
Special problem, Grocery Store Location. ECE 719
Optimal systems

Spring 2016
Electrical engineering department
University of Wisconsin, Madison

Instructor: Professor B Ross Barmish

By

Nasser M. Abbasi

December 30, 2019

Contents

0.1 Introduction . 3
0.2 Analysis of the problem . 3
0.3 Algorithm description . 6

0.3.1 Description of test cases used in development 8
0.4 Result applying the algorithm to the supplied input 9
0.5 Conclusion . 10
0.6 References . 11
0.7 Appendix . 11

List of Figures

1 Partitions found by kmeans++ with centroid as green dots and competitor
sores as black dots . 5

2 Density of population with corresponding store locations found 5
3 Partitions found by kmeans++ with centroid as green dots and competitor

sores as black dots . 5
4 Density of population with corresponding store locations found 5
5 Test case 1 . 10
6 Test case 2 . 10
7 Test case 3 . 10
8 Test case 4 . 10

List of Tables

1 Summary of store location score of each test case 9

2

3

Abstract

k-means++ cluster analysis was used to partition the population area such that the
center of each partition minimizes the within the partition sum of distance squares of
each point in the partition to the center of the partition. The number of customers that
would visit our stores located at the center of the partitions was then determined. The
number of partitions was increased and the calculation repeated on the larger set by
trying all of the di�erent combinations of allocating the stores in the new and larger set
of partitions. The largest score was selected. Matlab’s kmeans implementation in the
Statistics and Machine Learning Toolbox was used to find the set of partitions
and their centroids. kmeans++ clustering is known to be computationally NP-hard prob-
lem1. In addition, the time complexity to analyze each set of partitions is 𝒪 �𝑁�𝑝𝑛�� where
𝑝 is the number partitions and 𝑁 is the size of the population. This number quickly
becomes very large therefore the implementation limits the number of partitions 𝑝 to
no more than 15. A number of small test cases with known optimal store locations
were constructed and the algorithm was verified to be correct by direct observations.
Locations of competitor stores do not a�ect the decision to where to locate our stores.
Competitor stores locations a�ects the number of customers our stores will attract, but
not the optimal locations of our stores.

Index terms— k-means++ clustering, NP-hard, optimal store locations

0.1 Introduction

The problem is the following: We want to locate 𝑛 stores in an area of given population
distribution where there already exists 𝑚 number of competitor stores. We are given the
locations of the competitor stores. We want to find the optimal locations of our 𝑛 stores such
that we attract the largest number of customers by being close to as many as possible. We
are given the locations (coordinates) of the population.

0.2 Analysis of the problem

The first important observation found is that the locations of the competitor stores did not
a�ect the decision where the location of our stores should be. This at first seemed counter
intuitive. But the optimal solution is to put our stores at the center of the most populated
partitions even if the competitor store happened to also be in the same exact location.

The idea is that it is better to split large number of customers with the competition, than
locate a store to attract all customers but in a less populated area. This was verified using
small test cases (not shown here due to space limitation).

This is where cluster analysis using the kmeans++ algorithm was used. Cluster analysis is
known algorithm that partitions population into number of clusters or partitions such that
each cluster has the property that its centroid has minimum within-cluster sum of squares of
the distance to each point in the cluster. The following is the formal definition of kmeans++
clustering algorithm taken from https://en.wikipedia.org/wiki/K-means_clustering

1non-deterministic polynomial-time hard

https://en.wikipedia.org/wiki/K-means_clustering

4

Given a set of observations (𝑥1, 𝑥1, … , 𝑥𝑛), where each observation is a d-dimensional real
vector, k-means clustering aims to partition the 𝑛 observations into 𝑘 ≤ 𝑛 sets 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑘}
so as to minimize the within-cluster sum of squares (WCSS) (sum of distance functions of
each point in the cluster to the K center). In other words, its objective is to find:

arg min
𝑺

𝑘
�
𝑖=1

�
𝒙∈𝑆𝑖

�𝒙 − 𝜇
𝑖
�
2

where 𝜇𝑖 is the mean of points in 𝑆𝑖

The main di�culty was in deciding on the number of partitions needed. Should we try
smaller number than the number of stores, and therefore put more than one store in same
location? Using smaller number of clusters than the number of stores was rejected, since it
leads to no improvement in the score (Putting two stores in same location means other areas
are not served since we have limited number of stores). Or should we try more partitions
than the number of our stores, and then try all the combinations possible between these
partitions to find one which gives the larger score? This the approach taken in this algorithm.
It was found that by increasing the number of partitions than the number of stores, and
trying all possible combinations �𝑝𝑛�, where 𝑝 is the number of partitions, a set could be found
which has higher than if we used the same number of partitions as the number of stores. The
problem with this method is that it has 𝒪�𝑝𝑛� time complexity. This quickly becomes large
and not practical when 𝑝 > 15. In the test cases used however, there was no case found where
𝑝 had to be more than two or three larger than 𝑛. The implementing limits the number of
partitions to 15.

When a score is found which is smaller than the previous score, the search stops as this
means the maximum was reached. This was determined by number of trials where it was
found that once the score become smaller than before, making more partitions did not make
it go up again. There is no proof of this, but this was only based on trials and observations.
Therefore, the search stops when a score starts to decrease.

The implementation described here is essentially an illustration of the use of cluster analysis,
as provided by Matlab, in order to solve the grocery stores location problem. The appendix
contains the source code written to solve this problem.

Before describing the algorithm below, we show an example using the early test send to us
to illustrate how this method works. This used 500, 000 population with 5 competitor stores
(the black dots) in the plots that follows and 𝑛 = 4 (the green dots).

5

Figure 1: Partitions found by kmeans++
with centroid as green dots and competi-
tor sores as black dots

Figure 2: Density of population with cor-
responding store locations found

The partitions were now increased to 5 and �54� di�erent combinations were scored to find
the 4 best store locations out of these. This resulted in the following result

Figure 3: Partitions found by kmeans++
with centroid as green dots and competi-
tor sores as black dots

Figure 4: Density of population with cor-
responding store locations found

When trying 6 partitions, the score was decreased, so the search stopped. The program then
printed the final result
J*=[258732.0000] = [%51.75]

x y
21.356 28.929
78.378 66.732

6

48.212 51.197
84.078 16.864

0.3 Algorithm description

This is a description of the algorithm which uses the kmeans++ cluster analysis function
kmeans() as part of the Matlab Statistics and Machine Learning Toolbox toolbox,
which is included in the student version. This is not a description of the kmeans++ algorithm
itself, since that is well described and documented in many places such as in references [3,4].
This is a description of the algorithm using kmeans to solve the grocery location problem.

7

Algorithm 1: Cluster analysis using Kmeans++ for determining optimal store locations
Input: 𝑛,𝑋, 𝑌 where 𝑛 is the number of stores to allocate, 𝑋 is population coordinates, and 𝑌 is competitor store location coordinates
Output: list of coordinates to locate our 𝑛 stores at, and 𝐽∗ which is size of population our stores will attract when placed at these

locations

1 currentNumberOfPartitions ⟵ 𝑛
2 bestScore ⟵ 0
3 keepSearching ⟵ true
4 bestLocations ⟵ {}
5 while keepSearching do
6 𝐶 ⟵ kmeans(currentNumberOfPartitions,X) /* 𝐶 now contains the centroid of partitions found by kmeans++

cluster analysis algorithm using Matlab toolbox */
7 partitionSets ⟵ combnk(1:size(C,1),n) /* Find all possible combinations of partitions. Warning, this is �𝑘𝑛�

which will quickly grow. In practice, it was found we do not need 𝑘 greater than 𝑛 + 4 to find a
maximum. 𝑛 is limited to 10. */

8 partitionScore ⟵ 0
9 winningCombination ⟵ {}

10 foreach 𝑒 ∈ partitionSets do
11 score ⟵ 0
12 foreach 𝑥𝑖 ∈ 𝑋 do
13 𝑑1 ⟵ shortest distance of 𝑥𝑖 to any of the centroid of the partition 𝑒
14 𝑑2 ⟵ shortest distance of 𝑥𝑖 to any of competitor stores in 𝑌
15 if 𝑑1 ≤ 𝑑2 /* win this customer or split it. Else competitor is closer */
16 then
17 if 𝑑1 = 𝑑2 then
18 score ⟵ score + 1

2
19 else
20 score ⟵ score + 1
21 end
22 end
23 end
24 if score ≥ partitionScore then
25 partitionScore ⟵ score
26 winningCombination ⟵ 𝑒
27 end
28 end
29 if partitionScore ≥ bestScore then

/* score did not go down, keep searching. Increase number of population partitions by one and call
kmeans++ (above) for new partitions */

30 bestScore ⟵ partitionScore
31 bestLocations ⟵ winningCombination
32 if currentNumberOfPartitions = 15/* stop search if �𝑘>=15𝑖𝑛𝑘𝑛 � due to limitation */
33 then
34 keepSearching ⟵ false
35 else
36 currentNumberOfPartitions ⟵ currentNumberOfPartitions + 1
37 end
38 else

/* when score goes down, it will not improve any more */
39 keepSearching ⟵ false
40 end
41 end
42 return bestScore,bestLocations

8

0.3.1 Description of test cases used in development

It was very important to check the correctness of the algorithm using small number of test
cases to verify it is generating the optimal store locations as it is very hard to determine
the optimal solution for any large size problem by hand. The following are some of the test
problems used and the result obtained by the implementation, which shows that the optimal
locations were found for each case.

test case 1 0 1 2 3 4
0

1

2

3

4

5

By direct observations, since we have one store only, then we see that by locating it in
the center of the population, the score will be 6, which is optimal. The optimal store
location found by the program is {2.333, 2.222}

0 1 2 3 4
0

1

2

3

4

5

test case 2 This test case shows that the optimal location of our store do not change as
the competition store location is changed. Since the optimal location depends on
the clustering found and not on the competition location. In the following, the same
configuration is used, but one had the competition store is at {1.5, 5} and the other at
{4.5, 6.5}. We see by direct counting and observation that the optimal store location
is at {2, 5} regardless. The only di�erence is the number of customers we attract in
each case, but not the optimal store location itself. These two plots show this, with
the score we obtain given below each configuration.

Clearly when the competitor store is away from the density area, our score will increase.
Since the competition also wants to increase its score, then it should also have to locate
its store in the same location, which is the kmeans++ optimal location.

9

0 1 2 3 4 5 6

4

5

6

7

optimal {2.667,5} with score 6
0 1 2 3 4 5 6

4

5

6

7

optimal {2.667,5} with score 8

Many other test cases where run, using more store locations and they were verified manually
that the program result agrees with the finding. It is not possible to verify manually that the
result will remain optimal for large population and large number of stores, but these tests
cases at least shows that the algorithm works as expected. Now we will show result of large
tests cases and the program output generated.

0.4 Result applying the algorithm to the supplied input

The following table summarizes the result of running the store location algorithm on the 5
test cases provided.

Table 1: Summary of store location score of each test case

test case n m X (population) CPU time (minutes) 𝐽∗ percentage

trial/earlier one 4 5 500, 000 1.42 258, 732 51.75%
1 9 9 500, 000 5.49 371, 543 74.32%
2 10 10 1, 000, 000 3.38 637, 413 63.74%
3 5 5 130, 000 1.16 69, 093 53.15%
4 10 10 1, 000, 000 14.17 683, 899 68.39%

For illustration, the following four plots show the locations of our stores (the green dots) for
the above final four test cases with the location of the competitor stores (black dots) and
the final partitions selected.

10

Figure 5: Test case 1 Figure 6: Test case 2

Figure 7: Test case 3
Figure 8: Test case 4

0.5 Conclusion

kmeans++ algorithm for cluster analysis appears to be an e�ective method to use for finding
an optimal store locations, but it is only practical for small 𝑛 as the algorithm used to obtain
the partitions is NP-hard. In addition �𝑝𝑛� combinations of partitions needs to be searched
to select the optimal set.

This implementation shows how kmeans++ can be used to solve these types of problems.
The location of the competitor stores has no influence on where to locate the stores, but
it only a�ects the final possible score. Generating more partitions (using kmeans++) than
the number of stores and selecting from them the best set can lead to improved score. It
was found in the test cases used that no more than two of three additional partitions than
the number of stores was needed to find the a combination of partitions which gave the
maximum score. Generating additional partitions made the score go lower. The score used
is the number of customers the stores attract out of the overall population. The algorithm
was verified to be correct for small number of tests cases (not shown here due to space

11

limitation). More research is needed to investigate how feasible this method can be for
solving similar resource allocations problems.

0.6 References

1 Matlab cluster analysis toolbox. Mathworks, Natick, MA

2 https://en.wikipedia.org/wiki/K-means_clustering

3 Seber, G.A.F. (1984) Multivariate Observations, Wiley, New York.

0.7 Appendix� �
1 function abbasi()
2 %Special problem. ECE 719, spring 2016
3 %by Nasser M. Abbasi
4 %Matlab 2016a
5 %
6

7 clear; %start with clear env. just in case.
8 close all; %is it ok to close all windows?
9 commandwindow; %bring command window into focus
10 cd(fileparts(mfilename('fullpath')));
11

12 if license('test','Statistics_Toolbox') ~= 1
13 error(['Warning, the needed toolbox does not',�...
14 'seem to exist in your Matlab. This program needs',...
15 'the Statistics and Machine Learning Toolbox as',...
16 'it called kmeans++ cluster analysis\n',...
17 'Please use the ver command to check you the toolbox\n']);
18 end
19

20 %this window will close when we are done. Ok to do.
21 fig = figure('Position',[370 400 400 30],...
22 'Name','Optimal store locator. ECE 719. UW-Madison',...
23 'NumberTitle','off');
24 set(fig, 'MenuBar', 'none');
25 set(fig, 'ToolBar', 'none');
26 h = uicontrol('Style','text','Position',[4 7 396 15],...
27 'BackgroundColor','w',...
28 'HorizontalAlignment','left');
29 drawnow;
30

31 DEBUG=true; %set to true to see plots
32 %change to false before code lockdown as plots slows down time.
33

https://en.wikipedia.org/wiki/K-means_clustering

12

34 OUT(h,'Starting store location program version 1.0.....');
35 OUT(h,'Checking for mat files.....');
36

37 if ~exist('n.mat','file')
38 error(['file n.mat does not exist in current folder.',...
39 'Please check for lower/upper case and location']);
40 end
41 if ~exist('X.mat','file')
42 error(['file X.mat does not exist in current folder.',...
43 'Please check for lower/upper case and location']);
44 end
45 if ~exist('Y.mat','file')
46 error(['file n.mat does not exist in current folder.',...
47 'Please check for lower/upper case and location']);
48 end
49

50

51 cd('../official_data/4/');
52 load('n');
53 load('X');
54 load('Y');
55 OUT(h,'mat files read ok.....');
56 cd(fileparts(mfilename('fullpath')));
57

58 rng(1); %for reproducability
59 KEEP_TRYING = true; %tells when to stop search
60 best_score_found_so_far = 0;
61 best_locations = [];
62 current_number_of_cluster = n;
63 tstart = tic; %to keep track of CPU time
64 test_case = 4;
65 MAX_CPU = 15; %minutes CPU time limit.
66 status = true;
67 while KEEP_TRYING
68 OUT(h,sprintf(['Best score so far: [%d]. calling kmeans++',...
69 'to make %d partitions...please wait...'],...
70 round(best_score_found_so_far),current_number_of_cluster));
71 [idx,C] = make_cluster(X,current_number_of_cluster,...
72 'sqeuclidean');
73 active_C = combnk(1:size(C,1),n);
74 OUT(h,sprintf('created active_C, size is [%d,%d]....',...
75 size(active_C,1),size(active_C,2)));
76

77 [status,score,locations]=score_cluster(C,X,Y,active_C,...
78 tstart,h,MAX_CPU);

13

79

80 if ~status
81 OUT(h,'Allowed CPU time exceeded, stopping the program');
82 KEEP_TRYING = false;
83 else
84 if score>=best_score_found_so_far
85 best_score_found_so_far=score;
86 best_locations=locations;
87 current_number_of_cluster=current_number_of_cluster+1;
88 %stop search if size too large, or if number of
89 %partitions too large this is due to using k choose m.
90 %For k>15 it will need too much RAM.
91 if current_number_of_cluster>=size(X,1)...
92 ||current_number_of_cluster>=15
93 KEEP_TRYING = false;
94 end
95 OUT(h,sprintf('current score %6.2f',...
96 best_score_found_so_far));
97 if DEBUG
98 plot_result(test_case,best_locations,X,Y,...
99 best_score_found_so_far,C);
100 end
101 else
102 OUT(h,sprintf(...
103 'Score is %6.2f. Less than last. Terminating..',...
104 score));
105 KEEP_TRYING = false;
106 end
107 telapsed = toc(tstart);
108 if telapsed>MAX_CPU*60 % CPU limit
109 OUT(h,'CPU time exceeded');
110 KEEP_TRYING = false;
111 status = false;
112 else
113 OUT(h,sprintf(...
114 'CPU time used to far %6.2f minutes',telapsed/60));
115 end
116 end
117 end
118

119 %final result
120 fprintf('n=%d, X=%d, Y=%d\n',n,size(X,1),size(Y,1));
121

122 fprintf('J*=[%6.2f] = [%%%4.2f]\n\n',...
123 best_score_found_so_far,best_score_found_so_far/size(X,1)*100);

14

124 fprintf('optimal store coordinates\n');
125 fprintf(' x\t\t y\n');
126

127 for i=1:size(best_locations,1)
128 fprintf('%3.3f\t%3.3f\n',best_locations(i,1),best_locations(i,2));
129 end
130

131 telapsed = toc(tstart);
132

133 if ~status
134 fprintf('\nCPU limit reached. Elapsed time is %6.2f minutes\n',...
135 telapsed/60);
136 else
137 fprintf('\nElapsed time is %6.2f minutes\n',telapsed/60);
138 end
139 if ishandle(fig)
140 close(fig);
141 end
142 end
143 %=============================
144 function d = distance_between_2_points(pt1,pt2)
145 %find distance between 2 points, assuming one can only
146 %move N-S or E-W, not diagonal.
147 x1 = pt1(1,1);
148 y1 = pt1(1,2);
149 x2 = pt2(1,1);
150 y2 = pt2(1,2);
151

152 d = abs(x1-x2) + abs(y1-y2);
153 end
154 %===
155 function best_score_in_cluster = ...
156 find_my_score_in_each_cluster(C,X,Y)
157 %Takes center of each cluster (C) and customers locations (X)
158 %and competition store locations (Y) and returns how many
159 %customers I win in each cluster. Returns an array of number
160 %of customers we attract from competition in each cluster.
161

162 %to store score per cluster
163 best_score_in_cluster = zeros(size(C,1),1);
164

165 for i=1:size(X,1) %loop of all population to see which we win
166 %z1 is competitor, z2 is our store
167 [~,z1] = shortest_distance_to_stores(X(i,:),Y);
168 [idx,z2] = shortest_distance_to_stores(X(i,:),C);

15

169 if z2<=z1 %compare with competition to see if we are closer
170 if z1==z2
171 %oh well, split this customer between us and them
172 best_score_in_cluster(idx)=best_score_in_cluster(idx)+0.5;
173 else
174 %good, we are closer, take this customer.
175 best_score_in_cluster(idx)=best_score_in_cluster(idx)+1;
176 end
177 end
178 end
179 end
180

181 %===============================
182 function [idx,d] =shortest_distance_to_stores(pt,stores_locations)
183 %find shortest distance from one customer to a set of stores.
184 %The stores can be ours or the competition. Returns the shortest
185 %distance in 'd' and the index of the store who is closest to
186 %this customer
187

188 d = inf;
189 for i=1:size(stores_locations,1)
190 current_distance = distance_between_2_points(pt,...
191 stores_locations(i,:));
192 if current_distance <= d
193 d = current_distance;
194 idx = i;
195 end
196 end
197

198 end
199 %==
200 function [status,best_score,locations]=score_cluster(...
201 C,X,Y,active_C,tstart,h,MAX_CPU)
202

203 best_score = 0;
204 status = true;
205 KEEP_TRYING = true;
206

207 while KEEP_TRYING
208 for i=1:size(active_C,1)
209 OUT(h,sprintf(['scoring partition %d of %d in score_cluster() ',...
210 'Current best score %d'],...
211 i,size(active_C,1),round(best_score)));
212

213 score = find_my_score_in_each_cluster(...

16

214 C(active_C(i,:),:),X,Y);
215 score=sum(score);
216 if score>best_score
217 best_score = score;
218 locations = C(active_C(i,:),:);
219 end
220 telapsed = toc(tstart);
221 if telapsed>MAX_CPU*60
222 OUT(h,sprintf('Exceeded CPU time limit in score_cluster'));
223 KEEP_TRYING = false;
224 status = false;
225 end
226 end
227 KEEP_TRYING = false;
228 end
229 end
230 %===================================
231 function [idx,C] = make_cluster(population,how_many,the_option)
232 %cluster the population. Number of cluster is same as
233 %number of our stores. This was found to be optimal by many
234 %trials and errors. If we use more clusters than number of
235 %stores, the score actually goes down.
236 warning('off','all');
237 [idx,C] = kmeans(population,how_many,'Replicates',5,...
238 'MaxIter',50,'Distance',the_option);
239 warning('on','all');
240 end
241

242 %===
243 function plot_result(test_case,store_locations,X,Y,...
244 overall_best_score,C)
245

246 %figure;
247 tmp = hist3(X, {0:100 0:100});
248 n1 = tmp';
249 n1(size(tmp,1), size(tmp,2)) = 0;
250 xb = linspace(0,100,101);
251 yb = xb;
252

253 figure;
254 pcolor(xb,yb,n1);
255 hold on;
256 plot(Y(:,1),Y(:,2),'o','MarkerSize',9,...
257 'MarkerFaceColor','black',...
258 'LineWidth',1,'MarkerEdgeColor','white');

17

259 plot(store_locations(:,1),store_locations(:,2),...
260 'o','MarkerSize',9,'MarkerFaceColor','green',...
261 'MarkerEdgeColor','black');
262 title({sprintf(...
263 ['Test case $%d$. Showing our store location with',...
264 'competitors on density plot. score =%5.1f'],...
265 test_case,overall_best_score),...
266 sprintf('number of partitions k = $%d$, population size $%d$',...
267 size(store_locations,1),size(X,1))},...
268 'Fontsize',11,'interpreter','Latex');
269 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
270 drawnow;
271 saveas(gcf, sprintf('../images/1_test_case_%d',test_case), 'pdf');
272 saveas(gcf, sprintf('../images/1_test_case_%d',test_case), 'png');
273

274 figure;
275 [x1G,x2G] = meshgrid(linspace(0,100,200),linspace(0,100,200));
276 XGrid = [x1G(:),x2G(:)]; % Defines a fine grid on the plot
277 warning('off','all');
278 idx2Region = kmeans(XGrid,size(C,1),'MaxIter',1,'Start',C);
279 warning('on','all');
280 cmap = hsv(size(C,1));
281 gscatter(XGrid(:,1),XGrid(:,2),idx2Region,cmap,[],[],...
282 'doLeg','off');
283 hold on;
284 plot(Y(:,1),Y(:,2),'o','MarkerSize',12,...
285 'MarkerFaceColor','black',...
286 'LineWidth',1,'MarkerEdgeColor','white');
287 plot(store_locations(:,1),store_locations(:,2),...
288 'o','MarkerSize',9,'MarkerFaceColor','green',...
289 'MarkerEdgeColor','black');
290 title({sprintf(['test case $%d$. gscatter used to show',...
291 'partitions found by kmeans++'],test_case),...
292 sprintf('number of partitions k = $%d$, population size $%d$',...
293 size(C,1),size(X,1))},'Fontsize',11,'interpreter','Latex');
294 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
295 drawnow;
296 saveas(gcf, sprintf('../images/2_test_case_%d',test_case), 'pdf');
297 saveas(gcf, sprintf('../images/2_test_case_%d',test_case), 'png');
298 end
299 %==
300 function OUT(h,the_string)
301 fprintf(the_string);
302 fprintf('\n');
303

18

304 %if ishandle(h)
305 % set(h,'String',the_string);
306 % drawnow;
307 %end
308 end� �� �
1 function nma_generate_output(test_case)
2 %Program to generate output to test special problem with
3 %Nasser M. Abbasi
4 %ECE 719, UW Madison
5

6 cd(fileparts(mfilename('fullpath')));
7

8 switch test_case
9 case 1
10 X=[1,2;
11 1,3;
12 2,2;
13 2,3;
14 3,0;
15 3,1;
16 3,2;
17 3,3;
18 3,4];
19 Y=[1.5,2.5];
20 n=1;
21 save('n','n');
22 save('X','X');
23 save('Y','Y');
24 save('test_case','test_case');
25

26 case 105
27 X=[1,2;
28 1,3;
29 2,2;
30 2,3;
31 3,0;
32 3,1;
33 3,2;
34 3,3;
35 3,4];
36 Y=[1.5,2.5];
37 n=2;
38 save('n','n');
39 save('X','X');
40 save('Y','Y');
41 save('test_case','test_case');

19

42

43 % fprintf('best score is %3.3f\n',...
44 % find_my_score_in_each_cluster([2.5,2.5],X,Y))
45 case 2
46 X=[1,4;
47 1,5;
48 1,6;
49 2,4;
50 2,5;
51 2,6;
52 5,6;
53 5,5;
54 5,4];
55 Y=[4,6.5];
56 n=1;
57 save('n','n');
58 save('X','X');
59 save('Y','Y');
60 save('test_case','test_case');
61

62 % fprintf('best score is %3.3f\n',...
63 % find_my_score_in_each_cluster([2,5],X,Y))
64

65 case 3
66 X=[1,4;
67 1,5;
68 1,6;
69 2,4;
70 2,5;
71 2,6;
72 5,6;
73 5,5;
74 5,4];
75 Y=[1.5,5];
76 n=1;
77 save('n','n');
78 save('X','X');
79 save('Y','Y');
80 save('test_case','test_case');
81

82 % fprintf('best score is %3.3f\n',...
83 % find_my_score_in_each_cluster([2,5],X,Y))
84

85 case 4
86 X=[1,1;
87 1,2;
88 2,1;

20

89 2,2;
90 4,3;
91 4,4;
92 5,3;
93 5,4];
94 Y=[3,2.5];
95 n=1;
96 save('n','n');
97 save('X','X');
98 save('Y','Y');
99 save('test_case','test_case');
100

101 % fprintf('best score is %3.3f\n',...
102 % find_my_score_in_each_cluster([2,5],X,Y))
103

104 case 5
105 X=[1,1;
106 1,2;
107 1,3;
108 2,1;
109 2,2;
110 2,3;
111 3,2;
112 4,2;
113 4,3;
114 4,4;
115 4,5;
116 5,1;
117 5,2;
118 5,3;
119 5,4;
120 5,5;
121 6,3;
122 6,4;
123 6,5];
124 Y=[5,4];
125 n=1;
126 save('n','n');
127 save('X','X');
128 save('Y','Y');
129 save('test_case','test_case');
130

131 % fprintf('best score is %3.3f\n',...
132 % find_my_score_in_each_cluster([2,5],X,Y))
133

134 case 6
135 X=[1,1;

21

136 2,1;
137 3,1;
138 1,2;
139 2,2;
140 3,2;
141 1,3;
142 2,3;
143 3,3];
144 Y=[2,2];
145 n=2;
146 save('n','n');
147 save('X','X');
148 save('Y','Y');
149 save('test_case','test_case');
150

151 % fprintf('best score is %3.3f\n',...
152 % find_my_score_in_each_cluster([2,5],X,Y))
153

154 case 7
155 rng default; % For reproducibility
156 N=10000;
157 X=[30 + 2*randn(N,1),30 + 8*randn(N,1);
158 40 + 2*randn(N,1),40 + 10*randn(N,1);
159 25 + 2*randn(N,1), 50 + 4*randn(N,1);
160 20 + 2*randn(N,1),30 + 4*randn(N,1);
161 50 + 2*randn(N,1),50 + 4*randn(N,1)];
162

163 n=9; %this gives 50%, since competition is allready optimal
164 Y=[41.6552 35.4282;
165 24.5046 33.8534;
166 30.5928 30.0431];
167 save('n','n');
168 save('X','X');
169 save('Y','Y');
170 save('test_case','test_case');
171

172

173 case 8
174 rng default; % For reproducibility
175 N=1000;
176 X=[30+randn(N,1),30+randn(N,1);
177 40+randn(N,1),40+randn(N,1);
178 25+randn(N,1),50+randn(N,1);
179 20+randn(N,1),30+randn(N,1);
180 50+randn(N,1),50+randn(N,1)];
181

182 n=4; %this gives 50%, since competition is allready optimal

22

183 Y=[41.6552 35.4282;
184 24.5046 33.8534;
185 30.5928 30.0431];
186 save('n','n');
187 save('X','X');
188 save('Y','Y');
189 save('test_case','test_case');
190

191 case 9
192 rng default; % For reproducibility
193 N=1000;
194 X=[30+randn(N,1),30+randn(N,1);
195 40+randn(N,1),40+randn(N,1);
196 25+randn(N,1),50+randn(N,1);
197 20+randn(N,1),30+randn(N,1);
198 50+randn(N,1),50+randn(N,1)];
199

200 n=7; %this gives 50%, since competition is allready optimal
201 Y=[41.6552 35.4282;
202 24.5046 33.8534;
203 30.5928 30.0431];
204 save('n','n');
205 save('X','X');
206 save('Y','Y');
207 save('test_case','test_case');
208

209 case 10
210 rng default; % For reproducibility
211 N=100000;
212 X=[30+randn(N,1),30+randn(N,1);
213 40+randn(N,1),40+randn(N,1);
214 25+randn(N,1),50+randn(N,1);
215 20+randn(N,1),30+randn(N,1);
216 50+randn(N,1),50+randn(N,1)];
217

218 n=10; %this gives 50%, since competition is allready optimal
219 Y=[41.6552 35.4282;
220 24.5046 33.8534;
221 30.5928 30.0431;
222 40.5928 30.0431;
223 70.5928 30.0431];
224 save('n','n');
225 save('X','X');
226 save('Y','Y');
227 save('test_case','test_case');
228

229

23

230 end
231 end� �

	Introduction
	Analysis of the problem
	Algorithm description
	Description of test cases used in development

	Result applying the algorithm to the supplied input
	Conclusion
	References
	Appendix

