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Chapter 1

Introduction

Took this course in Spring 2015 to learn a little about dyanmics of robotics.

professor

1.1 Syllubus

’ ME/ECE 739 Introduction to Robotics

Course
Description:

Prerequisites:

Lectures:

Instructor:

Textbook:

Learn@UW:

Homework:

Final Project /
Paper Review:

Grading:

A first course in robotics analysis and design, focusing on the analytical
fundamentals specific to robotic manipulators. Topics to be covered
included serial chain robotic manipulator kinematics, dynamics, motion
planning, and controls.

ME 446 or ECE 332 or equivalent 1%t semester controls course, Math 320 or
340 or equivalent basic linear algebra course. In addition to the formal
prerequisites, familiarity with the following topic areas will be helpful

There are no required prerequisites for the class - but exposure to the
following topic areas will be helpful

= Kinematics and dynamics (at ME 240 level)

= System dynamics (at ME 340 level)

= Working knowledge of Matlab (important for homework)

Posted weekly to the course Learn@UW course page

Prof. Michael Zinn
2242 ME bldg.
608.263.2893 / mzinn@wisc.edu

Robot Modeling and Control, by Spong, Hutchinson, and Vidyasagar,
published by John Wiley & Sons, Inc., 2006
ISBN-10: 0-471-64990-2 / ISBN-13: 978-0-471-64990-8

The course Learn@UW web page will be used to post course material
throughout the semester. The page will have links to the recorded
lectures, course schedule/syllabus, the PowerPoint lecture notes, assigned
homework, and miscellaneous supporting material. | recommend you
check this periodically to make sure you have the up-to-date course
material.

Homework will be assigned approximately every two weeks and will be
due at the beginning of class on the specified due date.

Students will select a robotics design problem of their choosing and use a
combination of the tools learned in the course to develop a final design. A
final report, including working Matlab code, is required. The chosen design
problem must be approved by the instructor

Grades are based on your performance on the assigned homework (75%)
and the final project (25%).

Instructor:


http://directory.engr.wisc.edu/me/faculty/zinn_michael

ME/ECE 739 Introduction to Robotics

Course Schedule (Approximate):

Approx. Date Topic Text
1/20 (T) 1. Introduction Spong 1.1-1.4
1/22 (Th)
1/27 (T) 2. Rigid Body Motion
1/29 (Th) [ Representation

2/3 (M)
2/5 (Th)

January

Spong 2.1-2.8

3. Forward and Inverse
2/10 (T) . . Spong3.1-3.4
2/12_(Th) Kinematics
2/17 (1)
2/19 (Th)
2/24 (T)
2/26 (Th)

3/3 (M)

3/5 (Th)
3/10 (T)
3/12 (Th)
3/17 () | 6 Motion Planning /
3/19 (Th) . . Spong 5.1-5.5
324 (T) Trajectory Generation
3/26 (Th)

4/7 (1) | 7. Independent Joint Control | Spong6.1-6.5

4/9 (Th)
4/14 (7)
4/16 (Th)
4/21 (T)
4/23 (Th)
4/28 (1)
4/30 (Th)| 9. Force Control and

5/5 (T) | Miscellaneous Topics

5/7 (Th)

February

4. Velocity Kinematics Spong 4.1 -4.13

5. Dynamics Spong 7.1-7.6

March

8. Multivariable Control Spong 8.1-8.2

April

Spong 9.1-9.4

May




Chapter 2

HWs

21 HW1

2.1.1 Problem 1

problem description

(1) [Spong 2-15] Suppose that three coordinate frames o0;x;y:z;, 02X;y222, and 03x3y3z3 are given, and

suppose
1 0 0 00 -1
R=|0 » B/, Ri=|0 1 0
0 ¥ y 100
» Find the matrix R P
solution
Starting with the relation
R = RIR2

Pre-multiplying both sides by (R})™' which exists since R is a rotation matrix and hence

invertible results in
R = (BY)'R}

For a rotation matrix the following relation holds

(Ry)™ = (Ry)"



Therefore

1 0 0
00 -1
o3 | {01 o
NV 10 0
2 2
1 0 0
00 -1
o1 Bfo1 o
0—\/?71 10 0
2 2
0o 0 -1
3
| o
L

2.1.2 Problem 2

(2) [Spong 2-38] Consider the adjacent diagram. Find the
homogeneous transformations 7,°, 7,’, T, representing the

transformations among the three frames shown.
» Show that 7)) = T,"T}

Figure 2.1: problem 2 description

The goal is to determine TP, 7Y, TY and T#. T; ' is the homogeneous transformation from
frame {i — 1} to frame {i} given by

Ti-1 R d
’ 0 1

Where d is the position vector from the origin of frame {i — 1} to the origin of frame {7}
expressed in frame {i — 1}, and R:* is the rotation matrix.



By direct inspection of the above diagram the following transformations are obtained

0 1 0 O 0 0 -10 0 -1 0 1
0 0 -1 0 -1 0 0 1 0 0 -1 O

0 _ 0 _ 1_
= -1 0 0 1 Iz = 0 1 0 O Ix = 1 0 0 -1
0 0 0 1 0 0 0 1 0 0 0 1

Given the above transformations TP7; is found and checked to be the same as Ty

0 1 0 0\/0o -1 0 1
0 0 -1 0]]0 0 -1 0
0l __
LT, = -1 0 0 1|1 o 0 -1
0 0 1/\o o 0 1
0 0 -1 0
-1 0 0 1
10 1 0 O
0 0 0 1

Which is the same as Ty as expected.

2.1.3 Problem 3

v X3

(3) [Spong 2-39] Consider the diagram below. A robot is set up 1 meter B i:,
from a table. The table top is 1 meter high and 1 meter square. A frame
o:xyiz; is fixed to the edge of the table as shown. A cube measuring 20
cm on a side is placed in the center of the table with the frame o,xsy2z> 2
established at the center of the cube as shown. A camera is situated
directly above the center of the block 2 meters above the table top
with frame osx3y3z; attached as shown. Find the homogeneous
transformations relating each of these frames to the base
frame ogxgyozo.
» Find the homogeneous transformation relating

the frame 0,x,y2z> to the camera frame o03x3y3z3.

Figure 2.2: problem 3 description

The distance from the table surface to the center of the small cube is 0.1 meter. The goal
is to determine TY, 79, 7% and T2. By direct inspection of the given figure the following



transformations are obtained

1000 100 —05 01 0 -05

0101 010 15 10 0 15
0 __ 0 __ 0 __
T1_0011’T2_001 1.1 ’T3_00—1 3

0001 000 1 00 0 1

In each of the above, the first column of TZ‘1 is the projection of Z in frame ¢ into frame
t — 1 and the second is the projection of ¢ in frame ¢ into frame ¢ — 1 and the third column
the projection of Z in frame 7 into frame ¢ — 1. The fourth column of T is the position vector
of the center of frame i expressed in frame i — 1. By inspection T7 is found to be

01 0 O
2 |10 0 0
Ty 00 —1 1.9

00 0 1

2.1.4 Problem 4

(4) Coordinate frames {A} and {B} are fixed with respect to ground and are related by the homogeneous
transformation matrix

-% 0 —f% )
y 0 1 0 1

A A
00 0 1
The velocity of a point expressed in frame {A} is given as
vi=[-2 4 2]
» Evaluate the velocity of the point expressed in frame {B},v”

» Calculate the magnitude of v*andv”. Are they equal and why?

Figure 2.3: problem 4 description

PART 1:

Let d be the position vector of the origin of frame {B} relative to frame {A}. Let r* be
the position vector of a point relative to frame {A}, and r® be the position vector of the
point relative to frame {B} as shown in the following diagram



From the above diagram r4 is found as

r* = Rgr® +d

(1)
From the problem statement, R4 = | 0

2 -2
0 andd=| 4
ﬁ 0 =1 2
2 2

Taking time derivative of (1) and using the chain rule results in

- -V3
30
1

dR4 d
A= _dtBTB + Rpv® + %d (2)
R% does not depend on time, therefore % = 0. Since frame {B} does not move relative
to frame {A}, therefore £d = 0. Using these results (2) simplifies to

v = Rng

. B . A -1 A T . I .
Solving for v” from the above, and noting that (RB) = (RB> since it is a rotation
matrix gives

T
VP = (Rg) vA
Substituting the values given in the problem in the above results in

T
BVE
710—‘( _9

vB 0 1 0 4
ﬁo—l 2
2




Therefore

PART 2:

The norm of the velocity vectors are

|[+* =

|[+*1 =

10

V3 +1
4
V3 -1

They have the same magnitude. The reason is that frame {B} itself does not move nor
rotate relative to {A}. Therefore frame B is fixed relative from frame {A}. Hence the
velocity of a point relative to frame {A} will have the same magnitude relative to {B}. The
velocity vector has different representation depending on the frame of reference, but has

the same magnitude.

2.1.5 Problem 5

(5) For the two manipulators shown below derive the forward kinematics equations using the DH

operational
point
O

convention. /
v
A
(D,
™)

operational
point

B)

P Assign frames per the DH convention and build the DH table for each manipulator

» Derive the homogeneous transforms that relate successive frames (i.e. frame {i} to {i-1}) asa
function of the joint variables and manipulator geometric parameters.

» Derive the homogeneous transform that relates the position and orientation of the end-effector to
the base frame as a function of the joint variables and manipulator geometric parameters. Use the
base frame and end-effector operation point defined in the figures.

Figure 2.4: problem 5 description
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solution

PART (A)
The first step is to assign the z; axes for each link as follows

joint 2 C

link 1

joint 1 [ X0

link 0

TTITTT

4 links, 3 joints manipulator

The four Denavit-Hartenberg parameters are defined as follows|
1. a; (link length). The distance between axis z;_; and z; measured along z;.
2. «; (link twist angle). The angle between z;_; and z; measured in a plane normal to

x; using the right hand rule, around z; (not x;_;) to determine the positive sense of
this angle.

3. d; (link offset). The distance from origin o;_; to the intersection of the z; axis with
z;_1 measured along z;_; axis.
4. 6; (Joint angle). The angle from z;_; to x; measured in plane normal to z;_;.

When assigning the frames using the above rules, we need to insure? that z;;; L 2; and
x;+1 intersects z;. Using the above rules the DH table is written down. There is one row in
the table for each link. Hence there will be three rows. Link 0 is the base link and attached
to the ground and does not show in the table.

a (link length) | a (link twist angle) | d (link offset) | 6 (Joint angle)
link 1 0 90° L, 61
link 2 L, 0 0 6,
link 3 L 0 0 05

ITextbook, page 80.
2Text book, page T8.
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The following diagram shows the parameters for the first link

a1=0

0y X0~

The following diagram shows the parameters for the second link

=12
a

V2
distance between o and Interesection of x,.z; 11 x2
d, =0 T 0 9= 6 »
X1

since z1||z; thenas; = 0

The following diagram shows the parameters for the third link

dy=0 _

= L3
as» V3
X3
distance between o, and intersection of x3.z, Va2
LT 9= 0 R
02 X2

since z3||z2 then a3 = 0°

Now the forward transformations using equation (3.10) on page 77 of the textbook is found

Cg —SgCa SgSa GCQ
S CoC, —CyS, aSs
0 Sa Co d
0 0 0 1

Hence



A

A

&
I

cos 6,
sin 6,
0
0

cos Oy
sin 02
0
0

cos 05
sin 05
0
0

—sin 6, cos §

cos 0 cos
: s
Sin b

0

—sinf#, cos0

cos B cos0
sin 0
0

—sinf3cos0

cos B3 cos 0
sin 0

0

Using the above, T3 is found

T'?? = A1A2A3

cos 0,
sin 91

0
0

sin 6,
—cos b,
0
0

0

0
L,

1

sin 0; sin

—cos 6y sin §

s
COS §
0

sin f5 sin 0
— cos 0, sin
cos0
0

sin 63 sin 0
— cos 03 sin
cos0
0

cos 0y
sin 02
0
0

0 cosf; O
0 [sing, O
L] | o 1
1 0 0
Ly cosf, cos 0,
0 L2 sin 02 o sin 92
0 N
1 0
L3 cos 05 cos 03
0 Lzsinf3 | | sinf;
0 10
1 0
—sinf, 0 Lycosfy
cosfy 0 Lssinf,
0 1 Ly
0 0 1
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sin 6, 0
—cosf; O
0 L,
0 1
—sinf; 0 Lycosf,
cosf, 0 Lssinf,
0 1 0
0 0 1
—sinf3 0 Lscosbs
cosf3 0 L3sinbs
0 1 0
0 0 1
cosfl3 —sinf3 0 Lscosbs
sinf3 cosf3 0 Lssinfs
0 0 1 0
0 0 0 1

For verification of the above, let 6; = 0,6, = 0,605 = 0 then the fourth column of T gives
the position vector of the end effector relative to the base when the manipulator is in the
position in the problem. Substituting these values for the angles gives

Ty =

o O O =

0
0
1
0

0 Lo+ Ls
-1 0
0 L,
0 1

The above says that the end effector is at position vector p® = (Ly + L3, 0, L;) which means
x3 = Lo+ L3,y3 =0, 23 = L;. From the diagram this result is correct.

PART (B) For the second manipulator, the same steps were repeated. The first step is to
assign the axes for each link as follows
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3 joints, 4 links

Y
IA link 3 T =X3
/ |
L, |

0¢ IS base frame

01 Is link 1 frame (prismatic)
0, is link 2 frame

03 IS link 3 frame

The DH table is written down

a (link length) | a (link twist angle) | d (link offset) | 6 (Joint angle)
link 1 0 90° 0 61 + 90°
link 2 0 —90° Ly + Ly +ds 0
link 3 L 0 0 63 — 90°

The forward transformations using equation (3.10) on page 77 of the textbook gives

A=

—S6Cq
CoCo

SoSa an
—C’(;Sa aSe

Sa Ca d

0

0 1

Using the above, and noting that cos (z + 90°) = — sin z,sin (z + 90°) = cos z,cos (z — 90°) =
sinz and sin (z — 90°) = — cos (z) results in
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cos (01 +90) —sin (01 +90)cos T sin(6; +90)sing 0 —sinf; 0 cosfy 0
A = sin (6, +90)  cos (61 +90)cos5 —cos(61+90)sing O| | cosfy O sin6; 0
0 sin 2 cos 2 0 0 1 0 0
cos0 —sin0cos(—90°)  sinOsin (—90°) 0cos0 1 0 0 0
A sin0 cosOcos(—90°) — cos0sin(—90°%) 0sin0 0 0 1 0
2 = =
0 sin (—90°) cos (—90°) Li+ Ly +ds 0 -1 0 Li+Ly+ds
cos (93 - 900) —sin (03 — 900) cos0 sin (93 - 900) sin 0 L3 cos (03 — 900) sin 93 COs 03 0 L3 sin 03
A2 — | sin (93 - 900) cos (03 — 900) cos0 — cos (03 — 900) sin0 Lgsin (03 — 900) = | cos 03 Sin 03 0 _L3 cos 03
0 sin 0 cos0 0 O O 1 O
0 0 0 1 0 0 0 1
From the above
T:? = A;AyA;
—sinf; 0 cos#; O\ (1 O O 0 sinf3 cosf; 0 Lssinfs
_| costy 0 sinf 0|0 O 1 0 —cosf; sinf; 0 —Ls3cosbs
0 1 0 0 0 -1 0 Li+Lsy+dy 0 0 1 0
0 0 0 1 0 0 O 1 0 0 0 1
cosf1 cosf3 —sinfy sinf3 —cosfysinf3 —cosf3sinfy 0 cosby (L1 + L2 + d2) + L3 cos 61 cos 3 — L3 sin 01 sin 03
— | cosf1sinf3 + cos 03 sin 6 cos 01 cos 03 — sin 0 sin 63 0 sin6; (L1 + L2 + d2) + L3 cos 0y sin 63 + L3 cos 03 sin 61
0 0 1 0
0

0 0 1

To verify the above, let §; = 0,63 = 360°,d; = 0 then the fourth column of 79 gives the
position vector of the end effector relative to the base when the manipulator is in a straight
horizontal position

1 0 0 Ly+ Lo+ Ls
010 0
TO =
3 001 0
000 1

The above results show that x3 = L, + Lo + L3 which is the expected result.
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2.1.6 Problem 6

problem description

» Write Matlab code to plot the position (X, y, and z coordinates) of the end-effector (point E) as a
function of time. Your plots should match the plots shown below. The joint motion, as a
function of time, is given below. Make sure to include all supporting functions, including any
custom plotting routines, with your homework submission. Your homework submission must
provide clear, easy instructions to run you Matlab code

Joint variable inputs:
g, =—rsin(t), g, =%(1-cos(t)), g, =Zsin(t), q, =5L,(1-cos(t)), g; =—Zsin(t), g, = Zsin(t)
Please animate the system over the time interval t =0:27 .

»  Write Matlab code to animate the manipulator using the Matlab scripts provided on the
Learn@UW course page. The joint motion, as a function of time, is given above. Make sure to
include all supporting functions, including any custom plotting routines, with your homework
submission. Your homework submission must provide clear, easy instructions to run you Matlab
code. To maintain consistency, please use the following rendering window view parameters.

3----set rendering window view parameters

3 figure handle

f handle = 1;

3 axis limits

axis_limits = [-10 10 0 10 -10 10];
camera position

render _view = [-1 1 -1];

3 vertical orientation

view up = [0 1 0];

initialize rendering view
SetRenderingViewParameters (axis_limits,render view,view up,f handle);
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(6) For the manipulator shown in the adjacent figure

- .—-..q‘5

» Derive the homogeneous transforms that relate the successive frames as a function of the joint
variable and manipulator geometric parameters (i.e. find: TIO,TZI,T;,]?,T;,T? ). Use the

coordinate frames as defined in the figure. Note that the frames are fixed to the links at various
locations (e.g. proximal end, distal end). Assume that ¢; equals zero when the manipulator lies in
the plane of the page. Attendee

» Write Matlab code to calculate the homogeneous transforms derived above as a function of the
joint variables g1, g2, ¢3, g4 and gs.

»  Write Matlab code to calculate the homogeneous transformation matrices that describe the frame
displacements relative to the ground frame {0} (i.e. numerically evaluate T;O,TZO, T30,7:‘0,T50, T60 ).
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» Write Matlab code to plot the position (X, y, and z coordinates) of the end-effector (point E) as a
function of time. Your plots should match the plots shown below. The joint motion, as a
function of time, is given below. Make sure to include all supporting functions, including any
custom plotting routines, with your homework submission. Your homework submission must
provide clear, easy instructions to run you Matlab code

Joint variable inputs:

q, =—msin(t), g, =%(1—cos(t)), g, =Zsin(t), g, =+L,(1-cos(t)), g; =—Zsin(t), g, = %sin(t)
Please animate the system over the time interval t = 0:27 .

» Write Matlab code to animate the manipulator using the Matlab scripts provided on the
Learn@UW course page. The joint motion, as a function of time, is given above. Make sure to
include all supporting functions, including any custom plotting routines, with your homework
submission. Your homework submission must provide clear, easy instructions to run you Matlab
code. To maintain consistency, please use the following rendering window view parameters.

$----set rendering window view parameters

% figure handle
f handle = 1;

% axis limits
axis limits = [-10 10 O 10 -10 10];

% camera position
render view = [-1 1 -1];

% vertical orientation
view_up = [0 1 0];

% initialize rendering view
SetRenderingViewParameters (axis_limits,render view,view_up,f handle);

solution

The homogeneous transformation 77! was derived by inspection giving the following results



19

0 sing; cosqgr: O cosq; 0 sings O cosqs singg 0 O
70 1 0 0 L,y Tl _ 0 1 0 0 T2 _ 0 0 -1 0
! 0 cosqu —singg O |72 —singg 0 cosgy Of’73 —singg cosqs 0 Lo
0 0 0 1 0 0 0 1 0 0 0 1
1 00 0 cosqgs sings 0 O —cosqs singg 0 O
T3 _ 01 0 Ls+aqu |~ sings cosqs 0 0 5 _ 0 0 1 Ls
0 01 0 s 0 0 1 0[7° singg cosgg 0 O
0 00 1 0 0 01 0 0 0 1

The following is plot of the z,y, z coordinates of the end effector £

‘) DVARER

-~

ENLYAAV/ R 7SN L etV

-10 -10

0 5 0 5 0 5
t (sec) t (sec) t (sec)

The following Matlab script problem_6_part_1.m calculates the homogeneous transforma-
tion Tp and plots the above figures

%This scripts plots the x,y,z coordinates of the end effector E
%for problem 5, HW1 , ME 739.

%to run, type this script name on the Matlab console

% problem_6_part_1

%The matlab path must include the ME 739 rendering software
%Nasser M. Abbasi 2/16/15

clear all; close all;
%define syms to use to build the T matrices
syms q1 92 93 g4 q5 q6 L1 L2 L3 L5 ¢t

L1 = 3;
L2 = 5;
L3 = 3;
L5 = 3;
h6 = 1;

ql = -pi*sin(t);

q2 = pi/4*(1-cos(t));
g3 = pi/4*sin(t);

g4 = 1/2%L3*(1-cos(t));
g5 = -pi/4*sin(t);

g6 = pi/4*sin(t);




%define the 6 transformation matrices TO1 to T56 in syms

Tol = [0 sin(ql) cos(ql) 0;

1 0 0 L1;

0 cos(ql) -sin(ql) O;

0 0 0 11;
T12 = [cos(q2) O sin(q2) O0;

0 1 0 0;

-sin(q2) O cos(q2) 0;

0 0 0 11;
T23 = [cos(g93) sin(g3) O 0;

0 0 ) 0;

-sin(q3) cos(g3) 0 L2;

0 0 0 1];
T34 = [1 0 0 0;

0 1 0 L3+q4;

0 0 1 0;

0 0 0 11;
T45 = [cos(g5) sin(gb) O 0;

-sin(gb) cos(g5) 0 0;

0 0 1 0;

0 0 0 11;
T56 = [-cos(q6) sin(g6) O 0;

0 0 1 L5;

sin(g6) cos(g6) O 0;

0 0 0 1];

%Now obtain TO6 to allow finding the end effector coordinates
TO6 = TO1xT12%T23*T34*T45%T56;

%handle to function to evaluate TO6 at each instance of time
endPos = @(t0) subs(T06,t,t0)

%set up time scale, and evaluate the end effector coordinates
%saving result in a matrix for plotting later.

timeScale = 0:.1:2%pi;

coords zeros(length(timeScale),3);

%generate the coordinates of the end effector
for i = 1:length(timeScale)
p = endPos(timeScale(i))*[-h6 0 0 1]°’;
coords(i,:) = p(1:3);

20




end

%now plot the result. First col is the x-coordinates,
%second col is y-coord, and third col is z-coordinate.
subplot(1,3,1);

plot(timeScale,coords(:,1), ’LineWidth’,1.5);
xlabel(’t (sec)’); ylabel(’x’);

grid; axis square; x1im([0 2*pil);ylim([-14 14]);
set(gca, ’GridLineStyle’, ’-’);

subplot(1,3,2);

plot(timeScale,coords(:,2), ’LineWidth’,1.5);
xlabel(’t (sec)’); ylabel(’y’);

grid; axis square; x1im([0 2*pi]);ylim([0 18]);
%axis square; axis tight

set(gca, ’GridLineStyle’, ’-’);

subplot(1,3,3);
plot(timeScale,coords(:,3),’LineWidth’,1.5);
xlabel(’t (sec)’); ylabel(’z’);

grid; axis square; x1im([0 2*pi]);ylim([-13 15]);
set(gca, ’GridLineStyle’, ’-’);

%hexport_fig(gct, ’problem_6_part_1.pdf’);
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The following matlab script calculates 17,75, T3, T, T, T, where Ty
T9T3,T9 — T9T3,T9 = TITY, T¢ — T3S

For example, for T the result is

0 sing; cosq; O
70 1 0 0 L,
! 0 cosqy —sing; O
0 O 0 1
0 singg cosq; O cosqga 0 sings 0
1 0 0 L 0 1 0 O
TO — TOTl — 1 _
2 172 0 cosqu —sing; O —sings 0 cosge O
0 O 0 1 0 0 O 1

- TV, TY -

—cosq;singy sing; €Osq; COS Qo
COS @2 0 sin g2
sing,singy cosq; — cosgssing;

0 0 0

The complete calculation was done in the following Matlab script problem_6_part_2.m.

The script is run by typing its name on the Matlab console.

‘%This calculates T01,T02,T03,T04,T05,T06 numerically
%for problem 5, HW1 , ME 739.

‘%to run, just type this script name on the Matlab console
A problem_6_part_2




h

%The matlab path must include the ME 739 rendering software

Y%Nasser M. Abbasi 2/16/15

clear all; close all;

%define syms to use to build the T matrices
syms ql1 92 q3 q4 g6 q6 L1 L2 L3 L6 ¢t

L1 = 3;
L2 = 5;
L3 = 3;
L5 = 3;
hé = 1;

ql = -pi*sin(t);

g2 = pi/4*(1-cos(t));
g3 = pi/4*sin(t);

q4 = 1/2+L3*(1-cos(t));
g5 = -pi/4*sin(t);

g6 = pi/4*sin(t);

%define the 6 transformation matrices TO1l to T56 in syms
%define the 6 transformation matrices TO1 to T566 in syms

To1 = [0 sin(ql) cos(ql)
1 0 0
0 cos(ql) -sin(ql)
0 0 0

T12 = [cos(q2) O sin(q2)
0 1 0
-sin(q2) O cos(q2)
0] 0] 0

T23 = [cos(q3) sin(g3) O
0 0 -1
-sin(qg3) cos(q3) 0
0 0 0

T34 = [1 0 0
0 1 0
0 0 1
0 0 0

T45 = [cos(gb) sin(gb) O
-sin(g5) cos(qgb) 0
0 0 1
0 0 0

T56 = [-cos(q6) sin(g6) O

0;
L1;
0;
11;

0;
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0 0 1 L5;
sin(g6) cos(g6) O 0;
0 0 0 11;

%Now calculate T02,T03,T04,T05,T06
TO2 TO1*T12;
TO3 TO02%T23;
TO4 = TO3%T34;
TO5 = T04%T45;
T06 = T05+*T56;

%handle to function to evaluate each Tij at each instance of time
calcT = @(T,t0) double(subs(T,t,t0));

%now calculate all the T’s at some specific time. The problem
p P
%does not says what time instance to use, so we use t=0 for

%illustration

timeToShow = 1; Ychange this to different time as needed

fprintf (°TO1 at t=1 is \n’); calcT(TO01,timeToShow)
fprintf (°TO2 at t=1 is \n’); calcT(T02,timeToShow)
fprintf(°TO3 at t=1 is \n’); calcT(T03,timeToShow)
fprintf (°T04 at t=1 is \n’); calcT(T04,timeToShow)
fprintf(°TO5 at t=1 is \n’); calcT(T05,timeToShow)
fprintf (’T06 at t=1 is \n’); calcT(T06,timeToShow)

The above script calculates numerically all the transformation matrices using the joint
variable inputs given in the problem. At the end it prints each matrix. The problem did not
indicate for which value of ¢ to use to calculate the matrices, hence for illustration these are
displayed for ¢ = 0 and ¢ = 1 second. A variable inside the script can be used to change the
time instance. The following is the output from running the above script for illustration
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-0.4777
0
-0.87852
0

-0.4777
0
-0.87852
0

-0.45834
0.85312
0.24922

-0.45834
0.85312
0.24922

-0.82188
0.35325
0.4469

0

0.56761
0.57425
0.58997

At t = 0 the output is At t = 1 the output is

TO1 at t=0 is TO1 at t=1 is
0 0 1 0 0

1 0 0 3 1

0 1 0 0 0

0 0 0 1 0

TO2 at t=0 is T02 at t=1 is
0 0 1 0 0.31034

1 0 0 3 0.93553

0 1 0 0 -0.16875

0 0 0 1 0

TO3 at t=0 is TO3 at t=1 is
0 1 0 5 0.74949

1 0 0 3 0.52172

0 0 -1 0 -0.40753

0 0 0 1 0

TO4 at t=0 is TO4 at t=1 is
0 1 0 8 0.74949

1 0 0 3 0.52172

0 0 -1 0 -0.40753

0 0 0 1 0

TO5 at t=0 is TO5 at t=1 is
0 1 0 8 0.31034

1 0 0 3 0.93553

0 0 -1 0 -0.16875

0 0 0 1 0

TO6 at t=0 is TO6 at t=1 is
0 0 1 11 0.048223

-1 0 0 3 -0.73855

0 -1 0 0 0.67247

0 0 0 1 0

0

-0.87852
0

0.4777

0

-0.82188
0.35325
0.4469

0

0.4777
0
0.87852
0

0.4777
0
0.87852
0

0.4777
0
0.87852
0

-0.82188
0.35325
0.4469

0

= O WOo

= O W o

-4.1094
4.7663
2.2345

-5.8005
7.9139
3.154

-5.8005
7.9139
3.154

-8.2661
8.9736
4.4947

The manipulator was animated using the UW software. The following script problem_6_part_3.m
written for this purpose. Typing the name of the script in Matlab starts the animation.

This script problem_6_part_3.m assumes the Matlab path is set to include the UW ren-

dering software.

%This calculates T01,T02,T03,T04,T05,TO6 numerically
%for problem 5, HW1 , ME 739.

%to run, just type this script name on the Matlab comnsole

yA
% problem_6_part_3

%The matlab path must include the ME 739 rendering software

%
%Nasser M. Abbasi 2/17/15
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clear all; close all; clc;

%—-—--set rendering window view parameters

f_handle = 1; J figure handle

axis_limits = [-10 10 0 13 -10 10]; needed little bit more space
render_view = [-1 1 -1]; % camera position

view_up = [0 1 0]; % vertical orientation

% initialize rendering view
SetRenderingViewParameters(axis_limits,render_view,view_up,f_handle);

ADD_BASE false; %set to TRUE to see base rendered, does not move.

DO_MOVIE = false; ’%set true to make frames for movie

ANIMATION_TIME = 10; %10 seconds to animation

DEL_T = 0.05; %time betweeb each animation loop. smaller time
Y%make it run slower but more accurate

%define syms to use to build the T matrices
syms ql1 92 q3 q4 g6 g6 L1 L2 L3 L6 ¢t

L1 = 3;
L2 = 5;
L3 = 3;
L5 = 3;
h6é = 1;

ql = -pi*sin(t);

q2 = pi/4*(1-cos(t));
g3 = pi/4*sin(t);

g4 = 1/2%L3*(1-cos(t));
Q5 = -pi/4*sin(t);

g6 = pi/4xsin(t);

%define the 6 transformation matrices TO1l to T566 in syms
%define the 6 transformation matrices TO1 to T56 in syms

Tol = [0 sin(ql) cos(ql) 0;
1 0 0 L1;
0 cos(ql) -sin(ql) O;
0 0 0 11;
T12 = [cos(q2) O sin(q2) O0;
0 1 0 0;
-sin(q2) 0 cos(q2) 0;
0 0 0 11;
T23 = [cos(g93) sin(g3) O 0;
0 0 -1 0;
-sin(g3) cos(g3) 0 L2;

0 0 0 11;
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T34 = [1 0 0 0;
0 1 0 L3+q4;
0 0 1 0;
0 0 0 11;

T45 = [cos(g5) sin(g5) O 0;
-sin(qgb) cos(gb) 0O 0;
0 0 1 0;
0 0 0 11;

T56 = [-cos(g6) sin(qg6) O 0;
0 0 1 L5;
sin(g6) cos(g6) O 0;
0 0 0 11;

%Now calculate T02,T03,T04,T05,T06
TO2 = TO1*T12;
TO3 = TO02%T23;
T04 = TO03%*T34;
TO5 = T04%T45;
T06 = TO5+*T56;

%handle to function to evaluate each Tij at each instance of time
%this is called during running the animation
calcT = @(T,t0) double(subs(T,t,t0));

%base, does not move
if ADD_BASE
linkColor = [0 O 0]; plotFrame=0; normalized_location=-1;
nSides = 4; radius = 4; r = L1; axis_aligned = 2;
d0 = CreateLinkRendering(r ,radius, nSides, axis_aligned ,normalized_location
linkColor,plotFrame, f_handle);
end

Ynow create all the links

linkColor = [1 .1 0]; plotFrame=0; normalized_location=-1;

nSides=20; radius=2; r=L1; axis_aligned = 1;

dl = CreatelLinkRendering(r ,radius, nSides, axis_aligned ,normalized_location,
linkColor,plotFrame, f_handle);

linkColor = [.5 .2 1]; plotFrame=0; normalized_location=-1;

nSides=4; r=L2; radius=1.2; axis_aligned=3;

d2 = CreatelLinkRendering(r ,radius, nSides,axis_aligned ,normalized_location,
linkColor,plotFrame, f_handle);

linkColor = [1 .1 1]; plotFrame=0; normalized_location=-1;

H



nSides=4; r=L3; radius=1.15; axis_aligned=2;
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d3 = CreateLinkRendering(r ,radius, nSides,axis_aligned ,normalized_locationm,...

linkColor,plotFrame,f_handle);

linkColor = [0 O 1]; plotFrame=0; normalized_location=1;
nSides=4; r=L5; radius=.9; axis_aligned=2;

d4 = CreatelLinkRendering(r ,radius, nSides,axis_aligned,normalized_location,...

linkColor,plotFrame, f_handle);

linkColor = [.3 .5 .3]; plotFrame=0; normalized_location=-1;
nSides=4; r=L5; radius=.7; axis_aligned=2;

d5 = CreateLinkRendering(r ,radius, nSides,axis_aligned ,normalized_location,...

linkColor,plotFrame, f_handle);

linkColor = [.5 1 .5]; plotFrame=0; normalized_location=-1;
nSides=4; r=L5; radius=0.5; axis_aligned=3;

d6 = CreateLinkRendering(r ,radius, nSides,axis_aligned,normalized_location,..

linkColor,plotFrame, f_handle);

J%now start the animation
timeScale O: DEL_T :ANIMATION_TIME;
k 0; %for screen shots counting, to make movie
for i = 1:length(timeScale)
T = calcT(TO1,timeScale(i));
UpdateLink(d1,T);

T = calcT(T02,timeScale(i));
UpdateLink(d2,T);

T = calcT(T03,timeScale(i));
UpdateLink(d3,T);

T = calcT(T04,timeScale(i));
UpdateLink(d4,T) ;

T = calcT(T05,timeScale(i));
UpdateLink(d5,T) ;

T = calcT(T06,timeScale(i));
UpdateLink(d6,T);
title(sprintf(’time = %3.3f (sec)’,timeScale(i)));

if DO_MOVIE

k = k+1;

I = getframe(gcf);

imwrite(I.cdata, sprintf(’frameld.png’,k));
end




%p=T*[-h6 0 O 1]’; to show the end effector path if needed
%plotS(P(l) ,P(z) ,P(3) ’ ’O’) H
drawnow
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The following is a movie of the first few seconds of the Matlab run. (posted as animation

gif in my site).



2.1.7 key solution for HW 1

-SOLUTION-
ME / ECE 739: Advanced Robotics Homework #1
Due: February 19" (Thursday)

Please submit your answers to the questions and all supporting work including your Matlab scripts, and,
where appropriate, program results (plots, explanations). Your Matlab scripts should be readable, with
comments, sensible variable names, indentation of code-block, etc. In addition to the hardcopy (pdf
format), you must also submit your Matlab scripts electronically to the Learn@UW course page dropbox
(e.g. Homework #1) using a zip archive file format. Please name your zip files using your last name and
hw# (e.g. zinn_hw1.zip)

(1) [Spong 2-15] Suppose that three coordinate frames 0;x;y:z;, 02x;y2z2, and 03x3y3z3 are given, and

suppose
1 0 0 0 0 -1
R=10 % 3 R=01 0
0 % u 1 00

» Find the matrix R

(2) [Spong 2-38] Consider the adjacent diagram. Find the
homogeneous transformations 7,°, 7)), 7, representing the

transformations among the three frames shown.
» Show that 7)) = T,°T,

v X3
(3) [Spong 2-39] Consider the diagram below. A robot is set up 1 meter B z3
from a table. The table top is 1 meter high and 1 meter square. A frame
ox;yiz; is fixed to the edge of the table as shown. A cube measuring 20
cm on a side is placed in the center of the table with the frame o02x;y,z> 2
established at the center of the cube as shown. A camera is situated
directly above the center of the block 2 meters above the table top
with frame o03x3y3z; attached as shown. Find the homogeneous
transformations relating each of these frames to the base
frame opxgyozo.
» Find the homogeneous transformation relating
the frame 02x2; to the camera frame o03x3y3z3.

Xo

Page 1 of 4
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ME / ECE 739: Advanced Robotics Homework #1
Due: February 19" (Thursday)

(4) Coordinate frames {A} and {B} are fixed with respect to ground and are related by the homogeneous
transformation matrix

-% 0 —f% )

T = 0 1 0 1
o0 -0

00 0 1

The velocity of a point expressed in frame {A} is given as
vi=[-2 4 2]
» Evaluate the velocity of the point expressed in frame {B},v®

» Calculate the magnitude of v*andv®. Are they equal and why?

(5) For the two manipulators shown below derive the forward kinematics equations using the DH
convention.

7
4 operational
L L point
2 K 3 o

oD D

L, (at home pasition)

.

A) B)
» Assign frames per the DH convention and build the DH table for each manipulator

» Derive the homogeneous transforms that relate successive frames (i.e. frame {i} to {i-1}) as a
function of the joint variables and manipulator geometric parameters.

» Derive the homogeneous transform that relates the position and orientation of the end-effector to
the base frame as a function of the joint variables and manipulator geometric parameters. Use the
base frame and end-effector operation point defined in the figures.

Page 2 of 4
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ME / ECE 739: Advanced Robotics Homework #1
Due: February 19" (Thursday)

(6) For the manipulator shown in the adjacent figure

» Derive the homogeneous transforms that relate the successive frames as a function of the joint
variable and manipulator geometric parameters (i.e. find: 7}0,7;1,7;2,7}3,7;4,7"65 ). Use the

coordinate frames as defined in the figure. Note that the frames are fixed to the links at various
locations (e.g. proximal end, distal end). Assume that ¢; equals zero when the manipulator lies in
the plane of the page. Attendee

» Write Matlab code to calculate the homogeneous transforms derived above as a function of the
joint variables ¢q;, q», ¢3, ¢4 and gs.

» Write Matlab code to calculate the homogeneous transformation matrices that describe the frame

displacements relative to the ground frame {0} (i.e. numerically evaluate 7}0, TZO, T30, 7::), TSO, 7:,,0 ).

(continued)

Page 3 of 4



ME / ECE 739: Advanced Robotics Homework #1
Due: February 19" (Thursday)

> Write Matlab code to plot the position (X, y, and z coordinates) of the end-effector (point E) as a
function of time. Your plots should match the plots shown below. The joint motion, as a
function of time, is given below. Make sure to include all supporting functions, including any
custom plotting routines, with your homework submission. Your homework submission must
provide clear, easy instructions to run you Matlab code

Joint variable inputs:
g, =—nsin(t), g, =%(1-cos(t)), g, ==sin(t), g, =+L,(1—cos(t)), g; =—=sin(t), g, = Zsin(t)
Please animate the system over the time interval t =0: 27 .

10

i
|
|
e ___ -
|
|
|
|
|
|
|

time

» Write Matlab code to animate the manipulator using the Matlab scripts provided on the
Learn@UW course page. The joint motion, as a function of time, is given above. Make sure to
include all supporting functions, including any custom plotting routines, with your homework
submission. Your homework submission must provide clear, easy instructions to run you Matlab
code. To maintain consistency, please use the following rendering window view parameters.

$----set rendering window view parameters

% figure handle
f handle = 1;

% axis limits
axis limits = [-10 10 0 10 -10 10];

% camera position
render view = [-1 1 -1];

% vertical orientation
view up = [0 1 0];

% initialize rendering view
SetRenderingViewParameters (axis limits, render view,view up,f handle);

Page 4 of 4
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Question 7
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clear all; close all; ¢le¢

% Parameters

L1 = 3;
L2 = b;
L3 = 3;
L4 = 3;
L5 = 3;
he = 1;
%$——---set rendering window view parameters

% figure handle

f handle = 1;

% axis limits

axis limits = [-10 10 ¢ 10 -10 10]:

% camera position

render view = [-1 1 -1];

% vertical orientation

view up = [0 1 0];

% initialize rendering view

SetRenderingViewParameters (axis_limits,render view,view_up, f handle);

%$——--initialize rendering

% Dbase (link 0) rendering initialization

% (doesn't move - created for aesthetic reasons)
r=3; L=20.2; sides = 4; Axis = 2; norm L = 1.0;
linkColor = [.5 .5 .5]; plotFrame = .1 ;
d0 = CreateLinkRendering(L,r,sides,Axis,norm L,linkColor, ...

plotFrame, f handle);

% link 1 rendering initialization
r=1.0; L = Ll; sides = 10; Axis = 1; norm L = 1.0;
linkColor = [0.75 0 0]; plotFrame = .1;
dl = CreateLinkRendering(L,r,sides,Axis,norm L,linkColor, ...
plotFrame, f handle);

% link 2 rendering initialization

r =0.75; L = L2; sides = 10; Axis = 3; norm L = -1.0;
linkColor = [0 0.75 0]; plotFrame = .1;
d2 = CreateLinkRendering(L,r,sides,Axis,norm L,linkColor,...

plotFrame, £ handle);



% link 3 rendering initialization

r=20.75; L = L3; sides = 10; Axis = 2; norm L = -1.0;
linkColor = [0 0 0.75]; plotFrame = .1;
d3 = CreatelLinkRendering (L, r,sides,Axis,norm L,linkColor,...

plotFrame, f_handle);

% link 4 rendering initialization
r =0.6; L = L4; sides = 10; BAxis = 2; norm L = 1.0;
linkColor = [0.75 0 0]; plotFrame = .1;
d4 = CreatelLinkRendering(L,r,sides,Axis,norm L,linkColor,...
plotFrame, f handle):;

% link 5 rendering initialization
r =0.5; L = L5 sides = 10; Axis = 2; norm L = -1.0;
linkColor = [0 0.75 0]; plotFrame = .1;
d5 = CreatelLinkRendering(L,r,sides,Axis,ncrm L, linkColor, ...
plotFrame, f handle);

% link 6 rendering initialization (to visualize end effector motion)
r=20.2; L =2; sides = 10; 2Axis = 1; norm L = 0.0;
linkColor = [0 0 0.75]; plotFrame = .1;
dé = CreateLinkRendering(L,r,sides,Axis,norm L, linkColor,...
plotFrame, f handle);

%-—---joint variables as a function of time

% create time vector

tEnd = 2*pi; % animation run time
SamplesPerSimulation = 200;

t = linspace (0, tEnd, SamplesPerSimulation) *;

% create joint position vectors
gl = -pi*sin(t);

q2 (pi/4) * (L-cos(t));

q3 (pi/4) *sin(t):

g4 = L3*(l-cos(t))/2;

g5 = - (pi/4)*sin(t);

g6 = (pi/4)*sin(t);

§———-—evaluate the homogeneous transformation matrices that describe the
%$——--displacement of sucessive frames.

for i = l:size(t,1)
$transformation from {1} to {0}
s = sin(ql(i)); ¢ = cos(ql(i));
T10(:,:,1) = [0 s c 0
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1 0 0 L1

0 ¢c -s 0

0 O 0 11;
%$transformation from {2} to {1}
s = sin(g2(i)); ¢ cos(g2(i));

T21(:,:,1) = [ ¢ 0 s O
01 0 O
-s 0 ¢ O
0 0 0 11;
%$transformation from {3} to {2}
s = sin(q3(1)); ¢ = cos(g3(1)):
T32(:,:,1) = [ c s 0 0
0 0 -1 0
-8 C 0 L2

0 0 0 11;
$transformation from {4} to {3}

T43(:,:,i) = [ 1 O O O©
0 1 0 L3+q4(i)
0 0 1 0
0 0 0 11;

$transformation from {5} to {4}
s = sin(g5(i)); ¢ = cos(g5(i));

T54(:,:,1) = [ c s 0 0
-8 c 0 0
0 0 1 0

0 O 0 11;
%transformation from {5} to {6}
s = sin(g6(i)); c = cos(g6(i));

T65(:,:,1) = [-c¢ s 0 0
0 0 1 15
s ¢ O 0

0 0 O 11;
$transformations to the ground frame {0}
T20(spspl) = TID(2, 2, L)7T2L (spspl) s
T30(:,:,1) = T20(z,:,1)*T32(:,:,1);
TA0 (s 504) = T30, s, 1) *T43 (5, 50 d)
T50(:,:,1) = T40(:,:,1i)*T54(:,:,1);
TEO {5y vpd) = TB0 (g, 2,4)%T65 (s, sd) ¢

%$evaluate the position of the end-effector point, E,
hé = 1;
p6 = [-h6 0 0]'; P6 = [p6; 1];

XE(:,:) = T60(:,:,1)*P6;
XE(:,1) = XE(1):
yE(:,1) = XE(2);

zE(:,1)

XE (3):

relative to {0}
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end

%$----update the manipulator rendering
for i = l:size(t,1)
% update the link rendering
UpdateLink(dl,T10(:,:,1));
UpdateLink(d2,T20(:,:,1));
UpdateLink (d3, T30 (:,:,1));
UpdatelLink(d4,T40(:,:,1)):
UpdateLink (d5,T50(:,:,1));
UpdateLink (d6,T60(:,:,1));
if i ==
pause; % to allow resizing of graphics window

end

%pause;

pause (0.1); % pause time adjusted to give a smooth response
end
%$—---plote the end effector point, E, position as a function of time
figure;

subplot (1,3,1);plot(t,xE);xlabel ("time') ;ylabel ('x")
a = axis; axis([a(l) tEnd a(3) a(4)])
subplot (1, 3,2):plot(t,yE);;xlabel ("time') ;ylabel('y')
a = axis; axis([a(l) tEnd a(3) a(4)])
subplot (1,3,3):plot(t,zE);xlabel ("time');ylabel('z")
a = axis; axis([a(l) tEnd a(3) a(4)1)
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2.2 HW 2

2.2.1 Problem 1

Problem 1.
Frame {A} and frame {B} are initially coincident. Frame {B} is rotated through the following sequence
of rotations:

1. +adegree rotation about Z,

2. -fdegree rotation about Xp

3. -adegree rotation about Z,

4. +ydegree rotation about yg

5. +fdegree rotation about X,

where o =+45 degrees; f=-30 degrees; y=+90 degrees

Evaluate the rotation transformation (matrix) that describes the orientation of frame {B} relative to frame
{A} following this sequence of rotations.

When the rotation R; is around a fixed frame, it is pre-multiplied by the current sequence
of rotations. If the rotation R; is around the current frame, it is post-multiplied by the
current sequence of rotations.

1. R=R,,
2. Since rotation is around current frame, it is post multiplied giving R = R, R, g

3. Since rotation is around fixed frame, it is pre-multiplied, giving R = R, _oR,  R; 3

4. Since rotation now is about current frame, it is post multiplied giving R = R, _ R, R, 3R, ,

5. Since rotation now is about fixed frame, it is pre-multiplied giving R = R; gR, o R. o Rz s Ry o

Now that the rotation sequence is completed, the sequence of rotations are evaluated. Before
that, some simplification is made as follows

—_—
R= Rz,ﬁ Rz,—aRz,a Ra:,—BRy,'y
—_—
= RypRo g Iy
=Ry,
Therefore

cosy 0 sinvy cos90° 0 sin90° 0 01
R=R,, = 0 1 0 = 0 1 0 =10 10
—siny 0 cosy —sin90° 0 cos90° -1 00

Only angle v was needed in finding the final result. The above result shows that the final
orientation is as if one rotation of +90 degree was made around the fixed y axes. The
following diagram shows the result after each rotation, which confirms the above result |

3Source code that generated these plot is in the appendix if needed.



+45 around fixed z

30° around current x

-45° around fixed z

after rotation Final rotation matrix

0.707107 -0.707107 O.
0.707107 0.707107 O.
0. 0. 1.

after rotation Final rotation matrix

Z
z y 0.707107 -0.612372 0.353553
0.707107 0.612372 -0.353553
0. 0.5 0.866025
>y

after rotation Final rotation matrix

N

\ 0 0

1. ) .
\ y 0. 0.866025 -0.5
0. 0.5 0.866025
\\\“y

Figure 2.5: Graphical representation of problem 1 rotations
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+90 around current y after rotation

-30° around fixed x after rotation

Z
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Final rotation matrix

0. 0. 1.
0.5 0.866025 0.
-0.866025 0.5 0.

Final rotation matrix

Figure 2.6: Graphical representation of problem 1 rotations

2.2.2 Problem 2

Problem 2.

Homogeneous transformation matrix using DH convention:

Co =S, S5, ac,
To|% G CS. 9%

0 s, c, d

0 0 0 1

arguments.

their relative transformation.

The D-H parameters (d, a, @, and 6) and the homogeneous transformation which results (see below — also
in Kinematics lecture notes) cannot be used to represent a general rigid-body transformation.

» Explain why this is the case. You can use physical and/or mathematical

» For the rigid-body transformation shown to the right, label the unit vectors
of the two reference frames such that the D-H parameters cannot describe

A

L

A %4
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Part a

The homogeneous transformation matrix based on the use of the DH convention contains
only 4 parameters d,a,a, 6. Since a general rigid body transformation requires 6 param-
eters (3 angles for orientations, and 3 for translation), this implies the DH homogeneous
transformation matrix can not be used to represent any arbitrary rigid body transformation.
However, the DH convention can be used to represent any rigid body transformation that
meets two conditions, as specified on page 78 of the text book. These are

1. The z; axis of the i** frame is L to the z;_; axis of the ¢ — 1 frame.

2. The z; axis of the i** frame intersects the z;,_; axis of the i — 1 frame

Part b

At least one of the above two DH constraints need to be violated in order to come up with
a configuration that cannot be described using the DH transformation matrix. This is done
by making z; axis not perpendicular to 2z, axis. The following diagram illustrates this

"

tk
N

N

’ 0y

/—’YO

Xo

Figure 2.7: Problem 2 setup of axis

2.2.3 Problem 3



Problem 3. L4
. d; 3
» Sketch the DH frames on the planar view
of the manipulator given below. For each "/"‘/"
frame, state whether the frame definition is N -

unique and describe the choices you made
in the table below. Use the defined frames
{0} and {4} shown in Figure A.

Planar view of the manipulator:

link 2 link 3

link 1

Vo Xy

Figure 2.8: Problem 3 description

- Figure A -

link 4
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The first step is to assign the z; axis for each link. There are 5 links numbered 0,1, 2, 3,4
and four joints numbered 1,2, 3,4. Link 0 is fixed and does not move. Frame ¢ is attached
to link ¢ but its z; axis is oriented along the line of motion of joint 7 + 1. Once all the z axis
are established, then the rest of the frames are configured by insuring that that each x axis
is perpendicular to the last frame z axis.

So the rule to follow is that x; axis must be perpendicular to z;_; axis.

The frames are drawn below. The following choices were made. 2, intersects z; (case 3 in
the textbook), hence z; is arbitrary. The origin o; is the point of intersection of z; and 2
as shown in the problem statement.

Next, z; and 2z, also intersect (case 3). The choice of z; is arbitrary. The origin 0, could
be located also where z; intersect zo. But any point along 2z, will also work. Here o0, was
placed at point p-.

Next, 2o is parallel to z3. This is case (2) in the textbook. There are infinitely many common
normals. Here origin o3 can be anywhere along z3. It is placed at start of the end effector
as shown.

The following diagram shows the frames locations.

d=0,a=0,a=90%60=90°+0,
y

Frame 2 is attached to this i
s .

link but its z axis is aligned / “ached © aed \_\\'\\( &

with motion of joint 3 s 15 2

N

ys d=Lsa=0a=09000=0,

Joint 2

d=ds;+Ls,a=0,a0a=0,60=90°
Frame 1 is attached to this

link but its z axis is aligned
with motion of joint 2

--»d=L;+d;,a=0,a= 900,9 =0

Link 1

Joint 1

Frame {3} is attached to link 3
Frame {2} is attached to link 2
Frame {1} is attached to link 1
5 links, numbered 0,1,2,3,4

Zp 4 joints, numbered 1,2,3,4
an

; problem_3-.vsdx

Nasser M. Abbasi
3/4/2015

Figure 2.9: Frames assignments for problem 3
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2.2.4 Problem 4

Evaluate the DH parameters for the manipulator and frame definitions developed in the previous prol

S 6 | 4 a
1 0 Ly+d; | 0]90°
2|1 90° + 0, 0 0 | 90°
3 90° Ly+ds | 0] O

4 04 L, 0 | 90°
The homogeneous transformation matrices 77 ' are now evaluated, and then 7} is found

in order to verify that the location of the end effector. To verify, when 6, = 0,60, = 0, then
the end effector z,y, z position relative to the base frame should be located at

fL‘=d3+L3+L4

a;

y=0
z=L;+d;
These are The homogeneous transformation matrices 7, !
10 0 0
0 = 0 0 -1 0
01 0 di+1Ly
00 O 1
—sinfy 0 cosfy 0
Tl — cosf, 0 sinfy O
2 o 1 0 0
0 0 0 1
0 -1 0 0
T2 = 1 0 O 0
0 0 1 ds3+Ls
0 0 O 1
cosfy 0 sinfy O
3 sinfy 0 —cosfsy O
T4 ==
0 1 0 Ly
0 0 0 1
T = TYTyT2T2 was found and evaluated for 62 = 0. The result is
0 1 0 d3+Ls+1Ly
-1 00 0
0 01 di + Ly
0 00 1

Which shows the correct position vector of the end effector frame.



2.2.5 Problem 5

Problem 5

» Write a Matlab function which takes as its input the DH parameters and returns the associated 4x4
homogeneous transformation matrix, 7. A possible function prototype is given below. To learn how

to write a function in Matlab, type help function in the Matlab workspace.

function T = DH2T(d, a, alpha, theta);

» Write a Matlab script to verify that your function is working
properly. The script should evaluate the 7 matrix for the set of DH
parameters listed in the adjacent table. When your script is run,
the 7 matrices should be printed to the workspace. This script,
along with your function, are to be handed in to the course
dropbox on the Learn@UW course page. As a possible starting

point, your script might look like:

clear all; close all; clc
% Case 1:
d=0; a = 10; alpha = 0;

Tl = DH2T (a,alpha,d, theta)

% Case 2:

d = 10; a = 0; alpha = 0;

T2 = DH2T (a,alpha,d, theta)

% Case 3:

d = 10; a = 0; alpha = pi;
T3 = DH2T (a,alpha,d, theta)

% Case 4:

d=0; a=0; alpha = pi;
T4 = DH2T (a,alpha,d, theta)

Figure 2.10: Problem 5 description

part a

The following is the Matlab function DH2T

theta = 0;
theta = 0;
theta = 0;
theta = pi;

Link di ai Qi (2]
Casel: | 0O 10 0 0
Case 2: | 10 0 0 0
Case 3: | 10 0 m 0
Case4: | 0 0 T bis
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function T = DH2T(a,alpha,d,theta)

%generated the transformation matrix for a DH table row
#ME 739, Univ. Of Wisconsin, Madison. Spring 2015

T=[cos(theta) -sin(theta)*cos(alpha)
sin(theta) cos(theta)*cos(alpha)

0 sin(alpha)
0 0
1;

end

sin(theta)*sin(alpha)
-cos(theta) *sin(alpha)

cos(alpha)
0

a*cos (theta);
a*sin(theta);
d;

1




part b
The following is the script used and below it is the output generated.

clear all; close all; clc
Ycase 1

d=0; a=10; alpha=0; theta=0;
T1=DH2T(a,alpha,d,theta)

Ycase 2
d=10; a=10; alpha=0; theta=0;
T2=DH2T(a,alpha,d,theta)

%case 3
d=10; a=10; alpha=pi; theta=0;
T3=DH2T (a,alpha,d,theta)

%case 4
d=0; a=10; alpha=pi; theta=pi;
T4=DH2T (a,alpha,d,theta)

Tl =
1 0 0 10
0 1 0 0
0 0 1 0
0 0 0 1
T2 =
1 0 0 10
0 1 0 0
0 0 1 10
0 0 0 1
T3 =
1 0 0 10
0 -1 -1.2246e-16 0
0 1.2246e-16 -1 10
0 0 0 1
T4 =
-1 1.2246e-16  1.4998e-32 -10
1.2246e-16 1 1.2246e-16  1.2246e-15
0 1.2246e-16 -1 0
0 0 0 1




2.2.6

Part a
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Problem 6

Problem 6.

For the manipulator shown, the forward kinematics
are given as:
x, =cos, cosb, (L, +d,)

y, =siné,cosb, (L, +d,)
z,=L +sin6,(L, +d,)
» Develop the linear velocity Jacobian, J,, using
direct differentiation of the forward kinematics.

Assume that the task and joint variable vectors
are defined as

a=[6, 6, d]

XZ[Xe Ye Ze]T

» For the manipulator configuration defined by the joint vector, g =[7Z' ir LZ]T , evaluate the linear

velocity of the end-effector given the joint velocity vector g = [l 0 l]T.

» For what values of the joint variables is the linear velocity Jacobian, J,, singular? Use physical and/or
mathematical arguments to support your answer.

Figure 2.11: Problem 6 description

o2 Oz Ox
001 062 9ds

oy oy By
001 062 9ds
or 9z 0z

86, 80, Ods

8%1 cos 01 cos 03 (Lg + d3) 8%2 cos 61 cos 0y (Lo + d3) % cos 61 cos 0y (L2 + d3)

8%1 sin 0 cos 0 (L2 + d3) 8%2 sin 0 cos 0 (Lo + d3) 8%3 sin 0 cos 05 (Lo + d3)

% (Ll + sin 92 (LZ + d3)) % (Ll + sin 62 (Lz + d3)) Bidg (Ll + sin 92 (LQ + d3))

—sin 6 cos Oy (L + d3) —cosfysinfy (Ly +ds) cosBy cosby
cosfycosfy (Ly+ds) —sinfsinby (Ly+ds) sinb; cosby
0 cos By (Lo + d3) sin 6,
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Part b
v=Jyq
—sinf; cosby (L +ds) —cosbysinby (Ls +ds) cosbrcosby) /1
= | cosfcosfy(Ly+ds) —sinb;sinby(Le+ds) sinb cosbs (O)
0 cos By (Lo + d3) sin 6 1
—sinmeos 5 (L2 + Lg) —cosmsin§ (L2 + Lp) cosmcos T\ /g
= | cosmcos§ (Ly+ Ly) —sinwsinf (Ly + L) sinmcos 0)
0 cos 5 (Lz + Lg) sin § 1
0 2L, 0\ /1
=({0 0 O0]]O
0 0 1/ \1
0
=10
1
Part(c)

Mathematically, J, is singular when its determinant is zero, or when J, has a zero eigenvalue.
The determinant of the Jacobian [ was found to be

|Ju|= (d3 + Lg)? cos 6,

The above is zero when cos §, = 0. This occurs when 6, = £% (and any odd integer multiple

of this value).

2

This implies that the singularity occurs when the arm is fully extended vertically in the
upward position, or if physically possible, when the arm is fully extended vertically but in

the downwards position.

2.2.7 Problem 7

4Using syms and simplification



Problem 7.

Consider the three axis RRR manipulator shown in the figure below

» Derive the forward kinematics, T5, of this manipulator as a function of the joint displacements and
the geometric parameters shown in the figure. Sketch your intermediate frame definitions on the
plane view of the manipulator shown below. Keep in mind that your frame definitions should be
consistent with the conventions assumed when constructing the explicit form of the basic Jacobian.

TZO I
N\ I |
O, ) L,

» Evaluate the full basic Jacobian, ], for this manipulator. In this case, the basic Jacobian relates the
joint space velocities, ¢, and task space velocities X.

X=],g where X=[* ¥ Z wy o, w;]" and ¢=1[0, 6, 65]"
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» For the manipulator configurations listed below, evaluate the required joint torques to react the
applied end-effector forces and torques: F = [fy, 0 0 0 0 17,]”. Discuss you results.

Configuration o 6 &
1 0 30° 0
2 0 0 30°
3 0 90° 90°

» Evaluate the linear velocity Jacobian, /2, expressed in frame {1}

v

Using J1 find the singularities of the manipulator (with respect to the end-effector’s linear velocity)

» For each type of singularity that you identified explain the physical interpretation of the singularity -
by sketching the arm in a singular configuration and describing the resulting limitation on its
movement.

» For the manipulator above, a new task position representation has been defined as

u=2x+3y
V=x+y-z
w=z

Evaluate the /inear velocity analytical Jacobian, J,, for this new representation when the manipulator

configuration is givenas § = [6; 6, 65]=[0 % g]
p g,
v|=J4]d,
w q,

Figure 2.12: Problem 7 description

Derive the forward kinematics

The frames are first assigned to each link by insuring that that the z axis of each frame
follows the DH convention, which means z; axis attached to link ¢ is aligned in the direction
of motion of joint ¢ + 1.

For a revolute joint, this will be its axis of spin, and for prismatic joint, this will be its
direction of sliding. Once this is done the forward kinematics matrices are found using either
the DH table method or using homogeneous transformation by direct inspection. In this
case, the homogeneous transformation by direct inspection method was used. The frames
are assigned as follows



7

%C\\eé, . Frame {2} is attached
G to link 2, but its z axis
AN et g A
'a‘(\e\x \0\5\.\‘\(\-\0\(\ is aligned with joint 3
P> il motion )
W oS Frame {3} is attached
X0 . g0 . B o
Frame {0} is attached .\sa\\qf\c"\ 1 22 tgllnk3, its axisis as
. ; ) o A given
tolink 0, but its z axis 0 s~ s~ P
is aligned with joint 1 v — \
motion

Figure 2.13: Frames assignments for problem 7

Determine forward kinematics matrices and evaluate full basic Jacobian J;

Define the matrices 17, Ty, T using homogeneous transformation. Since z’ = Jyq' then to
find Jy we need to first find forward kinematics. By inspection, we find each transformation
matrix to be

cos(f;) 0 sin(6,) Lcos(6y)
70— | sin (A1) 0 —cos(f;) Lsin(6;)
0 1 0 0
0 0 0 1
cos(f) 0 —sin(f2) Lcos(f2)
T = sin(f2) 0 cos(fz) Lsin(6s)
0 -1 0 0
0 0 0 1
cos(f3) 0O —sin(f3) Lcos(fs)
72— | Sin (#s) 0 cos(f;) Lsin(6s)
0 -1 0 0
0 0 0 1
Therefore
cos (61) cos (6;) —sin(6;) —cos(f;)sin(fz) Lcos(f;)+ Lcos(h2)cos(6;)
TO = TOT! = cos (6;)sin (6;) cos(f;) —sin(fy)sin(f2) Lsin(6;)+ L cos(6;)sin (6;)
sin (62) 0 cos (62) Lsin (62)
0 0 0 1
TO = TOT?
cos (61) cos (62) cos (03) — sin (61) sin (63)  cos (61)sin (03)  — cos (63) sin (61) — cos (61) cos (92)sin (63) L (cos (61) (cos (62) (cos (63) + 1) +1) — sir
cos (62) cos (03) sin (1) + cos (1) sin (83)  sin (01)sin (82)  cos (61) cos (83) — cos (82) sin (61) sin (83) L ((cos (62) (cos (83) + 1) + 1) sin (81) + co
cos (63) sin (62) — cos (62) — sin (62) sin (63) L (cos (83) + 1) sin (62)

0 0 0 1
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In short notation the above can be written as

CiC, —S, —CyS; LCy(Cy+1)

o | @S G =88 LG+
S, 0 Gy LS,
0 0 0 1
C1CoCs — $1S; C1Sy —C38; — C1CySs L (Cy(Cy(Cs+1)+1) — S1.55)
po_ | GOSTGS 55 CiC—CSiS; L((C(Cs+1)+1)S+0iSy)
CsS, ~C, —55S5 L(Cs+1)8,
0 0 0 1

Now we find the base Jacobian Jy where 2’ = Jyq'

where
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0
2{ is given by ( 0 ) and
1

Ju, = 29 % (05 — 0g)
0 ( L (cos (61) (cos (65) (cos (fs) + 1) + 1) — sin (6;) sin (65)) )
=|0 ) X | L (sin (61) (cos (62) (cos (f3) + 1) + 1) + sin (f3) cos (61))
Lsin (65) (cos (65) + 1)
—L (sin (61) (cos (62) (cos (f3) + 1) + 1) + sin (65) cos (61)) )

= | L(cos(6) (cos(62) (cos(fs) + 1) + 1) — sin (6,) sin (05))
0

Ju, = 21 % (0§ — 0f)

sin (6;) L (cos (61) (cos (62) (cos (63) + 1) + 1) — sin (6;) sin (03)) L cos (6,) )
= | —cos(f) | X L (sin (6:) (cos (62) (cos (83) + 1) + 1) +sin (63) cos (1)) | — | Lsin (6;)
0 Lsin (62) (cos (63) + 1) 0

—Lsin (65) cos (6;) (cos (63) + 1) )

/

= | —Lsin (6,)sin (62) (cos(f3) + 1)
L cos (63) (cos (A3) + 1)

Juy = 23 % (0§ — 0)

sin (62) (— cos (61)) ) (( L (cos (61) (cos (62) (cos (83) + 1) + 1) — sin (81) sin (63)) ) ( Lcos (61) (cos (62) + 1) )
X _

= — sin (6;) sin (65) L (sin (81) (cos (82) (cos (63) + 1) + 1) + sin (83) cos (61)) Lsin (61) (cos (62) + 1)
cos (62) Lsin (62) (cos (63) + 1) Lsin (62)

—L (sin (61) cos (03) + sin (65) cos (6;) cos (63))
= | L(cos(6,)cos(fs) — sin (6;) sin (f3) cos (f2))
—Lsin (65) sin (65)
]
Ju. =] 0
1

sin (6;) )
Juw, = | —cos(6,)
0
sin (63) (— cos (61))
Jws = — sin (0;) sin (65)
cos (62)
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Hence the Jacobian becomes

—L ((cos (02) (cos (03) + 1) + 1)sin (A1) + cos (A1) sin (A3)) —Lcos(61) (cos(63) + 1)sin(f2) —L (cos (63)sin (61) + cos (01) cos (62)
L (cos (61) (cos (62) (cos (03) + 1) + 1) —sin (1) sin (63))  —L (cos (63) + 1)sin (01)sin (f2) L (cos (01) cos (63) — cos (62) sin (61) s

JO _ 0 L cos (62) (cos (63) + 1) —L sin (02) sin (03)
0 sin (61) —cos (01) sin (62)
0 —cos (61) — sin (61) sin (62)
1 0 cos (02)

Or in short notation

—L((C2(C3+1)+1)S1+C1S3) —LC(C5+1)Sy —L(C381 + C1CsS5)
L(C;(Cy(C5+1)+1)—51S3) —L(C3+4+1)51S2 L(C1C35—C251853)
Jy = 0 LCy(C5+1) —LS5S5;
0 S1 —C415;
0 -4 —S515;
1 0 02

When L = 1 the above becomes

—(C2(C5+1)+1)8 —C1S3 —C1(C3+1)Sy —C58; — C1C2S5
Ci(Co(C3+1)+1)—=5153 —(C3+1)8515, C1C3—Cy5153
Jo = 0 Cy (C3+1) —5253
0 Si —C15;
0 -C —515;
1 0 Cs

Evaluate required joint torques for the configurations

Using the duality property where

x,:JOQI
r=J'f

We can determine 7 for each Jacobian at each configuration. The following table gives the
result of this computation



81

T
# Jo Jf
0 -L 0
1++v3)L 0 L
0 ( ) o (1+v3)L o 0o 0 1 1
0 V3L 0 _
30 0 0 L -L 0 V3L 0 -1 0
-3 \ﬂ
0 0 -1 0 0 L 0 -3 0 @
V3
1 o 5
L L
-3 0 -3
L V3
0 (2+T3)L 0 \/gL -L (2+T)L 0 0 0 1
0 0 (1+@)L 0 0 0 (1+—‘/§>L 0 -1 0
30
0 0 0 -z VB 0 0 0 1
0 -1 0
1 0 1
L -L o0 o
0 ’; g OL L L 0 0 o0 1 0
90 o o _1 L 0 0o 0 -1 g
0 0 —-L -1 0 0
90 0 -1 o0 0
1 0 o0 Tz
Discussion of result
Since
fe
0
f= 0
0
0
Ty

then only entries in the J” matrix which are not zero at location (z,1) and (,6) where i is
the row number of J7 will contribute to the joint torques. So for configuration 1 above, we
see that J7 has non zero value in one of these locations in each row. But for configuration
2, the second row of JT has zero in both the first column and the last column. This means
no matter what joint torque is applied to joint 2, it will have no effect on end effector forces
produced.

Similarly, for the third configuration, we see that the last row of J7 also has zero entry in
the first and last column. This means no matter what joint torque is applied to joint 3, it
will have no effect on end effector forces produced when in this configuration.
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Evaluate linear velocity Jacobian J; expressed in frame 1
R, 0
0 Ri

case i = 1. But R} = (R%) ™' = (R?)". We found T? from above, so we can extract R? part
from it

To find Jj we need to transform Jy to frame 1 using J§ = ( ) Jo where in this

cos(61) 0 sin(f;) Lcos(6,)
T — sin(¢,) 0 —cos(f;) Lsin(6,)
0 1 0 0
0 0 0 1
cos(6h) 0 sin(6;)
R)=| sin(8;)) 0 —cos(6y)
0 1 0
Hence
cos(f,) sin(6;) O 0 0 0
0 0 1 0 0 0
Ry 0 ) [ sin(f1) —cos(6:) 0 0 0 0
0 R, ) 0 0 0 cos(f) sin() O
0 0 0 0 0 1
0 0 0 sin(f;) —cos(f;) O
mutliplying the above with J; found earlier gives
Ry 0
Ji= " " 1J
0 R}
—Lsin (63) —L (cos(63) 4+ 1)sin (6;) —Lcos(6;)sin (63)
0 L cos (0s) (cos (f3) +1)  —Lsin (65) sin (63)
_ | —L(cos(62) (cos (63) +1) + 1) 0 —L cos (03)
0 0 —sin (6;)
1 0 cos (02)
0 1 0
Hence Jj, is the top three rows given by
—Lsin (03) —L (cos (A3) + 1)sin () —Lcos(6s)sin (63)
Jy, = 0 L cos (62) (cos (63) +1) —Lsin (f2)sin (653)

—L (cos (62) (cos (f3) +1) + 1) 0 —L cos (65)
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When L = 1 the above becomes

— sin (65) —cos (65) sin (6;) — sin (f2) — cos (6) sin (65)
Jy, = 0 cos (6s) cos (63) + cos (f2)  —sin (6;) sin (63)
— cos (6s) cos (63) — cos (62) — 1 0 — cos (6s)

Find the singularities in J! and sketch the arm

The singularity of J! can be found mathematically by finding the conditions under which
the determinant of J} is zero, or the conditions under which one of the eigevalues become
zero. Or we can use geometry and consider the cases where the arm is in singular direction.
Mathematically, the determinant of J} is

|JX|= —L3sin (63) (cos (62) + 1) (cos (63) + 1)
When L = 1 the above becomes
|JY|= —(1 + cos6)(1 + cos f3) sin fs
To make |J}|, the above implies the corresponding joint angles have to be the following

02 =47
93 = {:I:Tl', 0}

The joint angle ; can be any value since it does not contribute to making the determinant
zero since the determinant does not depend on 6#,. The above shows there are a total of 5
configurations that will result in singularity.

The following diagram illustrates the above singularites found and also sketches the the
singular direction.



61 62 63 Ji configuration showing singular direction
)
0 0 0
any |any | 0 0 2L 0 \
-3L 0 -L
0 00
any |any | £71 ( 0 0 O
-L 0 L
0 0 0
any | 7t |any 0 -2L O \
L 0 -L
0 0 0
any | -7t |any 0 -2L O
L 0 -L

Figure 2.14: Singular directions for problem 7
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Find the linear analytic Jacobian J, for new representation

The analytical linear velocity Jacobian J, is given by

Ja = Ep(l'p) JO

Where E,(x,) is the representation matrix found from

/ /

U T
v | =Ep (mp) Y
w' 2
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Since we are given the expressions for u,v,w, then we differentiate them w.r.t time to

determine E,(z,) and obtain

Hence

O = N

3 0
E,(z,) = ( 1 -1 )
0 1

Therefore J, = E,(z,)Jo becomes, at the required angles

L -2L O
Jo=| 0 —-L L
0 0 -L

Andat L=1
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2.2.8 Problem 8

Problem 8

» Evaluate the inverse kinematics to provide a functional relationship between the defined task and
joint space displacements

a
(ie |q,|=f(x..2.))

qs

Figure 2.15: Problem 8 description
Using geometry as illustrated below

Zp

A

"T--@ end effector(Xe, Ye’ Ze)

Xo

Problem_8_d1.vsdx
Nasser M. Abbasi
3/6/15

Hence based on the above diagram ¢, is found to be

1 = 2
Taking the projection of the end effector vector on the zy plane gives
T = g3 cos(qz)
Ye = g3sin(go)

Dividing the second equation above by the first one gives ¥ = tan(g). Hence g =
atantwo(z., y.). If z = 0 then there is no solution (singular direction). A second solution is
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g2 = atantwo(zx.,y.) + 7 and finally g5 = (/22 + y2 . Therefore the two solutions are

Ze Ze
il ¢
@ atantwo(z., ye) atantwo(xe, ye) + ™

4/ (1) %2+ Y2 B/ (2 \Ze + Y2

2.2.9 Appendix

Source code for problem 1

axes[x_, y_, z_, £_, a_] :=
Graphics3D[Join[{Arrowheads[al},

Arrow[{{0, O, O}, #}] & /e {{x, 0, 0}, {0, y, 0}, {0, O, z}},
{Text[Style["x", FontSize -> Scaled[f]], {1.2*x, 0.1xy, 0.1xz}],
Text [Style["y", FontSize -> Scaled[f]], {0.1 x, 1.2*y, 0.1*z}],
Text [Style["z", FontSize -> Scaled[f]], {0.1*x, 0.1xy, 1.2*z}]1}1];

rotZ[a_] := {{Cos[al, -Sin[a], 0}, {Sin[a], Cos[a], 0}, {0, O, 1}};
rotX[a_] := {{1, 0, 0}, {0, Cos[al, -Sin[al}, {0, Sin[a], Cos[all}};
rotY[a_] := {{Cos[al, O, Sin[al}, {0, 1, 0}, {-Sin[a], O, Cos[al}};

obj = Cuboid[{1, -.5, -.1}, {-1, .5, .1}];

show[mat_, arrow_, fixed_] := Show[Graphics3D[
{
GeometricTransformation[{
{Opacity[0.7], obj},
{Red, Arrow[{{0, 0, 0}, {1.2, 0, 0}}1},
{Red, Arrow[{{0, 0, 0}, {0, 1.2, 0}}1},
{Red, Arrow[{{0, 0, 0}, {0, 0, 1.2}}1},
Text [Style["x", Red, FontSize -> Scaled[0.07]], {1.4, 0, 0}],
Text [Style["y", Red, FontSize -> Scaled[0.07]], {0, 1.4, 0}],
Text [Style["z", Red, FontSize -> Scaled[0.07]], {0, 0, 1.4}],
If[fixed, Sequence @@ {}, arrow]
}, mat
15
If[fixed, arrow, Sequence @@ {}]
},
Boxed -> False,
Axes -> None,
ViewPoint -> {3, 1.5, 1.5},
SphericalRegion —> True,
ImageSize -> 250, ImageMargins -> 0, ImagePadding -> O, PlotRangePadding -> N
axes[1.6, 1.6, 1.5, 0.1, 0.04]1];

show[mat_] := Show[Graphics3D[

one] ,

{



axes[1.6, 1.6, 1.5, 0.1, 0.04]];

pl

]

P2

p3

]
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GeometricTransformation [{
{Opacity[0.7], obj},
{Red, Arrow[{{0, 0, 0}, {1.2, 0, 0}}1},
{Red, Arrow[{{0, 0, 0}, {0, 1.2, 0}}1},
{Red, Arrow[{{0, 0, 0}, {0, 0, 1.2}}1},
Text [Style["x", Red, FontSize -> Scaled[0.07]], {1.4, 0, 0}],
Text [Style["y", Red, FontSize -> Scaled[0.07]], {0, 1.4, 0}],
Text [Style["z", Red, FontSize -> Scaled[0.07]], {0, 0, 1.4}]
}, mat
]
I
Boxed -> False,
Axes -> None,
ViewPoint -> {3, 1.5, 1.5},
SphericalRegion -> True,

ImageSize -> 200, ImageMargins -> O, ImagePadding -> 0, PlotRangePadding -> None],

= Grid[{

{Style["+45 around fixed z", Bold, 14], Style["after rotation ", Bold, 14], St
{

show[rotZ[0], makeCurvedArrow[.5, "z", 1], Truel,

show[rotZ[45 Degreell,

MatrixForm[N@rotZ[45 Degree]l]

}

}, Spacings -> {1, 1}, Frame -> All, FrameStyle -> LightGray

= Grid[{
{Style["30 around current x", Bold, 14], Style["after rotation ", Bold, 14],
Style["Final rotation matrix", Bold, 14]},
{
show[rotZ[45 Degree] , makeCurvedArrow[.5, "x", 1], Falsel,
show[rotZ[45 Degree] .rotX[30 Degreell],
MatrixForm[N@rotZ[45 Degree] .rotX[30 Degree]l]
}}, Spacings -> {1, 1}, Frame -> All, FrameStyle -> LightGray

= Grid[{

{Style["-45 around fixed z", Bold, 14], Style["after rotation ", Bold, 14],
Style["Final rotation matrix", Bold, 141},

{
show[rotZ[45 Degree] .rotX[30 Degree], makeCurvedArrow[.5, "z", -1], Truel,
show[rotZ[-45 Degree] .rotZ[45 Degree] .rotX[30 Degreell,
MatrixForm[NQrotZ[-45 Degree] .rotZ[45 Degree] .rotX[30 Degree]l
}}, Spacings -> {1, 1}, Frame -> All, FrameStyle -> LightGray

yle["Final r
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p4 = Grid[{
{Style["+90 around current y", Bold, 14], Style["after rotation ", Bold, 14], Style["Final
{
show[rotZ[-45 Degree] .rotZ[45 Degree] .rotX[30 Degree] , makeCurvedArrow[.5, "y", 1], False
show[rotZ[-45 Degree] .rotZ[45 Degree] .rotX[30 Degree] .rotY[90 Degreel],
MatrixForm[N@rotZ[-45 Degree] .rotZ[45 Degree] .rotX[30 Degree] .rotY[90 Degreel]
}}, Spacings -> {1, 1}, Frame -> All, FrameStyle -> LightGray
]

p5 = Grid[{
{Style["-30 around fixed x", Bold, 14], Style["after rotation ", Bold, 14],
Style["Final rotation matrix", Bold, 141},
{
show[rotZ[-45 Degree] .rotZ[45 Degree] .rotX[30 Degree] .rotY[90 Degree] , makeCurvedArrow[.5
show[rotX[-30 Degree] .rotZ[-45 Degreel] .rotZ[45 Degree] .rotX[30 Degree] .rotY[90 Degreel],
MatrixForm[Chop [N@rotX[-30 Degreel] .rotZ[-45 Degree] .rotZ[45 Degree] .rotX[30 Degree] .rotY[
}
}, Spacings -> {1, 1}, Frame -> All, FrameStyle -> LightGray]




2.2.10 key solution for HW 2

-SOLUTION-
ME / ECE 739: Advanced Robotics Homework #2

Due: March 5" (Thursday)

Please submit your answers to the questions and all supporting work including your Matlab scripts, and,
where appropriate, program results (plots, explanations). Your Matlab scripts should be readable, with
comments, sensible variable names, indentation of code-block, etc. In addition to the hardcopy (pdf
format), you must also submit your Matlab scripts electronically to the Learn@UW course page dropbox
(e.g. Homework #2) using a zip archive file format. Please name your zip files using your last name and
hw# (e.g. zinn_hw2.zip)

Problem 1.

Frame {A} and frame {B} are initially coincident. Frame {B} is rotated through the following sequence
of rotations:

1. +a degree rotation about Z4
-f degree rotation about Xp
-a degree rotation about Z,
+y degree rotation about V5
+/ degree rotation about X,

wk N

where o =+45 degrees; f=-30degrees; y=+90 degrees

Evaluate the rotation transformation (matrix) that describes the orientation of frame {B} relative to frame
{A} following this sequence of rotations.

Page 1 of 9
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Problem 3 [10 points]

Frame {A} and frame {B} are initially coincident. Frame {B}is rotated through the following sequence of
rotations:

+crdegree rotation about Z,
-3 degree rotation about £z
- degree rotation about 2,
+ydegree rotation about y5
+/3degree rotation about £,

uoRwN e

where «a=+45 degrees; [=-30 degrees; y=+90 degrees

Evaluate the rotation transformation {matrix) that describes the orientation of frame {B} relative to
frame {A} following this sequence of rotations.

L

N 7
AR R - p E= <.
§ | I - \ P )
| {\g\g W X’ﬁé J\[
E 7 !

3 L‘ 5451
t4)
N ‘Zf

[N
-
§od

'g oY ﬁ =3 OE 0°

4
.
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ME / ECE 739: Advanced Robotics Homework #2
Due: March 5" (Thursday)

Problem 2.

The D-H parameters (d, a, &, and 6) and the homogeneous transformation which results (see below — also
in Kinematics lecture notes) cannot be used to represent a general rigid-body transformation.

Homogeneous transformation matrix using DH convention:

¢, —S,.C, S,5, ac,

e A X 04
0 s, c, d
0 o 0o 1 L

» Explain why this is the case. You can use physical and/or mathematical
arguments. Yy

» For the rigid-body transformation shown to the right, label the unit vectors
of the two reference frames such that the D-H parameters cannot describe
their relative transformation.

Page 2 of 9



> The homnefenons fiosdormation 15 denved fiom
four discrede m?*w\s (%mf - %erméx-fmn? XWL)
whle o generel displacerment  vequives 6

PO\‘(@%\'\Q%E’\‘S o d?SCVibﬁ \“/

>
. fad o fome

— 0 0551wl whic »
| fesu s 1 n SHMM\OV\
| wheie fhe  Heans @mchon
| \ Shown Cant be expressed
B \ by tre D-H convention
| )
| o | v b
| Rocall Yot the frame

o ,Lw L‘% 0SSN rles glven

for twe D-H famts

e \"mmwd (mwh,mmf)x
Such Fhal Yhe Tvan 5?@{mﬂ{
G be descnbed with
oty Y paamefers.

Thys WE only need 1o
fnd un it \H?/Clro\f ()S‘B%@nmwﬁ S

Wi violote The vule s

@

93



Theve ave 4 possble Cases fo  extmme

NSRS

TR

NO wtesect. | L b

Z oox\S vequilts
Yhat Ob be,
Cﬁ\“c\ C\Q‘ﬂ.‘\' "'\‘\’\" “

O,
Xy
\ .
.
/yo\

NO “ivifersed, 1 b
Z-a5 RGAVES

Jnat Oy he.

Cora devt /

with O v

_N-O ‘ ‘V\{"“'Sf‘()ﬁ\q Xb

| 2-oxs Pruifes

[ #hat ¢, b olyged

ﬁfvw\c\acv\m
2% plawe

b Lb

Yy

b
Fo |

|
.

Vo (%
7

Y,

MOy mat Yy
e (%\kﬁn?d with |
COvina0n N/ ME

bﬁhﬂe?ﬂ Za
W\d 2y

)Z
S
>
>
<
SRS
~<
-

\’JP olged WO | X

L L0ommoN ;
vl /7@

A

94



95

ME / ECE 739: Advanced Robotics Homework #2
Due: March 5" (Thursday)

Problem 3.

» Sketch the DH frames on the planar view
of the manipulator given below. For each
frame, state whether the frame definition is
unique and describe the choices you made
in the table below. Use the defined frames
{0} and {4} shown in Figure A.

- Figure A -

Planar view of the manipulator:

link 2 link 3 link 4

link 1

Page 3 of 9



Problem 5 [10 poinis]

Sketch the DH frames on the planar view of
the manipulator given on the next page.
For each frame, state whether the frame
definition is unique and describe the
choices you made in the table below. Use
the defined frames {0} and {4} shown in d
Figure A. 1

- Figure A -

State whether the frame definition is unique and describe the choices you made.

= z;-axis aligned with revolute joint of link 2. Can be directed into or out of the page.
» origin located at intersection of zp and z1
= xs-axis perpendicular to zp and z1. Can be directed to the right or to the left

Frame 1

" 7,-axis aligned with prismatic joint of link 3. Can be directed to the left or to the
right.

origin [ocated at intersection of z; and zz

= xz-axis perpendicular to z; and z;. Can be directed up or directed down.

Frame 2
| 3

= zz-axis aligned with revolute joint of link 4. Can be directed to the left or to the right.

= origin can be located anywhere along the zz-axis (because z3 and zz are collinear). In
this case, it was located at the distal end of link 3.

= x3-axis is perpendicular to z3. — otherwise the direction is arbitrary. In this case it was
directed out of the page (and perpendicular to xa.

Frame 3
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DH Frames:
Sketch the DH frames on the planar view of the manipulator given below

link 2 link 3 link 4

\link 1

Problem 6 [15 points]

Evaluate the DH parameters for the manipulator and frame definitions developed in the previous
problem. List the DH parameters in the table below.

i G d; aj a;

= /‘[T, /

/2

T
0
N/,

I L=

1

O
—
«’r
o

C
-

r"




ME / ECE 739: Advanced Robotics Homework #2
Due: March 5" (Thursday)

Problem 4.

» Evaluate the DH parameters for the manipulator and frame definitions developed in the previous
problem. List the DH parameters in the table below.

i o d; a; a;

Page 4 of 9



DH Frames:
Sketch the DH frames on the planar view of the manipulator given below

link 2 link 3 link 4

\link 1

Problem 6 [15 points]

Evaluate the DH parameters for the manipulator and frame definitions developed in the previous
problem. List the DH parameters in the table below.

i G d; aj a;

= /‘[T, /

/2

T
0
N/,

I L=

1

O
—
«’r
o

C
-

r"
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ME / ECE 739: Advanced Robotics Homework #2
Due: March 5" (Thursday)

Problem 5

» Write a Matlab function which takes as its input the DH parameters and returns the associated 4x4
homogeneous transformation matrix, 7. A possible function prototype is given below. To learn how
to write a function in Matlab, type help function in the Matlab workspace.

function T = DH2T(d, a, alpha, theta);

» Write a Matlab script to verify that your function is working Link d _ _ o
properly. The script should evaluate the 7 matrix for the set of DH : L4 a
parameters listed in the adjacent table. When your script is run, | Casel: | 0 10 0 0
the 7 matrices should be printed to the workspace. This script, case2: | 10 | 0 0 0
along with your function, are to be handed in to the course
dropbox on the Learn@UW course page. As a possible starting | Case3: | 10 | 0 | = 0
point, your script might look like: Cased: | 0 0 T -

clear all; close all; clc

% Case 1:

d=0; a = 10; alpha = 0; theta = 0;
Tl = DH2T (a,alpha,d, theta)

% Case 2:

d = 10; a = 0; alpha = 0; theta = 0;
T2 = DH2T (a,alpha,d, theta)

% Case 3:

d = 10; a = 0; alpha = pi; theta = 0;
T3 = DH2T (a,alpha,d, theta)

Case 4:
d=0; a=0; alpha = pi; theta = pi;
T4 = DH2T (a,alpha,d, theta)

Page 5 of 9



Problem #3:

Testing Script:

clear all; close all; clc

% Case 1:

d=0; a
T1 = DH2T(a,alpha,d, theta)

% Case 2:

d = 10; a = 0;

10; alpha = O;

alpha = 0;

T2 = DH2T(a,alpha,d,theta)

% Case 3:
d = 10; a 0; alpha = pi;
T3 = DH2T(a,alpha,d, theta)
% Case 4:
d =0; a=0; alpha = pi;

T4 = DH2T(a,alpha,d, theta)

DH function (DH2T.m):

function T = DH2T(a,alpha,d,theta)
sinTheta = sin(theta); cosTheta =
sinAlpha = sin(alpha); cosAlpha =
T = [cosTheta -sinTheta*cosAlpha
sinTheta  cosTheta*cosAlpha
0 sinAlpha
0 0

theta

theta

theta

theta

cos(theta);
cos(alpha);

sinTheta*sinAlpha
-cosTheta*sinAlpha
cosAlpha

a*cosTheta
a*sinTheta
d

1];
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ME / ECE 739: Advanced Robotics Homework #2
Due: March 5" (Thursday)

Problem 6.

For the manipulator shown, the forward kinematics
are given as:

X, =cosb, cosb, (L, +d;)
y. =sin6,cosb, (L, +d,) ‘
z, =L, +sind,(L, +d,) L, Oy P

operational
point

» Develop the linear velocity Jacobian, J,, using
direct differentiation of the forward kinematics.
Assume that the task and joint variable vectors
are defined as

q=[91 6’2 da]T I

x=[x, . ze]T

» For the manipulator configuration defined by the joint vector, g = [7r i L, ]T , evaluate the linear

velocity of the end-effector given the joint velocity vector g = [1 0 1]T .

» For what values of the joint variables is the linear velocity Jacobian, J,, singular? Use physical and/or
mathematical arguments to support your answer.

Page 6 of 9
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% HW #2 - Problem $

clear all; close all; clc

% define variables as symbolic

syms thetal thetaZ d3 L1 L2 L3 xe ye ze

% forward kinematics

xe = cos (thetal) *cos (theta2)* (L2 + d3);

ye = sin(thetal) *cos (theta2) * (L2 + d3);

ze = L1 + sin(theta2)* (L2 + d3);

% evaluate the Jacobian (using diff function <- to differentiate)

J1l1 = diff (xe, thetal);

J12 = diff (xe,theta?);

J13 = diff (xe,d3);

J21 = diff (ye, thetal);

J22 = diff (ye,theta2);

J23 = diff(ye,d3);

J31 = diff (ze,thetal);

J32 = diff (ze, theta?);

J33 = diff(ze,d3);

J = [J11 J12 J13

J21 J22 J23
J31 J32 J331;

% print J to the workspace

pretty (J)

% evaluate the Jacobian - substituting in for the given values of g

Jlle = subs(J1l1l, {thetal, theta2,d3}, [pi,pi/2,L2]);

J12e = subs(J12, {thetal, theta2,d3}, [pi,pi/2,L2])

J13e = subs(J13, {thetal, theta2,d3}, [pi,pi/2,L2])

J21le = subs(J21, {thetal, theta2,d3}, [pi,pi/2,L2])

J22e = subs(J22, {thetal, theta2,d3}, [pi,pi/2,L2]);

J23e = subs (J23, {thetal, theta2,d3}, [pi,pi/2,L2]);
( [ 1)
( [ 1)
( [ 1)

’
’

’

’

J3le = subs(J31, {thetal,theta2,d3}, [pi,pi/2,L2
J32e = subs (J32, {thetal, theta2,d3}, [pi,pi/2,L2
J33e = subs (J33, {thetal, theta2,d3}, [pi,pi/2,L2
Je = [Jlle Jl2e Jl3e

J21le J22e J23e

J31le J32e J33e];
pretty (Je)

’

’

[

% evaluate the Jacobian for the singular configuration: theta2 = pi/2
Jlle = subs(J11, {theta2}, [pi/2]);
J12e = subs(J12, {theta2}, [pi/2]);



J13e = subs (J13, {theta2}, [pi/2
J21le = subs (J21, {theta2}, [pi/2
J22e = subs (J22, {theta2}, [pi/2
J23e = subs (J23, {theta2}, [pi/2
J3le = subs(J31, {theta2}, [pi/2
J32e = subs(J32, {thetal2}, [pi/2
J33e = subs (J33, {theta2}, [pi/2
Je = [Jlle Jl2e Jl1l3e

J2le J22e J23e

J31le J32e J33e];
pretty (Je)

[}

Jlle
J1l2e
J1l3e
J21e
J22e
J23e
J31le
J32e
J33e
Je =

[J1lle
J21e
J31le

subs

(

subs (J13, {d3},
(J21, {d3},

subs (J22, {d3},
(
(
(
(

subs

subs

subs

pretty (Je)

J23,{d3},
subs (J31, {d3},
J32, {d3},
subs (J33, {d3},
J12e
J22e
J32e

(-
(-
(-
(-
(-
(-
(-
(-

J13e
J23e
J33e];

])'

1)
1)
1)
1)
1)
1)
1)

.
14
14
4
14
14
’

14

% evaluate the Jacobian for the singular configuration:
subs(Jll,{d3},[‘
Jlz, {d3},
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ME / ECE 739: Advanced Robotics Homework #2
Due: March 5" (Thursday)

Problem 7.

Consider the three axis RRR manipulator shown in the figure below

Given: L=1.0

» Derive the forward kinematics, Ty, of this manipulator as a function of the joint displacements and
the geometric parameters shown in the figure. Sketch your intermediate frame definitions on the
plane view of the manipulator shown below. Keep in mind that your frame definitions should be
consistent with the conventions assumed when constructing the explicit form of the basic Jacobian.

o—X, @ : ' ) Cﬁ—>

] ~— X3

Uy3

» Evaluate the full basic Jacobian, J,, for this manipulator. In this case, the basic Jacobian relates the
joint space velocities, ¢, and task space velocities X.

X=]oq where X =[* ¥ Z wy Wy wz]™ and q=[91 92 93]T

(Problem continued on next page)

Page 7 of 9
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ME / ECE 739: Advanced Robotics

Due: March 5" (Thursday)

Homework #2

» For the manipulator configurations listed below, evaluate the required joint torques to react the
applied end-effector forces and torques: F = [f,

0 0 0 0 t,]7. Discuss you results.

Configuration o & [
1 0 30° 0
2 0 30°
3 90° 90

» Evaluate the linear velocity Jacobian, /3, expressed in frame {1}
» Using J} find the singularities of the manipulator (with respect to the end-effector’s linear velocity)

» For each type of singularity that you identified explain the physical interpretation of the singularity -
by sketching the arm in a singular configuration and describing the resulting limitation on its

movement.

» For the manipulator above, a new task position representation has been defined as

u=2x+3y
V=x+y-z

w=z

Evaluate the /inear velocity analytical Jacobian, J,, for this new representation where

u g,
v [=J4]4,
W g,

Page 8 of 9
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ME / ECE 739: Advanced Robotics Homework #2
Due: March 5™ (Thursday)

Problem 8

» For the three degree-of-freedom PRP manipulator shown, evaluate the inverse kinematics to provide a
functional relationship from the defined task to the joint space displacements

q,
(ie |a,|=Ff(x.¥.2.))
qs

Page 9 of 9
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2.3 HW 3

2.3.1 Problem 1

Problem 1 [20 points]

Following the steps outlined below, derive the equations of motion of the two degree-of-freedom

manipulator depicted. The links have mass, m, and an inertia tensor, /, given as.

I, 0 0] [, 00

1=|0 1, 0|=
0 0 I,

The location of the center of mass is located in
the middle of each link.

Note: you are strongly advised to use the Matlab
symbolic toolbox (or equivalent) for your
algebraic and differential operations.

» On each link we have attached frames at the
joints and at the center of mass of each link.
Calculate the homogeneous transforms that relate these
frames to the inertial frame {0}. In other words, find,

TP, T7, T¢,and T¢,. Verify that your matrices are correct
before proceeding to the next step (e.g. check the location m
and orientation of your frames for simple configurations such ~ &5\,

R
as 0, = 6, =90°)

» The evaluation of the mass matrix of the manipulator will require the L
computation of the linear Jacobian of the center of mass, ],,Ci, for each link Y2
and the angular velocity Jacobian for each link, J,.
= Find ]VC1 and ]ch.
* Find J,,, and J,.
Verify that your matrices are correct before proceeding to the next step.

22 X2

» Evaluate the mass matrix, D(gq), of the manipulator in terms of mass and geometric properties and its
configuration.

» Evaluate the centrifugal and Coriolis inertial terms of the manipulator in terms of mass and geometric
properties and its configuration.

* Find B(q)[4q]
= Find C(q)[4]

» Evaluate the gravity vector, G(q). In frame {0} the gravity vector is givenas: g =g[1 0 0]7.

» Form the complete equations of motion in the form

D(@)j+B(@)4q1+C(@Ig"1+G(q) =7

Figure 2.16: Problem 1 description
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The homogeneous transformation matrices 7; ' are found by direct inspection.

7
T,
Hence
T = TOT}
[1.3]cosf; O
_ sin 6 0
0 1
0 0

sin 0,
0

cos 65 sin 6,

[1.3]cosf; O siné; Lcosb,
sin 6 0 —cosf#; Lsinb,
0 1 0 0
0 0 0 1
[1.3]cosf; —sinfy O Lcosby
sin 0, cosfl, 0 Lsin6,
0 0 1 0
0 0 0 1
sinf; Lcos6;\ [[1.3]cosfy —sinfy 0 Lcosbs
—cosf; Lsinb, sin 0, cosf, 0 Lsin6,
0 0 0 0 1 0
0 1 0 0 0 1
sinf; Lcos6@; + Lcosbscosty

[1.3] cos B cos By — cos b sin By

—sinf;sinf; —cos@; Lsinf; + L cosbysinby
cos 0, 0 L sin 0,
0 0 1

T:~! are now found. These are the same as T; ' but with the last column adjusted for the
center of mass position which is given as being in the middle of the link, therefore

0
T,

Cc2

[1.3]cos#; O sinf; Zcosh,
sin 6, 0 —cosb, % sin 6,

0 1 0 0

0 0 0 1

L cos,

[1.3] cosfy —sin By 5

0

sin 0, cosf, O % sin 0,
1
0

0 0 0
0 0 1
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Hence

T) =TT,

[1.3]cosf; O sinf; Lcosf\ ([1.3]cosfy —sinf, O L cos b
_ sin 6, 0 —cosf, Lsinb; sin 0, cosfy O % sin 0,

0 1 0 0 0 0 1 0

0 0 0 1 0 o 0 1
[1.3] cos6; cosfy —cosbysinfy sinf; Lcosb; + %L cos 0; cos 05
_ cos 05 sin 64 —sin@;sinfy —cos@; Lsin6; + %L cos 65 sin 6,

sin 6, cos 0, 0 sLsin b,
0 0 0 1
VERIFICATION:

The end effector position (origin of frame (2)), relative to the inertial frame is given by

r) = Tors

[1.3]cos By cosfy —cosfisinf, sinfy Lcosf + Lcosfycosbr) ([1.3]0
. cos 65 sin 6; —sinf;sinfy —cosf; Lsinf; + L cos b, sin b, 0
B sin 0, cos 0, 0 L sin 0, 0

0 0 0 1 1

[1.3] L cos6; + L cos b cos 0,

_ Lsin#; + L cos 85 sin 6, (1)
Lsin 6,
1

When 6; = 6, = 0 the above becomes

Which is what expected. Now it is verified for #; = 90°, 0, = 0, Substituting these angle
values in (1) gives
[1.3]0
2L
0
1
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as expected. At 0; = 0,60, = 90° and substituting these angle values in (1) gives

[1.3]L
0
L
1

as expected. Finally, at 6; = 6, = 90° and substituting these angle values in (1) gives

[1.3]0
L

L
1

as expected. The result of part (1) have been verified.

Part 2

To determine the linear Jacobian for the center of the mass, the following quantities needs

to be determined
0.0 0.0 0 0

20, %15 09y 01, Ocla 002

These are obtained from the result of part (1)

[1.3]0
=1 0
1
[13] sin 01
z‘f = | —cosb,
0
[1.3]0
o=\ o
0
[1.3]L cos 6,
O? = Lsin 91
0
[1.3]Z cos 6y
Ogl = g sin 6,
0
[1.3] L cos 6, + %L cos 61 cos 0,
022 = Lsin6; + %L cos 05 sin 61
%L sin 6,



Therefore

([1.3];:3 x (o0, —of

Vcq
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) o)

[1.3]0 [1.3]5 cos 6, [1.3]0
= | [1.3] 0 X 5sin6, 0 0
1 0 0
[1.3] — LLsinf, 0
= L cos b, 0
0 0
Joe, = ([1.3]28 X 0 2] x (o(c’2 — o?))
[1.3]0 [1.3]L cos 6y + 3L cos 0; cos b, [1.3] sin 6, [1.3]L cos 6 + 3L cos b co
=|[13]| o |x Lsin6; + 1L cosf,sin 6, —cosf, | X Lsin6; + 1L cosf,sind
1 %L sin 02 0 %L sin 92
[1.3] — Lsin6; — 3L cosfasinf; —3L cos b, sinbs
= L cos 6 + ;L cos 0, cos - —3Lsin 6, sin 6,
0 L cosf,
Now the angular velocity Jacobians are found

[1.3]0 0

Jo = (1318 0)=|| 0 o0

1 0

[1.3]0 sin6;
Juy = ([1.3]5128 6_2Z?) = 0 —cosb,
1 0

VERIFICATION:

To verify the linear velocity Jacobians the following relations are used

Ty = (1315 %2) (2)
Orcy  Orey
Ty = (1315 52) (3)
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Result obtained from the above is compared to part (2) result. In the above, ., is the
position of the center of mass of link 7 measured from the origin of the inertial frame.

Thereford?]
0 _ 0.1
rcl - Tl Tcl

[1.3]cos6#y O sin# Lcos6;\ ([1.3]— %

_ sin 6 0 —cosf#; Lsinb, 0
0 1 0 0 0
0 0 0 1 1
[1.3]3L cos 6,
— %L sin 91
0
1
Therefore
[1.3]3L cos 6,
o =| 1Lsin6
0
Using the above in (2) gives
[1.3]3L cos 6, [1.3]2 L cos 6,
JuCl = [1'313%1 %L sin 6, 5%2 %L sin 6,
0 0

[1.3] — ;Lsin6; 0
= %L cos 0, 0
0 0

The above is the same result obtained in part (2). Similarly J,,, is verified

0 _ m0,.2
rcz - T2 TCQ

[1.3] cos 6y cosfy —cos@ysinfy sinf; Lcosb + Lcosbscos b, [1.3] — g
. cos 05 sin 61 —sin@;sinfy —cosf; Lsinf; + L cosbysinby 0
B sin 6, cos 6, 0 L sin 6, 0
0 0 0 1 1

[1.3] L cos 6, + %L cos 6; cos 0,
Lsinf, + %L cos 0, sin 6
%L sin 6,

1

5 0 _ 70 e ; ; c1 — T
we can also use r,, = T, r¢! where in this case rg! = [0,0,0,1]
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Hence
[1.3]Lcos6; + %L cos 6, cos 0,

rd = Lsin; + 3L cos 6, sin 6,
%L sin 02

Using the above in (3) gives

[1.3] L cos 6, + %L cos 61 cos 0, [1.3]Lcos6; + %L cos 0, cos 0,
Joe, = [1.3]8%1 Lsin 6, + %L cos 05 sin 6 6%2 Lsin6; + %L cos 0 sin 0;
%L sin 6, %L sin 0,

[1.3] — Lsin6, — ;Lsin6; cos, —3Lcos b sin b,
= L cos b + %L cos 6, cos b —3Lsin 6, sin 6,
0 1L cos b,

The above is the same as found in part(2).

2.3.2 Part 3
The mass matrix D(q) is evaluated. By definition
2
D(q) =Y mJL J, +JLRL (R U, @)
i=1
The following is found in part (1)
[1.3]cosf; 0 siné,

R) = sin 6, 0 —cosb,
0 1 0

[1.3] cosf cosfy —cosfysinfy sinb,

52
I

cos 0, sin 6, —sin#;sinfy — cosb;

sin 0, cos 0, 0
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Therefore (4) becomes

T
[1.3] — 3Lsin6; 0 [1.3] — 2Lsin6; 0
—Lcos«91 0 tLcost; 0
0 0 0
[1.3]0 0 [1.3]cosf; 0 siné; [1.3]3, 0 O
+ 0 0 sin 6, 0 —cosb; 0 I, 0
1 0 0 1 0 0 0 I,
[1.3]cosfy 0 sinf \ ([1.3]0 0
sin 0, 0 —cosb, 0 0
0 1 0 1 0

[1.3]3L*+1, 0
= ml
0 0

T
[1.3] — Lsin@; — ;Lsin6; cos, —3Lcosb;sinb; [1.3] — Lsin6; — ;Lsinf; cos, —

Ds (q) = my L cos 8y + 3L cos 6 cos 6 —3Lsin 6, sin 6, L cos 6 + 3L cos 0 cos 6, —
0 L cos 6, 0
[1.3]0 sin6; ’ [1.3] cos 6y cosfy —cosysinfy sinb, [1.3]%.7& 0 O
+ 0 —cos 6, cos 05 sin 6 —sinf; sinf, —cos6; 0 I, 0
1 0 sin 0, cos 6 0 0 0 I,
T
[1.3] cos b cosfs —cosbysinfy sinb, [1.3]0 sin6;
cos 0, sin 0 —sin#;sinfy —cosb; 0 —cos b,
sin 0, cos 0, 0 1 0
[1.3]3 (61, + 9L* + 8L2 cos B, + (21, + L?) cos (265)) 0
= m2 9
0 I+ %

Hence the D (q) becomes

D) = [1.3]m, (%Lz i Ia,) 0 . [1.3]3 (61, + 9L* + 8L2 cos B, + (21, + L?) cos (265)) 0
! 0 0 i 0 L+%Z

[1.3]m; (Ia + }le) + §my (61, + 9L + 8L? cos 0 + (21, + L?) cos (26,)) 0
0 moy (Ia + %2)
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Part 4
The Coriolis term B(q) [¢4] is now evaluated

B (q) [44] = EZ;Z] [9192] (1)

Where b, ;i is the Christoffel symbol of first kind defined as

1

b jx = 3 (dijk + dikj — djri)

Where d;j;, = %. Using these in (1) gives

.. -d112 +dio1 —dia| 4 4
B = 6.0
(9)lad] |da12 + dao1 — d122] [ ! 2}

di12 w
= 0.6
| da12 + dgo1 — d122] [ ' 2}

9di1
aq2 Y
T |oda 4 0dey m} 6162
| 9g2 oq1 Oq2
The mass matrix was found in part (3) as
. my (I + 1L2) + tmg (61, + 9L? + 8L% cos 0 + (21, + L?) cos (262)) 0
D(q) = )
0 mo (Ia + LT)
Hence
0qo B 00,
0 1 1
- [ml (Ia + ZLQ) + Smy (61, + 917 + 82 cos by + (21, + L2) cos (292))]
_ 1 2 2\ o
= gmg (—8L sin @y — 2 (2Ia + L ) sin (292)>
1
= —mpL?sinfy — m, (21, + L?) sin (262)
And
Ody1  Ody
0qy 00,
=0
And
Ody;  Oda

B 06,



130

And
0dy2 . 0di2
0qo B 00,
=0
Hence

B (q) [44] = [—77’L2L2 sin 6, — iﬂ’m (21, + L?) sin (292):| [9192]

0

_ l—m29192L2 sin 92 - A—llélégmg (2.[@ + L2) sin (292)]
0

The centrifugal term is now evaluated

C@|#] = lb b] [Z]

ba11 b22o
Where

1
bi1 = 2 (d111 + d111 — din)
1

=_d
g

. ladn
2 Oq
=0

And

1
by 22 = B (dy22 + d122 — da21)
1

= d122 - §d221

_ 0dy 104y
00, 206,
=0

And

1
ba11 = 2 (do11 + do11 — di12)
1

= d211 - _d112

2
. 8d21 1 adll

T 00, 206,

1 . 1 .
=0— 5 [—m2L2 sin @y — Zmz (QIa + L2) sin (292)]

1 . 1 .
= 5m2L2 sin 05 + gmz (2Ia + L2) sin (26,)



And

Therefore

Part (5)
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1
ba22 = 5 (daga + daga — dag2)

1
—d
o222

_ 10dy
2 06,
=0

o [ 0 o] [é2
(9) |¢°] = LmaL?sin 6, + Imy (21, + L) sin (262) 0| |2

0
[%mgéfL2 sin 0y + im,67 (21, + L?)sin (262)]

The gravity vector G(q) is now evaluated

From part(2) we found

Hence (1) becomes

G(q) = — [J5 mug + J.. mag] (1)
-—%L sin 6 0]
Ju, = | 2Lcos; 0
L O 0_
[ Lsin6, — tLsin6; cosp —3Lcosfsinb,
Ju, = | Lcosby + L cosbycosfy —3Lsinb;sinb,
0 L cos 6,
T . 1 . 1 . T
—%Lsinﬁl 0 1 —Lsin6; — ;Lsinf, cosfy —35Lcost;sinbs, 1
G (q) = —mug 1Lcosf; O [0] —mag | Lcos@ + 3Lcosfycosfy —1Lsinbysinb; {0]
0 o| LO 0 3L cosb, 0
% gmq Lsin 6, —Lgmssin 0; — %Lgm2 cos 05 sin 6,
0 —32gmaL cos 0, sin 6,

Il
| —

|

sLgm, sin6; + Lgms sin 6, + 2 Lgms cos 6 sin 91]

3 Lgms cos 6, sin 6,
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Part (6)

The equation of motion is now found using above results. Using the notation [ | for a
matrix and { } for a vector, it is written as

centrifugal

mass matrix Coriolis gravity torques

=

Di{a +Blad+(c{¢+ 16 = T

Since there is no applied external torques or forces, the right hand side is zero. The equation
of motion becomes

|

my (Ia + iLz) + gma (61, + 9L? + 8L? cos 0 + (21, + L?) cos (26,)) 0 i,
0 mo (Ia + %2) éQ
——m2L2 sin @y — %mQ (21, + L*)sin (262) | 1 ; 0 0
+ _ 0 [0102] + smoL?sin 03 + gmo (21, + L?) sin (26;) 0
N _%Lgml sin 6, + Lgmo sin 0; + %Lgmz cos 0, sin 6, _ lﬁ]
i $Lgms cos 6, sin 0, 71

Looking at each equation of motion on its own, for 8; the equation of motion is

. 1 1
61 [ml (Ia + ZLz) + g™ (6Ia + (cos(262)) (L2 + 2Ia) + 8L? cos 0 + 9L2)]

1 . 1 1
- (m2L2 sin 0y + ng (2[a + L2) sin (292)) 0,60, + §Lgm1 sin @, + Lgm, sin 6; + éLng cos By sinf; = |

And the equation of motion for 6 is

. 1 1 1 o 1
Oy (ZLZ + Ia) + (§m2L2 sin 6, + §m2 <2Ia + L2> sin (292)) 6? + éLgmz cosf;sinfy =0

These are coupled differential equations since 6,6, appears in both equations. They are
also nonlinear due to the 62,62 terms.
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2.3.3 Problem 2

Problem 2. [20 points]

Using your results from the previous question, write a Matlab numerical simulation of the manipulator
described in Question 2. Implement a 4™ order Runge-Kutta numerical integration of your equations of
motion. The model and simulation parameters are given below.

Geometric parameters: L= 2 meters

Mass properties: m=10kg
I, =5 kg/m®
g=9.81 m/s

Simulation parameters: At =0.01 seconds (integration time step)
Tfina = 20 seconds (simulated time duration)

Note, to help you develop your code, some example code has been posted to the course Learn@UW page.
Please use these scripts as a starting point. I would advise you to review all of the posted examples before
you start working on your code.

» Simulate (and animate) the release of the manipulator from a vertical position (i.e. g, = 180°,q, =
0) with small initial joint velocity (§; = g, = 0.17/s). You may want to add a small amount of
damping to the joint torque vector such that the system starts to settle after a few major oscillations
(suggested ¢; = 1 N-m/r/s where 7; = —c;q;).

» To check that you simulation (and equations of motion) are correct, calculate and plot the system
energy for the case where the damping coefficients are set equal to zero. Specifically, please plot the
total system kinetic energy, 7, the total system potential energy, ¥, and the total system energy (7 +
V) as a function of time. If your simulation and underlying equations of motion are correct, the total
energy should stay constant.

Figure 2.17: Problem 2 description

2.3.4 Part1l

The equations of motions for the 2 link serial manipulator were simulated by modifying the
learn UW Matlab code using results of problem 1.



134

Z
Y {imé'=20.000000 2

Figure 2.18: screen shot of simulation
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A small amount of damping ¢ =1 N-m/r/s was added to both joints in the file zDot2dof .m
and the simulation was run for 20 seconds.

When adding damping, the equation of motion becomes

centrifugal gravity torques

D@ + 4} +Blad+ic/{@}+ 1@ = T3

mass matrix damping Coriolis

Where ¢ above is the damping constant used.

The diagram below shows that total energy decreased as would be expected.

System energy as a function of time
HW 3, problem 2

Energy [joules]

-200

400 b total epergy
potential energy
kinetic energy
I I

0 2 4 6 8 10 12 14 16 18
Time [seconds]

Figure 2.19: Damping ¢ = 1 N-m/r/s for 20 seconds

The damping ¢ was now increased to 5 N-m/r/s and the simulation time increased to 50
seconds. Now the total energy decreased to almost zero by the end of the simulation and
the robot arm came close to being at rest. This was done as an additional verification yo

verify the equations of motion.
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System energy as a function of time
HW 3, problem 2

total energy
potential energy | _|
kinetic energy

400

N
o
o

o

Energy [joules]

-200

-400 [ 7

0 5 10 15 20 25 30 35 40 45
Time [seconds]

Figure 2.20: Damping ¢ = 5 N-m/r/s for 50 seconds

Part 2

The damping constant was removed and the simulation run again for 20 seconds. The total
energy remained constant as would be expected

System energy as a function of time
HW 3, problem 2

-+ N\ )

-200 [

IN
o
[}

N

o

o
T

L

Energy [joules]
o

L total energy i
-400 potential energy

kinetic energy

0 2 4 6 8 10 12 14 16 18
Time [seconds]

Figure 2.21: Damping ¢ = 0 for 20 seconds
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Animation

The following is a movie of the first 10 seconds of the simulation for the zero damping case.

source code

The following are the Matlab source code listings of all the files used used for the imple-
mentation of this problem.

%nma_HW3_problem.m

%This is modified version of the UW learn script used to solve
%probvlem 2, HW 3. ME 739, Univ. Wisconsin Madison

%Nasser M. Abbasi

clear all; close all; clc;
DO_MOVIE = false; /make true to generate movie frames

% model parameters

modelParameters.g 9.81; % gravitational constant [m/s~2]
modelParameters.m = 10; 7 link mass [kg]

modelParameters.L 2; % link length [m]

modelParameters.Ia = 5; % inertia (_|_ to 1link’s CL) [kg/m~2]

% initialize integration variables

dT = .01; %integration step size

tend = 20; Y%simulation run time

numPts = floor(tend/dT);

q = zeros(2,numPts) ; %pre-allocate array

dq = zeros(2,numPts);

t = zeros(1,numPts);

q(:,1) = [pi; 0]; %initial position

qd(:,1) = [0.1; 0.1]; %initial velocity

z = [q(:,1); qd(:,1)]; Y%initialize the state variables

% integrate equations of motion
for i = 1:numPts-1
% Runge-Kutta 4th order

k1 = zDot2dof (z,modelParameters) ;

k2 = zDot2dof(z + 0.5*%k1*dT,modelParameters);
k3 = zDot2dof(z + 0.5%k2*dT,modelParameters) ;
k4 = zDot2dof(z + k3*dT,modelParameters);

z =z + (1/6)*(k1 + 2%¥k2 + 2xk3 + k4)*dT;

% store joint position and velocity for post processing
q(:,i+1) = z(1:2);
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qd(:,i+1) = z(3:4);

t(1,i+1) = t(1,i) + dT;
end
e ————————— e
% RENDERING INITIALIZATION
e R B, i A i, L
%——--set rendering window view parameters
L = modelParameters.L;
L1 = L;
L2 = L;
f_handle =1;

axis_limits = L*x[-2 2 -2 2 -1 1];

render_view = [-.4 -.8 .5]; view_up = [-1 0 0];
SetRenderingViewParameters(axis_limits,render_view,view_up,f_handle);
camproj perspective , turns on perspective

%----initialize rendering

% link 00 rendering initialization, this is the base on the wall

% fixed, used for illustration

r00 = L; sides00 = 4; axis00 = 3; norm_LOO = 1.0;

linkColorl = [.6 0.75 0]; plotFrameOO = O;

d00 = CreateLinkRendering(0.01*L,r00,sides00,axis00,norm_LOO,...
linkColorl,plotFrame00,f_handle);

% link O this is the rod holding the arm, fixed does not move

r0 = L/10; sidesO = 10; axisO = 3; norm_L = 1.0;

linkColorO = [0.75 1 1]; plotFrame0O = O;

d0 = CreatelLinkRendering(L,r0,sides0,axisO,norm_L,linkColor0,...
plotFrameO,f_handle);

% link 1 rendering initialization

rl = L1/5; sidesl = 10; axisl = 1; norm_L1 = 1.0;

linkColorl = [0 0.75 0]; plotFramel = 0;

dl = CreateLinkRendering(Ll,rl,sidesl,axisl,norm_L1,linkColori,...
plotFramel,f_handle);

% link 2 rendering initialization

r2 = L2/6; sides2 = 10; axis2 = 1; norm_L2 = 1.0;

linkColor2 = [0.75 O 0]; plotFrame2 = O;

d2 = CreatelLinkRendering(L2,r2,sides2,axis2,norm_L2,1inkColor2,...
plotFrame2,f_handle);

% DISPLAY INTERATION RESULTS




%since these links are fixed, they are set outside the loop

TOO =1[1 O 0O O
0 1 0 0

0 0 1 -L
o o0 1];

o

TO [1 0
1 0
0 1
0 O 0 1];
UpdateLink (400, T00) ;
UpdateLink(d0,TO) ;

k =0;

0

o

0
0
0

o

for i = 1:numPts
% Update frame {1}
c = cos(q(1,i)); s = sin(q(1,i)); L
Ti10 = [c 0 s Lx*xc
s 0 -c Lx*xs
01 0 O
0 0 0 1];

% Update frame {2}

c = cos(q(2,i)); s = sin(q(2,i)); L

T21 = [c -s 0 Lx*c

c 0 Lxs

0 1 0
0 O 11;

T10%*T21;

N oomwn

T20

UpdateLink(d1,T10);
UpdateLink(d2,T20) ;

title(sprintf (’time = Jf’,i*dT));

if i == 1; Jpause at start of simulation rendering

pause;
end

if DO_MOVIE
k = k+1;
I = getframe(gcf);

imwrite(I.cdata, sprintf(’frameld.png’,k));

end

pause(dT) ;
end
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s
% ENERGY BALANCE - TO CHECK SIMULATION RESULTS

% ___________________________________________________________________

V = zeros(numPts,1);
T =1V;
E=1V;

for i = 1:numPts
% kinetic energy

Q = q(:,1);
Qd = qd(:,i);
D = Dmatrix2dof (Q,modelParameters) ;

T(i)

(1/2)*Qd’ *D*Qd;

% potential energy
% evaluate position of links center of mass

% Link 1:
c = cos(q(1,1));
s = sin(q(1,i)); L = L1;

T1I0 = [c 0 s Lxc
s 0 -c Lxs
01 0 O
0 0 0 1];
L = L1/2;
Ti0c = [c 0 s Lx*c
s 0O -c L*s
01 0 O
0 0 0 1];
% Link 2:
c = cos(q(2,1));
) = sin(q(2,1)); L = L2;
T21 = [c -s 0 Lxc
s c 0 Lx*s
0 0 1 0
0O 0 o0 1];
L = L2/2;
T21c = [c -s 0 Lx*c
s c 0 Lxs
0 0 1 o0
0O 0 o0 1];

T20 = T10%T21;
T20c = T10%T21c;
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% assign center of mass position vectors
rcl = T10c(1:3,4);

rc2 = T20c(1:3,4);

g = modelParameters.g*[1; 0; 0];

m = modelParameters.m;

% calculate the gravitational potential energy
V(i) = -(m*g’*rcl + mxg’*rc2 );

% calculate the total system energy
E(1) = V(@) + T(1);
end

% plot the energy terms as a function of time

figure; plot(t,E,’b’,t, V,’g’,t,T,’r’);

legend(’total energy’, ’potential energy’, ’kinetic energy’)
xlabel (’Time [seconds]’);ylabel(’Energy [joules]’);
title({’System energy as a function of time’,’HW 3, problem 2’});
axis ([0 max(t) -1.5*max(E) 2+*max(E)])

%zDot2dof .m

%problem 2, HW 3. ME 739, Univ. Wisconsin Madison
%called from RK-4 numerical integration method
%Nasser M. Abbasi

function [zDot] = zDot2dof (z,modelParameters);

% assign joint displacements / velocities from state variables
q= [z(1; z(21];
qd = [z(3); z(d)];

% calculate D, B, D, and G matrices
Dmatrix2dof (q,modelParameters) ;
= Bmatrix2dof (q,modelParameters) ;
Cmatrix2dof (q,modelParameters) ;
Gvector2dof (q,modelParameters) ;

Q QW o
|

%viscous friction in joints
tau_friction = 0; 75%qd; %5%*qd;

%acceleration

qdqd = [qd(1)*qd(2)];

qd2 = [qd(1)*qd(1); qd(2)*qd(2)];

qdd = D\(-B*qdqd - C*qd2 - G - tau_friction);

% assign state variable derivatives
zDot = [qd; qdd];
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‘end ‘

function G = Gvector2dof(q, modelParameters)

% assign model parameters to local variables
g = modelParameters.g;
m = modelParameters.m;
L = modelParameters.L;

G=zeros (2,1);

G(1,1) = 1/2*Lxmxg+*sin (q(1))+Lxg«mxsin (q(1))+1/2*Lxg+m*cos(q(2))*sin (q(1
G(2,1) = 1/2+L*g+m*cos(q(1l))*sin(q(2));

end

Y%Dmatrix2dof .m

%probvlem 2, HW 3. ME 739, Univ. Wisconsin Madison
%build the mass matrix D

%Nasser M. Abbasi

function D = Dmatrix2dof (q,modelParameters)

% assign model parameters to local variables

m = modelParameters.m;
Ia = modelParameters.la;
L = modelParameters.L;

D=zeros(2,2);
D(1,1) = m*(Ia+1/4*L"2)+1/8*m*(6*%Ia+9*L"2+8*xL"2*cos(q(2))...
+(2xTa+L"~2) *cos (2%q(2)));

D(1,2) = 0;

D(2,1) = D(1,2);

D(2,2) = m*(Ia+L"2/4);
end

%Cmatrix2dof.m

%probvlem 2, HW 3. ME 739, Univ. Wisconsin Madison
%build the C matrix

%Nasser M. Abbasi

function C = Cmatrix2dof (q,modelParameters)

% assign model parameters to local variables



m = modelParameters.m;
Ia = modelParameters.Ia;
L = modelParameters.L;

C=zeros(2,2);

C(1,1) = 0;
C(1,2) = 0;
C(2,1) = 1/2*m*xL"2*sin(q(2))+1/8*m* (2*Ia+L"2)*sin(2xq(2));
C(2,2) = 0;
end
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%Bmatrix2dof.m

%probvlem 2, HW 3. ME 739, Univ. Wisconsin Madison
%build the B matrix

%Nasser M. Abbasi

function B = Bmatrix2dof(q,modelParameters)

% assign model parameters to local variables
m = modelParameters.m;

Ia = modelParameters.la;

L = modelParameters.L;

B=zeros(2,1);

B(1,1) = -m*L"2%sin(q(2))-1/4*m* (2xIa+L"2)*sin(2*q(2));
B(2,1) 0;

end
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2.3.5 key solution for HW 3

ME/ECE 739: Adva @7 Homework #3

Due: April 1*' (Wednes @
@ ﬁ o wcluding your Matlab scripts, and,

Please submit your answers to
ipts should be readable, with

where appropriate, program results
j @ addition to the hardcopy (pdf

comments, sensible variable names, in
format), you must also submit your Matlab scr earn@UW course page dropbox
(e.g. Homework #3) using a zip archive file format.

hw# (e.g. zinn_hw3.zip).
Problem 1 [20 points] \/

zip files using your last name and

Following the steps outlined below, derive the equations of motion of the two degree-of-freedom
manipulator depicted. The links have mass, m, and an inertia tensor, |, given as.

The location of the center of mass is located in
the middle of each link.

Note: you are strongly advised to use the Matlab
symbolic toolbox (or equivalent) for your
algebraic and differential operations.




» On each link we have attached frames at the joints and at the center of mass of each link. Calculate
the homogeneous transforms that relate these frames to the inertial frame {0}. In other words, find,
TP, T;, T2, and T¢,. Verify that your matrices are correct before proceeding to the next step (e.g.
check the location and orientation of your frames for simple configurations such as 8; = 8, = 90°)

SOLUTION:

The homogeneous transformation matrices relating successive frames are given as

¢, 0 s ilLc
T0_ s, 0 —¢, iLs
o1 010
0 0 01
c, -s, 0ilLc,
T s, ¢, O0ilLs,
2710 0 110
0 01

e, 0 s |iLc
s, 0 —¢ é%le
0 1 0; 0
00 0 1
[c, -s, 0!iLc,
s, G, OHLS2
0 o0 lé 0
0 0 1

The homogeneous transformation matrices relating the link frames to the ground frame are calculated as:

¢ 0 s flglfe, -s, 0lLe] [ee, —¢s, 5 iLcl(1+c2)
ro_qori_|S I ¢ |Ls s, ¢ 0/Ls,| |sc, -ss, —¢ | Ls, (1+c,)
PT12T0 0 0,000 0 170 | |s, ¢ 0 Ls

00 0 1|0 0 01 o 0 0 1

¢ 0 s §Lc c, -S, Og%Lc2 cC, -CS, S §Lcl(1+%cz)
1o _ori _ s 1 —¢iLs|s, ¢, 0}4Ls, _[sC -ss, ¢ Ls,(1+4c,)
e=heTlo 0 0o0llo 0 1] 0 s, ¢ 0 ils

00 0 ; 1o o o§ 1 0 0 0 1

Page 2 of 7
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» The evaluation of the mass matrix of the manipulator will require the computation of the linear
Jacobian of the center of mass, J,_, for each link and the angular velocity Jacobian for each link, J,,.
L

= Find ],,C1 and ]vc2 .

* Find J,, and J,,.
Verify that your matrices are correct before proceeding to the next step.

SOLUTION:

The linear and angular velocity Jacobians (associated with the center-of-mass of each link) can be
evaluated using the explicit form. In this case, the link frame definitions must be consistent with our D-H
frame rules. Specifically, the z-axis of link i must be aligned with joint axis of link i+1. The frame
definitions shown in the figure above conform to this requirement.

Linear velocity Jacobian: Linear
center of mass of link 1:

velocity Jacobian:

center of mass of link 2:

i 0
_| 40 0 50 0 ;
JVC] - ZO XOCI § O JVCz :|:ZO X0C2 i
i 0
Angular velocity Jacobian of Angular velocity Jacobian of
link 1: link 2:
|0
_| 501 50
J@—Zogo @:[zol
0
where:
K s,
28 = , 2? =| —C, | (3" column, rows 1-3 of TIO) ,
i 1
LLc, L
02 =|LLs, | (4" column, rows 1-3 of TC(: ), ng =L

[Lc,
o’ =|Ls,
0

(4" column, rows 1-3 of T,”)
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147
» Evaluate the mass matrix, D(q), of the manipulator in terms of mass and geometric properties and its

configuration.

SOLUTION:

The mass matrix for the two link manipulator is evaluated as

1 2,1 2 2 1 P
D(q)= D, +D, +DQHDMZ{A‘mL +iml’(c,+2) +21,—11.s, 0

2
— 0 mL +1,
due to linear motion  due to rotational
of links COM motion of links
where
1 2
+mL” 0
T
DvI = rT.Il‘]vC ‘]vc = |:4
1 1 O 0

D —mal 3 —|[mE(e+2) 0
e e 0 iml?

I, 0
Tpo oT a
D, =J,R'IcR J”:[O 0}

1
D, =J R R"I, =|°

The inertia tensors, IC] and IC2 , are defined in the problem statement and the linear and angular velocity

Jacobians were evaluated in the previous question. The rotation matrices, R and R}, are given as
R'=[s, 0 —c | (rowand columns1-3of T,")

CC, -GS, 5
R)=[sc, —-SS, —C | (row and columns 1-3 of T,))
s, ¢ 0
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» Evaluate the centrifugal and Coriolis inertial terms of the manipulator in terms of mass and geometric
properties and its configuration.

* Find B(q)[q4]
" Find C(q)[4°]

SOLUTION:
For the two-degree-of-freedom manipulator shown, the Coriolis and centrifugal terms are evaluated as

B(a)[dd]= {m’”}[qu] _ {—(% I, +4mL* )sin(26,) -mL* sin(&z)}[éﬂzJ

2b2,12 0

b, b, 02 0 01 g2
C 27 1,11 1,22 '| _ .1
(a) 7] {b&“ buj{a;} l:(%Ia+§mL2)sin(202)+%mL2sin(Hz) 0}[9}}

od; od, ad, 1
o (dy gy —dy ). The
2\ aq aqj o

2
evaluation of the elements of the B and C matrices are given below.

b111 :%(dm"'dm_dm) :%dm =
d

where the Christoffel symbols are defined as b, ;, = [

b, =4(d,+dy—d,) =1d,, = (ll +1mL)sin(26,) -4 mL’sin(6, )
b122 :%(d122+d122 d221) :d122 2d221 =0
bzn %(dz +d211_d||2) =d21|_%d|12 = (%Ia+§mL2)sin(202)+%mL2sin(é’z)
b212 %(d212+d221 d122) = 0
b222 :%(dm"'dzzz_dm) :%dzzz =0
where the partial derivatives of the mass matrix elements are evaluated below.
od ad . . .
dm=a—él‘=0 dm=6—9]2]=—%Iasm(202)—mLzsln(Hz)—%mLzsm(2€2)
ad
dp, = (761’22 =0
ad ad
dm:aé‘: dzlzzéélzo
ad ad
21 20, 222 20,
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P Evaluate the gravity vector, G(q). In frame {0} the gravity vector is givenas: g =g[1 0 0]7.

SOLUTION:

For the two-degree-of-freedom manipulator shown, the gravity vector is evaluated as

1mgLs, (c, +3)}

— (37 T —
s(a)=—{3imo+3ima)< "

The linear velocity Jacobians for the link COMs were evaluated in the previous question. The
gravitational vector g is defined in the problem statement (figure) and is given as g = [g 0 O]T .

» Form the complete equations of motion in the form

D(a)d+B(a)[dd]+C([4°]+C(a) =7

SOLUTION:
The assembled equations of motion are given as
Iml+iml(c, +2) +21, —11,s,? 0 }[6’1}

0 im2+1, |6,

__(%|a+%mL2)Sin(()262)_mL2Sin(92):||:9192:| + .

I 0 01 g2 . imgLs,(c,+3)]  [7
(41, +1mL)sin(26,)+imsin(6,) 0] 6 imgles, | |g

SOLUTION:

The symbolic solution presented above was derived (in part) using the Matlab symbolic toolbox. The
Matlab script used to evaluate the solution has been posted to the Learn@UW course page.

Page 6 of 7
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Problem 2. [20 points]

Using your results from the previous question, write a Matlab numerical simulation of the manipulator
described in Question 2. Implement a 4™ order Runge-Kutta numerical integration of your equations of
motion. The model and simulation parameters are given below.

Geometric parameters: L= 2 meters

Mass properties: m=10 kg
la=5 kg/m’
g=9.81 m/s’

Simulation parameters: At=0.01 seconds (integration time step)
Tinal = 20 seconds (simulated time duration)

Note, to help you develop your code, some example code has been posted to the course Learn@UW page.
Please use these scripts as a starting point. I would advise you to review all of the posted examples before
you start working on your code.

» Simulate (and animate) the release of the manipulator from a vertical position (i.e. g; = 180°,q, =
0) with small initial joint velocity (§¢; = ¢, = 0.17/s). You may want to add a small amount of
damping to the joint torque vector such that the system starts to settle after a few major oscillations
(suggested ¢ = 1 N-m/t/s where 7; = —c;q;).

» To check that you simulation (and equations of motion) are correct, calculate and plot the system
energy for the case where the damping coefficients are set equal to zero. Specifically, please plot the
total system kinetic energy, T, the total system potential energy, V, and the total system energy (T +
V) as a function of time. If your simulation and underlying equations of motion are correct, the total
energy should stay constant.

SOLUTION:

The Matlab scripts used to evaluate the solution have been posted to the Learn@UW course page. To
simulation is executed by running the m-file TWoDOFDynamicsHW3.m. The rendering functions
introduced earlier in the semester are also required to display the results. A video of the simulation output
is included with the posted archive.
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24 HW 4

2.4.1 Problem 1

Problem 1 [20 points]

» Write a Matlab function which constructs a quintic polynomial, for the purposes of trajectory

generation, given the following input parameters

to: Initial time tr: Final time

¥o: Initial position ¥s: Final position
Yo: Initial velocity Vs Final velocity
Vo: Initial acceleration V¢ Final acceleration

An example function prototype is shown below

[t, ¥, ¥, ¥1 = QuinticPolynomial(to, &, Yo, Yrr Yor Yrr Yoo Vg, N)
where 7 is the number of elements in the time vector and output arrays ([y, ¥y, ¥1)
t : n-dimensional array of trajectory time
y : n-dimensional array of trajectory position
y . n-dimensional array of trajectory velocity
¥ @ n-dimensional array of trajectory acceleration

» To check your function, create and plot the trajectory for the input parameters given below:

to: 0 ty: 5

Yo: -10 e 10

Yo: -50 Yrio =50

Vo: 0 Py 0

e.g. [t, y, dy, ddy] = QuinticPolynomial (0,5,-10,10,-50,50,0,0,1000);
figure; plot(t,y);
figure; plot(t, dy);
figure; plot(t, ddy):;

Figure 2.22: Problem 1 description

151

A Matlab function called QuinticPolynomial was implemented. The following shows the
call made and the three plots generated. The output matched the required output in the

problem statement.

figure;
plot(t,y);
title(’HW4, probleml, y(t) solution’)

figure;
plot(t,dy);
title(’HW4, probleml, dy(t) solution’)

figure;
plot(t,dyy);
title(’HW4, probleml, ddy(t) solution’)

[t,y,dy,dyy] = QuinticPolynomial(0,5,-10,10,-50,-50,0,0,1000);
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HW4, problem, y(t) solution

HW4, problem, dy(t) solution

HWA4, problem1, ddy(t) solution

Figure 2.23: Problem 1 plots
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The following is the Matlab source code listings of the above function.

function [t,y,dy,ddy] = QuinticPolynomial(tO,tf,y0,yf,dy0,dyf,ddy0,ddyf,n)
%function QuinticPolynomial to solve trajectory generation using quintic
%polynomial method

#ME 739, UW Madison, Spring 2015

%by Nasser M. Abbasi

%INPUT:

%t0  : initial time

%tf : end time

%y0  : initial position
%yf : final position

%dy0 : initial speed

%dyf : final speed

%ddy0 : initial acceleration
%ddyf : final acceleration

%n : number of samples

/A

%OUTPUT

A" : time vector

hy : position vector

%dy : speed vector

%ddy : acceleration vector

syms t a0 al a2 a3 a4 a5;
%set up the polynomial

y = al0+al*t+a2*t~2+a3*t~3+ad*t"4+ab*t~5;
dy = diff(y,t);
ddy = diff(dy,t);

%setup the 6 contraints
eql = subs(y,t,t0)==y0;

eq2 = subs(y,t,tf)==yf;

eq3 = subs(dy,t,t0)==dy0;
eq4d = subs(dy,t,tf)==dyf;
eqb = subs(ddy,t,t0)==ddy0;
eq6 = subs(ddy,t,tf)==ddyf;

%solve for the unknowns
[a0,al,a2,a3,a4,ab]=solve(eql,eq2,eq3,eq4,eq5,eqb) ;

%set up time vector
t = linspace(t0,tf,n);

%use subs to replace all unknowns and time in the polynomials
y = double(subs(y));
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'dy = double(subs(dy));
'ddy = double(subs(ddy));
‘ end

2.4.2 Problem 2



Problem 2. [40 points]

firame revised X,
" "

X4
task Xoffser = 0.0
displacement Yofset = 2L
x5z Zoser = 2L
L =4.0

Overview of 3-DOF manipulator Task-space trajectory (rectangular)

You are to generate the motion trajectory for the three degree of freedom manipulator shown in the above
figure such that the manipulator's task frame (origin) moves between the four points that describe a square
in space (see Figure). The forward and inverse kinematics are given below.

Forward kinematics: Inverse kinematics:
X, =43 Cos(qz) q, =z,
Ve =45 Sin(qz) 9 :tanil(ye/xe)

=4 ‘13:\/xez+J’e2

For reference, the homogeneous transformations between the successive link frames (defined in the figure
above) are given below. These may be useful when animating your results in Problem 3.

10 -s, 0 01

0 1 c, 0 00
0 1 2 2 _
T]_OO ’ L= 0 1 ’ T”_IO

0 0 0 0 00

Problem 2. continued

Scenario 1: Joint-space trajectory generation

» Calculate the joint space displacements that correspond to the given task-space waypoints
[1\7 I X 25 X 5,and X 4] (using the inverse kinematics). The task space Cartesian coordinates for
each waypoint can be determined from the adjacent figure.

» Generate the four part trajectory, moving from waypoint / to 2, 2 to 3, 3 to 4, and 4 to /. The time
required to move between successive waypoint is 5 seconds. Generate the trajectory in joint-space,

using the joint-space displacements calculated above. The trajectories should follow a quintic
polynomial. At each waypoint, the joint-space velocity and acceleration should equal zero.

» Plot your results to include:
= Joint space displacements as a function of time.

= Task space displacements as a function of time (using the forward kinematics to calculate the task
space displacements).

= Task space displacements in 3-D space (using the Matlab plot3 command).

Scenario 2: Task-space trajectory generation

P Generate the four part trajectory, moving from waypoint / to 2, 2 to 3, 3 to 4, and 4 to /. The time
required to move between successive waypoint is 5 seconds. Generate the trajectory in task-space,
using the given task-space waypoints. The trajectories should follow a quintic polynomial. At each
waypoint, the task-space velocity and acceleration should equal zero.

P Plot your results to include:

= Joint space displacements as a function of time (using the inverse kinematics to calculate the
joint-space displacements).

= Task space displacements as a function of time.

= Task space displacements in 3-D space (using the Matlab plot3 command).

» Comment on the differences between the two approaches (advantages and disadvantages).

Figure 2.24: Problem 2 description
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The following 2D diagram illustrates the task space trajectory which is the path that the
end effector will travel over.

X, = {2L,2L,2.5L}

Xy = {-2L,2L,2.5L}

@  ———— A ®

T )
! :LJ[:E !
| o End |
| effector I
| |
| |
| |
| |

X4 ={-2L,2L,1.5L} B 2 offset X3 ={2L,2L,15L}

Ground level —— T

Figure 2.25: Problem 2 task path

First scenario

PART ONE:

The waypoints have the following coordinate values by inspection from the above diagram

X; = {~2L,2L,2.5L}
X, = {2L,2L,2.5L}
X; = {2L,2L,1.5L}
X, ={-2L,2L,1.5L}

Inverse kinematics was used to determine the joint space displacements that corresponds
to the above task space. For X; this results in

Q1 = 2. = 2.5L
—1({Ye -1 2L) 0
= - — - =1
g2 = tan (w) tan (—2L 35
g3 = 22+ 92 = VAL2 4412 =2LV2
For X,

q1 = 2, = 2.5L

— Je ) — =) =4
g2 = tan ( ) tan ( i3 5

gs = (/22 +y2 = VAL? + 412 =2LV2



For X3
q1 = Ze = 1.5L
e 1 (2L
go = tan™? (i—) = tan~! (i) = 459
g3 = /22 +y2 = VALZ+ 412 =2LV2
And for X,
q1 = e = 1.5L
e 2L
@ =ton™ (1) = tan™ ( 57) =135
g3 = /22 +9y2 = VAL + 412 =2LV2
PART TWO
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The trajectory in joint space is now generated. The joint space coordinates was found above

and illustrated in the following diagram

t=20 t = 5sec
= L aL L
dJ1 2.5L ,‘ 3 " g1 = 2.5L
02 = 1350 | q L
e Qo e | @q, = 45°
s = 242L | L e |
: : T | :Eeffec(tjor i q3 - 2\/§L
- | I
| wsl | |
t=15sec g T i O 1 ettt ot = 10sec
g: = 1.5L A 2 offset q: = 1.5L
g2 = 1350 s 02 = 450
as = 242L » qs = 242L
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Figure 2.26: Problem 2 task path expressed in joint coordinates

A quintic polynomial was used with the restriction that at each waypoint ¢ = 0 and also

§=0.

The above was done for each joint space path between two points. There are 3 joints. For
each joint the full path was generated. For example, for joint ¢;, the polynomial between
X; and X, was found by solving 6 equations in 6 unknowns. The polynomial is defined as

q(t) = ap + ait + ast® + ast® + agt* + ast’
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The 6 equations are

q(to) = ao + arto + a,2t(2J + a,3tg + a4t§ + aStS —95[
g (to) = a1 + 2asto + 3a3t3 +4a 4,53 + 5a5t§ -0
d (to) = 2ay + 6asty + 12a4t2 + 20asts = 0
q(ts) = ao + arty + ast? + ast’ + agth + asts = 2.5L
G (t) = a1 + 2ast; + 3agt? + dagt’ + Sagts = 0

G (t7) = 2as + 6asty + 12a4t3 + 20ast} = 0

Where t; = 0 and t; = 5. The above 6 equations are solved for ag, a1, as, as, as, as which
now gives the polynomial ¢ () in order to obtain the joint coordinate at any time 0 < ¢t < 5.

Lt 8 &t B8] o Tqt)] .-
0 1 2t 3t2 4t 5t Z(; i (to) 2.(5)/:
0 0 2 6t 125 2085| |g, i (to) 0
Lty & 85 tp t3 | |as| |a(ty)|  |25L
0 1 2ty 32 43 5t} 34 g (ty) 8
0 0 2 6t 1262 20| 2  |d)] - -

Similarly, these 6 equations are solved for the next segment between X5, X3

q (to) = ag + aity + at? + asts + asts + asty = 2.5L
G (to) = a1 + 2asto + 3ast? + dagtd + Sasts = 0
G (to) = 2as + 6asto + 12a4t] + 20asty = 0
q(ty) = ao + arty + ast} + agty + aty + a5t} = 1.5L
d (t5) = a1 + 2aats + 3ast? + dagt} + Sast} =0

G (tf) = 2ag + 6asty + 12a4t7 + 20ast} = 0

Where in the above ¢ty = 5 and ¢y = 10.

The above was done for all the segments. The same process was repeated for joints g2 and
gs.

A Matlab program listed below was written to implement the above. The result generated
is given below the source code listing.

function nma_HW4_problem_2_parti()

%nma_HW4_problem_2_parti()

%This function implements problem 2, HW 4, ME 739, scenario ONE
%by Nasser M. Abbasi

A

close all;

L=4;
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%generate the joint space (q) displacements, velocity and acceleration
%the value of q_1 at each X1,X2,X3,X4 have been determined from the
%inverse kinmatics as shown in the HW report above. These are now used
%to generate the polynomial

%generate polynomial for ql trajectory and position, speed and acc. plots

figure;

[t1,q1]=process_q(2.5%L,2.5%L,1.5%L,1.5%L,’ql’,1.4%L,2.6%L,...
‘meter’,’m/s’,’m/s"2°);

%generate polynomial for g2 trajectory and position, speed and acc. plots
figure;
[t2,92]=process_q(135*pi/180,45*pi/180,45*pi/180,135%pi/180,...

’q2’ ,40%pi/180,155%pi/180, ’angle(rad)’,’rad/sec’,’rad/sec”2’);

%generate polynomial for g3 trajectory and position, speed and acc. plots
figure;

z=2xL*sqrt(2) ;
[t3,q93]=process_q(z,z,z,z,°q3’,0,1.2*%2xLxsqrt(2) , 'meter’,’m/s’,’m/s"2’);

%generate the task space X displacement using the forward kinematics
xe = g3.*cos(q2);

ye = q3.*sin(q2);

ze = qi;

%generate task space displacements

figure;

hl = subplot(3,1,1);

plot(tl,xe);

title(hl,{’Task space displacements’,’Xe’});
xlabel(hl,’time (sec)’);

ylabel(hl, ‘meter’);

axis(h1l, [0 20 -2.2%L 2.2xL]);

h2 = subplot(3,1,2);
plot(t2,ye);
title(h2,’Ye’);

xlabel (h2,’time (sec)’);
ylabel (h2, meter’);
axis(h2,[0 20 1.8%L 3%L]);

h3 = subplot(3,1,3);
plot(t3,ze);

title(h3,’Ze’);

xlabel (h3,’time (sec)’);
ylabel (h3, 'meter’);
axis(h3,[0 20 1.4xL 2.6x*L]);
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%generate 3D plot of the task space trajectory
figure;

plot3(xe,ye,ze);

hold on;

plot3(-2*L,2*L,2.5%L,’07);

text (-2*L,2%L,2.5%L, X1°);

plot3(2+L,2*L,2.5%L,’0°);
text (2*L,2%L,2.5%L, X2°);

plot3(2+L,2+L,1.5%L,’0");
text (2*L,2%L,1.5%L, X3’);

plot3(-2*L,2%L,1.5%L,’0’);
text (-2*L,2*L,1.5%L,°X4°);

plot3(0,2+L,2+L, +’);
text (.1%L,2*xL,2.1%L, center’);

title(’3D task space displacement’);
xlabel(’X’); ylabel(’Y’); zlabel(’Z’);
z1im([0 3*L]);

end

%____ —_—— —_——

function [t,q]l=process_q(x1,x2,x3,x4,the_name,1im0,liml,y1,y2,y3)
h

%Function to generate joint space trajectory for problem 2 for specific
%joint q

%x1: first point coordinate in this joint space

%x2: second point coordinate in this joint space

%x3: third point coordinate in this joint space

%x4: fourth point coordinate in this joint space

%the_name: title to put on the plot, for example ’ql’ or ’q2’ etc..
%1im0 and liml are the y-axis limits to use for the plot

%yl: position y label

%y2: speed y label

%y3: acceleration y label

%RETURNS

%q: which is vector of q joint coordinates in joint space over
%the full time space to be used later to generate the task space
%trajectory using forward kinemetics

)

%t: the corresponding time vector
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%call gen_path to obtain the polynomial coefficients

a = gen_path(x1,x2,0,5);
[q1,dq,ddq,t1] = find_q(0,5,a); Juse the coefficients to make polynomials
[h1,h2,h3] = make_first_plot(tl,ql,dq,ddq);

title(hl,{the_name, ’position’});
title(h2,’velocity’);

title(h3, ’acceleration’);
xlabel(hl,’time (sec)’); ylabel(hl,yl);
xlabel (h2,’time (sec)’); ylabel(h2,y2);
xlabel (h3,’time (sec)’); ylabel(h3,y3);

a = gen_path(x2,x3,5,10);
[q2,dq,ddq,t2] = find_q(5,10,a);
make_other_plot(t2,92,dq,ddq,h1,h2,h3);

a gen_path(x3,x4,10,15);
[q3,dq,ddq,t3] = find_q(10,15,a);
make_other_plot(t3,q3,dq,ddq,hl1,h2,h3);

a gen_path(x4,x1,15,20);
[q4,dq,ddq,t4] = find_q(15,20,a);
make_other_plot(t4,q4,dq,ddq,hl1,h2,h3);

axis(h1l,[0 20 1im0 1lim1]);
q=[q1 92 q3 q4];

t=[t1 t2 t3 t4];

end

function a = gen_path(q0,qf,t0,tf)
%this function generates the polynomial coefficients by solving for the
%constraints given

dq0 = 0;
dqf = 0;
ddq0 = 0;
ddqf = 0;
C=[1 to t0"2 t073 t074 t075;
0 1 2%t0 3*t072 4*xt0"3 5%t074;
0 0 2 6*t0 12%t072 20*t073;
1 tf tf72 t£f73 tf~4 t£75;
0 1 2%xtf 3*xtf"2 4xtf"3  b*xtf~4;
0 0 2 6xtf 12xtf72 20%tf£73];
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q = [q0 dq0 ddq0 qf dgqf ddqf]’;
a = C\qg;
end

function [q,dq,ddq,t]l=find_q(t0,tf,a)

%This function takes the coefficients of the polynomial and

%return back the polynomials for position, speed and acceleration

a0 = a(l); a1l = a(2); a2 = a(3); a3 = a(4); a4 = a(5); ab = a(6);

t = linspace(t0,tf,1000);

q =a0 + alxt + a2*%t.”2 + a3*t.”3 + ad4xt."4 + ab*xt.”5;
dg = al + 2%a2xt + 3*a3*t.”2 + 4*ad*t.”3 + b*xabxt."4;

ddg = 2%a2 + 6*a3*t + 12*%ad*t.”2 + 20%ab*t.”3;

end

function [h1,h2,h3]=make_first_plot(t,q,dq,ddq)
%this function plots the position in joint space
hl = subplot(3,1,1);

plot(t,q)

h2 = subplot(3,1,2);
plot(t,dq);

h3 = subplot(3,1,3);
plot(t,ddq);
end

function make_other_plot(t,q,dq,ddq,hl,h2,h3)

%this function plots the speed and acceleration trajetory in joint space
hold(h1l,’on’);

subplot(3,1,1);

plot(t,q);

plot(t(1),q(1),’07%);

hold(h2,’0on’);
subplot(3,1,2);
plot(t,dq);
plot(t(1),dq(1),’0’);

hold(h3,’0on’);
subplot(3,1,3);
plot(t,ddq);
plot(t(1),ddq(1),’07);
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Lend
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Figure 2.27: Problem 2, part 1, ¢; joint space trajectory
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Second scenario

The four part trajectory was generated again, using the same constraints as in first sce-
nario, but now the polynomial was generated in task space as required for this part. The
polynomial between waypoint X; and X, was found by solving 6 equations in 6 unknowns.
The polynomial is defined for each coordinate x., ye, z.. For example, for z.

T (t) = ao + art + agt® + azt® + aqt* + ast®
The 6 equations are

Te t()) = a9+ a1t0 + aztg + agtg + a4t3 =+ a5tg =2.5L

Te (to) =a; + 2a2t0 + 3a3t(2) + 4a4t8 + 50,5'1561 =0
i (to) = 2ay + 6asty + 12a4t2 + 20asts =0
Ze (tf) = ap + arty + aztfc + a3t§- + a4t;1c + a5t? =2.5L

(
e (ty) = a1 + 2asts + 3ast; + 4ast} + Sasty = 0
ie (ty) = 2as + 6asty + 12a4t} + 20ast} = 0

Where ¢y = 0 and ¢; = 5. The above 6 equations are solved for ay, a1, as, as, as, as which
gives the polynomial z. (t) used obtain the joint coordinate at any time 0 < ¢ < 5.

1t 88 8 6 B . [et)] .-
01 2 32 48 s5t||® i 2ok

0 0 0 0 a; :L‘e( 0) 0
0 0 2 6t 1262 2088 |4| |4 (to) 0
1oty 83 3t 1% | |as| |z (tp)| |25L
0 1 2t; 32 43 5t} Z;l Ze (t5) 8
0 0 2 6t 1262 2063 - ©  |E(tp)] -

Similarly, these 6 equations were solved for the next segment between waypoint X5, X3.
The same process was repeated for y. and z.

The following gives the new Matlab implementation with the plots generated. Discussion
on differences between the two approaches is given at the end.

function nma_HW4_problem_2_part2()

Jnma_HW4_problem_2_part2()

%This function implements problem 2, HW 4, ME 739, scenario TWO
%by Nasser M. Abbasi

h

close all;

L=4;

%generate the task space (X,Y,Z) displacements, velocity and acceleration
%the value of x,y,z at each X1,X2,X3,X4 are given in the problem from
%the diagram shown.




%generate polynomial for x-coodinate of each X waypoint trajectory

figure;

[t1,x_coordinate]=process_X(-2*L,2+L,2*L,-2*L, x’ ,-2.6%L,2.6%L, ...
‘meter’,’m/s’,’m/s"2’);

%generate polynomial for y-coordinate of each X waypoint trajectory
figure;
[t2,y_coordinate] =process_X(2xL,2*L,2*L,2*L,...

’y?,1.9%L,2.1%L, *meter’,’m/sec’,’m/sec”2’);

%generate polynomial for z-coordinate of each X waypoint trajectory
figure;

[t3,z_coordinate]=process_X(2.5%L,2.5%L,1.5%L,1.5%L,’z’,1.4*L,2.6%L,...

‘meter’,’m/s’,’m/s”2’);

%generate the corresponding joint space q displacement, speed and
%acceleration from the above using forward kinematics

ql = z_coordinate;

g2 = atan2(y_coordinate,x_coordinate);

g3 = sqrt(x_coordinate.”2+y_coordinate."2);

%generate joint space displacements

figure;

hl = subplot(3,1,1);

plot(ti,ql);

title(hl,{’Joint space displacements’,’ql’});
xlabel (hl,’time (sec)’);

ylabel (hl, ’meter’);

axis(h1l,[0 20 0.9+L 2.8%L]);

h2 = subplot(3,1,2);

plot(t2,92);

title(h2,’qg2’);

xlabel (h2, ’time (sec)’);
ylabel(h2,’radian’);

axis(h2, [0 20 30*pi/180 140%pi/180]);

h3 = subplot(3,1,3);
plot(t3,q3);

title(h3,’q3’);

xlabel (h3,’time (sec)’);
ylabel(h3, ‘meter’);
axis(h3,[0 20 1.9%L 2.9%L]);

%generate 3D plot of the task space trajectory
figure;
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plot3(x_coordinate,y_coordinate,z_coordinate) ;
hold on;

plot3(-2*L,2*L,2.5%L,’07);

text (-2%L,2%L,2.5%L, X1°);

plot3(2+L,2+L,2.5%L, 0") ;
text (2%L,2%L,2.5%L, X2°);

plot3(2+L,2%L,1.5%L, 0°);
text (2*L,2%L,1.5%L, X3’);

plot3(-2*L,2*L,1.5%L,’07);
text (-2*L,2%L,1.5%L, X4’);

plot3(0,2+L,2*L, +’);
text (.1%L,2*xL,1.6*L, center’);

title(’3D task space displacement’);
xlabel(’X’); ylabel(’Y’); zlabel(’Z’);
z1lim ([0 3%L]);

end

function [t,x]=process_X(x1,x2,x3,x4,the_name,1lim0,liml,y1,y2,y3)
)

%Function to generate task space trajectory for problem 2

%x1: first point coordinate in this task space

%x2: second point coordinate in this task space

%x3: third point coordinate in this task space

%x4: fourth point coordinate in this task space

%the_name: title to put on the plot, for example ’x’ or ’y’ or ’z’
%1im0 and liml are the y-axis limits to use for the plot

%yl: position y label

%y2: speed y label

%y3: acceleration y label

%RETURNS

%q: which is vector of q joint coordinates in joint space over
%the full time space to be used later to generate the task space
%trajectory using forward kinemetics

b

%t: the corresponding time vector

%call gen_path to obtain the polynomial coefficients

a = gen_path(x1,x2,0,5);

[x_segment_1,dx,ddx,t1] = find_x(0,5,a); Juse the coefficients to make polynomial
[h1,h2,h3] = make_first_plot(tl,x_segment_1,dx,ddx);

]
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title(hl,{the_name, ’position’});
title(h2,’velocity’);
title(h3,’acceleration’);
xlabel(hl,’time (sec)’); ylabel(hl,yl);
xlabel(h2,’time (sec)’); ylabel(h2,y2);
xlabel (h3,’time (sec)’); ylabel(h3,y3);

a = gen_path(x2,x3,5,10);
[x_segment_2,dx,ddx,t2] = find_x(5,10,a);
make_other_plot(t2,x_segment_2,dx,ddx,hl1,h2,h3);

a = gen_path(x3,x4,10,15);
[x_segment_3,dx,ddx,t3] = find_x(10,15,a);
make_other_plot(t3,x_segment_3,dx,ddx,hl1,h2,h3);

a = gen_path(x4,x1,15,20);
[x_segment_4,dx,ddx,t4] = find_x(15,20,a);
make_other_plot(t4,x_segment_4,dx,ddx,hl1,h2,h3);

axis(h1l,[0 20 1imO 1imi]);

x=[x_segment_1 x_segment_2 x_segment_3 x_segment_4];
t=[t1 t2 t3 t4];

end

function a = gen_path(x0,xf,t0,tf)
%this function generates the polynomial coefficients by solving for the
%hconstraints given

dx0 = 0;

dxf = 0;

ddx0 = 0;

ddxf = 0;

C=[1 t0 t0"2 t0~3 t0~4 t075;
0 1 2xt0 3%t072 4%t073 5xt074;
0O 0 2 6*t0 12xt072 20%t073;
1 tf tf72 +t£f°3 tf74 t£75;
0 1 2*%tf 3*%tf72 4*tf”3 5xtf~4;
0O O 2 6xtf 12xtf~2 20%xtf~3];

x = [x0 dx0 ddx0 xf dxf ddxf]’;

a = C\x;

end
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function [x,dx,ddx,t]l=find_x(t0,tf,a)

%This function takes the coefficients of the polynomial and

%return back the polynomials for position, speed and acceleration

a0 = a(l); a1l = a(2); a2 = a(3); a3 = a(4); a4 = a(5); ab = a(6);

t = linspace(t0,tf,1000);

X = a0 + alx*xt + a2*xt.”2 + a3xt.”3 + adxt." 4 + abxt.”5;
dx = al + 2%a2xt + 3*%a3*t.”2 + 4*ad*t.”3 + bxabxt."4;

ddx = 2%a2 + 6%a3*t + 12*%ad*t.”2 + 20*ab*t.”3;

end

function [h1,h2,h3]=make_first_plot(t,x,dx,ddx)
%this function plots the position in task space
hl = subplot(3,1,1);

plot(t,x)

h2 = subplot(3,1,2);
plot(t,dx);

h3 = subplot(3,1,3);
plot(t,ddx);
end

function make_other_plot(t,x,dx,ddx,h1,h2,h3)

%this function plots the speed and acceleration trajetory in task space
hold(hl,’on’);

subplot(3,1,1);

plot(t,x);

plot(t(1),x(1),’07);

hold(h2,’0on’);
subplot(3,1,2);
plot(t,dx);
plot(t(1),dx(1),’0");

hold(h3,’0on’);
subplot(3,1,3);
plot(t,ddx);
plot(t(1),ddx(1),’0%);
end
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Figure 2.31: Problem 2, part 2, z. task space trajectory
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Figure 2.32: Problem 2, part 2, y. task space trajectory
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Figure 2.33: Problem 2, part 2, z, task space trajectory
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Figure 2.34: Problem 2, part 2, 3D plot of task space trajectory
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discussion

The following diagram gives an overview of the difference of the algorithm used for first

and second scenarios.
Joint space Plot joint space
coordinate at trajectories
each way point

X]_ q 1 Generate quintic

Scenario one

Inverse kinematics trajectory 1 (t) Convert back to Xe (t) Plot 3D task
X2—> apnlied to each way H» q2—> polynomial —>q2(t) P cask space using —>ye(t)—> space
X point between each way forward kinematics trajectory
3 q3 point in joint space gs(t) Ze(1)
X4 3D task space displacement

Scenario two T TTo——

Xl Generate quintic L
X trajectory Xe(t) Convetrt g J‘:mt q:(t) o
] space trajectory ot joint space
2> EZD\T:;':LCP‘ wa ™ ye (t) - using inverse —>q 2 (t) > trajectories
X o Y Zo(t kinematics (t)
3 point in task space e( ) Q3

trajectory

3D task space displacement
problem 2 fal s Plot 3D task
Nasser M. Abb: Spa ce _> 1 ~

Figure 2.35: Problem 2 algorithm difference scenario one and two

There are two main differences observed between the two methods.

1. In the first scenario, joint space trajectories ¢;(t) and go(t) were the same as in the
second scenario, but ¢3(t) was not the same.

In first scenario, gs(t) was constant with value 21/2 L for the whole path. This is
becuase at each way point g5 had the same value 2v/2 L, therefore the polynomial
generated was straight line connecting all the way points. In second scenario, ¢3(t) was
not constant, since g3(t) = \/ z(t)? + ye(t)? and z.(t) polynomial was not constant
(even though y.(t) was constant over the whole path).

2. In the first scenario, y.(t) was generated by inverse kinematics using y.(t) = g3(¢) sin(g2(t))
and even though ¢s3(t) was constant, g»(t) was not. Hence the path along the y direc-
tion is task space was changing as can be seen from the above plot. In the second
scenario, since the y was fixed at each way point, the trajectory generated in task
space shows that y(t) is not changing. This is why the 3D plot for the second scenario
do not show the same curved path in the y dimension as in the first scenario.
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The result from first scenario seems to be more realistic 3D task space path that the robot
arm end effector would take. Computationally, there is little difference between the two
scenarios.

2.4.3 Problem 3

Problem 3. [40 points]
For the manipulator described in Problem 2

» Use a parabolic well potential to define an attractive field applied to the origin of frame {e}. Use
Matlab to implement a gradient descent algorithm to find a path from the specified initial
configuration to the specified final configuration given below.

Initial configuration: g,=[L 0 L]T
Final configuration: ¢, = [2L iz 2L]T
» Animate your results using the Matlab rendering functions posted to the Learn@UW course page.

In general, you can vary ¢ (the scaling factor applied to the attractive force, f;) to modify the resulting
path. In this case, the forces are applied at only one point so there is only one value of {. You can also
vary the gradient descent scaling factor, a. Larger values of a can speed up the gradient descent
algorithm, but can also cause numerical instabilities in the solution. In addition, you can use different
values of « (¢; for joint i) to scale the joint torques and thus modify the path solution.

Gradient descent:
while qu —qf.H >¢
¢""'=¢" +aVU, where VU, = - .
k=k+1 H’(q )H 0 a

» Vary ¢; and comment on the resulting solution behavior (both in regards to the shape of the path and
the numerical stability of the solution.

Figure 2.36: Problem 3 description

In this problem we need to determine only the attractive virtual force on origin of end
effector frame {e}. The repulsive forces are not involved. The attractive virtual forces are
approximated with a parabolic well potential. We have only one location where the force is
applied to (which is the origin of frame {e}, which is the end effector). The first step is to
determine the virtual force from the gradient of the parabolic potential field given by

F.=-VU,
= —C (Oe (qcurrent) — Oc (qf))

Where in the above o, (¢q) is the position vector of the origin of frame {e} at current
configuration g and o, (gy) is position vector of the origin of frame {e} at final configuration
¢y Hence o, (gy) is constant position vector and only o, (¢) will change as the robot arm
moves.

T

We are given the final configuration as q; = [2L, % 2L} , and we now use this to obtain
0. (g7). We first need to obtain T? which we obtained forward kinematics given in problem
2. Hence
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1 00 Of[|—singyg O cosgz O] |0 1 0 O
10010 0 cosgz 0 sing; 0/ (0 O 1 O
1001 ¢ 0 1 0 Ol 00 g

0 00 1 0 0 O 1110 0 0 1

[cosqy, —sings 0 g3cosqm
sings cosqa 0 g3sing
0 0 1 Q1
0 0 0 1

Therefore, o, (¢) from the above is the last column. Hence

g3 COS g2
O¢ (QCurTent) = 1q3 sin q2
qi

We now replace the values of g1, go, g3 in the above, with the final configuration values given

2L cos 0
O¢ (innal) = |2LsinT | = |:2L]

2
2L, 2L

And the initial configuration (at time ¢ = 0) is

LcosO L
O¢ (qim'tial) = [Lsin0| = |0
L

L

Using the above, we need determine the virtual force F,

F.=-VU,
= _Ce (Oe (qcuw"ent) — O¢ (Qf))
g3 COS @2 0
= —Ce | |g3sing: | — |2L
¢ 2L

g3 cos (g2)
—Ce |g3singy — 2L
q1 — 2L
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In the above, all the ¢; variables are the current joint variables at the current time. In
simulation, there will change with time. Now that we found the virtual force, we convert
it to joint toque using the linear velocity Jacobian. We obtain J,, by direct differentiation
method

Oz 0Oz Oz
01 Ogq2 Ogs
Jo— | o &
Ve 0q1  0Oq2 Ogs
Oz Oz Oz

0q1 Oq2 Ogs
From problem 2, we are given that

Ze = Q3 COS g2
Ye = q38in g

e =1

Hence J,, becomes

8'-13 Cos g2 8'-13 Cos g2 8‘13 Cos g2

oq1 0g2 O3 0 —g3sings cosqo
g3 sin g2 g3 sin g2 g3 sin g2 .
Jo, =[085, 0857 0L, 2| =10 g¢scosgy singy
dq1 dq1 dq1 1 0 0
oq1 0q2 9q3

Therefore, using the duality relation that 7 =) Jg; F;; and since we have forces on one joint
only, this simplifies to 7 = JLF,

_ ) T
0 —gzsingy cosqy g3 cos (¢2)
6=—C |0 g3cosqy sing q3singy — 2L
10 0 @ — 2L
| q — 2L
= —(, | g3 (cos g2) (gssings — 2L) — g3 cos go sin go (1)

gs cos? g + (singo) (g3 singe — 2L)

The above is the actual torque/force applied at the joints 1,2 and 3. Therefore, the force
applied to joint 1 is ¢; — 2L and the torque to apply to joint 2 is g5 (cos ¢2) (g3 sings — 2L) —
g2 cos gz sin g, and the force to apply to end effector joint is g3 cos? ga+(sin g2) (g3 sin gz — 2L) .

For example, at initial configuration, where ginitia = [L, 0, L]T we find

—L
Binitial = —Ce | —2Lqs3
L
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T
And at final configuration where gfina = ¢ = [2L, 5 2L] we find

0
DBinitial = _Ce 0
0

Which is what we would expect. At the final configuration, the applied forces at the joints
should vanish since we have arrived at the final configuration.

Now that we have equation (1), we can use it to implement the gradient descent algorithm
in order to obtain the sequence of g; positions to use for the animation.

Part one

In this part, a single o value was used for all the joints. This value was changed in order to
observe the affect. In second part below, different a for each joint will be used.

In this part, and in all runs, ¢ was set to 100. This is the attractive force scaling value.

Below is the source code written to implement this part of the problem. The following
diagram shows the initial configuration for one example run.

step =1, position=[4.00,0.00,4.00], alpha=0.015, epsilon=0.005

Figure 2.37: Initial configuration, problem 3

And the following diagram shows the final configuration reached. It shows that it took 535
steps to reach the final configuration using a = 0.015 and € = 0.005
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step = 535, position=[-0.08,8.00,8.00], alpha=0.015, epsilon=0.005

Figure 2.38: Final configuration, problem 3

As a was made smaller the convergence became slower, but the animation became more
accurate and ran more smoothly. As the end effector came very close to the target, more
vibration around that region started to show as the end effector oscillated around the target
point as it converged to the exact target and the error became smaller and smaller.

To run the program, the command is nma_HW4_problem_3

function nma_HW4_problem_3()

%function nma_HW4_problem_3()

%This function implements path planning for the 3 links robot arm in
%HW4, ME 739, problem 3, spring 2015, Univ. Wiscosin, Madison.

b

%This version is for part 1, which uses one alpha for all joints

b

%Parabolic attractive field is used to model the attractive virtual
%force on the end effector. The linear velocity Jacobian is used to
%map this force to torque forces at the three joints.

%Then gradient descent is used to obtain the joint coordinates sequence
%which is then used to simulate the motion.

h

%By Nasser M. Abbasi

close all; clear all;

L = 4; Ylength of 1link 1 and 3

%epsilon = 0.005; %error tolerance

%alpha = 0.015; %smaller value, slows down convergence but more accurate
epsilon = 0.05; Jerror tolerance

zeta = 100; %attractive force scaling
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alpha = 0.05; %smaller value, slows down convergence but more accurate
q = [L;0;L]; %initial joint configuration

qf = [2#L;pi/2;2*L]; %find joint configuration

maxIter = 1200; Ymax iterations allowed

Q = zeros(3,maxIter); Ywhere to save the sequence of joint g’s
k =1;

keep_running = true;
%start of gradient descemt

while keep_running
QC:,k) = q;
tau = -zeta*[q(1)-2%L;
q(3)*cos(q(2))*(q(3)*sin(q(2))-2*L)-q(3) "2*cos(q(2))*sin(q(2));
q(3)*(cos(q(2)))"2+sin(q(2))*(q(3) *sin(q(2) ) -2*L)

1;

q = q + alphaxtau/norm(tau);

if k+1>maxIter || norm( gq-qf ) <= epsilon
keep_running = false;

else
k =k +1;

end

end

DO_MOVIE = false; /make true to generate movie frames
frameNumber = 0;

f_handle 1;

axis_limits = Lx[-2 2 -2 2 -0.1 2.5];

render_view = [-.4 -.8 .5]; view_up = [0 0 1];
SetRenderingViewParameters(axis_limits,render_view,view_up,f_handle);
camproj perspective 7, turns on perspective

% link O rendering initialization

r0 = L/5; sidesO = 4; axisO = 3; norm_LO = -1.0;

linkColorO = [0 .3 .3]; plotFrameO = O;

d0 = CreatelLinkRendering(L,r0,sides0,axisO,norm_LO,linkColorO,...
plotFrameO,f_handle);

% link 1 rendering initialization

rl = L/6; sidesl = 4; axisl = 3; norm_L1 = 1.0;

linkColorl = [0 0.75 0]; plotFramel = 0;

dl = CreateLinkRendering(L,rl,sidesl,axisl,norm_L1,linkColorl,...
plotFramel,f_handle);




% link 2 rendering initialization
r2 = L/7; sides2 = 10; axis2 = 3; norm_L2 = -1.0;
linkColor2 = [0.75 O 0]; plotFrame2 = 0;

d2 = CreatelLinkRendering(L,r2,sides2,axis2,norm_L2,linkColor2,...

plotFrame2,f_handle) ;

% link 3 rendering initialization
r3 = L/8; sides3 = 4; axis3 = 1; norm_L3 = 1.0;
linkColor2 = [0.75 O 1]; plotFrame2 = 0;

d3 = CreatelLinkRendering(L,r3,sides3,axis3,norm_L3,1linkColor2,...

plotFrame2,f_handle);

0 0 o0 1];
UpdateLink(d1,TO00) ;

for i = 1:k
% Update frames
q1=Q(1,1); 92=Q(2,1i); 93=Q(3,1);

TO1=[1 0 0 O
01 0 O
0 0 1 qt
0 0 o0 1I;
T12 = [-sin(q2) O cos(q2) O
cos(q2) O sin(q2) O
0 1 0 0
0 0 O 1];
T2e = [0 1 0 O
0O 0 1 O
1 0 0 g3
0O 0 o0 1];
TO2 = TO1*T12;
TOe = T02%xT2e;
UpdateLink(d1,T01);
UpdateLink(d2,T02) ;
UpdateLink(d3,TOe) ;

title(sprintf(’step = %d, position=[%3.2f,%3.2f,%3.2f], alpha=%3.3f, epsilon=

g3*cos(q2) ,93*%sin(q2) ,q1,alpha,epsilon));
»if i == 1; Jpause at start of simulation rendering
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%3.3f7,1,..
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% pause;
%end
if DO_MOVIE

frameNumber = frameNumber+1;
I = getframe(gcf);
imwrite(I.cdata, sprintf(’framej,d.png’,frameNumber)) ;
end
hold on;
plot3(0,2%L,2*L, *'marker’,’o0’,’color’,’r’);
drawnow;
hold off;
pause(0.01);
end
end

Part two

In this part, different o; values were used for each joint. The code to implement this part
is similar to the above with the only change is in using a diagonal matrix for « instead of
justone scalar value. Different a; was used for each joint to see the effect on the path of the
end effector.

The following vector of values gave the best solution

alpha = diag([0.05,0.01,0.1]);

The above produced the least amount of oscillation as the end effector came close to the
target. Making «; smaller caused the joint ¢ to move the slowest during the animation.

The following value of vector o caused large oscillation as the end effector came close to
the target.

alpha = diag([0.05,0.1,0.011);

These values of a are kept in the code below to allow one to try them. The source code for
this part is listed below. Using different «; value for each joint is more flexible and allowed
finding better solution than using the same alpha for all joints. The command to run the
Matlab script is nma_HW4_problem_3_part2

function nma_HW4_problem_3_part2()

%function nma_HW4_problem_3_part2()

%This function implements path planning for the 3 links robot arm in
%HW4, ME 739, problem 3, spring 2015, Univ. Wiscosin, Madison.

b

%This version is for part 2, which uses different alpha for each joint

)
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%Parabolic attractive field is used to model the attractive virtual
%force on the end effector. The linear velocity Jacobian is used to
%map this force to torque forces at the three joints.

%#Then gradient descent is used to obtain the joint coordinates sequence
%which is then used to simulate the motion.

b

%By Nasser M. Abbasi

close all; clear all;

L = 4; Ylength of link 1 and 3

%epsilon = 0.005; %error tolerance

%alpha = 0.015; ’smaller value, slows down convergence but more accurate
epsilon = 0.01; Jerror tolerance

zeta = 100; %attractive force scaling

%alpha = diag([0.05,0.1,0.01]); JCauses large errors in solution

alpha = diag([0.05,0.01,0.1]); Y%Produces best solution

q = [L;0;L]; %initial joint configuration

qf = [2#L;pi/2;2*L]; %find joint configuration

maxIter = 1000; Ymax iterations allowed

Q = zeros(3,maxIter); Y%where to save the sequence of joint q’s
k =1;

keep_running = true;
%start of gradient descemt

while keep_running
QC:,k) = q;
tau = -zeta*x[q(1)-2%L;
q(3)*cos(q(2))*(q(3)*sin(q(2))-2%L)-q(3) "2*cos(q(2) ) *sin(q(2));
q(3)*(cos(q(2)))~2+sin(q(2) ) *(q(3) *sin(q(2) ) -2xL)

1;

q = q + alpha*tau/norm(tau);

if k+1>maxIter || norm( q-qf ) <= epsilon
keep_running = false;

else
k =k +1;

end
end

DO_MOVIE = false; /make true to generate movie frames
frameNumber = 0;

f_handle
axis_limits

1l
Lx[-2 2 -2 2 -0.1 2.5];




render_view = [-.4 -.8 .5]; view_up = [0 0 1];

SetRenderingViewParameters(axis_limits,render_view,view_up,f_handle);

camproj perspective 7, turns on perspective

% link O rendering initialization
r0 = L/5; sidesO = 4; axisO = 3; norm_LO = -1.0;
linkColorO = [0 .3 .3]; plotFrame0O = O;

d0 = CreatelLinkRendering(L,r0,sides0,axisO,norm_LO,linkColorO,...

plotFrameO,f_handle);

% link 1 rendering initialization
rl = L/6; sidesl = 4; axisl = 3; norm_L1 = 1.0;
linkColorl = [0 0.75 0]; plotFramel = 0;

dl = CreateLinkRendering(L,rl,sidesl,axisl,norm_L1,linkColorl,...

plotFramel,f_handle);

% link 2 rendering initialization
r2 = L/7; sides2 = 10; axis2 = 3; norm_L2 = -1.0;
linkColor2 = [0.75 O 0]; plotFrame2 = O;

d2 = CreatelLinkRendering(L,r2,sides2,axis2,norm_L2,linkColor2,...

plotFrame2,f_handle);

% link 3 rendering initialization
r3 = L/8; sides3 = 4; axis3 = 1; norm_L3 = 1.0;
linkColor2 = [0.75 O 1]; plotFrame2 = 0;

d3 = CreatelLinkRendering(L,r3,sides3,axis3,norm_L3,1linkColor2,...

plotFrame2,f_handle) ;

0 0 o0 1];
UpdateLink(d1,T00) ;

for i = 1:k
% Update frames
q1=Q(1,1); q2=Q(2,i); 93=Q(3,1);

TO1=[1 0 0 O
01 0 O
0 01 ql
0O 0 o0 1];

T12 = [-sin(gq2) O cos(g2) O
cos(gq2) O sin(g2) O
0 1 0 0
0 0O o 1];
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end
end

T2e = [0 1 0 O
0 0 1 0
1 0 0 g3
0O 0 o0 1];

TO2 = TO1*T12;

TOe = T02*T2e;

UpdateLink(d1,T01);

UpdateLink(d2,T02) ;

UpdateLink(d3,TOe) ;

183

title(sprintf(’step = %d, position=[%3.2f,%3.2f,%3.2f], epsilon=Y3.3f’,i,...

g3*cos(q2) ,q3*sin(q2) ,q1,epsilon));
%if i == 1; Ypause at start of simulation rendering
A pause;
%end

if DO_MOVIE
frameNumber = frameNumber+1;
I = getframe(gcf);
imwrite(I.cdata, sprintf(’frame)d.png’,frameNumber));
end
hold on;
plot3(0,2%L,2*L, *marker’,’o0’,’color’,’r’);
drawnow;
hold off;
pause(0.01);
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2.4.4 key solution for HW 4

&
ME/ECE 739: Advanced Robotics @i& omework #4
Due: April 26" (Sunday, 11:59 pm) X
Please submit your answers to the questio Q
where appropriate, program results
comments, sensible variable names
format), you must also submit your

(e.g. Homework #4) using a zip archiv
hw# (e.g. zinn_hw4.zip).

ork including your Matlab scripts, and,
our Matlab scripts should be readable, with
e-block, etc. In addition to the hardcopy (pdf

ormat. Please name your zip files using your last name and

Problem 1 [20 points]

» Write a Matlab function which constructs a quintic polynomial, for the purposes of trajectory
generation, given the following input parameters

to: [Initial time tr: Final time

Yo: Initial position ys: Final position
Yo: Initial velocity Ys: Final velocity
Vo: Initial acceleration Jr: Final acceleration

An example function prototype is shown below
[t, vy, ¥, 1 = QuinticPolynomial(t,, trs Yo YVrs Yo » Yf1 Yo J7f= n)

where n is the number of elements in the time vector and output arrays ([y, v, 1)

t : n-dimensional array of trajectory time

y  : n-dimensional array of trajectory position

y : n-dimensional array of trajectory velocity

¥ : n-dimensional array of trajectory acceleration

» To check your function, create and plot the trajectory for the input parameters given below:

to: 0 ty: 5

Vo: -10 yrio 10

Yo: -50 e =50

j}o: 0 j}f: 0

eg. [t, y, dy, ddy] = QuinticPolynomial(0,5,-10,10,-50,-50,0,0,1000);
figure; plot(t,y);
figure; plot(t, dy);
figure; plot(t, ddy);

Your output plots should like those shown below.

50 ———T T 60

/T ) A S u

200 -

Position
Velocity
Acceleration

20F - -/

i i i i
| | | |
| | | |
I L a a
| | | |
| | | |
| | | |

OF---+H- -+ -4 - - - -4
J | | ]
{ | | )
| | | |
T T hi a
| | | |
| | | |
! | | |

T ) O A (S B S _

-60
0

time time time
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ME/ECE 739: Advanced Robotics Homework #4
Due: April 26" (Sunday, 11:59 pm)

Test of quintic polynomial function:

% number of elements in the time vector and output arrays
n = 1000;

% Enput parameters

t0 = 0; tf = 5;
y0 = -10; yf = 10;
dy0 = -50; dyf = -50;
ddy0 = O; ddyf = 0;

% test use of function

[t, y, dy, ddy] =
QuinticPolynomial (t0,tf,y0,yf,dy0,dyf,ddy0,ddyf,n);

% plot results
subplot(1,3,1);

plot(t, y,"r", "LineWidth",2)
xlabel ("time")

ylabel ("Position®);

grid on;

subplot(1,3,2);

plot(t, dy,"g", "LineWidth",2)
xlabel ("time")

ylabel ("Velocity");

grid on;

subplot(1,3,3);

plot(t, ddy,"b", "LineWidth",2)
xlabel ("time")

ylabel ("Acceleration®);

grid on;

Page 2 of 17
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ME/ECE 739: Advanced Robotics

Due: April 26" (Sunday, 11:59 pm)

Homework #4

QuinticPolynomial.m:

function [t, y, dy, ddy] = Qui

% coefficient matrix

nticPolynomial (t0, tf, yO, ...
yf, dyO, dyf, ddy0, ddyf, n)

cC=[1 t0 toN2 t0oN3 tonN4 ton5
0 1 2*t0 3*t0"2 4*t0"3 5*t0™M
0] 0 2 6*t0 12*t0”2  20*t0"3
1 tf tfn2 tf"3 tf™4 tf~5
0] 1 2*tf 3*tf 2 4*tf3 5*tf™M4
0 0 2 6*tf 12*tf~2  20*%tf~3];
% specified positions and velocities
ystates = [yO dyO ddyO yf dyf ddyf]";
% calculate quintic polynomial coefficients
a = C\ystates;
% construct time vector
t = linspace(t0,tf,n)";
% assisgn coefficient values
a0 = a(l); al = a(2); a2 = a(3);
a3 = a(4); a4 = a(b); a5 = a(6);
% construct output arrays
y = a0 + al*t + a2*t.~"2 + a3*t. "3 + ..
ad4*t. "M + ab*t.”"b;
dy = al + 2*a2*t + 3*a3*t.”"2 + 4*a4*t. "3 + ...
5*ab5*t.";
ddy = 2*a2 + 6*a3*t + 12*a4*t.”~2 + 20*a5*t."3;

Page 3 of 17
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ME/ECE 739: Advanced Robotics Homework #4
Due: April 26" (Sunday, 11:59 pm)

Problem 2. [40 points]

- OL—D
g X3

Xoffset = 0.0

displacement  _ __—Xoffst ___ - ==- Yofiset = 2L

. (% 2) <::”’ Zofiset = 2L

. R z L =40

Yoffset, ~~< Yo 0
X0
Overview of 3-DOF manipulator Task-space trajectory (rectangular)

You are to generate the motion trajectory for the three degree of freedom manipulator shown in the above
figure such that the manipulator's task frame (origin) moves between the four points that describe a square
in space (see Figure). The forward and inverse kinematics are given below.

Forward kinematics: Inverse kinematics:
X =q3COS(Q2) Q=2
Y, =0, sin(aq,) g, =tan"' (Y, /x,)

ze:ql qS:\/Xez—i_ye2

For reference, the homogeneous transformations between the successive link frames (defined in the figure
above) are given below. These may be useful when animating your results in Problem 3.

100;0 —520c2;0 010;0
1o 0100 . 0 s, |0 T2 00 10
7100 1iq | 2710 1 ojop = 7|1 0 0!dq,
000§1 000§1 000§1
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ME/ECE 739: Advanced Robotics Homework #4
Due: April 26" (Sunday, 11:59 pm)

Problem 2. continued

Scenario 1: Joint-space trajectory generation

» Calculate the joint space displacements that correspond to the given task-space waypoints
[)2 L X 25 X ,,and X 4] (using the inverse kinematics). The task space Cartesian coordinates for
each waypoint can be determined from the adjacent figure.

» Generate the four part trajectory, moving from waypoint 1 to 2, 2 to 3, 3 to 4, and 4 to 1. The time
required to move between successive waypoint is 5 seconds. Generate the trajectory in joint-space,
using the joint-space displacements calculated above. The trajectories should follow a quintic
polynomial. At each waypoint, the joint-space velocity and acceleration should equal zero.

» Plot your results to include:

= Joint space displacements as a function of time.

= Task space displacements as a function of time (using the forward kinematics to calculate the task
space displacements).

= Task space displacements in 3-D space (using the Matlab plot3 command).

Scenario 1: joint space displacements as a function of time
12 T T T T T T T T T

ql
g2
10 —aq3

[

Joint displacement
(o]
T

0 I I I ! I I I ! I
0 2 4 6 8 10 12 14 16 18 20

Time [sec]
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ME/ECE 739: Advanced Robotics Homework #4
Due: April 26" (Sunday, 11:59 pm)

Scenario 1: task space displacements as a function of time

15 T T T T T T T T T
X
y
z
10+ .
€
Q
5
g 1
[=8
2
©
Q
2
S of i
X
(2]
@©
'_
5L i
_10 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Time [sec]

Scenario 1: task space displacements in 3-D space
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ME/ECE 739: Advanced Robotics Homework #4
Due: April 26" (Sunday, 11:59 pm)

Scenario 1: Joint-space trajectory generation

% number of points in the trajectory
n = 1000;

% waypoint locations
L = 4; xOffset = 1; zOffset = 1; yOffset = 2;

XWP = [xOffset - L/2; xOffset + L/2; xOffset + L/2; xOffset - L/2];
ywp = [ yOffset; yOffset; yOffset; yOffset];
ZWP = [zOffset + L/2; zOffset + L/2; =zOffset - L/2; zOffset - L/2];

% waypoint times
tWwP = [0; 5; 10; 15; 20];

% calculate joint displacements at waypoint locations

q_WP1 = IK_PRP_manipulator([xwWP(1); ywP(1); zWP(1)1);
q_WP2 = IK_PRP_manipulator([xWP(2); yWP(2); zWP(2)D):
q_WP3 = IK_PRP_manipulator([xWP(3); ywP(3); zWP(3)1):
q_WP4 = IK_PRP_manipulator([xWP(4); yWwP(4); zWP(H)D):;
q_WP = [g_WP1® g_WP2® g_WP3" q_WP4<]1;

qlWwP = q_WP(1,:); % joint 1 waypoints

q2WP = q_WP(2,:); % joint 2 waypoints

qQ3WP = q_WP(3,:); % joint 3 waypoints

% Calculate move from 1 to 2
[tl, g1 1, dgl_1, ddql_1] = QuinticPolynomial (tWP(1), tWP(2), qlwP(1),
qlwp(2), 0, 0, 0, 0, n);
[tl, g2_1, dg2_1, ddg2_1] = QuinticPolynomial (tWP(1), tWP(2), q2WP(1),
gq2wp(2), 0, 0, 0, 0, n);
QuinticPolynomial (tWP(1), tWP(2), q3wP(1),
g3wP(2), 0, 0, 0, 0, n);

[tl, g3_1, dg3_1, ddqg3_1]

% Calculate move from 2 to 3
[t2, g1 2, dgl_2, ddgql_2] = QuinticPolynomial (tWP(2), tWP(3), qlWwP(2),
qlwp(3), 0, 0, 0, 0, n);
[t2, g2_2, dg2_2, ddqgq2_2] = QuinticPolynomial (tWP(2), tWP(3), q2wP(2),
q2WwP(3), 0, 0, 0, 0, n);
QuinticPolynomial (tWP(2), tWP(3), q3wWP(2),
g3wp(3), 0, 0, 0, 0, n);

[t2, g3_2, dg3_2, ddq3_2]

% Calculate move from 3 to 4
[t3, q1_3, dql_3, ddql_3] = QuinticPolynomial (tWP(3), tWP(4), qlwWwP(3),
qiwp(4), 0, 0, 0, 0, n);
[t3, g2_3, dg2_3, ddg2_3] = QuinticPolynomial (tWP(3), tWP(4), q2WP(3),
gq2wP(4), 0, 0, 0, 0, n);
QuinticPolynomial (tWP(3), tWP(4), q3wWP(3),
gq3wp(4), 0, 0, 0, 0, n);

[t3, g3_3, dg3_3, ddqg3_3]
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% Calculate move from 4 to 1

[t4, gql_4, dgl_4, ddgl_4] = QuinticPolynomial (tWP(4), tWP(5), qlwP(4),
qiwp(1), 0, 0, 0, 0, n);

QuinticPolynomial (tWP(4), tWP(5), q2wpP(4),
g2wp(1), 0, 0, 0, 0, n);

QuinticPolynomial (tWP(4), tWP(5), q3wP(4),
g3wp(1), 0, 0, 0, 0, n);

[t4, g2_4, dg2_4, ddg2_4]

[t4, g3_4, dg3_4, ddqg3_4]

% Assemble into a single trajectory

gl = [gl1_1; gl1_2; gl1_3; qgl_4];
02 = [g2_1; 92_2; 92_3; q2_4];
g3 = [g3_1; g3_2; g3_3; q3_4];

t = [tl; t2; t3; t4];

% Plot joint space displacements as a function of time.

figure;

plot(t,ql,"r",t,92,%9",t,03,"b");

xlabel ("Time [sec]");

ylabel ("Joint displacement®)

legend("ql","g2","q3")

title("Scenario 1: joint space displacements as a function of time");

% Calculate task-space displacements using the forward kinematics
nPts = size(ql,1);
for 1 = 1:nPts

X = FK_PRP_manipulator([ql(i) g2(i) g3()D:;

x(1) = X(1);

y(1) = X(2);

z(i) = X(3);
end

% Plot the task space displacements as a function of time

figure;

plot(t,x,"r",t,y,"g",t,y,"b");

xlabel ("Time [sec]™);

ylabel (" Task-space displacement®)

legend("x","y","z")

title("Scenario 1: task space displacements as a function of time®);

% Plot the task space displacements in 3-D space

figure;

plot3(x,y,2);

axis equal

xlabel ("x");

ylabel ("y");

zlabel("z");

title("Scenerio 1: task space displacements in 3-D space”);
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ME/ECE 739: Advanced Robotics Homework #4
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FK_PRP_manipulator.m

function [x] = FK_PRP_manipulator(q)

xe = q(3)*cos(q(2));
ye = q(3)*sin(q(2));
ze = q(1);

X = [xe; ye; ze];

end

IK_PRP_manipulator.m

function [g] = IK_PRP_manipulator(x)

xe = x(1); ye = x(2); ze = x(3);

q(l) = ze;

q(2) = atan2(ye,xe);
q(3) = sqrt(xe”2 + yen2);
end
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ME/ECE 739: Advanced Robotics Homework #4
Due: April 26" (Sunday, 11:59 pm)

Scenario 2: Task-space trajectory generation

|

Generate the four part trajectory, moving from waypoint 1 to 2, 2 to 3, 3to 4, and 4 to 1. The time
required to move between successive waypoint is 5 seconds. Generate the trajectory in task-space,
using the given task-space waypoints. The trajectories should follow a quintic polynomial. At each
waypoint, the task-space velocity and acceleration should equal zero.

Plot your results to include:

= Joint space displacements as a function of time (using the inverse kinematics to calculate the
joint-space displacements).

= Task space displacements as a function of time.

= Task space displacements in 3-D space (using the Matlab plot3 command).

Comment on the differences between the two approaches (advantages and disadvantages).

Scenario 2: joint space displacements as a function of time

12 T T T T T T T T T
I ql [
N/ :
10 \/ — g3 H
o 8 [ 7
c
(O]
IS
o]
&
S 6F i
0
©
=
'S
Law) 4 L _
2+ _
0 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20

Time [sec]
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Scenario 2: task space displacements as a function of time
8 T T T T T T T T T
X
6 y H

Task-space displacement

10

2 4 6 8 10 12 14 16

Time [sec]

Scenario 2: task space displacements in 3-D space

Scenario 2: Joint-space trajectory generation

18

20
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ME/ECE 739: Advanced Robotics

Due: April 26" (Sunday, 11:59 pm)

Homework #4

% Calculate move from
[tl, x1, dx1, ddx1] =

[tl, y1, dyl, ddyl]

[t1, z1, dzl, ddzil]
% Calculate move from
[t2, x2, dx2, ddx2] =
[t2, y2, dy2, ddy2] =

[t2, z2, dz2, ddz2]

% Calculate move from
[t3, x3, dx3, ddx3] =

[t3, y3, dy3, ddy3] =

[t3, z3, dz3, ddz3]

% Calculate move from
[t4, x4, dx4, ddx4] =

[t4, y4, dy4d, ddy4] =

[t4, z4, dz4, ddz4] =

X

[x1; x2; x3; x4];
[yl: y2; y3; y4];
[z1; z2; z3; z4];
[t1; €2; t3; t4];

~ N < X

1 to 2

QuinticPolynomial (CtWwP(1), twP(2), xWP(1),
xwp(2), 0, 0, 0, O,

QuinticPolynomial (CeWwP(1), twP(2), ywP(1),
ywpP(2), 0, 0, 0, O,

QuinticPolynomial (CeWP(1), twP(2), zWP(1),
zwpP(2), 0, 0, 0, O,

2 to 3

QuinticPolynomial (tWP(2), tWP(3), xWP(2),
xwP(3), 0, 0, 0, O,

QuinticPolynomial (tWP(2), tWP(3), yWwP(2),
ywp(3), 0, 0, 0, 0O,

QuinticPolynomial (tWP(2), tWP(3), zWP(2),
zZwP(3), 0, 0, 0, O,

3 to 4

QuinticPolynomial (CtWP(3), tWP(4), xWP(3),
xwp(4), 0, 0, 0, O,

QuinticPolynomial (CtWP(3), tWwP(4), ywP(3),
ywp(4), 0, 0, 0, O,

QuinticPolynomial (tWP(3), tWP(4), zWP(3),
zWp(4), 0, 0, O, O,

4 to 1

QuinticPolynomial (tWP(4), tWP(5), xWP(4),
xwp(1), 0, 0, 0, O,

QuinticPolynomial (tWP(4), tWP(5), yWP(4),
ywp(1), 0, 0, 0, O,

QuinticPolynomial (tWP(4), twP(5), zWP(4),
zwp(1), 0, 0, O, O,

Assemble into a single trajectory

n);
ny:

n);
ny;
ny:
ny:
ny;
ny;
ny;

% Calculate joint-space displacements using the inverse kinematics

nPts = size(ql,1);
for i = 1:nPts

Q = IK_PRP_manipulator([x(i) y(i) z(i)D):

91(i) = Q(1);

q2(i) = Q(2);

g3(1) = Q(3);
end
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ME/ECE 739: Advanced Robotics Homework #4
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% Plot joint space displacements as a function of time.

figure;

plot(t,ql,"r",t,02,°9",t,q3,"b");

xlabel ("Time [sec]™);

ylabel ("Joint displacement™)

legend("ql","g2","q3")

title("Scenario 2: joint space displacements as a function of time®);

% Plot the task space displacements as a function of time
figure;

plot(t,x, r",t,y,"g",t,y,"b");

xlabel("Time [sec]");

ylabel ("Task-space displacement®)

title("Scenario 2: task space displacements as a function of time");

% Plot the task space displacements in 3-D space

figure;

plot3(x,y,2);

axis equal

xlabel ("x");

ylabel ("y");

zlabel("z7);

title("Scenario 2: task space displacements in 3-D space®);
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ME/ECE 739: Advanced Robotics Homework #4
Due: April 26" (Sunday, 11:59 pm)

Problem 3. [40 points]
For the manipulator described in Problem 2

» Use a parabolic well potential to define an attractive field applied to the origin of frame {e}. Use
Matlab to implement a gradient descent algorithm to find a path from the specified initial configuration
to the specified final configuration given below.

Initial configuration: g, =[L 0 L]
Final configuration: q, =[2L 1z 2L]

» Animate your results using the Matlab rendering functions posted to the Learn@UW course page.

In general, you can vary & (the scaling factor applied to the attractive force, fi) to modify the resulting path.
In this case, the forces are applied at only one point so there is only one value of £, You can also vary the
gradient descent scaling factor, . Larger values of & can speed up the gradient descent algorithm, but can
also cause numerical instabilities in the solution. In addition, you can use different values of « (¢ for joint
i) to scale the joint torques and thus modify the path solution.

Gradient descent:

while ||qk —qf||>s

q9“'=q“+aVU, where VU, =
k=k+1 o J=(a)

» Vary o and comment on the resulting solution behavior (both in regards to the shape of the path and
the numerical stability of the solution.

Problem 3:
% attractive force scaling
zeta = 1;

% initial and goal position (Joint space)
L =5;

q0 = [L O L]";

olg = [0; 2*L; 2*L];

gGoal = IK_PRP_manipulator(olg)”;

%gradient descent step size
alpha = 1*[0.1; 0.01; 0.1];

%gradient descent error tolerance
epsilon = 0.0001;

%max gradient descent iterations
maxlterations = 10000;

% initialize joint positions
q = q0;

%initialize counter
k = 1;
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Homework #4

end

while(l)

% trigometric evaluations
c2 = cos(q(2)); s2 = sin(a(2));
% forward kinematics
ol = [q(3)*c2
q(3)*s2
a(D];

% attractive forces
Fal = -zeta*(ol - 01g);

% point Jacobians

Jol = [0 -q(3)*s2 c2
0 q(3)*c2 s2
1 0] 0];

%joint torques
tau = Jol"*Fal;

%update q
q = q + alpha.*tau/sqgrt(tau®*tau);

% store variables

Q(:,K) = q;
FA1(:,k) = Fal;
TAU(:,k) = tau;

%check convergence
error = (q - qGoal)"*(q - qGoal);
if error < epsilon
break;
end
if k > maxlterations;
break
end
k =k + 1;
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% Rendering parameters

dT = 0.001;

f _handle = 1;

axis_limits = L*[-2 2 -2 2 -2 2];

render_view = [-.5 -1 1]; view_up = [0 0 1];

SetRenderingViewParameters(axis_limits,render_view, . ..
view_up,T_handle);

% Initialize link rendering

% Blink O rendering initialization
LO = L; rO = LO/4; sidesO = 4; axisO = 3; norm_LO = -1.0;
linkColor0O = [0.5 0.5 0.5]; plotFrameO = O;
d0 = CreateLinkRendering(LO,r0,sides0,axisO,norm_LO, linkColoroO, ...
plotFrame0O,f_handle);

% link 1 rendering initialization
L1 = L; rl = L1/5; sidesl = 4; axisl = 3; norm L1 = 1.0;
linkColorl = [0 0.75 0]; plotFramel = 0;
dl = CreateLinkRendering(Ll,rl1,sidesl,axisl,norm_L1,linkColorl,...
plotFramel,f _handle);

% link 2 rendering initialization
L2 = L; r2 = L2/6; sides2 = 4; axis2 = 3; norm L2 = -1.0;
linkColor2 = [0.75 O 0]; plotFrame2 = 0;
d2 = CreateLinkRendering(L2,r2,sides2,axis2,norm_L2,linkColor2, ...
plotFrame2,f _handle);

% link 3 rendering initialization
L3 = L; r3 = L3/8; sides3 = 4; axis3 = 1; norm L3 = 1.0;
linkColor3 = [0 O 0.75]; plotFrame3 = 0;
d3 = CreateLinkRendering(L3,r3,sides3,axis3,norm_L3,linkColor3, ...
plotFrame3,f_handle);
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% Update rendering
for i = 1:k
ql = Q(1.1); a2 = Q(2,i); g3 = Q(B,i);

% Update frame {1}
TI0O =1 O O 0]
0 1 0 0
0O 0 1 ql
0O 0 O 1]3;
% Update frame {2}
s = sin(g2); ¢ = cos(q2);
T21 = [-s

Or OO

0
0
0
1];
% Update frame {e}
Te2 = [0 1 0 O
0O 01 o
1 0 0 g3
0O 0 0 17;
T20 = T10*T21;
TeO = T20*Te2;
UpdateLink(d1,T10);
UpdateLink(d2,T20);
UpdatelLink(d3,Te0);

if i ==1; %pause at start of simulation rendering
pause;

end

pause(dT);

end
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2.5 HWS5

2.5.1 Problem description

Problem 1. [100 points]

You are to design a series of position controllers for the three degree of freedom manipulator shown in the
figure below. The equations of motion and corresponding Matlab simulation code are given in the lecture
notes (4-9 — Dynamics — EOM Simulation: slides 4-136 to 4-147). The simulation code has been posted
on the course Learn@UW page (Simulation Example #2: Three DOF RRR Manipulator). For
completeness, the equations of motion are given on the next page.

X Le, (C23 +c, )
. 1= Ls (023 + Cz)
3|z, | |Lsn+L(s,+))
Link mass properties:
y
/—m, 1
?Lsx
Y m, |
2 x
y
m, |
3 J

Parameters:

I m 10.0 [kgl %
1 1.0 [m]
r | Yl (m] y
lo | Y2mi? [kg-m?] I, 00 I, 00
I mr’_[kg-m’] I=[0 1, 0|=01, 0
- g 9.81 [m/s%] 0 0 7, 0 0 17,




Equations of motion: D+ B[¢G]+C[¢*]+G =1 where the terms are given as:

Mass matrix:
—1 2,2, 1 2 2
D, =imLc,” +ymL (sz+2cz) Foee

2 2 2 2
],,4—]L,(c2 +¢,, )+Ib(s2 +8,, )

D, 0 0
D=| 0 D, D, | where DPn2= Sml +mlc, +2I,
0 D, D, Dy, =imL* +imLc,+1,
Dy, =d,,
Dy, =+ml*+1,
Coriolis matrix:
B, =(1,~1,~4mL*)sin(2q, +2q; )+
8.8, 0 Tid, (1, -1, -3mL )sin(2q,)—mL’ sin(2q, +q;)
B(¢)[dgl=| 0 0 B, | d¢g,| where B, :—g(sin(q2 +q3)(<4lu —41, +mL2)~~~
0 0 0 Jla:4; cos(q, +4q;)+2mL’ cos(qz)))
B,; =—mL’sin(q,)
Centrifugal matrix:
Gy =4(1, 1, ++mL)sin(2q, + 24, )+
(1, 1, +3mL )sin(2q, )+ mL’ sin (24, +q; )
0 0 014’ C,, =—Lml*sin(q;)
C@§*1=]C, 0 G, z{zz where C, = LmiZsin(a,)
C, Cy, 0|4
C, =%(sin(q2 +q,)((42, - 41, +Emr?)--
cos(q, +4,)+2mL’ cos (g, )))
Gravity vector:
g & =0

G=|g,| where g,=+mgL(3c,+cy)
g g, =1mglc,,
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»  Joint-space Control

In parts (a) — (c) design and implement a joint-space inverse dynamics controller. Use a simple
proportional-derivative (PD) controller to control the decoupled system. Set the controller gains such that
the closed-loop position controller has an undamped natural frequency, @,, equal to 2 Hz and a damping
ratio, ¢, equal to 1.0. Simulate the response of the system to a step input position command. The initial
joint positions of the manipulator are given as qo = [0 m/4 —m/2]". The final (or desired) joint
positions of the manipulator are given as gy =[x © 7/ 2]". Note, when simulating your system, you
may need to adjust the integration step size of the Runge-Kutta algorithm to ensure that the system does
not become ill-conditioned.

For parts (a) — (c) below, plot/animate the following:

= Plot the joint space displacements and velocities as a function of time

=  Plot the operational-point (task frame origin) displacements and velocities as a function of time
= Plot the operational-point displacements in three-dimensions [i.e. plot3(x, y, z)]

= Animate the motion of the manipulator

(a) Design and implement a joint-space inverse dynamics controller, where the nonlinear
Coriolis, centrifugal, and gravity terms are compensated and the equations are completely
decoupled using the joint-space mass matrix.

(b) Design and implement a modified joint-space inverse dynamics controller. In this case,
compensate for the gravitational terms but do not compensate for the nonlinear Coriolis or
centrifugal terms.

(c) Design and implement a decentralized joint-space controller. In this case, compensate for
the nonlinear Coriolis, centrifugal, and gravity terms but decouple the system using an
average mass matrix. Derive an average mass matrix using the true mass matrix. Explain
and justify your choice of an average (constant) mass matrix.

(d) Compare the response of the three controllers from parts (a) — (c) and comment on the
differences, advantages, and disadvantages.
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»  Operational-space Control

In parts (a) — (c), design and implement an operational-space inverse dynamics controller. Use a simple
proportional-derivative (PD) controller to control the decoupled system. Set the controller gains such that
the closed-loop position controller has an undamped natural frequency, @,, equal to 2 Hz and a damping
ratio, ¢, equal to 1.0.

For parts (a) — (c) below, plot/animate the following:

= Plot the joint space displacements and velocities as a function of time

=  Plot the operational-point (task frame origin) displacements and velocities as a function of time
= Plot the operational-point displacements in three-dimensions [i.e. plot3(x, y, z)]

=  Animate the motion of the manipulator

(a) Design and implement an operational-space inverse dynamics controller, where the
nonlinear Coriolis, centrifugal, and gravity terms are compensated and the equations are
completely decoupled using the operational-space mass matrix'. Simulate the response of
the system to a step input position command. The initial joint positions of the manipulator
are given as qo =[0 m/4 -—m/2]7. The final operational-space position of the
manipulator is given as xy = [-L -L o]

(b) Using the controller designed in part (a), simulate the response of the system to a step input
position command where the final operational-space position of the manipulator is given as
xp=[—L —L/10 O] (the initial joint positions of the manipulator are still given as
qgp=1[0 n/4 -m/2]".

(c) Using the controller designed in part (a), implement the operational-space linear velocity
limiting heuristic described in the lecture notes. Set the maximum linear velocity equal to 5
m/s. Simulate the response of the system to a step input position command where the
initial joint positions are given as g, = [0 m/4 —m/2]7 and the final operational-space
positions is givenas xp = [-L —L 0]

(d) Compare the response of the controllers from parts (a) and (b) comment on the differences,
advantages, and disadvantages.

2.5.2 Joint space control

The main goal is to decouple the nonlinear equation of motion of the robotic arm which
is given by the equation below, where [ | indicates a matrix and { } indicates a column
vector. Notice that [D(q)] means that that matrix [D] is a function of ¢. It does not mean
the matrix [D] is multiplied by gq.

[D(@)H{d} + [B(a)llgd] + [C(9H{d"} + [G(a)] = {7}

The sizes of each of above quantities in terms of n which is the number of generalized
coordinates, or the degrees of freedom, or the number of joints, which is 3 in this example,
are given by

(n—=1)n (n—1)n
2

nxn nx1 "X 57— x1 nxn nXx1 nx1 nx1

[D(@{d}+ [B(@)] lgd] +[C(9H{q}+I[G(g)] =A{7}
The velocity terms and the gravity terms and the mass terms are indicated below

Mass or inertia term velocity nonlinear terms gravity nonlinear term forces and torques
A ——

DD +B@ud+c@@+ ©@ = O
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The above equation of motion can be written in simpler form for analysis by letting V =
[B(q)][d4] + [C(q)]{¢*}. Therefore the above becomes

[D{§}+V+G=r
[DH§t=7-V -G (1)

Setting 7 = D'+ V +G where D, V, G are estimates of the the actual D, V, G. The estimates
are computed in real time. 7’ is the actuating signal generated by the propertional derivative
(P.D.) controller which is given by

T/ = kd((jdesired - Qactual) + kp(qdesired - qactual)
Using the above equation (1) becomes
Dlg|=Dr"+V+G-V -G
=Dr'+(V-V)+(G-G) (2)

Assuming the estimates are perfect with no noise and no delay, then V=V,G=G and
D = D and (2) reduces to

1} = D~ D7’
={r'} (3)
Where [I] is the identity matrix. Therefore the equations have been decoupled.

7 was determined based on the control being implemented as follows

part(a) |T7=Dr+G+V full compensation

part(b) | 7= D'+ @G no velocity terms compensation, only gravity is compen-
sated for. This means the V term is not estimated at
run time hence the equations of motion will not be fully
decoupled and some cross joints motion effects will result.

part (¢) | T = DjyerageT + G + V | decentralized control with full compensation. Mass matrix
is constant which represents the average mass matrix.

For part (c), the average mass matrix Djyerage Was found by setting the joint angles to zero
g; = 0 for the three joints in the original [D] mass matrix. Therefore all the cos(g) terms
were replaced by one and all sin(q) terms were replaced by zero.

Damping was not used as the problem did not specify one but this can be easily added in
the Matlab code. In addition, the gear ratio N was not used as the problem did not specify
a value for N.

The end-effector position in task space was found to be
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X end — T;?

= O O O

L cos(q1(t)) cos(ga(t)) + L cos(gi(t)) cos(ga(t)) cos(gs(t)) — L cos(q1(t)) sin(ga(?)) sin(gs(¢))
= | Lcos(ga(t))sin(qi(t)) + L cos(ga(t)) cos(gs(t)) sin(q1(t)) — Lsin(gy(t)) sin(gz(t)) sin(gs(t))
L (sin(g2(t)) + 1) + L cos(ga(t)) sin(gs(t)) + L cos(gs(t)) sin(gz(t))
The above was evaluated at each time instance and used to plot the path of the end-effector
in 3D.

The following diagram shows the controller layout taken from the class handout, page 6-120
which shows the controller with full compensation.

Nonlinear Dynamic Decoupling

Inverse Dynamics Control: Nonlinear Decoupling
. ;T " 1
1 N . N e —————— :
Y | V@.9+Glo) [ .
: C— i T T g
qd [ K + ': n I + . '
—— P‘r", d —’O::-r D(g) —+O—| Manipulator |q
I ': - 1
q | A
+¥ .| Kp :
e |
Linear Controller

= decoupling torques based on measured manipulator states
= Requires real-time computation of nonlinear decoupling terms
= Nonlinear terms affected by sensor noise and delay

6-120

Figure 2.39: Diagram of controller, inverse dynamics control, full compen-
sation. From class lecture notes

In the Matlab simulation, it was assumed that the measured manipulator states are exact
and no noise was present as mentioned above. In practice this will not be the case and there
will be an error in the estimates.

The following diagrams gives a high level overview of the Matlab software design for the
implementation of the joint space control and the M files used.



Software design of controller for part (a), HW5 showing

ThreeDOFcontrols.m

ask for control type

Initialization and
allocation of arrays

%RK-4 integrate equation of motion
LOOP over all time steps
K1=zDot3dofControls(...)
K2=...
ql:,i+1)=z(..)
qd(:,i+1)=z(..)
END LOOP

LOOP over all points
Animate Robot arm using
rendering software

END LOOP

Generate all plots

Matlab functions used

zDot3dofControls.m

[D, Daverage] = Dmatrix_ThreeDOFcontrols(...)

B = Bmatrix_ThreeDOFcontrols(...)

C = Cmatrix_ThreeDOFcontrols(...)

G = Gmatrix_ThreeDOFcontrols(...)

7" = Kg(Qdesired — Gactual) + Kp(Udesired — Jactual)

IF full compensation THEN
=D’ +G+V

ELSEIF no velocity compensation THEN
=D’ +G

ELSEIF decentalized with full compensation THEN
7 = DaverageT' + G+ V

END

Gg=D1(r-V-0G)

Flow.vsdx

May 6,2015 Dmatrix_ThreeDOFcontrol.m

Nasser M. Abbasi

Gmatrix_ThreeDOFcontrol.m

Bmatrix_ThreeDOFcontrol.m

Cmatrix_ThreeDOFcontrol.m

Figure 2.40: Matlab program design for joint space controller
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The output for each part is now given followed by discussion of the results.

Part (a) Coriolis, centrifugal, and gravity terms are compensated

In this part, full compensation was made for the nonlinear Coriolis, centrifugal and gravity
terms. This gave complete decoupling between the joints. Becuase of this one expects no
oscillation in the plots of the joints displacements over the time of the simulation. This was
verified from the plots generated by the simulation.

In addition to the required plots, an additional plot was made showing the end-effector
speed over time. This was found by finding the end-effector linear speed using X =
J¢ where J is the end-effector Jacobian. The Jacobian was found using symbolic mat-
lab in the file ThreeDOFcontrols_symbolic.m and the output was used in the the file
ThreeDOFcontrol.m in order to calculate | X | over each time step.

inverse dynamics with full decoupling
time 1.00 (sec), distance to final destination = 0.000 (m)

Figure 2.41: Final position of robot arm, Joint
space control, part(a)
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inverse dynamics with full decoupling
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Figure 2.42: Joint position vs. time, Joint
space control, part(a)

inverse dynamics with full decoupling
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Figure 2.43: Joint velocity vs. time, Joint
space control, part(a)



inverse dynamics with full decoupling

End effector X,Y,Z speed
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Figure 2.44: End effector %3¢, %2, <2 Joint
space control, part(a)
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Figure 2.45: End effector X.,Y., Z. vs. time,

Joint space control, part(a)
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inverse dynamics with full decoupling
End effector speed

speed [meter/sec]
N
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Figure 2.46: End effector linear speed vs. time,
Joint space control, part(a)

inverse dynamics with full decoupling
End effector 3D displacement

Figure 2.47: End effector plot3 displacement,
Joint space control, part(a)

Part (b) No velocity compensation. Only gravity compensation

In this part, only the gravity terms were compensated for. Since there is coupling that
remains between the joints, one expects to see some oscillation in the joints speeds as they
are no longer independent from each other as with part (a).

This was verified by the plots generated from the simulation.



inverse dynamics, with gravity compensation
time 1.20 (sec), distance to final destination = 0.001 (m)

Figure 2.48: Final position of robot arm, Joint
space control, part(b)

inverse dynamics, with gravity compensation
5 Joint Position Vs Time
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Figure 2.49: Joint position vs. time, Joint
space control, part(b)
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inverse dynamics, with gravity compensation

Joint velocity Vs Time
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Figure 2.50: Joint velocity vs. time, Joint
space control, part(b)

inverse dynamics, with gravity compensation
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Figure 2.51: End effector dé%, d;f, ddZ; Joint
space control, part(b)
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inverse dynamics, with gravity compensation
End effector X,Y,Z coordinates

coordinates [meter]

[

0 0.2 0.4 0.6 0.8
Time [sec]

12

Figure 2.52: End effector X,,Y,, Z. vs. time,
Joint space control, part(b)

inverse dynamics, with gravity compensation
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Figure 2.53: End effector linear speed vs. time,
Joint space control, part(b)
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inverse dynamics, with gravity compensation
End effector 3D displacement

Figure 2.54: End effector plot3 displacement,
Joint space control, part(b)

Part (c) Decentralized joint-space controller, full compensation using average
D matrix

In this part, full compensation were made for the nonlinear Coriolis, centrifugal, and gravity
terms, however the mass matrix D used was a constant matrix which represented the
average of the original mass matrix.

The approximate mass matrix is given by
b = Daverage + ng;Ime

Where I, is the actuator moment of inertia and J,, is the actuator Jacobian. In this problem
these were not used as they were not specified, and only the average mass matrix needed
to be determined.

The average mass matrix Djyerage Was obtained from D by setting each joint position given
by q to zero and by also setting the off diagonal elements to zero. Setting the off diagonal
elements to zero was needed as the average mass matrix needs to be diagonal to produce
the decoupling effect.

Therefore all the cosine terms were set to one and all the sine terms were set to zero. The
original D matrix is

1 1
Zmchg + ZmL2(023 + 2¢9)% 4 Iy + I,(c3 + c23) + Ty (s2 + s23) 0 0
1 1 .
[D] = 0 gmLz +mL2c3 + 21, ZmLQ + EmL‘
0 InL? 4+ tmites 41 ImL? +
_ 4m 2m C3 a 4:m .




Hence the average D matrix becomes

[-D average] =

Using the above [Dayerage] the following plots shows the output obtained.

ImL? + imL*(1+2)2 4+ I, + I,(1 4+ 1) + I,(0 + 0)

0

0

tmL? +3mL? + I, + 21,
0
0

0
SmL?+mL? + 21,
0

SmL? +mL? + 21,

0
0
imL2 + 1,

decentralized joint space controller, full compensation
time 1.20 (sec), distance to final destination = 0.001 (m)

Figure 2.55: Final position of robot arm, Joint
space control, part(c)
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decentralized joint space controller, full compensation
Joint Position Vs Time
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Figure 2.56: Joint position vs. time, Joint
space control, part(c)

decentralized joint space controller, full compensation
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Figure 2.57: Joint velocity vs. time, Joint
space control, part(c)
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decentralized joint space controller, full compensation
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Figure 2.58: End effector %<, “ze, *2c Joint

space control, part(c)

decentralized joint space controller, full compensation
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Figure 2.59: End effector X.,Y., Z. vs. time,

Joint space control, part(c)
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decentralized joint space controller, full compensation
End effector speed
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Figure 2.60: End effector linear speed vs. time,
Joint space control, part(c)

decentralized joint space controller, full compensation
End effector 3D displacement

Figure 2.61: End effector plot3 displacement,
Joint space control, part(c)

Part (d) discussion of result, compare control methods

There are two main methods for nonlinear dynamics decoupling. These are the computed
torque method and the inverse dynamics control. In this problem the inverse dynamics
control method was used. In this method, decoupling is based on measured or estimated
manipulator states as described above.

The advantages and disadvantages of each controller are given below followed by a discussion
on the output.

Full compensation
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advantages Becuase all the non-linear terms were compensated for, this produced a
smooth motion with no overshoot. In addition, the time step for the integration
during simulation was not required to be too small.

disadvantages In practice, this requires measurements in real time of all the states
in order to compute and estimate the current Mass, Coriolis, centrifugal and
gravity matrices at each sample time. This can be expensive and require a fast
CPU. Also compensating for noise and delay in measurements makes this more
complicated and there will always be some error in the estimates made.

No velocity terms compensation, only gravity compensation

advantages The main advantage is that in practice this controller will be less com-
plicated as the Coriolis and centrifugal terms do not need to be measured and
computed at each time step. This will reduce the cost and make it faster to
operate.

disadvantages By not compensating for velocity terms, coupling between the joints
motion remains. This can be seen by the overshoot in joints motion from the
desired value and the oscillation in motion, even with the use of critical damping
which should produce no overshoot. This can be severe disadvantage for an
end-effector which is required not to overshoot and possibly hit the target as it
approaches it.

Decentralized controller with full compensation

advantages Since the mass matrix is constant, this reduces the computation in real
time, as the mass matrix do not have to evaluated at each time sample as with
the other controllers. This makes the controller simpler to implement.

disadvantages Since the mass matrix is the average, it is an approximation of the
real mass matrix. This can produce errors. In the simulation it was found that
a smaller time step was needed for the numerical integration to reduce the
overshoot. Even with a much smaller time step, one joint had very small amount
of overshoot. In practice this might require a small sampling time and faster
CPU to implement.

The following discussion gives a review of the output of each controller.

In part(a), full decoupling was made, which means each joint motion was independent of
the other joints. Comparing the joint position vs. time plot generated in part (a) shows
that the joints motion was smooth and had no oscillation since it was not affected by other
joints motions. There was no overshoot in the joint positions since the damping ratio is set
to be critical.

While in part(b), where no velocity compensation was made (these are the centrifugal and
Coriolis terms) but only gravity was compensated for, the joint motion that resulted had
oscillation in it which showed as well in the speed profile which was not as smooth compared
to speed profile of the full decoupling case in part (a).
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In addition, there was an overshoot in the joint position which was most apparent in joint
1 motion. This can cause problems in applications where the end-effector must approach
the target without hitting it.

Part(c) initially showed some small oscillation in the motion of the joints when compared
to part(a). However, this turned out to be due to using a large time step for the Runge
Kutta integration. By reducing the time step to smaller value than that used in part (a)
and part (b), the result improved and showed no oscillation in the joint positions nor in
the joint velocities.

The time step used for part(c) was 0.002 seconds, while for part(a) it was 0.005 seconds.
The simulation time to converge to the final destination did not changed compared to part
(a). The only change needed was to reduce the time step.

However in part (c), there was a very small overshoot in the motion of joint 3 around 0.35
second as can be seen in the plot.

The mass matrix for part (c), which is the average mass matrix Dayerage, iS & constant matrix
as described above, found by eliminating all the variable terms in the entries of the original
mass matrix D by setting q to zero and updating the corresponding cosine and sine terms
accordingly and by also setting the off-diagonal elements to zero to insure decoupling of
the equations.

Of the above three controllers, the first one (part(a)) produced the best result (fast conver-
gence to target and no oscillation in joints motion). Part(c) was similar to part(a), except for
need to use much smaller integration time step. However, part (c) is the simplest controller
and can make the implementation faster since the mass matrix used is not as complicated
as the other two methods as it is a constant and hence no need to estimate it at run time.
Therefore it is simpler method to execute and can be faster in practice.

The following diagram shows the joint position vs. time for the three controllers next to
each others to make it easier to compare and contrast. Part (a) is similar to part(c), except
for the small overshoot in joint 3 using part (c). Part(b) clearly did not produce good joint
motion with large overshoot and large oscillations.

eeeeeee dynamics with full decoupling decentralized joint space controller, full compensation

Joint Position Vs Time inverse dynamics, with gravity compensation Joint Position Vs Time
4 Joint Position Vs Time

0 02 04 06 08 1 “o 02 04 06 08 1 12 0 02 04 06 08 1 12
Time [sec] Time [sec] Time [sec]

Figure 2.62: Joints positions vs. time, part(a),(b),(c) side by side

The following diagram shows the joint velocity vs. time for the three controller next to each
others to make it easier to compare. Part(b) had the most oscillations. In Part(a), joint 1
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had the same joint velocity as joint 2, and that is why the blue line in the plot did not show
as it is below the black line. For part(c) this was not the case.

Even though each joint had smooth velocity profile, joint 1 and joint 2 did not have the
same velocity profile as with the full decoupling case of part(a).

inverse dynamics with full decoupling decentralized joint space controller, full compensation
Joint velocity Vs Time Joint velocity Vs Time
inverse dynamics, with gravity compensation
Joint velocity Vs Time 16

Velocity [rad/sec]

Velocity [rad/sec]

f o N A& o ®

Velocity [rad/sec]

0 02 04 06 08 1
Time [sec] 0 02 04 06 08 1 12
Time [sec]

o 0.2 0.4 0.6 0.8 1 12
Time [sec]

Figure 2.63: Joints velocity vs. time, part(a),(b),(c) side by side

The following diagram shows the end effector speed for the three control methods side by
side. As discussed above, this was generated using X = J¢ where J is the basic Jacobian
for the end effector. This shows the end-effector speed profile in part (c) was similar to
part (a), while Part(b) end-effector speed profile showed the effect of the coupling that
remained between the joints where there was a number of places where an accelerations
and deceleration showed up over the full time of the simulation. The motion was not as
smooth as the other two methods.

inverse dynamics with full decoupling inverse dynamics, with gravity compensation decentralized Jmn:;s;;ac; \:u‘mru\ler‘d'uH compensation
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Figure 2.64: end effector speed, part(a),(b),(c) side by side

source code listing for joint-space control

The following is the Matlab source code listing which implements the joint based control
part of the HW.

To run the script for this part, the command is

ThreeDOFcontrols
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ThreeDOFcontrols.m -
%file ThreeDOFcontrols.m

%This the main script used to implement HW5, part a.

%Modified original code from ME739 UW learn@UW, Madison by Professor Zinn
)

%Nasser M. Abbasi 5/10/2015

%____ R = o R = o R = o

% NUMERICAL INTEGRATION OF DYNAMIC EQUATIONS

%____ —_——— —_——— —_——— —_—— —_——— —_——— —_——— —_——— ————

%clear all;
close all; clc;

% set the model parameters per the HW problem.
modelParameters = InitializeThreeDOFmodel() ;

% Ask use for which part to run. There are 3 types of controllers
disp(’Specify control method:’)

disp(® 1 = option(a), inverse dynamics with full decoupling’)
disp(® 2 = option(b), inverse dynamics - with gravity compensation’)
disp(®> 3 = option(c), decentralized joint space controller’)

modelParameters.controlMethod = input(’ ’);

%depending on the control type, set different values. The decentralized
%was found to require a smaller step size for RK-4 to behave well.
if modelParameters.controlMethod ==

tend =1; %simulation run time

dT = .005; %integration step size

title_add_on = ’inverse dynamics with full decoupling’;
elseif modelParameters.controlMethod ==

tend =1.3;

dT = .005;

title_add_on = ’inverse dynamics, with gravity compensation’;
else

tend = 1.25;

dT = .002;

title_add_on = ’decentralized joint space controller, full compensation’;
end;

numPts = floor(tend/dT);

%____ —_——— —_——— —_——— —_——— —_——— —_——— —_—— —_—— ————

% RENDERING INITIALIZATION

%____ —_—— —_—— —_—— —_—— —_—— —_—— —_—— —_—— ————

L = modelParameters.L;
L1 L;
L2 L;
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L3
f_handle
axis_limits = Lx[-2.5 2.1 -2.1 3 -.1 3];

render_view = [1 -1 1]; view_up = [0 0 1];
SetRenderingViewParameters(axis_limits,render_view,view_up,f_handle);
camproj perspective

L;
iy

%----initialize rendering

% link 1 rendering initialization

rl = L1/5;

sidesl = 10;

axisi = 2;

norm_L1 =1.0;

linkColorl = [0 0.75 0];

plotFramel = O;

di = CreatelLinkRendering(L1l,rl,sidesl,axisl,norm_L1,1inkColori,...

plotFramel,f_handle);

% link 2 rendering initialization

r2 = L2/6;

sides2 = 4;

axis?2 =1;

norm_L2 =1.0;

linkColor2 = [0.75 0 0];

plotFrame2 = 0;

d2 = CreatelLinkRendering(L2,r2,sides2,axis2,norm_L2,1inkColor2,...

plotFrame2,f_handle) ;

% link 3 rendering initialization

r3 = L2/8;

sides3 = 4;

axis3 =1;

norm_L3 =1.0;

linkColor3 = [0 0 0.75];

plotFrame3 = 0;

d3 = CreatelinkRendering(L3,r3,sides3,axis3,norm_L3,1inkColor3,...

plotFrame3,f_handle);

q = zeros(3,numPts);
dq = zeros(3,numPts) ;
t = zeros(1,numPts);
q(:,1) = [0; pi/4; -pi/2]; Jinitial position

%q(:,1) = [0; 0.01; O]; %initial position

qd(:,1) = [0; 0; 0]; %initial velocity

z = [q(:,1); qd(:,1)]; Y%initialize the state variables
qDes = [pi;pi;pi/2]; %desired final joint space position




%qDes = [pi/3;pi/2;pi/4]; %desired final joint space position
qdDes = [0; 0; 0O]; %desired final joint velocity
zDes = [qDes; qdDes];
Xend = zeros(3,numPts) ; %end effector coordinates
Xvend = zeros(3,numPts); %end effector linear velocity
% integrate equations of motion, % Runge-Kutta 4th order
for i = 1:numPts-1

k1 = zDot3dofControls(z,zDes,modelParameters) ;

k2 = zDot3dofControls(z + 0.5%k1*dT,zDes,modelParameters) ;

k3 = zDot3dofControls(z + 0.5%k2*dT,zDes,modelParameters) ;

k4 = zDot3dofControls(z + k3*dT,zDes,modelParameters) ;

z =z + (1/6)*(k1l + 2xk2 + 2%k3 + k4)*dT;

% store joint position and velocity for post processing

q(:,i+1) = z(1:3);

qd(:,i+1) = z(4:6);

t(1,i+1) = t(1,i) + dT;
end
S ——
% DISPLAY INTERATION RESULTS
S —
for i = 1:numPts

ql = q(1,1);

92 = q(2,1);

g3 = q(3,1);

% Update frame {1}

c = cos(ql);

s = sin(ql);

L = L1;

T10 = [c O s O
s 0 -c O
0 1 0 L
0O O 0 1];

% Update frame {2}

¢ = cos(q2);

s = sin(q2);

L = L2;

T21 = [c -s 0 Lx*c
s c 0 Lxs
0 0 1 0
0 0 0 11;

% Update frame {3}

225




end
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¢ = cos(qg3);
s = sin(q3);
L =13;
T32 = [c -8 0 Lx*xc
s c 0 Lxs
0 0 1 0
0 0 0 11;
T20 = T10%T21;
T30 = T20%T32;

% end-effector position
Xend(:,i) = T30(1:3,4);

%»to find end effector velocity, we use X’ = J*x q’ where the Jacobian
%for the end effector is found in the Three_DOF_symbolic.m script
%as part of this HW, in the same folder as this file.

J=zeros(3,3);

J(1,1)=L*sin(ql)*sin(q2)*sin(q3) - L*cos(q2)*cos(q3)*sin(ql) - L*cos(q2)*sin(
J(1,2)=-cos(ql)*(L*(sin(q2) + 1) - L + L*cos(q2)*sin(q3) + L*cos(g3)*sin(q2))
J(1,3)=-cos(ql)*(L*cos(q2)*sin(q3) + L*cos(q3)*sin(q2));
J(2,1)=L*cos(qgl)*cos(q2) + L*cos(ql)*cos(q2)*cos(q3) - L*cos(ql)*sin(q2)*sin(
J(2,2)=-sin(q1)*(L*(sin(q2) + 1) - L + Lxcos(g2)*sin(q3) + Lx*cos(qg3)*sin(q2))
J(2,3)=-sin(ql) *(L*cos(g2)*sin(q3) + L*cos(q3)*sin(q2));

J(3,1)=0;

J(3,2)=cos(ql)*(L*cos(ql)*cos(q2) + Lxcos(ql)*cos(q2)*cos(q3) - Lxcos(ql)*sin
J(3,3)=cos(q1)*(L*cos(ql)*cos(q2)*cos(q3) - L*cos(ql)*sin(q2)*sin(q3)) + sin(

Xvend(:,i) = Jxqd(:,1i);

% update rendering

figure(f_handle);

UpdateLink(d1,T10);

UpdateLink(d2,T20) ;

UpdateLink(d3,T30) ;

title(sprintf (’Ys\ntime %3.2f (sec), distance to final destination
title_add_on,i*dT,norm(Xend(:,i)-[1;0;0])));

hold on;

plot3(Xend(1,1:i),Xend(2,1:i),Xend(3,1:i),’r’,’LineWidth’,2);

%4.3f (m

if i == 1;
pause;
end

drawnow;

%pause at start of simulation rendering

(g2) *sin(q3)
ql)*(L*cos(q

) R




% PLOT JOINT POSITIONS

figure(2);

plot(t(2:end),q(1,2:end),’b’,’LineWWidth’,2); hold on
plot(t(2:end),q(2,2:end),’r’,’LineWWidth’,2); hold on
plot(t(2:end),q(3,2:end), ’k’,’LineWlidth’,2); hold off
title(sprintf (’%s\n)s’,title_add_on,’Joint Position Vs Time’));
xlabel(’Time [sec]’); ylabel(’Position [rad]’);

grid on

legend(’Joint 1°’,’Joint 2’,’Joint 3’,’Location’,’southeast’);

figure(3);

plot(t(2:end),qd(1,2:end),’b’, ’LineWidth’,2); hold on
plot(t(2:end),qd(2,2:end),’r’,’LineWidth’,2); hold on
plot(t(2:end),qd(3,2:end), ’k’,’LineWidth’,2); hold off
title(sprintf(’%s\n/s’,title_add_on,’Joint velocity Vs Time’));
xlabel (’Time [sec]’); ylabel(’Velocity [rad/sec]’);

grid on

legend(’Joint 1’,’Joint 2’,’Joint 3’,’Location’,’northeast’);

figure(4);

plot(t,Xvend(1,:),’b’,’LineWidth’,2); hold on
plot(t,Xvend(2,:),’r’,’LineWidth’,2); hold on
plot(t,Xvend(3,:),’k’,’LineWidth’,2); hold off
title(sprintf(’%s\nJ)s’,title_add_on,’End effector X,Y,Z speed’));
xlabel(’Time [sec]’); ylabel(’velocity [meter/sec]’);

grid on
legend(’d(Xe)/dt’,’d(Ye)/dt’,’d(Ze)/dt’,’Location’,’southeast’);

% PLOT end effector X,Y,Z positions

% ______________________________________________________________________

figure(5);

plot(t,Xend(1,:),’b’,’LineWidth’,2); hold on
plot(t,Xend(2,:),’r’, ’LineWidth’,2); hold on
plot(t,Xend(3,:),’k’,’LineWidth’,2); hold off

title(sprintf(’%s\nJ)s’,title_add_on,’End effector X,Y,Z coordinates’));
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xlabel(’Time [sec]’); ylabel(’coordinates [meter]’);
grid on
legend(’Xe’,’Ye’,’Ze’,’Location’,’southeast’) ;

S —
% PLOT end effector speed (magnitude)
S —
figure(6) ;

plot(t, sqrt(sum(Xvend."2,1)),’LineWidth’,2);
title(sprintf(’%s\n%s’,title_add_on, ’End effector speed’));
xlabel (’Time [sec]’); ylabel(’speed [meter/sec]’);

grid on

e
% PLOT end effector displacement in 3D
N ——

figure(7);

plot3(Xend(1,:),Xend(2,:),Xend(3,:),’LineWidth’,2); hold on;
plot3(Xend(1,1),Xend(2,1),Xend(3,1),’r0’);

text (Xend(1,1) ,Xend(2,1) ,Xend(3,1) ,{’initial’,’position’});
plot3(Xend(1,end) ,Xend(2,end) ,Xend(3,end),’ro’);

text (Xend(1,end) ,Xend(2,end) ,Xend(3,end) ,{’final’, ’position’});
title(sprintf(’%s\nJs’,title_add_on,’End effector 3D displacement’));
xlabel(’X’); ylabel(’Y’); zlabel(’Z’);

grid on

InitializeThreeDOFmodel.m

function modelParameters = InitializeThreeDOFmodel
% set model parameters

% gravitational constant [m/s~2]
g = 9.81;

% link mass [kg]
m = 10;

% link length [m]
L=1;

% link COM location [m]
Lc = L/2;

% link radius [m]
r = 0.1%L;




end

% link inertia (_|_ to 1link’s CL) [kg/m~2]
Ia = (1/12)*m*xL"2;
Ib = m*r~2;

% assign values of model parameter structure

modelParameters.g = 9.81; J, gravitational constant [m/s”2]
modelParameters.m = m; 7 link mass [kg]

modelParameters.L = L; % link length [m]

modelParameters.Lc = Lc; % link COM location [m]

modelParameters.Ia = Ia; % inertia (_|_ to 1link’s CL) [kg/m~2]
modelParameters.Ib = Ib; % inertia (colinear to link’s CL) [kg/m~2]
modelParameters.controlMethod = 1;
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zDot3dofControls.m

function [zDot] = zDot3dofControls(z,zDes,modelParameters)

% assign joint displacements / velocities from state variables

q = 2(1:3);

qd = z(4:end);
qDes = zDes(1:3);
qdDes = zDes(4:end);

% mass and "average" mass matrix calculation
[D,Davg] = Dmatrix_ThreeDOFcontrols(q,modelParameters);

% calculate D, B, D, and G matrices
Bmatrix_ThreeDOFcontrols(q,modelParameters) ;
= Cmatrix_ThreeDOFcontrols(q,modelParameters) ;
B*[qd (1) *qd(2) ;qd(1)*qd (3) ;9d(2)*qd(3)]...
+Cx[qd(1)72; qd(2)72; qd(3)72];

< Qw
]

% gravity vector
G = Gvector_ThreeDOFcontrols(q,modelParameters) ;

% decoupled system PD-controller torques

wn = 2%2%pi; %using 2Hz per HW problem specs

zeta = 1; YJcritical damping, per HW problem specs

Kp = wn"2;

Kd = 2%zeta*wn;

tauPrime = Kd*(qdDes - qd) + Kp*(gqDes - q); ’PD controller

% calculate total control torques (PD control + nonlinear decoupling)
% make up perfect estimate for simulation only
G_estimate = G;
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V_estimate = V;
D_estimate = D;
if modelParameters.controlMethod ==
% inverse dynamics with full decoupling

tau = D_estimatextauPrime + G_estimate + V_estimate;
elseif modelParameters.controlMethod ==

%inverse dynamics - with gravity compensation

tau = D_estimate*tauPrime + G_estimate;
elseif modelParameters.controlMethod ==

%decentralized joint space controller, full compensation but

%use average D matrix, a constant matrix

tau = Davg*tauPrime + G_estimate + V_estimate;

end

%form joint acceleration vector
qdd = D\(tau -V - G);

% assign state variable derivatives
zDot = [qd; qdd];

end

Three_ DOF__symbolic.m
%file Three_DOF_symbolic.m

%used for solving HW5, ME 739.

%finds the Jacobian also finds the derivative of the Jacobian,
Jmeeded for part(b) of the HW5 problem

b

#Modifield slightly from original code from class web site.

%I changed the notation to T_O_1 instead of T_1_0, since this makes
%it more clear to me.

%Nasser M. Abbasi

clear all; clc;

MAKE_FUNCTION = 1;

syms q1 q2 q3 L1 L2 L3 Lcl Lc2 Le3 ml m2 m3 g dql dq2 dq3
syms cl c2 c3 sl s2 s3

syms Ixx1l Ixx2 Ixx3 Iyyl Iyy2 Iyy3 Izzl Izz2 Izz3

syms Ja Ib L m

% simplifying assumptions

Ixxl = Ia; Iyyl = Ib; 1Izzl = Ia;
Ixx2 = Ib; Iyy2 = Ia; 1Izz2 = Ia;
Ixx3 = Ib; Iyy3 = Ia; 1Izz3 = Ia;




L1=L; L2=1L; L3 =1L;
Lcl = L/2; Lec2 = L/2; Lec3 = L/2;
mli =m; m2 =m; m3 = m;

gVector = [0; 0; -gl;
Icl = [Ixx1 O 0

0 Iyyi1 O

0 0 Izzi];
Ic2 = [Ixx2 O 0

0 Iyy2 O

0 0 Izz2];
Ic3 = [Ixx3 O 0

0 Iyy3 O

0 0 Izz3];

disp(’Evaluating kinematics’)

% calculate homogeneous transformation matrices to the link center of mass
% => Link 1

c = cos(ql); s = sin(ql);

TO1=1[c 0 s O
s 0-c O
0 1 0 L1
0 0 0 1];
TOclil=[c 0 8 O
s 0 -c 0
0 1 0 Lect
0O 0 O 11;

% => Link 2

c = cos(q2); s = sin(q2);

T 1.2 =[c -s 0 L2%*c

s c 0 L2%s

0 1 0

0O 0 0 1];

[c -s Lc2*c

Lc2*s
0
11;

o

T 1 c2 =

o n
O = OO

c
0
0 0
% => Link 3
c = cos(q3); s = sin(qg3);
T23=1[c -s 0 L3*c
s c 0 L3%*s

0O 0 1 O
0O 0 0 17;

T 2 c3 =[c -s 0 Lc3*c
s c 0 Lc3x*s
0O 0 1 0
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0 0O 0 11;
T 0 2=T0 1+T_1 2; T_0_2 = simplify(T_0_2);
T_0_c2 = T_0_1*T_1_c2; T_0_c2 = simplify(T_0_c2);
T_0_c3 = T_0_2+T_2_c3; T_0_c3 = simplify(T_0_c3);
T 0_3 = T_0_2%T_2_3;

% calculate the linear and angular velocity Jacobian of each link (COM)
z0 = [0 0 1]’; =z1 =T_0_1(1:3,3); =z2 = T_0_2(1:3,3);

00 = [000]’; o1l =T_0.1(1:3,4); 02 =T_0_2(1:3,4);

03 = T_0_3(1:3,4);

ocl = T_0_c1(1:3,4); oc2 = T_0_c2(1:3,4); o0c3 = T_0_c3(1:3,4);

%find the Jacobian for end effector first. This is needed to find
%x’> = J * q’ for solving part (a)

Jv3 [cross(z0,03) cross(zl,(0o3 - 0o1)) «cross(z2,(03 - 02))];
Jw3 [z0 z1 z2];
Jacobian = [Jv3;Jw3];

Ynow we need to find time derivative of the above Jacobian

tmp = subs(Jacobian,{ql,q2,93},{’ql(t)’,’q2(t)’,’q3(t)’});

syms t;

der_Jacobian = diff (tmp,t);

der_Jacobian = subs(der_Jacobian,{’diff(ql(t),t)’,’diff(q2(t),t)’,’diff(q3(t),t)’
{’qd(1)’,°qd(2)?,°qd(3)’});

der_Jacobian = subs(der_Jacobian,{’ql(t)’,’q2(t)’,’q3(t)’},...
{q1,92,93});

der_Jacobian = subs(der_Jacobian,{’sin(ql)’,’sin(q2)’,...
’sin(g3)’,’cos(ql)’,’cos(qg2) ’,’cos(q3)’}, ...
{s1,s2,s83,c1,c2,c3});

%find the end effector position vector using forward kinematics
Xend = T_0_3 * [0;0;0;1];

Xend = subs(Xend,{’cos(ql)’,’cos(q2)’,’cos(q3)’,’sin(ql)’,...
’sin(q2)’,’sin(q3) ’},{c1,c2,c3,81,82,s83});

% => Jvcl
Jvcl = [cross(z0,(ocl - 00)) [0; 0; 0] [0; 0; 011;
Jvec2 = [cross(z0,0c2) cross(zl,(oc2 - o1)) [0; 0; 011;

Jvec3 = [cross(z0,0c3) cross(zl,(oc3 - ol1l)) cross(z2,(oc3 - 02))];
Jul = [z0 [0; 0; 0] [0; O; 01];

Jw2 = [z0 z1 [0; 0; 0]];

Ju3 = [z0 z1 z2];
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% extract rotation matrices
R10 = T_0_c1(1:3,1:3);
R20 = T_0_c2(1:3,1:3);
R30 = T_0_c3(1:3,1:3);

% calculate mass matrix
disp(’Evaluating mass matrix’);

Dvi mlxtranspose (Jvcl)*Jvcl;
Dvl = simplify(Dv1l);

Dv2 = m2*transpose(Jvc2)*Jvc2;
Dv2 = simplify(Dv2);

Dv3 = m3*transpose(Jvc3)*Jvc3;
Dv3 = simplify(Dv3);

Dwl = transpose(Jwl)*R10*Icl*transpose(R10)*Jwl;
Dwl = simplify(Dwl);

Dw2 = transpose(Jw2)*R20*Ic2*transpose (R20)*Jw2;
Dw2 = simplify(Dw2);

Dw3 = transpose(Jw3)*R30*Ic3*transpose (R30)*Jw3;
Dw3 = simplify(Dw3);

D =Dvl + Dv2 + Dv3 + Dwl + Dw2 + Dw3;
D = simplify(D);

% after examining solution - try to get further simplification
D = subs(D,{cos(q2)"2 - 1},{-sin(q2)"2});
D = subs(D,{cos(q2 + q3)~2 - 1},{-sin(q2 + q3)72});

% calculate B and C maatrices
disp(’Evaluating Coriolis and centrifual terms’)

% form partial derivatives

for i = 1:3
for j = 1:3
for k = 1:3
if k ==
d(i,j,k) = diff(D(i,j),ql);
elseif k ==

elseif k ==
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d(i,j,k) = diff(D(i,j),q3);
end
end
end
end
d = simplify(d);

% form Christofel symbols

for i = 1:3
for j = 1:3
for k = 1:3
b(i,j,k) = 0.5%(d(i,j,k) + d(i,k,j) - d(j,k,1));
end
end
end

b = simplify(b);

% assemble C and B matrices

B = [2*b(1,1,2) 2*b(1,1,3) 2*b(1,2,3)
2%b(2,1,2) 2%b(2,1,3) 2%b(2,2,3)
2xb(3,1,2) 2%b(3,1,3) 2*b(3,2,3)];

c = [b(1,1,1) b(1,2,2) b(1,3,3)
b(2,1,1) b(2,2,2) b(2,3,3)
b(3,1,1) b(3,2,2) b(3,3,3)];

% form G vector

disp(’Evaluating gravity vector’)
Gl = -(transpose(Jvcl)#*mlxgVector);
G2 = -(transpose(Jvc2)*m3*gVector) ;
G3 = -(transpose(Jvc3)*m3*gVector) ;
G =Gl + G2 + G3;

G = simplify(G);

% Auto-generate Matlab functions to evaluate D, B, D, and G matrices
if MAKE_FUNCTION ==
disp(’Auto-generating Matlab functions’);

disp(’ => generating D matrix function’);
matlabFunction(D,’file’, ’EvaluateDmatrix’);
disp(’ => generating B matrix function’);
matlabFunction(B,’file’, ’EvaluateBmatrix’);
disp(’ => generating C matrix function’);
matlabFunction(C,’file’, ’EvaluateCmatrix’);
disp(’ => generating G vector function’);
matlabFunction(G,’file’, ’EvaluateGvector’);
disp(’ => generating derivative of analytical Jacobian function’);

matlabFunction(der_Jacobian,’file’,’EvaluateJd’);




‘end
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Bmatrix ThreeDOFcontrols.m
function B = Bmatrix_ThreeDOFcontrols(q,modelParameters)

% assign model parameters to local variables
g = modelParameters.g;

m = modelParameters.m;

Ia = modelParameters.Ia;

L = modelParameters.L;

Ib = modelParameters.Ib;

ql = q(1); q2 = q(2); q3 = q(3);
B(1,1) = (Ib-Ia-(1/4)*m*L~2)*sin(2*q2+2*q3)+...
(Ib-Ia- (5/4)*m*L"2)*sin(2*q2)-m*L"2*sin(2*q2+q3) ;

2+m*L"2*cos(q2)));
B(1,3) = 0;
B(2,1) = 0;
B(2,2) = 0;
B(2,3) = -m*L"2*sin(q3);
B(3,1) = 0;
B(3,2) = 0;
B(3,3) = 0;

end

B(1,2) = -(1/2)*(sin(q2+q3) * ((4*Ia-4*Ib+m*L"2)*cos(q2+q3)+...

Cmatrix__ThreeDOFcontrols.m
function C = Cmatrix_ThreeDOFcontrols(q,modelParameters)

% assign model parameters to local variables
g = modelParameters.g;

m = modelParameters.m;

Ia = modelParameters.Ia;

L = modelParameters.L;

Lc = modelParameters.Lc;

Ib = modelParameters.Ib;

ql = q(1); q2 = q(2); a3 = q(3);

c(1,1) = 0;

c(1,2) = 0;

Cc(1,3) = 0;

C(2,1) = (1/2)*(Ia-Ib+(1/4)*m*L"~2)*sin(2%q2+2*q3)+. ..




€(2,2)
€(2,3)
Cc(3,1)

€(3,2)

end
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(1/2)*(Ia-Ib+(5/4)*m*L"~2) *sin(2%q2) +(1/2) *m*L"2*sin(2*q2+q3) ;
0;

= -(1/2) *m*L"2*sin(q3) ;
(1/4)*(sin(q2+q3) * ((4*xIa-4*Ib+(1/4) *m*L"2) *. . .

cos(q2+q3) +2*m*L"2*cos (q2))) ;

(1/2) *m*L"2*sin(q3) ;

= 0; %verify with my derivation, I got something not zero

Dmatrix_ ThreeDOFcontrols.m

function [D,Davg] = Dmatrix_ThreeDOFcontrols(q,modelParameters)

% assign model parameters to local variables
% model parameters

m = modelParameters.m;

L = modelParameters.L;

Ia = modelParameters.la;

Ib = modelParameters.Ib;

s2 =
c2
c3 =
s23 =
c23 =

D =
Davg

sin(q(2));

= cos(q(2));

cos(q(3));
sin(q(2) + q(3));
cos(q(2) + q(3));

zeros(3,3);
D;

%see ThreeDOFcontrols_symbolic.m for derivation of these
D(1,1)= 1/4%m*L"2%c272+1/4*m*L"~ 2% (c23+2%c2) "2+. ..
Ib+Ia*(c272+c2372)+Ib*(s272+s2372);

D(1,3)

D(2,1)
D(2,2)
D(2,3)

D(3,2)

=o;
=O;

=0;
= 2xJa + (3/2)*m*L"2 + L~2*m*c3;
= 1/4*m*L"2 + 1/2*%m*L"2%xc3 + Ia;

=0;
= D(2,3);
= 1/4*m*L."2 + Ia;

% "average" mass matrix calculation,
% trigometric identities - assume g equals zero and set off diagonal
% to zero
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c2 =1.0; c3 =1.0; c23=1; s2=0;s23=0;

Davg(1l,1)= 1/4*m*L~2%c272+1/4*m*xL~2*(c23+2%c2) "2+. ..
Ib+Ia*(c272+c2372)+Ib*(s272+s2372);

Davg(1,2) = 0;

Davg(1,3) = 0;

Davg(2,1) = 0;
Davg(2,2) 2%Ia + (3/2)*m*L"2 + L~ 2*m*c3;
Davg(2,3) 0; % 1/4*mxL"2 + 1/2«m*xL"2*xc3 + Ia; Notice, set to zero

Davg(3,1) = 0;
Davg(3,2) 0; %notice, set to zero
Davg(3,3) 1/4*m*L"2 + Ia;

end

Gvector ThreeDOFcontrols.m
function G = Gvector_ThreeDOFcontrols(q,modelParameters)

% assign model parameters to local variables

g = modelParameters.g;
m = modelParameters.m;
L = modelParameters.L;

ql = q(1); q2 = q(2); q3 = q(3);

G(1,1) = 0;
G(2,1) = (1/2)*m*xg*L*(3*cos(q2)+cos(q2+q3));
G(3,1) = (1/2)*m*g*L*cos(q2+q3) ;

end

2.5.3 Operational space control

The difficult part of this implementation was finding the analytical Jacobian and its deriva-
tive with respect to time. Matlab symbolic was used for this and the file Three_DOF_symbolic.m
contains the implementation of this.

The operational space controller using proportional derivative was implemented in the
files ThreeDOFcontrols_OP.m and zDot3dofControls_0P.m. The following shows the plots
generated for parts (a,b,c) followed by discussion comparing the results.

The following diagram shows the operational space controller layout taken from the class
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handout, page 6-163 which shows the controller with full compensation.

Operational Space Dynamic Decoupling

Operational (or Task) Space Inverse Dynamics Control:

q‘I Kin(q)x
Robot qi %
| :&- J(q)
— S 3=

T

Nonlinear Decoupling

= decoupling forces based on measured manipulator states

= Requires real-time computation of nonlinear decoupling terms

= Requires real-time computation of A and g, both of which
require inverse matrix computations

= Nonlinear terms affected by sensor noise and delay s

Figure 2.65: Diagram of controller, task space inverse dynamics control,

full compensation. From class lecture notes

The following diagrams gives a high level overview of the Matlab software design for the
implementation of the task space control. The Jacobian use in this controller is much more
critical than with joint space controller due to the mapping between joint space and task
space needed in the implementation.



Software design of controller for part (b), task based control.
HWS5 showing Matlab functions used

ThreeDOFcontrols_OP.m

ask for part type

Initialization and

allocation of arrays .
%RK-4 integrate equation of motion

LOOP Until end-effector is within small
distance from target
K1=zDot3dofControls_OP(xdesired...)

zDot3dofControls_OP.m

K2=...
q(:,i+1)=z(..)
qd(:,i+1)=z(..)
Xend=... calculate end effector position
Break loop if reached target
END LOOP
LOOP over generated points
Animate Robot arm using
rendering software
END LOOP

Generate all plots

Flow_task vsdx
May 6,2015
Nasser M. Abbasi

Dmatrix_ThreeDOFcontrol.m

\ ]

Ja = evaluate Jacobian

%Ja = evaluate Jacobian derivative

D = Dmatrix_ThreeDOFcontrols(...)

B = Bmatrix_ThreeDOFcontrols(...)

C = Cmatrix_ThreeDOFcontrols(...)

G = Gmatrix_ThreeDOFcontrols(...)

V = B[gq] + C[¢?] find velocity terms
[u,s,v] = svd(Ja) Find inverse of J,
Jt=vstuT

A = J"DJ™ find task space mass matrix

p = JTG find task space gravity term
u=J7TV - AL J,q find task space V terms
kd = 2§con

kp = of

Now generate control force

F' = I(d (Xdesired - Xactual) + kp (Xdesired - Xactual)
F = At' +p + u end effector (task space) force
7 = JTF convert to joint space torques

g = DX(r -V - G) form joint acceleration

Gmatrix_ThreeDOFcontrol.m

Bmatrix_ThreeDOFcontrol.m

\j

Cmatrix_ThreeDOFcontrol.m

Figure 2.66: Matlab program design for task space controller
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Part (a) z; = [-L,—L,0]"

Part(a) Xf=[-L -L 0]
time 0.83 (sec), distance to final destination = 0.001 (m)

Figure 2.67: Final position of robot arm, Operational
space control, part(a)

Part(a) Xf=[-L -L 0]

1 Joint Position Vs Time

Position [rad]

Joint 1
Joint 2
Joint 3

0 0.1 0.2 0.3 0.4 0.5 0.6
Time [sec]

Figure 2.68: Joint position vs. time, Operational space
control, part(a)
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Part(a) Xf=[-L -L O]
Joint velocity Vs Time

10

Joint 1
Joint 2
Joint 3|

o

Velocity [rad/sec]
[4)]

-10

-15

.20 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6

Time [sec]
Figure 2.69: Joint velocity vs. time, Operational space

control, part(a)

Part(a) Xf=[-L -L 0]
End effector X,Y,Z speed

velocity [meter/sec]
[}

-10 d(Xe)/dt |
d(Ye)/dt
d(ze)/dt

12 | | | | ‘

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [sec]

Figure 2.70: End effector %, %, % Operational
space control, part(a)
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Part(a) Xf=[-L -L O]
End effector X,Y,Z coordinates

15

o
o

coordinates [meter]
o

-0.5

-1 -
0 0.1 0.2 0.3 0.4 0.5 0.6
Time [sec]

Figure 2.71: End effector X.,Y., Z. vs. time, Opera-
tional space control, part(a)

Part(a) Xf=[-L -L O]
End effector speed

14

12

=
[oe] o

speed [meter/sec]
(o]

0 0.1 0.2 0.3 0.4 0.5 0.6
Time [sec]

Figure 2.72: End effector linear speed vs. time, Opera-
tional space control, part(a)
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Part(a) Xf=[-L -L O]
End effector 3D digglacement

0.8

0.6

0.4

0.2

15

inal 0
iti -0.5
position
Y 1 P% X

Figure 2.73: End effector plot3 displacement, Opera-
tional space control, part(a)

Part (b) z; =[-L,—%,0]”

Part(b) Xf=[-L -L/10 0]
time 0.82 (sec), distance to final destination = 0.001 (m)

Figure 2.74: Final position of robot arm, Operational
space control, part(b)
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Part(b) Xf=[-L -L/10 0]
Joint Position Vs Time

Position [rad]

Joint 1
Joint2 | -
Joint 3

0 0.1 0.2 0.3 0.4 0.5 0.6
Time [sec]

Figure 2.75: Joint position vs. time, Operational space
control, part(b)

Part(b) Xf=[-L -L/10 0]

20 Joint velocity Vs Time

~ Joint 1
Joint 2 |
Joint 3

-20 b

40 - 4

-60 4

-80 [ b

Velocity [rad/sec]

140 | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6

Time [sec]

Figure 2.76: Joint velocity vs. time, Operational space
control, part(b)



Part(b) Xf=[-L -L/10 0]
End effector X,Y,Z speed

e ——

velocity [meter/sec]
(o))

-10 d(Xe)/dt |
d(Ye)idt
d(ze)/dt

-12 : : : : :

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [sec]

Figure 2.77: End effector %, %, % Operational
space control, part(b)

Part(b) Xf=[-L -L/10 Q]
End effector X,Y,Z coordinates

1.5
1 4
)
7] L 4
£ 0.5
7]
o
©
c
S Of—— .
o
o
o
0.5 1
Xe
Ye
Ze
1 L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6

Time [sec]

Figure 2.78: End effector X,,Y., Z. vs. time, Opera-
tional space control, part(b)
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Part(b) Xf=[-L -L/10 0]

End effector speed
14 T T T

12

=
[oe] o

speed [meter/sec]
[}

0 0.1 0.2 0.3 0.4 0.5 0.6
Time [sec]

Figure 2.79: End effector linear speed vs. time, Opera-
tional space control, part(b)

Part(b) Xf=[-L -L/10 0]
End effector 3D digplacement

Figure 2.80: End effector plot3 displacement, Opera-
tional space control, part(b)
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Part (c) z; = [-L,—L,0]" with velocity limiting heuristic

Part(c) Xf=[-L -L 0] with velocity limiting heuristic
time 1.01 (sec), distance to final destination = 0.003 (m)

Figure 2.81: Final position of robot arm, Operational
space control, part(c)

Part(c) Xf=[-L -L 0] with velocity limiting heuristic
Joint Position Vs Time

Position [rad]

Joint 1
Joint 2
Joint 3

0 0.2 0.4 0.6 0.8 1 1.2
Time [sec]

Figure 2.82: Joint position vs. time, Operational space
control, part(c)
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Part(c) Xf=[-L -L 0] with velocity limiting heuristic
Joint velocity Vs Time

5

Joint 1
Joint 2
Joint 3

< 0 1

Q

0

ke]

o

2

‘©

o

(V]

> 5 |

10 | | | | |
0 0.2 0.4 0.6 0.8 1 1.2
Time [sec]

Figure 2.83: Joint velocity vs. time, Operational space
control, part(c)

Part(c) Xf=[-L -L 0] with velocity limiting heuristic
End effector X,Y,Z speed

velocity [meter/sec]
) N
wn ) w0

&

w
o

d(Xe)/dt
d(ve)ydt | 4
d(ze)/dt

A

45 I I I I I
0 0.2 0.4 0.6 0.8 1 12

Time [sec]

Figure 2.84: End effector dj%, d;;e, ddZ; Operational
space control, part(c)
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Part(c) Xf=[-L -L O] with velocity limiting heuristic

15 End effector X,Y,Z coordinates

coordinates [meter]
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Figure 2.85: End effector X.,Y., Z. vs. time, Opera-
tional space control, part(c)

Part(c) Xf=[-L -L 0] with velocity limiting heuristic
End effector speed
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Figure 2.86: End effector linear speed vs. time, Opera-
tional space control, part(c)
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Part(c) Xf=[-L -L 0] with velocity limiting heuristic
End effector 3D digglacement

-1 pogition

Figure 2.87: End effector plot3 displacement, Opera-
tional space control, part(c)

Part (d) discussion of result, compare control methods

In this part of the problem, the same controller was used for all parts, which is a P.D.
controller with compensation for velocity terms (Coriolis and centrifugal terms) and the
gravity terms.

Operational space based control is more intuitive since the target coordinates are given in
operational space rather than in joint space and therefore it is easier to describe in terms
of where the end-effector target should be.

One issue with Operational space is that the Jacobian can become ill-conditioned near
singularities. Since the Jacobain and its derivatives are used in this control to map between
joint space and operational space, this can cause a problem. This means the operational
space control has to either avoid getting close to singularity region or be modified near
singularities. In this simulation, no singularity was encountered.

In the three cases, the path traveled by the end effector showed a straight line from the
initial position to the final position as desired. This was different from the joint space
control, where the path traveled by the end effector was curved and had number of twists
and turns.

The time used to reach the target for part (c) (with linear velocity limiting) was the longest,
a little over one second. This is about 30% longer than the time taken by part(a) which did
not have the velocity limiting heuristic and also had the same target coordinates in task
space.

This is as expected, since the maximum speed the end effector can reach in part(c) was kept
below 5 meter/sec. The end-effector speed profile for part(a) shows it reached maximum
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speed of 12 meter/sec.

The advantage of speed limiting heuristic is that it eliminated large acceleration and
deceleration of the end effector which can be important in some applications where joints
speed have to be kept below some value.

In all cases, there was no overshoot in the operational space motion. But looking at joint
space, case (b) showed sudden change in the joint one speed around 0.15 second.

Since control is based on operational space and not joint space, the joints positions and
speeds that result can become much larger and exhibit large oscillation compared with joint
based control. This is seen in part(b) where joint 1 had sudden change in speed. This can
be a problem depending on the application where the joints actuators can not provide the
required joint speed and will saturate.

The following plot shows side by side the joints space displacements that resulted for each
part.

Part(b) Xf=[-L -L/10 0] »

Part(c) Xi=[-L -L 0] with velocity limiting heuristic
Part(a) Xf=[-L -L 0] Joint Position Vs Time (©) i< ; m! b “‘I’ v yTl'm' 9 heu
Joint Position Vs Time 1 oint Position Vs Time

Position [rad]
Position [rad]

5
0 01 02 03 04 05 06 o 01 02 03 0.4 05 0.6 0 02 0.4 0.6 0.8 1 12
Time [sec] Time [sec] Time [sec]

Figure 2.88: Joints positions vs. time. Operational space. part(a),(b),(c)
side by side

In the above, joint 1 had sudden change in motion for part(b), this is due to the end target
location. In the velocity profile below, one can see the corresponding sudden change in
speed for this joint as well.

The following diagram shows the joint velocity vs. time for each case.

Part(a) Xf=[-L -L 0] ~ Part(c) Xf=[-L -L 0] with velocity limiting heuristic
Joint velocity Vs Time Part(b) Xf=[-L -L/10 0] Joint velocity Vs Time
10 Joint velocity Vs Time 5

o

Velocity [radisec]

Velocity [radisec]
38

20 -140 0 02 04 06 08 1 12
0 01 02 03 0.4 05 06 0 0.1 02 03 04 05 06 Time [sec]

Time [sec] Time [sec]

Figure 2.89: Joints velocity vs. time, operational space, part(a),(b),(c)
side by side

The following diagram shows the end effector speed for the three cases side by side.
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Part(a) Xf=[-L -L 0]
End :';ecm[r speeé Part(c) Xf=[-L -L 0] with velocity limiting heuristic

1 Part(b) Xf=[-L -L/10 0] End effector speed
End effector speed
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speed [meter/sec]
o =

speed [meter/sec]

0 0.1 0.2 03 04 05 0.6 o 01 02 03 04 05 06
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Figure 2.90: end effector speed. Operational space. part(a),(b),(c) side by
side

Source code listing for operational space control

The following gives the Matlab source code listing that implements the operational space
control part of the HW. Three new files were needed in addition of the files listed in part
(a) above.

To run the script for this part, the command is

ThreeDOFcontrols_0OP

ThreeDOFcontrols  OP.m
%file ThreeDOFcontrols_0OP.m

%#This the main script used to implement HW5, part b.

%Modified original code from ME739 UW learn@UW, Madison by Professor Zinn
h

%Nasser M. Abbasi 5/10/2015

%clear all;
close all;
clc;

% set the model parameters per the HW problem.
modelParameters = InitializeThreeDOFmodel 0P();
L = modelParameters.L;

% Ask use for which part to run. There are 3 sections for this problem
disp(’Specify part of problem to solve:’)

disp(® 1 = option(a) Xf =[-L -L 0]’)

disp(’ 2 = option(b) Xf =[-L -L/10 0]’)

disp(®> 3 = option(c), Xf =[-L -L 0] with velocity limiting heuristic’)
modelParameters.controlMethod = input(’> ’);
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%depending on the section, set labels as needed

xdDes = [0; 0; 0]; %desired final task space velocity
tend =1; %max simulation run time, Actual time is determined below
daT = .005; ‘integration step size

switch modelParameters.controlMethod

case 1
title_add_on = ’Part(a) Xf=[-L -L 0]’;
xDes = [-L;-L;0; xdDes]; %desired final task space states
case 2
title_add_on = ’Part(b) Xf=[-L -L/10 0]’;
xDes = [-L;-L/10;0; xdDes]; %desired final task space states
case 3
title_add_on = ’Part(c) Xf=[-L -L 0] with velocity limiting heuristic’;
xDes = [-L;-L;0; xdDes]; %desired final task space states
end;

R L s
% RENDERING INITIALIZATION

Y
L = modelParameters.L;

L1 = L;

L2 = L;

L3 = L;

f_handle =1;

axis_limits = L*x[-2.5 2.1 -2.1 3 -.1 3];

render_view = [1 -1 1]; view_up = [0 0 1];
SetRenderingViewParameters(axis_limits,render_view,view_up,f_handle);
camproj perspective

%-—---initialize rendering

% link 1 rendering initialization

rl = L1/5;

sidesl = 10;

axisi = 2;

norm_L1 =1.0;

linkColorl = [0 0.75 0];

plotFramel = 0;

di = CreatelLinkRendering(L1l,r1,sidesl,axisl,norm_L1,1inkColori,...

plotFramel,f_handle);

% link 2 rendering initialization

r2 = L2/6;
sides?2 = 4,;
axis?2 =1;
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norm_L2 =1.0;

1linkColor2 = [0.75 O 0];

plotFrame2 = 0;

d2 = CreatelinkRendering(L2,r2,sides2,axis2,norm_L2,1inkColor2,...

plotFrame2,f_handle) ;

% link 3 rendering initialization

r3 = L2/8;

sides3 = 4;

axis3 =1;

norm_L3 =1.0;

linkColor3 = [0 O 0.75];

plotFrame3 = 0;

d3 = CreatelLinkRendering(L3,r3,sides3,axis3,norm_L3,1inkColor3,...

plotFrame3,f_handle) ;

numPts = floor(tend/dT);

q = zeros(3,numPts);

dq = zeros(3,numPts) ;

t = zeros(1,numPts) ;

q(:,1) = [0; pi/4; -pi/2]; ‘%initial position

qd(:,1) = [0; 0; 0]; %initial velocity

z = [q(:,1); qd(:,1)]; Y%initialize the state variables
% integrate equations of motion, % Runge-Kutta 4th order

keep_running = true;
k0=1; Ycounter. Loop updates this and terminates when arm reaches target

while keep_running
k1 = zDot3dofControls_0P(z,xDes,modelParameters) ;
k2 = zDot3dofControls_0OP(z + 0.5%k1*dT,xDes,modelParameters);
k3 = zDot3dofControls_0P(z + 0.5%k2*dT,xDes,modelParameters) ;
k4 = zDot3dofControls_0OP(z + k3*dT,xDes,modelParameters) ;
z =2z + (1/6)*(k1 + 2*k2 + 2*¥k3 + k4)*dT;

% store joint position and velocity for post processing

q(:,k0+1) = z(1:3);
qd(:,k0+1) = z(4:6);
t(1,k0+1) = t(1,k0) + dT;

% check if goal position has been reached
ql = z(1); g2 = z(2); q3=2(3);

sl=sin(ql); c23=cos(q2+q3); s23= sin(q2+q3);
c2=cos(q2); cl=cos(ql);

s2=sin(q2); c3=cos(q3); s3=sin(q3);




end

Xen
Xve

for

%This is end effector position vector found from forward kinematics
%using the Three_DOF_symbolic.m symbolic computation script

X = [ L*cil*c2 + L*cl*c2*c3 - L*xcl*s2%s3;
L*c2*%s1 - Lksl*s2*xs3 + L*c2*xc3*sl;
L*x(s2 + 1) + L*c2*s3 + Lxc3%*s2];
xError = norm(X - xDes(1:3));
if (xError < 1e-3 || kO > numPts)
keep_running = false;
else
k0=kO0+1;
end

d = zeros(3,k0); %end effector coordinates
nd = zeros(3,k0); %end effector linear velocity
i=1:k0
ql = q(1,1);
g2 = q(2,1);
g3 = q(3,1);

% Update frame {1}

¢ = cos(ql);
s = sin(ql);

L = L1;
TI0O=[c 0 s O
s 0 -¢c O
0 1 0O L

0 0 0 1];

% Update frame {2}

¢ = cos(q2);

s = sin(q2);

L = L2;

T21 = [c -s 0 Lx*xc
s c 0 Lxs
0 0 1 0
0 0 O 11;

% Update frame {3}

¢ = cos(qg3);
s = sin(q3);
L = L3;
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end
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T32 = [c -s 0 Lx*c
s c 0 Lxs
0O 0 1 0
O 0 O 11;
T20 = T10%T21;
T30 = T20%T32;

% end-effector position
Xend(:,i) = T30(1:3,4);

%to find end effector velocity, we use X’ = J* q’ where the Jacobian
%for the end effector is found in the Three_DOF_symbolic.m script
%as part of this HW, in the same folder as this file.

J=zeros(3,3);

J(1,1)=L*sin(ql)*sin(q2)*sin(q3) - L*cos(q2)*cos(q3)*sin(ql) - L*cos(q2)*sin(

J(1,2)=-cos(ql)*(L*(sin(q2) + 1) - L + L*cos(q2)*sin(q3) + Lxcos(q3)*sin(q2))

J(1,3)=-cos(q1)*(L*xcos(q2)*sin(q3) + L*cos(q3)*sin(q2));

J(2,1)=Lx*cos(ql)*cos(q2) + Lx*cos(ql)*cos(g2)*cos(q3) - L*cos(ql)*sin(q2)*sin(

J(2,2)=-sin(q1)*(L*(sin(q2) + 1) - L + L*cos(q2)*sin(q3) + L*cos(g3)*sin(q2))

J(2,3)=-8in(ql) *(L*cos(q2) *sin(q3) + L*cos(q3)*sin(q2));

J(3,1)=0;

J(3,2)=cos(q1)*(L*cos(ql)*cos(q2) + Lx*cos(ql)*cos(g2)*cos(q3) - ...
L*xcos(ql)*sin(q2)*sin(q3)) + sin(ql)*(L*cos(q2)*sin(ql) + ..
L*cos(q2)*cos(q3)*sin(ql) - L*sin(ql)*sin(q2)*sin(q3));

J(3,3)=cos(ql)*(L*cos(ql)*cos(q2) *cos(q3) - Lxcos(ql)*sin(q2)*...
sin(q3)) + sin(ql)*(L*cos(q2)*cos(q3)*sin(ql) - ...
L*sin(ql)*sin(q2)*sin(q3));

Xvend(:,i) = J*qd(:,i);

% update rendering

figure(f_handle);

UpdateLink(d1,T10) ;

UpdateLink(d2,T20) ;

UpdateLink(d3,T30) ;

title(sprintf (’%s\ntime %3.2f (sec), distance to final destination = %4.3f (m
title_add_on,i*dT,norm(Xend(:,i)-xDes(1:3))));

hold on;

plot3(Xend(1,1:i),Xend(2,1:1),Xend(3,1:i),’r’, ’LineWidth’,2);

if i == 1; Ypause at start of simulation rendering
pause;

end

drawnow;

D2y ...



figure(2);

plot(t(1:k0),q(1,1:k0),’b’,’LineWidth’,2); hold on
plot(t(1:k0),q(2,1:k0),’r’,’LineWidth’,2); hold on
plot(t(1:k0),q(3,1:k0),’k’,’LineWidth’,2); hold off
title(sprintf(’%s\n/s’,title_add_on,’Joint Position Vs Time’));
xlabel(’Time [sec]’); ylabel(’Position [rad]’);

grid on

legend(’Joint 1°,’Joint 2’,’Joint 3’,’Location’,’southeast’);

figure(3);

plot(t(1:k0),qd(1,1:k0),’b’,’LineWidth’,2); hold on
plot(t(1:k0),qd(2,1:k0),’r’, ’LineWidth’,2); hold on
plot(t(1:k0),qd(3,1:k0),’k’, ’LineWidth’,2); hold off
title(sprintf (’%s\n/s’,title_add_on,’Joint velocity Vs Time’));
xlabel (’Time [sec]’); ylabel(’Velocity [rad/sec]l’);

grid on

legend(’Joint 1’,’Joint 2’,’Joint 3’,’Location’,’northeast’);

figure(4);

plot(t(1:k0),Xvend(1,:),’b’, ’LineWidth’,2); hold on
plot(t(1:k0),Xvend(2,:),’r’, ’LineWidth’,2); hold on
plot(t(1:k0),Xvend(3,:),’k’,’LineWidth’,2); hold off
title(sprintf(’%s\n/s’,title_add_on, ’End effector X,Y,Z speed’));
xlabel(’Time [sec]’); ylabel(’velocity [meter/sec]’);

grid on

legend(’d(Xe)/dt’,’d(Ye)/dt’,’d(Ze)/dt’, ’Location’,’southeast’);

figure(5);

plot(t(1:k0),Xend(1,:),’b’,’LineWidth’,2); hold on
plot(t(1:k0),Xend(2,:),’r’,’LineWidth’,2); hold on
plot(t(1:k0),Xend(3,:),’k’, ’LineWidth’,2); hold off
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title(sprintf(’%s\nJs’,title_add_on,’End effector X,Y,Z coordinates’));

xlabel(’Time [sec]’); ylabel(’coordinates [meter]’);
grid on
legend(’Xe’,’Ye’,’Ze’,’Location’,’southeast’) ;

figure(6) ;

plot(t(1:k0), sqrt(sum(Xvend."2,1)),’LineWidth’,2);
title(sprintf(’%s\nJs’,title_add_on,’End effector speed’));
xlabel(’Time [sec]’); ylabel(’speed [meter/sec]’);

grid on

figure(7);

plot3(Xend(1,:),Xend(2,:),Xend(3,:),’LineWidth’,2); hold on;
plot3(Xend(1,1),Xend(2,1),Xend(3,1),’r0’);

text (Xend(1,1) ,Xend(2,1) ,Xend(3,1) ,{’initial’,’position’});
plot3(Xend(1,end) ,Xend(2,end) ,Xend(3,end),’ro’);

text (Xend(1,end) ,Xend(2,end) ,Xend(3,end) ,{’final’, ’position’});
title(sprintf (’%s\n)s’,title_add_on,’End effector 3D displacement’));
xlabel (°X’); ylabel(’Y’); zlabel(’Z’);

grid on
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InitializeThreeDOFmodel  OP.m

function modelParameters = InitializeThreeDOFmodel_OP
% set model parameters

% gravitational constant [m/s~2]
g = 9.81;

% link mass [kg]
m = 10;

% link length [m]
L=1;

% link COM location [m]
Lc = L/2;




end
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% link radius [m]
r = 0.1%L;

% link inertia (_|_ to 1link’s CL) [kg/m~2]
Ia (1/12) *m*L."2;
Ib m*r~2;

% assign values of model parameter structure

modelParameters.g = 9.81; J, gravitational constant [m/s~2]
modelParameters.m = m; 7 link mass [kg]

modelParameters.L = L; % link length [m]

modelParameters.Lc = Lc; % link COM location [m]

modelParameters.Ia = Ia; % inertia (_|_ to 1link’s CL) [kg/m~2]
modelParameters.Ib = Ib; % inertia (colinear to link’s CL) [kg/m~2]
modelParameters.controlMethod = 1;

modelParameters.vMax=5; /meter/sec

zDot3dofControls_ OP.m

function [zDot] = zDot3dofControls_0P(z,xDesired,modelParameters)

% assign joint displacements / velocities from state variables

q = 2(1:3);

qd = z(4:end);

xDes = xDesired(1:3);
xdDes = xDesired(4:end);

L = modelParameters.L;

% precalculate sin and cos terms

s1=sin(q(1)); c23=cos(q(2)+q(3)); s23= sin(q(2)+q(3));

c2=cos(q(2)); cl=cos(q(1));

s2=8in(q(2)); c3=cos(q(3)); s3=sin(q(3));

q1=q(1) ;92=q(2) ;93=q(3);

J=zeros(3,3);

J(1,1)=L*sin(ql)*sin(q2)*sin(q3) - L*cos(q2)*cos(g3)*sin(ql) - L*cos(q2)*sin(
J(1,2)=-cos(q1)*(L*(sin(q2) + 1) - L + L*cos(q2)*sin(q3) + L*cos(q3)*sin(q2))
J(1,3)=-cos(ql)*(L*cos(q2)*sin(q3) + L*cos(q3)*sin(q2));
J(2,1)=L*cos(ql)*cos(q2) + Lxcos(ql)*cos(q2)*cos(q3) - L*cos(ql)*sin(q2)*sin(
J(2,2)=-sin(q1) *(L*(sin(q2) + 1) - L + L*cos(q2)*sin(q3) + Lxcos(q3)*sin(q2))
J(2,3)=-sin(ql) *(L*cos(g2)*sin(q3) + L*cos(q3)*sin(q2));

J(3,1)=0;

J(3,2)=cos(ql)*(L*cos(ql)*cos(q2) + L*cos(ql)*cos(q2)*cos(q3) - Lxcos(ql)*sin
J(3,3)=cos(q1)*(L*cos(ql)*cos(q2)*cos(q3) - L*cos(ql)*sin(q2)*sin(q3)) + sin(

%the derivative of the Jacobian was derived in the Three_DOF_symbolic.m

(q2)*sin(q3)
ql)*(L*cos(q

Y%file
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Jd = zeros(3,3);

Jd(1,1)=L*s1*s2%qd(2) - L*cl*c2%qd(1) - L*cl*c2*c3*qd(1) + ..
Lxclxs2*s3*%qd (1) + Lkc2*s1*s3*%qd(2) + L*c3*slxs2xqd(2) + ...
L*c2*s1*s3%qd(3) + L*c3+*s1*s2*qd(3);

Jd(1,2)=s1%qd(1)*(L*(s2 + 1) - L + L*c2*s3 + L*c3*s2) - ...
c1x(L*c2xqd(2) - L*s2*s3xqd(2) - L*s2*s3xqd(3) + ...
L*c2%c3%qd (2) + L*xc2%c3%qd(3));

Jd(1,3)=c1x(L*s2*s3*qd(2) + L*s2*s3xqd(3) - Lxc2*c3*qd(2) - ...
Lxc2xc3*qd(3)) + s1xqd(1)*(L*kc2*s3 + L*c3*s2);

Jd(2,1)=L*s1*s2xs3%qd (1) - L*xcl*s2*qd(2) - L*kc2*c3xslxqd(1) -...
Lxclxc2*s3*%qd(2) - Lkcl*c3*s2%qd(2) - L*cl*c2*s3*qd(3) -...
Lkcl*c3%s2%qd(3) - L¥c2*slxqd(1);

Jd(2,2)=- s1*(L*c2%qd(2) - L*s2%s3*qd(2) - L*s2*s3*qd(3) + ..
L*c2%c3%qd (2) + L*c2%c3%qd(3)) - cl*qd(1)*(L*(s2 + 1) -...

L + L*xc2%*s3 + L*c3*s2);

Jd(2,3)=s1*(L*s2*s3*qd (2) + L*s2*s3*qd(3) - L*kc2*c3*qd(2) - ...
L*c2xc3*qd (3)) - clxqd(1)*(L*c2*s3 + L*c3*s2);

Jd(3,1)=0;

Jd(3,2)=c1xqd (1) *(L*c2*s1l - Lksl*s2*s3 + L*c2*xc3*sl) - ...
s1*(L*s1*s2%qd(2) - Lxcl*kc2*qd(1l) - Lkcl*c2%c3*qd(1) +...
Lkc1xs2xs3%qd (1) + L*c2*s1*s3xqd(2) + Lxc3*sl*s2*%qd(2) +...
Lxc2*s1*s3%qd (3) + L*kc3*s1#s2%qd(3)) - sixkqd(1)*(L*xclxc2 +...
Lkclxc2xc3 - Lxclxs2+s3) - clx(Lxc2+s1*qd(1) + L*kcl*s2xqd(2) +...
Lxc2*c3*s1*qd (1) + Lkclkc2#s3%qd(2) + L*cl*xc3*s2*xqd(2) +...
Lkc1xc2xs3%qd(3) + L*cl*c3*s2xqd(3) - Lxsl*s2*s3*qd(1));

Jd(3,3)=- clx(L*c2*c3*s1*qd(1) + Lxcl*xc2#s3*qd(2) + L*clxc3*s2%qd(2)...
+ Lkcl*kc2xs3%qd(3) + Lxcl*c3*s2*qd(3) - L*kslxs2%s3%qd(1)) - ...
s1*(L*xclxs2*s3*qd (1) - Lkclkc2*c3*qd(1l) + L*c2*slxs3xqd(2) +...
Lxc3*s1*s2%qd(2) + L*c2*s1*s3*%qd(3) + L*c3*sl*s2*qd(3)) -...
s1xqd (1) *(L*¥cl*c2*c3 - Lkcl*s2xs3) - clkqd(1)*(L*sl*s2*s3 -...
Lxc2*c3*s1) ;

% mass matrix calculation
D = Dmatrix_ThreeDOFcontrols_0P(q,modelParameters) ;

% calculate D, B, D, and G matrices

B = Bmatrix_ThreeDOFcontrols(q,modelParameters) ;
C = Cmatrix_ThreeDOFcontrols(q,modelParameters) ;
V = Bx[qd(1)*qd(2) ;qd(1)*qd(3);qd(2)*qd(3)]...
+Cx[qd(1)~2; qd(2)"2; qd(3)~2];

% gravity vector
G = Gvector_ThreeDOFcontrols(q,modelParameters) ;

% evaluate inverese of the Jacobian
[u,s,v] = svd(J);
sInv = eye(size(J));
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for i = 1: size(J,1)
if s(i,i) < .01
sInv(i,i) = 0;
else
sInv(i,i) = 1/s(i,1i);
end
end
Jinv = wvxsInv*u’;

% evaluate operational space terms

LO = Jinv’*D*Jinv;
p = Jinv’*G;
mu = Jinv’*V - LO*Jd*qd;

% op space position and velocity. THis was found in Three_DOF_symbolic.m
x = [ L*cl*c2 + L*xcl*c2*c3 - L*cl*s2*s3;

L*c2*%sl - L*s1*s2*%s3 + L*c2*c3*sl;

L*x(s2 + 1) + L*c2*s3 + L*c3%*s2];
xd = J*qd;

% decoupled system PD-controller torques

wn = 2%2%pi; Jusing 2Hz per HW problem specs
zeta = 1; ‘critical damping, per HW problem specs
Kp = wn"2;

Kd = 2*zetaxwn;

% task-space velocity limiting heuristic
if modelParameters.controlMethod ==
vMax = modelParameters.vMax;
xError = norm(xDes - x);
%xErrorMag = sqrt(xError(1)~2 + xError(2)~2);

KpMax = Kd*vMax/xError; JxErrorMag;
if Kp > KpMax
Kp = KpMax;
end
end

Fprime = -Kd*(xd - xdDes) - Kpx(x - xDes); %PD controller
F = LO*Fprime + p + mu;
tau = J’*F;

%form joint acceleration vector
qdd = D\(tau -V - G);

% assign state variable derivatives
zDot = [qd; qdd];
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