
HW4 ME 739 Introduction to robotics

Spring 2015
Department of Mechanical Engineering

University of Wisconsin, Madison

Instructor: Professor Michael Zinn

By

Nasser M. Abbasi

May 3, 2022

Contents
0.1 Problem 1 . 3
0.2 Problem 2 . 6

0.2.1 First scenario . 8
0.2.2 Second scenario . 16
0.2.3 discussion . 23

0.3 Problem 3 . 24
0.3.1 Part one . 27
0.3.2 Part two . 31

List of Tables

2

3

0.1 Problem 1

ME/ECE 739: Advanced Robotics Homework #4
Due: April 26th (Sunday, 11:59 pm)

Page 1 of 4

Please submit your answers to the questions and all supporting work including your Matlab scripts, and,
where appropriate, program results (plots, explanations). Your Matlab scripts should be readable, with
comments, sensible variable names, indentation of code-block, etc. In addition to the hardcopy (pdf
format), you must also submit your Matlab scripts electronically to the Learn@UW course page dropbox
(e.g. Homework #4) using a zip archive file format. Please name your zip files using your last name and
hw# (e.g. zinn_hw4.zip).

Problem 1 [20 points]

► Write a Matlab function which constructs a quintic polynomial, for the purposes of trajectory
generation, given the following input parameters
 ௙: Final timeݐ ଴: Initial timeݐ
 ௙: Final positionݕ ଴: Initial positionݕ
 ሶ௙: Final velocityݕ ሶ଴: Initial velocityݕ
 ሷ௙: Final accelerationݕ ሷ଴: Initial accelerationݕ

An example function prototype is shown below

 (ሷ௙, nݕ ,ሷ଴ݕ ,ሶ௙ݕ ,ሶ଴ݕ ,௙ݕ ,଴ݕ ,௙ݐ ,଴ݐ)QuinticPolynomial = [ሷݕ ,ሶݕ ,ݕ ,ݐ]

where n is the number of elements in the time vector and output arrays ([ݕ ,ݕሶ, ݕሷ])
 n-dimensional array of trajectory time : ݐ
 n-dimensional array of trajectory position : ݕ
ሶݕ : n-dimensional array of trajectory velocity
ሷݕ : n-dimensional array of trajectory acceleration

► To check your function, create and plot the trajectory for the input parameters given below:
 ௙: 5ݐ ଴: 0ݐ
 ௙: 10ݕ ଴: -10ݕ
 ሶ௙: -50ݕ ሶ଴: -50ݕ
 ሷ௙: 0ݕ ሷ଴: 0ݕ

e.g. [t, y, dy, ddy] = QuinticPolynomial(0,5,-10,10,-50,50,0,0,1000);
 figure; plot(t,y);
 figure; plot(t, dy);
 figure; plot(t, ddy);

Your output plots should like those shown below.

0 1 2 3 4 5

-50

0

50

time

P
os

iti
on

0 1 2 3 4 5
-60

-40

-20

0

20

40

60

time

V
el

oc
ity

0 1 2 3 4 5
-80

-60

-40

-20

0

20

40

60

80

time

A
cc

el
er

at
io

n

Figure 1: Problem 1 description

A Matlab function called QuinticPolynomial was implemented. The following shows the call
made and the three plots generated. The output matched the required output in the problem
statement.

[t,y,dy,dyy] = QuinticPolynomial(0,5,-10,10,-50,-50,0,0,1000);
figure;
plot(t,y);
title(’HW4, problem1, y(t) solution’)

figure;
plot(t,dy);
title(’HW4, problem1, dy(t) solution’)

figure;
plot(t,dyy);
title(’HW4, problem1, ddy(t) solution’)

4

0 1 2 3 4 5
-50

-40

-30

-20

-10

0

10

20

30

40

50
HW4, problem1, y(t) solution

0 1 2 3 4 5
-60

-40

-20

0

20

40

60
HW4, problem1, dy(t) solution

0 1 2 3 4 5
-80

-60

-40

-20

0

20

40

60

80
HW4, problem1, ddy(t) solution

Figure 2: Problem 1 plots

5

The following is the Matlab source code listings of the above function.� �
function [t,y,dy,ddy] = QuinticPolynomial(t0,tf,y0,yf,dy0,dyf,ddy0,ddyf,n)
%function QuinticPolynomial to solve trajectory generation using quintic
%polynomial method
%ME 739, UW Madison, Spring 2015
%by Nasser M. Abbasi

%INPUT:
%t0 : initial time
%tf : end time
%y0 : initial position
%yf : final position
%dy0 : initial speed
%dyf : final speed
%ddy0 : initial acceleration
%ddyf : final acceleration
%n : number of samples
%
%OUTPUT
%t : time vector
%y : position vector
%dy : speed vector
%ddy : acceleration vector

syms t a0 a1 a2 a3 a4 a5;
%set up the polynomial
y = a0+a1*t+a2*t^2+a3*t^3+a4*t^4+a5*t^5;
dy = diff(y,t);
ddy = diff(dy,t);

%setup the 6 contraints
eq1 = subs(y,t,t0)==y0;
eq2 = subs(y,t,tf)==yf;
eq3 = subs(dy,t,t0)==dy0;
eq4 = subs(dy,t,tf)==dyf;
eq5 = subs(ddy,t,t0)==ddy0;
eq6 = subs(ddy,t,tf)==ddyf;

%solve for the unknowns
[a0,a1,a2,a3,a4,a5]=solve(eq1,eq2,eq3,eq4,eq5,eq6);

%set up time vector
t = linspace(t0,tf,n);

%use subs to replace all unknowns and time in the polynomials
y = double(subs(y));
dy = double(subs(dy));
ddy = double(subs(ddy));
end� �

6

0.2 Problem 2

7
ME/ECE 739: Advanced Robotics Homework #4
Due: April 26th (Sunday, 11:59 pm)

Page 2 of 4

Problem 2. [40 points]

You are to generate the motion trajectory for the three degree of freedom manipulator shown in the above
figure such that the manipulator's task frame (origin) moves between the four points that describe a square
in space (see Figure). The forward and inverse kinematics are given below.

Forward kinematics: Inverse kinematics:

 
 

3 2

3 2

1

cos

sin

e

e

e

x q q

y q q

z q







  
1

1
2

2 2
3

tan

e

e e

e e

q z

q y x

q x y







 

For reference, the homogeneous transformations between the successive link frames (defined in the figure
above) are given below. These may be useful when animating your results in Problem 3.

 0
1

1

1 0 0 0

0 1 0 0

0 0 1

0 0 0 1

T
q

 
 
   
 
  

;

2 2

2 21
2

0 0

0 0

0 1 0 0

0 0 0 1

s c

c s
T

 
 
   
 
  

; 2

3

0 1 0 0

0 0 1 0

1 0 0

0 0 0 1

eT
q

 
 
   
 
  

Overview of 3-DOF manipulator

z0

y0 x0

q2

q2

q3

q1

task
frame

ze

ye xez1, y2

x2

x1

link 1

link 2

link 3

z2y1

q1
L

L

ye xe

task
displacement
(x, y, z)

ze

2

X2

4L

LX1

3

4

trajectory

X3

X4

1

z0y0
x0

yoffset

zoffset

xoffset

center

L = 4.0

Task-space trajectory (rectangular)

xoffset = 0.0

zoffset = 2L

yoffset = 2L

revised

ME/ECE 739: Advanced Robotics Homework #4
Due: April 26th (Sunday, 11:59 pm)

Page 3 of 4

Problem 2. continued

Scenario 1: Joint-space trajectory generation

► Calculate the joint space displacements that correspond to the given task-space waypoints

1 2 3 4, , , andX X X X  
   

 (using the inverse kinematics). The task space Cartesian coordinates for

each waypoint can be determined from the adjacent figure.

► Generate the four part trajectory, moving from waypoint 1 to 2, 2 to 3, 3 to 4, and 4 to 1. The time
required to move between successive waypoint is 5 seconds. Generate the trajectory in joint-space,
using the joint-space displacements calculated above. The trajectories should follow a quintic
polynomial. At each waypoint, the joint-space velocity and acceleration should equal zero.

► Plot your results to include:

 Joint space displacements as a function of time.
 Task space displacements as a function of time (using the forward kinematics to calculate the task

space displacements).
 Task space displacements in 3-D space (using the Matlab plot3 command).

Scenario 2: Task-space trajectory generation

► Generate the four part trajectory, moving from waypoint 1 to 2, 2 to 3, 3 to 4, and 4 to 1. The time
required to move between successive waypoint is 5 seconds. Generate the trajectory in task-space,
using the given task-space waypoints. The trajectories should follow a quintic polynomial. At each
waypoint, the task-space velocity and acceleration should equal zero.

► Plot your results to include:

 Joint space displacements as a function of time (using the inverse kinematics to calculate the
joint-space displacements).

 Task space displacements as a function of time.
 Task space displacements in 3-D space (using the Matlab plot3 command).

► Comment on the differences between the two approaches (advantages and disadvantages).

Figure 3: Problem 2 description

8

The following 2D diagram illustrates the task space trajectory which is the path that the end
effector will travel over.

L

2
L

Ground level

End
effector

1

34

z0

z offset
L

L/
2

4L

L

2

q1

q3

problem_2_geometry.vsdx
Nasser M. Abbasi

4/16/2015

Figure 4: Problem 2 task path

0.2.1 First scenario

PART ONE:

The waypoints have the following coordinate values by inspection from the above diagram

X1 = {−2L, 2L, 2.5L}
X2 = {2L, 2L, 2.5L}
X3 = {2L, 2L, 1.5L}
X4 = {−2L, 2L, 1.5L}

Inverse kinematics was used to determine the joint space displacements that corresponds to the
above task space. For X1 this results in

q1 = ze = 2.5L

q2 = tan−1
(
ye
xe

)
= tan−1

(2L
−2L

)
= 1350

q3 =
√
x2e + y2e =

√
4L2 + 4L2 = 2L

√
2

For X2

q1 = ze = 2.5L

q2 = tan−1
(
ye
xe

)
= tan−1

(2L
2L

)
= 450

q3 =
√
x2e + y2e =

√
4L2 + 4L2 = 2L

√
2

9

For X3

q1 = ze = 1.5L

q2 = tan−1
(
ye
xe

)
= tan−1

(2L
2L

)
= 450

q3 =
√
x2e + y2e =

√
4L2 + 4L2 = 2L

√
2

And for X4

q1 = ze = 1.5L

q2 = tan−1
(
ye
xe

)
= tan−1

(2L
−2L

)
= 1350

q3 =
√
x2e + y2e =

√
4L2 + 4L2 = 2L

√
2

PART TWO

The trajectory in joint space is now generated. The joint space coordinates was found above and
illustrated in the following diagram

L

2
L

Ground level

End
effector

1

34

z0

z offset

L

L/
2

4L

L

2

q1

q3

problem_2_geometry_joint_space.vsdx
Nasser M. Abbasi

4/16/2015

q1  2.5L

q2  1350

q3  2 2 L

q1  2.5L

q2  450

q3  2 2 L

q1  1.5L

q2  450

q3  2 2 L

q1  1.5L

q2  1350

q3  2 2 L

t  0 t  5sec

t  10sect  15sec

Figure 5: Problem 2 task path expressed in joint coordinates

A quintic polynomial was used with the restriction that at each waypoint q̇ = 0 and also q̈ = 0.

The above was done for each joint space path between two points. There are 3 joints. For each
joint the full path was generated. For example, for joint q1, the polynomial between X1 and X2
was found by solving 6 equations in 6 unknowns. The polynomial is defined as

q (t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5

10

The 6 equations are

q (t0) = a0 + a1t0 + a2t
2
0 + a3t

3
0 + a4t

4
0 + a5t

5
0 = 2.5L

q̇ (t0) = a1 + 2a2t0 + 3a3t20 + 4a4t30 + 5a5t40 = 0
q̈ (t0) = 2a2 + 6a3t0 + 12a4t20 + 20a5t30 = 0
q (tf) = a0 + a1tf + a2t

2
f + a3t

3
f + a4t

4
f + a5t

5
f = 2.5L

q̇ (tf) = a1 + 2a2tf + 3a3t2f + 4a4t3f + 5a5t4f = 0
q̈ (tf) = 2a2 + 6a3tf + 12a4t2f + 20a5t3f = 0

Where t0 = 0 and tf = 5. The above 6 equations are solved for a0, a1, a2, a3, a4, a5 which now gives
the polynomial q (t) in order to obtain the joint coordinate at any time 0 < t < 5.



1 t0 t20 t30 t40 t50

0 1 2t0 3t20 4t30 5t40
0 0 2 6t0 12t20 20t30
1 tf t2f t3f t4f t5f

0 1 2tf 3t2f 4t30 5t4f
0 0 2 6tf 12t2f 20t3f





a0
a1
a2
a3
a4
a5


=



q (t0)
q̇ (t0)
q̈ (t0)
q (tf)
q̇ (tf)
q̈ (tf)


=



2.5L
0
0

2.5L
0
0



Similarly, these 6 equations are solved for the next segment between X2, X3

q (t0) = a0 + a1t0 + a2t
2
0 + a3t

3
0 + a4t

4
0 + a5t

5
0 = 2.5L

q̇ (t0) = a1 + 2a2t0 + 3a3t20 + 4a4t30 + 5a5t40 = 0
q̈ (t0) = 2a2 + 6a3t0 + 12a4t20 + 20a5t30 = 0
q (tf) = a0 + a1tf + a2t

2
f + a3t

3
f + a4t

4
f + a5t

5
f = 1.5L

q̇ (tf) = a1 + 2a2tf + 3a3t2f + 4a4t3f + 5a5t4f = 0
q̈ (tf) = 2a2 + 6a3tf + 12a4t2f + 20a5t3f = 0

Where in the above t0 = 5 and tf = 10.

The above was done for all the segments. The same process was repeated for joints q2 and q3.

A Matlab program listed below was written to implement the above. The result generated is given
below the source code listing.� �
function nma_HW4_problem_2_part1()
%nma_HW4_problem_2_part1()
%This function implements problem 2, HW 4, ME 739, scenario ONE
%by Nasser M. Abbasi
%
close all;

L=4;
%generate the joint space (q) displacements, velocity and acceleration
%the value of q_1 at each X1,X2,X3,X4 have been determined from the
%inverse kinmatics as shown in the HW report above. These are now used

11

%to generate the polynomial

%generate polynomial for q1 trajectory and position, speed and acc. plots
figure;
[t1,q1]=process_q(2.5*L,2.5*L,1.5*L,1.5*L,’q1’,1.4*L,2.6*L,...

’meter’,’m/s’,’m/s^2’);

%generate polynomial for q2 trajectory and position, speed and acc. plots
figure;
[t2,q2]=process_q(135*pi/180,45*pi/180,45*pi/180,135*pi/180,...

’q2’,40*pi/180,155*pi/180,’angle(rad)’,’rad/sec’,’rad/sec^2’);

%generate polynomial for q3 trajectory and position, speed and acc. plots
figure;
z=2*L*sqrt(2);
[t3,q3]=process_q(z,z,z,z,’q3’,0,1.2*2*L*sqrt(2),’meter’,’m/s’,’m/s^2’);

%generate the task space X displacement using the forward kinematics
xe = q3.*cos(q2);
ye = q3.*sin(q2);
ze = q1;

%generate task space displacements
figure;
h1 = subplot(3,1,1);
plot(t1,xe);
title(h1,{’Task space displacements’,’Xe’});
xlabel(h1,’time (sec)’);
ylabel(h1,’meter’);
axis(h1,[0 20 -2.2*L 2.2*L]);

h2 = subplot(3,1,2);
plot(t2,ye);
title(h2,’Ye’);
xlabel(h2,’time (sec)’);
ylabel(h2,’meter’);
axis(h2,[0 20 1.8*L 3*L]);

h3 = subplot(3,1,3);
plot(t3,ze);
title(h3,’Ze’);
xlabel(h3,’time (sec)’);
ylabel(h3,’meter’);
axis(h3,[0 20 1.4*L 2.6*L]);

%generate 3D plot of the task space trajectory
figure;
plot3(xe,ye,ze);
hold on;
plot3(-2*L,2*L,2.5*L,’o’);
text(-2*L,2*L,2.5*L,’X1’);

plot3(2*L,2*L,2.5*L,’o’);
text(2*L,2*L,2.5*L,’X2’);

12

plot3(2*L,2*L,1.5*L,’o’);
text(2*L,2*L,1.5*L,’X3’);

plot3(-2*L,2*L,1.5*L,’o’);
text(-2*L,2*L,1.5*L,’X4’);

plot3(0,2*L,2*L,’+’);
text(.1*L,2*L,2.1*L,’center’);

title(’3D task space displacement’);
xlabel(’X’); ylabel(’Y’); zlabel(’Z’);
zlim([0 3*L]);

end
%-----------------------
function [t,q]=process_q(x1,x2,x3,x4,the_name,lim0,lim1,y1,y2,y3)
%
%Function to generate joint space trajectory for problem 2 for specific
%joint q
%x1: first point coordinate in this joint space
%x2: second point coordinate in this joint space
%x3: third point coordinate in this joint space
%x4: fourth point coordinate in this joint space
%the_name: title to put on the plot, for example ’q1’ or ’q2’ etc..
%lim0 and lim1 are the y-axis limits to use for the plot
%y1: position y label
%y2: speed y label
%y3: acceleration y label

%RETURNS
%q: which is vector of q joint coordinates in joint space over
%the full time space to be used later to generate the task space
%trajectory using forward kinemetics
%
%t: the corresponding time vector

%call gen_path to obtain the polynomial coefficients
a = gen_path(x1,x2,0,5);
[q1,dq,ddq,t1] = find_q(0,5,a); %use the coefficients to make polynomials
[h1,h2,h3] = make_first_plot(t1,q1,dq,ddq);

title(h1,{the_name,’position’});
title(h2,’velocity’);
title(h3,’acceleration’);
xlabel(h1,’time (sec)’); ylabel(h1,y1);
xlabel(h2,’time (sec)’); ylabel(h2,y2);
xlabel(h3,’time (sec)’); ylabel(h3,y3);

a = gen_path(x2,x3,5,10);
[q2,dq,ddq,t2] = find_q(5,10,a);
make_other_plot(t2,q2,dq,ddq,h1,h2,h3);

13

a = gen_path(x3,x4,10,15);
[q3,dq,ddq,t3] = find_q(10,15,a);
make_other_plot(t3,q3,dq,ddq,h1,h2,h3);

a = gen_path(x4,x1,15,20);
[q4,dq,ddq,t4] = find_q(15,20,a);
make_other_plot(t4,q4,dq,ddq,h1,h2,h3);

axis(h1,[0 20 lim0 lim1]);
q=[q1 q2 q3 q4];
t=[t1 t2 t3 t4];
end

%--
function a = gen_path(q0,qf,t0,tf)
%this function generates the polynomial coefficients by solving for the
%constraints given

dq0 = 0;
dqf = 0;
ddq0 = 0;
ddqf = 0;

C = [1 t0 t0^2 t0^3 t0^4 t0^5;
0 1 2*t0 3*t0^2 4*t0^3 5*t0^4;
0 0 2 6*t0 12*t0^2 20*t0^3;
1 tf tf^2 tf^3 tf^4 tf^5;
0 1 2*tf 3*tf^2 4*tf^3 5*tf^4;
0 0 2 6*tf 12*tf^2 20*tf^3];

q = [q0 dq0 ddq0 qf dqf ddqf]’;
a = C\q;

end

%---
function [q,dq,ddq,t]=find_q(t0,tf,a)
%This function takes the coefficients of the polynomial and
%return back the polynomials for position, speed and acceleration
a0 = a(1); a1 = a(2); a2 = a(3); a3 = a(4); a4 = a(5); a5 = a(6);
t = linspace(t0,tf,1000);
q = a0 + a1*t + a2*t.^2 + a3*t.^3 + a4*t.^4 + a5*t.^5;
dq = a1 + 2*a2*t + 3*a3*t.^2 + 4*a4*t.^3 + 5*a5*t.^4;
ddq = 2*a2 + 6*a3*t + 12*a4*t.^2 + 20*a5*t.^3;

end

%---
function [h1,h2,h3]=make_first_plot(t,q,dq,ddq)
%this function plots the position in joint space
h1 = subplot(3,1,1);
plot(t,q)

h2 = subplot(3,1,2);

14

plot(t,dq);

h3 = subplot(3,1,3);
plot(t,ddq);
end

%--
function make_other_plot(t,q,dq,ddq,h1,h2,h3)
%this function plots the speed and acceleration trajetory in joint space
hold(h1,’on’);
subplot(3,1,1);
plot(t,q);
plot(t(1),q(1),’o’);

hold(h2,’on’);
subplot(3,1,2);
plot(t,dq);
plot(t(1),dq(1),’o’);

hold(h3,’on’);
subplot(3,1,3);
plot(t,ddq);
plot(t(1),ddq(1),’o’);
end� �

time (sec)
0 5 10 15 20

m
et

er

6

8

10

q1
position

time (sec)
0 5 10 15 20

m
/s

-2

0

2
velocity

time (sec)
0 5 10 15 20

m
/s

2

-1

0

1
acceleration

Figure 6: Problem 2, part 1, q1 joint space trajectory

15

time (sec)
0 5 10 15 20

an
gl

e(
ra

d)

1
1.5

2
2.5

q2
position

time (sec)
0 5 10 15 20

ra
d/

se
c

-1

0

1
velocity

time (sec)
0 5 10 15 20

ra
d/

se
c2

-0.5

0

0.5
acceleration

Figure 7: Problem 2, part 1, q2 joint space trajectory

time (sec)
0 5 10 15 20

m
et

er

0

5

10

q3
position

time (sec)
0 5 10 15 20

m
/s

-1

0

1
velocity

time (sec)
0 5 10 15 20

m
/s

2

-1

0

1
acceleration

Figure 8: Problem 2, part 1, task space xe, ye, ze trajectory

16

10

X2

X3

center

X

0

-10

X4

X1

3D task space displacement

89

Y

101112

8

10

12

2

0

6

4

Z

Figure 9: Problem 2, part 1, 3D plot of task space trajectory

0.2.2 Second scenario

The four part trajectory was generated again, using the same constraints as in first scenario, but
now the polynomial was generated in task space as required for this part. The polynomial between
waypoint X1 and X2 was found by solving 6 equations in 6 unknowns. The polynomial is defined
for each coordinate xe, ye, ze. For example, for xe

xe (t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5

The 6 equations are

xe (t0) = a0 + a1t0 + a2t
2
0 + a3t

3
0 + a4t

4
0 + a5t

5
0 = 2.5L

ẋe (t0) = a1 + 2a2t0 + 3a3t20 + 4a4t30 + 5a5t40 = 0
ẍe (t0) = 2a2 + 6a3t0 + 12a4t20 + 20a5t30 = 0
xe (tf) = a0 + a1tf + a2t

2
f + a3t

3
f + a4t

4
f + a5t

5
f = 2.5L

ẋe (tf) = a1 + 2a2tf + 3a3t2f + 4a4t3f + 5a5t4f = 0
ẍe (tf) = 2a2 + 6a3tf + 12a4t2f + 20a5t3f = 0

Where t0 = 0 and tf = 5. The above 6 equations are solved for a0, a1, a2, a3, a4, a5 which gives the
polynomial xe (t) used obtain the joint coordinate at any time 0 < t < 5.

1 t0 t20 t30 t40 t50

0 1 2t0 3t20 4t30 5t40
0 0 2 6t0 12t20 20t30
1 tf t2f t3f t4f t5f

0 1 2tf 3t2f 4t30 5t4f
0 0 2 6tf 12t2f 20t3f





a0
a1
a2
a3
a4
a5


=



xe (t0)
ẋe (t0)
ẍe (t0)
xe (tf)
ẋe (tf)
ẍe (tf)


=



2.5L
0
0

2.5L
0
0



17

Similarly, these 6 equations were solved for the next segment between waypoint X2, X3. The same
process was repeated for ye and ze.

The following gives the new Matlab implementation with the plots generated. Discussion on
differences between the two approaches is given at the end.� �
function nma_HW4_problem_2_part2()
%nma_HW4_problem_2_part2()
%This function implements problem 2, HW 4, ME 739, scenario TWO
%by Nasser M. Abbasi
%
close all;

L=4;
%generate the task space (X,Y,Z) displacements, velocity and acceleration
%the value of x,y,z at each X1,X2,X3,X4 are given in the problem from
%the diagram shown.

%generate polynomial for x-coodinate of each X waypoint trajectory
figure;
[t1,x_coordinate]=process_X(-2*L,2*L,2*L,-2*L,’x’,-2.6*L,2.6*L,...

’meter’,’m/s’,’m/s^2’);

%generate polynomial for y-coordinate of each X waypoint trajectory
figure;
[t2,y_coordinate]=process_X(2*L,2*L,2*L,2*L,...

’y’,1.9*L,2.1*L,’meter’,’m/sec’,’m/sec^2’);

%generate polynomial for z-coordinate of each X waypoint trajectory
figure;
[t3,z_coordinate]=process_X(2.5*L,2.5*L,1.5*L,1.5*L,’z’,1.4*L,2.6*L,...

’meter’,’m/s’,’m/s^2’);

%generate the corresponding joint space q displacement, speed and
%acceleration from the above using forward kinematics
q1 = z_coordinate;
q2 = atan2(y_coordinate,x_coordinate);
q3 = sqrt(x_coordinate.^2+y_coordinate.^2);

%generate joint space displacements
figure;
h1 = subplot(3,1,1);
plot(t1,q1);
title(h1,{’Joint space displacements’,’q1’});
xlabel(h1,’time (sec)’);
ylabel(h1,’meter’);
axis(h1,[0 20 0.9*L 2.8*L]);

h2 = subplot(3,1,2);
plot(t2,q2);
title(h2,’q2’);
xlabel(h2,’time (sec)’);
ylabel(h2,’radian’);
axis(h2,[0 20 30*pi/180 140*pi/180]);

18

h3 = subplot(3,1,3);
plot(t3,q3);
title(h3,’q3’);
xlabel(h3,’time (sec)’);
ylabel(h3,’meter’);
axis(h3,[0 20 1.9*L 2.9*L]);

%generate 3D plot of the task space trajectory
figure;
plot3(x_coordinate,y_coordinate,z_coordinate);
hold on;
plot3(-2*L,2*L,2.5*L,’o’);
text(-2*L,2*L,2.5*L,’X1’);

plot3(2*L,2*L,2.5*L,’o’);
text(2*L,2*L,2.5*L,’X2’);

plot3(2*L,2*L,1.5*L,’o’);
text(2*L,2*L,1.5*L,’X3’);

plot3(-2*L,2*L,1.5*L,’o’);
text(-2*L,2*L,1.5*L,’X4’);

plot3(0,2*L,2*L,’+’);
text(.1*L,2*L,1.6*L,’center’);

title(’3D task space displacement’);
xlabel(’X’); ylabel(’Y’); zlabel(’Z’);
zlim([0 3*L]);

end
%-----------------------
function [t,x]=process_X(x1,x2,x3,x4,the_name,lim0,lim1,y1,y2,y3)
%
%Function to generate task space trajectory for problem 2
%x1: first point coordinate in this task space
%x2: second point coordinate in this task space
%x3: third point coordinate in this task space
%x4: fourth point coordinate in this task space
%the_name: title to put on the plot, for example ’x’ or ’y’ or ’z’
%lim0 and lim1 are the y-axis limits to use for the plot
%y1: position y label
%y2: speed y label
%y3: acceleration y label

%RETURNS
%q: which is vector of q joint coordinates in joint space over
%the full time space to be used later to generate the task space
%trajectory using forward kinemetics
%
%t: the corresponding time vector

%call gen_path to obtain the polynomial coefficients

19

a = gen_path(x1,x2,0,5);
[x_segment_1,dx,ddx,t1] = find_x(0,5,a); %use the coefficients to make polynomials
[h1,h2,h3] = make_first_plot(t1,x_segment_1,dx,ddx);

title(h1,{the_name,’position’});
title(h2,’velocity’);
title(h3,’acceleration’);
xlabel(h1,’time (sec)’); ylabel(h1,y1);
xlabel(h2,’time (sec)’); ylabel(h2,y2);
xlabel(h3,’time (sec)’); ylabel(h3,y3);

a = gen_path(x2,x3,5,10);
[x_segment_2,dx,ddx,t2] = find_x(5,10,a);
make_other_plot(t2,x_segment_2,dx,ddx,h1,h2,h3);

a = gen_path(x3,x4,10,15);
[x_segment_3,dx,ddx,t3] = find_x(10,15,a);
make_other_plot(t3,x_segment_3,dx,ddx,h1,h2,h3);

a = gen_path(x4,x1,15,20);
[x_segment_4,dx,ddx,t4] = find_x(15,20,a);
make_other_plot(t4,x_segment_4,dx,ddx,h1,h2,h3);

axis(h1,[0 20 lim0 lim1]);
x=[x_segment_1 x_segment_2 x_segment_3 x_segment_4];
t=[t1 t2 t3 t4];
end

%--
function a = gen_path(x0,xf,t0,tf)
%this function generates the polynomial coefficients by solving for the
%constraints given

dx0 = 0;
dxf = 0;
ddx0 = 0;
ddxf = 0;

C = [1 t0 t0^2 t0^3 t0^4 t0^5;
0 1 2*t0 3*t0^2 4*t0^3 5*t0^4;
0 0 2 6*t0 12*t0^2 20*t0^3;
1 tf tf^2 tf^3 tf^4 tf^5;
0 1 2*tf 3*tf^2 4*tf^3 5*tf^4;
0 0 2 6*tf 12*tf^2 20*tf^3];

x = [x0 dx0 ddx0 xf dxf ddxf]’;
a = C\x;

end

%---
function [x,dx,ddx,t]=find_x(t0,tf,a)
%This function takes the coefficients of the polynomial and

20

%return back the polynomials for position, speed and acceleration
a0 = a(1); a1 = a(2); a2 = a(3); a3 = a(4); a4 = a(5); a5 = a(6);
t = linspace(t0,tf,1000);
x = a0 + a1*t + a2*t.^2 + a3*t.^3 + a4*t.^4 + a5*t.^5;
dx = a1 + 2*a2*t + 3*a3*t.^2 + 4*a4*t.^3 + 5*a5*t.^4;
ddx = 2*a2 + 6*a3*t + 12*a4*t.^2 + 20*a5*t.^3;

end

%---
function [h1,h2,h3]=make_first_plot(t,x,dx,ddx)
%this function plots the position in task space
h1 = subplot(3,1,1);
plot(t,x)

h2 = subplot(3,1,2);
plot(t,dx);

h3 = subplot(3,1,3);
plot(t,ddx);
end

%--
function make_other_plot(t,x,dx,ddx,h1,h2,h3)
%this function plots the speed and acceleration trajetory in task space
hold(h1,’on’);
subplot(3,1,1);
plot(t,x);
plot(t(1),x(1),’o’);

hold(h2,’on’);
subplot(3,1,2);
plot(t,dx);
plot(t(1),dx(1),’o’);

hold(h3,’on’);
subplot(3,1,3);
plot(t,ddx);
plot(t(1),ddx(1),’o’);
end� �

21

time (sec)
0 5 10 15 20

m
et

er

-10

0

10

x
position

time (sec)
0 5 10 15 20

m
/s

-10

0

10
velocity

time (sec)
0 5 10 15 20

m
/s

2

-5

0

5
acceleration

Figure 10: Problem 2, part 2, xe task space trajectory

time (sec)
0 5 10 15 20

m
et

er

7.6

8

8.4

y
position

time (sec)
0 5 10 15 20

m
/s

ec

-1

0

1
velocity

time (sec)
0 5 10 15 20

m
/s

ec
2

-1

0

1
acceleration

Figure 11: Problem 2, part 2, ye task space trajectory

22

time (sec)
0 5 10 15 20

m
et

er

6

8

10

z
position

time (sec)
0 5 10 15 20

m
/s

-2

0

2
velocity

time (sec)
0 5 10 15 20

m
/s

2

-1

0

1
acceleration

Figure 12: Problem 2, part 2, ze task space trajectory

10
5

X2

X3

0

3D task space displacement

X
-5

center

-107

X1

X4

7.5

Y

8

8.5

0

2

4

6

8

10

12

9

Z

Figure 13: Problem 2, part 2, 3D plot of task space trajectory

23

0.2.3 discussion

The following diagram gives an overview of the difference of the algorithm used for first and second
scenarios.

xet
yet
zet

xet
yet
zet

q1

q2

q3

q1t
q2t
q3t

Scenario one

X1

X2

X3

X4

Inverse kinematics
applied to each way
point

Joint space
coordinate at
each way point

Generate quintic
trajectory
polynomial
between each way
point in joint space

Plot joint space
trajectories

Convert back to
task space using
forward kinematics

Plot 3D task
space
trajectory

q1t
q2t
q3t

Scenario two

X1

X2

X3

X4

Generate quintic
trajectory
polynomial
between each way
point in task space

Plot joint space
trajectories

Plot 3D task
space
trajectory

Convert to joint
space trajectory
using inverse
kinematics

Problem_2_final.vsdx
Nasser M. Abbasi

042315

Figure 14: Problem 2 algorithm difference scenario one and two

There are two main differences observed between the two methods.

1. In the first scenario, joint space trajectories q1(t) and q2(t) were the same as in the second
scenario, but q3(t) was not the same.

In first scenario, q3(t) was constant with value 2
√
2 L for the whole path. This is becuase

at each way point q3 had the same value 2
√
2 L, therefore the polynomial generated was

straight line connecting all the way points. In second scenario, q3(t) was not constant, since
q3(t) =

√
xe(t)2 + ye(t)2 and xe(t) polynomial was not constant (even though ye(t) was

constant over the whole path).

2. In the first scenario, ye(t) was generated by inverse kinematics using ye(t) = q3(t) sin(q2(t))
and even though q3(t) was constant, q2(t) was not. Hence the path along the y direction is
task space was changing as can be seen from the above plot. In the second scenario, since
the y was fixed at each way point, the trajectory generated in task space shows that y(t) is
not changing. This is why the 3D plot for the second scenario do not show the same curved
path in the y dimension as in the first scenario.

24

The result from first scenario seems to be more realistic 3D task space path that the robot arm
end effector would take. Computationally, there is little difference between the two scenarios.

0.3 Problem 3ME/ECE 739: Advanced Robotics Homework #4
Due: April 26th (Sunday, 11:59 pm)

Page 4 of 4

Problem 3. [40 points]

For the manipulator described in Problem 2

► Use a parabolic well potential to define an attractive field applied to the origin of frame {e}. Use
Matlab to implement a gradient descent algorithm to find a path from the specified initial
configuration to the specified final configuration given below.
Initial configuration:  0 0

T
q L L

Final configuration:  1
22 2

T

fq L L

► Animate your results using the Matlab rendering functions posted to the Learn@UW course page.

In general, you can vary i (the scaling factor applied to the attractive force, fi) to modify the resulting
path. In this case, the forces are applied at only one point so there is only one value of . You can also
vary the gradient descent scaling factor, . Larger values of  can speed up the gradient descent
algorithm, but can also cause numerical instabilities in the solution. In addition, you can use different
values of  (i for joint i) to scale the joint torques and thus modify the path solution.

 Gradient descent:

 1

1

k
f

k k

while q q

q q U

k k






  

   


 

 where
 
 

k

k

q
U

q





  and

1 0

0 n






 
   
  



► Vary i and comment on the resulting solution behavior (both in regards to the shape of the path and
the numerical stability of the solution.

Figure 15: Problem 3 description

In this problem we need to determine only the attractive virtual force on origin of end effector
frame {e}. The repulsive forces are not involved. The attractive virtual forces are approximated
with a parabolic well potential. We have only one location where the force is applied to (which is
the origin of frame {e}, which is the end effector). The first step is to determine the virtual force
from the gradient of the parabolic potential field given by

Fe = −∇Ue

= −ζ (oe (qcurrent)− oe (qf))

Where in the above oe (q) is the position vector of the origin of frame {e} at current configuration
q and oe (qf) is position vector of the origin of frame {e} at final configuration qf . Hence oe (qf)
is constant position vector and only oe (q) will change as the robot arm moves.

We are given the final configuration as qf =
[
2L, π2 , 2L

]T , and we now use this to obtain oe (qf).
We first need to obtain T 0

e which we obtained forward kinematics given in problem 2. Hence

25

T 0
e = T 0

1 T
1
2 T

2
e

=


1 0 0 0
0 1 0 0
0 0 1 q1
0 0 0 1



− sin q2 0 cos q2 0
cos q2 0 sin q2 0
0 1 0 0
0 0 0 1



0 1 0 0
0 0 1 0
1 0 0 q3
0 0 0 1



=


cos q2 − sin q2 0 q3 cos q2
sin q2 cos q2 0 q3 sin q2
0 0 1 q1
0 0 0 1


Therefore, oe (q) from the above is the last column. Hence

oe (qcurrent) =

q3 cos q2q3 sin q2
q1


We now replace the values of q1, q2, q3 in the above, with the final configuration values given

oe (qfinal) =


2L cos π

2
2L sin π

2
2L

 =

 0
2L
2L


And the initial configuration (at time t = 0) is

oe (qinitial) =

L cos 0
L sin 0

L

 =

L0
L


Using the above, we need determine the virtual force Fe

Fe = −∇Ue

= −ζe (oe (qcurrent)− oe (qf))

= −ζe


q3 cos q2q3 sin q2

q1

−

 0
2L
2L




= −ζe


q3 cos (q2)

q3 sin q2 − 2L
q1 − 2L


In the above, all the qi variables are the current joint variables at the current time. In simulation,
there will change with time. Now that we found the virtual force, we convert it to joint toque
using the linear velocity Jacobian. We obtain Jve by direct differentiation method

26

Jve =


∂x
∂q1

∂x
∂q2

∂x
∂q3

∂y
∂q1

∂y
∂q2

∂y
∂q3

∂z
∂q1

∂z
∂q2

∂z
∂q3


From problem 2, we are given that

xe = q3 cos q2
ye = q3 sin q2
ze = q1

Hence Jve becomes

Jve =


∂ q3 cos q2

∂q1
∂ q3 cos q2

∂q2
∂ q3 cos q2

∂q3

∂ q3 sin q2
∂q1

∂ q3 sin q2
∂q2

∂ q3 sin q2
∂q3

∂q1
∂q1

∂q1
∂q2

∂q1
∂q3

 =

0 −q3 sin q2 cos q2
0 q3 cos q2 sin q2
1 0 0



Therefore, using the duality relation that τ =
∑

JT
viFi and since we have forces on one joint only,

this simplifies to τ = JT
veFe

ø = −ζe

0 −q3 sin q2 cos q2
0 q3 cos q2 sin q2
1 0 0


T


q3 cos (q2)
q3 sin q2 − 2L

q1 − 2L



= −ζe


q1 − 2L

q3 (cos q2) (q3 sin q2 − 2L)− q23 cos q2 sin q2
q3 cos2 q2 + (sin q2) (q3 sin q2 − 2L)

 (1)

The above is the actual torque/force applied at the joints 1,2 and 3. Therefore, the force applied
to joint 1 is q1− 2L and the torque to apply to joint 2 is q3 (cos q2) (q3 sin q2 − 2L)− q23 cos q2 sin q2
and the force to apply to end effector joint is q3 cos2 q2 + (sin q2) (q3 sin q2 − 2L) .

For example, at initial configuration, where qinitial = [L, 0, L]T we find

øinitial = −ζe

 −L

−2Lq3
L


And at final configuration where qfinal = qf =

[
2L, π2 , 2L

]Twe find

øinitial = −ζe

00
0



27

Which is what we would expect. At the final configuration, the applied forces at the joints should
vanish since we have arrived at the final configuration.

Now that we have equation (1), we can use it to implement the gradient descent algorithm in
order to obtain the sequence of qi positions to use for the animation.

0.3.1 Part one

In this part, a single α value was used for all the joints. This value was changed in order to observe
the affect. In second part below, different α for each joint will be used.

In this part, and in all runs, ζ was set to 100. This is the attractive force scaling value.

Below is the source code written to implement this part of the problem. The following diagram
shows the initial configuration for one example run.

step = 1, position=[4.00,0.00,4.00], alpha=0.015, epsilon=0.005

5

0

x
-5

-5
y

0

5

0

2

4

6

8

10

z

Figure 16: Initial configuration, problem 3

And the following diagram shows the final configuration reached. It shows that it took 535 steps
to reach the final configuration using α = 0.015 and ε = 0.005

28

Figure 17: Final configuration, problem 3

As α was made smaller the convergence became slower, but the animation became more accurate
and ran more smoothly. As the end effector came very close to the target, more vibration around
that region started to show as the end effector oscillated around the target point as it converged
to the exact target and the error became smaller and smaller.

To run the program, the command is nma_HW4_problem_3� �
function nma_HW4_problem_3()
%function nma_HW4_problem_3()
%This function implements path planning for the 3 links robot arm in
%HW4, ME 739, problem 3, spring 2015, Univ. Wiscosin, Madison.
%
%This version is for part 1, which uses one alpha for all joints
%
%Parabolic attractive field is used to model the attractive virtual
%force on the end effector. The linear velocity Jacobian is used to
%map this force to torque forces at the three joints.
%Then gradient descent is used to obtain the joint coordinates sequence
%which is then used to simulate the motion.
%
%By Nasser M. Abbasi

close all; clear all;
L = 4; %length of link 1 and 3
%epsilon = 0.005; %error tolerance
%alpha = 0.015; %smaller value, slows down convergence but more accurate

epsilon = 0.05; %error tolerance
zeta = 100; %attractive force scaling
alpha = 0.05; %smaller value, slows down convergence but more accurate

q = [L;0;L]; %initial joint configuration
qf = [2*L;pi/2;2*L]; %find joint configuration

29

maxIter = 1200; %max iterations allowed

Q = zeros(3,maxIter); %where to save the sequence of joint q’s
k = 1;
keep_running = true;

%start of gradient descemt

while keep_running
Q(:,k) = q;
tau = -zeta*[q(1)-2*L;

q(3)*cos(q(2))*(q(3)*sin(q(2))-2*L)-q(3)^2*cos(q(2))*sin(q(2));
q(3)*(cos(q(2)))^2+sin(q(2))*(q(3)*sin(q(2))-2*L)
];

q = q + alpha*tau/norm(tau);
if k+1>maxIter || norm(q-qf) <= epsilon

keep_running = false;
else

k = k +1;
end

end

DO_MOVIE = false; %make true to generate movie frames
frameNumber = 0;

f_handle = 1;
axis_limits = L*[-2 2 -2 2 -0.1 2.5];
render_view = [-.4 -.8 .5]; view_up = [0 0 1];
SetRenderingViewParameters(axis_limits,render_view,view_up,f_handle);
camproj perspective % turns on perspective

% link 0 rendering initialization
r0 = L/5; sides0 = 4; axis0 = 3; norm_L0 = -1.0;
linkColor0 = [0 .3 .3]; plotFrame0 = 0;
d0 = CreateLinkRendering(L,r0,sides0,axis0,norm_L0,linkColor0,...

plotFrame0,f_handle);

% link 1 rendering initialization
r1 = L/6; sides1 = 4; axis1 = 3; norm_L1 = 1.0;
linkColor1 = [0 0.75 0]; plotFrame1 = 0;
d1 = CreateLinkRendering(L,r1,sides1,axis1,norm_L1,linkColor1,...

plotFrame1,f_handle);

% link 2 rendering initialization
r2 = L/7; sides2 = 10; axis2 = 3; norm_L2 = -1.0;
linkColor2 = [0.75 0 0]; plotFrame2 = 0;
d2 = CreateLinkRendering(L,r2,sides2,axis2,norm_L2,linkColor2,...

plotFrame2,f_handle);

% link 3 rendering initialization
r3 = L/8; sides3 = 4; axis3 = 1; norm_L3 = 1.0;
linkColor2 = [0.75 0 1]; plotFrame2 = 0;
d3 = CreateLinkRendering(L,r3,sides3,axis3,norm_L3,linkColor2,...

30

plotFrame2,f_handle);

T00 = [1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1];

UpdateLink(d1,T00);

for i = 1:k
% Update frames
q1=Q(1,i); q2=Q(2,i); q3=Q(3,i);
T01 = [1 0 0 0

0 1 0 0
0 0 1 q1
0 0 0 1];

T12 = [-sin(q2) 0 cos(q2) 0
cos(q2) 0 sin(q2) 0
0 1 0 0
0 0 0 1];

T2e = [0 1 0 0
0 0 1 0
1 0 0 q3
0 0 0 1];

T02 = T01*T12;
T0e = T02*T2e;

UpdateLink(d1,T01);
UpdateLink(d2,T02);
UpdateLink(d3,T0e);

title(sprintf(’step = %d, position=[%3.2f,%3.2f,%3.2f], alpha=%3.3f, epsilon=%3.3f’,i,...
q3*cos(q2),q3*sin(q2),q1,alpha,epsilon));

%if i == 1; %pause at start of simulation rendering
% pause;
%end

if DO_MOVIE
frameNumber = frameNumber+1;
I = getframe(gcf);
imwrite(I.cdata, sprintf(’frame%d.png’,frameNumber));

end
hold on;
plot3(0,2*L,2*L,’marker’,’o’,’color’,’r’);
drawnow;
hold off;
pause(0.01);

end
end� �

31

0.3.2 Part two

In this part, different αi values were used for each joint. The code to implement this part is similar
to the above with the only change is in using a diagonal matrix for α instead of justone scalar
value. Different αi was used for each joint to see the effect on the path of the end effector.

The following vector of values gave the best solution

alpha = diag([0.05,0.01,0.1]);

The above produced the least amount of oscillation as the end effector came close to the target.
Making αi smaller caused the joint i to move the slowest during the animation.

The following value of vector α caused large oscillation as the end effector came close to the target.

alpha = diag([0.05,0.1,0.01]);

These values of α are kept in the code below to allow one to try them. The source code for this
part is listed below. Using different αi value for each joint is more flexible and allowed finding
better solution than using the same alpha for all joints. The command to run the Matlab script
is nma_HW4_problem_3_part2� �
function nma_HW4_problem_3_part2()
%function nma_HW4_problem_3_part2()
%This function implements path planning for the 3 links robot arm in
%HW4, ME 739, problem 3, spring 2015, Univ. Wiscosin, Madison.
%
%This version is for part 2, which uses different alpha for each joint
%
%Parabolic attractive field is used to model the attractive virtual
%force on the end effector. The linear velocity Jacobian is used to
%map this force to torque forces at the three joints.
%Then gradient descent is used to obtain the joint coordinates sequence
%which is then used to simulate the motion.
%
%By Nasser M. Abbasi

close all; clear all;
L = 4; %length of link 1 and 3
%epsilon = 0.005; %error tolerance
%alpha = 0.015; %smaller value, slows down convergence but more accurate

epsilon = 0.01; %error tolerance
zeta = 100; %attractive force scaling
%alpha = diag([0.05,0.1,0.01]); %Causes large errors in solution
alpha = diag([0.05,0.01,0.1]); %Produces best solution

q = [L;0;L]; %initial joint configuration
qf = [2*L;pi/2;2*L]; %find joint configuration
maxIter = 1000; %max iterations allowed

Q = zeros(3,maxIter); %where to save the sequence of joint q’s
k = 1;

32

keep_running = true;

%start of gradient descemt

while keep_running
Q(:,k) = q;
tau = -zeta*[q(1)-2*L;

q(3)*cos(q(2))*(q(3)*sin(q(2))-2*L)-q(3)^2*cos(q(2))*sin(q(2));
q(3)*(cos(q(2)))^2+sin(q(2))*(q(3)*sin(q(2))-2*L)
];

q = q + alpha*tau/norm(tau);
if k+1>maxIter || norm(q-qf) <= epsilon

keep_running = false;
else

k = k +1;
end

end

DO_MOVIE = false; %make true to generate movie frames
frameNumber = 0;

f_handle = 1;
axis_limits = L*[-2 2 -2 2 -0.1 2.5];
render_view = [-.4 -.8 .5]; view_up = [0 0 1];
SetRenderingViewParameters(axis_limits,render_view,view_up,f_handle);
camproj perspective % turns on perspective

% link 0 rendering initialization
r0 = L/5; sides0 = 4; axis0 = 3; norm_L0 = -1.0;
linkColor0 = [0 .3 .3]; plotFrame0 = 0;
d0 = CreateLinkRendering(L,r0,sides0,axis0,norm_L0,linkColor0,...

plotFrame0,f_handle);

% link 1 rendering initialization
r1 = L/6; sides1 = 4; axis1 = 3; norm_L1 = 1.0;
linkColor1 = [0 0.75 0]; plotFrame1 = 0;
d1 = CreateLinkRendering(L,r1,sides1,axis1,norm_L1,linkColor1,...

plotFrame1,f_handle);

% link 2 rendering initialization
r2 = L/7; sides2 = 10; axis2 = 3; norm_L2 = -1.0;
linkColor2 = [0.75 0 0]; plotFrame2 = 0;
d2 = CreateLinkRendering(L,r2,sides2,axis2,norm_L2,linkColor2,...

plotFrame2,f_handle);

% link 3 rendering initialization
r3 = L/8; sides3 = 4; axis3 = 1; norm_L3 = 1.0;
linkColor2 = [0.75 0 1]; plotFrame2 = 0;
d3 = CreateLinkRendering(L,r3,sides3,axis3,norm_L3,linkColor2,...

plotFrame2,f_handle);

T00 = [1 0 0 0
0 1 0 0

33

0 0 1 0
0 0 0 1];

UpdateLink(d1,T00);

for i = 1:k
% Update frames
q1=Q(1,i); q2=Q(2,i); q3=Q(3,i);
T01 = [1 0 0 0

0 1 0 0
0 0 1 q1
0 0 0 1];

T12 = [-sin(q2) 0 cos(q2) 0
cos(q2) 0 sin(q2) 0
0 1 0 0
0 0 0 1];

T2e = [0 1 0 0
0 0 1 0
1 0 0 q3
0 0 0 1];

T02 = T01*T12;
T0e = T02*T2e;

UpdateLink(d1,T01);
UpdateLink(d2,T02);
UpdateLink(d3,T0e);

title(sprintf(’step = %d, position=[%3.2f,%3.2f,%3.2f], epsilon=%3.3f’,i,...
q3*cos(q2),q3*sin(q2),q1,epsilon));

%if i == 1; %pause at start of simulation rendering
% pause;
%end

if DO_MOVIE
frameNumber = frameNumber+1;
I = getframe(gcf);
imwrite(I.cdata, sprintf(’frame%d.png’,frameNumber));

end
hold on;
plot3(0,2*L,2*L,’marker’,’o’,’color’,’r’);
drawnow;
hold off;
pause(0.01);

end
end� �

	Problem 1
	Problem 2
	First scenario
	Second scenario
	discussion

	Problem 3
	Part one
	Part two

