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1.1. Syllabus CHAPTER 1. INTRODUCTION

Took this course in spring 2014. Part of MSc. in Engineering Mechanics.

Instructor: professor Suzannah Sandrik

Class link moodle internal course site

1.1 Syllabus

EMA 550 Astrodynamics 
Spring 2014 

 
Instructor:  Dr. Suzannah Sandrik, Department of Engineering Physics 
 811 Engineering Research Building 
 sandrik@engr.wisc.edu, (608) 262-0764 
 
Class sessions:  TuTh 2:30-3:45 pm. The lecture room may change and we will have at least one class in a 
computer lab, so watch your email.  Exams will be in-class or take-home; no evening exams are expected. 
 
Office hours:  After class or by appointment. 
 
Course web site:  Moodle, https://courses.moodle.wisc.edu/prod/my/.  The course site will have lecture notes, 
homework assignments, and other material related to the course.  
 
Catalog course description:  Coordinate system transformations, central force motion, two body problem, three 
and n-body problem, theory of orbital perturbations, artificial satellites, elementary transfer orbits, and 
elementary rocket dynamics.  Prerequisite: EMA 202 or 221; or Physics 311 or con reg; or cons inst. 
 
What do astrodynamicists/orbital mechanicists do? 
Astrodynamicists design and optimize trajectories (paths through space defined by a sequence of rocket burns) 
to move a spacecraft from an initial orbit to a desired final orbit.  They work in teams with other engineers who 
are responsible for different parts of the mission (propulsion, payload, etc.).  Astrodynamicists use equations 
with simplifying assumptions to estimate the required orbit and software like Systems Tool Kit (STK, formerly 
Satellite Tool Kit) to refine the trajectory, account for perturbing effects, and create visualizations of the planned 
mission. 
 
Expectations for the course: 
Preparation:  Course notes and slides from lectures will be posted to the course web site. You’ll get the most 
from lecture if you read the notes for the day’s topic before class .There are some spaces in the notes for you to 
complete examples based on what we discuss in class. 
 
Homework:  You can expect homework assignments on an approximately weekly basis.   Working together on 
weekly homework assignments for EMA 550 is acceptable and encouraged, but each student is expected to 
work through the problems individually and will be responsible for being able to complete similar problems on 
exams.  Larger projects will be completed in pairs or teams.   
 
Projects:  You will be asked to design two trajectories in EMA 550.  The first is a trajectory from the Earth to the 
Moon, and the second is an interplanetary trajectory involving a gravity assist fly-by.  The lunar project is best 
done in pairs and the interplanetary project will have teams of four.  You will also be asked to research a current 
space mission or program and present information about it to the class. 
 
Exams:  There will be three exams.  All exams are open-notes (open-book) and must be completed individually.  
Two exams will be held in-class and will not require the use of specialized software.  One exam will be take-
home and may involve problems needing software like Matlab or EES.  Laptops may be used on in-class 
midterms for open-note purposes ONLY.  For fairness, the use of Mathcad, Maple, Matlab, EES, etc. on in-class 
exams is prohibited.  Students observed using their laptops for anything other than notes on in-class exams will 
receive a zero for the exam.  Students observed collaborating on exams will receive a zero for the exam. 
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1.1. Syllabus CHAPTER 1. INTRODUCTION

Course notes:  EMA 550 uses course notes prepared by Engineering Physics department professors in place of a 
published textbook. 
 
Math software: Familiarity with math software (Matlab, Mathcad, EES, etc.) is helpful and will be assumed.  
Matlab and EES tutors are generally available in Wendt library during walk-in tutoring on Sunday, Monday, 
Tuesday, and Wednesday nights.  See http://studentservices.engr.wisc.edu/classes/tutoring/ for more details. 
 
Dynamics/modeling software: I will use STK for in-class demonstrations. It is available on the CAE server and can 
be downloaded from agi.com.  STK is used by NASA, Boeing, Lockheed, Northrup Grumman, other companies, 
and private citizens engaged in the pursuit of space applications.  As a UW-Madison student, you can take a 
certification exam in STK for free, if you choose. 
 
Grading policy: The final course grade will be based on weekly homework assignments (10%), a lunar project 
(10%), an interplanetary project (15%), three exams (20% each), and a space mission/program presentation 
(5%).  You can access your grades during the semester on the course website.  The grading scale will be 
approximately 100-92 A, 92-87 AB, 87-82 B, 82-77 BC, 77-72 C, 72-62 D, and < 62 F. 
 
McBurney accommodations: Please contact the instructor during the first two weeks of class regarding 
McBurney passport accommodations. 
 
Textbook and references:  No required textbook.  Lecture notes will be posted on the course web site.  
Additional useful references on astrodynamics include: 
 
1. John Prussing and Bruce Conway, Orbital Mechanics, Oxford Univ. Press, 1993.  The orbital mechanics 
textbook at Purdue University and the University of Illinois Urbana-Champaign. 
 
2. Vladimir A. Chobotov, Orbital Mechanics, AIAA Education Series, 3rd ed., 2002. The textbook for EMA 550 
several years ago.   
 
3. Howard D. Curtis, Orbital Mechanics for Engineering Students, 2nd ed., Elsevier, 2010. Written by a professor 
at Embry-Riddle Aeronautical University, used there. 
 
4. Jerry Jon Sellers et al, Understanding Space, McGraw-Hill Primis Custom Publishing, 2005.  A less technical 
introduction to many space topics, including orbital mechanics, launch and entry, and spacecraft subsystems.  
Has been used to teach orbital mechanics to practicing engineers at NASA’s Johnson Space Center. 
 
5. Richard Battin, An Introduction to the Mathematics and Methods of Astrodynamics, Revised ed., AIAA 
Education Series, 1999. An advanced orbital mechanics reference book for graduate students and professionals. 
 
6. Roger Bate, Donald Mueller, and Jerry White, Fundamentals of Astrodynamics, Dover Publications, 1971. A 
classic.  
 
7. Charles D. Brown, Spacecraft Mission Design, AIAA Education Series, 2nd ed., 1998. Brown teaches short 
courses on orbital mechanics for professionals in the aerospace industry.  His book is sort of a cookbook of 
techniques for approximate analyses, especially patched conics, but weak on the underlying theory. 
 
8. A.E. Roy, Orbital Motion, Inst. Of Physics Publishing, 4th ed., 2005. Earlier editions of this text were used for 
this course by previous instructors. It went out of print for a while until the new edition came out.  It emphasizes 
celestial mechanics, as opposed to astrodynamics, more than most texts.  
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EMA 550 Astrodynamics 
Spring 2014 

 
 

  Date Mtg Topics Homework 

Tu 1/21 1 Introduction and Two-Body Gravitation 
 Th 1/23 2 Two-Body Gravitation (Equations of Motion)   

Tu 1/28 3 Two-Body Gravitation (Elliptical Orbits) 
 Th 1/30 4 Two-Body Gravitation (Elliptical Orbits, continued) HW 1 Due 

Tu 2/4 5 Two-Body Gravitation (Parabolic and Hyperbolic Orbits) 
 Th 2/6 6 Orbit Elements, Classical-to-Cartesian Conversion HW 2 Due 

Tu 2/11 7 Cartesian-to-Classical Conversion, Orbit Usage 
 Th 2/13 8 Orbit Maneuvers (In-Plane Hohmann and Bi-Elliptic) HW 3 Due 

Tu 2/18 9 Orbit Maneuvers (In-Plane Semi-Tan.) and Interplanetary 
Trajectories (Sph. of Grav. and Influence) 

 Th 2/20 10 Interplanetary Trajectories (Patched Conics) HW 4 Due 

Tu 2/25 11 Review 
 Th 2/27 12 IN-CLASS MIDTERM (through Orbit Maneuvers)   

Tu 3/4 13 Interplanetary Trajectories (Gravity Assist) 
 Th 3/6 14 Orbital Position (Walking Orbits, 2D Rendezvous) HW 5 Due, Lunar project assigned 

Tu 3/11 15 STK Tutorial - Computer lab TBA Lunar project assigned 

Th 3/13 16 Orbital Position (Semi-Tangential Rendezvous)   

Tu 3/18   SPRING BREAK   

Th 3/20       

Tu 3/25 17 Orbital Position (Lambert’s Theorem) HW 6 Due 

Th 3/27 18 Orbit Maneuvers (Out-Of-Plane Maneuvers)   

Tu 4/1 19 Rocket Equation, Fixed Impulses, Launch Windows HW 7 Due 

Th 4/3 20 Orbital Position (3D Rendezvous) Lunar project due, Interplanetary project assigned 

Tu 4/8 21 Relative Motion (Terminal Rendezvous, Fly-Around) HW 8 Due 

Th 4/10 22 Relative Motion (Ejected Particles)   

Tu 4/15 23 Orbit Perturbations HW 9 Due 

Th 4/17 24 Orbit Perturbations, continued Take-home exam assigned 

Tu 4/22 25 Three-Body Gravitation (Lagrange Points) Take-home exam due 

Th 4/24 26 Low/Continuous Thrust   

Tu 4/29 27 TBA HW 10 Due 

Th 5/1 28 Presentations   

Tu 5/6 29 Presentations 
 Th 5/8 30 Presentations Interplanetary project due 

Su 5/11 
 

FINAL EXAM (10:05 AM - 12:05 PM) 
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1.2. STK tutorial emailed to class CHAPTER 1. INTRODUCTION

Planetary Constants 
 
 

Earth 
Mass = 5.974 x 1024 kg 

Equatorial radius = 6378 km 

Earth = GmEarth = 3.986 x 105 km3/s2 

Mean distance from the Sun = 1 AU = 1.495978 x 108 km 
 

Sun 
Mass = 1.989 x 1030 kg 

Mean radius = 695,990 km 

Sun = GmSun = 1.327 x 1011 km3/s2 

 
 

 Mean 
distance  
from the 
Sun (AU) 

Orbit 
eccentricity 

Orbit inclination 
to the ecliptic 

plane (deg) 

Mass  
(units of 
MEarth) 

Equatorial 
radius (km) 

Sphere of 
influence 

radius (km) 

Mercury 0.3871 0.2056 7.005 0.0553 2440 1.13 x 105 

Venus 0.7233 0.006777 3.395 0.8149 6052 6.17 x 105 

Earth 1.000 0.01671 0.000 1.000 6378 9.24 x 105 

Mars 1.524 0.09339 1.850 0.1074 3396 5.74 x 105 

Jupiter 5.203 0.04839 1.304 317.9 71,492 4.83 x 107 

Saturn 9.537 0.05386 2.486 95.18 60,268 3.47 x 107 

Uranus 19.19 0.04726 0.7726 14.53 25,559 5.19 x 107 

Neptune 30.07 0.008590 1.770 17.14 24,764 8.67 x 107 

Pluto 39.48 0.2488 17.14 0.0022 1195 3.17 x 107 

 
 

Moon 
Mass = 7.3483 x 1022 kg 

Mean planetary radius = 1738 km 

Moon = GmMoon = 4902.8 km3/s2 

Mean distance from the Earth = 384,400 km 
Orbit eccentricity = 0.05490 

Orbit inclination to ecliptic = 5.15° 
Orbit inclination to the Earth’s equatorial plane ranges from 18° to 29° 

Sphere of influence radius: 6.61 x 104 km 
 

Universal Constant of Gravitation 
G = 6.674 x 10-11 m3/(kg s2) 

 

1.2 STK tutorial emailed to class

STK software can be downloaded for free.
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2.1. presentation project. Indian PSLV- . . . CHAPTER 2. PRESENTATION . . .

2.1 presentation project. Indian PSLV-C25 Mars orbiter
mission

2.1.1 Description of task

Space Mission Research Project 

EMA/ASTRO 550: Astrodynamics, Spring 2014 

 

Research a current space mission or space-related topic and deliver a one-page handout, a description 

of the project’s orbital mechanics, a list of resources, and an in-class presentation. 

1. One-page handout 

Create a one-page handout with the key pieces of information for your topic, presented in an easy-to-

read, visually appealing style. Bullet-points are likely. Headings are recommended. It may include a 

photo (with proper attribution unless you take the photo yourself). Samples are on the course website. 

The types of questions your handout should answer include (but are not limited to) the following: 

Programs/directives (e.g. Augustine Commission, COTS): Who was involved in the decision-

making process? Why was the group convened? What were the main findings or decisions? 

When were the decisions made? When will they take effect? When are spacecraft that arise as a 

result of them anticipated to be complete? How has the aerospace industry been affected by 

the decisions or findings? 

Past, current, and future spacecraft: Who (people, companies) was involved in the 

development? What is the goal of the project? What is the timeline of the project (start dates, 

completion dates, launch dates, arrival dates, etc.)? Where were the spacecraft built and 

launched? Where are they going? 

2. Orbital mechanics  

Describe the orbital mechanics of the project. This will likely be a single paragraph, about half a page.  

Include information like the following: 

Programs/directives: Which areas of space are affected by these decisions? What vehicles or 

programs have arisen as a result? What orbits do these vehicles use? 

Spacecraft: Which orbits do the satellites use? Are they launched directly to the target orbit or 

are they launched to a parking orbit? How do they transfer to their destination orbit? If relevant, 

find a picture of the trajectory and describe the transfer. 

3. Annotated references 

List the five best non-Wikipedia sources that discuss your program or mission. For each, give the citation 

information so that an interested reader could find that source for him or herself. Also provide a few 

sentences of description regarding the information that each source provides. The goal here is to really 

provide your space-loving classmates with genuinely helpful information. Wikipedia doesn’t count 

because your classmates can find that easily enough without your help. What else is out there for them? 

(Note: you may list a Wikipedia page as a 6
th

 source if it is particularly good or has helpful graphics that 

14



2.1. presentation project. Indian PSLV- . . . CHAPTER 2. PRESENTATION . . .

Space Mission Research Project 

EMA/ASTRO 550: Astrodynamics, Spring 2014 

 

Research a current space mission or space-related topic and deliver a one-page handout, a description 

of the project’s orbital mechanics, a list of resources, and an in-class presentation. 

1. One-page handout 

Create a one-page handout with the key pieces of information for your topic, presented in an easy-to-

read, visually appealing style. Bullet-points are likely. Headings are recommended. It may include a 

photo (with proper attribution unless you take the photo yourself). Samples are on the course website. 

The types of questions your handout should answer include (but are not limited to) the following: 

Programs/directives (e.g. Augustine Commission, COTS): Who was involved in the decision-

making process? Why was the group convened? What were the main findings or decisions? 

When were the decisions made? When will they take effect? When are spacecraft that arise as a 

result of them anticipated to be complete? How has the aerospace industry been affected by 

the decisions or findings? 

Past, current, and future spacecraft: Who (people, companies) was involved in the 

development? What is the goal of the project? What is the timeline of the project (start dates, 

completion dates, launch dates, arrival dates, etc.)? Where were the spacecraft built and 

launched? Where are they going? 

2. Orbital mechanics  

Describe the orbital mechanics of the project. This will likely be a single paragraph, about half a page.  

Include information like the following: 

Programs/directives: Which areas of space are affected by these decisions? What vehicles or 

programs have arisen as a result? What orbits do these vehicles use? 

Spacecraft: Which orbits do the satellites use? Are they launched directly to the target orbit or 

are they launched to a parking orbit? How do they transfer to their destination orbit? If relevant, 

find a picture of the trajectory and describe the transfer. 

3. Annotated references 

List the five best non-Wikipedia sources that discuss your program or mission. For each, give the citation 

information so that an interested reader could find that source for him or herself. Also provide a few 

sentences of description regarding the information that each source provides. The goal here is to really 

provide your space-loving classmates with genuinely helpful information. Wikipedia doesn’t count 

because your classmates can find that easily enough without your help. What else is out there for them? 

(Note: you may list a Wikipedia page as a 6
th

 source if it is particularly good or has helpful graphics that 

15



2.1. presentation project. Indian PSLV- . . . CHAPTER 2. PRESENTATION . . .

2.1.2 Sample of projects to select from
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2.1.3 my presentation

Elliptic parking orbits.  Perigee 250 km, and apogee 23,500 
km, Inclination of 19.2 degrees. 6 orbit raising burns increased 
the apogee to 192,874 km. Liquid fuel used for these burns. 4 
weeks to accomplish this maneuver. This is called orbit raising 
maneuver to gain more speed resulting is more efficient final 
burn to escape Earth SOI

Hohmann transfer orbit started when the 
Hohmann angle was 44 degree between 
Earth and Mars (300 days travel time) 
travel speed 1.55 km/sec

1

2

3

Nov 30, 2013

Sept. 24, 2014

Arrives to Mars SOI. 
Injection is made to 
park the spacecraft 
around mars in an 
elliptical orbit

Elliptic orbit around mars, 
period is 76.72 hrs,  
periapsis of 365.3 km and 
apoapsis of 80000 km. 
Inclination 150 degrees.

earth

Earth position 
when spacecraft 
arrives to mars

Manglyaan Main mission objectives
Develop technologies by India space research organization 
for design, planning, management and operation of an 
interplanetary mission

Explore Mars surface features, topography, mineralogy 
and atmosphere using onboard scientific instruments Payload (1336 kg orbiter satellite)

44.4 m

Maximum load capacity: 
1750 kg

5 stages rocket
(3 uses solid propellant, and 
2 uses liquid propellant. Lift 
off mass: 320 metric ton.

PSLV-C25 is Indian first interplanetary mission. 

3 main phases: Earth-centered phase (7 altitude-raising orbital maneuver, each requiring 

separate burn), followed by Hohmann trajectory for tangential transfer to Mars, and final 

Martian phase with elliptic parking orbit.

$21 million study and design of 
orbiter. Total project cost $76 
million. Satellite cost: $26 million.

Mission cost

http://en.wikipedia.org/wiki/Mars_Orbiter_Mission

Location of launch site : SDSC 
SHAR Centre, Sriharikota, India 
(small island on the east coast 
of India) (google maps)

Full View of 
PSLV-C25 on 
First Launch Pad

http://www.isro.gov.in

Satellite payload: 5 scientific 
equipment (total weight is 12.94 kg)

 Mars color Camera (MCC)
 Thermal infrared imaging 

spectrometer (TIS)
 Methane sensor for Mars (MSM)
 Mars meutal composition 

analyzer
 Lyman alpha photometer

Power: 
840 watt

1.5 meter 
cube volume

Develop deep space communication, planning, 
management and navigation skills.

All images unless 
otherwise given are thanks 
to ISRO.GOV.IN. additional 
annotations added to them 
afterwards.

Student: Nasser M. Abbasi, EMA 550
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References

[1] http://www.isro.org/mars/home.aspx This is the official web site for the Indian Mars mission. It is
part of the ISRO web site (below) and contains all technical material about the mission.

[2] http://www.isro.gov.in/

The official website of the Indian Space Research Organization where most of the material were obtained
including the images in the first page. ISRO is equivalent to NASA Organization in the US.

[3] http://www.isro.gov.in/pslv-c25/pdf/pslv-c25-brochure.pdf and http://www.isro.gov.
in/pslv-c25/pdf/pslv-c25.pdf

These two PDF documents contain technical information about the Earth to Mars orbit and about the launch
rocket used (PSLV-C25) and description of the satellite and its instrumentation Both are published by the
Indian Space Research Organization

[4] http://www.spaceflight101.com/mars-orbiter-mission.html

This article contains more information about the actual scientific experiments to be performed by PSLV-C25
about about the instrumentation carried aboard the satellite and information about the orbital mechanics part.

[5] http://www.space.com/23802-india-mars-probe-red-planet-journey.html This article on
space.com gives a general overview description of the mission, giving reasons for using PSLV as launch in-
stead of using GLSV (Geosynchronous Satellite Launch Vehicle) which encountered few problems in earlier
missions.

Orbital mechanics highlights

The transfer trajectory from Earth to Mars was a classical Hohmann transfer. The spacecraft left Earth tangen-
tially from the perigee of the final parking orbit it had and will arrive tangentially at the apogee of the Hohmann
ellipse. Rendezvous was accomplished by waiting the the required Hohmann angle to occur between the Earth
and Mars before initiating the Hohmann transfer. The Hohmann angle can be found as follows. Let ra = 1AU
be the distance of Earth from Sun, and rb = 1.524AU the distance from Mars to Sun, then the Hohmann angle is

θH = π

(
1−
(

ra + rb

2rb

) 3
3
)

Substituting numerical values results in θH = 44.36°. On November 30,2013 when the initial rocket was
launched, the angular longitudes on the ecliptic plane of Earth and Mars were (from JPL) θearth = 66.7° and
θmars = 140.8°

Small simulation showing the Hohmann transfer to Mars will now be given. What was more interesting is
the initial maneuver around Earth before starting the Hohmann transfer.

The spacecraft started in an elliptical parking orbit with perigee of 250 km and apogee of 23500 km. Next,
and over a period of 4 weeks, 6 separate burns, all using its liquid fuel engine, were made at the perigee to
increases the semi-major of the parking ellipse all the way to 192000 km. This method is called orbit raising
maneuver When the spacecraft was in the final and largest elliptical orbit, it initiated the final burn to escape
the Earth SOI from the perigee in order to enter the heliocentric Hohmann transfer ellipse. All elliptical orbits
shared the same perigee.

Orbit raising maneuvers allows the spacecraft to gradually gain speed resulting in smaller final burn to escape
the earth using its solid rocket engine. All burns done to raise the orbit are done when the probe is at the perigee.
From an article http://www.spacenews.com/article/launch-report/38111indian-mars-probes-orbit-raising-maneuver-falls-short it says that by the

1
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Figure 1: Showing the gradual enlargement of the
elliptical parking orbits over period of 4 weeks. Im-
age due to http://www.spaceflight101.com/
mars-orbiter-mission.html

Figure 2: Showing the size of each ellipse during the initial
parking maneuver used to gain speed. Image due to https:
//www.facebook.com/isromom

end of the sixth and final orbit raising maneuver, the probe would have the required escape velocity when it
arrived back at the perigee of the final ellipse, and that no additional ∆V was needed to escape Earth.

The reason given in the literature about this initial maneuvers, is that it reduced the final burn needed to
escape Earth, since the spacecraft will have much higher speed at the perigee in the final parking orbit due to its
much larger semi-major axes.

The launch rocket (PSLV-C25) is a five stages rocket. This diagram shows a break down of the sequence of
the rocket launch stages.

Figure 3: Ascent Profile of PSLV-25 showin all rocket stages. Image due to http://www.spaceflight101.com/uploads/6/4/0/
6/6406961/4674618_orig.jpg

Some facts about the PSLV-C25 fuel From http://www.spaceflightnow.com/pslv/c25/131104preview/

1. "Two-thirds of the orbiter’s mass at the time of launch is propellant."

2. "The launcher’s liquid-fueled fourth stage will coast for 25 minutes before igniting for the mission’s final
burn."

3. "Almost all of the mission’s 390 liters, or 103 gallons, of liquid fuel will be consumed to accelerate the
spacecraft out of Earth orbit and to slow its velocity for capture into orbit around Mars."

2
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2.1.4 Power points

India’s first interplanetary mission 

 

Mission Objectives 
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Deployed View of Orbiter Satellite 

1337 kg 
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Orbiter stowed vs. deployed 

Satellite 5 main scientific equipment 

Methane sensor 

Layman alpha photometer 

Exospheric neutral composition analyser 

MCC color camera 

Exospheric neutral composition analyser 
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PSLV-C25 Launch rocket 
Height 44.4 meter 

Lift off mass: 320 ton 

5 stages (payload at top) 

Once launched, orbiter 
spends 2 months in orbit 
raising maneuver  around 
the earth to gain speed 

Another view of orbit raising maneuver 

7 elliptical orbits, lasting 2 months, each requiring burn at perigee, designed to gain 

speed and reduce cost of fuel needed for final escape from Earth to Mars 

23
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PSLV-C25 Mars Trajectory Outline 

2.2 Final project. Earth to Neptune via Gravity assist
�yby Jupiter

2.2.1 project description

EMA 550 Interplanetary Project 
Spring 2014 

 
 

Calculate, model, and present an interplanetary trajectory from the Earth to Neptune via a 
gravity assist flyby of Jupiter.  
 
General Guidelines 
1. The work is to be done in teams of four, with the various tasks delegated to the team 
members. Submit one report for the team. If you have difficulty with a team member, attempt 
to resolve the issue.  If a problem persists, refer the issue to me, along with what you have 
done to resolve it.  If you would like to be assigned to a team or you need additional members 
for your team, let me know. 
 
2. Focus on the orbital mechanics aspects of the project once the spacecraft is in its initial orbit. 
You may start your analysis with the spacecraft in a circular, 300 km altitude parking orbit 
around the Earth in the ecliptic plane. 
 

3. Determine launch dates, arrival dates, and V using the actual positions of planets.  The JPL 
Horizons web site has data on the heliocentric coordinates of the planets. Assume the 
planetary orbits are circular orbits in the ecliptic plane. This means you may choose one date 
at which you find the planets’ positions from JPL Horizons, then write code to propagate their 
positions forward or backward in time assuming circular orbits. Choose launch and arrival dates 
that will allow the project to be completed within your professional lifetimes. 
 

4. Compare the V cost and the transfer time of your flyby mission to similar missions that do 
not have flybys, such as direct Hohmann, semi-tangential, or non-tangential (Lambert) 
transfers between the Earth and Neptune.  
 
5. Submit a detailed report about your proposed trajectory. It should contain a very brief 

executive summary (total V, transfer time, key dates), an introduction and description of the 
mission, a discussion of the orbital mechanics with relevant diagrams, and conclusions 
regarding your trajectory. Detailed calculations should be in an appendix, with the results 
summarized in the main body of the report. Make it look professional, something to be proud 
of.  References and sources of data and borrowed images should be accurately documented. 
  
6. Create visuals illustrating your trajectory.  You might use Matlab, STK, or other software.  
Make sure that the distances are to scale and the angles are accurate.  You may create 
separate visuals for each stage of the mission rather than trying to show all components of the 
mission in a single figure.   
 
7. Make sure to include information and analysis for what happens at Neptune. You can choose 
a flyby on the way to somewhere else, going into orbit about the planet, visiting one of the 
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planet’s moons, etc., at your discretion, but make sure to include what happens when your 
spacecraft reaches Neptune. 
 
8. Your goal is not necessarily to optimize the trajectory. Focus your early efforts on finding one 
trajectory that works given where the planets are in the Solar System. Once you have one solid 
option, you may consider variations on the launch, flyby, and/or arrival dates to identify the 

effect they have on the V for the mission. 
 
Grading 
The reports will be graded for thoroughness of the analysis, accuracy, completeness, 
readability, and visuals. All team members will receive the same grade unless there is a 
problem with a team member.  
 
Project Schedule and Deadlines 
Monday, April 7: By this date, email Dr. Sandrik with the names of your group members or to 
indicate that you are looking for group members. 
 
Thursday, May 8: Reports are due by the end of the day. Turn in paper reports in class or to Dr. 
Sandrik’s mailbox (in the walkway between ME and ERB, near the loading dock) or electronic 
documents online through the course website’s Interplanetary Project dropbox. 

2.2.2 �nding planet with JPL handout

JPL site http://ssd.jpl.nasa.gov/horizons.cgi

25
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2.2.3 my �nal report

Final Interplanetary Project EMA 550
by Nasser M. Abbasi

Introduction

The project was broken into 6 phases. This the high level summary of each phase.

1) The first phase was the waiting period to synchronize earth with Jupiter with the correct Hohmann angle.

Once this was achieved, the probe is launched from LEO orbit. 

2) The second phase is the escape from earth SOI using hyperbolic escape trajectory

3)  The  third  phase  is  the  travel  over  a  Hohmann  ellipse  to  reach  Jupiter  at  the  apogee  location  of  the

Hohmann transfer ellipse.

4) This stage the probe enters Jupiter SOI and performs a hyperbolic fly-by trajectory. The burnout distance

used was based on trial and error experiments using the simulation written for this project in order to obtain

a post fly-by ellipse that allowed the probe to reach Neptune orbit at the same time when Neptune was there.

5) This is the post-flyby stage, leaving Jupiter SOI and traveling on an ellipse to Neptune.

6)  This  is  the final  phase,  the probe is  now inside Neptune SOI.  It  enters  a  circular  orbit  around Neptune

and remains there.

The final results will be shown here, followed by the step by step calculations done in each phase, then the

simulation program will be described.

� How was the final trajectory found?

One  week  of  full  time  work  was  spend  on  writing  the  simulator,  as  this  was  the  only  method  to  find  if  a

chosen input will lead to the probe meeting Neptune when it arrives to its orbit. The simulator takes as input

the initial angular positions of Earth, Jupiter and Neptune in the ecliptic plane and using time step, advances

the  positions  of  the  planets  and  the  probe  on  its  orbit.  This  is  screen  shot  of  the  GUI  of  the  simulator.  It

allows one to stop, run, and make one step at a time. The step size can be changed from one day to one

week to one month.

Printed by Wolfram Mathematica Student Edition
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Once  the  simulator  was  completed,  different  starting  positions  for  Earth,  Jupiter  and  Neptune  were  tried.

Each position used was obtained from the JPL Horizon web site. Different dates were selected. In addition,

for each selected initial position, the altitude that the probe will be closest to Jupiter in its fly-by was modified

using a slider in simulator. This resulted in different ellipse since the burn out distance rbo  is different. The

closest altitude to Jupiter  (rboL  was modified from 200000 km to 500000 km above the surface of  Jupiter.

When  none  of  the  resulting  trajectories  found  to  be  acceptable,  if  they  did  not  lead  to  acceptable  ren-

dezvous  with  Neptune,  another  starting  date  was  selected  and  the  process  was  repeated.   Acceptable

rendezvous with Neptune is one which reaches Neptune within distance less that Neptune's SOI. This is the

final trajectory selected

2 project.nb

Printed by Wolfram Mathematica Student Edition
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EarthH1L

JupiterH1L

EarthH2L
JupiterH2L

NeptuneH1LNeptuneH2L

EarthH3L

JupiterH3L

NeptuneH3L
position

at start

position at

end of Hohmann

transfer

position

at end

of flight

-4´ 10
9

-2´ 10
9

2´ 10
9

4´ 10
9

-4´ 10
9

-2´ 10
9

2´ 10
9

4´ 10
9

To speed the process of finding the final trajectory, the simulator used a varying time step. The simulation

time step can be one day, one week, one month or even one year. However the accuracy of the resulting

trajectories will become worst if the time step was made large. When a candidate trajectory was found using

large time step (month for example) it was repeated again using one week time step, and then again using

one day time step. Using the one day time step, the simulation will take about 15 minutes to complete. So

this was a very time consuming part of the project to find the correct trajectory. 

This  table  shows  some  of  the  dates  and  corresponding  ecliptic  longitude  angles  showing  which  initial

position was selected

project.nb 3

Printed by Wolfram Mathematica Student Edition
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selected? date Earth Jupiter Neptune Altitude above Jupiter HKML
NO 3�21�2014 270 111.3 334.996 many

No 9�21�2014 356.76 126 336 many

No 10�01�2014 7.5 127 336 many

No 03�21�2016 180 166 339 many

No 03�21�2017 180 196 304 many

YES 3�21�2016 180 169 339 410000

Initial positions tried in simulation

� The following table shows the time history for all the phases on the project

phase date started date completed

waiting for correct Hohmann angle between Earth�Jupiter 3�21�2016 12�26�2016

Start on Hohmann transfer, travel to Jupiter SOI 12�26�2016 9�20�2019

Enter and exist Jupiter SOI 9�20�2019 2�29�2020

travel on Ellipse from Jupiter to Neptune 2�29�2020 12�25�2054

Time schedule of complete trajectory

� Show DV for fly-by and compare to Hohmann transfer

Trajectory DV1 Hkm�sL DV2 Hkm�sL Total Hkm�sL
Fly-by 6.267 13.44 19.71

Direct Hohmann 8.22 14.91 23.133

Compare total DV using Fly-by and Direct Hohmann. Saving is over 3 km�sec

� Show trajectory information for each phase (relevant data is shown)

Item Earth escape Hyperbola
Hohmann transfer

Earth�Jupiter

Fly-by Jupiter

Hyperbola

Elliptical orbit

Jupiter�Neptune

eccentricity e 2.291 0.6775 1.1199 0.726

semi-major a HkmL - 4.639´10
8

4.01´10
6

2.6´10
9

V¥ Hkm�secL 8.79 - 5.64 -

Departure speed VD Hkm�sL - - 17.024 -

Η HdegL 115.88 - 153.24 -

Turn angle Θ HdegL 64.12 - 126.48 -

Flight path angle Γd HdegL - - 15.45 -

True anomaly f HdegL - - 36.98 -

Orbits data found

� Velocity profile of probe showing speed gain due to flyby

The simulator  keeps track of  current  velocity  of  probe as it  travels starting from Earth all  the way to  Nep-

tune.  It  then plots the velocity  vs.  Time of  the probe.  This plot  below was generated by the simulator  and

shows the speed gained during the fly-by phase.  DV gained due to  flyby was found to  be 10.077 km/sec.

This is free DV due to gravity assist.

4 project.nb
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The simulator  keeps track of  current  velocity  of  probe as  it  travels  starting from Earth  all  the  way to  Nep-

tune.  It  then plots the velocity  vs.  Time of  the probe.  This plot  below was generated by the simulator  and

shows the speed gained during the fly-by phase.  DV gained due to  flyby was found to  be 10.077 km/sec.

This is free DV due to gravity assist.

The above shows that the fly-by Jupiter gave the probe almost 8 km/sec boost in speed relative to Sun. 

� Trajectory data gathering

The simulator contains an option to display all  the information about  the trajectory during its  running.  This

display can be turned off if needed. This allows one to monitor each aspect of the orbit as it runs. Here is a

screen show showing typical display during one simulation run

project.nb 5
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Step by step calculations

ã Constants used 

6 project.nb

Printed by Wolfram Mathematica Student Edition

33



2.2. Final project. Earth to Neptune via . . . CHAPTER 2. PRESENTATION . . .

In[7]:=
<<Calendar`

AU = 1.495978*10^8;

rE = 6378; H*Earth radius*L
rJ = 71492;H*Jupiter radius*L
rN = 24764;H*Neptune radius*L
rES = 1 AU;H*Earth distance from sun*L
rJS = 5.203 AU;H*Jupiter distance from sun*L
rNS = 30.07 AU; H*Neptune distance from sun*LH* SOI for each planet *L
eSOI = 9.24*10^5;

jSOI = 4.82*10^7;

nSOI = 8.67*10^7;H*mu for each planet*L
ΜSun = 1.327*10^11;

ΜE = 3.986*10^5;

ΜJ = 126686534;

ΜN = 6836529;

H*speed of each planet, all relative to sun*L
sE =

ΜSun

rES

;H*km�sec*L

sJ =
ΜSun

rJS

;H*km�sec*L

sN =
ΜSun

rNS

;H*km�sec*L
H*angular velocity of each planet*L
ΩE =

ΜSun

rES
3

;H*angular vecloity of earth*L

ΩJ =
ΜSun

rJS
3

;H*angular vecloity of earth*L

ΩN =
ΜSun

rNS
3

;H*angular vecloity of earth*L

Find the Hohmann  angle needed rendezvous between Earth and Jupiter

project.nb 7
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In[28]:=
ΘEarthJupitor = Pi 1 -

rES + rJS

2 rJS

3

2

;

N�ΘEarthJupitor*180 �Pi

Out[29]=
97.15821569

8 project.nb
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ã Enter the initial positions. These have been found by simulation first. The simulation includes all 

these steps build into it. There are shown here in order to be able to show each step done outside of 

the simulation code.

Note that 90 degrees were added to each position to make it compatible with standard coordinate 

system with positive x points to the right

ΘE0 =Mod@180 + 90, 360DDegree; H*Earth*L
ΘJ0 = H169 + 90LDegree; H*Jupiter*L
ΘN0 =Mod@H339 + 90L, 360DDegree; H*Neptune*L

� find wait time between Earth and Jupiter in order to find date when start Hohmann transfer. 

ã Find Θ0 the initial angle between earth and Jupiter at initial configuration

Θ0 = ΘJ0 - ΘE0;

Θ0*180. �Pi

-11.

ã Adjust Θ0 if ΘHis larger than Θ0 by adding 2 Π so not to get negative time

If @Θ0 £ ΘEarthJupitor, Θ0 = Θ0 + 2 PiD;
Θ0*180. �Pi

349.

ã calculate wait time before starting Hohmann transfer. This is the time needed to sync with Jupiter

waitTimeEarthJupiter0 =
Θ0 - ΘEarthJupitor

ΩE - ΩJ

;

waitTimeEarthJupiter0 � H60*60*24L H*days*L
279.0431558

ã Display the date the Hohmann transfer starts

currentDate = 82016, 3, 21<;
currentDate = DaysPlus@currentDate, Ceiling@waitTimeEarthJupiter0 � H60*60*24LDD
82016, 12, 26<

ã Find a for the Hohmann transfer

aEJ =
rES + rJS

2

4.639775767´10
8

project.nb 9
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ã find time of flight on the Hohmann transfer

tof = Π
aEJ

3

ΜSun

;

tof � H60*60*24*365L H*years*L
2.73308597

ã Find total wait time which includes sync time and time of flight over Hohmann transfer

waitTimeEarthJupiter = waitTimeEarthJupiter0 + tof;

waitTimeEarthJupiter � HH60*60*24*365LL H*years*L
3.497587767

ã display the date probe arrives to Jupiter SOI

currentDate = DaysPlus@currentDate, Round@tof � H60*60*24LDD
82019, 9, 20<

� Make function to convert Gregorian date to Julian day (Not used at this time)

toJD@d_, m_, y_D := 367 y - IntegerPartB7 Jy + IntegerPartBm+9

12
FN

4

F + IntegerPartB275 m

9

F + d + 1721013.5;

toJD@20, 10, 2014D

2.4569505´10
6

Hyperbolic escape from Earth

ã Find eccentricity of Hohmann transfer ellipse

eEJ =
rJS - rES

rES + rJS

0.6775753668

10 project.nb
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ã Find semi-minor axes for Hohmann ellipse (km)

bEJ = aEJ 1 - eEJ
2

3.412338607´10
8

ã Find velocity at perigee Vp (KM/sec)

vp = ΜSun

2

rES

-
1

aEJ

38.57570557

ã Show drawing (not to scale) of Earth escape hyperbolic trajectory

project.nb 11
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ã Find V¥ to escape earth (km/sec)

vInf = vp -
ΜSun

rES

8.792402687

ã Find rbo the burn out radius (km)

rbo = rE + 300 H*300 KM is altitude*L
6678

ã Find Vbo the burn out speed using the energy equation (km/sec)

Clear@vboD;
eq =

vbo
2

2

-
ΜE

rbo

�
vInf

2

2

-
ΜE

eSOI

;

vbo = First�Select@vbo �. NSolve@eq, vboD, ð > 0 &D
13.99359259

ã Find DV1 needed to escape earth

delV1 = AbsBvbo -
ΜE

rbo

F
6.267757388

ã Calculate the eccentricity of the hyperbolic escape from earth

e = 1 +
vInf

2
vbo

2
rbo

2

ΜE
2

2.291080512

ã Calculate angle Η where DV should be applied

Η = ArcCosB-1

e

F;
Η*180 �Pi

115.8792052

12 project.nb

Printed by Wolfram Mathematica Student Edition

39



2.2. Final project. Earth to Neptune via . . . CHAPTER 2. PRESENTATION . . .

ã Find the turn angle Θ

Θ = Pi - Η;

Θ*180 �Pi

64.12079477

Hohmann transfer between Earth and Jupiter

ã Find mean angular velocity on the Hohmann ellipses (rad/sec)

nHuhmannToJupiter =
ΜSun

aEJ
3

3.644936553´10
-8

ã Find the angular positions that earth and Jupiter will have at the end of the Hohmann transfer. We 

calculated the time of flight from above. So using this time, and knowing the angular velocity of Earth 

the Jupiter, we can find the new angular positions in ecliptic plane.

First display time of flight to Jupiter in days (this is half the period of the Hohmann transfer ellipse)

HtofL � H60*60*24L
997.5763791

ã Find the angle the earth will be at when probe starts Hohmann orbit

ΘE1 = ΘE0 + ΩE*waitTimeEarthJupiter0;

Mod@ΘE1, 2 PiD*180 �Pi

185.0143788

ã Find the angle Jupiter will be at when probe starts Hohmann orbit

ΘJ1 = ΘJ0 + ΩJ*waitTimeEarthJupiter0;

Mod@ΘJ1, 2 PiD*180 �Pi

282.1725945

project.nb 13
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ã Find the angle the earth will be at when probe reach end of Hohmann to Jupiter

ΘE2 = ΘE0 + ΩE* HwaitTimeEarthJupiter0 + tofL;
Mod@ΘE2, 2 PiD*180 �Pi

88.18792204

ã Find the angle Jupiter will be at with probe reach Jupiter

ΘJ2 = ΘJ0 + ΩJ* HwaitTimeEarthJupiter0 + tofL;
Mod@ΘJ2, 2 PiD*180 �Pi

5.014378828

ã Draw diagram showing the initial Earth/Jupiter positions at t=0 and at start of Hohmann transfer and 

at end of Hohmann transfer

14 project.nb
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p

EarthH0L

JupiterH0L

-5´ 10
8

5´ 10
8

-5´ 10
8

5´ 10
8

Positions at time82016, 3, 21<

EarthH1L

JupiterH1L

-5´ 10
8

5´ 10
8

-5´ 10
8

5´ 10
8

Positions at start of Hohmann82016, 12, 25<

EarthH2L
JupiterH2L

-5´ 10
8

5´ 10
8

-5´ 10
8

5´ 10
8

Positions at end of Hohmann82019, 9, 19<

project.nb 15
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ã Draw diagram showing the Hohmann elliptic transfer orbit showing initial positions of planets and 

final positions all on one diagram

EarthH1L

JupiterH1L

EarthH2L
JupiterH2L

-5´ 10
8

5´ 10
8

-5´ 10
8

5´ 10
8

Configuration at end of Hohmann transfer82019, 9, 19<
with positions indicated by H1L,H2L for start�end of transfer

ã Before making the fly-by Jupiter calculations,  lets show the above diagram along with the position of 

Neptune as well. All to scale.

Find the angle Neptune will be at when probe starts on Hohmann transfer from Earth to Jupiter

ΘN1 = ΘN0 + ΩN*waitTimeEarthJupiter0;

Mod@ΘN1, 2 PiD*180 �Pi

70.66784335

ã Find the angle Neptune will be at when probe  ends the  Hohmann transfer from Earth to Jupiter

ΘN2 = ΘN0 + ΩN* HwaitTimeEarthJupiter0 + tofL;
Mod@ΘN2, 2 PiD*180 �Pi H*degree*L
76.630366

16 project.nb
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ã Draw diagram of the three planets at end of Hohmann transfer

EarthH1L

JupiterH1L

EarthH2L
JupiterH2L

NeptuneH1LNeptuneH2L

-4´ 10
9

-2´ 10
9

2´ 10
9

4´ 10
9

-4´ 10
9

-2´ 10
9

2´ 10
9

4´ 10
9

Configuration at end of Hohmann transfer, all planets82019, 9, 19<
with positions indicated by H1L,H2L for start�end of transfer

Fly-by Jupiter, Hyperbolic flyby

project.nb 17
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ã Set the burn out radius rbo . This was found by simulation below in order to obtain the rendezvous 

with Neptune (km)

alt = 410000;

rbo = alt + rJ

481492

ã Find probe speed at entrance to Jupiter SOI

va = ΜSun

2

rJS

-
1

aEJ

H*velocity of craft atJupiter entrance*L
7.414127535

ã Find V¥ for Jupiter flyby (km/sec)

vInf = sJ - va

5.642948859

18 project.nb
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ã Find Vbo the burn out speed using the energy equation (km/sec)

Clear@vboD;
eq =

vbo
2

2

-
ΜJ

rbo

�
vInf

2

2

-
ΜJ

jSOI

;

vbo = First�Select@vbo �. NSolve@eq, vboD, ð > 0 &D
23.5119341

ã Calculate the eccentricity of the hyperbolic escape from Jupiter

e = 1 +
vInf

2
vbo

2
rbo

2

ΜJ
2

1.119944854

ã Find Η angle

Η = ArcCosB-1

e

F;
Η*180 �Pi

153.2400935

ã Find the turn angle

Θ = 2 Η - Pi;

Θ*180 �Pi

126.4801869

project.nb 19
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ã Find impact parameter b (km)

Clear@bD
eq = b vInf � rbo vbo;

b �. First�Solve@eq, bD;
b = %

2.006186563´10
6

ã Find the departure velocity (km/sec)

vdJN =
-IsJ

2
+ vInf

2
- 2 sJ vInf Cos@ΘDM

17.02770468

ã Find semi-major axes (km) of the Hyperbolic fly-by trajectory. Since rbo is rp for the Hyperbolic, we can 

use rbo = aHe - 1L to solve for a

Clear@aHyperD
eq = rbo� aHyper He - 1L;
aHyper = aHyper �. First�Solve@eq, aHyperD
4.014278105´10

6

ã Find the time probe is inside Jupiter SOI during fly-by.  First, find the eccentric anomaly F of the 

hyperbolic trajectory when probe at SOI

Clear@F0D;
eq = jSOI� aHyper He Cosh@F0D - 1L;
F0 = First�Select@HF0 �. NSolve@eq, F0, RealsDL, ð > 0 &D
3.143507611

ã Find the time inside Jupiter SOI. More than 4 months are spent inside Jupiter SOI. Yet, in the patched 

conic approximation, we assume the fly-by happens instantly and this time in simulation is not 

accounted for. But this is approximation.

tJ = 2

aHyper
3

ΜJ

He Sinh@F0D - F0L;
tJ � H60*60*24L H*days*L
162.3555079
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ã Find the date when probe leaves Jupiter SOI

currentDate = DaysPlus@currentDate, Round@tJ � H60*60*24LDD
82020, 2, 29<

ã Find the flight path angle at Jupiter for the new ellipse (post-fly ellipse) relative to sun

Clear@zD;
sol =QuietBSolveBSin@zD� vInf Sin@ΘD

vdJN

, zFF;
Γ = z �. First�sol;

Γ*180 �Pi

15.45400848

Departure from Jupiter. (Image edited from class handouts)

� Velocity diagram of the fly-by Jupiter

A summary of the above calculations is now given in terms of velocity diagram
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ã Find DV due to fly-by (km/sec)

delV = 2 vInf SinB Θ
2

F
10.07719057

Post-fly by calculations of new Ellipse

ã Find the semi-major axes a of the post-fly ellipses (KM)

Clear@zD;
eq = vdJN == ΜSun

2

rJS

-
1

z

;

aJN = z �. First�NSolve@eq, zD
2.600341362´10

9
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ã Find the eccentricity of the post-fly ellipse, to transfer to Neptune

Clear@zD;
eq = Cos@ΓD� aJN

2 I1 - z
2M

rJS H2 aJN - rJSL ;

sol = NSolve@eq, zD;
sol = z �. sol;

e = First�Select@sol, ð > 0 &D
0.7260062019

ã Find true anomaly at Jupiter for the new ellipse

Clear@zD;
eq = rJS�

aJN I1 - e
2M

1 + e Cos@zD ;H*sol=z�.First�FindRoot@eq,8z,ΘJ2<D;*L
sol = z �. FindRoot@eq, 8z, Pi �8<D;
fJN = sol;

fJN*180 �Pi

36.98646614

ã Since Γ was positive (from above) then the true anomaly will be between zero and 180

ã Find rp of the new ellipse  (km)

rpJN = aJN H1 - eL
7.12477406´10

8

ã Find ra of the new ellipse (km)

raJN = aJN H1 + eL
4.488205318´10

9

ã Find semi-minor axes of new ellipse (km)

bJN = aJN 1 - e
2

1.788223946´10
9
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ã Find center of new ellipse

xc2 = -aJN*e;

yc2 = 0;

Transfer on new ellipse from Jupiter to Neptune, post-flyby

ã Now that the new ellipse is found, it can be drawn to scale to show all trajectories found so far. This 

shows at the time when the Hohmann transfer was just completed with the new Ellipse draw showing 

the trajectory from Jupiter to Neptune, but the actual transfer has not started yet

EarthH1L

JupiterH1L

EarthH2L
JupiterH2L

NeptuneH1LNeptuneH2L

-4´ 10
9

-2´ 10
9

2´ 10
9

4´ 10
9

-4´ 10
9

-2´ 10
9

2´ 10
9

4´ 10
9

Configuration at end of Hohmann transfer, all planets and final ellipse82019, 9, 19<
with positions indicated by H1L,H2L for start�end of Hohmann transfer
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ã zoom into the above diagram showing the flyby Jupiter area

EarthH1L

JupiterH1L

EarthH2L
JupiterH2L

-1´ 10
9

-5´ 10
8

5´ 10
8

1´ 10
9

-1´ 10
9

-5´ 10
8

5´ 10
8

1´ 10
9

Showing the fly-by effect and the flight path angle82020, 2, 29<
with positions indicated by H1L,H2L for start�end of Hohmann transfer
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ã Show the positions of planets at end of trajectory when probe enters Neptune SOI. First find the time 

it takes to travel from Jupiter to Neptune on the new ellipse

ã Find E1, and E2 for new ellipse

Clear@E1D;
eq = rJS == aJN H1 - e Cos@E1DL;
E1 = First�Select@E1 �. Quiet@NSolve@eq, E1DD, ð > 0 &D;
E1*180 �Pi

15.18098712

Clear@E2D;
eq = rNS == aJN H1 - e Cos@E2DL;
E2 = HE2 �. Quiet@FindRoot@eq, 8E2, Pi �5<DDL;
E2*180 �Pi

179.9999997

timeOfFlyOnNewEllipse =
aJN

3

ΜSun

HHE2 - E1L - e Sin@E2 - E1DL

9.779114032´10
8

ã In days

tof2 = timeOfFlyOnNewEllipse � H60*60*24L + 1400

12718.41902

ã Find date it arrives to Neptune SOI

currentDate = DaysPlus@currentDate, Round@tof2DD
82054, 12, 25<

ã Time on new ellipse in years

timeOfFlyOnNewEllipse � H60*60*24*365L
31.00936717
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ã Find positions of all planets at the final day

EarthH1L

JupiterH1L

EarthH2L
JupiterH2L

NeptuneH1LNeptuneH2L

EarthH3L

JupiterH3L

NeptuneH3L

-4´ 10
9

-2´ 10
9

2´ 10
9

4´ 10
9

-4´ 10
9

-2´ 10
9

2´ 10
9

4´ 10
9
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ã Zoom in at the area where the probe enters Neptune SOI

Show@p1, p2, p3, p41, p7, p6, ImageSize® 500, PlotRange® 88-rNS, -0.2 rNS<, 80.1 rNS, 0.9 rNS<<D

NeptuneH3L

-3.5´ 10
9

-3.0´ 10
9

-2.5´ 10
9

-2.0´ 10
9

-1.5´ 10
9

-1.0´ 10
9

1.0´ 10
9

1.5´ 10
9

2.0´ 10
9

2.5´ 10
9

3.0´ 10
9

3.5´ 10
9

4.0´ 10
9

Move probe into final circular orbit around Neptune, final DV applied

ã Now that probe is inside Neptune SOI, we use make a burn out to slow it down into a circular orbit 

around Neptune. First find the speed the probe is at when it enters Neptune SOI using the ellipse 

equation (km/sec). Simulation stops when probe is just inside Neptune SOI. Let the altitude above 

Neptune be 1000 KM as the final parking orbit. The probe arrive on tangential approach to Neptune, 

hence the speed at apogee is

v0 = ΜSun

2

raJN

-
1

aJN

2.846226578
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ã Find the required  speed the probe in a circular orbit around Neptune (KM/sec) assuming 1000 km 

altitude above the surface

v1 = ΜN
1.

rN + 1000

16.28962869

ã Find DV needed (km)

delV2 = v1 - v0

13.44340211

Find total DV needed for the whole interplanetary trip and compare to if 

Hohmann transfer was used all the way from Earth to Neptune

delV = Abs@delV1D + Abs@delV2D
19.7111595

ã The above is DV using fly-by Jupiter. Now lets find DV assuming Hohmann transfer from Earth to 

Neptune. First find a for this new ellipse (km)

aDirect =
rES + rNS

2

2.324001823´10
9

ã Find Vp needed (km/sec)

vp = ΜSun

2

rES

-
1

aDirect

41.43658381
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ã Find needed V¥ to escape Earth

vInf = vp -
ΜSun

rES

11.65328093

ã Find rbo the burn out radius

rbo = rE + 300 H*300 KM is altitude*L
6678

ã Find Vbo the burn out speed using the energy equation (km/sec)

Clear@vboD;
eq =

vbo
2

2

-
ΜE

rbo

�
vInf

2

2

-
ΜE

eSOI

;

vbo = First�Select@vbo �. NSolve@eq, vboD, ð > 0 &D
15.94720179

ã Find DV1 needed to escape earth

delV1Direct = AbsBvbo -
ΜE

rbo

F
8.22136659

ã Now find Va at the apogee at Neptune end of the ellipse (km/sec)

va = ΜSun

2

rNS

-
1

aDirect

1.378004117

ã Find the needed circular speed around Neptune (using SOI since that is what was used above)

v3 = N�
ΜN

rN + 1000

16.28962869
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ã Find DV2 needed at Neptune

delV2Direct = v3 - va

14.91162457

ã Find total delV

Abs@delV1DirectD + Abs@delV2DirectD
23.13299116

ã Therefore, when using flyby, total DV was 19.71  km/sec, and using direct Hohmann transfer, total DV 

is 23.13 The saving is about 3.4 km/sec. 

� Find the time to travel from Earth to Neptune if direct Hohmann transfer was made

The time in this case is half the period of the Hohmann transfer ellipse, which can be found as follows

time = Pi

aDirect
3

ΜSun

;

time � H60*60*24*365L H*years*L
30.63814738
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Appendix

Simulation program source code

In[93]:= H*NotebookDelete@Cells@EvaluationNotebook@D,GeneratedCell®TrueDD;*L
ManipulateB

tick;

ModuleB
8xE, yE, xJ, yJ, xN, yN, eq, sol, xcc, ycc, slope, eq1, eq2, debug = False, va, ra, z, delt, rbo, r, g0, now, x0, y0<,
IfBHstate� "RUN" ÈÈ state� "STEP" ÈÈ state� "INITIAL"L,

delt =Which@timeStep == "day", 60*60*24,

timeStep == "week", 60*60*24*7,

timeStep == "month", 60*60*24*30,

timeStep == "year", 60*60*24*365D;
xE = rES Cos@ΘED; yE = rES Sin@ΘED;H*xJ=rJS Cos@ΘJD;yJ=rJS Sin@ΘJD;*L
xJ = rJS Cos@ΘJxD; yJ = rJS Sin@ΘJxD;
xN = rNS Cos@ΘND; yN = rNS Sin@ΘND;
date = DaysPlus@date,

Which@timeStep� "day", 1, timeStep� "week", 7, timeStep == "month", 30, timeStep == "year", 365DD;
now =Grid@88"year", "month", "day"<,8padIt2@date@@1DD, 4D, padIt2@date@@2DD, 2D, padIt2@date@@3DD, 3D<<, Frame® AllD;
If@showStats, g0 =

Grid@88Grid@88Style@"Timings and angles as simulation runs", BoldD, SpanFromLeft<,8"ΘE", "ΘJ", "ΘN", "ΘHohmann", "State", "Phase", "Θ Hohmann"<,8padIt2@ΘE*180. �Pi, 85, 2<D,H*padIt2@ΘJ*180.�Pi,85,2<D,*L
padIt2@ΘJx*180. �Pi, 85, 2<D,
padIt2@ΘN*180. �Pi, 85, 2<D,
padIt2@ΘEarthJupitor*180. �Pi, 85, 2<D,
state,

padIt2@phase, 1D,
padIt2@ΘEarthJupitor*180 �Pi, 85, 2<D<<, Frame® AllD<,8Grid@88Style@"mean speeds Hkm�secL", BoldD, SpanFromLeft<,

,
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In[93]:=

8"Earth", "Jupiter", "Neptune", "probe to Neptune"<,8padIt2@sE, 84, 2<D,
padIt2@sJ, 84, 2<D,
padIt2@sN, 84, 2<D,
padIt2@nJN*aJN, 84, 2<D<<, Frame® AllD<,8Grid@88Style@"Dimenstions data and current probe speed", BoldD, SpanFromLeft<,8"rES", "rJS", "rNS", "current ProbeSpeed Hkm�secL"<,8EngineeringForm@rES, 3D,
EngineeringForm@rJS, 3D,
EngineeringForm@rNS, 3D,
padIt2@currentProbeSpeed, 84, 2<D<<, Frame® AllD<,8Grid@88Style@"current positions in space", BoldD, SpanFromLeft<,8"xN", "yN", "x probe", "y probe", "dist. probe to Neptuen"<,8EngineeringForm@xN, 3D,
EngineeringForm@yN, 3D,
EngineeringForm@x, 3D,
EngineeringForm@y, 3D,
EngineeringForm@EuclideanDistance@8xN, yN, 0<, 8x, y, 0<D, 3D<<, Frame® AllD<,8Grid@88Style@"Hohmann transfer from Earth to Jupiter data", BoldD, SpanFromLeft<,8"a", "rp", "ra", "e", "current f", "current E"<,8EngineeringForm@aEJ, 3D,
EngineeringForm@rES, 3D,
EngineeringForm@rJS, 3D,
padIt2@eEJ, 86, 5<D,
padIt2@currentf *180 �Pi, 85, 2<D,
padIt2@currentE*180 �Pi, 85, 2<D<<, Frame® AllD<,8Grid@88Style@"hyperbolic Jupiter flyby", BoldD, SpanFromLeft<,8"V¥ Hkm�sL", "e Hyper", "Η Hyper HdegL", "Γd HdegreeL", "Θturn", "Vd Hkm�sL"<,8padIt2@vInfinityHyperJ, 86, 3<D,
padIt2@eHyperJ, 88, 7<D,
padIt2@ΗHyperJ*180 �Pi, 85, 3<D,
padIt1@ΓJN*180 �Pi, 84, 1<D,
padIt1@ΘJNoriginal*180 �Pi, 84, 1<D,
padIt1@vdJN, 85, 3<D<<, Frame® AllD<,
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In[93]:=

8Grid@88Style@"Post fly-by ellipse, Jupiter to Neptune", BoldD, SpanFromLeft<,8"aJN", "rpJN", "raJN", "eJN HeccentricityL",
"fnew Htrue anamolyL", Style@"mean probe speed deg�day", 9D<,8EngineeringForm@aJN, 3D,
EngineeringForm@rpJN, 3D,
EngineeringForm@raJN, 3D,
padIt2@eJN, 86, 5<D,
padIt1@fJNoriginal*180 �Pi, 84, 1<D,
padIt1@nJN*180 �Pi*60*60*24, 86, 4<D<<, Frame® AllD<,8Grid@88"current E HspacecraftL",
"current f",

"nHuhmannToJupiter Hdeg�dayL",
"nJNHdeg�dayL"<,8padIt1@currentE*180 �Pi, 84, 1<D,
padIt1@currentf *180 �Pi, 84, 1<D,
padIt1@nHuhmannToJupiter*180 �Pi*60*60*24, 86, 4<D<<, Frame® AllD<<DD;

g =GridB::GraphicsB:
H*8White,EdgeForm@Directive@BlueDD,Disk@80,0<,rNSD<,*L8White, Opacity@0D, EdgeForm@Directive@BlueDD, Disk@80, 0<, rNSD<,8White, Opacity@0D, EdgeForm@Directive@BlueDD, Disk@80, 0<, rJSD<,8White, Opacity@0D, EdgeForm@Directive@BlueDD, Disk@80, 0<, rESD<,8Blue, Opacity@.1D, Thickness@0.022D, EdgeForm@GrayD, Circle@80, 0<, rNSD<,
WhichBphase� 0,

8LightBlue, Opacity@.5D, EdgeForm@GrayD, Disk@80, 0<, rJS, 8ΘE, ΘE + ΘEarthJupitor <D<
,

phase� 1,:
Clear@currentED;
currentE = currentE �. First�

QuietBNSolveB tPhase1 == SqrtB aEJ
3

ΜSun

F HcurrentE - eEJ Sin@currentEDL, currentE, RealsFF;
currentE =Mod@currentE, 2 PiD;
currentR = aEJ* H1 - eEJ*Cos@currentEDL;
x0 = aEJ Cos@currentED;
x0 = x0 - HaEJ - rESL;
y0 = aEJ 1 - eEJ

2
Sin@currentED;

r = RotationMatrix@-initialHohmannD;8x, y< = 8x0, y0<.r;
;
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In[93]:=

currentProbeSpeed = ΜSun

2

currentR

-
1

aEJ

;

tPhase1 = tPhase1 + delt;8 H*Rotate@8Blue,Disk@8x,y<,sizeD<,initialHohmann,80,0<D,*L8Blue, Disk@8x, y<, size �4D<,
Rotate@8Red, Circle@8xc, yc<, 8aEJ, bEJ<, 80, Pi<D<, initialHohmann, 80, 0<D,
Rotate@8Red, Dashed, Line@88-aEJ H1 + eEJL, 0<, 8aEJ H1 - eEJL, 0<<D<, initialHohmann, 80, 0<D<>,

phase� 2,:
Clear@currentED;
currentE = currentE �. First�

QuietBNSolveB tPhase2 == SqrtB aJN
3

ΜSun

F HcurrentE - eJN Sin@currentEDL, currentE, RealsFF;
currentE =Mod@currentE, 2 PiD;
currentR = aJN* H1 - eJN*Cos@currentEDL;
x0 = aJN Cos@currentED;
x0 = x0 - HaJN - rJSL;
y0 = aJN 1 - eJN

2
Sin@currentED;

r = RotationMatrix@-HΘJForPhase2LD;8x, y< = 8x0, y0<.r;
currentProbeSpeed = ΜSun

2

currentR

-
1

aJN

;

If@EuclideanDistance@8xN, yN, 0<, 8x, y, 0<D < nSOI,

state = "STOP"D;
tPhase2 = tPhase2 + delt;

8Blue, Disk@8x, y<, size �4D<, H*moving spacecraft*L8Blue, Dashed, Line@880, 0<, 8x, y<<D<, H*moving spacecraft*L
H*rendevouze location Jupiter and earth*LH*8Black,Disk@8rJS Cos@ΘJForPhase2+fJND,rJS Sin@ΘJForPhase2+fJND<,sizeD<,*L8 H*original Hohmann Jupiter earth*L

Rotate@8Red, Circle@8xc, yc<, 8aEJ, bEJ<, 80, Pi<D<, initialHohmann, 80, 0<D,H*new ellipse post flyby*L
Rotate@8Red, Dashed, Circle@8xc2, yc2<, 8aJN, bJN<D<, ΘJForPhase2, 80, 0<D<>

F,
8Opacity@.4D, Red, Disk@8xE, yE<, sizeD<,

,

>
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In[93]:=

8Opacity@.4D, Red, Disk@8xJ, yJ<, sizeD<,8Red, Disk@8xN, yN<, nSOID<>
, PlotRange® 88-maxX, maxX<, 8-maxX, maxX<<,
If@showStats, ImageSize® 400, ImageSize® 600D, Axes® TrueF

>>F
F;
IfBstate� "RUN" ÈÈ state� "STEP",

t = t + delt;

ΘE =Mod@ΘE + ΩE*delt, 2 PiD;
ΘJx =Mod@ΘJx + ΩJ*delt, 2 PiD;
ΘN =Mod@ΘN + ΩN*delt, 2 PiD;
WhichBphase� 0,

IfBAbs@HMod@ΘE + ΘEarthJupitor, 2 PiD -Mod@ΘJx, 2 PiDLD £ 5 Degree ,

If@debug, Print@"detected Hohmann lock in,Mod@ΘE+ΘEarthJupitor,2 PiD=",

Mod@ΘE + ΘEarthJupitor, 2 PiD, " Mod@ΘJx,2 PiD=", Mod@ΘJx, 2 PiDDD;
If@debug, Print@"setting phase=1"DD;
phase = 1;

aEJ =
rES + rJS

2

;

eEJ =
rJS - rES

rES + rJS

;

bEJ = aEJ 1 - eEJ
2

;

lockAngleWithJupiter =Mod@ΘE + Pi, 2 PiD;
xf = rES Cos@ΘED;
yf = rES Sin@ΘED;
If@debug, Print@"e Hohmann=", eEJDD;
nHuhmannToJupiter =

ΜSun

aEJ
3

;

initialHohmann = ΘE;

xc = -aEJ eEJ;

yc = 0;

tPhase1 = 0F,
phase� 1,

IfBAbs@lockAngleWithJupiter - ΘJxD £ Pi �100,

phase = 2;

va = ΜSun

2

rJS

-
1

aEJ

; H*velocity of craft atJupiter entrance*L

;

;
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In[93]:=

vInfinityHyperJ = sJ - va;

rbo = rJ + SOIrb0 ; H*use this KM*L
Clear@vboD;
eq =

vbo
2

2

-
ΜJ

rbo

�
vInfinityHyperJ

2

2

-
ΜJ

jSOI

;

vbo = First�Select@vbo �. NSolve@eq, vboD, ð > 0 &D;
eHyperJ = 1 +

rbo vInfinityHyperJ
2

ΜJ

;

ΗHyperJ = ArcCosB -1

eHyperJ

F;
ΘJN = 2 ΗHyperJ - Pi;

ΘJNoriginal = ΘJN;

vdJN =
-IsJ

2
+ vInfinityHyperJ

2
- 2 sJ vInfinityHyperJ Cos@ΘJNDM;

Clear@zD;
sol = SolveBSin@zD� vInfinityHyperJ Sin@ΘJND

vdJN

, zF;
ΓJNoriginal = z �. sol;

ΓJN = z �. First�sol;

Clear@zD;
eq = vdJN == ΜSun

2

rJS

-
1

z

;

aJN = z �. First�NSolve@eq, zD;
Clear@zD;
eq = Cos@ΓJND� aJN

2 I1 - z
2M

rJS H2 aJN - rJSL ;

sol = NSolve@eq, zD;
sol = z �. sol;

eJN = First�Select@sol, ð > 0 &D;
Clear@zD;
eq = rJS�

aJN I1 - eJN
2M

1 + eJN Cos@zD ;
sol = z �. NSolve@eq, zD;
fJNoriginal = sol;

fJN = If@ΓJN ³ 0, First�Select@sol, ð > 0 &D, First�Select@sol, ð < 0 &DD;
rpJN = aJN H1 - eJNL;
raJN = aJN H1 + eJNL;
bJN = aJN 1 - eJN

2
;

ΘJForPhase2 = ΘJx - fJN;

xc2 = -aJN*eJN;

yc2 = 0;

;

;
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In[93]:=

nJN =
ΜSun

aJN
3

;

currentE = ArcCosB1 -
rJS

aJN

eJN

F;
currentf = 0;

Clear@zD;
eq = Tan@fJN �2D� 1 + eJN

1 - eJN

Tan@z �2D;
z = z �. First�NSolve@eq, zD;
Clear@tPhase2D;
tPhase2 = tPhase2 �. First�QuietBNSolveB tPhase2 == SqrtB aJN

3

ΜSun

F Hz - eJN Sin@zDL, tPhase2, RealsFF;
If@debug, Print@"currentE for JN is =", currentE*180 �PiDD;FH*Entered SOI jupiter*L

F
F;
If@state� "RUN",

vp@@vpIdx, 1DD = t;

vp@@vpIdx, 2DD = currentProbeSpeed;

vpIdx++;

tick = Not@tickDD;
If@showStats,

Grid@88g0<, 8g<, 8now<<D,
Grid@88g<, 8now<<DD

F,
Grid@88Grid@88Button@Text@Style@"run", 12DD, state = "RUN"; tick = Not@tickD, ImageSize® 860, 35<D,

Button@Text@Style@"step", 12DD, state = "STEP"; tick = Not@tickD, ImageSize® 860, 35<D,
Button@Text@Style@"stop", 12DD, state = "STOP"; tick = Not@tickD, ImageSize® 860, 35<D<<, Frame® TrueD,

Grid@88"zoom",

PopupMenu@Dynamic@zoom, 8zoom = ð ; Which@zoom� "Earth", maxX = 1.2 rES, zoom� "Jupiter",

maxX = 1.2 rJS, True, maxX = 1.2 rNSD; tick = Not@tickD< &D, 8"Earth", "Jupiter", "Neptune"<,
ImageSize® Tiny, ContinuousAction® FalseD<<, Frame® TrueD,

Grid@88
"jupiter flyby alt",

Manipulator@Dynamic@SOIrb0, 8SOIrb0 = ð ; tick = Not@tickD< &D,
, , D,

38 project.nb
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In[93]:=

81000, 10^6, 1000<, ImageSize® Tiny, ContinuousAction® TrueD,
Dynamic@padIt2@SOIrb0, 6DD<<, Frame® TrueD,

Grid@88"step",

PopupMenu@Dynamic@timeStep, 8timeStep = ð ; tick = Not@tickD< &D, 8"day", "week", "month", "year"<,
ImageSize® Tiny, ContinuousAction® FalseD<<, Frame® TrueD,

Grid@88"relax", Spacer@2D, Checkbox@Dynamic@showStats, 8showStats = ð ; tick = Not@tickD< &DD<<D<<, Spacings® 80.4, .2<, Alignment® CenterD,
88showStats, False<, None<,H*hyper flyby Jupiter parameters*L88eHyperJ, 0<, None<,88ΗHyperJ, 0<, None<,88vInfinityHyperJ, 0<, None<,
88x, 0<, None<,88y, 0<, None<,
88maxX, 1.1 rNS<, None<,88zoom, "Neptune"<, None<,88SOIrb0, 410000<, None<,H*88SOIrb0,395000<,None<,*LH*88SOIrb0,390000<,None<,*L88timeStep, "week"<, None<,88size, 10000 rE<, None<,88tick, False<, None<,88state, "INITIAL"<, None<,88phase, 0<, None<,H*set 03�21�2014 ΘE=180+90, ΘJ=111.30+90, ΘN=334.9963+90 *LH*88ΘJ,H111.30 +90LDegree<,None<,88ΘN,Mod@H334.9963 +90L,360DDegree<,None<,88ΘE,270 Degree<,None<,*L
H*set 09�21�2014 very close *LH*88ΘJx,H126.2818+90LDegree<,None<,88ΘN,Mod@H336.1014+90L,360DDegree<,None<,88ΘE,Mod@356.7575+90,360D Degree<,None<,*L
H*set 10�21�2014 very very close=========> *LH*88ΘJx,H128.6882+90LDegree<,None<,88ΘN,Mod@H336.2816+90L,360DDegree<,None<,88ΘE,Mod@26.3119+90,360D Degree<,None<,*L
H*set 10�01�2014 ok, with 340,000 *L

project.nb 39
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In[93]:=

H*88ΘJx,H127.1652+90LDegree<,None<,88ΘN,Mod@H336.167+90L,360DDegree<,None<,88ΘE,Mod@7.5386+90,360D Degree<,None<,*L
H*set 03�21�2016 *L88ΘJx, H169 + 90LDegree<, None<,88ΘN, Mod@H339 + 90L, 360DDegree<, None<,88ΘE, 270 Degree<, None<,
H*set 03�15�2016 *LH*88ΘJx,H168.5740+90LDegree<,None<,88ΘN,Mod@H339.3579+90L,360DDegree<,None<,88ΘE,H174.6131+90L Degree<,None<,*L
H*set 03�30�2016 *LH*88ΘJx,H169.7170+90LDegree<,None<,88ΘN,Mod@H339.4480+90L,360DDegree<,None<,88ΘE,H189.4931+90L Degree<,None<,*L
H*set 04�15�2016 *LH*88ΘJx,H170.9351+90LDegree<,None<,88ΘN,Mod@H339.5442+90L,360DDegree<,None<,88ΘE,H205.2323+90L Degree<,None<,*L
H*set 05�15�2016 *LH*88ΘJx,H173.2164+90LDegree<,None<,88ΘN,Mod@H339.7246+90L,360DDegree<,None<,88ΘE,H234.3716+90L Degree<,None<,*L
H*set 06�15�2016 *LH*88ΘJx,H175.5701+90LDegree<,None<,88ΘN,Mod@H339.9109+90L,360DDegree<,None<,88ΘE,H264.1023+90L Degree<,None<,*L
H*set 01�01�2016 *LH*88ΘJx,H162.9198+90LDegree<,None<,88ΘN,Mod@H338.9131+90L,360DDegree<,None<,88ΘE,H99.7590+90L Degree<,None<,*L
H*set 03�21�2000 ΘE=179.5877, ΘJ=43.4305+90, ΘN=304.3955+90*LH*88ΘJ,H43.4305+90LDegree<,None<,88ΘN,Mod@H304.3955+90L,360DDegree<,None<,88ΘE,270 Degree<,None<,*L
H*set 03�21�2017 *LH*88ΘJ,H196.5839 +90LDegree<,None<,88ΘN,Mod@H341.5831 +90L,360DDegree<,None<,88ΘE,270 Degree<,None<,*L
H*set 03�21�2020 OK *L

40 project.nb
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In[93]:=

H*88ΘJ,Mod@H282.3034+90L,360DDegree<,None<,88ΘN,Mod@H348.1929 +90L,360DDegree<,None<,88ΘE,270 Degree<,None<,*L
H*88ΘJx,Pi�4<,None<,88ΘJxx,45<,None<,*L
88t, 0<, None<,88tPhase1, 0<, None<,88tPhase2, 0<, None<,88date, 82016, 03, 21<<, None<,88a, 0<, None<,88e, 0<, None<,88nHuhmannToJupiter, 0<, None<,88nJN, 0<, None<,88currentE, 0<, None<,88currentf, 0<, None<,88initialHohmann, 0<, None<,88xf, 0<, None<,88yf, 0<, None<,88xc, 0<, None<,88yc, 0<, None<,88xc2, 0<, None<,88yc2, 0<, None<,88currentR, 0<, None<,88lockAngleWithJupiter, 0<, None<,88lockAngleWithNeputon, 0<, None<,88aJN, 0<, None<,88raJN, 0<, None<,88rpJN, 0<, None<,88bJN, 0<, None<,88eJN, 0<, None<,88fJN, 0<, None<,88fJNoriginal, 0<, None<,
88aEJ, 0<, None<,88bEJ, 0<, None<,88eEJ, 0<, None<,88fEJ, 0<, None<,88ΘJForPhase2, 0<, None<,
88ΓJN, 0<, None<,88ΓJNoriginal, 0<, None<,88ΘJN, 0<, None<,88ΘJNoriginal, 0<, None<,88vdJN, 0<, None<,88currentProbeSpeed, 0<, None<,88g, 0<, None<,88g0, 0<, None<,88vp, Table@80, 0<, 850*365<D<, None<,88vpIdx, 1<, None<,
TrackedSymbols¦ 8tick<,

,

project.nb 41
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In[93]:=

ControlPlacement® Top,

Initialization¦H
integerStrictPositive = HIntegerQ@ð D && ð > 0 &L;
integerPositive = HIntegerQ@ð D && ð ³ 0 &L;
numericStrictPositive = HElement@ð , RealsD && ð > 0 &L;
numericPositive = HElement@ð , RealsD && ð ³ 0 &L;
numericStrictNegative = HElement@ð , RealsD && ð < 0 &L;
numericNegative = HElement@ð , RealsD && ð £ 0 &L;
bool = HElement@ð , BooleansD &L;
numeric = HElement@ð , RealsD &L;
integer = HElement@ð , IntegersD &L;H*--------------------------------------------*L
padIt1@v_?numeric, f_ListD := AccountingForm@v,

f , NumberSigns® 8"-", "+"<, NumberPadding® 8"0", "0"<, SignPadding® TrueD;H*--------------------------------------------*L
padIt1@v_?numeric, f_IntegerD := AccountingForm@Chop@vD,

f , NumberSigns® 8"-", "+"<, NumberPadding® 8"0", "0"<, SignPadding® TrueD;H*--------------------------------------------*L
padIt2@v_?numeric, f_ListD := AccountingForm@v,

f , NumberSigns® 8"", ""<, NumberPadding® 8"0", "0"<, SignPadding® TrueD;H*--------------------------------------------*L
padIt2@v_?numeric, f_IntegerD := AccountingForm@Chop@vD,

f , NumberSigns® 8"", ""<, NumberPadding® 8"0", "0"<, SignPadding® TrueDLF

Out[93]=

42 project.nb
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Out[93]=

run step stop zoom Jupiter
jupiter

flyby alt

410000

step

-5´ 10
8

5´ 10
8

-5´ 10
8

5´ 10
8

year month day

2019 05 026

project.nb 43
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2.2.4 Matlab code

I do not now remember why I wrote this for. I think it was an initial attempt in Matlab,
because in the final report I used Mathematica. But here is the listing. It seems to be do
something. I should make an animation of this.

nma_project2_EMA550_v3.m� �
1 function nma_project2_EMA550_v3
2

3 close all;
4 MODE=1;
5

6 earthToSun = 1.495978*10^8;
7 jupiterToSun = 1.495978*10^8*5.203;
8 neptuneToSun = 30.07*1.495978*10^8;
9 jupiterR=71492;
10 muSun = 1.327*10^11;
11 muJupiter = 126686534;
12 jupiterSOI=4.83*10^7;
13 rE = 6378;
14 earthCurrentP=10*pi/180;
15 earthInitialP=10*pi/180;
16 neptuneCurrentP=mod((335.0023 + 180), 360)*pi/180;
17 neptuneInitialP=mod((335.0023 + 180), 360)*pi/180;
18 jupiterCurrentP=(1)*pi/180;
19 jupiterInitialP=(1)*pi/180;
20

21 if jupiterCurrentP<earthInitialP
22 initialPhasEarthJupitor=2*pi-(earthInitialP-jupiterCurrentP);
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23 else
24 initialPhasEarthJupitor=jupiterCurrentP-earthInitialP;
25 end
26

27 if MODE==0
28 p=hohmannPeriod(earthToSun, jupiterToSun, muSun);
29 a=semiMajor(earthToSun, jupiterToSun);
30 e=hohmannEnergy(earthToSun, jupiterToSun, muSun);
31 a=hohmannAngle(earthToSun, jupiterToSun);
32 v=vperigee(earthToSun, jupiterToSun, muSun);
33 w=angularVelocity(earthToSun, muSun);
34 p=updatePosition(earthToSun,0,1, muSun);
35 [rt,transferTime]=biEllipticalTransfer(rE,earthToSun, �...
36 jupiterToSun,initialPhasEarthJupitor,muSun)
37 end
38

39 [rTransferToJupiter,transferTime]=biEllipticalTransfer(...
40 2*rE,earthToSun, jupiterToSun,initialPhasEarthJupitor,muSun);
41

42 huhmannToJupiterSemiMajor1 = (earthToSun + rTransferToJupiter)/2;
43 eHuhmannToJupiter1 = (rTransferToJupiter - earthToSun)/...
44 (rTransferToJupiter + earthToSun);
45

46 nHuhmannToJupiter1 = 1/ sqrt(huhmannToJupiterSemiMajor1^3/muSun);%rad/sec
47 periodhuhmannToJupiter1 = 2*pi/nHuhmannToJupiter1;
48

49 huhmannToJupiterSemiMajor2 = (rTransferToJupiter + jupiterToSun)/2;
50 if rTransferToJupiter<jupiterToSun
51 eHuhmannToJupiter2 = (jupiterToSun-rTransferToJupiter)/...
52 (rTransferToJupiter + jupiterToSun);
53 else
54 eHuhmannToJupiter2 = (rTransferToJupiter-jupiterToSun)/...
55 (rTransferToJupiter + jupiterToSun);
56 end
57 nHuhmannToJupiter2 = 1/ sqrt(huhmannToJupiterSemiMajor2^3/muSun);%rad/sec*)
58 periodhuhmannToJupiter2 = 2*pi/nHuhmannToJupiter2;
59

60 wEarth = angularVelocity(earthToSun, muSun);
61 wJupiter = angularVelocity(jupiterToSun, muSun);
62 wNeptune = angularVelocity(neptuneToSun, muSun);
63 hohmannAngleJupiter = hohmannAngle(earthToSun, jupiterToSun);
64 hohmannAngleNeptune = hohmannAngle(earthToSun, neptuneToSun);
65 ndays1=0;
66 ndays2=0;
67 ndays3=0;
68

69 currentTimeInSec=0;
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70 time1=0;
71 time2=0;
72 time3=0;
73

74 currentF=0;
75 currentE=0;
76

77 figure;
78 axis square
79 hold on;
80 syms EE currentTheta;
81 firstTime=true;
82 firstTimeFlyBy=true;
83 stepSize=60*60*24*60; %month
84 doneLoop=false;
85

86 for i=0:10000
87

88

89 if currentTimeInSec < periodhuhmannToJupiter1/2
90 ndays1=currentTimeInSec/(60*60*24);
91 currentE = nHuhmannToJupiter1*currentTimeInSec;
92 currentR = huhmannToJupiterSemiMajor1*...
93 (1 - eHuhmannToJupiter1*cos(currentE));
94

95 eq = cos(currentTheta) == (eHuhmannToJupiter1 - ...
96 cos(currentE))/(eHuhmannToJupiter1*cos(currentE) - 1);
97

98 solCurrentTheta = double(vpa(solve(eq, currentTheta)));
99 solCurrentTheta = solCurrentTheta(solCurrentTheta==...
100 real(solCurrentTheta));
101

102 solCurrentTheta = solCurrentTheta(solCurrentTheta>0);
103 solCurrentTheta = min(solCurrentTheta)+earthInitialP;
104 else %on second ellipse, long one
105 if currentTimeInSec >= periodhuhmannToJupiter1/2 && ...
106 time2<periodhuhmannToJupiter2
107

108 time2 = time2 +stepSize;
109 if firstTime
110 time2=time2+periodhuhmannToJupiter2/2;
111 firstTime=false;
112 end
113 ndays2=(time2-periodhuhmannToJupiter2/2)/(60*60*24);
114 currentE = nHuhmannToJupiter2*time2;
115 currentR = huhmannToJupiterSemiMajor2*...
116 (1 - eHuhmannToJupiter2*cos(currentE));
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117 eq = cos(currentTheta) == (eHuhmannToJupiter2 - ...
118 cos(currentE))/(eHuhmannToJupiter2*cos(currentE) - 1);
119

120 solCurrentTheta = double(vpa(solve(eq, currentTheta)));
121

122 solCurrentTheta = solCurrentTheta(solCurrentTheta==...
123 real(solCurrentTheta));
124

125 z=solCurrentTheta(solCurrentTheta<0);
126 if length(z)>=1
127 if abs(z)<pi
128 z=2*pi+z;
129 else
130 z=pi-z;
131 end
132 else
133 z=max(solCurrentTheta);
134 end
135 solCurrentTheta = z+earthInitialP;
136 else %third legg calculate flyby
137 if firstTimeFlyBy
138 firstTimeFlyBy=false;
139

140 %this assume jupiter is at perigee!!
141 vp=sqrt(muSun*(2/jupiterToSun - 1/...
142 huhmannToJupiterSemiMajor2));
143

144 vJupiter = sqrt(muSun/jupiterToSun);
145 vinf= abs(vp-vJupiter);
146 rbo=500+jupiterR;
147 vbo= sqrt(2*( muJupiter/rbo + vinf^2/2 - ...
148 muJupiter/jupiterSOI));
149

150 eHyper=1+ (rbo*vinf^2)/muJupiter;
151

152 eta = acos(-1/eHyper);
153 theta=2*eta-pi;
154

155 %vD = sqrt(vJupiter^2+vinf^2-2*vJupiter*vinf*cos(theta));
156 vD = sqrt(vp^2+vinf^2-2*vp*vinf*cos(theta));
157

158 gamma=asin(vinf*sin(theta)/vD);
159

160 syms anew;
161 eq=vD==sqrt(muSun*(2/jupiterToSun - 1/anew));
162 anew=double(solve(eq,anew));
163

74



2.2. Final project. Earth to Neptune via . . . CHAPTER 2. PRESENTATION . . .

164 syms e;
165 eq=cos(gamma)==sqrt((anew^2*(1-e^2))/...
166 (jupiterToSun*(2*anew-jupiterToSun)));
167

168 sol=double(solve(eq,e));
169 e=sol(sol>0);
170

171 syms fNew;
172 if e>1
173 %find true anamoly in the new hyperbola
174 eq= jupiterToSun == abs(anew)*(e^2-1)/...
175 (1+e*cos(fNew));
176

177 sol=double(solve(eq,fNew));
178 fNew=sol(sol>0);
179 rpNew=abs(anew)*(e-1);
180 bNew = sqrt(anew^2*(e^1-1));
181

182 %http://mathforum.org/kb/message.jspa?messageID=6230348
183 plot_hyper(fNew,bNew,anew,e,neptuneToSun);
184 else
185 eq = tan(gamma) == e*sin(fNew)/(1+e*cos(fNew));
186 sol=double(solve(eq,fNew));
187 z2=max(real(sol));
188 rpNew=anew*(1-e);
189 bNew=anew*sqrt(1-e^2);
190 raNew=2*anew-rpNew;
191 plot_ellipse(fNew,bNew,anew,e,neptuneToSun,x2,y2);
192 end
193

194 end
195 if time2>periodhuhmannToJupiter2
196 doneLoop=true;
197 end
198 end
199 end
200

201

202 earthCurrentP = mod((wEarth*...
203 currentTimeInSec+earthInitialP),2*pi);
204

205 jupiterCurrentP = mod( wJupiter*currentTimeInSec+...
206 jupiterInitialP, 2*pi);
207

208 neptuneCurrentP = mod( wNeptune* currentTimeInSec+...
209 neptuneInitialP, 2*pi);
210

75



2.2. Final project. Earth to Neptune via . . . CHAPTER 2. PRESENTATION . . .

211 x1 = earthToSun*cos(earthCurrentP );
212 y1 = earthToSun*sin(earthCurrentP);
213 x2 = jupiterToSun*cos(jupiterCurrentP);
214 y2 = jupiterToSun*sin(jupiterCurrentP);
215 x3 = neptuneToSun*cos(neptuneCurrentP);
216 y3 = neptuneToSun*sin(neptuneCurrentP);
217 ej = abs(earthCurrentP - jupiterCurrentP);
218 en = abs(earthCurrentP - neptuneCurrentP);
219

220 plot( earthToSun*exp((0:.01:2*pi)*1i));
221 h1=plot(x1,y1,'or');
222 h2=plot(x2,y2,'or');
223 if i==0
224 plot([0 5.5*x1],[0 5.5*y1],':k');
225 end
226 plot( jupiterToSun*exp((0:.01:2*pi)*1i));
227 h3=plot(x3,y3,'or');
228

229 plot( neptuneToSun*exp((0:.01:2*pi)*1i));
230 plot(currentR*cos(solCurrentTheta),currentR*...
231 sin(solCurrentTheta),'ob','LineWidth',1,'MarkerSize',1);
232

233 h4=plot(currentR*cos(solCurrentTheta),currentR*...
234 sin(solCurrentTheta),'ok');
235

236 h5=text(-.9*neptuneToSun,.8*neptuneToSun,...
237 sprintf('time 1 = %6.0f days, time 2 = %6.0f days, E=%5.2f degree',...
238 ndays1, ndays2,currentE*180/pi));
239

240 pause(.01);
241 if ~doneLoop
242 delete(h1);delete(h2);delete(h3);delete(h4); delete(h5);
243 else
244 break;
245 end
246 currentTimeInSec = currentTimeInSec+stepSize;
247 %hold off;
248

249

250 end
251 end
252

253 function p=hohmannPeriod(r1, r2, mu)
254 a = semiMajor(r1, r2);
255 p=2*pi*sqrt(a^3/mu);
256 end
257
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258 function a=semiMajor(r1, r2)
259 a=(r1 + r2)/2;
260 end
261

262 function e=hohmannEnergy(r1, r2, mu)
263 e= -mu/(r1 + r2);
264 end
265

266 function a=hohmannAngle(sourceR, targetR)
267 a=pi*(1 - ((sourceR + targetR)/(2*targetR))^(3/2));
268 end
269

270

271 function v=vperigee(sourceR, targetR, mu)
272 a = semiMajor(sourceR, targetR);
273 v=sqrt(mu*(2/sourceR - 1/a));
274 end
275

276 function w=angularVelocity(r, mu)
277 w = sqrt(mu/r^3);
278 end
279

280

281 function v=linearVelocity(r, mu)
282 v = sqrt(mu/r);
283 end
284

285 function p=updatePosition(r, currentPos, nDays, mu)
286 w = angularVelocity(r, mu);
287 w = w*60*60*24; %convert to radians per day
288 p=currentPos + (w*nDays*180/pi);
289 end
290

291 function [sol, t1]=biEllipticalTransfer(rMin,sourceR,...
292 targetR,initialTheta,mu)
293

294 hTheta = hohmannAngle(sourceR, targetR);
295 syms rt;
296 a1 = (sourceR + rt)/2;
297 a2 = (targetR + rt)/2;
298 t1 = ((rt+sourceR)/2)^(3/2) + ((rt+targetR)/2)^(3/2) ;
299 wUpper = angularVelocity(targetR, mu);
300

301 n = 0;
302 if initialTheta < hTheta
303 t2 = ( (2*pi*(n+1) - initialTheta )*targetR^(3/2) /pi);
304 sol = double(vpa(solve(t1==t2, rt)));
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305 sol = sol(sol==real(sol));
306 sol = sol(sol>rMin&sol>targetR);
307 sol = min(sol);
308 else
309 sol=0;
310 n=1;
311 foundSolution=false;
312 while n<10 && ~foundSolution
313 t2 = ( (2*pi*(n+1) - initialTheta )*targetR^(3/2) /pi);
314 sol = solve(t1 == t2, rt);
315 sol = double(vpa(solve(t1==t2, rt)));
316 sol = sol(sol==real(sol));
317 sol = sol(sol>rMin);
318 if length(sol)>=1
319 sol = min(sol);
320 foundSolution=true;
321 else
322 n=n+1;
323 end
324 end
325 end
326

327 t1=double(vpa(subs(t1,rt,sol)));
328

329 end
330

331 function plot_hyper(f,b,a,e,neptuneToSun)
332 %Q=[cos( fNew) -sin( fNew);sin( fNew) cos( fNew)];
333 syms y x;
334 c=a*e;
335

336 ezplot( (x-c)^2/a^2 - y^2/b^2 - 1,[-neptuneToSun neptuneToSun-...
337 neptuneToSun neptuneToSun]);
338 end
339

340 function plot_ellipse(f,b,a,e,neptuneToSun,x2,y2)
341 syms y x;
342 c=a*e;
343

344 ezplot( (x-x2)^2/a^2 + (y-y2)^2/b^2 - 1 ,...
345 [-neptuneToSun neptuneToSun -neptuneToSun neptuneToSun]);
346 end� �

nma_project2_EMA550_driver� �
1

2 clear all;
3 syms rt;
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4 t1=pi*(((rt/2 + 74798900)^3/132700000000)^(1/2) + �...
5 ((rt/2 + 1632333680397517/4194304)^3/132700000000)^(1/2));
6 t2=3.7455e+08;
7 sol1=solve(t1 == t2, rt)
8 sol2=solve(t1 == t2, rt)� �
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3.1. project description CHAPTER 3. LUNAR PROJECT

3.1 project description

From the Earth to the Moon 
EMA 550 Astrodynamics - Spring 2014 

 

Due Date: Thursday, April 3, 2014 (PDF of report to online Lunar Project dropbox by 11:55 pm) 

Your job is to design a variety of trajectories from the Earth to the Moon.  Submit a detailed and well-

written technical report with the parts specified below.  For each part, your report should describe the 

maneuver and answer any questions asked in full paragraphs.  Include all requested illustrations.  Show 

clearly how you arrived at your answers so that you could easily reference this document again in the 

future and follow your steps again.  Please complete this project in pairs and submit one report for the 

team. 

For all parts of the project, assume the following regarding the Moon and the Moon’s orbit: 

Radius of the Moon: rMoon = 1738 km 

Gravitational parameter of the Moon: µMoon = 4902.8 km
3
/s

2
 

Moon’s sphere of influence radius: 6.6 x 10
4
 km 

Moon’s orbit about the Earth:  

a = 384,400 km  

e = 0 (actual mean eccentricity = 0.05490) 

i = 23.5° relative to the Earth’s equatorial plane (average of its range from 18° to 29°)  

ω undefined because of circular orbit assumption 

Ω = 0° (oscillates ±14° about Ω = 0° with a period of 18.6 years) 

 

For all parts of the project, assume that the Moon orbits the Earth’s gravitational and geometrical center 

and that the Earth is gravitationally and geometrically spherically symmetric with rEarth = 6378 km and 

µEarth = 3.986 x 10
5
 km

3
/s

2
.   

Also assume that the spacecraft starts in a 300 km altitude circular orbit about the Earth (LEO) in the 

same plane and in the same direction as the Moon’s orbit about the Earth. 

Part I: Hohmann Transfer 

Mission: Find a Hohmann transfer from a 300 km altitude initial circular orbit about the Earth to a 

circular orbit about the Earth at the same distance as the Moon’s orbit.   

Details to include: 

1) Report the semi-major axis and eccentricity of the Hohmann transfer orbit.   

2) Report the ∆V for each burn and the total ∆V required.   

3) Report the transfer time required for the transfer (in days)  

  

82



3.1. project description CHAPTER 3. LUNAR PROJECT

Part II: Tangential Flyby  

Mission: With a single ∆V in LEO, perform a Hohmann transfer from LEO to the vicinity of the Moon, 

performing a close flyby of the surface of the Moon.   According to the JPL Lunar Constants and Models 

Document, the highest peak on the Moon’s surface is 8 km above an average spherical radius of 1737.4 

km.  For safety considerations, set the burnout radius for the close flyby to 1760 km. 

Details to include: 

1) Calculate the impact parameter required to achieve a lunar burnout radius of 1760 km.   

2) Include a Moon-centered figure that shows the hyperbolic flyby of the spacecraft in the Moon’s 

frame of reference.  The Moon’s radius, the impact parameter, and the burnout radius should all 

be shown to scale relative to each other.  Include the turning angle of the asymptotes. The 

curved part of the hyperbola may be approximated, but should connect the asymptotes and the 

burnout radius. 

3) Assuming that the spacecraft approaches the Moon on the side between the Moon and the 

Earth, calculate the a and e of the spacecraft’s orbit relative to the Earth after it leaves the 

Moon’s sphere of influence. 

4) Calculate the true anomaly f of the Moon’s position (that is, the position it shares with the 

spacecraft from the Earth’s perspective during the flyby) on the spacecraft’s post-flyby orbit 

about the Earth. Use this true anomaly to locate perigee of the post-flyby orbit. 

5) Include a figure that shows the velocity triangles for the flyby (VMoon wrt Earth, VArrival wrt Earth, VDeparture 

wrt Earth, v∞ in wrt Moon, v∞ out wrt Moon, turning angle θ). 

6) Include an Earth-centered figure that shows the LEO orbit, the Moon’s orbit, the Hohmann 

trajectory from LEO to the Moon, and the post-tangential-flyby orbit to scale with accurate sizes 

and shapes. 

 

Part III: Non-Tangential Flyby  

Mission: With a single ∆V in LEO, send the spacecraft on a transfer ellipse that is tangent to LEO and has 

a semi-major axis equal to 300,000 km.  Perform the same close flyby of the lunar surface. 

Details to include: 

1) Assuming that the spacecraft flies behind the Moon at the intersection of the two orbits where 

0 ≤ f ≤ 180° on the pre-flyby ellipse, calculate the a and e of the spacecraft’s orbit relative to the 

Earth after the flyby. 

2) Calculate the true anomaly f of the Moon’s position on the post-flyby orbit about the Earth. 

3) Include a figure that shows the velocity triangles for the flyby. 

4) Repeat steps 1-3 assuming that the spacecraft flies in front of the Moon. 
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Part IV: Free-Return Trajectory 

Mission: Create a trajectory that uses a single burn in Earth LEO to reach the Moon, performs the same 

close flyby of the Moon (same burnout radius), and achieves a post-flyby elliptical orbit about the Earth 

with a perigee radius between 6678 km and 6878 km (300 to 500 km altitude).  This is called a free-

return trajectory because the spacecraft reaches the Moon and returns to the Earth without needing to 

burn fuel for the return trip.  For an animated illustration of a free-return lunar trajectory, see 

http://www.braeunig.us/apollo/free-return.htm.  

To accomplish this automatic return, you get to choose the size and shape of the pre-flyby trajectory 

and the arrival position with respect to the Moon (between the Moon and the Earth, outside the Moon’s 

orbit, fly behind the Moon, fly in front of the Moon). 

Details to include: 

1) Describe any assumptions or design decisions used to limit the available variables. 

2) Determine the a and e of the initial orbit and the ∆V needed in LEO to start the maneuver. 

3) Describe the arrival position with respect to the Moon that you chose and illustrate it using 

velocity triangles. 

4) Show that the spacecraft will return to the required perigee without any burns beyond the one 

required to start the transfer. 

 

Part V: Rendezvous and Timing Considerations 

Mission: Calculate the timing and positions required for your free-return trajectory. 

Details to include: 

1) Treating the SOI of the Moon as a single point at the location of the Moon, how long does your 

spacecraft take to reach the Moon (i.e., what is the transfer time on the pre-flyby piece of your 

free-return trajectory)? 

2) What angle must your spacecraft and the Moon have relative to each other at the time of the 

LEO ∆V in order for the Moon to be at the required location at the time of the flyby? 

3) How often do the spacecraft in LEO and the Moon have the correct alignment? 

4) The patched conic approach treats the flyby as an instantaneous ∆V from the Earth’s frame of 

reference. Evaluate and discuss this assumption. How long does the flyby really take (i.e., how 

long is the spacecraft within the Moon’s SOI)? How does the time in the SOI compare to the 

total time required for the trip (time to get to the Moon plus the flyby time and the return 

time)? What percentage of an orbit does the Moon complete during the time that the 

spacecraft is within the Moon’s SOI? 

 

 

3.2 fact check

This is a check on some selected values for the first parts of the Lunar Project. There are
multiple solutions to the fourth part, the free-return trajectory, but you can use this worksheet
to verify your code for the first three parts. This is entirely optional and not part of your
project grade.
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NOTE: The write-up requests more values than those shown here.

3.2.1 Part I: Hohmann

Semi-major axis: Answer km

Total Δ𝑉 Answer km/s

3.2.2 Part II: Tangential Flyby

Turning angle of the asymptotes: Answer degrees

Speed after the flyby relative to the Earth: Answer km/s

Eccentricity on post-flyby trajectory: Answer

3.2.3 Part III: Non-Tangential Flyby Behind the Moon

Turning angle of the asymptotes: Answer degrees

Speed after the flyby relative to the Earth: Answer km/s

Eccentricity on post-flyby trajectory: Answer

3.2.4 Part III: Non-Tangential Flyby In Front of the Moon

Turning angle of the asymptotes: Answer degrees

Speed after the flyby relative to the Earth: Answer km/s

Eccentricity on post-flyby trajectory: Answer

3.3 report

3.3.1 Part 1, Hohmann Transfer

3.3.2 problem description

Mission: Find a Hohmann transfer from a 300 km altitude initial circular orbit about the
Earth to a circular orbit about the Earth at the same distance as the Moon’s orbit.

Details to include:

1. Report the semi-major axis and eccentricity of the Hohmann transfer orbit.

2. Report the DV for each burn and the total DV required.

3. Report the transfer time required for the transfer (in days)
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3.3.2.1 part 1

Figure 3.1 shows the steps used. The satellite perigee 𝑟𝑝 is found from

r1

r2

V1
V2

V1

V3V4
V2

a  r1  r2

2

V1 

r1

V2   2
r1

 1
a

V1  V2  V1

V3   2
r2

 1
a

V4 

r2

V2  V4  V3

V  |V1 |  |V2 |

T   a3



Hohmann Transfer

Total Velocity 
change needed

Time to transfer 
from one orbit to 
the other

hohmann.vsdx
Nasser M. Abbasi
022014

1

Figure 3.1: Steps to preform Hohmann orbit transfer

𝑟𝑝 = 𝑟𝑒𝑎𝑟𝑡ℎ + alt

= 6378 + 300
= 6678 km

The apogee distance 𝑟𝑎 is the moon’s distance from center of earth given by 𝑟𝑎 = 384400 km.
Therefore the semi-major axis 𝑎 is

𝑎 =
𝑟𝑎 + 𝑟𝑝

2

=
384400 + 6678

2
= 195539 km

The eccentricity 𝑒 is

𝑒 =
𝑟𝑎 − 𝑟𝑝
𝑟𝑎 − 𝑟𝑝

=
384400 + 6678
384400 − 6678

= 0.96585
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3.3.2.2 part 2

𝑉1 is the spacecraft velocity in LEO and is given by

𝑉1 =
�

𝜇𝑒𝑎𝑟𝑡ℎ
𝑟𝑝

=
�

3.986 × 105

6678

= 7.7258 km per second

The spacecraft required speed at perigee of the Hohmann transfer orbit 𝑉𝑝 is

𝑉𝑝 =
�
𝜇𝑒𝑎𝑟𝑡ℎ �

2
𝑟𝑝

−
1
𝑎�

=
�
3.986 × 105 �

2
6678

−
1

195539�

= 10.8323 km per second

Since the moon is inside the sphere of influence of the earth, the di�erence of the above
two speeds is all that is needed to send the spacecraft to the moon using a Hohmann orbit.
Therefore

Δ𝑉1 = 𝑉𝑝 − 𝑉1

= 10.8323 − 7.7251

= 3.1065 km per second

When the spacecraft reaches the apogee of the Hohmann orbit, its speed 𝑉𝑎 will be

𝑉𝑎 =
�
𝜇𝑒𝑎𝑟𝑡ℎ �

2
𝑟𝑎

−
1
𝑎�

=
�
3.986 × 105 �

2
384400

−
1

195539�

= 0.1882 km per second

The required speed 𝑉2 to put the satellite in the moon’s circular orbit is

𝑉2 =
�

𝜇𝑒𝑎𝑟𝑡ℎ
𝑟𝑎

=
�

3.986 × 105

3844008

= 1.0183 km per second
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Therefore the impulse needed is

Δ𝑉2 = 1.0183 − 0.1882

= 0.83 km per second

The total Δ𝑉 is found from

Δ𝑉 = |Δ𝑉1| + |Δ𝑉2|
= 3.1065 + 0.83

= 3.937 km per second

3.3.2.3 part 3

The transfer time Δ𝑇 in seconds from the earth’s LEO orbit to the moon’s circular orbit is
half the period of the Hohmann ellipse. Therefore

Δ𝑇 = 𝜋
�

𝑎3

𝜇𝑒𝑎𝑟𝑡ℎ

= 𝜋
�

1955393

3.986 × 105
= 4.3026𝑒5 second

= 4.9798day

Figure 3.2 shows the final orbit which is to scale and was generated from STK.

Figure 3.2: Hohmann orbit to scale from STK
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3.3.3 Part II, Tangential �yby

The following parameters are used in the calculations that follows

𝜇𝑒𝑎𝑟𝑡ℎ = 3.986𝑒5 km3 per second squared

𝜇𝑚𝑜𝑜𝑛 = 4902.8 km3 per second squared

𝑟𝑎 = 384400 km
𝑟𝑒𝑎𝑟𝑡ℎ = 6378 km
𝑟𝑚𝑜𝑜𝑛 = 1737.4 km
𝑟𝑏𝑜 = 1760 km

𝑆𝑂𝐼𝑚𝑜𝑜𝑛 = 6.61𝑒4 km

Figure 3.3 shows a more detailed Hohmann transfer orbit used as a guide in the calculations
that follows. This diagram is not drawn to scale. A diagram drawn to scale is given at the
end of this section.
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Figure 3.3: Showing Hohmann transfer from earth to the moon
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3.3.3.1 part 1

The velocity of the spacecraft at the apogee of the Hohmann transfer was found in part (I)

as 𝑉𝑎 = 0.188184 km per second. The speed of the moon relative to earth is 𝑉𝑚𝑜𝑜𝑛 = �
𝜇𝑒𝑎𝑟𝑡ℎ
𝑟𝑎

=
1.0183 km per second, therefore the speed of the spacecraft relative to the moon at the entry
of the moon’s sphere of influence is

𝑉∞ = 𝑉𝑚𝑜𝑜𝑛 − 𝑉𝑎 = 0.830119 km per second

Using the energy equation we can solve for the burn out speed 𝑉𝑏𝑜, which is the speed of
the spacecraft at 𝑟𝑏𝑜, the closest distance from the moon surface

𝑉2
𝑏𝑜
2

−
𝜇𝑚𝑜𝑜𝑛
𝑟𝑏𝑜

=
𝑉2
∞
2

−
𝜇𝑚𝑜𝑜𝑛

𝑆𝑂𝐼𝑚𝑜𝑜𝑛
𝑉2
𝑏𝑜
2

−
4902.8
1760

=
0.8301192

2
−

4902.8
6.6 × 104

Solving gives

𝑉𝑏𝑜 = 2.47222 km per second

The impact distance 𝑏 is found by solving

𝑏𝑉∞ = 𝑟𝑏𝑜𝑉𝑏𝑜

𝑏(0.830119) = (1760)(2.47222)

Giving

𝑏 = 5241.56 km

3.3.3.2 part 2

Figure 3.4 drawn to scale shows a moon centered fly-by of the spacecraft. We now determine
the angle 𝜂 and 𝜃 and the final speed 𝑉𝐷 which is the speed relative to earth when the
spacecraft exits the moon’s SOI.

The eccentricity of the flyby hyperbolic orbit is found as follows

𝑒 = 1 +
𝑟𝑏𝑜𝑉2

∞
𝜇𝑚𝑜𝑜𝑛

= 1 +
(1760)(0.830119)

4902.8
= 1.24737
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Figure 3.4: Moon-centered fly-by hyperbolic trajectory of the spacecraft
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Hence

𝜂 = arccos �
−1
𝑒 �

= arccos �
−1

1.24737�

= 2.50665 radian

= 143.621degree

Therefore

𝜃 = 2𝜂 − 180degree
= 2(143.621) − 180degree

= 107.241degree

We now calculate 𝑉𝐷, the departure speed relative to earth, using figure 3.5 that shows the
change in speed and direction of the spacecraft as it enters and exists the moon’s sphere of
influence.

𝑉2
𝐷 = 𝑉2

𝑚𝑜𝑜𝑛 + 𝑉2
∞ − 2𝑉𝑚𝑜𝑜𝑛𝑉∞ cos𝜃

= 1.01832 + 0.8301192 − 2(1.0183)(0.830119) cos (107.241degree)
Hence

𝑉𝐷 = 1.49236 km per second

The angle 𝛾𝑑 is found from the law of sines
𝑉𝐷

sin𝜃
=

𝑉∞
sin𝛾𝑑

sin𝛾𝑑 =
𝑉∞ sin𝜃

𝑉𝐷

=
(0.830119) sin (107.241degree)

1.49236
Hence sin𝛾𝑑 = 0.531252 and

𝛾𝑑 = 32.0901degree
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Figure 3.5: Spacecraft after fly-by and finding the new ellipse parameters

94



3.3. report CHAPTER 3. LUNAR PROJECT

3.3.3.3 part 3

The semi-major axis of the new orbit 𝑎𝑛𝑒𝑤 is found from

𝑉𝐷 =
�
𝜇𝑒𝑎𝑟𝑡ℎ �

2
𝑟𝑎

−
1

𝑎𝑛𝑒𝑤
�

1.49236 =
�
3.986 × 105 �

2
384400

−
1

𝑎𝑛𝑒𝑤
�

Solving numerically for 𝑎𝑛𝑒𝑤 gives

𝑎𝑛𝑒𝑤 = −2.60104𝑒6 km

The new eccentricity is found from

cos𝛾𝑑 =
�

𝑎2𝑛𝑒𝑤(1 − 𝑒2)
𝑟𝑎(2𝑎𝑛𝑒𝑤 − 𝑟𝑎)

cos (32.0901degree) =
�

(−2.60104 × 106)2(1 − 𝑒2)
384400(2(−2.60104 × 106) − 384400)

Solving numerically for the new 𝑒 and taking the positive root gives

𝑒 = 1.10808

Therefore, the new trajectory is hyperbolic when the spacecraft exits the moon’s sphere of
influence.

3.3.3.4 part 4

Since the new trajectory is hyperbolic, the true anomaly 𝑓 can be found using the hyperbolic
equation

𝑟1 =
𝑎𝑛𝑒𝑤(𝑒2 − 1)
1 + 𝑒 cos 𝑓

384400 =
2.60104 × 106(1.108082 − 1)

1 + (1.10808) cos 𝑓
Solving for 𝑓 and taking the positive value since the spacecraft is in the positive half plane
gives

𝑓 = 1.06009 radian
= 60.7387degree

This value of the true anomaly is used to locate the new perigee of the post flyby orbit. The
𝑟𝑝 of the hyperbola is first found from

𝑟𝑝 = 𝑎𝑛𝑒𝑤(𝑒 − 1)
= 2.60104 × 106(1.10808 − 1)
= 281109 km
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Figure 3.6 shows the new post flyby hyperbolic trajectory

Figure 3.6: Showing the perigee on the post fly-by hyperbolic orbit (not to scale)

3.3.3.5 part 5

Figure 3.7 shows the velocity vector diagram

Figure 3.7: Velocity diagram

3.3.3.6 part 6

Figure 3.8 was generated from STK showing the LEO and small part of the Hohmann
transfer orbit with the moon orbit at a distance. This is to scale. Figure 3.9 was drawn using
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Figure 3.8: zoomed version of the final orbit for part II

VISIO showing the LEO, Hohmann, and post flyby orbit. Drawn to scale.

97



3.3. report CHAPTER 3. LUNAR PROJECT

Figure 3.9: Final Part II earth centered figure. Drawn to scale
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3.3.4 summary of tangential �yby

The above results are summarized in table 3.1

variable pre flyby post flyby

orbit type elliptical hyperbolic

𝑒 0.96585 1.10808

semi-major axis 𝑎 195539 km -2.60104e6 km

true anomaly 𝑓 180 degree 60.7387 degree

𝑟𝑝 6678 km 281109 km

Table 3.1: Summary table for tangential pre and post flyby

The above results for the flyby hyperbolic trajectory are summarized in table 3.2

parameter value

𝑒 1.24737

𝑉𝐴 0.188184 km per second

𝑉𝐷 1.49236 km per second

𝛾𝐴 77.37 degree

𝛾𝐷 32.09 degree

𝑏 5241.56 km

𝑉∞ 0.83 km per second

𝜂 143.621 degree

𝜃 107.241 degree

Table 3.2: Summary table for tangential flyby hyperbolic
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3.3.5 Part III Non-Tangential �yby

The following parameters are used in the calculations that follows

𝜇𝑒𝑎𝑟𝑡ℎ = 3.986𝑒5 km3 per second squared

𝜇𝑚𝑜𝑜𝑛 = 4902.8 km3 per second squared

𝑟𝑒𝑎𝑟𝑡ℎ = 6378 km
𝑟𝑚𝑜𝑜𝑛 = 1737.4 km

𝑆𝑂𝐼𝑚𝑜𝑜𝑛 = 6.61𝑒4 km
𝑟𝑝 = 𝑟𝑒𝑎𝑟𝑡ℎ + 300

= 6378 + 300
= 6678 km

𝑣𝑚𝑜𝑜𝑛 =
�

𝑚𝑢𝑒𝑎𝑟𝑡ℎ
𝑟𝑚𝑜𝑜𝑛

=
�

3.986 × 105

1737.4
= 1.0183 km per second (velocity of moon relative to earth)

𝑟1 = 384400 km(distance from earth to the moon)

𝑎 = 300000 km(semi-major axis of the Hohmann transfer ellipse)

Figure 3.10 gives a general view of the initial phase of the orbit showing the non-Tangential
approach to the moon’s circular orbit using the initial Hohmann transfer ellipse. This is not
scale.
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Figure 3.10: General view of the non-Tangential flyby orbit (not to scale)

3.3.5.1 Flying behind the moon

3.3.5.1.1 part 1 The given 𝑎 is used to solve for 𝑟𝑎. Since 𝑎 =
𝑟𝑝+𝑟𝑎
2 hence

𝑟𝑎 = 2𝑎 − 𝑟𝑝
= (2)(300000) − 6678

= 593322 km

The eccentricity of the Hohmann ellipse is now found as follows

𝑒 =
𝑟𝑎 − 𝑟𝑝
𝑟𝑎 + 𝑟𝑝

=
593322 − 6678
593322 + 6678

= 0.97774
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The speed of the spacecraft at the location where Hohmann orbit intersects the the moon’s
circular orbit is called 𝑉𝐴 and found as follows

𝑉𝐴 =
�
𝜇𝑒𝑎𝑟𝑡ℎ �

2
𝑟1

−
1
𝑎�

=
�
3.986 × 105 �

2
384400

−
1

300000�

= 0.863258 km

𝛾𝐴 is the angle between the path of the spacecraft and the moon’s velocity vector direction

cos𝛾𝐴 =
�

𝑎2(1 − 𝑒2)
𝑟1(2𝑎 − 𝑟1)

=
�

3000002(1 − 0.977742)
384400(2(300000) − 384400)

= 0.218651

Hence

𝛾𝐴 = 1.35036 radian

= 77.3702degree

The true anomaly 𝑓 of the pre flyby Hohmann transfer at the above location can now be
found

tan𝛾𝐴 =
𝑒 sin 𝑓

1 + 𝑒 cos 𝑓

tan (77.3702degree) =
(0.97774) sin 𝑓

1 + (0.97774) cos 𝑓
Solving for 𝑓 gives

𝑓 = 2.8582 radian

= 163.763degree

Relative to the moon, and at the entry to the moon’s sphere of influence, the velocity of the
spacecraft is given by 𝑉∞𝑎 as shown in figure 3.11 𝑉∞𝑎 is found as follows

𝑉∞𝑎 = �𝑉2
𝐴 + 𝑣2𝑚𝑜𝑜𝑛 − 2𝑉𝐴𝑣𝑚𝑜𝑜𝑛 cos𝛾𝐴

= �0.8632582 + 1.01832 − 2(0.863258)(1.0183) cos 1.35036
= 1.18226 km per second

102



3.3. report CHAPTER 3. LUNAR PROJECT

Figure 3.11: Velocity vector diagram at entry of SOI of the moon

And the angle 𝛽 is

𝑉𝐴
sin 𝛽

=
𝑉∞𝑎

sin𝛾𝐴
0.863258

sin 𝛽
=

1.18226
sin 1.35036

Solving for 𝛽 gives

𝛽 = 1.21158 radian

= 45.439degree

The eccentricity of the flyby hyperbolic trajectory 𝑒𝑓𝑙𝑦𝑏𝑦 inside the moon’s sphere of influence
can be found from the energy equation, using the burn out distance 𝑟𝑏𝑜 = 1760 km1.

𝑉2
∞𝑎

2
−

𝜇𝑚𝑜𝑜𝑛
𝑆𝑂𝐼𝑚𝑜𝑜𝑛

=
𝑉2
𝑏𝑜
2

−
𝜇𝑚𝑜𝑜𝑛
𝑟𝑏𝑜

1.182262

2
−

4902.8
6.61 × 104

=
𝑉2
𝑏𝑜
2

−
4902.8
1760

Solving for 𝑉𝑏𝑜 gives

𝑉𝑏𝑜 = 2.6116 km per second

1the same value used in part II
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Therefore

𝑒𝑓𝑙𝑦𝑏𝑦 =
�
1 +

𝑉2
𝑏𝑜𝑉2

∞𝑎𝑟
2
𝑏𝑜

𝜇2𝑚𝑜𝑜𝑛

=
�
1 +

(2.61162)(1.18226)2(1760)2

4902.82

= 1.4928

The angle 𝜂 is

𝜂 = arccos �
−1

𝑒𝑓𝑙𝑦𝑏𝑦
�

= arccos �
−1

1.4928�

= 2.3048 radian

= 132.05degree

The turning angle of the asymptotic is 𝜃 as shown in figure 3.12. The angle 𝜃 is found from

Figure 3.12: Turning angle 𝜃 when flying behind the moon

𝜃 = 2𝜂 − 180degree
= (2)132.05degree − 180degree
= 1.468 radian

= 84.11degree

The departure speed of the spacecraft 𝑉𝐷 relative to earth is found from the velocity vector
in figure 3.15 as follows Hence
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Figure 3.13: Finding departure velocity of spacecraft when flying behind the moon

𝑉𝐷 = �𝑣2𝑚𝑜𝑜𝑛 + 𝑉2
∞𝑑 − 2𝑣𝑚𝑜𝑜𝑛𝑉∞𝑑 cos (𝛽 + 𝜃)

= �1.01832 + 1.182262 − (2)(1.0183)(1.18226) cos (45.439degree + 84.11degree)

= 1.99197 km per second

The semi-major axis 𝑎𝑛𝑒𝑤 of the post flyby orbit is found from

𝑉𝐷 =
�
𝜇𝑒𝑎𝑟𝑡ℎ �

2
𝑟1

−
1

𝑎𝑛𝑒𝑤
�

1.99197 =
�
398600 �

2
384400

−
1

𝑎𝑛𝑒𝑤
�

Solving for 𝑎𝑛𝑒𝑤 gives

𝑎𝑛𝑒𝑤 = −2.10444𝑒5 km

Therefore the departure angle 𝛾𝐷 is

𝑉𝐷
sin (𝛽 + 𝜃)

=
𝑉∞𝑑

sin𝛾𝐷
Solving for 𝛾𝐷

sin𝛾𝐷 =
𝑣∞𝑑 sin (𝛽 + 𝜃)

𝑉𝐷

=
(1.18226) sin (45.439degree + 84.114degree)

1.99197
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Hence

𝛾𝐷 = 0.4753 radian

= 27.233degree

The eccentricity of the post flyby orbit is

cos𝛾𝐷 =
�

𝑎2𝑛𝑒𝑤(1 − 𝑒2)
𝑟1(2𝑎𝑛𝑒𝑤 − 𝑟1)

0.8891 =
�

(−2.10444 × 105)2(1 − 𝑒2)
384400(2(−2.10444 × 105) − 384400)

Solving for 𝑒 gives

𝑒 = 2.5546

3.3.5.1.2 part 2 Since the new trajectory after the flyby is found to be a hyperbola, then
the hyperbolic equation is used to obtain the true anomaly 𝑓

𝑟1 =
𝑎𝑛𝑒𝑤(𝑒2 − 1)
1 + 𝑒 cos 𝑓

384400 =
(2.10444 × 105)(2.55462 − 1)

1 + (2.5546) cos 𝑓
Solving for 𝑓 and taking the positive value since the spacecraft is in the positive half plane
gives

𝑓 = 0.665415 radian

= 37.552degree

This value of the true anomaly is used to locate the new value of perigee of the post flyby
orbit. The 𝑟𝑝 of the hyperbola is found from

𝑟𝑝 = 𝑎𝑛𝑒𝑤(𝑒 − 1)
= (2.10444 × 105)(2.55546 − 1)
= 3.27157𝑒5 km

Figure 3.14 shows the pre flyby and the new post flyby changes to the orbit. The e�ect of
the flyby is to produce an instantaneous Δ𝑉 that comes from the change of energy of the
spacecraft due to its going and leaving the moon’s sphere of influence.

3.3.5.1.3 part 3 Figure 3.15 shows the velocity triangles of the flyby trajectory.
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Figure 3.14: Finding departure velocity of spacecraft when flying behind the moon (not to
scale)

Figure 3.15: Finding departure velocity of spacecraft when flying behind the moon
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3.3.5.1.4 summary for non-tangential �yby. Behind the moon case The above re-
sults for the pre and post flyby trajectories are summarized in table 3.5 The results for the

variable pre flyby post flyby

orbit type elliptical hyperbolic

𝑒 0.97774 2.5546

semi-major axis 𝑎 300000 km -2.10444e5 km

true anomaly 𝑓 163.76 degree 37.552 degree

𝑟𝑝 6678 km 3.27157e5 km

Table 3.3: Summary table for non-tangential pre and post flyby the moon. Behind the moon
case

flyby hyperbolic trajectory are summarized in table 3.6 When the spacecraft flies by the

parameter value

𝑒 1.4928

𝑉𝐴 0.863 km per second

𝑉𝐷 1.99197 km per second

𝛾𝐴 77.37 degree

𝛾𝐷 27.233 degree

𝑉∞ 1.18226 km per second

𝛽 45.439 degree

𝜂 132.05 degree

𝜃 84.11 degree

Table 3.4: Summary table for non-tangential flyby hyperbolic. Behind the moon case

moon from behind it gains energy and the new speed relative to earth 𝑉𝐷 is larger than the
arrival speed 𝑉𝐴 relative to earth. The reverse happens when the spacecraft flies in front of
the moon. Its new velocity 𝑉𝐷 will be smaller than 𝑉𝐴.

3.3.5.2 �ying in front of the moon

The computation for this part follows closely what was done for the case of flying behind
the moon. The di�erence is in how the velocity vector diagram is constructed to make sure
the correct angles are used. This results in a velocity of the spacecraft 𝑉𝐷 after leaving the
moon sphere of influence slower than the above case.

The computation that follows starts from the new velocity vector diagram as follows.

The turning angle of the asymptotic 𝜃 is shown in figure 3.16. The angle 𝜃 is found from
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Figure 3.16: Turning angle 𝜃 when flying front of the moon
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𝜃 = 2𝜂 − 180degree
= (2)132.05degree − 180degree
= 1.468 radian

= 84.11degree

The departure speed of the spacecraft 𝑉𝐷 relative to earth is found from the velocity vector
in figure 3.19 Hence

Figure 3.17: Finding departure velocity of spacecraft when flying front the moon

𝑉𝐷 = �𝑣2𝑚𝑜𝑜𝑛 + 𝑉2
∞𝑑 − 2𝑣𝑚𝑜𝑜𝑛𝑉∞𝑑 cos (𝛽 − 𝜃)

= �1.01832 + 1.182262 − (2)(1.0183)(1.18226) cos (45.439degree − (84.11degree)

= 0.74492 km per second

The semi-major axis 𝑎𝑛𝑒𝑤 of the post flyby orbit is

𝑉𝐷 =
�
𝜇𝑒𝑎𝑟𝑡ℎ �

2
𝑟1

−
1

𝑎𝑛𝑒𝑤
�

0.74492 =
�
3.986 × 105 �

2
384400

−
1

𝑎𝑛𝑒𝑤
�

Solving for 𝑎𝑛𝑒𝑤 gives

𝑎𝑛𝑒𝑤 = 2.62413𝑒5 km
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The departure angle 𝛾𝐷 is found from

sin𝛾𝐷 =
𝑣∞ sin (𝛽 − 𝜃)

𝑉𝐷

=
(1.18226) sin (45.439degree − (84.11degree)

1.99197
Solving for 𝛾𝐷 gives

𝛾𝐷 = −1.4425 radian

= −82.649degree

The eccentricity of the post flyby orbit is found from

cos𝛾𝐷 =
�

𝑎2𝑛𝑒𝑤(1 − 𝑒2)
𝑟1(2𝑎𝑛𝑒𝑤 − 𝑟1)

0.1279 =
�

(2.62413 × 105)2(1 − 𝑒2)
384400(2(2.62413 × 105) − 384400)

Solving for 𝑒 gives

𝑒 = 0.9935

3.3.5.2.1 part 2 Since the new trajectory after the flyby is elliptic in this case, the elliptic
equation is used to obtain the new true anomaly 𝑓

𝑟1 =
𝑎𝑛𝑒𝑤(1 − 𝑒2)
1 + 𝑒 cos 𝑓

384400 =
(2.62413 × 105)(1 − 0.99352)

1 + (0.9935) cos 𝑓
Solving for 𝑓 gives

𝑓 = −3.0728 radian
= −176.06degree

Since 𝛾𝐷 < 0 then the post flyby true anomaly is between 180 and 360 degrees. Therefore,

𝑓 = 3.21 radian

= 183.94degree

This value of the true anomaly is now used to locate the new value of perigee of the post
flyby orbit. The 𝑟𝑝 of the new ellipse is found from

𝑟𝑝 = 𝑎𝑛𝑒𝑤(1 − 𝑒)
= (2.62413 × 105)(1 − 0.9935)
= 1689.13 km

Figure 3.18 shows the pre flyby and the post flyby changes to the orbit.
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Figure 3.18: Finding departure velocity of spacecraft when flying front of the moon (not to
scale)
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3.3.5.2.2 part 3 Figure 3.19 shows the velocity triangle of the flyby.

Figure 3.19: Finding departure velocity of spacecraft when flying front of the moon

3.3.5.2.3 summary of non-tangential �yby. Front of the moon case The above results
for the pre and post flyby trajectories are summarized in table 3.5 The above results for the

variable pre flyby post flyby

orbit type elliptical elliptical

𝑒 0.97774 0.9935

semi-major axis 𝑎 300000 km 262413 km

true anomaly 𝑓 163.76 degree 183.94 degree

𝑟𝑝 6678 km 1689 km

Table 3.5: Summary table for non-tangential pre and post flyby the moon. Front of the moon
case

flyby hyperbolic trajectory are summarized in table 3.6 Since new 𝑟𝑝 is smaller than 𝑟𝑒𝑎𝑟𝑡ℎ,
the spacecraft will hit earth on way back on way back on the new post flyby trajectory.

When the spacecraft flies by the moon from front, it losses energy and the new speed relative
to earth 𝑉𝐷 is smaller than the arrival speed 𝑉𝐴 relative to earth.
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parameter value

𝑒 1.4928

𝑉𝐴 0.863 km per second

𝑉𝐷 0.7449 km per second

𝛾𝐴 77.37 degree

𝛾𝐷 -82.649 degree

𝑉∞ 1.18226 km per second

𝛽 45.439 degree

𝜂 132.05 degree

𝜃 84.11 degree

Table 3.6: Summary table for non-tangential flyby hyperbolic. Front of the moon case

3.3.6 Part IV Free return trajectory

3.3.6.1 part 1

The trajectory that was selected for the pre flyby part is to send the spacecraft to front of the moon .
The reason is because the post flyby velocity of the spacecraft 𝑉𝐷 in this case will be smaller
that the approach velocity 𝑉𝐷 and the new flight path angle 𝛾𝐷 will be negative and the post
flyby trajectory being an ellipse. This insures the the spacecraft will return back to earth.

It is assumed that the spacecraft will rendezvous with the moon when it reaches the moon’s
orbit. Timing considerations are discussed in part (IV).

Since the original altitude above earth of the spacecraft was fixed by the project requirement
to be in LEO at 300 km, the other free variable that can be used to adjust the trajectory is
the semi-major axis 𝑎 of the pre flyby orbit.

Changing 𝑎 is the same as changing the initial Δ𝑉1. The lunar burn out radius 𝑟𝑏𝑜 was also
fixed by project requirement to be 1760 km.

A program was written to make it easier to change the semi-major axis 𝑎 using a flyby in
front of the moon approach. The program calculates all the parameters of the new post
flyby trajectory.

The resulting post flyby ellipse was checked after each simulation run to see if it meets the
requirement of having a return altitude on earth of between 300 km and 500 km. In addition,
The selected trajectory was required to have its velocity at perigee (closest point to earth)
to be below 12 km per second to ensure safety of the spacecraft as it enters earth.

The selected trajectory had a new 𝑉𝑝 of 10.8079 km per second. This is faster than the initial
elliptical orbit 𝑉𝑝 which was 7.725 km per second but it is still a safe entry velocity back to
earth.

Figure 3.20 shows the user interface of the program with the final selected trajectory. The
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Out[2]=

pre flyby semi-major axis HaL 415000

altitude at moon 22

zoom 1

parameter value units

f pre flyby 168.91 degree

f post flyby 185.979 degree

rp pre flyby 6678 km

rp post flyby 6725.03 km

ra pre flyby 823322 km

ra post flyby 453929. km

a pre flyby 415000 km

a hyper 2823.51 km

a post flyby 230327. km

delV1 3.1561 km�sec

e pre flyby 0.983908

e Hypereblic at moon 1.62334

e post flyby 0.970802

VA 1.05518 km�sec

VD 0.585916 km�sec

ΓA 79.6791 degree

ΓD -71.1728 degree

V¥ 1.32866 km�sec

Θ 76.0514 degree

Η 128.026 degree

Β 51.3815 degree

Vbo 2.68107 km�sec

LEO pre flyby 300 km

new Altitude on earth 347.028 km

LEO v outbound 7.72584 km�sec

LEO v return 10.8079 km�sec

E Hpre flybyL 1.49579 radian

E Hpre flybyL 85.7022 degree

E Hpost flybyL 2.33098 radian

E Hpost flybyL 133.555 degree

DT Htime to reach moonL 217926. sec

DT Htime to reach moonL 60.5351 hrs

DT Htime to reach moonL 2.5223 days

DT Htime to return from moonL 79.1491 hrs

moon angle traveled 0.577303 radians

moon angle traveled 33.077 degree

moon phase angle 135.833 degree

moon period 658.846 hrs

LEO period 1.50861 hrs

moon travel in one LEO period 0.824322 degree

Ωmoon 2.64907´ 10-6 rad�sec

ΩLEO 0.00115691 rad�sec

synodic period 1.51208 hrs

time in flyby 24.9029 hrs

totaltime 164.587 hrs

FF for flyby hyper 3.40112 radian

FF for flyby hyper 194.87 degree

fHyper 124.954 degree

moon traveled in SOI 13.6072 degree

earth

VA

VD

-400000 -200000 200000 400000

-400000

-200000

200000

400000

600000

800000

1 ´ 106

Figure 3.20: screen shot of the user interface of the program used to find the free return
trajectory
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program source code in the appendix. The program plots the pre and post flyby orbits and
displays all the detailed parameters of each trial.

3.3.6.2 part 2

Figure 3.21 shows the final result of the trajectory selected. This table was generated by
the simulation program written for this project. The semi-major axis of the initial orbit is

𝑎 = 415000km and the eccentricity is 𝑒 = 0.983908 and Δ𝑉1 = 3.1561km per second

The altitude at the perigee of the post flyby ellipse is ALT = 347.028km which meets the
requirements
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Figure 3.21: Table of results of selected free return trajectory
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3.3.6.3 part 3

The program developed for this project plots the final selected trajectory to scale. It shows
both the pre flyby ellipse and the post flyby ellipse.

Figure 3.22 shows the selected trajectory generated by the simulation program (to scale).
Figure 3.23 shows the velocity triangle for the selected trajectory. Figure 3.24 shows the

Figure 3.22: free return selected trajectory (to scale)

true anomaly angle 𝑓 at the intersection with the moon’s orbit for the pre and post flyby
trajectories. Since 𝛾𝐷 < 0 then true anomaly for the post flyby trajectory is between 𝜋 and
2𝜋
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Figure 3.23: velocity triangle for the selected free return trajectory
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Figure 3.24: Showing the e�ect on true anomaly angle for return free trajectory
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3.3.6.4 part 4

Figure 3.25 shows a zoomed version of the selected trajectory near earth. The new perigee is
6725.03 km which represents an altitude of 347.028 km. The above shows that the spacecraft

Figure 3.25: zoomed view of the free return selected trajectory near earth

returns to the required perigee with an altitude of 347.028 km and with safe entry velocity
back to earth of 10.08079 km per second.

It was found during simulation that finding the return ellipse with the required final altitude
was very sensitive to small changes in value of the semi-major axis 𝑎 for the initial orbit.
There was a small range of values of 𝑎 which generated an acceptable free return trajectories.
Using a simulation program helped in finding this small range of values of 𝑎 easier.

3.3.7 Part V Rendezvous and timing consideration

3.3.7.1 part 1

The time to reach the moon is given by Δ𝑇 =
�

𝑎3

𝜇𝑒𝑎𝑟𝑡ℎ
(𝐸 − 𝑒 sin𝐸) where 𝐸 is the eccentric

anomaly of the pre flyby trajectory.

𝐸 is found by solving 𝑟 = 𝑎(1 − 𝑒 cos𝐸) where 𝑟 here is the distance between earth and the
moon and 𝑒 is the eccentricity of the pre flyby orbit. Using the result of the selected trajectory
of part (4)

𝑟 = 𝑎(1 − 𝑒 cos𝐸)
384400 = 415000(1 − (0.9839) cos𝐸)
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Solving gives 𝐸 = 1.4957 radian or 𝐸 = 85.7degree . Therefore the time to reach the moon

is

Δ𝑇 =
�

𝑎3

𝜇𝑒𝑎𝑟𝑡ℎ
(𝐸 − 𝑒 sin𝐸)

=
�

(415000)3

3.986 × 105
(1.4957 − (0.9839) sin (1.4957))

= 217926 second
= 60.535hour

= 2.523day

3.3.7.2 part 2

The angular velocity of the moon in its orbit around earth is given by 𝜔 = �
𝜇𝑒𝑎𝑟𝑡ℎ
𝑟3 where 𝑟 is

the distance from earth to the moon. During the Δ𝑇 found in part (1), the moon will travel

𝜃 = 𝜔(Δ𝑇)

=
�

𝜇𝑒𝑎𝑟𝑡ℎ
𝑟3

(Δ𝑇)

=
�

3.986 × 105

384400
(217926)

= 0.5773 radian

= 33.077degree

Since the true anomaly was found in part (1) for the pre flyby to be 168.9 degree, therefore
the moon has to be at angle 𝜃0 = 168.9 − 33.077 or

𝜃0 = 135.833degree

In front of the spacecraft initial position as shown in figure 3.26
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Figure 3.26: Phase angle between moon and spacecraft for rendezvous
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3.3.7.3 part 3

The angular velocity of the spacecraft around earth

𝜔1 =
�

𝜇𝑒𝑎𝑟𝑡ℎ
𝑟𝑝

=
�

3.986 × 105

6678
= 0.00115691 radian per second

The angular velocity of the moon around earth is

𝜔𝑚𝑜𝑜𝑛 =
�

𝜇𝑒𝑎𝑟𝑡ℎ
𝑟1

=
�

3.986 × 105

384400
= 2.64907𝑒(−6) radian per second

The synodic period of the moon relative to the spacecraft is how often the space craft and
the moon have the correct alignment, which is given by

𝜏𝑠 =
2𝜋

|𝜔1 − 𝜔𝑚𝑜𝑜𝑛|

=
2𝜋

|0.00115691 − 2.64907 × 10−6|

= 1.51208hour

3.3.7.4 part 4

Figure 3.27 shows the flyby hyperbola. The time during the flyby can be determined from
the hyperbolic equation as follows. The semi-major axis 𝑎 for the flyby hyperbolic trajectory
is found from

𝑟𝑏𝑜 = 𝑎(𝑒 − 1)

𝑎 =
𝑟𝑏𝑜
𝑒 − 1

=
1760

1.62334 − 1
= 2823.51 km

The eccentric anomaly 𝐹 for the hyperbolic trajectory is found from

𝑟𝑏𝑜 = 𝑎(𝑒 cosh 𝐹 − 1)
1760 = 2823.51(1.62334 cosh 𝐹 − 1)

Solving gives

𝐹 = 3.40112 radian
= 194.87degree
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Figure 3.27: Flyby hyperbola used for calculation of flyby duration

Therefore the time for the overall flyby, which is the time that the spacecraft is inside the
moon’s sphere of influence is

Δ𝑇 = 2
�

𝑎3

𝜇𝑚𝑜𝑜𝑛
(𝑒 sinh 𝐹 − 𝐹)

= 2
�

2823.513

4902.8
((1.62334) sinh (3.40112) − 3.40112)

= 24.9029hour

The time to fly back to earth from the moon after the flyby phase is complete is found from
the elliptical equation for the return flight solution found above.

𝑟 = 𝑎(1 − 𝑒 cos𝐸)
384400 = 230327(1 − (0.970802) cos𝐸)

Solving gives 𝐸 = 2.33098 radian or 𝐸 = 133.55degree . Therefore the time is

Δ𝑇2 =
�

𝑎3

𝜇𝑒𝑎𝑟𝑡ℎ
(𝐸 − 𝑒 sin𝐸)

=
�

(230327)3

3.986 × 105
(2.33098 − (0.97080) sin (2.33098))

= 217926 second
= 79.149hour

= 3.298day
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Using the time to flyby the moon found earlier in part (1) above, the total flight time for the
whole journey is therefore

𝑇 = 60.535 + 24.9029 + 79.149

= 164.587hour

Hence, the percentage of time in flyby around the moon is 24.9029
164.587 or 15.13% .

During the time the spacecraft is inside the moon’s sphere of influence, the moon will have
traveled

Δ𝜃 = 𝜔𝑚𝑜𝑜𝑛 (flyby time)

=
�

𝜇𝑒𝑎𝑟𝑡ℎ
𝑟31

× (24.9029hour)

=
�

3.986 × 105

3844003
× (24.9029hour)

= 13.607degree

This is 13.607
360 = 3.78% of the full orbit of the moon around the earth. This shows that the

change of speed Δ𝑉 that occurs due to the flyby is not instantaneous and takes about 3.8%
of the period of the moon around the earth.

Therefore, the conic method can be considered only to be a first order approximation,
and therefore, for practical spacecraft trajectory design, numerical methods can be used to
obtain a more accurate solutions.
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4.1 �rst exam

4.1.1 Key solution

Earth radius = 6378 km  Page 1 of 8 µEarth = 3.986 x 10
5
 km

3
/s

2 

Earth-Sun distance = 1 AU = 1.495978 x 10
8
 km  µSun = 1.327 x 10

11
 km

3
/s

2
 

EMA 550/Astronomy 550 

 

Exam #1, Spring 2014 

 

 

75 Minutes, Open Notes Feb. 27, 2014  

 

 

 

Name ____________KEY________________ 

 

 

For the purposes of this exam, assume the Earth is spherical with a radius of 6378 km and  

µµµµ = 3.986 x 10
5
 km

3
/s

2
.  These values are reprinted in the footer of each page for your 

convenience. 

 

Show all of your work to get credit for your answer. To maximize your opportunities for 

partial credit, write down all of the equations you are using. 

 

Include units with all numerical answers. 

 

If you can’t do one section of a multi-part problem and the following parts depend on your 

answer, make a reasonable assumption, write on your paper that you are assuming a value 

and what it is, and continue on with the problem using your assumed value. 

 

 

  Points Score 

 Question 1 20 ______ 

 Question 2 20 ______ 

 Question 3 20 ______ 

 

 Total Score 60 ______ 
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Earth radius = 6378 km  Page 2 of 8 µEarth = 3.986 x 10
5
 km

3
/s

2 

Earth-Sun distance = 1 AU = 1.495978 x 10
8
 km  µSun = 1.327 x 10

11
 km

3
/s

2
 

Question 1  

A satellite is to be placed in an elliptical orbit about the Earth with a period of 8 hours.  

(a) For what range of eccentricities will the orbit NOT impact the Earth? 

  

In order for the satellite not to impact the Earth, the perigee radius rp = a (1-e) must be greater

than or equal to the Earth's radius.

The semi-major axis can be determined from the orbit period.

T 2 π⋅
a
3

μ
⋅= a

T

2 π⋅









2

μ⋅








1

3

20307 km=:=

Then the allowable eccentricities can be determined from

rp a 1 e−( )⋅ 6378 km⋅≥=

e 1
6378 km⋅

a
+≤

emax 1
6378 km⋅

a
− 0.686=:=

The range of eccentricities for which the elliptical orbit will not impact the Earth are eccentricities

between 0 (circular orbit) and 0.686. 
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(b) For a satellite in an elliptical orbit about the 

Earth with a period of 8 hours and an 

eccentricity of 0.5, determine whether it 

would cost less to escape the Earth on a 

parabolic trajectory by doing a tangential 

burn at perigee or by doing a tangential burn 

at apogee by calculating the ∆V required for 

each option. 

 

 

 

 

 

 

 

 

 

 

 

  

∆V option 1 

∆V option 2 

The period is only dependent on the semi-major axis, so the semi-major axis is the same as in

part (a).

Perigee location: rp a 1 e−( )⋅ 10154 km=:=

Speed at perigee: vp μ
2

rp

1

a
−









⋅ 7.674
km

s
=:=

Escape speed at

perigee:
vesc_p

2 μ⋅

rp
8.861

km

s
=:=

Cost of escaping

from perigee:
∆V1 vesc_p vp− 1.187

km

s
=:=

Apogee location: ra a 1 e+( )⋅ 30461 km=:=

Speed at apogee: va μ
2

ra

1

a
−









⋅ 2.558
km

s
=:=

Escape speed at

apogee:
vesc_a

2 μ⋅

ra
5.116

km

s
=:=

Cost of escaping

from apogee:
∆V2 vesc_a va− 2.558

km

s
=:=

It would cost less to do the parabolic escape burn at perigee than at apogee.
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Question 2  

 

A spacecraft is in a circular orbit about the Earth at a distance r = 16,000 km. An instantaneous 

tangential burn of ∆V = 3 km/s is performed. 

 

(a) What type of trajectory (circular, elliptical, parabolic, hyperbolic) is the spacecraft on after 

the burn? Show your reasoning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) How long does it take the spacecraft to reach a distance of r = 32,000 km? (Additional 

workspace is available on the following page if needed.) 

 

 

 

 

  

vcirc
μ

r1
4.991

km

s
=:=

vnew vcirc ∆V+ 7.991
km

s
=:=

vesc
2μ

r1
7.059

km

s
=:=

The speed is greater than the escape speed, so the spacecraft is on a hyperbolic trajectory.

Alternatively, looking at the specific orbit energy, 

εnew
vnew

2

2

μ

r1
− 7.017 10

6
×

N m⋅

kg
⋅=:=

The energy is positive, so the spacecraft is on a hyperbolic trajectory.

To determine time on a hyperbolic trajectory, use the hyperbolic corollary of Kepler's equation:

∆t
a

3

μ
e sinh F( )⋅ F−( )⋅=

To calculate the time, we need a and e for the new trajectory, and F when r = 32,000 km.

a can be found from the velocity equation for a hyperbola:

vnew μ
2

r1

1

a
+









⋅= a
1

vnew
2

μ

2

r1
−

28401 km=:=

The eccentricity can be found from applying the knowledge that the burn occurs at perigee of the

new trajectory:

r1 rp= a e 1−( )⋅= e 1
r1

a
+ 1.563=:=
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(c) What is the flight path angle of the spacecraft’s trajectory when r = 16,000 km, and what is 

the flight path angle of the spacecraft’s trajectory when r = 32,000 km? 

  

The true anomaly can be found from the polar equation for a hyperbola and then converted to F, or

F can be found directly from the hyperbolic polar form of the position equation:

r
a e

2
1−( )⋅

1 e cos f( )⋅+
= r2 32000 km⋅:=

f2 acos
1

e

a e
2

1−( )⋅

r2
1−









⋅








1.39 rad⋅=:=

f2 79.62 deg⋅=

tan
f

2








e 1+

e 1−
tanh

F

2








⋅= F2 2 atanh tan
f2

2

















e 1−

e 1+
⋅









⋅ 0.825=:=

or 

r a e cosh F( )⋅ 1−( )⋅= F2_alt acosh
1

e

r2

a
1+







⋅






0.825=:=

Once these parameters are found, the time to reach r = 32,000 km can be calculated:

∆t
a

3

μ
e sinh F2( )⋅ F2−( )⋅ 4674s=:=

∆t 77.9 min⋅=

∆t 1.3 hr⋅=

At the burn location, the velocity is perpendicular to the position vector, so the flight path angle at

r = 16,000 km is simply zero. 

At r = 32,000 km, the flight path angle can be calculated using the equation for flight path angle on

a hyperbola:

Hyperbolic flight path angle: cosγ
a

2
e
2

1−( )⋅

r 2 a⋅ r+( )⋅
=

γ2 acos
a
2

e
2

1−( )⋅

r2 2 a⋅ r2+( )⋅








0.876 rad⋅=:=

γ2 50.19 deg⋅=
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Question 3  

 

A spacecraft is in a circular orbit about the Sun at a distance of 1.25 AU (between the Earth’s 

orbit about the Sun and Mars’ orbit about the Sun; see below for conversions between AU and 

km and for µSun). 

 

The spacecraft is to be placed eventually into a circular orbit about the Sun at a distance of 8 

AU (between Jupiter and Saturn). 

  

(a) How long (in years) will each of the following transfers take? 

i. A Hohmann transfer 

ii. A bi-elliptic transfer with an aphelion of 10 AU 

iii. A semi-tangential elliptical transfer, tangent at perihelion to the 1.25 AU circular 

orbit, with an aphelion distance of 10 AU 

 

 

 

 

 

 

 

 

 

  

The semimajor axis on the Hohmannn transfer is the average of the initial and final circular radii.

The time required for the Hohmann transfer is one half the period of the Hohmann ellipse.

aH
r1 r2+

2
6.919 10

8
× km=:= aH_au

aH

au
4.625=:=

∆tH
1

2
2 π⋅

aH
3

μ
⋅









⋅ 1.57 10
8

× s=:= ∆tH 1817 day⋅=

∆tH 4.974 yr⋅=

The bi-elliptic transfer consists of two half ellipses: the first has a semimajor axis that is the

average of r1 and rb, and the second has a semimajor axis that is the average of rb and r2. The

time required for the entire transfer is half the period of each ellipse.

a1
r1 rb+

2
8.415 10

8
× km=:= a1_au

a1

au
5.625=:=

a2
rb r2+

2
1.346 10

9
× km=:= a2_au

a2

au
9=:=

∆tB
1

2
2 π⋅

a1
3

μ
⋅









⋅
1

2
2 π⋅

a2
3

μ
⋅









⋅+ 6.366 10
8

× s=:= ∆tB 7367.7 day⋅=

∆tB 20.172 yr⋅=
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The time on the semi-tangential transfer is calculated from Kepler's Equation:

∆t
a

3

μ
E e sin E( )⋅−( )⋅=

The semimajor axis is the same as a1 of the bi-elliptic transfer.

The eccentricity can be determined from perihelion:

r1 rp= a 1 e−( )⋅= eS 1
r1

a1
− 0.778=:=

The eccentric anomaly can be determined by finding the true anomaly from the polar equation from

an ellipse, then converting that to eccentric anomaly, or the eccentric anomaly may be found

directly from the form of the polar equation for an ellipse that has the eccentric anomaly.

r a 1 e cos E( )⋅−( )⋅=

r
a 1 e

2
−( )

1 e cos f( )⋅+
=

E2_alt acos
1

eS
1

r2

a1
−









⋅








2.145 rad⋅=:=

f2 acos
a1 1 eS

2
−( )⋅

r2
1−









1

eS
⋅









2.761rad=:=

E2_alt 122.9 deg⋅=

f2 158.213deg=

tan
f

2








1 e+

1 e−
tan

E

2








⋅=

E2 2 atan tan
f2

2







1 eS−

1 eS+
⋅








⋅ 2.145rad=:=

E2 122.9deg=

∆tS
a1

3

μ
E2 eS sin E2( )⋅−( )⋅ 9.994 10

7
× s=:= ∆tS 1157 day⋅=

∆tS 3.167 yr⋅=
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(b) Compute the ∆V for the final burn of the semi-tangential elliptical transfer option.  

 
The second burn on the semi-tangential transfer is the non-tangential burn. The ∆V is computed

using the law of cosines and the flight path angle: 

∆V2 v_arrival
2

vcirc2
2

+ 2 v_arrival⋅ vcirc2⋅ cos γ( )⋅−=

The arrival speed is the speed of the spacecraft with respect to the Sun on the elliptical transfer at

a distance of r2 = 8 AU.

v_arrival μ
2

r2

1

a1
−







⋅ 8.004
km

s
=:=

The circular orbit speed is the required speed after the burn to stay in a circular orbit at r2.

vcirc2
μ

r2
10.53

km

s
=:=

The flight path angle is determined from 

cos γ( )
a

2
1 e

2
−( )⋅

r 2 a⋅ r−( )⋅
=

γ acos
a1

2
1 eS

2
−( )⋅

r2 2 a1⋅ r2−( )⋅








0.805 rad⋅=:= γ 46.102 deg⋅=

cos γ( ) 0.693=

∆V2 v_arrival
2

vcirc2
2

+ 2 v_arrival⋅ vcirc2⋅ cos γ( )⋅− 7.62
km

s
=:=
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4.1.2 Some Maple versi�cation on �rst exam

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

problem 1
restart;
parms:={mu=3.986*10^5, T=8*60*60,r__p=6378};

#define the equation to solve
eq:=T = 2*Pi*sqrt(a^3/mu):
`eq`,subs(parms,eq);

sol := solve(subs(parms,eq),a);

sol:=select(x->type(x,'realcons'),[sol]);

parms:={op(parms),a=op(sol)};

eq:=a*(1-e)>= r__p;

solve(subs(parms,eq),e);

Problem 2
parms:={T=8*60*60,e=0.5,mu=3.986*10^5,a=op(sol)};

rp:=a*(1-e);

vp := sqrt(mu*(2/rp - 1/a));

vesc__rp:=sqrt(2*mu/rp);

ra:=a*(1+e);

va := sqrt(mu*(2/ra - 1/a));
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> > 

> > 

> > 

> > 

> > 

vesc__ra:=sqrt(2*mu/ra);

delta__p:=vesc__rp-vp;

delta__a:=vesc__ra-va;

evalf(subs(parms,delta__a));
2.557884502

evalf(subs(parms,delta__p));
1.187118329

4.2 midterm

4.2.1 questions

 

 

 

EMA 550 

 

Exam#2, Spring 2014 

 

 
Take home exam Due 2:30 p.m., Tuesday April 22, 2014 

 

 

Name _______________________________ 

 

 

Show all of your work to get credit for your answer. Include units with all answers. 

 

You may use mathematical software such as Matlab, MathCad, EES, etc., but include a printout of your 

worksheets with your solution. 

 

Since time is not an issue, please present your solution in a neat form that is easily readable. 

 

Use this page as a cover sheet for the work you turn in. 

 

You are allowed to consult your notes and homework (i.e., all the class materials you would have 

during an in-class exam) but are not allowed to consult or collaborate with classmates or anyone 

other than the instructor. It is permissible to ask the instructor for clarification of the exam questions. 

 

 

  Points Score 

 Problem 1 20 ______ 

 Problem 2 20 ______ 

 Problem 3 20 ______ 

 

 Total Score 60 ______ 
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Problem 1 (20 points)  

 

(a) Find the semi-major axis and eccentricity of the heliocentric orbit that connects Mars on April 17, 

2014 (rSun-Mars = 1.524 AU = 2.280 x 10
8
 km) with Uranus 20 years later on April 17, 2034 (rSun-Uranus = 

19.19 AU = 2.871 x 10
9
 km). Use data from JPL Horizons at 00:00 UT on the given days to determine 

their angular positions. Assume the planets are in circular orbits in the ecliptic plane.  

 

(b) For solutions using Lambert’s method (whether you are using Lambert’s method or not), should the 

variable α be calculated as � = 2asin� 	

� or � = 2� − 2asin� 	


� ? Why? 

 

(c) For solutions using Lambert’s method (whether you are using Lambert’s method or not), should the 

variable β be calculated as � = 2asin�	��
�  or � = −2asin�	��
�  ? Why? 

 

(d) What is the true anomaly of Mars on the transfer orbit at the time the transfer begins? 

 

(e) What is the true anomaly of Uranus on the transfer orbit at the time the transfer ends? 

 

(f) Draw to scale, on a single figure, the circular heliocentric orbits of Mars and Uranus and the transfer 

orbit.  Clearly label Mars’s position at the start of the transfer, Uranus’s position at the end of the 

transfer, the transfer angle, and the direction of motion. 

 

 

Problem 2 (20 points) 

 

An astronaut is working on the Hubble Space Telescope (HST), which orbits the Earth in a circular orbit 

at an altitude of 570 km. The astronaut kicks a tool backward, giving it a speed of 0.5 m/s in the positive 

x-direction of an HST-centered rotating coordinate system. 

 

(a) Plot the trajectory of the tool on xy-axes relative to the Hubble Space Telescope over the next two 

orbit periods of the HST circling the Earth. Clearly label your axes, including units. The origin of the 

xy-system should be the Hubble Space Telescope. 

 

(b) At what time is the tool directly between the HST and the Earth (i.e., directly below the Hubble)? 

 

(c) What is the lowest altitude that the tool reaches while drifting? 

 

(d) How far ahead or behind the HST does the tool drift during each orbit period of the HST about the 

Earth? Is the tool getting ahead of the HST or drifting behind it? 
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Problem 3 (20 points)  

 

Following a burn, a spacecraft has the following Earth-centered Cartesian position and velocity vectors: 

 

 

 

 

 

 

(a) Compute the orbital elements of the spacecraft’s trajectory: a, e, i, Ω, ω, and f. 

 

(b) What are the Earth-centered Cartesian position and velocity vectors of the spacecraft 6 hours later? 
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Chapter 5

practice exams

5.1 First exam practice

5.1.1 questions

Page 1 of 8 
 

EMA 550 
 

Exam #1, Spring 2011 
 
 

75 Minutes, Open Notes February 24, 2011  
 
 
 
Name _______________________________ 
 
 
For the purposes of this exam, assume the Earth is spherical with a radius of 6378 km and  

 = 3.986 x 105 km3/s2.  Show all your work to get credit for your answer. Include units with 
all answers. 
 
 
 
  Points Score 

 Problem 1 40 ______ 

 Problem 2 20 ______ 

 Problem 3 20 ______ 

 
 Total Score 80 ______ 
 
 
 
If you can’t do one section of a multi-part problem and the following parts depend on your 
answer, make a reasonable assumption, write on your paper that you are assuming an 
answer for that part, and then continue on with the problem using that assumption. 
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Page 2 of 8 
 

Problem 1 (40 points) 
 
A GPS satellite orbiting the Earth has malfunctioned and is to be brought back to the Space 
Shuttle for servicing.  The GPS satellite is initially in a circular orbit with a radius of 26,610 km.  
The Space Shuttle is in a circular orbit in the same plane at an altitude of 200 km. 
 

(a) (15 points) Calculate the V (magnitude and sign) for each burn that will bring the GPS 
satellite to the Space Shuttle on a Hohmann transfer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (b) (4 points) Explain why the signs (positive or negative) for the burns you calculated in part 
(a) are correct. 
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Page 3 of 8 
 

GPS orbit 

Shuttle orbit 
Transfer orbit 

(c) (15 points) Instead of returning on 
a Hohmann trajectory, the mission 
managers decide to send the GPS 
satellite back to the Space Shuttle’s 
orbit along an ellipse that is tangent 
to the Space Shuttle’s orbit and has 
an apogee radius of 40,000 km.  

Calculate the Vs needed for this 
semi-tangential return. 
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Page 4 of 8 
 

(d) (6 points) Calculate the transfer times in minutes for both the Hohmann return and the 
semi-tangential return. 
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Page 5 of 8 
 

Problem 2 (20 points) 
 
A satellite is on an elliptical orbit about the Earth with a 6 hour orbital period.  At perigee, the 
satellite is 5000 km from the center of the Earth.   
 
(a) (15 points) At apogee, a burn is performed that allows the satellite to escape the Earth’s 

gravitational pull.  What is the smallest v that will accomplish Earth escape from the original 
orbit’s apogee? 
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Page 6 of 8 
 

(b) (5 points) If a burn is made at perigee on the original orbit instead of at apogee and has a v 
of 2 km/s, what type of trajectory (ellipse, parabola, hyperbola) is the spacecraft on after the 
burn?  Show your reasoning and supporting calculations. 
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Problem 3 (20 points) 
 
Halley’s Comet is on an elliptical orbit about the Sun.  If its perihelion distance is 0.586 AU 
(astronomical units), its aphelion distance is 35.1 AU, and it was last at perihelion in the 
February of 1986, in what future year will Halley’s Comet next cross the Earth’s orbit about the 
Sun?  (Assume for this problem that the orbit of Halley’s Comet is in the same plane as the 
Earth’s orbit about the Sun and that the Earth’s orbit about the Sun is circular.) 
 

Useful constants: Sun = 1.327 x 1011 km3/s2 
        1 AU = Earth’s distance from the Sun = 1.495 x 108 km 
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5.1.2 key solution

Page 1 of 7 

 

Problem 1 (40 points) 

 

A GPS satellite orbiting the Earth has malfunctioned and is to be brought back to the Space 

Shuttle for servicing.  The GPS satellite is initially in a circular orbit with a radius of 26,610 km.  

The Space Shuttle is in a circular orbit in the same plane at an altitude of 200 km. 

 

(a) (15 points) Calculate the ∆V (magnitude and sign) for each burn that will bring the GPS 

satellite to the Space Shuttle on a Hohmann transfer. 

 

 
 

 

 

 

 (b) (4 points) Explain why the signs (positive or negative) for the burns you calculated in part 

(a) are correct. 

 

The satellite is starting on the largest orbit.  The first ∆v is negative, indicating that the 

spacecraft has to slow down to drop down to a smaller orbit, one with a perigee equal to the 

Shuttle’s orbit.  The second ∆v is also negative, because the final circular orbit is smaller than 

the transfer orbit, so staying on the Shuttle’s orbit requires reducing the orbit energy further. 

 

  

aH
r1 r2+

2
:= aH 16594km=

v1
µ

r1
:= v1 3.87

km

s
=

v2 µ
2

r1

1

aH
−









⋅:= v2 2.437
km

s
=

v3 µ
2

r2

1

aH
−









⋅:= v3 9.858
km

s
=

v4
µ

r2
:= v4 7.784

km

s
=

∆v1 v2 v1−:= ∆v1 1.434−
km

s
=

∆v2 v4 v3−:= ∆v2 2.073−
km

s
=
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Page 2 of 7 

 

GPS orbit 

Shuttle orbit 
Transfer orbit 

(c) (15 points) Instead of returning on 

a Hohmann trajectory, the mission 

managers decide to send the GPS 

satellite back to the Space Shuttle’s 

orbit along an ellipse that is tangent 

to the Space Shuttle’s orbit and has 

an apogee radius of 40,000 km.  

Calculate the ∆Vs needed for this 

semi-tangential return. 

 

 

 

 

 

 

 
  

rS 40000 km⋅:=

aS
rS r2+

2
23289 km=:=

rp r2:=

eS 1
rp

aS
− 0.718=:=

v2S μ
2

r1

1

aS
−









⋅ 3.584
km

s
=:=

cosγ
aS

2
1 eS

2
−( )

r1 2 aS⋅ r1−( )⋅
0.704=:= γ acos cosγ( ) 45.275 deg⋅=:= γ 0.79rad=

Note: since the spacecraft is coming into perigee, the flight path angle is the negative of the value

shown above.  Since calculating the ∆V uses the cosine of the flight path angle, the cosine and thus

the ∆V are the same for either a postivie or negative flight path angle.

∆V1S v1
2

v2S
2

+ 2 v1⋅ v2S⋅ cosγ⋅− 2.881
km

s
=:= ∆V1S 2.881

km

s
=

v3S μ
2

r2

1

aS
−









⋅ 10.202
km

s
=:=

∆V2S v4 v3S− 2.417−
km

s
=:= ∆V2S 2.417−

km

s
=
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(d) (6 points) Calculate the transfer times in minutes for both the Hohmann return and the 

semi-tangential return. 

 

 
  

∆tH
1

2
2 π⋅

aH
3

µ
⋅









⋅ 1.064 10
4

× s=:= ∆tH 177.279min⋅=

f1 acos
1

eS

aS 1 eS
2

−( )⋅

r1
1−









⋅








2.501 rad⋅=:= f1 143.314deg⋅=

Note: we can use this value of f to correctly solve the problem, but since f is measure in the

direction of motion, the most accurate description of the satellite's position at the start of the

transfer is 2*pi-f1.

E1 2 atan tan
f1

2









1 eS−

1 eS+
⋅









⋅ 1.771 rad⋅=:= E1 101.463deg⋅=

Could also calculate E directly from r = a*(1-e*cos(E))

E2 acos
1

eS
1

r1

aS
−









⋅








1.771 rad⋅=:= E2 101.463deg⋅=

∆tS
aS

3

µ
E1 eS sin E1( )⋅−( )⋅ 6.01 10

3
× s=:= ∆tS 100.167min⋅=
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Problem 2 (20 points) 

 

A satellite is on an elliptical orbit about the Earth with a 6 hour orbital period.  At perigee, the 

satellite is 5000 km from the center of the Earth.   

 

Note: this is a poorly written problem, as r = 5000 km is within the 6378 km radius of the 

Earth.  Students were instructed to treat the Earth as a point mass and ignore that the 

perigee radius is inside the Earth. 

 

(a) (15 points) At apogee, a burn is performed that allows the satellite to escape the Earth’s 

gravitational pull.  What is the smallest ∆v that will accomplish Earth escape from the original 

orbit’s apogee? 

 

 
 

 

  

μ 3.986 10
5

⋅
km

3

s
2

:=

T 6 hr⋅:=

a
T

2 π⋅









2

μ⋅








1

3

16763 km=:=

rp 5000 km⋅:=

e 1
rp

a
− 0.702=:=

ra a 1 e+( )⋅ 28527 km=:=

The smallest Earth-escape ∆V comes from placing the spacecraft on a parabolic trajectory.

∆Va
2 μ⋅

ra
μ

2

ra

1

a
−









⋅− 3.245
km

s
=:= ∆Va 3.245

km

s
=
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(b) (5 points) If a burn is made at perigee on the original orbit instead of at apogee and has a ∆v 

of 2 km/s, what type of trajectory (ellipse, parabola, hyperbola) is the spacecraft on after the 

burn?  Show your reasoning and supporting calculations. 

 

 

 

 
 

 

 

  

Method 1: compute the ∆V needed for a parabolic trajectory from the perigee distance.  A smaller

∆V indicates an elliptical orbit, and a larger ∆V indicates a hyperbolic orbit.

∆Vp
2 μ⋅

rp
μ

2

rp

1

a
−









⋅− 0.98
km

s
=:=

The given ∆V is larger than the ∆V needed for a parabolic trajectory, so the spacecraft is on a

hyperbolic trajectory. 

Method 2: calculate the circular orbit speed at perigee and see if the given ∆V results in a post-burn

speed of more than sqrt(2) times the circular orbit speed at the perigee distance.

∆Vgiven 2
km

s
⋅:=

vp μ
2

rp

1

a
−









⋅ 11.647
km

s
=:= vcircp

μ

rp
8.929

km

s
=:=

vp ∆Vgiven+ 13.647
km

s
= 2 vcircp⋅ 12.627

km

s
=

The speed is greater than sqrt(2)*vcirc, so the spacecraft is on a hyperbola.

Note: it is not accurate to apply this method using sqrt(2)*vp.  The speed on a parabola is sqrt(2)

times the circular orbit speed at the same distance, not sqrt(2) times any other orbit speed at that

distance.

Making that mistake on this problem would indicate the the spacecraft is on an ellipse, since vp +

∆V is less than vp* sqrt(2). 

vp 2⋅ 16.472
km

s
=

153



5.1. First exam practice CHAPTER 5. PRACTICE EXAMS

Page 6 of 7 

 

Problem 3 (20 points) 

 

Halley’s Comet is on an elliptical orbit about the Sun.  If its perihelion distance is 0.586 AU 

(astronomical units), its aphelion distance is 35.1 AU, and it was last at perihelion in the 

February of 1986, in what future year will Halley’s Comet next cross the Earth’s orbit about the 

Sun?  (Assume for this problem that the orbit of Halley’s Comet is in the same plane as the 

Earth’s orbit about the Sun and that the Earth’s orbit about the Sun is circular.) 

 

Useful constants: µSun = 1.327 x 10
11

 km
3
/s

2
 

        1 AU = Earth’s distance from the Sun = 1.495 x 10
8
 km 

 

 

 

(see next page) 

  

μ 1.327 10
11

⋅
km

3

s
2

:=

au 1.495 10
8

⋅ km:=

rp 0.586 au⋅ 8.761 10
7

× km=:=

ra 35.1 au⋅ 5.247 10
9

× km=:=

Orbit Characteristics

e
ra rp−

rp ra+
0.967=:=

a
ra

1 e+
2.668 10

9
× km=:=

a

au
17.843=
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(Additional workspace for Problem 3) 

 

Halley’s Comet will next cross the Earth’s path in 75.2 years (75 years and 2.4 months) from 

February, 1986, placing the crossing in April or May of 2061, depending on when in February it 

was at perihelion.   

 

Crossing Earth's Orbit

r 1 au⋅ 1.495 10
8

× km=:=

E1 acos
1

e
1

r

a
−









⋅








0.219rad=:= or E2 2 π⋅ E1− 6.064rad=:=

E1 12.576 deg= E2 347.424deg=

T 2 π⋅
a

3

μ
⋅ 2.376 10

9
× s=:= T 75.303 yr=

n
2 π⋅

T
:= n 2.644 10

9−
×

1

s
=

∆t1
1

n
E1 e sin E1( )⋅−( )⋅ 3.369 10

6
× s=:= ∆t1 0.107yr=

∆t2
1

n
E2 e sin E2( )⋅−( )⋅ 2.373 10

9
× s=:= ∆t2 75.196 yr=

On current cycle of orbit, first crossed Earth's path in the year 1986 + ∆t1 = 1986.  Next crossing of

Earth's orbit will be ∆t2 since latest perigee.

1986 yr⋅ ∆t2+( ) 2061yr=
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5.1.3 my solution

my Solution to practice exam 1, EMA 550

021914, Nasser M. Abbasi  (EMA 550)

Up

notebook

PDF

problem 1

question

Printed by Wolfram Mathematica Student Edition
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answer part (a)

In[32]:=

r1 = 200 + 6378;H*space shuttle orbit*L
r2 = 26 610;H*satellitem GPS*L
mu = 3.986 * 10^5;

a =

r1 + r2

2

Out[35]=

16 594

v1 =

mu

r2

3.87031

v2 = mu
2

r2

-

1

a

2.43679

v3 = mu
2

r1

-

1

a

9.85754

2   sol.nb

Printed by Wolfram Mathematica Student Edition
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v4 =

mu

r1

7.78434

v2 - v1

-1.43353

v4 - v3

-2.0732

delV = Abs@v2 - v1D + Abs@v4 - v3D

3.50673

part (c)

sol.nb   3

Printed by Wolfram Mathematica Student Edition
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In[40]:=

r3 = 40 000; H*new transfer orbit*L

a =

r3 + r1

2

Out[41]=

23 289

In[10]:=

e =

r3 - r1

r3 + r1

�� N

Out[10]=

0.717549

4   sol.nb

Printed by Wolfram Mathematica Student Edition
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In[12]:=

v1 =

mu

r2

Out[12]=

3.87031

In[13]:=

v2 = mu
2

r2

-

1

a

Out[13]=

3.58375

In[15]:=

CosGamma =

a2 I1 - e2M

r2 H2 a - r2L
�� N

Out[15]=

0.703699

In[16]:=

delV1 = v1
2

+ v2
2

- 2 v1 v2 CosGamma

Out[16]=

2.88126

In[17]:=

v3 = mu
2

r1

-

1

a

�� N

Out[17]=

10.2018

In[18]:=

v4 =

mu

r1

Out[18]=

7.78434

In[19]:=

delV2 = v4 - v3

Out[19]=

-2.41745

In[20]:=

totalDelV = Abs�delV1 + Abs�delV2

Out[20]=

5.29871

part(d)

sol.nb   5

Printed by Wolfram Mathematica Student Edition
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For hohmann, the time is half the period

In[87]:=

delT1 = Pi SqrtB
a3

mu

F

Out[87]=

17 685.1

in minutes

In[88]:=

delT1 = delT1 � H60L

Out[88]=

294.752

For the semi tangential

In[129]:=

Clear@a, e, r, EED

a =

r1 + r3

2

;

e =

r3 - r1

r1 + r3

;

r2 = 26 610;

r2 == a H1 - e Cos@EEDL;

Cos@EED �. First�NSolve@%, Cos@EEDD
Out[134]=

-0.198731

In[135]:=

EE = ArcCos@%D

Out[135]=

1.77086

In[136]:=

delT2 = SqrtB
a3

mu

F HEE - e Sin@EEDL

Out[136]=

6010.01

In[137]:=

delT2 = delT2 � 60

Out[137]=

100.167

Total time in minutes

In[138]:=

totalDelT = delT1 + delT2

Out[138]=

394.919

6   sol.nb

Printed by Wolfram Mathematica Student Edition
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problem 2

part(a)

In[168]:=

Clear@aD
rp = 5000;

mu = 3.986 * 10^5;

6 * 60 * 60 � 2 Pi SqrtB
a3

mu

F

Out[171]=

21 600 � 0.00995202 a
3

In[172]:=

aCube =

21 600

0.009952019565792981`

^2

Out[172]=

4.7107 ´ 10
12

In[173]:=

HaCubeL^H1 � 3L

Out[173]=

16 763.4

In[174]:=

a = %

Out[174]=

16 763.4

In[175]:=

ra = 2 a - rp

Out[175]=

28 526.8

In[179]:=

va = mu
2

ra

-

1

a

Out[179]=

2.04149

sol.nb   7

Printed by Wolfram Mathematica Student Edition
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In[180]:=

escape =

2 mu

ra

Out[180]=

5.28637

In[181]:=

smallestV = escape - va

Out[181]=

3.24488

In[182]:=

vp = mu
2

rp

-

1

a

Out[182]=

11.6474

In[183]:=

v2 = 2 + vp

Out[183]=

13.6474

In[184]:=

vecsp =

2 mu

rp

Out[184]=

12.627

since v2>vescape, hence hyperbolic

problem 3

8   sol.nb

Printed by Wolfram Mathematica Student Edition
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In[32]:=

mu = 1.327 * 10^11;

r1 = 1.495 * 10^8;

au = r1;

rp = 0.586 * au;

ra = 35.1 * au;

a =

rp + ra

2

Out[37]=

2.66753 ´ 10
9

In[38]:=

Clear@e, EED;

e =

ra - rp

ra + rp

Out[39]=

0.967158

In[40]:=

r1 � a H1 - e Cos@EEDL

Out[40]=

1.495 ´ 10
8

� 2.66753 ´ 10
9 H1 - 0.967158 Cos@EEDL

In[41]:=

Cos@EED �. First�Solve@%, Cos@EEDD

Out[41]=

0.97601

In[42]:=

EE = ArcCos@%D

Out[42]=

0.219485

In[44]:=

delT = SqrtB
a3

mu

F HEE - e Sin@EEDL

Out[44]=

3.36928 ´ 10
6

In[45]:=

period = 2 Pi SqrtB
a3

mu

F

Out[45]=

2.37634 ´ 10
9

In[48]:=

HperiodL � H60 * 60 * 24 * 365L

Out[48]=

75.3531

sol.nb   9

Printed by Wolfram Mathematica Student Edition
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In[46]:=

delT � H60 * 60 * 24 * 365L
Hperiod - delTL � H60 * 60 * 24 * 365L

Out[46]=

0.106839

Out[47]=

75.2463

10   sol.nb

Printed by Wolfram Mathematica Student Edition

5.2 Mid term practice exam

5.2.1 questions

 
 
 

EMA 550 
 

Exam#2, Spring 2013 
 
 

Take home exam Due 2:30 p.m., Thursday April 25, 2013 
 
 
Name _______________________________ 
 
 
Show all of your work to get credit for your answer. Include units with all answers. 
 
You may use mathematical software such as Matlab, MathCad, EES, etc., but include a printout of your 
worksheets with your solution. 
 
Since time is not an issue, please present your solution in a neat form that is easily readable. 
 
Use this page as a cover sheet for the work you turn in. 
 
You are allowed to consult your notes and homework (i.e., all the class materials you would have 
during an in-class exam) but are not allowed to consult or collaborate with classmates or anyone 
other than the instructor. It is permissible to ask the instructor for clarification of the exam questions. 
 
 
  Points Score 

 Problem 1 20 ______ 

 Problem 2 20 ______ 

 Problem 3 20 ______ 

 
 Total Score 60 ______ 
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Problem 1 (20 points)  
 
(a) Find the semi-major axis and eccentricity of the heliocentric orbit that connects the Earth on April 

20, 2013 (rSun-Earth = 1.496 x 108 km) with Saturn on May 20, 2016 (rSun-Saturn = 9.537* rSun-Earth). Use 
data from JPL Horizons at 00:00 UT on the given days to determine their positions. Assume the 
planets are in circular orbits in the ecliptic plane. 

 
(b) What is the true anomaly of the Earth on the transfer orbit at the time the transfer begins? 
 
(c) What is the true anomaly of Saturn on the transfer orbit at the time the transfer ends? 

 
(d) Draw to scale, on a single figure, the circular heliocentric orbits of Earth and Saturn and the transfer 

orbit.  Clearly label the Earth’s position at the start of the transfer, Saturn’s position at the end of 
the transfer, the transfer angle, and the direction of motion. 

 
 
Problem 2 (20 points) 
You are running the maneuvers desk at mission control for a Clean Sweep satellite that is collecting 
orbital debris when the satellite’s sensors spot a piece of debris 1000 m ahead of the satellite’s current 
position and 500 m above the satellite’s current position. The piece of debris is moving away from the 
satellite with a velocity relative to the satellite at the instant observed of 1 m/s in both the in-track and 
vertical directions. 
 
(a) Assuming that Clean Sweep starts in a circular orbit with a 100 minute orbit period, what 

instantaneous V vector (i.e. components along the rotating relative coordinate x and y directions) 
will allow the Clean Sweep satellite to reach the debris in exactly 15 minutes? (Note:  The debris is 
also moving during that time.) 

 
(b) Plot the trajectory of both the debris and the Clean Sweep satellite during the 15 minute maneuver 

on a single plot in rotating relative xy-coordinates and show that your V will allow Clean Sweep to 
reach the piece of debris. Clearly label your axes, units, and which line corresponds to which object. 
The origin of the xy-system should be Clean Sweep’s position at the start of the maneuver. 

 
 
Problem 3 (20 points)  
Following a satellite collision, a piece of debris is spotted by NORAD with the Earth-centered Cartesian 
position and velocity below. 

 
 
 
 
 

(a) Compute the orbital elements of the debris’ orbit: a, e, i, , , and f. 
 

(b) What are the Earth-centered Cartesian position and velocity vectors of the piece of debris when it 
collides with the Earth? What is the speed of the debris when it collides with the Earth? 
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5.2.2 key

Problem 1 (20 points)  

Earth data (4/20/2013): 

Helio long: 209.89° 

[x,y,z]=[-0.872,-0.503,-0.0000377] au 

[x,y,z]=[-1.304,-0.753,-0.0000565] 10
8
 km 

[Ω,ω,f]=[171.7,289.9,108.4]° (sum = 210°) 

 

Saturn data (5/20/2016) 

Helio long: 252.45° (Δθ = 42.56°) 

[x,y,z]=[-3.018,-9.555,0.286] au 

[x,y,z]=[-4.515,-14.29,0.428] 10
8
 km 

[Ω,ω,f]=[113.5,340.4,158.5]° (sum = 252°) 

 

(a) a = 9.988 x 10
8
 km, e = 0.97 

 

(b) f1Earth = 129° (2.246 rad) 

  

(c) f2Saturn =  171° (2.988 rad) 

 

(d) Figure: Earth, Saturn, transfer orbit, Earth’s position at start, Saturn’s position at end, transfer angle, 

direction of motion 

 

Problem 2 (20 points) 

 

(a) ∆V1x = -2.459 m/s, ∆V1y = 0.961 m/s  

 

(b) Figure: 

 

 

 

 

 

 

  

Problem 3 (20 points)  

 

(a) Compute the orbital elements of the satellite’s orbit: a, e, i, Ω, ω, and f. 

 

a = 11000 km 

e = 0.844 

i = 35.4° (0.617 rad)

Ω = 119.1° (2.078 rad) 

ω = 120.9° (2.111 rad)  

f = 156.3° (2.727 rad) 

 

(b) What are the satellite’s Cartesian position and velocity vectors when it collides with the Earth? 

 

E2 = 5.234 rad (299.9°) 

f2 = 4.074 rad (233.4°) 

 

Note: If using wrong E,  

E2 = 1.049 rad = 60.1°, then  

f = 2.209 rad = 126.6° and 

5.3 practice exams for �nals

5.3.1 2011

5.3.1.1 questions

Page 1 of 15 

 

radius of the Earth = 6378 km Earth = 3.986 * 10
5
 km

3
/s

2 
g = 9.81*m/s

2
 

 

 

EMA 550 

 

Final Exam, Spring 2011 

 

 
May 8, 2011, 7:45 am – 9:45 am Open notes 

 Two hours 

 

Name _______________________________ 

 

 

 

Show all of your work to get credit for your answers. Include units with all answers. 

 

Useful astronomical constants are found at the bottom of each page. 


 

 

 Points  Score 

Problem 1 25  _______ 

Problem 2 15  _______ 

Questions 40  _______ 

    

Total Score 80  _______ 

 

 

If you are unable to find a value that is needed in subsequent sections of a problem, 

use a reasonable guess value (and clearly state what it is).  
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Page 2 of 15 

 

radius of the Earth = 6378 km Earth = 3.986 * 10
5
 km

3
/s

2 
g = 9.81*m/s

2
 

 

Problem 1 

 

A spacecraft is orbiting the Sun on the elliptical heliocentric orbit shown.  The 

spacecraft’s orbit crosses Jupiter’s orbit twice each revolution, and at one of the crossings 

(as shown on the figure), Jupiter is positioned close enough to the crossing that the 

spacecraft enters Jupiter’s sphere of influence.  Relative to the Sun, the spacecraft arrives 

at Jupiter’s sphere of influence with a speed of 11.5 km/s and a flight path angle of -35°.  

Jupiter is moving with a speed of 13 km/s relative to the Sun in a circular orbit. 

 

Heliocentric view: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Calculate the speed of the spacecraft with respect to Jupiter when it enters Jupiter’s 

sphere of influence (v∞). 

 

 

  

Jupiter’s  

orbit 

Jupiter’s position at the time  

of the flyby 
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heliocentric  

orbit before  

the flyby 

Sun 
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(b) The spacecraft enters Jupiter’s sphere of influence with an impact parameter equal to 

ten times the radius of Jupiter, resulting in a turning angle () relative to Jupiter of 

145°.  On the figures below, draw and label 

a. velocity vector va, the spacecraft’s arrival at Jupiter’s sphere of influence with 

respect to the Sun 

b. velocity vector v∞,in, the incoming asymptote relative to Jupiter 

c. velocity vector v∞,out, the outgoing asymptote relative to Jupiter 

d. velocity vector vd, the spacecraft’s departure from Jupiter’s sphere of 

influence with respect to the Sun 

e. the turning angle with respect to Jupiter 

f. the heliocentric flight path angle at arrival (a) 

g. the heliocentric flight path angle at departure (d). 

 

The lengths of the vectors should be drawn approximately to scale and the required 

angles should be drawn approximately accurately.  You do not need to calculate all of 

the unknown velocity values and angle values.  Note: it may help you to sketch the 

flybys of Jupiter in Jupiter’s frame of reference. 

 

 

Velocity diagram for a flyby in front of Jupiter:  

 

 

 

 

 

 

 

 

 

 

 

 

Velocity diagram for a flyby behind Jupiter:  

 

 

 

 

 

 

 

 

 

 

  

VJupiter = 13 km/s 

VJupiter= 13 km/s 
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(c) Calculate the speed of the spacecraft relative to the Sun after the flyby behind Jupiter. 
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(d)  Calculate the flight path angle of the spacecraft relative to the Sun after the flyby 

behind Jupiter. 
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(f) On the heliocentric view below, draw and label the following: 

a. velocity vector va, the spacecraft’s arrival at Jupiter’s sphere of influence with 

respect to the Sun 

b. velocity vector vd,in front, the spacecraft’s departure from Jupiter’s sphere of 

influence with respect to the Sun following a flyby in front of Jupiter 

c. velocity vector vd,behind, the spacecraft’s departure from Jupiter’s sphere of 

influence with respect to the Sun following a flyby behind Jupiter. 

 

 

 

 

Heliocentric view: 
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Problem 2 

 

A rocket engine that generates 3000 N of thrust by burning 60 kg of fuel at a constant rate 

over 1 minute is attached to a satellite orbiting the earth with the following orbital 

parameters: 

 

perigee distance rp = 7000 km 

apogee distance ra = 14,000 km 

inclination i = 28.5° 

right ascension of ascending node  = 90° 

argument of perigee  = 0° 

 

 

(a) At what true anomaly in the satellite’s orbit must the engine be fired in order to 

achieve the maximum inclination change?  Why? 
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(b) If the combination of the satellite and rocket prior to burning the engine has a mass of 

120 kg, what is the maximum degree of inclination change that the satellite can 

achieve? 
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Questions 

 

For this section, answer the questions in complete sentences.  Use equations and minor 

calculations where appropriate, but the emphasis is on explaining course concepts rather 

than solving for numerical values. 

 

 

(a) The equation that describes the drift in right ascension of an Earth-orbiting satellite 

due to the oblateness of the Earth is  

 

 
deg/day    cos

1

969.9
5.3

22
i

hR

R

edt

d

E

E















  

 

What inclination orbits experience the maximum drift in right ascension of ascending 

node?  What is the physical reason that the effect is greatest for those inclinations? 

 

 

 

 

 

 

 

 

 

 

 

 

 

What inclination orbits experience the least drift in right ascension of the ascending 

node?  What is the physical reason that the effect is least for those inclinations? 
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(b) A satellite is orbiting the Earth on a circular orbit with a radius of 8059 km. 

 

At time t = 0, a small explosion aboard a satellite sends three pieces flying away from 

the main body of the satellite.   

 

Piece A speeds up by 2 m/s in the original satellite's direction of motion. 

Piece B attains a velocity of 1 m/s in the direction perpendicular to the orbit plane. 

Piece C receives a 3 m/s ΔV toward the Earth. 

 

Which piece will be farthest away from the main satellite 6 hours later?  Justify your 

answer. 
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(c) On page 15-9 of the course 

notes, you have the 

following figure, which 

illustrates right ascensions 

and inclinations of r1 = 

6656 km circular parking 

orbits that will allow an 

Earth-orbiting satellite 

with fixed-impulse rocket 

engines providing V1 = 

2.107 km/s and V2 = 

1.888 km/s to reach a 

desired mission orbit with 

r2 = 26,565 km,  = 0°, 

and i = 55°.   

 

 

 

 

The shaded region of the figure indicates parking orbits that will allow the rocket to 

reach the mission orbit.  The mission orbit is in the middle of the unshaded region.  

Why is this okay (and expected)? 
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(d) A spacecraft is in an elliptical orbit 

about the Earth with a semimajor 

axis of a = 40,000 km and 

eccentricity e = 0.8, as shown to the 

right.  An instantaneous tangential 

V is applied to the spacecraft, but 

rather than being applied at perigee 

or apogee, the tangential V is 

applied when the spacecraft has a 

true anomaly of f = 90°. 

 

 

 

Provide (but do not solve) the complete set of equations needed to find the semimajor 

axis (anew) and the eccentricity (enew) of the resulting orbit and the spacecraft’s true 

anomaly (fnew) on that orbit.  Next to each equation, indicate why it is important (i.e., 

what variable(s) is (are) found from each equation or system of equations).  You may 

assume that the orbit remains elliptical after the impulse. 

 

 

  

V 
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How would you be able to tell if the post-V orbit was hyperbolic instead of 

elliptical? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How would your equations for calculating anew, enew, and fnew change if the post-V 

orbit was hyperbolic? 
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(e) At time t0, a spacecraft is at perigee on an elliptical orbit with semimajor axis a1 and 

eccentricity e1.  It completes an impulsive, tangential burn that will allow it to 

rendezvous with a space station on a larger orbit with semimajor axis a2 and 

eccentricity e2.  The rendezvous occurs at apogee on the station’s orbit, so the transfer 

orbit is tangential to the final orbit as well as the spacecraft’s initial orbit.  The 

transfer ellipse is shown on the figure below as the dashed line. 

 

Provide (but do not solve) all of the equations necessary to find lead, the angle by which 

the space station must lead the spacecraft at t0, the time of the initial rocket firing.  

Indicate why you included each equation and simplify where possible using the 

properties of perigee and apogee.  Additional space is provided on the following page. 
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Problem 1 

 

A spacecraft is orbiting the Sun on the elliptical heliocentric orbit shown.  The 

spacecraft’s orbit crosses Jupiter’s orbit twice each revolution, and at one of the crossings 

(as shown on the figure), Jupiter is positioned close enough to the crossing that the 

spacecraft enters Jupiter’s sphere of influence.  Relative to the Sun, the spacecraft arrives 

at Jupiter’s sphere of influence with a speed of 11.5 km/s and a flight path angle of -35°.  

Jupiter is moving with a speed of 13 km/s relative to the Sun in a circular orbit. 

 

Heliocentric view: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Calculate the speed of the spacecraft with respect to Jupiter when it enters Jupiter’s 

sphere of influence (v∞). 

 

 

 
  

vinf VJ
2

va
2

+ 2 VJ va cos( )- 7.505
km

s
=:=

Jupiter’s  

orbit 

Jupiter’s position at the time  

of the flyby 

Spacecraft’s  

heliocentric  

orbit before  

the flyby 

Sun 
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(b) The spacecraft enters Jupiter’s sphere of influence with an impact parameter equal to 

ten times the radius of Jupiter, resulting in a turning angle () relative to Jupiter of 

145°.  On the figures below, draw and label 

a. velocity vector va, the spacecraft’s arrival at Jupiter’s sphere of influence with 

respect to the Sun 

b. velocity vector v∞,in, the incoming asymptote relative to Jupiter 

c. velocity vector v∞,out, the outgoing asymptote relative to Jupiter 

d. velocity vector vd, the spacecraft’s departure from Jupiter’s sphere of 

influence with respect to the Sun 

e. the turning angle with respect to Jupiter 

f. the heliocentric flight path angle at arrival (a) 

g. the heliocentric flight path angle at departure (d). 

 

The lengths of the vectors should be drawn approximately to scale and the required 

angles should be drawn approximately accurately.  You do not need to calculate all of 

the unknown velocity values and angle values.  Note: it may help you to sketch the 

flybys of Jupiter in Jupiter’s frame of reference. 

 

 

Velocity diagram for a flyby in front of Jupiter:  

 

 

 

 

 

 

 

 

 

 

 

 

Velocity diagram for a flyby behind Jupiter:  

 

 

 

 

 

 

 

 

 

 

  

VJupiter = 13 km/s 

va 

a 
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J 
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 
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v∞, out 

 

VJupiter= 13 km/s 

va 
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J 
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d v∞, out v∞, out 

 
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(c) Calculate the speed of the spacecraft relative to the Sun after the flyby behind Jupiter. 

 

 

 

 
 

 

 

 

 

 

  

a  35 deg=:=

a asin
va

vinf
sin a( )









61.511deg=:=

 2  a- - 153.733deg=:=

vd VJ
2

vinf
2

+ 2 VJ vinf cos ( )- 20.008
km

s
=:=

d asin
vinf

vd
sin ( )









9.556deg=:=

VJupiter= 13 km/s 

va 

a 

v∞, in 

J 

v∞, in 

 

vd 

d v∞, out v∞, out 

 

a 

 
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(d)  Calculate the flight path angle of the spacecraft relative to the Sun after the flyby 

behind Jupiter. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

  

vd VJ
2

vinf
2

+ 2 VJ vinf cos ( )- 20.008
km

s
=:=

d asin
vinf

vd
sin ( )









9.556deg=:=
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(f) On the heliocentric view below, draw and label the following: 

a. velocity vector va, the spacecraft’s arrival at Jupiter’s sphere of influence with 

respect to the Sun 

b. velocity vector vd,in front, the spacecraft’s departure from Jupiter’s sphere of 

influence with respect to the Sun following a flyby in front of Jupiter 

c. velocity vector vd,behind, the spacecraft’s departure from Jupiter’s sphere of 

influence with respect to the Sun following a flyby behind Jupiter. 

 

 

 

Heliocentric view: 

 

 

 

 

 

 

 

  

Jupiter’s  

orbit 
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Problem 2 

 

A rocket engine that generates 3000 N of thrust by burning 60 kg of fuel at a constant rate 

over 1 minute is attached to a satellite orbiting the earth with the following orbital 

parameters: 

 

perigee distance rp = 7000 km 

apogee distance ra = 14,000 km 

inclination i = 28.5° 

right ascension of ascending node  = 90° 

argument of perigee  = 0° 

 

 

(a) At what true anomaly in the satellite’s orbit must the engine be fired in order to 

achieve the maximum inclination change?  Why? 

 

 

In class, we discussed that the inclination change is maximized by 

firing the impulses at the equatorial crossings, because then the entire 

impulse goes into changing inclination and not changing the right 

ascension.   

 

Because this orbit has an argument of perigee = 0, the equatorial 

crossings are the perigee and apogee.  A greater amount of plane 

change is achievable if the rocket is going more slowly, so the greatest 

plane change is achieved at apogee, where the true anomaly f = 180 

degrees. 
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(b) If the combination of the satellite and rocket prior to burning the engine has a mass of 

120 kg, what is the maximum degree of inclination change that the satellite can 

achieve? 

 

 

 

 

 

 
 

 

  

T 3000N:= g 9.807
m

s
2

=

mfuel 60 kg:=

t 1 min:=

Isp
T

g
mfuel

t











305.915s=:=

mi
mfuel

.5
120 kg=:=

mf mi mfuel- 60kg=:=

V g Isp ln
mi

mf









 2.079
km

s
=:=

Plane change:  ΔV = 2*v*sin(θ/2)

rp 7000 km:=

ra 2 rp 14000 km=:=

rp a 1 e-( )=

ra a 1 e+( )=

a 10500 km=

e 0.333=

3.986 10
5


km

3

s
2

:=

v
2

ra

1

a
-









 4.357
km

s
=:=

2 asin
V

2 v









 0.482 rad=:= 27.614 deg=
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Questions 

 

For this section, answer the questions in complete sentences.  Use equations and minor 

calculations where appropriate, but the emphasis is on explaining course concepts rather 

than solving for numerical values. 

 

 

(a) The equation that describes the drift in right ascension of an Earth-orbiting satellite 

due to the oblateness of the Earth is  

 

 
deg/day    cos

1

969.9
5.3

22
i

hR

R

edt

d

E

E












+-
-=

  

 

What inclination orbits experience the maximum drift in right ascension of ascending 

node?  What is the physical reason that the effect is greatest for those inclinations? 

 

The maximum drift of right ascension due to J2 effects is experienced by orbits 

in low inclinations.  Not zero inclination, as the right ascension is undefined for 

orbits that are equatorial (no ascending or descending node), but low inclination.  

The effect is greatest at those inclinations because they spend the majority of 

their orbital period in the vicinity of the greater mass near the equator that 

torques the orbit’s angular momentum vector. 
 

 

 

 

 

What inclination orbits experience the least drift in right ascension of the ascending 

node?  What is the physical reason that the effect is least for those inclinations? 

 

The least drift of right ascension due to J2 effects is experienced by orbits in high 

inclinations, polar or nearly polar.  The effect is least at those inclinations 

because the orbit is perpendicular (or nearly perpendicular) to the oblate 

gravitational effect that would otherwise cause a torque on the angular 

momentum vector of the orbit. 
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(b) A satellite is orbiting the Earth on a circular orbit with a radius of 8059 km. 

 

At time t = 0, a small explosion aboard a satellite sends three pieces flying away from 

the main body of the satellite.   

 

Piece A speeds up by 2 m/s in the original satellite's direction of motion. 

Piece B attains a velocity of 1 m/s in the direction perpendicular to the orbit plane. 

Piece C receives a 3 m/s ΔV toward the Earth. 

 

Which piece will be farthest away from the main satellite 6 hours later?  Justify your 

answer. 

 

 
 

Since the period of the orbit is 2 hrs, the time of 6 hrs is equal to three orbit 

periods.   

 

Piece A receives a negative x-direction relative V.  The x-direction is the 

only direction that has a secular drift, so each period, the piece moves farther 

away from its original position. 

 

Piece B receives a z-direction relative V.  The piece will oscillate back and 

forth, perpendicular to the orbit plane, but it will return to its original 

position each orbit period, so at 6 hours, its distance from its original location 

will be zero. 

 

Piece C receives a negative y-direction relative V.  The piece will move 

forward, backward, above, and below its original position, but it will return 

to its original position each orbit period, so at 6 hours, its distance from its 

original location will be zero. 

 

 Piece A will be the farthest away 6 hours later. 

 

 

 

  

r 8059 km:=

T 2
r
3

 7200.008 s=:= T 120 min= T 2.000 hr=
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(c) On page 15-9 of the course 

notes, you have the 

following figure, which 

illustrates right ascensions 

and inclinations of r1 = 

6656 km circular parking 

orbits that will allow an 

Earth-orbiting satellite 

with fixed-impulse rocket 

engines providing V1 = 

2.107 km/s and V2 = 

1.888 km/s to reach a 

desired mission orbit with 

r2 = 26,565 km,  = 0°, 

and i = 55°.   

 

 

 

 

The shaded region of the figure indicates parking orbits that will allow the rocket to 

reach the mission orbit.  The mission orbit is in the middle of the unshaded region.  

Why is this okay (and expected)? 

 

The mission orbit is in the unshaded region because the rockets being used 

have too much fuel to complete an in-plane transfer and burn all of their 

fuel.  The rocket must change inclination and/or right ascension in order to 

burn all of its fuel and reach the mission orbit. 
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(d) A spacecraft is in an elliptical orbit 

about the Earth with a semimajor 

axis of a = 40,000 km and 

eccentricity e = 0.8, as shown to the 

right.  An instantaneous tangential 

V is applied to the spacecraft, but 

rather than being applied at perigee 

or apogee, the tangential V is 

applied when the spacecraft has a 

true anomaly of f = 90°. 

 

 

 

Provide (but do not solve) the complete set of equations needed to find the semimajor 

axis (anew) and the eccentricity (enew) of the resulting orbit and the spacecraft’s true 

anomaly (fnew) on that orbit.  Next to each equation, indicate why it is important (i.e., 

what variable(s) is (are) found from each equation or system of equations).  You may 

assume that the orbit remains elliptical after the impulse. 

 

The equations needed are as follows: 

 

a, e, and f are known, so the radius can be calculated from   
 (    )

         
.  In 

the particular case where f = 90°, this simplifies to       (    ). 
 

The speed before the V is applied is     √ (
 

 
 
 

 
). 

 

The new speed is          . 

 

The new semimajor axis can be found from     √ (
 

 
 

 

    
), where the 

radius r has not changed. 

 

Since the impulse is tangential, the flight path angle also has not changed, so 

the eccentricity can be found from setting 1 = 2, where  is calculated in 

both cases from        √
  (    )

  (    )
. 

 

The true anomaly can be found from either   
 (    )

         
 or       

       

         
 . 

  

V 
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How would you be able to tell if the post-V orbit was hyperbolic instead of 

elliptical? 

 

If the vis-viva equation returned a negative a or if the energy was calculated 

and found to be greater than zero, the orbit would be hyperbolic. 
 

 

 

 

 

 

 

 

 

 

 

 

How would your equations for calculating anew, enew, and fnew change if the post-V 

orbit was hyperbolic? 

 

The radius would be calculated the same way, since the original orbit is 

elliptical.  The new speed would be found the same way as well.  From that 

point on, hyperbolic equations would need to be used for the post-burn orbit. 

 

The hyperbolic velocity equation,     √ (
 

 
 

 

    
), would give the new a. 

 

The flight path angle is still equal before and after the impulse, and  before 

the impulse would be calculated from the elliptical equation, as before, but 

finding the eccentricity after the burn would require using the hyperbolic 

equation for the post-burn flight path angle,        √
  (    )

  (    )
. 

 

The true anomaly could then be found from the polar equation for a 

hyperbola,  
 (    )

         
 . 
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(e) At time t0, a spacecraft is at perigee on an elliptical orbit with semimajor axis a1 and 

eccentricity e1.  It completes an impulsive, tangential burn that will allow it to 

rendezvous with a space station on a larger orbit with semimajor axis a2 and 

eccentricity e2.  The rendezvous occurs at apogee on the station’s orbit, so the transfer 

orbit is tangential to the final orbit as well as the spacecraft’s initial orbit.  The 

transfer ellipse is shown on the figure below as the dashed line. 

 

Provide (but do not solve) all of the equations necessary to find lead, the angle by which 

the space station must lead the spacecraft at t0, the time of the initial rocket firing.  

Indicate why you included each equation and simplify where possible using the 

properties of perigee and apogee.  Additional space is provided on the following page. 

 

Since a and e are given for each orbit, use them to calculate the perigee and 

apogee radii of the transfer orbit. 

 

     (    ) 

     (    ) 
 

The semimajor axis of the transfer orbit is  
     

 
 . 

 

The time it takes for the spacecraft to travel on the transfer orbit is one-half 

the transfer orbit period. 

   
 

 
    √

  

 
   √

  

 
 

V 

lead 

Space station at t0 

Space station 

and spacecraft 

at tf 

Spacecraft 

at t0 

Transfer orbit 
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(additional workspace) 

 

During the same time period, the space station moves through a true 

anomaly change of f, which is found by using Kepler’s equation to find the 

initial and final eccentric anomalies (E1, E2) and converting the eccentric 

anomalies to true anomalies. 

 

Make sure to use the a and e for the space station’s orbit, which are given in 

the problem statement as a2 and e2. 

 

Then Kepler’s Equation for the time difference is  

 

 √
 

  
 
   (          (  ))  (          (  )) 

 

The simplification that can be noted is that the eccentric anomaly at arrival 

(E2) is equal to  radians because that point is apogee.  Then the above 

equation can be solved for E1 directly. 

 

Once E1 is known, the true anomaly f1 can be found from  

 

   (
  
 
)  √

    
    

     (
  
 
) 

 

The lead angle, lead, is just equal to f1, the true anomaly that the space 

station must have at the time of the launch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

End of the exam.  Congratulations, Rocket Scientist! 
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EMA 550 

 

Final Exam, Spring 2013 

 

 
May 13, 2013, 7:45-9:45 am Open notes 

  

 

Name _______________________________ 

 

 

 

Show all of your work to get credit for your answers. Include units with all answers. 

 

Useful astronomical constants are found at the bottom of each page. 

 

 

 

 Points  Score 

Question 1 10  _______ 

Question 2 10  _______ 

Question 3 20  _______ 

Question 4 20  _______ 

    

Total Score 60  _______ 

 

 

If you are unable to find a value that is needed in subsequent sections of a problem, 

use a reasonable guess value (and clearly state what it is).  
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Question 1 

 

We saw in class that the altitude difference between active Iridium satellites and spare 

Iridium satellites was intended to cause a relative drift in right ascension due to the 

oblateness of the Earth that would allow the orbit planes of the spares to align 

periodically with the orbit planes of the active satellites. While good in theory, the effect 

was minimal. 

 

A different satellite constellation has been proposed that will have active satellites in 40° 

inclination circular orbits at an altitude of 700 km. You are asked to implement the same 

idea regarding spare satellites, but in a more effective way than with the Iridium 

constellation. 

 

Determine the altitude required for spare satellites in circular orbits at 40° inclination that 

would close a 60° difference in right ascension between the actives and the spares in 45 

days through the mechanism of right ascension drift due to the Earth’s oblateness. 
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Question 2 

 

A website for a mission involving a 

flyby of Mars posted the figure to 

the right to illustrate the flyby. 

Mars is the dot at the top of the 

circle. The circle represents Mars’ 

orbit about the Sun. The dashed 

elliptical line is the heliocentric 

orbit of the spacecraft before the 

flyby. The solid elliptical line is the 

heliocentric orbit of the spacecraft 

after the flyby. The spacecraft’s 

direction of motion is shown with 

arrows. Mars is orbiting the Sun in 

a counter-clockwise direction in 

this figure. 

 

A member of the site has posted a 

comment saying that this figure 

must be wrong, because to slow 

down relative to the Sun, the 

spacecraft must have flown in front 

of Mars, and if it flew in front of Mars, its velocity vector should have been deflected 

outward, like so: 

 

 

 

 

You study the mission, fire up your interplanetary project code, and determine the 

following: 

 

Speed of Mars wrt Sun 24 km/s 

Speed of spacecraft wrt Sun before flyby 28 km/s 

Flight path angle of spacecraft wrt Sun before flyby 6.5° 

v∞ wrt to Mars starting and ending the flyby 4.8 km/s 

Turning angle during flyby 30° 

Flight path angle of spacecraft wrt Sun after flyby 2.8° 

Speed of spacecraft wrt Sun after flyby 19.5 km/s 

*wrt = “with respect to” 

 

On the next page, write a one-page response supporting or refuting the site member’s 

comment. Your response can be scanned and uploaded, so draw velocity triangles and 

figures from Mars’ frame of reference to illustrate your argument. 
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Question 3 

 

A satellite in a circular 8000 km radius orbit about the Earth needs to transfer quickly to a 

circular orbit in the same plane with a radius of 16000 km to reach an orbiting refueling 

station. 

 

(a) Determine the angle by which the fueling station must lead the satellite if the satellite 

is to complete the transfer on a parabolic trajectory that is tangent to the initial orbit. 

Draw a sketch of the transfer showing the lead angle and the true anomaly of the fuel 

station on the transfer orbit at rendezvous. 
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Question 3, continued 

 

(b) Determine the angle by which the fueling station (rf = 16,000 km) must lead the 

satellite (ri = 8,000 km) if the satellite begins the transfer with twice the speed as at 

the start of the parabolic transfer (still tangential to the initial orbit). Draw a sketch of 

the transfer showing the lead angle and the true anomaly of the fuel station on the 

transfer orbit at rendezvous. 
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Question 4 

  

A high-thrust rocket engine on an orbiting spacecraft will be fired for three minutes as it 

flies above Madison, WI (43°N latitude, 89°W longitude). Information about the rocket, 

the initial orbit, and the final orbit is as follows: 

 

Rocket Initial Orbit Final Orbit 

Thrust = 10 kN a1 = 7000 km a2 = ? 

Specific impulse = 300 s e1 = 0 e2 = ? 

Initial mass = 1000 kg i1 = 60° i2 = 50° 

 Ω1 = 150° Ω2 = 131.086° 

 ω1 undefined ω2 = ? 

 

Treating the burn as impulsive (all ∆V occurring at a single location) and firing the rocket 

in such a way that the burn location becomes the perigee of the new orbit, determine the 

a, e, and ω of the spacecraft’s orbit after the burn.  
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Question 1 

 

We saw in class that the altitude difference between active Iridium satellites and spare 

Iridium satellites was intended to cause a relative drift in right ascension due to the 

oblateness of the Earth that would allow the orbit planes of the spares to align 

periodically with the orbit planes of the active satellites. While good in theory, the effect 

was minimal. 

 

A different satellite constellation has been proposed that will have active satellites in 40° 

inclination circular orbits at an altitude of 700 km. You are asked to implement the same 

idea regarding spare satellites, but in a more effective way than with the Iridium 

constellation. 

 

Determine the altitude required for spare satellites in circular orbits at 40° inclination that 

would close a 60° difference in right ascension between the actives and the spares in 45 

days through the mechanism of right ascension drift due to the Earth’s oblateness. 

 

  

The active satellites drift in right ascension is as follows:

h1 700 km⋅:= i 40 deg⋅:=

Ωdot1 9.969−
deg

day
⋅









RE

RE h1+









3.5

⋅ cos i( )⋅ 5.304−
deg

day
⋅=:=

We want the spare satellites to close a given gap in a given amount of time, which requires a

relative drift in the right ascensions of the orbital planes of the  active satellites and the spare

satellites.

time_all 45 day⋅:=

∆Ω 60 deg⋅:=

∆Ω

time_all
1.333

deg

day
⋅=

If the spare satellites are in a lower orbit at the same inclination, the right ascensions of their orbit

planes will drift at a faster rate than that of the active satellites.

Ωdot2 Ωdot1
∆Ω

time_all
− 6.637−

deg

day
⋅=:=

h2
1

Ωdot2

9.969−
deg

day
⋅









cos i( )⋅











1

3.5

1−
















6378⋅ km⋅ 260.7 km⋅=:= h2 261 km⋅=

h1 h2− 439 km⋅=
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(Additional workspace for Question 1) 

 

 

 

 

 

  

If the spare satellites are in a higher orbit at the same inclination, the right ascensions of their orbit

planes will drift more slowly than that of the active satellites. Both options have their advantages;

the lower orbit requires less energy to reach, and the outer orbit is less crowded than close-in

LEO.

Ωdot3 Ωdot1
∆Ω

time_all
+ 3.971−

deg

day
⋅=:=

h3
1

Ωdot3

9.969−
deg

day
⋅









cos i( )⋅











1

3.5

1−
















6378⋅ km⋅ 1310.4 km⋅=:= h3 1310 km⋅=

h3 h1− 610 km⋅=

Note that the key here is RELATIVE right ascension drift. Neither of the satellites (active nor

spare) drifts at 45 degrees in 60 days, but their relative drift closes that gap. If a student uses 45

degrees in 60 days as the right ascension drift, they will find the following altitude:

Ωdot4
∆Ω

time_all
− 1.333−

deg

day
⋅=:=

h4
1

Ωdot4

9.969−
deg

day
⋅







cos i( )⋅









1

3.5

1−














6378⋅ km⋅ 4123 km⋅=:=
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Question 2 

 

A website for a mission involving a 

flyby of Mars posted the figure to 

the right to illustrate the flyby. 

Mars is the dot at the top of the 

circle. The circle represents Mars’ 

orbit about the Sun. The dashed 

elliptical line is the heliocentric 

orbit of the spacecraft before the 

flyby. The solid elliptical line is the 

heliocentric orbit of the spacecraft 

after the flyby. The spacecraft’s 

direction of motion is shown with 

arrows. Mars is orbiting the Sun in 

a counter-clockwise direction in 

this figure. 

 

A member of the site has posted a 

comment saying that this figure 

must be wrong, because to slow 

down relative to the Sun, the 

spacecraft must have flown in front 

of Mars, and if it flew in front of Mars, its velocity vector should have been deflected 

outward, like so: 

 

 

 

 

You study the mission, fire up your interplanetary project code, and determine the 

following: 

 

Speed of Mars wrt Sun 24 km/s 

Speed of spacecraft wrt Sun before flyby 28 km/s 

Flight path angle of spacecraft wrt Sun before flyby 6.5° 

v∞ wrt to Mars starting and ending the flyby 4.8 km/s 

Turning angle during flyby 30° 

Flight path angle of spacecraft wrt Sun after flyby 2.8° 

Speed of spacecraft wrt Sun after flyby 19.5 km/s 

*wrt = “with respect to” 

 

On the next page, write a one-page response supporting or refuting the site member’s 

comment. Your response can be scanned and uploaded, so draw velocity triangles and 

figures from Mars’ frame of reference to illustrate your argument. 
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Response for Question 2 

 

Note: Unfortunately, there was an error in this problem, which was unintentional. 

The given values should have been 

 

Speed of Mars wrt Sun 24 km/s 

Speed of spacecraft wrt Sun before flyby 28 km/s 

Flight path angle of spacecraft wrt Sun before flyby 6.5° 

v∞ wrt to Mars starting and ending the flyby 4.8 km/s 

Turning angle during flyby 30° 

Flight path angle of spacecraft wrt Sun after flyby 2.8° 10° 

Speed of spacecraft wrt Sun after flyby 19.5 km/s 26 km/s 

 

The correct values would have led to this velocity triangle: 

 

 

 

 

 

 

 

The correct values also would have changed the orbit picture to look like this: 
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Question 3 

 

A satellite in a circular 8000 km radius orbit about the Earth needs to transfer quickly to a 

circular orbit in the same plane with a radius of 16000 km to reach an orbiting refueling 

station. 

 

(a) Determine the angle by which the fueling station must lead the satellite if the satellite 

is to complete the transfer on a parabolic trajectory that is tangent to the initial orbit. 

Draw a sketch of the transfer showing the lead angle and the true anomaly of the fuel 

station on the transfer orbit at rendezvous. 

 

  

Parabola

p 2 ri⋅:= p 16000 km=

fcp acos
p

rf
1−









:= fcp 1.571 rad⋅=

fcp 90 deg⋅=

∆tp

tan
fcp

2









1

3
tan

fcp

2

















3

⋅+

2
μ

p
3

⋅

:= ∆tp 2137.076 s=

∆tp 35.618 min⋅=

Target moves through∆tp nf⋅ 0.667 rad⋅=

∆tp nf⋅ 38.2 deg⋅=

Lead angle is fcp ∆tp nf⋅− 0.904 rad⋅=

fcp ∆tp nf⋅− 51.8 deg⋅=

 

51.8°  

(lead angle) 

38.2° 

S/c and target at rendezvous 

(f = 90°) 

Target at s/c burn time 

S/c at burn time 
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Question 3, continued 

 

(b) Determine the angle by which the fueling station (rf = 16,000 km) must lead the 

satellite (ri = 8,000 km) if the satellite begins the transfer with twice the speed as at 

the start of the parabolic transfer (still tangential to the initial orbit). Draw a sketch of 

the transfer showing the lead angle and the true anomaly of the fuel station on the 

transfer orbit at rendezvous. 

 

 

vpi
2 μ⋅

ri
9.982

km

s
=:=

vhi 2 vpi⋅ 19.965
km

s
=:= By definition, the new ellipse must be a hyperbola because the

speed is faster than the parabolic speed at that same distance.

Hyperbola 

ah
vhi

2

μ

2

ri
−









1−

1333km=:=

eh 1
ri

ah
+ 7.000=:=

Ff acosh
1

eh

rf

ah
1+









⋅








1.23=:=

∆th
ah

3

μ
eh sinh Ff( )⋅ Ff−( )⋅ 749.883s=:=

fch 2 atan
eh 1+

eh 1−
tanh

Ff

2









⋅








⋅ 1.128 rad⋅=:= fch 64.623 deg⋅=

Target moves through∆th nf⋅ 0.234 rad⋅=

∆th nf⋅ 13.4 deg⋅=

Lead angle is fch ∆th nf⋅− 0.894 rad⋅=

fch ∆th nf⋅− 51.2 deg⋅=
  

51.2°  

(lead angle) 

13.4° 

S/c and target at rendezvous 

(f = 64.6°) 

Target at s/c burn time 

S/c at burn time 
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Question 4 

  

A high-thrust rocket engine on an orbiting spacecraft will be fired for three minutes as it 

flies above Madison, WI (43°N latitude, 89°W longitude). Information about the rocket, 

the initial orbit, and the final orbit is as follows: 

 

Rocket Initial Orbit Final Orbit 

Thrust = 10 kN a1 = 7000 km a2 = ? 

Specific impulse = 300 s e1 = 0 e2 = ? 

Initial mass = 1000 kg i1 = 60° i2 = 50° 

 Ω1 = 150° Ω2 = 131.086° 

 ω1 undefined ω2 = ? 

 

Treating the burn as impulsive (all ∆V occurring at a single location) and firing the rocket 

in such a way that the burn location becomes the perigee of the new orbit, determine the 

a, e, and ω of the spacecraft’s orbit after the burn. 

 

  

From spherical trigonometry, we can determine the change in angle (θ) between the velocity

vectors before the burn and after the burn. Since the burn location is perhielion on the new orbit,

the velocity vector is simply rotated through the angle θ, not moved out of the plane of motion.

u1 asin
sin ϕ( )

sin i1( )









0.907 rad⋅=:= u1 51.953 deg⋅=

θ asin sin Ω1 Ω2−( )
sin i2( )

sin u1( )
⋅









0.321 rad⋅=:= θ 18.38 deg⋅=

The rocket equation can be used to determine the magnitude of the applied ∆V.

mdot
T

g Isp⋅
3.398

kg

s
=:=

mf mi mdot ∆t⋅− 388.379kg=:=

∆V Isp g⋅ ln
mi

mf









⋅ 2.783
km

s
⋅=:=

The combination of the initial speed, the ∆V magnitude, and the turning angle θ provide the speed
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(Additional workspace for Question 4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The combination of the initial speed, the ∆V magnitude, and the turning angle θ provide the speed

on the new orbit at the same location (impulsive burn assumption).

v1
μ

a1
7.546

km

s
⋅=:=

From the quadratic formula, 

v2
2 v1⋅ cos θ( )⋅ 2 v1⋅ cos θ( )⋅( )

2
4 v1

2
∆V

2
−( )⋅−+

2
8.605

km

s
⋅=:=

Or, from the planar laws of sines and cosines,

ψ asin sin θ( )
v1

∆V
⋅









58.743 deg=:=

v2_alt v1
2

∆V
2

+ 2 v1⋅ ∆V⋅ cos 180 deg⋅ θ− ψ−( )⋅− 8.605
km

s
=:=

The semimajor axis can be determined from the new speed at the given distance.

a2
2

a1

v2
2

μ
−









1−

10007 km⋅=:= a2 10007 km=

The eccentricity can be determined from the position and the new semimajor axis, taking

advantage of the information that the burn location is perigee on the new orbit.

e2 1
a1

a2
− 0.3=:= e2 0.3=

The argument of perigee can be calculated from spherical trigonometry. Since the burn location is

the new perigee and u2 measures the distance from the equator (line of nodes) to the burn

location, u2 and the argument of perigee are the same value.

u2 asin sin 180 deg⋅ i1−( )
sin u1( )

sin i2( )
⋅







1.098 rad⋅=:=

ω2 u2:= ω2 62.9 deg⋅=
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Chapter 6

HWs

6.1 HW1

6.1.1 Problem 1

Let us examine the accuracy of the assumption that planets orbit the Sun rather than the
Sun and planet orbiting the mass center of the Sun-planet system. We’ll start with Earth:

What is the distance between the center of a spherical Sun with the radius given on your
Planetary Constants sheet and the center of mass of the Sun-Earth system? Assume that
the Earth is in a circular orbit about the Sun and that the "Mean distance from the Sun"
given on your Planetary Constants sheet is the distance between the mass centers of the
two bodies.

Answer:

Common mass center,measured from the origin of the coordinates system is given by solving
for 𝑅 in

r2

r1

R

m1

m2

origin of 
x-axes x

common 
mass 
center
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(𝑚1 + 𝑚2) 𝑅 = 𝑚2𝑟2 + 𝑚1𝑟1

𝑅 =
𝑚2𝑟2 + 𝑚1𝑟1
(𝑚1 + 𝑚2)

If we now put 𝑚2 at the center of origin, then 𝑟2 = 0. Hence the above simplifies to

r1

R

m1

m2

origin of 
x-axes

x

common 
mass 
center

(𝑚1 + 𝑚2) 𝑅 = 𝑚1𝑟1

𝑅 =
𝑚1𝑟1

(𝑚1 + 𝑚2)
In our case, 𝑚2 is the sun and 𝑚1 is the earth, and 𝑟1 is 𝐴𝑈. Hence

𝑅 =
5.974 × 1024 �𝑘𝑔� �1.495978 × 108 [𝑘𝑚]�

�5.974 × 1024 �𝑘𝑔� + 1.989 × 1030 �𝑘𝑔��

= 449.32 [𝑘𝑚]

The above is the distance of the common center of mass of the sun-earth, measured from
the center of the sun. As a percentage of the sun radius, it is 449.32

695990 × 100 = 6.4558 × 10−2
and as a percentage of the distance between the mass centers of the Sun and the Earth it is
449.32
𝐴𝑈 × 100 = 449.32

1.495978×108 × 100 = 3.0035 × 10−4%

Summary of answers

1. kilometers: Answer 449.319 km

2. percent of the Sun’s radius: Answer 0.0645%

3. percent of the distance between the mass centers of the Sun and the Earth: Answer
0.000300351%

6.1.2 question 2

Repeat the analysis above for the most massive planet in our solar system, Jupiter.

What is the distance between the center of a spherical Sun with the radius given on your
Planetary Constants sheet and the center of mass of the Sun-Jupiter system? Assume that
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Jupiter is in a circular orbit about the Sun and that the "Mean distance from the Sun" given
on your Planetary Constants sheet is the distance between the mass centers of the two
bodies.

Answer

Now 𝑚1 is mass of sun, but 𝑚2 is mass of Jupiter which is 317.9 that of the earth mass, and
𝑟1 now is the distance from center of Jupitor to center of sun (which is the origin of the
coordinates systems), which is 5.203 × 𝐴𝑈, hence from

(𝑚1 + 𝑚2) 𝑅 = 𝑚1𝑟1

𝑅 =
𝑚1𝑟1

(𝑚1 + 𝑚2)

=
317.9 × �5.974 × 1024� �5.203 × �1.495978 × 108��

�317.9 × �5.974 × 1024� + 1.989 × 1030�

= 7.4248 × 105[𝑘𝑚]

The above is the distance of the common center of mass of the sun-Jupiter, measured from

the center of the sun. As a percentage of the sun radius, it is 7.4248×105

695990 × 100 = 106.68 % and
as a percentage of the distance between the mass centers of the Sun and the Jupitor it is

7.4248×105

5.203×1.495978×108 × 100 = 9.5391 × 10−4%

Summary

1. kilometers: Answer 742481 km

2. percent of the Sun’s radius: Answer 106.68%

3. percent of the distance between the Sun and Jupiter: Answer 0.095%

6.1.3 question 3

A satellite is in an elliptical orbit around the Earth; at perigee its altitude is 400 km. The
eccentricity of the orbit is 0.10.

6.1.3.1 part 1

What is the speed of the satellite at perigee in km/s?

answer:

𝑟𝑝 = 𝑟𝐸 + 𝐴𝐿𝑇
= 6378 + 400
= 6778.0
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But 𝑟𝑝 =
𝑎�1−𝑒2�

1+𝑒 hence 𝑎 =
𝑟𝑝(1+𝑒)
1−𝑒2 = 6778(1.1)

1−0.12 = 7531.1[𝑘𝑚], hence

𝑣𝑝 =
�

𝜇
𝑎 �

1 + 𝑒
1 − 𝑒 �

=
�

3.986 × 105

7531.1 �
1.1
0.9�

= 8.0429 [𝑘𝑚/𝑠]

6.1.3.2 Part 2

What is the altitude of the satellite at apogee in km?

Answer

𝑟𝑎 =
𝑎 �1 − 𝑒2�
1 − 𝑒

=
7531.1 �1 − 0.12�

0.9
= 8284.2 [𝑘𝑚]

Hence altitude 8284.2 − 𝑟𝐸 = 8284.2 − 6378 = 1906.2 [𝑘𝑚]

6.1.3.3 Part 3

What is the speed of the satellite at apogee in km/s?

Answer

𝑣𝑎 =
�

𝜇
𝑎 �

1 − 𝑒
1 + 𝑒�

=
�

3.986 × 105

7531.1 �
0.9
1.1 �

= 6.5806 [𝑘𝑚/𝑠]

6.1.3.4 Part 4

What is the period of the orbit in hrs?

Answer

𝑇 = 2𝜋
�

𝑎3

𝜇
= 2𝜋

�
7531.13

3.986 × 105
= 6504.3 [sec]

=
6504.3
60 × 60

= 1.8068[ℎ𝑟]

6.2 HW2

6.2.1 Problem 1

A satellite is in an orbit with a period 𝑇 = 205 minutes and eccentricity 𝑒 = 0.40 about the
Earth. When the true anomaly of the satellite is 𝑓 = 70 degrees, find the time 𝑡 − 𝜏 since
perigee passage, in minutes.

Answer
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𝑛 (𝑡 − 𝜏) = 𝐸 − 𝑒 sin𝐸

But 𝑛 = 2𝜋
𝑇 hence

𝑡 − 𝜏 =
𝐸 − 𝑒 sin𝐸

𝑛
=

𝑇 (𝐸 − 𝑒 sin𝐸)
2𝜋

(1)

But tan �𝑓
2
� = �

1+𝑒
1−𝑒 tan �𝐸

2
�, hence 𝐸 can be found. Substituting it in the above, solves for

𝑡 − 𝜏

tan �
70𝜋

2 (180)�
=
�

1 + 0.4
1 − 0.4

tan �
𝐸
2 �

0.70021 = 1.5275 tan �
𝐸
2 �

tan �
𝐸
2 �

=
0.70021
1.5275

= 0.4584

𝐸
2
= arctan (0.4584) = 0.42982

𝐸 = 0.85964

Hence from Eq (1)

𝑡 − 𝜏 =
205 (0.85964 − 0.40 sin (0.85964))

2𝜋
= 18.16 min

6.2.2 Problem 2

A satellite is in an orbit with a period 𝑇 = 205 minutes and eccentricity 𝑒 = 0.40 about the
Earth. Find the true anomaly of the satellite, in degrees, when it is 50 minutes past perigee
passage.

Answer

𝑛 (𝑡 − 𝜏) = 𝐸 − 𝑒 sin𝐸
2𝜋
𝑇

(𝑡 − 𝜏) = 𝐸 − 𝑒 sin𝐸

2𝜋
205

(50) = 𝐸 − 0.4 sin𝐸

1.5325 = 𝐸 − 0.4 sin (𝐸)
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Solving for 𝐸

𝐸 = 1.9097 rad

Hence

tan �
𝑓
2�

=
�

1 + 𝑒
1 − 𝑒

tan �
𝐸
2 �

tan �
𝑓
2�

=
�

1 + 0.4
1 − 0.4

tan �
1.9097

2 �

= 2.1581

Hence

𝑓
2
= arctan (2.1581) = 1.1369

𝑓 = (1.1369) 2 = 2.2738

= 2.2738 �
180
𝜋 �

= 130.28 deg

6.2.3 Problem 3

A spaceship in a circular orbit above the Earth at an altitude of 300 km. At time 𝑡 = 0, it
retrofires its engine, reducing its speed by 500 m/s. How long (in minutes) does it take to
impact the Earth? Neglect atmospheric drag.

Answer
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𝜇 = 3.986 × 105 km3/s2

But

Δ𝑉 = 𝑉2 − 𝑉1

Where 𝑉1 = �
𝜇
𝑟𝑎
=
�

𝜇
𝑟𝐸+𝑎𝑙𝑡

where 𝑟𝐸 is earth radius and 𝑎𝑙𝑡 is the altitude at 𝑡 = 0 when the

spaceship was in circular orbit. Hence 𝑉1 = �
3.986×105

6378+300 = 7.7258 km/s hence 𝑉2 = 𝑉1 − 500 ×
10−3 = 7.7258 − 0.5 = 7.2258 km/sec. This is the speed at apogee for the new orbit.

𝑉𝑎 = 7.2258 km/sec

But

𝑉𝑎 =
�

𝜇
𝑎 �

1 − 𝑒
1 + 𝑒�

7.2258 =
�

3.986 × 105

𝑎 �
1 − 𝑒
1 + 𝑒�

(1)

But also we know that 𝑟𝑎 = 𝑎 (1 + 𝑒), hence
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6378 + 300 = 𝑎 (1 + 𝑒)

𝑎 =
6678
1 + 𝑒

(2)

Substitute (2) in (1)

7.2258 =
�

3.986 × 105

6678
(1 − 𝑒)

52.212 =
3.986 × 105

6678
(1 − 𝑒)

(52.212) (6678)
3.986 × 105

= 1 − 𝑒

0.87474 = 1 − 𝑒
𝑒 = 1 − 0.87474
= 0.12526

Hence from (2) we find 𝑎

𝑎 =
6678

1 + 0.12526
= 5934.6

Hence 𝑛 the mean speed is

𝑛 =
�

𝜇
𝑎3

=
�

3.986 × 105

5934.63
= 1.381 × 10−3𝑟𝑎𝑑/𝑠

At impact 𝑟 = 𝑟𝐸, hence

𝑟𝐸 = 𝑎 (1 − 𝑒 cos𝐸)
6378 = 5934.6 (1 − 0.12526 cos𝐸)
6378
5934.6

= 1 − 0.12526 cos𝐸

cos𝐸 =
1 − 6378

5934.6
0.12526

= −0.596 47

𝐸 = arccos (−0.596 47)
𝐸 = 2.2099

Solving this equation gives 𝐸 = 1260, but we want to use the 𝐸 shown in the diagram.
Hence remember to do 𝐸𝑎𝑐𝑡𝑢𝑎𝑙 = 2𝜋 − 𝐸 to obtain 𝐸𝑎𝑐𝑡𝑢𝑎𝑙 = 233𝑜 and that is the 𝐸 to use in
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𝑛 (𝑡 − 𝜏) = 𝐸 − 𝑒 sin𝐸.Hence, measured from perigee,

𝐸 = 2𝜋 − 2.2099

Using Kepler equation

𝑛 (𝑡 − 𝜏) = 𝐸 − 𝑒 sin𝐸
1.381 × 10−3 (𝑡 − 𝜏) = (2𝜋 − 2.2099) − 0.12526 sin (2𝜋 − 2.2099)

(𝑡 − 𝜏) =
(2𝜋 − 2.2099) − 0.12526 sin (2𝜋 − 2.2099)

1.381 × 10−3
= 3022. sec
= 50.37 min

But the period is 𝑇 = 2𝜋
�

𝑎3

𝜇 = 2𝜋 1
𝑛 = 2𝜋 1

1.381×10−3 = 4549.7 sec = 75.828 min

Hence the time to impact is

50.37 −
75.828

2
= 12.456 min

6.2.4 Problem 4

Russians use Molniya orbits for their communications satellites. A typical Molniya orbit has
a perigee altitude of 500 km and a period of 12 hr.

6.2.4.1 part a

What is the eccentricity of a Molniya orbit?

Answer

𝑇 = 2𝜋
�

𝑎3

𝜇

12 × 60 × 60 = 2𝜋
�

𝑎3

3.986 × 105

(12 × 60 × 60)2 = (2𝜋)2
𝑎3

3.986 × 105

𝑎3 =
(12 × 60 × 60)2 �3.986 × 105�

(2𝜋)2
= 1.884 3 × 1013

𝑎 = �1.8843 × 1013�
1/3

= 26610 km
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We are given that 𝑟𝑝 = 6378 + 500 = 6878, but 𝑟𝑝 =
𝑎�1−𝑒2�

1+𝑒 = 𝑎 (1 − 𝑒), hence

𝑒 = 1 −
𝑟𝑝
𝑎

= 1 −
6878
26610

= 0.741 53

6.2.4.2 part b

What is the apogee radius of a Molniya orbit, in km?

Answer

𝑟𝑝 = 𝑎 (1 + 𝑒)
= 26610 (1 + 0.741 53)
= 46342 km

6.2.4.3 part c

Determine the time, in hours, that a satellite on a Molniya orbit has a true anomaly greater
than 135𝑜 and less than 225𝑜

Answer

Let 𝜃1, 𝜃2 be the true anomaly angles at position 1 and 2, and let 𝐸1, 𝐸2 be the corresponding
circular angles. We first find 𝐸1, 𝐸2

tan �
𝐸1
2 � = tan �

𝜃1
2 ��

1 − 𝑒
1 + 𝑒

= tan �
135𝜋
2 × 180��

1 − 0.741 53
1 + 0.741 53

= 0.930 07

𝐸1
2

= arctan (0.93007) = 0.749 18

𝐸1 = 0.749 18 × 2
= 1.498 4 rad

= 1.498 4 × �
180
𝜋 � = 85.850

Similarly
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tan �
𝐸2
2 � = tan �

𝜃2
2 ��

1 − 𝑒
1 + 𝑒

= tan �
225𝜋
2 × 180��

1 − 0.741 53
1 + 0.741 53

= −0.930 07

𝐸1
2

= arctan (−0.930 07) = −0.749 18

𝐸1 = −0.749 18 × 2
= −1.498 4 rad

Hence 𝐸2 = −1.49836 rad or −85.75𝑜, Measured anticlockwise from perigee, it becomes
𝐸2 = 360 − 85.75 = 274.15𝑜

Now the time to reach point 1, is

𝑛 (𝑡1) = 𝐸1 − 𝑒 sin𝐸1

𝑡1 =
𝐸1 − 𝑒 sin𝐸1

�
𝜇
𝑎3

=
1.498 4 − 0.741 53 sin (1.498 4)

�
3.986×105

266103

= 5217.1 sec

and

𝑛 (𝑡2) = 𝐸2 − 𝑒 sin𝐸2

𝑡1 =
(2𝜋 − 1.49836) − 0.741 53 sin (2𝜋 − 1.49836)

�
3.986×105

266103

= 37983 sec

Hence the di�erence is 37983 −5217.1 = 32766 sec or 32766
60×60 = 9.1017 hr

6.3 HW3

6.3.1 Problem 1

A comet is on a parabolic orbit about the Sun. At its point of closest approach, the distance
between the comet and the center of the Sun is 5 million km.

6.3.1.1 part a

What is the speed of the comet, in km/s, relative to the Sun at its point of closest approach?

Answer
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

rp

r

satellite

rp

e r

e 

flight 
path 
angle

The time to fly this distance is
given by solving for t   from

2


p3
t    tan 

2
  1

3
tan 

2


3

r  p

1cos   2rp

1cos 

vp
vp  2

rp

parabolic_1.vsdx
Nasser M. Abbasi
2/5/14 p  2rp

r 
h2



1cos 

  
2

V  2
r

𝑣𝑝 =
�

2𝜇
𝑟𝑝

=
�

2 �1.327 × 1011�
5 × 106

= 230.39 [𝑘𝑚/ sec]

6.3.1.2 part b

How long is the comet within 150 million km of the Sun?

Answer

𝑟 =
𝑝

1 + cos𝜃 =
2𝑟𝑝

1 + cos𝜃

𝑝 = 2𝑟𝑝 = 2 × 5 × 106 = 10 × 106. Hence

cos𝜃 =
𝑝
𝑟
− 1

=
10 × 106

150 × 106
− 1 = −0.933 33

The above can also be found using
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𝑟 =

ℎ2

𝜇

1 + cos𝜃

Where ℎ = 𝑟𝑝𝑣𝑝 = 5 × 106 × 230.39 = 1.152 0 × 109 �𝑘𝑚2/𝑠�

Hence

cos𝜃 =
ℎ2

𝑟𝜇
− 1

=
�1.152 0 × 109�

2

150 × 106 × 1.327 × 1011
− 1 = −0.933 33

Therefore, 𝜃 = arccos (−0.933 33) = 2.774 4 [𝑟𝑎𝑑] = 158.96𝑜. Now, from

2
�

𝜇
𝑝3

(𝑡 − 𝜏) = tan �
𝜃
2 �

+
1
3 �

tan �
𝜃
2 ��

3

(𝑡 − 𝜏) =
tan �−2.7744

2
� + 1

3
�tan �−2.7744

2
��

3

2
�

1.327×1011

�10×106�
3

= 2.493 5 × 106 [sec]

=
2.493 5 × 106

60 × 60 × 24
= 28.8558 �𝑑𝑎𝑦�

To account for both sides of the trajectory, then number of days is doubled, hence 28.8558×2 =
57.712 �𝑑𝑎𝑦𝑠�

6.3.2 Problem 2

A spaceship is in a circular orbit about the Earth at an altitude of 700 km. It fires its rocket
engine for a short time to instantaneously increase its speed by 75% and boost the spaceship
to a hyperbolic orbit.

6.3.2.1 part a

What is the speed increase (del V) of the spaceship in km/s as a result of the rocket burn?

Answer:
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b

a

c  ae

hyper.vsdx
Nasser M. Abbasi
030714

rp

c2  a2  b2

e  c
a

r



x2

a2
 y2

b2
 1

y   b
a x y  b

a x

r 
a e21

1ecos 

2p

V

The time to fly this path is 
found by solving for t in 

r  aecoshF  1

tan 
2
  e1

e1
tanh F

2


Flight path angle

r 
h2



1ecos 

V
2  Vp

2  Vesc
2

V
2 


a

Vesc
2 

2
rp

Vp

Use this to 
determine Vp 
needed to 
escape to a 
hyperbolic orbit.

coshF  ecos 
1ecos 

V   2
r  1

a 

rp  ae  1

if we know r1, r2 on the
orbit, and know the travel
time between these 2 points
then a,e,F can be found by
numerically solving these

r1  ae  1

r2  aecoshF  1

t  a3

 e sinhF  F

t  a3

 e sinhF  F

cos 
a2 e21

r2ar

𝑉𝑐𝑖𝑟 =
�

𝜇
𝑟
=
�

3.986 × 105

6378 + 700
= 7.5044 [𝑘𝑚/𝑠]

Hence
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𝑉2 = 𝑉1 + Δ𝑉
1.75𝑉1 = 𝑉1 + Δ𝑉

Δ𝑉 = 0.75𝑉1

= 0.75 (7.5044)
= 5.6283 [𝑘𝑚/𝑠]

6.3.2.2 part b

What is the semimajor axis a of the resulting hyperbolic orbit in km?

Answer:

The new speed at the point of the firing is 𝑉 = 𝑉1 + Δ𝑉 = 7.5044 + 5.6283 = 13.133 [𝑘𝑚/𝑠]

But

𝑉 =
�
𝜇�

2
𝑟
+
1
𝑎�

𝑉2 = 𝜇 �
2
𝑟
+
1
𝑎�

1
𝑎
=

𝑉2

𝜇
−
2
𝑟

𝑎 =
1

𝑉2

𝜇 − 2
𝑟

=
1

13.1332

3.988×105 −
2

6378+700

= 6670.2 [𝑘𝑚]

6.3.2.3 part c

What is the eccentricity 𝑒 of the resulting hyperbolic orbit?

Answer

These are 3 ways to find 𝑒, the first is using 𝑟 =
𝑎�𝑒2−1�

1+𝑒 cos𝜃 , where we can use that 𝜃 = 0 at the
time of firing since that is when 𝑟 = 𝑟𝑝 for the hyperbolic orbit. This is always the case, when
an orbit changes to new orbit, we use the point of firing as perigee of the new orbit, and the

true anamoly is hence zero at that point. This means 𝑟𝑝 =
𝑎�𝑒2−1�

1+𝑒 and since we know 𝑎 and
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𝑟𝑝 we can solve for 𝑒

6378 + 700 =
6670.2 �𝑒2 − 1�

1 + 𝑒

7078.0 =
6670.2 �𝑒2 − 1�

1 + 𝑒
7078.0 + 7078.0𝑒 = 6670.2𝑒2 − 6670.2

6670.2𝑒2 − 6670.2 − 7078.0 − 7078.0𝑒 = 0
6670. 2𝑒2 − 7078.0𝑒 − 13748 = 0

Hence 𝑒 = 2.0614 or 𝑒 = −1, and since 𝑒 is positive, we use 𝑒 = 2.0614 as the solution.

Another way, is to note that since 𝑒 = 𝑐
𝑎 and 𝑐 = 𝑟𝑝 + 𝑎, hence

𝑒 =
(6378 + 700) + 6670.2

6670.2
= 2.061 1

Another way to find 𝑒 is using 𝑒 =
�
1 + 2ℰ ℎ2

𝜇2 where Energy ℰ = 𝑣2

2 − 𝜇
𝑟 and ℎ = 𝑟𝑣, hence

𝑒 =

�
⃓⃓
⃓
⎷
1 +

2 �𝑣
2

2 − 𝜇
𝑟
� (𝑟𝑣)2

𝜇2

=

�
⃓
⃓
⃓
⎷
1 +

2 �13.133
2

2 − 3.988×105

6378+700
� ((6378 + 700) 13.133)2

�3.988 × 105�
2

= 2.0614

6.3.2.4 part d

How long (in hours) does it take the spacecraft to reach the Moon’s orbit, a distance of
384,000 km from the center of the Earth?

Answer

𝑟2 = 384000 [𝑘𝑚]

Using

�
𝜇
𝑎3

�𝑡 − 𝜇� = 𝑒 sinh (𝐹) − 𝐹
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Where 𝐹 is found from

𝑟 = 𝑎 (𝑒 cosh (𝐹) − 1)
384000 = 6670.2 (2.0611 cosh (𝐹) − 1)

cosh (𝐹) =
384000
6670. + 1
2.0611

= 28.417

𝐹 = 4.03983

Hence

�
𝜇
𝑎3

(𝑡 − 𝜏) = 𝑒 sinh (𝐹) − 𝐹

�
3.988 × 105

6670.23
(𝑡 − 𝜏) = 2.0611 sinh (4.03983) − 4.03983

(𝑡 − 𝜏) =
2.0611 sinh (4.03983) − 4.03983

�
3.988×105

6670.23

= 47009 [sec]

=
47009
60 × 60

= 13.058 [ℎ𝑟]

6.3.3 Problem 3

Using Matlab, EES, Mathcad, Maple or similar software, create a program to calculate
the position and velocity components of a satellite in an 𝑥, 𝑦, 𝑧 coordinate system given its
classical orbital elements (a, e, i, GAMMA, OMEGA, f). Use the examples in the course
notes to test your program, then apply it to the set of elements below. (Save your program
somewhere you can find it again; you will need it later in the semester.)

a: 9000 km

e: 0.02

i: 28.5 degrees

GAMMA: 50 degrees

OMEGA: 20 degrees

f: 40 degrees

x = Answer km

y = Answer km

z = Answer km

vx = Answer km/s
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vy = Answer km/s

vz = Answer km/s

toXYZ[a_, e_, i_, gamma_, omega_, theta_] := Module[{r, p, x, y, z, vx, vy, vz, mu = 3.986*10^5, t1, t2, t3},
r = (a (1 - e^2))/(1 + e Cos[theta]);
p = a (1 - e^2);
t1 = {{Cos[omega], -Sin[omega], 0}, {Sin[omega], Cos[omega], 0}, {0, 0, 1}};
t2 = {{1, 0, 0}, {0, Cos[i], -Sin[i]}, {0, Sin[i], Cos[i]}};
t3 = {{Cos[gamma], -Sin[gamma], 0}, {Sin[gamma], Cos[gamma], 0}, {0, 0, 1}};
{x, y, z} = t3.t2.t1.{r Cos[theta], r Sin[theta], 0};
{vx, vy, vz} = t3.t2.t1.{-Sqrt[mu/p] Sin[theta], Sqrt[mu/p] (e + Cos[theta]), 0};
{{x, y, z}, {vx, vy, vz}}
]

a = 9000;
e = 0.02;
theta = 40 Degree;
i = 28.5 Degree;
gamma = 50 Degree;
omega = 20 Degree;
toXYZ[a, e, i, gamma, omega, theta]
{{-2318.17, 7728.55, 3661.5}, {-6.05942, -2.50006, 1.64775}}

6.4 HW4

6.4.1 Problem 1

Create a program to calculate the classical orbital elements (𝑎, 𝑒, 𝑖, Ω,𝜔, 𝑓) of a satellite given
its Cartesian position and velocity components (𝑥, 𝑦, 𝑧, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧). Use the examples in the
course notes to test your program, then apply it to the state vector below. (Save your program
somewhere you can find it again; you will need it later in the semester.)

𝑥 = −3000 km
𝑦 = −6000 km
𝑧 = 4000 km
𝑣𝑥 = 6 km/s

𝑣𝑦 = −1 km/s

𝑣𝑧 = −3 km/s

Answer is
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𝑎 = 7108.84 km
𝑒 = 0.4615 km
𝑖 = 34.32𝑜

Ω = 124.287𝑜

𝜔 = 242.65𝑜

𝑓 = 232.07𝑜

6.4.2 Problem 2

What combination of launch latitude and azimuth angle will allow a spacecraft to be launched
directly into an equatorial geostationary orbit about the Earth?

Since

cos 𝑖 = sin𝐴𝑧 cos𝜙
Where 𝑖 is inclination and 𝐴𝑧 is the azimath and 𝜙 is the latitude. Then for 𝑖 = 00

Latitude: 00

Azimuth: 900

Can a spacecraft be launched directly into an equatorial geostationary orbit about the Earth
from the ETR (Eastern Test Range, Cape Canaveral)? No Since 𝑖 is not zero.

Can a spacecraft be launched directly into an equatorial geostationary orbit about the Earth
from the WTR (Western Test Range, Vandenburg AFB)? No, same reason.

6.4.3 Problem 3

A satellite is initially in a circular orbit about the Earth at an altitude of 200 km. Its target
orbit is a circular orbit in the same plane with a radius of 130,000 km. Calculate the total
Δ𝑉 and transfer time (in hours) required to complete each of the orbit transfers below.
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6.4.3.1 Part(a) Hohmann transfer

r1

r2

V1
V2

V1

V3V4
V2

a  r1  r2

2

V1 

r1

V2   2
r1

 1
a

V1  V2  V1

V3   2
r2

 1
a

V4 

r2

V2  V4  V3

V  |V1 |  |V2 |

T   a3



Hohmann Transfer

Total Velocity 
change needed

Time to transfer 
from one orbit to 
the other

hohmann.vsdx
Nasser M. Abbasi
022014

1

𝑎 =
𝑟1 + 𝑟2

2
=

200 + 6378 + 130000
2

= 68289 km

𝑉1 =
�

𝜇
𝑟1

=
�

3.986 �105�
200 + 6378

= 7.7843 km/s

𝑉2 =
�
𝜇�

2
𝑟1

−
1
𝑎�

=
�
3.986 �105� �

2
200 + 6378

−
1

68289�
= 10.74 km/s

Δ𝑉1 = 𝑉2 − 𝑉1 = 10.74 − 7.7843 = 2.9557 km/s

𝑉3 =
�
𝜇�

2
𝑟2

−
1
𝑎�

=
�
3.986 �105� �

2
130000

−
1

68289�
= 0.54346 km/s

𝑉4 =
�

𝜇
𝑟2

=
�

3.986 �105�
130000

= 1.751 km/s

Δ𝑉2 = 𝑉4 − 𝑉3 = 1.751 − 0.54346 = 1.2075
Δ𝑉 = |Δ𝑉1| + |Δ𝑉2| = 2.9557 + 1.2075 = 4.1632 km/s
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Time of transfer

𝑇 = 𝜋
�

𝑎3

𝜇

= 𝜋
�

682893

3.986 �105�
= 88799 sec

=
88799
60 × 60

= 24.666 hr

6.4.3.2 Part (b) bi-elliptic transfer

with an intermediate transfer radius of 200,000 km

r1

r2

V1
V2

V1

V3V4
V2

Bi-Elliptic Transfer

Total Velocity 
change needed

Time to transfer 
from one orbit to 
the other

rb

a1 
r1rb

2
a2 

r2rb

2

V5
V6

V3

a1 
r1  rb

2

a2 
r2  rb

2

V1 

r1

V2   2
r1

 1
a1

V1  V2  V1

V3   2
rb

 1
a1

V4   2
rb

 1
a2

V2  V4  V3

V5   2
r2

 1
a2

V6 

r2

V3  V6  V5

V  |V1 |  |V2 |  |V3 |

T  
a1

3

  
a2

3



1

2

bi_ellptic.vsdx
Nasser M. Abbasi
022314

𝑟𝑏 = 200000 km, 𝑟1 = 200 + 6378 km, 𝑟2 = 130000 km
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𝑎1 =
𝑟1 + 𝑟𝑏

2
=

200 + 6378 + 200000
2

= 1.0329 × 105 km

𝑎2 =
𝑟2 + 𝑟𝑏

2
=

130000 + 200000
2

= 1.65 × 105 km

𝑉1 =
�

𝜇
𝑟1

=
�

3.986 �105�
200 + 6378

= 7.7843 km/s

𝑉2 =
�
𝜇�

2
𝑟1

−
1
𝑎1
� =

�
3.986 �105� �

2
200 + 6378

−
1

1.0329 × 105 �
= 10.832 km/s

Δ𝑉1 = 𝑉2 − 𝑉1 = 10.832 − 7.7843 = 3.0477 km/s

𝑉3 =
�
𝜇�

2
𝑟𝑏

−
1
𝑎1
� =

�
3.986 �105� �

2
200000

−
1

1.0329 × 105 �
= 0.35632 km/s

𝑉4 =
�
𝜇�

2
𝑟𝑏

−
1
𝑎2
� =

�
3.986 �105� �

2
200000

−
1

1.65 × 105 �
= 1.2531 km/s

Δ𝑉2 = 𝑉4 − 𝑉3 = 1.2531 − 0.35632 = 0.89678 km/s

𝑉5 =
�
𝜇�

2
𝑟2

−
1
𝑎2
� =

�
3.986 �105� �

2
130000

−
1

1.65 × 105 �
= 1.9278 km/s

𝑉6 =
�

𝜇
𝑟2

=
�

3.986 �105�
130000

= 1.751 km/s

Δ𝑉3 = 𝑉6 − 𝑉5 = 1.751 − 1.9278 = −0.1768 km/s

Δ𝑉 = |Δ𝑉1| + |Δ𝑉2| + �Δ𝑉3� = 3.0477 + 0.89678 + 0.1768 = 4.1213 km/s

Transfer time

𝑇 = 𝜋
�

𝑎31
𝜇

+ 𝜋
�

𝑎32
𝜇

= 𝜋

�
⃓⃓
⃓
⎷

�1.0329 × 105�
3

3.986 �105�
+ 𝜋

�
⃓⃓
⃓
⎷

�1.65 × 105�
3

3.986 �105�

= 4.9869 × 105 sec

=
4.9869 × 105

60 × 60
= 138.53 hr
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6.4.3.3 Part (c) semi-tangential elliptical transfer

r1

r2

V1
V2

V1

Semi-tangential transfer

Total Velocity 
change needed

Time to 
transfer from 
one orbit to 
the other

rb



V3

V4

V2

a  r1  rb

2

V1 

r1

V2   2
r1

 1
a

V1  V2  V1

V3   2
r2

 1
a

V4 

r2

e  rb  r1

rb  r1

cos 
a21  e2
r22a  r2

V2  V4
2  V3

2  2V4V3 cos

V  |V1 |  |V2 |

r2  a1  ecosE

n 

a3

t  1
n E  e sinE

semi_tangential.vsdx
Nasser M. Abbasi
022314

𝑟𝑏 = 200000 km, 𝑟1 = 200 + 6378 km, 𝑟2 = 130000 km,
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𝑎 =
𝑟1 + 𝑟𝑏

2
=

200 + 6378 + 200000
2

= 1.0329 × 105 km

𝑉1 =
�

𝜇
𝑟1

=
�

3.986 �105�
200 + 6378

= 7.7843 km/s

𝑉2 =
�
𝜇�

2
𝑟1

−
1
𝑎�

=
�
3.986 �105� �

2
200 + 6378

−
1

1.0329 × 105 �
= 10.832 km/s

Δ𝑉1 = 𝑉2 − 𝑉1 = 10.832 − 7.7843 = 3.0477 km/s

𝑉3 =
�
𝜇�

2
𝑟2

−
1
𝑎�

=
�
3.986 �105� �

2
130000

−
1

1.0329 × 105 �
= 1.5077

𝑉4 =
�

𝜇
𝑟2

=
�

3.986 �105�
130000

= 1.751 km/s

𝑒 =
𝑟𝑏 − 𝑟1
𝑟𝑏 + 𝑟1

=
200000 − (200 + 6378)
200000 + (200 + 6378)

= 0.93631

cos𝛾 =
�

𝑎2 �1 − 𝑒2�
𝑟2 (2𝑎 − 𝑟2)

=

�
⃓⃓
⃓
⎷

�1.0329 × 105�
2
�1 − 0.936322�

130000 �2 �1.0329 × 105� − 130000�
= 0.36351

Δ𝑉2 = �𝑉2
4 + 𝑉2

3 − 2𝑉4𝑉3 cos𝛾 = �1.7512 + 1.50772 − 2 (1.751) (1.5077) (0.36351) = 1.8493

Δ𝑉 = |Δ𝑉1| + |Δ𝑉2| = 3.0477 + 1.8493 = 4.897

To find transfer time, we first must find 𝐸, which is found by solving 𝑟 = 𝑎 (1 − 𝑒 cos𝐸) where
𝑟 is the radius we want to find 𝐸 at which is 𝑟2 in this case. Hence

𝑟2 = 𝑎 (1 − 𝑒 cos𝐸)
130000 = 1.0329 × 105 (1 − 0.93631 cos𝐸)

0.93631 cos𝐸 = 1 −
130000

1.0329 × 105
0.93631 cos𝐸 = −0.25859

cos𝐸 = −0.27618
𝐸 = arccos (−0.27618) = 1.8506 rad

𝑛 =
�

𝜇
𝑎3

=
�
⃓⃓
⃓
⎷

3.986 �105�

�1.0329 × 105�
3 = 1.9019 × 10−5

Δ𝑡 =
1
𝑛
(𝐸 − 𝑒 sin𝐸)

Δ𝑡 =
1

1.9019 × 10−5
(1.8506 − (0.93632) sin (1.8506)) = 49987 sec

=
49987
60 × 60

= 13.885 hr
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6.4.3.4 Part (d) a semi-tangential hyperbolic transfer

with a transfer time half that required for a semi-tangential parabolic transfer

Semi-tangential parabolic transfer time: Answer hours

Semi-tangential hyperbolic transfer time: Answer hours

Semi-tangential hyperbolic total Δ𝑉: Answer km/s

Answer:

𝑟1 = 200 + 6378 km, 𝑟2 = 130000 km. For a parabolic orbit, the true anamoly 𝜃 is found when
𝑟 = 𝑟2. From

𝑟2 =
2𝑟𝑝

1 + cos𝜃

𝜃 = arccos �
2𝑟𝑝
𝑟2

− 1�

= arccos �
2𝑟𝑝
𝑟2

− 1�

But 𝑟𝑝 = 𝑟1 hence

𝜃 = arccos �
2𝑟1
𝑟2

− 1�

= arccos �
2 (200 + 6378)

130000
− 1�

= 2.6878 rad
= 1540

So the time for transfer if we are using a parabolic orbit is

Δ𝑡 =
tan �𝜃

2
� + 1

3
�tan �𝜃

2
��

3

2
�

𝜇
2𝑟1

=
tan �2.6878

2
� + 1

3
�tan �2.6878

2
��

3

2
�

3.986�105�

(2(200+6378))3

= 37547 sec

=
37547
60 × 60

= 10.430 hr

Hence required time for hyperbolic is

Δ𝑡ℎ𝑦𝑝𝑒𝑟 =
1
2
(10.430) = 5.215 hr

Now to obtain Δ𝑉 for hyperbolic orbit.

If we know 𝑟1, 𝑟2 on the orbit, and know the travel time between these 2 points then 𝑎, 𝑒, 𝐹
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can be found by numerically solving these equations

𝑟1 = 𝑎 (𝑒 − 1)
𝑟2 = 𝑎 (𝑒 cosh 𝐹 − 1)

Δ𝑡 =
�

𝑎3

𝜇
(𝑒 sinh (𝐹) − 𝐹)

The above are 3 equations with 3 unknowns

200 + 6378 = 𝑎 (𝑒 − 1)

�

3.986 �105�
𝑎3

(5.215 × 60 × 60) = 𝑒 sinh (𝐹) − 𝐹

130000 = 𝑎 (𝑒 cosh 𝐹 − 1)

Solving gives

𝑒 = 1.5468
𝑎 = 12029.4 km
𝐹 = 2.7213 𝑟𝑎𝑑

Hence

𝑎 = 12029.4 km

𝑉1 =
�

𝜇
𝑟1

=
�

3.986 �105�
200 + 6378

= 7.7843 km/s

𝑉2 =
�
𝜇�

2
𝑟1

+
1
𝑎�

=
�
3.986 �105� �

2
200 + 6378

+
1

12029.4�
= 12.423 km/s

Δ𝑉1 = 𝑉2 − 𝑉1 = 12.423 − 7.7843 = 4.6387 km/s

𝑉3 =
�
𝜇�

2
𝑟2

+
1
𝑎�

=
�
3.986 �105� �

2
130000

+
1

12029.4�
= 6.2664

𝑉4 =
�

𝜇
𝑟2

=
�

3.986 �105�
130000

= 1.751 km/s

cos𝛾 =
�

𝑎2 �𝑒2 − 1�
𝑟2 (2𝑎 + 𝑟2)

=
�

(12029.4)2 �1.54682 − 1�
130000 (2 (12029.4 ) + 130000)

= 0.10031

Δ𝑉2 = �𝑉2
4 + 𝑉2

3 − 2𝑉4𝑉3 cos𝛾 = �1.7512 + 6.26642 − 2 (1.751) (6.2664) (0.10031) = 6.335

Δ𝑉 = |Δ𝑉1| + |Δ𝑉2| = 4.6387 + 6.335 = 10.974
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6.5 HW5

6.5.1 Problem 1

A spacecraft is initially in a 300 km altitude circular orbit about the Earth in the ecliptic
plane. It is to be sent on a Hohmann transfer to Saturn, also in the ecliptic plane. Assume
that Saturn is in the correct position in its orbit for a flyby to occur when the spacecraft
gets there.

6.5.1.1 part(a)

Calculate the initial Δ𝑉1 required to start the trip to Saturn.

𝑟𝑏0 = 𝑟𝐸 + 𝑎𝑙𝑡

Where 𝑟𝐸 is radius of earth and 𝑎𝑙𝑡 is spacecraft altitude. Hence

𝑟𝑏0 = 6378 + 300 = 6678 km

The distance from earth to sun is 𝑅𝐸 = 1.496 × 108 km and the distance from saturn to sun is

𝑅𝑠 = 9.536×1.496×108 = 1.4266×109 km therefore 𝑎 = 𝑅𝐸+𝑅𝑠
2 = 1.496×108+1.426 6×109

2 = 7.8815×108
km.

The earth speed around the sun is 𝑉𝑒 =
�

𝜇𝑠
𝑟𝑒

= �
1.327×1011

1.496×108 = 29.783 km/sec. When the

spacecraft escape the earth it has to be at speed

𝑉𝑝𝑒𝑟𝑖𝑔𝑒𝑒 =
�
𝜇𝑠 �

2
𝑅𝐸

−
1
𝑎�

=
�
1.327 × 1011 �

2
1.496 × 108

−
1

7.8815 × 108 �
= 40.07 km/sec

Therefore, 𝑉∞ is the escape speed found from

𝑉∞ = 𝑉𝑝𝑒𝑟𝑖𝑔𝑒𝑒 − 𝑉𝑒

= 40.07 − 29.783
= 10.287 km/sec

Now the burn out speed is found

𝑉2
𝑏𝑜
2

−
𝜇𝐸
𝑟𝑏0

=
𝑉2
∞
2

−
𝜇𝐸
𝑟𝑆𝑂𝐼

Where 𝑟𝑆𝑂𝐼 is the earth sphere of influense given by 9.24 × 105 km. Solving for 𝑉𝑏𝑜
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𝑉2
𝑏𝑜
2

−
3.986 × 105

6678
=

10.2872

2
−
3.986 × 105

9.24 × 105
𝑉𝑏𝑜 = 14.978 km/sec

Hence

Δ𝑉1 = 𝑉𝑏𝑜 −
�

𝜇𝐸
𝑟𝑏𝑜

= 14.97 −
�

3.986 × 105

6678
= 7.244 2

6.5.1.2 part(b)

Calculate the angle past the Earth’s dawn-dusk line where the Δ𝑉 should be applied.

𝑒 =
�
1 +

𝑉2
∞𝑉2

𝑏𝑜𝑟2𝑏𝑜
𝜇2𝐸

=
�
⃓⃓
⃓
⎷
1 +

�10.2872� �14.9782� �66782�

�3.986 × 105�
2

= 2.768 3

Hence

𝜂 = arccos �
−1
𝑒 � = arccos �

−1
2.768 3�

= 1.9404 radian

= 111.180

Hence 𝜃 = 180 − 111.18 = 68.820

6.5.1.3 part(c)

For how long is the spacecraft on the heliocentric Hohmann transfer between Earth and
Saturn? (Note: you do not need to calculate the time within either planet’s sphere of influence,
as that will be small relative to the Hohmann transfer time, but you are welcome to do so
and compare those values for yourself.)

The time is half the period of the elliptical orbit. Hence
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𝑇 = 𝜋
�

𝑎3

𝑢𝑠
= 𝜋

�
�7.8815 × 108�

3

1.327 × 1011
= 1.9082 × 108 sec

=
1.908 2 × 108

60 × 60 × 24 × 365
= 6.051 year

6.5.1.4 part(d)

After crossing into the sphere of influence of Saturn, the spacecraft is to be placed in a
circular orbit about Saturn with an orbital radius of 150,000 km. Calculate the Δ𝑉2 required
to place the spacecraft on this orbit.

Solution completed in the Mathematica solution. See above for links.

6.5.2 Problem 2

A spacecraft on an interplanetary mission in the same plane as Jupiter’s orbit about the
Sun enters Jupiter’s sphere of influence. The spacecraft has a speed of 10 km/s relative to
the Sun at this point, which you can estimate as the Jupiter’s average orbital radius about
the Sun. (See the Planetary Constants sheet in your notes for values.) Assume that Jupiter
is in a circular orbit about the Sun.

6.5.2.1 part(a)

The largest possible value for the impact parameter, 𝑏, that will still result in a hyperbolic
orbit about Jupiter in the patched conic method is Jupiter’s SOI radius. Find that value on
the Planetary Constants sheet in the course notes and enter it here for reference.

𝑏max = 𝑅𝑆𝑂𝐼,𝐽𝑢𝑝𝑖𝑡𝑜𝑟 = Answer km

For parts (b) through (g), assume that, relative to the Sun, the spacecraft is moving in the
same direction as Jupiter when it enters Jupiter’s SOI.

6.5.2.2 part(b)

What is the speed of the satellite relative to Jupiter when it enters Jupiter’s SOI?

𝑉∞ = Answer km/s

6.5.2.3 part(c)

What is the smallest possible value for the impact parameter b? This value of impact
parameter will result in a burnout radius that just grazes the surface of Jupiter, 𝑟𝑏𝑜 = 𝑟𝐽𝑢𝑝𝑖𝑡𝑒𝑟

𝑏𝑚𝑖𝑛 = 𝑘𝑚
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6.5.2.4 part(d)

Select as your impact parameter the value halfway between 𝑏𝑚𝑖𝑛 and 𝑏𝑚𝑎𝑥. Note that value
here for reference and use it as your impact parameter for the rest of the problem.

𝑏 = Answer km

6.5.2.5 part(e)

Given the impact parameter from part (d), calculate the turning angle of the spacecraft
relative to Jupiter during the flyby.

𝜃 = Answer degrees

6.5.2.6 part(f)

What is the spacecraft’s heliocentric speed following the flyby?

𝑉𝐷 = 𝑘𝑚/𝑠

6.5.2.7 part(g)

What is the spacecraft’s heliocentric flight path angle following the flyby?

𝛾𝐷 = 𝑑𝑒𝑔

For the remaining parts, assume that, relative to the Sun, the spacecraft DOES NOT arrive at
Jupiter’s SOI moving in the same direction at Jupiter. The spacecraft still has a heliocentric
speed of 10 km/s at the distance of Jupiter’s orbit from the Sun. But now it has a heliocentric
eccentricity of 0.5. (What was the heliocentric eccentricity when the spacecraft arrived in
the same direction as Jupiter, assuming that point was aphelion?)

6.5.2.8 part(h)

What is the spacecraft’s heliocentric flight path angle when it arrives at Jupiter’s SOI?

𝛾𝐴 = 𝑑𝑒𝑔

6.5.2.9 part(i)

What is the spacecraft’s speed relative to Jupiter?

𝑉∞ = km/s

part(j)

Using the same impact parameter as in part (d), calculate the turning angle of the spacecraft
relative to Jupiter.

𝜃 = 𝑑𝑒𝑔

part(k)
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Assuming that the spacecraft flies behind Jupiter, what is the spacecraft’s heliocentric speed
following the flyby?

𝑉𝐷 =km/s

6.5.2.10 part(L)

Assuming that the spacecraft flies behind Jupiter, what is the spacecraft’s heliocentric flight
path angle following the flyby?

𝛾𝐷 = 𝑑𝑒𝑔

239



6.5. HW5 CHAPTER 6. HWS

6.5.3 Appendix

6.5.3.1 solution in Maple

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 
> > 

HW5 by Nasser M. Abbasi, EMA 550

Problem 1
A spacecraft is initially in a 300 km altitude circular orbit about the Earth in the ecliptic plane. It is to
be sent on a Hohmann transfer to Saturn, also in the ecliptic plane. Assume that Saturn is in the 
correct position in its orbit for a flyby to occur when the spacecraft gets there.
local `~`:= proc(f::uneval, `$`::identical(` $`), expr::uneval)
local x, opr:= op(procname);
     if opr <> `<` then  return :-`~`[opr](args)  end if;
     x:= eval(expr);
     print(op(1,
          subs(
               _F_= nprintf("%a", f), _X_= x,
               proc(_F_:= expr=_X_) end proc
          )
     ));
     assign(f,x)
end proc:

part(a)
These below are from tables
AU := 1.496*10^8;
saturn_sun_distance := 9.537*1.496*10^8;
sun_mu        := 1.327*10^11;
earth_mu      := 3.986*10^5;
earth_soi     := 9.24*10^5;
satellite_earth_altitude := 300;
earth_radius  := 6378;

Find burn out radius
rb0_earth <~ satellite_earth_altitude+earth_radius;

find "a" for the Hohmann ellipse in sun centric space
a <~ (AU+saturn_sun_distance)/2;

Find velocity of earth relative to the sun
earth_speed <~ sqrt(sun_mu/AU);
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> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

Find velocity of spacecraft relative to earth
satellite_speed_relative_to_earth <~ sqrt(earth_mu/rb0_earth);

find what the velocity of spacecraft should be at the perigree of the Hohmann orbit in sun centeric 
space

velocity_perigee <~ sqrt(sun_mu*(2/AU - 1/a));

Find excess speed V infinity out, to escape earth
velocity_infinity_entering_saturn <~  velocity_perigee-
earth_speed;

set up the energy equation and solve for V_b0
saturn_vb0 := 'saturn_vb0';
saturn_vb0 <~ sqrt(2 * ((velocity_infinity_entering_saturn^2/2 
-earth_mu/earth_soi)+  earth_mu/rb0_earth ));

delta_v1 <~  saturn_vb0 - satellite_speed_relative_to_earth ;

part(b)

Find escape hyperbolic trajectory eccentricity
e <~ sqrt(1+ (velocity_infinity_entering_saturn^2*saturn_vb0^2*
rb0_earth^2)/earth_mu^2 );

find angle eta
eta <~ arccos(- 1/e);

theta <~ evalf(180 - eta*180/Pi);

Part (c)
For how long is the spacecraft on the heliocentric Hohmann transfer between Earth and Saturn? 
(Note: you do not need to calculate the time within either planet's sphere of influence, as that will be 
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> > 

> > 

> > 

small relative to the Hohmann transfer time, but you are welcome to do so and compare those values 
for yourself.)
The time is half the period of the elliptical orbit. Hence

T <~ evalf(Pi*sqrt(a^3/sun_mu));

T <~ T/(60*60*24*365);

Part (d)
After crossing into the sphere of influence of Saturn, the spacecraft is to be placed in a circular orbit 

on this orbit. When spacecraft reaches saturn is has speed relative to sun of
saturn_vb0 := 'saturn_vb0';
rb0_saturn := 150000;
v_apogee   <~ sqrt(sun_mu*(2/saturn_sun_distance-1/a));
satellite_speed_relative_to_earthurn <~ sqrt(sun_mu*
(1/saturn_sun_distance));
velocity_infinity_entering_jupitor <~ 
satellite_speed_relative_to_earthurn - v_apogee;
saturn_mu  := 37931187;
saturn_SOI := 3.47*10^7;
eq := saturn_vb0^2/2 - saturn_mu/rb0_saturn = 
velocity_infinity_entering_jupitor^2/2 - saturn_mu/saturn_SOI;
saturn_vb0 := op(select( is, [solve(eq,saturn_vb0)], positive))
;
satellite_speed_relative_to_earth <~ sqrt(saturn_mu/rb0_saturn)
;
del_v2     <~ evalf(satellite_speed_relative_to_earth - 
saturn_vb0);
total_delV <~ abs(delta_v1) + abs(del_v2);
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> > 

> > 

> > 

Problem 2
A spacecraft on an interplanetary mission in the same plane as Jupiter's orbit about the Sun enters 
Jupiter's sphere of influence. The spacecraft has a speed of 10 km/s relative to the Sun at this point, 
which you can estimate as the Jupiter's average orbital radius about the Sun. (See the Planetary 
Constants sheet in your notes for values.) Assume that Jupiter is in a circular orbit about the Sun.

part(a)
The largest possible value for the impact parameter, b, that will still result in a hyperbolic orbit 
about Jupiter in the patched conic method is Jupiter's SOI radius. Find that value on the Planetary
Constants sheet in the course notes and enter it here for reference.
jupitor_SOI := 4.83*10^7;
sun_mu      := 1.327*10^11;
jupitor_mu  := 126686534;
b_max       <~ jupitor_SOI;

part(b)
For parts (b) through (g), assume that, relative to the Sun, the spacecraft is moving in the same 
direction as Jupiter when it enters Jupiter's SOI
What is the speed of the satellite relative to Jupiter when it enters Jupiter's SOI?
satellite_speed_relative_to_sun :=10;
jupitor_sun_distance := 5.203*1.495978*10^8;
jupitor_speed <~ sqrt((sun_mu)/(jupitor_sun_distance));
velocity_infinity_entering_jupitor <~ jupitor_speed -
satellite_speed_relative_to_sun;

part(c)
What is the smallest possible value for the impact parameter b? This value of impact parameter 
will result in a burnout radius that just grazes the surface of Jupiter
jupitor_radius :=71492;
jupitor_vb0_min <~ sqrt(jupitor_mu/jupitor_radius);

243



6.5. HW5 CHAPTER 6. HWS

> > 

> > 

> > 

> > 

> > 

b_min <~ evalf(jupitor_radius*
jupitor_vb0_min/velocity_infinity_entering_jupitor);

part(d)
Select as your impact parameter the value halfway between b_{min} and b_{max}. Note that 
value here for reference and use it as your impact parameter for the rest of the problem

b <~ (b_max+b_min)/2;

part(e)
Given the impact parameter from part (d), calculate the turning angle of the spacecraft relative to
Jupiter during the flyby.
saturn_vb0 := 'saturn_vb0': rb0_earth := 'rb0_earth':
rb0_jupitor <~ b*
velocity_infinity_entering_jupitor/jupitor_vb0;
eq <~ (jupitor_vb0^2/2 - jupitor_mu/rb0_jupitor = 
velocity_infinity_entering_jupitor^2/2 - 
jupitor_mu/jupitor_SOI);
sol <~ solve(eq,jupitor_vb0);
jupitor_vb0 <~ op(select( is, [sol], positive));

rb0_jupitor;

e <~ sqrt(1+(velocity_infinity_entering_jupitor^2*
jupitor_vb0^2*rb0_jupitor^2)/jupitor_mu^2 );
eta &= arccos(-1/e);
evalf(eta*180/Pi);
theta &= (2*eta-Pi);
evalf(theta*180/Pi);
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> > 

> > 

> > 

> > 

111.1730211

3943.495406

part(f)
What is the spacecraft's heliocentric speed following the flyby? (11.73 is correct)
vd <~ sqrt(jupitor_speed^2+
velocity_infinity_entering_jupitor^2-2*jupitor_speed*abs
(velocity_infinity_entering_jupitor)*cos(theta));

part(g)
 What is the spacecraft's heliocentric flight path angle following the flyby
gamma_d <~ arcsin(velocity_infinity_entering_jupitor*sin
(theta)/vd);
evalf(gamma_d*180/Pi);

Hohmann from earth to moon (for project)
satellite_earth_altitude := 300;
earth_radius  := 6378;
r__p          <~ satellite_earth_altitude+earth_radius;
r__a          <~ 384400;
a             <~ ((r__p+r__a)/2);
earth_mu     := 3.986*10^5;
satellite_speed_relative_to_earth  <~ sqrt(earth_mu/r__p);
velocity_perigee  <~ sqrt(earth_mu*(2/r__p - 1/a));
del__V1 <~ velocity_perigee - 
satellite_speed_relative_to_earth;
e <~ evalf((r__a-r__p)/(r__a+r__p));
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> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > velocity_apogee <~  sqrt(earth_mu*(2/r__a - 1/a));

v2 <~ sqrt(earth_mu/r__a);

delV2 <~ v2-velocity_apogee;

totalDelV <~ abs(del__V1)+abs(delV2);

delT:=Pi* sqrt(a^3/earth_mu);

evalf(delT);

evalf(delT/(60*60*24));
4.979864981
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6.5.3.2 solution in Mathematica

HW5 EMA 550, University of 
Wisconsin, Madison

Nasser M. Abbasi
March 11,2014

problem 1
A spacecraft is initially in a 300 km altitude circular orbit about the Earth in the ecliptic plane. It is to be
sent on a Hohmann transfer to Saturn, also in the ecliptic plane. Assume that Saturn is in the correct
position in its orbit for a flyby to occur when the spacecraft gets there.

Part (a)

Find ΔV1 for Hohmann transfer

define constants to use

Clear["Global`*"];

AU = 1.495978 * 108;

rearth = 6378;

μsun = 1.327 * 10^11;

μearth = 3.986 * 10^5;

Rearth = 1.496 * 10^8;

RearthSOI = 9.24 * 10^5;

Rsaturn = 9.537 AU;

Velocity of earth relative to the sun

Vearth =
μsun

Rearth

29.7831

spacecraft altitude over earth

alt = 300;

Printed by Wolfram Mathematica Student Edition
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rb0 = rearth + alt

6678

Find Hohmann paramters for trip to Saturn

a =
Rearth + Rsaturn

2

7.88157 × 108

Find Vp the velocity are perigee

Vperigee = μsun
2

Rearth
-
1

a

40.0711

Find V∞ the excess velocity to escape from Earth

Vout = Vperigee - Vearth

10.2881

Find Vb0 at earth

Vb0 = 2
Vout

2

2
-

μearth

RearthSOI
+
μearth

rb0

14.9786

Find Vsat the spacecraft speed around eath

Vsat =
μearth

rb0

7.72584

2     HW5_mma.nb

Printed by Wolfram Mathematica Student Edition
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find ΔV1

delV1 = Vb0 - Vsat

7.25277

Part (b) Angle calculation at departure

Calculate the angle past the Earth’s dawn-dusk line where the ΔV should be applied.

find e the eccentricty for the escape hyperbola

e = 1 +
Vout

2 Vb0
2 rb0

2

μearth
2

2.76865

η = ArcCos-
1

e
;

Row"η Degree = ", η *
180

π


η Degree = 111.173

θ = Pi - η;

Row"θ Degree = ", θ *
180

π


θ Degree = 68.8269

Part (c)

For how long is the spacecraft on the heliocentric Hohmann transfer between Earth and Saturn? (Note:
you do not need to calculate the time within either planet’s sphere of influence, as that will be small
relative to the Hohmann transfer time, but you are welcome to do so and compare those values for
yourself.)

HW5_mma.nb    3

Printed by Wolfram Mathematica Student Edition
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find time to fly, which is half the period

T = 2 π
a3

μsun

;

Row"time to fly in years = ", 1  2 T  60 * 60 * 24 * 365

time to fly in years = 6.051

Part (d)

After crossing into the sphere of influence of Saturn, the spacecraft is to be placed in a circular orbit
about Saturn with an orbital radius of 150,000 km. Calculate the ΔV2 required to place the spacecraft
on this orbit. When spacecraft reaches saturn is has speed relative to sun of

Paramters to use

rb0 = 150 000;

μsaturn = 37 931 187;

RsaturnSOI = 3.47 * 10^7;

Find Vapegree of the Hohmann transfer

Vapegee = μsun
2

Rsaturn
-
1

a

4.20171

find saturn speed relative to sun

Vsaturn =
μsun

Rsaturn

9.64422

Find Vin the speed by which spacecraft enters saturn SOI

Vin = Vsaturn - Vapegee

5.4425

4     HW5_mma.nb

Printed by Wolfram Mathematica Student Edition
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Use energy equation to solve for Vb0 at Saturn

Vb0 = 2
Vin

2

2
-

μsaturn

RsaturnSOI
+
μsaturn

rb0

23.0908

Since spacecrasft will end up in an orbit around saturn, find its parking speed

Vsat =
μsaturn

rb0
// N

15.902

find ΔV2

delV2 = Vsat - Vb0

-7.18874

Find total speed change needed

totalV = Abs[delV1] + Abs[delV2]

14.4415

Problem 2
A spacecraft on an interplanetary mission in the same plane as Jupiter’s orbit about the Sun enters
Jupiter’s sphere of influence. The spacecraft has a speed of 10 km/s relative to the Sun at this point,
which  you  can  estimate  as  the  Jupiter’s  average  orbital  radius  about  the  Sun.  (See  the  Planetary
Constants sheet in your notes for values.) Assume that Jupiter is in a circular orbit about the Sun.

Part (a)

The largest possible value for the impact parameter, b, that will still result in a hyperbolic orbit about
Jupiter in the patched conic method is Jupiter’s SOI radius. Find that value on the Planetary Constants
sheet in the course notes and enter it here for reference.

HW5_mma.nb    5

Printed by Wolfram Mathematica Student Edition
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Paramters

ClearAll["Global`*"];

AU = 1.495978 * 108;

rearth = 6378;

μsun = 1.327 * 10^11;

μearth = 3.986 * 10^5;

μjupitor = 126 686 534;

Rearth = 1.496 * 10^8;

RearthSOI = 9.24 * 10^5;

Rjupitor = 5.203 AU;

rjupitor = 71 492;

jupitorSOI = 4.83 * 10^7;

bmax = jupitorSOI;

Part(b)

For parts (b) through (g), assume that, relative to the Sun, the spacecraft is moving in the same direc-
tion as Jupiter when it enters Jupiter’s SOI
What is the speed of the satellite relative to Jupiter when it enters Jupiter’s SOI?

Vin = 10;

find Jupitor speed relative to sun

Vjupitor =
μsun

Rjupitor

13.0571

Find speed of spacecraft relative to Jupitor

VinRelative = Vjupitor - Vin

3.05708

Part(c)

What is the smallest possible value for the impact parameter b? This value of impact parameter will
result in a burnout radius that just grazes the surface of Jupiter

6     HW5_mma.nb

Printed by Wolfram Mathematica Student Edition
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eq = bmin VinRelative ⩵ rjupitor
μjupitor

rjupitor
;

bmin /. First@Solve[eq, bmin];

bmin = % // N

984 436.

Part(d)

Select as your impact parameter the value halfway between bmin  and bmax. Note that value here for
reference and use it as your impact parameter for the rest of the problem

b = Mean[{bmin, bmax}]

2.46422 × 107

Part(e)

Given the impact parameter from part  (d),  calculate the turning angle of  the spacecraft  relative to
Jupiter during the flyby.

eq1 = rb0  vb0 ⩵ b VinRelative;

rb0 =
b VinRelative

vb0

7.53331 × 107

vb0

setup the energy equation at Jupitor

eq2 =
vb02

2
-
μjupitor

rb0
==

VinRelative2

2
-

μjupitor

jupitorSOI

-1.68168 vb0 +
vb02

2
⩵ 2.04995

Solve for Vb0

sol = vb0 /. NSolve[eq2, vb0]

{-0.950417, 4.31379}

HW5_mma.nb    7

Printed by Wolfram Mathematica Student Edition
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vb0 = First@Select[%, Positive]

4.31379

check the correspoding rb0

rb0

1.74634 × 107

Find e at jupitor and find η and θ

e = 1 +
VinRelative2 vb02 rb02

μjupitor
2

2.07476

η = ArcCos-
1

e
;

Row"η Degree = ", η *
180

π


η Degree = 118.815

θ = 2 η - Pi;

Row"θ Degree = ", θ *
180

π


θ Degree = 57.63

Part(f)

What is the spacecraft’s heliocentric speed following the flyby?

vd = Vjupitor
2
+ VinRelative2 - 2 Vjupitor VinRelative Cos[θ]

11.7086

Part (g)

What is the spacecraft’s heliocentric flight path angle following the flyby

8     HW5_mma.nb

Printed by Wolfram Mathematica Student Edition
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γd = ArcSin
VinRelative Sin[θ]

vd
;

Row"γd in degree ", γd 180  Pi

Row[γd in degree , 12.7398]

For the remaining parts, assume that, relative to the Sun, the spacecraft DOES 
NOT arrive at Jupiter’s SOI moving in the same direction at Jupiter. The 
spacecraft still has a heliocentric speed of 10 km/s at the distance of Jupiter’s 
orbit from the Sun. But now it has a heliocentric eccentricity of 0.5. (What was the 
heliocentric eccentricity when the spacecraft arrived in the same direction as 
Jupiter, assuming that point was aphelion?)

Part(h)

What is the spacecraft’s heliocentric flight path angle when it arrives at Jupiter’s SOI?

Clear[a];

e = 0.5;

eq = Vin ⩵ μsun
2

Rjupitor
-
1

a

10 ⩵ 364 280. 2.56951 × 10-9 -
1

a

a = a /. First@NSolve[eq, a]

5.50681 × 108

γ = ArcCos
a2 1 - e2

Rjupitor 2 a - Rjupitor
;

Row"angle is ", γ 180  Pi, " degree"

angle is 17.9875 degree

Part(i)

What is the spacecraft’s speed relative to Jupiter

HW5_mma.nb    9
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VinRelative = Vjupitor
2
+ Vin2 - 2 Vjupitor Vin Cos[γ]

4.70206

part(j)

Using the same impact parameter as in part (d), calculate the turning angle of the spacecraft relative to
Jupiter.

Clear[vb0];

eq1 = rb0 vb0 ⩵ b VinRelative;

rb0 =
b VinRelative

vb0

1.15869 × 108

vb0

setup the energy equation at Jupitor

Clear[vb0];

eq2 =
vb02

2
-
μjupitor

rb0
==

VinRelative2

2
-

μjupitor

jupitorSOI

-1.09336 vb0 +
vb02

2
⩵ 8.43177

Solve for Vb0

sol = vb0 /. NSolve[eq2, vb0]

{-3.15623, 5.34294}

vb0 = First@Select[%, Positive]

5.34294

check the correspoding rb0

rb0

2.16864 × 107
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Find e at jupitor and find η and θ

e = 1 +
VinRelative2 vb02 rb02

μjupitor
2

4.4153

η = ArcCos-
1

e
;

Row"η Degree = ", η *
180

π


η Degree = 103.09

θ = 2 η - Pi;

Row"θ Degree = ", θ *
180

π


θ Degree = 26.1805

Part(k)

Assuming that the spacecraft flies behind Jupiter, what is the spacecraft’s heliocentric speed following
the flyby?

Vjupitor

13.0571

VinRelative

4.70206

Vin

10

β = ArcSin
Vin Sin[γ]

VinRelative


0.716508
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vd = Vjupitor
2
+ VinRelative2 - 2 Vjupitor VinRelative Cos[β + θ]

12.0449

Part(L)

Assuming that the spacecraft flies behind Jupiter, what is the spacecraft’s heliocentric flight path angle
following the flyby?

γd = ArcSin
VinRelative Sin[β + θ]

vd
;

Row"γd in degree ", γd 180  Pi

Row[γd in degree , 21.0979]
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6.6.1 HW6 in Mathematica

HW6 EMA 550, University of Wisconsin, 

Madison
Nasser M. Abbasi

March 11,2014

problem 1

Part (a)

Assuming that Venus is spherical with a radius of 6052 km, determine the altitude of the initial circular orbit for the

three spacecraft. 
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period = 120 * 60

Ω =
2 Π

period

7200

Π

3600

Clear@hD
mu = 324 859;

eq = h Ω �
mu

h

h Π

3600

� 324859

1

h

h = h �. First�NSolve@eq, hD

7527.776558

radius = 6052;

alt = h - radius

1475.776558

ra = h

7527.776558

part(b)

Calculate DV Mal required to start the maneuver (magnitude and sign). 

leadAngle =
500

h

0.06642067497

% * 180 � Pi

3.805624348
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orbitTotalCircumference = 2 Pi h

47298.41507

n = 1

1

timeRequired1 = n -
leadAngle

2 Pi

period

7123.887513

timeRequiredInMinutes = timeRequired1 � 60

118.7314586

eq = timeRequired1 � 2 Pi
a^3

mu

7123.887513 �

2 a3 Π

324859

a = a �. First�NSolve@eq, aD

7474.630999

eq = a �
ra + rp

2

7474.630999 �

1

2

H7527.776558 + rpL

Clear@rpD
rp = rp �. First�NSolve@eq, rpD

7421.48544

part(c)

lowestAlt = rp - radius

1369.48544

HW6_mma.nb  3
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speedOnEllipse = mu
2

ra

-
1

a

6.545828652

speedOnCircle =
mu

ra

�� N

6.569224315

delV = speedOnEllipse - speedOnCircle

-0.0233956631

delVTotal = 2 * delV

-0.0467913262

part(d)

n = 1;

n +
leadAngle

2 Pi

timeRequired2 = n +
leadAngle

2 Pi

period

1.010571179

7276.112487

Clear@aD

eq = timeRequired2 � 2 Pi
a^3

mu

7276.112487 �

2 a3 Π

324859

NSolve@eq, aD

88a ® -3790.367586 + 6565.109239 ä<, 8a ® -3790.367586 - 6565.109239 ä<, 8a ® 7580.735173<<
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a = 7580.73517267325`

7580.735173

Clear@ra, rpD;

rp = h;

eq = a �
ra + rp

2

7580.735173 �

1

2

H7527.776558 + raL

ra = ra �. First�NSolve@%, raD

7633.693787

part(e)

largestAlt = ra - radius

1581.693787

speedOnEllipse = mu
2

rp

-
1

a

6.592130506

speedOnCircle =
mu

h

�� N

6.569224315

delV = speedOnEllipse - speedOnCircle

0.02290619083

part(f)

HtimeRequired1 - timeRequired2L � 60

-2.537082899
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problem 2, new method

part(a)

r1 = 6678;

r2 = 6878;

mu = 3.986 * 10^5;

a =
r1 + r2

2

6778

angularVelocityInLowerOrbit =
mu

r1^3

0.001156908535

angularVelocityInUpperOrbit =
mu

r2^3

0.001106815901

angularVelocityInUpperOrbit - angularVelocityInLowerOrbit

-0.0003147412999

initialAngle = 0;

hohmannAngle = Pi 1 -
r1 + r2

2 r2

H3�2L
;

If@initialAngle <= hohmannAngle, initialAngle = initialAngle + 2 PiD;

TOF = Pi
a^3

mu

2776.729487

6   HW6_mma.nb
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waitTimeToSync =
initialAngle - hohmannAngle

angularVelocityInLowerOrbit - angularVelocityInUpperOrbit

124068.5615

waitTime = waitTimeToSync + TOF

126845.291

waitTime � H60 * 60L

35.23480306

27.492 correct for second

part(b)

if initialAngle=280 degree

r1 = 6678;

r2 = 6878;

mu = 3.986 * 10^5;

a =
r1 + r2

2

6778

angularVelocityInLowerOrbit =
mu

r1^3

0.001156908535

angularVelocityInUpperOrbit =
mu

r2^3

0.001106815901

angularVelocityInUpperOrbit - angularVelocityInLowerOrbit

-0.0003147412999

HW6_mma.nb  7
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initialAngle = 280 * Pi � 180;

hohmannAngle = Pi 1 -
r1 + r2

2 r2

H3�2L
;

If@initialAngle <= hohmannAngle, initialAngle = initialAngle + 2 PiD;

TOF = Pi
a^3

mu

2776.729487

waitTimeToSync =
initialAngle - hohmannAngle

angularVelocityInLowerOrbit - angularVelocityInUpperOrbit

96194.93424

waitTime = waitTimeToSync + TOF

98971.66373

waitTime � H60 * 60L

27.49212881

Problem 3

part(a) theta=0

r1 = 6678;

r2 = 6878;

rmin = 6578;

mu = 3.986 * 10^5;

a =
r1 + r2

2

6778

8   HW6_mma.nb
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angularVelocityInLowerOrbit =
mu

r1^3

0.001156908535

angularVelocityInUpperOrbit =
mu

r2^3

0.001106815901

initialAngle = 0

hohmannAngle = Pi 1 -
r1 + r2

2 r2

H3�2L
;

Clear@rtD;

a1 =
r1 + rt

2

;

a2 =
r2 + rt

2

;

t1 = Pi
a1^3

mu

+
a2^3

mu

;

t2 =
H2 Pi - initialAngleL + 2 Pi n

angularVelocityInUpperOrbit

;

eq = t1 � t2;

n = 0;

NSolve@eq, rtD

0

88rt ® -13655.90913 + 11913.20284 ä<,
8rt ® -13655.90913 - 11913.20284 ä<, 8rt ® 6977.818259<<

t1 �. rt -> 6977.818258721281`

5676.811563

waitTime = % � H60 * 60L

1.576892101
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part(b) theta=160

r1 = 6678;

r2 = 6878;

rmin = 6578;

mu = 3.986 * 10^5;

a =
r1 + r2

2

6778

angularVelocityInLowerOrbit =
mu

r1^3

0.001156908535

angularVelocityInUpperOrbit =
mu

r2^3

0.001106815901

HinitialAngle = 160 * Pi � 180L �� N

hohmannAngle = Pi 1 -
r1 + r2

2 r2

H3�2L
�� N

2.792526803

0.06826430301

Clear@rt, nD;

a1 =
r1 + rt

2

;

a2 =
r2 + rt

2

;

t1 = Pi
a1^3

mu

+
a2^3

mu

;

t2 =
H2 Pi - initialAngleL + 2 Pi n

angularVelocityInUpperOrbit

;

eq = t1 � t2;

n = 1;

NSolve@eq, rtD

88rt ® -16011.84696 + 15993.72655 ä<,
8rt ® -16011.84696 - 15993.72655 ä<, 8rt ® 11689.69391<<
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t1 �. rt -> 11689.693913121537`

8830.595764

waitTime = % � H60 * 60L

2.452943268

function to solve hohman transfer on same orbit

hohmannRendezvousSameOrbit@Θ00_, r_, alt_, mu_D :=

ModuleB8Θ0 = Θ00 * Pi � 180, n = 1, delT, v1,

v2, period, a, rp, ra, done = False, vBefore, vAfter<,

ra = r + alt;

period = 2 Pi Sqrt@ra^3 � muD;

WhileBNot@doneD,

delT = n -
Θ0

2 Pi

period ;

a = First�Select@a �. NSolve@delT � 2 Pi Sqrt@a^3 � muD, aD, Element@ð, RealsD &D;

rp = 2 a - ra;

If@rp < r, H*we hit the earth, try again*L
n = n + 1,

done = True

D
F;

vBefore = Sqrt@mu � hD;

vAfter = Sqrt@mu H2 � h - 1 � aLD;

8delT, 2 HvAfter - vBeforeL<

F

mu = 324 859;

alt = 1475.7765582577413`;

r = 6052;

Θ0 = 3.80562; H*degree*L

hohmannRendezvousSameOrbit@Θ0, r, alt, muD

87123.8876, -0.04679127217<

? Select

Select@list, critD picks out all elements ei of list for which crit@eiD is True.

Select@list, crit, nD picks out the first n elements for which crit@eiD is True.  �
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6.6.2 HW6 in Maple

> > 

> > 

> > 

> > 

hohmann_rendezvous_2:= proc({
   theta::numeric:=0,
   r1::numeric:=0,
   r2::numeric:=0,
   N::nonnegint:=0,
   mu::numeric:=3.986*10^5})

   local theta0,thetaH,TOF;
   theta0  := theta*Pi/180;
   thetaH  := Pi*(1-((r1+r2)/(2*r2))^(3/2));

   if is(theta0 = thetaH) and N = 0 then      
      proc()
        local a:=(r1+r2)/2;        
        TOF    := Pi*(sqrt(a^3/mu));        
      end proc()
   else      
      proc()
        local t2,a1,a2,rt,omega2;
          omega2 := sqrt(mu/r2^3);
          t2     := ((2*Pi-theta0)+2*Pi*N)/omega2;
          a1     := (rt+r1)/2;
          a2     := (rt+r2)/2;
          TOF    := Pi*(sqrt(a1^3/mu)+sqrt(a2^3/mu));
          rt     := op(select(is, [solve(t2=TOF,rt)], real));
      end proc()
   fi;

   eval(TOF);
end proc:
%stopat(hohmann_rendezvous_2);
TOF:=hohmann_rendezvous_2(theta=0,r1=6678,r2=6878,N=0):
evalf(TOF/(60*60)); #in hrs

1.576892101
TOF:=hohmann_rendezvous_2(theta=160,r1=6678,r2=6878,N=1):
evalf(TOF/(60*60));  #in hrs

2.452943266
hohmann_rendezvous_1:= proc({
   theta::numeric:=0,
   r1::numeric:=0,
   r2::numeric:=0,
   mu::numeric:=3.986*10^5})

   local theta0,thetaH,TOF,a,omega1,omega2,wait_time;
   theta0  := theta*Pi/180;
   a       := (r1+r2)/2;        
   TOF     := Pi*(sqrt(a^3/mu));  
   omega1  := sqrt(mu/r1^3);      
   omega2  := sqrt(mu/r2^3);      
   thetaH  := Pi*(1-((r1+r2)/(2*r2))^(3/2)); 
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> > 

> > 

> > 

> > 

> > 

> > 

   if is(theta0 <= thetaH) then      
      theta0 := theta0+2*Pi;
   fi;
   wait_time := TOF+(theta0-thetaH)/(omega1-omega2);
   eval(wait_time);
end proc:
TOF:=hohmann_rendezvous_1(r1=6678,r2=6878,theta=0):
evalf(TOF/(60*60));

35.23480353
TOF:=hohmann_rendezvous_1(r1=6678,r2=6878,theta=280):
evalf(TOF/(60*60));

27.49212918
walking_rendezvous_1:= proc({
   theta::numeric:=0,
   alt::numeric:=0,
   r  ::numeric:=6378,
   N  ::posint:=1,
   mu::numeric:=3.986*10^5})
   
   local   TOF,a,T,theta0,time_on_ellipse,Va,Vcir;
   T       := 2*Pi*sqrt((r+alt)^3/mu);   
   theta0  := theta*Pi/180;
   
   TOF     :=(N- theta0/(2*Pi))*T;
   time_on_ellipse := 2*Pi*sqrt(a^3/mu);
   a       := op(select(is, [solve(time_on_ellipse=TOF,a)],real))
;  
   Va   := sqrt(mu*(2/(r+alt) - 1/a));
   Vcir := sqrt(mu/(r+alt));   
   {TOF,2*(Va-Vcir)};
end proc:
res:=walking_rendezvous_1(theta=evalf(500/(7527.78)*180/Pi),alt=
1475.78,r=6052,mu=324859):

res[1];

6.7 HW7

6.7.1 HW7 in Mathematica

HW7 EMA 550, Spring 2014
by Nasser M. Abbasi

problem 1

(a) Calculate the semimajor axis for the transfer orbit. 

Clear@a, e, f1, f2D;

mu = 3.986 * 10^5;

delT = 6 * 60 * 60.;

r1 = 6678.;

r2 = 42 164.;

theta = 210 * Pi � 180.;

c = Sqrt@r1^2 + r2^2 - 2 * r1 * r2 * Cos@thetaDD

48 063.43923
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s = Hr1 + r2 + cL � 2

48 452.71961

tp = Sqrt@2D � 3 * Hs^H3 � 2L - Sign@Sin@thetaDD * Hs - cL^H3 � 2LL � Sqrt@muD;

tp � H60 * 60 * 24L
tp � H60 * 60L

0.09223616371

2.213667929

alpha0 = 2 * ArcSin@Sqrt@s � H2 * aLDD

2 ArcSinB155.6481924
1

a

F

beta0 = 2 * ArcSin@Sqrt@Hs - cL � H2 * aLDD

2 ArcSinB13.95135093
1

a

F

eq = Sqrt@muD * 6 * 60 * 60 ==

a^H3 � 2L * HH2 Pi - alpha0L - beta0 - HSin@H2 Pi - alpha0LD - Sin@beta0DLL;

Hamin = s � 2L �� N

2   mma_HW7.nb
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timeTravel@a_, flag_D := a^H3 � 2L * HIf@flag, alpha0, 2 Pi - alpha0D -

beta0 - HSin@If@flag, alpha0, 2 Pi - alpha0DD - Sin@beta0DLL � Sqrt@muD;

data1 = Table@8a, timeTravel@a, TrueD � H60 * 60L<, 8a, amin, 1.2 * amin, 0.1 amin<D;

data2 = Table@8a, timeTravel@a, FalseD � H60 * 60L<, 8a, amin, 1.2 * amin, 0.1 amin<D;

48 063.43923

48 452.71961

7969.204545

2.213667929

2 ArcSinB155.6481924
1

a

F

2 ArcSinB13.95135093
1

a

F

24 226.35981

amin �� N

24 226.35981

9a ® 24 493.38502 + 8.158718813 ´ 10
-13

ä=

mma_HW7.nb  3

Printed by Wolfram Mathematica Student Edition

272



6.7. HW7 CHAPTER 6. HWS

p1 = ListLinePlot@8data1, data2<, AxesOrigin ® 80, 0<D;

p2 = Graphics�Line@880, 6<, 860 000, 6<<D;

Show@p1, p2D

5000 10 000 15 000 20 000 25 000

2

4

6

8

10

aFound = Re@a �. FindRoot@eq, 8a, 1.1 amin<, MaxIterations ® Infinity, PrecisionGoal ® 5DD

24 493.38502

find p

p =

4 aFound Hs - r1L Hs - r2L
c^2

SinA
H2 Pi - alpha0 �. a ® aFoundL + beta0 �. a ® aFound

2

E

NSolve@p � aFound H1 - e^2L, eD

10 933.06754

88e ® -0.7440643966<, 8e ® 0.7440643966<<

find true anaomolies
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Clear@f2, f1D;

e = 0.73838

aFound =24 491

r1

r2

f1 �. NSolveAr1 �

aFound H1 - e^2L
1 + e Cos@f1D

, f1E * 180 � Pi

f2 �. NSolveAr2 �

aFound H1 - e^2L
1 + e Cos@f2D

, f2E * 180 � Pi

0.73838

24 491

6678.

42 164.

8-25.23353146, 25.23353146<

8-175.2386421, 175.2386421<

Clear@f1D;

f1 �. NSolveAr1 �

aFound H1 - e^2L
1 + Cos@f1D

, f1E * 180 � Pi

8-48.09310707, 48.09310707<

Clear@f1, f2D;

eq = Cos@f1D �

aFound H1 - e^2L
r1 * e

- 1 � e

Hf1 �. Solve@eq, f1DL * 180 � Pi

Cos@f1D � 0.8563464842

Solve::ifun: Inverse functions are being used by Solve,

so some solutions may not be found; use Reduce for complete solution information. �

8-31.09119158, 31.09119158<
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eq = Cos@f2D �

aFound H1 - e^2L
r2 * e

- 1 � e

Hf2 �. Solve@eq, f2DL * 180 � Pi

Cos@f2D � -0.9954801908

Solve::ifun: Inverse functions are being used by Solve,

so some solutions may not be found; use Reduce for complete solution information. �

8-174.5504406, 174.5504406<

360 - 210

150

210 + 175

35

r

r

aFound

EE1 = First�Select@EE1 �. NSolve@r1 � aFound H1 - e Cos@EE1DL, EE1D, PositiveD
EE2 = First�Select@EE2 �. NSolve@r2 � aFound H1 - e Cos@EE2DL, EE2D, PositiveD

24 493.38502

NSolve::ifun: Inverse functions are being used by NSolve,

so some solutions may not be found; use Reduce for complete solution information. �

0.212327763

NSolve::ifun: Inverse functions are being used by NSolve,

so some solutions may not be found; use Reduce for complete solution information. �

2.894384602
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f1 = ArcCosA
e - Cos@EE1D

e Cos@EE1D - 1

E * 180 � Pi

f2 = ArcCosA
e - Cos@EE2D

e Cos@EE2D - 1

E * 180 � Pi

31.09119158

174.5504406

f1 = 2 * ArcTanB
1 + e

1 - e

TanB
EE1

2

FF * 180 � Pi

31.09119158

0.21232776299399742` * 180 � Pi

12.16548469

NSolve@r2 � aFound H1 - e Cos@true2DL, true2D

NSolve::ifun: Inverse functions are being used by NSolve,

so some solutions may not be found; use Reduce for complete solution information. �

88true2 ® -2.894384602<, 8true2 ® 2.894384602<<

2.894384601664499` * 180 � Pi

165.836022

Semimajor axis a = Answer km

(b) Calculate the eccentricity of the transfer orbit.

Eccentricity e = Answer

(c) Knowing the true anomalies of the burn points allows you to draw the transfer orbit between the two points in the

correct orientation. Calculate the true anomaly of the initial burn point on the transfer orbit.

True anomaly f1 = Answer degrees

(d) Calculate the true anomaly of the final burn point on the transfer orbit.

True anomaly f2 = Answer degrees

mma_HW7.nb  7
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probem 2

find Az

i1 = 28.5 Degree;

latitude = 25 Degree;

Clear@azD
eq = Cos@i1D � Sin@azD Cos@latitudeD
az = az �. First�NSolve@eq, azD

0.8788171127 � CosA25 °E Sin@azD

NSolve::ifun: Inverse functions are being used by NSolve,

so some solutions may not be found; use Reduce for complete solution information. �

1.323866377

az * 180 � Pi

75.85195602

find u

Clear@uD;

i2 = 40 Degree;

eq = 0 � -Cos@azD Cos@i1D + Sin@azD Sin@i1D Cos@uD

0 � -0.2148076749 + 0.462685293 Cos@uD
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u �. NSolve@eq, uD

NSolve::ifun: Inverse functions are being used by NSolve,

so some solutions may not be found; use Reduce for complete solution information. �

8-1.087993979, 1.087993979<

u = 1.0879939787936352`

1.087993979

u * 180 � Pi

62.33746312

Clear@thetaD
eq = Cos@Pi - i2D � -Cos@i1D Cos@thetaD + Sin@i1D Sin@thetaD Cos@uD

-CosA40 °E � -0.8788171127 Cos@thetaD + 0.2215271706 Sin@thetaD

NSolve@eq, thetaD

NSolve::ifun: Inverse functions are being used by NSolve,

so some solutions may not be found; use Reduce for complete solution information. �

88theta ® -0.810718662<, 8theta ® 0.3168587618<<

theta = 0.3168587617678044`;

theta * 180 � Pi

18.15466975

 

(b) What is the resulting change in the right ascension of the ascending node?

DW = Answer degrees

i2 = 40 Degree;

Clear@deltaD
eq = Cos@thetaD � Cos@i1D Cos@i2D + Sin@i1D Sin@i2D Cos@deltaD

0.9502188617 � 0.6732129657 + 0.3067117389 Cos@deltaD

NSolve@eq, deltaD

NSolve::ifun: Inverse functions are being used by NSolve,

so some solutions may not be found; use Reduce for complete solution information. �

88delta ® -0.4437515757<, 8delta ® 0.4437515757<<

mma_HW7.nb  9
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0.44375157574265334` * 180 � Pi

25.42509244

problem 3

(a) A simple plane change followed by a Hohmann transfer (3 impulses)
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mu = 3.986 * 10^5

r1 = 7000;

r2 = 130 000;

i1 = 30 Degree;

v1 = Sqrt@mu � r1D
delV1 = 2 v1 Sin@i1 � 2D

398 600.

7.546049108

3.906122449

a = Hr1 + r2L � 2;

vp = Sqrt@mu H2 � r1 - 1 � aLD;

delV2 = vp - v1

2.849466088

va = Sqrt@mu H2 � r2 - 1 � aLD;

v4 = Sqrt@mu � r2D;

delV3 = v4 - va

1.191285134

total = delV1 + delV2 + delV3

7.946873671

tot=

 

(b) A Hohmann transfer followed by a simple plane change (3 impulses)

mma_HW7.nb  11
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mu = 3.986 * 10^5;

r1 = 7000;

r2 = 130 000;

i1 = 30 Degree;

v1 = Sqrt@mu � r1D;

a = Hr1 + r2L � 2;

vp = Sqrt@mu H2 � r1 - 1 � aLD;

delV1 = vp - v1;

va = Sqrt@mu H2 � r2 - 1 � aLD;

v4 = Sqrt@mu � r2D;

delV2 = v4 - va;

delV3 = 2 v4 Sin@i1 � 2D;

total = delV1 + delV2 + delV3

4.94715811

 

(c) A Hohmann transfer that includes the plane change with the first impulse (2 impulses)

vp = Sqrt@mu H2 � r1 - 1 � aLD;

delV1 = Sqrt@vp^2 + v1^2 - 2 vp v1 Cos@i1DD
va = Sqrt@mu H2 � r2 - 1 � aLD;

v4 = Sqrt@mu � r2D;

delV2 = v4 - va;

total = delV1 + delV2

5.398032016

6.589317151

(d) A Hohmann transfer that includes the plane change with the last impulse (2 impulses)

vp = Sqrt@mu H2 � r1 - 1 � aLD;

delV1 = vp - v1

delV2 = Sqrt@va^2 + v4^2 - 2 va v4 Cos@i1DD
total = delV1 + delV2

2.849466088

1.296839919

4.146306007

DVtot = Answer km/s

 

(e) A Hohmann transfer with optimally split plane change (2 impulses)
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DVtot = Answer km/s

 

(e) A Hohmann transfer with optimally split plane change (2 impulses)

mu = 3.986 * 10^5;

r1 = 7000;

r2 = 130 000;

Θ = 30 Degree;

vc1 = Sqrt@mu � r1D;

a = Hr1 + r2L � 2;

vp = Sqrt@mu H2 � r1 - 1 � aLD;

va = Sqrt@mu H2 � r2 - 1 � aLD;

vc2 = Sqrt@mu � r2D;

eq =

vp vc1 Sin@alpha1D
Sqrt@vp^2 + vc1^2 - 2 vc1 vp Cos@alpha1DD

==

va vc2 Sin@Θ - alpha1D
Sqrt@va^2 + vc2^2 - 2 vc2 va Cos@Θ - alpha1DD

NSolve@
eq,

alpha1D

78.44506817 Sin@alpha1D

165.0095933 - 156.8901363 Cos@alpha1D
� -

0.9801615825 SinAalpha1 - 30 °E

3.379483436 - 1.960323165 CosAalpha1 - 30 °E

NSolve::ifun: Inverse functions are being used by NSolve,

so some solutions may not be found; use Reduce for complete solution information. �

88alpha1 ® -3.096012837<, 8alpha1 ® 0.01347011678<,

8alpha1 ® 0.5221111538 - 1.146893256 ä<, 8alpha1 ® 0.5221111538 + 1.146893256 ä<<

alpha1 = 0.01347011678252641

0.01347011678

delV1 = Sqrt@vp^2 + vc1^2 - 2 vc1 vp Cos@alpha1DD

2.85196251

delV2 = Sqrt@va^2 + vc2^2 - 2 vc2 va Cos@Θ - alpha1DD

1.291799249

total = delV1 + delV2

4.143761759

DVtot = Answer km/s
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DVtot = Answer km/s
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6.7.2 HW7 in Maple

> > 

> > restart;
a:= 24493.4:
e:= 0.738:
r1:= 6678:
r2:= 42164:
eq:=r1=a*(1-e^2)/(1+e*cos(f1));
sol:=solve(eq,f1);
f1:=evalf(180/Pi*sol):
sol:=solve(r2=a*(1-e^2)/(1+e*cos(f2)),f2):
f2:=evalf(180/Pi*sol);

f2:=185:
f1:='f1': 
solve(f1+210=f2,f1);

6.7.2.1 Matlab code for problem 1� �
1 %script to solve HW7, problem 1
2 %EMA 550, by Nasser M. Abbasi
3 %Using Matlab 2013a
4

5 mu = 3.986*10^5;
6 delT = 6*60*60;
7 r1 = 6678;
8 r2 = 42164;
9 theta= 210*pi/180;
10

11 c = sqrt(r1^2+r2^2-2*r1*r2*cos((2*pi-theta)));
12 s = (r1+r2+c)/2;
13

14 tp = sqrt(2)/3*(s^(3/2)-sign(sin(theta)*(s-c)^(3/2)))/sqrt(mu);
15 fprintf('Tp = %f hrs\n',tp/(60*60));
16

17

18 alpha0 = @(a) 2*asin(sqrt(s/(2*a)));
19 beta0 = @(a) 2*asin(sqrt((s - c)/(2*a)));
20 eq = @(a) sqrt(mu)*6*60*60 - a^(3/2)*((2*pi - alpha0(a)) - beta0(a) -�...
21 (sin((2*pi - alpha0(a))) - sin(beta0(a))));
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22 amin = 24226.4;
23 a = fzero(eq,1.2*amin);
24

25 fprintf('a = %f km',a);
26

27 p = (4*a*(s - r1)*(s - r2))/c^2 * sin(( (2*pi - alpha0(a)) + beta0(a))/2);
28

29 eq = @(e) p - a*(1 - e^2);
30 e = fsolve(eq,.5);
31

32 fprintf('e = %f km',e);
33

34 r=[r1,r2];
35 for i=1:2
36 eq = @(f) r(i)-a*(1-e^2)/(1+e*cos(f))
37 f = fsolve(eq,pi/2);
38 fprintf('f=%f\n',f*180/pi);
39 end
40

41 %problem 2
42

43 i1=28.5*pi/180;
44 theta1=61.5*pi/180;
45 eq=@(u) -cos(i1)*cos(theta1)+sin(i1)*sin(theta1)*cos(u)
46 u = fsolve(eq,pi/2);� �
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6.8 HW8

HW8 EMA 550 spring 2014
by Nasser M. Abbasi
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Answer

part(a)

r1 = 7000

r2 = 130 000

mu = 3.986 * 10^5;

v1 = Sqrt@mu � r1D

7000

130 000

7.546049108

a = Hr1 + r2L � 2

vp = Sqrt@mu H2 � r1 - 1 � aLD

68 500

10.3955152

delV = vp - v1

2.849466088

haveV = 4;

excess = haveV - delV

1.150533912

eq = haveV^2 � v1^2 + vp^2 - 2 * v1 * vp * Cos@alphaD;

NSolve@eq, alphaD

NSolve::ifun: Inverse functions are being used by NSolve,

so some solutions may not be found; use Reduce for complete solution information. �

88alpha ® -0.3182952069<, 8alpha ® 0.3182952069<<

0.3182952068827841` * 180 � Pi

18.23697199

vh = vp = Sqrt@mu H2 � r2 - 1 � aLD

0.5597585105

2   mma_HW8.nb

Printed by Wolfram Mathematica Student Edition

287



6.9. HW9 CHAPTER 6. HWS

v2 = Sqrt@mu � r2D

1.751043645

delV2 = v2 - vh

1.191285134

haveV2 = 1.5

eq = haveV2^2 � v2^2 + vh^2 - 2 * v2 * vh * Cos@alphaD;

NSolve@eq, alphaD

1.5

NSolve::ifun: Inverse functions are being used by NSolve,

so some solutions may not be found; use Reduce for complete solution information. �

88alpha ® -0.9567588888<, 8alpha ® 0.9567588888<<

0.9567588888438405` * 180 � Pi

54.81824634

part (b)

In[1]:=

a2 = 54.8182;

a1 = 18.237;

a1 + a2

Out[3]=

73.0552

a1 - a2

-36.5812

-a1 + a2

36.5812

-a1 - a2

-73.0552
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From:Suzannah Sandrik <sandrik@engr.wisc.edu>
Date:4/11/2014 11:45 AM
To:ema550-1-s14@lists.wisc.edu

I have a couple of suggestions on how to approach HW 9.

Debris avoidance is a little bit different from the examples we did in
lecture yesterday. There is a debris avoidance type of example in the
notes, so give that a read.

A good way to approach debris avoidance problems is to use the
satellite's original position as the target. Then the satellite moves
away from the target to avoid the debris, then back to the target so
that it has the position after the maneuver that it would have had if it
had never done the maneuver in the first place. Since the satellite
started on a circular orbit, keeping that same orbit as the target
reference also means that omega, the angular velocity of the target,
stays constant throughout the problem.

If you use that strategy, then the problem you are trying to solve is this:

(x0,y0) are (0,0). The satellite starts at the origin.
At time t1, being 10 km away means [x(t1)]^2 + [y(t1)]^2 = [10 km]^2.
What x0_dot and y0_dot are required for this to happen?
(And, since the problem specifies only an x-component delta-v, y0_dot is
zero.)

After performing delta-V #1, the satellite drifts away from its original
orbital position at the origin.

At time t1, the debris has passed and it's time to do a maneuver to return.

If the goal is to return to the origin at time t2, set x(t2) and y(t2)
equal to zero. Then what velocities x_dot and y_dot at time t1 are
required to accomplish reaching the origin at time t2? Compare those to
the velocities that the spacecraft already has at time t1 to find the
required second delta-V.

In the figure shown on the homework, the satellite starts and ends at
the origin, (0,0).

Hope that helps!

-- Dr. Suzannah Sandrik Department of Engineering Physics University of
Wisconsin-Madison 811 Engineering Research Building (608) 262-0764
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6.9.2 my solution

HW9 EMA 550, Spring 2014
by Nasser M. Abbasi

HW9 EMA 550

by Nasser M. Abbasi

w = 2 Pi � H12 * 60 * 60L;

ClearAll@xDot0D;

yDot0 = 0; y0 = 0; x0 = 0;

x@t_, yDot0_, xDot0_, y0_, x0_D :=

x0 + 2 yDot0 � w H1 - Cos@w tDL + H4 xDot0 � w - 6 y0L Sin@w tD + H6 w y0 - 3 xDot0L t;

y@t_, yDot0_, xDot0_, y0_, x0_D :=

4 y0 - 2 xDot0 � w + H2 xDot0 � w - 3 y0L Cos@w tD + yDot0 � w Sin@w tD;

xDot@t_, yDot0_, xDot0_, y0_, x0_D :=

2 yDot0 Sin@w tD + H4 xDot0 - 6 w y0L * Cos@w tD + 6 w y0 - 3 xDot0;

yDot@t_, yDot0_, xDot0_, y0_, x0_D := H3 w y0 - 2 xDot0L * Sin@w tD + yDot0 Cos@w tD;

t1 = 4 * 60 * 60;

eq = Sqrt@x@t1, yDot0, xDot0, y0, x0D^2 + y@t1, yDot0, xDot0, y0, x0D^2D;

part(a)

xDot0 = xDot0 �. First�NSolve@eq � 10 * 1000, xDot0D

-0.3533025102
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part(b)

newx0 = x@t1, yDot0, xDot0, y0, x0D

6847.918308

newy0 = y@t1, yDot0, xDot0, y0, x0D

7287.387381

part(c)

newxDot0 = xDot@t1, yDot0, xDot0, y0, x0D

1.766512551

newyDot0 = yDot@t1, yDot0, xDot0, y0, x0D

0.6119378981

part(d)
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eq1 = x@t1, requiredyDot0, requiredxDot0, newy0, newx0D;

eq2 = y@t1, requiredyDot0, requiredxDot0, newy0, newx0D;

sol = First�NSolve@8eq1 � 0, eq2 � 0<, 8requiredyDot0, requiredxDot0<D;

8requiredyDot0, requiredxDot0< = 8requiredyDot0 �. sol, requiredxDot0 �. sol<

8-1.523097952, 1.5034833<

part(e)

H*why this did not work?

Vbefore=Sqrt@newxDot0^2+newyDot0^2D
Vafter=Sqrt@requiredxDot0^2+requiredyDot0^2D

*L
delV = Sqrt@HnewxDot0 - requiredxDot0L^2 + HnewyDot0 - requiredyDot0L^2D

2.151176996

part(f)

returnxDot = xDot@t1, requiredyDot0, requiredxDot0, newy0, newx0D

-0.6163317615
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returnyDot = yDot@t1, requiredyDot0, requiredxDot0, newy0, newx0D

0.9111600542

part(g)

delV = Sqrt@returnxDot^2 + returnyDot^2D

1.10003522

part(h) (plot)
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p1 = ParametricPlot@8x@t, yDot0, xDot0, y0, x0D, y@t, yDot0, xDot0, y0, x0D<,

8t, 0, 4 * 60 * 60<, PlotStyle ® RedD;

p2 = ParametricPlot@8x@t, requiredyDot0, requiredxDot0, newy0, newx0D,

y@t, requiredyDot0, requiredxDot0, newy0, newx0D<,

8t, 0, 4 * 60 * 60<, PlotStyle ® DashedD;

Show@p1, p2, PlotRange ® All, Frame ® True, FrameLabel ®

88"yHtL HmeterL", None<, 8"xHtL HmeterL", "Part h, HW9, EMA 550"<<D
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6.10.1 �rst part

HW10  EMA 550

by Nasser M. Abbasi

In[1]:=

e = 0.45; rE = 6378; Clear@i, hD;

eq1 = 0.985626 � -9.969 *

1

H1 - e^2L^2

rE

rE + h

^H3.5L Cos@iD

eq2 = 0 � 9.969 *

1

H1 - e^2L^2

rE

rE + h

^H3.5L 2 -

5 Sin@iD^2

2

Out[2]= 0.985626 � -3.2477756 ´ 10
14

1

6378 + h

3.5

Cos@iD

Out[3]= 0 � 3.2477756 ´ 10
14

1

6378 + h

3.5

2 -

5 Sin@iD2

2

In[4]:= NSolve@8eq1, eq2<, 8i, h<D

Out[4]= 88i ® -1.107148718, h ® -16 443.16475 - 4847.127876 ä<,

8i ® 1.107148718, h ® -16 443.16475 - 4847.127876 ä<,

8i ® -1.107148718, h ® -16 443.16475 + 4847.127876 ä<,

8i ® 1.107148718, h ® -16 443.16475 + 4847.127876 ä<,

8i ® -2.034443936, h ® -8863.890401 - 10 891.39747 ä<,

8i ® 2.034443936, h ® -8863.890401 - 10 891.39747 ä<,

8i ® -2.034443936, h ® -8863.890401 + 10 891.39747 ä<,

8i ® 2.034443936, h ® -8863.890401 + 10 891.39747 ä<,

8i ® -1.107148718, h ® 587.3101204 - 8734.222631 ä<,

8i ® 1.107148718, h ® 587.3101204 - 8734.222631 ä<,

8i ® -1.107148718, h ® 587.3101204 + 8734.222631 ä<,

8i ® 1.107148718, h ® 587.3101204 + 8734.222631 ä<,

8i ® -2.034443936, h ® 4793.490054<, 8i ® 2.034443936, h ® 4793.490054<<
In[5]:= i = 2.0344439357957027`

Out[5]= 2.034443936
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In[12]:= i * 180 � Pi

Out[12]= 116.5650512

In[6]:= h = 4793.490054264077`;

In[7]:= eq3 = e �

Hhmax + rEL - Hhmin + rEL
Hhmax + rEL + Hhmin + rEL

;

eq4 = h � Hhmax + hminL � 2

8hmin, hmax< = 8hmin, hmax< �. First�NSolve@8eq3, eq4<, 8hmin, hmax<D

Out[8]= 4793.490054 �

hmax + hmin

2

Out[9]= 8-233.6804702, 9820.660579<

In[10]:= rp = hmin + rE;

Solve@rp � a H1 - eL, aD
Out[11]= 88a ® 11 171.49005<<
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6.10.2 second part

HW10 part 2, EMA 550, Spring 2014
by Nasser M. Abbasi

question 1

Printed by Wolfram Mathematica Student Edition

296



6.10. HW10 CHAPTER 6. HWS

rJS = 1;

rES = 1 � 2;

Graphics@
8

8Circle@80, 0<, rJSD<,

8Red, Circle@80, 0<, rESD<,

8Line@880, 0<,

8rJS Cos@60 DegreeD, rJS Sin@60 DegreeD<,

8rJS, 0<
<D<

<, Axes ® True

D

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

L4 is 60 degree ahead of Jupiter all the time, and on the same circle Jupiter is on. Therefore, we find Hohmann angle

with L4 by adding 60 degrees to Jupiter all the time.

AU = 1.495978 * 10^8;

rES = 1 AU;

rJS = 5.203 AU;

ΘH = Pi 1 -

rES + rJS

2 rJS

H3�2L
;

ΘH * 180 � Pi

97.15821569

ΘH - 60 Degree

0.6485332079
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Part 1

% * 180 � Pi

37.15821569

Part 2

ΘH + 60 Degree

2.74292831

% * 180 � Pi

157.1582157

question 2

part(a)

Find a

a = 42 241

42 241
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Find period T0

uE = 3.986 * 10^5;

T0 = 2 Pi
a3

uE

;

T0 � H60 * 60L H*hrs*L

23.99993176

find mass burn rate

f = 0.25;H*N*L
Isp = 2000; H*sec*L
g = 9.81;

massBurnRate =

f � Isp

g

0.0000127420999

find change in mass (kg)

Dm = massBurnRate * T0

1.100914301

find initial speed 

v0 =

uE

a

3.07186094

find change in V

mi = 2000 ;H*kg*L

Dv = g Isp LogB
mi

Hmi - DmL
F

10.80294284
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Divide by 1000 since the above is in meters and not KM

Dv = Dv � 1000

0.01080294284

find Da

Da =

Dv

v0

2 a

297.1014103

Part (b). One more revolution

Initial conditions for next revolution

a = a + Da

42 538.10141

mi = mi - Dm

1998.899086

v0 = v0 - Dv

3.061057997

find new period

T0 = 2 Pi
a3

uE

;

T0 � H60 * 60L H*hrs*L

24.25358118

find change in mass (kg)

Dm = massBurnRate * T0

1.112549596
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find change in V

Dv = g Isp LogB
mi

Hmi - DmL
F

10.92316269

Divide by 1000 since the above is in meters and not KM

Dv = Dv � 1000

0.01092316269

find Da

Da =

Dv

v0

2 a

303.5882382
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Part (c)

To do this, I wrote a function which makes one revolution and update the new initial configuration from last 

state of last revoluton. It runs untill mass is exchaused.

makeOneRev@mi_, ai_, Isp_, f_D :=

ModuleB8uE = 3.986 * 10^5, g = 9.81, T0, massBurnRate, Dm, v0, Dv, Da<,

T0 = 2 Pi
ai

3

uE

;

massBurnRate =

f � Isp

g

;

Dm = massBurnRate * T0;

v0 =

uE

ai

;

Dv = g Isp LogB
mi

Hmi - DmL
F;

Dv = Dv � 1000;

Da =

Dv

v0

2 ai;

8Dm, Da<

F

8Dm, Da< = makeOneRev@2000, 42 241, 2000, 0.25D

81.100914301, 297.1014103<

mi = 2000;

ai = 42 241;

keepRunning = True;

n = 0;

While@keepRunning,

8Dm, Da< = makeOneRev@mi, ai, 2000, 0.25D;

If@mi - Dm £ 1900,

keepRunning = False,

n++;

ai = ai + Da;

mi = mi - Dm

D
D
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n

56

ai

91 619.46394

ai = 42 241 + 297.1014102908317`

42 538.10141

Test the function on the notes example below

8Dm, Da< = makeOneRev@1000, 6678, 2500, 1D

80.2214480331, 9.389877037<

Try it on the notes problem

Find a

a = 6678

6678

Find period T0

uE = 3.986 * 10^5;

T0 = 2 Pi
a3

uE

;

T0 � H60 * 60L H*hrs*L

1.508614725
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find mass burn rate

f = 1;H*N*L
Isp = 2500; H*sec*L
g = 9.81;

massBurnRate =

f � Isp

g

0.00004077471967

find change in mass (kg)

Dm = massBurnRate * T0

0.2214480331

find initial speed 

v0 =

uE

a

7.725835198

find change in V

mi = 1000 ;H*kg*L

Dv = g Isp LogB
mi

Hmi - DmL
F

5.431614444

Divide by 1000 since the above is in meters and not KM

Dv = Dv � 1000

0.005431614444

find Da

Da =

Dv

v0

2 a

9.389877037
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