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1.1. Syllabus CHAPTER 1. INTRODUCTION

Took this course in spring 2014. Part of MSc. in Engineering Mechanics.

Instructor: professor [Suzannah Sandrik]

Class link [moodle internal course sitel

1.1 Syllabus

EMA 550 Astrodynamics
Spring 2014

Instructor: Dr. Suzannah Sandrik, Department of Engineering Physics
811 Engineering Research Building
sandrik@engr.wisc.edu, (608) 262-0764

Class sessions: TuTh 2:30-3:45 pm. The lecture room may change and we will have at least one class in a
computer lab, so watch your email. Exams will be in-class or take-home; no evening exams are expected.

Office hours: After class or by appointment.

Course web site: Moodle, https://courses.moodle.wisc.edu/prod/my/. The course site will have lecture notes,
homework assignments, and other material related to the course.

Catalog course description: Coordinate system transformations, central force motion, two body problem, three
and n-body problem, theory of orbital perturbations, artificial satellites, elementary transfer orbits, and
elementary rocket dynamics. Prerequisite: EMA 202 or 221; or Physics 311 or con reg; or cons inst.

What do astrodynamicists/orbital mechanicists do?

Astrodynamicists design and optimize trajectories (paths through space defined by a sequence of rocket burns)
to move a spacecraft from an initial orbit to a desired final orbit. They work in teams with other engineers who
are responsible for different parts of the mission (propulsion, payload, etc.). Astrodynamicists use equations
with simplifying assumptions to estimate the required orbit and software like Systems Tool Kit (STK, formerly
Satellite Tool Kit) to refine the trajectory, account for perturbing effects, and create visualizations of the planned
mission.

Expectations for the course:

Preparation: Course notes and slides from lectures will be posted to the course web site. You’ll get the most
from lecture if you read the notes for the day’s topic before class .There are some spaces in the notes for you to
complete examples based on what we discuss in class.

Homework: You can expect homework assignments on an approximately weekly basis. Working together on
weekly homework assignments for EMA 550 is acceptable and encouraged, but each student is expected to
work through the problems individually and will be responsible for being able to complete similar problems on
exams. Larger projects will be completed in pairs or teams.

Projects: You will be asked to design two trajectories in EMA 550. The first is a trajectory from the Earth to the
Moon, and the second is an interplanetary trajectory involving a gravity assist fly-by. The lunar project is best
done in pairs and the interplanetary project will have teams of four. You will also be asked to research a current
space mission or program and present information about it to the class.

Exams: There will be three exams. All exams are open-notes (open-book) and must be completed individually.
Two exams will be held in-class and will not require the use of specialized software. One exam will be take-
home and may involve problems needing software like Matlab or EES. Laptops may be used on in-class
midterms for open-note purposes ONLY. For fairness, the use of Mathcad, Maple, Matlab, EES, etc. on in-class
exams is prohibited. Students observed using their laptops for anything other than notes on in-class exams will
receive a zero for the exam. Students observed collaborating on exams will receive a zero for the exam.


https://directory.engr.wisc.edu/ep/Faculty/Sandrik_Suzannah/
https://courses.moodle.wisc.edu/prod/local/wiscservices/login/index.php
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Course notes: EMA 550 uses course notes prepared by Engineering Physics department professors in place of a
published textbook.

Math software: Familiarity with math software (Matlab, Mathcad, EES, etc.) is helpful and will be assumed.
Matlab and EES tutors are generally available in Wendt library during walk-in tutoring on Sunday, Monday,
Tuesday, and Wednesday nights. See http://studentservices.engr.wisc.edu/classes/tutoring/ for more details.

Dynamics/modeling software: | will use STK for in-class demonstrations. It is available on the CAE server and can
be downloaded from agi.com. STK is used by NASA, Boeing, Lockheed, Northrup Grumman, other companies,
and private citizens engaged in the pursuit of space applications. As a UW-Madison student, you can take a
certification exam in STK for free, if you choose.

Grading policy: The final course grade will be based on weekly homework assignments (10%), a lunar project
(10%), an interplanetary project (15%), three exams (20% each), and a space mission/program presentation
(5%). You can access your grades during the semester on the course website. The grading scale will be
approximately 100-92 A, 92-87 AB, 87-82 B, 82-77 BC, 77-72 C, 72-62 D, and < 62 F.

McBurney accommodations: Please contact the instructor during the first two weeks of class regarding
McBurney passport accommodations.

Textbook and references: No required textbook. Lecture notes will be posted on the course web site.
Additional useful references on astrodynamics include:

1. John Prussing and Bruce Conway, Orbital Mechanics, Oxford Univ. Press, 1993. The orbital mechanics
textbook at Purdue University and the University of lllinois Urbana-Champaign.

2. Vladimir A. Chobotov, Orbital Mechanics, AIAA Education Series, 3¢ ed., 2002. The textbook for EMA 550
several years ago.

3. Howard D. Curtis, Orbital Mechanics for Engineering Students, 2" ed., Elsevier, 2010. Written by a professor
at Embry-Riddle Aeronautical University, used there.

4. Jerry Jon Sellers et al, Understanding Space, McGraw-Hill Primis Custom Publishing, 2005. A less technical
introduction to many space topics, including orbital mechanics, launch and entry, and spacecraft subsystems.
Has been used to teach orbital mechanics to practicing engineers at NASA’s Johnson Space Center.

5. Richard Battin, An Introduction to the Mathematics and Methods of Astrodynamics, Revised ed., AIAA
Education Series, 1999. An advanced orbital mechanics reference book for graduate students and professionals.

6. Roger Bate, Donald Mueller, and Jerry White, Fundamentals of Astrodynamics, Dover Publications, 1971. A
classic.

7. Charles D. Brown, Spacecraft Mission Design, AIAA Education Series, 2 ed., 1998. Brown teaches short
courses on orbital mechanics for professionals in the aerospace industry. His book is sort of a cookbook of
techniques for approximate analyses, especially patched conics, but weak on the underlying theory.

8. A.E. Roy, Orbital Motion, Inst. Of Physics Publishing, 4™ ed., 2005. Earlier editions of this text were used for
this course by previous instructors. It went out of print for a while until the new edition came out. It emphasizes
celestial mechanics, as opposed to astrodynamics, more than most texts.
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EMA 550 Astrodynamics
Spring 2014
Date Mtg Topics Homework
Tu 1/21 1 Introduction and Two-Body Gravitation
Th 1/23 2 Two-Body Gravitation (Equations of Motion)
Tu 1/28 3 Two-Body Gravitation (Elliptical Orbits)
Th 1/30 4 Two-Body Gravitation (Elliptical Orbits, continued) HW 1 Due
Tu 2/4 5 Two-Body Gravitation (Parabolic and Hyperbolic Orbits)
Th 2/6 6 Orbit Elements, Classical-to-Cartesian Conversion HW 2 Due
Tu 2/11 7 Cartesian-to-Classical Conversion, Orbit Usage
Th 2/13 8 Orbit Maneuvers (In-Plane Hohmann and Bi-Elliptic) HW 3 Due
Tu 2/18 9 Orbit Maneuvers (In-Plane Semi-Tan.) and Interplanetary
Trajectories (Sph. of Grav. and Influence)
Th 2/20 10 Interplanetary Trajectories (Patched Conics) HW 4 Due
Tu 2/25 11  Review
Th 2/27 12 IN-CLASS MIDTERM (through Orbit Maneuvers)
Tu 3/4 13 Interplanetary Trajectories (Gravity Assist)
Th 3/6 14  Orbital Position (Walking Orbits, 2D Rendezvous) HW 5 Due, Lunar project assigned
Tu 3/11 15  STK Tutorial - Computer lab TBA Lunar project assigned
Th 3/13 16  Orbital Position (Semi-Tangential Rendezvous)
Tu 3/18 SPRING BREAK
Th 3/20
Tu 3/25 17  Orbital Position (Lambert’s Theorem) HW 6 Due
Th 3/27 18  Orbit Maneuvers (Out-Of-Plane Maneuvers)
Tu 4/1 19 Rocket Equation, Fixed Impulses, Launch Windows HW 7 Due
Th 4/3 20  Orbital Position (3D Rendezvous) Lunar project due, Interplanetary project assigned
Tu 4/8 21  Relative Motion (Terminal Rendezvous, Fly-Around) HW 8 Due
Th 4/10 22 Relative Motion (Ejected Particles)
Tu 4/15 23 Orbit Perturbations HW 9 Due
Th 4/17 24  Orbit Perturbations, continued Take-home exam assigned
Tu 4/22 25  Three-Body Gravitation (Lagrange Points) Take-home exam due
Th 4/24 26  Low/Continuous Thrust
Tu 4/29 27 TBA HW 10 Due
Th 5/1 28  Presentations
Tu 5/6 29  Presentations
Th 5/8 30 Presentations Interplanetary project due
Su 5/11 FINAL EXAM (10:05 AM - 12:05 PM)
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CHAPTER 1. INTRODUCTION

Planetary Constants

Mass = 5.974 x 10** kg

Earth

Equatorial radius = 6378 km
Ugarth = GMearth = 3.986 x 10° km?/s
Mean distance from the Sun = 1 AU = 1.495978 x 10% km

Mass = 1.989 x 10°° kg

Sun

Mean radius = 695,990 km
Usun = GMsun = 1.327 x 10™ km?/s®

Orbit inclination to the Earth’s equatorial plane ranges from 18° to 29°
Sphere of influence radius: 6.61 x 10* km

Mass = 7.3483 x 10%* kg
Mean planetary radius = 1738 km
Umoon = GMyioon = 4902.8 km*/s”

Mean distance from the Earth = 384,400 km

Orbit eccentricity = 0.05490
Orbit inclination to ecliptic = 5.15°

Universal Constant of Gravitation
G=6.674x 10™ m*/(kg s?)

1.2 STK tutorial emailed to class

STK software can be downloaded for free.

Mean Orbit Orbit inclination Mass Equatorial | Sphere of
distance eccentricity to the ecliptic (units of | radius (km) | influence
from the plane (deg) Meartn) radius (km)
Sun (AU)

Mercury 0.3871 0.2056 7.005 0.0553 2440 1.13x10°
Venus 0.7233 0.006777 3.395 0.8149 6052 6.17 x 10°
Earth 1.000 0.01671 0.000 1.000 6378 9.24x10°
Mars 1.524 0.09339 1.850 0.1074 3396 5.74 x 10°
Jupiter 5.203 0.04839 1.304 317.9 71,492 4.83 x 10’
Saturn 9.537 0.05386 2.486 95.18 60,268 3.47 x 10’
Uranus 19.19 0.04726 0.7726 14.53 25,559 5.19 x 10’
Neptune 30.07 0.008590 1.770 17.14 24,764 8.67 x 10’
Pluto 39.48 0.2488 17.14 0.0022 1195 3.17 x 10’
Moon




1.2. STK tutorial emailed to class CHAPTER 1. INTRODUCTION

—~ EMA 550 Astrodynamics STK Tutorial
University of Wisconsin-Madison
Creating Interplanetary Ellipse and Gravity Assist Flyby Figures

Opening STK

1) Log in with your CAE login.
2) Open STK from Start Menu => All Programs = Course Software = M-S = STK 9.2

Creating a Sun-Centered Scenario

1) STK will ask you where you would like your files to be saved. Choose a convenient location and click
OK.

2) When STK opens, click the “Create a New Scenario” button.

3) By default, STK is configured to open with an Earth-centered scenario, but we would like to make a
heliocentric ellipse. Look for a pull-down at the bottom-left of the New Scenario Wizard window
labeled “Central Body:”. You might not have this pull-down. If you do have the pull-down, skip to
the next section; if you don’t, continue with the steps below.

5TK: Hew Scenario Wizard

Name: g Scenariol

N\ Diescription: <Enter description of scenario>

Location: ;I:\EP\EMA SBOMSTE file directory

Anialysis Period: |18 Apr 2011 17-00:00.000 UTCG @] to 194pr2011170000000UTCG @)

i

3]

Central Body: | E

[[] Do nat show me this again. [ oK ] l _ Lancel I [ Help l

4) If you do not see the Central Body pull-down, click OK to create an Earth-centered scenario. You will
not be keeping this scenario, so you do not need to worry about a name or other information.

5) When the scenario opens, close the Insert STK Objects dialog box that opens automatically.

6) Go to the View menu and click on Planetary Options.

7) Asmall arrow should appear next to the New Scenario icon in the toolbar.

# Scenario1 - STK|
Wiew
=
i 1 8) Ch’;: 0 the"énk'ryém’/’éhd choose “Sun.” The New Scenario Wizard will open and allow you to create a
Sun-centered scenario. Continue to the next section.

Page 10of7
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Sun-Centered Scenario

S

1) Inthe New Scenario Wizard, make sure that the Central Body pull-down is set to Sun.

2) We are going to create a window that shows us the orbits of the Earth and Jupiter. Since STK only
shows the portions of orbits in the scenario time-frame, we will need a much longer time period
than the one-day default analysis period. In the second box for the Analysis Period, the end time,
type “+12 years” (without the quotation marks).

3) Give your Scenario a name and click OK. If you had to open an Earth-centered scenario to get to this
point, STK will ask if you want to save that scenario. You do not need to save it.

4) STK will show graphics windows for the Sun and launch the Insert STK Objects dialog box for your
sun-centered scenario. We are going to insert planets as if they are satellites, so make sure Satellite
is selected (it is selected by default) and click “Define Properties” on the right, then the Insert...
button.

Insert STK Objects ‘ [}(_:l
Select An Object To Be Inserted: Select & Method:
Scenario Dbjects éelect From Satellite Datsbase
. (&7 Orbit Wizard
£ aireraft {©area Target | 'E2yLoad GPS Constellation
L Facilicy G rTRalcle | Bhselect GPS Satelite From Catalng
o Missile !
&Ship " ave J ile:
__Attached Objects ( Dsert DeFaul et
i Ankenna @Radar
k3¢ Receiver ElSensor
@l Transritber
' Insert a satellite anél‘ ‘d‘éﬁne its properties i
[[]Do not show me this again Edit Preferences. .. [ Insert... } { Close } { Help

5) Change the step size from the default value of 60 sec to 1 day. Use the measuring tool button on
the right edge of the Step Size box to change your time unit. (Figure below)

6) Change the Semimajor Axis from its default value to 1 Au. Use the measuring tool button on the
right edge of the Semimajor Axis box to change your distance unit. (Figure below)

7) Change the Inclination from its default value of 45 degrees to 0 degrees. (Note: this is not actually
the ecliptic plane, which is oriented ~7° from the Sun’s equator, but it works for our model.) (Figure
below)

p

Page 2 of 7
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Propagator: '.Twﬁgd; . Ceriral Body: - Sun Initial State Tool.
- Alfitude

- Pass Br...
- Mass
--Eclipse ... Start Time:
----- Referen.
..... Ground.. ||  Stop Time

Use Scenario Analysis Period

- Descript... i s
G Grephics ||| Seedi
~Altibutes |

e TiteE

ernimajor Axis Ee

i Dv |Eccenticity w

Pass

Coord Epoch: |1+
- Contours B
~Range Coord Type: | Classical v

.- Lighting e = ;
—Swath Coord System: | ICRF v| Arginen. ol Fariee: | Ndeg G

Inclination |0 deg

w- Ground ..

53D Graphics Frop Spesifc RAAN v 0o

=

- Pass [ 2 I =
True Anomal d i

Dbt Sy.. e - Al )

- Altude
----- Vector

..... Proximity |
- Droplnes. | v

[ ok ) [ cancel ][ apew ][ Hep |

8) Click the OK button.

9) You will be returned to the Insert STK Objects window. Click the Insert... button to insert a satellite
to represent Jupiter.

N 10) Change the step size to 1 day again. Change the Semimajor Axis to 5.203 Au and the Inclination to 0
degrees. Click OK.

11) On the Insert STK Objects dialog box, click the Insert... button one more time to insert a satellite that
will have an orbit that connects Earth’s orbit and Jupiter’s orbit.

12) Let’s say that the orbit you found for your interplanetary mission has a semimajor axis of 4 Au and
an eccentricity of 0.8. In the satellite properties, adjust the step size (1 day), the Semimajor Axis (4
Au), the Eccentricity (0.8), and the Inclination (0 deg).

13) Click OK to return to the STK Objects window, then Close.

14) Close the 2D Graphics window if you have one open; you will not need it.

15) Maximize the 3D Graphics window.

16) The left-most window pane should be called the Object Browser and should list three satellites.
Click on Satellite1 twice, with a bit of time between clicks (not a double-click) so that the name is
editable. Rename Satellite 1 “Earth.”

17) In the same manner, rename Satellite2 “Jupiter” and Satellite3 “Satellite” or whatever name you
would like to give your project satellite.

18) Save your scenario somewhere that you can find it again. | recommend creating a folder for your
scenario, because it will have multiple files.

Page 3 0f7
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Adjusting the View
N
1) Once you are in the 3D Graphics window, click the Properties button just above the Graphics
window to open the properties for the 3D graphics.
@® Fie Edt View Insert Anolysis Satelite ities Winde
=G SunCentered2
1 8f Earth
g8 Jupiter
-3t EEEDR

2) In the left frame of the Properties window, choose Advanced.

3) In the Viewing area, change the Max Visible Distance to the maximum STK allows, 1e+027 km. This
allows you to zoom out far enough to see Jupiter’s orbit.

Delail§ igwing . Stereo Display Options
- Celastial Min Visible Distance e
- Lighting o
- Grids tax Visible Distance:  1e+013 km L
=Anootalion Far/Near Ratio: !
--Access Text  —— |
-~Vectar Field af View: 145 deg |
i A .=
-~ Overlays Miscellaneos
~Soft VTR [ Use Wirsframe Mode _
-indow Properti... [ Hide Cursar
[J Use Jopstick
Depth Cone/Buffer Crossover
Muse

4) Click OK.

5) Inthe 3D Graphics window, use the left button of your mouse to click and drag to change the orbit
view from looking at the edge of the orbits to looking down on the orbit plane.

6) Click the right button of your mouse and drag to zoom in and out.

7) Zoom out until you can see the Earth’s orbit, Jupiter’s orbit, and your satellite’s orbit. You might
notice at this point that you have an Earth labeled. This is the built-in Earth in STK. Leaving the label
is less problematic than trying to remove it, so just let it mark which orbit is the Earth’s orbit.

8) Voila! At this point, you should have two circles and an ellipse connecting them. Clicking the left
mouse button and dragging in the window allows you to spin the view around to whatever
orientation you like. When you are satisfied, you can copy the 3D graphics window with Ctrl-C or
Edit = Copy. You can paste this figure into a document or presentation.

9) Note: for a printed report, you might want to paste the figure into a graphics editor that allows you
to make a negative of the image (even Paint will do this, but newer versions of Microsoft Office do
not have the option to make a negative of an image). The negative of the image will save your ,

Page 4 of 7
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N printer from using all of its toner printing a black background. You can also use the Recolor function
in Microsoft Office to set black as transparent for a similar effect.
10) Your finished (negative) figure should look something like this (if you chose to spin the view around
to make the semimajor axis horizontal, which is entirely up to you):

Educational Use only

i St G400 de 'Educaﬁonﬂ Use Only . o

11) Note: if you want to change the orbit colors, double-click on the satellite in the Object Browser to
bring up its Properties window. Find the 2D Graphics heading (3D graphics are inherited from the
2D graphics properties) and the Attributes subheading. Change the line color, line style, and line
width to whatever you prefer.

Creating a Flyby Figure @ HW 5

1) Let’s say that you to show a flyby of a satellite in Jupiter’s frame of reference. In HW6, we
calculated flybys of Jupiter with an incoming Jupiter-centric speed of 3 km/s. Let’s model a flyby
with v.. = 3 km/s that just grazes the surface of Jupiter.

2) After saving your Sun-centered scenario, click the arrow next to the New Scenario icon in the toolbar
and choose Jupiter as the central body.

Page 5 of 7
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3)

4)
5)
6)

In the New Scenario Wizard, name the scenario and choose an Analysis Period that will show the
flyby. For the close flyby described above we will need a time period of 233 days (enter “+233 days”
without quotation marks in the Analysis Period end time). For other trajectories, you can calculate
the time that you need from these steps:

d.

Find a for the hyperbolic flyby from r,, =a, (e, —1).
Find F at the sphere of influence from 7y, =a,, (e, cosh Fy, —1).

Find the time from entering the sphere of influence to periapse from

3
ah,vﬁ

:uplanet
Double the time to reach periapse to get the time from entering the SOI to leaving it again.

At = (e, sinh Fy, = Fp) .

In the Insert STK Objects window, select Satellite, Define Properties, and Insert... as you did before.
This time, change the Coord Type from Classical to Cartesian. (Figure on following page)

The default Cartesian coordinates are inertial coordinates centered at Jupiter. The Z axis is Jupiter’s
spin axis, and the X and Y axes are in Jupiter’s equatorial plane. Even though Jupiter’s spin axis is
inclined to the ecliptic plane, we will model the hyperbolic trajectory as in Jupiter’s equatorial plane,
as we are just looking to show the shape of the flyby. The position and velocity coordinates to enter

on this screen (for our purposes) are those of the satellite as it enters Jupiter’s SOI.

&

Allow the X coordinate to equal the impact parameter, b. Let's model a flyby with b = 1.42e6

km.

Set the Y coordinate equal to — RSO,2 -b? (-4.83e7 km in our example)

Zero the Z position and velocity.

Page 6 of 7
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—~ d. Zero the X velocity.
e. Setthe Y velocity equal to v.. (3 km/s in our example). The settings should look like those in
the figure below.

Pl | Poesser [Tefoy v Coalbods duste
- Attitude =
- PassBr. Lisoin
s Use Scenario Analysis Period
- Eclipse Start Time:
-~ Referen.
o Giround . Stop Time:
- Deseript... -
D et StepSie 60 sec
- Bltributes e SRR L R e -
- TimeEv.. Orbit Epoch 19 Apr 2011 17.00.00.000UTC #:1.42e4006 km
Pass R N . ;’_ AT T b i
oo Coord Epoglyes S, [‘_“] ¥ 48324007 ki
~FRiange CoofType:  Cartesian 2z Okm
- Lighting e . o v
~Swath Coord Spstems ] R elocity: Okmisec
- Giround S .
30 Graphics Prop Speciic el e B
‘‘‘‘ Pass ZVelocity: {0 kmisee z
- Oibit Sy, I
Attitude
~Wector
= Progimity
- Dioplines ¥ »
N
7) Click Apply and OK.
8) Close the Insert STK Objects window.
9) Close the 2D Graphics window and maximize the 3D Graphics window.
10) In the 3D Graphics window, click and drag with the left mouse button to change the view, and the
right mouse button to zoom in and out.
11) Voila! You should now have a hyperbolic flyby image that you can copy (Ctrl-C or Edit = Copy),
paste, and annotate as desired. (Asymptote lines and turning angle added below as an example.)
> e

Page 7 of 7
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2.1 presentation project. Indian PSLV-C25 Mars orbiter
mission

2.1.1 Description of task

Space Mission Research Project
EMA/ASTRO 550: Astrodynamics, Spring 2014

Research a current space mission or space-related topic and deliver a one-page handout, a description
of the project’s orbital mechanics, a list of resources, and an in-class presentation.

1. One-page handout

Create a one-page handout with the key pieces of information for your topic, presented in an easy-to-
read, visually appealing style. Bullet-points are likely. Headings are recommended. It may include a
photo (with proper attribution unless you take the photo yourself). Samples are on the course website.
The types of questions your handout should answer include (but are not limited to) the following:

Programs/directives (e.g. Augustine Commission, COTS): Who was involved in the decision-
making process? Why was the group convened? What were the main findings or decisions?
When were the decisions made? When will they take effect? When are spacecraft that arise as a
result of them anticipated to be complete? How has the aerospace industry been affected by
the decisions or findings?

Past, current, and future spacecraft: Who (people, companies) was involved in the
development? What is the goal of the project? What is the timeline of the project (start dates,
completion dates, launch dates, arrival dates, etc.)? Where were the spacecraft built and

launched? Where are they going?
2. Orbital mechanics

Describe the orbital mechanics of the project. This will likely be a single paragraph, about half a page.
Include information like the following:

Programs/directives: Which areas of space are affected by these decisions? What vehicles or
programs have arisen as a result? What orbits do these vehicles use?

Spacecraft: Which orbits do the satellites use? Are they launched directly to the target orbit or
are they launched to a parking orbit? How do they transfer to their destination orbit? If relevant,
find a picture of the trajectory and describe the transfer.

3. Annotated references

List the five best non-Wikipedia sources that discuss your program or mission. For each, give the citation
information so that an interested reader could find that source for him or herself. Also provide a few
sentences of description regarding the information that each source provides. The goal here is to really
provide your space-loving classmates with genuinely helpful information. Wikipedia doesn’t count
because your classmates can find that easily enough without your help. What else is out there for them?
(Note: you may list a Wikipedia page as a 6" source if it is particularly good or has helpful graphics that

14
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Space Mission Research Project
EMA/ASTRO 550: Astrodynamics, Spring 2014

Research a current space mission or space-related topic and deliver a one-page handout, a description
of the project’s orbital mechanics, a list of resources, and an in-class presentation.

1. One-page handout

Create a one-page handout with the key pieces of information for your topic, presented in an easy-to-
read, visually appealing style. Bullet-points are likely. Headings are recommended. It may include a
photo (with proper attribution unless you take the photo yourself). Samples are on the course website.
The types of questions your handout should answer include (but are not limited to) the following:

Programs/directives (e.g. Augustine Commission, COTS): Who was involved in the decision-

making process? Why was the group convened? What were the main findings or decisions?
When were the decisions made? When will they take effect? When are spacecraft that arise as a
result of them anticipated to be complete? How has the aerospace industry been affected by
the decisions or findings?

Past, current, and future spacecraft: Who (people, companies) was involved in the

development? What is the goal of the project? What is the timeline of the project (start dates,
completion dates, launch dates, arrival dates, etc.)? Where were the spacecraft built and
launched? Where are they going?

2. Orbital mechanics

Describe the orbital mechanics of the project. This will likely be a single paragraph, about half a page.
Include information like the following:

Programs/directives: Which areas of space are affected by these decisions? What vehicles or

programs have arisen as a result? What orbits do these vehicles use?

Spacecraft: Which orbits do the satellites use? Are they launched directly to the target orbit or
are they launched to a parking orbit? How do they transfer to their destination orbit? If relevant,
find a picture of the trajectory and describe the transfer.

3. Annotated references

List the five best non-Wikipedia sources that discuss your program or mission. For each, give the citation
information so that an interested reader could find that source for him or herself. Also provide a few
sentences of description regarding the information that each source provides. The goal here is to really
provide your space-loving classmates with genuinely helpful information. Wikipedia doesn’t count
because your classmates can find that easily enough without your help. What else is out there for them?
(Note: you may list a Wikipedia page as a 6" source if it is particularly good or has helpful graphics that
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2.1.2 Sample of projects to select from

=

W o~ @ e N
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EMA 550 Project Sign Up Sheet 2014 S

File Edt View Inset Format Data Tools Help Laste Comments

[ IR e M= O - 14

Buy -

(1]
|~
4l

EMA/Astronomy 550 - Astrodynamics
A B €; D
‘ EMA/Astronomy 550 - Astrodynamics |
Space Mission Research Project Sign Up Sheet -- FEEL FREE TO ADD A TOPIC!!!

Projects/programs/vehicles ‘M Name Pres. Date (May 1, 6, or 8)

Dawn spacecraft

SpaceX Dragon Capsule 6/5/2014
Commercial Resupply Services (CRS)

Orbital Sciences Cygnus spacecraft 5/6/2014
New Horizons 5/1/2014

Mercury Messenger
Globalstar Constellation

SpaceX Red Dragon mission 5/6/2014
Chinese Tiangong 1 spacecraft
Van Allen Probes 5/1/2014

¥-378 Space Plane

Lunar Atmosphere and Dust Environment Explorer
MAVEN Mars mission

Indian Mars Orbiter Mission

Rosetta comet mission 5/6/2014
Japanese Akatsuki mission to Venus
Juno mission to Jupiter

Reaction Engines Skylon Spaceplane/SABRE Engine 9/1/2014
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2.1.3 my presentation

Manglyaan Main mission objectives
Develop technologies by India space research organization

® for design, planning, management and operation of an
interplanetary mission

o Develop deep space communication, planning,
management and navigation skills.

Explore Mars surface features, topography, mineralogy
and atmosphere using onboard scientific instruments

PSLV-C25 is Indian first interplanetary mission.

1.5 meter
cube volume

Payload (1336 kg orbiter satellite)

——
ey,

Power; s
840 watt

Deployed View

A4 m

3 main phases: Earth-centered phase (7 altitude-raising orbital maneuver, each requiring
separate burn), followed by Hohmann trajectory for tangential transfer to Mars, and final

Martian phase with elliptic parking orbit.

Hohmann transfer orbit started when the
Hohmann angle was 44 degree between
Earth and Mars (300 days travel time)
travel speed 1.55 km/sec

Elliptic parking orbits. Perigee 250 km, and apogee 23,500
km, Inclination of 19.2 degrees. 6 orbit raising burns increased
the apogee to 192,874 km. Liquid fuel used for these burns. 4
weeks to accomplish this maneuver. This is called orbit raising
maneuver to gain more speed resulting is more efficient final

burn to escape Earth SOI

Nov 30, 2013

& Marsat
Departure

Earth position
when spacecraft
arrives to mars

Vernal
Equinox B v
"y -
%\ Verage =1
b ol
3

£ ~ Arrives to Mars SOI.

-~ Injection is made to
—» park the spacecraft

— ' around mars in an

elliptical orbit

Sept. 24, 2014

All images unless .
otherwise given are thanks Full View of
to ISRO.GOV.IN. additional PS[V/-C25 on
annotations added to them First Launch Pad
afterwards.

Mission cost

$21 million study and design of

PSLV-C25 Vehicle
Conhguration

Maximum load capacity:
1750 kg

_S 5 stages rocket

& (3 uses solid propellant, and
2 uses liquid propellant. Lift
off mass: 320 metric ton.

- N

) .Elliptic orbit around mars,
period is 76.72 hrs,
periapsis of 365.3 km and
apoapsis of 80000 km.
Inclination 150 degrees.

PSLC25 cammying the Mars Orbiter &
Mission spacecraft was launched from
Sriharikota on 5 November 2013

[ http://en.wikipedia.org/wiki/Mars_Orbiter_Mission |

] Satellite payload: 5 scientific
equipment (total weight is 12.94 kg)
Wik e Mars color Camera (MCC)

orbiter. Total project cost $76
million. Satellite cost: $26 million.

http://www.isro.gov.in

Location of launch site : SDSC
SHAR Centre, Sriharikota, India
(small island on the east coast
of India) (google maps)

e Thermal infrared imaging
spectrometer (TIS)

e Methane sensor for Mars (MSM)

e Mars meutal composition
analyzer

Student: Nasser M. Abbasi, EMA 550
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References

[1] http://www.isro.org/mars/home.aspx This is the official web site for the Indian Mars mission. It is
part of the ISRO web site (below) and contains all technical material about the mission.

[2] http://www.isro.gov.in/

The official website of the Indian Space Research Organization where most of the material were obtained
including the images in the first page. ISRO is equivalent to NASA Organization in the US.

[3] http://www.isro.gov.in/pslv-c25/pdf/pslv-c25-brochure.pdf and http://www.isro.gov.
in/pslv-c25/pdf/pslv-c25.pdf

These two PDF documents contain technical information about the Earth to Mars orbit and about the launch
rocket used (PSLV-C25) and description of the satellite and its instrumentation Both are published by the
Indian Space Research Organization

[4] http://www.spaceflight101.com/mars-orbiter-mission.html

This article contains more information about the actual scientific experiments to be performed by PSLV-C25
about about the instrumentation carried aboard the satellite and information about the orbital mechanics part.

[5] http://www.space.com/23802-india-mars-probe-red-planet-journey.html This article on
space. com gives a general overview description of the mission, giving reasons for using PSLV as launch in-
stead of using GLSV (Geosynchronous Satellite Launch Vehicle) which encountered few problems in earlier
missions.

Orbital mechanics highlights

The transfer trajectory from Earth to Mars was a classical Hohmann transfer. The spacecraft left Earth tangen-
tially from the perigee of the final parking orbit it had and will arrive tangentially at the apogee of the Hohmann
ellipse. Rendezvous was accomplished by waiting the the required Hohmann angle to occur between the Earth
and Mars before initiating the Hohmann transfer. The Hohmann angle can be found as follows. Let r, = 1AU
be the distance of Earth from Sun, and r, = 1.524AU the distance from Mars to Sun, then the Hohmann angle is

3
O — 7 <1 B <ra+rb)3>
2/‘],
Substituting numerical values results in 6y = 44.36°. On November 30,2013 when the initial rocket was
launched, the angular longitudes on the ecliptic plane of Earth and Mars were (from JPL) 0,,,,, = 66.7° and
Oars = 140.8°

Small simulation showing the Hohmann transfer to Mars will now be given. What was more interesting is
the initial maneuver around Earth before starting the Hohmann transfer.

The spacecraft started in an elliptical parking orbit with perigee of 250 km and apogee of 23500 km. Next,
and over a period of 4 weeks, 6 separate burns, all using its liquid fuel engine, were made at the perigee to
increases the semi-major of the parking ellipse all the way to 192000 km. This method is called orbit raising
maneuver When the spacecraft was in the final and largest elliptical orbit, it initiated the final burn to escape
the Earth SOI from the perigee in order to enter the heliocentric Hohmann transfer ellipse. All elliptical orbits
shared the same perigee.

Orbit raising maneuvers allows the spacecraft to gradually gain speed resulting in smaller final burn to escape
the earth using its solid rocket engine. All burns done to raise the orbit are done when the probe is at the perigee.

From an article nttp://www. spaceneus. con/article/launch-report/38111indian-mars-probes-orbit-raising-naneuver-falls-short 1t says that by the
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Launch Nov 2013
MARS Arrival : Sep 2014

(71623 km

40183 ~km.
(

23550 km

Fl.gure I: ‘Showm‘g the gradL!M enlargement of - the Figure 2: Showing the size of each ellipse during the initial
elliptical parking orbits over period of 4 weeks. Im- o ) . I ) K

. parking maneuver used to gain speed. Image due to https:
age due to  http://www.spaceflight101.com/ / Jwww . facebook . com/isromon

mars-orbiter-mission.html

end of the sixth and final orbit raising maneuver, the probe would have the required escape velocity when it
arrived back at the perigee of the final ellipse, and that no additional AV was needed to escape Earth.

The reason given in the literature about this initial maneuvers, is that it reduced the final burn needed to
escape Earth, since the spacecraft will have much higher speed at the perigee in the final parking orbit due to its

much larger semi-major axes.
The launch rocket (PSLV-C25) is a five stages rocket. This diagram shows a break down of the sequence of

the rocket launch stages.

)

&) INJECTIO|
08
& 2
Q',s\ 2 COAST-PS4 TRANSITION
o
4 PS3 COAST-TRANSITION

L

[ E | “(Ps1-PS2 TRANSITION)

‘ ‘E LIFT-OFP
| &
i

Figure 3: Ascent Profile of PSLV-25 showin all rocket stages. Image due to http://www.spaceflight101.com/uploads/6/4/0/
6/6406961/4674618_orig. jpg

(Ps1)

|
|

1

STAGE.

Some facts about the PSLV-C25 fuel From http://wuw.spaceflightnow.com/pslv/c25/131104preview/

1. "Two-thirds of the orbiter’s mass at the time of launch is propellant.”

2. "The launcher’s liquid-fueled fourth stage will coast for 25 minutes before igniting for the mission’s final

burn."

3. "Almost all of the mission’s 390 liters, or 103 gallons, of liquid fuel will be consumed to accelerate the
spacecraft out of Earth orbit and to slow its velocity for capture into orbit around Mars."
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2.1.4 Power points

Indian Mars Orbiter Mission

India’s first interplanetary mission

SHAR Centre, Sriharikota, India
(smallisland on the east coast

Location of launch site : SDSC
of India) (google maps)

| http://www isro.gov.in |

Mission Objectives

Develop technologies by India space research organization
® for design, planning, management and operation of an
interplanetary mission
e Develop deep space communication, planning,
management and navigation skills.

Explore Mars surface features, topography, mineralogy
and atmosphere using onboard scientific instruments
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Deployed View of Orbiter Satellite

Medium
Gain Antenna

Propellant Tank
»e High

Solar Array Gain Antenna

Low
Gain Antenna

1337 kg

Deployed View

Satellite being packaged to move to rocket payload
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Orbiter stowed vs. deployed

Propellant Tank

X
o Deployed View

Launch

: . Stowed View
Configuration

Satellite 5 main scientific equipment

i MCC color camera

Methane sensor Exospheric neutral composition analyser
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PSLV-C25 Launch rocket

“3 HEIGHT 44.4 METER
LIFT OFF MASS: 320 TON
5 STAGES (PAYLOAD AT TOP)

...... )
e
ee/\

3
%) gy
{(COAST-PS4 TRANSITION)
&L .
EXN\ Once launched, orbiter
S~ o - .
&Y spends 2 months in orbit
&
& £\ raising maneuver around
N .
the earth to gain speed
k *m

E
g '

H

1

STAGE-1 (P$1)

Launch Nov 2013
MARS Arrival : Sep 2014

7 elliptical orbits, lasting 2 months, each requiring burn at perigee, designed to gain
speed and reduce cost of fuel needed for final escape from Earth to Mars
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PSLV-C25 Mars Trajectory Outline

Hohmann transier  Elliptic parking orbits.

orbit raising maneuver
Nov 30, 2013
Mars at
L Departure @_ \earth @

. ™, (

\
\
\ .

| - | Earth

n.
1 Ny ' at

l @ MOI >

\ | Vernal

\ / Equinox

% / i 4
% \2 / P
t 2 \@ ~ »
"-'5\ 2 \Q / _-
Q 7,

E? ??/.'\ / 5
40 % ey . - ' Y Ld -7 .
2 ' 4 Arri o ;
Y ()~ Arrives to Elliptic orbit

@ Mars SOI.

ki sk s around mars

2.2 Final project. Earth to Neptune via Gravity assist
flyby Jupiter

2.2.1 project description

EMA 550 Interplanetary Project
Spring 2014

Calculate, model, and present an interplanetary trajectory from the Earth to Neptune via a
gravity assist flyby of Jupiter.

General Guidelines

1. The work is to be done in teams of four, with the various tasks delegated to the team
members. Submit one report for the team. If you have difficulty with a team member, attempt
to resolve the issue. If a problem persists, refer the issue to me, along with what you have
done to resolve it. If you would like to be assigned to a team or you need additional members
for your team, let me know.

2. Focus on the orbital mechanics aspects of the project once the spacecraft is in its initial orbit.
You may start your analysis with the spacecraft in a circular, 300 km altitude parking orbit
around the Earth in the ecliptic plane.

3. Determine launch dates, arrival dates, and AV using;;l actual positions of planets. The JPL
Horizons web site has data on the heliocentric coordin gs of the planets. Assume the
planetary orbits are circular orbits in the ecliptic plane. This means you may choose one date
at which you find the planets’ positions from JPL Horizons, then write code to propagate their
positions forward or backward in time assuming circular orbits. Choose launch and arrival dates
that will allow the proiect to be combpleted within vour professional lifetimes.
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planet’s moons, etc., at your discretion, but make sure to include what happens when your
spacecraft reaches Neptune.

8. Your goal is not necessarily to optimize the trajectory. Focus your early efforts on finding one
trajectory that works given where the planets are in the Solar System. Once you have one solid
option, you may consider variations on the launch, flyby, and/or arrival dates to identify the
effect they have on the AV for the mission.

Grading

The reports will be graded for thoroughness of the analysis, accuracy, completeness,
readability, and visuals. All team members will receive the same grade unless there is a
problem with a team member.

Project Schedule and Deadlines

Monday, April 7: By this date, email Dr. Sandrik with the names of your group members or to
indicate that you are looking for group members.

Thursday, May 8: Reports are due by the end of the day. Turn in paper reports in class or to Dr.

Sandrik’s mailbox (in the walkway between ME and ERB, near the loading dock) or electronic
documents online through the course website’s Interplanetary Project dropbox.

2.2.2 finding planet with JPL handout
JPL site http://ssd. jpl.nasa.gov/horizons. cgil
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Finding Planet Positions with JPL Horizons
(“w EMA 550: Astrodynamics, University of Wisconsin-Madison

Website: JPL Horizons, http://ssd.jpl.nasa.gov/horizons.cgi

Introduction

The JPL Horizons website offers a rich set of data about planets, satellites, and other celestial bodies.

For the purposes of EMA 550, and for the Interplanetary Project in particular, the orbits of the planets
are generally assumed to be circular and in the ecliptic plane. All that is needed, then, is a singular
angular measurement to identify their positions relative to each other. The heliocentric longitude is just
such a measurement. A planet’s heliocentric longitude at a given time is the angle between the “first
point in Aries,” or “x,” direction, and the planet’s location at the specified time. Since all of the planets’
heliocentric longitudes are measured from a common direction and in the same direction of motion, the
heliocentric longitude of each can be used to find their relative positions.

Finding the Heliocentric Longitude on JPL Horizons

The JPL Horizons web interface at the address above allows the user to modify six categories of settings
to find the information of interest. Each category is discussed below with regard to finding heliocentric
longitude. Each setting can be changed in JPL Horizons by clicking the “change” link next to the category

(w title.

a) Ephemeris Type: for heliocentric longitude, choose Observer.

b) Target Body: choose the planet you would like to locate.

c) Center: for heliocentric, this must be the Sun. Choose the Sun by entering @sun in the box
that appears when you click the change link.

d) Time Span: to get a common time for locating all of your planets (which you can then
propagate by assuming a constant mean motion for each) find the link for the discrete times
form and choose one common time. v

e) Table Settings: if you are in the Observer mode, the table settings page should provide you
with a list of check boxes (40 of them in three columns). The only one that you need for
heliocentric longitude is #18, Helio eclip. lon & lat. You can uncheck all of the others.

f) Display Output: To get a single longitude for each planet, there is nothing here that you
need to change.

Finding Orbital Elements on JPL Horizons

You can use values from the class Planetary Constants sheet or JPL Horizons to set the radius for your
planets’ orbits. Use the semimajor axis of the orbit as the average radius for the assumed circular orbit.
To find the semimajor axis on JPL Horizons, set Ephemeris Type to Orbital Elements.
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Interplanetary Project Intro Work Day J
EMA 550: Astrodynamics, University of Wisconsin-Madison

Tasks to Complete Today

1) Find your group members.

2) Follow the instructions on the reverse for the heliocentric position of the Earth on today’s date
via JPL Horizons (see reverse).

3) Find the heliocentric longitudes for Jupiter and Neptune on today’s date and sketch (by hand)
their relative positions. To sketch them well, determine the radii of their heliocentric orbits from
JPL Horizons or from the course Planetary Constants sheet and draw them roughly to scale.

4) Confirm your sketch against the JPL Solar System Simulator (SSS) (httg:[{sgace.]gl.nasa.gov). To
see the solar system, choose “Show me the Solar System as seen from above” with a field of
view taking up 100% of the image width. If you need to zoom in to see the inner planets, note
the field of view in the upper left corner of the current image and choose a smaller field of view
angle on the previous page. (Note: JPL SSS seems to put the first point in Aries direction as
vertically upward, which will help you align your sketch with gheirs.)

5) Write a code that will

a. Take positions of Earth, Jupiter, and Neptune today and return their positions at a
future date (such as a launch date, flyby date, or arrival date) assuming circular orbits
with radii equal to the planets’ semimajor axis distances w-)
b. Return the differences between the planets’ angular positions on a common date (i.e.,
“On the launch date, Jupiter leads Earth by __ degrees.”)
¢. Return the angle between two planets on different dates (the 8 angle in the Lambert
method, also equal to the change in true anomaly on the transfer orbit, i.e. “The angle
between Earth at launch and Jupiter at arrival is _ degrees.”)
6) Verify the positions returned by your code against the JPL Solar System Simulator.
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2.2.3 my final report

Final Interplanetary Project EMA 550

by Nasser M. Abbasi

Introduction

The project was broken into 6 phases. This the high level summary of each phase.

1) The first phase was the waiting period to synchronize earth with Jupiter with the correct Hohmann angle.
Once this was achieved, the probe is launched from LEO orbit.

2) The second phase is the escape from earth SOI using hyperbolic escape trajectory

3) The third phase is the travel over a Hohmann ellipse to reach Jupiter at the apogee location of the
Hohmann transfer ellipse.

4) This stage the probe enters Jupiter SOl and performs a hyperbolic fly-by trajectory. The burnout distance
used was based on trial and error experiments using the simulation written for this project in order to obtain
a post fly-by ellipse that allowed the probe to reach Neptune orbit at the same time when Neptune was there.
5) This is the post-flyby stage, leaving Jupiter SOI and traveling on an ellipse to Neptune.

6) This is the final phase, the probe is now inside Neptune SOI. It enters a circular orbit around Neptune
and remains there.

The final results will be shown here, followed by the step by step calculations done in each phase, then the
simulation program will be described.

How was the final trajectory found?

One week of full time work was spend on writing the simulator, as this was the only method to find if a
chosen input will lead to the probe meeting Neptune when it arrives to its orbit. The simulator takes as input
the initial angular positions of Earth, Jupiter and Neptune in the ecliptic plane and using time step, advances
the positions of the planets and the probe on its orbit. This is screen shot of the GUI of the simulator. It
allows one to stop, run, and make one step at a time. The step size can be changed from one day to one
week to one month.

Printed by Wolfram Mathematica Student Edition
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2 project.nb

relax ™

|]uplter fiyby alt —— [—— = 410000 ‘

step Iweek j

‘ run | step | stop. zoom INeptumeﬂ

Once the simulator was completed, different starting positions for Earth, Jupiter and Neptune were tried.
Each position used was obtained from the JPL Horizon web site. Different dates were selected. In addition,
for each selected initial position, the altitude that the probe will be closest to Jupiter in its fly-by was modified
using a slider in simulator. This resulted in different ellipse since the burn out distance ry, is different. The
closest altitude to Jupiter (rp,) was modified from 200000 km to 500000 km above the surface of Jupiter.
When none of the resulting trajectories found to be acceptable, if they did not lead to acceptable ren-
dezvous with Neptune, another starting date was selected and the process was repeated. Acceptable
rendezvous with Neptune is one which reaches Neptune within distance less that Neptune's SOI. This is the
final trajectory selected

Printed by Wolfram Mathematica Student Edition
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project.nb

positiop at
end of Hohmann
Neptun transfer position
at start

position
atend
of flight

4x10° -

Eg{,

Neptune(2)

4

Neptune(1)

L L
-4x10° -2x10°

N

Jupiter(
J

upiter(1)

To speed the process of finding the final trajectory, the simulator used a varying time step. The simulation
time step can be one day, one week, one month or even one year. However the accuracy of the resulting
trajectories will become worst if the time step was made large. When a candidate trajectory was found using
large time step (month for example) it was repeated again using one week time step, and then again using
one day time step. Using the one day time step, the simulation will take about 15 minutes to complete. So
this was a very time consuming part of the project to find the correct trajectory.

This table shows some of the dates and corresponding ecliptic longitude angles showing which initial

position was selected

Printed by Wolfram Mathematica Student Edition
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4 project.nb
selected? date Earth | Jupiter | Neptune | Altitude above Jupiter (KM)

NO 3/21/2014 270 111.3 | 334.996 many

No 9/21/2014 | 356.76 126 336 many

No 10/01/2014 | 7.5 127 336 many

No 03/21/2016 | 180 166 339 many

No 03/21/2017 | 180 196 304 many

YES 3/21/2016 180 169 339 410000

Initial positions tried in simulation

m The following table shows the time history for all the phases on the project

phase date started | date completed
waiting for correct Hohmann angle between Earth/Jupiter | 3/21/2016 12/26/2016
Start on Hohmann transfer, travel to Jupiter SOI 12/26/2016 | 9/20/2019
Enter and exist Jupiter SOI 9/20/2019 2/29/2020
travel on Ellipse from Jupiter to Neptune 2/29/2020 12/25/2054

Time schedule of complete trajectory

= Show AV for fly-by and compare to Hohmann transfer

Trajectory AV1 (km/s) | AV2 (km/s) | Total (km/s)
Fly—by 6.267 13.44 19.71
Direct Hohmann | 8.22 14.91 23.133

Compare total AV using Fly—by and Direct Hohmann. Saving is over 3 km/sec

m Show trajectory information for each phase (relevant data is shown)

tem Earth escape Hyperbola Hohmann.transfer Fly—by Jupiter Elliptical orbit
Earth/Jupiter Hyperbola Jupiter/Neptune

eccentricity e 2.291 0.6775 1.1199 0.726

semi—major a (km) - 4.639x 108 4.01x10° 2.6x10°

V., (km/sec) 8.79 - 5.64 -

Departure speed Vp (km/s) | - - 17.024 -

n (deg) 115.88 - 153.24 -

Turn angle 6 (deg) 64.12 - 126.48 -

Flight path angle y4 (deg) - - 15.45 -

True anomaly f (deg) - - 36.98 -

Orbits data found

= Velocity profile of probe showing speed gain due to flyby

The simulator keeps track of current velocity of probe as it travels starting from Earth all the way to Nep-
tune. It then plots the velocity vs. Time of the probe. This plot below was generated by the simulator and

Printed by Wolfram Mathematica Student Edition
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project.nb

shows the speed gained during the fly-by phase. AV gained due to flyby was found to be 10.077 km/sec.
This is free AV due to gravity assist.

Probe velocity vs. time

LA B S e B S 4 T T 7

r—
(¥ Escape from Earth

3GF -
& Fhy-by Jupiter
2 20 ]
_E Arrival at ]
10 Neptune 501
Ok

0 2000 4000 6000 8000 10000 12000
time step

The above shows that the fly-by Jupiter gave the probe almost 8 km/sec boost in speed relative to Sun.

= Trajectory data gathering

The simulator contains an option to display all the information about the trajectory during its running. This

display can be turned off if needed. This allows one to monitor each aspect of the orbit as it runs. Here is a
screen show showing typical display during one simulation run

Printed by Wolfram Mathematica Student Edition
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6 project.nb

e | step | stop | zoom INeptunej ‘Jupiterﬂyb}r alt — |—— . 410000 |relax Iv

Timings and angles as simulation runs
3 ) & [BHohmann ‘State |F’hase ||9 Hohmann
087.38 |221.28 [11811| 09716 |RUN| 2 | 097186

mean speeds (kmy/sec)
Earth |Jup\ter |Neptune |prnhe on Hohmann ‘pmbetn Neptune

2078 [ 13.06 | 0543 | 1697 \ 078
Dimenstions data and current probe speed
1ES | [A5] ‘ NS |curremF'robeSpeed (Km/sec)
150.x 107 [ 778.x 107 [4.5x 107 | 05.45
current positions in space
¥ ‘ v | X probe | y probe ‘disl.proneto Meptuen
212 10% |3.97x10° [-125x10° [3.02108 | 128 10°

Hohmann transfer from Earth to Jupiter data
a \ 71 | ra | e \currentf |current E

454.x10° [150.x 10° | 778 10° [0.67758 | 14067 | 11179

hyperbolic Jupiter flyby
V.. (km/s) [ e Hyper |rzHyper (deqg) |:f.: (degree) | Brurn |V= (km/s)
005.643 |‘I 1210238 | 153.130 | +015.5 |*‘I2E.3 | +17.014
Post fiy—by ellipse, Jupiter to Neptune
al | pJN ‘ raJM |eJN (eccentricity) |fra,\ ftrue anamaly} |rraar probe speed
258x10% 712107 [444x10° | 072381 [ (037240372} | -00.0138

|current E (spacecraft) |currentf |nHuhmannTOJupiter (deg/day) ‘nJNIdeg-‘daw |
[ 1118 [ 7497 | +00.1804 \ |

Step by step calculations
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project.nb

In[7]:=

<< Calendar’

AU = 1.495978:10"8;

rE =6378; (xEarth radiusx)

rJ =71492;(-Jupiter radius=)

N = 24 764;(+Neptune radiusx)

rES = 1 AU;(xEarth distance from sunx)

rJS =5.203 AU;(+Jupiter distance from suns)
NS = 30.07 AU; (xNeptune distance from sunx)
(x SOI for each planet =)

eSOl =9.24:10"5;

jSOI =4.82x10"7;

nSOI =8.67+10"7;

(+*mu for each planetx)

pSun =1.327x10711;

HE =3.986x10"5;

©d =126 686534,

1N =6836529;

(+speed of each planet, all relative to sunx)

uSu
skE = ;(xkm/secsx)
rES
JS
Su

n
uSun
n

sJ= ;(xkm/secx)

.

yui
sN = (xkm/secx)
NS

(+angular velocity of each planetx)

usun

wE = ;(xangular vecloity of earths)
res®
usun

wl = ;(xangular vecloity of earth:)
ris®
uSun

wN = ;(xangular vecloity of earths)
INS®

Find the Hohmann angle needed rendezvous between Earth and Jupiter
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project.nb
This is the time (in sec)
Rendezvous Hohmann for (a) to travel on the
location transfer Hohmann orbit once it
S trajectory starts
Fat'y s
2 TOF =m |4~
Circular
u
COG - P
Fa
Angular speed of (a) in rad/sec
u
wp = -
a
"y
orbit of first b Angular speed of (b) slower
satellite Jupiter than (a)
3
FatFy 2
This is the phase at zero GH =m|1- (7_ )
60 time. The current angle that b
(b) is front of (a) Desired phase. This is the angle that (b) has to be
ahead of (a) before (a) starts its Hohmann transfer
rendey_separate_hohmann.vsdx
Nasser M. Abbasi
/1214
3
In[28]:= rES +rJS)2
¢EarthJupitor = Pi|1 - | ———| |;
2rJS
N @ 6EarthJupitor = 180/ Pi
Out[29]

97.15821569
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project.nb 9

o Enter the initial positions. These have been found by simulation first. The simulation includes all
these steps build into it. There are shown here in order to be able to show each step done outside of
the simulation code.

Note that 90 degrees were added to each position to make it compatible with standard coordinate
system with positive x points to the right

0EO = Mod[180 + 90, 360] Degree; (+Earth+)

6J0 = (169 + 90) Degree; (=Jupiters)
ONO = Mod[(339 + 90), 360] Degree; (xNeptune:)

= find wait time between Earth and Jupiter in order to find date when start Hohmann transfer.

o Find 6y the initial angle between earth and Jupiter at initial configuration

60 = 0J0 — OEO;
00+180./Pi
-11.

o Adjust 6, if 64is larger than 6, by adding 2 = so not to get negative time

If [00 < OEarthJupitor, 60 = 60 + 2 Pi;
00+180./Pi

349.

o calculate wait time before starting Hohmann transfer. This is the time needed to sync with Jupiter

00 — @EarthJupitor
waitTimeEarthJupiter0 = ————;
wE — wd

waitTimeEarthJupiter0/(60 « 60 x 24) (+daysx)

279.0431558

o Display the date the Hohmann transfer starts

currentDate = {2016, 3, 21};
currentDate = DaysPlus[currentDate, Ceiling[waitTimeEarthJupiter0/(60 = 60 % 24)]]

{2016, 12, 26}

o Find a for the Hohmann transfer

rES +rJS
aE)= ——
2
4.639775767 x 10°
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10 project.nb

o find time of flight on the Hohmann transfer

aEJ®
tof =x ;
uSun

tof /(60 %60+ 24 x 365) (+years:)

2.73308597

o Find total wait time which includes sync time and time of flight over Hohmann transfer

waitTimeEarthJupiter = waitTimeEarthJupiterO + tof;
waitTimeEarthJupiter/((60 = 60 * 24 x 365)) (+years«)

3.497587767

o display the date probe arrives to Jupiter SOI
currentDate = DaysPlus[currentDate, Round[tof /(60 x 60 x 24)]]

{2019, 9, 20}

= Make function to convert Gregorian date to Julian day (Not used at this time)

7 (y + IntegerPart[ml—;9 275
toJD[d_, m_,y ]:=367y — IntegerPart[ ] + IntegerPart[
4

m
] +d+1721013.5;

t0JD[20, 10, 2014]

2.4569505 x 10°

Hyperbolic escape from Earth

o Find eccentricity of Hohmann transfer ellipse

rJS - rES
eElJ= ——
rES +rJS

0.6775753668
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project.nb 11

bEJ=aEJV 1 - eEJ?

3.412338607x 108

2 1
vp=_|uSun|— - —
rES akEJ

38.57570557

i

|

1 X
W

\/ apogee N

\ |
g :
~ Ju p»terj;

\f\_‘_//

>V = Vperigee - Vl
ﬁyperigee

Hyperbolic
escape from
Earth
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12

puSun

vinf =vp -
rES

8.792402687

rbo =rE + 300

6678

Clear[vbo];

vbo = Firste Select[vbo /. NSolve[eq, vbo], # > 0 &]

13.99359259

E

rbo

delV1 = Abs|vbo —

6.267757388

vInf? vbo? rbo?

1+
uE?

2.291080512

-1
n= ArcCosI —l;

e
17%180/Pi

115.8792052

project.nb
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project.nb 13

o Find the turn angle 6

0=Pi—mn;
0+180/Pi

64.12079477

Hohmann transfer between Earth and Jupiter
o Find mean angular velocity on the Hohmann ellipses (rad/sec)

uSun

nHuhmannToJupiter =
aEJ®

3.644936553%107°

o Find the angular positions that earth and Jupiter will have at the end of the Hohmann transfer. We
calculated the time of flight from above. So using this time, and knowing the angular velocity of Earth
the Jupiter, we can find the new angular positions in ecliptic plane.

First display time of flight to Jupiter in days (this is half the period of the Hohmann transfer ellipse)
(tof)/ (6060 x24)

997.5763791

o Find the angle the earth will be at when probe starts Hohmann orbit

0E1 = EO + wE xwaitTimeEarthJupiter0;
Mod[0E1, 2 Pi]«180/Pi

185.0143788

o Find the angle Jupiter will be at when probe starts Hohmann orbit

031 = 0J0 + wJ = waitTimeEarthJupiterO;
Mod[#J1, 2 Pi] +180/Pi

282.1725945
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14 project.nb

0E2 = 0EO + wE x (waitTimeEarthJupiter0 + tof);
Mod[0E2, 2 Pi]+180/Pi

88.18792204

032 = 6J0 + wd * (waitTimeEarthJupiter0 + tof);
Mod[#J2, 2 Pi] +180/Pi

5.014378828
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project.nb 15

Eartn

L L L
-5x10°

Jupiter(0) [ Jupiter(1)
Positions at time Positions at start of Hohmann
{20186, 3, 21} {2016, 12, 25}
5x10°%
Earth(2)
/«\ upiter(2)

,
5x10°

/
\

-5x10°%

Positions at end of Hohmann
{2019, 9, 19}
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16 project.nb

Jupiter(2)

Jupiter(1)

Configuration at end of Hohmann transfer
{2019, 9, 19}
with positions indicated by (1),(2) for start/end of transfer

ON1 = 6NO + wN = waitTimeEarthJupiterO;
Mod[6N1, 2 Pi]+180/Pi

70.66784335

ON2 = ONO + wN = (waitTimeEarthJupiterO + tof);
Mod[ON2, 2 Pi]x180/Pi

76.630366
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project.nb 17

Neptune(2
P ( )Neptune(l)

h\(z) . Jupiter(2)
S

piter(1)

Configuration at end of Hohmann transfer, all planets
{2019, 9, 19}
with positions indicated by (1),(2) for start/end of transfer

Fly-by Jupiter, Hyperbolic flyby
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18 project.nb

R

Jupiter sphere_.-="""=-.
of influence” ~

Time to fly this part
of the hyperbolais

Flyby hyperbola

alt =410000;
rbo=alt+rd

481492

2 1
va=_|uSun|— - —
rJS akEJ

7.414127535

vinf=s8J —va

5.642948859
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project.nb 19

Clear[vbo];
vbo? J8) vinf? ud
eq=——"-—=—-—;
2 rbo 2 iSOl

vbo = Firste Select[vbo /. NSolve[eq, vbo], & >0 &]

23.5119341

vInf? vbo? rbo?

ud?

1.119944854

-1
n= ArcCosI —l;

e
7%180/Pi

153.2400935

0=2n-Pi
0+180/Pi

126.4801869

5.126.48

Jupiter
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20 project.nb

o Find impact parameter b (km)
Clear[b]
eq = bvInf = rbovbo;
b /. Firste Solve[eq, b];
b=%

2.006186563 x 10°

o Find the departure velocity (km/sec)
VAIN =/ (s32 + vinf? - 283 vinf Cos[6])

17.02770468

o Find semi-major axes (km) of the Hyperbolic fly-by trajectory. Since ry, is r,, for the Hyperbolic, we can
use r,, = a(e — 1) to solve for a

Clear[aHyper]
eq = rbo == aHyper (e — 1);
aHyper = aHyper /. First@ Solve[eq, aHyper]

4.014278105x 10°

o Find the time probe is inside Jupiter SOI during fly-by. First, find the eccentric anomaly F of the
hyperbolic trajectory when probe at SOI

Clear[FO0];
eq = jSOI == aHyper (e Cosh[F0] — 1);
FO = First@ Select[(FO /. NSolve[eq, FO, Reals]), > 0 &]

3.143507611
o Find the time inside Jupiter SOI. More than 4 months are spent inside Jupiter SOI. Yet, in the patched

conic approximation, we assume the fly-by happens instantly and this time in simulation is not
accounted for. But this is approximation.

aHyper®
W=2

(e Sinh[FO] — FO);
ud

tJ/(60%60%24) («days=)

162.3555079
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project.nb 21

currentDate = DaysPlus[currentDate, Round[tJ /(6060 x 24)]]

{2020, 2, 29
Clear[z];
vinf Sin[6]
sol = Quiet[SoIve[Sin[z S— z]];
vdJN

vy =z/.Firstesol;
v*180/Pi

15.45400848

jupiter

o

va= 15.45°

Departure from Jupiter. (Image edited from class handouts)

m Velocity diagram of the fly-by Jupiter

A summary of the above calculations is now given in terms of velocity diagram
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22 project.nb

win =

- ;
V
-

V:&:pirer = 13.05

Velocity diagram for fly-by Jupiter. Red color means
speed is relative to Sun. Blue color means relative to
Jupiter. All values are in KM/SEC

delV =2 vInf Sin[;—’]

10.07719057

Post-fly by calculations of new Ellipse

Clear(z];

2 1
eq=vdIJN== | uSun|——-—|;

IS z
aJN =z /. FirsteNSolve[eq, 7]

2.600341362x 10°
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project.nb 23

Clear[z];

aIN?(1-2?)

eq=Cosly]l= | ———
rJS (2aJN - rJS)

sol = NSolve[eq, 7];
sol =z /. sol;
e = Firste Select[sol, I > 0 &]

0.7260062019

Clear(z];

aN(1-e?)
eq=rS=———;
1+ e Cos|z]

sol = z /. FindRoot[eq, {z, Pi/8}];

fIN = sol;
fIN%180/Pi

36.98646614

rpPIN=aJN (1 -e)

7.12477406 x 10°

raJN=aJN(1 +e)

4.488205318x 10°

bIN=aJNV 1-e?

1.788223946 x 10°
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24 project.nb

Xxc2 = -aJNsxe;
yc2 =0;

Transfer on new ellipse from Jupiter to Neptune, post-flyby

Neptune(2
P ( )Neptune(l)

1

piter(1)

Configuration at end of Hohmann transfer, all planets and final ellipse
{2019, 9, 19}
with positions indicated by (1),(2) for start/end of Hohmann transfer
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project.nb 25

1x10° - \

Jupiter(2)

L L L L
-1x10° 1x10°

Jupiter(1)

-1x10° -
Showing the fly—by effect and the flight path angle
{2020, 2, 29}
with positions indicated by (1),(2) for start/end of Hohmann transfer
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26 project.nb

o Show the positions of planets at end of trajectory when probe enters Neptune SOI. First find the time
it takes to travel from Jupiter to Neptune on the new ellipse

o Find E1, and E2 for new ellipse
Clear[E1];
eq=rJS==aJN (1 - e Cos[E1]);

E1 = Firste Select[E1 /. Quiet[NSolve[eq, E1]], & > 0 &];
E1+180/Pi

15.18098712

Clear[E2];

eq =rNS ==aJN (1 - e Cos[E2));

E2 = (E2 /. Quiet[FindRoot[eq, {E2, Pi/5}]]);

E2+180/Pi

179.9999997

N3

timeOfFlyOnNewEllipse = ((E2 - E1) - eSin[E2 - E1])

uSun
9.779114032x 108

o In days
tof2 = timeOfFlyOnNewEllipse /(60 60 + 24) + 1400

12718.41902

o Find date it arrives to Neptune SOI
currentDate = DaysPlus[currentDate, Round[tof2]]

{2054, 12, 25}

o Time on new ellipse in years
timeOfFlyOnNewEllipse /(60«60 24 « 365)

31.00936717
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project.nb 27

Neptune(2
pne( >Neptune(l)

\
\

Eﬁlﬁﬁ@f . Jupiter(2)

72)\(]’09 . . :auig%

upiter(1)
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28 project.nb

o Zoom in at the area where the probe enters Neptune SOI

Show([pl, p2, p3, p41, p7, p6, ImageSize - 500, PlotRange — {{-rNS, —0.2rNS}, {0.1rNS, 0.9rNS}}]

4.0x10° -
35x10° -

3.0x10°

Neptune(3)

L L L L L L L L L L L L L L L L L L L L L L L L L L L L Il
-35x10° -3.0x10° ~2.5%10° ~2.0x10° ~15x10° -1.0x10°

Move probe into final circular orbit around Neptune, final AV applied

o Now that probe is inside Neptune SOI, we use make a burn out to slow it down into a circular orbit
around Neptune. First find the speed the probe is at when it enters Neptune SOI using the ellipse
equation (km/sec). Simulation stops when probe is just inside Neptune SOI. Let the altitude above
Neptune be 1000 KM as the final parking orbit. The probe arrive on tangential approach to Neptune,
hence the speed at apogee is

2 1
V0= | uSun|——- —
raJN  aJN

2.846226578
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project.nb 29

o Find the required speed the probe in a circular orbit around Neptune (KM/sec) assuming 1000 km
altitude above the surface

1.
vi= [N [7]
rN + 1000

16.28962869

o Find AV needed (km)
delV2 =v1 -v0

13.44340211

Find total AV needed for the whole interplanetary trip and compare to if
Hohmann transfer was used all the way from Earth to Neptune

delV = Abs[delV1] + Abs[delV2]

19.7111595

o The above is AV using fly-by Jupiter. Now lets find AV assuming Hohmann transfer from Earth to
Neptune. First find a for this new ellipse (km)

rES + INS
aDirect= ———

2.324001823x 10°

o Find V, needed (km/sec)

2 1
vp= | puSun|———
rES aDirect

41.43658381
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30

puSun

vinf =vp -
rES

11.65328093

rbo =rE + 300

6678

Clear[vbo];

vbo = Firste Select[vbo /. NSolve[eq, vbo], # > 0 &]

15.94720179

E

rbo

delV1Direct = Abs|vbo —

8.22136659

2 1
va=_|uSun|——-
rNS  aDirect

1.378004117

uN
v3=Ne | ————
rN + 1000

16.28962869

project.nb
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project.nb 31

o Find AV2 needed at Neptune
delV2Direct =v3 - va

14.91162457

o Find total delV
Abs[delV1Direct] + Abs[delV2Direct]
23.13299116
o Therefore, when using flyby, total AV was 19.71 km/sec, and using direct Hohmann transfer, total AV
is 23.13 The saving is about 3.4 km/sec.
= Find the time to travel from Earth to Neptune if direct Hohmann transfer was made
The time in this case is half the period of the Hohmann transfer ellipse, which can be found as follows

_ aDirect®
time = Pi ;

usun

time /(60 %60 %24 % 365) (+years:)

30.63814738
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32 project.nb

Appendix

Simulation program source code

93]:=
TR (xNotebookDelete[Cells[EvaluationNotebook[],GeneratedCell-True]];*)

Manipulate[
tick;
Module[
{xE, yE, xJ, yJ, xN, yN, eq, sol, xcc, ycc, slope, eql, eq2, debug = False, va, ra, z, delt, rbo, r, g0, now, x0, y0},

If[(state = "RUN" || state = "STEP" || state == "INITIAL"),

delt = Which[timeStep == "day", 606024,
timeStep =="week", 60%60%24x7,
timeStep == "month", 6060 x 24«30,
timeStep =="year", 6060 24 % 365

I;

XE = rES Cos[0E]; yE = rES Sin[0E];
(xxJ=rJS Cos[0J];yJ=rJS Sin[AJ];*)
xJ = rJS Cos[0Ix]; yJ = rIS Sin[6Ix];
XN = rNS Cos[6N]; yN = rNS Sin[6N];

date = DaysPlus[date,
Which[timeStep == "day", 1, timeStep == "week", 7, timeStep == "month", 30, timeStep == "year", 365]];
now = Grid[{
{"year", "month", "day"},
{padit2[date[[1]], 4], padIt2[date[[2]], 2], padIt2[date[[3]], 3]}

}, Frame - All];

If[showStats, g0 =
Grid[{
{Grid([{
{Style["Timings and angles as simulation runs", Bold], SpanFromLeft},
{"0e", "03", "ON", "OHohmann"s "State”, "Phase”, "0 Hohmann"},
{padIt2[0E + 180./Pi, {5, 2}],
(xpadIt2[6J%180./Pi,{5,2}],%)
padit2[0Jx = 180./Pi, {5, 2}],
padIt2[¢N % 180./Pi, {5, 2}],
padlt2[0EarthJupitor « 180./Pi, {5, 2}],
state,
padlt2[phase, 1],
padIt2[pEarthJupitor « 180/Pi, {5, 2}]
}
}, Frame — All]
B
{Grid[{
{Style["'mean speeds (km/sec)", Bold], SpanFromLeft},
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project.nb 33

{"Earth", "Jupiter", "Neptune", "probe to Neptune"},
{padlt2[sE, {4, 2}],
padit2[sJ, {4, 2}],
padlt2[sN, {4, 2}],
padit2[nIN xaJN, {4, 2}]
}
}, Frame — All]
B
{Grid([{
{Style["Dimenstions data and current probe speed”, Bold], SpanFromLeft},
{"rES", "rJS", "rNS", "current ProbeSpeed (km/sec)"},
{EngineeringForm[rES, 3],
EngineeringForm[rJS, 3],
EngineeringForm[rNS, 3],
padlt2[currentProbeSpeed, {4, 2}]
}
}, Frame — All]
B
{Grid[{
{Style["current positions in space", Bold], SpanFromLeft},
{"xN", "yN", "x probe", "y probe", "dist. probe to Neptuen"},
{EngineeringForm[xN, 3],
EngineeringForm[yN, 3],
EngineeringForm([x, 3],
EngineeringFormly, 3],
EngineeringForm[EuclideanDistance[{xN, yN, 0}, {x, y, 0}], 3]
}
}, Frame - All]
B
{Grid[{
{Style["Hohmann transfer from Earth to Jupiter data", Bold], SpanFromLeft},
{"a", "rp", "ra", "e", "current f", "current E"},
{EngineeringForm[aEJ, 3],
EngineeringForm[rES, 3],
EngineeringForm[rJS, 3],
padlt2[eEJ, {6, 5}],
padlt2[currentf«180/Pi, {5, 2}],
padlt2[currentE + 180/Pi, {5, 2}]
}
}, Frame - All]
B
{Grid[{
{Style["hyperbolic Jupiter flyby", Bold], SpanFromLeft},
{"Vo (km/s)", "e Hyper", "n Hyper (deg)", "yq (degree)”, "ym", "Vq (km/s)"},
{padit2[vinfinityHyperJ, {6, 3}],
padlt2[eHyper], {8, 7}],
padlt2[;HyperJ«180/Pi, {5, 3}],
padltl[yJN «180/Pi, {4, 1}],
padltl[¢INoriginal «+ 180/Pi, {4, 1}],
paditl[vdJN, {5, 3}]}
}, Frame - All]
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34 project.nb

{Grid[{
{Style["Post fly—by ellipse, Jupiter to Neptune", Bold], SpanFromLeft},
{"aJN", "rpJN", "raJN", "eJN (eccentricity)",
"fhew (true anamoly)”, Style["mean probe speed deg/day", 9]},
{EngineeringForm[aJN, 3],
EngineeringForm[rpJN, 3],
EngineeringForm[raJN, 3],
padlt2[eJN, {6, 5}],
padIt1[fINoriginal = 180/Pi, {4, 1}],
padItl[nJN +180/Pi« 606024, {6, 4}]
}
}, Frame - All]
b
{Grid[{{"current E (spacecraft)",
"current f",
"nHuhmannToJupiter (deg/day)",
“nIN(deg/day)"},
{paditl[currentE «180/Pi, {4, 1}],
paditl[currentf«180/Pi, {4, 1}],
paditl[nHuhmannToJupiter » 180 /Pix* 60«60 24, {6, 4}]}
}, Frame - All]

g= Grid[{{Graphics[{
(+*{White,EdgeForm[Directive[Blue]],Disk[{0,0},rNS]},)
{White, Opacity[0], EdgeForm[Directive[Blue]], Disk[{0, O}, INS]},
{White, Opacity[0], EdgeForm[Directive[Blue]], Disk[{0, 0}, rJS]},
{White, Opacity[0], EdgeForm[Directive[Blue]], Disk[{0, O}, rES]},
{

Blue, Opacity[.1], Thickness[0.022], EdgeForm[Gray], Circle[{0, 0}, NS]},

Which[phase =(0),
{LightBlue, Opacity[.5], EdgeForm[Gray], Disk[{0, 0}, rJS, {0E, 0E + §EarthJupitor }]}

phase ==1,

{

Clear[currentE];
currentE = currentE /. First@

agJ®

Quiet[NSoIve[tPhasel == Sqrt[ ](currentE eEJ Sin[currentE]), currentE, Reals]]

uSun

currente = Mod[currentE, 2 Pil;

currentR = aEJ* (1 — eEJ « Cos[currentE));
x0 = aEJ Cos[currentE];

X0 = x0 — (aEJ - rES);

y0=aEJV 1 -eEJ? Sin[currentE];

r = RotationMatrix[-initialHohmanny;
{x, y} = {x0, y0}.r;

Printed by Wolfram Mathematica Student Edition

61




2.2. Final project. Earth to Neptune via. .. CHAPTER 2. PRESENTATION...

project.nb 35

2 1
currentProbeSpeed = | uSun [— - —) ;
currentR  akEJ

tPhasel = tPhasel + delt;
{

(+Rotate[{Blue,Disk[{x,y},sizel},initialHohmann,{0,0}],x)

{Blue, Disk[{x, y}, size/4]},

Rotate[{Red, Circle[{xc, yc}, {aEJ, bEJ}, {0, Pi}]}, initialHohmann, {0, 0}],

Rotate[{Red, Dashed, Line[{{—aEJ (1 + eEJ), 0}, {aEJ (1 — eEJ), O}}]}, initialHohmann, {0, 0}]
}

phase == 2,

{

Clear[currentE];
currentE = currentE /. Firste

aJN®

Quiet[NSoIve[ tPhase2 == Sqrt[ ](currentE — eJN Sin[currentE]), currentE, Reals]];

uSun
currentE = Mod[currentE, 2 Pil;

currentR = aJN % (1 — eJN = Cos[currentE]);
X0 = aJN Cos[currentE];

X0 =x0 — (aJN - rJS);

y0 =aJNV 1 -eIN? Sin[currentE];

r = RotationMatrix[—(¢JForPhase2)];
{X, y} = {x0, yO}.r;

2 1
currentProbeSpeed = | uSun [— - —] ;
currentR  aJN

If[EuclideanDistance[{xN, yN, 0}, {x, y, 0}] < nSOl,
state ="STOP"
15

tPhase2 = tPhase?2 + delt;

{Blue, Disk[{x, Y}, size/4]}, (xmoving spacecraft:)
{Blue, Dashed, Line[{{0, O}, {x, y}}1}, (xmoving spacecrafts)

(«<rendevouze location Jupiter and earthx)
(+{Black,Disk[{rJS Cos[6JForPhase2+fIN],rJS Sin[@JForPhase2+fIN]},size]},)
{
(+original Hohmann Jupiter earthx)
Rotate[{Red, Circle[{xc, yc}, {aEJ, bEJ}, {0, Pi}]}, initialHohmann, {0, 0}],
(xnew ellipse post flybysx)
Rotate[{Red, Dashed, Circle[{xc2, yc2}, {aJN, bIN}1}, 8JForPhase2, {0, 0}]
}

J
|

{Opacity[.4], Red, Disk[{xE, yE}, size]},
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36 project.nb

{Opacity[.4], Red, Disk[{xJ, yJ}, size]},
{Red, Disk[{xN, yN}, nSOI]}

)

, PlotRange — {{—maxX, maxX}, {-maxX, maxx}},
If[showStats, ImageSize - 400, ImageSize - 600], Axes - True

il
[

If[state =="RUN" || state =="STEP",
t=t+ delt;

0E = Mod[¢E + wE = delt, 2 Pi];
0Jx = Mod[0Jx + wd xdelt, 2 Pi];
ON = Mod[0N + wN = delt, 2 Pi];

Which[phase =0,
If[Abs[(Mod[()E + OEarthJupitor, 2 Pi] — Mod[0Jx, 2 Pi])] < 5 Degree

If[debug, Print["detected Hohmann lock in,Mod[0E +6EarthJupitor,2 Pi]=",
Mod[¢E + #EarthJupitor, 2 Pi], " Mod[6Jx,2 Pi]=", Mod[6Jx, 2 Pi]]];

If[debug, Print["setting phase=1"]];

phase = 1;

rES +1JS
aEl= ——;

eEJ= ——;
rES +rJS

bEJ=aEJV 1-eEJ?;
lockAngleWithJupiter = Mod[0E + Pi, 2 Pi];
xf = rES Cos[0E];

yf = rES Sin[0E];

If[debug, Print["e Hohmann=", eEJ]];

)i
nHuhmannToJupiter = ;

initialHohmann = 6E;
xc = -aEJeEJ;
yc=0;
tPhasel =0
phase ==1,
If[Abs[IockAngIeWithJupiter ~ 0Jx] < Pi/100,
phase = 2;

2 1
va= _| uSun [— - —) ; (xvelocity of craft atJupiter entrancex)
rJS aEJ
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project.nb 37

vinfinityHyperJ = sJ — va;

rbo =rJ + SOIrb0; (xuse this KMx)

Clear[vbo];

vbo? ud vinfinityHyperJ? ud

eqq=—-—=— - —;
rbo 2 iSOl

vbo = First@ Select[vbo /. NSolve[eq, vbo], & > 0 &J;

rbo vInfinityHyperJ2
eHyperJ=1+ ——————;
ud

-1 ]
eHyperd”’
6IN = 2 nHyperJ - Pi;
#JNoriginal = 6JN;
VdIN = \/(SJZ + vinfinityHyperJd? — 2 sJ vinfinityHyperJ Cos[HJN]);

Clear[z];

nHyperJ = ArcCos[

vinfinityHyperJd Sin[6IN]

sol = Solve[Sin[z] = , z];
vdJN

yJNoriginal = z /. sol;

vJIN =2z /. Firstesol;

Clear|z];

eq =VvdIN ==

aJN =z /. FirsteNSolve[eq, z];
Clear(z];

alN? (1 - 2?)

eq=Cos[yIN] = | ———;
rJS (2 aJN - rJS)
sol = NSolve[eq, z];
sol =z /. sol;
eJN = Firste Select[sol, I >0 &];
Clear[z];
aIN (1 - eJN?)
eq=rJS= ————;
1 + eJN Cos|[z]
sol =z /. NSolve[eq, z];
fINoriginal = sol;
fIN = If[yJN = 0, First@ Select[sol, I > 0 &], First@ Select[sol, I < 0 &]];
rpJN = aJN (1 — eJN);
raJN = aJN (1 + eJN);

bIN=aJNV 1-eIN?;

AJForPhase2 = AJx — fIN;
xc2 = —aJNxeJN;
yc2 =0;
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38 project.nb
usun
nJN = ;
aJN®
_ s
currentE = ArcCos[ o ];
eJN
currentf = 0;
Clear(z];
eJN
eq=Tan[fIN/2] = Tan[z/2];
—-eJN

z =7 /. FirsteNSolveleq, z];
Clear[tPhase?2];

aJN®

tPhase2 = tPhase?2 /. Firste Quiet[NSoIve[ tPhase2 == Sqrt[ ] (z — eJN Sin[z]), tPhase2, Reals”;

usun
If[debug, Print["currentE for JN is =", currentE x« 180/ Pi]];
I(»:Entered SOl jupiterx)

|
[

If[state == "RUN",
vpllvpldx, 1]] = t;
vp[[vpldx, 2]] = currentProbeSpeed;
vpldx ++;
tick = Not[tick]
I;

If[showsStats,
Grid[{{g0}, {g}, {now}}],
Grid[{{g}, {now}}]

]

|

Grid[{
{Grid[{

{Button[Text[Style["run", 12]], state = "RUN"; tick = Not[tick], ImageSize - {60, 35}],
Button[Text[Style["step", 12]], state = "STEP"; tick = Not[tick], ImageSize - {60, 35}],
Button[Text[Style["stop", 12]], state = "STOP"; tick = Not[tick], ImageSize - {60, 35}]

}}, Frame - True],

Grid[{
{"zoom",
PopupMenu[Dynamic[zoom, {zoom = #; Which[zoom == "Earth", maxX = 1.2 rES, zoom == "Jupiter",
maxX = 1.21JS, True, maxX = 1.2 rNS]J; tick = Not[tick]} &], {"Earth", "Jupiter", "Neptune"},
ImageSize - Tiny, ContinuousAction - False]
}
}, Frame - True],
Grid[{{

"jupiter flyby alt",
Manipulator[Dynamic[SOIrb0, {SOIrb0 = #; tick = Not[tick]} &],
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project.nb 39

{1000, 10”6, 1000}, ImageSize — Tiny, ContinuousAction - True],
Dynamic[padIt2[SOIrb0, 6]]
}}, Frame - True],
Grid[{
{"step”,
PopupMenu[Dynamic[timeStep, {timeStep = f; tick = Not[tick]} &], {"day", "week", "month", "year"},
ImageSize — Tiny, ContinuousAction - False]
}
}, Frame - True],
Grid[{
{"relax", Spacer[2], Checkbox[Dynamic[showStats, {showStats = f; tick = Not[tick]} &]]}
1
}
}, Spacings — {0.4, .2}, Alignment —» Center
1,

{{showStats, False}, None},
(xhyper flyby Jupiter parameters:)
{{eHyperJ, 0}, None},

{{nHyperJ, 0}, None},
{{vInfinityHyperJ, 0}, None},

{{x, 0}, None},
{ty, 0}, None},

{maxX, 1.1 rNS}, None},

{zoom, "Neptune"}, None},

{SOIrb0, 410000}, None},
+{{SOIrb0,395000},None},*)
#{{SOIrb0,390000},None}, )

{timeStep, "week"}, None},

{size, 10000 rE}, None},

{tick, False}, None},

{state, "INITIAL"}, None},

{phase, 0}, None},

(xset 03/21/2014 FE=180+90, 6J=111.30+90, ON=334.9963+90 =)
(+{{6J,(111.30 +90)Degree},None},
{{6N,Mod[(334.9963 +90),360]Degree},None},
{{0E,270 Degree},None},x)

{
{
{
(
(
{
{
{
{
{

(+set 09/21/2014 very close x)
(+{{63x,(126.2818+90)Degree},None},
{{6N,Mod[(336.1014+90),360]Degree},None},
{{fE,M0d[356.7575+90,360] Degree},None},*)

(xset 10/21/2014 very very close=========> x)
(+{{6Jx,(128.6882+90)Degree},None},
{{6N,Mod[(336.2816+90),360]Degree},None},
{{0E,M0d[26.3119+90,360] Degree},None},*)

(+set 10/01/2014 ok, with 340,000 =)
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40 project.nb

(+{{6Ix,(127.1652+90)Degree},None},
{{6N,Mod[(336.167+90),360]Degree},None},
{{6E,Mod[7.5386+90,360] Degree},None},x)

(+set 03/21/2016 =)

{{603x, (169 + 90) Degree}, None},

{{ON, Mod[(339 + 90), 360] Degree}, None},
{{0E, 270 Degree}, None},

(xset 03/15/2016 =)
(+{{6Ix,(168.5740+90)Degree},None},
{{6N,Mod[(339.3579+90),360]Degree},None},
{{0E,(174.6131+90) Degree},None},:)

(xset 03/30/2016 =)
(+{{63x,(169.7170+90)Degree},None},
{{6N,Mod[(339.4480+90),360]Degree},None},
{{6E,(189.4931+90) Degree},None},x)

(xset 04/15/2016 =)
(+{{63x,(170.9351+90)Degree},None},
{{6N,M0d[(339.5442+90),360]Degree},None},
{{0E,(205.2323+90) Degree},None},x)

(+set 05/15/2016 =)
({{6Ix,(173.2164+90)Degree},None},
{{6N,Mod[(339.7246+90),360]Degree},None},
{{6E,(234.3716+90) Degree},None},x)

(xset 06/15/2016 =)
(+{{63x,(175.5701+90)Degree},None},
{{ON,Mod[(339.9109+90),360]Degree},None},
{{6E,(264.1023+90) Degree},None},x)

(xset 01/01/2016 =)
(+{{6Ix,(162.9198+90)Degree},None},
{{6N,Mod[(338.9131+90),360]Degree},None},
{{6E,(99.7590+90) Degree},None},x)

(+set 03/21/2000 YE=179.5877, §J=43.4305+90, IN=304.3955+90x)
(+{{6J,(43.4305+90)Degree},None},
{{6N,Mod[(304.3955+90),360]Degree},None},

{{6E,270 Degree},None},x)

(xset 03/21/2017 =)

(+#{{6J,(196.5839 +90)Degree},None},
{{6N,Mod[(341.5831 +90),360]Degree},None},
{{0E,270 Degree},None},)

(xset 03/21/2020 OK x)

Printed by Wolfram Mathematica Student Edition

67




2.2. Final project. Earth to Neptune via. ..

CHAPTER 2. PRESENTATION...

project.nb

(+{{6J,M0d[(282.3034+90),360]Degree},None},
{{6N,Mod[(348.1929 +90),360]Degree},None},
{{0E,270 Degree},None},x)

({{6Jx,Pi/4},None},
{{6Ixx,45},None}, )

{{t, 0}, None},

{{tPhasel, 0}, None},

{{tPhase2, 0}, None},

{{date, {2016, 03, 21}}, None},
{{a, 0}, None},

{{e, 0}, None},
{{nHuhmannToJupiter, 0}, None},
{{nJN, 0}, None},

{{currentE, 0}, None},

{{currentf, 0}, None},
{{initialHohmann, 0}, None},

{{xf, 0}, None},

{{yf, 0}, None},

{{xc, 0}, None},

{tyc, 0}, None},

{{xc2, 0}, None},

{{yc2, 0}, None},

{{currentR, 0}, None},
{{lockAngleWithJupiter, 0}, None},
{{lockAngleWithNeputon, 0}, None},
{{aJN, 0}, None},

{{raJN, 0}, None},

{{rpJN, 0}, None},

{{bJN, 0}, None},

{{eJN, 0}, None},

{{fJN, 0}, None},

{{fINoriginal, 0}, None},

{{aEJ, 0}, None},
{{bEJ, 0}, None},
{{eEJ, 0}, None},
{{fEJ, 0}, None},
{{¢JForPhase2, 0}, None},

{{yJN, 0}, None},

{{yJNoriginal, 0}, None},

{{¢IN, 0}, None},

{{0INoriginal, 0}, None},

{{vdJN, 0}, None},

{{currentProbeSpeed, 0}, None},

{{g, 0}, None},
{{g0, 0}, None},

{{vp, Table[{0, O}, {50+365}]}, None},
{{vpldx, 1}, None},
TrackedSymbols - {tick},

41
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42 project.nb

ControlPlacement — Top,
Initialization >
(

integerStrictPositive = (IntegerQ[ ] && > 0 &);
integerPositive = (IntegerQ[] && # = 0 &);
numericStrictPositive = (Element[ii, Reals] && i > 0 &);
numericPositive = (Element[f, Reals] && & > 0 &);
numericStrictNegative = (Element[, Reals] && # <0 &);
numericNegative = (Element[, Reals] && <0 &);
bool = (Element[f, Booleans] &);
numeric = (Element[ff, Reals] &);
integer = (Element[f, Integers] &);

paditl[v_?numeric, f_List] := AccountingForm([v,
f, NumberSigns - {"-", "+"}, NumberPadding - {"0", "0"}, SignPadding - True];

padltl[v_?numeric, f_Integer] := AccountingForm[Chop[V],
f, NumberSigns - {"-", "+"}, NumberPadding - {"0", "0"}, SignPadding - True];

padlt2[v_?numeric, f_List] := AccountingForm([v,
f, NumberSigns - {", "'}, NumberPadding — {"0", "0"}, SignPadding - True];

padIt2[v_?numeric, f_Integer] := AccountingForm[Chop[Vv],
f, NumberSigns - {", "}, NumberPadding - {"0", "0"}, SignPadding — True]
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project.nb 43

. jupiter —{}—— = 410000
run step stop zoom Jupiter fiyby alt :

out[93

year | month | day
2019 05 |o26
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2.2.4 Matlab code

I do not now remember why I wrote this for. I think it was an initial attempt in Matlab,
because in the final report I used Mathematica. But here is the listing. It seems to be do
something. I should make an animation of this.

)} <Student Version> Figure 1 _ o x|
M

Fle Edit View Insert Tools Desktop Window Help

el e D =2 %2 T U ol

T N T N S e e S e S S Gy S S et
N B S © ©® N e w D - O

OddsS | RG89 ds - E20H e

time 1 772970 days, ime 2= 4530 d

. E=360.50 degree

x10

nma project2 EMAb’50 v3.m

function nma_project2_EMA550_v3

close all;
MODE=1;

earthToSun = 1.495978%x1078;
jupiterToSun = 1.495978%1078%5.203;
neptuneToSun = 30.07%1.495978%1078;
jupiterR=71492;

muSun = 1.327%x10711;

muJupiter = 126686534;
jupiterS0I=4.83*1077;

rE = 6378;

earthCurrentP=10%*pi/180;
earthInitialP=10%pi/180;

neptuneCurrentP=mod ((335.0023 + 180), 360)*pi/180;
neptuneInitialP=mod((335.0023 + 180), 360)*pi/180;

jupiterCurrentP=(1)*pi/180;
jupiterInitialP=(1)*pi/180;

if jupiterCurrentP<earthInitialP

initialPhasEarthJupitor=2*pi-(earthInitialP-jupiterCurrentP);




23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

2.2. Final project. Earth to Neptune via... CHAPTER 2. PRESENTATION...

else
initialPhasEarthJupitor=jupiterCurrentP-earthInitialP;

end

if MODE==0
p=hohmannPeriod(earthToSun, jupiterToSun, muSun);
a=semiMajor (earthToSun, jupiterToSun);
e=hohmannEnergy (earthToSun, jupiterToSun, muSun);
a=hohmannAngle (earthToSun, jupiterToSun);
v=vperigee(earthToSun, jupiterToSun, muSun);
w=angularVelocity(earthToSun, muSun);
p=updatePosition(earthToSun,0,1, muSun);
[rt,transferTime]=biEllipticalTransfer(rE,earthToSun,\

jupiterToSun,initialPhasEarthJupitor,muSun)
end

[rTransferToJupiter,transferTime]=biEllipticalTransfer(...
2xrE,earthToSun, jupiterToSun,initialPhasEarthJupitor,muSun);

huhmannToJupiterSemiMajorl = (earthToSun + rTransferToJupiter)/2;
eHuhmannToJupiterl = (rTransferToJupiter - earthToSun)/...
(rTransferToJupiter + earthToSun);

nHuhmannToJupiterl = 1/ sqrt(huhmannToJupiterSemiMajor1~3/muSun) ;’%rad/sec
periodhuhmannToJupiterl = 2+*pi/nHuhmannToJupiteril;

huhmannToJupiterSemiMajor2 = (rTransferToJupiter + jupiterToSun)/2;
if rTransferToJupiter<jupiterToSun
eHuhmannToJupiter2 = (jupiterToSun-rTransferToJupiter)/...
(rTransferToJupiter + jupiterToSun);
else
eHuhmannToJupiter2 = (rTransferToJupiter-jupiterToSun)/...
(rTransferToJupiter + jupiterToSun);
end
nHuhmannToJupiter2 = 1/ sqrt(huhmannToJupiterSemiMajor2~3/muSun) ;’%rad/sec*)
periodhuhmannToJupiter2 = 2+*pi/nHuhmannToJupiter?2;

wEarth = angularVelocity(earthToSun, muSun) ;

wJupiter = angularVelocity(jupiterToSun, muSun);

wNeptune = angularVelocity(neptuneToSun, muSun);
hohmannAngleJupiter = hohmannAngle(earthToSun, jupiterToSun);
hohmannAngleNeptune = hohmannAngle(earthToSun, neptuneToSun) ;
ndays1=0;

ndays2=0;

ndays3=0;

currentTimeInSec=0;
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timel=0;
time2=0;
time3=0;

currentF=0;
currentE=0;

figure;

axis square

hold on;

syms EE currentTheta;
firstTime=true;
firstTimeFlyBy=true;
stepSize=60%60*24*60; Jmonth
doneLoop=false;

for i=0:10000

if currentTimeInSec < periodhuhmannToJupiterl/2
ndaysl=currentTimeInSec/ (60%60%24) ;
currentE = nHuhmannToJupiterl*currentTimeInSec;
currentR = huhmannToJupiterSemiMajorlx*. ..
(1 - eHuhmannToJupiterl*cos(currentE));

eq = cos(currentTheta) == (eHuhmannToJupiterl -
cos(currentE) )/ (eHuhmannToJupiterl*cos(currentE) - 1);

solCurrentTheta = double(vpa(solve(eq, currentTheta)));

solCurrentTheta

solCurrentTheta(solCurrentTheta==. ..

real (solCurrentTheta));

solCurrentTheta = solCurrentTheta(solCurrentTheta>0);

solCurrentTheta
else %on second ellipse, long one

min(solCurrentTheta)+earthInitialP;

if currentTimeInSec >= periodhuhmannToJupiterl/2 && ...
time2<periodhuhmannToJupiter2

time2 = time2 +stepSize;
if firstTime

time2=time2+periodhuhmannToJupiter2/2;

firstTime=false;
end

ndays2=(time2-periodhuhmannToJupiter2/2)/(60%60%24) ;
currentE = nHuhmannToJupiter2*time2;
currentR = huhmannToJupiterSemiMajor2x. ..

(1 - eHuhmannToJupiter2*cos(currentE));
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117 eq = cos(currentTheta) == (eHuhmannToJupiter2 -

118 cos(currentE))/(eHuhmannToJupiter2*cos(currentE) - 1);
119

120 solCurrentTheta = double(vpa(solve(eq, currentTheta)));
121

122 solCurrentTheta = solCurrentTheta(solCurrentTheta==...
123 real (solCurrentTheta));
124

125 z=solCurrentTheta(solCurrentTheta<O0) ;

126 if length(z)>=1

127 if abs(z)<pi

128 z=2%pi+z;

129 else

130 z=pi-z;

131 end

132 else

133 z=max (solCurrentTheta) ;

134 end

135 solCurrentTheta = z+earthInitialP;

136 else Jthird legg calculate flyby

137 if firstTimeFlyBy

138 firstTimeFlyBy=false;

139

140 %this assume jupiter is at perigee!!

141 vp=sqrt (muSun*(2/jupiterToSun - 1/...

142 huhmannToJupiterSemiMajor2)) ;

143

144 vJupiter = sqrt(muSun/jupiterToSun) ;

145 vinf= abs(vp-vJupiter);

146 rbo=500+jupiterR;

147 vbo= sqrt(2*( muJupiter/rbo + vinf~2/2 - ...

148 muJupiter/jupiterS0I)) ;
149

150 eHyper=1+ (rbo*vinf~2)/muJupiter;

151

152 eta = acos(-1/eHyper);

153 theta=2*eta-pi;

154

155 %»vD = sqrt(vJupiter”2+vinf ~2-2*vJupiter*vinf*cos(theta));
156 vD = sqrt(vp~2+vinf 2-2*vp*vinf*cos(theta));

157

158 gamma=asin(vinf*sin(theta)/vD);

159

160 syms anew;

161 eq=vD==sqrt (muSun*(2/jupiterToSun - 1/anew));
162 anew=double(solve(eq,anew)) ;

163
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syms e;
eq=cos (gamma)==sqrt ((anew™2x(1-e72))/...
(jupiterToSun*(2*anew-jupiterToSun)));

sol=double(solve(eq,e));
e=s01(s01>0) ;

syms fNew;
if e>1
%find true anamoly in the new hyperbola
eq= jupiterToSun == abs(anew)*(e~2-1)/...
(1+e*cos(fNew));

sol=double(solve(eq,fNew)) ;
fNew=so0l (s01>0) ;
rpNew=abs (anew) * (e-1) ;

bNew = sqrt(anew™2*(e"1-1));

%http://mathforum. org/kb/message. jspa?messageID=6230348

plot_hyper (fNew,bNew,anew,e,neptuneToSun) ;
else
eq = tan(gamma) == exsin(fNew)/(l+excos(fNew));
sol=double(solve(eq,fNew));
z2=max (real (sol));
rpNew=anew* (1-e) ;
bNew=anew*sqrt (1-e~2);
raNew=2*anew-rpNew;
plot_ellipse(fNew,bNew,anew,e,neptuneToSun,x2,y2) ;
end

end
if time2>periodhuhmannToJupiter2
doneLoop=true;
end
end
end

earthCurrentP = mod((wEarthx*. ..
currentTimeInSec+earthInitialP) ,2*pi);

jupiterCurrentP = mod( wJupiter*currentTimeInSec+...
jupiterInitialP, 2#*pi);

neptuneCurrentP = mod( wNeptune* currentTimeInSec+...
neptuneInitialP, 2*pi);
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211 x1 = earthToSun*cos(earthCurrentP );

212 yl = earthToSun*sin(earthCurrentP);

213 x2 = jupiterToSun*cos(jupiterCurrentP);

214 y2 = jupiterToSun*sin(jupiterCurrentP);

215 x3 = neptuneToSun*cos (neptuneCurrentP) ;

216 y3 = neptuneToSun*sin(neptuneCurrentP) ;

217 ej = abs(earthCurrentP - jupiterCurrentP);

218 en = abs(earthCurrentP - neptuneCurrentP);

219

220 plot ( earthToSun*exp((0:.01:2%pi)*1i));

221 hi=plot(x1l,yl,'or');

299 h2=plot(x2,y2,'or');

223 if i==0

224 plot ([0 5.5*x1],[0 5.5*%y1],"':k');

225 end

226 plot( jupiterToSun*exp((0:.01:2*%pi)*1i));

227 h3=plot(x3,y3,'or');

228

229 plot( neptuneToSun*exp((0:.01:2xpi)*1i));

230 plot(currentR*cos(solCurrentTheta) ,currentRx*. ..

231 sin(solCurrentTheta), 'ob', 'LineWidth',1, 'MarkerSize',1);
232

233 h4=plot (currentR*cos(solCurrentTheta) ,currentRx*. ..

234 sin(solCurrentTheta), 'ok');
235

236 h5=text (-.9*neptuneToSun, .8*neptuneToSun, ...

237 sprintf('time 1 = %6.0f days, time 2 = %6.0f days, E=/5.2f degree',...
238 ndaysl, ndays2,currentEx180/pi));
239

240 pause(.01);

241 if ~doneLoop

249 delete(hl) ;delete(h2) ;delete(h3) ;delete(hd); delete(hb);
243 else

244 break;

245 end

246 currentTimeInSec = currentTimelInSec+stepSize;

247 %hold off;

248

249

250 | end

251 | end

252

253 | function p=hohmannPeriod(rl, r2, mu)

254 |a = semiMajor(rl, r2);

955 | p=2*pi*sqrt(a~3/mu) ;

256 | end

257
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function a=semiMajor(rl, r2)
a=(rl + r2)/2;
end

function e=hohmannEnergy(rl, r2, mu)
e= -mu/(rl + r2);
end

function a=hohmannAngle(sourceR, targetR)
a=pi*(1 - ((sourceR + targetR)/(2xtargetR))~(3/2));
end

function v=vperigee(sourceR, targetR, mu)
a = semiMajor(sourceR, targetR);

v=sqrt (mux(2/sourceR - 1/a));

end

function w=angularVelocity(r, mu)
w = sqrt(mu/r~3);
end

function v=linearVelocity(r, mu)
v = sqrt(mu/r);
end

function p=updatePosition(r, currentPos, nDays, mu)
w = angularVelocity(r, mu);

W = wx60%60*24; Yconvert to radians per day
p=currentPos + (w*nDays*180/pi);

end

function [sol, t1]=biEllipticalTransfer (rMin,sourceR,...
targetR,initialTheta,mu)

hTheta = hohmannAngle(sourceR, targetR);

syms rt;

al = (sourceR + rt)/2;

a2 = (targetR + rt)/2;

tl = ((rt+sourceR)/2)~(3/2) + ((rt+targetR)/2)~(3/2) ;

wUpper = angularVelocity(targetR, mu);

n=0;

if initialTheta < hTheta
t2 ( (2*#pi*(n+1) - initialTheta )*targetR~(3/2) /pi);
sol double(vpa(solve(tl==t2, rt)));
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305 sol = sol(sol==real(sol));

306 sol = sol(sol>rMin&sol>targetR);

307 sol = min(sol);

308 | else

309 so0l1=0;

310 n=1;

311 foundSolution=false;

312 while n<10 && ~foundSolution

313 t2 = ( (2*pix(n+1) - initialTheta )*targetR™(3/2) /pi);
314 sol = solve(tl == t2, rt);

315 sol = double(vpa(solve(tl==t2, rt)));

316 sol = sol(sol==real(sol));

317 sol = sol(sol>rMin);

318 if length(sol)>=1

319 sol = min(sol);

320 foundSolution=true;

321 else

322 n=n+1;

323 end

324 end

325 | end

326

327 | t1=double (vpa(subs(tl,rt,so0l)));

328

329 | end

330

331 | function plot_hyper(f,b,a,e,neptuneToSun)

332 | %Q=[cos( fNew) -sin( fNew);sin( fNew) cos( fNew)];
333 | syms y Xx;

334 | c=ax*e;

335

336 | ezplot( (x-c)”2/a"2 - y~2/b"2 - 1, [-neptuneToSun neptuneToSun-...
337 neptuneToSun neptuneToSun]);
338 | end

339

340 | function plot_ellipse(f,b,a,e,neptuneToSun,x2,y2)
341 | syms y X;

342 | c=ax*e;

343

344 | ezplot( (x-x2)72/a"2 + (y-y2)~2/b"2 - 1 ,...

345 [-neptuneToSun neptuneToSun -neptuneToSun neptuneToSun]) ;
346 | end

nma project2 EMAbL50 driver

|
2 ‘clear all;
3 ‘syms rt;
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t1=pix(((rt/2 + 74798900)3/132700000000) ~(1/2) + ..

((rt/2 + 1632333680397517/4194304)~3/132700000000) ~(1/2));
t2=3.7455e+08;
soll=solve(tl
sol2=solve(t1

t2, rt)
t2, rt)
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3.1 project description

From the Earth to the Moon
EMA 550 Astrodynamics - Spring 2014

Due Date: Thursday, April 3, 2014 (PDF of report to online Lunar Project dropbox by 11:55 pm)

Your job is to design a variety of trajectories from the Earth to the Moon. Submit a detailed and well-
written technical report with the parts specified below. For each part, your report should describe the
maneuver and answer any questions asked in full paragraphs. Include all requested illustrations. Show
clearly how you arrived at your answers so that you could easily reference this document again in the
future and follow your steps again. Please complete this project in pairs and submit one report for the
team.

For all parts of the project, assume the following regarding the Moon and the Moon’s orbit:

Radius of the Moon: rygon = 1738 km
Gravitational parameter of the Moon: pweon = 4902.8 km?/s?
Moon’s sphere of influence radius: 6.6 x 10* km
Moon’s orbit about the Earth:
a = 384,400 km
e = 0 (actual mean eccentricity = 0.05490)
i = 23.5° relative to the Earth’s equatorial plane (average of its range from 18° to 29°)
w undefined because of circular orbit assumption
Q =0° (oscillates £14° about Q = 0° with a period of 18.6 years)

For all parts of the project, assume that the Moon orbits the Earth’s gravitational and geometrical center
and that the Earth is gravitationally and geometrically spherically symmetric with rg,, = 6378 km and
earth = 3.986 x 10° km®/s2.

Also assume that the spacecraft starts in a 300 km altitude circular orbit about the Earth (LEO) in the
same plane and in the same direction as the Moon’s orbit about the Earth.

Part I: Hohmann Transfer

Mission: Find a Hohmann transfer from a 300 km altitude initial circular orbit about the Earth to a
circular orbit about the Earth at the same distance as the Moon’s orbit.

Details to include:

1) Report the semi-major axis and eccentricity of the Hohmann transfer orbit.
2) Report the AV for each burn and the total AV required.
3) Report the transfer time required for the transfer (in days)
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Part ll: Tangential Flyby

Mission: With a single AV in LEO, perform a Hohmann transfer from LEO to the vicinity of the Moon,
performing a close flyby of the surface of the Moon. According to the JPL Lunar Constants and Models
Document, the highest peak on the Moon’s surface is 8 km above an average spherical radius of 1737.4
km. For safety considerations, set the burnout radius for the close flyby to 1760 km.

Details to include:

1) Calculate the impact parameter required to achieve a lunar burnout radius of 1760 km.

2) Include a Moon-centered figure that shows the hyperbolic flyby of the spacecraft in the Moon’s
frame of reference. The Moon’s radius, the impact parameter, and the burnout radius should all
be shown to scale relative to each other. Include the turning angle of the asymptotes. The
curved part of the hyperbola may be approximated, but should connect the asymptotes and the
burnout radius.

3) Assuming that the spacecraft approaches the Moon on the side between the Moon and the
Earth, calculate the a and e of the spacecraft’s orbit relative to the Earth after it leaves the
Moon’s sphere of influence.

4) Calculate the true anomaly f of the Moon’s position (that is, the position it shares with the
spacecraft from the Earth’s perspective during the flyby) on the spacecraft’s post-flyby orbit
about the Earth. Use this true anomaly to locate perigee of the post-flyby orbit.

5) Include a figure that shows the velocity triangles for the flyby (Vmoon wrt earths Varrival wrt Earths Vieparture
wrt Earthy Ves in wrt Moons Ves out wrt Moon, TUFNING angle 6).

6) Include an Earth-centered figure that shows the LEO orbit, the Moon’s orbit, the Hohmann
trajectory from LEO to the Moon, and the post-tangential-flyby orbit to scale with accurate sizes
and shapes.

Part lll: Non-Tangential Flyby

Mission: With a single AV in LEO, send the spacecraft on a transfer ellipse that is tangent to LEO and has
a semi-major axis equal to 300,000 km. Perform the same close flyby of the lunar surface.

Details to include:

1) Assuming that the spacecraft flies behind the Moon at the intersection of the two orbits where
0 < f<180° on the pre-flyby ellipse, calculate the a and e of the spacecraft’s orbit relative to the
Earth after the flyby.

2) Calculate the true anomaly f of the Moon'’s position on the post-flyby orbit about the Earth.

3) Include a figure that shows the velocity triangles for the flyby.

4) Repeat steps 1-3 assuming that the spacecraft flies in front of the Moon.
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Part IV: Free-Return Trajectory

Mission: Create a trajectory that uses a single burn in Earth LEO to reach the Moon, performs the same
close flyby of the Moon (same burnout radius), and achieves a post-flyby elliptical orbit about the Earth
with a perigee radius between 6678 km and 6878 km (300 to 500 km altitude). This is called a free-
return trajectory because the spacecraft reaches the Moon and returns to the Earth without needing to
burn fuel for the return trip. For an animated illustration of a free-return lunar trajectory, see
http://www.braeunig.us/apollo/free-return.htm.

To accomplish this automatic return, you get to choose the size and shape of the pre-flyby trajectory
and the arrival position with respect to the Moon (between the Moon and the Earth, outside the Moon’s
orbit, fly behind the Moon, fly in front of the Moon).

Details to include:

1) Describe any assumptions or design decisions used to limit the available variables.

2) Determine the a and e of the initial orbit and the AV needed in LEO to start the maneuver.

3) Describe the arrival position with respect to the Moon that you chose and illustrate it using
velocity triangles.

4) Show that the spacecraft will return to the required perigee without any burns beyond the one
required to start the transfer.

Part V: Rendezvous and Timing Considerations
Mission: Calculate the timing and positions required for your free-return trajectory.
Details to include:

1) Treating the SOI of the Moon as a single point at the location of the Moon, how long does your
spacecraft take to reach the Moon (i.e., what is the transfer time on the pre-flyby piece of your
free-return trajectory)?

2) What angle must your spacecraft and the Moon have relative to each other at the time of the
LEO AV in order for the Moon to be at the required location at the time of the flyby?

3) How often do the spacecraft in LEO and the Moon have the correct alignment?

4) The patched conic approach treats the flyby as an instantaneous AV from the Earth’s frame of
reference. Evaluate and discuss this assumption. How long does the flyby really take (i.e., how
long is the spacecraft within the Moon’s SOI)? How does the time in the SOl compare to the
total time required for the trip (time to get to the Moon plus the flyby time and the return
time)? What percentage of an orbit does the Moon complete during the time that the
spacecraft is within the Moon’s SOI?

3.2 fact check

This is a check on some selected values for the first parts of the Lunar Project. There are
multiple solutions to the fourth part, the free-return trajectory, but you can use this worksheet
to verify your code for the first three parts. This is entirely optional and not part of your
project grade.
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NOTE: The write-up requests more values than those shown here.

3.21 PartI: Hohmann
Semi-major axis: Answer km

Total AV Answer km/s

3.2.2 Part II: Tangential Flyby

Turning angle of the asymptotes: Answer degrees
Speed after the flyby relative to the Earth: Answer km/s

Eccentricity on postflyby trajectory: Answer

3.2.3 Part III: Non-Tangential Flyby Behind the Moon

Turning angle of the asymptotes: Answer degrees
Speed after the flyby relative to the Earth: Answer km/s

Eccentricity on postflyby trajectory: Answer

3.2.4 Part III: Non-Tangential Flyby In Front of the Moon
Turning angle of the asymptotes: Answer degrees
Speed after the flyby relative to the Earth: Answer km/s

Eccentricity on postflyby trajectory: Answer

3.3 report

3.3.1 Part 1, Hohmann Transfer
3.3.2 problem description

Mission: Find a Hohmann transfer from a 300 km altitude initial circular orbit about the
Earth to a circular orbit about the Earth at the same distance as the Moon’s orbit.

Details to include:
1. Report the semi-major axis and eccentricity of the Hohmann transfer orbit.
2. Report the DV for each burn and the total DV required.

3. Report the transfer time required for the transfer (in days)

85



3.3. report CHAPTER 3. LUNAR PROJECT

3321 partl
Figure shows the steps used. The satellite perigee 7, is found from

ri+r
a= 1 > 2
Vi= [
" AV, \/ - a3
A T=r/%
u(— — —) Time to transfer
from one orbit to
the other
AV, =V, -V,

e

Hohmann Transfer

AV = V4 —V3
V = |AV1| + |AV2|

Total Velocity
change needed

Figure 3.1: Steps to preform Hohmann orbit transfer

r

p = Tearth + alt

= 6378 + 300
= 6678 km

The apogee distance 7, is the moon’s distance from center of earth given by r, = 384400 km.
Therefore the semi-major axis a is
Tt
2
384400 + 6678
2

=| 195539 km

a =

The eccentricity e is

ra =Ty

e =
fa—Tp

384400 + 6678
384400 - 6678

=1 0.96585
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3.3.2.2 part2
V; is the spacecraft velocity in LEO and is given by

Vl — Hearth
T

3.986 x 10°

6678
=| 7.7258 km per second

The spacecraft required speed at perigee of the Hohmann transfer orbit V), is

2 1
Vp = 7| Hearth a T

2 1
=4/3.986 X 10° | — —
6678 195539

=| 10.8323 km per second

Since the moon is inside the sphere of influence of the earth, the difference of the above
two speeds is all that is needed to send the spacecraft to the moon using a Hohmann orbit.

Therefore
AV] = VP - Vl
=10.8323 — 7.7251

=| 3.1065km per second

When the spacecraft reaches the apogee of the Hohmann orbit, its speed V,, will be

2 1
Va = A\ |Hearth -~

T, a

2 1
3.986 x 10° -
\/ (384400 195539)

=| 0.1882km per second

The required speed V, to put the satellite in the moon’s circular orbit is

t
V2 — Hearth

ﬁ

a

~ /3986><105
YV 3844008

=| 1.0183 km per second
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Therefore the impulse needed is
AV, =1.0183 - 0.1882

=| 0.83km per second

The total AV is found from
AV = |AVy] + |AV,|
= 3.1065 + 0.83

=| 3.937km per second

3.3.2.3 part3

The transfer time AT in seconds from the earth’s LEO orbit to the moon’s circular orbit is
half the period of the Hohmann ellipse. Therefore

a3

AT =T
Wearth

[ 1955393
=Ty —
3.986 x 10°

4.3026¢5 second

=| 4.9798 day

Figure shows the final orbit which is to scale and was generated from STK.

Figure 3.2: Hohmann orbit to scale from STK
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3.3.3 Part II, Tangential flyby

The following parameters are used in the calculations that follows
Ueartn = 3.986€5 km® per second squared

Umoon = 4902.8 km’ per second squared
1, = 384400 km
Voartn = 6378 km
Fooon = 1737.4km
1o = 1760 km
SOI,,0y = 6.6ledkm
Figure |3.3|shows a more detailed Hohmann transfer orbit used as a guide in the calculations

that follows. This diagram is not drawn to scale. A diagram drawn to scale is given at the
end of this section.
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!VIoon sphtir,e,of' R Switch to planet
|nf|uen§§/ N Q © point of view
\\
\
\

Earth point of view

1£}
T
‘J_. Voo = V2 - Vapogee

apogee ¢+————

moon

Moon point of view (moon fixed and
spacecraft is moving towards it
showing the asymptotic lines and
the turning angle theta)

/ interplanetary Hohmann
transfer orbit leading to an
orbit around target planet

Part_2_1.vsdx
Nasser M. Abbasi
March 20, 2014

Figure 3.3: Showing Hohmann transfer from earth to the moon
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3331 partl

The velocity of the spacecraft at the apogee of the Hohmann transfer was found in part (I)
as V, = 0.188184 km per second. The speed of the moon relative to earth is V,,,,, = /@ =

1.0183 km per second, therefore the speed of the spacecraft relative to the moon at the entry
of the moon’s sphere of influence is

Veo = Vinoon = Vi = 0.830119 km per second

Using the energy equation we can solve for the burn out speed V,, which is the speed of
the spacecraft at r,,, the closest distance from the moon surface

V_lgo _ [Jmoon — V_(%O _ /‘lmOOVZ
2 re 2 SOLuon
VZ, 49028 0.830119%  4902.8

2 1760 2 6.6x104

Solving gives

Vi = 2.47222km per second

The impact distance b is found by solving
bV =15 Vi
b(0.830119) = (1760)(2.47222)
Giving

b = 5241.56 km

3.3.3.2 part2

Figure 3.4/ drawn to scale shows a moon centered fly-by of the spacecraft. We now determine
the angle n and 6 and the final speed V which is the speed relative to earth when the
spacecraft exits the moon’s SOI.

The eccentricity of the flyby hyperbolic orbit is found as follows

2
74,V
e=14 0

Hmoon

_ 4, (1760)(0.830119)
- 4902.8

=| 1.24737
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New speed of spacecraft
relative to earth as it exists
the moon SOl after the fly-by

Vp

Impact
distance.

V4

Speed of spacecraft
relative to earth as it \ V

enters the moon SOI

Speed of spacecraft relative
to the moon on the fly-by
hyperbolic orbit inside the SOI

part_2_2.vsdx
Nasser M. Abbasi
031414

Figure 3.4: Moon-centered fly-by hyperbolic trajectory of the spacecraft
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Hence
-1
= arccos | —
" e
B -1
Ao 1oa737
= 2.50665 radian
=| 143.621 degree
Therefore

0 = 2n—-180degree
= 2(143.621) — 180 degree

=| 107.241 degree

We now calculate V), the departure speed relative to earth, using figure that shows the
change in speed and direction of the spacecraft as it enters and exists the moon’s sphere of
influence.

VE = V20 + V2 =2V, 000 Voo cOS O
= 1.01832 + 0.8301192 - 2(1.0183)(0.830119) cos (107.241 degree)

Hence

Vp =1.49236 km per second

The angle y, is found from the law of sines

Vb Ve
sin@  sin Vd
. V. sin @
S Yy = V—D
_(0.830119) sin (107.241 degree)

1.49236
Hence siny; = 0.531252 and

v4 = 32.0901 degree
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change in magnitude of
spacecraft speed

Relative to 5
moon SS—
—_V Relative to earth
Vx.out A V 4 \\\D\,
SO T —_
S Yy T
Veoin T Vs
-
Vinoon
Vb

Original Hohmann
transfer ellipse

Moon orbit

Figure 3.5: Spacecraft after fly-by and finding the new ellipse parameters
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3.3.3.3 part3

The semi-major axis of the new orbit a,,, is found from

. 2 1
D — HUearth r Do

2 1
1.49236 = +/3.986 x 10° -
\/ (384400 anew)

Solving numerically for a,,,, gives

ey = —2.60104¢6 km

The new eccentricity is found from
g (zanew - 7”,1)

(~2.60104 x 106)2(1 — ¢2)
384400(2(-2.60104 x 106) — 384400)

COS Yy =

cos (32.0901 degree) = \/

Solving numerically for the new e and taking the positive root gives

e =1.10808

Therefore, the new trajectory is hyperbolic when the spacecraft exits the moon’s sphere of
influence.

3.3.3.4 part 4

Since the new trajectory is hyperbolic, the true anomaly f can be found using the hyperbolic
equation
— anew(ez B 1)
1+ecosf
2.60104 x 10°(1.108082 — 1)
1+ (1.10808) cos f

Solving for f and taking the positive value since the spacecraft is in the positive half plane
gives

1

384400 =

f =1.06009 radian
= 60.7387 degree

This value of the true anomaly is used to locate the new perigee of the post flyby orbit. The
r, of the hyperbola is first found from
Ty = Apew(e —1)
= 2.60104 x 10°(1.10808 — 1)
= 281109 km
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Figure [3.6 shows the new post flyby hyperbolic trajectory

/ 348400

|
|
|
|
|
|
I
|
|
I ,.
| ps
0 7

| 67.74°
7281109
[

Figure 3.6: Showing the perigee on the post fly-by hyperbolic orbit (not to scale)

3.3.3.5 partd
Figure [3.7 shows the velocity vector diagram

change in magnitude of
spacecraft speed

red lines are
Relative to
earth

V p(departure)
Vao_.our

dark lines
<
. < -
are relative ’/ Veein V4 (arrival)
e
<

to moon
turning

angle

Figure 3.7: Velocity diagram

3.3.3.6 part6

Figure was generated from STK showing the LEO and small part of the Hohmann
transfer orbit with the moon orbit at a distance. This is to scale. Figure was drawn using
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Figure 3.8: zoomed version of the final orbit for part II

VISIO showing the LEO, Hohmann, and post flyby orbit. Drawn to scale.
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moon SOI

Hohmann
transfer

new orbit after fly-by
(Hyperbolic) i

Figure 3.9: Final Part II earth centered figure. Drawn to scale
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3.3.4 summary of tangential flyby

The above results are summarized in table

variable pre flyby post flyby

orbit type elliptical hyperbolic

e 0.96585 1.10808
semi-major axis a | 1955639 km | -2.60104e6 km
true anomaly f 180 degree | 60.7387 degree
" 6678 km 281109 km

Table 3.1: Summary table for tangential pre and post flyby

The above results for the flyby hyperbolic trajectory are summarized in table

parameter | value

e 1.24737

Va 0.188184 km per second
Vb 1.49236 km per second
VA 77.37 degree

YD 32.09 degree

b 5241.56 km

Veo 0.83 km per second

n 143.621 degree

0 107.241 degree
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3.3.5 Part III Non-Tangential flyby

The following parameters are used in the calculations that follows
Uearth = 3.986€5 km’ per second squared

Umoon = 4902.8 km’ per second squared
Toarth = 6378 km
Tmoon = 1737.4km

SOI,,p0n = 6.61le4 km

= Toartn + 300

= 6378 + 300

= 6678 km

_ ,muearth
Omoon = 1’—
moon
_ [3.986x10°
B 1737.4

=1.0183km per second (velocity of moon relative to earth)

r1 = 384400 km (distance from earth to the moon)

a = 300000 km (semi-major axis of the Hohmann transfer ellipse)

p

Figure gives a general view of the initial phase of the orbit showing the non-Tangential
approach to the moon’s circular orbit using the initial Hohmann transfer ellipse. This is not
scale.
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Hohmann

transfer ellipse
-~ - = ~

moon orbit

Figure 3.10: General view of the non-Tangential flyby orbit (not to scale)

3.3.5.1 Flying behind the moon

3.3.5.11 partl The given a is used to solve for r,. Since a = ™ hence

2
r,=2a-1,
= (2)(300000) — 6678

=| 593322 km

The eccentricity of the Hohmann ellipse is now found as follows

ra—t
e= P
Tt 1y

_ 593322 - 6678
593322 + 6678

=| 0.97774
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The speed of the spacecraft at the location where Hohmann orbit intersects the the moon’s
circular orbit is called V4 and found as follows

2 1
VA = A\ |Hearth Z - E

2 1
=4/3.986 x 10° -
\/ (384400 300000)

= 0.863258 km

y 4 is the angle between the path of the spacecraft and the moon’s velocity vector direction

a2(1 - e?)
COS = rre—
va r1(2a —rq)

) \/ 3000002(1 - 0.97774%)

384400(2(300000) — 384400)
= 0.218651

Hence

y 4 = 1.35036 radian

=| 77.3702 degree

The true anomaly f of the pre flyby Hohmann transfer at the above location can now be
found

¢ esin f
an - 7
ra 1+ecosf
0.97774) si
tan (77.3702 degree) = ( )sin f

1+ (0.97774) cos f
Solving for f gives

f =2.8582radian

=| 163.763 degree

Relative to the moon, and at the entry to the moon’s sphere of influence, the velocity of the
spacecraft is given by V, as shown in figure Ve, is found as follows

Vooa = \/V,24 + v%mon =2V A Up90n €COS VA
— /0.8632582 + 1.01832 — 2(0.863258)(1.0183) cos 1.35036
=1.18226 km per second
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Velocity of spacecraft
relative to moon as it

Velocity of enters the SOI of the
spacecraft moon
relative to earth
as it enters the 01N
SOl of the moon '

\

\
\
> \
o
»

b
Vimoon

Velocity of moon
relative to earth

Figure 3.11: Velocity vector diagram at entry of SOI of the moon

And the angle g is
Vi Ve
sinf  sinyyu
0.863258  1.18226
sinf  sin1.35036

a

Solving for § gives
B =1.21158 radian

=| 45.439 degree

The eccentricity of the flyby hyperbolic trajectory e, inside the moon’s sphere of influence
can be found from the energy equation, using the burn out distance r,, = 1760 kIl‘El.

E _ ‘umoon — V_bzo _ (umoon
2 SOLyoon 2 Ty
118226> 49028 Vi 49028

2 661x104 2 1760

Solving for V,, gives

Vi = 2.6116 km per second

lthe same value used in part II
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Therefore

212 2
VboVOOarbo
U100

_ \/1 . (2.61162)(1.18226)2(1760)2
B 4902.82

eflyby =4[1+

=1 1.4928

-1
n= arccos( )
Eflyby

The angle 1 is

-1
= arccos (1.4928)
= 2.3048 radian

=| 132.05 degree

The turning angle of the asymptotic is 6 as shown in figure The angle 0 is found from

// V‘f..Olll

Vx,in

Figure 3.12: Turning angle 6 when flying behind the moon

0 = 2n—-180degree
= (2)132.05 degree — 180 degree
= 1.468 radian

=| 84.11 degree

The departure speed of the spacecraft V relative to earth is found from the velocity vector
in figure as follows Hence
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speed up after flyby
behind the moon

Vimoon
Velocity of moon
relative to earth

Figure 3.13: Finding departure velocity of spacecraft when flying behind the moon

Vp = \/v%w(m + V2, = 20,1000 Vo, 08 (B + 0)

\/1.01832 +1.182262 — (2)(1.0183)(1.18226) cos (45.439 degree + 84.11 degree)

=1 1.99197 km per second

The semi-major axis a,,, of the post flyby orbit is found from

. 2 1
D — Hearth " Do

2 1
1.99197 = 4398600 -
\/ (384400 amw)

Solving for a,,,, gives

(0 = —2.10444¢5km

Therefore the departure angle yp is
sin (8 + 0)  sin YD

Solving for yp
. Voo, SN (B + O)

_ (1.18226) sin (45.439 degree + 84.114 degree)
B 1.99197
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Hence

yp = 0.4753 radian

=| 27.233 degree

The eccentricity of the post flyby orbit is
(1 — €2)
" (Zanew - 1’1)

0.8891 = (-2.10444 X 105)%(1 - ¢?)
PP\ 384400(2(-2.10444 x 105) — 384400)

cosyp =

Solving for e gives

e = 2.5546

3.3.51.2 part2 Since the new trajectory after the flyby is found to be a hyperbola, then
the hyperbolic equation is used to obtain the true anomaly f

— anew(ez B 1)
1+ecosf
(2.10444 x 10°)(2.5546% — 1)
1+ (2.5546) cos f

Solving for f and taking the positive value since the spacecraft is in the positive half plane
gives

1

384400 =

f = 0.665415 radian

=| 37.552 degree

This value of the true anomaly is used to locate the new value of perigee of the post flyby
orbit. The 7, of the hyperbola is found from
Ty = Apew(€ —1)
= (2.10444 x 10°)(2.55546 — 1)
= 3.27157e5km

Figure shows the pre flyby and the new post flyby changes to the orbit. The effect of
the flyby is to produce an instantaneous AV that comes from the change of energy of the
spacecraft due to its going and leaving the moon’s sphere of influence.

3.3.51.3 part3 Figure shows the velocity triangles of the flyby trajectory.
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moon orbit

Hohmann
transfer ellipse

Figure 3.14: Finding departure velocity of spacecraft when flying behind the moon (not to
scale)

speed up after flyby
AV behind the moon

I

Vimoon

Velocity of moon
relative to earth

Figure 3.15: Finding departure velocity of spacecraft when flying behind the moon
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3.3.5.1.4 summary for non-tangential flyby. Behind the moon case The above re-
sults for the pre and post flyby trajectories are summarized in table |3.5| The results for the

variable pre flyby post flyby
orbit type elliptical hyperbolic
e 0.97774 2.5546

semi-major axis a2 | 300000 km -2.10444e5 km
true anomaly f 163.76 degree | 37.552 degree
6678 km 3.27157e5 km

"p

Table 3.3: Summary table for non-tangential pre and post flyby the moon. Behind the moon
case

flyby hyperbolic trajectory are summarized in table When the spacecraft flies by the

parameter | value

e 1.4928

Va 0.863 km per second
Vb 1.99197 km per second
Va 77.37 degree

VD 27.233 degree

Voo 1.18226 km per second
B 45.439 degree

n 132.05 degree

0 84.11 degree

Table 3.4: Summary table for non-tangential flyby hyperbolic. Behind the moon case

moon from behind it gains energy and the new speed relative to earth Vp, is larger than the
arrival speed V4 relative to earth. The reverse happens when the spacecraft flies in front of
the moon. Its new velocity Vp will be smaller than V4.

3.3.5.2 flying in front of the moon

The computation for this part follows closely what was done for the case of flying behind
the moon. The difference is in how the velocity vector diagram is constructed to make sure
the correct angles are used. This results in a velocity of the spacecraft V|, after leaving the
moon sphere of influence slower than the above case.

The computation that follows starts from the new velocity vector diagram as follows.

The turning angle of the asymptotic 6 is shown in figure The angle 0 is found from
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V‘J;’a

Figure 3.16: Turning angle 6 when flying front of the moon
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0 = 21 -180 degree
= (2)132.05 degree — 180 degree

=1.468 radian
=| 84.11 degree
The departure speed of the spacecraft V|, relative to earth is found from the velocity vector
in figure Hence
slow down after Q
flyby front of the
moon

Figure 3.17: Finding departure velocity of spacecraft when flying front the moon

Vp = \/v%won + Vgod - 2vmoonvood COS (ﬁ - 0)

= \/1.01832 +1.182262 — (2)(1.0183)(1.18226) cos (45.439 degree — (84.11 degree)

0.74492 km per second

The semi-major axis a,,, of the post flyby orbit is

. 2 1
D — Uearth " Do

2 1
0.74492 = \/3.986 x 10° ( )

384400 4,

Solving for a,,,, gives

ey = 2.62413¢5km
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The departure angle yp is found from
sinyp = Voo SIN (5 — 0)
Vb
_ (1.18226) sin (45.439 degree — (84.11 degree)
- 1.99197

Solving for yp gives
yp = —1.4425radian

=| —82.649 degree

The eccentricity of the post flyby orbit is found from
(1 — €2)
" (Zanew - 1’1)

01279 - (2.62413 x 105)2(1 — ¢?)
=777\ 384400(2(2.62413 x 105) — 384400)

Cosyp =

Solving for e gives

e =0.9935

3.3.5.21 part2 Since the new trajectory after the flyby is elliptic in this case, the elliptic
equation is used to obtain the new true anomaly f

_ anew(l B 32)
rn=——">
1+ecosf
(2.62413 x 10°)(1 — 0.99352)
384400 =

1+ (0.9935) cos f
Solving for f gives

f =-3.0728 radian
= -176.06 degree

Since yp < 0 then the post flyby true anomaly is between 180 and 360 degrees. Therefore,
f =3.21radian

=1| 183.94 degree

This value of the true anomaly is now used to locate the new value of perigee of the post
flyby orbit. The r, of the new ellipse is found from

Ty = Apeo(1 =€)
= (2.62413 x 10°)(1 — 0.9935)
=1689.13km

Figure shows the pre flyby and the post flyby changes to the orbit.
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Va f= 183.94° from new perihelion

Vmoon f=163.76° from old perihelion

Post flyby
ellipse

moon orbit
Hohmann
transfer ellipse

Figure 3.18: Finding departure velocity of spacecraft when flying front of the moon (not to
scale)
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3.3.5.22 part3 Figure shows the velocity triangle of the flyby.

/By,

moon

slow down after
flyby front of the
moon

Figure 3.19: Finding departure velocity of spacecraft when flying front of the moon

3.3.5.2.3 summary of non-tangential flyby. Front of the moon case The above results
for the pre and post flyby trajectories are summarized in table |3.5| The above results for the

variable pre flyby post flyby
orbit type elliptical elliptical

e 0.97774 0.9935
semi-major axis a2 | 300000 km 262413 km
true anomaly f 163.76 degree | 183.94 degree
rp 6678 km 1689 km

Table 3.5: Summary table for non-tangential pre and post flyby the moon. Front of the moon

case

flyby hyperbolic trajectory are summarized in table Since new r, is smaller than 7,4,
the spacecraft will hit earth on way back on way back on the new post flyby trajectory.

When the spacecraft flies by the moon from front, it losses energy and the new speed relative
to earth Vp is smaller than the arrival speed V4 relative to earth.
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parameter | value

e 1.4928

Va 0.863 km per second
Vb 0.7449 km per second
VA 77.37 degree

VD -82.649 degree

Voo 1.18226 km per second
B 45.439 degree

n 132.05 degree

0 84.11 degree

Table 3.6: Summary table for non-tangential flyby hyperbolic. Front of the moon case

3.3.6 Part IV Free return trajectory
3.3.61 partl

The trajectory that was selected for the pre flyby part is to send the spacecraft to| front of the moon |

The reason is because the post flyby velocity of the spacecraft V}, in this case will be smaller
that the approach velocity V|, and the new flight path angle yp will be negative and the post
flyby trajectory being an ellipse. This insures the the spacecraft will return back to earth.

It is assumed that the spacecraft will rendezvous with the moon when it reaches the moon’s
orbit. Timing considerations are discussed in part (IV).

Since the original altitude above earth of the spacecraft was fixed by the project requirement
to be in LEO at 300 km, the other free variable that can be used to adjust the trajectory is
the semi-major axis a of the pre flyby orbit.

Changing a is the same as changing the initial AV;. The lunar burn out radius r,, was also
fixed by project requirement to be 1760 km.

A program was written to make it easier to change the semi-major axis 2 using a flyby in
front of the moon approach. The program calculates all the parameters of the new post
flyby trajectory.

The resulting post flyby ellipse was checked after each simulation run to see if it meets the
requirement of having a return altitude on earth of between 300 km and 500 km. In addition,
The selected trajectory was required to have its velocity at perigee (closest point to earth)
to be below 12 km per second to ensure safety of the spacecraft as it enters earth.

The selected trajectory had a new V), of 10.8079 km per second. This is faster than the initial
elliptical orbit V,, which was 7.725 km per second but it is still a safe entry velocity back to
earth.

Figure shows the user interface of the program with the final selected trajectory. The
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pre flyby semi—major axis (a) G 415000
altitude at moon 22
zoom [} 1
parameter value units
f pre flyby 168. 91 degree
f post flyby 185.979 degree
rp pre flyby 6678 km
rp post flyby 6725. 03 km
ra pre flyby 823322 km
ro post flyby 453929. km
a pre f1yby 215000 Km 1x10° 1
a hyper 2823.51 km
a post flyby 230327. km
del V1 3.1561 km/sec
e pre flyby 0. 983908
e Hypereblic at noon 1.62334
e post flyby 0. 970802
Va 1. 05518 km/sec
Vp 0. 585916 km/sec
YA 79.6791 degree
YD -71.1728 degree
A 1. 32866 km/sec
E] 76. 0514 degree
n 128. 026 degr ee
out2)= B 51. 3815 degr ee
Vbo 2.68107 km/sec
LEO pre flyby 300 km
new Al titude on earth 347.028 km
LEO v out bound 7.72584 km/sec
LEOvV return 10.8079 km/sec
E (pre flyby) 1. 49579 radi an
E (pre flyby) 85. 7022 degree
E (post flyby) 2.33098 radi an
E (post flyby) 133.555 degr ee
AT (time to reach noon) 217926. sec
AT (tinme to reach noon) 60. 5351 hrs
AT (time to reach noon) 2.5223 days
AT (time to return from noon) |79. 1491 hrs
nmoon angl e travel ed 0.577303 radi ans
noon angl e travel ed 33.077 degree
noon phase angl e 135. 833 degree
noon period 658. 846 hrs
LEO peri od 1.50861 hrs
noon travel in one LEO period|0. 824322 degr ee
Wioon 2.64907x10° |rad/sec
LEo 0.00115691 |rad/sec
synodi ¢ period 1.51208 hrs
time in flyby 24.9029 hrs
total tine 164. 587 hrs
FF for flyby hyper 3.40112 radi an
FF for flyby hyper 194.87 degree
f Hyper 124. 954 degree
noon traveled in SO 13.6072 degr ee

Figure 3.20: screen shot of the user interface of the program used to find the free return
trajectory
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program source code in the appendix. The program plots the pre and post flyby orbits and
displays all the detailed parameters of each trial.

3.3.6.2 part 2
Figure shows the final result of the trajectory selected. This table was generated by

the simulation program written for this project. The semi-major axis of the initial orbit is

a = 415000km | and the eccentricity is | e = 0.983908 |and | AV; = 3.1561km per second

The altitude at the perigee of the post flyby ellipse is | ALT = 347.028km | which meets the
requirements
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parameter value units
f pre flyby 168.91 degree
f post flyby 185.979 |degree
rp pre flyby 6678 km

rp post flyby €725.03 |km

r, pre flyby 823322 km

r, post flyby 453929. |km

a pre flyby 415000 km

a post flyby 230327. |km
delVl 3.1561 km/sec
e pre flyby 0.983908

e Hypereblic at moon [1.62334

e post flyby 0.970802

Va 1.05518 |km/sec
Vb 0.585916 |km/sec
a 79.6791 |degree
YD -71.1728 |degree
V= 1.32866 |km/sec
& 7€.0514 |[degree
n 128.02¢é |degree
B 51.3815 |degree
Vbo 2.68107 |km/sec
LEQ pre flyby 300 km

new Altitude on earth |347.028 |km

LEO v outbound 7.72584 |km/sec
LEC v return 10.8079 |km/sec

Figure 3.21: Table of results of selected free return trajectory
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3.3.6.3 part3

The program developed for this project plots the final selected trajectory to scale. It shows
both the pre flyby ellipse and the post flyby ellipse.

Figure |3.22| shows the selected trajectory generated by the simulation program (to scale).
Figure [3.23| shows the velocity triangle for the selected trajectory. Figure shows the

S00090

pre-flyby

eIIipse\

Moon SOI

8 Post-flyby

' . ellipse
..':-: 000 )/

-

Free-return
trajectory

Figure 3.22: free return selected trajectory (to scale)
true anomaly angle f at the intersection with the moon’s orbit for the pre and post flyby

trajectories. Since yp < 0 then true anomaly for the post flyby trajectory is between 7 and
27
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Figure 3.23: velocity triangle for the selected free return trajectory
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Figure 3.24: Showing the effect on true anomaly angle for return free trajectory

from post flyby
perigee

f=185.98°

from pre flyby

-300000 -200000 -100000
eartht

1oclooc xx.noc 3“?“
scale (inkm)
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3.3.6.4 part4

Figure shows a zoomed version of the selected trajectory near earth. The new perigee is
6725.03 km which represents an altitude of 347.028 km. The above shows that the spacecraft

Initial
trajectory

Free-return
trajectory

Figure 3.25: zoomed view of the free return selected trajectory near earth
returns to the required perigee with an altitude of 347.028 km and with safe entry velocity
back to earth of 10.08079 km per second.

It was found during simulation that finding the return ellipse with the required final altitude
was very sensitive to small changes in value of the semi-major axis a for the initial orbit.
There was a small range of values of a which generated an acceptable free return trajectories.
Using a simulation program helped in finding this small range of values of a easier.

3.3.7 Part V Rendezvous and timing consideration

3371 partl

3
The time to reach the moon is given by AT = | yu - (E —esinE) where E is the eccentric
eart
anomaly of the pre flyby trajectory.

E is found by solving r = a(1 — ecos E) where r here is the distance between earth and the
moon and e is the eccentricity of the pre flyby orbit. Using the result of the selected trajectory
of part (4)
r=a(l —ecosE)
384400 = 415000(1 - (0.9839) cos E)
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Solving gives E = 1.4957 radian or | E = 85.7degree |. Therefore the time to reach the moon

1S

a3
AT =

(E—esinE)
Hearth

(415000)° .
= | 20 ) 4957 — (0.9839) sin (1.4957
3.986 X105 ¢ ( )sin (1.4957))

= 217926 second
= 60.535 hour

=| 2.523 day

3.3.7.2 part2
Hearth

The angular velocity of the moon in its orbit around earth is given by w = /r—3 where 7 is
the distance from earth to the moon. During the AT found in part (1), the moon will travel

6 = w(AT)

— Pea;th ( AT)
r

~ /3.986><105(217926)
B 384400

= 0.5773 radian

=| 33.077 degree

Since the true anomaly was found in part (1) for the pre flyby to be 168.9 degree, therefore
the moon has to be at angle 6, =168.9 —33.077 or

0y = 135.833 degree
In front of the spacecraft initial position as shown in figure [3.26]
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True anamoly for the

pre flyby trajectory
Moon position f = 16 8 . 90
when spacecraft
arrives

Moon position
before launch of
spacecraft

Spacegraft at
time zero
befor\% launch

Figure 3.26: Phase angle between moon and spacecraft for rendezvous
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3.3.7.3 part3

The angular velocity of the spacecraft around earth

Wy = Hearth
T

3.986 x 10°

6678
= 0.00115691 radian per second

The angular velocity of the moon around earth is

Uearth
Wiyoon = ﬂ p
1

3.986 x 10°

384400
= 2.64907e(—6) radian per second

The synodic period of the moon relative to the spacecraft is how often the space craft and
the moon have the correct alignment, which is given by
27

|w1 - C‘)moonl
21

~ 10.00115691 — 2.64907 x 10-9|
— | 1.51208 hour

Tg =

3.3.7.4 part 4

Figure shows the flyby hyperbola. The time during the flyby can be determined from
the hyperbolic equation as follows. The semi-major axis a for the flyby hyperbolic trajectory
is found from
oo = ale—1)
Ty

e—1
1760
- 1.62334-1
= 2823.51km
The eccentric anomaly F for the hyperbolic trajectory is found from
T = a(ecosh F —1)
1760 = 2823.51(1.62334 cosh F — 1)

Solving gives

F = 3.40112 radian
=194.87 degree
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Moon sphere of ~—— ==~~~
influence -~ N

Time to fly this part
of the hyperbola is

Flyby hyperbola
Figure 3.27: Flyby hyperbola used for calculation of flyby duration

Therefore the time for the overall flyby, which is the time that the spacecraft is inside the
moon’s sphere of influence is

a3
AT =2

(esinh F — F)

Himoon

2823.513
=2 1.62334) sinh (3.40112) — 3.40112
19003 ((1.62334) sinh (3.40112) — 3.40112)

= 24.9029 hour

The time to fly back to earth from the moon after the flyby phase is complete is found from
the elliptical equation for the return flight solution found above.

r=a(l —ecosE)
384400 = 230327(1 - (0.970802) cos E)

Solving gives E = 2.33098 radian or | E = 133.55 degree |. Therefore the time is

3

AT, = (E—-esinE)

Wearth

(230327)° |
=\ =2 (2.33098 — (0.97080) sin (2.33098
3,986 x 105 >33098 = ) sin (2.33098))

= 217926 second
= 79.149 hour

=| 3.298 day

125



3.3. report CHAPTER 3. LUNAR PROJECT

Using the time to flyby the moon found earlier in part (1) above, the total flight time for the
whole journey is therefore

T = 60.535 +24.9029 + 79.149

=1 164.587 hour

24.9029
164.587

r| 1513% |

Hence, the percentage of time in flyby around the moon is

During the time the spacecraft is inside the moon’s sphere of influence, the moon will have
traveled

AG

Wyo0n (flyby time)

= [Herth (24,9029 hour)
n
[3.986 x10° (249029 houn
= e . our
384400°

=| 13.607 degree

This is 126627 =1 3.78% | of the full orbit of the moon around the earth. This shows that the

change of speed AV that occurs due to the flyby is not instantaneous and takes about 3.8%
of the period of the moon around the earth.

Therefore, the conic method can be considered only to be a first order approximation,
and therefore, for practical spacecraft trajectory design, numerical methods can be used to
obtain a more accurate solutions.
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4.1. first exam CHAPTER 4. EXAMS

41 first exam

411 Key solution

EMA 550/Astronomy 550

Exam #1, Spring 2014

75 Minutes, Open Notes Feb. 27,2014

Name KEY

For the purposes of this exam, assume the Earth is spherical with a radius of 6378 km and
1 =3.986 x 10° km>/s%. These values are reprinted in the footer of each page for your
convenience.

Show all of your work to get credit for your answer. To maximize your opportunities for
partial credit, write down all of the equations you are using.

Include units with all numerical answers.
If you can’t do one section of a multi-part problem and the following parts depend on your

answer, make a reasonable assumption, write on your paper that you are assuming a value
and what it is, and continue on with the problem using your assumed value.

Points Score
Question 1 20
Question 2 20
Question 3 20
Total Score 60
Earth radius = 6378 km Page 1 of 8 Ueartn = 3.986 x 10° km?*/s’
Earth-Sun distance = 1 AU = 1.495978 x 10% km Usun = 1.327 x 10* km?/s?

129



4.1. first exam CHAPTER 4.

EXAMS

Question 1
A satellite is to be placed in an elliptical orbit about the Earth with a period of 8 hours.

(a) For what range of eccentricities will the orbit NOT impact the Earth?

In order for the satellite not to impact the Earth, the perigee radius rp = a (1-e) must be greater
than or equal to the Earth's radius.

The semi-major axis can be determined from the orbit period.
1

a3 T 2 ’
T=2m |— a:=||— | -p| =20307km
B 2.

Then the allowable eccentricities can be determined from

p =a- (1l —e) 26378 km
6378 km
a
_ 6378:km

a

e<1+

emax := 1 =0.686

The range of eccentricities for which the elliptical orbit will not impact the Earth are eccentricities
between 0 (circular orbit) and 0.686.

Earth radius = 6378 km Page 2 of 8 Ueartn = 3.986 x 10° km?/s”
Earth-Sun distance = 1 AU = 1.495978 x 10® km Usun = 1.327 x 10™ km’/s?
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(b) For a satellite in an elliptical orbit about the
Earth with a period of 8 hours and an
eccentricity of 0.5, determine whether it
would cost less to escape the Earth on a
parabolic trajectory by doing a tangential
burn at perigee or by doing a tangential burn
at apogee by calculating the AV required for
each option.

AV option 1

The period is only dependent on the semi-major axis, so the semi-major axis is the same as in

part (a).

Perigee location: p:=a(l —e)=10154km

Speed at perigee:  vp:= |p- 2.1 = 7,6741(—m
p a S

Escape speed at [ 2p km

perigee: VESC_p = ? =8.861 T

Cost of escaping km
from perigee: AV1 = vesc_p— vp = 1,187T

Apogee location: ra:=a- (1 + e) = 30461 km

Speed at apogee:  va:= |p- 2.1 = 2‘558k—m
ra a S
Escape speed at ’ 2-p km
apogee: vesc_a:= ? = S.IIGT
Cost of escaping km

from apogee: AV2 .= Vesc_a—va=2.558T

|t would cost less to do the parabolic escape burn at perigee than at apogee. |

Earth radius = 6378 km
Earth-Sun distance = 1 AU = 1.495978 x 10° km

Page 3 of 8

Ueartn = 3.986 X 10° km?/s?
Usun = 1.327 x 10™ km?/s?
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Question 2

A spacecraft is in a circular orbit about the Earth at a distance r = 16,000 km. An instantaneous
tangential burn of AV = 3 km/s is performed.

(a) What type of trajectory (circular, elliptical, parabolic, hyperbolic) is the spacecraft on after
the burn? Show your reasoning.

km
veire = L 4991 —
rl S

km
vnew := vecirc + AV =7.991—

S
2 km
vesc = . 7.059—
rl S

[The speed is greater than the escape speed, so the spacecraft is on a hyperbolic trajectory. |

Alternatively, looking at the specific orbit energy,

vnew2 6 N-m
€new = T B 7.017x 10—

rl kg

[The energy is positive, so the spacecraft is on a hyperbolic trajectory. ]

(b) How long does it take the spacecraft to reach a distance of r = 32,000 km? (Additional
workspace is available on the following page if needed.)

To determine time on a hyperbolic trajectory, use the hyperbolic corollary of Kepler's equation:

3
At = ’d—‘(e'sinh(F) -F
v

To calculate the time, we need a and e for the new trajectory, and F when r = 32,000 km.
a can be found from the velocity equation for a hyperbola:

2 1 1
vnew = || _l + — a: f
r a vnew 2

= 28401 km

n rl

The eccentricity can be found from applying the knowledge that the burn occurs at perigee of the
new trajectory:

rl =rp=a(e—-1) Ac}/\::1+£:1.563
a
Earth radius = 6378 km Page 4 of 8 Ueartn = 3.986 x 10° km?/s”
Earth-Sun distance = 1 AU = 1.495978 x 10® km Usun = 1.327 x 10™ km’/s?
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The true anomaly can be found from the polar equation for a hyperbola and then converted to F, or
F can be found directly from the hyperbolic polar form of the position equation:

ale 1)

r=—— 12 := 32000-km
1 + e-cos(f)
(2
f2 := acos| i M —1|{=1.39rad
e| 12
f2 =79.62-deg
f 1 F (( (& 1
tanf — | = [£5 L tann| — F2:= 2-atanh| | tan| = | | [ | = 0.825
2 e—1 2 A 2 e+ 1
or
1(r2
r = a-(e-cosh(F) — 1) F2_alt:= acostl L2+ 1 _ o 05
lela )]

Once these parameters are found, the time to reach r = 32,000 km can be calculated:

3
At = ’a—(e'sinh(FZ) _F2) = 4674s
B

(c) What is the flight path angle of the spacecraft’s trajectory when r = 16,000 km, and what is
the flight path angle of the spacecraft’s trajectory when r = 32,000 km?
At the burn location, the velocity is perpendicular to the position vector, so the flight path angle at
I = 16,000 km is simply zero.
Atr = 32,000 km, the flight path angle can be calculated using the equation for flight path angle on
a hyperbola:
2(.2_,4
Hyperbolic flight path angle:  cosy = are -7
rr(2-a+r1)
|_ a2~ ez -1
N2 = acos, |[———  =0.876-rad
|\ 2-2-a+ 12) |
~2 = 50.19-deg
Earth radius = 6378 km Page 50of 8 Uearth = 3.986 x 10° km?/s”
Earth-Sun distance = 1 AU = 1.495978 x 10 km Usun = 1.327 x 10™ km?/s?
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Question 3

A spacecraft is in a circular orbit about the Sun at a distance of 1.25 AU (between the Earth’s
orbit about the Sun and Mars’ orbit about the Sun; see below for conversions between AU and
km and for Usyn).

The spacecraft is to be placed eventually into a circular orbit about the Sun at a distance of 8
AU (between Jupiter and Saturn).

(a) How long (in years) will each of the following transfers take?
i. A Hohmann transfer
ii. A bi-elliptic transfer with an aphelion of 10 AU
iii. A semi-tangential elliptical transfer, tangent at perihelion to the 1.25 AU circular
orbit, with an aphelion distance of 10 AU

The semimajor axis on the Hohmannn transfer is the average of the initial and final circular radii.
The time required for the Hohmann transfer is one half the period of the Hohmann ellipse.

rl + 12 8 aH
aH .= =6.919x 10 km aH_au := — =4.625
2 au
1 aH3 8
AtH:= —| 2. |— [=157%x 10" s AtH = 1817-day
2 B
AtH = 4.974-y

The bi-elliptic transfer consists of two half ellipses: the first has a semimajor axis that is the
average of r1 andrb, and the second has a semimajor axis that is the average of rb and r2. The
time required for the entire transfer is half the period of each ellipse.

1 +1b 1
ali="22 8415 10%km alau="2 =565
2 au

2 2
2= 6% 10°km a2 aui= =9
au

| a’ ] 1 a2’ 8
AB = —| 27 |2 |+ = 2om [ 2 | = 6366 % 10°s A(B = 7367.7-day
2 V) 2 1!

AtB = 20.172-yj

Earth radius = 6378 km Page 6 of 8 Ueartn = 3.986 x 10° km?/s”
Earth-Sun distance = 1 AU = 1.495978 x 10® km Usun = 1.327 x 10™ km’/s?
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The time on the semi-tangential transfer is calculated from Kepler's Equation:

3
At = \/z‘(E —e-sin(E))
v

The semimajor axis is the same as a1 of the bi-elliptic transfer.

The eccentricity can be determined from perihelion:

1
fl=mp=a(l —e) eS::l—r—1:0.778
a

The eccentric anomaly can be determined by finding the true anomaly from the polar equation from
an ellipse, then converting that to eccentric anomaly, or the eccentric anomaly may be found
directly from the form of the polar equation for an ellipse that has the eccentric anomaly.

2
_ a(l—e ) r=a(l —e-cos(E))
1 + e-cos(f)
1 2
’ E2 alt:= acos|:—-(1 — —):| =2.145-rad
a1~(1 —eS ) 1 esS al
f2 := acos| | ———— - 1|-— [ =2.761rad
2 eS E2_alt = 122.9-deg

f2 = 158.213deg

f 1+e E
tan| — | = -tan| —
2 1-e 2

[ (2) [T=es)

E2:= 2-atan, tan, — |- =2.145rad
"2 ){1+es)
E2=1229deg
al3 7
AtS ;= [— (B2 — eS-sin(E2)) =9.994x 10" s AtS = 1157-day
w
AtS = 3.167-y]

Earth radius = 6378 km Page 7 of 8 Uearth = 3.986 x 10° km®/s”
Earth-Sun distance = 1 AU = 1.495978 x 10° km Usyn = 1.327 x 10" km?/s
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(b) Compute the AV for the final burn of the semi-tangential elliptical transfer option.

The second burn on the semi-tangential transfer is the non-tangential burn. The AV is computed
using the law of cosines and the flight path angle:

AV2 = \/v_arrival2 + vcir<:22 — 2-v_arrival-vcirc2-cos(7)

The arrival speed is the speed of the spacecraft with respect to the Sun on the elliptical transfer at
a distance of r2 = 8 AU.

. 2 1 km
v_arrival := o— = =8.004—

u\rZ ;) S

The circular orbit speed is the required speed after the burn to stay in a circular orbit at r2.

. N km
veirc2 ;= [— =10.53—
2 S

The flight path angle is determined from

cos(y) =

|_ a12~ 1 - eS2 -|
~ := acos, | ——— = 0.805-rad ~ =46.102-deg
|\ 2:(2-a1 - 12) |

cos(y) =0.693

km
AV2 = \/V_am'val2 + V(:irc22 — 2-v_arrival-vcirc2-cos(v) = 7.62 —
s

Earth radius = 6378 km Page 8 of 8 Ueartn = 3.986 x 10° km?/s”
Earth-Sun distance = 1 AU = 1.495978 x 10® km Usun = 1.327 x 10™ km’/s?
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4.1.2 Some Maple versification on first exam

VY problem 1

> restart;
parms:={mu=3.986*105, T=8%*60%*60,r_ p=6378};

parms = {T: 28800, 1L=3.98600000 10°, r,= 6378}

> #define the equation to solve
eq:=T = 2*Pi*sqrt(a*3/mu) :
‘eq’ ,subs (parms,eq) ;

3
=271 | 4 , 28800 =0.003167826216 1~/ a
v ou

> sol := solve(subs(parms,eq),ha);
sol :=20307.39319, -10153.69659 + 17586.71839 1, -10153.69659 — 17586.71839 1

> sol:=select (x->type (x, 'realcons') , [sol]);
sol == 120307.39319]

> parms:={op (parms) ,a=op(sol) };
parms = {T= 28800, @ =20307.39319, e=0.5, ©=3.98600000 105}
> eq:=a*(l-e)>= r_p;
eq =r, <a(l—e)

> solve (subs (parms,eq) ,e) ;
RealRange( - %, 0.6859271921)

Y Problem 2

> parms:={T=8*60*60,e=0.5,mu=3.986*105,a=op (sol) };

parms = {T= 28800, @ =20307.39319, e=0.5, ©=3.98600000 105}
=> rp:=a*(l-e);

pi=a(l—e)
> vp := sqrt(mu*(2/rp - 1/a));

V”::/“(a(lz—w _%)

> vesc__rp:=sqrt(2*mu/rp) ;

vesc. =2 H
p

i a(l—e)
> ra:=a* (1l+e) ;

ra=a (e+1)
> va := sqgrt (mu* (2/ra - 1/a));

o o )
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> vesc__ra:=sqrt(2*mu/ra) ;
> delta_ p:=vesc__rp-vp;
> delta_a:=vesc ra-va;

=> evalf (subs (parms,delta a));

> evalf (subs (parms,delta p));

4.2 midterm

4.2.1 questions

EMA 550

Exam#2, Spring 2014

Take home exam

Name

vesc,, :Zﬁ / ﬁ

%=V e / 1—e>_%)
J_\/ e-l—l / e+1) %)

2.557884502

1.187118329

Due 2:30 p.m., Tuesday April 22,2014

Show all of your work to get credit for your answer. Include units with all answers.

You may use mathematical software such as Matlab, MathCad, EES, etc., but include a printout of your

worksheets with your solution.

Since time is not an issue, please present your solution in a neat form that is easily readable.

Use this page as a cover sheet for the work you turn in.

You are allowed to consult your notes and homework (i

all the class materials you would have

during an in-class exam) but are not allowed to consult’or collaborate with classmates or anyone
other than the instructor. It is permissible to ask the instructor for clarification of the exam questions.

Points

Score
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Problem 1 (20 points)

(a)

(b)

()

(d)

(e)
(f)

Find the semi-major axis and eccentricity of the heliocentric orbit that connects Mars on April 17,
2014 (Fsynmars = 1.524 AU = 2.280 x 10° km) with Uranus 20 years later on April 17, 2034 (Fsn-uranus =
19.19 AU = 2.871 x 10° km). Use data from JPL Horizons at 00:00 UT on the given days to determine
their angular positions. Assume the planets are in circular orbits in the ecliptic plane.

For solutions using Lambert’s method (whether you are using Lambert’s method or not), should the

. . N . N
variable abe calculated as @ = 2 asin ’5 ora = 2m — 2 asin ’Z ? Why?

For solutions using Lambert’s method (whether you are using Lambert’s method or not), should the
variable S be calculated as 8 = 2 asin % or f = —2asin /% ? Why?

What is the true anomaly of Mars on the transfer orbit at the time the transfer begins?

What is the true anomaly of Uranus on the transfer orbit at the time the transfer ends?

Draw to scale, on a single figure, the circular heliocentric orbits of Mars and Uranus and the transfer

orbit. Clearly label Mars’s position at the start of the transfer, Uranus’s position at the end of the
transfer, the transfer angle, and the direction of motion.

Problem 2 (20 points)

An astronaut is working on the Hubble Space Telescope (HST), which orbits the Earth in a circular orbit
at an altitude of 570 km. The astronaut kicks a tool backward, giving it a speed of 0.5 m/s in the positive
x-direction of an HST-centered rotating coordinate system.

(a)

(b)
(c)
(d)

Plot the trajectory of the tool on xy-axes relative to the Hubble Space Telescope over the next two
orbit periods of the HST circling the Earth. Clearly label your axes, including units. The origin of the
xy-system should be the Hubble Space Telescope.

At what time is the tool directly between the HST and the Earth (i.e., directly below the Hubble)?

What is the lowest altitude that the tool reaches while drifting?

How far ahead or behind the HST does the tool drift during each orbit period of the HST about the
Earth? Is the tool getting ahead of the HST or drifting behind it?
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Problem 3 (20 points)

Following a burn, a spacecraft has the following Earth-centered Cartesian position and velocity vectors:

&Y [ 70000 fwxy =10
v | = 14000 |km wwl=]2 | —
{ 1 | 1 | 1 | -
Wz 7000 ) Wvz) L3 )

(a) Compute the orbital elements of the spacecraft’s trajectory: g, e, i, Q, ®, and f.

(b) What are the Earth-centered Cartesian position and velocity vectors of the spacecraft 6 hours later?

140
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Chapter 5

practice exams

5.1 First exam practice

5.1.1 questions

EMA 550

Exam #1, Spring 2011

75 Minutes, Open Notes February 24, 2011

Name

For the purposes of this exam, assume the Earth is spherical with a radius of 6378 km and
U =3.986 x 10° km?/s%. Show all your work to get credit for your answer. Include units with
all answers.

Points Score
Problem 1 40
Problem 2 20
Problem 3 20
Total Score 80

142
If you can’t do one section of a multi-part problem and the following parts depend on your
answer, make a reasonable assumption, write on your paper that you are assuming an
answer for that part, and then continue on with the problem using that assumption.
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Problem 1 (40 points)
A GPS satellite orbiting the Earth has malfunctioned and is to be brought back to the Space
Shuttle for servicing. The GPS satellite is initially in a circular orbit with a radius of 26,610 km.

The Space Shuttle is in a circular orbit in the same plane at an altitude of 200 km.

(a) (15 points) Calculate the AV (magnitude and sign) for each burn that will bring the GPS
satellite to the Space Shuttle on a Hohmann transfer.

(b) (4 points) Explain why the signs (positive or negative) for the burns you calculated in part
(a) are correct.

Page 2 of 8
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(c) (15 points) Instead of returning on

a Hohmann trajectory, the mission .
managers decide to send the GPS ; \
satellite back to the Space Shuttle’s ! |
orbit along an ellipse that is tangent
to the Space Shuttle’s orbit and has
an apogee radius of 40,000 km.
Calculate the AVs needed for this
semi-tangential return.

Transfer orbit

Shuttle orbit

<4— GPS orbit

Page 3 of 8

144



5.1. First exam practice CHAPTER 5. PRACTICE EXAMS

(d) (6 points) Calculate the transfer times in minutes for both the Hohmann return and the
semi-tangential return.

Page 4 of 8
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Problem 2 (20 points)

A satellite is on an elliptical orbit about the Earth with a 6 hour orbital period. At perigee, the
satellite is 5000 km from the center of the Earth.

(a) (15 points) At apogee, a burn is performed that allows the satellite to escape the Earth’s
gravitational pull. What is the smallest Av that will accomplish Earth escape from the original
orbit’s apogee?

Page 5 of 8
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(b) (5 points) If a burn is made at perigee on the original orbit instead of at apogee and has a Av
of 2 km/s, what type of trajectory (ellipse, parabola, hyperbola) is the spacecraft on after the
burn? Show your reasoning and supporting calculations.

Page 6 of 8
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Problem 3 (20 points)

Halley’s Comet is on an elliptical orbit about the Sun. If its perihelion distance is 0.586 AU
(astronomical units), its aphelion distance is 35.1 AU, and it was last at perihelion in the
February of 1986, in what future year will Halley’s Comet next cross the Earth’s orbit about the
Sun? (Assume for this problem that the orbit of Halley’s Comet is in the same plane as the
Earth’s orbit about the Sun and that the Earth’s orbit about the Sun is circular.)

Useful constants: uSun = 1.327 x 10" km?/s’
1 AU = Earth’s distance from the Sun = 1.495 x 10° km

Page 7 of 8
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5.1.2 key solution

Problem 1 (40 points)

A GPS satellite orbiting the Earth has malfunctioned and is to be brought back to the Space
Shuttle for servicing. The GPS satellite is initially in a circular orbit with a radius of 26,610 km.
The Space Shuttle is in a circular orbit in the same plane at an altitude of 200 km.

(a) (15 points) Calculate the AV (magnitude and sign) for each burn that will bring the GPS
satellite to the Space Shuttle on a Hohmann transfer.

aH =1 ; 12 aH = 16594km
k
vi= & vl =387
rl S
2 1 k
2= u] = - — V2 = 24372
rl aH S
2 1 k
V= ] = - — V3 = 9.858—
r2 aH S
u km
v4d = [— v4 =7.784—
2 S
km
Avl :=v2 —vl Avl =-1.434—
S
km
AV2 =v4 —v3 Av2 =-2.073—
S

(b) (4 points) Explain why the signs (positive or negative) for the burns you calculated in part
(a) are correct.

The satellite is starting on the largest orbit. The first Av is negative, indicating that the

spacecraft has to slow down to drop down to a smaller orbit, one with a perigee equal to the
Shuttle’s orbit. The second Av is also negative, because the final circular orbit is smaller than
the transfer orbit, so staying on the Shuttle’s orbit requires reducing the orbit energy further.

Page 1 of 7
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(c) (15 points) Instead of returning on . .
a Hohmann trajectory, the mission / .
managers decide to send the GPS ; \
satellite back to the Space Shuttle’s
orbit along an ellipse that is tangent
to the Space Shuttle’s orbit and has
an apogee radius of 40,000 km.
Calculate the AVs needed for this
semi-tangential return.

Transfer orbit
Shuttle orbit

<4— GPS orbit

1S := 40000-km
as:= 52 5380 km
2
=12
eSi=1- -2 =0718
aS
1 km
v2S:= || — - — | =3.584—
r aS S
2 2
ST\1 -eS
cosy = 2. 0.704 |’~( = acos(cosy) = 45.275-degi ~ = 0.79rad
rl-(2-aS —rl)

Note: since the spacecraft is coming into perigee, the flight path angle is the negative of the value
shown above. Since calculating the AV uses the cosine of the flight path angle, the cosine and thus
the AV are the same for either a postivie or negative flight path angle.

km km
AVIS = V12 + v252 - 2-v1v2S-cosy = 2.881 0 AVIS = 2.881 ~—
S S
Was= [p[ 2 - L)< 1020 k0
2 aS S
AVS = v4 — v3S = 2417 < AV2S = 2417 X
S S
Page 2 of 7
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(d) (6 points) Calculate the transfer times in minutes for both the Hohmann return and the
semi-tangential return.

1 aH3 4 -
AtH :=E~ 2 |— | =1.064x 10 s AtH = 177.279m1rl
u

2

1 |as1-es

fl = acos|:—s~|:Lle) - 1ﬂ =2.501rad f1 = 143.314deg
€ r

Note: we can use this value of f to correctly solve the problem, but since f is measure in the
direction of motion, the most accurate description of the satellite's position at the start of the

transfer is 2*pi-f1.

f1 1-eS
El:=2-atan| tan| — |- =1.771rad El= 101463deg
2 1+eS

Could also calculate E directly from r = a*(1-e*cos(E))

1 1
E2 = acos| —-| 1 - 2= || = 1.771rad E2 = 101.463deg
eS aS

3
S

AtS = a—~(E1 —eS:sin(El)) = 6.01x 1038 AtS = 100.167miﬂ
\‘ n

Page 3 of 7
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Problem 2 (20 points)

A satellite is on an elliptical orbit about the Earth with a 6 hour orbital period. At perigee, the
satellite is 5000 km from the center of the Earth.

Note: this is a poorly written problem, as r = 5000 km is within the 6378 km radius of the
Earth. Students were instructed to treat the Earth as a point mass and ignore that the

perigee radius is inside the Earth.

(a) (15 points) At apogee, a burn is performed that allows the satellite to escape the Earth’s
gravitational pull. What is the smallest Av that will accomplish Earth escape from the original

orbit’s apogee?
3

5 km
b= 3986:10" =~
S

A",FW:= 6-hr

ra:=a-(1 +e)=28527km

The smallest Earth-escape AV comes from placing the spacecraft on a parabolic trajectory.

2 2 1 km
AVa = {—”— fu- Z S lo3us 2
ra ra a S

AVa = 324550
S

Page 4 of 7
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(b) (5 points) If a burn is made at perigee on the original orbit instead of at apogee and has a Av
of 2 km/s, what type of trajectory (ellipse, parabola, hyperbola) is the spacecraft on after the
burn? Show your reasoning and supporting calculations.

Method 1: compute the AV needed for a parabolic trajectory from the perigee distance. A smaller
AV indicates an elliptical orbit, and a larger AV indicates a hyperbolic orbit.

7 7 1 km
AVp = /—”— fu- = _—l-0982
p Iy a S

The given AV is larger than the AV needed for a parabolic trajectory, so the spacecraftis on a
hyperbolic trajectory.

Method 2: calculate the circular orbit speed at perigee and see if the given AV results in a post-burn
speed of more than sqrt(2) times the circular orbit speed at the perigee distance.

km
AVgiven := 2-—

2 1 km . V! km
vpi= |p| — —— | =11.647T— veirep = [— =8.929—
p a S p S
km km
vp + AVgiven = 13.647 — \J2-veirep = 12,627 —
s S

The speed is greater than sqrt(2)*vcirc, so the spacecraft is on a hyperbola.

Note: it is not accurate to apply this method using sqrt(2)*vp. The speed on a parabola is sqrt(2)
times the circular orbit speed at the same distance, not sqrt(2) times any other orbit speed at that
distance.

Making that mistake on this problem would indicate the the spacecraft is on an ellipse, since vp +
AV is less than vp* sqrt(2).

k
vp/2 = 16472 Tm

Page 5 of 7
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Problem 3 (20 points)

Halley’s Comet is on an elliptical orbit about the Sun. If its perihelion distance is 0.586 AU
(astronomical units), its aphelion distance is 35.1 AU, and it was last at perihelion in the
February of 1986, in what future year will Halley’s Comet next cross the Earth’s orbit about the
Sun? (Assume for this problem that the orbit of Halley’s Comet is in the same plane as the
Earth’s orbit about the Sun and that the Earth’s orbit about the Sun is circular.)

Useful constants: uSun = 1.327 x 10" km3/s®
1 AU = Earth’s distance from the Sun = 1.495 x 10® km

3
km

wi= 13271012
82

au ;= 1.495~108km

p = 0.586-au = 8.761 X 10’ km

ra:= 35.1-au=5.247x 109km

Orbit Characteristics

~2.668x 10 km 2 17843
1+e au

(see next page)
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(Additional workspace for Problem 3)

Crossing Earth's Orbit

r:=1lau=1495x 108km

1
El:= acos|:—-(1 - Ej:| =0.219rad or E2:= 2.7 — E1 = 6.064rad
e a
El =12.576deg E2 =347 .424 deg
a3 9
=2 [— =2376x10"s T =75303yr
V!
no= 2T n=264dx 10 1
T S
1
Atl := —(El — e-sin(E1)) = 3.369 x 1065 Atl =0.107 yr
n
1
At2:= —(E2 — e-sin(E2)) = 2.373 x 1095 At2 =75.196 yr
n

On current cycle of orbit, first crossed Earth's path in the year 1986 + At1 = 1986. Next crossing of
Earth's orbit will be At2 since latest perigee.

(1986-yr + At2) =2061yr

Halley’s Comet will next cross the Earth’s path in 75.2 years (75 years and 2.4 months) from
February, 1986, placing the crossing in April or May of 2061, depending on when in February it
was at perihelion.

Page 7 of 7
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5.1.3 my solution

my Solution to practice exam 1, EMA 550

021914, Nasser M. Abbasi (EMA 550)
Up

notebook

PDF

problem 1

question

For the purposes of this exam, assume the Earth is spherical with a radius of 6378 km and

1 =3.986 x 10° km®/s”. Show all your work to get credit for your answer. Include units with
all answers.

A GPS satellite orbiting the Earth has malfunctioned and is to be brought back to the Space
Shuttle for servicing. The GPS satellite is initially in a circular orbit with a radius of 26,610 km.
The Space Shuttle is in a circular orbit in the same plane at an altitude of 200 km.

(a) (15 points) Calculate the AV (magnitude and sign) for each burn that will bring the GPS
satellite to the Space Shuttle on a Hohmann transfer.

Printed by Wolfram Mathematica Student Edition
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2| sol.nb

answer part (a)

In[32]:=

mu = 3.986 » 10°5;
rl+r2

3
&

Out]?

1=

rl = 200 + 6378; (xspace shuttle orbitx)
r2 = 26610; (xsatellitem GPSx)

mu
vl = =
r2

3. 87031

9. 85754

Printed by Wolfram Mathematica Student Edition
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sol.nb |3

mu
vd = [ —
rl

7.78434

v2 -vl

-1.43353

v4 -v3

-2.0732

delV = Abs[v2 - v1] + Abs[v4 - v3]

3. 50673

part (c)

() (15 points) Instead of returning on
a Hohmann trajectory, the mission
managers decide to send the GPS M
satellite back to the Space Shuttle’s
orbit along an ellipse that is tangent
to the Space Shuttle’s orbit and has
an apogee radius of 40,000 km.

Calculate the AVs needed for this Transfer orbit

. . Shuttle orbit
semi-tangential return.
4— GPS orbit

Printed by Wolfram Mathematica Student Edition
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4| sol.nb

In[40]:=
el r3 = 40000; (*new transfer orbitx)

r3+ril
a-=
2

Out[41]= 23289
In[10]:= r3-ril

(e = ] // N

r3+ril

Um0, 717549

Printed by Wolfram Mathematica Student Edition
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sol.nb |5

In[12] mu
vl = —
r2
Out[12] 3 87031
In[13]:=
T 3 58375
In[15] a? (1 - eZ)
CosGamma = .| ——— | // N
r2 (2a-r2)
U 0, 703699
"I deivt = 4fva? + v2? - 2 v v2 CosGamma
U o 88126
In(17):= 2 1
v3 = mu [— - = // N
rl a
1 10, 2018
8]:= mu
In[18] va = -
ri
Out[18]= 7.78434
In[19]:=
delV2 = v4 - v3
U o 41745
In[20]
totalDelV = AbsedelVl + AbsedelV2
Out[20]= 5. 29871
part(d)

Printed by Wolfram Mathematica Student Edition
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6\ sol.nb

(d) (6 points) Calculate the transfer times in minutes for both the Hohmann return and the
semi-tangential return.

For hohmann, the timeis half the period

In[87]:= _ as
delT1 = Pi Sqrt[—]
mu

out[87}=

17685. 1

in minutes

In[88]:=

delT1 = delT1 / (60)

Out[88]=

294.752

For the semi tangential

In[129]
A Clear[a, e, r, EE]

rl+r3

2
r3-ril
rl+r3’
r2 = 26610;
r2 ==a (1-eCos[EE]) ;
Cos[EE] /. FirsteNSolve[%, Cos[EE]]

e =

Out[134]

-0.198731

In[135]:=

EE = ArcCos[%]

out[135]=

1.77086

In[136]:=

a3
delT2 = Sqrt[—] (EE - e Sin[EE])
mu

Out[136]=

6010. 01

In[137]

delT2 = delT2 / 60

Out[137]

100. 167

Total timein minutes

In[138]:=
| totalDelT = delT1 + del T2

out[138]=

394. 919

Printed by Wolfram Mathematica Student Edition
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sol.nb \7

problem 2

Problem 2 {20 points)

A satellite is on an elliptical orbit about the Earth with a 6 hour orbital period. At perigee, the
satellite is 5000 km from the center of the Earth.

(a) (15 points) At apogee, a burn is performed that allows the satellite to escape the Earth’s
gravitational pull. What is the smallest Av that will accomplish Earth escape from the original
orbit’s apogee?

part(a)
In[168]
Clear[a]
rp = 5000;
mu = 3.986 % 1075
a3
6 % 60 % 60 == 2 Pi Sqrt[—]
mu
ORI 21 600 = 0. 00995202 /a3
In[172]:= 21600
aCube = N2
0.009952019565792981°
OUBTEE 1 4. 7107 x 1022
In[173]:=
(aCube) (17 3)
U 16763, 4
In[174]:=
a=%
U 16763, 4
In[175]:=
ra=2a-rp
Out[175]= 28526. 8
In[179]:=
Out[179] 2.04149

Printed by Wolfram Mathematica Student Edition
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8 \ sol.nb
In[180]:= 2mu
escape = .| —
ra
out[180]= 5 28637
In[181]:=
smal lestV = escape - va
Out[181]= 3. 24488
() (5 points) If a burn is made at perigee on the original orbit instead of at apogee and has a Av
of 2 km/s, what type of trajectory (ellipse, parabola, hyperbola) is the spacecraft on after the
burn? Show your reasoning and supporting calculations.
In[182]:=
vp =
QU 11, 6474
In[183]:=
V2 =2+Vvp
Out[183]= 13. 6474
In[184]:= 2mu
vecsp = | —
rp
Out[184]= 12. 627

since v2>vescape, hence hyperbolic

problem 3

Halley’s Comet is on an elliptical orbit about the Sun. If its perihelion distance is 0.586 AU
(astronomical units), its aphelion distance is 35.1 AU, and it was last at perihelion in the
February of 1986, in what future year will Halley’s Comet next cross the Earth’s orbit about the
Sun? (Assume for this problem that the orbit of Halley’s Comet is in the same plane as the
Earth’s orbit about the 5un and that the Earth’s orbit about the Sun is circular.)

Useful constants: usun = 1.327 x 10" km’/s”
1 AU = Earth’s distance from the Sun = 1.485 x 10% km

Printed by Wolfram Mathematica Student Edition
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sol.nb |9

In[32]

mu =1.327 » 10M11;

rl =1.495%10"8;

au =rl;

rp = 0.586 » au;

ra=35.1xau;
rp+ra

2

a=

out[37)=

2. 66753 x 10°

In[38]
Clear[e, EE];
ra-rp

ra+rp

Out[39]=

0. 967158

In[40]:=
rl==a (1-eCos[EE])

Out[40]=

1. 495 x 10% = 2. 66753 x 10° (1 - 0. 967158 Cos [EE])

e Cos[EE] /. FirsteSolve[%, Cos[EE]]

Out[41]=

0. 97601

In[42]:=
EE = ArcCos[%]

Out[42]

0. 219485

In[44]:=

a3
delT = Sqrt[—] (EE - e Sin[EE])
mu

Out[44]=

3. 36928 x 10°

In[45]:= - - a3
period = 2 Pi Sqrt[—]
mu

Out[45]=

2.37634 x 10°

In[48]:=

(period) / (60 % 60 x 24 % 365)

Out[48]

75. 3531

Printed by Wolfram Mathematica Student Edition
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10| sol.nb

delT / (60 60 24 « 365)
(period - delT) / (60 % 60 % 24 x 365)

Out[46]=

0. 106839

Out[47]=

75. 2463

Printed by Wolfram Mathematica Student Edition
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Problem 1 (20 points)

(a) Find the semi-major axis and eccentricity of the heliocentric orbit that connects the Earth on April
20, 2013 (Fsyncarth = 1.496 x 108 km) with Saturn on May 20, 2016 (Fsunr-saturn = 9.537* Fsun-cartn). Use
data from JPL Horizons at 00:00 UT on the given days to determine their positions. Assume the
planets are in circular orbits in the ecliptic plane.

(b) What is the true anomaly of the Earth on the transfer orbit at the time the transfer begins?
(c) What is the true anomaly of Saturn on the transfer orbit at the time the transfer ends?

(d) Draw to scale, on a single figure, the circular heliocentric orbits of Earth and Saturn and the transfer
orbit. Clearly label the Earth’s position at the start of the transfer, Saturn’s position at the end of
the transfer, the transfer angle, and the direction of motion.

Problem 2 (20 points)

You are running the maneuvers desk at mission control for a Clean Sweep satellite that is collecting
orbital debris when the satellite’s sensors spot a piece of debris 1000 m ahead of the satellite’s current
position and 500 m above the satellite’s current position. The piece of debris is moving away from the
satellite with a velocity relative to the satellite at the instant observed of 1 m/s in both the in-track and
vertical directions.

(a) Assuming that Clean Sweep starts in a circular orbit with a 100 minute orbit period, what
instantaneous AV vector (i.e. components along the rotating relative coordinate x and y directions)
will allow the Clean Sweep satellite to reach the debris in exactly 15 minutes? (Note: The debris is
also moving during that time.)

(b

Plot the trajectory of both the debris and the Clean Sweep satellite during the 15 minute maneuver
on a single plot in rotating relative xy-coordinates and show that your AV will allow Clean Sweep to
reach the piece of debris. Clearly label your axes, units, and which line corresponds to which object.
The origin of the xy-system should be Clean Sweep’s position at the start of the maneuver.

Problem 3 (20 points)
Following a satellite collision, a piece of debris is spotted by NORAD with the Earth-centered Cartesian
position and velocity below.

b4 o000 I 1
km
v |=| 7000 |km vw|=| 4 |—
s
z 8000 VT -2

(a) Compute the orbital elements of the debris’ orbit: a, €, i, Q, ®, and f.

(b) What are the Earth-centered Cartesian position and velocity vectors of the piece of debris when it
collides with the Earth? What is the speed of the debris when it collides with the Earth?
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522 key

Problem 1 (20 points)

Earth data (4/20/2013):

Helio long: 209.89°

[x,y,2]=[-0.872,-0.503,-0.0000377] au

[x,y,2]=[-1.304,-0.753,-0.0000565] 10° km

[Q,0,f]=[171.7,289.9,108.4]° (sum = 210°)  Transferombit _

Earth's orbit

Saturn data (5/20/2016)

. /3

Helio long: 252.45° (AB = 42.56°) %6 7
[x,y,2]=[-3.018,-9.555,0.286] au Farth st beginning T Satum)a
[x,y,2]=[-4.515,-14.29,0.428] 10° km of transfer, = 125°

[Q,m,f]=[113.5,340.4,158.5]° (sum = 252°)
(a) a=9.988x 10 km, e = 0.97

(b) flEarth = 129°(2.246 rad)

(c) f2Saturn= 171°(2.988 rad)

(d) Figure: Earth, Saturn, transfer orbit, Earth’s position at start, Saturn’s position at end, transfer angle,
direction of motion

. —— Debris
Problem 2 (20 points)
(a) AV1x=-2.459 m/s, AVly =0.961 m/s
(b) Figure: -
2
1+ ]
Problem 3 (20 points) s = -03 o
x(t) [km]
(a) Compute the orbital elements of the satellite’s orbit: g, e, i, 2, ®, and f.
a=11000 km Q=119.1°(2.078 rad)
e=0.844 ®=120.9°(2.111 rad)
i=35.4°(0.617 rad) f=156.3°(2.727 rad)

(b) What are the satellite’s Cartesian position and velocity vectors when it collides with the Earth?

E2=5234rad (299.9°) Note: If using wrong E,
f2=4.074 rad (233.4°) E2 =1.049 rad = 60.1°, then

, P P N f=2.209 rad = 126.6° and

{ x\_ ( —26:8\_ [ Vx \ -1.079 \ o £\ 5385 j’r\'x\: ;'/ 5‘430\.
R4 e i i e e IS lyl=| 20 [m |V¥|=]s587 |2
\2/ A6 Vel 38 :\z/' ."\-3412/’ “'\\'z/r‘ 1\'5-39-‘,’.
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Problem 1

Page 2 of 15

A spacecraft is orbiting the Sun on the elliptical heliocentric orbit shown. The
spacecraft’s orbit crosses Jupiter’s orbit twice each revolution, and at one of the crossings
(as shown on the figure), Jupiter is positioned close enough to the crossing that the
spacecraft enters Jupiter’s sphere of influence. Relative to the Sun, the spacecraft arrives
at Jupiter’s sphere of influence with a speed of 11.5 km/s and a flight path angle of -35°.
Jupiter is moving with a speed of 13 km/s relative to the Sun in a circular orbit.

Heliocentric view:

Jupiter’s position at the time

of the flyb
Tupiter’ o Spacecraft’s
ug.l:er S heliocentric
orbi orbit before
the flyby

(@) Calculate the speed of the spacecraft with respect to Jupiter when it enters Jupiter’s

sphere of influence (V..).

radius of the Earth = 6378 km

uEarth = 3.986 * 10° km®/s

168
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Page 3 of 15

(b) The spacecraft enters Jupiter’s sphere of influence with an impact parameter equal to
ten times the radius of Jupiter, resulting in a turning angle () relative to Jupiter of
145°. On the figures below, draw and label

a.
b.

C.
d.

e.

f.

g.

velocity vector v,, the spacecraft’s arrival at Jupiter’s sphere of influence with
respect to the Sun

velocity vector V.., the incoming asymptote relative to Jupiter

velocity vector V., out, the outgoing asymptote relative to Jupiter

velocity vector vy, the spacecraft’s departure from Jupiter’s sphere of
influence with respect to the Sun

the turning angle 6 with respect to Jupiter

the heliocentric flight path angle at arrival (ya,)

the heliocentric flight path angle at departure (yq).

The lengths of the vectors should be drawn approximately to scale and the required
angles should be drawn approximately accurately. You do not need to calculate all of
the unknown velocity values and angle values. Note: it may help you to sketch the
flybys of Jupiter in Jupiter’s frame of reference.

Velocity diagram for a flyby in front of Jupiter:

A

V]upiter =13 km/s

Velocity diagram for a flyby behind Jupiter:

A

V]upiter= 13 km/s

radius of the Earth = 6378 km pEarth = 3.986 * 10° km?/s? g = 9.81*m/s

169



5.3. practice exams for finals CHAPTER 5. PRACTICE EXAMS

Page 4 of 15

(c) Calculate the speed of the spacecraft relative to the Sun after the flyby behind Jupiter.

radius of the Earth = 6378 km uEarth = 3.986 * 10° km®/s g = 9.81*m/s?
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Page 5 of 15

(d) Calculate the flight path angle of the spacecraft relative to the Sun after the flyby
behind Jupiter.

radius of the Earth = 6378 km pEarth = 3.986 * 10° km?/s? g = 9.81*m/s*
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Page 6 of 15

(f) On the heliocentric view below, draw and label the following:

a. velocity vector v,, the spacecraft’s arrival at Jupiter’s sphere of influence with
respect to the Sun

b. velocity vector Vg in front, the spacecraft’s departure from Jupiter’s sphere of
influence with respect to the Sun following a flyby in front of Jupiter

c. velocity vector Vg pening, the spacecraft’s departure from Jupiter’s sphere of
influence with respect to the Sun following a flyby behind Jupiter.

Heliocentric view:

Jupiter’s position at the time
of the flyby

Jupiter’s

Spacecraft’s
orbit

heliocentric
orbit before
the flyby

radius of the Earth = 6378 km pEarth = 3.986 * 10° km?/s? g = 9.81*m/s?
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Problem 2

A rocket engine that generates 3000 N of thrust by burning 60 kg of fuel at a constant rate
over 1 minute is attached to a satellite orbiting the earth with the following orbital
parameters:

perigee distance r, = 7000 km

apogee distance ry = 14,000 km
inclination i = 28.5°

right ascension of ascending node Q = 90°
argument of perigee o = 0°

(@) At what true anomaly in the satellite’s orbit must the engine be fired in order to
achieve the maximum inclination change? Why?

radius of the Earth = 6378 km pEarth = 3.986 * 10° km?/s? g = 9.81*m/s
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(b) If the combination of the satellite and rocket prior to burning the engine has a mass of
120 kg, what is the maximum degree of inclination change that the satellite can
achieve?

radius of the Earth = 6378 km uEarth = 3.986 * 10° km®/s g = 9.81*m/s?
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Questions

For this section, answer the questions in complete sentences. Use equations and minor
calculations where appropriate, but the emphasis is on explaining course concepts rather
than solving for numerical values.

(@) The equation that describes the drift in right ascension of an Earth-orbiting satellite
due to the oblateness of the Earth is

C=;

35
@ ___9.969 Re | cosi deg/day
R +h

What inclination orbits experience the maximum drift in right ascension of ascending
node? What is the physical reason that the effect is greatest for those inclinations?

What inclination orbits experience the least drift in right ascension of the ascending
node? What is the physical reason that the effect is least for those inclinations?

radius of the Earth = 6378 km pEarth = 3.986 * 10° km?/s? g = 9.81*m/s
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(b) A satellite is orbiting the Earth on a circular orbit with a radius of 8059 km.

At time t = 0, a small explosion aboard a satellite sends three pieces flying away from
the main body of the satellite.

Piece A speeds up by 2 m/s in the original satellite's direction of motion.
Piece B attains a velocity of 1 m/s in the direction perpendicular to the orbit plane.
Piece C receives a 3 m/s AV toward the Earth.

Which piece will be farthest away from the main satellite 6 hours later? Justify your
answer.

radius of the Earth = 6378 km uEarth = 3.986 * 10° km®/s g = 9.81*m/s?
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(c) On page 15-9 of the course »_ T S —

notes, you have the L ded ok S egeo ]
following figure, which 75. S + N 44
illustrates right ascensions &
and inclinations of r; = = P ORTTRON ]
6656 km circular parking = ]
orbits that will allow an = bl AN N -
Earth-orbiting satellite Hss. e !
with fixed-impulse rocket & o Kea
engines providing AV1 = éqs N Y]
2.107 km/s and AV2 = o :
1.888 km/s to reach a — .
desired mission orbit with 3s. - :
r, = 26,565 km, Q = 0°, ’ 1
and i = 55°. . i l

S 1S. 25 35

CHANGE IN RIGHT ASCENSION OF ASCENDING NODE (DEG)

The shaded region of the figure indicates parking orbits that will allow the rocket to
reach the mission orbit. The mission orbit is in the middle of the unshaded region.
Why is this okay (and expected)?

radius of the Earth = 6378 km pEarth = 3.986 * 10° km?/s? g = 9.81*m/s
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(d) A spacecraft is in an elliptical orbit
about the Earth with a semimajor
axis of a = 40,000 km and
eccentricity e = 0.8, as shown to the
right. An instantaneous tangential
AV is applied to the spacecraft, but
rather than being applied at perigee
or apogee, the tangential AV is
applied when the spacecraft has a
true anomaly of f = 90°.

Provide (but do not solve) the complete set of equations needed to find the semimajor
axis (anew) and the eccentricity (enew) of the resulting orbit and the spacecraft’s true
anomaly (fnew) On that orbit. Next to each equation, indicate why it is important (i.e.,
what variable(s) is (are) found from each equation or system of equations). You may
assume that the orbit remains elliptical after the impulse.

radius of the Earth = 6378 km pEarth = 3.986 * 10° km®/s* g = 9.81*m/s?
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How would you be able to tell if the post-AV orbit was hyperbolic instead of
elliptical?

How would your equations for calculating anew, €new, and frew change if the post-AV
orbit was hyperbolic?

radius of the Earth = 6378 km pEarth = 3.986 * 10° km®/s g = 9.81*m/s
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(e) Attime to, a spacecraft is at perigee on an elliptical orbit with semimajor axis a; and
eccentricity e;. It completes an impulsive, tangential burn that will allow it to
rendezvous with a space station on a larger orbit with semimajor axis a, and
eccentricity e;. The rendezvous occurs at apogee on the station’s orbit, so the transfer
orbit is tangential to the final orbit as well as the spacecraft’s initial orbit. The
transfer ellipse is shown on the figure below as the dashed line.

and spacecraft
at t;

Provide (but do not solve) all of the equations necessary to find 64, the angle by which
the space station must lead the spacecraft at to, the time of the initial rocket firing.
Indicate why you included each equation and simplify where possible using the
properties of perigee and apogee. Additional space is provided on the following page.

radius of the Earth = 6378 km pEarth = 3.986 * 10° km?/s? g = 9.81*m/s?
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Page 2 of 15

Problem 1

A spacecraft is orbiting the Sun on the elliptical heliocentric orbit shown. The
spacecraft’s orbit crosses Jupiter’s orbit twice each revolution, and at one of the crossings
(as shown on the figure), Jupiter is positioned close enough to the crossing that the
spacecraft enters Jupiter’s sphere of influence. Relative to the Sun, the spacecraft arrives
at Jupiter’s sphere of influence with a speed of 11.5 km/s and a flight path angle of -35°.
Jupiter is moving with a speed of 13 km/s relative to the Sun in a circular orbit.

Heliocentric view: Jupiter’s position at the time
of the flyb
o o Spacecraft’s
Jupiter’s heliocentric
orbit orbit before
the flyby

(@) Calculate the speed of the spacecraft with respect to Jupiter when it enters Jupiter’s
sphere of influence (V.,).

. ki
vinf := \/VJ2 + va2 —2-VJ-va-cos(y) = 7.505—m
s

radius of the Earth = 6378 km pEarth = 3.986 * 10° km?/s? g = 9.81*m/s?
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(b) The spacecraft enters Jupiter’s sphere of influence with an impact parameter equal to
ten times the radius of Jupiter, resulting in a turning angle () relative to Jupiter of
145°. On the figures below, draw and label

a. velocity vector v,, the spacecraft’s arrival at Jupiter’s sphere of influence with
respect to the Sun

b. velocity vector v, the incoming asymptote relative to Jupiter

c. velocity vector v, o4, the outgoing asymptote relative to Jupiter

d. velocity vector vg, the spacecraft’s departure from Jupiter’s sphere of
influence with respect to the Sun

e. the turning angle 6 with respect to Jupiter

f. the heliocentric flight path angle at arrival (y,)

g. the heliocentric flight path angle at departure (yq).

The lengths of the vectors should be drawn approximately to scale and the required
angles should be drawn approximately accurately. You do not need to calculate all of
the unknown velocity values and angle values. Note: it may help you to sketch the
flybys of Jupiter in Jupiter’s frame of reference.

Velocity diagram for a flyby in front of Jupiter:

Velocity diagram for a flyby behind Jupiter:

Yd
V]upiter= 13 kVE/S

Ya

radius of the Earth = 6378 km pEarth = 3.986 * 10° km?/s? g = 9.81*m/s?
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(c) Calculate the speed of the spacecraft relative to the Sun after the flyby behind Jupiter.

Yd
0(2_/ VJupiter= 1;? k@/ s

N
Va 9 \\\ ~

Voo, in

ya := |y| = 35deg
oa ::asin(\{—a-sin(ya )j =61.511deg
vinf

¢ =21 —aa— 0 =153.733deg

v =V + vinf? — 2:V3vinf-cos (¢) = 20008
S

radius of the Earth = 6378 km pEarth = 3.986 * 10° km?/s? g = 9.81*m/s
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(d) Calculate the flight path angle of the spacecraft relative to the Sun after the flyby
behind Jupiter.

v ::asin(w—zf-sin(d))) - 9.556deg
Vi

radius of the Earth = 6378 km pEarth = 3.986 * 10° km?/s? g = 9.81*m/s?
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(f) On the heliocentric view below, draw and label the following:

a. velocity vector v,, the spacecraft’s arrival at Jupiter’s sphere of influence with
respect to the Sun

b. velocity vector Vg in front, the spacecraft’s departure from Jupiter’s sphere of
influence with respect to the Sun following a flyby in front of Jupiter

c. velocity vector Vg pening, the spacecraft’s departure from Jupiter’s sphere of
influence with respect to the Sun following a flyby behind Jupiter.

Heliocentric view:

Vd, in front

Vd, behind
Jupiter’s position at the time

Jupiter’s

Spacecraft’s
orbit

heliocentric
orbit before
the flyby

radius of the Earth = 6378 km pEarth = 3.986 * 10° km?/s? g = 9.81*m/s
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Problem 2

A rocket engine that generates 3000 N of thrust by burning 60 kg of fuel at a constant rate
over 1 minute is attached to a satellite orbiting the earth with the following orbital
parameters:

perigee distance r, = 7000 km

apogee distance ry = 14,000 km
inclination i = 28.5°

right ascension of ascending node Q = 90°
argument of perigee w = 0°

(@) At what true anomaly in the satellite’s orbit must the engine be fired in order to
achieve the maximum inclination change? Why?

In class, we discussed that the inclination change is maximized by
firing the impulses at the equatorial crossings, because then the entire
impulse goes into changing inclination and not changing the right
ascension.

Because this orbit has an argument of perigee = 0, the equatorial
crossings are the perigee and apogee. A greater amount of plane
change is achievable if the rocket is going more slowly, so the greatest
plane change is achieved at apogee, where the true anomaly f = 180
degrees.

radius of the Earth = 6378 km pEarth = 3.986 * 10° km?/s? g = 9.81*m/s?

186



5.3. practice exams for finals CHAPTER 5. PRACTICE EXAMS

Page 8 of 15

(b) If the combination of the satellite and rocket prior to burning the engine has a mass of
120 kg, what is the maximum degree of inclination change that the satellite can
achieve?

T:=3000N g= 9_8072
m 2

s
miuel :=60kg

t:=1-min

T
Isp ;== ——— =305.91%

. mfuel
mi :=
5

=120 kg

mf := mi — mfuel = 60kg

AV = g-lsp~|n(ﬂ) = 2.079~m
mf S

Plane change: AV = 2*v*sin(6/2)
rp := 7000-km

ra:= 2-rp = 14000-knr
p=a(l-e)
ra=a(l+e)
a =10500-km

e=0.333

5 km3
= 3.986.10"—

S

2 1 n
:

Vi= | = 4.357T

A
0:= 2~asin(2—v) =0.482rad 6 =27.614-deg
A

radius of the Earth = 6378 km pEarth = 3.986 * 10° km?/s? g = 9.81*m/s
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Questions

For this section, answer the questions in complete sentences. Use equations and minor
calculations where appropriate, but the emphasis is on explaining course concepts rather
than solving for numerical values.

(@) The equation that describes the drift in right ascension of an Earth-orbiting satellite
due to the oblateness of the Earth is

=,

35
e _ 9'969( Re _J cosi deg/day
Rg +h

What inclination orbits experience the maximum drift in right ascension of ascending
node? What is the physical reason that the effect is greatest for those inclinations?

The maximum drift of right ascension due to J2 effects is experienced by orbits
in low inclinations. Not zero inclination, as the right ascension is undefined for
orbits that are equatorial (no ascending or descending node), but low inclination.
The effect is greatest at those inclinations because they spend the majority of
their orbital period in the vicinity of the greater mass near the equator that
torques the orbit’s angular momentum vector.

What inclination orbits experience the least drift in right ascension of the ascending
node? What is the physical reason that the effect is least for those inclinations?

The least drift of right ascension due to J2 effects is experienced by orbits in high
inclinations, polar or nearly polar. The effect is least at those inclinations
because the orbit is perpendicular (or nearly perpendicular) to the oblate
gravitational effect that would otherwise cause a torque on the angular
momentum vector of the orbit.

radius of the Earth = 6378 km pEarth = 3.986 * 10° km?/s? g = 9.81*m/s?
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(b) A satellite is orbiting the Earth on a circular orbit with a radius of 8059 km.

At time t =0, a small explosion aboard a satellite sends three pieces flying away from
the main body of the satellite.

Piece A speeds up by 2 m/s in the original satellite's direction of motion.
Piece B attains a velocity of 1 m/s in the direction perpendicular to the orbit plane.
Piece C receives a 3 m/s AV toward the Earth.

Which piece will be farthest away from the main satellite 6 hours later? Justify your
answer.

r:= 8059-km
N

3
T.= 2~'n'jz = 7200008 s T=120min T =2.000hr
” 0

Since the period of the orbit is 2 hrs, the time of 6 hrs is equal to three orbit
periods.

Piece A receives a negative x-direction relative AV. The x-direction is the
only direction that has a secular drift, so each period, the piece moves farther
away from its original position.

Piece B receives a z-direction relative AV. The piece will oscillate back and
forth, perpendicular to the orbit plane, but it will return to its original
position each orbit period, so at 6 hours, its distance from its original location
will be zero.

Piece C receives a negative y-direction relative AV. The piece will move
forward, backward, above, and below its original position, but it will return
to its original position each orbit period, so at 6 hours, its distance from its
original location will be zero.

= Piece A will be the farthest away 6 hours later.

radius of the Earth = 6378 km pEarth = 3.986 * 10° km?/s? g = 9.81*m/s
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(c) On page 15-9 of the course s
notes, you have the
following figure, which
illustrates right ascensions
and inclinations of ry =
6656 km circular parking
orbits that will allow an
Earth-orbiting satellite
with fixed-impulse rocket
engines providing AV1 =
2.107 km/s and AV2 =
1.888 km/s to reach a
desired mission orbit with
r, = 26,565 km, Q = 0°,
and i = 55°.

Page 11 of 15

(DEG)

65.

"
ok

INC%INRTION
¢

3S.

25.

'
A & S

-3S.

ua
0
N
I —t---
w
U]

CHANGE IN RIGHT ASCENSION OF ASCENDING NODE (DEG)

The shaded region of the figure indicates parking orbits that will allow the rocket to
reach the mission orbit. The mission orbit is in the middle of the unshaded region.
Why is this okay (and expected)?

The mission orbit is in the unshaded region because the rockets being used
have too much fuel to complete an in-plane transfer and burn all of their
fuel. The rocket must change inclination and/or right ascension in order to

burn all of its fuel and reach the mission orbit.

radius of the Earth = 6378 km

pEarth = 3.986 * 10° km?/s?
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(d) A spacecraft is in an elliptical orbit
about the Earth with a semimajor
axis of a = 40,000 km and
eccentricity e = 0.8, as shown to the
right. An instantaneous tangential
AV is applied to the spacecraft, but
rather than being applied at perigee
or apogee, the tangential AV is
applied when the spacecraft has a
true anomaly of f = 90°.

Provide (but do not solve) the complete set of equations needed to find the semimajor
axis (anew) and the eccentricity (enew) of the resulting orbit and the spacecraft’s true
anomaly (frew) On that orbit. Next to each equation, indicate why it is important (i.e.,
what variable(s) is (are) found from each equation or system of equations). You may
assume that the orbit remains elliptical after the impulse.

The equations needed are as follows:

a(l—ez)
1+ecos f
the particular case where f = 90°, this simplifiesto r = p = a(1 — e?).

a, e, and f are known, so the radius can be calculated from r =

The speed before the AV is appliedisvy; = |u (3 - 1).

r a
The new speed is v, = v{ + AV.

. R . 2 1
The new semimajor axis can be found fromv, = |[u (— —

r Anew

), where the

radius r has not changed.

Since the impulse is tangential, the flight path angle also has not changed, so
the eccentricity can be found from setting y; = y,, where vy is calculated in

_  [a%(1-e?)
both cases from cos y = zasr)"
_e2 i
The true anomaly can be found from either r = 2026 or gny = 3/
1+ecosf 1+ecosf
radius of the Earth = 6378 km pEarth = 3.986 * 10° km®/s? g = 9.81*m/s’
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How would you be able to tell if the post-AV orbit was hyperbolic instead of
elliptical?

If the vis-viva equation returned a negative a or if the energy was calculated
and found to be greater than zero, the orbit would be hyperbolic.

How would your equations for calculating anew, €new, and frew change if the post-AV
orbit was hyperbolic?

The radius would be calculated the same way, since the original orbit is
elliptical. The new speed would be found the same way as well. From that
point on, hyperbolic equations would need to be used for the post-burn orbit.

The hyperbolic velocity equation, v, = /u (% + ai) would give the new a.

The flight path angle is still equal before and after the impulse, and y before
the impulse would be calculated from the elliptical equation, as before, but
finding the eccentricity after the burn would require using the hyperbolic
a?(e2-1)

equation for the post-burn flight path angle, cos y = )

The true anomaly could then be found from the polar equation for a

_ a(e’-1)
hyperbOIa, = rcosf .
radius of the Earth = 6378 km pEarth = 3.986 * 10° km?/s? g = 9.81*m/s?
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(e) Attime to, a spacecraft is at perigee on an elliptical orbit with semimajor axis a; and
eccentricity e;. It completes an impulsive, tangential burn that will allow it to
rendezvous with a space station on a larger orbit with semimajor axis a, and
eccentricity e;. The rendezvous occurs at apogee on the station’s orbit, o the transfer
orbit is tangential to the final orbit as well as the spacecraft’s initial orbit. The
transfer ellipse is shown on the figure below as the dashed line.

at t;

Provide (but do not solve) all of the equations necessary to find 6.4, the angle by which
the space station must lead the spacecraft at to, the time of the initial rocket firing.
Indicate why you included each equation and simplify where possible using the
properties of perigee and apogee. Additional space is provided on the following page.

Since a and e are given for each orbit, use them to calculate the perigee and
apogee radii of the transfer orbit.

rp, = a;(1-eq)
Te=a(1—ey)

Tp+Tq

The semimajor axis of the transfer orbit is =

The time it takes for the spacecraft to travel on the transfer orbit is one-half
the transfer orbit period.

1 a3 a3
At==2m |[—=m |—
2 u u

radius of the Earth = 6378 km pEarth = 3.986 * 10° km?/s? g = 9.81*m/s
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(additional workspace)
During the same time period, the space station moves through a true
anomaly change of Af, which is found by using Kepler’s equation to find the
initial and final eccentric anomalies (E1, E;) and converting the eccentric
anomalies to true anomalies.

Make sure to use the a and e for the space station’s orbit, which are given in
the problem statement as a, and e,.

Then Kepler’s Equation for the time difference is

’aingt = (Ez — ez sin (Ez)) — (Ey — e sin (Eq))

The simplification that can be noted is that the eccentric anomaly at arrival
(E2) is equal to & radians because that point is apogee. Then the above
equation can be solved for E; directly.

Once E; is known, the true anomaly f; can be found from

¢ (f1>_ 1+e2t (El)
an > )= 1=e, an >

The lead angle, 0jeaq, 1S just equal to f;, the true anomaly that the space
station must have at the time of the launch.

End of the exam. Congratulations, Rocket Scientist!

radius of the Earth = 6378 km pEarth = 3.986 * 10° km?/s? g = 9.81*m/s?
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EMA 550

Final Exam, Spring 2013

May 13, 2013, 7:45-9:45 am Open notes

Name

Show all of your work to get credit for your answers. Include units with all answers.

Useful astronomical constants are found at the bottom of each page.

Points Score
Question 1 10
Question 2 10
Question 3 20
Question 4 20
Total Score 60

If you are unable to find a value that is needed in subsequent sections of a problem,
use a reasonable guess value (and clearly state what it is).

radius of the Earth = 6378 km UEarth = 3.986 * 10° km’/s* g=9.81 m/s’
Sun-Earth distance = 1 AU uSun = 1.327 * 10" km?/s?
1 AU = 1.495978 * 10° km 195
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Question 1

We saw in class that the altitude difference between active Iridium satellites and spare
Iridium satellites was intended to cause a relative drift in right ascension due to the
oblateness of the Earth that would allow the orbit planes of the spares to align
periodically with the orbit planes of the active satellites. While good in theory, the effect
was minimal.

A different satellite constellation has been proposed that will have active satellites in 40°
inclination circular orbits at an altitude of 700 km. You are asked to implement the same
idea regarding spare satellites, but in a more effective way than with the Iridium
constellation.

Determine the altitude required for spare satellites in circular orbits at 40° inclination that
would close a 60° difference in right ascension between the actives and the spares in 45
days through the mechanism of right ascension drift due to the Earth’s oblateness.

radius of the Earth = 6378 km UEarth = 3.986 * 10° km®/s’ g =9.81 m/s*
Sun-Earth distance = 1 AU uSun = 1.327 * 10" km?/s’
1 AU = 1.495978 * 10® km
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Question 2

A website for a mission involving a
flyby of Mars posted the figure to
the right to illustrate the flyby.
Mars is the dot at the top of the
circle. The circle represents Mars’
orbit about the Sun. The dashed
elliptical line is the heliocentric
orbit of the spacecraft before the
flyby. The solid elliptical line is the
heliocentric orbit of the spacecraft
after the flyby. The spacecraft’s
direction of motion is shown with
arrows. Mars is orbiting the Sun in
a counter-clockwise direction in
this figure.

A member of the site has posted a
comment saying that this figure
must be wrong, because to slow
down relative to the Sun, the
spacecraft must have flown in front
of Mars, and if it flew in front of Mars, its velocity vector should have been deflected

outward, like so:

You study the mission, fire up your interplanetary project code, and determine the

following:

Speed of Mars wrt Sun 24 km/s
Speed of spacecraft wrt Sun before flyby 28 km/s
Flight path angle of spacecraft wrt Sun before flyby 6.5°

Vo, wrt to Mars starting and ending the flyby 4.8 km/s
Turning angle during flyby 30°
Flight path angle of spacecraft wrt Sun after flyby 2.8°
Speed of spacecraft wrt Sun after flyby 19.5 km/s

*wrt = “with respect to”

On the next page, write a one-page response supporting or refuting the site member’s
comment. Your response can be scanned and uploaded, so draw velocity triangles and
figures from Mars’ frame of reference to illustrate your argument.

radius of the Earth = 6378 km UEarth = 3.986 * 10° km"/s> g=9.81 m/s
Sun-Earth distance = 1 AU pSun = 1.327 * 10" km?/s?
1 AU = 1.495978 * 10° km

197



5.3. practice exams for finals CHAPTER 5. PRACTICE EXAMS

Page 6 of 9

Question 3

A satellite in a circular 8000 km radius orbit about the Earth needs to transfer quickly to a
circular orbit in the same plane with a radius of 16000 km to reach an orbiting refueling
station.

(a) Determine the angle by which the fueling station must lead the satellite if the satellite
is to complete the transfer on a parabolic trajectory that is tangent to the initial orbit.
Draw a sketch of the transfer showing the lead angle and the true anomaly of the fuel
station on the transfer orbit at rendezvous.

radius of the Earth = 6378 km UEarth = 3.986 * 10° km®/s’ g =9.81 m/s*
Sun-Earth distance = 1 AU uSun = 1.327 * 10" km?/s’
1 AU = 1.495978 * 10® km
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Question 3, continued

(b) Determine the angle by which the fueling station (ry= 16,000 km) must lead the
satellite (r; = 8,000 km) if the satellite begins the transfer with twice the speed as at
the start of the parabolic transfer (still tangential to the initial orbit). Draw a sketch of
the transfer showing the lead angle and the true anomaly of the fuel station on the
transfer orbit at rendezvous.

radius of the Earth = 6378 km UEarth = 3.986 * 10° km’/s’ g =9.81 m/s*
Sun-Earth distance = 1 AU uSun = 1.327 * 10" km?/s’
1 AU = 1.495978 * 10® km
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Question 4

A high-thrust rocket engine on an orbiting spacecraft will be fired for three minutes as it
flies above Madison, WI (43°N latitude, 89°W longitude). Information about the rocket,
the initial orbit, and the final orbit is as follows:

Rocket Initial Orbit Final Orbit
Thrust = 10 kN a; = 7000 km a="7
Specific impulse = 300 s e1=0 er="7
Initial mass = 1000 kg 11 = 60° 1, =50°
Q; =150° Q, =131.086°
®; undefined Wy ="

Treating the burn as impulsive (all AV occurring at a single location) and firing the rocket
in such a way that the burn location becomes the perigee of the new orbit, determine the
a, e, and w of the spacecraft’s orbit after the burn.

radius of the Earth = 6378 km uEarth = 3.986 * 10° km’/s’ g =9.81 m/s’
Sun-Earth distance = 1 AU uSun = 1.327 * 10" km?/s?
1 AU = 1.495978 * 10® km
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Question 1

We saw in class that the altitude difference between active Iridium satellites and spare
Iridium satellites was intended to cause a relative drift in right ascension due to the
oblateness of the Earth that would allow the orbit planes of the spares to align
periodically with the orbit planes of the active satellites. While good in theory, the effect
was minimal.

A different satellite constellation has been proposed that will have active satellites in 40°
inclination circular orbits at an altitude of 700 km. You are asked to implement the same
idea regarding spare satellites, but in a more effective way than with the Iridium
constellation.

Determine the altitude required for spare satellites in circular orbits at 40° inclination that
would close a 60° difference in right ascension between the actives and the spares in 45
days through the mechanism of right ascension drift due to the Earth’s oblateness.

The active satellites drift in right ascension is as follows:
h1:=700-km i:=40-deg

3.5
d RE d
Qdotl = [ -9.969- =2 || ——=—| .cos(i) = -5.304 —2
day ) \ RE + hl day

We want the spare satellites to close a given gap in a given amount of time, which requires a
relative drift in the right ascensions of the orbital planes of the active satellites and the spare
satellites.

time_all := 45-day

AQ = 60-deg
AQ
_ 3338
time_all day

If the spare satellites are in a lower orbit at the same inclination, the right ascensions of their orbit
planes will drift at a faster rate than that of the active satellites.

Qdot2 = Qdot1 — - 663752
time_all day
h2:= ! ~1{-6378 km = 260.7-km
dor2 35 h1-h2=439-km
(—9.969-Ej-cos(i)
day

radius of the Earth = 6378 km uEarth = 3.986 * 10° km?/s* g=9.81 m/s’
Sun-Earth distance = 1 AU uSun = 1.327 * 10" km?/s?

1 AU = 1.495978 * 10® km
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If the spare satellites are in a higher orbit at the same inclination, the right ascensions of their orbit

planes will drift more slowly than that of the active satellites. Both options have their advantages;
the lower orbit requires less energy to reach, and the outer orbit is less crowded than close-in

LEO.
deg
Qdot3 := Qdotl + =-3971.—
time_all day
1
h3:= —1]-6378km = 1310.4-km h3 = 1310
Qdot3 3.5 h3 —hl =610-km
d
-9.969- 2 |.cos(i)
day

Note that the key here is RELATIVE right ascension drift. Neither of the satellites (active nor
spare) drifts at 45 degrees in 60 days, but their relative drift closes that gap. If a student uses 45
degrees in 60 days as the right ascension drift, they will find the following altitude:

AQ d
Qdotd = — - 13332
time_all day

1
hd = —1]-6378-km = 4123-km

1

[ Qdot 177
(9 g60.922 )

L™ R

radius of the Earth = 6378 km uEarth = 3.986 * 10° km’/s* g=9.81 m/s®
Sun-Earth distance = 1 AU uSun = 1.327 * 10" km?/s*
1 AU = 1.495978 * 10® km
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Question 2

A website for a mission involving a
flyby of Mars posted the figure to
the right to illustrate the flyby.
Mars is the dot at the top of the
circle. The circle represents Mars’
orbit about the Sun. The dashed
elliptical line is the heliocentric
orbit of the spacecraft before the
flyby. The solid elliptical line is the
heliocentric orbit of the spacecraft
after the flyby. The spacecraft’s
direction of motion is shown with
arrows. Mars is orbiting the Sun in
a counter-clockwise direction in
this figure.

A member of the site has posted a
comment saying that this figure
must be wrong, because to slow
down relative to the Sun, the
spacecraft must have flown in front
of Mars, and if it flew in front of Mars, its velocity vector should have been deflected

outward, like so:

You study the mission, fire up your interplanetary project code, and determine the

following:

Speed of Mars wrt Sun 24 km/s
Speed of spacecraft wrt Sun before flyby 28 km/s
Flight path angle of spacecraft wrt Sun before flyby 6.5°

v, wrt to Mars starting and ending the flyby 4.8 km/s
Turning angle during flyby 30°
Flight path angle of spacecraft wrt Sun after flyby 2.8°
Speed of spacecraft wrt Sun after flyby 19.5 km/s

*wrt = “with respect to”

On the next page, write a one-page response supporting or refuting the site member’s
comment. Your response can be scanned and uploaded, so draw velocity triangles and
figures from Mars’ frame of reference to illustrate your argument.

radius of the Earth = 6378 km UEarth = 3.986 * 10° km"/s> g=9.81 m/s
Sun-Earth distance = 1 AU pSun = 1.327 * 10" km?/s?
1 AU = 1.495978 * 10° km
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Response for Question 2

Note: Unfortunately, there was an error in this problem, which was unintentional
The given values should have been

Speed of Mars wrt Sun 24 km/s
Speed of spacecraft wrt Sun before flyby 28 km/s
Flight path angle of spacecraft wrt Sun before flyby 6.5°

V., wrt to Mars starting and ending the flyby 4.8 km/s
Turning angle during flyby 30°
Flight path angle of spacecraft wrt Sun after flyby 282 10°

Speed of spacecraft wrt Sun after flyby 19S5kmfs 26 km/s

The correct values would have led to this velocity triangle:

V,

arrival

The correct values also would have changed the orbit picture to look like this:

radius of the Earth = 6378 km
Sun-Earth distance = 1 AU
1 AU = 1.495978 * 10% km

uEarth = 3.986 * 10° km’/s>

g=9.81 m/s’
uSun = 1.327 * 10" km?/s*
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A satellite in a circular 8000 km radius orbit about the Earth needs to transfer quickly to a
circular orbit in the same plane with a radius of 16000 km to reach an orbiting refueling

station.

(a) Determine the angle by which the

fueling station must lead the satellite if the satellite

is to complete the transfer on a parabolic trajectory that is tangent to the initial orbit.
Draw a sketch of the transfer showing the lead angle and the true anomaly of the fuel
station on the transfer orbit at rendezvous.

Parabola

p:=2ri

p
fcp := acos| — — 1

) 3(2)
S jpE

Atp =

p = 16000 km

fcp = 1.571-rad
fep = 90-deg

Atp=2137.076s
Atp =35.618-min

Target moves through Atp-nf = 0.667-rad
Atp-nf =382-deg

Leadangle is fcp — Atp-nf = 0.904rad

[fcp — Atpnf = 51.8-deg]

S/c and target at rendezvous
(f=90°)

38.2°

Target at s/c burn time

51.8°

S/c at burn time 124 angle)

radius of the Earth = 6378 km
Sun-Earth distance = 1 AU
1 AU = 1.495978 * 10® km

uEarth = 3.986 * 10° km*/s’ g=9.81 m/s’
uSun = 1.327 * 10" km?/s
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Question 3, continued

(b) Determine the angle by which the fueling station (ry= 16,000 km) must lead the
satellite (r; = 8,000 km) if the satellite begins the transfer with twice the speed as at
the start of the parabolic transfer (still tangential to the initial orbit). Draw a sketch of
the transfer showing the lead angle and the true anomaly of the fuel station on the
transfer orbit at rendezvous.

2 km
wi= [ZE — 90808
1 S
vhi := 2-vpi = 19.965 — By definition, the new ellipse must be a hyperbola because the
S speed is faster than the parabolic speed at that same distance.
Hyperbola
-1
2
ah:= (Vh‘ - zj = 1333km
W il

ri
eh:=1+ — =7.000
ah

Ff := acosh| L i +1]|=1.23
eh \ ah

’;
E
Ath:= ’a—~(eh~sinh(Ff) — Ff) = 749.883s
B
h+ 1 Ff
fch := 2-atan( %-taﬂh(;j} =1.128rad fch = 64.623-deg
! eh —

Target moves through Ath-nf = 0.234-rad
Ath-nf = 13.4-deg

Leadangle is fch — Ath-nf = 0.894-rad
|fch — Ath-nf = 51.2-deg]

S/c and target at rendezvous
(f=64.6°)

13.4°

Target at s/c burn time

51.2°
S/c at burn time (lead angle)
radius of the Earth = 6378 km UEarth = 3.986 * 10° km?/s’ g=9.81 m/s*
Sun-Earth distance = 1 AU uSun = 1.327 * 10" km?/s?

1 AU = 1.495978 * 10® km
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Question 4

A high-thrust rocket engine on an orbiting spacecraft will be fired for three minutes as it
flies above Madison, WI (43°N latitude, 89°W longitude). Information about the rocket,
the initial orbit, and the final orbit is as follows:

Rocket Initial Orbit Final Orbit
Thrust = 10 kN a; = 7000 km a="7
Specific impulse = 300 s e1=0 er="7
Initial mass = 1000 kg 11 = 60° 1, =50°
Q; =150° Q, =131.086°
®; undefined Wy ="

Treating the burn as impulsive (all AV occurring at a single location) and firing the rocket
in such a way that the burn location becomes the perigee of the new orbit, determine the
a, e, and w of the spacecraft’s orbit after the burn.

From spherical trigonometry, we can determine the change in angle (6) between the velocity
vectors before the burn and after the burn. Since the burn location is perhielion on the new orbit,
the velocity vector is simply rotated through the angle 6, not moved out of the plane of motion.

ul := asin| M =0.907-rad ul =51.953-deg
sin(il)
in(i2
0 := asin| sin(21 - 02)- 3002 ) _ 0351 1ad 6 = 1838 deg
sin(ul)

The rocket equation can be used to determine the magnitude of the applied AV.

k
=3308-%
gIsp s

mdot :=

mf := mi — mdot- At = 388.379kg

mi km
AV :=Isp-gIn| — | =2.783- —
mf S

radius of the Earth = 6378 km uEarth = 3.986 * 10° km?/s’ g =9.81 m/s’
Sun-Earth distance = 1 AU uSun = 1.327 * 10" km?/s*
1 AU = 1.495978 * 10° km
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(Additional workspace for Question 4)

The combination of the initial speed, the AV magnitude, and the turning angle 6 provide the speed
on the new orbit at the same location (impulsive burn assumption).

k
vi= B —7546-2
al S

From the quadratic formula,

2v1-co8(0) + y (2-v1-cos(8))? — 4-(v12 = AV?) km
- ; = 8.605
S

V2

Or, from the planar laws of sines and cosines,

vl
:= asin| sin(0)-—— | = 58.743 de,
P ( AV) g

km
V2 alt = \[v1% + AVZ = 2.v1-AV-cos(180-deg — 6 — 1) = §.605<
S

The semimajor axis can be determined from the new speed at the given distance.

(2 2V

2= —-— =10007km
\al  p )

The eccentricity can be determined from the position and the new semimajor axis, taking
advantage of the information that the burn location is perigee on the new orbit.

al

e2i=1-—=03

a2

The argument of perigee can be calculated from spherical trigonometry. Since the burn location is
the new perigee and u2 measures the distance from the equator (line of nodes) to the burn
location, u2 and the argument of perigee are the same value.

. ( . . sin(ul)\
u2:= asin, sin(180-deg —il)-——— = 1.098-rad
{ sin(i2) )
radius of the Earth = 6378 km pEarth = 3.986 * 10° km?/s* g=9.81 m/s’
Sun-Earth distance = 1 AU uSun = 1.327 * 10" km’/s?

1 AU = 1.495978 * 10® km
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Chapter 6

HWs

6.1 HWI1

6.1.1 Problem 1

Let us examine the accuracy of the assumption that planets orbit the Sun rather than the
Sun and planet orbiting the mass center of the Sun-planet system. We’ll start with Earth:

What is the distance between the center of a spherical Sun with the radius given on your
Planetary Constants sheet and the center of mass of the Sun-Earth system? Assume that
the Earth is in a circular orbit about the Sun and that the "Mean distance from the Sun”
given on your Planetary Constants sheet is the distance between the mass centers of the
two bodies.

Answer:

Common mass center,measured from the origin of the coordinates system is given by solving
for R in

<—rz—>‘

M2 mass

origin of & A P
_>_’ — i@ [
X-axes * X # & E

——

common
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(m1 + mz)R = Myty + M1ty
1P + mqrq
(my + my)
If we now put m, at the center of origin, then r, = 0. Hence the above simplifies to

>
g

common
mass

center PN
'.\- J.‘-

W

(ml + mz)R =nmyr
o mrn
(my +my)
In our case, m, is the sun and m;, is the earth, and r; is AU. Hence
5.974 % 102* [kg] (1.495978 x 10° [km])
 (5.974 x 1024 [kg] +1.989 x 10% [kg])
= 449.32 [km]

The above is the distance of the common center of mass of the sun-earth, measured from

the center of the sun. As a percentage of the sun radius, it is 44939% X 100 = 6.4558 x 1072

and as a percentage of the distance between the mass centers of the Sun and the Earth it is

4932 100 = —232 100 = 3.0035 x 10~4%

AU 1.495978x108

Summary of answers
1. kilometers: Answer 449.319 km
2. percent of the Sun’s radius: Answer 0.0645%

3. percent of the distance between the mass centers of the Sun and the Earth: Answer
0.000300351%

6.1.2 question 2
Repeat the analysis above for the most massive planet in our solar system, Jupiter.

What is the distance between the center of a spherical Sun with the radius given on your
Planetary Constants sheet and the center of mass of the Sun-Jupiter system? Assume that
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Jupiter is in a circular orbit about the Sun and that the "Mean distance from the Sun" given

on your Planetary Constants sheet is the distance between the mass centers of the two
bodies.

Answer

Now m; is mass of sun, but m, is mass of Jupiter which is 317.9 that of the earth mass, and
r1 now is the distance from center of Jupitor to center of sun (which is the origin of the
coordinates systems), which is 5.203 x AU, hence from
(ml + le)R =myr
o mn
(my + my)
317.9 x (5.974 x 10%#) (5.203 x (1.495978 x 10%))
- (317.9 x (5.974 x 102¢) +1.989 x 10%0)
= 7.4248 x 10°[km]
The above is the distance of the common center of mass of the sun-Jupiter, measured from
5
the center of the sun. As a percentage of the sun radius, it is 7223909 %100 = 106.68 % and
as a percentage of the distance between the mass centers of the Sun and the Jupitor it is

7.4248x10° 3 e
5.203x1.495978x 108 X 100 = 9.5391 x 10™*%

Summary
1. kilometers: Answer 742481 km
2. percent of the Sun’s radius: Answer 106.68%

3. percent of the distance between the Sun and Jupiter: Answer 0.095%

6.1.3 question 3

A satellite is in an elliptical orbit around the Earth; at perigee its altitude is 400 km. The
eccentricity of the orbit is 0.10.

6.1.3.1 partl

What is the speed of the satellite at perigee in km/s?

answer:

rp =rg+ ALT
= 6378 + 400
= 6778.0
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a(l—ez)

1
Butr, = — rp(1+e) — 6778(1.1)

1-2 ~  1-0.12

u(l+e 3.986 x10° (1.1 8.0429 [kni/s]
U, =7|l—|— =4/ ———|—| =8. m/s
p al\l-e 7531.1 0.9

= 7531.1[km], hence

hence a =

6.1.3.2 Part2
What is the altitude of the satellite at apogee in km?

Answer

a (1 - ez) 7531.1 (1 - 0.12)
1-e 0.9
Hence altitude 8284.2 — rp = 8284.2 — 6378 = 1906.2 [km]

r, = = 8284.2 [km]

6.1.3.3 Part3
What is the speed of the satellite at apogee in km/s?

Answer

u(l-e\  [3.986x105 (09
= —|— = _|— ] =6. k
v \/a (1+e) \/ 75311 \11) = 0-°806 ksl

6.1.3.4 Part4
What is the period of the orbit in hrs?

Answer
Toon % o \/ 753117 — 6504.3 [sec]
TN T TN 3986 X105 0 e
6504.3
_ — 1.8068[h
60x 60 _ B06slir]
6.2 HW2

6.2.1 Problem 1

A satellite is in an orbit with a period T = 205 minutes and eccentricity e = 0.40 about the
Earth. When the true anomaly of the satellite is f = 70 degrees, find the time t — 7 since
perigee passage, in minutes.

Answer
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n(t-1)=E-esinE

21
But n = - hence

E—-esinE T(E-esinkE)
n B 2n

(1)

t—-1=

1+e

But tan (Jzi) =\ tan(g), hence E can be found. Substituting it in the above, solves for

t—1

o[ 70 1+04 (E
an = an| —
2(180) 1-04 2

E
0.70021 =1.5275 tan (E)

E 0.70021
tan (—) = = 0.4584

2 1.5275

E

5= arctan (0.4584) = 0.42982
E = 0.85964

Hence from Eq (1)

_ 205 (0.85964 — 0.40sin (0.85964))
B 27

- T

=18.16 min

6.2.2 Problem 2

A satellite is in an orbit with a period T = 205 minutes and eccentricity e = 0.40 about the
Earth. Find the true anomaly of the satellite, in degrees, when it is 50 minutes past perigee
passage.

Answer

n(t—t)=E—-esinE

21 .
— (t—1)=E—esinE
T

2T (50) = E—04sin E
205 = .4 S1n

1.5325 = E — 0.4 sin (E)
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Solving for E

Hence

Hence

6.2.3 Problem 3

E =1.9097 rad

tan (g) = 1—: tan (g)

f /1 +04 1.9097
tan|=| = tan
2 1-04 2

=2.1581

g = arctan (2.1581) = 1.1369
f=(11369)2 = 2.2738
180
=22738| —
Tt
=130.28 deg

A spaceship in a circular orbit above the Earth at an altitude of 300 km. At time t = 0, it
retrofires its engine, reducing its speed by 500 m/s. How long (in minutes) does it take to
impact the Earth? Neglect atmospheric drag.

Answer
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rg = a(l1— ecosE)
4

-, Solving this equation gives £ = 126°, but
\ we want to use the E shown in the
\ dingram. Hence remember to do
\E geat = 27 — E 10 obtam
Epemar = 233° and that & the F to use in
/,'n(t—'r) = E— esmE

!

u=3.986x105 km’/s®

But
AV =V,-V;

Where V; = \/rE = \/; fﬂlt where rr is earth radius and alt is the altitude at ¢t = 0 when the
a E

5
spaceship was in circular orbit. Hence V; = "i?::ﬁgo = 7.7258 km/s hence V, = V; — 500 X

1073 = 7.7258 — 0.5 = 7.2258 km/sec. This is the speed at apogee for the new orbit.

V, = 7.2258 km/sec

_ |u(l-e
Va= a(1+e)

986 x 105 (1 -
7.2258:\/3986>< o( e) "

But

a 1+e

But also we know that r, = a (1 +¢), hence
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6378 +300=a(l +e)
a_6678
T 1+4e

(2)

Substitute (2) in (1)

3.986 x 10°

3.986 x 10°
52212 =22 (1—¢)

6678
(52.212) (6678) _

3.986 x 10°
0.87474=1-e

e=1-0.87474
= 0.12526

Hence from (2) we find a

6678

= Ty 012526 - 006

Hence n the mean speed is

_ [3.986 x 105
B 5934.63
=1.381 x 1073rad/s

At impact r = rg, hence

re=a(l —ecosE)
6378 = 5934.6 (1 — 0.12526 cos E)

0378 1 012526 cosE
59346 cos

6378

E=_ 5846 _ (59647
COSE = 012526

E = arccos (-0.596 47)
E =2.2099

Solving this equation gives E = 126°, but we want to use the E shown in the diagram.
Hence remember to do E,,,;; = 27 — E to obtain E, 4, = 233° and that is the E to use in
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n(t — 1) = E —esin E.Hence, measured from perigee,

E =2m-2.2099
Using Kepler equation
n(t—-t)=E—-esinE

1381 x 1073 (t - 7) = (27 — 2.2099) — 0.12526 sin (277 — 2.2099)
(27 — 2.2099) — 0.12526 sin (27 — 2.2099)

(t-1) =

1.381 X103
= 3022. sec
= 50.37 min
3
But the period is T = 27, /% = 271> = 21— = 4549.7 sec = 75.828 min

Hence the time to impact is

75.82
50.37 - % =12.456 min

6.2.4 Problem 4

Russians use Molniya orbits for their communications satellites. A typical Molniya orbit has
a perigee altitude of 500 km and a period of 12 hr.

6.2.41 parta
What is the eccentricity of a Molniya orbit?

Answer

T=214|—
U

a3
12 X 60 X 60 = 271 s
"\'3.986 x 108

3
(12 X 60 x 60)* = (27)°

3.986 x 105
(12 x 60 x 60)* (3.986 x 10°)
a = > =1.8843 x 10"
(2m)
1/3
a = (1.8843 x 10%%) " = 26610 km
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a(l—ez)

We are given that r, = 6378 + 500 = 6878, but r, = ——

=a(1-e), hence

Tp

e=1-—
a
3 6878
26610
=0.74153
6.2.4.2 partb
What is the apogee radius of a Molniya orbit, in km?
Answer
rp=a(l+e)
= 26610 (1 + 0.741 53)
= 46342 km
6.2.4.3 partc

Determine the time, in hours, that a satellite on a Molniya orbit has a true anomaly greater
than 135° and less than 225°

Answer

Let 04, 0, be the true anomaly angles at position 1 and 2, and let E;, E, be the corresponding
circular angles. We first find E;, E,

" E1 ¢ 61 1—6
n(—|=tan|—|+/—
i U B RN AV
o (13m )\ [1-074183 _ .
= 1n = U.
M 2%x180) V1+074153

E
5 = arctan (0.93007) = 0.74918

E; =0.74918 x 2
=1.4984 rad

180
=1.4984 x — = 85.859

Similarly
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E2 62 1-¢
tan|—=—| =tan|— —
2 2 1+e
2257 \ [1- 074153
= tan (2 X 180) T+07a153 00007

Eq
5 = arctan (-0.93007) = —0.74918

E; =-0.74918 x 2
= -1.4984 rad

Hence E, = -1.49836 rad or —85.75°, Measured anticlockwise from perigee, it becomes
E, =360 - 85.75 = 274.15°

Now the time to reach point 1, is

n (t1) = El - esinE1
Ei—-esinE; 1.4984 - 0.74153sin (1.4984)

t; = = = 5217.1 sec

“ [3.986x10

a3 266103
and

n (tz) = EZ - €SiIl Ez
(271 — 1.49836) — 0.741 53 sin (27 — 1.49836)
1= = 37983 sec
3.986x10°
266103

Hence the difference is 37983 —5217.1 = 32766 sec or 2’5122 =91017 hr

6.3 HW3

6.3.1 Problem 1

A comet is on a parabolic orbit about the Sun. At its point of closest approach, the distance
between the comet and the center of the Sun is 5 million km.

6.3.1.1 parta
What is the speed of the comet, in km/s, relative to the Sun at its point of closest approach?

Answer
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The time to fly this distance is
given by solving for (t — 7) from 4

3 /
5 (tan(5))

= tan(5) +

2‘/p—T3(t—r)

satellite
_ |2
Vp T YTV r\
Jr-
-
p p
prsele Lo |
2/5/14 p = 2rp ‘
\/ 1 327 X 1011
5% 10°
= 230.39 [km/ sec]
6.3.1.2 partb

How long is the comet within 150 million km of the Sun?

Answer

p 21y
" 1+cosO 1+cosO
p:2rp:2><5><106:10><106. Hence
cos O = E—l
r
10 x 10°
= 1505 10 -1=-0.93333

The above can also be found using
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hZ
-k
1+ cos@

Where It = 7,0, = 5 x 10° x 230.39 = 11520 x 10° [km?/s]

Hence
2

cosf=—-1
ry

(szoxuﬂf

= -1=-0.93333
150 x 100 x 1.327 x 1011

Therefore, 0 = arccos (-0.93333) = 2.774 4 [rad] = 158.96°. Now, from

3
2\/%(1? — 1) =tan (g) + % (tan (g))

t —2.7744 +1 t —-2.7744 3
an 2 3 an 2

1.327x1011
(10x106)3

=2.4935 x 10° [sec]

24935 x10°
60 x 60 x 24
= 28.8558 [day|

t—-1)=

To account for both sides of the trajectory, then number of days is doubled, hence 28.8558x2 =

57.712 [days]

6.3.2 Problem 2

A spaceship is in a circular orbit about the Earth at an altitude of 700 km. It fires its rocket
engine for a short time to instantaneously increase its speed by 75% and boost the spaceship

to a hyperbolic orbit.

6.3.21 parta

What is the speed increase (del V) of the spaceship in km/s as a result of the rocket burn?

Answer:
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The time to fly this path is
found by solving for t in

6.3. HW3
Vgo = V% - Vgsc Use this to
determine Vp
V2 — ﬂ needed to
o a escapetoa
hyperbolic orbit.
V2 — 2.“
esc rp
Flight path angle
a?(e2-1)
Cos y\ o r(2a+r)

a(e?-1)

l+ecosf
r = a(ecoshF—1)
h2

r=—=

1+ecos 6

030714

e+cos 6

COSh F - 1+ecos 6

tan(4) = /<L tanh($)

e= <%

c2=a?+h?

if we know ry,r, onthe
orbit, and know the travel
time between these 2 points
then a, e, F can be found by
numerically solving these

rn=ae—-1)
r, = a(ecoshF —1)

At = ‘/%(esinh(F) -F)

u 3.986 x 10°
V .= —_ = _— = 75044 k”l
o \/: V 6378 + 700 Limfs]

Hence
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Vo=V +AV
1.75V, =V + AV
AV =0.75V;
= 0.75(7.5044)
= 5.6283 [km/s]

6.3.2.2 partb
What is the semimajor axis a of the resulting hyperbolic orbit in km?

Answer:

The new speed at the point of the firing is V = V; + AV =7.5044 + 5.6283 = 13.133 [km/s]

But
Ve 2 N 1
—\H r o a
2 1
VZ=pl|=+-
i(5+3)
1 V2 2
a u or
1 1
a= V2 o2 T 131332 B 2
g v 3.988x105  6378+700
= 6670.2 [km]
6.3.2.3 partc

What is the eccentricity e of the resulting hyperbolic orbit?

Answer

a(e?-1
These are 3 ways to find e, the first is using r = (1) , where we can use that 6 =0 at the

time of firing since that is when r = r, for the hyperbohc orbit. This is always the case, when
an orbit changes to new orbit, we use the point of firing as perigee of the new orbit, and the

a(e?-1
true anamoly is hence zero at that point. This means r, = (1)

P = e and since we know a4 and
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r, we can solve for ¢

p
6670.2 (e2 - 1)
6378 +700 = ——— 7
1+e
6670.2 (e2 - 1)
70780 = ——~ 7
1+e

7078.0 + 7078.0e = 6670.2¢% — 6670.2
6670.2¢%2 — 6670.2 — 7078.0 — 7078.0e = 0
6670.2¢% — 7078.0e — 13748 = 0

Hence e = 2.0614 or e = -1, and since e is positive, we use e = 2.0614 as the solution.

Another way, is to note that since ¢ = 2 and ¢ =1, + a, hence

. (6378 + 700) + 6670.2

=2.0611
6670.2
= 2 5
Another way to find e is using e = /1 + Zizh where Energy & = % _ % and 1 = ro, hence

2

| 25 Y)er
e= \ 1+ T
131332 3.988x10° >
2( 2 6378+700) ((6378 + 700)13.133)
= |1+ .
\ (3.988 x 10%)

= 2.0614

6.3.2.4 partd

How long (in hours) does it take the spacecraft to reach the Moon’s orbit, a distance of
384,000 km from the center of the Earth?

Answer

ro = 384000 [km]

Using

%(t—[u) =esinh (F) - F
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Where F is found from
r=a(ecosh(F)-1)
384000 = 6670.2 (2.0611 cosh (F) — 1)

384000
h(F)= %70 — 28417
cosh (F) = = 0611 8
F = 4.03983

Hence

(5 (-0 =esinh (P - F
3.988 x 10° '
o670 (t - 7) = 2.0611 sinh (4.03983) — 4.03983

(t-1) 2.0611 sinh (4.03983) — 4.03983
— T =

[3.988x10°
6670.23

= 47009 [sec]
47009
= Z0%e0 13.058 [hr]

6.3.3 Problem 3

Using Matlab, EES, Mathcad, Maple or similar software, create a program to calculate
the position and velocity components of a satellite in an x,y,z coordinate system given its
classical orbital elements (a, e, i, GAMMA, OMEGA, f). Use the examples in the course
notes to test your program, then apply it to the set of elements below. (Save your program
somewhere you can find it again; you will need it later in the semester.)

a: 9000 km

e: 0.02

i: 28.5 degrees
GAMMA: 50 degrees
OMEGA: 20 degrees
f: 40 degrees

x = Answer km

y = Answer km

z = Answer km

vx = Answer km/s
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vy = Answer km/s
vz = Answer km/s

toXYZ[a_, e_, i_, gamma_, omega_, theta_] := Module[{r, p, x, y, z, vX, VY
r=(a (1 -e2))/(1 + e Cosl[theta]);
p=a(-e2);
tl = {{Cos[omega], -Sin[omega], 0}, {Sin[omega], Cos[omegal, 0}, {0, O,
t2 = {{1, 0, 0}, {0, Cos[i], -Sin[il}, {0, Sin[i], Cos[il}};
t3 = {{Cos[gamma], -Sin[gamma], 0}, {Sin[gamma], Cos[gamma], 0}, {0, O,
{x, y, z} = t3.t2.t1.{r Cos[thetal, r Sin[thetal, 0};
{vx, vy, vz} = t3.t2.t1.{-Sqrt[mu/p] Sin[thetal, Sqrt[mu/p] (e + Cos[ths
{{x, vy, z}, {vx, vy, vz}}
]

a = 9000;

e = 0.02;

theta = 40 Degree;

i = 28.5 Degree;

gamma = 50 Degree;

omega = 20 Degree;

toXYZ[a, e, i, gamma, omega, thetal

{{-2318.17, 7728.55, 3661.5}, {-6.05942, -2.50006, 1.64775}}

6.4 HW4

6.4.1 Problem 1

Create a program to calculate the classical orbital elements (a,¢,i,Q), w, f) of a satellite given
its Cartesian position and velocity components (x,y,z,v,,v,,0v,). Use the examples in the
course notes to test your program, then apply it to the state vector below. (Save your program
somewhere you can find it again; you will need it later in the semester.)

x = =3000 km
y = —6000 km
z = 4000 km
v, = 6 km/s
vy = -1 km/s
vz = -3 km/s

Answer is
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a = 7108.84 km
e = 04615 km
i = 34.320
Q = 124.287°
w = 242.65°
f=232.07°

6.4.2 Problem 2

What combination of launch latitude and azimuth angle will allow a spacecraft to be launched
directly into an equatorial geostationary orbit about the Earth?

Since
cosi = sin A, cos ¢
Where i is inclination and A, is the azimath and ¢ is the latitude. Then for i = 0°
Latitude: 0°
Azimuth: 90°

Can a spacecraft be launched directly into an equatorial geostationary orbit about the Earth
from the ETR (Eastern Test Range, Cape Canaveral)? No Since i is not zero.

Can a spacecraft be launched directly into an equatorial geostationary orbit about the Earth
from the WTR (Western Test Range, Vandenburg AFB)? No, same reason.

6.4.3 Problem 3

A satellite is initially in a circular orbit about the Earth at an altitude of 200 km. Its target
orbit is a circular orbit in the same plane with a radius of 130,000 km. Calculate the total
AV and transfer time (in hours) required to complete each of the orbit transfers below.
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6.4.3.1 Part(a) Hohmann transfer

q = 11 -5 I'2
Vi= |+
Vol Va T=nrx al
V2 = 1/ ‘Ll <L B l) \\\\ Time to tranl:fer
Iy a ‘ from one orbit to
' the oth
AVl :VZ—Vl e other
_ 2 1
Vs = ‘/ (5 - 3
Vo= |+
AVZ _ V4 _ V3 Hohmann Transfer —
= |AV1|+ |AV,|

Total Velocity
change needed

+7, 200 + 6378 + 130000
_hrh = 68289 km

3.986 (10°)
200 + 6378

2 1 2 1
Vo = u|= = = | = 1/3.986 (105 - =10.74 km/
2 \/“ (rl a) \/ (10°) (200 T 6378 68289) :

AV, =V, -V, =10.74 - 7.7843 = 2.9557 km/s

2 1 2 1
— — __| = 5 _ —
Vs = \/ u (rz a) = \/3.986 (10 )(130000 68289) = 0.54346 km/s

v / 3986 (10°) 1.751 km/
47 130000 - >
AV, = v4 —V, =1.751 - 0.54346 = 1.2075

V = |AV;| + |AV,| = 2.9557 + 1.2075 = 4.1632 km/s

= 7.7843 km/s
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Time of transfer

3
T=rm+—
U

2893
=7 & = 88799 sec
3.986 (105)

887599 24.666 h
= = . r
60 x 60

6.4.3.2 Part (b) bi-elliptic transfer

with an intermediate transfer radius of 200,000 km

a:r1+rb

! 2 a, = Zh
M+r

a, = 22b

Vi = ‘/rzl
Vo= [u(# - 4r)

AV =V -Vy

_ 2 1 > | _ Vi Ay
Ve = 1/ (-4
,MV ) Ve
5 AV3
V. 2 _ 1
4 H Iy dr
AVy =V4—-V3 o
— 2 1 Bi-Elliptic Transfer
Vs = 1/ u(f -5 )
3 3
T=rn,/-L +7,/32
Ve = / r% \ E |
Time to transfer
from one orbit to
AV3 = V6 - V5 the other
AV = |AV1|+ |AV2| + |AV3| B o

Total Velocity
change needed

1, = 200000 km, r; = 200 + 6378 km, r, = 130000 km
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ri+ 7y _ 200 + 6378 + 200000

2 2
_ 1+t rb 130000 + 200000

a, = =1.0329 x 10° km

=1.65 x10° km

3. 986
= 7.7843 km/s
200 + 6378 6378

2 1
Vo =+ fu|= - =) = [3.986 (105 - =10.832 kn/
2 \/’“‘ (r1 al) \/ (10%) (200 + 6378  1.0329 x 105) °

AV, =V, -V, =10.832 — 7.7843 = 3.0477 km/s

2 1 2 1
Vs =l = - =] = +/[3.986 (10° - = 0.35632 km/
3 \/” (rh al) \/ ( )(200000 1.0329 ><105) °

2 1 2 1
V= Ju[= - =] = 1[3.986 (10° - — 1.2531 kn/
: \/”(rb az) \/3 3 (10 )(200000 1.65><105) >o s

AV, =V, — V3 =1.2531 - 0.35632 = 0.89678 km/s

2 1 2 1
Vs =lu|= - =] = +/[3.986 (10° - =1.9278 km/
5 \/” (rz aZ) \/ ( )(130000 1.65 ><105) >

3.986 (10)
Ve = =1.751 km/s
130000
AV, = V6 - V5 =1.751 - 1.9278 = —0.1768 km/s

AV = |AV;| + [AV,] + |AV3| = 3.0477 + 0.89678 + 0.1768 = 4.1213 km/s

Transfer time
a3 al
T= nwf—l + 7"1’ 2

1 0329 x 105)
———+7
3.986 (105)
= 4.9869 x 10° sec

49869 x10°
- 60 %60

(1.65 % 105)3
3.986 (10)

=138.53 hr
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6.4.3.3 Part (c) semi-tangential elliptical transfer

Vi= |4
Vo= Ju(F - %)
AV; =V, — V3
- (B )
Vo= |+
2 _ 2
COSy = ‘/ :12((2];1 _erz))

AVy = V5 +VE—2V4Vscosy
AV = AV ] + AV,

Total Velocity
change needed

r, = 200000 km, 7, = 200 + 6378 km, r, = 130000 km,
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)

n =

At

Vi AV,

Time to
transfer from
one orbit to
he other

a(l—ecosk)
H
eil :3
l(E—esinE)
n
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ry+7, _ 200 + 6378 + 200000

a= = =1.0329 x 105 km
2 2
3.986 (105)
Vi =[5 =\[———2 =7.7843 km/s
200 + 6378

2 1 2 1
Vo =4 fu|= - =) = 1/3.986 (105 - =10.832 km/
2 \/’J (r1 a) \/ (10°) (200 +6378  1.0329 x 105) °

AV, =V, -V, =10.832 — 7.7843 = 3.0477 km/s

2 1 2 1
Vs = Ju[= - =] = 1[3.986 (10° - = 1.5077
3 \/“ (rz a) \/3 986 (10°) (130000 1.0329 X 105)

m 3.986 (105)
V4 = — = ——— 2 =1.751 km/s
130000
L Tb=r _ 200000 - (200 + 6378)

Cry+1r, 200000 + (200 + 6378)

= 0.93631

a?(1-e2) B (1.0329 x 105)2 (1-0.936322)
r2(2a—ry) 130000 (2(1.0329 x 105) - 130000)

cosy = = 0.36351

AV, = \/vg +V2-2V,V5cosy = V1.7512 + 1.50772 — 2 (1.751) (1.5077) (0.36351) = 1.8493
AV = |AV;| + |AV,| = 3.0477 +1.8493 = 4.897

To find transfer time, we first must find E, which is found by solving r = a (1 — e cos E) where
r is the radius we want to find E at which is r, in this case. Hence
ro =a(l —ecosE)
130000 = 1.0329 x 10° (1 - 0.93631 cos E)
130000

1.0329 x 10°
0.93631 cos E = —0.25859

cos E = -0.27618
E = arccos (—0.27618) = 1.8506 rad

0.93631cosE =1 -

3.986 (10°
n=L|5 = —()3 ~1.9019 x 105

3
a (1.0329 X 105)
1
At = - (E—esinE)

19019 x 105 (1:8906 — (0.93632) sin (1.8506)) = 49987 sec

49987
= 998 =13.885 hr
60 x 60
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6.4.3.4 Part (d) a semi-tangential hyperbolic transfer

with a transfer time half that required for a semi-tangential parabolic transfer
Semi-tangential parabolic transfer time: Answer hours

Semi-tangential hyperbolic transfer time: Answer hours

Semi-tangential hyperbolic total AV: Answer km/s

Answer:

r1 = 200 + 6378 km, r, = 130000 km. For a parabolic orbit, the true anamoly 6 is found when
r =r1,. From

2rp
Ty = ——
1+ cosB
2rp
6 = arccos|— -1
)
(er )
= arccos|— -1
§)

But rp = r]l hence

27‘1
6 = arccos|— -1
§)

2(200 + 6378) )

= arccos( 130000

= 2.6878 rad
= 1549

So the time for transfer if we are using a parabolic orbit is
3
o), 1 0
tan (E) + 3 (tan (E))
[
2 21’1
+

t 2.6878 1 t 2.6878 3
~ an — 3 an —

3.986(10°)
(2(200+6378))°

At =

= 37547 sec
37547 10.430 h
= = . Ir
60 x 60

Hence required time for hyperbolic is

1
Atpyper = > (10.430) = 5.215 hr
Now to obtain AV for hyperbolic orbit.

If we know rq,7, on the orbit, and know the travel time between these 2 points then a,¢, F

233



6.4. HW4 CHAPTER 6. HWS

can be found by numerically solving these equations
rn=a(-1)
ry =a(ecoshF —1)

\/?3
At = ; (esinh (F) = F)

The above are 3 equations with 3 unknowns

200+ 6378 = a(e—1)

3.986 (109)

——(5.215 % 60 x 60) = esinh (F) - F

130000 = a (ecosh F —1)

Solving gives

e =1.5468
a =12029.4 km
F =2.7213 rad
Hence
a =12029.4 km
M = 7.7843 km/s
200 + 6378

2 1 2 1
Vy = lu[= + =) = 1[3.986 (105 = 12.423 km/
2 \/“ (r1 i a) \/ ( )(200 16378 12029.4) >

AV, =V, -V, =12.423 - 7.7843 = 4.6387 km/s

Vs = G 3.986 (10°) 2,1 ) 6o66a
3TVHL, T TV 130000 * 120294 ~

m 3.986 (105)
Vi= & = ———2 =1.751 km/s
ry 130000

22 (2 -1) (12029.4)” (1.54682 - 1) 010031
O3V =N\ @a+ry V1300002 (12029.4 ) + 130000)

AV, = \/VZ + V2 -2V,V5cosy = V1.7512 + 6.26642 — 2 (1.751) (6.2664) (0.10031) = 6.335
AV = |AV4| + |AV,| = 4.6387 + 6.335 = 10.974
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6.5 HW)S

6.5.1 Problem 1

A spacecraft is initially in a 300 km altitude circular orbit about the Earth in the ecliptic
plane. It is to be sent on a Hohmann transfer to Saturn, also in the ecliptic plane. Assume
that Saturn is in the correct position in its orbit for a flyby to occur when the spacecraft
gets there.

6.5.1.1 part(a)

Calculate the initial AV, required to start the trip to Saturn.

Tyo = Vg +alt

Where ¢ is radius of earth and alt is spacecraft altitude. Hence

Fi0 = 6378 + 300 = 6678 km

The distance from earth to sun is Ry = 1.496 x 108 km and the distance from saturn to sun is

3 9
R, = 9.536x1.496 X 10° = 1.4266 x10° km therefore g = ~E= = 222020000 — 78815108
km.

. Ls 1.327x1011
The earth speed around the sun is V, = \/; = Voo = 29783 km/sec. When the

spacecraft escape the earth it has to be at speed

\% 2 1 1.327 x 1011 2 ! 40.07 km/
. — _—— =] = . - = . C
perigee s Rp a 1.496 x 108  7.8815 x 108 >

Therefore, V,, is the escape speed found from

Vo = Vperigee -V,
=40.07 - 29.783
=10.287 km/sec

Now the burn out speed is found

Vi b _ V& pe
2 1o 2 Tsor

Where 75y is the earth sphere of influense given by 9.24 X 10° km. Solving for V,
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VZ 3986x10° 102872 3.986 x 10°

2 6678 2 924x10°
Vo = 14.978 km/sec

Hence

AVy = Vi — | EE
Tho

3.986 x 10°
=14.97 —\| ———
6678

=7.2442

6.5.1.2 part(b)
Calculate the angle past the Earth’s dawn-dusk line where the AV should be applied.

VEVErh,
uE
(10.2872) (14.9782) (66782)

e=4/1+

= (1+

(3.986 x 105)2
= 2.7683

Hence

-1
11 = arccos (?) = arccos(

=111.18°

2.7683

) =1.9404 radian

Hence 6 =180 —111.18 = 68.82°

6.5.1.3 part(c)

For how long is the spacecraft on the heliocentric Hohmann transfer between Earth and
Saturn? (Note: you do not need to calculate the time within either planet’s sphere of influence,
as that will be small relative to the Hohmann transfer time, but you are welcome to do so
and compare those values for yourself.)

The time is half the period of the elliptical orbit. Hence
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] \/ 7 8815 x 108
T= n\/:s T3 1011 =1.9082 x 10° sec
1.9082 x 108
~ 60 x 60 X 24 X 365

= 6.051 year

6.5.1.4 part(d)

After crossing into the sphere of influence of Saturn, the spacecraft is to be placed in a
circular orbit about Saturn with an orbital radius of 150,000 km. Calculate the AV, required
to place the spacecraft on this orbit.

Solution completed in the Mathematica solution. See above for links.

6.5.2 Problem 2

A spacecraft on an interplanetary mission in the same plane as Jupiter’s orbit about the
Sun enters Jupiter’s sphere of influence. The spacecraft has a speed of 10 km/s relative to
the Sun at this point, which you can estimate as the Jupiter’s average orbital radius about
the Sun. (See the Planetary Constants sheet in your notes for values.) Assume that Jupiter
is in a circular orbit about the Sun.

6.5.2.1 part(a)

The largest possible value for the impact parameter, b, that will still result in a hyperbolic
orbit about Jupiter in the patched conic method is Jupiter’s SOI radius. Find that value on
the Planetary Constants sheet in the course notes and enter it here for reference.

brnax = RSOI,]upitor = Answer km

For parts (b) through (g), assume that, relative to the Sun, the spacecraft is moving in the
same direction as Jupiter when it enters Jupiter’s SOI.

6.5.2.2 part(b)
What is the speed of the satellite relative to Jupiter when it enters Jupiter’s SOI?
V. = Answer km/s

6.5.2.3 part(c)

What is the smallest possible value for the impact parameter b? This value of impact
parameter will result in a burnout radius that just grazes the surface of Jupiter, 1, = 7jpiter

bmin = km
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6.5.2.4 part(d)

Select as your impact parameter the value halfway between b,,;, and b,,,,. Note that value
here for reference and use it as your impact parameter for the rest of the problem.

b = Answer km

6.5.2.5 part(e)

Given the impact parameter from part (d), calculate the turning angle of the spacecraft
relative to Jupiter during the flyby.

0 = Answer degrees

6.5.2.6 part(f)
What is the spacecraft’s heliocentric speed following the flyby?
Vp = km/s

6.5.2.7 part(g)
What is the spacecraft’s heliocentric flight path angle following the flyby?
yp = deg

For the remaining parts, assume that, relative to the Sun, the spacecraft DOES NOT arrive at
Jupiter’s SOI moving in the same direction at Jupiter. The spacecraft still has a heliocentric
speed of 10 km/s at the distance of Jupiter’s orbit from the Sun. But now it has a heliocentric
eccentricity of 0.5. (What was the heliocentric eccentricity when the spacecraft arrived in
the same direction as Jupiter, assuming that point was aphelion?)

6.5.2.8 part(h)

What is the spacecraft’s heliocentric flight path angle when it arrives at Jupiter’s SOI?

Va = deg

6.5.2.9 part(i)

What is the spacecraft’s speed relative to Jupiter?
V. = km/s

part(j)

Using the same impact parameter as in part (d), calculate the turning angle of the spacecraft
relative to Jupiter.

0 = deg
part(k)
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Assuming that the spacecraft flies behind Jupiter, what is the spacecraft’s heliocentric speed
following the flyby?

VD :km/s

6.5.2.10 part(L)

Assuming that the spacecraft flies behind Jupiter, what is the spacecraft’s heliocentric flight
path angle following the flyby?

yp = deg
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6.5.3 Appendix
6.5.3.1 solution in Maple

Y HWS by Nasser M. Abbasi, EMA 550

Problem 1

A spacecraft is initially in a 300 km altitude circular orbit about the Earth in the ecliptic plane. It is to
be sent on a Hohmann transfer to Saturn, also in the ecliptic plane. Assume that Saturn is in the
correct position in its orbit for a flyby to occur when the spacecraft gets there.

> local "~ := proc(f::uneval, "$'::identical(’ $'), expr::uneval)
> local x, opr:= op(procname) ;

> if opr <> ‘<’ then return :-'~ [opr](args) end if;
> x:= eval (expr) ;

> print(op (1,

> subs (

> = nprlntf("%a" f), X =x,

> proc( ' := expr=_X ) end proc

> )

> )) s

> assign(f,x)

> end proc:

Y part(a)

;These below are from tables
> AU := 1.496*1078;

saturn_sun distance := 9.537%1.496%10"8;
sun_mu = 1.327*10711;

earth mu = 3.986*10"5;

earth soi := 9.24*1075;

satellite earth altitude := 300;
earth_radlus 1= 6378;

AU = 1.496000000 10°
saturn_sun_distance := 1.426735200 10°
sun_mu = 1.327000000 10"
earth_mu = 3.98600000 10°
earth_soi == 9.2400000 10°
satellite_earth_altitude := 300
L earth_radius = 6378

_F ind burn out radius

> rbo _earth <~ satellite_earth_altitude+earth radius;
rb0_earth = satellzte earth altitude + earth_ radius = 6678

ﬁnd "a" for the Hohmann ellipse in sun centric space
> a <~ (AU+saturn_sun_distance)/2;
a:= % AU+ % saturn_sun_distance =7.881676000 108
;Find velocity of earth relative to the sun
> earth_speed <~ sqgrt(sun_mu/AU) ;
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[ sun_mu
th d:= | ———— =29.78308388
earth_spee iU

;Find velocity of spacecraft relative to earth
> satellite_speed relative to_earth <~ sqgrt(earth mu/rb0_earth) ;

satellite_speed_relative to_earth .= | carth mu_ 7.725835198
rb0_earth

[ find what the velocity of spacecraft should be at the perigree of the Hohmann orbit in sun centeric
| space
> velocity perigee <~ sqgrt(sun_mu*(2/AU - 1/a));

1

velocity perigee ::/sun_mu (L — *) =40.07117375
AU  a

| Find excess speed V infinity out, to escape earth
> velocity infinity entering saturn <~ velocity perigee-
earth speed;

i velocity _infinity _entering saturn = velocity perigee — earth_speed =10.28808987

|_set up the energy equation and solve for V_b0
> saturn_vb0 := 'saturn vb0';
saturn vb0 <~ sqrt(2 * ((velocity infinity entering saturn”~2/2
-earth mu/earth soi)+ earth mu/rb0_earth ));
saturn_vb0 = saturn_vb0

saturn_vb0 := / velocilyﬁinﬁnizfyienteringisaturnz— Zearth_m'u + 2 earth_mu =14.97862082
earth_soi rb0_earth

> delta vl <~ saturn vb0 - satellite speed relative_ to_earth ;

delta vl = saturn_vb0 — satellite_speed relative to earth="7.252785622

Y part(b)

Calculate the angle past the Earth's dawn-dusk line where the AV should be applied.
Find escape hyperbolic trajectory eccentricity
> e <~ sqrt(l+ (velocity infinity entering saturn”2*saturn vb0~2*
rb0_earth*2) /earth mu*2 ); - - -

. ; 2 2 2
e:=/1 I velocity infinity entering saturn” saturn_vb0” rb0 earth 1 768660225

| earth_mu2
|_find angle eta
> eta <~ arccos(- 1l/e);
n:= arccos( - é ) =1.940335258

> theta <~ evalf (180 - eta*180/Pi) ;
1801

0:= evalf{l80 —
yis

) =68.8269789

Y Part (¢)

For how long is the spacecraft on the heliocentric Hohmann transfer between Earth and Saturn?
(Note: you do not need to calculate the time within either planet's sphere of influence, as that will be
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\ 4

small relative to the Hohmann transfer time, but you are welcome to do so and compare those values
for yourself.)
The time is half the period of the elliptical orbit. Hence

> T <~ evalf (Pi*sqrt(a*3/sun_mu)) ;

3
T:= evalf[n 4 J—1.908280789 108
i sun_mu
[> T <~ T/(60*60%*24%365) ;
— 1 _
T= S1s3co00 [ = 6-051118687

Part (d)

After crossing into the sphere of influence of Saturn, the spacecraft is to be placed in a circular orbit
about Saturn with an orbital radius of 150,000 km. Calculate the AV2 required to place the spacecraft
on this orbit. When spacecraft reaches saturn is has speed relative to sun of
> saturn _vb0 := 'saturn vbO0';

rb0_saturn := 150000;

v_apogee <~ sqrt(sun_mu*(2/saturn_sun distance-1/a));

satellite_speed relative_to_earthurn <~ sqrt(sun_mu*

(1/saturn sun distance)) ;

velocity infinity entering jupitor <~

satellite speed relative_ to_earthurn - v_apogee;

saturn mu := 37931187;

saturn_SOI := 3.47*10%7;

eq := saturn vb072/2 - saturn mu/rb0 saturn =

velocity infinity entering jupitor*2/2 - saturn_mu/saturn_SOI;

saturn vb0 := op(select( is, [solve(eq,saturn_vb0)], positive))

satellite_speed relative to_earth <~ sqrt(saturn_mu/rb0_saturn)

del v2 <~ evalf (satellite speed relative_to_earth -
saturn_vbo0) ;
total delV <~ abs(delta vl) + abs(del v2);

saturn_vb0 = saturn_vb0
rb0_saturn == 150000

2
saturn_sun_distance

v_apogee ::/sun_mu ( — L) =4.201653949
a

sun_mu
saturn_sun_distance

satellite speed relative to earthurn := / =9.644145932

velocity _infinity _entering jupitor := satellite_speed relative to_earthurn —v_apogee
=5.442491983
saturn_mu := 37931187

saturn_SOI = 3.470000000 10’
— 1 2 12643729 _
eq = saturn_vb0 50000 13.71724171

saturn_vb0 = 23.09076966
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\ 4

satellite_speed_relative _to_earth := saturn_mu___1 V 63218645
- - - - rb0_saturn 500

del v2:=evalf (satellite_speed_relative to_earth — saturn_vb0) = -7.18873897
total delV = |delta vi| + |del v2| =14.44152459

Problem 2

A spacecraft on an interplanetary mission in the same plane as Jupiter's orbit about the Sun enters
Jupiter's sphere of influence. The spacecraft has a speed of 10 km/s relative to the Sun at this point,
which you can estimate as the Jupiter's average orbital radius about the Sun. (See the Planetary
Constants sheet in your notes for values.) Assume that Jupiter is in a circular orbit about the Sun.

VY part(a)
The largest possible value for the impact parameter, b, that will still result in a hyperbolic orbit

about Jupiter in the patched conic method is Jupiter's SOI radius. Find that value on the Planetary
| Constants sheet in the course notes and enter it here for reference.

> jupitor_ SOI := 4.83*10"7;
sun_mu = 1.327*%10~11;
jupitor_mu = 126686534;
b _max <~ jupitor_ SOI;

Jupitor SOI :=4.830000000 10’
sun_mu = 1.327000000 10"
Jupitor_mu = 126686534
L b_max = jupitor_SOI=4.830000000 10’
V¥ part(b)

For parts (b) through (g), assume that, relative to the Sun, the spacecraft is moving in the same
direction as Jupiter when it enters Jupiter's SOI
| What is the speed of the satellite relative to Jupiter when it enters Jupiter's SOI?
> satellite _speed relative_to_sun :=10;
jupitor_sun distance := 5.203%1.495978*108;
jupitor_ speed <~ sqrt((sun _mu) / (jupitor_sun _distance));
veloc:l.ty infinity | enterlng jupitor <~ jupltor speed -
satellite _speed_ relatlve to_sun;
satelllte_speed_relattve_lo_sun =10

Jupitor_sun_distance :=7.783573534 10°

sun_mu =13.05707640

Jupitor_speed = /

velocity_infinity_entering jupitor := jupitor_speed — satellite _speed_relative to_sun
=3.05707640

Jupitor_sun_distance

VY part(c)
I:What is the smallest possible value for the impact parameter b? This value of impact parameter
will result in a burnout radius that just grazes the surface of Jupiter
> jupitor_ radius :=71492;
jupitor_vb0_min <~ sqrt(jupitor mu/jupitor_radius) ;
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b min <~ evalf(jupitor_radius¥*
jupltor vb0 m1n/veloc1ty infinity entering_ jupitor);

Jupitor_radius := 71492

upitor vb0 min == | —L4PIOr_mu 2264268422182
Juptior_vou_miz Jupitor_radius 35746 v

b min = evalf( Jupitor_radius jupitor vb0 min ) — 0844363876 10°
- velocity infinity_entering jupitor '

VY part(d)
Select as your impact parameter the value halfway between b_{min} and b_{max}. Note that

| value here for reference and use it as your impact parameter for the rest of the problem
> b <~ (b_max+b min)/2;

b= % b_max + % b_min =2.464221819 10’

VY part(e)
Given the impact parameter from part (d), calculate the turning angle of the spacecraft relative to
| Jupiter during the flyby.
> saturn_vb0 := 'saturn vb0': rb0 _earth := 'rb0_earth':

rb0 jupltor <~ b*

veloc1ty infinity entering jupitor/jupitor vboO;

eq <~ (jupitor vb0%2/2 - jupitor mu/rb0_jupitor =
velocity . 1nf1n1ty entering _ jupitor*2/2 =

jupitor mu/]upltor SOI) ;

sol <~ solve (eq, jupltor_ybO);

jupitor_vb0 <~ op(select( is, [sol], positive));

b velocity infinity entering jupitor  7.533314367 10’

b0 _jupitor := — — =
rov_jupitor Jupitor vb0 Jupitor vb0
eq = (% jupitor_vbO2 — % = % velocity_infinity entering _jupitor2

- % ) = ( % Jupitor vb(F — 1.681683889 jupitor vb0="2.049948451 )

sol := solve(eq, jupitor vb0) = (4.313785256, -0.9504174777)
i Jupitor_vb0 = op (select(is, [sol], positive)) =4.313785256
> rb0_jupitor;
1.746335045 10’

> e <~ sqgrt(l+(velocity infinity entering jupitor~”2*

jupitor_vb042*rb0_ jupitor”2)/jupitor mu*2 );

eta &= arccos(-1/e);

evalf (eta*180/Pi) ;

theta &= (2*eta-Pi);

evalf (theta*180/Pi) ;

A . N
B _/1 4 velocity infinity entering jupitor ]2upzt0r s rb0_jupitor 2074762092
Jupitor_mu
(1.940335258) &= (2.073712835)
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111.1730211

(68.8269789) &= (3.880670516 — 1)
3943.495406

\ 4 Part(i)

| What is the spacecraft's heliocentric speed following the flyby? (11.73 is correct)
> vd <~ sqrt(jupitor_speed”2+
velocity_ infinity entering jupitor”2-2*jupitor_speed*abs

(velocity infinity entering jupitor) *cos (theta)) ;
vd =

(jupitor_speed2 + velocity infinity entering _jupitor2

1/2
— 2 jupitor_speed |velocity infinity entering jupitor cos(0) ) =10.16313731

\ 4 part(g)

| What is the spacecraft's heliocentric flight path angle following the flyby
> gamma_d <~ arcsin(velocity infinity entering jupitor*sin
(theta) /vd) ;
evalf (gamma_d*180/Pi) ;

gamma d arcsin( veloczty_znfznzty_en‘izrzng_/upztor sin(0) ) — 0.08555941389
L -4.902193312
Y Hohmann from earth to moon (for project)
> satellite earth_altitude := 300;
earth radius := 6378;
r p <~ satellite_earth altitude+tearth radius;
r_ a <~ 384400;
a <~ ((r_pt+tr__a)/2);
earth mu = 3. 986*10"5

satellite _speed relative to_earth <~ sqrt(earth mu/r_ p);
veloc1ty_per:|.gee <~ sqgrt(earth . mu* (2/r_p - 1/a));
del V1 <~ velocity perigee -
satellite _speed_relative_to_earth;
e <~ evalf( (r__a- r_p)/(r a+r_p)) ;
satellite_earth_altitude := 300
earth_radius = 6378

P, = satellite_earth_altitude + earth_radius = 6678
r, = 384400 = 384400

_1 1 _
a:= 5 r,+ > rp—195539

earth_mu:=3.98600000 10°

satellite_speed relative_to_earth = | &rtf—nﬂ =7.725835198
P
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velocity perigee := / earth_mu [3 - cllJ =10.83229389
p

del,,, .= velocity_perigee — satellite_speed_relative_to_earth=3.106458692
o—
e=evalf| —2L | =0.9658482451
r,+ "y
> velocity apogee <~ sqrt(earth mu*(2/r_a - 1/a));

velocilyapogee:—/ earth_mu (2 — clz) =0.1881843356

ra

> v2 <~ sqrt(earth mu/r__a);

V2= earth_mu  _ 1.018302846
/ r
a

> delV2 <~ v2-velocity apogee;
delV2 :=v2 —velocity_apogee=0.8301185104
> totalDelV <~ abs(del_V1)+abs(delV2);
totalDelV := |delV]| + |delV2| =3.936577202
> delT:=Pi* sqrt(a”3/earth _mu);
delT = 1369561180 10° 1
> evalf (delT) ;
4302603342 10°

> evalf (delT/ (60*60%*24)) ;
4.979864981
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6.5.3.2

solution in Mathematica

HW5 EMA 550, University of
Wisconsin, Madison

Nasser M. Abbasi
March 11,2014

CHAPTER 6. HWS

problem 1

A spacecraft is initially in a 300 km altitude circular orbit about the Earth in the ecliptic plane. It is to be
sent on a Hohmann transfer to Saturn, also in the ecliptic plane. Assume that Saturn is in the correct
position in its orbit for a flyby to occur when the spacecraft gets there.

Part (a)

Find AV, for Hohmann transfer

define constants to use

Clear["Global +"];
AU = 1.495978 » 108%;
Pearth = 6378;

Hsun = 1.327 » 10711;
Hearth = 3.986 % 10°5;
Rearth = 1.496 % 107 8;
Rearthsy; = 9+24 % 1075;
Rsaturn = 9.537 AU;

Velocity of earth relative to the sun

Hsun
Vearth =
Rearth

29.7831

spacecraft altitude over earth

alt = 300;

Printed by Wolfram Mathematica Student Edition
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Fpe = Pearth + alt

6678

Find Hohmann paramters for trip to Saturn

_ Rearth + Rsaturn
2

7.88157 x 10%

Find V, the velocity are perigee

2 1
Vperigee = Hsun -
Rearth a

40.0711

Find V., the excess velocity to escape from Earth

Vout = Vperigee - Vearth

10.2881

Find Vpo at earth

Vout> U K
Vio = 2 (( out _ earth ] + earth
2 Rearthsor Moo

14.9786

Find Vs,t the spacecraft speed around eath

Hearth
Vsat =

Fbe

7.72584

Printed by Wolfram Mathematica Student Edition
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find AVl

delV; = Vpg - Vsat

7.25277

Part (b) Angle calculation at departure

Calculate the angle past the Earth’s dawn-dusk line where the AV should be applied.

find e the eccentricty for the escape hyperbola

2y 2p 2
Vout” Vbe” I'be
e = 1y ———

2
Hearth

2.76865

n = ArcCos [ - 1—],
e

Row[{..n Degree = ", n*ﬁ}]
T

n Degree = 111.173

9=P:i.—r];

Row[{"e Degree = ", e*ﬂ}]
n

© Degree = 68.8269

Part (c)

For how long is the spacecraft on the heliocentric Hohmann transfer between Earth and Saturn? (Note:
you do not need to calculate the time within either planet’s sphere of influence, as that will be small
relative to the Hohmann transfer time, but you are welcome to do so and compare those values for
yourself.)

Printed by Wolfram Mathematica Student Edition
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find time to fly, which is half the period

a3
T=2rx

>
Hsun

Row[{"time to fly in years = ", (1/2) T/ (60 60«24 » 365) }]

time to fly in years = 6.051

Part (d)

After crossing into the sphere of influence of Saturn, the spacecraft is to be placed in a circular orbit
about Saturn with an orbital radius of 150,000 km. Calculate the AV2 required to place the spacecraft
on this orbit. When spacecraft reaches saturn is has speed relative to sun of

Paramters to use

rpe = 150000;
HUsaturn = 37931187;
Rsaturngy; = 3.47 * 1077;

Find Vapegree Of the Hohmann transfer

2 1
Vapegee = Hsun - =
Rsaturn @

4.20171

find saturn speed relative to sun

Hsun
vsaturn =

Rsatur‘n

9.64422

Find Vi, the speed by which spacecraft enters saturn SOI

Vin = Vsaturn - Vapegee

5.4425

Printed by Wolfram Mathematica Student Edition
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Use energy equation to solve for Vg at Saturn

Vin?
Voo = 2 (( in” Hsaturn ] N usaturn)
2 Rsaturnsm Mbe

23.0908

Since spacecrasft will end up in an orbit around saturn, find its parking speed

[Vsat - usaﬂ ] // N
Fbe
15.902
find AVZ

dele = Vsat - Vo

-7.18874

Find total speed change needed

totalV = Abs[delV;] + Abs [delV,]

14.4415

Problem 2

A spacecraft on an interplanetary mission in the same plane as Jupiter’s orbit about the Sun enters
Jupiter’s sphere of influence. The spacecraft has a speed of 10 km/s relative to the Sun at this point,
which you can estimate as the Jupiter’s average orbital radius about the Sun. (See the Planetary
Constants sheet in your notes for values.) Assume that Jupiter is in a circular orbit about the Sun.

Part (a)

The largest possible value for the impact parameter, b, that will still result in a hyperbolic orbit about
Jupiter in the patched conic method is Jupiter’s SOI radius. Find that value on the Planetary Constants
sheet in the course notes and enter it here for reference.

Printed by Wolfram Mathematica Student Edition
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Paramters

ClearAll["Global x"];
AU = 1.495978 » 10%;
Pearth = 6378;

Usun = 1.327 »10711;
Hearth = 3.986 * 105
Kjupitor = 126 686534;
Rearth = 1.496 x 10 8;
Rearthsy = 9-24 % 1075
Rjupitor = 5.203 AU;
Pjupitor = 71492;
jupitorser = 4.83 x 1017;
bmax = jupitorser;

Part(b)

For parts (b) through (g), assume that, relative to the Sun, the spacecraft is moving in the same direc-
tion as Jupiter when it enters Jupiter’s SOI
What is the speed of the satellite relative to Jupiter when it enters Jupiter’s SOI?

Vin = 10;

find Jupitor speed relative to sun

Hsun
Vjupitor =
Rjupitor

13.0571

Find speed of spacecraft relative to Jupitor

VinRelative = Vjypitor - Vin

3.05708

Part(c)

What is the smallest possible value for the impact parameter b? This value of impact parameter will
result in a burnout radius that just grazes the surface of Jupiter

Printed by Wolfram Mathematica Student Edition
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. . . Hjupitor
eq = bmin VinRelative == rjypitor === 3
Ijupitor
bmin /. First@Solve[eq, bmin];
(bmin = %) // N
984 436.
Part(d)
Select as your impact parameter the value halfway between bpin and bmax. Note that value here for
reference and use it as your impact parameter for the rest of the problem
b = Mean[ {bmin, bmax}]
2.46422 x 107
Part(e)

Given the impact parameter from part (d), calculate the turning angle of the spacecraft relative to

Jupiter during the flyby.

eql = (rbe) (vbe) = (b) (VinRelative);
(b) (vinRelative)
vbo

rbe =

7.53331 x 107
vbo

setup the energy equation at Jupitor

) vbe?  Ujupitor VinRelative? Mijupitor
eq2 = — - == -
rbo 2 jupitorser
vbo?
-1.68168 vbo + == 2.04995

Solve for Vpg

sol = vbo /. NSolve[eq2, vbO]

{-0.950417, 4.31379}

Printed by Wolfram Mathematica Student Edition
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vbo = First@Select[%, Positive]

4.31379

check the correspoding r,

rbe

1.74634 x 107

Find e at jupitor and find nand 6

.. \/1 . (vinRelative)? (vbe)? (rbe)?

2
Hjupitor

2.07476

n = ArcCos [ - 1—],
e

Row[{"n Degree = ", n*&}]
T

n Degree = 118.815

e=2r]-Pi;

Row[{"e Degree = ", e*&}]
v

6 Degree = 57.63

Part(f)

What is the spacecraft’s heliocentric speed following the flyby?

vd = \/Vjupitorz + VinRelative? - 2 Vjypitor VinRelative Cos [6]

11.7086

Part (g)

What is the spacecraft’s heliocentric flight path angle following the flyby

Printed by Wolfram Mathematica Student Edition
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VinRelative Sin[e] ] .
vd ’
Row["yq in degree ", yq 180/Pi]

Y4 = Ar‘cSin[

Row[yq in degree , 12.7398]

For the remaining parts, assume that, relative to the Sun, the spacecraft DOES
NOT arrive at Jupiter’s SOl moving in the same direction at Jupiter. The
spacecraft still has a heliocentric speed of 10 km/s at the distance of Jupiter’s
orbit from the Sun. But now it has a heliocentric eccentricity of 0.5. (What was the
heliocentric eccentricity when the spacecraft arrived in the same direction as

Jupiter, assuming that point was aphelion?)

Part(h)

What is the spacecraft’s heliocentric flight path angle when it arrives at Jupiter’s SOI?

Clear[a];
e =0.5;

2 1
eq = Vip == Hsun -
Rjupitor Q@

1
10 == 364 280. \/2.56951 x107° - —
a

a=a /. FirsteNSolve[eq, a]

5.50681 x 108

)’:ArcCos[\/ - il (1_e2) I|£

jupitor (Za = Rjupitor)

Row[{"angle is ", ¥180 /Pi, " degree"}]

angle is 17.9875 degree

Part(i)

What is the spacecraft’s speed relative to Jupiter

Printed by Wolfram Mathematica Student Edition
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4.70206

VinRelative = \/Vjupitnrz +Vin? - 2 Vjypitor Vin Cos [¥]

part(j)

Using the same impact parameter as in part (d), calculate the turning angle of the spacecraft relative to

Jupiter.

Clear[vbo];
eql = rbo vbo == b VinRelative;

b VinRelative
vbo

1.15869 x 108
vbo

setup the energy equation at Jupitor

Clear[vbo];

eq? vbo?  Ujupitor VinRelative? Mjupitor
rboe 2 jupitorser
vbo?

-1.09336 vbo + == 8.43177

Solve for Vpg

sol = vbo /. NSolve[eq2, vbO]

{-3.15623, 5.34294}

vbo = First@Select[%, Positive]

5.34294

check the correspoding ry

rboe

2.16864 x 107

Printed by Wolfram Mathematica Student Edition
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2
Hjupitor

.. \/1 . (VinRelative)2 (vbe)2 (r'bO)2

n = ArcCos [ - 1—],
e

Row[{"n Degree = ", n*ﬁ}]
T

n Degree = 103.09

6:27‘]-Pi;

Row[{"e Degree = ", e*&}]
T

6 Degree = 26.1805

Part(k)

Assuming that the spacecraft flies behind Jupiter, what is the spacecraft’s heliocentric speed following

the flyby?

Vjupitor

13.0571

VinRelative

4.70206

Vin

10

Vin Sin
B = Ar‘cSin[—m
VinRelative

0.716508

Printed by Wolfram Mathematica Student Edition
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vd = \/Vjupm,,nz +VinRelative? - 2 Vjypitor VinRelative Cos [ + 6]

12.0449

Part(L)

Assuming that the spacecraft flies behind Jupiter, what is the spacecraft’s heliocentric flight path angle
following the flyby?

VinRelative Sin[p + 6]

vd
Row["yq in degree ", yq 180/Pi]

¥a = ArcSin|

[E

Row[y4 in degree , 21.0979]

Printed by Wolfram Mathematica Student Edition
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period = 120 x 60

2
W =
period
7200
JT
3600
Clear[h]
mu = 324859;
mu
eqg = hw == —
h
h 1
—— == 1/324859 —
3600 h

h =h /. FirsteNSolve[eq, h]

7527. 776558

radius = 6052;
alt = h - radius

1475. 776558

ra=h

7527. 776558

part(b)

Calculate AV Mal required to start the maneuver (magnitude and sign).

500
leadAngle = —

0. 06642067497

%+ 180 / Pi

3. 805624348

Printed by Wolfram Mathematica Student Edition
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orbitTotalCircumference = 2Pih

47 298. 41507

leadAngle
timeRequiredl = [n - —] period

2Pi

7123. 887513

timeRequiredInMinutes = timeRequiredl / 60

118. 7314586

a3
eq = timeRequiredl == 2 Pi —
mu

2+ad n
1/ 324859

7123. 887513 ==

a=a /. FirsteNSolve[eq, a]

7474. 630999

ra+rp

eq = 5B

7474. 630999 == — (7527. 776558 + rp)

N |-

Clear[rp]
rp = rp /. FirsteNSolve[eq, rp]

7421. 48544

part(c)

lowestAlt = rp - radius

1369. 48544
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speedOnEllipse =

6. 545828652

[speedOnCi rcle =

6. 569224315

delV = speedOnEllipse - speedOnCircle

-0. 0233956631

delVTotal = 2 x delV

-0. 0467913262

part(d)

n=1;
leadAngle
n+ ———
[ 2Pi ]
R } leadAngle
timeRequired2 = (n + —

] period
2Pi

1.010571179

7276.112487

Clear[a]

; B ; a3
eq = timeRequired2 == 2 Pi
mu

2\/a737r

\/ 324 859

7276. 112487 ==

NSolve[eq, a]

{{a -» -3790. 367586 + 6565. 109239 1}, {a » -3790. 367586 - 6565. 109239 1},

{a - 7580. 735173} }

Printed by Wolfram Mathematica Student Edition
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a = 7580.73517267325

7580. 735173

Clear([ra, rp];

rp = h;
ra+rp
eq=a-=
2
1
7580. 735173 == — (7527. 776558 +ra)
2

ra=ra/. FirsteNSolve[%, ra]

7633. 693787

part(e)

largestAlt = ra - radius

1581. 693787

speedOnEl lipse

6. 592130506

[speedOnCi rcle

mu
— | //N
h

6. 569224315

delV = speedOnEllipse - speedOnCircle

0. 02290619083

part(f)

(timeRequiredl - timeRequired2) / 60

-2.537082899
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problem 2, new method

A spacecraft is in a circular orbit about the Earth with a radius of 6678 km. Its mission is to rendezvous with the International
Space Station (ISS), which is in a circular orbit with a radius of 6878 km. Both orbits are in the same plane with the same
direction of motion. Att = 0, the ISS leads the spacecraft by an angle 6. Calculate the required transfer time, including the
wait time, for the spacecraft to accomplish the rendezvous with a Hohmann transfer if

(@) 8 =0°

I35.2348 hours

(b) & = 280°

IETASZ hours

part(a)
rl = 6678;
r2 = 6878;

mu = 3.986 x 10°5;

rl+r2
2

6778

mu
angularVelocitylnLowerOrbit =
rin3
0. 001156908535
R : mu
angularVelocitylnUpperOrbit =
ra2n3

0. 001106815901

angularVelocitylnUpperOrbit - angularVelocitylnLowerOrbit

-0.0003147412999

initialAngle = 0;

2r2
If[initialAngle <= hohmannAngle, initialAngle = initialAngle + 2 Pi];

rli+r2) /2
hohmannAngle = Pi [1 - {—) ]

a3
TOF = Pi .| —
mu

2776. 729487
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initialAngle - hohmannAngle

waitTimeToSync =
angularVelocitylnLowerOrbit - angularVelocitylnUpperOrbit

124 068. 5615

waitTime = waitTimeToSync + TOF

126 845. 291

waitTime / (60 = 60)

35. 23480306

27.492 correct for second

part(b)
if initial Angle=280 degree

rl = 6678;

r2 = 6878;

mu = 3.986 » 10"5;
rl+r2

2

a=

6778

mu
angularVelocitylnLowerOrbit =
rin3
0. 001156908535
) ) mu
angularVelocitylnUpperOrbit =
r2n3

0. 001106815901

angularVelocitylInUpperOrbit - angularVelocitylnLowerOrbit

-0. 0003147412999
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initialAngle = 280 * Pi / 180;
rl+r2y G2
hohmannAngle = Pi |1 - [ M
2r2
If[initialAngle <= hohmannAngle, initialAngle = initialAngle + 2Pi];

an3
TOF = Pi | —
mu

2776. 729487

initialAngle - hohmannAngle

waitTimeToSync =
angularVelocitylnLowerOrbit - angularVelocitylnUpperOrbit

96 194. 93424

waitTime = waitTimeToSync + TOF

98971. 66373

waitTime / (60 x 60)

27.49212881

Problem 3

For the same circular near-Earth orbits as the previous question (r1 = B678 km, = 6878 km), calculate the bielliptic

transfer time for the two lead angles below (8 = angle by which the target (I5S) leads the spacecraft at time t = 0). Add
additonal orbits to the target satellite as necessary to ensure that the intermediate transfer radius of the active satellite does
not fall below 6578 km.

(a)B=0°
IF hours
(b) B = 160°

453 hours

part(a) theta=0

rl = 6678;

r2 = 6878;

rmin = 6578;

mu = 3.986 » 10"5;
rl+r2

2

as=

6778

Printed by Wolfram Mathematica Student Edition
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mu
angularVelocitylnLowerOrbit =
rin3
0. 001156908535
: } mu
angularVelocitylInUpperOrbit =
r2n3

0. 001106815901

initialAngle = 0

ri+r2y G2
hohmannAngle = Pi [1 = [ ] ] :

2r2
Clear[rt];
rl+rt
al = ;
2
r2+rt
a2 = ;

2
al”3 a2”3
tl = Pi + =
mu mu

(2 Pi - initialAngle) +2Pin

angularVelocitylnUpperOrbit ’
eq = tl == t2;

n=0;

NSolve[eq, rt]

0

{{rt - -13655.90913 +11913. 20284 i},
{rt - -13655.90913 -11913. 20284 1}, {rt - 6977.818259}}

tl /. rt->6977.818258721281"

5676. 811563

waitTime = %/ (60 %= 60)

1.576892101
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part(b) theta=160

rl = 6678;

r2 = 6878;

rmin = 6578;

mu = 3.986 » 10"5;
rl+r2

2

6778

mu
angularVelocitylnLowerOrbit =
rin3
0. 001156908535
; } mu
angularVelocitylInUpperOrbit =
r2n3

0. 001106815901

(initialAngle = 160 « Pi /180) // N

ri+r2) /2
hohmannAngle = Pi |1 - [ ) // N
2r2

2.792526803

0. 06826430301

Clear[rt, n];

rl+rt

al = ;
2

r2+rt

a2 = :

2
al”3 a2”3
tl = Pi + M
mu mu

(2Pi - initialAngle) +2Pin

12 = ;
angularVelocitylnUpperOrbit

eq = tl == t2;

n=1;

NSolve[eq, rt]

{{rt > -16011. 84696 + 15993. 726551},
{rt - -16011. 84696 - 15993. 726551}, {rt - 11689.69391}}
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tl /. rt->11689.693913121537"

8830. 595764

waitTime = %/ (60 » 60)

2.452943268

function to solve hohman transfer on same orbit

hohmannRendezvousSameOrbit[e00_, r_, alt_, mu_] :=
Module[{eo =600 % Pi /180, n =1, delT, vi,

v2, period, a, rp, ra, done = False, vBefore, vAfter},
ra=r+alt;

period = 2 Pi Sqrt[ra”3/mu];

While[Not[done] .

e0
delT = (n - —) period ;
2 Pi

a = FirsteSelect[a /. NSolve[delT == 2Pi Sqrt[a”~3/mu], a], Element[#, Reals] &];
rp=2a-ra;
If[rp <r, (xwe hit the earth, try againx)
n=n+1,
done = True
]
[E
vBefore = Sqrt[mu/h];
vAfter = Sqrt[mu (2/h-1/a)];

{delT, 2 (vAfter - vBefore)}

mu = 324 859;
alt = 1475.7765582577413" ;
r = 6052;

60 = 3.80562; (xdegreex)

hohmannRendezvousSameOrbit[e0, r, alt, mu]

{7123. 8876, -0.04679127217}

? Select

Select[list, crit] picks out all elements g of list for which crit[e] is True.
Select[list, crit, n] picks out the first n elements for which crit[e] is True. >

Printed by Wolfram Mathematica Student Edition
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6.6.2 HW6 in Maple

> hohmann rendezvous_2:= proc({
theta: :numeric:=0,

rl: :numeric:=0,

r2: :numeric:=0,

N: :nonnegint:=0,

mu: :numeric:=3.986*1045})

local thetaO,thetaH, TOF;

thetal = theta*Pi/180;
thetaH = Pi* (1-((rl+r2)/(2*x2))~(3/2));
if is(theta0 = thetaH) and N = 0 then
proc ()
local a:=(rl+r2)/2;
TOF := Pi*(sqgrt(a*3/mu)) ;
end proc()
else
proc ()
local t2,al,a2,rt,omega2;
omega2 := sqrt(mu/r243);
t2 = ((2*Pi-thetal)+2*Pi*N) /omega2;
al = (rt+rl)/2;
a2 = (rt+r2)/2;
TOF = Pi*(sqrt(al”*3/mu)+sqrt(a2~3/mu)) ;
rt = op(select(is, [solve(t2=TOF,rt)], real));
end proc()
fi;
eval (TOF) ;
end proc:

> %stopat (hohmann rendezvous_2) ;
TOF:=hohmann_rendezvous_2 (theta=0,r1=6678,r2=6878,N=0) :
evalf (TOF/ (60*60)); #in hrs

%stopat(hohmann_rendezvous 2)
1.576892101

=> TOF:=hohmann_rendezvous_2 (theta=160,r1=6678,r2=6878,N=1) :
evalf (TOF/ (60*60)); #in hrs

2.452943266

> hohmann rendezvous_1l:= proc({
theta: :numeric:=0,
rl::numeric:=0,

r2: :numeric:=0,

mu: :numeric:=3.986*1045})

local thetal,thetaH,TOF,a,omegal,omega2,wait time;

thetal = theta*Pi/180;

a = (rl+r2)/2;

TOF = Pi*(sqrt(a”~3/mu)) ;

omegal = sqrt(mu/rl1”*3);

omega2 = sqgrt(mu/r243);

thetaH = Pi*(1-((rl+r2)/(2*xr2))*(3/2));
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if is(theta0 <= thetaH) then

thetal0 := thetal+2*Pi;
fi;
wait_time := TOF+(thetaO-thetaH)/(omegal-omega2) ;
eval (wait_time) ;
|l end proc:

> TOF:=hohmann_ rendezvous_1(rl=6678,r2=6878, theta=0) :
evalf (TOF/ (60*60)) ;
35.23480353

> TOF:=hohmann_rendezvous_1(r1=6678,r2=6878, theta=280) :
evalf (TOF/ (60*60)) ;
27.49212918

> walking rendezvous_1:= proc({
theta: :numeric:=0,
alt: :numeric:=0,
r ::numeric:=6378,
N ::posint:=1,
mu: :numeric:=3.986*1045})

local TOF,a,T,thetal,time on ellipse,Va,Vcir;

T = 2*Pi*sqrt((r+alt)~3/mu);

thetal = theta*Pi/180;

TOF :=(N- thetal/ (2*Pi)) *T;

time on ellipse := 2*Pi*sqrt(a”3/mu);

a := op(select(is, [solve(time_on_ellipse=TOF,a)],real))
Va = sqrt(mu*(2/ (r+alt) - 1/a));

Vecir := sqrt(mu/(r+alt));

{TOF,2* (Va-Vcir) };
end proc:

> res:=walking rendezvous_l (theta=evalf (500/(7527.78)*180/Pi) ,alt=
1475.78,r=6052 ,mu=324859) :

> res[1l];

-0.04679130

6.7 HW7

6.7.1 HW7 in Mathematica

HW7 EMA 550, Spring 2014

by Nasser M. Abbasi

problem 1

Use Lambert's method to find the elliptical orbit that connects a starting point in a circular,
equatorial LEO {r1 = 6678 km) and a target point in a geostationary orbit (circular, equatorial, Nn=

42 164 km). The allowed transfer time is 6 hours and the target point rn at the end of the transfer is

210 degrees ahead of point r,I's location at the beginning of the transfer.

(a) Calculate the semimajor axis for the transfer orbit.

Semimajor axis a = |§4493_4 km 270

(b) Calculate the eccentricity of the transfer orbit.

Eccentricity e = ID_TSS
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s=(rl+r2+c) /2

48452. 71961

tp = Sqrt[2] /3 % (s~ (3/2) -Sign[Sin[theta]] » (s-Cc)”™(3/2)) /Sqgrt[mu];
tp / (60 % 60 » 24)
tp / (60 % 60)

0. 09223616371

2.213667929

alphaO = 2 x ArcSiIn[Sqrt[s/ (2xa)]]

2 ArcSin|155. 6481924

| =

betal = 2 x ArcSin[Sqrt[(s-cC) / (2xa)]]

2 ArcSin|13.95135093

D | =

eq = Sgrt[mu] * 6 % 60 x 60 ==
a”(3/2) % ((2Pi -alpha0) - beta0 - (Sin[(2Pi -alpha0)] - Sin[betal])) ;

(amin=s/2) // N

Printed by Wolfram Mathematica Student Edition
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timeTravel[a_, flag_] :=a~(3/2) = (If[flag, alphaO, 2 Pi - alphaO] -

betaO - (Sin[1f[flag, alpha0, 2 Pi - alpha0]] - Sin[beta0l])) / Sqrt[mu];
datal = Table[{a, timeTravel[a, True] / (60 x60)}, {a, amin, 1.2 +amin, 0.1 amin}];
data2 = Table[{a, timeTravel [a, False] / (60 «60)}, {a, amin, 1.2 +amin, 0.1 amin}];

48 063. 43923

48 452. 71961

7969. 204545

2.213667929

2ArcSin {155. 6481924

L | =

2 ArcSin {13. 95135093

L |

24 226. 35981

amin // N

24226. 35981

{a - 24493. 38502 + 8. 158718813 x 10712 11}
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pl = ListLinePlot[{datal, data2}, AxesOrigin -» {0, 0}];
p2 = GraphicseLine[{{0, 6}, {60000, 6}}];
Show[pl, p2]

10+

L L L L L Il L L L L Il L L L L Il L L L L Il L L
5000 10000 15000 20000 25000

aFound = Re[a /. FindRoot[eq, {a, 1.1amin}, Maxlterations -» Infinity, PrecisionGoal - 5]]

24 493. 38502

find p

4 aFound (s-rl) (s-r2) - [ (2Pi -alpha0 /. a » aFound) + betal /. a » aFound
in

cN2 2
NSolve[p == aFound (1 -e”2), e]

p =

10933. 06754

{{e > -0.7440643966}, {e » 0.7440643966}}

find true anaomolies
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Clear[f2, f1];

e =0.73838

aFound =24 491

ri

r2

aFound (1-e”"2)
1+eCos[T1]

aFound (1-e”"2)

1+eCos[T2]

(fl /. NSolve[rl = . fl]] %180/ Pi

{fZ /. NSolve[r2 = s f2]] %180 / Pi

0. 73838

24491

6678.

42 164.

{-25. 23353146, 25.23353146}

(-175. 2386421, 175.2386421}

Clear[fl];

aFound (1 -e”"2) }
f1 /. Nsolve[rl == —————, f1]| « 180/ Pi
1+ Cos[fl]

(-48. 09310707, 48.09310707}

Clear[fl, f2];

aFound (1 -e”"2)
eqg = COS[fl] = _1/e
rlxe

(F1 /. Solve[eq, f1]) =180/ Pi

Cos [f1] == 0. 8563464842

Solve::ifun: Inverse functions are being used by Solve,
so some solutions may not be found; use Reduce for complete solution information. >

{-31.09119158, 31.09119158}
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aFound (1 -e”2)
eq =Cos[f2] = ——— —-1/e

r2xe
(f2 /. Solveleq, f2]) » 180/ Pi

Cos [f2] = -0.9954801908

Solve::ifun: Inverse functions are being used by Solve,
so some solutions may not be found; use Reduce for complete solution information. >

{-174.5504406, 174.5504406}

360 - 210

150

210 + 175

35

7

r

aFound

EE1 = FirsteSelect[EE1l /. NSolve[rl == aFound (1 - e Cos[EE1l]), EE1l], Positive]
EE2 = FirsteSelect[EE2 /. NSolve[r2 == aFound (1 - e Cos[EE2]), EE2], Positive]
24 493. 38502

NSolve::ifun: Inverse functions are being used by NSolve,
so some solutions may not be found; use Reduce for complete solution information. >

0. 212327763

NSolve::ifun: Inverse functions are being used by NSolve,
so some solutions may not be found; use Reduce for complete solution information. >

2.894384602

Printed by Wolfram Mathematica Student Edition
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e - Cos[EE1] }
[fl = ArcCos[—]) * 180 / Pi

eCos[EE1] -1

e - Cos[EE2] :
(f2 = ArcCos[—]) * 180 / Pi

e Cos[EE2] -1

31. 09119158

174. 5504406

l+e
1-e

EE1
f1=2*ArcTan[ Tan[7” »180 / Pi

31.09119158

0.21232776299399742" » 180 / Pi

12. 16548469

NSolve[r2 == aFound (1 - e Cos[true2]), true2]

NSolve::ifun: Inverse functions are being used by NSolve,
so some solutions may not be found; use Reduce for complete solution information. >

{{true2 » -2. 894384602}, {true2 - 2. 894384602} }

2.894384601664499" » 180 / Pi

165. 836022

Semimajor axisa= Answer km
(b) Calculate the eccentricity of the transfer orbit.
Eccentricity e = Answer

(c) Knowing the true anomalies of the burn points allows you to draw the transfer orbit between the two pointsin the
correct orientation. Calculate the true anomaly of theinitial burn point on the transfer orbit.

True anomaly f1 = Answer degrees
(d) Calculate the true anomaly of the final burn point on the transfer orbit.

True anomaly f2 = Answer degrees
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probem 2

The space shuttle is initially in a 28.5° inclination orbit. It changes to a 40° inclination orbit using a
simple single-impulse plane change. If the transfer occurs at a latitude of 257,

(a) By what angle should the velocity vector be rotated at the impulse point?

8= |18_154? degrees

(b) What is the resulting change in the right ascension of the ascending node?

AQ = |55_425 degrees
Chen:kl

Correct
Marks for this submission: 10.00/10.00.

find Az

il = 28_.5Degree;

latitude = 25 Degree;

Clear[az]

eq = Cos[il] == Sin[az] Cos[latitude]
az = az /. FirsteNSolve[eq, az]

0. 8788171127 == Cos [25° | Sin[az]

NSolve::ifun: Inverse functions are being used by NSolve,
so some solutions may not be found; use Reduce for complete solution information. >

1. 323866377

az » 180 / Pi

75. 85195602

findu

Clear[u];
i2 = 40 Degree;
eq = 0 == -Cos[az] Cos[i1] +Sin[az] Sin[il] Cos[u]

-~ ~0.2148076749 + 0. 462685293 Cos [u]

Printed by Wolfram Mathematica Student Edition
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u /- NSolve[eq, u]

NSolve::ifun: Inverse functions are being used by NSolve,
so some solutions may not be found; use Reduce for complete solution information. >

{-1.087993979, 1.087993979}

u =1.0879939787936352"

1. 087993979

u=x=180/Pi

62. 33746312

Clear[theta]
eq = Cos[Pi - 12] == -Cos[il] Cos[theta] +Sin[il] Sin[theta] Cos[u]

~Cos [40°] = -0. 8788171127 Cos [theta] + 0. 2215271706 Si n[t het a]

NSolve[eq, theta]

NSolve::ifun: Inverse functions are being used by NSolve,
so some solutions may not be found; use Reduce for complete solution information. >

({theta - -0.810718662}, (theta - 0. 3168587618} }

theta = 0.3168587617678044" ;
theta %= 180 / Pi

18. 15466975

(b) What is the resulting change in the right ascension of the ascending node?

AQ = Answer degrees

i2 = 40 Degree;
Clear[delta]
eq = Cos[theta] == Cos[i1] Cos[i2] +Sin[il] Sin[i2] Cos[delta]

0. 9502188617 == 0. 6732129657 + 0. 3067117389 Cos [del t a]

NSolve[eq, delta]

NSolve::ifun: Inverse functions are being used by NSolve,
so some solutions may not be found; use Reduce for complete solution information. >

({del ta - -0. 4437515757}, {delta - 0.4437515757}}
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0.44375157574265334~ % 180 / Pi

25. 42509244

problem 3

A spacecraft starts in an intial circular orbit about the Earth that has a radius of 7000 km and an
inclination of 30°. The desired orbit for the spacecraft is a circular orbit with a radius of 130,000 km
and an inclination of 0° (equatorial). Calculate and compare the total AV for the five orbit transfer
options below, all of which involve a Hohmann transfer. Assume that all of the burns take place
when the spacecraft is crossing the equator.

(a) A simple plane change followed by a Hohmann transfer (3 impulses)

7.94687 km/s

b

th

ot

(b) A Hohmann transfer followed by a simple plane change (3 impulses)

AV

ot = [1-94716 kmi/s
ot

I

(c) A Hohmann transfer that includes the plane change with the first impulse (2 impulses)

AV = 16.589 km/s
tot

(d) A Hohmann transfer that includes the plane change with the last impulse (2 impulses)

AV = 14146 km/s
tot

(e) A Hohmann transfer with optimally split plane change (2 impulses)

AV, = 14143 kmi/s
ot

Chen:kl

(a) A simple plane change followed by a Hohmann transfer (3 impul ses)
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mu = 3.986 * 10"5

rl = 7000;

r2 = 130000;

il = 30 Degree;

vl = Sgrt[mu/ ri]
delVl =2v1Sin[il/ 2]

398600.

7.546049108

3. 906122449

a=(ri+r2)/2;
vp =Sqgrt[(mu (2/rl-1/a)];
delvV2 = vp-vl

2.849466088

va=Sqrt[mu (2/r2-1/a)];
v4 = Sqrt[mu/ r2];
delV3 = v4 -va

1.191285134

total = delVl + delV2 + delV3

7.946873671

tot=

(b) A Hohmann transfer followed by a simple plane change (3 impulses)
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mu = 3.986 x 10"\5;

rl = 7000;

r2 = 130000;

il = 30 Degree;

vl = Sqrt[mu/rl];
a=(rl+r2)/2;

vp =Sqrt[mu (2/rl-1/a)];
delVl = vp -v1;

va = Sqrt[mu (2/r2-1/a)];
v4 = Sqrt[mu / r2];

delV2 = v4 - va;

delV3 = 2v4Sin[il/ 2];
total = delV1 + delV2 + delV3

4.94715811

(c) A Hohmann transfer that includes the plane change with the first impulse (2 impul ses)

vp =Sqrt[mu (2/rl-1/a)];

delVl = Sqrt[vp”2 +v1™2-2vpvlCos[il]]
va=Sqrt[mu (2/r2-1/a)];

v4 = Sqrt[mu / r2];

delV2 = v4 - va;

total = delVl + delV2

5. 398032016

6. 589317151

(d) A Hohmann transfer that includes the plane change with the last impulse (2 impul ses)

vp =Sqrt[mu (2/rl-1/a)];

delVl =vp-vl

delV2 = Sqrt[va”2 +v4~2 -2vav4 Cos[il]]
total = delVl + delV2

2.849466088

1.296839919

4.146306007

AVtot = Answer km/s
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(e) A Hohmann transfer with optimally split plane change (2 impul ses)

mu = 3.986 * 10"5;
rl = 7000;
r2 = 130000;
6 = 30 Degree;
vcl = Sgrt[mu / rl];
a=(rl+r2)/2;
vp = Sgrt[mu (2/rl1-1/a)];
va =Sqgrt[mu (2/r2-1/a)];
vc2 = Sqrt[mu/ r2];
vp vcl Sin[alphal]

eq =
Sqrt[vp”~2 +vcl”2 -2 velvp Cos[alphal]]

vavc2 Sin[e - alphal]

Sqrt[va”2 +vc2”2 -2 vc2vaCos[e -alphal]]

NSolve[
€q,
alphal]
78. 44506817 Si n[al phal] 0. 9801615825 Si n [al phal - 30 ° ]
\/165. 0095933 - 156. 8901363 Cos [al phal] J3. 379483436 - 1. 960323165 Cos [al phal - 30 ° |

NSolve::ifun: Inverse functions are being used by NSolve,
so some solutions may not be found; use Reduce for complete solution information. >

{{al phal - -3. 096012837}, {al phal - 0. 01347011678},
(al phal > 0. 5221111538 - 1. 146893256 i}, {al phal - 0.5221111538 + 1. 146893256 i} }

alphal = 0.01347011678252641

0. 01347011678

delVl = Sqrt[vp”2 +vcl”2 -2 vcl vp Cos[alphal]]

2.85196251

delV2 = Sgrt[va”2 +vc2”2 -2 vc2vaCos[e - alphal]]

1. 291799249

total = delV1l + delV2

4.143761759
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AVtot = Answer km/s
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6.7.2

>

HWY7 in Maple
restart;
a:= 24493.4:
e:= 0.738:
rl:= 6678:
r2:= 42164:

eq:=rl=a* (l-e”*2)/(l+e*cos(fl));
sol:=solve(eq,6 fl) ;
fl:=evalf (180/Pi*sol):
sol:=solve(r2=a*(1l-e*2)/(l+e*cos (£f2)) ,£f2):
f2:=evalf (180/Pi*sol) ;
11153.21665
= 6678 =
“ 1 +0.738 cos( 1)
sol :=0.4321838737

f2:=175.2638667

£2:=185:
fl1:="£1":
solve (£1+210=£2,f1l) ;
-25

6.7.2.1 Matlab code for problem 1

hscript to solve HW7, problem 1

%EMA 550, by Nasser M. Abbasi

%Using Matlab 2013a

mu = 3.986%1075;

delT = 6*60%*60;

ri = 6678;

r2 = 42164;

theta= 210%pi/180;
= sqrt(r172+r272-2*ri*r2*cos ((2*pi-theta)));
= (ri1+r2+c)/2;

tp = sqrt(2)/3*(s7(3/2)-sign(sin(theta)*(s-c)~(3/2)))/sqrt (mu) ;

fprintf('Tp = %f hrs\n',tp/(60%60));

alphaO
betal

eq

@(a) 2*asin(sqrt(s/(2*a)));

@(a) 2*asin(sqrt((s - c)/(2xa)));

@(a) sqrt(mu)*6%60%60 - a~(3/2)*((2%pi - alphaO(a)) - betal(a) < ...
(sin((2*pi - alphaO(a))) - sin(betal(a))));
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amin 24226.4;

fzero(eq,1.2*%amin) ;

)
Il

fprintf('a = %f km',a);
p = (4xax(s - r1)*(s - r2))/c”2 * sin(( (2%pi - alphaO(a)) + betal(a))/2);

eq = @(e) p - ax(1 - e72);
e fsolve(eq,.5);

fprintf('e = %f km',e);

r=[r1,r2];

for i=1:2
eq = @(f) r(i)-ax(1-e72)/(1+e*xcos(f))
f = fsolve(eq,pi/2);
fprintf ('f=Yf\n',f*180/pi);

end

Jiproblem 2

11=28.5%pi/180;

thetal=61.5%pi/180;

eq=0@(u) -cos(il)*cos(thetal)+sin(il)*sin(thetal)*cos(u)
u = fsolve(eq,pi/2);
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6.8 HWS

HW8 EMA 550 spring 2014

by Nasser M. Abbasi

A spacecraft starts in an intial circular orbit about the Earth that has a radius of 7000 km. The
desired orbit for the spacecraft is a circular orbit with a radius of 130,000 km and an inclination of
0° (equatorial). The rocket engines that the spacecraft must use have fixed AVs of ﬂV1 =4 km/s

and NJ’Z =15km/s.

(a) What plane changes must occur at the impulses so that the spacecraft can complete a
two-impulse Hohmann transfer between the initial and desired orbits while using the fixed AV at
each impulse?

a, = |18.23? degrees
a, = |54.818 degrees

(b) What initial inclinations would allow the Hohmann transfer to reach the desired orbit with these
fixed impulse rocket engines? (Note that the burns must happen while crossing the equator for the
spacecraft to end up on an equatorial orbit afterward.)

larger magnitude inclinations: i1 = + I?S.[}SS degrees

smaller magnitude inclinations: i1 = + |36_581 degrees
Che-:kl

Correct
Marks for this submission: 10.00/10.00.
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Answer

part(a)

rl = 7000

r2 = 130000

mu = 3.986 * 10"5;
vl = Sqrt[mu/ rl]

7000

130000

7.546049108

a=(rl+r2)/2
vp =Sqrt[mu (2/r1-1/a)]

68500

10. 3955152

delV =vp-vl

2.849466088

haveV = 4;
excess = haveV - delV

1. 150533912

eq = haveV"2 = viN2 + vp~2 -2 x vl x vp = Cos[alpha] ;
NSolve[eq, alpha]

NSolve::ifun: Inverse functions are being used by NSolve,
so some solutions may not be found; use Reduce for complete solution information. >

{{al pha > -0. 3182952069}, {al pha > 0. 3182952069} }

0.3182952068827841" » 180 / Pi

18. 23697199

vh =vp =Sqrt[mu (2/r2-1/a)]

0. 5597585105
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v2 = Sgrt[mu/ r2]

1. 751043645

delV2 = v2 - vh

1.191285134

havevV2 = 1.5
eq = haveV272 == v2°22 + vhr2 - 2 x v2 » vh « Cos[alpha] ;
NSolve[eq, alpha]

1.5

NSolve::ifun: Inverse functions are being used by NSolve,
so some solutions may not be found; use Reduce for complete solution information. >

{{al pha - -0. 9567588888}, {al pha » 0. 9567588888} }

0.9567588888438405™ » 180 / Pi

54. 81824634

part (b)

In[1]:=

a2 = 54.8182;
al = 18.237;
al+a2

Out[3]=

73. 0552

al-a2

-36. 5812

-al+a2

36. 5812

-al -a2

-73. 0552

Printed by Wolfram Mathematica Student Edition
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From:Suzannah Sandrik <sandrik@engr.wisc.edu>
Date:4/11/2014 11:45 AM
To:emab50-1-s140@lists.wisc.edu

I have a couple of suggestions on how to approach HW 9.

Debris avoidance is a little bit different from the examples we did in
lecture yesterday. There is a debris avoidance type of example in the
notes, so give that a read.

A good way to approach debris avoidance problems is to use the
satellite's original position as the target. Then the satellite moves
away from the target to avoid the debris, then back to the target so
that it has the position after the maneuver that it would have had if it
had never done the maneuver in the first place. Since the satellite
started on a circular orbit, keeping that same orbit as the target
reference also means that omega, the angular velocity of the target,
stays constant throughout the problem.

If you use that strategy, then the problem you are trying to solve is this:

(x0,y0) are (0,0). The satellite starts at the origin.

At time t1, being 10 km away means [x(t1)]72 + [y(t1)]"2 = [10 km]~2.
What x0_dot and yO_dot are required for this to happen?

(And, since the problem specifies only an x-component delta-v, yO_dot is
zero.)

After performing delta-V #1, the satellite drifts away from its original
orbital position at the origin.

At time tl1, the debris has passed and it's time to do a maneuver to return.

If the goal is to return to the origin at time t2, set x(t2) and y(t2)
equal to zero. Then what velocities x_dot and y_dot at time tl are
required to accomplish reaching the origin at time t27 Compare those to
the velocities that the spacecraft already has at time tl to find the
required second delta-V.

In the figure shown on the homework, the satellite starts and ends at
the origin, (0,0).

Hope that helps!

-- Dr. Suzannah Sandrik Department of Engineering Physics University of
Wisconsin-Madison 811 Engineering Research Building (608) 262-0764
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6.9.2 my solution

HW9 EMA 550, Spring 2014

by Nasser M. Abbasi

HW9 EMA 550

by Nasser M. Abbasi

It is discovered that a piece of space debris will approach dangerously close to a GPS satellite (12
hour period, 55° inclination) in 4 hours. To avoid the debris, give the satellite an in-track (negative
x-direction) AV such that 4 hours from now it is 10 km from the position it would have if it didn't
perform the AV

Note: This is a relative motion problem, so any distances or velocities that are asked for are
positions and velocities measured in a rotating coordinate system attached to an orbiting point. In
this rotating coordinate system, positive x is behind the reference position; positive y is above the
reference position; and positive z is defined by the right-hand rule from x and y.

(a) Calculate the tangential AV that will allow the satellite to miss the debris by 10 km 4 hours from
now. Include the correct sign for the AV as defined by the rotating coordinate system. Since
maneuvering AV's are small, report your answer in m/s instead of km/s.

AV = I—[}_3533+[}+[}

i+0j+0kmis

w=2Pi/ (12 %60 % 60) ;
ClearAll [xDotO0] ;
yDotO = 0; y0 =0; x0 = 0;
x[t_, yDotO_, xDotO_, yO_, x0_] :=
X0 +2yDotO/w (1-Cos[wt]) + (4 xDot0 /w-6Yy0) Sin[wt] + (6wyO - 3 xDot0) t;
y[t_, yDotO_, xDotO_, yO_, x0_] :=
4y0-2xDot0/w+ (2xDotO/w -3y0) Cos[wt] + yDotO /wSin[wt];
xDot[t_, yDotO_, xDotO_, yO_, x0_] :=
2 yDotO Sin[w t] + (4 xDot0O - 6 wy0) % Cos[w t] + 6 wyO - 3 xDot0;
yDot[t_, yDotO_, xDotO_, yO_, xO_] := (3wyO - 2 xDot0) * Sin[w t] + yDotO Cos[w t];
tl =4 %60 x60;
eq = Sqrt[x[tl, yDotO, xDotO, yO, x0] 2 +y[tl, yDotO, xDotO, yO, x0]"2];

part(a)

XDotO = xDotO /. FirsteNSolve[eq == 10 * 1000, xDotO]

-0. 3533025102

Printed by Wolfram Mathematica Student Edition
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2| mma_HW9.nb

(b} What are the x and y coordinates of the satellite after 4 hours, measured in km from the
position the satellite would have had without the AV?

x at 4 hours = I(_5_84?92
Ii

km

y at 4 hours = |7.28739

km

part(b)

newx0 = x[tl, yDotO, xDotO, yO, x0]

6847. 918308

newyO = y[tl, yDotO, xDotO, yO, x0]

7287. 387381

(c) What is the velocity of the satellite 4 hours after the AV, measured in m/s in the rotating
coordinate system?

VHME = |1.?6651
i+ |0_611938 j+*r0kmis

part(c)

newxDotO = xDot[tl, yDotO, xDot0O, yO, x0]

1.766512551

newyDotO = yDot[tl, yDotO, xDotO, y0, x0]

0.6119378981

part(d)

Printed by Wolfram Mathematica Student Edition
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mma_HW9.nb |3

(d) Now that the debris has safely passed, the satellite is to be returned to its original position in the
GPS orbit using a two-impulse maneuver. What velocity does it need at t = 4 hours in order to
return to its original orbital position 4 hours later (t = 8 hours after the initial burn)?

Vrequired = |1_5[}348
i+ |—1_5231 j+rO0kmis

eql = x[tl, requiredyDotO, requiredxDot0O, newy0O, newxO] ;

eq2 = y[tl, requiredyDotO, requiredxDotO, newyO, newxO0] ;

sol = FirsteNSolve[{eql == 0, eq2 == 0}, {requiredyDot0O, requiredxDot0O}];
{requiredyDot0O, requiredxDotO} = {requiredyDotO /. sol, requiredxDotO /. sol}

{-1.523097952, 1.5034833}

part(e)

(e) What is the magnitude of the AV that will change the velocity of the satellite from what it has
(part c) to what is required (part d)?

AV = I2.15118

m/s

(»why this did not work?
Vbefore=Sqgrt[newxDot0"2+newyDot0"2]
Vafter=Sqrt[requiredxDot0™2+requiredyDot0”"2]

*)

delV = Sgrt[ (newxDotO - requiredxDot0) ~2 + (newyDotO - requiredyDot0) ~2]

2.151176996

part(f)

(f) At t = 8 hours from the initial burn, the satellite is back at its original position. What velocity does
it have when it gets there?

Vt=3hrs = |—0.616332
i+ |0_91116 j+rO0kmis

returnxDot = xDot[tl, requiredyDotO, requiredxDotO, newy0O, newx0]

-0.6163317615

Printed by Wolfram Mathematica Student Edition

292



6.9. HW9 CHAPTER 6. HWS

4| mma_HW9.nb

returnyDot = yDot[tl, requiredyDotO, requiredxDotO, newyO, newx0]

0.9111600542

part(g)

(g) What is the magnitude of the AV the satellite needs at t = 8 hours to zero out its relative velocity
so that it stays in the correct orbital position?

AV = |1_1[}DD4

mi/s

delV = Sgrt[returnxDot”2 + returnyDot”"2]

1.10003522

part(h) (plot)

(h) Plot the trajectory taken by the satellite in the x-y plane for both the avoidance phase and the
return phase. Really, do it. It should look like the plot below, starting and ending at (x,y) = (0,0). If
you cannot make a plot that looks like the one below, ask me for help.
S Ll L
P Avoidance / |
-++- Return
T ¥ 47
2, 4
= . &
ey 1 L
-5 0 3 10
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mma_HW9.nb \5

pl = ParametricPlot[{x[t, yDotO, xDot0O, y0O, x0], y[t, yDotO, xDot0O, y0, x0]},
{t, 0, 4%x60 60}, PlotStyle -» Red];
p2 = ParametricPlot[{x[t, requiredyDotO, requiredxDotO, newyO, newx0],
y[t, requiredyDotO, requiredxDotO, newy0O, newx0]},
{t, 0, 4x60 %60}, PlotStyle - Dashed] ;
Show[pl, p2, PlotRange » All, Frame -» True, FrameLabel -
{{"y(t) (meter)", None}, {"X(t) (meter)", "Part h, HW9, EMA 550"}}]

Part h, HW9, EMA 550
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2| Hw10.nb

n2= 1 % 180 / Pi
ouf12)= 116. 5650512
nel= h = 4793.490054264077" ;

(hmax + rE) - (hmin + rE)
n7= eq3 = e == ;

(hmax + rE) + (hmin + rE) ’
eg4 = h = (hmax + hmin) 7 2
{hmin, hmax} = {hmin, hmax} /. FirsteNSolve[{eq3, eqg4}, {hmin, hmax}]

hmax + hm n

2
ourgl= {-233. 6804702, 9820. 660579}

Out[8]= 4793. 490054 --

In[10]:= rp = hmin + rE;
Solve[rp=a (1-¢e), a]

oufr1= {{a - 11171. 49005} }
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6.10.2 second part

HW10 part 2, EMA 550, Spring 2014

by Nasser M. Abbasi

question 1
Question 1 A spacecraft wants to leave the Earth to visit one of the Trojan asteroids at the Sun-Jupiter L4 Lagrange point.
Not complete The asteroid is too small for the satellte to see, so the satellite has to time its departure from the Earth based o
P Jupiter's location. Calculate the angle by which Jupiter must lead the Earth when the spacecraft departs the
'Tn 00 Earth's sphere of influence so that the spacecraft can rendezvous with the L4 asteroid via a heliocentric

) Hohmann transfer.
V' Flag question

L4: Jupiter must lead the Earth by I degrees when the spacecraft departs Earth's SOI.

How would your answer change if the goal was to rendezvous with a Trojan asteroid at the Sun-Jupiter L5
Lagrange point instead of the L4 point?

L5: Jupiter must lead the Earth by I degrees when the spacecraft departs Earth's SOl

Check

Printed by Wolfram Mathematica Student Edition
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2| HwW.nb
rJS=1;
rES=1/2;
Graphics|[

{
{Circle[ {0, 0}, rJsi},
{Red, Circle[ {0, O}, rES]},
{Line[{{0, 0},
{rJS Cos[60 Degree], rJS Sin[60 Degree]},
{rJs, 0}
11}
}, Axes -» True
1

-10

—1.0+

L4 is 60 degree ahead of Jupiter all the time, and on the same circle Jupiter is on. Therefore, we find Hohmann angle
with L4 by adding 60 degrees to Jupiter all the time.

AU = 1.495978 » 107 8;

rES = 1 AU;

rJS = 5.203 AU;

rES + rJS] <3/2>]

6H = Pi [1—[
2rJS

6H x 180 / Pi

97. 15821569

6H - 60 Degree

0. 6485332079

Printed by Wolfram Mathematica Student Edition
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HW.nb |3

Part 1

% * 180 / Pi

37. 15821569

Part 2

6H + 60 Degree

2.74292831

% * 180 / Pi

157. 1582157

question 2

Question 2 A 2000 kg spacecraft in geostationary orbit (r = 42,241 km) turns on a low-thrust, continuous thruster. The

Not complete thruster produces a thrust force of 0.25 N tangent to the spacecraft's velocity vector and has a specific impulse
of 2000 s.

Marked out of

10.00 Assuming circular orbits throughout the transfer, as done in the Edelbaum article, determine the following:

V' Flag question (a) By how much does the semi-major axis change during the first revolution about the Earth after the thruster
turns on?

Aal = km
(b) By how much does the semi-major axis change during the next revolution about the Earth?
Aal= km

(c) The spacecraft had a total of 100 kg of thruster fuel at the start of the maneuver. How many revolutions does
it take (assuming the thruster is always on) to use up all of the fuel?

revolutions

(d) What is the final semi-major axis of the spacecraft?

part(a)

Find a

a =42241

42241

Printed by Wolfram Mathematica Student Edition
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4| HW.nb

Find period TO

UE = 3.986 » 10°5;
23

TO = 2 Pi = 5
ukE

TO / (60 % 60) (xhrsx)

23.99993176

find massburn rate

f =0.25; (*N*)
Isp = 2000; (*secx)
g=9.81;

T/ 1sp

¢}

massBurnRate =

0. 0000127420999

find changein mass (kg)

Am = massBurnRate » TO

1.100914301

find initial speed

ukE
VO = —
a

3.07186094

find changein V

mi = 2000 ; (xkgx)
mi
Av = g Isp Log[—]
(mi - am)

10. 80294284

Printed by Wolfram Mathematica Student Edition
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HW.nb |5

Divide by 1000 since the aboveisin metersand not KM

AV = AV / 1000

0. 01080294284

find Aa
AV
Aa=—2a
vO

297.1014103

Part (b). One more revolution

Initial conditions for next revolution

a=a+Aa

42538. 10141

mi = mi - Am

1998. 899086

VO = vO - AV

3. 061057997

find new period

a3
TO=2Pi .| — ;
ukE

TO / (60 % 60) (xhrs=*)

24.25358118

find changein mass (kg)

Am = massBurnRate » TO

1. 112549596

Printed by Wolfram Mathematica Student Edition

300



6.10. HW10 CHAPTER 6. HWS

6| HW.nb

find changein V

mi
Av =g Isp Log[m]

10. 92316269

Divide by 1000 since the aboveisin metersand not KM

AV = Av / 1000

0.01092316269

find Aa
AV
Aa=—2a
v0

303. 5882382

Printed by Wolfram Mathematica Student Edition
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HW.nb |7

Part (c)

Todothis, | wrote afunction which makes one revolution and update the new initial configuration from last
state of last revoluton. It runsuntill massis exchaused.

makeOneRev[mi_, ai_, Isp_, ] :=
Module[{uE =3.986 » 10"5, g = 9.81, TO, massBurnRate, am, vO, Av, aa},

TO = 2 Pi

T/ 1sp
massBurnRate = M

9
am = massBurnRate » TO;

VO = —

mi
AV =g Isp Log[_—] ;

(mi - Am)
AV = AV / 1000;

AV :
Aa = — 2ai;
vO
{am, Aa}

{am, Aa} = makeOneRev[2000, 42241, 2000, 0.25]

{1. 100914301, 297.1014103}

mi = 2000;
ai = 42241;
keepRunning = True;
n=0;
While[keepRunning,
{am, Aa} = makeOneRev[mi, ai, 2000, 0.25];
I1f[mi - am < 1900,
keepRunning = False,
N++;
ai = ai +aa;
mi = mi - Am
]
1
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8| HW.nb

91619. 46394

ai = 42241 +297.1014102908317"

42538. 10141

Test the function on the notes example below

{am, Aa} = makeOneRev[1000, 6678, 2500, 1]

{0.2214480331, 9.389877037}

Try it on the notes problem

Find a

a = 6678

6678

Find period TO

uE = 3.986 » 10"5;

a3
TO = 2 Pi —— 5
ukE

TO / (60 * 60) (xhrsx)

1. 508614725

Printed by Wolfram Mathematica Student Edition
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find massburn rate

HW.nb |9

f=1;(*xNx)
Isp = 2500; (*Sec*)
g=9.81;

£/ 1sp

g

massBurnRate =

0. 00004077471967

find changein mass (kg)

Am = massBurnRate = TO

0. 2214480331

find initial speed
uE
VO = —
a

7.725835198

find changein V

mi = 1000 ; (xkg=)
mi
Av=glspLog[ - ]
(mi - Am)

5. 431614444

Divide by 1000 sincethe aboveisin metersand not KM

AV = AV / 1000

0. 005431614444

find Aa
AV
Aa=—2a
vO

9. 389877037

Printed by Wolfram Mathematicé?gQr%m Edition
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