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Chapter 1

Introduction

Took this course in spring 2014. Part of MSc. in Engineering Mechanics.

Instructor: professor [Riccardo Bonazza)



https://directory.engr.wisc.edu/ep/faculty/bonazza_riccardo

1.1. syllabus CHAPTER 1. INTRODUCTION

1.1 syllabus

January 8, 2014 1

EMA 523
FLIGHT DYNAMICS AND CONTROL
SPRING 2014

Instructor: Riccardo Bonazza
Office: 537 ERB; Phone: 265-2337; e-mail: bonazza@engr.wisc.edu
Office hours: Tue, Thu, 11:00AM - 12:00PM

Grader: Joe Schoneman
e-mail: jdschoneman@gmail.com
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Course Content

-

. Introduction (approximately 1 lecture)

(a) Definitions
(b) Nomenclature
(¢) Reference systems

2. Static Stability (approximately 8 lectures)

(a) Longitudinal stability
(b) Pitch stiffness

(¢) Longitudinal control
(d) Lateral stability

(e) Lateral control

3. Aircraft equations of motion (approximately 3.5 lectures)

(a) Full, non-linear equations

(b) Euler’s angles

(¢) Small disturbance linearization

(d) Description of aerodynamic actions

4. Stability derivatives (approximately 0.5 lectures)

5. Dynamic stability of uncontrolled motion (approximately 3 lectures)

(a) Review of differential equations
(b) Longitudinal modes and their approximations
(c) Lateral modes and their approximations

6. Open-loop aircraft control (approximately 5 lectures)

(a) Review of linear systems, Laplace transform and control theory
(b) Application to longitudinal control
(c¢) Application to lateral control

7. Closed-loop control (approximately 5 lectures)

(a) Review of closed-loop control theory and stability criteria
(b) Application to longitudinal control
(c) Application to lateral control

8. Analysis of control loops using Matlab (approximately 3 lectures)

(a) Matlab algorithms
(b) Using Simulink
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1.2 links

1. Imood]le internal course sitel

2. aircraft center of gravity calculator. Aerodynamic Center (AC), Mean Aerodynamic

Chord (MAC), Center of Gravity (CG), Neutral Point (NP) and Wing Area
|//adamone.rchomepage.com/cg calc.htm



https://courses.moodle.wisc.edu/prod/local/wiscservices/login/index.php
http://adamone.rchomepage.com/cg_calc.htm
http://adamone.rchomepage.com/cg_calc.htm
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2.1. HW1 CHAPTER 2. MY TYPED HWS AND...

21 HWI1

2.1.1 Problem1

1. Problem 2.1 in the course textbook.

NOTE: in Problem 2.1(c), for the half wing 7 # 0 and for the full wing 7 = 0 so you only need to
evaluate 7 and z. Refer to appendix C in the book and keep in mind that Eqs. (C.1,2) and (C.1,5)
are written for the half-wing.

NOTE: On page 320, in the first line below Eq.(B1.2), the symbol is supposed to be Cp,. On page
322 in Fig. B1.2, the label of the vertical axis is supposed to be Cp,/A and the left hand side of
the equation in the inset of the same figure is also supposed to be Cp,/A.

2.1 A subsonic transport aircraft has a tapered, untwisted sweptback wing with straight
leading and trailing edges. The wing tips are straight and parallel to the root chord. In
the following, use the data of Appendix C and assume that the airfoil section local
aerodynamic center is at the 3-chord point.

(a) Make an accurate three-view drawing of the wing chord plane.

(b) Calculate wing area S, aspect ratio A, taper ratio A = ¢,/c, and the mean aerody-
namic chord ¢.

(¢) Calculate the location of the wing’s mean aerodynamic center, and locate it and ¢
on the side view of the wing (with dimensions). (Assume a uniform additional
lift coefficient C,, = C,.)

(d) The aircraft is to be operated with its most rearward CG position limited to 25 ft
(7.62 m) aft of the apex of the wing. The distance between the wing and tail
mean aerodynamic centers is [, = 55 ft (16.76 m). Estimate the tail area required
to provide a control-fixed static margin of at least 0.05 at all times. Assume that

a, = a,, and h, = h, . Ignore power plant effects and use de/da = 0.25.
Geometric Data

Wing Span, b 150 ft (45.72 m)

Root Chord, ¢, 25 ft (7.62 m)

Tip Chord, ¢, 12 ft (3.66 m)

Leading edge sweep, A, 26
Dihedral angle, y 4

Figure 2.1: problem 1 description



2.1. HW1 CHAPTER 2. MY TYPED HWS AND...

2.1.1.1 Part(a)

150

|
Top View
| 55 |
‘ | ; |
20. > i
19.261 ‘ i
|
4.815 /
I~ _ﬂ tail
8.85
Apex of wing .
wing
’479.8151 >
| . N n.p.
cr a.c. c.g.
Side view of wing and tail
(r//n/’/’\
33.108/"\
k/ ?_g?_’ - F 4 Dihedral
e — e _*; Y angle
Aerodynamic center
Front view of airplane

Problem_1_parta_vsdx
Nasser M. Abbasi
021214

Figure 2.2: problem 1 part (a)

2112 Part(b)

The following diagram shows the calculated aerodynamic dimensions of the wing using the

three views.
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length of mean
aerodynamic chord
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Leading edge
sweep angle

centroid of area of

one half of wing
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aerodynamic chord
e
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A z
N
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N
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wing tip chord \\
'
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-
C;
K — — — — o ——_ = b
y ERN
\
\
wingl.vsdx .
Nasser M. Abbasi half wing span
020914 | L
1
| b

Figure 2.3: problem 1 part (b)

The wing area S is the mean of the root chord length and the wing tip chord multiplied by
the wing span b, therefore

c, + Cy
5= (’—) b
2
_(25+12 150
B 2
= 2775 ft2
The aspect ratio is
b2 1502
=— =——=81
S 2775 8.108
The taper ratio A is
Cy 12
=—=—=048
¢ 25

To find the length of the mean aerodynamic chord ¢, equation (C.3,3) in the textbook was
used with n = 0. In using this equation, x, which is the distance from wing tip to the start of

10
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the ¢ chord was found first using equation (C.3,1) as follows
_(b)(1)1e2n,
*=\2)\5) Toa tenldo)
150\ (1\1+2x0.48
- (—) (—) SRR an(26°)

2 J\3) 1+048
=16.148ft

Now equation (C3.3) was used since x is known
x  (1+20)1+A7)
T 8(1+A+A2
_ X 8(1+A+A?)
:(MMMMJGAQMG+M
B 16.148 8(1 + 0.48 + 0.48?%)
8108 tan(26%) (1 + 2 x 0.48)(1 + 0.48)
=19.2613 ft

This value for ¢ was verified using figure C.2 on page 261 based on the use of
2 1+A+A2

3714

The result matched that found using equation (C3.3) above.

Ltan(Ag)

ol

2.1.1.3 Part(c)

The location of mean aerodynamic center on the full wing is given by the coordinates (E, Y, Z)
in the local frame of reference. For the full wing

y=0

And

c

==

X=x+

1
=16.148 + (Z) 19.261
= 20.964 ft
To obtain z, (C.1,4) in appendix C was used

b

- 2 2
= — .14
z CLSJ; Cp czdy (C1,4)

From the problem C; = C; as the lift coefficient is uniform. Therefore the above simplifies
to

b

2 _
z:-]”cz@/ (C.1,4)

5 Jo

11
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The value for c(y) in the above integral is given E| by the following

2 (,_20-1)
(1+A)b(_ b y)

Given that z(y) = y tan(l') where T is the dihedral angle which is 4° and S = 2775{t? is the
wing area, and A = 0.48, (C.1,4) becomes

b
- 2z 2 21-2)
z—gfo (1+/\)b(1_ 5 y)ytan(F)dy

150
__2 (7 _2077) 2(1 - 0.48) ]
= 5o fo (7 0.48)150 (1 150 y) ytan(4®)dy

cy) =

=23151t

21.1.4 Appendix for part (c)

This section is extra as it finds the {x, 1, z} for half wing, and not the full wing as the problems
asks for. This was done to practice the use of appendix C integrals.

o1

wing tip chord ™|

Wing2.vsdx
Nasser M. Abbasi |
020914 |

|

Figure 2.4: problem 1 part (e)

In finding {x,y,z} , equations (C.1,2,3,4) in appendix C are used. The expression for c in
these integrals is given by

o) = 2s (_2(1—A)y)

1+ )b b

]lhttp ://en.wikipedia. org/wiki/Chord_aircraftl

12
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From (C1.2)
b
- 2 [z
X = C—sz(; CLHCXdy

b
2 -
:Ej;zcxdy

Where x = (}L)c + ytan(l') as seen in the above diagram. substituting these in the above

integral results in

b
=_2 (2 32 2(1-4) 25 2(1-1)
=1L e (- T (i - ) ) e

Giving numerical values for all the variables in the above gives
x = 20.9632 ft

Similarly for y
b
_ 2 2
= — d
=53 fo Cr,cydy
2 b
=5 vy

20-4) \
f(1+/1)h( b y)yy

Substituting numerical values for all the variables above gives
v =33.108ft

This value can also be found based on geometry using the above diagram as follows

tan(a) = =

y =xtan(90° - Ag)
=16.148 tan(90° — 26°)
= 33.108 ft

b
2 -
_:gj:czdy

Where z = y tan(I') hence the above becomes

Sf( 200 )(ytanF)dy

Substituting numerical values for all the variables above gives
z=2.315141t

The diagram below was drawn to scale in Mathematica using the actual values found. This

And finally for z

13
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diagram shows the aerodynamic center for the full wing as well for the half wing.

20.964 |

1

I

— - '
\» - ----_--"\-\.___H_
wing3.vsdx - -

Nasser M. Abbasi |

020914
| 75

Figure 2.5: detailed wing dimensions

(*calculations used in the abovex)
chordLength[y_, s_, b_, lambda_] := (2 s)/((1 + lambda) b) (1-(2(1 - lambd
Clearl[y];
s = 2775;
b = 150;
lambda = 0.48;
¢ = chordLengthl[y, s, b, lambda]
25. (1 - 0.00693333 y)
cBar = 2/s Integratel[c~2, {y, 0, b/2}]
19.2613
yBar = 2/s Integratelc y, {y, 0, b/2}]
33.1081
zBar = 2/s Integratel[c y Tan[4 Degreel, {y, 0, b/2}]
2.31514
xBar = 2/s Integratelc ((1/4) c + y*Tan[26 Degree]) , {y, 0, b/2}]
20.9632

14
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2.1.1.5 Part(d)

|
o _
: . |t . . 0.25
!
. 16.148 |, , ©=19.261 .l
i
. '! ¢, = 25, .
apex of i 5 :
wing wing AC.  mac 8 nop_
4.815 | 4.037 =£J.963é|
Ny € [(h —h,, ) [0 1)
control-fixed
static margin
| ) 8.852
Na:lsI:rgl_Vl‘l..\/I\S:;asi A h C o
020914
9.8151
hnC

Figure 2.6: problem 1 part(d)

From the above diagram (not drawn to scale)

_9.8151 050958
"7 19261

From equation (2.3,23)

Ignoring power plant effects and using a from (2.3,18) given by

B Y P
= fub Agp S da

4
¢

~

Substituting (2) into (1) and using Vy = % results in

B a I, S, de
i = Mg + w s #)\ 25 (1 - 5)
Awb 1+ ag 1- o

Since a; = a,,, the above becomes

)
PR TN Y X
S+St(1—£)c a

(2)

Substituting the following numerical values S = 2775 ft2,¢ = 19.2613 ft, ft = 55 ft, j—; =0.25

?Etkin and Ried, Dynamic of Flight, stability and control, third edition. Page 32.

15
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the above becomes

050058 < L4 2775 55 0.75S;
‘ " 4 (2775 +0.755,)19.2613 2775

Solving for S; gives the area of tail
S, = 367 ft?
2.1.2 Problem 2

2121 Part(d)

2. In the handouts on the course website, two expressions are given for the coefficient of pitching
moment about the center of gravity:

Yai

(ﬂ"m = ('mD + (-ﬂ"ma Chaph
with definitions for Cng and Cip

and

Con = Crug + Crpa @t

with definitions for Chp, Cp,, and o (this latter in your notes). Show that the two expressions for
Cn, can be reduced to the same form.

Figure 2.7: problem 2 description

The expression for C,, in the first equation above is given by

de aCm
Con = (= Tt,) — 0V (1 - %) + (M” 1)
While the expression for C,, in the second equation is given by

— de 8Cm
Cma =a (h - h”wb) — thVH (1 - %) + T'(p (2)

The above expressions are given in the class handout on page 32 and 34.

The problem asks to show that these two expression are the same. Starting from (2) in order
to show it can be rewritten as (1). For this purpose, the following two definitions are used

_ at St 36
0=, (1+ e (1 aa)) 3)
— LS
V===
H cS

16
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2.1. HW1
Since ft =1+ (h - h”wb) ¢ the above becomes
V4 lt + (h B hnwb) E St
VH = —————
c S
Iy S St
= gg + (h - h”wb) g (4—)

Substituting Eqs (3,4) into Eq (2) gives

a; St 86 lt St St 56 gcmp
Cma = Guwb (1 + ﬂwbg (1 B %)) (h - h”wb) a4 [gg + (h B hnwb) §:| (1 - % Ja
Si‘ 86 lt St St 86 acmp
= (owr 0 1= 50 ) 0o na) - [ad v - 55)+
St 86 lt St 56 St (96 8Cmp
- QWb(h_hnwb) +af§ (1 B %)(h_hnwb)_”tgg 1- P _ﬂt(h_hnwb)g 1- Ja + oa

The second term and the fourth term in the above cancel each others resulting in
Vi
ZTS_t de acmp
Cma = App (h—hnwb)—ﬂtgg( - % + oa

LSt .
In the above Etgt is Vi hence the above becomes

86‘ aC'm
Cma = Ayp (h - hnwb) - lltVH (1 - %) + 80;7

Comparing the above to (1), it can be seen it is same as (2).

17
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2.1.3 Problem 3

2.5 The following data apply to a 75 scale wind tunnel model of a transport airplane. The
full-scale mass of the aircraft is 1,552.80 slugs (22,680 kg). Assume that the aerody-
namic data can be applied at full-scale. For level unaccelerated flight at V = 239
knots {123 m/s) of the full-scale aircraft, under the assumption that propulsion effects
can be ignored,

(a) Find the limits on tail angle i, and CG position h imposed by the conditions
C, =0andC, <0

(b) For trimmed flight with &, = 0, plot i, vs. h for the aircraft and indicate where
this line meets the boundaries of part (a).

Geometric Data

Wing area, § 1.50 ft* (0.139 m?)

Wing mean aerodynamic chord, ¢ 6.145 in (15.61 cm)

I, 15.29 in (38.84 cm)

Tail area, S, 0.368 fi* (0.0342 m%)
Aerodynamic Data

[ 0.077/deg

a, 0.064/deg

€, 0.72°

de

Sa 0.30

Co —0.018

[ 0.25

p 2.377 X 1077 slugs/ft® (1.225 kg/m?)

Figure 2.8: problem 3 description

2.1.3.1 Part(a)

Cy, is given by (2.3,22) on page 32 of the textbook.

— , a; S de
Cp = Coye + 0V (€0 + 1) |1 -—3 (1 - 5)] 0)
Where (using SI units)
- _ LS
Vyg==—
H™%s
_38.840.0342
~ 15.61 0.139
= 0.6122

18
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And

at St 86
= ]_ + —— 1 -
= anfie 2 (%)
Iy 0.064 0.0342 1-03)
e 0.077 0.139 ’

=0.08802deg™!
Using the numerical values given by (0) the above becomes
0.064 0.0342 )

0.08802 0.139 1-03)

= 0.03427 i, + 0.006677 1)

Cinp = ~0.018 + 0.064 (0.6122) (0.72 + ;) (1 -

Hence
Cp >0
0.03427 i, + 0.006677 > 0
-0.006677

> —
0.03427
> —-0.19484°

Cy, is given by
0

&6) + 8Cmp

Cog = (=T, ) -V (1 - |+ —

Hence

Jda
= 0.08802 (11 — 0.25) — 0.064 (0.6122) (1 — 0.3)

J
C, = 0.08802 (1 - b, ) - a; (0.6122) (1 - —e)

Therefore
Cyn, = 0.08802 1 — 0.04943 (2)
Hence
Cn, <0
0.08802h — 0.04943 < 0

0.04943

562
0.08802 ~ 06

h <

2.1.3.2 Part(b)

Ci = Cpyy + Cpp @
But at trim C,, = 0, hence at trim the above becomes
Cmo + Cmaatn’m =0 3)

19
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We can find ay;, since (Cp),, = aay, and we know a which is C;, from part (a). Hence we
just need to find C; at trim. But

L W

(CL)trzm %pvzs %pvzs
where at trim the lift L is equal to the weight of the aircraft W. Therefore, since p =
1.225kgm™3, V = 123ms™! and at trim L = W = mg = 22680(9.8), and the scaled wing
area is S = (0.139) 252 = 86.875 m? then the above becomes

22680 (9.8)
> (1.225) (1232) (86.875)
= 0.27609

(CL)trim -

using a = 0.088 02" which was found from part (a), the angle of attack at trim a,;,, is now
found

(Cp),,,, 02761
L= = =3.1 °
Hrim = 0.08802 ~ 1307

Now that a;,;, is found, then equation (3) is used to find the following equation

Cmo + Cmaatrim =0

Cng from part (a) Cy, from part(a)
(0.03427i; + 0.006677) + (0.08802h — 0.04943)3.1367 = 0
0.27609h + 0.03427i, — 0.14837 = 0

Solving for 7; as a function of & gives

. 0.1484-0.2761h

T T 0.0343
— 43294 — 8.0563 I

The following is a plot in a small region around i; = -0.19° and h = 0.56

ipvshattrim

irvshat trim T T
T T 4 >
: ~
N \
02r \ T
~
~
. 2 S
. \
00 < S
~
\\ < .
N
It N
~ \
02+ \Q\ i \
™ ~
\\\ -2F AN
~
_04F ™~ 4 \
- \ N
~ . I I I I |
1 0.0 0.2 0.4 0.6 0.8 1.0

h

Figure 2.10: Plot for & = 0---1 showing loca-

Figure 2.9: problem 3 part b tion i, = —0.19° and h = 0.56

For static stability, 7, > —0.19° and h < 0.562 as was obtained above. This is the value of the
above line to the /eft of the shown small point and above the point, which is the limit of static
stability.

20
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2.1.4 Problem 4

2.6* The McDonnell Douglas C-17 is a four-engined jet STOL transport airplane.

(a) Find A and € for the wing using the geometrical data and Appendix C.
(b) Use Appendix B to estimate a,,, the wing lift curve slope, assuming that 8 = 1

and k = 1.
(¢) If @, = 0.068/deg and a,., = a,, find the lift curve slope, a, of the aircraft. As-
de  2a,
sume — = (with a,, expressed in rad™ ).
d 7A

(d) Find C,,, for the case where I, = I, = 92 ft (28.04 m). Ignore propulsion effects.

*Problem courtesy of Professor E. K. Parks, University of Arizona.

-15°

Figure 2.30 Trim data for Exercise 2.6.

(e) From the experimental curves of Figs. 2.29 and 2.30 and the given geometry, find
C,,, and h,. Find C,, for h = 0.30.

mag,

Geometric Data

Wing area, § 3,800 ft? (353.0 m?)
Wing span, b 165 tt (50.29 m)
Root chord, ¢, 3731t (11.37 m)
Tip chord, ¢, 8.8 ft (2.68 m)

% chord line sweep, A 25°

% chord line sweep, A, 22°

Tail area, S, 870 ft* (80.83 m?)

Figure 2.11: problem 4 description

2.1.4.1 Part(a)

The aspect ratio is (SI units are used)

P 50292
o =—=

= =7.1645
S 353

21
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The taper ratio A is

S8 288 s
¢, 11.37
Using table C.1 in appendix C of the textbook, page 359
_ 2 1+A+A2
‘T3
2 1+ 0.236 + 0.2367
= 33— 056

=7.921m

2.1.4.2 Part(b)

For this part, figure B.1-2 on page 322 was used. This figure is shown below

322 Appendix B. Data for Estimating Aerodynamic Derivatives

18 T 1T T T T 1

1.4 AN —-(ﬁ;_._z_"__
AERAN e e
1. < o B
' \‘\
SlT o ~]
6 =
~—

4 I —

4 ——
2

0

6 1 2 3 4 &5 & 7 8 8 10 11 12 13 14 15 16

1
’—; [p2+ tan? A,”}Z

Figure B.1,2 Subsonic wing lift-curve slope.

IC,

w

Ay = CLwa —&0(

C
In the above figure, g is the Prandtl-Glauert compressibility factor and « = ﬁzé“ where C; is
the 2D airfoil lift-curve slope and C;_.

The half chord sweep angle is A1 = 22°. The problem asks to use the expression in the figure
2

22
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inset to find Cp

CLa B 27
o 2
o tar{Al)
2+ Kf 1+ 522 +4
CLa _ 2n
71645 (a2 (oo
- \/(7.164152)(1 ) (l L (1222 ) ]+4
= 0.63247
Hence
Cr, = 7.165x0.633
=4.531rad!
=0.079deg™!
The angle C; makes with the horizontal is arctan(4.531) = 1.354rad = 77.556°
CL
0e = Oline
77.556°
a
Figure 2.12: plot for problem 4 part b
Therefore

a, = 4.531rad™!

2.1.4.3 Part (c)

The lift curve slope of the aircraft a is given by

a:awb(l+;—t&(1—ﬁ)) 1)

23
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Using a, = 0.068 deg™, a,;, = a,, = 0.079 deg™! and

de  2ay,
da  nd
2(4.531)
~ 7165
= 0.403
From Eq (1) we find
0.068) (80.83
a = 0.079 (1 + (m) (ﬁ) (1- 0.403))
= 0.0883 deg™!
= 5.059rad™!

21.4.4 Part(d)

IS, de
Cma =a (l’l - h”wb) - ﬂtgg (1 - 5)
The problem says that I, = I,. This implies that the distance between aerodynamic center

(a.c.) and the center of gravity (c.g.) of the aircraft is zero. This means (h_hnwb) = 0.
Therefore

1, S, de
=gt 1- =
Coa TS ( 801)
Using ¢ = 7.921 m,ft =28.04m,S; = 80.83m?2,S = 353 m? and using j—; = (0.403 and using

a; = 0.068 deg™! found from part(c), then the above gives
28.04 80.83

= —0.068—— ——(1-0.4
Cony = ~0.068 7 51 355 1 ~0409)

— ~0.0329 deg™!
= -1.885rad !

Since C,,, <0 then the airplane is statically stable.

2.1.4.5 Part(e)

. ICy,
From Fig 2.29, 5.

and using C,, = 0.125 and its corresponding line for 6, = 5°. This gives
dc,, 0.25-0125
do,  —050
Cmég =-0.025deg™!

can be estimated using C,, = 0.25 and the corresponding line for 6, = 0°
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In solving for h,,, figure 2.30 was used. The slope for the /& = 0.35 line is ~2 = 10.256 and

078
the slope for the /1 = 0.25 line is —% = -13.333. Using
do, Cr
=——=(h-h
(ch) =2 -y @
trim
Where A = CLaCmée - CLaeCma' Evaluating Eq (1) for the two given values of / results in two
equations
Cr,
-10.256 = - A (0.35-h,) (2)
Cr,
-13.333 = - A (0.25 - h,,) (3)
Cr, 10.256 i .. .
From (2) % = )’ substituting this in (3) gives
10.256
-13.333 =————(0.25-1h
(0.35-h,,) ( 2
~12.25(0.35 — h,)) = —9.494 (0.25 — 1)
h, = 0.6833
Cm, at h = 0.3 is now found. Since
Cm, = a(h—hy,)

Where a is found from part(c) as 0.088 296 deg™! and h, = 0.6833 therefore

Cm, = 0.088296 (0.3 - 0.6833)
= -0.03384 deg"!
= -1.9389rad"!

cm, < 0 indicates static stability.
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2.1.5 Problem 5

2.8* The following data were taken from a flight test of a PA-32R-300 Cherokee-6 air-

plane.
Altitude Vi Mass i Xco

(ft) fkm) {mph) (m/s) {slugs) (kg) (deg) (in) {cm)
4540 1.384 91.0 40.7 113.4 1656 1.5 93.89 238.5
4560 1.390 109 48.7 113.0 1650 0 93.89 2385
4700 1.433 126 56.3 1129 1649 —1.0 93.89 2385
4580 1.396 155 69.3 1127 1646 —20 93.89 2385
5320 1.622 89.0 39.8 100.4 1466 45 86.82 220.5
4620 1.408 105 46.9 100.2 1463 2.0 86.82 220.5
4740 1.445 123 55.0 100.0 1461 0.3 86.82 220.5
4900 1.494 151 67.5 99.84 1458 -1.0 86.82 220.5
4880 1.487 87.0 38.9 88.51 1293 7.2 80.43 204.3
4820 1.469 103 46.0 88.35 1290 35 80.43 2043
4880 1.487 122 54.5 88.20 1288 L5 80.43 204.3
4740 1.445 152 68.0 88.04 1286 0 80.43 204.3

The data were taken in trimmed level flight. xg is the distance of the CG aft of the
nose of the aircraft. The aircraft has an all-moving tail and thus 7, is used instead of 8,
to trim the aircraft. The wing area is § = 174.5 ft* (16.21 m?).

(a) Plot tail-setting angle, i, versus the lift coefficient of the aircraft for each of the
three CG locations.

(b) Curve fit the data points in (a) with three straight lines having a common inter-
cept (refer to Fig. 2.18).

(c) Use a graphical technique to find the location of the neutral point (controls fixed)
relative to the nose of the aircraft (refer to Fig. 2.21).

Figure 2.13: problem 5 description

2.1.5.1 Part(a)

CL=1 ?/25 and at trim L = mg. Using p = 1.225kgm™ and S = 16.21 m? Values for C; for
3P

the different Vi values given in the table and the corresponding mass are calculated and

plotted against the angle 7
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i iy (degree)
986753 | 1.5 r
686694 |0 ol
5135 |- 1. I
338290 | -2 al
913492 |4.5
656501 |2

[0.476718 |0. 3
0.315854 |- 1
0. 843405
0. 601743
0. 428016
0. 274511

it vs. CL

= k= K< K< K< K< Neo!

i; deg

S« .
al af N

lift coefficient C

Figure 2.14: table and plot for part a problem 5

2.1.5.2 Part(b)

The three segments are first fitted each to a straight line giving the following plot. The fitted
straight lines found by ﬁttinﬂ are {—3.78307 + 5.3984x, —4.02058 + 9.2621x, —3.76524 +12.6932x}
where y = i; ® -3.85 is the intercept angle in degrees where C; = 0 for all three lines

iy vs. C, fitted to stright line each

15

10

i deg
o

=

0.0 0.5 1.0

=
ul

lift coefficient C

Figure 2.15: problem 5 part b plot

Susing Mathematica line fit function applied to each set of data
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2.1.5.3 Part(c)

diy
AV trim
against / to find the intersection on the x-axis in

It was not clear if one should use the speed effect here and plot against / to find the

diy

dc

trim

intersection or to use slope given by
order to determine #,,.

The second approach is used below since that is what figure 2.31 used which was referred
to in the problem above. Therefore, the slope of each of the above lines is found for each h.
This results in the following table

slope | h meter (c.g. measured from tip of aircraft)

54 2.385
9.26 | 2.205
12.69 | 2.043

The data above gives three points. They are plotted and the intersection with & axis is found.
This intersection is /1,. Below is the plot of the data in the above table

graphical determination of h;, from flight data
14 T T

|

10F \Q
. 8 \\
@, °f \b

. . . . .
10 15 20 25 3.0 35 4.0
h(m)

Figure 2.16: problem 5 part c (1)

graphical determination of h;, from flight data
14 T T T

NI

\

10fF \

di¢ °f \

w o IS
\
\

| | L | |
10 15 20 25 3.0 35 4.0
h(m)

Figure 2.17: Line extended to the x-axis
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From the above diagram
h, = 2.65 meter
=265 cm
= 8.694 ft

2.1.6 HW 1 key solution

CHAPTER 2

3 | 21 (@

REAR

St s SIDE ~ 20091t

29
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Chapter 2
b) Each wing panel is a trapezoid, thus
1 b
S =2[§(Cl+cr) 5]
= 1112 +25) 150]

= 2,775 ft2 (257.81 m2)
From App. C, Sec. C.2

A =b%/S
= (150)2/2775
=8.11

)\, = C[/Cr
=12/25
=0.48

From Table C.1

2c, 1+A+2A2

lel}

-3 1+X
_2X25 1+.48 + 482
T3 T 1+.48

C= 19.26 ft (5.87 m)
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2.1. HW

Chapter 2

(©)  From Table C.1 for uniform Ce,

_150 1+2x.48
T2 3(1+.49)

=33.11 ft (10.09 m)

for the right half wing. [y =0 for the complete wing (see Sec. C.DI.

From (C.L,S) forn=

FN.

Use y = for the right half wing. From diagram 2.1 Ayg=24". Thus

N

x=75+33.11tan24°

=20.99 ft (6.40 m)

From (C.1,4)

Nt

2 b/2
== Cyczdy
CLS fO‘ a

but C¢, = QL = constant at given o, thus
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Chapter 2

J.bfzczdy

(4]

NI
)

Now for the right half wing
13
c(y) =25-ﬁy=25 -0.173y

z(y) =y tan 4° = 0.0699y

[ cady = [ (1.748y - 0.0120082)dy

2 3
_ 1.7;8y i 0.0l§09y + K

e _27%[1;& 2. 0.013209 YSF
= 2.32 ft (0.707 m)
The 1/4-chord point of < is placed at (X, ¥, ) as shown in diagram 2.1.
(d) From (2.3,6) the control-fixed static margin is

Kn = (hy - h) 1)

From (2.3,23) (ignoring propulsion effects)




2.1. HW1

CHAPTER 2. MY TYPED HWS AND...

Chapter 2
hnzhnwb+%§/}{(1-%) )
From (2.2,10)
Vi = %‘ 3)
From (2.3,18)
a:awb[1+—£v—tb-§i(1-%ﬂ @
But we are given a; = ayp, thus (4) becomes
32
From the giifen fact that hp,, = hp,,, diagram 2.1, Fig. 2.12 and the results x of
part (¢), at the aft CG location Note o XC(, -?l* (’-: L,

| | K # Chayy
@4 % —>.<-) = (eh-ahnw%zs-zo.% (X% X) -

4.01 -
(h- hnyp) = 75 5¢ = 0.208 {'\ (6)

Since Ky = 0.05 at the aft CG location (where Ky, is a minimum), therefore from

(1) +(6)

33
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Chapter 2

From (2) and (7)

From (3), (5) and (8)

0.258 [1 +

or

AN

0.258 [1

LS
2775

hn - hnWb = 0.05 + 0.208

=0.258 M

0.258 = % Vy (1 . (8)

oe
aa)

Sy

_4S
> =

cS

(-2t
(-2l

" 19.26 x 2775

de
oa

(1

o€
(2 9
aa) ©

For §£ =0.25, (9) becomes
oa,

0.258 +

or

6.973 x 10-58, = 7.7180 x 10-4S,

S¢=367.5 fi2 (34.14 m2)

22  AssumingL=W

CrL, =W/ (% pV2S)

V =180 m/s = 590.6 ft/s
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-

)

Chapter 2

5

» = - 9\ 9Cnm
0=a(hp - hnyp) -2Vl |1-— [+—F
. (hn "wb). t H( kaa) Ja .
or [
’ . ' = : aE 1aCm ‘
hn'= hnyp + S Vi [ 1 - |- - —2 23,23 4
ST Wb T :H( aa)a o G.323) i
|
25 () From (2.3,21a) ignoring propulsion effects}'
, A
CmO!. = a(h — hﬂwb) “— atV_H 1- £ (1)
From (2.3,22a) ignoring propulsion effects
Cmo = Cimgeyyp, TtVH Eo+10 | 11777 1 5o | @
H . | i .
From (2.2,105
Vi =43 ®)
cS :
-From (2.3,18)
= @

Evaluating (3)

12

- 36




Ty £ DBIX368 ) 0a
6,145 x 1,50

evaluating (4)

+.004 . 368 }

a=.077 [1 +me(l - 3)

= .0880/deg

Setting Cmg, <0 and_'evafluating (1)

Cmg = 088(h - 25) - .064 x .6104(1 - .3) <0
or '

h <0.5607-

Chapter 2

This is the controls-fixed pitch stiffness boundary. The CG must be forward of

~ the point represented by h = 0.5607. -
. |

Setting C}no >0 and evaljuaiting @ .

R
i

Cimg = -018 +.064 x .6104(.72 + 1) [1 S e :l%x (1-3)

or

iy >-0.193°

]>o
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O

L
The tail angle must be greater than -0.193°

Chapter"?
for-fhe aircraft to be capablé of

trimmed flight with positive lift and positive pitch stiffness.

(b)  For trimmed flight with 8¢ =0, (2.3,20a) gives

Cm = Cmg + Cmg, * =0

In level unaccelerated flight. -

Liwe'é-ao

[

:
! .
'9\728 -

[\SIE

thus o = 2W/(pV2Sa)

W = mg = 22,680 x 9.81 = 222,491 N

S = (25)2 x.139 m?

full scale
|
thus '
2 x 222,491

)

o= 7
1.225 x (123)“ % 86.875 % .088

=3.141°

Combining (1), (2) and (5) With the numerical data gives
0184 .0342 (72 + 1) + [088(r - 25) - 0273]3.141=0

!
!
i
I
|

14

38 Ty T ;.r'::r'rv:rtf-—:f'fr-*:“: S

(5)
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Chapter 2

or
03421, +.276 h = 1482
or

i(=4.33-8.07h deg.

From diagram 2.5 it can be seen that as h moves rearward (h becomes larger) the

plot of possible (h, i) hits the i; boundary just at (0.560, -0.193°). Note that for

this example Cn,, and Cp are both approximately zero at h = 0.560.

: 0 .

lt E

6 — -
5l g h boundary

i, =4.33-8.07h o

4P t . .

3 | -

[

2 [

9

1 4

0 4 i, boundary
P27 P77 AT T 77777 Vd t
-1 1 1 ] | | 1 h
01 0.2 03 04 05 06
Diagram 2.5
26 (a) FromApp.C,Sec.C2
A=b%/S
1652
=3300~ /16
15

o
N
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Chapter 2

(b)

From Table C.1

7\, = Cl/Cr

=8.8/37.3=0.236

c= 3L
3 1+A

_2x373 1+ .236+.2362
R 1+.236

=25.99 ft (7.92 m)

Use the equation included on Fig. B.1,2.

Here

The component

tan A¢p =tan 22°

=0.404

A2B2 tan2 Aep
‘\/"KT ((1 + _BT)]-’- 4

2 1

1

=7.977

16

40
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Thus

Chapter 2

2TA

w=Clo =33 707

(© ~

_2nx7.16
9977

=4.51/rad

9¢ _2ay

A

_2x4ﬁ
nx7.16

=0.40

4 =0.068/deg = 3.90/rad

From (2.3,18)
a= awb[l +
=4.51 [1 +

= 5.05/rad

ag §[
awb S

(1 ) BEJ]
Jo
3.90

870 .
4513800 > (1 - -40)]

17
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(d

If ¢, =Z( then Vy = \—/H

From (2.2.11)
' .S
VH=Vy- §[(h - hnwb)

becomes for Vy = VH
h= hr'wb ‘

From (2.3,23) with hnyp =h

_ oy g %
(h - hy) = 2 VH[I-an

From (2.2,10)

18

42
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Chapter 2

_ ~alzl81(1 ) Qg)

-3.90 x 92 x 870 x (1 - 0.40)
Cm =

o

25.99 x 3800
=-1.90/rad
; (e) From the Cp, vs CL_ curves of Fig. 2.29 it can be seen that Cmﬁc is independent of
' CL and Cpy; Scjust shifts the lines by a constant x 8.
| Crg, =55
= -0.028/deg
From the 8¢, v CLysim curves of Fig. 2.30
i :CS?:; =284 @n=3s
| =503 @n=2s

From (2.4,13¢)

dd,, -
—Crim _ -4
dCLy, — det (- o)

or

19
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PR

Chapter 2

det dseu—im _
Ta dCLtrim =(0-hn)
Thus
(.35-hp) = 11.4d—§-t—
(25-hy) = 15.03 %
or
.0877 hy =.0307 - g% G}
det y
.0665 h, =.0166 - e (5
Now from (4) and (5)
0212 h, =.0141
or

hp = 0.665
From (2.3,25¢) and ‘a’ from part (c)
Cmg =2a(h - hp)
- =505(3 - .665)

=-1.84/rad
Note that this value of Cy, differs from that in part (d) because the CG location is

different.

20
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Chapter 2
oy = 0133 + 22 rad , 9)
From (1)
aw _(, %eY!
a da
=(2-.2)1=0556
thus
oty = 0.133 + .556 i rad (10)

Substitute (10) into (8)

Ly 0.133+.556
L, - 08(133 +556 1) it

_0.133+0.556 iy
=0.106-0.555 3,

28 (@ CL=L/ypV2S

=L /% PoVEZS

where p,, is sea level atmospheric density. -

In level flight L = W, thus

CL=W/ ;— PoVE2S

25
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(b)

Use the Standard Atmosphere table from App. D to find po = 2.3769 x 10-3

slug/ft3.
Vg (in mph) x 1.467 = Vg (in fps)
S=174.5f12
XCG altitude VE w CLyim 0
(ft) (fpS) ‘ (Ib) Lirim
93.89 4540 133.50 3651 0.99 1.5
4560 159.90 3639 0.69 0
4700 184.84 3635 0.51 -1.0
4580 227.39 3629 0.34 2.0
86.82 5320 130.56 3233 0.91 4.5
4620 154.04 3226 0.66 20
4740 180.44 3220 0.48 0.3
4900  221.52 3215 0.32 “-1.0
80.43 4880 127.63 2850 0.84 7.2
4820 151.10 2845 0.60 3.5
4880 178.97 2840 0.43 1.5
4740  222.98 2835 0.27 0

As shown in Fig. 2.18 8¢, (here iy,) vs Cpyym are straight lines for a given

CG location. All the lines intersect at a common point on the CL,;,, = 0 axis.

(see diagram 2.8a)

This was true for the present data (see diagram'2.8a)

26
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ttrim

©

0 | |

Chapter 2

Xoq = 80.43in

O | L | | | |
0.3 04 05 0670708 09 1.0 1.1 1.2 1.3

0.1 0.2

Xcq = 93.89in

Diagram 2.8a

From (2.4,29) and Fig. 2.21, when the CG is located at the neutral point then

856 im J {rim
~=~M — | here we have

it,
CLyir Ly = 0). From our graph find the slopes for the 3

CG locations and make a plot like Fig. 2.21.

27
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ai

tirim

oC

I'trim

(deg)

XCG ~—Luim

(in) 9CLim
93.89 5.50
86.82 9.09
80.43 13.04

Diagram 2.8¢

28
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Chapter 2

Since (2.4,29) indicates a linear variation with h a linear fit to the plot was made

and the x intercept was (diagram 2.8c)

xcG = 103.3in

as the location of the CG for h = hy, i.e., the NP location.

29 (26,11b)

' _ 1 m§, Chea]
¢h- hn) =7 [a(h - hp) - _—e———bz

(2.4,8b)

Cmg, =-2cVH + CLg (- hnyp)

Substitute (2.4,8b) into (2.6,11b)

‘L_a Chy Cheq . =
(h-hp) =5 (- o) - 2 Crg (h - hnyp)* 5% 26V o
(2.6,4b) gives

CLﬁeChea
- ———b;-_

Use (2.6,4b) to replace “a” in “ah” on the right-hand side of (1) to obtain

| 1/ Che Chege VH
e R U . @

29

NG
<&




2.2. HW2 CHAPTER 2. MY TYPED HWS AND...

22 HW2

2.2.1 Problem 1

4.6  Two airplanes are geometrically similar and have similar mass distributions. Airplane
A has a span of 100 ft (30.48 m) and a weight of 100,000 Ib (445,000 N). B has 150-ft
(47.72 m) span and weighs 225,000 Ib (1,001,250 N). Both fly at speeds low enough
to neglect Mach number effects, and high enough to neglect Reynolds number ef-
fects.

When flying at 400 knots and 20,000-ft (6,096-m) altitude, airplane B has a spi-
ral divergence (a lateral instability) that has a characteristic time of 20 seconds.

(a) At what speed and altitude will A be dynamically similar to B?

(b) What will be the characteristic time of the spiral divergence of A at that speed
and altitude?

(c) What is the ratio of the C, values for the two flight conditions?

Figure 2.18: problem 1 description

NOTE: plane B has a wing span of 150 ft = 45.72m (the 47.72 value in the problem text is a
mistake).

2211 parta

Characteristic time (also called the time constant and given the letter 7, is the time it takes
the system to reaclﬂ 63.2% of its final response. The textbook on page 115 says

Two systems of the same class are dynamically similar when all the 7 functions
of one are numerically equal to those of the other.

Therefore we need to find the 7 functions and equate them for each airplane to solve for
the unknowns. The 7 functions are listed in page 115 as

_m

ol

_ Upt

Tlr= T

2
_ %

g
These are now derived using Buckingham’s 7 theorem. We assume that the time constant
7 is a function of all the system parameters ugy, p,m,[,g,t. The Mach number M and the
Reylond’s number Re are not used since the problem says that they can be ignored. The
time constant is a function of the remaining system parameters

st

Us

T= f(uO/ P/ m, l/g)

In the above t in the RHS was not used as the time constant 7 itself has units of time. The
system still has 6 overall variables. Since there are 3 standard dimensions given by M, L, T

7 =1-¢1=0632121
50
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where M is mass and L is length and T is time, and since there are 6 variables, then we need
to find 6 — 3 = 3 independent groups, called 7y, 715, 713.

To initiate the process of using Buckingham’s 7 theorem, we start by selecting 3 repeating
variables out of original 6 variables to use for finding each one of the three 7 groups. Let
us select {uo, p,m} as the three repeating variables. This choice is not unique, as we could
have selected {ug, m, [} just as well or any other set of 3 independent variables out of the six
variables to use as the three repeating variables.

The next step is to select one of non-repeating variables, one at a time, and for each one, we
set up a system of equations and then match the dimensions. The non-repeating variables

are {T, I, g].
Starting with the first variable in the above set of the non-repeating variable, which is
7, and using = to mean dimensionally equivalent, we set up the first equation as follows
(remembering that the repeating variables are [uo, p,m])
T = ufptme (1)

[T] ~ [LT'1 [ML]"[M]*

[T] ~ L(a—Sb)T—aMb+c
Equating powers of similar dimensions gives 3 equations in 3 the three unknowns {a, b, c}
powers to solve for. Hence

[T] 1=-a
[L] 0=a-3b
[M] O0=b+c

Solving the above gives a = -1,b = -

3 C= 1 therefore (1) becomes

1

T=1U P 313
(™ l

p Uy

1
"—31 U

Hence the first group is now found

Now we find the second group 7,. The next non-repeating variable to use is I, therefore, as

51
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above, we set up an equation to solve for the powers
I~ ugp’m (2)
[L] = [LT ' IML3[IM]°
[L] ~ L(u—Bb)T—aMb+c

Equating powers of similar dimensions gives 3 equations in 3 unknowns to solve for

[T] 0=-a
[L] 1=a-3b
[M] O0=b+c

Solving the above gives a =0,b = —%,c = % Therefore (2) becomes

W=
W=

!

Q

p 3m

1
m)3
p

Q

Hence

The third and final group 73 is found by selecting the last non-repeating variable which is g
g ~ ufp’m (3)
[LT?] = [LT " IML P [M]
ILT2 ~ L(a—3b)T—aMb+c

Equating powers of similar dimensions gives 3 equations in 3 unknowns to solve for

[T] -2=-a
[L] 1=a-3b
[M] O0=b+c

Solving the above for a,b,c gives a =2,b = %,c = —%, therefore

)

m

(ST
©l =

p

oON

u

8

Q

Q
—_—

SoS e
SN —
W=
=
oON

Q

N.lS

Hence

These are the 3 non-dimensional groups that should give the same numerical values for
both airplanes if the two airplanes are to be dynamically similar.
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For airplane B, we are given (i), = 400 knots, I =150 ft, mp = 225000 Ib and altitude of B
is 20000 ft. For airplane A I4 =100 ft, m4 = 100000 lb. The problem asks to find (1) , and
altitude of A.

The 7 groups use p (density of air) and not altitude, but appendix D in the textbook contains
a table to convert from altitude to corresponding air density p at that level. Using this table,

at altitude 20000 ft the air density is pp = 1.2673 x 107 b Sft—zz Now equating the three n
groups for both airplanes gives 3 equations

(1) A= (7T1)B

(102) A= (712)3

(13) , = (73),

Using the specific expression found for each 7 results in
UgT UgT
r),=(°F),
Pp Pp
(5),~(%),
(), -3
ug),  \uo/y

For dynamic similarity, both sides of the equations must give the same value. Therefore we
substitute the known numerical values for the parameters in these equations and solve for

the unknowns
(uOT) (400 x20
100/, \ 150 /,

( 100%p ) ~ (1503 X 1.2673 X 10-3)
A

100000 225000
100\  (150g
uy ), \4002),

Assuming g is the same for both planes, the above reduces to

UgT
— | =53.333 4
(100) 4 )
10p,4 = 0.01901 (5)
100
(—2) = 9.375 x 10" (6)
Uy A

From (6)
100

) = ————= =1.0667x10°
(4), = 5375 10
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Hence

(19) , = V1.066 7 x 10°

=| 326.6 knot

To find the air density for airplane A, using (5) above gives
10p4 = 0.01901

0.01901 sec?
= =1.901 107 Ib —
PA= 10 e
From appendix D (assuming linear relation between each entries in each row in the table)
sec2

we can interpolate the altitude for p4 =1.901 x 1073 Ib oy

7000 1.927 %107
y 1901 x1073
7000 x1.901 x 1073
Y= T H197x103

=| 6905.6 ft

2212 partb
Using the results from part (a) and from (4)

UgT
( ) = 53.333
A

100
Where (1) 4 =326.6 knot found in part(a). Hence solving for 7 gives
326.61
= 53.333
( 100 ) s
53333 x100
AT 3066
=1 16.330 sec
2213 partc
L
(CL)A = 1 2

204 (15) S
Assuming static equilibrium then the lift is the same as the airplane weight giving

m
(CL)A = 1 Azg
2P (15) , S

And similarly for airplane B

m
(Cop = T—r—
5PB (”o)B Sg
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Hence the ratio is
ma8g

_— 1
(C),  eald)sa  Mazps(u5), S
C T meg T 1 2
( L)B %PB(”%)BSB mszA (uO)A SA

Substituting the numerical values found
1 -3 2
(Co)y _ (100000) (1.2673 x 107%) (4002) S
(CL)y  (225000) % (1.901 X 103) (326.62) S 1

Sp
=0.44443—
Sa

2

. . . S - !
The surface area of the airplanes is not given. But s_B can be taken as similar to f and now
A A
the above becomes

(€, 1502
——A = 0.444436——
(CL), 1002

= 0.99998
i

2.2.2 Problem 2

Problem: Substitute the linear expressions for AZ and AM into the right side of (4.9,7c)

and (4.9,8b) and solve the resulting equations to get the second and third components of
(4.9,18).

Solution

The linearized form of Az and AM are given in (4.9,17) in the textbook as

ANZ =Z,ANu+Zyw+Zyw+ Zyq + AZ, (4.9,17 (c))
AM = M, Au + M,w + My + Myq + AM, (4.9,17 (e))
(4.9,7 c¢) and (4.9,8 b) are given by
ANZ
W= 0 - gAOsin Oy + uyq (4.9,7 ¢)
g= M (4.9,8 b)
I

Substituting (4.9,17 c) into (4.9,7 c) gives

oo Ll Zaw  Zui 2y AZ
m m m m m

- gAOsin Oy + uyq
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Solving for w
Zato _ Zubu  Zyw 2 DZ,

m m m m m
-7 Z,A Z V4 AZ
w (m ZU) — u u + ww + iq + [
m m m m
_ Z,Au ZyW Zyq AZ, gABsin O, L tog
W=

() () (=) (=) ()

_ Z,Au N ZyW Zyq AZ, _gAGsin60m+ Uoq

=

= + + m
m—-2Zy, m-—-Z, m-Z, m-2Z, m—Zy m—Zyg
Z Z, + ugm in 6 AZ
_ u Al + w R 0 q- M s Yo AO + ¢ 1)
m—2Zy m—Zy m—Zy m—Zy m—"Zy

The above is the second component of (4.9.18) which will written in matrix form below as
well. But now let us work on the second equation. Substituting (4.9,17 e) into (4.9,8 b) gives

M M M, M AM
= —LAu+ —Lw+ L+ —g+ —
L, L, L, I I,
The above expression contains . But we found @w above. Hence the above becomes
M M
g=—Au+—w
Iy Iy
+ My (( Zu )Au + (—Zw )w+ (Zq i uom)q - (ngiHQO)AG + AZ )
I, \\m—-2, m—Zy m—Zy m—Zy m—"2Zy
M AM
+ g4 —=
I I

Expanding and collecting terms

(0 ) (5 )
=|—+— Au+|—+— w
7 (Iy I, \m-2 I, 1, \m-27,

+(M +M (Z +u0m) q_]\ﬁ(gmsm@o)Ae_i_Mw AZ. +AMC
I, m—Zy I, \m-Z I, m-2y I,

Factoring out the Iy from each term gives

1 MyZ 1 MyZ
q:I—(Mu+ = ”)Au+—(Mw+ = w)w

y m_Zw Iy m_Zw

(o Ma (2, + ugm) (ngm sin 90) oo MobZ  AM,
L\ m—Zg I, (m = Zy) I, (m - Zw) I,
The above is the third component of 4.9.18. Putting (1) and (2) into matrix form gives

1

(2)
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| | |
Zu : Zw : Zq + uom : gm sin 00 Au
| | |
N T T T T T I TTT T T T -
VoL, Mz i, MaZ |1 M (Zg +uom) ]! Mygmsing, || 1
L1 m =z 1, Y M= 1, | m—Zy |1 Lm-Zy) |\AO
i i i
AZ,
+| MAZ an
IL,0m-Zy) "1,

2.2.3 Problem 3

4.10 A hovercraft in ground effect is acted on by the following aerodynamic forces, ex-
pressed as body frame components:

X=Y=0
Z=-mg+Zz;
L=Lyp; M=M, N=0
The body axes are principal axes, and the engine/rotor angular momentum is
hy=[0 0 H

Derive a set of small-disturbance equations of motion.
HINTS: start from Eqs. 4.9.7. 8. 9 and replace/simplify as many terms as possible based on:

1. the expressions for X, ¥, Z, L, M.and N given in the problem statement:

(]

. the fact that the axes are PRINCIPAL axes:

3. the angular momentum of the engine rotors also given in the statement (the effects of the
rotors are described in Sec. 4.6, p.103). Specifically. refer to Eqs. 4.5.9. 4.6.2. and 4.9.3 to
account correctly for the gyroscopic effects.

What the problem statement means is: Xo = 0 : AX =AY = AN =0:AZ = Z.Azg :

Also assume ¢g = 6y = 0.

Figure 2.19: problem 3 description

HINT: For HW2 Prob. 3 (#4.10 in the book): assume ¢y = 0y = 0. uy is non-zero (the
hovercraft is moving horizontally).

Given
X=Y=0
Z=-mg+ 2,z
L=Ly¢
M = Mg6
N=0

The forces and moments and angles given above are illustrated in figure Using the
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Figure 2.20: Boeing Pelican ground effect vehicle. image thanks to |http ://www.aerospaceweb.org

Model_problem _3.vsdx
By Nasser M. Abbasi
March 3, 2014

bal Aerodynamic loads
external forces alance

Figure 2.21: Balance of aerodynamic forces against external loads
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hint, and starting from (4.9,7,8,9) in the textbook, for linear motion

AX
A = - — g0 cos Oy (4.9,7 (a))
AY
V= 7 + g(p COS 60 — Ugr (49,7 (b))
AZ
w= — - gAOsin Oy + upg (4.9,7 (c))
And for angular motion
 LAL+I.AN
= iE (498 (@)
AM
g= 2 (4.9,8 (b))
y
. L,AL+ILAN
== 4.
Tt (£9.8 (©))
And Euler angles
AO =g (4.9,9 (a))
¢ =p+rtan 9, (4.9,9 (b))
Y = rsec 6 (4.9,9 (c))

Starting with the set of (4.9,7) equations. Since X = 0 and Y = 0 therefore AX = 0 and AY.
We need to find AZ which by the problem statement AZ = Z,Azg. Also using the assumption
given that 6) = ¢y = 0 then the set of (4.9.7) equations reduces to

Ait = —gAO (4.9,7 (al))
0 =g9¢ —uyr (4.9,7 (b1))
w= 252 (4.9,7 (c1))

Now considering the set of (4.9.8) equations. Since principal body axes is used, the off
diagonal terms in the inertial matrix vanish which means I, = I, = 0. Also, since N =0
then AN = 0. This reduces (4.9.8) to

AL

P=T (4.9,8 (al))
AM
4= (4.9,8 (b1))
¥
F=0 (4.9,8 (c1))

But in the above AL and AM do not yet have the gyroscopic effect. These need to be adjusted
to add the gyroscopic effect before going further. Since i3 = [0,0, H]" then using (4.6.2) in
order to find what terms to add to each moment, we write

L:qh;—rh;:qH
M : rh, — ph} = -pH
N :phj —qh; =0
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Therefore, the modified moments are
L=Lyp+qH
and
M = MQ@ - ].’)h
Assuming AL = Ly¢ and AM = M0 then the above two equations can be written as
AL/
—_——
L=AL+gH
and
AM/
—_——
M =AM - ph
We have to replace AL,AM, in (4.9.8 al,bl,cl) above with these new corrected AL, AM’
giving

AL + gH
b= Itq (4.9.8 (a2))
AM — ph
§== P (4.9,8 (b2))
Yy
F=0 (4.9.8 (c3))

The above now accounts for the gyroscopic effect. We now continue to the last three set of
equations (4.9.9). Since 6 = 0 these become

AO =g (4.9,9 (al))
$=p (49,9 (b1))
p=r (4.9,9 (c1))

Summary: The final set of equations are

At = —gAO (4.9,7 (al))

0 =g9¢—uyr (4.9,7 (b1))

w= 20 g (4.9,7 (c1))

p= 2 (49,8 (a2))

AM — ph
§=— P (4.9.8 (b2))
y

=0 (4.9,8 (c3))

AO =g (4.9,9 (al))
¢=p (4.9,9 (b1))
p=r (4.9,9 (c1))
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2.2.4 Problem 4

4.12* An aircraft is performing a rolling pullup. At the instant of observation, the vehicle is
at the bottom of a vertical circle of 2000 ft (610 m) radius moving at a constant speed
of 500 fps (152 m/s) with wings horizontal. (See Fig. 3.1). At the same time the roll
rate is constant at p = 90° s~ '. Given that

1, — I, = 300 slug ft* (406 kg m*) and I, = 500 slug ft* (677 kg m?)

determine the moments required at this time to perform this maneuver. Assume that
the axes are principal axes, with Cx horizontal. (You may assume constant Euler an-
gle rates and ¢ = 0.)

Figure 2.22: problem 4 description

HINT: the most useful equations are sets 4.7,2 and 4.7,3. In particular, to determine 7, it is
best to differentiate (4.7,3)(c).

Solution

equations (4.7,2) and (4.7,3) from the textbook are

L=1Lp-L,r+gqr (IZ - Iy) = L.pq + qh; — vhy, (4.7,2(a))
M =1,q+rp (L - L) + Ly (p? - 1?) + rh, — ph (4.7,2(b))
N=Li-L,p+pq (Iy - Ix) + Lqr + phy, — qh’, (4.7,2(c))

p=d—1sing (4.7,3(a))

g =0cos¢+ 1 cosOsing (4.7,3(b))

r =1 cos 0 cos¢p — Osin¢ (4.7,3(c))

Figure which is figure 3.1 in the text book illustrating the problem with added annota-
tions on it to help in solving the problem.

We start simplifying the above equations. Since body axes is used, then all the off diagonal
moments of inertial are zero. Hence I, = 0. Ignoring the gyroscopic effect, then i = hj, =
W, = 0. We are also told that i = 0, hence ¢ = 0. The above equations reduces to

L=Lp+qr(L-1,) (4.7,2(al))
M=1ILg+rmp(,-L) (4.7,2(b1))
N =Li+pq(l, - L) (4.7,2(c1))

p=a (4.7,3(al))

q= 6 cos [0 (4.7,3(b1))
r=-0sing (4.7,3(c1))
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a, = (n— g

w

Figure 3.1 Airplane in a pull-up.

Figure 2.23: aircraft rolling pull up

Differentiating (4.7,3) gives

ho (4.7,3(a2))
g=06cos¢+ Opsing (4.7,3(b2))
i =—0sin¢ — O¢ cos ¢ (4.7,3(c2))

Since we are told that p is constant, then p = 0. In addition, since the airplane is moving at
constant speed, and since the radius of the vertical circle is constant this implies that the
angular acceleration is zero or 0 = 0. The problem also says that the wings are horizontal at

this moment of time, therefore the Euler angle ¢ = 0 as can be seen from figure which
is figure 3.14 in the textbook.
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This angle is zero when wings are horizontal

Lift

W (weight)
Figure 3.14 Rolled airplane.

Figure 2.24: aircraft rolled angle

Using the above then the set of (4.7) equations above reduces to
L=1ILp+qr(L-1,)
M=1g+rp(l,-1L)
N = Li +pq (I, - L)

p=¢
g=0
r=0
p=0
g=20
F=—-0¢

The goal is to determine L, M, N. Substituting p = 0 and r = 0 and g = 0 in the first three
equations above, the reduce more to

L=0
M=0
N = -L0¢ +¢0 (I, - L)
The above are the moments needed to perform the rolling. Using the values given (SI) and
using V = RO or 0 = g and using p = ¢, the above becomes

63



2.2. HW2 CHAPTER 2. MY TYPED HWS AND...

L=0
M=0

N=-LYp+ K(1—1)
- ZRP PR y X

But p = 90° per sec, or grad/sec. Substituting numerical values the above becomes

L=0
M=0
152\ 7 (152
N:—(677)(m)5 E(m)@oe)
or
L=0
M=0

N = -106.07 Nm

=| -78.233foot-1b force
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2.2.5 Key solution

Chapter 4

hg =Ig @ + hg ®)
From (4.5,5)

Gg = hp +@p hp ©

Thus from (8) and (9) the additional terms in the moment equations due to spinning rotors are (if

we assume fig = 0)

0 -r q 7 hx
@hy=| 1 0 -p || hy
9 p OJd| p
ghy -thy ]
=| rhx-ph, (10)
1 phy - ghy
| as given by (4.6,2).
46 In(4.103)letn=Ts % where Ty is the characteristic time of the spiral divergence.
: 2
Since we are told to ignore M and RN, consider the nondimensional combinations m and 2o~

pf3 £g
For dynamic similarity, these groupings must be the same for the two aircraft.

(a) Let( )a be aircraft A values. Equating the above two groupings for the two aircraft

leads to
mA mp

= (€3]
palad ppepd

and
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Chapter 4
2 2
u_"é = i’ﬁ )
£ag IBg
From App. D, at 20,000 ft
pp =1.2673 x 10-3 slug/f3
Thus from (1)
. =MA (LBY
where
mA _
— 100,000/225,000
=0.444
s _ 150
2, 100
=1.5
Hence, from (3),
pa =0.444 x (1.5)3 x 1.2673 x 10-3
=1.899 x 10-3 slug/f3
From App. D the altitude corresponding to p 4 is 7,500 ft.
From (2)
2 _£A 2
Yop = iy Yop 4)
63

66




2.2. HW2 CHAPTER 2. MY TYPED HWS AND...

Chapter 4

Thus

2 _ 1 2
uOA =15% (400)

or

Uos = 326.6 knots

Thus A will be dynamically similar to B at 7,500 ft altitude and a speed of 326.6 knots.

(b) From &t = Ty 70, under conditions where the two aircraft are dynamically similar A =TR.

Thus
Uoa Uop
TSA N =TSB s : (%)

Hence
Yop  £a

TSA = TSB UOA ZB

400 100

=20 %3365 150

=16.33 seconds

© CLy=7—A ©
2PA qu Sa '

W |
CLp=7—2 o
2PBU SR
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Chapter 4

Thus

_ 100,000 12673x107 ( 400 )2 (150)7
225000 1.899x 107 \326.6/ \100

as expected, since CL is also a nondimensional combination, and as such must also be the

same for dynamic similarity.

4.7 From (4.9,17)

AZ = ZyDu + Zyw + ZiW + Zgq + AZ (1)
AM = MyAu + Myw + MW + Mg + AM 2)
From (4.9,7¢) and (4.9,8b)
. AZ . ,
Wo=—>- gA0 sin 6, + upq ' 3)
. AM
4=7- @
y

| Substitute (1) and (2) into (3) and (4)

;’ . Z ZwwW  Zaw 7 AZ . '
? W =2 Ay —:—IV]—-+—H‘;—+;?9+—“—19-gA6sm90+uoq (5)

= [Mydu+Myw + Maiv + Mgq + AMc ]/ Iy (6)
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Chapter 4

From (5)

w(m - Zy) = ZyAu + Zyw + (Zq + mup)q - mgAB sin 0, + AZ, @)
and (7) is the secdnd component of (4.9,18). Substitute (7) into (6) to eliminate W

qly = MyAu + m-Zg + Myw + m-Zg,

+ Mgq + My, G4t Mio)q MameA sin 6
m-Zy, m-Zy

AZ

+AMC+M‘:’m-Z\;, ‘ ®)

and (8) is the third component of (4.9,18).

48 X

Follow the method used in the text (Sec. 4.1 1) to generate Zq

0X
Xq= (% | (1)
where
X =CyypV2S @
Thus
1 oC
Xq= 3 puy2S (a—qxl 3)
since V = . l
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Chapter 4

410 Assume that §o=00="0. Thus making the usual assumptions

Zo = -mg + Zy7Eq )
AZ = Z,A75 (2)
AX =AY =AN=0 3)
AL =Lgo “
AM = Mgb , ©)
From the above and (49,7)
Au=-gb (6)
Vv =480 - Uor (M
W= %T/ AZE + uoq (8
From (4.9,10¢)
A.ZE = ‘qu + W (9)
From (4.9,9)
o=p (10)
b=q an
y=rT (12)
70
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Chapter 4
When the moment equations of (4.7,2) are linearized to produce (4.9,3) the hi; were
dropped. In the present problem hy = h;, = 0 but h, = H and thus should be retained in (4.9,3).
Also, since the body axes are principal axes it follows that I,y = 0. Thus the linearized moment

equations become (since Ly = Mg = Ny =0)

Lyo =10 +qH (13)
Mgb =1,6 - pH (14)
0=1t (15)

From (15) t = 0, thus if we start up with ¥ =r = 0 then they will remain equal to zero. Thus if

this were true we could dfop (12) and (15) and setr =0 in (7).

4.11 Assume that W is the wind as seen at the CG of the aircraft. Next make the point
approximation, that is, the aircraft is small compared with any spatial variations in the wind.

This means that the wind at any value of time is uniform over the complete aircraft. Thus from

(16,1

VE=V+W )

and the angular velocity @ used in calculating aerodynamic forces and moments is unchanged

from the text. Recall that the forces and moments also depend on V, the airspeed. From (4.2,15)

fg=mVp )
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Chapter 4
4.12  For this problem

| (@  w=y=0since itis a vertical circle.

‘ (b) 6= % for circular loop of radius K.

(¢) At the bottom of the loop we are givenp=0=y=0.

From (4.7,3) it follows from the above that at the bottom of the loop:

p =¢-ysin6
n
=<b=§rad/s

q =8cos ¢+ cos B sin ¢
\
"R

1]
Do

-
i}

W cos 6 cos ¢ - § sin ¢
0

| To evaluate the moment equations we need p, q, . Obtain these by differentiating (4.7,3) and

using (a), (b), (), (1), (2) and (3)

G =0coso-Bdsind=0
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T =-ésin¢~é¢cos¢=-é¢ ’ (6)
From (4.7,2) and the above, and making use of I,y =0 and h' = 0:
L =0 )
M =0 ®
N =ILr+pq(y- Iy )
“From (1), (2), (6) and (9)
N =830l -Ix- 1]
SR
=20+ X 1300 - 500]
=-78.54 ftlb (10)
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23 HW33

2.3.1 Problem 1

1. In a wind tunnel test, an airplane model is mounted so that it can only pivot about the body-
fixed y—axis, as shown in the figure, so that the only possible departures from steady horizontal
fight are in & and #. This particular airplane motion is called “pure pitching motion”.

a) Explain in plain English why, in this particnlar case, Aa = A#.

h) Starting from the general form of the equation of motion and eliminating all the quantities that
do not change with time in this case, evaluate the eigenvalues of the motion, the period and the
time to half. Feel free to use Maple {or any other package you may prefer) to carry out some of the
symbolic manipulation but make sure to write clearly, by hand, what steps you are taking.

Hint: for part b). you need to reduee the full, 4 x4 system of linear equations into a 2x2 system.
This means that, of the original four longitudinal variables, only two are necessary to completely
describe the present configuration (see the short-period approximation).

___equilibrium position

2.311 Part (1)

The angle 0 is the kinematic Euler angle that measures the pitch of the airplane relative to
the ground. The angle of attack « is an aerodynamic angle that measures the angle between
the zero lift line and the velocity direction V' of the airplane at any moment. The relation
between 6 and « is

O=y+a

Where y is the angle between horizontal plane and the velocity vector V. This is illustrated
in figure from our text book on page 19. In trim conditions, the angle y is constant (or
zero). Therefore any change in 6 must come from change in the angle of attack a. Hence

AO = Ax
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0=y+a .

Zera-hft line
""‘““-~!E::__-._‘~H-“-‘ o
( i

0

Figure 2,1 Steady symmetric {light.

Problem_1_part_1.vsdx
Nasser M. Abbasi
032214

Figure 2.25: Relation between y and 6 and angle of attack «

2.3.1.2 Part(2)

Equation 4.9,18 in text book represents the longitudinal equation of motion using the four
longitudinal variables {u, w,q, Qﬁ). In pure pitching mode, the two degrees of freedom are g
and w (similar to short-period mode). The pure pitching mode is the short-period mode in
the limit as m — co. From Mechanics of flight, Warren Phillips, page 873 :

Thus we see that as the dimensionless mass becomes large compared to the dimensionless
moment of inertia, the short-period motion associated with free flight becomes pure pitching
motion.

Therefore, to obtain the pure pitching mode, The short-period mode is used and then the
limit is taken to obtain the pure pitching mode equations. The short-period mode is given
by the following 2 X 2 system. (Equation 4.19,18 in the text book)

Zw Zq+mu0

w _ m—Zw m—Zw w
q 1 (Mw + MZ-UZw) 1 (M + Mw(Zq+muo)) q
I, - I 1

m—Zw
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The characteristic equation is found from

det(A-A) =0
-A U, 0
1 1 =
Mo 5 (M, + Myu,) = A
A2 -7 ! M, +M ! M,u, =0
- E( q+ wuo)_g wlo =
Let the natural frequency
U
Wy, = | |-My—
n w Iy
And the damping ratio
C _ - (Ml] + Mwuo)

U
I, /—ng

Equation (1) can be written in standard form as

A2 4 2w, A + w2 =0

The eigenvalues are

—b + Vb? - 4ac

A=

2a
1 2
=ar (M, + My, + o \/ (M, + Mg,)” + 41, M, u,
y
i 2
21 (M, + My, + 5\/ — (M, + Myu,)” — 41, My,
=n+iw
Where
1
n= 21 (M + M, uo)
1
W= a, — (M, + Mwuo) — 41, M1,
Hence
/\1 =n+iw
/\2 =n-iw
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The period T is given by

T:2—n: 4711y

@ \/— (Mq + Mwuo)z — 41, M, u,

The time to double is

0.693
=
In|
(21,)0.693
|Mq + Mwuo|
~ 1.386
M, + My,

2.3.2 Problem 2

6.3 The stability derivatives of a general aviation airplane are given in Table 7.2. The air-
plane weighs 2400 1b (10,675 N) and has a wing area of 160 ft* (14.9 m®). The flight
altitude is sea level. Calculate and plot the spiral stability criterion E as a function of
speed (0.15 < C, < 1.7) for values of 6, = —10°, 0%, 10°.

Hint: refer to Eq. (6.8,6) in the book.
Solution

Table 7.2 in the text book is

;:iﬁi;insional Derivatives—General Aviation Airplane (expressed in rad ' and (rad/s)™")
e g C,
B —0.14 —0.0689 — 0.0917C, 0.01326 + 0.017¢C2
p -0.039 —0.441 —0.00109 — 0.0966C,
F 0.165 -0.0144 + 0.271C, —0.048 — 0.0238C7
8, 0 —0.0531 0.005
8, 0.117 0.0105 —0.0509

From equation 6.8,6 in the book
E=g [(clﬁcnr - c,rcnﬁ) cos By + (clpcnﬁ - clﬁcnp) sin O |
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Using table 7.2, each of the above expressions are evaluated. Some are functions of C;.
Cy, = ~0.0689 - 0.0917C;
C,, = —0.048 - 0.0238C%
C;, = -0.0144 + 0.271Cy,
Cyy = 0.01326 +0.017C}

C), = -0.441
C,. =-0.00109 — 0.0966C;,

==
For each different value of 6, C; is changed and new value for E is obtained. This was done
three times, for 6, = -10°,0,+10°. The standard lift coefficient equation is used to obtain

the corresponding value of speed for each C;

L
CL = 1 )
Ep‘/ S
At trim, L = mg, hence
m
Ci = 1 é;
Ep‘/ S

Or

| 2mg
Ve \ PSCr

Substituting the numerical values given in the problem above (SI) gives

V- 2 (10675)
-\ pa49C,

The air density p is found from appendix D since the airplane is at see level. From appendix

D

sec2

p =2.3769 x107% Ib F

= 1.225 kg/m’

Ve 2(10675) |1
V(@225 149\ C;
= 34.201 ! m/
= . CL sec

=| 112.18 ft/sec

Hence

These are the equations to plot E vs. V. For each C;, V and E are calculated using the above.
A small program was written to do this. The result is in figure
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clbetalcl_] -0.0689 - 0.0917 cl;

cnrcl_] := -0.048 - 0.0238 cl-2;
clr[cl_] := -0.0144 + 0.271 cl;
cnbetalcl_] := 0.01326 + 0.017 cl1~2;
clp = -0.441;

cnplcl_] := -0.00109 - 0.0966 cl;

speed[cl_] := 34.201 Sqrt[1/cl];

spiralE[thetaO_, cl_] := ( (clbetalcl] cnr[cl] - clr[cl] cnbetalcl])
Cos[theta0] + (clp cnbetalcl] - clbetalcl] cnplcl]) Sin[theta0]);

angles = {-10 Degree, 0, 10 Degree};
data = Table[{speed[cl], spiralE[#, c1]}, {cl, 0.15, 1.7, 0.1}] & /@ anglsg

ListLinePlot[data, Joined -> True, PlotLegends -> angles, Frame -> True,
FrameLabel -> {{"Stability criterion E", None}, {"airplane speed in m/s
"Stability criterion E vs. speed for different angles theta"l}},
GridLines -> Automatic, GridLinesStyle -> LightGray,

ImageSize -> 500, Rotatelabel -> True, LabelStyle -> 18

Stability criterion E vs. speed for different angles 8,

0.010F=—__ =
0 dez ) h‘_"'"'--\.__________ / {d

= 0.005f \__ — .:_____————_.._ ]
£ 0.000-~ ' e
5 .
Z \\ 0
= 10°
= —0.005F <10 dag 1
= /

—0.010+ R

30 40 50 60 70 80

airplane speed in m/sec

Figure 2.26: Stability criterion E vs. speed
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2.3.2.1 Discussion of results

The plot in figure shows that spiral mode can become unstable depending on the speed

of the airplane.

The spiral mode characteristic equation was simplified to DA + E = 0 as discussed in the
textbook, page 193. E represents the static stability (as the case with the full, un-simplified
characteristic equation). The condition for static stability is that E should remain positive.
If E changes from positive to negative, which means a root has switched from negative to
positive, then the response becomes unstable (diverges).

From the above plot, when the reference angle of climb 6, was larger than zero, this mode
became unstable when the airplane slowed down to below critical value. The larger 6,
became, the larger this critical value became.

For example, when 6, = 0, this critical speed was about 27ms™!, but when 6, = 10°, the
critical speed was above 39 ms~!. When the reference angle of climb is negative, this mode
remained stable for all the speed range shown since E was positive throughout.

2.3.3 Problem 3

6.5 Find the critical climb angle for spiral stability of the jet transport of Sec. 6.7. [Hint:
start with (6.8,6}]. Having regard to its expected influence on the stability derivatives,
state the effect on spiral stability in horizontal flight of increasing the wing dihedral
angle.

3. Problem 6.5 in the textbook. For the first question: when caleulating the eritical elimb angle #;
use the values of the stability derivatives listed in table 6.6,

For the second question: make sure to use the statement “in horizontal fHight” to simplify Eq.
(6.8,6). Refer to Appendices B.9 and B.11. For this plane, the aspect ratio is 4 > 1 (recall
A=F/5). So, in App. B.9. use BEq (B.9.1]. Of all the terms therein, the only one that matters in

this problem is (%I&'Mr).
(Note: there is a typo in Eq.(B.9,1). The last term within the square bracket is (%) . The A
subscript should not be outside the square bracket.) o
Look up the value of those terms in Figs. B.9,4 and B.9.5 and concentrate on their SIGN. Similarly,
in App. B.11, use Eq. (B.11,1) and coneentrate on the term (#) Lock at its expression in Eq.

(B.11.3) and coneentrate on its SIGN.

Solution:

2.3.31 Part (1)

The first step is to evaluate E for the given jet using the stability derivatives in table 6.6.
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Table 6.6
Nondimensional Derivatives—B747 Airplane

CI! C.r (":1
B —0.8771 —0.2797 0.1946
i 0 —(0.3295 -0.04073
F { 0.304 -0.2737

Where E > 0 implies the following (per equation 6.8,6 on page 194 of textbook)

(Clﬁcnr - clrcnﬁ) cos 6, + (c,pcnﬁ -C,C )sin 6y > 0 1)

p

The meaning of these coefficients is explained more in this table

. . L . . .

C; | The rolling moment coefficient C; = +— ” where L here is rolling moment and not lift

aC . . .
Ciy a_ﬁl where f is the side slip angle

aC .
Ci, | = where r is yaw rate

d . . . .
G, a_sz rolling moment coefficient of propulsion units

. . N . .

Cy | Yawning moment coefficient C,, = +— bwhere N is the yawning moment
Cy, acr = where r is yaw rate

aC . . .
Cup | 5 ﬁ” where f is the side slip angle

d . . . .
Co, (%Yawmng moment coefficient of propulsion units

Using table 6.6 gives

Cy, = -0.2797
C,, = -0.2737
C; = 0.304
Cy, = 0.1946
C;, = —0.3295
Cy, = —0.04073

Substituting all these values in (6.8,6) gives

Or

(clﬁcnr - c,rcnﬂ) cos 6y + (clpcnﬁ -C,C )sin 6y > 0

p

(~0.2797 x —0.2737 — 0.304 x 0.1946) cos Oy +(—0.3295 x 0.1946 — (~0.2797) x —0.04073) sin 6y > 0
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Hence
1.7395 x 1072 cos 0y — 7.551 3 x 1072 sin G > 0
1.7395x1072 - 75513 x 102 tan 6, > 0
tan 6 > 1.7395 x 1072
7.5513 x 102
tan 6, > 0.230 36
Therefore

0, > tan™* (0.230 36)
> 12.97°

The above implies that the climb angle has to be larger than 12.97° to insure that E remains
positive and the jet remain statically stable in spiral mode at any speed.

2.3.3.2 Part (2)

E is now examined to see how it is depends on I' (dihedral angle). The expression for E above
does not have I' in its as shown, but I' comes into play when the coefficients are replaced by
their expressions in appendix B.9 and B.11. Before doing this, the term multiplied by sin 6,
are cancelled inthe above, since the jet is in a horizontal flight or 6, = 0. E > 0 now implies
the following

(C1,Cy, = C1,Cy) >0 (2)

The appendix is now used to replace the expressions in the above. From appendix B.9 and

for A>1
C ) C
B B
%) el
(CL Ac2 CL/y
The rest of the expression in B.9,1 was not used, since 6 = 0. For C,, looking at equation

B.9.3 in the appendix B.9, shows it does not depend on I, therefore its current numerical
value from the above table is used

Clﬁ
Clﬁ = CL +T TKMF (3)

Cnﬁ = 0.1946 (4)
Looking at C;, and from appendix B.11
Cp AC;
cmof],_ ()
Cry,=0

Where the last term was not used since 6 = 0. Finally from B.11.4 one sees that C,, does
not depend on I, therefore its current numerical value is used

C,, = —0.2737 (6)
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Substituting (3,4,5,6) into (2) results in

Clﬁ
+T TKMF

01046 | ¢, <
. L CL
is found from (B.11,3) as

AC, 1 mAsinAgy

r 1_2A+4cosAC/4

A\ rls o
(r) >0 ()

AC[r
T

In the above,

Hence (7) becomes

Cy P Cy
Cr/, Ma™\'c, .,

C 1 Asin A
—0.1946 CL(CLV) +( M)r
C

~0.2737 [CL

G

— >0 (8
L 12A+4COSAC/4 ( )

In order to determine what happens as I' changes, it is assumed that all terms that do not
involve I' above are fixed for the time being and can be renamed to constants z; and z; for
the purpose of finding the effect of changing I'. Writing (8) as

C 1 mAsinA
2T | =Ky |- zp—=———— T>0 9

“ ( r Mr) 2 AvdcosAgy ©)
This above can be simplified more since terms such as 7 and A are fixed and do not change
with changing I'. In addition, A4 do not change with I'. The above is simplified more
resulting in

Cl[),
—N—
C S
—zT (TﬁKMr) —Z,I'>0 (10)

The LHS above is required to remain positive for stability. The more positive it is, the more
stable the system is. As I increases, then C; = z,I" will become more positive. But what
C G
happens to I' (TﬁKMr) as I increases? To find what happens to Tﬁ and what happens to K,
l) . . .
the hints given are used. From figure B.9,4 it is seen that Tp is negative curve, as the y-axis
is negative for positive aspect ratio (the x-axis). This was the case for all values of the taper

ratios A.
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-.0003 I
ehh=0
Nepa
- 0002 o
u--""'"—-
Ciy T ] 240°
r __,--"’ — z
iper dag?) ﬁf-——"‘ 60
0007 e il
2
pZ
[~
0
0 z 4 8 8 10

Aspeact ratio, A
Figure B.9,4 Effect of uniform geometric dihedral on wing C Ia

Looking at figure B.9,5 shows that Kj. > 0 for all ranges defined over M cos A .

1.B |—
A
=1
COs Ay 0
1.6
a
Ey1.4
/ /] ¢
Vi /
/ 77
1.2 A /
..-"/ /""4
/ ]
—
1.0 B gl 0 s —T2
D 2 4 K] ] 1.0

M COS Az
Figure B.9,5 Compressibility correction to dihedral effect on wing C,,,

G
This means (TﬁKMr = (negative X positive) = negative. Therefore, as I' increases, Clﬁ be-
comes more negative (since I is positive). To see this more clearly, (10) is written as

v

—TI' (negative) — T (positive) > 0 (11)
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or
Clﬁ Cl

r

I' (positive) + I (negative) > 0 (12)

E has to be positive for spiral stability. Between the two terms above, C;; will cause E to be
become more positive as I increases. While the second term C; will have the opposite effect,
it will reduce E and cause it to become negative.

It is assumed in all of this that I is a positive angle and remain positive.

2.3.3.3 Conclusion

For horizontal flight 0 = 0, as the I' angle increases, its effect on C; is to make the airplane
become unstable in spiral mode, while I' effect on Clﬁ is to make the airplane become stable.

2.3.4 Problem 4

6.7 Using the stability derivalives given in Table 7.2 for a general aviation airplane, cal-
culate the lateral modes in the absence of graviry. The relevant data are:
W = 2400 1b (10,675 N) I, = 170 slug-ft* (230 kg-m?)
§ =160 ft* (14.9 m?) I = 1,312 slug-f* (1,778 kg-m?)
b =30 ft(9.14 m) I.=0

X

V = 150 knots (77.3 m/s) t,=0
altitude = sea level
Compare the results with those for gravity present.

4. Problem 6.7 in the textbook. Although not stated quite clearly, vou are required to find BOTH
the eigenvalues AND the eigenvectors and to do so for BOTH the case WITH gravity AND the
case WITHOUT it. Although unintuitive, in the absence of gravity the lift coefficient C'p=0. Use
this in evalnating the stahility derivative in Tab. 7.2.

Following the same approach we used in class: the eigenvector corresponding to each eigenvalue
has four components; each component comes with an amplitude and a phase; arbitrarily pick an
amplitude of 1 and a phase of 0 for any one of the components (here use r) and evaluate the 3 other
amplitudes relative to A4, and the 3 other phases with respect to n,.. It's hest to use the eig{A)
MATLARE routine or similar. By all means, use the routine posted on the course website. This
problem is quite long,

Solution method summary: It is required to write X = Ax for the lateral mode. This
is equation 4.9,19 on page 113 of the textbook. These are expressed using dimensional
derivatives Y,,Y), ---. Table 7.2 is used, and using non-dimensional derivatives C, ,Clﬁ, ey
with table 4.5 on page 118, the numerical values in the dimensional matrix A are found.
Having obtained % = Ax in numerical form, Matlab was used to obtain the eigenvalues and
eigenvectors. The above is done for both C; =0 and C; # 0. For the case of C; =0 or g =0,
the A matrix becomes 3 X 3 while for g # 0 the A matrix remained 4 X 4.
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Solution:

Table 7.2 in the text book is

;:zﬁi;insional Derivatives—General Aviation Airplane (expressed in rad ™' and (rad/s)™")
o) & s
B —-0.14 —0.0689 — 0.0917C, 0.01326 + 0.017C2
p —-0.039 —0.441 —0.00109 — 0.0966C,
? 0.165 -0.0144 + 0.271C, —0.048 — 0.0238C7;
8, 0 —0.0531 0.005
8, 0.117 0.0105 —0.0509

Table 4.5, page 118 of the textbook is used to convert from dimensional to non-dimensional

Table 4.5
Lateral Dimensional Derivatives

Y L N
v épul\SCyp ép“—ob SCJ B %\pu‘}bscnﬁ
p 4pubSC, spueh’SC,, ipugh’sC,,
r YpughsC,, bpush®SC,, 1puh’SC,,

Equation 4.9.19 for lateral mode, in dimensional form is

Y, Y, Y,
o i m (; - ”0) gcosbo)
, L, , L, , L, ,
p _ E + szNv E + IZXNP E + IZXNI’ 0 p (49 19)
2 / Ny ’ NP / Ny T ’
) (IZXLZ) + E) (szLp + E) (IZXLV + E) 0
¢ 0 1 tan 6, 0 ¢
Where
(LL-12) (230 x1778 - 0) )
x L 1778 sm
(LL-1%) (230x1778-12) )
I = = =1778 k
z L. 230 R
’ sz

zx

(lez - IJ%Z) -

To find air density p, we are told the airplane is at see level. Hence using table in appendix
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D then we find the corresponding air density at that altitude

2
p=23769x1073 Ib =

ft
= 1.225 kg/m’
2.3.41 Gravity present case
In this case
c L
L= 7 )
But at trim, L = mg, hence
mg 10675

C, = 0.196

VS 1 (1225)(77.3) (149)

Now the numerical values of the dimensional derivatives are calculated

non-dim. | value

C, | -014

C, | -0039

C, | 0165

C,, | -0.0689-0.0917C; = -0.0689 - 0.0917 x 019576 = —0.08685

C, |-0441

C, ~0.0144 + 0.271C; = -0.0144 + 0.271 x 0.19576 = 0.03865

Cny | 0.01326+0.017C2 = 0.01326 + 0.017 x 0.195 767 = 0.0139

C,, | -0.00109 - 0.0966C; = -0.00109 - 0.0966 X 0.19576 = —0.02

C, | —0.048 - 0.0238C2 = —0.048 - 0.0238 x 0.195 767 = —0.0489

Hence
dim. | non-dim. | numerical equation value

Yo | 5 pigSC,, > (1.225) (77.3) (14.9) (-0.14) —~98.764
Y, | 1pubSC, | ;(1.225)(77.3)(9.14) (14.9) (-0.039) ~125.73
Y, | 1pughSC,, | ;(1.225)(77.3)(9.14) (14.9) (0.165) 531.95
Lo | 5puoSCy, | 5(1225)(77.3)(9.14) (14.9) (-8.6851 x10?) | -560.01
L, ipuObZSClp 1 (1.225) (77.3) (9.142) (14.9) (-0.441) ~12995
L, ipuObZSClT i (1.225) (77.3) (9.142) (14.9) (3.8651 x 102) | 11389
N, |5 pughSC,, 5 (1.225) (77.3) (9.14) (14.9) (1.3911 x 102) | 89.700
N, |; pugh?SC,, 1 (1.225) (77.3) (9.142) (14.9) (-0.02) _589.35
N, %puObZSCny i (1.225) (77.3) (9.142) (14.9) (-4.8912 x 1072) | -1441.3

Now that all the numerical values are calculated, 4.19,9 is written again in order to find a
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numerical A matrix in order to determine its eigenvalues.

Since 0 = 0, equation 4.19,9 becomes

5 % % (% - 77.3) 981)
pl (‘526:(')01 +1, (89.7)) (‘1229095 + 1 (—589.35)) (% + 1, (—1441.3)) 0 ||p
’ (I;x (=560.01) + %) (ng (~12995) + %) (I;x (1138.9) + = ) r
¢ 0 1 0 o J\
And since I, = 0 the above reduces to

o) (-0.090761 -011554 -76.811 9.81)(v

p 24348  -565 49517 0 ||p

7|7 | 005045 033147 —081063 0 ||r

o 0 1 0 0 J\o

The above is in the form of & = Ax . The eigenvalues of A are found using Matlab. They are

Aguten = —0.4218 + 2.2873i
Apiral = ~0.0551
Avolling = ~56.5025

The characteristic polynomial is

EDU>> syms x
EDU>> vpa(charpoly(A,x),6)
x"4 + 57.4014%x"3 + 56.2385%x72 + 308.576%x + 16.832

Hence

p(A) = A% +57.4014A3 + 56.2385A2 + 308.576 +16.832
=AAM +BA3+CA2+DA+E
Therefore
E=16.832>0
R =D (BC - AD) - B’E
= 308.576 (57.4014 X 56.2385 — 1 x 308.576) — (57.40142) (16.832)
=8.4546x10° > 0

Hence all modes are stable since both E and R are positive. Now that the eigenvalues are
known, the system characteristic timing table is generated, as was done in the textbook on
page 188. Here is the table for this airplane
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Mode name A=n=+wi period (sec) tharf (5) Nyaf (cycles)
2n 0.693 @
— — 011—=
“ e i
spiral -0.0551 — Dol = 12577 —
- 0693
3 dﬂt)ll;ng 1| -0 4;)2 -fOZZ i873' °r —_2 770 | S _—2.(:4232(? : 0 11—2'2873_— 0.596 50
utch ro®t | —4 B YT 04218 — 04218
The dutch roll is oscillatory, its characteristic transients is plotted below

w=2.2873; n

{"Time (sec)"
ImageSize ->

, "Dutch roll mode"}},
400]

= -0.4218;
Plot[Exp[n t] (Sin[w t]), {t, 0, 10}, PlotRange -> {Automatic, {-1, 1}},

AxesOrigin -> {0, 0}, Frame -> True, GridLines -> Automatic,
GridLinesStyle -> LightGray, FrameLabel -> {{"pertrbation", None},

Drztch roll moda
T

0.0

pertrbation

10

-leb——
2

Figure 2.27: Dutch roll mode response for C # 0

The corresponding eigenvectors are now found in order to generate the eigenvector phase
diagrams similar to figure 6.3, page 169 in the textbook. The solution will appear as follows

4 X11 X12 X13
X21 X22 X23
Pl = eMt + elet + elst +
r X31 X32 X33
0] X41 X402 X43
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X th s thos
Where in the above, the vector is the i"" eigenvector that corresponds to the i eigenvalue.

The above can also be written as

x = x1eMF 4+ xpet2 4 xgetst 4 x et

Where the eigenvalues A; are known, but not the eigenvectors x;. By definition, an eigenvector
x; corresponding to eigenvalue A; can be found from

Axi = Aixi
(A - AZI) X; = 0
In this problem, Matlab was used to obtain the eigenvectors.

The problem asks to normalize the eigenvector using the third entry, which is . Therefore,
after finding the eigenvectors using the eig command, each entry in the eigenvector was
divided by the third entry in the same eigenvector. A small function was written to automate
this process for both C; = 0 and C; # 0. The function and its full output are listed in the
appendix of this problem. Here is the result found. The entries in the eigenvector were
made to be non-dimensional. This seems to be what was done in the textbook, page 189.
Non-dimensional eigenvector was generated from the eigenvector returned by Matlab as
follows:

To convert eigenvector P'| to non-dimensional form, we multiply elements as follows
r

A
[
4 ug
lf = P20 . This was done for each eigenvector of each mode. The dutch mode has two
|
Ad) | Ag

complex conjugate eigenvalues and counts as one mode.

After the eigenvectors are found, polar form table for the eigenvectors is made, similar to
table 6.4, page 168 of the textbook, then the vector phasor diagrams is drawn for the dutch
mode.

The polar form of each eigenvector is summarized below

2.3.4.11 dimensional result
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dutch A3, = —0.4218 + 2.2873i spiral A; = —0.055268 rolling A, = -56.5025
magnitude phase (deg) magnitude | phase (deg) | magnitude | phase (deg)
v 35.874 80.158 12.115 0 2.2246 0
p 1.5436 -98.95 0.43488 180 168.36 0
r 1 0 1 0 1 0
A 0.66332 -199.39 7.868 0 2.9796 -180

2.3.41.2 non-dimensional result v,p,r are first made non-dimensional. Next, the ratio
variable to r is found. The Matlab function below shows the the implementation details.

dutch A3, = -0.4218 + 2.2873i spiral A; = —-0.055268 rolling A, = -56.5025
amplitude phase (deg) amplitude | phase (deg) | amplitude | phase (deg)
ufr 7.849 80.158 2.651 0 0.4867 0
plr 1.543 -98.95 0.4348 180 168.36 0
r/r 1 0 1 0 1 0
X 11.22 -199.39 133.09 0 50.4 -180
norm 13.33 133.09 176.43
Figure is the eigenvector diagram for the dutch mode
-
7.85¢%"

11.22¢72%°

Figure 2.28: Dutch mode response for C; # 0

2.3.4.2 No gravity case

The above calculations are now repeated for C; = 0 case. Calculation of the numerical values

of the dimensional derivatives gives
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non-dim. | value
C, |-014
C, | -0.039
C, | 0165
C,, | -0.0689-0.0917C; = -0.0689
C, |-04u
C, ~0.0144 + 0.271C; = —0.0144
C,, | 0.01326+0.017C2 = 0.01326
C,, | -0.00109 - 0.0966C; = -0.00109
Cy, —0.048 — 0.0238C% = —0.048
Hence
dim. | non-dim. | numerical equation value
Y, | 5puoSC,, | 5(1225)(77.3)(14.9) (-0.14) ~98.764
Y, | ; pughSC,, ; (1.225) (77.3) (9.14) (14.9) (~0.039) 125.73
Y, | ;pugbSC,, | ;(1.225)(77.3)(9.14) (14.9) (0.165) 531.95
L, %puOSClﬂ > (1.225) (77.3) (9.14) (14.9) (-0.0689) | —444.26
L |3 pugh*SCy) 5 (1.225)(77.3) (9.142) (14.9) (-0.441) | 12995
L, i pugh?SC;, i (1.225) (77.3) (9.142) (14.9) (-0.0144) | -424.32
N, | 5pughSC,, | 5(1.225)(77.3)(9.14) 14.9) (0.01326) | 85.499
N, |; pugh?SC,, 5 (1.225) (77.3) (9.142) (14.9) (-0.00109) | -32.119
N, i pugh?SC,, i (1.225) (77.3) (9.142) (14.9) (-0.048) | -1441.3

With the above, equation 4.19,9 is written again in order to find a numerical A matrix to use
to find its eigenvalues, and since 6 = 0 then 4.19,9 becomes (but remember to use a 3 X 3
matrix in this case, since the 4 column is now zero column)

Yy 2 LI
0 m m m Mo
)| = (EH'N) (L—”+I’N) (E+I'N)
p - I;’( zx-Yvu I;,( zx-'p I)’( zZxX-'r
f ’ N‘U ’ N ’ Nr
4 (IZva+E) (IZpr+I—Z) (IZer+E)
—-98.764 -125.73 531.95 _773
10675/9.81 10675/9.81 10675/9.81 ’ 0
-44426 -12995 -, 42432,
= ( - +sz(85.499)) = +sz(—32.119)) ( — +sz(—1441.3)) p
;o 85.499 - -32.119 - -1441.3\ || r
(sz( 444.26) + —1778) (sz( 12995) + ——— ) (sz( 424.32) + —= )

92



2.3. HW3 CHAPTER 2. MY TYPED HWS AND...

And since I, = 0 the above reduces to
v)(-0.090761 -0.11554 -76.811 \(v
pl| 19316 565  -1.8449 ||p
7)1 0.048087 —-0.018065 -0.79551)\r
The above is in the form of ¥ = Ax . The eigenvalues of A (using eig command) are

Aguten = —0.44044 +1.9015i
Arolling = -56.505

The characteristic polynomial is

EDU>> sym x
EDU>> vpa(charpoly(A,x),6)
x~3 + 57.3858%x"2 + 53.5831xx + 215.257

Hence

p (1) = 0x* + x3 + 57.3858x2 + 53.5831x + 215.257
=AM +BA3+CA2+DA+E

Therefore
E =215.257 >0
R =D(BC - AD) - B’E
= 53.5831 (1 x 57.3858) — (12) (215.257)
=2859.7 > 0

All modes are stable since both E and R are positive. Now that the eigenvalues are known,
the characteristic times table is generated, as was done in the textbook on page 188.

Mode name A=n+wi period (sec) thatf (5) Niaf (cycles)
2n 0.693 )
= — 0.11—
. “ 05— -
rolling -56.505 ~ — @ = 0.01226 1 9015—
dutch roll | —0.44044 +1.9015; o0 = 3.3043 i 1.5734 0.11m =0.4749

The dutch roll is oscillatory. The characteristic transient is plotted below

w = 1.9015; n = -0.44044;

Plot[Exp[n t] (Sin[w t]), {t, 0, 10}, PlotRange -> {Automatic, {-1, 1}},
AxesOrigin -> {0, 0}, Frame -> True, GridLines -> Automatic,
GridLinesStyle -> LightGray, FrameLabel -> {{"pertrbation", None},
{"Time (sec)", "Dutch roll mode"}},

ImageSize -> 400
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purtrbation

Comparing the above to ¢ # 0, it is seen that there is very little change in the dutch mode

when ¢ = 0.

Similar to first part, now that all the eigenvectors are found, the polar form table for the
eigenvectors is made which is similar to table 6.4, page 168 of the textbook. This is followed

Dutch roll mods

=]
=

-1.0

10

Figure 2.29: Dutch roll mode response for C; =0

by making the vector phasor diagrams for the dutch mode.

The polar form of each eigenvector is summarized below

2.3.4.21 dimensional result

dutch A;, = -0.44044 +1.9015: rolling A; = -56.505
amplitude phase (deg) amplitude | phase (deg)
v 39.71 79.465 7.71
p 1.374 256.17 3104.4
r 1 0 1

2.3.4.2.2 non-dimensional result

dutch A, = —0.44044 +1.9015i |  rolling A, = -56.505
amplitude phase (deg) amplitude | phase (deg)
: 8.6893 79.465 1.69
b 1.3739 256.17 3104.4
; 1 0 1
norm 9.2688 3105.4
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Figure shows the eigenvector diagram for the dutch mode for g =0

8.68¢™%

r
p

1.37e%¢

Figure 2.30: Dutch mode response for C; =0

2.3.4.3 Observation on results

The first observation is that, when gravity is absent, the spiral mode vanishes. There are
only three modes when g = 0, and these are the dutch (complex conjugate eigenvalues) and
rolling (real eigenvalue) and yaw . Only the dutch and roll modes can be compared to each
others for both cases. Spiral mode can not be compared since this mode does not exist
when ¢ = 0.

For the dutch mode (the oscillatory mode), There is no significant change that can be seen.
So one can conclude that gravity has little effect on the dutch mode.

The final solution is now written for both cases, and plotted against each others to com-
pare graphically. (this uses the ratios in the eigenvectors components taken from the non-
dimensional results obtained above). The solution for g # 0 is
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; X1 X12 X13 X14
p
i _ X21 oMt 4 X22 ot 4 X23 ot 4 X24 at
p X31 X32 X33 X34
(Pr a1 spiral 42 rolling 43 dutch 44 dutch
2.651 0.4867
— —0.4348 o—0.055268 168.36 565025t
1 1
133.09 -50.4
7.849 (cos (2.2873t + 80.15°) + sin (2.2873t + 80.157))
_oao1st| 1-543(cos (2.2873t — 98.95%) + sin (2.2873t — 98.95°%))
o0-

(cos2.2873t + sin 2.2873t)

11.22 (cos (2.2873t —199.39°) + sin (2.2873t —199.39°))

Hence

— 2.6516_0'055268t + 0.48676_56'5025t

+ 7.849¢704218t (05 (22873t + 80.15°) + sin (2.2873t + 80.15°))

=S I

compare to g=0 below

————N———
= —(0.4348¢70-055268t | 168 36p—56.5025¢

+1.543¢704218 (c0s (2.2873t — 98.95°) + sin (2.2873f — 98.95°))

S0 <=

= ¢ 00552681 | o=56.5025t 4 o~04218¢ (05 2. 28734 + sin 2.28731)

= 133.098_0‘055268t _ 50.46_56'5025t

+11.22¢704218¢ (05 (2.2873¢ — 199.39°) + sin (2.2873f — 199.39°))

The solution for g = 0 is

v

7 X12 X13

Pl_ Aot

o Xoo et + Xo3

r

- X X

r 52 rolling 3 dutch
1.69
1

Hence

E}Lst + Xog

X14
€A4t

X
34 dutch

8.6893 (cos (1.9015¢ + 79.465°) + sin (1.9015¢ + 79.465°))

=|3104.4 | 76305t 4 ¢~044044F 1 3739 (cos (1.9015¢ + 256.17°) + sin (1.9015¢ + 256.17°))

(cos1.9015¢ + sin 1.9015¢)
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¥ = 1.690756:505 . g (689309,-04044t (cos (1.9015¢ + 79.465°) + sin (1.9015¢ + 79.465°))
larger but quickly damps
P o 310440565050 4] 3730,-044044¢ (cos (1.9015¢) + sin (1.9015¢))
r
-

= 720505t 4 o=044044 (.051.9015¢ + sin1.9015¢)

exponential.

From above, we see when ¢ = 0 the contribution from rolling mode has much larger amplitude
(3104 vs. 168.36). But this damps out very fast thanks to the large negative exponent on the

To compare the different modes for gravity and no gravity, each component from each
solution is plotted against the similar component from the other solution. For example,
v v
- and (-
(}’)g:O (}’)g;to

are plotted on same plot. The same for (E)
shows the the result.

d () .Fi 2.31
7oco an (")gth igure

V/R for gravity and no gravity solutions
.
u|
10 F
\I|
"ll gravity
\
|||
Ill Py
5 il 7]
- \I|I I.."r \\._
5 i / P
= 4 / - -
o | / o - —
= ! / Lo =y
0 [ f O = g
|l ! ! o e
\I'| |l|’ 1 -
W f ]
W i
(A, !
sl i 5 o gravity
A ¢ =
A ,
1 " 1 1 1 1 1
] 2 4 6 g 10
tsec

Figure 2.31: Comparing ; for gravity and no gravity

We see that there is little change in this part of the solution. Figure shows the p/r result
Looking Figure [2.32

, there does not seem to be difference as well. But that is because
damped very quickly, even though it was much larger in the case when there is no gravity.

P

r

We can see this more clearly if we zoom to a smaller time span, say for t = 0.1 seconds only.
Figure shows the result

This means that the rolling eigen mode will contribute much more to the p(t) component
of the total solution with no gravity when compared to with gravity. In other words, rolling

becomes the more dominant motion with no gravity. But this only affect the solution for
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relative P

P/R. for gravity and no gravity

solutions
10l i ’ \\ 1
AR
1 1 LT 1
. } 3 no gravity
5 ! 1 Ll -
| i IlI 1 - 4
i lllll \ b T
- i 4 T b e
o 0.0 T 1 \ an - T e
= iv [ ':I \ { s % ,:-’_ ~ —
= i | v /.' N A ~— __//
e _oskh / 1 L ) ]
T\ 7
: ||| '.lI / .
avity
10 I \ i ]
\_/
|
I|
Akt e Ll ]
0 2 4 6 g 10
tsec

Figure 2.32: Comparing é for gravity and no gravity

P/R for gravity and no gravity soltions
3000 [

2000 '

1500 [ y | — with gravity

- - - no gravity
1000 [ s

isec

Figure 2.33: Comparing ; for gravity and no gravity
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short amount of time. It will depend on other conditions and on the system being considered
if this is important or not.

This also seems to imply that rolling control becomes more important in outer space since
gravity becomes very weak. We do not need to worry about spiral mode control since it
does not exist. Dutch mode is not affected by gravity.

3333 1 A;)J)uendlx for Broblem 4, source code and Matlab output

rce coade
function problem_4_matlab()
Jiproblem_4 _matlab()
o
% This program solves problem 4, HW3, EMA 523, Univ. Wisconsin, Madison
% by Nasser M. Abbasi
% March 29,2014
h
% supports lateral motion only. Does g=0 and g ~= 0
% This function build the matrix A as well as solve for the
% modal eigenvectors.
b
% supports SI and imperial units. Change configuration
% below. set PROBLEM=2 to do the HW problem, and set
% PROBLEM=1 to solve the example in the book, page 189
% to verify code.

b

POROBLEM=2; Y%to select which problem to do, 1 is the example in text
%else will do the HW3, problem 4 (the long one)

if POROBLEM==
f———oeeeesees problem 6.2 in text book
RELATIVE_TERM=4; Ychange if you want v,p,r,phi, in this order
SI=false; ‘change to true as needed
g=32.2;
W=636636;
n=W/g;
S=5500;
b=195.7;
Ix=0.183*1078;
Iz=0.497%1078;
Izx=-0.156%10"7;
u0=774;
CL=0.654;
rao=0.0005909;
Cyb=-0.8771;
Clb=-0.2797;
Cnb=0.1946;
Cyp=0;
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Clp=-0.3295;
Cnp=-0.04073;
Cyr=0;
Clr=0.304;
Cnr=-0.2737;
DUTCH=1; Yneed a away to detect this automatically
ROLL=3;
SPIRAL=4;

else
%—-—-—— HW problem 4
RELATIVE_TERM=3; Yproblem asks to normalize by r, which is 3rd entry
%do not know why we selected this while in
%logintidudal the 4th entry, which is Euler angle phi
%is used. Need to ask about this

SI=false; %change to false if you want Imperial units
if SI

g=9.81;

W=10675;

m=W/g;

S5=14.9;

b=9.14;

Ix=230;

I1z=1778;

Izx=0;

u0=77.3;

rao=1.225;
else

g=32.2;

W=2400;

m=W/g;

S5=160;

b=30;

Ix=170;

I1z=1312;

Izx=0;

u0=77.3%3.2808; 7m/sec to ft/sec

rao0=2.3769%107(-3);
end

CL=0; %W/(1/2*rao*u0~2*S) Yfor part A or part B, change as needed
%this below is from table 7.2 in text book

Cyb=-0.14

Clb=-0.0689-0.0917*CL

Cnb=0.01326+0.017*CL"2

Cyp=-0.039

Clp=-0.441

100




2.3. HW3 CHAPTER 2. MY TYPED HWS AND...

87 Cnp=-0.00109-0.0966*CL
88 Cyr=0.165

89 Clr=-0.0144+0.271*CL
90 Cnr=-0.048-0.0238*CL"2
91 | end

92

93 | %hcommon code to all problem, laterl motion only

94 | %this computes the values to use for equation 4.9,19 in textbook
95 | Yv= 1/2*rao*u0*S*Cyb

96 | Yp= 1/4*rao*u0*b*S*Cyp

97 |Yr= 1/4*rao*ul*b*S*Cyr

98
99 |Lv= 1/2%rao*u0*b*S*Clb
100 | Lp= 1/4*rao*ul0*b~2*S*Clp
101 | Lr= 1/4*rao*u0*b~2%S*Clr
102
103 | Nv= 1/2*rao*u0*b*S*Cnb
104 | Np= 1/4*rao*ul0*b~2*S*Cnp
105 | Nr= 1/4*rao*ul0*b~2*S*Cnr

106
107 | Ipx = (Ix*Iz-Izx"2)/Iz
108 | Ipz = (Ix*Iz-Izx"2)/Ix

109 | Ipzx = Izx/(Ix*Iz-Izx"2)

110 | %build the A matrix. 4x4 for the lateral equation of motion in state space
111
112 |if CL==0 % 3 by 3 now !

113 DUTCH=1; Y%tells which column in eig result is each mode.

114 ROLL=3; %need to automate this. Hardcoded for now

115 A=[Yv/m Yp/m Yr/m-u0 ;
116 Lv/Ipx+Ipzx*Nv Lp/Ipx+Ipzx*Np Lr/Ipx+Ipzx*Nr ;
117 Ipzx*xLv+Nv/Ipz Ipzx*Lp+Np/Ipz Ipzx*Lr+Nr/Ipz]
118 (else % 4 by 4

119 DUTCH=2; Ytells which column in eig result is each mode.

120 ROLL=1; %need to automate this. Hardcoded for now

121 SPIRAL=4;

122 A=[Yv/m Yp/m Yr/m-u0 g;
123 Lv/Ipx+Ipzx*Nv Lp/Ipx+Ipzx*Np Lr/Ipx+Ipzx*Nr O;
124 Ipzx*Lv+Nv/Ipz Ipzx*Lp+Np/Ipz Ipzx*Lr+Nr/Ipz O;
125 0 1 0 0]
126 | end

197

128 | I=sqrt(-1);
129 | [eigenvectors,eigenvalues] = eig(A);

130 | fprintf('——————-————————— eigenvalues');
131 | eigenvalues=diag(eigenvalues)
132

133 | %#display the char. polynomial
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syms Xx;
vpa(charpoly(A,x),6)

format short g

fprintf (! > DIMENSIONAL\n');

fprintf ('dutch mode\n');

dutch_mode=[abs(eigenvectors(:,DUTCH))/abs(eigenvectors(RELATIVE_TERM,DUTCH)) ,
180/pi*((angle(eigenvectors(:,DUTCH))-angle(eigenvectors (RELATIVE_TERM,DUTCH))))

fprintf('rolling mode\n');
rolling_mode=[abs(eigenvectors(:,ROLL))/abs(eigenvectors(RELATIVE_TERM,ROLL)),...
180/pi* (angle(eigenvectors(: ,ROLL))-angle(eigenvectors (RELATIVE_TERM,ROLL)))]

if CL ~=
fprintf('spiral mode\n');
spiral_mode=[abs(eigenvectors(:,SPIRAL))/abs(eigenvectors(RELATIVE_TERM,SPIRAL)
180/pix*(angle(eigenvectors(:,SPIRAL))-angle(eigenvectors (RELATIVE_TERM,SPIRAL)
end

fprintf (' > NON-DIMENSIONAL\n');

%since we divided above to get the ratio, we now need to add the

%factors for non-dimensional. since v->v/u0 and p->p*b/(2 u0) and
%r=>r*b/(2 u0) to do the non-dimensional, therefore v/r and p/r and phi/r
%ratios above have to be adjusted now as follows (little algebra not shown)

dutch_mode(1,1)=dutch_mode(1,1)*2/b;
if CL ~=

dutch_mode (4,1)=dutch_mode(4,1)*(2%u0) /b;
end

fprintf ('dutch mode\n');
dutch_mode
fprintf('norm is %f\n',norm( dutch_mode(:,1)+exp(1i*pi/180*dutch_mode(:,2))));

if CL ~= 0
spiral_mode(1,1)=spiral_mode(1,1)*2/Db;
spiral_mode(4,1)=spiral_mode(4,1)*(2*u0)/b;
fprintf('spiral mode\n');
spiral_mode
fprintf('norm is %f\n',norm( spiral_mode(:,1)+exp(li*pi/180*spiral_mode(:,2))
end

rolling mode(1l,1)=rolling mode(1,1)*2/b;
if CL ~= 0

rolling mode(4,1)=rolling mode(4,1)*(2*u0)/b;
end
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‘fprintf('rolling mode\n') ;

‘rolling_mode

‘fprintf('norm is %f\n',norm(rolling mode(:,1)+exp(li*pi/180*rolling mode(:,2))))
‘end

b

2.3.4.5 output for C not zero SI units version

EDU>> problem_4_matlab

A =

-0.090761 -0.11555 -76.811 9.81
-2.4348 -56.5 4.9517 0
0.05045 -0.33146 -0.81062 0
0 1 0 0
————————————————— eigenvalues

eigenvalues =

-56.502 + 0i

-0.42168 + 2.28861

-0.42168 - 2.28861

-0.055268 + 0i

x~4 + 57.4009*x~3 + 56.2364*x~2 + 308.924*x + 16.9114
> DIMENSIONAL

dutch_mode =
35.874 80.158
1.5436 -98.95
1 0
0.66332 -199.39
rolling_mode =
2.2246 0
168.36 0
1 0
2.9796 -180
spiral_mode =
12.115 0
0.43488 180
1 0
7.8686 0
> NON-DIMENSIONAL
dutch_mode =
7.8498 80.158
1.5436 -98.95
1 0
11.22 -199.39

norm is 13.338843
spiral_mode =

2.651 0
0.43488 180
1 0
133.09 0

norm is 134.160410
rolling_mode =
0.48679 0

103




2.3. HW3 CHAPTER 2. MY TYPED HWS AND...

168.36 0
1 0

50.4 -180
norm is 176.431860

2.3.4.6 output for C; = 0 SI units version

EDU>> problem_4_matlab

A=
-0.090761 -0.11555 -76.811
-1.9316 -56.5 -1.8449
0.048087 -0.018065 -0.79551
----------------- eigenvalues
-0.44044 + 1.90151i
-0.44044 - 1.90151
-56.505 + 0i

ans =
x~3 + 57.3858%x~2 + 53.5831xx + 215.257

> DIMENSIONAL

dutch_mode =
39.71 79.465
1.3739 256.17

1 0

rolling_mode =

7.72 0
3104.4 0
1 0

> NON-DIMENSIONAL

dutch_mode =
8.6893 79.465
1.3739 256.17

1 0
norm is 9.268892

rolling_mode =

1.6893 0
3104.4 0
1 0

norm is 3105.448784
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2.3.4.7 output for CL not zero Imperial units version

EDU>> problem_4_matlab

A=
-0.09058 -0.3785 -252 32.2
-0.73948 -56.294 4.9505 0
0.015343 -0.33158 -0.80909 0
0 1 0 0
eigenvalues =

-56.297 + 01

-0.42083 + 2.2871

-0.42083 - 2.2871

-0.05525 + 0i

x"4 + 57.1937*x~3 + 55.9473%x"2 + 307.346*x + 16.8197
> DIMENSIONAL

dutch_mode =
117.8 80.168
1.5451 -98.94
1 0
0.66446 -199.37
rolling_mode =
7.3191 0
167.68 0
1 0
2.9785 -180
spiral_mode =
39.741 0
0.43452 180
1 0
7.8647 0
> NON-DIMENSIONAL
dutch_mode =
7.8534 80.168
1.5451 -98.94
1 0
11.234 -199.37

norm is 13.351797
spiral_mode =

2.6494 0
0.43452 180
1 0

132.97 0

norm is 134.035132
rolling_mode =

0.48794 0
167.68 0
1 0

50.358 -180

norm is 175.773068
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2.3.4.8 output for C; = 0 Imperial units version

EDU>> problem_4_matlab

A =
-0.09058 -0.3785 -252
-0.58634 -56.294 -1.8382
0.014621 -0.018029 -0.79393

————————————————— eigenvalues
-0.43956 + 1.8992i1
-0.43956 - 1.8992i1

-56.299 + 01

x73 + 57.1785%x72 + 53.2939*x + 213.948
> DIMENSIONAL

dutch _mode =
130.44 79.473
1.3749 256.18

1 0

rolling mode =

25.353 0
3099.3 0
1 0

> NON-DIMENSIONAL

dutch mode =
8.696 79.473
1.3749 256.18
1 0
norm is 9.275345

rolling mode =

1.6902 0
3099.3 0
1 0

norm is 3100.286548
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2.3.5 Problem 5

6.8 Find the characteristic equation of the hovercraft of Exercise 4.10. Show that when it
is statically unstable with both M, and L, positive it can be gyrostabilized (like a
spinning top, i.e., solutions remain bounded) if H is large enough.

5. Problem 6.8 in the textbook. Hint: concentrate on the vector x = [# ¢, ¢, p|" and find the
matrix A for the differential equation % = Ax. Work in symbolic form and use Maple to solve the
characteristic equation.

MNotes: the matrix is quite sparse and the characteristic equation should boil down to a polynomial
with only s! and s%. Therefore vou ean solve symbolically for s* first and then for s. When solving
for %, you'll come to a square root. The crux of the problem is to discuss the consequences of the
sign of the argument of that square root and to relate the sign of the argument to the gyroscopic

term.
solution
0
We are told in hint to use x = Z) as the state vector. Therefore we need to set up a state
P

equation & = Ax that has this form

0 0
= al? 1)
¢ ¢

p p

So the question is, how to build the A matrix above? We have solved this same problem in
HW 2, and in there we found expressions for [9, q, ci),p} and these will be used as is in this
problem. These are the equations found in HW2 for this problem

0=gq
. M-pH
q:
Iy
p=p
_L+gH
=T

Where, from problem 4.10 statement, M = M0 and L = L, ¢, hence the above becomes
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0=gq
My H
g=——0-—p
I I
¢=p
L
_ ¢ a
P=1 ¢+q I
Substituting the above in (1) results in
0 0 1 0 0}
My H
. Yo 0 o -Z
=l dlK @)
[0 0 0 0 1]||e
. H Lq,
p 0 L 0 J\p

The characteristic equation can now be easily found from the definition

|[A-All=0
-A 1 0 O
Mg H
2oy o -Z
Ly -9
0o 0 -A 1

H Ly

0 TL -A

The determinant is found using CAS and this is the result

(mat = {{-s, 1, 0, 0},
{M/1y, -s, 0, -H/Iy},
{0, 0, -s, 1},
{0, H/Ix, L/Ix, -s}}) // MatrixForm

Out[16]//MatrixForm=

-5 1 0 0
— -5 0 —_i
Iy Iy
0 O —-s 1
BE B g
Ix Ix !

The characteristic equation is found

poly = Det[mat] == 0;
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poly = Collect[poly, sl

.M (E®-1yn-1xzM]s?
Out[18]= Tx Iy + Tx Ty +5 =0
Therefore
H? - LI, - MI LM
pA)=At+ ——L— )24 —
L1, L1,

This has 4 roots. They all should have negative real part for stability. Using the hint given,
we set this as quadratic polynomial in say r = s> and solve for r first. Letting s?> = r in the
above gives

H?>-LI,-MI, LM

= 2 4+ - 74+ —
P =r Ll LI
This can be solved using the quadratic equation
, —b Vb2 -dac
r=s=_—+——
2a 2a
2
2-_k (w) . EJ (HZ‘U—J‘MI) _4(LM)
2 LI, 2 LI, LI,
H2-LI,~MI, 2 H2-LI,~MI,
+ is always positive. Let A = + , hence the above can be written as
xly Xy
1 1 LM
?=--A+-,|A2-4
2 2 LI,
case 1 case 2

1,1 My 1, 1| LM
—SA+ oA -4 ) - SA- S [A2 -4
2772 (ley) 272 (ley)

We want to find out if the real part of s is negative or not to decide on stability. Considering
each case at a time.

2.3.51 Casel

1 1 LM
2= A+ -, [A2-4|—
2772 LI,
There are two sub-cases to consider under this case. If the expression A% -4 (%) under the
xly
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LM

Ly

square root is positive or negative. Let A% - 4( ) B therefore

2.3.5.2 Case B negative
If B <0 then
1 1

2=——A+-iV|B

s FA+ 5T |B|
This is a complex number, say z. To make it easier to proceed, it is written in polar form as
|z] 28, Hence in polar form

2 =z= |Z|eiargz
Where |z| is the magnitude of the complex root, which is always positive. Taking the square

root of the complex root gives
1

Sp =+ (lzl eiargz)i
i
= +/|zlez *"&*
i i
= (+Vlzle2 57, —y/ze2 ")

The real part of +\/§e§ 8% is Re (\/_[cos(arzgz) + zsm(arzgz)]) = yz cos (arfz) and the real
part of the second root is Re (—\/Z [COS( 2g ) +isi n( )]) |cos( )

These two complex roots have the following real parts

Re(sy) = —Vz| cos (argz)

2

argz
Re(sy) = \/I?cos( 2g )
These real parts can not be both negative or both positive at the same time. If we assume
cos (%gz) > 0 for some igz, then Re(s;) < 0 (since v|z| > 0 all the time, since |z| is the

magnitude of the complex root). But Re (s;) > 0 or unstable.

On the other hand, i
unstable. Therefore if B < 0 then the system is not stable as one of the roots must have

H2-L[,~MI 2
Y x
L,

positive real part. Since B = A2—4( ) this implies that 4( o ) > A2, Since A? = (

Xy
then this condition means

LM\ (H?-LI,-MLY
4 >|—t
L1, L1,
5 2
(H? - LI, - ML)

4IM >
L1,

(unstable)

Therefore, if B < 0, the system is always unstable as one of the roots is unstable.
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2.3.5.3 Case B positive

If B > 0 then
1 1

P =-cA+ ~ViB|

2
1
=5 (ViBI-4)
Now +/B] is positive number. Let vIB| = |D| then
1
2=_(D|I-A
&= (DI~ A)

Now we can take the square root

=2V A

If (|D| - A) > 0 then s is real and positive, hence unstable. This means |D| > Aor , /A2 -4 (ﬁ) >
xly

H2-LI,~MI,

then the condition is
L1,

A and since A =

J(HZ—Lly—MIx)Z (M) HE L - ML

I, L) T L,

2 2 2 2
(H —Lly—MIx) (M >(H —LIy—MIx)
LI, LI, LI,

-4 % >0
LI,
LM
@ <0

LM <0 (unstable)

But if (|[D|-A) < 0 then s; and s, are pure imaginary numbers. Hence the system is
marginally stable (real part is zero. Some books call this marginally unstable). This means
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ID| < A or ,|A2-4 (#) < A then the condition is
xly
H? - LI, - M, \* o (M) _ H2 =L, - M
a— —_— < S
LI, LI,
H2 - LI, - M, LM\ (H?-LI,-MLY
a— —_— < S
LI, LI,
4 M <0
LI,

LM >0 (marginally stable)

We need repeat all the above for case 2

2354 Case?2

1 1 LM
2= A— = |A2-4|—
27 2 LI,

. . . LM
There is now 2 sub cases to consider. If the expression [A? -4 ( T )under the square root
xly

LM

L]

is positive or negative. Let A% — 4(
xly

) B therefore

2.3.5.5 Case negative
If B <0 then
1 1
2=—-A--iV|B
== A= iviBl
This is a complex number. To make it easier to proceed, it is written in polar form as
2| ¢*&(") Hence in polar form
2= |SZ| eiarg(sz)
This is the same as case 1. Will just use that result. hence this is unstable condition
2
. (ﬂ/{) . (HZ - LI, —Mlx)
LI, LI,

(H2 - L1, - ML)’
LI,

4LM > (unstable)

Therefore, if B < 0, system unstable.
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2.3.5.6 Case positive

If B > 0 then
1 1

2 =2~ IViEl

2 2
=5 (VI +4)

Now +/B] is positive number, since B > 0. Then

s = ii\/g\/m

If VIB| + A > 0 then both s; and s, are pure imaginary and the system is marginally stable

217 _
(real part is zero). This condition is VIBl + (%) >0 or
xly
H?2-LI,-MIL\*> (LM\ (H2-LI,—MI
J (#) -4 (—) + (#] >0  (marginally stable)
LI, LI, LI,

If VBl + A <0 then s; = i\/§i|,/\/®+ A| = —\/g|\/\/®+ A| which is negative, hence s, is
stable. and s, = —i\/gi VBl + A| = \/g v VIBl + A

which is positive, hence s, is not stable.

H2-LI,~MI,
This condition is v/|B| + (+) <0or
xly
H2-LI,-MIL\* (LM\ (H2?-LI,-MI
— Y %) -4 +|———2L " 2|<0 (not stable)
LI, LI, LI,

This covers all 4 cases. We now summarize the findings

2.3.5.7 Summary of results

condition meaning
H2-LI,~MI, :
LM > 1L (2L -ML) unstable
4 L1,
IM <0 unstable
LM >0 marginally stable

H2-L1,-MI, \? LM H2-LI,~MI
Ty TR g (22 y~Vx .
J( Ly, ) 4 (ley) + ( L, ) >0 marglnally stable

2
H2-LI,~MI, M H2-LI,-MI
(¢) -4 (_) +|—L—1]<0 not stable
Ll, L, L,
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1 (HZ—LIy—MIx)Z

o 1 (12t
I do not think I did this correctly. LM > 7-—————— comes out as unstable. But - I
xly xly

is positive quantity, while LM > 0 came out as marginally stable. We can’t have both cases
be true.

2.3.6 Key solution

| H\I\T N

-

A o) o meK Tewen SpEsTle AN < Ars
~C

O ¢ MG6E Teiweed K-AXS D Xg-DiRecTiod
L GROUND

W FleestREM S Always || Xe- DiRecTion
> o=

b) W U=Us = ComST
U =0
| A /W __/0(

WML | AT EPAY MEANS A = we

:i)% n o= ol BT

o= N oLy NERD  ONE
<o oNe OF (HEM

AR

EQUAT I ON

=
\!
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(& _ &u)(é” A@b)\ (L\L’LA’L\ -0
O XL ~ cl (AW JVA‘UL) “AL?/AU: 0
; = QXU%AQ\ ® ) [ A“YW” Lo

1 ) |
[ . M" % —(-(\Mu,o)

+

w C/\N»— %Aﬂz

B Vb (g
oo f&’\w - —= N

e
)
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AS&UME A40 INSIDE SQUARE BYo7

= (\“J,L = ‘/V\ £ (o

W/ - \L(A”*An)t LPAF&AZ/

2

4 | ,-A(H/A)
oM

L

-(Au fAzm) Z-QA(ZAQ /-

e e

i - ., (Au %42@)

—_

WALF
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Chapter 6

where, from Table 4.1 and Section 6.2,

l —
=
o

1l

—
X

(@]

2x 774
27.31

=56.683

(12)

The following table lists the results of applying (11) to Table 6.9 using the data from the above

table.
A A YE_
Mode ' \Y Y+ Vv Ugt*
Spiral 0.997 -0.00119 0.9958 7.735%103 /180°
_____ +0i +0i +0i
Roll -0.0562 -0.0198 -0.0760 7.659 /0°
+01 +01 +0i
Dutch Roll -0.28162 0.29110 0.00948 1.78 £-163.5°
+0.12716i -0.155431 -0.028271

6.3  From (6.8,6) for static spiral stability

+ (C[anB - C[ﬁCnp) sin 60

> ()

100

-117

E= (C[BCnr - C[rCnB) Cos 80

(1)
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Chapter 6
Let
E =A cos 6, + B sin 6y (2)
Also assume
L=W= % pV2SCL
Thus
- 12 012
V=QW/pSHY=C 3
at sea level, from App. D
p = 2.3769 x 10-3 slug/ft3
Thus
NS 2 x 2400 1/2 cln
23769 x 103x 160 | -
= 11235 ¢} fps @
The results from applying (2) and (4) based on Table 7.2 are given below.
CL CEB Cn, Cy, Cng A
0.15 -.08266 -.04854 02625 01364 .003654
0.55 -.1193 -.05520 1347 01840 004107
0.95 -.1560 -.06948 2431 .02860 .003886
1.35 -.1927 -.09138 3515 04424 .002059
1.70 -.2248 -.1168 4463 06239 -.001588
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Chaprer 6
CL Ce, Cng Ceg Cnpy B
0.15 -441 01364 -.08266 -01558 -.007303
70.55 -.441 .01840 - 1193 -.05422 -.01458
0.95 -441 02860 -.1560 -.09286 -.02710
1.35 -.44] 04424 -.1927 -.1315 -.04485
1.70 -.441 06239 -.2248 -.1653 -.06467
V (fps) CL E (-10%) E (0°) E (107
290 0.15 004867 003654 002330
151 0.55 . .006576 004107 .001513
115 0.95 .008533 003886 -.0008789
96.7 1.35 009816 002059 -.005760
86.2 1.70 009666 -.001588 -.01279

See diagram 6.3 for plots of E vs. V.
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Chapter 6

-10°

5 oL 10°

/”1' [ L 1

1
/ 100 140 180 220 260 300

fps

10

12

-14 b
Diagram 6.3

6.4  Write the Nt order characteristic equation as

A -AN) R-AND (A=) =0 ()

For N =1 this becomes

(A-R)=0 2
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Chaprer 6

and the coefficient of AN-1 or A0 is -Aj. For N =2 (1) becomes

(L -22) (L -A1) =0 3)
or

A2+ A(AL-A2) +MAp=0 4)

and the coefficient of AN-1 or A1is -(A1 + A2). For N = n let the coefficient of A1 be Cj,.

Thus for N = n+1 (1) becomes
(A - Anse1) AN+ CpAnl+ . )=0 (5)
or
}\'I'H-l + Kn(Cn - >\n+]) +. e = () (6)
and the coefficient of AN-1 or AP is

Cn+) =Cn‘ 7\n+1 7

From (7) it follows that the coefficient of AN-1 is the negative of the sum of the N roots of (1).
Since these roots are either real or complex conjugate pairs it follows that this is also the negative

of the sum of the real parts of the N roots of (1).

6.5  From (6.8,6) it is seen that the spiral is stable if E > 0. The critical climb angle 6o, causes

E =(0. Combine (6.8,6) with the derivative data in Table 6.6 10 obtain
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E= ()i()‘l 74 cos B, - 0.07551 sin B, (1)

Set (1) equal to zero and solve for 6o, thus
tan 8o, = 0.0174/0.07551

B0, = 12.98° =ﬁ(,(>o_z.o5‘ 2 edD ()

Assume 6q = 0 in horizontal flight, thus from (6.8,6) P T l
Cﬁ ST A0
A ] 2
E= CZBCnl’ - CZI'CnB (3) /7&57"1’
”——

T
The effect of " on the stability derivatives in (3) can be seen from App. B.9 and B.11. Only CgB
and Cy, are affected. For increasing T, CgB becomes more negative and G, more positive. For
Cp, =-0.2737 and C“B = 0.1946 from Table 6.6, it follows that for increasing T, the CgB effect is
stabilizing and the Cy, effect is destabilizing (since E > 0O for stability). Based on the results of

Exercise 5.3, the CgB effect should normally dominate.

6.6 From (A.4,12) with ¢ =y =0 and 6 small

1 0 -6
Lge=| 0 1 0 (1)
6 0 1

Now

Wg = Lpg WE )
From (1), (2) and (6.9,4)
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=

eo)

]
L.

= —
— S &5

1
“: 0 }(WO-FFZE)
0

Wq + Tz
= 0 (3)

since ['Bzg is second order and can be dropped.

6.7  From (4.9,19) with l,x =8, = 0 form

where i
1
x=[v p r o ) ‘
Yy Yy Yo . ]
m m m Yo 4 .,
|
b L Loy, |
A= Ix Ix Ix 3) i
Ne Ny N
Iy I, I |
- () 1 0 0 -

106

193 !




2.3. HW3

CHAPTER 2. MY TYPED HWS AND...

From Table 4.4

Lt

Ny

Ny

1
= 5 PueS Cyﬁ

1

= Z puObSCyp
1

= Z pUObSCyr
]

= 3 pu(,bSC[B
L b2

= Z pUQb SCZP
L b2

= 3 pueb<SCy,
1

= ‘2‘ pUObSCﬂB
L b2

= Z pUOb SCnp
L b2

= Z pU()b SCnr
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Chaprer 6

I .
2 puy2bS Cngy

From App. D psea level = 2.3769x10-3 slug/f3. Since L = W, thus

W
CL= i
5 pue2S
) 2400
123769 x 103 (L3 F « 160 ©
2% % .3048)
=0.196
From Table 7.2 and (6)
Cyyg = 014 | 7
Cyy = -0.039
Cyr = O‘ ] 65
CgB = -0.0689 - 0.0917 CL
= -0:0869
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Chapter 6
Cgp = -0.441
Cs = -0.0144+0271CL
= 0.0387
Cog = 0.01326+0.017 CL2
= 0.0139
Co, = -0.00109-0.0966 CL
= -0.0200
Cn, = -0.048-0.0238CL?
= -0.0489
1pUS = 2x23769 x 10-&(%% 160 ®)
= 4822
2 PuGbS = %—O x 48.22
= 7233
109
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Chapter 6

From (5), (7) and (8)

L pughs = 1.446.6

%puosz = 21,701

2 puehS = 366903

Y, = 48.22x(-0.14)
Y, = 723.3x(-0.039)
Y, = 7233x(0.165)
Ly = 1,446.6x (-0.0869)
Lp = 21,701 x (-0.441)
Ly = 21,701 x (0.0387)
N, = 1,446.6 x (0.0139)
Np = 21,701 x (-0.0200)
N, = 21,701 x (-0.0489)
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6751
-28.209
119.345
-125.710
-9,570.14
839.829
20.108
-434.020

-1,061.18
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m = 2400/32.2 = 74.534slugs
Ix = 170 slug fi2 g = 32.2fys?
. 77.3
I, = 1312slugf? U = F5ig
= 253.6 fps
From (3) and (9)
-0.0906  -0.378  -252 322
-0.739 -56.3 4.94 0
A= (10)
0.0153  -0.331 -0.809 0
0 1 0 0
From (4) and (9)
(D
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hw4_prob3_w_gravity

A=
-0.0906 -0.3780 -252.0000 32.2000
-0.7390 -56.3000 4.9400 0
0.0153 -0.3310 -0.8090 0
0 1.0000 0 0
eigenvalues =
-56.3028 0 0 0
0 -0.4207 +2.28391 0 0
0 0 -0.4207 - 2.2839i 0
0 0 0 -0.0554
eigenvectors =
-0.0435 -0.9999 -0.9999 0.9807
-0.9989 0.0131 +0.0002i 0.0131 - 0.0002i -0.0107
-0.0059 -0.0014 +0.0084i -0.0014 - 0.00841 0.0246
0.0177 -0.0009 - 0.0056i -0.0009 + 0.00561i 0.1936
Eigenvalue Damping Frequency
-5.63e+01 1.00e+00  5.63e+01
-4.21e-01 +2.28e+00i 1.81e-01  2.32e+00
-4.21e-01 - 2.28e+001  1.81e-01  2.32¢+00
-5.54e-02 1.00e+00  5.54e-02

(Frequencies expressed in rad/TimeUnit)

period =
Inf Inf Inf Inf
Inf 27510 Inf Inf
Inf  Inf -2.7510 Inf
Inf Inf Inf Inf
thalf =
0.0123  -Inf -Inf -Inf
-Inf 1.6472 -Inf -Inf
Inf  -Inf 1.6472  -Inf
-Inf  -Inf -Inf 12.5134
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nhalf =
0 NaN NaN NaN
NaN -0.5988 NaN NaN

NaN  NaN 0.5988 NaN
NaN NaN NaN 0

Summary

r arbitrarily chosen with unit amplitude and zero phase

Dimensional Dimensionless  Phases
Ratios Ratios

Roll

v 73219 0.4881 0

p 167.9934 167.9934 0

r  1.0000 1.0000 0

phi 2.9837 50.4472 -180.0000
Dutch Roll

v 117.9715 7.8648 80.1557

p 1.5462 1.5462 -98.9582

r 1.0000 1.0000 0

phi 0.6658 11.2568 -199.3952
Spiral

v 39.8336 2.6556 0

P 0.4355 0.4355 180.0000
r 1.0000 1.0000 0

phi 7.8645 132.9684 0
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-309.33(-.33692 + 2.284i)(106.58 + 2.2841) (20)
= 76,132/279.62°

-115(-.4207 + 2.284i)[(-.00097 841)2 + 1.21662]

> - .0044310i)

-115(-.4207 + 2.284i)(
= $897.94/100.5Q

245 +2.2841)(.0764 + 2.284i)(83.064 + 2.284i)

Np(k3)/(-.4207

= 429.70/0.06°
From (20)
7.86/80.16°

117.96/80.16

(21

11.26/-19

0.666/-199.4°

When gravity is absent g = () in (3). The variable ¢ can then be eliminated from the system

equations by forming

x=A'x +B'§, 22
where

x=(v p 1T (23)

and A'is 3x3. Bank angle can be found from the auxiliary equation
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0 =] pdt+ 00 (24)
Also, since gravity is now absent it follows that
L=W=mg=0 : (25)
and

CL=0 (26)

Thus from Table 7.2 the following derivatives which depend on C| are altered

Ceg = -0.0689 (27)
Ce = ,_0.0144
Cog = 0.01326
Cop = -0.00109
Cp, = -0.048
From (5), (8) and (27)
L, = 1,446.6.x(-o.<>589)=-99.671 (28)
Lr = 21,701 x (-0.0144) =-31v2.494
116
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The modes of the system are determined from (22) and there are now only 3 distinct roots 1o the

characteristic equation. In (22) (from (3), (9) and (28))

-0.0906  -0.378 252
A'=| -0586  -563  -1.84 (29)

0.0146  -0.0180 -0.794

(30)

The resulting eigenvalues are
A1 =-56.31 | (Roll) - 31)
A23=-0.43961 £ 1.8977i (Dutch Roll) (32)

For g =0, A1 and A2 3 look like A9 and A3 4 for g = 32.2 fi/s2, and thus they were named

accordingly. The numerators of the transfer functions /8, are
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hw4_prob3_no_gravity
A=
-0.0906 -0.3780 -252.0000

-0.5860 -56.3000 -1.8400
0.0146 -0.0180 -0.7940

eigenvalues =
-0.4396 + 1.89771 0 0
0 -0.4396 - 1.8977i 0
0 0 -56.3054

eigenvectors =
0.9999 0.9999 0.0082

-0.0105 +0.0006i -0.0105 - 0.0006i 1.0000
0.0014 - 0.00751 0.0014 +0.00751 0.0003

Eigenvalue Damping Frequency
-4.40e-01 + 1.90e+00i  2.26e-01  1.95¢+00

-4.40e-01 - 1.90e+00i  2.26e-01  1.95¢+00
-5.63e+01 1.00e+00 5.63e+01

(Frequencies expressed in rad/TimeUnit)

period =

3.3109 Inf Inf
Inf -3.3109 Inf
Inf Inf Inf

thalf =
1.5764  -Inf -Inf

-Inf 15764 -Inf
-Inf  -Inf 0.0123

nhalf =
-0.4761  NaN  NaN

NaN 04761 NaN
NaN NaN 0
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Summary

r arbitrarily chosen with unit amplitude and zero phase

Dimensional

Ratios
Roll

1.0e+03 *
v 0.0254
p 3.1045
r 0.0010

Dutch Roll

1.0e+03 *
v 0.1305
p 0.0014
r 0.0010

Dimensionless
Ratios

0.0017
3.1045
0.0010

0.0087
0.0014
0.0010

Phases

[

0.0795
0.2562
0
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Chapter 6
A = -0.43961 + 1.8977i Dutch Roll Mode
-309.33(65.343 + 1.89771) (36)
20.221/181.66°
Np(h2) b 15[
Nr(}\’Z) = -
54.91/102.20°
From (36)
130.5/79.46° g- = NOo46
(37)
? = 1.375/-103.83° ? = 1.375/-10N

” 4
The biggest effect of setting g = () was the disappearance of the spiral mode. Comparing (19)
with (35) and (21) with (37) it can be seen that deleting gravity had no major impact on the

Dutch roll mode but it did alter the roll mode (there is now relatively less yaw response).

6.8  From Exercise 4.10 the linearized equations for the hovercraft are

Al =-gb (1)
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Chapter 6

V=-g- uer )
=L pz v ug 6)
AZE =00 + W 4)
b=p ®)

b=q (6)
Y=r [
=504 ®
é:‘}ﬂ;m%p ©9)
1=0 10

From the above it can be seen that (5), (6), (8) and (9) re]
equations containing all the parameters required to solve

equations and represent them by

x=[6 q ¢

120

present a self-contained subset of

this exercise. Thus consider these 4

pIT an

(12)

Chapter 6
where
0 1 0o 0
My o B
Ty Iy
A= (13)
0 0 0 1
H Ly
U ol 0
|
Thus the characteristic equation is
IIs-Al=0 a4
From (13) and (14) it follows that
s -1 0 0
My o, H
Ty Iy .
=0 (15)
0 0 s, -1
H Ly
LR S S
121
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fl}x )
,1“ Chapter 6 Chapter 6
I Expand (15) on the first row ¢
‘_- 2=-2xid @
| H Mg H
\ ‘ s 0y R :
_ [ b )
I I s 0 s a1 . 0 s 1 -0 16) where d = )2 ,and (22) is a complex number. Let (22) be represented by
| ‘ )
i Bk 0o ko . N
| % x x s2=aeiB" and s2=aclh (23)
']
Expand.the determinants on their second rows in (16) « " where “a” is real and positive. /
s -2 s 0 Mg H Mo . :
y Iy Iy Yy - Thus the solutions to (23) are
s2 +5 +s + =0 (¢W)
H H Ly Lo
L s L Tk 0 s 0 -3
Ix X ‘ot
s12=tvae®?
24
and (17) becomes on expansion i
an P s3,4=i\/:—ae'(ﬁ ”
2 and
(o) ol o e Molano w .
xly x y Iy Re(s12) =acos 5
or
2 . 25
Xy X xy Re(s34) =+Vacos 5
Let (19) be ted b
(19) be represented by Since there are always positive real parts in (25) the system is unstable when (g )2 <cor
sd+s2b+c=0 (20)
Thus )
(H2 - Lgly - Mgly)? < 4MgLolkly (26)
@n
Consider the case where ( lzj )2 >c: thus s2 is real with
Consider the case where (% )2 <c: thus
122 ) 123
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Chapter 6

~ 52=-'§Jie @n

. . b
where e= (E)z-c

Since c is given as positive (i.e., Mg and L positive) thus

and 0<c<‘%‘ 28)

It follows from (27) and (28) that the polarity of s2is the same as that of (-b). Thus, if bis
negative (b < 0). Then for f real
s2=f
>0 29
s=x+f

and some solutions sj to (27) will have positive real parts and the system is unstable.
If b is positive (b > 0) then
s2<0 (30)

and all solutions s; to (27) will be pure imaginary, i.e., zero real parts, and the system will be
neutrally stable and hence bounded.

From the above it is seen that tc prevent instability requires

(‘E’)Zn 61

and b>0 (32)

124

Chapter 6

For Mg and Ly > 0 this can be achieved by increasing H to a suitable level. This can be seen

from:
(31) becomes (H2 - Loly - Mgly)2 > 4MpLglly (33)
(32) becomes H2 - Loly - Mglx >0 (34)

6.9 In the instant following the point in time when the headwind suddenly vanishes, the
aircraft’s inertial velocity VE is unchanged and the airspeed is suddenly reduced in magnitude
by an amount equal to the headwind speed. The governing equations following the removal of
the headwind are those presented in Chapter 4 (the no-wind case). Thus for the given control
settings the initial airspeed is too low and the aircraft will respond as if it had a negative Au for
its initial conditions. In general, the release of a dynamic system of linear differential equations
from non-zero initial conditions will result in a response which is a linear combination of its
modal responses. From the longitudinal modes described in Section 6.2 it can be seen that

(see Fig. 6.3) Au is almost absent from the short-period mode while it figures prominently in the
phugoid mode. Thus any excitation of the short-period mode should be minimal, and since it is
highly damped, it would soon disappear. On the other hand, the lightly damped phugoid'mode
should be strongly excited.

The steady state flight path angle without the headwind will be less steep than that in the
presence of the headwind. If it is assumed that the headwind is larger than a small perturbation
in u, then the initial response will be governed by the nonlinear flight equations. The initial drop
in airspeed will cause the aircraft to lose lift and fall below the original flight path. This will be
followed by an oscillation in flight path angle that will soon become dominated by the phugoid

response as the response becomes that of the linearized equations. Note that flight path angle

125
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24 HWA4
2.4.1 Problem 1

1. Problem 7.4 in the textbook. Hint: write the f(s) in the denominator (Eq. 7.7,11 (c)) in terms
of the n and w parameters of Eq. (7.3,10). Then manipulate the fraction until you can invert the
transfer function using a table of Laplace transforms. Do not use Matlab. For once, it's good to do
the inversion by hand.

7.4 1In a test flight procedure, the airplane is brought to a condition of steady horizontal
flight in quiet air. The elevator is then displaced rapidly through a small angle, held
briefly, and then returned as rapidly to its original position. Assume that the resulting
input can be treated as an impulse at r = 0 (see Sec. 7.3).

(a) Use the short period approximation (7.7,11b) to the transfer function for 8 to de-
rive a time domain solution for 6(t). Express the solution in terms of n, w, b;,, and
b,.

(b) Assuming that € and ¢ can be determined very accurately from the flight test data,
and hence that n and @ can be determined precisely, suggest how the experimen-
tal data could be used to determine b, b, ¢,, and ¢,. Note that if a, and a, could
likewise be determined accurately, then the six equations (7.7,12) could in princi-
ple be used to solve for the six aerodynamic derivatives on the right side of the
equations.

2411 part (a)

Equation 7.7,11 b is
A (s) bis + by
5e(s) T TSf )
Where f (s) = s? + ¢15 + ¢o. Using the hint, from (7.3,10), page 211 in the textbook

f(s)=s*+c15+¢

(7.7.11 b)

=52+ 20w,,s + w?
= (s — 1) + w? (7.3,10)
Where n = —Cw,, and v = w,, (1 - Cz). Substituting (7.3,10) into (7.7,11 b) gives
AB (s) bis + by
0, () B s ((s —n) + a)z)

Since 0, (t) is approximated as an impulse, its Laplace transform 6, (s) is one. The above
becomes

b]S + bo bls + bO
= = 1
AB () s ((s —n)® + a)z) @)

s|s2 —2ns + (nz +a)2)

polynomial in s
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To find AO (t), the inverse Laplace of the RHS of (1) is found using partial fractions. The
polynomial in the denominator of (1) is in the following form

1
x (x2 + bx + c)
From tables, the above has this partial fraction
A N Bx N C
X x2+bx+c x2+bx+c
Therefore (1) can be written as

b15+b0 _é Bs + C
s((s—n)2+a)2) s 52—2n5+(n2+w2) 52—2n5+(n2+w2)
A Bs+C
=—+
s 52—2n3+(n2+a)2)
é Bs+C

S )

s (s—n)?+w?
Expanding both sides and comparing powers of s of the numerators gives
bis+by = A((s-n)* +@?) +5(Bs +C)
= A((s? + n? - 2ns) + w?) + Bs? + Cs
= As? = 2Ans + A(n? + @?) + B + Cs
= 52(A+B)+s(—2An+C)+A(n2+a)2)
Comparing powers of s results in

bo = A(le +a)2)

by =-2An+C
0=A+B
From the first equation above, A = zbo > and from the third equation B = -A = —%.
nc+w nc+w

Using these, the second equation gives
C= bl +2An
Zbon
n? + w?
bl (7’12 + 0)2) + 2b07’l

:bl+

n2 + w?
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Substituting the above values found for A, B, C into (2) results in

A Bs+C
AO(s) ==+ — =

s (s—n) + w?

-by bl(n2+w2)+2bon
by 1 22® + n%+w?

n2+w?s (s —n)* + w?

by 1 1 —bys+by (n2 + a)z) + 2bon

-+
n?+w?s  n?+w? (s —n)* + w?

_( by )1 by [S_Z—;(n2+a)2)—2n]

n?+w?)s (n2+a)2) (s — n)* + w?

is seen as closest to the above. To

Using Laplace transform tables’| the expression 5
(s—a)” +w?

use the above expression, the second term above is converted to match it. Rewriting A6(s)
as

b
by 1 by (S—n)—%(n2+a)2)—n
AB(s) = | 5= - >
nc+ws)s (n2+a)2) (s—n) +w?
And breaking the second term on the RHS
i b
bp \1 bo (s—n) ﬁ (”2 + wz) tn
AO(s) =\ 5]~ 2 - 2
nc+w*)s (n2+a)2) (s-n"+w? (s—-n) +w?
b 1 b [ - 1(b
:(2 0 2)__ 0 (s 271) ——(—1(n2+a)2)+n)+] (3)
nc+w<)s (n2+a)2) [(s-n)"+w? w\bo (s —n)" + w?
Using S_Za = u (t) e* cos (wt) for the first part of the second term, and using 3
(s—a) +w? (s—a)*+w?

u (t) e* sin wt for the second part of the second term above, and since % = u (f) where u (f)
in the above is the unit step function which can be factored out of all the terms since it is a
common term. Now the inverse Laplace of (3) can be written as

A6 (f) = (ﬁ) u(t) - (1123—0602) [e"f cos (wt) — é (Z—; (n? + @?) + n) ¢ sin (a)t)]u (t)

Therefore the time domain is

b, (n2 +a)2) +n

(n2 + a)z)

b by cos (wt)

A0 () = n2 +w? (nz + wz)

1 e sin (wt) (4)
w

Fort>0

5Ihttp ://en.wikibooks.org/wiki/Engineering_Tables/Laplace_Transform_Table_2
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2.41.2 Part (b)

c1,¢o are now found in terms of n, w. This is by definition from

f(s) =%+ ¢35 + ¢

= (s - n)* + w?
=52 - 2ns + (w? + n?) (7.3,10)
Comparing terms gives
c1=-2n

co = w? +n?
Since 1, w are known experimentally, using the above relation gives cy, .

To find by and by, equation (4) in part (a) above is used, which is the solution as a function
of time. n and w are known, therefore equation (4) has two unknowns: by, by. This requires
two equations to solve. From the data, using 0 (t;) and #; generates one instance of equation
(4) which is the solution at the instance ¢;. Another data set 0 (f;) and t, generates a second
instance of the solution at t,.

b etibycos (wty) 1 b1 (n* +w?) +n ,
A0y (t) = — +O 5 = 02 > LA ( > 2) e"1 sin (wty)
n®+w (11 +w ) w (n +w )
bo e"2py cos (wty) 1 b1 (n2 + mz) +n
AO, (ty) = - — "2 sin (wt
2 (t2) 2ol (nz N a)z) 5 (nz N wz) e"2 sin (wty)

These two equations can be solved numerically simultaneously for by, b;. All the parameters
in (4) are now known: {by, by, n, w}. The solution as given in (4) is now found and can be
simulated or plotted as needed.

2.4.2 Problem 2

7.10 (a) Using the numerical data for the B747 example (Sec. 7.9), calculate the static
gains for each of the eight responses that correspond to (7.9,5)—that is, the val-
ues of |G(£w},}-| for w = 0.

(b) Calculate the slopes of the high-frequency asymptotes for each of the eight fre-
quency response amplitudes (express result in decades/decade).

(c) Assume that @ = 0, that is, that a steady state exists in response to one of the
controls being deflected, such that ¢ = 15°. For each of the two controls—
aileron and rudder—calculate the control angle, the sideslip angle, and the yaw
rate r.

solution
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The eight transfer functions are given in equation (7.9,5)

Nysa(s)  2.896s% + 6.5425 + 0.622
Go,s, (8) = =
f(s) f(s)
Cor (6 Nysr(s)  5.642s% + 379.45% + 167.9s — 5.934
S = =
oo £(s) £(s)
G.s (s) Npsa(s) 014318 +0.0273s% + 0.1102s
N S) = =
Pl £(s) £(s)
Ny (s)  0.1144s% - 0.19975% - 1.368s
Gp or (S) = =
’ f(s) f(s)
N,sa(5)  —0.003741s% — 0.002708s% — 0.0001394s + 0.004539
Gy, (8) = =
fs) fs)
Gor (8 N, (5)  —0.4849s% — 0.232752 — 0.009018s — 0.05647
S = =
o £(s) £s)
Ngsa(s) 0143152 +0.0273s + 0.1102
Gy,s, (8) = =
f@s) f(s)
Ngosr (8)  0.1144s% — 0.1997s — 1.368
qu,ér (S) = =
f@s) fs)
Where
f(s) = s* +0.63585% + 0.938852 + 0.5114s + 0.003682 (6.7,2)

2421 part (a)

To find the static gain, equation (7.4,5) is used, which says

k= lir% Gii (s) (7.5,4)
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The above is applied to each of the transfer functions in (7.9,5)

ks —limGr (91 2.8965% + 6.5425 + 0.622 062 . o .
= 11m S 1m = .
vo, = 5 C08, ) = I8 D 635857 + 0.93885% + 0,5114s + 0.003682 ~ 0.003682
5.6425% + 379.452 + 167.95 — 5.934 _5.934
Kooy = im Gy, (5) = > > i — _1611.6

20 5 + 0.63585 + 0.938852 + 0.5114s + 0.003682 _ 0.003682
y y 0143153 + 0.0273s2 + 0.1102s
Koo = 1 G, () = I o5 63585 + 0.938852 + 0.5114s + 0.003682
0.1144s® — 0.19975% — 1.368s

0 5% + 0.63585% + 0.938852 + 0.5114s + 0.003682
~0.003741s% — 0.002708s2 — 0.0001394s + 0.004539  0.004539

K. =limG,s (s) = li - ~1.2328
noo = 1 Gro, (8) = L — 35899 1 0.938852 1 051145 + 0.003682 _ _ 0.003682

—0.4849s% — 0.23275% — 0.009018s — 0.05647 _ —0.05647

K, 5 = hm Gp sr(8) =

Koy =lim G = _15.337
ror = I G (8) = I o e e+ 0.938852 + 0.5114s  0.003682  0.003632
0143152 + 0.0273s + 01102 01102
Ko, = limG = 29.929
o0 = B G, (8) = it a7 0. 938852 + 051145 + 0.003682 _ 0.003682
0114452 — 019975 — 1.368 ~1.368
K(P or — hm G¢ S5r (S) ° > =-371.54

Sosty 0.63585 + 0.938852 + 0.5114s + 0.003682 _ 0.003682

2.4.2.2 part(b)

The slope for large frequency is determined for all the above transfer functions using the
following method. The first step is to write the transfer function in a polynomial factored
form (in Matlab, called zpk form). This results in the following form of the transfer function

k(s+2z1)(s+2z) - (s+2z,)
s(s+p1) (s+p2) (s +pm)

Where the z; are the zeros of the numerator polynomial, and the p; are the poles of the
denominator polynomial.

G(s) =

s is now replaced by jo and each factored term is converted to (1 + ]Zg) in the numerator
1

and to (1 + ]5) in the denominator. This requires factoring out a z; or p;. This converts G (s)
1

to a standard form for corner frequency analysis in the bode plot.
G(s) = kﬁ (1 +j%) (1 +j%) (1 +]-%)
s(l +]'p£1) (1 +]'pﬂz) (1 +],p£n)
(i) booi2) o) (1+52)
pezPu) (jo) (1 +j;‘—i)(1 +jp£2)...(1 +].p%)

In the above, z; and p; are corner frequencies. At a corner frequency the slope changes by
+20 db/decade at each zero z;, and changes by —20 db/decade for the each pole p;.

Therefore when a corner frequency in the numerator is reached, the slope of the bode log
magnitude increases by additional 20 db/decade and when a corner frequency p; in the
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denominator is reached, the slope of the bode log magnitude decreases by 20 db/decade.
The slope starts at —20 db/decade due to the (]a)) term in the denominator. This term has
no corner frequency but it has slope of —20 db/decade.

Using this form of the transfer function, to find the slope for large frequency, 20 db/decade
is added for each zero and 20 db/decade is subtracted for each pole. This is done for all
corner frequencies until all frequencies are counted for. The final slope that results, is the
slope needed, which is the slope at large frequency.

Since the number of zeros is the same as the degree of the numerator polynomial, and the
number of poles is the same as the degree of the denominator polynomial, the difference
between the degrees gives the final slope in db per decade. In this problem the number of
poles is 4 for all the transfer functions since that is the common polynomial f (s).

The final slope is converted to decade per decade since 20 db per decade is one decade per
decade. The table below summarizes the result

Transfer function | zeros | poles large frequency slope slope (decade/decade)
Gy, (5) 2 4 (2-4) = -2 = -40 db/dec -2
Goor (5) 3 4 | (3-4)=-1= -20db/dec -1
Gy, (5) 3 4 | (3-4)=-1= -20db/dec -1
Gyp,sr () 3 4 | (3-4)=-1= -20db/dec -1
Gy, (5) 3 4 | (3-4)=-1= -20 db/dec -1
Gyor (5) 3 4 | (3-4)=-1= -20db/dec -1
Go,s, (5) 2 4 (2-4) = -2 = -40 db/dec -2
Gq),(sr (s) 2 4 (2-4) = -2 = —-40 db/dec -2

2.4.2.3 Part(c)

To make it easier to answer this question, block diagrams are used for the transfer functions.
The following diagram shows the 8 transfer functions in (7.9,5) in block diagrams. The
input is the control signal, and the output is the result of multiplying the control signal by
the transfer function.

To find the output from the transfer function, the input to the transfer function is multiplied
by the transfer function itself. For example, looking at the last transfer function block
diagram in the aileron transfer functions above, the following determines ¢

¢ = 6a G¢5a

output

The above from the definition of the transfer function, since Gy, = = 62. The input to

input
the transfer function block is the control signal.

The problem says that w = Orads™, which is the steady state. But k = lim,_,y G;; (s) from
part (a). This means the transfer function in the above block diagram becomes the static
gain. Each G (s) is replaced by the corresponding gain found in part (a).
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control control
signal output  signal output
0a —® Gys,(s) —» v or —» Gus(s) —» v
6s —» Gps, —»p or —»  Gps —»p
0q — G5, —»r or —» G w71
60 —  Gyps, ¢ or —»  Gys —» ¢
Aileron transfer rudder transfer
function function

Figure 2.34: Block diagram view of lateral motion transfer functions

control control
signal output  signal output
8y —» 16893 —P v or —»  -16116 —» Vv
Oq — o »p 5r —» o —»p
Sq —® 12328 (—»r or —»  -15337 |—m
8 —® 29929 —»¢ or —w 37154 ¢
Aileron transfer rudder transfer
function function

Figure 2.35: Block diagram view of lateral motion transfer functions with gain only
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2.4.2.3.1 Aileron controls For the aileron control
¢ = 0,Ggs,
using ¢ =15° =15 (%) = (.261 80rad the above becomes
0.26180 = 0, X 29.929
_0.26180

7 29.929
= 8.7474 x 1072 radian

180
= 8.7474 x 1073 (—)
T

=( 0.50119°

This is the aileron control angle that produces ¢ = 15° in steady state. The problem now
asks to find B, the side slip angle. The side slip angle is

Trace of xz plane

1b)

Figure 2.36: Showing side slip angle, From textbook

And given in equation (1.6,4) in the textbook as
(v
= — 1.6,4
p=tan” (1) (1.6,4)
Where v is the speed in the lateral direction and V is the magnitude of the velocity vector of

the airplane. The example used in this problem is based on the same jet section 6.2, page
165 of the textbook, shown in the figure below.
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6.2 Longitudinal Modes of a Jet Transport

The foregoing theory is now illustrated by applying it to the Boeing 747 transport.
The needed geometrical and aerodynamic data for this airplane are given in Appendix
E. The flight condition for this example is cruising in horizontal flight at approxi-
mately 40,000 ft at Mach number 0.8. Relevant data are as follows:

W = 636,636 1b (2.83176 X 10° N) § = 5500 ft* (511.0 m%)
€= 27.311t(8.324 m) b= 1957 ft (59.64 m)

1, = 0.183 x 10* slug ft* (0.247 X 10" kg m*) [, = 0.331 X 10° slug ft*
(0.449 X 10° kg m?)

I, = 0.497 x 10® slug ft* (0.673 X 10 kg m?) [, = — .156 X 10" slug ft®
(—.212 X 10" kg m?)
uy = 774 fps (235.9 m/s) 6, =0 p = 0.0005909 slug/ft*
(0.3045 kg/m*)
C,, = 0.654 Cp, = 0.

Figure 2.37: Airplane data used for problem 2

From the above u, = 774 fts~!. Using this in (1.6,4) gives

v
Ly 2
v is now found in order to find . From the above transfer functions, using the first one gives
v

control
signal output

0, —» 16893 —» y

Figure 2.38: G, 5 block diagram for problem 2

Therefore v = 6, (168.93) but 6, = 0.501 19° from above. Hence
- 0 l)
v (0.50119 X 180 (168.93)
= 14777 fts!
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Substituting v from above in (2) gives

B = tan™! (7%)

(14777
= Ta _—
"\

= (0.0019rad
=0.1094°

To find the yaw rate r, the following transfer function is used

o, —»| 12328 |—»r

Figure 2.39: G, 5, block diagram for problem 2

Hence

r=06,(1.2328)
T
=(0.50119° —) 1.232
( SOI19” x 75 ) (1:2328)
=0.010784rad s}

= 0.61788°s7!

2.4.2.4 Rudder controls

The same process is repeated using the the rudder control blocks on the right side of the
above figure. These are the blocks that takes 6, as control signal.

For the rudder control
¢ = 67’G(1)5r

For ¢ =15° =15 (%) = (0.2618rad, the above becomes

0.2618 = 5, x (—371.54)
02618
" _371.54
= —7.0463 x 107* radian

= —0.0404°

This is the rudder control angle that produces ¢ = 15° in steady state. The problem now
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asks to find g, the side slip angle. Using

(v
= — 2
=t () @)
v is now found in order to find . From the above blocks, using the block that output v from
a rudder control signal gives

control
signal output

or —»| -16116 v

Figure 2.40: G, 5, block diagram for problem 2

Therefore v = 6, (-1611.6). But 6, = —0.0404° from above. Hence
e
= [-0.0404° —) -1611.
0 = (-0.0408 x =) (-1611.6)
=1.1364fts™!
Substituting this v in (2) gives

o ()

ot (11364
= tan —_—
744

= 0.0015rad

= 0.0841°

To find the yaw rate r, the following block which output 7 for input 6, is used

or —»| -15337 —» 7

Figure 2.41: G, s, block diagram for problem 2
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Hence
r =0, (-15.337)

TC
= (=0.0404° —)—1. 7
(000 x =) (-15.337)

0.010814rads™!

=| 0.6196°s7!

2.4.3 problem 3

3. Problem 7.11 in the textbook. Hint, for part b): when a passenger is lifted from his seat, the

value of the load factor n, becomes ...7

7.11 The elevator of the B747 airplane is oscillated at a frequency a little below that of the

short-period mode.

(a) Use the results given in Fig. 7.18 to estimate the amplitude of the load factor if

the elevator amplitude is 2°.

(b) What elevator amplitude would lift a passenger seated near the CG from the seat?
(c) What elevator amplitude would cause the load factor to reach the FAR Part 25

limit maneuvering value of 2.5?

solution:

2.4.3.1 Part (a)

The load factor 7, is the ratio of lift to weight
L -Z

EWSW

(7.7,4)

1, is unity for straight horizontal steady ﬂightﬂ The minus sign on the Z force is added since
Z is positive downwards (in body coordinates of the airplane) while the lift L is upwards.

The transfer function in figure 7.18 is defined as

An,

Gan,5, = 5
e

In block transfer function diagram the above is

Wherée]

n, = ny, + An,

OTextbook, page 60 and page 230
7Thanks to hint from professor Bonazza for this relation.
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56 —» GAnZ,c?e — Anz

Figure 2.42: G,,_s, block diagram for problem 3

n,, is the load factor 7, at trim defined as one. Hence the above becomes

n, =1+ An, (2)

Figure 7.18 shows that |GMZ,5€| =15 when w is close to the short term frequency.

107 —
E Exact
N Phugoid
BDprox.
15 [ Shortperiod .,\{’:/
10" apprux.xxh&‘ . Py,
A
':._:5; -
-”JU - ‘\"l-.‘_q
iy »
- A Phugoid | Snort—l
£s | period
¥ I 1
1 i
I I
101k L1 1 iyrd | A EEL I
1p—¢ 107 109 1’
w (rad/s}

fer

Figure 2.43: Figure 7.18 from textbook used for problem 3

Therefore (1) becomes

15 = An,

- Ve
ZXTSO

Tt
An, =2XxX — x1
" 180 <1

= 0.52360
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Using (2), the load factor n, is now found
n, =1+ 0.52360

=1 1.5236

2.4.3.2 Part (b)

If a passenger at exactly the CG of the airplane floats up from the seat, it implies no external
force Z acting down at the C.G. In other words, this is the same as saying the lift L is zero.
So the airplane has only its weight W acting downwards (this is similar to having an airplane
in free fall and moving with constant horizontal velocity as used to simulate being in outer
space). When L = 0 then 7, = 0. From (2)

0=1+An,
An, = -1
And from (1)
An
G z
Anz,ée 68
15=
=3
8 = I—5 = —0.066 67 rad
Hence the elevator angle needed is
5, = —3.82°
2.4.3.3 Part (c)
For n, =25
25=1+An,
An,=25-1
=15

Hence from (1)
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1.
15 = 12
o
1.5
Op = 3
= 0.1 radian
Therefore
0, = 5.7296°

2.4.4 Problem 4

4. Modify the matlab routine open-looplongitudinal.m (on the course website) to reproduce the
plots of Fig. 7.21 describing the response of a B-747 to a step input in the throttle, §, = é. On a
separate piece of paper, write clearly how you determine the elements of the transfer function
matrix, for this specific problem. In other words: how vou use all the information available
in the book and in the handouts, to calculate the appropriate transfer function matrix, using the
fewest possible steps.

Then combine the original version of the routine and your modifications to study the response to

simultaneous steps in elevator and throttle, d. = 1° and d, = é

Next modify the routine into an open-loop_lateral.m and plot the response of the lateral variables
to separate steps in J, and d,. Use §, = 6° and 4§, = 3°.

Finally, use this routine to plot the response to combined steps in d, and d,. Study two distinct
cases: (0, = 6°, d, = —3°) and (d, = 6° and 3, = 3°).

Make sure to plot all the responses over multiple ranges of time to observe all the modes present.

solution:

2441 Summary of results

The summary of observations is given first. In longitudinal control, elevator action 6, and
thrust action 6, can be applied separately from each others to achieve the expected response
for each control. In lateral control, the rudder action 6, and the aileron action 6, have to be
applied simultaneously to achieve the expected response for roll and yaw motion. For side
slip rate (lateral speed v) rudder control 6, was the primary control needed.

Once the transfer functions are found, all the required plots are generated using Matlab.
Each plot generated has the Matlab code used to generate above it. In addition to the
response plots, Bode plots were generated to verify the output with the textbook.

Table [2.1] gives a summary of the variables to control for each mode of motion.
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type of motion | variable | meaning

Au Velocity component in the x direction (cruise speed)
Longitudinal w Velocity component in the z direction

q Pitch rate

AO pitch angle

v Side slip rate or side velocity.

Roll rat

Lateral P o rare

r Yaw rate

A Bank angle

Table 2.1: Summary of variables to control in longitudinal and lateral motion

24411 results and observations found for longitudinal motion Table summa-
rizes the results and observations found for longitudinal motion.

2.441.2 results and observations found for lateral motion Table[2.3|summarizes the
results and observations found for lateral motion when each control is applied separately.

Table summarizes the results and observations found for lateral motion when both
controls 6, and 6, are applied simultaneously.

2.4.42 open loop longitudinal responses

To obtain the transfer function matrix Gj (s) for the longitudinal motion, the following matrix
is found

G@i)=(I-A)"'B 1)

Where A is the matrix for B-747 given on page 166, and B is given on page 229. The equation
of motion for longitudinal motion becomes

A output B
Ail)  (-0.006868 001395 0  -322\(Au) (—0.000187 9.66)controlinput
w|_|-000055 0351 77398 0 |fw| | <785 0 {58}
i 0.000118 —-0.001026 —0.4285 0 || g 1158 0 5,
AG 0 0 1 0 a6 0 0

Once G (s) is found, it will be a 4 x 2 matrix. G (i, ]) is the transfer function of the ratio of it

output to the j input. For example, Gy, 5, will be G (1,1) which is a function of s in equation
(1). To obtain all the transfer functions, equation (1) is evaluated. This can be done using
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Control action

Numerator of
planet trans-
fer function

Observed response and comments

6, = 1° elevator angle. Nys, Increases cruise speed as expected, but too slowly.
positive is down. causes 10 minutes needed to reach steady state. All the
changes in pitch angle o response happens in phugoid mode. Large over-
which in steady state is shoot, with oscillations in response due to low
. damping in phugoid. Reference figure 7.19, figure 7.20
meant to cause change in in textbook
i d onl . :
cruise speed only Ny, Angle of attack responds fast, in short period
mode, rapidly damped. 5 minutes to reach steady
state with small residual seen present in steady
state. Reference figure 7.19, figure 7.20 in textbook

N, s, Response contained in phugoid, slow (10 minutes)
with remaining y angle residual remaining. Which
implies a residual A, residual exists as a result.
Something that was supposed to be generated. Ref-
erence figure 7.19, figure 7.20 in textbook

0, = % Throttle (thrust). Ny, Au Remained unchanged as expected but only af-

Causes climb up or down. ter initial undesired oscillations. Took 20 minutes

In other words, this control to damp out completely.

action is used to cause a Nas, Remained unchanged as expected with very little

change Ag. No change in Au oscillation. Damps out after 200 seconds.

nl(l)r 11r(11anglti Oi a}tltack i)f N, s, 2.8° steady state response reached after 10 minutes.

should result 1t thrust lines Large overshoot. Many oscillations before damp-

pass through C.G. ing out

6P + 6, Simultaneous effect Nu,(6p+5e) Throttle action has almost no effect on speed Au

of applying both controls at response, other than causing a small increase in

same time overshoot and slight phase delay in oscillations
compared to 0, only control. Slow response as be-
fore.

Na,(épﬂge) Throttle action 6, also had almost no effect on
angle of attack response. Response followed very
closely the 6, response as described above.

N, (5,4+5,) In this case, the addition of elevator action was

A\Yp e

seen to have most effect on transient response of
flight path angle. Steady state remained as with
throttle action alone, but adding elevator action
caused large overshoot compared to throttle only
response. Also a phase shift was seen. Steady state
was slow to be reached as with throttle only action.

Table 2.2: Results and observations for longitudinal motion
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Control action

Numerator of
plant transfer
function

Observed response and comments

0, = 3° Causes Yaw motion.

N v,0p

Rudder affects initial side slip rate much more than
aileron. After 10 minutes, v reached —-80fts™! at
steady state. High oscillatory response and faster
response compared to aileron 6, only.

2 minutes was needed to reach steady state of
—0.04rads™!, high overshoot, similar to aileron
with oscillation. Aileron 6, caused similar effect.

Took 10 minutes to reach steady state of
—0.8rads™! compared to aileron 6, case, which
needed 20 minutes to cause only -0.12rads™!
change. But small oscillation seen in the first
minute of response.

Much more effect on bank angle than aileron. In
6 minutes this action caused -19° change in bank
angle. Smooth response.

0, = 6° Causes roll motion

After 10 minutes reached steady state of only
~18fts™! compared to —-80fts™' by rudder 6, in
the same amount of time. Side slip rate is seen to
be more controlled by rudder alone.

2 minutes to reach steady state of —0.006 rads™!,
high overshoot, similar to rudder with oscillation.
But rudder 3° input caused much larger roll rate
of —0.04rad s~

Took 20 minutes to reach steady state of
—0.12rads™!, Smooth response, no oscillation. Rud-
der response was similar but rudder response
reached steady state in half the time (10 minutes)
and had much larger effect on yaw rate.

Less affect on bank angle compared to rudder. Af-
ter same amount of 10 minutes, cause only -3°
change in bank angle compared to about —20° with
the above rudder input.

Table 2.3: Results and observations for lateral motion. Controls applied separately
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Control action

Numerator of
plant transfer
function

Observed response and comments

0, + 0, where 6, = 3" and
0,=6°

Ny 5,+5,)

Combined side slip rate response followed the rud-
der only response. Aileron control response had
small effect on final speed. Steady state reached
in 10 minutes to about -100fts™! compared to
—80 ft s~ with rudder alone.

Ny, (5,+5,)

Yaw rate response is controlled mainly by Rudder.
Aileron had little effect. Initial small oscillation
was still present in combined response. Damped
out after one minute.

N, 5,+6,)

Combined response followed rudder response.
Aileron effect on bank angle is minimal.

0, + 0, where 6, = -3° and
0,=6°

er(6r+5u)

Combined side slip rate response followed the
rudder only response. Aileron control response
had small effect on final speed. Steady state was
reached in 10 minutes to about 70 ft s™! compared
to 80 fts™! with rudder alone. Aileron effect has
reduced final speed by 10 ft s~

N, (5,+5,)

Yaw rate response is controlled mainly by Rudder.
Aileron had little effect. Initial small oscillation
still present in combined response. Damped out
after one minute.

N, 5,+6,)

Combined response followed rudder response.
Aileron effect on bank angle is minimal.

Table 2.4: Results and observations for lateral motion. Controls applied simultaneously
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equation 7.2.7 on page 209
-1 adj (sI — A)
C1=A) "= Ger6T-4)
For this problem, finding the transfer functions is done using computer algebra. Here are
the steps and the resulting G (s) matrix.

A = {{-0.006868, 0.01395, 0, -32.2},

{-0.09055, -0.3151, 773.98, 0},

{0.0001187, -0.001026, -0.4285, 0},

{0, 0, 1, 0}};
B = {{-0.00187, 9.66}, {-17.85, 0}, {-1.158, 0}, {0, 0}};
g = Inverse[s*IdentityMatrix[4] - A].B;

Map[Collect [Simplify@Numerator [#], s]/Denominator[#] &, g, {2}];
MatrixForm[%]

Which gives the following result

11.1596224.6778 5-0.249147 s2-0.000187 =7 5.97534 527.18318 52:0.66 5°
0.0041958720.00946303 5+0.935494 52:0.750468 s3+5%  0.00410958720.00046303 520.935494 52:0.750468 57252
-3.44462-6.20812 5-904.04 52-17.85 55 0.512663 5-0.874713 52
0.00419587+0.00946303 520.935494 52:0.750468 s2+5?  0.0041958720.00946303 5+0.935494 522:0.750468 =525
_0.00387259 5-0.354525 s2-1.158 53 0.00125876 5+0.00114664 52
0.00419587+0.00946303 2+0.935494 52:0.750468 =2+2?  0.0041958720.00946303 2+0.935494 52:0.750468 s°+5?
-0.00387259-0.354525 5-1.158 52 0.00125876+0.00114664 =

| 0.004189587+0.00946303 =+0.035404 s2.0.750468 s52s%  0.00419587+0.00046303 =+0.0935494 52:0.750468 525 /
Using Matlab, the same procedure was also performed using symbolic toolbox as follows
A = [-0.006868 0.01395 0 -32.2;
—-0.09055 -0.3151 773.98 0;
0.0001187 -0.001026 —0.4285 0;
0, 0, 1, 0]

B =[-0.000187 9.66;

-17.85 0;
-1.158 0
0, 0]

syms s;

G=inv(sxeye(4)-A)*B;

outPut={'u','w','q', 'theta'};

inPut={'del_e', 'del_p'};

for i=1:4

for j=1:2
[N,D] = numden(G(i,j));
c=coeffs(D);
fprintf('N(%s,%s) = %s',outPut{i},inPut{j},...
char(vpa(simplify(N/c(end)),5)))

fprintf('\n');
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end
end

The output generated is

N(u,del_e) = 24.678*xs — 0.24915xs"2 — 0.000187*s"3 + 11.16
N(u,del_p) 8.9753*s + 7.1832*s™2 + 9.66%*s"3

N(w,del_e) = — 6.2081xs — 904.04xs"2 — 17.85xs"3 — 3.4446
N(w,del_p) 0.51266*s — 0.87471%xs"2

N(q,del_e) = —1.8808e—48+s*(1.885e47xs + 6.157e47xs™2 + 2.059e45)
N(q,del_p) 6.5459e-23*s*(1.7517€19*s + 1.923e19)

N(theta,del_e) = — 0.35452xs — 1.158%xs"2 — 0.0038726
N(theta,del_p) = 0.0011466*s + 0.0012588

2.4.4.2.1 Generating the transfer function when throttle 6, is the input G; is now
found to solve the problem. The input is the throttle 6, which is j = 2. The output in figure
7.21 top plot is Au, which is i = 1. Therefore

N
u,bp

—9.66s% + 7.18218s2 + 8.97534s
s* + 0.750468s% + 0.935494s2 + 0.00946303s + 0.00419587

Gi2(5) = Gaup, = (2)
To obtain the transfer function for the second plot, the transfer function for the angle of

attack is needed. But a = uﬁ where 1y = 774fts™!, which is the cruise speed. Therefore
0

Na,(sp = M_Nwlép. But what is Nwlép ?. Since 0, is the second input, then j = 2 and since w is
0
the second output then i = 2, therefore

C e - —0.874713s% + 0.512663s
wop T P22 o4 1 0.75046853 + 0.93549452 + 0.00946303s + 0.00419587
Hence
Goo
Ga,ép =—
Up
1 —0.874713s% + 0.512663s

T 774 % + 07504685 + 0.93549452 + 0.00946303s + 0.00419587
0.0006624s — 0.00113s?

= 5%+ 0.7504685% + 0.93549452 + 0.00946303s + 0.00419587

(3)

To obtain the result for the third plot in figure 7.21, a transfer function for y is needed. Since
y = 0 —a then

Gy 5, = Gop, = Ga, (4)

But Gg 5, = G (4,2) since A0 is the fourth output and 6, is the second input. This gives
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0.00114664s + 0.0012587
s* + 0.750468s% + 0.935494s2 + 0.00946303s + 0.00419587

G@/ép = G(4, 2) =

Substituting the above in (4) results in

_(0.00114664s + 0.00125876) — (0.00114664s + 0.00125876)
V0 T st 1 0.750468s% + 0.93549452 + 0.00946303s + 0.00419587
_ —0.00113s% + 0.0004843s + 0.001 259 5)
s* +0.750468s% + 0.935494s2 + 0.00946303s + 0.00419587
The three transfer functions to generate figure 7.21 have been found. To summarize, they
are

~9.66s% + 7.18218s% + 8.97534s

GAM,(SF = f (S)
C 3 0.0006624s — 0.00113s2
“op = £ )
C 3 —0.00113s2 + 0.0004843s + 0.001 259
i« f(s)

Where f (s) = s* + 0.750468s% + 0.935494s2 + 0.009463s + 0.00419587

24422 Generating Gaue, and 6, = é response Matlab is used to generate figure 7.21
in the book. First the top plot showing the response to 6, = % is given. The step response is

found then multiplied by % to obtain the result.

close all; clear all;

figure;

s=tf('s');

den = s74+0.750468%5"3+0.935494%s"2+0.009463*5+0.00419587;
sys = tf((-9.66*xs"3+7.18318%s"2+8.97534x*s) /den);
t=0:.01:600;

u = step(sys,t);

subplot(2,1,1);

plot(t,ux1/6);

hold on;

plot([t(l) t(end)],[u(end)*1/6 u(end)*x1/6],'r");
legend( ' response', 'steady state')

xlabel('Time (sec)');

ylabel('\Delta(u) (fps)');

title('speed response to throttle. Figure 7.21. First 10 minutes');
subplot(2,1,2);

t=0:.01:1200;

u = step(sys,t);

plot(t,ux1/6);
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xlabel('Time (sec)');

ylabel('\Delta(u) (fps)');

title('speed response to throttle. First 20 minutes');
hold on;

plot([t(1l) t(end)],[u(end)*1/6 u(end)*1/6],'r");
legend('response', 'steady state')

speed response to throttle. Figure 7.21. First 10 minutes

=20

30 T T T T T
response
20 steady state ||
0
= /\ /\ |
= AN _
=f \\/ /S
_10 - -
_20 1 1 1 1 1
0 100 200 300 400 500 600
Time (sec)
speed response to throttle. First 20 minutes
30 T T T T T
response
207) steady state ||
S inin |
s ol AWAAN |
3 \\/ \/ v Vv
_10 - -
200

400 600 800 1000 1200
Time (sec)

Figure 2.44: Speed response to throttle, open loop, longitudinal motion

24423 Generating GM,@p and o, = : response Matlab is used to generate the second
plot in figure 7.21 in the book. Using G, s, found above, the step response is found then

multiplied by % to obtain the result.

close all; clear all;

s=tf('s');

den = s™4+0.750468%5"3+0.935494%s5"2+0,009463%s+0.00419587;
sys = tf((0.0006624*xs—-0.00113*s"2)/den);

[alpha,t] = step(sys);

plot(t,alphaxl/6);

xlim([0 600]);

ylim([-0.05 0.05]);
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xlabel('Time (sec)');
ylabel('\alpha (rad)"');
title('angle of attack response to throttle. Figure 7.21 reproduced');

angle of attack response to throttle. Figure 7.21. First 10 minutes
0.05 T T T T T

0.04 - N N . -

0.03f i

0.02} .

0.01 - . N . -

o (rad)
o

-0.01 4

-0.02} . . . .

-0.031 .

-0.04} 1

-0.05 i i i i i
0 100 200 300 400 500 600

Time (sec)

Figure 2.45: angle of attack a response to throttle, open loop, longitudinal motion

24424 Generating Gays, and 6, = z response Matlab is used to generate the third
plot in figure 7.21 in the book. Using G%ép found above, the step response is found then

multiplied by % to obtain the result.

close all; clear all;

s=tf('s');

den S™4+0.750468*5"3+0.935494%5"2+0.009463*5+0.00419587;
sys = tf((-0.00113*5"2+0.00048424%s+0.0012587) /den) ;
t=0:.1:300;

alpha= step(sys,t);

subplot(2,1,1);

plot(t,alphaxl/6);

ylim([0 0.2]);

xlabel('Time (sec)');

ylabel('\gamma (rad)');

title('flight path angle response to throttle. Figure 7.21. first 5 minutes');
hold on;

plot([t(1l) t(end)],[alpha(end)*1/6 alpha(end)*1/6]1,'r');
legend('response', 'steady state')

subplot(2,1,2);

t=0:.1:1200;
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alpha= step(sys,t);

plot(t,alphax1/6);

ylim([0 0.2]);

xlabel('Time (sec)');

ylabel('\gamma (rad)');

title('flight path angle response to throttle. Figure 7.21. first 20 minutes');
hold on;

plot([t(l) t(end)],[alpha(end)*1/6 alpha(end)x*1/6],'r');
legend( ' response', 'steady state')

flight path angle response to throttle. Figure 7.21. first 5 minutes
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Figure 2.46: Flight path angle y response to throttle, open loop, longitudinal motion
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2.4.4.2.5 Generating the transfer function when throttle 6, is the input Now ¢, = %

and 6, = 1° are applied, still in open loop longitudinal motion. The responses are Au, Aa
and flight path angle ). Since the system is linear, the input 6, is applied and the output
obtained, then the input 6, is applied again, and its output obtained, then both outputs are
added linearly (point wise). Now the transfer function for 6, are found as above and the
process is repeated, but this time the responses are added before making the final plot.

2.4.4.2.6 Generating G,,5, Gj are found to use to solve the problem. The input is the
elevator angle 6, which is j = 1. The output Au, which is i = 1. Therefore G;;(s) is the
component selected from G (s)

Nu,be

—0.000187s3 — 0.249147s2 + 24.6778s + 11.1596
s* + 0.750468s3 + 0.935494s2 + 0.00946303s + 0.00419587

G11(8) = Gaugs, =

24427 Generating Gp,5, a = Z where 1, = 774 ft/sec, which is the cruise speed.
ug

Therefore N, 5, = ulelée. But what is Ny, 5 ?. Since 6, is the first input, then j =1 and since
0
w is the second output then i = 2, therefore Gy (s) is selected from G (s)

C - —17.8553 — 904.04s2 — 6.20812s — 3.44462
woe = P21 T o4 4075046833 + 0.93549452 + 0.00946303s + 0.00419587

Hence
Gw 0,
G,s = -
a,00 g
1 —17.85s% — 904.04s% — 6.20812s — 3.44462

" 774 5% + 0.75046853 + 0.935494s2 + 0.00946303s + 0.00419587
-0.023062s> —1.168s% — 0.0080208s — 0.004450 4

~ 5%+ 0.7504685% + 0.93549452 + 0.009463035 + 0.00419587

2.4.4.28 Generating G, 5, The transfer function for y is needed. But y = 6 — a, hence
Gy5, = Gos, — Gas,

But Gy 5, = G (4,1) since A0 is the 4" output and 6, is the first input. Hence

~1.158s? — 0.354525s — 0.00387259

Ggs, =G4,1) =
00 @1 st + 0.750468s% + 0.935494s2 + 0.00946303s + 0.00419587

Substituting this in (4) gives
. (—1.15832 —0.3545255 — 0.00387259) - (—0.02306253 —1.1685% — 0.0080208s — 0.004450 4)

Ve s* + 0.750468s% + 0.935494s2 + 0.00946303s + 0.00419587
0.02306 25> + 0.01s2 — 0.346 5s + 0.0005778

" 5%+ 0.7504685% + 0.9354945 + 0.009463035 + 0.00419587
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2.4.4.3 Simultaneous response for elevator 6, and throttle 6, input

Using the transfer functions found above, now Matlab was used to generate the output.

2.4.43.1 Simultaneous response of speed A, to combined 6, and throttle 6, The
response to 0, and 6, are added to obtain the result using Matlab.

close all; clear all;

s = tf('s');

num_throttle = —9.66%s"3+7.18318%5"2+8.97534%s;

num_elevator = —0.000187%5"3-0.249147xs"2+24.6778+s+11.1596;

den = s74+0.750468*5"3+0.935494%5"2+0.009463*5+0.00419587;

sysl = tf(num_throttle/den);

t = 0:.1:000;

subplot(2,1,1);

u_throttle = step(sysl,t);

plot(t,u_throttlexl/6,'-k');

sys2 = tf(num_elevator/den);

u_elevator = step(sys2,t);

hold on;

plot(t,u_elevatorx1lxpi/180,'—-");

plot(t, (u_elevatorx1xpi/180 + u_throttlexl/6 ),'r');

xlabel('Time (sec)');

ylabel('\Delta_u (fps)');

title('speed response to throttle and elevator combined, 10 minutes');
plot([t(1l) t(end)],[(u_elevator(end)=*pi/180 + u_throttle(end)*1/6 ),...
(u_elevator(end)*pi/180 + u_throttle(end)*1/6 )1,'r');
legend('throttle', 'elevaltor', 'combined');

)
“©

subplot(2,1,2);

t = 0:.1:1200;

u_throttle = step(sysl,t);

plot(t,u_throttlexl/6,'-k');

u_elevator = step(sys2,t);

hold on;

plot(t,u_elevatorxlxpi/180,'——");

plot(t, (u_elevatorx1xpi/180 + u_throttlexl/6 ),'r');

xlabel('Time (sec)');

ylabel('\Delta_u (fps)');

title('speed response to throttle and elevator combined, 20 minutes');
plot([t(1l) t(end)],[(u_elevator(end)*pi/180 + u_throttle(end)*1/6 ),...
(u_elevator(end)*pi/180 + u_throttle(end)*1/6 )1,'r');
legend('throttle', 'elevaltor', 'combined');
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speed response to throttle and elevator combined, 10 minutes
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Figure 2.47: Speed response to throttle and elevator combined, open loop, longitudinal

motion
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2.4.43.2 Simultaneous response of angle of attack o to combined 6, and throttle 6,
The response to 6, and 6, are added to obtain the result using Matlab.

close all; clear all;

set (0, 'DefaultAxesFontSize',8)

s = tf('s'");

num_throttle = 0.0006624*s-0.00113*s"2;

num_elevator = —0.023062*s"3-1.168*5"2-0.0080208*s—-0.0044505;
den = s74+0.750468%5"3+0.935494%5"2+0.009463*5+0.00419587;
sysl = tf(num_throttle/den);

t = 0:.1:60;

u_throttle = step(sysl,t);

subplot(3,1,1);

plot(t,u_throttlexl/6,'-k');

sys2 = tf(num_elevator/den);

u_elevator = step(sys2,t);

hold on;

plot(t,u_elevatorx1lxpi/180,'—-"');

plot(t, (u_elevatorx1xpi/180 + u_throttlexl/6 ),'r');
xlabel('Time (sec)');

ylabel('\alpha (rad)');

title('angle of attack response to throttle and elevator combined, first one minutes');
legend('throttle', 'elevaltor', 'combined');

)
©

subplot(3,1,2);

t =0:.1:300;

u_throttle = step(sysl,t);
plot(t,u_throttlexl/6,'-k');

u_elevator = step(sys2,t);

hold on;

plot(t,u_elevatorx1lxpi/180,'—-");

plot(t, (u_elevatorx1xpi/180 + u_throttlexl/6 ),'r');
xlabel('Time (sec)');

ylabel('\alpha (rad)');

title('angle of attack response to throttle and elevator combined, 3 minutes');
legend('throttle', 'elevaltor', 'combined');

)
©

subplot(3,1,3);

t =0:.1:600;

u_throttle = step(sysl,t);
plot(t,u_throttlexl/6,'-k');

u_elevator = step(sys2,t);

hold on;

plot(t,u_elevatorxlxpi/180,'——");

plot(t, (u_elevatorx1xpi/180 + u_throttlexl/6 ),'r');
xlabel('Time (sec)');

ylabel('\alpha (rad)');

title('angle of attack response to throttle and elevator combined, 10 minutes');
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legend('throttle', 'elevaltor', 'combined');
plot([t(1l) t(end)],[(u_elevator(end)*pi/180 + u_throttle(end)*1/6 ),...
(u_elevator(end)*pi/180 + u_throttle(end)*1/6 )],'r');

angle of attack response to throttle and elevator combined, first one minutes
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Figure 2.48: Angle of attack a response to throttle and elevator combined, open loop,
longitudinal motion

2.44.3.3 Simultaneous response of flight path angle y to combined 6, and throttle
6, The response to 6, and 6, are added to obtain the result using Matlab.

close all; clear all;

set (0, 'DefaultAxesFontSize',8)

s = tf('s");

num_throttle
num_elevator
den

—0.00113%572+0.00048424*s+0.0012587;
0.023062%5"3+0.01%572-0.3465%5+0.0005778;

s™4+0.750468%5"3+0.935494%5"2+0.009463*s+0.00419587;
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sysl = tf(num_throttle/den);

t = 0:.1:600;

u_throttle = step(sysl,t);

subplot(2,1,1);

plot(t,u_throttlexl/6,'k');

sys2 = tf(num_elevator/den);

u_elevator = step(sys2,t);

hold on;

plot(t,u_elevatorx1lxpi/180,'—-"');

plot(t, (u_elevatorx1xpi/180 + u_throttlexl/6 ),'r');

ylim([-.1 .21);

xlabel('Time (sec)');

ylabel('\gamma (rad)');

title('flight path angle response to throttle and elevator combined, 10 minutes');
legend('throttle', 'elevaltor', 'combined');

plot([t(1l) t(end)],[(u_elevator(end)=*pi/180 + u_throttle(end)x*1/6 ),...
(u_elevator(end)*pi/180 + u_throttle(end)=*1/6 )],'r');

subplot(2,1,2);

t =0:.1:1200;

u_throttle = step(sysl,t);

plot(t,u_throttlexl/6, 'k"');

u_elevator = step(sys2,t);

hold on;

plot(t,u_elevatorx1lxpi/180,'——"');

plot(t, (u_elevatorx1xpi/180 + u_throttlexl/6 ),'r');

ylim([-.1 .21);

xlabel('Time (sec)');

ylabel('\gamma (rad)"');

title('flight path angle response to throttle and elevator combined, 20 minutes');
legend('throttle', 'elevaltor', 'combined');

plot([t(1) t(end)],[(u_elevator(end)*pi/180 + u_throttle(end)*1/6 ),...
(u_elevator(end)*pi/180 + u_throttle(end)*1/6 )1,'r');
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flight path angle response to throttle and elevator combined, 10 minutes
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Figure 2.49: flight path angle y response to throttle and elevator combined, open loop,
longitudinal motion
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2.4.4.4 open loop lateral motion responses

The first step is to generate G (s) as was done in the above section for the longitudinal case.
To obtain the transfer function matrix Gj;(s) for the lateral motion, the following matrix
needs to be found

G =GI-A)'B

Where A is the matrix for B-747 given on page 187, and B is given on page 224. The equation
of motion for lateral motion becomes

A output B
—_—~—
o ~0.0558 0 —774  322\( v 0 5.642 ) control input
p|_|-0003865 -04342 04136 0 |l p | |-01431 01144 04
# | | 0001086 -0.006112 -01458 0 || r 0.003741 —0.4859 5,

A 0 1 0 0 A 0 0

G (s) is a 4 X 2 matrix. G (i, ]) is the transfer function of the ratio of i output to the j input.

For example, Gp,;s, is G(1,1) which is a function of s in equation (1). To obtain all the
transfer functions, equation (1) is evaluated. This can be done using equation 7.2.7 on page
209 of the text.

1 adj(sl - A)
CI-4) "= reT-a)

For this problem, this was done using symbolic algebra using the following steps, and the
resulting G (s) matrix found is shown below

A = {{-0.0558, 0, -774, 32.2%},
{-0.003865, -0.4342, 0.4136, 0%},
{0.001086, -0.006112, -0.1458, 0},
{0, 1, 0, 0}};

B = {{0, 5.642}, {-0.1431, 0.1144}, {0.003741, -0.4859}, {0, 0}};
g = Inverse[s*IdentityMatrix[4] - A].B;
r = Map[Collect[Simplify@Numerator [#], s]/Denominator[#] &, g, {2}];

r2 = Map[Collect [Numerator [#], s]/Denominator[#] &, r, {2}];
MatrixForm[r?2]

The output is
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-0.621998-6.54202 5-2.89553 52 -5.9341:167.803 5:379.359 52:5.642 57
0.00368199+0.511384 5+0.938762 5220.6358 5325 0.00368199+0.511384 5+0.938762 5220.6358 5325
-0.110171 5-0.0273017 s2-0.1431 53 ~1.36834 5-0.199712 52:0.1144 5°
0.00368199+0.511384 5+0.938762 5220.6358 5325 0.00368199+0.511384 5+0.938762 5220.6358 5325
-0.00453851+0.000139442 5+0.00270772 52+0.003741 =  -0.0564712-0.00901786 =-0.232663 52-0.4859 53
0.00368199+0.511384 5+0.938762 5220.6358 5325 0.00368199+0.511384 5+0.938762 5220.6358 5325
-0.110171-0.0273017 5-0.1431 52 ~1.36834-0.189712 5:0.1144 52
| 0.00368199:0.511384 5+0.938762 5220.6358 s525? 0.00368199+0.511384 5+0.0938762 52:0.6358 s325%

Figure 2.50: Transfer function matrix G(s) for lateral motion

Using Matlab, the same procedure was done using syms as follows
A = [-0.0558, 0, 774, 32.2;

-0.003865, -0.4342, 0.4136, O;

0.001086, -0.006112, -0.1458, 0;

0, 1, 0, 0]

B = [0, 5.642;
-0.1431, 0.1144;
0.003741, -0.4859;
0, 0]

syms s;
G=inv (sxeye(4)-A)x*B;
outPut={'v','p','r','phi'};
inPut={'del_a"', 'del_r'};
for i=1:4
for j=1:2
[N,D] = numden(G(i,j));
c=coeffs(D);
fprintf('N(%s,%s) = %s',outPut{i},inPut{j},...
char(vpa(N/c(end),5)))
fprintf('\n');
end
end

And the output is

N(v,del_a) - 6.542%s - 2.89556%s72 - 0.622

N(v,del r) = 167.89%s + 379.36%s”2 + 5.642*%s"3 - 5.9341

N(p,del_a) = - 0.11017*s - 0.027302%s"2 - 0.1431%s73

N(p,del r) = 0.1144%s"3 - 0.19971%s”2 - 1.3683%*s

N(r,del_a) = 0.00013944*s + 0.0027077*s”2 + 0.003741*%s~3 - 0.0045385
N(r,del r) = - 0.0090179*s - 0.23266*s”2 - 0.4859%s”3 - 0.056471
N(phi,del_a) - 0.027302*xs - 0.1431*s"2 - 0.11017

N(phi,del_r) 0.1144%s”2 - 0.19971%s - 1.3683
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2.4.441 Generating the transfer function when aileron o, = 6° is the input Transfer
function Gos,
G;; is now found. The input is 6, which is j = 1. The output is v, which is i = 1. Therefore
Nv,éa
— 2.89553s% — 6.54202s — 0.621998
s* +0.6358s3 + 0.938762s% + 0.511384s + 0.00368199

G11(8) = Gye, =

The side velocity v response to 6, = 6° is generated using Matlab
close all; clear all;

s = tf('s');

num_aileron = —2.89553%5"2-6.54202*s-0.621998;

den = s74+0.6358%5"3+0.938762x5"2+0.511384%5+0.00368199;
sys = tf(num_aileron/den);

[v,t] = step(sys);

plot(t,vx6%pi/180);

x1im([0 600]);

xlabel('Time (sec)');

ylabel('v (fps)');

title('lateral velocity response, open loop, lateral motion');
grid

lateral velocity response to 8a=6 degree input, open loop, lateral motion

0 100 200 300 400 500 600
Time (sec)

Figure 2.51: Lateral velocity v response to 6, = 6°

The bode plot for G, 5, is now generated. This is figure 7.27 on page 248 of the textbook.
close all; clear all;
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s = tf('s'");

num_aileron = —2.89553%5"2-6.54202*s5-0.621998;

den = s74+0.6358*5"3+0.938762*5"2+0.511384+5+0.00368199;
sys = tf(num_aileron/den);

opts = bodeoptions;

opts.MagUnits="'abs"';

opts.MagScale='log"';

bodeplot(sys,opts);

grid

bode plot, aileron angle input, lateral velocity output
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Figure 2.52: Bode plot of G, 5,

Transfer function G, 5,
The input now is 0, which is j = 1. The output is p, which is i = 2. Therefore
Npléa

—0.1431s3 — 0.0273017s2 — 0.110171s
s* +0.6358s3 + 0.938762s% + 0.511384s + 0.00368199

Ga1(8) =Gy, =

The roll rate p response to 6, = 6° is generated using Matlab
close all; clear all;
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set (0, 'DefaultAxesFontSize',8)

s = tf('s'");

num_aileron = —0.1431%5"3-0.0273017*5"2-0.110171%*s;

den = 574+0.6358%5"3+0.938762*5"2+0.511384*5+0.00368199;

sys = tf(num_aileron/den);

t=0:.1:30;

p = step(sys,t);

subplot(2,1,1);

plot(t,px6xpi/180);

xlabel('Time (sec)');

ylabel('p (rad/sec)');

title('roll rate (p) response to \delta_a=6 degree input, lateral motion, 30 seconds');
hold on;

plot([t(1) t(end)],[(p(end)*6xpi/180), (p(end)*6+pi/180)]1,'r");
legend('roll rate', 'steady state');

)
“©

subplot(2,1,2);

t=0:.1:180;

p = step(sys,t);

plot(t,px6xpi/180);

xlabel('Time (sec)');

ylabel('p (rad/sec)');

title('roll rate (p) response to \delta_a=6 degree input, lateral motion, 3 minutes');
hold on;

plot([t(1) t(end)],[(p(end)*6xpi/180), (p(end)+*6+pi/180)]1,'r");

legend('roll rate', 'steady state');
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roll rate (p) response to 6a:6 degree input, lateral motion, 30 seconds
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Figure 2.53: The roll rate p response to 6, = 6°
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The bode plot for G, 5, is

close all; clear all;

s = tf('s'");

num_aileron = —0.1431%5s"3-0.0273017*%5"2-0.110171%s;

den = s74+0.6358*5"3+0.938762*x5"2+0.511384*5+0.00368199;
sys = tf(num_aileron/den);

opts = bodeoptions;

opts.MagUnits="'abs"';

opts.MagScale='log"';

figure

bodeplot(sys,opts);

grid

title('bode plot, transfer function roll rate response to aileron input');

bode plot, transfer function roll rate response to aileron input
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Figure 2.54: Bode plot of G, 5,

Using transfer function G,
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The input now is 6, which is j = 1. The output is r which is i = 3. Therefore
Nr,ba
—0.003741s% + 0.00270772s% + 0.000139442s — 0.00453851
s* +0.6358s% + 0.938762s2 + 0.511384s + 0.00368199

G31(8) =G5, =

The yaw rate r response to 6, = 6° is generated using Matlab

close all; clear all;

set (0, 'DefaultAxesFontSize',8)

s = tf('s'");

num_aileron = —-0.003741%s"3+0.00270772%5"2+0.000139442+s-0.00453851;
den = s™4+0.6358*5"3+0.938762*5"2+0.511384*5+0.00368199;

sys = tf(num_aileron/den);

t=0:.01:180;

r = step(sys,t);

subplot(2,1,1);

plot(t, rx6xpi/180);

xlabel('Time (sec)');

ylabel('r (rad/sec)');

title('yaw rate (r) response to \delta_a=6 degree input, lateral motion, 3 minutes');
hold on;

plot([t(1l) t(end)],[(r(end)*6xpi/180), (r(end)*6xpi/180)],'r");
legend('yaw rate (r)', 'steady state');

grid

subplot(2,1,2);

t=0:.01:600;

r = step(sys,t);

plot(t, rx6xpi/180);

xlabel('Time (sec)');

ylabel('r (rad/sec)');

title('yaw rate (r) response to \delta_a=6 degree input, lateral motion, 10 minutes');
hold on;

plot([t(1l) t(end)],[(r(end)*6xpi/180), (r(end)*6xpi/180)],"'r");
legend('yaw rate (r)', 'steady state');

grid
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yaw rate (r) response to Sa=6 degree input, lateral motion, 3 minutes
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Figure 2.55: The yaw rate r response to 6, = 6
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The bode plot for G, 5 is now generated. This can be compared to figure 7.27(e) on page
250.

close all; clear all;

s = tf('s');

num_aileron = —0.003741%5"3+0.00270772+5"2+0.000139442+5—-0.00453851;

den = s74+0.6358*5"3+0.938762*5"2+0.511384+s+0.00368199;

sys = tf(num_aileron/den);

opts = bodeoptions;

opts.MagUnits="'abs"';

opts.MagScale='log"';

figure

bodeplot(sys,opts);

grid

title('bode plot, transfer function yaw rate (r) response to aileron input');

bode plot, transfer function yaw rate (r) response to aileron input
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Figure 2.56: Bode plot of G,

Transfer function Gy,
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The input now is 6, which is j = 1. The output is ¢,which is i = 4. Therefore
Nd)/éa

—0.1431s2 — 0.0273017s — 0.110171
s* + 0.6358s3 + 0.938762s2 + 0.511384s + 0.00368199

Gy (8) = Gy 5, =

The Euler angle @ response to 6, = 6° is found using Matlab

close all; clear all;

set (0, 'DefaultAxesFontSize',8)

s = tf('s'");

num = —-0.1431%s"2-0.0273017xs-0.110172;

den = s74+0.6358%5"3+0.938762*5"2+0.511384*5+0.00368199;

sys = tf(num/den);

t=0:.1:600;

r = step(sys,t);

plot(t, rx6xpi/180);

xlabel('Time (sec)');

ylabel('\Phi (rad)');

title('Euler angle \Phi response to \delta_a=6 degree input, lateral motion, 10 minutes');
hold on;

plot([t(1) t(end)],[(r(end)*6xpi/180), (r(end)*6+pi/180)1,'r");
legend('\Phi', 'steady state');
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Euler angle @ response to 5a=6 degree input, lateral motion, 10 minutes
O T T T T T

(0]
steady state

_35 1 1 1 1 1
0 100 200 300 400 500 600

Time (sec)

Figure 2.57: Euler angle @ response to 6, = 6°
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The bode plot for Gy 5, is generated. This can be compared to figure 7.27(c) on page 249.
close all; clear all;

s = tf('s'");

num_aileron = —0.1431%s"2-0.0273017xs-0.110172;

den = s74+0.6358%5"3+0.938762%5"2+0.511384*5+0.00368199;

sys = tf(num_aileron/den);

opts = bodeoptions;

opts.MagUnits="'abs';

opts.MagScale='log"';

figure

bodeplot(sys,opts);

grid

title('bode plot, transfer function Euler angle \Phi response to aileron input');

bode plot, transfer function Euler angle ® response to aileron input
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Figure 2.58: Bode plot of Gg 5,

2.44.42 Generating the transfer function when rudder 6, = 3° is the input Transfer
function G, s,
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The input now is 6, which is j = 2. The output is v which is i = 1. Therefore
Nv,br

3 —5.642s3 + 379.359s% + 167.893s — 5.9341

s +0.6358s3 + 0.938762s2 + 0.511384s + 0.00368199

Gi2(8) = Gy,

The lateral speed v response (side slip rate) to 0, = 3° is generated using Matlab
close all; clear all;

s = tf('s'");

num = -5.642%5"34+379.359%572+167.893%5-5.9341;

den = s74+0.6358%5"3+0.938762*5"2+0.511384*5+0.00368199;

sys = tf(num/den);

t=0:.1:30;

v = step(sys,t);

subplot(2,1,1);

plot(t,vx3%pi/180);

xlabel('Time (sec)');

ylabel('v (fps)');

title('lateral speed v response to \delta_r=3 degree input, first 1/2 minute');
hold on;

plot([t(1) t(end)],[(v(end)*3*xpi/180), (v(end)=*3+xpi/180)]1,'r");
legend('lateral speed', 'steady state');

subplot(2,1,2);

t=0:.1:180;

v = step(sys,t);

plot(t,vx3%pi/180);

xlabel('Time (sec)');

ylabel('v (fps)');

title('lateral speed v response to \delta_r=3 degree input, first 3 minutes');
hold on;

plot([t(1) t(end)],[(v(end)*3xpi/180), (v(end)*3xpi/180)],'r"');
legend('lateral speed', 'steady state');
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side slip rate v response to 6r=3 degree input, first 1/2 minute
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Figure 2.59: side slip rate v response to 6, = 3°
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Bode plot for G, is now generated. This can be compared to figure 7.26(a) on page 245.
close all; clear all;

s = tf('s");

num_aileron = -5.642*5"3+379.359*5"2+167.893*5-5.9341;

den = s74+0.6358%5"3+0.938762*5"2+0.511384*5+0.00368199;

sys = tf(num_aileron/den);

opts = bodeoptions;

opts.MagUnits="'abs';

opts.MagScale='log"';

figure

bodeplot(sys,opts);

grid

title('bode plot, transfer function lateral speed response to rudder input');

bode plot, transfer function lateral speed response to rudder input

Magnitude (abs)
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Figure 2.60: Bode plot of G,

Transfer function G, 5,
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The input now is 6, which is j = 2. The output is p which is i = 2. Therefore

Nprbr

G c —0.1144s% — 0.19971252 — 1.36834s

2(5) = POr T 4 4 0.63585% + 0.93876252 + 0.511384s + 0.00368199
The roll rate p respones to 6, = 3° is generated using Matlab

close all; clear all;

set (0, 'DefaultAxesFontSize',8)

s = tf('s'");

num = —0.1144%5"3-0.199712x5"2-1.36834%s;

den = s74+0.6358*5"3+0.938762*%5"2+0.511384*s5+0.00368199;

sys = tf(num/den);

t=0:.1:60;

p = step(sys,t);

subplot(2,1,1);

plot(t,p*3xpi/180);

xlabel('Time (sec)');

ylabel('p (rad/sec)');

title('roll rate (p) response to \delta_r=3 degree input, lateral motion, first one minute');
hold on;

plot([t(1) t(end)],[(p(end)*3xpi/180), (p(end)*3+pi/180)1,'r");
legend('roll rate (p)','steady state');

subplot(2,1,2);

t=0:.1:180;

p = step(sys,t);

subplot(2,1,2);

plot(t,p*3xpi/180);

xlabel('Time (sec)');

ylabel('p (rad/sec)');

title('roll rate (p) response to \delta_r=3 degree input, lateral motion, first 3 minutes');
hold on;

plot([t(1l) t(end)],[(p(end)*3xpi/180), (p(end)*3+pi/180)1,'r");
legend('roll rate (p)','steady state');
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p (rad/sec)

p (rad/sec)

roll rate (p) response to 6r=3 degree input, lateral motion, first one minute
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roll rate (p)
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Figure 2.61: Roll rate p response to 6, = 3°
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Bode plot for G, 5 is now generated

close all; clear all;

s = tf('s');

num_aileron = —-0.1144%s"3-0.199712*5"2-1.36834xs;

den = s74+0.6358*5"3+0.938762*x5"2+0.511384*5+0.00368199;
sys = tf(num_aileron/den);

opts = bodeoptions;

opts.MagUnits="'abs"';

opts.MagScale='log"';

figure

bodeplot(sys,opts);

grid

title('bode plot, transfer function roll rate (p) response to rudder input');

bode plot, transfer function roll rate (p) response to rudder input
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Figure 2.62: Bode plot of G, 5,

Using transfer function G, s,
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The input now is 6, which is j = 2. The output is r which is i = 3. Therefore
Nr,br

_ —0.4859s% - 0.232663s2 — 0.00901786s — 0.0564712

5% +0.6358s% + 0.938762s2 + 0.511384s + 0.00368199

Gz (8) = Gy,

The yaw rate r respones to 6, = 3° is generated using Matlab
close all; clear all;

set (0, 'DefaultAxesFontSize',8)

s = tf('s'");

num = —0.4859%5"3-0.232663*5"2-0.0090178%5-0.0564712;
den = s74+0.6358*5"3+0.938762%5"2+0.511384+s+0.00368199;
sys = tf(num/den);

t=0:.01:600;

r = step(sys,t);

plot(t, rx3xpi/180);

xlabel('Time (sec)');

ylabel('r (rad/sec)');

title('yaw rate (p) response to \delta_r=3 degree input, open loop, lateral motion');
grid

yaw rate (p) response to Br:3 degree input, open loop, lateral motion
0.1 T T T

r (rad/sec)

0 100 200 300 400 500 600
Time (sec)

Figure 2.63: Yaw rate r response to 6, = 3% up to 600 seconds

The bode plot for G, is now generated.

close all; clear all;

s = tf('s");

num_aileron = —0.4859%5"3-0.232663*5"2-0.0090178+5-0.0564712;
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den $™4+0.6358*5"3+0.938762%5"2+0.511384+5+0.00368199;

sys = tf(num_aileron/den);

opts = bodeoptions;

opts.MagUnits="'abs';

opts.MagScale='log"';

figure

bodeplot(sys,opts);

grid

title('bode plot, transfer function yaw rate (r) response to rudder input');

bode plot, transfer function yaw rate (r) response to rudder input
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Figure 2.64: Bode plot of G, s,

Using transfer function G s,
The input now is 6, which is j = 2. The output is ¢ which is i = 4. Therefore
No,sr

- 0.1144s? - 0.199712s — 1.36834
s* + 0.6358s3 + 0.938762s2 + 0.511384s + 0.00368199

Gy (s) = G¢,6, =

The Euler angle ® respones to 6, = 3° is generated using Matlab
close all; clear all;
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s = tf('s'");

num = —-0.1144%s"2-0.199712*xs-1.36834;

den = s74+0.6358*5"3+0.938762*5"2+0.511384+5+0.00368199;
sys = tf(num/den);

[phi,t] = step(sys);

plot(t,phix3*pi/180);

xlim([0 600]);

xlabel('Time (sec)');

ylabel('\Phi (rad)');

title('Euler angle \Phi response to \delta_r=3 degree input, open loop, lateral motion');
grid

Euler angle @ response to 6r=3 degree input, open loop, lateral motion

@ (rad)

0 100 200 300 400 500 600
Time (sec)

Figure 2.65: Euler @ response to 6, = 3° up to 600 seconds

The bode plot for Gg 5, is now generated. This can be compared to figure 7.26(c) on page
246.

close all; clear all;

s = tf('s");

num = —0.1144%xs"2-0.199712xs-1.36834;
den = s74+0.6358%573+0.938762%5"2+0.511384*s+0.00368199;
sys = tf(num/den);

opts = bodeoptions;
opts.MagUnits="'abs"';
opts.MagScale='log"';
figure
bodeplot(sys,opts);
grid
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title('bode plot, transfer function \Phi response to rudder input');

bode plot, transfer function ® response to rudder input

2
10 . T : R RAALIEE
10"

10°

Magnitude (abs)

B T

Phase (deg)

Frequency (rad/s)

Figure 2.66: Bode plot of G,

2.4.44.3 Simultaneous response for aileron and rudder input (6, = 6°,6, = -3°) The
transfer functions are found above. They are used to find the combined response. As was
done for the longitudinal case, since the system is linear, the response to 0, = 6° is found
and added to the response to 6, = —3° to obtain the combined response.

Lateral v response to combined (6, = 6°,6, = -3°)
close all; clear all;

set (0, 'DefaultAxesFontSize',8)

s = tf('s');

num_a = —2.89553%572-6.54202x5-0.621998;

num_r = —5.642*s"3+379.359%5"2+167.893*5-5.9341;
den = s74+0.6358*5"3+0.938762%5"2+0.511384+5+0.00368199;
sysl = tf(num_a/den);

t=0:.1:120;

ya = step(sysl,t);

subplot(2,1,1);

plot(t,yax6xpi/180, '—.k');
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hold on;

sys2 = tf(num_r/den);

yr = step(sys2,t);

plot(t,-yrx3*xpi/180,'—-");

plot(t,yax6*xpi/180—yr*3+pi/180,'r"');

xlabel('Time (sec)');

ylabel('v (fps)');

title('lateral speed v response to \delta_r=-3 and \delta_a=6 degree combined, 2 minutes');
legend('\delta_a', '\delta_r', 'combined', 'steady state');

xlim([0 120])

[)
“©

subplot(2,1,2);

t=0:.1:300;

ya = step(sysl,t);

plot(t,yax6xpi/180,'—.k');

hold on;

yr = step(sys2,t);

plot(t,—yrx3xpi/180,'—"');
plot(t,yax6xpi/180—yr*3*xpi/180,'r');

xlabel('Time (sec)');

ylabel('v (fps)');

title('lateral speed v response to \delta_r=-3 and \delta_a=6 degree combined, 5 minutes');
plot([t(1) t(end)],[(ya(end)*6xpi/180-yr(end)=*3xpi/180), ...
(ya(end)*6xpi/180-yr(end)*3*xpi/180)],'——r"');
legend('\delta_a', '\delta_r', 'combined', 'steady state');
x1im([0 300])

Yaw rate r response to combined (6, = 6,6, = -3°)
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v (fps)
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Figure 2.67: side speed v response to 0,
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close all; clear all;
close all; clear all;

s = tf('s');
num_a = —0.003741%s"3+0.00270772*5"2+0.000139442*s5-0.00453851;
num_r = —-0.4859%573-0.232663*5"2-0.0090178*5-0.0564712;

den = s74+0.6358%5"3+0.938762*5"2+0.511384*5+0.00368199;
sysl = tf(num_a/den);

t=0:.1:30;

ya = step(sysl,t);

subplot(2,1,1);

plot(t,yax6xpi/180, '-k');

hold on;

sys2 = tf(num_r/den);

yr = step(sys2,t);

plot(t,—-yrx3*xpi/180,'-"');
plot(t,yax6*pi/180—yr*3+pi/180,'r"');

xlabel('Time (sec)');

ylabel('r (rad/sec)');

title('yaw rate (r) response to \delta_r=-3 and \delta_a=6 degree combined, 30 seconds');
legend('\delta_a', '\delta_r', 'combined');

)
©

subplot(2,1,2);

t=0:.1:300;

ya = step(sysl,t);

plot(t,ya*x6xpi/180, '-k');

hold on;

sys2 = tf(num_r/den);

yr = step(sys2,t);

plot(t,—yrx3xpi/180,'-"');
plot(t,yax6xpi/180—yr*3*xpi/180,'r');

xlabel('Time (sec)');

ylabel('r (rad/sec)');

title('yaw rate (r) response to \delta_r=-3 and \delta_a=6 degree combined, 5 minutes');
plot([t(1) t(end)],[(ya(end)*6+pi/180-yr(end)*3xpi/180),...
(ya(end)*6xpi/180-yr(end)*3*xpi/180)],'——r"');
legend('\delta_a', '\delta_r', 'combined', 'steady state');

Euler angle @ response to combined (6, = 6°,6, = -3°)
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yaw rate (r) response to 8r=—3 and 6a=6 degree combined, 30 seconds
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Figure 2.68: Yaw rate r response to 6, = —3° and 6, = 6° combined
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close all; clear all;

set (0, 'DefaultAxesFontSize',8)

s = tf('s'");

num_a = —0.1431%5"2-0.0273017*5-0.110172;

num_r = —0.1144%s5"2-0.199712xs-1.36834;

den = s74+0.6358%5"3+0.938762*5"2+0.511384*5+0.00368199;
sysl = tf(num_a/den);

t=0:.1:180;

ya = step(sysl,t);

subplot(2,1,1);

plot(t,yax6xpi/180, '-k');

hold on;

sys2 = tf(num_r/den);

yr = step(sys2,t);

plot(t,—-yrx3*xpi/180,'-"');
plot(t,yax6*pi/180—yr*3+pi/180,'r"');

xlabel('Time (sec)');

ylabel('\Phi (rad)');

title('Roll angle \Phi response to \delta_r=-3 and \delta_a=6 degree combined, 3 minutes');
legend('Aileron', 'Rudder', 'combined');

)
©

subplot(2,1,2);

t=0:.1:480;

ya = step(sysl,t);

plot(t,ya*x6xpi/180, '-k');

hold on;

yr = step(sys2,t);

plot(t,—yrx3*xpi/180,'-"');
plot(t,ya*x6xpi/180-yr*3*xpi/180,'r"');

xlabel('Time (sec)');

ylabel('\Phi (rad)');

title('Roll angle \Phi response to \delta_r=-3 and \delta_a=6 degree combined, 7 minutes');
plot([t(1) t(end)],[(ya(end)x*6xpi/180-yr(end)=*3xpi/180), ...
(ya(end)*6+pi/180-yr(end)*3xpi/180)]1,'——r');
legend('Aileron', 'Rudder', 'combined', 'steady state');
x1im([0 480]);

2.4.4.44 Simultaneous response for aileron and rudder input (6, = 6°,6, = +3°) The
transfer functions are found above. They are used to obtain the combined response. As was
done for the longitudinal case, since the system is linear, the response to 6, = 6° was added
to the response to 0, = 3° to obtain the combined response.

Lateral v response to combined (0, = 6°,6, = +3°)

201



2.4. HW4 CHAPTER 2. MY TYPED HWS AND...

Roll angle ® response to Sr:—s and Sa:G degree combined, 3 minutes
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Figure 2.69: Euler angle ® response to 6, = -3° and 6, = 6° combined
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close all; clear all;

set (0, 'DefaultAxesFontSize',8)

s = tf('s'");

num_a = —2.89553*5"2-6.54202xs—-0.621998;

num_r = —5.642*s5"3+379.359%5"2+167.893%x5-5.9341;

den = s74+0.6358%5"3+0.938762*5"2+0.511384*5+0.00368199;
sysl = tf(num_a/den);

t=0:.01:120;

ya = step(sysl,t);

subplot(2,1,1);

plot(t,yax6xpi/180,'—.k');

hold on;

sys2 = tf(num_r/den);

yr = step(sys2,t);

plot(t,yr*x3xpi/180,'——");
plot(t,ya*x6+pi/180+yr+3xpi/180,'r');

xlabel('Time (sec)');

ylabel('v (fps)');

title('lateral speed v response to \delta_r=-3 and \delta_a=6 degree combined, 2 minutes');
legend('Aileron', 'Rudder', 'combined');

)
©

subplot(2,1,2);

t=0:.01:600;

ya = step(sysl,t);

plot(t,yax6xpi/180,'—.k');

hold on;

yr = step(sys2,t);

plot(t,yr*x3xpi/180,'——");
plot(t,ya*x6+pi/180+yr+3xpi/180,'r');

xlabel('Time (sec)');

ylabel('v (fps)');

title('lateral speed v response to \delta_r=-3 and \delta_a=6 degree combined, 5 minutes');
plot([t(1) t(end)],[(ya(end)*6xpi/180+yr(end)=*3xpi/180),...
(ya(end)*6+pi/180+yr(end)*3*pi/180)]1, " '—-r"');
legend('Aileron', 'Rudder', 'combined', 'steady state');

Yaw rate r response to combined (6, = 6°,0, = +3°)
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lateral speed v response to Sr:+3 and Sa:G degree combined, 2 minutes

40 T T T T T
————— Aileron
combined

v (fps)

0 20 40 60 80 100 120
Time (sec)

lateral speed v response to 8r=+3 and 6a=6 degree combined, 5 minutes
50 T T T T T
- — - — - Aileron
— — — Rudder
combined |+
——————————————————————— — — — steady state H

S0 — — - — - - - - — - — — — — — = = ===

_150 1 1 1 1 1
0 100 200 300 400 500 600

Time (sec)

Figure 2.70: Lateral speed v response to 6, = +3° and 6, = 6° combined
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close all; clear all;

s = tf('s"');
num_a = —0.003741%s"3+0.00270772%s"2+0.000139442%xs—0.00453851;
num_r = —0.4859%5"3-0.232663%5"2-0.0090178%s—0.0564712;

den = s74+0.6358%5"3+0.938762*5"2+0.511384%5+0.00368199;
sysl = tf(num_a/den);

t=0:.1:30;

ya = step(sysl,t);

subplot(2,1,1);

plot(t,yax6xpi/180, '-k');

hold on;

sys2 = tf(num_r/den);

yr = step(sys2,t);

plot(t,yr*3xpi/180,'-"');
plot(t,yax6xpi/180+yr*3xpi/180,'r');

xlabel('Time (sec)');

ylabel('r (rad/sec)');

title('yaw rate (r) response to \delta_r=+3 and \delta_a=6 degree combined, 30 seconds');
legend('Aileron', 'Rudder', 'combined');

[)
“©

subplot(2,1,2);

t=0:.1:300;

ya = step(sysl,t);

plot(t,yax6xpi/180, '-k');

hold on;

sys2 = tf(num_r/den);

yr = step(sys2,t);

plot(t,yr*x3xpi/180,'-"');
plot(t,ya*x6+pi/180+yr+3xpi/180,'r');

xlabel('Time (sec)');

ylabel('r (rad/sec)');

title('yaw rate (r) response to \delta_r=+3 and \delta_a=6 degree combined, 5 minutes');
plot([t(1) t(end)],[(ya(end)*6xpi/180+yr(end)=*3xpi/180),...
(ya(end)*6+pi/180+yr(end)*3*pi/180)]1, " '—-r"');
legend('Aileron', 'Rudder', 'combined', 'steady state');

Euler angle ® response to combined (0, = 6°,6, = +3°)
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r (rad/sec)

r (rad/sec)

yaw rate (r) response to 5r:+3 and 8a=6 degree combined, 30 seconds

005 T T T T T
0
-0.05
-0.1 Aileron
— Rudder
-0.15 combined
_02 1 1 1 1 1
0 5 10 15 20 25 30
Time (sec)
yaw rate (r) response to 6r=+3 and 83=6 degree combined, 5 minutes
05 T T T T T
Aileron
Rudder
0 combined |
— — — steady state
_05 -
-1 | | | | |
0 50 100 150 200 250 300

Time (sec)

Figure 2.71: Yaw rate r response to 6, = +3° and 6, = 6° combined
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close all; clear all;

set (0, 'DefaultAxesFontSize',8)

s = tf('s'");

num_a = —0.1431%5"2-0.0273017*5-0.110172;

num_r = —0.1144%s5"2-0.199712xs-1.36834;

den = s74+0.6358%5"3+0.938762*x5"2+0.511384*5+0.00368199;
sysl = tf(num_a/den);

t=0:.1:180;

ya = step(sysl,t);

subplot(2,1,1);

plot(t,yax6xpi/180, '-k');

hold on;

sys2 = tf(num_r/den);

yr = step(sys2,t);

plot(t,—-yrx3*xpi/180,'-"');
plot(t,ya*x6+pi/180+yr+3xpi/180,'r');

xlabel('Time (sec)');

ylabel('\Phi (rad)');

title('Roll angle \Phi response to \delta_r=+3 and \delta_a=6 degree combined, 3 minutes');
legend('Aileron', 'Rudder', 'combined');

)
©

subplot(2,1,2);

t=0:.1:480;

ya = step(sysl,t);

plot(t,ya*x6xpi/180, '-k');

hold on;

yr = step(sys2,t);

plot(t,yr*x3xpi/180,'-"');
plot(t,ya*x6+pi/180+yr+3xpi/180,'r');

xlabel('Time (sec)');

ylabel('\Phi (rad)');

title('Roll angle \Phi response to \delta_r=-3 and \delta_a=6 degree combined, 7 minutes');
plot([t(1) t(end)],[(ya(end)*6xpi/180+yr(end)=*3xpi/180),...
(ya(end)*6+pi/180+yr(end)*3*pi/180)]1, " '—-r"');
legend('Aileron', 'Rudder', 'combined', 'steady state');
x1im([0 480]);
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Roll angle @ response to 8r=+3 and Sa=6 degree combined, 3 minutes

20 T I T T T T T T
— Aileron
10| — Rudder //—//_I_
combined
g
s 0 i
S
_10 - -
_20 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180
Time (sec)
Roll angle ® response to 8r=—3 and 6a=6 degree combined, 7 minutes
0 T T T T T T T T
-5 . -
Aileron
%\ -10+ — Rudder ]
g combined
S -15} — — — steady state
_20 -
_25 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450

Time (sec)

Figure 2.72: Euler angle ® response to 6, = +3° and 6, = 6° combined
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2.4.5 HW 4 key solution

e e o S i

Chapter 7

7.3  When the throttle is first opened, thrust will be greater than drag and the airspeed will
increase. Thus you will progress up the drag polar towards P.. When P is reached, thrust will

equal drag and the airspeed will no 10nger change. P is a stable equilibrium point.

7.4  From (7.7,11b)

bis + b,
__DiS+Do ¢))

Gos.. =
03¢ s(s2 +¢15 + Co)

(a) Expressing (1) in terms of A1 2 =n+ie

__ bis+by

Gos. =
%= A - 1)

bis + bg
~_bis+tbo 2
s[(s - n)2 + 0?] @
For 8 = 8(t), it follows from Table A.1
Se=1 - )]
and
\ 0 =Ggg, « Oc
= Ggg, )
Expand Ggs,, using partial fractions
= b ©
o= b ®)

—(;.(S'n)2+0)2+s[(s-n)2+co2]

137
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Chapter 7

The second térm in (5) can be expanded as follows:

5 ) [% (s

——————=b,
s[(s- )2 + @?]  ©

The numerator of the part of (6) inside the square brackets is
As? - 2nAs + (n2 + w2)A +

and equating this to 1 in order to satisfy (6) results in

A+B=0
C-2nA=0

(n2+w?)A =1
From (10)

A=n2+@2)!
From (8) and (11)

B=-(n2+ 2!
From (9) and (11)

C =2n(n2 + w2)’!

138
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Bs+C
-n)2+m2:|

(6)

Bs2+Cs’ )

®
(€)
(10)
(11)
(12)

- (13)
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Chapter 7

From (5), (6), (11), (12) and-(13)

é=~b—]- @ + b A
© (s-n)2+w?2 (2+@2) S

B(s - n) + (Bn + C))
b
+0{ (s-n)2 +®2 f

o

4{_L}+_bc>__,l
o ls-n2+w2 @2+w2) S

_bo [ (s-m)
2+ @2 s -n)2 + 2]

bo'n [ .
. , 14
M2 +w?)@ (s-n)2+@? 19

Frpm (14) and Table A.1 (3, 13 and 14)

e(t)=entsinmt[ﬁ+ bon ] o [1.emcosa]  (15)

© M+wd)ow +(n2+(02)

b) b and b; can be found by using (15) at two different times t; and t) (since 6(t;) and O(tp)

are known) and then solving the two equations for the two unknowns bg and by. co and ¢ can be

found bby using (1) and (2). By expanding and equating the two denominators it follows that
82+cls+co=52~2ns+(n24;0)2) (16)
for all s. Thus equating the coefﬁpients of the same powers in s
139
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Chapter 7

c1=-2n 17
Co=n2+ @2 (18)
where n and o ére known.
7.5 From Table 4.5
1 .
Yy, = 5 PUoSCyB 1)

1

pUObSCnB

RO i

NV =
Y8r = E Puy SCySr
Ls, =7puo’dSCes,
1 2
Ls =7 puo?bSCys,

Nﬁa =

pqubSCnsa

BN —

1
NS; = '2— pUQZbSCnSr

140

212




2.4. HW4 CHAPTER 2. MY TYPED HWS AND...

- Chapter 7
Thus the condition that must be satisfied is
det A#0 (6)
710 (a) From(6.7,2)
£(s) = s* + .6358s3 + 938852 + .5114s + .003682 M
In (1) replace s by iw with @ =0, thus

£(0) = .003682 @

In (7.9,5) the static gain case is also given by N; j(0) which is the constant term in the expression.

Thus the static gains Gj;(0) = Nj;j(0)/£(0) are given by
Gvg,(0) = .6220/.003682 = 168.9 3)
Gi,(0) = -5.934/.003682 = -1612
g0 =0
Gps(0)=0
Grs,(0) = 004539/.003682 = 1.233

Gr5,(0) =-.05647/.003682 = -15.34
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Chaprer 7

Gs,(0) = .1102/.003682 = 29.93

G¢5,(0) = -1.368/.003682 = -371.5

(b)  As® — oo, Gjj(im) can be simplified by keeping only the dominant high order

terms in each of Njj(iw) and f(iw). From (1)

Am fiw) = ot

Ffom (7.9,5) as W~ in N jj(i®) only the first term need be kept. Thus
(gi_r)noo |Nij(i(n)| = aj; "

where n is the largest index of @ in Nijj(im). Thus

O}i_n)lw IGjji@)l = ajj 0@4)

and the slope of (6) in decades per decade can be determined by taking the logjg of the
right-hand side

log1o ajj + (n - H)logiow

The desired slope is given by (n - 4) decades/decade. From (7.9,5)

152
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Chapter 7
Slope
Transfer Function (decades/decade)
Gvﬁa -2
“‘ ’ GVS; '1
GpSa -1
Gpﬁr -1
Grs, -1
Grs, -1
Gy, 2
G¢5r 2
©) Consider the case with 3, deflection only. From part (a)
G¢s,(0) =29.93
= 0/8, ' ®)
Thus for ¢ = 15° ‘
83 =15/29.93
=0.501° 5 ©)
To determine {3 just find v from (a)
Gy, (0) = 168.9
=v/8y (10)
Hence
V= 1689 Sa
(with 8, in rad)
153
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s e )

Chapter 7

But B = v/ug (up = 774 fps from Sec. 6.2) and thus for 8, =0.501°

168.9 /0.501
B=772 (057.3 )57‘3

=0.109°
The yaw rate can be found from

Gr3y(0) = 1.233
= r/83

Hence for 6, = 0.501°

0.501% .
r=1233x (—575)57.3

=0.618 deg/s
Consider the case with 3, deflection only. From part (a)

Gos,(0) = -371.5
= ¢/8;

Thus for ¢ = 15°
O =-15/371.5
=-0.0404°

From (a)
Gvgr(O) =-1612

= V/sr
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I
z Chapter 7
| Hence
v=-1 6126[
and for & = -0.0404°
1612 0.0404
=774 (Q 573 )573
=0.0841° an
From (a)
G,ar(O) =-15.34
=1/8; (18)
Hence for &, = -0.0404°
.0404
r=1534 x(%ﬁ)ﬁﬁ |
= 0.620 deg/s (19)

Gn & = 13.5

IAn,l = 13.5 x 18

=135%x_2_
57.3

=0.471

155

711 (a) From Fig. 7.18a it is found that at the frequency of the short-period mode

(D

Thus for a sinusoidal 3¢ of amplitude I8¢} at that frequency, the amplitude 1An,! of the response

An; (about ngzy, = 1) is (for 1&! in rad)

2
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Chapter 7

and nz =1+ 0.471 sin (Wgpt) 3)

(») Since n, is measured at th¢ CG and must reach a value of n; = 0 for a passenger at
the CG to be lifted from his seat, it follows that An, must reach a value of -1. This is achieved by
(see (2))

18l = (1/13.5) x 57.3
=4.24° 4)

() For n to reach a peak value of 2.5 would require An; to reach a peak of 1.5.
From (2)
10 = (1.5/13.5) x 57.3
=6.37° ' 5)
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N usels)= —0.0008% g% 0A3S rO ?;9 »
_12.£ (O~O/Zét9§2{/©100§?§)§f 9;0332) +
+1-16 (‘zlvw.f/a/)

u@‘%) SINCE  THeE owey ELEMEN)7 OF E 3?[ 0
s THe TIRST ove AL wE fpuE To DO

IS USE THE TIRST TeRm oF EAtk of (HE
Muge fv)w fe | Nf;?g@ p /’U@'gg Ans  REPLACE THE

TACTOR —O.000 Id7 W/l 2,66
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O.L. Step Resp. to 6p=0.16667

90 T T T

0 [ | | ; | | | |
t(s)
O.L. Step Resp. to 6pz0.16667

01 T T T

(<2}
~
[oe]
©
)

0.05 -

y (rad)

-0.05— -
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O.L. Step Resp. to 6p:0.16667
x10°

2 T
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40 50 60

t(s)
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O.L. S
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O.L. StepResp.to 5 =1 + 5 =0.1666J.L. Step Resp. to 571 + 5 =0.16667

~
n
=~
=
N

30

251

10}

5}

0

201

15¢

0 2
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4t(s)6

10

O.L. Step Resp. to 6e:1° + 6p:0.16661L. Step Resp. to 6e:1° + 6pz0.16667
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O.L. StepResp.to 5 =1 + 5 =0.1666J.L. Step Resp. to 571 + 5 =0.16667

100 0
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9D 6o} 18
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5 > 0015 |
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=] e} ~0.02 WW
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O.L. Step Resp. to Ba:6°
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O.L. Step Resp. to 6r:3° O.L. Step Resp. to 6r:3°

40

0.05

v (ft/s)

4t(s)6 4t(S)6

O.L. Step Resp. to 6r:3° O.L. Step Resp. to 6r:3°

230




2.4. HW4

CHAPTER 2. MY TYPED HWS AND...

40

O.L. Step Resp. to 6r:3°

v (ft/s)

-30
0

10 20 40 50 60

t(s)

O.L. Step Resp. to 6r:3°

10 20 40 50 60

t(s)

0.05

O.L. Step Resp. to 6r:3°

10 20 40 50 60

t(s)

O.L. Step Resp. to 6r:3°

50

40

10 20 60

t(s)

231




2.4. HW4

CHAPTER 2. MY TYPED HWS AND...

O.L. Step Resp. to 6r:3°
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O.L. Step Resp. to 6a:6° + 6r:3° O.L. Step Resp. to 6a:6° + 6r:3°
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O.L. Step Resp. to 6a:6° + 6r:3° O.L. Step Resp. to 6a:6° + 6r:3°
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O.L. Step Resp. to 6a:6° + 6r:3°
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O.L. Step Resp. to 6a:6° + 6r:—3° O.L. Step Resp. to éa:6° + 6r:—3°
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O.L. Step Resp. to 6a:6° + 6r:—3° O.L. Step Resp. to éa:6° + 6r:—3°
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25 HW)S

2.5.1 Problem 1

1. Problem 8.2. Hints: in part a), use the open-loop transfer function you used in Chap.7 (it is
R . . s oY)

repeated in Eq.(8.3) or you can form it using Eqs.(6.2,2) and (7.7.2)).

In part b), start with the schematic of Fig.8.5. Write an expression for Ggg.= %. Develop an

expression for the error, e(s), in terms of Ggg, (5) and 6.(s) and evaluate e, = {hm e(t).
— 00

8.2 (a) What is the steady state @ that results from a steady A8, = 5° for the jet transport
of Sec. 8.37
(b) For the closed-loop response to a unit step input in Sec. 8.3, with J = k,, derive

an expression for the steady-state error e, as a function of k,. (Hint: start with

(8.3,1)).
(c) Calculate the value of &, needed to keep ¢, < 0.1° for 6. = 5°.

(d) For the value of &, found in (c) what is the elevator angle at + = 0" when 8, is a
step input of 5°? Comment on the practicality of using &, alone to reduce ¢,

Solution

2.5.1.1 Part (a)

To find the steady state 6(t), the final value theorem will be used

tlilg O(t) = £1_1>% sO (s) (1)
But
6 (s) = Ad, (5) Go g, (5) (2)
Substituting (2) in (1) gives
lim 6 (f) = lim sA5, (s) Go,, (5) (3)

Using the hint given, the open loop transfer function Gg s is used, which is given in (8.3,3)
on page 267 in the text as

- (1.15832 +0.35455 + 0.003873)

G = 8.3,3
00: ) = 075046857 + 0.93549452 + 9.453025 X 1035 + 2195875 X 102 ((8:3,3))
Since Ao, = 5%, then £ (AS,) = %Aée and (3) becomes
S — (115852 + 0.3545s + 0.003873) )
t) = -
HIm 8 () = ligs (s 6) S5+ 0.7504685 + 0.9354945% + 9.453025 x 1035 1 4195875 x 103

— (0.003873)

=A
664.195875 x 1073
3 ( —0.003873 )

4195875 x 1073
=| —4.6152°
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2.5.1.2 Part(b)

Starting from (8.3,1) on page 266 of the textbook
0(3) = 0.(5) Gop,

G
= 0,(5) ot
1+ ]G@/ée

Since the error by definition is given by
e(s) = 0. (5) -0 (s)
Then using (6) and (5) results in

Go <
)= 0.9~ 0.6) [t
B JGo,5,
=00 (1 1 +]G6,68)

But 6.(s) is step input, whose Laplace transform is é, hence
1 G
s\1+ ]GG/(SE

Since | = k, then

1 k,G
STt

B 1+ kZGQ,@e
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Using final value theorem gives

lim e (t) = limse (s)
t—o0 s—0

=lim1 - lim —————
s—0 s—0 1+ szQlée
—(1.15852+0.35455+0.003873)

— : s*+0. 5°+0. S°+9. X107°s+4. %10~
-1 -|1im kag 0.75046853+0.93549452 +9.453025x10~35+4.195875%10-3
s—0 —(1.15852+0.35455+0.003873)

1+ ke g 7500657 +0.935 1992+ 45302510 35 14 195875103

~(0.003873)
_ 1 _ __24195875x103
T 4k, —000s873)

24.195875x10-3

~0.923 05k,
1-0.923 05k,
_ (1-0.92305k,) + 0.923 05k,
- 1 - 0.92305k,
1

~ 1-0.92305k,
Which simplifies to

1

lime(f) = ——
ime® = I3k,

This is a plot showing the steady state error e(co) as function of k, as k; is changed from 0
to =50

ess[k2_] := 1/(1 - 0.932305 k2);
Plot[Evaluate@ess[k2], {k2, -50, 0}, Frame -> True,
FrameLabel -> {
"ess", Nonel,
{"k2", "steady state error as function of k2"}},
BaseStyle -> FontSize -> 18
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2.5. HW5
steady state error as function of k2
0.20} [ ]
_0.15} /]
E E .-":I:II ]
0.10} 1
[ yd ]
0.05} - ]
-50 -40 -30 -20 -10 0
k2
Figure 2.73: Steady state error as function of k,, problem 1
2.5.1.3 Part(c)
From (7) above
B JGoys.
E(S) = QC (S) (1 - m)

When 0. (t) = 5° then 0, (s) = g and using final value theorem, with requirement that e, < 0.1

then
5 (;) <01
1 -0.92305k,
Hence
5 < 0.1 -0.092305 k,
4.9 < -0.092305 k,
49

ko < o2
2= 70.002305
_53.085

k2 <
Hence k; has to be kept below —-53.085 for the steady state error to be less than 0.1° when

0.(s) =5°
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2.51.4 Part(d)

From figure 8.5, in textbook 9, is the elevator angle (output from the controller and the

controller aircraft

= Jf = Ga -

Figure 8.5 Pitch attitude controller.

Figure 2.74: Figure 8.5 from text, pitch attitude controller, problem 1

input to Ggs,. The controller is now | = k, where k, = -53.085. Hence
0, = e(s)ky (8)

But e(s) is given in (7). Hence (8) becomes

kyGe s,
0. (s) = 0. (s) (1 - m)kz

Since 6. (s) = g and k, = —53.085 the above becomes

5 -53.085) G
5,6 =2 [1- ( ) Ge,s,
s\ T 1= (53.085) Gy,

) (53.085) 9)

Using initial value theorem
lim 6, (f) = lim so, (s)
t—0 §—00
Applying this to (9) gives
(—53.085) Gy 5,
1-(53.085) Gg 5,
(-53.085) Gg 5,
1-(53.085) GQ[@E)

(SE(t:O):—lim5(1—

S—00

) (53.085) (10)

S—00

= — lim 265.43 (1 -

—(1.15852+0.35455+0.003873)

Since G, = s4+0.75046853+0.9354945%+9.453025x10~35+4.195875x103 then, by dividing numerator and
denominator by s* and then taking the limit, it is clear that

lim Gg’(sg =0

§—00
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Therefore (10) reduces to

5,(t = 0) = —265.43°

2.5.2 Problem 2

) 1
2. Problem 8.3. Hint: In part b}, you are to find the tT_l}ll d.(t) for the case J(s) = 0.5 (l + s+ —)
s s
and for a step in #..

8.3 (a) With respect to Fig. 8.5, write out the transfer function for the elevator angle re-
sponse to £, input.

(b) Calculate the steady-stale response for the case of Fig. 8.7c.

Solution

2.5.2.1 Part(a)

Figure 8.5 from the textbook is

contrallar aircraft

J P Gy -

Figure 8.5 Pitch attitude controller.

Figure 2.75: Figure 8.5 from text, pitch attitude controller, problem 2

We need to find transfer function %. From the above diagram we see that

c

O (s) = e(s)] () (1)
Where e(s) was found in problem 1 above in equation (7) as
B JGoys.
e(s) = 6c(s) (1 T +IG9,5,3)
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Hence (1) becomes

G
0. (s) =] (s) (1 - 11]%;5)
5 ) JGeps,
G_C = Gs,0, —](1 - m)
1
Gég,ec = ](W—GQ,@,)
T
1+ ]Ggy, )

Where

. - (1.15852 +0.3545s + 0.003873)
00 ~ 54 1 0.75046853 + 0.93549452 + 9.453025 X 1035 + 4.195875 x 103

2.52.2 Part(b)

Using the hint, let ] = 0.5 (1 +5+ %) and apply the final value theorem to obtain the steady
1
s

state 9, (c0) when 6, (s) = - (step input).

Hence (2) becomes
Oc J

6. 1+JGgs

1 0.5(1+s+1)
S
6E(S)=(—) N
s 1+0.5(1+s+ ;)Gg,ée

Therefore

o.5(1+s+§)

0, (c0) = lim N
201405 (1 +5+ ;) Gos,

To simplify the above, the numerator and denominator are multiplied by s

. 0.5(s+52+1)
O (00) = lim
520 5+ 0.5 (s +52 4+ 1) Goo,

Now the limit is taken, and noting that lim,_,; Gg 5, = % results in

0.5
~(0.003873)
4.195875x10-3

o (OO) =

0.5(1)

=| -1.0834°
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2.5.3 Problem 3
3. Problem 8.9. Note: the constant r. in the expression for ry, is the magnitude of the step in r.(t).

8.9 (a) Prove that in the yaw damper with washout, the steady-state yaw rate for a step in
r, is independent of the washout time constant and is given by

Iy = rJ(0)G,5(0)

(b} Prove that if the washout filter is in the forward path, instead of the feedback
path, then

regardless of the washout time constant.

Solution

2.5.3.1 Part(a)

The transfer function diagram for the Yaw damper is shown on figure 8.21, page 288 in the
textbook Where

E"r
G'ﬁr r
Rudder and airframe
servo actuator
W
_ 333K flter R
5+ 3.333 E+a

Step response
of filtar

o

Figure 8.21 Yaw damper.
Figure 2.76: figure 8.21 from text book, yaw damper

r(s) =7.(5) Gy, 1)
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The closed loop ér,&, is

G,
Gré = ] .
o1+ W]G,,,ér

To obtain ry = (o) the final value theorem is used. Here 7, (s) = rcé where 7, on the right
side is now the magnitude of the step input (per the hint given). Equation (1) becomes

Tes = li_{%sﬁéré
- lim rc]Gr o
T 501+ W]Gr(g
Using W = é the above becomes
— lim 7’c]Gr o
s—=01 + _]Gré
- rc] (O) Gr,ér (0)

Since limg_, s%a = 0 then the above reduces to

s =1cJ (0) Gr,ér (0)

Since the expression for 7, does not contain the time constant - in it, (it does not contain
a at all), therefore ry, does not depend on the time constant of the washout filter.

2.5.3.2 Part(b)

Putting the washout filter in the forward path instead of in feedback, then

_ W] Gr,ér
"1+ WG,y
Following what was done in part (a), to obtain r, = r(co) the final value theorem is used.

Here 7. (s) = rcl where 7. on the right side is the magnitude of the step input (per hint above).
Equation (1) becomes
limsee
Tss = SI_I%S;GHS
. 1 WG,
T 01+ WIG, s,

Using W = —— the above becomes
s+a

_] 7,0y

Cs+a
s=01 + _]Gré

s+a r

rSS -
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Since limg_,, é = 0 then the above becomes
0
+0

Tss =

Il
O -

Hence
tlim r.(t)=0

Regardless of what 4 is.

2.5.4 Problem 4

a =]
4. Following the same procedure shown in class, develop expressions for Gy.g. and Gug.. Any
quantity developed in class can be used with no need to rederive it.

¢ e p = Side-velocity
N~ 9 €+ €p 0 a >V
—»@—P J. p Ja > 7m
B ? Roll-rate
alleron / [ p
Iy
)
~ Yaw-rate
N
&
N
=0 e o 0 bank-angle
I" c — + r J r ¢
— > >
r
Plant
- transfer
rudder function E:Iel;}a/ngle

Washout highpass filter

. s [
W_ s+a

main_diagram.vsdx
Drawn by Nasser M. Abbasi
Ref: Prof. Bonazza handout, 5/1/2014
EMA 523, UW, spring 2014

Roll control system

Figure 2.77: Roll control system, nonaugmented, problem 4
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2.5.4.1 Part(a)

We need to obtain ééuqbc. From the above diagram we see that
0 = ep]a
= (pc - P) Ja
But p. =ey), = (cpc - cp) J»» hence the above becomes
50 = ((9c=0) Iy =p) s
Since p = G5,07 + Gps, 04, the above becomes
80 = ((c = @) = (Gps, 0 + Gp,04) ) T

. _ _ —WJiGrsa
From lecture 5/1/2014 in class, 6r = BS, where B = T WG

80 = ((¢c = @), = (Gps, BS4 + Gps,04)) Ja
Also from lecture 5/1/2014 in class, ¢ = ¢cé¢¢>c, and the above reduces to
Oq = (((pc h ¢Cé¢¢C)]p B (GpérBéa + Gpéuéa))]“
= (Pc]p - ¢cé¢¢clp - GpérBéa]a - Gpéaéa]a
8 (1+ Gy, Bla + Gy Ja) = b (Jy (1= G )

. Therefore

Therefore

& = (1-Gop)
e (Pc 1+ Gpé,B]a + Gpéu]a

2.5.4.2 Part(b)

From the diagram above
U= Gvérér + Gv(sa(sa

= — WhiGroa
But 6r = B6, where B = T Wi G hence

0= GvérB(Sa + Gv(ga(sa
= (GZ)BVB + Gvéu) op

Jp(1-Gooc)
1+GP57Bjﬂ+GP5a]ﬂ

0= (GvérB + GU(S,Z) qbcééach

From part (a), we found o, = QDcééacpc’ where ééa(pc = . The above becomes

Therefore

év¢c = % = (GvérB + Gvbﬂ) é5g¢c

2.5.5 Problem 5
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5. Problem 8.11. Hints: modify the schematic of Fig. 8.26 as described in the problem statement
(heeding the hint given there). In the problem statement, “write out the angmented system differ-
ential equation” means write something like & = Pz + (1), where z, P and () are madified versions
of the same vectors and matrices seen in the example in class. Specifically:

add a new summator point and a new reference value wy;
then v, — = ey ;
£y now enters a gain block that turns it into ¢, . Now vou're back to the system we studied in class.

The new state vector, %, is the same as before except that this time it includes ¥ [place it after ¢,
so it has 8 components. Then vector () must have 8 components and matrix P becomes an 8 <8,

Write a relationship between 1. and ¢,

In the original equation z = Pz + Q¢ replace ¢, with an expression involving 1.
Remember that o = rsec fy and assume By = 0.

Now rearrange matrix P and vector () to account for the changes you just made.

Onece done with that, modify the Matlab and for Simulink seripts in the course website to include
the additions wou made to the control loop and generate plots of the responses of all the variables
studied in class to an impulse and a step in the new input variable. For the gains, I recommend: a
value of 2.5 between ey and ¢, and a value of 1.5 between e, and p,.

Especially with the Simulink seript, it is easy to experiment with different inputs. Comment on the
results vou abtained, especially on the response of ¢ and + to step inputs in 0, and r.. Make sure
to attach your Matlab script and/or your Sinmlink schematic,

8.11 Add an outer loop to the system of Fig. 8.26 to control the heading angle . Draw a
new block diagram and write out the augmented system differential equation. (Hint:
design the loop to command a bank angle proportional to heading error.)

Figure 2.78: problem 5 description
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Solution:

2.5.51 Generating the augmented system

From class notes on may 1, 2014, the following was derived

{z} = P{z} + {Q} ¢,
Where for 6, =0

(5] | a2 a3z & b bro 0 Jfo] [o]

P Ay Ay a3 0 by b 0 p 0

7 az axp a0 by bz 0 r 0

o [ () 1 0 0 0 0 0 0

- +

(.P 0 ke 0 _kaky 1 0 0 ¢ koky Pc
6‘1 Ta Ta Ta 6“ T,

5, 0 0 0 0 0 0 1 O, 0

. K, K, K, k, kb 1 11
Y1 | o a0 by (T - _MwO) - (; + T_wo) Y1 10 ]

The values for 4;; in the above are those from lateral equations of motion equation 4.9,19
on page 111 in the textbook

i v, Y, 1 /Y, o\ _
T : T : ( H:J) : g'l:ﬂ"_h HU
m : m : I :
L, l ) L -
(— + N2+ f’ﬂ,} (= +rN) 0
E A Y AT A
AN LA AT
Lo+ =) 1| 2V (L + =)
i 0 i 1 : tan 6, i 0

Figure 2.79: Details of A matrix from x’(t) = Ax(t) + Bu(t) for problem 5

And the b;; are from the B matrix (4 X2) from equation 7.9,3 on page 244 We are now ready
to augment the above system. Since ey, = 1. — ¢ and e, k = ¢ where k is the gain shown in
the above diagram feeding to ¢, then

b =k (e - ) (1)
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ir

m

L "B

I'L

N

+ IL.Ng

12}

F

Figure 2.80: Details of B matrix from x’(t) = Ax(t) + Bu(t) for problem 5

Equation (3) in the notes from 5/1/2014, needs to be modified. It was

: k.k k o, kak
b= =——F¢=Zp- =+ —Lo, 3)
Tﬂ Tll Tll T(l
Using (1) and (3) results in
: k,k k 5, kik
§ =Py 24, 24 Pr(w. -
! Tﬂ Tﬂ Tﬂ " Tﬂ (l/}c Ip)
k.k k 6, kakp k,k
— 4Py _lta, Ta_ kw pkwc
Tﬂ Ta Tﬂ a ﬂ
Given that ¢ = rsec 6, = r since 6, = 0. In Laplace domain this results in ¢ (s) = ér The new
augmented system becomes
(51 [an e @z g 0 by b1z 0 o] [ o]
p Ay ap a0 0 by b 0 p 0
i a; axp  azp 0 0 b ) 0 " 0
i 0 1 0 0 0 0 0 0
| o1, | °
A=l o o 1 o0 0 0 0 0 0 |¥e
17[1 k kak kk 1 17b
' 0 -= 0 -2 P __ 0 0 P I )
611 (P T, T, T, a T
o, 0 0 0 0 0 0 0 1 o, 0
: k, k, ke k, kb 1 11
0] [Zan e Tas 00 fh (2o -(Ze D)) Lo
The above is the new system {z} = P {z} + {Q} ¢, where P now is an 8 X 8 matrix and Q is an
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8 x 1 vector. A new state 1) was added and the input now is ¢, instead of ¢.. The closed
loop transfer function is

G=[sI-P]'Q
For the controller, the following values will be used k = 2.5 and W (s) = %, where 7, =4,
s+ —
and J, (s) = rrlr where k, = —1.6 and 7, = 0.3, hence J, (s) = (10316 and J,(s) = k, = 1.5 and
TR L T T )T 51/0.3) p\&) ="K =1

Tr
1 _
k 1

L -1
J. = —= where k, = -1 and 7, = 0.15. Hence J, = 2. To summarize

S+a S+m
k=25
S
W(s) = T
S + Z
1(6) = -(1/03)1.6 _ -5.3333
" s 4+(1/03) s +3.3333
1
= 5= —6.6667
o1 L s +6.6667
s+ 0.15

Now that all the controllers are known and the new augmented system is shown above,
Matlab was used to obtain the response due to an impulse and step in the new input ¢..
The structure of A, B, C and D matrices is as follows

Number of
columnsiis
the number
of inputs
Iy T
|
Number of I
rows is the '
|
number of A | B
|
states nXn n X M
|
v __ |
berof | ]
Number o
rows is the C : D
number of I/v X n |]/' X m
outputs v I

Figure 2.81: State space matrices dimensions
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And the augmented roll controller becomes

(7)
(5) Side-velocity
€p J IN7 s s our7 Y
IN5 | @ [ouTs | Oa i\w
v Roll-rate
(1) (2) 3) alleron / > D
ouT8
2 1 -12 t;
- ~~ Yaw-rate Q79
3 2 -10 /! >
5 3 -8 (a) 6) S ) 1 Eul(:_lal;//gle
6 4 -11 CD IN10O| S
Fe Fe e.INg IN8 ouT12
720 N ™ 1 [quma Jr ™o ©)
8 6 0 N4 ouT6 17 plant
- bank-angle
99 0 rudder transfer =5%
109 0 function OUT1
Q connection
matrix
Washout highpass filter
[1,4] ouT11 IN9
_ s [
INPUT W= <=
[5,6,7,8,9,10,12] ()

OUTPUT

Augmented Roll control system

main_diagram_2.vsdx
Drawn by Nasser M. Abbasi

Figure 2.82: Roll control system, augmented, problem 5

2552 A B,C,D generated by Matlab

These are the numerical value of the matrices A,B,C,D generated by Matlab after connecting
the system

254

sys=connect (sysa,Q, inputs, outputs)
a=sys.A
b=sys.B
c=sys.C
d=sys.D
a =
-6.6667 0 0 -1.0000 0 -1.5000 0 -3.750
0 -3.3333 0 0 -1.0000 0 0.2500
0 -30.0907 -0.0558 0 -774.0000 32.2000 0
0.9540 -0.6101 -0.0039 -0.4342 0.4136 0 0
-0.0249 2.5915 0.0011 -0.0061 -0.1458 0 0
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0 0 0 1.0000 0 0 0 D
0 0 0 0 1.0000 0 -0.2500 D
0 0 0 0 1.0000 0 0 D
b =
3.7500 0
0 1.0000
0 0
0 0
0 0
0 0
0 0
0 0
c =
-6.6667 0 0 0 0 0 0 D
0 -5.3333 0 0 0 0 0 D
0 0 1.0000 0 0 0 0 D
0 0 0 1.0000 0 0 0 D
0 0 0 0 1.0000 0 0 D
0 0 0 0 0 1.0000 0 D
0 0 0 0 0 0 0 1.0000
d =
0 0
0 0
0 0
0 0
0 0
0 0
0 0

2.5.5.3 Generating the responses
Four different inputs are used, and for each input, seven outputs were plotted.

The inputs are: 15° step input in 1, and one radian angle impulse in .. For each of these
two inputs the responses ,p,r, ¢, 1, 06,, 0, were plotted.

Next, a step input r, of amplitude 1° per second, and an impulse 7, of 1° per second are used,
and for each of these inputs, the responses g,p,r, ¢, 1,0,,6, were plotted.

There are 28 different plots generated. Special attention is given to the response ¢ to the
15° step input ¢, and to the response r to the 1° per second step input ..

Final conclusion is given below at the end after showing the responses obtained.
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2.5.5.4 Response for one radian impulse in i,

All variables subside to negligible level, including i which had a residual value in the
non-augmented system when ¢, was used as input instead of 1. here.

All state variables had good damped oscillatory decay as well. The aileron angle was larger
than the case with the non-augmented system, reaching almost 50 degrees before damping
down. The rudder angle went to 2 degrees which is twice as much as with the non-augmented
system in the text book at page 293. Variables decay to negligible level in about 15 seconds,
similar to the non-augmented system, except for ¢ which needed about 30 seconds.

1 radian impulse response. Input: [wc ] Output: [Sa]

1 radian degree impulse response. Input: [, ] Output: [3]
60 T T 2

50

401

301

degree
degree

20

15 i i i i ; ;
0 5 10 15 20 25 30 35 40
t(s) t(s)

Figure 2.83: Impulse response. Input 1., out- Figure 2.84: Impulse response. Input ¢, out-
put o, put 6,

1 radian degree impulse response. Input: [y, ] Output: [ B] 1 radian degree impulse response. Input: [y, ] Output: [p]
2 T T T T T T T 25

20

degre

10

_15 L L L L L L L _15 L L L
[ 5 10 15 20 25 30 35 40 0 5 10 15
t(s)

I I I
20 25 30 35 40
t(s)

Figure 2.85: Impulse response. Input 1., out-Figure 2.86: Impulse response. Input ¢, out-
put 8 put p
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1 radian degree impulse response. Input: [w_] Output: [¢] 1 radian degree impulse response. Input: [\u:]ompm [21]

degree
degree per second

5 10 15 20 25 30 35 40

Figure 2.87: Impulse response. Input . out-Figure 2.88: Impulse response. Input ¢, out-
put ¢ put r

1 radian degree impulse response. Input: [\uc] Output: [ y]
6 T T T T T T T

degree

-1 I I I I I I I
0 5 10 15 20 25 30 35 40

t(s)

Figure 2.89: Impulse response. Input ¢, output ¢
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2.5.5.5 Response for one degree per second impulse in 7,

All variables here also subsided to negligible level in about 15 seconds, except for ¢ and ¢
which needed 40 seconds.

All state variables had good damped oscillatory decay as well. The aileron angle reached
only 5 degrees before damping down.

1 degreels impulse response. Input: [, ] Output: [3,] 1 degreefs impulse response. Input: [ r_ ] Output: [3]

degree

I | I | I | I
0 5 10 15 20 25 30 35 40 o 5
t(s) t(s)

Figure 2.90: Impulse response. Input r., out- Figure 2.91: Impulse response. Input rc,, out-
put 6, put 6,

1 degree/s impulse response. Input: [rc] Output: [ B] 1 degree/s impulse response. Input: [rc]Output [nl

0.8

0.6

04r

degree per second

-0.6-

-0.8

- | | | | | I I I
0 5 10 15 ) 5 10 15 20 25 30 35 40
t(s) t(s)

Figure 2.92: Impulse response. Input rc., out-Figure 2.93: Impulse response. Input rc., out-
put put p

2.5.5.6 Response for 15 degrees step input in 1,

Aileron angle took 40 seconds to damped to zero and had large initial oscillation (-50
degrees). Rudder angle reached 1.2 degrees before damping.

The yaw rate r did not residual value as the case was with the non-augmented system when
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1 degree/s impulse response. Input: [, ] Output: [¢] 1 degreels impulse response. Input: [1, ] Output: [ y]
25 T T T T T 0.6 T T T T T

degree
degree

Figure 2.94: Impulse response. Input rc. out-Figure 2.95: Impulse response. Input rc., out-

put ¢ put ¢

1 degree/s impulse response. Input: [rc] Output: [2 1]
1.2 T T T T T T T

0.4 .

degree per second

0.6 I I I I I I I
0 5 10 15 20 25 30 35 40

t(s)

Figure 2.96: Impulse response. Input rc., output r
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roll command was used as can be seen in figure 8.28, page 294 in the text. Here we see r
damping down to almost zero in 40 seconds.

15 degrees step response. Input: [\4/c ] Output: [65]

15 degrees step response. Input: [y, ] Output: [5]
T T

14

degree

degree

L L L L L L
0 5 10 15 25 30 35 40

20
t(s)

5 10 15 20 25 30 35 40
t(s)

Figure 2.97: Step response. Input ¢, output
5ag prep put ¥ P Figure 2.98: Step response. Input 1, output 6,

15 degrees step response. Input: [v_] Output: [B] 15 degrees step response. Input: [y ] Output: [ p]
1.4 T T T T

degree
degree per second

L L L i i L Il Il Il Il Il Il Il
5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
t(s) t(s)

Figure 2.99: Step response. Input ., output Figure 2.100: Step response. Input ¢, output
p P

2.5.5.7 Response for one degree per second step input in .

Aileron angle reach 20 degrees steady state, while rudder was -1.6 degrees when the reference
command is set to one degree per second yaw rate r..

Rudder angle had more oscillation than aileron but both reached steady state in 40 seconds.
The roll rate p damped to zero in 40 seconds.

State variable yaw rate r did not track r. in this case. The augmented system could not
control Yaw rate as it did not follow the step input r, as is discussed more below.
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15 degrees step response. Input: [y, ] Output: [ 6] 15 degrees step response. Input: [Wc] Output: [2 1]

30 : : : : : ! ! 3 T T T T T

degree
degree per second

0 5 0 s 2 & 30 3 40 0 5 10 15 20 25 30 35 40
Figure 2.101: Step response. Input ¢, output Figure 2.102: Step response. Input 1., output
¢ r

15 degrees step response. Input: [\yc] Output: [y]
18 T T T T T T T

degree

| | | | | | |
0 5 10 15 20 25 30 35 40
t(s)

Figure 2.103: Step response. Input ., output ¢
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25

1 degreels step response. Input: [1_ ] Output: [3,] 1 degrees step response. Input: [1, ] Output: [3]

T T T T T 0 T T T T T T T

degree

I
10 15 20 25 30 35 40
t(s)

Figure 2.104: Step response. Input r,, output Figure 2.105: Step response. Input ., output
04

Figure 2.106:

p

-0.2

-0.4

degree

Or

1 degreel/s step response. Input: [rC] Output: [ B] 1 degree/s step response. Input: [ rc] Output: [ p]

T T T T T 25 T T T T T

degree per second

)

Step response. Input 7., output Figure 2.107: Step response. Input 7., output
p
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1 degree/s step response. Input: [rc] Output: [y]
7 T T T T T

1 degree/s step response. Input: [rc]Oulput: [0]
10 T T T T T

degree
degree

() 0 5 10 15 20 25 30 35 40
t(s)

Figure 2.108: Step response. Input r. output Figure 2.109: Step response. Input ., output

¢ 0

1 degree/s step response. Input: [rc] Output: [21]
1.2 T T T T T

0.6~

0.4

degree per second

0.2

1
0 5 10 15 20 25 30 35 40
t(s)

Figure 2.110: Step response. Input r,, output r
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2.5.5.8 Conclusion

Looking at the 1 step response of 15° in . given in figure we can see that the response
Y was good to the step input. After 30 seconds, it had amplitude of 16 degrees, and at 40
seconds it was close to the 15 degrees reference input. There was no oscillation and almost
no overshoot (about 1 degree overshoot).

However, Looking at the r step response of 1° per second in r, given in figure [2.110} the r
step response was not as good as the case was when using the nonaugmented system.

There was similar oscillation initially in the response r, but after 10 seconds, the response
failed to reach one degree per second, and it actually went to zero instead, as can be seen
in the following figure.

This shows the augmented system is not suitable for controlling r.
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=Student Version> Figure 27 <Student Version> Fgure 21 -|Ol=
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Figure 2.111: Showing augmented system is not suitable to tracking r,
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2.5.59 Source code listing

%This script is modified version of EMA 523 class script to solve
sproblem 5, HW5.

%sstep input in \psi_c and r_c and impulse in \psi_c and r_c

%sare given. For each, response in v,p,r,\phi,\psi,del_a and del_r is
%splotted.

% EMA 523 Univ. Wisconsin, Madison, spring 2014

% modified by Nasser M. Abbasi

close all;

clear all;

v_cruise = 774;%cruise speed in fps

max_time = 40;

T = 0:0.01:max_time; %time interval for plotting

%set up matrices %%%%%%%%%%%%%%%%%%%

A=[-0.0558 0.0 -774.0 32.20;
-0.003865 -0.4342 0.4136 0.0;
0.001086 -0.006112 -0.1458 0.0;
0.0 1.0 0.0 0.0]

B=[0.0 5.642;
—-0.1431 0.1144;
0.003741 -0.4859;

0.0 0.0]
C=[10 0 0;
010 0;
001o0;
000 1]
D=[0 0;
0 0;
0 0;
0 0]
f—————————— set up string arrays and cells

states='v p r \phi'
inputs='aileron rudder';
outputs='v p r \phi';

states_st={' v ';' p ';' r ';' \phi '};
inputs_st={' aileron ';' rudder '};

outputs_st=states_st;

%————————— display all matrices
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printsys(A,B,C,D,inputs, outputs,states);

G——————— SYs1
[A1,B1,C1,D1]=zp2ss(0,0,1) Sbetween zeta_c and zeta_c
sysl=ss(Al1,B1,C1,D1, 'inputname', '\psi_c', 'outputname', '\psi_c');

B———————— SYSs2
[A2,B2,C2,D2]=2zp2ss(0,0,2.5) %between error_zeta and phi_c
sys2=ss(A2,B2,C2,D2, 'inputname', 'e_\psi', 'outputname', '\phi_c');

G———————— SYS 3, Roll-rate controller (Jp=SYS3)

K_p=1.5

[A3,B3,C3,D3]=2zp2ss(0,0,K_p)
sys3=ss(A3,B3,C3,D3, "inputname', 'e_\phi', 'outputname', 'p_c')

%————————— SYS4
[A4,B4,C4,D4]1=2zp2ss(0,0,1)
sys4=ss(A4,B4,C4,D4, 'inputname', 'r_c', 'outputname','r_c')

H————————— SYS 5, Aileron controller (Ja=SYS5)
tau_a = 0.15

K_.a =-1.0

den_ja = [1 1./tau_a]

num_ja = [K_a/tau_a]

[A5,B5,C5,D5] = tf2ss(num_ja,den_ja)
sys5 = ss(A5,B5,C5,D5, '"inputname', 'e_p', 'outputname', '\delta_a')

—————————— SYS 6, Rudder controller (Jr=SYS6)
taur =10.3

K_r = -1.6

den_jr = [1 1./tau_r]

num_jr = [K_.r/tau_r]

[A6,B6,C6,D6] = tf2ss(num_jr,den_jr)
sys6 = ss(A6,B6,C6,D6, 'inputname', 'e_r', 'outputname', '\delta_r')

% SYs 7
sys7 _ SS(A’B,C,D,Iinputnamel,{l\delta_al '\delta_r'}l 'outputname',{'\/- 'p' 'r'

f—————————— SYS 8, Washout

tau_wo = 4.0

[A8,B8,(C8,D8] = zp2ss(0,-1/tau_wo,1)
sys8=ss(A8,B8,C8,D8, 'inputname', 'r', 'outputname', 'r_f')

—————————— SYS 9, Integrator
den_int = [1 0]

num_int = [1]

[A9,B9,C9,D9] = tf2ss(num_int,den_int)

267

‘\phi'})



2.5. HW) CHAPTER 2. MY TYPED HWS AND...

sys9 = ss(A9,B9,C9,D9, 'inputname', 'r', 'outputname', '\psi')

sysa=append(sysl,sys2,sys3,sys4,sys5,sys6,sys7,sys8,sys9)

Q=[2 1 -12
32 -10
53 -8
6 4 -11
750
860
990
10 9 0];

inputs=[1 4];
outputs=[5 6 7 8 9 10 12];

sys=connect(sysa,Q,inputs,outputs)

a=sys.
b=sys.
C=Sys.
d=sys.

O N0 w >

%sset up string arrays and cells%%%%%%%%%
states_1='v p r \phi \psi';

inputs_1='\psi_c r_c';

outputs_1='\delta_a \delta_r v p r \phi \psi';

states_st_1={' \delta_a ';' \delta_r ';' \beta ';' p ';' r ';' \phi ';' \psi '};
inputs_st_1={' \psi_c ';' r_c '};

outputs_st_l=states_st_1;

%set up string arrays and cells%%%%%%%%%

% IMPULSE IN PSI_C

figure;

plot(T,impulse(a,b,c(1,:),d(1,:),1,T)*180/pi,'r"', 'LineWidth',2);%x0.262);

title(strcat('l radian impulse response. Input: [',...
[char(inputs_st_1(1)), '] Output: [', char(outputs_st_1(1))], '1'));

axis([0 15 -1 60]);

xlabel('t (s)');

ylabel('degree');

grid;

saveas(gcf, 'impulse_psi_to_del_a', 'epsc');

figure;

plot(T,impulse(a,b,c(2,:),d(2,:),1,T)*180/pi, " 'r', 'LineWidth',2);%x0.262);
title(strcat('l radian degree impulse response. Input: [',...
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[char(inputs_st_1(1)), '] Output: [', char(outputs_st_1(2))], '1'));
%axis ([0 max_time —0.05 0.05])
xlabel('t (s)');
ylabel('degree');
grid;
saveas(gcf, 'impulse_psi_to_del_r', 'epsc');

figure;
plot(T,impulse(a,b,c(3,:),d(3,:),1,T)/v_cruisex180/pi,'r','LineWidth',2);%*0.262/v_cruise);
title(strcat('l radian degree impulse response. Input: [',...
[char(inputs_st_1(1)), '] Output: [', char(outputs_st_1(3))], '1'));
%axis ([0 max_time —0.03 0.05])
xlabel('t (s)');
ylabel('degree');
grid;
saveas(gcf, 'impulse_psi_to_beta', 'epsc');

figure;

plot(T,impulse(a,b,c(4,:),d(4,:),1,T)*x180/pi,'r', 'LineWidth',2);%*0.262%2);

title(strcat('l radian degree impulse response. Input: [',...
[char(inputs_st_1(1)), '] Output: [', char(outputs_st_1(4))], '1'));

%axis([0 max_time -0.3 0.5])

xlabel('t (s)')

ylabel('degree per second')

grid;

saveas(gcf, 'impulse_psi_to_p', 'epsc');

figure;

plot(T,impulse(a,b,c(5,:),d(5,:),1,T)*2x180/pi, 'r', 'LineWidth',2);%*x0.262%2);

title(strcat('l radian degree impulse response. Input: [',...
[char(inputs_st_1(1)), '] Output: [2', char(outputs_st_1(5))1, '1'));

%ax1is([0 max_time —-0.05 0.05])

xlabel ('t (s)');

ylabel('degree per second');

grid;

saveas(gcf, 'impulse_psi_to_r', 'epsc');

figure;

plot(T,impulse(a,b,c(6,:),d(6,:),1,T)*180/pi,'r"', 'LineWidth',2);%x0.262);

title(strcat('l radian degree impulse response. Input: [',...
[char(inputs_st_1(1)), '] Output: [', char(outputs_st_1(6))], '1'));

%axis ([0 max_time —0.3 0.6])

xlabel('t (s)');

ylabel('degree');

grid;
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saveas(gcf, 'impulse_psi_to_phi', 'epsc');

figure;

plot(T,impulse(a,b,c(7,:),d(7,:),1,T)*180/pi, 'r', 'LineWidth',2);%x0.262);

title(strcat('l radian degree impulse response. Input: [',...
[char(inputs_st_1(1)), '] Output: [', char(outputs_st_1(7))1, '1'));

%axis([0 max_time -0.02 0.1])

xlabel('t (s)');

ylabel('degree');

grid;

saveas(gcf, 'impulse_psi_to_psi', 'epsc');

% IMPULSE IN r_C
figure;
plot(T,impulse(a,b,c(1,:),d(1,:),2,T)*0.0175%x180/pi, 'r', 'LineWidth',62);%x0.262);
title(strcat('l degree/s impulse response. Input: [',...

[char(inputs_st_1(2)), '] Output: [', char(outputs_st_1(1))], '1'));
%axis([0 max_time —0.3 0.5])
xlabel('t (s)');
ylabel('degree');
grid;
saveas(gcf, 'impulse_rc_to_del_a', 'epsc');

figure;
plot(T,impulse(a,b,c(2,:),d(2,:),2,T)*0.0175%x180/pi, 'r', 'LineWidth',62);%x0.262);
title(strcat('l degree/s impulse response. Input: [',...
[char(inputs_st_1(2)), '] Output: [', char(outputs_st_1(2))1, '1'));
axis([0 15 -4 1])
xlabel('t (s)')
ylabel( 'degree')
grid;
saveas(gcf, 'impulse_rc_to_del_r', 'epsc');

figure;
plot(T,impulse(a,b,c(3,:),d(3,:),2,T)*0.0175/v_cruisex180/pi, 'r', 'LineWidth',2);%x0.262/v_cruise)
title(strcat('l degree/s impulse response. Input: [',...
[char(inputs_st_1(2)), '] Output: [', char(outputs_st_1(3))1, '1'));
axis([0 15 -1 1])
xlabel('t (s)');
ylabel('degree');
grid;
saveas(gcf, 'impulse_rc_to_beta', 'epsc');

figure;
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plot(T,impulse(a,b,c(4,:),d(4,:),2,T)*0.0175%180/pi, 'r', 'LineWidth',2);%*0.262%2);
title(strcat('l degree/s impulse response. Input: [',...
[char(inputs_st_1(2)), '] Output: [', char(outputs_st_1(4))], '1'));
%axis([0 max_time —0.3 0.5])
xlabel('t (s)"')
ylabel('degree per second')
grid;
saveas(gcf, 'impulse_rc_to_p', 'epsc');

figure;
plot(T,impulse(a,b,c(5,:),d(5,:),2,T)*2x0.0175%180/pi, 'r', 'LineWidth',2);%*0.262%2);
title(strcat('l degree/s impulse response. Input: [',...
[char(inputs_st_1(2)), '] Output: [2', char(outputs_st_1(5))]1, '1'));
%axis ([0 max_time —0.05 0.05])
xlabel('t (s)');
ylabel('degree per second');
grid;
saveas(gcf, 'impulse_rc_to_r', 'epsc');

figure;
plot(T,impulse(a,b,c(6,:),d(6,:),2,T)*x0.0175x180/pi, 'r', 'LineWidth',2);%*0.262);
title(strcat('l degree/s impulse response. Input: [',...
[char(inputs_st_1(2)), '] Output: [', char(outputs_st_1(6))], '1'));
%axis ([0 max_time —0.3 0.5])
xlabel('t (s)');
ylabel('degree');
grid;
saveas(gcf, 'impulse_rc_to_phi', 'epsc');

figure;
plot(T,impulse(a,b,c(7,:),d(7,:),2,T)*0.0175%180/pi, 'r', 'LineWidth',2);%*0.262);
title(strcat('l degree/s impulse response. Input: [',...

[char(inputs_st_1(2)), '] Output: [', char(outputs_st_1(7))], '1'));
%axis ([0 max_time —0.05 0.05])
xlabel('t (s)');
ylabel('degree');

grid;

saveas(gcf, 'impulse_rc_to_psi', 'epsc');

g ———————————————————————— 15 degree STEP IN PSI_C
figure
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plot(T,step(a,b,c(1,:),d(1,:),1,T)*0.262x180/pi,'r', 'LineWidth',2);

title(strcat('15 degrees step response. Input: [',...
[char(inputs_st_1(1)), '] Output: [', char(outputs_st_1(1))], '1'));

axis ([0 max_time -55 13]);

xlabel('t (s)');

ylabel('degree');

grid;

saveas(gcf, 'step_psi_to_del_a', 'epsc');

figure;

plot(T,step(a,b,c(2,:),d(2,:),1,T)*0.262%x180/pi, 'r', 'LineWidth"',2);

title(strcat('15 degrees step response. Input: [',...
[char(inputs_st_1(1)), '] Output: [', char(outputs_st_1(2))1, '1'));

%axis ([0 max_time —0.022 0.1])

xlabel('t (s)');

ylabel('degree');

grid;

saveas(gcf, 'step_psi to_del_r', 'epsc');

figure;
plot(T,step(a,b,c(3,:),d(3,:),1,T)*0.262/v_cruise *180/pi,'r','LineWidth',2);
title(strcat('15 degrees step response. Input: [',...
[char(inputs_st_1(1)), '] Output: [', char(outputs_st_1(3))1, '1'));
%axis ([0 max_time —0.022 0.1])
xlabel('t (s)');
ylabel('degree');
grid;
saveas(gcf, 'step_psi_to_beta', 'epsc');

figure;

plot(T,step(a,b,c(4,:),d(4,:),1,T)*0.262%x180/pi, 'r', 'LineWidth"',2);

title(strcat('15 degrees step response. Input: [',...
[char(inputs_st_1(1)), '] Output: [', char(outputs_st_1(4))1, '1'));

%ax1is([0 max_time -0.5 0.5])

xlabel('t (s)');

ylabel('degree per second');

grid;

saveas(gcf, 'step_psi_to_p', 'epsc');

figure;
plot(T,step(a,b,c(5,:),d(5,:),1,T)*2x0.262«180/pi, 'r', 'LineWidth',2);
title(strcat('15 degrees step response. Input: [',...

[char(inputs_st_1(1)), '] Output: [2', char(outputs_st_1(5))1, '1'));
%axis ([0 max_time —0.022 0.1])
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xlabel('t (s)');

ylabel('degree per second');

grid;

saveas(gcf, 'step_psi_to_r', 'epsc');

figure;

plot(T,step(a,b,c(6,:),d(6,:),1,T)*x0.262x180/pi,'r', 'LineWidth',2);

title(strcat('15 degrees step response. Input: [',...
[char(inputs_st_1(1)), '] Output: [', char(outputs_st_1(6))], '1'));

%axis([0 max_time -0.1 0.6])

xlabel('t (s)');

ylabel('degree');

grid;

saveas(gcf, 'step_psi_to_phi', 'epsc');

figure;

plot(T,step(a,b,c(7,:),d(7,:),1,T)*0.262x180/pi, 'r', 'LineWidth',2);

title(strcat('15 degrees step response. Input: [',...
[char(inputs_st_1(1)), '] Output: [', char(outputs_st_1(7))], '1'));

axis ([0 max_time -1 18])

xlabel('t (s)');

ylabel('degree');

grid;

saveas(gcf, 'step_psi_to_psi', 'epsc');

—————————————— — — —

%STEP INPUT 1 deg/sec in r_c

figure

plot(T,step(a,b,c(1,:),d(1,:),2,T)*0.0175%x180/pi, 'r', 'LineWidth',2);

title(strcat('l degree/s step response. Input: [',...
[char(inputs_st_1(2)), '] Output: [', char(outputs_st_1(1))1, '1'));

%axis ([0 max_time —0.5 0.5])

xlabel('t (s)');

ylabel('degree’');

grid;

saveas(gcf, 'step_rc_to_dela', 'epsc');

figure;
plot(T,step(a,b,c(2,:),d(2,:),2,T)*0.0175%x180/pi, 'r', 'LineWidth',2);
title(strcat('l degree/s step response. Input: [',...

[char(inputs_st_1(2)), '] Output: [', char(outputs_st_1(2))1, '1'));
%axis ([0 max_time —0.022 0.1])
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xlabel('t (s)');

ylabel('degree');

grid;

saveas(gcf, 'step_rc_to_delr', 'epsc');

figure;
plot(T,step(a,b,c(3,:),d(3,:),2,T)*x0.0175/v_cruisex180/pi,'r', 'LineWidth',2);
title(strcat('l degree/s step response. Input: [',...

[char(inputs_st_1(2)), '] Output: [', char(outputs_st_1(3))], '1'));
%axis ([0 max_time —0.022 0.1])
xlabel('t (s)');
ylabel('degree');
grid;
saveas(gcf, 'step_rc_to_beta', 'epsc');

figure;

plot(T,step(a,b,c(4,:),d(4,:),2,T)*x0.0175%x180/pi, 'r', 'LineWidth',2);

title(strcat('l degree/s step response. Input: [',...
[char(inputs_st_1(2)), '] Output: [', char(outputs_st_1(4))], '1'));

%axis([0 max_time —-0.5 0.5])

xlabel('t (s)');

ylabel('degree per second');

grid;

saveas(gcf, 'step_rc_to_p', 'epsc');

figure;

plot(T,step(a,b,c(5,:),d(5,:),2,T)*2x0.0175x180/pi, 'r', 'LineWidth',2);

title(strcat('l degree/s step response. Input: [',...
[char(inputs_st_1(2)), '] Output: [2', char(outputs_st_1(5))1, '1'));

%axis([0 max_time —-0.022 0.1])

xlabel('t (s)');

ylabel('degree per second');

grid;

saveas(gcf, 'step_rc_to_r', 'epsc');

figure;

plot(T,step(a,b,c(6,:),d(6,:),2,T)*x0.0175%x180/pi, 'r', 'LineWidth',2);

title(strcat('l degree/s step response. Input: [',...
[char(inputs_st_1(2)), '] Output: [', char(outputs_st_1(6))], '1'));

%axis([0 max_time —-0.5 0.5])

xlabel('t (s)');

ylabel('degree');

grid;
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saveas(gcf, 'step_rc_to_phi', 'epsc');

figure;

plot(T,step(a,b,c(7,:),d(7,:),2,T)*x0.0175%x180/pi, 'r', 'LineWidth',2);

title(strcat('l degree/s step response. Input: [',...
[char(inputs_st_1(2)), '] Output: [', char(outputs_st_1(7))1, '1'));

%axis([0 max_time —0.022 0.15]);

xlabel('t (s)');

ylabel( 'degree');

grid;

saveas(gcf, 'step_rc_to_psi', 'epsc');

2.5.6 Problem 6

6. Use Simulink to model the speed controller of Fig. 8.5 in the book, reproducing Fig. 8.
with the parameters given in the book, vou will not be able to precisely reproduce Fig. 8
will be able to reproduce Figs. 8.7 (b) and (c) exactly.

Then use Simulink to model the speed controller of Fig. 8.8, reproducing Figs. 8.12, 8.13, 8.14,
and 8.15. Note: vou determined the elements of the G matrix in HW 4, Prob. 4. Make sure to

use the Simulink handout on the website for tips and to attach yvour Simulink schematic. Note: to
model the J = 0.005(3s — 1) actuator of Figs. 8.8 and 8.11 in Simulink, I used a PID box and I
entered values of /=0 and N=10000. This essentially sets the last ratio in Simulink’s representation
of a PID to 1 and therefore delivers a proportional-derivative block. I am sure there are better ways
to do this but I couldn’t find any.

Solution:

2.5.6.1 Pitch attitude controller

The following diagram illustrates the system that we need to implement in simulink. It is
figure 8.5 in the text, page 266, which is a pitch attitude controller. The three different
controllers are implemented in simulink. A scope was used to show the responses in order
to reproduce figure 8.7 in the textbook (page 268). These are the resulting plots showing
the simulink model used for each.

2.5.6.2 Speed controller
For this part, the speed controller given by figure 8.8, page 270 is implemented in simulink.

Using the exact equations, the aircraft A,B,C,D state space matrices are defined in the
Matlab workspace before starting simulink. This was done since a state space control block
was used for the aircraft model directly in simulink instead of using transfer functions. This
lead to a much simpler model in simulink. The matrices A, B, C, D longitudinal motion are
the following

275



CHAPTER 2. MY TYPED HWS AND...

2.5.

HW5

cantroller aireraft

) e 8,
s J ! Gy

e

Figure 8.5 Pitch attitude controller.

Controller to implement in Simulink
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Figure 2.112: pitch attitude controller for problem 6, showing the three type of controllers

to implement in simulink
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Figure 2.113: producing figure 8.7(a) for problem 6
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-} <Student Version:> : theta _ o] x|
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Figure 2.114: producing figure 8.7(b) for problem 6
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Figure 2.115: producing figure 8.7(c) for problem 6
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controller .Ei.F aircraft
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Figure 8.8 Speed controller.
Figure 2.116: figure 8.8, speed controller for problem 6
A=[-0.006868 0.01395 0 -32.20;
-0.09055 -0.3151 773.98 0.0;
0.0001187 -0.001026 -0.4285 0.0;
0.0 0.0 1 0.0];

B=[-0.000187 9.66;-17.85 0;-1.158 0; 0 0]

2.5.6.3 Generating figure 8.12, speed response

Figure 8.12 was reproduced using controller | = 0.005(3s + 1) which was implemented using
PID block. 6, = %] was implemented using step input with amplitude of %1. The following
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shows the resulting plot with the model used.
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figure 8.12, speed controller, exact equations
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Figure 2.117: producing figure 8.12, speed controller for problem 6
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2.5.6.4 Figure 8.13, y response

To reproduce figure 8.13, we first note that y = 0 — a where «a is the angle of attack found

from o = = where uy = 774 fps (the cruise speed). Therefore, the model was adjusted to
U
find y according to the above. Here is the simulink model and the figure reproduced.
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figure 8.13, speed controller, exact equations, GAMMA response
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Figure 2.118: producing figure 8.13, speed controller for problem 6
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2.5.6.5 Figure 8.14

To produce this figure, a scope as added after the controller to capture the value of the
elevator angle 6, feeding into the aircraft as input. The y axes scale was changed to have

units of degrees instead of radians by using a gain block with gain ?. Here is the result.
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Figure 2.119: producing figure

8.14, speed controller for problem 6
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2.5.6.6 Figure 8.15

To produce this figure, which shows the resulting angle of attack, a scope as added after «
was calculated using a = % Here is the result.
0
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Figure 2.120: producing figure 8.15, speed controller for problem 6
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