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Chapter 1

introduction

Local contents

1.1 Syllubus . .. ... . .
1.2 courserelated links . . . . . . . . ..

I took this course in Spring 2013 part of masters degree in engineering mechanics. Uni-
versity of Wisconsin, Madison.

Instructor is professor Matt Alle

External class web pagehttp://courses.engr.wisc.edu/ema/ema545. html]|

Text book: Mechanical and Structural Vibrations: Theory and Applications, Jerry H.


http://silver.neep.wisc.edu/~msallen/
http://courses.engr.wisc.edu/ema/ema545.html
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Ginsberg, 1st Edition, Wiley, 2001.

1.1 Syllubus

EP/EMA 545 — Spring 2013
Mechanical Vibrations

Course Home Page: Engineering Moodle Courses: https://courses.moodle.wisc.edu
Lecture notes, homework and solutions will be posted on course web site.

Instructor:
Prof. Matt Allen
Department of Engineering Physics
535 Engineering Research Building
Email: msallen@engr.wisc.edu, Office Phone: 608-890-1619
Office Hours: T 9:15-10AM, 2-3PM, W 2-3PM, or by appointment

Grader: (available by appointment if needed)

Samuel Fedenia, sfedenia@wisc.edu

Prerequisites:
EMA 202 or 221, EMA 304 or 306, Math 223

Required Textbook: Mechanical and Structural Vibrations: Theory and Applications, Jerry H.
Ginsberg, 1* Edition, Wiley, 2001.

Evaluation:

o Weekly Homework sets — Problems assigned weekly and typically due on Thursday. Late
homework will not be accepted unless prior arrangements have been made with the instructor.
Consulting with your peers is allowed so long as it is done responsibly.

o Ifyouareill or otherwise unable to turn in an assignment, contact Prof. Allen
immediately by phone or email to make arrangements to turn the assignment. Late
homework will not be accepted unless prior arrangements have been made.

e Exams (2)

o Two in-class exams, each approximately one hour long.

o The instructor will also give occasional 5-min pop-quizzes focusing on very fundamental
concepts, which will be graded for homework credit.

e Design Project

o  Work in groups of two and turn in a short but high-quality written report with
handwritten calculations in the appendix.

e Final Exam

e QGrades in the course will be based on the following weighting:

o Homework Sets 30%
o Exams 40%
o Design Project 10%
o Final Exam 20%

Academic Misconduct:

The instructor takes dishonesty very seriously. Cheating will not be tolerated, whether on exams, quizzes
or homework. If there is reasonable evidence that you have cheated on a homework assignment, the
instructor reserves the right to give you negative credit for the assignment up to three times the value of
the assignment. (Score =—3*value of assignment.) Serious infractions will be handled through the
designated university channels.

Online course description:

General theory of free, forced, and transient vibrations; vibration transmission, isolation, and
measurement; normal modes and generalized coordinates; method of matrix equation formulation and

Version 1/21/2013



1.1. Syllubus CHAPTER 1. INTRODUCTION

solution. The application of theory and methods to the analysis, measurement and design of dynamic
systems.

General Topic Areas Covered:

e Equations of Motion for Discrete Vibratory Systems
Transient Response of Single-Degree of Freedom (SDOF) Systems
Steady State Response to Harmonic Excitation
Modal Analysis of Multi-Degree-of-Freedom (MDOF) Systems
Harmonic Excitation of MDOF Systems
Vibration of Continuous Systems: The Ritz Method

Miscellaneous
Please inform me within the first two weeks of class of any specific days during the semester that may
conflict with your religious observances, so I can make alternate arrangements for you.

Matlab

Many of the homework assignments require a computer package such as Matlab to complete. Matlab is
available in all CAE computer labs. You can also purchase a student version for around $100 to install on
your personal computer. Alternatively, there are a few clones of Matlab which may provide enough
functionality to meet the needs of this course. These are compared in the following and in many blogs
and websites:

http://www.webcitation.org/6BbWgerg3

The most notable for laptop/desktop computers seem to be:

Octave — www.octave.org

Freemat — www.freemat.org

Python with SciPy - http://en.wikipedia.org/wiki/SciPy

For Android:

Addi — https://play.google.com/store/apps/details?id=com.addi

Octave - https://play.google.com/store/apps/details?id=com.octave&hl=en

Version 1/21/2013



1.1. Syllubus CHAPTER 1. INTRODUCTION

TENTATIVE Semester Schedule:

* NOTE: All of the dates below are approximate. The instructor reserves the right to adjust the schedule!

Date* E Topic (Book sections) Due Dates
1/22 1 | Introduction, Review of Newton-Euler EOM (/.7-1.4)
1/24 Numerical solution methods, Harmonic Functions (2.7)
1/29 2 | Intro — Solutions to EOM, Beating
1/31 Free Response: Underdamped/Overdamped (2.2) HW #1 due
2/5 3 | Forced Response (2.3)
2/7 Finish Forced Response (2.3) HW #2 due

2/12 4 | MSA OUT (IMAC) Video Lecture
RF Switch Example, Aircraft Engine Example

2/14 MSA OUT (IMAC) — Lab Demo (John Dreger) HW #3 due

2/19 5 | Frequency Response (3.7, 3.2.1, 3.3)

2/21 Exam #1 (Ch. 2, SDOF Time Response)

2/26 6 | Base Excitation, examples (Assign Design Project)
2/28 Damping (3.2) Resonance (3.3) Stress in Springs (notes) HW #4 due

3/5 7 | Rotating Imbalance (3.4) Force Transmissibility (3.6)

3/7 Intro to Fourier Series (3.7) HW#5 due

3/12 8 | FFT for Periodic Excitation (3.7.5)
Fourier Transform, DFT/FFT, Aliasing

3/14 FFT for Transient Excitation (3.8.2), Accelerometer HW#6 due
(3.7.6), Examples

3/19 9 | MDOF EOM, Large Deformation & Linearization, DP analysis due
Gravity Stiffness & Stiff Spring Approx

3/21 Additional examples HW #7 due

3/26-28

4/2 10 | MDOF Solution, Shuttle Example

4/4 Exam #2 (SDOF System Response) HW #8 due

4/9 11 | MDOF Systems — Intro to Eigenproblem (4.1-4.2) DP due (Monday 5PM)

4/11 MDOF Systems — Orthogonality, Normalization (4.2.2) HW#9 due

4/16 12 | Examples: Free Response, Transient Response, Damping

4/18 Modal Transformation — (4.3), 3DOF Example and HW #10 due

Matlab, (done by video) (do after close fn’s next time)
4/23 13 | Close Nat. Fregs. (4.2.5-6), Rigid Body Modes
Frequency Response using Modal Coordinates

4/25 Freq. Domain TF (5.1), Vibration Absorber (5.3)

4/30 14 | Introduction to Power Balance & Lagrange Methods (1.5)

5/2 Ritz Method (6.1), Sound from a rod excited axially HW #11 due
5/7 15 | Examples Continued

5/9 Aircraft Modes using Ritz, Aeroelasticity Example, HW #12 due

Review for Final, Nonlinear Vibration

5/16 Final Exam: Thurs. May 16, 10:05AM - 12:05PM

Version 1/21/2013



1.2. course related links CHAPTER 1. INTRODUCTION

1.2 course related links

1. ltinal exam schedule]
2. Byllabus

3. [public course web page]

4. linternal course web page|

5. [Lectures download|



final_exam_EMA_545.png
http://courses-dev.engr.wisc.edu/EMA/ema545.html
https://courses.moodle.wisc.edu/prod/course/view.php?id=932
https://video.engr.wisc.edu/cgi-bin/cae-auth/Download2.php?file=cae-auth/ema/545/EMA545.html
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Chapter 2

HW's

Local contents
21 HWlookupTable . . . . . ... ... .. ... . .
22 HWL .. Ol
23 HW2 . e B2
24 HW3 .. 55
25 HW4 . . 56l
26 HWS o 93
27 HW6 ... e 113
28 HW7 .
29 HWS . . e VAl
210 HWO . . o e
211 HWI0 . . .o 241]
212 HWAL ... e 283
213 HWI1 . . o o
2.1 HW lookup Table
HW | grade | about
1 95% | series/parallel stiffness, How to use x = Re{Xei“’t] to analyze systems earliest time
to reach maximum value/speed, complex exponential
2 95.70% eq. of motion cube in water, more use of complex exponential analyzing in complex
plane. Logarithmic decrement from graph. Impulse problem
3 100% | small lab
4 98.75% force applied for small period, find response. Impulse force on system. analyse in
complex plane. resonance problem, students on bridge.
5 88% | 2 DOF system, shock observer on spring.Force transmission to base. off center mo-
tion, find EQM. 2 counter-rotating masses
6 97.50% Find complex Fourier series.Verify using fft. Simple model of car moving on ground,
find EQM. Fourier series. rectangle force, Fourier series.
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7 95% | Using FFT to find response. Transfer functions Compare to analytical. Using La-
grange to find EQM, 2 DOF.

8 99% | non-linear EQM, spring stiff approximation. Lagrangian. Model of wing. cart on
spring with sliding mass on it with spring. Lagrangian. Finding w,, for 2DOF

Al | 100% | more spring stiff approximation. manipulation of complex form of solution. half-
power point, finding phase lag, solving step response using appendix B method

9 95% | Full solution in modal coordinates. Mass normalized. Initial conditions in modal
coordinates. All problems done in power balance method. Double physical pendu-
lum

10 | 92.5% | Full solution in modal coordinates. 3 DOF problem

11 | 93.3% | modal analysis, with damping using specific modal damping. Structual damping

Compare transfer functions for each damping method used. Ritz method, shape
functions. plot mode shapes.

Table 2.1: Homeworks summary table
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2.2 HW1

Local contents

221 problemdescription . . ... ..... .. ... ... . L. 10l
222 Problem1 (1.1book) . . . . . . .. . 1l
223 Problem?2 . ... .. 1l
224 Problem3 . .. ... 12l
225 Problem4 (25book) . . . ...
22.6 Problem5 (2.8book) . . . ... ... 20
22.7 Problem6 (2.10book) . . . .. ... 22]
228 Keysolutionfor HW1 . .. ... ... .. ... ... .
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2.2.1 problem description

Homework #1
EMA 545, Spring 2013

Problem 1: 1.1 from Ginsberg:

1.1 Determine the spring stiffness that is equiva-
lent to the action of the four springs in the sketch.

Problem 2: Find the equation of motion of the system pictured below. The mass of the
block is m and the mass of the beams and springs is negligible. Assume that all of the
displacements are very small. (Recall that the displacement of the tip of a cantilever
beam, Ay, is related to the force at the tip by: Ftip:(3EI/L3)Atip)

L

=
v L

F

USE COMPLEX EXPONENTIALS to derive the solution to problems 3-6 (i.e. do
not simply look up a trig identity).

Problem 3: 2.3 from Ginsberg

Problem 4: 2.5 from Ginsberg. Note that “this quantity” in the last sentence is referring
to “the complex amplitude of dv/dt.”

Problem 5: 2.8 from Ginsberg.
Problem 6: 2.10 from Ginsberg.

Extra: (this problem will not be graded) If you are not already familiar with Matlab,
review the Matlab® tutorial on the EMA 545 course website (created by Prof. Negrut).

10



2.2. HW1 CHAPTER 2. HW’S

2.2.2 Problem 1 (1.1 book)

1.1 Determine the spring stiffness that is equiva-
lent to the action of the four springs in the sketch.

ky

ks and k; are in parallel, hence the effective stiffness is
k23 = kz + k3
k,3 and k; are now in series, hence the effective stiffness is

1 1 1 _k23+k1_k2+k3+k1_k2+k3+k1

_ = — 4 — = = =
kigz ki kps kikos kq(ky + k3) kiky + kiks

Therefore

_ k1k2 + k1k3
123 = k2+k3+k1
ki3 and k4 are now in parallel, hence the effective stiffness is

k134 = kg + kqp3
klkZ + k1k3

:k4+k2+k3+k1

Hence the final effective stiffness is
_ky(ky + k3 + k) + kiky + kiks

k
“ k2+k3+k1

2.2.3 Problem 2

Problem 2: Find the equation of motion of the system pictured below. The mass of the
block is m and the mass of the beams and springs is negligible. Assume that all of the
displacements are very small. (Recall that the displacement of the tip of a cantilever
beam, Ay, is related to the force at the tip by: Fup=(3EL‘L")Anp)

L Ll

k

k

We start by drawing a free body diagram and taking displacement of mass from the
static equilibrium position. Let the displacement of the mass be x and positive pointing
upwards.

Let A, be the downward deflection at right end of the bottom beam. Let A, be the
downward deflection at right end of top beam. The free body diagram is

11
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- -

- -

Applying equilibrium of vertical forces ) F, = 0 for mass m and noting that inertial
forces opposes motion, results in the equation of motion

mx"” +k(x—2,)=F

(2.1)

To find an expression for A in terms of x, we apply equilibrium of vertical forces at the

right end of the lower beamE|

k(x — A1) = kyasg + k(A = 1)

(2.2)

Similarly, applying equilibrium of vertical forces at the right end of the top beam

k(a1 = 2p) = kpoy

(2.3)

Solving for A, A, from Eqs[2.1112.96| (2 equations, 2 unknowns) gives

__kk+ky)
YT k2 4 3kky + K2

Substituting the above value into Eq[2.110|results in the equation of motion

mx" + kx(l -

2.2.4 Problem 3

L
:;20"““\ /

EXERCISE 2.3

1k, is beam stiffness against vertical displacement at the end and is given as k, = -

12

k(k+k) '\
k2 +3kk, + k)

Use the properties in this trace to determine
(a) The initial values of x and X .

(b) The value of ¢ at which the minimum value of
first occurs.

(¢) The maximum positive value of X and the ear-
liest value of 7 at which this maximum occurs.

(d) The maximum positive value of ¥ and the ear-
liest value of r at which this maximum occurs.

3EI
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Assuming periodic motion, the period is T = 6 ms, or 6 X 107> sec. Hence w = g rad/ms
Representing this as a cosine signal with phase gives

x(t) = Acos(wt + )
Then

x(t) = Re[A + cos(wt + O)]
= Re[Ae%ei®]
= Re[Ae!] (2.4)

Where now A = Ae'® Using phasor diagram

————v——————
\

Xx(t) = Re(Aeiet)
— Re(Aei(a)t+9))
= Acos(wt + 0)

Hence from the diagram we see that for x(f;) to be zero when ¢, = 1 ms, we need to have

a)t0+9=g

Butw = grad/ms, hence
0= T M T
2 3 6

To find A we see that the maximum absolute value of x(t) is 20 mm hence A = 20 mm
or 20 X 10~ meter. The equation of x(t) when substituting all numerical values becomes

x(t) = 20 Cos(gt + %) (2.5)

Where units used are radians, milliseconds and mm. This is a plot of the above function

parms = f -> 1/(6 107-3);
Plot[0.02 Cos[2 Pi f t + (Pi/6)] /. parms, {t,0,0.005},
AxesLabel -> {t,x[t]}, ImageSize -> 300]

13
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0.015 £, 4
polf N £
0.005 /
._\ 'r.l'
My ey gty i oy 0y
0.0 0,802 0.003 0004 0ol
—0.005 N /4
4 /
—0.010 /
\, y
—0.015 % s
‘\\-\-.. o~

0020 S

2.24.1 part(a)

Att =0, from[2.117]x(0) = Re[A] = A cos(6) = 20 cos(%) hence

x(0) =17.321 mm

From [2.117|x’(t) = Re[wAe'®*] hence x’(0) = Re[wA] = wA cos(6) = 20% cos(%) giving

x’(0) =18.138 m/sec

2.24.2 part(b)
This can be solved using calculuﬂ
x'(t) =-2nfA sin(27zft + 6)
0=-2nfA sin(ant + %)

3 3\ . 2m iy
= —(6 v 10_3)(20 x 10 )sm(6 ot g)
0= sin(z—nt + E)
6x1073 6

We solve for t and find t=2.5 ms. But this can be solved more easily by looking at the
phasor diagram

ot + 60

¢

u |

‘ Maximum negative
value of x(t)

The minimum x(f) (in negative sense and not in absolute value sense) occurs when

n-0
wtyi, + 0 = 1, hence t,;, = 7 therefore

tmin = 25

2Taking derivative of x(t) and setting the result to zero and solving for ¢

14
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2.24.3 part(c)

This is solved in a similar way by treating the speed as the rotating vector in complex

plan. Since x'(t) = Re(Aa)el<wt+6+g)) then in complex plan as follows

Phase of speed vector at t=0

T
0+ %

ot

|
Velocity /

vector

*—v

x'(t) = Re[Awei("*%)]

The difference is that the velocity vector has phase of 6 + g instead of O as was the case
with the position vector, and the amplitude is Aw instead of A. Hence the first time the
speed vector will have the maximum value is when

TC
O+—+wt=2
2 @ TC

Hence
T
27 — 5~
t =
@
s s
_2M-57%
- TT
3

Hence t = 4 ms and the amplitude is given by Aw = 20% hence Aw = 20.944 meter/sec
2244 vpart(d)
Now treating the acceleration as the rotating vector in complex plan

x(t) = Re(Aei(Q“‘)t))
xX'(t) = Re(iAa)ei(9+CUt))
x//(t) — Re(_AwZei(6+a)t))

But -1 = ¢™ This adds a 7 to the phase resulting in
x”(t) — Re(AwZei(6+wt+n))

Representing x”’(t) in complex plan gives

15
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0+rm

<

accvector

The first time the x”(t) vector will have the maximum value is when
O0+mn+wt=2n

Hence

Hence t = 2.5 ms and the amplitude is

- 2
Aw? =20 mm(g rad/msec)

= 21.933 x 10° meter/sec?

2.2.5 Problem 4 (2.5 book)

2.5 An oscilloscope trace indicates that the volt-
age output v from a sensor varies harmonically,
with zeroes occurring every 8 ms. The first zero of
v occurs at f = 5.5 ms, the amplitude of the signal
isl.2V,andv > Qatt = 0.

(a) Express this signal as a complex exponential.
Write the complex amplitude in polar and rectan-
gular forms.

(b) Express the time rate of change of the voltage
as a complex exponential. Write this quantity 11
polar and rectangular forms.

2.2.,5.1 part(a)

The function of the signal is converted to complex exponential. A sin or cos can be
used to represent the signal as long as we are consistent. Assuming the signal is x(t) =

Acos(wt + 0), plotting the general representation of the position vector in complex plan
gives

16
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X(t) = Re(Aeiet)
= Re(Aei@t0)
= Acos(ot + 0)

The complex representation of the position vector is

x(t) = Re [Ae“‘””g)]

27 27

We are given that w = e and since x(fj) has first zero at t; = 5.5 ms this means

from looking at the above diagram that
e
0+ wty = <
Wiy >

Hence 0 = 7 — (wty) = 3 - (52°) which gives

-3
0= 1—6nradians

Hence the signal is

x(t) = Re[Ae@+0)]
~ Re —1.2ei(gt‘%z)l

[ i Tt
= Re|l.2¢ "16¢'8 ]

= Re Aeigt]

.37
Where A =1.2¢7'% is the complex amplitude in polar coordinates. In rectangular coor-
dinates it becomes
.3m

A=120"7

i) -5

=1.2(0.831 - i0.5556)
=| 0.9977 - i0.6667

Hence
. i . e
x(t) = Re[(0.998 — 10.668)(C0s gt + isin gt)]
e Tt
= Rel(0.998 cos gt + 0.668 sin §t)+

) T e
1(0.998 sin gt —0.668 cos gt)]

Here is a plot of the signal for 20 ms
17
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w = Pi/8;
f 1.2 Cos[w t - 3 Pi/16];
Plot[f, {t, 0, 20}, AxesLabel -> {t, x[t]l},
ImageSize -> 300,
GridLines -> Automatic,
GridLinesStyle->{{Dashed,Grayl},{Dashed,Grayl}},
PlotStyle -> Red]

Xx(t) = Re(Aeiet)
= Re(Ae'(@t0))
= Acos(wt + 0)

2.2.5.2 part(b)

From above it was found that
x(t) = Re[Aei(w”Q)]
Hence

x'(t) = Re zcuAel(w”e)]

= Re|lw A

= Re[e ZwAe% ’“’f]
[ ECR) lwt]

=Re Ae’wt]
Where A = a)Aei(ngg) Replacing numerical values gives A= g(l.Z)ei(g_l%n) = 0.471¢10-983
and
x'(t) = Re[0.47lei0'983ei“’t]
= Re[0.47lei0'983ei%t]
— Re[0.4718i0.983ei0.3923t]

18
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In rectangular coordinates, the above becomes

x'(t) Re[0.471(cos 0.983 +isin 0.983)

(cos 0.3923t + isin 0.39231‘)]
= Re[(0.261 + 0.392i)(cos 0.392t + isin 0.3921)]
= Re[(0.261 c0s 0.392t — 0.392 sin 0.392¢)

+i(0.261 sin 0.392¢ + 0.392 cos O.392t)]

2.2.5.3 part(c)

To find the maximum rate of the signal

x'(t) = Re[ Ae']

Then the maximum x’(f) is |A| which is

|A| = 10.261 + 0.392i|

= V0.2612 + 0.3922
= 0471

Hence maximum x’(t) is 0.471 v/ms or 471 volt/sec.

Maximum velocity in simple harmonic motion occurs when x(tf) = 0. This occurs at
t = 5.5 ms and at 8 ms henceforth. Hence maximum speed occurs at

t =5.5+ n(8)
forn =0,1,2, --- this results in
t=55,13,5,21.5,---ms

Here is a plot of x’(t) in units of volt/ms

f = 0.261 Cos[0.392 t] - 0.392 Sin[0.392 t];

Plot[f, {t, 0, 30},

AxesLabel -> {Row[{t, "(ms)"}], x'[t]},

ImageSize -> 300, GridLines -> Automatic,
GridLinesStyle -> {{Dashed, Gray}, {Dashed, Gray}},
PlotStyle -> Red]

()
N EEY . .
il [ -I ----- I- i oy _." ----- Jri i I- T -.lli- _I-
B i i .l'III |'l|| I I J I
L I' 1 'llll
i 1\
:l}"l' """" _Ilill----l-T--_l """ T
'\ f T '
\ i ':I I \ | | [ I
— am . ~ t{msz)
\ 3 b is b 2y b
L i f L1 ] IIl|
\ i I || i |
G = ek, ek ke o ek it T (S
W | Y ,f
. e A 3 el R 1
'y W
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2.2.6 Problem 5 (2.8 book)

2.8 Suppose ¢ = 0.01sin(507) — 0.02cos (50t —
0.3m).

(a) Write g in complex exponential form. What is
the complex amplitude?

(b) What is the time interval separating instants at

which g = 0?
(¢) What is the earliest positive ¢ at which
qg =0?

(d) What is the largest value of g that will occur,
and what is the earliest positive ¢ at which this
maximum occurs?

2.2.6.1 part(a)
This is a plot of the signal

f = 0.01 Sin[50 t] - 0.02 Cos[50 t - 0.3 Pil;

Plot[f, {t, 0, 0.2},
AxesLabel -> {Row[{t , " (sec)"}], x[tl},
ImageSize -> 300,
GridLines -> Automatic,
GridLinesStyle->{{Dashed,Grayl},{Dashed,Grayl}},
PlotStyle -> Red]

x(t)

0.010-

0,003

—0.005}

~0.010}

g = 0.01 sin(50¢) — 0.02 cos(50t — 0.37)
[0.01 ]

= Re eiSOt _ 0.0zei(50t—0.3n)
i

— Re|0.01¢772 650 _ 0,000 e—i0.3n]

= Re (0,0le_ii - 0'026—i0.3n)ei50t]
= Re[ AeiSOt]
Hence the complex amplitude is

A =00le'z - 0.02e-03"

20
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2.2.6.2 part(b)

From above, we see that
w = 50rad/sec

Hence f = gHz, or the period T = i—g = (.126 sec, therefore the time period separating

1
the zeros is % = 0.063 sec or 63 ms

2.2.6.3 part(c)

A —iZ _i3r
The complex phase A can be found by adding the vector 0.0l¢"'2 and —0.02¢ ' 10 by com-
pleting the parallelogram as shown in this diagram. A = —0.02 cos 0.77+i(-0.01 + 0.02sin 0.77),
hence the angle o that A makes with the horizontal is

—0.01 + 0.02sin0.77

tan_l( ) = arctan(0.526)

—0.02 cos0.71t
= (0.484 radian
= 27.73 degree
0. 02ei(0.77r)
A
\ . a
. 0.37
0.0le7'z
0. 02e—i0.3n

and the amplitude is

\/(—0.01 +0.02sin 0.77)* + (0.02 cos 0.77)* = 0.0133V

To find the earliest time g will be zero, we need to find the time the complex position
vector will take to rotate and reach the imaginary axis.

’hp/e)(
haSe Ve cto T—a
A Fattsp '/_
2|
ot
\et
) 00«\9
& X
qeéo (\“\e
R
s\‘\o yo&
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Hence we need to solve

n—a+a)t0:§n

gn — 70 + 0.48402

50
=0.0411 s

fg =

Therefore
t=411ms

2.2.6.4 part(d)

The largest value of g is the absolute value of its complex amplitude. We found this
above as R
|A| = 0.0133 Volt

To find when this occur first time, the time the position vector will align with the real
axis in the positive direction is found. Hence solving for ¢, from

T—a+wty=2n
2t -1+ 0.484
toz
50

Gives t = 72.5 ms. Another way would be to take derivative of gt) and set that to zero
and solve for first t which satisfy the equation.

2.2.7 Problem 6 (2.10 book)

2.10 Two parts of the harmonic motion of a
system are x, = 8sin(10¢ — 57/6), x,= 12
cos(10¢ + ¢) . Find the phase angle ¢ for which
X =x, + x, is a pure sine function. What is the
amplitude of x in that case?

X] = 851n(10t - gn)
x, =12 cos(10t + ¢)
Let w =10, hence
X=X+ X
8 i(wt—gn)

= Re 4
1

[ . 5
~ Re §,el(“’t_5”) + 1Zei(“)t+¢)]
1

+ Re[lZei(“’t+¢)]

o ot ,
= Re 86_1Eez(wt 6 ) + 12€Z(Mt+¢)]

- -
= Re|8e'zei@te ™6™ + 126“”6“7’]

= Re (Se_i(gn) + 1Zei¢)ei‘“t]

= Re[Aefwt] (2.6)
22
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Where
4= 50 (7 4 100
= (—4 +6.928i) + 12(cos ¢ + i sin )
= (-4 +12cos ) +(6.928 + sin )
Hence Eq2.6|becomes

x = Re[{(~4 + 12 cos §) +i(6.928 + sin ) e'!

To convert to sin we multiply and divide by i hence

' ‘ .emﬁ
X = Rel{(—él + 12 cos qb) + 1(6.928 + sin (P)}ZT]

= Rel[—(6.928 +sin¢) +i(—4 +12cos ¢)]eijtl (2.7)

The complex number —(6.928 + sin qb) + i(—4 + 12 cos (j)) can be written in polar form as

—4+12cos ¢

: 2 2
ke where K = 1/(6.928 + sin + (-4 + 12 cos and B = tan”!| ———
~(6.928+sin ¢)

Eq[2.7]becomes

), hence

[ iwt
x = Re keiﬁe—]

: ei(wt+ﬁ)}

= Relk

= ksi_n(a)t +p)

or in full form

X = \/ (6.928 + sin ¢)2 + (-4 +12cos q))z

sin| wt + tan™! —4+12cos (P
—~(6.928 +sin )

—4+12cos ¢

1
w =0orl12cos¢ =4orcos¢p = g,hence

For pure sine function we need

¢ =1.23096 radian
=70.529°

The amplitude can also be found from the complex amplitude above when ¢ =1.23096
as follows

(4
e (57) 4 101200 - |-6.592 x 1076 +18.242i|

2
- \/ (-6.592x1076)" + (18.242)*
=18.242
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2.2.8 Key solution for HW 1

Homework #1
EMA 545, Spring 2013

Problem 1: 1.1 from Ginsberg:

1.1 Determine the spring stiffness that is equiva-
lent to the action of the four springs in the sketch.

Problem 2: Find the equation of motion of the system pictured below. The mass of the
block is m and the mass of the beams and springs is negligible. Assume that all of the
displacements are very small. (Recall that the displacement of the tip of a cantilever
beam, Ay, is related to the force at the tip by: Ftip:(3EI/L3)Atip)

L

=
v L

F

USE COMPLEX EXPONENTIALS to derive the solution to problems 3-6 (i.e. do
not simply look up a trig identity).

Problem 3: 2.3 from Ginsberg

Problem 4: 2.5 from Ginsberg. Note that “this quantity” in the last sentence is referring
to “the complex amplitude of dv/dt.”

Problem 5: 2.8 from Ginsberg.
Problem 6: 2.10 from Ginsberg.

Extra: (this problem will not be graded) If you are not already familiar with Matlab,
review the Matlab® tutorial on the EMA 545 course website (created by Prof. Negrut).
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2.3.1 problem description

Homework #2
EMA 545, Spring 2013

Problem 1:

A cube with density p and side length a is floating ’7 a 4‘

freely in a pool of water.

a.) Find the equation of motion of the cube when it is
displaced in the vertical direction. (Recall that the
buoyant force on a floating object is equal to the
weight of the water displaced.) If necessary, re-
define your vertical coordinate to eliminate any X
static forces. |

b.) Derive an expression for the natural frequency of
the cube.

c.) If the block is pine (p=400 kg/m®) with a side length of 10cm, what is the natural frequency
in Hz?

(Note that, while an analysis like this would be important when designing a boat or ocean vessel,

in reality the rotational motions of the vessel would usually be more important and those require

a more complicated analysis.)

Problem 2: 2.17 from Ginsberg

Problem 3: 2.19 from Ginsberg

Problem 4: Show that x(t)=Be” is a solution to X+ 2¢w,%+,’x =0 and find A for the

following cases: 1.) Underdamped system, 2.) Overdamped system. Write the solution x(t) for
both cases for an arbitrary set of initial conditions and draw a sketch to illustrate how each

response x(t) would look. Show that x(t) can be written as x(t) = Re(Ae‘g”‘"‘e“""‘) in case (1).

Comment: | would encourage you to see if you can solve the following problems using only
math and the fact that the general solution to an underdamped SDOF system

X+ 2w X+ w,*x=0

X(t) = Re( A <fe')

where @, = w,/1-¢? and A is a complex constant. If you’re hunting through the book for

equations to solve these problems then you might be making them more difficult than they need
to be and perhaps failing to connect the concepts.

Problem 5: 2.29 from Ginsberg

Problem 6: 2.32 from Ginsberg. (part a=5pts, b=5pts, c=10pts)
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2.3.2 problem1

Problem 1:

A cube with density p and side length a is floating ’7 a9 4‘

freely in a pool of water.

a.) Find the equation of motion of the cube when it is
displaced in the vertical direction. (Recall that the
buoyant force on a floating object is equal to the \ X
weight of the water displaced.) If necessary. re- S
define your vertical coordinate to eliminate any X
static forees. ‘

b.) Derive an expression for the natural frequency of
the cube.

¢.) If the block is pine (p=400 kg/m®) with a side length of 10cm. what is the natural frequency
in Hz?

(Note that. while an analysis like this would be important when designing a boat or ocean vessel,

in reality the rotational motions of the vessel would usually be more important and those require

a more complicated analysis.)

2.3.2.1 Part(a)

We assume the cube is displaced downwards from its static equilibrium position and it
is currently at distance x below the static position.

The buoyant force F, will push the cube upwards. This force will equal the weight of
water displaced which is xa%p,,¢ where p,, is density of water and g is the gravitational
constant. The free body diagram is

Static equilibrium

A I -

Ocg |X

Showing cube
when slightly
pushed
downward

Buoyant
b force

Applying F = mx”" we obtain equation of motion

Mx" = -F, (2.8)
Mx" +F, =0 (2.9)

M = a®p where p is density of pine. The above can be simplified to

alpx’ + xa?pug =0 (2.10)
v+ P8y g (2.11)
ap
X" +wix =0 (2.12)
2.3.2.2 Part(b)
Hence from the above equation
B [
ap
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2.3.2.3 Part(c)

Given p = 400 kg/m> and p,, = 1000 kg/m® and a = 0.1m then

Hence frequency in Hz is

_w, 1566
=t =5 =249

f

2.3.3 Problem 2

2.17 An undamped one-degree-of-freedom sys-
tem has a mass coefficient of 50 kg and a natural
frequency of 80 Hz. At t+ = 0 it is released from
g = 20 mm with ¢4 = —50 m/s.

(a) Determine the maximum positive value of q
that occurs in the ensuing vibration, and the earli-

est instant at which 1t occurs.

(b) Determine the maximum positive value of g
that occurs in the ensuing vibration, and the earli-

est instant at which it occurs.

2.3.3.1 Part(a)

g(0) = 20mm
q'(0) = -50m/sec

M —__T___ q — O Static

equilibrium

applying F = mq”’, we obtain equation of motion

Mq” = —kq
Mg” +kq=0

LI
q Mq_

q" +wpqg =0

(2.13)
(2.14)

(2.15)
(2.16)

Let solution be g(t) = Re(Aeiw”t) where A is the complex amplitude, which is a complex
number that can be written as A = a + ib. We use initial conditions to determine A. At
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t=0,letg(0) = qq

go = Re(Ac@nt) (2.17)
= Re(A) (2.18)
=4 (2.19)

Hence a = gy And since g'(t) = Re(ia)nAei‘””t), then t = 0 we have

96 = Re(iw, A) (2.20)
= Re(iw,(a + ib)) (2.21)
= Re(iw,a — w,,b) (2.22)
= -wy,b (2.23)
Hence b = —Z—é therefore the general solution is
q(t) = Re(Ae“nt) (2.24)
= Re((a + ib)eint) (2.25)
A
—

=R _ @ iw,t

= Re|[go —i— |e'“n (2.26)
a)}’l

/

90

\2
Hence |A| = /75 + (Z—O) and arg(A) =0= tan"l(ﬂ]. We have 2 complex quantities

qo0

above being multiplied. The first is A and the second is ¢!, therefore the result is
obtained by adding the angles and by multiplied the magnitudes. The magnitude of
¢'“r! is one. Hence on the complex plan, the above expression for g(t) is represented as
vector of length |A| and phase ¢ = 0 + w,t

Imaginary axes

eiwnt

-
-

q(;) \ \ Aelwnt

n

From the above diagram we see that the maximum value of

qmax(t) = |A|
which occurs when
¢=0+w,t=0
solving for t gives
-0
t=—
a)i’l

Notice that 0 is negative, hence we will get positive value for t. Substituting the numerical
values given we find thatAnd the earliest time this occurs is

1.3724

t= =2.7303%x107% =2.73
271(80) ms
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We confirm this by noticing that the initial position vector was at about ; cycle away from

the positive x-axis (we found the phase of A above to be about —80 degrees), and the
rotational speed is given as 80 cycles per second. Hence it takes 12.5 ms to make one

cycle and 31 of this is about 3ms.

2.3.3.2 Part(b)

4

Since we found g(t) = Re((qg - iZTO) i ) then

q'(t) = Re(za)n(qo —i— ) Wﬂt) (2.27)
Re((cunqo —e Zq )e 2 ¢in ) (2.28)

= Re((a)nqoe 2 —e'™gl )e ) ""nt) (2.29)

= Re (a)nqoeif + q{)) elnt (2.30)

" . 2 2
Where now B is the complex amplitude of g'(t). Hence |B | = \/ (a)nqo) + (%) and its

phase is arg(f%) = tan"! w;—f](). The complex plane representation of 4’(t) is
0

Imaginary axes éeiwnt This
PN angle is
e ~_——»opt+ 0

7

|

anOA giont . !
//\7B ,:/

wnt P /:

|

|

qO ée iont /. L
a0, — )

From the above diagram we see that maximum magnitude of g'(¢) is |B| given by

A

|B| = \/ (wu0)” + (75)° (2.31)

- \/ (27(80)(20 x 102))” + (~50)? (232)
=51.001lm/s (2.33)

The earliest time it occurs is found by solving for t in

nt+ O =2m (2.34)
2m -0
== (2.35)
a)Vl
2n—tan™' 8 on_ tan! 2r(30)(20x107%)
B = 0 (2.36)
27(80) 271(80)
_2n—tan(020106) o .
- 271(80) - _
= 0129 ms (2.38)
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2.3.4 Problem 3

2.19 A block of mass m is mounted on a spring
having stiffness k. The block moves in the vertical
direction. When the system is at rest, a 2 kg block
is placed gently on the original block. It is
observed that the static length of the spring after
insertion of the additional block is 50 mm less
than it was prior to the addition. It also is
observed that the natural frequency with the addi-
tional mass is 5 Hz less than it was originally.
Determine k and m.

EXERCISE 2.19

Adding 2 kg caused deflection of 50 mm, hence from F = kA we can find k as follows

F2¢  209.81)
—_ = = = 2
AT 005 o005 _22N/m

(2.39)

where g is the gravitational constant. We also told that f, = f; —5 where f, is the natural
frequency after adding the second mass and where f; = %wl and f; = S~w,, hence

fa=f1-5
1 1
szzﬂa)l—S

wy = w1 =107

[k k
But w; = 4/~ and w, = m,hence

/k _/k 10
m+2 N\Nm &

From Eq[2.117]the above becomes

392 392
\/ = \/ -107
m+2 m

Solving numerically gives m = 0.1955kg

2.3.5 Problem 4

At

Problem 4: Show that x(f)=Be” is a solution to ¥+ 2¢@,x+®,"x =0 and find & for the

following cases: 1.) Underdamped system. 2.) Overdamped system. Write the solution x(7) for
both cases for an arbitrary set of initial conditions and draw a sketch to illustrate how each

response x(f) would look. Show that x(f) can be written as x(f) = RE:(111&:,'_""”"'&2i o“'r] m case (1).

38
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To show that x(t) = Be'! is solution to the differential equation, we substitute this solution
into the LHS of the differential equation and see if we obtain zero.

xX'(t) = ABeM = Ax(t) (2.43)
x"(t) = A2BeM = A%x(t) (2.44)
Then
X" + 20w, X + w2x =0 (2.45)
A2x(t) + 2Cw, Ax(t) + w2x(t) = 0 (2.46)
(A2 +2Cw, A + w2)x(t) = 0 (2.47)

Hence x(t) = Be is a non-trivial solution to the differential equation provided A? +
2Cw, A + w3 = 0 since then we obtain 0 = 0.

Now we find A for the different cases.

2.3.5.1 casel

The roots of A2 + 2Lw,A + w2 = 0 are

/\1,2 = —Cw, + w, VT -1
For underdamped C < 1, hence V(%2 -1 < 0 and we write the above as

Mo = —Cwy, +iw, V1 - C? (2.48)
= —Cw, * iwy (2.49)

where
wy = w,V1 — 2

Let A = —Cw,, + iw, and its complex conjugate A* = —Cw,, — iwy, hence the solution is
x(t) = ByeM + Byet't

To obtain a real solution we must have B; be complex say B and B, = B*. Hence the
above can be written as

x(t) = BeM + Bret't (2.50)
= 2Re(Be) (2.51)
= Re(2Be~Contivnt) (2.52)
Therefore
x(t) = Re(AeConteiodt) (2.53)

Where A = 2B = a + ib. Hence
x(t) = Re((a + ib)e‘cwnte"“’dt)

To find a, b we need to use initial conditions. Assuming x(0) = xy and x’(0) = x{ then

from Eq we obtain
xo =Re(a+ib) =a

Hence
a=Xy
and taking derivative of
x(t) = Re((a + ib)e‘c“’nteia’dt) (2.54)
x'(t) = Re(—Ca)n(a + ib)e~C@ntei®dt 4 jo (a + ib)e‘ca’ﬂteiwdt) (2.55)
x'(0) = Re(—Cw,,(a + ib) + iwy(a + ib)) (2.56)
= —Cw,a— wgb (2.57)
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Hence ,
- xp + Cwya
Wy
But a = x(, hence
b= x4 + CwpXxo
wy
Hence becomes
x(t) = Re((a + ib)e‘c“’ﬂteiwdt) (2.58)
- Re((xo + im)e‘cwntei“’dt) (2.59)

Wq
And this is the general solution. In complex plan it is

Imaginary eiwdl Im.aglnary
axis axis

/ Ae—gwnteiwdt

,{_(\)r\‘

J wqgt |:l\> \Me i
// a)dt -0 :

N _ —1 [ Xotc®nXo |
\\\\je = tan ( Xowd ) X(t) ]

~

\A
A(t)

\ 4
X+l @nXo
w4

" 2
Al 2 Xo+C @nXo
JA] = Jxe+ (Rt

3] - [Afe

Hence the rotating vector will have its length become smaller with time since |4] is
multiplied by e~*“. The real part, which is the solution will eventually damp down to

zero. Hence it is a damped sinusoid oscillation as follows

sk=tch of zolution to vnde=rdempad

TEE T e & e w ko LI TN PR K i) R T B ] R
L |I ]
|
S
L [ 1 i
0.5 | || I| |'r \ ]
|| | |I II |I I| "II I,l'-.'-
| I \ |I ] | Il' l'lﬁl' =
E |} [ | || N T f ) ."ﬁ"'.l 5
I A [
0.0 I | || | | I| |I L U, I'| [\ ll.l." S
[ [ ' L L g 2 \ S
e ft el [\ II'. NS AP W
v g | [ \ f W
| | |I I| \ | \J
05 W .
L | | |
| | \
1]
|
1 .ILII| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
o 10 ] EL 4 50

2.3.5.2 case?2

From

A1,2 = —C(Un *w, VCZ -1

For overdamped C > 1, hence V(%2 =1 > 0 and we write the above as

Mo = —Cw, + w, V1 =2
Hence the solution is
x(t) = ByeMt + Byel2!t
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where A; = —Cw,, + w,V1 - (? and A, = —Cw,, — w, V1 — (2. We see that both roots are
negative always, hence we have 2 exponentially damped solution being added with no

oscillation. A sketch of the solution is

sketch of solution to overerdampad Both solutions addad
T T T T T T T T

2.3.6 Problem 5

2.29' The measured free vibration response of a
one-degree-of-freedom system is as shown in the
graph.

b2
(==

¥ T 1 1 l T L T T 4 T T L] T 4' L T L} T

el Rt ahate T b el T it bl i nanty oaad has hafnt, Retef sheie hubad s
e --I-.--I-—---i-—-I—-l--I————-I-._—l——i--l--———i-..-.h---o——l.-_
it S i et S e S e e B e M
9 it i ke i o ey e g
- - - -_I__ - -ale . - - -

. 8 X 4 N e e s e S e L e
==y - okl ot il itk Rl b nel LT TR T

o
Vi
4

T==fF=q==y =
]—-II--A.L_JI—-:...—--J-...I..-J-—J--|
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o e D e S i B

- sl pmmbe e d ek
S R s e e e e
i ki e e e o e s e i A e i s st S £

Displacement (mm)
o

-20
0 0.2 0.4 0.6 0.8
Time (s)

EXERCISE 2.29

(a) Deduce from this measurement the log decre-
ment, the natural frequency, and the critical damp-
ing ratio of the system.

(b) Estimate the value of ¢ beyond which the
displacement magnitude lgl will not exceed
0.01 mm.

(c) If the damping constant C is held fixed, while
the system is modified by doubling the stiffness X
and halving the generalized mass M, how would
that alter the answer to part (b)?

(d) The initial displacement, at t = 0, is 4o = —10
mm. What is the initial velocity?

2.3.6.1 Part(a)

From looking at the plot above, here are the values estimated for displacement positive
peaks and time they occur

41



2.3. HW2 CHAPTER 2. HW’S

t y(t)
0.07 | 16
017 | 12
027 | 9
037 | 6

From the above we estimate the natural period T = 0.1sec hence f = 10 hz hence
w, = 2nf = 60.3 rad/sec The log decrement is

5=In—2
Yi+N
Selecti=1and N = 3 gives
16
0=In 3 (2.60)
=0.981 (2.61)

To find C we use the log decrement method

6 =2nNC
Hence
o 0.98083
= = 2.62
¢ 2nN 27t(3) ( )
¢ =0.052 (2.63)
Hence
C = 5.20/0

2.3.6.2 Part(b)

ln( 4 ): 2nNC
Yi4N

Where now we write y; = 16 and yy,1 = 0.01, and hence we need to find N the only
unknown in the equation above

(22} = 272N(0.052)
Moor) =W

16
_ nlg)
~ 271(0.052)

We take N = 23. What this says is that after 23 periods beyond the first peak, we will
satisfy the requirement. But T = 0.1 sec, and the first peak was at t = 0.05 sec, therefore

Hence

= 22.581

t = 0.07 +23(0.1) (2.64)
= 2.37sec (2.65)
2.3.6.3 Partc
Since 6y = 2nNC and C = Ci = 2\;}(_ , then if we double k and half the mass m, then C
T m

would remain the same since c is held constant. Therefore the answer in part b would
not change.
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2.3.6.4 Partd

Since this is an underdamped system, the solution is
q(t) = Re( AeCwnt+iwat)
Where A is the complex amplitude, say (a + ib), hence
q(t) = Re((a + ib)e(_wnC+ia)d)t)

At t = 0 we find that
a=4q(0) =qo

Hence
a=-0.01

and the general solution is
g(t) = Re((qo + ib)e(—wnCde)t)
Now taking derivatives of the above gives
9'(5) = Re((-w,C + iwy)(qo + ib)eentiaa)

At t = 0 then, assuming g is the initial velocity

g = Re((~w,C + iwg)(qo + b))

= —w,Cqo — wgb
Hence )
b — _qO + w?’quO
]

Therefore the general solution is
q(t) = Re((qo _ B0t @nClo )e<—wné+iwd>f)
Wq

and

q'(t) = Re((—a)nC + ia)d)(% - iM)e(—wnGiwdﬁ)
W

Now at ty = 0.07 sec the velocity is zero, since this is where the displacement is maximum
(first peak). Hence now we have one equation with one unknown gythat we can solve

for from the above

4 + '
0= Re((—a)nC + ia)d)(qo - iqo—a)ncqo)e(—a)nCde)to)
Wq
0+
= ¢ nth Re (—wano 4 o T Uno Onl
Wy wy

= e—wnlto Re (Z(%i‘)ﬂwnc + %wd) + qé)eiwdtO)
d

[0+ @ , .
= e—wano Re l(qow—anOa)nC + qoa)d)ela)dto + q’oela’dtO)
d
-1{gy +w , ,
— e—wnCto Re T(qoaj—anownC + qoa)d)el(wdto) + q6elwdt0)
d

14 ‘ ,
= e~wnClo [RG(T(MC%C + qowd)ez(wdto)) + Re(%el“’dto)]

Wy

_ e—w@to[_(m

w,C+ qoa)d) sin(wgtg) + q; cos(a)dto)]
Wy
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Butgy = -0.01 m/sec, { = 0.052, w,, = 60.3rad/secand w; = w, V1 - (* = 60.3V1 - 0.052? =
60.218, therefore w,ty = 60.218%0.07 = 4.2153 and gpw,; = (60.218)(-0.01) = —0.60218 hence
the above equation becomes

0 = ¢~(603)(0.052)(. 07)( (% +(60.3)(0.052)(-0.01)

<0718 60.3 x 0.052 - 0.602) sin(4.215) + q; cos(4.215))

(2.75)

7 —3.136 x 1072
= 0.80293(—(% g (3:1356) - 0.602)(—0.879) + qé(—0.477)) (2.76)

Solving for q; gives
9o = —1.231 m/sec
Now that we gq;,

Now that we g, we can find the numerical value for b and write the general solution
again.

b= _q6 + C‘)nc%

(2.77)
Wq
~1.231 + 60.3(0.052)(~0.01
_ (0.052)(-0.01) (278)
60.218
=2.0963 x 1072 (2.79)
Hence from

q(t) = Re((qo + ib)el-wnt+iwat) (2.80)

= Re((~0.01 + i0.0209)-wnt+ica)t) (2.81)

giving|A| = V0.012 + 0.02092 = 0.023

2.3.7 Problem 6

(a) Determine the downward displace
based on z = 0 being the center of masg
at the instant when the package first copgge
ground. Hint: Gravity cannot be ignored pa.
z = 0 is not the static equilibrium poslum Y
(b) Use the solution in part (a) to derive ap gy
sion for the force exerted by the cushlonmg ot
package mass m. How can this €Xpression e %
to determine the instant t’ at which the

= will rebound from the ground? .
(c) Consider the case where m = 1 kg, 0
Hz, and v = 4 m/s. Use mathematical softwan.

evaluate the maximum cushioning force in pas
v 2z for all ¢ at a fixed critical damping ratio. Cg

2.32 The cushioning for a package of mass m may
be represented as a spring k and dashpot c. After
falling some distance, the package hits the ground
with a known initial velocity v. The system is
underdamped.

0 < ¢ < 1 for this evaluation. Which case jay
c to the most protection for the package?

23.7.1 Parta
Assume the system is underdamped.

When the package hits the ground, its speed becomes zero. Therefore the impulse gen-

erated on it is the change of linear momentum. Since it speed was v just before impact,
then impulse= mo.
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m T
l
A \j
z
kz I:impulse
cz'
\/
mg
Hence the EQM is
mz" = —cz’ —kz = Fiypyise + Mg (2.82)
mz"” +cz’ +kz = mg = Fiypuse (2.83)

With the initial conditions now being z = 0 and z’ = 0.

The response due to the force mg can be found from the response to a unit step of
amplitude mg Hence the response due to the force mg is

u(t) = %(1 - e‘C“’"t[cos wgt + Cwid” sin a)dt])

The response due to the impulse is the response of a free system with zero initial position
impulse

but with initial velocity
due to the impulse only is

—— in the upward (negative) direction. Hence the response

mo ;
t) = ——e Snt sin wyt 2.84
80 = e sinag (284)
= 7 o-Tont sin wgt (2.85)
Wy

Hence the downward displacement is given by

—Cwpt

m ve ““n

z(t) = —g(l - e‘C‘””t[cos wgt + Cﬂ sin wdt]) - sin w,t (2.86)
k wy @y

2.3.7.2 Partb

Now that the impulse have taken place and we have accounted for it in the z(t) solution,
then we can use this expression to find the spring force since Fyy;,; = kz(f) and the
damping force on the mass Fjype, = ¢z'(f). When resultant net force F is negative then
the mass will rebound from the ground.
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m T
|
|

A \j
Z
kz v
mg
cz'

F =mg — kz(t) — cZ'(t)

But
—Cawpt
z(t) = m_g(l - e‘C“’"tlcos wgt + C&n sin a)dtD _x sin wyt (2.87)
k Wy Wy
Hence
—Cwpt
Z/(t) = %(Cwne‘cwnt[cos wgt + COn sin a)dtl — e t@nt [~  sin wyt + Cw,, cos wdt]) _ Sove sin w,t — ve”
k wy wy
(2.88)
or
—Cawpt
Z(t) = o ((kva)nC + gm(a)ﬁ + w%lz)) sin w,t — kvw, cos(a)dt)) (2.89)
Hence
F =mg —kz(t) — cz/'(t) (2.90)

m B Ca) ‘ ve—Ca)nt . —Cawpt ‘
=mg — k[Tg(l —e Cwnf[cos wgt + a)—; sin a)dt]) - "y sin a)dt] -c Py ((kva)nC + gm(wg + w%cz)) sit
(2.91)

To find when this force will turn negative first time, we can take the derivative with
respect to time and set it to zero and solve for first ¢ = #’ that will make it zero. Since the
force was positive first, then it has to become zero before turning negative.

2.3.7.3 Part(c)

Letm =1kg, w, =5 rad/se v = 4m/s. Hence w; = 5V1 - (2. Since w? = %, hence
k =25 N/m. Also ¢ = Cc., = (2mw,, = 10C

Using these values, the force in part(b) is plotted for different values of C. For example,
setting C = 5% gives this plot of F(t) for t = 0 to 20 seconds.

3typo in book. hz is assumed to mean rad/sec
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7
s =% 2le] =]
total Force on mass for £=3. %

max force =21.6308 N at t=0.193186 sec
first time zero at 0.824292 sec

|
10 l! !I i

Fif)
=

|
—10 |I || U

The maximum force is seen as little over 20 N.Therefore, to find which C gives the
smallest value of maximum force, we can try different values of C and see how the
maximum force changes as a function of C. Using software the following values of
maximum for for different C are generated along with t = t,,,, when this maximum
occurs and with the time t =  when the mass rebounds first time from z = 0

maximum force (N) | C% | tnax(sec) | t'(sec)
221 1 0.21 0.84
21.85 3 |0.206 0.834
21.45 7 0.184 0.81
21.27 10 | 0.16 0.779
214 20 | 0.11 0.75
25.8 40 | 0.01 0.68
30 50 | 0.001 0.64

Most protection when damping ratio is below 10%
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2.3.8 Key solution for HW 2

Hw# 2 — Floating (uze ,
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Exercise 2,19

Given skakee % =0,05 mefer due (o
Inse~twn of 2 k3 block

z:. —17 What webh 2ty ;s 10T rades
Fea less Hoa o without 2 ks
Fod L+ -,
S0lution: State dlsp/acemqf = F/e = 3_(7‘_;9_".7): 0.08
Bebore 2 ky (wap)=(k )™
Abfe- 2 ky , Maaf = (:f-1 e mat)y —1O0 T
From static Acspbcsmeont k= %)’: 32,3 N/ ===
Solve —_-i%_i v (?i’-i-‘-’)"l- 0 => M=0,1956 ky =
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Exrercise 2,29

Gives 9 vs t
? pu"— values w> 7 cy cles

524 LR~y (S5 )00 <
'5"(‘"'1*5.,).,,_, = 0, 04723 <

16 2¢r03 w> IS half perivds = Is[i) (0.715-0.0+%)
S wy = ;’5—7: 20T = wihyy (1o \shM“‘S
Waap = ©2.90 rad A <

Waat max o~ »un I,/ < 0.01
S= L 4a( 2 %, )90247—7’:‘- tn (S,
N=24 8 r-o:::d up v neerest o.5 => N=-Is5
T has 25 dam,oe/ pu“a/i bcyo"/ §i~st peqt
t > 0007+ 125 (= )-:zsavsco =
The number of cycles N - s/ec:f:o/ LR W
‘lﬂenlﬁ on § = ﬂz—-{rg’)%’ ) 'y z(kH)"'
If cl=c, K'eZ ¢t o y's
Thas N =
However u/,“/ ( )‘/‘._2( )’/’e L Wab
Be cause tg’ ® = w‘ > 2uy, sSo
¢ >0.007+25(25) < 1.257 sec <

Coe, halE e Fooe from o £ st ,ouL
To F1ad 4, use eg.(2.2.24). Set g =o@t=0.775:

9, cos[ Wy (0,795)] + %o "(3 “act o ..[w,(o 795)] =0
2

o= =Sy 9 = %2, ot[ws(0.795)]= 1304 mss <

Cl

1(:1'4))‘/\, = CS
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Exercise 2,32

m3 TR = My-k -2 =m2
1, Fraswgieagee
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‘gor O< t< T:ul (m-ut 1M on goru, wc// oOCcur 1=
$irsd cycle)-»v‘u.rf 2(¢€) 13 14/7—3’()- [Adente €y
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vied o opge10m m-d 0-9807  ©4(Q) = 1-C 0y
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24 HW3

Resonance at 9 Hz

Node location e

Resonance at 39 Hz

Lab observation 2/14/13
EME 545 Spring 2013

Nasser M. Abbasi
Resonance at 180 Hz

3 nodes counted in each ring
when it was in resonance
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2.5.1 problem description

Homework #4
EMA 545, Spring 2013

Problem 1: Exercise 2.54 from Ginsberg.

Problem 2: (30 pts, each part below is worth 10 pts).

The read head on a Hard Disk Drive (HDD) can be modeled as a pinned bar with a
torsional spring at its base as shown below with L =2 cm, m = 3 grams and x = 20 N/rad.
The damping ratio for the system is = 0.02. The equation of motion for this system is:
(later we will discuss how to find the EOM for a system like this)

%mL29+09+K6 =I(t)

A certain read operation involves applying a step torque I'(t) = F(t) with amplitude F, and
duration T as shown below, where Fj is the static torque required to displace the bar 30
degrees.

F®

F

0

(a) Find the response of the system numerically over the time interval 0 <1 < 10*T, with
T =2.5*%T4, where Tq is the damped period of the system. Use a numerical procedure,
preferably Matlab's “ode45” function together with a suitably modified version of
eom_2_12.m, which is available on the class website.

(b) Assuming an underdamped response, write down a closed-form solution for the
response in terms of Heaviside-step functions, and unit step responses, q(t).

Compare this with the response that you found numerically.

(c) Plot the displacement as a function of time for the case where T =3*Ty and T =
2.5%T4. What do you observe? Why is the residual vibration larger in the latter case?
(Hint —an undamped version of your analysis in (b) may make this easier to see.)

Problem 3: A SDOF system modeling a car bouncing on its suspension has m=1000kg,
k=11 kN/m and ¢=660 N-s/m. The car is released from rest at t=0
T f(t)  with z(0)=—0.10m. It is possible to bring the car exactly to rest by
7 1_ exerting an impulsive force f(t)=F(5(t-T) at some instant t=T. (e.g.
hitting it with a very large hammer at just the right instant). Find the
magnitude of the impulse and the instant, T, at which it should be
applied such the bouncing of the car stops completely after at least
K 2.0 seconds have elapsed but before 5.0 seconds have elapsed.
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Problem 4: Suppose that the bridge over University Avenue (pictured below) can be
modeled as a simply-supported beam with length L=50 m. To simplify the analysis, let’s
assume that the beam has rectangular cross section with height 18 inches, width 4 feet
and that it is constructed from steel with p=7800 kg/m”"3 and E=210 GPa. (Note that the
stiffness for various beam configurations is given in Figure 1.1 in the text.) Model this
bridge as a SDOF system with an effective mass that is one third of the total mass of the
beam and a stiffness equal to the stiffness of the beam when a static force is applied at its
center. The damping ratio of the system is observed to be £=0.01.

Suppose that a single student jumping up and down on the bridge can exert a
force f(t)=(1000 N)cos(wt) where  can be between 0 and 87 rad/s depending on how
quickly he jumps up and down. How many students must jump on the bridge to cause a
displacement amplitude of 50 cm? What frequency should they jump at to minimize the
number of students required? (Don’t worry, the actual bridge is stiffer and lighter than
that given in the problem statement. Extra Credit: What would be more reasonable
values for its mass and natural frequency? How does this change the solution?)

Problem 5: 3.2 from Ginsberg. Note that you are approximating the radar display as a
rigid mass (“mounted mass is 8 kg”), which is mounted on a spring and dashpot.

Problem 6: 3.5 from Ginsberg. Also, please sketch the force and the response of the

system (by hand) over one or two cycles, taking care to properly represent the amplitude
and phase difference. Do this for both cases, 0.95 kHz and 1.05 kHz.
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2.5.2 problem1

0 < 3 o tally. Specif; call 4 :
’ Q) Foexp[~g(; )—E %(’]‘)1; z' '
the response. :

Assuming zero initial conditions. The input to the system is made up of two inputs. We
tind the response to the first input, then add this response to the response due to the
second input. The first input is

uy (t) = Foh(t) = Foh(t = T)
= Fo(h(t) = h(t = T))

Which is a rectangular pulse of width T starting at t = 0. For example for T = 10 sec.
and Fy =1

firat inpast

12p . .
1.0

0B

0.6

04F

01

0.0 F

-Hxhb

Assuming the response to unit step is g;(t) then the response to u(t) is

§1(t) = Fo[gs(O(t) = gs(t = Tt = )

From appending B, g,(f) = L(1 — cos(wy,t)), hence the above becomes
PP &b & a2

1 (1 = cos(w,t))h(t) - !

(1 - cos(w, (t - T)h(t - T) (2.92)

mw? mw?

g1(t) = Fo[

Looking at the second input given by u,(t) = Foe P*"Dh(t - T)
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s2ooded inpast

12p

1.0F

0.8F \"“u
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0.4F .

0.2 Tl
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—0.2 :
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fimea

From appendix B, the response to an exponential Foe P'h(t) is

Fo (e—ﬁf - (COS(wnt) _£ Sin(w”t)))h(t)
) [

m(a),% + ﬁz n

Therefore the response to u;(t) is

$(t) = ﬁ(e‘ﬁ(t‘ﬂ - (Cos(a)n(t -T)) - a)ﬁ sin(w,, (t - T))))h(t -T) (2.93)

Adding Eqs[2.102|and 2.93| results in the final response

g(f) = g1(t) + &1(t)
= FO( ! (1 = cos(w,,t))h(t) — L (1 - cos(w,,(t = T)))h(t - T))+

maw? mw?

m(rﬁ(f—ﬂ - (cos(wn(t -T)) - wﬁn sin(w,(t - T))))h(t -1

For illustration, the following plot shows the response using some values. Using m =1
kg, w, =1rad/sec,T =10sec,f =1,F, =1 Volt.

f2EponsE
20 ' ' 3 ' ]
5 Ilnll I'r'l|
| k
Lip |
I| |I | IllII f
Lok | { [ III fil—n -
1] || L
[ | f [ 1 [
] ||'-I ||I 1] Ijll III | |||| Illl | ||||-
|
sabl |_|| ||||||||||||||||.||||||||||||_
: V |||||||||I||||'||I||||
ik | | | ||| |||| i 1 |I|| ||| -
| I |
ik | v ll..'I I“| IIL.I |/ Ill,lI \/ |I.-II |—:
20 a0 80 50
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2.5.3 Problem 2

Problem 2: (30 pts. each part below 1s worth 10 pts).

The read head on a Hard Disk Drive (HDD) can be modeled as a pinned bar with a
torsional spring at its base as shown below with L =2 em. m = 3 grams and x = 20 N/rad.
The damping ratio for the system 1s £ = 0.02. The equation of motion for this system 1s:
(later we will discuss how to find the EOM for a system like this)

o ey w
Eml‘@ +cl+x8=T(t)

A certain read operation involves applying a step torque I'(t) = F(t) with amplitude Fg and
duration T as shown below. where Fy is the static torque required to displace the bar 30
degrees.

F(1)

Fy

(a) Find the response of the system numerically over the time interval 0 < 1 < 10*T, with
T =2.5%T4. where Tq is the damped period of the system. Use a numerical procedure,

preferably Matlab's “ode45™ function together with a suitably modified version of

eom 2 12.m. which is available on the class website.

(b) Assuming an underdamped response. write down a closed-form solution for the
response in terms of Heaviside-step functions. and unit step responses. qs(t).
Compare this with the response that you found numerically.

(c) Plot the displacement as a function of time for the case where T=3%T3 and T =
2.5%T4. What do you observe? Why 1s the residual vibration larger in the latter case?
(Hint —an undamped version of your analysis in (b) may make this easier to see.)

2.5.3.1 part(a)

The differential equation is
1
EMLZG"(t) +cO'(t) + kO(t) = Fo(h(t) — h(t - T)) (2.94)

The initial conditions are not given, and assumed to be zero, therefore 6(0) = 0° and
0’(0) = 0 rad/sec. The system is underdamped, hence

wg = w,V1 -2
Let T,, be the damped period of oscillation given by

27 3 27

a)_d - w, V1 - (?

To obtain an expression for w,,, Eq[2.110]is changed to a standard form 6" (t) + 2Cw, 0’ (t) +
w26(t) = Fo(h(t)-h(t-T))
2 SR e e

T;=

%MLZ
2Cwy, a);%
3¢ 3k Fo(h(t) — h(t - T))
" (t —0'(t) + t 2.
0 ()+ML29() ML2<9() [y (2.95)
3
Therefore
, 3k
“n = MI2
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Using k = 20 N/rad, L = 0.02 meter, M = 0.003 kg

2o 300

—————— =5.0x107
(0.003)(0.02)
or
= V5.0 x 107 =| 7071 rad/sec
and
T, = 27 —| 0.8888 ms
= =1 0.
7071.1V1 — 0.022
Therefore

T =25T;=25%0.88857 =| 2.221 ms

To find F it is assumed the head was initially at rest. Therefore

F0=k90

= 20(%) = | 10.472 N-meter

Eq becomes
Fo(h(t) = h(t —2.5T))

0" (t) + 2Lw, 0’ () + w2O(t) =

lMLZ
0” (1) + 2(0.02)(7071)6’ () + (5 x 107)O(+ 3><20( )(h(t) h(t —2.5T,))
(t) + 2(0.02)(7071) ()+( X ) (t) = 0o

0" (t) + 2830’ (t) + 5 x 1070(t) = 2.618 x 107 (h(t) — h(t — 0.0022219))

This is solved numerically for 0 < t < 10T with the initial conditions 6(0) = 0° and
0’(0) = 0 rad/sec. Here is a plot of the solution and the input on a second plot.

numarical solution &) Ty = 0.888754 ms I T "

_ inpast torque F{E) (W meter), T = 2.22189 m=

1.0 W'I" R A T S O R A e A T L T T T T

|| ( |’| ™ ! ' ; 30107 F ' ' : '
sE \ ' : :

H 'H| i o _

LT TYSPRE N e

|f|II|||||n,,,-.I.., X -

) ||H||||||||||||||t|||||||I|II|,.|1L-"u v u'"'u‘-* Laxil” b

2.5%107 F

‘.'J

lox107 |

—0Ef ‘ . : ; 1 sox10f

| : : ; i ok, i : , ,
: : ! : : 0 005 0.010 0.015 0.02
0.000 0.005 0.010 0.015 0.020 b i 00 0.0t 0

" . tims in sac
tima in sac

A computational software was used to numerically solve the above differential equation
for the solution 6(t).
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params = {m -+ 0.003, L->0.02, £ ->0.02, k- 20}:

3k T 2m
B ~ swa=w,Y1-F ;f0-k—;Td=—;T=2.5Td;
m L*° [ g
£0
input = (TnitStep[t] - UnitStep[t -2.5Td])

5=

eq=6'"[t] +2Eu, ' [t] + ()" B[t] = input;
sol = 6[t] /. First@NDSolve[{eq /. params, &'[0] = 0, 6[0] == 0}, 6[t], {t, 0, 10T /. params}];

= Grid[{
{Plot[sol, {t, 0, 10T /. params}, Frame + True, GridLines + Automatic,
GridlLinesStyle -+ [{Dashed, LightGray},
Framelabel -
{{Hone, Honel,
{"time in sec", Row[{"numerical solution 8(t) Ty = ", (Td /. params) «1000, " ms"}]}},
ImageSize —» 300],
Plot[input /. params, {t, 0, 10«T /. params}, Frame + True, GridlLines + Antomatic,
GridLinesStyle + {Dashed, LightGray}, PlotRange -+ [All, 3.5«10*7},
FramelLabel —+
{{¥one, None}, {Row[{"time in sec"}],
Row[{"input torque F(t) (N meter), T = ", (T /. params) »1000, " m="}]}}, ImageSize - 300]
1
1}, Spacings -+ {1, 1}, Frame -+ All, FrameStyle + LightGray]

2.5.3.2 Part(b)

From appendix B the response to underdamped second order system to a unit step u(t)
is

g,(t) = lez (1 — e Cwnt (cos(a)dt) + Cw—a? sin(a)dt)))h(t)

n

Hence the response U(t) due to (h(t) = h(t - T)) is given by

Fo
1 52
(3m22)

(FL )(qsa)h(t) G~ D)
3

F
Notice the factor 1—02 This was used since appendix B solution on based on equation

3
of motion 0" (t) + 2w, 0’ (t) + w20(t) = % while in this case, the equation of motion is

0" (t) + 2Cw, 0’ (t) + w20(t) = 1 0

u(t) =

Therefore the analytical solution is

U(t) = %(1 - e_c“’nt(cos(a)dt) + Ca)& sin(wdt)))h(t)
n d
3P0/L ( _ ¢~ Cawn(t-2T) (cos(a)d(t - T))))h(t -T)

Maw?

To compare this solution with the numerical solution found in part(a), the two solutions
are plotted side-by-side for the case T = 2.5T}

numerical solution Aty analytical solution
LOL | i i } 1op H } } i 1
|| 1 1 ] 1 1 1 I
1 1 1 1 1 1 1 1
1| r| i : : : | | ' : : :
05 || | "l ' I + 4 :._5 | ' ' i i
||||II|HH||I'||F||1F|I_ Z i ||H|| ||||1,|' i |
| A 3 ! i Il f :
. ||H|.i||| WUAAANA KA nanndant oof VYL p o Ak
T e 1 |||||'||'l TV AR
AT R ARG ! i || || |
osb LY | | osf ‘ ! ! -
: H I I : | | : l: ! : :
e ot L s ol s s s v el g T A PO TR B
0.000 0.005 0.010 0.015 0.020 0.000 0.005 0.010 0.015 0.020
fima in 220 tima in sac
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We see that solutions are in good approximate. Here is a plot of the difference. The error
is in the order of 1077

Plot[sol - analyticalSolution /. params, {t, 0, 10«T /. params}, Frame + True, GridlLines » Automatic,
GridLinesStyle » [Dashed, LightGray},
FramelLabel + {{None, None}, {"time in sec", "difference between exact and numerical solution &(t)"}},
ImageSize + 500, PlotStyle » Red]

difErence between emact and numerical solwtion &t)
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2.5.3.3 Part(c)
The analytical solutions for T = 2.5T; and T = 3.0T} are

snalytical solution, T = 2.5 T analytical solution, T =3 Tz
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We see when the step load duration is T = 2.5T};, the disk head will vibrate with larger
amplitudes than when the step duration was T = 3T.

To understand the reason for this, analysis was done on the undamped version of the
solution for part b

From appendix B the response to undamped second order system to a unit step u(t) is

qs(t) = — cos(wyt))h(t)

M 2

2
Therefore the solution for 0 < t < T is SI\F;/LZ (1 — cos(w,t)). This means at t = T which is

3F0/L _ 3Fg/L?

(1 — cos(w,T))and 0'(T) =

when the step load is removed, O(T) = (a)n sin(w,, T)).

For t > T, the load is not present any more and we have free vibration response but with
the above initial conditions obtained at the end of the T. The solution to free vibration
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of an undamped system forf =t — T > 0 is given by

01T _ ~
H(t) = ( )sina)nt+ O(T) cos w,,t
n
3Fy/L2 .
- Momz (w, sin(w, T)) B 3F0/L2 _
= i sinw, f + > (1 = cos(w,, T)) cos w,t
Wy Mw}
3F,/12 _ [3F. L2 3F./I2 )
=— MOC{)% sin(w, T) sinw, t + ( Moc{),% - ]VIO({),% cos(a)nT)) COS W)t
3F, L2 _ 3F L2 _ 3F L2 3
== MOC{)% sin(w,T) sinw,t - MOC{)% cos(w,,T) cos wyt + MOC{)% cos w, T
3F,/L? B . 3F2 )
= — ]\/IOC{J% (sin(wnT) sin w,t + cos(w,, T) cos a)nt) + Moc{),% cos w,t (2.96)

We have obtained a solution for the time after the step load was removed. We now
investigate the result observed. We see that when T is close to an integer multiple of the
period of the system, where we call the period of the system T to differentiate it from T,

then

~ 21 -
sin(a)nnT) = sin(?nT) =sin(n2m) =0

Also
~ 21 -
cos(wnnT) = cos(?nT) = cos(n2m) =1

Hence the response given by equation becomes

s 3Fy/L? . 3Fy/L? -
Q(t) = - Moa),% cos w,t + ]\/Ioa),% cos w,t

~0 (2.97)

But if T occurs at multiple of halves of the period of the system (for example, T =
0.5T,1.5T,2.5T, etc...) then now

) T (2n( T )
51n(a)n(n§)) — sm(?(na)) — sin(nm) — 0

However _ 5
T 2 T (n70) 1
— | — —n—=-\— - —
cos a)nnz cos 7 n2 cos(nm

We notice that the sign is now negative. This means equation becomes

- 3F/L? - 3Fy/L? -
G(t) = —O—/ cos w,t — o cos w,t
w? w?
6F/L? _
= - Maw? cos w,t (2.98)

Comparing Eqs[2.97|and [2.98/we see that| when T is an integer multiple of the period of the system

v

then the response after T is minimal (zero for the case on undamped)

While when T occurs at multiple of halves of the period of the system |the responseis

large beyond the time T.

The above analysis was done for undamped system, but the same idea carries to the
underdamped case. This explains why the response dies out quickly when T = 3T}
while it was large when T = 2.5T)
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2.5.4 Problem 3

Problem 3: A SDOF system modeling a car bouncing on its suspension has m=1000kg,
=11 kN/m and ¢=660 N-s/m. The car is released from rest at =0

T ft) withz(0)=—0.10m. Itis possible to bring the car exactly to rest by
exerting an impulsive force f{f)=F8(+-T) at some instant 1=T. (e.g.
m hitting it with a very large hammer at just the right instant). Find the
magnitude of the impulse and the instant. T, at which it should be
applied such the bouncing of the car stops completely after at least
g k 2.0 seconds have elapsed but before 5.0 seconds have elapsed.

3 2

First lets look at the free vibration response (zero input response, called u,;). The damp-

. . _c_ < _ 660 _ 2 _ \/E _
ing ratio ¢ = o o > V0009000 9.9499 x 10 0.1 | and w, -

% hence w, = 3.162 rad/sec, and w; = w,V1-{ = 3.1623V1-0.12. Hence
w, = 3.146 rad/sec | The damped period of the system is T; = Z—Z = 321% = 1.997
L1 _2n _ 2m
seconds and the natural period is T, = o = 31,2 - 1.987 |seconds.

Hence the system is underdamped and the solution is

U, = Re (Ae(i“’d‘cwn)t)

Where A = a + ib is the complex amplitude. At t = 0 we have

a=uy;(0)=-0.1
and u;(0) = uj = Re((iw; — Cwy,)(a + ib)) = —~bw,; — alw,, therefore b = %ﬂ;&% Since car
was dropped from rest, then we take 1 = 0 which leads to b = —(_0'1)3(2# = 01
Hence, since a = u((0) = ug and
T
Wy
then
() = Re((a -~ ib)e(i“’d‘c‘*’n)t)
= Re(e‘(:“’"t(uo —~ i(—ué * acw"))ei“’dt)
Wq
= e‘cwnt(uO(O) cos w,t + (%;—wa”) sin a)dt) (2.99)

For the numerical values gives, we now can plot this solution

Uu,;(t) = e 01616240 1 cos 3.146¢ + 0.1 sin 3.146¢)
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The phase is given by tan_l(g) = tan_l(%) = 2.356 rad = 135°, In complex plane, u,(t)
is

Zero input (free vibration N
put ( ) |A| = /a2 + b2

e,z;con‘ A solution vector at time t

|
® 0 = tan~! (g) _ 1350 \ wqgt \\

- ~

g <
e |
?" |
|
® I
R \ iwgt | \
x N € ! /71 a8
=8 |
I
|
|

\
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Uz = Re(Aeleatont

Now we add the zero initial conditions response, also called zero state response u,4 for
an input which is an impulse using appendix B.

F
O sin wdt)h(t)

uzs(t) = e—Cwnt(
maog

Hence u,; for an impulse that occurs at time T is

F
() = e—Cwn<f—T>(—° sin wy(t — T))h(t ~T) (2.100)
mwg;

Hence the solution is found by combining Eq.[2.117|and Eq[2.113
u(t) = Uy + Uy

‘ L+ . F
= e‘Cwnt(uO(O) cos wyt + (uo—ala)n) sin a)dt)h(t) + e‘c“’"(t‘T)(—O sin wy(t — T))h(t -T)
Wy Mmay

We need now to solve for T and Fj in order to meet the requirements that u(t) should
become zero between for 2 < t < 5. To do this in the complex plane, we draw the zero
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state response as a vector

F
Uy = e‘C“’n(t‘T’(—O sin wy(t — T))h(t -7
mag

~Lwp(t=T)
- Re(Foe—lemd(t—n) h(t - T)
mwg 1

_C n(t_T) . T
= Re(&el(wd(tq _5))h(t -T)
mwg;

Poe*Cwn(t*ﬂ e
——— |and phase | w;t — w;T — —~ | Now to solve

Hence u,; vector has | magnitude >

mawg

the problem of finding T and F,: To make the response become zero we need the magni-
tude of 1, to be equal but opposite in sign to the magnitude of u,; so that the projection
on the x-axis cancel out (the projection on the x-axis of the vector is the real part which
is the solution). Therefore, for the projection of 1, to be the same as the projection of u,;
but of different sign, the following diagram shows all the possible T values that allows
this. We will pick the first T value which is larger than 2 seconds to use.

This vector represents the response
to the impulse for zero initial
conditions shown here at one

Zero input (free vibration)
possible value for T

solution vector at time 0

[
Magnitude of /—/P Magnitude of
this vector is : this vector is
Aot
| T mogd
[
[
[
[
his
q Ole ;
e
O4T 4 & Is
2
We want these 2 values to
be the same for the total
response to be zero
2n-2-2 3n
From the above diagram, we need w,T + = =2n- - hence T=—*=%2=15

wq
seconds. Hence this value of T is not acceptable We now look for the next poss1b1e T.
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This vector represents the response
to the impulse for zero initial
Zero input (free vibration) conditions shown here at one

solution vector at time 0 possible value for T
wdtﬂ\

I
Magnitude of /—+ Magnitude of
this vector is \ this vector is

|
|
|A|egwnt : o4t Foe-Son(T)
: Mad
| 450
T
|
Thi
I IS
| @, T gle i
[ al +z

We want these 2 values to
be the same for the total
response to be zero

pJ SR
From the above diagram we see it will be w,T + g =21+ % hence T = —% 2 =175

seconds. Hence this is still too early to apply the impulse. We look at the next possible
case. We see that now we must rotate the vector all the way it was in the first diagram
above to get the projection on the x-axis canceling the projection of the free vibration
vector. Hence now the relation to solve for is

s

wdT+g:4n—Z

Where in the above we added full 27 to the first case we considered above. This gives

A

roi73
Tt

N

= 3.25 sec

.We have found T which brings the system to halt after at least 2 seconds has elapsed.
Now we find F; This is done by equating the amplitudes of the vectors as follows

_C n(t_T)
& — e_Cwnt

A

mawg

Now fort = T = 3.25 second, plug-in numerical values

Fo — ~(0.1)3.162(325)/0 12 + 0.12

1000(3.146)
Fo _ 5.0607 x 1072
3146.0
Fo = 159.21

To verity, here is a plot of the response when the impulse hit with

Fo =159.21 N at t = 3.25 seconds
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Eesponse showing effect of impulse
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2.5.5 Problem 4

Problem 4: Suppose that the bridge over University Avenue (pictured below) can be
modeled as a simply-supported beam with length L=50 m. To simplify the analysis. let’s
assume that the beam has rectangular cross section with height 18 inches, width 4 feet
and that it is constructed from steel with p=7800 kg/m"3 and E=210 GPa. (Note that the
stiffness for various beam configurations is given in Figure 1.1 in the text.) Model this
bridge as a SDOF system with an effective mass that is one third of the total mass of the
beam and a stiffness equal to the stiffness of the beam when a static force is applied at its
center. The damping ratio of the system 1is observed to be £=0.01.

Suppose that a single student jumping up and down on the bridge can exert a
force fir)=(1000 N)cos(mt) where @ can be between 0 and 8 rad/s depending on how
quickly he jumps up and down. How many students must jump on the bridge to cause a
displacement amplitude of 50 em? What frequency should they jump at to minimize the
mumber of students required? (Don’t worry. the actual bridge is stiffer and lighter than
that given in the problem statement. Extra Credit: What would be more reasonable
values for its mass and natural frequency? How does this change the solution?)

2.5.5.1 First part

Let A be the area of the cross section and p the mass density and L the length, then
actual mass is

Myctyal = LA.D
— 50(18 x 0.0254)(4 x 0.3048)(7800)
= 217393 kg

Hence we will use
217393
m =

= 72464 kg

The actual stiffness for a simply supported mean with loading at the center is %fl where
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I is the area moment of inertia. Hence

B (4% 0.3048)(1 .0254)°
I:aiz _ (4%030 8)§28><005) — 0.00971

Therefore the stiffness of the beam is

48E]
k=17

48(210 X 109)(0.00971)

— = = 783014 N/m
The natural frequency is
/ /783014 — 3987rad)
72464 ra secC
=0. 523 Hz

Therefore, assuming the loading is given by F( cos(@t) where @ is the forcing frequency.
The dynamic response at any time is given by

A

Folk

\/( —rZ) +(2Cr)

Where r = wi We start by drawing |X| vs. @ for the load of 1000 N by changing @ from

0 to 871, Hence for a single student the displacement vs. forcing frequency is

parms = {£f » 1000, k—» 783014, wn—> 3.287, z—» 0.01};
f/k

w 12)2 W 12
J(l—(;}) +(22;}
Plot[y[w] /. parms, {w, 0, 8Pi}, PlotRange + {{0, 8}, All},

GridLines - Automatic, Frame —» True,

ylw_] ==

FrameLabel » {{"|X|", None}, {"w (rad/sec)", "displacement vs. frequency"}}]

displacement vs. frequency

0.06 |

0.00F s e —
0 2 4 5 8

w(rad/sec)

Hence we see that for one student, the maximum displacement is around 6 cm when
the student is jumping at resonance frequency.

To answer the question of how many students are needed to cause |X]| to be 50 cm then
that will depend on what forcing frequency is used. Now we will find the minimum
number of students needed.

The minimum number will be when they all jump at the resonance frequency which is
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found from solving for @,esnance iN

Wresonance _ \/1_726)_

Wy

Wresonance = Wy V1-— 2C2

= 3.2874/1 — 2(0.01)?

= 3.28667 rad/sec
Therefore, at this forcing frequency, we now solve for F; to determine the number of

students

. Fo/k

- 2
@ 2 o 2
1- (M) + (ZC resommce)
Wy Wy
@ 2)? o 2
Fo = k[X| (1 - (M) ] + (zgw)
Wy wy,

212 2
3.28667 3.28667
= (783014(05) (l_( 3.287 ) ) +(2(O'01)W)

=7829.75 N

Therefore we need at least| 8 students |all jumping at 3.287 rad/sec to cause a displace-
ment of at least 50 cm.

2.5.6 Extra part

. . 0]
To make the structure avoid resonance, we need to make sure the ratio — stays away
@

n
from one. This is the ratio of the forcing frequency to the natural frequency. One way
is to make w, much larger than any expected @ that can occur is typical use of this
structure.

But to make w,, = \/g large, means either making m small or making k large. It is hard

to reduce the mass of the structure. Therefore, making the structure more stiff will be a
better solution.

The bridge can be made more stiff in many ways, such as by adding additional truss
structure to it (assuming this will add minimal weight). For this example, suppose we

double the stiffness. Hence w,, = 1/3”—1( = 1/2(775:2;4) = 4.649rad /sec.

Therefore NOW @psopance = Wp V1 — 202 = 4.649+/1 — 2(0.01)* = 4.65 rad/sec. Now the

same number of students (8) as before, jumping at same frequency of 3.28667 will cause
displacement of

) 8F,/k
X| = -
2)\2 5)\2
\/(1‘(:)) +(22)
B 8000/783014
2\2 2
3.28667 3.28667
\/(1 _( 4.649 ) ) + (2(0'01) 4.649 )
= 0.02 meter

Therefore by making the bridge twice as stiff, now the same 8 students at @ = 3.287 will
cause only 2 cm displacement instead of 50 cm.
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2.5.7 Problem 5

A radar display is to be tested by mounting it on spring-dashpot suspension and sub-
jecting it to harmonic force Q = F cos(wt). The mounted mass is 8 kg and C = 0.25. A
free vibration shows that damped natural frequency f; = Shz.It is observed that when
the force is applied at very low frequency the displacement amplitude is 2 mm. The test
is to be performed at 5.2 Hz. What will be the steady state response?

We are given are the following

m = 8 kg
=025
wy = w,V1 = 2 =27n(5) rad/sec
Fo/k = 0.002 meter
@ = 27(5.2) rad/sec

27(5)

\/;)_dcz = Vioaz 32.446 rad/sec. The steady state response is given by

Hence w,, =

Ugg = Re(f(ei‘f’ t)

where X = |X|ei9. Hence

2= Folk
@ 2 ? @ 2
(1 () ) + ()
3 0.002
2m(52)\? ’ 2n(52)\?
(1 a (32.446) ) + (2(0'25) 32.446)
= 0.00397
and
2Cr
— tan-1
0 = tan (1 — rz)
2(0.2
i 1( © 5))
0
tan~!(co)
Since 0 < 0 < n then the phase is
g="
2

Hence
u= Re(f(ei“_’t)
- Re(0.00397eigei@t)
= 0.00397 cos(a‘)t + g)
= —0.00397 sin(@t)
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= Plot[-0.00397 8in[2+Pix5.2t], {t, 0, 1}, Frame - True, GridlLines -+ Automatic,

FrameLabel —+ {{"uz: (t) ", None}, {t, "setady state response"}}]

setady state response

0.004 F7

0.002 -

[P ]

0.000 . — H— — —_— .

—0.002 —

—on0b, Y : o
00 02 04 06 08 10

2.5.8 Problem 6

A one degree of freedom system whose mass is 10 kg and whose natural frequency is 1
khz is subjected to a harmonic excitation 1.2 sin @t kN. The steady state amplitude when
@ =1 khz is observed to be 2.4 mm. Determine the steady state response at @ = 0.95

khz and @ = 1.05 khz.

We are given

m =10 kg
w,, = 21(1000) rad/sec
Fy =1200 N

IX| = 2.4 x 1073 meter when @ = w,,

Since w? = k, hence k = w2m = (27'((1000))2(10), therefore
m

k =3.949 x 108 N/m

Now when @ = w,, we have

% Fo/k
@ 2 2 @ 2
(1 (%) ) # (2
1200/(3.949 x 108)
24x10738 =
(207
3.039%x107°

2C

Hence
_(3.039%x10°
\2%x24%x103
= 0.000633

2.5.8.1 Part (1)

when | @ =2n(950) |now r = wi < 1 hence dynamic magnification factor is positive.

Therefore loading and displacement will be in phase with each others. (i.e. displacement
is in same direction as force). Since the force is sin then the response will be sin with
same frequency but different phase and amplitude. Hence let

Uy, = Xsin(wt — 0)
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Where
Fo/k

)+ czf

1200/(3.949 x 10°)

X =

[

e

n

2
2m(950) 2

27(950)
2n(1000)) ) + (2(0.000633)

21(1000)

X

=3.116 x 10~ meter

)z

and
2Cr
1-r2

0 = tan™!

|

2(0.000633)
271(950)

1- (271(1000)
= tan"1(1.234 x 1072)
= 0.01235 radians
=0.71°

2m(950)
2m(1000)

)2

= tan !

Hence steady state response is

U = 3.116 X 107 sin(@t — 0.71°)

Hence we see that the displacement is lagging the load by 0.71°. On complex plane it

looks as follows

Im When r<1 the displacement
load moves with load, but lags
behind it by g
,Disp.%
T Re
|
|
! |
oth\ | /
: | '\(\(9\
NN
| A \036
|
Z o\
ol Q‘&e&.
¢ @
* L aceme™ G R
¥ @
o O
NG
>
O
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2.5.8.2 Part (2)

When | @ = 27(1050) [now r = wi > 1 hence dynamic magnification factor is negative.

Therefore loading and displacement will be out of phase with loading. (i.e .displacement
is in opposite direction to force). Doing the same calculations are done as above

ug = Xsin(@t — 0)

where X

Fo/k

Y- () ey

1200/(3.949 X 108)

2\2 2
27(1050) 27(1050)
\/(1 B (2n(1000)) ) + (2(0'000633) 27'((1000))

=2.964 x 10~ meter

and

2Cr
_ -1
6 = tan (1 — rz)

27(1050
2(0.000633) 2:§ 1 000;

_ 2m(1050) 2
2m(1000)

_1(0.0013293)
=tan | —————

= tan™

-0.1025
= 3.12862 radians
=179.257°

Hence steady state response is

Uy = 2.964 X 107° sin(@t — 179.257°)

On complex plane it looks as follows
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% We see that when r>1 then as load
@\ increases in one direction, the displacement
/‘\ is increasing but in opposite direction
displacement ‘CA
P o)
=2
EAN

Im
W, |:"> Load increasing
load %

Q Re

When r>1 the displacement

__ér__

Displacement increasing ot moves with load, but lags
<I|:| ,ﬁ& behind it by
'
3
2
rel
load

Here is a plot by hand for the above 2 cases. First, the period that the loading is using
=2 = - =1.0526 X 10 3sec
o 950
T =1.053 ms
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2.5.9 Key solution for HW 4

Homework #4
EMA 545, Spring 2013

Problem 1: Exercise 2.54 from Ginsberg.

Problem 2: (30 pts, each part below is worth 10 pts).

The read head on a Hard Disk Drive (HDD) can be modeled as a pinned bar with a
torsional spring at its base as shown below with L =2 cm, m = 3 grams and x = 20 N/rad.
The damping ratio for the system is = 0.02. The equation of motion for this system is:
(later we will discuss how to find the EOM for a system like this)

%mL29+09+K6 =I(t)

A certain read operation involves applying a step torque I'(t) = F(t) with amplitude F, and
duration T as shown below, where Fj is the static torque required to displace the bar 30
degrees.

F®

F

0

(a) Find the response of the system numerically over the time interval 0 <1 < 10*T, with
T =2.5*%T4, where Tq is the damped period of the system. Use a numerical procedure,
preferably Matlab's “ode45” function together with a suitably modified version of
eom_2_12.m, which is available on the class website.

(b) Assuming an underdamped response, write down a closed-form solution for the
response in terms of Heaviside-step functions, and unit step responses, q(t).

Compare this with the response that you found numerically.

(c) Plot the displacement as a function of time for the case where T =3*Ty and T =
2.5%T4. What do you observe? Why is the residual vibration larger in the latter case?
(Hint —an undamped version of your analysis in (b) may make this easier to see.)

Problem 3: A SDOF system modeling a car bouncing on its suspension has m=1000kg,
k=11 kN/m and ¢=660 N-s/m. The car is released from rest at t=0
T f(t) with z(0)=-0.10m. It is possible to bring the car exactly to rest by
7 1_ exerting an impulsive force f(t)=F(5(t-T) at some instant t=T. (e.g.
hitting it with a very large hammer at just the right instant). Find the
magnitude of the impulse and the instant, T, at which it should be
applied such the bouncing of the car stops completely after at least
K 2.0 seconds have elapsed but before 5.0 seconds have elapsed.
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Problem 4: Suppose that the bridge over University Avenue (pictured below) can be
modeled as a simply-supported beam with length L=50 m. To simplify the analysis, let’s
assume that the beam has rectangular cross section with height 18 inches, width 4 feet
and that it is constructed from steel with p=7800 kg/m”"3 and E=210 GPa. (Note that the
stiffness for various beam configurations is given in Figure 1.1 in the text.) Model this
bridge as a SDOF system with an effective mass that is one third of the total mass of the
beam and a stiffness equal to the stiffness of the beam when a static force is applied at its
center. The damping ratio of the system is observed to be £=0.01.

Suppose that a single student jumping up and down on the bridge can exert a
force f(t)=(1000 N)cos(wt) where  can be between 0 and 87 rad/s depending on how
quickly he jumps up and down. How many students must jump on the bridge to cause a
displacement amplitude of 50 cm? What frequency should they jump at to minimize the
number of students required? (Don’t worry, the actual bridge is stiffer and lighter than
that given in the problem statement. Extra Credit: What would be more reasonable
values for its mass and natural frequency? How does this change the solution?)

Problem 5: 3.2 from Ginsberg. Note that you are approximating the radar display as a
rigid mass (“mounted mass is 8 kg”), which is mounted on a spring and dashpot.

Problem 6: 3.5 from Ginsberg. Also, please sketch the force and the response of the

system (by hand) over one or two cycles, taking care to properly represent the amplitude
and phase difference. Do this for both cases, 0.95 kHz and 1.05 kHz.
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L xXercese 2,54

] Q = F;&(e)-w-ﬂ]
) \ + Fo expl-p(-T) h(t-T7)

o - M?f&; :O Awame;(o)zé(a)so

Led u Le #\eo{m!sl(p regponu ?ad éc %«nz/
e xporeatial ses3ponse , 7T4ean

2 =f ult)- £, wul€-T) + £ =(¢- 1)
whore L (t)= *—'11‘“",.2' (- cosluw, , t) Th(¢)

!

x(t) =

Mo —2me .,, ,_ﬁ-,){e"/’("“f)
- [wa(w...,(') —;;’ St e, 4 ”]} e

[0

80



2.5. HW4

Hw 2¢-01 M ﬁJp

Engineer's Computation Pad

o No.937 811E

#STAEDTLER

h

e
v‘\»_//‘

(i

— & L6 cé r Ko = [ee)

3

)

M:JBMLQ’ ——

Grosmdwte = I8
- N 2
:’;{ - O( O’Z/ .‘fi/p? e (/3:7—;"?

FOAy = Foh&) = Rohét-T)

EH = Fogs 8) — R goCh=T) o
Gs ) 3;1'\/&4/}?? /fﬁgf’@m&f}% & | R Y Y7 T)
hers %luf ¢ 0 { &MtQ’C/(
= Yo T remt 10 ynglute —> a) b)

~h'e vecter — ﬁcawz//?(ﬁe, [0 Fpes por e ,,«G,.’c_ﬁ;” .

!

C/\’ For an ,wma/@m%o{ s5y5 Fee ;
57 ) = (m;i’,(} — (75 ey, é*j) h(;@

The yes pevse 1 5 o ?MM o 2 $"f£"t’}ﬁ maﬁaw D2,
$0F) = (| = fosCap ) =51 - toslon(rT)hik 1)
= —Cycos (k) + & (os(tnd — WnT)

€T =nTd, w.Tzn2mT

— gud The tuwg (O%lne PV G e )37 f??‘?ﬁv}aﬁ avol
(?’/Vlf’[( c(fm,(minf«f!
=t T = [VH«;)E The yepms yeuttere€  anel The

vesidon| vibredrcer s layges . 4
¥ Lﬁ "/7“{ o'{.ﬁwfi?f,ﬂ’( Fetse, f”’w C&w:.;s #i"z:vzvg (i& ,,‘,M,,’ f /'7 /z,;;; (}, f»‘,z,f ,’?"Zu;
S

Fvo foms, gre sliybily oiffevvat, 5o frere
Sorme. M%’/é’?wﬁff Vv bm’}%’};w,{\/»w b T = nTof

81

CHAPTER 2. HW’S



2.5. HW4 CHAPTER 2.

HW’S

HWH#6, Problem 2e-01, Hard Disk Drive
SOLUTION
MSA — Mar. 2009
Response with T = 3*Td

Forcing F(t)

15

10 d

15 20 25 30

0

time (ms)

The transient response due to the step up is in phase with that of the transient response
due to the step down, so the two almost cancel. They do not quite cancel because the
response has damped somewhat, so the second step is larger than what would be needed
to cancel the residual vibration from the first step.

Response with T = 2.5*Td
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Forcing F(t)

20 25

100

Analytica

time (ms)

Matlab code:
% Solution to HW 2e-01 Hard Disk Drive Head

clear all; close all

Parameter values

L =0.02; % m

k = 20; % N/rad (torsional)

m = 0.003; %

M = (1/3)*m*L"2; K = k; % SDOF parameters
wn = sqrt(K/M)

zt = 0.02

FO = 30*pi/180*k;

q_0 = 0; g_dot_0 = 0;

Td = 2*pi/wn;

Tc = 1/(zt*wn); % time constant of the system
T = 3*Td

% T = 2.5*Td;

global S

vns = whos; % put into a global variable

for k = 1:length(vns);
eval(["S.",vns(k).name, " = ",vns(k).name,";"]);

en

d
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% Time Vector
ts = [0:Td/10:10*T]; % 4*Tctime vector, sample 10x per period and over
4 time constants.

% Forcing - sum of step and ramp
% note h(t) written as (t>0) in Matlab
F = FO*(ts>0) - FO.*(ts-T>0);

% Analytical Solution

% Unit step and ramp responses from Ginsberg - includes particular and
% complimentary solutions
gqs = inline([" (/(M*wn"2))*(1-exp(-zt*wn*t)*(cos(wn*sqrt(1-
ZtN2)*e)+", ...

"(zt/sqre(1-ztn2))*sin(wn*sqrt(1-
zt"2)*t)))*(t>0)"],"t","M","wn","zt");

% Response is a sum of step and ramp responses
q = zeros(size(ts));
for k = 1:length(ts)
q(k) = FO*gs(ts(k),M,wn,zt) - FO*qs(ts(k)-T,M,wn,zt);
end

figure(l)

subplot(2,1,1)

plot(ts*1e3,F); grid on;

title("Forcing F(t)");

subplot(2,1,2);

plot(ts*1e3,g*180/pi); grid on;
title("Response q(t)");

xlabel ("time (ms)"); ylabel("\theta (™0)");

% Solution using ODE45

% Define equations of motion in eom 2 12.m

% Note - ode45 requires only the time span, not the whole time vector
tic

[tout,yout] = oded45("eom 2e 1°,[ts(1),ts(end)],[q_0; g_dot _0]);

t_ode = toc

g_ode = yout(:,1); % the Ffirst of the y variables is q(t), the second
is g _dot(t)

% Add red dots to plot above
hold on; plot(tout*1e3,q_ode*180/pi,"r."); hold off;
legend("Analytical ™, "ODE45%);

%%% Equations of Motion:
function [xdot] = eom_2e_ 1(t,x)

global S % bring in parameters

% Forcing - sum of step and ramp
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F = S.FO*(t>0) - S.FO.*(t-S.T>0);

% Equations of Motion
xdot(1,1) = x(2);
xdot(2,1) = -S.wn™"2*x(1)-2*S.zt*S.wn*x(2) + F/S.M;
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% Solution to HW e2-03, Car impulse

m=1000;
wn=sqrt(11000/1000)
zt=660/1000/2/wn
wd=wn*sqrt(1-zt"2);
lam=-zt*wn+1li*wd;

A=-0.1+1i*0.1*zt*wn/ (wn*sqrt(1-zt"2))
gam=pi-angle(A)
T=(3*pi/2+gam+1*2*pi)/wd

FO=m*wd*abs(A)*exp(-zt*wn*T)

% Notice, the value of FO seems rather small. Remember that it is an
% impulse, so to get realistic units we need to integrate over the
impulse.

% For example, if the impulse were a constant force, Fc, that is
0.001sec long,

% then the integral of Fc*0.001 would equal FO, or in other words,

Fc=F0/0.001 % N
% Maybe that still seems a little small but it seems to be correct.

B=(-1i*F0/(m*wd))

% Check to see if this works:
dt=2*pi/wd)/20; % 20 samples per period
ts=[0:dt:7];

z_IC=real (A*exp(lam*ts));

z_F=real (B*exp(lam*(ts-T))).*(ts>T);

figure(1);

plot(ts,z_IC, ts,z F, ts, z IC+z_F,"--"); grid on;
legend("z_{IC}","z_F","z_{total}");

set(get(gca, "Children®), "LineWidth",2);
xlabel("time (s)"); ylabel("Displacement (m)");

Command Window Output:

wn =
3.3166
zt =
0.099499
A =
-0.1 + 0.0099995i
gam =
0.099664
T =
3.362
FO =
109.36
Fc =
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1.0936e+05

0.033138i

0]

(w) uswaoe(dsiq

time (s)
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€ xercise 3,2

Mi‘!‘ cé-{-#; =F ecos(wt)
m= @8 k;) 3?.0.25) w‘(;/orrfa/d) F/ k= ©.002 ~aefer

Waay = L = 32,446 mds
(1=
r= 5,03(:-”) = 1,006%76
na
3~ T btr, g )eos (wi- 8)

(C-r¥)reqqte)'s

= -t 237
D= fan-! 23 =~/ 5430 ¢+ =1,5986rad = 91, 593°

Cr-r™

7hus g >0.00397/ cos (10,9 f{-r.598¢c ) el
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2.6.1 problem description

Homework #5, EMA 545, Spring 2013
Due Thursday 2/28

Comment: As | mentioned in class, | strongly encourage you to avoid hunting for formulas on
forced response. All of these problems can be solved simply by knowing the differential
equation and that the force and steady state response have the form:

f(t)=Re(Fe") -  x(t)=Re(Xe")

Problem 1: 3.9 from Ginsberg (Hint: assume that the motion of every component of the system
is harmonic. Derive the equation(s) of motion and show the full derivation used to obtain the
complex amplitude(s) from the equation(s) of motion.)

Problem 2: (3el) (20 points)
A 450 kg generator, modeled as a rigid mass, must be installed on the
same floor as some sensitive laboratory equipment. The operation of the T f(t)
generator results in a vertical force, f(t), being applied to the generator
(rigid mass) whose amplitude is 20kN and whose frequency is 1800 rpm.  Z 1_
Use a damping ratio of ¢ = 0.03 for both (a) and (b) below.

a.) Find the stiffness of the support, k, such that the force transmitted

to the ground is no more than 2kN. C k

b.) Take your result from part (a) and compute the amplitude of the
generator as the machine starts up. (As the machine starts up,
assume that the force amplitude is constant at 20kN, but the
frequency increases very slowly from zero to 1800 rpm. Do a worst-case analysis — just
assure that the steady-state amplitude of the machine is less than 10mm for any forcing
frequency between 0 and 1800 rpm.)
Using your results from (a) and (b), suppose that the startup amplitude must not exceed
10mm. The startup amplitude can be decreased by adding mass to the generator while
also increasing the stiffness of the support to keep the natural frequency of the system
constant. How much mass must be added to keep the amplitude below 10mm?

C.

—

Problem 3: 3.19 from Ginsberg

Problem 4: 3.23 from Ginsberg
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2.6.2 problem1

i e [ —
F
EXERCISE 3.9

3.9 The shock absorber consists of an outer tube
of mass m, that is restrained by spring k and an

« inner piston of mass m,. Orifices in the piston
permit passage of a viscous fluid that fills the
tube; the coefficient of damping between the pis-
ton and the tube is . An unknown force F@) is
applied to the piston, with the result that the abso-
lute displacement of the piston is y =Asin(w?).
The parameters of the system are: m; =0.5 kg,
m, =1.0 kg, k =3.2 kN/m, p. =40 N-s/m, and
A =20 mm. Determine the amplitude and phase
of the force F(f) relative to the displacement y(f)
when w =75 rad/s and @ = 85 rad/s.

Assuming the 2 masses move together (else we will have 2 systems and 2 equations of
motions. Hence I assumed that they move together as one body).

(my +mp)y” +y'u+ky = f(t)
Since y(t) = Asin(wt) hence B
y(t) = Re(7ei“’t)
Let -
F .
_ — Li(wt)
ft) = Re( e )

Where F is the complex amplitude of the force. Now we substitute all these in the differ-
ential equation above.

y = Re(a)Aeiwt)
Yy’ = Re(ia)eri“’f)

(my +my)y” +y'u+ky =Re

1 1 A H) — i(wt)
Re(ia)erWt)(ml + my) + Re(a)Ae“"t)y + kRe(Te”" ) = Re| e

1 ) F .
Re[(ia)z(ml +1my) + wu + ;k)AeZ“’t] = Re| —¢@?)
1 F
(ia)z(ml + mz) twu+ ;k A= 7
Hence .
F= (—a)z(ml +my) +iwp + k)A

k=32x10%Nm, p =40 Ns/m,A = 0.02 meter. When w = 75rad/sec the above becomes

F = (-75%(1.5) + i75 x 40 + 3.2 X 10%)0.02
= —104.75 + 60.0i
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Hence Re(f—" ) = -104.75N and the phase is tan_l(—%) = 2.62 rad/sec.
When w = 85

) , 40
F=15(-85" + i85 +2133.3)0.02
= ~152.75 + 68.0i

68

Re(f:) = —152.75 N and the phase is tan_l(—m) = 2.722 rad/sec.

2.6.3 problem 2

Problem 2: (3c1) (20 points)
A 450 kg generator. modeled as a rigid mass. must be installed on the
same floor as some sensitive laboratory equipment. The operation of the i fit)
generator results in a vertical force. f{t). being applied to the generator
(rigid mass) whose amplitude is 20kN and whose frequency is 1800 rpm. = L
Use a damping ratio of £ = 0.03 for both (a) and (b) below.
a.) Find the stiffness of the support. k. such that the force transmitted
to the ground is no more than 2kN. c k
b.) Take your result from part (a) and compute the amplitude of the
generator as the machine starts up. (As the machine starts up.
assume that the force amplitude is constant at 20kN. but the
frequency inereases very slowly from zero to 1800 rpm. Do a worst-case analysis — just
assure that the steady-state amplitude of the machine is less than 10mm for any forcing
frequency between 0 and 1800 rpm.)
¢.) Using your results from (a) and (b). suppose that the startup amplitude must not exceed
10mm. The startup amplitude can be decreased by adding mass to the generator while
also increasing the stiffness of the support to keep the natural frequency of the system
constant. How much mass must be added to keep the amplitude below 10mm?

2.6.3.1 Part(a)
Force transmitted to floor is given by

F, =cz +kz

Let f(t) = Fcos(wt) = Re(Fei“’t) = Re(Feiwt) where we are given that F = 20 x 10° N.

w=2n (1800) 607t = 188.50 rad/sec or 30 Hz.

Let z,, = Re( ID|é’ i(wt- (7))) where ¢ = tam_l(l2 2) nd |D| = L

(1—r2)2+(20’)2
Hence 2’ = Re(iw%lDlei(“’t_(P)) = Re(w%IDlei(wt_wi)). Therefore

F o ilwt—os D F il
F,, = cRe(mﬁlDlel(wt ¢+2)) + kRe(EIDlel(“)t ¢))

Where ¢ = 2Cw,m and When F,, = 2 x 103N . We now solve for k from

F oW E .
2x10° > 2w, m Re(w%|D|el(“’f ¢+2)) " kRe(E|D|el<wf—<f>))

@
.and r = —
@

Taking the maximum case for RHS where exponential are unity magnitude, hence

F
2x10% = ZCa)nmeIDI + F|D|
F
= (ZCa)nma)(E) + F)lDI
m
F(1+2Cw, 7 w)

i \/( —r2) + (20r)?
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@ @
Where r = — = . Hence the above becomes
n

m

F(1+2lw, 7 )

]

In the above everything is known except for k which we solve for. Plugging the numerical

2x10° =

values given. w = 271(%),111 =450, F =20 x 103, = 0.03 hence
20 % 103(1 +2(0.03)\ %(6071))
2x10% =

2
2
450(60m)? 607
450

6
Hence k = 1.2135 x 10° N/m. Hence w,, = \/g =4/ 1'212’:;10 = 51.929 rad/sec or 8.265
Hz.

2.6.3.2 part(b)
The total displacement is given by
Z(t) = Ztmnsient(t) + Zss(t)
F  iwi-
= e@nt(A cos wyt + Bsinw,t) + Re(EIDIel(wt (P))
Where
Ziransiont(t) = €75t (A cos wyt + B sin wyt)

Assuming at t = 0 the system is relaxed hence z(0) = 0 and z’(0) = 0 we can determine
A, B from Eq ??.

Att =0,
z(0)=0
F .
=A+ Re(ElDle‘l‘z’)
Hence
F .
A= —Re(—lDle‘1¢)
k
and

Z/(t) = —~Cw,e~ (A cos wyt + Bsin wyt) + et (—w A sin wyt + wyB cos wyt)

F i~ T
t Re(a)EIDIeZ( ¢+2))

Henceatt =0
Z/(0)=0

F iour
= _Cw,A+awyB+ Re(a)%lDlel( ¢+2))
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Hence

1 F (T
B= Ca)nA — —Re(w?DIel( ¢+2))

Wq Wgq
F , 1 F (—h+ 2
= 59 pe(Eiple-i¢) - L Re[w iDpei-0+5)
Wy k @y k

Therefore the displacement is

F , F . 1 F i~ T
z(t) = e"@nt| —Re| —|Dle™® | cos w,t + Lo Re|=|DJe™®| - — Re a)—IDIeZ( 9+3) sin w,t
k Wy k wy k

F . b4
+ Re(EIDIel(wt_T(p))

Hence expressed in sin and cos

F F 1( F
z(t) = _(%|D| CoS qb)e‘cwnf coswyt + e—cwnt{_cwﬂ(?Dl cos gb) (a)ElDl sin q;)} sin w,t
d

Wy

+ %IDI cos(a)t - (j))

F —Cawyt —Cw tFlDl ; ; F
=— ElDl cos ¢ |e”*“n* cos wyt + e~ %n a)—dk(—Ca)n Cos ¢ — wsin (P) sin wyt + ElDl cos(a)t - gb)
F 1 F
= —|Dle~*“nt| - cos ¢ cos w,t + —(—Ca)n cos @ — wsin q)) sinwyt [+ —|D| cos(wt - qb)
k wy k

Since C = 0.03 then w; = w,, V1 -? = w,V1-0.032 = 0.99955(«w,,). Therefore in the
above we can just replace w; by w,, with very good approximation, hence we now obtain

+ %IDI cos(a)t — qb)

F . 1
z(t) = E|Dle—éwy,t[_ CoS ¢ cos w,t + w—(—Ca)n cos @ — wsin qf)) sin w,t
n
E o ot @ ) F
= EIDIe Cont| — cos ¢ cos wyt — [Ccos d + . sing |sinw,t|+ ElDl cos(a)t - ¢)
n

w

,and ¢ = tan"! —“~. The

22 2 w\?
) etz &)
transient solution usually goes away after 5 or 6 cycles. Hence let us assume that the
= 0.72597 seconds. Or 1 second at

1

This is the amplitude. In the above |D| =

2
start up time takes 6 X —

21 2mn

=6X — =6 X ——

Wy \/Z 1.2135x106
m 450

Therefore we can now plot the amplitude for t = 0 to t = 1 second in increments of
0.1 second, and each time advance, we can increment w from 0 to 607 in linear fashion,
hence each 0.1 second we update w by an amount 67. After 1 second has passed, the
system is assumed to be in steady state, and then we keep w fixed at 607 rad/sec. This
is a plot showing z(t) for t = 0 to 2 seconds given the above method of changing w

worst.

To avoid going over 10mm, this means we have to avoid the case of r = 1 or w = w,.
When [ first just incremented w,, such that r = 1 was not avoided, resonance caused the
amplitude to go over 10mm as given in this plot. The transient solution itself stayed just
below 10mm but the steady state solution went over 10mm due to resonance
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2.6.3.3 Part(c)

To insure that the amplitude does not go over 10mm, we need to add mass to the gener-

F1 20x10° 1
ator. Maximum amplitude is givenby -—— = ————— = (.
0 p eis givenby + = o % 7009 0.27469 meter or 274mm
. . 20x10% 1
So to insure maximum does not exceed 10mm, solve for new k from 0.01 = 2003
» )
. k . 3.3333x107
hencek, = 3.3333x107. Since w,, = 51.929 = /- thennew massism, = ~—————— =| 12361 kg
n My, n 51.9292
using these values, the above plot now are redone. This is the result
tranziznt empliteds 23 w chengss steady state ampliteds a2 w chanzes
06 ! Py :
0.4 s
- I
4
wWijmm 0.0 4 ) mm ||
] ! 2 !
-0.2 ||rl | - ‘ﬂ || ||I|ﬁ
0.4 [)] T i||i' '|| IIII'I.III A=
| [l
—0.6H ; 22k I :
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time (s22) time (zac)
total smplitude 2= w chanzes
6
4
¥it) men
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| ' il
l7||:m'|'||'| |
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We see that now the maximum displacement remained below 10 mm.
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2.6.4 Problem 3

beam is 10 mm. It also is observed that a¢ a ‘
e, tion rate of 145 rev/min, the radial line 10 the pu.
3.19 The total mass of a motor is 80 kg. It is g Of Ldth, r()‘lor I‘? 7§ {bove horizgy,
; : when the beam is at its static reference posist
observed that gently placing the motor on a beam (where g = 0) POsitigy
produces a static downward displacement of 40 '
mm. When the motor rotates at an angular speed
of 145 rev/min, the steady-state amplitude of the
50 mm

EXERCISE 3.19

(a) Determine the damping ratio { for the system,
(b) Determine the imbalance em.

(¢) Determine the smallest possible amplitude of
vibration of the beam if the motor turns at a rate
that is much larger than the natural frequency of
the system.

Let ¢ = 50mm = 0.05m be the distance of the unbalance mass m. Let M = 80kg be the
mass of the motor. The equation of motion is given by

(M +m)y” +cy’ +ky = meQ? sin(Qt)

m 1.
77 ’ 2., — 2 — 0t
Yy’ + 20w,y + wyy = M Q) Re(ie )

k _ Y o .
Where w,, = ,/m and C = m Lety = Re(;el ) This leads to

m Q0?2
Cm+Mao? - Q2+ 2ilw,Q

Since static deflection is 40mm, then

. (M +m)g
o 0.04

k__ Mg g S e 15.66 rad/sec or 2.492 Hz.
But wj; = M 0.0&(M+m) _ 0.04’ hence w, = /77 /

2.6.4.1 part(a)

145
Since at steady state the displacement is 10 mm, then Q = 2r—= =15.184 or| 2.4167 Hz
hence
2 n
Y . em r i(Q-1)
= Z ol = R e 2
Y Re(ie ) em+M(1—r2+2iCr)
= emr” 1 Re e_i¢ei(Qt_g))

m+ M \/((1 j rz)z . (2Cr)2)
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Where ¢ = tan‘l(%). r = C% = % = 0.9696 |hence the above becomes, at steady
state
2 , n
0.01 = (0-353;(1)1 0-96296 Re(ez(15.184 t—E—qb))
m \/(1 - 0.96962) +(2£0.9696)°
_ (0.05)m 0.96962

sin(15.184 - ¢)) (2.101)

m + 80 \/ (1- 0.96962)2 + (200.9696)

We are now told that at Q = 15.184 and when Qf = 75° then the displacement is zero,

hence
_ (0.05)m 0.96962

sin(75° - ¢)
m + 80 \/ (1- 0.96962)2 + (200.9696)2

or
sin(750 - gi)) =0
750-¢ =0
¢ =75°

. (2
Since ¢ = tan 1(%) then

75( - ) o1 2009696
| = n -
180/~ " (12096962
Hence
200.9696
- = ) =1.3090
n (1—0.96962)
2009696 1 s000)
1-096962 M
20096% _ .
1-0.96962
Hence| ¢ = 0.11523
2.6.4.2 Part(b)
From Eq
0.05 0.96962
0.01 = L00m sin(15.184 £ - )

m + 80 \/(1 _ 0,96962)2 + (2C0.9696)2

The maximum amplitude is when

0.05 0.96962
001 = 005)m

m + 80 \/ (1- 0.96962)2 + (200.9696)

But C = 0.11523, hence we now solve for m

(0.05)m 0.96962
0.01 =

2
m + 80 \/ (1-0.96962)" + (2(0.11523)0.9696)*

Hence

m=41kg

Hence em = (0.05)(4.1) = 0.20 kg meter
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2.6.4.3 Part(c)

since

Yy

2 . n
emr 1 Re el(Qt_ E‘¢))

T M \/((1 j rz)z R (2Cr)2)

2
As Q) becomes much larger than w,, then (1 - 1’2) — r* . Now dividing numerator and
denominator by 72 gives

sin(Qt - ¢)

4 2
as r becomes large then riz — 0 hence

Y= % sin(Qt - qb)

The smallest possible amplitude is

| | ~ 020
Y= 11+80
= 2.3781 x 1073 meter

or
|y| =238 mm
2.6.5 problem4
3.23 A counter-rotating eccentric mass exciter is and the angular position of the eccentric masses
attached to a block, which is supported by a light- when the block passes its equilibrium position.

weight beam. Stroboscopic measurement at an
angular speed @ =900 rev/min indicates that the
block passes its static equilibrium position with an

. Q
upward velocity at the instant when the eccentric @ \Q
masses are at their highest position. The amplitude

of vertical displacement at this speed is 8.5 mm. The

total mass of the system is m = 200 kg and the rotat- M
ing imbalance of each rotor is 0.5 kg-m. Determine

(a) The natural frequency of the system. _L

(b) The damping constant c. c
(c) For the case where () = 1000 rev/min, the
amplitude of the vertical displacement of the mass

EXERCISES 3.23, 3.24

2.6.5.1 Part(a)

(note: total mass of system includes the small unbalanced masses) Since static deflection
is 8.5mm, then

M
Tg — 0.0085
k= Mg
"~ 0.0085
k M 9.81
But w? = i 0.008g5M = 0'0%85, hence w,, = 5555z = 33.972 rad/sec or 5.4068 Hz
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2.6.5.2 Part(b)

The equation of motion is (angle Q is now measured from horizontal, anti-clock wise
positive)

1 .
My” + ¢y’ = 2meQ?sin(Qt) = Re(?ngQ%l(Ot))

Let y(t) = Re(%YeiQf) hence y'(t) = Re(YQeiQt),y” () = Re(iYQzeiQt), hence the above

becomes

Re(imzeiﬂf) Re(me@f) (

Re( (107 + —)Yeth) (12’”592 )

1 ZmeQZ

12meQ? th)

Qz+—
BTM

Y =

Hence

Now we are told when Qf = E (upright position) then y = O(since it passes static equi-
librium). At this moment Q) = 27196000 =| 94.248 rad/sec |, At this moment the centripetal
forces equal the damping force downwards (since the mass was moving upwards).

Hence

meQ? = cy'(t)

But from above we found that
2meQ? it
icQ) — MQ?
(0.5)94.2482 in)

y'(f) = Re

=Re 594.248e 2
ic(94.248) — 200(94.248)

8.3718 x 10° lg)

= Re - e
94.248ic — 1.7765 x 10°

Hence

meQ? = cly' (1|

37 5
(0.5)94.2482 = ¢ 8.3718 x 10

2
(94.2480)” + (1.7765 x 10°)
C

1/8882.7¢2 + 3.1560 x 1012

4441.3 = 8.3718 x 10°

Solving numerically for ¢ gives

¢ =1.0882 x 10* N second per meter
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2.6.5.3 Part(c)

When Q = (27{%) =104.72 rad/sec or 16.667 Hz. From

1 2meQ? .

— - i(Qt)

v =Rel Fia - Moz )

R 2(05)(104.72)° J(108726-%)
i(1.0882 X 104)104.72 —200(104.72)

_ Re[- 10966. ei(104.72t—§)
11.1396 x 106 — 2.1933 x 106

|y| = 4.4 mm
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2.6.6 Key solution for HW 5

Homework #5, EMA 545, Spring 2013
Due Thursday 2/28

Comment: As | mentioned in class, | strongly encourage you to avoid hunting for formulas on
forced response. All of these problems can be solved simply by knowing the differential
equation and that the force and steady state response have the form:

f(t)=Re(Fe") -  x(t)=Re(Xe")

Problem 1: 3.9 from Ginsberg (Hint: assume that the motion of every component of the system
is harmonic. Derive the equation(s) of motion and show the full derivation used to obtain the
complex amplitude(s) from the equation(s) of motion.)

Problem 2: (3el) (20 points)
A 450 kg generator, modeled as a rigid mass, must be installed on the
same floor as some sensitive laboratory equipment. The operation of the T f(t)
generator results in a vertical force, f(t), being applied to the generator
(rigid mass) whose amplitude is 20kN and whose frequency is 1800 rpm.  Z 1_
Use a damping ratio of ¢ = 0.03 for both (a) and (b) below.

a.) Find the stiffness of the support, k, such that the force transmitted

to the ground is no more than 2kN. C k

b.) Take your result from part (a) and compute the amplitude of the
generator as the machine starts up. (As the machine starts up,
assume that the force amplitude is constant at 20kN, but the
frequency increases very slowly from zero to 1800 rpm. Do a worst-case analysis — just
assure that the steady-state amplitude of the machine is less than 10mm for any forcing
frequency between 0 and 1800 rpm.)
Using your results from (a) and (b), suppose that the startup amplitude must not exceed
10mm. The startup amplitude can be decreased by adding mass to the generator while
also increasing the stiffness of the support to keep the natural frequency of the system
constant. How much mass must be added to keep the amplitude below 10mm?

C.

—

Problem 3: 3.19 from Ginsberg

Problem 4: 3.23 from Ginsberg
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2.7.1 problem description

Homework #6
EMA 545, Spring 2013

1.) Problem 3.41 in Ginsberg. Check your answer for A=1.0 using FFT techniques with
the fft_easy.m Matlab function from the course website.

2.) Problem 3.50 in Ginsberg. DO PART (a) ONLY.

3.) (20 points) Find the steady-state response of the system in Problems 3.45 and 3.46
from Ginsberg using FFT techniques. Perform your analysis with t = 7/(3c,) as stated in
the problem and also repeat the analysis for t = 3n/@,. Which harmonic is dominant in
the response in each case? Why? Create a plot of the steady-state displacement for each
case.
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2.7.2 problem1

3.41 in text: A periodic disturbance consists of a sequence of exponentially pulse re-

—At

peated at intervals T, such that Q(f) = Fe T for 0 <t < T, and Q(t £ T) = Q(t). The
parameter A is nondimensional. Determine the complex Fourier series representing the
force. Evaluate the first 5 coefficients when A = 0.1,1,10. What does this reveal regarding

the influence of A on the frequency spectrum?

Let Q(t) be the Fourier series approximation to Q(t) given by

~t _1 - F inzTnt
Q) =5 X Fue

Where
T
2 m—t
r, = —fQ(t)e Tt
T
0
T
T t nz—n—i)
At 2n 2F —t( nz_”_/_‘) 2F ( T T
== |FeTe"Tiat="=]e 'T Tgt="
T T| ;2 _2
0 0 T T ),
.2t A
_ 2F e—T(sz—T) _1
in2m - A
2F .
— —in2m ,—A _ 1
in2m — A(e ¢ )
But ¢ 2™ =1, hence
2F
=l ——— A _ 1
Toim2n-A (e )
Hence Eq[2.102|becomes
~ 1 & 2F 2T
£ == I ) -1 mTt
QM) ZHZZ_OOinZn (et 1)
0 (6_)L —]_) . 2n
—F AN mTt
n;minZTC —A¢
& 1-eh 2
—F znTt
n;oo/\ T+ in2n

Forn =-2,-1,0,1,2 we obtain

(2.102)

Q) =F 22] Lo i
= —e
A+ in2m
T-e? _#ny 1-e? _2ny 1-e? 1-e? 25y 1-eh jn,
= — T 4 ——¢ T + + — T 4+ ———¢'T
A —idm A—127 A A+127 A+idm
For A =01
_ _ 6_0'1 —i4—nt 1-— 6_0'1 —iz—nt 1-— 6_0'1 1-— 6_0'1 iz—“t 1—=¢0
Qt)=Fl——F—¢ T +———2¢ T + + — T 4+ —
01-idn 01-127 01 01+ 12m 01 +idmn

AT
= F{(6.026 x 107 +7.572 x 10%)e "' T

.21
n (2.41 x 1074 +1.514 x 10‘21')8_th
+0.952

2T
+ (2.4099 x 1074 —1.5142 x 10‘2i)e17t
AT
+ (6.026 x 1075 = 7.572 x 10‘31')6th}
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ForA =1

Q(t) = F(

1-et any 1-¢! 2r, 1-¢! 1-¢! j2n, 1-¢! 4n
—ec T + - + — ¢ T + :
1-in 1-1i2m 1 1+2n 1+i4n

A7 .21 .21 AT
= F{(0.00398 + 0.051')6_th + (0.016 + 0.098i)e_17t + 0.632 + (0.016 + 0.098i)eth +(0.00398 + 0.05i)¢' T

For A =10

O(t) = F + + +
) (10—i4ne 10 - 27 10 10+ 10+ idn

1-e10 any 1-¢10 2np 1-¢10 110 2n, 1710 i4—”t)
eT

Am
= F{(3.877 x 1072 + 4.872 x 10‘21')6_th

.21
+(7.169 x 1072 + 4.505 x 10 2i)e ' 7
+0.1
.2_7'[t
+ (7169 x 1072 - 4.505 x 10%)e' T
.47
+(3.877 x 1072 - 4.872 X 1072i)¢' T}
We notice that as A became larger, the DC term became smaller. Since the DC term
represents average value of the whole signal, then we can say that as A gets larger, then

the average becomes smaller. This means the energy of the signal becomes smaller as A
becomes larger.

2.7.2.1 Verification using Matlab ffteasy.m

From above, we found for A =1

2F
_ -A
n= in27z—/\(e -1)
2F
= -1_ 1
n2m -1 (et -1)
and the first 5 found to be
n | F,

-2 | 0.00398 + 0.05:
-1 | 0.016 + 0.098i
0 |0.632

1 | 0.016 - 0.098i
2 | 0.00398 - 0.05i

To verify the result with ffteasy.m using A =1, Using F =1, and using T = 1. This below
shows the result for Fy, F1, F, and we see that the DC term F; agrees, and that complex
component of Fy, F, also agrees. The real parts are little larger than what I obtained using
the above. This might be a scaling issue, and I was not able to determine the reason for
it at this time.

EDU>> T=1; del=0.01; t=0:del:T; lambda=1; xt=exp(-lambda*t/T);
EDU>> (1/length(t))*fft_easy(xt,t)

ans =
0.6326 + 0.00001

0.0190 - 0.09861
0.0072 - 0.05021
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2.7.3 problem 2

3.50 The sketch depicts a one-degree-of-freedom
model of an automobile traveling to the right at
constant speed v when the road is not smooth. The
mass is 1200 kg, the natural frequency of the sys-
tem is 5 Hz, and the critical damping ratio is 0.4.
The elevation of a certain road is a sequence of
periodic 50 mm high bumps spaced at a distance
of 4 m, specifically, z = (x — 5x2) if 0 < x < 0.2
m,z=0if02 <x <4m,z(x + 4) =z(x).

(a) What speeds v would cause the vertical dis-

placement y to be resonant if the dashpot were not
present?

(b) Determine the steady-state displacement y
when v = 5 m/s.

We are given that m =1200 kg, f =5 Hz, { = 0.4 and

x-5x2 0<x<02
z(x) =
0 02<x<4

A plot of z(x) for first 20 meters is

z[x ] := Piecewise[{{x - 5 x72, 0 <= x < 0.2}, {0, 0.2 <= x <= 4}}]
z[x 1 /; x> 4 := z[Mod[x, 4]1];
Table[{x, z[x]}, {x, 0, 21, .1}];
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ListLinePlot[%, PlotRange -> {All, {0, .07}}, Frame -> True,
FrameLabel -> {{"z(x) hight or road (mm)", None}, {"meter",
"bumps on road"l}}]

bumps on road
DD-'I T T T T T T T T T T T T T T T T T T T T T T ]

0.06

0.05

004

0.03

0.02

z(x) hight or road (mm)

0.m

D[H} L s L || 1 : s I L 1 L I‘ L L 1 1 L : LI %
3 10 15 20

L=

meter

.21
We need to be able to express z(t) as Re{Zeth} where T is the period of the function z(t).

Hence we need to represent z(x) as Fourier series approximation then replace x = vt and
use the result.

The period T = 4 meter. Let Z(x) be the Fourier series approximation to z(x), hence

~ 1 J inz—nx
Z(x) = EFO + Re ZFne T

n=1
Where
5 T , ) 2/10 , 2/10 . 2/10
F, = ?!Z(X)E_ZHTde ot !(x —~ 5x2)e_m§xdx =5 E)fxe‘”fli"dx -5 Ofxze_mixdx

. T
—m5Xx

Using integration by parts f udv = uv - f vdu, letting u = x and dv = e 2" then
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insx ie 2"
v:fe 2°dx = ——hence
nl
2
2/10 —inZx |10 210, Ty
—inTx ie 2 ie 2
xe 27dx = x—= - —dx
n- n-
0 2 0 0 2
—ink2 2/10
2 i 9 inZx
= ———F>—-— |ie "27dx
10 n= nm
0
2
. —in— 1
4ie™0 2 (e 2" )"
10 nw nr| —in—
0
2
4 je”"'10 4 ( _in_x)ﬁ
= — + e
10 nm  n?m? 0
4 —in%
e —ins 2
= — ——\e 210 — 1
10 nn nem
_ 4i e—inﬁ + e—inll _ 4
10n7t n2m? n2n?
_inZ( 4 2i 4
=e
n?m?  5nm)  nPm?
2/10
. T
Now we do the second integral f x2e "2V dx.
0
. T
. . e Z ie—mjx
Integration by parts, f udv = uv - f vdu, letting u = x> and dv = ¢ "2 then v = —
nZ
2
hence
2
2/10  _infx]10 210 | T
5 —inlx Jie nsx jo 3%
xe " 27dx =[x — - | 2x———dx
0 3 o 0 3
. —inZ . 2/10
8 ie "0 4 —inlx
= — - — | xe "27dx
100 nm nm
0
2/10

But f xe 2% dx was solved before and its results is Eq 2.1, hence

0
2/10 _in™ . .
i T 4 jge "0 4if .. f 4 2i 4
2 mzxd _ = ings " _
!xe ¥~ 100 ”g nn(e (n2n2 5nn) nznz)
8 e_m% i 161 8 161
100n7 n31d  5n2m? n373
_in™ 8i 161 8 161
= "M
100nt  n3m3  5n?m? n37d
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Putting all the above together, we obtain F, as

2/10 2/10

1 _in T 5 _ink
F, = —fxe "2 dx — —fxze "2 dx
2 2
0 0
U g 4 2 4 | 5[ wx( 8 _16i 8 | 16
= —|e - ——le -
2 n?n2  Sun) n?m?| 2 100nt  n3m3  5n2m? n373
a2 i 2 _n( 20i  40i 20 40i
=e¢ 10 + — — 10 — + —
n?n?  5un)  n?m? 100nt n373  5n2m?) ndnd

wx[ 2 i 200 40 4 2 40i
| n?1?  5nm 100nm ndmd nPm? | P w3l
o[ 400 2 2 400

=e 10 — — —
n373 nznz) n?mn?2  ndnd

Now
5 T , 2/10 ,
— 2
Fo = —fz(x)dx = Ef(x—5x )dx 300
0 0
Hence

1 N _inx( 40i 2 2 40i \ ;.74
~ 600 *Re Z(e 10(713713 - nznz) 2 n3n3)€ i

1 (s _nmy (401 2 el 2 401
= %00 TRe 3! )(n—n)‘ R

N

-40 1 i -1 2 i(22 -1 2 Ty 40 1 ;.7

=— 4+ R —e\2" 10/ — e\2 10/ — -

600 ¢ Z‘Erﬁrﬁ i n2m? n?m? nd3md i

But x = vt, hence

1 N —401 Ly (fmopmmy 2 pmy 40 1 g

Z(t) = — + R —e\2 710/ — ——p'\2 710/ — I

(1) 600 e(gln% i 22’ n?m? n373 i

Therefore the forcing frequency is no; = n%v or from 27 f; = %v, hence f; = ZHZ.The
above can be written as

1 X —40 1 e, ) 2 j(rmmy
Z(t) = — + R —e\2 " 10/)]— R 27 10
() 600 ;12::1 e(n37'c3 i ;::1 \ w22
N N
40 1 ;,m
- Z Re(nznzem 2 t) + Z Re(n3n Z " t)
n=1 n=1
1 N —40 nm ) nm
=— 4+ in(not— — |- Y, —— ot — —
600 n;ln3n3 Sm(” ! 10) nzlnznz COS(" ! 10)
N N
2 40
- 1t) + in(noqt
,;1”27?2 cos(naqt) §n3n3 sin(nt)

nm
@ - —2 sm(ncht - —) - nz Z cos(ncalt - ﬁ)
2 & 40 Y
- ? F COS(Tl(Dlt) + ﬁZg Sin(ncht)

Where @1 = —
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To verify the above, here is a plot for different number of fourier series terms showing
that approximation improves as N increases. This was done for v = 5m/s and for 5

seconds.
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AT ATTYYATT: ‘ i} |‘n I I gl il
0.000 0.000 0.000 Lpashlf
1 1 e 1]
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time (sec) time (sec) time (sec)
2(t) for N=7 z(t} for N=8 z(t) for N=0
o[ | U=
Uit 0013
0010 0.010 '
0.003 | 0.0035
0.000 H 0.000
—0.003 —0.005
0o 1 2 3 4 5 0 L ¥ MW i 5
time (sec) time (sec) time {sec)
zit) for N=10 z(t) for N=11 z(t) for N=12
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i 03 b
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0.01 001 001
0.00 0.00 0.00

0 1 2 3 4 3 0 1 2 3 4 3 0 1 Z 3 4 3
time (sec) time (sec) time (sec)
2.7.3.1 Part(a)
The equation of motion is
my"’ + c(y’ - z’) + k(y - z) =0
my” +cy’ +ky=cz’' +kz (2.1)
From earlier, we found that fourier series approximation to z(t) is
1 -40 1 (mt_ﬂ) 2 i(not-"17) , 40 1
z(t) = — + Re 10/ — 0/ — inot -~ sinot
)= 600 2%113713 n?m? n?m? n373
1 -40 _jmm1 . 2 _m 2 . 40 1
=— 4+ R e 10 —pin@t _ e &) ginot inot emcat
600 Elrﬁ 3 i n?m? n?m? n3m3 i )
1 oo | 40 i n 2 _m 2 40 _ir
- — +R einot| __—~ , i(T5+3) _ e 10 — "2
600 © 2231 ln3n n?m? n?n?  n3nd
Let
40 (BT 2 - 2 40
(e 22’ 22 B
Then above can be simplified to
z(t) = — + Re| Y e"?Z
0= 600 (;::1 )
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O
Where @ = 7 hence

Z(t) = Re(Zin(Dei”‘Dth)

n=1
Hence, let

Yss(H) = Re DY, e
n=1

Hence Eq 2.1 becomes

k . .
E mn?@?Y,e"met + EzcmDY et 4 ZkY einot = chn@e’”@tz +—+ Zkem‘”Zn

~ 600

Z}l( —mn?@? + icnd + k)Y einot = ;:l(zcma +k)Z, "ot + — 200

20? + icna + k)Y,,e"t = + @ + k)Z,,emet

Z}l( mn icn ) e 00 Z(zcn )Z,.e

Hence
1 +k
y,= etk (2.103)
—-m(no)” + icno + k
Let
icn® + k
D(r,, C) =

—m(ncD)2 +icno + k
20Mw N + w?,m

—m(n@)* + 20Mw, nd + wi,m
22 +1
Wyt
0] 2 )
—(n ) +12Cn
Wyat Wyt
1+ 12Cr,
(1-73) +i2er,

+1

. . 2 . Ly
Where in the above r, = —— where @ is ?n which means it is the fundamental frequency

Wnat

of the forcing function and w,,;; is the natural frequency:.

Then Eq[2.111|becomes
Y, = D(r,, OZ,

And the steady state solution y(t) becomes

k
Yss(t) = 600 + RG(ZD(T’W 0Z, em@t)
Now we can answer the question. When ¢ = 0 then D(r,, ) reduces to ( k)2 - =
-mnw) +
1 1
—7 = P hence
1_(n“’nat)
Ul = 4 Re[ 3L 7, ot
SS O n=11 _ r% n
So the displacement y,(t) will be resonant when r,, =1 or ZZZ =lorov= 2?:7’;”*
Hence
_2(2w5) 20
- onm om
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Hence v = 20,10, 5,2.5,1.25, --- meter/sec will each cause resonance. To verify, here is a
plot of y.(t) with no damper for speed near resonance v = 19.99 and comparing this for
speeds away from resonance speed. This plot shows that when speed v is close to any
of the above speeds, then the displacement y,,(t) becomes very large. Once the speed is
away from those values, then y(f) quickly comes down to steady state F/k value.

k=107 +1200;
Grid[
Partition[

Plot[vy[t, k, 10, #], {t, 0, B}, PlotRange + {{0, 5}, {0, 100}},
AxesOrigin— {0, 0}, Frame -+ True, GridLines -+ Automatic,
GridLinesStyle —» LightGray,

FrameLabel —+ {{"y (L)', None},
{"time", Row[{"speed=", #, " m/s"}]}}] & /@
{19.999 . 19.98,:9.999, 9.98, 15, 7.5}, 211

speed=19.809 m/s speed=1998 m/s
100
TR e
jo ‘|H|||‘ ‘|H|||| ‘ |||| ‘ ‘””m ‘ | || ‘ l B0 PSS
= oI | | I | | I
i I .
20
o : 0
0 1 2 3 4 3 0 1 2 3 4 5
time time
speed=0999m/s speed=098 m/s
100 100
80
o IR
o 60 |||||| 11 ||J|L|| ”|||||l|| ||I| ll'””““l[l[ o 60 fremmnnnsnnenn ¢ e oo
> 4 ™ 40
20 20
0 o
1 2 3 4 3 1 2 3 4 3
time time
speed=13m/s speed=73m/s
100 100
S0t 20}
= 60 = B0F
> 40 ™ 40
20 20
0 0
0 1 o 3 4 5 0 1 2 3 4 5
time time

2.74 problem 3

3.) (20 points) Find the steady-state response of the system in Problems 3.45 and 3.46
ﬁ‘om Ginsberg using FFT techniques. Perform yvour analysis with T = m/(3m,) as stated in
the problem and also repeat the analvsis for T=3m/®,. Which harmonic is dominant in
the response in each case? Why? Create a plot of the steady-state displacement for each
case.
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' A one—degree-of—freedom, underdamped sys-
having mass 71, natural freqx-lency @ray and
:ioal damping ratio { =0.Q4 is subjected to
g a] triangular pulse excitation, as shown
o Wwhat is the largest harmonic in the

oW.
zponse when 7 = 3w, ?
A
P e g ———— =y T T T
/ - |/
——
e 7

EXERCISES 3.45, 3.46

3.46 Use FFT techniques to determine and .graph
the steady-state displacement and acceleration of

the system in Exercise 3.45 for the parameters
stated there.

The function is periodic with period T = 27

Et O<t<rt
fy=°
0 T<t<27T

and f(t+T) = f(t). Let f (t) be the Fourier series approximation to f(t), hence
7 1 J inz—nx
fit) = 5Fo +Re ;Fne T (2.104)

Where
2 T 2n
F, == f F(he " T dt
T
0
2 (P _iuT
=— | =te"7dt
Zbe’c ¢

T
P —inZt
=— |te "t dt
’czf
0

Using integration by parts f udv = uv — f vdu, letting u = t and dv = ¢ "7 then v =
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—in—t ze_m%t
fe dt = ——hence
ns
—in\" T
e T —in—
Fn = - ] _ _nf mTtdt
T n-— n-—
o 0
—-in—t —in—t t
P ie e T
=—|IT - —
> T T T
T n— n—\ —imm-
T T (VN
zle—inn T2 _inT T
== T + ) e
|\ nm n°m 0
P [ ie—inn TZ '
= || t 2 z(e_mn 1)
T nrt n<7t

e~ = cos(nm) = (-1)", hence

Li(-1)" 7
b= 5[ )+ (e )

Hence for even n

and for odd n

Now Eq becomes

- 1 N
fity=Fo+ Re(ZPnem T")

n=1

1 2 2
= E130+Re( Z Fe"T'+ ZFHemTt)

even n odd n

2n P2 27
E ( Z P zn t E ——(—+i)€mTt)
4 e oy Hm\nm
P 1 2n 2n

:aRe(_z_m IR 2

4 TC et 1 T s\ T
=B+Re(£ Z iein%t_gz(%_i_i)ein%t)

4 T ot 11 T g\ 1

To verify, here is a plot of the above, using P =1and 7 = 0.5 secfort =0---

2 seconds.

This shows as more terms are added, the approximation becomes very close to the

function. At N = 40 the approximation appears very good.
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f(t) using 1 terms

f(t) using 3 terms

f(t) using 3 terms

F|

f(t) using 10 terms

fit)using 13 terms

£it) using 20 terms

10F L0f LoF ' ' ' ;
08 08 08
0.6 0.6 0.6
04 04 04
02 02 02
0.0 0.0 kg ki 0.0 i It

0.0 0.0 0.5 1.0 13 20 0.0 0.3 1.0 15 20

r I r
f(t) using 23 terms f(t) using 30 terms f(t) using 40 terms

10f 10f 10}
0.8 0.8 0.8
0.6 06 0.6
04 04 04
02 02 02
0.0 0.0 ¥ 0.0

0.0 0.3 1.0 15 20 0.0 0.3 1.0 135 20 0.0 0.3 1.0 135 20

Now we need to write f(t) as sum of exponential to answer the question.

where @ is the fundamental frequency of the force given by 2?

Hence, let y,s =

n=—0oo

o

Remz

n=-—00

Hence

Hence

. 4. _n
Finding Y/, for 7 = o
where r = wm . When C =

nat

- 1 N . 2m
fity = 3Fo+ Re(EFnem T ")

n=1

)} Y,e"®, then

n=-0o n=-0o

[o0]

n=-—0o

1

(¢} (oe]
— (@)Y, + ¢ ), indY,e"t +k Y Y6t

Y, =

|

1
(1 - (nr)z) + 12Cnr

|

2
(1—(n © ) )+i2Cn ©
Wpat What

1 &
yss = 5Fo + Re(EYne’"“’t)

n=1

Tt

004and T = 3

Wnat

126

T 21 bd
T

T2

1 N
) = SFo+ Re(EPnem T x)
n=1

. 1 N . 2n
Z (—m(n(D)2 +icn® + k)Yne’”‘Dt = EFO + Re(ZFnem T x)
n=1

21

, hence now r = = =

QT)wpat (2
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therefore

F, 1

k(1= (3n)?) +i6(0.04)n
F, 1

K (1-9n2) +0.24n

n

The largest Y,, will occur when the denominator of the above is smallest. Plotting the

2
modulus of the denominator \/ (1 - 9n2) + (O.24n)2 for different n values shows that
n =1 is the values which makes it minimum.

This happens since for any n > 1 the denominator will become larger due to n* and
hence Y,, will become smaller. So n = 1 will be used.

1

Showing how - changes with n

H
200 [ pa
_ 150} i
é - i
S 10l i
so b ]
I} -_ 1 1 1 1 1 1]

1] 1 2 3 4 3
n
For n =1, we obtain
K 1

17k (1-9) +i6(0.04)

But F; = —g(% + i), hence

P2 . E+.
le‘;;“ 1 P \z T

kK (1-9)+i6(0.04) 7k -8 +i0.24
p 2+i  p (% + i)(8 +0.24)
= — Tt = —
k8 —i0.24 ~ 7tk (8 — i0.24)(8 + i0.24)
j2

= —(0.075759 + 0.127271)
1tk

Therefore p
Y1 = (0024115 + 0.04050)

Here is a list of Y, for n = 1---10 with the phase and magnitude of each (this was done
for2 =1)
k
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r=3, C£=0.04
n |¥p Yn Arg[Yp]
1 |0.0241149 +0.0405122 1 0.04714e2 59_2367
2 [0.000062351 - 0.00454¢43 1 0.00454¢686 -89.2143
3 |0.000265948% +0.00132872 1 0.00135577 78.5348
4 |3.73568x%x10°%-0.0005564611i |0.000556473 |-89.6154
5 |(0.0000346626 + 0.00028435%1 1 |0.000286496 |83.0509
6 |7.3223x10°7-0.000164243 1 0.000164245 |(-89.744¢
7 |9.00427x10°%+0.000103382i |0.000103773 |85.0223
8 |2.31058%x10°"-0.000069197 i |0.0000691974 |-89.8087
9 |3.29231x10°%+0.00004859191 |0.0000487033 |86.1239
10 |9.45233%x10°% - 0.0000354069 i |0.000035407 |-689.847

From the above we see that most of the energy in the response will be contained in
Y; and adding more terms will not have large effect on the response shape. This is

confirmed by the plot that follows.
Plot for the steady state

Since ) .
yss = 5Fo + Re(ZYneimf)
n=1

Where now r = ——. When C = 0.04 and 7 = ——, hence now r = n_ - 2
Wyt 3wyat QT)wpat (2 n )w ,
3wyt ) M
therefore| r =3
P < - — :
Yss = 4 +Re _z Y, et + _Z Yneznwt)
n=1,3,5- =246
P S Fn()dd 1 inot . Pneven 1 inot
== +Re elnot 4 ¢in®
4 n:§5... k (1 - (nr)z) + 2Cnr n:g[;’&,_ k (1 _ (nr)z) +i2Cnr
_i(i + l) 2 i
= E +Re nm\ nm 21 ' eith Z nn 21 : einth
4 n=1,3,5- k (1 — (nr) ) + 2Cnr neod6.. K (1 — (nr) ) +2Cnr
1(2 .
PP i —n(—n i 1) - i — -
= -+ -Re — eino oin®
4k n=1,3,5--- (1 - (nr)Z) +12Cnr n=2,4,6-- (1 - (1’11’)2) + i2Cnr

Now let r = 3, C = 0.04. Normalizing the equation for @ = 1 which implies T = m and

k =1 and p =1, then the above becomes

1(2 .
SEYEN .
nm\nrm

i

nm int

1 .
= — 4+ Re — eint
BT AT - GnP) + 20,093

n=izt- (1= (3n)°) +i2(0.04)3n

e

Here is a plot of the above for t = 0 -+ 20 seconds for different values of n
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Yss (L) in red, as more terms are added. Black color is force

08

0.6

1 o0s
1 05
04f
02—
0.0

Lo
0ef
1 o6t
1 o4l
02Ff—
0.0

We see from the above plot, that y(t) does not change too much as more terms are
added, since when r = 3, then Y, for n = 1 contains most of the energy, hence adding
more terms did not have an effect.

Repeating the calculations for 7 = o

Wyat
@ 3n 21 2m 1
r= .When(=004and 7 = , hence now r = = = -, therefore
Wnat Wnat 2T wpat (23—n)wwt 3
Wnat
F 1
Y, =— TN
k (1 — (nr) ) + 12Cnr
_F, 1
Tk 1\ 2
(1 - (gn) ) + 15(0.04)71
_F, 1
- 7 2
k (1 - 3) +10.0267n

The largest Y,, will occur when the denominator of the above is smallest. Similar to
above, we can either find n which minimizes the denominator (by taking derivative
and setting it to zero and solve for 1) or we can make a plot and see how the function
behaves. Making a plot shows this
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1
| ¥ |

Showing how changes with n

|[denominaton

From the above we see that the smallest value of the denominator happens when n = 3.

so using n = 3 we find

F3

k (1-3n?%) +i2e3r

F; 1

? 1 2 . 1
(1 - (35) ) +12(0.04)3;

F; 1

ButF, = —%(% + i), hence

3n\37n
Therefore
_i(i )
3n\ 371 1
Ya =
3 k i0.08
Hence

Y, = %(—1.3263 +0.281451)

Here is a list of Y, for n =1 ---10 with the phase and magnitude of each (this was done
for£ =1)
k
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r=1/3, [=0.04
n |¥, ¥n Arg[Yg]
1 [-0.238501-0.3509441 0.424316 -124.2
2 |0.0272508 +0.283863 1 0.285168 B4 .51¢64
3 [-1.32629 +0.2814461 1.355B2 168.018%
4 |0.0137726 - 0.100425 1 0.101365 -82.1921
5 (0.00186323 + 0.035949%¢6 1 0.0359979 (87,0331
© |(0.000940465-0.0176337 1 0.0176588 |-86.9471
7 10.0004959 - 0.0102524 1 0.0102e46 |87.2085
g8 |0.000227012 - 0.006502%61 (0.006506%2 |-88.0007
9 |0.000179929 +0.004426371 |0.00443002 |87.6722
10 |0.0000829656 - 0.00314553 1 |0.00314703 |-BB8.4853
We see from the above that |Y3| is the largest harmonic.
Plot for the steady state
Since
1 ..
Yss = 5Fo +Re(z_]ynem@f)
n=1
In} 3n 2n
Where now r = —. When(=0.04and 7 = —, hence now r = =
nat nat

therefore from above

PP N 1 ( 2 ) 1
s« = —+—Re -—|—+1
/ 4 k [n:l,ZS,Sm nic\nm (1 - (nr)z) +12Cnr

Now let r = %, C = 0.04, and assuming 7 = 0.5 then ® = 2n

then the above becomes

QT)wpat B (2 3n

Wnat

inot \ 1
e 3 L

n=246--1

_ Tt
2t~ 057

1 1 — 1 (2 1 in T
]/ss__"‘_Re E -—|—+1i 5 55t
4 k _{5%.. nm\nm 1 .
n=1,9 1- (ng) +i2(0.04)=n
iird Y L ! o35t
k =i T

(1 - (n%)z) +i2(0.04)5n

Here is a plot of the above for t = 0 --- 20 seconds for different values of n
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Vas L) as more terms are added
number of terms - 1 number of terms : 2 number of terms : 3
) i o
06 IIIr "||II Ifr ‘l.l f\ll 0.8 fp | I|'ll III |||ﬁ |II 15 IPII I|‘|| Ir'| ||'|| II\ \ ||‘|| |”| | ll'
R A I S A A st ||/ 1111} | |F'| |
/ : | [ |
ozl/ \ IOk ||I lllll 04 ’ |I f || II|| |I A ||| L || IUII || [ | | II |I | & ||
|I|I : IIII l\ JI|I |Il ||I 02 | |I " )} || A I|I| ||I - III 05 || U | | | | | || | || \ | | | |
0.0 4 — " oopl LN |I AL rof |\ | \J IR
_02 \J \\_,"' "Jl} —02k W/ ll_/ L’ —15F IuI v | lul i
B 3 10 13 20 0 3 10 135 20 0 3 10 15 20
¢ t t
number of terms : 4 number of terms : 3 number of terms : §
L5 f\ 15 1o1s "
fi fl N | [
Lo ||'|||“ |'|||||ﬂll |||I ' | 12 I| I|||||\| '(l i\ )| e |'(| I\ |'|||||FI| f
o.:lllII ||,||| ||I|| 05 '|||||||||||| |:>.3||||||I||||||||I|||
00 TR | | ] |_|' 0.0 |L|' 7T T 0o H T I,,l
=03 || 8§ ll “ || I||| -0.3 |I ||| I|| || |||| || I —ﬂ'-j'f ||| I||| |||| ||| kl
-t | I VU 2 VY ..J o V|
—1. W —-L U W —-L
0 3 10 13 20 0 3 10 13 20 0 5 10 15 20
¢ t t
number of terms : 7 number of terms : § number of terms : @
20
0 ﬂ | [ e I| f T II“I i ||II| f II|1| fl
L0 '| N ' I"' ||| L0 |'|f |\||| |||| |'|' wi VAL AT
0s I|| ] |||I|| ost LTV || ost [TV IV IY V)
|| | |'||| ||'||||' | ||'||||'||||||'I|||
00 |I-J|||| ( VTV ||||u'| RV RRIATRATEL
—a) |||) IIR -0sEf L || IIH o I U
-10}/ I\ 'n || o) [ l'.-' -10 [\ | A
gsf  § —-15f -1sf | \ {
0 3 10 13 20 0 3 10 13 20 0 3 10 15 20
¢ t t

We see now that after n = 3 that the response did not change much by adding more
terms, this is because more of the energy are contained in the first 3 harmonics with Y,
being the the largest.
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2.7.5 Key solution for HW 6

Homework #6
EMA 545, Spring 2013

1.) Problem 3.41 in Ginsberg. Check your answer for A=1.0 using FFT techniques with
the fft_easy.m Matlab function from the course website.

2.) Problem 3.50 in Ginsberg. DO PART (a) ONLY.

3.) (20 points) Find the steady-state response of the system in Problems 3.45 and 3.46
from Ginsberg using FFT techniques. Perform your analysis with t = 7/(3,) as stated in
the problem and also repeat the analysis for t = 3n/@,. Which harmonic is dominant in
the response in each case? Why? Create a plot of the steady-state displacement for each
case.
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Exercise 3.41

N

Ferp(-2%)

N

Fe 2F [ exp(-(p +2men W ] A4/

= 2F

BOF;‘:

n=0.5

c

F(%,n) =

1 =erp(=(agamial]
A+amun
2(1-2xp(-2))
A+

buk exp(-tarn) =1

—————— (1 - exp(-}))
(A +2inm)

Re<F a(0.1 ,n)>
Re<F Ne! ,n)>

R:(F N 10,n)>

S}
w
o
9

Im<F n(O.l,n)>
B8

Im<F n(lO,n)>

Im<F a(1 ,n)> 01k

n

As A increases, the higher harmonic amplitudes increase.
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Matlab solution to HW#8, Problem 3.41

%% Solution to 3.41 using Matlab
% EMA 545, Spring 2011
clear all; close all

= 275; % 2713; % number of samples for FFT
au = pi/3; % 3*pi; % pi/3;

—A =

wl = 2*pi/T;
F=1; % Force will be non-dimensional
lam = 1;

dt = T/N;
ts_fft = [0:dt:(T-dt)]-";

% Define Input Force in Time Domain--f(t)
ft = Frexp(-lam*ts_fft);
ft = ft(:); % make sure these are column vectors

% Use FFT easy to perform analysis
[D_fft,ws_fft] = fft_easy(ft,ts_fft);

F_fft = (2/N)*D_fft; % this only has those for positive frequencies.

ns = [0:5].";
F_fs = 2*(1-exp(-lam)) ./(lam+1i*2*pi*ns);

disp("n, Frequency, Fourier Coeff, FFT estimate (abs)");

[ns, ws_fft(1:6), abs(F_fs(1:6)), abs(F_fft(1:6))]
disp("Frequency, Fourier Coeff, FFT estimate (angle in deg)®);
[ns, ws_fft(1:6), angle([F_fs(1:6), F_fft(1:6)]1)*180/pi]

Results with n=27"5=32

n, Frequency, Fourier Coeff, FFT estimate (abs)
ans =

0 0 1.2642 1.2841

1 6.2832 0.19871 0.20215

2 12.566 0.10029 0.10252

3 18.85 0.066976 0.069021

4 25.133 0.050263 0.052388

5 31.416 0.040222 0.042541

n, Frequency, Fourier Coeff, FFT estimate (angle in deg)
ans =

0 0 0 0

1 6.2832 -80.957 -75.361

2 12.566 -85.45 -74.259

3 18.85 -86.963 -70.177

4 25.133 -87.721 -65.34

5 31.416 -88.177 -60.201

With only 32 samples, this is already a pretty good approximation of the Fourier
Coefficients. With n=2"13, the FFT is accurate to about three decimal places.
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Exercise 3,50

y Wn"f, =10.ﬂ’r*¢//3).3 =O,4‘)M ersw/?
M J my+Cy-t-ky=cz+kz=Q
L 2(x) e (%x-5x%)[h(x)-h(x-02)]
k(y-z):—c(?-é) I£ D<= < & mafer

A<+4)c 2(x)

Substitute == vt Perodv & >ow, =2L =T
RZSo/zdace e @y AGrmonie pmalches naturaf pd’u(q‘/

vy = = Z W
'7(%) S gy =2 V= ;'-;_'-‘3"-_-. 20,10,6.67, ,, m/s &

Response @ v=5 m/s = T=o0,g sec

U$¢ N=128 = -éﬂ :(n-l)ﬁ;
Fualcale

20¢,) = (v€, -5 ) [h(t )= n(t,- 2]
Take FFT = Z(w,)

T he

where wn;r)u_,;)ujl:—%,g
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Solution: Problem 4 (3.45-46) Spring 2011
Matlab code given below, which is modified only slightly from
FFT_Square_Ex_545 v2.m

%% Solution to P4, HW#8 (based on 3.45 and 3.46 in Ginsberg)
clear all; close all

N 256; % number of samples for FFT
tau = pi/3; % 3*pi; % pi/3;
T

= 2*tau;
wl = 2*pi/T;
m=1;
wn=1; % since time is non-dimensional
zt = 0.04;

P =1; % Force will be non-dimensional

dt = T/N;
ts_fft = [0:dt:(T-db)];

% Define Input Force in Time Domain--f(t) = mean at discontinuity
for k = 1:1:length(ts_fft)
if ts_fft(k) < tau;
ft(k,1) = P*ts_fft(k)/tau;
else
ft(k,1) = 0;
end
end

% Use FFT easy to perform analysis
[F_fft,ws_fft] = fft_easy(ft,ts_fft);

% Each coefficient in F_fft is the complex amplitude of a harmonic
whose

% frequency is given in ws_fft. We could scale these to obtain
estimates

% of the Fourier coefficients, but we do not need to since we are just
% going to take the IFFT later.

% Make everything a column vector:
F fft = F_fft(:); ws_fft = ws_fft(:);

% Now form a vector of transfer function values at each frequency:
H = (/m)./((i*ws_Fft) .2 + i*ws_FFt*(2*zt*wn) + wn”™2); % dot or term
by term multiply

% Same as doing a for loop over each frequency.

% Now the response is just the force times the transfer function.
X = H.*F_FFt(:);

% Plot everything in the frequency domain to understand what"s
happening.

figure(d)
semilogy(ws_fft,abs(F_fft),"o" ,ws_fft,abs(X), " *",ws_fft,abs(H),"-");
grid on;
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xlabel ("\bfFrequency (rad/s))"); ylabel("\bf|X]| or |F|");
legend("fFt(F) ", "Fre(X) ", "H(\omega) ") ;

% take IFFT of the coefficients X to find the time signal x(t)
xt = ifft_easy(X,ws_fft);
% note ifft_easy(F_fft,ws_fft) = ft, exactly with no approximation

figure(4)
% [ax,hl,h2] = plotyy(ts ft, gt ts_fft,xt);
plot(ts_fft, ft, ,ts_FFL,xt,".-");

xlabel("time (s)* ) ylabel( f(t) or x(t)");
legend("F(t) ", "x()");
title("\bfForce and Response Found with FFT");

Results:
Casel: t=n/(3wn) (r=3)

Force and Response Found with FFT
1 T T

e (1)

0.9+ e x(1)

0.7 R

0.6 i

f(t) or x(t)
o
ul

0.4+ B

0.2r 4

0.1- B

0 1 1 L
0 0.5 1 15 2 2.5

time (s)

To understand this, let’s look at the FFT coefficients of X, F and the transfer function H,
shown in the following figure. Since the first coefficient is beyond the natural frequency,
the transfer function gets smaller as omega increases. The force is also dominated by the
lower frequency terms, so the low frequency terms dominate. The DC term is the largest,
followed by the first harmonic (DC is Electrical Engineering terminology for Direct
Current or the zero frequency). So, it shouldn’t surprise us to see that the response is an
offset sinusoid with low amplitude.
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[4] 10 [X|

Frequency (rad/s))

1= 3n/on (r = 1/3)

Case 2:

Force and Response Found with FFT

——f(t)
—e— X(t) 4

15+

(®x 1o (14

12 14 16 18 20

10
time (s)
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10°

—-B - -

10"

=it = =

|X] or |F|

10°

T
R T

107 bi

Frequency (rad/s))

In this case the fundamental frequency of the sawtooth is 1/3 the natural frequency.
Hence, the third harmonic is equal to the natural frequency so that harmonic is amplified
in the response. So, the response looks like a 3-cycle sinusoid (per period of the force)
even though the force spectrum is dominated by the lower frequency harmonics.
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2.8.1 problem description

Homework #7
EMA 545, Spring 2013

Problem 1: (20 pts) Use FFT techniques to find the response of your vibration isolation
system to the turbulent flight profile in “FlightAccel.mat” on the course website. (To do
this, you will have to assume that the aircraft experiences this exact same flight profile
over and over again.)
a.) Provide at least one plot comparing the response of the aircraft to the (hopefully
improved) response on the vibration isolator.
b.) Report on the values of mass, stiffness and damping that you used and how they
would be realized in practice (e.g. if you use a beam as a leaf spring, what would
its dimensions be?).

Problem 2: (20 pts) Do Problem 3.60 as given in the text. Comment on how you
selected adequate values for N (number of samples in the time history) and the length of
the time window (in seconds).

Problem 3: Exercise 1.11 from Ginsberg. (For the proof described in (b), set m,=0 and
see what your equation of motion reduces to.)

1.11 When the system in the sketch is at its static oy mple  series or parallel—according to the
equlljbnum position, there is no axial force in each equivalent spring stiffness.

spring.

(a) Derive equations of motion for the horizontal
displacements x; and x, measured from the equi- g
librium position.
(b) Prove that if m; = 0, the equation of motion B!
for x, is the same as that obtained by replacing the |
four sprmgs by a single cquxva]ent spring. Identify
the way in which the springs are connected—for EXERCISE 1. 11
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2.8.2 problem1

Problem 1: (20 pts) Use FFT techniques to find the response of your vibration isolation
system to the turbulent flight profile in “FlightAccel.mat” on the course website. (To do
this. you will have to assume that the aircraft experiences this exact same flight profile
over and over again.)
a.) Provide at least one plot comparing the response of the aircraft to the (hopefully
improved) response on the vibration isolator.
b.) Report on the values of mass, stiffness and damping that you used and how they
would be realized in practice (e.g. if you use a beam as a leaf spring. what would
its dimensions be?).

2.8.2.1 Part(a)

Vibration isolation was based on reducing absolute acceleration of passenger under
turbulent external forces. This was done by isolating the passenger from the base motion
subjected to external absolute acceleration. Hence the model is based on the following
diagram

j

O
~

Hence EQM of motion is

my"’ + c(y’ - z’) + k(y - z) =0
my” +cy’ +ky =cz’ +kz (2.105)

We are given the time history of the turbulent acceleration. Hence in frequency domain

we can write
7 acc ,i(wn)t
2" = Re{Zi<el@m!)

Where Z%“ is the complex amplitude of the n* harmonic component in the acceleration
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data. Let win = @, then using the above, In frequency domain Eq[3.1/becomes

Re|(—ma? + idyc + K)Y,e) = R{( Zi kZ““) }

ZCD (D

< _ K

iy af acc
Y, = z

-md2 + id,c + k

The above gives the transfer function between the displacement of the passenger and
the external acceleration. In otherwords

e _k
y(t) = Re 0, _af Zaccpil@rmt
-mo? +io,c+ k| "

Let
c k

Y. = o, o} 7acc
" -m@2 +io,c + k
then the transfer function is
—ic k
Y _ @y %
Zoce  —m@?2 +id,c + k
1 (k + ica,,)

o (k - m@%) +i@,c

H(o,) =

Hence phase is

arg(H(@n)) = tan‘l(aDT”) — tan‘l( @;,C )

k —ma?
and magnitude is

Y
Zacc

1 T2

CD” \/(k - m@%)z + (@)

|H(@,)| =

. . 1 k+ico,
These can be written in terms of ¢ and w,,;; as follows. From H(®,,) = ——2%,
@3 (k—m(Dn)+l(DnC

dividing numerator and denominator by k = mw?,, and using ¢ = 2{maw,, then

1+ 20Mwy @y 1+ 20wy,
1 mw%at 1 Wnat
(@) 2 mad io20many @2 ) i0,2C
n(l— 2)+ — "(1— 2)+ -
MWy a4 MWy ¢ Whyat What
Letr, = — ~ then the above becomes
nat
1 (+i2lr,)
H(wn) = T2 > _n
@y (1 - rn) +i2r,C
Hence

Y1+ (2cr,)’

(@)l =
‘D\/ Y + 2o
2r,,C

i

arg(H(wo,)) = tan~'(2¢r,) — tan™
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The following is a plot showing the passenger absolute acceleration y”’(t) over the period
of 80 seconds against the turbulent acceleration z” (). We now see that passenger abso-
lute acceleration is close to the nominal acceleration. This was done using the following
values for the vibration isolation

M | 100000 kg

C 1072

k | 38924 N/m
c | 57746 Ns/m

The plot on the right side is the absolute acceleration of the passenger during flight in
the turbulent case.

turbulent acoceleration time history: nominal acceleration time histony o ki et rws Bncioes

2 e
B & om
- T

2.8.2.2 Part(b)

The length of first class cabinet was estimated to be L = 15 meters from looking at Boeing
web page.

Using Steel, Structural ASTM-A36 [ beam as a cantilever beam for the implementation,

. 3EI ,
then using k = —= results in

3(200 x 10°)1
15°
I=21895x10"*m*

38924 =

(2.1895><10—4)12

——— =0.32843

bh’
Using rectangle cross section I = —. Letting /1 = 20 cm, then b =
meter or 32 cm.
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2.8.3 Problem 2

360 A one-degree-of-freedom system is subjected
to a pulse excitation in the form of a parabola,

0= 2000’(T Olh@ty —h(t-T)] N

The system mass is 0.5 kg, and the natural fre-
quency is 100 Hz. The pulse duration T equals the
undamped period of free vibration period. The
system is at rest in the equilibrium position at
t=0.

(a) Use FFT techniques to evaluate the response
when { = 0.20.

(b) Use FFT techniques to evaluate the response
when ¢ = 0.002.

(¢) Use superposition and Appendix B to derive
the analytical solution for this pulse. Compare the
analytical and FFT results for ¢ =02 and
£ =0.002.

2.8.3.1 part(a)

Q= ZOOOt(T )[h(t) h(t —T)]
m = 0.5kg
w, =2nf,
f, =100 Hz

Hence pulse duration is % = (0.01 sec.
my” +cy’ +ky = Q(t)

In the frequency domain assuming that the force Q(f) can be represented in its Fourier

series as
Q) = Re(Z Qnefwlnf)

where w; is the fundamental frequency for Q(f) which depends on the period we choose
to select to sample over. In this example, I selected 3T as the overall period to sample over
so that it covers the pulse duration and an additional time to show the free vibration
part as well and to compare to the analytical solution. Hence the EQM becomes

Qu

—m(nw,)* + ic(nwy) + k

Y, =
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k = w?m hence dividing the numerator and denominator by k we obtain

Qn

na)l) ) ic(nwq)

2

wnm wnm

1
E( - rz) +12Cr,

hw .
where r,, = — .Hence response is

y(t) = Re(z Yneiwl’”)
1

1 |
=R - iwqnt
e(; k(1-72) + i2CrnQne 1 ]

1
nk (1 rn)+125rn

y(t) is found by taking the IFFT of E Q,-

Q,, values are found by taking the FFT of Q(t). We start by sampling Q(t). To obtain
the solution for say t = 0 --- 3T, then we have to assume that the period of the signal is
actually 3T and sample over this whole time from O --- 3T — delt. Then we use FFT on the
result. Then find the response by doing IFFT. Using N = 128 over t = 0 --- 0.03 seconds,

the following solution was obtained

force Q) and its reponse. 16 samples, delT=0.000236
BO0 T T T T T

400 -

200

I '::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
0.005 0.01 0.015 0.02 0.025 0.03

0
0
time sec
AT reponse at zeta=0.200000

4 T T T ! ;

_ i | | i !
0 0.005 0.01 0.015 0.0z 0.025 003
time sec
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%by Nasser M. Abbasi, HW 7, EMA 545
close all;

T = 0.01; %sec
duration = 3%T; Yduration to find solution over
N = 128;

delT = duration/(N-1);

wl 2*pi/duration; %fundamental freq rad/sec
t linspace(0, (duration-delT) ,N) ;

Qt Q(t) (2000%t.*(T-t))/T~2.*(t<=T)+0*(t>T)

subplot(2,1,1)

plot(t,Qt(t),'r-o0');

hold on;
plot(0:delT:duration,Qt(0:delT:duration),'r');

title(sprintf('force Q(t) and its reponse. 16 samples, delT=Yf',delT));
xlabel('time sec');

grid;

m = 0.5; Ymass kg

wn = 2xpi*100; %natural freq

k = wn"2*m; Y%stiffness N/meter

[Q,ws] = fft_easy(Qt(t),delT);

zeta = 0.002;

I = sqrt(-1);

y = ifft_easy( (Q/k)./( (1-(ws/wn)."2) + 2xI*zeta*ws/wn),ws);

subplot(2,1,2);

plot(t,y,'r');

title(sprintf ('reponse at zeta=)f',zeta));
xlabel('time sec');

grid;

2.8.3.2 Part(b)
For C = 0.002 the above Matlab script was modified and the following solution resulted.

force QUt) and its reponse. 16 samples, delT=0.000235
GO0 T ! ! T !

Aok " IREIE .............. .............. frreereasenns 4

11| v, SRR .......... ot .............. ............. i

le_, i '€:=:::::=:l:::::l:l:::l:::::::::::::::l:::::l:l:::l=:::::=:::::=:::::=:l:=:ll:::::::::::::::::::::l:
0 0.005 0. 0.015 0.02 0.025 0.03
time sec
reponse at zeta=0.002000
p.02
]
-0.02
-0.04 i | ] 1 I
0 0.005 0.0 0.015 0.02 0.025 0.03
time sec

Now we compare the above with the analytical solution.
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2.8.3.3 Part(c)

The pulse can be written as

F = Q®[n(t) - h(t - T)]
= QO)r(t) = Q(Oh(t = T)

Lett =t—-T,hencet =t + T, therefore the above becomes
F=Q(®h(t) — Q" + THh(t')
20004(T—t)

But Q(t) = = Let % = B since it is a constant. Hence Q(t) = (T —t). Now we
write the above F as

F = BT — Hh(t) — Bt + T)(T — (¢’ + T))h(t)
= (BTt - B2)h(t) - B(t' + T)(~t)h(t')
= (BTt - p2)h(t) + B((t')* + T# )(t')
= BTth(t) — Bt2h(t) + BT(¥')* + BTHh(t') (2.106)

So we see that the response to F will be the response to a unit impulse h(t) with forcing
basis functions that are 1,¢, 2. Now we can use the solution from back of the book

appendix B to sum the responses in order to find the final response and compare to the
FFT method.

From appendix B, the response to unit ramp th(t)is

r(th(t)) = ! . (a)nt 20+ e—Cwnf|2c cos wat — (1 - zcz)% sin wdt])h(t)
d

mw;,

and the response to quadratic #2h(t) is

s(tzh(t)) = miu‘l ((a)nif)2 —4Cw,t - 2(1 - 4C2) + e‘Cwntl2(1 - 4C2) cos wyt + (6C - 8C3)Z—Z sin wdtl)h(t)

Now that we have the basis solutions, we can apply them to EQ
F=pBT(r(t) +r(t')) — BT(s(t) — s(t"))
= p(r(t) + 1t = T)) = BT(s(t) — s(t = T))
1 o
= (ﬁT)m—w,%(wnt -2C+ e‘C“’ﬂtlZC cos wyt — (1 - ZCZ)Z))—d sin a)dt])h(t)

1 ,
+ <[3T)m_a);°{(wnt, —2C + e~Cwnt [ZC cos wyt’ — (1 — 2C2)Z—Z sin w,t’

)h(t’)

- () mi)% ((cunt)2 — 4wt —2(1 - 422) + e—lwnfl2(1 — 42) cos wyt + (6C — 863)2—2 sin a)dt])h(t)
1

N (ﬁ)W((w”t/)z — 4wt~ 2(1 - 4C2) + e Gt l2(1 — 4C%) cos at’ + (6C - 8C3)% sin a)dt’])h(t’)
b d

In the above, w; = w, V1 — (2. To plot this solution, the following small script was used
and was run for both { = 0.2 and ¢ = 0.002

For C =0.2

151



2.8. HW7

CHAPTER 2.

HW’S

0.003

0.002

0.001

[ERpOn&e

0.000

For ¢ = 0.002

0.004
0.003

0.002

TEHpONEE

0.000

—0.001

—0.002

=0.003

solution vsing Superposition Impulss eponsa e J=02

/N

0.000

0.003 0010 0.013 0.020 0.025

solution szing Suvperposition Impulss responsze oo J=0.002

0.030

0.000

2.8.3.4 Conclusions

0.005 0.010 0.015 0.020 0.025

0.030

The analytical solution, using superposition agreed with the FFT solution for ¢ = 0.2.
However, for some reason which I am not able to determine why yet, the FFT solution
when C = 0.002 did not agree with the analytical solution. The analytical solution was
verified to be correct using another numerical ODE solver. So the FFT method for some
reason is not giving accurate result for ¢ = 0.002. The same Matlab script was used for
both cases. I tried increasing the sampling rate but that did not change the result. Please

see Appendix for verification and the code used to plot the analytical solutions.

2.8.4 Problem 3

Problem 3: Exercise 1.11 from Ginsberg. (For the proof described in (b). set #2,=0 and

see what your equation of motion reduces to.)

1.11 When the system in the sketch is at its static

equllibnum position, there is no axial force in each equivalent spring stiffness.

spring.

(a) Derive equations of motion for the horizontal
displacements x, and x; measured from the equi- g

librium position.

(b) Prove that if m, = 0, the equation of motion
for x, is the same as that obtained by replacing the j_f ;
four springs by a single cquivalent spring. Identify §

the way in which the springs are connected—for E}(ERCISE 1 11 .
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2.8.4.1 Part(a)

Let T be the kinetic energy and V be the potential energy. Then equation of motion for
a generalized coordinate g; is given by

d(JdL\ JL
~| =) -2 =0
dt c}’ql d qi
Where L is the Lagrangian L = T - V and Q; is the generalized force in the g; direction.
Assuming x, > x; and masses are moving to the right. For x; we obtain
1 1
T= Emlx% + Emlx%

1 1 1 1
V= Eklx% + Ekz(Xz - x1)2 + Ek4x% + Ekg,x%

Qi=F
Q=0
Hence
L=T-V
1 1 1 1
= Emlx% + Emlx% - (Eklx% + Ekz(Xz - Xl)z + §k4x% + §k3x%)
JdL ]
— =M X
dx, 1
d{JdL o
T e
JL
&_xl = —kyx1 = ky(xp — x1)(-1) = kyxq
and
JL )
8_552 = myXxy
d(dL o
A\ ox, | ~ 2
JL
9%, —ka(xxy — x1)(1) = k3x
Hence the 2 EOM are for x;
d{(JdL JL _r
dt 8x1 8x1 -
my ¥y = (=kixq + ko(x — x1) —kyxy) = F
my X, + k1x1 - kz(Xz - xl) + k4x1 =F
Therefore EOM 1
mlkl + (kl + k2 + k4)x1 - k2x2 =F
and for x,
d{JL JL _0
dt\di,| dx,

myXy = (=ky(xa — x1) —k3xp) = 0
m15€2 + kz(Xz - x1) + k3X2 =0
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Hence EOM 2
my X, + (k2 + k3)X2 - kle =0

Hence in Matrix form EOM are

MX” +KX = Q
mp O\ x| [(ki+kp+ke) ko x| (F
+ =
0 my .X'é’ —k2 (kz + k3) Xy 0

If m, do not exist, then this means the springs k, and k3 do not have a mass between them
and so these need to be replaced by single spring, say ks found by finding equivalent
spring in series

k
4 Ky
F
L, F
my [::::{:> .
my
k k ks
1 2 K

In series ks

F Ke
my 1
k1

N

In series

2.8.4.2 Part(b)

In parallel

k3+k2+k2k3k4+k1k2k3

= kak3
[::::C> — ™
Equivalent stiffness

T 1 N 1
ks ky ks
ks +k
ks = 3T K
kaks
From above, EQM for m; becomes
ks
—_—~
ks +k
m15€1+ k1+(3 2)+k4X1:P
kaks

So now k4 and k, are in parallel, hence we replace ks + k4 by k¢ found from

k6 = k5 + k4
_ k3 + kz
- ( kaks ) +k4
k3 + k2 + k2k3k4
k6 =
kaks
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Hence EQM for m; now becomes
ke
k3 + kz + k2k3k4
X1 =
kaks

m15€1 + kl +

and finally
k3 + kz + k2k3k4 + k1k2k3

koks

mljtl + X1 = F
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2.8.5 Key solution for HW 7

Homework #7
EMA 545, Spring 2013

Problem 1: (20 pts) Use FFT techniques to find the response of your vibration isolation
system to the turbulent flight profile in “FlightAccel.mat” on the course website. (To do
this, you will have to assume that the aircraft experiences this exact same flight profile
over and over again.)
a.) Provide at least one plot comparing the response of the aircraft to the (hopefully
improved) response on the vibration isolator.
b.) Report on the values of mass, stiffness and damping that you used and how they
would be realized in practice (e.g. if you use a beam as a leaf spring, what would
its dimensions be?).

Problem 2: (20 pts) Do Problem 3.60 as given in the text. Comment on how you
selected adequate values for N (number of samples in the time history) and the length of
the time window (in seconds).

Problem 3: Exercise 1.11 from Ginsberg. (For the proof described in (b), set m,=0 and
see what your equation of motion reduces to.)

1.11 When the system in the sketch is at its static oy mple  series or parallel—according to the
equlljbnum position, there is no axial force in each equivalent spring stiffness.

spring.

(a) Derive equations of motion for the horizontal
displacements x; and x, measured from the equi- g
librium position.
(b) Prove that if m; = 0, the equation of motion B!
for x, is the same as that obtained by replacing the |
four sprmgs by a single cquxva]ent spring. Identify
the way in which the springs are connected—for EXERCISE 1. 11
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Problem 3.60.
A SDOF system is subjected to a pulse excitation of the form:

):3|[2000t(T-t)/T2 OLtET
i 0 t>T

Q(t

We aretold that m= 0.5 kg and that the natura frequency is 100Hz; i.e., the undamped period of
vibrationis /100 = 0.01 sec. Since the pulse-duration is said to be equal to an undamped period, T
=0.01 sec. We are to find the response of the system for the case of (a) z = 0.2 and (b) z = 0.002.

(& Forz=0.2, thetime-congtant of the system is 1/zw,= 1/(0.2* 2* p* 100) = 0.007958 sec. Four
time constants would be about 0.032, so choosing a maximum time of Tmax = 0.05 sec will ensure
that we alow enough time for the transient response to die down to an acceptably small value. The
next parameter that we need to chooseis N. Let's choose N = 256 and then check that our Nyquist
critical frequency is high enough relative to the natura frequency of the system and the bandwidth
of theinput spectrum. Figure 1 showsthe FFT of the input spectrum, the FFT of the output
spectrum, and the system transfer function as a function of frequency ratio for Tmax = 0.05 sec and
N = 256. Each curve is scaled so that its maximum vaue is unity. Although difficult to see whether
there are enough points in the vicinity of the resonant peak, it is clearly the case that our Nyquist
frequency is high enough. Figure 2 shows the displacement response of the system for Tmax = 0.05
sec and using 2 different values of N. Below N = 64, the errors in the response become much more
noticeable. Note that the responseis very smdl at t = 0.05 sec, indicating that "wraparound errors'

are negligable.
z=0.2
i ; i
il ~&- Input
0.9 ———————— Transfer Function |
—— Output
5
o
5
O
w
'_
]
Q.
£

0 5 10 15 20 25 30
Frequency Ratio

Figure 1.

157



2.8. HW7 CHAPTER 2. HW’S

x10° z=0.2, Tmax = 0.05 sec

e e B N = 256
3 ~A- N=32

N
3]
i

15

Displacement (m)

0.5

-0.5

-15
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Time (sec)

Figure 2.

Figure 3 shows the effect of varying Tmax, keeping N = 256. It is seen that as Tmax is
reduced, the solution beginsto degrade. In particular, examining the curve for Tmax = 0.02 sec, it is
seen that the response no longer appears to begin with zero initial conditions. Thus, using a Tmax
which istwice the duration of the pulse is inadequate in this case to avoid warparound errors.
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y 10_3 z= 02, N = 256

4 ‘ ‘ : ; T T

Tmax = 0.05sec

as| = — Tmax = 0.04sec
— Tmax = 0.03sec

—— Tmax = 0.02sec

Displacement (m)

-15

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Time (sec)

Figure 3.

(b) For z = 0.002, the time-constant of the systemis 1/zw,= 1/(0.2* 2*p* 100) = 0.7958 sec. Four
time constants would be about 3.2, so choosing a maximum time of Tmax = 5 sec should ensure
that we allow enough time for the transient response to die down to an acceptably smdll value. As
before, we will choose avalue for N (4096) and then check that our Nyquist critical frequency is
high enough relative to the natural frequency of the system and the bandwidth of the input spectrum.
Figure 4 showsthe FFT of the input spectrum, the FFT of the output spectrum, and the system
transfer function as a function of frequency ratio for Tmax =5 sec and N = 4096. As before, each
curveis scaled so that its maximum value is unity. We observe that there appear to be enough points
in the vicinity of the resonant peak and that the Nyquist frequency appears to be high enough.
Figure 5 shows the displacement response of the system for Tmax =5 sec and N = 4096. The result
was checked using ode45 and found to be very close to the values produced using the FFT analysis.
Figure 6 shows the first 0.01 seconds of response from Figure 5 on alarger scale. The fact that the
response begins with nearly zero displacement and velocity shows that wraparound error has been
avoided.

159



CHAPTER 2. HW’S

2.8. HW7

0.002

Z=

- Transfer Function

-=— Input

Output

—

© 1 %
o o o
INdinO ‘41 ‘indu|

4.5

Frequency Ratio

Figure4.

4096

0.002, N =

zZ=

x 10

(w) wawaoe|dsig

5 4.5

3.

5

2
Time (sec)

1.5

0.5

= 4096 points.

5sc, N

Figure 5. Tmax
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x10°

z=0.002

Displacement (m)
N

-1
0 0.001 0.002

0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time (sec)

Figure 6. Tmax = 5 sec, N = 4096. Same result as shown in Figure 5, but over a smaller time range.

The Matlab code used to generate these results is shown below:

% ME6442, Spring 2002
%Dr. Ferri
% Probl em 3. 60

% Qis a short-pul se parabolic input.
% a danped SDOF systemw th m = 0.5kg,

%the pulse is Tn,

m=0.5; %g
zeta = 0.2; %or zeta
wn = 100*2*pi; % rad/s

The systemis
and fn = 100 Hz. The duration of

an undanped period of notion.

= 0.002 for part (b)

tineconstant = 1/ (zeta*wn)

T = 2*pi /wn;
Tmax
N = input('Enter N ..
wl = 2*pi/ Tnax;

delt = Tmax/ N,

t = 0:delt:(N1)*delt;

t

% Def i ne input pul se

Q= zeros(1,N);
for k = 1: N
if t(k) > T, break;

% duration of pul se
input (' Enter Tnax.

")

Y

end
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QK) = 2000%t (K).*(T-t(k))/T"2;

end

plot(t,Q;

x|l abel (' Tine (sec)')

ylabel (' Q)

title(['N=",nunstr(N)," , \zeta ="', nunBstr(zeta)])
grid

pause

Qtrans = fft(Q;

N 2)) *wl/ wn;

(1 - r."h2 + i*2%zeta*r);

= Qtrans(1: (N 2+1)).*D (nfwn"2);
_index = (N2):-1:2;

X = [Xhal f conj (Xhal f(rev_index))];

% Plot input fft, output fft, and TF on same plot.

Qlot = Qtrans(1l: (N 2+1))/ max(abs(Q trans(1l: (N 2+1))));
Dpl ot = D/ max(abs(D));

Xpl ot = Xhal f/ max(abs(Xhal f));

plot(r,abs(@lot), o--',r,abs(Dplot), " k-',r,abs(Xplot),"'*--")
x| abel (' Frequency Ratio')

ylabel (' I nput, TF, Qutput')

title(['\zeta = ', nunkstr(zeta)]);

grid

I egend(' I nput',' Transfer Function','Qutput')
pause

Xifft = ifft(X);

% Check that the ifft is "nostly real-valued." The quantity
% imag_check is the ratio of the norms of the imaginary and
%reak parts. This termshould be very snall (<le-5).

i mg_check = norn(imag(xifft))/norn(real (xifft))

% Assum ng that imag_check is snall, discard the imaginary part
%of xifft:

xifft=real (xifft);

plot(t,xifft);

x|l abel (' Tine');

ylabel (' x");

title(['N=",numstr(N,' , \zeta ="', nunBstr(zeta)])
grid

zoom on
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Exercise 3.60

Sa/f//osuém-t solwtco R ¢ —t‘ -T
@t )? “00( -L )4(0 2000 £T ‘*r (“’r)] h(o")

2000 ¢ ‘\() 7-000LL({') +—2000 et 20 ')A(”

Let rt) aud S(f) Aenole o yuid rmw,a aud ?uc/no‘m
reSp0ases. The v

2= 299°[r(t) ¢ r(4-7)]- 222 [s(6)-5(4-7)]

21

()

M:= 0.5 O pat = 2001 T =

Note: Change pulse duration to t
nat

Superposition solution

y )
O patt-2C+ exp<—§-m nat't>' 2-C-COS\ l - sz nat't/
2] )
nat + 1-2%6 -sin( 2

1-¢ o nat't/

ramp(t,&) = (t>0)-
M-

2

-G

quad(t,&) = (t>0)-

[ 2 ( 2)
- <m nat-t> S 4G et - 201 - 487

M- ot ( 2> 2
+exp<—§-m nat't>' 2-1-4-L )-cos A/l -G 0 papt)

+6'§—8~§3 ) [ P \

sinil - & o nat't/

2

1-G

2000 2000
9 super(t>8) = (ramp(t,C) + ramp(t - 7,C)) - ——+(quad(t,C) - quad(t - 7,5))

T
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First case £ =020
4 . , . 4
=0.032 This is greater than t=0.01, so let T' = 4/C*w,,,, T' =
EO nat =" nat
Because damped period is larger than the undamped period, select A= T
A>ST20, 4 80 nat
2-T
N':=_"_ N'=101.859 N := 128 T:=2T A = T
A N
. (i . t.-(Tt-t.
J=1.N tj =(-1)A Q. - 20002 < J>'/t.<r>
i \i
T
F = FFT(Q) 21
I fund = K-Mo. .~
) nat'T nat
n=1.—+1 F 1
2 X, = — x = TFFT(X)
2 .. =
K- [(-Dorgypg] + 206 (- D fynq

- [
X super = 4 super\tn’€>

T T
X 0.002 - .
n
X super,
.......... 0 n T =0.01
-0.002 ' L
002 5 0.01 0.02 0.03
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Second case (= 0.0020
4 . , . 4
=3.183 This is greater than t=0.01, so let T' = 4/C*w,,; T' =
EO nat =" nat
Because damped is larger than the undamped period, select A'>n/2m,,; A= T
80 nat
N 2T NS 1019101 N 1024416 T 2T AsL
A N
. . t-(t-t
j=1.N t.=(-1)A _ 'J< J>,/
i Q = 20001~ (4<1)
T
F := FFT(Q) . . 2m ,
fund ® ot T K= Mo pq
n=1.—+1 F 1
2 X, = = IFFT(X)
2 .. X =
K l—[(n—l)-rfund] +21-Q~[(n—1)-rfund]
0.005 T T
Xl’l 0 —
| |
~0.005 2.5 3 3.5

0.005

| |
~0.005 5 0.01 0.02 0.03
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2.8.6 appendix

Appendix, HW7, EMA 545, spring 2013

= Analytical (superposition) solution for HW7 EMA 545

T=0.01;
wn = 2.0 % Pi »100;
m=0.5;

o= wd[€ ] s=wna/1-82 ;

2000
= T2 5
tp=t-T;
fl[t_, g1 :=
BT wnt-2¢+Exp[-gwnt] [2§C03[wd[§]t]-(1-2§2) m Sin[wd[g]t]]];
mwn wd[£g]

1
f2[t_, 8 ]:=8—— [(wnt)2—4§wnt—2 (1-48%) +
mwn?

wn
Exp[-Zwn t] (2 (1-42%) Cos[wd[g] t] + (6&-8¢&°)
wd[&]

Sin[wd[Z] t]]];

f3[t_, 2 ]1:=28T

1
[wntp-zg*Exp[-gwntp]
mwn®

n

[2§COS[Wd[§] tp] - (1-28%) dw - Sintwdre) tp]]];
Wi

fa[t_, 8. 1:=8

" [(wntp)2—4:wntp—2 (1-42%) +
mwn’

wn

EXp[-&wn tp] [2 (1-42%) Cos[wd[g] tp] + (65 -8¢&%) Sin[wd[Z£] tp]]];
1

ewn
sin[wd[&] tpl]];
]

1
f5[t_, & ] :=2BT> —— [1-Exp[-§wn tp] [Cos[wd[g] tp] +
mwn?

f6[t_, & ] :=
wn

BT

1
3 [Wntp-2§+Exp[-§wntp] [2§C05[wd[§] tp] - (1-2§2)
mwn

Sin[wd[g] tP]]];
1

VO + Zwn q0

freeResponse[t_, qO_, vO_, £ ] := Exp[-gwnt] [qO Cos[wd[Zg] t] + .
wd[g]

sin[wd (2] t]];

n1si= impulseResponse[t_, £ ] := F1[t, £] UnitStep[t] - F2[t, £] UnitStep[t] - F3[t, £] UnitStep[tp] +
f4[t, £] UnitStep[tp] + F5[t, &] UnitStep[tp] - F6[t, &] UnitStep[tp];

case ¢=0.2
ni21)= €= 0.2;
pl = Plot[impulseResponse[t, £] (UnitStep[t] - UnitStep[tp]), {t, 0, T}];

= Evaluate IC at end of impulse to use for free vibration response
niza= g0 = (FLE, €] - F2[t, €] - F3[t, &1 + FA[L, €1 + F5[t, £] - F6[t, &]) /. t->T
ouiizz= 0. 00120186

Printed by Wolfram Mathematica Student Edition
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2| problem_2.nb

np2ap= vO = D[FL[t, ] - F2[t, €] - F3[t, £] + FA[t, €] + F5[t, €] -F6[t, €], t] /. t>T
oufi24= -1.21014

nzsi= p2 = Plot[freeResponse[tp, 0, vO, £] UnitStep[tp],
{t, T, 3T}, Exclusions - None, PlotStyle » {Dashed, Thick}];
= Plot the complete solution by combining the above 2 plots

np1z6}= Show[pl, p2, PlotRange » All, Frame » True, FrameLabel -» {{''response', None},

{"time (sec)", Row[{'solution using Superposition Impulse response for £=", £}1}},
GridLines -» Automatic, GridLinesStyle » LightGray, Axes -» False, ImageSize -» 500]

solution using Superposition Impulse response for £=0.2

0.003 4
0.002 - i
8 I
f=4
ou126] % 0.0011 \ ]
= [ 1 -
r \ VRN
\ 4 \,
I \ / AN
r \ \ Pr Ll
0.000 - \ K . s i
L \ 1 . ’
L \ /! N
L \ /
\ /
L \ /
—0.001 - \ / 4
3 ’
[l | L \'"’ L L L L1
0.000 0.005 0.010 0.015 0.020 0.025 0.030
time (sec)

Printed by Wolfram Mathematica Student Edition
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problem_2.nb |3

= case ¢=0.002
n1371= € = 0.002;

pl = Plot[impulseResponse[t, £] (UnitStep[t] - UnitStep[tp]), {t, 0, T}1;

q0 = (F1[t, g1 -f2[t, g] - f3[t, g] + FA[t, g1 + F5[t, g1 -F6[t, £]) /. t>T;

vO = D[FL[t, £] - F2[t, £] - F3[t, ] + FA[t, £] + F5[t, £] - F6[t, €], t] /. t>T;

p2 = Plot[freeResponse[tp, qO0, vO, £] UnitStep[tp],
{t, T, 3xT}, Exclusions - None, PlotStyle -» {Dashed, Thick}];

Show[pl, p2, PlotRange -» All, Frame -» True, FrameLabel -» {{''response", None},
{"time (sec)", Row[{"'solution using Superposition Impulse response for ¢=", £}1}},

GridLines -» Automatic, GridLinesStyle - LightGray, Axes - False, ImageSize -» 500]

solution using Superposition Impulse response for {=0.002
T

0.004

0.003

0.002

0.001

out[142]=

response

0.000

—-0.001

-0.002

-0.003

0.025 0.030

L L L L L L L L L L L L L L L L L

0.000 0.005 0.010 0.015 0.020
time (sec)

= Verify the solutions using Numerical DE solver

in143= € = 0.002;
eq=y""[t]+28wny"[t] +wn"2y[t] = F[t] /m

oufia4= 394784, y[t] +2.51327y [t] +y"[t] =4. x107 (0.0l -t)t (-UnitStep[-0.01+t] +UnitStep[t])
ni4si= sol = FirsteNDSolve[{eq, y"[0] =0, y[0] = 0}, y[t], {t, O, 3T}];

n1471= Plot[y[t] /. sol, {t, O, 3T}, GridLines » Automatic, GridLinesStyle » LightGray]

0.004
0.003F
0.002 -

0.001
Out[147]= L

L L L L L L L L L L L
0.005 0.010

-0.001F

-0.002 F

-0.003F

Printed by Wolfram Mathematica Student Edition
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4| problem_2.nb

The above shows that the analytical solution using superposition is correct.

Printed by Wolfram Mathematica Student Edition
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2.9.1 problem description

Homework #8
EMA 545, Spring 2013

Problem 1: (40 points)

a.) Find the nonlinear equation of motion for the system pictured below. The block
has mass m and the guide can be approximated as frictionless. In the position
shown the spring is unstretched and the angle between the spring and guide bar is
Bo.

Linearize your equation of motion for small deflections from the position shown
(i.e. using a Taylor series expansion on k(x) about x=0). Use a computer to plot
k(x) versus the linear approximation for L=1 m, k=1000 N/m and 6, = 45 degrees
for x ranging from -1 m to +1 m.

c.) Find the equations of motion for the system using the stiff spring approximation
and assuming small displacements from an equilibrium position defined by L=1
m, k=1000 N/m and 6, = 45 degrees. Compare your result with your linearized
result from part (b).

Using m=1, find the response of the nonlinear system (in part a) using ode45 and
plot the displacement of the mass over a few cycles when it is released from rest
at x(0)=0.1 and also at x(0)=0.5 meters. Overlay both curves on the same set of
axes. How does the period of the response compare with the linearized natural
frequency in each case? In what other way(s) does the nonlinearity manifest itself
in the response of the system when x(0)=0.5?

b.

—

d.

—

o, L

-]

Problem 2: Exercise 1.27 from Ginsberg.

A standard model for a wing has a translational spring ky and a torsional spring kr
representing the elastic rigidity. Point E represents the elastic center because static
application of a vertical force at that point results in upward displacement without an
associated rotation. The design of the wing is such that horizontal movement of point E
is negligible. The lift force L acts at point P, which is called the center of pressure. The
lift force may be treated as known. When the wing is in its static equilibrium position,
points G, E and P form a horizontal line. Point G is the center of mass, and the radius of
gyration of the wing about that point is rs. Denote the mass of the wing m. Derive the
equations of motion for the wing, assuming small displacements (and small rotational
displacements). Put the equations in matrix form and check the units and sign of each
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term in your EOM. (Hint: use the displacement of the center of gravity and the rotation
of the wing as generalized coordinates.)

. d .
755 N
G l‘-—‘ F
¢ E

EXERCISE 1.27

Problem 3: Use the power balance method and the stiff spring approximation to find the
equation of motion of the system pictured in Problem 1.16.

Problem 4: Exercise 1.33 from Ginsberg: (be very careful to write a correct expression
for the acceleration of the small block.) Check the unit and sign of each term in your
EOM.

1.33 Determine the equations of motion govern-
ing a pair of generalized coordinates that locate
the position of the cart and the sliding block. Fric-  (Sreasmmasisms
tion is negligible. EXERCISE 1.33

Problem 5: Exercise 1.30 from Ginsbherg: Use the stiff spring approximation and
assume small deflections of both bars. Check the units and sign of each term in your
EOM. Gravity acts downward (same direction as the force, F).

L[4 LA
.I. 1 f |
=
= =
o
1.30 Both bars in the linkage are horizontal, as L .I —
shown, when the system is in static equilibrium.
Determine the linearized equations of motion for F Lf2 L4
this systern. EXERCISE 1.30

Problem 6: Exercise 4.1 in Ginsberg. Solve the eigenvalue problem by hand to get the
natural frequencies and mode shapes. You may check your answers with Matlab.
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2.9.2 problem1

Problem 1: (40 points)

a.) Find the nonlinear equation of motion for the system pictured below. The block
has mass m and the guide can be approximated as frictionless. In the position
shown the spring is unstretched and the angle between the spring and guide bar is
Bq.

b.) Linearize your equation of motion for small deflections from the position shown
(i.e. using a Taylor series expansion on k(x) about x=0). Use a computer to plot
kix) versus the linear approximation for L=1 m. /~1000 N/m and 8y = 45 degrees
for x ranging from -1 m to +1 m.

¢.) Find the equations of motion for the system using the stiff spring approximation
and assuming small displacements from an equilibrium position defined by L=1
m. k=1000 N/m and 8 = 45 degrees. Compare your result with your linearized
result from part (b).

d.) Using m=1, find the response of the nonlinear system (in part a) using ode45 and
plot the displacement of the mass over a few cycles when it is released from rest
at %(0)=0.1 and also at x(0)=0.5 meters. Overlay both curves on the same set of
axes. How does the period of the response compare with the linearized natural
frequency in each case? In what other way(s) does the nonlinearity manifest itself
in the response of the system when x(0)=0.5?

2.9.2.1 part(a)

Let initial length of the spring (un stretched length) be Ly and when the mass m has
moved to the right by an amount x then let the current length be L,,,.

Therefore the stretch in the spring is

A= Loy — Lo

Let the height of the bar by H, where tan 0y = % or H = Ltan 0y

x

— [

Hence from the above diagram we see that Ly = VH? + L2 and L, = \/H? + (L + x),
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therefore

A=+JH2+ (L +x)° - VH2 + 12
2
N = (\/H2+(L+x)2 m)

Now we can derive the equation of motion using energy methods.

Let T be the current kinetic energy in the system, and let V be the current potential
energy. This system is one degree of freedom, since we only need one generalized
coordinate to determine the position of the mass m. This coordinate is x.

T = —mi?
2
1

V = —kA?
2

_L( 2 iz
_Ek( H2+ (L+x) - H2+L2)

Hence the Lagrangian @ is

O=T-V=T-V
1,01 2 2
= mi _Ek H? + (L +x)" — VH?> + L?

Now the equation of motion for coordinate x is (using the standard Lagrangian form)

= Qx

d[oe) o0
dt\ Jdx dx

But Q,, then generalized force, is zero since there is no external force and no damping.
Now we just need to evaluate each part of the above expression to obtain the EOM.

ID ,
E mx
d (D)
at\ox ) =™
and
D 1 1 >
I 8x(2mx Ek(\/ +(L+x -VH2 +L ) ]
-1
——4JH2+@+xf— H2+B){HLHL+@67xL+m
\/H2+(L+x - VH? + 2
(L +x)
VH? + (L + x)?
Hence EOM becomes
a(00) 20 _,
dt\ox | ox
\/Hz +(L+x)° -VH2 +12
(L+x)=

VH? + (L +x)?
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2.9.2.2 part(b)

H2+(L+x)? -VH2+L2
VH2+(L+x)?

series and let higher powers of x go to zero.

For small x we need to expand f(x) = k[ ](L + x) around x = 0 in Taylor

fo//(O)
2!

+ HOT.

f() = f(0) +xf"(0) +

VH? + (L +0)* - VH? + 2
f0)=k (L +0)
VH? + (L +0)?

. VH? + 12 —\/H2+L2)L
VH? + 12
=0

and now for f’(0)
d
£1(0) = —F@)eco
JH? + (L +x)* - VH2 + 12
:k% MR M
[ 2
H2 + (L + x) o
dlVH2+ L+ -VH2Z+ 12| [JH2+ (L +x)? -VHZ+12 | 4
:k(L+x)d— + d—(L+x)
* VH? + (L + x)? H2 + (L +x)° *
VH? + (L +x)* - VH? + 12
= k[ (L + x)| VH? + L2 Lrx + MG !

3
(H2 + L2+ 2Lx + x2)2 VH2 + (L + x)°

Now we evaluateitatx =0

L+0 VH2 + (L +0)* - VH2 + 2
(L+0)| VH?2 + L2

+
\H? + (L + 0)°

f'0) =k

NI &

(H? + L2 +2L0 +0)

v 3 +[VH2+LZ—VH2+L2J
(2 + 12)? H? +1?
1
= k[ L2 (12 + L)
(H2+L2)§

Therefore, EOM of motion becomes (notice we ignored higher order terms, which con-
tains x2 in them)

mi + (£(0) + xf’(0)) = 0
Hence the linearized EOM is

.. I? _
mx + kmx =0
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Or in terms of 6 the EOM can be written as

LZ
mx + k 5 x=0
((Ltan 6p)° +L2)
1

—x
1 + tan? 0,

mx + k

This is the linearized EOM around x = 0. Using numerical values given in the problem
L=1,m=1,k=1000N/m, 6, = g, it becomes

1

X +1000 nzx:O
1+(tanz)
X+500x =0

Therefore thel linearized stiffness is 500x | while the nonlinearized stiffness is

JVH2 + (L+x)* —VHZ + 12
k (L +x)
VH? + (L + x)?
L=1,0=450

\/(tan 2)2 +(1+ x)2 - \/(tan 2)2 +1
\/(tan g)z +(1+ x)2

\/(x +1.0)% + 1.0 —1.4142

= 1000 1 + )

=1000

1+ x)

\/(x +1.0° +1.0

Here is a plot of linearized vs. non-linearized stiffness for x = -1 ---1

Ah*a2+ (L+x)?2 —VH?+ L2
A h?+ (L+x)2
linear[x ] := x 500;

values = {L+1, & + 45Degree, h +» Tan[45 Degree] , k -+ 1000} ;

Inf12}= nonlinear[x ] :=k (L + x)

Plot[{nonlinear([x] /. values, linear[x] /. values}, {x, -1, 1},
PlotStyle » { {Dashed, Thick}, Black}, Frame + True, PlotLegends + {"non-linear", "linear"},
Framelabel »+ {{k[x], Hone}, {x, "linearized wvs. non-linearized"}}, ImageSize » 500,
GridlLines + Antomatic, GridLinesStyle + LightGray]

linzarizad v, non—linssrizad
T T T

[
]

00 |- *
400 -

F
200 | e
- - -+ non-linear

— linear

.....

—200 |-

—400

2.9.2.3 part(c)

The spring extension A is first found by assuming there is a point A at x = 0 and point
B where the spring is attached to the ceiling. Hence
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F”"
Bia

A = (itp — itg)eap
= (J’cf— Oj) . (cos Oof — sin Gof)
= X cos O

Therefore
A = xcos 0

Now we repeat the same calculations but using A = x cos 0, for the spring extension.

1
T = —mi?
2
1
V = ZkA?
2
1 2
= —k(x cos )
2
Hence the Lagrangian @ is
O=T-V

1 2
= mez -~ Ek(x cos 0)

Now the equation of motion for coordinate x is (using the standard Lagrangian form)
d(dD) JD 0
dt\dx | Jx

It is equal to zero above, since there is no generalized force associated with coordinate
x. Now we just need to evaluate each part of the above expression to obtain the EOM.

&—CD = mx
o
d(do)y |
at\ax ) =™
and
a0 J (1 1
e e v 2
P &x(zmx 2k(x cos ) )
= —k(x cos 6y) cos 6,
= —kx cos? 0,
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Hence EOM becomes
d(JD L0 0
dt\ dx dx
m¥ + kx cos?> 0y =0
But cos 6y = L hence
07 VAni2
.. 12
mx + kxm =0

This is the same as the EOM for the linearized case found in part(c)
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2.9.24 part(d)

Now we need to solve numerically the nonlinear EOM found in part(a) which is

JHZ + (L + x)* — VH2 + 2
mx +k
VH? + (L + x)?

usingm =1,k =1000,L = 1,0, = 459, For IC we use x(0) = 0.1,x’(0) = 0 for first case,
and for second case using x(0) = 0.5, x"(0) = 0. This is a plot showing both responses on
same diagram

(L+x)=0

WhA2+ (Lex[t])? - Vh?+12? A
A/ h?+ (Lex[t])?

ic={{x[0] =0.1, x'[0] =0}, {x[0] =0.5, x"[0] =0}}:
valunes = {L+1, h—+ Tan[45Degree] , m -1, k - 1000} ;

eg=mx""[t] +k (L+x[t])

so0l = First@NDSclve[{Evalnate[eq /. values], &£}, x[t], {t, 0, 1}] & /@ic;

Plot[Evalunate[x[t] /. sol], {t, O, 1}, PlotStyle »+ {{Dashed, Thick}, Black}, Frame + True,

PlotLegends + {"x[D]=0.1", "x[0]=0.5"},

Framelabel » {{x[t], Hone}, {"t sec", "numerical found nonlinear solution for 2 initial conditions"}},

ImageSize »+ 600, GridlLines + Automatic, GridLinesStyle + LightGray]

numarical found nonlinzsr solution f©or 1 initial conditions

04

T T T T T T
2k 4
~ Pt .- .. o
s . - - . . i 4
P . . . -
5 Fl £l
= r} v v . - .
. - . . .
hd # . . gF o ..
LR L " AR g1 P

0.0

—04

L I I L 1 I
0.0 0.1 04 0.5 0.2

The period for the response for case of IC given by x(0) = 0.5 is seen to be about 0.375
seconds and for the case x(0) = 0.1 it is 0.275 sec.

The linearized EOM is ¥ + 500x = 0 and hence w;; = 500 or w,, = V500 = 22.361 rad/sec,

hence T = 2% = 2™ | 0.281 sec |.

w, 22361

We notice this agrees well with the period of the response of the nonlinear equation for
only the case x = 0.1.This is because x = 0.1 is very close to x = 0 the point at which
the linearization happened. Therefore, the linearized EOM gave an answer of 0.281 sec
that is very close the more exact value of 0.275 seconds. But when the initial conditions
changed to x(0) = 0.5, then T found from linearized EOM does not agree with the exact
value of 0.375 seconds.

This is because x = 0.5 is far away from the point x = 0 where the linearized was done.
Hence the linearized EOM can be used for only initial conditions that are close to the
point where the linearization was done.

Additionally, the nonlinearity manifests itself in the response of the system by noticing
that the frequency of the free vibration response has actually changed depending on
initial conditions. In a linear system, only the phase and amplitude of the free vibration
response will change as initial conditions is changed, while the natural frequency of
vibrations does not change.
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2.9.3 problem 2

Problem 2: Exercise 1.27 from Ginsberg.

A standard model for a wing has a translational spring k, and a torsional spring kr
representing the elastic rigidity. Point E represents the elastic center because static
application of a vertical force at that point results in upward displacement without an
associated rotation. The design of the wing is such that horizontal movement of point E
is negligible. The lift force L acts at point P. which is called the center of pressure. The
lift force may be treated as known. When the wing is in ifs static equilibrium position,
points G. E and P form a horizontal line. Point G is the cenfer of mass, and the radius of
gyration of the wing about that point is 7. Denote the mass of the wing m. Derive the
equations of motion for the wing. assuming small displacements (and small rotational
displacements). Put the equations in matrix form and check the units and sign of each

term in your EOM. (Hint: use the displacement of the center of gravity and the rotation
of the wing as generalized coordinates.)

TLICN

EXERCISE 1.27

Use y and 0 as generalized coordinates as shown in this diagram in the positive direction

Using Lagrangian method, we start by finding the kinetic energy of the system, then
the potential energy.
1 .1 .
T = Emyz + E(erG)GZ
For the potential energy, there will be potential energy due to k, spring extension and

due to ky spring angle of rotation in system. From the diagram above, we see that, for

small angle 6

1 1
_ 2 2
V= EkyA + Ek'p@

To find A we use the stiff spring approximation. Let the point the spring is attached at
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the top be B, then
A = (g — iig)egsp
= ((10-9)-0)- ()
=(10-9)-(4)
= (- 10)
Hence

A=y-10
Therefore, the potential energy now can be found to be

1 1
V= Eky(y - 16)2 + EkTQZ

Therefore, the Lagrangian @ is

O=T-V
= %m]'/z + %(mrz )62 - %ky(y - 19)2 - %kTez

We now find the equations for each coordinate. For y

0 _
gy Y

100 _

ity Y
oD
i ~k,(y - 10)

Hence EOM is

a0 oo
dt dy dy Y

mij + ky(y - 16) = Qy

We just need to find Q, the generalized force in the y direction. Using virtual work,
we make small virtual displacement 6y in positive y direction while fixing all other
generalized coordinates from moving (in this case 0) and then find out the work done
by external forces. In this case, there is only one external force which is L. Hence

SW = Loy

Therefore Q, = L since that is the force that is multiplied by 6y. Hence EOM for y is now
found

my+ky(y—19) =L

verification: As L increases, then we see that y”’ gets larger. This makes sense since y is
upwards acceleration, so wing accelerates in the same direction.

Now we find EOM for 0
0 5
20 =mrg0
d oo 5
720 =mrg0
d
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Therefore the EOM is

dJdd Jo
e = o= O

itod 90
mrz0 - k,l(y - 10) + k6 = Qg
mrg0 —kyly + k,20 + k70 = Qq

mr%0 —k,ly + (kT + kylz)G = Qy

We just need to find Qg the generalized force in the O direction. Using virtual work, we
make small virtual displacement 60 in positive 0 direction (i.e. anticlock wise) while
fixing all other generalized coordinates from moving (in this case y) and then find out
the work done by external forces. In this case, there is only one external force which is L.
When we make 60 rotation in the positive 0 direction, the displacement where the force
L acts is (I + 5)00 for small angle. But this displacement is in the downward direction,
hence it is negative, since we are using y as positive upwards. Hence

SW = —L(I +5)50

Therefore Qg = —L(I + s) since that is the force that is multiplied by 66. Hence EOM for
0 is now found )
mrs0 - k,ly + (kg +k,12)0 = -L(l +s)

Verification: As L gets larger, then 0 gets negative (since L has negative sign). This makes
sense, since as L gets larger, the rotation as shown in the positive direction will change
sign and the wing will now swing the opposite direction (i.e. anticlockwise).

Now we can make the matrix of EOM

MX" +kX =Q
m 0 |y . ky =k (y [ L
0 mg)\6) |-k, kr+kP)6) (-LU+5)

Notice that for [k] the matrix is symmetric as expected, and also positive on the diagonal
as expected. The mass matrix [m] is symmetric and positive definite as well.
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294 problem3

1.16 The bar executes small rotations in the verti- )
cal plane relative to the static equilibrium position
depicted in the sketch. Let the rotation of the bar be
the generalized coordinate. Determine the damping
coefficient C,;.

EXERCISE 1.16

Problem 3: Use the power balance method and the stiff spring approximation to find the
equation of motion of the system pictured in Problem 1,16,

Let 0 be the small angle of rotation that the rod rotates by in the anti clockwise direction.
Let the point the spring is fixed be B and the moving point where the spring is attached
to the rod be A.To find spring extension A we use the stiff spring approximation. Let
the angle a = 53.13%, hence

A= (g —1iig)-eyp

= 29 ;-0 -(Cosai+sinaf)
3
— L@' ;
= 30sina
Hence

A LG'
= —0Osina
305

Using Lagrangian method, we start by finding the kinetic energy of the system, then
the potential energy. 0 is the only generalized coordinate. Assume bar has mass m and

mL
hence I = T

1.
T = Z16?
2

For the potential energy, there will be potential energy due to k spring extension. From
the diagram above, we see that

V—lkLG' 2
= 5k| 30sina
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Therefore, the Lagrangian @ is

O=T-V
1. 1. 12
= 5162 - Ekgez sinza

Now we find EOM for 6

EC 9
Therefore the EOM is
dodd IO

too oo  ~°
. kL2sin?
I@+——%lﬁ9=Q9

We now need to find the generalized force due to virtual 60 rotation using the virtual
work method. There are 2 external forces, the damping force which will have negative
sign since it takes energy away from the system, and the external force F which will add
energy hence will have positive sign.

We start by making 660 and then find the work done by these 2 forces.

Work done by F is FLS0 since the displacement is L60 for small angle. Now the work
done by damping is(c%@)%é@ hence total work is

OW = FL6O LQ L(SG
= —|C— —_
3 /3

L2
= (FL - C?Q)(‘i@

Notice that work due to damping was added with negative sign since damping removes
energy from the system.

2,
Hence Qg = (FL - 0%8) therefore the EOM is

. kILZ2sin?a 12 .
1064+ ——0=FL-c—6
9 9
.. 2. kIL?sin®a
16+C?6+TQ:PL

12
Hence the damping coefficient is ¢
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2.9.5 problem 4

Problem 4: Exercise 1.33 from Ginsberg: (be very careful to write a correct expression
for the acceleration of the small block.) Check the unit and sign of each term in your
EOM.

1.33 Determine the equations of motion govern-
ing a pair of generalized coordinates that locate
the position of the cart and the sliding block. Fric-  |ammarms
tion is neghgible. EXERCISE 1.33

Let x; and x; be the generalized coordinates as shown in this diagram

N

2

—»X1

Let mass of cart be m; and mass of small sliding block be m, (at the end, they will be
replaced by values given). Let k for spring attached to wall be k; and k for spring for
small block be k,.We start by finding the kinetic energy of the system

1 5,1
T:Em1x1+5mzv

2

where v is the velocity of the block. To find this v it is easier to resolve components on
the x and y direction. Therefore we find that

U = X sin 0] + (%, cos O + X1)i

Hence
2 . 2 . 2 \2
|v| = (X, sin O)” + (&, cos O + Xq)
= (x% sin? 9) + (x% cos? O + &3 + 2k, ¥ cos 9)
2 26 26 .2 Yitnd 0
= ¥5(sin” 0 + cos” 0) + &7 + 2X,%7 cos

= X5 + &2 + 24,X; cos 0

Therefore
1 ) 1 ) .2 L.
T = Emlxl + Emz(xz + X7 + 2%Xq cos 8)
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Now we find the potential energy.

1 1
V= Eklx% + Ekzx% — myg(x, sin 0)

There are no external forces, hence generalized forces Q,,, Qy, are zero. The Lagrangian
Dis
o=T-V
1 1

1
= Emlx% + Emz(x% + .X% + 25(2.5(1 CcoSs 6) - Eklx% - Ekzx% + ng(XZ sin 6)

Now we find EOM for x; is

P . , ,

—— = M1Xq + MyX1 + MyrXy COS 7]

8x1
d oo N " N
——— = my X1 + myX; + myi, cos O
dt (9x1

= (m1 + mz)f‘X.fl + mz.;X'fz cos 6

dP

22 - kx

9361 141

Therefore the EOM for x; is

(mq + my)Xy + myXycos O + kixg =0

Now we replace the actual values for my = 2m, m, = m, k; = 3k hence

3mx{ + mX, cos 0 + 3kx; =0

Now we find EOM for x; is

oD , )
&_jcz = my(Xy + X1 cos O)

d JD N

Eo—)_xl = mz(xz + X1 COS 6)

= 1My cos OX1 + myX,

D ' '
8_x2 = —kpxy + mpgsin O

Therefore the EOM for x, is

dt 8x2 8x2 B
my cos OX1 + my¥y + kpxy —mpgsin @ = 0

Now we replace the actual values for my = 2m,m, = m, k, = k hence

mcos 0¥, + mX, + kx, = mygsin 0

Now we can make the matrix of EOM

MX” +kX = Q

3m  mcos@ | ¥ . 3k Offx1) 0
mcos 0 m Xy 0 kllx, mpgsin 0
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Hence

3  cosB| X 3 0|fx 0
m +k = _
cos@ 1 i 0 1)lx; myg sin 0

Notice that there zeros now off diagonal in the [K] matrix, which means the springs
are not coupled. (which is expected, as motion of one is not affected by the other). But
mass matrix [m] has non-zeros off the diagonal. So the masses are coupled. i.e. EOM
is coupled. This means we can’t solve on EOM on its own and both have to be solved
simultaneously.

2.9.6 problem 5

Problem 5: Exercise 1.30 from Ginsberg: Use the stiff spring approximation and
assume small deflections of both bars. Check the units and sign of each term in your
EOM. Gravity acts downward (same direction as the force. F).

. 3L14 . L4,

l o | F

| O ]
1.30 Both bars in the linkage are horizontal, as ' IT .
shown, when the system is in static equilibrinm.
Determine the linearized equations of motion for F Lf L4
this gystem. EXERCISE 1.30

There are 2 degrees of freedom, 0; and 0, as shown in this diagram, using anticlock
wise rotation as positive

\ sLiA--" | L4
i - -

I 0. M l<

—
-
—
ﬁl
L

The Lagrangian ® = T — V where

1 . 1 .
T= E119-3- +=1,03

2
m1L2 m2L2 L 2 . .
Where I; = —= and I, = —= + my| ;| (using parallel axis theorem). Hence I, =
m2L2 Lz _ 2
12 Tyg = gl

Now we find the potential energy, assuming springs remain straight (stiff spring as-
sumption) and assuming small angles

A 2 Ay 2
—N— —N—
1 3L 3L 1 L L L
V= Ekl 161 + Z@z + Ekz L61 + 562 + m1g§61 - ngzez
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Hence
O=T-V
1 1 3L 3L \* 1 L\ L L
= (5116% + 5126%) ( kl( 61 + 1 62) + Ekz(Lel + 562) + mlgzﬁl - ngzez
Now we find EOM for 6,
70 1
20, 1
d dO g
dtag, !

L) 3L 3L 3L L L
3 = —kl(ZHZ + 191)(1) - k2(§92 + Lel)(L) —mgy

3L (3L 3L L L
= __kl( 92 + — 61) - kzL( 92 + Lgl) - mlgE

Therefore the EOM for 60, is
d od IO
290 90 ~qq,
90, 90,

3L (3L 3L L L

1161 + Ikl( 1 92 + 291) + kzL(ZQZ + LQl) + mlgi =0

The generalized force is zero, since there is no direct external force acting on top rod.

Hence EOM for 6 is from above

mL?, 3L\ 3L\ 12 L
13 61 + Gl(kl( ) + kszJ + 62(k1(Z) + k2 5 ) = —mlgE

Now we find EOM for 0,

oD
=16
20, 2
400 _
dtdg, *

D 3L 3L 3L L L
(9_62 = —kl(zez + 191)( 1 ) kz( 62 + L@l)(z) + ngZ

Therefore the EOM for 6, is

d od JD _0
dtod, 90, <%
3L 3L 3L L L L

Now Qg,is found by virtual work. Making a virtual displacement 60, while fixing 6,
and finding the work done by all external forces.

L
(SW = PE(SQZ

Hence Qg, = F g with positive sign since it add energy to the system. Hence EOM for 0,

is
2 2
7 B 3L 12 3L L L L
@Lzmzez + 91(k1(z) +ho— J + Qz[kl( ) + kZ(E) ] =mgy +F5
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Now we can make the matrix of EOM

MX" +kX=Q
2
12 ) I | kI2 3L L L
m1T 0 [61]+ kigg + kel k1(4) k25 [61]_ —migs
7 a) 2 ) 2 2llg, | L, L
0 SLPm; % kl(%) + kz% kl(%) + kz(é) 2 M8y +Fy
The matrix [k] is coupled but the mass matrix [m] is not.
2.9.7 problem 6
4 0 200 200
The inertia and stiffness matrices for a system are [M] = kg, [K] = N/m.
0 2 200 800

determine the corresponding natural frequencies and modes of free vibration.

[1K] - w?[M] [{@} = {0}

Solving for eigenvalues

200 200 40
det - w? =0
200 800 0 2
200 — 402 200 |
det
200 800 - 2a?]

(200 - 42)(800 - 2w?) - 200% = 0
8w* — 3600w? + 120000 = 0

=0

Hence, taking the positive square root only we find

w1 = 20.341 rad/sec
w, = 6.0211 rad/sec

o=

When | v = w;

[200 — 402 200

200 800 - 2w?

Let @q; be the arbitrary value 1 hence

1 0
o)L
200 — 4w? +200d,; =0
—200 + 4w?  —200 + 4(20.341)°

Oo = _ = 7.2751
21 200 200

200 - 4w? 200

X X

Hence the first mode associated with w = 20.341 rad/sec is

1
7.2751
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200 —4w3 200 Dy, 0
200 800 -2w3||Px2 0

Let @y, be the arbitrary value 1 hence

200 — 4w3 200(| 1 0
X x || P22 X

200 — 4w3 + 200dD,, = 0

~200 + 403 —200 + 4(6.0211)
Gy = 00 500 = -0.27493

When | w = w,

Hence the first mode associated with w = 6.0211 rad/sec is

1
—-0.27493

Summary
w,, (rad/sec) | mode shape
1

6.0211

-0.27493

1

20.341

7.2751

Verification using Matlab:

EDU>> M=[4 0;0 2]; K=[200 200;200 800];
EDU>> [phi,omegal=eig(K,M);
EDU>> sqrt(omega)

6.0211 0
0  20.3407
EDU>> phi(:,1)/abs(phi(1,1))

-1.0000
0.2749

EDU>> phi(:,2)/abs(phi(1,2))

1.0000
7.2749

Which matches the result derived. One mode shape has both displacement in phase,
and the other mode shape shows the displacements to be out of phase.
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2.9.8 Key solution for HW 8

Homework #8
EMA 545, Spring 2013

Problem 1: (40 points)

a.) Find the nonlinear equation of motion for the system pictured below. The block
has mass m and the guide can be approximated as frictionless. In the position
shown the spring is unstretched and the angle between the spring and guide bar is
Bo.

Linearize your equation of motion for small deflections from the position shown
(i.e. using a Taylor series expansion on k(x) about x=0). Use a computer to plot
k(x) versus the linear approximation for L=1 m, k=1000 N/m and 6, = 45 degrees
for x ranging from -1 m to +1 m.

c.) Find the equations of motion for the system using the stiff spring approximation
and assuming small displacements from an equilibrium position defined by L=1
m, k=1000 N/m and 6, = 45 degrees. Compare your result with your linearized
result from part (b).

Using m=1, find the response of the nonlinear system (in part a) using ode45 and
plot the displacement of the mass over a few cycles when it is released from rest
at x(0)=0.1 and also at x(0)=0.5 meters. Overlay both curves on the same set of
axes. How does the period of the response compare with the linearized natural
frequency in each case? In what other way(s) does the nonlinearity manifest itself
in the response of the system when x(0)=0.5?

b.

—

d.

—

o, L

-]

Problem 2: Exercise 1.27 from Ginsberg.

A standard model for a wing has a translational spring ky and a torsional spring kr
representing the elastic rigidity. Point E represents the elastic center because static
application of a vertical force at that point results in upward displacement without an
associated rotation. The design of the wing is such that horizontal movement of point E
is negligible. The lift force L acts at point P, which is called the center of pressure. The
lift force may be treated as known. When the wing is in its static equilibrium position,
points G, E and P form a horizontal line. Point G is the center of mass, and the radius of
gyration of the wing about that point is rs. Denote the mass of the wing m. Derive the
equations of motion for the wing, assuming small displacements (and small rotational
displacements). Put the equations in matrix form and check the units and sign of each
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term in your EOM. (Hint: use the displacement of the center of gravity and the rotation
of the wing as generalized coordinates.)

. d .
755 N
G l‘-—‘ F
¢ E

EXERCISE 1.27

Problem 3: Use the power balance method and the stiff spring approximation to find the
equation of motion of the system pictured in Problem 1.16.

Problem 4: Exercise 1.33 from Ginsberg: (be very careful to write a correct expression
for the acceleration of the small block.) Check the unit and sign of each term in your
EOM.

1.33 Determine the equations of motion govern-
ing a pair of generalized coordinates that locate
the position of the cart and the sliding block. Fric-  (Sreasmmasisms
tion is negligible. EXERCISE 1.33

Problem 5: Exercise 1.30 from Ginsbherg: Use the stiff spring approximation and
assume small deflections of both bars. Check the units and sign of each term in your
EOM. Gravity acts downward (same direction as the force, F).

L[4 LA
.I. 1 f |
=
= =
o
1.30 Both bars in the linkage are horizontal, as L .I —
shown, when the system is in static equilibrium.
Determine the linearized equations of motion for F Lf2 L4
this systern. EXERCISE 1.30

Problem 6: Exercise 4.1 in Ginsberg. Solve the eigenvalue problem by hand to get the
natural frequencies and mode shapes. You may check your answers with Matlab.
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% Part (b)
% Plot nonlinear k(x) for large deformations of spring-mass system.
% M.S. Allen, Spring 2011, EMA 545

k=1000; %N/m

L =1; %m

theta = 45*pi/180; % rad
xs = [-1:0.01:1]; % m

h = L*tan(theta);

kx = k*((h"2+(L+xs) ."2) . ~N(1/2)-
sqrt(h"2+L"2)) . *((L+xs) ./ (h"2+(L+xs) ."2) . ~(1/2));

klin = k*(Lr2/(h2+L72));

figure(l)

plot(xs,kx,xs,klin*xs,"-."); set(get(gca, “Children®), "LineWidth",2);
grid on;

xlabel ("Disp x (m)"); ylabel("Spring Force (N)");

title("Spring Force-Displacement Curve®);
legend("Nonlinear”,"Linear™);

Spring Force-Displacement Curve
800 ‘ ‘ ‘ ‘

Nonlinear
600 e Linear

400

200

Spring Force (N)

-200

-400 - BT

-600
Disp x (m)

% Part (d)

% Find response to a small disturbance.
m=1;

wn_lin = sgrt(klin/m)
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eom = @(t,x) [X(2)+0*t; -(L/m)*(k*((h"2+(L+x(1))-*2) .~ (1/2)-
sqre(h"2+L1°2)) . > ((L+x (1)) -/ (h"2+(L+x(1)) . "~2) .~ (1/2)))]

[tsl,yl]=0de45(eom,[0,1],[0-1; OD);
[ts2,y2]=0de45(eom,[0,1],[0.5; O0D);

figure(2)

plot(tsl,yl(:,1),ts2,y2(:,1)); hold on; grid on;
xlabel("Time (s)"); ylabel("Response (m)");
title("Response of Nonlinear System®);

Response of Nonlinear System

Response (m)

Tlmé (s)

The period of the nonlinear response in each case is given below (found using
ginput on the plot). The linearized natural frequency is 22.36 rad/s and the corresponding
period is 0.281 seconds.

Initial
Displacement Period (s)
Xo=0.1 0.2823
X0=0.5 0.3698
X0=0.53 0.5311

The behavior of the system is quite peculiar. The period becomes longer
(frequency lower) as the system approaches the region where the stiffness vanishes. As
shown, with a slightly larger initial displacement of 0.53, the mass almost comes to rest
as the mass approaches x=-1, which is the other equilibrium position. Incidentally, the
body panels of a hypersonic aircraft, which I am studying as part of an Air Force grant,
can behave very similarly. They buckle due to thermal expansion and then as they
vibrate they may jump between two equilibria.
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2.10.1 problem description

Homework #9
EMA 545, Spring 2013

For the following problems, you may have the equations of motion for some of
these systems in your past homework assignments or in the solutions to those that were
posted online, so you may use those if you wish.

For all of these problems you may use Matlab or some other package to find the
natural frequencies and mode vectors and to mass normalize the mode vectors (if
needed).

1.) Problem 4.3 in Ginsberg. Sketch the deformation of the system when it moves in
each of the modes. (Notice that you can pull out factors such as k and m so that only
numbers remain in the mass and stiffness matrices. Then it is possible to check your
answers using Matlab.)

2.) Problem 4.7 as given in the text. You may use the following equations of motion:
%6, |#-% F |[a)_[o
P +mgL 0 =
AL 5 -}l

3.) Problem 4.11 as given in the text. Hint: normal modes = mass normalized modes

mL?

4.) Problem 4.29 as given in the text. Also, plot the motion of the automobile as a
function of time. Is the response a pure-sinusoid? Why or why not? Note: The answer
provided by the book is incorrect. The correct answer is:

yi(t) = 0.16c0s(1.5t") + 0.84cos(2.0t”)

ya(t) = 0.45c0s(1.5t) — 0.45c0s(2.0t")
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2.10.2 problem1

After solving problem 4.3 in text, Sketch the deformation of the system when it moves
in each of the modes.

4.3 Determine the natural frequencies and modes
of free vibration for this system of bars and
springs for the case where m;=m, m, =2m,
k, = k, and k, = k/2, where m and k are basic units
of mass and stiffness.

|_. - ﬁ L/4

o

|
]
P I_ L2 LIH

There are 2 degrees of freedom, 6; and 0, as shown in this diagram, using anticlock
wise rotation as positive

We solved this problem in HW8, using classical Lagrangian method. This problem will
now be solved using power balance method. The static equilibrium position must be
chosen so that all generalized coordinates have value zero. Hence, using the above
diagram as the static equilibrium, we take 0; = 0, = 0 in this position.

Now, as in Lagrangian method, we always start by finding kinetic energy T

1, 1.
T= 51191 + 51292

2
Where | [ = — |and I, = T2 mz(i) (using parallel axis theorem). Hence I, =

mpL? 12 7

12 TM275 = 13

Now we compare the above expression to the quadratic form
1 . . .
T = E(Man + M2262 + 2M126162)

209



2.10. HW9 CHAPTER 2. HW’S

Hence we see that My, = [1, My, = I,,M, = My = 0, therefore the mass matrix is

I, 0
0 I,

We now find the potential energy due to springs. For this, we need to write down
the relative displacement between end points of each spring. Let A; be the relative
displacement in the first spring k; and let A, be the relative displacement in the second
spring k,. Hence (and assuming springs remain straight, since we are assuming very
stiff springs and small angles) then

3L 3L
A =20+
1 1 91 + 1 92
L
Az = L@l + —62
2
Then
1 1
Vspring = EklAzl + EklAZZ
2 2
1. (3L 3L 1 L
= Ekl(zel + Zez) + Ekz(Lel + 562)

1. (9 9 9 1 1
= Ekl( 6L292 + 8L28162 + EL292) + 2k2(L262 +120,0, + L292)

9 1 9 1 9 1

3—2L262k1 + 2L262k2 + 3—2L282k1 + 8L262k2 + BL 0162](1 + 2L 9162](2
9 9 1 9 1

(32L2k1 + szz)ez (32L2k1 + ngkz)Q% + (Eszl + Eszz)ngz

Now we compare the above to quadratic form

1 2 2
Vpring = §(K1191 + K05 + 2K1219192)
We see that
9
Kll = 1—L2k1 + L2k2
9 2
KZZZEL k1+ Lk2
9 L2
Kip = —L2%k; + —k
2= + 52

Now we need to find V1, Taking the static equilibrium position as the datum, then
upward displacement of center of gravity will be positive and downward displacement
is negative. This means the left bar will add positive potential energy due to gravity and
the right bar will add negative potential energy, hence

L L
V= mlgE sin 0 — ngZ sin 0,

Now we need to find the components of the gravity potential energy stiffness matrix.
Notice that each term is evaluated at static equilibrium

% 8V§ L 0 0
=|=— = |-m1g= sin =
811 962 Jo,=0 185 1 o
0,=0 =
V2 L
V,, =|—= = |-mg—=sin0 =0
522 89% 01=0 ( 1g2 2)@ =0
6,=0 2
A%
Voo, = =0
312 881&62 61:0
6,=0
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Hence, no contribution from gravity is added to the stiffness matrix. All contribution
comes from the springs potential energy. Therefore, the stiffness matrix is

942 2 942 2
16Lk1+Lk2 16Lk1+2k2

[K]

Oy LB 972 152
16Lk1+2k2 16Lk1+4Lk2
Now since there is no damping, then Py, = 0. To find P;, we need to find
Piy = Q1601 + Q20,

The only external force is F which generates a torque F %82, hence by comparing to the
above

P —FLQ
in — 7 2
L
= F—
Q; = F5

Now we can make the matrix of EOM

MX” +kX = Q

L o)é, %szl + L%k, %szl + L;kz 6, 0
N -

[0 12] 02 212k, + L;kz 212k + 112k |\02) ;

LZ% 0 (g, . Zki+ky ki + 5k (o, ) oL

0 émz 0, 19_6k1 + %kz %Iﬁ + ikz 02) |\F3

Now we can solve the problem given.

When my = m,my, =2m,ky =k, ky = g we obtain

1 17 13
= 0o — —|le 0
3 1 16 16 1
mlL2 A + kL2 N [ ]: L
0 % 62 T 1 92 PE
6 16

To find modes of free vibration, let the RHS {0} then we write

1K1 - w22 1M1 (@) = (0}

Let A = a)z%, hence
[[K] = A[M]]{®} = {0}

Solving for eigenvalues

17

16
13

16

det

17

16
det

13
16
11
16

13
16

1
3

11

16

13
16
7

24" |

=0

9.7222 x 107212 — 0.53906 + 7.0313 x 102 =0
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Hence, taking the positive square root only we find
Ay =0.13366
Ay = 54110

When A, = 013366

[[k] = A [M]]{@}, = {0}

17

16 16

Let @y, be the arbitrary value 1 hence

17 1 13
3 % |[1] o
B O 750\ @ X

16 16 24
17 1/\ N 13@ _0
16 31716 7
o 16 1/\ 17\ 16
27 13\3" " 16) " 13\3
Hence the first mode associated with A; = 0.13366 is
1
-1.253
When A, = 54110
[[k] - A, [M]]{®}, = {0}

17

16 16 24

Let @y, be the arbitrary value 1 hence

17 1 13
6 32 % |[1] o
Bou_ 7, D, |x

16 16 2472
17 1 13
E—§A2+16CD22:0
Dy = 16(1/\2 17) 16
1313 16

Hence the second mode associated with A, = 5.411 is

o

Summary

1 13
6 3 16 Dy |
= u_ _/\1 Dy

13\3

)

( (0.137) - 1—2) = -1.253

1 13
632 1% [[Pr] o
= 07, P2 0

( (5.411) - —Z) =0.912

w (rad/sec)

mode shape

A= a)z% =S w= \/g 10137 = 0.366\/5

)

A= wz% == \/g \5.411 = 2.326\/5

o
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2.10.2.1 verification using Matlab

EDU>> M=[1/3 0;0 7/24]; K=[17/16 13/16;13/16 11/16];
EDU>> [phi,omegal=eig(K,M);
EDU>> sqrt(omega)

0.3656 0
0 2.3262

EDU>> phi(:,1)/abs(phi(1,1))

1.0000
-1.2529

EDU>> phi(:,2)/abs(phi(1,2))

-1.0000
-0.9122

2.10.2.2 Sketch of each mode

1
{O 912} means that 6; and 6, are in phase, and for each 1 unit rotation of 6 there will

1
be 0.912 units of rotation of 6,, while 5 means that 0, and 0, are out of phase,

and for each 1 unit rotation of 8, there will be 1.253 units of rotation of 6, but in the
opposite direction. This is a sketch of both modes

0,

1
0.91229

B & ()
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2.10.3 problem 2

:.7. The linkage shown consists of two rigid bars
wz;vmg Ie{'lgth L a}nd mass m. The torsional springs
ose stiffness js BmgL(B is a nondimensional’

mine the natural frequencies
> th when B =2, Explaj
the significance of the result of the second casexplalIl

2.) Problem 4.7 as given in the text. You may use the following equations of motion:

ot Ao

Using power balance method, we start by finding the kinetic energy.
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_ 1 2
I, = 12m|_

1 2
|1—3mL

Since the top bar does not have a point that is fixed in inertial space as the lower bar does,
then we take its moment of inertia around its center of mass, and add a translational
kinetic energy due to the motion of its center of mass in space. For the lower bar, since it
has a point that is fixed in space, then we take the moment of inertia around that point,
and we do not need to account for translational kinetic energy for the lower bar. To find
the speed of the center of mass of the top bar, we can either use its coordinates system
x, y differentiate these w.r.t time, or we can use the angular motion of the base of the
second bar and add it to the speed of the center of mass of the second bar relative to the
base. This is what will be done next:

———————— >L0,cos;

____________ _>|_91 c0s6,
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Therefore, the speed components of the center of mass of the top bar is

L. )
Uy = 562 cos 8, + LO; cos 01

L. )
0, = —562 sin 62 - L@l sin 61

Yy

So the velocity of the center of mass is

Veg. = V% + 05

Now that we have the translation velocity of the top bar, and we know its moment of
inertia around its c.g. then we have all the terms needed to obtain the kinetic energy.

1,01 1,
T:51191+§292+§mvcg_

Again, the important thing is to note that I; is taken around the base of lower rod while
I, is taken around the center of mass of the top rod. Hence

IR T (et + )
_Iml? g, Aml?, 1

23 1721272 2
1mL2 1

2 N2
= — 0+ —B+=
Or+ 533 %2+ 3m

T

L 2 (L 2
m((EQZ cos 0, + LB cos 61) + (—592 sin 6, — LO; sin 61) J

12 . . . L2, . .
((ZQ% cos? 0, + L2602 cos? 0, + L?0,0; cos 0, cos 61) + (195 sin? 0, + L2602 sin? 0, + [20,0, sin 0, sin 0

Simplifying the last term, and using cos? 0; + sin® sin 6; = 1 we obtain

W 7 O B VN o
T = 5791 + 5662 + Em 162 + L°01 + L“0,0,(cos 0, cos O, + sin O, sin 0,)

To compare with the quadratic form, we collect all terms as follows

H(1mL2 1 L(1mL? 1 . (1
T = 9%(—m— + —Lzm) + Qg(in;_z + gmLz) + Qzel(EmLz(cos 6, cos 61 + sin O, sin 91))

Using cos 0, cos 07 + sin 0, sin 01 = cos(0, — 0;) the above becomes
o4 o of1l 5 A
T = 61 gﬂ”lL + 62 gmL + 6261 EmL COS(@Z - 91)
We now compare the above to

(S
T = EMHQl + EMZZQZ + M126261

Therefore
M 4 12
=-m
11 3
M 1 12
=-m
22 3

1 2
M12 = M21 = EWZL COS(@Z - 91)
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I am not sure how to get the same answer given for the mass matrix. Even if I assume
1
that 0, — 0, is very small, hence My, = EmL2 then the mass matrix is

[M] = mL?

NI~ QI
@RIl= N

Now we find the V,,;,, the potential energy due to springs.

1 , 1 )
Vs EﬁmgLel + EﬁmgL(Qz - 0y)

pring =
1 1
= 5pmgLO% + E5mgL(<9§ + 6% - 20,0,)

= 6%(,8mgL) + 95(%ﬁmgL) + 0,0, (—ﬁmgL)

Comparing to quadratic form

e o 1o o
Vipring = 5K1101 + 5K1101 + K120, 0,
Then
Kll = ZﬁmgL
Ky = pmglL

Kip = Ky = —-pmgL

Hence the stiffness matrix due to springs only is

We know need to find the gravity contribution to stiffness. We start by finding the Vit
We take the datum as the horizontal line at the bottom the lower bar.

L L
V ravity = mgz cos 01 + mg|L cos 0 + 3 cos 0,

Hence
22 Vg

L
= &2—91 = —ng cos 61 —mg(L cos 0;)

Vi

evaluate at 0, = 0 gives

and
9V, L
V22 = 82—62 = —mg ECOS 62

evaluate at 0, = 0 gives

V = -mgz
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and

2
2V,

Vip=—=3-=0
127 96,00,

Hence the stiffness matrix due to gravity is

[K] = mgL

Combine the above with the stiffness matrix due to springs we obtain

3
-5 0 [Zﬁ —ﬁ]

A mgL
0 - B B
3
p-5 B
1
+ b3

[K] = mgL

= mgL

There is no Py, and no Py, hence the equations of motion are

4 1), . 3
|3 26 N CA
mL (e + mgL e = 0
2 3)\% - B3\
For| =4
41 13
3 3|6 > 4o 0
mr2l> 2| +mgL 2 =
1 1 62 -4 Z 62 0
2 3 2

To find modes of free vibration, we write

[1K] - w?[M] [{@} = {0}

Solving for eigenvalues

B, 41
2 s o3 2
det|mgL - wmL L =0

-4 3 2 3)
13 4 1)]
=2 1 2 Z
L3 2
det 2 —C()zg1 1 :0
-4 3 2 3]
Let wzg = 1, hence
13 4 1)
=2 4 2
3 2
det|| ° -1 =0
4 Z 11
2 3)
13 4 1 ]
- -3 —4-351
2 3 2
det X o =0
—4-3n 3730
7 2 65 27 _
367 T 61T
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Hence n = 55.084, 1 = 0.63023

When | 1 = 55.084

-66.945 -31.542|[®11| [0
31542 14861 ||y [ o
[—66.945 ~31.542

Let @q; be the arbitrary value 1 hence
1 0
31542 -14.861||Px | |x
—66.945 — 31.5420,; =0
66.945

- = 01224
217 31542

Hence the first mode associated with 1 = 55.084 is

When | 7 = 0.63023

Let @y, be the arbitrary value 1 hence

I 56597 —4.3151

1 0
~43151 32899 ||®pn[  |x

5.6597 — 4.3151@y, = 0
—5.6597

P2 = = 3E

=1.3116

Hence the second mode associated with 7 = 0.630 is

1
1.3116
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Summary, a)zg =1 hence w = \/ﬁ \/%

w,, (rad/sec)

mode shape

8
742JE

1
—-2.1224

o

8
oy%JE

1.3116

CHAPTER 2. HW’S

For

p=2

6

[..

mlL>2

0,

NI—m QI

]+mgL

Wik NI

To find modes of free vibration, we write

[[K] - w?[M] i@} = {0}

Solving for eigenvalues

5 4 1)]
2 2 3 2
det|mgL — w?ml? L=
2 3 2 3)
5 4 1)]
A ] >z
Ll3 2
det 2 —wz—l . =0
2 3 2 3)
Let a)zg = 1, hence
5 4 1)
2 2 2
2 3 2
det -1 =0
2 11
2 3)
5 1 ]
SN —2-57
2 3 2
det =0
o1, 31
2 3 377_
7 , 29 1
367 61 4

Hence n = 24.909,n = —5.162 X 1072

Since wzg = 1 hence when 1 = -5.162 x 1072 then w = /7] \/% which means there
will a complex number for w which is not possible as the frequency must be positive.

This means such a| system is not stable |.It is not possible to obtain the shape functions

when w is complex.
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2.10.4 Problem 3

1
problem 4.11 in text: the mass and stiffness matrices of a system are [M] = [1 3}kg,

300
[K] = ) 0 kN/m, determine the system natural frequencies and normal vibration

modes. (hint, normal modes means mass normalized modes).
Answer:

To find modes of free vibration, we write
[1K] - w?[M] [fv} = (0}
Solving for eigenvalues

300 x10° 1000
1000 200 x10°

det

4 1]
- w? =0
1 3

300 x 10° — 4w? 1000 — w?
1000 - w? 200 x 10° - 3w?|
11w* = 1698000w? + 59999000000 = 0

det =0

Hence the positive roots are w = 234.02, v = 315.59
When w; = 234.02 rad/sec then

[1K] - w?[M] (o}, = {0}

(e}

300%10° —4w?  1000-w@? |{oy) [0
U21

1000 - w? 200 x 103 - 3w?

300 x 103 — 4(234.02)> 1000 — (234.02)*  |[oyy

o O

1000 — (234.02)> 200 x 10° — 3(234.02)?| | v21

—_———
Il
—_—N—
o O
—_————

[ 80939. —53765.) {vu

~53765.  35704. || vy

Let v11 be the arbitrary value 1 hence

80939. -53765.|| 1| o0
~53765. 35704 ||vp| | x
80939. — 537650, = 0

. _ 80939
2L~ 53765

| 1
vt =
1 11.5054

[1K] - w3[M] (o}, = {0}

=1.5054

Hence

When w, = 315.59 rad/sec then

221



2.10. HW9 CHAPTER 2. HW’S

300x10° —4w?  1000-w? (o) (0
1000 —w? 200 x10% - 3w3 || 022 0

300 x 103 — 4(315.59)> 1000 — (315.59)*>  |{vy, 0
1000 — (315.59)> 200 x 10% — 3(315.59)*

-98388. -98597.|[012| [0
-98597. 98791 ||0s| |0

Let v, be the arbitrary value 1 hence

—98388. -98597.| 1 0
—98597. —98791.(| vy X
98388 — 985970y, = 0

o 98388 oo
227 98597 ~

1
ol = ~0.998

To obtain the mass normalized shape functions:

Hence

= {o}] [M]{v},

p1 =1
T
o 4 1| 1
- {1.5054} [1 3]{1.5054}

o s

=13.809
And
{v
1
~0.999 ~0.998
1
3002 1. 994]
~0.998
= 4.992
Hence
1
oy < 2 _ [1595) o269
17 I vA3809  |0.405
and

—_——

1
(@], = {0}2 _ {—0.999 _ 0.446
2 iz 4992 ~0.447
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Summary
w, (rad/sec) | original mode shape | normal mode shapes
1 0.269
234.02
1.5054 0.405
1 0.44759
315.59
0.999 —0.44665
Hence
(@] = 0.2691 0.448
- [0.40511 -0.447
To verify
- T
T 0269 0448 | (4 1(/0.269 0.446
[®]" [M][P] =
0.405 -0.447) (1 3|/0.405 -0.447
[0269 0405 |[4 1][0.269 0.448
10448 -0.447||1 3|(0.405 -0.447
_ 1.0 8.840 x 107
8840x10° 1.0

1.0 0
Which is approximately 0

as expected. calculations were not done with high

enough accuracy, so that is why the off-diagonal numerical values were not an exact

Zeros.

To verify with the [K] matrix

- T
T 0.269 0.448 | (300 x10°
[@] [K][®] =
0.405 -0.447| | 1000
_ [54765. 6594
6.594  99600.0

1000

200 x 103((0.405 -0.447

0269 0.448 }

Note w? = 234.022 = 54765. and w3 = 315.59% = 99597 and these are the values on the
diagonal as expected. The values off the diagonal should be an exact zero, since the [K]
matrix should be decoupled. Due to low precision in the above calculations, the values

did not come out to be zero.

Verify using Matlab. Note that Matlab eig() returns the shape function that are mass

normalized

EDU>>
EDU>>
EDU>>

M=[4 1;1 3];
K=[300%10"3 1000;1000 200%1073];
[eig,lam]=eig(K,M)

eig =

-0
-0

.2691
.4051

-0.4476
0.4467
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lam =
1.0e+04 x

5.4764 0
0 9.9600

1.0000 0
0  1.0000

EDU>> eig'*Kxeig

1.0e+04 *
5.4764 0
0 9.9600

2.10.5 Problem 4
problem 4.29 in text.

4.29 The diagram models an automobile and its
suspension as a rigid block on springs. The mass
of the bar is m, and the radius of gyration relative
to the center of mass G 18 Kg = 0.4L. Generalized
coordinates are the vertical displacements ¥, and
y, of the ends relative to the static equilibrium

L2 L2
"1 ‘ - » \‘ "\ Y2
L . B
Mass m

1.5k k

EXERCISE 4.29

“Gosition. Consider a situation where the vehicle 1
released from rest with y; = mglk, y, = 0. Deter-
mine the ensuing free vibration as a function of the
nondimensional time ¢ = ( kim)'/%t.

y y 9 i
g

224



2.10. HW9 CHAPTER 2. HW’S

Y1 Y2

A =

Yg(A+B) =y A+y,B
6(A+B) =Y~

L
In our care, A =B = > hence the above becomes

L L
Yis 725yt

BT 2
g=2° N
L
Hence taking derivative
it
$T 2
s _ Y2
0 ==
L

Using the power balance method, we start by finding the kinetic energy T

1 . .2 1 s\ 2
:_m(y1+y2) +§(mrzc)(y2Lyl)

where ¢ is the radius of gyration 0.4L, hence

2
1 oo s ooy 1 (4 Lo 5
T= gm(yl + 3+ 2i92) + E[’"(EL) )ﬁ(yZ + 13 =201

1 i N8 o

= gm(7A + 33+ 20n92) + 155m (35 + 57 - 2013

— 2 lm+im + 12 lm+im + 117 %m—ﬁm

~ V8™ T 100™) T2\ T 100™) T Y1Y2\8™ T 100
4, 4,9

4, M, 9
200V T 5002 T 199"Y1Y2

Comparing the above to quadratic form T = %Muy% +%M22y% + M1, then

41
M = mm = 0.41m
41
My, = ﬁm =0.41m
M, = 0.09m
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Hence the mass matrix is

0.41 0.09
[M] =m
0.09 041

1 1
Vspring = Eklefty% + Ekrighty%

13\, 1,
= 2(2k)]/1 + 2k3/1

Comparing to quadratic form %Klly% +%K22y% + K1o11Y, then

15 0
[kspring]:klo 1}

1t
ngvzty =mgYq = mgy > /

Since this will be evaluated at y; = y, = 0 then we see right away that there is no
contribution to potential energy to the stiffness matrix. Hence the EOM are

|04 009)1in®) 115 0}y o
O 09 0.41|[i(t) 0 1i{y(t) 0
, , _dydr _ dy
To convert to t’ space, givenby ' = tas required, then we see that 2 S T s N
qa% dzy a2y k
MEG2 T Wi
Hence the ODE becomes
Joar 009)lin®)k  f15 ol
009 0.41||5@)|™ |0 1|{y2(t)

o4 009 in(t) +k_1.5 ol[v2(®))
0.09 041||i)| |0 1f|n)| |o]

Since k # 0 we can divide by it, hence

0.41 009 in() 15 0 n)| o
0.09 0. 41 in(t) 0 1 yo(t) 0
To find modes of free vibration, we write

[[K] - w?[M]]fv} =

Solving for eigenvalues

det

15 o] 041 009]]
0 1 0.09 0.41|]

15— 04102 -20.09 |
det =0
| -0?0.09 1-w?0.41
0.16w* -=1.0250w%2 +1.5=0
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Hence the positive roots are w; = 2.0357, w, = 1.5041

When w; = 2.0357 then
[1K] - w?[M] (o}, = {0}

1.5-0.41(2.0357)> —(2.0357)%0.09 |[vy 0
~(2.0357)°0.09 1 -(2.0357)%0.41 0

0199 -0373|[vn| o
-0.373 _0699‘ 021 0
Let v11 be the arbitrary value 1 hence

-0.199 -0.373]| 1 0
—-0.373 -0.699||v21 X

~0.199 — 0.3730,;, = 0

U21

i 0.199
21 7= 70373

1
toh = ~0.534

[1K] - w3[M]]io}, = (0}

= -0.534

Hence

When w, = 1.5041 then

1.5-0.41(1.504)° —(1.504)%0.09 |{v| [0
~(1.504)%0.09 1 - (1.504)%0.41 0

0572 -0204|[v12| 0
—0204 0072 UZZ O

Let vy, be the arbitrary value 1 hence

0572 -0.204|| 1 3 0
-0.204 0.072 ||Uyn X
0.572 - 0.204’022 =0

vy = 22725 e1n
270204 ©

1
ol = 2.812

To obtain the mass normalized shape functions:

Hence

w1 = (o} Mo},

T
B 1 0.41 0.09 1
—-0.534| [0.09 0.41](-0.534
= 0.43073

227



2.10. HW9 CHAPTER 2. HW’S

And
Uy = {0} Mo},
T
)1 041 0.09]| 1
2.812| [0.09 0.41(|2.812
=4.1569
Hence
1
(@), {0}1 ~ -0.53374 ~ 1.5237
1 1043073 V0.43073 -0.81326
and
1
o) < 22 _ 1282] [0
2 B2 V41569 (1379
Summary
w (rad/sec) | original mode shape | normal mode shapes
1 1.524
2.0357
-0.534 -0.813
1 0.491
1.5041
2.812 1.379
Hence
| 1.524 0491
-0.813 1.379
To verity
- T
" 1.524 0.491| (041 0.09| 1.524 0.491
[©] [M][®] =
-0.813 1.379| 10.09 0.41((-0.813 1.379
|10 ~1.9688 x 10+
| -1.9688 x 10~ 1.0

1.0

Which is approximately O as expected. calculations were not done with high

enough accuracy, so that is why the off-diagonal numerical values were not an exact
Zeros.

To verity with the [K] matrix

- T
. 1.5237 049047 |1.5 0| 1.5237  0.49047
(@] [K][®] =
-0.81326 1.3790 | | 0 1[[-0.81326 1.3790
| 41439 —s9183x10
-4.9183 x 10~ 2.2625
Verify using Matlab
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EDU>> K=[1.5 0;0 1]; M=[0.41 0.09;0.09 0.41];
EDU>> [eig,lam]=eig(K,M)

eig =
-0.4905  -1.5238
-1.3789 0.8130
lam =
2.2624 0
0 4.1439

Now we can solve the problem. Using {x} = [CD]{T]}, where

{n} = (@] )
= [@]"[M]{x}

Hence, initial conditions in the {n] space is

(1}, = @' M),

0
_ [(D]T[M] yl( )
¥2(0)

T mg
1.524 0491 {041 0.09(["
-0.813 1.379| [0.09 041(] o

0.552§m

0.325‘%111

and

[}, = @' M),

/(0)
_ o] i
¥5(0)

So, we need to solve

R R el K

with the initial conditions

g
m.(0) ) 0.5522m
12(0) 0.325§m
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The solution is given by

M (t) = Acos V4.144t + Bsin V4.144

When t = 0, 11(0) = 0.55152§m = A. Taking derivative gives nj(t) = —Asin V4144t +
Bcos V4.144 t, hence when t = 0 we have 0 = B, therefore

m) = 0.552%41 cos VA144 ¢

Now we solve for 1,(t),The solution is given by
N(t) = Acos V2.263t + Bsin V2.263 t
When t =0, 1,(0) = 0.3252‘%171 = A. and 0 = B, therefore

() = 0.325%11 cos V2263 ¢

Now we obtain the solution in the y space

[y} = [@1fn}

g EVER
o)) [-0813 1.379[10.3258m cos V22625

0.840§m c0s(2.036t') + 0.1595§m cos(1.504¢")

0.4487m cos(1.504t') — 0.449%m cos(2.036t")

We are supposed to obtain the answer

y1() ~ 0.16 cos(1.5¢') + 0.84 cos(2t')
yo(t)|  10.45 cos(1.5¢') — 0.45 cos(2t')

8

piL for some reason is not shown in the key solution.

The answers agree. The scalar
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2.10.6 Key solution for HW 9

Homework #9
EMA 545, Spring 2013

For the following problems, you may have the equations of motion for some of
these systems in your past homework assignments or in the solutions to those that were
posted online, so you may use those if you wish.

For all of these problems you may use Matlab or some other package to find the
natural frequencies and mode vectors and to mass normalize the mode vectors (if
needed).

1.) Problem 4.3 in Ginsberg. Sketch the deformation of the system when it moves in
each of the modes. (Notice that you can pull out factors such as k and m so that only
numbers remain in the mass and stiffness matrices. Then it is possible to check your
answers using Matlab.)

2.) Problem 4.7 as given in the text. You may use the following equations of motion:
%o ha\a), |#-% F |[a)_[o
P +mgL 0 =
AL - -yl

3.) Problem 4.11 as given in the text. Hint: normal modes = mass normalized modes

mL?

4.) Problem 4.29 as given in the text. Also, plot the motion of the automobile as a
function of time. Is the response a pure-sinusoid? Why or why not? Note: The answer
provided by the book is incorrect. The correct answer is:

yi(t) = 0.16co0s(1.5t") + 0.84cos(2.0t”)

ya(t) = 0.45c0s(1.5t") — 0.45c0s(2.0t")
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Solution: Ch. 4, Problem 4.29

See handwritten notes for derivation.
Matlab Code:
% Define Mass and Stiffness matrices:
M = [0.5+0.4"2, 0.5-0.4"2;
0.5-0.472, 0.5+0.4"2];

K = [1.5, 0; 0, 1];
% q_0 = [1; 1];

% q_0 = [1; 0O];
q_0 = [1; 0]:

% Solve the eigenvalue problem:

[Phi,Lam] = eig(K,M);

% Matlab solves an eigenvalue problem [A]{x} = lam*[B]{x}, where lam is
a

% scalar 1If we input eig(A,B). the matrix Lam output by Matlab is a

% diagonal matrix of eigenvalues lam, so by comparing with our
eigenvalue

% problem, we see that each nat. freq wn = sqrt(lam), or the vector of
% natural frequencies is wns = diag(Lam).~(1/2)

Phi
wns = diag(Lam).~(1/2)
% Check that the eigenvectors are mass normalized. If this is not an

% identity, then we need to normalize

Phi . "*M*Phi

% Note that Matlab sometimes gives the first eigenvector as the
negative of

% what we found. Either is a valid mode for the system.

% Now the initial conditions give:
eta_0 = Phi."*M*qg_0O
eta_dot_O = Phi."*M*g_dot_O

% and the constants in the solutions eta(t) = al*cos(wns(l)*t)+etc...
al eta_0(1); a2 = eta_dot_0(1)/wns(1);
bl = eta_0(2); b2 = eta_dot_0(2)/wns(2);

% Define a time vector with 5 cycles of the lowest frequency:

ts = [0:1:200]/200*5*(2*pi/wns(1));

eta_t = [al*cos(wns(l)*ts)+a2*sin(wns(l)*ts);
bl*cos(wns(2)*ts)+b2*sin(wns(2)*ts)];

% each column of the matrix above gives {eta(t)} at some instant t.

Since

% the eta values are in columns, we obtain {q} by multiplying by [Phi]

q_t = Phi*eta_t;

figure(1);

subplot(2,1,1)

plot(ts,eta_t(1,:),"-0",ts,eta_t(2,:),":."); legend("\eta_1","\eta_2");
xlabel("time (s)");

subplot(2,1,2)

plot(ts,q_t(1,:),"-0",ts,q_t(2,:),":.7); legend("y_17,"y 2%);
xlabel("time (s)"); ylabel("y*k/(m*g)");
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Results:
>> M
M =
0.41 0.09
0.09 0.41
>> K
K =
1.5 0
0 1
Phi =
-0.4905 -1.5238
-1.3789 0.81302
wns =
1.5041
2.0357
ans =
1 5.5511e-017
-5.5511e-017 1
eta 0 =
-0.32521
-0.55158
eta dot 0 =
0
0
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0 5 10 15 20 25
time (s)
1@ \
1) A —o—Y,
® o ﬁ e ® ﬁ
L]
0.5+ o %00 ¢ * $l-e Yyl
' s ¢ ° : ° N
~ 0 s D O
2 ° . \ ®
£ 0 . ° ‘ ° $ t ‘ ; B
< el o ; o (e o 4 \
i . \ i o |2 N '
. , S d .
0.5 S ¢ ° e o g
vV ¥ VoW
o: [
v Vv
_l 1 1 | |
0 5 10 15 20 25
time (s)

Response plotted over 5 cycles. Notice that the initial
conditions are satisfied. Both modes are excited and
oscillate at different frequencies. The superposition of
both modes causes the response in yl, y2 coordinates to
look quite complicated.
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2.11.1 problem description

Homework #10
EMA 545, Spring 2013

For all of these problems you may use Matlab or some other package to find the natural
frequencies and mode vectors and to mass normalize the mode vectors (if needed).

1.) Exercise 4.8 from Ginsberg. (Note: the spring constants are defined such that the
frequencies given are the natural frequencies that each spring-mass system would have if
it were attached to a rigid base. Notice that there is not a simple relationship between
those frequencies and the natural frequencies of the system as a whole.)

2.) Exercise 4.30 as given in the text. Repeat the analysis for k=2mg/L and graph that
response as well. (Questions to consider: What do you notice about the natural
frequencies of this system in each case? How does that affect the way the response
looks? Why?)

3.) Exercise 4.43 from Ginsberg. How does the time required to reach steady state
compare with t.=1/(¢,wy) for each mode, r=1,2,3?

4.) Exercise 4.47 from Ginsberg.
5.) (Covering material from Chapter 5)

A uniform rod of length L. and mass my is attached to a cart having mass m, by means of a
spring k. A viscous damper c¢ resists the motion of the cart.

\\ /;e
X
L2
k C
W
—_—000)
L2
/
m, RO

a.) Let F(t)=Re[Fexp(imt)], x(t) = Re[Xexp(iwt)] and B(t)=Re[Yexp(iot)]. Find
analytical expressions for the complex transfer functions X/F and Y/F.

b.) Find the magnitude and phase of the response of x and 6 when the system is forced at
its natural frequencies ®=wm; and w=w,. Compare these values to the eigenvectors for
modes 1 and 2. Use the following numerical values: m;=m,=1 kg, k=3 N/m, L=1 m,
09=9.81 m/s"2, and c=0.1 N-s/m.
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¢.) Plot the transfer functions Y/F and X/F over a range of frequencies encompassing
both modes of vibration. Use the plot to determine at what frequency m; acts as a
vibration absorber for the rod. How does that frequency compare with the natural
frequency that the system would have if the rod were held fixed: mcart = (k/m2)1’2 ?

6.) Consider Exercise 3.45 and 3.46 in the text (you solved
this in problem #3 in HW#6). Use the steady-state
displacement that you computed using FFT techniques for t
= 3n/w, to compute the maximum stress in the spring.
Assume that the spring is a cantilever beam (in bending) f(t)
modeled after one of the pillars supporting the ERB, which —
have length L=40m, rectangular cross section with height h,
equal to the width b=h=0.6m, and is constructed from a
material with modulus E=30 GPa and ultimate tensile
strength =40 MPa. (The mass of the beam is assumed to be
included in m, so its density is not needed.) Let the mass m
be such that the natural frequency of the mass-spring system
is wn=0.2Hz. What is the amplitude of the force, P, such that
the beam fails due to the dynamic load? Compare that to the
static load required to cause the beam to fail (also in
bending).
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2.11.2 problem1

Ya
4.8 The system shown in the sketch represents a T—

scale model used to study the vibration of a three-
story building. The masses for the model are y

m; =100, m, =200, and m;=300 kg. The t
springs are selected such that k; = wjz m;, where ‘
w; = 40, 50, and 60 rad/s. Determine the character-

istic equation, natural frequencies, and mode
shapes of this system. *3

. . - . 1 2 1 2
Generalized coordinates are ys3,1,,y;. Kinetic energy is T = Emg(yé) + Emz(yé) +

1 ,\2 . . . 1, o 1 2 1 2
> (3/1) - Potential energy due to springs is Ving = k3y3+ k2 (]/2 - y3) +2k (y1 - 1/2) .

Therefore
1 1 1
Vipring = 5Ksy3 + Ska(V3 + 13 = 202y3) + Ska (4 + 13 — 20192)

1 1 1 1 1
= y§(§k3 + Ekz) + y%(ikz + §k1) + y%(ikl) + y1y2(=k1) + y1y3(0) + yoy3(=k3)

The EOM is
my 0 0|y ki =k 0 ||n

0
0 my 0 yé/ + _kl k2 + k1 —k2 Y| = 0
0 0 i3 yé, 0 —kz k3 +k2 Y3 0
Following values are for mass (units in kg) m; = 100, m, = 200, m3 = 300. Following

values are for spring constants (units in N/m) k; = 40%(100), k, = 502(200), k3 = 602(300).
EOM becomes

100 0o 0 |[|[¥Y| [160000 —=160000 0 vl o
0 200 O [|v5|+|-160000 660000 -500000][y.|= |0
0 0 300y 0 ~500000 1580000 ||y5| |0

Characteristic equation is

det([K] - @?[M]) = 0

160000 -160000 0 100 0 0
det{|-160000 660000 —500000{-?| 0 200 0 ||=0
0  -500000 1580000 0 0 300

160000 —100w?  —160000 0
det{  -160000 660000 —200w®> 500000 | =0
0 500000 1580000 — 300c?|

—6 X 100w°® + 6.1 x 101090w* = 1.54 x 10 w? + 8.64 x10'® = 0
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Positive roots of the above polynomial are the natural frequencies (units in rad/sec).
w1 = 28.1

w, = 52.6
w3 = 81.3

To obtain mode shapes, the eigenvector associated with each eigenvalue is found. Start-
ing with w; = 28.1

160000 —-160000 0 100 0o olN1]| [o
~160000 660000 -500000{-2812] 0 200 0 |llex]=]0
0  -500000 1580000 0 0 300|)lex| [0
Hence
81x10% —160000 0 1
2160000 5.02x10° —500000 ||®21|= [0

0 -500000 1.34 x10°||Pa1| [O]

8.1 x10%* - 1.6 x 10°¢y;
5.02 X 10°¢p,; — 5.0 X 10°¢p3 — 1.6 X 10° | = |0

1.34 X 10°%031 — 5 X 10°¢5 0]

Solving gives @1 = 0.506 and ¢3; = 0.188. First eigenvector is

1
@1 = [0.506
0.188
For w, = 52.6,
160000 -160000 0 100 0 0 1 0
160000 660000 -500000(-52.62 0 200 O |||P=|=10
0 —~500000 1580000 0 0 300()|ex| |0
Hence
117 %105 —1.6x 10 0 1
-1.6x10° 1.07 x10° -5.0x10°||P22| = |0

0 -5.0x10° 7.50 x10°||®s2| O]

~1.6 x 10°¢, — 1.17 x 10°
1.07 X 10°@p — 5.0 X 10°p3, — 1.6 X 10°| = [0

7.5 X 10°@3, — 5.0 X 105, 0]

Solving gives ¢,, = —0.731 and @3, = —0.476 .Second eigenvector is

1
@, = |-0.731

-0.476
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For w3 = 81.3
160000 —160000 0 100 0 O 1 0
~-160000 660000 -500000(-81.32] 0 200 O [|l®¥23|=]0
0 —~500000 1580000 0 0 300()|psz| |0
Hence
_5.01 X105 -1.6 X 10° 0 1]
-1.6x10° —-6.62x10° -=5.0%x10° |[P23|=]0
0 -5.0x10° —4.03 x10°|| P33,

-1.6 X 10°¢,3 — 5.01 x 10°
—6.62 X 10%@p3 — 5.0 X 10°¢33 — 1.6 X 10°| = |0

—5.0 X 10°¢@p3 — 4.03 X 10° @33

Solving gives @,3 = —3.13 and @3, = @33 = 3.82. Third eigenvector is

1
Q3 =1-3.13
3.82

Eigenvectors are mass normalized. Mass normalization factors p; are found for each
eigenvector

u = @1 Mg
T
1 |fioo o ol 1
=los06| | 0 200 o0 ||0.506|=162.

018811 0 0 300((0.188

and
H2 = 93 [Mlep,
1 TlOO 0 0 1
=1-0.731| | 0 200 O [|-0.731|=275.
-0.476( | 0 0 300(/-0.476
and

b3 = 3 [M]gs
1 Thoo o o 1
=|-313| | 0 200 o0 |[-313]=6.44x10
38210 0 300|382
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Normalized eigenvectors are

1 7.86 X 1072
P1 1
P, = — = ——0.506| = [3.98 x 1072
YT VB Vil
0.188 1.48 x 1072
1 6.03 x 1072
P2 1
D, = = -0.731| =|-4.41 x 1072
2T Vlk 275
-0.476 —2.87 x1072
1 1.25 x 1072
S i ! 313 =| —0.039
V3 V6.44 x 103
3.82 4.76 x 1072

Verification of the above result follows

EDU>> k=[160000 -160000 0;-160000 660000 -500000;0 -500000 1580000] ;
EDU>> M=[100 0 0;0 200 0;0 0 300];

EDU>> [eigV,lam]=eig(k,M)

eigV =
0.0786 0.0606 0.0124
0.0398 -0.0437 -0.0389
0.0148 -0.0289 0.0477
lam =
1.0e+03 *
0.7897 0 0
0 2.7528 0
0 0 6.6242

EDU>> sqrt(diag(lam))
ans =

28.1013
52.4674
81.3889
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2.11.3 Problem 2

nondimcnswum Saaasee

- identical bars having mass m are sus-

P Tr;;u:;?cciling and interconnected by a

pu?dc?‘demical springs. The unstretched length of

= ing equals the spacing between the bar_s

3 s;:;l g are vertical. The spring stiffness 15

e 5? /L. At 1= 0, all bars are vcnicgl. The

ks0.0d ’;ikgh;.hars are not moving at this instant,

kﬁ'lanmc gniddlc bar is rotating at 2 rad/s. Deter-
::;: and graph the vibration of each bar.

e e

Initial conditions are 0,;(0) = 0 fori =1,2,3 and 07(0) = 65(0) = 0 but 65(0) = 2 rad/sec.

The generalized coordinates are shown above. kinetic energy is

1 1 1
T = 51(6{)2 ; EI(‘%)Z n E1(65)2

1 .
where [ = gmLz. Mas matrix becomes

: 1 0 0|07
[M]:gmLZO 1 0/|6%
00 1|6y

Spring potential energy is
1 2 1 2
Vspring = Ek(L@z - L@l) + Ek(LGB - L@z)
1 1
= EkLZ(ag + 6% - 26,6,) + EkLZ(eg + 03 - 20,03)
1 1 1 1
- 9§(§kL2) + eg(EkLz + EkLZ) + Qé(EkLZ) + 010,(~KL2) + 6, 0(0) + 0,05(-kL?)
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Hence stiffness matrix due to spring is

1 -1 0

— 172
K],y = K21 2 -1
0 -1 1

Assume the zero PE for gravity is taken as the top of the bar. Stiffness due to gravity is
L
Ve = —ng(cos 61 + cos O, + cos O3)

2
92V,

Vi = =2
1 902

= mg%(cos 01). Evaluate this at static position 6; = 0hence V{; = m%
L
Similarly, Vy, = V33 = ms. All other terms are zero.

Hence stiffness matrix due to gravity is

. 100
[K]g =mgy 010
0 01
Therefore, complete stiffness matrix is
1 -1 0 . 1 00
kL2|-1 2 -1 +mg510 10
0 -1 1 0 01

There are no generalized forces. Hence EOM is

: 1 0 0|67 1 -1 0 L100(91 0
5mL20109'2'+kL2—1 2 -1+mgz10 10 0,1 =10
00 1|loy 0 -1 1 0 0 1{Jles| |0

211.3.1 Part (a) k = 0.05=

For case k = 0.05%, Hence for 0 = 0.05 then k = U%. EOM becomes

: 1 0 0|67 1 -1 0 L10091 0]
5mL201o@g’+o-mgL—1 2 -1j+mg=0 10 0, =0
00 1|6y 0 -1 1 0 0 1|6,

—1+o -0 O Ira1 1
) 1 0 0|0 2 01 |0
gmLZO 1 0||65|+mgL| —o %+2a A
00 1|loy
63 O -0 —+G_93_
_1+a -0 0 Ir,1
1 0 of|67 ; 2 0. [o
01 09§'+fg -0 %+20 -0 ||62 =10
00 1|ler 0
63 O -0 -+4+0 63_‘
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Let L =1,g =10. The above becomes

1 0 ol|67| [15+300 —300 0 01| o
01 0|[65|+| -300 15+60c —300 ||6,|=1]0
0 0 1oy 0 ~30c  15+300|[65| |0

Natural frequencies of the system are found by solving the eigenvalue problem.

15+300 -300 0 100
det{|| -306 15+600c =300 |-w?0 1 0||=0
0 -300 15+ 300 001

Substituting o = 0.05 gives

165 -15 0 10
det||-1.5 180 -15|-w?|0 1 =0
0 -15 165 001
165-w? -15 0
detf -15 18-w? -15 |=0

0 -15  165-w?

~w® + 5lw* - 861.75w2 + 4826.3 = 0
Positive roots of this polynomial are w = 3.87, w = 4.062, v = 4.416.

Associated eigenvectors are found by solving for ¢; in ([K] - wZ[M])goi = 0 for each
eigenvalue w;.

For w; = 3.87
165-w? -15 o 11 Tol
-1.5  18-w? -15 |[|@2a1]|=|0
0 -1.5  16.5-w?|[P3| 0]
165-3.872  -15 o |1
-15 18 - 3.872 -15  [|P2a1|=|0
0 -15  165-3.87%||¢a1| |0

1523 -15 0 |[ 1]
15 3.023 -15|lea|=10
0 15 1.52|py| |0]

1523 1505 | o]
3.023 §021 - 1.5(P31 -1.5| = 0
1.523 (p31 — 1-5(,021 hOJ

Solving gives @1 = 1.0153 and ¢3; = 1.046 2. First eigenvector is

1 1
@1 = |P21|=(1.0153
P31 1.0462
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Similarly, second and the third eigenvectors are found.

Eigenvectors are mass normalized. First the mass normalization factors y; are found for
each eigenvector

= @i Mg
T
1 1 00 1
=11.0153| [0 1 0l|1.0153| = 3.1254

1.0462]| |0 0 1(|1.0462

Normalized eigenvector is

1 0.51353
1.0153| ={0.52139
1.0462 0.53726

V31254  4/3.792

D,

Verification of the above result (Matlab result is more accurate due to more accurate
method used)

EDU>> k=[0.55 -0.05 0;-0.05 0.6 -0.05;0 -0.05 0.55];
EDU>> M=eye(3);
EDU>> [eigV,lam]=eig(k,M)

eigV =

-0.5774 -0.7071 0.4082
-0.5774 -0.0000 -0.8165
-0.5774 0.7071 0.4082

EDU>> sqrt(diag(lam))
ans =

0.7071
0.7416
0.8062

Transformation matrix (based on Matlab more accurate result) is
-0.577 -0.7073 0.4082
O = [P, D3] = |-0.577 0 -0.8165
-0.577 0.7069 0.4082
Mapping from physical coordinates 0 to modal coordinates 7 is

= [D]

Bold face is used to indicate a column vector. EOM’s are written in modal coordinates
resulting in
1 0 ol|n?| [@F 0 O{m| [o]
01 0|[ng|+]|0 w3 0][m|=|0
00 | o o wf|ns] O]

1 0 ollm| lozomz o o lml| ol
01 ofny|+ 0 0.74162 0 ml=10
0 0 1f|ny 0 0  0.8062%||n3| |0
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Initial conditions are transformed to modal coordinates using (0) = [@]T[M](O) and
"(0) = [CD]T[M]’ (0), since (0) = 0 then (0) = 0, however ’(0) is not all zero, hence

, r T

mO| [-0577 -0.7073 0.4082 | |1 0 ollo
n5(0)| = |-0.577 0 -0.8165| |0 1 0][2
n5(0)| |-0.577 0.7069 0.4082 | [0 0 1[0

1154
=| o
-1.633

Initial conditions in modal coordinates are found. The solution can be found. The
solution to n” + w?n = 0 with initial conditions n(0) and 7'(0) is n(t) = 1(0) cos wt +

"0y . )
% sin wt. Therefore modal solutions are

-1.154 .
m(t) = 07071 sin(0.7071¢) = —1.632sin(0.707 t)
() =0

-1.633 ,
n3(t) = 03062 sin(0.8062t) = —2.026 sin(0.8062¢)

Solution in the normal coordinates is

=1-0.577 0 -0.8165 0

61(t)| [-0577 -0.7073 0.4082 || ~1.6325in(0.707 t)
0(t)
05()| |-0577 07069 0.4082 ||-2.026sin(0.8062¢)

0.94166 sin(0.707 t) — 0.82701 sin(0.8062t)
= | 0.94166 sin(0.707 t) + 1.6542 sin(0.8062t)
0.94166 sin(0.707 t) — 0.82701 sin(0.8062¢)

2113.2 Part (b) k =22

Using part (a), but with 0 = 2 results in

154300 300 0 100
det|]| 300 15+600 -300 |-@?0 1 0||=0
0 -300 15+ 300 001
15+30(2) -30(2) 0 10 0
det{| -302) 15+60(2) -30(2) |[-w?0 1 0]|=0
0 -30(2) 15+ 30(2) 001
75.0 - w?  —60.0 0
detf{ -60.0 135.0-w? -60.0 |=0
0 -60.0  75.0-w?

Similar steps as repeated as part (a) above. The final result are shown below using
Matlab
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EDU>> k=[75 -60 0;-60 135 -60;0 -60 75]
EDU>> M=eye(3);
[eigV,lam]=eig(k,M)

eigV =

-0.5774 -0.7071 0.4082

-0.5774 0.0000 -0.8165

-0.5774 0.7071 0.4082
EDU>> sqrt(diag(lam))

3.8730
8.6603
13.9642

-0.577 -0.7071 0.4082
Transformation matrix is ® = [®;D,D5] = [-0.577 0 -0.8165|. Mapping from

-0.577 0.7071  0.4082
0 to modal coordinates 1 is
= [@]

Bold face is used to indicate a column vector. EOM’s are written in modal coordinates
resulting in

1 0 o|[m]| |@f O Ofm| Jol
01 0of|n5[+]0 w3 Ofmn|=1|0
00 1n7] o 0 wd|m

1 0 ol|n?| [387302 o o l|lml [o]
01 ofn5|+]| o 8.66032 0 2 =10
0 0 1|ny 0 0 13.96422||ns

Initial conditions are transformed to modal coordinates using (0) = [CD]T[M]X(O) and
"(0) = [CD]T[M]Q’(O), since 6(0) = 0 then (0) = 0, however 6’(0) is not all zero. Similar to
part (a), initial conditions are found

mo| [-1154
10)=| 0
113(0) -1.633

The solution to 17”7 + A% = 0 with initial conditions n(0) and 1’(0) is given by n(t) =

n(0) cos At + —= = ( ) sin At. The solutions are

(t) = 154 (3.873t) = —0.297 96 sin(3.873 1)
Uil 3 3730 ————sin = sin
m(t) =
3
N3(t) = ——— sin(13.9642) = —0.116 94 5in(13.9642)

13 9642
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Solution in the physical coordinates is

D
N
—~~

~=
~—

Il

Summary table

0577 -0.7071 0.4082 || —0.297 96 sin(3.8730 )
~0577 0  -08165 0
-0.577 07071  0.4082 ||-0.11694 sin(13.9642t)

0,171 92 in(3.873¢) — 4.773 5 x 102 sin(13.964¢)
9.5482 x 1072 sin(13.964¢) + 0.171 92 sin(3.873¢)

0.171 92 sin(3.873t) — 4.7735 x 1072 sin(13.964¢)

k frequencies | [D] solutions in 6
0.7071 05774 —0.7071 04082 | | [0.94166sin(0.707 ) — 0.82701 sin(0.8062t)
0.05% 0.7416 —0.5774 0 —0.8165] | | 0.94166 sin(0.707 t) + 1.6542 sin(0.8062¢)
0.8062 -0.5774 0.7071  0.4082 | | |0.94166sin(0.707 t) — 0.82701 sin(0.8062¢)
3.8730 05774 —-07071 0.4082 | F0.17192 sin(3.873t) — 4.773 5 x 1072 sin(13.964t)
% 8.6603 ~0.5774 0 —0.8165] | {9.5482 x 1072 sin(13.964t) + 0.171 92 sin(3.873t)
13.9642 -0.5774  0.7071  0.4082 | | [0.17192 sin(3.873t) — 4.773 5 x 1072 sin(13.964¢)

Even though the normalized natural frequencies are different, the shape functions are

the same.

Plots of the solutions of 6;(t) for both cases are made. For the case of k = 0.05%
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In addition, a small program is written to animate both the full solution and the modal
solutions. The program to animate the full solution is at|http://12000.0rg/my_courses/
[univ_wisconson_madison/spring 2013/EMA_545_Mechanical_Vibrations/HWs/HW10/HW1Opp.
while the program that animate the modal solution is number 112 at bottom of
this pagehttp://12000.0rg/my_notes/my_matlab_functions/index.htmn
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2.11.4 Problem 3

4.43 The following

properties are known for a

certain three-degree-of-freedom system:

600 400 200
[M] = 1400 1200 ¢ kg,

200 0 800

300 0 —200
[KI=]| 0 500 300 | kN/m,

=200 300 700

[ 500 300 —400
[CI=] 300 900" 600 |N-s/m,

[-400 600 1300

200cos(16¢)
{0} = 0 N

0

The syste_n} was initially at rest at its static equilib-
rum position. Use the light damping approxima-
ton to determine the response, Graph each
generalized coordinate as a function of time. From

that result, estimate the time required to attain the
steady-state condition.

EOM is

600 400 200|[*7 500 300 —400||*1 300 0 -200][*1 200 cos(16t)
400 1200 O |{x5 p+| 300 900 600 [§x5+10°] 0 500 300 |{xp¢ = 0
200 0 800||xy| |—400 600 1300 ]|x3 =200 300 700 ||x3 0
10| (o 10| (o
Initial conditions are { x,(0) p =40 and {x5(0) p =<0¢-
x3(0) 0 x5(0) 0

Solve the eigenvalue problem to determine the natural frequencies of the system

det([K] - @?[M]) = 0

300 x 103 0 —200 x 103 600 400 200
det 0 500 x 103 300 %103 |- w?|400 1200 0 [|=0
—200 x10% 300 x10°® 700x10° 200 0 800

—4.0x108w® +1.044 x 102w* - 4.72 x 104 w? + 5.8 x 10¢ = 0

Positive roots are {w =15.052, w =17.562, w = 45.552}. For each natural frequency the
corresponding eigenvector is found. A program is now used to compute these values.
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EDU>>

k = [300 0 -200;0 500 300;-200 300 700]*1073;

M = [600 400 200;400 1200 0;200 0O 800];
C = [500 300 -400;300 900 600;-400 600 1300];

[PHI,lam] = eig(k,M);
PHI
lam = sqrt(diag(lam))
CcC = PHI'*C*PHI;
zetal = CC(1,1)/(2x1lam(1))
zeta2 = CC(2,2)/(2x1lam(2))
zeta3 = CC(3,3)/(2x1lam(3))
PHI =
~0.0216  0.0232 -0.0373
0.0203 0.0168 0.0201
-0.0220 0.0023 0.0302
lam =
15.0519
17 .5624
45 .5522
zetal =
0.0018
zeta?2 =
0.0219
zetal3 =
0.0376
~0.0216 0.0232 —0.0373
[®] =] 0.0203 0.0168 0.0201 |. In modal coordinates EOM is
~0.0220 0.0023 0.0302
1 0 ol 500 300 —400 m
01 ofdnys+[®I"| 300 900 600 |[®R7¢+
00 1||ny —400 600 1300 4
1 0 ol{m] [5419%x102 5331x102  -0416 |
0 1 ORny ¢ +15.331 x1072 0.768 —3.52x 1045 ¢ +
00 1|{ny —0.4156  -3.52x 107 3428 ||m
1 0 ol{m)] [2¢ien O 0o |(m
01 OXkmg¢+| O 20w, 0 Mo+

In the above 2(;w; = 0.0542, 20w, = 0.7676 and 2C3w3 = 3.4247. Hence (g =
0.0018 and ¢, = x

0.76755 3.4247

2(455522) 0.0376

m = 0.0219 and C3 =
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w? 0
0 w3
0 O

w? 0
0 w3
0 O

w? 0
0 w3

0 O

0 [[m

200 cos(16t;
0 [fmp=I0's 0
3|73 0
0 1lm 200 cos(16¢
0 Rm2g =[0]" 0
w3 |13 0
0 {|m 200 cos(16¢
0 [fmpe=I0'{ 0
3|13 0
54193x1072
2(15.0519)
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Final EOM in modal coordinates is

1 0 ol[7'| loos42 0 o |[m]| [22656 0 0 |[m —4.32 cos(16.0t)
01 odnyt+| 0 0768 0 Kmop+| 0 30844 0 |[{mpt =1 4.64cos(16.0f)
00 1||ny 0 0 3.425|(n, 0 0 2075||n;3 —~7.46 cos(16.0¢)

EOM’s to solve are

ny + 20 w1y + w3y = —4.32 cos(16.0t)
1% + 2w, + w3, = 4.64 cos(16.0t)
N4 + 20zw3nh + wins = =7.46 cos(16.0t)

Initial conditions are zero. The solution in modal coordinates is given in appendix B for
underdamped case. Complete solution for the case of underdamped is given in appendix
B as

n(t) = ﬁz-l-élljjﬁ{ﬁ cos(@t) + 2Cwd sin(@t) — e~ B cos(wyt) + C;))—f sin(a)dt)l}h(t)
B = (a)z—(Dz),a)d = wV1-C2.

The solutions in modal coordinates are now found. Recall that w; = 15.0519,w, =
17.5624, w3 = 45.5522 and ¢; = 0.0018,C, = 0.0219 and (3 = 0.0376

3
Next step is to transform the solution to the physical coordinates using q; = E CD(]', m)n(m),
or m=1
q=[P]

In component form

g1(t) = ©(1, 1)1 (t) + O, 2)ny(t) + D, 3)n5(t)
go(t) = O2,1)n1(t) + D2, 2)my(t) + P(2, 3)15(t)
5]3(1’) = CD(?’/ 1)171 (t) + CD(?’/ 2)772(t) + @(3, 3)773(t)

Program was written to complete the computation and make plots. Here is the result
showing plots of each of the above g;(t) vs. time

function nma_ HW10_problem_3_EMA_545()
%solve for q(t) using modal analysis, by Nasser M. Abbasi

close all;

syms t;

N = 3;

k = [300 0 -200;0 500 300;-200 300 700]*1073;
M = [600 400 200;400 1200 0;200 O 800];

C = [500 300 -400;300 900 600;-400 600 1300];

wF = 16;
F = [200*%cos(wF*t); 0; 0];

[PHI,lam] = eig(k,M);

lam = sqrt(diag(lam));
cC = PHI'=*CxPHI
F = PHI.'xF;

eta = sym(zeros(N, 1));
time_constant = zeros(3,1);

for i=1:N
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end

W = lam(i);

b = w 2-wF~2;

zeta = CC(i,1)/(2*w);
wd = wxsqrt(l-zeta™2);

eta(i) = F(i)/(b™2+4xzeta ™ 2*xw ™ 2%wF~2) * ...
( bxcos(wF*xt)+2*xzeta*wxwFxsin (wF*t)- ...
exp(-zeta*w*t)* (  bxcos(wd*t)+ zeta*wxb/wd * sin(wd*t) )
);

time constant(i) = 1/(zetaxw);

q=PHI*eta;
time_constant
time_constant = sum(time_constant);

% plot the generalized solutions
lims= [-0.004 0.003;

for

end

end

-0.002 0.007;
-0.006 0.002
1;
i=1:N
subplot(3,1,1i);

ezplot(q(i), [0,100]);

ylim(1ims(i,:));

title(sprintf('q(%d) solution, time constant = %f',i,time_constant));
xlabel('time (sec)');

ylabel('q(t) Newton');

w107 (1) solution, time canstant = 40633121
o 2
=]
0
=
=2
o
_4 | 1 1 1 1 | 1 | 1
o 10 20 30 40 &0 B0 70 80 50 100
time (sec)
ik (2] solution, time canstant = 400633121
E [ T T T T T T T T T ]
3 4
: |
= 2
=0 i
_2 1 1 1 1 1 1 1 1 1
o 10 20 30 40 &0 60 70 a0 =0 100
time (sec)
w107 (3} solution, time canstant = 40.633121
2 T T T T T T T T T
5 0 |
3 2
e 1
E 1 1 1 1 1 1 1 1

| 1
a 10 20 a0 40 50 G0 70 a0 a0 100
time (sec)

From above, the time to reach steady state is about 90 seconds based on looking at g1 (t)
since that takes the longest time to each steady state out of the three coordinates.

The time constant for each 7;(t) solution was calculated giving 7, = L —37.4471 and

G
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T, = 2.602 and 73 = 0.58. The first time constant 7; = 37.4 seconds dominated the result
in the response in the physical coordinates.

This means the dominant time constant found in modal analysis is one to use to estimate
how long it will take for the response in physical coordinates to reach steady state. Each
modal solution contributes to each physical solution. The one with the longest time

constant affects more than any other mode how long the physical solution takes to reach
steady state.

2.11.5 Problem 4

4.47 The mass matrix, natural frequencies, and
unnormalized vibration modes for a two-degree-
of-freedom system are

S =3
[M] = kg
-3 4
w, = 15.68 rad/s, w, = 40.78 rad/s
1 R
03 =1 366 1% T 10366

The modal damping ratios are estimated to be
, = ¢, = 0.08. The system is subjected to a har-
monic excitation for which the generalized forces
are Q, = 50 sin (201), Q, = 100 cos (20r) N. Deter-
mine the steady-state response of the generalized
coordinates. Express the result in the form
q, = RelY, exp(iZOI)N,' and give the values of Y,
and Y.

5 -3 1 1
[M] = kg,w; =15.68 rad/sec,w, = 40.78 rad/sec. | = 2=
4 1.366

~0.366
T
1 | |5 -3 1
by = = 4.2678
1.366| [-3 4 ||1.366
T
1 5 -3l 1
iy = =7.7318
-0366| |-3 4 ||-0.366

Normalized eigenvectors are

11 1| [o048406
YTV Va2678 |-0366(  |-017717
11 1| [035963
2T Vl° 77318 |-0366| |-013163
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Hence
048406 0.35963 ]

-0.17717 -0.13163

1568 0 |[m o 50 sin(20¢)
0  40.78%[| 2 100 cos(20t)

24586 0 |[m 24.203 sin(20.0t) — 17.717 cos
0  1663||n, ~ 117.9825in(20.0¢) - 13.163 cos

[©] = [12] = [

EOM in modal coordinates is

1 o|(ny . [P00905:68) 0 m .
0 1||ny 0 2(0.08)(40.78) | | 5

1 ol|m’| 2509 o m
+ +
0 1||ny 0 6.5248||n

The two EOMs to solve are

24.203 .
1 () + 250977, () + 245.861; () = 24.203 sin(20¢) — 17.717 cos(20¢) = Re{ : 1201‘} + Re{-17.717¢2}

17.982 .
1y (£) + 6.525m5(t) + 1663n,(t) = 17.982 sin(20¢) — 13.163 cos(20) = Re{ lZOf} + Re{-13.163¢2}

Hence

N7 (t) +2.509n] () + 245.867;(t) = 24.203 sin(20¢t) — 17.717 cos(20t) = Re{(—24.203i -~ 17.717)ef20f}
5 (t) + 6.52515(t) + 16631,(t) = 17.982 sin(20¢t) — 13.163 cos(20t) = Re{(—17.982i -~ 13.163)el’20f]

In matrix form ‘
[1” + [CY + [K] =Re{Fe|

Where @ = 20 rad/sec. F is the complex amplitude of the input
F = -24.2031 - 17.717
-17.982i —13.163
Using method of transfer functions (since steady state response is needed), response is
= Re{X¢"'}

Where
Fj

-@% + 2ZC](U]CD + (1)]2

X; =

Steady state solutions in modal coordinates is

-24.203i - 17.717 .
m(t) = et
@2 + 2.5088i® + 245.86

24203 -17.717 .
~400 + 50176 + 245.86"

= Re{(5 77 %1072 + 0.176i)e @f}
~17.982i —13.163 ef@t}
{

na(f) = { 2+ 6.525i + 1663
{ ~17.982i —13.163 eimt}

—400 + 130.5i + 1663
= e(1178><102 1.302 x 10~ )l@f}

262



2.11. HW10 CHAPTER 2. HW’S

Solutions are transformed back to normal coordinates

q = [?]
Hence

gi(t) = n)n(n)

(i
CD( ) Re[X(n)el‘Dt}

2
z ( )X(n)eia)t

Lo
5

0.48406 0.35963
Since[®] = then
-0.17717 -0.13163

g1(t) = Re({0.48406(5.77 x 1072 + 0.176i) + 0.359 63(~1.178 x 1072 - 1.302 X 1072i) }¢2")
g2(t) = Re({-017717(5.77 x 1072 + 0.176i) — 0.131 63(~1.178 x 1072 - 1.302 x 102} e’2°*)
or

g1(t) = Re({2.369 x 102 + 8.051 x 102e2")
ga(t) = Re({-8.672 x 1072 — 2.947 x 1072}

Therefore

Y, = 2.369 X 1072 + 8.051 x 1072
Y, = —8.672 x 1073 - 2.947 x 1072

sectionProblem 5

5.) (Covering material from Chapter 3)
A uniform rod of length L and mass my; is attached to a cart having mass m; by means of a
spring k. A viscous damper ¢ resists the motion of the cart.

i, —|

[SIIS]8]

a.) Let F{t)=Re[Fexp(imt)]. x(t) = Re[Xexp(1@t)] and 8(t)=Fe[Yexp(1ict)]. Find
analytical expressions for the complex transfer functions X/F and Y/F.

b.) Find the magnitude and phase of the response of x and 6 when the system 1s forced at
its natural frequencies ©=m; and @=w>. Compare these values to the eigenvectors for
modes 1 and 2. Use the following numerical values: mj=m>=1 kg_ k=3 N/'m. L=1 m_
=981 m/s"2, and c=0.1 N-s/m.

c.) Plot the transfer functions Y/F and X/F over a range of frequencies encompassing
both modes of vibration. Use the plot to determine at what frequency mo acts as a
vibration absorber for the rod. How does that frequency compare with the natural
frequency that the system would have if the rod were held fixed: e = (k.-"m_v}m 7S
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2.11.5.1 Part(a)

First step is to determine EOM. The kinetic energy T is

1 1
T = E1(9’)2 + Emz(x')2

I= %mle.Assuming small angle, stiff spring approximation and zero gravity datum at
the level where pendulum is hinged, spring potential energy V is

2
1 L
V =— — —9
Zk(x 2 )

1 12
= Ek(xz + ZGZ - .X'LQ)

12 1 kL
—_ n2| = 2| — __
—Q(Sk)+x(2k)+x6( 2)

Stiffness matrix due to spring is

2
Ly K
4 2
Kspring =
o
2
. o L PV L B
Potential energy due to gravity is Vy = —mg> cos 6. Hence Vo, = == = (mgz cos 6) =

0=0
mg%. All other terms are zero. The stiffness matrix due to gravity is

L
mg= 0
Kspring = 2
0 O
Combined stiffness matrix is
L_Zk + ng _k_L
4 2 2
K =
kL
-—= k

EOM is

L2 K L kL
I 0 6”+z+mg5 “Z2l)o|  |Qe
0 my||x” I | Y B o)
2
Generalized forces are now found. Qg = FL since F is only external forces acting on the
first d.o.f. O and the work done by this force is FL6O for small virtual angle. For Q, work

is done only by damper and acts to remove energy, hence negative in sign. Q, = —cx’.

The above becomes

? L kL
I oller] |zk+me; —S|le FL
+ =
0 my||x” _kL e [\x —cx’

2

L? L kL
1oojjer] foofer| |Tk*masz 7 |[e| _[FL
0 my||x” 0 c||x _kL e [\x o

2

Rearranging
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Each EOM is
L2 L ) kL

16”+(Zk+m1g§ G_TXZPL

kL
myx" + cx’ — 79 +kx=0

12
Units checking: First EOM. each term must have units of torque. k6 have units of

torque OK. mg%@ have units of torque OK. kLx have units of torque OK.

second EOM Each term must have units of force. cx’ have units of force OK. kLO have
units of force, OK. kx have units of force, OK.

Transfer function is now found Let x = Re{Xei‘Dt}, 0 = Re{Yeith }, F= Re{ﬁei@t}.Substitute
in the above EOM

Re{[(—IcDZY) + (Lzzk + ngg)y - %X]ei@f} = Re{FLe™|

kL .
Re{l—mchZX +icoX — ?Y + kX]e’@t} =0

Simplify
—Ich+L—2k+m EY—k—LX—ffL (2.107)
TR DY '
, kL
(-mp@? + ica> + k)X = Y (2.108)

The above two equations are solved to obtain the required transfer functions X/F and
Y/F . To obtain Y/F, the second equation solved for X in terms of Y
kL

X = 2
—My@? + icd + k

X in first equation is replaced by the giving

kL

L2 L kL .
1% + —k +mye=|Y - — 2 Y = FL
( 4 ngz) 2 —my@? +ico + k

k212
L? L -

FL

—10? + —k + myg— — Y =
g T8y —My@? + icd + k

Hence
1 N

F
mpg k21/4
2 —my@%+icd+k

Y =

1 L
_Z 24k
( 3m1Lca +4k+

To obtain the transfer function X/F, the second equation is solved for Y in terms of X

(-my@? + ica> + k)
kL2

This is substituted in the first equation giving

- sz L (—mzmz +ic@d + k)X kLX .
0% + —k + myg— -—X=
( 4 ngz) kL2 2
(—%mchaz + %k + %)(—mzwz +ic@d + k) KL A
- —|X=FL
k/2 2
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Hence
kL "
X = F

1 L .
(—gmchDZ + gk + %)(—mzwz +ico + k) — k2L

This complete part(a). These are the analytical expressions for the transfer functions.

2.11.5.2 Part(b)
Letm; =my=1kg k=3N/m,L=1m,g=9.81m/s? ¢ =0.1N-s/m.

A program was written to plot the magnitude and phase spectrums of x(t) and 0(t)
using the above numerical values. This was done for a range of forcing frequencies to
cover both natural frequencies and beyond. Natural frequencies are found by solving

the eigenvalue problem det([K] - a)Z[M]) =0

wy =1.1308 rad/sec
Wy = 4.3228 rad/sec

The magnitude and phase of each transfer function are evaluated when @ = w; and
when ® = w,.F = 1 was assumed since its numerical value was not given. Result is
shown below. From these plots, magnitude and phase values are determined at the
natural frequencies.

x(t) = Re{Xe®!
o(t) = Re{Yeith]

Table of results

response | magnitude at w; | phase at w; | magnitude at w, | phase at w,
x(t) 4.25 ~830 2.62 131.7°

o(t) 2.55 -80° 11.5 -500

ratio 4.25/2.55 =1.6667 11.5/2.62 =4.389 3

Plots used to obtain these results

magnitude spectrum of X, wy = 1.130817, w, =4 322780

forcing frequency (radfsec)

phaze spectrum of X, wy; = 1.130817, w, =4 322780
5 3 ! ! I g ! ;
g . : ; I 1 iy

i i i
a 1 2 3 4 5 5 7
farcing frequency (radfsec)

'
[ ]
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magnitude gpectrum of Y, wy, = 1591324 w, =4 175247

15 J ; . !
[n]| S ............ ............ ............ .......... ............ .......... i
i R ...... .I ..... .......................... | ERRR R R RN
____ﬁj\kj : )
a i [ ; il I i
a 1 2 3 4 ] 5 7
forcing frequency (rad/sec)
phase spectrum of X wy; = 1591324 w, =4 175247
5 T T T I

arg(¥)

3 4 5 5 7
forcing frequency (rad/sec)

The function used to generate the plots

function nma_ HW10_problem 5 EMA 545 spectrum()
%hplots the spectrums of problem 5, HW10, by Nasser M. Abbasi
close all;

.1,
.81;

I

0
9
1
= 3;
1
1
1

N P 0e o
1l

b

b

m2 =

b

M = [1/3*m1*L"2 0;0 m2];
K = [L‘2/4*k+m2*g*L/2 -kxL/2;-k*xL/2 k];
C = [00;0 c];

[PHI,w]
lam

eig(K,M);
sqrt(diag(w))

I = sqrt(-1);
= @(wf) ((k*L)./((-1/3*ml*L*wf. 2+L/4xk+m2*g/2) .* (-m2*wf . 2+Ixc*xwf+k) - (k~2*L)))*F;
Y = 0(wf) (1./((-1/3*ml1*Lxwf. 2+L/4xk+m2*g/2-( k™2*L./(-m2*wf . 2+I*cxwf+k)))))*F;

<
|

N = 2;

for i=1:N
figure(i);
wf = 0:0.1:6.5;

if i==
name_='X"';
tf_ = X(wf);
else
name_='Y';
tf_ = Y(wf);
end

subplot(2,1,1);
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plot (wf,abs(tf_));

hold on;
line([lam(1) lam(1)],[0 5],'LineStyle','-.");
line([lam(2) lam(2)],[0 5],'LineStyle','-.");

title(sprintf('magnitude spectrum of %c, $\\omega_1=)f$, $\\omega_2=Yf$',name_,lam(1
xlabel('forcing frequency (rad/sec)');

ylabel (sprintf ('$|%c|$' ,name_), 'interpreter','latex', 'FontSize',12);

grid;

subplot(2,1,2);
plot(wf,angle(tf_));
line([lam(1) lam(1)],[-5 5], 'LineStyle','-."');
line([lam(2) lam(2)],[-5 5], 'LineStyle','-."');
title(sprintf ('phase spectrum of X, $\\omega 1=%f$, $\\omega 2=Yf$',lam(1),lam(2)),"’
xlabel('forcing frequency (rad/sec)');
ylabel (sprintf ('$arg(’c)$' ,name_ ), 'interpreter','latex', 'FontSize',12);
grid;
end

end

Eigenvectors @, and @, are now found, using modal analysis, which de-couples the
EOM. The ratio of one component of the same eigenvector to its other component is
found and compared with the result found above. The eigenvectors found are

—0.5446
(Dl =

{—0.9493}

—-1.6442
(Dz =

{ 0.3145 }

The ratios are 0.9493/0.5446 = 1.7431 and 1.6442/0.3145 = 5.228 0. Compare these to the
ratios found

response | magnitude at w; | phase at w; | magnitude at w, | phase at w,
x(t) 4.25 -830 2.62 131.79

o(t) 2.55 -80° 11.5 -50°

ratio 4.25/2.55 =1.6667 11.5/2.62 =4.3893

These ratios are close to each others. Ratio ®1;/®,; shows how much one dof (1) will
change relative to dof (2) in mode j

2.11.5.3 Part(c)

Transfer functions are plotted in part(a). From magnitude spectrum of Y it is seen that

k

|Y| = 0 when @ between 1.5 and 2.0 rad /sec and also when @ > 6 rad/sec. @ 4+ = e

na

\/§ = 1.7321 rad/sec. This agrees with range found in plots. When /i = 1.73, top

mass acts as vibration absorber, and rod will not oscillate when F(¢) is at this specific
frequency.
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2.11.6 Problem 6

6.) Consider Exercise 3.45 and 3.46 in the text (you solved
this in problem #3 in HW#6). Use the steady-state
displacement that you computed using FFT techniques for T
= 3T/, to compute the maximum stress in the spring.
Assume that the spring is a cantilever beam (in bending) f (1)
modeled after one of the pillars supporting the ERB. which — m
have length L=40m. rectangular cross section with height h.
equal to the width b=h=0.6m. and is constructed from a
material with modulus E=30 GPa and ultimate tensile
strength =40 MPa. (The mass of the beam is assumed to be
included in m, so its density is not needed.) Let the mass
be such that the natural frequency of the mass-spring system
is 0,=0.2Hz. What 1s the amplitude of the force. P. such that
the beam fails due to the dynamic load? Compare that to the
static load required to cause the beam to fail (also in
bending).

X—>

From HW®6, problem 3

Et O<t<rt
fH=r

0 T<t<27T

Let y.(t) be the solution from problem 3 found using FFT technique. Let the full solution
for deflection of the above pillar be

x(v.t) = y®OY)

y(t) is the time dependent (dynamic) part of the solution. This solution is y,(t) found

in problem 3. l,b(y) is solution due to static loading. Also called the shape function. For
cantilever beam with static force P at its end, deflection curve due to static loading P at
end is

Y(x) = (3Lx - X )

d? )((x t) M(x,t)c

- where c is the

Internal bending moment M(x t) = EI——~ and direct stress 0 =

section modulus. Assume ¢ = E' For yleld, let 0 = 40MPa, then

M, b = =
C

2
Eld x(x, t) _ ol

dx?

_ 143
I—Ebh.

Solve for P at yield
p L yieldI

EI
Oyieldl
p= yield EI

h
Yss (t) E L
269
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Yss(t) from problem 3 has maximum value of 1.8 at t = 10 sec. Given numerical values in
the problem and using this maximum value of y(t) then P can be found from above.

I am not sure this is the correct approach to solve this.We did not have any practice or
examples on solving this type of vibration problem before. Need more time to study
this subject.
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2.11.7 Key solution for HW 10

Homework #10
EMA 545, Spring 2013

For all of these problems you may use Matlab or some other package to find the natural
frequencies and mode vectors and to mass normalize the mode vectors (if needed).

1.) Exercise 4.8 from Ginsberg. (Note: the spring constants are defined such that the
frequencies given are the natural frequencies that each spring-mass system would have if
it were attached to a rigid base. Notice that there is not a simple relationship between
those frequencies and the natural frequencies of the system as a whole.)

2.) Exercise 4.30 as given in the text. Repeat the analysis for k=2mg/L and graph that
response as well. (Questions to consider: What do you notice about the natural
frequencies of this system in each case? How does that affect the way the response
looks? Why?)

3.) Exercise 4.43 from Ginsberg. How does the time required to reach steady state
compare with t.=1/(¢,wy) for each mode, r=1,2,3?

4.) Exercise 4.47 from Ginsberg.
5.) (Covering material from Chapter 5)

A uniform rod of length L. and mass my is attached to a cart having mass m, by means of a
spring k. A viscous damper c¢ resists the motion of the cart.

\\ /;e
X
L2
k C
W
—_—000)
L2
/
m, RO

a.) Let F(t)=Re[Fexp(imt)], x(t) = Re[Xexp(iwt)] and B(t)=Re[Yexp(iot)]. Find
analytical expressions for the complex transfer functions X/F and Y/F.

b.) Find the magnitude and phase of the response of x and 6 when the system is forced at
its natural frequencies ®=wm; and w=w,. Compare these values to the eigenvectors for
modes 1 and 2. Use the following numerical values: m;=m,=1 kg, k=3 N/m, L=1 m,
09=9.81 m/s"2, and c=0.1 N-s/m.
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¢.) Plot the transfer functions Y/F and X/F over a range of frequencies encompassing
both modes of vibration. Use the plot to determine at what frequency m; acts as a
vibration absorber for the rod. How does that frequency compare with the natural
frequency that the system would have if the rod were held fixed: wcart = (k/m2)1’2 ?

6.) Consider Exercise 3.45 and 3.46 in the text (you solved
this in problem #3 in HW#6). Use the steady-state
displacement that you computed using FFT techniques for t
= 3n/w, to compute the maximum stress in the spring.
Assume that the spring is a cantilever beam (in bending) f(t)
modeled after one of the pillars supporting the ERB, which —
have length L=40m, rectangular cross section with height h,
equal to the width b=h=0.6m, and is constructed from a
material with modulus E=30 GPa and ultimate tensile
strength =40 MPa. (The mass of the beam is assumed to be
included in m, so its density is not needed.) Let the mass m
be such that the natural frequency of the mass-spring system
is wn=0.2Hz. What is the amplitude of the force, P, such that
the beam fails due to the dynamic load? Compare that to the
static load required to cause the beam to fail (also in
bending).
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Exercise 4,8

_JYI My 0D e, = 290, m4=300 ky
~ . -
ol k, =« , w,= 90, w,= 50 wy=0reds
!
> =V, 4, +Y>
"‘u‘“" # U;‘:oo ’0° o
[M] =[ 0o =00 O
b o o <00
Moy JYS =

k‘ ‘K‘ o
-K, Kitks -k«
° -k kt*ks

'96 "a‘ O -
=S| -l 6.6 -2 -K.Uo
o -9 I$¢0

I‘s:ﬂ_ ‘ [ K ]

Drode all ¢pustions by oo
- j600 -w" -1600 o ¢, 0
[["]- w f“]‘pd 1 -o0 ¢600- 2wt ~5000 ¢\$__. 0
o - 500p  /5800-3w"
Chor €q: (1600 " X¢e00-20" X15800- 30°)
-(/coa)1'('5'600-340’)-Gaoa)z(/boo—w‘) =0

-

0

6 wW-6116>)w*+153.84(10*)™ - 8C.5(¢07) =0 —
w'=7817 2752,8, c.24.2
Set &, =t ¢ use first fwo es

(600 ~wj* [—lbl)o o ] *0;,'}_%0}
-2~ - “10
é,‘b 00 T | 6o00-24 5000 b,

-t
@ - 16 00 (]
LJ\

. —(e00 +(6600-2c4) b,
/600 £ @35 L

5000
Thus |
wi= 28,00 relss, T4} ={S7953
: i
wo=952.47 ru(/b‘/ Ebt}=€:g.’7‘z_?37 <
i
Wy =839 radss T4, 1= {‘33;9";",}
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é«»c«se 4,30

2126 ,8.%6,2,=8,

fe St T4 e6> 8
8, R & T, = £ wrt!
AV :'t]sp Va,
H’ ﬁ Vip= 2k ¢ b
Ny D, v L(8,-6,), 8,:L(8,-0)

Vsp=2 LLT[(6.-8) ¢(8,-63")
3 -LLL‘['G'-\«-zo,, +0"—26,8,-26,6;]
(K“),-, = #LI (K'u,)sp = 1“0 (k;;),'p =JLL
(Krv s’——/‘b ;(Kw‘s)SP (K,g)
s, =- Wl;_" (4059 + Cos &, + Co:&-,)
(Ku) = (3\/»’ )' - M;E ,S/—n,/a//y (K,,_),,_:(K.,s)’,_: m’g-,

?6‘
LKl‘L)’r = (39,39-.) =0 ?—(K‘L‘S)’/- = (kt 3)’,_

éev/ k£ =0. U5m;L
0.5s —-©.o0F O ]

[K’] [KSr ] + [ k’l] M’L[’o oS 9,60 -0,05
o -0.03 0.%7%

Evaluale wy 4 LF]  Scolmy Frcbor G vy 13(2)%
Setd €33 Ccﬂh? L FRDALY

Jaihial eonditions Eg'} to0} ¢§j'§ i }N1/5 @f=0
Thas {1}=0 ¢ Tq3=CTLMILY] oF =0
Compleme~try so0lulior 7, = = A, w;(w().\t Smlw}f)
Sadis€y 1n 1tal apord i foor = 4 =0, 5 = )‘{J(o)/w/—
E(/a/ualc 7 al ofiscmede ¥, covem ,ﬂgu,‘p,‘/cmlv]
periods ['z]a FEntéD} 5*(61-»7}'»'3

m‘l r;’l = 07[. 'Z] , Rol—gﬁfoqj as &« L)“'o"dq
of (2)%4
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HW 4.30 Solution
M.S. Allen
Spring 2013

Using the equations of motion and modal responses derived on the previous page, the
following Matlab code can then be used to find the transient response:

M = eye(3)/3; %*mL"2
K=[1-10; -12 -1; 0 -1 1]*0.05 + eye(3)*0.5; % Kspr + Kgrav

[phi,lam] = eig(K,M);
wns = sqrt(diag(lam));

% Sort & Normalize Eigenvectors to unity modal mass and Check
Orthogonality

[lam_sort, lam_indx] = sort(diag(lam));
wns = sqrt(lam_sort) % *sqrt(k/m)

phi_sort = (phi(:,lam_indx));
mu = phi_sort. "*M*phi_sort;
PHI = real(phi_sort*sqgrt(inv(mu)))

check_orth = norm(PHI."*M*PHI-eye(size(phi)))

n_0 = [0; 0; 0];

nd_0 = PHI"*M*[0; 2; 0]./wns % *m/k
t = [0:0.5:80];

q = PHI*[nd_O0(1)*sin(wns(1)*t);

nd_0(2)*sin(wns(2)*t);
nd_0(3)*sin(wns(3)*t)];

figure(l)

plot(t,q(l,:), t,9(2,:), t,9(3,:), "."); grid on;

xlabel ("time t*(k/m)”0"."5%); ylabel("Displacement (m)*k/m®);
legend("\theta_1", "\theta_ 2", "\theta_3");

title("Response to Initial Velocity in \theta 2%)

% To animate the solution
%{
figure(2)
for i1 = 1:1:length(t);
st = 50;
plot([-0.5 0.5].", [0 O0].","0:",[-0.7 0.7]-", [O 0]-","k");
line([-0.5 -0.5+10*sin(q(1,11)/st)].[0 -
10*cos(q(1,ii)/sf)],"LineWidth", 4); grid on;
line([O 0+10*sin(q(2,1i)/st)],[0 -10*cos(q(2,ii)/sfF)], "LineWidth",
4); grid on;
line([0.5 0.5+10*sin(q(3,11)/sf)],[0 -
10*cos(q(3,i1)/sfF)], "LineWidth", 4); grid on;
xlabel ("X-position (*L)"); ylabel("Displacement (m)*k/m");
title(["Time (W/k)™0.5 = * num2str(t(ii))])
axis([-0.7 0.7 -12 2]);
movl(ii) = getframe(2);
end
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movie(movl,2,20)
%}

The natural frequencies and mode shapes are (only the first and third modes are excited):
wns =

1.2247
1.2845
1.3964
PHI =
-1 -1.2247 0.70711
-1 -7.4506e-09 -1.4142
-1 1.2247 0.70711

The response is given below for k=0.05 mg/L
Response to Initial Velocity in 0,

h

i

|
18F--H--4----g-195----f-- 414

|

|

:,

|

1.5

Displacement (m)*k/m
o

e [

time t*(k/m)°->

The response shows a beating phenomenon, since each bar is influenced by modes 1 and
3 and the modes’ frequencies are close (1.22 and 1.39 rad/s).

On the other hand, for k=2*mg/L, the natural frequencies differ by a factor of more than
three and the response does not look as simple:

wns =
1.2247
2.7386
4.4159
PHI =
-1 -1.2247 0.70711
-1 -1.2905e-08 -1.4142
-1 1.2247 0.70711
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Response to Initial Velocity in 0,

Displacement (m)*k/m

0 10 20 30 40 50 60 70 80
time t*(k/m)°->
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Exercise 4.43

600 400 200 300 0 -200 500 300 -400
M =400 1200 O K := 1000/ 0 500 300 C:=| 300 900 600
200 0 800 -200 300 700 -400 600 1300
Eigensolution
A = genvals(K,M) ¢ = genvecs(K, M)
) ( < T > \
¢ = submatrix \rsort\stack\A~ ,¢/,1/,2,rows(A) + 1,1,rows(R)
A = sort(A) o = \/;

KT :[226.558845 308.438284 2.075003-103]

mT =(15.051872 17.562411 45.552199)
-0.586168 -0.806945 0.717
¢ =| 0.549759 -0.585395 -0.386503

ji=1.. A
20.595123 -0.078432 -0.580109 ] rows(2)
. <j> <j>
o7 - if] ¢, 20, ¢ - ¢
. \T . . \T .
<> <> [ <> <j>
j‘<<¢ ! > ‘M-¢ ! >1,1 j <\¢ ! > ‘M-¢ ! >1,1

0.021637 0.023197 0.037332 00 0
® =[-0.020293 0.016828 -0.020124 q)T.M.q) - identity(rows(A)) =[0 0 0
0.021968 2.254691-107> -0.030205 000

Light damping approximation T
C:=0 COD

0.053409  -0.052984 -0.413171

C' =[-0.052984  0.768463  2.49957-10°

-0.413171 2.49957-107°  3.428128

= L T -3
i 7.0 ¢ =[1.774153~10 0.021878 0.037629]
]
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Unit cosine response from Appendix B

<co nat2 - 0)2> cos(t) + 260 o-sin(o-t) ..

+—exp<—§-m nat't>' <m nat2 - 0)2>- cos(m nat !l - Cz-t>>
g < 2

2\ . 1 2
+ O pat O )sinfo ool - 0t

1 -

Ctrans<t’°)’°) nat’c> =

(S
Jx
)

2\2 2 2 2
<°°nat -0 +4:C 0 a0 ® ]

Generalized force coefficents T
F:=(200 0 0)

Transient solution for modal coordinates when » = 16 rad/s:

4 1 2= [T max
Tmax = —F— At = Z‘m @ P:= Cell\ v
minl(C-w)) e
p=1.P tp =(p-1)-At P =4.344.10°
N p = q)l,j'Fl'ctrans<tp’16’(°j’cj> q=®mn
0.005

Ghp 0
-0.005
t
p
0.01 T T T T T T T
q27p —
001 | | | | | | |
0 20 40 60 80 100 120 140 160
t
p
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0.01 T T T T T T T
0.005 -
9Bp 0 7
-0.005 ]
-0.01 | | | | | | |
o 20 40 60 80 100 120 140 160
t
p

0.01 | | |

300 302 304 306 308 310 312 314 316 318 320

t
p

T2n)

\ 16
Response seems to periodic at ®=16 rad/s after 300 forced cycles

300 21_2 — 117.809725
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Exercise 4.47

M| 7 15.38
= W, = .
-3 4 1 ®, = 40.78
. 1 1
11366 -0.366 5y = 0.08 g, = 0.08
i=1.2
. <j>
o> . ¢ 0.484057 0.359633
. ¢) =
T . 0.661222 -0.131626
<j> <j>
j<¢ M¢ 1,1
50
Fu=|1
100 =20

-0.203556 + 6.975392i-10"°
-0.270729 + 0.0176391

Y:=®'X Y:
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2.12.1 problem description

Homework #A1
EMA 545, Spring 2013
Instructions:
e If you scored 23 or below on Problem #2 on Exam #1, do Problems 1, 2 and 3.
e If you scored 23 or below on Problem #4 on Exam #1, do Problems 4 and 5
e If neither of those criteria apply to you then you do not need to turn in this assignment.

When working out your solutions to the following problems, you must derive your answers
starting from the following. You may not use any equations from the book without first deriving
them from these basic principles:

The general solution to an underdamped SDOF system

X+ 20w %+ a,°x =0

x(t) = Re(Ae’g”’"‘e"”ﬂ‘)

where @, = @,[1-¢” and A is a complex constant.
You are free to use Appendix B as needed and the fact that the forced response of a system is
X(t) = X,c +Xe
Where xic and xg are found in Appendix B for a variety of forcing functions.
f(t)= Re(Fe“‘") 5 X)) = Re(Xe“"‘)

The half power points in a transfer function occur at frequencies ® = ®peaktCmn

Problem 1: 3.1 from Ginsberg. Begin by writing the equation of motion for T f(t)
the system (shown to the right after replacing z(t) with q(t)). L
z

Problem 2: 3.11 from Ginsberg. Begin by writing the equation of motion for
the system (shown to the right after replacing z(t) with x(t)).

Problem 3: (3e2)

The equations of motion for the 2DOF system studied in class are given

below. If the applied force is f(t)=Fcos(wt), then the response of both

coordinates x; and x, will also be harmonic. Use this fact to derive the transfer function between
the force F and the response X.

m 07](%) [2k —k][x 0
+ =
0 m|(%] [k k]||x f(t)
Problem 4: 2.52 from Ginsberg. Check your answer by comparing it to the solution from ode45
in Matlab.

Problem 5: 2.54 from Ginsberg. Choose values for the parameters and check your answer by
plotting the response and comparing it to the solution from ode45 in Matlab.
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2.12.2 problem1

A system has mass M = 20kg and w,, = 100 rad/sec. It is observed that steady state re-
sponse is g = 20 cos(110t — 1.5) mm, where t is in seconds. Determine harmonic excitation
causing this response for ( = 0and { = 0.4

Let the harmonic excitation be .
F(t) = Re{Fe!)

where F is its complex amplitude. Also let
q= Re{Qei“)t]
be the steady state response. We are given that g = 20 X 1073 cos(110¢ — 1.5), therefore
q= Re [20 % 10—3€i(100t—1.5)]

= Re [20 % 10—36—1.51'61'1001‘}

Therefore .
Q =20 x 107315

But the transfer function for second order system is
O = F 1
k(1-12) +2iCr

w .
where r = —, hence we can now solve for F from the above.

Wy

2

F=Q(k((1- ) +2icr))

But k = Mw? hence

F = O(Mw2((1 - ) +2i07))

When C =0 we find

2
. . 110
F=20x10"3¢"15[20 x100%|1 - | —
¢ [ 100

=20 x 1073¢7151(-42000.0)
= —42000.0 x 20 x 107 3¢15

= —840.0e1>
Hence
F@t) = Re{ﬁeiwt}
= Re{-840.0¢7157¢i10}
= Re{-840.0¢/100:-15)}
Therefore

F(t) = -840 cos(100t — 1.5)
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When C =04 we find

F=Q(Ma?((1-7?) +2iCr))

2
. 110 110
=20 %1073 1% 20 x 100%||1 - [ — 2(0.4) —
0x 1073 (Ox 00 (( (100)]+12(04)(100)]]

= 20 x 107%1%(20 x 1002(-0.21 + 0.881))
= 4000e~1%(-0.21 + 0.88i)

j jtan~! 88
= 4000e—1-51(\/(0.21)2 +(0.88)%¢" (_0,21))

In[4] := ArcTan[-0.21, 0.88]

Out [4]= 1.80505

Hence
F = 4000e715/(0.90471¢11-50505)
— 3618.88_1'5i+1'80505i
= 3618.8¢9-30505
Therefore
F(t) = Re{Fei!}
— Re {3618'860.30505iei110t}
— Re [361 8 8i(100+0.30505) }
Hence

F(t) = 3618.8 cos(100t + 0.30505)

2.12.3 Problem 2
3.11 Measurement of the steady-state response c_)f
a one-degree-of-freedom system to a harmonic
excitation Fcos(w?) indicates that at a frequency
of 100 Hz, the response is x = 4sin(w?). It also 1s
observed that 105 Hz is a half-power point.

(a) Determine the phase lag of the response rela-
tive to the excitation at 105 Hz.

(b) Determine the amplitude and phase lag of the
response at 110 Hz.

Let
P(t) = Re{Fe*!]

where F is the complex amplitude of the excitation. Hence by comparing this to P(t) =
Fcoswt = Re{Fei“’t} we see that F = F.
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When w = 2n100 then the response was g = Re{Qei“’t} = 45sin(2rt100t) hence g =

/_/Q? ; n
Re{de '2¢@t} = g = Re{4ez(“}t_5)} therefore

Q= 4e2
But, from the transfer function of second order system we know that
O = F 1
k(1-12)+2iCr

Hence

- % ! () (2.109)

u 2Cr
2 1-r2
2C271100
Wn

=—)— (2.110)
1- (27‘[100)

When w = 105Hz we are told it is half power point, which means the amplitude there is
0.707 of the maximum amplitude which occurs when r = 1. Hence

1
0. 707— =

"\/ - 2) + @) \/(1—(@)2)2+(2C(2n105))2
o1 1 (2.111)

) o)

We now have 2 equations [2.110|and [2.111] to solve numerically for C and w,, . Solving
and keeping the positive solutions results in

1

1 Ty

C = 0.0309
w,, = 640.8 rad/sec
=101.987 Hz

Hence at w =105 hz the phase is

6408 =133.305°
[ 2n(105)
( 640.8 )
In[35]:= ArcTan[1 - ((2 Pi 105)/640.8)"2, 2 (0.0309) ((2 Pi 105)/640.8)]1%*180/Pi
Out [35]= 133.305

20 2(0.0309)Z
tan~! = tan’!
1-r2)
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2.12.3.1 Part(b)
When @ =100 Hz we found from Eq[2.109|that

V(2 )

But we found that w,, = 640.8 rad/sec and C = 0.0309, hence

~ 2
E_ o (200 2(0.0309)( 2% 2
ko 640.8 ‘ 640.8

=1

4 =

= (0.28733
Atw =110 Hz
ol - F 1
ok 2\2 2
(1 3 (zmlo) ) + (2(:(271110))
Wy, Wy,
1
= (0.28733
1 (o 2 2+ 2(0.0309) 27110\
640.8 : 640.8
=| 1.6288
The phase is
27110
2(0.0309)( )
2 )
tan—l( Crz) = tan! 2= 157.798°
1-r 1 _ (1o
640.8

In[37]:= ArcTan[1 - ((2 Pi 110)/640.8)"2, 2 (0.0309) ((2 Pi 110)/640.8)]*180/Pi
Out [37]= 157.798

2.12.4 Problem 3

Problem 3: (3e2)

The equations of motion for the 2DOF system studied in class are given

below. If the applied force is f{r)=Fcos(r). then the response of both

coordinates x; and x> will also be harmonic. Use this fact to derive the transfer function between
the force F and the response X;.

m O|[x)] [2k —k]|[x] [ O
+ =
0 m|lx,] [& & |(x) |fQ)
The two equations are

mxy + 2kx; —kxy =0
mxy —kxy +kx, = f(t)

Since the responses are harmonic and the input is harmonic, then we can write

x1(t) = RefX; et}
x1(t) = Re{f(zei‘“t}
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Therefore the two equations can be written in terms of the complex amplitudes as

—mw?X; +2kX; - kX, =0 (2.112)
—maw?X, —kX; +kX, = F (2.113)
From Eq[2.117
(—ma)z + Zk) A
T sk

Substitute the above into Eq gives

2(—ma)2+2k)A . (—ma)2+2k)A
—mw #Xl—kX1+k—X1=F
2 4 2
( m-w kma) 2k)+k—ma)2 % = F
Xlsz 1

(—m2w4 — mw?22k + k% - kma)z)

Dividing the numerator and denominator of the RHS by k?, and using k? = wjm? and

. w
using r = —

Wy
2 _F 1
“E(ﬂ_ﬂzﬂ_mwz)
whm? wim wim
. F 1
' k(—r4—2r2+1—r2)

Hence the transfer function is
2.12.5 Problem 4

ubjected ¢q

P €Xcitations, o = 10 ' a
i 3w/wna[, Q) = 200 N jf ¢ = 377?5 i (”)I’h<
nat - 11¢

System mass js § g
Mine and graph the resp()nSetlat 50 rad/s. Detey. ,

Summary of method of solution: There are 2 ways to solve these problem. We will
solve it using both methods. The first method is using known standard solution for step

input, the solution y(t) is found for the period of 0 < t < z—n using zero initial conditions.

n

Next, the solution y(t) and y’'(t) is evaluated again at t = 2% These values are now used

Wy

as the initial conditions for the solution for ¢ > 3—n. The solution for t > 3 will have the

Wy

Wy
same form, but the step input now is 200N instead of 100N.

The second method as follows: Let F(#) = 100h(t) +100h(t _ z—”) or E(t) = 100h(#) +1001(f)
where f = t— i—n, then assuming the transient solution to h(t) is s(t) then the solution to

F(t) is 100s(t) + 1005(?). The second method is simplet than the first method.
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Solution using first method:

The system is
my”(8) + ky(t) = F(t)

When F(t) is a fixed input, such as a step input of magnitude F then the response is given

by

/

E Yo F
y(®) = |yo - Jcos@ut + =Esinayt +

Wy

Where in the above, vy and y; are the initial position and initial velocity. For 0 < t <1.5T),
the solution is

F F
y(t) = = cos w,t + T

F
= %(1 — cos wy,t)

Let F = Q; = 100N, and since k = ma),% then the above becomes

37
—cosw,t) O0<t<—
n

y(b) =

S—H) From the above

n

Now we need first to evaluate y(t = %n) and y’(t =

3n
y(t) = & sinw,t 0<t<—
maw,, Wy,
Hence
3m\ _ A 3y~ O Ql 2Q1
ylt = 5|1 —cosw,— 2 - cos3m) =
w,]  mw? w,) mw w?
and 3 3
y’(t = _71) = 2 sin(a)n—n) = 2 sin(37) =
Wy, maw,, " mw,
Now letf =t - iTnHence the solution for > 0 is
~ ~ Qz ~ y'(f:()) . T QZ
y(t) = (y(t = O) - na? cos w,t + a)—n sinw,t + T
(201 Q2
=|\—35 3| cos w,F+ ==
mw;  Mos k
Therefore, we have obtain the complete solution, which is
time solution
3w | Qg _ 100 . _ B
0<t< ol (1 -cosw,t) = 5607 (1 — cos 50t) = 0.008(1 — cos 50t)
v_, on 201 @ Q (100) 200 7, 200 _
t=t o (mwn )cos w,f+ == p (5(50)2 5(50)2) wy,t + ? 0.016

This is a plot of the solution. Then a numerical ODE solver is used to verify the result
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- ylt ] := Piecewise[{{ﬂ.ﬂ{)ﬂ (1-Cos[50t]), 0= t< %} {0.016, True}}l;

Plot[y[t], {t, 0, 0.8}, Exclusions + None,
PlotRange »+ {Automatic, {-0.001, 0.02}}, AxesOrigin—» {0, 0},

Frame + True, GridLines &+ Automatic, GridLinesStyle —+ LightGray,
FrameLabel -+ {{"y(t)", None}, {"time (sec)", "Analytical soclutiocn"}}.
RotateLabel -+ False]
Analytical solution
I}I};J,'D T T T T T T T T T T T T T T

ooisk N\ f

L | 1
oy 0010 ..

0005 ||

0.000

0.0 02 04 0.6 0.3

time (sec)

Now a numerical ODE solver was used to verify. Here is the result

: force[t ?NumericQ] :=

3. =
Piecewise[{{lﬂﬂ, 0< < } {200, True}, {0, t< {I}H;

force[t]
ode = y''[t] + 50*2y[t] = T;

NDSolve[{ode, ¥[0] =0, vy'[0] =0}, v, {t, 0, 0.8}];

sol

: Plot[Evaluate[y[t] /. sol], {t, 0, 0.8}, Exclu=sions + None,
PlotRange - {Automatiec, {-0.001, 0.02}}, Axe=Origin—» {0, 0},
Frame -+ True, GridLines - Automatic, GridLinesStyle &+ LightGray,

FrameLabel —+
{{"y(t)", None}, {"time (sec)", "Numerical ODE sclver solution"}},

RotateLabel & False]

Numerical ODE solver solution

0.020 — T T — — — — r
oois ) f ]
L II II f
L [ |
| |
r II II I|
L | 4
¥it) 0010 O] I II _
: | | f
r| | | 1
| | |
oo | |
0005 | b |
T | | |
L | |\ |
| 1. |
L b
Ff \/
0.000 -/ W -
0.0 02 04 0.6 0.8
time {sec)

We can see the solutions match very well.
Solution using second method:

Let F(t) = 100h(t) + 100h(t - Z—n) then assuming the transient solution to h(t) is s(t) then
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the solution to F(t) is 100s(t) + 100s(t - z—n)h(t - S)—n) From appendix B, the solution to

h(t) is given by
1

1 - cosw,t
7 (L= cosan

s(t) =

hence the solution to F(t) = 100k(t) + 100h(t - i—n) is

y(t) = 100s(¢) + 100s(t - i—”)h(t _ 3_”)

n a)n

100 100 3n 31
= 5(1 —coswyt) + 5(1—cosw,|t - —||h|t - —
Mmw mw? w, w,,

n

To verify, this is a plot of the above solution. We see it is the same as the first analytical
solution, and it is the same solution as the one using numerical ODE solver as well.

100
= 1-Cos[wn t +
vit ] o ( [ 1)
100 3 3
(I—Cos[wn (t— —)]) UnitStep[t— —]
mwn”™2 50 50

Plot[Evaluate[y[t] /. {m + 5, wn—» 50}], {t, 0, 0.8},
PlotRange &+ {Automatic, {-0.001, 0.02}}, Exclusions &+ None,
AxesOrigin -+ {0, 0}, Frame &+ True, GridLines -+ Automatic,

GridLinesStyle + LightGray,
FrameLabel -+ {{"y(t)", None}, {"time (sec)", "Analytical sclution"}},

RotateLabel —+ False]
Amnalyvtical solution

0.020
eorst [
i
A
vty 0010 F | lll |
b |
L |
0.005 1
g_mg.:fl I\/}
00 02 04 06 08
time (sec)

The input can be written as Foh(t) — Foh(t — T) + Foe P*"Dh(t — T) or, by lettingF = t - T,

the input becomes
Foh(t) - Foh(F) + Foe Ph(F)
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If the response to h(t) is s(t) and the response to e Pl is sl(f) then the response to the
above becomes

Fus(®) — Fos(E)A(E) + Fosa (FJn(D)

From appendix B, we see that

s(t) =

1-cosw,t
ool )

and

+ —sinw,t
n

sl(?) = (

m(w3 + B>

et

o

Therefore the the final response is

y(t) = Foh(t) - Foh() + Foe Ph(F)

=F, miu,% — cos w,t)h(t) — FO L o7 (1 - cos cu,{f)h(f)+
1 . B y
FOW(e pt _ (cos(a)n ) + w—n sin a)nt))h(t)
=F, ! 5(1 = cosw,t) - 5 (1 = cos(w,(t = T)h(t - T)+
mw? maw?
Pom(e‘ﬂ(t‘ﬂ - (cos(a)n(t -7+ ;—’i sin w,,(t — T)))h(t -7

To plot this, we need to choose values for parameters. Let Fy = 100, w,, = 50rad/sec, m =

5kg,p =1,T =1, then a plot of the above is below, followed by solution from numerical
ODE solver.

Plot of the analytical solution

£f0

ylt]:
m WIL
f0
m (wn® B?)

UnitStep[t - T]

5 {1 -Cos[wn t]) - 5 (lL-Cos[wn (t-T)]) UnitStep[t - T] +

]
(Exp[—ﬂ (t-T)] — |[Cos[wn (£ —-T)] —Esin[wn (C—T}]))

parms = {T—+1, B—+1, wn—>50, m—»+5, £0 » 100} ;

Plot[Evaluate[y[t] /. parm=], {t, 0, 3}, Exclusions + None,
PlotRange &+ All, AxesOrigin —»+ {0, 0}, Frame &+ True, GridLines %+ Automatic,
GridLinesStyle -+ LightGray,
FrameLabel &+ {{"y(t)"

; None}l, {"time (sec)", "analytical solution"}},

RotateLabel —+ False]

analytical solution

o015k |

0.010 1

) 0005|

I}.DI}D

N
\|| ||| |||||||

-0005 F

|,||' | | |
ll |J || || ” I || || '|\ || \
||,|

I || || ||

15

time {sec)
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To verify, this is the result from numerical ODE solver

Clear[t, y]
T=1; B=1; wn=50; m=5; £0 = 100;
forece[t ?NumerieQ] :=
Piecewise[{{f0, 0 = t < T}, {fOExp[-B (£ -T)] UnitStep[t - T], True}}]:
foroce[t]

ode = y''[t] +wn2y[t] =

so0l = NDSolve[{ode, y[0] =0, vy [0] =0}, ¥, {t, 0, 3}]:
Plot[Evaluate[y[t] /. sol], {t, 0, 3}, Exclusions - None,
PlotRange + All, AxesOrigin -+ {0, 0}, Frame - True, GridLines - Automatic,
GridlLinesStyle + LightGray,
FrameLabel -
{{"y(t)", None}, {"time (sec)", "Numerical ODE solwver soluticn"}},
RotateLabel -+ False]

Numencal ODE solver solution

ZZZ "ﬂ'nj“ """""
l \ U\ H il [
ﬁ; T

0.0 0.3 1.0 15 20 23 30
time (sec)

We can see that the solutions agree.
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2.12.7 Key solution for HW A1l

Homework #A1
EMA 545, Spring 2013
Instructions:
o If you scored 23 or below on Problem #2 on Exam #1, do Problems 1, 2 and 3.
e If you scored 23 or below on Problem #4 on Exam #1, do Problems 4 and 5
e If neither of those criteria apply to you then you do not need to turn in this assignment.

When working out your solutions to the following problems, you must derive your answers
starting from the following. You may not use any equations from the book without first deriving
them from these basic principles:

The general solution to an underdamped SDOF system

X+ 20w %+ a,°x =0

x(t) = Re(Ae’g”’"‘e"”ﬂ‘)

where @, = @,[1-¢* and A is a complex constant.
You are free to use Appendix B as needed and the fact that the forced response of a system is
X(t) = X,c +Xe
Where xic and xg are found in Appendix B for a variety of forcing functions.
f(t)= Re(Fe“‘") 5 X)) = Re(Xe“"‘)

The half power points in a transfer function occur at frequencies ® = ®peaktCmn

Problem 1: 3.1 from Ginsberg. Begin by writing the equation of motion for T f(t)
the system (shown to the right after replacing z(t) with q(t)). L
z

Problem 2: 3.11 from Ginsberg. Begin by writing the equation of motion for
the system (shown to the right after replacing z(t) with x(t)).

Problem 3: (3e2)

The equations of motion for the 2DOF system studied in class are given

below. If the applied force is f(t)=Fcos(wt), then the response of both

coordinates x; and x, will also be harmonic. Use this fact to derive the transfer function between
the force F and the response X.

m 07](%) [2k —k][x 0
+ =
0 m|(%] [k k]||x f(t)
Problem 4: 2.52 from Ginsberg. Check your answer by comparing it to the solution from ode45
in Matlab.

Problem 5: 2.54 from Ginsberg. Choose values for the parameters and check your answer by
plotting the response and comparing it to the solution from ode45 in Matlab.
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Exercss 3.1

M= R0 kg, Why =100 vad 5 = fsMuyay = 205IN/m
2 = 0.0 cos(1iob=15)mele-
= Ko CO, 02 e‘;(“"*"'ﬂ‘)] W=)1p radss
Q) = My +C g tk
Re [(= M+ Ciwtk )(0.02)es (W ))
Wt € CAM = LG Wiagp, S0

M Re (- o+ al oy w tw,a No.02)
x 'e'((u)t'-hS)]

For £ =0 € w=00"
Q=20 R [-aa o (ot-1-3]
= = -840 CosCi11ob-1.5) rtw vy,
For $ =0 .4 €w=11/0 read/s!
Q=20 e [ (2000 ¢8600()(0.02) e s Cot-1.5)]
= Re [F®40+3520¢) o (1o k=1:5)]
= Re [3 etaer loﬁosle'&(uolw-:.‘:)

= = 236(9 aos (1ot ip 305s/)

(R
o

Buf
QR (t)

' £

WA-)
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E&C"CIS(

2.52

200N | - - Q(¢) =100 h(#) +100 h(#- 327 )
,w,,L__(* myg thky =@,

AsScme ?(0)= 7'C0) =0

o Let U(H) be dhe wait skep respoase,
g =100 [ule) e ule- 2T )}
Aat
M:=5 ® ot = 50
0 = (1 V(60 = 100-{u(t) +ult- 2™
u(t) := > < - cos<(o nat't/>'(t> ) q(t) = Ju(t) +u't-
M-® ot ® pat
-1 10
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0.02 I I I I I I
0.015 |
at,) 0.01 - |
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2.13.1 problem description

Homework #11
EMA 545, Spring 2013

Problem 1.)

Consider the N-DOF system modeled by the system of equations

[vJigh+[cla}+ [k Jia) = {o}

with [C] matrix given by:

261t 0 0o - 0
0 26,5
[c]=[M]@] o 0 [@] [a].
: . 0
0 0 Zoywy

[f we transform to normal coordinates using {q} = [cb]{r] } show that the N-coupled
equations transform into N uncoupled differential equations of'the form

: 2 \T . AT
i +20j0m+0m; = {d)” o} j=LN
Problem 2.)
The 5-DOF system shown below can be thought of as a lumped-element approximation of a

fixed-free elastic bar. (This is similar to Example Problem 4.4, which treats a fixed-fixed
bar, and similar to example problem 7.2, where the exact solution is derived.)

sl il st e

k, Kk, k, ks

F(t)
e

In parallel with each of the springs k; which are drawn, there are viscous dampers ¢; which
are not shown. The equations of motion for this system are easily found to be:

[m]X+[c]x+[k]x=F
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where [m] is a diagonal matrix having entries m;, and [k] is the banded matrix:

(k1+k2) X2 0 0 0
k2 (k2+k3) k3 0 0
0 K3 (kK3+kd) k4 0

0 0 k4 (k4+k3) kS

0 0 0 &S k5

The damping matrix has the same form as [k|, but with viscous damping coefficients ¢; in
place of stitfhess coefficients k;. The forecing vector F is a 5 by | vector of zeros, except for
the last entry: F=[0 0 0 O F()]~

The numerical value for k, through ks 1s 1 N/m, the numerical value of k; =2 N/m, the
numerical value for m; through ms is 1 kg, and the numerical values for the viscous damping
coefficients ¢; = 0.1%k; , =1,5 (in units of N-s/m).

(a) Find the natural frequencies and mass-normalized modes of the system.

(b) Find the magnitude and phase of the steady-state response xs(t) assuming the forcing to
be harmonic, with amplitude 1 N and with a frequency from 0 to 1.2*ws. Plot the
magnitude and phase of the response, clearly indicating the location of the natural
frequencies.

(c) Repeat the analysis in (b), but use the strategy described in Problem 1 to create a [C]
matrix that gives 2% modal damping to each mode. Overlay the frequency response of
this system with that which you found in (b).

(d) Compare your answer for part (c) to that obtained using a structural damping model and
a loss factor of y=0.04.

(You will need the following to compare this problem with problem 3 below.) As discussed in
Example Problem 4.4, the relationship between the lumped spring stiffnesses and the parameters
EA and L are as follows: kj= N*EA/L, i=2,N where N is the number of masses. The spring
adjacent to a fixed point, because it is only 1/2 the length of the other springs has a stiffness
twice as high, k; = 2N*EA/L. The lumped masses are equal to the total bar mass divided by N:
m; = pAL/N, where p is the mass density of the bar.

303



2.13. HW11 CHAPTER 2. HW’S

Problem 3.) (40 points)

Use a three-term Ritz series to predict the first 3 natural frequencies and natural modes of a
fixed-free bar of length L, elastic modulus E, and constant cross-sectional area A.

(5 pts) a.) Use the potential and Kinetic energy expressions in the book (eg. 6.1.1 and 6.1.2) to
derive the expressions for the mass and stiffness matrices in eq. 6.1.11 and 6.1.13.

(5 pts) b.) Use the following Ritz basis functions to find the 3x3 mass and stiffness matrices:

Vvifx)=x/L, Wy(x)= (x/L)z ,and y3(x)= (x/L)3

Hint: Use the pattern described in Example Problem 6.1. In that problem, a uniform bar that
1s fixed at x=0 is studied; however, in that problem, there is an extra spring and dashpot at
the right end of the bar, x=L.. Note also that Example Problem 6.1 uses a different set of
basis functions.

(10 pts) c.) Repeat the analysis using the following basis functions. | suggest using a computer
package to estimate the numerical terms in the mass and stiffness matrices.

l//n:Sin(anﬁj' an:(zn_lj”! n:1,2;3
L 2

What do you notice about the M and K matrices using this set of basis functions?

(10 pts) d.) Compare the natural frequencies obtained parts (b) and (c) of this problem with
those obtained in Problem 2.  (Use the relationships given in the problem statement above to
find EAJ/L and pAL values that agree with those used in problem 2.)

(10 pts) e.) Generate a plot of the mode shapes of the systems based on the models in (b) and
(c), and also overlay the mode shapes obtained in problem 2. How do the three sets of results
compare?
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2.13.2 problem1

Problem 1.)
Consider the N-DOF system modeled by the system of equations

160 2 Tl o Tl — )
o ) ) 1)
[Mg}+[clig}+[Klg}={o

with [C] matrix given by:

[ 26,0, 0 0 .- 0
0 ngwz
[c]=[m]®] o 0o P[] ).
: : »
0 0 25ymy

If we transform to normal coordinates using {g} = [d)]{n} , show that the N-coupled
equations transform mto N uncoupled differential equations of the form
. p 4 2 e T g
Nj+25;0omM+om;=@;{ Q5 j=LN

The columns of matrix [®@] are orthogonal w.r.t to the mass matrix. Hence the following
two relations will be assumed as given in the derivation that follows

0 0
[@]" MI[®]=|0 - 0 (2.114)
0 0 1
(02 0 0
[@"[KI[®]=]|0 -~ o0
0 0 wf

Starting with the coupled EOM given, which is

MI{g”} +[Cl{g'} + [Kl{q} = (Q)

Since [q} = [CD]{T]], then {q”} = [CI)][n”] and [q’] = [CD][n’]. Substituting these in the above
EOM gives
[MI[@]{n”} + [ClI@]{n’} + [KI[@]{n} = (Q}
premultiplying by [@]" both the LHS and RHS results in
[ MI[@]{n”} + [1 [Cl[@N 7'} + [T [KI[@]{n} = [©1T{Q}

Using Eq 8.1 the above simplifies to

0 ~ o|fy’}+ @ crly)+o o |{n)=1e"Q)
001 0 0 wh
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Replacing [C] by the expression given in the problem description, the above becomes

10 0 > 0 0 (2 0 0]
0 - of{r’}+@l|Mi@] 0 - o | MIf[@lfy}+|0 - o |[n}=[@1"Q)
001 0 0 wf 0 0 wf

10 o I 2C1w1 0 —a)% 0 0]
= ol{n”] + [@" M][@ @M@l )+ 0 - 0 {1} =[@]"Q)
001 0 20ywyn 0 0 wf

Since [CD]T[M] [®] is the identity matrix, then the above reduces to

100 2Giwy 00 w? 0 0
0o -~ olfp’l+| o - o |rl+lo - olfn}=10I"Q
0 0 1 0 0 20yoy 0 0 &

This is decoupled OEM since there is no coupling in the mass matrix, and no coupling
in the damping matrix and no coupling in the stiffness matrix.

QED

306



2.13. HW11 CHAPTER 2. HW’S

2.13.3 Problem 2

Problem 2.)

The 5-DOF system shown below can be thought of as a lumped-element approximation of a
fixed-free elastic bar. (This is similar to Example Problem 4.4, which treats a fixed-fixed
bar, and similar to example problem 7.2, where the exact solution 1s derived.)

s aiiagil el ng

Y W e my | m o —{ ms——
k, ky ks Ky ks

| F(t)

e

In paralle]l with each of the springs ki which are drawn, there are viscous dampers ¢; which
are not shown. The equations of motion for this system are easily found to be:

[m]X+[e]x +[k]x=F

where [m] is a diagonal matrix having entries my, and [Kk] is the banded matrix:

(k1+k2) k2 0 0 0
X2 k2+k3) k3 0 0
0 K3 (kK3tkd) k4 0

0 0 k4 (kd+k5) k5

0 0 0 ks kS

The damping miatrix has the same (o as [K], but with viscous damping cosflicients ¢
place of stiffhess coefficients ki. 1he forcing vector F is a 5 by 1 vector of zeros, except for
the last entry: F=[0 0 0 0 F()]".

The numerical value for ki through ks is 1 N/m, the numerical value of k) = 2 N/m, the
numerical value for my through ms is 1 kg, and the numerical values for the viscous damping
coeflicients ¢; = 0.1%k; , 1=1,5 (in units of N-s/m).

(a) Find the natural frequencies and mass-normalized modes of the system.

(b) Find the magnitude and phase of the steady-state response x5(t) assuming the foreing to
be harmonic, with amplitude 1 N and with a frequency from 0 to 1.2%@s. Plot the
magnitude and phase of the response, clearly indicating the location of the natural
frequencies.

(¢) Repeat the analysis in (b), but use the strategy described in Problem 1 to create a [C]
matrix that gives 2% modal damping to each mode. Overlay the frequency response of
this system with that which you found in (b).

(d) Compare your answer for part (¢) to that obtained using a structural damping model and
a loss factor of yv=0.04.

(You will need the following to compare this problem with problem 3 below.) As discussed in
Example Problem 4.4, the relationship between the lumped spring stiffnesses and the parameters
EA and L are as follows: k= N*EA/L. 1=2.N where N is the number of masses. The spring
adjacent to a fixed point, because it is only 1/2 the length of the other springs has a stiffness
twice as high, k; = 2N*EA/L. The lumped masses are equal to the total bar mass divided by N:
m;= pAL/N, where p is the mass density of the bar.
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EOM is
m;, 0 0 0
0 m 0 O
0 0 m O
0 0 0 my
0 0 0 0

msg

A fep+e - 0 0 0 |[x
xy -, Cp+C3 —C3 0 0 []x3
x3¢+| O —C3 C3+C4 4 0 Kx5¢p+
xy 0 0 —c4 Cg+c5 —Cs||x)
X5 _ 0 0 0 —C5 G5 | X5
[k +k,  —k, 0 0 0][x 0
—ky  ky+ks —kz 0 0 |fx 0
0 —ks  ks+ky —ky 0 Nx3 0
0 0 kg ky+ks —ks||x4 0
0 0 0 —ks ks ||xs E(t)

substituting the numerical values gives c; = 0.2,¢; = 0.1,i = 2,5, hence EOM becomes

o o o = O
o O = O O
o =, O O O

===

xy
44
X
44
X3

Xy

- o O O o

X5

10

(3 1.0 0o of[m
-1 2 -1 0 o0f*x
0 -1 2 -1 0
0 0 -1 2 -Iffx
0 0 0 1 1|y

(3 -1 0 0 0]
1 2 -1 0 0
+Ho -1 2 41 0
0 0 -1 2 -1
0 0 0 -1 1]

2.13.3.1 part(a)

X1
X2
X3
Xy

X5

o o O

E(t)

Natural frequency and mass normalized modes are found by solving the eigenvalue
problem to find the natural frequencies and the mass normalized modes.

K=[3-1000;-12-100;0-12-10;00-12-1;00
M=diag(ones(5,1));

[phi,omegal=eig(K,M);

omega = sqrt(diag(omega));

[—0.0989
~0.2871
—~0.4472
~0.5635
~0.6247

0.2871

0.6247 -0.4472 0.0989

0.4472  0.4472 0.4472
-0.0989 0.4472 -0.6247
-0.5635 -0.4472 0.2871

[©]

W
= {0.0498, 0.1445, 0.225,0.284, 0.314} hz

2.13.3.2 Part(b)

in modal coordinates, EOM is decoupled to become

Ifn”} + (@1 [Cl[@)fn'} + [@] K] [@){n} = [@]"
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~0.4472 -0.5635 —0.6247]

-0.4472

~0.0989
{0.3129,0.9080, 1.4142,1.7820,1.9754} rad /sec

0 -1 1]

0.5635

0.2871

o o O O

E(t)
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EDU>> C = 0.1x*K;
C = phi.'*C*phi

K = phi.'*Kxphi
syms f(t);
F = zeros(5,1); F(5)=1;
F = phi.'*F
C =
0.0098 0.0000 -0.0000 0.0000 0.0000
0.0000 0.0824 -0.0000 0.0000 -0.0000
-0.0000 -0.0000 0.2000 -0.0000 0.0000
0.0000 0.0000 -0.0000 0.3176  -0.0000
0.0000 -0.0000 0.0000 -0.0000 0.3902
K =
0.0979 0.0000 -0.0000 0.0000 0.0000
0.0000 0.8244 -0.0000 0.0000 -0.0000
-0.0000 -0.0000 2.0000 -0.0000 0.0000
0.0000 0.0000 -0.0000 3.1756  -0.0000
0.0000 0 0.0000 -0.0000 3.9021
F =
-0.6247
-0.5635
-0.4472
0.2871
-0.0989

Hence EOM in modal coordinates is

M| Joooes o 0 0 o ||
2 0 00824 0 0 0 ||
[y ¢+| © 0 02 0 0 [Rnhe+

n 0 0 0 03176 0 |[n
Y 0 0 0 0 03902

00979 0 0 0 o ||m| [-0.6247F(t)

0 08244 0 0 0 |[[m —0.5635F(t)

0 0 2 0 0 Knat=1{-04472F()

0 0 03175 0 ||n, 0.2871F(t)

0 0 0 0 3.9021 N5 —0.0989F(#)

Where in the above F(t) = cos(@t) with @ being the forcing frequency in the range 0 to
1.2ws where ws = 1.9754 rad/sec.

Since the equations are now decoupled, the 5 equation can solved on its own

n¥ +0.39021; + 3.902115 = Re{-0.0989¢""

Assuming ns(t) = Re{Xei‘Dt} and substituting in the above and simplifying gives

(—@2 +i0.3902 + 3.9021)X = —0.0989
o ~0.0989
T —@2 +i©0.3902 + 3.9021

Hence

7s(6) = Re { ~0.0989 imt}

Z0? + i00.3902 + 3.9021
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Similarly, all other 7;,i =1, 5 are found. Hence

—0.6247
-@2+i®0.0098+0.0979
M -0.5635
2 —@2+i®0.0824+0.8244
-0.4472 -
= Re — et
3 —02+i00.2+42
M4 0.2871
—02+i00.3176+3.176
5 -0.0989
—@2+i®0.3902+3.9021

and the solution in physical coordinates is now found from {x} = [CD]{n}. Hence

5
X5 = 2}@(5,1')17(;')
-

5
= 3 0(5,/) Re{X (e
j=1
5 .
= Re| ;@(5,/)X(j)e*
j=1
= Re(~0.6247X (£) - 0.5635X,(F) — 0.4472X5(t) + 0.2871X4(t) — 0.0989X5(t))e’* |
[ (-0.6247)(-0.6247) (—0.5635)(~0.5635) (—0.4472)(-0.4472)
—@2+i©0.0098+0.0979 -2 +i®0.0824+0.8244 -2 +i00.2+2 .
=Re et
(0.2871)0.2871 (—0.0989)(-0.0989)

-2 +i®00.3176+3.176  —@?+i®0.3902+3.9021

0.39025 0.08243 0.31753

~ Re —@240.0098i@+0.098 = —-®2+0.3178i0+3.176 = —@2+0.0824i0+0.8244 siot
0.00978 0.19999

—02+0.3902i0+3.9021 + —@240.2i0+2

Therefore _
X5 = Re(Y5€ZCDt)
where
0.390 25 0.08243 0.31753
Y5 = . + : + : +
—-@2% 4+ 0.0098i® + 0.098 —-@2 +0.3178i® + 3176 —@2 + 0.0824i® + 0.8244
0.00978 0.19999

+
@2 +0.3902i® + 39021 -@?2+0.2i0 +2

Here is a plot of the magnitude spectrum of Y5 and the phase spectrum for the range
of @ of 0 to 1.2ws. This shows that x5(t) response will have the largest magnitude when
the forcing frequency coincides with the first natural frequency (the fundamental fre-
quency). In otherwords when @ = w;.

The amplitude of x5(t) at resonance is smaller for the remaining 4 natural frequencies.
For higher order natural frequencies, resonances at those frequencies produces lower
amplitudes than lower order natural frequencies.
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Maznituds spactrom x5 {t)
20 [ T T |' | T T T T
isf II | :
[ ]
10 E I| || ]
ot ) |
— I|IIII = ]
£
A\ \\H
-, F —
| R e e
iy o w Gy G5
'3.I'3 — I ':'.Ii I - l.l':' . 1I — J.I-:'
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Phase spactrom x5 (t)
o=y L B T R 0
L Brl-l o w oy
: |'III.K\1'.
—sof —\ 4
T f v
& |
2 | |
ol I [
o —l00f | | - 4
E I | || II."' .\l".
f I|I ,.'II I"._‘I‘
_1s0 III \ ,?'I : S— -
H |II _,-"I e ‘x&x%%_ -
':'.Iﬂ' e _:"'_E e l.l':' l.li J.I':' : :
foaring Feguency rad zec
2.13.3.3 part(c)
Using (; = C = 0.02 for i = 1,5 the EOM is
” ] ’ [ 2 ]
n; w, 0 0 0 of[m| |t 0 0 0 Offnpy ~0.6247F(t)
ny 0 w, 0 0 Of|m| [0 @ 0 0 0[|m| [-0.5635F@
IRyt +2000 0 w3 0 ORmE+|0 0 w2 0 0 [nsp=1{-04472F(p)
ny 0 0 0 wg Oflmy| |0 0 0 w?2 0]|m 0.2871F(t)

Hence the solution

where now

X;

—@? + 2i(jOw; + w?

]

Hence, since w = {0.3129,0.9080,1.4142,1.7820,1.9754} the solutions in modal coordi-
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nates is
-0.6247
—@2+2i©(0.02)(0.3129)+0.0979
N ~0.5635
i —02+2i®(0.02)(0.9080)+0.8244
-0.4472 -
— 1ot
M3 ( = Re —22io002)14182) 2 (€
T4 0.2871
—@2+2i®(0.02)(1.7820)+3.176
75
—0.0989
—@2+2i®(0.02)(1.9754)+3.9021

and the solution in physical coordinates is now found from {x} = [CD]{n}. Hence

5
x5 = 3,9(5,7)n()

j=1
5

= ;@(5, i) Re{X(j)ei!}
=

= Re 25}1)(5, j)X (e

j=1
Re[(-0.6247X (F) - 0.5635X,(t) — 0.4472X5(t) + 0.2871X4(F) - 0.0989X5(£))e |

(-0.6247)(~0.6247) (-0.5635)(~0.5635) (—0.4472)(~0.4472)
R —@2+2i®(0.02)(0.3129)+0.0979 = -@2+2i(0.02)(0.9080)+0.8244 = —@2+2i(0.02)(1.4142)+2 o
= Re e
(0.2871)0.2871 (~0.0989)(~0.0989)
—@2+2i0(0.02)(1.7820)+3.176 = —@2+2i®(0.02)(1.9754)+3.9021
0.39025 0.31753 0.19999
—@241.2516x1072i0+0.0979 = -@%+0.03632i0+0.8244 = —@2+5.656 8x10~2i+2.0 .
= Re oot
8.242 6x1072 9.7812x1073
-@240.07128i0+3.176 = —@2+7.901 6x10~2i0+3.902 1
Therefore
X5 = Re(Y5e“Dt)
where
0.39025 N 0.31753 N 0.19999 N
> —@2 +1.2516 X 10~2i® + 0.0979 —-@2 +0.03632i® + 0.8244 —®? +5.6568 X 1072i + 2.0

8.2426 x 1072 . 9.7812 x 1073
-2 +0.07128i® + 3176 —-@2 + 7.9016 x 10~2%i® + 3.9021

Here is a plot of the magnitude spectrum of Y5 and the phase spectrum for the range of
@ of 0 to 1.2ws for both part(b) and (c) on the same plot

Magnirsds spactrum x5 (0

\ , 6 =2%

Original C

1¥5 | puts b.2)

--- partc
partb
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When C = 2% was used, the resonance is seen to be higher (part c) compared to part
(b). Here is a full range plot of the above.

Magnituda spactrum x5 (t)

100 -

|¥5 | parts b g)
2

’ --- partc
[ | = partb
Frin H
I
|I \
0
// \
._——/’
0 O \“—'—*—"’" Ty == —y— -
L 2 e L S g w5,
0.0 1 15 20
Brcing Faquancy madjsac
Comparing the phase between part(b) and (c) gives
Dhase spectrum x5 (t)
L . ° | 0 o
™ w1 w3 g w3
‘1 ‘
I e g ;
i
I i
il |
| \
2 ] i
: } I‘, - parte
b [T
h [| -‘,I O\
i / I'\.,.I

it L
oo 0.5 10 15

Which shows the effect on the phase spectrum.

2.13.3.4 Part (d)

In structural damping, the damping force is proportional to the elastic force. For example

given an EOM my”’ +cy’ +ky = f, and converting to frequency domain to obtain transfer
function

F
Y =
—@Q%*m +ico + k

Then structural damping implies replacing c@ with yk in the above, giving

F F
Y = - =
—o*m+iyk+k  —@2m+ (1 + iy)k

The above method is now applied to the EOM given, and the resulting transfer function
for x5 is compared to the last results in order to see the effect of using structural damping
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on the response. The eigenvalue problem was solved in part (a) where the result was

200989 02871 -0.4472 -0.5635 —0.6247]
-0.2871 0.6247 -0.4472 0.0989 0.5635
[O] =|-0.4472 0.4472 0.4472 0.4472 -0.4472
-0.5635 -0.0989 0.4472 -0.6247 0.2871
-0.6247 -0.5635 -0.4472 0.2871 -0.0989
w =1{0.3129,0.9080,1.4142,1.7820,1.9754}

Hence the modal EOM is now

m —().0979 0 0 0 0 1{m —0.6247F(t)
7 0 08244 0 0 0 ||m ~0.5635F(f)
In5t+(1+iy)| 0 0 2 0 0 [{nsp=1{-0.4472F(p)
i 0 0 031756 0 |[[n, 0.2871F(t)
ny 0 0 0 0 3.9021_ 15 ~0.0989F ()

Hence the steady state solution now in modal coordinates is Hence the solution
1= Re{Xjei‘Dt}

where now

F;

-2 + (1 + iy)a)jz

X =

The solutions in modal coordinates are (where y = 0.04)

-0.6247
—@2+(1+iy)0.0979

m -0.5635
—@2+(1+iy)0.8244
2
R -0.4472 o
M3 =Re —@2+(1+iy)2 €
T4 0.2871
ns —@2+(1+iy)3.176

-0.0989
—@2+(1+iy)3.9021

and the solution in physical coordinates is now found from {x} = [(D][n}. Hence

5

X5 = Z®(5zf)77(7)
=1

5

(5, /) Re{X(;‘)ei@f}
i=1

~

5

D0(5,7)X (e
j=1

= Re[(-0.6247X (t) — 0.5635X,(t) — 0.4472X5(t) + 0.2871X,(t) - 0.0989X5(f))e’ |

Re

0.39025 N 0.31753 L 019999
—@2+(1+iy)0.0979  -@2+(1+iy)0.8244  -@2+(1+iy)2

Re eicat
8.242 6x1072 9.7812x1073

—@2+(1+iy)3.176 * —@2+(1+iy)3.9021
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Therefore '
X5 = Re(Y5€ZCDt)
where
0.39025 0.31753 0.19999
= + + +
—@% + (1+i)0.0979 -2 + (1+iy)0.8244 -2 + (1 +iy)2
8.2426 x 1072 9.7812 x 1073

~@? + (1 +1y)3176 s (1 +iy)3.9021

Here is a plot of the magnitude spectrum of Y5 and the phase spectrum for the range
of @ of 0 to 1.2ws using the above transfer function, and superimposed on top of part
(c). The magnitude spectrum is identical and | no difference can be seen | Looking the

phase spectrum there is very small change. Here are the plots. In the following plot,

part(d) and (c) can not be distinguished. (the x-axis is drawn using dashed as well, not
to be confused with the actual response curve).

Magnitds spactrum 5 (1)

1¥5 | pants [eg)
e

| [
\ -

To better see the difference, the plot was reproduced by taking the difference of the

absolute values from part(d) and part(c) and plotting the log to base 20 of this difference.
Now the difference can be better seen as very small.

120 of the difirencs in the magnituds spactrum x5(f) between case dand ¢

.
Se
e

0 o
ws

-Fell

Logl20 JF;
i

The following the phase difference between case d and c.
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Phasa spactrem X5 ()

|

|

)

L ]
fe
Lo
L ]
‘e

1

1 --- pand
|' i —pa.rtc
|

|

Phass ¥5 (dogross)

L
[ 0.5 10 13

The above plots show that using structural damping instead of using the same value of
C for each EOM made very little difference in the result.

2.13.4 Problem 3
2.13.4.1 part(a)

Given u(x, t) equations 6.1.1 and 6.1.2 in the text are
1 L
Tuur = 5 f i2p Adx (2.115)
0
1 L ou\?
v :—fEA—d 2116
bar 7 0 (&x) X ( )

To obtain the mass matrix components Ty, is evaluated and each set of quadratic term

are used to generate M;, as follows. Using Ritz method, Let u(x,t) = E\I/j(x)q]-(t). Sub-

j=1
stituting this in Eq[2.115|gives
1M 0 & i 1 & i
Tur =5 [ |2 2¥i@a0) | pAdx =2 [ | 3w30| pAds
2Jy |0t 4 2Jo | &

L( N

N
Z\I’j(x)q}(t)](Z‘Pn(x)%(t))PAdx
j=1 n=1

N =
<)

N N
PIPN SCR METHGIAG

j=1n=1

pAdx

N =
o

Replacing order or integration with summation (since both are linear operations) and
moving ;(t)q;(t) outside the integration since it does not depend on x results in

Tyor = 22( f W)W, <x>pAdx)q]< () (2.117)

] 1n=1
Let

L
M, = fo W ()W, () pAdx

Then eq becomes Eq 6.1.11 in the textbook

Toar = ZE nq](t)qn (2.118)

] 1n=1
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Now, obtain the components of the stiffness matrix. Starting with eq|2.116/and replacing
u(x, t) in this equation gives

1t (o gL W(x)
Vier = 5 fO EA ﬂjg\yj(x)qj(t)J dx =3 fo EA(Z == q](t)] dx

j=1
1 L N d\II d‘y
= fo EA d;yfx) qj(t)](z d(x) n(t))

j:1 n=1

1 L

j=1n=1

N dv; (x) d\I’ (x)

——aj(hq (t))dx

Replacing order of integration with summation and moving g;(t)q,(t) outside the inte-
gration since it does not depend on x gives

L d\If A,
Viar = 5 ZZ( f (x)% )qj(t)qn(t)

]1n1

L d¥;
LetKj, = £ EA—— ) ¥, dx then the above becomes
dx dx

Viar = ZZ ndiqn

] 1n=1
Which is eq 6.1.13 in the book. QED.

2.13.4.2 Part(b)

3
2 3
The basic function to use are W; = %,\Ifz = (%) , W3 = (%) . Let u(x, t) = Z\I/j(x)qj(t).

Now eq 6.1.11 and eq. 6.1.13 are used to obtain the mass matrix and the stiffness matrix

components based on the power balance method. T, = %ZEM]M]’ (H)g5,(t) where

j=1n=1
L
M;, = £ W(x)W,,(x)pAdx hence
L
M, = fo W ()W, (x)p Adx
L j n
= [, (F) (7) pae
o \L/\L
L/ \J+1
= - Adx
fO(L) P
L
_pA f X dx
U-H’l 0
_ pAl xj+n+1 _ PA U+n+1
vrjen 1) T Gen o
__pAL
Cj+n+1
Therefore, the mass matrix is
L1 ] 111
M1 My, Mis 14141 1+2+1  143+1 3 4 5
_ _ 1 1 1| 11 1
M =My My My|=pALlos o0 | = PALT 5 6
Mz Mz, Mss 1 1 1 1 1 1
34141 3+2+1  3+43+1 5 6 7
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1w _ (L, 1Y aw, )
and 5 3’ K;uq, where K, = |y A=~ 5 —dx, hence

j=1n=1
d( - -1
K;, = fEA d—fEA](U)(Ln)dx

= EAlf 11y
0

LjLn
EAjn (L .
=g [
0
EAjn| »+1 -
Ut j+n-1 .
EAjn 1
= —
(]+n 1)L7 0
_ EAjn -1
(j+n-1)L*
_EA jn
C Lj+n-1

Hence the stiffness matrix is

10 1 1) ]
Ki1 Kip Kiz 1+41-1  142-1  1+3-1
EA| 20y 200  203)
K=|Ka Ky Ko T L |241m1 2421 2431
K31 Kz Ks3 31) 32 30)
[3+1-1  3+2-1 3+3-1]
111
EAl, 4 3
=13 3
L
3 9
125

2.13.4.3 Part(c)

. . . 2r-1
The basic function to use are W, = sm(ar%) where a, = (77)71 forr=1,2,3.

3

Let u(x,t) = Z\If]-(x)q]-(t). Now eq 6.1.11 and eq. 6.1.13 are used to obtain the mass
j=1

matrix and the stiffness matrix components based on the power balance method. Tj,, =

ZE ]/ (£)7,(t) where M, £ W(x)W,,(x)pAdx hence
j=1n=1

L
M, = f W ()W, (x)p Adx
0
L . x . x
_j; sm(ajz) sm(anz)pAdx
Lo ((2j-1\ x\ . (({2n-1)\ «x
—j(;sm((T)nz)sm(( > )nz)pAdx
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Using sin Asin B = 1(c:os(A — B) — cos(A + B)) the above can be solved.

((” iG] o (e

COS
L1 2; 1)-@n-1)) x (2/-1)+(2n- n
= . 2 > T - cos > p Adx
( (

L1l (2 X 2(j+n)-2) «x
= | = —~ 1 " |zZ|pA
j; 2| ] I cos( > nr|P dx
L1y
:fo ol cos(] n TT— —cos((] + n ]pAdx

Forj =1,n =1 the above gives

L1 x pA (L x
Mjn:fo 5[1—cosnz]pAdx:7j; 1—cosnzdx:7
Forj=1,n=2

M= [ sl o) -eomanlpate = B fLeo{ ) el
n = . 2COS 7'(L COS 2Tt |pAdX > 0COS 7'(L COS 7'(L X

sm( ) sin(2n%) g
- 2 I =
pA
> —[0-0]=0

The rest of the computation is now done using a small code below to generate the final
mass and stiffness matrix

= problem 3 part c

2= Clear[L, x, &, M, p , A, €, k];

. X

Tln ] := S:Ln[a[.u] E],
) 2n-1

o[z ] := 5 ;

L
M[F , n ] := J- (7] E[n] pAdx
o
L
k(7 , =z ] ==J-EAD[E[_‘-‘]; x] D[E[n], x] dx
u}

7= MatrixForm @ Table[M[i, j], {i, 1, 3}, {3, 1, 3}]

MatrixForm=
(BLe g 0 |
0 =2
0 0 2Le |

2

gi= MatrixForm @ Table[k[i, j1, {i, 1, 3}, {3, 1, 3}]

fMatrixForm=
B ol \
e I D D 1
gL
B n
o Shenm o
8L
3 0 Z5he e
8L /
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Therefore, the mass matrix is
1 00

010
0 01

ALp
M=—
2

1 MY L d¥i(x) 4w, (x)
and Eglejnqjqn where K;, = £ EA Frm— dx, hence
j=1n=

LA v,
an—fOEA LSy

From the above code, the result is

1 0 O

K- AET? 09 o
- 8L

0 0 25

Using this set of basis functions produces mass and stiffness matrices that are already
decoupled. This is good.

2.13.44 vpart (d)

The natural frequencies obtained in problem 2 were

100 0 0 (3 -1 0 0 0]
01000 1 2 -1 0 0
problem2=M=10 0 1 0 0, K=|0 -1 2 -1 O
00010 0 0 -1 2 -1
00001 |0 0 0 -1 1|

w = (0.3129,0.9080,1.4142,1.7820,1.9754) rad/sec
= (0.0498, 0.1445, 0.225,0.284,0.314) hz

Now the eigenvalue problem det([k] - a)z[M]) is solved again using the mass and stiff-
ness matrices in parts b,c above and the natural frequencies are compared with the
above result from problem 2. Recall, the M and K from part b were

[1 1 1 -
11 1 EA|; 4 3
part(b) = M = pAL|; E’K=T1 3 2
3 9
11 1 1 2 2
5 5 7 " 205
1 0 0 10 0
art@) = M= 22200 1 ol k=200 o o
par -2 Gy
00 1] 00 25

First, a numerical values given at end of problem 2 are used, therefore pAL = m =1 and
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— = %, hence the K and M for part(b) and ¢ become

1 1 1] i
- 111
11 1 11 &4 3
part(b):>M=Zgg,K=§l32
3 9
11 1 1 3?2
5 5 7] 25
100 10 0
o=M=to 1 ok="lo 9 o
'a = — = —
parte 2 = 16
00 1 00 25

The natural frequencies are found. Here is a summary table

w (rad/sec) f hz
problem 2 | 0.3129,0.9080,1.4142,1.7820,1.9754 | 0.0498,0.1445,0.225,0.284,0.314
part(b) 1.1108, 3.4199, 7.3872 0.1768, 0.5443,1.1757
part(c) 1.1107, 3.3322,5.5536 0.1768,0.5303, 0.8839

It can be seen that the first three natural frequencies using Ritz basic functions as given
for both part b and c are higher than the natural frequencies generated by part b.

The stiffness matrix K for both parts b and c contains much smaller numerical values

2:

k
than the one used in problem 2. Since w* = — then one expects this result.

2.13.4.5 Part(e)

The first 3 mode shapes from problem 2 were

-0.0989 02871 —0.4472]
~0.2871 0.6247 —0.4472
[@] = [-0.4472 04472  0.4472
~0.5635 —0.0989 0.4472
-0.6247 —0.5635 —0.4472]

The mode shapes from part(b)

22642 -11.2099 13.0082
[P] =|-0.2314 25.3536 —47.2984
-0.6181 -12.7003 37.5941

The mode shapes from part(c)

14142 0 0
[®]=] 0 14142 0
0 0  1.4142

Here is a plot of the above mode shapes
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part b
L 3] L5} o3
T T T 40 pr
] ]
20l . o\ y
4o - /N 20 /
15 N /! N . /
10 \ 10 V4 Of Sncmm oA
g; N Of -/~ -mm-mo-- -] 2 AN /
4 T / N \_ /
-03 e ] g Y

~Partc_

41 & L4]
14 14 3 14 T
12F N 12 SN 12 p
10 . 10 S 10 /
0.8 N, 0.8 p N 0.8 Y
0.6 0.6 / . 0.6
04 \ 04 . 0.4 /
02 \ 02f / 3 02 /
0.0 ‘e 0.0 I e 00l o

10 15 20 25 30 10 15 20 25 30 10 15 20 25 3.0
problem 2
41 & L4]
—03F [ " 7 06F A " 7 04f " 7 ]
. - . : / )
—D.-f / .. 04} - Y s ) \
—05 / . o ™, 02 / \
~——— 02 N \
-0.6 / e 00k oo \_\ _____ 00F---=--= e e -
-7/ : . \
-08f / -02 “ —0a /
-09}/ 04 S s
-0t d 06 et
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Here is a plot of the mode shapes overlay.
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2.13.5 Key solution for HW 11

Homework #11
EMA 545, Spring 2013

Problem 1.)

Consider the N-DOF system modeled by the system of equations

[vJigh+[cla}+ [k Jia) = {o}

with [C] matrix given by:

261t 0 0o - 0
0 26,5
[c]=[M]@] o 0 [@] [a].
: . 0
0 0 Zoywy

[f we transform to normal coordinates using {q} = [cb]{r] } show that the N-coupled
equations transform into N uncoupled differential equations of'the form

: 2 \T . AT
i +20j0m+0m; = {d)” o} j=LN
Problem 2.)
The 5-DOF system shown below can be thought of as a lumped-element approximation of a

fixed-free elastic bar. (This is similar to Example Problem 4.4, which treats a fixed-fixed
bar, and similar to example problem 7.2, where the exact solution is derived.)

sl il st e

k, Kk, k, ks

F(t)
e

In parallel with each of the springs k; which are drawn, there are viscous dampers ¢; which
are not shown. The equations of motion for this system are easily found to be:

[m]X+[c]x+[k]x=F
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where [m] is a diagonal matrix having entries m;, and [k] is the banded matrix:

(k1+k2) X2 0 0 0
k2 (k2+k3) k3 0 0
0 K3 (kK3+kd) k4 0

0 0 k4 (k4+k3) kS

0 0 0 &S k5

The damping matrix has the same form as [k|, but with viscous damping coefficients ¢; in
place of stitfhess coefficients k;. The forecing vector F is a 5 by | vector of zeros, except for
the last entry: F=[0 0 0 O F()]~

The numerical value for k, through ks 1s 1 N/m, the numerical value of k; =2 N/m, the
numerical value for m; through ms is 1 kg, and the numerical values for the viscous damping
coefficients ¢; = 0.1%k; , =1,5 (in units of N-s/m).

(a) Find the natural frequencies and mass-normalized modes of the system.

(b) Find the magnitude and phase of the steady-state response xs(t) assuming the forcing to
be harmonic, with amplitude 1 N and with a frequency from 0 to 1.2*ws. Plot the
magnitude and phase of the response, clearly indicating the location of the natural
frequencies.

(c) Repeat the analysis in (b), but use the strategy described in Problem 1 to create a [C]
matrix that gives 2% modal damping to each mode. Overlay the frequency response of
this system with that which you found in (b).

(d) Compare your answer for part (c) to that obtained using a structural damping model and
a loss factor of y=0.04.

(You will need the following to compare this problem with problem 3 below.) As discussed in
Example Problem 4.4, the relationship between the lumped spring stiffnesses and the parameters
EA and L are as follows: kj= N*EA/L, i=2,N where N is the number of masses. The spring
adjacent to a fixed point, because it is only 1/2 the length of the other springs has a stiffness
twice as high, k; = 2N*EA/L. The lumped masses are equal to the total bar mass divided by N:
m; = pAL/N, where p is the mass density of the bar.
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Problem 1) (Creating a damping matrix with any desired modal damping ratios.)

The goal is to show that one can use the modal transformation together with the given
damping matrix to obtain uncoupled equations of motion.

We need to show that [(D]T [(”][(D] is diagonal:

(26,00 0 0 - 0
0 26,0, :
e [cle]=[@] [u]le] o o - @) M]e]
. . 0
| 0 0 25y |

Since [@]r [JM][(D} = [I ], we have the desired result:

(26,0, 0 0 - 0
0 26,1, E
[ [c]e]=| o 0 :
' 0
| 0 0 26yoy |

Now, starting with the coupled equations of motion:
v R+ [CRa+ [ fixf = {0}
Substituting {x}= [fb]{n} and pre-multiplying by [(D]T vields
o] [T}« ] [cTolin+ ] [KToln) = @] 0} = {0}

Using the fact that [(D ]T [M’ ][(D] = [I ] and [(D]T [K ][fb] 1s a diagonal matrix containing the
square of the natural frequencies, we now have N uncoupled equations of motion.

i +2Cja)j17+cu?nj ={¢>J-}T<‘@} j=LN

Note that we have also used the fact that each row of [(D]T{Q} is equal to the jth mode
vector transposed times {Q}.
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HW 12, PROBLEM 2: LUMPED MASS APPROXIMATION FOR A BAR IN EXTENSION

Part (a):
The mass and stiffness matrices are given, so it is easy to find the natural frequencies and
mode shapes in Matlab. Here is the result: (Matlab code given at the end.)

wns =
0.31287
0.90798
1.4142
1.782
1.9754
PHI =
-0.098938 0.28713 -0.44721 -0.56352 -0.62467
-0.28713 0.62467 -0.44721 0.098938 0.56352
-0.44721 0.44721 0.44721 0.44721 -0.44721
-0.56352 -0.098938 0.44721 -0.62467 0.28713
-0.62467 -0.56352 -0.44721 0.28713 -0.098938
Part (b):

The input is harmonic, so the steady-state response of each mass will also be harmonic.
Their complex amplitudes can be found with the equation: inv([K+ioC-w”2*M]). See
the Matlab code for details. The complex amplitude of the 5" DOF is plotted below.
Note that this stiffness proportional damping approach gives the following modal
damping ratios, which are clearly different than those for part (c) below:
zts =

0.015643

0.045399

0.070711

0.089101

0.098769

Part (c):

The solution here is the same as for (b), only now we use C =
M*PHI*2*0.02*diag(wns)*PHI . **M

Both solutions are plotted below.

Part(d): (not included in Spring 2011)
For the structural damping case, K = K*(1+iy).

The plot shows that the stiffness proportional damping approach gives heavier damping
for the higher frequency modes.
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2.13. HW11

Transfer Function of X with 3 Kinds of Damping

Proportional |7

------Modal
— - — Structural

2.5

15

Frequency (rad/s)

0.5

fom -

1501 ------

(o) (@/%)eseyd

-200

2.5

15

Frequency (rad/s)

0.5

0

The mode shapes were requested as part of the next problem. They are plotted below:

Mode #1
Mode #2
Mode #3

[
—o—

Mode #4

apnydwy [epon

X Location
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Matlab Code:
% ME 6442 Homework #10, MDOF Systems-LUMPED MASS APPROX TO BAR IN EXTENSION
clear all; close all

M = eye(5); % ldentity matrix since each mj=1;

K = eye(5)*2+diag([-1 -1 -1 -1],1)+diag([-1 -1 -1 -1],-1);
% Above is a fancy way to make the banded stiffness matrix, although
% the two terms below must be fixed manually.

K(1,1) = 1+2; K(5,5) = 1;

C = 0.1*K;

[phi,lam] = eig(K,M);
wns = sqrt(diag(lam))

% Normalize Eigenvectors

[natfreqgs, Isort]=sort(sqrt(diag(lam))); % sort by nat freq
phi=phi(:,Isort); % sort eigenvectors

scale= phi."*M*phi;

PHI=real (phi*inv(sgrt(scale))) % normalize e.vectors

zts = (diag(PHI."*C*PHI1)/2)./wns

% Check Orthogonality
check_m = norm(PHI."*M*PHI-eye(size(PHI)))
check_k = norm(PHI."*K*PHI-l1am)

% Plot Mode Shapes
% Create x-vector. Remember that the masses are at the center of each
% element, so the first node is at 0.5*(L/N)
xs = [0, 0.5:1:4.5]/5;
% Will have to stack zeros above PHI below for the displacement at x=0.
figure(l)
plot(xs.",[0 0 0 O O; PHI],"0-"); grid on;
xlabel ("X Location®); ylabel("Modal Amplitude®);
legend("Mode #1", “Mode #2","Mode #3","Mode #4","Mode #5%);

ws = [0:max(wns)*1.2/2000:max(wns)*1.2];
% TF Using Proportional C-Matrix
for ii = 1:1:length(ws);
Gn(:z, i) = [K+i*ws(ii)*C-ws(ii)"2*MJ\([0 O 0 O 1].7);
end
Gb = 6n(5,:);

% TF Using modal damping ratios
Cc = M*PHI*2*0.02*diag(wns)*PHI . "*M
for ii = 1:1:length(ws);
Gn(:,i1) = [K+i*ws(ii)*Cc-ws(ii)"2*M]\([0 O 0 O 1].7);
end
Gc = 6n(5,:);

% TF Using Structural Damping
Kd = K*(1+i*0.04);
for i1 = 1:1:length(ws);
Gn(:,ii) = [Kd-ws(ii)"2*M]J\([O 0 0 O 1]-7);
end
Gd = 6n(5,:);

figure(2)

subplot(211);
semilogy(ws,abs(Gb),ws,abs(Gc), " :",ws,abs(Gd),"-."); grid on;
xlabel ("Frequency (rad/s)"); ylabel("|X_5/F|");
legend("Proportional®, "Modal ", "Structural ™) ;

title("Transfer Function of X_5 with 3 Kinds of Damping®);
axis([0 2.5 0.09 200]);
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subplot(212);

plot(ws,angle(Gb)*180/pi ,ws,angle(Gc)*180/pi, ": " ,ws,angle(Gd)*180/pi,"-.");
grid on;

xlabel ("Frequency (rad/s)"); ylabel("Phase(X_5/F) (™0)");
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Parts (a & b):
First, note that since k, in Problem 3 1s 1 N/m, this suggests EA/L = 1/5 N/m. Also, since
m; = 1 kg, pAL =5 kg. The kinetic energy of the rod is given by:

2
1L cu
T_Ejo pA[ GJ dx (4.1)

We use the following Ritz series to approximate the displacement firld for the rod:

3
u(x,t)= Zq,—(’f}l{/,-('x) 4.2)
i=1
Substitution of (4.2) into (4.1) yields:

j p'I[Z%(UWi(\) ZQJ”)WJ(\) 4.3)
j=1
ZZM,I pAy yjdv=— ZZM,WU (4.4)
r 17=1 1 1j=1
where the elements of the mass matrix are identified to be:
L (=Y 1
mj; = Al — | | = | dx= X dx = pAL 4.5
i~y [LNLJ LwIO IR @2
The potential energy of the rod is given by
2
1L cu
=—| FEA dx 4.6
2 J. 0 ( 8\) (4.6
The derivative of the displacement field (4.2) with respect to x is given by:
i”mr) Zq,/r)m//’“) 4.7
ox cx
i=l
Substitution of (4.7) into (4.6) yields:
t//
fj EA Zq, qu dx (4.8)
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3 3 -~ A 1 3 3
L 1 &< L_ oy, c¥; 1<
V=2 > 4ia,f, E4 e =20 2414 Ky (4.9)

i=1j=1 ¢ i=1j=1

where the elements of the stiffness matrix are identified to be:

s Ny TR W
ki = [ EA 2L |xiti-2 dx=E?1—’;’j witi gy BT (4.10)
0 o\t I+ 0 Li+j-1

The three-term Ritz approximation for the rod is given by the following 3DOF system:

1/3 1/4 1/5 [ql 111 qll {0
, EA
PAL|1/4 1/5 1/6 1 p+==|1 473 6/4 )iz =10 (4.11)
1/5 1/6 1/7 ng 1 6/4 9/5 q;,J 10

Note that the dimensional factors can be pulled out so that the eigenvalue problem can be
solved in Matlab (for part (d)). To do so, we define:

2P =w? ﬁ
E
Part (c):
The integrals are not convenient to evaluate analytically using these basis functions, so
the solution is carried out only in Matlab. The resulting matrices are:

>> M
M =
0.5 0 0
0 0.5 0
0 0 0.5
>> K
K =
1.2337 0 0
0 11.103 0
0 0 30.843

Notice that the matrices are diagonal. This occurs because the chosen basis functions
happen to be the eigenfunctions for this continuous system. So, the coordinate governing
each basis function is independent of all of the others and the natural frequencies can be
found by inspection, for example: w;=sqrt(1.2337/0.5)=1.5708, etc...

Part (d):

COMPARISON OF NATURAL FREQUENCIES:

First we observe that since pAL/(EA/L) = 25, we must multiply the natural frequencies
found in Problem 2 by (25)(1/2) to compare with the results from the nondimensional
Ritz analysis. The results are summarized in the table below, where the natural
frequencies for other Ritz Series lengths are also shown FY1. Notice that as the series
length increases, new modes appear at higher frequencies, and the lower natural
frequencies decrease slightly, converging towards the true values. The lumped parameter
method in Problem 2 gives similar results although the frequencies are sometimes lower
than the true values, while the Ritz method always over predicts the natural frequencies.
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Ritz Natural Frequencies (nondimensional)

Series

Length ol 2 o3 o4 5
2 15767 5.6728 - - -
3 1.5709 4.8365 10.4471 - -
4 15708 4.7246  8.3309 16.3036 -
5 1.5708 4.7132 7.9390 12.1739 23.3614

Results for Lumped Parameter Approximation with N=5 below
N=5 1.5643 4.539 7.0711 8.9101 9.8769

With the second set of basis functions from part (c), one obtains the true analytical
natural frequency for any length Ritz Series.

Ritz Natural Frequencies (nondimensional)
Series
Length ol ®2 ®3 w4 ®5
2 15708 4.7124 - -

3 15708 4.7124  7.8540 - -
4 15708 4.7124  7.8540 10.9956 -
5 15708 4.7124  7.8540 10.9956 14.1372

MODE SHAPES

Using the polynomials in part (b):
PHI =

-2.2642 -11.2099 -13.0082

0.2314 25.3536 47.2984
0.6181 -12.7003 -37.5941

Each column gives the proportion of each Ritz vector in the approximation for the
eigenfunction. For example, the approximation for the first modeshape is given by:

2 3
—2.2642(1 +0.2314(i +0.6181(1
I I I

The second eigenfunction 1s approximated by:

2 3
—11.2099(x)+25.3536(xJ —12.7003[*‘}
L L L

333



2.13. HW11 CHAPTER 2. HW’S

The third eigenfunction is approximated by:

2 \3
~13.0082] X | +47.2084 | —37.5041 *
I j3 I

The three modeshapes obtained from the Ritz method are shown in Figure 4.1 Tt is seen that
the first mode closely resembles a "1/4 sine," which is the exact modeshape for a fixed-free
rod. The second mode resembles a "3/4 sine." The theoretical prediction of the third mode

1s a"5/4 sme." It 1s seen that there is considerable inaccuracy m the Ritz-method prediction

for this mode. The Matlab code given at the back of the solution set gives a concise way of
finding these approximate modeshapes given the modal matrix PHI.

The three mode shapes obtained from the Ritz method for part (b) are shown below. The
first mode closely resembles a “1/4 sine,” which is the exact mode shape for a fixed-free
rod. The second resembles a “3/4 sine.” The theoretical prediction of the third mode is a
“b/4 sine,” but one can see that there is considerable error in the Ritz approximation for
that mode since the basis is inadequate to describe it.

Mode Functions for First Three Modes, N = 3

3.5 T T T T T T T
Mode 1 Ritz 3 3 3 3 3
3r Mode 2 Ritz ~ |----- i b A Lo oA
Mode 3 Ritz | | | | |
2511 o Mode 1 Analytical |~ T e i’”]””
5| | —&—Mode 1 Lumped | i 77777 3 77777 j 77777 L 77777 37”:77
©— Mode 2 Lumped ! ! ! ! b
15l —© Mode3Llumped | . I S S L,‘;‘i,,,

Mode Function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Position (X/L)

When using the basis functions from part (c), the modes are exact and are given in the
figure below.
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Mode Functions for First Three Modes, N = 3

Mode Function

Position (X/L)

The Matlab code used for these calculations follows. Symbolic variables were used to
check the answer for part ), and to compute the M and K matrices for part d).

Partb.)

% EMA 545, HW12

% Ritz Series solution for Clamped-free rod in extension
%

% M.S. Allen, May 2011

clear all; close all
syms x jj kk real;
tic

N = 5;

% Create basis functions as symbolic functions in Matlab - Symbolic
% variables x and jj and kk defined above
for jj = 1:N;

psi(di) = x"ij;

end
% Loop to create (Jj,kk) terms of mass and stiffness matrices
for jj = 1:N;
for kk = 1:jj;
% Usig Matlab symbolics
MMgJ,.kk) = int(psi@j)*psi(kk),x,0,1);% *rho*A*L
KK ,kk) = int(diff(psij),x,1)*diff(psi(kk),x,1)),x,0,1); % *EA/L
% Using analytically derived formulas for M and K
M1 ,.kk) = 17/(J+kk+1);
K1 ,.kk) = (J*kk)/(j+kk-1);
% note - matrices are symmetric, so we can fill the rest of the
% matrix in with the same terms.
MM(KK, §3) = MMGi3.KK) 3 KK(KK,§§) = KKCid.KK);
ML(kK,§3) = MLGJ.KK); KL(KK,§§) = K1(id.KK);
end
end

M = double(MM); % convert symbolic expressions to numbers.

C = 0; K = double(KK);

toc

% display the difference, which is on the order of numerical round off
% error.

M-M1

K-K1
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% Use Embedding Property to find Eigensolutions for 2 <= N <= 5. For
% example, the EVP for N = 3 uses the 3x3 matrix in the upper left quadrant
% of M and K.
for p = 2:1:N;
[phi,lambda] = eig(K(1:p,1:p).M(1:p,1:p));
wnd(p-1,1:p) = sqrt(diag(lambda))*
end

% Finding Mode Functions
Ns = [3]; % number of basis functions to use for mode shape plots.
delta = 1/(100-1); % spacing for y-axis on mode shapes.
yd = [O:delta:1]";
for g = 1:length(Ns);

psi_vals = 0; phi = 0; lambda = O;

[phi lambda] = eig(K(1:Ns(q),1:Ns(q)),M(1:Ns(q),1:Ns(q)));

wns = sqrt(diag(lambda));

for p = 1:1:100;

for n = 1:Ns(q);

% evaluate each basis function "n" at each point "p". (or use
yd(p)”"n)
psi_vals(p,n) = subs(psi(n), "x",yd(p)); % Matlab symbolics - sub
yd(p) for "y"
end
end

% mode shapes for plotting are psi_vals*phi
psi_c(1:100,1:Ns(q),q) = psi_vals(:,1:Ns(q))*phi;
end

% Analytical Mode Shape

psi_an = sin((2*1-1)/2*pi*yd);

psi_an = psi_an/max(psi_an)*max(psi_c(:,1,1)); % scale to same amplitude as
psi_c

% Plotting
figure(d)
plot(yd, psi_c(:,1,1),yd, psi_c(:,2,1), yd, psi_c(:,3,1),...
yd, psi_an,"b."); grid on;%, yd, psi_c(:,1,2), ".:", vyd,
psi_c(:,3,2),".:"); grid;
legend("Mode 1 Ritz","Mode 2 Ritz","Mode 3 Ritz","Mode 1 Analytical™);
xlabel ("Position (X/L)"); ylabel("Mode Function®);
title(["Mode Functions for First Three Modes, N = ",num2str(Ns)]);

return

%% Plot the solution to Problem 2 on top:

M eye(5); % ldentity matrix since each mj=1;

K = eye(5)*2+diag([-1 -1 -1 -1],1)+diag([-1 -1 -1 -1],-1);
% Above is a fancy way to make the banded stiffness matrix, although
% the two terms below must be fixed manually.

K(1,1) = 1+2; K(5,5) = 1;

M = M/5; K = K*5; % change to non-dimensional

[phi,lam] = eig(K,M);
PHI=real (phi*inv(sgrt(phi.**M*phi)));
xs = [0, 0.5:1:4.5]/5;

% To get a good plot, have to manually adjust the sign of some of the mode

% vectors (the sign of a mode vector is arbitrary). Make all end values

% positive:

PHI = PHI*diag(sign(PHI(end,:)));

hold on; plot(xs.",[0 0 O; PHI(:,1:3)],"0-"); hold off;

legend("Mode 1 Ritz","Mode 2 Ritz","Mode 3 Ritz","Mode 1 Analytical”,"Mode 1
Lumped®, "Mode 2 Lumped®,*Mode 3 Lumped®);
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Part (c):

% EMA 545, HW12

% Ritz Series solution for Clamped-free rod in extension
%

% M.S. Allen, April 2008

clear all; close all
syms x jj kk real;
tic

N = 3;

% Create basis functions as symbolic functions in Matlab - Symbolic
% variables x and jj and kk defined above
for jj = 1:N;
psi(Qj) = sin((2*jj-1)/2*pi*x);
end

% Loop to create (Jj,kk) terms of mass and stiffness matrices
for jj = 1:N;
for kk = 1:jj;
% Usig Matlab symbolics
MM .kk) = int(psi@i)*psi(kk),x,0,1);% *rho*A*L
KK ,kk) = int(diff(psij),x,1)*diff(psi(kk),x,1)),x,0,1); % *EA/L
% note - matrices are symmetric, so we can fill the rest of the
% matrix in with the same terms.
MM(kK,§3) = MMGi3.KK); KK(KK,§§) = KKCid.kK):
end
end
M = double(MM); % convert symbolic expressions to numbers.
C = 0; K = double(KK);
toc

% Use Embedding Property to find Eigensolutions for 2 <= N <= 5. For

% example, the EVP for N = 3 uses the 3x3 matrix in the upper left quadrant

% of M and K.

for p = 2:1:N;
[phi, lambda]
wnd(p-1,1:p)

eig(K(1:p,1:p),M(1:p,1:p));
sqrt(diag(lambda))*

end

% Finding Mode Functions
Ns = [3]; % number of basis functions to use for mode shape plots.
delta = 1/(100-1); % spacing for y-axis on mode shapes.
yd = [O:delta:1]";
for q = 1:length(Ns);

psi_vals = 0; phi = 0; lambda = O;

[phi lambda] = eig(K(1:Ns(q),1:Ns(q)).M(1:Ns(q).,1:Ns(q)));

wns = sqrt(diag(lambda));

for p = 1:1:100;

for n = 1:Ns(q);
% evaluate each basis function "n" at each point "p". (or use

yd(p)”™n)

yd(p) for "y
end
end
% mode shapes for plotting are psi_vals*phi
psi_c(1:100,1:Ns(q),q) = psi_vals(:,1:Ns(q))*phi;
end

psi_vals(p,n) = subs(psi(n),"x",yd(p)); % Matlab symbolics - sub
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3.1 Design project, team 4

Local contents

3.2 Introduction

By Nasser M. Abbasi, Donny Kuettel III and Paul Frisch.

This report outlines a simple passive vibration isolation system design for use in the
first class cabin of a Boeing 757-200 airplane with the goal of reducing the vibrations
telt by the passengers in the first class cabin. This was done by simulation in order to
select suitable design parameters that produced an acceptable absolute acceleration
time history compared the rest of the airplane during a turbulent flight.

3.2.1 Discussion and results

3.2.1.1 Notations used in the report

M mass of first class cabin
k spring constant
C critical damping constant
r ratio of external load frequency to the natural frequency of first class
cabin
Wnatural
Ty ratio of external load n" harmonic frequency to the natural frequency
of first class cabin —
Wnatural
T, Transmissibility. The ratio of cabin absolute displacement to base ab-

solute displacement

w,, | Natural frequency of first class cabin

w1 Fundamental frequency of the external load frequency.

EOM | Equation Of Motion

c damping constant for damper under first class cabin

Z5¢ | the complex amplitude of the term associated with the n'" harmonic

of the frequency z"(t)
| the complex amplitude of the term associated with the n'" harmonic
of the displacement z(t)
Y, the complex amplitude of the term associated with the n" harmonic

of the displacement of y(f)

Table 1. Description of mathematical notations used in report

3.2.1.2 Mathematical model

Reducing the vibration effect felt by the passengers in the first class cabin was based
on reducing the transmissibility ratio (T,) of the absolute acceleration of the airplane to
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that of the first class cabin. A passive vibration isolation system was used for its ease of
implementaion and its low cost. The model is based on figure 1 below

<

Airplane

/ body

First | economy
class class

Figure 1. Mechanical model view of vibration isolation system in place.

The absolute acceleration of the first class cabin, y”’(t), was calculated with the vibration
isolation system in place and then compared to the absolute acceleration, z”(t), of the
rest of the airplane. The goal was to produce a smooth absolute acceleration time history
when compared to the rest of the airplane. This was done by adjusting M, C and K and
running a simulation of the motion of the plane with our vibration isolation system in
place. A plot of T, vs. r was also used to insure that the maximum T, remained small as
the frequency ratio r was increased.

Assuming the mass of cabin is M, which includes the live load (passengers), then
applying Newton’s laws the the first class cabin results in the equation of motion

my” + c(y’ - z’) + k(y - z) =0
my” +cy’ +ky=cz' +kz

The transfer function between y(t) and z(t) in the frequency domain can now be derived
(Appendix contains complete derivation) resulting in

o 1+ey
\/(1 - r%)z +(2Cr,)?

To compare the absolute acceleration of the first class cabin with the rest of the airplane,
the absolute acceleration, y”’(t), is now found from Y. Since y(t) = Re{YneifDnt] then

y'(t) = Re{—caﬁYnei‘Dnt}.

Yy

disp
n

T(r) =

3.2.1.3 Design results

z”(t) (given) and y”’(t) (computed) are now plotted on the same plot in order to compare
the effect of our vibration isolation system to the comfort of the first class passengers.
The final design parameters used are (Appendix 5.1)
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M Mass of first class cabin (dead+live) | 3050 kg

C 0.7
k 9700 N/M

Table 3. Final values of design parameters

Figure 2 below shows the result using the above parameters

ahsolute aooeleration of first class ws. rest of airplane durning turbulent flight

15

10

; rest of airplane
5 b first class

| ===+ fime
0 %WW\AWM

|
e | 1 I | | | | 1 I

1] 10 20 30 40 50 80 T0 80 80
time (s=c)

Figure 2. First class cabin absolute acceleration compared to rest of airplane.

We see from figure 2 that the absolute acceleration of the first class cabin has much less
variation and is much smoother than the absolute acceleration of the rest of the airplane.
From this we can see that the first class passengers experience a much more comfortable
flight than the rest of the airplane. In addition, the transmissibility plot was found to be
acceptable since T, decreases with increasing r

transmizsibility

L

n

y

1

1

1

1

1
R e R e e I B ]
L st TS e e R e R e Y e e

PPN IR iy [P [P LRy [P
B Lt EE TR e e P
1
1
1
1
|

(3]
wt
]
O
.
en

r ratio

Figure 3. Transmissibility plot of first class cabin.

In addition to producing a smooth absolute acceleration time history, the goal was also to
insure that T, decreased as r increased. This implies that at higher external acceleration
relative to the natural frequency, our vibration isolation system remained effective. The
simulation program generated a mechanical view showing the absolute position of the
first class cabin, with an offset, and the absolute position of the airplane during the flight
as shown in figure 4 below.
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_ absohite positions first class and rest of airplane
.{::I T T T T T T

70 L -

15t

10}

Figure 4. Animation of vibration isolation during flight.

The force shown in Figure 4. below the airplane is the numerical value of ~Mz"” where
z"” is the absolute acceleration of the airplane and M is the total mass of the first class
cabin.

3.2.2 Implementation of the vibration isolation system

The vibration dampening system proposed for the first class cabin is a simple spring
dashpot system that utilizes the additive properties of springs and dashpots to dampen
the vibration of the first class cabin in the Boeing 757-200.

=

[ |“|
| | 1]

Front View Side View

=

Figure 5. Schematic diagram of vibration isolation system in place

The design of our passive vibration isolation system is simple and effective with a mini-
mal costs. It starts by defining the area that represents the first class cabin, which is at
the front of the plane right behind the cockpit.

The cabin spans the entire inside width of the airplane body, which is 3.53 m (11.58 ft),
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and then extends down the body of the plane roughly 3.35 m (11 ft) giving the first class
cabin a total area of 3.53 x 3.35 m? (11.58 x 11 ft?).

The next step in our design is to define the area that will actually be part of the vibration
isolation system. We cannot use the whole floor of the first class cabin because the
rounded body of the airplane would not allow the floor to travel up and down rendering
our whole system ineffective. To solve this problem we started at the center of the plane’s
cross section and went out 1.524 m (5 ft) in either direction giving a total area of the
platform used in our vibration isolation system 3.048x3.35 m? (10x 11 ft?) as seen above
in figure 5.

To begin the actual design, additional support must be given to the aluminum floor of
the cabin. The use of 6061 T6 Aluminum I-beams (specifications are given in appendix
5) spanning the width of the platform provides the needed support. In addition the
I-beams provide a sturdy surface for the spring and dashpot system to contact the cabin
floor.

The key component of the vibration dampening system is the use of carbon fiber leaf
springs. We chose carbon fiber leaf springs in place of steel for several reasons. They
provide a softer ride at a lower noise level and excellent stability due to better damping
characteristics than steel. Placed in series, the use of 5 carbon fiber leaf springs provides
the spring constant required (9700 N/m) and a low increase in weight.

The dashpots needed for our design, 2K325 Dashpots, can be purchased from many
manufactures. When added in parallel they provided the necessary damping coefficient
of 7425 N*s/m needed when the first class cabin is full and 5800 N/s*m when the cabin
is empty.

Our design for this passive vibration isolation system works whether the first class cabin
is full, empty, or half way in-between. The system works best when the cabin is fully
loaded with passengers, and has almost identical results with no passengers on board.
Even though the results are slightly diminished with fewer passengers, the system still
creates a noticeably smoother flight.

3.2.3 Cost estimate of the vibration isolation system

The total cost of our vibration isolation system is around $16500 (appendix 5). The cost
of the aluminum support beams, dashpots and carbon fiber leaf springs make up the
majority of the material cost totaling only about $3000. The majority of the total cost
comes from the additional weight of the system and the resulting price of fuel used
during the planes lifetime. The additional weight results in an expected cost of about
$13500 over the lifetime of the plane.

The damping effects of the system could be improved if weight were added to the cabin.
However the additional cost of the added weight over the lifetime of the plane would
outweigh the benefits for the passengers. If however some heavy components of the
plane were to be attached to the first class cabin, the system could be redesigned for an
even better ride. This would require further investigation into the balance of the plane,
tflight dynamics and a deeper knowledge of the various components of the plane so it
falls out of the scope of this project.
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3.24 Appendix

3.2.4.1 Design values
weight

This table shows the design values based on weight

Description of item Mass (kg)
15 Chairs @ 100 kg/chair 1500

10 ft by 11 ft aluminum flooring 200

5 Aluminum I-beams @ 20 kg/beam 100

5 Carbon Fiber leaf springs @ 5 kg/spring 25
Miscellaneous weight 25

15 Passengers @ 80 kg 1200
Weight of First Class Cabin before vibration isolation system | 1700
Weight of First Class Cabin after vibration isolation system | 1850
Weight of First Class Cabin with maximum passengers 3050

Table 3. Mass of items used in design calculations

The total mass M has the value of 3050 kg. For our C value we choose the value 0.7 as
it worked well in simulations to provide a smooth ride for the passengers while still
keeping T, small.

Leaf springs and spring K value

The most important aspect of picking a k value is the total allowed clearance the first
class cabin floor has to move. The first class cabin’s floor has a displacement relative to
the body of the aircraft and if that gets too large the floor will make contact with the
body of the airplane. The lower the k value we choose, the larger the displacement of the
tirst class cabin relative to the body of the airplane will become. The maximum travel
distance of the first class cabin is around 20 cm (7.87 in) and we can use this value to
pick an appropriate k value. A k value around 10000 N/m keeps the first class cabin
floor within this tolerance. The following plot shows the absolute acceleration of the
cabin vs. the rest of the airplane during the turbulent flight ﬂ

labsolute position of the first class cabin was computed from the absolute acceleration of the cabin in
the frequency domain. Hence the average value was not used due to the division by zero problem with
this method. We do not have another method to find absolute position from absolute acceleration (unless
we use more advanced numerical integration method in time domain, which is beyond the scope of this
course)
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Figure 6. absolute acceleration of first class cabin compared to rest of airplane

To keep the weight of our vibration isolation system as small as possible we opted to
use carbon fiber leaf springs. The k value of any leaf spring system can be calculated by
the equation

_ 8Enbt?

k 3L3

8xXExnxhuxt3

3 % L

E = Youngs Modulus

n = Number of Leaves
b = Width of Leaves

t = Thickness of Leaves
L = Span

k = Stiffness

Figure 7. Leaf spring design used in vibration isolation system

Since our springs are in parallel, the k values add to give a total equivalent k. We took
the k value selected (10000 N/m) and divided it by 5 giving us an individual k value of
2000 N/m. Using the following dimensions for the leaf spring resulted in a k value of
1940 N/m for a total k value of 9700 N/m.

o £E=17Gpa

e n=23
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e [ = 3.048 meter (10 ft)
e b =0.1016 meter (4 in)
o t =(.015875 meter (5/8 in)

3.2.4.2 Cost values

After finding the materials we needed, the following describes how we calculated the
total cost of our vibration isolation system.

e 5@10 ft 6061 T6 Aluminum I-beams @ $180/beam results in $900.
Width 6 in, Flange 4 in, Web 0.19 in, Thickness 0.28 in.

e 5 Carbon Fiber leaf Springs @ $300/spring results in $1500.

e 150 kg of extra weight, total weight of the airplane is 59350 kg.
Fuel costs for this aircraft was estimated to be $3,500/hour and a typical aircraft
operates 3000 hours per year. An increase of 1% in the weight of the aircraft is

expected to increase fuel costs by 0.5%

150 kg

2259350 kg $3500 x 3000 = $13270

e 5 2k325 Dashpots @ $100/dashpot = $500
Needed c is around 2000 N*s/m. These dashpots have an adjustable ¢ from 0 to
7000 N*s/m

e Total cost estimate $16500

3.2.4.3 Simulation program description

The simulation program was a GUI program written in Matlab version 2013a, which
made it easier to determine the parameters to use for the design. The following is a
screen shot of the program. The program can be downloaded from [the project web site|
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-) <Student Version> : Ver. 3/30/13. Team #4. Vibration isolation. UW Madison, EME 52 —lof =]
N o2d -
simuslation control AT
3
flight data mat file name
run stop step 2z
load file || Flight&coel mat | e e e 7
slow 4 | gt e e 4
— design par,
e R L R R .
empty cabinet mass A | ﬂﬂ 10°3 kg
number of passengers ﬂ _I LI 13
MASS PEr passenger 4 il 80 kg
critical stiffness ‘J J ﬂ 0872 ' ' ! [
: 0
=pring stiffness k ﬂj ﬂsﬂﬁ‘l Mim 0 i z 3 4 5
r ratio
sbsolute displacement vs. time absolute positions first class and rest of airplane __ system information
total mass (kg) 41200
w1 {hz) 0.01219
natural fregq (Hz) 0.07432
| © ([dgamping) N sim 374007
1st class =ample time (sec) 0.02034
b MNao. samples 4032
_ R \ire | fiight time {sec) 81.9969
/E.?SEIEHJE- N

sample [1] time [0.000] sec

-2 -1 '] i 2 3
18

10

!
| rest of airplane
i : first class

| =i = fine

o :‘\\va\.—M_ﬂ‘{WJ‘\_/\VMMﬂ“/
I
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time {sec)

Figure 6. Simulation Matlab program used for obtaining the design parameters.

The first step is to load the Matlab .mat file which contains the acceleration time history.
Then one can use the sliders to adjust the system parameters and see the effect on
the absolute acceleration of the first class cabin. Computation was done in the FFT
domain using the functions f ft_easy() and if ft_easy() in the class web site. The absolute
displacement was found from the absolute acceleration in the frequency domain. Due
to the problem of division by zero for the first component in the frequency vector, this
was set to zero before using if ft_easy().

3.2.4.4 Derivation of the transfer function

Assuming the mass of cabinet is M which includes passengers weight, by applying
Newton'’s laws the EOM for the first class cabin is

my” + c(y’ - z’) + k(y - z) =0
my” +cy +ky=cz' +kz (3.1)

The time history of the turbulent acceleration z”(t) was given to us in the matlab mat
tile. Therefore in the frequency domain, and assuming the time history represents one
period we can write

o = Re[zﬁccei(a)ln)t}

Substituting back into Eq[3.1and simplifying, the magnitude of the absolute displace-
ment of the first class cabin relative to absolute displacement of airplane is found to
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be
Y, 1+ 2Cr,)?
£ BN I o

Where Z%“ is the complex amplitude of the n* harmonic component in the acceleration
data. Letting w7 = @, then in the frequency domain Eq 3.1/ becomes

. acc ZlZCC .
Re{(—m@% +iD,C + k)Yne”D"t} = Re{ [c—— + k—= |e"n!
o, -2
c k
Y, = i, of acc

-mo? +io,c+k| "
oz 1420,
% (1 - r%) + 2ilr,

Where
(Di’l

T, =
Wyatyral

zje . . '
But ——is the absolute displacement of the airplane, say Zoer , hence the transfer func-

tion between the absolute displacement of first class cabin and the absolute displacement
of the airplane is
1+ i2Cr, Zdisp

Yu= (1 - r%) + 2iCr, !

The magnitude of the absolute displacement of first class cabinet relative to absolute
displacement of the airplane is

v, | NL+@m)’
£ BN I o

3.2.4.5 References

1. Aluminum datalhttp://www.onlinemetals. comn|

2. Airpot Dashpot Performance Specifications. N.p., n.d. Web. 15 Apr. 2013.

[http://www.airpot.com/html/dashpot.html]

3. Boeing Commercial Airplanes. 757 Program. n.d. Web. 5 Apr. 2013.

[http://www.boeing.com/boeing/commercial/757family/index.page|

4. Engineering ToolBox. Young’s Modulus. Fabrication Extrusion Company, n.d. Web.
9 Apr. 2013.

5. Ginsberg, Jerry H. Mechanical and structural vibrations: theory and applications.
New York: Wiley, 2001.

6. Online Metal Store Metal Product Guides at OnlineMetals.com. Metal Product
Guides at OnlineMetals.com. N.p.,n.d. Web. 15 Apr.2013.http: //www.onlinemetals.

[com/merchant.cfm?id=980|

7. 7575-200 Airliner flugzeuginfo.net-the aircraft encyclopedia. N.p., n.d. Web. 10
Apr. 2013 http://www.flugzeuginfo.net/acdata_php/acdata_7572_en.php|

3.2.5 software

The following [zip file]contains the current version of Matlab software to use to design
the vibration isolation system.
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4.1 Practice exam Spring 2013

Name:

EMA 545 — Practice Exam #1
Spring 2013 - Prof. M. S. Allen

Honor Pledge: On my honor, | pledge that | have neither given nor received inappropriate aid
in the preparation of this exam.

Signature

Calculators are allowed but not really needed. You may use one sheet of notes (one side).
Formulas:

e’ =cos(0)+isin(6)
Transient Response
The general solution to an underdamped SDOF system

X+ 2¢w %+ @,°x =0
X(t) = Re( Ae <fe)

where @, = @,/1-¢7 and A is a complex constant.
Forced Transient Response:

X(t) = X,c () + X (1)
where Xg(t) can be found in Appendix B

Forced Steady-State Response:
f(t)=Re(Fe"') -  x(t)=Re(Xe")

Page 1 of 5
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Appendix B from Ginsberg, Wiley, 2001:
§ +2wgd + 0l

« Free vibration; F(#) = 0
g = exp(—{w,,?) [q(0)cos(wy?)
4 4(0) + {w,,q(0)
@y
+ Impulse excitation: F() = 8(t)

sin( wdt)}

g = ——exp(— Lo, t)sin(w,Hh(E)

Moy
+ Step excitation: F(t) = A(?)
1
1 Moty (1=exp(—{w, ) cos(wy?)

+ gw“a‘sin (wdz)} }h(t)
@y

» Ramp excitation: F(f) = th(?)

9= L (W) - 2¢

What
+ exp (— {wy,2)[2{cos(wyt)
-1 - zgz)ww—":‘sin(wdt)] }h(r)
« Quadratic excitation: F(t) = #2h(f)

q= ""—"lr{(mmtt)z — 4{(wpyt)

Wnat
=2(1—42)+exp(—L{w,1)
X [2(1 = 4&)cos(mdt)+(6§

—-843 2:; s‘in(wdr)} }h(:)

Name:

fﬁl [<1, w3=awy -

» Exponential excitation:
F() = exp(—B 1) h(®)

- 1 _ _
TR Bz){exp( Br)

—exp(—{w,, ) cos(wyt)
+ ﬁ"i:i-:f sin (@,1)] }h(t)

d

« Transient sinusoidal excitation:
F(t) = sin(whh(f), o #w,, if { =0

1
q= .
M(02, — 0*) +4l w2, 0]

X {(wgat - w?)sin(wt) —2{ o, cos(wr)

+ wexp(—{wy,t) |:2§'mmtcos(wdt)

(1 —2{2)w§at— w?
Wy

sin(mdt)] }h(:)
« Transient co-sinusoidal excitation:
F(t) = cos(wth(t), w # w,,, if {#0
1

M[(w2,— w?)? + 4.2 0k, 0

q k—1
X {(wgﬂ -~ w?)cos (wt) + 2w, wsin(wt)

—exp(—{wpt) [( w2, — w?)coswyt)

- gwnal(wfat + w?)
@y

sin (wdr)} }h(:) |

Page 2 of 5
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Name:

Short Answer Questions: (10 pts each)
1.) A very lightly damped single-degree-of-freedom system is observed to oscillate at 200 Hz
after being excited by an impulsive force at t = 0. The oscillations are observed to fall below 1%

of the initial amplitude after t = 1.5 seconds. What is the damping ratio, £? (Show your work!
An unjustified answer will not receive credit.)

2.) A certain single-degree of freedom system is excited by a force f(t) = -cos(wt)-1.5sin(wt),
resulting in a response x(t) = 1.2cos(wt)+0.226sin(wt). By what angle does the response lag the
force? (Show your work! An unjustified answer will not receive credit.) Is this possible? If it
is, would this require that the excitation frequency be smaller or larger than the natural
frequency?

Page 3 of 5
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Name:

Problem #3 (40 pts)
A single-degree-of-freedom system is initially at rest in its static
Tf(t) equilibrium position when, at t=0, a force, f(t) = Re(Foe'™) is applied,
where the drive frequency, o, is one fourth of the natural frequency of

X the system and Fq is a real constant. The stiffness of the system is 10
N/m, its mass is 0.1 kg, and the system can be modeled as undamped
m over the time interval of interest, so ¢ = 0.
I a.) Find an expression for the response of the system for t > 0.
c ’J_‘ k b.) Sketch the response noting any important features.

Page 4 of 5
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Name:
Problem #4 (40 pts)
The schematic shows a simplified model for an automotive suspension, AN
where the mass represents a wheel and the springs and dashpots lc
represent the suspension and tire. The equations of motion for the k g
system shown are: g

Y
L S B [

All of the system parameters, m, c, ¢4, C2, and kg are known. A harmonic C J_
force f(t) excites the system and steady state conditions have been y
reached so the motion of the massless point, y(t), is harmonic, y(t) = f(t) ¢ |
Re(Ye'™"). This motion has been measured so the complex amplitude, Y,
and frequency, w, are known. C2

(a) (20 pts) Derive the transfer function relating the complex WTLYETT\

amplitude of x(t) to that of y(t).
(b) (10 pts) What would the amplitude of x(t) be for very small and very large drive
frequencies? You may express your answer in terms of m, ¢, cg, C2, and kg, Y and o.

Page 5 of 5
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4.2 first practice exam for finals. 2011

EMA 545 — Review Problems for Final Exam - Prof. M. S. Allen
Spring 2011

Problem #1:
4.34 The mass matrix, excitation, and modal proper-
ties of a two-degree-of-freedom system are known to be

_13 1 _]0
Iirr:]—[l Jkg- {2} {20:}N

w; = 542 rad/s, w,=13.00 rad’s,

! _[
-l L} wo-{)

where « is an unspecified value. The system was
initially at rest in the static equilibrium position.
Determine the response.

Problem #2:

The system below consists of two pendulums on frictionless pins, connected at their tips by a
soft spring k = aumg(L/2) where a. is a small constant. The equations of motion are the following,
where 0, corresponds to the left bar.

1 L[t o][é Lla+05 -« 6, 0

—mL .. p+mg— =

3 0 1](6, 2| —a a+0.5]|6, 0
The bar on the left is given an initial displacement of 2 degrees with the bar on the right vertical
and the response is recorded and is shown below. The blue line corresponds to 0, while the
dashed green line corresponds to 0,. The amplitude of the motion of the left beam decays and
then grows with time as the vibration energy transfers from one pendulum to the other and then

back again. The beat period is 63 seconds. What is the value of a? Justify your answer, but you
need only do those parts of the analysis that are critical to understand what is happening.

k E ¥,F §
L 10 20 30 40 50 60 70 80 920 100

FYI: You can see a video of a system such as this at:
http://www.youtube.com/watch?v=RoSYKPTdIxs
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Problem #3:

The two degree-of-freedom system shown below is forced by means of ground excitation.
The lower spring rests on the moving base, but is not attached to it. When y(t)=0, the system
is in static equilibrium when x; = x = 0. The equations of motion for the system are given

M

For all of the following you may assume that the base of spring k; never looses contact with the
platform.
a.) Find the steady-state response x(t) and x»(t) when o is equal to the first natural frequency
of the system. Use k; =k and k; = 2k.
b.) Are there any frequencies of excitation for which the steady-state response amplitude for
x1 is identically zero? Use k; =k and k, = 2k.
c.) Ifk; =k, =k, what is the steady-state response amplitude of each mass when the system
is excited at a resonant frequency? Can you explain the result?
d.) For arbitrary k; and k»_ if y(t) is such that x,(t) = Acos(wt), what is the response x,(t)?

contacting,

but not attached y(t) = Ycos(ot)

Extra credit — under what conditions does the base of the spring k; loose contact with the
platform?
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Problem #4
Find the linearized equations of motion for the system pictured below. Model the cable as a

massless spring with stiffness £. The system is in static equilibrium in the position shown when
the dynamic force F is not present.

[ L/z (I Lz -]
“]ﬂ
m 2
I !' V]
30°
0

Problem #5
Sorry, I didn’t have time to write a 5" problem. This final probably isn't quite long enough.
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F(t _ I Pa—
§+2§wmtj‘+w§uq = —[2 (<1, w3=wapynl L2

M
« Free vibration: F(f) = 0 « Exponential excitation:
g = exp(—{@,,1) [g(0)cos(@y?) F(r) = exp(—p 1) h(t)
1 -
+0) + 1] ; = exp( ﬁr}
4(0) iﬁﬂmq( ]sm(wdr):l q M (ke — 2‘:%“.3 + ,32){
d
« Impulse excitation: F(t) = (1) —exp(—{wy,t)[cos(w,t)
g - E}—nxp(—{mmr}sin(mdz)h(t} +§“’_;:T_E3in(w 01 }h(t]
W, q

Step excitation: F(f) = h(f) « Transient sinusoidal excitation:

1 F() = sin(onh(s), @ # g if £ #0
=——(1—exp(— rylcos(wyt)
q Muﬁm“ exp(—{@p,t) 4 . )
— ) 2 2
+ g—‘mﬂm—‘sin (wdt}] }AU) Ml(wl, — o) + 4l 057
@y
« Ramp excitation: F(t) = th() X {(m&m — w?) sin(wt) =2{wy, @ cos (1)
q= 13 (@) — 2¢ + wexp(——g‘mmr)[ifmmws(md:)
Wiy
+ exp (— { @y, t) (25 cos(@y1) _(1=2{Nw iy~ w? Sin(mdr)]}h(r]
@y
-(1- 2{1}%}“51“ (md!)] }h(‘} « Transient co-sinusoidal excitation:
‘ F() = cos(wDh(f), w # @, if {#0
« Quadratic excitation: F(f) = 2h(t) .
q =
q= 14 {(mmr}z — 4l (wpyt) M(w2,— o?)? + 402 02, 0?]
Mwgy
=2(1—42)+exp(—{wyt) X {{mﬁm — w?)cos (@) + 2w, wsin(wt)

2(1 — 4L cos(wyt) +(64
e d —exp(—gwmt)[(mﬁﬂ— w*)cos wyt)

2 .
+ gwhm({ﬂ'n“ + o) )sin(wdﬂ] }h[f)

Wy

—g ;S%Sin(mdr):l }h[r)
d

key solution
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4.3 extra one problem practice

Name:

EMA 545 —Exam #2
Spring 2013 - Prof. M. S. Allen
Honor Pledge: On my honor, | pledge that | have neither given nor received inappropriate aid
in the preparation of this exam.

Signature
Formulas:

Stiff spring approx: Newton’s Laws (2D): moment of inertia of a thin
A=u, —U, =(V, -V, )& F=ma rod about its center of mass:
B A ( B A) B/A z ) Iy = (1/12)mLZ

2 Mg =1,00r about its end:
S M, =1,0if 4,=0 leng = (1/3)mL*

Appendix B from Ginsberg, Wiley, 2001: (Corrected)
, . F(z _ —
§+2o,g+ wl%atq = "'X(l")' (<1, @g=aw,Nl— £

+ Free vibration: F(£) = 0 - = Exponential excitation:
g = exp(—{w,,1) [q(0)cos (wyr) F(» '= exp(—B 1) h(f)
7(0) + fw,,q(0) | = 1 _
+ q_(__:{_w_ﬁ__.sm(wd;)} q Mot — 20a B ¥ ‘Bz){exp( Br)
a
» Impulse excitation: F(#) = 8(2) —exp(— {wy,t)[cos(wyt)
g= A_Jim_de;cp(—;mmx)sin(wd:)h(:) 4.’5“’_:1:;"_9 sin(wy)] } 1)

* Step excitation: F(r) = h(1) « Transient sinusoidal excitation:

g =Ma11%m { l—exp("é'wna:t)[cos (wqt) F) = Siﬂ(alt)hit), ©F Wy if {#0
{w 7= 2 — 2. 2 2
+ 2 %gin (cud:)] }h(z) M2, — o) +4l0l o]
Wy
+ Ramp excitation: F(f) = th(?) X { (0%, — @) sin(wt) ~2{w,,w cos(w)
+ exp (— o, ) [2{cos(wyt) _a -2{)wl— o? sin(mdt)] }h(f)
o @a
-1~ zgz)ﬁsin(mdt)} }h(t)
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4.3. extra one problem practice CHAPTER 4. EXAMS

Name:

Problem #1 (20 pts)

The system pictured below consists of two identical bars of mass m and length L. The bars are
connected as shown with stiff springs, so that the left bar is inclined at an angle B while the right
bar is horizontal. This position is the static equilibrium position. Both springs have stiffnesses k.
The generalized coordinates are the position of the mass, denoted y, and the angular deflections

of the bars from static equilibrium, denoted 6, and 6,. The angles 6; and 6, are positive in the
directions shown.

F(t)

i

A co-worker asserts that one of the equations of motion for this system is the following.

%mLéﬁkLcosﬂ(L@2 + Lchosﬁ)—kLycos/}:%

Consider the physics of the problem and check the sign and units of each term. Does each term
produce the expected effect? Explain your reasoning.

Page 2 of 4
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4.4. practice exam 2 CHAPTER 4. EXAMS

4.4 practice exam 2

practice exam 2 . checking validity of K matrix, derive EOM for 2 DOF system, bar,
spring, damper full modal analysis, find solution due to impulse.

4.4.1 questions

Name:

EMA 545 — Practice Exam #2
Spring 2013
Prof. M. S. Allen

Honor Pledge: On my honor, | pledge that | have neither given nor received inappropriate aid
in the preparation of this exam.

Signature

One (1) 8.5x11” double-sided sheet of notes allowed and must be turned in with your exam.

Problem #1 (10 pts)

a.) A colleague asserts that the linearized
equations of motion for this system are as given
below, where x’s denote terms that are not given
to you, which may be zero or constant. []|springs
denotes the portion of the stiffness matrix due to
the springs and []|gravity denotes that portion due to
gravity. Check the units and the sign on the
Kaalsprings term.  If incorrect, please provide the
corrected term and explain your reasoning. (The
left mass is constrained so that it slides along the
bar as the bar rotates.)

I 0 x][4] [k k x 0] [x x x 0] (o

0 m x|[<Xp+| kK x x Xp+[x x x Xxr=40

x x||y xooxox | Dy LY 0
Page 1 of 3
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4.4. practice exam 2 CHAPTER 4. EXAMS

Name:

Problem #2 (45 pts)
Gravity acts downward (along dashpot c),
and the initial lengths of the springs are Lz ' Lz
such that the position shown corresponds to l
C

the static equilibrium when the applied

F
dynamic force F(t) is not present. The Mass m,; / 0,
o (g
E 3—1

moment of inertia of a rod about its mass = )
center is lg = (1/12)mL? and about its end is A 5;
. .b

leng = (1/3)mL2.

a.) ldentify generalized coordinates and &
derive the corresponding equations of
motion. Employ the stiff-spring
approximation to simplify your analysis.
Friction is negligible in the pin joint A
and the friction force between the guide
and m; is equal to f=c,v, where v is the speed of the mass. (30 pts)

b.) Check that your answers make sense. Explain each check that you perform and why it shows
that your EOM are/are not correct. (15 pts)

Page 2 of 3
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4.4. practice exam 2 CHAPTER 4. EXAMS

Name:

Problem #3 (45 pts)

The system pictured is initially at rest when an impulsive force f(t) = Fod(t-T) is applied to the
mass on the right. The masses are constrained so that they only translate in the horizontal
direction, and there is no friction between the masses and ground.

%

m ‘/\k/\/‘ 2m  |—=f(t)

ATTIITIHI T TTTRRTRITTRTIRIRIRIRRRRRRRRRN

The equations of motion of this system are:

o anltel U i)

Find the response of the first mass, x;(t), as a function of time.

Page 3 of 3
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4.4. practice exam 2 CHAPTER 4. EXAMS

SRS

v . F(t —
« Free vibration: F(f) = 0 « Exponential excitation:
g = exp(— oy, t) [g(0)cos(wyl) F@® ‘= exp(—B 1) h(®)
4(0) + {w,,q(0) . = 1 <0 (— Bt
e TR Ty D)
d
« Impulse excitation: F(t) = (1) —exp(— {wy,t)[cos(wyt)
1 . —
g = ——exp(— L sin(wgt)h(f) R A e
Moy W,
* Step excitation: F() = () « Transient sinusoidal excitation:
q= 1 (1—exp(—Lw, plcos(wg?) F( = sin(wdh(®), o # wy, if {#0
Mw%lat 1
{o 17 2 22 2 2
s "atsin(wdt)]}h(t) Mi(w2, — ) + 4L 0%
Wy
« Ramp excitation: F(f) = th(r) X {(wx?;at — w?) sin(wt) —2{w, o cos(wt)
1
q= w3 t {(wnatt) - 25 + w exp(—g’a)natt)[ZZa)natCOS(a)dI)
nal
+ exp (— {wyt)[2{cos(@g?) _(1-2Nel— o sin(wdt):| }h(t)
w
_1_22wnat.(wt) h . d. . . .
( 4 )7,,—d' sin\®y (1) « Transient co-sinusoidal excitation:
Ft) = Oh(D), # if £20
« Quadratic excitation: F(f) = #h(1) () = cos(@nh(t), @ # wpy I £
1
—_ 1 2_4 =
4= (@) {(@gyt) Ml(2,— 0?)? + 402 02, 0?]
nat
—2(1-42)+exp(—{wyyt) X {(wgat — w?)cos (wt) + 2{w,, wsin(w?)

X [2(1 — 4)cos(w4t) + (64
-8¢ ﬁﬁ-s‘in(w t):l}h(t) _exp(—gw"att)[(wfz‘at— w?)cos wyt)
a)d d anat(wnat + w2)

Wy

sin(wdf):\ }h(r) |
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4.4. practice exam 2 CHAPTER 4. EXAMS

4.4.2 Problem1

Problem #1 (10 pts)

a.) A colleague asserts that the linearized
equations of motion for this system are as given
below. where x’s denote terms that are not given
to you, which may be zero or constant. []|springs
denotes the portion of the stiffness matrix due to
the springs and []|gravity denotes that portion due to )
gravity. Check the gnifs and the sign on the

K12lsprings term. If incorrect. please provide the
corrected term and explain your reasoning. (The
left mass is constrained so that it slides along the
bar as the bar rotates.)

I O x l 9 }\’LJ k x_ J Bl oM X Kl Ol
0 m x|<¥:+| k X X B.E A o B S Jxl=J0}
x X x||¥ 5% ®ooX ] 1‘[ X oxo x| o ‘1 O[

Jsprings Y 4

Taking x as positive as shown, and y as positive as shown, then the middle spring is in
compression with change of length A = (x + LO) and the right most spring is in tension
with change of length A = x, hence

Vs

1 1 1
— 2 2 2
pring — Eky + Ek(x + L@) + Ekx

1 1 1
_ 2 2, 71202 2
= Eky +Ek(x +L°0 +2xL6)+§kx

= Qz(ékLz) + x%(k) + yz(%k) + xO(kL)

Compare to quadratic form

1 1 1
Vipring = 5Ku1 6% + 5 2% + §K331/2 + K12x0 + K130y + Kysxy
Then
K11 = kLZ
K22 = k
K33 = k
K12 = kL
Ki3=0
Ky3 =0
Hence the K matrix due to stiffness is
kL? kL 0}/06
kL k O0O]fx
0 0 k\M\y

Therefore, Ky, had the wrong units. This reason is as follows: result of multiplying the
0

tirst row of the Ky, matrix with the column | x [ should have units of torque. Therefore

Y
the units should be force X meter and hence K;,x should come out as Nm units. But as
given in the problem, it has units N only, ie. units of force. But now, the units will come
out to be Nm.

pring
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4.4. practice exam 2 CHAPTER 4. EXAMS

0

Similarly, the second row of the K matrix when multiplied by | x [ should have units of

Yy
force only (not torque). We can see this this is the case with this correction. So the sign
was correct, but the units did not match before.
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4.4.3 Problem 2

Problem #2 (45 pts)
Gravity acts downward (along dashpot c).

and the initial lengths of the springs are ~— L2 —™ L2—
such that the position shown corresponds to T
the static equilibrium when the applied &
dynamic force F(r) is not present. The Mass my
moment of inertia of a rod about its mass E ;
center is I, = (1/1 2)1};12 and about its end is A .
1

Iona = (1/3)mL*.

a.) Identify generalized coordinates and
derive the corresponding equations of
motion. Employ the stiff-spring
approximation to simplify your analysis.
Friction is negligible in the pin joint A
and the friction force between the guide
and - is equal to f=c,v. where v is the speed of the mass. (30 pts)

b.) Check that your answers make sense. Explain each check that you perform and why it shows
that your EOM are/are not correct. (15 pts)

4.4.3.1 Parta

This is a 2 degrees of freedom system. The first generalized coordinate is taken as «
which the angle of rotation of the top bar around joint A. The second degree of freedom
is taken as x which is the sliding distance that mass m, moves as it slides over the lower
bar

~— L2 —{=— L2 —

A

Mass my

\

\

|
i
o
I A

i

o

-

Static equilibrium is at @ = 0 and x = 0.

We start by finding the kinetic energy. Since bar m; is fixed at one point to inertial space,
then only its rotational kinetic energy is added to the system kinetic energy

1(1 1
I 2 n2 - 7\2
T = 2(12m1L )(a) + 2mz(x)

Now we find the potential energy, assuming springs remain straight. Spring k; will
extend by amount

A==
1 201

and spring k, will extend by amount

Ay = La —xsin 6,
375



4.4. practice exam 2 CHAPTER 4. EXAMS

Hence potential energy of the system is
1 1 L
V= Ekl(Al)z + EkZ(AZ)Z + mlgE sina + mygx sin 0,

Therefore the Lagrangian @ is

O=T-V
1(1 1 1 1 L
= E(Emle)(al)z + E7112(_‘)(:/)2 — (Ekl(Al)z + EkZ(AZ)Z + mlgE sina + mpgx sin 62)
2
1(1 1 1 (L 1 L
= E(EmlLZ)(a/)z + Emz(x’)2 - (Ekl(ia) + Ekz(La — xsin 6,)% + mgs sina + mygx sin 62]

2

1 1 1 L
= ﬂmle(a’)2 + Emz(x’)2 -k gaz -~ Ekz(Lzaz + x2 sin? B, — 2Lax sin 62) -mgs sin & — mygx sin 6,

EOM for x is

d(dD) D

dt\ox'| dIx ~F

where Q, is the generalized for for the x coordinate. To find Q, we make virtual dis-
placement 6x while fixing all other coordinates and obtain virtual work done by non-
conservative forces. Only non-conservative force acting on m, is the friction force f = c,v
where v is the speed of the mass m,. The speed of the mass m; is the vertical direction is
v = x’ sin 0,, hence the non-conservative force acting on m;, is c;(x sin 0,) and is acting
in negative direction. Hence taking projection of this force along x gives

OW = —cp(x’ sin 6,) sin 6,0x

Therefore
Q, = —c,x’ sin” 6,
Hence
d{dD\ JID .
a(o.)x/) - x = —sz/ Sll’l2 92
E(mZX/) - (—kzx sin? 6, + 2k,La sin 0 — myg sin 82) = —c,x’ sin% 0,
MoX" + cox’ sin? 0, + kyx sin? O, — 2k,Larsin 0, = —1myg sin 0,
EOM for a is
d(dD) JD 0
dt\da’ | da =

where Q, is the generalized for for the a coordinate. To find Q, we make virtual dis-
placement da while fixing all other coordinates and obtain virtual work done by non-
conservative forces. We see that the work is

L
OW = —c(La’)E(Sa + (Fsin 61)Loa

, cL?
= |FL sin 61 - TCY/ oa

Hence 5

cL
QO( :FLsinel—Ta’

376



4.4. practice exam 2 CHAPTER 4. EXAMS

Therefore
d (oD acD_FL_ p cL? |
i\da’ | 9o ST A
d(1 L2 L cL?
E(Emlea’) - (—klza — koL?a + 2Lx sin 0, — mlgE cos a) = FLsin 0, - 70/
1 ) 12 ) ' L ' cL?
—mL°a” + ky—a + kyLa — 2kyLx sin 05 + myg— cosa = FLsin 01 — —a’
12 4 2 2
e 2 ) : . L
EmlL a”’ + Ta + klZ + kyL* |a — 2kyLx sin 6, = FLsin 6] — mlgE cosa
Hence the 2 EOM are

MyX" + cox’ sin? O, + kyx sin? O, — 2k,Lar sin 0, = —1myg sin 0,

1 cL? 2
Emlea" + 7&' + (klz + ksz)a —2k,Lxsin 6, = FLsin 6] — mlgz cosa

Linearize around static equilibrium, a = 0, x = 0 then we obtain
MyX" + cyx’ sin? O + kyx sin? O, — 2k,Larsin 0, = —-1myg sin 0,

1 12 L2 L
Emlea" + %0(/ + (klz + kzLZ)O{ - 2k2Lx sin 92 = FL sin 61 - mlgz

In Matrix form

2 2

SmL? 0 [a) = 0 (a] ki =+ koL?  ~2kyLsin 0, [a] FLsin 0, - m;g;
+ + 4 =

x 0 Co Sil’lz 92

’’ xl x

0 mo —ZkzL sin 62 kz —myg sin 62

I think the weight contributions should be zero. So I need to look more into this, but I
think the OEM should be as follows

2 2
—mL? 0 [a) = 0 [a] kS + kL2 —2k,Lsin 6, [a] (PL sin 61]
+ + 4 =

0 my \ X7 0 ¢,sin?6, X') | ~2k,Lsin 6, ky x 0

44.4 Partb

’

/

!
Checking the Damping matrix units. First row of C ( ] should give units of torque.

12 T
looking at %a’ . viscous damping coefficient ¢ has units of N7, hence the units of the

expression %a’ are N %(L)Z% = NL, in other words, a torque. (in here, L stands for
length units, T stands for time units and N stands for force units). Now to verify the
second row of C. We see it is ¢, sin® 0,x” which has units of force (given in the problem).
Since the second must have units of force, this is verified.

!
Now checking the stiffness matrix units. First row of K[ ] should have units of torque.

X

2
But (kl% + ksz)a has units of torque since k has units of force per unit length. and

2k,L sin O,x has units of torque also (note @ has no units as it is an angle).

For the second row of K, it should have units of force, which it does, since k,x has units
of force and —2k,L sin O,a has units of force. Hence verified.
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4.4. practice exam 2 CHAPTER 4. EXAMS

Check signs on the x EOM:

mzx” + szl sinz 92 + kzx Sinz 92 - 2k2L(X sin 62 =0

mzx" + sz/ sinz 62 + kzx sin2 62 = ZkzLCY sin 62

x"”” > 0,x" > 0,x > 0 then a > 0,checks OK, since when x > 0 then the top bar will be
rotating in the positive direction and a > 0, i.e. the top bar will be above the horizontal.

Check signs on the « EOM:

1, o L2 2 : :
EmlL a’ + - + klZ + kyL“ |a — 2kyLx sin 8, = FLsin 64

12 o _ _
EmlL a’ + 70[’ + klz + kzL a = FLsin 91 + 2k2Lx sin 92

a” > 0,a" > 0,a > 0 then x > 0,checks OK, since when @ > 0 then the top bar will
be rotating in the positive direction and x > 0, means the lower mass m;, is moving
upwards.
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4.4.5 Problem 3

Problem #3 (45 pts)
The system pictured is initially at rest when an impulsive force f{r) = Fpd(7-T) is applied to the
mass on the right. The masses are constrained so that they only translate in the horizontal
direction. and there is no friction between the masses and ground.

X

|2

X
» !

k 2m

"\

AANERRRIR LR IR VRN AR R RSN N
The equations of motion of this system are:
m ko —k |.\‘ll J 0 }

o lief e el Lol

r+
2m
Find the response of the first mass, x1(7). as a function of time.

— 1)

m

ANARNN

%

We solve this in modal coordinates so to de-couple the EOM’s. First find the 2 natural

frequencies
1 -1 10
k - w’m =0
-1 1 0 2
1 -1 ,mfl 0
- wc— =0
-1 1 klo 2
Let a)2% = 1” then
1 -1 10
- 772 =0
-1 1 0 2
1-7 -1
n ~0
-1 1-27

(1-n?)(1-27%)-1=0

Hence taking positive roots | 1 =1.2247,1=0 | Whenn =0

1- ’72 -1 Pu| 0
-1 1-2n%)|912 0
1 (1] o

-1 1)|912 0

1
1

|

Hence 1 — @1, = 0 or ¢, =1, therefore ¢, = {

When n =1.2247

1-7 -1 ||en o
-1 1-21%] |92 0
-05 -1}|| 1 B 0

-1 =2)|P2 0
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Hence —0.5 — ¢y = 0 or ¢y, = —0.5, therefore ¢, = {

and

Hence

(@}, = o), _ {1} _ {0.57735}

0.57735

@), - (e}, {(1)5} {0.81650}

V2 V15 ~0.40825

Hence

o] = 0.57735 0.81650
0.57735 -0.40825

Then the modal EOM are

[M] [@] + [@]" [K][®] = [®]"{F)

1 0 [T O0|fm) (057735 057735 )| o0
0 n2flm] 1081650 -0.40825]|Foo(t)
10 0 0 0.57735F4(t)

15/|m|

—0.40825Fo(t)
For the first mass, EOM is

t
iy = f 0.57735F5(t)dt + C;
0
1
_ 0.57735F0(h(t) - E) e
t 1
m(b) = f (0.57735F0(h(t) - E) + Cl)dt LG,
0
1
= O57735F0t(h(t) - E) + tCl + C2

380
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. . . x1(0) 0 x1(0) 0
Now initial conditions are zero since = and also = then
x,(0) 0 x5(0) 0

1m1(0) 0 11(0) 0
= and also =
112(0) 0 112(0) 0

Initial conditions 71(0) = 0 implies

C2 =0
while and 73;(0) = 0 implies

1
C, = —0.57735F0(h(t) - 5)

Hence the solution is

1
T]l(t) = 057735F0t(h(t) — E) + tC1 + C2
1 1
= O.57735F0t(h(t) - E) - 0.57735F0(h(t) - 5)
1
- 0.57735F0(h(t) - E)(t _1)

Now the second EOM is solved.
fip +1.5m, = —0.40825F0(t)

Which has solution (using appendix B) and using M =1 and wp = w, = V1.5 =1.2247

since C = 0, hence
~0.40825F,

in(1.2247
Tod7 sin(1.2247t)

m(f) =

Now to obtain the solution in normal coordinates

x1(£) _ (] M)
xp(t) M2(t)

Then
1
{x1(t)} ) [0.57735 0.51650 | |0-57735F ®) = 3¢ =1
Xo(t) 0.57735 -0.40825 ~0.40825F; .
o017 sin(1.2247t)
So
1 0.40825F,
= 0.577 577 -=|(t-=1)|-0. ————  sin(l.
x1(t) = 0.5 35[05 35F0(h(t) 2)(t 1)] 081650[ Tooa7 sin(1 225t)l
1 0.40825F,
= 0.577 577 - —|(t- . ———— sin(l.
x,(t) = 0.5 35[05 35F0(h(t) 2)(t 1)]+040825[ T o007 sin(1 225t)]
For example, if Fy =1 then
1 0.40825
xq(f) = 0.57735[0.57735(}1(1‘) - E)(t - 1)] - 0.81650lm s1n(1.2247t)l
1 0.40825
x(F) = 0.57735[0.57735(h(t) - E)(t -1+ 0.40825[ T 5007 sin(1.2247t)}

Here is a plot of the solution x(f) and x,(t). The 2 masses move to the right after the
impulse, while in sinusoidal motion at the same frequency, but different amplitudes.
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a0 = 0.57735;
b0 = 0.B165;
cO = 0.40825;
wn=1.2247;
1 cl
XL[t ] :=a0 [aO [UnitStep[t] r —] (:_1)} ~ kO [— sin[wm :]}
s 2 wn
1 cl
X2[E ] iz a0 [aU [Unitstep[t] - —] (‘-:—l)} +e0 [— Sin[wn ‘-:]]
- 2 W
Grid|[

{{Plot[x1[Et], {t, O, 30}, Frame -+ True, Framelabel -+ {{"x; (L))", Honel}, {"L",

x1{t)

ut[42}=

"solution to x; (E)"1},

GridLines - Automatic, GridlLinesStyle - LightGray, Rotatelabel -+ False, ImageSize —» 300]},

{Plot[x2[t], {t, O, 30}, Frame » True, FrameLabel » {{"x;(t}", Hone}, {"t",

"solution to x3(t)"}},

GridlLines - Automatic, GridlLinesStyle - LightGray, Rotatelabel -+ False, ImageSize -+ 300]11}]

(]

(=)

[

]

solwtion to x (t)

P
L . ]
T A
L ,"J ]
//‘-u
/f -».__\__f’
E P f ]
.r':
L] 5 10 15 1] 25 £l
t
solution to x5 (t)
T T T T T T =
&
L // 4
i
-
[ ! ]
il
o
//
- v -~ B
rd
F,/
[~ ]
i 1 L L 1 L L
L] 5 10 15 p. 1] 25 ED]
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4.5 finals 2nd practice exam

4.5.1 questions

Name:

EMA 545 — Final Exam - Prof. M. S. Allen
Spring 2011

Honor Pledge: On my honor, | pledge that this exam represents my own work, and that | have
neither given nor received inappropriate aid in the preparation of this exam.

Signature

Problem 1 (20)

Problem 2 (20)

Problem 3 (30)

Problem 4 (10)

Problem 5 (10)

Problem 6 (10)

Total (100)

You are allowed one sheet of notes for this exam, front and back. Staple your note sheet
to the back of your exam when you turn it in. Calculators are allowed, but you must show all of
your work to receive credit.

Page 1 of 9
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Name:

Appendix B from Ginsberg, Mechanical & Structural Vibration, Wiley, 2001: (corrected)
" . F(2) _
G+ 2w,g+ 0lg = 73 (<1, w3=aw,uNl—{2

+ Pree vibration: F(f) = 0 - » Exponential excitation:
g = exp(—{ @) [4(0)cos(ay?) F@) = exp(=B 1) k()
4(0) + {0,,q(0) . = 1 exp(— Bt)
T e ! Mt~ 2B B0 T
» Impulse excitation: F(f) = §(2) —exp(—{w,, )L cos(wyt)
1 : {o,— B
= e—exp(— t)sin(w (¢ nat .
0= oD~ (A0 oL Lo o
* Step excitation: F(f) = (1) « Transient sinusoidal excitation:
1 F() = sin(dh(t), w #w,,, if {#0
q =y —exp(—{w, 1)[cos(wyt) ) 1 hat
{ Wy = 2 — W+ Al w2 P
+ ——Zsin (wdt)] h(t) M[(wnat w?) + g’Qa)natw ]
@y
« Ramp excitation: F(f) = th(?) X {(wﬁat - w?) sin(wt) =2{w, 0 cos(wt)
1
q= ngat {(wnatt) - 2f + wexp(mgwnatz)[Zg’wnmcos(wdt)
' - — 2
+ exp (—Lay,1)[26c0s (@) _(1=2Peh - @ sin(wdt)] }h(t)
Wygt “a
al .
—(1- 2{2)-6-0—;-sm(wdt)J }h(t) « Transient co-sinusoidal excitation:
F(t) = cos(wdh(t), o # w,, if £ #0

* Quadratic excitation: F(f) = #2h(f)
1

q p=4
7= “C—i'r{(comt)z — () MI(h~ P + 40 a2y o?]
nat .
—2(1—48)+exp(—{wy, ) X {(wgat — w?)cos (wt) + 2{w, wsin(w?)

X [2(1 = 4¢2)cos(wy)+(6¢

—exp(—{wut) [( w2, — @*)coswyt)

—8¢3 ;j; sin(md:)]}h(t)

> gwnal(wﬁat + w?)

Wy

sin(wdt)} }h(z) |

Page 2 of 9
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Name:

Problem #1 (20 pts)

Two rigid beams are pinned at their ends and arranged as shown below with a stiff spring
connecting their tips. Gravity acts in the direction indicated. The position shown corresponds to
the static equilibrium position. The masses of the two beams are m; and m, and they both have
the same length, L. They are separated by a distance h. A dynamic force is applied to the tip of
the right beam as shown. The moment of inertia of a bar is 1;=(1/12)mL? about its center and
leng= (1/3)mL? about its end.

Find the linearized equation(s) of motion for this system and check that your equation(s)
are physically reasonable.

m, L
. k
¢ gravity F
>
h |
Page 3 of 9
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Name:

Page 4 of 9
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Name:

Problem #2 (20 pts)

The impact of a tennis ball with a racquet can be modeled using the two degree-of-freedom
system shown below to represent the ball (the masses are only permitted to move in the
horizontal direction). A ball is initially traveling to the right at speed vo, (i.e. with X, =X, =V,)

when it strikes a racquet. Suppose that the impact force is known and is modeled as a square
pulse whose duration is T. Damping is negligible.

f(t)
>y b, -

k
2m N\ m <—f(t)

t
B
The equations of motion of this system are:

2m 0 |[X . k —ki{fx| | O
0 mil%| |-k k||x| |-f@)
a.) (10 pts) Find the natural frequencies and mass-normalized mode shapes of the system.

b.) (10 pts) Find two uncoupled, second-order differential equations that could be solved to

find the response of the tennis ball. Be sure to substitute all known quantities into each of
the equations.

¢.) (3 pts extra credit) Use the result from (b) to sketch the response of the first mass, x;(t),
qualitatively for t > T, explaining any important features.

Page 5 of 9
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Name:

Problem #3 (30 pts)
The system below is a simplified model of an aircraft with an engine mounted on its tail.

) T f(t)
o
S
m2

K k

2 2

24

N NNN\N ~N

The equations of motion for certain values of the ki, my, etc..., are known except for the mass

matrix,
My My [%] [004 0[] [100 -100]x] _[f()
M, M, ||% 0 005||%| [-100 200 ||x,/ | O

s0 M1, My2 and My, are unknown constants. The mass normalized modes are also known and

0L o[

The second natural frequency is w,= 16.9 rad/s. Suppose the system is initially at rest when the
engine starts exerting a force f(t) = Acos(wt)h(t) where h(t) is the unit step function.

a.) (10 pts) What is the first natural frequency w;?

b.) (10 pts) How long will it take for the system’s response to settle to within approximately
1% of its steady state value? (Think carefully about what is being asked here and only
answer the question that was asked.)

¢.) (10 pts) Find an expression for the steady state response of the first mass x;(t) in terms of
the forcing frequency o.

Page 6 of 9
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Name:

Page 7 of 9
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Name:

Problem #4 (10 pts)

The system shown consists of a beam with a large mass mounted one fourth of the
distance from its end. This can be represented with the undamped spring-mass system shown to
the right, with k=85EI/L>. The system is initially in its static equilibrium position when a step
force, f(t)=Foh(t), is applied to the mass.

L | f(t) ¢f(t) f(t)

-2 -

0

m

I R S—

The following information is available from a static analysis of the beam. When a static
load, F, is applied to a beam, the maximum bending stress occurs in the outer fiber of the beam is
given by omax=-MmaxC/l, Where Mmax is the maximum bending moment in the beam, c is the
(known) distance to the outer fiber and | is the area moment of inertia (also known). See the
figure below for additional details regarding a static loading scenario.

(a) Simply supported beam with concentrated loading

W (S M — Mg

a Flx-a ‘ R = F[l _E] o
.2 ] :

! N - X 0 p i
F%—_, |
. 2=F[ﬂj S e a

T 2 T l ] Mpar = Fa(] _T

Ry 2 =MAX(R;, Ry)

hear Vnm,r .
Lo Aoment

Loading

What is the amplitude of the load, Fo, that causes the beam to exceed its yield stress, cy?

Page 8 of 9
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Name:

Problem #5 (10 pts)
A single degree-of-freedom system’s response is given by x(t) = Re(Xei“’t) , with X=e'?™*,

Sketch the complex amplitude, X, in the complex plane and sketch the corresponding time
function x(t) over at least one cycle.

Problem #6 (10 pts)
A three degree-of-freedom system is excited by a sinusoidal force, f(t)=cos(wt).

[MI{x}+[CI{x}+ [K]{xp ={F} f )
The frequency response was computed using { X} = (—a)2 [M]+iw[C] +[K])7l {F} and |X4
from that calculation is plotted below.

3.3

3
2.7
2.4
2.1
1.8
15
1.2
0.9
0.6
0.3

IX,]

Frequency (rad/s)
Suppose that the input, f(t), is replaced with a periodic function that can be expressed as follows,

£(t) =% > (_100n_ ”Je‘"wﬂ

n=—ow

with o1 = 3.0 rad/s. What frequencies would be present in the steady-state response x(t)?
Which of those would be dominant (i.e. have the largest amplitude)?

Page 9 of 9
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4.5.2 Problem1

Problem #1 (20 pts)

'wo rigid beams are pinned at their ends and arranged as shown below with a stift spring
connecting their tips. Gravity acts in the direction indicated. The position shown corresponds to
the static equilibrium position. The masses of the two beams are my and m: and they both have
the same length, L. They are separated by a distance A. A dynamic force is applied to the tip of
the right beam as shown. The moment of inertia of a bar is I,=(1/12)mL> about its center and
Lo (1/3ymL* about its end.

Find the linearized equation(s) of motion for this system and check that vour eguation(s)
are physicallv reasonable,

01

l gravity

This is a 2 D.O.F. system. The degrees of freedom are 0; and 0, shown above in the
positive sense. The method of power balance is used to obtain the EOM.

The system kinetic energy is T = m1 3 (9’ ) + m1 (62) , hence by comparing term to
the quadratic form, the mass matrlx part of the EOM is obtained

LZ mq 0 ei/
3 0 my Qg

To find spring stiffness, the spring deformation is found using stiff spring approxima-
tion.

N =(Vg=Vp,)-epa
= (LOi-L64j) - (cos pi — sin j)

Where ep4 is unit vector oriented to B from A and tanf = The above becomes

AN = L0, cos f+LO] sin

Hence, integrating, squaring and collecting terms gives

A = LO, cos +L0O; sin
N? = 1203 cos? B + L2602 sin® B + 2126, 0, sin  cos B
= 03(L2sin? B) + 03(L? cos? B) + 010,(2L2 sin f cos )

Using the quadratic form of the power balance method, the spring stiffness matrix part

of the EOM is found from V.

spring = k(AZ) and by comparing quadratic terms, which
leads to

L2 sin® 2sinfcosp||6;
2sinfcosf  cos?p 02

Vspring

But sinffcosp = . (sm Zﬁ) hence

) sin 8 sin28|(6;
sin2f cos? B|| 62
392
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Stiffness due to gravity V, is now found. Let datum for zero potential energy be at the
horizontal level of the top bar, hence V, = m, g% sin 60 —ngg cos 6,. Since the derivatives

are evaluated at static equilibrium 6; = 0 and 0, = 0, the only term that remains is 1, g%
which is now added to the ky, term of the stiffness matrix. FL is the generalized force for
0, since work done by F in making virtual 60, is FL6O,. Therefore, the EOM becomes

12|my 0 |67 12 sin® B sin2f3 6, 0

J— + =

310 my||0y sin28 cos? B + ng% 0> FL
To check units of the above EOM, looking at the first EOM from above

%zmlegf + kL2(sin? B)0; + kL(sin28)6, = 0

2
Let 6; = 0. Hence %mlei’ = —kLz(sin 2,8)62. Assume 0, > 0 and the system is now
released to move. We should expect the top bar to accelerate down (negative), since the
spring is stretched. Looking at the above, we see that 07 < 0. hence this is correct.

2
Now let 6, = 0. Hence %ml 07 = —kLz(sin2 ﬁ) 0:1. Assume 01 > 0 and the system is now

released to move. We should expect the top bar to accelerate down (negative) since the
spring was stretched. Looking at the above, we see that 67" < 0. This is correct.

Checking the second EOM

12 L
S ma0% + kL?(sin 28)0; + kL2(cos? B)6, = FL - myg 62

Let 6; =0and F = 0 then

LZ 77 L 2 2
Emzez = —m2g§92 -L (COS ﬁ)@z

Assume 0, > 0 and the system is now released to move. We would expect the right bar
to accelerate back (negative) when released to move. From the equation we see that
07 < 0. This is correct.

Now let 8, = 0 and F = 0 then

LZ
?mz%’ = —kLz(sin 25)91

Assume 0; < 0 and the system is now released to move. We would expect the bar to
accelerate to the right (positive) since the spring was compressed. From the equation
we see that 05 > 0. This is correct.
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4.5.3 Problem 2

Problem #2 (20 pts)

The impact of a tennis ball with a racquet can be modeled using the two degree-of-freedom
system shown below to represent the ball (the masses are only permitted to move in the
horizontal direction). A ball is initially traveling to the right at$peed v, (i.e. with x, = X, = v,
when it strikes a racquet. Suppose that the impact force is known and is modeled as a square
pulse whose duration is 7. Damping is negligible.

A0

e b
k
2m NN\A m |<—fD)

The equations of motion of this system are:
2m 0 || % k —k|[x 0
+ f—
0 m|lX -k k||x —f()
a.) (10 pts) Find the natural frequencies and mass-normalized mode shapes of the system.
b.) (10 pts) Find two uncoupled, second-order differential equations that could be solved to
find the response of the tennis ball. Be sure to substitute all known quantities into each of
the equations.

c.) (3 pts extra credit) Use the result from (b) to sketch the response of the first mass, x;(t),
qualitatively for t > T, explaining any important features.

4.5.3.1 part(a)

det([k] - w?[m]) = 0

ko —k 2m 0]
det - w? =0
-k k 0 m

1 -1 2 0]
det —a)zﬂ =0
-1 1 klo 1

’

For normalization, let t' = wt then %~ wand using t’ instead of t as the independent

dt
variable the above becomes

1 -1 2 0]

det - w? =0
101 01
1-202 -1 |

det =0
-1 1-w?

(1-20?)(1-w?)-1=0

The roots are w = 0 and w = \/g . When w = 0 it is a rigid body motion, So any ¢ will

1
do. Let ¢ = ) .Whena):\/gthen
1 -1 3|2 0]]|Pr2
-1 1| 2{0 1{/|px 0

-2 -1 P12
-1 —5 (P22 0
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let 1, =1 then -2 — ¢,, = 0 or ¢y, = =2 hence @, = {

_ _ T2
1 = ¢1[Mley )

0

_ T (Mlo, - 12 o[ 1 i
Ha2 = @) P2 o lo 102
Hence
® _ﬂ_il 3 0.57735
YU Vm o VB[ os7rss
o - P2 _ 1 [1[_[o40825
2" Vilz e |-2  |-081650
4.5.3.2 part(b)
1 1
® = V3 Ve
1 2
V3 Ve
The EOM is
T
1 1 1
3 - = =
0 1||lny] |0 = —f(t) 2] |-f® 1
s Al f = f V6 £(1)
o » 11(0) 0
initial conditions are = and
112(0) 0
T
1 1
15(0) v |L 210 1| 0
V3 Ve

Therefore, the first ODE is

1
1 = =3 V3 Fo(h(t) — h(t = T)

with IC 11(0) = 0 and 17(0) = V3 v,. The second ODE is

3 1
15 + 52 = 5 V6 Folh(t) = h(t = T))

with IC 17(0) =0 and 17(0) =0
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4.5.3.3 part(c)

Dy111(t) + D1a1a(t)
1 1

— — (¢

\/3 771(t) + \/6 T)Z( )

x1(t)

Therefore, x;(t) solution has contribution from 7,(t) and Uz(t). But ﬂ}(t) is lilrllizar \:[vﬁ’;};
positive slope of vy and 7,(t) is a sinusoidal, with no damping. So adding both together,

here is a sketch of possible solution

X1 (t)

n t

2( 2///'771(1:)
- t

4.5.4 Problem 3

Problem #3 (30 pts)
The system below is a simplified model of an aircraft with an engine mounted on its tail.

The equations of motion for certain values of the ki, my, etc..., are known except for the mass

matrix,
M, M,](% [004 0 7%, L[ 100 -1007(x]  [f@)
M, M, || 0 005]%,) |[-100 200 [|x,[ | o

so M1, My, and My, are unknown constants. The mass normalized modes are also known and

h={os @~ o4}

The second natural frequency is m,= 16.9 rad/s. Suppose the system is initially at rest when the
engine starts exerting a force S (1) = Acos(wt)h(r) where h(1) is the unit step function.
a.) (10 pts) What is the first natural frequency @;?
b.) (10 pts) How long will it take for the system’s response to settle to within approximately
1% of its steady state value? (Think carefully about what is being asked here and only
answer the question that was asked.)
c.) (10 pts) Find an expression for the steady state response of the first mass x,(¢) in terms of
the forcing frequency .
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4.5.4.1 part(a)

OT[K]®T =

. . ;
085 11 |[100 -100][0.85 11| [0} O
0.65 —0.5| [-100 200 [|0.65 —05| |0 w2

4625 -05| |o? O
—05 281.0| |0 o2

Hence w? = 46.25 or w; = 6.8 rad/sec

4.5.4.2 part(b)

. . . . . 1
Using the first natural frequency, since this has the longest time constant 7 = C—wand
191

solving for the number of periods using logarithmic decrement method

1
Nln(;—;) = 2nC1 (1)

C; is not known but can be found by evaluating @ T[C]®T

T
T + (085 111004 0 |{085 1.1 0.05 0.021
O'[K]D" = =
0.65 -05|| 0 0.05|[0.65 -0.5( [0.021 0.061
and assuming small damping approximation, then 2{;w; = 0.05. Hence {; = % =

% = 0.0038. Now that the critical damping ratio for the first mode is found, we can

use the method of logarithmic decrement to find how many periods it takes to attenuate
by 99%

1
Let ;—; = 507 = 100 then Eq (1) becomes

1
N In(100) = 272(0.0038)

_ (4.605)
~ 27(0.0038)
=193

=192.87

Where N is the number or periods needed. But T = i—n,hence the time needed is
1

27 27
t=NT =192T =192— =192— =177.41 sec
w1 68

So it takes 178 seconds for the first modal (decoupled) solution to attenuate in amplitude
by 99%. Since this is the dominant time constant, we expect the physical solution to
attenuate in approximately the same amount of time as well.

4.5.4.3 part(c)

The EOM is, in modal coordinates

’” ’ 2 iot
1 Of|™ T 004 O o m N wi 0 ||m _oT Re(Ae‘D)
0 1||ny 0 005 |m| |o w2||n 0
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But

T
0.85 1.1‘ [0.04 0 “0.85 1.1}_[0.05 0.021}

004 0
@ ® = =
0 005 [0.65 -05|| 0 0.05/065 -05| |0.021 0.061

Hence EOM in modal coordinates become

Lojfm| 005 oo21|fm| |68 0 |fm|_|085 11
0 1||ny| 10.021 0.061(|n, 0 16.9%((n2 0.65 -0.5
and using small damping approximation

1o|fm]  foos o |[m| |68 o |fm|_ 0.85Re(Ae'?)
o 1flngf [0 ooe|lmf |0 1692f(m) | 11Re(act)

Hence the 2 EOM’s are

! Re(Aei‘Dt)

0

ny +0.05n] +46.24n; = Re(0.85A¢)
ny +0.061n) + 285.617, = Re(1.1Ae™)

_ ” _ 0.85A _ -t _ 1.1A
Letn, = Re(Xlel CD) thenX; = — e remand m2 = Re(Xzel ‘D)then X2 = — 30060901285 61
then
x = D11y + D1y
x1(t) 0.85 ‘ 1.1 .
T Re(X;et) + Re(X,e!)
(1) 0.65 -05
Hence
x1(f) = 0.85 Re(X;e®) + 1.1 Re(X,e')
x5(t) = 0.65 Re(X;e®) — 0.5 Re(X,e'®")
hence
0.85A . 11A .
f) = 0.85R ot 1 11R iot
x(h) e(_@z T 10.050 + 46.24° ) e(—caz +10.0610 + 285.61° )
0.85A . 11A ‘
#) = 0.65R iot| ~05R iot
x2() e(—mZ T 10.050 + 46.24° ) e(—cDZ +0.061 + 285.61 )
These can be combined to
0.852A 1.12A .
x;(t) = Re , + : it
—@2 +i0.050 + 46.24  —@2 +i0.0609% + 285.61
0.65)(0.85)A 0.5)(1.1)A .
xz(t) = Re ( i )( ) _ ( )( ) it
—-@? +i0.05@ + 46.24 -2 +10.061@ + 285.61
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4.5.5 Problem 4

Problem #4 (10 pts)

The system shown consists of a beam with a large mass mounted one fourth of the
distance from its end. This can be represented with the undamped spring-mass system shown to
the right, with k=85EI/L’. The system is initially in its static equilibrium position when a step
force, f(1)=Foh(t), is applied to the mass.

L | A9 i AD) Aty

=
4 F

0

T’”
x]

z | év R

The following information is available from a static analysis of the beam. When a static
load, F, is applied to a beam, the maximum bending stress occurs in the outer fiber of the beam is
given by Gmax=-Mmaxc/I, Where My is the maximum bending moment in the beam, ¢ is the
(known) distance to the outer fiber and 7 is the area moment of inertia (also known). See the
figure below for additional details regarding a static loading scenario.

{2) simply supported beam with concentrated loading

! v M

S—_ N

 ——

{
7

omax
{7

=2 . f &
? 270T7) Mypar = Fa| 1-2 |
R \

Viar = MAX(Ry, Ry)

mrieax

What is the amplitude of the load. Fy, that causes the beam to exceed its vield stress oy?

The transient response is given in appendix B as

x(t) = %(1 — cos w,t)h(t)

_ 2F, . .
Hence maximum amplitude of the response is 1,y = TO Compare this to static deflec-

tion which is 1y, = % then we can say that dynamic load is twice as large as the static

load. Therefor using 2F in place of F in the expression for stress gives the result needed

Therefore

T
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4.5.6 Problem 5

Problem #5 (10 pts)
A single degree-of-freedom system’s response is given by x(t)= Re(Xe'“”), with X=¢'2™3.

Sketch the complex amplitude, X, in the complex plane and sketch the corresponding time
function x(z) over at least one cycle.

.21
Att =0 then x(t) = Re(el?) which is - cos(600) = —%. Using w = 2m rad/sec then x(t)
can be traced. Here is a plot

I=sqrt(-1);

W=2%pi;

x=0(t) real(exp(I*2*pi/3)*exp(I*w*t))
t=0:.01:1;

plot (t,x(t))

grid

xlabel('time (sec)'); ylabel('x(t)');

i i I i i
0 01 n2z 03 04 05 0B 07 08 089 1
time (sec)
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4.5.7 Problem 6

Problem #6 (10 pts)
A three degree-of-freedom system is excited by a sinusoidal force, Af)=cos(wr).
[M]{EH+[C s} +[K]{x) = {F) £ 1)
The frequency response was computed using {X}= (—wz [M]+ i(u[C]+[K])7I {F} and [X,|
from that calculation is plotted below.

L B B m e o
3.3

B3~
27
2.4
21
1.8
1.5]
12
0.9
0.6+
0.3

0 i S N I

0 3 6 9 12 15 .18 21 24 27 ?O
Frequency (rad/s)

Suppose that the input, f{7), is replaced with a periodic function that can be expressed as follows,

1 & (1001 '
f(r)zz(—n je

n=—om

IX,|

. with o} : 3.0 rad/s. What frequencies would be present in the steady-state response x;(¢)?
Which of those would be dominant (i.e. have the largest amplitude)?

Damped resonances are seen at w = 8.5,14 and 23 rad/sec. This is where r = (,,2 is close

to unity, where @ is the forcing frequency and w; is the natural frequency. Since this is a
3 dof system, it will have 3 natural frequencies.

The response of each dof will take contributions from each mode of vibration. Each
mode vibrates at different natural frequency. From the plot above it is seen that the
response of x;(t) has the largest response when the forcing frequency is close to the
w, =14 rad/sec.

The new force now has the following set of discrete harmonics in it: (n = 0 is not counted,

100 99 98 97 96 95 94 98
DC) _e3t _e6t 70 9t _elzt _6151L _6181L —6‘21t —624t

1 - ’3 an ' s r 7’8 y o0 Or

f(t) =100e>,49.5¢%,32.7¢%, 24.3¢12,19.2¢15!,15.8¢18,13 46211, 12,3624

So the input force has only discrete frequencies. Since linear sum, each f;(t) will cause
the response |X| at that specific forcing frequency as shown in the plot. Looking the plot
it can be seen that when forcing frequency is 9 rad/sec, this will cause the largest |X]
among all these set of discrete frequencies. Hence the dominant harmonic is 9 rad/sec
and will have amplitude around 2.4 from looking at the plot.
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51 Quiz1

Name: ,{;CH/ “ %? f&“?

EMA 545 - Pop Quiz #1 - Prof. M. S. Allen 5(; r. 2017
Closed book, no calculators

Problem #1 (5 pts each)
The figure below shows a harmonic function g(#) whose frequency is ®=1.0 rad/s.

T T

T T T T T
L 1 R e D 4 ) [T
) l 1 i !
I I I ' I
I i I | I
05F---4 [ O R A R W U . IR
' i ] i )
i ) I '
! I I ‘
! |
0 1 il
)
| i
OBL - fo ot

oY ‘ ‘
o' 2 4 6 8 10 12 14 16 18 20
K \ time (s)
a.) If this were expressed as a complex exponential g(f)=real(Aexp(inf), in which quadrant
would A be located? Why? Sketch the complex vector A on the axes below.

i/wm! &Mmc{ |
vt G e *’ e

\

—2 G 13 J
spaid i 14 " o £ oy !'(“" a
rasiram g;azfz«.;»f' J¥ e Bl
b S 1t m/wi!’ﬂf alasl 5'}3
v Viee] . oxTrérg. 5Jev)

sk at t))

( V! {”3‘«’ /

Jred Chaaddrand D Bt syt

b.) Suppose that the expression for g(¥) is also valid before time zero. Sketch the complex vector
Aexp(iot;) for #; =~1.5 sec (i.e. # = negative 1.5 seconds).
/“ N . 2 7 o
wh Y W = A
Alfre” & ) Ve
. ye Y

polate backnsere

[ov K?/ ’:}

,JZ«’\?/ ? ‘E,; 4 (:'z;// “ T

Soad chdrand 7 Ay Chaddrasd

Page 1 of 1
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5.2 Quiz 2

5.2.1 Problem description
Consider this 3 DOF system

0 ovardgle -
200 erxanp |

> >
gy’ /& K, veymses .oy
gy f fs o Iyt ben
f‘mvj ’\,\-—[ )”?l f[\ ﬂ’/l 5 (//ﬂ whipm ’ﬂ,f,h e

;7" l's wwewwleof
’M; )*ﬁ [”(;

| — — Firet viaf. r[ }'lfﬁ'; gncl V,m,__.ff};

Suppose a harmonic force f(t) = Acos(ot) is applied to the mass in the center. Use
modal analysis to do the following:

1. Find the uncoupled modal equations of motion. Consider the steady state solution
for each of these equations. Sketch the modal amplitude (X; in the book on page
275) for each mode versus frequency. A hand sketch is sufficient.

2. Use that result to sketch the frequency response of each of the masses, in other
words the complex amplitude Y;, versus w

5.2.2 Answer part (1)

A summary of the steps needed for full modal analysis is first given. In these steps, a
column vector is shown as bold letter Y and a matrix is shown as [M]. In this summary,
the system is assumed to have n degree of freedom.

The steps are

1. Determine the system of equations of motion and set up [M]Y” +[C]Y' +[K]Y = F
in matrix form.

2. Solve the eigenvalue problem det([K] - a)z[M]) = (0 in order to determine the n
natural frequencies.
3. For each natural frequency w; determine the corresponding j" eigenvector j by

solving ([K] - a)]-z [M])j = 0. In this step, the first component of ; is set to 1 and the
other components are solved relative to it.

4. Obtain the normalized eigenvectors ®@; for each ; using @; = F where u; T[M]]
Uj

Each uj will be a scalar.

5. Set up the modal transformation matrix [®] = [P D, --- D, ]. This will be ann X n
matrix.

6. The transformation from normal solution y(¢) to modal 7(t) will be Y = [®] and
= [@]'Y = [0] [M]Y

7. Apply the above transformation on the original equations of motions in matrix
form to obtain the equations of motion in modal coordinates [CD]T[M] [D]Y” +
[@]"[CI[@]Y'+ [@]"[C][@]Y = [®]F. This becomes I”(t) + [C[ (t) + [K]() = [®]"F
where I is the identity matrix, [C ] is a diagonal damping matrix obtained using
a method such as weak damping approximation and [f( ] is diagonal matrix with
diagonal that contains the natural frequencies squared a)j2 in each of entries.

8. For steady state solution in modal coordinates, the loading vector [<I)]TF is assumed
tobe Q = [@]TF = Re(Qei(Dt) where Q is the complex amplitude of the loading

vector in modal coordinates. Therefore, the steady state solution is .(t) = Re()zei@t)
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T
- N i F
where X is the complex amplitude of each modal response is Xj=——_——.
) —(Dz+12C]'(JJ]'(D+(Uj
T

'F
. . . . & ] T
For a system with no damping this simplifies to Xj—m. In here, ; represents
the transpose of the j column of the modal transformation matrix [®], or the
transpose of the j mass normalized eigenvector, and wj is the j™ natural frequency.

9. Now the steady state solution in modal coordinate is used to obtain the solution
in normal coordinates since Y = [®]. Therefore Y, = Re()tei‘at) = Re([CD])zei‘Dt) =

%

j=1

X‘ ez’mt

Re(Yei@t). In component form Y, = Re j

The EOM are derived in the hand out given. The force f(t) acting on the second mass is
now added, resulting in the following equations of motion for the system

m 0 Ol|4| |k+k -~k 0 T 0
0 m O q/Z/ + —kz k1 + 2k2 —k2 qa ¢ = A cos(at)
0 0 m qé’ 0 —kz kl + k2 qs 0

The first step is to obtain the natural frequencies of the system. This is done by solving the

eigenvalue problem det([K] - a)z[M]) = (. The solutions are also given in handout. They

k ky+k ky+3k : . .
are w? = i,w% = %,a)g = -——2_ The non mass normalized eigenvectors associated

with these eigenvalues are found as

1 1 1
1=31¢,2=90 ¢,3=9-2
1 -1 1

The next step is to mass normalize the eigenvectors as follows

T
1l fm 0 0Of|1
w=TML =317 [0 m 0]31} =3m
1) o o ml|l1

T,

=M, =30¢ |0 m 030}=2m

us =IMls={-2} |0 m 0f{-2}=6m
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Hence the mass normalized eigenvectors are

1
S S I B
Y Vi \/_3m1
1

2 1
)= — = — 0
\/E V2m 1
1

3 1
3:—:—_2
\/@ vém ,

Hence the modal transformation matrix [®] is

[ 1 1 1]
1 ACI G | [0577 0707 008

1 -2
[CD]:[m]:W@ 0 F|==lo577 0 -0si6
o4 0577 —0.707 0.408

NN

The modal EOM’s are now found using the modal transformation matrix [®]

[@] MI[@]{n”} + [@]"[KI[@]{n} = [@]'Q

1 0 ol[m] |ef O Of(m 0
01 ORmy¢+|0 w? 0 Rmyp= [@]" A cos(@t)
00 1fing)] o 0 wi|\m 0
_ i ’ - R T
1 0 of|™Mm . ky 0 0 M , 0577 0.707 0.408 0
0 1 02+ 10 kitky 0 a7 :TO'SW 0  -0816| {Acos(ot)
m
0 0 1||ny 0 0 ki +3k||ns 0577 —0.707 0.408 0
1 0 ol ki 0 0 |(m 0.577 A cos(ot)
1 1
Je+—|0 ki+k 0 =—
0[ym2 . 1tk 12 N 0
0 0 1]|n% 0 0k +3k|{ns —0.816 A cos(ot)

Therefore, the 3 uncoupled modal EOM’s are

k 0.577 A
() + () = cos(@)
ki +k
(1) + =——=na(t) = 0
k1 + 3k2 0.816 A
5 (1) + t)=- cos(t
(0 + = a(t) =~ cos(@h

To complete the solution, the above EOM are written as follows by using complex form
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for the loading vector

k 0577 A .
7" -1 =R 10t
() + m’h(f) e( NG e )
, k1 + k2
5 () + - m(t) =0
k1 + 3k2

-0.816 A .
né/(t) + ez@t)

- ns3(t) = RG(T

Assuming the steady state solution is

= Re(Xei@t)

or in expanded form
m(t) = Re(jﬁeimt)
Ma(t) = Re(xzeimt)
n3(t) = Re(Xaei‘Dt)

Where
0.577 A
& m
Xy = ; Vi
w? + 2iC 0@ — @2
1 11
Xz = O
-0.816 A
A N
3 =

w3 + 2iC3w3@ — @2

Dividing the numerator and the denominator by a)l-z wherei =1,2,3 and using r; = wﬂ
and letting C = 0 since no damping exists, results in

o A\m| 0577
X, = P >

1- mE
X,=0

. Aym | -0816

Sk 3k -y
k1+3k2

To sketch these amplitudes, the equations are normalized. This is in effect the same as
settingm =1,k =k, =1, A =1 resulting in

0.577
& —2
Xl 1-©
- A 0
X Xy =
o 1[ -0.816
X3 z( 2 J
1=
4

Here is a plot of each X; vs @. The x-axis is the nondimensional forcing frequency €2
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Miodal smplituds X; vs.

nondimenzions] bering Faquency 01

&h

Since there is no damping, resonance will occur at {2 =1 in first mode and at () = 2 for
mode 3.

5.2.3 Answer part (2)

The transformation from modal coordinates to normal coordinates is

q = [P]
In expanded form
71 q)lT{”}
Q2p =19 [77}
B | efln)
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0.577 0.707 0.408
But [®] = % 0.577 0 -0.816|and = Re()zei@t) hence the above becomes
0.577 -0.707 0.408
0577)" |RelXie)
0.577’ Re( X,e!®t )
0.577 Re( o 3ei“’t)
o o707 )" |Re(ae)
Q2= Re( X 2€Z(Dt)
q3 -0.707 Re(%3¢®)
0408 | [Re(Xe™)
_0.816 ’ Re( X Zel‘af)
0.408 Re ( o 3el‘Df)

0.577 X; + 0.577 X, + 0.577 X5
0.707 X; — 0.707 X5
0.408 X; — 0.816 X, + 0.408 X

= Re elot

Comparing the above to qs = Re(Yei‘Dt) shows that

0.577 X; + 0.577 X, + 0.577 X3
0.707 X; - 0.707 X5
0.408 X; — 0.816 X, + 0.408 X3

Y

0.577 Re(X;¢"®) + 0.577 Re(X,e®) + 0.577 Re(X;e™?)
= 0.707 Re(X;e®) - 0.707 Re(X5¢'*®)

0.408 Re(X;¢"®) - 0.816 Re(X,e™®) + 0.408 Re(X;¢™?)

Toploteach Y;, letm =1,k; =1,k; =1, A =1, and letting X, = 0 as found earlier, results

in

0. 577 0.577 | -0.816

0577 = [ .
4 @

1__

0. 577 0.707 | —0.816

Y =10.707+ ( .
4 @

1__

0. 577 0.408 | —0.816

0.408 =~ ( .

4 1_@_
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smpliteds vz, nondimenzionsl baring Faguency 0
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The above shows that when the nondimensional frequency €2 is not close to a one of the
nondimensional natural frequencies, then the Y values have comparable magnitudes.
For nondimensional frequency Q) larger than 3 all amplitude are zero, which means the
whole system does not oscillate any more in steady state.
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5.24 Key solution
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6.1. cheat sheet

CHAPTER 6. APPENDIX

6.1 cheat sheet

. | . S !
By Nasser M. Abbasi | ¢on2z small damping 2 | ( Yn ) _
=L =t - _c Y _ eop N g 1? = gt2n :In Jor ) = 627
Cr 2.Jkm 2onm | Yot |
on = |X ! time constant 7 = - () = ¢an
n m ! {on  Length of pendulum I
_ 2 ) a0 1-cos2x ) | number of cycles B
Wp = Wn 1- (s | smew = —ee Tixed | needed for peak (%)
@ | cosly = lecosk :to decay by half
T on : sin2x = 2sinxcosx | ; glsigig
Ty = 2}—75 ! cos 2x = cos’y —sin’x 15 3 67726
B 1 | = 1-2sin’x :4. 2.75735
B= VLo !'Springs: in parallel, ADD |‘2' iigggg
( - ) +@re Sin(®] Cos (%] Velocity acceleration | |- R
Pmax = ;2 Ligix_1jgix|e® e | diggram diagram }2 1'3'??9;
25 ’1_5 z 2 z z A 2. L2257
5 | f= emO? sin(Qt) (10. 1.10318
Bmax Whenr = /1 - 2¢& . - stt = 3%?
" / 2. my” +cy' +ky = Re(Fel) 5.Cos[3t] = -35in[3t]
u" +2éou +w°u =0 « - Re{ie '} 5 STale] [= | Cosle)
roots 3. Cos [t = -5in[t]
E<1 {—§w+jwnm,—§w—iwnm} X = %D(V,C) S fanir) |- | Secrel
¢=1|{-o0-o0} D(r,¢) = W refac = =
—r2) 4 2icr J
&>1 {*wn§+wn1}§2*1|*wn§*wn\/§2’1} - ¢ [Cos[3t]dt = ESi":'Bt'
— : x=Re{Ep R} 7T T
Lety _ Re(Ye””t>Y= - ™ : . Sin[t] dt = -Cos[t]
: g—m +2{ on@+od ) 0 — tan-1_2" Cos[tldt =  Sin[t]
_ F_ 1 Liwt 1-r2
c=0 y=Ref Erie N

F
{>0y=Rel
When y=0, then y in
complex plan is pure
imaginary. When force is
max, then fin complex

planis all real

L=T-V

d( )_

oL

oxi

oL
OXi

dt

ftr(t) = fspring + 1:damper

=Re (lE + Ciw%)D(r,C)eth}

Phase of response complex
amplitude for underdamped

1
(1-r?)+i2¢r

iwt

)

[-8in[x], Sin[x

1y Cos[x],

{Cos[Pi/2+x], Cos[PL/2-x], 3in[Pi/2-x], 53in[Pi/2+x]}

Cos[x]}

system

equation used to derive

transfer function

isolate base from force
transmitted by machine

fue(t) = fspring + Faamper

fr®lmax _
[~ oy J1+ @2

isolate machine from motion
of base

Use absolute mass position
my" +cy’ +ky = ¢z’ + kz

[¥Imax

4]

= Pl 1+ @)

accelerameter: Measue base

Use relative mass position

. e di " , " U:ﬁzaﬁlD(ﬂOF;—l
acc. using relative displacement mu” +cu’ +ku = -mz (@-0%)+io2Lon (03-02)*+@o¢on)?
seismometer: Measue base Use relative mass position R D)l P

= ——x—-< = |D(, =
motion using relative displacement | mu” +cu’ + ku = -mz" (QUr?)iagr Jayace
1

u(t) = e*!(Acosagt + Bsinogt) + £

sin(wt — 0)

[(1-r2) 2en)?

d wh 1 .
zgas‘:;i’\]l :e from 0 to -90 A = I-4'0 + E+ZSIn9
degrees |ftr(t)|max é’ < 1 (1—r2) +(2¢r)
_ Yo , Uo  F 1 ino —
R B=2r+ K — (éwsind — wcosH)
= |F[IDl 1+ 2¢1)? e
Lr Same for © @ = o - u(0)coswt + %O)sinwt - E%‘cos(wt)
u
vibration V'O  F_r ) - E_1 o
H <olation C _po|l @re~ u(0)coswt + ( - KT sinot + e sinwt

-7
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1. Determine the system of equations of motion and set up [M]Y" + [CTY’ + [K]Y = F in matrix form. In II ght daml ngl the
2. Solve the eigenvalue problem det([K] - uE[M']) = 0 in order to determine the n natural frequencies. H H
off-diagonal entries

3. For each natural frequency wj determine the corresponding jm eigenvector L2 by solving ([K] - Wf[M])v’, = 0. In this step
first component of Y; is set to 1 and the other components are;o\ved relative to it. are Set to Ze ro and
4. Obtain the normalized eigenvectors &; for each ¢ using &= Fj where u; = go;[M]q:j. Each u; will be a scalar.
G
5. Set up the modal transformation matrix [#] = [@;@g - - - &,,]. This will be an i x 1 matrix. then C]_l = 2§1 Q)] 1
6. The transformation from normal sclution (&) to modal 7(t) wil be Y = [&]n and n = [&] 'Y = [8]" [M]Y
7. Apply the above transformation on the original equations of motions in matrix form to obtain the equations of motion in modal 1 - _r
coordinates [@]T[]U] [@Y" + [@]T[C][GPIY' + [@]T[C’“Q]Y = [Q’]TF‘ This becomes In"(t) + [5] ' (t)+ [R’}f](t) = [!I']TF where T =—l=€ 2
I is the identity matrix, [5} is a diagonal damping matrix obtained using a method such as weak damping approximation and Klis
diagonal matrix with diagonal that contains the natural frequencies squared w? in each of entries. Y power point,
8. For steady state solution in modal coordinates, the loading vector [@]TF is assumed to be Q = [@]TF = Re(ae’m where a is the means the max

complex amplitude of the loading vector in modal coordinates. Therefore, the steady state solution is 1,4 (t) = Re(ie"""‘) where X is amp”tUde at that
%F frequency is 0.707

the complex amplitude of each modal response is X_.,— m For a system with no damping this simplifies to

- a7F T of the maximum
X;j = —;—. In here, ®; represents the transpose of the §t" column of the modal transformation matrix [®], or the transpose of . .
—w possible amplitude
the j“' mass normalized eigenvector, and wj is the jm natural frequency. hich h
9. Now the steady state solution in modal coordinate is used to obtain the solution in normal coordinates since Y = [®]n. Therefore (W Ic appens at

Y,, = Re(’j{‘emt) _ Re([gﬂ’)‘(‘eim) — Re(?e*'”‘}. In component form Y, = Re((E;‘:l {-J—Xj)eim) resonance)

1 1
T= —mlx’3+ Emgvg

O] [M]D; = [1Tonlyifi = i, else 0 °

k. To find this v it is easier to resolve components on the =

FOI’ mOdaI SOlUtlon, {Y} = Z] q)JXJ i;':x‘2sin6j+(x’2cosﬂ+i1)é

Sum-to-Product Formulas AN
or locit S
velocCity N
v

Yl = q)llxl + (D12X2 + .. sinu+siny = 2sin (n-;—w cos(“;")
Yo = @y X1 + Do Xy + -

. . vy . ®— v
smu—smu:?mﬁ( ) sm( 3 )
or ]?}|2 = (% sinﬂ)l2 + (s cos B + x1)2

Y]_ = {(D} rowl {X} o8t 4 cost = 2 cos (n -;-11 cos (n - 11) = (x";sin2 6‘) + (xﬁ cos? 0+ 5 + Ligsy cosa)

¥acos8 + %,

2 2( . 9 2 2
. T =X (sm 0 + cos’ B) + % + 2xy%, cos f)
Y2 - {(D }FOWZ{X} _ 2, 2
— 94 wt+ev\ . fu—v =%y + % + 24% cos @
cost — cosv = —2sin 3 sin 3
If USing power method Product-to-Sum Formulas
Stiff
ov3 Lo . . 1 .
Vou = 92 Joo (7mlgES|n01)01:0 =0 sinusiny = 3 [cos(u — v) — cos(u + v)] spring 1
0,-0
ov? . 1
Vg, = (53)9120 = (*m1g%8m02)92:0 =0 cOSUCOSY = ] [cos(u — v) + cos(u + v)]
27 ppo
V2 1 . A = (ity —up)e
Vou = | 79720 =0 sinu cosv = — [sin(u + v) + sin{u — v)] 4 A/B
1002 Jo g v Ny
= (1 — 03) - (cos B2 — sinfy])

0 . = xcos By
T= %myé + %ICQG2 cosusiny = — [sin(u + v) — sin{u — v))

9

1

0]
1YLty 1 Yo — V1
=3 (—2 ) (er)( ) b+ VI —dac_
2a

Physically, the constant represents the time it
takes the system's step response to reach

632 % of |t$ ﬂnal (asymptotic) Value T = Hence from the above diagram we see that Lg = vV H> + L? and Leyy = V‘Hg + (L + 1)7, therefore

{101
. . . A =\H +(L+a) - VHE 1 IF
Where eg,s IS unit vector oriented to B from A
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6.2 study notes

6.2.1 trigidentities

1 _n
sinwt = Re[ ew’t] i(wt 2)]
coswt = Re[el“’t

coswt = 5( eiwt 4 e‘l“’t)

sinwt = %(eiwt _ e—iwt)

When 2 harmonics have same amplitude, we can write then as envolope of one in another

A cos(a)lt - (Pl) + A cos(a)zt - qf)z) =2A cos(Awt - A¢) cos(a)avt - cp,w)

a1 OPY ()

|
| |
P ¢LV 9

Here is an example of the above. We first draw the two signals on their own, then plot
the additions of them

f1 = a Cos[wl t - pi];

f2 = a Cos[w2 t - p2];

parms = {a -> 1, w1 -> 1, pl -> Pi/3, w2 -> 10, p2 -> Pi/4};
Plot[Evaluate[{f1, f2} /. parms], {t, O, 10},

PlotStyle -> {Red, Blue}]
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Now we add them to see the envelope effect

Plot[Evaluate[{f1, f1 + f2} /. parms], {t, 0, 10},
PlotStyle -> {Red, Blue}]

Now we plot the same signal addition, but using the form after converting to use the
mean and delta notation as shown above just to confirm it is the same signal

avWW = Mean[{wl, w2}];
avP = Mean[{p1l, p2}];
delW = w2 - avW;
delp = p2 - avP;

g = 2 a Cos[delW t - delp] Cos[avW t - avP];
Plotlg /. parms, {t, 0, 10}]
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The beat period is ﬁ (this is the time between each beat to the next beat). The whole

signal will be periodic only when =2 is rational.
w2

Beat shows up when we have 2 harmonics added, that has same amplitude. The beat
signal itself will be period when the ratio between the frequencies of the two harmonics
is rational. In the context of response of a system, we can think of the steady state
response as one signal and the transient response as another singnal. The response will
then show a beating signal when the amplitude of the steady state and transient singnals
is the same. Here is an example of that from one of my demos

transient+steady state solution (combined) j

damping ¢ J— 00.0 2=
stiffiess & .-J— 02,0 system response u(1) vs. time
(0) —_— 400 20 I I
f—ro00 =| |
#{0) — |— 400 = |
Mass M -—J— 04.8
ampﬁtudEF-J—- 01.0 4
mu"(t) +cu'(t) + & u(t) =F sin(w {)
harmonic * @jw—— 0.93
F d(z) T
damping ratio & 0000.000 4 IJ_ ]J.IH il ‘m I i j
magnification factor 5 [0007.072 “ 'I ”
static displacement F /i [0000. 500
fordng frequency @ |0000.600 |rad/sec -2
natural frequency w 0000.648 |rad/sec
natural period 2mjews  |0009.703 |sec
damped frequency w; |0000.648 |rad/sec il
damped period 2wy (0009703 |sec
time constant T 0001, 544 |sec ¥
test case |besting phenomencn j 0 ]cln ﬁ 5.;:3 4.;‘.3 00
ful screen ¥ time J 500.0 (sec)
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