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1.1. syllabus CHAPTER 1. INTRODUCTION

1.1

syllabus

DYNAMICS OF STRUCTURES

CEE 744

Description:
3 credits, Introduction to basics of dynamics: lumped mass dynamics with various loading

functions to develop the dynamic equations of motion, dynamics of multi-degree of freedom systems,
dynamic analysis of structural systems, introduction to earthquake engineering,

Reference:
Dynamics of Structures, Anil K. Chopra, Prentice-Hall

Tentative course schedule:
(We start by looking at dynamics of a lump of mass - because actual buildings are
generally modelled for structural analysis by using discreet degrees of freedom. -In
CEE440 or in programs such asRISA, STAAD-II or SAP and ETABS a structure is
modelled by defining “nodes” and “elements”. The nodes have discreet degrees of
freedom in movement and the elements are like springs that connect nodes together.
Each single degree of freedom can be considered as a “lump of mass™ that has a unique
degree of freedom in movement.)

Dynamic equilibrium of unloaded lumped mass
Dynamics of lumped mass under harmonic loading

Dynamics of lumped mass under random dynamic loadings

(Now with the equations developed for solving how a lump of mass will move - we
consider an entire structure to just be a bunch of lumps of mass connected together by
spring elements. For each lump we have the equations describing how it moves. We can
combine those equations to define how the whole structure moves.)

Multi-degree of freedom systems - equations of motion

Analysis of structural systems - natural frequencies
response under loading

Introduction to earthquake engineering
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CLASS GUIDE

Problems:

_Completed home ?roblems are a required part of this course. Problem due date will vary
depending on the length of the assignment. The due dates will be absolutely definite - 50% maximum
credit for late assignments! All problems must be completed by the end of the semester.

Problem layout: | have to read y%urfasi?ignments so | like to see them in a form which is easy
o follow.

1. Reserve the right margin of each sheet for comments to me describing what you are trying to
do. (Similar to providing comments in a computer program.)

2. Results of particular steps or conclusions should be boxed to set them off from regular
calculations.

3. Use only 8-1/2 by 11 paper, lined, unlined or the green structural grid paper.

Reading: L . . .
I generally cover material in lectures which | feel is the material you should understand. Many of

the lectures will be based on material that is very well presented in the reference and you should consult
_reftehrenc$s for detailed further information if desired. Many lectures will be based on material which is not
in the reference.

Grading:
Grading will be proportionally based upon the following:

Final exam...30%
homework..70%

Text:
The following chapters/sections or topics will be studied from the Chopra reference.

Chapter 1: introduction and equation of motion

Chapter 2: response in free vibration o

Chapter 3: response to harmonic loading, Parts A and B, response to periodic loads, Part D
Chapter 4: response to impulse, pulse

Chapter 5: time stepping methods

Chapter 6: response spectrum concept

Chapter 8: generalized systems )

Chapter 9: multi-dof equation of motion

Chapter 10: natural freqs and mode shapes

Chapter 11: modal analysis
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1.2 Links

1. jpublic course web page)

2. [internal course web page|



http://courses.engr.wisc.edu/cee/cee744.html
https://courses.moodle.wisc.edu/prod/course/view.php?id=932
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2.1. HW1 CHAPTER 2. HWS

2.1.1 Problem description

CEE 744
Homework assn #1

Use the data from the measured plastic beam free vibration response to estimate the natural frequency

(cycles/second) and damping of the beam The data is in the file titled: “free vibr.txt”.

Format of data:
e first column is date of test
e second column is time of test
e third column is output of accelerometer in Volts

To convert the data (volts) to accelerations you need to divide by the calibration factor of 0.500volts/g.
That will provide output in acceleration as a fraction of g. For output in in/sec> multiply by 386in/sec’/g.

Find:
1. natural frequency in cycles/sec, list the number of peaks used,
2. damping based on two successive peaks using the first formula based on the log of the ratio of

the peaks,
3. damping based on two successive peaks using the formula derived from the series expansion of

the exponential,
4. the damping based more than 2 successive peaks, using the final formula with an interval of “m”

peaks.

DUE: in class on Thursday, Feb 7
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CHAPTER 2. HWS

2.1.2 Solution

HW1 CEE 744 Spring 2013

Nasser M. Abbasi, Feb 2, 2013

Reading the data from file and ready it for processing

In[o]:=

SetDirectory[NotebookDirectory[]1];
Clear[data, yy, vy, t];
data = Import["free_vibr.txt", "Elements"]

T (pata, Lines, Plaintext, String, Vords)

In[12]:=

data = StringSplit[Import[“free_vibr._txt", "Lines"]];
Dimensions[data]

out[13]=

(8192, 3)

Show 3lines of data

In[14]:=

dataf[[1l ;; 3]] // TableForm

out[14]//TableForm=

1/22/2013 12:52: 00. 987959 -1.171216E-1
1/22/2013 12:52: 00. 988936 -1. 152905E-1
1/22/2013 12:52: 00. 989912 -1.183423E-1

pull out thetime and the voltage columns

In[15]:=
Internal “StringToDouble[#] & /edata[ [All, 3]11}];
Dimensions[filteredData]

out[16]=

{8192, 2}

filteredData = Transpose[{ToExpression[Part[StringSplit[#, ":"], 3]] &/@datal[[All, 2]],

Show 3 lines of the above result

In[17]:=

filteredData[[1 ;; 3]] // TableForm
Out[17]//TableForm=

0. 987959 -0.117122
0. 988936 -0. 115291
0. 989912 -0.118342

Printed by Wolfram Mathematica Student Edition
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2| Hwi.nb

Filter the data

Makethedata start at zero

In[18]

FilteredData[ [All, 1]] = FilteredData[ [All, 1]] - filteredData[[1, 1]];

Normalize the data by subtracting the mean

In[19]:=

mean = Mean[filteredDatal [All, 2]]]

out[19)=

-0. 00600079
el FilteredData[ [All, 2]] = FilteredData[ [All, 2]] - mean;
In[21]:= _

FilteredData[ [l ;; 3]] // TableForm
Out[21)//TableForm=

0. -0.111121

0. 000977 -0.10929

0. 001953 -0.112342

Plot the data before analysis

first in raw data asvolts

In[22]:=
e ListLinePlot[filteredData, Frame - True,

FrameLabel -» {{Row[{y""[t], "™ volts'"}], None}, {Row[{t, "(sec)"}],
"Acceleration data (volt) CEE 744, Univ Of Wisconsin, spring 2013"}},
RotatelLabel - False, GridLines -» Automatic, GridLinesStyle -» LightGray]

Acceleration data (volt) CEE 744, Univ Of Wisconsin, spring 2013

0151 b
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Printed by Wolfram Mathematica Student Edition
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HW1i.nb |3

Convert to fractionsof g

In[23]:=

filteredData[ [All, 2]] = FilteredData[ [All, 2]] * 0.5/9.81;

In[24]:=

ListLinePlot[filteredData, Frame - True, FrameLabel -
{{y""[t], None}, {Row[{t, "(sec)"}], "Acceleration data (fraction of g)"}},
RotatelLabel -» False, GridLines -» Automatic, GridLinesStyle -» LightGray]

Acceleration data (fraction of g)
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Convert to inches per second”*2

In[25]:=

FilteredData[ [All, 2]] = FilteredData[[All, 2]] » 386 «9.81;

In[26]:= _ _ -
ListLinePlot[filteredData, Frame » True,

FrameLabel » {{Column[{y""[t], " in/secz"} , Alignment - Center], None},
{Row[{t, " (sec)"}1, "Acceleration data (in/sec?)"}},
RotatelLabel -» False, GridLines -» Automatic, GridLinesStyle » LightGray]

Acceleration data (in/sec?)

20 b

e INNERTIY
LR

—20fF ]

Printed by Wolfram Mathematica Student Edition
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4| HW1.nb

Plot few values (3 seconds)

In[27]:=
e ListLinePlot[filteredData[[1 ;; 5000]], Frame - True,
FrameLabel -» {{y[t], None}, {Row[{t, " (sec)'}], "Acceleration data"}},
RotatelLabel -» False, GridLines -» {Range[0, 5, .27], None},
GridLinesStyle » Gray, Axes - None]
Acceleration data
30[ ]
20F ]
10F ]
Out[27]= y(t) oL é
_10f ]
-20F —
-30[ ,
0 1 2 3 4
t(seo)

Printed by Wolfram Mathematica Student Edition
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HWi.nb |5

Find the natural frequency

From the above plot, Using the first 8 peaks|, the period is 11*0.27=2.97/7 =0.424 seconds. Hence the frequency is

Finding the natural frequency using Fourier transform to obtain the spectrum

py = Fourier[filteredData[ [All, 2]] , FourierParameters » {1, -1}];
nSamples = Length[filteredData[[All, 2]]1;

nuUniquePts = Ceiling[ (nSamples +1) /2];

py = py[[1 ;; nUniquePts]];

py = Abs[pyl;

py = py / nSamples;

py = py"2;

IT[0ddQ[nSamples], py[[2 ;5 -1]1]1 =2*py[[2;; -111, pY[[2:; -2]1]1 =2*py[[2 ;5 -2]1];

fs = 1000;

T = N[ (Range [0, nUniquePts - 1] fs) / nSamples] ;

ListPlot[Transpose[{f, py}], Joined -» True,
FrameLabel » {{""|H(F) |", None}, {"hz", "Magnitude spectrum of acceleration data}},
ImageSize -» 400, Frame -» True, RotatelLabel -» False, GridLines -» Automatic,
GridLinesStyle -» Dashed, PlotRange -» {{0, 10}, All}]

Magnitude spectrum of acceleration data

120

100

80

out[38]= HOI 60

20

hz

We see from the above that [f = 2.3 cyclesper second]. Hereisazoomin view

Printed by Wolfram Mathematica Student Edition

12
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6| HwWi.nb

In[39]

out[39]=

ListPlot[Transpose[{f, py}], Joined - True,
FrameLabel -» {{"|H(F)|", None}, {"hz", "Magnitude spectrum of acceleration data}},
ImageSize -» 400, Frame -» True, RotateLabel -» False, GridLines » Automatic,
GridLinesStyle » Dashed, PlotRange » {{1, 3}, All}]

Magnitude spectrum of acceleration data

120

100

80

H®! 60

20

We see that the above result matches that we obtained by counting the peaks from the plot directly. But using the
spectrum would be a better method to use.

Printed by Wolfram Mathematica Student Edition
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HWi.nb |7

Finding the damping ¢

We first need to generate alist of say 10 peak values of y*’(t) and the corresponding time. From the plot we see that
the first positive peak is located at time 0.27 seconds. Hence we start from that point and look for a value at each
sample point that is 1/f away from it. The datais available such that the separation in time between each data point is
one milliseconds. First here is the plot showing theinitial phase

In[40]

to = 400;

ListLinePlot[filteredData[[1l ;; to]], Frame - True,
FrameLabel -» {{y[t], None}, {Row[{t, " (sec)'}], "Acceleration data™}},
RotatelLabel -» False, GridLines » {Range[0, to/ 1000, .27], Range[-35, 35, 4]},
GridLinesStyle -» Gray, Axes -» None, ImageSize -» 300]

Acceleration data
T
30 3
20 / 9
101 3
out[41]= y(t) 0F 1
_10L ]
_20F 1
—30f N Bl
. . .
0.0 0.1 0.2 0.3
t(sec)

Hereisalist of thefirst 10 peaks

In42]

period = 1/2.3;
initial = 0.27;
scale = 1000; (xone sample per millisecondx)
peaks = Table[ Flatten[
{n+1, Part[filteredData[[ Round[ (initial + n x period) »scale]]]1}]1, {n, 0, 9}1;
TableForm[peaks, TableHeadings » {None, {"peak #', "time", "peak'}}]

Out[46])//TableForm=

peak # tine peak

1 0. 262696 32. 9469
2 0. 6875 30. 797
3 1.11231 27.5576
4 1.53613 25. 2605
5 1.96094 23. 6703
6 2.38572 20.5192
7 2.81052 19. 4295
8 3.23435 16. 7202
9 3. 65916 14. 806
10 4.08393 13. 2452

Printed by Wolfram Mathematica Student Edition
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Plot the above peaksto verify

s ticks = {{None, None}, {{#, Style[Rotate[#, 90 Degree], 141} & /@peaks[[ All, 2]], None}};

ListPlot[peaks[[ All, {2, 3}]], Filling -» Axis, FillingStyle - Red,
Frame -» True, FrameTicks -» ticks, ImageMargins -» 30, Epilog » MapThread [
Text[Style[#2, 11], {#1, #2}] &, {peaks[[ All, 2]], peaks[[ All, 3]]1}], FrameLabel -
{{y""[t], None}, {"time in seconds", Style["'Showing the first 10 peaks", 12]}},
PlotRange » {Automatic, {10, 35}}]

Showing thefirst 10 peaks

32.9469
30.797
27.5576
25.2605
= 23.6703
>
out[48] 20.519?19 555
16.7202
14.806
13.24
TR EEREREEE
© [c0) N (o] (@] Lo o D (4]
N © — [92) (o] Q 1 Lo [c0)
8 5 =2 I & ® ® N © 9
& " +d +d o o & o <
o
time in seconds

Damping based on two successive peaks using the first formula

The formula to use here isIn(%) =2n ¢ . Therefore, using the first 2 values we found above we obtain
2

Inf49]:=

yl = peaks[[ 1, 31];
y2 = peaks[[ 2, 3]];

VA
Log [ =
£= ——
2w
out[51]
0. 0107394

Hencethisshowsthat |¢ = 1.074 %

Printed by Wolfram Mathematica Student Edition

15
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Damping based on two successive peaks using the series expansion

The formulato use hereis % =1+ 2n ¢ therefore using the first 2 peaks we obtain
2

HW1i.nb |9

In[5

ol
a
i

y1 = peaks[[1, 3]1;
y2 = peaks[[ 2, 3]1;
1 yl-y2

2nx  y2

out[57]=

0.01111

Thisshowsthat |¢ = 1.111 %

Damping based more than 2 successive peaks, using the final formula with an interval of “m”

peaks

Y1
Yiem

Here we use the formula

=1+ 22 m¢ wheremisanumber we can change. Using m= 5 for example gives

yl =peaks[[1, 3]];
m=5;
y2 = peaks[[1+m, 31];

1 1
€= [y——l]
2mr \y2

0.0192788

out[61]=

Henceusingm = 5givesf¢ = 1.93 %

Trying for m=9gives

In[62]:= yl = peaks[[1, 3]1;
m=9;
y2 = peaks[[1+m, 3]];
yl
(z-1)
2mor
out[65]= 0. 0263042

Henceusingm = 9 gives|¢ = 2.63 %

Printed by Wolfram Mathematica Student Edition
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10| Hw1.nb

Finding number of cycles to have the amplitude decay by 1/2

Using In(2) = 2mz ¢ < we can estimate m the number of cycles for the amplitude to decay by half. We use
Wy

£=0.0107394 from above since that is the £ value found from the same formula. Hence

In[66]:=
T £ 2 0.0107394;
Log[2] A/ 1- €
mzs —mM
2n €&
o= 10, 2717

This showsthat it takes|10 cyclesfor theamplitudeto decay by half| Looking again at the plots, thisis verified

Applet to analyze the data allowing different formulas to be selected and
different values for M

Thisisasmall applet to help analyze this data. It allows you to select the formula to determine ¢ and also select mfor

the final formula. For each formula used, the corresponding value of number of cycles for the first peak to decay by
half is computed.

Manipulate [
Module[ {dataPlot},

dataPlot = ListPlot|
filteredData[[1l ;; tscale]],
Joined - True,
Frame - True,
FrameLabel - {

{None, None}, {Row[{t, " (sec)"}], "Acceleration data y""(t) (in/sec?)"}},
GridLines -» Automatic,
GridLinesStyle » LightGray,
ImageSize » {250},
ImageMargins - O,
ImagePadding » {{20, 5}, {40, 20}}];

Grid[{
{Row[{&, " = ", padlt2[ 100 x findZeta[formula, mm], {5, 4}], " %"}],
Row[{"frequency ", "™ = ", 2.3, " Hz"}1},

{dataPlot, spectrum},
{peaksPlot, tbl}
}, Frame -» All, Alignment - Center]

1-
Grid[

{

{

Printed by Wolfram Mathematica Student Edition
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HWi.nb |11

Row[ {Style["m ", 127,
Manipulator [Dynamic[mm, {mm = #} &], {1, 8, 1}, ImageSize -» Tiny],
Style[Dynamicepadlt2[mm, 1], 11]
}1. SpanFromLeft

1,

{

Row[{Style["g formula™, 117,

PopupMenu[Dynamic[formula, {formula = #} &7,

{

1- Row[{Style["first method ™, Bold],
- Y
Style[TradltlonaIForm[Log[)ﬁ] =2 §7r] , 10]}] ,
2> Row[{Style["series method ", Bold], Style[

TraditionalForm[y—m =14+2 §7r] . 10]}] ,

Yme1
3o Row[{Style["m method ', Bold], Style[TraditionalForm[
Y.
y:m =1+2¢mx|, 10]}],

}

, ImageSize -> All

}
].

Row[ {Style["time scale ", 12],
Manipulator [Dynamic[tscale, {tscale = #} &],
{1, 8192, 1}, ImageSize -» Tiny], Spacer[5],
Style[Dynamicepadlt2[tscale, 4], 11], Spacer[5], "ms"
]

}

}, Alignment - Left
E

{{mm, 1}, None},

{{formula, 3}, None},

{{tscale, 4000}, None},
SynchronousUpdating -» True,
ControlPlacement - Top,

Alignment - Center,
Synchronousinitialization -» True,
ContinuousAction » True,
AutorunSequencing -» Automatic,
TrackedSymbols » {mm, formula, tscale},

Printed by Wolfram Mathematica Student Edition
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Initialization :->{

SetDirectory[NotebookDirectory[]];
data = Import["free_vibr.txt", "Elements'"];
data = StringSplit[Import[“free_vibr._txt", "Lines"]];

filteredData =
Transpose[ {ToExpression[Part[StringSplit[#, ":"], 3]] & /edatal[[All, 2]],
Internal "StringToDouble[#] & /@data[[All, 3]11}]1;

filteredData[ [All, 1]] = filteredData[ [All, 1]] - filteredData[[1, 1]1];
mean = Mean[filteredData[ [All, 2]]];

filteredData[ [All, 2]] = FilteredData[ [All, 2]] - mean;

filteredData[ [All, 2]] = filteredData[ [All, 2]] » 0.5/9.81;
filteredData[ [All, 2]] = filteredData[ [All, 2]] » 386 x9.81;

py = Fourier[filteredData[ [All, 2]] , FourierParameters -» {1, -1}];
nSamples = Length[filteredDatal[All, 2]]];

nUniquePts = Ceiling[ (nSamples + 1) / 2];

py = py[[1 ;; nUniquePts]];

py = Abs[py];

py = py / nSamples;

py = py”"2;

1f[0ddQ[nSamples],

PY[[2 ;5 -111 =2%py[[2;; -1]11, py[[2:;; -2]1] =2xpy[[2;; -2]11];
fs = 1000;
f = N[ (Range [0, nUniquePts - 1] fs) / nSamples];

spectrum = ListPlot[Transpose[{f, py}], Joined -» True, FrameLabel -
{{"|H(F)|", None}, {"hz", "Magnitude spectrum of acceleration data"}},
Frame -» True, RotatelLabel -» False, GridLines -» Automatic, GridLinesStyle -» Dashed,
PlotRange -» {{0, 10}, All}, ImageSize -» {250}, ImageMargins - 0] ;

period = 1/2.3;
initial = 0.27;
scale = 1000; (xone sample per millisecondx)
peaks = Table[ Flatten[
{n+1, Part[filteredData[[ Round[ (initial + n % period) *scale]1]1]}], {n, 0, 9}1;
tbl = TableForm[peaks[[1 ;; 10]], TableHeadings » {None, {"#, "time", "peak™}}];

ticks = {{None, None}, {{#, Style[Rotate[padlt2[#, {3, 2}], 90 Degree], 141} & /@
peaks[[1 ;; 10, 2]], None}};
peaksPlot = ListPlot[peaks[[ 1 ;; 10, {2, 3}]1,
Filling -» Axis,
FillingStyle - Red,
Frame - True,
FrameTicks - ticks,
ImageMargins - 0,
Epilog » MapThread [Text[Style[padlt2[#2, {3, 1}], 10], {#1, #2}, {0, -1}] &,
{peaks[[1 ;; 10, 2]], peaks[[1 ;; 10, 3]11}], FrameLabel -

Printed by Wolfram Mathematica Student Edition
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{{y""[t], None}, {"time in seconds”, Style["Showing the first 10 peaks", 12]}},
PlotRange -» {Automatic, {10, 39}},
ImageSize -» {250},
ImagePadding » {{20, 5}, {50, 20}}1;

padltl[v_, f List] := AccountingForm[Chop[Vv],
f, NumberSigns -» {"-", "+"}, NumberPadding -» {""0", 0"}, SignPadding - True];

padlt2[v_, f List] := AccountingForm[Chop[V],
£, NumberSigns - {""*, """}, NumberPadding -» {''0"", ""0""}, SignPadding - True];

padlt2[v_, ¥ Integer] := AccountingForm[Chop[V],
f, NumberSigns - {*"**, """}, NumberPadding -» {''0*", ""0""}, SignPadding - True];

findZeta[formula_, m_] := Module[{yl, y2},
Which[formula =1,

yl = peaks[[m, 3]];
y2 = peaks[[m+1, 3]];
yl
Log[ ]
27 ’

formula == 2,
yl = peaks[[m, 3]1;
y2 = peaks[[m+ 1, 3]];
1 yl-y2

2n  y2
formula == 3,
yl = peaks[[ 1, 3]1;
y2 = peaks[[1+m, 3]];

1 1
-
2mw \y2

Printed by Wolfram Mathematica Student Edition
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out[68

]

m{J———=1
£ formula m method —— =1.69311 time scale (—— = 4000 ms
Y2717
0.0107394 = 1.1110 % frequency = 2.3 Hz
Acceleration data y"(t)(in/sec?)
. . . Magnitude spectrum of acceleration data
i ROFTTTT T T
ol \ | L EEE R BEES
/\/\ e ——.-H
g IH@l - 60F - - - - %\Lfff%f”f%f”f% fffff
“10 . | A S S S
i mo
cab . J L | |
0 ] B B 0 2 4 6 8 10
t(sec) hz
Showing the first 10 peaks
=3 time peak
B 1 0.262696  32. 9469
30.8 2 0. 6875 30. 797
276 3 1.11231 27.5576
e 23 57 4 1.53613  25.2605
205 494 5 1.96094 23.6703
67 6 2.38572 20.5192
28 oy 7 2. 81052 19. 4295
[ H 8 3.23435 16. 7202
© o < E'; © O o M © 8 9 3. 65916 14. 806
N © < A M 0o N ©
O O a4 dda o M o < 10 4.08393 13. 2452
timein seconds

Printed by Wolfram Mathematica Student Edition
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2.1.3 Mathematica applet

To run the applet, the following zip file needs to be downloaded to your PC. Then extracting
it will make a folder with the applet file in it along with a text file that contains the
acceleration data. Now just double click on the .CDF file there and this will start the
applet.

You might see a warning message at the top first time you start the applet. Simply click on
the button at the top right corner to enable dynamics. That is all. This message is harmless.
Here is the zip file HWs/HW1/CEE_744 applet.zip|

Here is the data file HWs/HW1/free vibr.txt|

22


HWs/HW1/CEE_744_applet.zip
HWs/HW1/free_vibr.txt

2.2. HW2 Generalized single degree of. .. CHAPTER 2. HWS

2.2 HW2 Generalized single degree of freedom
system applied to wind tower

1. Excel file that contains the final result table turbine tower RESULT.x1sx]

2. Mathematica simulation using CDF is available on this web pagel The demo is titled
Generalized Single Degree 0f Freedom Method (you can search for it on the page
since its link can change with time)

This is the original Excel file used to load data from [HWs/HW2/turbine tower prob |
ORIGINAL . x1sX]

2.2.1 Problem description

Using different shape functions an estimate of the natural frequency for the wind tower was
found using the method of generalized single degree of freedom for each method.

The following table summarizes the results obtained. For each shape function the following
items are calculated: Effective mass M., effective stiffness K. = Ky, + K, effective flexural
stiffness K., effective geometric stiffness K., The ratio %and the natural frequency f in
Hz.

The rows of the table below are listed from the lowest to the largest natural frequency
found.

The shape function that produces the lowest natural frequency will be the one to select as
the closest approximation to the real solution. The actual mass is 404171 Kg.

An Excel worksheet is also available on my web page for this HW for the lowest natural
frequency case.

shape function @ (z) | M, kg) | K. Flexural K. (N/m) | Geometric K4 (N/m) ]\A/{_,e f (H
%Z 159,636 | 383,031 393, 520 —10489 39.49% | 0.24¢
1— cos (2Z) 164,157 | 431,388 441,587 —10198 40.62 | 0.25¢
2Lg? o’ 165,830 | 472,453 482,548 ~10095 41.03 | 0.26¢
first mode 168,445 | 543,282 553,333 —10051 41.68 0.28¢
SL20%—Ala ot 169,764 | 595,562 605, 586 —10024 42 0.29¢
2nd mode 185,852 | 14,443,032 14,509, 551 —66519 45.98 1.40¢
3rd mode 192,575 | 100,304,976 | 100,475,002 —170026 47.65 3.63:
4th mode 195,562 | 371,956,138 | 372,284,973 —328835 48.386 | 6.94!

The shape functions above indicated by the mode, are the mode shape function for a beam
with fixed-free boundary conditions obtained from table 8.1 from reference [1].

The following diagram describes the computation done at each element of the wind tower
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X
A V(X,1) = d(X)y(t)

/ D(x)
O

i" Element f

\/
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I
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I
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|
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|
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The effective flexural stiffness is K¢, = Z EliM;0;
i

Where 0; angle increment given by ®:'h
M; is the bending moment given by ®'y;
Where I; = Z(rj - r{)

Hence K¢ = ZEIi(cD{’)Zh .
i

Effective mass Me = »_ m;®?
i
And effective geometric stiffness is Kge = Z(d)é)zmigh
i

where m is the accumlative mass from all the top elements
and g is 9.81 meter/sec”2
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2.2.2 Conclusions

z2

The lowest approximate natural frequency found is | 0.2465 Hz | for the shape function 7.

The effective mass to actual mass ratio for this case was 39.49%

The higher the natural frequency became as the shape function is changed, this ratio also
increased. At f = 6.941 Hz, this ratio became almost 50%.

An applet was written to simulate the result allowing one to select different shape functions
and observe the result.

run | stop | step | reset| geometric stiffness ¥
time (s=c} steps {0 simulation spead
765.6000 0013311 & 3p| | How) —— f—— = (fast
shaps if [ fig ¥} . fag ey iy J"|I FETEAN
i = |-y {sinh| 2= - sinf = )] — cos{ >~ | + cosh] 2+~
function |24 FL 0\ 4 ) ';.-:,'I,' A ‘.g}IJIv

SDOF natural freguency = 0.23&5 H=
Effect flexural stiffness = 0000551432.3 N/m
Effect geometric stiffmness = 10048.7 N/m
Combined effect stiffness = 00005B81383.6 N/m
Effective mass = le7540. kg
Zctual mass = 404171. kg
Mass ratio = 41.4527 =
Tower height = X@5.7185 meter

Figure 2.1: Mathematica demonstration

This table shows the final computation result for the case that gave the lowest natural
frequency
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geometric  flexural current

T height T (m) D (m) mass (kg) E (GPa) tiffn tiffn height P curveture angle I (m)
\ \ i Function

(/m) (N/m) (m)
1 1.32 [ 0. 130000. 2.1x10% 0 o 0 106.815 1. 0 a [ 130000.
2 0.295 0,121 2.8 2374.83 2.1x10"  65.4782 1742.69 1677.21 105.475  0.975067 0.000175293  0.0000517115  0.915479  2257.88
3 23 0.015 2.8 2386.14 2.1x10"  516.807 1888. 1371.7 105.18 0.969621 0.000175293  0.000403175 0.127245  2243.36
4 2.94 0.015  2.822  3062.18 2.1210%  646.2 2471.66 1825.26 102.88 0.927467¢8 0o 0.000515363 0.130284  2635.27
5 2.9 0.015  2.844  3086.28 2.1x10%  623.643 2530.23 1806.53 88,94 0.875415 0 0.000515363 0.133371  2365.18
; 2.935 0.015  2.868  3106.17 2.1x10"  s588.42 2580.76 1991.34 87, 0.824668 0.0005144286 0.136794  2112.43
g 2.935 0.015  2.89 3131.32 2.1x10"  575.951 2651.15 2075.2 94.065 0.775518 0.000514486 0.139983  1883.26
] 2.935 0.015  2.912  3155.37 2.1x10"  552.162 2712.48 2160.32 91.13 0.727877 0.000514456 0.143222  1671.73%
E 2.935 0.016  2.834  3390.22 2.1x10%  528.833 2856.7 2427.87 ge.195 0.621747 0.000514426 0.156116  1575.7
10 2.93 0.017  2.956  3621.85 2.1x10%  505.006 3204.35 2699.34 £5.26 0.637127 0.00051361 0.168481  1470.26
1 2.93 0.018  2.978  3862.51 2.1x10"  a82.455 2983.65 £2.33 0.594088 00051361 0.183326  1363.24
12 2.925 0.019 3. 4099.09 2.1x10"  259.353 3271.37 79.4 0.552556 000512733 0.197659  1251.53
13 0.28 0.18 3. 3529.65 2.1x10™  41.6633 2834.1 76.475 0.512595 0000480821  1.59164 927.428
12 2.ee5 0.02 3.052  4307.75 2.1x10%  437.018 3638.58 76.195 0.508848 0.000505721 0.218926  1115.39
15 2.885 0.02 3.124  4396.6 2.1x10%  414.825 3858.07 73.31 0.471045 0.00050572 0.234895  975.529
16  2.88 0.021  3.196  4715.07 2.1x10"  392.306 4513.07 70.425 0.4347 000504845 0.263855  £90.978
17 2.a8 0.021  3.268  4823.23 2.1x10"  370.427 4875.28 £7.545 0.399873 0.000504845 0.282322  771.226
18 2.88 0.022  3.34 5164.63 2.1x10"  348.88 5516.19 €4.665 0.3665 0.000504845 0.315596  693.725
19 2.875 0.022  3.412  5268.77 2.1:10%  326.664 5817.7 €1.785 0.334581 000503968 0.336589  589.81
20 2.875 0.022  3.484  5381.87 2.1x10%  305.063 6345.67 s8.91 0.304168 000503968 0.358494  497.521
21 2.87 0.023  3.556  5733.12 2.1x10"  z83.321 7093.5 56.035 10.275204 000503092 0.398325  434.21
22 2.87 0.023  3.628  5851.16 2.1x10"  262.196 7574.87 53.165 0.247735 0.000503092 0.423176  359.101
2 2.86 0.023 3.7 5947.94 2.1x10"  240.32 8046.77 50.295 0.22171 0.000501339 0.443041  292.373
24 0.33 0.2 i) £540.68 2.1.10%  25.3972 2045.82 47.435 0.187212 0.0000578468  3.78036 254.384
2 2.7 0.024  3.76 5986.44 2.1x10%  211.099 47.105 0.194478 0.000475045 0.481484  226.416
26 2.71 0.024  3.825  6087.4 2.1x10"  192.408 gese.7 44.395 0.172744 0 0.000475045 0.517585  181.652
290 2ETE 0.02¢  3.89 £192.4 2.1x10"%  174.03 9349.39 41.885 0.152298 0 0.000475045 0.544595  143.631
28 2.705 0.025  3.955  6546. 2.1x10™  155.911 10244, £.975 0.13314 0 0.000£74169 0.59593 116.036
23 2.705 0.025  4.02 6655.17 2.1x10%  138.59 10788, 36.27 0.1153 0.000 0.000474169 0.6259% 82.475
30 2.705 0.02 4.085  6764.34 2.1x10%  121.796 11345.8 33.565 0.0987436 0.000175283  0.000474169 0.657044  65.3543
31 2.485 0.026  4.15 7093.36 2.1x10"  104.928 12303.1 30.86 0.0834654 0.000175283  0.000470663 0.716154  49.4204
32 0.36 0.24 4.15 2389_62 2.1x10"  12.0884 13124.6 28.175 0.0695766 0.000175293  0.0000631056  5.65503 40.6134
33 2.41 0.026  4.15 £417.42 2.1x10"  50.6735 11056.5 27.815 0.06751 0.000175293  0.000£22457 0.716154  29.5086
3¢ 2.4 0.02 4.15 §662.63 2.1x10%  G2.8614 11488.3 25.405 00565684 0.000175283  0.000422457 0.74316 21.3203
35 2.41 0.028  4.15 £907.72 2.1x10%  57.743 11818.7 22.995 0.0463448 0.000175283  0.000422457 0.770126  14.2368
36 2.41 0.029  4.15 7152.69 2.1x10"  27.3746 12395.2 12347.8 20.585 0.03713%6 0.000175283  0.000422457 0.797053  9.86606
37 2.405 0.023  4.15 7137.85 2.1x10% 12369.5 12331.8 18.175 0.0289524 0.000175293  0.000421581 0.797053  5.98324
38 2.405 0.03 4.15 7382.19 2.1x10"  29.0553 12786.8 12757.7 15.77 0.0217971 0.000175293  0.000£21581 0.82394 3.50738
39 0.4 0.3% 4.15 16023.5 2.1x10%  2.00782 23363.5 23359.5 13.365 0.0156557 0.000175283  0.0000771291  £.22878 3.92738
0 2.4 0.031  4.15 7610.56 2.1x10%  20.905 13174. 13155.1 12.92 0.0146418 0.000175283  0.000420704 0.850788  1.63158
41 2.4 0.032  4.15 7854.15 2.1x10%  14.177 13591.2 10.525 0.00970812 0.000175283  0.000420704 0.677597  0.740387
42 2.395 0,034 4.15 8323.61 2.1x10"  8.62937 14389.7 8.125 0005728605 0.000175293  0.000419828 0.931096  0.278661
43 2.395 0.06 4.15 14595.9 2.1x10"  s.46481 24919, 5.73 0.00287769 0.000175293  0.000£19228 1.61241 0.120871
44 2.385 0.0§ 4.15 14585.% 2.1x10%  1.57107 24814, 3.335 0.000974826 0.000175283  0.000419828 1.61241 0.0138703
45 0.2 0.4 4.15 £940.34 2.1:10%  0.0127931  12974.4 0.94 0.0000774446  0.000175283  0.0000420704  £.37774 0.000053621
46 0.7 0.055  4.15 3915.31 2.1x10"  0.0208944  §700.56 0.7 0.0000429469  0.000175283  0.000122705 1.48341 7.22154x10

Figure 2.2: Final table

2.2.3 References

1. Formulas for Natural Frequency and Mode Shape, Robert D. Blevins
2. Dynamics of structures by Ray W. Clough and Joseph Penzien.
3. Structural Dynamics, 5th edition by Mario Paz and William Leigh.

4. Professor Oliva class lecture notes, CEE 744, structural dynamics, spring 2013, Uni-
versity of Wisconsin, Madison.

5. http://en.wikipedia.org/wiki/List of moment of areas|
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2.3.1 Problem description

CEE 744

N Ve wN R

Periodic response analysis:

Develop a solution for the response felt by a driver crossing a bridge similar to the south beltline

highway viaduct. For fun, we’'ll look at how different cars and drivers respond to the trip.

The first part of the problem setup is in a MathCad file you can download from the class web
site. Finish the MathCad sheet for the response solution.

Provide the following summary of information on your solution:

natural period and damped period of your car

the time to cross one span (period of loading)

time to cross the bridge (duration of loading)

at least the first four “a,” values from your representation of the load
the peak relative displacement of the driver

the peak total displacement of the driver

the number of “a” values you decided to use in your solution

Submit: 1) your MathCad solution electronically to the class web site

2) the summary data above on a paper sheet

3) a plot of the series representation of the load on a sheet

4) a plot of relative displacement vs time on a sheet

5) a plot of the sum of steady state solutions for relative displacement on a sheet
6) a plot of your transient solution on a sheet

8) a plot of the total car displacement with the bridge shape on a sheet
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Driver speed car shocks springs

weight (% damp) (Ib/ft)
Nasser 30 1500 75 2400
Sam 50 1500 75 2400
Jeffryd 80 1500 75 2400
Tom 50 2300 75 2400
Moon 50 1500 75 3600
lan 50 2200 50 3600
Henrik 80 1500 50 2000
Derek 80 2200 50 3600
Brad 50 1200 40 2000
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2.3.2 Mathcad initial calculations

Analysis of motion in a car crossing south beltline bridge

A vehicle crossing the south beltline bridges experiences vertical dynamic vibration
due to the residual camber in the bridge. Determine the extent of vertical motion
that will occur. (Insert your values in the highlighted regions.)

X(t) = location of the car

’—.

Bridge data: span length = 70 ft. Ai=T0-1t
upward camber = 2.5 inches A E_ﬁ
12
Car data: weight := 18001b

speed := 60mph

€:=0.75
k:= 5000E
ft
. 2 2
m e welght.sec m = 55.901 Ib-s
322 ft ft
k
I L3 w, = 9.458.189
m sec
W 1
f= — f, = 1.505 =
2.1 S
1
Th=— T,=0.664s
fn
d
wgm Wl - €2 wy= 625622
sec
ft
sp := speed sp = 88—
s

PART #1: Define load and convert to a series form

Loading is as if ground is moving up and down under car. This is
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like an EQ load. Define the ground movement and acceleration.

-the car travels through 1/2 cycle in one span:

]
Yg(t) = A-sin(qr-ij for O<x<span

-the car location "X" is dependent on speed and time:

X = sp-tI

]
= . i .i.
yo(t) = A sm(vr N tj
]

2
-Sp . sp
accy(t) = —A| —— | -sin| w-—-t
o0 ( X j ( X j

-the span length/speed = time to cross one span,

IN Th
Tp=— Tp=0.795s Beto:= — PBeta=0.835
sp Tp
2 ]
™ . s .
accy(t) = 7A~(—J -5|n(—~ J rounded time, more than
Tp T one period:

Then the load in one span (0<t<Tp): Ta=12s

2 ' steps in analysis:
T . T
Pa(t) = mA(?J -Sln(—~tJ T

p p st:= -2 st =120
.01s

We need to convert this load to a periodic form
that works for any point in time, until the vehicle
is off of the bridge.

end of load:
Tmax = 7Tp Tinax = 5.568's

— 1
Tmax* N

Convert the load to a series - Fourier Transform:

2 2
Pa(t) = m-A(TlJ -sin(l.tJ with a period of Tp, P, := m.A.(lj
p p
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P, = 181.654 Ib

(o]

Pe(t) =3, + Z (an~cos(2~1-r~n~_l_ijj + Z (bn.sin(z.-ﬁ.n.%)]
P p

n=1

a,= 115.644 Ib

T
Po (p [t t

8= 2.—- sin| 7t-— |-cos| 2-7-n-— | dt
pJ Tp Tp

theoretically
all "b" = zero,

ay = 115.644 Ib
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2.3.3 Mathematical model

X(t) = location of the car

’_.
i

The equation of motion of the car is

my" +cy' + ky = cy, + ky,

Let y — y, = u which is the distance between m and the ground. Hence the equation of
motion now becomes

m (W +yg) +c (v +yg) +k(uty,) = cy, +ky,

mu” + cu’ + ku = —my,

33



2.3. HW3

CHAPTER 2.

HWS

2.3.4 Summary of results found

2.3.4.1 Bridge data

imperial SI

span length A 70 ft

70 x 0.3048 = 21.336 meter

upward camber A | 2.5” = 0.208 33ft

2.5 x 0.0254 = 0.0635 meter

2.3.4.2 Car data

imperial
1500 _ 1b.s2
mass of car o9 = 46.584 fi

speed of car

30 mile/hr= 44.0 ft/sec

critical damping ratio is ¢

0.75

spring constant k

2400 Ib/ft

natural frequency w, = /%

2400
46.584

= 7.1777 rad/sec

Wy

natural frequency f, = o

LT — 1.1424 Hz

natural period T;, = fin

L_ — 0.87535 sec

1.1424

natural damped frequency wy = w,v/1 — (?

717774/1 —0.752 = 4.7476 rad/sec

natural damped frequency fq = 52

L7476 — 0.7556 Hz

T, time to driver over one span = 2

1.591 sec

T, time to cross the bridge (duration of loading)

7 % 1.591 = 11.137 sec

2.3.4.3 Results

a, values found for up to n = 10
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ap distribution

o

afn]
24.0897
-16.0598
-3.21196
-1.37655
-0.764752
-0.486¢6
-0.336919
-0.247074
-0.188939
-0.145162
0(-0.12075

| oo =d| | O] ol L B = O

Peak relative displacement of the driver

Maximum relative displacement was 0.24 inch and it occurred during transient phase.

Peak total displacement of the driver

0.165 inch + 2.5 inch =2.665 inch and it occurred during steady state phase at multiples
of half the period T, while on the bridge.

Number of a,, terms used

In addition to ag term, the next 5 terms are used for a total of 6 terms.

2.3.5 Analysis

2.3.5.1 Generate load equation

The equation of the ground is shown in this diagram
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A =25in=0.0635m ) Asin(/ix) 0<x<4i
% VelX) = L.
Asmn{Z(x—- A4 x> 4
\ ‘ ( A (Y )) X
006 [
: \
oo |
0m -
10 20 3IIJ 40
-0 | |
oot 1/1 = 70ft = 21.3361?1]
- 006 ;
Description of one span and equation of road
Therefore, the equation of span is
Yo (z) = Asin(fz) 0<z <A
Hence, we convert it to be a function of time using z = vt, hence
Yo (t) = Asin(5vt) 0<¢<2
= Asin(wt) 0<t<T,
= Asm(T—pt> 0<t<T,
Where in the above @w = 7 is the fundamental frequency of the ground motion. Hence

TP
y, (t) = ATLP cos (%t) and

50=-2(5) = (%)

T, 0.87535

ﬂ=f, 1.591

And
= 0.55019

Then load in one span 0 <t < T, is

r0=na (i) (7:)
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Let
7\ 2 T \2
P, =mA (Tp) — (46.584) (0.208 33) (ﬁ)
— 37.840 b

Then the load becomes

P, (t) = P,sin <%t) (2.1)

2.3.5.2 Convert load to Fourier series

Now we need to convert Eq [2.1]to Fourier seried!} Let P, () be the Fourier series approxi-
mation to P, (t), hence

- - 2 - 2
P,(t) =ao+ ;an coS (n%t) + ;bn sin (n%t)

p p

Tp
1
=— [P, (t)dt
w=7 B0
0
Tp
2 2
ay, = fp/Pa (t) cos <n%t> dt
0
Tp

2 ) 2m
b, = E/Pa (t) sin (nTpt> dt
0

Hence
Tp Tp us Tp
1 P, P, — COoS —pt P,
aO:—/Pa(t)dtz— sin | =t ) dt = -2 A = —— (cos(m) — 1)
Tp Tp Tp p ’14 T
0 0 P 0
2P, 2 (37.840)
T T
= 24.090 1b

1The Fourier series can also be found using complex form. This was done in the appendix.
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And

TP
2 2
ay = T},/Pa (t) cos (n%t) dt
0
TP
= 25, sin 7rt cos n27rt dt
a T, T, T,
0

4P,

= ——°_ cos(nn)?
T — 4n’m
But cos (n7)? = 1 Hence
. - 4P,
" m—4n2m

and

Ty
1
b, = E/Pa (t) sin (277711%) dt

2P t cos n2—7rt dt
TP TP TP
0

= m sin (2'”;77)

But sin (2n7) = 0 for all integer n, hence b,, = 0.Therefore

P, (t) = ao + Zan cos <27rn%p>

n=1

=\ 4P, t
=aqag + ;m (¢0 ] <27m7_},)

Using the numerical values found, we obtain

(37.840) t
P, (t) = 24.0897 + Zm cos (27m1.591>
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2.3.5.3 Plot of load and its Fourier series approximation

This plot below shows P, (t) and its Fourier series approximation P, (t) as more terms
are added. This was plotted for ¢t = 0---5sec. This was done to verify that the Fourier
series approximation is correct before going to the next stage of the analysis. The actual
calculations used the first 6 terms of a,,.

Fourier Senes approx. using 1 terms Fourier Senes approx. using 2 terms
40 F x_\. T o T oz "'i.l ,"‘: T T =
3 “ e . - 2J & % & 4 P
i \ f \ 4 [ b f b i
\ i / 30 / Y f
3 ) 1 1 /
30 § l ¥ " J - I \ { % i
i 1 " d 23k f \ 1 f
) i \ ' J \ | \ |
= v i A ' = 0F |} \ | ! !
R 1 A v I h ) = < \ I | |
=1 A A I Ry ' i ¥
I / v I 15F ¢ A ' i i
1 L1 4 v b ™ ] 0 [ | i
] L} v | ] [ '
10} | \ K 0E | V! y
- N [ 4 | A LI
5k o f ¥
0 . . . DEL . . .
0 1 2 3 4 0 1 2 3 4
t i
Fourier Senes approx. using 3 terms Fourier Senes approx. using 4 terms
— T = = =
- # F 4 z ™ f
\, 1
33 d \‘ i \ i 23 f ‘. f f
¥ \ ' \ i | i A /
30 / y ! W / 30F / \ ! h |
f \ f \ i i A / "\ |
{ ! f i 5 \
2 3 ] 25E f f
L7 f \ i h r f ‘] { “ {
[ f [}
= 0f | e ¥ =0f |/ » S
B ! \ f \ ! B f \ f \ {
15 ) \ I 1\ i 15 | \ I 1 i
! i l ! ! lL ! " f
10F 1 | 10F | ' |
' 1 1 ¢} } | L |
sE/ / ' SE S \ L |
TS \ Ly, 3 | \/ \/
0 ! 113 - \
] 1 2 2 4 0 1 2 3 4
i t

2.3.5.4 Finding the steady state response

The equation of motion of the car is

my" +cy' + ky = cy, + ky,

Let y — y, = u which is the distance between m and the ground. Hence the equation of
motion now becomes

m (v +4)) +c (v +y,) +k(u+y,) =cy, + kyg
mu” + cu’ + ku = —my, (2.2)
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Hence Eq [2.2 becomes

2
"ted +ku=mA () sin (Tt
mu +cu +ru=m (Tp> sm(Tp)

— PR

= ni;oan cos (27rn%p>
= Re {ianeinwt }
n=0

Where w = %’r is the fundamental loading harmonic. Let uss (n) = Re {U,e"'} be the

response due to the n term in the loading function. Hence the equation of motion now
becomes

mRe {i - n2w2Unei”m} + cRe {iiwnUnemm} + kRe {iUnemm} = Re {ianemm}
n=0

n=0 n=0 n=0
(—n*w?m + cinw + k) U, = ay,
a
Un = 2.2 —
—n?w’m + cinw + k
an 1

k (1 —n2r2) + 2iCnr

Hence the transfer function is

(—n2w2m + cinw + k) U, =a,

an
Un = 2,2 :
—n2w?m + cinw + k

an 1

k (1= n2r2) + 2iCnr

Therefore, steady state response is

yss (t) = Re {ZUnemm}

n=0

_ Qn ]' inwot
= Re {Z k (1 —n?r?)+ ZZCnTe }

=0

8

8

Un
00/—/%

Z—n (¢,rym)e™=t (2.3)
zok
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Where D ((,r,n) is the n'® harmonic dynamic magnification factor

1
(1- n2r2)2 + (2Cnr)2

D (¢,r,m)| =

and

1 —n?r?

arg D (¢,r,n) = —tan™" <2Ci>

In the above,
2m 2w

w Ty 1.591
= = = = 05502
" o wne | TATTT

This is a list of the magnitude of U, for different n value to examine the contribution of
each harmonic to the steady state response.

Distribution of Uz; harmonics

n |Up Uy rhase (U} degree
0 |0.0100374 0.0100374 0.

1 |-0.00170524 - 0.00366837 1 0.00404534 -114.931
2 |[0.0000312072 -0.000443%12 i |0.000445007 |-85.5787
3 |[0.0000425907 - 0.000111137 i |0.000115018 |-69.0317
4 |0.000024122 - 0.0000376552 1 |0.00004471% |-57.3563
5 |[0.0000134002 - 0.0000153014 1 |0.0000203396 |-458.7897
6 |7.7639x10°%-7.05943%x10°%: |[0.0000104935 |-42.2791
7 |4.72164x10°%+-3.58384x10°%1i [5.92772x10°%|-37.1994
8 [3.00344x10%-1.96149x10"%1[3.58722x10"%|-33.1478
9 |1.98761x10%+1.14081x10%3i (2.29173x10°%|-29.8542
10 |1.36131x108+6.97572x 107 i [1.52963x10°% [-27.1318

2.3.5.5 Find the transient solution

From the steady state solution uss (t) we found above, we now find s (0) and u/, (0) these
are the initial conditions, but in opposite sign, that the transient solution have to satisfy.

From above, we found the steady state solution to be
o0
yss (t) = Re ZUnemm
n=0

Hence

y.s (t) = Re Zianneinm

n=0
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At time ¢t = 0 the above becomes

Yss (0) = Re {iUn}
y.s (0) = Re {iiann}

n=0

Now we need to decide on how many harmonics to use in order to determine y (0) and

y.. (0). From above we see that after | n =5 |then a, became very small. Hence we will
use up to n = 5 to find the initial conditions from the above 2 equations.

5

5 a, 1
Yss (0) = Re {;Un} = Re { k (1—n%?) + 22'Cnr}

n=0

= 0.0084435 ft = 0.101322 inch

and for the initial velocity we obtain

v, (0) = Re {Zz’ann}

n=0

. ap 1
= Re {;znw? (1 —n?r?) + 22'Cm'}
= —0.020207 ft/sec = —0.242484 inch/sec

Now the transient solution for damped system is given by
gy (t) = et (A coswyt + B sinwgt)
with

s (0) = —0.0084435
ul, (0) = +0.020207

Hence

A = uy, (0) =| —0.0084435

Taking derivative of uy, (t) gives

), (t) = Cwne™m (A coswat + Bsinwgt) + e "t (— Awy sin wat + Buwg cos wyt)

Hence at t = 0 we obtain

uy,. (0) = CwnA + Bwy

Wq
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But uj, (0) = 40.020207 ft/sec, A = —0.0084435 ft,{ = 0.75,wq = 4.7476 rad/sec,w, =
7.1777 rad/sec, hence

_0.020207 — 0.75 x 7.1777 x (—0.0084435)

B 4.7476

= 0.01383

Therefore

Uz (t) = et (—0.0084435 cos wyt + 0.01383 sin wgt)
= ¢ 0T(TTTDE (_(),0084435 cos (4.7476t) + 0.01383 sin 4.7476t)

This solution is now added to the steady state solution.

2.3.5.6 Plot of the absolute total displacement with the bridge for both
steady state and transient combined

uftjusinguptpn=3

uft) inch

1 --- ground

oo : t '

time (sec)

Zooming on the first 1.8 seconds shows more clearly the effect of transient solution
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full response(t)using up ton=3

— car

—1

00 0.3 1.0 13

The transient solution effect vanishes after about 1.5 second.

2.3.5.7 Plotting the full relative solution

To better see the solution obtained, we plot the relative displacement. This is the displace-
ment felt by the passenger. First the solution is shown for the whole time to cross the

bridge, then we zoom to the first 2 seconds to better see the transient solution

full relative response(fjusingupton=73

020

osf

Uratativa(t)inch g 4o[

05|

000]

0 2 4 6 8 10

time sec)
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full relative response(t) usingupton=3

015
F Ueatativalt) inch g 1q L
005 F

000

0.0 03 10 13 20

time (sec)

From the above we see that the maximum relative displacement is about 0.24 inch and it
occurs during transient phase. During steady state, the maximum relative displacement is
about 0.165 inch
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2.3.6 Appendix

2.3.6.1 Finding Fourier series approximation using complex form

The Fourier series approximation can also be found using the complex representation. This
is the derivation using this method which gives the same result as was found earlier.

D 1 S inwt
P,(t) = §Y0 + Re (;Yne )
Where
TP
Y, = 2 / P,(t)e "dt
n - Tp a
0
Ty
2P,

(2.4)

Integration by parts, [udv = uv — [ vdu, let u = sin <%t>, hence du = % cos (%pt) and

—inwt
€

v = ©——, therefore the above becomes
. T, Tp )
2P T e inwt p T T e—znwt
Y, ==>-> in | —t|— — [ = —t) ——dt
T, S (Tp ) —mw]o /Tp co8 (Tp ) —inw
0
2P . —inwTp . Tp
o . T 1€ 1 ™ —inwt
= —T, )| =— - — —t dt
T) sin (Tp p) — 2n/ Ccos (Tp > e
0
TP
ZP T —inwt
=——2 —t dt 2.5
nTp/COS(Tp>e (2.5)

Now integrate by parts again where now [udv = wv — [wvdu, let u = cos (Tlpt>, hence

46



2.3. HW3 CHAPTER 2. HWS
du = _:% sin <%t) and v = %, therefore Eq becomes
B » T Tp X
ZP T e inwt p T T e—znwt
Y, =——2 —t - — | ——sin | =t —dt
nT, (COS (Tp ) —mw)o / T, S (Tp ) —inw
i 0
i —in 28 TP
__h cos [ =T, ) & " I + i/Sin ) e ™ dt
N nT, T, ) —inw —inw n2 T,
i 0
[ —in2m Tp
_ 'LPO Z,e Z + Z /Sin ™ t e—inwtdt
T, nw  nw n2 1,
i 0
P —in2m 1 A Ty
o e + . T —inwt
= — —t dt 2.
nT, nw ) + 2n2Tp/Sln (Tp ) ¢ (2:6)

Ip

0

Now we see that the term / sin (%t) e ""dt has repeated again. This term is the same
0

as what we started with in Eq therefore, we write

Tp
. s —inwt Tp
el =Py
/sm (Tpt> e dt oA
0

and replace this term back into Eq hence it becomes

v __ P e +1 L AT
" nT, nw 2n2T, 2A "
P, (™ +1 1
S Y,
nT ( nw * 222
1 P, (™ +1
Y., Y, =—
22n2 nT), ( nw
v (1_ 1 __ PR e ™4+ 1
" (2n)?)  nT, nw

2P, (e‘"”” + 1) 2P, (e‘"”z" + 1)

7 — 7 (2n)°
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And
T, T, - Tp
o [ (= oP, [ ([ op, [ —cos (T—pt> 9P,
Yo=— [ P,sin| —=t | dt = sin (| —=t ) dt = =— cos
T, 1, T, T, 1y T T
0 0 P 0
2P,
=211
" (-1-1)
4P,

- 1 e .
F,(t) = ;Yo +Re (ZYnemwt>

4P, . 4P, oot
S oor + Re (Zﬂ(l—4n2)e )

2P, . 4P, oot
oo + Re (Zw(1—4n2)e )

Il
MA

n

We see that we obtained the same result using the classical Fourier series form.
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Chapter 3

Final project. Dynamic Analysis of

the Elizabeth Ashman Bridge

3.1 Solution

3.1.1 Introduction

current database for the bridge, in the format of SDB SAP2000 1.5 version is

Results of each step are given in separate section. Each section has two parts, the first
shows the results and the second describes the methods and analysis performed to obtain

the results.

3.1.2

3.1.2.1 Results

step one. Displacements at joints S15L, SO7L

and 21

49

Joint | Ul U2 U3 R1 R2 R3
ft ft ft rad rad rad

SO7L | 0.000179 | -0.003174 | 0.021538 | -0.000119 | 0.000098 | 4.253E-06

S15L | 0.000035 | -0.003104 | -0.032437 | -0.000216 | -0.001357 | 0.000029

Joint | Ul U2 U3 R1 R2 R3
ft ft ft rad rad rad

21 0.007568 | -0.002749 | -0.024066 | -0.000011 | 0.001533 | -0.000120

Table 3.1: Displacements at joint 21
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3.1.2.2 Method used

Problem description is

Find the deflections of the arch portion of the bridge at node or joint S15L and SO7L when
a 10k downward point load is applied at joint S15L. Also find the displacements of joint 21
on the ramp when a 10k downward load is applied at that joint.

There are the steps performed

1. The original bridge database was not complete. The missing joints were first added.
After opening the database, the XZ view was selected. This is needed as it was found
it is not possible to add a point in the default 3D view.

2. Clicked on the Draw Special joint icon located on the left edge of the window. This
is the small blue square in version 15 of SAP2000.

Clicked on an empty area on the screen to add a point.

4. Right clicked on the added point again to bring up a pop-up menu dialogue that was
used for data entry of given coordinates.

5. Filled the coordinates and the labels as given in the PDF file.

6. Made sure that the menu item in the JOINT COORDINATES called SPECIAL Jt (User Def)
is labeled YES. If this is labeled NO then this procedure did not work and the point
was not added.

7. Clicked UPDATE DISPLAY then clicked OK.
8. Verified that the points were added by selecting DISPLAY->SHOW TABLES then using
the pop-up menu and searched Joint Coordinates

9. Figure shows part of the joints coordinates table after completing the above steps.
Partial listing of joints is shown below

SAP2000 v15.0.1 5/2/13 22:18:29
Table: Joint Coordinates

Joint CoordSys  CoordType XorR Y Z Speciallt GlobalX GlobalY GlobalZ
ft ft ft ft ft ft

1 GLOBAL Cartesian -4.1200 122.2500 74.0750 No -4.1200 122.2500 74.0750
2 GLOBAL  Cartesian 4.1200 122.2500 74.0750 No 4.1200 122.2500 74.0750
3 GLOBAL  Cartesian -7.9700 152.5000 58.2900 No -7.9700 152.5000 58.2900
4 GLOBAL  Cartesian 7.9500 152.5000 58.2900 No 7.9500 152.5000 58.2900
5 GLOBAL  Cartesian 0.0000 175.8000 36.1100 Yes 0.0000 175.8000 36.1100
6 GLOBAL  Cartesian 0.0000 175.8000 53.3800 Yes 0.0000 175.8000 53.3800
7 GLOBAL  Cartesian 6.0000 175.0000 53.3800 Yes 6.0000 175.0000 53.3800
8 GLOBAL Cartesian -6.0000 175.0000 53.3800 Yes -6.0000 175.0000 53.3800
9 GLOBAL  Cartesian 3.5600 157.8000 54.5400 No 3.5600 157.8000 54.5400
10 GLOBAL  Cartesian -3.5600 157.8000 54.5400 No -3.5600 157.8000 54.5400
11 GLOBAL  Cartesian 0.0000 219.2000 50.7300 Yes 0.0000 219.2000 50.7300
12 GLOBAL  Cartesian 0.0000 219.2000 39.3100 Yes 0.0000 219.2000 39.3100
13 GLOBAL  Cartesian 0.0000 219.2000 32.7400 Yes 0.0000 219.2000 32.7400
14 GLOBAL  Cartesian 12.0000 217.6000 50.7300 Yes 12.0000 217.6000 50.7300
15 GLOBAL  Cartesian -12.0000 217.6000 39.3100 Yes -12.0000 217.6000 39.3100
16 GLOBAL  Cartesian -7.0000 179.7600 36.7400 Yes =7.0000 179.7600 36.7400
17 GLOBAL  Cartesian 0.0000 265.5700 29.8700 Yes 0.0000 265.5700 29.8700
18 GLOBAL  Cartesian 0.0000 265.5700 42.5100 Yes 0.0000 265.5700 42.5100
19 GLOBAL  Cartesian 0.0000 265.5700 44.8600 Yes 0.0000 265.5700 44.8600
20 GLOBAL  Cartesian 0.0000 265.5700 47.0300 Yes 0.0000 265.5700 47.0300
21 GLOBAL Cartesian 18.0000 263.1700 47.0300 Yes 18.0000 263.1700 47.0300
22 GLOBAL Cartesian -18.0000 263.2000 42.5100 Yes -18.0000 263.2000 42.5100
23 GLOBAL  Cartesian 0.0000 283.5700 44.8600 Yes 0.0000 283.5700 44.8600

10. Connected the joints added above to the bridge in order to establish the ramp.
Figure is screen shot showing the ramp connected to bridge. RBEAM elements
are used.
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File View FormatFiter-Sort Select Options
Units: &3 Moted
Joint | CoordSys CooidT ype | XorR Y Z| Speciallt | ﬁluhaIX| Globaly GlobalZ -
Text Text Text ft it ft| Yes/No ft ft ft 1
3 1 GLOBAL Cartesian 412 122.25 74.075 Mo -412 122.25 74.075 )
|| GLOBAL Cartesian 412 122.25 74.075 Mo 412 122.25 74.075
L | 3 GLOBAL Cartesian .97 1525 58.29 Mo 797 1525 58.29
L | 4 GLOBAL Cartesian 7.95 1525 58.29 Mo 7.595 152.5 58.29
|| 5 GLOBAL Cartesian 1] 175.8 3611 s 0 175.8 3611
L | 6 GLOBAL Cartesian ] 1758 53.38 ‘ez 0 175.8 53.38
L | 7 GLOBAL Cartesian 5 175 53.38 es [ 175 53.38
L | 8 GLOBAL Cartesian -6 175 53.38 es -6 175 53.38
|| g GLOBAL Cartesian 356 157.8 54.54 Mo 356 157.8 54.54
L | 10 GLOBAL Cartesian -3.56 157.8 54.54 Mo 356 157.8 54.54
L | 11 GLOBAL Cartesian 1] 2192 50.73 ‘res 0 219.2 50.73
|| 12 GLOBAL Cartesian 1] 219.2 1\ es 0 219.2 39.31
L | 13 GLOBAL Cartesian ] 2182 3274 ‘ez 0 218.2 3274
L | 14 GLOBAL Cartesian 12 2176 50.73 ‘s 12 2178 50.73
L | 15 GLOBAL Cartesian 12 217.6 39.31 es 12 217.6 39.31
|| 16 GLOBAL Cartesian =7 173.76 3674 s -7 173.76 36.74
L | 17 GLOBAL Cartesian 1] 2B5.57 29.87 ‘ez 0 265.57 29.87
L | 18 GLOBAL Cartesian 1] 2B5.57 4251 ‘res 0 265.57 42.51
|| 19 GLOBAL Cartesian 0 265.57 44.86 s 0 265.57 44.86
|| 20 GLOBAL Cartesian 1] 265,57 47.03 es ] 265.57 47.03
L | 21 GLOBAL Cartesian 18 28317 47.03 ‘s 18 26317 47.03
L | 22 GLOBAL Cartesian -18 263.2 4251 es -18 263.2 4251
23 GLOBAL Cartesian 1] 28357 44.86 s 0 283.57 44.86 =
Fam crana ot ion EEE r e caca - EFE rac caca
| o[ ]
Record: mn 1k . of 91 Add Tables... | Done |

Figure 3.1: Adding missing joints to bridge database

Figure 3.2: connected ramp to bridge using RBEAMS
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11.

12.

13.

14.

15.

16.

Before adding the 10 kips downwards load, a load pattern is defined. Selected DEFINE->LOAD PATTERNS

and added new load pattern called S15L of type DEAD with self weight multiplier 0.

10 kips downwards load at joint S15L was added. This was done by clicking on the joint
and right clicking again. Using the pop up menu that appeared the value minus 10
was entered. Minus sign was used since load is downwards. The load pattern selected
was S15L. Figure shows the result.

Clicked on RUN ANALYSIS. In the set load case to run case S15L was the only
one selected. All other load cases, including DEAD was not selected. This was done
to obtain result due to vertical load only. Model was locked now. After run was
completed, clicked on DISPLAY->SHOW TABLES->JOINT DISPACEMENTS and located
nodes S15L and SO7L to find the node displacements. Figure shows the result of
this step In addition a listing from the table is shown below

SAP2000 v15.0.1 5/3/13 1:35:52
Table: Joint Displacements
Joint OutputCase CaseType U1 U2 U3 R1 R2
ft ft ft Radians Radians

SO7L S15L LinStatic 0.000179 -0.003174 0.021538 -0.000119 0.000098
06
S15L S15L LinStatic 0.000035 -0.003104 -0.032437 -0.000216 -0.001357

Before adding the 10 kips downwards load to node 21, a load pattern is defined for
use. Selected DEFINE->LOAD PATTERNS and added new load pattern called node21 of
type DEAD with self weight multiplier 0.

10 kips downwards load at joint 21 was now added. This was done by clicking on
the joint and right clicking aging. Using the pop-up menu that appeared the value
minus 20 was entered. Minus sign was used since load is downwards. The load pattern
selected was node20. Figure [3.5|shows this step.

Clicked on RUN ANALYSIS. In the setload case to run case node21 was the only
one selected. All other load cases, including DEAD was not selected. This was done
to obtain result due to vertical load only. Model was locked now. After run was
completed, clicked on DISPLAY->SHOW TABLES->JOINT DISPACEMENTS and located
nodes 21 to find the node displacements. Figure [3.6| shows the result. Listing from
the table is shown below

SAP2000 v15.0.1 5/3/13 2:33:04
Table: Joint Displacements

Joint OutputCase CaseType U1 U2 U3 R1 R2
ft ft ft Radians Radians
21 node21 LinStatic  0.007568 -0.002749 -0.024066 -0.000011 0.001533
0.000120
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e R

Lotiton | Miigeets  Losk |
L Assign Load
Lot (e | Select Joint Load Type to Assign
— « Noint Force
— " Ground Displacement
| 0K I Cancel
upcante Digiay
Moty sty _|
1 |
_Cnesl |

Dionibde cheh, whibe bachground coll i odi fem

bont orces (e ]

Iderication
Load Patterr Mams Units -

Label  [515L

£ BET | Kip. iL.F -

Loads Comedinate Systam [ |

Load Pattein DL el
Fotce Global X 0 T Joint Faree

Cooidnata System GLOBAL
R (el D. = ForcenZ Di 10 P
plore: Load Pattemn S15L 12
fg :
Foice Global 2 d  AddioEsisting Loads Jdoint Force
Comidnale Syiterm GLOBAL Rezat A
Moment about Global = 0. * Replace Eusting Loads ForcainZ Di 10
Momert about Global ¥ 0. " Delete Existing Loads
Moment about Global 2 0.
0K Cancel
Update Display
Modiy Ditplay
oK
Cancel

Double cick white background cell to edlt iem.

Figure 3.3: adding vertical load pattern for step one use
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Joint Displacements

File View FormatFilter-Sort Sclect Options
Units: Az Noted

Filter; Joint = 'SO7L'

Joint OutputCase | CaseType

u1 ll2| u3 l R1 R2 R3
Text Text Text id ft fit Radians Radians Radians
ia SO7L | S15L | LinStatic | 0.000179) 0.003174 0.021538| 0.000019 0.000095 0.000004253|

loint Displacemen

Ele View Format-Fiter-Sort Select  Options
Unitz: 43 Noted bloint Displacements
Filter: Jaint = 'S715L"
Joint OutputCase | CaseType | u u2 u3 R1 R2 R3
Text Text Text it it it Radians Radians Radians
i3 S15L | 5150 | LinStatic | 0.000035] -0.003104]  -0032437  -0.000216| -0.001357| 0.000023|

Figure 3.4: adding vertical load to joint S15L
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Location | Assigreents Loz ]
licherstifac.stion

Label 21

™ Ground Displacement

e

Double chok white background cell 1o adit dam

Loads [Mone Batign Losd._ |
pasignoad ehF =
Sedect Joint Load Type to Assign
= Hort Foscel gﬁﬂﬁm

Locstion || Assgreents st |
Iieratiaz iy
Label 21
Load Pattean nodeZ1 Astign Luad
Jewd Fence
Coordnate Sythem GLOBAL
Fencs i Z D n Ko b F :I
Fieaet 1
Uipdae Diickes I
Maoddy Diigly |
0K
Cancel |
Dioutsls chei: white back ghourd coll 15 et e

Figure 3.5: adding vertical load pattern for step one use

Joint Displacements

File View Format-Filter-Sort 5 Options

Units: Az Moted |JuintDispIaEEmEnls ﬂ
Joint DutputCase | CaseType u1 uz2 u3 R1 R2 R3 -
Text Text Text it ft ft Radians Radians Radians
21 node21 LinStatic: 0.007568 -0.002749 -0.02408E: -0.000011 0.001533 -0.0002

Figure 3.6: adding vertical load to joint 21

%)



3.1. Solution CHAPTER 3. FINAL PROJECT....

3.1.3 Step two, period and damping calculations
3.1.3.1 Results
The result is shown in table

Natural period T (sec) | Natural frequency f, (hz) | critical damping ratio ¢
0.5 2.0 0.0014%

Table 3.2: Period and damping

3.1.3.2 Method used

This is the problem description

Two people jogging across the bridge created the vertical acceleration records shown below.
Each set of pulses is when the joggers were running, in between they stopped. Once they
stopped it is as if the bridge had an initial displacement and velocity and then decayed in
free vibration. Using the enlarged portion of the record estimate - the natural period of the
structure and the

vertical accelerations

raw data

BT T T T T T T e BT e T T e e T T e e T e e T
rF r T ot T T v v o o N NN NN NN NoB MM

time (secs'20)

Figure 3.7: vertical acceleration time records

The above profile can be used as free the vibration profile. The method of logarithmic
decrement was used to obtain the natural period and ¢ (damping critical coefficient).
Figure 3.8 shows a closer zoom view of the above plot in order to estimate the period. It
shows the natural period to be around 10 division.
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I

I
| |
VIR

TR AT T ST T W
— o™~ (2] - Ty w0 P~
- o™ o™ - w (=}

Figure 3.8: zoomed view on the vertical acceleration time records

The units used are sec*20, therefore natural period is T' = % = 0.5 sec. Hence natural
frequency is f = 2 hz.

To obtain the damping ¢, a number of methods can be used. The more accurate methods
uses more peaks. Using N = 35 as number of peaks and using method of series expansion
¢ can be found. From the above plot the value of first peak is 55940 and value of peak
number 35 was found to be 55770. Hence

P —1427N¢

Yo+ N
1 55940 — 55770
~35(2m) 55770
=1.3861 x 107°
= 0.0014%

3.1.4 Step three. Modal analysis

3.1.4.1 Results
The following are the modal analysis results. Mode 3 has period 0.426531 seconds and
natural frequency 2.3445 hz.

SAP2000 v15.0.1 5/3/13 3:29:56
Table: Modal Periods And Frequencies

OutputCase StepType StepNum Period Frequency CircFreq Eigenvalue

Sec Cyc/sec rad/sec  rad2/sec2
Modal Mode 1.000000 0.486993 2.0534E+00 1.2902E+01 1.6646E+02
Modal Mode 2.000000 0.435780 2.2947E+00 1.4418E+01 2.0789E+02
Modal Mode 3.000000 0.426531 2.3445E+00 1.4731E+01 2.1700E+02
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Modal Mode 4.000000 0.352227 2.8391E+00 1.7838E+01 3.1821E+02
Modal Mode 5.000000 0.321345 3.1119E+00 1.95563E+01 3.8231E+02
Modal Mode 6.000000 0.268232 3.7281E+00 2.3424E+01 5.4871E+02
Modal Mode 7.000000 0.258425 3.8696E+00 2.4313E+01 5.9114E+02
Modal Mode 8.000000 0.249385 4.0099E+00 2.5195E+01 6.3477E+02

In this description, reference is made to different view angles. Figure [3.48 shows the axis
orientation used by SAP2000.

Figure 3.9: 3D axis orientation used

The maximum stress at the base of the column (label 11) in the ramp was also found for
each mode. This was done using SAP2000 v15.1 which has this added feature. The following
diagrams give stress S11 for each mode.
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Diagrams for Frame Object 11 (COLUMN3)

—End Length Offzet [Location]q — Dizplay O ptions
Case IMudaI j I-End |J: 17 " Seroll for Yalues
Mode |1. @I Display | [Dtlnﬂnﬂnﬂnﬂuf{; f* Show Max
[tems IStress [511] j IStepped j J-End: |Jt: 18
[, qoo0o
[12.6400 f]
— Strezs Diagram - 1
[511 Max =l
275,84 Kip/ft2
at 00000 i
— Strezs Diagram - 2
511 Min |
-84E.59 Kip/it2
at 00000 f
— Strezs Diagram - 3
511 Point 0 =]
14.E2 Kip/ft2
at 12 6400
— Strezs Diagram - 4
511 Pairt 1 |
-84E.53 Kip/it2
at 00000 i
Rreset ta lnitial Units | Dane | Units  [Kip, t.F 7]

Figure 3.10: Stress at base of column, mode 1
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Diagrams for Frame Object 11 (COLUMN3)

—End Length Offzet [Location]q — Dizplay O ptions
Case IMudaI j I-End |J: 17 " Seroll for Yalues
Mode |2 E Display | [Dtlnﬂnﬂnﬂnﬂuf{; f* Show Max
[tems IStress [511] j IStepped j J-End: |Jt: 18
[, qoo0o
[12.6400 f]
— Strezs Diagram - 1
[511 Max =l
1294 47 Kipdft2
at 00000 i
— Strezs Diagram - 2
511 Min |
-1265.77 Kip/h2
at 00000 f
— Strezs Diagram - 3
511 Point 0 =]
14.35 Kip/ft2
at 12 6400
— Strezs Diagram - 4
511 Pairt 1 |
-1265.77 Kip/fit2
at 00000 i
Rreset ta lnitial Units | Dane | Units  [Kip, t.F 7]

Figure 3.11: Stress at base of column, mode 2
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Diagrams for Frame Object 11 (COLUMN3)

—End Length Offzet [Location]q — Dizplay O ptions
Case IMudaI j I-End |J: 17 " Seroll for Yalues
Mode |3 E Display | [Dtlnﬂnﬂnﬂnﬂuf{; f* Show Max
[tems IStress [511] j IStepped j J-End: |Jt: 18
[0.00000 f
[12.6400 ft]
— Strezs Diagram - 1
[511 Max =l
5542 .31 KipAft2
&t 0.0000 fr
— Strezs Diagram - 2
511 Min |
-BR5Z2 59 Kip/ft2
&t 0.0000 f
— Strezs Diagram - 3
511 Point 0 =]
-5.14 Kip/ft2
&t 12,6400 ft
—Strezz Diagram - 4
511 Paint 1 |
3426.32 KipAft2
&t 0.0000 fr
Rreset ta lnitial Units | Dane | Units  [Kip, t.F 7]

Figure 3.12: Stress at base of column, mode 3
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Diagrams for Frame Object 11 (COLUMN3)

—End Length Offzet [Location]q — Dizplay O ptions
Case IMudaI j I-End |J: 17 " Seroll for Yalues
Mode |4 E Display | [Dtlnﬂnﬂnﬂnﬂuf{; f* Show Max
[tems IStress [511] j IStepped j J-End: |Jt: 18
[, qoo0o
[12.6400 f]
— Strezs Diagram - 1
[511 Max =l
2563.01 Kipdft2
at 00000 i
— Strezs Diagram - 2
511 Min |
-2571.24 Kip/h2
at 00000 f
— Strezs Diagram - 3
511 Point 0 =]
-9.12 KipAft2
at 12 6400
— Strezs Diagram - 4
511 Pairt 1 |
-1124.90 Kip/ft2
at 12 6400
Rreset ta lnitial Units | Dane | Units  [Kip, t.F 7]

Figure 3.13: Stress at base of column, mode 4
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Diagrams for Frame Object 11 (COLUMN3)

—End Length Offzet [Location]q — Dizplay O ptions
Case IMudaI j I-End |J: 17 " Seroll for Yalues
Mode |5. E Display | [Dtlnﬂnﬂnﬂnﬂuf{; f* Show Max
[tems IStress [511] j IStepped j J-End: |Jt: 18
[0.00000 f
[12.6400 ft]
— Strezs Diagram - 1
[511 Max =l
2091.03 KipAft2
&t 0.0000 fr
— Strezs Diagram - 2
511 Min |
-20836.32 Kip/ft2
&t 0.0000 f
— Strezs Diagram - 3
511 Point 0 =]
2.36 Kip/it2
&t 12,6400 ft
—Strezz Diagram - 4
511 Paint 1 |
-1621.95 Kip/ft2
&t 0.0000 fr
Rreset ta lnitial Units | Dane | Units  [Kip, t.F 7]

Figure 3.14: Stress at base of column, mode 5
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Diagrams for Frame Object 11 (COLUMN3)

—End Length Offzet [Location]q — Dizplay O ptions
Case IMudaI j I-End |J: 17 " Seroll for Yalues
Mode |6 E Display | [Dtlnﬂnﬂnﬂnﬂuf{; f* Show Max
[tems IStress [511] j IStepped j J-End: |Jt: 18
[, qoo0o
[12.6400 f]
— Strezs Diagram - 1
[511 Max |
47743 Kipdft2
at 12 6400
— Strezs Diagram - 2
511 Min |
-471.36 Kip/it2
at 12 5400 fr
— Strezs Diagram - 3
511 Point 0 =]
3.04 Kip/ft2
at 12 6400
— Strezs Diagram - 4
511 Pairt 1 |
47743 Kipdft2
at 12 6400

Rreset ta lnitial Units | Dane | Units  [Kip, t.F 7]

Figure 3.15: Stress at base of column, mode 6
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Diagrams for Frame Object 11 (COLUMN3)

—End Length Offzet [Location]q — Dizplay O ptions
Case IMudaI j I-End |J: 17 " Seroll for Yalues
Mode |7. E Display | [Dtlnﬂnﬂnﬂnﬂuf{; f* Show Max
[tems IStress [511] j IStepped j J-End: |Jt: 18
[, qoo0o
[12.6400 f]
— Strezs Diagram - 1
[511 Max =l
1043.51 Kipdft2
at 12 6400
— Strezs Diagram - 2
511 Min |
-90E.78 Kip/it2
at 12 5400 fr
— Strezs Diagram - 3
511 Point 0 =]
B3, 37 Kip/ft2
at 12 6400
— Strezs Diagram - 4
511 Pairt 1 |
-90E6.78 Kip/it2
at 12 6400
Rreset ta lnitial Units | Dane | Units  [Kip, t.F 7]

Figure 3.16: Stress at base of column, mode 7
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Diagrams for Frame Object 11 (COLUMN3)

—End Length Offzet [Location]q — Dizplay O ptions
Case IMudaI j I-End |J: 17 " Seroll for Yalues
Mode |5 E Display | [Dtlnﬂnﬂnﬂnﬂuf{; f* Show Max
[tems IStress [511] j IStepped j J-End: |Jt: 18
[, qoo0o
[12.6400 f]
— Strezs Diagram - 1
[511 Max =l
20210 Kip/ft2
at 00000 i
— Strezs Diagram - 2
511 Min |
-907 92 Kip/it2
at 00000 f
— Strezs Diagram - 3
511 Point 0 =]
5291 KipAft2
at 12 6400
— Strezs Diagram - 4
511 Pairt 1 |
303,33 Kipdft2
at 00000 i
Rreset ta lnitial Units | Dane | Units  [Kip, t.F 7]

Figure 3.17: Stress at base of column, mode 8

3.1.5 Step four. Solving for response under simulated marching
band

3.1.5.1 Results

The nodes to find the displacements for are marked and given in figure ?7?.
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End joint of first
cantilever beam

End joint 6fthird
cantilever bearfi~._

End joint of second
cantilever beam

Figure 3.18: node locations for cantilever beams

The result is shown below. The labels for local axes for joints are shown below, and are the
same as the global axes. This is from SAP2000 help section

By default, the joint local 1-2-3 coordinate system is identical to

the global X-Y-Z coordinate system

Therefore, Ul is in the X direction, and U2 in the Y direction, and U3 is the vertical

displacement.
SAP2000 v15.0.1 5/4/13 1:02:04
Table: Joint Displacements

Joint OutputCase StepType U1

ft
20 COMO Max 0.146711
20 COMO Min -0.141382
21 COMO Max 0.144476

U2 U3 R1 R2

ft ft Radians Radians
0.019285 -0.000479 0.001667 0.015544
-0.017992 -0.000676 -0.001788 -0.013209
0.034315 0.262294 0.002986 0.022603
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CHAPTER 3. FINAL PROJECT....

21

22
22

23
23

coMo

COMO
COMO

COMO
COMO

Min

Max
Min

Max
Min

-0.139764

0.082805
-0.083333

0.123308
-0.123593

-0.037636

0.009682
-0.005028

0.015499
-0.014890

-0.375865

0.236030
-0.305074

0.013802
-0.049072

0.000383

0.003108
-0.000501

0.001111
-0.002825

-0.015478

0.014103
-0.018799

0.015690
-0.014603

Figure [3.19) shows screen shot of the deformed part of the ramp with the above joints
marked on the diagram showing the relative displacement for better illustration.

The following text file contains the result for all nodes. [step 4 beam result.txt|

“x

17 (on ground)

Figure 3.19: relative displacements of joints on ramp

In addition, below are plots of nodal displacements of node 20, on top of column labeled
11 on the ramp (this is the column being analyzed for stress). This plot shows that it took
about 20 seconds for dynamic loading to settle down.

This means after 20 second of the marching band moving into the ramp, the ramp vibration
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HWs/HW4/step_4_beam_result.txt

3.1. Solution CHAPTER 3. FINAL PROJECT....

reached steady state, therefore, the ramp is now vibrating at the same forcing frequency
and transient response of the ramp has completed.

« 10 U3 vs. time, colurn 3 (label 11], joint 20
1 ) ) ! ' ! )
05
- B
> _ s ,
y a i i i i a i
1] 2 4 ] g 10 12 14
time (sec)
w10 L2 vs. time, column 3 (label 11), joint 20
2 T T T T T T T T
1F -
o U )
=
s .
2 i | i | i i 1 i
0 2 4 B g 10 12 14 16 18
tirme (sec)
I3 vs. time, column 3 (label 11), joint 20
0.02 ! ! ! ! ! ! ! !
n 0 )
] : : .
0.0 i i i i ; i i i
0 2 4 ] g 10 12 14 16 18
time (sec)

Figure 3.20: Displacement of node 20 on ramp column 3 during dynamic response

This is a plot the total axial load P on the column for the first 20 seconds.
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3.1. Solution

P ws. time, column 3, station 0

a] T T T T T T T
A _
w
=
) .
o

b ht ..... 4

- T N B .

0 2 4 B 8 1 12 14 16 18
time [sec)

Figure 3.21: Axial load P variation in column during during dynamic excitation

This is movie of the first 20 seconds of the bridge vibration during marching band motion.

Figure 3.22: movie of first 20 seconds during marching band motion
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3.1. Solution

CHAPTER 3. FINAL PROJECT....

Node displacement for joint 20 under marching band (time history) is given below. The
output is in this file pode 20 final displacement.txt|

This is partial listing of the table from SAP2000.

SAP2000 v15.0.1

5/3/13 5:24:47

Table: Joint Displacements

Joint OutputCase

20 MarchingBand
20 MarchingBand
20 MarchingBand
20 MarchingBand
20 MarchingBand

3.1.5.2 Method

CaseType

LinModHist
LinModHist
LinModHist
LinModHist
LinModHist

StepType

Time
Time
Time
Time
Time

StepNum

0.000000
0.021400
0.042800
0.064200
0.085600

U1
ft

0.000000
-3.745E-07
-2.849E-06
-8.717E-06

-0.000018

Description of the problem is given below

wWr oo o

U2
ft

000000

625E-08
016E-07
522E-06
074E-06
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u3
ft

000000

T12E-10
063E-09
310E-09
289E-08

R1
Radians

0.000000
-7.568E-09
-5.715E-08
-1.726E-07
-3.463E-07

R2
Radians

0.000000
-3.795E-08
-2.887E-07
-8.828E-07
-1.804E-06

R3
Radians

0.000000

2.215E-09
1.677E-08
5.090E-08
1.028E-07


HWs/HW4/node_20_final_displacement.txt

3.1. Solution CHAPTER 3. FINAL PROJECT....

4. Solve for the displacement response of the structure
under the simulated marching band load shown
below. Determine the peak displacements at the
ends of the cantilever beams extending from the far north column and the peak displacements
at the column top.

This step in the analysis is to estimate the possible response of the bridge to a marching band
crossing and marching in step. This will invelve placing a dynamic vertical loading on the
bridge floor and solving for the elastic response of the structure.

The bridge will be considered to be under full dead load, with a reduced uniform live load of
40 psf (160 Ib. person over 4 3q. ft_ of floor), and a superimposed 30 psf varying live load.

The 30 psf multiplies the followmg vanation. The assumed vanation (but not amplitude) in the
live load is shown below and is intended to represent the effect of stepping down and then
removing weight from the floor. So, when the load vanation is -1 and multiphies the varying
live load of 30psf, combined with the static live load of 40 psf, the resulting live load decreases
to 10psf.

dynamic load variation

| ek period = 542 seconds
lesd |

The vertical live load (dynamic) will only be
applied to half the ramp: from the arch to the
tum-around. The dynamic load will be
applied where you see green shading (see the
1} 0 04 s DB 1 12 Figlli!}'l- Static vertical live load will be
el applied over the entire bridge floor. A file

that provides the time vanation of dynamic

load, as shown above, will be on the web site
— titled “load dat”. This tme vanation will have to be multiphied by the 30 psf amphtude in the SAP
program. The “time hustory™ load function option is used in SAP to define this load.

:Inll]

|\ laoeseanal |

Vi

—_
"
Figure 3.23: Description of step 4, solving for response under dynamic marching band

The following are the steps performed

1. Load patterns are first defined. In SAP2000, a load case uses a load pattern. Hence
a load pattern must first be be defined. Load pattern tells SAP where the loads are
while a load cases tells SAP how to apply a specific load pattern, for example, either
statically or dynamically and also tells SAP how to perform the analysis, for example,
either using modal or direct integration.

Figure [3.24] shows the relation between load patterns and load cases as used in
SAP2000.
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Use DEFINE->LOAD PATTERN to define a load pattern name

Load Pattems + IClick: Tox
Sell wight s Lt | .|
Lioa Pty Noarne Mutpber Ld-qu -"'
MWLMW
denLude
Showr Load Patien Noles.
K
Load
Load Load pattern
pattern pattern C
A B
- modal analysis - i
Y Static ~ Loadcased
- Modal analysis - Static Load case 1
- Modal analysis - modal anlysis
- time history analysis
Livgad st == 303
Ak Copy ol Load Caen Load case 2
j Ll - Static
Dot Load Cane .
o | = - Modal analysis
St Load Cooe Tree
ok | o |
e
[Losd Case Data tmearstatc
Load Cate Hame Koy Lead Caze Tipe
Fosser  seDehess| | _wedwshow | || [Bwe =] Desen| Load case 3
Salteagy o Llpe Andyrn Tige =
5 Ty esial Coseabionss - Urabisisod Shskis & Linsar - Static
" i . T - direct integration
Loads gl
Load Tyem Load Mame Scale Factar
Load Patsen =[50 =
A |
Lo |
==
_Cance |

Use DEFINE->LOAD CASE->ADD NEW LOAD CASE in order to
associate a load case with a load pattern

Figure 3.24: Relation between load pattern and load case

The first load pattern is live load. This is the load of people on the bridge and is
present all the time. The bridge is 10 ft wide, and the problem says to use 40 Ib per
square feet, or 400 1b per linear feet.
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Selected DEFINE->LOAD PATTERNS and wrote LL in the Load Pattern Name window.
selected LIVE as type, and set self weight multiplier to 0 then clicked Add New Load Pattern.
Figure [3.25| shows this step.

Define Load Patterns

r— Load Pattern r Click Ta:

Self Wwieight At Lateral
Load Psttern Name Type Multiplier Load Pattern sgdew Load Pattem

LIVE

L =llo I |
DL DEAD L ﬂ ffadify Lateral Load | Patterm. . |
Delete Load Pattern |
Bl
Show Load Pattern Motes... |
Ok, |

Cancel |

fodify Load Pattern

Figure 3.25: Defining live load pattern LL

2. Defined a new load pattern similar to the above called DYNALOAD of type LIVE and
also a self weight of zero.

3. Selected the floor of the bridge using SELECT->PROPERTIES->AREA SECTIONS->FLOOR.
Added load LL using ASSIGN->AREA LOADS->UNIFORM(SHELL) and selected LL for load
pattern. Used 0.04 for the load amount. This is 40 psf. (or 400 lb per linear ft, since
the bridge is 10 ft wide). Figure shows this step.

Area Uniform Loads

— Load Pattern Mame LIriks
k[ -] [ [Kip.0F ]
— Uniform Load — Ophions
Load 0.04 & | Add to Existing Loads
Coord Systern |GLOBAL ¥ i Replace Existing Loads
Diraction Gravity d " Delete Existing Loads

k. I Cancel |

Figure 3.26: Adding live load to bridge floors
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4. added 400 Ib per linear ft also to on the ramp. SELECT->PROPERTIES->FRAME SECTIONS->RBEAM
and as the ramp is selected clicked ASSIGN->FRAME LOAD->DISTRIBUTED LOAD and
entered 400 (Ib per linear ft). Load pattern LL was used. Figure shows this step.

Frame Distributed Loads

— Load Pattern N arne Urits
A | ] [ [kKip.tF =]
— Load Tppe and Direction—————— — Options
@ Forces (" Moments | Add to Existing Loads
Coord Sys |GLOBAL | " Replace Existing Loads
Direction | Gravity | = Delete Exizting Loads
— Trapezoidal Loads
1. 2. 3. 4.
Distance |0, |0.25 [0.75 [1.
Load  |0. |0 [ |0
* Relative Distance from End-| " Abzolute Distance from End-|

— Unifarm Load

Load ID.4 Qk. Canicel

Figure 3.27: Adding LL load to ramp RBEAMs

5. Added 10 kips per linear ft as distributed load on the first 4 RBEAMS on the right
side of the ramp. Selected DYNALOAD as the load definition. Figure [3.28] shows this
step.
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Object Model - Line Information

Location | Assignments L8385 Design |
— ldentification
Label IE Design Procedurs INDne j
Load Pattern LL Azzign Load... I
Diztributed Force
Coordinate System GLOBAL
Load Direction Gravity -
Start Force/Length 0.4at0. Kip. ft. F J
End Force/Length 0.4 at 437102
Load Pattern DYMNALOAD Feszet Al I
Diztributed Force
Coordinate System GLOBAL
Load Direction Gravity
Start ForceLendgth 10. at 0.
End Force/Length 10, &k 43102
Ilpdate Dizplay I
Madity Display |
Double click white background cell to edit item.

Figure 3.28: Adding 10 kips load on right side of RAMP

6. Using the menu, selected DEFINE->FUNCTIONS->TIME HISTORY then selected From file
and clicked on Add New Function... and gave it name and used the browser to lo-
cate the text file that contains the time history. The time history file was downloaded
from the class web site.

Set VALUES AT EQUAL INTERVALS to 0.0214. Figure [3.29 shows this step.
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Time History Function Definition

Function Name |FL|NI:'|
— Function File —Walues are;
File Marne Browse... | £ Time and Function Walues
g \nabbazitdatahnabbazi web pagehmy courzeshy &+ “alues at Equal Intervals of ID-D21 4
— Format Type

Header Lines ta Skip IU & Free Format
Frefis Characters per Line o Skip IU " Fired Format

Characters per [tem I
Murmber of Pointz per Line |1

Corvert o Ulzer Defined I Wiew File |

— Function Graph

Uisplay raph i | (32,9073 , 0.0771)

(] | Cancel |

Figure 3.29: Adding time history function

7. Defined MODAL load case. Selected EIGN VECTOR and not RITZ Figure [3.30| shows this
step.

8. Defined load case MarchingBand to use for time history loading to simulate the
marching band on the ramp. Selected DYNALOAD as load pattern. Made sure to change
the scale to 0.03. Figure [3.31] shows this step.
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Load Case Data - Modal

1.000E-03

Figure 3.30: Adding MODAL load case
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Load Case Data - Linear Modal History

— Load Caze Mame Matez——— [ Load Caze Tupe
|MarchingBand Set Def Mame | ’7 Madify/Shaw... | ITime Histary j Dezign... |
r Iniial Conditions —Analyzis Tope Timne History Type
% Zemn Initial Conditions - Start from Unstressed State % Linear * Modal
" Continue from State at End of Modal Histary | :l" " Monlinear " Direct Integration
Important Mote:  Loads from this previous case are included in the e . .
cument case Time Histary Motioh Type
f* Transiert
—Modal Load Case o
" Periodic

|Jze Modes from Case IMndaI "l

— Loads Applied
Load Type Load Mame Function Scale Factor

Load Pattemn > || DYNALOAD ¥ |[ band N |CXE

Fmrmrm sed |
odify I
ll Delete I

[T Show ddvanced Load Parameters

— Time Step Data

Mumber of Dutput Time Steps |4DD‘I
Output Time Step Size ID.DE‘I 4

— Other Parameters

Modal D amping Carstant at 0.07 M odifyShow, .. |

Cancel |

Figure 3.31: defining marching band dynamic load case

9. Defined a COMBINATION load case called COMO as shown in Figure [3.32
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Load Combination Name [User-Generated) |CoMo
Motes bodify/Show Maotes. I
Load Combination Type Limear &dd j
— Optiong
Eonwvert to Hzen Load Combe Create Monlinear Load Caze from Load Combo |

— Define Cambination of Load Case Besultz

Load Caze Mame Load Caze Tupe Scale Factor
|DEAD | [Linear Static 1
Linear Static .
LIVE Linear Static 1. Add
k archingB and Linear kaodal Histary 1.

kd odify

Delete

i

Cancel |

Figure 3.32: defining combination load case

10. Modified mass and weight property of RBEAM by changing property modifier mass to

2.1762 and property modifier weight to 2.1748 as shown in Figure [3.33]
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Object Model - Line Information
 Location Azsignments | Loads I Design I
— |dentification
Label |'| Design Procedures INDne j
Section Property REEAM -
Property Modifiers
kazs 21762
Wwieight 21748 -
M atenal O verwrite Mone Kip. #. F J
Releaszes MHone
Partial Fixity 5prings Mone
Local Axes Crefault
Inzertion Point Crefault
End Length Offsets Mone
Min. Humber Stationz 3
Station at Elm Intersect ez
Station at Conc Loads T'es
P-Delta Force Mone .
T/C Limits Nane Update Display |
Monlinear Hinges Maone Madify Display |
Hinge Overmwrites Mone
Line Springs Mone
Line Mass Mone
Automatic Mesh ;I

Figure 3.33: modified section property RBEAM

11. PEAK DISPLACEMENT at end of cantilever beams extending from far north column are
found. These are the sections called CANT3. The first beam is from node 20 to 21, the
second beam from node 23 to 19, and the third beam from node 22 to 18.

Clicked on run and selected all cases to run. When run was completed, clicked on
Display->Tables and clicked on Select load cases... and selected COMO. Then
selected ANALYSIS RESULTS followed by Joint Output->Displacements->Table.

Searched the table of joint Displacements for the 3 beams given above.

12. Wrote a Matlab script to plot the time history displacement for node 20 under
marching band motion is in this file [sap_post processes.m
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3.1. Solution
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3.1.6 Step five. Stress results

3.1.6.1 Results

In this step, peak stress calculations at the bottom of came column under the peak marching
band are made. A Matlab script was written to do the computation based on result obtained

from SAP tables.

Maximum tensile and compressive stress due to marching band load only was first found.
Then the stress due to dead and live load was added as a separate step. The final result is

show on table 3.3

load case max compressive stress (kip/sq inch) | max tensile stress (kip/sq inch)
marching band (4001 steps) | -44.125 45.24

dead load -1.3812

live load -0.519

combined -46.02 45.24

Table 3.3: Stress calculation result for step 5

Figure shows variation of stress during the 85 seconds of the time history of the

marching band.

82




3.1. Solution CHAPTER 3. FINAL PROJECT....

stress vs. time, column 3, station 0.

Maximum tensile stress 43.336 kipsfinz, maximum compressive stress -46.021 kipsfin2
8000 T T T T T T T T

01 1] TR : : 5
aooo ke i

2000----

stress slugs/ff

2000 | - ‘
Apoo k! ‘ ‘

Eooak : ‘ i s

a0m0 i i i i i i i i
a 10 20 3o 40 a0 B0 70 an a0
time (sec)

Figure 3.34: Plot of stress vs. time during dynamic loading

3.1.6.2 additional results

Additional analysis was done using SAP2000 V15.1 which allows one to visually examine
stress diagrams. By selecting this Show stress and selecting this column and point 17
(which is station 0) which is the base of the column, the following diagrams are obtained
for different measures at this location. However, these results are obtained before changing
the section module of the column to the one we are asked to used in this project. Hence the
results shown are not the same found above due to this. These are left here for reference
and illustration of this SAP2000 feature.
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Diagrams for Frame Object 11 {COLUMN3)

— End Length Offzet [Location) — Digplay Options
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— Stregz Diagram - 2

511 Min |
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— Strezs Diagram - 3
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— Strezs Diagram - 4
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at 0.0000 f
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at 0.0000 f

Rreset ta Initial Linits | | Dane | Urits |Kip, F

Figure 3.35: max/min of S11 stress at base of column, Marching band case
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Diagrams for Frame Object 11 (COLUMN3)
—End Length Offzet [Location]q — Dizplay O ptions
Case IMarchingE and j I-E ruk |Jt: 17 " Scrall for Yalues
b 2/ Min Ervee j [DGDDDDDDDDDFIE (+ Show Max
J-End: |Jt: 18
(0 00000 £
[12.6400 f]
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Axial
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at 12 6400 ft
-5 1E9 Kip
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Rezet to |ritial Units I Dane I Uitz IKip_, ft,F "I

Figure 3.36: Max/min of axial load at base of column, Marching band case

Diagrams for Frame Object 11 (COLUMN3)
—End Length Offset [Location] — Display Options
Casze IMarchingE and j |-End: |Jt: 17 = Scroll for Yalues
b &/ tin Eree j [DGDDDDDDDDDFI; (+ Show Max
J-End: |Jt: 18
(0 00000 £
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Figure 3.37: Max/min My, at base of column, Marching band case
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Diagrams for Frame Object 11 (COLUMN3)

—End Length Offzet [Location]q — Dizplay O ptions
Case IMarchingE and j I-E ruk |Jt: 17 " Scrall for Yalues
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Reset ta [nitial Lnits I Done I U nitz IKip, fi, F ""I

Figure 3.38: Max/min M3z at base of column, Marching band case
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Diagrams for Frame Object 11 (COLUMN3)

—End Length Offzet [Location]q — Dizplay O ptions

Case IEEIMEI j I-End: |J: 17 " Seroll for Yalues
0. 00000 fr = Show Max
(0.0000 f]
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— Strezs Diagram - 1
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— Strezs Diagram - 3
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Figure 3.39: Stress S11 at base of column, Combination test case
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Diagrams for Frame Object 11 (COLUMN3)

—End Length Offzet [Location]q — Dizplay O ptions
Case IEEIMEI j I-E |Jt: 17 " Seroll for Yalues

j [.00000 f t*  Show Max

[0.0000 fr)

J-End:lJt: 18
[.00000 f
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— Resultant Axial Force

Axial
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at 00000 f

— Resultant Torzsion

Torzion
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Reset ta [nitial Lnits I Done I U nitz IKip, fi, F ""I

Figure 3.40: Axial load at base of column, Combination test case

Diagrams for Frame Object 11 (COLUMN3)

—End Length Offset [Location] — Display Options

Case IEEIMEI j I-End: |J¢ 17 = Scroll for Yalues
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Shear ¥3
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Figure 3.41: Max/min Ms, at base of column, Combination test case
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Diagrams for Frame Object 11 (COLUMN3)

—End Length Offzet [Location]q — Dizplay O ptions
Case IEEIMEI j I-E |Jt: 17 " Seroll for Yalues
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Moment M3
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-3.300. 2309 Kip-ft
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Figure 3.42: Max/min M3z at base of column, Combination test case

3.1.6.3 Method

. Selected run with all load cases.

. Selected Display-Show Tables-Analysis Results-Element Output-Frame Output-

Element Forces Modify/Show Options.. was used to make sure the envelope option

is not selected and that the step-by-step option is selected under the Modal History Results.

Also made sure that the load case MarchingBand and COMO are the only ones selected.

. Waited for table to build. This took about 30 minutes. Then used the table filter to
select column 11 and station 0 (this is the bottom of the column).

. Saved the table to a text file to process using Matlab. Here is the text file that contains
the results. [final station zero forces.txt|

. Now obtained the stress due to dead load and dynamic load. This was done by
running the analysis again and now selecting LIVE and DEAD load cases and using
the envelope. The result is in this file [final load result DEAD and LIVE.txt|

SAP2000 v15.0.1 5/8/13 2:08:08
Table: Element Forces - Frames

Frame Station OutputCase CaseType P \] v3 T M2 M3 S1iMax PtS11Max
ft Kip Kip Kip Kip-ft Kip-ft Kip-ft Kip/ft2
11 0.0000 DEAD LinStatic -101.634 0.257 -3.227 -6.3522 -19.2532 26.2485 -81.17 2
0.50000 0.50000 -155.36 3 0.50000 -0.50000 11-1 0.0000
11 0.0000 LIVE LinStatic -40.210 0.082 -0.040 -1.4303 2.1635 14.0489 -34.51 1
0.50000 -0.50000 -59.07 4 0.50000 0.50000 11-1 0.0000

. Ran the Matlab script and obtained the maximum stress. The area for the column
cross section is 0.8594 square ft. The matlab script is in this file [stress calc.m
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HWs/HW4/final_station_zero_forces.txt
HWs/HW4/final_load_result_DEAD_and_LIVE.txt
HWs/HW4/stress_calc.m
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7. Calculation used for stress is based on the following formula ¢ = % + %%26 + &g?é%
Where A is the section area of the beam and My, and M33 are the internal bending
moments at the base of the column obtained from SAP2000 finite elements results.

Final stress was converted from kip per sq ft to kip per sq inch by dividing by 144.

3.1.7 Appendix

3.1.7.1 SAP2000 definitions used in this report
These below are obtained from SAP2000 help sections.

Sign Convention

Normal Axis 3

Local axis 3 is always normal to the plane of the shell element. This axis is directed towards you when the path
j1-2-j3 appears counter-clockwise. For quadrilateral elements, the element plane is defined by the vectors that
connect the mid-points of the two pairs of opposite sides.

Default Orientation
The default orientation of the lecal 1 and 2 axes is determined by the relationship between the local 3 axis and
the global Z axis:
m The local 3-2 plane is taken to be vertical, i.e., parallel to the Z axis

» The local 2 axis is taken to have an upward (+Z) sense unless the element is horizontal, in which case the
local 2 axis is taken along the global + direction

m The local 1 axis is horizontal, i.e., it lies in the X-Y plane

The element is considered to be horizontal if the sine of the angle between the local 3 axis and the 7 axis is less
-3
than 10,

The local 2 axis makes the same angle with the vertical axis as the local 3 axis makes with the horizontal plane.
This means that the local 2 axis points vertically upward for vertical elements.

Figure 3.43: SAP2000 local axis signs

3.1.7.1.1 Local axis signs
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Frame Element Internal Forces Output Conventions

The frame interal forces are:

= P, the axial force

V2, the shear force in the 1-2 plane

V3, the shear force in the 1-3 plane

T, the axial torque (about the 1-axis)

M2, the bending moment in the 1-3 plane (about the 2-axis)

M3, the bending moment in the 1-2 plane (about the 3-axis)

These intemal forces and mements are present at every cross-section aleng the length of the frame.
For each load pattern and lead combination the frame internal forces and moments are computed and reported at each frame output station.

For frame output displayed in a tabular form on the computer screen, printed to a printer or printed to a file, the locations of the output stations are identified by the absolute distance to the station measured
from the i-end of the frame.

The sign convention for frame intemal forces is illustrated in the figure below. This sign convention can be described by defining the concept of positive and negative faces of an object. Consider a section cut
through the object in the 2-3 plane. At this section the positive 1 face is the face whose outward normal (arrow that is perpendicular to the section and peinting away from the section) is in the positive local 1
direction. At this same section the negative 1 face is one whose outward normal is in the negative local 1 direction. The positive 2 and 3 faces are those faces with outward normals in the positive local 2 and 3
directions, respectively, from the neutral axis. Mote the following about the frame internal forces:

L Auis 1
- P
~ Aais
2 ~ Axis 1
—
M3 Axis 3
—— > —Compression face
“hxis 3
vz = Tension face
b. Positive Moment and Shear in the 1-2 Plane ¢. Posilive Moment and Shear in the 1-3 Plane

Positive intemal forces (P, V2 and V3) and positive axial torque (T) acting on a positive 1 face are criented in the positive direction of the corresponding object local coordinate axis. For example, when v2
acting on a positive 1 face is positive, it is oriented in the direction of the positive local 2-axis.

Positive internal forces (P, V2 and V3) and pesitive axial torque (T) acting on a negative 1 face are oriented in the negative direction of the corresponding object local coordinate axis, For example, when
V2 acting on a negative 1 face is positive, it is oriented in the direction of the negative local 2-axis.

Positive M2 bending moments cause compression on the positive 3 face and tension on the negative 3 face.

Positive M3 bending moments cause compression on the positive 2 face and tension on the negative 2 face.

When end offsets along the length of the frame are present, the internal forces and moments are output at the faces of the supports rather than the ends of the object. No output is produced within the
end offset length.

Figure 3.44: SAP2000 Frame element internal forces output convention

3.1.7.1.2 Frame element internal forces output convention
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Frame Axial Stress S11 for Display

Frame axial stresses can be displayed using the SAP2000 > Display > Show Forces/Stresses > Frames/Cables/Tendons command. Additional detail can be

obtained by right-clicking on a frame, cable, or tendon object while displaying frame, cable, or tendon forces or stresses.

The axial stress 511 is the tension or compression stress that exists at every material point in the cross-section due to the combined effects of axial force P and the

bending moments M2 and M3. The stress is reported and can be displayed at selected stress points that depend on the shape of the cross-section:

= |sections, T-sections, Rectangles, Tubes, Channels, and Angles - at all comers where the maximum stresses could occur.

Circles and Pipes - at eight points on the circumference.

= Section Designer, General Sections, and all other shapes - at the four comers of the rectangular bounding box for the section.

Nenprismatic sections - computed as above from the interpolated shape, if the shape type is the same at both ends of the frame segment; if the shape type is

not the same at both ends, then zero stress is reported.

For all shapes except the Tube and Pipe, stresses are also computed at the centroid of the section.

= For cables and tenden, the stress is computad only at the centroid.

Tensile stress is reported as positive, and compressive stress is negative, regardless of the type of material. Stresses are computed from P, M2, and M3 for the base
material of the section, with no account for modular ratio or nonlinear behavior in frame hinges. The displayed stresses are computed as analysis results and are

independent of the stresses used for design, which may depend on the type of material and the design code.

For plotting the axial stress 511, any of the following options can be chasen:

Stress 511 At Point plots the axial stress at the chosen stress point in the cross section for all frame, cables, and tendons. Point 0 is the centroid of the section,
and exists for all section types except the Tube and Pipe. Cables and tendons report only stress at Point 0. For all frame sections, the number of stress points in

addition to the centroid may vary from 2 to 8, depending on the shape type. Zero stress will be plotted for frame, cable, or tendon objects that do not report at
the selected stress point.

$11 Max plots the maximum stress taken over all stress points at each station. When an enveleping load case or combination is displayed, 511 Max plots the

maximurm stress for the envelope maximum and the maximum stress for the envelope minimum.

$11 min plots the minimurm stress taken over all stress points at each station. When an enveloping load case or combination is displayed, 11 Min plots the

minimurm stress for the envelope maximum and the minimum stress for the envelope minimum.

$11 Max/Min plots both the maximum and minimum stress taken over all stress points at each station. When a single-valued load case or combination result is

displayed, 511 Max/Min displays either the maximum stress or the minimum stress, whichever has the larger absolute value, When an enveloping load case or

Figure 3.45: SAP2000 S11 description

3.1.7.1.3 SAP2000 S11 description (stress calculations)
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Shell Element Internal Forces/Stresses Output Convention

The six faces of a shell element are defined as the positive 1 face, negative 1 face, positive 2 face, negative 2 face,
positive 3 face and negative 3 face as shown in the figure below. In this definition the numbers 1, 2 and 3 correspond to
the local axes of the shell element. The positive 1 face of the element is the face that is perpendicular to the 1-axis of
the element whose outward normal (pointing away from the element) is in the positive 1-axis direction. The negative 1
face of the element is a face that is perpendicular to the 1-axis of the element whose outward normal (pointing away
from the element] is in the negative 1-axis direction. The other faces have similar definitions.

. Positive 2 Face

e " Negative 3 Faceis |
i onback of elemen
| Posiive3Facels
~ on frontof element

SRS ot 1

Negative 1 Face”

Mote that the positive 3 face is sometimes called the top of the shell elerment in SAP2000, particularly in the output, and
the negative 3 face is called the bottom of the shell element.

shell Element Internal Forces

The shell element internal forces, like stresses, act throughout the element. They are present at every peint on the
midsurface of the shell element. SAP reports values for the shell internal forces at the element nodes. It is important to
note that the internal forces are reported as forces and moments per unit of in-plane length.

The basic shell element forces and moments are identified as F11, F22, F12, M11, M22, M12, V13 and V23. You might

Figure 3.46: SAP2000 shell element internal forces/stresses output convention

3.1.7.1.4 SAP2000 shell element internal forces/stresses output convention
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3.1.7.2 references

1. Lecture notes given by professor Michael G. Oliva, college of engineering, dept. of
civil engineering. CEE 744 structural dynamics, spring 2013.

2. [SAP2000 The modeling and analysis of human-induced vibrations due to foottalls or|
[another type of impact. |

3. [Structural vibrations which result from human footfalls may be modeled in ETABY]
[using modal time-history analysis|

4. Description of joints in SAP2000 https://wiki.csiberkeley.com/display/kb/Joint

These below are documents that describe the project itself and SAP 2000 guide and the
original SAP model we obtained to start from.

1. Problem statment for Elizabeth Ashman Bridge [CEE744Ashman2013. pdf]
2. Original SAP 2000 data file [ashdynstat original.sdb]
3. SAP 2000 GUIDE [SAPGuide . pdf]

3.2 animations

The following are the first few vibration modes of the Elizabeth Ashman Bridge, generated
using SAP 2000 software.

Figure 3.47: Picture of Elizabeth Ashman Bridge, located near UW Madison.

Figure [3.48| shows the axis orientation used by SAP2000.
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Figure 3.48: 3D axis orientation used

The following table is description of each mode. Clicking on the image plays an animated
gif file of that mode.
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mode 1 | Bridge main body vibrates sinusoidally in the YZ plan with almost a full sin wave
being described along the full length of the bridge. Ramp shows little vibration. Little
motion in X direction.
HTML version contains the animation.

mode 2 | Similar to mode 1 but with larger amplitudes. Bridge vibration remained in the YZ
plan. Ramp remains with little motion
HTML version contains the animation.

mode 3 | This is the ramp torsion mode. Ramp shows large twisting motion around the Y axis.
Main bridge body now vibrates sideways moving in the X axes direction. The top of
the bridge is tilting sidways more than the floor.
HTML version contains the animation.

mode 4 | Larger twists on the main bridge. Twist is around the Z axis where one half of the
bridge swings to one side and the other half to the opposite side. Ramp has less torsion
compared to mode 3.
HTML version contains the animation.

mode 5 | Both ramp and bridge now show large vibration. On the bridge, more twisting vi-
bration are seen around the Z axis going through the middle of the bridge. Little
vibration in the XY plan (up and down). Most of vibration is sideways. The half of
the bridge connected to the ramp is vibrating in opposite direction to the ramp (out
of phase with ramp).
HTML version contains the animation.

mode 6 | On the bridge, larger torsion vibration around the Z axis in the middle of the bridge.
Ramp appears to vibrate less than in mode 5.
HTML version contains the animation.

mode 7 | Bridge floor vibration now in the YZ plane (vertically up and down) with larger
vertical amplitude in the middle of the bridge. Almost two full sin wave can be seen
across the full span of the bridge. Ramp appears to vibrate much less than it did in
mode 7.
HTML version contains the animation.

mode 8 | Bridge has large torsional motion around the Y axis (Axis along its length). Bridge

almost closes on itself near the top. The part of the Ramp attached to the bridge
moves in phase with the bridge motion.
HTML version contains the animation.

Table 3.4: Description of each mode
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4.1. Lecture Thursday April 4, 2013 CHAPTER 4. NOTES

4.1 Lecture Thursday April 4, 2013

Multidegree freedom system, free vibration, no damping

[m]{o (8)} + [k] {v ()} = {0} (4.1)

Assume

{v(t)} = {0} sin (wt + )

where {0} is an amplitude vector of constants. Acts like shape function. Hence {9 (t)} =
—w? {9} sin (wt + 6). Substituting into Eq

[m] (—w? {8} sin (wt + 0)) + [k] {0} sin (wt + §) = {0}
(= [m]w® + [k]) {0} = {0}

This is an eigenvalue problem. Hence

det ([k] — [m]w?) =0

We obtain n unique eigenvalues w; and corresponding n independent mode shapes {0},

(= [m]w? + [K]) {8}, = {0}

1 ¥1
2 2

Where {0}, =¢ ¢ or {0}, =< 5 . Hence for each w; we get different shape function
Un) . Pn

4 %

vector {0},. Let the mode shape matrix [®] be

[®] = {0}y, {0}, -+, {0},

Y11 P12 P1n
Y21 P22 Pon
Onl Pn2 *°° Pnn
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4.2 Lecture Tuesday April 9, 2013

Modal decoupling

Instructions on using my dynamic response analysis program

Accessing dynamic response modeling app

Nasser Abbasi

- First you need to have the CDF Player installed, This can be obtained from the Wolfram-Mathematica
site at: http://www.wolfram.com/cdf-player/

- Then go to Nasser’s web site and launch the app:
http://www.12000.0rg/my notes/mma_demos/single degree of freedom responses/index.htm

Move down past the introduction — to the rectangular processing area.
e input values are set in the upper left hand side box and include:
o dampingc
o stiffness K
o initial displacement u(0)
o initial velocity v(0)
O massm
o amplitude of a loading function F (set to O for free vibration case)
e additional input in the second box from top:
o beta ratio for a harmonic loading function
o check bullet if you want a step load function
e attop of plot on right hand side you can select the kind of plot you wish to see,
“excitation with response” might be a good choice
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