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Chapter 1

Introduction

I took this course in Fall 2017 to learn more about Vibration since it was a while since I
studied this.

The instructor was very good and solved many problems in class which was very useful.
All class notes were online. Exams were a little hard and time was short. There is closed
notes portion and open notes portion in the exam. The grading was fair.

Links

1. class canvas site https://canvas.wisc.edu/courses/57245| requires login.



https://canvas.wisc.edu/courses/57245
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1.1 syllabus

ME 440 — Intermediate Vibrations
Fall 2017

Time: 11 am —12:15 pm (Tu, Th)
Location: ME 2108

Instructor:  Andrew Mikkelson

Office: ME 1250

E-Mail: andrew.mikkelson@wisc.edu

Course Page: learnuw.wisc.edu

Office Hours:
Monday: 2 - 3 pm
Tuesday: 12:30 - 1:30 pm
Wednesday: 10:30 - 11:30 am
Thursday: 12:30 - 1pm
Other times by appointment (please email to arrange)

Text: S. S. Rao, Mechanical Vibrations, 2004 (4th edition). Text is optional.
Prerequisites: ME340

Catalog Description: Analytical methods for solution of typical vibratory and balancing
problems encountered in engines and other mechanical systems. Special emphasis on dampers
and absorbers.

Course Objectives:

The purpose of the course is to develop the skills needed to design and analyze mechanical
systems in which vibration problems are typically encountered. These skills include analytical
and numerical techniques (e.g., finite element methods) that allow the student to model the
system, analyze the system performance and employ the necessary design changes. Emphasis is
placed on developing a thorough understanding of how the changes in system parameters affect
the system response.

Course Outcomes: Students must have the ability to:

1. Derive the equations of motion of single and multi-degree of freedom systems, using Newton's
Laws and energy methods.

2. Determine the natural frequencies and mode shapes of single and multi-degree of freedom
systems.

3. Evaluate the dynamic response of single and multi-degree of freedom systems under impulse
loadings, harmonic loadings, and general periodic excitation.

4. Apply modal analysis and orthogonality conditions to establish the dynamic characteristics of
multi-degree of freedom systems.

5. Generate finite element models of discrete systems to simulate the dynamic response to initial
conditions and external excitations. (time permitting)

1
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ME 440 — Intermediate Vibrations
Fall 2017

Grades will be based on your performance on written homework and examinations. All
homework and exam scores will be maintained on the Learn@UW course website. This will
allow you to monitor your performance and see aggregate scores for the rest of the class, which
can give you a continuous idea of your performance in relation to the rest of the class. Should
you have questions about your score, please contact me. Policies regarding grading and turning
in your homework:

1. Score-related questions about homeworks and exams must be raised prior to the next

class period after receiving the score.

2. If homework that you turned in appears not to be graded (missing) on the Learn@UW
course website please point that out to me within one week after the return of the
corresponding set of graded homeworks. It is a good practice to save your homeworks so
that | will be able to update the grade to give you full credit for your work.

Please do not drop homework in my department mail box

Homework is due at the beginning of each lecture

One homework with the lowest score will be dropped when computing the final
homework average

o s~ w

Percentage participation to the final grade shall be distributed in the following manner:

Homework = 40%
Examl = 20%
Exam Il = 20%
Exam Il = 20%

TOTAL 100%

Textbook reading assignments will be assigned prior to each class. You are asked to read the
material, take notes and be prepared to participate in classroom activities. The Microsoft
PowerPoint notes used in class will be posted online.

Homework: Problems will be assigned weekly during the semester and posted to LearnUW. All
assigned homework will be collected at the beginning of class on the due date. No late
homework will be accepted. Homework solutions should be neat and well organized. All
necessary diagrams and calculations must be clearly shown.

Exams: The best way to prepare for exams is to participate in class, learn the fundamental
concepts, and practice homework and example problems from lecture and the text.

Disability requests: | must hear from anyone who has a disability that may require some
modification of seating, testing or other class requirements so that appropriate arrangements may
be made. Please see me after class or during my office hours.
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Complaints: If you have a complaint regarding the course and if you are unsatisfied with the
response of the instructor, then you should contact the Chair of the Department of Mechanical
Engineering. The Chair's office is in ME 3650, and an appointment to see the Chair can be made
by contacting the Department Office at 608 263-5372.

Campus Environment: Diversity is a source of strength, creativity, and innovation. All students
in this course are expected to value the contributions of each person and respect the ways in
which their identity, culture, background, experience, status, abilities, and opinion enrich our
learning experience and university community. Disrespectful behavior or comments directed
toward any group or individual will be addressed by the instructor.

Academic integrity: The Department of Mechanical Engineering takes Academic Integrity very
seriously. According to state law, any instances of academic misconduct are reported to the UW
Dean of Students. Once reported, the incident is retained in a permanent disciplinary file. This
file may never see the light of day, or it may be released if you apply to graduate school, to
medical school, to law school, for government clearance, for a visa, etc. As a result, even a minor
infraction, such as plagiarism, copying a problem solution, or aid from an exam neighbor could
have serious and permanent consequences.

Letter Grades: The grading scale listed below is a worst case scenario. At the end of semester

letter grades may be curved up but they will not be curved down (i.e., A grade of 91% will

guarantee you at least an AB, and might be an A). Final letter grades will be based on the total

score accumulated on homework and exams throughout the semester using the following scale:
Score Grade

292 A
88-92 AB
83-88 B
78-83 BC
70-78 C
60-70 D
<60 F




1.1. syllabus CHAPTER 1. INTRODUCTION

Tentative Schedule for ME 440

Intermediate Vibrations

Fall Semester 2017

TEXTBOOK: Mechanical Vibrations, 4th ed. by S. S. Rao (Optional)
COURSE INSTRUCTOR:  Andrew Mikkelson, Rm. 1250 ME Bldg., andrew.mikkelson@wisc.edu

Date Study Assignment Topics Covered
Sept. 5 - -
7 1.1-16 Basic Concepts, Classifications, Procedures
Sept. 12 1.7-19 Spring, Mass, and Damping Elements
14 1.10 Harmonic Motion, Complex Algebra, Fourier Series
Sept. 19 1.11 Fourier Series, Complex Representation
21 21-22 Review of Single DOF Systems: Deriving EOMs
Sept. 26 2.2,2.6 1VPs, Transient Response
28 2.6 Coulomb Friction, Logarithmic decrement; Applications
Oct. 3 2.3 Pendulum Systems; Torsional Vibration; Energy Methods
5 2.5 Energy Methods; Rayleigh’s Method and Applications
Oct. 10 Exam 1
12 31-35 Review of Single DOF Systems: Harmonic Excitation
Oct. 17 36-37 Harr_nonic Excitation: Rotating Unbalance, Design Problem
Engine Mounts
19 3.8-3.11 Harmonic Excitation: Base Excitation, Beating Phenomena
Oct. 24 41-43 Nonharmonic Excitation: General Periodic Excitation
2% 44 Nonharmonic Excitation: Impulsive Forces, Convolution
’ Integral
Oct. 31 45-4.6 Nonharmonic Excitation: Convolution Integral, Superposition
Nov. 2 Impulse Loading — Response Spectrum, Dynamic Load Factor
Nov. 7 51-52 Two DOF Systems: Natural Frequencies and Mode Shapes
9 53_54 Two DOF Systems: Natural Frequencies and Mode Shapes,
’ ’ MATLAB
Nov. 14 Exam 2
16 5.4 Two DOF Systems: Coupling, Matrix Notation
Nov. 21 5.5 Two DOF Systems: Decoupling of EOMs, Principal Coordinates
23 - - No class — (Thanksgiving)
Modal Analysis: Natural Frequencies and Mode Shapes,
Nov. 28 6.8-6.10,6.12 MATLAB
30 6.13 Modal Analysis: Free Response of Undamped and Underdamped
) Systems
Multi-DOF Systems: Forced Response and Lumped Mass
Dec. 5 6.14 - 6.16 Modeling
7 6.14 - 6.16, 6.7 Multi-DOF Systems: Lumped Mass Modeling, Lagrange’s egns
Dec. 12 6.7 Exam 3
14 - -
Dec. 23 Festivus!

*Note: We have 2 less class periods this semester as compared to the last time this class was offered. As a result, we
will probably not complete all of the topics listed above.

Final Exam: N/A
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21 HWI1

2.1.1 Problem1

Problem 1

The mass m is pinned to the end of a cantilevered beam that has a bending stiffness factor of £/

and a length of /. The spring constant of each of the two vertical springs is k. Determine the
equivalent spring constant k, of the system.

EI

3
From tables we find that for cantilever beam loaded at end, the vertical deflection is 6 = b

3EI’
ope m 3EI
hence by definition k;, = S =T
5, Cantilever beam loaded at end _pL? _b 3Bl
8= k -
» 3EI 8
e |
P
— <73

1= moment of inertia about
neutral bending axis

Therefore, we can model the stiffness of the system as

kbeam - keq

springs in series

Therefore

Keg =k + Kpeam + k

=2k + kbeam

Since k;, = 3L—L;I then the above becomes
3EI
keq =2k + F
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2.1.2 Problem 2

Problem 2

The pinion of the rack and pinion system shown below is free to rotate about its mass center but
it can not translate in any direction. For this 1 degree-of-freedom system, find it’s equivalent
mass a) if the generalized coordinate that captures this degree of freedom is the angle 6, b) if the
generalized coordinate that captures this degree of freedom is the horizontal displacement x of
the rack.

Pinion, mass moment of inertia J,

Rack, mass m

2.1.2.1 Part (a)

Using energy method
1 ., 1 . 1.
mez + 5]092 = E]eq(%q
But 6,, = 0 for this part. And since x = R or & = R0, then the above becomes
1 N2 1o 1
2 _ 2
Em (R@) + EIO@ = Efqu
Simplifying gives

]eq = mR? +Jo

2.1.2.2 Part (b)

Using energy method

11
me2 + 5]092 = Emeqxgq

But #,, = i for this part. And since x = R or & = R0, then 6 = % and the above becomes

1 2+1] (X)Z 1 .9
—mx*+ =Jol =] = zmex
2 2’0\R 2

Simplifying gives
Jo

meq:m+ﬁ
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2.1.3 Problem 3

Problem 3

Find the equivalent spring constant and equivalent mass of the system shown below with regards
to the @ degree of freedom shown in the figure. Assume that the bar AOB is rigid with negligible
mass.

n, l A 1 QT I ms

Assuming a small deflection as shown

21.3.1 Mass equivalent

The kinetic energy of the system is (assuming small angles)

S (126) + 5 (Lo6)” = 2102

Hence

miL3 +myl3 = I,

Where I, is the equivalent mass moment of inertia. The problem does not say where the
equivalent mass should be located relative to the pivot point (where the torsional spring is
located) so we can stop here. But assuming that distance was some ¥, then we can write

I, = M,,x*> where equivalent mass is used as a point mass, and simplify the above more

eq eq

mﬁ+%@:MWZ

M, =
eq 5{2

21.3.2 Stiffness equivalent

Using potential energy method, where energy stored by a spring due to extension or
compression is %kAz, then we see that the total energy using the above deformation is given

10
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1 _ 1( ksk . 1 1
Ski (lysin 0)* + 5 ( k33’+ ?{2) (I, sin 6)% + Ektez - Ekm,egq

Where kljf]fz is the equivalent stiffness of the springs k;, k3 since they are in series. The
above assumes small angle 0, therefore we can simplify the above using sin6 =~ 0, and
obtain

kska

ks + ky

1 , 1 , 1 1
10 + 3 (222 ) 00+ 200 = L

But here 6 = 6,,, therefore solving for k; ., gives

eq»

ksk
Kieg = kil + (k33+§<2)15 +k;

11
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22 HW2

2.2.1 Problem 1

Problem 1

The impact force created by a forging hammer can be modeled as shown in the figure below.
Determine the Fourier series expansion of the impact force.

v(r)

JAWAWA

Period is 7. This is not even and not odd. The first step is to determine the function x (t).
This is truncated sin. Therefore we see that, over first period

oo { Asin(zTnt)

IA

t<

q NIA

0 t

A

NI O
IA

This repeated over each period by shifting it. Now that we know x (t) we can find ay, a,, b,
and plot the approximation for larger n

= ——[cos () —1]
Hence
2A
ag = —
Tt
Finding a,
1 (2 2
a, ==+ fz x () cos (—nnt) dt
-J_z T
2 2

T

2 (2 2
== fz x(t) cos(—nnt) dt
TJyo T
= 2 fz Asin (z—nt) cos (Z—Hnt) dt
TJy T T
But sin (1) cos (v) = % (sin (u + v) + sin (u — v)), therefore the above integral becomes

12
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24(1 2z . (2n. 2m 13 . (21 2¢;
a, = — —f sin | —t + —nt dt+—f sin|—t — —nt|dt
T \2Jg T T 2Jy T T
Az . (2 7. (2
:—(j”sm(lfa+nn%ﬁ+j”sm(ifa—nn)m) 1)
T 0 T 0 T

The first integral above is

2n %
z ) Cos(—(l +n) t)
j“antfa+nﬂ}ﬁ:— A
0 T ?(1 +1’l)

0
:_—1[005(2—n(1+n)z)—1]
Z (1 +n) T 2

.
p v [cos (rt (1 +n)) —1]

Forn=1,3,5,-- the above becomes zero. For n =2,4,6, ---

;. (2 2
fZSin —n(1+n)t dt:—T
0 T 21t (1 +n)
T

- =2,4,6, 9
rd+n) )

The second integral in (1) is

cos (ZTH 1-n) t)

Z@-n)

NI~

J

But this is undefined for n = 1, since denominator is zero. Hence we need to handle n =1
first on its own. At n =1, since sin (0) = 0 then

sin(z—n(l—n)t)dt: -
T

0

T

2
fzsin(—n(l—n)t)dtzo (3)
0 T
Forn>1

z cos 2—n(l—n)t‘ %
j”ﬁnefa—mgw:— S; )
0 T T(l—n)

0
-1 21 T
= m [COS(T 1-mn) E) —1]

= Zn_—l[cos(n(l—n))—l]
7(1—”)

= Zn;[cos(n(n—l))—ll
7(”—1)

Forn=2,4,6,--

-2 T
27”(,1_1) Cn(n-1)

NIa

I}

sm@;a—mgm: (4)

13
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For n =3,5,7,--- the integral is zero. Using result in (2,3,4) in (1) gives final result

A T -7
a, = { T (n(1+n) + n(n—l)) n=246--

0 otherwise
Or
(n=1)-(1+n) 3 B
a, = A(m) n=246,
0 otherwise
Or
n-1-1-n
a, = A(m) n=2,46,---
0 otherwise
Or
A (_—2) n=246,-
a, = n(1+n)(n-1) =4£,4,0, (5)
0 otherwise
Finding b,
1 3 5
bn =T fZT X(t) sin (_Tint) dr
2V 73 T

2 2
= - fz x (t) sin (—nnt) dt
TJg T

2 (2 2 2
= - fz Asin (—nt) sin (—nnt) dt
T Jy T T
But sin (1) sin (v) = % (cos (u —v) — cos (u + v)), therefore the above integral becomes

24(1 2 (2m 2¢ 1 2 (2n 2¢
a, = — —f cos|—t—- —nt dt——f cos|—t+ —nt|dt
T \2Jg T T 2Jy T T

:é(j:COS(ZTT((l—n)t)dt—j:COS(Z?H(1+1’I)t)dt) (6)

For the first integral

: n 21—t
fz cos(z—n(l—n)t)dt:[smz;#]
0 T T(l—n) 0

But this is undefined for n =1, since denominator is zero. Hence we need to handle n =1
first on its own. At n =1, since cos(0) =1 then

j:cos(zTn(l—n)t)dt:fo dtz% 7)

NI~

Now forn >1

14
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sin(zTn(l —n)t) :

T -n)

NI~

J

2

cos (_71(1 —n)t)dt =
T

0

T (21 %
=5— 0 T (sm (? 1-n) t))

0

:m(sin(%ﬂa—n)%)—o)

T )
= T (sin(m (1 —n))-0)

Which is zero for all n. For the second integral in (6)

sin 2—n(l+n)t‘
(Fa+n]

2n
T (1 +1’l)

NIlA

J;

cos (2—7T 1+ n) t) =
T
0

T . (2n %
= T ) (sm (T 1 +n) t))

0

T . (27 T
ZM(SID(T(l—l_n)E)_O)

T .
= AT (sin( (1 +n))-0)

Which is zero for all n. Hence for b,, we have one term only

b{

Therefore the Fourier series approximation is

S N>

n=2,3,

0 a,

2

A A 21 & ) 27
— 4+ —sin )+ A cos| —mnt
L e R Cr e R
A A

n 2

A & 1 271
) a+mm—n“*?mg

246,

+

=
Il

Therefore

A A [2n 2A & 1 27
i ) R VN cwn Ty Rl e
n=2,4,6,-

7

To verify this result, the following is a plot of increasing n, using A = 2 and 7 =1 with

the approximation superimposed on top of x (f). We notice that small number of terms is
needed in this case to obtain a good approximation.

15
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Approximation using n=2
2.0} ]
1.5 ]
£ 10 — Exact
— Approximation
0.5 ]
0.0
0 1 2 3 4
t
Approximation using n=4
200 |
1.5-
< 10" — Exact
> L
i —— Approximation
0.5 ]
0.0¢
0 1 2 3 4
t
Approximation using n=6
2.0 -
15"
£ 10 — Exact
I —— Approximation
0.5 E
0.0}
0 1 2 3 4

16
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Approximation using n=8

T T T T T T T T T T T T T T T T T T T T T

2.0 ]
1.5} :
:>-.<L 1_05 1 — Exact
I — Approximation
05} |
00" :
0 1 2 3 4

xApprox[t_, max_, AO_, period_] := AO/Pi + (A0/2)*Sin[2*(Pi/period)*t] -
2% (AO/Pi)*
Sum[(1/((1 + n)*(n - 1)))*Cos[2*(Pi/period)*n*t], {n, 2, max, 2}];

myperiodic[func_, {val_Symbol, (min_)?NumericQ, (max_)?NumericQ}] :=
func /. val :> Mod[val - min, max - min] + min

f[t_] := Piecewise[{{A0*Sin[2*(Pi/period)*t], O < t < period/2}, {0,Truel}}]

maxTerms=2;

A0=2;

period=1/2 Pi;

p=Plot [{Evaluate [myperiodic[f[t],{t,0,period}]],
xApprox [t,maxTerms,A0,period]},{t,0,3 period},
PlotLegends->{"Exact","Approximation"},
PlotStyle->{Red,Blue},
Frame->True,
FrameLabel->{{"x(t)",Nonel},{"t","Approximation using n="<>ToString[

maxTerms] }},

BaseStyle->14,ImageSize->400]

2.2.2 Problem 2

Problem 2

Determine the Complex Fourier series expansion for the periodic function y(t):

The function to approximate is defined as
17
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0 = A 0<t<m
Y= -A n<t<2m

With period t = 2n. This function is odd.

1 (3 2 17
T _% TJyp

1 T —'z—nnt 27 —‘Z—Hnt
= - Ae 77" dr - Ae 7" dt
T 0 T
.21 i ' 2n
Alle?=" R
| G _2n
J T " 0 J T " ud
s 27
Al -1 [ 2 1 [ 2y
= — e T + e T
T 21 2Tt
J—n 0 ]Tn T

But 7 = 27t and the above simplifies to

A . T . 12T
Cp = o (— [e‘]’”]o + [e‘J”t]n )

_4 ([ - ] + [ = 7))

j2nn
But
e "™ = cosnm — jsinnmn
= COSNT
And
e 12 = cos 2nm — jsin 2nm
=1
Hence (1) becomes
¢, = — ([1 = cosnm] + [1 — cosnm)
j2mn
A
= — (1 - cosnmn)
jmn

For n odd cosnnt = -1 and the above becomes

24

Cp = =
" jmn

1)

For n even cosnmt =1 and ¢, = 0 in this case. Therefore the approximation is

[o¢]
yO= Y ™
n=-=3,-1,13,

— % \- 1 ejZnt

J7t n=---3,-1,1,3, n

We can now obtain the standard form of the series if needed. c_, = ¢,

18

(2)

24
= — and hence
—jmn
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a, =c, +c_,
=0
All a, = 0, as expected, since this is an odd function.

bn :j(cn - C—n)

_.[2A  2A
I\ jmn

—jmn

Hence

y(t‘)zg i lsin(m‘)

n=1,35,- 1t

(3)
Both (2) and (3) are the same. (2) is complex form of (3). To see the approximation, here
are some plots with increasing number of terms for A =1

Approximation using n = 1

0.5}
§ 0.0 — Exact
—— Approximation
-0.5
BV \V
0 T 27T 3T 47T 55 6 1t
t
Approximation using n = 3
ol AN AN
of! Y \V
0.5
T 0.0; — Exact
[ —— Approximation
-0.5¢
10/ A A
[ vV V vV \V
0 T 277 37T 47T 57T 67
t

19
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Approximation usingn =5
Lol Al A A
r , V'V \ ( VvV V \
0.5¢
§ 0.0} — Exact
[ — Approximation
-0.5
10k \ AN J AN J
e A VA
0 7T 277 37T 477 57T 67
t

20
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Approximation usingn =7
1 Oi anll Nan ANan
MLV VY \VALCAY vV VYV
0.5+
g 0.0 — Exact
[ — Approximation
-0.5}
10l AAA A AN AAA
Ur \"AY, A/ LAY
0 7T 277 37T 47T 57T 67
t
Approximation using n = 11
1 0 - vl\vl\v:\vl\v vl\vl\vl\vl\v vl\vAvAvI\V
0.5"
g 0.0 — Exact
[ — Approximation
-0.5)
-1.0 7 AVAVAVAVA l\vnvnvl\vl\ l\vl\vnvl\vl\
0 7T 277 37T 477 57T 61
t
Approximation using n = 21
1.0- &MHWMN* PMNWMN*
0.5¢
g 0.0 — Exact
— Approximation
-0.5¢
-1.0t %HM*NHN+ #MﬂvaW*
0 T 27T 37T 47T 55 6 1t
t

xApprox[t_, max_, AO_, period_] := 4 AO/Pi * Sum[(1/n)*Sin[n*t], {n, 1, max,

2}1;

myperiodic[func_, {val_Symbol, (min_)?NumericQ, (max_)?NumericQ}] :=
func /. val :> Mod[val - min, max - min] + min

21
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flt_] := Piecewise[{{AO, 0 < t < period/2}, {-AO0, Truel}}];

maxTerms=11;

AO=1;

period=2 Pi;

p=Plot [{Evaluate [myperiodic[f[t],{t,0,period}]1],
xApprox[t,maxTerms,AO,period] },{t,0,3 period},
PlotLegends->{"Exact","Approximation"},
PlotStyle->{Red,Blue},
Frame->True,
FrameLabel->{{"x(t)",Nonel},{"t","Approximation using n = "<>ToString[
maxTerms] }},
BaseStyle->14,ImageSize->400,
Exclusions—->None,
FrameTicks->{{Automatic,None},{Range[0,6 Pi,Pi],Automatic}}]

22
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23 HW33

2.3.1 Problem 1

Problem 1

A flywheel is mounted on a vertical shaft, as shown below. The shaft has a diameter d and
length / and is fixed at both ends. The flywheel has a weight of # and a radius of gyration of r.
Find the natural frequency of the longitudinal, the transverse, and the torsional vibration of the
system.

//4/}/;4/4

Flywheel

Shaft —

We need to find the natural frequency of vibration for the following cases

- » transverse vibration

longitudinal vibration 4 .

( J torsional vibration

longitudinal In this mode the system can be modeled as the following

the two springs are in ks This spring will stretch

parallel since they deform

the same amount y static equilibrium position

w Extension y
g

ks This spring will be compressed

Since both springs are in parallel, then the equivalent spring stiffness is
keq = kl + k2

The equivalent mass is just the mass of the flywheel Z—V. Hence the overall system can now

be modeled as follows

23
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Which has the equation of motion

Therefore

meq

We now just need to determine k,; = k; + k3. But from mechanics of materials we know that

ki = % and k, = %. Therefore the above becomes

AE  AE

a b
w

N g

_ JSAE(L T
B W(a+b

Transverse In this mode the system can be modeled as beam with fixed ends with load W
at distance a from one end and distance b from the other end. From tables, the stiffness
coefficient in this case is given by
3
L
keg = 3EI(—)

Wy, =

ab

The equivalent mass remains as before which is just the mass of the flywheel g . Therefore,

as above we find the natural frequency as

_ [agEr (L )?
Wn = W \ab

Torsional In this mode, the flywheel is twisted by some degree 0, and therefore the top
part of the beam and the bottom part of the beam will resist this twist by applying moment
against the twist as shown in this diagram
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reaction moment M,

twist by angle 60

=
ANEANNAN

reaction moment Mo

From mechanics of materials, there is relation between the twisting angle and resisting
torque by beam which is given by

GJ
M= —6
L
Where here 0 is the twist angle (radians) and M is the torque (Nm) and L is length of beam
and G is modulus of rigidity (N per m?) and ] is the second moment of area of the cross

section (m*) about its center. Therefore total moments is

M1+M2:%]6+%]6

_G91 1
= ] (54‘5)

Comparing the above to definition of stiffness which is F = KA but in this problem A = 0
and F = (M; + M), then we see that the equivalent stiffness is

1 1
keq :G](E'i'g)

We now need the equivalent mass. In this case it is the mass moment of inertia of flywheel.
We are given that radius of gyration is r, hence

4%
Moy = —1

8

We now have all the pieces needed to find w,

2

Summary of results

case Wy,

longitudinal \/ g%E (i + %)

g L
Transverse \/V_\/ (BEI) (_b

a
i gGmdt (1,1
Torsional \/Wr2 T PR
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2.3.2 Problem 2

Problem 2

The uniform rigid bar OA4 of length L and mass m is pinned about point O. Using Newton’s
Second Law, find the equation of motion for the system using the generalized coordinate & and
also find the system’s natural frequency.

Torsional ~»  Linear
spring spring
pring v, pring
k —/ 1
7\0@_ N7 .
T~_y#b | |C.G.
= \
-
-~
‘ % Linear
- spring

The first step is to draw the free body diagram and the kinematic diagram

F.B.D. kinematics

M; = ko k1 (asin(6))

ko (Isin(0))

Taking moments about the joint O, noting that positive is anti-clockwise gives

ki@ + ky(asinB)a+ky, (LsinO)L = -1,0 (1)

Using parallel axis theorem,

2
1, 12

= —mL* + m—
Ty
1

= ]2
3 m

Hence (1) becomes

1 ..
ngmQ + kO +ky(asin0)a+k,(Lsin@)L =0

For small angle approximation the above becomes (we have to apply small angle approxi-

mation in order to obtain the form that allows us to determine w2, since this only works

for linear equations of motion).

1 ..
§L2m6 + k0 + kya%0 + k, 120 = 0
1 ..
ELZWZQ +6 (kt + klﬂz + ksz) =0

3(k; + kya® + k,L2
6+6(t 1 2 ):O
ml2
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Comparing the above to standard form of linearized 6 + w20 = 0 we see that the natural

frequency (radians per second) is

3(ky+kya2+kyL2)
On=NTT
2.3.3 key solution version 1
ME 440

Intermediate Vibrations

Homework #3
due Thursday, October 5, 2017

Problem 1

A flywheel is mounted on a vertical shaft, as shown below. The shaft has a diameter 4 and
length / and is fixed at both ends. The flywheel has a weight of W and a radius of gyration of r.
Find the natural frequency of the longitudinal, the transverse, and the torsional vibration of the
system,

E'”l}'\x-hucin 2 a

Shalt v

Problem 2

The uniform rigid bar 04 of length L and mass m is pinned about point . Using Newton’s
Second Law, find the equation of motion for the system using the generalized coordinate & and
also find the system’s natural frequency.

Torsional ey Linear
spring _spring
I3 y ky -
7 A
ol e r— - B
g7 Ty 8 P GG
o ks
\, a . -
i ! S -
; 5 meadr./‘ s
- spring i

T
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2.3.4 key solution version 2

G AT
G SR LY o N

ME 440
Intermediate Vibrations

Homework #3
due Thursday, October 5, 2017

Problem 1

A flywheel is mounted on a vertical shaft, as shown below. The shaft has a diameter 4 and
length I and is fixed at both ends. The fiywheel has a weight of W and a radius of gyration of ».
Find the natural frequency of the longitudinal, the transverse, and the torsional vibration of the

system,
W f,r/g S
¢ s I
Flywhee! #
‘& & |
i
CHEHESE S !
! heig
s e : |
' YT
& ,"‘{y//f/
Problem 2

The uniform rigid bar 04 of length L and mass m is pinned about point 0. Using Newton’s
Second Law, find the equation of motion for the system using the generalized coordinate & and
also find the system’s natural frequency.

Torsional ~  Linear
SOTING 110
,x;/,rmc i spring
k < 1
4
P~ 4
Bl ———— s
P TeG
; T k%
a z
i ! o A
| =1 Linear . "dee
- ; spring
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24 HWH4

241 Problem1

Problem 1

The pulley is in fixed axis rotation about Point O. Using energy concepts and & as the
generalized coordinate, determine

a) the natural frequency of the system shown below, and

b) the equation of motion for the system, in terms of the parameters provided.

Pulley, mass
moment of
inertia J,

2411 Parta

Using Rayleigh method, we need to find T,,,, and U,,,, where T is the kinetic energy of
the system and U is the potential energy and then solve for w, by setting Ty,.x = Upax-

Kinetic energy is

1.1,
T = mez + 51092

But x = 10, therefore x = 7,0 and the above becomes
1
T_Emﬁl)+ hw 1)

And potential energy only comes from the spring, since we assume x is measured from
static equilibrium. Hence

1
U= —kx?
2

= 2K (20) @)

To get w, into (1) and (2), we now assume that motion is harmonic, hence 6 = 0, sin (w,t),
Therefore 0 = 0,,,,w,, cos (w,t) and rewriting (1,2) using these expressions results in

1 1
T= Em (7’1 Qmaan CO8S (wnt))z + E]o (Gmaxa)n COS (C‘)nt))z

U= %k (> (B SID1 (@11)))?

Hence, maximum is when 6 = 6, and 6 = 6,,,,@,, and the above becomes

1 1
Thax = 2m7’19%naan + ]oegnax 1%

Umax = Ekrgerznax
Now
Thax = umax
SRR + 2o} = k120

2
mrl a)n + ]0 kr2
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Hence
, ki
Wy = —5=
mri +J,
k 2
wyy —21’2
mry + J,
2412 Partb
The equation of motion is given by
d
—((T+U)=0

We found T, U in part (a), therefore the above becomes

d (1 N2 11
E (Em (1’19) + EIDQZ + Ek (1’29)2) =0
mri00 + J,00 + kr300 = 0
For non trivial motion 6 # 0 for all time, hence we can divide throughout by 6 and obtain

mr20 +,0 + kr30 =0

) (mr% +]0) +kr30 =0

The above is the equation of motion.

2.4.2 Problem 2

Problem 2

An underdamped shock absorber is to be designed for motorcycle of mass 200 kg. When the
shock absorber is subjected to an initial vertical velocity due to a road bump, the resulting
displacement-time curve is to be as illustrated below. Determine the necessary stiffness and
damping constants of the shock absorber if the damped period of vibration is to be 2 seconds and
the amplitude x; is to be reduced to % in one half cycle (i.e., x; 5= x,/4). Also find the minimum
initial velocity that leads to a maximum displacement of 250 mm.

x(r)

o\ e

First part

The first step is to determine damping ratio C. This is done using logarithmic decrement.
Since X1'5 = EX:[ and X2 = 2X1.5 then

X—1 1X
2= 3l

=X
Using
Xq e~Cwnt1

X_Z - e‘Cwn(tl +tp)

37



2.4. HW4 CHAPTER 2. HWS

Where t, = t; + 7; and 7, is damped period. Therefore the above becomes

Xl e‘cwntl e‘cwntl A
1 = Cw,(t1+74) = Cawyt p—Cwyty = etnd
A () —LWy —LWy
= X, ¢ e e
In (16) = Cw,, 74
Taking log of both sides gives
In (16) = Cw, 74 1)
But
27
Tg = —
Wy
B 27
w, V1 — (2
And (1) simplifies to
27
In (16) = (w,,———
"o N1-C
2mC
2.7726 =
1-C2
Squaring both sides and solving for C gives
(2.7726)* (1 - ) = 4n2C?
C? (472 +7.6873) = 7.6873
, 7.6873
412 +7.6873
Taking the positive root results in
‘= 7.6873
~ NV 4r2 +7.6873

= 0.40371

Now that C is know, w,, can be found, since we are told that 7; = 2 seconds. Using
21

- w, V1 — (2

Then solving for w, from the above gives

Td

5= 27
w, V1 — 0.403712
e
W, =

V1 - 0.403712

= 3.4339 rad/sec

Now we are ready to find the stiffness coefficient k and damping coefficient c. Using
c

¢= 2w,,m
Then
¢ =2Cw,m
= 2(0.40371) (3.4339) (200)
= 554.52 N-s/m
But since
k
W=
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Then k is now found
k = w?m
= (3.4339)% (200)
= 2358.3 N/m

Second part

Maximum displacement occurs at time t; as given by (from textbook)

sinwgt; = V1 - (2

Hence
wyt; = arcsin (\/1 - Cz)
1
t; = ———arcsin (\/1 - CZ)
! w, V1 - Z
s aresin ¥
= arcsin [ V1 — 0.403712)
3.4339V1 - 0.403712
= 0.36772 sec
Since

x (t) = Xe %nt sin (w,t)

Then at maximum displacement, where x = 0.25 m, the above becomes
Xmax (1) = Xe ™ ¥nf1 sin (wytq)
xmaxecwntl B
sin (wytq)
Plug-in numerical values to solve for maximum displacement X gives
_ 0.25exp (0.40371 x 3.4339 X 0.36772)

~ sin ((3.4339V1 - 0.403712) (0.36772))

= 0.45495 m

From (2), the velocity is found
¥ (t) = —Cw, Xe @nt sin (wyt) + Xe “ntw, cos (w,t)
= Xe~“@nt (w, cos (wyt) — Cw, sin (wyt))
At t = 0 the above gives
x(0) = Xwy
= X(w,V1-22)
Plug-in in numerical values

i (0) = 0.45495 (3.4339\/1 - 0.403712)

=1.4293 m/s

39
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2.4.3 key solution

ME 440
Intermediate Vibrations

Homework #4 (2 problems)
due Friday, October 13, 2017

Problem 1

The pulley is in fixed axis rotation about Point (). Using energy concepts and & as the
generalized coordinate, determine
a) the natural frequency of the system shown below, and
b) the equation of motion for the system, in terms of the parameters provided.
[

Puliey, mass
moment of
inertia J,

Problem 2

An underdamped shock absorber is to be designed for motorcycle of mass 200 kg. When the
shock absorber is subjected to an initial vertical velocity due to a road bump, the resulting
displacement-time curve is to be as illustrated below. Determine the necessary stiffness and
damping constants of the shock absorber if the damped period of vibration is to be 2 seconds and
the amplitude x; is to be reduced to ' in one half cycle (i.e., x; 5= x;/4). Also find the minimum
initial velocity that leads to a maximum displacement of 250 mm.

X
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Problem 1

The stepped cylinder is connected to a spring of stiffness k> and an inextensible cable. The other end of the
inextensible cable is attached to mass m;. The stepped cylinder rolls without slip on the fixed surface. The
mass m; rolls on 2 massless cylinders. Assume the system will be limited to small displacements. The total

mass of the stepped cylinder is m; and it’s mass moment of inertia about point O is .

@] (0]

a) In preparation for using Newton’s Second Law, sketch the free-body diagram(s) and inertial diagram for this

system.

b) Using Newton’s Laws exclusively, determine the differential equation of motion for small angular

oscillations of the mass m; (in terms of the generalized coordinate Xx).

Problem 2

Repeat Problem 1 but use 7},,c = U, to find the natural frequency of the system.

2.5.1 Problem 1
2511 Part (A)

We start by assuming motion to the right, such that the small disk m, rotates clockwise as
shown below. So the k, spring is stretched by amount 26 which come due to pure rotation,
and it also stretch by 0 due to disk translation to the right at same time, therefore the
spring k; will stretch by amount (a + r) 6 and the k; spring will be compressed by amount

X.

Therefore total extension of
spring kg is the sum of these

/

this part of spring extension
comes from disk pure

rotation
a

two extensions, which is
(a+1)6

this part of spring extension

stretched spring

to the right

H

TV comes from disk translation

compresse
spring

k1
—VW\—

Q)

Q

Based on the above, the following is the free body diagram for m, and m; and the cor-
responding kinematic diagrams. This assumes small angle 0 and that springs remain

straight.
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ka(a+1)0 %

T kiz
FBD R m1 < - FBD
( )/T/i Q)
Ny ma1g

ma

Inertia
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"

|
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|
|
|
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2512 Part (B)

Since cable is inextensible, then the constraint is that x = r0. Starting from the FBD for m,

2 F, =mX
=T - kix = myX
mx +kix=-T (1)
We do not need to resolve forces in vertical direction, since no motion is in that direction.
To find T, which is the tension in cable, we go back to m, and find T.

We can do this part in two ways, either by taking moments around the instantaneous center
of zero velocity which is point D at bottom of the small cylinder shown in the diagram, or
we can take moments around the C.M. of the disk and then use another equation to solve
for the friction F. We will show both methods, and that they give the same result.

Method one, using instantaneous center of zero velocity

Take moments around point D as shown in figure in order to not have to account for the
friction force F and the N, force on m, and using positive as anti-clockwise gives

E MD = —IDé
parallel axes
—

kz(a+r)9(u+r)—Tr:—(Io+m2r2)6

~ ky (a +r)26 + (Io +m2r2)6

r

But due to constraint, then 6 = ;, 0= J—; Hence the above can be written as

k23—: (a+7r)+ (Io + mzrz)

%
r

,
2 .
xky (a + 1) (Io +myr )x
- 2 + 2
r r

(2)
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Substituting (2) into (1) gives

xky (a + r)2 N (Io + mzrz) X

mljé—l—k]x: —(

r2 r2

I, + myr?) ¥ ko (a + 7)°
m1x+—(o rzz ) +k1x+—x2(f2 N =0

I+ m,r? ko (2 + 1)?
5&(m1+—(0 22 )]+x(k1+—2(a2 r)):o

r r

B m1r2+(10+m2r2) kir? + ko (a + 1)

X > +x > =0
r %

Hence
X (m1r2 + (IO + mer)) +x (klr2 +ky(a+ r)z) =0
In standard form
ki + ko (a + 1) B
r2 (mq + my) + 1,

(3)

¥+ w2x=0
Where
Pk tk @)
2 (my +my) + 1,

2
n

Method two, moments around center of mass

Using this method. We start by taking moments around the center of mass of the disk m,
and using positive as anti-clockwise gives

MM, =-1,0
(kp(a+r)0)a—-Fr=-1,0
F= } (1,0 + (ky (a + 1) 0) ) (4)
Now resolving forces in the x direction for m,, gives (with positive to the right)
D Fy =myrb
T—-ky(a+1r)0—F =myr0 (5)

Plugging (4) into (5) gives T

T—kz(a+r)9—}(Ioé+(k2(u+r)9)a) = m,rf
Solving for T gives

T:m2r9+}(Ioé+(k2(a+r)9)u)+k2(a+r)9

We now use the constraint that x = r0 to write everything in x. Hence 0 = J—;, 0= ; and the
above now becomes

. 1 s
T:mzrf+—(IOE+(k2(11+r)f)a)+k2(a+r)f
r r r T r
1
:m25€+r—z(1056+(kz(a+r)x)a)+k2(a+r)§

Now that we found T, we go back to the equation of motion for m; in (1) and substitute
the above into it, the result becomes

mljt + klx =-T

:—(m25&+:—2(on+(kz(a+r)x)a)+k2(a+r)§)
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Collecting terms

I 1
X(m1+m2+r—(z’)+k1x+r—z((kz(a+r)x)a)+k2(a+r)f:

I 1 1

X(m1+m2+r0)+x(k1+—(kz(a+r)a)+k2(a+r);) 0

i} L, ka
X m1+m2+r2 + X k1+— [@+ra+r@+n]]=0

i} L, ka
xm1+m2+r2 +xk1+—[a +m+ar+r =0

. Ig kz

xm1+m2+r + x|k + —2a+2ar+r =0
(m1+m2+ ) ( +—(a+r)2):0

Or
(2 ) + 1) (s a0+ 17) =

Pk +kp(a+1)°
r2(my +my) +1,

Which is the same equation of motion found in the first method.

2.5.2 Problem 2

In Rayleigh energy method, we ignore any friction, and assume motion is simple harmonic
motion (which is valid, since there is no damping).

The Kinetic energy T of the system is (since disk rolls with no slip)

disk cart
—_—

1———192+1mv + —mqi2
2 0 7 2Ycg 2 1
But Z)Cg = 1’9, hence the above becomes

1. ., 1 N2 1
T = 51062 +5m (76) + Emlxz

But due to constraint, then 6 = ;, then 6 = ; and the above becomes
. 11 (k)2+1 (i)2+1 i
==I,|- —my [r— —myx
2° 272\y) T2
1.4 1 1,

= —I,— + =myk? + —myx
2°%2 2 2

1 I
_ 5*2(73 +m2+m1) )
The potential energy is

1 1
U= ky((a+7) 0) + Ek1x2
1 x\2 1

= 5k ((a ) ;) + S

1 2 xz 1 5

To find T,,,x and U,,,x, we now assume m; undergoes simple harmonic motion given by
x (t) = Xppax sin (w,,t). Hence x = X,,,,x@, cos w,,t. Therefore

xmax = Xmaxa)n

Ymax = Xmax
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Therefore using these into (1) and (2) gives

1 LI
Trnax = E (xmax) (T’_Z +my + ml)

1 X2 1
umax = EkZ (El + T)Z mza + Eklxmax
Or
1 I
Tmax E (Xmaan)z (7’_; +my + ml)
1 ky (a + r)2
Umax = 7 Iznax( 1’2 + kl
Hence

Tmax = umax

1 I 1 ky (a + 1)
E (Xmaxa)n)z (—; +my + ml) = _sznax (—2 > + kl
r 2 r

ko (a +1)° + 12k,
2

I
w,%(r—g+m2+m1 =

Solving for w?

k@@t + 1%k
L+ 12 (my + my)

2
n

Therefore the equation of motion for m; is
¥+wix=0
ky (a + 1) + r2ky
I, + 72 (my + my) -

Comparing this to the solution found in first problem, we see they are the same. The
Rayleigh energy method was much simpler in this case. But we have to ignore any friction,
and assume motion is harmonic, which is reasonable, since this is single degree of freedom
system.
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26 HW6

2.6.1 Problem 1

i S L B e T g

Problem 1

Download the ANSYS input file “/DOF _spring mass-problem_18pl.txt” from Canvas and step
through the ANSYS tutorial “Intro to ANSYS modal analysis” that is also posted to Canvas.
Using the parameters defined in the text file, analytically determine the natural frequency of the
1 degree of freedom system. Show your work for this calculation and then compare the
analytical and finite element results. And then answer the following questions:

a) Does ANSYS provide the frequency (f) or the circular frequency (@)?

b) Can we verify the amplitude of displacement shown on Slide 10 of the “Intro to

ANSYS modal analysis” slides? Why or why not?

The input file to ANSYS is given to us in plain text file as the following

/filnam, 1DOF_spring_mass

/title, 1 Degree of freedom spring mass example

/prep7

!element type

et,1,mass21 !element type no.l is mass21

et,2,combinl4 lelement type no.2 is combination 14 (this is a spring element)
! model parameters

mass = 10 ! mass of mass element

k=10 ! spring stiffness

initial 1 = 2 ! initial spring length (equilibrium length)

n_modes = 1 ! number of modes wanted

!real constants

r,1,mass ! real constant set 1 is for the point mass
r,2,k,,,,,initial_1 ! real constant set 2 is for the spring

!create nodes

n,1,0,0,0 ! Node 1 is at x=0, y=0, z=0

n,2,initial_1,0,0 ! Node 2 is at x=initial_1, y=0, z=0

lcreate elements

type,2 ! specify element type of subsequently defined elements
real,2 ! specify real constant set of subsequently defined elements
e,1,2 ! define element to start at node 1 and end at node 2
type,1 ! specify element type of subsequently defined elements
real,l ! specify real constant set of subsequently defined elements
e,2 ! define element to be created at node 2

!displacement boundary conditions

nsel,s,loc,x,0 !select node at x = 0

d,all,ux,0 'displacement of selected node in x-dir is O
d,all,uy,0 !displacement of selected node in y-dir is O
d,all,uz,0 'displacement of selected node in z-dir is O
nsel,s,loc,x,initial_1 !select node at x = initial_1

d,all,uy,0 'displacement of selected node in y-dir is O
d,all,uz,0 !displacement of selected node in z-dir is O

allsel

finish

/solu !select static load solution

antype,modal

modopt,lanb,n_modes

solve

finish

/post1l

2.6.1.1 Part (1)
For a mass-spring system the equation of motion is
¥+ w2x=0
Where w, = \/g = \/% = 1 rad/sec. Since w, = 2nf,, hence f, = (;—; = i = 0.1592 Hz.
Therefore the frequency given by ANSYS is in Hz and not the circular frequency rad/sec.
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2.6.1.2 Part (2)

Unable to verify this result. At first I thought ANSYS uses gravity and the spring is verti-

cally connected, therefore the static displacement would be

W
Xst = T
Where W is the weight attached to end of spring. But this gives xy = % = % = g. And

depending on units used (ANSYS do not use units and assumes that the input is using
correct units), then value shown which is 0.316228 should be numerical value of g. But this
would not be valid number using any units. Unable to find out how ANSYS came up with
this value.

2.6.2 Problem 2

Problem 2

Derive the equation of motion and find the steady-state response {&#)} of the system shown
below for rotational motion about the hinge O for the following data: k; = k, = 5000 N/m, a =
025m,5=0.5m,/=1m, M=50kg, m=10kg, F,=500 N and @= 1000 rpm. Give the steady-
state response in the simplest form possible.

I F(t) = Fysin ot
Uniform rigid bar, mass m k, l
= ¢ M
o ]
kyq
ANNNNN
SE—
b— |
[

The free body diagram and the inertial diagram are given below. It is assumed that motion
is measured from equilibrium position with the mass already in attached to springs. Hence
the weight of the beam do not show up in the FBD.

Ibeam,é = %mLZG

-~ kb

ML%

S

Inertial
Fy sin(wt)

Taking moments around hinge at point 0 and using anti-clockwise as positive gives (assum-
ing small angle 0)

1
ky (a0)a + ky (bO) b — Fysin (wt) L = — (gmL2 + MLZ) 2

1 )
(gmLz + MLZ) 0 + 0 (kya? + kyb?) = Fosin (@) L

In standard form, the above becomes
Moy + kg0 = Fy sin wt
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Where
k
w? = -9
Meg
_ k1a2 + k2b2
12 (%m + M)

This model is single degree of freedom system, undamped, with forced input. Hence we
know its solution is given by

0() =0, (t) + 6, (t)
Where 6, (t) is particular solution and 6, () is homogenous solution. We know that
0y, (t) = ¢1 cos w,t + ¢y sin w,t

And assuming 6, (t) = Xsinwt. Now we need to check if  # w, so to decide on which
solution to pick. Using the numerical values given

keq = klﬂz + kzbz

= (5000) (0.25)* + (5000) (0.5)°

=1562.5 N/m
And
_712 1
Meq =L gm +M
2 ((1
=) 3 (10) + 50
= 53.333 kg
Hence

keg 1562.5
= = = 5413 d/
“n =\ M, ~ 5333 raamee

But the forcing frequency is given as

—1000 27} (™) Z 100027 = 104.72 rad/
= reo)\ 760 ) T o) T /e radsec

. w
Hence w # w,,. We also see w > w,, which means r > 1 where r = —, 50 we also expect that

n
particular solution displacement maximum displacement to be negative. Now we use the
standard solution, which is

0, (t) = Xsinwt

Where
F
X = 0
Keg = Mg
F, 1
Meg 244 _ ()2
meq
R 1
B Mgy WG — w2
F, 1
meqa)n 1 @ 2
-(2)
F, 1

Calling wi = r, which is the standard notation and since :—0 = x4 the static deflection, then
n eq
the above becomes
— Xt
1-12

We notice again, since r > 1 in this problem, then X is negative. It is out of phase with the
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forcing function. The particular solution can now be written as
0, (t) = Xsinwt

Xst .
sin wt

T1-p2
And the total solution is

articular
homogeneous P ———
Xst
72

sin wt

O (t) = cq cosw,t + cpsinw,t + 1

Assuming initial conditions are 0 (0) = 6, 0 (0) = 0y, then (1) at ¢ = 0 becomes

0o =01
Hence solution becomes
. xst .
0 (t) = 6y cos w,t + cp sin w,t + -2 sin wt
-7
Taking derivative
. X
0’ (t) = w,0p sin w,t + w,C; cos w,t + w7 ot 5 Cos wt
-7

At t =0 the above becomes
Xst
1-72

90 = wyCy +w

Hence
60 W Xg

G=——-—
w, w,1-71?

60 r
= — - ——Xg4
w, 1-127°

Therefore the solution now becomes (again, this is for v # w,)

homogeneous

particular
0@ =0 t+ O _ _r i t+( Xst ) t
= COs w — — — 5 Xg | SINW S w
0 n W, 1-12 st n 1-12

(1)

(2)

The problem now asks for steady state solution. It is not clear to me what is this meant to
be, since there is no damping in the system, and hence the full solution remain for all time.
Therefore, will show the full solution (using zero initial conditions) and will also show the

particular solution.

This is a plot of the full solution, assuming that all initial conditions are zero. Therefore,

this is a plot of this solution

0 (¥ Fo 7 nat+ D0 inwt
=—— in — in
keql—r25 @n keg1—12 @
Obtained from (2) by setting 6, = 0,0, = 0
500 3.5744 500 1
0(t) = - sin (5.413¢) + ( (
® 1562.5 (1 —(3.574 4)2) ) 1562.5 \1 - (3.574 4)

= 0.09713 sin (5.413f) — 0.0272 sin (104.72¢)

Here is a plot of the full solution for the first 1 second
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Inf15p= X[t_] :=0.09713Sin[29.297 t] - ©.0272Sin[104.72 t];
p = Plot[x[t], {t, @, 1}, Frame - True,
FrameLabel - { {"solution", None}, {"t (sec)", "Full solution for zero initial conditions"}},
BaseStyle - 12, GridLines - Automatic, GridLinesStyle - LightGray]

Full solution for zero initial conditions
0.10F
0.05F /\/\ /\/\
Out[16]= 0.00
-0.05r w \/\/ k
-0.10r _

t (sec)

solution

The particular solution (steady state?) is

X .
0, () = —— sin wt
P() 1—12

= 0.0272 sin (104.721)

Here is a plot of the particular solution for the first 0.25 second

61= X[t_] 1= -0.0272Sin[104.72 1] ;
p = Plot[x[t], {t, @, .25}, Frame - True,
FrameLabel - { {"solution", None}, {"t (sec)", "Steady state solution"}}, BaseStyle -» 12,
GridLines - Automatic, GridLinesStyle - LightGray]

Steady state solution

0.03
0.021
0.011
C
il
6= 3 0.00
o
(2]
-0.011
-0.021
—0.03k I I I I L
0.0 0.05 0.10 0.15 0.20 0.25

t (sec)

2.6.3 Problem 3

Problem 3

A spring-mass system with m = 10 kg and £ = 5000 N/m is subjected to a harmonic force of
amplitude 250 N and frequency @. If the maximum amplitude of the mass is observed to be 100
mm, find the value of @.

The equation of motion (assuming sin (wt) for the force) iﬂ

mX + kx = Fysin (wt)

IThe general solution changes depending on if the forcing function is sin or cos. But the particular
solution is the same.
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Where k = 5000 N/m, m =10 kg, Fy = 250 N. We know the solution to the above is given
by (but we here have to assume that v # w,)

homogeneous particular
—_—
Xo r . Yo\ .
x(t) = xgcoSw,t + | — — — x4 |sinw,t + sin wt
1-72 1-12
n

Looking now at only the steady state solution (in this case, it is the particular solution)
then we see that

Xes (1) = (1 Jis';z) sin wt

Hence maximum is

Xst
X t) = —
rnax( ) 1 _ 7’2
we are told that x,,, = 0.1 meter, and . But r = a% and xy = % Therefore the above
becomes
Fp 1
Xmax = 7

k w \?
1‘(:)

In the above equation everything is known except for w. Solving for w gives

a)n kxmax
F
w? = (1 -0 )a),%
kxmax

But w, = \/g, hence

Al E
@ =1 —1[l1-
m kxmax

/ 5000
10 (5000) (0. 1))

= 22.361V0.

=15.812 rad/sec

Substituting numerical values

ODE ‘ solution

. X Xo . X,
mx +kx =Fycoswt | x(t) = (xo - 1—;2) cos w,t + = sinw,t + ﬁ cos wt
_ o -

. . X r . X, .
mX + kx = Fysinwt | x(f) = xycosw,t + (a—)0 - s | sinwy,t + # sin wt
n — -
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2.7 HW7

2.7.1 Problem 1

Problem 1

Download the ANSYS input file “MODAL pipe_flywheel.txt” from Canvas, run this input file in
ANSYS and go through the file line by line to figure out what the system parameters are for this
modal analysis. (Hint: When viewing the mode shapes within ANSYS, try plotting all 3
displacements and all 3 rotations (1 at a time) available under the “Nodal Solu” / “DOF
Solution” option; this should be helpful in determining the type of displacement associated with
each specific frequency.
A) List the 4 frequencies from ANSYS and label each as longitudinal, transverse, or torsional.
B) Using the parameters defined in the text file, analytically determine 3 of the 4 natural
frequencies of this system. Show ALL your work for these calculations and then compare
the analytical and finite element frequencies in a table with % errors.

The following is diagram of the model of the problem to solve
Wall thickness = 0.003 m

Outer diameter = 0.04 m
/ Length = 1 meter

pipe

R — flywheel

M = 10 kg, radius 0.2 m

The ANSYS APDL (input file) listing was provided to us to use and is given in the text
file below for reference

element
tness

ipe

/filnam, pipe_flywheel_modal

/title, Flywheel on torsional spring example

/prep7

!element type

et,1,mass21,,0,0 !element type no.l is mass21 (",,,0" signifies

!that this is a 3-D mass with rotary inertia)

et,2,pipe288 lelement type no.2 is pipe288 (this is a pipe element)
mp,ex,1,200e9 ! elastic modulus for steel is 200 GPa

mp,gxy,1,77.2e9 ! shear modulus for steel is 77.2 GPa

mp,prxy,1,0.295 ! poisson's ratio for steel is 0.295

! model parameters

mass = 10 ! mass of flywheel (kg)

rad_f = 0.2 ! outer radius of flywheel

izz = 0.5*mass*rad_f*rad_f ! mass moment of inertia

outer_d = 0.04 ! outer diameter of pipe (m)

wall_t = 0.003 ! wall thickness of pipe (m)

pipe_l = 1 ! pipe length (m)

n_modes = 10 ! number of modes wanted

!real constants

r,1,mass,mass,mass,0.5%izz,izz,0.5%xizz ! real constant set 1 is for the mass21
sectype,1,pipe ! section type 1 is "pipe"

secdata,outer_d,wall_t ! section data for pipe is outer diameter and wall thick
!create nodes

k,1,0,0,0 ! keypoint 1 is at x=0, y=0, z=0, this will be the fixed end of the g
k,2,0,-pipe_1,0 ! keypoint 2 is at x=0, y=-pipe_l, z=0, this will be the free
! end of the pipe with the flywheel

!create elements
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type,2 ! specify element type of subsequently defined elements
secnum, 1 ! specify section type number of subsequently defined elements
1,1,2 ! creates a line from keypoint 1 to keypoint 2

lesize,1,,,10 ! specifies that line 1 will consist of 10 elements when meshed
lmesh,1 ! take line 1 and mesh it, resulting in elements representing t
type,1 ! specify element type of subsequently defined elements
real,l ! specify real constant set of subsequently defined elements
e,2 ! create element to be created at node 2

nsel,all ! selects all nodes

d,all,uz,0 ! sets the z displacements on selected nodes to be 0, thereby

! 1limiting our modal analysis to modes in the xy plane

d,all,rotx ! sets the rotx displacments on selected nodes to be 0
!displacement boundary conditions

nsel,s,loc,y,0 ! select node at x = 0

d,all,ux,0 ! displacement of selected node in x-dir is O

d,all,uy,0 ! displacement of selected node in y-dir is O

d,all,uz,0 ! displacement of selected node in z-dir is O
d,all,rotx,0 ! rotations of selected node about x axis is O
d,all,roty,0 ! rotations of selected node about y axis is O
d,all,rotz,0 ! rotations of selected node about z axis is O

allsel

finish

/solu !select static load solution

antype,modal
modopt,lanb,n_modes
solve

finish

/post1l

2711 Partl

The following 4 modal frequencies were generated by ANSYS after running the above
APDL file.

mode Mode number | Frequency (Hz)
transverse 1 9.4438
torsional 2 34.272
transverse 3 111.41
longitudinal | 4 420.31

The modal shapes were then plotted using ANSYS. They are given below for each mode

Flywheel on torsional spring example Flywheel on torsional spring example

Figure 2.1: First mode: Trans- Figure 2.2: Second mode: Tor-
verseat 9.443 Hz sional at 34.2724 Hz
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Flywheel on tors Flywheel on torsional spring e

Figure 2.3: Third mode: Transverse Figure 2.4: Fourth mode: longtitu-
at 111.408 Hz dinal at 420.312 Hz

The system parameters are

PARAMETER STATUS- ( 13 PARAMETERS DEFINED)
(INCLUDING 6 INTERNAL PARAMETERS)
NAME VALUE TYPE DIMENSIONS
VA 0.200000000 SCALAR
MASS 10.0000000 SCALAR
N_MODES 10.0000000 SCALAR
OUTER_D 4.000000000E-002 SCALAR
PIPE_L 1.00000000 SCALAR
RAD_F 0.200000000 SCALAR
WALL_T

Total U displacement by ANSYS for mode 1 is

PRINT U NODAL SOLUTION PER NODE

*%%%x*x POST1 NODAL DEGREE OF FREEDOM LISTING %%

LOAD STEP= 1 SUBSTEP= 1
FREQ= 9.4438 LOAD CASE= O

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE UX Uy Uz USUM
1 0.0000 0.0000 0.0000 0.0000
2 0.31268 -0.15719E-019 0.0000 0.31268
3 0.45277E-002-0.15719E-020 0.0000 0.45277E-002
4 0.17442E-001-0.31438E-020 0.0000 0.17442E-001
5 0.37825E-001-0.47156E-020 0.0000 0.37825E-001
6 0.64762E-001-0.62875E-020 0.0000 0.64762E-001
7 0.97336E-001-0.78594E-020 0.0000 0.97336E-001
8 0.13463 -0.94313E-020 0.0000 0.13463
9 0.17573 -0.11003E-019 0.0000 0.17573
10 0.21972 -0.12575E-019 0.0000 0.21972
11 0.26567 -0.14147E-019 0.0000 0.26567
MAXIMUM ABSOLUTE VALUES
NODE 2 2 0 2
VALUE 0.31268 -0.15719E-019 0.0000 0.31268

Total ROT displacement by ANSYS for mode 1 is

PRINT ROT NODAL SOLUTION PER NODE

*%%*xx POST1 NODAL DEGREE OF FREEDOM LISTING ***xx

LOAD STEP= 1 SUBSTEP= 1
FREQ= 9.4438 LOAD CASE= O
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THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE ROTX ROTY ROTZ RSUM

1 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.54021E-017 0.47205 0.47205

3 0.0000 0.54021E-018 0.88444E-001 0.88444E-001

4 0.0000 0.10804E-017 0.16772 0.16772

5 0.0000 0.16206E-017 0.23784 0.23784

6 0.0000 0.21609E-017 0.29879 0.29879

7 0.0000 0.27011E-017 0.35058 0.35058

8 0.0000 0.32413E-017 0.39320 0.39320

9 0.0000 0.37815E-017 0.42666 0.42666

10  0.0000 0.43217E-017 0.45095 0.45095

11 0.0000 0.48619E-017 0.46608 0.46608
MAXIMUM ABSOLUTE VALUES
NODE 0 2 2 2
VALUE 0.0000 0.54021E-017 0.47205 0.47205

Total U displacement by ANSYS for mode 2 is

PRINT U NODAL SOLUTION PER NODE

*%%*xx POST1 NODAL DEGREE OF FREEDOM LISTING
LOAD STEP=

1 SUBSTEP= 2

FREQ=

34.272

THE FOLLOWING DEGREE

LOAD CASE=

0

OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE UX Uy Uz USUM

1 0.0000 0.0000 0.0000 0.0000
2 0.11870E-012 0.57718E-018 0.0000 0.11870E-012
3 0.17191E-014 0.57718E-019 0.0000 0.17191E-014
4 0.66222E-014 0.11544E-018 0.0000 0.66222E-014
5 0.14361E-013 0.17316E-018 0.0000 0.14361E-013
6 0.24588E-013 0.23087E-018 0.0000 0.24588E-013
7 0.36955E-013 0.28859E-018 0.0000 0.36955E-013
8 0.51113E-013 0.34631E-018 0.0000 0.51113E-013
9 0.66715E-013 0.40403E-018 0.0000 0.66715E-013
10 0.83412E-013 0.46175E-018 0.0000 0.83412E-013
11 0.10086E-012 0.51947E-018 0.0000 0.10086E-012

MAXIMUM ABSOLUTE VALUES

NODE 2 2 0 2

VALUE 0.11870E-012 0.57718E-018 0.0000 0.11870E-012

Total ROT displacement by ANSYS for mode 2 is

PRINT ROT NODAL SOLUTION PER NODE

*%%%x*x POST1 NODAL DEGREE OF FREEDOM LISTING ***xx

LOAD STEP=
FREQ=

1
34.272

SUBSTEP= 2

LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM
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NODE ROTX ROTY ROTZ RSUM
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 2.2361 0.17917E-012 2.2361
3 0.0000 0.22361 0.33581E-013 0.22361
4 0.0000 0.44721 0.63680E-013 0.44721
5 0.0000 0.67082 0.90299E-013 0.67082
6 0.0000 0.89443 0.11344E-012 0.89443
7 0.0000 1.1180 0.13309E-012 1.1180
8 0.0000 1.3416 0.14927E-012 1.3416
9 0.0000 1.5652 0.16197E-012 1.5652

10  0.0000 1.7889 0.17118E-012 1.7889
11 0.0000 2.0125 0.17691E-012 2.0125
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MAXIMUM ABSOLUTE VALUES
NODE 0 2 2 2
VALUE 0.0000 2.2361 0.17917E-012 2.2361

Total U displacement by ANSYS for mode 3 is

PRINT U NODAL SOLUTION PER NODE

*%%*x*x POST1 NODAL DEGREE OF FREEDOM LISTING ***xx

LOAD STEP= 1 SUBSTEP= 3
FREQ= 111.41 LOAD CASE= O

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE UX Uy UZ USUM
1 0.0000 0.0000 0.0000 0.0000
2 -0.47205E-001-0.10687E-014 0.0000 0.47205E-001
3 -0.29904E-001-0.10687E-015 0.0000 0.29904E-001
4 -0.10556 -0.21374E-015 0.0000 0.10556
5 -0.20770 -0.32061E-015 0.0000 0.20770
6 -0.31709 -0.42748E-015 0.0000 0.31709
7 -0.41446 -0.53435E-015 0.0000 0.41446
8 -0.48056 -0.64122E-015 0.0000 0.48056
9 -0.49614 -0.74809E-015 0.0000 0.49614
10 -0.44194 -0.85497E-015 0.0000 0.44194
11 -0.29872 -0.96184E-015 0.0000 0.29872
MAXIMUM ABSOLUTE VALUES
NODE 9 2 0 9
VALUE -0.49614 -0.10687E-014 0.0000 0.49614

Total ROT displacement by ANSYS for mode 3 is

PRINT ROT NODAL SOLUTION PER NODE

*%**xx POST1 NODAL DEGREE OF FREEDOM LISTING x***xx*

LOAD STEP= 1 SUBSTEP= 3
FREQ= 111.41 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE ROTX ROTY ROTZ RSUM
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 -0.49528E-013 3.1268 3.1268
3 0.0000 -0.49528E-014-0.55375 0.55375
4 0.0000 -0.99056E-014-0.91496 0.91496
5 0.0000 -0.14858E-013 -1.0836 1.0836
6 0.0000 -0.19811E-013 -1.0598 1.0598
7 0.0000 -0.24764E-013-0.84334 0.84334
8 0.0000 -0.29717E-013-0.43438 0.43438
9 0.0000 -0.34670E-013 0.16711 0.16711

10 0.0000 -0.39622E-013 0.96115 0.96115
11 0.0000 -0.44575E-013 1.9477 1.9477

MAXIMUM ABSOLUTE VALUES
NODE 0 2 2 2
VALUE 0.0000 -0.49528E-013 3.1268 3.1268

Total U displacement by ANSYS for mode 4 is

PRINT U NODAL SOLUTION PER NODE

*%%*x*x POST1 NODAL DEGREE OF FREEDOM LISTING ***xx

LOAD STEP= 1 SUBSTEP= 4
FREQ= 420.31 LOAD CASE= O
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THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM
NODE UX Uy UZ USUM

1 0.0000 0.0000 0.0000 0.0000
2 -0.14600E-009 0.31623 0.0000 0.31623
3 -0.21370E-011 0.31623E-001 0.0000 0.31623E-001
4 -0.82246E-011 0.63246E-001 0.0000 0.63246E-001
5 -0.17820E-010 0.94868E-001 0.0000 0.94868E-001
6 -0.30480E-010 0.12649 0.0000 0.12649
7 -0.45762E-010 0.15811 0.0000 0.15811
8 -0.63223E-010 0.18974 0.0000 0.18974
9 -0.82420E-010 0.22136 0.0000 0.22136
10 -0.10291E-009 0.25298 0.0000 0.25298
11 -0.12425E-009 0.28460 0.0000 0.28460

MAXIMUM ABSOLUTE VALUES

NODE 2 2 0 2

And total ROT displacement by ANSYS for mode 4 is

PRINT ROT NODAL SOLUTION PER NODE
*%%*xx POST1 NODAL DEGREE OF FREEDOM LISTING ***xx
LOAD STEP= 1 SUBSTEP= 4
FREQ= 420.31 LOAD CASE= O
THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM
NODE ROTX ROTY ROTZ RSUM
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.15287E-011-0.21790E-009 0.21790E-009
3 0.0000 0.15287E-012-0.41720E-010 0.41721E-010
4 0.0000 0.30573E-012-0.79011E-010 0.79012E-010
5 0.0000 0.45860E-012-0.11187E-009 0.11187E-009
6 0.0000 0.61146E-012-0.14031E-009 0.14031E-009
7 0.0000 0.76433E-012-0.16431E-009 0.16431E-009
8 0.0000 0.91720E-012-0.18389E-009 0.18389E-009
9 0.0000 0.10701E-011-0.19903E-009 0.19904E-009
10 0.0000 0.12229E-011-0.20975E-009 0.20975E-009
11 0.0000 0.13758E-011-0.21604E-009 0.21604E-009
MAXIMUM ABSOLUTE VALUES
NODE 0 2 2 2
VALUE 0.0000 0.15287E-011-0.21790E-009 0.21790E-009
271.2 Part2

To verify ANSYS solution, this was solved in two ways. By taking into account the mass m
of the pipe and then by ignoring the mass m. Both hand solutions are given below. ANSYS
do not take the mass of the pipe into account, since it was not told the density of the pipe
material in the APDL input file. The first solution below is the recommend one to use to
compare the ANSYS result against and it the method which gave more agreement with
ANSYS result.

2.71.21 First solution. Not accounting for mass of pipe

Finding the longitudinal (axial) natural frequency.

Using k,, = % where A is the cross sectional area of the pipe and L is the pipe length and

using m,, = M, then the longitudinal natural frequency is

k

eq

meq

AE
LM

wy, =
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The cross sectional area of the pipe is
_ T2 _p2
A= (D2-D?)
Tt 2 2
=1 ((0.04)” - (0.034)°)
= 34872 x107* m?

The length of pipe is 1 meter and M =10 kg. Equation (1) becomes

(3.4872 X 10—4) (200 X 109)
W = (1) (10)
= 2640.9 rad/sec

The cycle frequency is

= Yn
fn= 2n
26409
- 2n
=420.31 Hz
ANSYS gives 420.31 Hz. So the error is 0.
Finding the torsional natural frequency.
Torsional stiffness k; is
GJ
ky = —
L

Where G is the shear modulus (given in handout), and | is the polar area moment of inertia

of the cross section given by

m
T 32
m
T 32
=1.2013 x 10”7 m*

] = 5 (D8 - D)

(0.04% - 0.034*)

Therefore
(77.2x10%) (12013 x 1077)

k = = 9274 N-m per radian

£ 1

The equivalent mass is just the mass moment of inertia of the flywheel %Mr]% (since the

pipe assumed to have no mass). Hence the torsional frequency is

ky
w = 1M >
2f
B 9274
5 (10)(02)°

= 215.34 rad/sec

Therefore the torsional frequency in Hz is

215.34
f= 27

= 34272 hz
ANSYS gives this as 34.272 Hz. The the error is 0.

Finding the transverse natural frequency:

Using k = i—? and M =10. Where [ is the area moment of inertia given by

_ TC
" 64
= 614 (0.04% - 0.034%)

I (D4 -D%)

= 6.0066 x 1078 m*
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The transverse natural frequency is therefore

_ [3EI
RS YIE

B J 3(200 % 10%) (6.0066 x 10-8)

(10) (1)°
= 60.033 rad/sec

Hence
60.033
fn= o 9.5545 Hz

ANSYS gives 9.4438 for the first transverse natural frequency. Hence error is (%) 100 =
11722 %
Summary of results

mode ANSYS result | Hand calculation | %error

First transverse 9.4438 9.5545 1.1722 %

First torsional 34.272 34.272 0%

First longitudinal (axial) | 420.31 420.31 0%

All the analytical solutions gave exact agreement with ANSYS except for the transverse

case. The transverse case uses stiffness 3L—E3[ due to load at end of fixed-free beam. This does
not account for bending rotation in the beam. That is why ANSYS result is more accurate,
as its finite elements account for the small bending associated with the transverse vibration.
In the other two cases (Torsional and axial), there is no associated bending, hence the
solutions agree.

2.71.2.2 Second solution. Accounting for mass of pipe

Finding the longitudinal natural frequency.

Following the example given in the textbook, at page 715, the (first) longitudinal natural
frequency is found to be

a E
i L (E.4)
w1 = I .
Where «; is the (first) root of
atana =

Where f is the mass ratio = Aﬂ/{

To find mass of pipe m, using steel density p = 7800 kg/m?, we first find the volume of the
pipe.

Let D; be the inner diameter and D, the outer diameter. D, = 0.04 meter and D; =
0.04 - 2(0.003) = 0.034 meter , therefore the cross sectional area of the pipe is

e
4

e
= ((0.04)” - (0.034)°)

= 3.4872 x107™* m?

where m is mass of pipe and M is end mass (flywheel).

A== (D2-D?)

And since length of pipe is 1 meter, the mass of pipe is

m = pAL
= (7800) (3.4872 x 107#) (1)
=272 kg.
The mass at the end is given as M =10 kg. Therefore the mass ratio
p= =22 o7
M 10
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To find a; we now need to solve a; tana; = 0.272. This was solved numerical using root
finder. The first root was found to be
ap; =0.499

Therefore from equation E.4 in textbook (page 715)

aqc
w1 = —

200x10°
7800

(0499

1
= 2526.8 rad/sec

Therefore
_ v
fi= o
_ 2526.8
27
=402.15 Hz

420.31-402.15

ANSYS gives 420.31 Hz. So the error is ( 2031

)100 =4.321%

Finding the torsional natural frequency.

k; is

kt:g
L

Where G is the shear modulus (given in handout), and | is the polar area moment of inertia

of the cross section given by

s
T 32
m
T 32
=1.2013 %1077 m*

] =+ (Ds-D})

(0.044 - 0.0344)

Hence

(77.2x10%) (12013 x 1077)
ki = : = 9274
To find equivalent mass, using kinetic energy method
1 1 :

. 1. .
Elflywheelez + Elpipeez = EquQZ (1)

For a hollow pipe, where now m is replaced by %m from continuous system derivation.

1(1 \((D,\> (D;\’
e=2\3"(2) 2

= 21—4171 (D2 +D?)

And for the flywheel, I, = %Mr} where 7 = 0.2 meter. Hence from (1)

1 1
leg = 5 Mg + m (D2 + D?)
1 » 1 , ,
=510 (0.2 + - (272) (0.042 +0.0342)
= 0.20031 kg-m”
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ki
W=,
Lefy
_ [ 9274
~ Y 0.20031

= 215.17 rad/sec

Hence the torsional frequency is

Therefore the torsional frequency in Hz is
21517
f= 21

=34.245 hz

34.272-34.245

ANSYS gives this as 34.272 Hz. The the error is ( 3127

)100 = 0.079%

Finding the transverse natural frequency:

From textbook, table 8.15 page 726, it gives for fixed-end beam the value ;L = 1.875104.
But since there is a mass attach to the end in our problem, I did not know how to add this
using the table.

So I used the other method we used before, which is the Rayleigh energy method, where
we assume motion is simple harmonic motion. Taking the displacement as the transverse
motion of the free end of the pipe (where the large mass is attached), measured from
equilibrium then the kinetic energy is

meq

1/—’%
T = 5 (M + 0.23m) >

Where we added 0.23m, where m is the mass of the pipe, since this is continuous mass. For

the potential energy, we use the stiffness formula for the fixed-free beam which is k = ?’L—?,
hence
u 1k 2
= —kx
2
Now, assuming x = Xsinw,t, then ¥ = Xw, cos w,t. Therefore when
Unax = Tiax
We obtain
13EI 1
2 _ 2
3EI
) 3EI
W=
" L3 (M +0.23m)
3EI
N 1
©n \/L3 (M + 0.23m) @
Where [ now is the area moment of inertiaﬂ is given by
_ T
I=— (D4 - D)
_ T 4 4
== (0.04% - 0.034*)
= 6.0066 x 1078 m*
And

M+ 0.23m =10 + 0.23 (2.72)
=10.626 kg

Notice that the polar area moment of ineria has 312 factor, while the area moment of interia, the factor
.1
1S 6_4
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Substituting the numerical values in (1) gives

3 (200 x 10°) (6.006 6 x 10-8)

10.626
58.239 rad/sec

Wy, =

Hence

58.239
fn = T = 9269 HZ

9.4438-9.269

94438 )100 -

ANSYS gives 9.4438 for the first transverse natural frequency. Hence error is (
1.851 %

Summary of results

mode ANSYS result | Hand calculation | %error
First transverse 9.4438 9.269 1.851 %
First torsional 34.272 34.245 0.079%
First longitudinal | 420.31 402.15 4.321%

Comparing the above table to the first solution, it shows that ignoring the mass of the pipe
gave result which agree with ANSYS result much better. This is because ANSYS did not
take into the account the mass of the pipe. It will be interesting exercise to find how to
change the APDL input file to make ANSYS account for the mass of the pipe and then
compare the above results with ANSYS.

2.7.2 Problem 2

Problem 2

The signpost of a fast food restaurant consists of a hollow steel cylinder of height 4, inside
diameter d, and outside diameter D, fixed to the ground and carries a concentrated mass M at the
top. It can be modeled as a single degree of freedom spring-mass-damper system with an
equivalent viscous damping ratio of 0.1 for analyzing its transverse vibration characteristics
under wind excitation. Assume the signpost mass (m) and concentrated mass (M) have an
equivalent mass (m,,) as defined below. (this equivalent mass equation was from a lecture
example earlier in the semester). The specific weight (pg) and the elastic modulus (£) of the
steel are 76,500 N/m® and 207 GPa, respectively. For the density and viscosity of air, use 1.20
kg/m® and 1.80 x 10 N-s/m?, respectively. For the remaining parameters, assume 4 = 10 m, D =
25 ecm, d =20 cm and M =200 kg.

D

m M Cantilever beam of mass m

= T carrying an end mass M Moy =M. % Q.25m

Determine the following:

A) the natural frequency of transverse vibration of the signpost,

B) the wind velocity at which the signpost undergoes maximum steady-state displacement, and
C) the maximum wind induced steady-state displacement of the signpost.

2721 Part A

The first step is to determine the natural frequency w,, for the transverse vibration. Rayleigh

energy method was used to find the transverse frequency. Taking the displacement as the
transverse motion of the free end of the sigpost (where the large mass M is attached),
measured from equilibrium, then the kinetic energy is

meq

1/_H
T=2(M+ 0.23m)i2
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m is the mass of the sigpost. For the potential energy, the bending stiffness formula for the
fixed-free beam with load at the end was used, which is

3EI
k=T
The potential energy is therefore
1
U= —kx?
5 X

Assuming x = Xsinwyt, then ¥ = Xw,, cos w,t. Using
Unax = Tiax

Then the above reduces to

1 (3EI 1
2 _ 2
3EI
= (M + 0.23m) w?
) 3EI
Wy = o
"7 L3 (M + 0.23m)
3EI
N 1
@n \/L3 (M + 0.23m) @

I is the area moment of inertia of the pipe cross section. Since D, = 0.25 m and D; = 0.2 m,
then

1= (Di-Df)
- 614 (0254 - 0.24)

=1.1321%x107* m*
M =200 kg, and L = 10 meter. Using pg,;g = 76500 N/m> and E = 207 x 10° Pa. To find the
mass m of the post, the cross sectional area is first found
T 2
A= (D2-D?)
_r 2 2
=1 (0.25% -0.22)
= 0.017671 m?
Hence the mass m is
(psteelg)
8
76500

= ———(0.017671) (1
981 (0.017671) (10)

= 1378 kg

AL

Substituting the numerical values in (1) gives

B 3E]
On =\ I3 (M + 0.23m)
) J 3(207 x 109) (11321 x 10-4)

(10)® (200 + 0.23 (1378))
=11.662 rad/sec

Or
11.662
fn= >
Therefore
fn=18561Hz
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27.2.2 PartB

Maximum steady state displacement occurs at resonance. This is when the frequency of
vortex shedding is the same as the natural frequency f, of the post found above. Using
Strouhal formula
_ f nDo
775
Where in the above v is the wind velocity and the vortex shedding frequency is set to be
the natural frequency in order to obtain the maximum displacement. Assume S = 0.21
gives
_ (1.8561) (0.25)

0.21
Hence
v = 2.2096 m/s
Checking Reynold number
Re = UDopair
u

Pair is density of air and p is viscosity of air. Using the numerical values given the above
becomes
 _ (2:2096) (025) (1.2)

(1.8x1075)
= 36827
Since 400 < Re < 300000 then the assumption of Strouhal S = 0.21 was valid.

2.7.2.3 Part C

The lateral force exerted by the wind on the sigpost is given by
1
E(t) = Ecpairva sin wt

= Fysin wt

Where c = 1 for cylinder and v is the wind speed found in last part and A is the projected
area A = D,L. Hence
1 2
FO = Ecpm'ﬂ] A

_ % (1.2) (2.2096)% (0.25) (10)
= 73235 N

Using the steady state displacement formula for damped single degree of freedom system,
which is
_Fy 1

K \/(1 - r2)2 + (281

Where F| is total force from the wind over the whole span. Assuming this force acts at the

end of a fixedfree beam (This is an over estimation. The wind force actually acts over the
3EI

Yss

whole length of the sigpost, but it is now taken as acting on the end). Therefore k =

can be used based on this. Since » =1 (resonance) and & = 0.1, then y,, is now evaluateé3
F 1
Yss = ? \/@
FoL3 1
" BEI 2

(7.3235) (10)° 1
3 (207 X 109) (1.1321 X 10—4) 2(0.1)
=5.2085 x 10~ meter
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Yss = 0.5 mm

69



2.8. HW8 CHAPTER 2. HWS

28 HWS

2.8.1 Problem 1

e mmmeraiaee gy st v wamat wa o owany v a

Problem 1

Download the ANSYS input file “MODAL _pipe_flywheel.txt” from HW7 on Canvas, run this
input file in ANSY'S and go through the file line by line to figure out what the system parameters
are for this modal analysis. (Hint: When viewing the mode shapes within ANSYS, try plotting
all 3 displacements and all 3 rotations (1 at a time) available under the “Nodal Solu” / “DOF
Solution” option; this should be helpful in determining the type of displacement associated with
each specific frequency.

A) Modify the “MODAL pipe flywheel.txt” file to use ANSYS to predict the natural
frequencies and mode shapes for the problem listed below (NOTE: you should remember
this problem from HW3).

A flywheel is mounted on a vertical shaft, as shown below. The shaft has a diameter d and
length | and is fixed at both ends. The flywheel has a weight of W and a radius of gyration of
r. Find the natural frequency of the longitudinal, the transverse, and the torsional vibration of
the system. For the parameters, assume thatd =1.2in,a=2ft,b=4ft, W=100 Ibsand r =
16 in. (Assume the shaft is massless and the flywheel is rigid.)

L

Flywheel | ! ‘ a

For this problem, submit a hard copy of your modified .txt file and also create a table comparing
the analytical and finite element frequencies (including % error) for the first longitudinal, first
transverse and first torsional mode. Which mode has the most error? Which mode SHOULD
have the most error? And why?

The APDL was modified to use solid pipe288 and put the mass element at the location as
shown in the problem statement. The following are the four modes generated by ANSYS

set number | mode frequency (Hz)
1 Torsion 10.437
2 First transverse (bending) 14.1815
3 Second transverse (bending) | 35.384
4 First longitudinal (axial) 447.98

The following are the four plots showing the mode shapes for each of the above modes
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00:26:44

Figure 2.7: Third mode: Bending
26.302 Hz

Figure 2.8: Fourth mode: Axial

44798 Hz

The above result was next compared to the analytical result that was done in HW 3, by
using the numerical value given in this problem. The numerical values for this problem
are listed here

variable name

numerical value

L (length of pipe) 6 ft
a 2 ft
b 4 ft
. : 12
d (diameter of pipe) 12in=— =011t
W (weight of flywheel) 100 1Ib

r (outer radius of flywheel)

16
16 in = o= 1.3333 ft

r¢ (radius of gyration)

\/? = \/ 13?;—332 = 0.94279 ft

E (Elastic modulus of pipe material, steel)

29007547.546 x 144 psf (200 GPa)

G (shear modulus for pipe material, steel)

11196913.353 x 144 pst (7.2

GPa)

Poisson’s ratio for steel

0.295

I area moment of inertia for pipe section

d 4
- (—) =4.90874 x 1076 ft*

If1wheer mass moment of inertial of flywheel

W o

4\2
_ 2
rili 5.52105 slug-ft

The above values were now used in the derivations from HW3 to obtain numerical values
for the natural frequencies. The following are the results obtained (using analytical result
from HW3 derivation)
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mode Analytical result Numerical calculation w,, in rad/sec Hz
. _ [gGmd* (1 1 (32.2)(11196913.353x144)72(0.1)* ( 1.1 ) _
Torsion w, =/ oW (u + b) \/ 32100(0.94275) 5t ) =6558 10.437
3 _ 3
. _[sgEr (L 3(32.2)(29007547.546x144)(4.90874x1076) (¢ B
bending (1) | 0, =32 (1) |/ (n5) = 91412 | 1450
AL (1 1 (32.2)(n(02;1)2)(29007547.54@@44) L1
axial wy, = W (; + Z) 100 (E + 4_1) = 2814.8 447 99

The following table compares the above analytical result with the ANSYS result shown
earlier with the percentage error

mode ANSYS result (Hz) | Analytical result (Hz) | error percentage
Torsion 10.437 10.437 0%

. . 14.1815-14.549 _ o
First bending | 14.1815 14.549 W) x 100 = 2.59%
First axial | 447.98 447.99 27T %100 = 0.002%

44798

The mode that has most error is the first bending (transverse) mode. This was the case
also in HW7 ANSYS problem. ANSYS result is the more accurate one. The analytical

3

result for this mode was derived The transverse case uses stiffness 3E1(%) due to load at

a distance from one end of fixed-free beam and b distance from the other end of the fixed

beam. But this derivation does not account for any bending rotation in the beam as the
ANSYS result would do.

2.8.1.1 Listing of modified APDL script

I-— Modified APDL script for HW 8, ME 440, Fall 2017
!

/filnam, pipe_flywheel_modal
/title, Flywheel on torsional spring example
/prep7

!-- give names for elements ——————-----
MASS_ELEMENT=1
PIPE_ELEMENT=2

!-- define the mass element —————-------
ET,MASS_ELEMENT,mass21,,0,0 !element type no.l is mass21 (",,,0" signifies
Ithat this is a 3-D mass with rotary inertia)
! model parameters for MASS_ELEMENT
mass = (100/32.2) ! mass of flywheel (1Db)
r_wheel = (16/12) ! radius of gyration (ft)
Iyy = mass*(r_wheel*r_wheel)/2 ! mass moment of inertia
OUTER_DIAMETER = (1.2/12) ! outer diameter of pipe (ft)
wall_t = OUTER_DIAMETER/2-0.0001 ! Solid pipe! This gives warning
! but we can ignore it for now
SHAFT_LENGTH = 6 ! shaft length (ft)
n_modes = 10 ! number of modes wanted, but ANSYS always gives 4

lreal constants for MASS_ELEMENT
r ,MASS_ELEMENT ,mass,mass,mass,0.5%IYY,IYY,0.5%IYY

!-— define the shaft element as solid pipe ———----
ET,PIPE_ELEMENT,pipe288

mp,ex,MASS_ELEMENT, 29007547 .546%144 1 (200e9 SI) elastic modulus PSF
mp, gxy ,MASS_ELEMENT, 11196913.35276x144 !(77.2e9 SI) shear modulus PSF
mp,prxy,MASS_ELEMENT,0.295 ! poisson's ratio for steel is 0.295

KEYOPT,PIPE_ELEMENT, 4,2 !'Thick wall per ansys help

!SECTYPE, SECID, Type, Subtype, Name, REFINEKEY
! Associates section type information with a section ID number.
sectype,l,pipe ! section type 1 is "pipe"
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41 | secdata,OUTER_DIAMETER,wall_t ! section data for pipe is outer
42 ! diameter and wall thickness

43
44
45 | !'-— key points -—-——-----

46 |k,1,0,0,0 ! keypoint 1 is at x=0, y=0, z=0, one fixed end of pipe
47
48 | ! keypoint 2 where fluwheel is located
49 | k,2,0,-SHAFT_LENGTH/2.0,0

50
51 | k,3,0,-SHAFT_LENGTH,0 ! keypoint 3 is other end of the fixd pipe
52
53 | !'-- create elements ----——————--—--———-

54 | TYPE,PIPE_ELEMENT ! element type of subsequently defined elements.
55
56 | 'SECNUM, SECID

57 | ! Sets the element section attribute pointer.

58 | ! Defines the section ID number to be assigned to the

59 | ! subsequently-defined elements Defaults to 1. See SECTYPE for more
60 | ! information about the section ID number.

61
62 | secnum,1 !specify section type number of subsequently defined elements
63
64
65 | '-— create line ——————————-—-———----

66 | 'L, P1, P2

67 | 'Defines a line between two keypoints.
68
69 |[L,1,3 ! creates ONE line from keypoint 1 to keypoint 3
70
71 | 'LESIZE, NL1, SIZE, ANGSIZ, NDIV, SPACE, KFORC, LAYER1, LAYER2, KYNDIV
72 | 'Specifies the divisions and spacing ratio on unmeshed lines.

73 | ! NL1 Number of the line to be modified.

74 SIZE If NDIV is blank, SIZE is the division (element edge) length.
75 The number of divisions is automatically calculated from the
76 line length (rounded upward to next integer). If SIZE is zero

!
!
!
77 | ! (or blank), use ANGSIZ or NDIV
!
!

78 ANGSIZ The division arc (in degrees) spanned by the element edge
79 NDIV If positive, NDIV is number of element divisions per line.
80

81 | lesize,1,,,12 ! line 1 will consist of 12 elements when meshed

82

83 | 'LMESH, NL1, NL2, NINC Generates nodes and line elements along lines
84 | ! Mesh lines from NL1 to NL2

85

86 | lmesh,ALL ! line 1 meshed, resulting in elements representing the pipe
87

88 [l

89 | type,MASS_ELEMENT ! element type of subsequently defined elements

9 |real,l ! real constant set of subsequently defined element
91

92 |'E, I, J, K, L, M, N, O, P
93 | 'Defines an element by node connectivity.

94 |! I  Number of node assigned to first nodal position (node I)

9 |E,6 | create element to be created at node 6

96

97 | finish

98

99 | /solu Iselect static load solution

100

101 | !'-- Set the boundary conditions --——----------

102 |nsel,all ! selects all nodes

103 |d,all,uz,0 ! sets the z displacements on selected nodes to be 0

104 ! limiting our modal analysis to modes in the xy plane
1

105 |d,all,rotx
106
107 | 'displacement boundary conditions

108 | ! NSEL, Type, Item, Comp, VMIN, VMAX, VINC, KABS

sets the rotx displacments on selected nodes to be 0

109 | ! Type S Select a new set (default).

110 | ! Item LOC X,Y,Z X,Y, or Z location in active coordinate system
111

112 | nsel,S,NODE,,1 ! select node at x = 0
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113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
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d,all,roty,0

rotations of

selected node about

y axis is O

d,all,ux,0 ! displacement of selected node in x-dir is O
d,all,uy,0 ! displacement of selected node in y-dir is O
d,all,uz,0 ! displacement of selected node in z-dir is O
d,all,rotx,0 ! rotations of selected node about x axis is O
]
]

d,all,rotz,0

nsel,A,NODE, ,2

rotations of

select node at x =

selected node about

-SHAFT_LENGTH

z axis is O

1
d,all,ux,0 ! displacement of selected node in x-dir is O
d,all,uy,0 ! displacement of selected node in y-dir is O
d,all,uz,0 ! displacement of selected node in z-dir is O
d,all,rotx,0 I rotations of selected node about x axis is O
d,all,roty,0 ! rotations of selected node about y axis is O
d,all,rotz,0 ! rotations of selected node about z axis is O
allsel

antype,modal

modopt,lanb, 20

solve
finish

/postl

2.8.2 Problem 2

Problem 2

A centrifugal pump, weighing 700 N and operating at 1000 rpm, is mounted on six springs of
stiffness 6000 N/m each. Find the maximum permissible unbalance in order to limit the steady-
state deflection to 5.0 mm peak-to-peak.

The first step is to determine the natural frequency of the system. Since the springs are in

parallel then

And the equivalent mass is m,, = VEV where W =700 N. Hence

[k 6k [6(6000)
W, = mﬂ = |lw= |~ - 22.461 rad/sec
“ n 9.81

Since this is undamped system, then the steady state solution (particular solution) is given

by

Yy (t) = Kot > cos wt (1)

-7
Where r = w% and w is the driving frequency, which is
w = 1000 (2_71) (@) =1000 (2_71) =104.72 rad/sec
rev )\ 60 60
From (1), we see that the maximum steady state response is
oo =~ (2)

(-

We now just need to determine x,; which is the static deflection. Let m be the unbalanced
mass which is spinning inside, and let e be the radius around the spin axis. Therefore, and
assuming w is constant, this mass will have only radial acceleration towards the center of

ew? and therefore it will induce a centripetal force mgew?.
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Force causing vertical vibration

From the above we see that the vertical force is
F
/—’L
F(t) = mpeaw? sin O (t)
Hence the static deflection is

FO moea)z
Xep = 7 =

Keg 6k

Substituting this into (2) gives

moew? 2

T mpew

Yoo =~ = . (3)
\/(1 - r2) 6k\/(1 - ,,2)
But 7 is
_w 10472
"o, T 2461

2
Since r > 1 then we now can simplify (1 - rz) =12 -1 and (3) becomes

moew?

6k (r2-1)
Since we want to limit deflection to 5 mm peak to peak, then we want to limit y,, = 2.5
mm (which is half of the peak-to-peak). The above equation becomes
104.72)?
25x103 = Mo (10472)
6 (6000) (4.6625% ~ 1)

 mge (104.72)°
36000 (20.739)
e (104.72)
7466 X 10°

ySS

Solving for unbalance myge gives
(2.5 x107%) (7.466 x 10%)
(104.72)?

mpe =

mge = 0.1702 kg-meter

This means to limit mye below this value in order to limit vibration to 5 mm, peak-to-peak.
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2.8.3 Problem 3

Problem 3
Determine the steady-state response of the system 0(t) due to the input excitation shown, using
the system parameters given in the figure. (Use a trigonometric Fourier expansion of the input

excitation.)
x(t)
, bl |
Uniform bar, % x(r)
mass m
k . k
[ x
G —F— - Qd
- 0 0 T 27 i
L] 3 B I
I 4 |

The first step is to make a FBD and corresponding inertia diagram Where it is assumed
the left spring is in tension and the right side spring is in compression.

Shape of input
F(t) excitation is given in

I problem
i K2LG .
%Hj/

Inertia

FBD

Taking moments around the pivot o where the bar is rotating around, and using anti-

clockwise as positive gives (this assumes small angle approximation)

Y M=10
L \L 3L \ 3L 3L ..

But I, is the mass moment of inertia around o, which is
parallel axis

ICg ,_/7
1 1
I,= —mL?+ m|-L
12 4
7
= —L%m
48

Therefore the equation of motion (1) becomes

7 o . > 9I? 3L
12 Y - —
48L mo k(166+ 16 6)+k4x(t)
.. 10 48 48 (3L
L2 _LZ —
m6+6(k16 )7 k7(4)x(t)
.. 30 361

Therefore

[0k
“n=NTm
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We now need to expand x (t) in Fourier series. x (t) has period of 7. This is not even and
not odd function.

X
x(t) = —t
T
Hence
17X, 2X(2\ X,
a():?f —tdt:——z :—2T =X
570 T TT o T
1 X 2
”n:Tf —tcos|—nt|dt
—_ O T
2
2X (T 21
= —— tcos|—nt|dt
(ol T
2X
=220
7T
And
1 X 2
b, == —tsin (—nnt) dt
- Jyo T T
2
2X T . (2¢
:——f tsin | —mnt|dt
Tt Jy T
_2X 72
Tt \ 2nm
X
onm
Hence

n=1 T
X X1 (271 )
X = - — —sin | —nt
2 mi4en T

X X{1 27
X ——— ) —sin|—nt
2 n nz:]l no ( T )
To verify this solution, the above is plotted for number of terms to see if it will approximate

the original x (t).

ClearAll[x, n, t]
X0 =1;
T0 = 2;
numberTerms = 20;

x[t_] = X—: -xe/ PiSum[% sin[2Pi/Tent], {n, 1, numberTerms}|;
Plot[x[t], {t, @, 3T0}]

1.0F
081
0.6
04}

0.2}

Now we go back to the original equation of motion (2), and replace x (t) by its Fourier
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series expansion

mb + 6 (@k) = k?)—61 (§ X Z 1sin (Z—Rnt))
n

7 7L\2 m4He T
18X 136X( . (2m 1 . (2¢n 1 . [2¢n
=k———-k———|sin| —t|+ = sin|—2¢| + = sin | —3¢| + -
7 L n7L T 2 T 3 T
18X 136X . 1 . 1 . 1 .
= k7f k=T (Sln (wt) + 5 sin (Qwt) + 3 Sin Bwt) + 2 Sin (4wt) + ) (3)

Linearity is now used to find the solution to the above by adding the the steady state
response to each of the terms. The steady state response to the first term above, which is

Bk is the steady state response to the ODE
7 mL

Which Is given by

But k,, = ?k, therefore

_(18,x) 7
Y =\ 7T | 30k

99X

T 15L
This is the response to only the first term in (3). Now we do the same for each of the trig
terms. But we only need to consider one general term. The ODE we will look at now is

) 136X 31 (2
m9+9(30k):k—§— —sin(—”nt)
T

7 n7 L& n
_kl 36X (. 2nt +1 . 2n2t +1 . 27'(3t N
=k—— 7 |sin{— 5 sin|— 35| —
136X (. 1 . 1 .
= k;7f (sm (wt) + 5 sin Qwt) + 3 sin Quwt) + )

30 136X1
k| =k|———=——sin (nwt)
w7 Ln

= Fysin (nwt) (4)

136X1
foe (L2051

Where

n7 Ln
Fo
k

Xst =
eq
136X1
n7Ln

30

7k
6 X

~ 5nLn

We know the steady state (particular) solution for (4) is

st (t) =

()

Xst .
——  __sin (nwt 6
o) ) (©)
Where r is
21

1’:2: T = 277
wy /30k - [30k
7 m 7 m

The above is the steady state response for the n'" term. So the total response is the sum of

(7)
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all these responses. Putting all this together, we now obtain the steady state solution as

— 9X S Xst .
st (t) - kﬁ - ngl m S11 (na)t) (8)

Where x; is given (5) and r is given by (7) and w = zTn To try verify the above, it is plotted
using the following values X =1,L = 10 meter,k = 100 N/m,t = 3sec and m = 5 kg. This is
the result (for 30 terms in Fourier sum)

Clear[n]
X0 =1;
TO = 3;
mo =5;
ke = 100;
Lo = 10;
6 X0
t= —— —;
5Pile ken
30 ke 1.
7 mol’

wn = Sqrt[

9 Xe [ xst
1- (nr)?
Plot[yx180/ (2Pi), {t, @, 5T0}, Frame -» True, GridLines - Automatic,
GridLinesStyle - LightGray, PlotStyle -» Red, ImageSize - 500,
FrameLabel » { {"theta(t) (degree)", None}, {"time (sec)", "Steady state solution for prroblem 3"}},
BaseStyle -» 14]

sin[nwt], {n, 1, 39)];

<

Steady state solution for prroblem 3

0.05
0.04
0.03
0.02

0.01

theta(t) (degree)

0.00
-0.01

0 2 4 6 8 10 12 14
time (sec)
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2.8.4 HW 8 key solution

ME 440
Intermediate Vibrations

Homework #8 (3 problems)
due Thursday, November 9th, 2017
Problem 1

Download the ANSYS input file “MODAL pipe flywheel.txt” from HW7 on Canvas, run this
input file in ANSYS and go through the file line by line to figure out what the system parameters
are for this modal analysis. (Hint: When viewing the mode shapes within ANSYS, try plotting
all 3 displacements and all 3 rotations (1 at a time) available under the “Nodal Solu” / “DOF

Solution™ option; this should be helpful in determining the type of displacement associated with -
each specific frequency.

A) Modify the “MODAL pipe flywheeltxt” file to use ANSYS to predict the natural
frequencies and mode shapes for the problem listed below (NOTE: you should remember
this problem from HW3).

A flywheel is mounted on a vertical shaft, as shown below. The shaft has a diameter 4 and
length / and is fixed at both ends. The flywheel has a weight of ¥ and a radius of gyration of
r. Find the natural frequency of the longitudinal, the transverse, and the torsional vibration of
the system. For the parameters, assumethat d=12in,a=2f, b=41{t, W=1001bsand r =
16 in. (Assume the shaft is massless and the flywheel is rigid.)

rileies
¥ ES ,*
Flywheel ; a |
et
. ' K
Shaft e 5
-
* : |
-

For this problem, submit a hard copy of your modified .txt file and also create a table comparing
the analytical and finite element frequencies (including % error) for the first longitudinal, first
transverse and first torsional mode. Which mode has the most error? Which mode SHOULD
have the most error? And why?

Problem 2

A centrifugal pump, weighing 700 N and operating at 1000 rpm, is mounted on six springs of
stiffness 6000 N/m each. Find the maximum permissible unbalance in order to limit the steady-
state deflection to 5.0 mm peak-to-peak.
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| (1)
1 ouecoorie  Spledy e

Determine the steady-state response of the system O(z) due to the input excitation shown,
using the system parameters given in the figure. (Use a Fourier expansion of the input
excitation.) '

. -
35 Lnens Seedl eselleirns —

x(

P
Uniform bar, X
k mass m

P
N
e —

Betevancian  SDM é& oo Sy g tenm ¢
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29 HWI

2.9.1 Problem1

Problems 2/3 (due Friday, November 17" by 4pm)

A compressed air cylinder is connected to the spring-mass system shown in Figure (a) below.
Due to a small leak in the valve, the pressure on the piston, p(?), builds up as indicated in Figure
(b) shown below. Assume m = 10 kg, £ = 1000 N/m and d = 0.1 m and that all initial conditions

are zero.
Valve %&\

\su/l{osc
\
\

B;

Compressed
air
cylinder

>

p(t),kPa

p() =50(1 - e73)

(b)

Solve for the complete response of the piston by using direct integration.

Since this is an undamped system, the equation of motion is
mx + kx = F ()
Where F (t) = Ap(t) and p () is the pressure. Therefore
F(H) = (50x10%) A(1-e)

The term 50x10° was added above because the units were given in kPa and need to convert
them to Pa. The equation of motion becomes

m¥ + kx = (50 X 103) A (1 _ e—3t)
= (50 x10%) A - (50 x 10%) A

To simplify notations, let § = (50 X 103) A. The above now becomes

mi +kx = — e 1)
The solution to the above can be found by adding the two particular solutions of
mx +kx = f8 (2)
And
mi + kx = —fe™>! (3)

To the homogeneous solution of mx + kx = 0. This can be done since the ODE is linear.
The particular solution to (2) is found by assuming x, (t) = C; where C; is some constant

and substituting this into (1) and solving for C; gives kC; = or C; = g, hence

)=t (4A)

The particular solution to (2) is now found. From the lookup table, assuming x, (t) = Cqe™3
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and substituting this into (2), and since %, = -3C;¢™ and ¥, = 9C;e™ gives
9mCie™3 + kCie™3 = et
9mC1 + kC1 = —ﬁ

_ P
G = Om + k
Therefore
_ —p —3t
X2 () = — ke (4B)

Now that the particular solutions are known (4A,4B), they are added to the homogeneous
solution (which is known) and the complete solution for (1) is

xp(h) p(t)

x () = Acoswyt + Bsinw,t +x,1 (£) + x,2 (f)

_ - PP
= Acosw,t + Bsinw,t + . 9m+ke (5)
Initial conditions are now applied to determine A, B. Since x (0) = 0 the above becomes
_ . B__B
0=A4+ k 9m+k
__B B
Im+k k
The solution (5) becomes
(B B - PP s
x(t)_(9m+k . cosa)nt+Bsma)nt+k 9m+ke (6)
Taking derivative of the above
N B B\.. B 4
x(t) = -w, (9m Tk sin w,t + w,,B cos w,t + 39m ¢
Since & (0) = 0 then
_ p
0=w,B+ 39m p
__ 3
C m+k)w,
Substituting this in (6) gives the final solution
_(_P__P __ ¥ B__B &
x(0) = (9m+k k) St T G @, Ot T Gk @
Since
[k 1000 _10
U=Nwm TN 10 T
And
B =(50x10°) A
2
0.1
= 108 —_
(50 x 10 )n( > )
=392.70

Then numerically, the solution (7) is
0 = ( 39270 392.70) 10f 3(392.70) Sin10f + 39270 39270 .
90 +1000 1000 (90 +1000) 10 1000 90 + 1000
= —0.032 cos 10t — 0.108 sin 10t + 0.393 — 0.360¢~>*

—3t

Below is a plot of the above to illustrate the solution for some arbitrary time t.

88



2.9. HW9 CHAPTER 2. HWS

d=0.1;

m=10;

k = 1000;

wn = Sqrt[k/m];

A =Pi (d/2)"2;

beta = 50000 % Pix (d/2) ~2

392.699

beta beta 3 beta beta beta
x[t_ ] := [ - )Cos[wn t] - ———— Sin[wn t] + - Exp[-3t];
9m + k k (9m + k) wn k 9am + k

Plot[x[t], {t, ©, 10}, Frame - True,

FrameLabel » {{"x(t)", None}, {"time (sec)", "Solution for probem 2, direct integration method"}},

GridLines - Automatic, GridLinesStyle - LightGray, PlotStyle - Red, BaseStyle -» 12]

Solution for probem 2, direct integration method

0 2 4 6 8 10
time (sec)

2.9.2 Problem 2

Problem 3

Set up both integrals (both options) for solving for the response of the piston by using Duhamel’s
integral. You do NOT need to complete either of the integrations.

The force on the piston is
E(t) = Ap (D)

2
Where A is the area of the piston whichis A== (g) . Since this is undamped system, the

equation of motion is

mx + kx = F ()

To solve using Duhamel integration, the impulse response g () = % sin (wyt) is used. The

integration is done using the two options.

29.21 Option1l

Xconv (t) = j:F(T)g(t - T) dt

= mjj)n j:p(t) sin (w,, (t — 1)) dt
_ min fo '50(1000) (1 - %) sin (@, (¢ - D) dr

Where 50 (1000) is used since the units are in kPa. The above becomes

Xeomo () = (5 X 10%) % f t (1 - %) sin (@, (t - 1)) dr
nvo

= (5 X 104) mzj) (j: sin (w,, (t — 1)) dt — j: e~ sin (w,, (t - 7)) El’l')

89
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The first integral in (1) becomes

t
f sin (@, (- 1) dr = - (—COS (@i (£~ T)))
0 0

_a)n

= L (cos(w, (t- D)),
a)n

1 (cos (w,, (t — 1)) — cos (wy1))
w

n

= L (1 = cos (wyt)) (2)
w

n

The second integral in (1) is found using the handout integration tables
ae™sin (b + cx)  ce™ cos (b + cx)
a? + c? - a? + c?
In this case a = -3 and b = w,t and ¢ = —w,,. The above becomes after substitution

—36_3T sin ((Un (t - T)) _ _wne_?n COs (wn (t - T)) )t
0

f e™sin (b + cx) dx =

ft e~3Tsin (w, (t — 7)) dt = (
0

9+ wj 9+ w?
1
CEy (3737 sin (w, (t — 7)) + @, cos (, (t - 'c)))
1
9+ w2
3 w,e™3 + 3sin (w,t) — w, cos (w,t) @)

9+ w?
Substituting (2,3) into (1) gives the final result

t
0

(wne‘3t — (=3 sin (wy,t) + w,, cos (a)nt)))

Xeono (£) = (5 X 104) mA

(wi (1 cos (@) - w,e~3 + 3sin (w,t) — w,, cos (a)nt)) )

2
» 9+ wi

Because initial conditions are zero the solution is

X (t) =Xp (t) + Xcov(t)

= Xcov(t)
Substituting all the numerical values, and since w, = 1/% = % =10 then (4) becomes
- (0.1 )2 N
2 1 10e73 + 3 sin (10t) — 10 cos (10t)
) =(5%10%) ———=(1- 101)) -
x() = (5x10%) vy (10 (1= cos (105) 109
1 10e~3* + 3 sin (10¢) — 10 cos (10¢)
=3.927 | = (1 - cos (10t)) —
3.92 10( cos (101)) 109 )
1 10 10 3
_ 2 d . R
=3.927 10 (1 - cos(101)) + 109 cos (10¢) 1096 109 sin (10t))
1 10 3 9
=3.927 = - —e 3 - —sin(10t) - —— 10t
10 109° 100 51 (109 = 75g5 cos( ))

This is a plot of the above, which agrees with plot from the direct integration method. This
verifies the above result
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d=0.1;
m=10;
k = 1000;
wn =Sqrt[k/m];
AO =Pi (d/2)"2;
50 * 1000 AO 1

xconv[t_] i= — | — (1 -Cos[wnt]) -
mwn wn 9 + wn?

(Wn EXp[-3t] +3Sin[wn t] - wn Cos [wn t])

Plot[xconv[t], {t, @, 10}, Frame - True,
FrameLabel -» {{"x(t)", None}, {"time (sec)", "Solution for probem 3 option 1"}},
GridLines -» Automatic, GridLinesStyle -» LightGray, PlotStyle » Red, BaseStyle -» 12]

Solution for probem 3 option 1

0.5

.................

0 2 4 6 8 10

time (sec)

2.9.2.2 Option 2

e 0= | Ft-Dg(dr

= A j:p(t—r)sin(a)nf)d’(

mw,

At
L f 50 (1000) (1 - e3¢0 sin (w,,7) dt
mwy Jo
Where 50 (1000) is used, since the units are in kPa. The above becomes

A t
Xeono (£) = (5 X 104) p— L (1 - 6_3(t_T)) sin (w,,7) dt
n

A t t
= (5 X 104) - (f sin (w,7) dT — f e=3=D sin (w,,7) dT) (1)
Wy \Yo 0

The first integral in (1) is now evaluated

ft sin (w,,7)dt = L (cos (a)nT))g
0 w

n

_—1 (cos (w,t)—1)
)

n

- L cos@,) @)
w

n

The second integral in (1) is

t t
f e 3= sin (w,7) dt = f ¢33 gin (w,7) dt
0 0

&

= f e~3e3 sin (w,,7) dt
0

t
e f AT sin (w,7) dt 3)
0

This integral is found using tables

f e™ sin (bx) dx = e (asin (bx) — bcos (bx))

a% + b?
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Where in this case a = 3 and b = w,, Therefore (3) becomes

: t
et f t 3T sin (w,7)dt = e 7" (3sin (@, T) — @y COS (@,T))
0 " 9+ w? 0

t
3T (3 sin (w,T) — w,, COS (w,ﬂ)))o

(
(e3t (3sin (w,t) — w,, cos (wyt)) — (—wn))
5 (e

9+ a)n
3 .
= 9raz (B sin (w,t) — w, cos (wyt)) + a)n)
1
_ - -3
=5t w2 (3 sin (wyt) — w,, cos (w,t) + w,e t) (4)
Substituting (2,4) into (1) gives the final result

A -3t

3si t) — £ +
Xeono (F) = (5 X 10%) . sin (wyf) — wy, cos (w,t) + wye

9+ w?

(i (1 - cos () - 5)
a)n

n

Because initial conditions are zero then
X (t) =Xy (t) + Xcou(t)
= Xeoo(t)

Comparing (5) above to equation (4) found using option (1) shows they are the same as
expected.
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210 HWI10

Problem 1. Use Newton’s Law to determine the equation of motion. Solve for the natural
frequencies and mode shapes without using a computer (solve by hand). Use your hand written
solution to write out the 2x2 modal matrix (normalized) and the 2x2 Q matrix.

Problem 2. Solve for the natural frequencies and mode shapes using Matlab. (Include a screen
shot of your Matlab output.)

The sphere of mass m is attached to the end of a cantilevered beam that is fixed to
a carriage of mass 2m as shown in the figure below. The generalized coordinates
of the system are the absolute displacements x; and x, of the carriage and sphere,
respectively. Determine (a) the mass and stiffness matrices of the system, and (b)
the system’s natural circular frequencies and modal matrix [«] if £ = 200 Ib / in.
andm=21b-s’/ in.

200 Ib/in.
2 1b-s?/in

non

2% 2k N
W 2m k
: N
Q__O
N A\

Partial answer: @, = 16.68 rad/s

2.10.1 Problem 1

To make it easier to obtain the equation of motions, the top mass m is modeled as attached
to spring of stiffness k which is in turn attached to an infinitely stiff vertical massless beam.
This way the vibration of the mass m at the top can be more easily modeled.

T2

i
vibration of x

This is an infinitly stiff x

beam and remains Spring of stiffness k,
vertical. Stiffness is assumed to remain
modeled by the spring \ horizontal

above. This is also the

equilibrium position of xs
T2 — 1

2%k 2k

A AN 2m

‘%x 1

Simplified model of the original system

Based on the above diagram, we now obtain the free body diagram as follows. In this, we
assume that x, > x; and both as positive. Hence spring k attached to m is in tension.
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—
]C(J?Q — 1‘1)
massless
F,
Fy Y
<«
p
— Fz
2k$l 2]{5561
P 2mg -
\
v
N

The top mass m vibrates in horizontal direction only. Hence this assumes the spring will
remain horizontal and we must assume that x, — x; remain small for this model to be

realistic.

From this free body diagram we see now that the reaction force F, is equal to k (x, — x7).
(By resolving forces in the x direction for the massless beam).

Therefore

Fx:k(XZ_xl)

And the equation of motion for x; is

mj(.fz =-k (XZ - xl)

mb&z + ka - kX1 =0

The equation of motion for the cart is

2mx, + 5kx1 - ka =0

27115&1 = —4kX1 + Fx

ijél = —4kx1 +k (XZ - xl)

Writing (1) and (2) in matrix form

[

-k

At-4)

[kl 2ot 4o

(1)

(2)

The first step is to find the eigenvalues (which are the square of the natural frequency) for

2m
0
Or
4 0
0 2
the system.
Let

A=MIK

40
o 2

94
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But

Hence

20" 1 |20
0 2| det(M)|o 4
12 0
8|0 4

|

0][1000 -200
=200 200

1
2

NI— O

RN
1
O e

250 -50
~ [-100 100

Now we will find the eigenvalues of A (these will be the w? values). To find the eigenvalues

of A, we solve

Hence

Therefore, the eigenvalues are

250 =50
et
-100 100

det ([A] - A [I]

)=0
0 Al]
~50
100 — A

250 - A
-100

(250 — 1) (100 — 1) — 5000 = 0

A? = 3504 + 20000 = 0

-b Vb2 -4ac

A=—=

2a 2a
350 . /3502 — 4 (20 000)

2 2
=175 +103.08

= {71.92,278.08}

A = w? = {71.92,278.08) (3)

The natural frequencies of the system are the sqrt of the eigenvalues. Therefore

Hence

w, = {71.92,278.08}

= {8.4806,16.676}

wp(1) = 8.4806 rad/sec
wy(2) = 16.676 rad/sec

The next step is to find the eigenvectors. These are also called the shape vectors, or the u
vectors. Each eigenvalue will generate one eigenvector. We need to solve

[Al{u} = A {u)

For each eigenvalue, we find the corresponding eigenvector.

For A =71.92, we obtain the equation

|

From first equation

250

=50
il = 71,9941
-100 100 Unq Unq

2501411 - 501/121 = 71.921/111
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We always let u;; = 1. Therefore

250 — 50uy; = 71.92
250 —71.92
Up = 50
= 3.5616

. 1
u =
3.5616

For A = 278.08, we obtain the equation
250 =50
12 _ 978,08 12
-100 100 [25%) Uy

2501/[12 - 501/122 = 278.081/112

Therefore, the first eigenvector is

From first equation

We always let 11, = 1. Hence

250 — 50y, = 278.08

250 - 278.08
M2 = 55—

=-0.5616

Therefore, the second eigenvector is

—-0.561 6

=l
N}
Il
—_——
—_
—_————

Therefore the modal matrix [u] is

1 1
u=
3.5616 —0.5616

And Q matrix is

0~ a)rzl(l) 0 ]

| 0 wig
o2 0
| o 278.08

And the system of equations written in principle coordinates g is

fa} +1Q1{q} = 10}

1oljmm| 7192 o |fao|_|o
0 1|0 0 278.08| i (O] o

which is now decoupled. The solution in normal coordinates is

xq (£) U Uupp
=A; Ccos\w 1t—(P1 + A, Cos\w 2t—¢2
{xz (t)} {“21} ( " ) Uy ( " )
= A U os (8481t — ;) + Ay Ul (16.676t - ¢, )
3.5616 —-0.561 6

21011 Appendix

This is derivation of the same equations of motions using energy method. (In this example,
this method is much simpler to use to find equation of motions). The kinetic energy of the
system is

1, 1 :
T= me% *3 (2m) i
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And the potential energy comes only from the springs, since we assumed the top mass m
remain horizontal as it vibrates back and forth

1 1
U= 54kx% + ok (e - x;)?
Therefore the Lagrangian is
r=r-u

1 1
= me% + mx% -5 (4k) x% - Ek (xp — xl)2

EOM for x
d (8F) aT
[ =)1-Z==0
dt Xq X1
d _ .
T (2mxq) — (—4kx; + k(xy; —x1)) =0
277’15('71 - (—4kx1 + ka - kxl) =0
277’1.‘7&1 - (—5kx1 + ka) =0
27’1/1..751 + 5kx1 - ka =0 (1)
EQM for x,
d (&F) T
—[=]-—=0
dt X7 pe)

2 ()~ (k(x =) = 0
mxy — (—kx, + kx1) =0
mXy + kxy —kx; =0 (2)
In Matrix form (1,2) becomes
[Zm 0] {x1}+ [Sk —k] {xl} _ {o}
0 m||X% -k k||x 0

Which is the same exact result obtained earlier.
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2.10. HW10

2.10.2 Problem 2

The Matlab code is the following

#Solve HW 10, problem 2 using Matlab
/Nasser M. Abbasi, ME 440, Fall 2017
/#see HW 10 for more detatils.

m= 2;
k 200;

mass_mat = [2%m O;
0 m]

stiffness_mat = [5xk -k;
-k k]

A _mat = inv(mass_mat) * stiffness_mat

[eig_vectors, eig_values] = eig(A_mat);

natural_frequencies = sqrt(diag( eig_values))

eig_vectors(:,1) = eig_vectors(:,1)/eig_vectors(1,1);
eig_vectors(:,2)/eig_vectors(1,2);

eig_vectors(:,2)

eig_vectors

The output is

mass_mat =
4 0
0 2

stiffness_mat =

1000 -200
-200 200
A_mat =
250  -50
-100 100

natural_frequencies =
16.6757
8.4807

eig_vectors =
1.0000 1.0000
-0.5616 3.5616
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2.10.3 Problem 3

Problem 3.

Determine the flexibility matrix of the uniform beam shown in the figure below. Disregard the mass of the
beam compared to the concentrated masses fastened on the beam and assume the beam has a stiffness of E/
and that all /;= /.

mli ms ]ﬂls

SRR
UWMHRRRRR

Definitions For stiffness matrix [K], element k;; means: Apply unit displacement at location
j and measure the force at location i. While for flexibility matrix [4], its element a;; means:
Apply unit force at location j and measure the displacement at location i.

To solve this problem, this part of handout is used

Fixed-fixed beam*

Yl ) =
4 Vo
Z) R Z
< a b——
P
@
= i [(26 — 30X + 3I(I — b)xX*] {x < a)
Y GEIP
i ) 3 P
y—w@ (2b—3!)x3+31(! b}xl—l— bz(x ay ] (xza)

Since [a] is symmetric, only lower triangle part needs to be found (or upper triangle).

an

a1 dx

asz1 Aazx as3
To find 4y, a unit force is put at location m; and displacement at m, is measured. To find
ay1, a unit force is put at location m, and displacement at m, is measured and so on. The
formulas in the above hand out are used for this. To speed this process and make less

error, a small function is written to do the computation. Here is the function and the result
generated for ayq, a5, as; a; a3, a3
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Define the function to find a_ij

getFlexibility([x ,a , b_] := Piecewise[{

b2
{— ((2b -310) x* +3 10 (L0 - b) xz),xsa},
6 EO IO LO3
b? Lo3
{— ((2b—3L0) X +3L0 (LO-b) x*+ — (x-a)3],x>a}}];
6 E0 I0 LO> b?

Call the function to find each element in lower triangle

Lo=4L;
a=L;b=3L; x=1L;

flex[1, 1] = Assuming[x > @, Simplify[getFlexibility[x, a, b]]]
93

64 EO 10

a=L;b=3L;x=2L;

flex[2, 1] = Assuming[x > @, Simplify[getFlexibility[x, a, b]]]
L3

6 EO 10

a=L;b=3L;x=3L;

flex[3, 1] = Assuming[x > @, Simplify[getFlexibility[x, a, b]]]
13 L3

192 EQ 10

a=2L;b=2L;x=2L;

flex[2, 2] = Assuming[x > @, Simplify[getFlexibility[x, a, b]]]
L3

3E0 IO

a=2L;b=2L;x=3L;

flex[3, 2] = Assuming[x > @, Simplify[getFlexibility[x, a, b]]]
L3

6 EO IO

a=3L;b=L; x=3L;

flex[3, 3] = Assuming[x > @, Simplify[getFlexibility[x, a, b]]]
93

64 EO 10

Therefore, using this result, the lower

Hence by symmetry

triangle is

9
64 3
T o1 s
5 1 EI
192 6 64
9 1 13
64 192
[a] = | 2 i L
“|s
o1 og|HE
192 6 64
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3.1 Solve slide 412

Reproduce flexibility matrix, slide 412

3= EI = 86 * 1076
Lo = 120;
y[x_, a_, b_, LO_, pLocation_] := If[pLocation < Lo,

Which[
1 b2) , b b2 )
<a, 3b|1-— | x*-—|3-—]| Xx°|,
2 EI Lo? Lo Lo?
2
x 2 Lo, (x-Le)
EIL®
1
Which[
x < Lo, (¢ -Lex?),
4EILO
210
X 2 Lo, (x3-L0x2-[ +1] (x-Le)3)
4EILO 3a

L@ =120; a=10/2; b=10/2; x=10/2; pLocation = L8 / 2;
all =y[x, a, b, L@, pLocation];

Lo=120; a=10/2; b=10/2; x = Lo +L8/2; plocation = L8 / 2;
a2l =y[x, a, b, L@, pLocation];

Lo =120; a=10/2; x=10/2; pLocation = L@ /2 +Le;
al2 =y[x, a, b, L@, pLocation];

L0 =120; a=10/2; x=10+L0/2; pLocation =10/2+10;
a22 =y[x, a, b, L@, pLocation];

a = {{all1, al2}, {a21, a22}};
MatrixForm[N[a]]
Out[67]//MatrixForm=
0.00018314 -0.000313953
-0.000313953 0.00209302

Printed by Wolfram Mathematica Student Edition
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3.2 Solving slide 390 example

[AO]
Example: Forced
Undamped Response

* Find response of the system

W " | e ]
L
f@)
By inspection
[k]:lk1+k2 —k, :[27 —18]
~ky  ky+ks -18 36

And

mq 0 1 0
[ )|
0 mo 0 2

bt e

The system is

3 sin 4t
0

(1)

The above is solved using modal analysis in order to decouple the system. The first step is

to determine the eigenvalues.

[A] = [m] " [K]

12 of[27 -18
2o 1||-18 36

1 0] [ 27 -18
= 1

0 >[]-18 36
|27 -18

-9 18
To find the eigenvalues of [A] we solve |[A - Al =0 or

27-A  -18
-9 18-1
A2 450 +324 =0

Hence
A =9
Ay =36
Which implies
wyqy = 3 rad/s
Wp(z) = 9 rad/s
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Now we find the eigenvectors u; or the shape vectors. For A; =9
U3 U
27 -18 Uuq —9 uq
-9 18 Uy B Uy
27u; = 18uy | |9uy
—9u; +18u, | |9uy

27111 - 181/12 = 9M1

Using first equation only gives
We always normalized to u; =1, hence the above gives

27 181, = 9

1/l2:1

X

To find the second eigenvector. For A, = 36
U up
27 -18 Uuq 36 uq
-9 18 Un Uy
27M1 - 181/!2 _ 361/11
—9u; +18u,| | 35u,

271/[1 - 181/[2 = 361/[1

Therefore the first eigenvector is

Using first equation only gives

We always normalized to u; =1, hence the above gives

27 —18u, = 36
1

Uy = ——

27

Therefore the second eigenvector is

Hence the modal matrix is

Using the modal matrix, we can now decouple the original system given above in (1) which

is
- {xl} K] {xl} _ {3 sin 4t} )
x2 x2 O

Let 7 ® = [u] ) , then the above becomes
xa () q2 (t)

i1 () q1 (t) 3sin 4t
k =
il {572 (f)} + Ll {‘12 (f)} { 0 }
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Premultiplying both sides by [u]" gives

T i1 (t) T q | . r|3sin4t
[u]" [m][u] {qz(t)}+[ul [k] [u] {lh(f)}_[u] { . } (4)

But

And

T
T o127 -8|ft 1| [27 0
o, (2 20 3

3 0f g, () N 27 0| jq(H)| _ |3sin4t
0 :lea[ [0 54]|q®] |3sin4t

Hence we obtain 2 ODEs

Then (4) becomes

31 () + 27g4 () = 3sin 4t

gq'z () + 549, (t) = 3sin 4t

i1 (t) +9g1 (t) = sin4t (5)
Go () + 364, (t) = 2sin 4t (6)

Note There is a short cut to obtain the above (5,6) equations directly as follows. Starting
with (2), we just write

[1 O} i +lw§(1) g ] L e

00 C]z(t) 0 a)n(z) q2 (t) 0
no+on® | 1 1] 1 o] [3sings
G2 () ++360 (0] 1 3] |0 2] | o0

3 sin 4t
"~ |2sin 4t

Which is the same as (5,6). This short cut just needs finding [u]_1 [m]_l. Use this short cut
for the exam.

Solving (5)

The homogeneous solution is
1, (t) = Aj cos 3t + By sin 3¢

And to find the particular solution, we guess g;, = Csin4t, hence 4;, = 4Ccos4t and

f1p = —-16C sin 4t. Plug-in in (5) gives

—16C sin4t + 9 (C sin 4t) = sin 4t
—7Cq sin 4t = sin 4t

o]
1=y

Hence q;, = —% sin4t and the complete solution is
1
g1 (t) = Ay cos 3t + By sin 3t — 7 sin 4t

Now we do the same to solve (6)

The homogeneous solution is
o (t) = Ay cos 6t + B, sin 6t

And to find the particular solution, we guess g,, = Csin4t, hence g, = 4Ccos4t and
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i2p = —16Csin4t. Plug-in in (6) gives

—16Csin 4t + 36 (C sin4t) = 2sin 4t
20C; sin 4t = 2sin 4t
1
C = T

1
Hence g, , = 5 sin4t and the complete solution is

1
o (t) = Ay cos 6t + B, sin 6t + T sin 4t

Therefore the solution in principle coordinates is

g1 (t) = Ay cos 3t + By sin 3t — ; sin 4t
qgo (t) = Ay cos 6t + B, sin 6 + 11—0 sin 4t
Since {x} = [u] {q], then {q} = [u]_1 {x}. Therefore
{qO} =[] (x (0)

)
n | _[1 11 (0)
O] |1 —§ 1 (0)
2
3

o

Il
" |
WINW | =
WIN

And
i
42 (0) T

Applying first initial conditions to (5A,6A) gives
1 = Al
2 = Az
Hence (5A,6A) becomes
1
g1 (t) = cos 3t + By sin 3t — 5 sin 4t

1
go (t) = 2 cos 6t + B, sin 6t + 0 sin 4t

Taking derivatives
4
g1 (t) = =3sin 3t + 3B; cos 3t — 7 €08 4t

4
go (t) = =12sin 6t + 6B, cos 6 + 0 cos 4t

Applying the second initial conditions to the above gives
4

6:3B1—§

6= 6B, +
2710
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Solving gives By = » B, = —%. Hence (5B,6B) become

EI
46 | 1 .
g1 (t) = cos 3t + > Sin 3t - - sin 4t (5C)
(t) = 2 cos 6t 10 6t + L 4t (6C)
g (t) = 2 cos T 10 5in

The above is the solution in principle coordinates. Now we transform it back to normal

coordinates. Since {x} = [u] {q , then

x1 (t) :P”n ”12] q1 (t)
X ()] |u21 uxz] (92 (H)

[1 1 ][cos(3t)+ (%) sin (3t) — (%) sin (4t)
) 1 - 2 cos (6f) — (E)sin (61) + L ginat
- 2 15 10

46 . 3. 16 .
(:0831,‘+2(3os6t+Hsth—%smélt—ﬁsm&L

46, 27" . g .
cos3t—cos6t+Zsm3t—msm4t+ﬁsm6t

The above is the final solution. Here is a plot of x (t),x, (t)

mySol = {x1[t] - Cos[3t] +2 Cos[6t] +46/21Sin[3t] - 3/70Sin[4t] - 16/15Sin[6t],
X2[t] » Cos[3t] - Cos[6t] + 46/21Sin[3t] - 27/140Sin[4t] +8/15Sin[6t]};

Plot[{ x1[t] /. mySol, x2[t] /. mySol}, {t, @, 2}, Frame - True,
GridLines - Automatic, GridLinesStyle - LightGray,
FrameLabel -» {{"x1(t),x2(t)", None}, {"time (sec)", "Solution to slide 390"}},
PlotLegends -» {"x1(t)", "x2(t)"}, ImageSize » 400, BaseStyle - 14]

Solution to slide 390

2 \\/
g 0 -
X — x1(t)
= > x2(t)
-4
0.0 0.5 1.0 1.5 2.0

time (sec)
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3.3 Solving slide 362 example

[AC]

Example 4 ,

The cylinder of mass m, radius r, and centroidal mass moment of inertia
I = mr?/2 rolls without slipping on the platform of mass 2m as shown in the
figure. The generalized coordinates z; and x5 of the system are the absolute
displacements of the platform and the mass center of the cylinder, respectively.
Note that the absolute angular displacement of the cylinder is (z2 — z1)/r.

e Derive the EOMs and indicate whether the EQOMs are coupled

e Using MATLAB, determine the system’s natural frequencies and modal
matrix

e Determine the principal coordinates associated with this system and state
the set of ODEs satisfied by these new generalized coordinates

Assuming x, > xy,%, > X1,X% > ¥; and all are positive, the free body diagram for the
cylinder and the cart is

k(xo —x1) k(xg — 1) = + o
T <« F
Ny
kaxy k(xe — 1) k(ze — 1) 2man
<> N —> e —
| P
2m, T
g N

Equation of motion for cylinder. )} F,
=2k (xy —x1) — F = miX, (1)
And taking moment around C.G. of cylinder, using anti-clock wise as positive
—Fr=-l,a
Fr=1I,a
Since we assumed no slip, then (¥, — ¥;) = ar and the above becomes

(%3 — %9)
Cg r

r= Icg(xzr_le)

— 17’117’2 (XZ B j&1)
2 r2

1
=5 (X — ¥71) (2)

Fr=1
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Using (2) in (1) gives EQM for x,

1
mj(.fz +2k(x2 —xl) + Em(xz —j(.fl) =0
3

1
Emj('fz - mel + 2kxy, —2kx; =0 (3)

For EQM for x;, resolving forces in x direction gives
—kx1 + 2k (Xz - xl) +F = 2mx1

Using F found in (2) into the above gives
1
—kx1 + 2k (XZ - Xl) + Em (.XZ - x1) = 2mx1
Simplifying

1
2m5€1 - Em (.XZ - xl) + kxl -2k (XZ - xl) =0

1 5
—mez + mel + 3kx1 - ZkXZ =0 (4)

Writing (3,4) in matrix form gives (note. Using (4) for top row and then use (3) for second

row)
m —im] (% 3k —2k||x 0
O LN = (5)
—Em Em X> -2k 2k X2 0
If we had picked (3) for top row and then (4) for second row, the result will be
1 3
- - X -2k 2k 0
[52"1 21'”] ! +[ ] = (6)
Em —Em Xo 3k -2k Xo 0

Since So (5) and (6) are equivalent. To verify both (5) and (6) give the same eigenvalues,
here is a check

(* eq 5%)
m=1;
k = 1;

massMat = {{5/2m, -1/2m}, {-1/2m, 3/2m}};
kMat = {{3k, -2k}, {-2k, 2k}};

Amat = Inverse[massMat] . kMat;

Sqrt [Eigenvalues [Amat]] // N

{1.353042756497228, 0.5586881437327312}
(* eq 6%)

SetOptions[$FrontEndSession, PrintPrecision - 16]
m=1;

k = 1;

massMat = {{-1/2m, 3/2m}, {5/2m, -1/2m}};
kMat = {{-2k, 2k}, {3k, -2k}};

inv = Inverse[massMat];

Amat = (inv. kMat) ;

Sqrt [Eigenvalues [Amat]] // N

{1.353042756497228, 0.5586881437327312}
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3.4 Solving example 2, lecture 4. ME 440 page 78

Solving example 2, lecture 4. ME 440 page 78

Plot the function

A=2;
T=4;
myperiodic[func_, {val_Symbol, min_?NumericQ, max_?NumericQ}] :=
func /. (val > Mod[val - min, max - min] +min)
flt_]1 :=A/Tt;
Plot [myperiodic[f[t], {t, -T, T}] // Evaluate, {t, -T, 5T},
PlotRange » {Automatic, {-A-1, A+1}}, Exclusions - True,
ExclusionsStyle -» Dashing [Medium], AxesLabel -» {"t", "f(t)"}, ImageSize - 450]

f(t)
3~

2

Find a0,an,bn

a0 = 1/T Integrate[f[t], {t, -T, T}]

outfe}= (]

an=1/T Integrate[f[t] Cos[2Pi/ (2T) nt], {t, -T, T}]

out[7l= 0

Printed by Wolfram Mathematica Student Edition
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2 | example_2.nb

wer= | bn=1/TIntegrate[f[t] Sin[2Pi/ (2T) nt], {t, -T, T}];
b[n_] = Assuming[Element[n, Integers], Simplify[bn]]

4 (-1)"

out[9)= -
n st

Plot approximation for n=10

In[10]:=
Plot[Sum[ b[n] Sin[2nPi/ (27T) t], {n, 1, 10}], {t, -4T, 4T}]
AL
1L
ouor TR BTy S B R SN AT R ENT 4
af
2|

Plot approximation for n=50 to improve the approximation.

In[11]:=

Plot[Sum[ b[n] Sin[ZnPi/(zT) t], {n, 1, 50}], {t, -4T, 4T}]

Out[11]= T T T A P M AN T R T
-15 -10 -5 F 5 10 15,

af

Find Xn and Phase, where

Printed by Wolfram Mathematica Student Edition
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example_2.nb | 3

X, cos(wp t— @) = a, cos(wp t) + by, sin(wp t)

Where X, = 1/ a%+b2 and P, = tan‘l(gj-) and since a, = 0 then phase is 90 degrees and X, = | b, |

In[12]:= X[n_] :=Abs[b[n]];
data = Join[{ {0, ©}}, Table[{n, X[n]}, {n, 1, 10}]];
ListPlot[data, Filling -» Axis, PlotStyle - Red, AxesLabel » {"n", "Xn"}, BaseStyle - 14]

Xn

1.2
1.0
0.8t
Out[14]=
0.6 ?

0.4+ i

02 [ * (]

Verify using Mathematica build-in function

nisi= | data = Table[{i, Abs@FourierCoefficient [myperiodic[f[t], {t, -T, T}],
t, i, FourierParameters » {1, 2 Pi/ (2T)}]}, {i, @, 10}];
head = {"n", "|cn|"};
Grid[Insert[data, head, 1], Frame - All]
n|lcn|
0 )
1 2
Tt
2 1
3 2
3n
a4 1
27
out[17]= 5 2
5
6 1
3n
7 2
7n
8 1
45
9 =
9
10| X
5

Printed by Wolfram Mathematica Student Edition
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4 | example_2.nb

n[18]:=

Oout[20]=

mag = data;

mag[[All, 2]] = Map[Abs [#] &, data[[All, 2]]];

ListPlot[2 * mag, AxesOrigin » {0, @}, Filling - Axis,
PlotStyle - Red, AxesLabel -» {"n", " |Subscript[c, n]|"}]

|Subscript[c, n]|
.
12+
1.0
0.8
0.6

041 *

0.2 . .

Printed by Wolfram Mathematica Student Edition
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3.5 Solving slide 148 example, lecture sept 28, 2017

[AO]

iExample, Deriving EOM

= Cylinder of radius r rolls without slip. Mass of each rod is m,=m/4
= Assume small oscillation and ignore the very small rotational effect of the horizontal bar

= For this system:
= Derive EOM

= Show that the model’s natural
frequency and damping ratio are

[ 12k ¢ 3¢
Wy = =
11m V132km

148

We will solve this using 3 separate bodies. So there are three free body diagrams as shown
below

may )
—degf .
z9
L — Do
Py,
Dy,
Ffrict’ion T
N Pry o

I.40

3 Free body diagrams and kinematics 19
cr —— kr@

In this diagram, it is assumed the horizontal bar only moves in the x direction and this is
all for small angle 6. Now we apply Newton laws to each body.

For disk, we apply 7 = I,0 but using the point D on the figure to take moments around
in order to get rid of the friction F and N terms. This gives (using counter clock wise as
positive)

(kr@)r — py,r = 1,0
kr?0 — Prt = — (Icg + mrz) 0

= ——mr?0 1)
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We now move to the second body, which is the horizontal bar.
E Fy = mpyg,X
m .
_px1 +px2 = Z?’@ (2)
From (2) we solve for p,, and plug it into (1)

m ..
pxl = pr - Zra

Hence (1) now becomes

.. 3
kr?0 — (pr - %r@) r= —Emrze

3 m ,\ .
kr?0 —py,r = - (zmrz + Zrz) 0
7 ..
= —ZerQ (3)
To find p,,, we use the third body, the vertical bar. Taking moments about C.G. of bar

using counter clock wise as positive gives

T = —I0

. ) 1 (m 2
(kr@)rcos 0 + (cr@) rcos 0 + py,rcos 0 +p,,rsin 6 = R (Z) 2rn-o

1 ..

2
=" 0
For small angle the above becomes
k1?0 + cr?0 + py,r + Py,70 = g (4)

12
Py, is now found from vertical balance of horizontal bar. Since it does not move vertically
and assumed to only move horizontally, then

M F,=0
m
_pyl_Pyz_ZgZO

Due to symmetry, p,, = p,, and the above becomes
m
_2py2 = Zg

m
Py, = _gg
Plugging this value for p,, into (4) and solving for p,, gives

k1?0 + cr?0 + py,r — ggrQ = —1—2r29
1(m,.. m .
P = (_E 20 + 3370 - kr?6 — chG)

Plugging the above into (3) gives the equation of motion for disk

.. . 7
kr?0 — (—ﬂrze + %gr@ —kr?0 - c1’26) = —L—Lmrze

12
.. ) 7 .
kr?0 + %1’2@ - %gr@ +kr?0 + cr?0 = —A—LerQ
m . 7 N
0 (2kr* — — ) 20 = ——mr?0 — —r?0
( - ggr|ter 10 - o

11 . .
gmﬂe +cr?’0+0 (2kr2 - %gr) =0

11m 11m 44r

Writing the above in the standard form 6 + 2w, 0 + @260 = 0 we see that

w2 = /gk_ig
" N1lm  44r
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And

2Cw,, 1?—;
3
 1lmw,
3 3c
3 =
3c
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3.6 Beam handouts

Pinned-pinned beam with overhang (P at x = [ + a)* :
we B _ 3
71 Vheort  @Ha+1)
R = *
b { ! 'T' ’ ”"1 P Pax
. = — 2
Y= En [Ean s x<1
P
® Yol ~ -+ - F]  xzl
Fixed-fixed beam with lateral displacement .
_ PP?
12ET .
. 12EI
k= B
P
y= EE}QZXZ - 2x)
() |
|
Fixed-fixed beam* !
Y| . K= P
: " : L Vlxea
4 192E7
f P . x lel/z = T
| b | 2
[ i L
; K=3ET (_-
@ ql
y= 6};3—1;213 [2b — 3D + 31 — B)x*] (x=<a)
13
y=-6%b1[3{(2b—31)f+31(1—(?)x1+§(xfa)3] x=a)
Fixed-pinned beam with overhang*
¥y } k= P
Yh-a
4 T68ET
2 B~ =5
a b
e
1
!
O]
P B b A
y=ﬁ[3b<l —1—2')31—7(3——1—2))(3] x=<a
P P\, b 2 B
=1 -2 -2(3-5 - <x=l
y 12EI{3b<1 B 1(3 Iz)x"+2(x xz)] as<x=
—pbd®
= = =1
Y=g &0 x=
Fixed-pinned beam with overhang (P at x = [ + a)*
wo P12
¥ Vhtra @3+ 4a)
€ — 7 FTY Y el
! Y= 40 =
Pa 21 )
(k) =¥ -2 == .yt :
‘ y 4EII[X3 bcl (3a+1)(x I)} x=1
* Axial extensions due to axial end constraints considered negligibl
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Cantilevered Beam Slopes

and Deflections

Beam Slope Deflection Elastic Curve
0 -PL? —~PL? ~Px -
> > e Or Y
~PL? —5PL? ~-P7
= Viax = v= - =x=
™ T TSR =T T asE] g 0% b=rsia
- LZ
= AR Bx—43L) LR=x=L
wl? —wiLt -
max = ——— Vrnax = v= x* ~ 4Lx + 6L7
6EI = 8EI 287 " £
ML Mr? M2
max — . Umax = =
ET 2E! 2E1
P . T oLt u2
= ‘Um‘ = D = ———— o LT
ST AN = 384E] 2481 ¢ g
O0=sx=Ln2
T3
= (4x — 12)
192E¢
LR=x=<sL
—woL? —woL* —Wox?
O = —— DVrnax = ~—— v = ——— (10L% — 10L% + 5Li* — 1)
24E] " 30E1 12011,
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TABLE 2-1 " SPRING CONSTANTS AND DEFLECTION EQUATIONS OF ELASTIC

O]

N ELEMENTS
s A = area of cross sec?t{on
E = modulus of elasticity
I = area moment of inertia about neutral axis
G = modulus of rigidity
J = polar moment of inertia
Axial (rods, cables, etc.)
fies
N #8
¢ | & b wo P _AE
(@ VN
Coil spring
. _ 64PnR’?
R\ H Gd*
& ) ? k= _fi_ - Gd*
- e 4 A )4_ A - 64nR? ‘
d n = number of active coils|
(b) : R = mean bhelix radius
Torsion
"R Cantilever beam ,,P
. k= g
¥y y L"T—% ;::- e A
4 L —TTA N BV
: P
“ P y=6—E—I(3ax2—x3) x<a
@ y= i-(3»alx -a) x=a
’ 6EI " .
. Simply supported beam (pinned-pinned)*
‘ P 3 el L
k= _
3 L . | ylFa py o
J | l Moy = 2EL (e
v . x a=i2 [3
< a b e
P L N iy - <
i~ ?-x ) x<a
© Pb ]
=— (P-Px -+ (x—a) xza
Y= 6En [(Z e p* 9 }
Pinned-pinned beam with overhang®
b4
p—
x
ﬁrl 7z { 7h7.
b
, ! ‘ P Aﬂ

I CIPERE
}J—6Eﬂ(a2 PYoe— 1)
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Vse o £y Oy o shedid - 4,7.0

Moments of inertia of ' ' Mass Momenis of inertia of
Common Geometric Shapes Common Georetric Shapes
Rectangle ) Slender rod
= 1o 4 y y'
£ P ﬁbh - 3 1
I,=1%bh i R I,=1,=3ml?
I, =i’ B o
1, = 1 N
Jo=sbh(B>+ R | — =
‘-‘—— b ——»l Thin rectangular plate
Triangle : I, =+mb* + &)
I, = &mc?
_ I = Lmb?
I, = ';—617713 h
I = {0k l
.
'*‘_ b— Rectangular prism
- I, = 17rn(l72 + 2)
Circle I, nm(cz e )
y I‘ Lm(a® + b?)

1 54
. ‘ .
Q J Thin disk

I, = %mr2
Semicircle I,=1 =y
4
I,=1,= gart i - i
S { S . :
Jo = far* — : x Circular cylinder
- T+\ I, =%mad
I,=1,=%m3d + L?)
FQuaﬁer circle
Ji= Iy . %WA Circular cone
Jo = ]§'FI’4
I, = %ma’
I,=1, = Im(1a® + 1?)
Ellipse
\ Sphere
I.= -Wab 2
I. =1 = I. = ima
1, = ima®h B= S
Jo ‘(rab(a2 + b%)
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3.7 my cheat sheet

3.7.1 Solution to undamped forced harmonic

3.71.1 Input is Fycoswt

mX + kx = Fycos wt

This model is single degree of freedom system, undamped, with forced harmonice input.
Its solution is given by

x(t) =2, () + x, (1)
Where x, (t) is particular solution and x;, (t) is homogenous solution. We know that
x5, (£) = ¢ cos w,t + ¢y sin w,,t
And assuming x,, (f) = X cos wt for the case w # w, Pluggin this into the ODE, we find that
= XSt
1-7r2

Where r = wﬂ and x, = kF—O the static deflection. Hence the solution becomes
n eq

homogeneous partlAcular
- X
x (t) = ¢1 cos w,t + ¢y sinw,t + : Stz cos wt (1)
-7
Assuming initial conditions are x (0) = xp, X (0) = X, then (1) at £t = 0 becomes
g 0 (})
Xt
Xg =01+

0 1 1— 7/_2

o = X — Xst

Hence solution (1) now becomes

Xst

cos wt
2

X
x(t) = (xo -1 _Strz) cos wyt + Cp sin w,t + I

Taking derivative

Xst Xst

x(t) = —w, (xo — 1 rz) sin w,,t + cow,, cos w,t — S sin wt
At t = 0 the above becomes
Xp = Cwy
X
Cy = —0
a)n
Therefore the solution now becomes (again, this is for v # w,)
X X X
x(t) = (xo - 2) cosw,t+ —2 sinw, t+ —= 5 COs wt (2)
1-vr Wy, 1-7r

3.71.2 Input is Fysinwt

mX + kx = Fysin wt

This model is single degree of freedom system, undamped, with forced harmonice input.
Its solution is given by

x(£) = xp (£) + x, (£)
Where x, (t) is particular solution and xj, (t) is homogenous solution. We know that
Xy, (t) = ¢ cosw,,t + ¢y Ssinw,,t
And assuming x,, (f) = Xsin wt for the case w # w, Pluggin this into the ODE, we find that

Xt
1-12
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[

Where r = — and x,; =
.

n Eq

]f_o the static deflection. Hence the solution becomes

homogeneous partlAcular
. xst .
x (t) = ¢j cos wy,t + ¢ sin w,t + msmwt (1)
Assuming initial conditions are x (0) = x(, ¥ (0) = Xy, then (1) at t = 0 becomes
X0=0
Hence solution (1) now becomes
— < = Xst .
x (t) = xg cos w,t + ¢ sin w,t + _p s wt
Taking derivative
. . Xst
X (t) = —xg sin w,t + cow,, cos w,,t + VT3 cos wt
—-r
At t = 0 the above becomes
Xo = Crw,, + a)i
0 2Wn 1— 7’2
jCO W Xg
G=—-—— 5
w, w,l-r
jCO r
=— - ——X
w, 1-r2"*%
Therefore the solution now becomes (again, this is for v # w,)
X r . X .
x () = xg cos w,t + 0 —— X |sinw,t + —Stz sin wt (2)
w, 1-r 1-r
Notice the difference in the solution. Here is summary
ODE solution
Tp
mi + kx = Fycoswt | x(t) = (xg— =) cos w, t + -2 sin w,t + —% cos wt
-0 “\0 2 n wy n 112
p
—N—
. . X r . X .
mi + kx = Fysinwt | x(t) = xy cos w,t + (w—o - ﬁxst) sinw,t + Srtz sin wt
T —

3.7.2 Solution to underdamp

ed forced harmonic

ODE particular solution only
.. . _ _ ”_01
mx+cx+kx—2 xp(t)—Zk 1
mix + cx + kx = a,, cos (nwt) | x, (t) = %” cos (na)t - cpn)
(1—(nr)2)2+(2(;nr)2
mx + cx + kx = b, sin (nwt) | x, (t) = % - sin (na)t - ¢)n)
(1—(nr)2) +(2Cnr)2
Where
w
r=—
wl’l
2Cnr
Pn = tan™" ( : 2)
1 - (nr)

3.7.3 unit Impulse respones

For undamped system mx + kx = 6 (¢) th

g(®)

e response (solution) is (notes calls these g (f))

sin (w,t)
n

And for an underdamped mX + cx + kx = 6 (t) the response is

1 )
t) = ——e “@nl sin (wgt
g(t) ma)de sin (wyt)
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3.7.4 Duhamel Integral

For arbitray forcing function F (t) which can be of any forum, the response of the system
to F(t), assuming the system was at rest is

o 0= | F@)g(t-1)dr

3.7.41 Some definitions

3.741.1 DLF Dynamic locad factor. DLF = ? But we really only care for the maxi-
st
mum DLF. When the input is constant (step input), the DLF,, = 2.

3.7.41.2 Response spectrum Plots the DLF ., on the y axis vs % where T is the period
of the system on the x axis. This is done for typical inputs such as unit step, triangle, half
sine, etc...
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