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Chapter 1

Introduction

I took this course in Fall 2017 to learn more about Vibration since it was a while since I
studied this.

The instructor was very good and solved many problems in class which was very useful. All
class notes were online. Exams were a little hard and time was short. There is closed notes
portion and open notes portion in the exam. The grading was fair.

Links

1. class canvas site https://canvas.wisc.edu/courses/57245 requires login.
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1.1 syllabus

 1 

ME 440 – Intermediate Vibrations 

Fall 2017 
 

Time: 11 am – 12:15 pm (Tu, Th) 

 

Location: ME 2108 

 

Instructor: Andrew Mikkelson 

 

Office: ME 1250 

 

E-Mail: andrew.mikkelson@wisc.edu  

 

Course Page: learnuw.wisc.edu 

 

Office Hours: 

 Monday: 2 - 3 pm 

 Tuesday: 12:30 - 1:30 pm 

 Wednesday: 10:30 - 11:30 am 

 Thursday: 12:30 - 1pm 

 Other times by appointment (please email to arrange) 

 

Text: S. S. Rao, Mechanical Vibrations, 2004 (4th edition).  Text is optional. 

 

Prerequisites: ME340 

 

Catalog Description:  Analytical methods for solution of typical vibratory and balancing 

problems encountered in engines and other mechanical systems. Special emphasis on dampers 

and absorbers. 

 

Course Objectives:  

The purpose of the course is to develop the skills needed to design and analyze mechanical 

systems in which vibration problems are typically encountered. These skills include analytical 

and numerical techniques (e.g., finite element methods) that allow the student to model the 

system, analyze the system performance and employ the necessary design changes. Emphasis is 

placed on developing a thorough understanding of how the changes in system parameters affect 

the system response.  

 

Course Outcomes: Students must have the ability to:  

1. Derive the equations of motion of single and multi-degree of freedom systems, using Newton's 

Laws and energy methods.  

2. Determine the natural frequencies and mode shapes of single and multi-degree of freedom 

systems.  

3. Evaluate the dynamic response of single and multi-degree of freedom systems under impulse 

loadings, harmonic loadings, and general periodic excitation.  

4. Apply modal analysis and orthogonality conditions to establish the dynamic characteristics of 

multi-degree of freedom systems.  

5. Generate finite element models of discrete systems to simulate the dynamic response to initial 

conditions and external excitations. (time permitting) 
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ME 440 – Intermediate Vibrations 

Fall 2017 
 

Grades will be based on your performance on written homework and examinations.  All 

homework and exam scores will be maintained on the Learn@UW course website.  This will 

allow you to monitor your performance and see aggregate scores for the rest of the class, which 

can give you a continuous idea of your performance in relation to the rest of the class.  Should 

you have questions about your score, please contact me.  Policies regarding grading and turning 

in your homework: 

1. Score-related questions about homeworks and exams must be raised prior to the next 

class period after receiving the score.  

2.  If homework that you turned in appears not to be graded (missing) on the Learn@UW 

course website please point that out to me within one week after the return of the 

corresponding set of graded homeworks.  It is a good practice to save your homeworks so 

that I will be able to update the grade to give you full credit for your work. 

3. Please do not drop homework in my department mail box 

4. Homework is due at the beginning of each lecture 

5. One homework with the lowest score will be dropped when computing the final 

homework average 

 

 

Percentage participation to the final grade shall be distributed in the following manner: 

 

Homework = 40% 

Exam I = 20% 

Exam II = 20% 

Exam III = 20% 

TOTAL  100% 

 

Textbook reading assignments will be assigned prior to each class.  You are asked to read the 

material, take notes and be prepared to participate in classroom activities.  The Microsoft 

PowerPoint notes used in class will be posted online. 

 

Homework: Problems will be assigned weekly during the semester and posted to LearnUW.  All 

assigned homework will be collected at the beginning of class on the due date.  No late 

homework will be accepted.  Homework solutions should be neat and well organized.  All 

necessary diagrams and calculations must be clearly shown.   

 

Exams: The best way to prepare for exams is to participate in class, learn the fundamental 

concepts, and practice homework and example problems from lecture and the text.   

 

Disability requests:  I must hear from anyone who has a disability that may require some 

modification of seating, testing or other class requirements so that appropriate arrangements may 

be made.  Please see me after class or during my office hours. 
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Complaints:  If you have a complaint regarding the course and if you are unsatisfied with the 

response of the instructor, then you should contact the Chair of the Department of Mechanical 

Engineering.  The Chair's office is in ME 3650, and an appointment to see the Chair can be made 

by contacting the Department Office at 608 263-5372. 

 

Campus Environment:  Diversity is a source of strength, creativity, and innovation. All students 

in this course are expected to value the contributions of each person and respect the ways in 

which their identity, culture, background, experience, status, abilities, and opinion enrich our 

learning experience and university community. Disrespectful behavior or comments directed 

toward any group or individual will be addressed by the instructor. 

 

Academic integrity:  The Department of Mechanical Engineering takes Academic Integrity very 

seriously. According to state law, any instances of academic misconduct are reported to the UW 

Dean of Students. Once reported, the incident is retained in a permanent disciplinary file. This 

file may never see the light of day, or it may be released if you apply to graduate school, to 

medical school, to law school, for government clearance, for a visa, etc. As a result, even a minor 

infraction, such as plagiarism, copying a problem solution, or aid from an exam neighbor could 

have serious and permanent consequences.   

 

Letter Grades:  The grading scale listed below is a worst case scenario.  At the end of semester 

letter grades may be curved up but they will not be curved down (i.e., A grade of 91% will 

guarantee you at least an AB, and might be an A).  Final letter grades will be based on the total 

score accumulated on homework and exams throughout the semester using the following scale: 

Score Grade 

92 A 

88-92 AB 

83-88 B 

78-83 BC 

70-78 C 

60-70 D 

< 60 F 
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Tentative Schedule for ME 440  
 

Intermediate Vibrations 
 

Fall Semester 2017 
 

TEXTBOOK:  Mechanical Vibrations, 4th ed. by S. S. Rao (Optional) 
 

COURSE INSTRUCTOR: Andrew Mikkelson, Rm. 1250 ME Bldg., andrew.mikkelson@wisc.edu 
 

Date Study Assignment Topics Covered 

Sept. 5 - - 

 7 1.1 – 1.6 Basic Concepts, Classifications, Procedures 

Sept. 12 1.7 – 1.9 Spring, Mass, and Damping Elements 

 14 1.10 Harmonic Motion, Complex Algebra, Fourier Series 

Sept. 19 1.11 Fourier Series, Complex Representation 

 21 2.1 – 2.2 Review of Single DOF Systems: Deriving EOMs 

Sept. 26 2.2, 2.6 IVPs, Transient Response 

 28 2.6 Coulomb Friction, Logarithmic decrement; Applications 

Oct. 3 2.3 Pendulum Systems; Torsional Vibration; Energy Methods  

 5 2.5 Energy Methods; Rayleigh’s Method and Applications 

Oct. 10  Exam 1 

 12 3.1 – 3.5 Review of Single DOF Systems: Harmonic Excitation 

Oct. 17 3.6 – 3.7 
Harmonic Excitation: Rotating Unbalance, Design Problem 
Engine Mounts 

 19 3.8 – 3.11 Harmonic Excitation: Base Excitation, Beating Phenomena 

Oct. 24 4.1 – 4.3 Nonharmonic Excitation: General Periodic Excitation 

 26 4.4  
Nonharmonic Excitation: Impulsive Forces, Convolution 
Integral 

Oct. 31 4.5 – 4.6 Nonharmonic Excitation: Convolution Integral, Superposition 

Nov. 2  Impulse Loading – Response Spectrum, Dynamic Load Factor 

Nov. 7 5.1 – 5.2 Two DOF Systems: Natural Frequencies and Mode Shapes 

 9 5.3 – 5.4 
Two DOF Systems: Natural Frequencies and Mode Shapes, 
MATLAB 

Nov. 14  Exam 2 

 16 5.4 Two DOF Systems: Coupling, Matrix Notation 

Nov. 21 5.5 Two DOF Systems: Decoupling of EOMs, Principal Coordinates 

 23 - - No class – (Thanksgiving) 

Nov. 28 6.8 – 6.10, 6.12 
Modal Analysis: Natural Frequencies and Mode Shapes, 
MATLAB 

 30 6.13 
Modal Analysis: Free Response of Undamped and Underdamped 
Systems 

Dec. 5 6.14 – 6.16 
Multi-DOF Systems: Forced Response and Lumped Mass 
Modeling 

 7 6.14 – 6.16, 6.7 Multi-DOF Systems: Lumped Mass Modeling, Lagrange’s eqns 

Dec. 12 6.7 Exam 3 

 14 - - 

Dec. 23  Festivus! 

 
*Note: We have 2 less class periods this semester as compared to the last time this class was offered.  As a result, we 
will probably not complete all of the topics listed above. 
 
_________________________________________________________________________________________________________________________________________________________________________________________ 
 

 

Final Exam:  N/A 
 

5



1.1. syllabus CHAPTER 1. INTRODUCTION

6



Chapter 2

HWs

Local contents
2.1 HW1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 HW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 HW3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 HW4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5 HW5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.6 HW6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.7 HW7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.8 HW8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.9 HW9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
2.10 HW10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7



2.1. HW1 CHAPTER 2. HWS

2.1 HW1

2.1.1 Problem 1

ME 440 

Intermediate Vibrations 

 

Homework #1 (3 problems) 

due Thursday, September 21, 2017 

 

Problem 1 

The mass m is pinned to the end of a cantilevered beam that has a bending stiffness factor of EI 

and a length of l.  The spring constant of each of the two vertical springs is k.  Determine the 

equivalent spring constant ke of the system. 

 

 

Problem 2 

The pinion of the rack and pinion system shown below is free to rotate about its mass center but 

it can not translate in any direction.  For this 1 degree-of-freedom system, find it’s equivalent 

mass a) if the generalized coordinate that captures this degree of freedom is the angle , b) if the 

generalized coordinate that captures this degree of freedom is the horizontal displacement x of 

the rack. 

 

 

 

 

 

From tables we find that for cantilever beam loaded at end, the vertical deflection is 𝛿 = 𝑚𝐿3

3𝐸𝐼 ,

hence by definition 𝑘𝑏 =
𝑚
𝛿 =

3𝐸𝐼
𝐿3 .

Therefore, we can model the sti�ness of the system as

8
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k

k

kbeam =⇒ keq

springs in series

Therefore

𝑘𝑒𝑞 = 𝑘 + 𝑘𝑏𝑒𝑎𝑚 + 𝑘
= 2𝑘 + 𝑘𝑏𝑒𝑎𝑚

Since 𝑘𝑏 =
3𝐸𝐼
𝐿3 then the above becomes

𝑘𝑒𝑞 = 2𝑘 +
3𝐸𝐼
𝐿3

2.1.2 Problem 2

ME 440 

Intermediate Vibrations 

 

Homework #1 (3 problems) 

due Thursday, September 21, 2017 

 

Problem 1 

The mass m is pinned to the end of a cantilevered beam that has a bending stiffness factor of EI 

and a length of l.  The spring constant of each of the two vertical springs is k.  Determine the 

equivalent spring constant ke of the system. 

 

 

Problem 2 

The pinion of the rack and pinion system shown below is free to rotate about its mass center but 

it can not translate in any direction.  For this 1 degree-of-freedom system, find it’s equivalent 

mass a) if the generalized coordinate that captures this degree of freedom is the angle , b) if the 

generalized coordinate that captures this degree of freedom is the horizontal displacement x of 

the rack. 
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2.1.2.1 Part (a)

Using energy method
1
2
𝑚𝑥̇2 +

1
2
𝐽0𝜃̇2 =

1
2
𝐽𝑒𝑞𝜃̇2𝑒𝑞

But 𝜃̇𝑒𝑞 = 𝜃̇ for this part. And since 𝑥 = 𝑅𝜃 or 𝑥̇ = 𝑅𝜃̇, then the above becomes

1
2
𝑚 �𝑅𝜃̇�

2
+
1
2
𝐽0𝜃̇2 =

1
2
𝐽𝑒𝑞𝜃̇2

Simplifying gives

𝐽𝑒𝑞 = 𝑚𝑅2 + 𝐽0

2.1.2.2 Part (b)

Using energy method
1
2
𝑚𝑥̇2 +

1
2
𝐽0𝜃̇2 =

1
2
𝑚𝑒𝑞𝑥̇2𝑒𝑞

But 𝑥̇𝑒𝑞 = 𝑥̇ for this part. And since 𝑥 = 𝑅𝜃 or 𝑥̇ = 𝑅𝜃̇, then 𝜃̇ = 𝑥̇
𝑅 and the above becomes

1
2
𝑚𝑥̇2 +

1
2
𝐽0 �

𝑥̇
𝑅
�
2
=
1
2
𝑚𝑒𝑞𝑥̇2

Simplifying gives

𝑚𝑒𝑞 = 𝑚 +
𝐽0
𝑅2

10



2.1. HW1 CHAPTER 2. HWS

2.1.3 Problem 3

Problem 3 

Find the equivalent spring constant and equivalent mass of the system shown below with regards 

to the  degree of freedom shown in the figure.  Assume that the bar AOB is rigid with negligible 

mass. 

 

 

 
Assuming a small deflection as shown

k3
k1k2

k1+k2

θ

l1

l2

l2 sin θ

l1 sin θ
kt

2.1.3.1 Mass equivalent

The kinetic energy of the system is (assuming small angles)

1
2
𝑚1 �𝐿1𝜃̇�

2
+
1
2
𝑚2 �𝐿3𝜃̇�

2
=
1
2
𝐼𝑒𝑞𝜃̇2

Hence

𝑚1𝐿21 + 𝑚2𝐿23 = 𝐼𝑒𝑞

11
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Where 𝐼𝑒𝑞 is the equivalent mass moment of inertia. The problem does not say where the
equivalent mass should be located relative to the pivot point (where the torsional spring is
located) so we can stop here. But assuming that distance was some 𝑥̄, then we can write
𝐼𝑒𝑞 = 𝑀𝑒𝑞𝑥̄2 where equivalent mass is used as a point mass, and simplify the above more

𝑚1𝐿21 + 𝑚2𝐿23 = 𝑀𝑒𝑞𝑥̄2

𝑀𝑒𝑞 =
𝑚1𝐿21 + 𝑚2𝐿23

𝑥̄2

2.1.3.2 Sti�ness equivalent

Using potential energy method, where energy stored by a spring due to extension or com-
pression is 1

2𝑘Δ
2, then we see that the total energy using the above deformation is given

by

1
2
𝑘1 (𝑙1 sin𝜃)2 + 1

2 �
𝑘3𝑘2
𝑘3 + 𝑘2

� (𝑙2 sin𝜃)2 + 1
2
𝑘𝑡𝜃2 =

1
2
𝑘𝑡,𝑒𝑞𝜃2𝑒𝑞

Where 𝑘3𝑘2
𝑘3+𝑘2

is the equivalent sti�ness of the springs 𝑘2, 𝑘3 since they are in series. The above
assumes small angle 𝜃, therefore we can simplify the above using sin𝜃 ≈ 𝜃, and obtain

1
2
𝑘1 (𝑙1𝜃)

2 +
1
2 �

𝑘3𝑘2
𝑘3 + 𝑘2

� (𝑙2𝜃)
2 +

1
2
𝑘𝑡𝜃2 =

1
2
𝑘𝑡,𝑒𝑞𝜃2𝑒𝑞

But here 𝜃 = 𝜃𝑒𝑞, therefore solving for 𝑘𝑡,𝑒𝑞 gives

𝑘𝑡,𝑒𝑞 = 𝑘1𝑙21 + �
𝑘3𝑘2
𝑘3 + 𝑘2

� 𝑙22 + 𝑘𝑡

12
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2.2 HW2

2.2.1 Problem 1

ME 440 

Intermediate Vibrations 

 

Homework #2 (2 problems) 

due Thursday, September 28, 2017 

 

Problem 1 

The impact force created by a forging hammer can be modeled as shown in the figure below.  

Determine the Fourier series expansion of the impact force. 

 

 

Problem 2 

Determine the Complex Fourier series expansion for the periodic function y(t): 

 

 

 

 

Period is 𝜏. This is not even and not odd. The first step is to determine the function 𝑥 (𝑡).
This is truncated sin. Therefore we see that, over first period

𝑥 (𝑡) =

⎧⎪⎪⎨
⎪⎪⎩
𝐴 sin �2𝜋𝜏 𝑡� 0 ≤ 𝑡 ≤ 𝜏

2

0 𝜏
2 < 𝑡 ≤ 𝜏

This repeated over each period by shifting it. Now that we know 𝑥 (𝑡) we can find 𝑎0, 𝑎𝑛, 𝑏𝑛
and plot the approximation for larger 𝑛

𝑎0 =
1
𝜏
2
�

𝜏
2

− 𝜏
2

𝑥 (𝑡) 𝑑𝑡

=
2
𝜏 �

𝜏
2

0
𝑥 (𝑡) 𝑑𝑡

=
2
𝜏 �

𝜏
2

0
𝐴 sin �

2𝜋
𝜏
𝑡� 𝑑𝑡

= −
2
𝜏
𝐴
2𝜋
𝜏

�cos �
2𝜋
𝜏
𝑡��

𝜏
2

0

= −
𝐴
𝜋 �

cos �
2𝜋
𝜏
𝜏
2�
− 1�

= −
𝐴
𝜋
[cos (𝜋) − 1]

Hence

13
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𝑎0 =
2𝐴
𝜋

Finding 𝑎𝑛

𝑎𝑛 =
1
𝜏
2
�

𝜏
2

− 𝜏
2

𝑥 (𝑡) cos �
2𝜋
𝜏
𝑛𝑡� 𝑑𝑡

=
2
𝜏 �

𝜏
2

0
𝑥 (𝑡) cos �

2𝜋
𝜏
𝑛𝑡� 𝑑𝑡

=
2
𝜏 �

𝜏
2

0
𝐴 sin �

2𝜋
𝜏
𝑡� cos �

2𝜋
𝜏
𝑛𝑡� 𝑑𝑡

But sin (𝑢) cos (𝑣) = 1
2
(sin (𝑢 + 𝑣) + sin (𝑢 − 𝑣)), therefore the above integral becomes

𝑎𝑛 =
2𝐴
𝜏

⎛
⎜⎜⎜⎝
1
2 �

𝜏
2

0
sin �

2𝜋
𝜏
𝑡 +

2𝜋
𝜏
𝑛𝑡� 𝑑𝑡 +

1
2 �

𝜏
2

0
sin �

2𝜋
𝜏
𝑡 −

2𝜋
𝜏
𝑛𝑡� 𝑑𝑡

⎞
⎟⎟⎟⎠

=
𝐴
𝜏

⎛
⎜⎜⎜⎝�

𝜏
2

0
sin �

2𝜋
𝜏
(1 + 𝑛) 𝑡� 𝑑𝑡 +�

𝜏
2

0
sin �

2𝜋
𝜏
(1 − 𝑛) 𝑡� 𝑑𝑡

⎞
⎟⎟⎟⎠ (1)

The first integral above is

�
𝜏
2

0
sin �

2𝜋
𝜏
(1 + 𝑛) 𝑡� 𝑑𝑡 = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos �2𝜋𝜏 (1 + 𝑛) 𝑡�
2𝜋
𝜏
(1 + 𝑛)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜏
2

0

=
−1

2𝜋
𝜏
(1 + 𝑛)

�cos �
2𝜋
𝜏
(1 + 𝑛)

𝜏
2�
− 1�

=
−𝜏

2𝜋 (1 + 𝑛)
[cos (𝜋 (1 + 𝑛)) − 1]

For 𝑛 = 1, 3, 5,⋯ the above becomes zero. For 𝑛 = 2, 4, 6,⋯

�
𝜏
2

0
sin �

2𝜋
𝜏
(1 + 𝑛) 𝑡� 𝑑𝑡 =

2𝜏
2𝜋 (1 + 𝑛)

=
𝜏

𝜋 (1 + 𝑛)
𝑛 = 2, 4, 6,⋯ (2)

The second integral in (1) is

14
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�
𝜏
2

0
sin �

2𝜋
𝜏
(1 − 𝑛) 𝑡� 𝑑𝑡 = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos �2𝜋𝜏 (1 − 𝑛) 𝑡�
2𝜋
𝜏
(1 − 𝑛)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜏
2

0

But this is undefined for 𝑛 = 1, since denominator is zero. Hence we need to handle 𝑛 = 1
first on its own. At 𝑛 = 1 , since sin (0) = 0 then

�
𝜏
2

0
sin �

2𝜋
𝜏
(1 − 𝑛) 𝑡� 𝑑𝑡 = 0 (3)

For 𝑛 > 1

�
𝜏
2

0
sin �

2𝜋
𝜏
(1 − 𝑛) 𝑡� 𝑑𝑡 = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos �2𝜋𝜏 (1 − 𝑛) 𝑡�
2𝜋
𝜏
(1 − 𝑛)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜏
2

0

=
−1

2𝜋
𝜏
(1 − 𝑛)

�cos �
2𝜋
𝜏
(1 − 𝑛)

𝜏
2�
− 1�

=
−1

2𝜋
𝜏
(1 − 𝑛)

[cos (𝜋 (1 − 𝑛)) − 1]

=
1

2𝜋
𝜏
(𝑛 − 1)

[cos (𝜋 (𝑛 − 1)) − 1]

For 𝑛 = 2, 4, 6,⋯

�
𝜏
2

0
sin �

2𝜋
𝜏
(1 − 𝑛) 𝑡� 𝑑𝑡 =

−2
2𝜋
𝜏
(𝑛 − 1)

=
−𝜏

𝜋 (𝑛 − 1)
(4)

For 𝑛 = 3, 5, 7,⋯ the integral is zero. Using result in (2,3,4) in (1) gives final result

𝑎𝑛 =

⎧⎪⎪⎨
⎪⎪⎩

𝐴
𝜏
� 𝜏
𝜋(1+𝑛) +

−𝜏
𝜋(𝑛−1)

� 𝑛 = 2, 4, 6,⋯

0 otherwise

Or

𝑎𝑛 =

⎧⎪⎪⎨
⎪⎪⎩
𝐴 � (𝑛−1)−(1+𝑛)𝜋(1+𝑛)(𝑛−1)

� 𝑛 = 2, 4, 6,⋯

0 otherwise

15
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Or

𝑎𝑛 =

⎧⎪⎪⎨
⎪⎪⎩
𝐴 � 𝑛−1−1−𝑛

𝜋(1+𝑛)(𝑛−1)
� 𝑛 = 2, 4, 6,⋯

0 otherwise

Or

𝑎𝑛 =

⎧⎪⎪⎨
⎪⎪⎩
𝐴 � −2

𝜋(1+𝑛)(𝑛−1)
� 𝑛 = 2, 4, 6,⋯

0 otherwise
(5)

Finding 𝑏𝑛

𝑏𝑛 =
1
𝜏
2
�

𝜏
2

− 𝜏
2

𝑥 (𝑡) sin �
2𝜋
𝜏
𝑛𝑡� 𝑑𝑡

=
2
𝜏 �

𝜏
2

0
𝑥 (𝑡) sin �

2𝜋
𝜏
𝑛𝑡� 𝑑𝑡

=
2
𝜏 �

𝜏
2

0
𝐴 sin �

2𝜋
𝜏
𝑡� sin �

2𝜋
𝜏
𝑛𝑡� 𝑑𝑡

But sin (𝑢) sin (𝑣) = 1
2
(cos (𝑢 − 𝑣) − cos (𝑢 + 𝑣)), therefore the above integral becomes

𝑎𝑛 =
2𝐴
𝜏

⎛
⎜⎜⎜⎝
1
2 �

𝜏
2

0
cos �

2𝜋
𝜏
𝑡 −

2𝜋
𝜏
𝑛𝑡� 𝑑𝑡 −

1
2 �

𝜏
2

0
cos �

2𝜋
𝜏
𝑡 +

2𝜋
𝜏
𝑛𝑡� 𝑑𝑡

⎞
⎟⎟⎟⎠

=
𝐴
𝜏

⎛
⎜⎜⎜⎝�

𝜏
2

0
cos �

2𝜋
𝜏
(1 − 𝑛) 𝑡� 𝑑𝑡 −�

𝜏
2

0
cos �

2𝜋
𝜏
(1 + 𝑛) 𝑡� 𝑑𝑡

⎞
⎟⎟⎟⎠ (6)

For the first integral

�
𝜏
2

0
cos �

2𝜋
𝜏
(1 − 𝑛) 𝑡� 𝑑𝑡 =

⎛
⎜⎜⎜⎜⎜⎝
sin 2𝜋

𝜏
(1 − 𝑛) 𝑡

2𝜋
𝜏
(1 − 𝑛)

⎞
⎟⎟⎟⎟⎟⎠

𝜏
2

0

But this is undefined for 𝑛 = 1, since denominator is zero. Hence we need to handle 𝑛 = 1
first on its own. At 𝑛 = 1 , since cos (0) = 1 then

�
𝜏
2

0
cos �

2𝜋
𝜏
(1 − 𝑛) 𝑡� 𝑑𝑡 = �

𝜏
2

0
𝑑𝑡 =

𝜏
2

(7)

16
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Now for 𝑛 > 1

�
𝜏
2

0
cos �

2𝜋
𝜏
(1 − 𝑛) 𝑡� 𝑑𝑡 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin �2𝜋𝜏 (1 − 𝑛) 𝑡�
2𝜋
𝜏
(1 − 𝑛)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝜏
2

0

=
𝜏

2𝜋 (1 − 𝑛) �
sin �

2𝜋
𝜏
(1 − 𝑛) 𝑡��

𝜏
2

0

=
𝜏

2𝜋 (1 − 𝑛) �
sin �

2𝜋
𝜏
(1 − 𝑛)

𝜏
2�
− 0�

=
𝜏

2𝜋 (1 − 𝑛)
(sin (𝜋 (1 − 𝑛)) − 0)

Which is zero for all 𝑛. For the second integral in (6)

�
𝜏
2

0
cos �

2𝜋
𝜏
(1 + 𝑛) 𝑡� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin �2𝜋𝜏 (1 + 𝑛) 𝑡�
2𝜋
𝜏
(1 + 𝑛)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝜏
2

0

=
𝜏

2𝜋 (1 + 𝑛) �
sin �

2𝜋
𝜏
(1 + 𝑛) 𝑡��

𝜏
2

0

=
𝜏

2𝜋 (1 + 𝑛) �
sin �

2𝜋
𝜏
(1 + 𝑛)

𝜏
2�
− 0�

=
𝜏

2𝜋 (1 + 𝑛)
(sin (𝜋 (1 + 𝑛)) − 0)

Which is zero for all 𝑛. Hence for 𝑏𝑛 we have one term only

𝑏𝑛 =

⎧⎪⎪⎨
⎪⎪⎩

𝐴
2 𝑛 = 1
0 𝑛 = 2, 3,⋯

Therefore the Fourier series approximation is

𝑥 (𝑡) =

𝑎0
2
⏞𝐴
𝜋
+

𝑏1
���������������𝐴
2

sin �
2𝜋
𝜏
𝑡� +

∞
�

𝑛=2,4,6,⋯

𝑎𝑛
���������������������������
𝐴 �

−2
𝜋 (1 + 𝑛) (𝑛 − 1)�

cos �
2𝜋
𝜏
𝑛𝑡�

=
𝐴
𝜋
+
𝐴
2

sin �
2𝜋
𝜏
𝑡� −

2𝐴
𝜋

∞
�

𝑛=2,4,6,⋯

1
(1 + 𝑛) (𝑛 − 1)

cos �
2𝜋
𝜏
𝑛𝑡�

17
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Therefore

𝑥 (𝑡) =
𝐴
𝜋
+
𝐴
2

sin �
2𝜋
𝜏
𝑡� −

2𝐴
𝜋

∞
�

𝑛=2,4,6,⋯

1
(1 + 𝑛) (𝑛 − 1)

cos �
2𝜋
𝜏
𝑛𝑡�

To verify this result, the following is a plot of increasing 𝑛, using 𝐴 = 2 and 𝜏 = 1 with the
approximation superimposed on top of 𝑥 (𝑡). We notice that small number of terms is needed
in this case to obtain a good approximation.

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

t

x(
t)

Approximation using n=2

Exact

Approximation
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0.0

0.5

1.0

1.5

2.0

t

x(
t)

Approximation using n=4

Exact

Approximation
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Approximation using n=6

Exact

Approximation
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0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

t

x(
t)

Approximation using n=8

Exact

Approximation



 xApprox[t_, max_, A0_, period_] := A0/Pi + (A0/2)*Sin[2*(Pi/period)*t] -
 2*(A0/Pi)*
 Sum[(1/((1 + n)*(n - 1)))*Cos[2*(Pi/period)*n*t], {n, 2, max, 2}];


 myperiodic[func_, {val_Symbol, (min_)?NumericQ, (max_)?NumericQ}] :=
 func /. val :> Mod[val - min, max - min] + min


 f[t_] := Piecewise[{{A0*Sin[2*(Pi/period)*t], 0 < t < period/2}, {0,True}}]


 maxTerms=2;
 A0=2;
 period=1/2 Pi;
 p=Plot[{Evaluate[myperiodic[f[t],{t,0,period}]],
 xApprox[t,maxTerms,A0,period]},{t,0,3 period},
 PlotLegends->{"Exact","Approximation"},
 PlotStyle->{Red,Blue},
 Frame->True,
 FrameLabel->{{"x(t)",None},{"t","Approximation using n="<>ToString[

maxTerms]}},
 BaseStyle->14,ImageSize->400]

˙

2.2.2 Problem 2
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ME 440 

Intermediate Vibrations 

 

Homework #2 (2 problems) 

due Thursday, September 28, 2017 

 

Problem 1 

The impact force created by a forging hammer can be modeled as shown in the figure below.  

Determine the Fourier series expansion of the impact force. 

 

 

Problem 2 

Determine the Complex Fourier series expansion for the periodic function y(t): 

 

 

 

 The function to approximate is defined as

𝑦 (𝑡) =

⎧⎪⎪⎨
⎪⎪⎩
𝐴 0 ≤ 𝑡 ≤ 𝜋
−𝐴 𝜋 < 𝑡 ≤ 2𝜋

With period 𝜏 = 2𝜋. This function is odd.

𝑐𝑛 =
1
𝜏 �

𝜏
2

− 𝜏
2

𝑦 (𝑡) 𝑒−𝑗
2𝜋
𝜏 𝑛𝑡𝑑𝑡 =

1
𝜏 �

𝜏

0
𝑦 (𝑡) 𝑒−𝑗

2𝜋
𝜏 𝑛𝑡𝑑𝑡

=
1
𝜏 ��

𝜋

0
𝐴𝑒−𝑗

2𝜋
𝜏 𝑛𝑡𝑑𝑡 −�

2𝜋

𝜋
𝐴𝑒−𝑗

2𝜋
𝜏 𝑛𝑡𝑑𝑡�

=
𝐴
𝜏

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣
𝑒−𝑗

2𝜋
𝜏 𝑛𝑡

−𝑗2𝜋𝜏 𝑛

⎤
⎥⎥⎥⎥⎥⎥⎦

𝜋

0

−

⎡
⎢⎢⎢⎢⎢⎢⎣
𝑒−𝑗

2𝜋
𝜏 𝑛𝑡

−𝑗2𝜋𝜏 𝑛

⎤
⎥⎥⎥⎥⎥⎥⎦

2𝜋

𝜋

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
𝐴
𝜏

⎛
⎜⎜⎜⎜⎜⎝
−1
𝑗2𝜋𝜏 𝑛

�𝑒
−𝑗 2𝜋𝜏 𝑛𝑡

�
𝜋

0
+

1
𝑗2𝜋𝜏 𝑛

�𝑒
−𝑗 2𝜋𝜏 𝑛𝑡

�
2𝜋

𝜋

⎞
⎟⎟⎟⎟⎟⎠

=
𝐴
𝜏

𝜏
𝑗2𝜋𝑛

⎛
⎜⎜⎜⎜⎝− �𝑒

−𝑗 2𝜋𝜏 𝑛𝑡
�
𝜋

0
+ �𝑒

−𝑗 2𝜋𝜏 𝑛𝑡
�
2𝜋

𝜋

⎞
⎟⎟⎟⎟⎠

But 𝜏 = 2𝜋 and the above simplifies to
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𝑐𝑛 =
𝐴
𝑗2𝜋𝑛

�− �𝑒−𝑗𝑛𝑡�
𝜋

0
+ �𝑒−𝑗𝑛𝑡�

2𝜋

𝜋
�

=
𝐴
𝑗2𝜋𝑛

��1 − 𝑒−𝑗𝑛𝜋� + �𝑒−𝑗2𝑛𝜋 − 𝑒−𝑗𝑛𝜋�� (1)

But

𝑒−𝑗𝑛𝜋 = cos 𝑛𝜋 − 𝑗 sin 𝑛𝜋
= cos 𝑛𝜋

And

𝑒−𝑗2𝑛𝜋 = cos 2𝑛𝜋 − 𝑗 sin 2𝑛𝜋
= 1

Hence (1) becomes

𝑐𝑛 =
𝐴
𝑗2𝜋𝑛

([1 − cos 𝑛𝜋] + [1 − cos 𝑛𝜋])

=
𝐴
𝑗𝜋𝑛

(1 − cos 𝑛𝜋)

For 𝑛 odd cos 𝑛𝜋 = −1 and the above becomes

𝑐𝑛 =
2𝐴
𝑗𝜋𝑛

For 𝑛 even cos 𝑛𝜋 = 1 and 𝑐𝑛 = 0 in this case. Therefore the approximation is

𝑦 (𝑡) ≈
∞
�

𝑛=⋯−3,−1,1,3,⋯
𝑐𝑛𝑒𝑗2𝑛𝑡

=
2𝐴
𝑗𝜋

∞
�

𝑛=⋯−3,−1,1,3,⋯

1
𝑛
𝑒𝑗2𝑛𝑡 (2)

We can now obtain the standard form of the series if needed. 𝑐−𝑛 = 𝑐∗𝑛 =
2𝐴
−𝑗𝜋𝑛 and hence

𝑎𝑛 = 𝑐𝑛 + 𝑐−𝑛
= 0

All 𝑎𝑛 = 0, as expected, since this is an odd function.
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𝑏𝑛 = 𝑗 (𝑐𝑛 − 𝑐−𝑛)

= 𝑗 �
2𝐴
𝑗𝜋𝑛

−
2𝐴
−𝑗𝜋𝑛�

= 𝑗 �
4𝐴
𝑗𝜋𝑛�

=
4𝐴
𝜋𝑛

Hence

𝑦 (𝑡) ≈
4𝐴
𝜋

∞
�

𝑛=1,3,5,⋯

1
𝑛

sin (𝑛𝑡) (3)

Both (2) and (3) are the same. (2) is complex form of (3). To see the approximation, here
are some plots with increasing number of terms for 𝐴 = 1
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Approximation using n = 21

Exact

Approximation



 xApprox[t_, max_, A0_, period_] := 4 A0/Pi * Sum[(1/n)*Sin[n*t], {n, 1, max,
2}];

 myperiodic[func_, {val_Symbol, (min_)?NumericQ, (max_)?NumericQ}] :=
 func /. val :> Mod[val - min, max - min] + min


 f[t_] := Piecewise[{{A0, 0 < t < period/2}, {-A0, True}}];


 maxTerms=11;
 A0=1;
 period=2 Pi;
 p=Plot[{Evaluate[myperiodic[f[t],{t,0,period}]],
 xApprox[t,maxTerms,A0,period]},{t,0,3 period},
 PlotLegends->{"Exact","Approximation"},
 PlotStyle->{Red,Blue},
 Frame->True,
 FrameLabel->{{"x(t)",None},{"t","Approximation using n = "<>ToString[

maxTerms]}},
 BaseStyle->14,ImageSize->400,
 Exclusions->None,
 FrameTicks->{{Automatic,None},{Range[0,6 Pi,Pi],Automatic}}]

˙

26



2.3. HW3 CHAPTER 2. HWS

2.3 HW3

2.3.1 Problem 1

ME 440 

Intermediate Vibrations 

 

Homework #3 

due Thursday, October 5, 2017 

 

Problem 1 

A flywheel is mounted on a vertical shaft, as shown below.  The shaft has a diameter d and 
length l and is fixed at both ends.  The flywheel has a weight of W and a radius of gyration of r.  
Find the natural frequency of the longitudinal, the transverse, and the torsional vibration of the 
system. 

 

Problem 2 

The uniform rigid bar OA of length L and mass m is pinned about point O.  Using Newton’s 

Second Law, find the equation of motion for the system using the generalized coordinate  and 

also find the system’s natural frequency. 

 
 

 

 

 

We need to find the natural frequency of vibration for the following cases

transverse vibration

longitudinal vibration

torsional vibration

longitudinal In this mode the system can be modeled as the following
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Extension y

static equilibrium position

This spring will stretch

This spring will be compressed

k1

k2

W
g

the two springs are in
parallel since they deform
the same amount y

Since both springs are in parallel, then the equivalent spring sti�ness is

𝑘𝑒𝑞 = 𝑘1 + 𝑘2

The equivalent mass is just the mass of the flywheel 𝑊
𝑔 . Hence the overall system can now

be modeled as follows

Extension y

keq

Meq

Which has the equation of motion

𝑚𝑒𝑞𝑦̈ + 𝑘𝑒𝑞𝑦 = 0

𝑦̈ +
𝑘𝑒𝑞
𝑚𝑒𝑞

𝑦 = 0

Therefore

𝜔𝑛 =
�

𝑘𝑒𝑞
𝑚𝑒𝑞

We now just need to determine 𝑘𝑒𝑞 = 𝑘1 + 𝑘2. But from mechanics of materials we know that
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𝑘1 =
𝐴𝐸
𝑎 and 𝑘2 =

𝐴𝐸
𝑏 . Therefore the above becomes

𝜔𝑛 =

�
⃓
⃓
⃓
⎷

𝐴𝐸
𝑎 + 𝐴𝐸

𝑏
𝑊
𝑔

=
�

𝑔𝐴𝐸
𝑊 �

1
𝑎
+
1
𝑏�

Transverse In this mode the system can be modeled as beam with fixed ends with load 𝑊
at distance 𝑎 from one end and distance 𝑏 from the other end. From tables, the sti�ness
coe�cient in this case is given by

𝑘𝑒𝑞 = 3𝐸𝐼 �
𝐿
𝑎𝑏�

3

The equivalent mass remains as before which is just the mass of the flywheel 𝑊
𝑔 . Therefore,

as above we find the natural frequency as

𝜔𝑛 =
�

𝑘𝑒𝑞
𝑚𝑒𝑞

Or

𝜔𝑛 = �
3𝑔𝐸𝐼
𝑊
� 𝐿
𝑎𝑏
�
3

Torsional In this mode, the flywheel is twisted by some degree 𝜃, and therefore the top
part of the beam and the bottom part of the beam will resist this twist by applying moment
against the twist as shown in this diagram

twist by angle θ

reaction moment M1

reaction moment M2

a

b

From mechanics of materials, there is relation between the twisting angle and resisting
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torque by beam which is given by

𝑀 =
𝐺𝐽
𝐿
𝜃

Where here 𝜃 is the twist angle (radians) and 𝑀 is the torque (𝑁𝑚) and 𝐿 is length of beam
and 𝐺 is modulus of rigidity (𝑁 per 𝑚2) and 𝐽 is the second moment of area of the cross
section (𝑚4) about its center. Therefore total moments is

𝑀1 +𝑀2 =
𝐺𝐽
𝑎
𝜃 +

𝐺𝐽
𝑎
𝜃

= 𝐺𝐽𝜃 �
1
𝑎
+
1
𝑏�

Comparing the above to definition of sti�ness which is 𝐹 = 𝐾Δ but in this problem Δ ≡ 𝜃
and 𝐹 ≡ (𝑀1 +𝑀2), then we see that the equivalent sti�ness is

𝑘𝑒𝑞 = 𝐺𝐽 �
1
𝑎
+
1
𝑏�

We now need the equivalent mass. In this case it is the mass moment of inertia of flywheel.
We are given that radius of gyration is 𝑟, hence

𝑚𝑒𝑞 =
𝑊
𝑔
𝑟2

We now have all the pieces needed to find 𝜔𝑛

𝜔𝑛 =
�

𝑘𝑒𝑞
𝑚𝑒𝑞

=

�
⃓
⃓
⃓
⎷

𝐺𝐽 �1𝑎 +
1
𝑏
�

𝑊
𝑔 𝑟

2

=
�

𝑔𝐺𝐽
𝑊𝑟2 �

1
𝑎
+
1
𝑏�

From tables, for circular bar of radius 𝑑, we see that 𝐽 = 𝜋
32𝑑

4. Hence the above becomes

𝜔𝑛 =
�

𝑔𝐺𝜋𝑑4

32𝑊𝑟2
�1
𝑎 +

1
𝑏
�

Summary of results

case 𝜔𝑛

longitudinal
�

𝑔𝐴𝐸
𝑊
�1
𝑎 +

1
𝑏
�

Transverse
�

𝑔
𝑊
(3𝐸𝐼) � 𝐿

𝑎𝑏
�
3

Torsional
�

𝑔
𝑊

𝐺
𝑟2

𝜋𝑑4

32
�1
𝑎 +

1
𝑏
�
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2.3.2 Problem 2

ME 440 

Intermediate Vibrations 

 

Homework #3 

due Thursday, October 5, 2017 

 

Problem 1 

A flywheel is mounted on a vertical shaft, as shown below.  The shaft has a diameter d and 
length l and is fixed at both ends.  The flywheel has a weight of W and a radius of gyration of r.  
Find the natural frequency of the longitudinal, the transverse, and the torsional vibration of the 
system. 

 

Problem 2 

The uniform rigid bar OA of length L and mass m is pinned about point O.  Using Newton’s 

Second Law, find the equation of motion for the system using the generalized coordinate  and 

also find the system’s natural frequency. 

 
 

 

 

 

The first step is to draw the free body diagram and the kinematic diagram

Mt = ktα k1 (a sin(θ))

k2 (l sin(θ))

⇐⇒ Ioθ̈

oo

F.B.D. kinematics

Taking moments about the joint 𝑂, noting that positive is anti-clockwise gives

𝑘𝑡𝜃 + 𝑘1 (𝑎 sin𝜃) 𝑎 + 𝑘2 (𝐿 sin𝜃) 𝐿 = −𝐼𝑜𝜃̈ (1)

Using parallel axis theorem,

𝐼𝑜 = 𝐼𝐶𝐺 + 𝑚�
𝐿
2�

2

=
1
12
𝑚𝐿2 + 𝑚

𝐿2

4

=
1
3
𝐿2𝑚

Hence (1) becomes
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1
3
𝐿2𝑚𝜃̈ + 𝑘𝑡𝜃 + 𝑘1 (𝑎 sin𝜃) 𝑎 + 𝑘2 (𝐿 sin𝜃) 𝐿 = 0

For small angle approximation the above becomes (we have to apply small angle approxi-

mation in order to obtain the form that allows us to determine 𝜔2
𝑛, since this only works for

linear equations of motion).

1
3
𝐿2𝑚𝜃̈ + 𝑘𝑡𝜃 + 𝑘1𝑎2𝜃 + 𝑘2𝐿2𝜃 = 0

1
3
𝐿2𝑚𝜃̈ + 𝜃 �𝑘𝑡 + 𝑘1𝑎2 + 𝑘2𝐿2� = 0

𝜃̈ + 𝜃
3 �𝑘𝑡 + 𝑘1𝑎2 + 𝑘2𝐿2�

𝑚𝐿2
= 0

Comparing the above to standard form of linearized 𝜃̈ + 𝜔2
𝑛𝜃 = 0 we see that the natural

frequency (radians per second) is

𝜔𝑛 = �
3�𝑘𝑡+𝑘1𝑎2+𝑘2𝐿2�

𝑚𝐿2

32



2.3. HW3 CHAPTER 2. HWS

2.3.3 key solution version 1
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2.3.4 key solution version 2
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2.4 HW4

2.4.1 Problem 1

ME 440 

Intermediate Vibrations 

 

Homework #4 (2 problems) 

due Friday, October 13, 2017 

 

Problem 1 

The pulley is in fixed axis rotation about Point O.  Using energy concepts and  as the 
generalized coordinate, determine  
a) the natural frequency of the system shown below, and 
b) the equation of motion for the system, in terms of the parameters provided. 

 

Problem 2 

An underdamped shock absorber is to be designed for motorcycle of mass 200 kg.  When the 

shock absorber is subjected to an initial vertical velocity due to a road bump, the resulting 

displacement-time curve is to be as illustrated below.  Determine the necessary stiffness and 

damping constants of the shock absorber if the damped period of vibration is to be 2 seconds and 

the amplitude x1 is to be reduced to ¼ in one half cycle (i.e., x1.5 = x1/4).  Also find the minimum 

initial velocity that leads to a maximum displacement of 250 mm. 

 

2.4.1.1 Part a

Using Rayleigh method, we need to find 𝑇max and 𝑈max where 𝑇 is the kinetic energy of the
system and 𝑈 is the potential energy and then solve for 𝜔𝑛 by setting 𝑇max = 𝑈max.

Kinetic energy is

𝑇 =
1
2
𝑚𝑥̇2 +

1
2
𝐽𝑜𝜃̇2

But 𝑥 = 𝑟1𝜃, therefore 𝑥̇ = 𝑟1𝜃̇ and the above becomes

𝑇 =
1
2
𝑚 �𝑟1𝜃̇�

2
+
1
2
𝐽𝑜𝜃̇2 (1)

And potential energy only comes from the spring, since we assume 𝑥 is measured from static
equilibrium. Hence

𝑈 =
1
2
𝑘𝑥2

=
1
2
𝑘 (𝑟2𝜃)

2 (2)

To get 𝜔𝑛 into (1) and (2), we now assume that motion is harmonic, hence 𝜃 = 𝜃max sin (𝜔𝑛𝑡),
Therefore 𝜃̇ = 𝜃max𝜔𝑛 cos (𝜔𝑛𝑡) and rewriting (1,2) using these expressions results in

𝑇 =
1
2
𝑚 (𝑟1𝜃max𝜔𝑛 cos (𝜔𝑛𝑡))

2 +
1
2
𝐽𝑜 (𝜃max𝜔𝑛 cos (𝜔𝑛𝑡))

2

𝑈 =
1
2
𝑘 (𝑟2 (𝜃max sin (𝜔𝑛𝑡)))

2
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Hence, maximum is when 𝜃 = 𝜃max and 𝜃̇ = 𝜃max𝜔𝑛 and the above becomes

𝑇max =
1
2
𝑚𝑟21𝜃2max𝜔2

𝑛 +
1
2
𝐽𝑜𝜃2max𝜔2

𝑛

𝑈max =
1
2
𝑘𝑟22𝜃2max

Now

𝑇max = 𝑈max
1
2
𝑚𝑟21𝜃2max𝜔2

𝑛 +
1
2
𝐽𝑜𝜃2max𝜔2

𝑛 =
1
2
𝑘𝑟22𝜃2max

𝑚𝑟21𝜔2
𝑛 + 𝐽𝑜𝜔2

𝑛 = 𝑘𝑟22
Hence

𝜔2
𝑛 =

𝑘𝑟22
𝑚𝑟21 + 𝐽𝑜

𝜔𝑛 =
�

𝑘𝑟22
𝑚𝑟21 + 𝐽𝑜

2.4.1.2 Part b

The equation of motion is given by
𝑑
𝑑𝑡
(𝑇 + 𝑈) = 0

We found 𝑇,𝑈 in part (a), therefore the above becomes

𝑑
𝑑𝑡 �

1
2
𝑚 �𝑟1𝜃̇�

2
+
1
2
𝐽𝑜𝜃̇2 +

1
2
𝑘 (𝑟2𝜃)

2� = 0

𝑚𝑟21𝜃̇𝜃̈ + 𝐽𝑜𝜃̇𝜃̈ + 𝑘𝑟22𝜃𝜃̇ = 0

For non trivial motion 𝜃̇ ≠ 0 for all time, hence we can divide throughout by 𝜃̇ and obtain

𝑚𝑟21𝜃̈ + 𝐽𝑜𝜃̈ + 𝑘𝑟22𝜃 = 0

𝜃̈ �𝑚𝑟21 + 𝐽𝑜� + 𝑘𝑟22𝜃 = 0

𝜃̈ +
𝑘𝑟22

𝑚𝑟21 + 𝐽𝑜
𝜃 = 0

The above is the equation of motion.

2.4.2 Problem 2
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ME 440 

Intermediate Vibrations 

 

Homework #4 (2 problems) 

due Friday, October 13, 2017 

 

Problem 1 

The pulley is in fixed axis rotation about Point O.  Using energy concepts and  as the 
generalized coordinate, determine  
a) the natural frequency of the system shown below, and 
b) the equation of motion for the system, in terms of the parameters provided. 

 

Problem 2 

An underdamped shock absorber is to be designed for motorcycle of mass 200 kg.  When the 

shock absorber is subjected to an initial vertical velocity due to a road bump, the resulting 

displacement-time curve is to be as illustrated below.  Determine the necessary stiffness and 

damping constants of the shock absorber if the damped period of vibration is to be 2 seconds and 

the amplitude x1 is to be reduced to ¼ in one half cycle (i.e., x1.5 = x1/4).  Also find the minimum 

initial velocity that leads to a maximum displacement of 250 mm. 

 

First part

The first step is to determine damping ratio 𝜁. This is done using logarithmic decrement.

Since 𝑋1.5 =
1
4𝑋1 and 𝑋2 =

1
4𝑋1.5 then

𝑋2 =
1
4 �

1
4
𝑋1�

=
1
16
𝑋1

Using

𝑋1
𝑋2

=
𝑒−𝜁𝜔𝑛𝑡1

𝑒−𝜁𝜔𝑛(𝑡1+𝑡2)

Where 𝑡2 = 𝑡1 + 𝜏𝑑 and 𝜏𝑑 is damped period. Therefore the above becomes

𝑋1
1
16𝑋1

=
𝑒−𝜁𝜔𝑛𝑡1

𝑒−𝜁𝜔𝑛(𝑡1+𝜏𝑑)
=

𝑒−𝜁𝜔𝑛𝑡1

𝑒−𝜁𝜔𝑛𝑡1𝑒−𝜁𝜔𝑛𝜏𝑑
= 𝑒𝜁𝜔𝑛𝜏𝑑

ln (16) = 𝜁𝜔𝑛𝜏𝑑

Taking log of both sides gives

ln (16) = 𝜁𝜔𝑛𝜏𝑑 (1)
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But

𝜏𝑑 =
2𝜋
𝜔𝑑

=
2𝜋

𝜔𝑛√1 − 𝜁2

And (1) simplifies to

ln (16) = 𝜁𝜔𝑛
2𝜋

𝜔𝑛√1 − 𝜁2

2.7726 =
2𝜋𝜁

√1 − 𝜁2

Squaring both sides and solving for 𝜁 gives

(2.7726)2 �1 − 𝜁2� = 4𝜋2𝜁2

𝜁2 �4𝜋2 + 7.6873� = 7.6873

𝜁2 =
7.6873

4𝜋2 + 7.6873
Taking the positive root results in

𝜁 =
�

7.6873
4𝜋2 + 7.6873

= 0.40371

Now that 𝜁 is know, 𝜔𝑛 can be found, since we are told that 𝜏𝑑 = 2 seconds. Using

𝜏𝑑 =
2𝜋

𝜔𝑛√1 − 𝜁2

Then solving for 𝜔𝑛 from the above gives

2 =
2𝜋

𝜔𝑛√1 − 0.403712

𝜔𝑛 =
𝜋

√1 − 0.403712
= 3.4339 rad/sec

Now we are ready to find the sti�ness coe�cient 𝑘 and damping coe�cient 𝑐. Using

𝜁 =
𝑐

2𝜔𝑛𝑚
Then

𝑐 = 2𝜁𝜔𝑛𝑚
= 2 (0.40371) (3.4339) (200)
= 554.52 N-s/m

But since

𝜔2
𝑛 =

𝑘
𝑚
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Then 𝑘 is now found

𝑘 = 𝜔2
𝑛𝑚

= (3.4339)2 (200)
= 2358.3 N/m

Second part

Maximum displacement occurs at time 𝑡1 as given by (from textbook)

sin𝜔𝑑𝑡1 = �1 − 𝜁2

Hence

𝜔𝑑𝑡1 = arcsin ��1 − 𝜁2�

𝑡1 =
1

𝜔𝑛√1 − 𝜁2
arcsin ��1 − 𝜁2�

=
1

3.4339√1 − 0.403712
arcsin �√1 − 0.403712�

= 0.36772 sec

Since

𝑥 (𝑡) = 𝑋𝑒−𝜁𝜔𝑛𝑡 sin (𝜔𝑑𝑡) (2)

Then at maximum displacement, where 𝑥 = 0.25 m, the above becomes

𝑥max (𝑡1) = 𝑋𝑒−𝜁𝜔𝑛𝑡1 sin (𝜔𝑑𝑡1)
𝑥max𝑒𝜁𝜔𝑛𝑡1

sin (𝜔𝑑𝑡1)
= 𝑋

Plug-in numerical values to solve for maximum displacement 𝑋 gives

𝑋 =
0.25 exp (0.40371 × 3.4339 × 0.36772)
sin ��3.4339√1 − 0.403712� (0.36772)�

= 0.45495 m

From (2), the velocity is found

𝑥̇ (𝑡) = −𝜁𝜔𝑛𝑋𝑒−𝜁𝜔𝑛𝑡 sin (𝜔𝑑𝑡) + 𝑋𝑒−𝜁𝜔𝑛𝑡𝜔𝑑 cos (𝜔𝑑𝑡)
= 𝑋𝑒−𝜁𝜔𝑛𝑡 (𝜔𝑑 cos (𝜔𝑑𝑡) − 𝜁𝜔𝑛 sin (𝜔𝑑𝑡))

At 𝑡 = 0 the above gives

𝑥̇ (0) = 𝑋𝜔𝑑

= 𝑋�𝜔𝑛�1 − 𝜁2�

Plug-in in numerical values

𝑥̇ (0) = 0.45495 �3.4339√1 − 0.403712�

= 1.4293 m/s
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2.4.3 key solution
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2.5 HW5
ME 440 

Intermediate Vibrations 

 

Homework #5 

due Thursday, October 19, 2017 

 

Problem 1 

The stepped cylinder is connected to a spring of stiffness k2 and an inextensible cable.  The other end of the 

inextensible cable is attached to mass m1.  The stepped cylinder rolls without slip on the fixed surface.  The 

mass m1 rolls on 2 massless cylinders.  Assume the system will be limited to small displacements.  The total 

mass of the stepped cylinder is m2 and it’s mass moment of inertia about point O is I0. 

 
a) In preparation for using Newton’s Second Law, sketch the free-body diagram(s) and inertial diagram for this 

system. 

b) Using Newton’s Laws exclusively, determine the differential equation of motion for small angular 

oscillations of the mass m1 (in terms of the generalized coordinate x). 
 

 

 

 

Problem 2 

Repeat Problem 1 but use Tmax = Umax to find the natural frequency of the system. 

 

2.5.1 Problem 1

2.5.1.1 Part (A)

We start by assuming motion to the right, such that the small disk 𝑚2 rotates clockwise as
shown below. So the 𝑘2 spring is stretched by amount 𝑎𝜃 which come due to pure rotation,
and it also stretch by 𝑟𝜃 due to disk translation to the right at same time, therefore the
spring 𝑘1 will stretch by amount (𝑎 + 𝑟) 𝜃 and the 𝑘1 spring will be compressed by amount 𝑥.
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θ

k2

o
r

a

aθ

stretched spring

m2Io

x

k1

compressed
spring

m1

rθ
this part of spring extension
comes from disk translation
to the right

this part of spring extension
comes from disk pure
rotation

Therefore total extension of
spring k2 is the sum of these
two extensions, which is
(a+ r)θ

Based on the above, the following is the free body diagram for 𝑚2 and 𝑚1 and the corre-
sponding kinematic diagrams. This assumes small angle 𝜃 and that springs remain straight.

θ
k2(a+ r)θ

o
r

a

m2Io

x

k1x
m1

F

N2
m2g

D

T T

N1
m1g

θ

o
r

a

m2Io D

Ioθ̈

FBD

Inertia

m1
mẍ

m2(rθ̈)

FBD

Inertia
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2.5.1.2 Part (B)

Since cable is inextensible, then the constraint is that 𝑥 = 𝑟𝜃. Starting from the FBD for 𝑚1

�𝐹𝑥 = 𝑚1𝑥̈
−𝑇 − 𝑘1𝑥 = 𝑚1𝑥̈
𝑚1𝑥̈ + 𝑘1𝑥 = −𝑇 (1)

We do not need to resolve forces in vertical direction, since no motion is in that direction.
To find 𝑇, which is the tension in cable, we go back to 𝑚2 and find 𝑇.

We can do this part in two ways, either by taking moments around the instantaneous center
of zero velocity which is point 𝐷 at bottom of the small cylinder shown in the diagram, or
we can take moments around the C.M. of the disk and then use another equation to solve
for the friction 𝐹. We will show both methods, and that they give the same result.

Method one, using instantaneous center of zero velocity

Take moments around point 𝐷 as shown in figure in order to not have to account for the
friction force 𝐹 and the 𝑁2 force on 𝑚2 and using positive as anti-clockwise gives

�𝑀𝐷 = −𝐼𝐷𝜃̈

𝑘2 (𝑎 + 𝑟) 𝜃 (𝑎 + 𝑟) − 𝑇𝑟 = −

parallel axes

��������������𝐼𝑜 + 𝑚2𝑟2�𝜃̈

𝑇 =
𝑘2 (𝑎 + 𝑟)

2 𝜃 + �𝐼𝑜 + 𝑚2𝑟2� 𝜃̈
𝑟

But due to constraint, then 𝜃 = 𝑥
𝑟 , 𝜃̈ =

𝑥̈
𝑟 . Hence the above can be written as

𝑇 =
𝑘2

𝑥
𝑟
(𝑎 + 𝑟)2 + �𝐼𝑜 + 𝑚2𝑟2�

𝑥̈
𝑟

𝑟

=
𝑥𝑘2 (𝑎 + 𝑟)

2

𝑟2
+
�𝐼𝑜 + 𝑚2𝑟2� 𝑥̈

𝑟2
(2)

Substituting (2) into (1) gives

𝑚1𝑥̈ + 𝑘1𝑥 = −
⎛
⎜⎜⎜⎜⎝
𝑥𝑘2 (𝑎 + 𝑟)

2

𝑟2
+
�𝐼𝑜 + 𝑚2𝑟2� 𝑥̈

𝑟2

⎞
⎟⎟⎟⎟⎠

𝑚1𝑥̈ +
�𝐼𝑜 + 𝑚2𝑟2� 𝑥̈

𝑟2
+ 𝑘1𝑥 +

𝑥𝑘2 (𝑎 + 𝑟)
2

𝑟2
= 0

𝑥̈
⎛
⎜⎜⎜⎜⎝𝑚1 +

�𝐼𝑜 + 𝑚2𝑟2�
𝑟2

⎞
⎟⎟⎟⎟⎠ + 𝑥

⎛
⎜⎜⎜⎝𝑘1 +

𝑘2 (𝑎 + 𝑟)
2

𝑟2

⎞
⎟⎟⎟⎠ = 0

𝑥̈
⎛
⎜⎜⎜⎜⎝
𝑚1𝑟2 + �𝐼𝑜 + 𝑚2𝑟2�

𝑟2

⎞
⎟⎟⎟⎟⎠ + 𝑥

⎛
⎜⎜⎜⎝
𝑘1𝑟2 + 𝑘2 (𝑎 + 𝑟)

2

𝑟2

⎞
⎟⎟⎟⎠ = 0

Hence

𝑥̈ �𝑚1𝑟2 + �𝐼𝑜 + 𝑚2𝑟2�� + 𝑥 �𝑘1𝑟2 + 𝑘2 (𝑎 + 𝑟)
2� = 0
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In standard form

𝑥̈ + 𝑥
𝑘1𝑟2 + 𝑘2 (𝑎 + 𝑟)

2

𝑟2 (𝑚1 + 𝑚2) + 𝐼𝑜
= 0 (3)

Or

𝑥̈ + 𝜔2
𝑛𝑥 = 0

Where

𝜔2
𝑛 =

𝑟2𝑘1 + 𝑘2 (𝑎 + 𝑟)
2

𝑟2 (𝑚1 + 𝑚2) + 𝐼𝑜
Method two, moments around center of mass

Using this method. We start by taking moments around the center of mass of the disk 𝑚2
and using positive as anti-clockwise gives

�𝑀𝑜 = −𝐼𝑜𝜃̈
(𝑘2 (𝑎 + 𝑟) 𝜃) 𝑎 − 𝐹𝑟 = −𝐼𝑜𝜃̈

𝐹 =
1
𝑟
�𝐼𝑜𝜃̈ + (𝑘2 (𝑎 + 𝑟) 𝜃) 𝑎� (4)

Now resolving forces in the 𝑥 direction for 𝑚2, gives (with positive to the right)

�𝐹𝑥 = 𝑚2𝑟𝜃̈
𝑇 − 𝑘2 (𝑎 + 𝑟) 𝜃 − 𝐹 = 𝑚2𝑟𝜃̈ (5)

Plugging (4) into (5) gives 𝑇

𝑇 − 𝑘2 (𝑎 + 𝑟) 𝜃 −
1
𝑟
�𝐼𝑜𝜃̈ + (𝑘2 (𝑎 + 𝑟) 𝜃) 𝑎� = 𝑚2𝑟𝜃̈

Solving for 𝑇 gives

𝑇 = 𝑚2𝑟𝜃̈ +
1
𝑟
�𝐼𝑜𝜃̈ + (𝑘2 (𝑎 + 𝑟) 𝜃) 𝑎� + 𝑘2 (𝑎 + 𝑟) 𝜃

We now use the constraint that 𝑥 = 𝑟𝜃 to write everything in 𝑥. Hence 𝜃 = 𝑥
𝑟 , 𝜃̈ =

𝑥̈
𝑟 and the

above now becomes

𝑇 = 𝑚2𝑟
𝑥̈
𝑟
+
1
𝑟
�𝐼𝑜
𝑥̈
𝑟
+ �𝑘2 (𝑎 + 𝑟)

𝑥
𝑟
� 𝑎� + 𝑘2 (𝑎 + 𝑟)

𝑥
𝑟

= 𝑚2𝑥̈ +
1
𝑟2
(𝐼𝑜𝑥̈ + (𝑘2 (𝑎 + 𝑟) 𝑥) 𝑎) + 𝑘2 (𝑎 + 𝑟)

𝑥
𝑟

Now that we found 𝑇, we go back to the equation of motion for 𝑚1 in (1) and substitute the
above into it, the result becomes

𝑚1𝑥̈ + 𝑘1𝑥 = −𝑇

= − �𝑚2𝑥̈ +
1
𝑟2
(𝐼𝑜𝑥̈ + (𝑘2 (𝑎 + 𝑟) 𝑥) 𝑎) + 𝑘2 (𝑎 + 𝑟)

𝑥
𝑟 �
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Collecting terms

𝑥̈ �𝑚1 + 𝑚2 +
𝐼𝑜
𝑟2 �

+ 𝑘1𝑥 +
1
𝑟2
((𝑘2 (𝑎 + 𝑟) 𝑥) 𝑎) + 𝑘2 (𝑎 + 𝑟)

𝑥
𝑟
= 0

𝑥̈ �𝑚1 + 𝑚2 +
𝐼𝑜
𝑟2 �

+ 𝑥 �𝑘1 +
1
𝑟2
(𝑘2 (𝑎 + 𝑟) 𝑎) + 𝑘2 (𝑎 + 𝑟)

1
𝑟 �
= 0

𝑥̈ �𝑚1 + 𝑚2 +
𝐼𝑜
𝑟2 �

+ 𝑥 �𝑘1 +
𝑘2
𝑟2
[(𝑎 + 𝑟) 𝑎 + 𝑟 (𝑎 + 𝑟)]� = 0

𝑥̈ �𝑚1 + 𝑚2 +
𝐼𝑜
𝑟2 �

+ 𝑥 �𝑘1 +
𝑘2
𝑟2
�𝑎2 + 𝑟𝑎 + 𝑎𝑟 + 𝑟2�� = 0

𝑥̈ �𝑚1 + 𝑚2 +
𝐼𝑜
𝑟2 �

+ 𝑥 �𝑘1 +
𝑘2
𝑟2
�𝑎2 + 2𝑎𝑟 + 𝑟2�� = 0

𝑥̈ �𝑚1 + 𝑚2 +
𝐼𝑜
𝑟2 �

+ 𝑥 �𝑘1 +
𝑘2
𝑟2
(𝑎 + 𝑟)2� = 0

Or

𝑥̈ �𝑟2 (𝑚1 + 𝑚2) + 𝐼𝑜� + 𝑥 �𝑟2𝑘1 + 𝑘2 (𝑎 + 𝑟)
2� = 0

𝑥̈ + 𝑥
𝑟2𝑘1 + 𝑘2 (𝑎 + 𝑟)

2

𝑟2 (𝑚1 + 𝑚2) + 𝐼𝑜
= 0

Which is the same equation of motion found in the first method.

2.5.2 Problem 2

In Rayleigh energy method, we ignore any friction, and assume motion is simple harmonic
motion (which is valid, since there is no damping).

The Kinetic energy 𝑇 of the system is (since disk rolls with no slip)

𝑇 =

disk

���������������������1
2
𝐼𝑜𝜃̇2 +

1
2
𝑚2𝑣2𝑐𝑔 +

cart

�������1
2
𝑚1𝑥̇2

But 𝑣𝑐𝑔 = 𝑟𝜃̇, hence the above becomes

𝑇 =
1
2
𝐼𝑜𝜃̇2 +

1
2
𝑚2 �𝑟𝜃̇�

2
+
1
2
𝑚1𝑥̇2

But due to constraint, then 𝜃 = 𝑥
𝑟 , then 𝜃̇ =

𝑥̇
𝑟 and the above becomes

𝑇 =
1
2
𝐼𝑜 �

𝑥̇
𝑟
�
2
+
1
2
𝑚2 �𝑟

𝑥̇
𝑟
�
2
+
1
2
𝑚1𝑥̇2

=
1
2
𝐼𝑜
𝑥̇2

𝑟2
+
1
2
𝑚2𝑥̇2 +

1
2
𝑚1𝑥̇2

=
1
2
𝑥̇2 �

𝐼𝑜
𝑟2
+ 𝑚2 + 𝑚1� (1)
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The potential energy is

𝑈 =
1
2
𝑘2 ((𝑎 + 𝑟) 𝜃)

2 +
1
2
𝑘1𝑥2

=
1
2
𝑘2 �(𝑎 + 𝑟)

𝑥
𝑟
�
2
+
1
2
𝑘1𝑥2

=
1
2
𝑘2 (𝑎 + 𝑟)

2 𝑥2

𝑟2
+
1
2
𝑘1𝑥2 (2)

To find 𝑇max and 𝑈max, we now assume 𝑚1 undergoes simple harmonic motion given by
𝑥 (𝑡) = 𝑋max sin (𝜔𝑛𝑡). Hence 𝑥̇ = 𝑋max𝜔𝑛 cos𝜔𝑛𝑡. Therefore

𝑥̇max = 𝑋max𝜔𝑛

𝑥max = 𝑋max

Therefore using these into (1) and (2) gives

𝑇max =
1
2
(𝑥̇max)

2 �
𝐼𝑜
𝑟2
+ 𝑚2 + 𝑚1�

𝑈max =
1
2
𝑘2 (𝑎 + 𝑟)

2 𝑥2max
𝑟2

+
1
2
𝑘1𝑥2max

Or

𝑇max =
1
2
(𝑋max𝜔𝑛)

2 �
𝐼𝑜
𝑟2
+ 𝑚2 + 𝑚1�

𝑈max =
1
2
𝑋2

max

⎛
⎜⎜⎜⎝
𝑘2 (𝑎 + 𝑟)

2

𝑟2
+ 𝑘1

⎞
⎟⎟⎟⎠

Hence

𝑇max = 𝑈max

1
2
(𝑋max𝜔𝑛)

2 �
𝐼𝑜
𝑟2
+ 𝑚2 + 𝑚1� =

1
2
𝑋2

max

⎛
⎜⎜⎜⎝
𝑘2 (𝑎 + 𝑟)

2

𝑟2
+ 𝑘1

⎞
⎟⎟⎟⎠

𝜔2
𝑛 �
𝐼𝑜
𝑟2
+ 𝑚2 + 𝑚1� =

𝑘2 (𝑎 + 𝑟)
2 + 𝑟2𝑘1
𝑟2

Solving for 𝜔2
𝑛

𝜔2
𝑛 =

𝑘2 (𝑎 + 𝑟)
2 + 𝑟2𝑘1

𝐼𝑜 + 𝑟2 (𝑚2 + 𝑚1)
Therefore the equation of motion for 𝑚2 is

𝑥̈ + 𝜔2
𝑛𝑥 = 0

𝑥̈ +
𝑘2 (𝑎 + 𝑟)

2 + 𝑟2𝑘1
𝐼𝑜 + 𝑟2 (𝑚2 + 𝑚1)

𝑥 = 0

Comparing this to the solution found in first problem, we see they are the same. The Rayleigh
energy method was much simpler in this case. But we have to ignore any friction, and assume
motion is harmonic, which is reasonable, since this is single degree of freedom system.
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2.6 HW6

2.6.1 Problem 1
ME 440 

Intermediate Vibrations 

 

Homework #6 (3 problems) 

due Thursday, October 26th, 2017 

Problem 1 
 
Download the ANSYS input file “1DOF_spring_mass-problem_18p1.txt” from Canvas and step 
through the ANSYS tutorial “Intro to ANSYS modal analysis” that is also posted to Canvas.  
Using the parameters defined in the text file, analytically determine the natural frequency of the 
1 degree of freedom system.  Show your work for this calculation and then compare the 
analytical and finite element results.  And then answer the following questions: 

a) Does ANSYS provide the frequency (f) or the circular frequency ()? 
b) Can we verify the amplitude of displacement shown on Slide 10 of the “Intro to 

ANSYS modal analysis” slides?  Why or why not? 

 

Problem 2 

Derive the equation of motion and find the steady-state response {(t)} of the system shown 
below for rotational motion about the hinge O for the following data: k1 = k2 = 5000 N/m, a = 
0.25 m, b =0.5 m, l = 1 m, M = 50 kg, m = 10 kg, Fo = 500 N and  = 1000 rpm.  Give the steady-
state response in the simplest form possible. 

 
 

Problem 3 

A spring-mass system with m = 10 kg and k = 5000 N/m is subjected to a harmonic force of 

amplitude 250 N and frequency .  If the maximum amplitude of the mass is observed to be 100 

mm, find the value of . 

 

 

The input file to ANSYS is given to us in plain text file as the following

/filnam, 1DOF_spring_mass
/title, 1 Degree of freedom spring mass example
/prep7
!element type
et,1,mass21 !element type no.1 is mass21
et,2,combin14 !element type no.2 is combination 14 (this is a spring element)
! model parameters
mass = 10 ! mass of mass element
k = 10 ! spring stiffness
initial_l = 2 ! initial spring length (equilibrium length)
n_modes = 1 ! number of modes wanted
!real constants
r,1,mass ! real constant set 1 is for the point mass
r,2,k,,,,,initial_l ! real constant set 2 is for the spring
!create nodes
n,1,0,0,0 ! Node 1 is at x=0, y=0, z=0
n,2,initial_l,0,0 ! Node 2 is at x=initial_l, y=0, z=0
!create elements
type,2 ! specify element type of subsequently defined elements
real,2 ! specify real constant set of subsequently defined elements
e,1,2 ! define element to start at node 1 and end at node 2
type,1 ! specify element type of subsequently defined elements
real,1 ! specify real constant set of subsequently defined elements
e,2 ! define element to be created at node 2
!displacement boundary conditions
nsel,s,loc,x,0 !select node at x = 0
d,all,ux,0 !displacement of selected node in x-dir is 0
d,all,uy,0 !displacement of selected node in y-dir is 0
d,all,uz,0 !displacement of selected node in z-dir is 0
nsel,s,loc,x,initial_l !select node at x = initial_l
d,all,uy,0 !displacement of selected node in y-dir is 0
d,all,uz,0 !displacement of selected node in z-dir is 0
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allsel
finish
/solu !select static load solution
antype,modal
modopt,lanb,n_modes
solve
finish
/post1

2.6.1.1 Part (1)

For a mass-spring system the equation of motion is

𝑥̈ + 𝜔2
𝑛𝑥 = 0

Where 𝜔𝑛 = �
𝑘
𝑚 = �

10
10 = 1 rad/sec. Since 𝜔𝑛 = 2𝜋𝑓𝑛, hence 𝑓𝑛 =

𝜔𝑛
2𝜋 = 1

2𝜋 = 0.159 2 Hz.
Therefore the frequency given by ANSYS is in Hz and not the circular frequency rad/sec.

2.6.1.2 Part (2)

Unable to verify this result. At first I thought ANSYS uses gravity and the spring is vertically
connected, therefore the static displacement would be

𝑥𝑠𝑡 =
𝑊
𝑘

Where 𝑊 is the weight attached to end of spring. But this gives 𝑥𝑠𝑡 =
𝑚𝑔
𝑘 = 10𝑔

10 = 𝑔. And
depending on units used (ANSYS do not use units and assumes that the input is using
correct units), then value shown which is 0.316228 should be numerical value of 𝑔. But this
would not be valid number using any units. Unable to find out how ANSYS came up with
this value.
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2.6.2 Problem 2

ME 440 

Intermediate Vibrations 

 

Homework #6 (3 problems) 

due Thursday, October 26th, 2017 

Problem 1 
 
Download the ANSYS input file “1DOF_spring_mass-problem_18p1.txt” from Canvas and step 
through the ANSYS tutorial “Intro to ANSYS modal analysis” that is also posted to Canvas.  
Using the parameters defined in the text file, analytically determine the natural frequency of the 
1 degree of freedom system.  Show your work for this calculation and then compare the 
analytical and finite element results.  And then answer the following questions: 

a) Does ANSYS provide the frequency (f) or the circular frequency ()? 
b) Can we verify the amplitude of displacement shown on Slide 10 of the “Intro to 

ANSYS modal analysis” slides?  Why or why not? 

 

Problem 2 

Derive the equation of motion and find the steady-state response {(t)} of the system shown 
below for rotational motion about the hinge O for the following data: k1 = k2 = 5000 N/m, a = 
0.25 m, b =0.5 m, l = 1 m, M = 50 kg, m = 10 kg, Fo = 500 N and  = 1000 rpm.  Give the steady-
state response in the simplest form possible. 

 
 

Problem 3 

A spring-mass system with m = 10 kg and k = 5000 N/m is subjected to a harmonic force of 

amplitude 250 N and frequency .  If the maximum amplitude of the mass is observed to be 100 

mm, find the value of . 

 

 

The free body diagram and the inertial diagram are given below. It is assumed that motion
is measured from equilibrium position with the mass already in attached to springs. Hence
the weight of the beam do not show up in the FBD.

R1

R2

k1aθ

k2bθ
Ibeamθ̈ =

1
3mL

2θ̈

O

ML2θ̈

FBD

Inertial
F0 sin(ωt)

Taking moments around hinge at point 𝑜 and using anti-clockwise as positive gives (assuming
small angle 𝜃)

𝑘1 (𝑎𝜃) 𝑎 + 𝑘2 (𝑏𝜃) 𝑏 − 𝐹0 sin (𝜔𝑡) 𝐿 = − �
1
3
𝑚𝐿2 +𝑀𝐿2� 𝜃̈

�
1
3
𝑚𝐿2 +𝑀𝐿2� 𝜃̈ + 𝜃 �𝑘1𝑎2 + 𝑘2𝑏2� = 𝐹0 sin (𝜔𝑡) 𝐿
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In standard form, the above becomes

𝑚𝑒𝑞𝜃̈ + 𝑘𝑒𝑞𝜃 = 𝐹0 sin𝜔𝑡
Where

𝜔2
𝑛 =

𝑘𝑒𝑞
𝑚𝑒𝑞

=
𝑘1𝑎2 + 𝑘2𝑏2

𝐿2 �13𝑚 +𝑀�

This model is single degree of freedom system, undamped, with forced input. Hence we
know its solution is given by

𝜃 (𝑡) = 𝜃ℎ (𝑡) + 𝜃𝑝 (𝑡)

Where 𝜃𝑝 (𝑡) is particular solution and 𝜃ℎ (𝑡) is homogenous solution. We know that

𝜃ℎ (𝑡) = 𝑐1 cos𝜔𝑛𝑡 + 𝑐2 sin𝜔𝑛𝑡

And assuming 𝜃𝑝 (𝑡) = 𝑋 sin𝜔𝑡. Now we need to check if 𝜔 ≠ 𝜔𝑛 so to decide on which
solution to pick. Using the numerical values given

𝑘𝑒𝑞 = 𝑘1𝑎2 + 𝑘2𝑏2

= (5000) (0.25)2 + (5000) (0.5)2

= 1562.5 N/m

And

𝑀𝑒𝑞 = 𝐿2 �
1
3
𝑚 +𝑀�

= (1)2 ��
1
3�
(10) + 50�

= 53.333 kg

Hence

𝜔𝑛 =
�

𝑘𝑒𝑞
𝑀𝑒𝑞

=
�
1562.5
53.333

= 5.413 rad/sec

But the forcing frequency is given as

𝜔 = 1000 �
2𝜋
𝑟𝑒𝑣� �

min
60 �

= 1000 �
2𝜋
60 �

= 104.72 rad/sec

Hence 𝜔 ≠ 𝜔𝑛. We also see 𝜔 > 𝜔𝑛 which means 𝑟 > 1 where 𝑟 = 𝜔
𝜔𝑛
, so we also expect that

particular solution displacement maximum displacement to be negative. Now we use the
standard solution, which is

𝜃𝑝 (𝑡) = 𝑋 sin𝜔𝑡
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Where

𝑋 =
𝐹0

𝑘𝑒𝑞 − 𝑚𝑒𝑞𝜔2

=
𝐹0
𝑚𝑒𝑞

1
𝑘𝑒𝑞
𝑚𝑒𝑞

− 𝜔2

=
𝐹0
𝑚𝑒𝑞

1
𝜔2
𝑛 − 𝜔2

=
𝐹0

𝑚𝑒𝑞𝜔2
𝑛

1

1 − � 𝜔
𝜔𝑛
�
2

=
𝐹0
𝑘𝑒𝑞

1

1 − � 𝜔
𝜔𝑛
�
2

Calling 𝜔
𝜔𝑛
= 𝑟, which is the standard notation and since 𝐹0

𝑘𝑒𝑞
= 𝑥𝑠𝑡 the static deflection, then

the above becomes

𝑋 =
𝑥𝑠𝑡
1 − 𝑟2

We notice again, since 𝑟 > 1 in this problem, then 𝑋 is negative. It is out of phase with the
forcing function. The particular solution can now be written as

𝜃𝑝 (𝑡) = 𝑋 sin𝜔𝑡

=
𝑥𝑠𝑡
1 − 𝑟2

sin𝜔𝑡

And the total solution is

𝜃 (𝑡) =
homogeneous

�����������������������������𝑐1 cos𝜔𝑛𝑡 + 𝑐2 sin𝜔𝑛𝑡 +

particular

���������������𝑥𝑠𝑡
1 − 𝑟2

sin𝜔𝑡 (1)

Assuming initial conditions are 𝜃 (0) = 𝜃0, 𝜃̇ (0) = 𝜃̇0, then (1) at 𝑡 = 0 becomes

𝜃0 = 𝑐1
Hence solution becomes

𝜃 (𝑡) = 𝜃0 cos𝜔𝑛𝑡 + 𝑐2 sin𝜔𝑛𝑡 +
𝑥𝑠𝑡
1 − 𝑟2

sin𝜔𝑡

Taking derivative

𝜃′ (𝑡) = 𝜔𝑛𝜃0 sin𝜔𝑛𝑡 + 𝜔𝑛𝑐2 cos𝜔𝑛𝑡 + 𝜔
𝑥𝑠𝑡
1 − 𝑟2

cos𝜔𝑡

At 𝑡 = 0 the above becomes

𝜃̇0 = 𝜔𝑛𝑐2 + 𝜔
𝑥𝑠𝑡
1 − 𝑟2
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Hence

𝑐2 =
𝜃̇0
𝜔𝑛

−
𝜔
𝜔𝑛

𝑥𝑠𝑡
1 − 𝑟2

=
𝜃̇0
𝜔𝑛

−
𝑟

1 − 𝑟2
𝑥𝑠𝑡

Therefore the solution now becomes (again, this is for 𝜔 ≠ 𝜔𝑛)

𝜃 (𝑡) =

homogeneous

���������������������������������������������������
𝜃0 cos𝜔𝑛𝑡 + �

𝜃̇0
𝜔𝑛

−
𝑟

1 − 𝑟2
𝑥𝑠𝑡� sin𝜔𝑛𝑡 +

particular

�������������������
�
𝑥𝑠𝑡
1 − 𝑟2

� sin𝜔𝑡 (2)

The problem now asks for steady state solution. It is not clear to me what is this meant to
be, since there is no damping in the system, and hence the full solution remain for all time.
Therefore, will show the full solution (using zero initial conditions) and will also show the
particular solution.

This is a plot of the full solution, assuming that all initial conditions are zero. Therefore,
this is a plot of this solution

𝜃 (𝑡) = −
𝐹0
𝑘𝑒𝑞

𝑟
1 − 𝑟2

sin𝜔𝑛𝑡 + �
𝐹0
𝑘𝑒𝑞

1
1 − 𝑟2 �

sin𝜔𝑡

Obtained from (2) by setting 𝜃0 = 0, 𝜃̇0 = 0

𝜃 (𝑡) = −
500
1562.5 �

3. 574 4
1 − (3. 574 4)2

� sin (5.413𝑡) + �
500
1562.5 �

1
1 − (3. 574 4)2

�� sin (104.72𝑡)

= 0.09713 sin (5.413𝑡) − 0.0272 sin (104.72𝑡)
Here is a plot of the full solution for the first 1 second

In[15]:= x[t_] := 0.09713 Sin[29.297 t] - 0.0272 Sin[104.72 t];

p = Plot[x[t], {t, 0, 1}, Frame → True,

FrameLabel → {{"solution", None}, {"t (sec)", "Full solution for zero initial conditions"}},

BaseStyle → 12, GridLines → Automatic, GridLinesStyle → LightGray]

Out[16]=

0.0 0.2 0.4 0.6 0.8 1.0

-0.10

-0.05

0.00

0.05

0.10

t (sec)

so
lu
tio
n

Full solution for zero initial conditions
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The particular solution (steady state?) is

𝜃𝑝 (𝑡) =
𝑥𝑠𝑡
1 − 𝑟2

sin𝜔𝑡

= 0.0272 sin (104.72𝑡)
Here is a plot of the particular solution for the first 0.25 second

In[61]:= x[t_] := -0.0272 Sin[104.72 t];

p = Plot[x[t], {t, 0, .25}, Frame → True,

FrameLabel → {{"solution", None}, {"t (sec)", "Steady state solution"}}, BaseStyle → 12,

GridLines → Automatic, GridLinesStyle → LightGray]

Out[62]=

0.00 0.05 0.10 0.15 0.20 0.25
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

t (sec)

so
lu
tio
n

Steady state solution

2.6.3 Problem 3

ME 440 

Intermediate Vibrations 

 

Homework #6 (3 problems) 

due Thursday, October 26th, 2017 

Problem 1 
 
Download the ANSYS input file “1DOF_spring_mass-problem_18p1.txt” from Canvas and step 
through the ANSYS tutorial “Intro to ANSYS modal analysis” that is also posted to Canvas.  
Using the parameters defined in the text file, analytically determine the natural frequency of the 
1 degree of freedom system.  Show your work for this calculation and then compare the 
analytical and finite element results.  And then answer the following questions: 

a) Does ANSYS provide the frequency (f) or the circular frequency ()? 
b) Can we verify the amplitude of displacement shown on Slide 10 of the “Intro to 

ANSYS modal analysis” slides?  Why or why not? 

 

Problem 2 

Derive the equation of motion and find the steady-state response {(t)} of the system shown 
below for rotational motion about the hinge O for the following data: k1 = k2 = 5000 N/m, a = 
0.25 m, b =0.5 m, l = 1 m, M = 50 kg, m = 10 kg, Fo = 500 N and  = 1000 rpm.  Give the steady-
state response in the simplest form possible. 

 
 

Problem 3 

A spring-mass system with m = 10 kg and k = 5000 N/m is subjected to a harmonic force of 

amplitude 250 N and frequency .  If the maximum amplitude of the mass is observed to be 100 

mm, find the value of . 

 

 

The equation of motion (assuming sin (𝜔𝑡) for the force) is1

𝑚𝑥̈ + 𝑘𝑥 = 𝐹0 sin (𝜔𝑡)
1The general solution changes depending on if the forcing function is sin or cos. But the particular solution

is the same.
ODE solution

𝑚𝑥̈ + 𝑘𝑥 = 𝐹0 cos𝜔𝑡 𝑥 (𝑡) = �𝑥0 −
𝑥𝑠𝑡
1−𝑟2

� cos𝜔𝑛𝑡 +
𝑥̇0
𝜔𝑛

sin𝜔𝑛𝑡 +
𝑥𝑠𝑡
1−𝑟2

cos𝜔𝑡

𝑚𝑥̈ + 𝑘𝑥 = 𝐹0 sin𝜔𝑡 𝑥 (𝑡) = 𝑥0 cos𝜔𝑛𝑡 + � 𝑥̇0
𝜔𝑛

− 𝑟
1−𝑟2

𝑥𝑠𝑡� sin𝜔𝑛𝑡 +
𝑥𝑠𝑡
1−𝑟2

sin𝜔𝑡
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Where 𝑘 = 5000 N/m, 𝑚 = 10 kg, 𝐹0 = 250 N. We know the solution to the above is given by
(but we here have to assume that 𝜔 ≠ 𝜔𝑛)

𝑥 (𝑡) =

homogeneous

���������������������������������������������������
𝑥0 cos𝜔𝑛𝑡 + �

𝑥̇0
𝜔𝑛

−
𝑟

1 − 𝑟2
𝑥𝑠𝑡� sin𝜔𝑛𝑡 +

particular

�������������������
�
𝑥𝑠𝑡
1 − 𝑟2

� sin𝜔𝑡

Looking now at only the steady state solution (in this case, it is the particular solution) then
we see that

𝑥𝑠𝑠 (𝑡) = �
𝑥𝑠𝑡
1 − 𝑟2

� sin𝜔𝑡

Hence maximum is

𝑥max (𝑡) =
𝑥𝑠𝑡
1 − 𝑟2

we are told that 𝑥max = 0.1 meter, and . But 𝑟 = 𝜔
𝜔𝑛

and 𝑥𝑠𝑡 =
𝐹0
𝑘 . Therefore the above becomes

𝑥max =
𝐹0
𝑘

1

1 − � 𝜔
𝜔𝑛
�
2

In the above equation everything is known except for 𝜔. Solving for 𝜔 gives

1 − �
𝜔
𝜔𝑛
�
2

=
𝐹0

𝑘𝑥max

�
𝜔
𝜔𝑛
�
2

= 1 −
𝐹0

𝑘𝑥max

𝜔2 = �1 −
𝐹0

𝑘𝑥max
�𝜔2

𝑛

But 𝜔𝑛 = �
𝑘
𝑚 , hence

𝜔 =
�
𝑘
𝑚�

�1 −
𝐹0

𝑘𝑥max
�

Substituting numerical values

𝜔 =
�
5000
10 �

�1 −
250

(5000) (0.1)�

= 22.361√0.5
= 15.812 rad/sec
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2.7 HW7

2.7.1 Problem 1
ME 440 

Intermediate Vibrations 

 

Homework #7 (2 problems) 

due Thursday, November 2nd, 2017 

Problem 1 
 

Download the ANSYS input file “MODAL_pipe_flywheel.txt” from Canvas, run this input file in 

ANSYS and go through the file line by line to figure out what the system parameters are for this 

modal analysis.  (Hint: When viewing the mode shapes within ANSYS, try plotting all 3 

displacements and all 3 rotations (1 at a time) available under the “Nodal Solu” / “DOF 

Solution” option; this should be helpful in determining the type of displacement associated with 

each specific frequency. 

A) List the 4 frequencies from ANSYS and label each as longitudinal, transverse, or torsional. 

B) Using the parameters defined in the text file, analytically determine 3 of the 4 natural 

frequencies of this system.  Show ALL your work for these calculations and then compare 

the analytical and finite element frequencies in a table with % errors. 

 

Problem 2 

The signpost of a fast food restaurant consists of a hollow steel cylinder of height h, inside 

diameter d, and outside diameter D, fixed to the ground and carries a concentrated mass M at the 

top.  It can be modeled as a single degree of freedom spring-mass-damper system with an 

equivalent viscous damping ratio of 0.1 for analyzing its transverse vibration characteristics 

under wind excitation.  Assume the signpost mass (m) and concentrated mass (M) have an 

equivalent mass (meq) as defined below.  (this equivalent mass equation was from a lecture 

example earlier in the semester).  The specific weight (g) and the elastic modulus (E) of the 

steel are 76,500 N/m
3
 and 207 GPa, respectively.  For the density and viscosity of air, use 1.20 

kg/m
3
 and 1.80  10

-5
 N-s/m

2
, respectively.  For the remaining parameters, assume h = 10 m, D = 

25 cm, d = 20 cm and M = 200 kg. 

D

 
Determine the following:  

A) the natural frequency of transverse vibration of the signpost, 

B) the wind velocity at which the signpost undergoes maximum steady-state displacement, and 

C) the maximum wind induced steady-state displacement of the signpost. 

The following is diagram of the model of the problem to solve

flywheel

pipe

M = 10 kg, radius 0.2 m

Wall thickness = 0.003 m
Outer diameter = 0.04 m
Length = 1 meter

The ANSYS APDL (input file) listing was provided to us to use and is given in the text file
below for reference

/filnam, pipe_flywheel_modal
/title, Flywheel on torsional spring example
/prep7
!element type
et,1,mass21,,0,0 !element type no.1 is mass21 (",,,0" signifies
!that this is a 3-D mass with rotary inertia)
et,2,pipe288 !element type no.2 is pipe288 (this is a pipe element)
mp,ex,1,200e9 ! elastic modulus for steel is 200 GPa
mp,gxy,1,77.2e9 ! shear modulus for steel is 77.2 GPa
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mp,prxy,1,0.295 ! poisson's ratio for steel is 0.295
! model parameters
mass = 10 ! mass of flywheel (kg)
rad_f = 0.2 ! outer radius of flywheel
izz = 0.5*mass*rad_f*rad_f ! mass moment of inertia
outer_d = 0.04 ! outer diameter of pipe (m)
wall_t = 0.003 ! wall thickness of pipe (m)
pipe_l = 1 ! pipe length (m)
n_modes = 10 ! number of modes wanted
!real constants
r,1,mass,mass,mass,0.5*izz,izz,0.5*izz ! real constant set 1 is for the mass21 element
sectype,1,pipe ! section type 1 is "pipe"
secdata,outer_d,wall_t ! section data for pipe is outer diameter and wall thickness
!create nodes
k,1,0,0,0 ! keypoint 1 is at x=0, y=0, z=0, this will be the fixed end of the pipe
k,2,0,-pipe_l,0 ! keypoint 2 is at x=0, y=-pipe_l, z=0, this will be the free
! end of the pipe with the flywheel
!create elements
type,2 ! specify element type of subsequently defined elements
secnum,1 ! specify section type number of subsequently defined elements
l,1,2 ! creates a line from keypoint 1 to keypoint 2
lesize,1,,,10 ! specifies that line 1 will consist of 10 elements when meshed
lmesh,1 ! take line 1 and mesh it, resulting in elements representing the pipe
type,1 ! specify element type of subsequently defined elements
real,1 ! specify real constant set of subsequently defined elements
e,2 ! create element to be created at node 2
nsel,all ! selects all nodes
d,all,uz,0 ! sets the z displacements on selected nodes to be 0, thereby
! limiting our modal analysis to modes in the xy plane
d,all,rotx ! sets the rotx displacments on selected nodes to be 0
!displacement boundary conditions
nsel,s,loc,y,0 ! select node at x = 0
d,all,ux,0 ! displacement of selected node in x-dir is 0
d,all,uy,0 ! displacement of selected node in y-dir is 0
d,all,uz,0 ! displacement of selected node in z-dir is 0
d,all,rotx,0 ! rotations of selected node about x axis is 0
d,all,roty,0 ! rotations of selected node about y axis is 0
d,all,rotz,0 ! rotations of selected node about z axis is 0
allsel
finish
/solu !select static load solution
antype,modal
modopt,lanb,n_modes
solve
finish
/post1

2.7.1.1 Part 1

The following 4 modal frequencies were generated by ANSYS after running the above APDL
file.
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mode Mode number Frequency (Hz)

transverse 1 9.4438
torsional 2 34.272
transverse 3 111.41
longitudinal 4 420.31

The modal shapes were then plotted using ANSYS. They are given below for each mode

Figure 2.1: First mode: Trans-
verseat 9.443 Hz

Figure 2.2: Second mode: Torsional
at 34.2724 Hz

Figure 2.3: Third mode: Transverse
at 111.408 Hz

Figure 2.4: Fourth mode: longtitudi-
nal at 420.312 Hz

The system parameters are

PARAMETER STATUS- ( 13 PARAMETERS DEFINED)
(INCLUDING 6 INTERNAL PARAMETERS)
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NAME VALUE TYPE DIMENSIONS
IZZ 0.200000000 SCALAR
MASS 10.0000000 SCALAR
N_MODES 10.0000000 SCALAR
OUTER_D 4.000000000E-002 SCALAR
PIPE_L 1.00000000 SCALAR
RAD_F 0.200000000 SCALAR
WALL_T

Total U displacement by ANSYS for mode 1 is

PRINT U NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1
FREQ= 9.4438 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE UX UY UZ USUM
1 0.0000 0.0000 0.0000 0.0000
2 0.31268 -0.15719E-019 0.0000 0.31268
3 0.45277E-002-0.15719E-020 0.0000 0.45277E-002
4 0.17442E-001-0.31438E-020 0.0000 0.17442E-001
5 0.37825E-001-0.47156E-020 0.0000 0.37825E-001
6 0.64762E-001-0.62875E-020 0.0000 0.64762E-001
7 0.97336E-001-0.78594E-020 0.0000 0.97336E-001
8 0.13463 -0.94313E-020 0.0000 0.13463
9 0.17573 -0.11003E-019 0.0000 0.17573

10 0.21972 -0.12575E-019 0.0000 0.21972
11 0.26567 -0.14147E-019 0.0000 0.26567

MAXIMUM ABSOLUTE VALUES
NODE 2 2 0 2
VALUE 0.31268 -0.15719E-019 0.0000 0.31268

Total ROT displacement by ANSYS for mode 1 is

PRINT ROT NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1
FREQ= 9.4438 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE ROTX ROTY ROTZ RSUM
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.54021E-017 0.47205 0.47205
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3 0.0000 0.54021E-018 0.88444E-001 0.88444E-001
4 0.0000 0.10804E-017 0.16772 0.16772
5 0.0000 0.16206E-017 0.23784 0.23784
6 0.0000 0.21609E-017 0.29879 0.29879
7 0.0000 0.27011E-017 0.35058 0.35058
8 0.0000 0.32413E-017 0.39320 0.39320
9 0.0000 0.37815E-017 0.42666 0.42666

10 0.0000 0.43217E-017 0.45095 0.45095
11 0.0000 0.48619E-017 0.46608 0.46608

MAXIMUM ABSOLUTE VALUES
NODE 0 2 2 2
VALUE 0.0000 0.54021E-017 0.47205 0.47205

Total U displacement by ANSYS for mode 2 is

PRINT U NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 2
FREQ= 34.272 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE UX UY UZ USUM
1 0.0000 0.0000 0.0000 0.0000
2 0.11870E-012 0.57718E-018 0.0000 0.11870E-012
3 0.17191E-014 0.57718E-019 0.0000 0.17191E-014
4 0.66222E-014 0.11544E-018 0.0000 0.66222E-014
5 0.14361E-013 0.17316E-018 0.0000 0.14361E-013
6 0.24588E-013 0.23087E-018 0.0000 0.24588E-013
7 0.36955E-013 0.28859E-018 0.0000 0.36955E-013
8 0.51113E-013 0.34631E-018 0.0000 0.51113E-013
9 0.66715E-013 0.40403E-018 0.0000 0.66715E-013

10 0.83412E-013 0.46175E-018 0.0000 0.83412E-013
11 0.10086E-012 0.51947E-018 0.0000 0.10086E-012

MAXIMUM ABSOLUTE VALUES
NODE 2 2 0 2
VALUE 0.11870E-012 0.57718E-018 0.0000 0.11870E-012

Total ROT displacement by ANSYS for mode 2 is

PRINT ROT NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 2
FREQ= 34.272 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM
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NODE ROTX ROTY ROTZ RSUM
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 2.2361 0.17917E-012 2.2361
3 0.0000 0.22361 0.33581E-013 0.22361
4 0.0000 0.44721 0.63680E-013 0.44721
5 0.0000 0.67082 0.90299E-013 0.67082
6 0.0000 0.89443 0.11344E-012 0.89443
7 0.0000 1.1180 0.13309E-012 1.1180
8 0.0000 1.3416 0.14927E-012 1.3416
9 0.0000 1.5652 0.16197E-012 1.5652

10 0.0000 1.7889 0.17118E-012 1.7889
11 0.0000 2.0125 0.17691E-012 2.0125

MAXIMUM ABSOLUTE VALUES
NODE 0 2 2 2
VALUE 0.0000 2.2361 0.17917E-012 2.2361

Total U displacement by ANSYS for mode 3 is

PRINT U NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 3
FREQ= 111.41 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE UX UY UZ USUM
1 0.0000 0.0000 0.0000 0.0000
2 -0.47205E-001-0.10687E-014 0.0000 0.47205E-001
3 -0.29904E-001-0.10687E-015 0.0000 0.29904E-001
4 -0.10556 -0.21374E-015 0.0000 0.10556
5 -0.20770 -0.32061E-015 0.0000 0.20770
6 -0.31709 -0.42748E-015 0.0000 0.31709
7 -0.41446 -0.53435E-015 0.0000 0.41446
8 -0.48056 -0.64122E-015 0.0000 0.48056
9 -0.49614 -0.74809E-015 0.0000 0.49614

10 -0.44194 -0.85497E-015 0.0000 0.44194
11 -0.29872 -0.96184E-015 0.0000 0.29872

MAXIMUM ABSOLUTE VALUES
NODE 9 2 0 9
VALUE -0.49614 -0.10687E-014 0.0000 0.49614

Total ROT displacement by ANSYS for mode 3 is

PRINT ROT NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****
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LOAD STEP= 1 SUBSTEP= 3
FREQ= 111.41 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE ROTX ROTY ROTZ RSUM
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 -0.49528E-013 3.1268 3.1268
3 0.0000 -0.49528E-014-0.55375 0.55375
4 0.0000 -0.99056E-014-0.91496 0.91496
5 0.0000 -0.14858E-013 -1.0836 1.0836
6 0.0000 -0.19811E-013 -1.0598 1.0598
7 0.0000 -0.24764E-013-0.84334 0.84334
8 0.0000 -0.29717E-013-0.43438 0.43438
9 0.0000 -0.34670E-013 0.16711 0.16711

10 0.0000 -0.39622E-013 0.96115 0.96115
11 0.0000 -0.44575E-013 1.9477 1.9477

MAXIMUM ABSOLUTE VALUES
NODE 0 2 2 2
VALUE 0.0000 -0.49528E-013 3.1268 3.1268

Total U displacement by ANSYS for mode 4 is

PRINT U NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 4
FREQ= 420.31 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE UX UY UZ USUM
1 0.0000 0.0000 0.0000 0.0000
2 -0.14600E-009 0.31623 0.0000 0.31623
3 -0.21370E-011 0.31623E-001 0.0000 0.31623E-001
4 -0.82246E-011 0.63246E-001 0.0000 0.63246E-001
5 -0.17820E-010 0.94868E-001 0.0000 0.94868E-001
6 -0.30480E-010 0.12649 0.0000 0.12649
7 -0.45762E-010 0.15811 0.0000 0.15811
8 -0.63223E-010 0.18974 0.0000 0.18974
9 -0.82420E-010 0.22136 0.0000 0.22136

10 -0.10291E-009 0.25298 0.0000 0.25298
11 -0.12425E-009 0.28460 0.0000 0.28460

MAXIMUM ABSOLUTE VALUES
NODE 2 2 0 2

And total ROT displacement by ANSYS for mode 4 is

PRINT ROT NODAL SOLUTION PER NODE
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***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 4
FREQ= 420.31 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE ROTX ROTY ROTZ RSUM
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.15287E-011-0.21790E-009 0.21790E-009
3 0.0000 0.15287E-012-0.41720E-010 0.41721E-010
4 0.0000 0.30573E-012-0.79011E-010 0.79012E-010
5 0.0000 0.45860E-012-0.11187E-009 0.11187E-009
6 0.0000 0.61146E-012-0.14031E-009 0.14031E-009
7 0.0000 0.76433E-012-0.16431E-009 0.16431E-009
8 0.0000 0.91720E-012-0.18389E-009 0.18389E-009
9 0.0000 0.10701E-011-0.19903E-009 0.19904E-009

10 0.0000 0.12229E-011-0.20975E-009 0.20975E-009
11 0.0000 0.13758E-011-0.21604E-009 0.21604E-009

MAXIMUM ABSOLUTE VALUES
NODE 0 2 2 2
VALUE 0.0000 0.15287E-011-0.21790E-009 0.21790E-009

2.7.1.2 Part 2

To verify ANSYS solution, this was solved in two ways. By taking into account the mass 𝑚
of the pipe and then by ignoring the mass 𝑚. Both hand solutions are given below. ANSYS
do not take the mass of the pipe into account, since it was not told the density of the pipe
material in the APDL input file. The first solution below is the recommend one to use to
compare the ANSYS result against and it the method which gave more agreement with
ANSYS result.

2.7.1.2.1 First solution. Not accounting for mass of pipe

Finding the longitudinal (axial) natural frequency.

Using 𝑘𝑒𝑞 =
𝐴𝐸
𝐿 where 𝐴 is the cross sectional area of the pipe and 𝐿 is the pipe length and

using 𝑚𝑒𝑞 = 𝑀, then the longitudinal natural frequency is

𝜔𝑛 =
�

𝑘𝑒𝑞
𝑚𝑒𝑞

=
�
𝐴𝐸
𝐿𝑀

(1)
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The cross sectional area of the pipe is

𝐴 =
𝜋
4
�𝐷2

𝑜 − 𝐷2
𝑖 �

=
𝜋
4
�(0.04)2 − (0.034)2�

= 3.487 2 × 10−4 m2

The length of pipe is 1 meter and 𝑀 = 10 kg. Equation (1) becomes

𝜔𝑛 =
�

�3.487 2 × 10−4� �200 × 109�
(1) (10)

= 2640.9 rad/sec

The cycle frequency is

𝑓𝑛 =
𝜔𝑛
2𝜋

=
2640.9
2𝜋

= 420.31 Hz

ANSYS gives 420.31 Hz. So the error is 0.

Finding the torsional natural frequency.

Torsional sti�ness 𝑘𝑡 is

𝑘𝑡 =
𝐺𝐽
𝐿

Where 𝐺 is the shear modulus (given in handout), and 𝐽 is the polar area moment of inertia
of the cross section given by

𝐽 =
𝜋
32
�𝐷4

𝑜 − 𝐷4
𝑖 �

=
𝜋
32
�0.044 − 0.0344�

= 1.201 3 × 10−7 m4

Therefore

𝑘𝑡 =
�77.2 × 109� �1.201 3 × 10−7�

1
= 9274 N-m per radian

The equivalent mass is just the mass moment of inertia of the flywheel 1
2𝑀𝑟

2
𝑓 (since the pipe

assumed to have no mass). Hence the torsional frequency is

𝜔 =
�
⃓
⃓
⎷

𝑘𝑡
1
2𝑀𝑟

2
𝑓

=
�

9274
1
2
(10) (0.2)2

= 215.34 rad/sec
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Therefore the torsional frequency in Hz is

𝑓 =
215.34
2𝜋

= 34.272 hz

ANSYS gives this as 34.272 Hz. The the error is 0.

Finding the transverse natural frequency:

Using 𝑘 = 3𝐸𝐼
𝐿3 and 𝑀 = 10. Where 𝐼 is the area moment of inertia given by

𝐼 =
𝜋
64
�𝐷4

𝑜 − 𝐷4
𝑖 �

=
𝜋
64
�0.044 − 0.0344�

= 6.0066 × 10−8 m4

The transverse natural frequency is therefore

𝜔 =
�

3𝐸𝐼
𝑀𝐿3

=
�
⃓
⃓
⎷

3�200 × 109� �6.0066 × 10−8�

(10) (1)3

= 60.033 rad/sec

Hence

𝑓𝑛 =
60.033
2𝜋

= 9.5545 Hz

ANSYS gives 9.4438 for the first transverse natural frequency. Hence error is � |9.4438−9.5545|9.4438
� 100 =

1.1722%

Summary of results

mode ANSYS result Hand calculation %error

First transverse 9.4438 9.554 5 1.1722%
First torsional 34.272 34.272 0%
First longitudinal (axial) 420.31 420.31 0%

All the analytical solutions gave exact agreement with ANSYS except for the transverse case.
The transverse case uses sti�ness 3𝐸𝐼

𝐿3 due to load at end of fixed-free beam. This does not
account for bending rotation in the beam. That is why ANSYS result is more accurate, as its
finite elements account for the small bending associated with the transverse vibration. In the
other two cases (Torsional and axial), there is no associated bending, hence the solutions
agree.

2.7.1.2.2 Second solution. Accounting for mass of pipe

76



2.7. HW7 CHAPTER 2. HWS

Finding the longitudinal natural frequency.

Following the example given in the textbook, at page 715, the (first) longitudinal natural
frequency is found to be

𝜔1 =
𝛼1
�

𝐸
𝜌

𝐿
(E.4)

Where 𝛼1 is the (first) root of

𝛼 tan𝛼 = 𝛽
Where 𝛽 is the mass ratio 𝛽 = 𝑚

𝑀 where 𝑚 is mass of pipe and 𝑀 is end mass (flywheel). To
find mass of pipe 𝑚, using steel density 𝜌 = 7800 kg/m3, we first find the volume of the pipe.

Let 𝐷𝑖 be the inner diameter and 𝐷𝑜 the outer diameter. 𝐷𝑜 = 0.04 meter and 𝐷𝑖 = 0.04 −
2 (0.003) = 0.034 meter , therefore the cross sectional area of the pipe is

𝐴 =
𝜋
4
�𝐷2

𝑜 − 𝐷2
𝑖 �

=
𝜋
4
�(0.04)2 − (0.034)2�

= 3.487 2 × 10−4 m2

And since length of pipe is 1 meter, the mass of pipe is

𝑚 = 𝜌𝐴𝐿

= (7800) �3.487 2 × 10−4� (1)

= 2.72 kg.

The mass at the end is given as 𝑀 = 10 kg. Therefore the mass ratio

𝛽 =
𝑚
𝑀

=
2.72
10

= 0.272

To find 𝛼1 we now need to solve 𝛼1 tan𝛼1 = 0.272. This was solved numerical using root
finder. The first root was found to be

𝛼1 = 0.499

Therefore from equation E.4 in textbook (page 715)

𝜔1 =
𝛼1𝑐
𝐿

=
𝛼1
�

𝐸
𝜌

𝐿

=
(0.499)�

200×109

7800
1

= 2526.8 rad/sec
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Therefore

𝑓1 =
𝜔1
2𝜋

=
2526.8
2𝜋

= 402.15 Hz

ANSYS gives 420.31 Hz. So the error is �420.31−402. 15420.31
� 100 = 4.321%

Finding the torsional natural frequency.

𝑘𝑡 is

𝑘𝑡 =
𝐺𝐽
𝐿

Where 𝐺 is the shear modulus (given in handout), and 𝐽 is the polar area moment of inertia
of the cross section given by

𝐽 =
𝜋
32
�𝐷4

𝑜 − 𝐷4
𝑖 �

=
𝜋
32
�0.044 − 0.0344�

= 1.201 3 × 10−7 m4

Hence

𝑘𝑡 =
�77.2 × 109� �1.201 3 × 10−7�

1
= 9274

To find equivalent mass, using kinetic energy method
1
2
𝐼𝑓𝑙𝑦𝑤ℎ𝑒𝑒𝑙𝜃̇2 +

1
2
𝐼𝑝𝑖𝑝𝑒𝜃̇2 =

1
2
𝐼𝑒𝑞𝜃̇2 (1)

For a hollow pipe, where now 𝑚 is replaced by 1
3𝑚 from continuous system derivation.

𝐼𝑝𝑖𝑝𝑒 =
1
2 �

1
3
𝑚�

⎛
⎜⎜⎜⎜⎝�
𝐷𝑜
2 �

2

+ �
𝐷𝑖
2 �

2⎞⎟⎟⎟⎟⎠

=
1
24
𝑚 �𝐷2

𝑜 + 𝐷2
𝑖 �

And for the flywheel, 𝐼𝑓𝑙𝑦 =
1
2𝑀𝑟

2
𝑓 where 𝑟𝑓 = 0.2 meter. Hence from (1)

𝐼𝑒𝑞 =
1
2
𝑀𝑟2𝑓 +

1
24
𝑚 �𝐷2

𝑜 + 𝐷2
𝑖 �

=
1
2
(10) (0.2)2 +

1
24
(2.72) �0.042 + 0.0342�

= 0.20031 kg-m2
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Hence the torsional frequency is

𝜔 =
�

𝑘𝑡
𝐼𝑒𝑓𝑓

=
�

9274
0.20031

= 215.17 rad/sec

Therefore the torsional frequency in Hz is

𝑓 =
215.17
2𝜋

= 34.245 hz

ANSYS gives this as 34.272 Hz. The the error is �34.272−34. 24534.272
� 100 = 0.079%

Finding the transverse natural frequency:

From textbook, table 8.15 page 726, it gives for fixed-end beam the value 𝛽1𝐿 = 1.875104.
But since there is a mass attach to the end in our problem, I did not know how to add this
using the table.

So I used the other method we used before, which is the Rayleigh energy method, where
we assume motion is simple harmonic motion. Taking the displacement as the transverse
motion of the free end of the pipe (where the large mass is attached), measured from
equilibrium then the kinetic energy is

𝑇 =
1
2

𝑚𝑒𝑞

���������������(𝑀 + 0.23𝑚)𝑥̇2

Where we added 0.23𝑚, where 𝑚 is the mass of the pipe, since this is continuous mass. For
the potential energy, we use the sti�ness formula for the fixed-free beam which is 𝑘 = 3𝐸𝐼

𝐿3 ,
hence

𝑈 =
1
2
𝑘𝑥2

Now, assuming 𝑥 = 𝑋 sin𝜔𝑛𝑡, then 𝑥̇ = 𝑋𝜔𝑛 cos𝜔𝑛𝑡. Therefore when

𝑈max = 𝑇max

We obtain
1
2
3𝐸𝐼
𝐿3
𝑋2 =

1
2
(𝑀 + 0.23𝑚) (𝑋𝜔𝑛)

2

3𝐸𝐼
𝐿3

= (𝑀 + 0.23𝑚)𝜔2
𝑛

𝜔2
𝑛 =

3𝐸𝐼
𝐿3 (𝑀 + 0.23𝑚)

𝜔𝑛 =
�

3𝐸𝐼
𝐿3 (𝑀 + 0.23𝑚)

(1)
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Where 𝐼 now is the area moment of inertia2 is given by

𝐼 =
𝜋
64
�𝐷4

𝑜 − 𝐷4
𝑖 �

=
𝜋
64
�0.044 − 0.0344�

= 6.006 6 × 10−8 m4

And

𝑀+ 0.23𝑚 = 10 + 0.23 (2.72)
= 10.626 kg

Substituting the numerical values in (1) gives

𝜔𝑛 = �

3 �200 × 109� �6.006 6 × 10−8�
10.626

= 58.239 rad/sec

Hence

𝑓𝑛 =
58.239
2𝜋

= 9.269 Hz

ANSYS gives 9.4438 for the first transverse natural frequency. Hence error is �9.4438−9.2699.4438
� 100 =

1.851%

Summary of results

mode ANSYS result Hand calculation %error

First transverse 9.4438 9.269 1.851%
First torsional 34.272 34.245 0.079%
First longitudinal 420.31 402.15 4.321%

Comparing the above table to the first solution, it shows that ignoring the mass of the pipe
gave result which agree with ANSYS result much better. This is because ANSYS did not take
into the account the mass of the pipe. It will be interesting exercise to find how to change
the APDL input file to make ANSYS account for the mass of the pipe and then compare
the above results with ANSYS.

2Notice that the polar area moment of ineria has 1
32

factor, while the area moment of interia, the factor is
1
64
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2.7.2 Problem 2

ME 440 

Intermediate Vibrations 

 

Homework #7 (2 problems) 

due Thursday, November 2nd, 2017 

Problem 1 
 

Download the ANSYS input file “MODAL_pipe_flywheel.txt” from Canvas, run this input file in 

ANSYS and go through the file line by line to figure out what the system parameters are for this 

modal analysis.  (Hint: When viewing the mode shapes within ANSYS, try plotting all 3 

displacements and all 3 rotations (1 at a time) available under the “Nodal Solu” / “DOF 

Solution” option; this should be helpful in determining the type of displacement associated with 

each specific frequency. 

A) List the 4 frequencies from ANSYS and label each as longitudinal, transverse, or torsional. 

B) Using the parameters defined in the text file, analytically determine 3 of the 4 natural 

frequencies of this system.  Show ALL your work for these calculations and then compare 

the analytical and finite element frequencies in a table with % errors. 

 

Problem 2 

The signpost of a fast food restaurant consists of a hollow steel cylinder of height h, inside 

diameter d, and outside diameter D, fixed to the ground and carries a concentrated mass M at the 

top.  It can be modeled as a single degree of freedom spring-mass-damper system with an 

equivalent viscous damping ratio of 0.1 for analyzing its transverse vibration characteristics 

under wind excitation.  Assume the signpost mass (m) and concentrated mass (M) have an 

equivalent mass (meq) as defined below.  (this equivalent mass equation was from a lecture 

example earlier in the semester).  The specific weight (g) and the elastic modulus (E) of the 

steel are 76,500 N/m
3
 and 207 GPa, respectively.  For the density and viscosity of air, use 1.20 

kg/m
3
 and 1.80  10

-5
 N-s/m

2
, respectively.  For the remaining parameters, assume h = 10 m, D = 

25 cm, d = 20 cm and M = 200 kg. 

D

 
Determine the following:  

A) the natural frequency of transverse vibration of the signpost, 

B) the wind velocity at which the signpost undergoes maximum steady-state displacement, and 

C) the maximum wind induced steady-state displacement of the signpost. 

2.7.2.1 Part A

The first step is to determine the natural frequency 𝜔𝑛 for the transverse vibration. Rayleigh
energy method was used to find the transverse frequency. Taking the displacement as the
transverse motion of the free end of the sigpost (where the large mass 𝑀 is attached),
measured from equilibrium, then the kinetic energy is

𝑇 =
1
2

𝑚𝑒𝑞

���������������(𝑀 + 0.23𝑚)𝑥̇2

𝑚 is the mass of the sigpost. For the potential energy, the bending sti�ness formula for the
fixed-free beam with load at the end was used, which is

𝑘 =
3𝐸𝐼
𝐿3

The potential energy is therefore

𝑈 =
1
2
𝑘𝑥2

Assuming 𝑥 = 𝑋 sin𝜔𝑛𝑡, then 𝑥̇ = 𝑋𝜔𝑛 cos𝜔𝑛𝑡. Using

𝑈max = 𝑇max
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Then the above reduces to
1
2 �
3𝐸𝐼
𝐿3 �

𝑋2 =
1
2
(𝑀 + 0.23𝑚) (𝑋𝜔𝑛)

2

3𝐸𝐼
𝐿3

= (𝑀 + 0.23𝑚)𝜔2
𝑛

𝜔2
𝑛 =

3𝐸𝐼
𝐿3 (𝑀 + 0.23𝑚)

𝜔𝑛 =
�

3𝐸𝐼
𝐿3 (𝑀 + 0.23𝑚)

(1)

𝐼 is the area moment of inertia of the pipe cross section. Since 𝐷𝑜 = 0.25 m and 𝐷𝑖 = 0.2 m,
then

𝐼 =
𝜋
64
�𝐷4

𝑜 − 𝐷4
𝑖 �

=
𝜋
64
�0.254 − 0.24�

= 1.132 1 × 10−4 m4

𝑀 = 200 kg, and 𝐿 = 10 meter. Using 𝜌𝑠𝑡𝑒𝑒𝑙𝑔 = 76500 N/m3 and 𝐸 = 207 × 109 Pa. To find the
mass 𝑚 of the post, the cross sectional area is first found

𝐴 =
𝜋
4
�𝐷2

𝑜 − 𝐷2
𝑖 �

=
𝜋
4
�0.252 − 0.22�

= 0.017671 m2

Hence the mass 𝑚 is

𝑚 =
�𝜌𝑠𝑡𝑒𝑒𝑙𝑔�

𝑔
𝐴𝐿

=
76500
9.81

(0.017671) (10)

= 1378 kg

Substituting the numerical values in (1) gives

𝜔𝑛 =
�

3𝐸𝐼
𝐿3 (𝑀 + 0.23𝑚)

=
�
⃓
⃓
⎷

3�207 × 109� �1.132 1 × 10−4�

(10)3 (200 + 0.23 (1378))
= 11.662 rad/sec

Or

𝑓𝑛 =
11.662
2𝜋
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Therefore

𝑓𝑛 = 1.856 1 Hz

2.7.2.2 Part B

Maximum steady state displacement occurs at resonance. This is when the frequency of
vortex shedding is the same as the natural frequency 𝑓𝑛 of the post found above. Using
Strouhal formula

𝑣 =
𝑓𝑛𝐷𝑜
𝑆

Where in the above 𝑣 is the wind velocity and the vortex shedding frequency is set to be the
natural frequency in order to obtain the maximum displacement. Assume 𝑆 = 0.21 gives

𝑣 =
(1.856 1) (0.25)

0.21
Hence

𝑣 = 2.2096 m/s

Checking Reynold number

Re = 𝑣𝐷𝑜𝜌𝑎𝑖𝑟
𝜇

𝜌𝑎𝑖𝑟 is density of air and 𝜇 is viscosity of air. Using the numerical values given the above
becomes

Re =
(2.209 6) (0.25) (1.2)

�1.8 × 10−5�

= 36827

Since 400 ≤ Re ≤ 300000 then the assumption of Strouhal 𝑆 = 0.21 was valid.

2.7.2.3 Part C

The lateral force exerted by the wind on the sigpost is given by

𝐹 (𝑡) =
1
2
𝑐𝜌𝑎𝑖𝑟𝑣2𝐴 sin𝜔𝑡

= 𝐹0 sin𝜔𝑡
Where 𝑐 ≈ 1 for cylinder and 𝑣 is the wind speed found in last part and 𝐴 is the projected
area 𝐴 = 𝐷𝑜𝐿. Hence

𝐹0 =
1
2
𝑐𝜌𝑎𝑖𝑟𝑣2𝐴

=
1
2
(1.2) (2.2096)2 (0.25) (10)

= 7.3235 N
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Using the steady state displacement formula for damped single degree of freedom system,
which is

𝑦𝑠𝑠 =
𝐹0
𝑘

1

��1 − 𝑟
2�

2
+ (2𝜉𝑟)2

Where 𝐹0 is total force from the wind over the whole span. Assuming this force acts at the
end of a fixed-free beam (This is an over estimation. The wind force actually acts over the
whole length of the sigpost, but it is now taken as acting on the end). Therefore 𝑘 = 3𝐸𝐼

𝐿3 can
be used based on this. Since 𝑟 = 1 (resonance) and 𝜉 = 0.1, then 𝑦𝑠𝑠 is now evaluated

𝑦𝑠𝑠 =
𝐹0
𝑘

1

√4𝜉2

=
𝐹0𝐿3

3𝐸𝐼
1
2𝜉

=
(7.3235) (10)3

3 �207 × 109� �1.132 1 × 10−4�
1

2 (0.1)

= 5.208 5 × 10−4 meter

Or

𝑦𝑠𝑠 ≈ 0.5 mm
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2.8 HW8

2.8.1 Problem 1
ME 440 

Intermediate Vibrations 

 

Homework #8 (3 problems) 

due Thursday, November 9th, 2017 

Problem 1 
 

Download the ANSYS input file “MODAL_pipe_flywheel.txt” from HW7 on Canvas, run this 

input file in ANSYS and go through the file line by line to figure out what the system parameters 

are for this modal analysis.  (Hint: When viewing the mode shapes within ANSYS, try plotting 

all 3 displacements and all 3 rotations (1 at a time) available under the “Nodal Solu” / “DOF 

Solution” option; this should be helpful in determining the type of displacement associated with 

each specific frequency.   

 

A) Modify the “MODAL_pipe_flywheel.txt” file to use ANSYS to predict the natural 

frequencies and mode shapes for the problem listed below (NOTE: you should remember 

this problem from HW3). 

 

A flywheel is mounted on a vertical shaft, as shown below. The shaft has a diameter d and 

length l and is fixed at both ends. The flywheel has a weight of W and a radius of gyration of 

r. Find the natural frequency of the longitudinal, the transverse, and the torsional vibration of 

the system.  For the parameters, assume that d = 1.2 in, a = 2 ft, b = 4 ft, W = 100 lbs and r = 

16 in.  (Assume the shaft is massless and the flywheel is rigid.) 
 

 
 
For this problem, submit a hard copy of your modified .txt file and also create a table comparing 

the analytical and finite element frequencies (including % error) for the first longitudinal, first 

transverse and first torsional mode.  Which mode has the most error?  Which mode SHOULD 

have the most error?  And why? 

 

Problem 2 

A centrifugal pump, weighing 700 N and operating at 1000 rpm, is mounted on six springs of 

stiffness 6000 N/m each.  Find the maximum permissible unbalance in order to limit the steady-

state deflection to 5.0 mm peak-to-peak. 
 The APDL was modified to use solid pipe288 and put the mass element at the location as

shown in the problem statement. The following are the four modes generated by ANSYS

set number mode frequency (Hz)

1 Torsion 10.437
2 First transverse (bending) 14.1815
3 Second transverse (bending) 35.384
4 First longitudinal (axial) 447.98
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The following are the four plots showing the mode shapes for each of the above modes

Figure 2.5: First mode: Torsion
7.3802 Hz

Figure 2.6: Second mode: Bending
13.491 Hz

Figure 2.7: Third mode: Bending
26.302 Hz

Figure 2.8: Fourth mode: Axial
447.98 Hz

The above result was next compared to the analytical result that was done in HW 3, by
using the numerical value given in this problem. The numerical values for this problem are
listed here
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variable name numerical value

𝐿 (length of pipe) 6 ft
𝑎 2 ft
𝑏 4 ft
𝑑 (diameter of pipe) 1.2 in = 1.2

12 = 0.1 ft
𝑊 (weight of flywheel) 100 lb
𝑟 (outer radius of flywheel) 16 in = 16

12 = 1.3333 ft

𝑟𝑓 (radius of gyration) �
𝑟2

2 = �
1.33332

2 = 0.94279 ft
𝐸 (Elastic modulus of pipe material, steel) 29007547.546 × 144 psf (200 GPa)
𝐺 (shear modulus for pipe material, steel) 11196913.353 × 144 psf (7.2 GPa)
Poisson’s ratio for steel 0.295

𝐼 area moment of inertia for pipe section 𝜋
4
�𝑑
2
�
4
= 4.90874 × 10−6 ft4

𝐼𝑓𝑙𝑦𝑤ℎ𝑒𝑒𝑙 mass moment of inertial of flywheel 𝑊
𝑔 𝑟

2
𝑓 = 5.52105 slug-ft2

The above values were now used in the derivations from HW3 to obtain numerical values
for the natural frequencies. The following are the results obtained (using analytical result
from HW3 derivation)

mode Analytical result Numerical calculation 𝜔𝑛 in rad/sec Hz

Torsion 𝜔𝑛 =
�

𝑔𝐺𝜋𝑑4

32𝑊𝑟2𝑓
�1
𝑎 +

1
𝑏
�

�
(32.2)(11196913.353×144)𝜋(0.1)4

32(100)(0.94279)2
�1
2 +

1
4
� = 65.58 10.437

bending (1) 𝜔𝑛 = �
3𝑔𝐸𝐼
𝑊
� 𝐿
𝑎𝑏
�
3

�
3(32.2)(29007547.546×144)�4.90874×10−6�

100
� 6
(2)(4)

�
3
= 91.412 14.549

axial 𝜔𝑛 =
�

𝑔𝐴𝐸
𝑊
�1
𝑎 +

1
𝑏
�

�
⃓
⃓
⎷

(32.2)�𝜋�
0.1
2 �

2
�(29007547.546×144)

100
�1
2 +

1
4
� = 2814.8 447.99

The following table compares the above analytical result with the ANSYS result shown
earlier with the percentage error

mode ANSYS result (Hz) Analytical result (Hz) error percentage

Torsion 10.437 10.437 0%

First bending 14.1815 14.549 �14.1815−14.549
14.1815

� × 100 = 2.59%

First axial 447.98 447.99 447.98−447.99
447.98 × 100 = 0.002%

The mode that has most error is the first bending (transverse) mode. This was the case also
in HW7 ANSYS problem. ANSYS result is the more accurate one. The analytical result for

this mode was derived The transverse case uses sti�ness 3𝐸𝐼 � 𝐿
𝑎𝑏
�
3
due to load at 𝑎 distance

from one end of fixed-free beam and 𝑏 distance from the other end of the fixed beam. But
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this derivation does not account for any bending rotation in the beam as the ANSYS result
would do.

2.8.1.1 Listing of modi�ed APDL script� �
1 !-- Modified APDL script for HW 8, ME 440, Fall 2017
2 !
3

4 /filnam, pipe_flywheel_modal
5 /title, Flywheel on torsional spring example
6 /prep7
7

8

9 !-- give names for elements -----------
10 MASS_ELEMENT=1
11 PIPE_ELEMENT=2
12

13 !-- define the mass element ------------
14 ET,MASS_ELEMENT,mass21,,0,0 !element type no.1 is mass21 (",,,0" signifies
15 !that this is a 3-D mass with rotary inertia)
16 ! model parameters for MASS_ELEMENT
17 mass = (100/32.2) ! mass of flywheel (lb)
18 r_wheel = (16/12) ! radius of gyration (ft)
19 Iyy = mass*(r_wheel*r_wheel)/2 ! mass moment of inertia
20 OUTER_DIAMETER = (1.2/12) ! outer diameter of pipe (ft)
21 wall_t = OUTER_DIAMETER/2-0.0001 ! Solid pipe! This gives warning
22 ! but we can ignore it for now
23 SHAFT_LENGTH = 6 ! shaft length (ft)
24 n_modes = 10 ! number of modes wanted, but ANSYS always gives 4
25

26 !real constants for MASS_ELEMENT
27 r,MASS_ELEMENT,mass,mass,mass,0.5*IYY,IYY,0.5*IYY
28

29 !-- define the shaft element as solid pipe -------
30 ET,PIPE_ELEMENT,pipe288
31

32 mp,ex,MASS_ELEMENT,29007547.546*144 !(200e9 SI) elastic modulus PSF
33 mp,gxy,MASS_ELEMENT,11196913.35276*144 !(77.2e9 SI) shear modulus PSF
34 mp,prxy,MASS_ELEMENT,0.295 ! poisson's ratio for steel is 0.295
35

36 KEYOPT,PIPE_ELEMENT,4,2 !Thick wall per ansys help
37

38 !SECTYPE, SECID, Type, Subtype, Name, REFINEKEY
39 ! Associates section type information with a section ID number.
40 sectype,1,pipe ! section type 1 is "pipe"
41 secdata,OUTER_DIAMETER,wall_t ! section data for pipe is outer
42 ! diameter and wall thickness
43

44

45 !-- key points ---------
46 k,1,0,0,0 ! keypoint 1 is at x=0, y=0, z=0, one fixed end of pipe
47

48 ! keypoint 2 where fluwheel is located
49 k,2,0,-SHAFT_LENGTH/2.0,0
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50

51 k,3,0,-SHAFT_LENGTH,0 ! keypoint 3 is other end of the fixd pipe
52

53 !-- create elements -------------------
54 TYPE,PIPE_ELEMENT ! element type of subsequently defined elements.
55

56 !SECNUM, SECID
57 ! Sets the element section attribute pointer.
58 ! Defines the section ID number to be assigned to the
59 ! subsequently-defined elements Defaults to 1. See SECTYPE for more
60 ! information about the section ID number.
61

62 secnum,1 !specify section type number of subsequently defined elements
63

64

65 !-- create line ------------------
66 !L, P1, P2
67 !Defines a line between two keypoints.
68

69 L,1,3 ! creates ONE line from keypoint 1 to keypoint 3
70

71 !LESIZE, NL1, SIZE, ANGSIZ, NDIV, SPACE, KFORC, LAYER1, LAYER2, KYNDIV
72 !Specifies the divisions and spacing ratio on unmeshed lines.
73 ! NL1 Number of the line to be modified.
74 ! SIZE If NDIV is blank, SIZE is the division (element edge) length.
75 ! The number of divisions is automatically calculated from the
76 ! line length (rounded upward to next integer). If SIZE is zero
77 ! (or blank), use ANGSIZ or NDIV
78 ! ANGSIZ The division arc (in degrees) spanned by the element edge
79 ! NDIV If positive, NDIV is number of element divisions per line.
80

81 lesize,1,,,12 ! line 1 will consist of 12 elements when meshed
82

83 !LMESH, NL1, NL2, NINC Generates nodes and line elements along lines
84 ! Mesh lines from NL1 to NL2
85

86 lmesh,ALL ! line 1 meshed, resulting in elements representing the pipe
87

88 !----------------------
89 type,MASS_ELEMENT ! element type of subsequently defined elements
90 real,1 ! real constant set of subsequently defined element
91

92 !E, I, J, K, L, M, N, O, P
93 !Defines an element by node connectivity.
94 ! I Number of node assigned to first nodal position (node I)
95 E,6 ! create element to be created at node 6
96

97 finish
98

99 /solu !select static load solution
100

101 !-- Set the boundary conditions --------------
102 nsel,all ! selects all nodes
103 d,all,uz,0 ! sets the z displacements on selected nodes to be 0
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104 ! limiting our modal analysis to modes in the xy plane
105 d,all,rotx ! sets the rotx displacments on selected nodes to be 0
106

107 !displacement boundary conditions
108 ! NSEL, Type, Item, Comp, VMIN, VMAX, VINC, KABS
109 ! Type S Select a new set (default).
110 ! Item LOC X,Y,Z X,Y, or Z location in active coordinate system
111

112 nsel,S,NODE,,1 ! select node at x = 0
113 d,all,ux,0 ! displacement of selected node in x-dir is 0
114 d,all,uy,0 ! displacement of selected node in y-dir is 0
115 d,all,uz,0 ! displacement of selected node in z-dir is 0
116 d,all,rotx,0 ! rotations of selected node about x axis is 0
117 d,all,roty,0 ! rotations of selected node about y axis is 0
118 d,all,rotz,0 ! rotations of selected node about z axis is 0
119

120

121 nsel,A,NODE,,2 ! select node at x = -SHAFT_LENGTH
122 d,all,ux,0 ! displacement of selected node in x-dir is 0
123 d,all,uy,0 ! displacement of selected node in y-dir is 0
124 d,all,uz,0 ! displacement of selected node in z-dir is 0
125 d,all,rotx,0 ! rotations of selected node about x axis is 0
126 d,all,roty,0 ! rotations of selected node about y axis is 0
127 d,all,rotz,0 ! rotations of selected node about z axis is 0
128

129 allsel
130

131 antype,modal
132 modopt,lanb,20
133 solve
134 finish
135

136 /post1� �
2.8.2 Problem 2

ME 440 

Intermediate Vibrations 

 

Homework #8 (3 problems) 

due Thursday, November 9th, 2017 

Problem 1 
 

Download the ANSYS input file “MODAL_pipe_flywheel.txt” from HW7 on Canvas, run this 

input file in ANSYS and go through the file line by line to figure out what the system parameters 

are for this modal analysis.  (Hint: When viewing the mode shapes within ANSYS, try plotting 

all 3 displacements and all 3 rotations (1 at a time) available under the “Nodal Solu” / “DOF 

Solution” option; this should be helpful in determining the type of displacement associated with 

each specific frequency.   

 

A) Modify the “MODAL_pipe_flywheel.txt” file to use ANSYS to predict the natural 

frequencies and mode shapes for the problem listed below (NOTE: you should remember 

this problem from HW3). 

 

A flywheel is mounted on a vertical shaft, as shown below. The shaft has a diameter d and 

length l and is fixed at both ends. The flywheel has a weight of W and a radius of gyration of 

r. Find the natural frequency of the longitudinal, the transverse, and the torsional vibration of 

the system.  For the parameters, assume that d = 1.2 in, a = 2 ft, b = 4 ft, W = 100 lbs and r = 

16 in.  (Assume the shaft is massless and the flywheel is rigid.) 
 

 
 
For this problem, submit a hard copy of your modified .txt file and also create a table comparing 

the analytical and finite element frequencies (including % error) for the first longitudinal, first 

transverse and first torsional mode.  Which mode has the most error?  Which mode SHOULD 

have the most error?  And why? 

 

Problem 2 

A centrifugal pump, weighing 700 N and operating at 1000 rpm, is mounted on six springs of 

stiffness 6000 N/m each.  Find the maximum permissible unbalance in order to limit the steady-

state deflection to 5.0 mm peak-to-peak. 
 

The first step is to determine the natural frequency of the system. Since the springs are in
parallel then

𝑘𝑒𝑞 = 6𝑘
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And the equivalent mass is 𝑚𝑒𝑞 =
𝑊
𝑔 where 𝑊 = 700 N. Hence

𝜔𝑛 =
�

𝑘𝑒𝑞
𝑚𝑒𝑞

=
�
⃓
⃓
⎷

6𝑘
𝑊
𝑔

=
�
⃓
⃓
⎷

6 (6000)
700
9.81

= 22.461 rad/sec

Since this is undamped system, then the steady state solution (particular solution) is given
by

𝑦𝑝 (𝑡) =
𝑥𝑠𝑡

��1 − 𝑟
2�

2
cos𝜔𝑡 (1)

Where 𝑟 = 𝜔
𝜔𝑛

and 𝜔 is the driving frequency, which is

𝜔 = 1000 �
2𝜋
𝑟𝑒𝑣� �

min
60 �

= 1000 �
2𝜋
60 �

= 104.72 rad/sec

From (1), we see that the maximum steady state response is

𝑦𝑠𝑠 =
𝑥𝑠𝑡

��1 − 𝑟
2�

2
(2)

We now just need to determine 𝑥𝑠𝑡 which is the static deflection. Let 𝑚0 be the unbalanced
mass which is spinning inside, and let 𝑒 be the radius around the spin axis. Therefore, and
assuming 𝜔 is constant, this mass will have only radial acceleration towards the center of
𝑒𝜔2 and therefore it will induce a centripetal force 𝑚0𝑒𝜔2.

m
eω

2

meω2 cos θ

meω2 sin θ

ω

θ(t)

m

e

Force causing vertical vibration

unbalanced mass

From the above we see that the vertical force is

𝐹 (𝑡) =
𝐹0

�������𝑚0𝑒𝜔2 sin𝜃 (𝑡)
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Hence the static deflection is

𝑥𝑠𝑡 =
𝐹0
𝑘𝑒𝑞

=
𝑚0𝑒𝜔2

6𝑘
Substituting this into (2) gives

𝑦𝑠𝑠 =
𝑚0𝑒𝜔2

6𝑘

��1 − 𝑟
2�

2
=

𝑚0𝑒𝜔2

6𝑘��1 − 𝑟
2�

2
(3)

But 𝑟 is

𝑟 =
𝜔
𝜔𝑛

=
104.72
22.461

= 4.662 3

Since 𝑟 > 1 then we now can simplify ��1 − 𝑟
2�

2
= 𝑟2 − 1 and (3) becomes

𝑦𝑠𝑠 =
𝑚0𝑒𝜔2

6𝑘 �𝑟2 − 1�

Since we want to limit deflection to 5 mm peak to peak, then we want to limit 𝑦𝑠𝑠 = 2.5 mm
(which is half of the peak-to-peak). The above equation becomes

2.5 × 10−3 =
𝑚0𝑒 (104.72)

2

6 (6000) �4.662 52 − 1�

=
𝑚0𝑒 (104.72)

2

36000 (20.739)

=
𝑚0𝑒 (104.72)

2

7.466 × 105
Solving for unbalance 𝑚0𝑒 gives

𝑚0𝑒 =
�2.5 × 10−3� �7.466 × 105�

(104.72)2

Or

𝑚0𝑒 = 0.1702 kg-meter

This means to limit 𝑚0𝑒 below this value in order to limit vibration to 5 mm, peak-to-peak.
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2.8.3 Problem 3
 

 

Problem 3 

Determine the steady-state response of the system (t) due to the input excitation shown, using 

the system parameters given in the figure.  (Use a trigonometric Fourier expansion of the input 

excitation.) 

 

The first step is to make a FBD and corresponding inertia diagram Where it is assumed the
left spring is in tension and the right side spring is in compression.

F (t)
Shape of input
excitation is given in
problem

kL
4 θ

k 3L
4 θ

Iθ̈

FBD
Inertia

Taking moments around the pivot 𝑜where the bar is rotating around, and using anti-clockwise
as positive gives (this assumes small angle approximation)

�𝑀 = 𝐼𝑜𝜃̈

−𝑘 �
𝐿
4
𝜃�
𝐿
4
− 𝑘 �

3𝐿
4
𝜃�
3𝐿
4
+ 𝑘𝑥 (𝑡) �

3𝐿
4 �

= 𝐼𝑜𝜃̈ (1)
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But 𝐼𝑜 is the mass moment of inertia around 𝑜, which is

𝐼𝑜 =

𝐼𝑐𝑔

�������1
12
𝑚𝐿2 +

parallel axis

���������
𝑚 �

1
4
𝐿�

2

=
7
48
𝐿2𝑚

Therefore the equation of motion (1) becomes

7
48
𝐿2𝑚𝜃̈ = −𝑘 �

𝐿2

16
𝜃 +

9𝐿2

16
𝜃� + 𝑘

3𝐿
4
𝑥 (𝑡)

𝐿2𝑚𝜃̈ + 𝜃 �𝑘
10
16
𝐿2�

48
7
= 𝑘

48
7 �

3𝐿
4 �

𝑥 (𝑡)

𝑚𝜃̈ + 𝜃 �
30
7
𝑘� = 𝑘

36
7
1
𝐿
𝑥 (𝑡) (2)

Therefore

𝜔𝑛 = �
30
7

𝑘
𝑚

We now need to expand 𝑥 (𝑡) in Fourier series. 𝑥 (𝑡) has period of 𝜏. This is not even and not
odd function.

𝑥 (𝑡) =
𝑋
𝜏
𝑡

Hence

𝑎0 =
1
𝜏
2
�

𝜏

0

𝑋
𝜏
𝑡𝑑𝑡 =

2
𝜏
𝑋
𝜏 �

𝑡2

2 �
𝜏

0
=
𝑋
𝜏2
𝜏2 = 𝑋

𝑎𝑛 =
1
𝜏
2
�

𝜏

0

𝑋
𝜏
𝑡 cos �

2𝜋
𝜏
𝑛𝑡� 𝑑𝑡

=
2
𝜏
𝑋
𝜏 �

𝜏

0
𝑡 cos �

2𝜋
𝜏
𝑛𝑡� 𝑑𝑡

=
2
𝜏
𝑋
𝜏
(0)

= 0

And

𝑏𝑛 =
1
𝜏
2
�

𝜏

0

𝑋
𝜏
𝑡 sin �

2𝜋
𝜏
𝑛𝑡� 𝑑𝑡

=
2
𝜏
𝑋
𝜏 �

𝜏

0
𝑡 sin �

2𝜋
𝜏
𝑛𝑡� 𝑑𝑡

=
2
𝜏
𝑋
𝜏 �
−
𝜏2

2𝑛𝜋�

= −
𝑋
𝑛𝜋
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Hence

𝑥 (𝑡) ≈
𝑎0
2
+

∞
�
𝑛=1

𝑏𝑛 sin �
2𝜋
𝜏
𝑛𝑡�

≈
𝑋
2
−
𝑋
𝜋

∞
�
𝑛=1

1
𝑛

sin �
2𝜋
𝜏
𝑛𝑡�

≈
𝑋
2
−
𝑋
𝜋

∞
�
𝑛=1

1
𝑛

sin �
2𝜋
𝜏
𝑛𝑡�

To verify this solution, the above is plotted for number of terms to see if it will approximate
the original 𝑥 (𝑡) .

In[120]:= ClearAll[x, n, t]

X0 = 1;

T0 = 2;

numberTerms = 20;

x[t_] =
X0

2
- X0/ Pi Sum

1

n
Sin[2 Pi/ T0 n t], {n, 1, numberTerms};

Plot[x[t], {t, 0, 3 T0}]

Out[125]=

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Now we go back to the original equation of motion (2), and replace 𝑥 (𝑡) by its Fourier series
expansion

𝑚𝜃̈ + 𝜃 �
30
7
𝑘� = 𝑘

36
7
1
𝐿 �

𝑋
2
−
𝑋
𝜋

∞
�
𝑛=1

1
𝑛

sin �
2𝜋
𝜏
𝑛𝑡��

= 𝑘
18
7
𝑋
𝐿
− 𝑘

1
𝜋
36
7
𝑋
𝐿 �

sin �
2𝜋
𝜏
𝑡� +

1
2

sin �
2𝜋
𝜏
2𝑡� +

1
3

sin �
2𝜋
𝜏
3𝑡� +⋯�

= 𝑘
18
7
𝑋
𝐿
− 𝑘

1
𝜋
36
7
𝑋
𝐿 �

sin (𝜔𝑡) + 1
2

sin (2𝜔𝑡) + 1
3

sin (3𝜔𝑡) + 1
4

sin (4𝜔𝑡) +⋯� (3)

Linearity is now used to find the solution to the above by adding the the steady state response
to each of the terms. The steady state response to the first term above, which is 18

7 𝑘
𝑋
𝑚𝐿 is the

steady state response to the ODE

𝑚𝜃̈ + 𝜃 �
30
7
𝑘� = �

18
7
𝑘
𝑋
𝐿 �
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Which Is given by

𝑦𝑠𝑠 = �𝑘
18
7
𝑋
𝐿 �

1
𝑘𝑒𝑞

But 𝑘𝑒𝑞 =
30
7 𝑘, therefore

𝑦𝑠𝑠 = �
18
7
𝑘
𝑋
𝐿 �

7
30𝑘

=
9
15
𝑋
𝐿

This is the response to only the first term in (3). Now we do the same for each of the trig
terms. But we only need to consider one general term. The ODE we will look at now is

𝑚𝜃̈ + 𝜃 �
30
7
𝑘� = 𝑘

1
𝜋
36
7
𝑋
𝐿

∞
�
𝑛=1

1
𝑛

sin �
2𝜋
𝜏
𝑛𝑡�

= 𝑘
1
𝜋
36
7
𝑋
𝐿 �

sin �
2𝜋
𝜏
𝑡� +

1
2

sin �
2𝜋
𝜏
2𝑡� +

1
3

sin �
2𝜋
𝜏
3𝑡� +⋯�

= 𝑘
1
𝜋
36
7
𝑋
𝐿 �

sin (𝜔𝑡) + 1
2

sin (2𝜔𝑡) + 1
3

sin (2𝜔𝑡) +⋯�

Considering one general term

𝑚𝜃̈ + 𝜃 �
30
7
𝑘� = 𝑘 �

1
𝜋
36
7
𝑋
𝐿
1
𝑛�

sin (𝑛𝜔𝑡)

= 𝐹0 sin (𝑛𝜔𝑡) (4)

Where

𝐹0 = �𝑘
1
𝜋
36
7
𝑋
𝐿
1
𝑛�

𝑥𝑠𝑡 =
𝐹0
𝑘𝑒𝑞

=
𝑘 1𝜋

36
7
𝑋
𝐿
1
𝑛

30
7 𝑘

=
6
5𝜋𝐿

𝑋
𝑛

(5)

We know the steady state (particular) solution for (4) is

𝜃𝑠𝑠 (𝑡) =
𝑥𝑠𝑡

�1 − (𝑛𝑟)2�
sin (𝑛𝜔𝑡) (6)

Where 𝑟 is

𝑟 =
𝜔
𝜔𝑛

=
2𝜋
𝜏

�
30
7

𝑘
𝑚

=
2𝜋

𝜏�
30
7

𝑘
𝑚

(7)

The above is the steady state response for the 𝑛𝑡ℎ term. So the total response is the sum of
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all these responses. Putting all this together, we now obtain the steady state solution as

𝜃𝑠𝑠 (𝑡) = 𝑘
9𝑋
15𝑘𝐿

−
∞
�
𝑛=1

𝑥𝑠𝑡
�1 − (𝑛𝑟)2�

sin (𝑛𝜔𝑡) (8)

Where 𝑥𝑠𝑡 is given (5) and 𝑟 is given by (7) and 𝜔 = 2𝜋
𝜏 . To try verify the above, it is plotted

using the following values 𝑋 = 1, 𝐿 = 10 meter,𝑘 = 100 N/m,𝜏 = 3 sec and 𝑚 = 5 kg. This is
the result (for 30 terms in Fourier sum)

Clear[n]

X0 = 1;

T0 = 3;

m0 = 5;

k0 = 100;

L0 = 10;

xst =
6

5 Pi L0

X0

k0 n
;

wn = Sqrt
30

7

k0

m0
;

w =
2 Pi

T0
;

r =
w

wn
;

y =
9 X0

15 k0 L0
- Sum

xst

1 - (n r)2
Sin[n w t], {n, 1, 30};

Plot[y* 180/(2 Pi), {t, 0, 5 T0}, Frame → True, GridLines → Automatic,

GridLinesStyle → LightGray, PlotStyle → Red, ImageSize → 500,

FrameLabel → {{"theta(t) (degree)", None}, {"time (sec)", "Steady state solution for prroblem 3"}},

BaseStyle → 14]

Out[123]=
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Steady state solution for prroblem 3
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2.8.4 HW 8 key solution
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2.9 HW9

2.9.1 Problem 1

ME 440 

Intermediate Vibrations 

 

Homework #9 (3 problems) 

due Thursday / Friday, November 16 / 17, 2017 

 

Problem 1 (due end of class Thursday) 
 

Anonymously, please print out on a separate sheet of paper (submit Thursday at the end of 

class in a pile): 

- Two things that you dislike the most about the class, and 

- One thing you would do to improve this class (if you were teaching ME440). 

 

Submitting your responses to “Problem 1” is worth 5 points.  As you submit this 

“assignment”, everyone will write their name on a signup sheet so I know who has completed 

this request.  You do not have to submit this typed up but if you wish to remain completely 

anonymous, you can do so by typing up your responses.  Also, please provide comments that are 

directly related to the class, the classroom environment and the class content; and stating that 

what you dislike most is “seeing Mikkelson’s stupid face twice a week” is not directly related to 

the classroom environment.  Note: I’ve included these last few comments just for your 

amusement; hopefully you enjoy seeing my stupid face twice a week! 

 

Problems 2/3 (due Friday, November 17
th

 by 4pm) 

 
A compressed air cylinder is connected to the spring-mass system shown in Figure (a) below.  
Due to a small leak in the valve, the pressure on the piston, p(t), builds up as indicated in Figure 
(b) shown below.  Assume  m = 10 kg, k = 1000 N/m and d = 0.1 m and that all initial conditions 
are zero. 

 
Problem 2 

Solve for the complete response of the piston by using direct integration. 
 

Problem 3 

Set up both integrals (both options) for solving for the response of the piston by using Duhamel’s 

integral.  You do NOT need to complete either of the integrations. 

ME 440 

Intermediate Vibrations 

 

Homework #9 (3 problems) 

due Thursday / Friday, November 16 / 17, 2017 

 

Problem 1 (due end of class Thursday) 
 

Anonymously, please print out on a separate sheet of paper (submit Thursday at the end of 

class in a pile): 

- Two things that you dislike the most about the class, and 

- One thing you would do to improve this class (if you were teaching ME440). 

 

Submitting your responses to “Problem 1” is worth 5 points.  As you submit this 

“assignment”, everyone will write their name on a signup sheet so I know who has completed 

this request.  You do not have to submit this typed up but if you wish to remain completely 

anonymous, you can do so by typing up your responses.  Also, please provide comments that are 

directly related to the class, the classroom environment and the class content; and stating that 

what you dislike most is “seeing Mikkelson’s stupid face twice a week” is not directly related to 

the classroom environment.  Note: I’ve included these last few comments just for your 

amusement; hopefully you enjoy seeing my stupid face twice a week! 

 

Problems 2/3 (due Friday, November 17
th

 by 4pm) 

 
A compressed air cylinder is connected to the spring-mass system shown in Figure (a) below.  
Due to a small leak in the valve, the pressure on the piston, p(t), builds up as indicated in Figure 
(b) shown below.  Assume  m = 10 kg, k = 1000 N/m and d = 0.1 m and that all initial conditions 
are zero. 

 
Problem 2 

Solve for the complete response of the piston by using direct integration. 
 

Problem 3 

Set up both integrals (both options) for solving for the response of the piston by using Duhamel’s 

integral.  You do NOT need to complete either of the integrations. 
Since this is an undamped system, the equation of motion is

𝑚𝑥̈ + 𝑘𝑥 = 𝐹 (𝑡)

Where 𝐹 (𝑡) = 𝐴𝑝 (𝑡) and 𝑝 (𝑡) is the pressure. Therefore

𝐹 (𝑡) = �50 × 103�𝐴 �1 − 𝑒−3𝑡�

The term 50× 103 was added above because the units were given in 𝑘𝑃𝑎 and need to convert
them to 𝑃𝑎. The equation of motion becomes

𝑚𝑥̈ + 𝑘𝑥 = �50 × 103�𝐴 �1 − 𝑒−3𝑡�

= �50 × 103�𝐴 − �50 × 103�𝐴𝑒−3𝑡

To simplify notations, let 𝛽 = �50 × 103�𝐴. The above now becomes

𝑚𝑥̈ + 𝑘𝑥 = 𝛽 − 𝛽𝑒−3𝑡 (1)
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The solution to the above can be found by adding the two particular solutions of

𝑚𝑥̈ + 𝑘𝑥 = 𝛽 (2)

And

𝑚𝑥̈ + 𝑘𝑥 = −𝛽𝑒−3𝑡 (3)

To the homogeneous solution of 𝑚𝑥̈+ 𝑘𝑥 = 0. This can be done since the ODE is linear. The
particular solution to (2) is found by assuming 𝑥𝑝 (𝑡) = 𝐶1 where 𝐶1 is some constant and

substituting this into (1) and solving for 𝐶1 gives 𝑘𝐶1 = 𝛽 or 𝐶1 =
𝛽
𝑘 , hence

𝑥𝑝,1 (𝑡) =
𝛽
𝑘

(4A)

The particular solution to (2) is now found. From the lookup table, assuming 𝑥𝑝 (𝑡) = 𝐶1𝑒−3𝑡
and substituting this into (2), and since 𝑥̇𝑝 = −3𝐶1𝑒−3𝑡 and 𝑥̈𝑝 = 9𝐶1𝑒−3𝑡 gives

9𝑚𝐶1𝑒−3𝑡 + 𝑘𝐶1𝑒−3𝑡 = −𝛽𝑒−3𝑡

9𝑚𝐶1 + 𝑘𝐶1 = −𝛽

𝐶1 =
−𝛽

9𝑚 + 𝑘
Therefore

𝑥𝑝,2 (𝑡) =
−𝛽

9𝑚 + 𝑘
𝑒−3𝑡 (4B)

Now that the particular solutions are known (4A,4B), they are added to the homogeneous
solution (which is known) and the complete solution for (1) is

𝑥 (𝑡) =
𝑥ℎ(𝑡)

���������������������������𝐴 cos𝜔𝑛𝑡 + 𝐵 sin𝜔𝑛𝑡 +

𝑥𝑝(𝑡)

�������������������𝑥𝑝,1 (𝑡) + 𝑥𝑝,2 (𝑡)

= 𝐴 cos𝜔𝑛𝑡 + 𝐵 sin𝜔𝑛𝑡 +
𝛽
𝑘
−

𝛽
9𝑚 + 𝑘

𝑒−3𝑡 (5)

Initial conditions are now applied to determine 𝐴,𝐵. Since 𝑥 (0) = 0 the above becomes

0 = 𝐴 +
𝛽
𝑘
−

𝛽
9𝑚 + 𝑘

𝐴 =
𝛽

9𝑚 + 𝑘
−
𝛽
𝑘

The solution (5) becomes

𝑥 (𝑡) = �
𝛽

9𝑚 + 𝑘
−
𝛽
𝑘�

cos𝜔𝑛𝑡 + 𝐵 sin𝜔𝑛𝑡 +
𝛽
𝑘
−

𝛽
9𝑚 + 𝑘

𝑒−3𝑡 (6)

Taking derivative of the above

𝑥̇ (𝑡) = −𝜔𝑛 �
𝛽

9𝑚 + 𝑘
−
𝛽
𝑘�

sin𝜔𝑛𝑡 + 𝜔𝑛𝐵 cos𝜔𝑛𝑡 + 3
𝛽

9𝑚 + 𝑘
𝑒−3𝑡
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Since 𝑥̇ (0) = 0 then

0 = 𝜔𝑛𝐵 + 3
𝛽

9𝑚 + 𝑘

𝐵 =
−3𝛽

(9𝑚 + 𝑘)𝜔𝑛

Substituting this in (6) gives the final solution

𝑥 (𝑡) = �
𝛽

9𝑚 + 𝑘
−
𝛽
𝑘�

cos𝜔𝑛𝑡 −
3𝛽

(9𝑚 + 𝑘)𝜔𝑛
sin𝜔𝑛𝑡 +

𝛽
𝑘
−

𝛽
9𝑚 + 𝑘

𝑒−3𝑡 (7)

Since

𝜔𝑛 = �
𝑘
𝑚
=
�
1000
10

= 10

And

𝛽 = �50 × 103�𝐴

= �50 × 103� 𝜋 �
0.1
2 �

2

= 392.70

Then numerically, the solution (7) is

𝑥 (𝑡) = �
392.70
90 + 1000

−
392.70
1000 � cos 10𝑡 − 3 (392.70)

(90 + 1000) 10
sin 10𝑡 + 392.70

1000
−

392.70
90 + 1000

𝑒−3𝑡

= −0.032 cos 10𝑡 − 0.108 sin 10𝑡 + 0.393 − 0.360𝑒−3𝑡

Below is a plot of the above to illustrate the solution for some arbitrary time 𝑡.
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In[86]:= d = 0.1;

m = 10;

k = 1000;

wn = Sqrt[k / m];

A0 = Pi (d / 2)^2;

beta = 50 000* Pi * (d / 2)^2

Out[91]= 392.699

In[94]:= x[t_] :=
beta

9 m + k
-
beta

k
Cos[wn t] -

3 beta

(9 m + k) wn
Sin[wn t] +

beta

k
-

beta

9 m + k
Exp[-3 t];

Plot[x[t], {t, 0, 10}, Frame → True,

FrameLabel → {{"x(t)", None}, {"time (sec)", "Solution for probem 2, direct integration method"}},

GridLines → Automatic, GridLinesStyle → LightGray, PlotStyle → Red, BaseStyle → 12]

Out[95]=
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Solution for probem 2, direct integration method

2.9.2 Problem 2

ME 440 

Intermediate Vibrations 

 

Homework #9 (3 problems) 

due Thursday / Friday, November 16 / 17, 2017 

 

Problem 1 (due end of class Thursday) 
 

Anonymously, please print out on a separate sheet of paper (submit Thursday at the end of 

class in a pile): 

- Two things that you dislike the most about the class, and 

- One thing you would do to improve this class (if you were teaching ME440). 

 

Submitting your responses to “Problem 1” is worth 5 points.  As you submit this 

“assignment”, everyone will write their name on a signup sheet so I know who has completed 

this request.  You do not have to submit this typed up but if you wish to remain completely 

anonymous, you can do so by typing up your responses.  Also, please provide comments that are 

directly related to the class, the classroom environment and the class content; and stating that 

what you dislike most is “seeing Mikkelson’s stupid face twice a week” is not directly related to 

the classroom environment.  Note: I’ve included these last few comments just for your 

amusement; hopefully you enjoy seeing my stupid face twice a week! 

 

Problems 2/3 (due Friday, November 17
th

 by 4pm) 

 
A compressed air cylinder is connected to the spring-mass system shown in Figure (a) below.  
Due to a small leak in the valve, the pressure on the piston, p(t), builds up as indicated in Figure 
(b) shown below.  Assume  m = 10 kg, k = 1000 N/m and d = 0.1 m and that all initial conditions 
are zero. 

 
Problem 2 

Solve for the complete response of the piston by using direct integration. 
 

Problem 3 

Set up both integrals (both options) for solving for the response of the piston by using Duhamel’s 

integral.  You do NOT need to complete either of the integrations. 

The force on the piston is

𝐹 (𝑡) = 𝐴𝑝 (𝑡)

Where 𝐴 is the area of the piston which is 𝐴 = 𝜋 �𝑑2�
2
. Since this is undamped system, the

equation of motion is

𝑚𝑥̈ + 𝑘𝑥 = 𝐹 (𝑡)

To solve using Duhamel integration, the impulse response 𝑔 (𝑡) = 1
𝑚𝜔𝑛

sin (𝜔𝑛𝑡) is used. The
integration is done using the two options.
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2.9.2.1 Option 1

𝑥𝑐𝑜𝑛𝑣 (𝑡) = �
𝑡

0
𝐹 (𝜏) 𝑔 (𝑡 − 𝜏) 𝑑𝜏

=
𝐴
𝑚𝜔𝑛

�
𝑡

0
𝑝 (𝑡) sin (𝜔𝑛 (𝑡 − 𝜏)) 𝑑𝜏

=
𝐴
𝑚𝜔𝑛

�
𝑡

0
50 (1000) �1 − 𝑒−3𝜏� sin (𝜔𝑛 (𝑡 − 𝜏)) 𝑑𝜏

Where 50 (1000) is used since the units are in 𝑘𝑃𝑎. The above becomes

𝑥𝑐𝑜𝑛𝑣 (𝑡) = �5 × 104�
𝐴
𝑚𝜔𝑛

�
𝑡

0
�1 − 𝑒−3𝜏� sin (𝜔𝑛 (𝑡 − 𝜏)) 𝑑𝜏

= �5 × 104�
𝐴
𝑚𝜔𝑛

��
𝑡

0
sin (𝜔𝑛 (𝑡 − 𝜏)) 𝑑𝜏 −�

𝑡

0
𝑒−3𝜏 sin (𝜔𝑛 (𝑡 − 𝜏)) 𝑑𝜏� (1)

The first integral in (1) becomes

�
𝑡

0
sin (𝜔𝑛 (𝑡 − 𝜏)) 𝑑𝜏 = − �

cos (𝜔𝑛 (𝑡 − 𝜏))
−𝜔𝑛

�
𝑡

0

=
1
𝜔𝑛

(cos (𝜔𝑛 (𝑡 − 𝜏)))
𝑡
0

=
1
𝜔𝑛

(cos (𝜔𝑛 (𝑡 − 𝑡)) − cos (𝜔𝑛𝑡))

=
1
𝜔𝑛

(1 − cos (𝜔𝑛𝑡)) (2)

The second integral in (1) is found using the handout integration tables

�𝑒𝑎𝑥 sin (𝑏 + 𝑐𝑥) 𝑑𝑥 = 𝑎𝑒𝑎𝑥 sin (𝑏 + 𝑐𝑥)
𝑎2 + 𝑐2

−
𝑐𝑒𝑎𝑥 cos (𝑏 + 𝑐𝑥)

𝑎2 + 𝑐2
In this case 𝑎 = −3 and 𝑏 = 𝜔𝑛𝑡 and 𝑐 = −𝜔𝑛. The above becomes after substitution

�
𝑡

0
𝑒−3𝜏 sin (𝜔𝑛 (𝑡 − 𝜏)) 𝑑𝜏 = �

−3𝑒−3𝜏 sin (𝜔𝑛 (𝑡 − 𝜏))
9 + 𝜔2

𝑛
−
−𝜔𝑛𝑒−3𝜏 cos (𝜔𝑛 (𝑡 − 𝜏))

9 + 𝜔2
𝑛

�
𝑡

0

=
1

9 + 𝜔2
𝑛
�−3𝑒−3𝜏 sin (𝜔𝑛 (𝑡 − 𝜏)) + 𝜔𝑛𝑒−3𝜏 cos (𝜔𝑛 (𝑡 − 𝜏))�

𝑡

0

=
1

9 + 𝜔2
𝑛
�𝜔𝑛𝑒−3𝑡 − (−3 sin (𝜔𝑛𝑡) + 𝜔𝑛 cos (𝜔𝑛𝑡))�

=
𝜔𝑛𝑒−3𝑡 + 3 sin (𝜔𝑛𝑡) − 𝜔𝑛 cos (𝜔𝑛𝑡)

9 + 𝜔2
𝑛

(3)

Substituting (2,3) into (1) gives the final result

𝑥𝑐𝑜𝑛𝑣 (𝑡) = �5 × 104�
𝐴
𝑚𝜔𝑛

�
1
𝜔𝑛

(1 − cos (𝜔𝑛𝑡)) −
𝜔𝑛𝑒−3𝑡 + 3 sin (𝜔𝑛𝑡) − 𝜔𝑛 cos (𝜔𝑛𝑡)

9 + 𝜔2
𝑛

� (4)
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Because initial conditions are zero the solution is

𝑥 (𝑡) = 𝑥ℎ (𝑡) + 𝑥𝑐𝑜𝑣(𝑡)
= 𝑥𝑐𝑜𝑣(𝑡)

Substituting all the numerical values, and since 𝜔𝑛 = �
𝑘
𝑚 = �

1000
10 = 10 then (4) becomes

𝑥 (𝑡) = �5 × 104�
𝜋 �0.12 �

2

(10) (10) �
1
10
(1 − cos (10𝑡)) − 10𝑒

−3𝑡 + 3 sin (10𝑡) − 10 cos (10𝑡)
109 �

= 3.927 �
1
10
(1 − cos (10𝑡)) − 10𝑒

−3𝑡 + 3 sin (10𝑡) − 10 cos (10𝑡)
109 �

= 3.927 �
1
10
(1 − cos (10𝑡)) + 10

109
cos (10𝑡) − 10

109
𝑒−3𝑡 −

3
109

sin (10𝑡)�

= 3.927 �
1
10
−
10
109

𝑒−3𝑡 −
3
109

sin (10𝑡) − 9
1090

cos (10𝑡)�

This is a plot of the above, which agrees with plot from the direct integration method. This
verifies the above result

In[102]:= d = 0.1;

m = 10;

k = 1000;

wn = Sqrt[k / m];

A0 = Pi (d / 2)^2;

In[108]:= xconv[t_] :=
50 * 1000 A0

m wn

1

wn
(1 - Cos[wn t]) -

1

9 + wn2
(wn Exp[-3 t] + 3 Sin[wn t] - wn Cos[wn t])

In[110]:= Plot[xconv[t], {t, 0, 10}, Frame → True,

FrameLabel → {{"x(t)", None}, {"time (sec)", "Solution for probem 3 option 1"}},

GridLines → Automatic, GridLinesStyle → LightGray, PlotStyle → Red, BaseStyle → 12]

Out[110]=
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Solution for probem 3 option 1
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2.9.2.2 Option 2

𝑥𝑐𝑜𝑛𝑣 (𝑡) = �
𝑡

0
𝐹 (𝑡 − 𝜏) 𝑔 (𝜏) 𝑑𝜏

=
𝐴
𝑚𝜔𝑛

�
𝑡

0
𝑝 (𝑡 − 𝜏) sin (𝜔𝑛𝜏) 𝑑𝜏

=
𝐴
𝑚𝜔𝑛

�
𝑡

0
50 (1000) �1 − 𝑒−3(𝑡−𝜏)� sin (𝜔𝑛𝜏) 𝑑𝜏

Where 50 (1000) is used, since the units are in 𝑘𝑃𝑎. The above becomes

𝑥𝑐𝑜𝑛𝑣 (𝑡) = �5 × 104�
𝐴
𝑚𝜔𝑛

�
𝑡

0
�1 − 𝑒−3(𝑡−𝜏)� sin (𝜔𝑛𝜏) 𝑑𝜏

= �5 × 104�
𝐴
𝑚𝜔𝑛

��
𝑡

0
sin (𝜔𝑛𝜏) 𝑑𝜏 −�

𝑡

0
𝑒−3(𝑡−𝜏) sin (𝜔𝑛𝜏) 𝑑𝜏� (1)

The first integral in (1) is now evaluated

�
𝑡

0
sin (𝜔𝑛𝜏) 𝑑𝜏 = −

1
𝜔𝑛

(cos (𝜔𝑛𝜏))
𝑡
0

=
−1
𝜔𝑛

(cos (𝜔𝑛𝑡) − 1)

=
1
𝜔𝑛

(1 − cos (𝜔𝑛𝑡)) (2)

The second integral in (1) is

�
𝑡

0
𝑒−3(𝑡−𝜏) sin (𝜔𝑛𝜏) 𝑑𝜏 = �

𝑡

0
𝑒−3𝑡+3𝜏 sin (𝜔𝑛𝜏) 𝑑𝜏

= �
𝑡

0
𝑒−3𝑡𝑒3𝜏 sin (𝜔𝑛𝜏) 𝑑𝜏

= 𝑒−3𝑡�
𝑡

0
𝑒3𝜏 sin (𝜔𝑛𝜏) 𝑑𝜏 (3)

This integral is found using tables

�𝑒𝑎𝑥 sin (𝑏𝑥) 𝑑𝑥 = 𝑒𝑎𝑥 (𝑎 sin (𝑏𝑥) − 𝑏 cos (𝑏𝑥))
𝑎2 + 𝑏2
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Where in this case 𝑎 = 3 and 𝑏 = 𝜔𝑛 Therefore (3) becomes

𝑒−3𝑡�
𝑡

0
𝑒3𝜏 sin (𝜔𝑛𝜏) 𝑑𝜏 = 𝑒−3𝑡 �

𝑒3𝜏 (3 sin (𝜔𝑛𝜏) − 𝜔𝑛 cos (𝜔𝑛𝜏))
9 + 𝜔2

𝑛
�
𝑡

0

=
𝑒−3𝑡

9 + 𝜔2
𝑛
�𝑒3𝜏 (3 sin (𝜔𝑛𝜏) − 𝜔𝑛 cos (𝜔𝑛𝜏))�

𝑡

0

=
𝑒−3𝑡

9 + 𝜔2
𝑛
�𝑒3𝑡 (3 sin (𝜔𝑛𝑡) − 𝜔𝑛 cos (𝜔𝑛𝑡)) − (−𝜔𝑛)�

=
𝑒−3𝑡

9 + 𝜔2
𝑛
�𝑒3𝑡 (3 sin (𝜔𝑛𝑡) − 𝜔𝑛 cos (𝜔𝑛𝑡)) + 𝜔𝑛�

=
1

9 + 𝜔2
𝑛
�3 sin (𝜔𝑛𝑡) − 𝜔𝑛 cos (𝜔𝑛𝑡) + 𝜔𝑛𝑒−3𝑡� (4)

Substituting (2,4) into (1) gives the final result

𝑥𝑐𝑜𝑛𝑣 (𝑡) = �5 × 104�
𝐴
𝑚𝜔𝑛

�
1
𝜔𝑛

(1 − cos (𝜔𝑛𝑡)) −
3 sin (𝜔𝑛𝑡) − 𝜔𝑛 cos (𝜔𝑛𝑡) + 𝜔𝑛𝑒−3𝑡

9 + 𝜔2
𝑛

� (5)

Because initial conditions are zero then

𝑥 (𝑡) = 𝑥ℎ (𝑡) + 𝑥𝑐𝑜𝑣(𝑡)
= 𝑥𝑐𝑜𝑣(𝑡)

Comparing (5) above to equation (4) found using option (1) shows they are the same as
expected.
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2.10 HW10

ME 440 

Intermediate Vibrations 

 

Homework #10 

due Thursday, December 7th, 2017 

 
 
Problem 1. Use Newton’s Law to determine the equation of motion.  Solve for the natural 
frequencies and mode shapes without using a computer (solve by hand).  Use your hand written 
solution to write out the 2x2 modal matrix (normalized) and the 2x2  matrix. 
 
Problem 2.  Solve for the natural frequencies and mode shapes using Matlab.  (Include a screen 
shot of your Matlab output.) 

 

The sphere of mass m is attached to the end of a cantilevered beam that is fixed to 

a carriage of mass 2m as shown in the figure below.  The generalized coordinates 

of the system are the absolute displacements x1 and x2 of the carriage and sphere, 

respectively.  Determine (a) the mass and stiffness matrices of the system, and (b) 

the system’s natural circular frequencies and modal matrix [u] if k = 200 lb / in. 

and m = 2 lbs
2
 / in. 

 
 

Partial answer: 2 = 16.68 rad/s 

 

Problem 3. 
 

Determine the flexibility matrix of the uniform beam shown in the figure below.  Disregard the mass of the 

beam compared to the concentrated masses fastened on the beam and assume the beam has a stiffness of EI 

and that all li = l. 

  

 

2.10.1 Problem 1

To make it easier to obtain the equation of motions, the top mass 𝑚 is modeled as attached
to spring of sti�ness 𝑘 which is in turn attached to an infinitely sti� vertical massless beam.
This way the vibration of the mass 𝑚 at the top can be more easily modeled.
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x2

x1

Simplified model of the original system

This is an infinitly stiff
beam and remains
vertical. Stiffness is
modeled by the spring
above. This is also the
equilibrium position of x2

Spring of stiffness k,
assumed to remain
horizontal

m
vibration of x2

x2 − x1

2m
2k 2k

Based on the above diagram, we now obtain the free body diagram as follows. In this, we
assume that 𝑥2 > 𝑥1 and both as positive. Hence spring 𝑘 attached to 𝑚 is in tension.

m

2mg
2kx1 2kx1

k(x2 − x1)k(x2 − x1)

Fx

Fx

N

Fy

Fy

massless
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The top mass 𝑚 vibrates in horizontal direction only. Hence this assumes the spring will
remain horizontal and we must assume that 𝑥2−𝑥1 remain small for this model to be realistic.

From this free body diagram we see now that the reaction force 𝐹𝑥 is equal to 𝑘 (𝑥2 − 𝑥1). (By
resolving forces in the 𝑥 direction for the massless beam).

Therefore

𝐹𝑥 = 𝑘 (𝑥2 − 𝑥1)

And the equation of motion for 𝑥2 is

𝑚𝑥̈2 = −𝑘 (𝑥2 − 𝑥1)
𝑚𝑥̈2 + 𝑘𝑥2 − 𝑘𝑥1 = 0 (1)

The equation of motion for the cart is

2𝑚𝑥̈1 = −4𝑘𝑥1 + 𝐹𝑥
2𝑚𝑥̈1 = −4𝑘𝑥1 + 𝑘 (𝑥2 − 𝑥1)

2𝑚𝑥̈1 + 5𝑘𝑥1 − 𝑘𝑥2 = 0 (2)

Writing (1) and (2) in matrix form

⎡
⎢⎢⎢⎢⎣
2𝑚 0
0 𝑚

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑥̈1
𝑥̈2

⎫⎪⎪⎬
⎪⎪⎭
+
⎡
⎢⎢⎢⎢⎣
5𝑘 −𝑘
−𝑘 𝑘

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑥1
𝑥2

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

Or
⎡
⎢⎢⎢⎢⎣
4 0
0 2

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑥̈1
𝑥̈2

⎫⎪⎪⎬
⎪⎪⎭
+
⎡
⎢⎢⎢⎢⎣
1000 −200
−200 200

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑥1
𝑥2

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

The first step is to find the eigenvalues (which are the square of the natural frequency) for
the system.

Let

𝐴 = 𝑀−1𝐾

=
⎡
⎢⎢⎢⎢⎣
4 0
0 2

⎤
⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎣
1000 −200
−200 200

⎤
⎥⎥⎥⎥⎦

But
⎡
⎢⎢⎢⎢⎣
4 0
0 2

⎤
⎥⎥⎥⎥⎦

−1

=
1

det (𝑀)

⎡
⎢⎢⎢⎢⎣
2 0
0 4

⎤
⎥⎥⎥⎥⎦

=
1
8

⎡
⎢⎢⎢⎢⎣
2 0
0 4

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
1
4 0
0 1

2

⎤
⎥⎥⎥⎥⎦
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Hence

𝐴 =
⎡
⎢⎢⎢⎢⎣
1
4 0
0 1

2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1000 −200
−200 200

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
250 −50
−100 100

⎤
⎥⎥⎥⎥⎦

Now we will find the eigenvalues of 𝐴 (these will be the 𝜔2
𝑛 values). To find the eigenvalues

of 𝐴, we solve

det ([𝐴] − 𝜆 [𝐼]) = 0

det
⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
250 −50
−100 100

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣
𝜆 0
0 𝜆

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ =

�
250 − 𝜆 −50
−100 100 − 𝜆

� =

(250 − 𝜆) (100 − 𝜆) − 5000 = 0
𝜆2 − 350𝜆 + 20 000 = 0

Hence

𝜆 =
−𝑏
2𝑎

± √
𝑏2 − 4𝑎𝑐
2𝑎

=
350
2
± √

3502 − 4 (20 000)
2

= 175 ± 103.08
= {71.92, 278.08}

Therefore, the eigenvalues are

𝜆 = 𝜔2
𝑛 = {71.92, 278.08} (3)

The natural frequencies of the system are the sqrt of the eigenvalues. Therefore

𝜔𝑛 = �√71.92,√278.08�

= {8.4806, 16.676}

Hence

𝜔𝑛(1) = 8.4806 rad/sec
𝜔𝑛(2) = 16.676 rad/sec

The next step is to find the eigenvectors. These are also called the shape vectors, or the 𝑢
vectors. Each eigenvalue will generate one eigenvector. We need to solve

[𝐴] {𝑢} = 𝜆 {𝑢}

For each eigenvalue, we find the corresponding eigenvector.
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For 𝜆 = 71.92, we obtain the equation
⎡
⎢⎢⎢⎢⎣
250 −50
−100 100

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑢11
𝑢21

⎫⎪⎪⎬
⎪⎪⎭
= 71.92

⎧⎪⎪⎨
⎪⎪⎩
𝑢11
𝑢21

⎫⎪⎪⎬
⎪⎪⎭

From first equation

250𝑢11 − 50𝑢21 = 71.92𝑢11
We always let 𝑢11 = 1. Therefore

250 − 50𝑢21 = 71.92

𝑢21 =
250 − 71.92

50
= 3.5616

Therefore, the first eigenvector is

𝑢⃗1 =

⎧⎪⎪⎨
⎪⎪⎩

1
3.5616

⎫⎪⎪⎬
⎪⎪⎭

For 𝜆 = 278.08, we obtain the equation
⎡
⎢⎢⎢⎢⎣
250 −50
−100 100

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑢12
𝑢22

⎫⎪⎪⎬
⎪⎪⎭
= 278.08

⎧⎪⎪⎨
⎪⎪⎩
𝑢12
𝑢22

⎫⎪⎪⎬
⎪⎪⎭

From first equation

250𝑢12 − 50𝑢22 = 278.08𝑢12
We always let 𝑢12 = 1. Hence

250 − 50𝑢22 = 278.08

𝑢22 =
250 − 278.08

50
= −0.561 6

Therefore, the second eigenvector is

𝑢⃗2 =

⎧⎪⎪⎨
⎪⎪⎩

1
−0.561 6

⎫⎪⎪⎬
⎪⎪⎭

Therefore the modal matrix [𝑢] is

𝑢 =
⎡
⎢⎢⎢⎢⎣

1 1
3.5616 −0.5616

⎤
⎥⎥⎥⎥⎦
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And Ω matrix is

Ω =
⎡
⎢⎢⎢⎢⎣
𝜔2
𝑛(1) 0
0 𝜔2

𝑛(2)

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
71.92 0
0 278.08

⎤
⎥⎥⎥⎥⎦

And the system of equations written in principle coordinates 𝑞 is
�𝑞̈� + [Ω] �𝑞� = {0}

⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑞̈1 (𝑡)
𝑞̈2 (𝑡)

⎫⎪⎪⎬
⎪⎪⎭
+
⎡
⎢⎢⎢⎢⎣
71.92 0
0 278.08

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑞̈1 (𝑡)
𝑞̈2 (𝑡)

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

which is now decoupled. The solution in normal coordinates is
⎧⎪⎪⎨
⎪⎪⎩
𝑥1 (𝑡)
𝑥2 (𝑡)

⎫⎪⎪⎬
⎪⎪⎭
= 𝐴1

⎧⎪⎪⎨
⎪⎪⎩
𝑢11
𝑢21

⎫⎪⎪⎬
⎪⎪⎭

cos �𝜔𝑛(1)𝑡 − 𝜙1� + 𝐴2

⎧⎪⎪⎨
⎪⎪⎩
𝑢12
𝑢22

⎫⎪⎪⎬
⎪⎪⎭

cos �𝜔𝑛(2)𝑡 − 𝜙2�

= 𝐴1

⎧⎪⎪⎨
⎪⎪⎩

1
3.5616

⎫⎪⎪⎬
⎪⎪⎭

cos �8.481𝑡 − 𝜙1� + 𝐴2

⎧⎪⎪⎨
⎪⎪⎩

1
−0.561 6

⎫⎪⎪⎬
⎪⎪⎭

cos �16.676𝑡 − 𝜙2�

2.10.1.1 Appendix

This is derivation of the same equations of motions using energy method. (In this example,
this method is much simpler to use to find equation of motions). The kinetic energy of the
system is

𝑇 =
1
2
𝑚𝑥̇22 +

1
2
(2𝑚) 𝑥̇21

And the potential energy comes only from the springs, since we assumed the top mass 𝑚
remain horizontal as it vibrates back and forth

𝑈 =
1
2
4𝑘𝑥21 +

1
2
𝑘 (𝑥2 − 𝑥1)

2

Therefore the Lagrangian is

Γ = 𝑇 − 𝑈

=
1
2
𝑚𝑥̇22 + 𝑚𝑥̇21 −

1
2
(4𝑘) 𝑥21 −

1
2
𝑘 (𝑥2 − 𝑥1)

2
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EQM for 𝑥1

𝑑
𝑑𝑡 �

𝜕Γ
𝑥̇1
� −

𝜕Γ
𝑥1

= 0

𝑑
𝑑𝑡
(2𝑚𝑥̇1) − (−4𝑘𝑥1 + 𝑘 (𝑥2 − 𝑥1)) = 0

2𝑚𝑥̈1 − (−4𝑘𝑥1 + 𝑘𝑥2 − 𝑘𝑥1) = 0
2𝑚𝑥̈1 − (−5𝑘𝑥1 + 𝑘𝑥2) = 0
2𝑚𝑥̈1 + 5𝑘𝑥1 − 𝑘𝑥2 = 0 (1)

EQM for 𝑥2

𝑑
𝑑𝑡 �

𝜕Γ
𝑥̇2
� −

𝜕Γ
𝑥2

= 0

𝑑
𝑑𝑡
(𝑚𝑥̇2) − (−𝑘 (𝑥2 − 𝑥1)) = 0

𝑚𝑥̈2 − (−𝑘𝑥2 + 𝑘𝑥1) = 0
𝑚𝑥̈2 + 𝑘𝑥2 − 𝑘𝑥1 = 0 (2)

In Matrix form (1,2) becomes
⎡
⎢⎢⎢⎢⎣
2𝑚 0
0 𝑚

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑥̈1
𝑥̈2

⎫⎪⎪⎬
⎪⎪⎭
+
⎡
⎢⎢⎢⎢⎣
5𝑘 −𝑘
−𝑘 𝑘

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑥1
𝑥2

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

Which is the same exact result obtained earlier.
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2.10.2 Problem 2

The Matlab code is the following� �
1 %Solve HW 10, problem 2 using Matlab
2 %Nasser M. Abbasi, ME 440, Fall 2017
3 %see HW 10 for more details.
4

5 m = 2;
6 k = 200;
7

8 mass_mat = [2*m 0;
9 0 m]
10

11 stiffness_mat = [5*k -k;
12 -k k]
13

14 A_mat = inv(mass_mat) * stiffness_mat
15

16 [eig_vectors, eig_values] = eig(A_mat);
17

18 natural_frequencies = sqrt(diag( eig_values))
19

20 eig_vectors(:,1) = eig_vectors(:,1)/eig_vectors(1,1);
21 eig_vectors(:,2) = eig_vectors(:,2)/eig_vectors(1,2);
22

23 eig_vectors� �
The output is� �

1

2 mass_mat =
3 4 0
4 0 2
5

6 stiffness_mat =
7 1000 -200
8 -200 200
9

10 A_mat =
11 250 -50
12 -100 100
13

14 natural_frequencies =
15 16.6757
16 8.4807
17

18 eig_vectors =
19 1.0000 1.0000
20 -0.5616 3.5616� �
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2.10.3 Problem 3

ME 440 

Intermediate Vibrations 

 

Homework #10 

due Thursday, December 7th, 2017 

 
 
Problem 1. Use Newton’s Law to determine the equation of motion.  Solve for the natural 
frequencies and mode shapes without using a computer (solve by hand).  Use your hand written 
solution to write out the 2x2 modal matrix (normalized) and the 2x2  matrix. 
 
Problem 2.  Solve for the natural frequencies and mode shapes using Matlab.  (Include a screen 
shot of your Matlab output.) 

 

The sphere of mass m is attached to the end of a cantilevered beam that is fixed to 

a carriage of mass 2m as shown in the figure below.  The generalized coordinates 

of the system are the absolute displacements x1 and x2 of the carriage and sphere, 

respectively.  Determine (a) the mass and stiffness matrices of the system, and (b) 

the system’s natural circular frequencies and modal matrix [u] if k = 200 lb / in. 

and m = 2 lbs
2
 / in. 

 
 

Partial answer: 2 = 16.68 rad/s 

 

Problem 3. 
 

Determine the flexibility matrix of the uniform beam shown in the figure below.  Disregard the mass of the 

beam compared to the concentrated masses fastened on the beam and assume the beam has a stiffness of EI 

and that all li = l. 

  

 

Definitions For sti�ness matrix [𝐾], element 𝑘𝑖𝑗 means: Apply unit displacement at location
𝑗 and measure the force at location 𝑖. While for flexibility matrix [𝑎], its element 𝑎𝑖𝑗 means:
Apply unit force at location 𝑗 and measure the displacement at location 𝑖.

To solve this problem, this part of handout is used

Since [𝑎] is symmetric, only lower triangle part needs to be found (or upper triangle).
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎11
𝑎21 𝑎22
𝑎31 𝑎32 𝑎33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

To find 𝑎11, a unit force is put at location 𝑚1 and displacement at 𝑚1 is measured. To find
𝑎21, a unit force is put at location 𝑚1 and displacement at 𝑚2 is measured and so on. The
formulas in the above hand out are used for this. To speed this process and make less
error, a small function is written to do the computation. Here is the function and the result
generated for 𝑎11, 𝑎21, 𝑎32,𝑎22,𝑎32,𝑎33
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Define the function to find a_ij

getFlexibility[x_, a_, b_] := Piecewise


b
2

6 E0 I0 L03
(2 b - 3 L0) x

3
+ 3 L0 (L0 - b) x

2
, x ≤ a,


b
2

6 E0 I0 L03
(2 b - 3 L0) x

3
+ 3 L0 (L0 - b ) x

2
+
L03

b
2
(x - a)

3 , x > a;

Call the function to find each element in lower triangle

In[43]:= L0 = 4 L;

a = L; b = 3 L; x = L;

flex[1, 1] = Assuming[x > 0, Simplify[getFlexibility[x, a, b]]]

Out[45]=
9 L3

64 E0 I0

In[48]:= a = L; b = 3 L; x = 2 L;

flex[2, 1] = Assuming[x > 0, Simplify[getFlexibility[x, a, b]]]

Out[49]=
L3

6 E0 I0

In[50]:= a = L; b = 3 L; x = 3 L;

flex[3, 1] = Assuming[x > 0, Simplify[getFlexibility[x, a, b]]]

Out[51]=
13 L3

192 E0 I0

In[52]:= a = 2 L; b = 2 L; x = 2 L;

flex[2, 2] = Assuming[x > 0, Simplify[getFlexibility[x, a, b]]]

Out[53]=
L3

3 E0 I0

In[54]:= a = 2 L; b = 2 L; x = 3 L;

flex[3, 2] = Assuming[x > 0, Simplify[getFlexibility[x, a, b]]]

Out[55]=
L3

6 E0 I0

In[56]:= a = 3 L; b = L; x = 3 L;

flex[3, 3] = Assuming[x > 0, Simplify[getFlexibility[x, a, b]]]

Out[57]=
9 L3
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Therefore, using this result, the lower triangle is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9
64
1
6

1
3

13
192

1
6

9
64

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐿3

𝐸𝐼

Hence by symmetry

[𝑎] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9
64

1
6

13
192

1
6

1
3

1
6

13
192

1
6

9
64

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐿3

𝐸𝐼
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3.1 Solve slide 412

Reproduce flexibility matrix, slide 412
In[23]:= EI = 86 * 10^6;

L0 = 120;

y[x_, a_, b_, L0_, pLocation_] := IfpLocation ≤ L0,

Which

x ≤ a,
1

12 EI
3 b 1 -

b2

L02
x2 -

b

L0
3 -

b2

L02
x3 ,

x ≥ L0,
-b a2

4 EI L0
x - L0

,

Which

x ≤ L0,
a

4 EI L0
x3 - L0 x2,

x ≥ L0,
a

4 EI L0
x3 - L0 x2 -

2 L0

3 a
+ 1 x - L03



;

L0 = 120; a = L0  2; b = L0  2; x = L0  2; pLocation = L0  2;

a11 = y[x, a, b, L0, pLocation];

L0 = 120; a = L0  2; b = L0  2; x = L0 + L0  2; pLocation = L0  2;

a21 = y[x, a, b, L0, pLocation];

L0 = 120; a = L0  2; x = L0  2; pLocation = L0  2 + L0;

a12 = y[x, a, b, L0, pLocation];

L0 = 120; a = L0  2; x = L0 + L0  2; pLocation = L0  2 + L0;

a22 = y[x, a, b, L0, pLocation];

a = {{a11, a12}, {a21, a22}};

MatrixForm[N[a]]

Out[67]//MatrixForm=


0.00018314 -0.000313953

-0.000313953 0.00209302


Printed by Wolfram Mathematica Student Edition
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3.2 Solving slide 390 example

6 

[Cntd] 

Modal Analysis [in the Context of Undamped Response] 

389 

 

 Now, modal analysis is nothing more than just a decoupling of the 
equations of motion… easy-peasy! 

 

 Please keep in mind how you choose the initial conditions:   

[AO] 

Example: Forced 

Undamped Response 

m1=1kg, m2=2kg 

k1=9N/m  

k2=k3=18N/m 

• Find response of the system 

390 

By inspection

[𝑘] =
⎡
⎢⎢⎢⎢⎣
𝑘1 + 𝑘2 −𝑘2
−𝑘2 𝑘2 + 𝑘3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
27 −18
−18 36

⎤
⎥⎥⎥⎥⎦

And

[𝑚] =
⎡
⎢⎢⎢⎢⎣
𝑚1 0
0 𝑚2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1 0
0 2

⎤
⎥⎥⎥⎥⎦

The system is
⎡
⎢⎢⎢⎢⎣
1 0
0 2

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑥̈1
𝑥̈2

⎫⎪⎪⎬
⎪⎪⎭
+
⎡
⎢⎢⎢⎢⎣
27 −18
−18 36

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑥1
𝑥2

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
3 sin 4𝑡
0

⎫⎪⎪⎬
⎪⎪⎭

(1)

The above is solved using modal analysis in order to decouple the system. The first step is
to determine the eigenvalues.

[𝐴] = [𝑚]−1 [𝑘]

=
1
2

⎡
⎢⎢⎢⎢⎣
2 0
0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
27 −18
−18 36

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
1 0
0 1

2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
27 −18
−18 36

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
27 −18
−9 18

⎤
⎥⎥⎥⎥⎦
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To find the eigenvalues of [𝐴] we solve |𝐴 − 𝜆𝐼| = 0 or

�
27 − 𝜆 −18
−9 18 − 𝜆

� = 0

𝜆2 − 45𝜆 + 324 = 0

Hence

𝜆1 = 9
𝜆2 = 36

Which implies

𝜔𝑛(1) = 3 rad/s
𝜔𝑛(2) = 9 rad/s

Now we find the eigenvectors 𝑢𝑖 or the shape vectors. For 𝜆1 = 9

[𝐴]

⎧⎪⎪⎨
⎪⎪⎩
𝑢1
𝑢2

⎫⎪⎪⎬
⎪⎪⎭
= 𝜆1

⎧⎪⎪⎨
⎪⎪⎩
𝑢1
𝑢2

⎫⎪⎪⎬
⎪⎪⎭

⎡
⎢⎢⎢⎢⎣
27 −18
−9 18

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑢1
𝑢2

⎫⎪⎪⎬
⎪⎪⎭
= 9

⎧⎪⎪⎨
⎪⎪⎩
𝑢1
𝑢2

⎫⎪⎪⎬
⎪⎪⎭

⎡
⎢⎢⎢⎢⎣
27𝑢1 − 18𝑢2
−9𝑢1 + 18𝑢2

⎤
⎥⎥⎥⎥⎦ =

⎧⎪⎪⎨
⎪⎪⎩
9𝑢1
9𝑢2

⎫⎪⎪⎬
⎪⎪⎭

Using first equation only gives

27𝑢1 − 18𝑢2 = 9𝑢1
We always normalized to 𝑢1 = 1, hence the above gives

27 − 18𝑢2 = 9
𝑢2 = 1

Therefore the first eigenvector is

𝑢⃗1 =

⎧⎪⎪⎨
⎪⎪⎩
1
1

⎫⎪⎪⎬
⎪⎪⎭

To find the second eigenvector. For 𝜆2 = 36

[𝐴]

⎧⎪⎪⎨
⎪⎪⎩
𝑢1
𝑢2

⎫⎪⎪⎬
⎪⎪⎭
= 𝜆2

⎧⎪⎪⎨
⎪⎪⎩
𝑢1
𝑢2

⎫⎪⎪⎬
⎪⎪⎭

⎡
⎢⎢⎢⎢⎣
27 −18
−9 18

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑢1
𝑢2

⎫⎪⎪⎬
⎪⎪⎭
= 36

⎧⎪⎪⎨
⎪⎪⎩
𝑢1
𝑢2

⎫⎪⎪⎬
⎪⎪⎭

⎡
⎢⎢⎢⎢⎣
27𝑢1 − 18𝑢2
−9𝑢1 + 18𝑢2

⎤
⎥⎥⎥⎥⎦ =

⎧⎪⎪⎨
⎪⎪⎩
36𝑢1
35𝑢2

⎫⎪⎪⎬
⎪⎪⎭
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Using first equation only gives

27𝑢1 − 18𝑢2 = 36𝑢1
We always normalized to 𝑢1 = 1, hence the above gives

27 − 18𝑢2 = 36

𝑢2 = −
1
2

Therefore the second eigenvector is

𝑢⃗2 =

⎧⎪⎪⎨
⎪⎪⎩
1
−1
2

⎫⎪⎪⎬
⎪⎪⎭

Hence the modal matrix is

[𝑢] =
⎡
⎢⎢⎢⎢⎣
1 1
1 −1

2

⎤
⎥⎥⎥⎥⎦

Using the modal matrix, we can now decouple the original system given above in (1) which
is

[𝑚]

⎧⎪⎪⎨
⎪⎪⎩
𝑥̈1
𝑥̈2

⎫⎪⎪⎬
⎪⎪⎭
+ [𝑘]

⎧⎪⎪⎨
⎪⎪⎩
𝑥1
𝑥2

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
3 sin 4𝑡
0

⎫⎪⎪⎬
⎪⎪⎭

(2)

Let

⎧⎪⎪⎨
⎪⎪⎩
𝑥1 (𝑡)
𝑥2 (𝑡)

⎫⎪⎪⎬
⎪⎪⎭
= [𝑢]

⎧⎪⎪⎨
⎪⎪⎩
𝑞1 (𝑡)
𝑞2 (𝑡)

⎫⎪⎪⎬
⎪⎪⎭
, then the above becomes

[𝑚] [𝑢]

⎧⎪⎪⎨
⎪⎪⎩
𝑞̈1 (𝑡)
𝑞̈2 (𝑡)

⎫⎪⎪⎬
⎪⎪⎭
+ [𝑘] [𝑢]

⎧⎪⎪⎨
⎪⎪⎩
𝑞1 (𝑡)
𝑞2 (𝑡)

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
3 sin 4𝑡
0

⎫⎪⎪⎬
⎪⎪⎭

Premultiplying both sides by [𝑢]𝑇 gives

[𝑢]𝑇 [𝑚] [𝑢]

⎧⎪⎪⎨
⎪⎪⎩
𝑞̈1 (𝑡)
𝑞̈2 (𝑡)

⎫⎪⎪⎬
⎪⎪⎭
+ [𝑢]𝑇 [𝑘] [𝑢]

⎧⎪⎪⎨
⎪⎪⎩
𝑞1 (𝑡)
𝑞2 (𝑡)

⎫⎪⎪⎬
⎪⎪⎭
= [𝑢]𝑇

⎧⎪⎪⎨
⎪⎪⎩
3 sin 4𝑡
0

⎫⎪⎪⎬
⎪⎪⎭

(4)

But

[𝑢]𝑇 [𝑚] [𝑢] =
⎡
⎢⎢⎢⎢⎣
1 1
1 −1

2

⎤
⎥⎥⎥⎥⎦

𝑇 ⎡
⎢⎢⎢⎢⎣
1 0
0 2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 1
1 −1

2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
3 0
0 3

2

⎤
⎥⎥⎥⎥⎦

And

[𝑢]𝑇 [𝑘] [𝑢] =
⎡
⎢⎢⎢⎢⎣
1 1
1 −1

2

⎤
⎥⎥⎥⎥⎦

𝑇 ⎡
⎢⎢⎢⎢⎣
27 −18
−18 36

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 1
1 −1

2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
27 0
0 54

⎤
⎥⎥⎥⎥⎦

Then (4) becomes
⎡
⎢⎢⎢⎢⎣
3 0
0 3

2

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑞̈1 (𝑡)
𝑞̈2 (𝑡)

⎫⎪⎪⎬
⎪⎪⎭
+
⎡
⎢⎢⎢⎢⎣
27 0
0 54

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑞1 (𝑡)
𝑞2 (𝑡)

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
3 sin 4𝑡
3 sin 4𝑡

⎫⎪⎪⎬
⎪⎪⎭
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Hence we obtain 2 ODEs

3𝑞̈1 (𝑡) + 27𝑞1 (𝑡) = 3 sin 4𝑡
3
2
𝑞̈2 (𝑡) + 54𝑞2 (𝑡) = 3 sin 4𝑡

Or

𝑞̈1 (𝑡) + 9𝑞1 (𝑡) = sin 4𝑡 (5)

𝑞̈2 (𝑡) + 36𝑞2 (𝑡) = 2 sin 4𝑡 (6)

Note There is a short cut to obtain the above (5,6) equations directly as follows. Starting
with (2), we just write

⎡
⎢⎢⎢⎢⎣
1 0
0 0

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑞̈1 (𝑡)
𝑞̈2 (𝑡)

⎫⎪⎪⎬
⎪⎪⎭
+
⎡
⎢⎢⎢⎢⎣
𝜔2
𝑛(1) 0
0 𝜔2

𝑛(2)

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑞1 (𝑡)
𝑞2 (𝑡)

⎫⎪⎪⎬
⎪⎪⎭
= [𝑢]−1 [𝑚]−1

⎧⎪⎪⎨
⎪⎪⎩
3 sin 4𝑡
0

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩
𝑞̈1 (𝑡) + 9𝑞1 (𝑡)
𝑞̈2 (𝑡) + +36𝑞2 (𝑡)

⎫⎪⎪⎬
⎪⎪⎭
=
⎡
⎢⎢⎢⎢⎣
1 1
1 −1

2

⎤
⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎣
1 0
0 2

⎤
⎥⎥⎥⎥⎦

−1 ⎧⎪⎪⎨
⎪⎪⎩
3 sin 4𝑡
0

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

sin 4𝑡
2 sin 4𝑡

⎫⎪⎪⎬
⎪⎪⎭

Which is the same as (5,6). This short cut just needs finding [𝑢]−1 [𝑚]−1. Use this short cut
for the exam.

Solving (5)

The homogeneous solution is

𝑞1,ℎ (𝑡) = 𝐴1 cos 3𝑡 + 𝐵1 sin 3𝑡
And to find the particular solution, we guess 𝑞1,𝑝 = 𝐶 sin 4𝑡, hence 𝑞̇1,𝑝 = 4𝐶 cos 4𝑡 and
𝑞̈1,𝑝 = −16𝐶 sin 4𝑡. Plug-in in (5) gives

−16𝐶 sin 4𝑡 + 9 (𝐶 sin 4𝑡) = sin 4𝑡
−7𝐶1 sin 4𝑡 = sin 4𝑡

𝐶1 = −
1
7

Hence 𝑞1,𝑝 = −
1
7 sin 4𝑡 and the complete solution is

𝑞1 (𝑡) = 𝐴1 cos 3𝑡 + 𝐵1 sin 3𝑡 − 1
7

sin 4𝑡

Now we do the same to solve (6)

The homogeneous solution is

𝑞2,ℎ (𝑡) = 𝐴2 cos 6𝑡 + 𝐵2 sin 6𝑡
And to find the particular solution, we guess 𝑞2,𝑝 = 𝐶 sin 4𝑡, hence 𝑞̇2,𝑝 = 4𝐶 cos 4𝑡 and

130



3.2. Solving slide 390 example CHAPTER 3. STUDY NOTES

𝑞̈2,𝑝 = −16𝐶 sin 4𝑡. Plug-in in (6) gives

−16𝐶 sin 4𝑡 + 36 (𝐶 sin 4𝑡) = 2 sin 4𝑡
20𝐶1 sin 4𝑡 = 2 sin 4𝑡

𝐶1 =
1
10

Hence 𝑞2,𝑝 =
1
10 sin 4𝑡 and the complete solution is

𝑞2 (𝑡) = 𝐴2 cos 6𝑡 + 𝐵2 sin 6𝑡 + 1
10

sin 4𝑡

Therefore the solution in principle coordinates is

𝑞1 (𝑡) = 𝐴1 cos 3𝑡 + 𝐵1 sin 3𝑡 − 1
7

sin 4𝑡 (5A)

𝑞2 (𝑡) = 𝐴2 cos 6𝑡 + 𝐵2 sin 6𝑡 + 1
10

sin 4𝑡 (6A)

Since {𝑥} = [𝑢] �𝑞�, then �𝑞� = [𝑢]−1 {𝑥}. Therefore

�𝑞 (0)� = [𝑢]−1 {𝑥 (0)}
⎧⎪⎪⎨
⎪⎪⎩
𝑞1 (0)
𝑞2 (0)

⎫⎪⎪⎬
⎪⎪⎭
=
⎡
⎢⎢⎢⎢⎣
1 1
1 −1

2

⎤
⎥⎥⎥⎥⎦

−1 ⎧⎪⎪⎨
⎪⎪⎩
𝑥1 (0)
𝑥2 (0)

⎫⎪⎪⎬
⎪⎪⎭

=
⎡
⎢⎢⎢⎢⎣

1
3

2
3

2
3 −2

3

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
3
0

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩
1
2

⎫⎪⎪⎬
⎪⎪⎭

And

�𝑞̇ (0)� = [𝑢]−1 {𝑥̇ (0)}
⎧⎪⎪⎨
⎪⎪⎩
𝑞̇1 (0)
𝑞̇2 (0)

⎫⎪⎪⎬
⎪⎪⎭
=
⎡
⎢⎢⎢⎢⎣

1
3

2
3

2
3 −2

3

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
0
9

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩
6
−6

⎫⎪⎪⎬
⎪⎪⎭

Applying first initial conditions to (5A,6A) gives

1 = 𝐴1

2 = 𝐴2

Hence (5A,6A) becomes

𝑞1 (𝑡) = cos 3𝑡 + 𝐵1 sin 3𝑡 − 1
7

sin 4𝑡 (5B)

𝑞2 (𝑡) = 2 cos 6𝑡 + 𝐵2 sin 6𝑡 + 1
10

sin 4𝑡 (6B)
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Taking derivatives

𝑞̇1 (𝑡) = −3 sin 3𝑡 + 3𝐵1 cos 3𝑡 − 4
7

cos 4𝑡

𝑞̇2 (𝑡) = −12 sin 6𝑡 + 6𝐵2 cos 6𝑡 + 4
10

cos 4𝑡

Applying the second initial conditions to the above gives

6 = 3𝐵1 −
4
7

−6 = 6𝐵2 +
4
10

Solving gives 𝐵1 =
46
21 , 𝐵2 = −

16
15 . Hence (5B,6B) become

𝑞1 (𝑡) = cos 3𝑡 + 46
21

sin 3𝑡 − 1
7

sin 4𝑡 (5C)

𝑞2 (𝑡) = 2 cos 6𝑡 − 16
15

sin 6𝑡 + 1
10

sin 4𝑡 (6C)

The above is the solution in principle coordinates. Now we transform it back to normal
coordinates. Since {𝑥} = [𝑢] �𝑞�, then

⎧⎪⎪⎨
⎪⎪⎩
𝑥1 (𝑡)
𝑥2 (𝑡)

⎫⎪⎪⎬
⎪⎪⎭
=
⎡
⎢⎢⎢⎢⎣
𝑢11 𝑢12
𝑢21 𝑢22

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑞1 (𝑡)
𝑞2 (𝑡)

⎫⎪⎪⎬
⎪⎪⎭

=
⎡
⎢⎢⎢⎢⎣
1 1
1 −1

2

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos (3𝑡) + �4621� sin (3𝑡) − �17� sin (4𝑡)

2 cos (6𝑡) − �1615� sin (6𝑡) + 1
10 sin 4𝑡

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩
cos 3𝑡 + 2 cos 6𝑡 + 46

21 sin 3𝑡 − 3
70 sin 4𝑡 − 16

15 sin 6𝑡
cos 3𝑡 − cos 6𝑡 + 46

21 sin 3𝑡 − 27
140 sin 4𝑡 + 8

15 sin 6𝑡

⎫⎪⎪⎬
⎪⎪⎭

The above is the final solution. Here is a plot of 𝑥1 (𝑡) , 𝑥2 (𝑡)
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mySol = {x1[t] → Cos[3 t] + 2 Cos[6 t] + 46/ 21 Sin[3 t] - 3/ 70 Sin[4 t] - 16/ 15 Sin[6 t],

x2[t] → Cos[3 t] - Cos[6 t] + 46/ 21 Sin[3 t] - 27/ 140 Sin[4 t] + 8/ 15 Sin[6 t]};

Plot[{ x1[t] /. mySol, x2[t] /. mySol}, {t, 0, 2}, Frame → True,

GridLines → Automatic, GridLinesStyle → LightGray,

FrameLabel → {{"x1(t),x2(t)", None}, {"time (sec)", "Solution to slide 390"}},

PlotLegends → {"x1(t)", "x2(t)"}, ImageSize → 400, BaseStyle → 14]

Out[30]=

0.0 0.5 1.0 1.5 2.0

-4

-2

0

2

time (sec)

x1
(t
),
x2

(t
)

Solution to slide 390

x1(t)

x2(t)
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3.3 Solving slide 362 example

2 

362 

[AO] 

Example 

[AO] 

Example: MATLAB Implementation and Results 

clear 
m = 1.0 
k = 1.0 
 
Mmat = [ 5/2*m -m/2 ; -m/2 3/2*m] 
Kmat = [ 3*k  -2*k  ; -2*k  2*k] 
 
invMmat = inv(Mmat) 
 
Pmat = invMmat*Kmat 
 
[Umat, Omegamat] = eig(Pmat) 
 
UmatNormalized = [Umat(:,1)/Umat(1,1)   Umat(:,2)/Umat(1,2)] 
 
firstNatFreq = sqrt(Omegamat(1,1)) 
secondNatFreq = sqrt(Omegamat(2,2)) 

Mmat = 
    2.5000   -0.5000 
   -0.5000    1.5000 
 
Kmat = 
     3    -2 
    -2     2 
 
invMmat = 
    0.4286    0.1429 
    0.1429    0.7143 
 
Pmat = 
    1.0000   -0.5714 
   -1.0000    1.1429 
 
Umat = 
   -0.6390    0.5667 
   -0.7692   -0.8239 
 
Omegamat = 
    0.3121         0 
         0    1.8307 
 
UmatNormalized = 
    1.0000    1.0000 
    1.2038   -1.4538 
 
firstNatFreq     =    0.5587 
secondNatFreq =    1.3530 363 

Assuming 𝑥2 > 𝑥1, 𝑥̇2 > 𝑥̇1, 𝑥̈2 > 𝑥̈1 and all are positive, the free body diagram for the cylinder
and the cart is

F
mg

N1

k(x2 − x1)k(x2 − x1)
Icgα

+
mẍ2=⇒

k(x2 − x1) k(x2 − x1)kx1

F

N1

2mg
N

=⇒ 2mẍ1

Equation of motion for cylinder. ∑𝐹𝑥
−2𝑘 (𝑥2 − 𝑥1) − 𝐹 = 𝑚𝑥̈2 (1)
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And taking moment around C.G. of cylinder, using anti-clock wise as positive

−𝐹𝑟 = −𝐼𝑐𝑔𝛼
𝐹𝑟 = 𝐼𝑐𝑔𝛼

Since we assumed no slip, then (𝑥̈2 − 𝑥̈1) = 𝛼𝑟 and the above becomes

𝐹𝑟 = 𝐼𝑐𝑔
(𝑥̈2 − 𝑥̈1)

𝑟

𝐹 = 𝐼𝑐𝑔
(𝑥̈2 − 𝑥̈1)

𝑟2

=
1
2
𝑚𝑟2

(𝑥̈2 − 𝑥̈1)
𝑟2

=
1
2
𝑚 (𝑥̈2 − 𝑥̈1) (2)

Using (2) in (1) gives EQM for 𝑥2

𝑚𝑥̈2 + 2𝑘 (𝑥2 − 𝑥1) +
1
2
𝑚 (𝑥̈2 − 𝑥̈1) = 0

3
2
𝑚𝑥̈2 −

1
2
𝑚𝑥̈1 + 2𝑘𝑥2 − 2𝑘𝑥1 = 0 (3)

For EQM for 𝑥1, resolving forces in 𝑥 direction gives

−𝑘𝑥1 + 2𝑘 (𝑥2 − 𝑥1) + 𝐹 = 2𝑚𝑥̈1
Using 𝐹 found in (2) into the above gives

−𝑘𝑥1 + 2𝑘 (𝑥2 − 𝑥1) +
1
2
𝑚 (𝑥̈2 − 𝑥̈1) = 2𝑚𝑥̈1

Simplifying

2𝑚𝑥̈1 −
1
2
𝑚 (𝑥̈2 − 𝑥̈1) + 𝑘𝑥1 − 2𝑘 (𝑥2 − 𝑥1) = 0

−
1
2
𝑚𝑥̈2 +

5
2
𝑚𝑥̈1 + 3𝑘𝑥1 − 2𝑘𝑥2 = 0 (4)

Writing (3,4) in matrix form gives (note. Using (4) for top row and then use (3) for second
row)

⎡
⎢⎢⎢⎢⎣

5
2𝑚 −1

2𝑚
−1
2𝑚

3
2𝑚

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑥̈1
𝑥̈2

⎫⎪⎪⎬
⎪⎪⎭
+
⎡
⎢⎢⎢⎢⎣
3𝑘 −2𝑘
−2𝑘 2𝑘

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑥1
𝑥2

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

(5)

If we had picked (3) for top row and then (4) for second row, the result will be
⎡
⎢⎢⎢⎢⎣
−1
2𝑚

3
2𝑚

5
2𝑚 −1

2𝑚

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑥̈1
𝑥̈2

⎫⎪⎪⎬
⎪⎪⎭
+
⎡
⎢⎢⎢⎢⎣
−2𝑘 2𝑘
3𝑘 −2𝑘

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩
𝑥1
𝑥2

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

(6)

Since So (5) and (6) are equivalent. To verify both (5) and (6) give the same eigenvalues,
here is a check

135



3.3. Solving slide 362 example CHAPTER 3. STUDY NOTES

In[49]:= (* eq 5*)

m = 1;

k = 1;

massMat = {{5/ 2 m, -1/ 2 m}, {-1/ 2 m, 3/ 2 m}};

kMat = {{3 k, -2 k}, {-2 k, 2 k}};

Amat = Inverse[massMat]. kMat;

Sqrt[Eigenvalues[Amat]] // N

Out[54]= {1.353042756497228, 0.5586881437327312}

In[63]:= (* eq 6*)

SetOptions[$FrontEndSession, PrintPrecision → 16]

m = 1;

k = 1;

massMat = {{-1/ 2 m, 3/ 2 m}, {5/ 2 m, -1/ 2 m}};

kMat = {{-2 k, 2 k}, {3 k, -2 k}};

inv = Inverse[massMat];

Amat = (inv. kMat);

Sqrt[Eigenvalues[Amat]] // N

Out[70]= {1.353042756497228, 0.5586881437327312}
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3.4 Solving example 2, lecture 4. ME 440 page 78

Solving example 2, lecture 4. ME 440 page 78

Plot the function

In[1]:= A = 2;

T = 4;

myperiodic[func_, {val_Symbol, min_?NumericQ, max_?NumericQ}] :=

func /. val ⧴ Mod[val - min, max - min] + min

f[t_] := A / T t;

Plot[myperiodic[f[t], {t, -T, T}] // Evaluate, {t, -T, 5 T},

PlotRange → {Automatic, {-A - 1, A + 1}}, Exclusions → True,

ExclusionsStyle → Dashing[Medium], AxesLabel → {"t", "f(t)"}, ImageSize → 450]

Out[5]=

5 10 15 20
t

-3

-2

-1

1

2

3
f(t)

Find a0,an,bn

In[6]:= a0 = 1  T Integrate[f[t], {t, -T, T}]

Out[6]= 0

In[7]:= an = 1  T Integratef[t] Cos2 Pi  2 T n t, {t, -T, T}

Out[7]= 0

Printed by Wolfram Mathematica Student Edition
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In[8]:= bn = 1  T Integratef[t] Sin2 Pi  2 T n t, {t, -T, T};

b[n_] = Assuming[Element[n, Integers], Simplify[bn]]

Out[9]= -
4 -1n

n π

Plot approximation for n=10

In[10]:=

PlotSum b[n] Sin 2 n Pi  2 T t, {n, 1, 10}, {t, -4 T, 4 T}

Out[10]=
-15 -10 -5 5 10 15

-2

-1

1

2

Plot approximation for n=50 to improve the approximation. 

In[11]:=

PlotSum b[n] Sin 2 n Pi  2 T t, {n, 1, 50}, {t, -4 T, 4 T}

Out[11]=
-15 -10 -5 5 10 15

-2

-1

1

2

Find Xn and Phase, where 

2     example_2.nb

Printed by Wolfram Mathematica Student Edition
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Xn cos(ωn t-ϕn) = an cos(ωn t) +bn sin(ωn t)

Where Xn = an
2 + bn

2 and Φn = tan-1 bn
an
 and since an = 0 then phase is 90 degrees and Xn = bn

In[12]:= X[n_] := Abs[b[n]];

data = Join[{{0, 0}}, Table[{n, X[n]}, {n, 1, 10}]];

ListPlot[data, Filling → Axis, PlotStyle → Red, AxesLabel → {"n", "Xn"}, BaseStyle → 14]

Out[14]=

2 4 6 8 10
n

0.2

0.4

0.6

0.8

1.0

1.2

Xn

Verify using Mathematica build-in function

In[15]:= data = Tablei, Abs@FourierCoefficientmyperiodic[f[t], {t, -T, T}],

t, i, FourierParameters → 1, 2 Pi  2 T, {i, 0, 10};

head = {"n", "|cn|"};

Grid[Insert[data, head, 1], Frame → All]

Out[17]=

n |cn|
0 0

1 2

π

2 1

π

3 2

3 π

4 1

2 π

5 2

5 π

6 1

3 π

7 2

7 π

8 1

4 π

9 2

9 π

10 1

5 π

example_2.nb     3

Printed by Wolfram Mathematica Student Edition
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In[18]:= mag = data;

mag[[All, 2]] = Map[Abs[#] &, data[[All, 2]]];

ListPlot[2 * mag, AxesOrigin → {0, 0}, Filling → Axis,

PlotStyle → Red, AxesLabel → {"n", "|Subscript[c, n]|"}]

Out[20]=

5 10 15 20
n

0.2

0.4

0.6

0.8

1.0

1.2

|Subscript[c, n]|

4     example_2.nb

Printed by Wolfram Mathematica Student Edition
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3.5 Solving slide 148 example, lecture sept 28, 2017

9 

Example: Coulomb Damping   (Cntd.) 

147 

[AO] 

Example, Deriving EOM 

 Cylinder of radius r rolls without slip.  Mass of each rod is mr=m/4 
 Assume small oscillation and ignore the very small rotational effect of the horizontal bar 

148 

 For this system: 
 Derive EOM 
 Show that the model’s natural 

frequency and damping ratio are 

We will solve this using 3 separate bodies. So there are three free body diagrams as shown
below

θ

krθ px1

N

Ffriction

mg

m
4 g

px2

py2

D

Icg θ̈

m
4 rθ̈

m
4 g

krθcrθ̇

Icg θ̈

3 Free body diagrams and kinematics

px1

py1

py1

py2

px2
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In this diagram, it is assumed the horizontal bar only moves in the 𝑥 direction and this is
all for small angle 𝜃. Now we apply Newton laws to each body.

For disk, we apply 𝜏 = 𝐼𝑜𝜃̈ but using the point 𝐷 on the figure to take moments around
in order to get rid of the friction 𝐹 and 𝑁 terms. This gives (using counter clock wise as
positive)

(𝑘𝑟𝜃) 𝑟 − 𝑝𝑥1𝑟 = −𝐼𝑜𝜃̈

𝑘𝑟2𝜃 − 𝑝𝑥1𝑟 = − �𝐼𝑐𝑔 + 𝑚𝑟
2� 𝜃̈

= − �
1
2
𝑚𝑟2 + 𝑚𝑟2� 𝜃̈

= −
3
2
𝑚𝑟2𝜃̈ (1)

We now move to the second body, which is the horizontal bar.

�𝐹𝑥 = 𝑚𝑏𝑎𝑟𝑥̈

−𝑝𝑥1 + 𝑝𝑥2 =
𝑚
4
𝑟𝜃̈ (2)

From (2) we solve for 𝑝𝑥1 and plug it into (1)

𝑝𝑥1 = 𝑝𝑥2 −
𝑚
4
𝑟𝜃̈

Hence (1) now becomes

𝑘𝑟2𝜃 − �𝑝𝑥2 −
𝑚
4
𝑟𝜃̈� 𝑟 = −

3
2
𝑚𝑟2𝜃̈

𝑘𝑟2𝜃 − 𝑝𝑥2𝑟 = − �
3
2
𝑚𝑟2 +

𝑚
4
𝑟2� 𝜃̈

= −
7
4
𝑚𝑟2𝜃̈ (3)

To find 𝑝𝑥2, we use the third body, the vertical bar. Taking moments about C.G. of bar using
counter clock wise as positive gives

𝜏 = −𝐼𝑐𝑔𝜃̈

(𝑘𝑟𝜃) 𝑟 cos𝜃 + �𝑐𝑟𝜃̇� 𝑟 cos𝜃 + 𝑝𝑥2𝑟 cos𝜃 + 𝑝𝑦2𝑟 sin𝜃 = − 1
12
�
𝑚
4
� (2𝑟)2 𝜃̈

= −
1
12
𝑚𝑟2𝜃̈

For small angle the above becomes

𝑘𝑟2𝜃 + 𝑐𝑟2𝜃̇ + 𝑝𝑥2𝑟 + 𝑝𝑦2𝑟𝜃 = −
𝑚
12
𝑟2𝜃̈ (4)

𝑝𝑦2 is now found from vertical balance of horizontal bar. Since it does not move vertically
and assumed to only move horizontally, then

�𝐹𝑦 = 0

−𝑝𝑦1 − 𝑝𝑦2 −
𝑚
4
𝑔 = 0
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Due to symmetry, 𝑝𝑦1 = 𝑝𝑦2 and the above becomes

−2𝑝𝑦2 =
𝑚
4
𝑔

𝑝𝑦2 = −
𝑚
8
𝑔

Plugging this value for 𝑝𝑦2 into (4) and solving for 𝑝𝑥2 gives

𝑘𝑟2𝜃 + 𝑐𝑟2𝜃̇ + 𝑝𝑥2𝑟 −
𝑚
8
𝑔𝑟𝜃 = −

𝑚
12
𝑟2𝜃̈

𝑝𝑥2 =
1
𝑟
�−
𝑚
12
𝑟2𝜃̈ +

𝑚
8
𝑔𝑟𝜃 − 𝑘𝑟2𝜃 − 𝑐𝑟2𝜃̇�

Plugging the above into (3) gives the equation of motion for disk

𝑘𝑟2𝜃 − �−
𝑚
12
𝑟2𝜃̈ +

𝑚
8
𝑔𝑟𝜃 − 𝑘𝑟2𝜃 − 𝑐𝑟2𝜃̇� = −

7
4
𝑚𝑟2𝜃̈

𝑘𝑟2𝜃 +
𝑚
12
𝑟2𝜃̈ −

𝑚
8
𝑔𝑟𝜃 + 𝑘𝑟2𝜃 + 𝑐𝑟2𝜃̇ = −

7
4
𝑚𝑟2𝜃̈

𝜃 �2𝑘𝑟2 −
𝑚
8
𝑔𝑟� + 𝑐𝑟2𝜃̇ = −

7
4
𝑚𝑟2𝜃̈ −

𝑚
12
𝑟2𝜃̈

11
6
𝑚𝑟2𝜃̈ + 𝑐𝑟2𝜃̇ + 𝜃 �2𝑘𝑟2 −

𝑚
8
𝑔𝑟� = 0

Or

𝜃̈ +
6𝑐
11𝑚

𝜃̇ + 𝜃 �
12
11
𝑘
𝑚
−
3
44
𝑔
𝑟 �
= 0

Writing the above in the standard form 𝜃̈ + 2𝜁𝜔𝑛𝜃̇ + 𝜔2
𝑛𝜃 = 0 we see that

𝜔2
𝑛 = �

12
11
𝑘
𝑚
−
3
44
𝑔
𝑟

And

2𝜁𝜔𝑛 =
6𝑐
11𝑚

𝜁 =
3𝑐

11𝑚𝜔𝑛

=
3𝑐

11𝑚�
12
11

𝑘
𝑚 −

3
44

𝑔
𝑟

=
3𝑐

�132𝑘𝑚 −
363
44

𝑔𝑚2

𝑟
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3.6 Beam handouts
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3.7 my cheat sheet

3.7.1 Solution to undamped forced harmonic

3.7.1.1 Input is 𝐹0 cos𝜔𝑡

𝑚𝑥̈ + 𝑘𝑥 = 𝐹0 cos𝜔𝑡
This model is single degree of freedom system, undamped, with forced harmonice input. Its
solution is given by

𝑥 (𝑡) = 𝑥ℎ (𝑡) + 𝑥𝑝 (𝑡)

Where 𝑥𝑝 (𝑡) is particular solution and 𝑥ℎ (𝑡) is homogenous solution. We know that

𝑥ℎ (𝑡) = 𝑐1 cos𝜔𝑛𝑡 + 𝑐2 sin𝜔𝑛𝑡

And assuming 𝑥𝑝 (𝑡) = 𝑋 cos𝜔𝑡 for the case 𝜔 ≠ 𝜔𝑛 Pluggin this into the ODE, we find that

𝑋 =
𝑥𝑠𝑡
1 − 𝑟2

Where 𝑟 = 𝜔
𝜔𝑛

and 𝑥𝑠𝑡 =
𝐹0
𝑘𝑒𝑞

the static deflection. Hence the solution becomes

𝑥 (𝑡) =
homogeneous

�����������������������������𝑐1 cos𝜔𝑛𝑡 + 𝑐2 sin𝜔𝑛𝑡 +

particular

���������������𝑥𝑠𝑡
1 − 𝑟2

cos𝜔𝑡 (1)

Assuming initial conditions are 𝑥 (0) = 𝑥0, 𝑥̇ (0) = 𝑥̇0, then (1) at 𝑡 = 0 becomes

𝑥0 = 𝑐1 +
𝑥𝑠𝑡
1 − 𝑟2

𝑐1 = 𝑥0 −
𝑥𝑠𝑡
1 − 𝑟2

Hence solution (1) now becomes

𝑥 (𝑡) = �𝑥0 −
𝑥𝑠𝑡
1 − 𝑟2

� cos𝜔𝑛𝑡 + 𝑐2 sin𝜔𝑛𝑡 +
𝑥𝑠𝑡
1 − 𝑟2

cos𝜔𝑡

Taking derivative

𝑥̇ (𝑡) = −𝜔𝑛 �𝑥0 −
𝑥𝑠𝑡
1 − 𝑟2

� sin𝜔𝑛𝑡 + 𝑐2𝜔𝑛 cos𝜔𝑛𝑡 − 𝜔
𝑥𝑠𝑡
1 − 𝑟2

sin𝜔𝑡

At 𝑡 = 0 the above becomes

𝑥̇0 = 𝑐2𝜔𝑛

𝑐2 =
𝑥̇0
𝜔𝑛

Therefore the solution now becomes (again, this is for 𝜔 ≠ 𝜔𝑛)

𝑥 (𝑡) = �𝑥0 −
𝑥𝑠𝑡
1 − 𝑟2

� cos𝜔𝑛𝑡 +
𝑥̇0
𝜔𝑛

sin𝜔𝑛𝑡 +
𝑥𝑠𝑡
1 − 𝑟2

cos𝜔𝑡 (2)
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3.7.1.2 Input is 𝐹0 sin𝜔𝑡

𝑚𝑥̈ + 𝑘𝑥 = 𝐹0 sin𝜔𝑡
This model is single degree of freedom system, undamped, with forced harmonice input. Its
solution is given by

𝑥 (𝑡) = 𝑥ℎ (𝑡) + 𝑥𝑝 (𝑡)

Where 𝑥𝑝 (𝑡) is particular solution and 𝑥ℎ (𝑡) is homogenous solution. We know that

𝑥ℎ (𝑡) = 𝑐1 cos𝜔𝑛𝑡 + 𝑐2 sin𝜔𝑛𝑡

And assuming 𝑥𝑝 (𝑡) = 𝑋 sin𝜔𝑡 for the case 𝜔 ≠ 𝜔𝑛 Pluggin this into the ODE, we find that

𝑋 =
𝑥𝑠𝑡
1 − 𝑟2

Where 𝑟 = 𝜔
𝜔𝑛

and 𝑥𝑠𝑡 =
𝐹0
𝑘𝑒𝑞

the static deflection. Hence the solution becomes

𝑥 (𝑡) =
homogeneous

�����������������������������𝑐1 cos𝜔𝑛𝑡 + 𝑐2 sin𝜔𝑛𝑡 +

particular

���������������𝑥𝑠𝑡
1 − 𝑟2

sin𝜔𝑡 (1)

Assuming initial conditions are 𝑥 (0) = 𝑥0, 𝑥̇ (0) = 𝑥̇0, then (1) at 𝑡 = 0 becomes

𝑥0 = 𝑐1
Hence solution (1) now becomes

𝑥 (𝑡) = 𝑥0 cos𝜔𝑛𝑡 + 𝑐2 sin𝜔𝑛𝑡 +
𝑥𝑠𝑡
1 − 𝑟2

sin𝜔𝑡

Taking derivative

𝑥̇ (𝑡) = −𝑥0 sin𝜔𝑛𝑡 + 𝑐2𝜔𝑛 cos𝜔𝑛𝑡 + 𝜔
𝑥𝑠𝑡
1 − 𝑟2

cos𝜔𝑡

At 𝑡 = 0 the above becomes

𝑥̇0 = 𝑐2𝜔𝑛 + 𝜔
𝑥𝑠𝑡
1 − 𝑟2

𝑐2 =
𝑥̇0
𝜔𝑛

−
𝜔
𝜔𝑛

𝑥𝑠𝑡
1 − 𝑟2

=
𝑥̇0
𝜔𝑛

−
𝑟

1 − 𝑟2
𝑥𝑠𝑡

Therefore the solution now becomes (again, this is for 𝜔 ≠ 𝜔𝑛)

𝑥 (𝑡) = 𝑥0 cos𝜔𝑛𝑡 + �
𝑥̇0
𝜔𝑛

−
𝑟

1 − 𝑟2
𝑥𝑠𝑡� sin𝜔𝑛𝑡 +

𝑥𝑠𝑡
1 − 𝑟2

sin𝜔𝑡 (2)

Notice the di�erence in the solution. Here is summary
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ODE solution

𝑚𝑥̈ + 𝑘𝑥 = 𝐹0 cos𝜔𝑡 𝑥 (𝑡) = �𝑥0 −
𝑥𝑠𝑡
1−𝑟2

� cos𝜔𝑛𝑡 +
𝑥̇0
𝜔𝑛

sin𝜔𝑛𝑡 +

𝑥𝑝

�������������𝑥𝑠𝑡
1−𝑟2 cos𝜔𝑡

𝑚𝑥̈ + 𝑘𝑥 = 𝐹0 sin𝜔𝑡 𝑥 (𝑡) = 𝑥0 cos𝜔𝑛𝑡 + �
𝑥̇0
𝜔𝑛
− 𝑟

1−𝑟2𝑥𝑠𝑡� sin𝜔𝑛𝑡 +

𝑥𝑝

�������������𝑥𝑠𝑡
1−𝑟2 sin𝜔𝑡

3.7.2 Solution to underdamped forced harmonic

ODE particular solution only

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑎0
2 𝑥𝑝 (𝑡) =

𝑎0
2
1
𝑘

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑎𝑛 cos (𝑛𝜔𝑡) 𝑥𝑝 (𝑡) =
𝑎𝑛
𝑘

1

�
�1−(𝑛𝑟)2�

2
+(2𝜁𝑛𝑟)2

cos �𝑛𝜔𝑡 − 𝜙𝑛�

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑏𝑛 sin (𝑛𝜔𝑡) 𝑥𝑝 (𝑡) =
𝑏𝑛
𝑘

1

�
�1−(𝑛𝑟)2�

2
+(2𝜁𝑛𝑟)2

sin �𝑛𝜔𝑡 − 𝜙𝑛�

Where

𝑟 =
𝜔
𝜔𝑛

𝜙𝑛 = tan−1 �
2𝜁𝑛𝑟

1 − (𝑛𝑟)2
�

3.7.3 unit Impulse respones

For undamped system 𝑚𝑥̈ + 𝑘𝑥 = 𝛿 (𝑡) the response (solution) is (notes calls these 𝑔 (𝑡))

𝑔 (𝑡) =
1

𝑚𝜔𝑛
sin (𝜔𝑛𝑡)

And for an underdamped 𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝛿 (𝑡) the response is

𝑔 (𝑡) =
1

𝑚𝜔𝑑
𝑒−𝜁𝜔𝑛𝑡 sin (𝜔𝑑𝑡)

3.7.4 Duhamel Integral

For arbitray forcing function 𝐹 (𝑡) which can be of any forum, the response of the system to
𝐹 (𝑡), assuming the system was at rest is

𝑥𝑐𝑜𝑛𝑣 (𝑡) = �
𝑡

0
𝐹 (𝜏) 𝑔 (𝑡 − 𝜏) 𝑑𝜏
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3.7.4.1 Some de�nitions

3.7.4.1.1 DLF Dynamic locad factor.𝐷𝐿𝐹 = 𝑥(𝑡)
𝑥𝑠𝑡
. But we really only care for the maximum

DLF. When the input is constant (step input), the 𝐷𝐿𝐹max = 2.

3.7.4.1.2 Response spectrum Plots the DLFmax on the 𝑦 axis vs 𝑡
𝑇 where 𝑇 is the period

of the system on the 𝑥 axis. This is done for typical inputs such as unit step, triangle, half
sine, etc...
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