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1.1. links CHAPTER 1. INTRODUCTION

1.1 links

1. piazza page http://piazza.com/wisc/fall2016/math322 requires login

2. [Professor Leslie Smith page| Office hrs: MW from 1:15-2:15 in Van Vleck 825.

1.2 syllabus

Math 322 - 001 Syllabus
Applied Mathematical Analysis (Introduction to Partial Differential Equations)
MWEF 12:05-12:55 in Van Hise 115

Textbook: Applied Partial Differential Equations with Fourier Series and Boundary Value
Problems, Richard Haberman, 5th Edition, Pearson.

Pre-requisites: Math 319; Math 321; recommended: Math 340 or Math 320.

Professor: Leslie Smith, Departments of Mathematics and Engineering Physics, Office
Hours in Van Vleck 825 MW 1:15-2:15, Ismith@math.wisc.edu,
http://www.math.wisc.edu/ Ismith.

Midterm Exams: There will be two in-class exams: Monday October 10 and Monday
November 14. Please plan accordingly. Each exam is 25% of the final grade.

Final Exam: Saturday December 17, 5:05 - 7:05 PM, 35% of grade.

Piazza: There will be a Piazza course page to facilitate peer-group discussions. Please
consider this resource mainly as a discussion among students. The instructor will check in a
few times per week. Piazza Sign-Up Page: piazza.com/wisc/fall2016/math322

Piazza Course Page: piazza.com/wisc/fall2016/math322/home

Weekly Problem Sets: Homework is due at the beginning of class, normally on
Friday. Homework problems will be selected from the book, and will be available on-line at
www.math.wisc.edu/ Ismith approximately one week prior to the due date.

Please write your name clearly on each homework set, stapled please! Unstapled homework
will not be accepted.

Grading of Homework: A grader will grade a subset of the homework problems given out
each week, with some points also given for completeness. The homework scores will count
for 15% of the grade. The lowest homework score will be dropped.

Late Policy: Homework turned in after the beginning of class will be considered late and
will be graded at 80% credit. Late homework will be accepted until 5 PM on the due date

(no credit thereafter, no exceptions). The policy is intended to keep everyone as current as
possible.

Please email the instructor directly before the due time/day to make arrangements re-
garding late homework submission.

Expectations In Class: You are required to come to class. Some classes may involve
student participation such as discussion, group work, student presentation of material, etc.

If you should need to miss a class for any reason, please let me know ahead of time, and
make sure that you get notes and other important information from a classmate.

No cell phones, ipods, computers or other electronic devices may be used in class. In par-
ticular, please refrain from texting during class.

Find my mistakes in class, get brownie points!

Expectations Outside of Class: In order to fully understand the material and do well in
the course, it is vital that you stay on top of your reading and homework assignments. The


http://piazza.com/wisc/fall2016/math322
http://www.math.wisc.edu/~lsmith

1.2. syllabus CHAPTER 1. INTRODUCTION

six hours (minimum) of work outside class includes (but is not limited to) reading the texts
(before and after the material is covered in lecture), completing/writing homework problems,
and reviewing for exams. In addition, be prepared to work additional problems as needed,
to formulate coherent questions for me and for your classmates, and to prepare material for
discussion and or student presentation.

Grading Scale for Final Grade: 92-100 A, 89-91 AB, 82-88 B, 79-81 BC, 70-78 C, 60-69
D, 59 and below F

Course description: This is a first course in Partial Differential Equations. We will focus
on the physical phenomena represented by three canonical equations — the Heat Equation,
Laplace’s Equation and the Wave Equation— and learn the mathematical solution techniques.
A basic starting point for these linear equations is Separation of Variables, and we will learn
how to construct Eigenfunction Solutions, starting in one space dimension and then in two
and three dimensions. More advanced topics include Green’s function solutions, Fourier
Transform solutions, and the Method of Characteristics.

Course outline: The course covers most of the material in Chapters 1-5, and selected mate-
rial from Chapters 7-10, 12 (time permitting). The topics are listed below with corresponding
chapter.

Chapter 1: The Heat Equation

Chapter 2: Method of Separation of Variables

Chapter 3: Fourier Series

Chapter 4: Wave Equation: Vibrating Strings and Membranes
Chapter 5: Sturm-Liouville Eigenvalue Problems

Chapter 7: Higher-Dimensional Partial Differential Equations
Chapter 8: Non-homogeneous Problems

Chapter 9: Green’s Functions for Time Independent Problems

Chapter 10: Infinite Domain Problems: Fourier Transform Solutions of Partial Differential
Equations

Chapter 12: The Method of Characteristics
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2.1. summary pf HWs CHAPTER 2. HWS

21

summary pf HWs

HW

description

1

chapter one. Steady state. Heat flux. Total heat energy

chapter 2.4,2.5.

separation of variables from selected PDE’s.

Finding eigevalues for different homogeneous B.C.

Heat PDE in 1D with initial conditions, homogeneous B.C.
Total heat energy

chapter 2.5

Laplace on rectangle

Laplace on quarter circle

Laplace inside circular annulus

backward heat PDE is not well posed.

Drag force zero for uniform flow past cylinder
Circulation around cylinder

chapters 2.5,3.2, 3.4
Fourier series, even and odd extensions
Heat PDE 1D, source with homogenous B.C.

chapters 3.5,3.6,4.2,4.4

Fourier series, even and odd extensions

Heat PDE 1D, source with homogenous B.C.

Find Fourier series for x” , Complex Fourier series

Derive vibrating string wave equation. Wave equation with damping.
Derive conservation of energy for vibrating string.

chapter 5.3,5.5

Wave equation

Sturm-Liouville DE, more eigenvalue Sturm-Liouville, self adjoint
Show that eigenfunctions are orthogonal. More S-L problems

chapter 5.6,5.9

Rayleigh quotient to find upper bound on lowest eigenvalue for S-L. ODE
Show eigenvalue is positive for S-L

Estimating large eigenvalues for S-L with different boundary conditions
Sketch eigenfunctions for y” + A(1 + x)y = 0

chapter 5.10, 7.3, 7.4

How many terms needed for Fourier series for f(x) =1?
Find formula for infinite series using Parseval’s equality.
More on Parseval’s equality

Solve Wave equation with homogeneous B.C.

Solve Laplace in 3D, seperation of variables.

Show that A > 0 using Rayleigh quotient.

Derive Green formula

Chapter 8.2,8.3,8.4,8.5

Heat PDE 1D with zero source and non-homogeneous BC. Using u = v + uy where ug
is equilibrium solution. (Use ug if source is zero.

Heat PDE 1D with source and non-homogeneous BC. Using u# = v + u, where u, is
reference solution (only needs to satisfy BC) since source is not zero.

Solve heat PDE inside circle. No source, non-homogeneous BC, use .

Solve heat PDE in 1D with time dependent k

Solve heat PDE inside circle. Source, homogeneous BC.

Solve heat PDE 1D. Source and non-homogeneous BC. use u,

Solve heat PDE 1D. Source and non-homogeneous BC without using u,.

Solve wave equation, 1D with source and homogeneous BC.

Solve wave equation, 2D membrane. With source and fixed boundaries.

10

Hand problems, not from text
Solve ODE’s using two sided Green function with different boundary conditions
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11 Hand problems, not from text
Solve Laplace using method of images. Different boundary conditions
12 chapter 12.2
Wave equation in 1D, such as % - 3— 0 using method of charaterstics.
More wave in 1D with source. % + c% e

22 HWI1

Reference table used in HW

(E flux (class uses q) vector field. thermal energy per unit time per unit area. %
5 71 | flux Flux component that is outward normal to the surface %
. o M
Q heat source heat energy generated per unit volume per unit time.| —
. M
e thermal energy density. Scalar field. | =
p density mass density of material which heat flows in. ?—/31
. . . . 12
c specific heat energy to raise temp. of unit mass by one degree Kelvin. |
ko Thermal conductivity | Used in flux equation q = —kyVu, where u is temperature. %
K Thermal diffusivity Used in heat equation - @ = xVu + Q. Where x = I;—O u is temperature.
. £ ML?
conservation of energy | — Le(x Hdv = f g-(-n)dA+ Lde Each term has units -
Fourier law ¢ = —koV u. Relates flux to temperature gradient.
. d d d
\% Divergence operator A vector operator. V = (5, E 5)

2.2.1 Problem 1 (1.5.2)

e

*1.5.2. For conduction of thermal energy, the heat flux vector is ¢ = —KoVu. If
in addition the molecules move at an average velocity V', a process called
convection, then briefly explain why ¢ = —KygVu + cpuV. Derive the
corresponding equation for heat flow, including both conduction and con-
vection of thermal energy (assuming constant thermal properties with no
sources).

Fourier law is used to relate the flux to the temperature u by ¢ = —koz;—z for 1D or qg = —koVu
in general.

In addition to conduction, there is convection present. This implies there is physical
material mass flowing out of the control volume carrying thermal energy with it in addition
to the process of conduction. Hence the flux is adjusted by this extra amount of thermal

energy motion. The amount of mass that flows out of the surface per unit time per unit

area is (z')p) = [%%] [T LZ] Where p = [ ] is the mass density of the material and o = [%]

is velocity vector of material flow at the surface.

Amount of thermal energy that (z‘)p) contains is given by (z‘;p) cu where c is the specific heat

and u is the temperature. Therefore (Z'Jp) cu is the additional flux due to convection part.
Total flux becomes

¢ = —koVu + Dpcu 1)
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Starting from first principles. Using conservation of thermal energy given by

de _

E = — ( . (P)
Where e is thermal energy density in the control volume. In this problem Q = 0 (no energy
source). The integral form of the above is

d -
— X, t)dV = -(-)dA
) cwnav=[g.cn

The dot product with the unit normal vector 7 was added to indicate the normal component
of cﬁ at the surface. Since e (X,t) = pcu and by using divergence theorem the above is written

as
d _ -
¥ fvpcudv - fvv (-@)av
Using (1) in the above and moving the time derivative inside the integral (which becomes
partial derivative) results in

du _ _ ~
j;/pcﬁdv = LV . (kOVu - vpcu) av
Moving all terms under one integral sign
Ju _ _
j;/ [pcﬁ -V (kOVu - z')pcu)]dV =0
Since this is zero for all control volumes, therefore the integrand is zero

pc(;—Ltl -V. (kOVu - z‘;pcu) =0

Assuming «k = k—o, the above simplifies to
pc

Ju=xV2u - - (ou) (2)

Applying to (2) the property of divergence of the product of scalar and a vector given by
V - (ou) :u(v -@)+@-(Vu)

Equation (2) becomes

%:szu—(u(v-@)+@-(Vu))

2.2.2 Problem 2 (1.5.3)

1.5.3. Consider the polar coordinates

Tz =rcosf
y =rsind.
. 2 _ .2 2 ar _ o o 80 _
(a) S:l;:e T —8.1:0 + v oshow that §- = cos#, 3 = sin @, 5 =
c and 98¢ — —siné
r oz r

(b) Show that # = cos 0% + sinfj and 8 = — sin 6% + cos 6.

(c) Using the chain rule, show that V = #2 + 615 and hence Vu =
Bua 1 Oué
3‘;1" + r88""

d) If A = Aﬁ,i= + Afé’ show that V-4 = é%(rAr) + %%(Ao), since
8+/06 = 0 and 00/060 = —+ follows from part (b).

2y

Q

(e) Show that V2u =12 (r3¥) + %

3
3
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x=rcos@ (1)
y=rsin0 (2)

2221 part (a)

since 2 = x? + y* then taking derivative w.r.t. x

2"~ 5
r— =
ox *
ar X
dx r
_ rcos 0
oy
= cos 6 (3)
And taking derivative w.r.t. y
AN
yr— =
dy Y
ar y
dy r
3 rsin 0
oy
=sin O (4)
Now taking derivative w.r.t. y of (2) gives
1 ar . o+ dsin 0
= —sin
dy S ’ dy
ar . dsin O 20
From (4) Ey =gsin 6 and 5 =cos6 (a_y) Therefore the above becomes
J
1=sin’0 + rcos@(—e)
dy
20 1= sin® @
dy  rcos6
_ cos?0
" rcos6
Hence
20 __cos0
dy - r

Similarly, taking derivative w.r.t. x of (1) gives

1 ar 0+ dcos 0
=—cosO+r
dx dx
ar dcos 6 . 20
From (3), — =cos6 and = —sin 6 (= ), Therefore the above becomes
dx dx dx

J20
1=cos?6 - rsin@(—)

dx
90 1-cos?0
dx  rsin®
3 sin® 6
~ rsin®
Hence
8_9 __sin®
ax r
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2222 Part (b)

By definition of unit vector
5 7 (IrlcosO)i+ (Ir|sin0)f

Irl Irl

= cos 01 + sin 0f

To find 0, two relations are used.||6|| = 1 by definite of unit vector. Also 6 - # = 0 since
these are orthogonal vectors (basis vectors). Assuming that 6 = c¢;7+ c,f, the two equations
generated are

16 =1=2+3 (1)
0-7=0= (cos 01 + sin Gj) : (c1i+ czj) =c;cos 0+ cysin 0 (2)

—cpsin @

From (2), ¢; = e

. Substituting this into (1) gives

. 2
—Cysin @ 5
1= +c

( cos 0 ) 2

3 sin? 6 »
= + CZ

~ cos?6
Solving for ¢, gives
cos? 0 = c3 (sin2 0 + cos? 9)
cp = cosO
Since ¢, is now known, ¢; is found from (2)
0=rcycos0 +cysin
0 =y cos O + (cos 0) sin O
_ —(cos6)sin6

1
cos 0

Hence ¢; = —sin 0. Therefore

0 = —sin 07 + cos 67

2.2.2.3 Part (c)
d . R
V = ZCZ + -] (1)

Since x = x(r,0),y =y (r, 0), then
Jd _ddr J IO
ox  drdx 96 dx
Jd _ddr J IO
dy ~dardy 209y
Equation (1) becomes

N

1+

A~

_(aar aae) ]

ardx | 96 dx
Using result found in (a), the above becomes

V—i 6+i_sin9 A+i_9+icoseA
B &rcos 00 r ! 8rsm 00 r J

9g9or, 099
drdy dOdy

. Jd dJd .
Collecting on -, - gives

— 8 7 ] 7
V= 5 (cos Of + sin 6]) +

d ( sin@ _ cos@)
- i+ i

20 r

= i (cos 01 + sin Gf) + li (— sin 01 + cos Qf)
ar rdo

Using result from (b), the above simplifies to

~ 0 Al
V=79=+0-
ar r

ia
90

10
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Hence

2.2.2.4 Part (d)

Hence

0
or

_ (?i | Ar?) . (ﬁ Ag0)+ (éli -Ar?) . (éli - Agé) )
or r r

But

A
or

= (2)

- (1) + A, (0)

And

Il
NS
¥

—~
=)
N
+
hS
&)
—~
=)
N
Il
(e}

(3)
And

. 7 A
Since (9—; = 0. Therefore

1
AT = -4, (4)

11
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And finally
~1 d ~ Al d A
0-=5 - Agf = 0-= (A60)
1. (dAg A PLe,
= ;9 —0 0+ AQ%)
19Ag ;1 ~ 1 ~ d0
10A 1 R
=-—g W+ -4 (0-(-7)
r
1 8A 1
—p D +-46(0)
1 8A9
_ %470 5
r 40 ()
Substituting (2,3,4,5) into (1) gives
V-A= o4, +O+1A +18A9
- or r r 00
B 1A L 94 dA, L1 1 8A9
T 9 90
Add since — (rAr) =A + r , the above can also be written as
V-A:l(Ar+ o4, )+18A6
r ar r 00
1 BAQ
2.2.2.5 Part (e)
From part (c), it was found that
V=p ? + él ?
B rc?r rdo
But
V2=V.V
d +él d N él d
r&r rdo r&r rdo
Using result of part (d), which says that V-A = -— ( A,)+ - ! '9;;9, the above becomes (where
A4 10
nowW 2, = 5,420 = 759
g2 12 (2), 10 (10
rar\ ar]  rao\rao
_1d( d N 1 92
“ror\or) T R oe2
Hence
V2y = li % l&_zu
Trar\ ar]  r20e?

2.2.3 Problem 3 (1.5.4)

1.5.4. Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the
special case of Exercise 1.5.3(e) if u(r) only.

12
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Let u = u(r). From problem 2 part (a) it was found that

x=rcosf
y=rsin0
ar
> =cos 0
ar )
8_y =gsinf
d60  cos 0O
Erii
Jd0  -sin0
ax
And
*u  d%u
V2 = = 7 1)
But
Pu _ d (du
92 = o (—)
_d (dudr
= (a—a—)
= % (% cos 9)
_ i&_u) o4 Judcost
dx d dr  dx
%u dr du( . 30
= W&Tc) cos 0 + P (— sin 8(9_x)
2%u u( . —sin@
= Wcos@)cos@+ W(—Slﬂ@( . ))
2
= % cos? 0 + % sin? 6% (2)
And
Pu 9 (du
a2y (&_y)
_d (dudr
"y (W@_y)
d (du
= 8_]/ (W sin 6)
d du)\ . du dsin @
= a—m)sl 7 oy
2
= i—;j—;) sin 0 + % (cos Qg—i)
2
= g—rg sin 9) sin 6 + % (cos@ (co:w 6))
2
= % sin 6 + % cos? Gg—jf (3)
Substituting (2),(3) into (1) gives
2 2
V2y = (% cos? 6 + }sin2 9%) + (% sin 6 + % cos? 6%)
_Pu 1[5 du 5 Ou
=52 + P (sm 65 + cos 68_r)
B *u 1du
o2 vor

13
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Which can be written as

2, =12 (,on
Viu = ror (T z?r)
2
Which is the special case of problem 2(e) V2u = %a% (1’%) + %2% when u = u (r) only.

2.2.4 Problem 4 (1.5.5)

1.5.5. Assume that the temperature is circularly symmetric: u = u(r,t), where
r? = 22 4+ y*. We will derive the heat equation for this problem. Consider
any circular annulus a < r < b.
(a) Show that the total heat energy is 27 f: cpur dr.

(b) Show that the low of heat energy per unit time out of the annulus at
r=bis ~2rbKoOu/Or |,=p. A similar result holds at r = a.

(c) Use parts (a) and (b) to derive the circularly symmetric heat equation

without sources:
ou_ko ( on
ot ror\ or)

2.2.4.1 Part(a)

Considering the thermal energy in a annulus as shown

Amount of thermal energy in Amount of thermal energy in
unit thickness volume is annulus is fozw ]:(cpu) rdrdf
rdrdf cup

Integrating gives total thermal energy

21 b 27 b
f f (cpu)rdrd@zf d@f (cpu)rdr
0 a 0 a
b
:27zf (cpu)rdr
a

2.2.4.2 Part (b)

Using Fourier law,

5 = —kOVu
Ju ,1du
= —kol?P— +6-—
0 (r ar 7 89)
Since symmetric in 0, then g—g = 0 and the above reduces to

- du
= kP —
¢ "o

14
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Hence the heat flow per unit time through surface at r = b is

f()2ﬂ$-(—ﬁ)ds

27T 311
—kot— |- (R) rdO
fo ( of 8r) () 7
But 71 = # since radial unit vector. The above becomes
2T Ju u
—kg— = - (2mky) r—
fo Oarrde ( no)r&r

At r = b the above becomes

du
- (277](0) b E L
Similarly at r = a

Ju
- (27'(](0) a Z

r=a

2.2.4.3 Part (c)

Applying that the rate of time change of total energy equal to flux through the boundaries
gives

d b du du
T (27‘(]; (cpu) rdr) = —(2mtkg) a > + (27tkgy) b >

r=b

r=a

Moving % inside the first integral, it become partial

b du b9 ( Jdu
2nj; cpﬁ) rdr=27'(koj; Z(rw)dr

Moving everything under one integral

Pl du d [ du
f (cpz)r—kog—r(rg)]dr:O

Hence, since this is valid for any annulus, then the integrand is zero

Ju ' d [ du —0
Por) T\ "or ) T

8u_k018(o"u)

t  cpror

k(o
ot ror\ or

Hence

k
Where « = 2.

cp

2.2.5 Problem 5 (1.5.6)

1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on 7.

The earlier problem is now repeated but in this problem c = c(r) kg = ko () and p = p (7).
These are the thermal properties in the problem.

15
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2.2.5.1 Part(a)

21 b 27 b
f L(c(r)p(r)u)rdrd@zj; d@fa (c(r)p(r)u)rdr

0
=27 fh (c (r)p(r) u) rdr
2.2.5.2 Part (b)

b= ko ()7 2

The heat flow per unit time through surface at r is therefore

fo znq? () ds = f o (—ko (r)f%) () rd®

0
But 71 = # since radial therefore

27 ou ou
fo ko (1) 216 = — @rtky (N 15

At r = b the above becomes

Similarly at r = a

2.2.5.3 Part (c)

Applying that the rate of time change of total energy equal to flux through the boundaries
gives

Ju

% (27’( fab (c ) p(r)u) rdr) =- (2n k0|r:a) a % _ + (2n k0|r:b) b >

b9 du
227'(]; Z(ko(r)rz)dr

Moving % inside the first integral, it become partial

27'(fb c(r)p(r)%)rdrzanb%(ko(r)r%)dr

Moving everything under one integral

br d d d
f (c(r)p(r)a—ttl)r— > (ko (r)rg—z)]dr =0

Since this is valid for any annulus then the integrand is zero

d d d
(c(r)p(r) &—?)r— 5 (ko (r)r&—:l) =0

Therefore, the heat equation when the thermal properties depends on r becomes

r=b

du(rt) _ 1 120 du(r,t)
o pe T or (ko Nr=; )

16
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2.2.6 Problem 6 (1.5.9)

1.5.9. Determine the equilibrium temperature distribution inside a circular annu-
lus (ry <7 < 7ry):
*(a) if the outer radius is at temperature T> and the inner at T

(b) if the outer radius is insulated and the inner radius is at temperature
T,

2.2.6.1 Part (a)

K&(&u

. . du du . . .
The heat equation is — = - r;). At steady state —— = 0. And since circular region,

symmetry in 0 is assumed and therefore temperature u depends only on r only. This means
u (rg) is the same at any angle O for that specific ry. This becomes a second order ODE

Ki(du)zo

rdr VE
E(d_u+f_”):0
r\dr  dr?

d>u  1du

PR

Since ; # 0. Assuming % = v(r), the above becomes

Integrating

Inv=-Inr+¢

v = e Inrta

du

- =0, then

Where ¢, = ¢°1. Since
du 1
ar = 2y
du = CZ}dT’
Integrating
u(r)=cylnr+cs
When r = r{,u = T;, and when r = r,,u = T,, therefore
Ty =cyInr; +c3
Ty =cyInr, +c3
From first equation, c; = T; — ¢, Inr;. Substituting in second equation gives
Ty =cylnry, + Ty —cplnryg
=c(nr,—-Inr)+T;

Therefore
T, -T,

Cp= —"— ~
2" Inr,—Inr
2 1

17
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T-Ty
Inry—Inry

Hence ¢; =Ty - Inry. Therefore the steady state solution becomes

u(r)=cylnr+cs

T, -T T, -T
L Sl W R S Tkl B
1Il1’2 — 1111’1 1111’2 — lnrl
_ Tl + (Tz—Tl)lnr— (TZ —Tl)hl?"l
Inr, —Inr
ST+ (T, = Ty)(Inr—1nry)
Inry—Inr

(7]
(7]

=Ty +(T,-Ty)

Hence

n(57)
()

u(r) =Ty + (T, - Tl)

2.2.6.2 Part (b)
Insulated condition implies i—u 0. So the above is repeated, but this new boundary
condition is now used at r,. Starting from the general solution found in part (a)
u(r) = czlnr+c3
When r=r,u=T; andwhenr—rz, » = =0.Bu t r.Hencer:rzgives‘;—2:00rc2:0.
2
Therefore the solution is
u(r)=c;

When r = r, u = T1, hence c3 = T;. The solution becomes
u(r)=T

The temperature is T; everywhere. This makes sense as this is steady state, and no heat
escapes to the outside.

2.2.7 Problem 7 (1.5.10)

1.5.10. Determine the equilibrium temperature distribution inside a circle (r < rg)
if the boundary is fixed at temperature Tj.

Last problem found the solution to the heat equation in polar coordinates with symmetry
in 0 to be

u(r)y=cyInr+c;
c, must be zero since at 7 = 0 the temperature must be finite. The solution becomes
u(r) = cs
Applying the boundary conditions at r = r
Ty =c3
Therefore,
u(r) =

The temperature everywhere is the the same as on the edge.

18



22. HW 1 CHAPTER 2. HWS

2.2.8 Problem 8 (1.5.11)

*1.5.11. Consider

subject to
du Ou
u(r,0) = f(r), E(a,t) = 3, and E(b’t) =1.

Using physical reasoning. for what value(s) of 3 does an equilibrium tem-
perature distribution exist?

For equilibrium the total rate of heat flow at r = a should be the same as at » = b. Circum-
ference at r = a is 2rta and total rate of flow at r = a is given by . Hence total heat flow
rate at r = a is given by

(o) du| )
Tia ar| = 2maf
Similarly, total heat flow rate at r = b is given by
d
@nb) 22| = 2mb
or|._
r=b
Therefore 2mtaf = 2ma or
_a
b= b

2.2.9 Problem 9 (1.5.12)

1.5.12. Assume that the temperature is spherically symmetric, 4 = u(r,t), where r
is the distance from a fixed point (r? = z2 + y? + 22). Consider the heat
flow (without sources) between any two concentric spheres of radii a and b.

(a) Show that the total heat energy is 4 [ : cpur? dr.

(b) Show that the flow of heat energy per unit time out of the spherical
shell at r = b is —47wb? Ko Ou/Or |r=p. A similar result holds at r = a.

(c) Use parts (a) and (b) to derive the spherically symmetric heat equation

Ou _k 0 ( 20u
o o\ or)

2.29.1 Part (a)

Total heat energy is, by definition
E= f cpudv (1)
14

Co 4
Volume v of sphere of radius ris v = 57173. Hence

19
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Equation (1) becomes, where now the r limits are from a to b

E= fb cpu (4nr2dr)

b
= 4n f cpur?dr
a
2.2.9.2 Part (b)
By definition, the flux at » = b is
Ju
=k —
Po = —ko = .

The above is per unit area. At r = b, the surface area of the sphere is 47b?. Therefore, the
total energy per unit time is ¢, (4nb2) or

d
—47'([72](0 &—u
r

r=b
Similarly for r = a.

2.2.9.3 Part(c)

By conservation of thermal energy

d du
—F = -41a%kn —
dt ko arl_,

d b b9 (,du
E(élnfa cpur dr) —4nk0fa Z(V E)dr

b du, b (,du
j;cpﬁrdr—koj; E’(r W)dr

Moving everything into one integral

b du d (., du
f [cp8—tr2 - k0c9_r (rzz)]dr =0

Since this is valid for any limits the integrand must be zero

d d (.0
cp—ur2 —koﬁ (r2 u) =0

It r
du ko1 d (,du
—_— = | rc—
at  cprédr\ dr
Therefore
du _ x d [ odu
TR (r E)
ko
Where x = —
cp

2.210 Problem 10 (1.5.13)

*1.5.13. Determine the steady-state temperature distribution between two concentric
spheres with radii 1 and 4, respectively, if the temperature of the outer
sphere is maintained at 80° and the inner sphere at 0° (see Exercise 1.5.12).

. s u _ xd | 5du
The heat equation is — = 5 — (r 87). For steady state

du . .
>; = 0 and assuming symmetry in
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0, the heat equation becomes an ODE in r
K d [ ,du 0
—_—|rr—\ =
r2dr\ dr

d zdu 0

—|rr—1 =

dr\ dr
Forr#0

d
Let d—l: =v(r), hence

do 20

dr  r

dov dr

R, Josd

v r
Integrating

Inv=-2Inr+c
U= e—21nr+c

— C1€_2 Inr

1
:Clr_Z

. du
Therefore, since - = v (r) then

Integrating

u(r):_TCl+cz

When r =1, u = 0 and when r = 4, u = 80, hence
0= —C1 +Cy

—C
80= — +0¢p

4
From first equation, ¢; = ¢, and from second equation 80 = —761 + ¢1, hence ch = 80 or
1= (4);—80) = %. Therefore, the general solution becomes
() = 3201 N 320
- 3r 3

or

u(r):%(l—%)
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23 HW 2

2.3.1 Summary table

For 1D bar
Left Right A=0 A>0 u (x,t)
nr 2
u©0)=0 | u)=0 No An = (T) m=123, Zoo_l B, sin (\//\_nx) ekAnt
X, =B, sin( /\nx) "=
2
u@©=0| 20 =9 No M= (5) m=135 0 g sin (V7,x) et
Jx X, =B, Sin( /\nx) =135,
2u(0) Ai=(52) n=1,35 | qe iy
— =0 |ul)=0 No 2L SN A, cos \/A_xe n
Jx X, = A, cos (\/)\_nx) =135 7 ( ! )
2u(l) Aog=0 | tan(VA,L)=-4, o o
u@)=0 | u(L)+ =0 Ay + B, sin (WA, x| e ™
(0) (L) + 5, Xo— Ao | Xy = By sin (V) 0+ Ty Busin (VA,)
Ao =0 — (Y = -
@ -0 @ -0 0 A= (T) =123 A+ 3, A, cos (VAx) ekt
x ¥ Xo=4Ag | X,=A,cos (\//\_nx) ~
Ju(-L) _ Ju(L)

For periodic conditions u (-L) = u (L) and - 5

2
nrt
h= () =123,

A>0

u(x,t) = Aa”%O + i A, cos (\/A_nx) ekt i B, sin (\/A_nx) ekAnt
n=1 n=1

Note on notation When using separation of variables T (t) is used for the time function
and X (x),R(r),® (0) etc. for the spatial functions. This notation is more common in other
books and easier to work with as the dependent variable T,X,--- and the independent
variable t,x, --- are easier to match (one is upper case and is one lower case) and this
produces less symbols to remember and less chance of mixing wrong letters.
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2.3.2 section 2.3.1 (problem 1)

2.3.1. For the following partial differential equations, what ordinary differential
equations are implied by the method of separation of variables?

u kO [ Bu Ou 0%u Ou
*®) B =T (’"ar) ®) 5 = o " "5
&u  0%u du k8 [ ,0u
) gtz =0 @ % =75 (’ ar)
Ou &u ou _ ,0%
*©) 3 = ko *@ BE =

2.3.21 part (a)

1du 1&(8u)

Kot~ rar\ar @
Let
u(t,r)=T () R(r)
Then
u ,
57 =T (t)R(r)
And
() _du P
ar r&r Car 70')72

=TR' (r)+rTR" (r)

Hence (1) becomes
%T’ (HR () = } (TR’ (r) + rTR” (7))

Note From now on T’ () is written as just 7’ and similarly for R’ (r) = R’ and R” (r) = R"” to
simplify notations and make it easier and more clear to read. The above is reduced to

1 1
-T'R=-TR"+TR”
k r
Dividing throughout EI by T (t) R (r) gives
1T 1R R”
_—— = —— 4 —
kT rR R
Since each side in the above depends on a different independent variable and both are
equal to each others, then each side is equal to the same constant, say —A. Therefore
1T 1R R”
- = —— 4 — =
kT rR R
The following differential equations are obtained
T"+AkT =0
rR” +R"+rAR =0

-A

In expanded form, the above is

dT
— + AKT(t) =
dt+/\ ®H=0

d’R  dR
r— +—+1AR(r) =0
dr?2  dt ™
LT (#) R (r) can not be zero, as this would imply that either T (f) = 0 or R(r) = 0 or both are zero, in which
case there is only the trivial solution.
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2.3.2.2 Part (b)

1du d°u wvydu

Kot o2k ox @)
Let
u(x,t)=TX
Then
&—u =T'X
Jt
And
u ,
P =X'T
TU_ xop
dx?

Substituting these in (1) gives
Lrx = xrr - Lxr
k k
Dividing throughout by TX # 0 gives
1T X" X
kT~ X kX
Since each side in the above depends on a different independent variable and both are
equal to each others, then each side is equal to the same constant, say —A. Therefore

1T X" v X

KT- X *kx "
The following differential equations are obtained
T"+AkT =0

X”—%X’+/\X:0
The above in expanded form is

daT
— +AKT(t) =0

it
dZX UOdX+AX()—O
i2  k dx A=

2.3.2.3 Part (d)

(1)

kot  rrar\ ar
Let
u(t,r)=TR
Then
u _ TR
ot
And

Jd z&u 5 8u+ 28214
o\ ar) T T o
= 2rTR’ + r*TR”

Substituting these in (1) gives
=1 (2rTR’ + TR")
Pl !
2
=-TR"+TR"”
r

Dividing throughout by TR # 0 gives
1T 2R" R”
- = ——— 4 —
kT rR R
24
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Since each side in the above depends on a different independent variable and both are
equal to each others, then each side is equal to the same constant, say —A. Therefore

1T 2R R’ _

- == -A
kT rR * R
The following differential equations are obtained
T+ AkT =0

rR” + 2R’ + ArR =0

The above in expanded form is

T
— 4 AKT(®) =0

dt
d2R+2dR+/1 R(r)=0
7’drz dr IR =

2.3.3 section 2.3.2 (problem 2)

2.3.2. Consider the differential equation

d%¢
P + ¢ =0.

Determine the eigenvalues A (and corresponding eigenfunctions) if ¢ satisfies
the following boundary conditions. Analyze three cases (A > 0,A =0,A <
0). You may assume that the eigenvalues are real.

(a) #(0) =0 and ¢(7) =0
*(b) ¢(0) =0 and ¢(1) =0
d¢ de

d, .«
Zw=o

() Z2(0) = 0 and p(L) =0
*(f) #(a) =0 and ¢(b) = 0 (You may assume that A > 0.)

*(d) $(0) =0 and

(g) ¢(0) =0 and %(L) + ¢(L) = 0 (If necessary, see Sec. 5.8.)

2.3.3.1 Part (d)

d>¢ 3
ﬁ'FAd)—O
$(0)=0
o .\ _
Zw=0

Substituting an assumed solution of the form ¢ = Ae’* in the above ODE and simplifying
gives the characteristic equation

P+A=0
r?=-A
N ary
Assuming A is real. The following cases are considered.

case A <0 In this case, —A and also V-A, are positive. Hence both roots +v-A are real
and positive. Let

V-A =5
Where s > 0. Therefore the solution is

¢ (x) = Ae*™ + Be™*

d
ot = Ase’™ — Bse™*
dx
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Applying the first boundary conditions (B.C.) gives

0=¢(0)
=A+B

Applying the second B.C. gives
d¢
0= T (L)

= As—Bs

=s(A-B)

=A-B
The last step above was after dividing by s since s # 0. Therefore, the following two
equations are solved for A, B

0=A+8B
0=A-B

The second equation implies A = B and the first gives 2A = 0 or A = 0. Hence B = 0.
Therefore the only solution is the trivial solution ¢ (x) = 0. A <0 is not an eigenvalue.

case A =0 In this case the ODE becomes

d>
S
dx?
The solution is
¢(x)=Ax+B
d¢
T_A
dx
Applying the first B.C. gives
0=¢(0)
=B
Applying the second B.C. gives
¢
=— (L
0=—"(@)
=A

Hence A, B are both zero in this case as well and the only solution is the trivial one ¢ (x) = 0.
A =0 is not an eigenvalue.

case A > 0 In this case, —A is negative, therefore the roots are both complex.

r=+ivA

Hence the solution is
P (x) = AeiVAx 4 Bemivix
Which can be writing in terms of cos, sin using Euler identity as

¢ (x) = Acos (\/Xx) + Bsin (\/Xx)

Applying first B.C. gives

0=¢(0)
= Acos(0) + Bsin (0)
0=A

The solution now is ¢ (x) = Bsin (\/Xx) . Hence

Z—f = \/XB cos (\/Xx)
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Applying the second B.C. gives
0=2w)

= VABcos (\/ZL)

= VAB cos (\/XL)
Since A # 0 then either B = 0 or cos (\/XL) = 0. But B = 0 gives trivial solution, therefore

Cos (\/XL) =
This implies

VAL = ”7” n=1,35,

In other words, for all positive odd integers. n < 0 can not be used since A is assumed

positive.

A= (i)2 n=1,3,5-

The eigenfunctions associated with these eigenvalues are

¢, (x) =B, sm( I

-1
oL ) n=135,

2.3.3.2 Part (f)

2
ixqzb +A¢p =0
¢ (a) =
¢ () =
It is easier to solve this if one boundary condition was at x = 0. (So that one constant
drops out). Let 7 = x —a and the ODE becomes (where now the independent variable is 7)

chZ) (T)

+Ap (1) =0 (1)
With the new boundary conditions qb(O) =0and ¢ (b—a) = 0. Assuming the solution is
¢ = Ae’", the characteristic equation is
P?+A=0
r?=-A

r=+V-1

Assuming A is real and also assuming A > 0 (per the problem statement) then —A is negative,
and both roots are complex.

r=+ivA
This gives the solution
¢ (1) = Acos (\/XT) + Bsin (\/}[)
Applying first B.C.

0=¢(0)
= Acos0+ Bsin0
=A

Therefore the solution is ¢ (7) = Bsin (\/XT) Applying the second B.C.
0=¢(b-a)
= Bsin (VA (b-0))

27



2.3. HW 2 CHAPTER 2. HWS

B =0 leads to trivial solution. Choosing sin (\/Z (b- a)) =0 gives

VA, (b-a) = nn
\/A—:n_n n=1273...
" (b-a) "

A, = (g)2 n=1,2,3-

The eigenfunctions associated with these eigenvalue are

¢, (1) = B, sin (\//\—n’[)

B si nm
= B, sin
-
Transforming back to x
¢ (x) = B, sin ( (bnjza) (x - a))
2.3.3.3 Part (g)
d?
ﬁ + AQZ) =0
$(0)=0
d¢
— (L L)=0
L W+oW)
Assuming solution is ¢ = Ae™, the characteristic equation is
”+A1=0
r?=-A

r=+V-A
The following cases are considered.

case A <0 In this case —A and also V-A are positive. Hence the roots +v-A are both real.
Let

V-A =5
Where s > 0. This gives the solution
¢ (x) = Ape™ + Boe™

£ cosh (sx) = & +2e— to the following

Which can be manipulated using sinh (sx) =
¢ (x) = A cosh (sx) + B sinh (sx)
Where A, B above are new constants. Applying the left boundary condition gives

0=¢(0)
=A
The solution becomes ¢ (x) = Bsinh(sx) and hence Z—q; = scosh (sx). Applying the right
boundary conditions gives
do
0=¢@)+— (L)

= Bsinh (sL) + Bs cosh (sL)
= B (sinh (sL) + s cosh (sL))
But B = 0 leads to trivial solution, therefore the other option is that
sinh (sL) + scosh (sL) = 0
But the above is
tanh (sL) = —s

Since it was assumed that s > 0 then the RHS in the above is a negative quantity. However
the tanh function is positive for positive argument and negative for negative argument.
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The above implies then that sL < 0. Which is invalid since it was assumed s > 0 and L
is the length of the bar. Hence B = 0 is the only choice, and this leads to trivial solution.
A <0 is not an eigenvalue.

case A =0
In this case, the ODE becomes
2
-0
The solution is
P(x)=cix+cp
Applying left B.C. gives
0=¢(0)
=0,
The solution becomes ¢ (x) = c;x. Applying the right B.C. gives

_ ¢
0=pW)+=2 (L)

= ClL +C
=0 (1 + L)
Since ¢; = 0 leads to trivial solution, then 1 + L = 0 is the only other choice. But this

invalid since L > 0 (length of the bar). Hence ¢; = 0 and this leads to trivial solution.
A =0 is not an eigenvalue.

case A >0

This implies that —A is negative, and therefore the roots are both complex.

r=+ivA
This gives the solution
¢ (x) = AeiVAx 4 Bemivix
= Acos (\/Xx) + Bsin (\/Xx)
Applying first B.C. gives
¢ (0) =0 = Acos(0) + Bsin (0)
0=A

The solution becomes ¢ (x) = Bsin (ﬁx) and
d
£ = VAB cos (\/Xx)

Applying the second B.C.

_ 49
0=2W+o M)

— VB cos (\/XL) + Bsin (\/ZL) (1)

Dividing (1) by cos (\/XL) , which can not be zero, because if cos (\/ZL) =0, then Bsin (\/XL) =
0 from above, and this means the trivial solution, results in

B (\/X + tan (\/KL)) =0
But B # 0, else the solution is trivial. Therefore

tan (\/ZL) = —\/X

The eigenvalue A is given by the solution to the above nonlinear equation. The text book, in
section 5.4, page 196 gives the following approximate (asymptotic) solution which becomes
accurate only for large  and not used here

3 (-3)
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Therefore the eigenfunction is
¢, (x) = Bsin (\/Xx)

Where A is the solution to tan (\/XL) = —\/X.

2.3.4 section 2.3.3 (problem 3)

2.3.3. Consider the heat equation

bu _ O
ot  0x?’
subject to the boundary conditions
u(0,t)=0 and u(L,t)=0.

Solve the initial value problem if the temperature is initially

(a) u(z,0) = 6sin 272 (b) u(z,0) = 3sin ZX —sin drz

L
*x(c) u(z,0) =2cos 3= (d) u(x’0)={; (I)J/<2:c<§5:lé/i

2.3.41 Part (b)

du *u
ETRT3
Let u (x,t) = T (t) X (x), and the PDE becomes
1
%T’X =X"T
Dividing by XT # 0
17 X"
kT~ X

Since each side depends on different independent variable and both are equal, they must
be both equal to same constant, say —A where A is assumed to be real.

1 T/ 3 X// 3 A
kKT X
The two ODE’s are
T +kAT =0 1)
X" +AX = 0 (2)

Starting with the space ODE equation (2), with corresponding boundary conditions X (0) =
0, X (L) = 0. Assuming the solution is X (x) = ¢, Then the characteristic equation is

P+A=0
r?=-A
r=+V-A7A

The following cases are considered.

case A <0 In this case, —A and also V-7 are positive. Hence the roots +v—-A are both real.
Let

V-1=5s

Where s > 0. This gives the solution
X (x) = A cosh (sx) + B sinh (sx)
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Applying the left B.C. X (0) = 0 gives
0 = Acosh (0) + Bsinh (0)
=A
The solution becomes X (x) = Bsinh (sx). Applying the right B.C. u (L, t) = 0 gives
0 = Bsinh(sL)
We want B # 0 (else trivial solution). This means sinh (sL) must be zero. But sinh (sL) is
zero only when its argument is zero. This means either L = 0 which is not possible or A = 0,

but we assumed A # 0 in this case, therefore we run out of options to satisfy this case.
Hence A < 0 is not an eigenvalue.

case A =0

The ODE becomes
a2x

a2 =0

The solution is
Xx)=cx+c
Applying left boundary conditions X (0) = 0 gives
0=X(0)
=,
Hence the solution becomes X (x) = ¢c;x. Applying the right B.C. gives
0=X(L)
=L

Hence c¢; = 0. Hence trivial solution. A = 0 is not an eigenvalue.

case A >0
Hence —A is negative, and the roots are both complex.
r=xiVA
The solution is
X (x) = Acos (\/Xx) + Bsin (\/Xx)
The boundary conditions are now applied. The first B.C. X (0) = 0 gives

0 = Acos(0) + Bsin (0)
=A

The ODE becomes X (x) = Bsin (\/Xx) Applying the second B.C. gives

0 =Bsin (\/XL)
B # 0 else the solution is trivial. Therefore taking
sin (\/XL) =0
VA,L=nn  n=1,23,--
Hence eigenvalues are

nm?

Lz
The eigenfunctions associated with these eigenvalues are

Ay = n=123
X, (x) = B, sin (nfnx)
The time domain ODE is now solved. T’ + kA,,T = 0 has the solution
T, (t) = e~ Mt

For the same set of eigenvalues. Notice that there is no need to add a new constant in the
above as it will be absorbed in the B, when combined in the following step below. The
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solution to the PDE becomes
Uy (x, 1) = Ty (£) X5, (x)
But for linear system the sum of eigenfunctions is also a solution, therefore
u(x,t) = D, (x,1)
n=1

[e) 2
= E B, sin (n_nx) e_k(T) !
n=1 L

Initial conditions are now applied. Setting t = 0, the above becomes

[o¢]

3
u(x,0) = 381n%x—sin%x _nz:l nsm(nfnx)

As the series is unique, the terms coefficients must match for those shown only, and all
other B, terms vanish. This means that by comparing terms

. (Tx . [3mx . (Tix . (3m
3sm(—)—sm —— | =B;sin (—) + Bysin| —x
L L L L

Therefore

And all other B, = 0. The solution is

Tt R 3n —k(s—n)zt
u(x, t) = 3sin(zx) It _gin (Tx)e L

2.3.42 Part (d)

Part (b) found the solution to be
u(x,t) = i B, sin (%x) e_k(%)zt
The new initial conditions are now a;;iied
Fx) = Z B, sin (—x) 1)
Where

)1 O0<x<Lf2
f(x)_{z IR<x<lL

Multiplying both sides of (1) by sin (%x) and integrating over the domain gives

j;Lsin(%x)f(x)dx:f [ZB sm(anx)sm(n: )]dx

Interchanging the order of integration and summation

L 0 L
f sin (@x)f(x) dx = Z [Bn (f sin (@x) sin (Ex) dx)]
0 L n=1 0 L L
But £ sin —x) sin (%x) = 0 for n # m, hence only one term survives

j(;Lsm(—x)f(x)dx—B fsm( x)dx
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L
Renaming m back to n and since L sin? (@x) dx = % the above becomes

L
L nm L
fo sm(fx) f @dx = 3B,

2

,_,I —_—
@)
@}
0

Ii) + cos (0)

+2 [— cos (nm) + cos (n_n)])

E

|
+ ~——

n nmn
—cos( +1—-2cos(nm) +2cos (?))

— e~ — —

SInF[e 5[e 5w

=
|
~——

cos (7 1-2cos (nn))

Hence the solution is
2

— (NPT k()
’t - Bn (_ ) '
u(x,t) nz::l sin T x|e
With
2

B,=— (cos (E) —2cos(nm) + 1)
nm 2

= % (1 —2(-1)" + cos (%))

2.3.5 section 2.3.4 (problem 4)

2.3.4. Consider
ou_, 0%
at = ox?’

subject to u(0,t) = 0,u(L,t) =0, and u(z,0) = f(z).

*(a) What is the total heat energy in the rod as a function of time?
(b) What is the flow of heat energy out of the rod at z =07 at £ = L?
*(c) What relationship should exist between parts (a) and (b)?

2.3.5.1 Part (a)
By definition the total heat energy is
E= f pcu (x,t) dv
1%

Assuming constant cross section area A, the above becomes (assuming all thermal proper-
ties are constant)

L
E= f peu (x, t) Adx
0

But u (x, ) was found to be

nr

(o] n _ _2
u(x,t) = ansin(Tnx)e KT
n=1
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For these boundary conditions from problem 2.3.3. Where B, was found from initial
conditions. Substituting the solution found into the energy equation gives

L& nrt k(" Zt
E= cAf anin(—x)e (T) )dx
- _k(ﬂ)zt L nn
= pcAnE1 (Bne L f sin (Tx) dx)

0
nr L
0 nm\2, | —COS | —Xx
_ pea 35, 4) [J]
n=1 5B 0
. k("™ L
= pcA 2 B,e M)t 2 (— cos (”TTCL) + cos (0))

=1 nrt

g, o L
= pcA Z B,e \L — (1 - cos (nn))

n=1
_ LpcA G & ~ —k(%)zt
=== Z}l[n (1 - cos (nm))e ]

2.3.5.2 Part (b)

By definition, the flux is the amount of heat flow per unit time per unit area. Assuming
the area is A, then heat flow at x = 0 into the rod per unit time (call it H (x)) is

Hlx:O = A ¢|x:0

Similarly, heat flow at x = L out of the rod per unit time is
Hlo =Ad|,

=-Ak —
dx

x=L

To obtain heat flow at x = 0 leaving the rod, the sign is changed and it becomes Ak %

x=0
l’lﬂz

Since u (x,t) = X" | B, sin (%x) e T)'* then

U . Nm nT o\ ("2
£=ZBHTCOS(TX)€ (T)t

Then at x = 0 then heat flow leaving of the rod becomes

du — N7t _k(ﬂ)z,;
= Ak Y =B, T
T

n=1

Ak —
ox 120

And at x = L, the heat flow out of the bar
du

_Ak ==
ox

X NT AT\ (77
) :—AkZBnTcos(TL)eK(L)t
x=L n=1

- . NT nm 2
A ()
;1;1 "I cos (nm)e

0 nm\2
= Ak Y, ()" Bn%e‘“(ﬂ f
n=1
2.3.5.3 Part (c)

Total E inside the bar at time f is given by initial energy E;_; and time integral of flow of
heat energy into the bar. Since from part (a)

A O By k(Y
E=1P2 E Zn (T L1 = cos (nm))
t n=1
Then initial energy is
pcA & B,
Eio=L— ), —(1-
0= L6 320 - cos i)
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And total heat flow into the rod (per unit time) is (—A az + Ak Z—Z ), therefore
x=0 x=L
A X B, iy t d d
L&Z—”e"h)fa—cos(m))_f( A2 a2 )dx
TC n=1 n &x x=0 &x x=L

—Akf (Qu(L) 8u(0))dx

But
Ju(l) Ju(0) L 0 k(m)zt
- == B, (-1 L)' —— B L
&x ax L ngln n( ) e nglﬂ n€
ad nm\2 had nm\2
=z (2 nB, (1) e TV 3 g, HT) f)
L n=1 n=1
Hence
LpcA X B k(1) Ak S 2, @ 2
pr Zz’lexp KT) "1 = cos (nm)) = Tﬂ 0 (Zan(_l)ne KTt _ E”Bne k(“F) t)dx
n=1 =1 =1

2.3.6 section 2.3.5 (problem 5)

2.3.5. Evaluate (be careful if n = m)

L

. AT . MAT

/ sin — sin dz forn>0,m>0.
0 L L

Use the trigonometric identity

sinasinb = % [cos(a — b) — cos(a + b)].

L
I= f sin(@)sm(@)dx
0 L L

Considering first the case m = n. The integral becomes

L L
I= f sin? (@)dx =—
0 L 2

1
sinasinb = > (cos(a —b) — cos (a + b))

For the case where n # m, using

The integral | becomesﬂ

J‘ (nnx MRX) (nnx+_mnx)d
2 COSs I COSs I I X

f nx(n m) nix (n + m)
—cos| —— |dx
2 L
L L
. mix(n—m) . nix(n+m)
) fem (2 ) | (s (2)

2 mt(n—m) 2 nt(n+m)

L 0 k 0

L L
L . [mx(n—m) L  [rmx(n+m)
= ———sin - sin 1)
2n(n—m)( ( L ))0 27'((n+m)( ( L ))0
But
(mxm-m)\\" .
(sm (f)) = sin (1t (n —m)) — sin (0)
0

Note that the term (1 — m) showing in the denominator is not a problem now, since this is the case where
n+m.
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mix(n—m)

L
And since n —m is integer, then sin (7 (n — m)) = 0, therefore (Sin( )) = (. Similarly
0

L
(sin (M)) = sin (1 (n + m)) — sin (0)
0

L
Since n + m is integer then sin (7 (n + m)) = 0 and (sin (HX(Tm))) = 0. Therefore
0

L mmx\ . (mnx L n=m
f sin (—) sm(—)dx =4 2
0 L L 0  otherwise

2.3.7 section 2.3.7 (problem 6)

2.3.7. Consider the following boundary value problem (if necessary, see Sec. 2.4.1):

ou 0%y

.y Ou o Ou _ _
a = k@ with a(o, t) =0, E(L, t) = 0, and u(x,O) = f(:c)

(a) Give a one-sentence physical interpretation of this problem.

(b) Solve by the method of separation of variables. First show that there
are no separated solutions which exponentially grow in time. [Hint:
The answer is

nnxT

(o o]
u(z,t) = Ao+ »_ Ane *** cos 7

n=1

What is A\,?

2.3.71 part (a)

This PDE describes how temperature u changes in a rod of length L as a function of
time f and location x. The left and right end are insulated, so no heat escapes from these
boundaries. Initially at ¢ = 0, the temperature distribution in the rod is described by the
function f (x).

2.3.7.2 Part (b)

du _ J*u
ot ox?
Let u(x,t) = T(t) X (x), then the PDE becomes
1
[TX=X'T
Dividing by XT # 0
17 X"
kT~ X

Since each side depends on different independent variable and both are equal, they must
be both equal to same constant, say —A. Where A is assumed real.

1T/_X/I_

kT x
The two ODE’s generated are
T' +kAT =0 (1)
X" +AX =0 ()
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Starting with the space ODE equation (2), with corresponding boundary conditions Z—)x( 0) =
0, c;_); (L) = 0. Assuming the solution is X (x) = ¢™*, Then the characteristic equation is
P+A=0
r?=-A
N
The following cases are considered.

case A <0 In this case, -1 and also V-A are positive. Hence the roots +V-A are both real.
Let

V-A=s
Where s > 0. This gives the solution
X (x) = A cosh (sx) + Bsinh (sx)
aX
T Asinh (sx) + B cosh (sx)
Applying the left B.C. gives
ax
0= I (0)
= Bcosh (0)
=B
The solution becomes X (x) = A cosh (sx) and hencei—f = Asinh (sx). Applying the right B.C.
gives
aX
0=— (L
- (D)
= Asinh (sL)

A = 0 result in trivial solution. Therefore assuming sinh(sL) = 0 implies sL = 0 which
is not valid since s > 0 and L # 0. Hence only trivial solution results from this case.
A <0 is not an eigenvalue.

case A =0
The ODE becomes
da2xX —0
dx2
The solution is

X(x)=cix+c

ax
O
Applying left boundary conditions gives
dX
0=—
)
= C1

Hence the solution becomes X (x) = c,. Therefore Z—f = 0. Applying the right B.C. provides
no information.
Therefore this case leads to the solution X (x) = ¢,. Associated with this one eigenvalue,

. . dT, . .
the time equation becomes d—to =0 hence T, is constant, say a. Hence the solution uq (x, t)
associated with this A =0 is

Up (x, t) = XOTO
=0
= AO

where constant c,a was renamed to Ay to indicate it is associated with A = 0. A = 0 is an eigenvalue.

case A >0
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Hence —-A is negative, and the roots are both complex.

r:—_ki\/X

The solution is

X (x) = Acos (\/Xx) + Bsin (\/Kx)
d—X = - AV sin (\/Xx) + BV cos (\/Xx)

dx
Applying the left B.C. gives
X
0= T (0)
= BV cos 0)
=BVA

Therefore B =0as A > 0. The solution becomes X (x) = A cos (\/Xx) and Z—f = —A\/X sin (\/Xx)
Applying the right B.C. gives

dX
=— (L
= —AVAsin (\/XL)
A =0 gives a trivial solution. Selecting sin (\/XL) =0 gives

VAL=nn n=1,23,
Or

Therefore the space solution is
n
Xn(x):Ancos(Tnx) n=1,2,3,---

The time solution is found by solving

dT
— kAT, =0

This has the solution
T,(t) = ekt

VlTIz
:e‘k(T)t n=1,2,3,

For the same set of eigenvalues. Notice that no need to add a constant here, since it
will be absorbed in the A, when combined in the following step below. Since for A = 0

nm\2
the time solution was found to be constant, and for A > 0 the time solution is e_k(T) !

then no time solution will grow with time. Time solutions always decay with time as the

2
exponent —k (nfn) t is negative quantity. The solution to the PDE for A > 0 is
u, (x,t) =T, () X, (x) n=0,1,23,--

But for linear system sum of eigenfunctions is also a solution. Hence

u(x,t) =uy_o(xt)+ i u, (x,t)

n=1

o~ nm _k(ﬂ)zt
=Ag+ ), A (— ) L
0 nz::l 5 COS T x|e

2.3.7.3 Partc

From the solution found above, setting t = 0 gives

u(x,0)=Ag+ Z A, cos (%x)

n=1
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Therefore, f (x) must satisfy the above

fx)=Ap+ ZAn coS (nTnx)

2374 Partd

Multiplying both sides with cos (%x) where in this problem m =0,1,2, --- (since there was
an eigenvalue associated with A = 0), and integrating over the domain gives

L L (o)
f f (x) cos (@x) dx = f coS (@x) (AO + E A, cos (Ex)) dx
0 L 0 L o L
L mmn M\ nm
= fo Ap cos (Tx) dx + fcos (Tx) 1;1 A, cos (Tx) dx
L L &
= j;) Ag cos (%x) dx + j(; ,1221 A, cos (%x) cos (nfnx) dx
Interchanging the order of summation and integration

L mr L mr = L mr nm
j(; f (x) cos (Tx) dx = j(; Ag cos (Tx) dx + nz::l A, j(; coS (Tx) coS (Tx) dx (1)
case m =0

When m = 0 then cos (%x) =1 and the above simplifies to
L L oo L -
f F(x)dx = f A+ ) Anf COS(—x) dx
0 0 oy 0 L
But I;L cos (%x) dx = 0 and the above becomes

fOLf(x)dx:fOLAodx
= AL

Therefore

Ay = %ﬁf(x)dx

case m >0

From (1), one term survives in the integration when only n = m, hence

L L L
f f (x)cos (@x) dx = Ay f cos (@x) dx + A, f cos? (@x) dx
0 L 0 L 0 L

But l;L cos (%x) dx = 0 and the above becomes

L L
fo f (x) cos (%x) dx = Amz
Therefore

A, = %£Lf(x) cos ("Tnx) dx

Forn=1,2,3,---

2.3.7.5 Part (e)

The solution was found to be

- nm _k(ﬂ)zt
u(x,t)=Ag+ Y A Cos(—x)e L
()= Ag + 3 Aycos( 7

nrt

2
In the limit as t — oo the term e_k(T) * 0. What is left is Ay. But Ay = %£Lf(x) dx from
above. This quantity is the average of the initial temperature.
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2.3.8 section 2.3.8 (problem 7)

3R v

*2.3.8. Consider 5 o
u u

T

This corresponds to a one-dimensional rod either with heat loss through the

lateral sides with outside temperature 0° (a > 0, see Exercise 1.2.4) or with

insulated lateral sides with a heat sink proportional to the temperature.

Suppose that the boundary conditions are
u(0,t) =0 and u(L,t)=0.
(a) What are the possible equilibrium temperature distributions if a > 0?

(b) Solve the time-dependent problem [u(z,0) = f(z)] if @ > 0. Analyze
the temperature for large time (¢ — 0o) and compare to part (a).

au.

2.38.1 part (a)

Equilibrium is at steady state, which implies % = 0 and the PDE becomes an ODE, since
u = u(x) at steady state. Hence

Pu «a 0
=
dx2  k

The characteristic equation is P = % orr= i\/%. Since « > 0 and k > 0 then the roots are

u= Aoe‘/%x + Boe_‘/%x

u (x) = Acosh (\/%x) + Bsinh (\/%x)

0=u(0)
= A cosh (0)
=A

real, and the solution is

This can be rewritten as

Applying left B.C. gives

The solution becomes u (x) = Bsinh (\/%x) Applying the right boundary condition gives

0=u(L)

v )

B = 0 leads to trivial solution. Setting sinh (\/%L) = 0 implies \/%L = 0. But this is not

possible since L # 0. Hence the only solution possible is

u(x)=0
2.3.8.2 Part (b)
du kc92u _
ot dx2 au
u N B k&zu
ot T TG

Assuming u (x,t) = X (x) T () and substituting in the above gives
XT  +aXT =kTX"”

Dividing by kXT # 0

L

kT

+ XN
kX
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Since each side depends on different independent variable and both are equal, they must
be both equal to same constant, say —A. Where A is assumed real.

1T « X"
iTTrTx A
The two ODE’s are
1T «
kT TR
X//_
x =

Or
T"+(a+Ak)T=0
X"+ AX =0

The solution to the space ODE is the familiar (where A > 0 is only possible case, As found
in problem 2.3.3, part d. Since it has the same B.C.)

. (nT
Xn:anm(Tx) n=12,3,---

2
Where A, = (%n) . The time ODE is now solved.

T
dt” +(@+A,0T, =0

This has the solution
Tn (t) — e—(oz+)tnk)t
nm\2
= e_ate_(f) kt

For the same eigenvalues. Notice that no need to add a constant here, since it will be
absorbed in the B, when combined in the following step below. Therefore the solution to
the PDE is

Uy (x/ t) = Tn (t) Xn (X)

But for linear system sum of eigenfunctions is also a solution. Hence

u(x,t)= i u, (x,t)

n=1

s nm\2
= Z B, sin (Ex) et (TR
n=1 L

nm\2

- nm
— et B qin (2L ~(%F) ket
e nz::l nsm( T x)e
Where ¢ was moved outside since it does not depend on 7. From initial condition
- nm
u(x,0)=f(x = B sin(—x)
(0,0 = f() = 2 Bysin (7
Applying orthogonality of sin as before to find B, results in
2 b nm
B, = Zj(; sin (Tx)f(x) dx

Hence the solution becomes

2 (&t 2
u(x,t) = —e (Z [f sin (Ex)f(x) dx] sin (Ex)e (T) kt)

L n=1 0 L L
Hence it is clear that in the limit as t becomes large u (x,t) — 0 since the sum is multiplied

by e and a > 0
tlim u(lx,t)=0

This agrees with part (a)
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2.3.9 section 2.3.10 (problem 8)

2.3.10. For two- and three-dimensional vectors, the fundamental property of dot
products, A - B = |A||B| cos#, implies that

|A - B| < |A||Bj. (2.3.44)
In this exercise we generalize this to n-dimensional vectors and functions,
in which case (2.3.44) is known as Schwarz’s inequality. [The names of
Cauchy and Buniakovsky are also associated with (2.3.44).]
(a) Show that |A —yB|? > 0 implies (2.3.44), where y = A- B/B - B.
(b) Express the inequality using both
o0
bn
3 anea’t.
Cn

n=1

oC
A-B=) asb,=
n=1

*(c) Generalize (2.3.44) to functions. [Hint: Let A - B mean the integral
f A(z)B(z) dz.]

Since |A - yB|2 > 0 then

Expanding
(A-A)—y(A-B)—y(B-A)+y2(B-B)20
But A-B=B- A, hence
(A A)=2y(A-B)+12(B-B) >0

Using the definition of y = % into the above gives

(A-A)—zg(A-BM ((2:3: (B-B)=0
PR IR AL
(A-B)

(A-A)(B-B)-(A-B)' 20
(A-A)(B-B)=(4-B)
But (A : B)z =|A- B|2 since A - B is just a number. The above becomes

(A-A)(B-B)>|A-B]

And A-A = |/1|2 and (B : B) = |B|2 by definition as well. Therefore the above becomes

Taking square root gives

Which is Schwarz’s inequality.

2391 Partb

From the norm definition

Then
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Hence
A" = Y, a2
n=1
B = Y
n=1
And

(4 B)j <|4f' B
[Zon) () (5)

2.3.9.2 Partc

Using A - B for functions to mean £L A (x) B (x) dx then inequality for functions becomes

L 2 L L
A(x)B(x)d < A% (x)d B2(x)d
([, awmern] <([ 0 [ e

2.3.10 section 2.4.1 (problem 9)

*2.4.1. Solve the heat equation du/0t = k8%u/8z2, 0 < z < L, t > 0, subject to

fu
E(O,t)-—o t>0

Bu
a(Lt)=0 t>0

(a) u(z,O):{ 0 ;;’L‘ﬁ (b) u(z,O)=6+4.cos,3"Tz
(c) u(zx,0) = —2sin T%r (d) u(x,0) = —3cos gz—z

The same boundary conditions was encountered in problem 2.3.7, therefore the solution
used here starts from the same general solution already found, which is

/\0 = 0
2
nm
An:(f) 1’121,2,3,"'
00 nm\2
u(x,t)=Ap+ E A, cos (nfnx) e_k(f) !

n=1

2.3.10.1 Part (b)

3
u (x,0) :6+4cos%x

Comparing terms with the general solution at ¢ = 0 which is

u(x,0)=Ag+ E A, cos (nfnx)

n=1
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results in
Ag=6
Az =4
And all other A, = 0. Hence the solution is

3 _
u(x,t) :6+4COS(Tnx)e k(L

2.3.10.2 Part (c)

X
,0) = —2sin —
u (x,0) sin I
Hence

-2sin %x =Ap+ nz::l A, cos (nfnx) (1)

Multiplying both sides of (1) by cos (@x) and integrating gives
L . (TX mm L mm mm nm
j(; -2 sm( 7 ) coS (Tx) dx = j; (AO cos (Tx) + cos (Tx) Z A, cos ( T x)) dx
= J Aocos () [ 3, v () os ()
=J, 0 cos (= —x) dx ) & n CO8 | x| cos | x| dx

Interchanging the order of integration and summation

L . (TX mm nm
j(; —28111( I )cos(—x)dx—f Aocos(—x)dx+ZA f cos( I )cos(fx)dx
Case m =0

The above becomes
L L
f —-2sin (E)d f Agdx + EA f cos(ﬂx) dx
0 L = 0 L
But £ cos )dx = 0 hence
L L
f —-2sin (n—x)dx = f Apdx
0 L
AOL——2f sm( )
T
T

vt =

o)

- 2@+
TC

4L
o
Hence
-4
Ay = —
Casem >0

L L o0 L
j(; —-2sin (%x) coS (%x) dx :fo Ap cos (%x) dx+n§::lAnj(; cos(%x) cos(%x) dx

One term survives the summation resulting in

L 4 oL L
f —2sin (nx) coS (@x) dx = — f coS (@x) dx + A, f cos? (@x) dx
0 L L Tt 0 L 0 L
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But £L cos (%x) dx =0 and £L cos? (%x) dx = %, therefore

L L
f —Zsin(nx)cos(m )dx—A —
0 L L 2

-4 L mx nm
A, =— sm(—) cos (—x) dx
0

L L L
But
L rmx nm —-L (1 + cos (nm))
f sin (—) coS (—x) dx =
0 L L T (n2 - 1)
Therefore
A, = (1 + cos (nm))
4 (n2 - 1)
-1)" +1
=4— n:1,2,3,---
T (n2 - 1)

Hence the solution becomes

-1D)"+1 nmn _k%zt
u(x, t)—— —nz; (n2 )COS(Tx)e (7)

2.3.11 section 2.4.2 (problem 10)

*2.4.2. Solve 2,
gt—u kgx2 with Z—:-(o,t) =0
u(L,t)=0
u(z,0) = f(x).

For this problem you may assume that no solutions of the heat equation
exponentially grow in time. You may also guess appropriate orthogonality
conditions for the eigenfunctions.

du  J*u
a9
Let u(x,t) = T(t) X (x), then the PDE becomes
Lpx =xrr
K
Dividing by XT
17 _ X
T X

Since each side depends on different independent variable and both are equal, they must
be both equal to same constant, say —A. Where A is real.

1 T X" _
kT X
The two ODE’s are
T +kAT =0 1)
X"+ AX =0 (2)

Per problem statement, A > 0, so only two cases needs to be examined.
Case A =0
The space equation becomes X"’ = 0 with the solution

X=Ax+b

Hence left B.C. implies X’ (0) = 0 or A = 0. Therefore the solution becomes X = b. The
right B.C. implies X (L) = 0 or b = 0. Therefore this leads to X = 0 as the only solution.
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This results in trivial solution. Therefore A = 0 is not an eigenvalue.

Case A >0

Starting with the space ODE, the solution is

X(x) = Acos (\/Zx) + Bsin (\/Xx)
= = -AVAsin (\/—x) + BV cos (\/—x)

dx
Left B.C. gives

aX
OZE(O)
=BV

Hence B = 0 since it is assumed A # 0 and A > 0. Solution becomes
X (x) = Acos (\/Xx)
Applying right B.C. gives
0=X(L)
= Acos (\/XL)

A = 0 leads to trivial solution. Therefore cos (\/XL) =0or

Vi=ZZ  u=135,.

2L
Cn-Dmn
= T n= 1, 2,3
Hence
2
An:(g) n=1,3,5,"
2n -1)* 72
= T n=1,23--
Therefore
Xy (x) = Ay cos(zzz ) n=1,3,5,-
And the corresponding time solution
nr 2
Tn:g‘k(z)t n=1,3,5-

Hence

ui’l (x/ t) = XnTn
had nm\2
u(x,t) = E A, cos (ﬂx) k)

n=135, - 2L
2
_ EA COS((Zn Ll)n )e_ ((znz—Ll)n)t

From initial conditions

fx) = 123:‘5 A, COS( )

n=

Multiplying both sides by cos (m—fx) and integrating

f f(x)cos(—x)dx—f( 1;5 A, cos,(n;;T )COS(ZL ))dx

Interchanging order of summation and integration and applying orthogonality results in

f f(x) cos (—x)dx =A g

A, = Zfo f(x)cos(Z—Zx)dx
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Therefore the solution is

[s¢]

u(x,t):% E

n=1,3,5,--

| [fOL f (x) cos (Z—Zx) dx] cos (Z_Zx) e—k(%)zt

or

(o]

u(x,t) = % n§=:1 [jjf (x) cos (%x) dx} CoS (%x) e_k((znz_Ll)ﬂ) !

2.3.12 section 2.4.3 (problem 11)

*2.4.3. Solve the eigenvalue problem

¢
&z =

subject to
_ d¢ . _ d¢

d 2

£%+A¢:O
¢ (0) = ¢ (2n)
dp  do
— 0 =—(mn

First solution using transformation

Let 7 = x — i, hence the above system becomes

d 2
j%+A¢:O

¢ (-m) = ¢ (n)
d¢ _dg
27 (== (m)

The characteristic equation is 7> + A = 0 or r = +V-A. Assuming A is real. There are three
cases to consider.

Case A <0

Let s = \/3 >0
¢ (1) = 1 cosh (s7) + ¢ sinh (s7)
¢’ (1) = scq sinh (s7) + sc, cosh (s7)
Applying first B.C. gives
¢ (-m) = ¢ (1)
¢1 cosh (s7) — ¢, sinh (s7) = ¢q cosh (s7) + ¢, sinh (s7)
2¢, sinh (s7t) =0
¢y sinh (sm) =0 (1)
Applying second B.C. gives
¢ () = ¢ ()
—scq sinh (s7t) + scp cosh (sm) = scq sinh (s7t) + scy cosh (sm)
2¢; sinh (sm) =0
¢y sinh (sm) =0 (2)

Since sinh (sn) is zero only for s = 0 and s7t is not zero because s > 0. Then the only other
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option is that both ¢; = 0 and ¢, = 0 in order to satisfy equations (1)(2). Hence trivial
solution. Hence A < 0 is not an eigenvalue.

Case A =0

2
The space equation becomes Zi = 0 with the solution ¢ (7) = A7 + B. Applying the first

2
B.C. gives

¢ (-m) =¢(n)
-An+B=An+B
0=2An

Hence A = 0. The solution becomes ¢ () = B. And ¢’ (t) = 0. The second B.C. just gives
0 = 0. Therefore the solution is

p(1)=C

Where C is any constant. Hence A = 0 is an eigenvalue.

Case A >0

¢ (1) = c1 cos (\/XT) + ¢y sin (\/}c)
Q' (1) = —clﬁsin (\/ZT) + czx/z coS (\/XT)
Applying first B.C. gives
¢ (-m) = ¢ (n)
€1 COS (\/Xn) — ¢y sin (\/Xn) = (1 COS (\/Xn) + ¢y sin (\/Xn)
2c, sin (\/Zn) =0
C, sin (\/Xn) =0 (3)
Applying second B.C. gives
¢’ (-m) = ¢’ (1)
cl\/zsin (\/Kn) + cz\/x cos (\/Xn) = —clﬁsin (\/Xn) + cz\/z CoS (\/XT()
2C1\/XSiIl (\/Xn) =0
1 8in (\/Zn) =0 (2)

Both (3) and (2) can be satisfied for non-zero VA7. The trivial solution is avoided. Therefore
the eigenvalues are

sin (\/Xn) =0

VA, T =nm n=1,23--
Ap=n®>  n=1,23,

Hence the corresponding eigenfunctions are

[cos (\//\_nf) ,sin (\//\_nr)] = {cos (n1), sin (n7)}

Transforming back to x using t =x -7

{cos (n (x — m)),sin (n (x — 1))} = {cos (nx — nm),sin (nx — nmn)}

But cos (x — ) = —cosx and sin (x — ) = —sinx, hence the eigenfunctions are

{—cos (nx) , — sin (nx)}
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The signs of negative on an eigenfunction (or eigenvector) do not affect it being such as
this is just a multiplication by —1. Hence the above is the same as saying the eigenfunctions
are

{cos (nx), sin (nx)}

Summary

’ ‘ eigenfunctions

A =0 | arbitrary constant

A >0 | {cos(nx),sin (nx)} forn=1,2,3 -

Second solution without transformation

(note: Using transformation as shown above seems to be easier method than this below).

The characteristic equation is > + A = 0 or r = +V-A. Assuming A is real. There are three
cases to consider.

Case A <0
In this case —A is positive and the roots are both real. Assuming V-1 = s where s > 0, then
the solution is
¢ (x) = Ae* + Be™*
¢’ (x) = Ase®* — Bse™*
First B.C. gives

¢ (0) = ¢ (2m)
A+ B = Ae*™ + Be T
A(1-e¥")+B(1-e>7) =0 1)

The second B.C. gives
¢’ (0) = ¢’ (2m)
As — Bs = Ase®™ — Bse %7
A(1-e¥")+B(-1+e%7) =0 (2)
After dividing by s since s # 0. Now a 2 by 2 system is setup from (1),(2)

1=} )l -()

Since this is Mx = b with b = 0 then for non-trivial solution |M| must be zero. Checking the
determinant to see if it is zero or not:

o et R e R e

= (—1 + 7T 4 25T — 1) - (1 — 2T — 2T ¢ 1)
=142 +e2T 114>+ 27 -1

= —4 + 2057 4 2757

=—4+2 (ezs7T + e‘zS”)

= —4 + 4 cosh (2sm)

Hence for the determinant to be zero (so that non-trivial solution exist) then —4+4 cosh (2s7) =
0 or cosh (2sm) =1 which has the solution 2s7 = 0. Which means s = 0. But the assumption
was that s > 0. This implies only a trivial solution exist and A <0 is not an eigenvalue.

case A =0

dg?

The space equation becomes —= = 0 with the solution ¢ (x) = Ax + B. Applying the first
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B.C. gives
B=2An+B
0=2An
Hence A = 0. The solution becomes ¢ (x) = B. And ¢’ (x) = 0. The second B.C. just gives
0 = 0. Therefore the solution is
¢()=C

Where C is any constant. Hence A = 0 is an eigenvalue.

Case A >0

In this case the solution is

¢ (x) = Acos (\/Xx) + Bsin (\/Xx)

P’ (x) = ~AVAsin (\/Xx) + BVA cos (\/Xx)
Applying first B.C. gives
¢ (0) = ¢ (2n)
A = Acos (ZH\/X) + Bsin (271\5)
A (1 ~ cos (2n\/X)) ~ Bsin (2nx/i) =0
Applying second B.C. gives
¢’ (0) = ¢’ (2nm)
BVA = —AVAsin (271\5) + BV cos (ZR\/X)
AVAsin (an/i) +B (\/Z ~ VA cos (2n\/Z)) =0
Asin (ZH\/X) +B (1 — COoS (ZN\/X)) =0
Therefore

1 - cos (277\5) —sin (271\/1) A
[ sin (ZN\/X) 1 - cos (Zﬂﬁ)] [B

Setting |M| = 0 to obtain the eigenvalues gives

_ [g] 3)

(1 — cos (27’(\/1)) (1 — cos (27’(\/1)) + sin (Zﬂ\/X) sin (27’(&) =0
1 - cos (271\/1) =0
Hence
CcoS (271\/1) =1
on\d, =nm n=2,4,--
1, = g n=24,
Or
A, =n n=12,3,
A, = n? n=1,2,3,

Therefore the eigenfunctions are
¢, (x) = {cos (nx), sin (nx)}

Summary

eigenfunctions

A =0 | arbitrary constant

A >0 | {cos(nx),sin (nx)} forn=1,2,3---
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2.3.13 section 2.4.6 (problem 12)

2.4.6. Determine the equilibrium temperature distribution for the thin circular
ring of Section 2.4.2:

(a) Directly from the equilibrium problem (see Sec. 1.4)
(b) By computing the limit as t — oo of the time-dependent problem

The PDE for the thin circular ring is

ou  J*u
o = Fom
u(-L,t)=u(L,t)
du(=L,t) Jdu(L,t)
ot ot
u(x,0) = f(x)

2.313.1 Part (a)

At equilibrium % = 0 and the PDE becomes
9%u
Ix?
As it now has one independent variable, it becomes the following ODE to solve
d?u (x)
dx2 0
u(-L)=u(L)

0=

du du
(L) = (D)

. d%u .
Solution to - =0 is
dax
ux) =cix+c,

Where cy, ¢, are arbitrary constants. From the first B.C.

u(-L)=u(L)
—c1L+cy;=c1L+c¢y
2e;L =0
c1=0
Hence the solution becomes
u(x) =c

The second B.C. adds nothing as it results in 0 = 0. Hence the solution at equilibrium is

u(x) =cy

This means at equilibrium the temperature in the ring reaches a constant value.

2.3.13.2 Part (b)

The time dependent solution was derived in problem 2.4.3 and also in section 2.4, page

62 in the book, given by

> nnx 2 R nmnx 2
u(x,t) =ay+ E a, cos (%) T, E a, sin (”Lﬂ) )t
n=1 n=1

nmx

2
As t — oo the terms e_k( ok — 0 and the above reduces to
u (x,00) = ap
Since a4, is constant, this is the same result found in part (a).
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24 HW33

2.41 Problem 2.5.1(e) (problem 1)

2.5.1. Solve Laplace’s equation inside a rectangle 0 < z < L, 0 < y < H, with the
following boundary conditions:

*(a) §2(0,y) =0, 52(L,y)=0, wu(z,0)=0, u(z, H) = f(x)
(b) 32(0,9) = 9(¥), 3(L,y) =0, u(z,0)=0, u(z, H) =0

x(c) 3£(0,y) =0, u(L,y)=g(y), u(z,0)=0, u(z,H) =0
(d) u(0,y) =g(y), u(Ly)=0,  F(z,0)=0, u(z, H) =0

x(e) u(0,y) =0, u(L,y) =0, u(z,0) — g%(x,O) =0, u(z,H)= f(z)

2 2
Let u (x, y) = X (x) Y (x). Substituting this into the PDE % + g—y’; = 0 and simplifying gives
Xl/ Y/I

X Y
Each side depends on different independent variable and they are equal, therefore they
must be equal to same constant.
X/I ‘Y//
X =Ty =
Since the boundary conditions along the x direction are the homogeneous ones, —A is

selected in the above. Two ODE’s (1,2) are obtained as follows

X"+AX =0 (1)
With the boundary conditions
X(0)=0
X(L)=0
And
Y’ -AY =0 (2)
With the boundary conditions
Y (0) =Y’ (0)
Y(H) = f (%)

In all these cases A will turn out to be positive. This is shown for this problem only and
not be repeated again. The solution to (1) is

X = AeVAx 4 BemVix

Case A <0

X = Acosh (\/Xx) + Bsinh (\/Xx)

At x = 0, the above gives 0 = A. Hence X = Bsinh (\/Xx) At x = L this gives X = Bsinh (ﬁL)

But sinh (\/XL) =0 only at 0 and \/XL # 0, therefore B = 0 and this leads to trivial solution.
Hence A < 0 is not an eigenvalue.

Case A =0

X=Ax+B

Hence at x = 0 this gives 0 = B and the solution becomes X = B. At x =L, B = 0. Hence the
trivial solution. A = 0 is not an eigenvalue.

Case A >0
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Solution is

X = Acos (\/Xx) + Bsin (\/Xx)
At x = 0 this gives 0 = A and the solution becomes X = Bsin (\/Xx) Atx=1L
0 = Bsin (x/ZL)

For non-trivial solution sin (\/XL) =0or \/XL =nmn where n =1,2,3, ---, therefore

2
nmn
An:(f) n:1’2,3,...
Eigenfunctions are
X, (x) =B, sin(%x) n=1,2,3, 3)

For the Y ODE, the solution is
Y, = C, cosh (nfny) + D,, sinh (nfny)

nrt

, _ N (T nmn
Y, =C, T smh(Ly)+D T cosh(Ly)

Applying B.C. at y = 0 gives

Y (0) =Y (0)
C, cosh (0) = Dn% cosh (0)
nm
Cn = DHT
The eigenfunctions Y, are
nm nm ., (nT
Y, = an cosh (Ty) + D,, sinh (Ty)

=D, ( LT( cosh( Lny) + sinh (nfny))
Now the complete solution is produced

Uy (x, y) =Y, X,
Tt Tt ., (nT . (nT
=D, ( T cosh( T y) + sinh (Ty)) B, sin (Tx)
Let D,B,, = B, since a constant. (no need to make up a new symbol).

nm nm ., (nT . (nm
u, (x, y) =B, (T cosh (Ty) + sinh (Ty)) sin (Tx)
Sum of eigenfunctions is the solution, hence

( ) Z B, ( cosh( ny) + sinh (n_ny)) sin (n_nx)
L L L
The nonhomogeneous boundary condition is now resolved. Aty =H

u(x,H) = f(x)
Therefore

f(x) = E B, ( cosh (—H) + sinh (TH)) sin (%x)

Multiplying both sides by sin (—x) and integrating gives

f f(x)sm(—x)dx— fo Lsm(%x)ZB ( cosh(—H)+s1nh(TH))sin(%x)dx
S (ot () () o )

=B, (@ cosh (—H) + sinh (—H)) E
L L L 2
Hence

£L f (x)sin (%x) dx

(nfn cosh (nan) + sinh (”THH))

n—

(4)

il \S]
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This completes the solution. In summary

u (x, y) = 21 B, (nfn cosh (nfny) + sinh (nfny)) sin (nfnx)
n=

With B, given by (4). The following are some plots of the solution above for different f (x).

OQ(XVY)
0.0

9.5 o_;

1.0 1.0

Figure 2.1: Solution using f(x) =x,L=1,H =1

Figure 2.3: Solution using f(x) = cos(4x),L =1,H =1

Figure 2.4: Solution using f(x) = sin(3x) cos(2x),L =5,H =1

54



24. HW 3 CHAPTER 2. HWS

2.4.2 Problem 2.5.2 (problem 2)

2.5.2. Consider u(z,y) satisfying Laplace’s equation inside a rectangle (0 < = <
L, 0 < y < H) subject to the boundary conditions

80,y)=0 2(z,00=0
82(L,y) =0 %i(z,H) = f().

*(a) Without solving this problem, briefly explain the physical condition
under which there is a solution to this problem.

(b) Solve this problem by the method of separation of variables. Show that
the method works only under the condition of part (a).

(c) The solution [part (b)] has an arbitrary constant. Determine it by
consideration of the time-dependent heat equation (1.5.11) subject to
the initial condition

u(z,y,0) = g(x,y).

2421 part (a)

At steady state, there will be no heat energy flowing across the boundaries. Which implies
the flux is zero. Three of the boundaries are already insulated and hence the flux is zero
at those boundaries as given. Therefore, the flux should also be zero at the top boundary
at steady state.

By definition, the flux is ¢ = -kVu - fi. (Direction of flux vector is from hot to cold). At the
top boundary, this becomes

du
¢ = —k—=—(x,H) (1)
Iy
Therefore, For the condition of a solution, total flux on the boundary is zero, or
L
f bdx = 0
0
Using (1) in the above gives
L 9
%f—ﬂmmw:o
0 9y
L g
o (x, Hydx=0
0 9y

But Z—;(x, H) = f (x) and the above becomes

[ F@dx=0

2.4.2.2 Part (b)

Using separation of variables results in the following two ODE’s
X"+AX =0
X" (0)=0
X' (L)=0
And
Y'-AY =0
Y’ (0)=0
Y' (L) = f(x)
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The solution to the X (x) ODE has been obtained before as
X, = Ao+ Aycos(VA,x)  n=1,23,-
X, = A, cos (\//\—nx) n=0,1,273,-- (1)

Where A, = (%)2 In this ODE A = 0 is applicable as well as A > 0. (As found in last HW).

Now the Y(y) ODE is solved (for same set of eigenvalues). For A = 0 the ODE becomes
Y” =0 and solution is Y = Cy + D. Hence Y’ = C and since Y’ (0) = 0 then C = 0. Hence
the solution is Y = Cj, where C, is some new constant. For A > 0, the solution is

Y, = C, cosh (\/A_ny) + D, sinh (\//\_ny) n=1,2,3,-
Y, = Cn\//\_nsinh (\//\—ny) + Dn\/A_ncosh (\/A—Hy)
Aty=0
0=7Y3(0)
=D, n=1,23,-
Since A,, >0 forn=1,2,3,--- then D,, = 0 and the Y(y) solution becomes
Yn:C0+Cncosh(\//\_ny) n=1,2,3,---

Yn = Cn cosh (\/A_ny) n=0,12,3,-- (2)
Combining (1) and (2) gives
Uy, (x, y) =X,Y,

= A, cos (\//\—nx) C,, cosh (\//l_ny) n=0,1,23,---
= A, cos (\//\—nx) cosh (\/A_ny) n=0,1,2,3,: -

Where A,C, above was combined and renamed to A, (No need to add new symbol). Hence
by superposition the solution becomes

u (x, y) = gAn cos (\//\_nx) cosh (\/A_ny)

Since Ay = 0 and cos (\/A_Ox) cosh (\/A_Oy) =1, the above can be also be written as
u (x, y) = Ay + ;:]1 A, cos (nTnx) cosh (nfny) (3)

At y = H, it is given that (x H) = f (x). But

8u - nm \ nm
&y 2_:1 A, cos (Tx) T sinh ( y)
At y = H the above becomes
fx) = ,;1 A, cos (%x) % sinh (%H) (4)

To verify part (a) by integrating both sides

ff(x)dx—f ZA cos () T sinh (2 H) dx
S () [

But l; cos )dx—O hence

L
f Fdx=0
0
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The verification is completed. Now back to (4) and multiplying by cos (%x) and integrating
L [ o0
j(; f(x) cos (%x) dx = J{; nz::l A, cos (nfnx) \//l_nsinh (%H) dx
o L
= 2 A, sinh (n_nH) f oS (n_nx) \//\_ndx
n=1 L 0 L

L
= A,, sinh (@H) =

L 2
Hence
L nm
(x) —x)dx
A SOl s
L sinh (TH)
Therefore the solution now becomes (from (3))
2 [ fcos(Ex)dx)  um nm
( ) Ag + Z [ oy (TH) coS (Tx) cosh (Ty)

Only Ay remains to be found. This is done in next part.

2.4.2.3 Part (c)

Since at steady state, total energy is the same as initial energy. Initial temperature is given
as g (x, y), therefore initial thermal energy is found by integrating over the whole domain.

This is 2D, therefore
L ~H
f f pcg(x,y) dA = pc fo fo g (%) dydx

Setting the above to pc £ £ dydx found in last part, gives one equation with one

unknown, which is A; to solve for Hence

PCf f X,y dydx = pCf f Ap + E A, cos (—x) COSh( y) dydx
j(; . g x,y dydx = f f Apdydx + f f 2 A, cos (—x) COSh( y) dydx
fOL fng X, y dydx = AgHL + Z A, f f cos (—x) cosh( y) dydx (5)

L H L
f f Ccos (—x) cosh( y) dydx = f cosh (nny) (f Ccos (ﬂx) dx) dy
0 0 L 0 L
Where LL coS (nfx) dx = 0. Hence the whole sum vanish. Therefore (5) reduces to
L (H
f f g(x, y) dydx = AgHL
0 Yo
1 L ~H

But

Summary The complete solution is

L nm
)= (i [ st B L ) )

The following are some plots of the solution.
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1.071.0

Figure 2.7: Solution using g(x,y) = ysin(y) cos(xy), f(x) = sin(10x),L =1,H =1

2.4.3 Problem 2.5.5(c,d) (problem 3)

x(a) 9(r,00=0, u(r,3)=0,

(b) %(r.00=0, %(r.3)=0,

+(c) u(r,0) =0, u(r,§) =0,
2

(@) %(r.0)=0, Su(r,Z) =0,

this condition physically.

2.5.5. Solve Laplace’s equation inside the quarter-circle of radius 1 (0 < 8 <
n/2, 0 < r < 1) subject to the boundary conditions

u(1,6) = £(6)
u(1,6) = £(6)
84(1,0) = £(9)
B4(1,6) = 9(0)

Show that the solution [part (d)] exists only if f;'“g(8) dd = 0. Explain
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2431 Partc

The Laplace PDE in polar coordinates is

u  Ju  J*u
2~ B =
78r2+rc9r+862 0 (A)
With boundary conditions
u(r,0)=0
T
=)= B
u (r, 2) 0 (B)

u(1,6) = £(6)

Assuming the solution can be written as
u(r,0) =R (r)©(0)
And substituting this assumed solution back into the (A) gives
”R"® +rR'O®+RO” =0
Dividing the above by RO # 0 gives

r2l+rR—,+®N =0
R R ©
rzRN +rRI 3 @/I
R R O

Since each side depends on different independent variable and they are equal, they must
be equal to same constant. say A.

This results in the following two ODE’s. The boundaries conditions in (B) are also trans-
ferred to each ODE. This gives

O +10=0
©(0) =0 1)
TC
o(3)=0
And
72R” + R’ = AR = 0 (2)
IR (0)] < oo

Starting with (1). Consider the Case A < 0. The solution in this case will be
© = Acosh (\/Xe) + Bsinh (x/X@)

Applying first B.C. gives A = 0. The solution becomes ® = Bsinh (\/X@) Applying second
B.C. gives

0 = Bsinh (\/Xg)

But sinh is zero only when \/_g = 0 which is not the case here. Therefore B = 0 and hence
trivial solution. Hence A < 0 is not an eigenvalue.

Case A =0 The ODE becomes ®” = 0 with solution ® = A0 + B. First B.C. gives 0 = B.
The solution becomes © = A9. Second B.C. gives 0 = Ag, hence A =0 and trivial solution.
Therefore A = 0 is not an eigenvalue.

Case A > 0 The ODE becomes ®” + A® = 0 with solution
® = Acos (\/Xe) + Bsin (ﬁ@)
The first B.C. gives 0 = A. The solution becomes

® = Bsin (\/Xe)
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And the second B.C. gives
0 = Bsin (\/Xg)
For non-trivial solution sin (\/Xg) =0 or \/_g =nnforn=1,2,3,---. Hence the eigenvalues

are
VA, = 2n

/\n:4n2 n=1,2,3,--

And the eigenfunctions are

®,,(6) = B, sin (2n0) n=1,2,3,-- (3)

Now the R ODE is solved. There is one case to consider, which is A > 0 based on the
above. The ODE is

?R” +rR' —A,R=0
r?R"” + 1R’ —4n?R =0 n=123,--
This is Euler ODE. Let R(r) = . Then R’ = pr*"! and R” =p (p - 1) "2, This gives
2 (p (p - 1) ,,p—z) +r (prp‘l) —4n?P =0
((pz - p) rp) +pr? —4n?P =0
p? — prf + prf — 4n?r¥ = 0
p?—4n? =0
p==+2n
Hence the solution is
R(r) = Cr?" + D};—n
Applying the condition that |R (0)| < co implies D = 0, and the solution becomes
R,(N=Cy* n=123,-- (4)
Using (3,4) the solution u, (r, 0) is
u,(r,0) =R,0,
= C,r¥"B, sin (2n0)
= B,,r*" sin (2n0)

Where C,,B,, was combined into one constant B,,. (No need to introduce new symbol). The
final solution is

u(r,0) = i u, (r, 0)

n=1

= 2 B,r*" sin (2n0)
n=1

Now the nonhomogeneous condition is applied to find B,,.

d — el
Zu (r,0) = E B,, (2n) r*"~1 sin (2n6)

n=1

Hence (%u (1,0) = f (0) becomes

f(0) = i 2B, nsin (2n0)

n=1

Multiplying by sin (2m0) and integrating gives
f 2 £(6) sin (2m6) d6 = f ? sin 2m0) 3 2B,nsin (2n0) 6
0 0 n=1

= Z 2nB,, J‘E sin (2m@) sin (2n0) dO (5)
n=1 0
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When #n = m then

NI

sin (2m6) sin (2n6) d6 = f 2 gin2 (2n6) dO
0

3(1 1
= - — = 4 d
fo (2 2Cos n@) 6
1

I sin4n@g
- 3105 - 3| 5|

J

2 4n

0
- (81_11 (sin 47’171) —sin (0))

. .. . 4n . T
And since 7 is integer, then sin - 7= sin 2nmt = 0 and the above becomes T

1
2
T
4

Now for the case when n # m using sin Asin B = % (cos (A — B) — cos (A + B)) then

n L
fz sin (2m0) sin (2n0) doO = fz 5 (cos (2mO — 2n6) — cos 2mO + 2n6)) dO
0 0

us

T 1 n
fz cos (2m6O —2n0) do — > fz cos (2m6 + 2n6) do
0 0

NI =

1 (3 1 (3
:Efz cos((2m—2n)6)d6—§f2 cos ((2m + 2n) ) dO
0 0

1[sin(@n-2m0)]F 1 [sin(@m+2n)0)]?
_E[ (2m - 2n) ]_E[ (2m + 2n) ]

_ [sin ((2m — 2n) 6)]§ - [sin ((2m +2n) 0)]2

4(m—n)

4(m+n)
= m [Sin ((Zm —-2n) g) - O] - 4(ml—+n) [sin ((2m + 2n) g) - 0]

Since 2m — 271% = 7 (m —n) which is integer multiple of 7 and also (2m + 2n)§ is integer
multiple of 7 then the whole term above becomes zero. Therefore (5) becomes

f 2 £(6)sin (2m6) d6 = ZmBm%
0

Hence

By=— ﬁ £(6)sin (2n6) d6

Summary: the final solution is

u(r,0) = i B, (r2” sin (2n6))
n=1

2 32 :
Bu=— fo £(6)sin (2n6) dO

The following are some plots of the solution

Figure 2.8: Solution using f(6) = 0sin(30)
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04!

Figure 2.9: Solution using f(0) =0

2.4.3.2 Part (d)

The Laplace PDE in polar coordinates is

With boundary conditions
u(r,0)=0

u (r z) =0
"2
u(1,0) = f(0)
Assuming the solution is
u(r,0) =R(r)©(0)
Substituting this back into the PDE gives
”R"® +rR'©® + R®” =0

Dividing by R® # 0 gives

rzR” +rR, + o _ 0
R R ©
7"21211 +rR/ _@I/
R R O

Since each side depends on different independent variable and they are equal, they must
be equal to same constant. say A.

This results in two ODE’s with the following boundary conditions
®"+10=0
®'0)=0 1)

of3)-o

R” + 1R’ = AR =0 (2)
IR (0)] < o0
Starting with (1). Consider Case A < 0 The solution will be

© = Acosh (\/19) + Bsinh (\/XG)

And

And
®’ = AVAsinh (\/XQ) + BV cosh (\/XQ)

Applying first B.C. gives 0 = B\/X, therefore B = 0 and the solution becomes A cosh (ﬁ@)

and ©’ = AVAsinh (\/XQ) Applying second B.C. gives 0 = Ay sinh (\/X%) But sinh (\/X%) #
0 since A # 0, therefore A = 0 and the trivial solution results. Hence A < 0 is not an eigenvalue.
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Case A =0 The ODE becomes
®"=0
With solution
®=A0+B

And ©’ = A. First B.C. gives 0 = A. Hence ® = B. Second B.C. produces no result and the
solution is constant. Hence

@ZCO

Where C; is constant. Therefore A = 0 is an eigenvalue.

Case A > 0 The ODE becomes ®” + A® = 0 with solution
® = Acos (\/X@) + Bsin (\/X@)
@’ = —AVAsin (\/XQ) + BV cos (\/X@)
The first B.C. gives 0 = BYA or B = 0. The solution becomes
® = Acos (\/XQ)
And ®’ = —A\/X sin (\/XQ) The second B.C. gives
0 = —-AVAsin (\/Zg)
For non-trivial solution sin (\/Xg) =0 or \/_g =nnforn=1,2,3,---. Hence the eigenvalues

are
VA, = 2n

A, = 4n? n=1,23,---

And the eigenfunction is

0, (0) = A, cos (2n0) n=1,23,--- (3)

Now the R ODE is solved. The ODE is
rR” +rR" = AR =0

Case A =0
The ODE becomes r*R” + ¥R’ = 0. Let v (r) = R’ (r) and the ODE becomes
v +1r0=0

Dividing by r # 0
1
v (r) + ;v(r) =0

1
Using integrating factor e/ 7 = 7 = 1 Hence
d

5(rv):0

Hence

ro =

S| b

v(r) =
But since v (r) = R’ (r) then R’ = %1 The solution to this ODE Is

R(r):fédr+B

Therefore, for A = 0 the solution is

R(r)y=Aln|r|+ B r+0

Since

lim [R (r)] < oo
r—0
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Then A = 0 and the solution is just a constant
R(r) = By
Case A > 0 The ODE is
PR” +rR’ —4n?*R =0 n=1,23,---
The Let R(r) =#*. Then R" =pr’t and R” = p (p - 1) 72, This gives
12 (p (p - 1) rf"z) +r (prp‘l) —4n?r? =0
((p2 - p) r?’) +pr? —4n?rP =0
p? — pr? + prP — dn’r? = 0
p?—4n? =0
p==+2n
Hence the solution is
R(r) = Cr*" + D;—n
The condition that
li_r)% IR (r)] < o0
Implies D = 0, Hence the solution becomes
R, (r) = C,r*n n=1,2,3,--
Now the solutions are combined. For A = 0 the solution is
ug (r,0) = CoBy

Which can be combined to one constant B;. Hence

uO:BO

And for A > 0 the solution is
uy (r,0) = R, 0,
= C,1*" (A, cos (2n0))
= B, r*" cos (2n0)
Where C, A, are combined into one constant B,. Hence

, (r, 0) = Y, B,r*" cos (2n0)

n=1

(4)

(5)

(6)

Equation (5) and (6) can be combined into one this now includes eigenfunctions for both

A=0and A >0
u(r,0) = By + Z B,r*" cos (2n0)

n=1

(7)

Where B, represent the products of the eigenfunctions for R and © for A = 0. Now the

nonhomogeneous condition is applied to find B,,.
d - _
Zu (r,0) = ;::1 B, (2n) r*"~1 cos (2n0)
Hence (%u (1,0) = g(0) becomes
g(0) = Y] 2B,n cos (2n0)

n=1

Multiplying by cos (2m0) and integrating gives

fE g(0) cos (2mO) do = fi cos (2m0) 2 2B,n cos (2n6)do
0 0

n=1

= Y onB, f 2 cos (2m6) cos (2n6) d6 )
n=1 0
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As in the last part, the integral on right gives g when n = m and zero otherwise, hence

fig(G) cos (2n6)do = 2ang
0

T

)
B, = _f2 g(0)cos2n0)d0  n=1,2,3,--
m Jy

Therefore the final solution is from (7) and (9)

u(r,0) = By + Z B,,7*" cos (2n0)

n=1
=By + 2_]1(% fo * ¢(6) cos (2m0) d@) 72" cos (2n0)

The unknown constant By can be found if given the initial temperature as was done in
problem 2.5.2 part (c). To answer the last part. Using (8) and integrating

fz 2(6)d6 = fz 3 2B, cos (2n0) d6
0 0 n=1

Ve

= 2 2nB,, fi cos (2n0) do
n=1 0

But
3 in (2n6) |2
[ cos eaorao =| 22|
0 2n 0
1 (. 2n 0
= m Sin 5 Tt

1
= %(sinnn—O)
=0

Since 7 is an integer. This condition physically means the same as in part (b) problem
2.5.2. Which is, since at steady state the flux must be zero on all boundaries, and g (0)
represents the flux over the surface of the quarter circle, then the integral of the flux must
be zero. This means there is no thermal energy flowing across the boundary.

2.4.4 Problem 2.5.8(b) (problem 4)

2.5.8. Solve Laplace’s equation inside a circular annulus (@ < r < b) subject to
the boundary conditions

*(a) u(a,0)=/(8), u(b6)=g(6)
(b) 5%(a,0)=0,  u(b6)=g(9)
(c) %%(a,0) = f(8), 3:(b,6)=g(6)

If there is a solvability condition, state it and explain it physically.

The Laplace PDE in polar coordinates is

u  du J*u
2— _— _— =
r8r2+r8r+862 0 (A)
With
Ju
W (El, 9) =0
u(b,0)=g(0) (B)

Assuming the solution can be written as
u(r,6) = R(r)©(0)
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And substituting this assumed solution back into the (A) gives
”R"®+rR'O® +RO” =0
Dividing the above by RO gives

R// R/ @//
2— 44—+ =0
"RTR T

rZR—N+rR—,——®”
R R O

Since each side depends on different independent variable and they are equal, they must
be equal to same constant. say A.

This results in the following two ODE’s. The boundaries conditions in (B) are also trans-
ferred to each ODE. This results in

®"+A0 =0 (1)
O (-n) =0(n)
©’(-n) =0’ (n)
And
?R” +rR" = AR =0 (2)
R (a)=0

Starting with (1) Case A <0 The solution is

® () = Acosh («/Xa) + Bsinh (x/X@)
First B.C. gives
O(-n) =0 (n)

A cosh (—\/Xn) + Bsinh (—\/XT[) = Acosh (\/Zn) + Bsinh (\/Xn)
Acosh (\/Xn) — Bsinh (\/Xn) = Acosh (\/Xn) + Bsinh (\/Xn)
2Bsinh (\/XT() =0
But sinh (\/XT() =0 only at zero and A # 0, hence B = 0 and the solution becomes
®(6) = Acosh (\/XQ)

®’ () = AVA cosh (\/Xe)
Applying the second B.C. gives
Q' (-n) =0’ (n)
AVA cosh (—\/Xn) = AVA cosh (\/Xn)
AR eosh (Vi) = 4 cosh (Vi)
2AVA cosh (\/Xn) =0

But cosh (\/Xn) # 0 hence A = 0. Therefore trivial solution and A < 0 is not an eigenvalue.

Case A = 0 The solution is ©® = A0 + B. Applying the first B.C. gives

©(-n) =0 (n)
-An+B=mA+B
2nA =0
A=0

And the solution becomes ® = By. A constant. Hence A = 0 is an eigenvalue.

Case A >0
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The solution becomes

® = Acos (\/X@) + Bsin (\/16)
@’ = ~AVAsin (\/X@) + BV cos (\/XG)
Applying first B.C. gives
O(-n) =0 (n)
Acos (—\/Zn) + Bsin (—\/Xn) = Acos (\/Zn) + Bsin (\ﬁn)
Acos (\/Xn) — Bsin ( /\n) = Acos (\/Xn) + Bsin (\/Xn)
2B sin( /\n) =0 3)
Applying second B.C. gives
O’ (-n) =0’ (n)
~AVAsin (—\/Xn) + BV cos (—\/Xn) —AVsin (\/Zn) + BV cos (\/Xn)
AV sin (\/Xn) + BVA cos (\/Xn) ~AVAsin (\/Xn) + BV cos (\/Xn)
AV sin (\/Xn) ~AVAsin (\/Xn)

2A sin( /\n) 0 (4)

Equations (3,4) can be both zero only if A = B = 0 which gives trivial solution, or when
sin (\/Zn) = 0. Therefore taking sin (\/Xn) = 0 gives a non-trivial solution. Hence

\/Xn:nn n=1,2,3,--
A, = n? n=1,23, -
Hence the solution for © is

®=A)+ Z A, cos (n6) + B,, sin (n0) (5)

n=1

Now the R equation is solved

The case for A = 0 gives
”R” +rR' =0
1
R”"+-R"=0 r+0
r
As was done in last problem, the solution to this is
R(r)y=Aln|r|+C

Since r > 0 no need to keep worrying about [r| and is removed for simplicity. Applying the
B.C. gives

1
R = A-
r
Evaluating at r = a gives
1
0=A-
a
Hence A =0, and the solution becomes
R(r)=Cy

Which is a constant.

Case A > 0 The ODE in this case is
PR’ +rR' —=n?*R =0 n=1,2,3,-
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Let R = ¥, the above becomes
2p (p - 1) 72 4 rprPl — 2P = 0
p(p—l)rp+prp—n2rp =0
p(p—1)+p—n2 =0
P =1
p==n
Hence the solution is
Rn(r):Cr”+Dr1—n n=1,2,3,---

Applying the boundary condition R’ (a) = 0 gives

R, (r) = nC,r"' —=uD, ,,n1+1
0 =Rj (a)
=nC,a" ' -nD, L
ah+1
=nC,a*" - nD,
= C,a*" - D,
D, = C,a*"

The solution becomes

1
R,(r)=C,r"+ Cnaznr—n n=1,2,3,-

2n
a
=C, (r” + —)
1/-1’1

Hence the complete solution for R (r) is

00 2n
R(r):C0+ZCn(r”+i—n) (6)
n=1

Using (5),(6) gives
u, (r,0) =R,0,

Ag + Y, Ay cos (n0) + B, sin (n6)

a 612”
u(r,0)=|Co+ EC”(rn ¥ —)]
n=1 r n=1
b aZn o] azn
= Do + Zzll Ay cos (n6) C, (r” + r—n) + 2:]1 B, sin (n0) C, (r” + r_n)

Where D, = CyAy. To simplify more, A,C, is combined to A, and B,C,, is combined to B,,.
The full solution is
2n 2n

u(r,0) =Dy + i A, (r” + a_) cos (n6) + i B, (r” + a,,_n) sin (n6)

n
n=1 ¥ n=1

The final nonhomogeneous B.C. is applied.

u(b,6) =g ()
00 a2n 00 aZn
¢(6) =Dy + 712::1 A, (b” + b_”) cos (n0) + nz::l B, (b" + b_”) sin (n6)
For n = 0, integrating both sides give
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For n > 0, multiplying both sides by cos (m0) and integrating gives

fn g (0) cos (m0)do = fﬂ Dg cos (m6)deo

f E A, (b” + ;) cos (m0) cos (n0) dO

ﬂn 1
2n
f Z B, (b” + —) cos (m0) sin (nO) do
—Ttn=1
Hence
f g (0) cos (m0O)do = f Dy cos (mB)do
-7 OO—T[ azn .
+ ;An (b" + b_”) f_ cos (m0) cos (n6) do
0_0 aZn T
+ EBn (b” + b—n) f_ cos (m0) sin (10) dO 7)
But
f cos (mB) cos (n)d6 = n n=m=%0
f cos (mB) cos (n6)d6 =0 n#m
And
f cos (m6) sin (n6)do =0
And

f Dy cos (mB)do =0
Then (7) becomes
7T a2
f 2(6) cos (n6) dO = nA, (b” + b—n)
—Tt
1 [ (6) cos (n6) do
_ - -m
n - P a2n
b+ o
Again, multiplying both sides by sin (m0) and integrating gives

f " 2 (0)sin (m6) do = f " Dy sin (m0) do

8)

f E A, (b” + j) sin (m6) cos (n0) dO

7Tn 1 b"
211
f Z B, (b” + b_) sin (m06) sin (n6) dO
—Tn=1
Hence
f 2 (6)sin (m0) do = f Dy sin (m0) d0
=Tt OO—TZ azn .
+ 1;1 A, (b" + b_”) f_ sin (m6) cos (n6) dO
00 aZn T
+ 3B, (b“ + b—n) f sin (m0) sin (10) dO )
n=1 -
But
f sin (m0) sin (nB)do = 7t n=m#0
f sin (m0O) sin (n0)do = 0 n#m
And

fn sin (m6) cos (n6)do =0

=Tt
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And
f Dy sin (m6)d6 = 0
Then (9) becomes
Tt u2n
f ¢(6)sin (n6)d6 = 1B, (b” + b—n)
—Tt
. :lf_ng(e)sm(ne)de
112"

Tt
bn+b_n

This complete the solution. Summary

2n

00 n 00
u(r,0) =Dy + 2 A, (r” + i_”) cos (n6) + 2 B, (r” + ar—n) sin (n6)
n=1 n=1

1 7T
D, = Zf 2(6)do

1 [ (6) cos (n6) do
A — —Tl

n e 112_”
b+
1 [ g(0)sin(n0)do
B, = ——"
o b+

bn

The following are some plots of the solution.

1.0 -1.0

Figure 2.10: Solution using f(0) = sin(36%),a = 0.3,b = 0.5
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1.0 -1.0

Figure 2.11: Solution using f(0) = 36,4 =0.3,b = 0.6

1.0

200

0 u(r.theta)

Figure 2.12: Solution using f(6) =1000,a = 0.1,b = 0.4

2.4.5 Problem 2.5.14 (problem 5)

2.5.14. Show that the “backward” heat equation

ou_ o
o ez

subject to u(0,t) = u(L,t) = 0 and u(z,0) = f(z), is not well posed. [Hint:
Show that if the data are changed an arbitrarily small amount, for example,

§(2) = §(z) + = sin 72

for large n, then the solution u(z,t) changes by a large amount.]

-1Ju _ d%u
k ot Jx2
u(0,t)=0
u(L,t)=0
(x,0) = f (x)
Assume u (x,t) = XT. Hence the PDE becomes
1
—%T’X =X"T
1 T/ B X//
kT X
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Hence, forA real
1 T/ X// A
kKT ~ X

The space ODE was solved before. Only positive eigenvalues exist. The solution is

X(x) = i B, sin (\//\—nx)
n=1

nm\2
/\n:(T) 1’1:1,2,3,"'
The time ODE becomes
T, = A,T,
T, -A,T,=0

With solution
T,(t) = AneA"t

T(t) = ), At

n=1
For the same eigenvalues. Therefore the full solution is
0 nm\2
u(x,t) = 2 C,, sin (nTnx) e(T) ! (1)
n=1

Where C, = A, B,,. Applying initial conditions gives
- . (nm
f(x) = ;::1 C,, sin (Tx)
Multiplying by sin (%x) and integrating results in
L L
j(; f(x) sin(%x) dx = j(; sin % )
o L
Y Cu [ sin
0

n=1

BT
%

) sin (nLnx) dx

Il
@)

C
L
2

m

f f (x)sin (—x) x
0
The solution (1) becomes

nr 2
w(x,b) = ( f £(@)sin (—x) dx) (sm (%x) A7) f) )
Assuming initial data is changed to f(x)+ - sm( ) then
1
f(x)+ - sin (%x) = nz::l C, sin (nfnx)
Multiplying both sides by sin (%x) and integrating
1 b ,ymn L imm \ & . (nm
f f(x)sin (—x) dx + = sin (Tx) dx = sin (Tx) ,12::1 C, sin (Tx)

0 0

Therefore

P‘IN

=~

F(x)sin (%x) dx + %
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Therefore, the new solution is

ii(x,t) = i (% fo(x) sin (n%x) dx + %) sin (nfnx) e(%)zf
EZ: f f (x)sin (Tnx) dx sin (%x) e(m)2 + % sin (%x) e(%)zt
5_01 f f(x) sm(%x) dx sin (n—x) f Z —sin (—x) (T )

nr

2
But 2:’:1 %£Lf(x) sin (%x) dx sin (%x) e(f) "=y (x,t), therefore the above can be written
as

i (x, t) =u(x,t)+ i %sin (nfnx) e(nTn)zt

n=1

For large n, the difference between initial data f(x) and f(x) + %sin (%x) is very small,
nm\2
since % — 0. However, the effect in the solution above, due to the presence of e(T) s

nrt 2
that e( ) increases now for large n, since the exponential is to the positive power, and
it grows at a faster rate than * grows small as n increases, with the net effect that the

produce blow up for large n. This is because the power of the exponential is positive and

nr 2
not negative is normally would be the case. Also by looking at the series of T which

nm\4 £ nm\6 3 1 (%)t 1 1/nm\4#2 1 nn\6 8 .
p— PR p— cen — L - - — —_ - — —_ ces
1s1+(L)2+(L)3!+ , then —e expandston+n(L)2+n(L)3!+ which
becomes very large for large n.

In the normal PDE case, the above solution would have instead been the following
Ry

— 1 _
i (x,t) :u(x,t)+’§£sin(nfnx)e (7

nm\2

And now as n — oo then Z 15 sm( Lnx) e_(T) ' 0 as well. Notice that sin (%x) term is
not important for this analy51s as its value oscillates between -1 and +1.

2.4.6 Problem 2.5.22 (problem 6)

2.5.22. Show the drag force is zero for a uniform flow past a cylinder including
circulation.

The force exerted by the fluid on the cylinder is given by equation 2.5.56, page 77 of the
text as

_ 27T
= —f p (cos 6, sin 6) ad6
0

Where 4 is the cylinder radius, p is the fluid pressure. This vector has 2 components. The
x component is the drag force and the y component is the left force as illustrated by this
diagram.
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Lift force (y direction)
F,=- f027rpsin(9)a de

\

\
radius = a

F, = — fOQTrpcos(H)a do

Drag force (x direction)

Therefore the drag force (per unit length) is

27T
F,=- p cos BadO (1)
0

Now the pressure p needs to be determined in order to compute the above. The fluid
pressure p is related to fluid flow velocity by the Bernoulli condition

1
p+5pluf=C 2)
Where C is some constant and p is fluid density and # is the flow velocity vector. Hence in
order to find p, the fluid velocity is needed. But the fluid velocity is given by

i =uf+ugo

Since the radial component of the fluid velocity is zero at the surface if the cylinder (This
is one of the boundary conditions used to derive the solution), then only the tangential

component comes into play. Hence || = |—(Z—\f| but

r a?
\P(T',Q) =0 111(;) + Uy (T"— 7) sin 6

Therefore
A4 (o] a? .
W = 7 +1/l0(1+ r—z)sme
And hence
il A'Y
i =|-—
or
a + 1+ 2\ 0
=|-—+u — | sin
r 0 r2
At the surface r = a, hence
| = |—% + g sin 8|

Substituting this into (2) in order to solve for pressure p gives
p+ 1p (—C—l + Zuosin6)2 =C
2 a
p=C- 1p (—C—1 + 2uosin6)2
2 a
Substituting the above into (1) in order to solve for the drag gives

27 1 1 ) 2
F,=- f C-=p (—— + 2uq sin 8) cos BadO
0 2 a

The above is the quantity that needs to be shown to be zero.

270 a 270 o 2
F, = —aCf cos 0d0 — =p f (—— + 2ug sin 6) cos 6d6
0 20 Jy a
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But 1;277 cos 0d0 = 0 hence the above simplifies to
270 2
F, = —gpj; (—% + 2ug sin 6) cos 640

a (2 c3 s .2 1.
:—Epf a—20056+4uosm 80088—4;u081n90089d9
0
a C% 27 ) 2m ) 1 2n
=—=p [—zf cos@d6+4u0f sin 60088d6—4—u0f sm@cos@d@]
2 a 0 0 a 0

But Kﬂ cos 0dO = 0 and fﬂ sin 0 cos 8dO = 0 hence the above reduces to

27
F, = —4apu} f sin” @ cos 0d0
0

But sin’ 6 = cos (20) and the above becomes

1 1
2 2

2 (1 1
F,= —4apu%f (E ~ 5 cos (26)) cos 0d0
0

1 27T 1 27T
= —dapuj | = cos 6dO — = cos (26) cos 6dO
*\2J, 2Jy

But LG cos 0d0 = 0 and by orthogonality of cos function l;zn cos (20) cos (6) dB = 0 as well.
Therefore the above reduces to

F, =0

The drag force (x component of the force exerted by fluid on the cylinder) is zero just
outside the surface of the surface of the cylinder. Which is what the question asks to show.

2.4.7 Problem 2.5.24 (problem 7)

2.5.24. Consider the velocity ug at the cylinder. If the circulation is negative, show
that the velocity will be larger above the cylinder than below.

Introduction. The stream velocity # in Cartesian coordinates is

i =ui+vf
oV OV
=3y ox .

Where W is the stream function which satisfies Laplace PDE in 2D V2W = 0. In Polar
coordinates the above becomes

= u,b+ugb
=-—F-—0 (2)
The solution to V2W = 0 was found under the following conditions

1. When r very large, or in other words, when too far away from the cylinder or the
wing, the flow lines are horizontal only. This means at r = co the y component of

IV (x,
7 in (1) is zero. This means # = 0. Therefore ‘I’(x,y) = 1oy where 1, is some

constant. In polar coordinates this implies W (r, 0) = uyrsin 0, since y = rsin 0.

2. The second condition is that radial component of 7 is zero. In other words, %‘;—\Z =0

when r = a4, where 2 is the radius of the cylinder.
3. In addition to the above two main condition, there is a condition that W =0 atr =0

Using the above three conditions, the solution to V2W = 0 was derived in lecture Sept. 30,
2016, to be
2

r .
W (r,0) :clln(5)+u0(1’—7)sm6
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Using the above solution, the velocity # can now be found using the definition in (2) as
follows

10V 1 a?
PR TR U R
A4 C1 a2 .
W:7+M0 1+7"—2 sin 6
Hence, in polar coordinates
_ (1 a? ~ c1 a2\ . A
n=|-u|r-— cos 07— — +up 1+r—2 sin@) 0 (3)

Now the question posed can be answered. The circulation is given by
270
r= f ugrdo
0

2
But from (3) ug = - (% + Uy (1 + i—z) sin 8), therefore the above becomes

27 0 a2
T:f —(—+u0(l+—2)sin6)rd6
0 r T

At r = a the above simplifies to

e o )
I= f2 —(— +2u051n9)ad9
0 a
27T
= f —c1 — 2aug sin 6d6
0

27T 27T
- f €1d0 — 2auy f sin 6d6
0 0

But l;zn sin 646 = 0, hence

271
r= —clf d6
0

=-201T

Since I' < 0, then ¢; > 0. Now that c; is known to be positive, then the velocity is calculated

at 0 = ? and then at 6 = % to see which is larger. Since this is calculated at r = 4, then
the radial velocity is zero and only 1y needs to be evaluated in (3).

-7t
At627
C1+ 1+ s (_n)
Ui-my =—|—+U — |sin|—
(%) r 0 2)° 2
c1 s 2\ (n)
=—|—-u sin | —
r 0 r2 2
_|a a?
= - 7—140 1+1’_2
Atr=a
U(-n :—(C—l—ZuO)
(%) a
=9 oy, (4)
a
+7
At6—7
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Atr=a
(5 +2u0)
U-ny = —|— U
(%) a 0
5]

=-— " 2up (5)

Comparing (4),(5), and since c; > 0, then the magnitude of uy at g is larger than the

magnitude of uy at ? Which implies the stream flows faster above the cylinder than below
it.
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25 HW 4

2.5.1 Problem 2.5.24

2.5.24. Consider the velocity ug at the cylinder. If the circulation is negative, show
that the velocity will be larger above the cylinder than below.

Introduction. The stream velocity # in Cartesian coordinates is

i =ui+vj
oV, IV
=5 o (1)

Where W is the stream function which satisfies Laplace PDE in 2D V2W = 0. In Polar
coordinates the above becomes

= u,?+uyh
=-——7-—0 (2)
The solution to V2W = 0 was found under the following conditions

1. When r very large, or in other words, when too far away from the cylinder or the
wing, the flow lines are horizontal only. This means at r = co the y component of

&\I/(x,y)
Ix

constant. In polar coordinates this implies W (r, 0) = uyrsin 0, since y = rsin 0.

7 in (1) is zero. This means = 0. Therefore \I/(x,y) = 1oy where 1, is some

2. The second condition is that radial component of 7 is zero. In other words, %%j =0

when r = a, where 2 is the radius of the cylinder.
3. In addition to the above two main condition, there is a condition that W =0 at r =0

Using the above three conditions, the solution to V2W = 0 was derived in lecture Sept. 30,
2016, to be

r a?
WY(r,0)=c ln(—) + up (r— —) sin O
a r

Using the above solution, the velocity # can now be found using the definition in (2) as
follows

10¥ 1 a?
PR TR (f‘ 7)‘3086
a_\ll = C—1+u0(1+a—2)sin6
ar r r?
Hence, in polar coordinates
L‘t:(luo(r—f)COSG)?—(c—l+u0(1+é)sin9)é (3)
r r r r

Now the question posed can be answered. The circulation is given by

27T
T:f ugrdo
0

2
But from (3) ug = - (% + 1 (1 + j—z) sin 6), therefore the above becomes

270 2
F:f —(C—l+u0(1+a—2)sin6)1’d9
0 r T
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At r = a the above simplifies to

27T o
I= f —(; +2uosin6)ad9

27T
= f —Cq1 — 2aug sin 6d0O
0

27T i
=- €1d0 — 2au, f2 sin 6d6
0

But l;zn sin 6d6 = 0, hence

271
T= —clf d0
0

=-2011

Since I' < 0, then ¢; > 0. Now that ¢; is known to be positive, then the velocity is calculated

at 0 = ? and then at 6 = % to see which is larger. Since this is calculated at r = 4, then
the radial velocity is zero and only 1y needs to be evaluated in (3).

At6=—>
= C1+ 1+a2 '(_n)
wgy =\ (i ) in (3
2
C1 Tt
=- 7—u0 1+1’2)sm(2))
1 1+a2
:———u —_—
r 0 r2
Atr=a
wz)== (5 ~2)
2 a
=9 oy, (4)
a
At6:+2—”
G a2\  (m
wemy== (3 +m(1 ) (3)
[Srfi )
= + Uy —2
Atr=a

(3

= —— —2MO (5)
a

Comparing (4),(5), and since c¢; > 0, then the magnitude of uy at g is larger than the

magnitude of u, at % Which implies the stream flows faster above the cylinder than below
it.
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2.5.2 Problem 3.2.2 (b,d)

3.2.2.  For the following functions, sketch the Fourier series of f(z) (on the interval
—L < z < L) and determine the Fourier coefficients:
x(a) flx)==zx (b) f(z) =€
= (c) f(:t)=sin% (d) f(:;-):{ 2 z:g
1 L/2
© f@={4 AL (0 s@={7 25
© f@=-{; 230
2.521 Partb
The following is sketch of periodic extension of e™ from x = -L---L (for L = 1) for

illustration. The function will converge to e™ between x = —L --- L and between x = -3L ---~L
and between x = L---3L and so on. But at the jump discontinuities which occurs at x =
---,=3L,-L,L,3L, --- it will converge to the average shown as small circles in the sketch.

i

L [ L L I
3 -2 -1 3 1 2 3
Periodic extension of exp(-x) from -1...1

By definitions,

1 T/2
ag = — (x) dx
1 Iz 27
= — —|x]|d
" =70t (X)COS( (T)x) i

1 T2 _ 2n
b, = T_/2 f_mf(x) sin (n (T) x) dx

The period here is T = 2L, therefore the above becomes

1 L
= — d
ag 2Lj:Lf(x) X

1 L e

a, = I _Lf(x) cos (nzx) dx
1 L (T

b, = I _Lf(x) sin (nzx) dx

These are now evaluated for f (x) =e™

1 L 1 (e*\" -1 ., -1 el —e
= — _xd = — | — =— (¢~ = — -L _ oL =
00 f_Le ) (—1) L @ = gp (=) = 5

Now a,, is found
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This can be done using integration by parts. f udv = uv — f vdu. Let

L
I= f e~ *cos (nzx) dx
L L

Tt _ nm . T _
and u = cos (nzx) Jdv=e¢* — du = - sin (nzx) ,v = —e*, therefore

L
I= [uv]EL —f vdu
L

L L
= [—e‘x CoSs (nzx)] _m e ¥sin (n zx) dx
L ;. L J_ L

R AR
[e cos(nLL)+e cos(nL(L) T _Le sin an dx

L
= [—e‘L cos (nm) + ek cos (rm)] I f e*sin (nzx) dx
LJ, I

Applying integration by parts again to f e~*sin (n%x) dx where now u = sin (n%x) ,dv =

_ nr T _
e > du= - cos (nzx) ,v = —e*, hence the above becomes

I= [—e‘L cos (nm) + el cos (nn)] - nfn (uv - fvdu)

nm
= [—e‘L cos (nm) + ek cos (nn)] -—

0
[ el cos (nm) + e cos (n )] i [ e si (nnx)]L LI Le‘xcos(nnx)dx
= - n n)|- —| |-e*sin(n— — —
L [ A L
a
n

m\2 L T
= [—e‘L cos (nm) + ek cos (nn)] - (— f e cos (n—x) dx
L) J, I

L
But f_ . e * cos (n%x) dx =1 and the above becomes

2
I = —eLcos (nm) + el cos (nm) — (n_n) I

Simplifying and solving for I

I+ (nfn)zl = cos (nm) (eL -e L)
1(1 + (nfn)z) = cos (nmn) (eL -e L)
I(L2 +LZZT(2) = cos (nm) (eL —e L)

Hence a,, becomes

But cos (nmt) = 1" hence

n L .
0= () )

1 L
b, = I f_L e~ sin (n%x) dx

This can be done using integration by parts. f udv = uv — f vdu. Let

L
I= f e ¥sin (nzx) dx
L L

Similarly for b,
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. T _ nr T _
and u = sin (nzx) Jdv=e%, > du = - cos (nzx) ,v = —e*, therefore

L
I= [uv]EL—f vdu
L

0

) n\1 nn Lo T
= |—e‘x sin (n—x)] + — e*cos (n—x) dx
L . L J.p L

L
= nfn . e~ cos (n%x) dx
Applying integration by parts again to f e~ cos (n%x) dx where now u = cos (n%x),dv =

_ —nT . TC _
e > du= ——sin (nzx) ,v = —e¥, hence the above becomes

I:nfn(uv—fvdu)

_ [—e"‘ cos (nzx)]L _ " e~ sin (nzx) dx
L L), LJ, L
L
= nfn (—e‘L oS (n%L) + el cos (n%L) - % j:L e ¥sin (n%x) dx)
L
- (cos (nm) (eL - e‘L) I i (nzx) dx)
L LJ; L
But f t e~ cos (nzx) dx =1 and the above becomes
L1, L
_nm .\ nm
I= T (COS(TIT() (e —e )— TI)
Simplifying and solving for I
2
= L) (E) I
cos (nm) (e e ) T
L ! L ( )
nm\2\ nm
_ L_ L
I(1+(T) )— Tcos(nn)(e —-e )
L2 +n?n?\ nn
_ L_ ,-L
I( 2 )—Tcos(nn)(e —e )

Hence b,, becomes

b, = H (L—Z) I% cos (nm) (eL - e‘L)

L\L2+n?r2] L
nrt
- (g cosom (e - )

But cos (nmt) = —=1" hence

b= (" () (=)

Summary
ol oL
TS
L

_ n L L
a, = (-1) (nznz +L2) (e -e)

_ n nn L L
b= () ()

f(x) = ag +§:1ancos( (%)x) + b, sin (n (%)x)

— e e
X ap + —x)+b,5si ( — )
ag Eancos(an) nsin{nrx
The following shows the approximation f (x) for increasing number of terms. Notice the
Gibbs phenomena at the jump discontinuity.
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2522 Partd

The following is sketch of periodic extension of f(x) from x

f(x)

00|

Fourier series approximation, number of terms
Showing 3 periods extenstion of

f(x)

0.0

Fourier series approximation, number of terms

w

Showing 3 periods extenstion of -L..L, with L=1

X

Fourier series approximation, number of terms
Showing 3 periods extenstion of -L..L, with L=1

w
L

10

25
20!
15

10"

05

-L..L, with L=1

25
2.0/
15
1.0/

05

—L---L (for L = 1) for

illustration. The function will converge to f(x) between x = —L---L and between x =
-3L--- - L and between x = L --- 3L and so on. But at the jump discontinuities which occurs
atx = ---,-3L,-L,L,3L, - it will converge to the average % shown as small circles in the
sketch.

83



2.5. HW 4 CHAPTER 2. HWS

; | | |
5 ; JD JD

| | | |

4 4 4 L

B 2 3

3 2
between -L..L, with L=1

Showing 3 periods extenstion of f(x)

By definitions,
1 T/2

ag = T 1 f(x)dx
1 T2 2n
a, = T_/2 _T/Zf(x) cos( (T)x) dx

1 T/2 2
b, = — f £(x)sin (n(—")x) dx
T2 J 11 T
The period here is T = 2L, therefore the above becomes

1 L

ay = Zf_Lf(x)dx
1 L

a, = ZﬁLf(x)cos(n
1 L

b, = —f f(x)sin(n x)dx
LJ

These are now evaluated for given f (x)

1 L
aozif_Lf(x)dx
1 0 L
:i(f_Lf(x)dx+fOf(x)dx)

o 0

x) dx

=R A

BN

Now a,, is found

a, = %fL f(x)cos (n%x) dx
-L
= %(jif(x) cos (n%x) dx + LLf(x) cos (n%x) dx)

1 L T
=— f X COS (n—x) dx
LJ, L
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. T
s\ n—
Integration by parts. Let u = x,du =1,dv = cos (n%x) ,0= #, hence the above becomes
n

0

_1((L 2 ( e )L
=75 CoSs an .
= 8 (”EX)O
L T
= 732 [cos (n—L) - 1]
L
T 22 [-1"-1]

Now b,, is found

b, = %fif(x) sin (n%x) dx
1

=7 (fo f (x)sin (n%x) dx + fo(x) sin (n%x) dx)
L 0

1 (L T
:Zfo xsin(nzx)dx
Integration by parts. Let u = x,du = 1,dv = sin (nzx),v = _COS(:ZX)’ hence the above
L ng
becomes
1 ( L 7 \\F L cOS (n—x)
b, = -||-—xcos (n—x) +f —dx
L nm L 0 0 n—
L
1 L L
= - (—— (L cos (nEL) - 0) + —f Cos (n—x) dx)
L\ nm L nm Jy
0
—_——
L
11 12 . L sin (n%x)
"L T Y T | T
L 0
L
= o e
L
= (-1 n+1
1) nmn
Summary
L
ag = 1
L
a, = 2.2 [-1" -1]
L
bn — (_1)1’[+1 _

f(x)=ag+ i a, cos (n (ZTT() x) + b, sin (n (ZTT() x)

n=1

(o)
i i
= ay + a,cos|n=x]+b sin(n—x)
0 nz::l” (L) " L

The following shows the approximation f (x) for increasing number of terms. Notice the
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Gibbs phenomena at the jump discontinuity.

Fourier series approximation, number of terms 3
Showing 3 periods extenstion of -L..L, with L=1
0.8} ]
0.6f ]
< 0.4 1
0.2} ]
A N N
AYAAY V vV V ]
-3 -2 -1 0 1 2 3
Fourier series approximation, number of terms 10
Showing 3 periods extenstion of -L..L, with L=1
1 0 j\ L e T T T / LA B R B B o
0.8} 1
0.6 1
Z04] ]
0.2} 1
0.0 HAMA AL AP
V N N Y ]
-3 -2 -1 1 2 3
Fourier series approximation, number of terms 50

Showing 3 periods extenstion of -L..L, with L=1
1.0F ‘ ‘ : ‘

0.8
0.6

f(x)

0.4
0.2}

0.0

-0.2%

2.5.3 Problem 3.2.4

3.2.4. Suppose that f(z) is piecewise smooth. What value does the Fourier series
of f(z) converge to at the endpoint £ = —L? at = L?

It will converge to the average value of the function at the end points after making periodic
extensions of the function. Specifically, at x = —L the Fourier series will converge to

1
S (FED+ £ )
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And at x = L it will converge to

1
S (F@+ D)

Notice that if f(L) has same value as f (-L), then there will not be a jump discontinuity
when periodic extension are made, and the above formula simply gives the value of the
function at either end, since it is the same value.

2.5.4 Problem 3.3.2 (d)

3.3.2. For the following functions, sketch the Fourier sine series of f(x) and deter-
mine its Fourier coefficients.

1 z<L/6
f(z) =cosmz/L
() Verify formula (3.3.13). () f ($)={3 Lfs z/;<L/2
O /m={3 5 @ se-{ 50

>_
X 2

The first step is to sketch f (x) over 0--- L. This is the result for L =1 as an example.

1 x<E
f(x):{O 7

Original f(x) function defined for 0..L

1.0 e
0.8
0.6
0.4r

0.2

-3 -2 -1 1 2 3

The second step is to make an odd extension of f (x) over —L--- L. This is the result.

odd extension of f(x) defined for -L..L
1.0
0.5+
-3 -2 -1 1 2 3
-0.5¢
=1.0¢

The third step is to extend the above as periodic function with period 2L (as normally
would be done) and mark the average value at the jump discontinuities. This is the result
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I_ 1.0 — F
) osf 6 0
= g = —
¢ : (? -0.5 (? i
| | | | |
Showing 3 periods extenstion of f(x) between -L..L, with L=1

Now the Fourier sin series is found for the above function. Since the function f (x) is odd,
then only b, will exist

f(x) = gbn sin (n (i—;) x)
(o) ) e
= nz::l b, sin (nzx)

T

Since f (x)sin (n%x) is even, then the above becomes

b, = %fOLf(x) sin (n%x) dx

Where

2

Tt

LJy

L

n—x) dx

L/2 n
—( 1 X sin (n—x) dx +
0 L

2 L/2
- sin (

L/2

0

0 X sin (n%x) dx)

=N

[ (ngx)]”z
_cosngy)
n_

L 0

= — _COS (T’IZ}C)]O

21 nL
= — COS(”ZE)_l]
3 -2 : nm
= — _cos (7)—1]

o)

Therefore
- 2 ni\\ . e
fx) = ,;1 pr (1 - Cos (7)) sin (nzx)
The following shows the approximation f (x) for increasing number of terms. Notice the
Gibbs phenomena at the jump discontinuity.

Fourier series approximation, number of terms 3
Showing 3 periods extenstion of -L..L, with L=1

10 - |
o.5§—
2 00! —_—
-o.5§—
10 05 00 05 10

X
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Fourier series approximation, number of terms 10
Showing 3 periods extenstion of -L..L, with L=1

1.0 -
0.5

X 0.0FaAA .
-0.5}
-1.0f

10 ~05 0.0 05 1.0

Fourier series approximation, number of terms 50
Showing 3 periods extenstion of -L..L, with L=1

1.0} 1
05/ ]
= 00! il
“05 |
~10! |
10 05 00 05 10

2.5.5 Problem 3.3.3 (b)

3.3.3. For the following functions, sketch the Fourier sine series of f(z). Also,
roughly sketch the sum of a finite number of nonzero terms (at least the
first two) of the Fourier sine series:

(a) f(z) =cosmz/L [Use formula (3.3.13).]

® sa={5 231

(c) f(x) = = [Use formula (3.3.12).]

This is the same problem as 3.3.2 part (d). But it asks to plot for n =1 and n = 2 in the
sum. The sketch of the Fourier sin series was done above in solving 3.3.2 part(d) and will
not be repeated again. From above, it was found that

fx) = g B, sin (n%x)

Where B, = % [1 - cos (%n)] The following is the plot for n =1---10.
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f(x)

f(x)

f(x)

f(x)

Fourier series approximation, number of terms 1
Showing 3 periods extenstion of -L..L, with L=1

1.0 — ]
05 ]
0.0

-05 ]

1.0  -05 00 05 1.0
X

Fourier series approximation, number of terms 3
Showing 3 periods extenstion of -L..L, with L=1

1.0 t ]
05 1
0.0

-05 1

-1.0 ]

-10  -05 0.0 05 1.0
X

Fourier series approximation, number of terms 5
Showing 3 periods extenstion of -L..L, with L=1

1.0 - :
05 ]
0.0 —

-05 :

-1.0 :

10 05 00 05 10
X

Fourier series approximation, number of terms 7
Showing 3 periods extenstion of -L..L, with L=1

1.0 1 bl
0.5 q
0.0 ~=\
-0.5 b
-1.0 ]
-1.0 -0.5 0.0 0.5 1.0
X

Fourier series approximation, number of terms 9
Showing 3 periods extenstion of -L..L, with L=1

1.0 1 1
0.5 i
0.0 — s

-0.5 ]

-1.0 ]

10 05 0.0 05 10
X

2.5.6 Problem 3.3.8

f(x)

f(x)

Fourier series approximation, number of terms 2
Showing 3 periods extenstion of -L..L, with L=1

1.0
0.5
0.0
-0.5
-1.0
—1‘,0 —0‘.5 0.0 015 110
X

Fourier series approximation, number of terms 4
Showing 3 periods extenstion of -L..L, with L=1

1.0
0.5

0.0
-0.5
-1.0

-1.0 -0.5 0.0 0.5

Fourier series approximation, number of terms 6
Showing 3 periods extenstion of -L..L, with L=1

1.0
05
0.0 — —
-05
-1.0
10 05 00 05 10

Fourier series approximation, number of terms 8
Showing 3 periods extenstion of -L..L, with L=1

1.0

0.5
0.0

0.5

Fourier series approximation, number of terms 10
Showing 3 periods extenstion of -L..L, with L=1

1.0
0.5

0.0F=A e
-0.5

-1.0

-1.0 -0.5 0.0 0.5 1.0

3.3.8.

(a) Determine formulas for the even extension of any f(z). Compare to
the formula for the even part of f(z).

(b) Do the same for the odd extension of f(z) and the odd part of f(z).

(c) Calculate and sketch the four functions of parts (a) and (b) if

f@ = {

zx x>0
2 z<0.

Graphically add the even and odd parts of f(z). What occurs? Simi-
larly, add the even and odd extensions. What occurs then?
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2.5.6.1 Part (a)

The even extension of f (x) is

f(x) x>0
f(=x) x<0

But the even part of f (x) is
S (f@+ £ ()

2.5.6.2 Part (b)
The odd extension of f (x) is

f(x) x>0
-f(=x) x<0
While the odd part of f(x) is
1
5 (0 = f (=)

2.5.6.3 Part (c)

First a plot of f(x) is given

X x>0

x <0
Plot of f(x)
1.0F
0.8}
__06]
X
T 04}
0.21
0.0, ‘ ‘ N
-1.0 -0.5 0.0 0.5 1.0
X

A plot of even extension and the even part for f (x) Is given below

Plot of even extension Plot of even part
1.0 ‘ 1.0 ‘
0.8 1 0.8
0.6 1 0.6
= £
0.4 1 0.4
0.2 1 0.2
0.0 q 0.0
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X X

A plot of odd extension and the odd part is given below
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Plot of odd extension Plot of odd part of f(x)
1.0F ‘ ‘ ‘ i
0.10}
05t 0.05}
c c
2 k]
T 00 S 0.00
c c
2 2
-0.05¢
-0.5
-0.10
-1.0 7\ L L \7 L L L L
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X X

Adding the even part and the odd part gives back the original function

Plot of (odd +even parts of f(x))
10F T T T
0.8F
5 08/
°
C
2 041
0.2}
0.0 _I 1 1 1
-1.0 -0.5 0.0 0.5 1.0
X

Plot of adding the even extension and the odd extension is below

Plot of (even extension+odd extension of f(x))
20F T T T
1.5¢
c
Re]
S 1.0f
c
=
0.5
0.0 7I 1 1 1
-1.0 -0.5 0.0 0.5 1.0
X

2.5.7 Problem 3.4.3

3.4.3. Suppose that f(z) is continuous [except for a jump discontinuity at z = xo,
f(z3) = a and f(zg) = B] and df /dx is piecewise smooth.

*(a) Determine the Fourier sine series of df /dz in terms of the Fourier cosine
series coefficients of f(z).

(b) Determine the Fourier cosine series of df /dz in terms of the Fourier
sine series coefficients of f(z).

2.5.7.1 Part (a)
Fourier sin series of f’(x) is given by, assuming period is —L --- L
- u
1)~ Rtusin ]

£ (x) ; ,, Sin an

Where
2 L
b, = Zf f’ (x)sin (n%x) dx

0
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Applying integration by parts. Let f’ (x) = dv, u = sin (n%x), thenv = f (x),du = % oS (%x)

Since v = f (x) has has jump discontinuity at x; as described, and assuming x;, > 0, then,
and using sin (n%x) =0atx=1L

b, = %fL udv
= i |([uv] + [uv] ) LL vdu]
= % [[sin (n%x)f(x)]z6 + [sin (n%x)f(x)]; _nmr f f (x) cos (—x) dx)
= % (sin (n%xa)f (xo) sin (anOf xO ) f f(x) cos (—x) dx) (1)
In the above, sin (n%x) =0 and at x = L was used. But
flx)=a
f(x5) =8

. N . . T\ . T o4\ - L . . .
And since sin is continuous, then sin (”fxo) = sin (nzxo) = sin (”zxo)- Equation (1) simpli-

fies to
b, = % ((a /3) sin (n xo) f f (x)cos (—x) dx) (2)

On the other hand, the Fourier cosine series for f (x) is given by

f(x) ~ag+ i a, CcoS (n%x)

n=1

L
ag = %j(; f(x)dx

2 L T
a, = Zj(; f(x) cos (nzx) dx
Therefore l;L f (x) cos (n%x) dx = %ﬂn- Substituting this into (2) gives

= (l-a)n(on) 7 (5

2 2nm (L
=la ﬁ)sm(”f%) LnLR(za)

Where

Hence

b, = % sin (n%xo) (oc - ﬁ) - %an (3)

Summary the Fourier sin series of f’ (x) is

’ < : Tt
f (%) ;::{ b, sin (n T x)
With b,, given by (3). The above is in terms of a,,, which is the Fourier cosine series of f (x),

which is what required to show. In addition, the cos series of f(x) can also be written in
terms of sin series of f’(x). From (3), solving for a,

a Lb 2s' (nnx)( )
= —b,— —sin|{n— o —
"' nn L0 B

f(x)~a0+2 ( b, —%sm(ano)( ﬁ))cos(nfnx)

This shows more clearly that the Fourier series of f (x) has order of convergence in a, as %
as expected.
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2.5.7.2 Part (b)

Fourier cos series of f’(x) is given by, assuming period is —L--- L

f(x) ~ i a, cos (n%x)

n=0
aozlfo’(x)dx
:%(f f'(x)dx+f f’(x)dx)

- ( ]° [f(x)]x+)

L\
=+ ([~ F @]+ [F0)-p)

_(@-p)  fO+fW)
L L

Where

—_

And forn >0

2 b Tt
a, = Zfo f’ (x) cos (nzx) dx
Applying integration by parts. Let f’ (x) = dv, u = cos (n%x), thenv = f (x),du = % sin (%x)
Since v = f (x) has has jump discontinuity at x; as described, then

a, = %LL udv
:([uv] O+ [uol, ) fo " Udu]
[cos (n%x)f(x)]zo + [cos (n%x)f(x)]; + % j;Lf(x) sin (nfnx) dx]

cos (n%x{))f (x{)) — f(0) + cos (nm) f (L) — cos (n%xar)f (xa“) + nTTc fOLf(x) sin (n%x) dx)
(1)

N N TN

But

f (xo) a

flxg) =8
And since cos is continuous, then cos (n%xg) = cos (n%xg) = oS (n%xo), therefore (1) be-
comes

L
a, = % (cos (nm) f (L) = f (0) + cos (”%xo) (0‘ - 5) + nfn j; f (x)sin (nfnx) dx) (2)

On the other hand, the Fourier sin series for f (x) is given by

fx) ~ gbn sin (n%x)

Where

2 L
b, = Zj; f (x)sin (n%x) dx
Therefore g (x)sin (n=x) dx = Ebn. Substituting this into (2) gives
L 2 g g

nn L

a, = % (cos (nm) f (L) = £ (0) + cos (n%xo) (a - [)’) + Tib”)

< Femom - 3100+ S -) 1

=2 (A0 W) - F ) + 7 cos(n7x0) () + b,

by
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Hence

4y == (1) £ (L) = £ (0)) + = cos (nTxp) (o - B) + =,

Summary the Fourier cos series of f’(x) is

f(x) ~ gan cos (n%x)

. (a;ﬁ) O

2 2
4= 2 (1) )= F©) + 5 cos (n%xo) (a—p)+ ”T”bn

(3)

The above is in terms of b,, which is the Fourier sin series of f (x), which is what required

to show.

2.5.8 Problem 3.4.9

*3.4.9

Consider the heat equation with a known source ¢(z, t):
du ka’-’u
ot~ "oz

Assume that g(z,t) (for each t > 0) is a piecewise smooth function of z.

Also assume that u and du/8z are continuous functions of z (for ¢t > 0) and
0%u/8x? and Gu /Ot are piecewise smooth. Thus,

+ q(z,t) with u(0,t) =0 and u(L,t)=0.

o o]
u(z,t) = 3 ba(t) sin %

n=1

What ordinary differential equation does b,(t) satisfy? Do not solve this
differential equation.

The PDE is

du 2%u

EZkﬁ+q(x,t)

(1)

Since the boundary conditions are homogenous Dirichlet conditions, then the solution
can be written down as

u(x,t) = gbn () sin (n%x)

Since the solution is assumed to be continuous with continuous derivative, then term by
term differentiation is allowed w.r.t. x

U N T e
i ;}lnzbn (t) cos (nzx)

d%u & T2 _ T
5 =~ 2(T) tnosin(nfx)

n=1

Also using assumption that % is smooth, then

dJu  Hdb, () . (n)
E—nz::l i S1n lex

Substituting (2,3) into (1) gives

2 db;t(t) sin (n%x) = -k 2 (%)2 b, (t) sin (n%x) +q(x,t)

Expanding g (x,t) as Fourier sin series in x. Hence

q(x,t) = gqn () sin (%x)

Where now g, (t) are time dependent given by (by orthogonality)

gn () = %LLq(x, t)sin (”Tnx)
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Hence (4) becomes

S dby (1) Sm(n x):_zk(”;) b, (t)sm(n x) E‘Ht) Sln(—x)

Cdr L
n=1 n=1
Applying orthogonality the above reduces to one term only

db;t(t) sin (n%x) = -k (%)2 b, (t) sin (n%x) +q(t), sin (%x)

Dividing by sin (n%x) #0

[o¢]

B e (Z2)s, )+ g, 00
db,, (t
wO () B, ) = 0, ) ®)

The above is the ODE that needs to be solved for b, (t). It is first order inhomogeneous
ODE. The question asks to stop here.

2.5.9 Problem 3.4.11

3.4.11. Consider the nonhkomogeneous heat equation (with a steady heat source):

Ou 8?u
a = kaL‘i + g(:c).

Solve this equation with the initial condition
u(z,0) = f(z)
and the boundary conditions
u(0,t) =0 and wu(L,t) =0.

Assume that a continuous solution exists (with continuous derivatives).
[Hints: Expand the solution as a Fourier sine series (i.e., use the method
of eigenfunction expansion). Expand g(z) as a Fourier sine series. Solve
for the Fourier sine series of the solution. Justify all differentiations with
respect to z.]

The PDE is

du 2%u
T kg 5 +8((x) (1)

Since the boundary conditions are homogenous Dirichlet conditions, then the solution
can be written down as

1w (x, ) = gbn (t)sin (n%x)

Since the solution is assumed to be continuous with continuous derivative, then term by
term differentiation is allowed w.r.t. x

U N T Tt
o= ,;1 ”an () cos (nzx)
%u &\ (T2 T
- - in(n— 2
5t =~ 2T ) 0sin(ngx) @
Also using assumption that % is smooth, then
du & db, (1) (
ot dt sin
Substituting (2,3) into (1) gives
< db, (). T &, nn)z ) ( T )
“x)l=— - — 4
o sm(an) kZ(L b, (t) sin an +g(x) (4)

n=1 n=1

2 nr x) (3)
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Using hint given in the problem, which is to expand g (x) as Fourier sin series. Hence

g = ig sin (2F)

-1 swn(7E)
& =T ngsm x

o]

Where

Hence (4) becomes

— db, (t
ngl%sin(n%x):—;;lk(n:) b, (t)sm(n x) Egnsm( )
Applying orthogonality the above reduces to one term only
db,(t) . ( m\ _ nm\2 nm
o sin (nzx) =—k (T) b, (t) sin (an) + g, sin (Tx)
Dividing by sin (n%x) #0

IE N
DDy (M) b, 0 = s, ®)

2
This is of the form y’ +ay = g,,, where a = k (Tn) . This is solved using an integration factor

d o . .
p = e, where — (e“ty) = e"q,, giving the solution

1 c
) =~ f dr+ &
y i H&n U
Hence the solution to (5) is

nrm 2 nm 2
b, (t)ek(T) ! :f T Qudt + ¢

nm\2 Lzek(%)t
b (t)e( )tzmgn‘i'c
L2 k("2
bn(t):Wgn"'Ce k(L)t

Where c above is constant of integration. Hence the solution becomes

u(x,t) = i b, (t) sin (n%x)

(o]

2
_kﬂ t . TC
E(knz >8n T ce (T) )sm(nzx)

At t =0, u(x,0) = f (x), therefore
f(x) = ;12;1 (Wg” + c) sin (n%x)

Therefore
12 2 L ) I
22 +c= I j;) f (x)sin (nzx) dx

Solving for c gives

2 b L2
c= Zj; f (x)sin (n%x) dx — 22

This completes the solution. Everything is now known. Summary
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0 (x, ) = gbn (t)sin (n%x)

L2 —k”—nzt
bn(t):(Wgn‘i-ce (L) )

2 L (0si (nn )
=1 ; g (0sin | —x
2 b (T L?
c=7 . f(x)sm(nzx)dx PRl
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26 HW S5

2.6.1 Problem 3.5.2

3.5.2. (a) Using (3.3.11) and (3.3.12), obtain the Fourier cosine series of x2.

(b) From part (a), determine the Fourier sine series of z3.

2.6.1.1 Parta

Equation 3.3.11, page 100 is the Fourier sin series of x
< s
= ) B,sin|n— -L L 3.3.11
X nz:]l nsm(an) <x< ( )

Where
2L
B, = — (-1)"" (3.3.12)
nr

2
The goal is to find the Fourier cos series of x?. Since £x tdt = x?, then x? = 2£x tdt. Hence

from 3.3.11
2 %3 Tt d
x :2f anin(n—t)] t
Sl

Interchanging the order of summation and integration the above becomes

=2, (Bn fsin (nzt) dt)
n=1 0 L

Tt
= nm L
— —2L Tt
= 2 —B, [COS (n—x) 1]
oonm L
= i _—ZLB cos (nzx) + %B
=V L nm "
-y g ( ) ol 1
1;1 - cos [n—x 2 " (1)
But a Fourier cos series has the form
x2 = Ag+ Y Ay cos (n%x) (2)
n=1
Comparing (1) and (2) gives
-2L
Ay = EBI’I
Using 3.3.12 for B, the above becomes
—2L 2L
Ay = == ()"
nm nm

2
o
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And
— 2L
A = Z By—
— i ( n+1)
n=1
_ 4L i i 1
But E 1 (-1 )”+1 nlz = E’ hence the above becomes
4L2 2
s
2 12
LZ
E}

Summary The Fourier cos series of x? is

2-4,+ Y A (E)
x Onzjlncosan

2 2L\
=—+ E (-1)" (—) cos (nzx)
3 4 nm L

2.6.1.2 Part (b)

Since

X
X3 = sf r2dt
0

Then, using result from part (a) for Fourier cos series of #? results in

X o T
—3j; A0+2Ancos(nzt)]dt

n=1

x 2 x 2 n
:3f ?dt+3f Z( 1)" (—) cos(nzt)dt

n=

2
= 12 () +32( )" ( ) cos nzt)dt

L
—L2x+3§]( 1" (zi) [K’;fﬂ
T
0

L

X

s S L oy (2 fon o)
=L%x+(3-4) i (-1D" (%)3 sin (n%x)
n=1

Using 3.3.11 which is x = 3}

0

11 Busin (n%x), with B, = % (—1)"Jrl the above becomes

) ) 3
3= LZE % (=1)"* sin (n%x) +3- 4)2‘1 (-1)" (%) sin (n%x)

Combining all above terms

i_o][ )" 4+ (3 4)(<1)" ( )3]3111(?17235)

Will try to simplify more to obtain B,
&, o LB 1] (o«
x3 = nz::l (-1) - [—2 +(3-4) (E) ]sm (nzx)

© o3 1V] . (n
= ,;1(_1) o -1 +(3X2)(E) ]Sln (nzx)
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Comparing the above to the standard Fourier sin series x> = 2:’21 B, sin (n%x) then the

above is the required sin series for x*> with
213 1\
B, = (-1)" == [—1 +(3x2) (—) ]sin (nzx)
nm nm L

Expressing the above using B,, from x! to help find recursive relation for next problem.

2L

Will now use the notation ‘B, to mean the B, for x'. Then since !B, = E(—l)wrl =

(-1)" (—%) for x, then, using ®B, as the B,, for x°, the series for x> can be written
) 2L L T
3 _ nr2 -
x° = nzzll(—l) L [—E +6(2W):|Sln (nzx)
o~ L . e
= 2 (_1)n L2 [1Bn +6 (2712_712)] Sin (nzx)

n=1

Where now

3Bn = (_1)n L?

1 L
B, +6 ZW

The above will help in the next problem in order to find recursive relation.

2.6.2 Problem 3.5.3

3.5.3. Generalize Exercise 3.5.2, in order to derive the Fourier sine series of 2™,
m odd.

Result from Last problem showed that

x = Y,Blsin (n%x)

n=1

1Bn = (_1)n (_£)

nrt

And
=) (-1)"'12

n=1

1 L . T
B, + (3x2) 2112_712 sin (nzx)
This suggests that

=) (-1)" 12

n=1

3 L ) T
B,+(5Xx4x3x%x2) ZW sm(nzx)

3B, = (-1)" 1.2 =

) L
B,+6[2——

And in general

] L T
_ nr2|m=2 :
X" = ,12::1 (-1)"L [W‘ B, + m! (2n2—712)]sm (nzx)
Where
_ " — L
an = (—1) L2 [ 4Bn + (m - 2)' (ZW)“

The above is a recursive definition to find x™ Fourier series for m odd.
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2.6.3 Problem 3.5.7

*3.5.7. Evaluate
1 1 1
1-— 3—3 + 5'3' - 7—3 +
using (3.5.6).
Equation 3.5.6 is
2 L 4L2 sin 3nx sin 5mx sin 7mx
X . TIX - - -
3 = Ex— ? SIHT + 33L + 53L + 73L + ] (356)
Letting x = % in (3.5.6) gives
L L L
L . 3ns . 5ns . Tns
2 12 412 sinﬁ+smT2 +smT2 +smT2 Y
8 4 3 L 33 53 73
12 412 n sin3§ sin5g sin 7% ]
=———|sin—+ + + + .-
4 78 2 33 53 73
L2401 1 1
T e\lTEtE T
Hence
12 LZ_ 4:LZ1 1+1 1
8 4 8 3 5 7B
L2 412 1 1 1 1
8 3 3% 5 73
e _(; 1 1 1
X8 33 5 78
Or
e _1 1 1 1
32 33 5 78
2.6.4 Problem 3.6.1
*3.6.1. Consider
0 T <x9
flx)=4¢ 1/A ze<z<z0+A
0 T>xz0+ A

coefficients c,,.

Assume that zg > —L and ¢ + A < L. Determine the complex Fourier
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The function defined above is the Dirac delta function. (in the limit, as A — 0). Now

L .
C, = if f(x)e"Trdx
aJ,

Xo+A .
_ lf 0 leznfxdx
2, A

. _qXot+A
m+x

_1leL

2L A

X0
1 L [ ingx:IxO‘*'A
= —— e L
2L Ainmt o

1 in>(xg+A) inZx
= —-V\e L 0 —e L 0)
2nAm (

elZ —1Z

. T A
Since —— =sinz. The denominator above has 2i in it. Factoring out ¢ "\ 2/ from the
above gives

 nAmn i2
Now the form is sin (z) is obtained, hence it can be written as

inZ(x +A
L O

e 2) . A
—sin[n——=
L2

c,, =
" nAm

C, =

sl o)) s o s+ 3) )

Anm nfE

2.6.5 Problem 4.2.1

4.2.1. (a) Using Equation (4.2.7), compute the sagged equilibrium position ug(z)
if Q(z,t) = —g. The boundary conditions are u(O) = 0 and u(L) = 0.

(b) Show that v(z,t) = u(z,t) — ug(x) satisfies (4.2.9).

2.6.5.1 Part (a)

Equation 4.2.7 is

%u *u
p (x) i TOW +Q(x, t)p(x) (4.2.7)
Replacing Q (x,t) by —¢
*u *u

P05 =T ~8r®

At equilibrium, the string is sagged but is not moving.
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This is equilibrium position.
Sagged due to only weight of
string

Therefore ‘98—2 = 0. The above becomes

d%u
0= TOWzE -gp (x)

This is now partial differential equation in only x. It becomes an ODE

d?up _8p()

dxz TO
With boundary conditions ug (0) = 0, ug (L) = 0. By double integration the solution is found.
Integrating once gives

dug _ [~ 8p(s)
dx 0 TO

L
(j: ((] dz)ds+ xclds+c2

= —f f p (z)dzds + c1x + c; (1)
To Jo Jo
Equation (1) is the solution. Applying B.C. to find ¢y, c,. At x = 0 the above gives

=—ds + ¢

Integrating again

dz+ cl)ds +cy

0:C2

The solution (1) becomes

g X S
U = = f f p (z)dzds + c1x (2)
To Jo Jo

And at x = L the above becomes

a=in f f 0 (2) dzds

Substituting this into (2) gives the final solution

Up = (fp(z) dz) ds + (LTO (fp(z) dz) ds)x (3)

If the density was constant, (3) reduces to

Up = &P sds + (—gp sds) X

T, LT,
gp xz gp L?

== - X
T, 2 LT, 2

gp(__gx)
To\2 2

Here is a plot of the above function for g =9.8,L =1,T; =1, p = 0.1 for verification.
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sagged equilibrium position uE

0.00
-0.02¢
-0.04¢
-0.06
-0.08¢
-0.10¢
—0.12*‘ | | ‘ | |
0.0 0.2 04 0.6 0.8 1.0
X
2.6.5.2 Part (b)
Equation 4.2.9 is
%u Ty 9*u
52 = _p ) 92 (4.2.9)
Since
%u *u
p(x) 57 © To(;—xz +Q(x, t)p(x) 1)
And
aZME 821/{1;
P S5 =Toss +QHp () @
Then by subtracting (2) from (1)
32 2 32
P T @) S = T, T QD p ()~ Ty S~ Q) ()
() (92 _QZME T i_&zuE
PRN\or " ar )~ 2\o92 ~ ax2
Since v (x,t) = u (x, ) — ug (x,t) then gt: = ?—Z - a;:lf nd a—j:z) = (;27124 - a;:f, therefore the above
equation becomes
9%v v
(X) 0-)t2 - 08 2
9%v Ty 9%
a2 p(x) dx?
(92
=

Which is 4.2.9. QED.

2.6.6 Problem 4.2.5

4.2.5. Derive the partial differential equation for a vibrating string in the simplest
possible manner. You may assume the string has constant mass density
Po, you may assume the tension Tj is constant, and you may assume small
displacements (with small slopes).

Let us consider a small segment of the string of length Ax from x to x + Ax. The mass of
this segment is pAx, where p is density of the string per unit length, assumed here to be
constant. Let the angle that the string makes with the horizontal at x and at x+Ax be 0 (x, t)
and O (x + Ax, t) respectively. Since we are only interested in the vertical displacement u (x, t)
of the string, the vertical force on this segment consists of two parts: Its weight (acting
downwards) and the net tension resolved in the vertical direction. Let the total vertical
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force be F,. Therefore

weight net tension on segment in vertical direction

—_—N—
F, = —pAxg+ (T (x+ Ax, t)sin 0 (x + Ax, t) = T (x, ) sin 0 (x, 1))

2
Applying Newton’s second law in the vertical direction F, = ma, where a, = % and

m = pAx, gives the equation of motion of the string segment in the vertical direction

&2
x$ = —pAxg + (T (x + Ax, P)sin 0 (x + Ax, £) — T (x, ) sin 0 (x, 1))

Dividing both sides by Ax

%u (x, t) (T (x + Ax)sin O (x + Ax, t) — T (x) sin O (x, t))
oz P8 M Ax
Taking the limit Ax — 0

pA

%u (x,t) J .
5z =P8 + P (T (x,t)sin O (x, t))
Assuming small angles then % = tan6 = zzz ~ sin 0, then we can replace sin 0 in the
above with g—z giving
%u (x,t) d du (x,t)
T (T(x' D =5x )
Assuming tension T (x,t) is constant, say T, then the above becomes
%u (x, ) d (du(x,t)
oz _Pg”(%( ox )

u(x,t) Eo”zu(x, H
i p  Ix?

Setting % = ¢ then the above becomes

Pu(x,t)  ,0%u(x,t)
FI R
Note: In the above g (gravity acceleration) was used instead of Q(x,t) as in the book to
represent the body forces. In other words, the above can also be written as

Pu(x,t) 0% (x,t)
gE ¢ ge TPRWD

This is the required PDE, assuming constant density, constant tension, small angles and
small vertical displacement.

2.6.7 Problem 4.4.1

4.4.1. Consider vibrating strings of uniform density pp and tension 7.

*(a) What are the natural frequencies of a vibrating string of length L fixed
at both ends?

*(b) What are the natural frequencies of a vibrating string of length H,
which is fixed at z = 0 and “free” at the other end [i.e., Ou/0z(H,t) =
0]? Sketch a few modes of vibration as in Fig. 4.4.1.

(c) Show that the modes of vibration for the odd harmonics (i.e., n =
1,3,5,...) of part (a) are identical to modes of part (b) if H = L/2.
Verify that their natural frequencies are the same. Briefly explain using
symmetry arguments.
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2.6.7.1 Part (a)

The natural frequencies of vibrating string of length L with fixed ends, is given by equation
4.4.11 in the book, which is the solution to the string wave equation
— U e e
= Sy 750) (o (5750) 3,50 (5751
u(x,t) nzz:lsm(an)( ncos(n— nSin {n—r
The frequency of the time solution part of the PDE is given by the arguments of eigen-
fucntions A, cos (n%t) + B, sin (n%t). Therefore n% represents the circular frequency w,,.

Comparing general form of coswt with cos (n%ct) we see that each mode 7 has circular

frequency given by

_mc
=TT

Forn=1,2,3,---. In cycles per seconds (Hertz), and since w = 27nf, then 2nf = n%. Solving
for f gives

Where ¢ = | /? in all of the above.
0

2.6.7.2 Part (b)

Equation 4.4.11 above was for a string with fixed ends. Now the B.C. are different, so
we need to solve the spatial equation again to find the new eigenvalues. Starting with

2 2
u = X (x) T (t) and substituting this in the PDE ? ;g’t) = cza 5;;’” with 0 < x < H gives
T"X = 2TX"
1 T’/ B X/’ 3 A
2T X

Where both sides are set equal to some constant —A. We now obtain the two ODE’s to
solve. The spatial ODE is

X"+ AX =0
X(0)=0
X' (H =0
And the time ODE is
T” + Ac*T =0

The eigenvalues will always be positive for the wave equation. Taking A > 0 the solution to
the space ODE is

X (x) = Acos (\/Zx) + Bsin (\/Xx)
Applying first B.C. gives
0=A
Hence X (x) = Bsin (\/Xx) and X’ (x) = -BVA cos (\/Xx) Applying second B.C. gives

0= —B\/Xcos (\/XH)

Therefore for non-trivial solution, we want \/ZH = gn forn=1,3,5,--- or written another
way

1
VAH = (n— E)n n=1,2,3,

Therefore
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These are the eigenvalues. Now that we know what A, is, we go back to the solution found
before, which is

u(x,t) = E sin (\//\_nx) (An cos (\//\—nct) + B, sin (\//\_nct))
n=1
And see now that the circular frequency w, is given by
Wy = \[X;C

1
~ n-— > Tt
~  H
In cycles per second, since w =27nf then

" 1
2

c n=123,--

Zﬂfn:TC
1
(-3)
fu= TR n=1,2,3,

The following are plots for n =1,2,3,4,5 for t =0 --- 3 seconds by small time increments.

(*solution for HW 5, problem 4.4.1%)

flx_, n_, t_] := Module[{HO =1, ¢ = 1, lam},

lam = ((n - 1/2) Pi/HO);

Sin[lam x] (Sin[lam c t])

13

Table[Plot[f([x, 1, t], {x, 0, 1}, AxesOrigin -> {0, 0}], {t, 0,3, .25}];
p = Labeled[Show[

Mode n=1 vibration, from t=0 to t=3 seconds

-Mode n=2 vibration, from t=0 to t=3 seconds
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Mode n=5 vibration, from t=0 to t=3 seconds

2.6.7.3 Part (c)

For part (a), the harmonics had circular frequency w, = %c. Hence for odd n, these will
generate

%c, 3%0, 5%C, 7%@ (1)
1 1
(TI—E)T[ L 2 H—E)Tl
For part (b), w, = ~—7—c. When H = -, this becomes w, = ———c. Looking at the first

few modes gives

1 1 1 1
2(1-2)7’[6 2(2—5)7'(C 2(3—5)7'(6 2(4—5)7'(
L ’ L ’ L ’ L
n 3n 5t 7n
T4 T4 /4 /4" 2
L“T“TLC @)
Comparing (1) and (2) we see they are the same. Which is what we asked to show.

C,-.-
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2.6.8 Problem 4.4.3

4.4.3. Consider a slightly damped vibrating string that satisfies

ou %y 8u
Pogiz = Togmz ~ By

(a) Briefly explain why 8 > 0.

*(b) Determine the solution (by separation of variables) that satisfies the
boundary conditions

u(0,t) =0 and wu(L,t)=0
and the initial conditions
8u
u(z,0) = f(z) and —&—(z, 0) = g(z).

You can assume that this frictional coefficient 3 is relatively small
(ﬁ2 < 47f2poTo/L2).

2.6.8.1 Part (a)

Pu T *u  Jdu

Pogr = 1052 P
The term —ﬁ% is the force that acts on the spring segment due to damping. This is the
Viscous damping force which is proportional to speed, where § represents viscous damping

coefficient. This damping force always opposes the direction of the motion. Hence if % >0

then —ﬁ% should come out to be negative. This occurs if § > 0. On the other hand, if

Ju

du s . . "
=, < 0 then = should now be positive. Which means again that g must be positive

quantity. Hence only case were the damping force always opposes the motion of the string
is when g > 0.

2.6.8.2 Part (b)

Starting with u = X (x) T (t) and substituting this in the above PDE with 0 < x < L gives
poT”X = TyTX" - BT'X
pT” BT _X"_
T, T T, T X
Hence we obtain two ODE’s. The space ODE is

-A

X" +AX =0
X(0)=0
X(L)=0

And the time ODE is
T + BT + c2AT =0
T(0) = f(x)
T7(0) =g (x)

The eigenvalues will always be positive for the wave equation. Hence taking A > 0 the
solution to the space ODE is

X (x) = Acos (\/Xx) + Bsin (\/Xx)
Applying first B.C. gives
0=A
Hence X = Bsin (\/Zx) Applying the second B.C. gives

O:Bsm(VEq
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Therefore

Hence the space solution is
- nm
ngl n S I X (1)

Now we solve the time ODE. This is second order ODE, linear, with constant coefficients.

pI” BT _
To T ToT

Porr e B ar =0
Ty Ty

T
el loarog
Po Po
Where in the above A = A, for n =1,2,3, ---. The characteristic equation is 72 + c?fr+c?A = 0.
The roots are found from the quadratic formula

_ -BxVB2-4AC

2= 2A

nr

2
Replacing A = (T) , gives

2 242
__p LB T
2p0 2\p; po L
2
A
2p0  2po L

2 2
We are told that g2 < 4p0T0%, what this means is that g2 — n? (4P0T0%) < 0, since n? > 0.

This means we will get complex roots. Let

2
A =2 (4poTo— | - p2
=hn Po OLZ ﬁ
Hence the roots can now be written as
B ivA
+

Flpg=-———+—
27 2p0 " 2pp

#t} + B, sin [#t}

Po Po

Therefore the time solution is

B

T,()=c %

A, cos

This is sinusoidal damped oscillation. Therefore

& Lt VA VA
— 2 1 -
T = E e (Ancos(zpot)+Bn81n(2 t

n=1 po

(2)

A

Combining (1) and (2), gives the total solution

— nio\ -t VA VA
u(x,t) = sin(—x)e 20 [ A, cos| =—t|+ B, sin| —t 3
)= X7 [%J @W 3)
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Where b,, constants for space ODE merged with the constants A,, B, for the time solution.
Now we are ready to find A,, B, from initial conditions. At t =0

fx) = 2 sin (n%x) A

Multiplying both sides by sin (%x) and integrating gives

fOLf(x) sin (%x) dx = fo E sin (—x) sm(nL )A dx

n=1
Changing the order of integration and summation

L oo L

fo f(x)sin(%x)dszAnj; sin(%x)sin(%x)dx
Ak

2

Hence
2 L
A, = Zj(; f (x)sin (nfnx) dx
To find B,,, we first take time derivative of the solution above in (3) which gives
J & - A A A A
—u(x,t) = 2 sin (@x)e 20" VA £if +B, £ Ccos \/—t
Jat “~ L 2pg

-—2A, sin
2po "2pg

_B
_F sin (Ex) ¢ 20’ A, cos ﬂ1,‘ + B, sin ﬂ1,‘
2po L 2pg 2po

At t = 0, using the second initial condition gives

— . (N7 VA B nm
(x) = ),sin (—x) B,— - —A, sm( x)
$ Z{ L") 2po  2pg L
Multiplying both sides by sin (@x) and integrating gives

‘[(;Lg (x) sin (%x) dx = f E sin (—x) sin (nL ) B 2—\/p_0d - f: Z%A" sin (%x) sin (n%x)

=1

Changing the order of integration and summation

f g(x)sm(—x)dx—EB 2pof sm(%x)sm(—x)dx iz%AnJ;Lsin(nznx)sm(nfnx)

n=1

_ o VAL _p L

2p902 2py 2

:’;(Bﬂ_i ]
2 "2p0  2po

Hence

Bmﬂ - f g (x)sin (—x) dx

( [ seosin(2e)acs £ )%

This completes the solution. Summary of solution
(o] _i A
u(x,t) = E sin (Ex) e ' A, cos £t‘ + B, sin| —
n=1 L ZPO
2 L
=— f f (x)sin (n_nx) dx

b= (2 [ s (Mfaes £, 20

A=n (4POT0 L2) p
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2.6.9 Problem 4.4.9

4.4.9 From (4.4.1), derive conservation of energy for a vibrating string,

dE _ 20u6'u
& =S5, (4.4.15)

where the total energy E is the sum of the kinetic energy, defined by
2
L 3 (%)2&:, and the potential energy, defined by fOL < (8) dz.

Hence

dE_1d @2d+fz “(2e)
ar 2ard o \or) T oar ) \ox)

Moving % inside the integral, it becomes partial derivative

dE 1 (L9 (du) 2 L9 (du\’
-2 OE(E) dx + — 05(5) dx (1)
But
d (du\> 9 (dudu\ Pudu udu _(dud*u
ﬁ(ﬁ) :a_(ﬁﬁ):ﬁEJrﬁﬁ:z(Eﬁ) @
And
z(%):z(w_u): Pugu  Ju ot ou Pu @)
ot \ dx ot \ dx dx dxdt dx  dx dxot ox dxdt

Substituting (2,3) into (1) gives
f du d*u oy & c2 Lz&u a%u i
dt ~2 9t 92 dx dxot
du d%u , [t 8u 2%u
—fo (Eﬁ)d"” . P T

then the above becomes

d_E_f du 82 i L%cﬂud

il L bl el | o ox dxdt

B f du d%u dr+ L&u 2%
- ¢ e Laada o dx dxat

ou d%u u &zu
- ¢ f (at 8x2) (% 8x(9t)dx )
But since the integrand in (4) can also be written as

9 (uon)_ Puon gudu
dx \ dt dx| Ixdtdx It Ix2

(92 20”11
Butﬁ—

Then (4) becomes
dE _ sz d (dudu i
dt Ix 81‘ Ix
Ju du\"
ot 8x

Which is what we are asked to show. QED.
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27 HWG

2.7.1 Problem 5.3.2

5.3.2. Consider
Q?E = T @ + + ﬂ@.
Potz = 0pgz T T PGt

(a) Give a brief physical interpretation. What signs must a and 8 have to
be physical?

(b) Allow p,x, 3 to be functions of z. Show that separation of variables
works only if 8 = cp, where c is a constant.

(c) If B = cp, show that the spatial equation is a Sturm-Liouville differen-
tial equation. Solve the time equation.

2.7.1.1 Part (a)

u __ d%u u
Pog —T0ﬁ+au+ﬁ$
The PDE equation represents the vertical displacement u (x,t) of the string as a function
of time and horizontal position. This is 1D wave equation. The term ﬁ% represents the

damping force (can be due to motion of the string in air or fluid). The damping coefhi-

cient f must be negative to make ﬁa—? opposite to direction of motion. Damping force is

proportional to velocity and acts opposite to direction of motion.

The term au represents the stiffness in the system. This is a restoring force, and acts
also opposite to direction of motion and is proportional to current displacement from
equilibrium position. Hence a < 0 also.

2.71.2 Part (b)

Let u = X (x) T (t). Substituting this into the above PDE gives
pT"X = ToX"T + aXT + BT’'X

Dividing by XT # 0

T//_TX//+ +T/
P =Tox ta+hg
T’/ T’_ X//+
P =P =loy 7@

To make each side depends on one variable only, we move p (x), 5 (x) to the right side since
these depends on x. Then dividing by p (x) gives
T/I ﬁ T’ 3 T X// a

T pT pX p

If % = ¢ is constant, then we see the equations have now been separated, since % do
not depend on x any more and the above becomes
T// T/ XII a (x)

T CT:TOP—X-FM

Now we can say that both side is equal to some constant —A giving the two ODE’s

TII T/_ A
T °T

TXH+(X A
0" v - =
pX p
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T" =cT"+ AT =0

a p
X'"+X|—+A—=1]=0
’ (To i To)

2.71.3 Part (c)
From above, the spatial ODE is
p

a
X"+ X|— — | = 1
+ (TO+/\TO) 0 1)

Comparing to regular Sturm Liouville (RSL) form, which is

d
— (pX’) + 49X + 16X =0

dx
pX" +p'X +(q+A0) X =0 (2)
Comparing (1) and (2) we see that
p=1
a
=1,

To solve the time ODE T” — c¢T” + AT = 0, since this is second order linear with constant
coefficients, then the characteristic equation is

rP—cr+A=0

Hence the two solutions are

m)t

2

NI o
+

T, (t) = e(

r=d )

The general solution is linear combination of the above two solution, therefore final solution
is

2 2

T(t) = cle(§+m)t + cze(c m)t

Where cy, ¢, are arbitrary constants of integration.

2.7.2 Problem 5.3.3

*5.3.3. Consider the non-Sturm-Liouville differential equation

¢ + a2 + r8(z) + (@6 =0,

Multiply this equation by H(z). Determine H(r) such that the equation
may be reduced to the standard Sturm-Liouville form:

2 [P %2] + bo@ + at@o =0

Given a(z), 3(z), and y(x), what are p(x),o(z), and q(z)?

115



2.7. HW 6 CHAPTER 2. HWS

? d
‘2? +a(x)£ +(AB@) +y ()P =0
Multiplying by H (x) gives
H(0)¢" (x) +H@a @) ¢ )+ HE) (ABR) +y )¢ =0 1)

Comparing (1) to Sturm Liouville form, which is

% (p¢’) +qg¢p +Aop =0
p ()" () +p ()¢ (x) + (q+Ao) p(x) =0 (2)
Then we need to satisfy
H(x) = P(x)

H(x)a(x) =P (x)
Therefore, by combining the above, we obtain one ODE equation to solve for H (x)

H (x) =H(x)a(x)
This is first order separable ODE. %/ =aor In|H| = fadx +c or

H = Ae [ a(x)dx
Where A is some constant. By comparing (1),(2) again, we see that
g+Ac=AB(x)H(x)+y(x)H (x)

Summary of solution

o (x) = B (x)H(x)
q(x) =y H(®)
P(x) = H(x)

H(x) = Ae) a0
QED

2.7.3 Problem 5.3.9

5.3.9. Consider the eigenvalue problem

zzﬁ +x‘—12 +Ap=0 with ¢(1)=0, and o¢(b)=0. (5.3.10)
dz? dz ’ o
(a) Show that multiplying by 1/z puts this in the Sturm-Liouville
form. (This multiplicative factor is derived in Exercise 5.3.3.)
(b) Show that A > 0.

*(c) Since (5.3.10) is an equidimensional equation, determine all posi-
tive eigenvalues. Is A = 0 an eigenvalue? Show that there is an
infinite number of eigenvalues with a smallest, but no largest.

(d) The eigenfunctions are orthogonal with what weight according to
Sturm-Liouville theory? Verify the orthogonality using propertics
of integrals.

(e) Show that the nth eigenfunction has n — 1 zeros.

2P +x¢ + Ap =0 (1)
$p1)=0
P (b)=0
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2.7.3.1 Part (a)

Multiplying (1) by i where x # 0 gives

A
Xp” 4§+ =9 =0 @)
Comparing (2) to Sturm-Liouville form
po” +p'¢’ + (9+ Ao) =0 3)
Then
p=x
q=0
1
o=-
x

And since the given boundary conditions also satisfy the Sturm-Liouville boundary condi-
tions, then (2) is a regular Sturm-Liouville ODE.

2.7.3.2 Part(b)

Using equation 5.3.8 in page 160 of text (called Raleigh quotient), which applies to regular
Sturm-Liouville ODE, which relates the eigenvalues to the eigenfunctions

’ v=b b ’ 2 2
N ~[poer] _ + [ (@) - adPdx
f p?odx
b 2
PO O -pMOM ¢ )]+ [Tp(¢7) - q0%dx
jb p?odx
Usingp=x,q=0,0= }1_( and using ¢ (1) =0, ¢ (b) = 0, then the above simplifies to
b 2
L - £ p(qb’) dx
f %zdx
The integrands in the numerator and denominator can not be negative, since they are

squared quantities, and also since x > 0 as the domain starts from x =1, then RHS above
can not be negative. This means the eigenvalue A can not be negative. It can only be A > 0.

QED.

(5.3.8)

2.7.3.3 Part(c)

The possible values of A > 0 are determined by trying to solve the ODE and seeing which
A produces non-trivial solutions given the boundary conditions. The ODE to solve is (1)
above. Here it is again

2" +x¢p’ + Ap =0 @)
We know A > 0, so we do not need to check for negative A.
Case A = 0.
Equation (1) becomes

2" +x¢’ =0

x¢” +¢" =0
d
- (x¢7) =0

. d c
Hence x¢" = ¢; where ¢; is constant. Therefore —-¢ = ;1 or

1
qb:clf;dx+c2

=cyIn|x|+ ¢,
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Atx =1, ¢(1) =0, hence
0= C1 ln(l) +Cy

But In (1) = 0, therefore ¢, = 0. The solution now becomes

¢ =cyInlx|
At the right end, x = b, ¢ (b) = 0, therefore
0O=c;Inbd

But since b > 1 the above implies that ¢; = 0. This gives trivial solution. Therefore
A =0 is not an eigenvalue.

Case A >0

xX2¢" +xd + Ap =0
This is non-constant coefficients, linear, second order ODE. Let ¢ (x) = x”. Equation (1)
becomes

x%p (p - 1) xP72 4+ xpxPL + AxP = 0
p(p—l)xp +pxP + AxP =0
Dividing by x” # 0 gives the characteristic equation
p(p—1)+p+A =0
pPP-p+p+A=0
p?=-A
Since A > 0 then p is complex. Therefore the roots are
p= +iVA
Therefore the two solutions (eigenfunctions) are
¢ (x) = x1VA
¢y (x) = 71V

To more easily use standard form of solution, the standard trick is to rewrite these solution
in exponential form

b1 (x) = PVAInx
da (2) = o~iVAInx
The general solution to (1) is linear combination of these two solutions, therefore
o (x) = Cleiﬁlnx " Cze—iﬁlnx (2)
Since A > 0 then the above can be written using trig functions as
¢ (x) = c1 cos (\/Xln x) + ¢y sin (\/Xln x)
We are now ready to check for allowed values of A by applying B.C’s. The first B.C. gives

0 = ¢y cos (\/Xlnl) + ¢y sin (\/Xlnl)

= ¢y cos (0) + ¢, sin (0)
= C].

Hence the solution now simplifies to
¢ (x) = cpsin (\/Xln x)
Applying the second B.C. gives

0 = ¢y sin (\/Xln b)
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For non-trivial solution we want
\/Xlnb:nn n=1,2,3,---

Ji-m

Inb
M= )2 =1,2,3
" \lnb nE LS
Therefore, there are infinite numbers of eigenvalues. The smallest is when n =1 given by
2
U
M=|—
! (lnb)

2.7.34 Part (d)

From Equation 5.3.6, page 159 in textbook, the eigenfunction are orthogonal with weight
function o (x)

bePn(X)cZ)m(x)O(X)dx:O n+m

In this problem, the weight o = 31'6 and the solution (eigenfuctions) were found above to be

¢, (x) = sin (\/)L_n In x)

Now we can verify the orthogonality

b =b 1
j; @y (%) Py (x) 0 () dx = j::1 sin (1111_7;7 In x) sin (;7:1_7119 lnx) ;dx
Using the substitution z = In x, then Z—i = }1—( Whenx=1,z=1In1=0and whenx =0,z = Inb,
then the above integral becomes

; fz=lnb ) (rm z) _ (mnz) dzdx
= sin [ —z|sin [ —z|) =
220 Inb Inb / dx

= sin | —z|sin(—z|dz
0 Inb Inb
But sin (ﬁz) and sin (%z) are orthogonal functions (now with weight 1). Hence the above

gives 0 when n # m using standard orthogonality of the sin functions we used before many
times. QED.

n

2.7.3.5 Part(e)
The n* eigenfunction is
¢, (x) = sin (% In x)
Here, the zeros are inside the interval, not counting the end points x =1 and x = b.

(n—nlnx) - (ﬂo) =0

Inb =1 \Inb
And
nm nm
—1 =—1
(lnb nx) T me Y
=nm

Hence for n =1, The domain of ¢ (x) is 0--- 7. And there are no zeros inside this for sin
function not counting the end points. For n = 2, the domain is 0--- 2 and sin has one zero
inside this (at 7), not counting end points. And for n = 3, the domain is 0--- 3w and sin
has two zeros inside this (at 7, 27), not counting end points. And so on. Hence ¢, (x) has
n -1 zeros not counting the end points.
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2.7.4 Problem 5.5.1 (b,d,g)

5.5.1. A Sturm-Liouville eigenvalue problem is called self-adjoint if

AT
P\"az " Vaz a

since then [ : [uL(v) — vL(u)] dz = O for any two functions v and v satis-
fying the boundary conditions. Show that the following yield self-adjoint
problems.

(a) $(0) = 0 and $(L) = 0
(b) ?(0) =0 and ¢(L) =
(c) 22(0) —h¢(0) = 0 and Z2(L) =0
(d) ¢(a) = ¢(b) and p(a)%2(a) = p(b) F£(b)
(€) #(a) = #(b) and $¢(a) = Z(b) [self-adjoint only if p(a) = p(b)]
(f) ¢(L) = 0 and [m the situation in which p(0) = 0] ¢(0) bounded and
hmx—oo p(x)ﬂé
*(g) Under what conditions is the following self-adjoint (if p is constant)?

&(L) + agp(0) + BE(0) = 0
42(L) +v(0) +632(0) = 0

=0

The Sturm-Liouville ODE is

d /

— (p9') + 99 =100
Or in operator form, defining L = % (p%) + ¢, becomes

L¢] = -0

The operator L is self adjoined when

fbuL[v]dx:fva[u]dx

For the above to work out, we need to show that
b

p (uv' — vu’)| =0
a

And this is what we will do now.

2.7.41 Part(b)

Here a=0and b = L.

, PN dv  du\["
p (uv —vu)|a:p uo U

d d d P
= [P (L) (u (L) i (L) -o(L) % (L)) -p(0) (u (0) % (0) - v(0) ﬁ (O))]
Substituting u (L) = v (L) =0 and (0) du
given) gives

(0) 0 into the above (since there are the B.C.
p (uv' —ou’) [p(L)(Ox —(L)-0x —(L)) p(0) (1 (0) x0—-2v(0) XO)]

=[0-
0

120



2.7. HW 6 CHAPTER 2. HWS

2.7.4.2 Part (d)

a

, N dv  du
p (uv —vu)|u:p uo — v

b
= [P (@) (u(a)v' (@) —v(a)u’ (a)) - p (b) (u (D) V" (b) — v (b) ' (b))]
=p@u(a)v' (a)-p@ov(@u (a)-p®)u)v ©)+pb)o@u (b)) (1)
We are given that u (a) = u(b) and v(a) = v(b) and p(a)u’ (a) = p(b)u’ (b) and p(a) v’ (a) =
p(b)v' (b).

We start by replacing u (a) by u (a) and replacing v (a) by v (b) in (1), this gives
pv - o) = p@u® @ -p@o B @) -pE)u®)v G) +pE)o G ©)
=u(0) (p @) @ ~p®)V ©) +0 ) (p )1 ©) - p @1 (2))
Now using p (a) u’ (a) = p(b)u’ (b) and p (a) v’ (a) = p (b) v’ (b) in the above gives

p (uv' - vu’)|z =u(b) (p B B)-p) (b)) +v(b) (p O)uw ) -p)w (b))

=u(b)(0) +v(b)(0)
=0-0
=0
2.7.4.3 Part (g)
p is constant. Hence
L dv  du\["
p (uv' - vu’)|0 =p (ua - UE) 0
=plu@)v' (L) - (L) u (L)) - (u(0) 2" (0) - v (0) u’ (0))] 1)
We are given that
u(L)+au0)+pu’ (0)=0 (2)
u’ (L) +yu(0) +ou’ (0) =0 (3)
And
v(L)+av(0)+ B0 (0)=0 (4)
v (L) +yv(0)+ 60 (0) =0 (5)
From (2),
u (L) = —au (0) — pu’ (0)
From (3)
u’' (L) = —yu(0) — ou’ (0)
From (4)
v(L) = —av (0) — v’ (0)
From (5)

v’ (L) = —yv(0) — 60’ (0)

Using these 4 relations in equation (1) gives (where p is removed out, since it is constant,
to simplify the equations)

(uv’ - vu’)lé =u(L)v (L)—ov(L)u’ (L)—u(0)v" (0) + v (0) u’ (0)
= (~au (0) - pu’ (0)) (—yv (0) - 6v' (0))
~ (~aw (0) - o’ (0)) (—yu (0) - 61’ (0))
—u(0)7v’ (0) + v (0)u’ (0)
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Simplifying
(uv’ - vu’)|é = au (0) yv (0) + au (0) 6v’ (0) + Bu’ (0) yv (0) + pu’ (0) 60’ (0)

— (a0(0) yu (0) + av (0) 1’ (0) + Bv’ (0) yu (0) + po’ (0) b1’ (0))

—u(0)7v' (0) + v (0)u’ (0)

= au (0) yv (0) + au (0) 6v’ (0) + Bu’ (0) yv (0) + pu’ (0) 60" (0)

—av (0) yu (0) — av (0) 6u’ (0) = v’ (0) yu (0) — v’ (0) du’ (0) — u (0) v’ (0) + v (0) u’ (0)
Collecting
(uv’ — vu’)lé =ad (w(0)v’ (0)—v(0)u’ (0))

+po (u’ (0)v" (0) — o' (0) u’ (0))

+ay u(0)v(0) —v(0)u(0)

+ By (' (0)v(0) — o' (0) u (0))

—u(0)7v' (0) + v (0)u’ (0)

=ad (u(0)v" (0) - v (0)u’' (0)) + By (' (0)v (0) — v" (0) u (0)) — (u (0) v’ (0) — v (0) u’ (0))

= ad u(0)v' (0) - v (0)u’ (0)) - By (" (0) u (0) - u’ (0) v (0)) — (u (0) " (0) — v (0) u’ (0))
Let u (0) v’ (0) —v (0) u’ (0) = A then we see that the above is just

(v’ —ou')|y = ad (A) = By (A) - (A)
= A(as-py-1)

Hence, for (uv’ - vu’)lé =0, we need

adb-py-1=0

2.7.5 Problem 5.5.3

5.5.3. Consider the eigenvalue problem L(¢) = —Ao(z)¢, subject to a given set of
homogeneous boundary conditions. Suppose that

/b [uL(v) — vL(u)] dz =0

for all functions u and v satisfying the same set of boundary conditions.
Prove that eigenfunctions corresponding to different eigenvalues are orthog-
onal (with what weight?).

We are given that

fbuL[v]—vL[u]dx:O 1)

But
L[v] =-A,0(x)v (2)
Llu] =-Ay0 (x)u (3)

Where ¢ (x) is the weight function of the corresponding Sturm-Liouville ODE that u,v are
its solution eigenfunctions. Substituting (2,3) into (1) gives

f Ao (1)0) v (Ao (1) ) dx = 0

b
f —Ay0 (x) uv + A,0 (x) uvdx =0
a

(A, = Ap) fba(x) uvdx =0

Since u, v are different eigenfunctions, then the A,,— A, # 0 as these are different eigenvalues.
(There is one eigenfunction corresponding to each eigenvalue). Therefore the above says
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that
fba(x)u(x)v(x)dx -0

Hence different eigenfunctions u (x),v (x) are orthogonal to each others. The weight is o (x).

2.7.6 Problem 5.5.8

5.5.8. Consider a fourth-order linear differential operator,
&

dz?’

(a) Show that uL(v) — vL(u) is an exact differential.

(b) Evaluate fol [uL(v) — vL(u)] dz in terms of the boundary data for any
functions u and v.

(c) Show that fol [uL(v) — vL(u)] dz =0 if u and v are any two functions
satisfying the boundary conditions

$0) = 0 ¢1) = 0
20 = 0 1) = o0

(d) Give another example of boundary conditions such that

L=

/ l [uL(v) ~ vL(u)] dz = 0.
0

(e) For the eigenvalue problem [using the boundary conditions in part (c)]

di¢

azh + A% =0,
show that the eigenfunctions corresponding to different eigenvalues are
orthogonal. What is the weighting function?

d4
T dd
2.7.6.1 Part (a)
a* d*
uL [v] —oL[u] = ud_xz - Ud_le
= 0@ — ou®

We want to obtain expression of form % () such that it comes out to be uv® — vu®. If we
can do this, then it is exact differential. Now, since

d_ (uvlu _ M’U”) =u'v" + MU(4) —u'v = uwv” (1)
X

And

d_ ('()1/[,” _ ,Ulull) =ou" + '01/[(4) —o"'u =o'u” (2)
X

Then (1)-(2) gives

d
d_ (uv”’ _ M/Z)”) _ d_ (UM"/ _ U’M”) — (M’Z)”/ + MU(4) —u’v" — M’U”/) _ (U/u/// + UM(4) - - Z)/Z/L”,)
X X

=" + MU(4) —u'o =W =o'y — UM(4) + 0"’ +o'u”

= uo® — ou®
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Hence we found that

177

— W - - o’ +v'u”) = uv® —ou®

dx
= uL [v] — vL [u]

Therefore uL [v] — vL [u] is exact differential.

2.7.6.2 Part (b)

b
I:f uL [v] — oL [u] dx

= ’ i (uv"”’ —u
. dx
= uv" —u'v’ —vu

= u )" () - B) " (b) - v B)u” (b) + 0 (b)u” (b)
—(u(a)v" (a) —u' (a)v" (a) —v(a) u"’ (a) + v’ (a) u” (a))

’

o —ou + v’u”) dx

b
"y o'u |,1

Or
I=u)v” (b)-u’ (b)v” (b)—v (b)u”” (b)+v (b)u” (b)—u(a)v"” (a)+u’ (a)v” (a)+v(a)u”’ (a)—-v’ (a) " (a)

2.7.6.3 Part (c)
From part(b),
1
I= f uL[o] - oL [u]dx = uv" —u'v" —ou’” + v'u"|] 1)
0

Since we are given that

$0)=0

¢’ (0)=0

p1)=0

0" (1)=0

The above will give

u(0)=v0)=0
w(0)=20)=0
ul)=v1)=0

W (1) =v"(1)=0

Substituting these into (1) gives

fl uL[v]-oL[uldx=u@)o” 1) -u' W)v” D) -o@Quw” Q1)+ D)u” (1)
0
—u(0)v"” (0) +u’ (0)v” (0) + v (0) ' (0) — v’ (0) u” (0)

Therefore

fl uL[v]—oL[u]ldx=0x0"” 1)-0-0Oxu"”"1)+0-(0x2"(0)+0+ (0xu"(0)-0
0

=0

124



2.7. HW 6 CHAPTER 2. HWS

2.7.6.4 Part (d)

244

Any boundary conditions which makes uv"”” —u'v”" —ou'” + z/u”l(l) = 0 will do. For example,

¢0)=0
¢’ (0)=0
¢(1)=0
¢’1)=0
The above will give
u(0)=v0)=0
uw0)=v0)=0
ul)=v1)=0

uw@1)=v"(1)=0
Substituting these into (1) gives

fl uL[v] —oL[u]dx =u@)o”" 1) -u' 1)0”" Q1) —o@Q)u"”” 1)+ Q) u” (1)
0

—u(0)v"” (0) + u’ (0)v” (0) + v (0) u””” (0) — v’ (0) u”’ (0)
=O0xv"”1)-0xv”"1)-Oxu" Q)+ Oxu"(@))
—(0x v (0)) + (0xv"”(0) + (0 xu"” (0)) — (0 xu"(0))

=0
2.7.6.5 Part (e)
Given
4
@qﬁ) +Ae¥p =0
Therefore
L[¢]=-2e"p
Therefore, for eigenfunctions #,v we have
Lu] = -A,efu
L[v] = -A,e%0

Where A, A, are the eigenvalues associated with eigenfunctions u,v and they are not the
same. Hence now we can write

1
o:f uL [v] - oL [u] dx
0
1
=f u (—A,e%v) — v (-A,e5u) dx
0
1
= f A, uv + A, efuvdx
0
1
_ f (A, = Ay) (¢¥uv) dx
0

1
(A, - A,) f (¢*1uv) dx
0
Since A, — A, # 0 then

1
f (uv)dx =0
0

Hence u,v are orthogonal to each others with weight function ¢*.
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2.7.7 Problem 5.5.10

5.5.10. (a) Show that (5.5.22) yields (5.5.23) if at least one of the boundary con-
ditions is of the regular Sturm-Liouville type.

(b) Do part (a) if one boundary condition is of the singular type.

2.7.7.1 Part(a)

Equation 5.5.22 is

p ($1005 — 20%1) = constant (5.5.22)

Looking at boundary conditions at one end, say at x = a (left end), and let the boundary
conditions there be

P (a) + B¢’ (a) = 0

Therefore for eigenfunctions ¢, ¢, we obtain

P11 (@) + Popy (@) =0 1)
B1p2 (@) + Paps (a) = 0 (2)
From (1),
o1 @ = Loy @) )
B2
From (2)
P (a) = —&qbz (a) (4)
P2

Substituting (3,4) into ¢1¢; — P,¢] gives, at end point 4, the following
010005 0) - 92 065 0 = 61 @ (B2 @) - .0 (Bl 0
=L @0 @+ B @1 @
p2 P2
=0
In the above, we evaluated ¢1¢5 — ¢,¢] at one end point, and found it to be zero. But
D195 — P¢] is the Wronskian W (x). It is known that if W (x) = 0 at just one point, then it
is zero at all points in the range. Hence we conclude that

P19 = a1 = 0

For all x. This also means the eigenfunctions ¢, ¢, are linearly dependent. This gives
equation 5.5.23. QED.

2.7.7.2 Part(b)

Equation 5.5.22 is
p (¢1¢§ - sz(Pi) = constant (5.5.22)

At one end, say end x = g, is where the singularity exist. This means p(a) = 0. Now to
show that p (qblqbé - <j)2¢i) =0 at x = a, we just need to show that ¢,¢5 — ¢, is bounded.
Since in that case, we will have 0 x A = 0, where A is some value which is ¢;¢; — P,¢]. But
boundary conditions at x =1 must be ¢ (a) < co and also ¢’ (1) < co. This is always the case
at the end where p = 0.

Then let ¢ (a) = c; and ¢’ (a) = ¢, where ¢y, ¢, are some constants. Then we write

$1(a) =c1
¢1 (@) =
$2(a) = ¢
¢35 (a) =c;
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Hence it follows immediately that

P19y — Pap] = €162 — €201
=0

Hence we showed that ¢,¢; — ¢,¢] is bounded. Then p (gblgi)é - qbng’l) =0. QED.
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28 HWY7

2.8.1 Problem 5.6.1 (a)

5.6.1. Use the Rayleigh quotient to obtain a (reasonably accurate) upper bound

for the lowest eigenvalue of
(a) L% + (A - 22)¢ = 0 with 32(0) = 0 and ¢(1) =0
(b) £$ + (A= z)¢ =0 with 92(0) = 0 and 42(1) + 2¢(1) = 0
*(c) 9% +A¢ = 0 with $(0) = 0 and 32(1)+¢(1) = 0 (See Exercise 5.8.10.)

2.81.1 part (a)

d*¢

-+ (A-x2)¢p=0
¢’ (0)=0
1) =0
Putting the equation in the form
d*¢

25 _
Fro
And comparing it to the standard Sturm-Liouville form

¢ do
poz YV g tae =109

Shows that
p=1
g=-x
o=1

Now the Rayleigh quotient is
(poo). + [ p (o) a2
f op?dx
Substituting known values, and since ¢’ (0) = 0,¢ (1) = 0 the above simplifies to
1;1 (qb’)z + x2p%dx
Ll P2dx

A=

Now we can say that

[ (@) +22¢2dx N
f ¢p?dx

We now need a trial solution ¢,,;, to use in the above, which needs only to satisfy boundary
conditions to use to estimate lowest A,,;;,. The simplest such function will do. The boundary
conditions are ¢’ (0) = 0,¢ (1) = 0. We see for example that ¢, (x) = x> — 1 works, since

/\min = /11 <

128



28. HW 7 CHAPTER 2. HWS

@iy (x) = 2x, and ¢;,.,; (0) = 0 and ¢y, (1) =1 -1 = 0. So will use this in (1)
f (2x)% + x2 (xz - 1)2 dx
f (x2 - 1)2 dx
K (2x)% + x2 (x4 —2x% + 1) dx

f (x4 - 2x2 + 1) dx

Amin = Al <

1
£ 4x2 + x® — 2x* + x%dx

f (x4 - 2x2 + 1) dx

1
£ 3x2 + x®dx
K x4 —2x2 + 1dx
3,17 ! 1
x° + =x 2z
_ ( 7 )0 _ (1+7)
- 17 (1 2
5
0
15
7
= 21429
Hence
Ay £21429

2.8.2 Problem 5.6.2

5.6.2. Consider the eigenvalue problem

%+(A—rz)¢=0

subject to %(0) =0 and %(1) = 0. Show that A > 0 (be sure to show that
A #0).

d*
=+ (A-x2)¢p=0
¢ (0)=0
¢’ (1) =0
Putting the equation in the form
¢
2 Te=1
And comparing it to the standard Sturm-Liouville form
¢ 4o
poz YV g tae =109
Shows that
p=1
q=-x
o=1

Now the Rayleigh quotient is
(poo) + [ p (o) - a2
f op?dx
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Substituting known values, and since ¢’ (0) = 0,¢ (1) = 0 the above simplifies to
F (g/)’)z + x2p2dx
f P?dx
Since eigenfunction ¢ can not be identically zero, the denominator in the above expression

can only be positive, since the integrand is positive. So we need now to consider the
numerator term only:

A=

1, o 1
f (qf)’) dx + f x2p2dx
0 0
For the second term, again, this can only be positive since ¢ can not be zero. For the first
term, there are two cases. If ¢’ zero or not. If it is not zero, then the term is positive and we

2
are done. This means A > 0. if ¢’ = 0 then 1;1 (qb’) dx = 0 and also conclude A > 0 thanks

1
to the second term £ x2¢? being positive. So we conclude that A can only be positive.

2.8.3 Problem 5.6.4
Problem

Consider eigenvalue problem d%(r‘%) = -Ar¢,0 < r < 1 subject to B.C. |¢ (O)| < o (you

may also assume Z—f bounded). And 2—? (1) = 0. (a) prove that A > 0. (b) Solve the bound-
ary value problem. You may assume eigenfunctions are known. Derive coefficients using
orthogonality.

Notice: Correction was made to problem per class email. Book said to show that A > 0
which is error changed to A > 0.

2.8.3.1 Part (a)
From the problem we see that p = r,q = 0,0 = . The Rayleigh quotient is
1 1 2
(poer), + [ (@) —aedr
f op?dr
lw o Y
B 1;1 r¢?dr

The term - (r(qu’) expands to

1
0
(W) ¢’ 1) - (090 ¢ (0)
Since ¢’ (1) = 0, the above is zero and Equation(1) reduces to
ﬁ r (qb’)z dr
ﬁ r¢?dr

The denominator above can only be positive, as an eigenfunction ¢ can not be identically
zero. For the numerator, we have to consider two cases.

A=

case 1 If ¢’ # 0 then we are done. The numerator is positive and we conclude that A > 0.

case 2 If ¢’ = 0 then ¢ is constant and this means A = 0 is possible hence A > 0. Now we
need to show ¢ being constant is also possible. Since ¢’ (1) = 0, then for ¢’ = 0 to be true
everywhere, it should also be ¢’ (0) = 0 which means ¢ (0) is some constant. We are told
that |¢)(O)| < co. Hence means ¢ (0) is constant is possible value (since bounded). Hence
¢’ = 0 is possible.

Therefore A > 0. QED.
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2.8.3.2 Part (b)

The ODE is
r¢”" + @' + Argp =0 O0<r<l1 (1)
[0 O)f < o0
¢'1)=0

In standard form the ODE is ¢"" + %cp’ + A¢ = 0. This shows that » = 0 is a regular singular

point. Therefore we try

qb (r) = E anrn+a
n=0

Hence
Qb/ (7") = Z (7’1 + 0() anri’l+(1—l
n=0
(P” (7’) = i (Tl + 0() (n +a - 1) anrn+a—2

n=0

Substituting back into the ODE gives

o [o¢] [o¢]
r Z n+a)(n+a-1)a,r" 2+ 2 (n+a)a, "+ Ar Z a1t =0
n=0 n=0

=0
oo = J
m+a)n+a-1) anrn+a—1 + 2 (n+ ) anrn+a—1 +A E anrn+a+1 =0

)
n=0 n=0

n=0
To make all powers of r the same, we subtract 2 from the power of last term, and add 2 to

the index, resulting in
(e} o o
N n+a)m+a-1)a, 1+ Y (1 +a)a, "+ A1), a, =0
n=0 n=0 n=2

For n = 0 we obtain
(@) (a@-1)agr* T+ (a)agr* 1 =0

(@) (@-1)ag+(a)ag =0
ao(az—a+a):o

aoaz =0

But a5 # 0 (we always enforce this condition in power series solution), which implies

a=0

Now we look at n =1, which gives
MA-Dar*et+ Q) are1=0
a) = 0

For n > 2, now all terms join in, and we get a recursive relation
(n)(n=1)a, "' + (n)a,r" " + Aa,_," 1 =0
my(n-1)a,+m)a, + Aa,,_, =0

4. = _/\an—Z
" mn-1)+n
-A
= ?an—Z
For example, for n = 2, we get
-A
ap = 2—2510

All odd powers of n result in a,, = 0. For n = 4

#

-A A2
a, = 4—2112 = E = ag

20 @) @)
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Andforn=6

a Zjﬂ :i /12 ag = _A3 a
e e@)e)” ()@)(e)”

And so on. The series is
G = a,r"
n=0
=ag+0+ayr? +0+ay* +0+agr® + -
A—rza + o ag — vre ag +
27 @)#)° @)@) ()"
Vi), (V) ()
=ag|l- > + - + - (2)
z @)@ @)@

From tables, Bessel function of first kind of order zero, has series expansion given by

=35 (5

:[10—

= ()
2/ @2\2) (@) \2
z2 1 1
_ 4 6
=l tapt T et T
22 A z6
=l mt g ppe T (3)

By comparing (2),(3) we see a match between ], (z) and ¢ (), if we let z = VAr we conclude
that

¢1 (r) = agfo (\/XT’)

We can now normalized the above eigenfunction so that gy = 1 as mentioned in class. But it
is not needed. The above is the first solution. We now need second solution. For repeated
roots, the second solution will be

G2 (1) = 1 (N In (r) + 7% D] byr"
n=0
But a = 0, hence
G2 (1) =1 (NI (r) + D byr"
n=0

Hence the solution is

¢ (r) = c1¢1 (1) + 22 ()
Since ¢ (0) is bounded, then c; = 0 (since In (0) not bounded at zero), and the solution
becomes (where 4, is now absorbed with the constant c;)

() =c1¢1 ()
e

The boundedness condition has eliminated the second solution altogether. Now we apply
the second boundary conditions ¢’ (1) = 0 to find allowed eigenvalues. Since

¥ (1) = o (V)
Then ¢’ (1) = 0 implies

0=—-c; (\/X)

The zeros of this are the values of V1. Using the computer, these are the first few such
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values.

A, = 3.8317

VA, = 7.01559

A5 =10.1735
or

Ay =14.682

Ay = 49.219

A3 =1035
Hence

bn (1) = culo (VAur) (4)

G () =D P (1)
n=1
= E culo (\//\_nr)
n=1

To find c,,, we use orthogonality. Per class discussion, we can now assume this problem was
part of initial value problem, and that at f = 0 we had initial condition of f (r), therefore,
we now write

(o)

F) =Y o (VAar)

n=1

Multiplying both sides by J, (\/Amr) o and integrating gives (where o =r)

yfifMMNMWW=§L%%WMOMV@%W
n=1 n=1
- fl Cnl? (\Mmr) rdr
0
1
= ij(; J2 (\//\mr) rdr

=c,,Q
Where Q is some constant. Therefore

L f 0o (VEr) rr
" Q

C

And ¢ (1)

[s¢]

D calo (\//\_nr)

n=1
With the eigenvalues given as above, which have to be computed for each n using the
computer.
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2.8.4 Problem 5.9.1 (b)

5.9.1. Estimate (to leading order) the large eigenvalues and corresponding eigen-
functions for
d do

e ( (a:)—) + [Ao(z) + g(z)]¢ =0
if the boundary conditions are

(a) 2(0)=0 and %2(L)=0
*(b) $(0)=0 and 2(L)=0

(c) $(0) =0 and 22(L)+h¢(L)=0

From textbook, equation 5.9.8, we are given that for large A

(T e /a(t)
¢ (X) = (GP) exp [ilﬁﬁ Mdt]
(T * o . * o
= (ap) [01 cos [ﬁfo mdt] + ¢y sin [ﬁfo Mdt]] (1)

Where c;,c, are the two constants of integration since this is second order ODE. For

¢ (0) = 0, the integral K \ /%dt = ﬁ) ) /%dt = 0 and the above becomes

0=¢(0)

-1

- (gp)I (c1 cos (0) + ¢, sin (0))

-1

=0 (ap)T
Hence ¢; = 0 and (1) reduces to

P (x)=c, op%sm[\/_f 1/;8 dt]

iy 7 ECEN N G
¢ (x) =cy (ap) cos \/Xf () dt dx\/zj; p(t)dt]
_ - /a(t o(x
=0 (ap) cos \/Xf ") VA - (x)]
_ T |Ae * o
=0 (op) ; cos [\/Xj; () dt]
_ T | N 40
O=c, (ap) . cos [ﬁfo () dtJ

Which means, for non-trivial solution, that

Ljo®), 1
A Ny = (3

Hence

Since ¢’ (L) = 0 then
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Therefore, for large A, (i.e. large n) the estimate is

2.8.5 Problem 5.9.2

5.9.2. Consider P
Ex% + /\(l + .’L’)d) =0
subject to ¢(0) = 0 and ¢(1) = 0. Roughly sketch the eigenfunctions for A
large. Take into account amplitude and period variations.

¢"+A1+x)p=0

Comparing the above to Sturm-Liouville form

(po') +q¢ = 100>

Shows that
p=1
g=0
o=1+x

Now, from textbook, equation 5.9.8, we are given that for large A

(T (" /a(t)
(P (X) = (GP) exp [ilﬁﬁ Mdt]
(T v o . N0
= (ap) [01 coS [ﬁfo mdt] + ¢y sin [ﬁfo Mdt]] (1)

Where c;,c, are the two constants of integration since this is second order ODE. For

¢ (0) = 0, the integral K \ /%dt = ﬁ) ) /%dt = 0 and the above becomes

0=¢(0)

- (gp)_I (c1 cos (0) + ¢, sin (0))

-1

4

=0 (ap)
Hence ¢; = 0 and (1) reduces to

¢ (x) =c, (C’iﬂ)_I Sin[«/X fo ) 1 /%dt]

Applying the second boundary condition ¢ (1) = 0 on the above gives
0=¢@)

= (ap)_I sin [\/Xfol 1 /%dt]
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Hence for non-trivial solution we want, for large positive integer n

\/_ f G( dt =nmn

£ o(t 9®) 34

\/ p(t
£ \/1 + tdt

But 1)‘1 VI + #dt = 1.21895, hence
- = 25773
VA= 1.21895 "
A = 6.642412

Therefore, solution for large A is

P (x)=cp (op)_T sin \/Xf ,/;E?dt}
= ¢, (op) * sin|2.5773n f,/p(t dt]

-1
=cy(1+x)4 sin (2.5773n f V1 + tdt)
0

-1

i 2 2 3
=cy(1+x)4 sin (2.5773n (—5 + 3 a+ x)Z))

To plot this, let us assume ¢, =1 (we have no information given to find c,). What value of
n to use? Will use different values of # in increasing order. So the following is plot of

¢ =>1+ x)_T1 sin (2.5773n (—% + % 1+ x)g))

Forx=0---1 and for n =10, 20, 30, ---, 80.
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Plot of ¢(x) for n =10 Plot of ¢(x) for n =20
) /\ /\ /\ /\ | ) /\ /\ /\ |
g oo £ oo
-05¢ \/ \/ \/ -0.5¢ \/ V \/
Oj4 0;6 018 11

-1.0L, .
0.0 0.2
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29 HWS

2.9.1 Problem 5.10.1

5.10.1. Consider the Fourier sine series for f(z) = 1 on the interval 0 < z < L.
How many terms in the series should be kept so that the mean-square error
. L 4o
is 1% of [ f20 dz?

The Fourier sin series of f(x) =1 on 0 <x <L is given by
> . (nm
f(x) ~ I; b, sin (Tx) 1)
Where
1 L . (NT
b, = Zf_Lf(x)an(Tx)dx
1 0 . (nT L . (nm
=1 (f_L (-1)sin (Tx) dx + j; (+1) sin (Tx) dx)
0 L (nn ) -
——cos|—x
nm L 0

1

T +

1(L nmt \1 L nm \
= 1 (e [oos ()], = oo (4]

1

L

1

L

L [cos (0) — cos (nm)] - L [cos (nm) — cos (0)])
n nmn

L [1-cos(nmn)] - L [cos (nm) — 1])
nm nm

We see that b, = 0 for n = 2,4,6,---, and b, odd for n = 1,3,5,--- so we can simplify the
above to be

1(L L
by=-(—0--D]-—[-1-1
e L ! 1)
1(L L
== 2-— [—21)
nm nm
1[4
- L\nn
4
onm
Equation (1) becomes
- 4 nm
F) ~ = sin (—x) )
n:l,;,S,-»- nmn L
mean-square error is, from textbook, page 213, is given by equation 5.10.11
L o L
E-= f POo@d- Y @ f $20 (x) dx (5.10.11)
0 n=135, 0

In this problem, ¢, = sin (%x) and a, =a, = %. The above equation becomes

L - 4\* (L nm
E:j(;fZ(x)a(x)dx— E (E)fosinz(fx)a(x)dx

n=135, -
L & 16 L nm
= 2 (x) odx — — | sin®(—x]odx
22
0 n=135,.- 1" Jo L

For 0 =1 we know that

L L
j(; sin? (nfnx) odx = 5
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Hence E becomes

L i 16 L
E = f 2 dx — -
. f? (x) odx n=1§,5,... 35
But VEL £2 (x) odx for 0 =1 is just LL 12dx = L, and the above becomes
L16 ad 1
E=L--= Y, =
2m2 n=135, n?
8L ad 1
=L -= —
72 n:1§3,-- 2
We need to find N so that E = 0.01L. The above becomes
8L & 1
0 O].L = L - —2 —2
n
n=1,3,5

8L & 1
00IL-L=-= Y, =
T 4=135,.. 1
2 i 1
0.99L (—) = —
8L) i35, n?
i 1
1.2214 = —
n=135,- n?

A small Mathematica program written which prints the RHS sum for each n, and was
visually checked when it reached 1.2214, here is the result

data = Table[{i, Sum[1/n”2, {n, 1, i, 2}]}, {i, 1, 50, 2}] // N;
Grid[Join[{{"n", "sum"}}, data], Frame -» All]

n sum
1. 1.

3. ]1.11111
5. ]1.15111
7. 11.17152
9. 11.18386
11.]1.19213
13.[1.19805
15.11.20249
17.11.20595
19.11.20872
21.11.21099
23.11.21288
25.11.21448
27.11.21585
29.11.21704
31.11.21808
33.| 1.219
35.11.21982
37.(1.22055
39.11.2212
41.1] 1.2218
43.11.22234
45.11.22283
47.11.22329
49.] 1.2237

Counting the number of terms needed to reach 1.2214, we see there are 21 terms (21 rows
in the table, since only odd entries are counted, the table above skips the even n values in
the sum since these are all zero).
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2.9.2 Problem 5.10.2 (b)

5.10.2. Obtain a formula for an infinite series using Parseval’s equality applied to
the
(a) Fourier sine series of f(z) = 1 on the interval 0 < z < L
*(b) Fourier cosine series of f(z) = z on the interval 0 <z < L

(c) Fourier sine series of f(z) = z on the interval 0 < z < L

Parseval’s equality is given by equation 5.10.14, page 214 in textbook

b 00 b
f fodx =Y a2 f $2adx (5.10.14)
a n=1 a

The books uses «,, instead of a,,, but it is the same, these are the coefficients in the Fourier
series for f (x). We now need to find the cosine Fourier series for f (x) = x. This is given by

fx)=ag+ 2 a,, cos (%x)

= lfL f (x) cos (Ex)dx
[f (—x) cos (—x) dx + fL (+x) cos (—x) dx]
= %[—fo xcos(nTnx)dx+focos (nfnx)dx]
-L 0

0 nm -1+ (-1)"
" )ax = - =) g2
f xcos( 2 x) X i3
L -1+ (-1)"
f X COS (n_nx) dx = #LZ
0 L 1/l27'(2

~1+(-1)" Lz]
n2m2

Where

But

Hence

1

L
2L (-1 + (-1)")

- n?

2

Looking at few terms to see the pattern
2L (=2 -2 -2
W= 1w

—4L
QHZW n:1,3,5,--~

Therefore, we can write a,, as

And
S

:;_Lf (- x)dx+f0L(+x)dx]

a1 [xzr N xZH
2L (2], [2],
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Hence the Fourier series is

f(x):£+ i ;ﬂcos(ﬂx)

2,2
2 i35 TN L

We now go back to equation 5.10.14 (but need to add g to it, since there is this extra term
with cosine Fourier series)

b b co b
f fPodx = a%f 12dx + Y, a%f PZodx
a a n=1 a
L L\ (L > (4L b
f x2dx = (—) f dx + Z (ﬂ) f cos? (Ex) dx
0 2 0 T“n 0 L

n=135,-

B (12 © 1612 (L n

[_] :(—)L+ E - 4f cosz(—nx)dx
3 N 4 n=13s,.. 1% Jo L

. L L
Since £ cos? (Ex) dx = > the above becomes

L
L3 (12 > 1612 L
—:(—)L+ >

3 4 ey mint 2
13 12 ad 813
T(z)“ 2
n=135,
> > 8L’ i 1
3 4 n=1,3,5,~~”4
Simplifying
1 1 8 > 1
I
3 4 m _G5.n
i 1 (1 1\n*
n:1,3,5,_“n4_ 3 4/ 8
§ o1
n=1,3,5,~-.”4 96
Hence
il =1+ ! + ! + ! +
9 3% 54 74

Which agrees with the book solution given in back of book.

2.9.3 Problem 5.10.6

5.10.6. Assuming that the operations of summation and integration can be inter-
changed, show that if

f=zan¢n and g=Zﬂn¢ny

then for normalized eigenfunctions

b =)
/ fgo dz = Z anfBn,
a n=1

a generalization of Parseval’s equality.

b b [ ©© 00
f fgodx = f (Z anqbn) (Z ﬁnqbn) odx
a a \n=1 n=1
b
= f (0(1(]51 + a2¢2 + ) (ﬁlcpl + ﬁzCZ)Z + ) odx (1)
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But

(11 + aagpp + ) (B1p1 + o + +++) = 1P} + 1o + arachr s + -
+ 0P1PrP1 + o5 + rB3Prps + -
+ a3B1 P31 + AafoPapn + asPapl + -+

Which means when expanding the product of the two series, only the terms on the diagonal
(the terms with a;,¢;¢; with i = j) will survive. This due to orthogonality. To show this
more clearly, we put the above expansion back into the integral (1) and break up the
integral into sum of integrals

b b b b
ffgadx:f a1ﬁ1¢%0dx+f a152¢1¢20dx+f a1B3prpzodx + -
b b b
+f a2ﬁ1¢2¢10dx+f a2ﬁ2¢§odx+f o BzprPzodx + -+
b b b
+f a351¢3¢1adx+f a352¢3¢20dx+f ar3Bap30dx + -+

The above simplifies to

b b b b b
f fgodx = f a1 frp2odx + f apPrpiodx + f asPapiodx + -+ f a,Bupiodx + -+
a a a a a

Since all other terms vanish due to orthogonality of eigenfunctions. The above simplifies
to

j;b fgodx = i fb a,BupAodx

n=1%Yva

0o b

= nPn %d)
nE:l(aﬁfaqbax

b

Because the eigenfunctions are normalized, then f ¢Zodx = 1 and the above reduces to
a

the result needed

b o
f fgo dx = E B
a n=1

2.9.4 Problem 7.3.4

7.3.4. Consider the wave equation for a vibrating rectangular membrane (0 < z <
L 0<y<H)
Bu  , (0% B%*u
—_— = — + —_—
ot? dz2  Oy?

subject to the initial conditions

u(z,y,0) =0 and 2(z,y,0) = f(z,y).

Solve the initial value problem if
(a) u(0,y,t)=0, wu(L,y,t)=0, %—;(2,0, t) =0, %—(I, H,t)=0

*(b) §2(0,u.t)=0, (Lyt)=0, 2(z.0,t)=0, $(z,H,t)=0

2.9.4.1 part(a)

Letu=Xx)Y (y) T (t). Substituting this back into the PDE gives
T”"XY = 2 (X"YT + Y"XT)
Dividing by XYT # 0 gives
1 T// X// YN
— = — 4+
2T X Y
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Since left side depends on t only and right side depends on (x, y) only, then both must be
equal to some constant, say —A

1 TII 3 X// Y// 3

— = =-A
2T XY
We obtain the following
T” + AT =0
X// 3 A Y/I
X Y

Again, looking at the second ODE above, we see that the left side depends on x only, and
the right side on y only. Then they must be equal to some constant, say —u and we obtain

XI’_ A Y// 3
X y |~ 7#

Which results in two ODE’s. The first is

X" +uX=0
X(0)=0
X(L)=0
And the second is
A+ ¥ -
Y'=Yu-AY
Y +Y(A-p)=0
With B.C.
Y’ (0)=0
Y (H)=0

Starting with the X ODE since it is simpler, the solution is
X =¢q cos (\/ﬁx) + ¢y sin (\/ﬁx)
Applying X (0) = 0 gives
0=¢
Hence solution is
X =¢psin (\/ﬁx)
Applying X (L) = 0 gives
0 = ¢y sin (\/ﬁL)
For non-trivial solution
nm\2
yn:(f) n=1,2,3,--

And the eigenfunctions are

X, (x) = sin (nfnx)
We now solve the Y ODE.

Y+ (A= p,)Y =0
Assuming that (/\ - y) > 0 for all A, u, (we know this is the only case, since only positive
A — u, will be possible when B.C. are homogeneous Dirichlet). Then, for (A - y) > 0, the

solution is
Y (y) = (1 COS (\//\ - yny) + ¢y sin (\M - yny)
Y’ = —c;y/A — p, sin (\/A - yny) + oA = i, cos (\M - yny)

Applying B.C. Y’ (0) = 0 the above becomes

0= Cz\/A — Hn
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Hence ¢, = 0 and the solution becomes

Y = ¢y cos (\M - yny)

Y’ = —c;y/A =y sin (VA = 1,y)
Applying second B.C. Y’ (H) = 0 gives

0 = —c;y/A = sin (VA - i, H)
For non-trivial solution we want
sin (VA - p,H) = 0
V/\nm — Uy =m

TC
H
2
Tt
b3

7T\2
/\nm:(mﬁ) + Uy m=0,1,2,---

Hence the eigenfunctions are
U
Ynmzcos(mﬁy) m=0,12,.-,n=1,2,3,--

For each n,m, we find solution of T” + c?A,,,T = 0.The solution is
Ty (£) = A,y COS (c )\nmt) + B, sin (c /\nmt)
Putting all these results together gives

u (x,y, ) z:: 2:: T (£) Xy (%) Ynm( )
[Anm cos (c An,mt) + B, sin (c An,mt)] sin (%x) cos (m%y)

. (nT Tt
A, COS (c Anmt) sin (Tx) cos (m Ey)

I
N
DMz i

1m=1

=
I
3
I

DM

1

Z Z B, sin (c Anmt) sin (%x) cos (m%y)

e
83

n=1m=1
We now apply initial conditions to find A,,,, B,,,. At t =0
u (x, Y, 0) =0
Tt
= 2 E Ay sin (—x) COS( —y)
n=1m=0 " H
Hence
Apm =0

And the solution becomes

u (x, Y, t) = i i B, sin (c /\nmt) sin (nTnx) cos (m%y)

n=1m=0

Taking derivative of the solution w.r.t. time t gives

(x Yy ) Z Z eV AumBum cos (C /\nmt) sin (nfnx) cos (m%y)

n=1m=0

At t = 0 the above becomes

a (x’ y) = E Z ¢ Antnm sin (%x) CcOS (m%y)

n=1m=0

Multiplying both sides by sin (n—ﬂx) cos (mzy) and integrating gives

f f X, y sin (—x) cos( Hy) dxdy =c ntnmnzlmEOf f sin (—x) cos ( Hy) dxdy

nr 2 (X

=c ntnmf f sin (L )cos (mHy) dxdy
— v (E)\(H

=cC nm*=nm 2 2
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Hence

B 4 foHa(x )s'n(nnx)cos(mn )dxd
m= T — s 1 5 T7T

Summary of solution

. (N7
X, (x) = sin (Tx) n=1,23,--

(”n)z 1,2,3
=\ n=1,29,---
lun L

Y m (y) = Cos (m%y) m=0,1,2,-

T\2
Anm_‘un:(mﬁ) m=0,1,2,---,n=1,2,3,--
Ty () = By sin (cy/A )
u (x, Y t) = E E B, sin (c Anmt) sin (%x) cos (m%y)
n=1m=0
nm

B, = LHcmf f xy sin (Tx) oS (m y)dxdy

2.9.42 Part (b)

In this case we have

X" +uX=0
X' 0)=0
X' (L)=0
And the second spatial ODE is
A+ v —H
Y'=Yu-AY
Y’ +Y(A-p)=
With B.C.
Y (0)=0
Y (H)=0

Starting with the X ODE. The solution is
X = ¢ cos (\/ﬁx) + ¢y 8in (\/ﬁx)
X" = —c14/pisin (\/ﬁx) + Cp/l cos (\/ﬁx)

First B.C. gives

OZCZ\/E

Hence ¢, = 0 and the solution becomes
X = ¢q cos (\/ﬁx)
X" = —c14/sin (\/ﬁx)

Second B.C. gives

0 = —cq/usin (\/ﬁL)

Hence

145



29. HW 8 CHAPTER 2. HWS

Now for the Y solution. This is the same as part (a).
Y (y) = cos (mzy)
nm H
2

et )
nm — Hn = mH

Tt

2
/\nm = (WIITI) + Uy

( 7I)2+(”n)2 0,1,2 0,1,2
=|\m—= - m=u9,1,2,---,n=40,1,2,--
H L

For each n,m, we find solution of T" +c?A,,,,T = 0.When n = 0,m = 0, A,,,, = 0 and the ODE
becomes

" =0
With solution
T=At+B
And total solution is
1 (%,,) = Ty () Xy (0) Yo (1)
= Too () Xoo (x) Yoo (3/)
= (At +B)

Since Xy (x) =1 and Yy (y) =1. Applying initial conditions gives

u(x,y,O) =0=8B
Therefore the solution is u (x, v, t) = At. Applying second initial conditions gives
A=« (x, y)
Hence the time solution for n =m =0 is
Too = ta (x, y)
For each n,m, other than n = m = 0, the time solution of T” + c?A,,,,T = 0 is
Tm () = A, cos (c )\nmt) + B, Sin (c /\nmt)

Putting all these results together, we obtain

u(xy,t) = Z Z T () X () Yoo (1)

OOOO

Il
M

2 [Anm cos (c Anmt) + B,,,;, sin (c /\nmt)] cos (nTnx) cos (m%y)

i A, COS (c /\nmt) cos (%x) cos ( %y)
Z Z B, sin ( nmt) Cos (nfx) CoS (m%y)

n=0m=0
The difference in part(b) from part(a), is that the space solutions eigenfunctions are now
all cosine instead of cosine and sine. When the eigenfunction is cos the sum starts from
zero. When eigenfunction is sin the sum starts from 1. Now initial conditions are applied
as in part (a).

3
Il
o
S

Il
81 Mg

8||

u(x,y, ) 0= EEAnmcos(—x)cos( %y)

n=0m=0
Hence A,,, =0. And the solution becomes

u (x, Y, t) = i i B, sin (c Anmt) Cos (nfnx) cos (m%y)

n=0 m=0
Taking derivative of the solution w.r.t. time
d o
(x Y ) Z E c /\ntnm COS (C Anmt) COS (Ex) CcOS (mzy)
&t 1=0 m=0 L H
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At t =0 the above becomes

a (x’ ]/) = 2 f:oc AyimBpm €OS (%X) CcOos (m%y)

m
Multiplying both sides by cos (%x) cos (mgy) and integrating gives

L rH nm T = (frH nm T
j;) fo a (x, y) Cos (Tx) oS (mﬁy) dxdy = e\ AywBum Dy D, j;) fo cos? (Tx) cos? (mﬁy) dxdy

n=0m=0

SN

B 4 foH (x )cos(nnx)cos(mn )dxd
= — a P — —_—
" T He A Jo Jo 7Y L Y)Y

Summary of solution

Hence

nm
X, (x) = cos (Tx) n=0,12,---

(nn)z 0102
= |— n = y Ly
Ha L ’

Tt
Yo (y) = COS (mﬁy) m=20,1,2,--
\2
Anm—ynz(mﬁ) m=0,1,2,---,n=0,1,2,---
ta (x, y) n=m=0
Ty (t) = . .
B, sin (c Anmt) otherwise

fene) = i/ herwi
ulx,y,t) = N S B sin (cVAumt) cos (Tx) cos (mZy)  otherwise

B 4 foH (x )cos(nnx)cos(mn )dxd
nmm = T — a\x, - I7
LHcA,,, Yo Yo Y L Hy 4

2.9.4.3 Part (c)

Same problem, but using the following boundary conditions

u(O,y,t) =0
u(L,y,t) =0
u(x,0,1)=0
u(x,H,t)=0

Since the boundary conditions are homogeneous Dirichlet then the X (x) ODE solution is
. (N7
X,, = sin (Tx)
nm\?
#:(f) n=1,2,3,--
And Y(y) ODE solution is

Yom (y) = sin (m—;y)

7\2
Aum = (m—) +

H
( 71)2+(””)2 1,2,3 1,2,3
=\m— - m=1,4,9,"-,Nn=1,£,0,""
H L

And the time solution is

Ty () = Ay €08 (c\At) + By sin (cyAyt) — m=1,2,3,,n=1,2,3, -
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Hence the total solution is

(2 y,t) = 33 3% Tm () X ) Y (4)

=
Il
—_
3
—_

D) Ay cos (c nmt) sin (%x) sin (%y)

=1

(o)
(o]
(o]

1

=
I
3

Mg

+

2 um SIN (c nmt) sin (nfnx) sin (@y)

1

3
Il

3

_

Att=0

0= ZzAmsm( )sin(%y)

n=1m=1

Hence A,,,, = 0 and the solution becomes

w(oyt) = 33 Bysin (cvi) sin (M) sin (2

n=1m=1

Taking derivative

a [o¢] (o]
c9t (x Y, ) 2 E B,cN A cOs (c Anmt) sin (%x) sin (%y)

n=1m=1

o (X, 3/) = E E BmC\ Ay SIN (nfnx) sin (%y)

n=1m=1

Att=0

Therefore, using orthogonality in 2D, we find

B —LfoHa(x )sin(n—n )sm(m )dxd
nm_LHC\//W 0 0 /y L Hy y

Summary of solution

Xn(x):sin(%x) n=1,2,3--

—(””)2 n=1,23
Un = I = 1,4,9

Y,m (y) = oS (m%y) m=1,2,3,--

\2
Anm—yn:(mﬁ) m=1,2,3,---,n=1,2,3,---
Ty (£) = By sin (cy/ At
u (X, v, t) = E 2 B, sin (c /\nmt) sin (nfnx) sin (m%y)
n= lm 1
nm

B ff X, sm(—x)sm(@ )dxd
" LHcm T I
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2.9.5 Problem 7.3.6

7.3.6. Consider Laplace’s equation

%u  O%*u  B%u

2, v ogu Oou
Vu_8z2+8y2+822

=0
in a right cylinder whose base is arbitrarily shaped (see Fig. 7.3.3). The top
is z = H and the bottom is z = 0. Assume that

0
f(z,y)

a%u(:z, y.0)
u(z,y, H)

and u = 0 on the “lateral” sides.

(a) Separate the z-variable in general.

*(b) Solve for u(z,y. 2) if the region is a rectangular box, 0 < z < L,0 <
y<W,0<z<H.

ﬁ,/llj Figure 7.3.3

2.9.5.1 Part (a)

V2, - J%u s %u .\ Pu
"E o - 92
Let u = XYZ where X = X(x), Y=Y (y) ,Z = Z (z). Substituting this back in the above gives
X"YZ+Y"XZ+7"XY =0

Dividing by XYZ # 0 gives

X/l + YI/ + ZN 3 0

X Y Z
XN + YN 3 ZN
X Y Z

Since the left side depends on x,y only and the right side depends on z only and they are
equal, they must both be the same constant. Say —A, and we write

X// Y’/
e 1
<ty (1)
ZI/
— |
Zz
The problem asks to separate the z variable, then the ODE for this variable is
Z"-AZ=0 (2)
With boundary conditions
Z'0)=0

Z(H) = f(xy)

2.9.5.2 Part(b)

We will continue separation from part(a). From (1) in part (a)
X/I + YI/ 3 A

X Y
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We now need to separate X, Y. Therefore
X/l Yl/

X Y
As the left side depends on x only and right side depends on y only and both are equal,
then they are equal to some constant, say —u

X,/ —
X - H
R
Y
The x ODE becomes
X" +uX=0 (1)
X(0) =0
X([L)=0
And the y ODE becomes
Y
-y =H +A
Y +(A-p)Y=0 (2)
With B.C.
Y(©0) =0
Y(W)=0

Now that we have the three ODE’s we start solving them. Starting with the x ODE (1).

The solution is
. (T
X,, = sin (Tx)

2
nrt
- (2 =1,2,3, -
”(L) "

For each n there is solution for the y ODE

o (mmn
Yo = sin (379)
mm\?
Anm_;un:(w) m=1,2,3,:

mm\2  (nm\2
Anm:(W) +(T) n:1/2/3,"'/m:1/2/31“.

And for each n and for each m there is a solution for the z ODE we found in part (a),
which is
2" = AmZ =0
Z'(0)=0
The solution is, since A,,,, > 0 is
Z=c cosh( Anmz) +cy sinh( Anmz)
7 = clm sinh ( /\nmz) + sz cosh ( /\nmz)
Applying B.C. Z’ (0) = 0 gives
0= coVAdum
Hence ¢, = 0 and the solution becomes
Z = Cpm COSh( )\nmz)
Putting all these solutions together, we obtain
u (x, Yy, z) = g}l mi::l Cpy SIN (nfnx) sin (m—v\?;y) cosh ( /\nmz)

Only now we apply the last boundary condition u (x, Y, H) =f (x, y) to find c,,,,.

oo o0

f (x, y) = 2 E Cpmy SID (nfnx) sin (m—vz;y) cosh( /lan)

n=1m=1
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Applying 2D orthogonality gives

f f X, y sin (Ex) sin (n;v y) dxdy = ¢y, cosh f

= Cpum Cosh

J st (s ) v
() (3)

Hence

££ fxy )sm( y)dxdy
cosh(mH)( )( )

X, y sin (nn ) sin (m—v\?y) dxdy

Crm

LWcosh \/ an f f

Summary of solution

nmn
Xn:sm(—x)
L
Ynm—sin(@y)
mm\2  (nm\?
= () () m=123m=1,23,

(x v,z ) i E Cpm SID (—x) sin (m—y) cosh ( Anmz)
o nm mm
Com = ool \/_H f f X,y sm(fx) sm( W y) dxdy
nm

2.9.6 Problem 7.4.2

~ ~ v

7.4.2. Without using the explicit solution of (7.4.7), show that A > 0 from the
Rayleigh quotient, (7.4.6).

Equation 7.4.7 is

VZip+Ap =0
¢ (0,y) =
¢(Ly)=0
¢ (x,0)=0
¢ (x, H) = 0

And 7.4.6 is

—5€¢v¢-ﬁds+ff IV o[ dxdy
R
JR‘fqbzdxdy

56 ¢V ¢ - ids = 0 as we are told ¢ = 0 on the boundary and this integration is for the

ff |qu|2 dxdy
R

f p2dxdy
R

A=

boundary only. Hence A simplifies to

2
The numerator can not be negative, since the integrand |V¢| is not negative. Similarly,
the denominator has positive integrand, because ¢ can not be identically zero, as it is an
eigenfunction. Hence we conclude that A > 0.
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2.9.7 Problem 7.4.3

7.4.3. If necessary, see Sec. 7.5:

(a) Derive that [[(uV?v — vV2u)dzr dy = §(uVv — vVu) - A ds.
(b) From part (a), derive (7.4.5).

29.71 part (a)

V-uVo)=uV?v+Vu-Vo (1)
V-@Vu)=ovV2u+Vo-Vu (2)
Equation (1)-(2) leads to
V- -uVo)-V - -@Vu) = (quv +Vu- Vv) - (UVZu +Vou- Vu)
V- -wVo-oVu) =uV2v-oV2u+Vu-Vo-Vov-Vu
But Vu-Vov =Vuv-Vu so the above reduces to
V- WVo-oVu) =uV3v-oV3u
Therefore
ff (uVZU - UVZu) dxdy = ffV - (uVo - vVu)dxdy (3)
But the RHS of the above is of the form f f (V - A)dxdy where A = (uVv—-vVu) here.

Which we can apply divergence theorem on it and obtain § (A -)ds. Therefore, using

divergence theorem on the RHS of (3), then (3) can be written as

ff (uVZz;—vVZu) dxdy = § (uVo—-ovVu)-nds

Which is what is required to show.

2.9.7.2 Part(b)
Equation 7.4.5 is

f f G udrdy =0 if Ay # Ay (7.4.5)
R

From part (a), we found

ff (uVZU - szu) dxdy = § (uVv-oVu)-ads (1)

But we know that, since both u, v satisfy the multidimensional eigenvalue problem on same
domain, then

V2u+A,0=0 (2)
Bro+ By (Vo -it) =0 (3)
And similarly
V2u+A,u=0 (4)
pru+ P (Vu-7)=0 (5)

Now we will use (2,3,4,5) into (1) to obtain 7.4.5. From (2), we see that V?v = —1,v and
from (4) V?u = -A,u and from (3) Vo -1 = —fé—;v and from (b) Vu -7 = —ﬁ—;u. Substituting
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all of these back into (1) gives
ff (u (=Ay0) = v (=A,u)) dxdy = ﬁu(Vv -f)—ov(Vu-n)ds

= EulPry) o[ B
ff (=Ayuv + Ayou) dxdy = §u ( 5 v) U( 5 u) ds
_fB
f (A, = Ay) uv dxdy = §52 [-uv + uv]ds
(A, —Ay) ffuv dxdy =0 (6)

We now use (6) the above to show that 7.4.5 is correct. In (6), if we replace u = ¢,,,v = P
and A, = A4, A, = A, then (6) becomes

(A1 =2 [[ (62,01) dudy =0
We see now that for A; # A,, then ff (thqbu) dxdy = 0. Which is what we asked to show.
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210 HW

2.10.1 Problem 8.2.1 (a,b)

8.2.1. Solve the heat equation with time-independent sources and boundary con-

ditions )
Ou O%u
5 = Fom 90
u(z,0) = f(z)

if an equilibrium solution exists. Analyze the limits as ¢ — oo. If no equilib-
rium exists, explain why and reduce the problem to one with homogeneous
boundary conditions (but do not solve). Assume

*(a) Q(x) =0, u(0,t) = A, Su(L,t)=B
(b) Q(z) =0, gu(0,t) =0, Su(L,t)=B+#0
() Q(z)=0, Su0,t)=A#0, E(Lt)=4
*(d) Q(z) =k, u(0,t) = A, u(L,t) = B
(e) Q(z) =k, gu(0,t) =0, Su(L,t)=0
(f) Q(z) =sin %=, gu(0,t) =0, Su(L,t)=0

2.10.1.1 Part (a)

Let
u(x,t) =ov(x,t)+ ug(x) (1)

Since Q (x) in this problem is zero, we can look for ug (x) which is the steady state solution
that satisfies the non-homogenous boundary conditions. (If Q was present, and if it also
was time dependent, then we replace ug (x) by 7 (x, ) which becomes a reference function
that only needs to satisfy the non-homogenous boundary conditions and not the PDE
itself at steady state. In (1) v (x,t) satisfies the PDE itself but with homogenous boundary

conditions. The first step is to find ug (x). We use the equilibrium solution in this case. At
Jug(x,t)
Jt

S S
equilibrium = 0 and hence the solution is given ﬁ =0or

ug (x) =c1x + ¢y

At x =0,ur (x) = A, Hence

Cy = A
And solution becomes ur (x) =cix+ A. at x =1L, au;;x) = ¢y = B, Therefore
up(x)=Bx+ A

Now we plug-in (1) into the original PDE, this gives
dv(x,t) 1 %0 (x, t) . %ug (x))

ot dx dx

9ug(x)

But ax

=0, hence we need to solve

dv(x,t) kﬁzv (x,t)
at dx

for v (x,t) = u(x,t) — ug (x) with homogenous boundary conditions v (0,t) = 0,

Jo(Lt)
o

0 and

initial conditions
v(x,0) = u(x,0) - ug (x)
=f(x)-(Bx+ A)
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This PDE we already solved before in earlier HW’s and we know that it has the following
solution

4 (X, t) = i bn sin (\/A_nx) e_kAHt

=135,

2
nrt
A, = (Z) n=1,35,- )

With b, found from orthogonality using initial conditions v (x,0) = f (x) — (Bx + A)

v(x,0) = i bn sin (\/A_nx)

n=1,35,
f (f (x) - (Bx + A)) sin \/ x f bn sin (\/A_nx) sin (\me) dx
0 n=1,35,
f (f () - (Bx + A)) sin (y/A,x) dx = bmE
0
Hence
2 oL
bn:—f (f(x)—(Bx+A))Sin(\/A_nx)dx n=1,3,5,--- (3)
LJy
Therefore, from (1) the solution is
HE(X)
u(x, t) = Z b, sm(\/_x) kA t+Bx+A
n=1,3,5,
With b, given by (3) and eigenvalues /\n given by (2).
2.10.1.2 Part (b)
Let
u(x,t) =v(x,t)+rx) 1)

Since Q (x) in this problem is zero, we can look for 7 (x), since unique equilibrium solution
is not possible due to both boundary conditions being insulated. The idea is that, if we

can find ur then we use that, else we switch to reference function r (x) which only needs

E()

to satisfy the non-homogenous boundary condition = 0 but does not have to satisfy

equilibrium solution. Let

r(x) = c1x + cpx?

r
—— =01 +20x
9 2
At x =0, second equation above reduces to
0= Cq

P . B
Hence 7 (x) = c,x%. Now é = 2¢px. At x = L, this gives 2c,LL=B or ¢, = TR therefore

r(x) = —

The above satisfies the non-homogenous B.C. at the right, and also satisfies the homogenous
B.C. at the left. Now we plug-in (1) into the original PDE, this gives

du(x,t) k(&% (x, 1) BzuE (x))

Jt ox ox
dv(x,t) L v (x, t) B
ot ax L
827) (x, 1)
ox k_

Hence

dv(x,t)  d*v(x,t) kB
oy T
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We now treat kg as forcing function. So the above can be written as

dv(x,t)  d*v(x,1)
FTERR PR @)

The above is now solved using eigenfunction expansion, since no steady state equilibrium
solution exist. Let

0 t) = D a, (1) Py (%) (3)
n=0

Where the index starts from zero, since there is a zero eigenvalue, due to B.C. being

Neumann. ¢, (x) are the eigenfunctions of the corresponding homogenous PDE &v;f’t) =

k220 \ith homogenous BC avf;;’t) =0, av{;ﬁ’t) = 0. This we solved before. The eigenfunctions
are
¢, (x) = cos (Ex)
L
With eigenvalues
nm?
An:7 Tl:0,1,2,"'

Notice that Ag = 0. Substituting (3) into (2) gives

S &0, ()
5,6 00,0 = (k5 0 252) 4 0
n=0 n=0
Term by term differentiation is justified, since v (x,t) and ¢, (x) both solve the same ho-

2
mogenous B.C. problem. Since djl)T”z(x) = -A,¢, (x) the above equation reduces to

Z al/’l (t) (Pn (x) = (_k E ay (t) Anan (x)) + Q
n=0 n=0

Now we expand Q, which gives

E 61;1 (t) ¢n (X) =-k E ay (t) Ancpn (X) + Z qnq)n (X)
n=0 n=0 n=0
By orthogonality
ay (£) +kay () Ay = qn

case n =0

ag () + kag (t) Ag = g
But AO =0
ag () = qo
. kB . kB o0 . kB
But since Q = — is constant, then - = 20 TnPn (x) implies that - = Jodo (x). But ¢ (x) =1

for this problem. Hence qq = % and the ODE becomes

kB
4 t -
ay (t) L
Hence
kB
ag (t) = ft +Cq
casen >0

ay () + ka, () Ay = gy
Since all g, = 0 for n > 0 the above becomes

o (8) +ka, (A, = 0
Integrating factor is u = ¢!, Hence % (an (t) ekA"t) =0 or

a, (t) = cpe™ Mt
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Therefore the solution from (3) becomes

v(x, t) = ]ét+c1 +c223 fcos (\//\_nx) (4)

n=1
Now we find the initial conditions on v (x, t). Since u (x,0) = v (x,0) + r (x) then
B
_ _2.2
v(x,0) = f(x) 2Lx
Hence equation (4) at t = 0 becomes

f(x)——x —c1+c2§:cos(\/_x)

We now find ¢y, ¢, by orthogonality.

case n =0
f(f(x)——x)cos(\/_x)dx—f clcos(\/)\_ox)dx
But Ag =0
f (f(x)——x)dx:fOLcldx
f (f(x)——x)dx:clL
Lf ( (x)——x)dx
case n >0

LL (f (x) - %xz) cos (\/Ex) dx = j(;L Cy 21 CoS (\/A_nx) cos (mx) dx

L
—CZ

Lf (f(x)——x)cos(\/—x)

Therefore the solution for v (x, t) is now complete from (4). Hence
u(lx,t)=ov(x,t)+r(x)
:k—Bt+cl+ czze cos(\/—x)
L

n=1
Where cy, ¢, are given by above result. This completes the solution.

2.10.2 Problem 8.2.2 (a,d)

8.2.2. Consider the heat equation with time-dependent sources and boundary con-

ditions: .
u &%u
5t = ke tQ=1)
u(z,0) = f(z).
Reduce the problem to one with homogeneous boundary conditions if
*(a) 82(0,t) = A(t) and gu(L,t) = B(t)
(b) u(0,t) = A(t) and %(L, t) = B(t)
* (c) gg(o, t) = A(t) and u(L,t) = B(t)
(d) u0,t) =0 and Su(L,t)+ h(u(L,t) — B(t)) =0
(e) %(0,t)=0 and Su(L,t) + h(u(L.t) - B(t)) =0
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2.10.2.1 Part (a)

Let
u(x,t)=o(xt)+r(xt) (1)

Since the problem has time dependent source function Q (x,t) then 7 (x, f) is now a reference
function that only needs to satisfy the non-homogenous boundary conditions which in this
problem are at both ends and v (x, f) has homogenous boundary conditions. The first step
is to find r(x, t). Let

r(x,t) = cq (£) x + ¢y () x?

Then
or(x,t
Tl 0420, ()
dx
Atx=0
A(t) =cq(t)
And atx=L

B(t) = c; () +2¢, () L

& () = B(t) Z—Lcl (t)

Solving for ¢, ¢, gives

(2)

r(x, t) =A(if)x+(w)x2

2L
Replacing (1) into the original PDE u; = ku,, + Q (x,t) gives

J P
5; @) =7 (6 1) =k— (@ 1) =7 (x, 1) + Q(x, 1)

J J 92 92
v Jdr v_ I, 01
dx?

at  dt ox?
2, _
But % = 50 LA(t), hence the above reduces to
dv  d% B(t)—A(t) or
— =k— ) —k———+ — 3
ot = Kom TR L o )
Let

Qx, 1 =Q(x,t)+g—:—kw

L
then (3) becomes
Jdv %
— =k=— t
The above PDE now has homogenous boundary conditions
[ (0, t) =0
[ (L, t) =0

And initial condition is

v(x,0) = u(x,0)—r(x,0)
=f(x)- (A 0)x + (—B (O)Z_LA (O)) x2)

The problem does not ask us to solve it. So will stop here.

2.10.2.2 Part (d)
Let
ulx,t)=v(xt)+r(xt) (1)

Since the problem has time dependent source function Q (x,t) then 7 (x, t) is now a reference
function that only needs to satisfy the non-homogenous boundary conditions which in this
problem are at both ends and v (x, f) has homogenous boundary conditions. The boundary
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condition r (x, t) need to satisfy is

ﬁ (L,t) + hr(L,t)=hB(t) =0
dx
r0,£)=0 (2)
Let
r(x,t)=cy(H)x+cy(t)

Since 7(0,t) = 0 then ¢, = 0. Now we use the right side non-homogenous B.C. to solve for
c1. Plugging the above into the right side B.C. gives

C1 +hC1L—I’1B (t) =0
_ hB(®)
I

Hence

hB
r(x,t) = T;fL)x (3)

The rest is very similar to what we did in part (a). Replacing (1) into the original PDE

du(xt) %u(x,f) .
T k -+ Q (x,t) gives
J 92
5, (U (x/t) - 7"(x/ t)) = k_ (U (x/t) - 7"(x/ t)) + Q(x/t)
ot dx
dv dr % %
ot "o Ko Tkga TRl
But j—i; = 0 hence the above reduces to
v 9% ar
E—kﬁ'%Q(xlf)'i'E (4)
Let

~ ar
Q(xlt) = Q(x/t) + E
Then (4) becomes

dJv
ot

v
= k> +Q(x 1)

The above PDE now has homogeneous boundary conditions

v(0,)=0
Jo (L,
ot =0

And initial condition is
v(x,0) =u(x,0)—r(x,0)

hB(0)
=f0- 1+hL
The problem does not ask us to solve it. So will stop here.

X

2.10.3 Problem 8.2.5

4msstmay v vaan assssav s IRV VN

8.2.5. Solve the initial value problem for a two-dimensional heat equation inside a
circle (of radius a) with time-independent boundary conditions:

% = kVZu
u(a,6,t) = g(8)
u(r,6,0) = f(r,0).
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o Moz tiatage

[1(0,0,1)] < o0
u(a,0,t)=g(0)
u(r,-m,t)=u(r,m,t)

u(r,0,t)  (d*u 1du 1821,1)

j—g (r,-m,t) = j—g (r,m,t)

With initial conditions u (r,8,0) = f (r, 0). Since the boundary conditions are not homoge-
nous, and since there are no time dependent sources, then in this case we look for u (r, 0)
which is solution at steady state which needs to satisfy the nonhomogeneous B.C., where
u(r,0,t) =v(r,0,t)+ug(r,0) and v (r, 6,1t) solves the PDE but with homogenous B.C. There-
fore, we need to find equilibrium solution for Laplace PDE on disk, that only needs to

satisfy the nonhomogeneous B.C.
VZME =0
92 10 1 92
Ug 42 Ug 4= Ug -0
ar> r dr  r? 96?

With boundary condition
lug (0,0) < 6
Ur (a, 6) = g (6)
UE (1’, _n) = Ug (7’, T()
314}5
Y2 (T, —7'() - % (7’, 77)

But this PDE we have already solved before. But to practice, will solve it again. Let

ug (r,0) = R(r)©(6)

Where R (r) is the solution in radial dimension and © (0) is solution in angular dimension.
Substituting ug (r, 0) in the PDE gives

1 1
R'®+ -R'O + —2®”R =0
r T

Dividing by R (r) @ (0)
RELIR L9 )
R rR 0O
rZR—” + rR—, .o
R R Q)
Hence each side is equal to constant, say A and we obtain
R” R
1’2? + r@E =A
5 = A
Or
”R” +rR' = AR =0 (1)
®"+A0 =0 (2)
We start with @ ODE. The boundary conditions on (3) are
O(-n) =0 (n)

0 0
20 (-m) = 20 (1)
case A = 0 The solution is ® = ¢;6 + ¢,. Hence we obtain, from first initial conditions
—TiC1 +Cp =TiC1 +Cp
1 = 0

Second boundary conditions just says that c, = ¢;, so any constant will do. Hence A =0 is
an eigenvalue with constant being eigenfunction.
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case A > 0 The solution is

© (0) = cq cos VA6 + o sin vae

The first boundary conditions gives

c1 COS (—\ﬁn) + ¢y sin (—\/Xn) = (1 COS (\/Xn) + ¢y sin (\/Xn)
c1 COS (\/Xn) —Cp sin (\/Xn) = 1 COS (\/Zn) + ¢y sin (\/Xn)
2c5 sin (\/Xn) =0 (3)

From second boundary conditions we obtain

®’©O) = —\/Xcl sin VAO + cz\/x cos VA6

Therefore

Ve, sin(—ﬁn)+c2\ﬁcos( Vi n): Ve, sm(\/Xn)Jrczx/Xcos(\/Xn)
VAcy sin (ﬁn) + VA cos (\/Xn) —VAe, sin (\/Xn) + VA cos («/Xn)
ey s (V) = ey in (V)
20, sin(\/in)

0 (4)
Both (3) and (4) are satisfied if

Therefore

0, (0) = ;I:) + Y, A, cos (n6) + B, sin (n6) (5)
n=1
I put tilde on top of these constants, so not confuse them with constants used for v (r, 6, t)
found later below. Now we go back to the R ODE (2) given by ?R” + rR’ - 1,R = 0 and
solve it. This is Euler PDE whose solution is found by substituting R (r) = r*. The solution
comes out to be (Lecture 9)

Ry()=co+ Y e (6)

n=1

Combining (5,6) we now find uf as
ug, (r,0) =R, (r)©,,(6)

ug (r,0) = Ay + E A, cos (n0) r" + B, sin (n0) r"
n=1

(o)

= 2 An cos (n0) r'* + i B, sin (n0) 1" (7)

n=0 n=1
Where ¢y was combined with Aj;. Now the above equilibrium solution needs to satisfy the
non-homogenous B.C. ug (2, 0) = g(0). Using orthogonality on (7) to find A,, B, gives

g(0) = E A, cos(nb)a" + E B, sin (n0) a"
n=0 n=1
271 271

f g(0)cos(n'0)do = f EA cos (n6) cos (n’ 6)a”d6+f ZB sin (n0) cos (n’'6) a"do

0

27T
= Zf A, cos (n6) cos (n’ 9)a”d6+2 f B, sin (n0) cos (n’0) a"do
27T

= A, cos? (n'0) a*do
0
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Forn=0
27 _ 270
f g(@)dQ:Aof d6

0 0
-
A:—f 0)do
0= 27 J, g(0)
Forn>0

271 271
f g(0)cos (n0)do = A, f cos? (n6) a"do
0 0

_ 1 P
A, = —f g (0)cos(nO)do
TTJo

Similarly, we apply orthogonality to find B, which gives (for n > 0 only)

_ 1 271
s f 2(6) sin (n6) d6
TTJo

Therefore, we have found u (r, 6) completely now. It is given by

ug (r,0) = Ay + Y, A, cos (n0) r" + B, sin (n0) 1"

n=1

_ 1 27T
Ay = Efo 2(6)d6

~ 1 27T
A, =— g(0)cos (n0)do
T

_ 1 271
B, =~ f 2 (6) sin (n6) d6
TJo

The above satisfies the non-homogenous B.C. ug(a,0) = g(0). Now, since u(r,0,t) =
v(r,0,t) + ug (r, 0), then we need to solve now for v (r, 0, t) specified by

do(r,0,t) k(820 1dv 1 0% ®)

ot a7 " rar T Rae
lv (0,6, <06
v(a,0,t)=0

% (7", -, t) =0 (T/ T, t)
dv dv
a_g (7’, Y t) - 8_6 (7’, T, t)
Let v(r,0,t) = R(r)© (0) T (t). Substituting into (8) gives
1 1
T'RO® =k (R”T@ +-R'TO® + -O"”RT
r r

Dividing by R (r)® (6) T (t) # 0 gives
I _RrR” IR 107
kT R rR 10O
Let first separation constant be —A, hence the above becomes

1T
kT
R IR 10"
R rR 0O
Or
T"+AkT =0
RI/ Rl @ll
2— tr—+r2A=-
"RTRT e
We now separate the second equation above using p giving
/7 R/
2 8 2y
_— +rR +1r°A=u
@// 3
® =4
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Or
R”+1R’+R(A “) 0 )
®"+u®=0 (10)
Equation (9) is Sturm-Liouville ODE with boundary conditions R (a) = 0 and bounded at
r =0 and (10) has periodic boundary conditions as was solved above. The solution to (10)
is given in (5) above, no change for this part.
A=0 00

©,(0) = Ay + Y, A, cos (n0) + B, sin (n0)
n=1

= i A, cos (n0) + i B, sin (n0) (11)
n=0 n=1

2
Therefore (9) becomes R” + %R’ + R (/\ - 7:—2) =0withn=0,1,2,---. We found the solution

to this Sturm-Liouville before, it is given by
Ry (1) = Ty (VA ) n=0,1,2,---,m=1,2,3,- (12)
Where +/A,,, = — where a is the radius of the disk and z,, is the m'" zero of the Bessel

function of order n. This is found numerically. We now just need to find the time solution
from T’ + A,,,kT = 0. This has solution

Ty (£) = & VFlunt (13)
Now we combine (11,12,13) to find solution for v (7, 6, f)
O (1,0, £) = ©, () Rypyy () Ty (1)
v(r,0,t) = i i A, cos (n0)], ( Anmr) e~ VkAumt 4 i i B, sin (n0)], ( Anmr) e~ VkAumt

n=0m=1 n=1m=1
(14)

We now need to find A,, B,,, which is found from initial conditions on v (r, 6,0) which is
given by
v(r,0,0)=u(r,0,0)—ug(r,0)
= f(rl 9) —Ur (7’, 9)
Hence from (14), at t =0
fr,0) -up(r,0)= Y, Y A, cos (10) ], (VAumr) + D) D) Bysin (20) ], (VAumr) (15)
n=0m=1 n=1m=1
For each n, inside the m sum, cos(n60) and sin (n0) will be constant. So we need to ap-

ply orthogonality twice in order to remove both sums. Multiplying (15) by cos (n’6) and
integrating gives

f(f(r@) uE(rG))cos(nQ)dQ fz

ﬂn 0

>

—Ttn=1

(Z Al ( nmr)) cos (n6) cos (n’0) do

(Z Bn]n nmr)) sin (n6) cos (n’0)

The second sum in the RHS above goes to zero due to f_ sin (n6) cos (n’0) d6 and we end
up with

i f(r,0) - ug (r,0)) cos (n0)d6 = A, i cos? (n6) 3 Ty (VA ) dO
-7 -7 m=1

We now apply orthogonality again, but on Bessel functions and remember to add the
weight 7. The above becomes

fﬂ fﬂ (f (r, 0) — ug (r, 9)) cos (n0)]J, (\//lnm,r) rdOdr = A, fﬂ fﬂ cos? (n0) i ]n( Anmr) I (\/)\nm/r) rdOdr
0 vY-n

= A f f cos? (10) J2 (VA7) rdOdr
Hence
K f_z (f (r,0) — ug (r, 9)) cos (n0)J, ( Anmr) +d6dr
La f_z cos? (n6) J2 ( Anmr) rdOdr
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We will repeat the same thing to find B,. The only difference now is to use sinn0. repeating
these steps gives

F L6600 1e,0) i 00y (V)
"= [ 7 siv? (10) ]2 (VAgur) rd6cr

This complete the solution.

n=012--,m=1,23, -

Summary of solution

u(r,0,t) =v(r,0,t) +ug(r,0)
=Y, D, A, cos(nd) ], ( Anmr) e VkAumt

n=0m=1
Z Z B, sin (n0)], ( Anmr) eVt 4y (1, 0)
n=1m=1
Where
ug (r,0) = Ay + E A, cos (n0)r" + B, sin (n0) "
-1
_ 1 n2n
Ay= — f 6) 40
0= 5 . g(0)
_ o q e
A, =— g (0) cos (n0)do
TJdo
I
B, =~ f 2 (6) sin (n6) d6
TJdo
And

K f_: (f (r,0) —ug (r, 0)) cos (n0) ], ( Anmr) vdOdr

A = K f_: cos? (n0) J2 ( /\nmr) rdOdr

n=012--,m=1,23,--

And

o _f LU0 -u e 0)sin o)), (Vi) doar
n= Laf_?;SiHZ(nQ)]%( /\nmr)rdadr n=4vl,2--,m=1,2429,

Where vA,,, = — where 7 is the radius of the disk and z,,, is the m'" zero of the Bessel

Znm

function of order n.

2.10.4 Problem 8.3.3

Problem Solve the initial value problem

du o du
Cpa_t = ZC(Koa—x)'Fqu-i'f(X,t) (1)
Where ¢, p, Ky, q are functions of x only, subject to conditions u (0,) = 0,u(L,t) = 0,u(x,0) =
g (x). Assume that eigenfunctions are know. Hint: let L = % (KO%) +q

solution

Because this problem has homogeneous B.C. but has time dependent source (i.e. non-
homogenous in the PDE itself), then we will use the method of eigenfunction expansion.
In this method, we first need to find the eigenfunctions ¢,, (x) of the associated PDE without
the source being present. Then use these ¢, (x) to expand the source f (x,t) as generalized
Fourier series. We now switch to the associated homogenous PDE in order to find the
eigenfunctions. This the same as above, but without the source term.
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Ju 1 &(K&u)_'_qu ©

FTiarrd Lk re e
u(0,1)=0
u(L,t)=0
u(x,0) = g(x)
We are told to assume the eigenfunctions ¢, (x) are known. But it is better to do this
explicitly, also needed to find the weight. Let u = X (x) T (t). Then (2) becomes

1 1
T'X = —K\X'T + —KoX"'T + -LXT
cp cp cp
Dividing by XT gives
T 1. X 1_X' g
— = K= + —Ky= + —
T c¢ "X ¢ X c¢p
As the right side depends on x only, and the left side depends on ¢ only, we can now
separate them. Using —A as separation constant gives

T"+AT =0

And for the x part
1 X 1 X" ¢
5 0% + QKOY + 5 =
KX + KoX” 4+ gX = =AcpX (2A)
(KoX') +gX = —AcpX

We now see this is Sturm-Liouville ODE, with

p =Ky

qg=q

o=cp
And

L[X] = 4 (KO—X) +gX
dx dx
L= i (K d—X) +

dx \" 0 dx 1

Where

L[X] = -AcpX
The solution to S-L, with homogeneous B.C. is given as

X () = Y} 4y ()
n=1

When we plug-in this back into (2), and incorporate the time solution from T’ + A, T =0,
we end up with solution for (2) as

u(x,t) = D a, () Py (0) (3)
n=1

Where now the Fourier coefficients became time dependent. We now substitute this back
into the original PDE (1) with the source present (the nonhomogeneous PDE) and obtain

cp Yy ()P (¥) = D4, (O L[y )]+ £ (x,8) (4)
n=1 n=1

We now expand f (x,t) using same eigenfunctions found from the homogeneous PDE
solution (we can do this, since eigenfunctions found from Sturm-Liouville can be used to
expand any piecewise continuous function). Let

Fet) =] fu )y (x) (5)
n=1
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Hence (4) becomes
cp Yy ()P, () = D a, (DL [, )]+ Y fu () Py () (6)
n=1 n=1 n=1

But from above, we know that L [CPn (x)] = -A,cp¢, (x), hence (6) becomes
cp 23 () Pu (¥) = =cp D3 Aty () Py () + D3 f (8) P ()
n=1 n=1 n=1
D cpaly (8) Py (x) + cpAuay (B @ (1) = D fu (8) Py ()
n=1 n=1

25 @, () + Ay, (D) cpy (1) = 3 fu () i ()
n=1 n=1
By orthogonality, (weight is cp) then from the above we obtain
ay (£) + Ayay () = f, (£)

The solution to the above is
¢
a, (t) = e‘Antf f(s)eMsds + ce™Mnt
0

To find constant of integration ¢ in the above, we use initial conditions. At t =0
¢ =a,(0)

Hence the solution becomes

t
0, (f) = et f o (8)eMds + a, (0) et
0

t
— o~ Ant ; 0 i Ans g
e (a()+f0f(s)e s)
To find a, (0), from (3), putting t = 0 gives
g0 =21a,(0)¢, (%)
n=1
Applying orthogonality
L L
[ 5@ dx =a,0) [ ¢ (0 cpdn
0 0
[[8@e, @

LL @3 (x) cpdx
And finally, to find f,, (), which is the generalized Fourier coefficient of the expansion of
the source in (5) above, we also use orthogonality

L L
[ renenac=£,0 [ ¢4 @epx
0 0

[ F 0006 () dx
L¢3 () cpdx

ap

fn(t):

Summary of solution

The solution to cp% =2 (KO%) +qu + f (x,t) is given by

X

w(x,t) = D5 a, (t) Py (¥)
n=1

Where a,, (t) is the solution to
ap (t) + Any (t) = fn (t)
Given by

t
a, (t) = e~ner! (an (0) + f f () eA”CPsds)
0
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Where
[ F D¢, @dx
f n(t) = I
[ 93 (0 cpdx
And
[ 309 @ax
a, (0) = L
[ #% () cpdx
2.10.5 Problem 8.3.5
*8.3.5. Solve ou

5= kV2u + f(r,t)

inside the circle (r < a) with u = 0 at r = a and initially u = 0.

Since this problem has homogeneous B.C. but has time dependent source (i.e. non-
homogenous in the PDE itself), then we will use the method of eigenfunction expansion.
In this method, we first find the eigenfunctions ¢, (x) of the associated homogenous PDE
without the source being present. Then use these ¢, (x) to expand the source f (x,t) as
generalized Fourier series. We now switch to the associated homogenous PDE in order to
find the eigenfunctions. u = u (r,t). There is no 6. Hence

du(r,t) _k(&zu 18u) 1

ot arr " ror
u(a,t)=0
[ (0,1t)] < o

u(r,0)=0

We need to solve the above in order to find the eigenfunctions ¢, (r). Let u = R(r) T (¢).
Substituting this back into (1) gives

1
T'R=k (R”T + ;R’T)

Dividing by RT
1T R” 1R
- = — 4 ——
kT R rR
Let separation constant be —A. We obtain
T" + kAT =0
And
RII + 1 Rl 3 A
R rR

R"” + }R’ =-AR
rR” +R"+ ArR =0
This is a singular Sturm-Liouville ODE. Standard form is
(rR’) = -ArR

Hence

We solved R” + %R’ + AR = 0 before. The solution is

R, (r) = Jo (Vaur)
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Where /A, is found by solving J, (\//\_na) = 0. Now that we know what the eigenfunctions
are, then we write

u(r,t) =Y a, (O Jo (VA7) 2)
n=1

Where a, (f) is function of time since it includes the time solution in it. Now we use the
above in the original PDE with the source in it

du(r,t)
dt
Where V2u = —Au. Substituting (2) into (3), and using f (r,t) = 2:;1 fu®]o (\/A_nr) gives

3, (0o (V) =~k 33 A 0o (VA7) + 3 £ 00 (VA7)
n=1 n=1 n=1

3 (@ (6) + kA, () Jo (NAr) = 35 fu (0o (VA7)

n=1 n=1

Applying orthogonality, the above simplifies to
ay () + kAya, (8) = f, ()

=kV2u + f(r,1) (3)

The solution is
t
a, () = eFnt f fu (s)éMnsds + ce*Aut
0

To find constant of integration c in the above, we use initial conditions. At t =0
¢ =a,(0)

Hence the solution becomes

t
a, (t) = et f f(s)eMsds + a, (0) e *Ant
0

= ekt (an 0) + f 6 e“nsds)
To find a,, (0), from (2), putting t = 0 gives O
0=a,0J (VAur)
Hence a,, (0) = 0. Therefore a, (f) beco;;_;s.
a, (t) = et j: fu(s)enids

And finally, to find f, (), which is the generalized Fourier coefficient of the expansion of
the source in (3) above, we also use orthogonality

fo £ 0,010 (VAar) rdr = £, () fo 13 (V)
ﬁ fr v (\/A_nr) rdr
fn (t) = a
1; ](2) (\/A_nr) rdr

Summary of solution

du(rt) (8214 1du

The solution to > k -2+ ;5) + f (r,t) is given by

u(r,t) =, a, (6 Jo (VAr)
n=1
Where a,, (t) is the solution to

a;fz (t) + kAnan (t) = fn (t)
Given by

t
a, (f) = oKt f Fo () Misds
0
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Where
e Kf(r, ) Jo (\/A_nr) rdr
fult)= l;a ]% (\/A_nr) rdr

2.10.6 Problem 8.3.6

8.3.6. Solve

2,
%‘ g 2 +sin5z e~ %

subject to u(0,t) = 1, u(w,t) =0, and u(z,0) = 0.

This problem has nonhomogeneous B.C. and non-homogenous in the PDE itself (source
present). First step is to use reference function to remove the nonhomogeneous B.C. then
use the method of eigenfunction expansion on the resulting problem.

Let
r(x) =cix+cy
Atx=0,7r(x)=1,hencel =¢cy and at x = 7,7 (x) =0, hence 0 = ¢yt +1 or ¢; = —%, hence
r(x)y=1- d
Tt
Therefore
u(x,t)=ov(x,t)+r(x)

Where v (x,t) solution for the given PDE but with homogeneous B.C., therefore
v (x, H _ %0 (x, 1)

5 2 + 7% sin 5x (1)
v(0,)=0
v(m,t)=0
v (x,0) :u(x,O)—r(x):O—(l—f) = f—1
T T

We now solve (1). This is homogeneous in the PDE itself. To solve, we first solve the
nonhomogeneous PDE in order to find the eigenfunctions. Hence we need to solve
dv(x,t)  d*v(x,t)
at  Ix?

This has solution
v(x,t) = D, a, (1) ¢y () )
n=1
With
an(x):Sin(\//\_nx) n=1,2,3--
An:nz n=12,3---
Plug—in (2) back into (1) gives

i a, (t) ¢, (x) = i a, (t) ¢, (x) + e sin 5x
n=1

92

ij: (t)& 2gbn(x)+e fsin 5x

But —gbn (x) = =A,¢, = —n¢,, hence the above becomes

o]

E a, (t) ¢, (x) + na, (t) ¢, (x) = e sin 5x

NgE

(11,’1 (t) + n?a, (t)) sin (nx) = 7% sin 5x

n=1
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Therefore, since Fourier series expansion is unique, we can compare coefficients and obtain

e?t n=5

a,@(t)+n2an(t):{ 0 i

For the casen =5

as () + 25a5 (t) = e
i (a5 () 6251‘) — 23t

dt
as (t) e? = femdt +c

023t
=—+4c¢
23
Hence
—2t

e
as (t) = g + Ce_z

5t

Att=0,a5(0) = 2—13 + ¢, hence

1
C:ﬂ5(0)—£

And the solution becomes

1 1
as (t) = ge‘z’f + (a5 (0) - ﬁ) g2t

For the case n #5

a, (t) +n®a, () =0

% (an (t) e"zt) =0
a, () e™t =c
a, (f) = ce*t
Att=0,a,(0)=c, hence
a, (t) = a, (0)e™
Therefore
o) = { %e‘Zt + (a5 ) - %) e®  n=5
a, (0) et n#5

To find a, (0) we use orthogonality. Since u(x,t) = v (x,t) + r(x), then

0 . X
u(x,t) = (nz:]l a, (t)sin (nx)) + (1 - g)
And at t = 0 the above becomes

0= (i a, (0) sin (”x)) + (1 - %)

n=1

X 1= Z a, (0) sin (nx)
Tt n=1
Applying orthogonality
f (f - 1) sin (n’x)dx = a,; (0) f sin® (n’x)dx
0 \Tt 0
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Therefore
KT (% - 1) sin (nx) dx

T
2

= %ﬁn (%—1)sin(nx)dx

ap 0) =

2 Tt 1 7
= — —f sin(nx)dx+—f xsin(nx)dx]
Tl Yo TTJp
2 [ (—cos (nx))n+ 1 (sin (nx) xcos (nx))j
= [-|—= - S~
| n 0 7 n n 0
3 E [ ( cos (nm) _ 1 N l sin (nm) _ TLCOS (nm) B sin (0) _ 0 cos (0)
|\ n n) m n? n n? n
2[(-1" 1 1 -1
Sy s
nif\n n) =n n
_2[Ent 1 ("
| on n n
_2
onm
Therefore a5 (0) = % Hence
L2t 4 (—_2 _ i)e—ZSt n=-5
a,(H)={ _25n 223
Ee_”t n+5

Where

u(x,t) =v(x,t)+r(x)

= (g a, (t)sin (nx)) + (1 - %)

2.10.7 Problem 8.4.1 (b)

8.4.1. In these exercises, do not make a reduction to homogeneous boundary con-
ditions. Solve the initial value problem for the heat equation with time-
dependent sources

o 0?
5 = k3 +Qa
u(z,0) = f(z)
subject to the following boundary conditions:
(a) u(0,t) = A(2), %%(L, t) = B(t)
*(b) 8%(0,t) = A(t), gu(L,t) = B(t)
Let
w(x,t) ~ Dby (8) Py (1) 1)
n=0

Where in this problem ¢, (x) are the eigenfunctions of the corresponding homogenous PDE,

which due to having both sides insulated, we know they are given by ¢, (x) = cos (%x)

2
wherenown =0,1,2,---and A, = (%) . That is why the sum above starts from zero and not
one. We now substitute (1) back into the given PDE, but remember not to do term-by-term
differentiation on the spatial terms.

00 0’)2
Y b (09, () = k3 +Q(x, D)

n=0
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But Q(x,t) ~ ZZO dn (t) ¢, (x) so the above becomes
92u

Zb/ () b (x) = k=5 + Eqn (£) P ()
Multiplying both sides by (jom (x) and integrating

L L 821/[ [ >
J, oo, @onwdr = [ kzon@adx+ [ 3au 00,0 0n W
Applying orthogonality
o) [ @2 @dx= [ ke, dr+ g0 [ 02 0d
10 Ghedr= [ k550, +g,0 [ of @

Dividing both sides by l;L ¢2 (x) dx gives

L 92y

b (t) = k‘g;”‘qu” ik
[ 0% 0 dx

I 92 2
We now use Green’s formula to simplify £ %qﬁn (x)dx. We rewrite ZTZ = L[u] and let

¢, (x) = v, then
L 92y L
fo S5O () dx = fo oL [u] dx

But we know from Green’s formula that
du do L
f (oL [u] —uL[v])dx =p v—x—u—
0

In this problem p =1, so we solve for l; vL [u]dx (which is really all what we want) from

+ 0, () (1A)

the above and obtain

L L d do\
f vL[u]dx—f uL[]dx—(v—u—u—v)
0 0 dx dx 0

Since we said ¢, (x) = v, then we replace these back into the above to make it more explicit

L 92y du  do, (x) k L
fo &_xz% (x)dx = (<Pn (X)E —u— )0 +f(; uL [(Pn (x)]dx

But L [cpn (x)] = -1,¢, (x) and above becomes

L &2 d d L L
j(; axZ(pn (x)dx = ((Z)n () % —-u ¢£x(x)) -A, f ug, (x)dx (2)
0

0

We are now ready to substitute boundary conditions. In this problem we know that

du
o (L, t) =B(t)

do,(L,t) d nm nm . (Nm
= — cos (—x) = ——sin (—x) =0
dx dx L") L L
G (L,0) = cos(“Tx) = cos () = (-1
x=L
do, (0,t d
et =g () =0
x=0
¢, (0,t) = cos (Ex) =1
L x=0

du
= 0,t) = A(b)
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Now we have all the information to evaluate (2)

L )2y
[ o= (0,0 % -0 2 - (6,05 0 - u0 0]

_A, f e, (x) dx
0
Which becomes

L 92y ; L
j{; 8_xz¢n (x)dx = ((_1) B(t) - 0) -(A)-0) -4, f(; up, (x) dx

L
= ('BO-AO Ay [ up,@)dx 3)
0
Now we need to sort out the LL u¢, (x) dx term above, since u (x,t) is unknown, so we can’t
o ng Uy, (x)dx
leave the above as is. But we know from u (x, t) ~ Zn—O b, (t) ¢, (x) that b, (t) = ﬁz— by
- o7 (x)dx

orthogonality. Hence £L ue, (x)dx = b, (t) £L ®2 (x)dx. Using this in (3), we finally found
the result for I;L %q)n (x)dx

L (92 ; .
J. G2ty =" BO-A0-Ab,® [ 0f @ dx
But I;L P3 (x)dx = l; cosz( ; )dx — L hence

L (92
f e 2<z>n(x)dx—( 1)"B(t) - A(t) - Aub, (t) (4)
Substituting the above in (1A) gives
k((—l)”B(t) —~ A(t) - Auby, (t) g)

by, (t) = - 0
2
2 L
b (t) = Tk ((—1)“B<t>—A<t)—Anbn () §)+qn (t)
2
= Tk ()" B(5) = A(®) ~kAuby (1) + 4, ()

b )+ Kb (0= 0, )+ 2K ()" BO) - AW)

Now that we found the differential equation for b, (t) we solve it. The integrating factor is
p = ekt hence the solution is

d 2
= (10 () = g, () + uzk ()" B (1) - A )
Integrating

by @)= [[pg, Ot + [ 12k (1) BO - A®)dt+c

2
b, (f) = et f it () dt + f M (A1) B () - A () dt + ce e

The constant of integration c is b, (0), therefore

b, (f) = ekt f hilg, (1) dt + f e“ﬂt%k (21" B(t) = A(®)) dt + b, (0) et

The above could also be written as
¢ ¢ 2
b, () = ekt f ekhisg (s)ds + f Mk (A1) B(S) ~ A©) ds + by 0) e
0 0

Now that we found b, (t), the last step is to determine b, (0). This is done from initial
conditions

1(x,0) ~ Y, b, (0) y, (%)
n=0

173



2.10. HW 9 CHAPTER 2. HWS

By orthogonality

L
f (x) (Pn (x) dx 2 L
b, (0) = l; £L o = Zfo f (x) cos (%x) dx

This complete the solution. Summary of result

The solution is

u (x/ t) ~ 2 bn (t) (Pn (X)
n=0

Where
t t 2
by (t) = et f g, (s) ds + f e 2k (1) B () = A(s)) ds + b, (0) et
0 0
Where
2 L nm
b (0)= = fo f(x)cos(Tx)dx
And
2 L nm
NOE —f Q(x,t)cos (—x) dx
1 LJ, i
And

2
An:(ﬂ) n=0,1,23,

2.10.8 Problem 8.4.3

8.4.3. Consider 5y 8 ou
c()o(@) 55 = 3= | Kol) 5] + alau + (a0

u(z,0) = g(z) u(0,t) = aff)
w(L,t) = p(t)

Assume that the eigenfunctions ¢, (z) of the related homogeneous problem
are known.

(a) Solve without reducing to a problem with homogeneous boundary con-
ditions.

(b) Solve by first reducing to a problem with homogeneous boundary con-
ditions.

2.10.8.1 Part (a)

From problem 8.3.3, we found the eigenfunctions ¢,, (x) from the Sturm-Liouville to have
weight

o=cp
Let
(6, 8) ~ Dby (1) ()
n=1
Substituting the above in the PDE gives

o Db (B Py (1) = L[ul + f (x,1)
i=1
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Where L = 8% (Koa%) + g. Following same procedure using Green’s formula on page 35, we

obtain

O o = e VA, (a () - (-1)" B (1)

1
dr f 2 (x) adx W

Where
fo D= (), )
n=1

I;L £, 8) b, (x) oddx
ﬁ ¢ (x) odx

The solution to (1) is found using integrating factor.

VA (@) - 1" B )
LL @3 (x) odx

fn(t):

db, ()
= (U)ba) AR

An
Hence u = eCp and the solution becomes

k

W [ (@t -1y p@)de|+ e

b, (F) = e'%’”[é CEE (1) dt +

Where ¢ is found from
b,(0)=c

And b,, (0) is found from initial conditions
g = E b, (0) @, (x)

£ 8 (%) ¢, (x) oddx
£ @3 (x) odx

b, (0) =

This complete the solution. Summary

Solution is

U, t) ~ D3 by () py (1)

n=1
Where

by ()= %f e+ | e () - (1) () dt | + b, (0) "

k
ﬁ 2 (x) adx
l;L g (x) P, (x) odx

b, (0) = I
£ 2 (x) odx

o=cp

210.8.2 Part (b)

The first step is to obtain a reference function r(x, ) where u (x,t) = v(x,t) + r(x,t). The
reference function only needs to satisfy the nonhomogeneous B.C.

We see that
Bt -a(t)

rix,t)y=a()+ T
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does the job. Now we solve the following PDE

Juv d Jv
cpﬁ = > (Koﬁ_x) +qX) v+ f(xt)
v(0,t)=0
v(m, ) =0

ﬁmwa@a

v(x,O):g(x)—(a(0)+ I

Using Green’s formula, starting with
v(x,t) = Y, by (8) Py (%)
i=1

Where we used = instead of ~ above now, since both v (x, t) and ¢, (x) satisfy the homoge-
nous B.C., and where b, (f) satisfies the ODE

db
Tl s Mbu) = £, 0 )
Where 0 = cp and

fo D= (), (x)
n=1

ﬁ £, 8) b, (x) oddx
f 2 (x) adx

fn(t):

An
The solution to (1) is found using integrating factor u = e ', hence

Myl iy
b, (t)=¢ < —feo £ (O dt+b, O)e
And b,, (0) is found from initial conditions v (x, 0)

POZ0) - 536, 0000
i=1

[ 8@~ (0 + 220, (3)
L 32 (x) odx

g() —(a(0)+

by (0) =

This complete the solution. Summary

Solution is given by

u(x,t) = (i b, (t) ¢, (x)) +r(x, 1)
i=1
(2 (t)an(x))+a(t)+5(t)£a(t)x
Where
— —A;"tl %t —%”t
b, (t) = e Gfe FoBdt+b, (0)e
And
[ 50~ (@ + H250) 9, (0)
b, (0) =
£ 03 (x) odx
And
1)‘ £, 1) ¢y (x) oddx
fut)=
£ ¢ (x) odx
Where 0 = cp
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2.10.9 Problem 8.5.2

8.5.2. Consider a vibrating string with time-dependent forcing:

8? 8?
37 = “gztQ@
u(0,t) =0 u(z,0) = f(z)

u(L,t)=0 ?—;:(:c,O) =0

(a) Solve the initial value problem.

*(b) Solve the initial value problem if Q(z,t) = g(z) coswt. For what values
of w does resonance occur?

2.10.9.1 Part (a)
Let
w(x,t) = DA, (O Py (x)
n=1

Where we used = instead of ~ above, since the PDE given has homogeneous B.C. We know

n\2
that ¢, (x) = sin (\/A_nx) forn =1,2,3,--- where A, = (Tn) . Substituting the above in the
given PDE gives

2
2A”<t>¢n<x>—c2§]A<t> T Qe

n=1
But Q(x,t) = Z:’ 19n (t) ¢y, (x), hence the above becomes
ZA" (69 (x) = ZA CRALIGN Zgn 69 ()

But i (P”(x) = -A,¢, (x), hence

47 06,0 =~ 3 A (06,0 + 28, (06,
n=1 n=1 n=1
Multiplying both sides by ¢,, (x) and integrating gives

L & [, o [, oo
[ B4 060 @ e @dx == [ N AA O 6@ 0y Wdx+ [T 80060 06y () dx
0 p=1 0 pn=1 0 n=1

L L L
a0 [ G @dx=-ha,0 [ FE@dr+g 0 [ 6 0dx
0 0 0
Hence
A (1) + 2N, A, (B = g, (1)
Now we solve the above ODE. Let solution be
Ay (t) = Al () + AL ()

Which is the sum of the homogenous and particular solutions. The homogenous solution

is
Al () = c1, COS (c\//\_nt) + ¢y, Sin (c\//\—nt)

And the particular solution depends on g, (). Once we find g, (), we plug-in everything
back into u (x,t) = Z:;l A, (t) ¢, (x) and then use initial conditions to find ¢; ,c; , the two
constant of integrations. We will do this in the second part.

2.10.9.2 Part (b)

Now we are given that Q(x,t) = g (x) cos (wt). Hence
£ QB gy (W dx  cos(wh) L 8 () ¢y, (x) dx
[ #@ax [ wax

8n (t) = COs (w t) Vn
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Where
~ £Lg(x) ¢y, (x) dx
) LL ¢ (x) dx
is constant that depends on n. Now we use the above in result found in part (a)
AL (1) + A Ay (B) = 7y cos (wt) (1)

We know the homogenous solution from part (a).

Al () = c1,, COS (c\//\—nt) + o, Sin (C\//\—ni')

We now need to find the particular solution. Will solve using method of undetermined
coefficients.

Case 1 w # cyA, (no resonance)

We can now guess
Al () = z; cos (wt) + z, sin (wt)
Plugging this back into (1) gives
(z1 cos (wt) + zp sin (wt))” + ®A,, (z; cos (wt) + z, sin (wt)) = y,, cos (wt)
(~wzy sin (wt) + wz, cos (wt)) + c?A,, (21 cos (wt) + z; sin (wt)) = ¥, cos (wt)
—w?z; cos (wt) — w?z, sin (wt) + c?A,, (21 cos (wt) + z; sin (wt)) = ¥, cos (wt)
Collecting terms
cos (wt) (—a)221 + cz/lnzl) + sin (wt) (—a)zzz + czAnzz) =y, cos (wt)
Therefore we obtain two equations in two unknowns
—w?zy + PAyzi =V,
—~w?zy + A2y = 0

From the second equation, z; = 0 and from the first equation

z1 (czAn - a)z) =V

_ Vn
= A, — w?
Hence
Al () = zq cos (wh) + z, sin (wt)
_ Vn
= CZAn——a)Z COS (a) t)
Therefore

Ay (1) = Ay (8) + Al (1)
=0, cos( \/_t) + ¢y, Sin (c\/_t) — 2 ———— cos (wt)

Now we need to find ¢; ,c, . Since

u(x,t) = D Ay (5 oy (¥)

n=1

= Z (cln cos (c\/A_nt) + 0y, sin (c\//\_nt) + 27/—112 cos (a)t)) sin (Ex)
n=1 c An w L

At t = 0 the above becomes
. (N7
—a)z SIH(TX)

f@ =
( )*gd—fa)zsm(%ﬂ’f)

Applying orthogonality
L mmn L & nm mmn L & y nm mmn
n ()= | B, sin(Tox)sin () e 73 b sin () sin ()
j;f(x)sm(Lx) X Onz::lclnsm Lx sin Lx X+ Onz::lcz)\n_wzsm Lx sin Lx X
L L L
f f (x)sin (%x) dx = Clnf sin® (nfnx) dx + cz/ly—nzf sin® (nTnx) dx
0 0 n— @ Jy
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Rearranging
it [y () ae=a, [ ()
ff(x)sm( )dx cz/l — 2 Osm Lx dx =cq, Osm Lx dx
L .
Lf(x)sm(%x)dx_ Y
LL sin? (%x) dx Gy w?

Lyf f(x)an( )dx EZE?%TZE

We now need to find ¢, . For this we need to differentiate the solution once.

M S (o)l el i)

du(x,0)
ot

C]n =

Applying initial conditions

=0 gives

ad nr
0= cyA,Cp sin (—x)
nzzll n“2, L
Hence

Cy =0

n

Therefore the final solution is

- _In

Ay (t) = cq, cos (c\/A_nt) + Ey R cos (wt)
And
— . (nm
u(x,t) = ,;1 A, (t)sin (Tx)

Where

_2 Y

c1, ff(x)sm( )dx %—iwz

Case 2 w = cy/A, Resonance case. Now we can’t guess Ab () = z1 €os (wt) + z, sin (wt) so we
have to use

Al (1) = 21t cos (wt) + z,t sin (wt)
Substituting this in A}/ (t) + ¢2A, A, (t) = y,, cos (wt) gives
(z1t cos (wt) + zpt sin (wt))” + ®A,, (z1t cos (wt) + zyt sin (wt)) = y,, cos (wt) (2)
But
(z1t cos (wt) + zpt sin (wt))” = (z1 cos (wt) — zywt sin (wt) + zy sin (wt) + zywt cos (wt))
= —zqwsin (wt) - (zla) sin (wt) + z;w?t cos (a)t))
+ zyw cos (wt) + (zza) cos (wt) — zyw?t sin (w t))
= -2z w sin (wt) — zyw?t cos (wt) + 2z,w cos (wt) — zyw?t sin (wt)
Hence (2) becomes
=271 sin (wt) -z w2t cos (wt)+2zyw cos (wt)—zpw?t sin (wt)+c%A,, (21t cos (wt) + zpt sin (wt)) = y,, cos (wt)

Comparing coefficients we see that 2z,w =y, or

Vu

2= 2w

And z; = 0. Therefore
Ab @) = tsm (wt)
Therefore
Ay () = A (B) + AL (1)

=y, COS (C\//\_nt) + 0y, Sin (c\/A_nt) +

tsin (wt)

Vn
2¢y/A,
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We now can find ¢; ,c; from initial conditions.

u(x,t) = DAy (8) Py (0)
n=1

= g}l (cln coS (c\/A_nt) + ¢y, Sin (c\/A_nt) + 2;:/”/\_”1‘ sin (a)t)) sin (nTnx) (4)

Att=0
fx) = ;;1 c1, 8in (%x)

2 L
C1p = ZJ(; f(x)sin (%x) dx

Taking time derivative of (4) and setting it to zero will give c,,. Since initial speed is zero
then ¢, = 0. Hence

Vn .
A, (t) =cq coslcA t) + ts t
1’1() ln ( 71) ZC\/A_H ln(a))

This completes the solution.

Summary of solution

The solution is given by
u (x/ t) = Z An (t) (;bn (x)
n=1

Case w # cV/A,

_ Vn
A, (t) = €1, COS (C\/A_nt) + m cos (wt)

And
2 b . (mTn Vn
C, =7 fo f (x)sin (Tx) dx — —cz/\n — 2
And
L
[ 80 ¢ (x)dx
Vn = I
[ 0% (0 dx
nm\2
And A, = ()" ,n=1,2,3,
Case @ = cy/A,, (resonance)
Ay, () = ¢y, cos (c\//\_nt) + Ltsin (wt)

2c\/A,

2 L
€1, = Zfo f (x)sin (nTnx) dx

And
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2.10.10 Problem 8.5.5 (b)

8.5.5. Solve the initial value problem for a membrane with time-dependent forcing
and fixed boundaries (u = 0),

2
% = c*V2u + Q(z,y,t),

ou
u(x,y,o) =f(:x:,y), 5{(3’%0) =0,
if the membrane is

(a) arectangle (0 <z < L,0<y < H)
(b) a circle (r < a)
*(c) a semicircle (0 < 0 < w,7 < a)

(d) a circular annulus (a < r < b)

The solution to the corresponding homogeneous PDE

2%u

_ 2\72
W_CV
Is

u(r,0,t) = i i a, ()], ( Anmr) cos (n0) + i i a, ()], ( Anmr) sin (n0)

n=0m=1 n=1m=1

Where A, are found by solving roots of J, ( /\nmu) = 0. To make things simpler, we will
write

u(r,0,0) =Y, a;(t) D (r,0)

Where the above means the double sum of all eigenvalues A;. So ®;(r,0) represents
]n( Anmr) {cos (n0),sin (0)} combined. So double sum is implied everywhere. Given this,
we now expand the source term

Q (1’, 6/ t) = E qi (t) cDi (7’, 6)
And the original PDE becomes
20 (@A) = Y ai(t) V(R (r,0)) + Y 4; (1) D (1, 0) (1)

But
V2(®;(r,0)) = —A;®; (r, 0)
Hence (1) becomes

Ml ()i (r, 0) + 2Aa; (1) D; (r, 0) = D, q; (1) D; (r, 0)

X (a7 () + 220 (1) D (r,0) = Y4, () D (7, 6)

Applying orthogonality gi\l/es
ay’ (t) + A (1) = q; (¢)
Where
f [ Z Q(r,0,t) ®; (r, 0) rdrd0
La f_ Z 2 (r, 0) rdrd0

g; (t) =

The solution to the homogenous ODE is

aﬁ’ (t) = A, cos (c\//\—it) + B; sin (c\//\—it)

And the particular solution is found if we know what Q(r, 6,t) and hence g; (). For now,
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lets call the particular solution as af (t). Hence the solution for g; (t) is

a; (t) = A, cos (c\/Z.t) + B, sin (C\/Zt) + af (1)
Plugging the above into the u (r,0,t) = Zi a; (t) D; (r, 0), gives

u(r,0,t) = E (Ai cos (c\/z't) + B;sin (c\/xit) + af (t)) @, (r,0) (2)

We now find A, B; from initial conditions. At t =0
£r,0) =Y (A+4d] 0)©i (r,6)

1

Applying orthogonality
f f £ (r,0)®; (1, 0) rdrd0 = f f 3 (A; + (0)) s (r, 6) D, (7, 6) rdrd6
0 Y-n 0 v-m

J: j’_if(?’, 0) ; (r, 0) rdrdO = (Aj + a;? (0)) j: jjz q)].Z (r, 0) rdrd@

a T 0)®,(r, 0 o
Mﬁﬂm»:£2f3> (r, 6) rdr
[ [[ @2 (,0)rardo

Taking time derivative of (2)

p
w = zl] (—Aic\/xi sin (c\/)\_it) + c\/I'Bi cos (C\/A_it) + dﬂ;t(t) ) @, (r,0)

Att=0
P
0= Z (C\//\iBi + da;—t(())) q)i (7", 9)

Hence B; = 0. Therefore the final solution is

u(r,0,t) = Y, (A;cos (cyAit) + af (1) @i (r, 0)

1

Where
(A p (0)) K j:z f (r,0) D; (r, 0) rdrd6
-+ 4 —

o [ [ @ (r,0)rdrde

This complete the solution.
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211 HW 10

Math 322 (Smith): Problem Set 10
Due Wednesday Dec. 7, 2016

1-4) For the following problems, determine a representation of the solution in terms of a
symmetric Green’s function. Use appropriate homogeneous boundary conditions for the
Green’s function. Show that the boundary terms can also be understood using homoge-
neous solutions of the differential equation.

d? d
%Z:f(:r), 0<z<l, u(0)=A, £(1)=B (1)
d*u
@+u:f(x), O0<xz<L, uw0)=A, wl)=B, L#nrw 2)
%:f("f)’ 0<z<L, u(0)=4 j—Z(LHhu(L):o 3)
%+2%+u:f(x), O<z<1, u0)=0, ul)=1 (4)

2.11.1 Problem 1

version 040417

d?u

dx?
Note: I used L for the length instead of one. Will replace L by one at the very end. This
makes it more clear. Compare the above to the standard form (Sturm-Liouville)

d ( du
_E (pa) + qu = f(X)

du
=f;0<x<Lu(©)=4A—(01)=B

Therefore it becomes
d ( du
I (Pd—) =/

px) =1
Green function is G (x,xy) (will use xy which is what the book uses, instead of a, as xq is
more clear). Green function is the solution to

d?G (x, xp)
——— =0(x—x
G (O/ xO) =0
dG(L,xo) 0
dx B
2
Where x is the location of the impulse. Since % = 0 for x # x, then the solution to
2

4 i(jz’x‘)) = 0, which is a linear function in this case, is broken into two regions

A1X+A2 0<X<XO
G(x,x9) =
le+B2 XO<X<L

dG(1xp) _

dx 0

The first solution, using G (0,x;) = 0 gives A, = 0 and the second solution using
gives By = 0, hence the above reduces to

Aix x<xg

G (x,x0) = 1)

Bz Xg <X
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We are left with constants to Ay, B, to find. The continuity condition at x = xy gives

A1xg = By (2)
The jump discontinuity of the derivative of G (x, xo) at x = x, gives the final equation
d d -1
(d_G (x, xo)) - (d_G (x, xo)) = =-1 (2A)
x Xp<X * xX<Xxp p (xo)
Since p (x) =1 in this problem. But
dG (x, xg) Ay X < X
T ©)
X 0 Xg <X
Hence (2A) becomes
0-(A)=-1
Therefore
A =1 (4)

Solving (2,4) gives B, = x;. Hence the Green function is, from (1)

x x < Xg
G(x,xo)z{
X0 Xg <X

And dG(xxO)

where now derivative is w.r.t. xg, is

dG(x,x) | 0 x<x
dx, |1 Xg < X

We now have all the information needed to evaluate the solution to the original ODE.

boundary terms

particular solution

4G (x, %) 1"
u(x) = f G (x,x0) f (xg) dxg + |p (x0) G (x, x0) du (x )—P(xo)u(xo)%]
X0 X0 =0
Since p (xp) =1 then
d d xo=L
y(x) = f G (x, xg) f (xo) dxg + [G (x, %) u(xo) u () G(xoxo)]
X0=0
Let uj, = [G (x, xo) d”(xo) 1t (x;) dG(x, xo)] hence
x0=0
=G (x L>d”(x°) 0 - () 2 XO) 0-660 25 0) 40 )%;%)( )
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But
G(x,L)=x
du (xp) (L) =B
de
4G &%) 1y _ g
dXO
G(x,00=0
dG (x, xg) 0 =1
de
u)=A4
Then
u,=xB+ A

We see that the boundary terms are linear in x, which is expected as the fundamental
solutions for the homogenous solution as linear. The complete solution is

L
y () = fo G (x, %) f (x0) dxy + (xB + A)
:fLG(x,xo)f(xO)dx0+xB+A
0

X L
:f xof(xo)dx0+f xf (xg)dxg+xB+ A

0
For example, if f(x) = x, or f(xy) = xy then (but remeber, we have to use —f (x) since we
are using S-L form)

X 1
v == | Gl (f G+ [ Gl x-S Co)idzo+ (B +4)

X 1
:—f xoxodxo—f xxgdxg+xB+ A
0 X
3\% 21
e -X Al +xB+ A
3 2
0 x

—x3 1xz+B+A
“T\3) T T

1 1
=A—-—x+Bx+=x°
2 6

To verify the result, this was solved directly, with f (x) = x, giving same answer as above.

DSolve[{u""'[X] == X, u[@] == A@, u'[1] = BO}, u[x], x]

{{u[x} »% (6A9—3x+6B0x+x3)}}

Expand [%]

Hu[x] eA0—§+Bex+X€3H

And if f (x) = ¥, or f(xy) = x3, then
X L
y(x) = j(; Xo (—f(xo))dxo + j; x(—f(xo))dxo +xB+ A

X 1
= - f xXpx3dxo — xf x3dxo +xB + A
0 x
4\ 3\!
= —(@) —x(ﬁ) +xB+ A
4 3
0 X
xt 1 8
=—|=]-x|z-=|+xB+ A
[5)5-5)
1 1,
=A-=-x+Bx+—x
3 12
To verify the result, this was solved directly, with f (x) = x?, giving same answer as above.
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DSolve[{u''[x] == x"2, u[@] == A@, u'[1] == BO}, u[x], x]

Hu[x] > % (12A6—4x+12B6x+x4)}}

Expand [%]

Hu[x] A0 - g +BOX+)1(—;H

This shows the benefit of Green function. Once we know G (x, x(), then changing the source
term, requires only convolution to find the new solution, instead of solving the ODE again
as normally done.

211.2 Problem 2

d2
d_xl;+u:f(x);0<x<L;u(0)=A;u(L):B?Iﬁ&””

Solution

Compare the above to the standard form

d [ du
“Ir (Pa) +qu=f(x)

—pu”" +qu = f(x)

Therefore
p(x)=-1
Green function is the solution to
d?G (x, xg)
Q2 + G (x,x9) =0 (x — xg)
G (O, Xo) =0
G (L, xo) =0
2
Where x is the location of the impulse. Since % = 0 for x # xy, then the solution to
2
% + G (x,x0) = 0, is broken into two regions

Ajcosx+ Aysinxy  x <Xy
G (x,x) = .
Bjcosx + Bysinx Xp < X

The first boundary condition on the left gives A; = 0. Second boundary conditions on the
right gives

BicosL+ BysinL =0

B B sinL
=" cosL
Hence the solution now looks like
Ajpsinx X < Xg
G x0) = B sinl cosx + B, sinx Xg < X
2 cosL 2 0
But
sinL . B2 . .
-B, cosx + Bysinx = (sinxcosL — cosxsinL)
cos cos

. . oo : . . By .
Using trig identity sin (a — b) = sina cos b—cos asin b, the above can be written as ﬁ sin (x — L),
hence the solution becomes

Ajpsinx X < X
G(x,x) =1 B, (1)

msm(x—L) Xg <X

Continuity at x, gives

B
Ay sinxg = co:L sin (xg — L) (2)
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And jump discontinuity on derivative of G gives

1
cos (xg— L) — Apcosxyg = ———

PG

2
osL

Xo—L)— A,cosxyg =1
COSLCOS( 0—L)—Aycosxg

(3)

Now we need to solve (2,3) for A,, B, to obtain the final solution for G (x, xy). From (2),

A B, i (v~ )
= ————sin(xp -
27 cosLsin X 0

Plug into (3)

B, B, .
—L)- —2 -L =1
T cos (xg — L) cos L sin g sin (xg — L) cos xg

COS X
=1

B B
2L cos(xg—L) - 2L sin (xg — L)

sin xg
COs X
=cosL

B, cos (xg — L) — By sin (xg — L)
sin X0

COS X — cosL

B, (cos (xg — L) —sin (xg — L)
N Xp

B, (sin xq cos (xg — L) — cos xg sin (xO — L)) = cos Lsinx,
But using trig identity sin (a — b) = sinacosb - cosasinb we can write above as
B, (sin (xg — (xg — L))) = cos Lsin xy
B, sin L = cos L sin x
cos Lsin x
Bz =
sin L
Now that we found B,, we go back and find A, from (4)
cos Lsinx 1
Az = - 0 - sin (XO - L)
sinL.  cosLsinxg
_ sin(xp—L)
~ sinL
Therefore Green function is, from (1)

sin(xp—-L)
W sin x X <Xy
G (xr xO) = cosLsinxg 1

Lsin(x—L) X < X

sinL cos

sin(xg—L)

G(X, xO) = { smxsgnL
sinL

sin x X < X

n(x-1L) Xg < X

(4)

()

It is symmetrical. Here is a plot of G (x, xy) for some arbitrary x;, located at x = 0.75 for

L=1.

Problem 2 Green function. x0=0.75

0.00 [
-0.05}

-0.10}

G(x,x0)

-0.15}

-0.20r, _ _ _ _ b
0.0 0.2 0.4 0.6 0.8 1.0
X

Now comes the hard part. We need to find the solution using

. . ndary term
particular solution boundary terms

d 4G o=t
o) p o (rg)
X0

v = [ Gl f o)z + p o) Gl o)

x0=0
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The first step is to find %. From (5), we find
0

sin

COS X
peawall in(x-L) xp<x

Now we plug everything in (6). But remember that G (0,xy) =0,G (L, xg) =0,u(0) = A,u(L) =
B. Hence

ple : cos(xg—L) .
(x, x0) _ { L sin x X < X 7

de

G o=t
[P(XO)G(X v0) PO (e (1) T x")]
x0=0
e L) du (L) () e dG (x L) yers 0) du (O) 1(0) de(x, 0)
X0
B cos(xg—L) . CosSXg .
=0-(B) (T sin x)xO:L -0+ (A) ( = sin (x — L))xo:0
3 1 . sin (x — L)
== (SinL Smx) * (A)( SinL )
sin x sin (x — L)
= —-B— + -
sinL sinL
But p = -1, hence the above becomes
A=—Gx L) du (OL) u (L) dG (x0 ,L) ers O) du (0) 4 (0) dG (xO ,0)
+(B) (M smx) +0-(A) ( o8 xo sin (x — L))
Xo= =L L XOZO
1 . sin (x — L)
- +<B)(sinL Smx) ) (A)( SinL )
3 Bsinx sin (x — L)
" UsinL sin L

We see that the boundary terms are linear combination of sin and cosine in x, which is
expected as the fundamental solutions for the homogenous solution as linear combination
of sin and cosine in x as was found initially above. Equation (6) becomes

Y (@) = fG(xxO)f(xo)dxo+B

Now we can do the integration part. Therefore

X X L L ;
fo G (x, %) f (xo) dxg = fo (%smxo)ﬂxowxw f (:iizSin(xo—L))f(xo)dxo

We can test the solution to see if it correct. Let f (x) = x or f (xg) = xy, hence

X (sin(x-L) L f[sinx |
f G (x,xq) f (x0) dxg = fo X0 (T sin xo) dxg + f;{ X (sinL sin (xg — L)) dxg

sin x sin (x — L)
nL sin L

(8)

sin(x— L sinx (L
= mngL) . X Sin xgdxy + SEIlL fx Xg sin (xg — L) dxg
sin (x — L)

sin x
= ——— (—xcosx +sinx) + —— (-L + xcos(x — L) —sin (x — L))
sin L sin L

—xcosxsin (x — L) N sinxsin (x — L) sin x N xcos(x—L)sinx sinxsin(x—1L)

sin L sin L sin L sin L sin L
—xcosxsin(x—L) sinx xcos(x—L)sinx

sinL sinL sinL

1
= —— (-Lsinx +xcos(x — L)sinx — x cosxsin (x — L))
sin L

Hence the solution is

1 ) ) s
u(x) = .—L(—Lsinx+xcos(x—L)sinx—xcosxsin(x—L)) + (Bsmx _Asm(x ))
S1n

sinL sin L

plen (-Lsinx + xcos (x — L)sinx —xcosxsin(x — L) + Bsinx — Asin (x — L))

To verify, the problem is solved directly using CAS, and solution above using Green
function was compared, same answer confirmed.
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f=x;

Lo =1;

A0 = 1;

BO = 2;

computerSolution = u[x] /. First@DSolve[{u''[x] +u[x] ==f, u[@] == A@, u[LO] == BO}, u[x], x];

mySolUsingGreenFunction = 1/Sin[L@] (-L@® Sin[x] +xCos[x - LO] Sin[x] - xCos[x] Sin[x - LO®] + BOSin[x] - A@Sin[x - LO]);
Simplify[computerSolution - mySolUsingGreenFunction]

2]

2.11.3 Problem 3

d?u du
= :f(X),O<x<L,u(O)=A,E(L)+hu(L)=0

Solution

Compare the above to the standard form

d { du
I (PE) =f )
—pu”" = f(x)
Therefore
p(x)=-1
Green function is the solution to
d%G (x, x
dg(fz O) = 6(x - xO)
G (O, xo) =0

d
aG(L,Xo) + hG (L,XO) =0

2
i i(;;'x()) = 0 for x # x, then the solution to

Where x is the location of the impulse. Since
d2G(x,xg)
dx?

= 0, is broken into two regions

A1x+A2 X <X
B1X+B2 Xg <X

G(x,xp) = {

The first boundary condition on the left gives A, = 0. Second boundary conditions on the
right gives
Bl +h(B1L+B2) =0
Bl (1 + hL) = —hBZ

B — -hB,
1" 140
Hence the solution now looks like
Aqx X < Xp
G (x/ xO) = -hB
(ﬁ) x+B, xp<x
But
—hB, —hB, B, (1 + kL)
B, = -
(1+m)x+ 2 (1+m)x+ 1+hL
_ B, (1 +hL - hx)
B 1+hL
Hence
Aqx x < X
G (x,xp) = By(1+hL—hx) 1)
1+hL Yo <X

Continuity at x, gives
B2 (1 + hL — th)
1+hL

Ale =

(2)
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And jump discontinuity on derivative of G gives

52 (xo-L)- A LI
cos(xg—L)— Aycosxg=——— =
osL 0 2 0 p(x)
~hB, 1

YT e ®)

We solve (2,3) for Aj, B,. From (3)

~hB,

1+hL_A1_1
_ -hB,

L)

_ -hB, (1+Hhl)
" 14kl 1+4HhL
_ —hBy-1-hL
1 +hL

Substituting in (2)
—hBy —1-hL B, (1 + hL - hxp)
1+hL 0" 1+hL
(=hBy =1 = hL) xq = By (1 + hL — hxg)
—hByxg — xg — hLxg = By + hLB, — hxyB,
By (=hxg —1 — hL + hxg) = xo + hLx,
B, (1 + hL) xg
27 Aa-nL
—(1+hL)
1+hL ©

Hence
-hB, —1 - hL
A= ———
1 1+hL
3 —h(=xy) —1-hL
B 1+hL
th — 1 — hL
1+ hL
th 1+ hL

T1+nL 144
th

1+ hL

Therefore (1) becomes

th

- 1) X x<Xxg

_ 1+hL

G (x,x0) = { o (1+hL—hy) - (1)
1+hL Yo <X

But
—xo(1+hL—hx)  (-1-hL + hx)
1+nL % 14hL

3 hx 1+ hL
TN\ T T 1L

3 hx 1
Yl T

(ﬂ—l)x X < X

Hence (1) becomes

1+hL

(2)

—1)x0 Xg <X

We see they are symmetrical in x, x. Here is a plot of G (x, x;) for some arbitrary x; located
atx=075h=1,for L =1.
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Problem 3 Green function. x0=0.75

0.0

-0.1¢

-0.21

G(x,x0)

-0.3}

-04f

0.0 0.2 0.4 0.6 0.8 1.0

We need to find the solution using

du (xo) dG(xx)xOL
¥ = fcvmﬂmwNmmF@%> 2 () S 3)

0 xO:O

The first step is to find dG;x’XO). From (2), we find
h
dG (x,xo) 1+;L X < X )
. T k&
dxo Tl -1 Xg < X

Now we plug everything in (3). But remember that G (0, x;) = dG(dexo) —hG (L, xg),u(0) =

A, dL;iL) = —hu (L) . Hence
xo=L
A =G0 du (x) 1 (xo) dG (x, xo)]
xo 0 X0=0
_ G L) du (L) e )dG (x,L) yers 0) du (0) 4O de(x'O)
X0 Xo
dG (x,0
= G (x,L) (<hu (L)) — u (L) (=hG (xo, L)) = 0 + ( A)( d(xz ))

0
=G, L)hu (L) +u(L)hG (x, L)+A(%—1)

hx
=A -1
(1+hL )

Now we do the integration, From (3), and since p = -1 then we obtain

hx
y(x) = j:G(x,xO)f(xO)dxo —A(m —1)
particular solution boundary terms
[T G f e + [ Gl de - A1
= X, X, Xg) dx X, X, Xg) dxg — -
. , Xo) f (x0) dxg ) ,Xo) f (xo) dxo 1+7L

We see that the boundary terms are linear combination x, which is expected as the funda-
mental solutions for the homogenous solution as linear in x as was found initially above.
Plugging values From (3) for G (x, x;) for each region into the above gives

<[ h L hx I
y® :fo (1 +th _1)x°f(x0)dx°+f (1 th )xf(xO)dxo_ (1 +3;1L _1)

This completes the solution. Now we should test it. Let f (x) = x or f (xy) = xg and compare
to direction solution. The above becomes

Xp=
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hx hxg hx
v =\ ! fxodx0+xf (1 hL_l)xode_A(1+hL_1)
hx g L hx3 hx
= -1 - | -1
1+hL ( ) (1 HL xo)dxo (1 +hL )
| hx . 3 X3 X2 g A hx .
\1+hnL 3 1+hL3 2/, 1+ hL

[ hx x3 h I3 12 ho 28 x2 A hx ,
_1+hL )T\ TT L3 T2 1+mL3 2 1+ hL

h
(<hL3x - 312 + hLA® + %) - A( i —1)

=

6(1+Lh) 1+hL
hx
- m(x3(1+hL)—x(hL3+3L2))+A(1—1+hL)
1 1+h(L-x)
- m(;@a +hL)—xL2(hL+3))+A(W)

To verify, the problem is solved directly, and solution above using Green function was
compared, same answer confirmed.

ClearAll[x, Lo, y, AO, h]

f=x;
computerSolution = u[x] /. First@DSolve[{u''[x] == f, u[@] == A@, u'[LO] + hu[LO] == 0}, u[x], x];
) . 1 3 1+h (LO-X)
mySolUsingGreenFunction = —————— (x> (1+hL@) -xLe"2 (hL@+3)) + A0 —————;
6 (1+L0h) 1+hLe

Simplify[computerSolution - mySolUsingGreenFunction]

(4]

2.11.4 Problem 4

uw+2u'+u=f(x);0<x<Lu@)=0u(l)=1

Solution

Since the coefficient on u’ is 2, then the Integrating factor is u (x) = ol 2x = p2x. Multiplying
the ODE by u (x) gives

e u’ + 2eFu’ + ePu = e f (x)
— (p2x,,r 2X,, — 2%
dx(e u)+e u=ef(x)
To keep the solution consistent with the class notes, we now multiply both sides by -1 in
order to obtain the same form as used in class notes. Hence our ODE is

ddx (eru ) 02Xy = fo )

We now see from above that

P =
Once we found p (x), we now find the Green function. The Green function is the solution
to
d*G
(x/ xO) + sz (x/ xO)
dx? dx

+ G (x,x9) = 0 (x — xp)
G(O,XO) =0
G(L,xg) =0

Where x is the location of the impulse. We first need to find fundamental solutions to the
homogeneous ODE. The solution to u” + 2u’ + u = 0 is found by characteristic method.
2+ 2r+1 = 0, hence (r +1)*> = 0. Therefore the roots are r = -1, double root. Hence the
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fundamental solutions are
up=e>*
Uy = xe~*
Therefore
Aquq + Ayuy X < Xg

G(x,x9) = {

Bllxll + Bzuz X > Xy
Ae™ + Ayxe™ x < xg
Bie™ + Byxe™ X > X

The first boundary condition on the left end gives A; = 0 from the first region. The second
B.C. on the right end, gives

Ble_L + BZLB_L =0

Bl = - = —BzL
Hence the above solution now reduces to

—X
Ajpxe X < X

G (x, xq) :{

—ByLe™ 4+ Boxe™ x> X
Simplifying ~B,Le™ + Byxe™ = B, (x — L) ™, the above can be written as

—X
Ajpxe X < Xp

G (x,x0) = { 1)

By(x—L)e™ x>x
Continuity at x, gives
Aprxge™ = By (xg — L)e™0
Apxg = By (xg - L) (2)

And jump discontinuity on derivative of G gives

Ay (67 —xe™) X < Xp
—G(x,x0) =
dx By(1-x+L)e* x>xg

. - sy~ d
Hence (important note: we use —L below and not —— because we started with = (p—y)+m
p(xo) pxo) dx \"dx

. d dy
instead of + (pﬂ) )
-1 -1

- - ~X0) — - — _p2
By(1—-xp+L)e™ — Ay (e70 — xge xo)_p(xo)_ez_xo__e Yo

Dividing by e™0 to simplify gives
By(1-xg+L)-Ay(1—xp) =—€7 (3)
We solve (2,3) for A, B,. From (3)
—e7%0 + AZ (1 - xo)
B2 =
1- X0 +L

(4)

Substituting in (2)
-0 + Ay (1 —xp)
1-xo+L
Apxg(1—xg+L)=—-e(xg— L)+ Ay (1 — xg) (xg — L)
Ag(xg (1 =xp+ L) = (1 —xp)(xg— L)) = —e7 (xo - L)
e (- 1)
xg (1 =xp + L) = (1 —xp) (xo — L)

Apxg = (xo - L)

AZZ

1
Ze %0 (], —
Le ( X0)
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Hence, from (4)

-7 + (%e‘xo (L- xo)) (1-xp)
1- Xo + L

BZZ

= —lx e—Xo0
I 0

Therefore the solution (1) becomes

1
—e0 (L—xp)xe™  x<Xxg
G(x,xp) = 5
Gt x0) { %xoe‘xo (L-x)e* x>x ®)
Or
—(L_LXO)xe‘xO‘x X <X
G (x,x0) = LX) xo-x ()
I Xp€ X > Xg

We see they are symmetrical in x, xo. Here is a plot of G (x, xy) for some arbitrary x, located
atx=0.75for L=1.

Problem 4 Green function. x0=0.75

00 02 04 06 08 10

We now need to find the solution using

homogeneous solution/boundary terms

du (xo) dG (x, %) T°~"

particular solution

X
y(x) = f G (x, x0) f (xp) dxg + [P (x0) G (x, x0) ! = p (xo) u (xp) d—xo (6)
0 XOZO
The first step is to find dcgc’x(’). From (5), we find
0
4G (x, xo) _xe_z_xo B xe_X_XOL(L—XO) X < x .
- e 0(L—x L—x)xge ¥ 0
dxg L( ) ! )E x> X

Now we plug everything in (3). But remember that G (x,0) =0,G(x,L) =0,u(0) =0,u (L) =
1,p (x) = €. The following is the result of the homogeneous part

4G : xo=L
( 0) o) () ;jccoxo)]

|P (x0) G (x, xq)

XOZO

= ()G (o 1) 2D du(L) (@) u D dG(x L) ~ (20) G(x,0)$ + (29) u(0) dG(x 0)
0 X0
x<x0 branch from (7)

—X—XQ —X—XQ L —
= 0-e2 (1) (—xeL _Z L( xO)) ~0+(0)
XOZL
_ 2 (_ xe L ~ xe L (L - L))
L L

ol xe—x—L

=e
L

XBL_x

L
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Now we complete the integration, From (3)

particular homogeneous
—_——
X xeL—x
@ = [ Gl xo)fxo)dxo+ ( - )
0
L xeL—x
- f G (x,x0) f (xp) dxg + f G (x,x0) f (xp) dxg +
0 X
Plug-in in values From (5) G (x, x,) for each region,
from x>x( branch in (5) from x<x( branch in (5)
x ((L - L ((L- 1
u(x) = f (—x)xoe"‘O‘x g (xp)dxg + f (—xO)xe‘xO‘x g (x0) dxg + —xe ™t
0 L ; L L

This completes the solution. Now we should test it. Let f (x) = x or f (xy) = x(. But since we
multiplied by - (integrating factor) at start, we should now use g (xg) = —e?0xy as f (xp)
below.The above becomes

v (L-x) L((L-x)) . xel =
u(x) = fo (Txoe o x) (—e%0xq) dxg +fx (Txe *07 | (—e20xy ) daxg + -
(L — x) e X X xe~X L xeL—x
=-—1 j(; x3e¥0dxg — I J; (L — xg) xpe*0dxg + I (8)
But
X
f x3e%0dxy = —2 + &~ (2 + 22 - 2x)
0
L
f e (L — xg) xpdxy = eL(L—2)+ex(2+L—2x—Lx+x2)
X
Hence (8) becomes
(L-x)e™ xel ™

u(x) = (—2+e"(2+x2—2x))—%_x(eL(L—Z)+ex(2+L—2x—Lx+x2))+

L
Which can be simplified to

u(x) = %e‘x ((3eL —~ 2) x+L (2 +ef(x—2) - xeL))

For L =1, the above becomes

X 2 e
UuX)=x-2—+—+2x—-2
er e e*

Verification

To verify the above, a plot of the solution was compare to Mathematica result. Here is plot
of the result. My solution gives exact plot as Mathematica.

ClearAll[L, x, f]
f=x;
computerSolution = u[x] /. First@DSolve[{u''[x] +2u"'[x] +u[x] ==f, u[@] =0, u[L] =1}, u[x], x]
e*(2L-2e*L-2x+3e' x-e"Lx+e LX)
L

mysolution = - (L - x) Exp[-X] /L (-2 +EXp[X] (2+Xx"2-2x)) - xExp[-x] /L (Exp[L] (L-2) +Exp[Xx] (2+L-2x-Lx+x"2)) +x/LEXp[L-x];
Simplify [mysolution]
e ((-2+3e") x+L (2+e* (-2+X) -e"x))

L

(mysolution - computerSolution) // Simplify
]
L=1;

pl = Plot [computerSolution, {x, @, 1}, PlotRange —» All, ImageSize -» 300, PlotLabel » "Mathematica answer", PlotStyle -» Blue, GridLines - Automatic,
GridLinesStyle - LightGray] ;

p2 = Plot [mysolution, {x, @, 1}, PlotRange -» All, ImageSize - 300, PlotLabel » "Manual solution, Green function method", PlotStyle -» {Red},
GridLines - Automatic, GridLinesStyle - LightGray];
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Out[575]=

0.8

0.6

0.4

0.2

Mathematica answer

0.8

0.6

0.4

0.2

Manual solution
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212 HW 11

Math 322 Homework 11

Due Wednesday Dec. 14, 2016

1. (a) Use the method of images to solve

Viu(x) = f(x) (la)
in a semi-infinite 2D domain with boundary condition u(x,0) = h(x).
(b) Use the method of images to solve

VZu(x) = f(x) (10)
in a semi-infinite 2D domain with boundary condition du(x,0)/0y = h(x).

(¢) (a) Use the method of images to solve

Vu(x) = f(x) (1c)
in a semi-infinite 3D domain with boundary condition du(z, 0, z)/dy = h(z, z).
2. Using the method of images, solve

Vu(x) = f(x) (2)
in the 2D domain z > 0, y > 0 with boundary conditions u(0,y) = g(y) and u(z,0) = h(z).

The following are the general steps used in all the problems below :

1. Image points were placed to satisfy homogenous boundary conditions for Green
function using the solution for infinite domain.

2. The Green formula was applied to determine the particular solution and the bound-
ary terms.

3. Derivative of Green function was found and used in the result found above.
4. The role of X, x was reversed in the final expression to express the final result as

u (Y) instead of u (YO).

2.12.1 Problem 1
2.12.1.1 Part (a)

Green function on infinite domain, which is the solution to
VZG (FC),?C)O) = 6 (?C) - ?C)())
Is given by
1
Goo ‘}14) = _1
(x xo) o 1o (r)

1 = o
= 7 In (|x—x0|)

= % In [\/(x - x0)2 + (y - yO)ZJ

= i In ((x — xo)* + (y - yo)z)

By placing a negative impulse at location X, = (xo, —yo), the Green function for semi-infinite
domain is obtained
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A
Region where solution exist @ (z0,Y0)
© (z0,—v0)
1 1
G (%, %) = - In(r) - —In(r)
1 SN 1 N
= Eln(x—xol) - %ln(lx—?ﬁal)

= ﬁ (ln ((x —x)? + (y - yo)z) ~In ((x —xp)? + (v + yo)z))

I i U y°)z
(x = xp)° + (]/ + yo)

4n
The following is 3D plot of the above Green function, showing the image impulse and
showing that G = 0 at the line y = 0 (marked as red)

(1)

But V2G (?Z,?c’o) =0 (75,750) and V2u (Y) =f (?Z), therefore the above becomes

9‘;57)_u(7) - ]_dx

[[r@sGw)aa- [[ (%) £ () da :_Z [G (% %)
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Since ffu (35) o (35,?50) dA=u (750), the above reduces to

u(®)- [[ 6 E%)f() —T(G(z,fo)gg—f)_u(y)G(j,jo)J_ dx

y=0
xR du (% dG (X%,
u (%) ffc dA+f(G(7c’,;eO) QE/)_u(f) <(9y ) |
J, e

And since G (?Z,?c’o) =0 at y = 0, therefore

u(®)= [[cE%)/(F dA+f( (x)gGS;’YO))_ dx

—00

And since u( ) h(x) at y = 0, then

u(fo):ffc(mo ) dA - fh(x)( N] dx 3)

y=0

( dG(3 %))

& ) is now evaluated to complete the solution. Using G(?E,?ZO) in equation (1),

y=0
therefore

m - %di In ((x o) + (y yo)z) —-In ((x —x0)” + (y + ]/0)2))

[ S >2]

-2+ (y-10)  =x0P+ (v+vo
Evaluating the above at y = 0 gives

(R a(

dy 7\ (x - x)* + v (x- x)* + v3

_ E(L)
Tt (x—xo)2 +y%

Replacing the above into (3) gives

xo ffG xxo dA+y0f %dx
0

Using the expression for G (?5 550) from (1), the above result becomes
(x - xo) +\Y—Yo r h(x)
(xo o) = o~ f f ( ) f(x y) dydx + yof— dx
nx__ooy o (r—x0)*+ (y+y0 (x - x0)” + 113
And finally, order of %, is reversed giving

( )’
u(xy) = - ff i )f(xol/o)dyodxo+—fog)dxo

Xp=—01,=0 (xO x) + y0+y (xo—x) +y2

y=0

2.12.1.2 Part (b)

This is similar to part (a), and the image is placed on the same location as shown above,
but now the boundary conditions are different. Starting from equation (2) in part (a)

u (%) f f G(%,%) f (R)dA + E(G (%,%)) (%;(j) ~u (%) ~ (j,fo) .
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IG(2 %)
Iy
positive impulse and not negative as in part (a). Therefore G (75,550) becomes the following

But now =0aty=0and not G (35,?50) =0 as in part (a). This means the image is a

G (X,XO) = E In (7’1) + E In (7’2)

= o (%)) + 5 In (-5

)

1 2 2
= I (ln ((x - x0)2 + (y - yo) ) +In ((x - x0)2 + (y + yo) )) (2)
IG(E3

The following is 3D plot of the above Green function, showing that showing that GS;Xo) =0
at y = 0 (marked as red)

Green function, semi—infiniteb.ZD, x0 at (1,1) and image at (1,-1) part(b)

IG(Z X,
Since ) =0 at y = 0 then (1) becomes
" Ju (%
u(®) = [[ 6E%)f()aa+ f[c (%) (9( )] dx
%, V)
&u(?)
But oy h(x) at y = 0, hence the above reduces to
u (xo) = ffG (x, xo)f(x) dA +_fG (x, xo)y:O h(x) dx (3)

Evaluating G (75,?50) at y = 0 gives

G (Y’YO) = ﬁ (hl ((x - x0)2 + (y - yo)z) +In ((x - xo)2 + (y + yO)Z))

yo=0 y=0

= i (ln ((x - x0)2 + y%) +1n ((x - x0)2 + y%))

= ﬁ In (((x —x) + y%)z)

= % In ((x - xo)2 + y%)

Substituting the above in RHS of (3) gives

u (?0) = f fG (%’,Yo)f(x, y) dydx + ifln ((x —x)* + y%) h(x) dx

x:—OOy:O

Reversing the role of X, ¥ gives

u (f) = f f G (Y,?c’o)f (xo,yo) dyodxg + %f In ((xo x4+ yz) h(xg) dxg
xo=-o0y5=0 “eo
2.12.1.3 Part (c)

In infinite 3D domain, the Green function for Poisson PDE is given by
- = _ _1
G (x, xo) "~ 4nr
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Where r is given by

r= \/(x—x0)2+(y—y0)2+(z—zo)2

X = (xo,yo,zo) is the location of the impulse. Since % = 0, then the same sign impulse is

Iy
located at xj, = (xo, —yo,zo), and the Green function becomes
-1 1
G(x,%y) = -
( O) dnry  4mrg

1 1 1
=— |- - (1)
in [ \/(x - xo)2 + (y - yo)z +(z- 20)2 \/(x - x0)2 + (y + y0)2 +(z- zo)z]

Using Green formula in 3D gives

[[[ @76 (&%) - 6 (73) v2u(F)av = [[ (u(7) VG (%) - G (%.%) Vu(F))- 7 dxdz
= [ (+(2) VG (%) - G (33) Vuu (8)) - () e
( %)) - dxdz

But V2G (FE,?C’O) =0 (55,750) and V2u (ﬁ) =f (?c)) and the above becomes

[[[#@oEz0)av- [[[ ¢ ) £( tw_ff @ﬂGf%) dxdz
s y ),
But fff x xo dV =u (xo) hence
(%) fffc %)V = ii(c (%, %) gg(j) ~ (%) &Gg’?")) s

h y=0
Rearranging
T du (X dG (X, %,
w@w)= [[[em)s@av [ [ [G ) 20 gy (;;"”] itz ()
R 4=0
But ( a(*)) = h(x,z) and we impose (ac(j,}’o)) = 0, therefore the above becomes
! y=0 Y y=0
u(@)= [[[c@z)r@av+ [ [c (2%),_ n(x,2) dudz 3)

Evaluating G (75, 750) . gives
y:

CET) =-—|- ! - ! ]

0 AT \/(x —~x0)” + (y - y0)2 +(z-z) \/(x —x0)" + (y + yo)2 +(z -2 )
1 1 ) 1
T Ja-xf 413+ G207 x-x0? + 1B+ (-0
1

271\/(9( - xo)2 +y+(z— 20)2
Using the above in (3) results in

u(®) = [[[ 6 @) f( dV——ff ! -1 (x,2) ddz

—co— oo\/(x—xo)2+y%+(Z—Zo)
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And finally reversing the role of X, ¥ gives the final answer

o) = [[[6 6w G ave-L [ [ ! o 20) dod

—co—00 \/(xo - x)z +y?+ (20— 2)2

2.12.2 Problem 2

Green function in 2D on infinite domain, which is the solution to
VZG (?C),FC)()) =0 (?C) - 70)
Is given by

Goo (%,%9) = % In (r)

A negative impulse is placed X; = (xo, —yo) and another negative impulse at X, = (—xo,yo)

and positive one at X3 = (—xo, —yo). The following is a diagram showing the placement of
images.

It
Region where solution exist
@ (*xo7y0) @ ($07y0>
>
@ (=20, —¥0) @ (0, —¥o)

The resulting Green function becomes

Loy 1 1 1 1
G(% %) = S In() = - In(r) - —In(r) + —In(r3)

G (?,750) = ﬁ In ((x —x0)* + (y - yo)z) - ﬁ In ((x —x0)* + (y + yo)z)
_ i In ((x +x0) + (y - yo)z) + ﬁ In ((x +x0)° + (y + yo)z) (1)

The following is 3D plot of the above Green function, showing the image impulse and
showing that G = 0 at the line y = 0 and also at line x = 0. (Lines marked as red and blue)

Now that the Green function is found, it is used to solve V2u (Y) =f (Y), with u (x,0) = h (x),
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u (O y) =g (y) Starting with Green formula for 2D
[[#@) V26 (@7) - 6 (2.%) Vu(@)dA = § (u(3)VG (%) -G (%%) Vu(3))-n ds
51
+§ (u(7)VG(2%) -G (%%) Vu(3))-# ds
52

To simplify the notation, from now on, G is used of G (Y,YO), and also u instead of u (f)
The line s; in the above is the line x > 0, = 0 and s, is the line x = 0, > 0. Therefore the
above becomes

fquZG—GVZu dA = 9§ (VG - GVu) - () ds+9§ WV G- GVu) - (-0) ds

r ((-9u 9G
uV2G dA- || GV2udA = (G— - u—) dx + (G— - u—) dy
[ovcon evman- [e2oid] o Jlett-i28)
But V2G (?Z,?c’o) =5 (55,750) and VZ2u (Y) (
ffu(?f)é(?c’,?c’o) dA—ffo(Y) dA:f(Gg—;—ug—j) dx+f(G%—u§—i) dy
0 y=0 0 =0

But f f x xo dA =u (xo) therefore

ffo ) dA = f(G%—u—) O dx+f(G%—ui.)—f)x_o dy

: 0 =

=f ?5), hence the above reduces to

Or

=
—
=
N
1
%>
)
-~
—
=U

e IG
dA—!(u&—y) dx—‘of(ug)xzo dy

y=0
Smceu() h(x)aty = Oandu() g(y)atx:Othen

1 (%0, Y0) ffo ) dA- fh(x)("c) de—fg(y)((;—f) Ody 2)
y= 0 x=

(Z_j) and (é_f)x:o are now evaluated to complete the solution. Using G (%,%,) in equation
(1) gives
G 1 2(y - ) 1 2(y+ )
Iy _ﬂ[(x—xo)2 +(y-wo) A x4 (v+v0)
_L[ 2(v-w) |, 1 2(+w)
T+ x0)* + (y - yo)z AT (x 1 x0)2 + (y+ yO)Z

Evaluating the above at y = 0 results in

(5], =l =)
Wy A c-x0 +55) 4\ -x0)® + 3

L (i) L1 (L]
A\ (e +x0)? +12) 4\ (x + x0)* + 13

(%) :@( Lo ) @)
W) o T+ -x)+ i
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ST aG .
Finding —- gives

JdG 1 2 (x = xp) 1 2 (x = xq)
8_x__n[(x—xo)z+(y—y0)2 An (x—x0)2+(y+y0)2
1 2 (x + x) 1 2 (x + x)

__”[(X+xo)2+(yyo)2 " (c+x0% + (y+ o)

Evaluating the above at x = 0 results in

(8G) 1 —ZXO 1 —2x0
O —2 a1, . 2
dx =0 T 4n ) 4m x%

+(v-% +(y+vo)

_ L ZXO + 1 ZXO
an x5+ (}/ - ]/0)2 an X5+ (y + 1/0)2

(0"_(3) _1 Xo 1 Xo
) o T\ B+ (yrn) ) B+ (y-wo)

_ E[ 1 B 1 ] )
B+ (y+v0) B+ (y-vo)

Substituting (3,4) into (2) gives the final answer

xo,yo f f G X, xo dxdy
Yo 1 _ 1
n\ofh(X)[(x+x 242 2 ]dx

oS+ (x-x)’ + B

%fg(y)[xa (1 = )2]dy

0 + y+yo) X%Jf(?/—yo

Reversing the role of ¥, %, gives

u(xy) = ffG (%,%0) f (0, v0) dxoddyo
0 0

v [ 1 1
_%fh(xo)((x+ - > 2)dx0

xX)"+y* (xg—x) +y

“Jg%[ S J@o

2
yo +y) X%+ (yo —y)
Where G (7, ?ZO) is given by equation (1). This complete the solution.

The following is 3D plot of the solution (for small area is first quadrant) generated using
Mathematica using

£ () = 206 00 lr-5)

g (v) = 10sin (5y)
h(x) = 5 cos (2x)
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20

10
outf194)= 2

This is a contour plot of the above solution

10

Out[186]=

-2+
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213 HW 12

2.13.1 Problem 12.2.1

Show that the wave equation can be considered as the following system of two coupled
first-order PDE

Ju  Jdu
ﬁ—Ca—x =w (1)
Jw Jw
E + Cx =0 (2)

Answer

2
The wave PDE in 1D is zu c28 u

7 2 = 0. Taking time derivative of equation (1) gives
(assuming c is constant)

Pu  Pu  Jdw
o2~ “oxat ~ ot
Taking space derivative of equation (1) gives (assuming c is constant)

2%u u  Jw
Jiox a2 " ax )

(3)

Multiplying (4) by ¢

2 2
9 u CZ&_M = C&_w (5)

“Gtox o2 “ox

Adding (3)+(5) gives

&Zu_ 2%u . d%u ~ 2&2u B &w+ dw

o2 " “oxat  Sotox “ o2 ot T “ox
2%u 2(92u Jw  Jdw

92 o T 9 T ox
But the RHS of the above is zero, since it is equation (2). Therefore the above reduces to
Pu 0% 0
o o2
Which is the wave PDE.
2.13.2 Problem 12.2.2
Solve
Jw _Jdw
—_— _ = 1
Jt 3 ox 0 @D
with w (x,0) = cosx
Answer
Let
w=w(x(t),t)
Hence

dw_8w+&wdx
At Jt  Jx dt

Comparing (2) and (1), we see that if we let % = -3 in the above, then we obtain (1).

(2)

Hence we conclude that Z—Zf = 0. Therefore, w (x(f),t) is constant. At time t = 0, we are
given that

w(x(0),t) = cosx(0) t=0 (3)

We just now need to determine x (0). This is found from % = -3, which has the solution
x = x(0) — 3t. Hence x (0) = x + 3t. Therefore (3) becomes

w(x(t),t) = cos(x + 3t)
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2.13.3 Problem 12.2.3

Solve
i_ztv + 4§_w =0 (1)
with w (0, f) = sin 3t
Answer
Let
w=w(x, t(x))
Hence

do _ v owdt
dx dx  Jt dx

Comparing (2) and (1), we see that if we let % = i in (2), then we obtain (1). Hence we

(2)

conclude that % = 0. Therefore, w (x, t (x)) is constant. At x = 0, we are given that
w (x,t(0)) = sin (3£ (0)) x=0 (3)

We just now need to determine f(0). This is found from % = i, which has the solution

t(x)=1t(0)+ ix. Hence ¢ (0) =t (x) - Llix. Therefore (3) becomes

w(x,t(x)) = sin (3 (t (x) - }Ix))

3
= sin (3t - Zx)

2.13.4 Problem 12.2.4

Solve

%—?+C§—Z;:O (1)
with ¢ > 0 and
w(x,0) = f(x) x>0
w(0,t) = h(t) t>0
Answer
Let
w=w(x(f),t)

Hence
dw Jw N Jw dx
dt ot  Ox dt

Comparing (2) and (1), we see that if we let % = c in (2), then we obtain (1). Hence we

(2)

conclude that Z—Zf = 0. Therefore, w (x(t),t) is constant. At t = 0, we are given that
w(x(t),t) = f (x(0)) t=0 (3)

We just now need to determine x(0). This is found from % = ¢, which has the solution
x(t) = x(0) + ct. Hence x(0) = x (t) — ct. Therefore (3) becomes

w(x,t) = f(x—ct)
This is valid for x > ct. We now start all over again, and look at Let
w=w(x, t(x))

Hence
dw B Jw N Jdw dt
dx  dx = Jt dx

Comparing (4) and (1), we see that if we let % = % in (4), then we obtain (1). Hence we

(4)
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conclude that % = 0. Therefore, w (x, t (x)) is constant. At x = 0, we are given that

w (x, £ (x)) = h(£(0)) x=0 (5)
We just now need to determine f(0). This is found from % = %, which has the solution

t(x)=1t(0)+ %x. Hence ¢ (0) = t(x) - %x. Therefore (5) becomes
w(x,t) = h(t— 1x)
c

Valid for f > JC—C or x < ct. Therefore, the solution is

f(x—ct) x> ct
= h(t—%x) x <ct

2.13.5 Problem 12.2.5
21351 Part (a)

Solve
Jw Jw

- 27 p2x
z9t+c8x e (1)

with w (x,0) = f (x)
Answer Let
w=w(x(t),t)

Hence

dw_dw  Juwix
dt  Jt  ox dt

Comparing (2) and (1), we see that if we let % = c in the above, then we obtain (1). Hence

(2)

we conclude that ‘Z—Zf = ¢**. Hence
w = w(0) + te*
Att =0, w(0) = f (x(0)), hence
w = f(x(0)) + te** (3)

We just now need to determine x(0). This is found from % = ¢, which has the solution
x = x(0) + ct. Hence x (0) = x — ct. Therefore (3) becomes

w(x(t),t) = f(x —ct) + te*

2.13.5.2 Part (b)
Solve
— +x— =1 (1)
with w (x,0) = f (x)
Answer Let
w=w(x(t),t)

Hence

dw _dw Jwdx
At Jt  ox dt

Comparing (2) and (1), we see that if we let % = x in the above, then we obtain (1). Hence

(2)

we conclude that i—? =1. Hence
w=w(0)+t
Att =0, w(0) = f(x(0)), hence the above becomes
w=f(x(0))+t
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We now need to find x (0). From % = x, the solution is In|x| =t +x(0) or x = x (0) ¢!. Hence

x (0) = xe! and the above becomes

w=f (xe‘t) +t
2.13.5.3 Part (c)
Solve
Jw Jdw
W + &—x =1 (1)

with w (x,0) = f (x)
Answer Let
w=wx(t),t)
Hence
dvw Jw Jdwdx
a o T oxdt
Comparing (2) and (1), we see that if we let % =t in the above, then we obtain (1). Hence

we conclude that iif =1. Hence

(2)

w=w()+t
At t =0, w(0) = f (x(0)), hence the above becomes
w=f(x(0)+¢t
t2

2
= t, the solution is x = x(0) + % Hence x(0) = x — 5

dx

We now need to find x (0). From "

and the above becomes

w:f(x—§)+t

213.5.4 Part (d)

Solve
Jw Jw
E + 3t$ =w (1)
with w (x,0) = f (x)
Answer Let
w=wx(f),t)
Hence
do o duwix
dt 9t  Ox dt

Comparing (2) and (1), we see that if we let % = 3t in the above, then we obtain (1). Hence

(2)

we conclude that E;—z: = w. Hence
In|w| =w(0) + ¢
w=w(0)e
Att =0, w(0) = f(x(0)), hence the above becomes
w = f (x(0))e
312

2
3t, the solution is x = x(0) + 3% Hence x(0) = x - -

dx

We now need to find x (0). From - =

and the above becomes
312

e e Z)e
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Chapter 3

study notes

3.1 Heat PDE inside disk

We only did steady state. i.e. #; = 0. Hence using polar coordinates the dependent variable
is u (r,0). No time dependency. The heat PDE becomes

Vu(r,0) =0 (1)
2u  Jdu J%u
27 % .27 92
PR TR T @
1
U, + ;u,, + Ugg = 0 (3)

With 0 <7 <a and 0 < 6 < 27. The boundary conditions are

u(r,—m) =u(r,n
du(r,-m) Jdu(r,n)
20 90

|1 (0, 0)] < o0
u(a,0) = f(0)

Solution is

RO (1’) =0 A=0
R, (r) = cpr" A>0
0,,(0) = {cos (nb),sin (nO)} n>0

Hence solution is
u(r,0) = i A, 1" cos (n0) + B,r" sin (n0)
n=0
3.1.1 Mean value principle (steady state, heat PDE, disk)

Temperature at center of any disk is the average of all points on the disk boundary

3.1.2 Maximum value principle (steady state, heat PDE, disk)

Temperature inside the disk can not be the maximum of all points. Proof by contradiction,
using the mean value.
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3.1.3 Minimum value principle (steady state, heat PDE, disk)

Temperature inside the disk can not be the minimum of all points. Proof by contradiction,
using the mean value.

Maximum/Minimum principle can be used to proof well possdness and uniqueness of
Laplace PDE.

Solvability conditions V?u = 0 implies total thermal energy in any closed region is constant.

This implies total flux is zero, or L} Vu.it = 0. i.e. no heat flow across boundaries.

3.1.4 Heat PDE Outside disk
Vg =0

Boundary conditions,
W (0, 0) = ugy = ugrsin 6
W(a,0) =

Solution is

2 aZ

r r )
W(r,@):clln(;)+u0( )sm@

Note, when r = a, W(g,0) = 0. Use

_ow

u, = —ay
Ay

Hy =5

where u,,v, are horizontal and vertical components of fluid velocity in Cartesian coordi-
nates. Also

19w
=90

AY 1 2 —a%\ .
MQ:—W:—7—M0( 1"2 )Slng

For radial and angular components of the fluid velocity in polar coordinates. Circulation
is

270
f ugrdd = —2mcq
0

Bernoulli relation

p+%p(u§+u$):c

15
p+§pu9:c atr=a

Lift is

27
-a f psin 640
0
2

f _a_, (roe '62'6016
i o | —5—|siné| sin

Negative circulations, means velocity above disk is higher than below. This means lower
pressure above, hence lift.
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3.2 Easy way to get the signs for Newton’s cooling law.

Newton’s cooling law says
flux 4

—— R
(<koV'T) - (=71) o (Tqy = Tyarn)
(~koV'T) - (-71) = =H (Tq = Tyam)
Where T, is the temperature of the surface of body and T,y is the temperature of the
outside.
In the above the proportionality constant H > 0 always. So —H is always a negative number.

The above works in all cases. 1D, 2D and 3D and in any configuration. Here is how to use
it. Direction of flux vector § = —koV T is always from hot to cold. We start by drawing 4.
Now we compare the direction 7 of to the direction of the reverse of outer normal 7 to the
surface. In other words, we compare the direction of g to the inner normal (not the outer
normal), since we are looking at —7.

These two vectors are always parallel. They could be in either same direction or in reverse
directions.

If direction of 7 and the inner normal are in the same direction, then the sign on the left
is positive. i.e. (=kgV T) - (—ﬁ) is a positive quantity (since cos (0) =1).

If the direction of § and inner normal are in the opposite direction, then the sign of
(=koVT) - (—ﬁ’) is negative (since cos (1800) =-1).

Hence always use (=koVT) - (—ﬁ) = -H(Tq — Tyay,) for H > 0. Examples are given below.
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hot

hot

cold <— }—Vﬁ
q

n <—{ —» cold

We see that ¢ and the inner
normal are in opposite direction,
hence sign in the left is negative.
Therefore

-ve = (*H) (ﬂlot - Tcold)
ve = (-ve)(+ve)

q

We see that ¢ and the inner
normal are in opposite direction,
hence sign in the left is negative.
Therefore

-ve = (7H) (Thot - Tcold)
-ve = (-Ve)(+Ve)

We see that ¢ and the inner
normal are in same direction,
hence sign in the left is positive.
Therefore

+ve = (_H) (Tcold - Thot)
+ve = (-ve)(-ve)
+ve = +ve

Signs OK.

-ve = -ve -ve = -ve
Signs OK. Signs OK.
cold cold
hot ? i <] <— ot
q

We see that ¢ and the inner
normal are in same direction,
hence sign in the left is positive.
Therefore

+ve = (=H)(Tcola — Thot)
+ve = (-ve)(-ve)
+ve = +ve

Signs OK.

We see that ¢ and the inner
normal are in opposite direction,
hence sign in the left is negative.
Therefore

-ve = (—H) (Thot - Tcold)
-ve = (-ve)(+ve)

-ve = -ve

Signs OK.

214

We see that ¢ and the inner
normal are in same direction,
hence sign in the left is positive.
Therefore

+ve = (—H)(Teota — Thot)
+ve = (-ve)(-ve)
+ve = +ve

Signs OK.
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