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1.1. links CHAPTER 1. INTRODUCTION

1.1 links

1. piazza page http://piazza.com/wisc/fall2016/math322 requires login

2. Professor Leslie Smith page O�ce hrs: MW from 1:15-2:15 in Van Vleck 825.

1.2 syllabus

Math 322 - 001 Syllabus
Applied Mathematical Analysis (Introduction to Partial Differential Equations)

MWF 12:05-12:55 in Van Hise 115

Textbook: Applied Partial Differential Equations with Fourier Series and Boundary Value

Problems, Richard Haberman, 5th Edition, Pearson.

Pre-requisites: Math 319; Math 321; recommended: Math 340 or Math 320.

Professor: Leslie Smith, Departments of Mathematics and Engineering Physics, Office
Hours in Van Vleck 825 MW 1:15-2:15, lsmith@math.wisc.edu,
http://www.math.wisc.edu/̃ lsmith.

Midterm Exams: There will be two in-class exams: Monday October 10 and Monday
November 14. Please plan accordingly. Each exam is 25% of the final grade.

Final Exam: Saturday December 17, 5:05 - 7:05 PM, 35% of grade.

Piazza: There will be a Piazza course page to facilitate peer-group discussions. Please
consider this resource mainly as a discussion among students. The instructor will check in a
few times per week. Piazza Sign-Up Page: piazza.com/wisc/fall2016/math322

Piazza Course Page: piazza.com/wisc/fall2016/math322/home

Weekly Problem Sets: Homework is due at the beginning of class, normally on
Friday. Homework problems will be selected from the book, and will be available on-line at
www.math.wisc.edu/̃ lsmith approximately one week prior to the due date.

Please write your name clearly on each homework set, stapled please! Unstapled homework
will not be accepted.

Grading of Homework: A grader will grade a subset of the homework problems given out
each week, with some points also given for completeness. The homework scores will count
for 15% of the grade. The lowest homework score will be dropped.

Late Policy: Homework turned in after the beginning of class will be considered late and
will be graded at 80% credit. Late homework will be accepted until 5 PM on the due date
(no credit thereafter, no exceptions). The policy is intended to keep everyone as current as
possible.

Please email the instructor directly before the due time/day to make arrangements re-
garding late homework submission.

Expectations In Class: You are required to come to class. Some classes may involve
student participation such as discussion, group work, student presentation of material, etc.

If you should need to miss a class for any reason, please let me know ahead of time, and
make sure that you get notes and other important information from a classmate.

No cell phones, ipods, computers or other electronic devices may be used in class. In par-
ticular, please refrain from texting during class.

Find my mistakes in class, get brownie points!

Expectations Outside of Class: In order to fully understand the material and do well in
the course, it is vital that you stay on top of your reading and homework assignments. The
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1.2. syllabus CHAPTER 1. INTRODUCTION

six hours (minimum) of work outside class includes (but is not limited to) reading the texts
(before and after the material is covered in lecture), completing/writing homework problems,
and reviewing for exams. In addition, be prepared to work additional problems as needed,
to formulate coherent questions for me and for your classmates, and to prepare material for
discussion and or student presentation.

Grading Scale for Final Grade: 92-100 A, 89-91 AB, 82-88 B, 79-81 BC, 70-78 C, 60-69
D, 59 and below F

Course description: This is a first course in Partial Differential Equations. We will focus
on the physical phenomena represented by three canonical equations – the Heat Equation,
Laplace’s Equation and the Wave Equation– and learn the mathematical solution techniques.
A basic starting point for these linear equations is Separation of Variables, and we will learn
how to construct Eigenfunction Solutions, starting in one space dimension and then in two
and three dimensions. More advanced topics include Green’s function solutions, Fourier
Transform solutions, and the Method of Characteristics.

Course outline: The course covers most of the material in Chapters 1-5, and selected mate-
rial from Chapters 7-10, 12 (time permitting). The topics are listed below with corresponding
chapter.

Chapter 1: The Heat Equation

Chapter 2: Method of Separation of Variables

Chapter 3: Fourier Series

Chapter 4: Wave Equation: Vibrating Strings and Membranes

Chapter 5: Sturm-Liouville Eigenvalue Problems

Chapter 7: Higher-Dimensional Partial Differential Equations

Chapter 8: Non-homogeneous Problems

Chapter 9: Green’s Functions for Time Independent Problems

Chapter 10: Infinite Domain Problems: Fourier Transform Solutions of Partial Differential
Equations

Chapter 12: The Method of Characteristics
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2.1. summary pf HWs CHAPTER 2. HWS

2.1 summary pf HWs

HW description

1 chapter one. Steady state. Heat flux. Total heat energy

2 chapter 2.4,2.5.
separation of variables from selected PDE’s.
Finding eigevalues for di�erent homogeneous B.C.
Heat PDE in 1D with initial conditions, homogeneous B.C.
Total heat energy

3 chapter 2.5
Laplace on rectangle
Laplace on quarter circle
Laplace inside circular annulus
backward heat PDE is not well posed.
Drag force zero for uniform flow past cylinder
Circulation around cylinder

4 chapters 2.5,3.2, 3.4
Fourier series, even and odd extensions
Heat PDE 1D, source with homogenous B.C.

5 chapters 3.5,3.6,4.2,4.4
Fourier series, even and odd extensions
Heat PDE 1D, source with homogenous B.C.
Find Fourier series for 𝑥𝑚 , Complex Fourier series
Derive vibrating string wave equation. Wave equation with damping.
Derive conservation of energy for vibrating string.

6 chapter 5.3,5.5
Wave equation
Sturm-Liouville DE, more eigenvalue Sturm-Liouville, self adjoint
Show that eigenfunctions are orthogonal. More S-L problems

7 chapter 5.6,5.9
Rayleigh quotient to find upper bound on lowest eigenvalue for S-L ODE
Show eigenvalue is positive for S-L
Estimating large eigenvalues for S-L with di�erent boundary conditions
Sketch eigenfunctions for 𝑦″ + 𝜆(1 + 𝑥)𝑦 = 0

8 chapter 5.10, 7.3, 7.4
How many terms needed for Fourier series for 𝑓(𝑥) = 1?
Find formula for infinite series using Parseval’s equality.
More on Parseval’s equality
Solve Wave equation with homogeneous B.C.
Solve Laplace in 3D, seperation of variables.
Show that 𝜆 ≥ 0 using Rayleigh quotient.
Derive Green formula

9 Chapter 8.2,8.3,8.4,8.5
Heat PDE 1D with zero source and non-homogeneous BC. Using 𝑢 = 𝑣 + 𝑢𝐸 where 𝑢𝐸
is equilibrium solution. (Use 𝑢𝐸 if source is zero.
Heat PDE 1D with source and non-homogeneous BC. Using 𝑢 = 𝑣 + 𝑢𝑟 where 𝑢𝑟 is
reference solution (only needs to satisfy BC) since source is not zero.
Solve heat PDE inside circle. No source, non-homogeneous BC, use 𝑢𝐸.
Solve heat PDE in 1D with time dependent 𝑘
Solve heat PDE inside circle. Source, homogeneous BC.
Solve heat PDE 1D. Source and non-homogeneous BC. use 𝑢𝑟
Solve heat PDE 1D. Source and non-homogeneous BC without using 𝑢𝑟.
Solve wave equation, 1D with source and homogeneous BC.
Solve wave equation, 2D membrane. With source and fixed boundaries.

10 Hand problems, not from text
Solve ODE’s using two sided Green function with di�erent boundary conditions

6



2.2. HW 1 CHAPTER 2. HWS

11 Hand problems, not from text
Solve Laplace using method of images. Di�erent boundary conditions

12 chapter 12.2

Wave equation in 1D, such as 𝜕𝑦
𝜕𝑡 − 3

𝜕𝑦
𝜕𝑥 = 0 using method of charaterstics.

More wave in 1D with source. 𝜕𝑦𝜕𝑡 + 𝑐
𝜕𝑦
𝜕𝑥 = 𝑒

2𝑥

2.2 HW 1

Reference table used in HW

𝜙 flux (class uses 𝑞⃗) vector field. thermal energy per unit time per unit area. �𝑀𝑇3 �

𝜙 ⋅ 𝑛̂ flux Flux component that is outward normal to the surface �𝑀𝑇3 �

𝑄 heat source heat energy generated per unit volume per unit time.� 𝑀𝐿𝑇3 �

𝑒 thermal energy density. Scalar field. � 𝑀𝐿𝑇2 �

𝜌 density mass density of material which heat flows in.�𝑀𝐿3 �

𝑐 specific heat energy to raise temp. of unit mass by one degree Kelvin. � 𝐿2

𝑇2𝑘𝑜 �

𝑘0 Thermal conductivity Used in flux equation 𝑞 = −𝑘0∇𝑢, where 𝑢 is temperature. � 𝑀𝐿𝑇3𝑘0 �

𝜅 Thermal di�usivity Used in heat equation 𝜕𝑢
𝜕𝑡 = 𝜅∇𝑢 + 𝑄̃. Where 𝜅 = 𝑘0

𝜌𝑐 , 𝑢 is temperature.

conservation of energy 𝑑
𝑑𝑡
∫
𝑉
𝑒 (𝑥, 𝑡) 𝑑𝑣 = ∫

𝐴
𝑞̄ ⋅ (−𝑛̂) 𝑑𝐴 + ∫

𝑉
𝑄𝑑𝑣. Each term has units �𝑀𝐿

2

𝑇3 �

Fourier law 𝜙 = −𝑘0∇̄𝑢. Relates flux to temperature gradient.

∇ Divergence operator A vector operator. ∇̄ = � 𝜕𝜕𝑥 ,
𝜕
𝜕𝑦 ,

𝜕
𝜕𝑥
�

2.2.1 Problem 1 (1.5.2)

l.~. Heat Equation in Two or Three Dimensions 

x=L 

EXERCISES 1.5 

Area 
magnified 

Figure 1.5.3 Spherical coordinates. 

29 

1.5.1. Let c(x, y, z, t) denote tht' concentration of a pollutant (the amount per unit 
volume). 

(a) What is an expression for the total amount of pollutant in the region 
R? 

(b) Suppose that the flow J of the pollutant is proportional to the gradient 
of the concentration. (Is this reasonable?) Express conservation of the 
pollutant. 

( c) Derive the partial differential equation governing the diffusion of the 
pollutant. 

*1.5.2. For conduction of thermal energy, the heat flux vector is <p = -KoVu. If 
in addition the molecules move at an average velocity V, a process called 
convection, then briefly explain why <p == -KoVu + cpuV. Derive the 
corresponding equation for heat flow, including both conduction and con­
vection of thermal energy (assuming constant thermal properties with no 
sources). 

1.5.3. Consider the polar coordinates 

x == rcosO 

y == rsinO. 

(a) Since r2 == x2 + y2, show that ~ == cosO, ~ = sinO, 
cos 8 and 88 = -sin8 

r ' 8% r· 

(b) Show that r = cos oi + sin 03 and Ii = - sin oi + cos 03. 
(c) Using the chain rule, show that V = r tr + 1i~1B and hence Vu = 
~r+ ~~Ii. 

(d) If A = Arr + A81i, show that V·A == ~1.:(rAr) + ~1B(A8), sinct' 
8rj80 = Ii and 8lij80 = -r follows from part (b). 

Fourier law is used to relate the flux to the temperature 𝑢 by 𝜙 = −𝑘0
𝜕𝑢
𝜕𝑥 for 1D or 𝜙 = −𝑘0∇̄𝑢

in general.

In addition to conduction, there is convection present. This implies there is physical
material mass flowing out of the control volume carrying thermal energy with it in addition
to the process of conduction. Hence the flux is adjusted by this extra amount of thermal
energy motion. The amount of mass that flows out of the surface per unit time per unit

area is �𝑣̄𝜌� ≡ � 𝐿𝑇
𝑀
𝐿3 � = �

𝑀
𝑇
1
𝐿2 �. Where 𝜌 ≡ �𝑀𝐿3 � is the mass density of the material and 𝑣̄ ≡ � 𝐿𝑇�

is velocity vector of material flow at the surface.

Amount of thermal energy that �𝑣̄𝜌� contains is given by �𝑣̄𝜌� 𝑐𝑢 where 𝑐 is the specific heat
and 𝑢 is the temperature. Therefore �𝑣̄𝜌� 𝑐𝑢 is the additional flux due to convection part.
Total flux becomes

𝜙 = −𝑘0∇̄𝑢 + 𝑣̄𝜌𝑐𝑢 (1)

7



2.2. HW 1 CHAPTER 2. HWS

Starting from first principles. Using conservation of thermal energy given by

𝜕𝑒
𝜕𝑡

= − �∇̄ ⋅ 𝜙�

Where 𝑒 is thermal energy density in the control volume. In this problem 𝑄 = 0 (no energy
source). The integral form of the above is

𝑑
𝑑𝑡 �𝑉

𝑒 (𝑥̄, 𝑡) 𝑑𝑉 = �
𝑆
𝜙 ⋅ (−𝑛̂) 𝑑𝐴

The dot product with the unit normal vector 𝑛̂ was added to indicate the normal component
of 𝜙 at the surface. Since 𝑒 (𝑥̄, 𝑡) = 𝜌𝑐𝑢 and by using divergence theorem the above is written
as

𝑑
𝑑𝑡 �𝑉

𝜌𝑐𝑢𝑑𝑉 = �
𝑉
∇̄ ⋅ �−𝜙� 𝑑𝑉

Using (1) in the above and moving the time derivative inside the integral (which becomes
partial derivative) results in

�
𝑉
𝜌𝑐
𝜕𝑢
𝜕𝑡
𝑑𝑉 = �

𝑉
∇̄ ⋅ �𝑘0∇̄𝑢 − 𝑣̄𝜌𝑐𝑢� 𝑑𝑉

Moving all terms under one integral sign

�
𝑉
�𝜌𝑐

𝜕𝑢
𝜕𝑡

− ∇̄ ⋅ �𝑘0∇̄𝑢 − 𝑣̄𝜌𝑐𝑢�� 𝑑𝑉 = 0

Since this is zero for all control volumes, therefore the integrand is zero

𝜌𝑐
𝜕𝑢
𝜕𝑡

− ∇̄ ⋅ �𝑘0∇̄𝑢 − 𝑣̄𝜌𝑐𝑢� = 0

Assuming 𝜅 = 𝑘0
𝜌𝑐 , the above simplifies to

𝜕
𝜕𝑡𝑢 = 𝜅∇

2𝑢 − ∇̄ ⋅ (𝑣̄𝑢) (2)

Applying to (2) the property of divergence of the product of scalar and a vector given by

∇̄ ⋅ (𝑣̄𝑢) = 𝑢 �∇̄ ⋅ 𝑣̄� + 𝑣̄ ⋅ �∇̄𝑢�

Equation (2) becomes

𝜕𝑢
𝜕𝑡 = 𝜅∇

2𝑢 − �𝑢 �∇̄ ⋅ 𝑣̄� + 𝑣̄ ⋅ �∇̄𝑢��

2.2.2 Problem 2 (1.5.3)

l.~. Heat Equation in Two or Three Dimensions 

x=L 

EXERCISES 1.5 

Area 
magnified 

Figure 1.5.3 Spherical coordinates. 

29 

1.5.1. Let c(x, y, z, t) denote tht' concentration of a pollutant (the amount per unit 
volume). 

(a) What is an expression for the total amount of pollutant in the region 
R? 

(b) Suppose that the flow J of the pollutant is proportional to the gradient 
of the concentration. (Is this reasonable?) Express conservation of the 
pollutant. 

( c) Derive the partial differential equation governing the diffusion of the 
pollutant. 

*1.5.2. For conduction of thermal energy, the heat flux vector is <p = -KoVu. If 
in addition the molecules move at an average velocity V, a process called 
convection, then briefly explain why <p == -KoVu + cpuV. Derive the 
corresponding equation for heat flow, including both conduction and con­
vection of thermal energy (assuming constant thermal properties with no 
sources). 

1.5.3. Consider the polar coordinates 

x == rcosO 

y == rsinO. 

(a) Since r2 == x2 + y2, show that ~ == cosO, ~ = sinO, 
cos 8 and 88 = -sin8 

r ' 8% r· 

(b) Show that r = cos oi + sin 03 and Ii = - sin oi + cos 03. 
(c) Using the chain rule, show that V = r tr + 1i~1B and hence Vu = 
~r+ ~~Ii. 

(d) If A = Arr + A81i, show that V·A == ~1.:(rAr) + ~1B(A8), sinct' 
8rj80 = Ii and 8lij80 = -r follows from part (b). 

30 Chapter 1. Heat Equation 

1.5.4. Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the 
special case of Exercise 1.5.3(e) if u(r) only. 

1.5.5. Assume that the temperature is circularly symmetric: u = u(r, t), where 
r2 = x2 + y2. We will derive the heat equation for this problem. Consider 
any circular annulus a ~ r ~ b. 

(a) Show that the total heat energy is 211" J: cpur dr. 

(b) Show that the How of heat energy per unit time out of the annulus at 
r = b is -211"bKoau/ar I,=b. A similar result holds at r = a. 

(c) Use parts (a) and (b) to derive the circularly symmetric heat equation 
without sources: 

au k a ( au) 
at =;:ar rar . 

1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on r. 

1.5.7. Derive the heat equation in two dimensions by using Green's theorem, 
(1.5.16), the two-dimensional form of the divergence theorem. 

1.5.8. If Laplace's equation is satisfied in three dimensions, show that 

If V'uon dS = 0 

for any dosed surface. (Hint: Use the divergence theorem.) Give a physical 
interpretation of this result (in the context of heat flow). 

1.5.9. Determine the equilibrium temperature distribution inside a circular annu­
lus (rl ~ r ~ r2): 

*(a) if the outer radius is at temperature T2 and the inner at Tl 

(b) if the outer radius is insulated and the inner radius is at temperature 
Tl 

1.5.10. Determine the equilibrium temperature distribution inside a circle (r ~ ro) 
if t.he boundary is fixed at temperature To. 

*1.5.11. Consider 
au = ~~ (rau) 
at rar ar 

a<r<b 

subject. to 

au au 
u(r.O) = f(r), ar (a, t) = ,B, and ar (b, t) = 1. 

Using physical reasoning. for what value(s) of {3 does an equilibrium tem­
perature distribution exist? 

8



2.2. HW 1 CHAPTER 2. HWS

𝑥 = 𝑟 cos𝜃 (1)

𝑦 = 𝑟 sin𝜃 (2)

2.2.2.1 part (a)

since 𝑟2 = 𝑥2 + 𝑦2 then taking derivative w.r.t. 𝑥

2𝑟
𝜕𝑟
𝜕𝑥

= 2𝑥

𝜕𝑟
𝜕𝑥

=
𝑥
𝑟

=
𝑟 cos𝜃
𝑟

= cos𝜃 (3)

And taking derivative w.r.t. 𝑦

2𝑟
𝜕𝑟
𝜕𝑦

= 2𝑦

𝜕𝑟
𝜕𝑦

=
𝑦
𝑟

=
𝑟 sin𝜃
𝑟

= sin𝜃 (4)

Now taking derivative w.r.t. 𝑦 of (2) gives

1 =
𝜕𝑟
𝜕𝑦

sin𝜃 + 𝑟𝜕 sin𝜃
𝜕𝑦

From (4) 𝜕𝑟
𝜕𝑦 = sin𝜃 and 𝜕 sin𝜃

𝜕𝑦 = cos𝜃 �𝜕𝜃𝜕𝑦 �. Therefore the above becomes

1 = sin2 𝜃 + 𝑟 cos𝜃 �
𝜕𝜃
𝜕𝑦 �

𝜕𝜃
𝜕𝑦

=
1 − sin2 𝜃
𝑟 cos𝜃

=
cos2 𝜃
𝑟 cos𝜃

Hence

𝜕𝜃
𝜕𝑦 =

cos𝜃
𝑟

Similarly, taking derivative w.r.t. 𝑥 of (1) gives

1 =
𝜕𝑟
𝜕𝑥

cos𝜃 + 𝑟𝜕 cos𝜃
𝜕𝑥

From (3), 𝜕𝑟
𝜕𝑥 = cos𝜃 and 𝜕 cos𝜃

𝜕𝑥 = − sin𝜃 �𝜕𝜃𝜕𝑥 �, Therefore the above becomes

1 = cos2 𝜃 − 𝑟 sin𝜃 �
𝜕𝜃
𝜕𝑥 �

𝜕𝜃
𝜕𝑥

=
1 − cos2 𝜃
𝑟 sin𝜃

=
sin2 𝜃
𝑟 sin𝜃

Hence

𝜕𝜃
𝜕𝑥 =

sin𝜃
𝑟

9
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2.2.2.2 Part (b)

By definition of unit vector

𝑟̂ =
𝑟̄
|𝑟|
=
(|𝑟| cos𝜃) ̂𝚤 + (|𝑟| sin𝜃) ̂𝚥

|𝑟|
= cos𝜃 ̂𝚤 + sin𝜃 ̂𝚥

To find 𝜃̂, two relations are used.�𝜃̂� = 1 by definite of unit vector. Also 𝜃̂ ⋅ 𝑟̂ = 0 since
these are orthogonal vectors (basis vectors). Assuming that 𝜃̂ = 𝑐1 ̂𝚤 + 𝑐2 ̂𝚥, the two equations
generated are

�𝜃̂� = 1 = 𝑐21 + 𝑐22 (1)

𝜃̂ ⋅ 𝑟̂ = 0 = �cos𝜃 ̂𝚤 + sin𝜃 ̂𝚥� ⋅ �𝑐1 ̂𝚤 + 𝑐2 ̂𝚥� = 𝑐1 cos𝜃 + 𝑐2 sin𝜃 (2)

From (2), 𝑐1 =
−𝑐2 sin𝜃

cos𝜃 . Substituting this into (1) gives

1 = �
−𝑐2 sin𝜃

cos𝜃 �
2

+ 𝑐22

=
𝑐22 sin2 𝜃
cos2 𝜃 + 𝑐22

Solving for 𝑐2 gives

cos2 𝜃 = 𝑐22 �sin
2 𝜃 + cos2 𝜃�

𝑐2 = cos𝜃
Since 𝑐2 is now known, 𝑐1 is found from (2)

0 = 𝑐1 cos𝜃 + 𝑐2 sin𝜃
0 = 𝑐1 cos𝜃 + (cos𝜃) sin𝜃

𝑐1 =
− (cos𝜃) sin𝜃

cos𝜃
Hence 𝑐1 = − sin𝜃. Therefore

𝜃̂ = − sin𝜃 ̂𝚤 + cos𝜃 ̂𝚥

2.2.2.3 Part (c)

∇ =
𝜕
𝜕𝑥

̂𝚤 +
𝜕
𝜕𝑥

̂𝚥 (1)

Since 𝑥 ≡ 𝑥 (𝑟, 𝜃) , 𝑦 ≡ 𝑦 (𝑟, 𝜃), then
𝜕
𝜕𝑥

=
𝜕
𝜕𝑟
𝜕𝑟
𝜕𝑥

+
𝜕
𝜕𝜃

𝜕𝜃
𝜕𝑥

𝜕
𝜕𝑦

=
𝜕
𝜕𝑟
𝜕𝑟
𝜕𝑦

+
𝜕
𝜕𝜃

𝜕𝜃
𝜕𝑦

Equation (1) becomes

∇ = �
𝜕
𝜕𝑟
𝜕𝑟
𝜕𝑥

+
𝜕
𝜕𝜃

𝜕𝜃
𝜕𝑥 �

̂𝚤 + �
𝜕
𝜕𝑟
𝜕𝑟
𝜕𝑦

+
𝜕
𝜕𝜃

𝜕𝜃
𝜕𝑦 �

̂𝚥

Using result found in (a), the above becomes

∇ = �
𝜕
𝜕𝑟

cos𝜃 + 𝜕
𝜕𝜃 �

−
sin𝜃
𝑟 �� ̂𝚤 + �

𝜕
𝜕𝑟

sin𝜃 + 𝜕
𝜕𝜃

cos𝜃
𝑟 � ̂𝚥

Collecting on 𝜕
𝜕𝑟 ,

𝜕
𝜕𝜃 gives

∇ =
𝜕
𝜕𝑟
�cos𝜃 ̂𝚤 + sin𝜃 ̂𝚥� + 𝜕

𝜕𝜃 �
−

sin𝜃
𝑟

̂𝚤 +
cos𝜃
𝑟

̂𝚥�

=
𝜕
𝜕𝑟
�cos𝜃 ̂𝚤 + sin𝜃 ̂𝚥� + 1

𝑟
𝜕
𝜕𝜃

�− sin𝜃 ̂𝚤 + cos𝜃 ̂𝚥�

Using result from (b), the above simplifies to

∇ = 𝑟̂ 𝜕𝜕𝑟 + 𝜃̂
1
𝑟
𝜕
𝜕𝜃

10
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Hence

∇𝑢 = �𝑟̂
𝜕
𝜕𝑟
𝑢 + 𝜃̂

1
𝑟
𝜕
𝜕𝜃
𝑢�

2.2.2.4 Part (d)

𝐴̄ = 𝐴𝑟𝑟̂ + 𝐴𝜃𝜃̂

∇ = 𝑟̂
𝜕
𝜕𝑟
+ 𝜃̂

1
𝑟
𝜕
𝜕𝜃

Hence

∇ ⋅ 𝐴̄ = �𝑟̂
𝜕
𝜕𝑟
+ 𝜃̂

1
𝑟
𝜕
𝜕𝜃�

⋅ �𝐴𝑟𝑟̂ + 𝐴𝜃𝜃̂�

= �𝑟̂
𝜕
𝜕𝑟
⋅ 𝐴𝑟𝑟̂� + �𝑟̂

𝜕
𝜕𝑟
⋅ 𝐴𝜃𝜃̂� + �𝜃̂

1
𝑟
𝜕
𝜕𝜃

⋅ 𝐴𝑟𝑟̂� + �𝜃̂
1
𝑟
𝜕
𝜕𝜃

⋅ 𝐴𝜃𝜃̂� (1)

But

𝑟̂
𝜕
𝜕𝑟
⋅ 𝐴𝑟𝑟̂ = 𝑟̂

𝜕
𝜕𝑟
(𝐴𝑟𝑟̂)

= 𝑟̂ ⋅ �
𝜕𝐴𝑟
𝜕𝑟

𝑟̂ + 𝐴𝑟
𝜕𝑟̂
𝜕𝑟�

=
𝜕𝐴𝑟
𝜕𝑟

(𝑟̂ ⋅ 𝑟̂) + 𝐴𝑟 �𝑟̂ ⋅
𝜕𝑟̂
𝜕𝑟�

=
𝜕𝐴𝑟
𝜕𝑟

(1) + 𝐴𝑟 (0)

=
𝜕𝐴𝑟
𝜕𝑟

(2)

And

𝑟̂
𝜕
𝜕𝑟
⋅ 𝐴𝜃𝜃̂ = 𝑟̂

𝜕
𝜕𝑟
�𝐴𝜃𝜃̂�

= 𝑟̂ ⋅ �
𝜕𝐴𝜃
𝜕𝑟

𝜃̂ + 𝐴𝜃
𝜕𝜃̂
𝜕𝑟 �

=
𝜕𝐴𝜃
𝜕𝑟

�𝑟̂ ⋅ 𝜃̂� + 𝐴𝜃 �𝑟̂ ⋅
𝜕𝜃̂
𝜕𝑟 �

=
𝜕𝐴𝜃
𝜕𝑟

(0) + 𝐴𝜃 (0) = 0 (3)

And

𝜃̂
1
𝑟
𝜕
𝜕𝜃

⋅ 𝐴𝑟𝑟̂ = 𝜃̂
1
𝑟
𝜕
𝜕𝜃

(𝐴𝑟𝑟̂)

=
1
𝑟
𝜃̂ ⋅ �

𝜕𝐴𝑟
𝜕𝜃

𝑟̂ + 𝐴𝑟
𝜕𝑟̂
𝜕𝜃�

=
1
𝑟
𝜕𝐴𝑟
𝜕𝜃

�𝜃̂ ⋅ 𝑟̂� +
1
𝑟
𝐴𝑟 �𝜃̂ ⋅

𝜕𝑟̂
𝜕𝜃�

=
1
𝑟
𝜕𝐴𝑟
𝜕𝜃

(0) +
1
𝑟
𝐴𝑟 �𝜃̂ ⋅ 𝜃̂�

Since 𝜕𝑟̂
𝜕𝜃 = 𝜃̂. Therefore

𝜃̂
1
𝑟
𝜕
𝜕𝜃

⋅ 𝐴𝑟𝑟̂ =
1
𝑟
𝐴𝑟 (4)

11
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And finally

𝜃̂
1
𝑟
𝜕
𝜕𝜃

⋅ 𝐴𝜃𝜃̂ = 𝜃̂
1
𝑟
𝜕
𝜕𝜃

�𝐴𝜃𝜃̂�

=
1
𝑟
𝜃̂ ⋅ �

𝜕𝐴𝜃
𝜕𝜃

𝜃̂ + 𝐴𝜃
𝜕𝜃̂
𝜕𝜃�

=
1
𝑟
𝜕𝐴𝜃
𝜕𝜃

�𝜃̂ ⋅ 𝜃̂� +
1
𝑟
𝐴𝜃 �𝜃̂ ⋅

𝜕𝜃̂
𝜕𝜃�

=
1
𝑟
𝜕𝐴𝜃
𝜕𝜃

(1) +
1
𝑟
𝐴𝜃 �𝜃̂ ⋅ (−𝑟̂)�

=
1
𝑟
𝜕𝐴𝜃
𝜕𝜃

(1) +
1
𝑟
𝐴𝜃 (0)

=
1
𝑟
𝜕𝐴𝜃
𝜕𝜃

(5)

Substituting (2,3,4,5) into (1) gives

∇ ⋅ 𝐴̄ =
𝜕𝐴𝑟
𝜕𝑟

+ 0 +
1
𝑟
𝐴𝑟 +

1
𝑟
𝜕𝐴𝜃
𝜕𝜃

=
1
𝑟
𝐴𝑟 +

𝜕𝐴𝑟
𝜕𝑟

+
1
𝑟
𝜕𝐴𝜃
𝜕𝜃

Add since 𝜕
𝜕𝑟
(𝑟𝐴𝑟) = 𝐴𝑟 + 𝑟

𝜕𝐴𝑟
𝜕𝑟 , the above can also be written as

∇ ⋅ 𝐴̄ =
1
𝑟 �
𝐴𝑟 + 𝑟

𝜕𝐴𝑟
𝜕𝑟 �

+
1
𝑟
𝜕𝐴𝜃
𝜕𝜃

=
1
𝑟
𝜕
𝜕𝑟
(𝑟𝐴𝑟) +

1
𝑟
𝜕𝐴𝜃
𝜕𝜃

2.2.2.5 Part (e)

From part (c), it was found that

∇ = 𝑟̂
𝜕
𝜕𝑟
+ 𝜃̂

1
𝑟
𝜕
𝜕𝜃

But

∇ 2 = ∇ ⋅ ∇

= �𝑟̂
𝜕
𝜕𝑟
+ 𝜃̂

1
𝑟
𝜕
𝜕𝜃�

⋅ �𝑟̂
𝜕
𝜕𝑟
+ 𝜃̂

1
𝑟
𝜕
𝜕𝜃�

Using result of part (d), which says that ∇ ⋅ 𝐴̄ = 1
𝑟
𝜕
𝜕𝑟
(𝑟𝐴𝑟)+

1
𝑟
𝜕𝐴𝜃
𝜕𝜃 , the above becomes (where

now 𝐴𝑟 ≡
𝜕
𝜕𝑟 , 𝐴𝜃 ≡

1
𝑟
𝜕
𝜕𝜃)

∇ 2 =
1
𝑟
𝜕
𝜕𝑟 �

𝑟
𝜕
𝜕𝑟�

+
1
𝑟
𝜕
𝜕𝜃 �

1
𝑟
𝜕
𝜕𝜃�

=
1
𝑟
𝜕
𝜕𝑟 �

𝑟
𝜕
𝜕𝑟�

+
1
𝑟2
𝜕2

𝜕𝜃2

Hence

∇ 2𝑢 =
1
𝑟
𝜕
𝜕𝑟 �

𝑟
𝜕𝑢
𝜕𝑟 �

+
1
𝑟2
𝜕2𝑢
𝜕𝜃2

2.2.3 Problem 3 (1.5.4)
30 Chapter 1. Heat Equation 

1.5.4. Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the 
special case of Exercise 1.5.3(e) if u(r) only. 

1.5.5. Assume that the temperature is circularly symmetric: u = u(r, t), where 
r2 = x2 + y2. We will derive the heat equation for this problem. Consider 
any circular annulus a ~ r ~ b. 

(a) Show that the total heat energy is 211" J: cpur dr. 

(b) Show that the How of heat energy per unit time out of the annulus at 
r = b is -211"bKoau/ar I,=b. A similar result holds at r = a. 

(c) Use parts (a) and (b) to derive the circularly symmetric heat equation 
without sources: 

au k a ( au) 
at =;:ar rar . 

1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on r. 

1.5.7. Derive the heat equation in two dimensions by using Green's theorem, 
(1.5.16), the two-dimensional form of the divergence theorem. 

1.5.8. If Laplace's equation is satisfied in three dimensions, show that 

If V'uon dS = 0 

for any dosed surface. (Hint: Use the divergence theorem.) Give a physical 
interpretation of this result (in the context of heat flow). 

1.5.9. Determine the equilibrium temperature distribution inside a circular annu­
lus (rl ~ r ~ r2): 

*(a) if the outer radius is at temperature T2 and the inner at Tl 

(b) if the outer radius is insulated and the inner radius is at temperature 
Tl 

1.5.10. Determine the equilibrium temperature distribution inside a circle (r ~ ro) 
if t.he boundary is fixed at temperature To. 

*1.5.11. Consider 
au = ~~ (rau) 
at rar ar 

a<r<b 

subject. to 

au au 
u(r.O) = f(r), ar (a, t) = ,B, and ar (b, t) = 1. 

Using physical reasoning. for what value(s) of {3 does an equilibrium tem­
perature distribution exist? 

12
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Let 𝑢 ≡ 𝑢 (𝑟). From problem 2 part (a) it was found that

𝑥 = 𝑟 cos𝜃
𝑦 = 𝑟 sin𝜃
𝜕𝑟
𝜕𝑥

= cos𝜃

𝜕𝑟
𝜕𝑦

= sin𝜃

𝜕𝜃
𝜕𝑦

=
cos𝜃
𝑟

𝜕𝜃
𝜕𝑥

=
− sin𝜃
𝑟

And

∇ 2𝑢 =
𝜕2𝑢
𝜕𝑥2

+
𝜕2𝑢
𝜕𝑦2

(1)

But
𝜕2𝑢
𝜕𝑥2

=
𝜕
𝜕𝑥 �

𝜕𝑢
𝜕𝑥�

=
𝜕
𝜕𝑥 �

𝜕𝑢
𝜕𝑟

𝜕𝑟
𝜕𝑥�

=
𝜕
𝜕𝑥 �

𝜕𝑢
𝜕𝑟

cos𝜃�

= �
𝜕
𝜕𝑥
𝜕𝑢
𝜕𝑟 �

cos𝜃 + 𝜕𝑢
𝜕𝑟
𝜕 cos𝜃
𝜕𝑥

= �
𝜕2𝑢
𝜕𝑟2

𝜕𝑟
𝜕𝑥�

cos𝜃 + 𝜕𝑢
𝜕𝑟 �

− sin𝜃𝜕𝜃
𝜕𝑥 �

= �
𝜕2𝑢
𝜕𝑟2

cos𝜃� cos𝜃 + 𝜕𝑢
𝜕𝑟 �

− sin𝜃 �
− sin𝜃
𝑟 ��

=
𝜕2𝑢
𝜕𝑟2

cos2 𝜃 + 1
𝑟

sin2 𝜃𝜕𝑢
𝜕𝑟

(2)

And
𝜕2𝑢
𝜕𝑦2

=
𝜕
𝜕𝑦 �

𝜕𝑢
𝜕𝑦�

=
𝜕
𝜕𝑦 �

𝜕𝑢
𝜕𝑟

𝜕𝑟
𝜕𝑦�

=
𝜕
𝜕𝑦 �

𝜕𝑢
𝜕𝑟

sin𝜃�

= �
𝜕
𝜕𝑦
𝜕𝑢
𝜕𝑟 �

sin𝜃 + 𝜕𝑢
𝜕𝑟
𝜕 sin𝜃
𝜕𝑦

= �
𝜕2𝑢
𝜕𝑟2

𝜕𝑟
𝜕𝑦�

sin𝜃 + 𝜕𝑢
𝜕𝑟 �

cos𝜃𝜕𝜃
𝜕𝑦 �

= �
𝜕2𝑢
𝜕𝑟2

sin𝜃� sin𝜃 + 𝜕𝑢
𝜕𝑟 �

cos𝜃 �
cos𝜃
𝑟 ��

=
𝜕2𝑢
𝜕𝑟2

sin2 𝜃 + 1
𝑟

cos2 𝜃𝜕𝑢
𝜕𝑟

(3)

Substituting (2),(3) into (1) gives

∇ 2𝑢 = �
𝜕2𝑢
𝜕𝑟2

cos2 𝜃 + 1
𝑟

sin2 𝜃𝜕𝑢
𝜕𝑟 �

+ �
𝜕2𝑢
𝜕𝑟2

sin2 𝜃 + 1
𝑟

cos2 𝜃𝜕𝑢
𝜕𝑟 �

=
𝜕2𝑢
𝜕𝑟2

+
1
𝑟 �

sin2 𝜃𝜕𝑢
𝜕𝑟

+ cos2 𝜃𝜕𝑢
𝜕𝑟 �

=
𝜕2𝑢
𝜕𝑟2

+
1
𝑟
𝜕𝑢
𝜕𝑟

13
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Which can be written as

∇ 2𝑢 = 1
𝑟
𝜕
𝜕𝑟
�𝑟𝜕𝑢𝜕𝑟 �

Which is the special case of problem 2(e) ∇ 2𝑢 = 1
𝑟
𝜕
𝜕𝑟
�𝑟𝜕𝑢𝜕𝑟 � +

1
𝑟2
𝜕2𝑢
𝜕𝜃2 when 𝑢 ≡ 𝑢 (𝑟) only.

2.2.4 Problem 4 (1.5.5)

30 Chapter 1. Heat Equation 

1.5.4. Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the 
special case of Exercise 1.5.3(e) if u(r) only. 

1.5.5. Assume that the temperature is circularly symmetric: u = u(r, t), where 
r2 = x2 + y2. We will derive the heat equation for this problem. Consider 
any circular annulus a ~ r ~ b. 

(a) Show that the total heat energy is 211" J: cpur dr. 

(b) Show that the How of heat energy per unit time out of the annulus at 
r = b is -211"bKoau/ar I,=b. A similar result holds at r = a. 

(c) Use parts (a) and (b) to derive the circularly symmetric heat equation 
without sources: 

au k a ( au) 
at =;:ar rar . 

1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on r. 

1.5.7. Derive the heat equation in two dimensions by using Green's theorem, 
(1.5.16), the two-dimensional form of the divergence theorem. 

1.5.8. If Laplace's equation is satisfied in three dimensions, show that 

If V'uon dS = 0 

for any dosed surface. (Hint: Use the divergence theorem.) Give a physical 
interpretation of this result (in the context of heat flow). 

1.5.9. Determine the equilibrium temperature distribution inside a circular annu­
lus (rl ~ r ~ r2): 

*(a) if the outer radius is at temperature T2 and the inner at Tl 

(b) if the outer radius is insulated and the inner radius is at temperature 
Tl 

1.5.10. Determine the equilibrium temperature distribution inside a circle (r ~ ro) 
if t.he boundary is fixed at temperature To. 

*1.5.11. Consider 
au = ~~ (rau) 
at rar ar 

a<r<b 

subject. to 

au au 
u(r.O) = f(r), ar (a, t) = ,B, and ar (b, t) = 1. 

Using physical reasoning. for what value(s) of {3 does an equilibrium tem­
perature distribution exist? 

2.2.4.1 Part(a)

Considering the thermal energy in a annulus as shown

dr

Amount of thermal energy in
unit thickness volume is
rdrdθ cuρ

rdθ

a

Amount of thermal energy in

annulus is
∫ 2π

0

∫ b
a
(cρu) rdrdθ

dr
dθ

r
b

Integrating gives total thermal energy

�
2𝜋

0
�

𝑏

𝑎
�𝑐𝜌𝑢� 𝑟𝑑𝑟𝑑𝜃 = �

2𝜋

0
𝑑𝜃�

𝑏

𝑎
�𝑐𝜌𝑢� 𝑟𝑑𝑟

= 2𝜋�
𝑏

𝑎
�𝑐𝜌𝑢� 𝑟𝑑𝑟

2.2.4.2 Part (b)

Using Fourier law,

𝜙 = −𝑘0∇̄𝑢

= −𝑘0 �𝑟̂
𝜕𝑢
𝜕𝑟

+ 𝜃̂
1
𝑟
𝜕𝑢
𝜕𝜃�

Since symmetric in 𝜃, then 𝜕𝑢
𝜕𝜃 = 0 and the above reduces to

𝜙 = −𝑘0𝑟̂
𝜕𝑢
𝜕𝑟

14



2.2. HW 1 CHAPTER 2. HWS

Hence the heat flow per unit time through surface at 𝑟 = 𝑏 is

�
2𝜋

0
𝜙 ⋅ (−𝑛̂) 𝑑𝑠

�
2𝜋

0
�−𝑘0𝑟̂

𝜕𝑢
𝜕𝑟 �

⋅ (𝑛̂) 𝑟𝑑𝜃

But 𝑛̂ = 𝑟̂ since radial unit vector. The above becomes

�
2𝜋

0
−𝑘0

𝜕𝑢
𝜕𝑟
𝑟𝑑𝜃 = − (2𝜋𝑘0) 𝑟

𝜕𝑢
𝜕𝑟

At 𝑟 = 𝑏 the above becomes

− (2𝜋𝑘0) 𝑏
𝜕𝑢
𝜕𝑟
�
𝑟=𝑏

Similarly at 𝑟 = 𝑎

− (2𝜋𝑘0) 𝑎
𝜕𝑢
𝜕𝑟
�
𝑟=𝑎

2.2.4.3 Part (c)

Applying that the rate of time change of total energy equal to flux through the boundaries
gives

𝑑
𝑑𝑡 �

2𝜋�
𝑏

𝑎
�𝑐𝜌𝑢� 𝑟𝑑𝑟� = − (2𝜋𝑘0) 𝑎

𝜕𝑢
𝜕𝑟
�
𝑟=𝑎

+ (2𝜋𝑘0) 𝑏
𝜕𝑢
𝜕𝑟
�
𝑟=𝑏

= 2𝜋𝑘0�
𝑏

𝑎

𝜕
𝜕𝑟 �

𝑟
𝜕𝑢
𝜕𝑟 �

𝑑𝑟

Moving 𝑑
𝑑𝑡 inside the first integral, it become partial

2𝜋�
𝑏

𝑎
�𝑐𝜌

𝜕𝑢
𝜕𝑡 �

𝑟𝑑𝑟 = 2𝜋𝑘0�
𝑏

𝑎

𝜕
𝜕𝑟 �

𝑟
𝜕𝑢
𝜕𝑟 �

𝑑𝑟

Moving everything under one integral

�
𝑏

𝑎
��𝑐𝜌

𝜕𝑢
𝜕𝑡 �

𝑟 − 𝑘0
𝜕
𝜕𝑟 �

𝑟
𝜕𝑢
𝜕𝑟 ��

𝑑𝑟 = 0

Hence, since this is valid for any annulus, then the integrand is zero

�𝑐𝜌
𝜕𝑢
𝜕𝑡 �

𝑟 − 𝑘0
𝜕
𝜕𝑟 �

𝑟
𝜕𝑢
𝜕𝑟 �

= 0

𝜕𝑢
𝜕𝑡

=
𝑘0
𝑐𝜌
1
𝑟
𝜕
𝜕𝑟 �

𝑟
𝜕𝑢
𝜕𝑟 �

Hence

𝜕𝑢
𝜕𝑡 =

𝜅
𝑟
𝜕
𝜕𝑟
�𝑟𝜕𝑢𝜕𝑟 �

Where 𝜅 = 𝑘0
𝑐𝜌 .

2.2.5 Problem 5 (1.5.6)

30 Chapter 1. Heat Equation 

1.5.4. Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the 
special case of Exercise 1.5.3(e) if u(r) only. 

1.5.5. Assume that the temperature is circularly symmetric: u = u(r, t), where 
r2 = x2 + y2. We will derive the heat equation for this problem. Consider 
any circular annulus a ~ r ~ b. 

(a) Show that the total heat energy is 211" J: cpur dr. 

(b) Show that the How of heat energy per unit time out of the annulus at 
r = b is -211"bKoau/ar I,=b. A similar result holds at r = a. 

(c) Use parts (a) and (b) to derive the circularly symmetric heat equation 
without sources: 

au k a ( au) 
at =;:ar rar . 

1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on r. 

1.5.7. Derive the heat equation in two dimensions by using Green's theorem, 
(1.5.16), the two-dimensional form of the divergence theorem. 

1.5.8. If Laplace's equation is satisfied in three dimensions, show that 

If V'uon dS = 0 

for any dosed surface. (Hint: Use the divergence theorem.) Give a physical 
interpretation of this result (in the context of heat flow). 

1.5.9. Determine the equilibrium temperature distribution inside a circular annu­
lus (rl ~ r ~ r2): 

*(a) if the outer radius is at temperature T2 and the inner at Tl 

(b) if the outer radius is insulated and the inner radius is at temperature 
Tl 

1.5.10. Determine the equilibrium temperature distribution inside a circle (r ~ ro) 
if t.he boundary is fixed at temperature To. 

*1.5.11. Consider 
au = ~~ (rau) 
at rar ar 

a<r<b 

subject. to 

au au 
u(r.O) = f(r), ar (a, t) = ,B, and ar (b, t) = 1. 

Using physical reasoning. for what value(s) of {3 does an equilibrium tem­
perature distribution exist? 

The earlier problem is now repeated but in this problem 𝑐 ≡ 𝑐 (𝑟) , 𝑘0 ≡ 𝑘0 (𝑟) and 𝜌 ≡ 𝜌 (𝑟).
These are the thermal properties in the problem.

15
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2.2.5.1 Part(a)

�
2𝜋

0
�

𝑏

𝑎
�𝑐 (𝑟) 𝜌 (𝑟) 𝑢� 𝑟𝑑𝑟𝑑𝜃 = �

2𝜋

0
𝑑𝜃�

𝑏

𝑎
�𝑐 (𝑟) 𝜌 (𝑟) 𝑢� 𝑟𝑑𝑟

= 2𝜋�
𝑏

𝑎
�𝑐 (𝑟) 𝜌 (𝑟) 𝑢� 𝑟𝑑𝑟

2.2.5.2 Part (b)

𝜙 = −𝑘0 (𝑟) 𝑟̂
𝜕𝑢
𝜕𝑟

The heat flow per unit time through surface at 𝑟 is therefore

�
2𝜋

0
𝜙 ⋅ (𝑛̂) 𝑑𝑠 = �

2𝜋

0
�−𝑘0 (𝑟) 𝑟̂

𝜕𝑢
𝜕𝑟 �

⋅ (𝑛̂) 𝑟𝑑𝜃

But 𝑛̂ = 𝑟̂ since radial therefore

�
2𝜋

0
−𝑘0 (𝑟)

𝜕𝑢
𝜕𝑟
𝑟𝑑𝜃 = − (2𝜋𝑘0 (𝑟)) 𝑟

𝜕𝑢
𝜕𝑟

At 𝑟 = 𝑏 the above becomes

− �2𝜋 𝑘0�𝑟=𝑏� 𝑏
𝜕𝑢
𝜕𝑟
�
𝑟=𝑏

Similarly at 𝑟 = 𝑎

− �2𝜋 𝑘0�𝑟=𝑎� 𝑎
𝜕𝑢
𝜕𝑟
�
𝑟=𝑎

2.2.5.3 Part (c)

Applying that the rate of time change of total energy equal to flux through the boundaries
gives

𝑑
𝑑𝑡 �

2𝜋�
𝑏

𝑎
�𝑐 (𝑟) 𝜌 (𝑟) 𝑢� 𝑟𝑑𝑟� = − �2𝜋 𝑘0�𝑟=𝑎� 𝑎

𝜕𝑢
𝜕𝑟
�
𝑟=𝑎

+ �2𝜋 𝑘0�𝑟=𝑏� 𝑏
𝜕𝑢
𝜕𝑟
�
𝑟=𝑏

= 2𝜋�
𝑏

𝑎

𝜕
𝜕𝑟 �

𝑘0 (𝑟) 𝑟
𝜕𝑢
𝜕𝑟 �

𝑑𝑟

Moving 𝑑
𝑑𝑡 inside the first integral, it become partial

2𝜋�
𝑏

𝑎
�𝑐 (𝑟) 𝜌 (𝑟)

𝜕𝑢
𝜕𝑡 �

𝑟𝑑𝑟 = 2𝜋�
𝑏

𝑎

𝜕
𝜕𝑟 �

𝑘0 (𝑟) 𝑟
𝜕𝑢
𝜕𝑟 �

𝑑𝑟

Moving everything under one integral

�
𝑏

𝑎
��𝑐 (𝑟) 𝜌 (𝑟)

𝜕𝑢
𝜕𝑡 �

𝑟 −
𝜕
𝜕𝑟 �

𝑘0 (𝑟) 𝑟
𝜕𝑢
𝜕𝑟 ��

𝑑𝑟 = 0

Since this is valid for any annulus then the integrand is zero

�𝑐 (𝑟) 𝜌 (𝑟)
𝜕𝑢
𝜕𝑡 �

𝑟 −
𝜕
𝜕𝑟 �

𝑘0 (𝑟) 𝑟
𝜕𝑢
𝜕𝑟 �

= 0

Therefore, the heat equation when the thermal properties depends on 𝑟 becomes

𝜕𝑢(𝑟,𝑡)
𝜕𝑡 = 1

𝜌(𝑟)𝑐(𝑟)
1
𝑟
𝜕
𝜕𝑟
�𝑘0 (𝑟) 𝑟

𝜕𝑢(𝑟,𝑡)
𝜕𝑟

�
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2.2.6 Problem 6 (1.5.9)

30 Chapter 1. Heat Equation 

1.5.4. Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the 
special case of Exercise 1.5.3(e) if u(r) only. 

1.5.5. Assume that the temperature is circularly symmetric: u = u(r, t), where 
r2 = x2 + y2. We will derive the heat equation for this problem. Consider 
any circular annulus a ~ r ~ b. 

(a) Show that the total heat energy is 211" J: cpur dr. 

(b) Show that the How of heat energy per unit time out of the annulus at 
r = b is -211"bKoau/ar I,=b. A similar result holds at r = a. 

(c) Use parts (a) and (b) to derive the circularly symmetric heat equation 
without sources: 

au k a ( au) 
at =;:ar rar . 

1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on r. 

1.5.7. Derive the heat equation in two dimensions by using Green's theorem, 
(1.5.16), the two-dimensional form of the divergence theorem. 

1.5.8. If Laplace's equation is satisfied in three dimensions, show that 

If V'uon dS = 0 

for any dosed surface. (Hint: Use the divergence theorem.) Give a physical 
interpretation of this result (in the context of heat flow). 

1.5.9. Determine the equilibrium temperature distribution inside a circular annu­
lus (rl ~ r ~ r2): 

*(a) if the outer radius is at temperature T2 and the inner at Tl 

(b) if the outer radius is insulated and the inner radius is at temperature 
Tl 

1.5.10. Determine the equilibrium temperature distribution inside a circle (r ~ ro) 
if t.he boundary is fixed at temperature To. 

*1.5.11. Consider 
au = ~~ (rau) 
at rar ar 

a<r<b 

subject. to 

au au 
u(r.O) = f(r), ar (a, t) = ,B, and ar (b, t) = 1. 

Using physical reasoning. for what value(s) of {3 does an equilibrium tem­
perature distribution exist? 

2.2.6.1 Part (a)

The heat equation is 𝜕𝑢
𝜕𝑡 =

𝜅
𝑟
𝜕
𝜕𝑟
�𝑟𝜕𝑢𝜕𝑟 �. At steady state 𝜕𝑢

𝜕𝑡 = 0. And since circular region,

symmetry in 𝜃 is assumed and therefore temperature 𝑢 depends only on 𝑟 only. This means
𝑢 (𝑟0) is the same at any angle 𝜃 for that specific 𝑟0. This becomes a second order ODE

𝜅
𝑟
𝑑
𝑑𝑟 �

𝑟
𝑑𝑢
𝑑𝑟 �

= 0

𝜅
𝑟 �
𝑑𝑢
𝑑𝑟
+ 𝑟

𝑑2𝑢
𝑑𝑟2 �

= 0

𝑑2𝑢
𝑑𝑟2

+
1
𝑟
𝑑𝑢
𝑑𝑟

= 0

Since 𝜅
𝑟 ≠ 0. Assuming 𝑑𝑢

𝑑𝑟 = 𝑣 (𝑟), the above becomes

𝑑𝑣
𝑑𝑟
+
1
𝑟
𝑣 = 0

𝑑𝑣
𝑑𝑟
= −

1
𝑟
𝑣

𝑑𝑣
𝑣
= −

𝑑𝑟
𝑟

Integrating

ln 𝑣 = − ln 𝑟 + 𝑐1
𝑣 = 𝑒− ln 𝑟+𝑐1

= 𝑐2𝑒− ln 𝑟

= 𝑐2
1
𝑟

Where 𝑐2 = 𝑒𝑐1. Since
𝑑𝑢
𝑑𝑟 = 𝑣, then

𝑑𝑢
𝑑𝑟

= 𝑐2
1
𝑟

𝑑𝑢 = 𝑐2
1
𝑟
𝑑𝑟

Integrating

𝑢 (𝑟) = 𝑐2 ln 𝑟 + 𝑐3
When 𝑟 = 𝑟1, 𝑢 = 𝑇1, and when 𝑟 = 𝑟2, 𝑢 = 𝑇2, therefore

𝑇1 = 𝑐2 ln 𝑟1 + 𝑐3
𝑇2 = 𝑐2 ln 𝑟2 + 𝑐3

From first equation, 𝑐3 = 𝑇1 − 𝑐2 ln 𝑟1. Substituting in second equation gives

𝑇2 = 𝑐2 ln 𝑟2 + 𝑇1 − 𝑐2 ln 𝑟1
= 𝑐2 (ln 𝑟2 − ln 𝑟1) + 𝑇1

Therefore

𝑐2 =
𝑇2 − 𝑇1

ln 𝑟2 − ln 𝑟1
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Hence 𝑐3 = 𝑇1 −
𝑇2−𝑇1

ln 𝑟2−ln 𝑟1
ln 𝑟1. Therefore the steady state solution becomes

𝑢 (𝑟) = 𝑐2 ln 𝑟 + 𝑐3

=
𝑇2 − 𝑇1

ln 𝑟2 − ln 𝑟1
ln 𝑟 + 𝑇1 −

𝑇2 − 𝑇1
ln 𝑟2 − ln 𝑟1

ln 𝑟1

= 𝑇1 +
(𝑇2 − 𝑇1) ln 𝑟 − (𝑇2 − 𝑇1) ln 𝑟1

ln 𝑟2 − ln 𝑟1
= 𝑇1 +

(𝑇2 − 𝑇1) (ln 𝑟 − ln 𝑟1)
ln 𝑟2 − ln 𝑟1

= 𝑇1 + (𝑇2 − 𝑇1)
ln � 𝑟𝑟1 �

ln � 𝑟2𝑟1 �

Hence

𝑢 (𝑟) = 𝑇1 + (𝑇2 − 𝑇1)
ln� 𝑟

𝑟1
�

ln� 𝑟2𝑟1
�

2.2.6.2 Part (b)

Insulated condition implies 𝑑𝑢
𝑑𝑟 = 0. So the above is repeated, but this new boundary

condition is now used at 𝑟2. Starting from the general solution found in part (a)

𝑢 (𝑟) = 𝑐2 ln 𝑟 + 𝑐3
When 𝑟 = 𝑟1, 𝑢 = 𝑇1 and when 𝑟 = 𝑟2,

𝑑𝑢
𝑑𝑟 = 0. But

𝑑𝑢
𝑑𝑟 =

𝑐2
𝑟 . Hence 𝑟 = 𝑟2 gives

𝑐2
𝑟2
= 0 or 𝑐2 = 0.

Therefore the solution is

𝑢 (𝑟) = 𝑐3
When 𝑟 = 𝑟1, 𝑢 = 𝑇1, hence 𝑐3 = 𝑇1. The solution becomes

𝑢 (𝑟) = 𝑇1

The temperature is 𝑇1 everywhere. This makes sense as this is steady state, and no heat
escapes to the outside.

2.2.7 Problem 7 (1.5.10)

30 Chapter 1. Heat Equation 

1.5.4. Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the 
special case of Exercise 1.5.3(e) if u(r) only. 

1.5.5. Assume that the temperature is circularly symmetric: u = u(r, t), where 
r2 = x2 + y2. We will derive the heat equation for this problem. Consider 
any circular annulus a ~ r ~ b. 

(a) Show that the total heat energy is 211" J: cpur dr. 

(b) Show that the How of heat energy per unit time out of the annulus at 
r = b is -211"bKoau/ar I,=b. A similar result holds at r = a. 

(c) Use parts (a) and (b) to derive the circularly symmetric heat equation 
without sources: 

au k a ( au) 
at =;:ar rar . 

1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on r. 

1.5.7. Derive the heat equation in two dimensions by using Green's theorem, 
(1.5.16), the two-dimensional form of the divergence theorem. 

1.5.8. If Laplace's equation is satisfied in three dimensions, show that 

If V'uon dS = 0 

for any dosed surface. (Hint: Use the divergence theorem.) Give a physical 
interpretation of this result (in the context of heat flow). 

1.5.9. Determine the equilibrium temperature distribution inside a circular annu­
lus (rl ~ r ~ r2): 

*(a) if the outer radius is at temperature T2 and the inner at Tl 

(b) if the outer radius is insulated and the inner radius is at temperature 
Tl 

1.5.10. Determine the equilibrium temperature distribution inside a circle (r ~ ro) 
if t.he boundary is fixed at temperature To. 

*1.5.11. Consider 
au = ~~ (rau) 
at rar ar 

a<r<b 

subject. to 

au au 
u(r.O) = f(r), ar (a, t) = ,B, and ar (b, t) = 1. 

Using physical reasoning. for what value(s) of {3 does an equilibrium tem­
perature distribution exist? 

Last problem found the solution to the heat equation in polar coordinates with symmetry
in 𝜃 to be

𝑢 (𝑟) = 𝑐2 ln 𝑟 + 𝑐3
𝑐2 must be zero since at 𝑟 = 0 the temperature must be finite. The solution becomes

𝑢 (𝑟) = 𝑐3
Applying the boundary conditions at 𝑟 = 𝑟0

𝑇0 = 𝑐3
Therefore,

𝑢 (𝑟) = 𝑇0
The temperature everywhere is the the same as on the edge.
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2.2.8 Problem 8 (1.5.11)

30 Chapter 1. Heat Equation 

1.5.4. Using Exercise 1.5.3(a) and the chain rule for partial derivatives, derive the 
special case of Exercise 1.5.3(e) if u(r) only. 

1.5.5. Assume that the temperature is circularly symmetric: u = u(r, t), where 
r2 = x2 + y2. We will derive the heat equation for this problem. Consider 
any circular annulus a ~ r ~ b. 

(a) Show that the total heat energy is 211" J: cpur dr. 

(b) Show that the How of heat energy per unit time out of the annulus at 
r = b is -211"bKoau/ar I,=b. A similar result holds at r = a. 

(c) Use parts (a) and (b) to derive the circularly symmetric heat equation 
without sources: 

au k a ( au) 
at =;:ar rar . 

1.5.6. Modify Exercise 1.5.5 if the thermal properties depend on r. 

1.5.7. Derive the heat equation in two dimensions by using Green's theorem, 
(1.5.16), the two-dimensional form of the divergence theorem. 

1.5.8. If Laplace's equation is satisfied in three dimensions, show that 

If V'uon dS = 0 

for any dosed surface. (Hint: Use the divergence theorem.) Give a physical 
interpretation of this result (in the context of heat flow). 

1.5.9. Determine the equilibrium temperature distribution inside a circular annu­
lus (rl ~ r ~ r2): 

*(a) if the outer radius is at temperature T2 and the inner at Tl 

(b) if the outer radius is insulated and the inner radius is at temperature 
Tl 

1.5.10. Determine the equilibrium temperature distribution inside a circle (r ~ ro) 
if t.he boundary is fixed at temperature To. 

*1.5.11. Consider 
au = ~~ (rau) 
at rar ar 

a<r<b 

subject. to 

au au 
u(r.O) = f(r), ar (a, t) = ,B, and ar (b, t) = 1. 

Using physical reasoning. for what value(s) of {3 does an equilibrium tem­
perature distribution exist? 

For equilibrium the total rate of heat flow at 𝑟 = 𝑎 should be the same as at 𝑟 = 𝑏. Circum-
ference at 𝑟 = 𝑎 is 2𝜋𝑎 and total rate of flow at 𝑟 = 𝑎 is given by 𝛽. Hence total heat flow
rate at 𝑟 = 𝑎 is given by

(2𝜋𝑎)
𝜕𝑢
𝜕𝑟
�
𝑟=𝑎

= 2𝜋𝑎𝛽

Similarly, total heat flow rate at 𝑟 = 𝑏 is given by

(2𝜋𝑏)
𝜕𝑢
𝜕𝑟
�
𝑟=𝑏

= 2𝜋𝑏

Therefore 2𝜋𝑎𝛽 = 2𝜋𝑎 or

𝛽 =
𝑎
𝑏

2.2.9 Problem 9 (1.5.12)

1.5. Heat Equation in Two or Three Dimensions 31 

1.5.12. Assume that the temperature is spherically symmetric, 1.1 = u(r, t), where r 
is the distance from a fixed point (r2 = x 2 + y2 + z2). Consider the heat 
flow (without sources) between any two concentric spheres of radii a and b. 

(a) Show that the total heat energy is 411" J: cpur2 dr. 

(b) Show that the flow of heat energy per unit time out of the spherical 
shell at r = b is -411"b2 Ko 8u/ar Ir:b. A similar result holds at r = a. 

(c) Use parts (a) and (b) to derive the spherically symmetric heat equation 

811. = ~~ ( r2 8U) 
at r2 ar 8r. 

*1.5.13. Determine the steady-state temperature distribution between two concentric 
spheres with radii 1 and 4, respectively, if the temperature of the outer 
sphere is maintained at 80° and the inner sphere at 0° (see Exercise 1.5.12). 

1.5.14. Isobars are lines of constant temperature. Show that isobars are perpendic­
ular to any part of the boundary that is insulated. 

1.5.15. Derive the heat equation in three dimensions assuming constant thermal 
properties and no sources. 

1.5.16. Express the integral conservation law for any three-dimensional object. As­
sume there are no sources. Also assume the heat flow is specified, Vu·i& = 
g(:.:, 11, z), on the entire boundary and does not depend on time. By in­
tegrating with respect to time, determine the total thermal energy. (Hint: 
Use the initial condition.) 

1.5.17. Derive the integral conservation law for any three dimensional object (with 
constant thermal properties) by integrating the heat equation (1.5.11) (as­
suming no sources). Show that the result is equivalent to (1.5.1). 

Orthogonal curvilinear coordinates. A coordinate system (11., 
v,w) may be introduced and defined by x = x(u,v,w),y = y(u,v,w) and 
z = z(u, v, w). The radial vector r == xi + yj + zk. Partial derivatives of 
r with respect to a coordinate are in the direction of the coordinate. Thus, 
for example, a vector in the u-direction 8r/8u can be made a unit vector e" 
in the u-direction by dividing by its length h" = lar/8v.1 called the scale 
factor: e" = hI .. 8r / 811. . 

1.5.18. Determine the scale factors for cylindrical coordinates. 

1.5.19. Determine the scale factors for spherical coordinates. 

1.5.20. The gradient of a scalar can be expressed in terms of the new coordinate 
system Vg = aor/8v. + b8r/8v + c8r/aw, where you will determine the 
scalars a, b, c. Using dg = V g. dr, derive that the gradient in an orthogonal 
curvilinear coordinate system is given by 

" 18g A 18g A 18g A 

V g = h" 8v. e" + hv 8v e v + hwa,;;ew. (1.5.23) 

2.2.9.1 Part (a)

Total heat energy is, by definition

𝐸 = �
𝑉
𝑐𝜌𝑢𝑑𝑣 (1)

Volume 𝑣 of sphere of radius 𝑟 is 𝑣 = 4
3𝜋𝑟

3. Hence

𝑑𝑣
𝑑𝑟
= 4𝜋𝑟2

𝑑𝑣 = 4𝜋𝑟2𝑑𝑟
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Equation (1) becomes, where now the 𝑟 limits are from 𝑎 to 𝑏

𝐸 = �
𝑏

𝑎
𝑐𝜌𝑢 �4𝜋𝑟2𝑑𝑟�

= 4𝜋�
𝑏

𝑎
𝑐𝜌𝑢𝑟2𝑑𝑟

2.2.9.2 Part (b)

By definition, the flux at 𝑟 = 𝑏 is

𝜙𝑏 = −𝑘0
𝜕𝑢
𝜕𝑟
�
𝑟=𝑏

The above is per unit area. At 𝑟 = 𝑏, the surface area of the sphere is 4𝜋𝑏2. Therefore, the
total energy per unit time is 𝜙𝑏 �4𝜋𝑏2� or

−4𝜋𝑏2𝑘0
𝜕𝑢
𝜕𝑟
�
𝑟=𝑏

Similarly for 𝑟 = 𝑎.

2.2.9.3 Part(c)

By conservation of thermal energy

𝑑
𝑑𝑡
𝐸 = −4𝜋𝑎2𝑘0

𝜕𝑢
𝜕𝑟
�
𝑟=𝑎

+ 4𝜋𝑏2𝑘0
𝜕𝑢
𝜕𝑟
�
𝑟=𝑏

𝑑
𝑑𝑡 �

4𝜋�
𝑏

𝑎
𝑐𝜌𝑢𝑟2𝑑𝑟� = 4𝜋𝑘0�

𝑏

𝑎

𝜕
𝜕𝑟 �

𝑟2
𝜕𝑢
𝜕𝑟 �

𝑑𝑟

�
𝑏

𝑎
𝑐𝜌
𝜕𝑢
𝜕𝑡
𝑟2𝑑𝑟 = 𝑘0�

𝑏

𝑎

𝜕
𝜕𝑟 �

𝑟2
𝜕𝑢
𝜕𝑟 �

𝑑𝑟

Moving everything into one integral

�
𝑏

𝑎
�𝑐𝜌

𝜕𝑢
𝜕𝑡
𝑟2 − 𝑘0

𝜕
𝜕𝑟 �

𝑟2
𝜕𝑢
𝜕𝑟 ��

𝑑𝑟 = 0

Since this is valid for any limits the integrand must be zero

𝑐𝜌
𝜕𝑢
𝜕𝑡
𝑟2 − 𝑘0

𝜕
𝜕𝑟 �

𝑟2
𝜕𝑢
𝜕𝑟 �

= 0

𝜕𝑢
𝜕𝑡

=
𝑘0
𝑐𝜌

1
𝑟2
𝜕
𝜕𝑟 �

𝑟2
𝜕𝑢
𝜕𝑟 �

Therefore

𝜕𝑢
𝜕𝑡 =

𝜅
𝑟2

𝜕
𝜕𝑟
�𝑟2 𝜕𝑢𝜕𝑟 �

Where 𝜅 = 𝑘0
𝑐𝜌

2.2.10 Problem 10 (1.5.13)

1.5. Heat Equation in Two or Three Dimensions 31

1.5.12. Assume that the temperature is spherically symmetric, u = u(r, t), where r
is the distance from a fixed point (r2 = x2 + y2 + z2). Consider the heat
flow (without sources) between any two concentric spheres of radii a and b.

(a) Show that the total heat energy is 47r fo cpur2 dr.
(b) Show that the flow of heat energy per unit time out of the spherical

shell at r = b is -4irb2Ko 8u/8r Ir=b. A similar result holds at r = a.
(c) Use parts (a) and (b) to derive the spherically symmetric heat equation

8u k 8 T28u
8t r2 8r C?

.

*1.5.13. Determine the steady-state temperature distribution between two concentric
spheres with radii 1 and 4, respectively, if the temperature of the outer
sphere is maintained at 80° and the inner sphere at 0° (see Exercise 1.5.12).

1.5.14. Isobars are lines of constant temperature. Show that isobars are perpendic-
ular to any part of the boundary that is insulated.

1.5.15. Derive the heat equation in three dimensions assuming constant thermal
properties and no sources.

1.5.16. Express the integral conservation law for any three-dimensional object. As-
sume there are no sources. Also assume the heat flow is specified,
g(x, y, z), on the entire boundary and does not depend on time. By in-
tegrating with respect to time, determine the total thermal energy. (Hint:
Use the initial condition.)

1.5.17. Derive the integral conservation law for any three dimensional object (with
constant thermal properties) by integrating the heat equation (1.5.11) (as-
suming no sources). Show that the result is equivalent to (1.5.1).
Orthogonal curvilinear coordinates. A coordinate system (u,
v, w) may be introduced and defined by x = x(u, v, w), y = y(u, v, w) and
z = z(u, v, w). The radial vector r =_ At + yj + A. Partial derivatives of
r with respect to a coordinate are in the direction of the coordinate. Thus,
for example, a vector in the u-direction 8r/8u can be made a unit vector e
in the u-direction by dividing by its length h = I8r/8ul called the scale
factor: cu = - er/au .

1.5.18. Determine the scale factors for cylindrical coordinates.

1.5.19. Determine the scale factors for spherical coordinates.

1.5.20. The gradient of a scalar can be expressed in terms of the new coordinate
system Vg = a 6)r/8u + b 8r/(7v + c Or/Ow, where you will determine the
scalars a, b, c. Using dg = V9 dr, derive that the gradient in an orthogonal
curvilinear coordinate system is given by

Vg = 1 8g _ 1 8g 1 8g
0-

( )

T" T. eu + h 8; e +
hu, 8w

. 1.5.23

The heat equation is 𝜕𝑢
𝜕𝑡 =

𝜅
𝑟2

𝜕
𝜕𝑟
�𝑟2 𝜕𝑢𝜕𝑟 �. For steady state 𝜕𝑢

𝜕𝑡 = 0 and assuming symmetry in
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𝜃, the heat equation becomes an ODE in 𝑟
𝜅
𝑟2
𝑑
𝑑𝑟 �

𝑟2
𝑑𝑢
𝑑𝑟 �

= 0

𝑑
𝑑𝑟 �

𝑟2
𝑑𝑢
𝑑𝑟 �

= 0

2𝑟
𝑑𝑢
𝑑𝑟
+ 𝑟2

𝑑2𝑢
𝑑𝑟2

= 0

For 𝑟 ≠ 0

𝑟
𝑑2𝑢
𝑑𝑟2

+ 2
𝑑𝑢
𝑑𝑟

= 0

Let 𝑑𝑢
𝑑𝑟 = 𝑣 (𝑟), hence

𝑟
𝑑𝑣
𝑑𝑟
+ 2𝑣 = 0

𝑑𝑣
𝑑𝑟
= −

2𝑣
𝑟

𝑑𝑣
𝑣
= −2

𝑑𝑟
𝑟

Integrating

ln 𝑣 = −2 ln 𝑟 + 𝑐
𝑣 = 𝑒−2 ln 𝑟+𝑐

= 𝑐1𝑒−2 ln 𝑟

= 𝑐1
1
𝑟2

Therefore, since 𝑑𝑢
𝑑𝑟 = 𝑣 (𝑟) then

𝑑𝑢
𝑑𝑟

= 𝑐1
1
𝑟2

𝑑𝑢 = 𝑐1
𝑑𝑟
𝑟2

Integrating

𝑢 (𝑟) = −𝑐1
𝑟 + 𝑐2

When 𝑟 = 1, 𝑢 = 0 and when 𝑟 = 4, 𝑢 = 80, hence

0 = −𝑐1 + 𝑐2

80 =
−𝑐1
4
+ 𝑐2

From first equation, 𝑐1 = 𝑐2, and from second equation 80 = −𝑐1
4 + 𝑐1, hence

3
4𝑐1 = 80 or

𝑐1 =
(4)(80)
3 = 320

3 . Therefore, the general solution becomes

𝑢 (𝑟) = −
320
3
1
𝑟
+
320
3

or

𝑢 (𝑟) = 320
3
�1 − 1

𝑟
�
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2.3 HW 2

2.3.1 Summary table

For 1𝐷 bar

Left Right 𝜆 = 0 𝜆 > 0 𝑢 (𝑥, 𝑡)

𝑢 (0) = 0 𝑢 (𝐿) = 0 No
𝜆𝑛 = �

𝑛𝜋
𝐿
�
2
, 𝑛 = 1, 2, 3,⋯

𝑋𝑛 = 𝐵𝑛 sin �√𝜆𝑛𝑥�
∑∞
𝑛=1 𝐵𝑛 sin �√𝜆𝑛𝑥� 𝑒−𝑘𝜆𝑛𝑡

𝑢 (0) = 0 𝜕𝑢(𝐿)
𝜕𝑥 = 0 No

𝜆𝑛 = �
𝑛𝜋
2𝐿
�
2
, 𝑛 = 1, 3, 5,⋯

𝑋𝑛 = 𝐵𝑛 sin �√𝜆𝑛𝑥�
∑∞
𝑛=1,3,5,⋯ 𝐵𝑛 sin �√𝜆𝑛𝑥� 𝑒−𝑘𝜆𝑛𝑡

𝜕𝑢(0)
𝜕𝑥 = 0 𝑢 (𝐿) = 0 No

𝜆𝑛 = �
𝑛𝜋
2𝐿
�
2
, 𝑛 = 1, 3, 5,⋯

𝑋𝑛 = 𝐴𝑛 cos �√𝜆𝑛𝑥�
∑∞
𝑛=1,3,5⋯𝐴𝑛 cos �√𝜆𝑛𝑥� 𝑒−𝑘𝜆𝑛𝑡

𝑢 (0) = 0 𝑢 (𝐿) + 𝜕𝑢(𝐿)
𝜕𝑥 = 0

𝜆0 = 0
𝑋0 = 𝐴0

tan �√𝜆𝑛𝐿� = −𝜆𝑛
𝑋𝜆 = 𝐵𝜆 sin �√𝜆𝑛𝑥�

𝐴0 +∑
∞
𝑛=1 𝐵𝑛 sin �√𝜆𝑛𝑥� 𝑒−𝑘𝜆𝑛𝑡

𝜕𝑢(0)
𝜕𝑥 = 0 𝜕𝑢(𝐿)

𝜕𝑥 = 0
𝜆0 = 0
𝑋0 = 𝐴0

𝜆𝑛 = �
𝑛𝜋
𝐿
�
2
, 𝑛 = 1, 2, 3,⋯

𝑋𝑛 = 𝐴𝑛 cos �√𝜆𝑛𝑥�
𝐴0 +∑

∞
𝑛=1𝐴𝑛 cos �√𝜆𝑛𝑥� 𝑒−𝑘𝜆𝑛𝑡

For periodic conditions 𝑢 (−𝐿) = 𝑢 (𝐿) and 𝜕𝑢(−𝐿)
𝜕𝑥 = 𝜕𝑢(𝐿)

𝜕𝑥

𝜆𝑛 = �
𝑛𝜋
𝐿
�
2
, 𝑛 = 1, 2, 3,⋯

𝑢 (𝑥, 𝑡) =
𝜆=0
⏞𝑎0 +

𝜆>0

�����������������������������������������������������������������������∞
�
𝑛=1

𝐴𝑛 cos ��𝜆𝑛𝑥� 𝑒−𝑘𝜆𝑛𝑡 +
∞
�
𝑛=1

𝐵𝑛 sin ��𝜆𝑛𝑥� 𝑒−𝑘𝜆𝑛𝑡

Note on notation When using separation of variables 𝑇 (𝑡) is used for the time function
and 𝑋 (𝑥) , 𝑅 (𝑟) , Θ (𝜃) etc. for the spatial functions. This notation is more common in other
books and easier to work with as the dependent variable 𝑇,𝑋,⋯ and the independent
variable 𝑡, 𝑥,⋯ are easier to match (one is upper case and is one lower case) and this
produces less symbols to remember and less chance of mixing wrong letters.
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2.3.2 section 2.3.1 (problem 1)2.3. Heat Equation With Zero Temperature Ends

EXERCISES 2.3

55

2.3.1. For the following partial differential equations, what ordinary differential
equations are implied by the method of separation of variables?

(a) au ka (r2u)

* at r ar &

a2u a2u
*

(C) 09x2 + ft2 = o

&U 04U

*(e) at = k
a 44

a2u 2 02U

ate ax

2.3.2. Consider the differential equation

z
2+A0=0.

Determine the eigenvalues \ (and corresponding eigenfunctions) if 0 satisfies
the following boundary conditions. Analyze three cases (.\ > 0, A = 0, A <
0). You may assume that the eigenvalues are real.

(a) 0(0) = 0 and 0(-,r) = 0
*(b) 0(0) = 0 and 5(1) = 0

(c) !LO (0) = 0 and LO (L) = 0 (If necessary, see Sec. 2.4.1.)

*(d) 0(0) = 0 and O (L) = 0

(e) LO (0) = 0 and O(L) = 0

*(f) O(a) = 0 and O(b) = 0 (You may assume that A > 0.)

(g) ¢(0) = 0 and LO
(L)

+ cb(L) = 0 (If necessary, see Sec. 5.8.)

2.3.3. Consider the heat equation

OU 82U

at - kax2
subject to the boundary conditions

u(0,t) = 0 and u(L,t) = 0.

Solve the initial value problem if the temperature is initially

(a) u(x, 0) = 6 sin s (b) u(x, 0) = 3 sin i - sin i

(b) -` = k
09x22

- v0 ax

(d)

* (f)
=c

* (c) u(x, 0) = 2 cos lmE (d) u(x, 0)
1 0 < x < L/2
2 L/2<x<L

2.3.2.1 part (a)

1
𝑘
𝜕𝑢
𝜕𝑡

=
1
𝑟
𝜕
𝜕𝑟 �

𝑟
𝜕𝑢
𝜕𝑟 �

(1)

Let

𝑢 (𝑡, 𝑟) = 𝑇 (𝑡) 𝑅 (𝑟)

Then
𝜕𝑢
𝜕𝑡

= 𝑇′ (𝑡) 𝑅 (𝑟)

And
𝜕
𝜕𝑟 �

𝑟
𝜕𝑢
𝜕𝑟 �

=
𝜕𝑢
𝜕𝑟

+ 𝑟
𝜕2𝑢
𝜕𝑟2

= 𝑇𝑅′ (𝑟) + 𝑟𝑇𝑅′′ (𝑟)

Hence (1) becomes
1
𝑘
𝑇′ (𝑡) 𝑅 (𝑟) =

1
𝑟
(𝑇𝑅′ (𝑟) + 𝑟𝑇𝑅′′ (𝑟))

Note From now on 𝑇′ (𝑡) is written as just 𝑇′ and similarly for 𝑅′ (𝑟) = 𝑅′ and 𝑅′′ (𝑟) = 𝑅′′ to
simplify notations and make it easier and more clear to read. The above is reduced to

1
𝑘
𝑇′𝑅 =

1
𝑟
𝑇𝑅′ + 𝑇𝑅′′

Dividing throughout 1 by 𝑇 (𝑡) 𝑅 (𝑟) gives
1
𝑘
𝑇′

𝑇
=
1
𝑟
𝑅′

𝑅
+
𝑅′′

𝑅
Since each side in the above depends on a di�erent independent variable and both are
equal to each others, then each side is equal to the same constant, say −𝜆. Therefore

1
𝑘
𝑇′

𝑇
=
1
𝑟
𝑅′

𝑅
+
𝑅′′

𝑅
= −𝜆

The following di�erential equations are obtained

𝑇′ + 𝜆𝑘𝑇 = 0
𝑟𝑅′′ + 𝑅′ + 𝑟𝜆𝑅 = 0

In expanded form, the above is
𝑑𝑇
𝑑𝑡
+ 𝜆𝑘𝑇 (𝑡) = 0

𝑟
𝑑2𝑅
𝑑𝑟2

+
𝑑𝑅
𝑑𝑡
+ 𝑟𝜆𝑅 (𝑟) = 0

1𝑇 (𝑡) 𝑅 (𝑟) can not be zero, as this would imply that either 𝑇 (𝑡) = 0 or 𝑅 (𝑟) = 0 or both are zero, in which
case there is only the trivial solution.
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2.3.2.2 Part (b)

1
𝑘
𝜕𝑢
𝜕𝑡

=
𝜕2𝑢
𝜕𝑥2

−
𝑣0
𝑘
𝜕𝑢
𝜕𝑥

(1)

Let

𝑢 (𝑥, 𝑡) = 𝑇𝑋

Then
𝜕𝑢
𝜕𝑡

= 𝑇′𝑋

And
𝜕𝑢
𝜕𝑥

= 𝑋′𝑇

𝜕2𝑢
𝜕𝑥2

= 𝑋′′𝑇

Substituting these in (1) gives
1
𝑘
𝑇′𝑋 = 𝑋′′𝑇 −

𝑣0
𝑘
𝑋′𝑇

Dividing throughout by 𝑇𝑋 ≠ 0 gives
1
𝑘
𝑇′

𝑇
=
𝑋′′

𝑋
−
𝑣0
𝑘
𝑋′

𝑋
Since each side in the above depends on a di�erent independent variable and both are
equal to each others, then each side is equal to the same constant, say −𝜆. Therefore

1
𝑘
𝑇′

𝑇
=
𝑋′′

𝑋
−
𝑣0
𝑘
𝑋′

𝑋
= −𝜆

The following di�erential equations are obtained

𝑇′ + 𝜆𝑘𝑇 = 0

𝑋′′ −
𝑣0
𝑘
𝑋′ + 𝜆𝑋 = 0

The above in expanded form is
𝑑𝑇
𝑑𝑡
+ 𝜆𝑘𝑇 (𝑡) = 0

𝑑2𝑋
𝑑𝑥2

−
𝑣0
𝑘
𝑑𝑋
𝑑𝑥

+ 𝜆𝑋 (𝑥) = 0

2.3.2.3 Part (d)

1
𝑘
𝜕𝑢
𝜕𝑡

=
1
𝑟2
𝜕
𝜕𝑟 �

𝑟2
𝜕𝑢
𝜕𝑟 �

(1)

Let

𝑢 (𝑡, 𝑟) ≡ 𝑇𝑅

Then
𝜕𝑢
𝜕𝑡

= 𝑇′𝑅

And
𝜕
𝜕𝑟 �

𝑟2
𝜕𝑢
𝜕𝑟 �

= 2𝑟
𝜕𝑢
𝜕𝑟

+ 𝑟2
𝜕2𝑢
𝜕𝑟2

= 2𝑟𝑇𝑅′ + 𝑟2𝑇𝑅′′

Substituting these in (1) gives
1
𝑘
𝑇′𝑅 =

1
𝑟2
�2𝑟𝑇𝑅′ + 𝑟2𝑇𝑅′′�

=
2
𝑟
𝑇𝑅′ + 𝑇𝑅′′

Dividing throughout by 𝑇𝑅 ≠ 0 gives
1
𝑘
𝑇′

𝑇
=
2
𝑟
𝑅′

𝑅
+
𝑅′′

𝑅
24
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Since each side in the above depends on a di�erent independent variable and both are
equal to each others, then each side is equal to the same constant, say −𝜆. Therefore

1
𝑘
𝑇′

𝑇
=
2
𝑟
𝑅′

𝑅
+
𝑅′′

𝑅
= −𝜆

The following di�erential equations are obtained

𝑇′ + 𝜆𝑘𝑇 = 0
𝑟𝑅′′ + 2𝑅′ + 𝜆𝑟𝑅 = 0

The above in expanded form is
𝑑𝑇
𝑑𝑡
+ 𝜆𝑘𝑇 (𝑡) = 0

𝑟
𝑑2𝑅
𝑑𝑟2

+ 2
𝑑𝑅
𝑑𝑟

+ 𝜆𝑟𝑅 (𝑟) = 0

2.3.3 section 2.3.2 (problem 2)

2.3. Heat Equation With Zero Temperature Ends

EXERCISES 2.3

55

2.3.1. For the following partial differential equations, what ordinary differential
equations are implied by the method of separation of variables?

(a) au ka (r2u)

* at r ar &

a2u a2u
*

(C) 09x2 + ft2 = o

&U 04U

*(e) at = k
a 44

a2u 2 02U

ate ax

2.3.2. Consider the differential equation

z
2+A0=0.

Determine the eigenvalues \ (and corresponding eigenfunctions) if 0 satisfies
the following boundary conditions. Analyze three cases (.\ > 0, A = 0, A <
0). You may assume that the eigenvalues are real.

(a) 0(0) = 0 and 0(-,r) = 0
*(b) 0(0) = 0 and 5(1) = 0

(c) !LO (0) = 0 and LO (L) = 0 (If necessary, see Sec. 2.4.1.)

*(d) 0(0) = 0 and O (L) = 0

(e) LO (0) = 0 and O(L) = 0

*(f) O(a) = 0 and O(b) = 0 (You may assume that A > 0.)

(g) ¢(0) = 0 and LO
(L)

+ cb(L) = 0 (If necessary, see Sec. 5.8.)

2.3.3. Consider the heat equation

OU 82U

at - kax2
subject to the boundary conditions

u(0,t) = 0 and u(L,t) = 0.

Solve the initial value problem if the temperature is initially

(a) u(x, 0) = 6 sin s (b) u(x, 0) = 3 sin i - sin i

(b) -` = k
09x22

- v0 ax

(d)

* (f)
=c

* (c) u(x, 0) = 2 cos lmE (d) u(x, 0)
1 0 < x < L/2
2 L/2<x<L

2.3.3.1 Part (d)

𝑑2𝜙
𝑑𝑥2

+ 𝜆𝜙 = 0

𝜙 (0) = 0
𝑑𝜙
𝑑𝑥

(𝐿) = 0

Substituting an assumed solution of the form 𝜙 = 𝐴𝑒𝑟𝑥 in the above ODE and simplifying
gives the characteristic equation

𝑟2 + 𝜆 = 0
𝑟2 = −𝜆

𝑟 = ±√−𝜆

Assuming 𝜆 is real. The following cases are considered.

case 𝜆 < 0 In this case, −𝜆 and also √−𝜆, are positive. Hence both roots ±√−𝜆 are real
and positive. Let

√−𝜆 = 𝑠

Where 𝑠 > 0. Therefore the solution is

𝜙 (𝑥) = 𝐴𝑒𝑠𝑥 + 𝐵𝑒−𝑠𝑥

𝑑𝜙
𝑑𝑥

= 𝐴𝑠𝑒𝑠𝑥 − 𝐵𝑠𝑒−𝑠𝑥
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Applying the first boundary conditions (B.C.) gives

0 = 𝜙 (0)
= 𝐴 + 𝐵

Applying the second B.C. gives

0 =
𝑑𝜙
𝑑𝑥

(𝐿)

= 𝐴𝑠 − 𝐵𝑠
= 𝑠 (𝐴 − 𝐵)
= 𝐴 − 𝐵

The last step above was after dividing by 𝑠 since 𝑠 ≠ 0. Therefore, the following two
equations are solved for 𝐴,𝐵

0 = 𝐴 + 𝐵
0 = 𝐴 − 𝐵

The second equation implies 𝐴 = 𝐵 and the first gives 2𝐴 = 0 or 𝐴 = 0. Hence 𝐵 = 0.
Therefore the only solution is the trivial solution 𝜙 (𝑥) = 0. 𝜆 < 0 is not an eigenvalue.

case 𝜆 = 0 In this case the ODE becomes

𝑑2𝜙
𝑑𝑥2

= 0

The solution is

𝜙 (𝑥) = 𝐴𝑥 + 𝐵
𝑑𝜙
𝑑𝑥

= 𝐴

Applying the first B.C. gives

0 = 𝜙 (0)
= 𝐵

Applying the second B.C. gives

0 =
𝑑𝜙
𝑑𝑥

(𝐿)

= 𝐴

Hence 𝐴,𝐵 are both zero in this case as well and the only solution is the trivial one 𝜙 (𝑥) = 0.
𝜆 = 0 is not an eigenvalue.

case 𝜆 > 0 In this case, −𝜆 is negative, therefore the roots are both complex.

𝑟 = ±𝑖√𝜆

Hence the solution is

𝜙 (𝑥) = 𝐴𝑒𝑖√𝜆𝑥 + 𝐵𝑒−𝑖√𝜆𝑥

Which can be writing in terms of cos, sin using Euler identity as

𝜙 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

Applying first B.C. gives

0 = 𝜙 (0)
= 𝐴 cos (0) + 𝐵 sin (0)

0 = 𝐴

The solution now is 𝜙 (𝑥) = 𝐵 sin �√𝜆𝑥� . Hence

𝑑𝜙
𝑑𝑥

= √𝜆𝐵 cos �√𝜆𝑥�
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Applying the second B.C. gives

0 =
𝑑𝜙
𝑑𝑥

(𝐿)

= √𝜆𝐵 cos �√𝜆𝐿�

= √𝜆𝐵 cos �√𝜆𝐿�

Since 𝜆 ≠ 0 then either 𝐵 = 0 or cos �√𝜆𝐿� = 0. But 𝐵 = 0 gives trivial solution, therefore

cos �√𝜆𝐿� = 0

This implies

√𝜆𝐿 =
𝑛𝜋
2

𝑛 = 1, 3, 5,⋯

In other words, for all positive odd integers. 𝑛 < 0 can not be used since 𝜆 is assumed
positive.

𝜆 = �𝑛𝜋2𝐿 �
2

𝑛 = 1, 3, 5,⋯

The eigenfunctions associated with these eigenvalues are

𝜙𝑛 (𝑥) = 𝐵𝑛 sin �𝑛𝜋
2𝐿
𝑥� 𝑛 = 1, 3, 5,⋯

2.3.3.2 Part (f)

𝑑2𝜙
𝑑𝑥2

+ 𝜆𝜙 = 0

𝜙 (𝑎) = 0
𝜙 (𝑏) = 0

It is easier to solve this if one boundary condition was at 𝑥 = 0. (So that one constant
drops out). Let 𝜏 = 𝑥 − 𝑎 and the ODE becomes (where now the independent variable is 𝜏)

𝑑2𝜙 (𝜏)
𝑑𝜏2

+ 𝜆𝜙 (𝜏) = 0 (1)

With the new boundary conditions 𝜙 (0) = 0 and 𝜙 (𝑏 − 𝑎) = 0. Assuming the solution is
𝜙 = 𝐴𝑒𝑟𝜏, the characteristic equation is

𝑟2 + 𝜆 = 0
𝑟2 = −𝜆

𝑟 = ±√−𝜆

Assuming 𝜆 is real and also assuming 𝜆 > 0 (per the problem statement) then −𝜆 is negative,
and both roots are complex.

𝑟 = ±𝑖√𝜆

This gives the solution

𝜙 (𝜏) = 𝐴 cos �√𝜆𝜏� + 𝐵 sin �√𝜆𝜏�

Applying first B.C.

0 = 𝜙 (0)
= 𝐴 cos 0 + 𝐵 sin 0
= 𝐴

Therefore the solution is 𝜙 (𝜏) = 𝐵 sin �√𝜆𝜏�. Applying the second B.C.

0 = 𝜙 (𝑏 − 𝑎)

= 𝐵 sin �√𝜆 (𝑏 − 𝑎)�
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𝐵 = 0 leads to trivial solution. Choosing sin �√𝜆 (𝑏 − 𝑎)� = 0 gives

�𝜆𝑛 (𝑏 − 𝑎) = 𝑛𝜋

�𝜆𝑛 =
𝑛𝜋

(𝑏 − 𝑎)
𝑛 = 1, 2, 3⋯

Or

𝜆𝑛 = �
𝑛𝜋
𝑏−𝑎
�
2

𝑛 = 1, 2, 3,⋯

The eigenfunctions associated with these eigenvalue are

𝜙𝑛 (𝜏) = 𝐵𝑛 sin ��𝜆𝑛𝜏�

= 𝐵𝑛 sin �
𝑛𝜋

(𝑏 − 𝑎)
𝜏�

Transforming back to 𝑥

𝜙𝑛 (𝑥) = 𝐵𝑛 sin �
𝑛𝜋

(𝑏 − 𝑎)
(𝑥 − 𝑎)�

2.3.3.3 Part (g)

𝑑2𝜙
𝑑𝑥2

+ 𝜆𝜙 = 0

𝜙 (0) = 0
𝑑𝜙
𝑑𝑥

(𝐿) + 𝜙 (𝐿) = 0

Assuming solution is 𝜙 = 𝐴𝑒𝑟𝑥, the characteristic equation is

𝑟2 + 𝜆 = 0
𝑟2 = −𝜆

𝑟 = ±√−𝜆

The following cases are considered.

case 𝜆 < 0 In this case −𝜆 and also √−𝜆 are positive. Hence the roots ±√−𝜆 are both real.
Let

√−𝜆 = 𝑠

Where 𝑠 > 0. This gives the solution

𝜙 (𝑥) = 𝐴0𝑒𝑠𝑥 + 𝐵0𝑒−𝑠𝑥

Which can be manipulated using sinh (𝑠𝑥) = 𝑒𝑠𝑥−𝑒−𝑠𝑥

2 , cosh (𝑠𝑥) = 𝑒𝑠𝑥+𝑒−𝑠𝑥

2 to the following

𝜙 (𝑥) = 𝐴 cosh (𝑠𝑥) + 𝐵 sinh (𝑠𝑥)
Where 𝐴,𝐵 above are new constants. Applying the left boundary condition gives

0 = 𝜙 (0)
= 𝐴

The solution becomes 𝜙 (𝑥) = 𝐵 sinh (𝑠𝑥) and hence
𝑑𝜙
𝑑𝑥 = 𝑠 cosh (𝑠𝑥) . Applying the right

boundary conditions gives

0 = 𝜙 (𝐿) +
𝑑𝜙
𝑑𝑥

(𝐿)

= 𝐵 sinh (𝑠𝐿) + 𝐵𝑠 cosh (𝑠𝐿)
= 𝐵 (sinh (𝑠𝐿) + 𝑠 cosh (𝑠𝐿))

But 𝐵 = 0 leads to trivial solution, therefore the other option is that

sinh (𝑠𝐿) + 𝑠 cosh (𝑠𝐿) = 0
But the above is

tanh (𝑠𝐿) = −𝑠
Since it was assumed that 𝑠 > 0 then the RHS in the above is a negative quantity. However
the tanh function is positive for positive argument and negative for negative argument.
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The above implies then that 𝑠𝐿 < 0. Which is invalid since it was assumed 𝑠 > 0 and 𝐿
is the length of the bar. Hence 𝐵 = 0 is the only choice, and this leads to trivial solution.
𝜆 < 0 is not an eigenvalue.

case 𝜆 = 0

In this case, the ODE becomes

𝑑2𝜙
𝑑𝑥2

= 0

The solution is

𝜙 (𝑥) = 𝑐1𝑥 + 𝑐2
Applying left B.C. gives

0 = 𝜙 (0)
= 𝑐2

The solution becomes 𝜙 (𝑥) = 𝑐1𝑥. Applying the right B.C. gives

0 = 𝜙 (𝐿) +
𝑑𝜙
𝑑𝑥

(𝐿)

= 𝑐1𝐿 + 𝑐1
= 𝑐1 (1 + 𝐿)

Since 𝑐1 = 0 leads to trivial solution, then 1 + 𝐿 = 0 is the only other choice. But this
invalid since 𝐿 > 0 (length of the bar). Hence 𝑐1 = 0 and this leads to trivial solution.
𝜆 = 0 is not an eigenvalue.

case 𝜆 > 0

This implies that −𝜆 is negative, and therefore the roots are both complex.

𝑟 = ±𝑖√𝜆

This gives the solution

𝜙 (𝑥) = 𝐴𝑒𝑖√𝜆𝑥 + 𝐵𝑒−𝑖√𝜆𝑥

= 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

Applying first B.C. gives

𝜙 (0) = 0 = 𝐴 cos (0) + 𝐵 sin (0)
0 = 𝐴

The solution becomes 𝜙 (𝑥) = 𝐵 sin �√𝜆𝑥� and
𝑑𝜙
𝑑𝑥

= √𝜆𝐵 cos �√𝜆𝑥�

Applying the second B.C.

0 =
𝑑𝜙
𝑑𝑥

(𝐿) + 𝜙 (𝐿)

= √𝜆𝐵 cos �√𝜆𝐿� + 𝐵 sin �√𝜆𝐿� (1)

Dividing (1) by cos �√𝜆𝐿� ,which can not be zero, because if cos �√𝜆𝐿� = 0, then 𝐵 sin �√𝜆𝐿� =
0 from above, and this means the trivial solution, results in

𝐵 �√𝜆 + tan �√𝜆𝐿�� = 0

But 𝐵 ≠ 0, else the solution is trivial. Therefore

tan �√𝜆𝐿� = −√𝜆

The eigenvalue 𝜆 is given by the solution to the above nonlinear equation. The text book, in
section 5.4, page 196 gives the following approximate (asymptotic) solution which becomes
accurate only for large 𝑛 and not used here

�𝜆𝑛 ∼
𝜋
𝐿 �
𝑛 −

1
2�
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Therefore the eigenfunction is

𝜙𝜆 (𝑥) = 𝐵 sin �√𝜆𝑥�

Where 𝜆 is the solution to tan �√𝜆𝐿� = −√𝜆.

2.3.4 section 2.3.3 (problem 3)

2.3. Heat Equation With Zero Temperature Ends

EXERCISES 2.3

55

2.3.1. For the following partial differential equations, what ordinary differential
equations are implied by the method of separation of variables?

(a) au ka (r2u)

* at r ar &

a2u a2u
*

(C) 09x2 + ft2 = o

&U 04U

*(e) at = k
a 44

a2u 2 02U

ate ax

2.3.2. Consider the differential equation

z
2+A0=0.

Determine the eigenvalues \ (and corresponding eigenfunctions) if 0 satisfies
the following boundary conditions. Analyze three cases (.\ > 0, A = 0, A <
0). You may assume that the eigenvalues are real.

(a) 0(0) = 0 and 0(-,r) = 0
*(b) 0(0) = 0 and 5(1) = 0

(c) !LO (0) = 0 and LO (L) = 0 (If necessary, see Sec. 2.4.1.)

*(d) 0(0) = 0 and O (L) = 0

(e) LO (0) = 0 and O(L) = 0

*(f) O(a) = 0 and O(b) = 0 (You may assume that A > 0.)

(g) ¢(0) = 0 and LO
(L)

+ cb(L) = 0 (If necessary, see Sec. 5.8.)

2.3.3. Consider the heat equation

OU 82U

at - kax2
subject to the boundary conditions

u(0,t) = 0 and u(L,t) = 0.

Solve the initial value problem if the temperature is initially

(a) u(x, 0) = 6 sin s (b) u(x, 0) = 3 sin i - sin i

(b) -` = k
09x22

- v0 ax

(d)

* (f)
=c

* (c) u(x, 0) = 2 cos lmE (d) u(x, 0)
1 0 < x < L/2
2 L/2<x<L

2.3.4.1 Part (b)

𝜕𝑢
𝜕𝑡

= 𝑘
𝜕2𝑢
𝜕𝑥2

Let 𝑢 (𝑥, 𝑡) = 𝑇 (𝑡) 𝑋 (𝑥), and the PDE becomes
1
𝑘
𝑇′𝑋 = 𝑋′′𝑇

Dividing by 𝑋𝑇 ≠ 0
1
𝑘
𝑇′

𝑇
=
𝑋′′

𝑋
Since each side depends on di�erent independent variable and both are equal, they must
be both equal to same constant, say −𝜆 where 𝜆 is assumed to be real.

1
𝑘
𝑇′

𝑇
=
𝑋′′

𝑋
= −𝜆

The two ODE’s are

𝑇′ + 𝑘𝜆𝑇 = 0 (1)

𝑋′′ + 𝜆𝑋 = 0 (2)

Starting with the space ODE equation (2), with corresponding boundary conditions 𝑋 (0) =
0, 𝑋 (𝐿) = 0. Assuming the solution is 𝑋 (𝑥) = 𝑒𝑟𝑥, Then the characteristic equation is

𝑟2 + 𝜆 = 0
𝑟2 = −𝜆

𝑟 = ±√−𝜆

The following cases are considered.

case 𝜆 < 0 In this case, −𝜆 and also √−𝜆 are positive. Hence the roots ±√−𝜆 are both real.
Let

√−𝜆 = 𝑠

Where 𝑠 > 0. This gives the solution

𝑋 (𝑥) = 𝐴 cosh (𝑠𝑥) + 𝐵 sinh (𝑠𝑥)
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Applying the left B.C. 𝑋 (0) = 0 gives

0 = 𝐴 cosh (0) + 𝐵 sinh (0)
= 𝐴

The solution becomes 𝑋 (𝑥) = 𝐵 sinh (𝑠𝑥). Applying the right B.C. 𝑢 (𝐿, 𝑡) = 0 gives

0 = 𝐵 sinh (𝑠𝐿)
We want 𝐵 ≠ 0 (else trivial solution). This means sinh (𝑠𝐿) must be zero. But sinh (𝑠𝐿) is
zero only when its argument is zero. This means either 𝐿 = 0 which is not possible or 𝜆 = 0,
but we assumed 𝜆 ≠ 0 in this case, therefore we run out of options to satisfy this case.
Hence 𝜆 < 0 is not an eigenvalue.

case 𝜆 = 0

The ODE becomes
𝑑2𝑋
𝑑𝑥2

= 0

The solution is

𝑋 (𝑥) = 𝑐1𝑥 + 𝑐2
Applying left boundary conditions 𝑋 (0) = 0 gives

0 = 𝑋 (0)
= 𝑐2

Hence the solution becomes 𝑋 (𝑥) = 𝑐1𝑥. Applying the right B.C. gives

0 = 𝑋 (𝐿)
= 𝑐1𝐿

Hence 𝑐1 = 0. Hence trivial solution. 𝜆 = 0 is not an eigenvalue.

case 𝜆 > 0

Hence −𝜆 is negative, and the roots are both complex.

𝑟 = ±𝑖√𝜆

The solution is

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

The boundary conditions are now applied. The first B.C. 𝑋 (0) = 0 gives

0 = 𝐴 cos (0) + 𝐵 sin (0)
= 𝐴

The ODE becomes 𝑋 (𝑥) = 𝐵 sin �√𝜆𝑥�. Applying the second B.C. gives

0 = 𝐵 sin �√𝜆𝐿�

𝐵 ≠ 0 else the solution is trivial. Therefore taking

sin �√𝜆𝐿� = 0

�𝜆𝑛𝐿 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯

Hence eigenvalues are

𝜆𝑛 =
𝑛2𝜋2

𝐿2
𝑛 = 1, 2, 3,⋯

The eigenfunctions associated with these eigenvalues are

𝑋𝑛 (𝑥) = 𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥�

The time domain ODE is now solved. 𝑇′ + 𝑘𝜆𝑛𝑇 = 0 has the solution

𝑇𝑛 (𝑡) = 𝑒−𝑘𝜆𝑛𝑡

For the same set of eigenvalues. Notice that there is no need to add a new constant in the
above as it will be absorbed in the 𝐵𝑛 when combined in the following step below. The
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solution to the PDE becomes

𝑢𝑛 (𝑥, 𝑡) = 𝑇𝑛 (𝑡) 𝑋𝑛 (𝑥)

But for linear system the sum of eigenfunctions is also a solution, therefore

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑢𝑛 (𝑥, 𝑡)

=
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡

Initial conditions are now applied. Setting 𝑡 = 0, the above becomes

𝑢 (𝑥, 0) = 3 sin 𝜋𝑥
𝐿
− sin 3𝜋𝑥

𝐿
=

∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥�

As the series is unique, the terms coe�cients must match for those shown only, and all
other 𝐵𝑛 terms vanish. This means that by comparing terms

3 sin �𝜋𝑥
𝐿
� − sin �

3𝜋𝑥
𝐿 � = 𝐵1 sin �𝜋𝑥

𝐿
� + 𝐵3 sin �

3𝜋
𝐿
𝑥�

Therefore

𝐵1 = 3
𝐵3 = −1

And all other 𝐵𝑛 = 0. The solution is

𝑢 (𝑥, 𝑡) = 3 sin �𝜋
𝐿
𝑥� 𝑒−𝑘�

𝜋
𝐿 �

2
𝑡 − sin �

3𝜋
𝐿
𝑥� 𝑒

−𝑘� 3𝜋𝐿 �
2
𝑡

2.3.4.2 Part (d)

Part (b) found the solution to be

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡

The new initial conditions are now applied.

𝑓 (𝑥) =
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� (1)

Where

𝑓 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
1 0 < 𝑥 ≤ 𝐿/2
2 𝐿/2 < 𝑥 < 𝐿

Multiplying both sides of (1) by sin �𝑚𝜋𝐿 𝑥� and integrating over the domain gives

�
𝐿

0
sin �𝑚𝜋

𝐿
𝑥� 𝑓 (𝑥) 𝑑𝑥 = �

𝐿

0
�
∞
�
𝑛=1

𝐵𝑛 sin �𝑚𝜋
𝐿
𝑥� sin �𝑛𝜋

𝐿
𝑥�� 𝑑𝑥

Interchanging the order of integration and summation

�
𝐿

0
sin �𝑚𝜋

𝐿
𝑥� 𝑓 (𝑥) 𝑑𝑥 =

∞
�
𝑛=1

�𝐵𝑛 ��
𝐿

0
sin �𝑚𝜋

𝐿
𝑥� sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥��

But ∫
𝐿

0
sin �𝑚𝜋𝐿 𝑥� sin �𝑛𝜋𝐿 𝑥� 𝑑𝑥 = 0 for 𝑛 ≠ 𝑚, hence only one term survives

�
𝐿

0
sin �𝑚𝜋

𝐿
𝑥� 𝑓 (𝑥) 𝑑𝑥 = 𝐵𝑚�

𝐿

0
sin2 �𝑚𝜋

𝐿
𝑥� 𝑑𝑥
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Renaming 𝑚 back to 𝑛 and since ∫
𝐿

0
sin2 �𝑚𝜋𝐿 𝑥� 𝑑𝑥 =

𝐿
2 the above becomes

�
𝐿

0
sin �𝑛𝜋

𝐿
𝑥� 𝑓 (𝑥) 𝑑𝑥 =

𝐿
2
𝐵𝑛

𝐵𝑛 =
2
𝐿 �

𝐿

0
sin �𝑛𝜋

𝐿
𝑥� 𝑓 (𝑥) 𝑑𝑥

=
2
𝐿

⎛
⎜⎜⎜⎜⎝�

𝐿
2

0
sin �𝑛𝜋

𝐿
𝑥� 𝑓 (𝑥) 𝑑𝑥 +�

𝐿

𝐿
2

sin �𝑛𝜋
𝐿
𝑥� 𝑓 (𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎠

=
2
𝐿

⎛
⎜⎜⎜⎜⎝�

𝐿
2

0
sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 + 2�

𝐿

𝐿
2

sin �𝑛𝜋
𝐿
𝑥� 𝑑𝑥

⎞
⎟⎟⎟⎟⎠

=
2
𝐿

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− cos �𝑛𝜋𝐿 𝑥�
𝑛𝜋
𝐿

�

𝐿
2

0

+ 2
− cos �𝑛𝜋𝐿 𝑥�

𝑛𝜋
𝐿

�

𝐿

𝐿
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
2
𝑛𝜋

⎛
⎜⎜⎜⎜⎝�− cos �𝑛𝜋

𝐿
𝑥��

𝐿
2

0
+ 2 �− cos �𝑛𝜋

𝐿
𝑥��

𝐿

𝐿
2

⎞
⎟⎟⎟⎟⎠

=
2
𝑛𝜋 ��

− cos �
𝑛𝜋
𝐿
𝐿
2�
+ cos (0)� + 2 �− cos (𝑛𝜋) + cos �𝑛𝜋

2
���

=
2
𝑛𝜋

�− cos �𝑛𝜋
2
� + 1 − 2 cos (𝑛𝜋) + 2 cos �𝑛𝜋

2
��

=
2
𝑛𝜋

�cos �𝑛𝜋
2
� + 1 − 2 cos (𝑛𝜋)�

Hence the solution is

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡

With

𝐵𝑛 =
2
𝑛𝜋

�cos �𝑛𝜋
2
� − 2 cos (𝑛𝜋) + 1�

=
2
𝑛𝜋

�1 − 2 (−1)𝑛 + cos �𝑛𝜋
2
��

2.3.5 section 2.3.4 (problem 4)
56 Chapter 2. Method of Separation of Variables

[Your answer in part (c) may involve certain integrals that do not need to
be evaluated.]

2.3.4. Consider

k02,

subject to u(0, t) = 0, u(L, t) = 0, and u(x, 0) = f (x).

*(a) What is the total heat energy in the rod as a function of time?

(b) What is the flow of heat energy out of the rod at x = 0? at x = L?

*(c) What relationship should exist between parts (a) and (b)?

2.3.5. Evaluate (be careful if n = m)

L nzrx m7rxsin L sin L dx forn>0,m>0.

Use the trigonometric identity

*2.3.6. Evaluate

sin asin b = 2 [cos(a - b) - cos(a + b)] .

L n7rx m7rx
cog L cc

L
dx for n > O, m > 0.

Use the trigonometric identity

cos a cos b = 2 [cos(a + b) + cos(a - b)] .

(Be careful if a - b = 0 or a + b = 0.)

2.3.7. Consider the following boundary value problem (if necessary, see Sec. 2.4.1):

= k
82U

with au (0, t)=O, au (L, t) = 0, and u(x, 0) = f (x).at ax2 ax ax

(a) Give a one-sentence physical interpretation of this problem.

(b) Solve by the method of separation of variables. First show that there
are no separated solutions which exponentially grow in time. [Hint:
The answer is

u(x, t) = Ao + > cos nix .

n=1

What is An?

2.3.5.1 Part (a)

By definition the total heat energy is

𝐸 = �
𝑉
𝜌𝑐𝑢 (𝑥, 𝑡) 𝑑𝑣

Assuming constant cross section area 𝐴, the above becomes (assuming all thermal proper-
ties are constant)

𝐸 = �
𝐿

0
𝜌𝑐𝑢 (𝑥, 𝑡) 𝐴𝑑𝑥

But 𝑢 (𝑥, 𝑡) was found to be

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡
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For these boundary conditions from problem 2.3.3. Where 𝐵𝑛 was found from initial
conditions. Substituting the solution found into the energy equation gives

𝐸 = 𝜌𝑐𝐴�
𝐿

0
�
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡� 𝑑𝑥

= 𝜌𝑐𝐴
∞
�
𝑛=1

�𝐵𝑛𝑒
−𝑘� 𝑛𝜋𝐿 �

2
𝑡�

𝐿

0
sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥�

= 𝜌𝑐𝐴
∞
�
𝑛=1

𝐵𝑛𝑒
−𝑘� 𝑛𝜋𝐿 �

2
𝑡

⎛
⎜⎜⎜⎜⎜⎝
− cos �𝑛𝜋𝐿 𝑥�

𝑛𝜋
𝐿

⎞
⎟⎟⎟⎟⎟⎠

𝐿

0

= 𝜌𝑐𝐴
∞
�
𝑛=1

𝐵𝑛𝑒
−𝑘� 𝑛𝜋𝐿 �

2
𝑡 𝐿
𝑛𝜋

�− cos �𝑛𝜋
𝐿
𝐿� + cos (0)�

= 𝜌𝑐𝐴
∞
�
𝑛=1

𝐵𝑛𝑒
−𝑘� 𝑛𝜋𝐿 �

2
𝑡 𝐿
𝑛𝜋

(1 − cos (𝑛𝜋))

=
𝐿𝜌𝑐𝐴
𝜋

∞
�
𝑛=1

�
𝐵𝑛
𝑛
(1 − cos (𝑛𝜋)) 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡�

2.3.5.2 Part (b)

By definition, the flux is the amount of heat flow per unit time per unit area. Assuming
the area is 𝐴, then heat flow at 𝑥 = 0 into the rod per unit time (call it 𝐻 (𝑥)) is

𝐻|𝑥=0 = 𝐴 𝜙�
𝑥=0

= −𝐴𝑘
𝜕𝑢
𝜕𝑥
�
𝑥=0

Similarly, heat flow at 𝑥 = 𝐿 out of the rod per unit time is

𝐻|𝑥=𝐿 = 𝐴 𝜙�
𝑥=𝐿

= −𝐴𝑘
𝜕𝑢
𝜕𝑥
�
𝑥=𝐿

To obtain heat flow at 𝑥 = 0 leaving the rod, the sign is changed and it becomes 𝐴𝑘 𝜕𝑢
𝜕𝑥 �𝑥=0

.

Since 𝑢 (𝑥, 𝑡) = ∑∞
𝑛=1 𝐵𝑛 sin �𝑛𝜋𝐿 𝑥� 𝑒

−𝑘� 𝑛𝜋𝐿 �
2
𝑡 then

𝜕𝑢
𝜕𝑥

=
∞
�
𝑛=1

𝐵𝑛
𝑛𝜋
𝐿

cos �𝑛𝜋
𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡

Then at 𝑥 = 0 then heat flow leaving of the rod becomes

𝐴𝑘
𝜕𝑢
𝜕𝑥
�
𝑥=0

= 𝐴𝑘
∞
�
𝑛=1

𝑛𝜋
𝐿
𝐵𝑛𝑒

−𝑘� 𝑛𝜋𝐿 �
2
𝑡

And at 𝑥 = 𝐿, the heat flow out of the bar

−𝐴𝑘
𝜕𝑢
𝜕𝑥
�
𝑥=𝐿

= −𝐴𝑘
∞
�
𝑛=1

𝐵𝑛
𝑛𝜋
𝐿

cos �𝑛𝜋
𝐿
𝐿� 𝑒−𝜅�

𝑛𝜋
𝐿 �

2
𝑡

= −𝐴𝑘
∞
�
𝑛=1

𝐵𝑛
𝑛𝜋
𝐿

cos (𝑛𝜋) 𝑒−𝜅�
𝑛𝜋
𝐿 �

2
𝑡

= −𝐴𝑘
∞
�
𝑛=1

(−1)𝑛 𝐵𝑛
𝑛𝜋
𝐿
𝑒−𝜅�

𝑛𝜋
𝐿 �

2
𝑡

2.3.5.3 Part (c)

Total 𝐸 inside the bar at time 𝑡 is given by initial energy 𝐸𝑡=0 and time integral of flow of
heat energy into the bar. Since from part (a)

𝐸 = 𝐿
𝜌𝑐𝐴
𝜋

∞
�
𝑛=1

𝐵𝑛
𝑛
𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡 (1 − cos (𝑛𝜋))

Then initial energy is

𝐸𝑡=0 = 𝐿
𝜌𝑐𝐴
𝜋

∞
�
𝑛=1

𝐵𝑛
𝑛
(1 − cos (𝑛𝜋))
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And total heat flow into the rod (per unit time) is �−𝐴𝑘
𝜕𝑢
𝜕𝑥 �𝑥=0

+ 𝐴𝑘 𝜕𝑢
𝜕𝑥 �𝑥=𝐿

�, therefore

𝐿
𝜌𝑐𝐴
𝜋

∞
�
𝑛=1

𝐵𝑛
𝑛
𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡 (1 − cos (𝑛𝜋)) = �

𝑡

0
�−𝐴𝑘

𝜕𝑢
𝜕𝑥
�
𝑥=0

+ 𝐴𝑘
𝜕𝑢
𝜕𝑥
�
𝑥=𝐿
� 𝑑𝑥

= 𝐴𝑘�
𝑡

0
�
𝜕𝑢 (𝐿)
𝜕𝑥

−
𝜕𝑢 (0)
𝜕𝑥 � 𝑑𝑥

But
𝜕𝑢 (𝐿)
𝜕𝑥

−
𝜕𝑢 (0)
𝜕𝑥

=
𝜋
𝐿

∞
�
𝑛=1

𝑛𝐵𝑛 (−1)
𝑛 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡 −

𝜋
𝐿

∞
�
𝑛=1

𝑛𝐵𝑛𝑒
−𝑘� 𝑛𝜋𝐿 �

2
𝑡

=
𝜋
𝐿 �

∞
�
𝑛=1

𝑛𝐵𝑛 (−1)
𝑛 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡 −

∞
�
𝑛=1

𝑛𝐵𝑛𝑒
−𝑘� 𝑛𝜋𝐿 �

2
𝑡�

Hence
𝐿𝜌𝑐𝐴
𝜋

∞
�
𝑛=1

𝐵𝑛
𝑛

exp−𝑘�
𝑛𝜋
𝐿 �

2
𝑡 (1 − cos (𝑛𝜋)) = 𝐴𝑘𝜋

𝐿 �
𝑡

0
�
∞
�
𝑛=1

𝑛𝐵𝑛 (−1)
𝑛 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡 −

∞
�
𝑛=1

𝑛𝐵𝑛𝑒
−𝑘� 𝑛𝜋𝐿 �

2
𝑡� 𝑑𝑥

2.3.6 section 2.3.5 (problem 5)

56 Chapter 2. Method of Separation of Variables

[Your answer in part (c) may involve certain integrals that do not need to
be evaluated.]

2.3.4. Consider

k02,

subject to u(0, t) = 0, u(L, t) = 0, and u(x, 0) = f (x).

*(a) What is the total heat energy in the rod as a function of time?

(b) What is the flow of heat energy out of the rod at x = 0? at x = L?

*(c) What relationship should exist between parts (a) and (b)?

2.3.5. Evaluate (be careful if n = m)

L nzrx m7rxsin L sin L dx forn>0,m>0.

Use the trigonometric identity

*2.3.6. Evaluate

sin asin b = 2 [cos(a - b) - cos(a + b)] .

L n7rx m7rx
cog L cc

L
dx for n > O, m > 0.

Use the trigonometric identity

cos a cos b = 2 [cos(a + b) + cos(a - b)] .

(Be careful if a - b = 0 or a + b = 0.)

2.3.7. Consider the following boundary value problem (if necessary, see Sec. 2.4.1):

= k
82U

with au (0, t)=O, au (L, t) = 0, and u(x, 0) = f (x).at ax2 ax ax

(a) Give a one-sentence physical interpretation of this problem.

(b) Solve by the method of separation of variables. First show that there
are no separated solutions which exponentially grow in time. [Hint:
The answer is

u(x, t) = Ao + > cos nix .

n=1

What is An?

𝐼 = �
𝐿

0
sin �𝑛𝜋𝑥

𝐿
� sin �𝑚𝜋𝑥

𝐿
� 𝑑𝑥

Considering first the case 𝑚 = 𝑛. The integral becomes

𝐼 = �
𝐿

0
sin2 �𝑛𝜋𝑥

𝐿
� 𝑑𝑥 =

𝐿
2

For the case where 𝑛 ≠ 𝑚, using

sin 𝑎 sin 𝑏 = 1
2
(cos (𝑎 − 𝑏) − cos (𝑎 + 𝑏))

The integral 𝐼 becomes 2

𝐼 =
1
2 �

𝐿

0
cos �𝑛𝜋𝑥

𝐿
−
𝑚𝜋𝑥
𝐿

� − cos �𝑛𝜋𝑥
𝐿

+
𝑚𝜋𝑥
𝐿

� 𝑑𝑥

=
1
2 �

𝐿

0
cos �

𝜋𝑥 (𝑛 − 𝑚)
𝐿 � − cos �

𝜋𝑥 (𝑛 + 𝑚)
𝐿 � 𝑑𝑥

=
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin �𝜋𝑥(𝑛−𝑚)𝐿
�

𝜋(𝑛−𝑚)
𝐿

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐿

0

−
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin �𝜋𝑥(𝑛+𝑚)𝐿
�

𝜋(𝑛+𝑚)
𝐿

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐿

0

=
𝐿

2𝜋 (𝑛 − 𝑚) �
sin �

𝜋𝑥 (𝑛 − 𝑚)
𝐿 ��

𝐿

0
−

𝐿
2𝜋 (𝑛 + 𝑚) �

sin �
𝜋𝑥 (𝑛 + 𝑚)

𝐿 ��
𝐿

0
(1)

But

�sin �
𝜋𝑥 (𝑛 − 𝑚)

𝐿 ��
𝐿

0
= sin (𝜋 (𝑛 − 𝑚)) − sin (0)

2Note that the term (𝑛 − 𝑚) showing in the denominator is not a problem now, since this is the case where
𝑛 ≠ 𝑚.
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And since 𝑛 − 𝑚 is integer, then sin (𝜋 (𝑛 − 𝑚)) = 0, therefore �sin �𝜋𝑥(𝑛−𝑚)𝐿
��
𝐿

0
= 0. Similarly

�sin �
𝜋𝑥 (𝑛 + 𝑚)

𝐿 ��
𝐿

0
= sin (𝜋 (𝑛 + 𝑚)) − sin (0)

Since 𝑛 + 𝑚 is integer then sin (𝜋 (𝑛 + 𝑚)) = 0 and �sin �𝜋𝑥(𝑛+𝑚)𝐿
��
𝐿

0
= 0. Therefore

�
𝐿

0
sin �𝑛𝜋𝑥

𝐿
� sin �𝑚𝜋𝑥

𝐿
� 𝑑𝑥 =

⎧⎪⎪⎨
⎪⎪⎩

𝐿
2 𝑛 = 𝑚
0 otherwise

2.3.7 section 2.3.7 (problem 6)

56 Chapter 2. Method of Separation of Variables

[Your answer in part (c) may involve certain integrals that do not need to
be evaluated.]

2.3.4. Consider

k02,

subject to u(0, t) = 0, u(L, t) = 0, and u(x, 0) = f (x).

*(a) What is the total heat energy in the rod as a function of time?

(b) What is the flow of heat energy out of the rod at x = 0? at x = L?

*(c) What relationship should exist between parts (a) and (b)?

2.3.5. Evaluate (be careful if n = m)

L nzrx m7rxsin L sin L dx forn>0,m>0.

Use the trigonometric identity

*2.3.6. Evaluate

sin asin b = 2 [cos(a - b) - cos(a + b)] .

L n7rx m7rx
cog L cc

L
dx for n > O, m > 0.

Use the trigonometric identity

cos a cos b = 2 [cos(a + b) + cos(a - b)] .

(Be careful if a - b = 0 or a + b = 0.)

2.3.7. Consider the following boundary value problem (if necessary, see Sec. 2.4.1):

= k
82U

with au (0, t)=O, au (L, t) = 0, and u(x, 0) = f (x).at ax2 ax ax

(a) Give a one-sentence physical interpretation of this problem.

(b) Solve by the method of separation of variables. First show that there
are no separated solutions which exponentially grow in time. [Hint:
The answer is

u(x, t) = Ao + > cos nix .

n=1

What is An?

2.3.7.1 part (a)

This PDE describes how temperature 𝑢 changes in a rod of length 𝐿 as a function of
time 𝑡 and location 𝑥. The left and right end are insulated, so no heat escapes from these
boundaries. Initially at 𝑡 = 0, the temperature distribution in the rod is described by the
function 𝑓 (𝑥).

2.3.7.2 Part (b)

𝜕𝑢
𝜕𝑡

= 𝑘
𝜕2𝑢
𝜕𝑥2

Let 𝑢 (𝑥, 𝑡) = 𝑇 (𝑡) 𝑋 (𝑥), then the PDE becomes
1
𝑘
𝑇′𝑋 = 𝑋′′𝑇

Dividing by 𝑋𝑇 ≠ 0
1
𝑘
𝑇′

𝑇
=
𝑋′′

𝑋
Since each side depends on di�erent independent variable and both are equal, they must
be both equal to same constant, say −𝜆. Where 𝜆 is assumed real.

1
𝑘
𝑇′

𝑇
=
𝑋′′

𝑋
= −𝜆

The two ODE’s generated are

𝑇′ + 𝑘𝜆𝑇 = 0 (1)

𝑋′′ + 𝜆𝑋 = 0 (2)
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Starting with the space ODE equation (2), with corresponding boundary conditions 𝑑𝑋𝑑𝑥 (0) =

0, 𝑑𝑋𝑑𝑥 (𝐿) = 0. Assuming the solution is 𝑋 (𝑥) = 𝑒𝑟𝑥, Then the characteristic equation is

𝑟2 + 𝜆 = 0
𝑟2 = −𝜆

𝑟 = ±√−𝜆

The following cases are considered.

case 𝜆 < 0 In this case, −𝜆 and also √−𝜆 are positive. Hence the roots ±√−𝜆 are both real.
Let

√−𝜆 = 𝑠

Where 𝑠 > 0. This gives the solution

𝑋 (𝑥) = 𝐴 cosh (𝑠𝑥) + 𝐵 sinh (𝑠𝑥)
𝑑𝑋
𝑑𝑥

= 𝐴 sinh (𝑠𝑥) + 𝐵 cosh (𝑠𝑥)

Applying the left B.C. gives

0 =
𝑑𝑋
𝑑𝑥

(0)

= 𝐵 cosh (0)
= 𝐵

The solution becomes 𝑋 (𝑥) = 𝐴 cosh (𝑠𝑥) and hence𝑑𝑋𝑑𝑥 = 𝐴 sinh (𝑠𝑥). Applying the right B.C.
gives

0 =
𝑑𝑋
𝑑𝑥

(𝐿)

= 𝐴 sinh (𝑠𝐿)
𝐴 = 0 result in trivial solution. Therefore assuming sinh (𝑠𝐿) = 0 implies 𝑠𝐿 = 0 which
is not valid since 𝑠 > 0 and 𝐿 ≠ 0. Hence only trivial solution results from this case.
𝜆 < 0 is not an eigenvalue.

case 𝜆 = 0

The ODE becomes
𝑑2𝑋
𝑑𝑥2

= 0

The solution is

𝑋 (𝑥) = 𝑐1𝑥 + 𝑐2
𝑑𝑋
𝑑𝑥

= 𝑐1

Applying left boundary conditions gives

0 =
𝑑𝑋
𝑑𝑥

(0)

= 𝑐1

Hence the solution becomes 𝑋 (𝑥) = 𝑐2. Therefore
𝑑𝑋
𝑑𝑥 = 0. Applying the right B.C. provides

no information.

Therefore this case leads to the solution 𝑋 (𝑥) = 𝑐2. Associated with this one eigenvalue,
the time equation becomes 𝑑𝑇0

𝑑𝑡 = 0 hence 𝑇0 is constant, say 𝛼. Hence the solution 𝑢0 (𝑥, 𝑡)
associated with this 𝜆 = 0 is

𝑢0 (𝑥, 𝑡) = 𝑋0𝑇0
= 𝑐2𝛼
= 𝐴0

where constant 𝑐2𝛼was renamed to𝐴0 to indicate it is associated with 𝜆 = 0. 𝜆 = 0 is an eigenvalue.

case 𝜆 > 0
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Hence −𝜆 is negative, and the roots are both complex.

𝑟 = ±𝑖√𝜆

The solution is

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

𝑑𝑋
𝑑𝑥

= −𝐴√𝜆 sin �√𝜆𝑥� + 𝐵√𝜆 cos �√𝜆𝑥�

Applying the left B.C. gives

0 =
𝑑𝑋
𝑑𝑥

(0)

= 𝐵√𝜆 cos (0)

= 𝐵√𝜆

Therefore 𝐵 = 0 as 𝜆 > 0. The solution becomes𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� and 𝑑𝑋
𝑑𝑥 = −𝐴√𝜆 sin �√𝜆𝑥�.

Applying the right B.C. gives

0 =
𝑑𝑋
𝑑𝑥

(𝐿)

= −𝐴√𝜆 sin �√𝜆𝐿�

𝐴 = 0 gives a trivial solution. Selecting sin �√𝜆𝐿� = 0 gives

√𝜆𝐿 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯

Or

𝜆𝑛 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

Therefore the space solution is

𝑋𝑛 (𝑥) = 𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� 𝑛 = 1, 2, 3,⋯

The time solution is found by solving
𝑑𝑇𝑛
𝑑𝑡

+ 𝑘𝜆𝑛𝑇𝑛 = 0

This has the solution

𝑇𝑛 (𝑡) = 𝑒−𝑘𝜆𝑛𝑡

= 𝑒−𝑘�
𝑛𝜋
𝐿 �

2
𝑡 𝑛 = 1, 2, 3,⋯

For the same set of eigenvalues. Notice that no need to add a constant here, since it
will be absorbed in the 𝐴𝑛 when combined in the following step below. Since for 𝜆 = 0

the time solution was found to be constant, and for 𝜆 > 0 the time solution is 𝑒−𝑘�
𝑛𝜋
𝐿 �

2
𝑡,

then no time solution will grow with time. Time solutions always decay with time as the

exponent −𝑘 �𝑛𝜋𝐿 �
2
𝑡 is negative quantity. The solution to the PDE for 𝜆 > 0 is

𝑢𝑛 (𝑥, 𝑡) = 𝑇𝑛 (𝑡) 𝑋𝑛 (𝑥) 𝑛 = 0, 1, 2, 3,⋯

But for linear system sum of eigenfunctions is also a solution. Hence

𝑢 (𝑥, 𝑡) = 𝑢𝜆=0 (𝑥, 𝑡) +
∞
�
𝑛=1

𝑢𝑛 (𝑥, 𝑡)

= 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡

2.3.7.3 Part c

From the solution found above, setting 𝑡 = 0 gives

𝑢 (𝑥, 0) = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥�
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Therefore, 𝑓 (𝑥) must satisfy the above

𝑓 (𝑥) = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥�

2.3.7.4 Part d

Multiplying both sides with cos �𝑚𝜋𝐿 𝑥� where in this problem 𝑚 = 0, 1, 2,⋯ (since there was
an eigenvalue associated with 𝜆 = 0), and integrating over the domain gives

�
𝐿

0
𝑓 (𝑥) cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0
cos �𝑚𝜋

𝐿
𝑥� �𝐴0 +

∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥�� 𝑑𝑥

= �
𝐿

0
𝐴0 cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +� cos �𝑚𝜋

𝐿
𝑥�

∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� 𝑑𝑥

= �
𝐿

0
𝐴0 cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +�

𝐿

0

∞
�
𝑛=1

𝐴𝑛 cos �𝑚𝜋
𝐿
𝑥� cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

Interchanging the order of summation and integration

�
𝐿

0
𝑓 (𝑥) cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0
𝐴0 cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +

∞
�
𝑛=1

𝐴𝑛�
𝐿

0
cos �𝑚𝜋

𝐿
𝑥� cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 (1)

case 𝑚 = 0

When 𝑚 = 0 then cos �𝑚𝜋𝐿 𝑥� = 1 and the above simplifies to

�
𝐿

0
𝑓 (𝑥) 𝑑𝑥 = �

𝐿

0
𝐴0𝑑𝑥 +

∞
�
𝑛=1

𝐴𝑛�
𝐿

0
cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

But ∫
𝐿

0
cos �𝑛𝜋𝐿 𝑥� 𝑑𝑥 = 0 and the above becomes

�
𝐿

0
𝑓 (𝑥) 𝑑𝑥 = �

𝐿

0
𝐴0𝑑𝑥

= 𝐴0𝐿

Therefore

𝐴0 =
1
𝐿
∫𝐿
0
𝑓 (𝑥) 𝑑𝑥

case 𝑚 > 0

From (1), one term survives in the integration when only 𝑛 = 𝑚, hence

�
𝐿

0
𝑓 (𝑥) cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = 𝐴0�

𝐿

0
cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 + 𝐴𝑚�

𝐿

0
cos2 �𝑚𝜋

𝐿
𝑥� 𝑑𝑥

But ∫
𝐿

0
cos �𝑚𝜋𝐿 𝑥� 𝑑𝑥 = 0 and the above becomes

�
𝐿

0
𝑓 (𝑥) cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = 𝐴𝑚

𝐿
2

Therefore

𝐴𝑛 =
2
𝐿
∫𝐿
0
𝑓 (𝑥) cos �𝑛𝜋𝐿 𝑥� 𝑑𝑥

For 𝑛 = 1, 2, 3,⋯

2.3.7.5 Part (e)

The solution was found to be

𝑢 (𝑥, 𝑡) = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡

In the limit as 𝑡 → ∞ the term 𝑒−𝑘�
𝑛𝜋
𝐿 �

2
𝑡 → 0. What is left is 𝐴0. But 𝐴0 =

1
𝐿
∫𝐿
0
𝑓 (𝑥) 𝑑𝑥 from

above. This quantity is the average of the initial temperature.
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2.3.8 section 2.3.8 (problem 7)

2.3. Heat Equation With Zero Temperature Ends 57

(c) Show that the initial condition, u(x, 0) = f (x), is satisfied if

f (x) = Ao + E A. cos00

n=1

(d) Using Exercise 2.3.6, solve for AO and An(n > 1).
(e) What happens to the temperature distribution as t -+ oo? Show that

it approaches the steady-state temperature distribution (see Sec. 1.4).

*2.3.8. Consider
8u 02u& = kax2 - au.

This corresponds to a one-dimensional rod either with heat loss through the
lateral sides with outside temperature 0° (a > 0, see Exercise 1.2.4) or with
insulated lateral sides with a heat sink proportional to the temperature.
Suppose that the boundary conditions are

u(0,t) = 0 and u(L,t) = 0.

(a) What are the possible equilibrium temperature distributions if a > 0?
(b) Solve the time-dependent problem [u(x, 0) = f (x)] if a > 0. Analyze

the temperature for large time (t --+ oo) and compare to part (a).

*2.3.9. Redo Exercise 2.3.8 if a < 0. [Be especially careful if -a/k = (n7r/L)2.]

2.3.10. For two- and three-dimensional vectors, the fundamental property of dot
products, A B = IAI[BI cos9, implies that

IA - BI < IAIIBI. (2.3.44)

In this exercise we generalize this to n-dimensional vectors and functions,
in which case (2.3.44) is known as Schwarz's inequality. [The names of
Cauchy and Buniakovsky are also associated with (2.3.44).]

(a) Show that IA - -yBi2 > 0 implies (2.3.44), where ry = A B/B B.
(b) Express the inequality using both

00 00 b

n.
n=1 n=1 Cn

*(c) Generalize (2.3.44) to functions. [Hint: Let A A. B mean the integral
J L A(x)B(x) dx.]

2.3.11. Solve Laplace's equation inside a rectangle:

2
=

02u 02u
V U

axe
+ 8y2 = 0

subject to the boundary conditions

u(0,y) = g(y) u(x,0) = 0
u(L, y) = 0 u(x, H) = 0.

(Hint: If necessary, see Sec. 2.5.1.)

2.3.8.1 part (a)

Equilibrium is at steady state, which implies 𝜕𝑢
𝜕𝑡 = 0 and the PDE becomes an ODE, since

𝑢 ≡ 𝑢 (𝑥) at steady state. Hence

𝑑2𝑢
𝑑𝑥2

−
𝛼
𝑘
𝑢 = 0

The characteristic equation is 𝑟2 = 𝛼
𝑘 or 𝑟 = ±�

𝛼
𝑘 . Since 𝛼 > 0 and 𝑘 > 0 then the roots are

real, and the solution is

𝑢 = 𝐴0𝑒�
𝛼
𝑘 𝑥 + 𝐵0𝑒

−�
𝛼
𝑘 𝑥

This can be rewritten as

𝑢 (𝑥) = 𝐴 cosh �
�
𝛼
𝑘
𝑥� + 𝐵 sinh �

�
𝛼
𝑘
𝑥�

Applying left B.C. gives

0 = 𝑢 (0)
= 𝐴 cosh (0)
= 𝐴

The solution becomes 𝑢 (𝑥) = 𝐵 sinh ��
𝛼
𝑘 𝑥�. Applying the right boundary condition gives

0 = 𝑢 (𝐿)

= 𝐵 sinh �
�
𝛼
𝑘
𝐿�

𝐵 = 0 leads to trivial solution. Setting sinh ��
𝛼
𝑘𝐿� = 0 implies �

𝛼
𝑘𝐿 = 0. But this is not

possible since 𝐿 ≠ 0. Hence the only solution possible is

𝑢 (𝑥) = 0

2.3.8.2 Part (b)

𝜕𝑢
𝜕𝑡

= 𝑘
𝜕2𝑢
𝜕𝑥2

− 𝛼𝑢

𝜕𝑢
𝜕𝑡

+ 𝛼𝑢 = 𝑘
𝜕2𝑢
𝜕𝑥2

Assuming 𝑢 (𝑥, 𝑡) = 𝑋 (𝑥) 𝑇 (𝑡) and substituting in the above gives

𝑋𝑇′ + 𝛼𝑋𝑇 = 𝑘𝑇𝑋′′

Dividing by 𝑘𝑋𝑇 ≠ 0
𝑇′

𝑘𝑇
+
𝛼
𝑘
=
𝑋′′

𝑋
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Since each side depends on di�erent independent variable and both are equal, they must
be both equal to same constant, say −𝜆. Where 𝜆 is assumed real.

1
𝑘
𝑇′

𝑇
+
𝛼
𝑘
=
𝑋′′

𝑋
= −𝜆

The two ODE’s are
1
𝑘
𝑇′

𝑇
+
𝛼
𝑘
= −𝜆

𝑋′′

𝑋
= −𝜆

Or

𝑇′ + (𝛼 + 𝜆𝑘) 𝑇 = 0
𝑋′′ + 𝜆𝑋 = 0

The solution to the space ODE is the familiar (where 𝜆 > 0 is only possible case, As found
in problem 2.3.3, part d. Since it has the same B.C.)

𝑋𝑛 = 𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑛 = 1, 2, 3,⋯

Where 𝜆𝑛 = �
𝑛𝜋
𝐿
�
2
. The time ODE is now solved.

𝑑𝑇𝑛
𝑑𝑡

+ (𝛼 + 𝜆𝑛𝑘) 𝑇𝑛 = 0

This has the solution

𝑇𝑛 (𝑡) = 𝑒−(𝛼+𝜆𝑛𝑘)𝑡

= 𝑒−𝛼𝑡𝑒−�
𝑛𝜋
𝐿 �

2
𝑘𝑡

For the same eigenvalues. Notice that no need to add a constant here, since it will be
absorbed in the 𝐵𝑛 when combined in the following step below. Therefore the solution to
the PDE is

𝑢𝑛 (𝑥, 𝑡) = 𝑇𝑛 (𝑡) 𝑋𝑛 (𝑥)

But for linear system sum of eigenfunctions is also a solution. Hence

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑢𝑛 (𝑥, 𝑡)

=
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑒−𝛼𝑡𝑒−�

𝑛𝜋
𝐿 �

2
𝑘𝑡

= 𝑒−𝛼𝑡
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑒−�

𝑛𝜋
𝐿 �

2
𝑘𝑡

Where 𝑒−𝛼𝑡 was moved outside since it does not depend on 𝑛. From initial condition

𝑢 (𝑥, 0) = 𝑓 (𝑥) =
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥�

Applying orthogonality of sin as before to find 𝐵𝑛 results in

𝐵𝑛 =
2
𝐿 �

𝐿

0
sin �𝑛𝜋

𝐿
𝑥� 𝑓 (𝑥) 𝑑𝑥

Hence the solution becomes

𝑢 (𝑥, 𝑡) =
2
𝐿
𝑒−𝛼𝑡 �

∞
�
𝑛=1

��
𝐿

0
sin �𝑛𝜋

𝐿
𝑥� 𝑓 (𝑥) 𝑑𝑥� sin �𝑛𝜋

𝐿
𝑥� 𝑒−�

𝑛𝜋
𝐿 �

2
𝑘𝑡�

Hence it is clear that in the limit as 𝑡 becomes large 𝑢 (𝑥, 𝑡) → 0 since the sum is multiplied
by 𝑒−𝛼𝑡 and 𝛼 > 0

lim
𝑡→∞

𝑢 (𝑥, 𝑡) = 0

This agrees with part (a)
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2.3.9 section 2.3.10 (problem 8)

2.3. Heat Equation With Zero Temperature Ends 57

(c) Show that the initial condition, u(x, 0) = f (x), is satisfied if

f (x) = Ao + E A. cos00

n=1

(d) Using Exercise 2.3.6, solve for AO and An(n > 1).
(e) What happens to the temperature distribution as t -+ oo? Show that

it approaches the steady-state temperature distribution (see Sec. 1.4).

*2.3.8. Consider
8u 02u& = kax2 - au.

This corresponds to a one-dimensional rod either with heat loss through the
lateral sides with outside temperature 0° (a > 0, see Exercise 1.2.4) or with
insulated lateral sides with a heat sink proportional to the temperature.
Suppose that the boundary conditions are

u(0,t) = 0 and u(L,t) = 0.

(a) What are the possible equilibrium temperature distributions if a > 0?
(b) Solve the time-dependent problem [u(x, 0) = f (x)] if a > 0. Analyze

the temperature for large time (t --+ oo) and compare to part (a).

*2.3.9. Redo Exercise 2.3.8 if a < 0. [Be especially careful if -a/k = (n7r/L)2.]

2.3.10. For two- and three-dimensional vectors, the fundamental property of dot
products, A B = IAI[BI cos9, implies that

IA - BI < IAIIBI. (2.3.44)

In this exercise we generalize this to n-dimensional vectors and functions,
in which case (2.3.44) is known as Schwarz's inequality. [The names of
Cauchy and Buniakovsky are also associated with (2.3.44).]

(a) Show that IA - -yBi2 > 0 implies (2.3.44), where ry = A B/B B.
(b) Express the inequality using both

00 00 b

n.
n=1 n=1 Cn

*(c) Generalize (2.3.44) to functions. [Hint: Let A A. B mean the integral
J L A(x)B(x) dx.]

2.3.11. Solve Laplace's equation inside a rectangle:

2
=

02u 02u
V U

axe
+ 8y2 = 0

subject to the boundary conditions

u(0,y) = g(y) u(x,0) = 0
u(L, y) = 0 u(x, H) = 0.

(Hint: If necessary, see Sec. 2.5.1.)

�𝐴̄ − 𝛾𝐵̄�2 = �𝐴̄ − 𝛾𝐵̄� ⋅ �𝐴̄ − 𝛾𝐵̄�

Since �𝐴̄ − 𝛾𝐵̄�2 ≥ 0 then

�𝐴̄ − 𝛾𝐵̄� ⋅ �𝐴̄ − 𝛾𝐵̄� ≥ 0

Expanding

�𝐴̄ ⋅ 𝐴̄� − 𝛾 �𝐴̄ ⋅ 𝐵̄� − 𝛾 �𝐵̄ ⋅ 𝐴̄� + 𝛾2 �𝐵̄ ⋅ 𝐵̄� ≥ 0

But 𝐴̄ ⋅ 𝐵̄ = 𝐵̄ ⋅ 𝐴̄, hence
�𝐴̄ ⋅ 𝐴̄� − 2𝛾 �𝐴̄ ⋅ 𝐵̄� + 𝛾2 �𝐵̄ ⋅ 𝐵̄� ≥ 0

Using the definition of 𝛾 = 𝐴̄⋅𝐵̄
𝐵̄⋅𝐵̄ into the above gives

�𝐴̄ ⋅ 𝐴̄� − 2
𝐴̄ ⋅ 𝐵̄
𝐵̄ ⋅ 𝐵̄

�𝐴̄ ⋅ 𝐵̄� +
�𝐴̄ ⋅ 𝐵̄�

2

�𝐵̄ ⋅ 𝐵̄�
2 �𝐵̄ ⋅ 𝐵̄� ≥ 0

�𝐴̄ ⋅ 𝐴̄� − 2
�𝐴̄ ⋅ 𝐵̄�

2

𝐵̄ ⋅ 𝐵̄
+
�𝐴̄ ⋅ 𝐵̄�

2

𝐵̄ ⋅ 𝐵̄
≥ 0

�𝐴̄ ⋅ 𝐴̄� −
�𝐴̄ ⋅ 𝐵̄�

2

𝐵̄ ⋅ 𝐵̄
≥ 0

�𝐴̄ ⋅ 𝐴̄� �𝐵̄ ⋅ 𝐵̄� − �𝐴̄ ⋅ 𝐵̄�
2
≥ 0

�𝐴̄ ⋅ 𝐴̄� �𝐵̄ ⋅ 𝐵̄� ≥ �𝐴̄ ⋅ 𝐵̄�
2

But �𝐴̄ ⋅ 𝐵̄�
2
= �𝐴̄ ⋅ 𝐵�2 since 𝐴̄ ⋅ 𝐵̄ is just a number. The above becomes

�𝐴̄ ⋅ 𝐴̄� �𝐵̄ ⋅ 𝐵̄� ≥ �𝐴̄ ⋅ 𝐵�2

And 𝐴̄ ⋅ 𝐴̄ = �𝐴̄�2 and �𝐵̄ ⋅ 𝐵̄� = �𝐵̄�2 by definition as well. Therefore the above becomes

�𝐴̄ ⋅ 𝐵�2 ≤ �𝐴̄�2 �𝐵̄�2

Taking square root gives

�𝐴̄ ⋅ 𝐵� ≤ �𝐴̄� �𝐵̄�

Which is Schwarz’s inequality.

2.3.9.1 Part b

From the norm definition

�𝐴̄� = ��𝑥2 + 𝑦2 + 𝑧2

Then

�𝐴̄ ⋅ 𝐴̄� = �𝐴̄�2 =�𝑥2 + 𝑦2 + 𝑧2
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Hence

�𝐴̄�2 =
∞
�
𝑛=1

𝑎2𝑛

�𝐵̄�2 =
∞
�
𝑛=1

𝑏2𝑛

And

𝐴̄ ⋅ 𝐵̄ =
∞
�
𝑛=1

𝑎𝑛𝑏𝑛

Therefore the inequality can be written as

�𝐴̄ ⋅ 𝐵̄�
2
≤ �𝐴̄�2 �𝐵̄�2

�
∞
�
𝑛=1

𝑎𝑛𝑏𝑛�
2

≤ �
∞
�
𝑛=1

𝑎2𝑛� �
∞
�
𝑛=1

𝑏2𝑛�

2.3.9.2 Part c

Using 𝐴̄ ⋅ 𝐵̄ for functions to mean ∫
𝐿

0
𝐴 (𝑥) 𝐵 (𝑥) 𝑑𝑥 then inequality for functions becomes

��
𝐿

0
𝐴 (𝑥) 𝐵 (𝑥) 𝑑𝑥�

2

≤ ��
𝐿

0
𝐴2 (𝑥) 𝑑𝑥� ��

𝐿

0
𝐵2 (𝑥) 𝑑𝑥�

2.3.10 section 2.4.1 (problem 9)

2.4. Worked Examples with the Heat Equation

Table 2.4.1: Boundary Value Problems
ford2o

e
= -a0

69

(0) = 0 m(-L) _ (L)
Boundary 46(0) = 0
conditions 46(L) = 0

(L) = 0 dx (-L) = dx (L)

Eigenvalues
nn) a )( (nvr) 2

An
( L

n = 1, 2, 3,...

T
L

n = 0, 1, 2, 3,...
L

n = 0, 1, 2, 3,...

Eigenfunctions
n7rx

sin L nax
cos L

nax
sin

L
and cos L

00
x1(x) E°n cos n

Series
00

f ( x ) _ E Bn sin
nrx f(x) A. cos

Ln=0

n=1 L n=0 L 00 n x
6 in s n+E

n=1

1 L
a0 = 2L /-L'(.) ds

1 L !(:) dxA0 = L I
Coefficients

/r`L

Bn = f(z).in n-
dx

2

/
O

1an - IL f(.)- nrs
dzL 0 L

Z nxsL
An J /(z) toy dz

L L I.

L O L
En - 1 /L !(s)sfn nva ds

1L L L

EXERCISES 2.4

*2.4.1. Solve the heat equation 8u/8t = k82u/8x2, 0 < x < L, t > 0, subject to

8x(O,t)0 t>0

(L, t)0 t>0.

(a) u(x,0) =
0 x < L/2
1 x>L/2

(c) u(x, 0) = -2 sin L

(b)
u(x,0)=6+4cos31rx

(d) u(x, 0) = -3 cos jLx

The same boundary conditions was encountered in problem 2.3.7, therefore the solution
used here starts from the same general solution already found, which is

𝜆0 = 0

𝜆𝑛 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

𝑢 (𝑥, 𝑡) = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡

2.3.10.1 Part (b)

𝑢 (𝑥, 0) = 6 + 4 cos 3𝜋𝑥
𝐿

Comparing terms with the general solution at 𝑡 = 0 which is

𝑢 (𝑥, 0) = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥�
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results in

𝐴0 = 6
𝐴3 = 4

And all other 𝐴𝑛 = 0. Hence the solution is

𝑢 (𝑥, 𝑡) = 6 + 4 cos �
3𝜋
𝐿
𝑥� 𝑒

−𝑘� 3𝜋𝐿 �
2
𝑡

2.3.10.2 Part (c)

𝑢 (𝑥, 0) = −2 sin 𝜋𝑥
𝐿

Hence

−2 sin 𝜋𝑥
𝐿
= 𝐴0 +

∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� (1)

Multiplying both sides of (1) by cos �𝑚𝜋𝐿 𝑥� and integrating gives

�
𝐿

0
−2 sin �𝜋𝑥

𝐿
� cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0
�𝐴0 cos �𝑚𝜋

𝐿
𝑥� + cos �𝑚𝜋

𝐿
𝑥�

∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥�� 𝑑𝑥

= �
𝐿

0
𝐴0 cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +�

𝐿

0

∞
�
𝑛=1

𝐴𝑛 cos �𝑚𝜋
𝐿
𝑥� cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

Interchanging the order of integration and summation

�
𝐿

0
−2 sin �𝜋𝑥

𝐿
� cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0
𝐴0 cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +

∞
�
𝑛=1

𝐴𝑛�
𝐿

0
cos �𝑚𝜋

𝐿
𝑥� cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

Case 𝑚 = 0

The above becomes

�
𝐿

0
−2 sin �𝜋𝑥

𝐿
� 𝑑𝑥 = �

𝐿

0
𝐴0𝑑𝑥 +

∞
�
𝑛=1

𝐴𝑛�
𝐿

0
cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

But ∫
𝐿

0
cos �𝑛𝜋𝐿 𝑥� 𝑑𝑥 = 0 hence

�
𝐿

0
−2 sin �𝜋𝑥

𝐿
� 𝑑𝑥 = �

𝐿

0
𝐴0𝑑𝑥

𝐴0𝐿 = −2�
𝐿

0
sin �𝜋𝑥

𝐿
� 𝑑𝑥

𝐴0𝐿 = −2

⎛
⎜⎜⎜⎜⎜⎝−

cos �𝜋𝑥𝐿 �
𝜋
𝐿

⎞
⎟⎟⎟⎟⎟⎠

𝐿

0

= −
2𝐿
𝜋 �− cos �

𝜋𝐿
𝐿 �

+ cos �
𝜋0
𝐿 ��

= −
2𝐿
𝜋
(− (−1) + 1)

= −
4𝐿
𝜋

Hence

𝐴0 =
−4
𝜋

Case 𝑚 > 0

�
𝐿

0
−2 sin �𝜋𝑥

𝐿
� cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0
𝐴0 cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +

∞
�
𝑛=1

𝐴𝑛�
𝐿

0
cos �𝑚𝜋

𝐿
𝑥� cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

One term survives the summation resulting in

�
𝐿

0
−2 sin �𝜋𝑥

𝐿
� cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 =

−4
𝜋 �

𝐿

0
cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 + 𝐴𝑚�

𝐿

0
cos2 �𝑚𝜋

𝐿
𝑥� 𝑑𝑥
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But ∫
𝐿

0
cos �𝑚𝜋𝐿 𝑥� 𝑑𝑥 = 0 and ∫

𝐿

0
cos2 �𝑚𝜋𝐿 𝑥� 𝑑𝑥 =

𝐿
2 , therefore

�
𝐿

0
−2 sin �𝜋𝑥

𝐿
� cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = 𝐴𝑚

𝐿
2

𝐴𝑛 =
−4
𝐿 �

𝐿

0
sin �𝜋𝑥

𝐿
� cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

But

�
𝐿

0
sin �𝜋𝑥

𝐿
� cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 =

−𝐿 (1 + cos (𝑛𝜋))
𝜋 �𝑛2 − 1�

Therefore

𝐴𝑛 = 4
(1 + cos (𝑛𝜋))
𝜋 �𝑛2 − 1�

= 4
(−1)𝑛 + 1
𝜋 �𝑛2 − 1�

𝑛 = 1, 2, 3,⋯

Hence the solution becomes

𝑢 (𝑥, 𝑡) =
−4
𝜋
+
4
𝜋

∞
�
𝑛=1

(−1)𝑛 + 1
�𝑛2 − 1�

cos �𝑛𝜋
𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡

2.3.11 section 2.4.2 (problem 10)

70 Chapter 2. Method of Separation of Variables

*2.4.2. Solve
z

= k8-z with 8 (0, t) = 0

u(L, t) = 0

u(x,0) = f(x)

For this problem you may assume that no solutions of the heat equation
exponentially grow in time. You may also guess appropriate orthogonality
conditions for the eigenfunctions.

*2.4.3. Solve the eigenvalue problem

d2,0

dx2
- _AO

subject to

0(0) = 0(27r) and ;jj(O) =

dx

(21r).

2.4.4. Explicitly show that there are no negative eigenvalues for

d2O

x
_ -A subject to dz (0) = 0 and (L) = 0.

2.4.5. This problem presents an alternative derivation of the heat equation for a
thin wire. The equation for a circular wire of finite thickness is the two-
dimensional heat equation (in polar coordinates). Show that this reduces
to (2.4.25) if the temperature does not depend on r and if the wire is very
thin.

2.4.6. Determine the equilibrium temperature distribution for the thin circular
ring of Section 2.4.2:

(a) Directly from the equilibrium problem (see Sec. 1.4)

(b) By computing the limit as t - oo of the time-dependent problem

2.4.7. Solve Laplace's equation inside a circle of radius a,

I .92U
V 2U

r Or (r 8r) + rz 902 = 0,

subject to the boundary condition

u(a,9) = f(9).

(Hint: If necessary, see Sec. 2.5.2.)

𝜕𝑢
𝜕𝑡

= 𝜅
𝜕2𝑢
𝜕𝑥2

Let 𝑢 (𝑥, 𝑡) = 𝑇 (𝑡) 𝑋 (𝑥), then the PDE becomes
1
𝜅
𝑇′𝑋 = 𝑋′′𝑇

Dividing by 𝑋𝑇
1
𝜅
𝑇′

𝑇
=
𝑋′′

𝑋
Since each side depends on di�erent independent variable and both are equal, they must
be both equal to same constant, say −𝜆. Where 𝜆 is real.

1
𝜅
𝑇′

𝑇
=
𝑋′′

𝑋
= −𝜆

The two ODE’s are

𝑇′ + 𝑘𝜆𝑇 = 0 (1)

𝑋′′ + 𝜆𝑋 = 0 (2)

Per problem statement, 𝜆 ≥ 0, so only two cases needs to be examined.

Case 𝜆 = 0

The space equation becomes 𝑋′′ = 0 with the solution

𝑋 = 𝐴𝑥 + 𝑏

Hence left B.C. implies 𝑋′ (0) = 0 or 𝐴 = 0. Therefore the solution becomes 𝑋 = 𝑏. The
right B.C. implies 𝑋 (𝐿) = 0 or 𝑏 = 0. Therefore this leads to 𝑋 = 0 as the only solution.
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This results in trivial solution. Therefore 𝜆 = 0 is not an eigenvalue.

Case 𝜆 > 0

Starting with the space ODE, the solution is

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

𝑑𝑋
𝑑𝑥

= −𝐴√𝜆 sin �√𝜆𝑥� + 𝐵√𝜆 cos �√𝜆𝑥�

Left B.C. gives

0 =
𝑑𝑋
𝑑𝑥

(0)

= 𝐵√𝜆

Hence 𝐵 = 0 since it is assumed 𝜆 ≠ 0 and 𝜆 > 0. Solution becomes

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥�

Applying right B.C. gives

0 = 𝑋 (𝐿)

= 𝐴 cos �√𝜆𝐿�

𝐴 = 0 leads to trivial solution. Therefore cos �√𝜆𝐿� = 0 or

√𝜆 =
𝑛𝜋
2𝐿

𝑛 = 1, 3, 5,⋯

=
(2𝑛 − 1) 𝜋

2𝐿
𝑛 = 1, 2, 3⋯

Hence

𝜆𝑛 = �
𝑛𝜋
2𝐿
�
2

𝑛 = 1, 3, 5,⋯

=
(2𝑛 − 1)2 𝜋2

4𝐿2
𝑛 = 1, 2, 3⋯

Therefore

𝑋𝑛 (𝑥) = 𝐴𝑛 cos �𝑛𝜋
2𝐿
𝑥� 𝑛 = 1, 3, 5,⋯

And the corresponding time solution

𝑇𝑛 = 𝑒
−𝑘� 𝑛𝜋2𝐿 �

2
𝑡 𝑛 = 1, 3, 5,⋯

Hence

𝑢𝑛 (𝑥, 𝑡) = 𝑋𝑛𝑇𝑛

𝑢 (𝑥, 𝑡) =
∞
�

𝑛=1,3,5,⋯
𝐴𝑛 cos �𝑛𝜋

2𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
2𝐿 �

2
𝑡

=
∞
�
𝑛=1

𝐴𝑛 cos �
(2𝑛 − 1) 𝜋

2𝐿
𝑥� 𝑒

−𝑘� (2𝑛−1)𝜋2𝐿 �
2
𝑡

From initial conditions

𝑓 (𝑥) =
∞
�

𝑛=1,3,5,⋯
𝐴𝑛 cos �𝑛𝜋

2𝐿
𝑥�

Multiplying both sides by cos �𝑚𝜋2𝐿 𝑥� and integrating

�
𝐿

0
𝑓 (𝑥) cos �𝑚𝜋

2𝐿
𝑥� 𝑑𝑥 = �

⎛
⎜⎜⎜⎝

∞
�

𝑛=1,3,5,⋯
𝐴𝑛 cos �𝑚𝜋

2𝐿
𝑥� cos �𝑛𝜋

2𝐿
𝑥�
⎞
⎟⎟⎟⎠ 𝑑𝑥

Interchanging order of summation and integration and applying orthogonality results in

�
𝐿

0
𝑓 (𝑥) cos �𝑚𝜋

2𝐿
𝑥� 𝑑𝑥 = 𝐴𝑚

𝐿
2

𝐴𝑛 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) cos �𝑛𝜋

2𝐿
𝑥� 𝑑𝑥
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Therefore the solution is

𝑢 (𝑥, 𝑡) =
2
𝐿

∞
�

𝑛=1,3,5,⋯
��

𝐿

0
𝑓 (𝑥) cos �𝑛𝜋

2𝐿
𝑥� 𝑑𝑥� cos �𝑛𝜋

2𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
2𝐿 �

2
𝑡

or

𝑢 (𝑥, 𝑡) =
2
𝐿

∞
�
𝑛=1

��
𝐿

0
𝑓 (𝑥) cos �

(2𝑛 − 1) 𝜋
2𝐿

𝑥� 𝑑𝑥� cos �
(2𝑛 − 1) 𝜋

2𝐿
𝑥� 𝑒

−𝑘� (2𝑛−1)𝜋2𝐿 �
2
𝑡

2.3.12 section 2.4.3 (problem 11)

70 Chapter 2. Method of Separation of Variables

*2.4.2. Solve
z

= k8-z with 8 (0, t) = 0

u(L, t) = 0

u(x,0) = f(x)

For this problem you may assume that no solutions of the heat equation
exponentially grow in time. You may also guess appropriate orthogonality
conditions for the eigenfunctions.

*2.4.3. Solve the eigenvalue problem

d2,0

dx2
- _AO

subject to

0(0) = 0(27r) and ;jj(O) =

dx

(21r).

2.4.4. Explicitly show that there are no negative eigenvalues for

d2O

x
_ -A subject to dz (0) = 0 and (L) = 0.

2.4.5. This problem presents an alternative derivation of the heat equation for a
thin wire. The equation for a circular wire of finite thickness is the two-
dimensional heat equation (in polar coordinates). Show that this reduces
to (2.4.25) if the temperature does not depend on r and if the wire is very
thin.

2.4.6. Determine the equilibrium temperature distribution for the thin circular
ring of Section 2.4.2:

(a) Directly from the equilibrium problem (see Sec. 1.4)

(b) By computing the limit as t - oo of the time-dependent problem

2.4.7. Solve Laplace's equation inside a circle of radius a,

I .92U
V 2U

r Or (r 8r) + rz 902 = 0,

subject to the boundary condition

u(a,9) = f(9).

(Hint: If necessary, see Sec. 2.5.2.)

𝑑𝜙2

𝑑𝑥2
+ 𝜆𝜙 = 0

𝜙 (0) = 𝜙 (2𝜋)
𝑑𝜙
𝑑𝑥

(0) =
𝑑𝜙
𝑑𝑥

(2𝜋)

First solution using transformation

Let 𝜏 = 𝑥 − 𝜋, hence the above system becomes

𝑑𝜙2

𝑑𝜏2
+ 𝜆𝜙 = 0

𝜙 (−𝜋) = 𝜙 (𝜋)
𝑑𝜙
𝑑𝜏

(−𝜋) =
𝑑𝜙
𝑑𝜏

(𝜋)

The characteristic equation is 𝑟2 + 𝜆 = 0 or 𝑟 = ±√−𝜆. Assuming 𝜆 is real. There are three
cases to consider.

Case 𝜆 < 0

Let 𝑠 = √−𝜆 > 0

𝜙 (𝜏) = 𝑐1 cosh (𝑠𝜏) + 𝑐2 sinh (𝑠𝜏)
𝜙′ (𝜏) = 𝑠𝑐1 sinh (𝑠𝜏) + 𝑠𝑐2 cosh (𝑠𝜏)

Applying first B.C. gives

𝜙 (−𝜋) = 𝜙 (𝜋)
𝑐1 cosh (𝑠𝜋) − 𝑐2 sinh (𝑠𝜋) = 𝑐1 cosh (𝑠𝜋) + 𝑐2 sinh (𝑠𝜋)

2𝑐2 sinh (𝑠𝜋) = 0
𝑐2 sinh (𝑠𝜋) = 0 (1)

Applying second B.C. gives

𝜙′ (−𝜋) = 𝜙′ (𝜋)
−𝑠𝑐1 sinh (𝑠𝜋) + 𝑠𝑐2 cosh (𝑠𝜋) = 𝑠𝑐1 sinh (𝑠𝜋) + 𝑠𝑐2 cosh (𝑠𝜋)

2𝑐1 sinh (𝑠𝜋) = 0
𝑐1 sinh (𝑠𝜋) = 0 (2)

Since sinh (𝑠𝜋) is zero only for 𝑠𝜋 = 0 and 𝑠𝜋 is not zero because 𝑠 > 0. Then the only other
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option is that both 𝑐1 = 0 and 𝑐2 = 0 in order to satisfy equations (1)(2). Hence trivial
solution. Hence 𝜆 < 0 is not an eigenvalue.

Case 𝜆 = 0

The space equation becomes
𝑑𝜙2

𝑑𝜏2 = 0 with the solution 𝜙 (𝜏) = 𝐴𝜏 + 𝐵. Applying the first
B.C. gives

𝜙 (−𝜋) = 𝜙 (𝜋)
−𝐴𝜋 + 𝐵 = 𝐴𝜋 + 𝐵

0 = 2𝐴𝜋

Hence 𝐴 = 0. The solution becomes 𝜙 (𝜏) = 𝐵. And 𝜙′ (𝜏) = 0. The second B.C. just gives
0 = 0. Therefore the solution is

𝜙 (𝜏) = 𝐶

Where 𝐶 is any constant. Hence 𝜆 = 0 is an eigenvalue.

Case 𝜆 > 0

𝜙 (𝜏) = 𝑐1 cos �√𝜆𝜏� + 𝑐2 sin �√𝜆𝜏�

𝜙′ (𝜏) = −𝑐1√𝜆 sin �√𝜆𝜏� + 𝑐2√𝜆 cos �√𝜆𝜏�

Applying first B.C. gives

𝜙 (−𝜋) = 𝜙 (𝜋)

𝑐1 cos �√𝜆𝜋� − 𝑐2 sin �√𝜆𝜋� = 𝑐1 cos �√𝜆𝜋� + 𝑐2 sin �√𝜆𝜋�

2𝑐2 sin �√𝜆𝜋� = 0

𝑐2 sin �√𝜆𝜋� = 0 (3)

Applying second B.C. gives

𝜙′ (−𝜋) = 𝜙′ (𝜋)

𝑐1√𝜆 sin �√𝜆𝜋� + 𝑐2√𝜆 cos �√𝜆𝜋� = −𝑐1√𝜆 sin �√𝜆𝜋� + 𝑐2√𝜆 cos �√𝜆𝜋�

2𝑐1√𝜆 sin �√𝜆𝜋� = 0

𝑐1 sin �√𝜆𝜋� = 0 (2)

Both (3) and (2) can be satisfied for non-zero√𝜆𝜋. The trivial solution is avoided. Therefore
the eigenvalues are

sin �√𝜆𝜋� = 0

�𝜆𝑛𝜋 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯
𝜆𝑛 = 𝑛2 𝑛 = 1, 2, 3,⋯

Hence the corresponding eigenfunctions are

�cos ��𝜆𝑛𝜏� , sin ��𝜆𝑛𝜏�� = {cos (𝑛𝜏) , sin (𝑛𝜏)}

Transforming back to 𝑥 using 𝜏 = 𝑥 − 𝜋

{cos (𝑛 (𝑥 − 𝜋)) , sin (𝑛 (𝑥 − 𝜋))} = {cos (𝑛𝑥 − 𝑛𝜋) , sin (𝑛𝑥 − 𝑛𝜋)}

But cos (𝑥 − 𝜋) = − cos 𝑥 and sin (𝑥 − 𝜋) = − sin 𝑥, hence the eigenfunctions are

{− cos (𝑛𝑥) , − sin (𝑛𝑥)}
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The signs of negative on an eigenfunction (or eigenvector) do not a�ect it being such as
this is just a multiplication by −1. Hence the above is the same as saying the eigenfunctions
are

{cos (𝑛𝑥) , sin (𝑛𝑥)}

Summary

eigenfunctions

𝜆 = 0 arbitrary constant

𝜆 > 0 {cos (𝑛𝑥) , sin (𝑛𝑥)} for 𝑛 = 1, 2, 3⋯

Second solution without transformation

(note: Using transformation as shown above seems to be easier method than this below).

The characteristic equation is 𝑟2 + 𝜆 = 0 or 𝑟 = ±√−𝜆. Assuming 𝜆 is real. There are three
cases to consider.

Case 𝜆 < 0

In this case −𝜆 is positive and the roots are both real. Assuming √−𝜆 = 𝑠 where 𝑠 > 0, then
the solution is

𝜙 (𝑥) = 𝐴𝑒𝑠𝑥 + 𝐵𝑒−𝑠𝑥

𝜙′ (𝑥) = 𝐴𝑠𝑒𝑠𝑥 − 𝐵𝑠𝑒−𝑠𝑥

First B.C. gives

𝜙 (0) = 𝜙 (2𝜋)
𝐴 + 𝐵 = 𝐴𝑒2𝑠𝜋 + 𝐵𝑒−2𝑠𝜋

𝐴�1 − 𝑒2𝑠𝜋� + 𝐵 �1 − 𝑒−2𝑠𝜋� = 0 (1)

The second B.C. gives

𝜙′ (0) = 𝜙′ (2𝜋)
𝐴𝑠 − 𝐵𝑠 = 𝐴𝑠𝑒2𝑠𝜋 − 𝐵𝑠𝑒−2𝑠𝜋

𝐴�1 − 𝑒2𝑠𝜋� + 𝐵 �−1 + 𝑒−2𝑠𝜋� = 0 (2)

After dividing by 𝑠 since 𝑠 ≠ 0. Now a 2 by 2 system is setup from (1),(2)
⎛
⎜⎜⎜⎜⎝
�1 − 𝑒2𝑠𝜋� �1 − 𝑒−2𝑠𝜋�
�1 − 𝑒2𝑠𝜋� �−1 + 𝑒−2𝑠𝜋�

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝐴
𝐵

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Since this is 𝑀𝑥 = 𝑏 with 𝑏 = 0 then for non-trivial solution |𝑀| must be zero. Checking the
determinant to see if it is zero or not:

�
�1 − 𝑒2𝑠𝜋� �1 − 𝑒−2𝑠𝜋�
�1 − 𝑠𝑒2𝑠𝜋� �−1 + 𝑠𝑒−2𝑠𝜋�

� = �1 − 𝑒2𝑠𝜋� �−1 + 𝑒−2𝑠𝜋� − �1 − 𝑒−2𝑠𝜋� �1 − 𝑒2𝑠𝜋�

= �−1 + 𝑒−2𝑠𝜋 + 𝑒2𝑠𝜋 − 1� − �1 − 𝑒2𝑠𝜋 − 𝑒−2𝑠𝜋 + 1�

= −1 + 𝑒−2𝑠𝜋 + 𝑒2𝑠𝜋 − 1 − 1 + 𝑒2𝑠𝜋 + 𝑒−2𝑠𝜋 − 1
= −4 + 2𝑒2𝑠𝜋 + 2𝑒−2𝑠𝜋

= −4 + 2 �𝑒2𝑠𝜋 + 𝑒−2𝑠𝜋�

= −4 + 4 cosh (2𝑠𝜋)
Hence for the determinant to be zero (so that non-trivial solution exist) then −4+4 cosh (2𝑠𝜋) =
0 or cosh (2𝑠𝜋) = 1 which has the solution 2𝑠𝜋 = 0. Which means 𝑠 = 0. But the assumption
was that 𝑠 > 0. This implies only a trivial solution exist and 𝜆 < 0 is not an eigenvalue.

case 𝜆 = 0

The space equation becomes
𝑑𝜙2

𝑑𝑥2 = 0 with the solution 𝜙 (𝑥) = 𝐴𝑥 + 𝐵. Applying the first
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B.C. gives

𝐵 = 2𝐴𝜋 + 𝐵
0 = 2𝐴𝜋

Hence 𝐴 = 0. The solution becomes 𝜙 (𝑥) = 𝐵. And 𝜙′ (𝑥) = 0. The second B.C. just gives
0 = 0. Therefore the solution is

𝜙 (𝑥) = 𝐶

Where 𝐶 is any constant. Hence 𝜆 = 0 is an eigenvalue.

Case 𝜆 > 0

In this case the solution is

𝜙 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

𝜙′ (𝑥) = −𝐴√𝜆 sin �√𝜆𝑥� + 𝐵√𝜆 cos �√𝜆𝑥�

Applying first B.C. gives

𝜙 (0) = 𝜙 (2𝜋)

𝐴 = 𝐴 cos �2𝜋√𝜆� + 𝐵 sin �2𝜋√𝜆�

𝐴 �1 − cos �2𝜋√𝜆�� − 𝐵 sin �2𝜋√𝜆� = 0

Applying second B.C. gives

𝜙′ (0) = 𝜙′ (2𝜋)

𝐵√𝜆 = −𝐴√𝜆 sin �2𝜋√𝜆� + 𝐵√𝜆 cos �2𝜋√𝜆�

𝐴√𝜆 sin �2𝜋√𝜆� + 𝐵 �√𝜆 − √𝜆 cos �2𝜋√𝜆�� = 0

𝐴 sin �2𝜋√𝜆� + 𝐵 �1 − cos �2𝜋√𝜆�� = 0

Therefore ⎛
⎜⎜⎜⎜⎝
1 − cos �2𝜋√𝜆� − sin �2𝜋√𝜆�

sin �2𝜋√𝜆� 1 − cos �2𝜋√𝜆�

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝐴
𝐵

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠ (3)

Setting |𝑀| = 0 to obtain the eigenvalues gives

�1 − cos �2𝜋√𝜆�� �1 − cos �2𝜋√𝜆�� + sin �2𝜋√𝜆� sin �2𝜋√𝜆� = 0

1 − cos �2𝜋√𝜆� = 0

Hence

cos �2𝜋√𝜆� = 1

2𝜋�𝜆𝑛 = 𝑛𝜋 𝑛 = 2, 4,⋯

�𝜆𝑛 =
𝑛
2

𝑛 = 2, 4,⋯

Or

�𝜆𝑛 = 𝑛 𝑛 = 1, 2, 3,⋯
𝜆𝑛 = 𝑛2 𝑛 = 1, 2, 3,⋯

Therefore the eigenfunctions are

𝜙𝑛 (𝑥) = {cos (𝑛𝑥) , sin (𝑛𝑥)}
Summary

eigenfunctions

𝜆 = 0 arbitrary constant

𝜆 > 0 {cos (𝑛𝑥) , sin (𝑛𝑥)} for 𝑛 = 1, 2, 3⋯
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2.3.13 section 2.4.6 (problem 12)

70 Chapter 2. Method of Separation of Variables

*2.4.2. Solve
z

= k8-z with 8 (0, t) = 0

u(L, t) = 0

u(x,0) = f(x)

For this problem you may assume that no solutions of the heat equation
exponentially grow in time. You may also guess appropriate orthogonality
conditions for the eigenfunctions.

*2.4.3. Solve the eigenvalue problem

d2,0

dx2
- _AO

subject to

0(0) = 0(27r) and ;jj(O) =

dx

(21r).

2.4.4. Explicitly show that there are no negative eigenvalues for

d2O

x
_ -A subject to dz (0) = 0 and (L) = 0.

2.4.5. This problem presents an alternative derivation of the heat equation for a
thin wire. The equation for a circular wire of finite thickness is the two-
dimensional heat equation (in polar coordinates). Show that this reduces
to (2.4.25) if the temperature does not depend on r and if the wire is very
thin.

2.4.6. Determine the equilibrium temperature distribution for the thin circular
ring of Section 2.4.2:

(a) Directly from the equilibrium problem (see Sec. 1.4)

(b) By computing the limit as t - oo of the time-dependent problem

2.4.7. Solve Laplace's equation inside a circle of radius a,

I .92U
V 2U

r Or (r 8r) + rz 902 = 0,

subject to the boundary condition

u(a,9) = f(9).

(Hint: If necessary, see Sec. 2.5.2.)

The PDE for the thin circular ring is

𝜕𝑢
𝜕𝑡

= 𝑘
𝜕2𝑢
𝜕𝑥2

𝑢 (−𝐿, 𝑡) = 𝑢 (𝐿, 𝑡)
𝜕𝑢 (−𝐿, 𝑡)

𝜕𝑡
=
𝜕𝑢 (𝐿, 𝑡)
𝜕𝑡

𝑢 (𝑥, 0) = 𝑓 (𝑥)

2.3.13.1 Part (a)

At equilibrium 𝜕𝑢
𝜕𝑡 = 0 and the PDE becomes

0 =
𝜕2𝑢
𝜕𝑥2

As it now has one independent variable, it becomes the following ODE to solve

𝑑2𝑢 (𝑥)
𝑑𝑥2

= 0

𝑢 (−𝐿) = 𝑢 (𝐿)
𝑑𝑢
𝑑𝑥
(−𝐿) =

𝑑𝑢
𝑑𝑥
(𝐿)

Solution to 𝑑2𝑢
𝑑𝑥2 = 0 is

𝑢 (𝑥) = 𝑐1𝑥 + 𝑐2
Where 𝑐1, 𝑐2 are arbitrary constants. From the first B.C.

𝑢 (−𝐿) = 𝑢 (𝐿)
−𝑐1𝐿 + 𝑐2 = 𝑐1𝐿 + 𝑐2

2𝑐1𝐿 = 0
𝑐1 = 0

Hence the solution becomes

𝑢 (𝑥) = 𝑐2
The second B.C. adds nothing as it results in 0 = 0. Hence the solution at equilibrium is

𝑢 (𝑥) = 𝑐2

This means at equilibrium the temperature in the ring reaches a constant value.

2.3.13.2 Part (b)

The time dependent solution was derived in problem 2.4.3 and also in section 2.4, page
62 in the book, given by

𝑢 (𝑥, 𝑡) = 𝑎0 +
∞
�
𝑛=1

𝑎𝑛 cos �𝑛𝜋𝑥
𝐿
� 𝑒−𝑘�

𝑛𝜋𝑥
𝐿 �

2
𝑡 +

∞
�
𝑛=1

𝑎𝑛 sin �𝑛𝜋𝑥
𝐿
� 𝑒−𝑘�

𝑛𝜋𝑥
𝐿 �

2
𝑡

As 𝑡 → ∞ the terms 𝑒−𝑘�
𝑛𝜋𝑥
𝐿 �

2
𝑡 → 0 and the above reduces to

𝑢 (𝑥,∞) = 𝑎0
Since 𝑎0 is constant, this is the same result found in part (a).
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2.4 HW 3

2.4.1 Problem 2.5.1(e) (problem 1)

2.5. Laplace's Equation 85

for a one-dimensional example, see Exercise 1.4.7(b)]. To show this, we integrate
V2u = 0 over the entire two-dimensional region

0 = if V2u dx dy = if V.(Vu) dx dy.

Using the (two-dimensional) divergence theorem, we conclude that (see Exercise
1.5.8)

0 = i Vu-ft ds. (2.5.61)

Since is proportional to the heat flow through the boundary, (2.5.61) implies
that the net heat flow through the boundary must be zero in order for a steady
state to exist. This is clear physically, because otherwise there would be a change
(in time) of the thermal energy inside, violating the steady-state assumption. Equa-
tion (2.5.61) is called the solvability condition or compatibility condition for
Laplace's equation.

EXERCISES 2.5

2.5.1. Solve Laplace's equation inside a rectangle 0 < x < L, 0 < y < H, with the
following boundary conditions:

(0,y) = 0, (L,y) = 0,*(a) ax- Tx-

(b) (O, y) = 9(y), (L, y) = 0,Tx- TX-

*(c) "'(0,y) = 0, u(L,y) = 9(y),

(d) u(O,y) = 9(y), u(L,y) = 0,

*(e) u(0,y) = 0, u(L,y) = 0,

(f) u(O, y) = f (y), u(L, y) = 0,

(0, y) = 0, (L, y) = 0,(g) TX- YX-

2.5.2.

u(x,0) = 0,

u(x,0) = 0,

u(x,0) = 0,

(x,0) = 0,Fy-

u(x,0) - (x,0) = 0,

(x,0) = 0,
TV-

u(x 0) = /0

u(x, H) = f (x)

u(x, H) = 0

u(x, H) = 0

u(x, H) = 0

u(x, H) = f (x)

"u (x, H) = 0

x > L/2 au ( H)x < L/2' yy- x, = 0

Consider u(x, y) satisfying Laplace's equation inside a rectangle (0 < x <
L, 0 < y < H) subject to the boundary conditions

(0,y) = 0
Yx-

(L,y)=0

(b)

Ou (x,0) = 0

(x, H) = f (x).

Without solving this problem, briefly explain the physical condition
under which there is a solution to this problem.
Solve this problem by the method of separation of variables. Show that
the method works only under the condition of part (a).

Let 𝑢 �𝑥, 𝑦� = 𝑋 (𝑥) 𝑌 (𝑥). Substituting this into the PDE 𝜕2𝑢
𝜕𝑥2 +

𝜕2𝑢
𝜕𝑦2 = 0 and simplifying gives

𝑋′′

𝑋
= −

𝑌′′

𝑌
Each side depends on di�erent independent variable and they are equal, therefore they
must be equal to same constant.

𝑋′′

𝑋
= −

𝑌′′

𝑌
= ±𝜆

Since the boundary conditions along the 𝑥 direction are the homogeneous ones, −𝜆 is
selected in the above. Two ODE’s (1,2) are obtained as follows

𝑋′′ + 𝜆𝑋 = 0 (1)

With the boundary conditions

𝑋 (0) = 0
𝑋 (𝐿) = 0

And

𝑌′′ − 𝜆𝑌 = 0 (2)

With the boundary conditions

𝑌 (0) = 𝑌′ (0)
𝑌 (𝐻) = 𝑓 (𝑥)

In all these cases 𝜆 will turn out to be positive. This is shown for this problem only and
not be repeated again. The solution to (1) is

𝑋 = 𝐴𝑒√𝜆𝑥 + 𝐵𝑒−√𝜆𝑥

Case 𝜆 < 0

𝑋 = 𝐴 cosh �√𝜆𝑥� + 𝐵 sinh �√𝜆𝑥�

At 𝑥 = 0, the above gives 0 = 𝐴. Hence 𝑋 = 𝐵 sinh �√𝜆𝑥�. At 𝑥 = 𝐿 this gives𝑋 = 𝐵 sinh �√𝜆𝐿�.
But sinh �√𝜆𝐿� = 0 only at 0 and √𝜆𝐿 ≠ 0, therefore 𝐵 = 0 and this leads to trivial solution.
Hence 𝜆 < 0 is not an eigenvalue.

Case 𝜆 = 0

𝑋 = 𝐴𝑥 + 𝐵

Hence at 𝑥 = 0 this gives 0 = 𝐵 and the solution becomes 𝑋 = 𝐵. At 𝑥 = 𝐿, 𝐵 = 0. Hence the
trivial solution. 𝜆 = 0 is not an eigenvalue.

Case 𝜆 > 0
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Solution is

𝑋 = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

At 𝑥 = 0 this gives 0 = 𝐴 and the solution becomes 𝑋 = 𝐵 sin �√𝜆𝑥�. At 𝑥 = 𝐿

0 = 𝐵 sin �√𝜆𝐿�

For non-trivial solution sin �√𝜆𝐿� = 0 or √𝜆𝐿 = 𝑛𝜋 where 𝑛 = 1, 2, 3,⋯, therefore

𝜆𝑛 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

Eigenfunctions are

𝑋𝑛 (𝑥) = 𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑛 = 1, 2, 3,⋯ (3)

For the 𝑌 ODE, the solution is

𝑌𝑛 = 𝐶𝑛 cosh �𝑛𝜋
𝐿
𝑦� + 𝐷𝑛 sinh �𝑛𝜋

𝐿
𝑦�

𝑌′𝑛 = 𝐶𝑛
𝑛𝜋
𝐿

sinh �𝑛𝜋
𝐿
𝑦� + 𝐷𝑛

𝑛𝜋
𝐿

cosh �𝑛𝜋
𝐿
𝑦�

Applying B.C. at 𝑦 = 0 gives

𝑌 (0) = 𝑌′ (0)

𝐶𝑛 cosh (0) = 𝐷𝑛
𝑛𝜋
𝐿

cosh (0)

𝐶𝑛 = 𝐷𝑛
𝑛𝜋
𝐿

The eigenfunctions 𝑌𝑛 are

𝑌𝑛 = 𝐷𝑛
𝑛𝜋
𝐿

cosh �𝑛𝜋
𝐿
𝑦� + 𝐷𝑛 sinh �𝑛𝜋

𝐿
𝑦�

= 𝐷𝑛 �
𝑛𝜋
𝐿

cosh �𝑛𝜋
𝐿
𝑦� + sinh �𝑛𝜋

𝐿
𝑦��

Now the complete solution is produced

𝑢𝑛 �𝑥, 𝑦� = 𝑌𝑛𝑋𝑛

= 𝐷𝑛 �
𝑛𝜋
𝐿

cosh �𝑛𝜋
𝐿
𝑦� + sinh �𝑛𝜋

𝐿
𝑦�� 𝐵𝑛 sin �𝑛𝜋

𝐿
𝑥�

Let 𝐷𝑛𝐵𝑛 = 𝐵𝑛 since a constant. (no need to make up a new symbol).

𝑢𝑛 �𝑥, 𝑦� = 𝐵𝑛 �
𝑛𝜋
𝐿

cosh �𝑛𝜋
𝐿
𝑦� + sinh �𝑛𝜋

𝐿
𝑦�� sin �𝑛𝜋

𝐿
𝑥�

Sum of eigenfunctions is the solution, hence

𝑢 �𝑥, 𝑦� =
∞
�
𝑛=1

𝐵𝑛 �
𝑛𝜋
𝐿

cosh �𝑛𝜋
𝐿
𝑦� + sinh �𝑛𝜋

𝐿
𝑦�� sin �𝑛𝜋

𝐿
𝑥�

The nonhomogeneous boundary condition is now resolved. At 𝑦 = 𝐻

𝑢 (𝑥,𝐻) = 𝑓 (𝑥)

Therefore

𝑓 (𝑥) =
∞
�
𝑛=1

𝐵𝑛 �
𝑛𝜋
𝐿

cosh �𝑛𝜋
𝐿
𝐻� + sinh �𝑛𝜋

𝐿
𝐻�� sin �𝑛𝜋

𝐿
𝑥�

Multiplying both sides by sin �𝑚𝜋𝐿 𝑥� and integrating gives

�
𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0
sin �𝑚𝜋

𝐿
𝑥�

∞
�
𝑛=1

𝐵𝑛 �
𝑛𝜋
𝐿

cosh �𝑛𝜋
𝐿
𝐻� + sinh �𝑛𝜋

𝐿
𝐻�� sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

=
∞
�
𝑛=1

𝐵𝑛 �
𝑛𝜋
𝐿

cosh �𝑛𝜋
𝐿
𝐻� + sinh �𝑛𝜋

𝐿
𝐻���

𝐿

0
sin �𝑛𝜋

𝐿
𝑥� sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥

= 𝐵𝑚 �
𝑚𝜋
𝐿

cosh �𝑚𝜋
𝐿
𝐻� + sinh �𝑚𝜋

𝐿
𝐻��

𝐿
2

Hence

𝐵𝑛 =
2
𝐿

∫𝐿
0
𝑓 (𝑥) sin �𝑛𝜋𝐿 𝑥� 𝑑𝑥

�𝑛𝜋
𝐿 cosh �𝑛𝜋𝐿 𝐻� + sinh �𝑛𝜋𝐿 𝐻��

(4)
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This completes the solution. In summary

𝑢 �𝑥, 𝑦� =
∞
�
𝑛=1

𝐵𝑛 �
𝑛𝜋
𝐿

cosh �𝑛𝜋
𝐿
𝑦� + sinh �𝑛𝜋

𝐿
𝑦�� sin �𝑛𝜋

𝐿
𝑥�

With 𝐵𝑛 given by (4). The following are some plots of the solution above for di�erent 𝑓 (𝑥).

Figure 2.1: Solution using 𝑓(𝑥) = 𝑥, 𝐿 = 1,𝐻 = 1

Figure 2.2: Solution using 𝑓(𝑥) = sin(12𝑥), 𝐿 = 1,𝐻 = 1

Figure 2.3: Solution using 𝑓(𝑥) = cos(4𝑥), 𝐿 = 1,𝐻 = 1

Figure 2.4: Solution using 𝑓(𝑥) = sin(3𝑥) cos(2𝑥), 𝐿 = 5,𝐻 = 1
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2.4.2 Problem 2.5.2 (problem 2)

2.5. Laplace's Equation 85

for a one-dimensional example, see Exercise 1.4.7(b)]. To show this, we integrate
V2u = 0 over the entire two-dimensional region

0 = if V2u dx dy = if V.(Vu) dx dy.

Using the (two-dimensional) divergence theorem, we conclude that (see Exercise
1.5.8)

0 = i Vu-ft ds. (2.5.61)

Since is proportional to the heat flow through the boundary, (2.5.61) implies
that the net heat flow through the boundary must be zero in order for a steady
state to exist. This is clear physically, because otherwise there would be a change
(in time) of the thermal energy inside, violating the steady-state assumption. Equa-
tion (2.5.61) is called the solvability condition or compatibility condition for
Laplace's equation.

EXERCISES 2.5

2.5.1. Solve Laplace's equation inside a rectangle 0 < x < L, 0 < y < H, with the
following boundary conditions:

(0,y) = 0, (L,y) = 0,*(a) ax- Tx-

(b) (O, y) = 9(y), (L, y) = 0,Tx- TX-

*(c) "'(0,y) = 0, u(L,y) = 9(y),

(d) u(O,y) = 9(y), u(L,y) = 0,

*(e) u(0,y) = 0, u(L,y) = 0,

(f) u(O, y) = f (y), u(L, y) = 0,

(0, y) = 0, (L, y) = 0,(g) TX- YX-

2.5.2.

u(x,0) = 0,

u(x,0) = 0,

u(x,0) = 0,

(x,0) = 0,Fy-

u(x,0) - (x,0) = 0,

(x,0) = 0,
TV-

u(x 0) = /0

u(x, H) = f (x)

u(x, H) = 0

u(x, H) = 0

u(x, H) = 0

u(x, H) = f (x)

"u (x, H) = 0

x > L/2 au ( H)x < L/2' yy- x, = 0

Consider u(x, y) satisfying Laplace's equation inside a rectangle (0 < x <
L, 0 < y < H) subject to the boundary conditions

(0,y) = 0
Yx-

(L,y)=0

(b)

Ou (x,0) = 0

(x, H) = f (x).

Without solving this problem, briefly explain the physical condition
under which there is a solution to this problem.
Solve this problem by the method of separation of variables. Show that
the method works only under the condition of part (a).

86 Chapter 2. Method of Separation of Variables

(c) The solution [part (b)] has an arbitrary constant. Determine it by
consideration of the time-dependent heat equation (1.5.11) subject to
the initial condition

u(x,y,0) = g(x,y)

*2.5.3. Solve Laplace's equation outside a circular disk (r > a) subject to the
boundary condition

(a) u(a, 9) = In 2 + 4 cos 39

(b) u(a,9) = f(9)

You may assume that u(r, 9) remains finite as r - oo.

*2.5.4. For Laplace's equation inside a circular disk (r < a), using (2.5.45) and
(2.5.47), show that

00

u(r,9)= f(6) 2+E(a)ncosn(9-8)1 dB.
a L n_0

Using cos z = Re [ei=], sum the resulting geometric series to obtain Poisson's
integral formula.

2.5.5. Solve Laplace's equation inside the quarter-circle of radius 1 (0 < 0 <-
7r/2, 0 < r < 1) subject to the boundary conditions

* (a) (r, 0) = 0, u (r, 2) = 0, u(1,0) = f (O)

(b) Ou (r, 0) = 0, 6u (r, z) = 0, u(1, 0) = f (0)

* (c) u(r, 0) = 0, u (r, z) = 0, Ou (1, 9) = f (O)

(d) (r, o) = o, (r, 2) = o, (1, e) = g(e)

Show that the solution [part (d)] exists only if fo 2 g(9) d9 = 0. Explain
this condition physically.

2.5.6. Solve Laplace's equation inside a semicircle of radius a(0 < r < a, 0 < 9 <
a) subject to the boundary conditions

*(a) u = 0 on the diameter and u(a, 9) = g(9)
(b) the diameter is insulated and u(a, 0) = g(9)

2.5.7. Solve Laplace's equation inside a 60° wedge of radius a subject to the bound-
ary conditions

(a) u(r, 0) = 0, u (r, a) = 0, u(a, 9) = f (0)

* (b) (r, 0) = 0, (r, 3 ) = 0, u(a, 9) = f (0)

2.4.2.1 part (a)

At steady state, there will be no heat energy flowing across the boundaries. Which implies
the flux is zero. Three of the boundaries are already insulated and hence the flux is zero
at those boundaries as given. Therefore, the flux should also be zero at the top boundary
at steady state.

By definition, the flux is 𝜙̄ = −𝑘∇̄𝑢 ⋅ 𝑛̂. (Direction of flux vector is from hot to cold). At the
top boundary, this becomes

𝜙 = −𝑘
𝜕𝑢
𝜕𝑦

(𝑥,𝐻) (1)

Therefore, For the condition of a solution, total flux on the boundary is zero, or

�
𝐿

0
𝜙𝑑𝑥 = 0

Using (1) in the above gives

−𝑘�
𝐿

0

𝜕𝑢
𝜕𝑦

(𝑥,𝐻) 𝑑𝑥 = 0

�
𝐿

0

𝜕𝑢
𝜕𝑦

(𝑥,𝐻) 𝑑𝑥 = 0

But 𝜕𝑢
𝜕𝑦
(𝑥,𝐻) = 𝑓 (𝑥) and the above becomes

∫𝐿
0
𝑓 (𝑥) 𝑑𝑥 = 0

2.4.2.2 Part (b)

Using separation of variables results in the following two ODE’s

𝑋′′ + 𝜆𝑋 = 0
𝑋′ (0) = 0
𝑋′ (𝐿) = 0

And

𝑌′′ − 𝜆𝑌 = 0
𝑌′ (0) = 0
𝑌′ (𝐿) = 𝑓 (𝑥)
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The solution to the 𝑋 (𝑥) ODE has been obtained before as

𝑋𝑛 = 𝐴0 + 𝐴𝑛 cos ��𝜆𝑛𝑥� 𝑛 = 1, 2, 3,⋯

𝑋𝑛 = 𝐴𝑛 cos ��𝜆𝑛𝑥� 𝑛 = 0, 1, 2, 3,⋯ (1)

Where 𝜆𝑛 = �
𝑛𝜋
𝐿
�
2
. In this ODE 𝜆 = 0 is applicable as well as 𝜆 > 0. (As found in last HW).

Now the 𝑌 �𝑦� ODE is solved (for same set of eigenvalues). For 𝜆 = 0 the ODE becomes
𝑌′′ = 0 and solution is 𝑌 = 𝐶𝑦 + 𝐷. Hence 𝑌′ = 𝐶 and since 𝑌′ (0) = 0 then 𝐶 = 0. Hence
the solution is 𝑌 = 𝐶0, where 𝐶0 is some new constant. For 𝜆 > 0, the solution is

𝑌𝑛 = 𝐶𝑛 cosh ��𝜆𝑛𝑦� + 𝐷𝑛 sinh ��𝜆𝑛𝑦� 𝑛 = 1, 2, 3,⋯

𝑌′𝑛 = 𝐶𝑛�𝜆𝑛 sinh ��𝜆𝑛𝑦� + 𝐷𝑛�𝜆𝑛 cosh ��𝜆𝑛𝑦�
At 𝑦 = 0

0 = 𝑌′𝑛 (0)

= 𝐷𝑛�𝜆𝑛 𝑛 = 1, 2, 3,⋯

Since 𝜆𝑛 > 0 for 𝑛 = 1, 2, 3,⋯ then 𝐷𝑛 = 0 and the 𝑌 �𝑦� solution becomes

𝑌𝑛 = 𝐶0 + 𝐶𝑛 cosh ��𝜆𝑛𝑦� 𝑛 = 1, 2, 3,⋯

𝑌𝑛 = 𝐶𝑛 cosh ��𝜆𝑛𝑦� 𝑛 = 0, 1, 2, 3,⋯ (2)

Combining (1) and (2) gives

𝑢𝑛 �𝑥, 𝑦� = 𝑋𝑛𝑌𝑛
= 𝐴𝑛 cos ��𝜆𝑛𝑥�𝐶𝑛 cosh ��𝜆𝑛𝑦� 𝑛 = 0, 1, 2, 3,⋯

= 𝐴𝑛 cos ��𝜆𝑛𝑥� cosh ��𝜆𝑛𝑦� 𝑛 = 0, 1, 2, 3,⋯

Where 𝐴𝑛𝐶𝑛 above was combined and renamed to 𝐴𝑛 (No need to add new symbol). Hence
by superposition the solution becomes

𝑢 �𝑥, 𝑦� =
∞
�
𝑛=0

𝐴𝑛 cos ��𝜆𝑛𝑥� cosh ��𝜆𝑛𝑦�

Since 𝜆0 = 0 and cos �√𝜆0𝑥� cosh �√𝜆0𝑦� = 1, the above can be also be written as

𝑢 �𝑥, 𝑦� = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� cosh �𝑛𝜋

𝐿
𝑦� (3)

At 𝑦 = 𝐻, it is given that 𝜕𝑢
𝜕𝑦
(𝑥,𝐻) = 𝑓 (𝑥). But

𝜕𝑢
𝜕𝑦

=
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥�
𝑛𝜋
𝐿

sinh �𝑛𝜋
𝐿
𝑦�

At 𝑦 = 𝐻 the above becomes

𝑓 (𝑥) =
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥�
𝑛𝜋
𝐿

sinh �𝑛𝜋
𝐿
𝐻� (4)

To verify part (a) by integrating both sides

�
𝐿

0
𝑓 (𝑥) 𝑑𝑥 = �

𝐿

0

∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥�
𝑛𝜋
𝐿

sinh �𝑛𝜋
𝐿
𝐻� 𝑑𝑥

=
∞
�
𝑛=1

𝐴𝑛
𝑛𝜋
𝐿

sinh �𝑛𝜋
𝐿
𝐻��

𝐿

0
cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

But ∫
𝐿

0
cos �𝑛𝜋𝐿 𝑥� 𝑑𝑥 = 0, hence

�
𝐿

0
𝑓 (𝑥) 𝑑𝑥 = 0
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The verification is completed. Now back to (4) and multiplying by cos �𝑚𝜋𝐿 𝑥� and integrating

�
𝐿

0
𝑓 (𝑥) cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0

∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥��𝜆𝑛 sinh �𝑛𝜋

𝐿
𝐻� 𝑑𝑥

=
∞
�
𝑛=1

𝐴𝑛 sinh �𝑛𝜋
𝐿
𝐻��

𝐿

0
cos �𝑛𝜋

𝐿
𝑥��𝜆𝑛𝑑𝑥

= 𝐴𝑚 sinh �𝑚𝜋
𝐿
𝐻�

𝐿
2

Hence

𝐴𝑛 =
2
𝐿

∫𝐿
0
𝑓 (𝑥) cos �𝑛𝜋𝐿 𝑥� 𝑑𝑥

sinh �𝑛𝜋𝐿 𝐻�
𝑛 = 1, 2, 3,⋯

Therefore the solution now becomes (from (3))

𝑢 �𝑥, 𝑦� = 𝐴0 +
∞
�
𝑛=1

⎛
⎜⎜⎜⎜⎜⎜⎝
2
𝐿

∫𝐿
0
𝑓 (𝑥) cos �𝑛𝜋𝐿 𝑥� 𝑑𝑥

sinh �𝑛𝜋𝐿 𝐻�

⎞
⎟⎟⎟⎟⎟⎟⎠ cos �𝑛𝜋

𝐿
𝑥� cosh �𝑛𝜋

𝐿
𝑦�

Only 𝐴0 remains to be found. This is done in next part.

2.4.2.3 Part (c)

Since at steady state, total energy is the same as initial energy. Initial temperature is given
as 𝑔 �𝑥, 𝑦�, therefore initial thermal energy is found by integrating over the whole domain.
This is 2D, therefore

��𝜌𝑐𝑔 �𝑥, 𝑦� 𝑑𝐴 = 𝜌𝑐�
𝐿

0
�

𝐻

0
𝑔 �𝑥, 𝑦� 𝑑𝑦𝑑𝑥

Setting the above to 𝜌𝑐∫
𝐿

0
∫𝐻
0
𝑢 �𝑥, 𝑦� 𝑑𝑦𝑑𝑥 found in last part, gives one equation with one

unknown, which is 𝐴0 to solve for. Hence

𝜌𝑐�
𝐿

0
�

𝐻

0
𝑔 �𝑥, 𝑦� 𝑑𝑦𝑑𝑥 = 𝜌𝑐�

𝐿

0
�

𝐻

0
𝐴0 +

∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� cosh �𝑛𝜋

𝐿
𝑦� 𝑑𝑦𝑑𝑥

�
𝐿

0
�

𝐻

0
𝑔 �𝑥, 𝑦� 𝑑𝑦𝑑𝑥 = �

𝐿

0
�

𝐻

0
𝐴0𝑑𝑦𝑑𝑥 +�

𝐿

0
�

𝐻

0

∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� cosh �𝑛𝜋

𝐿
𝑦� 𝑑𝑦𝑑𝑥

�
𝐿

0
�

𝐻

0
𝑔 �𝑥, 𝑦� 𝑑𝑦𝑑𝑥 = 𝐴0𝐻𝐿 +

∞
�
𝑛=1

𝐴𝑛�
𝐿

0
�

𝐻

0
cos �𝑛𝜋

𝐿
𝑥� cosh �𝑛𝜋

𝐿
𝑦� 𝑑𝑦𝑑𝑥 (5)

But

�
𝐿

0
�

𝐻

0
cos �𝑛𝜋

𝐿
𝑥� cosh �𝑛𝜋

𝐿
𝑦� 𝑑𝑦𝑑𝑥 = �

𝐻

0
cosh �𝑛𝜋

𝐿
𝑦� ��

𝐿

0
cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥� 𝑑𝑦

Where ∫
𝐿

0
cos �𝑛𝜋𝐿 𝑥� 𝑑𝑥 = 0. Hence the whole sum vanish. Therefore (5) reduces to

�
𝐿

0
�

𝐻

0
𝑔 �𝑥, 𝑦� 𝑑𝑦𝑑𝑥 = 𝐴0𝐻𝐿

𝐴0 =
1
𝐻𝐿 �

𝐿

0
�

𝐻

0
𝑔 �𝑥, 𝑦� 𝑑𝑦𝑑𝑥

Summary The complete solution is

𝑢 �𝑥, 𝑦� = �
1
𝐻𝐿 �

𝐿

0
�

𝐻

0
𝑔 �𝑥, 𝑦� 𝑑𝑦𝑑𝑥� +

∞
�
𝑛=1

⎛
⎜⎜⎜⎜⎜⎜⎝
2
𝐿

∫𝐿
0
𝑓 (𝑥) cos �𝑛𝜋𝐿 𝑥� 𝑑𝑥

sinh �𝑛𝜋𝐿 𝐻�

⎞
⎟⎟⎟⎟⎟⎟⎠ cos �𝑛𝜋

𝐿
𝑥� cosh �𝑛𝜋

𝐿
𝑦�

The following are some plots of the solution.
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Figure 2.5: Solution using 𝑔(𝑥, 𝑦) = 𝑥𝑦, 𝑓(𝑥) = sin(3𝑥), 𝐿 = 5,𝐻 = 1

Figure 2.6: Solution using 𝑔(𝑥, 𝑦) = sin(𝑦) cos(𝑥𝑦), 𝑓(𝑥) = 𝑥, 𝐿 = 5,𝐻 = 1

Figure 2.7: Solution using 𝑔(𝑥, 𝑦) = 𝑦 sin(𝑦) cos(𝑥𝑦), 𝑓(𝑥) = sin(10𝑥), 𝐿 = 1,𝐻 = 1

2.4.3 Problem 2.5.5(c,d) (problem 3)

86 Chapter 2. Method of Separation of Variables

(c) The solution [part (b)] has an arbitrary constant. Determine it by
consideration of the time-dependent heat equation (1.5.11) subject to
the initial condition

u(x,y,0) = g(x,y)

*2.5.3. Solve Laplace's equation outside a circular disk (r > a) subject to the
boundary condition

(a) u(a, 9) = In 2 + 4 cos 39

(b) u(a,9) = f(9)

You may assume that u(r, 9) remains finite as r - oo.

*2.5.4. For Laplace's equation inside a circular disk (r < a), using (2.5.45) and
(2.5.47), show that

00

u(r,9)= f(6) 2+E(a)ncosn(9-8)1 dB.
a L n_0

Using cos z = Re [ei=], sum the resulting geometric series to obtain Poisson's
integral formula.

2.5.5. Solve Laplace's equation inside the quarter-circle of radius 1 (0 < 0 <-
7r/2, 0 < r < 1) subject to the boundary conditions

* (a) (r, 0) = 0, u (r, 2) = 0, u(1,0) = f (O)

(b) Ou (r, 0) = 0, 6u (r, z) = 0, u(1, 0) = f (0)

* (c) u(r, 0) = 0, u (r, z) = 0, Ou (1, 9) = f (O)

(d) (r, o) = o, (r, 2) = o, (1, e) = g(e)

Show that the solution [part (d)] exists only if fo 2 g(9) d9 = 0. Explain
this condition physically.

2.5.6. Solve Laplace's equation inside a semicircle of radius a(0 < r < a, 0 < 9 <
a) subject to the boundary conditions

*(a) u = 0 on the diameter and u(a, 9) = g(9)
(b) the diameter is insulated and u(a, 0) = g(9)

2.5.7. Solve Laplace's equation inside a 60° wedge of radius a subject to the bound-
ary conditions

(a) u(r, 0) = 0, u (r, a) = 0, u(a, 9) = f (0)

* (b) (r, 0) = 0, (r, 3 ) = 0, u(a, 9) = f (0)
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2.4.3.1 Part c

The Laplace PDE in polar coordinates is

𝑟2
𝜕2𝑢
𝜕𝑟2

+ 𝑟
𝜕𝑢
𝜕𝑟

+
𝜕2𝑢
𝜕𝜃2

= 0 (A)

With boundary conditions

𝑢 (𝑟, 0) = 0

𝑢 �𝑟,
𝜋
2
� = 0 (B)

𝑢 (1, 𝜃) = 𝑓 (𝜃)

Assuming the solution can be written as

𝑢 (𝑟, 𝜃) = 𝑅 (𝑟)Θ (𝜃)

And substituting this assumed solution back into the (A) gives

𝑟2𝑅′′Θ + 𝑟𝑅′Θ + 𝑅Θ ′′ = 0

Dividing the above by 𝑅Θ ≠ 0 gives

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
+
Θ ′′

Θ
= 0

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
= −

Θ ′′

Θ
Since each side depends on di�erent independent variable and they are equal, they must
be equal to same constant. say 𝜆.

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
= −

Θ ′′

Θ
= 𝜆

This results in the following two ODE’s. The boundaries conditions in (B) are also trans-
ferred to each ODE. This gives

Θ ′′ + 𝜆Θ = 0
Θ (0) = 0 (1)

Θ�
𝜋
2
� = 0

And

𝑟2𝑅′′ + 𝑟𝑅′ − 𝜆𝑅 = 0 (2)

|𝑅 (0)| < ∞

Starting with (1). Consider the Case 𝜆 < 0. The solution in this case will be

Θ = 𝐴 cosh �√𝜆𝜃� + 𝐵 sinh �√𝜆𝜃�

Applying first B.C. gives 𝐴 = 0. The solution becomes Θ = 𝐵 sinh �√𝜆𝜃�. Applying second
B.C. gives

0 = 𝐵 sinh �√𝜆
𝜋
2
�

But sinh is zero only when √𝜆
𝜋
2 = 0 which is not the case here. Therefore 𝐵 = 0 and hence

trivial solution. Hence 𝜆 < 0 is not an eigenvalue.

Case 𝜆 = 0 The ODE becomes Θ ′′ = 0 with solution Θ = 𝐴𝜃 + 𝐵. First B.C. gives 0 = 𝐵.
The solution becomes Θ = 𝐴𝜃. Second B.C. gives 0 = 𝐴𝜋

2 , hence 𝐴 = 0 and trivial solution.
Therefore 𝜆 = 0 is not an eigenvalue.

Case 𝜆 > 0 The ODE becomes Θ ′′ + 𝜆Θ = 0 with solution

Θ = 𝐴 cos �√𝜆𝜃� + 𝐵 sin �√𝜆𝜃�

The first B.C. gives 0 = 𝐴. The solution becomes

Θ = 𝐵 sin �√𝜆𝜃�
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And the second B.C. gives

0 = 𝐵 sin �√𝜆
𝜋
2
�

For non-trivial solution sin �√𝜆𝜋2 � = 0 or √𝜆
𝜋
2 = 𝑛𝜋 for 𝑛 = 1, 2, 3,⋯. Hence the eigenvalues

are

�𝜆𝑛 = 2𝑛
𝜆𝑛 = 4𝑛2 𝑛 = 1, 2, 3,⋯

And the eigenfunctions are

Θ𝑛 (𝜃) = 𝐵𝑛 sin (2𝑛𝜃) 𝑛 = 1, 2, 3,⋯ (3)

Now the 𝑅 ODE is solved. There is one case to consider, which is 𝜆 > 0 based on the
above. The ODE is

𝑟2𝑅′′ + 𝑟𝑅′ − 𝜆𝑛𝑅 = 0
𝑟2𝑅′′ + 𝑟𝑅′ − 4𝑛2𝑅 = 0 𝑛 = 1, 2, 3,⋯

This is Euler ODE. Let 𝑅 (𝑟) = 𝑟𝑝. Then 𝑅′ = 𝑝𝑟𝑝−1 and 𝑅′′ = 𝑝 �𝑝 − 1� 𝑟𝑝−2. This gives

𝑟2 �𝑝 �𝑝 − 1� 𝑟𝑝−2� + 𝑟 �𝑝𝑟𝑝−1� − 4𝑛2𝑟𝑝 = 0

��𝑝2 − 𝑝� 𝑟𝑝� + 𝑝𝑟𝑝 − 4𝑛2𝑟𝑝 = 0
𝑟𝑝𝑝2 − 𝑝𝑟𝑝 + 𝑝𝑟𝑝 − 4𝑛2𝑟𝑝 = 0

𝑝2 − 4𝑛2 = 0
𝑝 = ±2𝑛

Hence the solution is

𝑅 (𝑟) = 𝐶𝑟2𝑛 + 𝐷
1
𝑟2𝑛

Applying the condition that |𝑅 (0)| < ∞ implies 𝐷 = 0, and the solution becomes

𝑅𝑛 (𝑟) = 𝐶𝑛𝑟2𝑛 𝑛 = 1, 2, 3,⋯ (4)

Using (3,4) the solution 𝑢𝑛 (𝑟, 𝜃) is

𝑢𝑛 (𝑟, 𝜃) = 𝑅𝑛Θ𝑛

= 𝐶𝑛𝑟2𝑛𝐵𝑛 sin (2𝑛𝜃)
= 𝐵𝑛𝑟2𝑛 sin (2𝑛𝜃)

Where 𝐶𝑛𝐵𝑛 was combined into one constant 𝐵𝑛. (No need to introduce new symbol). The
final solution is

𝑢 (𝑟, 𝜃) =
∞
�
𝑛=1

𝑢𝑛 (𝑟, 𝜃)

=
∞
�
𝑛=1

𝐵𝑛𝑟2𝑛 sin (2𝑛𝜃)

Now the nonhomogeneous condition is applied to find 𝐵𝑛.
𝜕
𝜕𝑟
𝑢 (𝑟, 𝜃) =

∞
�
𝑛=1

𝐵𝑛 (2𝑛) 𝑟2𝑛−1 sin (2𝑛𝜃)

Hence 𝜕
𝜕𝑟𝑢 (1, 𝜃) = 𝑓 (𝜃) becomes

𝑓 (𝜃) =
∞
�
𝑛=1

2𝐵𝑛𝑛 sin (2𝑛𝜃)

Multiplying by sin (2𝑚𝜃) and integrating gives

�
𝜋
2

0
𝑓 (𝜃) sin (2𝑚𝜃) 𝑑𝜃 = �

𝜋
2

0
sin (2𝑚𝜃)

∞
�
𝑛=1

2𝐵𝑛𝑛 sin (2𝑛𝜃) 𝑑𝜃

=
∞
�
𝑛=1

2𝑛𝐵𝑛�
𝜋
2

0
sin (2𝑚𝜃) sin (2𝑛𝜃) 𝑑𝜃 (5)
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When 𝑛 = 𝑚 then

�
𝜋
2

0
sin (2𝑚𝜃) sin (2𝑛𝜃) 𝑑𝜃 = �

𝜋
2

0
sin2 (2𝑛𝜃) 𝑑𝜃

= �
𝜋
2

0
�
1
2
−
1
2

cos 4𝑛𝜃� 𝑑𝜃

=
1
2
[𝜃]

𝜋
2
0 −

1
2 �

sin 4𝑛𝜃
4𝑛 �

𝜋
2

0

=
𝜋
4
− �

1
8𝑛 �

sin 4𝑛
2
𝜋� − sin (0)�

And since 𝑛 is integer, then sin 4𝑛
2 𝜋 = sin 2𝑛𝜋 = 0 and the above becomes 𝜋

4 .

Now for the case when 𝑛 ≠ 𝑚 using sin𝐴 sin𝐵 = 1
2
(cos (𝐴 − 𝐵) − cos (𝐴 + 𝐵)) then

�
𝜋
2

0
sin (2𝑚𝜃) sin (2𝑛𝜃) 𝑑𝜃 = �

𝜋
2

0

1
2
(cos (2𝑚𝜃 − 2𝑛𝜃) − cos (2𝑚𝜃 + 2𝑛𝜃)) 𝑑𝜃

=
1
2 �

𝜋
2

0
cos (2𝑚𝜃 − 2𝑛𝜃) 𝑑𝜃 − 1

2 �
𝜋
2

0
cos (2𝑚𝜃 + 2𝑛𝜃) 𝑑𝜃

=
1
2 �

𝜋
2

0
cos ((2𝑚 − 2𝑛) 𝜃) 𝑑𝜃 − 1

2 �
𝜋
2

0
cos ((2𝑚 + 2𝑛) 𝜃) 𝑑𝜃

=
1
2 �

sin ((2𝑚 − 2𝑛) 𝜃)
(2𝑚 − 2𝑛) �

𝜋
2

0
−
1
2 �

sin ((2𝑚 + 2𝑛) 𝜃)
(2𝑚 + 2𝑛) �

𝜋
2

0

=
1

4 (𝑚 − 𝑛)
[sin ((2𝑚 − 2𝑛) 𝜃)]

𝜋
2
0 −

1
4 (𝑚 + 𝑛)

[sin ((2𝑚 + 2𝑛) 𝜃)]
𝜋
2
0

=
1

4 (𝑚 − 𝑛) �
sin �(2𝑚 − 2𝑛) 𝜋

2
� − 0� −

1
4 (𝑚 + 𝑛) �

sin �(2𝑚 + 2𝑛) 𝜋
2
� − 0�

Since 2𝑚 − 2𝑛𝜋2 = 𝜋 (𝑚 − 𝑛) which is integer multiple of 𝜋 and also (2𝑚 + 2𝑛) 𝜋2 is integer
multiple of 𝜋 then the whole term above becomes zero. Therefore (5) becomes

�
𝜋
2

0
𝑓 (𝜃) sin (2𝑚𝜃) 𝑑𝜃 = 2𝑚𝐵𝑚

𝜋
4

Hence

𝐵𝑛 =
2
𝜋𝑛
∫

𝜋
2

0
𝑓 (𝜃) sin (2𝑛𝜃) 𝑑𝜃

Summary: the final solution is

𝑢 (𝑟, 𝜃) =
∞
�
𝑛=1

𝐵𝑛 �𝑟2𝑛 sin (2𝑛𝜃)�

𝐵𝑛 =
2
𝜋𝑛 �

𝜋
2

0
𝑓 (𝜃) sin (2𝑛𝜃) 𝑑𝜃

The following are some plots of the solution

Figure 2.8: Solution using 𝑓(𝜃) = 𝜃 sin(3𝜃)
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Figure 2.9: Solution using 𝑓(𝜃) = 𝜃

2.4.3.2 Part (d)

The Laplace PDE in polar coordinates is

𝑟2
𝜕2𝑢
𝜕𝑟2

+ 𝑟
𝜕𝑢
𝜕𝑟

+
𝜕2𝑢
𝜕𝜃2

= 0

With boundary conditions

𝑢 (𝑟, 0) = 0

𝑢 �𝑟,
𝜋
2
� = 0

𝑢 (1, 𝜃) = 𝑓 (𝜃)

Assuming the solution is

𝑢 (𝑟, 𝜃) = 𝑅 (𝑟)Θ (𝜃)

Substituting this back into the PDE gives

𝑟2𝑅′′Θ + 𝑟𝑅′Θ + 𝑅Θ ′′ = 0

Dividing by 𝑅Θ ≠ 0 gives

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
+
Θ ′′

Θ
= 0

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
= −

Θ ′′

Θ
Since each side depends on di�erent independent variable and they are equal, they must
be equal to same constant. say 𝜆.

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
= −

Θ ′′

Θ
= 𝜆

This results in two ODE’s with the following boundary conditions

Θ ′′ + 𝜆Θ = 0
Θ ′ (0) = 0 (1)

Θ ′ �
𝜋
2
� = 0

And

𝑟2𝑅′′ + 𝑟𝑅′ − 𝜆𝑅 = 0 (2)

|𝑅 (0)| < ∞

Starting with (1). Consider Case 𝜆 < 0 The solution will be

Θ = 𝐴 cosh �√𝜆𝜃� + 𝐵 sinh �√𝜆𝜃�

And

Θ ′ = 𝐴√𝜆 sinh �√𝜆𝜃� + 𝐵√𝜆 cosh �√𝜆𝜃�

Applying first B.C. gives 0 = 𝐵√𝜆, therefore 𝐵 = 0 and the solution becomes 𝐴 cosh �√𝜆𝜃�
andΘ ′ = 𝐴√𝜆 sinh �√𝜆𝜃�. Applying second B.C. gives 0 = 𝐴√𝜆 sinh �√𝜆𝜋2 �. But sinh �√𝜆𝜋2 � ≠
0 since 𝜆 ≠ 0, therefore𝐴 = 0 and the trivial solution results. Hence 𝜆 < 0 is not an eigenvalue.
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Case 𝜆 = 0 The ODE becomes

Θ ′′ = 0

With solution

Θ = 𝐴𝜃 + 𝐵

And Θ ′ = 𝐴. First B.C. gives 0 = 𝐴. Hence Θ = 𝐵. Second B.C. produces no result and the
solution is constant. Hence

Θ = 𝐶0

Where 𝐶0 is constant. Therefore 𝜆 = 0 is an eigenvalue.

Case 𝜆 > 0 The ODE becomes Θ ′′ + 𝜆Θ = 0 with solution

Θ = 𝐴 cos �√𝜆𝜃� + 𝐵 sin �√𝜆𝜃�

Θ ′ = −𝐴√𝜆 sin �√𝜆𝜃� + 𝐵√𝜆 cos �√𝜆𝜃�

The first B.C. gives 0 = 𝐵√𝜆 or 𝐵 = 0. The solution becomes

Θ = 𝐴 cos �√𝜆𝜃�

And Θ ′ = −𝐴√𝜆 sin �√𝜆𝜃� . The second B.C. gives

0 = −𝐴√𝜆 sin �√𝜆
𝜋
2
�

For non-trivial solution sin �√𝜆𝜋2 � = 0 or √𝜆
𝜋
2 = 𝑛𝜋 for 𝑛 = 1, 2, 3,⋯. Hence the eigenvalues

are

�𝜆𝑛 = 2𝑛
𝜆𝑛 = 4𝑛2 𝑛 = 1, 2, 3,⋯

And the eigenfunction is

Θ𝑛 (𝜃) = 𝐴𝑛 cos (2𝑛𝜃) 𝑛 = 1, 2, 3,⋯ (3)

Now the 𝑅 ODE is solved. The ODE is

𝑟2𝑅′′ + 𝑟𝑅′ − 𝜆𝑅 = 0

Case 𝜆 = 0

The ODE becomes 𝑟2𝑅′′ + 𝑟𝑅′ = 0. Let 𝑣 (𝑟) = 𝑅′ (𝑟) and the ODE becomes

𝑟2𝑣′ + 𝑟𝑣 = 0

Dividing by 𝑟 ≠ 0

𝑣′ (𝑟) +
1
𝑟
𝑣 (𝑟) = 0

Using integrating factor 𝑒∫
1
𝑟 𝑑𝑟 = 𝑒ln 𝑟 = 𝑟. Hence

𝑑
𝑑𝑟
(𝑟𝑣) = 0

Hence

𝑟𝑣 = 𝐴

𝑣 (𝑟) =
𝐴
𝑟

But since 𝑣 (𝑟) = 𝑅′ (𝑟) then 𝑅′ = 𝑐1
𝑟 . The solution to this ODE Is

𝑅 (𝑟) = �
𝐴
𝑟
𝑑𝑟 + 𝐵

Therefore, for 𝜆 = 0 the solution is

𝑅 (𝑟) = 𝐴 ln |𝑟| + 𝐵 𝑟 ≠ 0

Since

lim
𝑟→0

|𝑅 (𝑟)| < ∞
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Then 𝐴 = 0 and the solution is just a constant

𝑅 (𝑟) = 𝐵0
Case 𝜆 > 0 The ODE is

𝑟2𝑅′′ + 𝑟𝑅′ − 4𝑛2𝑅 = 0 𝑛 = 1, 2, 3,⋯

The Let 𝑅 (𝑟) = 𝑟𝑝. Then 𝑅′ = 𝑝𝑟𝑝−1 and 𝑅′′ = 𝑝 �𝑝 − 1� 𝑟𝑝−2. This gives

𝑟2 �𝑝 �𝑝 − 1� 𝑟𝑝−2� + 𝑟 �𝑝𝑟𝑝−1� − 4𝑛2𝑟𝑝 = 0

��𝑝2 − 𝑝� 𝑟𝑝� + 𝑝𝑟𝑝 − 4𝑛2𝑟𝑝 = 0
𝑟𝑝𝑝2 − 𝑝𝑟𝑝 + 𝑝𝑟𝑝 − 4𝑛2𝑟𝑝 = 0

𝑝2 − 4𝑛2 = 0
𝑝 = ±2𝑛

Hence the solution is

𝑅 (𝑟) = 𝐶𝑟2𝑛 + 𝐷
1
𝑟2𝑛

The condition that

lim
𝑟→0

|𝑅 (𝑟)| < ∞

Implies 𝐷 = 0, Hence the solution becomes

𝑅𝑛 (𝑟) = 𝐶𝑛𝑟2𝑛 𝑛 = 1, 2, 3,⋯ (4)

Now the solutions are combined. For 𝜆 = 0 the solution is

𝑢0 (𝑟, 𝜃) = 𝐶0𝐵0
Which can be combined to one constant 𝐵0. Hence

𝑢0 = 𝐵0 (5)

And for 𝜆 > 0 the solution is

𝑢𝑛 (𝑟, 𝜃) = 𝑅𝑛Θ𝑛

= 𝐶𝑛𝑟2𝑛 (𝐴𝑛 cos (2𝑛𝜃))
= 𝐵𝑛𝑟2𝑛 cos (2𝑛𝜃)

Where 𝐶𝑛𝐴𝑛 are combined into one constant 𝐵𝑛. Hence

𝑢𝑛 (𝑟, 𝜃) =
∞
�
𝑛=1

𝐵𝑛𝑟2𝑛 cos (2𝑛𝜃) (6)

Equation (5) and (6) can be combined into one this now includes eigenfunctions for both
𝜆 = 0 and 𝜆 > 0

𝑢 (𝑟, 𝜃) = 𝐵0 +
∞
�
𝑛=1

𝐵𝑛𝑟2𝑛 cos (2𝑛𝜃) (7)

Where 𝐵0 represent the products of the eigenfunctions for 𝑅 and Θ for 𝜆 = 0. Now the
nonhomogeneous condition is applied to find 𝐵𝑛.

𝜕
𝜕𝑟
𝑢 (𝑟, 𝜃) =

∞
�
𝑛=1

𝐵𝑛 (2𝑛) 𝑟2𝑛−1 cos (2𝑛𝜃)

Hence 𝜕
𝜕𝑟𝑢 (1, 𝜃) = 𝑔 (𝜃) becomes

𝑔 (𝜃) =
∞
�
𝑛=1

2𝐵𝑛𝑛 cos (2𝑛𝜃) (8)

Multiplying by cos (2𝑚𝜃) and integrating gives

�
𝜋
2

0
𝑔 (𝜃) cos (2𝑚𝜃) 𝑑𝜃 = �

𝜋
2

0
cos (2𝑚𝜃)

∞
�
𝑛=1

2𝐵𝑛𝑛 cos (2𝑛𝜃) 𝑑𝜃

=
∞
�
𝑛=1

2𝑛𝐵𝑛�
𝜋
2

0
cos (2𝑚𝜃) cos (2𝑛𝜃) 𝑑𝜃 (9)
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As in the last part, the integral on right gives 𝜋
4 when 𝑛 = 𝑚 and zero otherwise, hence

�
𝜋
2

0
𝑔 (𝜃) cos (2𝑛𝜃) 𝑑𝜃 = 2𝑛𝐵𝑛

𝜋
4

𝐵𝑛 =
2
𝜋𝑛 �

𝜋
2

0
𝑔 (𝜃) cos (2𝑛𝜃) 𝑑𝜃 𝑛 = 1, 2, 3,⋯

Therefore the final solution is from (7) and (9)

𝑢 (𝑟, 𝜃) = 𝐵0 +
∞
�
𝑛=1

𝐵𝑛𝑟2𝑛 cos (2𝑛𝜃)

= 𝐵0 +
∞
�
𝑛=1

⎛
⎜⎜⎜⎝
2
𝜋𝑛 �

𝜋
2

0
𝑔 (𝜃) cos (2𝑚𝜃) 𝑑𝜃

⎞
⎟⎟⎟⎠ 𝑟2𝑛 cos (2𝑛𝜃)

The unknown constant 𝐵0 can be found if given the initial temperature as was done in
problem 2.5.2 part (c). To answer the last part. Using (8) and integrating

�
𝜋
2

0
𝑔 (𝜃) 𝑑𝜃 = �

𝜋
2

0

∞
�
𝑛=1

2𝑛𝐵𝑛 cos (2𝑛𝜃) 𝑑𝜃

=
∞
�
𝑛=1

2𝑛𝐵𝑛�
𝜋
2

0
cos (2𝑛𝜃) 𝑑𝜃

But

�
𝜋
2

0
cos (2𝑛𝜃) 𝑑𝜃 = �

sin (2𝑛𝜃)
2𝑛 �

𝜋
2

0

=
1
2𝑛 �

sin 2𝑛
2
𝜋 − 0�

=
1
2𝑛
(sin 𝑛𝜋 − 0)

= 0

Since 𝑛 is an integer. This condition physically means the same as in part (b) problem
2.5.2. Which is, since at steady state the flux must be zero on all boundaries, and 𝑔 (𝜃)
represents the flux over the surface of the quarter circle, then the integral of the flux must
be zero. This means there is no thermal energy flowing across the boundary.

2.4.4 Problem 2.5.8(b) (problem 4)

2.5. Laplace's Equation 87

2.5.8. Solve Laplace's equation inside a circular annulus (a < r < b) subject to
the boundary conditions

* (a) u(a, 9) = f (O), u(b, 9) = g(9)

(b) 67 (a,0) = 0, u(b,0) = g(9)

(c) (a,0) =Wr- f(0), (b,0) = g(0)3T

If there is a solvability condition, state it and explain it physically.

*2.5.9. Solve Laplace's equation inside a 90° sector of a circular annulus (a < r <
b, 0 < 0 < ir/2) subject to the boundary conditions

(a) u(r, 0) = 0, u(r, it/2) = 0, u(a, 9) = 0, u(b, 0) = f (0)

(b) u(r,0) = 0, u(r,ir/2) = f(r), u(a,0) = 0, u(b,9) = 0

2.5.10. Using the maximum principles for Laplace's equation, prove that the so-
lution of Poisson's equation, V2u = g(x), subject to u = f (x) on the
boundary, is unique.

2.5.11. Do Exercise 1.5.8.

2.5.12. (a) Using the divergence theorem, determine an alternative expression for
ffu02udxdydz.

(b) Using part (a), prove that the solution of Laplace's equation V2u = 0
(with u given on the boundary) is unique.

(c) Modify part (b) if 0 on the boundary.
(d) Modify part (b) if 0 on the boundary. Show that Newton's

law of cooling corresponds to h < 0.

2.5.13. Prove that the temperature satisfying Laplace's equation cannot attain its
minimum in the interior.

2.5.14. Show that the "backward" heat equation

au 02u
at = -k 8x2 ,

subject to u(0, t) = u(L, t) = 0 and u(x, 0) = f (x), is not well posed. (Hint:
Show that if the data are changed an arbitrarily small amount, for example,

1
srn _f (x) -' f (x) + n

for large n, then the solution u(x, t) changes by a large amount.]

2.5.15. Solve Laplace's equation inside a semi-infinite strip (0 < x < oo, 0 < y < H)
subject to the boundary conditions

The Laplace PDE in polar coordinates is

𝑟2
𝜕2𝑢
𝜕𝑟2

+ 𝑟
𝜕𝑢
𝜕𝑟

+
𝜕2𝑢
𝜕𝜃2

= 0 (A)

With
𝜕𝑢
𝜕𝑟

(𝑎, 𝜃) = 0

𝑢 (𝑏, 𝜃) = 𝑔 (𝜃) (B)

Assuming the solution can be written as

𝑢 (𝑟, 𝜃) = 𝑅 (𝑟)Θ (𝜃)
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And substituting this assumed solution back into the (A) gives

𝑟2𝑅′′Θ + 𝑟𝑅′Θ + 𝑅Θ ′′ = 0

Dividing the above by 𝑅Θ gives

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
+
Θ ′′

Θ
= 0

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
= −

Θ ′′

Θ
Since each side depends on di�erent independent variable and they are equal, they must
be equal to same constant. say 𝜆.

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
= −

Θ ′′

Θ
= 𝜆

This results in the following two ODE’s. The boundaries conditions in (B) are also trans-
ferred to each ODE. This results in

Θ ′′ + 𝜆Θ = 0 (1)

Θ(−𝜋) = Θ (𝜋)
Θ ′ (−𝜋) = Θ ′ (𝜋)

And

𝑟2𝑅′′ + 𝑟𝑅′ − 𝜆𝑅 = 0 (2)

𝑅′ (𝑎) = 0

Starting with (1) Case 𝜆 < 0 The solution is

Θ(𝜃) = 𝐴 cosh �√𝜆𝜃� + 𝐵 sinh �√𝜆𝜃�

First B.C. gives

Θ(−𝜋) = Θ (𝜋)

𝐴 cosh �−√𝜆𝜋� + 𝐵 sinh �−√𝜆𝜋� = 𝐴 cosh �√𝜆𝜋� + 𝐵 sinh �√𝜆𝜋�

𝐴 cosh �√𝜆𝜋� − 𝐵 sinh �√𝜆𝜋� = 𝐴 cosh �√𝜆𝜋� + 𝐵 sinh �√𝜆𝜋�

2𝐵 sinh �√𝜆𝜋� = 0

But sinh �√𝜆𝜋� = 0 only at zero and 𝜆 ≠ 0, hence 𝐵 = 0 and the solution becomes

Θ(𝜃) = 𝐴 cosh �√𝜆𝜃�

Θ ′ (𝜃) = 𝐴√𝜆 cosh �√𝜆𝜃�

Applying the second B.C. gives

Θ ′ (−𝜋) = Θ ′ (𝜋)

𝐴√𝜆 cosh �−√𝜆𝜋� = 𝐴√𝜆 cosh �√𝜆𝜋�

𝐴√𝜆 cosh �√𝜆𝜋� = 𝐴√𝜆 cosh �√𝜆𝜋�

2𝐴√𝜆 cosh �√𝜆𝜋� = 0

But cosh �√𝜆𝜋� ≠ 0 hence 𝐴 = 0. Therefore trivial solution and 𝜆 < 0 is not an eigenvalue.

Case 𝜆 = 0 The solution is Θ = 𝐴𝜃 + 𝐵. Applying the first B.C. gives

Θ(−𝜋) = Θ (𝜋)
−𝐴𝜋 + 𝐵 = 𝜋𝐴 + 𝐵

2𝜋𝐴 = 0
𝐴 = 0

And the solution becomes Θ = 𝐵0. A constant. Hence 𝜆 = 0 is an eigenvalue.

Case 𝜆 > 0
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The solution becomes

Θ = 𝐴 cos �√𝜆𝜃� + 𝐵 sin �√𝜆𝜃�

Θ ′ = −𝐴√𝜆 sin �√𝜆𝜃� + 𝐵√𝜆 cos �√𝜆𝜃�

Applying first B.C. gives

Θ(−𝜋) = Θ (𝜋)

𝐴 cos �−√𝜆𝜋� + 𝐵 sin �−√𝜆𝜋� = 𝐴 cos �√𝜆𝜋� + 𝐵 sin �√𝜆𝜋�

𝐴 cos �√𝜆𝜋� − 𝐵 sin �√𝜆𝜋� = 𝐴 cos �√𝜆𝜋� + 𝐵 sin �√𝜆𝜋�

2𝐵 sin �√𝜆𝜋� = 0 (3)

Applying second B.C. gives

Θ ′ (−𝜋) = Θ ′ (𝜋)

−𝐴√𝜆 sin �−√𝜆𝜋� + 𝐵√𝜆 cos �−√𝜆𝜋� = −𝐴√𝜆 sin �√𝜆𝜋� + 𝐵√𝜆 cos �√𝜆𝜋�

𝐴√𝜆 sin �√𝜆𝜋� + 𝐵√𝜆 cos �√𝜆𝜋� = −𝐴√𝜆 sin �√𝜆𝜋� + 𝐵√𝜆 cos �√𝜆𝜋�

𝐴√𝜆 sin �√𝜆𝜋� = −𝐴√𝜆 sin �√𝜆𝜋�

2𝐴 sin �√𝜆𝜋� = 0 (4)

Equations (3,4) can be both zero only if 𝐴 = 𝐵 = 0 which gives trivial solution, or when
sin �√𝜆𝜋� = 0. Therefore taking sin �√𝜆𝜋� = 0 gives a non-trivial solution. Hence

√𝜆𝜋 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯
𝜆𝑛 = 𝑛2 𝑛 = 1, 2, 3,⋯

Hence the solution for Θ is

Θ = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝜃) + 𝐵𝑛 sin (𝑛𝜃) (5)

Now the 𝑅 equation is solved

The case for 𝜆 = 0 gives

𝑟2𝑅′′ + 𝑟𝑅′ = 0

𝑅′′ +
1
𝑟
𝑅′ = 0 𝑟 ≠ 0

As was done in last problem, the solution to this is

𝑅 (𝑟) = 𝐴 ln |𝑟| + 𝐶
Since 𝑟 > 0 no need to keep worrying about |𝑟| and is removed for simplicity. Applying the
B.C. gives

𝑅′ = 𝐴
1
𝑟

Evaluating at 𝑟 = 𝑎 gives

0 = 𝐴
1
𝑎

Hence 𝐴 = 0, and the solution becomes

𝑅 (𝑟) = 𝐶0
Which is a constant.

Case 𝜆 > 0 The ODE in this case is

𝑟2𝑅′′ + 𝑟𝑅′ − 𝑛2𝑅 = 0 𝑛 = 1, 2, 3,⋯
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Let 𝑅 = 𝑟𝑝, the above becomes

𝑟2𝑝 �𝑝 − 1� 𝑟𝑝−2 + 𝑟𝑝𝑟𝑝−1 − 𝑛2𝑟𝑝 = 0

𝑝 �𝑝 − 1� 𝑟𝑝 + 𝑝𝑟𝑝 − 𝑛2𝑟𝑝 = 0

𝑝 �𝑝 − 1� + 𝑝 − 𝑛2 = 0
𝑝2 = 𝑛2

𝑝 = ±𝑛

Hence the solution is

𝑅𝑛 (𝑟) = 𝐶𝑟𝑛 + 𝐷
1
𝑟𝑛

𝑛 = 1, 2, 3,⋯

Applying the boundary condition 𝑅′ (𝑎) = 0 gives

𝑅′𝑛 (𝑟) = 𝑛𝐶𝑛𝑟𝑛−1 − 𝑛𝐷𝑛
1
𝑟𝑛+1

0 = 𝑅′𝑛 (𝑎)

= 𝑛𝐶𝑛𝑎𝑛−1 − 𝑛𝐷𝑛
1
𝑎𝑛+1

= 𝑛𝐶𝑛𝑎2𝑛 − 𝑛𝐷𝑛

= 𝐶𝑛𝑎2𝑛 − 𝐷𝑛

𝐷𝑛 = 𝐶𝑛𝑎2𝑛

The solution becomes

𝑅𝑛 (𝑟) = 𝐶𝑛𝑟𝑛 + 𝐶𝑛𝑎2𝑛
1
𝑟𝑛

𝑛 = 1, 2, 3,⋯

= 𝐶𝑛 �𝑟𝑛 +
𝑎2𝑛

𝑟𝑛 �

Hence the complete solution for 𝑅 (𝑟) is

𝑅 (𝑟) = 𝐶0 +
∞
�
𝑛=1

𝐶𝑛 �𝑟𝑛 +
𝑎2𝑛

𝑟𝑛 �
(6)

Using (5),(6) gives

𝑢𝑛 (𝑟, 𝜃) = 𝑅𝑛Θ𝑛

𝑢 (𝑟, 𝜃) = �𝐶0 +
∞
�
𝑛=1

𝐶𝑛 �𝑟𝑛 +
𝑎2𝑛

𝑟𝑛 �� �
𝐴0 +

∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝜃) + 𝐵𝑛 sin (𝑛𝜃)�

= 𝐷0 +
∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝜃)𝐶𝑛 �𝑟𝑛 +
𝑎2𝑛

𝑟𝑛 �
+

∞
�
𝑛=1

𝐵𝑛 sin (𝑛𝜃)𝐶𝑛 �𝑟𝑛 +
𝑎2𝑛

𝑟𝑛 �

Where 𝐷0 = 𝐶0𝐴0. To simplify more, 𝐴𝑛𝐶𝑛 is combined to 𝐴𝑛 and 𝐵𝑛𝐶𝑛 is combined to 𝐵𝑛.
The full solution is

𝑢 (𝑟, 𝜃) = 𝐷0 +
∞
�
𝑛=1

𝐴𝑛 �𝑟𝑛 +
𝑎2𝑛

𝑟𝑛 �
cos (𝑛𝜃) +

∞
�
𝑛=1

𝐵𝑛 �𝑟𝑛 +
𝑎2𝑛

𝑟𝑛 �
sin (𝑛𝜃)

The final nonhomogeneous B.C. is applied.

𝑢 (𝑏, 𝜃) = 𝑔 (𝜃)

𝑔 (𝜃) = 𝐷0 +
∞
�
𝑛=1

𝐴𝑛 �𝑏𝑛 +
𝑎2𝑛

𝑏𝑛 �
cos (𝑛𝜃) +

∞
�
𝑛=1

𝐵𝑛 �𝑏𝑛 +
𝑎2𝑛

𝑏𝑛 �
sin (𝑛𝜃)

For 𝑛 = 0, integrating both sides give

�
𝜋

−𝜋
𝑔 (𝜃) 𝑑𝜃 = �

𝜋

−𝜋
𝐷0𝑑𝜃

𝐷0 =
1
2𝜋 �

𝜋

−𝜋
𝑔 (𝜃) 𝑑𝜃
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For 𝑛 > 0, multiplying both sides by cos (𝑚𝜃) and integrating gives

�
𝜋

−𝜋
𝑔 (𝜃) cos (𝑚𝜃) 𝑑𝜃 = �

𝜋

−𝜋
𝐷0 cos (𝑚𝜃) 𝑑𝜃

+�
𝜋

−𝜋

∞
�
𝑛=1

𝐴𝑛 �𝑏𝑛 +
𝑎2𝑛

𝑏𝑛 �
cos (𝑚𝜃) cos (𝑛𝜃) 𝑑𝜃

+�
𝜋

−𝜋

∞
�
𝑛=1

𝐵𝑛 �𝑏𝑛 +
𝑎2𝑛

𝑏𝑛 �
cos (𝑚𝜃) sin (𝑛𝜃) 𝑑𝜃

Hence

�
𝜋

−𝜋
𝑔 (𝜃) cos (𝑚𝜃) 𝑑𝜃 = �

𝜋

−𝜋
𝐷0 cos (𝑚𝜃) 𝑑𝜃

+
∞
�
𝑛=1

𝐴𝑛 �𝑏𝑛 +
𝑎2𝑛

𝑏𝑛 ��
𝜋

−𝜋
cos (𝑚𝜃) cos (𝑛𝜃) 𝑑𝜃

+
∞
�
𝑛=1

𝐵𝑛 �𝑏𝑛 +
𝑎2𝑛

𝑏𝑛 ��
𝜋

−𝜋
cos (𝑚𝜃) sin (𝑛𝜃) 𝑑𝜃 (7)

But

�
𝜋

−𝜋
cos (𝑚𝜃) cos (𝑛𝜃) 𝑑𝜃 = 𝜋 𝑛 = 𝑚 ≠ 0

�
𝜋

−𝜋
cos (𝑚𝜃) cos (𝑛𝜃) 𝑑𝜃 = 0 𝑛 ≠ 𝑚

And

�
𝜋

−𝜋
cos (𝑚𝜃) sin (𝑛𝜃) 𝑑𝜃 = 0

And

�
𝜋

−𝜋
𝐷0 cos (𝑚𝜃) 𝑑𝜃 = 0

Then (7) becomes

�
𝜋

−𝜋
𝑔 (𝜃) cos (𝑛𝜃) 𝑑𝜃 = 𝜋𝐴𝑛 �𝑏𝑛 +

𝑎2𝑛

𝑏𝑛 �

𝐴𝑛 =
1
𝜋

∫𝜋
−𝜋
𝑔 (𝜃) cos (𝑛𝜃) 𝑑𝜃

𝑏𝑛 + 𝑎2𝑛

𝑏𝑛

(8)

Again, multiplying both sides by sin (𝑚𝜃) and integrating gives

�
𝜋

−𝜋
𝑔 (𝜃) sin (𝑚𝜃) 𝑑𝜃 = �

𝜋

−𝜋
𝐷0 sin (𝑚𝜃) 𝑑𝜃

+�
𝜋

−𝜋

∞
�
𝑛=1

𝐴𝑛 �𝑏𝑛 +
𝑎2𝑛

𝑏𝑛 �
sin (𝑚𝜃) cos (𝑛𝜃) 𝑑𝜃

+�
𝜋

−𝜋

∞
�
𝑛=1

𝐵𝑛 �𝑏𝑛 +
𝑎2𝑛

𝑏𝑛 �
sin (𝑚𝜃) sin (𝑛𝜃) 𝑑𝜃

Hence

�
𝜋

−𝜋
𝑔 (𝜃) sin (𝑚𝜃) 𝑑𝜃 = �

𝜋

−𝜋
𝐷0 sin (𝑚𝜃) 𝑑𝜃

+
∞
�
𝑛=1

𝐴𝑛 �𝑏𝑛 +
𝑎2𝑛

𝑏𝑛 ��
𝜋

−𝜋
sin (𝑚𝜃) cos (𝑛𝜃) 𝑑𝜃

+
∞
�
𝑛=1

𝐵𝑛 �𝑏𝑛 +
𝑎2𝑛

𝑏𝑛 ��
𝜋

−𝜋
sin (𝑚𝜃) sin (𝑛𝜃) 𝑑𝜃 (9)

But

�
𝜋

−𝜋
sin (𝑚𝜃) sin (𝑛𝜃) 𝑑𝜃 = 𝜋 𝑛 = 𝑚 ≠ 0

�
𝜋

−𝜋
sin (𝑚𝜃) sin (𝑛𝜃) 𝑑𝜃 = 0 𝑛 ≠ 𝑚

And

�
𝜋

−𝜋
sin (𝑚𝜃) cos (𝑛𝜃) 𝑑𝜃 = 0
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And

�
𝜋

−𝜋
𝐷0 sin (𝑚𝜃) 𝑑𝜃 = 0

Then (9) becomes

�
𝜋

−𝜋
𝑔 (𝜃) sin (𝑛𝜃) 𝑑𝜃 = 𝜋𝐵𝑛 �𝑏𝑛 +

𝑎2𝑛

𝑏𝑛 �

𝐵𝑛 =
1
𝜋

∫𝜋
−𝜋
𝑔 (𝜃) sin (𝑛𝜃) 𝑑𝜃

𝑏𝑛 + 𝑎2𝑛

𝑏𝑛

This complete the solution. Summary

𝑢 (𝑟, 𝜃) = 𝐷0 +
∞
�
𝑛=1

𝐴𝑛 �𝑟𝑛 +
𝑎2𝑛

𝑟𝑛 �
cos (𝑛𝜃) +

∞
�
𝑛=1

𝐵𝑛 �𝑟𝑛 +
𝑎2𝑛

𝑟𝑛 �
sin (𝑛𝜃)

𝐷0 =
1
2𝜋 �

𝜋

−𝜋
𝑔 (𝜃) 𝑑𝜃

𝐴𝑛 =
1
𝜋

∫𝜋
−𝜋
𝑔 (𝜃) cos (𝑛𝜃) 𝑑𝜃

𝑏𝑛 + 𝑎2𝑛

𝑏𝑛

𝐵𝑛 =
1
𝜋

∫𝜋
−𝜋
𝑔 (𝜃) sin (𝑛𝜃) 𝑑𝜃

𝑏𝑛 + 𝑎2𝑛

𝑏𝑛

The following are some plots of the solution.

Figure 2.10: Solution using 𝑓(𝜃) = sin(3𝜃2), 𝑎 = 0.3, 𝑏 = 0.5
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Figure 2.11: Solution using 𝑓(𝜃) = 3𝜃, 𝑎 = 0.3, 𝑏 = 0.6

Figure 2.12: Solution using 𝑓(𝜃) = 100𝜃, 𝑎 = 0.1, 𝑏 = 0.4

2.4.5 Problem 2.5.14 (problem 5)

2.5. Laplace's Equation 87

2.5.8. Solve Laplace's equation inside a circular annulus (a < r < b) subject to
the boundary conditions

* (a) u(a, 9) = f (O), u(b, 9) = g(9)

(b) 67 (a,0) = 0, u(b,0) = g(9)

(c) (a,0) =Wr- f(0), (b,0) = g(0)3T

If there is a solvability condition, state it and explain it physically.

*2.5.9. Solve Laplace's equation inside a 90° sector of a circular annulus (a < r <
b, 0 < 0 < ir/2) subject to the boundary conditions

(a) u(r, 0) = 0, u(r, it/2) = 0, u(a, 9) = 0, u(b, 0) = f (0)

(b) u(r,0) = 0, u(r,ir/2) = f(r), u(a,0) = 0, u(b,9) = 0

2.5.10. Using the maximum principles for Laplace's equation, prove that the so-
lution of Poisson's equation, V2u = g(x), subject to u = f (x) on the
boundary, is unique.

2.5.11. Do Exercise 1.5.8.

2.5.12. (a) Using the divergence theorem, determine an alternative expression for
ffu02udxdydz.

(b) Using part (a), prove that the solution of Laplace's equation V2u = 0
(with u given on the boundary) is unique.

(c) Modify part (b) if 0 on the boundary.
(d) Modify part (b) if 0 on the boundary. Show that Newton's

law of cooling corresponds to h < 0.

2.5.13. Prove that the temperature satisfying Laplace's equation cannot attain its
minimum in the interior.

2.5.14. Show that the "backward" heat equation

au 02u
at = -k 8x2 ,

subject to u(0, t) = u(L, t) = 0 and u(x, 0) = f (x), is not well posed. (Hint:
Show that if the data are changed an arbitrarily small amount, for example,

1
srn _f (x) -' f (x) + n

for large n, then the solution u(x, t) changes by a large amount.]

2.5.15. Solve Laplace's equation inside a semi-infinite strip (0 < x < oo, 0 < y < H)
subject to the boundary conditions

−1
𝑘
𝜕𝑢
𝜕𝑡

=
𝜕2𝑢
𝜕𝑥2

𝑢 (0, 𝑡) = 0
𝑢 (𝐿, 𝑡) = 0
𝑢 (𝑥, 0) = 𝑓 (𝑥)

Assume 𝑢 (𝑥, 𝑡) = 𝑋𝑇. Hence the PDE becomes

−
1
𝑘
𝑇′𝑋 = 𝑋′′𝑇

−
1
𝑘
𝑇′

𝑇
=
𝑋′′

𝑋
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Hence, for𝜆 real

−
1
𝑘
𝑇′

𝑇
=
𝑋′′

𝑋
= −𝜆

The space ODE was solved before. Only positive eigenvalues exist. The solution is

𝑋 (𝑥) =
∞
�
𝑛=1

𝐵𝑛 sin ��𝜆𝑛𝑥�

𝜆𝑛 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

The time ODE becomes

𝑇′𝑛 = 𝜆𝑛𝑇𝑛
𝑇′𝑛 − 𝜆𝑛𝑇𝑛 = 0

With solution

𝑇𝑛 (𝑡) = 𝐴𝑛𝑒𝜆𝑛𝑡

𝑇 (𝑡) =
∞
�
𝑛=1

𝐴𝑛𝑒𝜆𝑛𝑡

For the same eigenvalues. Therefore the full solution is

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐶𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑒�

𝑛𝜋
𝐿 �

2
𝑡 (1)

Where 𝐶𝑛 = 𝐴𝑛𝐵𝑛. Applying initial conditions gives

𝑓 (𝑥) =
∞
�
𝑛=1

𝐶𝑛 sin �𝑛𝜋
𝐿
𝑥�

Multiplying by sin �𝑚𝜋𝐿 𝑥� and integrating results in

�
𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0
sin �𝑚𝜋

𝐿
𝑥�

∞
�
𝑛=1

𝐶𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑑𝑥

=
∞
�
𝑛=1

𝐶𝑛�
𝐿

0
sin �𝑚𝜋

𝐿
𝑥� sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

= 𝐶𝑚
𝐿
2

Therefore

𝐶𝑛 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

The solution (1) becomes

𝑢 (𝑥, 𝑡) =
2
𝐿

∞
�
𝑛=1

��
𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥� �sin �

𝑛𝜋
𝐿
𝑥� 𝑒�

𝑛𝜋
𝐿 �

2
𝑡� (2)

Assuming initial data is changed to 𝑓 (𝑥) + 1
𝑛 sin �𝑛𝜋𝐿 𝑥� then

𝑓 (𝑥) +
1
𝑚

sin �𝑚𝜋
𝐿
𝑥� =

∞
�
𝑛=1

𝐶𝑛 sin �𝑛𝜋
𝐿
𝑥�

Multiplying both sides by sin �𝑚𝜋𝐿 𝑥� and integrating

�
𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +

1
𝑚 �

𝐿

0
sin2 �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0
sin �𝑚𝜋

𝐿
𝑥�

∞
�
𝑛=1

𝐶𝑛 sin �𝑛𝜋
𝐿
𝑥�

�
𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +

1
𝑚
𝐿
2
= 𝐶𝑚

𝐿
2

𝐶𝑛 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 +

1
𝑛
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Therefore, the new solution is

𝑢̃ (𝑥, 𝑡) =
∞
�
𝑛=1

�
2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 +

1
𝑛�

sin �𝑛𝜋
𝐿
𝑥� 𝑒�

𝑛𝜋
𝐿 �

2
𝑡

=
∞
�
𝑛=1

2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 sin �𝑛𝜋

𝐿
𝑥� 𝑒�

𝑛𝜋
𝐿 �

2
𝑡 +

1
𝑛

sin �𝑛𝜋
𝐿
𝑥� 𝑒�

𝑛𝜋
𝐿 �

2
𝑡

=
∞
�
𝑛=1

2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 sin �𝑛𝜋

𝐿
𝑥� 𝑒�

𝑛𝜋
𝐿 �

2
𝑡 +

∞
�
𝑛=1

1
𝑛

sin �𝑛𝜋
𝐿
𝑥� 𝑒�

𝑛𝜋
𝐿 �

2
𝑡

But ∑∞
𝑛=1

2
𝐿
∫𝐿
0
𝑓 (𝑥) sin �𝑚𝜋𝐿 𝑥� 𝑑𝑥 sin �𝑛𝜋𝐿 𝑥� 𝑒

� 𝑛𝜋𝐿 �
2
𝑡 = 𝑢 (𝑥, 𝑡), therefore the above can be written

as

𝑢̃ (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) +
∞
�
𝑛=1

1
𝑛

sin �𝑛𝜋
𝐿
𝑥� 𝑒�

𝑛𝜋
𝐿 �

2
𝑡

For large 𝑛, the di�erence between initial data 𝑓 (𝑥) and 𝑓 (𝑥) + 1
𝑛 sin �𝑛𝜋𝐿 𝑥� is very small,

since 1
𝑛 → 0. However, the e�ect in the solution above, due to the presence of 𝑒�

𝑛𝜋
𝐿 �

2
𝑡 is

that 1
𝑛𝑒
� 𝑛𝜋𝐿 �

2
𝑡 increases now for large 𝑛, since the exponential is to the positive power, and

it grows at a faster rate than 1
𝑛 grows small as 𝑛 increases, with the net e�ect that the

produce blow up for large 𝑛. This is because the power of the exponential is positive and

not negative is normally would be the case. Also by looking at the series of 𝑒�
𝑛𝜋
𝐿 �

2
𝑡 which

is 1 + �𝑛𝜋𝐿 �
4 𝑡2

2 + �
𝑛𝜋
𝐿
�
6 𝑡3

3! +⋯, then 1
𝑛𝑒
� 𝑛𝜋𝐿 �

2
𝑡 expands to 1

𝑛 +
1
𝑛
�𝑛𝜋
𝐿
�
4 𝑡2

2 +
1
𝑛
�𝑛𝜋
𝐿
�
6 𝑡3

3! +⋯ which
becomes very large for large 𝑛.

In the normal PDE case, the above solution would have instead been the following

𝑢̃ (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) +
∞
�
𝑛=1

1
𝑛

sin �𝑛𝜋
𝐿
𝑥� 𝑒−�

𝑛𝜋
𝐿 �

2
𝑡

And now as 𝑛 → ∞ then ∑∞
𝑛=1

1
𝑛 sin �𝑛𝜋𝐿 𝑥� 𝑒

−� 𝑛𝜋𝐿 �
2
𝑡 → 0 as well. Notice that sin �𝑛𝜋𝐿 𝑥� term is

not important for this analysis, as its value oscillates between −1 and +1.

2.4.6 Problem 2.5.22 (problem 6)

88

(a) 8' (x, 0) = 0,

(b) u(x,0) = 0,

(c) u(x,0) = 0,

(d) (x, 0) = 0,

Chapter 2. Method of Separation of Variables

"' (x, H) = 0, u(0, y) = f (y)

u(x, H) = 0, u(0,y) = f(y)

u(x, H) = 0, (0,y) = f(y)

Ou (x, H) = 0, a: (0, y) = f (y)

Show that the solution [part (d)] exists only if fH f (y) dy = 0.

2.5.16. Consider Laplace's equation inside a rectangle 0 < x < L, 0 < y < H, with
the boundary conditions

8u
au

8u
&"

8x(0,
y) = 0, 8x(L, y) = g(y),

8y(x, 0)
= 0, 8y (x, H) = f (x)

(a) What is the solvability condition and its physical interpretation?
(b) Show that u(x, y) = A(x2 - y2) is a solution if f (x) and g(y) are

constants [under the conditions of part (a)].
(c) Under the conditions of part (a), solve the general case [nonconstant

f (x) and g(y)]. [Hints: Use part (b) and the fact that f (x) = f +
[f (x) - f.,.], where f.,. = L fL f (x) dx.]

2.5.17. Show that the mass density p(x, t) satisfies k + V (pu) = 0 due to con-
servation of mass.

2.5.18. If the mass density is constant, using the result of Exercise 2.5.17, show
that

2.5.19. Show that the streamlines are parallel to the fluid velocity.

2.5.20. Show that anytime there is a stream function, V x u = 0.

2.5.21. From u and v=- ,derive u,-=rue=-
2.5.22. Show the drag force is zero for a uniform flow past a cylinder including

circulation.

2.5.23. Consider the velocity ug at the cylinder. Where do the maximum and
minimum occur?

2.5.24. Consider .the velocity ue at the cylinder. If the circulation is negative, show
that the velocity will be larger above the cylinder than below.

2.5.25. A stagnation point is a place where u = 0. For what values of the circulation
does a stagnation point exist on the cylinder?

2.5.26. For what values of 0 will u,. = 0 off the cylinder? For these 6, where (for
what values of r) will ue = 0 also?

2.5.27. Show that r/ = a 81T B satisfies Laplace's equation. Show that the streamlines
are circles. Graph the streamlines.

The force exerted by the fluid on the cylinder is given by equation 2.5.56, page 77 of the
text as

𝐹̄ = −�
2𝜋

0
𝑝 ⟨cos𝜃, sin𝜃⟩ 𝑎𝑑𝜃

Where 𝑎 is the cylinder radius, 𝑝 is the fluid pressure. This vector has 2 components. The
𝑥 component is the drag force and the 𝑦 component is the left force as illustrated by this
diagram.
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θ
r

radius = a
Fx = −

∫ 2π

0
p cos(θ)a dθ

Fy = −
∫ 2π

0
p sin(θ)a dθ

Lift force (y direction)

Drag force (x direction)

Therefore the drag force (per unit length) is

𝐹𝑥 = −�
2𝜋

0
𝑝 cos𝜃𝑎𝑑𝜃 (1)

Now the pressure 𝑝 needs to be determined in order to compute the above. The fluid
pressure 𝑝 is related to fluid flow velocity by the Bernoulli condition

𝑝 +
1
2
𝜌 |𝑢̄|2 = 𝐶 (2)

Where 𝐶 is some constant and 𝜌 is fluid density and 𝑢̄ is the flow velocity vector. Hence in
order to find 𝑝, the fluid velocity is needed. But the fluid velocity is given by

𝑢̄ = 𝑢𝑟𝑟̂ + 𝑢𝜃𝜃̂

=
1
𝑟
𝜕Ψ
𝜕𝜃

𝑟̂ −
𝜕Ψ
𝜕𝑟

𝜃̂

Since the radial component of the fluid velocity is zero at the surface if the cylinder (This
is one of the boundary conditions used to derive the solution), then only the tangential

component comes into play. Hence |𝑢̄| = �−𝜕Ψ𝜕𝑟 � but

Ψ(𝑟, 𝜃) = 𝑐1 ln � 𝑟
𝑎
� + 𝑢0 �𝑟 −

𝑎2

𝑟 �
sin𝜃

Therefore
𝜕Ψ
𝜕𝑟

=
𝑐1
𝑟
+ 𝑢0 �1 +

𝑎2

𝑟2 �
sin𝜃

And hence

|𝑢̄| = �−
𝜕Ψ
𝜕𝑟

�

= �−
𝑐1
𝑟
+ 𝑢0 �1 +

𝑎2

𝑟2 �
sin𝜃�

At the surface 𝑟 = 𝑎, hence

|𝑢̄| = �−
𝑐1
𝑎
+ 2𝑢0 sin𝜃�

Substituting this into (2) in order to solve for pressure 𝑝 gives

𝑝 +
1
2
𝜌 �−

𝑐1
𝑎
+ 2𝑢0 sin𝜃�

2
= 𝐶

𝑝 = 𝐶 −
1
2
𝜌 �−

𝑐1
𝑎
+ 2𝑢0 sin𝜃�

2

Substituting the above into (1) in order to solve for the drag gives

𝐹𝑥 = −�
2𝜋

0
�𝐶 −

1
2
𝜌 �−

𝑐1
𝑎
+ 2𝑢0 sin𝜃�

2
� cos𝜃𝑎𝑑𝜃

The above is the quantity that needs to be shown to be zero.

𝐹𝑥 = −𝑎𝐶�
2𝜋

0
cos𝜃𝑑𝜃 − 𝑎

2
𝜌�

2𝜋

0
�−
𝑐1
𝑎
+ 2𝑢0 sin𝜃�

2
cos𝜃𝑑𝜃
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But ∫
2𝜋

0
cos𝜃𝑑𝜃 = 0 hence the above simplifies to

𝐹𝑥 = −
𝑎
2
𝜌�

2𝜋

0
�−
𝑐1
𝑎
+ 2𝑢0 sin𝜃�

2
cos𝜃𝑑𝜃

= −
𝑎
2
𝜌�

2𝜋

0

𝑐21
𝑎2

cos𝜃 + 4𝑢20 sin2 𝜃 cos𝜃 − 4𝑐1
𝑎
𝑢0 sin𝜃 cos𝜃𝑑𝜃

= −
𝑎
2
𝜌 �
𝑐21
𝑎2 �

2𝜋

0
cos𝜃𝑑𝜃 + 4𝑢20�

2𝜋

0
sin2 𝜃 cos𝜃𝑑𝜃 − 4𝑐1

𝑎
𝑢0�

2𝜋

0
sin𝜃 cos𝜃𝑑𝜃�

But ∫
2𝜋

0
cos𝜃𝑑𝜃 = 0 and ∫2𝜋

0
sin𝜃 cos𝜃𝑑𝜃 = 0 hence the above reduces to

𝐹𝑥 = −4𝑎𝜌𝑢20�
2𝜋

0
sin2 𝜃 cos𝜃𝑑𝜃

But sin2 𝜃 = 1
2 −

1
2 cos (2𝜃) and the above becomes

𝐹𝑥 = −4𝑎𝜌𝑢20�
2𝜋

0
�
1
2
−
1
2

cos (2𝜃)� cos𝜃𝑑𝜃

= −4𝑎𝜌𝑢20 �
1
2 �

2𝜋

0
cos𝜃𝑑𝜃 − 1

2 �
2𝜋

0
cos (2𝜃) cos𝜃𝑑𝜃�

But ∫
2𝜋

0
cos𝜃𝑑𝜃 = 0 and by orthogonality of cos function ∫2𝜋

0
cos (2𝜃) cos (𝜃) 𝑑𝜃 = 0 as well.

Therefore the above reduces to

𝐹𝑥 = 0

The drag force (𝑥 component of the force exerted by fluid on the cylinder) is zero just
outside the surface of the surface of the cylinder. Which is what the question asks to show.

2.4.7 Problem 2.5.24 (problem 7)

88

(a) 8' (x, 0) = 0,

(b) u(x,0) = 0,

(c) u(x,0) = 0,

(d) (x, 0) = 0,

Chapter 2. Method of Separation of Variables

"' (x, H) = 0, u(0, y) = f (y)

u(x, H) = 0, u(0,y) = f(y)

u(x, H) = 0, (0,y) = f(y)

Ou (x, H) = 0, a: (0, y) = f (y)

Show that the solution [part (d)] exists only if fH f (y) dy = 0.

2.5.16. Consider Laplace's equation inside a rectangle 0 < x < L, 0 < y < H, with
the boundary conditions

8u
au

8u
&"

8x(0,
y) = 0, 8x(L, y) = g(y),

8y(x, 0)
= 0, 8y (x, H) = f (x)

(a) What is the solvability condition and its physical interpretation?
(b) Show that u(x, y) = A(x2 - y2) is a solution if f (x) and g(y) are

constants [under the conditions of part (a)].
(c) Under the conditions of part (a), solve the general case [nonconstant

f (x) and g(y)]. [Hints: Use part (b) and the fact that f (x) = f +
[f (x) - f.,.], where f.,. = L fL f (x) dx.]

2.5.17. Show that the mass density p(x, t) satisfies k + V (pu) = 0 due to con-
servation of mass.

2.5.18. If the mass density is constant, using the result of Exercise 2.5.17, show
that

2.5.19. Show that the streamlines are parallel to the fluid velocity.

2.5.20. Show that anytime there is a stream function, V x u = 0.

2.5.21. From u and v=- ,derive u,-=rue=-
2.5.22. Show the drag force is zero for a uniform flow past a cylinder including

circulation.

2.5.23. Consider the velocity ug at the cylinder. Where do the maximum and
minimum occur?

2.5.24. Consider .the velocity ue at the cylinder. If the circulation is negative, show
that the velocity will be larger above the cylinder than below.

2.5.25. A stagnation point is a place where u = 0. For what values of the circulation
does a stagnation point exist on the cylinder?

2.5.26. For what values of 0 will u,. = 0 off the cylinder? For these 6, where (for
what values of r) will ue = 0 also?

2.5.27. Show that r/ = a 81T B satisfies Laplace's equation. Show that the streamlines
are circles. Graph the streamlines.

Introduction. The stream velocity 𝑢̄ in Cartesian coordinates is

𝑢̄ = 𝑢 ̂𝚤 + 𝑣 ̂𝚥

=
𝜕Ψ
𝜕𝑦

̂𝚤 −
𝜕Ψ
𝜕𝑥

̂𝚥 (1)

Where Ψ is the stream function which satisfies Laplace PDE in 2D ∇ 2Ψ = 0. In Polar
coordinates the above becomes

𝑢̄ = 𝑢𝑟𝑟̂ + 𝑢𝜃𝜃̂

=
1
𝑟
𝜕Ψ
𝜕𝜃

𝑟̂ −
𝜕Ψ
𝜕𝑟

𝜃̂ (2)

The solution to ∇ 2Ψ = 0 was found under the following conditions

1. When 𝑟 very large, or in other words, when too far away from the cylinder or the
wing, the flow lines are horizontal only. This means at 𝑟 = ∞ the 𝑦 component of

𝑢̄ in (1) is zero. This means
𝜕Ψ�𝑥,𝑦�

𝜕𝑥 = 0. Therefore Ψ�𝑥, 𝑦� = 𝑢0𝑦 where 𝑢0 is some
constant. In polar coordinates this implies Ψ(𝑟, 𝜃) = 𝑢0𝑟 sin𝜃, since 𝑦 = 𝑟 sin𝜃.

2. The second condition is that radial component of 𝑢̄ is zero. In other words, 1𝑟
𝜕Ψ
𝜕𝜃 = 0

when 𝑟 = 𝑎, where 𝑎 is the radius of the cylinder.

3. In addition to the above two main condition, there is a condition that Ψ = 0 at 𝑟 = 0

Using the above three conditions, the solution to ∇ 2Ψ = 0 was derived in lecture Sept. 30,
2016, to be

Ψ(𝑟, 𝜃) = 𝑐1 ln � 𝑟
𝑎
� + 𝑢0 �𝑟 −

𝑎2

𝑟 �
sin𝜃
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Using the above solution, the velocity 𝑢̄ can now be found using the definition in (2) as
follows

1
𝑟
𝜕Ψ
𝜕𝜃

=
1
𝑟
𝑢0 �𝑟 −

𝑎2

𝑟 �
cos𝜃

𝜕Ψ
𝜕𝑟

=
𝑐1
𝑟
+ 𝑢0 �1 +

𝑎2

𝑟2 �
sin𝜃

Hence, in polar coordinates

𝑢̄ = �1𝑟𝑢0 �𝑟 −
𝑎2

𝑟
� cos𝜃� 𝑟̂ − � 𝑐1𝑟 + 𝑢0 �1 +

𝑎2

𝑟2
� sin𝜃� 𝜃̂ (3)

Now the question posed can be answered. The circulation is given by

Γ = �
2𝜋

0
𝑢𝜃𝑟𝑑𝜃

But from (3) 𝑢𝜃 = − �
𝑐1
𝑟 + 𝑢0 �1 +

𝑎2

𝑟2
� sin𝜃�, therefore the above becomes

Γ = �
2𝜋

0
− �
𝑐1
𝑟
+ 𝑢0 �1 +

𝑎2

𝑟2 �
sin𝜃� 𝑟𝑑𝜃

At 𝑟 = 𝑎 the above simplifies to

Γ = �
2𝜋

0
− �
𝑐1
𝑎
+ 2𝑢0 sin𝜃� 𝑎𝑑𝜃

= �
2𝜋

0
−𝑐1 − 2𝑎𝑢0 sin𝜃𝑑𝜃

= −�
2𝜋

0
𝑐1𝑑𝜃 − 2𝑎𝑢0�

2𝜋

0
sin𝜃𝑑𝜃

But ∫
2𝜋

0
sin𝜃𝑑𝜃 = 0, hence

Γ = −𝑐1�
2𝜋

0
𝑑𝜃

= −2𝑐1𝜋

Since Γ < 0, then 𝑐1 > 0. Now that 𝑐1 is known to be positive, then the velocity is calculated

at 𝜃 = −𝜋
2 and then at 𝜃 = +𝜋

2 to see which is larger. Since this is calculated at 𝑟 = 𝑎, then
the radial velocity is zero and only 𝑢𝜃 needs to be evaluated in (3).

At 𝜃 = −𝜋
2

𝑢�−𝜋2 �
= − �

𝑐1
𝑟
+ 𝑢0 �1 +

𝑎2

𝑟2 �
sin �−𝜋

2
��

= − �
𝑐1
𝑟
− 𝑢0 �1 +

𝑎2

𝑟2 �
sin �𝜋

2
��

= − �
𝑐1
𝑟
− 𝑢0 �1 +

𝑎2

𝑟2 ��

At 𝑟 = 𝑎

𝑢�−𝜋2 �
= − �

𝑐1
𝑎
− 2𝑢0�

= −
𝑐1
𝑎
+ 2𝑢0 (4)

At 𝜃 = +𝜋
2

𝑢�+𝜋2 �
= − �

𝑐1
𝑟
+ 𝑢0 �1 +

𝑎2

𝑟2 �
sin �𝜋

2
��

= − �
𝑐1
𝑟
+ 𝑢0 �1 +

𝑎2

𝑟2 ��
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At 𝑟 = 𝑎

𝑢�−𝜋2 �
= − �

𝑐1
𝑎
+ 2𝑢0�

= −
𝑐1
𝑎
− 2𝑢0 (5)

Comparing (4),(5), and since 𝑐1 > 0, then the magnitude of 𝑢𝜃 at 𝜋
2 is larger than the

magnitude of 𝑢𝜃 at
−𝜋
2 . Which implies the stream flows faster above the cylinder than below

it.
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2.5 HW 4

2.5.1 Problem 2.5.24

88

(a) 8' (x, 0) = 0,

(b) u(x,0) = 0,

(c) u(x,0) = 0,

(d) (x, 0) = 0,

Chapter 2. Method of Separation of Variables

"' (x, H) = 0, u(0, y) = f (y)

u(x, H) = 0, u(0,y) = f(y)

u(x, H) = 0, (0,y) = f(y)

Ou (x, H) = 0, a: (0, y) = f (y)

Show that the solution [part (d)] exists only if fH f (y) dy = 0.

2.5.16. Consider Laplace's equation inside a rectangle 0 < x < L, 0 < y < H, with
the boundary conditions

8u
au

8u
&"

8x(0,
y) = 0, 8x(L, y) = g(y),

8y(x, 0)
= 0, 8y (x, H) = f (x)

(a) What is the solvability condition and its physical interpretation?
(b) Show that u(x, y) = A(x2 - y2) is a solution if f (x) and g(y) are

constants [under the conditions of part (a)].
(c) Under the conditions of part (a), solve the general case [nonconstant

f (x) and g(y)]. [Hints: Use part (b) and the fact that f (x) = f +
[f (x) - f.,.], where f.,. = L fL f (x) dx.]

2.5.17. Show that the mass density p(x, t) satisfies k + V (pu) = 0 due to con-
servation of mass.

2.5.18. If the mass density is constant, using the result of Exercise 2.5.17, show
that

2.5.19. Show that the streamlines are parallel to the fluid velocity.

2.5.20. Show that anytime there is a stream function, V x u = 0.

2.5.21. From u and v=- ,derive u,-=rue=-
2.5.22. Show the drag force is zero for a uniform flow past a cylinder including

circulation.

2.5.23. Consider the velocity ug at the cylinder. Where do the maximum and
minimum occur?

2.5.24. Consider .the velocity ue at the cylinder. If the circulation is negative, show
that the velocity will be larger above the cylinder than below.

2.5.25. A stagnation point is a place where u = 0. For what values of the circulation
does a stagnation point exist on the cylinder?

2.5.26. For what values of 0 will u,. = 0 off the cylinder? For these 6, where (for
what values of r) will ue = 0 also?

2.5.27. Show that r/ = a 81T B satisfies Laplace's equation. Show that the streamlines
are circles. Graph the streamlines.

Introduction. The stream velocity 𝑢̄ in Cartesian coordinates is

𝑢̄ = 𝑢 ̂𝚤 + 𝑣 ̂𝚥

=
𝜕Ψ
𝜕𝑦

̂𝚤 −
𝜕Ψ
𝜕𝑥

̂𝚥 (1)

Where Ψ is the stream function which satisfies Laplace PDE in 2D ∇ 2Ψ = 0. In Polar
coordinates the above becomes

𝑢̄ = 𝑢𝑟𝑟̂ + 𝑢𝜃𝜃̂

=
1
𝑟
𝜕Ψ
𝜕𝜃

𝑟̂ −
𝜕Ψ
𝜕𝑟

𝜃̂ (2)

The solution to ∇ 2Ψ = 0 was found under the following conditions

1. When 𝑟 very large, or in other words, when too far away from the cylinder or the
wing, the flow lines are horizontal only. This means at 𝑟 = ∞ the 𝑦 component of

𝑢̄ in (1) is zero. This means
𝜕Ψ�𝑥,𝑦�

𝜕𝑥 = 0. Therefore Ψ�𝑥, 𝑦� = 𝑢0𝑦 where 𝑢0 is some
constant. In polar coordinates this implies Ψ(𝑟, 𝜃) = 𝑢0𝑟 sin𝜃, since 𝑦 = 𝑟 sin𝜃.

2. The second condition is that radial component of 𝑢̄ is zero. In other words, 1𝑟
𝜕Ψ
𝜕𝜃 = 0

when 𝑟 = 𝑎, where 𝑎 is the radius of the cylinder.

3. In addition to the above two main condition, there is a condition that Ψ = 0 at 𝑟 = 0

Using the above three conditions, the solution to ∇ 2Ψ = 0 was derived in lecture Sept. 30,
2016, to be

Ψ(𝑟, 𝜃) = 𝑐1 ln � 𝑟
𝑎
� + 𝑢0 �𝑟 −

𝑎2

𝑟 �
sin𝜃

Using the above solution, the velocity 𝑢̄ can now be found using the definition in (2) as
follows

1
𝑟
𝜕Ψ
𝜕𝜃

=
1
𝑟
𝑢0 �𝑟 −

𝑎2

𝑟 �
cos𝜃

𝜕Ψ
𝜕𝑟

=
𝑐1
𝑟
+ 𝑢0 �1 +

𝑎2

𝑟2 �
sin𝜃

Hence, in polar coordinates

𝑢̄ = �1𝑟𝑢0 �𝑟 −
𝑎2

𝑟
� cos𝜃� 𝑟̂ − � 𝑐1𝑟 + 𝑢0 �1 +

𝑎2

𝑟2
� sin𝜃� 𝜃̂ (3)

Now the question posed can be answered. The circulation is given by

Γ = �
2𝜋

0
𝑢𝜃𝑟𝑑𝜃

But from (3) 𝑢𝜃 = − �
𝑐1
𝑟 + 𝑢0 �1 +

𝑎2

𝑟2
� sin𝜃�, therefore the above becomes

Γ = �
2𝜋

0
− �
𝑐1
𝑟
+ 𝑢0 �1 +

𝑎2

𝑟2 �
sin𝜃� 𝑟𝑑𝜃
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At 𝑟 = 𝑎 the above simplifies to

Γ = �
2𝜋

0
− �
𝑐1
𝑎
+ 2𝑢0 sin𝜃� 𝑎𝑑𝜃

= �
2𝜋

0
−𝑐1 − 2𝑎𝑢0 sin𝜃𝑑𝜃

= −�
2𝜋

0
𝑐1𝑑𝜃 − 2𝑎𝑢0�

2𝜋

0
sin𝜃𝑑𝜃

But ∫
2𝜋

0
sin𝜃𝑑𝜃 = 0, hence

Γ = −𝑐1�
2𝜋

0
𝑑𝜃

= −2𝑐1𝜋

Since Γ < 0, then 𝑐1 > 0. Now that 𝑐1 is known to be positive, then the velocity is calculated

at 𝜃 = −𝜋
2 and then at 𝜃 = +𝜋

2 to see which is larger. Since this is calculated at 𝑟 = 𝑎, then
the radial velocity is zero and only 𝑢𝜃 needs to be evaluated in (3).

At 𝜃 = −𝜋
2

𝑢�−𝜋2 �
= − �

𝑐1
𝑟
+ 𝑢0 �1 +

𝑎2

𝑟2 �
sin �−𝜋

2
��

= − �
𝑐1
𝑟
− 𝑢0 �1 +

𝑎2

𝑟2 �
sin �𝜋

2
��

= − �
𝑐1
𝑟
− 𝑢0 �1 +

𝑎2

𝑟2 ��

At 𝑟 = 𝑎

𝑢�−𝜋2 �
= − �

𝑐1
𝑎
− 2𝑢0�

= −
𝑐1
𝑎
+ 2𝑢0 (4)

At 𝜃 = +𝜋
2

𝑢�+𝜋2 �
= − �

𝑐1
𝑟
+ 𝑢0 �1 +

𝑎2

𝑟2 �
sin �𝜋

2
��

= − �
𝑐1
𝑟
+ 𝑢0 �1 +

𝑎2

𝑟2 ��

At 𝑟 = 𝑎

𝑢�−𝜋2 �
= − �

𝑐1
𝑎
+ 2𝑢0�

= −
𝑐1
𝑎
− 2𝑢0 (5)

Comparing (4),(5), and since 𝑐1 > 0, then the magnitude of 𝑢𝜃 at 𝜋
2 is larger than the

magnitude of 𝑢𝜃 at
−𝜋
2 . Which implies the stream flows faster above the cylinder than below

it.
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2.5.2 Problem 3.2.2 (b,d)

3.2. Convergence Theorem

L n7rx L n7rx n7rx
an

L
f (x) cos L dx = L J cos L dx nir sin L

L L/2

= 1
sinn7r - sin

nir
nir 2

bn = 1 L f (x) sin
nirx

L

1L
dx = sin n

xL nir LL
J

/2

nn
Cos - - cos n7r

n7r 2

95

(3.2.7)

(3.2.8)

We omit simplifications that arise by noting that sinn7r = 0, cosnir = (-1)", and
so on.

EXERCISES 3.2

3.2.1. For the following functions, sketch the Fourier series off (x) (on the interval
-L < x < L). Compare f (x) to its Fourier series:

(a) f(x) = 1 *(b) f(x) = x2

(c) f(x)=1+x *(d) f(x) = ex

(e) f (x) = { 2x x > 0 * (f) f (x) 1+x
(g) f(x) x

0
x < L/2
x > L/2

x > O

3.2.2. For the following functions, sketch the Fourier series of f (x) (on the interval
-L < x < L) and determine the Fourier coefficients:

*(a) f(x)=x (b) f(x) = e-x

*(c) f(x) = sin

L
(d) f(x)

0 x < 0

l x x>0

(e) f(x) I jxj < L/2
0 jxI > L/2

(g) f(x) = I 1 x < 0

l 2 x>0

-1 nirx
dx = - cos

* (f) f (x) = l 0

L

IL/2

L

L/2

x<0
x>0

2.5.2.1 Part b

The following is sketch of periodic extension of 𝑒−𝑥 from 𝑥 = −𝐿⋯𝐿 (for 𝐿 = 1) for
illustration. The function will converge to 𝑒−𝑥 between 𝑥 = −𝐿⋯𝐿 and between 𝑥 = −3𝐿⋯−𝐿
and between 𝑥 = 𝐿⋯3𝐿 and so on. But at the jump discontinuities which occurs at 𝑥 =
⋯ ,−3𝐿, −𝐿, 𝐿, 3𝐿,⋯ it will converge to the average shown as small circles in the sketch.

oo o o

-3 -2 -1 1 2 3

0.5

1.0

1.5

2.0

2.5

3.0

Periodic extension of exp(-x) from -1...1

By definitions,

𝑎0 =
1
𝑇 �

𝑇/2

−𝑇/2
𝑓 (𝑥) 𝑑𝑥

𝑎𝑛 =
1
𝑇/2 �

𝑇/2

−𝑇/2
𝑓 (𝑥) cos �𝑛 �

2𝜋
𝑇 �

𝑥� 𝑑𝑥

𝑏𝑛 =
1
𝑇/2 �

𝑇/2

−𝑇/2
𝑓 (𝑥) sin �𝑛 �

2𝜋
𝑇 �

𝑥� 𝑑𝑥

The period here is 𝑇 = 2𝐿, therefore the above becomes

𝑎0 =
1
2𝐿 �

𝐿

−𝐿
𝑓 (𝑥) 𝑑𝑥

𝑎𝑛 =
1
𝐿 �

𝐿

−𝐿
𝑓 (𝑥) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

𝑏𝑛 =
1
𝐿 �

𝐿

−𝐿
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

These are now evaluated for 𝑓 (𝑥) = 𝑒−𝑥

𝑎0 =
1
2𝐿 �

𝐿

−𝐿
𝑒−𝑥𝑑𝑥 =

1
2𝐿 �

𝑒−𝑥

−1 �
𝐿

−𝐿
=
−1
2𝐿
(𝑒−𝑥)𝐿−𝐿 =

−1
2𝐿
�𝑒−𝐿 − 𝑒𝐿� =

𝑒𝐿 − 𝑒−𝐿

2𝐿

Now 𝑎𝑛 is found

𝑎𝑛 =
1
𝐿 �

𝐿

−𝐿
𝑒−𝑥 cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥
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This can be done using integration by parts. ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢. Let

𝐼 = �
𝐿

−𝐿
𝑒−𝑥 cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

and 𝑢 = cos �𝑛𝜋𝐿𝑥� , 𝑑𝑣 = 𝑒
−𝑥,→ 𝑑𝑢 = −𝑛𝜋𝐿 sin �𝑛𝜋𝐿𝑥� , 𝑣 = −𝑒

−𝑥, therefore

𝐼 = [𝑢𝑣]𝐿−𝐿 −�
𝐿

−𝐿
𝑣𝑑𝑢

= �−𝑒−𝑥 cos �𝑛𝜋
𝐿
𝑥��

𝐿

−𝐿
−
𝑛𝜋
𝐿 �

𝐿

−𝐿
𝑒−𝑥 sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

= �−𝑒−𝐿 cos �𝑛𝜋
𝐿
𝐿� + 𝑒𝐿 cos �𝑛𝜋

𝐿
(−𝐿)�� −

𝑛𝜋
𝐿 �

𝐿

−𝐿
𝑒−𝑥 sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

= �−𝑒−𝐿 cos (𝑛𝜋) + 𝑒𝐿 cos (𝑛𝜋)� − 𝑛𝜋
𝐿 �

𝐿

−𝐿
𝑒−𝑥 sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

Applying integration by parts again to ∫ 𝑒−𝑥 sin �𝑛𝜋𝐿𝑥� 𝑑𝑥 where now 𝑢 = sin �𝑛𝜋𝐿𝑥� , 𝑑𝑣 =
𝑒−𝑥 → 𝑑𝑢 = 𝑛𝜋

𝐿 cos �𝑛𝜋𝐿𝑥� , 𝑣 = −𝑒
−𝑥, hence the above becomes

𝐼 = �−𝑒−𝐿 cos (𝑛𝜋) + 𝑒𝐿 cos (𝑛𝜋)� − 𝑛𝜋
𝐿
�𝑢𝑣 −�𝑣𝑑𝑢�

= �−𝑒−𝐿 cos (𝑛𝜋) + 𝑒𝐿 cos (𝑛𝜋)� − 𝑛𝜋
𝐿

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

�������������������������
�−𝑒−𝑥 sin �𝑛𝜋

𝐿
𝑥��

𝐿

−𝐿
+
𝑛𝜋
𝐿 �

𝐿

−𝐿
𝑒−𝑥 cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= �−𝑒−𝐿 cos (𝑛𝜋) + 𝑒𝐿 cos (𝑛𝜋)� − 𝑛𝜋
𝐿 �

𝑛𝜋
𝐿 �

𝐿

−𝐿
𝑒−𝑥 cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥�

= �−𝑒−𝐿 cos (𝑛𝜋) + 𝑒𝐿 cos (𝑛𝜋)� − �𝑛𝜋
𝐿
�
2
�

𝐿

−𝐿
𝑒−𝑥 cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

But ∫
𝐿

−𝐿
𝑒−𝑥 cos �𝑛𝜋𝐿𝑥� 𝑑𝑥 = 𝐼 and the above becomes

𝐼 = −𝑒−𝐿 cos (𝑛𝜋) + 𝑒𝐿 cos (𝑛𝜋) − �𝑛𝜋
𝐿
�
2
𝐼

Simplifying and solving for 𝐼

𝐼 + �
𝑛𝜋
𝐿
�
2
𝐼 = cos (𝑛𝜋) �𝑒𝐿 − 𝑒−𝐿�

𝐼 �1 + �
𝑛𝜋
𝐿
�
2
� = cos (𝑛𝜋) �𝑒𝐿 − 𝑒−𝐿�

𝐼 �
𝐿2 + 𝑛2𝜋2

𝐿2 � = cos (𝑛𝜋) �𝑒𝐿 − 𝑒−𝐿�

𝐼 = �
𝐿2

𝐿2 + 𝑛2𝜋2 �
cos (𝑛𝜋) �𝑒𝐿 − 𝑒−𝐿�

Hence 𝑎𝑛 becomes

𝑎𝑛 =
1
𝐿 �

𝐿2

𝐿2 + 𝑛2𝜋2 �
cos (𝑛𝜋) �𝑒𝐿 − 𝑒−𝐿�

But cos (𝑛𝜋) = −1𝑛 hence

𝑎𝑛 = (−1)
𝑛 �

𝐿
𝑛2𝜋2 + 𝐿2 �

�𝑒𝐿 − 𝑒−𝐿�

Similarly for 𝑏𝑛

𝑏𝑛 =
1
𝐿 �

𝐿

−𝐿
𝑒−𝑥 sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

This can be done using integration by parts. ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢. Let

𝐼 = �
𝐿

−𝐿
𝑒−𝑥 sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥
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and 𝑢 = sin �𝑛𝜋𝐿𝑥� , 𝑑𝑣 = 𝑒
−𝑥,→ 𝑑𝑢 = 𝑛𝜋

𝐿 cos �𝑛𝜋𝐿𝑥� , 𝑣 = −𝑒
−𝑥, therefore

𝐼 = [𝑢𝑣]𝐿−𝐿 −�
𝐿

−𝐿
𝑣𝑑𝑢

=

0

�������������������������
�−𝑒−𝑥 sin �𝑛𝜋

𝐿
𝑥��

𝐿

−𝐿
+
𝑛𝜋
𝐿 �

𝐿

−𝐿
𝑒−𝑥 cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

=
𝑛𝜋
𝐿 �

𝐿

−𝐿
𝑒−𝑥 cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

Applying integration by parts again to ∫ 𝑒−𝑥 cos �𝑛𝜋𝐿𝑥� 𝑑𝑥 where now 𝑢 = cos �𝑛𝜋𝐿𝑥� , 𝑑𝑣 =
𝑒−𝑥 → 𝑑𝑢 = −𝑛𝜋

𝐿 sin �𝑛𝜋𝐿𝑥� , 𝑣 = −𝑒
−𝑥, hence the above becomes

𝐼 =
𝑛𝜋
𝐿
�𝑢𝑣 −�𝑣𝑑𝑢�

=
𝑛𝜋
𝐿 ��−𝑒−𝑥 cos �𝑛𝜋

𝐿
𝑥��

𝐿

−𝐿
−
𝑛𝜋
𝐿 �

𝐿

−𝐿
𝑒−𝑥 sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥�

=
𝑛𝜋
𝐿 �−𝑒−𝐿 cos �𝑛𝜋

𝐿
𝐿� + 𝑒𝐿 cos �𝑛𝜋

𝐿
𝐿� −

𝑛𝜋
𝐿 �

𝐿

−𝐿
𝑒−𝑥 sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥�

=
𝑛𝜋
𝐿 �cos (𝑛𝜋) �𝑒𝐿 − 𝑒−𝐿� − 𝑛𝜋

𝐿 �
𝐿

−𝐿
𝑒−𝑥 sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥�

But ∫
𝐿

−𝐿
𝑒−𝑥 cos �𝑛𝜋𝐿𝑥� 𝑑𝑥 = 𝐼 and the above becomes

𝐼 =
𝑛𝜋
𝐿
�cos (𝑛𝜋) �𝑒𝐿 − 𝑒−𝐿� − 𝑛𝜋

𝐿
𝐼�

Simplifying and solving for 𝐼

𝐼 =
𝑛𝜋
𝐿

cos (𝑛𝜋) �𝑒𝐿 − 𝑒−𝐿� − �𝑛𝜋
𝐿
�
2
𝐼

𝐼 + �
𝑛𝜋
𝐿
�
2
𝐼 =

𝑛𝜋
𝐿

cos (𝑛𝜋) �𝑒𝐿 − 𝑒−𝐿�

𝐼 �1 + �
𝑛𝜋
𝐿
�
2
� =

𝑛𝜋
𝐿

cos (𝑛𝜋) �𝑒𝐿 − 𝑒−𝐿�

𝐼 �
𝐿2 + 𝑛2𝜋2

𝐿2 � =
𝑛𝜋
𝐿

cos (𝑛𝜋) �𝑒𝐿 − 𝑒−𝐿�

𝐼 = �
𝐿2

𝐿2 + 𝑛2𝜋2 �
𝑛𝜋
𝐿

cos (𝑛𝜋) �𝑒𝐿 − 𝑒−𝐿�

Hence 𝑏𝑛 becomes

𝑏𝑛 =
1
𝐿 �

𝐿2

𝐿2 + 𝑛2𝜋2 �
𝑛𝜋
𝐿

cos (𝑛𝜋) �𝑒𝐿 − 𝑒−𝐿�

= �
𝑛𝜋

𝐿2 + 𝑛2𝜋2
� cos (𝑛𝜋) �𝑒𝐿 − 𝑒−𝐿�

But cos (𝑛𝜋) = −1𝑛 hence

𝑏𝑛 = (−1)
𝑛 �

𝑛𝜋
𝐿2 + 𝑛2𝜋2

� �𝑒𝐿 − 𝑒−𝐿�

Summary

𝑎0 =
𝑒𝐿 − 𝑒−𝐿

2𝐿

𝑎𝑛 = (−1)
𝑛 �

𝐿
𝑛2𝜋2 + 𝐿2 �

�𝑒𝐿 − 𝑒−𝐿�

𝑏𝑛 = (−1)
𝑛 �

𝑛𝜋
𝐿2 + 𝑛2𝜋2

� �𝑒𝐿 − 𝑒−𝐿�

𝑓 (𝑥) ≈ 𝑎0 +
∞
�
𝑛=1

𝑎𝑛 cos �𝑛 �
2𝜋
𝑇 �

𝑥� + 𝑏𝑛 sin �𝑛 �
2𝜋
𝑇 �

𝑥�

≈ 𝑎0 +
∞
�
𝑛=1

𝑎𝑛 cos �𝑛𝜋
𝐿
𝑥� + 𝑏𝑛 sin �𝑛𝜋

𝐿
𝑥�

The following shows the approximation 𝑓 (𝑥) for increasing number of terms. Notice the
Gibbs phenomena at the jump discontinuity.
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-3 -2 -1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

x

f(
x)

Fourier series approximation, number of terms 3
Showing 3 periods extenstion of -L..L, with L=1

-3 -2 -1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

x

f(
x)

Fourier series approximation, number of terms 10
Showing 3 periods extenstion of -L..L, with L=1

-3 -2 -1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

f(
x)

Fourier series approximation, number of terms 50
Showing 3 periods extenstion of -L..L, with L=1

2.5.2.2 Part d

The following is sketch of periodic extension of 𝑓 (𝑥) from 𝑥 = −𝐿⋯𝐿 (for 𝐿 = 1) for
illustration. The function will converge to 𝑓 (𝑥) between 𝑥 = −𝐿⋯𝐿 and between 𝑥 =
−3𝐿⋯ − 𝐿 and between 𝑥 = 𝐿⋯3𝐿 and so on. But at the jump discontinuities which occurs
at 𝑥 = ⋯ ,−3𝐿, −𝐿, 𝐿, 3𝐿,⋯ it will converge to the average 1

2 shown as small circles in the
sketch.
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oo o o

-3 -2 -1 1 2 3

0.2
0.4
0.6
0.8
1.0

Showing 3 periods extenstion of f(x) between -L..L, with L=1

By definitions,

𝑎0 =
1
𝑇 �

𝑇/2

−𝑇/2
𝑓 (𝑥) 𝑑𝑥

𝑎𝑛 =
1
𝑇/2 �

𝑇/2

−𝑇/2
𝑓 (𝑥) cos �𝑛 �

2𝜋
𝑇 �

𝑥� 𝑑𝑥

𝑏𝑛 =
1
𝑇/2 �

𝑇/2

−𝑇/2
𝑓 (𝑥) sin �𝑛 �

2𝜋
𝑇 �

𝑥� 𝑑𝑥

The period here is 𝑇 = 2𝐿, therefore the above becomes

𝑎0 =
1
2𝐿 �

𝐿

−𝐿
𝑓 (𝑥) 𝑑𝑥

𝑎𝑛 =
1
𝐿 �

𝐿

−𝐿
𝑓 (𝑥) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

𝑏𝑛 =
1
𝐿 �

𝐿

−𝐿
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

These are now evaluated for given 𝑓 (𝑥)

𝑎0 =
1
2𝐿 �

𝐿

−𝐿
𝑓 (𝑥) 𝑑𝑥

=
1
2𝐿 ��

0

−𝐿
𝑓 (𝑥) 𝑑𝑥 +�

𝐿

0
𝑓 (𝑥) 𝑑𝑥�

=
1
2𝐿 �

0 +�
𝐿

0
𝑥𝑑𝑥�

=
1
2𝐿 �

𝑥2

2 �
𝐿

0

=
𝐿
4

Now 𝑎𝑛 is found

𝑎𝑛 =
1
𝐿 �

𝐿

−𝐿
𝑓 (𝑥) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

=
1
𝐿 ��

0

−𝐿
𝑓 (𝑥) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 +�

𝐿

0
𝑓 (𝑥) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥�

=
1
𝐿 �

𝐿

0
𝑥 cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥
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Integration by parts. Let 𝑢 = 𝑥, 𝑑𝑢 = 1, 𝑑𝑣 = cos �𝑛𝜋𝐿𝑥� , 𝑣 =
sin�𝑛𝜋𝐿 𝑥�

𝑛𝜋𝐿
, hence the above becomes

𝑎𝑛 =
1
𝐿

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

�������������������������
�
𝑛𝜋
𝐿
𝑥 sin �𝑛𝜋

𝐿
𝑥��

𝐿

0
−�

𝐿

0

sin �𝑛𝜋𝐿𝑥�
𝑛𝜋𝐿

𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1
𝐿 �
−
𝐿
𝑛𝜋 �

𝐿

0
sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥�

=
1
𝐿

⎛
⎜⎜⎜⎜⎜⎜⎝−

𝐿
𝑛𝜋

⎛
⎜⎜⎜⎜⎜⎝
− cos �𝑛𝜋𝐿𝑥�

𝑛𝜋𝐿

⎞
⎟⎟⎟⎟⎟⎠

𝐿

0

⎞
⎟⎟⎟⎟⎟⎟⎠

=
1
𝐿

⎛
⎜⎜⎜⎜⎝�
𝐿
𝑛𝜋�

2

cos �𝑛𝜋
𝐿
𝑥�
𝐿

0

⎞
⎟⎟⎟⎟⎠

=
𝐿

𝑛2𝜋2
cos �𝑛𝜋

𝐿
𝑥�
𝐿

0

=
𝐿

𝑛2𝜋2 �
cos �𝑛𝜋

𝐿
𝐿� − 1�

=
𝐿

𝑛2𝜋2
[−1𝑛 − 1]

Now 𝑏𝑛 is found

𝑏𝑛 =
1
𝐿 �

𝐿

−𝐿
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

=
1
𝐿 ��

0

−𝐿
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 +�

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥�

=
1
𝐿 �

𝐿

0
𝑥 sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

Integration by parts. Let 𝑢 = 𝑥, 𝑑𝑢 = 1, 𝑑𝑣 = sin �𝑛𝜋𝐿𝑥� , 𝑣 =
− cos�𝑛𝜋𝐿 𝑥�

𝑛𝜋𝐿
, hence the above

becomes

𝑏𝑛 =
1
𝐿

⎛
⎜⎜⎜⎜⎜⎝�−

𝐿
𝑛𝜋
𝑥 cos �𝑛𝜋

𝐿
𝑥��

𝐿

0
+�

𝐿

0

cos �𝑛𝜋𝐿𝑥�
𝑛𝜋𝐿

𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎠

=
1
𝐿 �
−
𝐿
𝑛𝜋

�𝐿 cos �𝑛𝜋
𝐿
𝐿� − 0� +

𝐿
𝑛𝜋 �

𝐿

0
cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥�

=
1
𝐿

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
𝐿2

𝑛𝜋
(−1)𝑛 +

𝐿
𝑛𝜋

0

�����������������⎡
⎢⎢⎢⎢⎢⎣
sin �𝑛𝜋𝐿𝑥�

𝑛𝜋𝐿

⎤
⎥⎥⎥⎥⎥⎦

𝐿

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
𝐿
𝑛𝜋

�− (−1)𝑛�

= (−1)𝑛+1
𝐿
𝑛𝜋

Summary

𝑎0 =
𝐿
4

𝑎𝑛 =
𝐿

𝑛2𝜋2
[−1𝑛 − 1]

𝑏𝑛 = (−1)
𝑛+1 𝐿

𝑛𝜋

𝑓 (𝑥) ≈ 𝑎0 +
∞
�
𝑛=1

𝑎𝑛 cos �𝑛 �
2𝜋
𝑇 �

𝑥� + 𝑏𝑛 sin �𝑛 �
2𝜋
𝑇 �

𝑥�

≈ 𝑎0 +
∞
�
𝑛=1

𝑎𝑛 cos �𝑛𝜋
𝐿
𝑥� + 𝑏𝑛 sin �𝑛𝜋

𝐿
𝑥�

The following shows the approximation 𝑓 (𝑥) for increasing number of terms. Notice the
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Gibbs phenomena at the jump discontinuity.
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Fourier series approximation, number of terms 3
Showing 3 periods extenstion of -L..L, with L=1

-3 -2 -1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

x

f(
x)

Fourier series approximation, number of terms 10
Showing 3 periods extenstion of -L..L, with L=1
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Fourier series approximation, number of terms 50
Showing 3 periods extenstion of -L..L, with L=1

2.5.3 Problem 3.2.4

96 Chapter 3. Fourier Series

3.2.3. Show that the Fourier series operation is linear: that is, show that the
Fourier series of c1 f (x) + c2g(x) is the sum of cl times the Fourier series of
f (x) and c2 times the Fourier series of g(x).

3.2.4. Suppose that f (x) is piecewise smooth. What value does the Fourier series
of f (x) converge to at the endpoint x = -L? at x = L?

3.3 Fourier Cosine and Sine Series
In this section we show that the series of sines only (and the series of cosines only)
are special cases of a Fourier series.

3.3.1 Fourier Sine Series
Odd functions. An odd function is a function with the property f (-x)
- f (x). The sketch of an odd function for x < 0 will be minus the mirror image of
f (x) for x > 0, as illustrated in Fig. 3.3.1. Examples of odd functions are f (x) = x3
(in fact, any odd power) and f (x) = sin 4x. The integral of an odd function over
a symmetric interval is zero (any contribution from x > 0 will be canceled by a
contribution from x < 0).

Figure 3.3.1 An odd function.

Fourier series of odd functions. Let us calculate the Fourier coeffi-
cients of an odd function:

ao
1 fL

1 J_Lf (x) dx = 0

L

an = L ff(x)cosdx=0.
L

Both are zero because the integrand, f (x) cos nirx/L, is odd (being the product of
an even function cos n7rx/L and an odd function f (x)). Since an = 0, all the cosine
functions (which are even) will not appear in the Fourier series of an odd function.
The Fourier series of an odd function is an infinite series of odd functions (sines):

00

f (x) - bn sin
n1x,

(3.3.1)
n=1

It will converge to the average value of the function at the end points after making periodic
extensions of the function. Specifically, at 𝑥 = −𝐿 the Fourier series will converge to

1
2
�𝑓 (−𝐿) + 𝑓 (𝐿)�
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And at 𝑥 = 𝐿 it will converge to
1
2
�𝑓 (𝐿) + 𝑓 (−𝐿)�

Notice that if 𝑓 (𝐿) has same value as 𝑓 (−𝐿), then there will not be a jump discontinuity
when periodic extension are made, and the above formula simply gives the value of the
function at either end, since it is the same value.

2.5.4 Problem 3.3.2 (d)

114 Chapter 3. Fourier Series

(a)

(c)

f(x) = 1

f(x) _ {
1 + x x > 0

(e) f(x) e-x x > 0

(b) f(x)=1+x

*(d) f(x) = ex

3.3.2. For the following functions, sketch the Fourier sine series of f (x) and deter-
mine its Fourier coefficients.

(a) [Verify formula (3.3.13).]

(c) f(x)
0

x
x < L/2

x > L/2

1 x < L/6

(b) f (x) = 3 L/6 < x < L/2
0 x > L/2

* (d) f (x) 1 x < L/2
0 x > L/2

3.3.3. For the following functions, sketch the Fourier sine series of f (x). Also,
roughly sketch the sum of a finite number of nonzero terms (at least the
first two) of the Fourier sine series:

(a) f (x) = cos irx/L [Use formula (3.3.13).]

(b) f(x) _ { 1 x < L/2
0 x > L/2

(c) f (x) = x [Use formula (3.3.12).]

3.3.4. Sketch the Fourier cosine series of f (x) = sin irx/L. Briefly discuss.

3.3.5. For the following functions, sketch the Fourier cosine series of f (x) and
determine its Fourier coefficients:

1 x < L/6
(a) f (x) = x2 (b) f (x) = 3 L/6 < x < L/2 (c) f (x) =

0 x > L/2 fx x > L/2

3.3.6. For the following functions, sketch the Fourier cosine series of f (x). Also,
roughly sketch the sum of a finite number of nonzero terms (at least the
first two) of the Fourier cosine series:

(a) f (x) = x [Use formulas (3.3.22) and (3.3.23).]

(b) f (x) = 0 x<L/2
1 x > L12 [Use carefully formulas (3.2.6) and (3.2.7).]

_ 0 x < L/2(c) f (x)
1 x > L/2 [Hint: Add the functions in parts (b) and (c).]

3.3.7. Show that ex is the sum of an even and an odd function.

𝑓 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
1 𝑥 < 𝐿

2
0 𝑥 > 𝐿

2

The first step is to sketch 𝑓 (𝑥) over 0⋯𝐿. This is the result for 𝐿 = 1 as an example.

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0

Original f(x) function defined for 0..L

The second step is to make an odd extension of 𝑓 (𝑥) over −𝐿⋯𝐿. This is the result.

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

odd extension of f(x) defined for -L..L

The third step is to extend the above as periodic function with period 2𝐿 (as normally
would be done) and mark the average value at the jump discontinuities. This is the result
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o

o o

o

o o

o

o

o

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Showing 3 periods extenstion of f(x) between -L..L, with L=1

Now the Fourier sin series is found for the above function. Since the function 𝑓 (𝑥) is odd,
then only 𝑏𝑛 will exist

𝑓 (𝑥) ≈
∞
�
𝑛=1

𝑏𝑛 sin �𝑛 �
2𝜋
2𝐿 �

𝑥�

≈
∞
�
𝑛=1

𝑏𝑛 sin �𝑛𝜋
𝐿
𝑥�

Where

𝑏𝑛 =
1
𝐿 �

𝐿

−𝐿
𝑓 (𝑥) sin �𝑛 �

2𝜋
2𝐿 �

𝑥� 𝑑𝑥 =
1
𝐿 �

𝐿

−𝐿
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

Since 𝑓 (𝑥) sin �𝑛𝜋𝐿𝑥� is even, then the above becomes

𝑏𝑛 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

=
2
𝐿 ��

𝐿/2

0
1 × sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 +�

𝐿/2

0
0 × sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥�

=
2
𝐿 �

𝐿/2

0
sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

=
2
𝐿

⎡
⎢⎢⎢⎢⎢⎣−

cos �𝑛𝜋𝐿𝑥�
𝑛𝜋𝐿

⎤
⎥⎥⎥⎥⎥⎦

𝐿/2

0

=
−2
𝑛𝜋 �

cos �𝑛𝜋
𝐿
𝑥��

𝐿/2

0

=
−2
𝑛𝜋 �

cos �𝑛
𝜋
𝐿
𝐿
2�
− 1�

=
−2
𝑛𝜋 �

cos �𝑛𝜋
2
� − 1�

=
2
𝑛𝜋 �

1 − cos �𝑛𝜋
2
��

Therefore

𝑓 (𝑥) ≈
∞
�
𝑛=1

2
𝑛𝜋

�1 − cos �𝑛𝜋
2
�� sin �𝑛𝜋

𝐿
𝑥�

The following shows the approximation 𝑓 (𝑥) for increasing number of terms. Notice the
Gibbs phenomena at the jump discontinuity.
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Fourier series approximation, number of terms 3
Showing 3 periods extenstion of -L..L, with L=1
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Fourier series approximation, number of terms 10
Showing 3 periods extenstion of -L..L, with L=1
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Fourier series approximation, number of terms 50
Showing 3 periods extenstion of -L..L, with L=1

2.5.5 Problem 3.3.3 (b)

114 Chapter 3. Fourier Series

(a)

(c)

f(x) = 1

f(x) _ {
1 + x x > 0

(e) f(x) e-x x > 0

(b) f(x)=1+x

*(d) f(x) = ex

3.3.2. For the following functions, sketch the Fourier sine series of f (x) and deter-
mine its Fourier coefficients.

(a) [Verify formula (3.3.13).]

(c) f(x)
0

x
x < L/2

x > L/2

1 x < L/6

(b) f (x) = 3 L/6 < x < L/2
0 x > L/2

* (d) f (x) 1 x < L/2
0 x > L/2

3.3.3. For the following functions, sketch the Fourier sine series of f (x). Also,
roughly sketch the sum of a finite number of nonzero terms (at least the
first two) of the Fourier sine series:

(a) f (x) = cos irx/L [Use formula (3.3.13).]

(b) f(x) _ { 1 x < L/2
0 x > L/2

(c) f (x) = x [Use formula (3.3.12).]

3.3.4. Sketch the Fourier cosine series of f (x) = sin irx/L. Briefly discuss.

3.3.5. For the following functions, sketch the Fourier cosine series of f (x) and
determine its Fourier coefficients:

1 x < L/6
(a) f (x) = x2 (b) f (x) = 3 L/6 < x < L/2 (c) f (x) =

0 x > L/2 fx x > L/2

3.3.6. For the following functions, sketch the Fourier cosine series of f (x). Also,
roughly sketch the sum of a finite number of nonzero terms (at least the
first two) of the Fourier cosine series:

(a) f (x) = x [Use formulas (3.3.22) and (3.3.23).]

(b) f (x) = 0 x<L/2
1 x > L12 [Use carefully formulas (3.2.6) and (3.2.7).]

_ 0 x < L/2(c) f (x)
1 x > L/2 [Hint: Add the functions in parts (b) and (c).]

3.3.7. Show that ex is the sum of an even and an odd function.

This is the same problem as 3.3.2 part (d). But it asks to plot for 𝑛 = 1 and 𝑛 = 2 in the
sum. The sketch of the Fourier sin series was done above in solving 3.3.2 part(d) and will
not be repeated again. From above, it was found that

𝑓 (𝑥) ≈
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥�

Where 𝐵𝑛 =
2
𝑛𝜋
�1 − cos �𝑛𝜋2 ��. The following is the plot for 𝑛 = 1⋯10.
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Fourier series approximation, number of terms 1
Showing 3 periods extenstion of -L..L, with L=1
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Showing 3 periods extenstion of -L..L, with L=1
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Showing 3 periods extenstion of -L..L, with L=1
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Showing 3 periods extenstion of -L..L, with L=1
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Showing 3 periods extenstion of -L..L, with L=1
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Showing 3 periods extenstion of -L..L, with L=1
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2.5.6 Problem 3.3.8

3.3. Cosine and Sine Series 115

3.3.8. (a) Determine formulas for the even extension of any f (x). Compare to
the formula for the even part of f (x).

(b) Do the same for the odd extension of f (x) and the odd part of f (x).

(c) Calculate and sketch the four functions of parts (a) and (b) if

= J x x>0
f(x x2 x <0.

Graphically add the even and odd parts of f (x). What occurs? Simi-
larly, add the even and odd extensions. What occurs then?

3.3.9. What is the sum of the Fourier sine series of f (x) and the Fourier cosine
series of f (x)? [What is the sum of the even and odd extensions of f (x)?]

2

*3.3.10. If f (x) = e_z x > 0 , what are the even and odd parts of f (x)?

3.3.11. Given a sketch of f(x), describe a procedure to sketch the even and odd

parts of f (x).

3.3.12. (a) Graphically show that the even terms (n even) of the Fourier sine series
of any function on 0 < x < L are odd .(antisymmetric) around x = L/2.

(b) Consider a function f (x) that is odd around x = L/2. Show that the
odd coefficients (n odd) of the Fourier sine series of f (x) on 0 < x < L
are zero.

*3.3.13. Consider a function f (x) that is even around x = L/2. Show that the even
coefficients (n even) of the Fourier sine series of f (x) on 0 < x < L are zero.

3.3.14. (a) Consider a function f (x) that is even around x = L/2. Show that
the odd coefficients (n odd) of the Fourier cosine series of f (x) on
0 < x < L are zero.

(b) Explain the result of part (a) by considering a Fourier cosine series of
f (x) on the interval 0 < x < L/2.

3.3.15. Consider a function f (x) that is odd around x = L/2. Show that the even
coefficients (n even) of the Fourier cosine series of f (x) on 0 < x < L are
zero.

3.3.16. Fourier series can be defined on other intervals besides -L < x < L. Sup-
pose that g(y) is defined for a < y < b. Represent g(y) using periodic
trigonometric functions with period b - a. Determine formulas for the coef-
ficients. [Hint: Use the linear transformation

a+b b-a
2 + 2L
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2.5.6.1 Part (a)

The even extension of 𝑓 (𝑥) is
⎧⎪⎪⎨
⎪⎪⎩
𝑓 (𝑥) 𝑥 > 0
𝑓 (−𝑥) 𝑥 < 0

But the even part of 𝑓 (𝑥) is
1
2
�𝑓 (𝑥) + 𝑓 (−𝑥)�

2.5.6.2 Part (b)

The odd extension of 𝑓 (𝑥) is
⎧⎪⎪⎨
⎪⎪⎩

𝑓 (𝑥) 𝑥 > 0
−𝑓 (−𝑥) 𝑥 < 0

While the odd part of 𝑓 (𝑥) is
1
2
�𝑓 (𝑥) − 𝑓 (−𝑥)�

2.5.6.3 Part (c)

First a plot of 𝑓 (𝑥) is given

𝑓 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
𝑥 𝑥 > 0
𝑥2 𝑥 < 0

-1.0 -0.5 0.0 0.5 1.0
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0.8
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x

f(
x)

Plot of f(x)

A plot of even extension and the even part for 𝑓 (𝑥) Is given below
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Plot of even extension
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Plot of even part

A plot of odd extension and the odd part is given below
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Plot of odd part of f(x)

Adding the even part and the odd part gives back the original function
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Plot of (odd +even parts of f(x))

Plot of adding the even extension and the odd extension is below
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Plot of (even extension+odd extension of f(x))

2.5.7 Problem 3.4.3
3.4. Term-by-Term Differentiation 125

3.4.3. Suppose that f (x) is continuous [except for a jump discontinuity at x = x°i
f (xa) = a and f (xo) = 01 and df /dx is piecewise smooth.

*(a) Determine the Fourier sine series of df /dx in terms of the Fourier cosine
series coefficients of f (x).

(b) Determine the Fourier cosine series of df /dx in terms of the Fourier
sine series coefficients of f(x).

3.4.4. Suppose that f (x) and df /dx are piecewise smooth.

(a) Prove that the Fourier sine series of a continuous function f (x) can
only be differentiated term by term if f (0) = 0 and f (L) = 0.

(b) Prove that the Fourier cosine series of a continuous function f (x) can
be differentiated term by term.

3.4.5. Using (3.3.13) determine the Fourier cosine series of sin 7rx/L.

3.4.6. There are some things wrong in the following demonstration. Find the
mistakes and correct them.

In this exercise we attempt to obtain the Fourier cosine coefficients of ex:

00 nirxex=A°+E A.cos r .

n=1

Differentiating yields

00 nir nirxe2=-
L ,

n=1

the Fourier sine series of ex. Differentiating again yields

(3.4.22)

°O 2n7r
ex - ( L) An cos nLx (3.4.23)

n=1

Since equations (3.4.22) and (3.4.23) give the Fourier cosine series of ex,

they must be identical. Thus,

`40 0 (obviously wrong!).An =0

By correcting the mistakes, you should be able to obtain A° and An without
using the typical technique, that is, An = 2/L f L ex cos nirx/L dx.

3.4.7. Prove that the Fourier series of a continuous function u(x, t) can be differ-
entiated term by term with respect to the parameter t if 8u/8t is piecewise
smooth.

2.5.7.1 Part (a)

Fourier sin series of 𝑓′ (𝑥) is given by, assuming period is −𝐿⋯𝐿

𝑓′ (𝑥) ∼
∞
�
𝑛=1

𝑏𝑛 sin �𝑛𝜋
𝐿
𝑥�

Where

𝑏𝑛 =
2
𝐿 �

𝐿

0
𝑓′ (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥
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Applying integration by parts. Let 𝑓′ (𝑥) = 𝑑𝑣, 𝑢 = sin �𝑛𝜋𝐿𝑥�, then 𝑣 = 𝑓 (𝑥) , 𝑑𝑢 =
𝑛𝜋
𝐿 cos �𝑛𝜋𝐿 𝑥�.

Since 𝑣 = 𝑓 (𝑥) has has jump discontinuity at 𝑥0 as described, and assuming 𝑥0 > 0, then,
and using sin �𝑛𝜋𝐿𝑥� = 0 at 𝑥 = 𝐿

𝑏𝑛 =
2
𝐿 �

𝐿

0
𝑢𝑑𝑣

=
2
𝐿 �
�[𝑢𝑣]𝑥

−
0
0 + [𝑢𝑣]𝐿𝑥+0 � −�

𝐿

0
𝑣𝑑𝑢�

=
2
𝐿

⎛
⎜⎜⎜⎜⎝�sin �𝑛

𝜋
𝐿
𝑥� 𝑓 (𝑥)�

𝑥−0

0
+ �sin �𝑛

𝜋
𝐿
𝑥� 𝑓 (𝑥)�

𝐿

𝑥+0
−
𝑛𝜋
𝐿 �

𝐿

0
𝑓 (𝑥) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

⎞
⎟⎟⎟⎟⎠

=
2
𝐿 �

sin �𝑛𝜋
𝐿
𝑥−0� 𝑓 �𝑥−0� − sin �𝑛𝜋

𝐿
𝑥+0𝑓 �𝑥+0 �� −

𝑛𝜋
𝐿 �

𝐿

0
𝑓 (𝑥) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥� (1)

In the above, sin �𝑛𝜋𝐿𝑥� = 0 and at 𝑥 = 𝐿 was used. But

𝑓 �𝑥−0� = 𝛼

𝑓 �𝑥+0 � = 𝛽

And since sin is continuous, then sin �𝑛𝜋𝐿𝑥
−
0� = sin �𝑛𝜋𝐿𝑥

+
0 � = sin �𝑛𝜋𝐿𝑥0�. Equation (1) simpli-

fies to

𝑏𝑛 =
2
𝐿 �
�𝛼 − 𝛽� sin �𝑛𝜋

𝐿
𝑥0� −

𝑛𝜋
𝐿 �

𝐿

0
𝑓 (𝑥) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥� (2)

On the other hand, the Fourier cosine series for 𝑓 (𝑥) is given by

𝑓 (𝑥) ∼ 𝑎0 +
∞
�
𝑛=1

𝑎𝑛 cos �𝑛𝜋
𝐿
𝑥�

Where

𝑎0 =
1
𝐿 �

𝐿

0
𝑓 (𝑥) 𝑑𝑥

𝑎𝑛 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

Therefore ∫
𝐿

0
𝑓 (𝑥) cos �𝑛𝜋𝐿𝑥� 𝑑𝑥 =

𝐿
2𝑎𝑛. Substituting this into (2) gives

𝑏𝑛 =
2
𝐿 �
�𝛼 − 𝛽� sin �𝑛𝜋

𝐿
𝑥0� −

𝑛𝜋
𝐿 �

𝐿
2
𝑎𝑛��

=
2
𝐿
�𝛼 − 𝛽� sin �𝑛𝜋

𝐿
𝑥0� −

2
𝐿
𝑛𝜋
𝐿 �

𝐿
2
𝑎𝑛�

Hence

𝑏𝑛 =
2
𝐿 sin �𝑛𝜋𝐿𝑥0� �𝛼 − 𝛽� −

𝑛𝜋
𝐿 𝑎𝑛 (3)

Summary the Fourier sin series of 𝑓′ (𝑥) is

𝑓′ (𝑥) ∼
∞
�
𝑛=1

𝑏𝑛 sin �𝑛𝜋
𝐿
𝑥�

With 𝑏𝑛 given by (3). The above is in terms of 𝑎𝑛, which is the Fourier cosine series of 𝑓 (𝑥),
which is what required to show. In addition, the cos series of 𝑓 (𝑥) can also be written in
terms of sin series of 𝑓′ (𝑥). From (3), solving for 𝑎𝑛

𝑎𝑛 =
𝐿
𝑛𝜋
𝑏𝑛 −

2
𝑛𝜋

sin �𝑛𝜋
𝐿
𝑥0� �𝛼 − 𝛽�

𝑓 (𝑥) ∼ 𝑎0 +
∞
�
𝑛=1

1
𝑛 �

𝐿
𝜋
𝑏𝑛 −

2
𝜋

sin �𝑛𝜋
𝐿
𝑥0� �𝛼 − 𝛽�� cos �𝑛𝜋

𝐿
𝑥�

This shows more clearly that the Fourier series of 𝑓 (𝑥) has order of convergence in 𝑎𝑛 as
1
𝑛

as expected.
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2.5.7.2 Part (b)

Fourier cos series of 𝑓′ (𝑥) is given by, assuming period is −𝐿⋯𝐿

𝑓′ (𝑥) ∼
∞
�
𝑛=0

𝑎𝑛 cos �𝑛𝜋
𝐿
𝑥�

Where

𝑎0 =
1
𝐿 �

𝐿

0
𝑓′ (𝑥) 𝑑𝑥

=
1
𝐿

⎛
⎜⎜⎜⎝�

𝑥−0

0
𝑓′ (𝑥) 𝑑𝑥 +�

𝐿

𝑥+0
𝑓′ (𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎠

=
1
𝐿 �
�𝑓 (𝑥)�

𝑥−0
0
+ �𝑓 (𝑥)�

𝐿

𝑥+0
�

=
1
𝐿
��𝛼 − 𝑓 (0)� + �𝑓 (𝐿) − 𝛽��

=
�𝛼 − 𝛽�
𝐿

+
𝑓 (0) + 𝑓 (𝐿)

𝐿
And for 𝑛 > 0

𝑎𝑛 =
2
𝐿 �

𝐿

0
𝑓′ (𝑥) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

Applying integration by parts. Let 𝑓′ (𝑥) = 𝑑𝑣, 𝑢 = cos �𝑛𝜋𝐿𝑥�, then 𝑣 = 𝑓 (𝑥) , 𝑑𝑢 =
−𝑛𝜋
𝐿 sin �𝑛𝜋𝐿 𝑥�.

Since 𝑣 = 𝑓 (𝑥) has has jump discontinuity at 𝑥0 as described, then

𝑎𝑛 =
2
𝐿 �

𝐿

0
𝑢𝑑𝑣

=
2
𝐿 �
�[𝑢𝑣]𝑥

−
0
0 + [𝑢𝑣]𝐿𝑥+0 � −�

𝐿

0
𝑣𝑑𝑢�

=
2
𝐿

⎛
⎜⎜⎜⎜⎝�cos �𝑛𝜋

𝐿
𝑥� 𝑓 (𝑥)�

𝑥−0

0
+ �cos �𝑛𝜋

𝐿
𝑥� 𝑓 (𝑥)�

𝐿

𝑥+0
+
𝑛𝜋
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

⎞
⎟⎟⎟⎟⎠

=
2
𝐿 �

cos �𝑛𝜋
𝐿
𝑥−0� 𝑓 �𝑥−0� − 𝑓 (0) + cos (𝑛𝜋) 𝑓 (𝐿) − cos �𝑛𝜋

𝐿
𝑥+0 � 𝑓 �𝑥+0 � +

𝑛𝜋
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥�

(1)

But

𝑓 �𝑥−0� = 𝛼

𝑓 �𝑥+0 � = 𝛽

And since cos is continuous, then cos �𝑛𝜋𝐿𝑥
−
0� = cos �𝑛𝜋𝐿𝑥

+
0 � = cos �𝑛𝜋𝐿𝑥0�, therefore (1) be-

comes

𝑎𝑛 =
2
𝐿 �

cos (𝑛𝜋) 𝑓 (𝐿) − 𝑓 (0) + cos �𝑛𝜋
𝐿
𝑥0� �𝛼 − 𝛽� +

𝑛𝜋
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥� (2)

On the other hand, the Fourier 𝑠𝑖𝑛 series for 𝑓 (𝑥) is given by

𝑓 (𝑥) ∼
∞
�
𝑛=0

𝑏𝑛 sin �𝑛𝜋
𝐿
𝑥�

Where

𝑏𝑛 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

Therefore ∫
𝐿

0
𝑓 (𝑥) sin �𝑛𝜋𝐿𝑥� 𝑑𝑥 =

𝐿
2𝑏𝑛. Substituting this into (2) gives

𝑎𝑛 =
2
𝐿 �

cos (𝑛𝜋) 𝑓 (𝐿) − 𝑓 (0) + cos �𝑛𝜋
𝐿
𝑥0� �𝛼 − 𝛽� +

𝑛𝜋
𝐿
𝐿
2
𝑏𝑛�

=
2
𝐿

cos (𝑛𝜋) 𝑓 (𝐿) − 2
𝐿
𝑓 (0) +

2
𝐿

cos �𝑛𝜋
𝐿
𝑥0� �𝛼 − 𝛽� +

2
𝐿
𝑛𝜋
2
𝑏𝑛

=
2
𝐿
�(−1𝑛) 𝑓 (𝐿) − 𝑓 (0)� +

2
𝐿

cos �𝑛𝜋
𝐿
𝑥0� �𝛼 − 𝛽� +

𝑛𝜋
𝐿
𝑏𝑛
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Hence

𝑎𝑛 =
2
𝐿
�(−1𝑛) 𝑓 (𝐿) − 𝑓 (0)� + 2

𝐿 cos �𝑛𝜋𝐿𝑥0� �𝛼 − 𝛽� +
𝑛𝜋
𝐿 𝑏𝑛 (3)

Summary the Fourier cos series of 𝑓′ (𝑥) is

𝑓′ (𝑥) ∼
∞
�
𝑛=0

𝑎𝑛 cos �𝑛𝜋
𝐿
𝑥�

𝑎0 =
�𝛼 − 𝛽�
𝐿

+
𝑓 (0) + 𝑓 (𝐿)

𝐿

𝑎𝑛 =
2
𝐿
�(−1𝑛) 𝑓 (𝐿) − 𝑓 (0)� +

2
𝐿

cos �𝑛𝜋
𝐿
𝑥0� �𝛼 − 𝛽� +

𝑛𝜋
𝐿
𝑏𝑛

The above is in terms of 𝑏𝑛, which is the Fourier 𝑠𝑖𝑛 series of 𝑓 (𝑥), which is what required
to show.

2.5.8 Problem 3.4.9

126 Chapter 3. Fourier Series

3.4.8. Consider
au _ a2u
at kaxe

subject to

au/ax(0,t) = 0, au/ax(L,t) = 0, and u(x,0) = f(x).

Solve in the following way. Look for the solution as a Fourier cosine se-
ries. Assume that u and au/ax are continuous and a2u/axe and au/at are
piecewise smooth. Justify all differentiations of infinite series.

*3.4.9 Consider the heat equation with a known source q(x, t):

2

= k jx2 + q(x, t) with u(0, t) = 0 and u(L, t) = 0.

Assume that q(x, t) (for each t > 0) is a piecewise smooth function of x.
Also assume that u and au/ax are continuous functions of x (for t > 0) and
a2u/axe and au/at are piecewise smooth. Thus,

u(x, t) _ N,(t) sin .Lx.
n=1

What ordinary differential equation does satisfy? Do not solve this
differential equation.

3.4.10. Modify Exercise 3.4.9 if instead au/ax(0, t) = 0 and au/ax(L, t) = 0.

3.4.11. Consider the nonhomogeneous heat equation (with a steady heat source):

2

at kax2 +g(x).

Solve this equation with the initial condition

u(x,0) = f(x)

and the boundary conditions

u(O,t) = 0 and u(L, t) = 0.

Assume that a continuous solution exists (with continuous derivatives).
[Hints: Expand the solution as a Fourier sine series (i.e., use the method
of eigenfunction expansion). Expand g(x) as a Fourier sine series. Solve
for the Fourier sine series of the solution. Justify all differentiations with
respect to x.]

*3.4.12. Solve the following nonhomogeneous problem:

2

= k5-2 + e-t + e- 2t
cos 3Lx [assume that 2 # k(37r/L)2]

The PDE is
𝜕𝑢
𝜕𝑡

= 𝑘
𝜕2𝑢
𝜕𝑥2

+ 𝑞 (𝑥, 𝑡) (1)

Since the boundary conditions are homogenous Dirichlet conditions, then the solution
can be written down as

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑏𝑛 (𝑡) sin �𝑛
𝜋
𝐿
𝑥�

Since the solution is assumed to be continuous with continuous derivative, then term by
term di�erentiation is allowed w.r.t. 𝑥

𝜕𝑢
𝜕𝑥

=
∞
�
𝑛=1

𝑛
𝜋
𝐿
𝑏𝑛 (𝑡) cos �𝑛𝜋

𝐿
𝑥�

𝜕2𝑢
𝜕𝑥2

= −
∞
�
𝑛=1

�
𝑛𝜋
𝐿
�
2
𝑏𝑛 (𝑡) sin �𝑛

𝜋
𝐿
𝑥� (2)

Also using assumption that 𝜕𝑢
𝜕𝑡 is smooth, then

𝜕𝑢
𝜕𝑡

=
∞
�
𝑛=1

𝑑𝑏𝑛 (𝑡)
𝑑𝑡

sin �𝑛𝜋
𝐿
𝑥� (3)

Substituting (2,3) into (1) gives
∞
�
𝑛=1

𝑑𝑏𝑛 (𝑡)
𝑑𝑡

sin �𝑛𝜋
𝐿
𝑥� = −𝑘

∞
�
𝑛=1

�
𝑛𝜋
𝐿
�
2
𝑏𝑛 (𝑡) sin �𝑛

𝜋
𝐿
𝑥� + 𝑞 (𝑥, 𝑡) (4)

Expanding 𝑞 (𝑥, 𝑡) as Fourier sin series in 𝑥. Hence

𝑞 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑞𝑛 (𝑡) sin �
𝑛𝜋
𝐿
𝑥�

Where now 𝑞𝑛 (𝑡) are time dependent given by (by orthogonality)

𝑞𝑛 (𝑡) =
2
𝐿 �

𝐿

0
𝑞 (𝑥, 𝑡) sin �𝑛𝜋

𝐿
𝑥�
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Hence (4) becomes
∞
�
𝑛=1

𝑑𝑏𝑛 (𝑡)
𝑑𝑡

sin �𝑛𝜋
𝐿
𝑥� = −

∞
�
𝑛=1

𝑘 �
𝑛𝜋
𝐿
�
2
𝑏𝑛 (𝑡) sin �𝑛

𝜋
𝐿
𝑥� +

∞
�
𝑛=1

𝑞 (𝑡)𝑛 sin �𝑛𝜋
𝐿
𝑥�

Applying orthogonality the above reduces to one term only

𝑑𝑏𝑛 (𝑡)
𝑑𝑡

sin �𝑛𝜋
𝐿
𝑥� = −𝑘 �

𝑛𝜋
𝐿
�
2
𝑏𝑛 (𝑡) sin �𝑛

𝜋
𝐿
𝑥� + 𝑞 (𝑡)𝑛 sin �𝑛𝜋

𝐿
𝑥�

Dividing by sin �𝑛𝜋𝐿𝑥� ≠ 0

𝑑𝑏𝑛 (𝑡)
𝑑𝑡

= −𝑘 �
𝑛𝜋
𝐿
�
2
𝑏𝑛 (𝑡) + 𝑞𝑛 (𝑡)

𝑑𝑏𝑛 (𝑡)
𝑑𝑡

+ 𝑘 �
𝑛𝜋
𝐿
�
2
𝐵𝑛 (𝑡) = 𝑞𝑛 (𝑡) (5)

The above is the ODE that needs to be solved for 𝑏𝑛 (𝑡). It is first order inhomogeneous
ODE. The question asks to stop here.

2.5.9 Problem 3.4.11

126 Chapter 3. Fourier Series

3.4.8. Consider
au _ a2u
at kaxe

subject to

au/ax(0,t) = 0, au/ax(L,t) = 0, and u(x,0) = f(x).

Solve in the following way. Look for the solution as a Fourier cosine se-
ries. Assume that u and au/ax are continuous and a2u/axe and au/at are
piecewise smooth. Justify all differentiations of infinite series.

*3.4.9 Consider the heat equation with a known source q(x, t):

2

= k jx2 + q(x, t) with u(0, t) = 0 and u(L, t) = 0.

Assume that q(x, t) (for each t > 0) is a piecewise smooth function of x.
Also assume that u and au/ax are continuous functions of x (for t > 0) and
a2u/axe and au/at are piecewise smooth. Thus,

u(x, t) _ N,(t) sin .Lx.
n=1

What ordinary differential equation does satisfy? Do not solve this
differential equation.

3.4.10. Modify Exercise 3.4.9 if instead au/ax(0, t) = 0 and au/ax(L, t) = 0.

3.4.11. Consider the nonhomogeneous heat equation (with a steady heat source):

2

at kax2 +g(x).

Solve this equation with the initial condition

u(x,0) = f(x)

and the boundary conditions

u(O,t) = 0 and u(L, t) = 0.

Assume that a continuous solution exists (with continuous derivatives).
[Hints: Expand the solution as a Fourier sine series (i.e., use the method
of eigenfunction expansion). Expand g(x) as a Fourier sine series. Solve
for the Fourier sine series of the solution. Justify all differentiations with
respect to x.]

*3.4.12. Solve the following nonhomogeneous problem:

2

= k5-2 + e-t + e- 2t
cos 3Lx [assume that 2 # k(37r/L)2]The PDE is

𝜕𝑢
𝜕𝑡

= 𝑘
𝜕2𝑢
𝜕𝑥2

+ 𝑔 (𝑥) (1)

Since the boundary conditions are homogenous Dirichlet conditions, then the solution
can be written down as

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑏𝑛 (𝑡) sin �𝑛
𝜋
𝐿
𝑥�

Since the solution is assumed to be continuous with continuous derivative, then term by
term di�erentiation is allowed w.r.t. 𝑥

𝜕𝑢
𝜕𝑥

=
∞
�
𝑛=1

𝑛
𝜋
𝐿
𝑏𝑛 (𝑡) cos �𝑛𝜋

𝐿
𝑥�

𝜕2𝑢
𝜕𝑥2

= −
∞
�
𝑛=1

�
𝑛𝜋
𝐿
�
2
𝑏𝑛 (𝑡) sin �𝑛

𝜋
𝐿
𝑥� (2)

Also using assumption that 𝜕𝑢
𝜕𝑡 is smooth, then

𝜕𝑢
𝜕𝑡

=
∞
�
𝑛=1

𝑑𝑏𝑛 (𝑡)
𝑑𝑡

sin �𝑛𝜋
𝐿
𝑥� (3)

Substituting (2,3) into (1) gives
∞
�
𝑛=1

𝑑𝑏𝑛 (𝑡)
𝑑𝑡

sin �𝑛𝜋
𝐿
𝑥� = −𝑘

∞
�
𝑛=1

�
𝑛𝜋
𝐿
�
2
𝑏𝑛 (𝑡) sin �𝑛

𝜋
𝐿
𝑥� + 𝑔 (𝑥) (4)
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Using hint given in the problem, which is to expand 𝑔 (𝑥) as Fourier sin series. Hence

𝑔 (𝑥) =
∞
�
𝑛=1

𝑔𝑛 sin �𝑛𝜋
𝐿
𝑥�

Where

𝑔𝑛 =
2
𝐿 �

𝐿

0
𝑔 (𝑥) sin �𝑛𝜋

𝐿
𝑥�

Hence (4) becomes
∞
�
𝑛=1

𝑑𝑏𝑛 (𝑡)
𝑑𝑡

sin �𝑛𝜋
𝐿
𝑥� = −

∞
�
𝑛=1

𝑘 �
𝑛𝜋
𝐿
�
2
𝑏𝑛 (𝑡) sin �𝑛

𝜋
𝐿
𝑥� +

∞
�
𝑛=1

𝑔𝑛 sin �𝑛𝜋
𝐿
𝑥�

Applying orthogonality the above reduces to one term only

𝑑𝑏𝑛 (𝑡)
𝑑𝑡

sin �𝑛𝜋
𝐿
𝑥� = −𝑘 �

𝑛𝜋
𝐿
�
2
𝑏𝑛 (𝑡) sin �𝑛

𝜋
𝐿
𝑥� + 𝑔𝑛 sin �𝑛𝜋

𝐿
𝑥�

Dividing by sin �𝑛𝜋𝐿𝑥� ≠ 0

𝑑𝑏𝑛 (𝑡)
𝑑𝑡

= −𝑘 �
𝑛𝜋
𝐿
�
2
𝑏𝑛 (𝑡) + 𝑔𝑛

𝑑𝑏𝑛 (𝑡)
𝑑𝑡

+ 𝑘 �
𝑛𝜋
𝐿
�
2
𝑏𝑛 (𝑡) = 𝑔𝑛 (5)

This is of the form 𝑦′ +𝑎𝑦 = 𝑔𝑛, where 𝑎 = 𝑘 �
𝑛𝜋
𝐿
�
2
. This is solved using an integration factor

𝜇 = 𝑒𝑎𝑡, where 𝑑
𝑑𝑡
�𝑒𝑎𝑡𝑦� = 𝑒𝑎𝑡𝑔𝑛, giving the solution

𝑦 (𝑡) =
1
𝜇 �

𝜇𝑔𝑛𝑑𝑡 +
𝑐
𝜇

Hence the solution to (5) is

𝑏𝑛 (𝑡) 𝑒
𝑘� 𝑛𝜋𝐿 �

2
𝑡 = �𝑒𝑘�

𝑛𝜋
𝐿 �

2
𝑡𝑔𝑛𝑑𝑡 + 𝑐

𝑏𝑛 (𝑡) 𝑒
𝑘� 𝑛𝜋𝐿 �

2
𝑡 =

𝐿2𝑒𝑘�
𝑛𝜋
𝐿 �

2
𝑡

𝑘𝑛2𝜋2
𝑔𝑛 + 𝑐

𝑏𝑛 (𝑡) =
𝐿2

𝑘𝑛2𝜋2
𝑔𝑛 + 𝑐𝑒

−𝑘� 𝑛𝜋𝐿 �
2
𝑡

Where 𝑐 above is constant of integration. Hence the solution becomes

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑏𝑛 (𝑡) sin �𝑛
𝜋
𝐿
𝑥�

=
∞
�
𝑛=1

�
𝐿2

𝑘𝑛2𝜋2
𝑔𝑛 + 𝑐𝑒

−𝑘� 𝑛𝜋𝐿 �
2
𝑡� sin �𝑛𝜋

𝐿
𝑥�

At 𝑡 = 0, 𝑢 (𝑥, 0) = 𝑓 (𝑥), therefore

𝑓 (𝑥) =
∞
�
𝑛=1

�
𝐿2

𝑘𝑛2𝜋2
𝑔𝑛 + 𝑐� sin �𝑛𝜋

𝐿
𝑥�

Therefore
𝐿2

𝑘𝑛2𝜋2
𝑔𝑛 + 𝑐 =

2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

Solving for 𝑐 gives

𝑐 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 −

𝐿2

𝑘𝑛2𝜋2
𝑔𝑛

This completes the solution. Everything is now known. Summary
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𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑏𝑛 (𝑡) sin �𝑛
𝜋
𝐿
𝑥�

𝑏𝑛 (𝑡) = �
𝐿2

𝑘𝑛2𝜋2
𝑔𝑛 + 𝑐𝑒

−𝑘� 𝑛𝜋𝐿 �
2
𝑡�

𝑔𝑛 =
2
𝐿 �

𝐿

0
𝑔 (𝑥) sin �𝑛𝜋

𝐿
𝑥�

𝑐 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 −

𝐿2

𝑘𝑛2𝜋2
𝑔𝑛
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2.6 HW 5

2.6.1 Problem 3.5.2

3.6. Complex Form of Fourier Series

EXERCISES 3.5

3.5.1. Consider

131

00

x2bnsinnrx. (3.5.12)
n=1

(a) Determine bn from (3.3.11), (3.3.12), and (3.5.6).

(b) Fdr what values of x is (3.5.12) an equality?

*(c) Derive the Fourier cosine series for x3 from (3.5.12). For what values
of x will this be an equality?

3.5.2. (a) Using (3.3.11) and (3.3.12), obtain the Fourier cosine series of x2.

(b) From part (a), determine the Fourier sine series of x3.

3.5.3. Generalize Exercise 3.5.2, in order to derive the Fourier sine series of xm,
m odd.

Suppose that cosh x - F_', b,, sin nirx/L.

(a) Determine bn by correctly differentiating this series twice.

(b) Determine bn by integrating this series twice.

3.5.5. Show that Bn in (3.5.9) satisfies Bn = an/(n7r/L), where a is defined by
(3.5.1).

3.5.6. Evaluate
1 1 1 1 1+22+32+42+52+62+...

by evaluating (3.5.5) at x = 0.

*3.5.7. Evaluate
1 1 1 ...1-53 -

73
+T3- +

using (3.5.6).

3.6 Complex Form of Fourier Series
With periodic boundary conditions, we have found the theory of Fourier series to
be quite useful:

00 nirx nlrx
f (x) . ac + F, an cos f- + bn sin L (3.6.1)

n=1

2.6.1.1 Part a

Equation 3.3.11, page 100 is the Fourier sin series of 𝑥

𝑥 =
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� − 𝐿 < 𝑥 < 𝐿 (3.3.11)

Where

𝐵𝑛 =
2𝐿
𝑛𝜋

(−1)𝑛+1 (3.3.12)

The goal is to find the Fourier cos series of 𝑥2. Since ∫𝑥
0
𝑡𝑑𝑡 = 𝑥2

2 , then 𝑥
2 = 2∫

𝑥

0
𝑡𝑑𝑡. Hence

from 3.3.11

𝑥2 = 2�
𝑥

0
�
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑡�� 𝑑𝑡

Interchanging the order of summation and integration the above becomes

𝑥2 = 2
∞
�
𝑛=1

�𝐵𝑛�
𝑥

0
sin �𝑛𝜋

𝐿
𝑡� 𝑑𝑡�

= 2
∞
�
𝑛=1

𝐵𝑛

⎛
⎜⎜⎜⎜⎜⎝
− cos �𝑛𝜋𝐿 𝑡�

𝑛𝜋𝐿

⎞
⎟⎟⎟⎟⎟⎠

𝑥

0

=
∞
�
𝑛=1

−2𝐿
𝑛𝜋

𝐵𝑛 �cos �𝑛𝜋
𝐿
𝑡��

𝑥

0

=
∞
�
𝑛=1

−2𝐿
𝑛𝜋

𝐵𝑛 �cos �𝑛𝜋
𝐿
𝑥� − 1�

=
∞
�
𝑛=1

�
−2𝐿
𝑛𝜋

𝐵𝑛 cos �𝑛𝜋
𝐿
𝑥� +

2𝐿
𝑛𝜋
𝐵𝑛�

=
∞
�
𝑛=1

−2𝐿
𝑛𝜋

𝐵𝑛 cos �𝑛𝜋
𝐿
𝑥� +

∞
�
𝑛=1

𝐵𝑛
2𝐿
𝑛𝜋

(1)

But a Fourier cos series has the form

𝑥2 = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� (2)

Comparing (1) and (2) gives

𝐴𝑛 =
−2𝐿
𝑛𝜋

𝐵𝑛

Using 3.3.12 for 𝐵𝑛 the above becomes

𝐴𝑛 =
−2𝐿
𝑛𝜋

2𝐿
𝑛𝜋

(−1)𝑛+1

= (−1)𝑛 �
2𝐿
𝑛𝜋�

2
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And

𝐴0 =
∞
�
𝑛=1

𝐵𝑛
2𝐿
𝑛𝜋

=
∞
�
𝑛=1

�
2𝐿
𝑛𝜋

(−1)𝑛+1�
2𝐿
𝑛𝜋

=
4𝐿2

𝜋2
∞
�
𝑛=1

(−1)𝑛+1
1
𝑛2

But ∑∞
𝑛=1 (−1)

𝑛+1 1
𝑛2 =

𝜋2

12 , hence the above becomes

𝐴0 =
4𝐿2

𝜋2
𝜋2

12

=
𝐿2

3
Summary The Fourier cos series of 𝑥2 is

𝑥2 = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥�

=
𝐿2

3
+

∞
�
𝑛=1

(−1)𝑛 �
2𝐿
𝑛𝜋�

2

cos �𝑛𝜋
𝐿
𝑥�

2.6.1.2 Part (b)

Since

𝑥3 = 3�
𝑥

0
𝑡2𝑑𝑡

Then, using result from part (a) for Fourier cos series of 𝑡2 results in

𝑥3 = 3�
𝑥

0
�𝐴0 +

∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑡�� 𝑑𝑡

= 3�
𝑥

0

𝐿2

3
𝑑𝑡 + 3�

𝑥

0

∞
�
𝑛=1

(−1)𝑛 �
2𝐿
𝑛𝜋�

2

cos �𝑛𝜋
𝐿
𝑡� 𝑑𝑡

= 𝐿2 (𝑡)𝑥0 + 3
∞
�
𝑛=1

(−1)𝑛 �
2𝐿
𝑛𝜋�

2

�
𝑥

0
cos �𝑛𝜋

𝐿
𝑡� 𝑑𝑡

= 𝐿2𝑥 + 3
∞
�
𝑛=1

(−1)𝑛 �
2𝐿
𝑛𝜋�

2
⎡
⎢⎢⎢⎢⎢⎣
sin �𝑛𝜋𝐿 𝑡�
𝑛𝜋𝐿

⎤
⎥⎥⎥⎥⎥⎦

𝑥

0

= 𝐿2𝑥 + 3
∞
�
𝑛=1

𝐿
𝑛𝜋

(−1)𝑛 �
2𝐿
𝑛𝜋�

2

�sin �𝑛
𝜋
𝐿
𝑡��

𝑥

0

= 𝐿2𝑥 + (3 ⋅ 4)
∞
�
𝑛=1

(−1)𝑛 �
𝐿
𝑛𝜋�

3

sin �𝑛𝜋
𝐿
𝑥�

Using 3.3.11 which is 𝑥 = ∑∞
𝑛=1 𝐵𝑛 sin �𝑛𝜋𝐿𝑥�, with 𝐵𝑛 =

2𝐿
𝑛𝜋
(−1)𝑛+1 the above becomes

𝑥3 = 𝐿2
∞
�
𝑛=1

2𝐿
𝑛𝜋

(−1)𝑛+1 sin �𝑛𝜋
𝐿
𝑥� + (3 ⋅ 4)

∞
�
𝑛=1

(−1)𝑛 �
𝐿
𝑛𝜋�

3

sin �𝑛𝜋
𝐿
𝑥�

Combining all above terms

𝑥3 =
∞
�
𝑛=1

⎡
⎢⎢⎢⎢⎣𝐿
2 2𝐿
𝑛𝜋

(−1)𝑛+1 + (3 ⋅ 4) (−1)𝑛 �
𝐿
𝑛𝜋�

3⎤⎥⎥⎥⎥⎦ sin �𝑛𝜋
𝐿
𝑥�

Will try to simplify more to obtain 𝐵𝑛

𝑥3 =
∞
�
𝑛=1

(−1)𝑛
𝐿3

𝑛𝜋

⎡
⎢⎢⎢⎢⎣−2 + (3 ⋅ 4) �

1
𝑛𝜋�

2⎤⎥⎥⎥⎥⎦ sin �𝑛𝜋
𝐿
𝑥�

=
∞
�
𝑛=1

(−1)𝑛
2𝐿3

𝑛𝜋

⎡
⎢⎢⎢⎢⎣−1 + (3 × 2) �

1
𝑛𝜋�

2⎤⎥⎥⎥⎥⎦ sin �𝑛𝜋
𝐿
𝑥�
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Comparing the above to the standard Fourier sin series 𝑥3 = ∑∞
𝑛=1 𝐵𝑛 sin �𝑛𝜋𝐿𝑥� then the

above is the required sin series for 𝑥3 with

𝐵𝑛 = (−1)
𝑛 2𝐿3

𝑛𝜋

⎡
⎢⎢⎢⎢⎣−1 + (3 × 2) �

1
𝑛𝜋�

2⎤⎥⎥⎥⎥⎦ sin �𝑛𝜋
𝐿
𝑥�

Expressing the above using 𝐵𝑛 from 𝑥1 to help find recursive relation for next problem.

Will now use the notation 𝑖𝐵𝑛 to mean the 𝐵𝑛 for 𝑥𝑖. Then since 1𝐵𝑛 = 2𝐿
𝑛𝜋
(−1)𝑛+1 =

(−1)𝑛 �− 2𝐿𝑛𝜋� for 𝑥, then, using
3𝐵𝑛 as the 𝐵𝑛 for 𝑥3, the series for 𝑥3 can be written

𝑥3 =
∞
�
𝑛=1

(−1)𝑛 𝐿2 �−
2𝐿
𝑛𝜋

+ 6 �2
𝐿

𝑛2𝜋2 ��
sin �𝑛𝜋

𝐿
𝑥�

=
∞
�
𝑛=1

(−1)𝑛 𝐿2 �1𝐵𝑛 + 6 �2
𝐿

𝑛2𝜋2 ��
sin �𝑛𝜋

𝐿
𝑥�

Where now

3𝐵𝑛 = (−1)
𝑛 𝐿2 �𝐵1𝑛 + 6 �2

𝐿
𝑛2𝜋2 ��

The above will help in the next problem in order to find recursive relation.

2.6.2 Problem 3.5.3

3.6. Complex Form of Fourier Series

EXERCISES 3.5

3.5.1. Consider

131

00

x2bnsinnrx. (3.5.12)
n=1

(a) Determine bn from (3.3.11), (3.3.12), and (3.5.6).

(b) Fdr what values of x is (3.5.12) an equality?

*(c) Derive the Fourier cosine series for x3 from (3.5.12). For what values
of x will this be an equality?

3.5.2. (a) Using (3.3.11) and (3.3.12), obtain the Fourier cosine series of x2.

(b) From part (a), determine the Fourier sine series of x3.

3.5.3. Generalize Exercise 3.5.2, in order to derive the Fourier sine series of xm,
m odd.

Suppose that cosh x - F_', b,, sin nirx/L.

(a) Determine bn by correctly differentiating this series twice.

(b) Determine bn by integrating this series twice.

3.5.5. Show that Bn in (3.5.9) satisfies Bn = an/(n7r/L), where a is defined by
(3.5.1).

3.5.6. Evaluate
1 1 1 1 1+22+32+42+52+62+...

by evaluating (3.5.5) at x = 0.

*3.5.7. Evaluate
1 1 1 ...1-53 -

73
+T3- +

using (3.5.6).

3.6 Complex Form of Fourier Series
With periodic boundary conditions, we have found the theory of Fourier series to
be quite useful:

00 nirx nlrx
f (x) . ac + F, an cos f- + bn sin L (3.6.1)

n=1

Result from Last problem showed that

𝑥 =
∞
�
𝑛=1

𝐵1𝑛 sin �𝑛𝜋
𝐿
𝑥�

1𝐵𝑛 = (−1)
𝑛 �−

2𝐿
𝑛𝜋�

And

𝑥3 =
∞
�
𝑛=1

(−1)𝑛 𝐿2 �1𝐵𝑛 + (3 × 2) �2
𝐿

𝑛2𝜋2 ��
sin �𝑛𝜋

𝐿
𝑥�

This suggests that

𝑥5 =
∞
�
𝑛=1

(−1)𝑛 𝐿2 �3𝐵𝑛 + (5 × 4 × 3 × 2) �2
𝐿

𝑛2𝜋2 ��
sin �𝑛𝜋

𝐿
𝑥�

3𝐵𝑛 = (−1)
𝑛 𝐿2 �1𝐵𝑛 + 6 �2

𝐿
𝑛2𝜋2 ��

And in general

𝑥𝑚 =
∞
�
𝑛=1

(−1)𝑛 𝐿2 �𝑚−2𝐵𝑛 + 𝑚! �2
𝐿

𝑛2𝜋2 ��
sin �𝑛𝜋

𝐿
𝑥�

Where

𝑚−2𝐵𝑛 = (−1)
𝑛 𝐿2 �𝑚−4𝐵𝑛 + (𝑚 − 2)! �2

𝐿
𝑛2𝜋2 ��

The above is a recursive definition to find 𝑥𝑚 Fourier series for 𝑚 odd.
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2.6.3 Problem 3.5.7

3.6. Complex Form of Fourier Series

EXERCISES 3.5

3.5.1. Consider

131

00

x2bnsinnrx. (3.5.12)
n=1

(a) Determine bn from (3.3.11), (3.3.12), and (3.5.6).

(b) Fdr what values of x is (3.5.12) an equality?

*(c) Derive the Fourier cosine series for x3 from (3.5.12). For what values
of x will this be an equality?

3.5.2. (a) Using (3.3.11) and (3.3.12), obtain the Fourier cosine series of x2.

(b) From part (a), determine the Fourier sine series of x3.

3.5.3. Generalize Exercise 3.5.2, in order to derive the Fourier sine series of xm,
m odd.

Suppose that cosh x - F_', b,, sin nirx/L.

(a) Determine bn by correctly differentiating this series twice.

(b) Determine bn by integrating this series twice.

3.5.5. Show that Bn in (3.5.9) satisfies Bn = an/(n7r/L), where a is defined by
(3.5.1).

3.5.6. Evaluate
1 1 1 1 1+22+32+42+52+62+...

by evaluating (3.5.5) at x = 0.

*3.5.7. Evaluate
1 1 1 ...1-53 -

73
+T3- +

using (3.5.6).

3.6 Complex Form of Fourier Series
With periodic boundary conditions, we have found the theory of Fourier series to
be quite useful:

00 nirx nlrx
f (x) . ac + F, an cos f- + bn sin L (3.6.1)

n=1

Equation 3.5.6 is

𝑥2

2
=
𝐿
2
𝑥 −

4𝐿2

𝜋3

⎛
⎜⎜⎜⎜⎜⎝sin

𝜋𝑥
𝐿
+

sin 3𝜋𝑥
𝐿

33
+

sin 5𝜋𝑥
𝐿

53
+

sin 7𝜋𝑥
𝐿

73
+⋯

⎞
⎟⎟⎟⎟⎟⎠ (3.5.6)

Letting 𝑥 = 𝐿
2 in (3.5.6) gives

𝐿2

8
=
𝐿2

4
−
4𝐿2

𝜋3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
sin

𝜋𝐿2
𝐿
+

sin
3𝜋 𝐿

2
𝐿

33
+

sin
5𝜋 𝐿

2
𝐿

53
+

sin
7𝜋 𝐿

2
𝐿

73
+⋯

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
𝐿2

4
−
4𝐿2

𝜋3

⎛
⎜⎜⎜⎜⎝sin

𝜋
2
+

sin 3𝜋2
33

+
sin 5𝜋2
53

+
sin 7𝜋2
73

+⋯
⎞
⎟⎟⎟⎟⎠

=
𝐿2

4
−
4𝐿2

𝜋3 �
1 −

1
33
+
1
53
−
1
73
⋯�

Hence
𝐿2

8
−
𝐿2

4
= −

4𝐿2

𝜋3 �
1 −

1
33
+
1
53
−
1
73
⋯�

−
𝐿2

8
= −

4𝐿2

𝜋3 �
1 −

1
33
+
1
53
−
1
73
⋯�

𝜋3

4 × 8
= �1 −

1
33
+
1
53
−
1
73
⋯�

Or
𝜋3

32
= 1 −

1
33
+
1
53
−
1
73
⋯

2.6.4 Problem 3.6.1134 Chapter 3. Fourier Series

EXERCISES 3.6

*3.6.1. Consider
0 x < xo

f (x) = 1/0 xo <X < xo +
0 x>xo+0.

Assume that xo > -L and xo + A < L. Determine the complex Fourier
coefficients c,,.

3.6.2. If f (x) is real, show that c_,a = c,,.
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The function defined above is the Dirac delta function. (in the limit, as Δ → 0). Now

𝑐𝑛 =
1
2𝐿 �

𝐿

−𝐿
𝑓 (𝑥) 𝑒𝑖𝑛

𝜋
𝐿 𝑥𝑑𝑥

=
1
2𝐿 �

𝑥0+Δ

𝑥0

1
Δ
𝑒𝑖𝑛

𝜋
𝐿 𝑥𝑑𝑥

=
1
2𝐿

1
Δ

⎡
⎢⎢⎢⎢⎢⎣
𝑒𝑖𝑛

𝜋
𝐿 𝑥

𝑖𝑛𝜋𝐿

⎤
⎥⎥⎥⎥⎥⎦

𝑥0+Δ

𝑥0

=
1
2𝐿

𝐿
Δ𝑖𝑛𝜋 �

𝑒𝑖𝑛
𝜋
𝐿 𝑥�

𝑥0+Δ

𝑥0

=
1

𝑖2𝑛Δ𝜋
�𝑒𝑖𝑛

𝜋
𝐿 (𝑥0+Δ) − 𝑒𝑖𝑛

𝜋
𝐿 𝑥0�

Since 𝑒𝑖𝑧−𝑒−𝑖𝑧

2𝑖 = sin 𝑧. The denominator above has 2𝑖 in it. Factoring out 𝑒
𝑖𝑛𝜋𝐿 �𝑥0+

Δ
2 � from the

above gives

𝑐𝑛 =
1

𝑖2𝑛Δ𝜋
𝑒
𝑖𝑛𝜋𝐿 �𝑥0+

Δ
2 � �𝑒𝑖𝑛

𝜋
𝐿
Δ
2 − 𝑒−𝑖𝑛

𝜋
𝐿
Δ
2 �

=
1

𝑛Δ𝜋
𝑒
𝑖𝑛𝜋𝐿 �𝑥0+

Δ
2 �
�𝑒𝑖𝑛

𝜋
𝐿
Δ
2 − 𝑒−𝑖𝑛

𝜋
𝐿
Δ
2 �

𝑖2
Now the form is sin (𝑧) is obtained, hence it can be written as

𝑐𝑛 =
𝑒
𝑖𝑛𝜋𝐿 �𝑥0+

Δ
2 �

𝑛Δ𝜋
sin �𝑛

𝜋
𝐿
Δ
2 �

Or

𝑐𝑛 =
cos �𝑛𝜋𝐿 �𝑥0 +

Δ
2
�� + 𝑖 sin �𝑛𝜋𝐿 �𝑥0 +

Δ
2
��

Δ𝑛𝜋
sin �𝑛

𝜋
𝐿
Δ
2 �

2.6.5 Problem 4.2.1

138 Chapter 4. Wave Equation

One-dimensional wave equation. If the only body force per unit mass
is gravity, then Q(x, t) = -g in (4.2.7). In many such situations, this force is small
(relative to the tensile force pog << jTo82u/8x20 and can be neglected. Alterna-
tively, gravity sags the string, and we can calculate the vibrations with respect to
the sagged equilibrium position. In either way we are often led to investigate (4.2.7)
in the case in which Q(x, t) = 0,

82u 82u
Po (x) 8t2

_ To 8x2

or

192U 02U

5j2 Ox2 ,

(4.2.8)

(4.2.9)

where c2 = Tolpo(x). Equation (4.2.9) is called the one-dimensional wave equa-
tion. The notation c2 is introduced because To/po(x) has the dimensions of velocity
squared. We will show that c is a very important velocity. For a uniform string, c
is constant.

EXERCISES 4.2

4.2.1. (a) Using Equation (4.2.7), compute the sagged equilibrium position uE(x)
if Q(x, t) = -g. The boundary conditions are u(O) = 0 and u(L) = 0.

(b) Show that v(x, t) = u(x, t) - uE(x) satisfies (4.2.9).

4.2.2. Show that c2 has the dimensions of velocity squared.

4.2.3. Consider a particle whose x-coordinate (in horizontal equilibrium) is des-
ignated by a. If its vertical and horizontal displacements are u and v,
respectively, determine its position x and y. Then show that

dy 8u/8a
dx - 1 + 8v/8a'

4.2.4. Derive equations for horizontal and vertical displacements without ignor-
ing v. Assume that the string is perfectly flexible and that the tension is
determined by an experimental law.

4.2.5. Derive the partial differential equation for a vibrating string in the simplest
possible manner. You may assume the string has constant mass density
po, you may assume the tension To is constant, and you may assume small
displacements (with small slopes).

2.6.5.1 Part (a)

Equation 4.2.7 is

𝜌 (𝑥)
𝜕2𝑢
𝜕𝑡2

= 𝑇0
𝜕2𝑢
𝜕𝑥2

+ 𝑄 (𝑥, 𝑡) 𝜌 (𝑥) (4.2.7)

Replacing 𝑄 (𝑥, 𝑡) by −𝑔

𝜌 (𝑥)
𝜕2𝑢
𝜕𝑡2

= 𝑇0
𝜕2𝑢
𝜕𝑥2

− 𝑔𝜌 (𝑥)

At equilibrium, the string is sagged but is not moving.
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y

x0 L

uE

This is equilibrium position.
Sagged due to only weight of
string

g

Therefore 𝜕2𝑢𝐸
𝜕𝑡2 = 0. The above becomes

0 = 𝑇0
𝜕2𝑢𝐸
𝜕𝑥2

− 𝑔𝜌 (𝑥)

This is now partial di�erential equation in only 𝑥. It becomes an ODE

𝑑2𝑢𝐸
𝑑𝑥2

=
𝑔𝜌 (𝑥)
𝑇0

With boundary conditions 𝑢𝐸 (0) = 0, 𝑢𝐸 (𝐿) = 0. By double integration the solution is found.
Integrating once gives

𝑑𝑢𝐸
𝑑𝑥

= �
𝑥

0

𝑔𝜌 (𝑠)
𝑇0

𝑑𝑠 + 𝑐1

Integrating again

𝑢𝐸 = �
𝑥

0
��

𝑠

0

𝑔𝜌 (𝑧)
𝑇0

𝑑𝑧 + 𝑐1� 𝑑𝑠 + 𝑐2

= �
𝑥

0
��

𝑠

0

𝑔𝜌 (𝑧)
𝑇0

𝑑𝑧� 𝑑𝑠 +�
𝑥

0
𝑐1𝑑𝑠 + 𝑐2

=
𝑔
𝑇0
�

𝑥

0
�

𝑠

0
𝜌 (𝑧) 𝑑𝑧𝑑𝑠 + 𝑐1𝑥 + 𝑐2 (1)

Equation (1) is the solution. Applying B.C. to find 𝑐1, 𝑐2. At 𝑥 = 0 the above gives

0 = 𝑐2
The solution (1) becomes

𝑢𝐸 =
𝑔
𝑇0
�

𝑥

0
�

𝑠

0
𝜌 (𝑧) 𝑑𝑧𝑑𝑠 + 𝑐1𝑥 (2)

And at 𝑥 = 𝐿 the above becomes

0 =
𝑔
𝑇0
�

𝐿

0
�

𝑠

0
𝜌 (𝑧) 𝑑𝑧𝑑𝑠 + 𝑐1𝐿

𝑐1 =
−𝑔
𝐿𝑇0

�
𝐿

0
�

𝑠

0
𝜌 (𝑧) 𝑑𝑧𝑑𝑠

Substituting this into (2) gives the final solution

𝑢𝐸 =
𝑔
𝑇0
�

𝑥

0
��

𝑠

0
𝜌 (𝑧) 𝑑𝑧� 𝑑𝑠 + �

−𝑔
𝐿𝑇0

�
𝐿

0
��

𝑠

0
𝜌 (𝑧) 𝑑𝑧� 𝑑𝑠� 𝑥 (3)

If the density was constant, (3) reduces to

𝑢𝐸 =
𝑔𝜌
𝑇0
�

𝑥

0
𝑠𝑑𝑠 + �

−𝑔𝜌
𝐿𝑇0

�
𝐿

0
𝑠𝑑𝑠� 𝑥

=
𝑔𝜌
𝑇0
𝑥2

2
−
𝑔𝜌
𝐿𝑇0

𝐿2

2
𝑥

=
𝑔𝜌
𝑇0
�
𝑥2

2
−
𝐿
2
𝑥�

Here is a plot of the above function for 𝑔 = 9.8, 𝐿 = 1, 𝑇0 = 1, 𝜌 = 0.1 for verification.
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0.0 0.2 0.4 0.6 0.8 1.0
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-0.10

-0.08

-0.06

-0.04

-0.02

0.00

x

uE

sagged equilibrium position uE

2.6.5.2 Part (b)

Equation 4.2.9 is

𝜕2𝑢
𝜕𝑡2

=
𝑇0
𝜌 (𝑥)

𝜕2𝑢
𝜕𝑥2

(4.2.9)

Since

𝜌 (𝑥)
𝜕2𝑢
𝜕𝑡2

= 𝑇0
𝜕2𝑢
𝜕𝑥2

+ 𝑄 (𝑥, 𝑡) 𝜌 (𝑥) (1)

And

𝜌 (𝑥)
𝜕2𝑢𝐸
𝜕𝑡2

= 𝑇0
𝜕2𝑢𝐸
𝜕𝑥2

+ 𝑄 (𝑥, 𝑡) 𝜌 (𝑥) (2)

Then by subtracting (2) from (1)

𝜌 (𝑥)
𝜕2𝑢
𝜕𝑡2

− 𝜌 (𝑥)
𝜕2𝑢𝐸
𝜕𝑡2

= 𝑇0
𝜕2𝑢
𝜕𝑥2

+ 𝑄 (𝑥, 𝑡) 𝜌 (𝑥) − 𝑇0
𝜕2𝑢𝐸
𝜕𝑥2

− 𝑄 (𝑥, 𝑡) 𝜌 (𝑥)

𝜌 (𝑥) �
𝜕2𝑢
𝜕𝑡2

−
𝜕2𝑢𝐸
𝜕𝑡2 �

= 𝑇0 �
𝜕2𝑢
𝜕𝑥2

−
𝜕2𝑢𝐸
𝜕𝑥2 �

Since 𝑣 (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) − 𝑢𝐸 (𝑥, 𝑡) then
𝜕2𝑣
𝜕𝑡2 =

𝜕2𝑢
𝜕𝑡2 −

𝜕2𝑢𝐸
𝜕𝑡2 and 𝜕2𝑣

𝜕𝑥2 =
𝜕2𝑢
𝜕𝑥2 −

𝜕2𝑢𝐸
𝜕𝑥2 , therefore the above

equation becomes

𝜌 (𝑥)
𝜕2𝑣
𝜕𝑡2

= 𝑇0
𝜕2𝑣
𝜕𝑥2

𝜕2𝑣
𝜕𝑡2

=
𝑇0
𝜌 (𝑥)

𝜕2𝑣
𝜕𝑥2

= 𝑐2
𝜕2𝑣
𝜕𝑥2

Which is 4.2.9. QED.

2.6.6 Problem 4.2.5

138 Chapter 4. Wave Equation

One-dimensional wave equation. If the only body force per unit mass
is gravity, then Q(x, t) = -g in (4.2.7). In many such situations, this force is small
(relative to the tensile force pog << jTo82u/8x20 and can be neglected. Alterna-
tively, gravity sags the string, and we can calculate the vibrations with respect to
the sagged equilibrium position. In either way we are often led to investigate (4.2.7)
in the case in which Q(x, t) = 0,

82u 82u
Po (x) 8t2

_ To 8x2

or

192U 02U

5j2 Ox2 ,

(4.2.8)

(4.2.9)

where c2 = Tolpo(x). Equation (4.2.9) is called the one-dimensional wave equa-
tion. The notation c2 is introduced because To/po(x) has the dimensions of velocity
squared. We will show that c is a very important velocity. For a uniform string, c
is constant.

EXERCISES 4.2

4.2.1. (a) Using Equation (4.2.7), compute the sagged equilibrium position uE(x)
if Q(x, t) = -g. The boundary conditions are u(O) = 0 and u(L) = 0.

(b) Show that v(x, t) = u(x, t) - uE(x) satisfies (4.2.9).

4.2.2. Show that c2 has the dimensions of velocity squared.

4.2.3. Consider a particle whose x-coordinate (in horizontal equilibrium) is des-
ignated by a. If its vertical and horizontal displacements are u and v,
respectively, determine its position x and y. Then show that

dy 8u/8a
dx - 1 + 8v/8a'

4.2.4. Derive equations for horizontal and vertical displacements without ignor-
ing v. Assume that the string is perfectly flexible and that the tension is
determined by an experimental law.

4.2.5. Derive the partial differential equation for a vibrating string in the simplest
possible manner. You may assume the string has constant mass density
po, you may assume the tension To is constant, and you may assume small
displacements (with small slopes).

Let us consider a small segment of the string of length Δ𝑥 from 𝑥 to 𝑥 + Δ𝑥. The mass of
this segment is 𝜌Δ𝑥, where 𝜌 is density of the string per unit length, assumed here to be
constant. Let the angle that the string makes with the horizontal at 𝑥 and at 𝑥+Δ𝑥 be 𝜃 (𝑥, 𝑡)
and 𝜃 (𝑥 + Δ𝑥, 𝑡) respectively. Since we are only interested in the vertical displacement 𝑢 (𝑥, 𝑡)
of the string, the vertical force on this segment consists of two parts: Its weight (acting
downwards) and the net tension resolved in the vertical direction. Let the total vertical
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force be 𝐹𝑦. Therefore

𝐹𝑦 =
weight

���������− 𝜌Δ𝑥𝑔 +
net tension on segment in vertical direction

���������������������������������������������������������������������(𝑇 (𝑥 + Δ𝑥, 𝑡) sin𝜃 (𝑥 + Δ𝑥, 𝑡) − 𝑇 (𝑥, 𝑡) sin𝜃 (𝑥, 𝑡))

Applying Newton’s second law in the vertical direction 𝐹𝑦 = 𝑚𝑎𝑦 where 𝑎𝑦 =
𝜕2𝑢(𝑥,𝑡)
𝜕𝑡2 and

𝑚 = 𝜌Δ𝑥, gives the equation of motion of the string segment in the vertical direction

𝜌Δ𝑥
𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑡2

= −𝜌Δ𝑥𝑔 + (𝑇 (𝑥 + Δ𝑥, 𝑡) sin𝜃 (𝑥 + Δ𝑥, 𝑡) − 𝑇 (𝑥, 𝑡) sin𝜃 (𝑥, 𝑡))

Dividing both sides by Δ𝑥

𝜌
𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑡2

= −𝜌𝑔 +
(𝑇 (𝑥 + Δ𝑥) sin𝜃 (𝑥 + Δ𝑥, 𝑡) − 𝑇 (𝑥) sin𝜃 (𝑥, 𝑡))

Δ𝑥
Taking the limit Δ𝑥 → 0

𝜌
𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑡2

= −𝜌𝑔 +
𝜕
𝜕𝑥

(𝑇 (𝑥, 𝑡) sin𝜃 (𝑥, 𝑡))

Assuming small angles then 𝜕𝑢
𝜕𝑥 = tan𝜃 = sin𝜃

cos𝜃 ≈ sin𝜃, then we can replace sin𝜃 in the

above with 𝜕𝑢
𝜕𝑥 giving

𝜌
𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑡2

= −𝜌𝑔 +
𝜕
𝜕𝑥 �

𝑇 (𝑥, 𝑡)
𝜕𝑢 (𝑥, 𝑡)
𝜕𝑥 �

Assuming tension 𝑇 (𝑥, 𝑡) is constant, say 𝑇0 then the above becomes

𝜌
𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑡2

= −𝜌𝑔 + 𝑇0
𝜕
𝜕𝑥 �

𝜕𝑢 (𝑥, 𝑡)
𝜕𝑥 �

𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑡2

=
𝑇0
𝜌
𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑥2

− 𝜌𝑔

Setting 𝑇0
𝜌 = 𝑐2 then the above becomes

𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑡2

= 𝑐2
𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑥2

− 𝜌𝑔

Note: In the above 𝑔 (gravity acceleration) was used instead of 𝑄 (𝑥, 𝑡) as in the book to
represent the body forces. In other words, the above can also be written as

𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑡2

= 𝑐2
𝜕2𝑢 (𝑥, 𝑡)
𝜕𝑥2

+ 𝜌𝑄 (𝑥, 𝑡)

This is the required PDE, assuming constant density, constant tension, small angles and
small vertical displacement.

2.6.7 Problem 4.4.1

4.4. Vibrating String With Fixed Ends 147

of standing waves, it can be shown that this solution is a combination of just two
waves (each rather complicated)-one traveling to the left at velocity -c with fixed
shape and the other to the right at velocity c with a different fixed shape. We are
claiming that the solution to the one-dimensional wave equation can be written as

u(x, t) = R(x - ct) + S(x + ct),

even if the boundary conditions are not fixed at x = 0 and x = L. We will show
and discuss this further in the Exercises and in Chapter 12.

EXERCISES 4.4

4.4.1. Consider vibrating strings of uniform density po and tension To.

*(a) What are the natural frequencies of a vibrating string of length L fixed
at both ends?

*(b) What are the natural frequencies of a vibrating string of length H,
which is fixed at x = 0 and "free" at the other end [i.e., Ou/8x(H, t) =
01? Sketch a few modes of vibration as in Fig. 4.4.1.

(c) Show that the modes of vibration for the odd harmonics (i.e., n =
1, 3, 5, ...) of part (a) are identical to modes of part (b) if H = L/2.
Verify that their natural frequencies are the same. Briefly explain using
symmetry arguments.

4.4.2. In Sec. 4.2 it was shown that the displacement u of a nonuniform string
satisfies

02u 92u
Po To 8x2 + Q,

where Q represents the vertical component of the body force per unit length.
If Q = 0, the partial differential equation is homogeneous. A slightly differ-
ent homogeneous equation occurs if Q = au.

(a) Show that if a < 0, the body force is restoring (toward u = 0). Show
that if a > 0, the body force tends to push the string further away
from its unperturbed position u = 0.

(b) Separate variables if po(x) and a(x) but To is constant for physical
reasons. Analyze the time-dependent ordinary differential equation.

*(c) Specialize part (b) to the constant coefficient case. Solve the initial
value problem if a < 0:

u(0, t) = 0 u(x,0) = 0

u(L, t) = 0 5 (x, 0) = f W.

What are the frequencies of vibration?
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2.6.7.1 Part (a)

The natural frequencies of vibrating string of length 𝐿 with fixed ends, is given by equation
4.4.11 in the book, which is the solution to the string wave equation

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

sin �𝑛𝜋
𝐿
𝑥� �𝐴𝑛 cos �𝑛𝜋𝑐

𝐿
𝑡� + 𝐵𝑛 sin �𝑛𝜋𝑐

𝐿
𝑡��

The frequency of the time solution part of the PDE is given by the arguments of eigen-
fucntions 𝐴𝑛 cos �𝑛𝜋𝑐𝐿 𝑡� + 𝐵𝑛 sin �𝑛𝜋𝑐𝐿 𝑡�. Therefore 𝑛

𝜋𝑐
𝐿 represents the circular frequency 𝜔𝑛.

Comparing general form of cos𝜔𝑡 with cos �𝑛𝜋𝑐𝐿 𝑡� we see that each mode 𝑛 has circular
frequency given by

𝜔𝑛 ≡ 𝑛
𝜋𝑐
𝐿

For 𝑛 = 1, 2, 3,⋯. In cycles per seconds (Hertz), and since 𝜔 = 2𝜋𝑓, then 2𝜋𝑓 = 𝑛𝜋𝑐𝐿 . Solving
for 𝑓 gives

𝑓𝑛 = 𝑛
𝜋𝑐
2𝜋𝐿

= 𝑛
𝑐
2𝐿

Where 𝑐 =
�

𝑇0
𝜌0

in all of the above.

2.6.7.2 Part (b)

Equation 4.4.11 above was for a string with fixed ends. Now the B.C. are di�erent, so
we need to solve the spatial equation again to find the new eigenvalues. Starting with

𝑢 = 𝑋 (𝑥) 𝑇 (𝑡) and substituting this in the PDE 𝜕2𝑢(𝑥,𝑡)
𝜕𝑡2 = 𝑐2 𝜕

2𝑢(𝑥,𝑡)
𝜕𝑥2 with 0 < 𝑥 < 𝐻 gives

𝑇′′𝑋 = 𝑐2𝑇𝑋′′

1
𝑐2
𝑇′′

𝑇
=
𝑋′′

𝑋
= −𝜆

Where both sides are set equal to some constant −𝜆. We now obtain the two ODE’s to
solve. The spatial ODE is

𝑋′′ + 𝜆𝑋 = 0
𝑋 (0) = 0
𝑋′ (𝐻) = 0

And the time ODE is

𝑇′′ + 𝜆𝑐2𝑇 = 0

The eigenvalues will always be positive for the wave equation. Taking 𝜆 > 0 the solution to
the space ODE is

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

Applying first B.C. gives

0 = 𝐴

Hence 𝑋 (𝑥) = 𝐵 sin �√𝜆𝑥� and 𝑋′ (𝑥) = −𝐵√𝜆 cos �√𝜆𝑥�. Applying second B.C. gives

0 = −𝐵√𝜆 cos �√𝜆𝐻�

Therefore for non-trivial solution, we want √𝜆𝐻 = 𝑛
2𝜋 for 𝑛 = 1, 3, 5,⋯ or written another

way

√𝜆𝐻 = �𝑛 −
1
2�
𝜋 𝑛 = 1, 2, 3,⋯

Therefore

𝜆𝑛 = ��𝑛 −
1
2�

𝜋
𝐻�

2

𝑛 = 1, 2, 3,⋯
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These are the eigenvalues. Now that we know what 𝜆𝑛 is, we go back to the solution found
before, which is

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

sin ��𝜆𝑛𝑥� �𝐴𝑛 cos ��𝜆𝑛𝑐𝑡� + 𝐵𝑛 sin ��𝜆𝑛𝑐𝑡��

And see now that the circular frequency 𝜔𝑛 is given by

𝜔𝑛 = �𝜆𝑛𝑐

=
�𝑛 − 1

2
� 𝜋

𝐻
𝑐 𝑛 = 1, 2, 3,⋯

In cycles per second, since 𝜔 = 2𝜋𝑓 then

2𝜋𝑓𝑛 =
�𝑛 − 1

2
� 𝜋

𝐻
𝑐

𝑓𝑛 =
�𝑛 − 1

2
�

2𝐻
𝑐 𝑛 = 1, 2, 3,⋯

The following are plots for 𝑛 = 1, 2, 3, 4, 5 for 𝑡 = 0⋯3 seconds by small time increments.

(*solution for HW 5, problem 4.4.1*)
f[x_, n_, t_] := Module[{H0 = 1, c = 1, lam},
lam = ((n - 1/2) Pi/H0);
Sin[lam x] (Sin[lam c t])
] ;
Table[Plot[f[x, 1, t], {x, 0, 1}, AxesOrigin -> {0, 0}], {t, 0,3, .25}];
p = Labeled[Show[

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

Mode n=1 vibration, from t=0 to t=3 seconds

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

Mode n=2 vibration, from t=0 to t=3 seconds
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0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

Mode n=3 vibration, from t=0 to t=3 seconds

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

Mode n=4 vibration, from t=0 to t=3 seconds

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

Mode n=5 vibration, from t=0 to t=3 seconds

2.6.7.3 Part (c)

For part (a), the harmonics had circular frequency 𝜔𝑛 =
𝑛𝜋
𝐿 𝑐. Hence for odd 𝑛, these will

generate
𝜋
𝐿
𝑐, 3

𝜋
𝐿
𝑐, 5

𝜋
𝐿
𝑐, 7

𝜋
𝐿
𝑐,⋯ (1)

For part (b), 𝜔𝑛 =
�𝑛− 1

2 �𝜋

𝐻 𝑐. When 𝐻 = 𝐿
2 , this becomes 𝜔𝑛 =

2�𝑛− 1
2 �𝜋

𝐿 𝑐. Looking at the first
few modes gives

2 �1 − 1
2
� 𝜋

𝐿
𝑐,
2 �2 − 1

2
� 𝜋

𝐿
𝑐,
2 �3 − 1

2
� 𝜋

𝐿
𝑐,
2 �4 − 1

2
� 𝜋

𝐿
𝑐,⋯

𝜋
𝐿
𝑐,
3𝜋
𝐿
𝑐,
5𝜋
𝐿
𝑐,
7𝜋
𝐿
𝑐,⋯ (2)

Comparing (1) and (2) we see they are the same. Which is what we asked to show.
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2.6.8 Problem 4.4.3

148 Chapter 4. Wave Equation

4.4.3. Consider a slightly damped vibrating string that satisfies

211

Po &2 T o - ) 9 -

(a) Briefly explain why /3 > 0.

*(b) Determine the solution (by separation of variables) that satisfies the
boundary conditions

u(0, t) = 0 and u(L, t) = 0

and the initial conditions

u(x,0) = f(x) and 8t(x,0) = g(x)-

You can assume that this frictional coefficient Q is relatively small
()32 < 4rr2poTo/L2).

4.4.4. Redo Exercise 4.4.3(b) by the eigenfunction expansion method.

4.4.5. Redo Exercise 4.4.3(b) if 4rr2poTo/L2 < p2 < 16rr2poTo/L2.

4.4.6. For (4.4.1)-(4.4.3), from (4.4.11) show that

u(x, t) = R(x - ct) + S(x + ct),

where R and S are some functions.

4.4.7. If a vibrating string satisfying (4.4.1)-(4.4.3) is initially at rest, g(x) = 0,
show that

u(x, t) = I [F(x - ct) + F(x + ct)],

where F(x) is the odd periodic extension of f (x). Hints.

1. For all x, F(x) _ An sin !.
2. sin a cos b = [sin(a + b) + sin(a - b)].

Comment: This result shows that the practical difficulty of summing an
infinite number of terms of a Fourier series may be avoided for the one-
dimensional wave equation.

4.4.8. If a vibrating string satisfying (4.4.1)-(4.4.3) is initially unperturbed, f (x) _
0, with the initial velocity given, show that

Ect
u(x, t) = 1 G(x) dam,

2c t

where G(x) is the odd periodic extension of g(x). Hints:

1. For all x, G(x) _ °O_1 nir-c sin nT

2.6.8.1 Part (a)

𝜌0
𝜕2𝑢
𝜕𝑡2

= 𝑇0
𝜕2𝑢
𝜕𝑥2

− 𝛽
𝜕𝑢
𝜕𝑡

The term −𝛽𝜕𝑢𝜕𝑡 is the force that acts on the spring segment due to damping. This is the
Viscous damping force which is proportional to speed, where 𝛽 represents viscous damping

coe�cient. This damping force always opposes the direction of the motion. Hence if 𝜕𝑢𝜕𝑡 > 0

then −𝛽𝜕𝑢𝜕𝑡 should come out to be negative. This occurs if 𝛽 > 0. On the other hand, if
𝜕𝑢
𝜕𝑡 < 0 then −𝛽𝜕𝑢𝜕𝑡 should now be positive. Which means again that 𝛽 must be positive
quantity. Hence only case were the damping force always opposes the motion of the string
is when 𝛽 > 0.

2.6.8.2 Part (b)

Starting with 𝑢 = 𝑋 (𝑥) 𝑇 (𝑡) and substituting this in the above PDE with 0 < 𝑥 < 𝐿 gives

𝜌0𝑇′′𝑋 = 𝑇0𝑇𝑋′′ − 𝛽𝑇′𝑋
𝜌0
𝑇0
𝑇′′

𝑇
+
𝛽
𝑇0
𝑇′

𝑇
=
𝑋′′

𝑋
= −𝜆

Hence we obtain two ODE’s. The space ODE is

𝑋′′ + 𝜆𝑋 = 0
𝑋 (0) = 0
𝑋 (𝐿) = 0

And the time ODE is

𝑇′′ + 𝑐2𝛽𝑇′ + 𝑐2𝜆𝑇 = 0
𝑇 (0) = 𝑓 (𝑥)
𝑇′ (0) = 𝑔 (𝑥)

The eigenvalues will always be positive for the wave equation. Hence taking 𝜆 > 0 the
solution to the space ODE is

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

Applying first B.C. gives

0 = 𝐴

Hence 𝑋 = 𝐵 sin �√𝜆𝑥�. Applying the second B.C. gives

0 = 𝐵 sin �√𝜆𝐿�
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Therefore

√𝜆𝐿 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯

𝜆 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

Hence the space solution is

𝑋 =
∞
�
𝑛=1

𝑏𝑛 sin �𝑛𝜋
𝐿
𝑥� (1)

Now we solve the time ODE. This is second order ODE, linear, with constant coe�cients.
𝜌0
𝑇0
𝑇′′

𝑇
+
𝛽
𝑇0
𝑇′

𝑇
= −𝜆

𝜌0
𝑇0
𝑇′′ +

𝛽
𝑇0
𝑇′ + 𝜆𝑇 = 0

𝑇′′ +
𝛽
𝜌0
𝑇′ +

𝑇0
𝜌0
𝜆𝑇 = 0

Where in the above 𝜆 ≡ 𝜆𝑛 for 𝑛 = 1, 2, 3,⋯. The characteristic equation is 𝑟2+𝑐2𝛽𝑟+𝑐2𝜆 = 0.
The roots are found from the quadratic formula

𝑟1,2 =
−𝐵 ± √𝐵2 − 4𝐴𝐶

2𝐴

=
− 𝛽
𝜌0
±
�
� 𝛽
𝜌0
�
2
− 4𝑇0𝜌0𝜆

2

= −
𝛽
2𝜌0

±
1
2�

�
𝛽
𝜌0
�
2

− 4
𝑇0
𝜌0
𝜆

Replacing 𝜆 = �𝑛𝜋𝐿 �
2
, gives

𝑟1,2 = −
𝛽
2𝜌0

±
1
2�

�
𝛽
𝜌0
�
2

− 4
𝑇0
𝜌0
�
𝑛𝜋
𝐿
�
2

= −
𝛽
2𝜌0

±
1
2�

𝛽2

𝜌20
− 4

𝑇0
𝜌0
𝑛2𝜋2

𝐿2

= −
𝛽
2𝜌0

±
1
2𝜌0�

𝛽2 − 𝑛2 �4𝜌0𝑇0
𝜋2

𝐿2 �

We are told that 𝛽2 < 4𝜌0𝑇0
𝜋2

𝐿2 , what this means is that 𝛽2 − 𝑛2 �4𝜌0𝑇0
𝜋2

𝐿2
� < 0, since 𝑛2 > 0.

This means we will get complex roots. Let

Δ = 𝑛2 �4𝜌0𝑇0
𝜋2

𝐿2 �
− 𝛽2

Hence the roots can now be written as

𝑟1,2 = −
𝛽
2𝜌0

±
𝑖√Δ
2𝜌0

Therefore the time solution is

𝑇𝑛 (𝑡) = 𝑒
− 𝛽
2𝜌0

𝑡
⎛
⎜⎜⎜⎜⎝𝐴𝑛 cos

⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠ + 𝐵𝑛 sin

⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

This is sinusoidal damped oscillation. Therefore

𝑇 (𝑡) =
∞
�
𝑛=1

𝑒
− 𝛽
2𝜌0

𝑡
⎛
⎜⎜⎜⎜⎝𝐴𝑛 cos

⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠ + 𝐵𝑛 sin

⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ (2)

Combining (1) and (2), gives the total solution

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

sin �𝑛𝜋
𝐿
𝑥� 𝑒

− 𝛽
2𝜌0

𝑡
⎛
⎜⎜⎜⎜⎝𝐴𝑛 cos

⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠ + 𝐵𝑛 sin

⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ (3)
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Where 𝑏𝑛 constants for space ODE merged with the constants 𝐴𝑛, 𝐵𝑛 for the time solution.
Now we are ready to find 𝐴𝑛, 𝐵𝑛 from initial conditions. At 𝑡 = 0

𝑓 (𝑥) =
∞
�
𝑛=1

sin �𝑛𝜋
𝐿
𝑥�𝐴𝑛

Multiplying both sides by sin �𝑚𝜋𝐿 𝑥� and integrating gives

�
𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0

∞
�
𝑛=1

sin �𝑚𝜋
𝐿
𝑥� sin �𝑛𝜋

𝐿
𝑥�𝐴𝑛𝑑𝑥

Changing the order of integration and summation

�
𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 =

∞
�
𝑛=1

𝐴𝑛�
𝐿

0
sin �𝑚𝜋

𝐿
𝑥� sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

= 𝐴𝑚
𝐿
2

Hence

𝐴𝑛 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

To find 𝐵𝑛, we first take time derivative of the solution above in (3) which gives

𝜕
𝜕𝑡
𝑢 (𝑥, 𝑡) =

∞
�
𝑛=1

sin �𝑛𝜋
𝐿
𝑥� 𝑒

− 𝛽
2𝜌0

𝑡
⎛
⎜⎜⎜⎜⎝−
√Δ
2𝜌0

𝐴𝑛 sin
⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠ + 𝐵𝑛

√Δ
2𝜌0

cos
⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

−
𝛽
2𝜌0

sin �𝑛𝜋
𝐿
𝑥� 𝑒

− 𝛽
2𝜌0

𝑡
⎛
⎜⎜⎜⎜⎝𝐴𝑛 cos

⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠ + 𝐵𝑛 sin

⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

At 𝑡 = 0, using the second initial condition gives

𝑔 (𝑥) =
∞
�
𝑛=1

sin �𝑛𝜋
𝐿
𝑥� 𝐵𝑛

√Δ
2𝜌0

−
𝛽
2𝜌0

𝐴𝑛 sin �𝑛𝜋
𝐿
𝑥�

Multiplying both sides by sin �𝑚𝜋𝐿 𝑥� and integrating gives

�
𝐿

0
𝑔 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0

∞
�
𝑛=1

sin �𝑚𝜋
𝐿
𝑥� sin �𝑛𝜋

𝐿
𝑥� 𝐵𝑛

√Δ
2𝜌0

𝑑𝑥 −
∞
�
𝑛=1

𝛽
2𝜌0

𝐴𝑛 sin �𝑚𝜋
𝐿
𝑥� sin �𝑛𝜋

𝐿
𝑥�

Changing the order of integration and summation

�
𝐿

0
𝑔 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 =

∞
�
𝑛=1

𝐵𝑛
√Δ
2𝜌0

�
𝐿

0
sin �𝑚𝜋

𝐿
𝑥� sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 −

∞
�
𝑛=1

𝛽
2𝜌0

𝐴𝑛�
𝐿

0
sin �𝑚𝜋

𝐿
𝑥� sin �𝑛𝜋

𝐿
𝑥�

= 𝐵𝑚
√Δ
2𝜌0

𝐿
2
−

𝛽
2𝜌0

𝐴𝑛
𝐿
2

=
𝐿
2

⎛
⎜⎜⎜⎜⎝𝐵𝑚

√Δ
2𝜌0

−
𝛽
2𝜌0

𝐴𝑛

⎞
⎟⎟⎟⎟⎠

Hence

𝐵𝑚
√Δ
2𝜌0

−
𝛽
2𝜌0

𝐴𝑛 =
2
𝐿 �

𝐿

0
𝑔 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥

𝐵𝑚 = �
2
𝐿 �

𝐿

0
𝑔 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +

𝛽
2𝜌0

𝐴𝑛�
2𝜌0
√Δ

This completes the solution. Summary of solution

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

sin �𝑛𝜋
𝐿
𝑥� 𝑒

− 𝛽
2𝜌0

𝑡
⎛
⎜⎜⎜⎜⎝𝐴𝑛 cos

⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠ + 𝐵𝑛 sin

⎛
⎜⎜⎜⎜⎝
√Δ
2𝜌0

𝑡
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

𝐴𝑛 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

𝐵𝑛 = �
2
𝐿 �

𝐿

0
𝑔 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +

𝛽
2𝜌0

𝐴𝑛�
2𝜌0
√Δ

Δ = 𝑛2 �4𝜌0𝑇0
𝜋2

𝐿2 �
− 𝛽2
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2.6.9 Problem 4.4.9
4.5. Vibrating Membrane 149

2. sin a sin b = 1 [cos(a - b) cos(a + b)].

See the comment after Exercise 4.4.7.

4.4.9 From (4.4.1), derive conservation of energy for a vibrating string,

dE 2'9U &U L

wt -c8x8to, (4.4.15)

where the total energy E is the sum of the kinetic energy, defined by
f L 2 (8u) 2 dx, and the potential energy, defined by f L z (&) 2 dx.

4.4.10. What happens to the total energy E of a vibrating string (see Exercise 4.4.9)

(a) If u(0, T) = 0 and u(L, t) = 0
(b) If Ou(0,t) = 0 and u(L,t) = 0

(c) If u(0, t) = 0 and Ou (L, t) = -ryu(L, t) with y > 0
(d) If y < 0 in part (c)

4.4.11. Show that the potential and kinetic energies (defined in Exercise 4.4.9) are
equal for a traveling wave, u = R(x - ct).

4.4.12. Using (4.4.15), prove that the solution of (4.4.1)-(4.4.3) is unique.

4.4.13. (a) Using (4.4.15), calculate the energy of one normal mode.

(b) Show that the total energy, when u(x, t) satisfies (4.4.11), is the sum
of the energies contained in each mode.

4.5 Vibrating Membrane
The heat equation in one spatial dimension is 8u/8t = k82u/8x2. In two or three
dimensions, the temperature satisfies 8u/8t = kV2u. In a similar way, the vibration
of a string (one dimension) can be extended to the vibration of a membrane (two
dimensions).

The vertical displacement of a vibrating string satisfies the one-dimensional wave
equation

82u 82u
c2 8x2

There are important physical problems that solve

,92 = c2V2u, (4.5.1)

known as the two- or three-dimensional wave equation. An example of a physical
problem that satisfies a two-dimensional wave equation is the vibration of a highly
stretched membrane. This can be thought of as a two-dimensional vibrating string.
We will give a brief derivation in the manner described by Kaplan [1981], omitting

𝐸 =
1
2 �

𝐿

0
�
𝜕𝑢
𝜕𝑡 �

2

𝑑𝑥 +
𝑐2

2 �
𝐿

0
�
𝜕𝑢
𝜕𝑥�

2

𝑑𝑥

Hence

𝑑𝐸
𝑑𝑡

=
1
2
𝑑
𝑑𝑡 �

𝐿

0
�
𝜕𝑢
𝜕𝑡 �

2

𝑑𝑥 +
𝑐2

2
𝑑
𝑑𝑡 �

𝐿

0
�
𝜕𝑢
𝜕𝑥�

2

𝑑𝑥

Moving 𝑑
𝑑𝑡 inside the integral, it becomes partial derivative

𝑑𝐸
𝑑𝑡

=
1
2 �

𝐿

0

𝜕
𝜕𝑡 �

𝜕𝑢
𝜕𝑡 �

2

𝑑𝑥 +
𝑐2

2 �
𝐿

0

𝜕
𝜕𝑡 �

𝜕𝑢
𝜕𝑥�

2

𝑑𝑥 (1)

But

𝜕
𝜕𝑡 �

𝜕𝑢
𝜕𝑡 �

2

=
𝜕
𝜕𝑡 �

𝜕𝑢
𝜕𝑡
𝜕𝑢
𝜕𝑡 �

=
𝜕2𝑢
𝜕𝑡2

𝜕𝑢
𝜕𝑡

+
𝜕𝑢
𝜕𝑡
𝜕2𝑢
𝜕𝑡2

= 2 �
𝜕𝑢
𝜕𝑡
𝜕2𝑢
𝜕𝑡2 �

(2)

And

𝜕
𝜕𝑡 �

𝜕𝑢
𝜕𝑥�

2

=
𝜕
𝜕𝑡 �

𝜕𝑢
𝜕𝑥

𝜕𝑢
𝜕𝑥�

=
𝜕2𝑢
𝜕𝑥𝜕𝑡

𝜕𝑢
𝜕𝑥

+
𝜕𝑢
𝜕𝑥

𝜕2𝑢
𝜕𝑥𝜕𝑡

= 2
𝜕𝑢
𝜕𝑥

𝜕2𝑢
𝜕𝑥𝜕𝑡

(3)

Substituting (2,3) into (1) gives

𝑑𝐸
𝑑𝑡

=
1
2 �

𝐿

0
2 �
𝜕𝑢
𝜕𝑡
𝜕2𝑢
𝜕𝑡2 �

𝑑𝑥 +
𝑐2

2 �
𝐿

0
2
𝜕𝑢
𝜕𝑥

𝜕2𝑢
𝜕𝑥𝜕𝑡

𝑑𝑥

= �
𝐿

0
�
𝜕𝑢
𝜕𝑡
𝜕2𝑢
𝜕𝑡2 �

𝑑𝑥 + 𝑐2�
𝐿

0

𝜕𝑢
𝜕𝑥

𝜕2𝑢
𝜕𝑥𝜕𝑡

𝑑𝑥

But 𝜕2𝑢
𝜕𝑡2 = 𝑐

2 𝜕2𝑢
𝜕𝑥2 then the above becomes

𝑑𝐸
𝑑𝑡

= �
𝐿

0
�
𝜕𝑢
𝜕𝑡 �

𝑐2
𝜕2𝑢
𝜕𝑥2 ��

𝑑𝑥 + 𝑐2�
𝐿

0

𝜕𝑢
𝜕𝑥

𝜕2𝑢
𝜕𝑥𝜕𝑡

𝑑𝑥

= 𝑐2�
𝐿

0
�
𝜕𝑢
𝜕𝑡
𝜕2𝑢
𝜕𝑥2 �

𝑑𝑥 + 𝑐2�
𝐿

0

𝜕𝑢
𝜕𝑥

𝜕2𝑢
𝜕𝑥𝜕𝑡

𝑑𝑥

= 𝑐2�
𝐿

0
�
𝜕𝑢
𝜕𝑡
𝜕2𝑢
𝜕𝑥2 �

+ �
𝜕𝑢
𝜕𝑥

𝜕2𝑢
𝜕𝑥𝜕𝑡�

𝑑𝑥 (4)

But since the integrand in (4) can also be written as

𝜕
𝜕𝑥 �

𝜕𝑢
𝜕𝑡
𝜕𝑢
𝜕𝑥�

=
𝜕2𝑢
𝜕𝑥𝜕𝑡

𝜕𝑢
𝜕𝑥

+
𝜕𝑢
𝜕𝑡
𝜕2𝑢
𝜕𝑥2

Then (4) becomes

𝑑𝐸
𝑑𝑡

= 𝑐2�
𝐿

0

𝜕
𝜕𝑥 �

𝜕𝑢
𝜕𝑡
𝜕𝑢
𝜕𝑥�

𝑑𝑥

= 𝑐2 �
𝜕𝑢
𝜕𝑡
𝜕𝑢
𝜕𝑥�

𝐿

0

Which is what we are asked to show. QED.
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2.7 HW 6

2.7.1 Problem 5.3.2

168 Chapter 5. Sturm-Liouville Eigenvalue Problems

EXERCISES 5.3

*5.3.1. Do Exercise 4.4.2(b). Show that the partial differential equation may be
put into Sturm-Liouville form.

5.3.2. Consider
02U 1012u 8u

=To 8x2
+au+/3 .

(a) Give a brief physical interpretation. What signs must a and 'o have to
be physical?

(b) Allow p, a, /3 to be functions of x. Show that separation of variables
works only if Q = cp, where c is a constant.

(c) If 0 = cp, show that the spatial equation is a Sturm-Liouville differen-
tial equation. Solve the time equation.

*5.3.3. Consider the non-Sturm-Liouville differential equation

dx + a(x) dx + [AQ(x) + -Y(x)lo = 0.

Multiply this equation by H(x). Determine H(x) such that the equation
may be reduced to the standard Sturm-Liouville form:

d
dx [p(x) d-J + [Ao,(x) + q(x)1 q5 = 0.

Given a(x), 3(x), and -y(x), what are p(x), a(x), and q(x)?

5.3.4. Consider heat flow with convection (see Exercise 1.5.2):

19U 02U
49U

cat ka 2 - VoOx

(a) Show that the spatial ordinary differential equation obtained by sepa-
ration of variables is not in Sturm-Liouville form.

*(b) Sore the initial boundary value problem

u(0,t) = 0
u(L, t) = 0
u(x, 0) = f (x).

(c) Solve the initial boundary value problem

(O,t) = 0
TX_

(L, t) = 0Tz-
u(x,0) = f(x).

2.7.1.1 Part (a)

𝜌
𝜕2𝑢
𝜕𝑡2

= 𝑇0
𝜕2𝑢
𝜕𝑡2

+ 𝛼𝑢 + 𝛽
𝜕𝑢
𝜕𝑡

The PDE equation represents the vertical displacement 𝑢 (𝑥, 𝑡) of the string as a function

of time and horizontal position. This is 1D wave equation. The term 𝛽𝜕𝑢𝜕𝑡 represents the
damping force (can be due to motion of the string in air or fluid). The damping coe�-

cient 𝛽 must be negative to make 𝛽𝜕𝑢𝜕𝑡 opposite to direction of motion. Damping force is
proportional to velocity and acts opposite to direction of motion.

The term 𝛼𝑢 represents the sti�ness in the system. This is a restoring force, and acts
also opposite to direction of motion and is proportional to current displacement from
equilibrium position. Hence 𝛼 < 0 also.

2.7.1.2 Part (b)

Let 𝑢 = 𝑋 (𝑥) 𝑇 (𝑡). Substituting this into the above PDE gives

𝜌𝑇′′𝑋 = 𝑇0𝑋′′𝑇 + 𝛼𝑋𝑇 + 𝛽𝑇′𝑋

Dividing by 𝑋𝑇 ≠ 0

𝜌
𝑇′′

𝑇
= 𝑇0

𝑋′′

𝑋
+ 𝛼 + 𝛽

𝑇′

𝑇

𝜌
𝑇′′

𝑇
− 𝛽

𝑇′

𝑇
= 𝑇0

𝑋′′

𝑋
+ 𝛼

To make each side depends on one variable only, we move 𝜌 (𝑥) , 𝛽 (𝑥) to the right side since
these depends on 𝑥. Then dividing by 𝜌 (𝑥) gives

𝑇′′

𝑇
−
𝛽
𝜌
𝑇′

𝑇
= 𝑇0

𝑋′′

𝜌𝑋
+
𝛼
𝜌

If
𝛽(𝑥)
𝜌(𝑥) = 𝑐 is constant, then we see the equations have now been separated, since

𝛽(𝑥)
𝜌(𝑥) do

not depend on 𝑥 any more and the above becomes

𝑇′′

𝑇
− 𝑐

𝑇′

𝑇
= 𝑇0

𝑋′′

𝜌𝑋
+
𝛼 (𝑥)
𝜌 (𝑥)

Now we can say that both side is equal to some constant −𝜆 giving the two ODE’s
𝑇′′

𝑇
− 𝑐

𝑇′

𝑇
= −𝜆

𝑇0
𝑋′′

𝜌𝑋
+
𝛼
𝜌
= −𝜆
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Or

𝑇′′ − 𝑐𝑇′ + 𝜆𝑇 = 0

𝑋′′ + 𝑋�
𝛼
𝑇0

+ 𝜆
𝜌
𝑇0
� = 0

2.7.1.3 Part (c)

From above, the spatial ODE is

𝑋′′ + 𝑋�
𝛼
𝑇0

+ 𝜆
𝜌
𝑇0
� = 0 (1)

Comparing to regular Sturm Liouville (RSL) form, which is
𝑑
𝑑𝑥
�𝑝𝑋′� + 𝑞𝑋 + 𝜆𝜎𝑋 = 0

𝑝𝑋′′ + 𝑝′𝑋′ + �𝑞 + 𝜆𝜎�𝑋 = 0 (2)

Comparing (1) and (2) we see that

𝑝 = 1

𝑞 =
𝛼
𝑇0

𝜎 =
𝜌
𝑇0

To solve the time ODE 𝑇′′ − 𝑐𝑇′ + 𝜆𝑇 = 0, since this is second order linear with constant
coe�cients, then the characteristic equation is

𝑟2 − 𝑐𝑟 + 𝜆 = 0

𝑟 =
−𝐵
2𝐴

± √
𝐵2 − 4𝐴𝐶
2𝐴

=
𝑐
2
± √

𝑐2 − 4𝜆
2

Hence the two solutions are

𝑇1 (𝑡) = 𝑒
�
𝑐
2+

�𝑐2−4𝜆
2 �𝑡

𝑇2 (𝑡) = 𝑒
�
𝑐
2−

�𝑐2−4𝜆
2 �𝑡

The general solution is linear combination of the above two solution, therefore final solution
is

𝑇 (𝑡) = 𝑐1𝑒
�
𝑐
2+

�𝑐2−4𝜆
2 �𝑡

+ 𝑐2𝑒
�
𝑐
2−

�𝑐2−4𝜆
2 �𝑡

Where 𝑐1, 𝑐2 are arbitrary constants of integration.

2.7.2 Problem 5.3.3

168 Chapter 5. Sturm-Liouville Eigenvalue Problems

EXERCISES 5.3

*5.3.1. Do Exercise 4.4.2(b). Show that the partial differential equation may be
put into Sturm-Liouville form.

5.3.2. Consider
02U 1012u 8u

=To 8x2
+au+/3 .

(a) Give a brief physical interpretation. What signs must a and 'o have to
be physical?

(b) Allow p, a, /3 to be functions of x. Show that separation of variables
works only if Q = cp, where c is a constant.

(c) If 0 = cp, show that the spatial equation is a Sturm-Liouville differen-
tial equation. Solve the time equation.

*5.3.3. Consider the non-Sturm-Liouville differential equation

dx + a(x) dx + [AQ(x) + -Y(x)lo = 0.

Multiply this equation by H(x). Determine H(x) such that the equation
may be reduced to the standard Sturm-Liouville form:

d
dx [p(x) d-J + [Ao,(x) + q(x)1 q5 = 0.

Given a(x), 3(x), and -y(x), what are p(x), a(x), and q(x)?

5.3.4. Consider heat flow with convection (see Exercise 1.5.2):

19U 02U
49U

cat ka 2 - VoOx

(a) Show that the spatial ordinary differential equation obtained by sepa-
ration of variables is not in Sturm-Liouville form.

*(b) Sore the initial boundary value problem

u(0,t) = 0
u(L, t) = 0
u(x, 0) = f (x).

(c) Solve the initial boundary value problem

(O,t) = 0
TX_

(L, t) = 0Tz-
u(x,0) = f(x).
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𝑑2𝜙
𝑑𝑥2

+ 𝛼 (𝑥)
𝑑𝜙
𝑑𝑥

+ �𝜆𝛽 (𝑥) + 𝛾 (𝑥)� 𝜙 = 0

Multiplying by 𝐻 (𝑥) gives

𝐻 (𝑥) 𝜙′′ (𝑥) + 𝐻 (𝑥) 𝛼 (𝑥) 𝜙′ (𝑥) + 𝐻 (𝑥) �𝜆𝛽 (𝑥) + 𝛾 (𝑥)� 𝜙 = 0 (1)

Comparing (1) to Sturm Liouville form, which is
𝑑
𝑑𝑥
�𝑝𝜙′� + 𝑞𝜙 + 𝜆𝜎𝜙 = 0

𝑝 (𝑥) 𝜙′′ (𝑥) + 𝑝′ (𝑥) 𝜙′ (𝑥) + �𝑞 + 𝜆𝜎�𝜙 (𝑥) = 0 (2)

Then we need to satisfy

𝐻 (𝑥) = 𝑃 (𝑥)
𝐻 (𝑥) 𝛼 (𝑥) = 𝑃′ (𝑥)

Therefore, by combining the above, we obtain one ODE equation to solve for 𝐻 (𝑥)

𝐻′ (𝑥) = 𝐻 (𝑥) 𝛼 (𝑥)

This is first order separable ODE. 𝐻
′

𝐻 = 𝛼 or ln |𝐻| = ∫𝛼𝑑𝑥 + 𝑐 or

𝐻 = 𝐴𝑒∫𝛼(𝑥)𝑑𝑥

Where 𝐴 is some constant. By comparing (1),(2) again, we see that

𝑞 + 𝜆𝜎 = 𝜆𝛽 (𝑥)𝐻 (𝑥) + 𝛾 (𝑥)𝐻 (𝑥)

Summary of solution

𝜎 (𝑥) = 𝛽 (𝑥)𝐻 (𝑥)
𝑞 (𝑥) = 𝛾 (𝑥)𝐻 (𝑥)
𝑃 (𝑥) = 𝐻 (𝑥)

𝐻 (𝑥) = 𝐴𝑒∫𝛼(𝑥)𝑑𝑥

QED

2.7.3 Problem 5.3.9

5.3. Sturm-Liouville Eigenvalue Problems 169

5.3.5. For the Sturm-Liouville eigenvalue problem,

x + AO = 0 with

dx

(0) = 0 and

dx

(L) = 0,

verify the following general properties:
(a) There is an infinite number of eigenvalues with a smallest but no

largest.
(b) The nth eigenfunction has n - 1 zeros.
(c) The eigenfunctions are complete and orthogonal.
(d) What does the Rayleigh quotient say concerning negative and zero

eigenvalues?

5.3.6. Redo Exercise 5.3.5 for the Sturm-Liouville eigenvalue problem

dx2 + A = 0 with (0) = 0 and ¢(L) = 0.

5.3.7. Which of statements 1-5 of the theorems of this section are valid for
the following eigenvalue problem?

I + AO = 0 with
O(L)d(-L) = d (L)

5.3.8. Show that A > 0 for the eigenvalue problem
2

d2 + (a - x2)0 = 0 with (0) = 0, (1) = 0.

Is A = 0 an eigenvalue?
5.3.9. Consider the eigenvalue problem

2

x2dx2 + x + AO = 0 with 0(1)=O, and 0(b)=O. (5.3.10)

(a) Show that multiplying by 1/x puts this in the Sturm-Liouville
form. (This multiplicative factor is derived in Exercise 5.3.3.)

(b) Show that A > 0.
*(c) Since (5.3.10) is an equidimensional equation, determine all posi-

tive eigenvalues. Is A = 0 an eigenvalue? Show that there is an
infinite number of eigenvalues with a smallest, but no largest.

(d) The eigenfunctions are orthogonal with what weight according to
Sturm-Liouville theory? Verify the orthogonality using properties
of integrals.

(e) Show that the nth eigenfunction has n - 1 zeros.
5.3.10. Reconsider Exercise 5.3.9 with the boundary conditions

dx (1) = 0 and (b) = 0.

𝑥2𝜙′′ + 𝑥𝜙′ + 𝜆𝜙 = 0 (1)

𝜙 (1) = 0
𝜙 (𝑏) = 0
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2.7.3.1 Part (a)

Multiplying (1) by 1
𝑥 where 𝑥 ≠ 0 gives

𝑥𝜙′′ + 𝜙′ +
𝜆
𝑥
𝜙 = 0 (2)

Comparing (2) to Sturm-Liouville form

𝑝𝜙′′ + 𝑝′𝜙′ + �𝑞 + 𝜆𝜎�𝜙 = 0 (3)

Then

𝑝 = 𝑥
𝑞 = 0

𝜎 =
1
𝑥

And since the given boundary conditions also satisfy the Sturm-Liouville boundary condi-
tions, then (2) is a regular Sturm-Liouville ODE.

2.7.3.2 Part(b)

Using equation 5.3.8 in page 160 of text (called Raleigh quotient), which applies to regular
Sturm-Liouville ODE, which relates the eigenvalues to the eigenfunctions

𝜆 =
− �𝑝𝜙𝜙′�

𝑥=𝑏

𝑥=1
+ ∫

𝑏

1
𝑝 �𝜙′�

2
− 𝑞𝜙2𝑑𝑥

∫𝑏
1
𝜙2𝜎𝑑𝑥

(5.3.8)

=
− �𝑝 (𝑏) 𝜙 (𝑏) 𝜙′ (𝑏) − 𝑝 (1) 𝜙 (1) 𝜙′ (𝑏)� + ∫

𝑏

1
𝑝 �𝜙′�

2
− 𝑞𝜙2𝑑𝑥

∫𝑏
1
𝜙2𝜎𝑑𝑥

Using 𝑝 = 𝑥, 𝑞 = 0, 𝜎 = 1
𝑥 and using 𝜙 (1) = 0, 𝜙 (𝑏) = 0, then the above simplifies to

𝜆 =
−∫

𝑏

1
𝑝 �𝜙′�

2
𝑑𝑥

∫𝑏
1

𝜙2

𝑥 𝑑𝑥

The integrands in the numerator and denominator can not be negative, since they are
squared quantities, and also since 𝑥 > 0 as the domain starts from 𝑥 = 1, then RHS above
can not be negative. This means the eigenvalue 𝜆 can not be negative. It can only be 𝜆 ≥ 0.
QED.

2.7.3.3 Part(c)

The possible values of 𝜆 > 0 are determined by trying to solve the ODE and seeing which
𝜆 produces non-trivial solutions given the boundary conditions. The ODE to solve is (1)
above. Here it is again

𝑥2𝜙′′ + 𝑥𝜙′ + 𝜆𝜙 = 0 (1)

We know 𝜆 ≥ 0, so we do not need to check for negative 𝜆.

Case 𝜆 = 0.

Equation (1) becomes

𝑥2𝜙′′ + 𝑥𝜙′ = 0
𝑥𝜙′′ + 𝜙′ = 0
𝑑
𝑑𝑥
�𝑥𝜙′� = 0

Hence 𝑥𝜙′ = 𝑐1 where 𝑐1 is constant. Therefore
𝑑
𝑑𝑥𝜙 =

𝑐1
𝑥 or

𝜙 = 𝑐1�
1
𝑥
𝑑𝑥 + 𝑐2

= 𝑐1 ln |𝑥| + 𝑐2
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At 𝑥 = 1, 𝜙 (1) = 0, hence

0 = 𝑐1 ln (1) + 𝑐2
But ln (1) = 0, therefore 𝑐2 = 0. The solution now becomes

𝜙 = 𝑐1 ln |𝑥|
At the right end, 𝑥 = 𝑏, 𝜙 (𝑏) = 0, therefore

0 = 𝑐1 ln 𝑏
But since 𝑏 > 1 the above implies that 𝑐1 = 0. This gives trivial solution. Therefore
𝜆 = 0 is not an eigenvalue.

Case 𝜆 > 0

𝑥2𝜙′′ + 𝑥𝜙′ + 𝜆𝜙 = 0

This is non-constant coe�cients, linear, second order ODE. Let 𝜙 (𝑥) = 𝑥𝑝. Equation (1)
becomes

𝑥2𝑝 �𝑝 − 1� 𝑥𝑝−2 + 𝑥𝑝𝑥𝑝−1 + 𝜆𝑥𝑝 = 0

𝑝 �𝑝 − 1� 𝑥𝑝 + 𝑝𝑥𝑝 + 𝜆𝑥𝑝 = 0

Dividing by 𝑥𝑝 ≠ 0 gives the characteristic equation

𝑝 �𝑝 − 1� + 𝑝 + 𝜆 = 0
𝑝2 − 𝑝 + 𝑝 + 𝜆 = 0

𝑝2 = −𝜆

Since 𝜆 ≥ 0 then 𝑝 is complex. Therefore the roots are

𝑝 = ±𝑖√𝜆

Therefore the two solutions (eigenfunctions) are

𝜙1 (𝑥) = 𝑥𝑖√𝜆

𝜙2 (𝑥) = 𝑥−𝑖√𝜆

To more easily use standard form of solution, the standard trick is to rewrite these solution
in exponential form

𝜙1 (𝑥) = 𝑒𝑖√𝜆 ln 𝑥

𝜙2 (𝑥) = 𝑒−𝑖√𝜆 ln 𝑥

The general solution to (1) is linear combination of these two solutions, therefore

𝜙 (𝑥) = 𝑐1𝑒𝑖√𝜆 ln 𝑥 + 𝑐2𝑒−𝑖√𝜆 ln 𝑥 (2)

Since 𝜆 > 0 then the above can be written using trig functions as

𝜙 (𝑥) = 𝑐1 cos �√𝜆 ln 𝑥� + 𝑐2 sin �√𝜆 ln 𝑥�

We are now ready to check for allowed values of 𝜆 by applying B.C’s. The first B.C. gives

0 = 𝑐1 cos �√𝜆 ln 1� + 𝑐2 sin �√𝜆 ln 1�

= 𝑐1 cos (0) + 𝑐2 sin (0)
= 𝑐1

Hence the solution now simplifies to

𝜙 (𝑥) = 𝑐2 sin �√𝜆 ln 𝑥�

Applying the second B.C. gives

0 = 𝑐2 sin �√𝜆 ln 𝑏�
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For non-trivial solution we want

√𝜆 ln 𝑏 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯

√𝜆 =
𝑛𝜋
ln 𝑏

𝜆𝑛 = �
𝑛𝜋
ln 𝑏

�
2

𝑛 = 1, 2, 3,⋯

Therefore, there are infinite numbers of eigenvalues. The smallest is when 𝑛 = 1 given by

𝜆1 = �
𝜋

ln 𝑏
�
2

2.7.3.4 Part (d)

From Equation 5.3.6, page 159 in textbook, the eigenfunction are orthogonal with weight
function 𝜎 (𝑥)

�
𝑏

𝑎
𝜙𝑛 (𝑥) 𝜙𝑚 (𝑥) 𝜎 (𝑥) 𝑑𝑥 = 0 𝑛 ≠ 𝑚

In this problem, the weight 𝜎 = 1
𝑥 and the solution (eigenfuctions) were found above to be

𝜙𝑛 (𝑥) = sin ��𝜆𝑛 ln 𝑥�
Now we can verify the orthogonality

�
𝑏

1
𝜙𝑛 (𝑥) 𝜙𝑚 (𝑥) 𝜎 (𝑥) 𝑑𝑥 = �

𝑥=𝑏

𝑥=1
sin � 𝑛𝜋ln 𝑏 ln 𝑥� sin �𝑚𝜋ln 𝑏 ln 𝑥� 1

𝑥
𝑑𝑥

Using the substitution 𝑧 = ln 𝑥, then 𝑑𝑧
𝑑𝑥 =

1
𝑥 . When 𝑥 = 1, 𝑧 = ln 1 = 0 and when 𝑥 = 𝑏, 𝑧 = ln 𝑏,

then the above integral becomes

𝐼 = �
𝑧=ln 𝑏

𝑧=0
sin � 𝑛𝜋ln 𝑏𝑧

� sin �𝑚𝜋ln 𝑏𝑧
�
𝑑𝑧
𝑑𝑥
𝑑𝑥

= �
ln 𝑏

0
sin � 𝑛𝜋ln 𝑏𝑧

� sin �𝑚𝜋ln 𝑏𝑧
� 𝑑𝑧

But sin � 𝑛𝜋ln 𝑏𝑧� and sin �𝑚𝜋ln 𝑏𝑧� are orthogonal functions (now with weight 1). Hence the above
gives 0 when 𝑛 ≠ 𝑚 using standard orthogonality of the sin functions we used before many
times. QED.

2.7.3.5 Part(e)

The 𝑛𝑡ℎ eigenfunction is

𝜙𝑛 (𝑥) = sin � 𝑛𝜋ln 𝑏 ln 𝑥�

Here, the zeros are inside the interval, not counting the end points 𝑥 = 1 and 𝑥 = 𝑏.

�
𝑛𝜋
ln 𝑏 ln 𝑥��

𝑥=1
= �

𝑛𝜋
ln 𝑏0

� = 0

And

�
𝑛𝜋
ln 𝑏 ln 𝑥��

𝑥=𝑏
=
𝑛𝜋
ln 𝑏 ln 𝑏

= 𝑛𝜋

Hence for 𝑛 = 1, The domain of 𝜙1 (𝑥) is 0⋯𝜋. And there are no zeros inside this for sin
function not counting the end points. For 𝑛 = 2, the domain is 0⋯2𝜋 and sin has one zero
inside this (at 𝜋), not counting end points. And for 𝑛 = 3, the domain is 0⋯3𝜋 and sin
has two zeros inside this (at 𝜋, 2𝜋), not counting end points. And so on. Hence 𝜙𝑛 (𝑥) has
𝑛 − 1 zeros not counting the end points.
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2.7.4 Problem 5.5.1 (b,d,g)5.5. Self-Adjoint Operators 181

EXERCISES 5.5

5.5.1. A Sturm-Liouville eigenvalue problem is called self-adjoint if

du
p (udv

dx - vdx
b

=0
a

since then fQ [uL(v) - vL(u)] dx = 0 for any two functions u and v satis-
fying the boundary conditions. Show that the following yield self-adjoint
problems.

(a) 0(0) = O and O(L) = 0
(b) V. (0) = 0 and O(L) = 0

(c) a (0) - hq5(0) = 0 and
d

(L) = 0

(d) t(a) = 0(b) and p(a) 10 (a) = p(b) -2 (b)

(e) 0(a) = 0(b) and lk(a) _ (b) [self-adjoint only if p(a) = p(b)]

(f) q(L) = 0 and [in the situation in which p(0) = 0] 0(0) bounded and
lim;r .o p(x)- = 0

*(g) Under what conditions is the following self-adjoint (if p is constant)?

¢(L) + a0(0) + Qd (0) = 0

d
!k(L)+-r,0(0)+&-2(0) 0

5.5.2. Prove that the eigenfunctions corresponding to different eigenvalues (of the
following eigenvalue problem) are orthogonal:

dx [p(x) d_] + 4(x)¢ + Ao(x)¢ = 0

with the boundary conditions

0(1) = 0
.0(2) - 2 (2) = 0.

What is the weighting function?

5.5.3. Consider the eigenvalue problem L(¢) = -av(x)46, subject to a given set of
homogeneous boundary conditions. Suppose that

jb

[uL(v) - vL(u)] dx = 0

for all functions u and v satisfying the same set of boundary conditions.
Prove that eigenfunctions corresponding to different eigenvalues are orthog-
onal (with what weight?).

The Sturm-Liouville ODE is
𝑑
𝑑𝑥
�𝑝𝜙′� + 𝑞𝜙 = −𝜆𝜎𝜙

Or in operator form, defining 𝐿 ≡ 𝑑
𝑑𝑥
�𝑝 𝑑

𝑑𝑥
� + 𝑞, becomes

𝐿 �𝜙� = −𝜆𝜎𝜙

The operator 𝐿 is self adjoined when

�
𝑏

𝑎
𝑢𝐿 [𝑣] 𝑑𝑥 = �

𝑏

𝑎
𝑣𝐿 [𝑢] 𝑑𝑥

For the above to work out, we need to show that

𝑝 (𝑢𝑣′ − 𝑣𝑢′)�𝑏
𝑎
= 0

And this is what we will do now.

2.7.4.1 Part(b)

Here 𝑎 = 0 and 𝑏 = 𝐿.

𝑝 (𝑢𝑣′ − 𝑣𝑢′)�𝑏
𝑎
= 𝑝 �𝑢

𝑑𝑣
𝑑𝑥
− 𝑣

𝑑𝑢
𝑑𝑥�

�
𝐿

0

= �𝑝 (𝐿) �𝑢 (𝐿)
𝑑𝑣
𝑑𝑥
(𝐿) − 𝑣 (𝐿)

𝑑𝑢
𝑑𝑥
(𝐿)� − 𝑝 (0) �𝑢 (0)

𝑑𝑣
𝑑𝑥
(0) − 𝑣 (0)

𝑑𝑢
𝑑𝑥
(0)��

Substituting 𝑢 (𝐿) = 𝑣 (𝐿) = 0 and 𝑑𝑣
𝑑𝑥
(0) = 𝑑𝑢

𝑑𝑥
(0) = 0 into the above (since there are the B.C.

given) gives

𝑝 (𝑢𝑣′ − 𝑣𝑢′)�𝑏
𝑎
= �𝑝 (𝐿) �0 ×

𝑑𝑣
𝑑𝑥
(𝐿) − 0 ×

𝑑𝑢
𝑑𝑥
(𝐿)� − 𝑝 (0) (𝑢 (0) × 0 − 𝑣 (0) × 0)�

= [0 − 0]
= 0
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2.7.4.2 Part (d)

𝑝 (𝑢𝑣′ − 𝑣𝑢′)�𝑏
𝑎
= 𝑝 �𝑢

𝑑𝑣
𝑑𝑥
− 𝑣

𝑑𝑢
𝑑𝑥�

�
𝑎

𝑏

= �𝑝 (𝑎) (𝑢 (𝑎) 𝑣′ (𝑎) − 𝑣 (𝑎) 𝑢′ (𝑎)) − 𝑝 (𝑏) (𝑢 (𝑏) 𝑣′ (𝑏) − 𝑣 (𝑏) 𝑢′ (𝑏))�

= 𝑝 (𝑎) 𝑢 (𝑎) 𝑣′ (𝑎) − 𝑝 (𝑎) 𝑣 (𝑎) 𝑢′ (𝑎) − 𝑝 (𝑏) 𝑢 (𝑏) 𝑣′ (𝑏) + 𝑝 (𝑏) 𝑣 (𝑏) 𝑢′ (𝑏) (1)

We are given that 𝑢 (𝑎) = 𝑢 (𝑏) and 𝑣 (𝑎) = 𝑣 (𝑏) and 𝑝 (𝑎) 𝑢′ (𝑎) = 𝑝 (𝑏) 𝑢′ (𝑏) and 𝑝 (𝑎) 𝑣′ (𝑎) =
𝑝 (𝑏) 𝑣′ (𝑏).

We start by replacing 𝑢 (𝑎) by 𝑢 (𝑎) and replacing 𝑣 (𝑎) by 𝑣 (𝑏) in (1), this gives

𝑝 (𝑢𝑣′ − 𝑣𝑢′)�𝑏
𝑎
= 𝑝 (𝑎) 𝑢 (𝑏) 𝑣′ (𝑎) − 𝑝 (𝑎) 𝑣 (𝑏) 𝑢′ (𝑎) − 𝑝 (𝑏) 𝑢 (𝑏) 𝑣′ (𝑏) + 𝑝 (𝑏) 𝑣 (𝑏) 𝑢′ (𝑏)

= 𝑢 (𝑏) �𝑝 (𝑎) 𝑣′ (𝑎) − 𝑝 (𝑏) 𝑣′ (𝑏)� + 𝑣 (𝑏) �𝑝 (𝑏) 𝑢′ (𝑏) − 𝑝 (𝑎) 𝑢′ (𝑎)�

Now using 𝑝 (𝑎) 𝑢′ (𝑎) = 𝑝 (𝑏) 𝑢′ (𝑏) and 𝑝 (𝑎) 𝑣′ (𝑎) = 𝑝 (𝑏) 𝑣′ (𝑏) in the above gives

𝑝 (𝑢𝑣′ − 𝑣𝑢′)�𝑏
𝑎
= 𝑢 (𝑏) �𝑝 (𝑏) 𝑣′ (𝑏) − 𝑝 (𝑏) 𝑣′ (𝑏)� + 𝑣 (𝑏) �𝑝 (𝑏) 𝑢′ (𝑏) − 𝑝 (𝑏) 𝑢′ (𝑏)�

= 𝑢 (𝑏) (0) + 𝑣 (𝑏) (0)
= 0 − 0
= 0

2.7.4.3 Part (g)

𝑝 is constant. Hence

𝑝 (𝑢𝑣′ − 𝑣𝑢′)�𝐿
0
= 𝑝 �𝑢

𝑑𝑣
𝑑𝑥
− 𝑣

𝑑𝑢
𝑑𝑥�

�
𝐿

0

= 𝑝 [(𝑢 (𝐿) 𝑣′ (𝐿) − 𝑣 (𝐿) 𝑢′ (𝐿)) − (𝑢 (0) 𝑣′ (0) − 𝑣 (0) 𝑢′ (0))] (1)

We are given that

𝑢 (𝐿) + 𝛼𝑢 (0) + 𝛽𝑢′ (0) = 0 (2)

𝑢′ (𝐿) + 𝛾𝑢 (0) + 𝛿𝑢′ (0) = 0 (3)

And

𝑣 (𝐿) + 𝛼𝑣 (0) + 𝛽𝑣′ (0) = 0 (4)

𝑣′ (𝐿) + 𝛾𝑣 (0) + 𝛿𝑣′ (0) = 0 (5)

From (2),

𝑢 (𝐿) = −𝛼𝑢 (0) − 𝛽𝑢′ (0)

From (3)

𝑢′ (𝐿) = −𝛾𝑢 (0) − 𝛿𝑢′ (0)

From (4)

𝑣 (𝐿) = −𝛼𝑣 (0) − 𝛽𝑣′ (0)

From (5)

𝑣′ (𝐿) = −𝛾𝑣 (0) − 𝛿𝑣′ (0)

Using these 4 relations in equation (1) gives (where 𝑝 is removed out, since it is constant,
to simplify the equations)

(𝑢𝑣′ − 𝑣𝑢′)|𝐿0 = 𝑢 (𝐿) 𝑣
′ (𝐿) − 𝑣 (𝐿) 𝑢′ (𝐿) − 𝑢 (0) 𝑣′ (0) + 𝑣 (0) 𝑢′ (0)

= �−𝛼𝑢 (0) − 𝛽𝑢′ (0)� �−𝛾𝑣 (0) − 𝛿𝑣′ (0)�

− �−𝛼𝑣 (0) − 𝛽𝑣′ (0)� �−𝛾𝑢 (0) − 𝛿𝑢′ (0)�

− 𝑢 (0) 𝑣′ (0) + 𝑣 (0) 𝑢′ (0)
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Simplifying

(𝑢𝑣′ − 𝑣𝑢′)|𝐿0 = 𝛼𝑢 (0) 𝛾𝑣 (0) + 𝛼𝑢 (0) 𝛿𝑣
′ (0) + 𝛽𝑢′ (0) 𝛾𝑣 (0) + 𝛽𝑢′ (0) 𝛿𝑣′ (0)

− �𝛼𝑣 (0) 𝛾𝑢 (0) + 𝛼𝑣 (0) 𝛿𝑢′ (0) + 𝛽𝑣′ (0) 𝛾𝑢 (0) + 𝛽𝑣′ (0) 𝛿𝑢′ (0)�

− 𝑢 (0) 𝑣′ (0) + 𝑣 (0) 𝑢′ (0)
= 𝛼𝑢 (0) 𝛾𝑣 (0) + 𝛼𝑢 (0) 𝛿𝑣′ (0) + 𝛽𝑢′ (0) 𝛾𝑣 (0) + 𝛽𝑢′ (0) 𝛿𝑣′ (0)
− 𝛼𝑣 (0) 𝛾𝑢 (0) − 𝛼𝑣 (0) 𝛿𝑢′ (0) − 𝛽𝑣′ (0) 𝛾𝑢 (0) − 𝛽𝑣′ (0) 𝛿𝑢′ (0) − 𝑢 (0) 𝑣′ (0) + 𝑣 (0) 𝑢′ (0)

Collecting

(𝑢𝑣′ − 𝑣𝑢′)|𝐿0 = 𝛼𝛿 (𝑢 (0) 𝑣
′ (0) − 𝑣 (0) 𝑢′ (0))

+ 𝛽𝛿 (𝑢′ (0) 𝑣′ (0) − 𝑣′ (0) 𝑢′ (0))
+ 𝛼𝛾 (𝑢 (0) 𝑣 (0) − 𝑣 (0) 𝑢 (0))
+ 𝛽𝛾 (𝑢′ (0) 𝑣 (0) − 𝑣′ (0) 𝑢 (0))
− 𝑢 (0) 𝑣′ (0) + 𝑣 (0) 𝑢′ (0)
= 𝛼𝛿 (𝑢 (0) 𝑣′ (0) − 𝑣 (0) 𝑢′ (0)) + 𝛽𝛾 (𝑢′ (0) 𝑣 (0) − 𝑣′ (0) 𝑢 (0)) − (𝑢 (0) 𝑣′ (0) − 𝑣 (0) 𝑢′ (0))
= 𝛼𝛿 (𝑢 (0) 𝑣′ (0) − 𝑣 (0) 𝑢′ (0)) − 𝛽𝛾 (𝑣′ (0) 𝑢 (0) − 𝑢′ (0) 𝑣 (0)) − (𝑢 (0) 𝑣′ (0) − 𝑣 (0) 𝑢′ (0))

Let 𝑢 (0) 𝑣′ (0) − 𝑣 (0) 𝑢′ (0) = Δ then we see that the above is just

(𝑢𝑣′ − 𝑣𝑢′)|𝐿0 = 𝛼𝛿 (Δ) − 𝛽𝛾 (Δ) − (Δ)

= Δ �𝛼𝛿 − 𝛽𝛾 − 1�

Hence, for (𝑢𝑣′ − 𝑣𝑢′)|𝐿0 = 0, we need

𝛼𝛿 − 𝛽𝛾 − 1 = 0

2.7.5 Problem 5.5.3

5.5. Self-Adjoint Operators 181

EXERCISES 5.5

5.5.1. A Sturm-Liouville eigenvalue problem is called self-adjoint if

du
p (udv

dx - vdx
b

=0
a

since then fQ [uL(v) - vL(u)] dx = 0 for any two functions u and v satis-
fying the boundary conditions. Show that the following yield self-adjoint
problems.

(a) 0(0) = O and O(L) = 0
(b) V. (0) = 0 and O(L) = 0

(c) a (0) - hq5(0) = 0 and
d

(L) = 0

(d) t(a) = 0(b) and p(a) 10 (a) = p(b) -2 (b)

(e) 0(a) = 0(b) and lk(a) _ (b) [self-adjoint only if p(a) = p(b)]

(f) q(L) = 0 and [in the situation in which p(0) = 0] 0(0) bounded and
lim;r .o p(x)- = 0

*(g) Under what conditions is the following self-adjoint (if p is constant)?

¢(L) + a0(0) + Qd (0) = 0

d
!k(L)+-r,0(0)+&-2(0) 0

5.5.2. Prove that the eigenfunctions corresponding to different eigenvalues (of the
following eigenvalue problem) are orthogonal:

dx [p(x) d_] + 4(x)¢ + Ao(x)¢ = 0

with the boundary conditions

0(1) = 0
.0(2) - 2 (2) = 0.

What is the weighting function?

5.5.3. Consider the eigenvalue problem L(¢) = -av(x)46, subject to a given set of
homogeneous boundary conditions. Suppose that

jb

[uL(v) - vL(u)] dx = 0

for all functions u and v satisfying the same set of boundary conditions.
Prove that eigenfunctions corresponding to different eigenvalues are orthog-
onal (with what weight?).

We are given that

�
𝑏

𝑎
𝑢𝐿 [𝑣] − 𝑣𝐿 [𝑢] 𝑑𝑥 = 0 (1)

But

𝐿 [𝑣] = −𝜆𝑣𝜎 (𝑥) 𝑣 (2)

𝐿 [𝑢] = −𝜆𝑢𝜎 (𝑥) 𝑢 (3)

Where 𝜎 (𝑥) is the weight function of the corresponding Sturm-Liouville ODE that 𝑢, 𝑣 are
its solution eigenfunctions. Substituting (2,3) into (1) gives

�
𝑏

𝑎
𝑢 (−𝜆𝑣𝜎 (𝑥) 𝑣) − 𝑣 (−𝜆𝑢𝜎 (𝑥) 𝑢) 𝑑𝑥 = 0

�
𝑏

𝑎
−𝜆𝑣𝜎 (𝑥) 𝑢𝑣 + 𝜆𝑢𝜎 (𝑥) 𝑢𝑣𝑑𝑥 = 0

(𝜆𝑢 − 𝜆𝑣)�
𝑏

𝑎
𝜎 (𝑥) 𝑢𝑣𝑑𝑥 = 0

Since 𝑢, 𝑣 are di�erent eigenfunctions, then the 𝜆𝑢−𝜆𝑣 ≠ 0 as these are di�erent eigenvalues.
(There is one eigenfunction corresponding to each eigenvalue). Therefore the above says
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that

�
𝑏

𝑎
𝜎 (𝑥) 𝑢 (𝑥) 𝑣 (𝑥) 𝑑𝑥 = 0

Hence di�erent eigenfunctions 𝑢 (𝑥) , 𝑣 (𝑥) are orthogonal to each others. The weight is 𝜎 (𝑥).

2.7.6 Problem 5.5.8

182 Chapter 5. Sturm-Liouville Eigenvalue Problems

5.5.4. Give an example of an eigenvalue problem with more than one eigenfunction
corresponding to an eigenvalue.

5.5.5. Consider

L= d +6d +9.
dx2

(a) Show that L(e'-'y) = (r + 3)2e''s

(b) Use part (a) to obtain solutions of L(y) = 0 (a second-order constant-
coefficient differential equation).

(c) If z depends on x and a parameter r, show that

arL(z)=L(50
-

(d) Using part (c), evaluate L(8z/8r) if z = e''x.
(e) Obtain a second solution of L(y) = 0, using part (d).

5.5.6. Prove that if x is a root of a sixth-order polynomial with real coefficients,
then a is also a root.

5.5.7. For

L=d (pd
)

+ 9

with p and q real, carefully show that

L(0) = L(¢)

5.5.8. Consider a fourth-order linear differential operator,

=dL

(a) Show that vL(v) - vL(u) is an exact differential.

(b) Evaluate fo [uL(v) - vL(u)] dx in terms of the boundary data for any
functions u and v.

(c) Show that fo [uL(v) - vL(u)] dx = 0 if u and v are any two functions
satisfying the boundary conditions

46(0) = 0 0(1) = 0
d(0) = 0 d (1) = 0.

(d) Give another example of boundary conditions such that

f 1 [uL(v) - vL(u)] dx = 0.

5.5. Self-Adjoint Operators 183

(e) For the eigenvalue problem [using the boundary conditions in part (c)]

d44
+ aez ¢ = 0

dx4
,

show that the eigenfunctions corresponding to different eigenvalues are
orthogonal. What is the weighting function?

*5.5.9. For the eigenvalue problem

dx + Aexb = 0

subject to the boundary conditions

0(0) = 0 O(1) = 0
(0) = 0 (1) = 0,ad -,

show that the eigenvalues are less than or equal to zero (A < 0). (Don't
worry; in a physical context that is exactly what is expected.) Is A = 0 an
eigenvalue?

5.5.10. (a) Show that (5.5.22) yields (5.5.23) if at least one of the boundary con-
ditions is of the regular Sturm-Liouville type.

(b) Do part (a) if one boundary condition is of the singular type.

5.5.11. *(a) Suppose that

Consider

L = p(x)
2 + r(x) + q(x).

b

1 vL(u) dx.
a

By repeated integration by parts, determine the adjoint operator L'
such that

b

1 [uL'(v) - vL(u)j dx = H(x)
a

b

0

What is H(x)? Under what conditions does L = L', the self-adjoint
case? [Hint: Show that

\ \ 1
L' d2

2

p
d ( Pdr JJ=pdx + TX dx dx 4

(b) If
u(0) = 0 and (L) + u(L) = 0,

what boundary conditions should v(x) satisfy for H(x)ILa = 0, called
the adjoint boundary conditions?

𝐿 =
𝑑4

𝑑𝑥4

2.7.6.1 Part (a)

𝑢𝐿 [𝑣] − 𝑣𝐿 [𝑢] = 𝑢
𝑑4𝑣
𝑑𝑥4

− 𝑣
𝑑4𝑢
𝑑𝑥4

= 𝑢𝑣(4) − 𝑣𝑢(4)

We want to obtain expression of form 𝑑
𝑑𝑥
() such that it comes out to be 𝑢𝑣(4) − 𝑣𝑢(4). If we

can do this, then it is exact di�erential. Now, since
𝑑
𝑑𝑥
(𝑢𝑣′′′ − 𝑢′𝑣′′) = 𝑢′𝑣′′′ + 𝑢𝑣(4) − 𝑢′′𝑣′′ − 𝑢′𝑣′′′ (1)

And
𝑑
𝑑𝑥
(𝑣𝑢′′′ − 𝑣′𝑢′′) = 𝑣′𝑢′′′ + 𝑣𝑢(4) − 𝑣′′𝑢′′ − 𝑣′𝑢′′′ (2)

Then (1)-(2) gives
𝑑
𝑑𝑥
(𝑢𝑣′′′ − 𝑢′𝑣′′) −

𝑑
𝑑𝑥
(𝑣𝑢′′′ − 𝑣′𝑢′′) = �𝑢′𝑣′′′ + 𝑢𝑣(4) − 𝑢′′𝑣′′ − 𝑢′𝑣′′′� − �𝑣′𝑢′′′ + 𝑣𝑢(4) − 𝑣′′𝑢′′ − 𝑣′𝑢′′′�

= 𝑢′𝑣′′′ + 𝑢𝑣(4) − 𝑢′′𝑣′′ − 𝑢′𝑣′′′ − 𝑣′𝑢′′′ − 𝑣𝑢(4) + 𝑣′′𝑢′′ + 𝑣′𝑢′′′

= 𝑢𝑣(4) − 𝑣𝑢(4)
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Hence we found that
𝑑
𝑑𝑥
(𝑢𝑣′′′ − 𝑢′𝑣′′ − 𝑣𝑢′′′ + 𝑣′𝑢′′) = 𝑢𝑣(4) − 𝑣𝑢(4)

= 𝑢𝐿 [𝑣] − 𝑣𝐿 [𝑢]

Therefore 𝑢𝐿 [𝑣] − 𝑣𝐿 [𝑢] is exact di�erential.

2.7.6.2 Part (b)

𝐼 = �
𝑏

𝑎
𝑢𝐿 [𝑣] − 𝑣𝐿 [𝑢] 𝑑𝑥

= �
𝑏

𝑎

𝑑
𝑑𝑥
(𝑢𝑣′′′ − 𝑢′𝑣′′ − 𝑣𝑢′′′ + 𝑣′𝑢′′) 𝑑𝑥

= 𝑢𝑣′′′ − 𝑢′𝑣′′ − 𝑣𝑢′′′ + 𝑣′𝑢′′|𝑏𝑎
= 𝑢 (𝑏) 𝑣′′′ (𝑏) − 𝑢′ (𝑏) 𝑣′′ (𝑏) − 𝑣 (𝑏) 𝑢′′′ (𝑏) + 𝑣′ (𝑏) 𝑢′′ (𝑏)
− (𝑢 (𝑎) 𝑣′′′ (𝑎) − 𝑢′ (𝑎) 𝑣′′ (𝑎) − 𝑣 (𝑎) 𝑢′′′ (𝑎) + 𝑣′ (𝑎) 𝑢′′ (𝑎))

Or

𝐼 = 𝑢 (𝑏) 𝑣′′′ (𝑏)−𝑢′ (𝑏) 𝑣′′ (𝑏)−𝑣 (𝑏) 𝑢′′′ (𝑏)+𝑣′ (𝑏) 𝑢′′ (𝑏)−𝑢 (𝑎) 𝑣′′′ (𝑎)+𝑢′ (𝑎) 𝑣′′ (𝑎)+𝑣 (𝑎) 𝑢′′′ (𝑎)−𝑣′ (𝑎) 𝑢′′ (𝑎)

2.7.6.3 Part (c)

From part(b),

𝐼 = �
1

0
𝑢𝐿 [𝑣] − 𝑣𝐿 [𝑢] 𝑑𝑥 = 𝑢𝑣′′′ − 𝑢′𝑣′′ − 𝑣𝑢′′′ + 𝑣′𝑢′′|10 (1)

Since we are given that

𝜙 (0) = 0
𝜙′ (0) = 0
𝜙 (1) = 0
𝜙′′ (1) = 0

The above will give

𝑢 (0) = 𝑣 (0) = 0
𝑢′ (0) = 𝑣′ (0) = 0
𝑢 (1) = 𝑣 (1) = 0
𝑢′′ (1) = 𝑣′′ (1) = 0

Substituting these into (1) gives

�
1

0
𝑢𝐿 [𝑣] − 𝑣𝐿 [𝑢] 𝑑𝑥 = 𝑢 (1) 𝑣′′′ (1) − 𝑢′ (1) 𝑣′′ (1) − 𝑣 (1) 𝑢′′′ (1) + 𝑣′ (1) 𝑢′′ (1)

− 𝑢 (0) 𝑣′′′ (0) + 𝑢′ (0) 𝑣′′ (0) + 𝑣 (0) 𝑢′′′ (0) − 𝑣′ (0) 𝑢′′ (0)

Therefore

�
1

0
𝑢𝐿 [𝑣] − 𝑣𝐿 [𝑢] 𝑑𝑥 = (0 × 𝑣′′′ (1)) − 0 − (0 × 𝑢′′′ (1)) + 0 − (0 × 𝑣′′′ (0)) + 0 + (0 × 𝑢′′′ (0)) − 0

= 0
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2.7.6.4 Part (d)

Any boundary conditions which makes 𝑢𝑣′′′ − 𝑢′𝑣′′ − 𝑣𝑢′′′ + 𝑣′𝑢′′|10 = 0 will do. For example,

𝜙 (0) = 0
𝜙′ (0) = 0
𝜙 (1) = 0
𝜙′ (1) = 0

The above will give

𝑢 (0) = 𝑣 (0) = 0
𝑢′ (0) = 𝑣′ (0) = 0
𝑢 (1) = 𝑣 (1) = 0
𝑢′ (1) = 𝑣′ (1) = 0

Substituting these into (1) gives

�
1

0
𝑢𝐿 [𝑣] − 𝑣𝐿 [𝑢] 𝑑𝑥 = 𝑢 (1) 𝑣′′′ (1) − 𝑢′ (1) 𝑣′′ (1) − 𝑣 (1) 𝑢′′′ (1) + 𝑣′ (1) 𝑢′′ (1)

− 𝑢 (0) 𝑣′′′ (0) + 𝑢′ (0) 𝑣′′ (0) + 𝑣 (0) 𝑢′′′ (0) − 𝑣′ (0) 𝑢′′ (0)
= (0 × 𝑣′′′ (1)) − (0 × 𝑣′′ (1)) − (0 × 𝑢′′′ (1)) + (0 × 𝑢′′ (1))
− (0 × 𝑣′′′ (0)) + (0 × 𝑣′′ (0)) + (0 × 𝑢′′′ (0)) − (0 × 𝑢′′ (0))
= 0

2.7.6.5 Part (e)

Given
𝑑4

𝑑𝑥4
𝜙 + 𝜆𝑒𝑥𝜙 = 0

Therefore

𝐿 �𝜙� = −𝜆𝑒𝑥𝜙

Therefore, for eigenfunctions 𝑢, 𝑣 we have

𝐿 [𝑢] = −𝜆𝑢𝑒𝑥𝑢
𝐿 [𝑣] = −𝜆𝑣𝑒𝑥𝑣

Where 𝜆𝑢, 𝜆𝑣 are the eigenvalues associated with eigenfunctions 𝑢, 𝑣 and they are not the
same. Hence now we can write

0 = �
1

0
𝑢𝐿 [𝑣] − 𝑣𝐿 [𝑢] 𝑑𝑥

= �
1

0
𝑢 (−𝜆𝑣𝑒𝑥𝑣) − 𝑣 (−𝜆𝑢𝑒𝑥𝑢) 𝑑𝑥

= �
1

0
−𝜆𝑣𝑒𝑥𝑢𝑣 + 𝜆𝑢𝑒𝑥𝑢𝑣𝑑𝑥

= �
1

0
(𝜆𝑢 − 𝜆𝑣) (𝑒𝑥𝑢𝑣) 𝑑𝑥

= (𝜆𝑢 − 𝜆𝑣)�
1

0
(𝑒𝑥𝑢𝑣) 𝑑𝑥

Since 𝜆𝑢 − 𝜆𝑣 ≠ 0 then

�
1

0
(𝑒𝑥𝑢𝑣) 𝑑𝑥 = 0

Hence 𝑢, 𝑣 are orthogonal to each others with weight function 𝑒𝑥.
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2.7.7 Problem 5.5.10

5.5. Self-Adjoint Operators 183

(e) For the eigenvalue problem [using the boundary conditions in part (c)]

d44
+ aez ¢ = 0

dx4
,

show that the eigenfunctions corresponding to different eigenvalues are
orthogonal. What is the weighting function?

*5.5.9. For the eigenvalue problem

dx + Aexb = 0

subject to the boundary conditions

0(0) = 0 O(1) = 0
(0) = 0 (1) = 0,ad -,

show that the eigenvalues are less than or equal to zero (A < 0). (Don't
worry; in a physical context that is exactly what is expected.) Is A = 0 an
eigenvalue?

5.5.10. (a) Show that (5.5.22) yields (5.5.23) if at least one of the boundary con-
ditions is of the regular Sturm-Liouville type.

(b) Do part (a) if one boundary condition is of the singular type.

5.5.11. *(a) Suppose that

Consider

L = p(x)
2 + r(x) + q(x).

b

1 vL(u) dx.
a

By repeated integration by parts, determine the adjoint operator L'
such that

b

1 [uL'(v) - vL(u)j dx = H(x)
a

b

0

What is H(x)? Under what conditions does L = L', the self-adjoint
case? [Hint: Show that

\ \ 1
L' d2

2

p
d ( Pdr JJ=pdx + TX dx dx 4

(b) If
u(0) = 0 and (L) + u(L) = 0,

what boundary conditions should v(x) satisfy for H(x)ILa = 0, called
the adjoint boundary conditions?

2.7.7.1 Part(a)

Equation 5.5.22 is

𝑝 �𝜙1𝜙′2 − 𝜙2𝜙′1� = constant (5.5.22)

Looking at boundary conditions at one end, say at 𝑥 = 𝑎 (left end), and let the boundary
conditions there be

𝛽1𝜙 (𝑎) + 𝛽2𝜙′ (𝑎) = 0

Therefore for eigenfunctions 𝜙1, 𝜙2 we obtain

𝛽1𝜙1 (𝑎) + 𝛽2𝜙′1 (𝑎) = 0 (1)

𝛽1𝜙2 (𝑎) + 𝛽2𝜙′2 (𝑎) = 0 (2)

From (1),

𝜙′1 (𝑎) = −
𝛽1
𝛽2
𝜙1 (𝑎) (3)

From (2)

𝜙′2 (𝑎) = −
𝛽1
𝛽2
𝜙2 (𝑎) (4)

Substituting (3,4) into 𝜙1𝜙′2 − 𝜙2𝜙′1 gives, at end point 𝑎, the following

𝜙1 (𝑎) 𝜙′2 (𝑎) − 𝜙2 (𝑎) 𝜙′1 (𝑎) = 𝜙1 (𝑎) �−
𝛽1
𝛽2
𝜙2 (𝑎)� − 𝜙2 (𝑎) �−

𝛽1
𝛽2
𝜙1 (𝑎)�

= −
𝛽1
𝛽2
𝜙2 (𝑎) 𝜙1 (𝑎) +

𝛽1
𝛽2
𝜙2 (𝑎) 𝜙1 (𝑎)

= 0

In the above, we evaluated 𝜙1𝜙′2 − 𝜙2𝜙′1 at one end point, and found it to be zero. But
𝜙1𝜙′2 − 𝜙2𝜙′1 is the Wronskian 𝑊(𝑥). It is known that if 𝑊(𝑥) = 0 at just one point, then it
is zero at all points in the range. Hence we conclude that

𝜙1𝜙′2 − 𝜙2𝜙′1 = 0

For all 𝑥. This also means the eigenfunctions 𝜙1, 𝜙2 are linearly dependent. This gives
equation 5.5.23. QED.

2.7.7.2 Part(b)

Equation 5.5.22 is

𝑝 �𝜙1𝜙′2 − 𝜙2𝜙′1� = constant (5.5.22)

At one end, say end 𝑥 = 𝑎, is where the singularity exist. This means 𝑝 (𝑎) = 0. Now to
show that 𝑝 �𝜙1𝜙′2 − 𝜙2𝜙′1� = 0 at 𝑥 = 𝑎, we just need to show that 𝜙1𝜙′2 − 𝜙2𝜙′1 is bounded.
Since in that case, we will have 0 ×𝐴 = 0, where 𝐴 is some value which is 𝜙1𝜙′2 − 𝜙2𝜙′1. But
boundary conditions at 𝑥 = 1 must be 𝜙 (𝑎) < ∞ and also 𝜙′ (𝑎) < ∞. This is always the case
at the end where 𝑝 = 0.

Then let 𝜙 (𝑎) = 𝑐1 and 𝜙′ (𝑎) = 𝑐2, where 𝑐1, 𝑐2 are some constants. Then we write

𝜙1 (𝑎) = 𝑐1
𝜙′1 (𝑎) = 𝑐2
𝜙2 (𝑎) = 𝑐1
𝜙′2 (𝑎) = 𝑐2

126



2.7. HW 6 CHAPTER 2. HWS

Hence it follows immediately that

𝜙1𝜙′2 − 𝜙2𝜙′1 = 𝑐1𝑐2 − 𝑐2𝑐1
= 0

Hence we showed that 𝜙1𝜙′2 − 𝜙2𝜙′1 is bounded. Then 𝑝 �𝜙1𝜙′2 − 𝜙2𝜙′1� = 0. QED.
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2.8 HW 7

2.8.1 Problem 5.6.1 (a)

194 Chapter 5. Sturm-Liouville Eigenvalue Problems

We thus have a minimization theorem for the lowest eigenvalue A1. We can
ask if there are corresponding theorems for the higher eigenvalues. Interesting
generalizations immediately follow from (5.6.13). If we insist that al = 0, then

F O O_ 2 anAn f6 0 2 a dx
RQ[u] =

2
b°

n (5.6.15)
En=2 an fn 'Vna dx

This means that in addition we are restricting our function u to be orthogonal to
461, since a1 = f, uOla dx/ fa 0la dx. We now proceed in a similar way. Since
1\2 < An for n > 2, it follows that

RQ[u] > A2,

and furthermore the equality holds only if an = 0 for n > 2 [i.e., u = a202(x)J
since al = 0 already. We have just proved the following theorem: The minimum
value for all continuous functions u(x) that are orthogonal to the lowest eigenfunc-
tion and satisfy the boundary conditions is the next-to-lowest eigenvalue. Further
generalizations also follow directly from (5.6.13).

EXERCISES 5.6

5.6.1. Use the Rayleigh quotient to obtain a (reasonably accurate) upper bound
for the lowest eigenvalue of

(a) + ( - x2) = 0 with 2(0) = 0 and ¢(1) = 0

(b) d +(a=x)4=0with d (0)=0and (1)+2-0(1)=0

*(c) St +A.0 = 0 with -0(0) = 0 and a!tt(l) = 0 (See Exercise 5.8.10.)

5.6.2. Consider the eigenvalue problem

subject to (0) = 0 and 2(1) = 0. Show that A > 0 (be sure to show that
A 0).

5.6.3. Prove that (5.6.10) is valid in the following way. Assume L(u)/a is piecewise
smooth so that

L(u)
_ E bn0n(x)

n=1

Determine bn. [Hint: Using Green's formula (5.5.5), show that bn = -anan
if u and du/dx are continuous and if u satisfies the same homogeneous
boundary conditions as the eigenfunctions On(x).]

2.8.1.1 part (a)

𝑑2𝜙
𝑑𝑥2

+ �𝜆 − 𝑥2� 𝜙 = 0

𝜙′ (0) = 0
𝜙 (1) = 0

Putting the equation in the form

𝑑2𝜙
𝑑𝑥2

− 𝑥2𝜙 = −𝜆𝜙

And comparing it to the standard Sturm-Liouville form

𝑝
𝑑2𝜙
𝑑𝑥2

+ 𝑝′
𝑑𝜙
𝑑𝑥

+ 𝑞𝜙 = −𝜆𝜎𝜙

Shows that

𝑝 = 1
𝑞 = −𝑥2

𝜎 = 1

Now the Rayleigh quotient is

𝜆 =
− �𝑝𝜙𝜙′�

1

0
+ ∫

1

0
𝑝 �𝜙′�

2
− 𝑞𝜙2𝑑𝑥

∫1
0
𝜎𝜙2𝑑𝑥

Substituting known values, and since 𝜙′ (0) = 0, 𝜙 (1) = 0 the above simplifies to

𝜆 =
∫1
0
�𝜙′�

2
+ 𝑥2𝜙2𝑑𝑥

∫1
0
𝜙2𝑑𝑥

Now we can say that

𝜆min = 𝜆1 ≤
∫1
0
�𝜙′�

2
+ 𝑥2𝜙2𝑑𝑥

∫1
0
𝜙2𝑑𝑥

(1)

We now need a trial solution 𝜙𝑡𝑟𝑖𝑎𝑙 to use in the above, which needs only to satisfy boundary
conditions to use to estimate lowest 𝜆min. The simplest such function will do. The boundary
conditions are 𝜙′ (0) = 0,𝜙 (1) = 0. We see for example that 𝜙𝑡𝑟𝑖𝑎𝑙 (𝑥) = 𝑥2 − 1 works, since
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𝜙′𝑡𝑟𝑖𝑎𝑙 (𝑥) = 2𝑥, and 𝜙′𝑡𝑟𝑖𝑎𝑙 (0) = 0 and 𝜙𝑡𝑟𝑖𝑎𝑙 (1) = 1 − 1 = 0. So will use this in (1)

𝜆min = 𝜆1 ≤
∫1
0
(2𝑥)2 + 𝑥2 �𝑥2 − 1�

2
𝑑𝑥

∫1
0
�𝑥2 − 1�

2
𝑑𝑥

=
∫1
0
(2𝑥)2 + 𝑥2 �𝑥4 − 2𝑥2 + 1� 𝑑𝑥

∫1
0
�𝑥4 − 2𝑥2 + 1� 𝑑𝑥

=
∫1
0
4𝑥2 + 𝑥6 − 2𝑥4 + 𝑥2𝑑𝑥

∫1
0
�𝑥4 − 2𝑥2 + 1� 𝑑𝑥

=
∫1
0
3𝑥2 + 𝑥6𝑑𝑥

∫1
0
𝑥4 − 2𝑥2 + 1𝑑𝑥

=
�𝑥3 + 1

7𝑥
7�
1

0

�1
5𝑥
5 − 2

3𝑥
3 + 𝑥�

1

0

=
�1 + 1

7
�

�1
5 −

2
3 + 1�

=
15
7

= 2.1429

Hence

𝜆1 ≤ 2.1429

2.8.2 Problem 5.6.2

194 Chapter 5. Sturm-Liouville Eigenvalue Problems

We thus have a minimization theorem for the lowest eigenvalue A1. We can
ask if there are corresponding theorems for the higher eigenvalues. Interesting
generalizations immediately follow from (5.6.13). If we insist that al = 0, then

F O O_ 2 anAn f6 0 2 a dx
RQ[u] =

2
b°

n (5.6.15)
En=2 an fn 'Vna dx

This means that in addition we are restricting our function u to be orthogonal to
461, since a1 = f, uOla dx/ fa 0la dx. We now proceed in a similar way. Since
1\2 < An for n > 2, it follows that

RQ[u] > A2,

and furthermore the equality holds only if an = 0 for n > 2 [i.e., u = a202(x)J
since al = 0 already. We have just proved the following theorem: The minimum
value for all continuous functions u(x) that are orthogonal to the lowest eigenfunc-
tion and satisfy the boundary conditions is the next-to-lowest eigenvalue. Further
generalizations also follow directly from (5.6.13).

EXERCISES 5.6

5.6.1. Use the Rayleigh quotient to obtain a (reasonably accurate) upper bound
for the lowest eigenvalue of

(a) + ( - x2) = 0 with 2(0) = 0 and ¢(1) = 0

(b) d +(a=x)4=0with d (0)=0and (1)+2-0(1)=0

*(c) St +A.0 = 0 with -0(0) = 0 and a!tt(l) = 0 (See Exercise 5.8.10.)

5.6.2. Consider the eigenvalue problem

subject to (0) = 0 and 2(1) = 0. Show that A > 0 (be sure to show that
A 0).

5.6.3. Prove that (5.6.10) is valid in the following way. Assume L(u)/a is piecewise
smooth so that

L(u)
_ E bn0n(x)

n=1

Determine bn. [Hint: Using Green's formula (5.5.5), show that bn = -anan
if u and du/dx are continuous and if u satisfies the same homogeneous
boundary conditions as the eigenfunctions On(x).]

𝑑2𝜙
𝑑𝑥2

+ �𝜆 − 𝑥2� 𝜙 = 0

𝜙′ (0) = 0
𝜙′ (1) = 0

Putting the equation in the form

𝑑2𝜙
𝑑𝑥2

− 𝑥2𝜙 = −𝜆𝜙

And comparing it to the standard Sturm-Liouville form

𝑝
𝑑2𝜙
𝑑𝑥2

+ 𝑝′
𝑑𝜙
𝑑𝑥

+ 𝑞𝜙 = −𝜆𝜎𝜙

Shows that

𝑝 = 1
𝑞 = −𝑥2

𝜎 = 1

Now the Rayleigh quotient is

𝜆 =
− �𝑝𝜙𝜙′�

1

0
+ ∫

1

0
𝑝 �𝜙′�

2
− 𝑞𝜙2𝑑𝑥

∫1
0
𝜎𝜙2𝑑𝑥
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Substituting known values, and since 𝜙′ (0) = 0, 𝜙 (1) = 0 the above simplifies to

𝜆 =
∫1
0
�𝜙′�

2
+ 𝑥2𝜙2𝑑𝑥

∫1
0
𝜙2𝑑𝑥

Since eigenfunction 𝜙 can not be identically zero, the denominator in the above expression
can only be positive, since the integrand is positive. So we need now to consider the
numerator term only:

�
1

0
�𝜙′�

2
𝑑𝑥 +�

1

0
𝑥2𝜙2𝑑𝑥

For the second term, again, this can only be positive since 𝜙 can not be zero. For the first
term, there are two cases. If 𝜙′ zero or not. If it is not zero, then the term is positive and we

are done. This means 𝜆 > 0. if 𝜙′ = 0 then ∫
1

0
�𝜙′�

2
𝑑𝑥 = 0 and also conclude 𝜆 > 0 thanks

to the second term ∫1
0
𝑥2𝜙2 being positive. So we conclude that 𝜆 can only be positive.

2.8.3 Problem 5.6.4

Problem

Consider eigenvalue problem 𝑑
𝑑𝑟
�𝑟𝑑𝜙𝑑𝑟 � = −𝜆𝑟𝜙, 0 < 𝑟 < 1 subject to B.C. �𝜙 (0)� < ∞ (you

may also assume
𝑑𝜙
𝑑𝑟 bounded). And

𝑑𝜙
𝑑𝑟
(1) = 0. (a) prove that 𝜆 ≥ 0. (b) Solve the bound-

ary value problem. You may assume eigenfunctions are known. Derive coe�cients using
orthogonality.

Notice: Correction was made to problem per class email. Book said to show that 𝜆 > 0
which is error changed to 𝜆 ≥ 0.

2.8.3.1 Part (a)

From the problem we see that 𝑝 = 𝑟, 𝑞 = 0, 𝜎 = 𝑟. The Rayleigh quotient is

𝜆 =
− �𝑝𝜙𝜙′�

1

0
+ ∫

1

0
𝑝 �𝜙′�

2
− 𝑞𝜙2𝑑𝑟

∫1
0
𝜎𝜙2𝑑𝑟

=
− �𝑟𝜙𝜙′�

1

0
+ ∫

1

0
𝑟 �𝜙′�

2
𝑑𝑟

∫1
0
𝑟𝜙2𝑑𝑟

(1)

The term − �𝑟𝜙𝜙′�
1

0
expands to

− �(1) 𝜙 (1) 𝜙′ (1) − (0) 𝜙 (0) 𝜙′ (0)�

Since 𝜙′ (1) = 0, the above is zero and Equation(1) reduces to

𝜆 =
∫1
0
𝑟 �𝜙′�

2
𝑑𝑟

∫1
0
𝑟𝜙2𝑑𝑟

The denominator above can only be positive, as an eigenfunction 𝜙 can not be identically
zero. For the numerator, we have to consider two cases.

case 1 If 𝜙′ ≠ 0 then we are done. The numerator is positive and we conclude that 𝜆 > 0.

case 2 If 𝜙′ = 0 then 𝜙 is constant and this means 𝜆 = 0 is possible hence 𝜆 ≥ 0. Now we
need to show 𝜙 being constant is also possible. Since 𝜙′ (1) = 0, then for 𝜙′ = 0 to be true
everywhere, it should also be 𝜙′ (0) = 0 which means 𝜙 (0) is some constant. We are told
that �𝜙 (0)� < ∞. Hence means 𝜙 (0) is constant is possible value (since bounded). Hence
𝜙′ = 0 is possible.

Therefore 𝜆 ≥ 0. QED.
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2.8.3.2 Part (b)

The ODE is

𝑟𝜙′′ + 𝜙′ + 𝜆𝑟𝜙 = 0 0 < 𝑟 < 1 (1)

�𝜙 (0)� < ∞
𝜙′ (1) = 0

In standard form the ODE is 𝜙′′ + 1
𝑟𝜙

′ + 𝜆𝜙 = 0. This shows that 𝑟 = 0 is a regular singular
point. Therefore we try

𝜙 (𝑟) =
∞
�
𝑛=0

𝑎𝑛𝑟𝑛+𝛼

Hence

𝜙′ (𝑟) =
∞
�
𝑛=0

(𝑛 + 𝛼) 𝑎𝑛𝑟𝑛+𝛼−1

𝜙′′ (𝑟) =
∞
�
𝑛=0

(𝑛 + 𝛼) (𝑛 + 𝛼 − 1) 𝑎𝑛𝑟𝑛+𝛼−2

Substituting back into the ODE gives

𝑟
∞
�
𝑛=0

(𝑛 + 𝛼) (𝑛 + 𝛼 − 1) 𝑎𝑛𝑟𝑛+𝛼−2 +
∞
�
𝑛=0

(𝑛 + 𝛼) 𝑎𝑛𝑟𝑛+𝛼−1 + 𝜆𝑟
∞
�
𝑛=0

𝑎𝑛𝑟𝑛+𝛼 = 0

∞
�
𝑛=0

(𝑛 + 𝛼) (𝑛 + 𝛼 − 1) 𝑎𝑛𝑟𝑛+𝛼−1 +
∞
�
𝑛=0

(𝑛 + 𝛼) 𝑎𝑛𝑟𝑛+𝛼−1 + 𝜆
∞
�
𝑛=0

𝑎𝑛𝑟𝑛+𝛼+1 = 0

To make all powers of 𝑟 the same, we subtract 2 from the power of last term, and add 2 to
the index, resulting in

∞
�
𝑛=0

(𝑛 + 𝛼) (𝑛 + 𝛼 − 1) 𝑎𝑛𝑟𝑛+𝛼−1 +
∞
�
𝑛=0

(𝑛 + 𝛼) 𝑎𝑛𝑟𝑛+𝛼−1 + 𝜆
∞
�
𝑛=2

𝑎𝑛−2𝑟𝑛+𝛼−1 = 0

For 𝑛 = 0 we obtain
(𝛼) (𝛼 − 1) 𝑎0𝑟𝛼−1 + (𝛼) 𝑎0𝑟𝛼−1 = 0

(𝛼) (𝛼 − 1) 𝑎0 + (𝛼) 𝑎0 = 0

𝑎0 �𝛼2 − 𝛼 + 𝛼� = 0
𝑎0𝛼2 = 0

But 𝑎0 ≠ 0 (we always enforce this condition in power series solution), which implies

𝛼 = 0

Now we look at 𝑛 = 1, which gives

(1) (1 − 1) 𝑎1𝑟𝑛+𝛼−1 + (1) 𝑎1𝑟𝑛+𝛼−1 = 0
𝑎1 = 0

For 𝑛 ≥ 2, now all terms join in, and we get a recursive relation

(𝑛) (𝑛 − 1) 𝑎𝑛𝑟𝑛−1 + (𝑛) 𝑎𝑛𝑟𝑛−1 + 𝜆𝑎𝑛−2𝑟𝑛−1 = 0
(𝑛) (𝑛 − 1) 𝑎𝑛 + (𝑛) 𝑎𝑛 + 𝜆𝑎𝑛−2 = 0

𝑎𝑛 =
−𝜆𝑎𝑛−2

(𝑛) (𝑛 − 1) + 𝑛

=
−𝜆
𝑛2
𝑎𝑛−2

For example, for 𝑛 = 2, we get

𝑎2 =
−𝜆
22
𝑎0

All odd powers of 𝑛 result in 𝑎𝑛 = 0. For 𝑛 = 4

𝑎4 =
−𝜆
42
𝑎2 =

−𝜆
42 �

−𝜆
22
𝑎0� =

𝜆2

�22� �42�
𝑎0
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And for 𝑛 = 6

𝑎6 =
−𝜆
62
𝑎4 =

−𝜆
62

𝜆2

�22� �42�
𝑎0 =

−𝜆3

�22� �42� �62�
𝑎0

And so on. The series is

𝜙 (𝑟) =
∞
�
𝑛=0

𝑎𝑛𝑟𝑛

= 𝑎0 + 0 + 𝑎2𝑟2 + 0 + 𝑎4𝑟4 + 0 + 𝑎6𝑟6 +⋯

= 𝑎0 −
𝜆𝑟2

22
𝑎0 +

𝜆2𝑟4

�22� �42�
𝑎0 −

𝜆3𝑟6

�22� �42� �62�
𝑎0 +⋯

= 𝑎0

⎛
⎜⎜⎜⎜⎜⎜⎝1 −

�√𝜆𝑟�
2

22
+
�√𝜆𝑟�

4

�22� �42�
−

�√𝜆𝑟�
6

�22� �42� �62�
+⋯

⎞
⎟⎟⎟⎟⎟⎟⎠ (2)

From tables, Bessel function of first kind of order zero, has series expansion given by

𝐽𝑜 (𝑧) =
∞
�
𝑛=0

(−1)𝑛

(𝑛!)2
�
𝑧
2
�
2𝑛

= 1 − �
𝑧
2
�
2
+

1
(2)2

�
𝑧
2
�
4
−

1
((2) (3))2

�
𝑧
2
�
6
+⋯

= 1 −
𝑧2

22
+

1
2242

𝑧4 −
1

223226
𝑧6 +⋯

= 1 −
𝑧2

22
+

𝑧4

2242
−

𝑧6

224262
+⋯ (3)

By comparing (2),(3) we see a match between 𝐽𝑜 (𝑧) and 𝜙 (𝑟), if we let 𝑧 = √𝜆𝑟 we conclude
that

𝜙1 (𝑟) = 𝑎0𝐽0 �√𝜆𝑟�

We can now normalized the above eigenfunction so that 𝑎0 = 1 as mentioned in class. But it
is not needed. The above is the first solution. We now need second solution. For repeated
roots, the second solution will be

𝜙2 (𝑟) = 𝜙1 (𝑟) ln (𝑟) + 𝑟𝛼
∞
�
𝑛=0

𝑏𝑛𝑟𝑛

But 𝛼 = 0, hence

𝜙2 (𝑟) = 𝜙1 (𝑟) ln (𝑟) +
∞
�
𝑛=0

𝑏𝑛𝑟𝑛

Hence the solution is

𝜙 (𝑟) = 𝑐1𝜙1 (𝑟) + 𝑐2𝜙2 (𝑟)

Since 𝜙 (0) is bounded, then 𝑐2 = 0 (since ln (0) not bounded at zero), and the solution
becomes (where 𝑎0 is now absorbed with the constant 𝑐1)

𝜙 (𝑟) = 𝑐1𝜙1 (𝑟)

= 𝑐𝐽0 �√𝜆𝑟�

The boundedness condition has eliminated the second solution altogether. Now we apply
the second boundary conditions 𝜙′ (1) = 0 to find allowed eigenvalues. Since

𝜙′ (𝑟) = −𝑐𝐽1 �√𝜆𝑟�

Then 𝜙′ (1) = 0 implies

0 = −𝑐𝐽1 �√𝜆�

The zeros of this are the values of √𝜆. Using the computer, these are the first few such
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values.

�𝜆1 = 3.8317

�𝜆2 = 7.01559

�𝜆3 = 10.1735
⋮

or

𝜆1 = 14.682
𝜆2 = 49.219
𝜆3 = 103.5
⋮

Hence

𝜙𝑛 (𝑟) = 𝑐𝑛𝐽0 ��𝜆𝑛𝑟� (4)

𝜙 (𝑟) =
∞
�
𝑛=1

𝜙𝑛 (𝑟)

=
∞
�
𝑛=1

𝑐𝑛𝐽0 ��𝜆𝑛𝑟�

To find 𝑐𝑛, we use orthogonality. Per class discussion, we can now assume this problem was
part of initial value problem, and that at 𝑡 = 0 we had initial condition of 𝑓 (𝑟), therefore,
we now write

𝑓 (𝑟) =
∞
�
𝑛=1

𝑐𝑛𝐽0 ��𝜆𝑛𝑟�

Multiplying both sides by 𝐽0 �√𝜆𝑚𝑟� 𝜎 and integrating gives (where 𝜎 = 𝑟)

�
1

0

∞
�
𝑛=1

𝑓 (𝑟) 𝐽0 ��𝜆𝑚𝑟� 𝑟𝑑𝑟 =
∞
�
𝑛=1

�
1

0
𝑐𝑛𝐽0 ��𝜆𝑚𝑟� 𝐽0 ��𝜆𝑛𝑟� 𝑟𝑑𝑟

= �
1

0
𝑐𝑚𝐽20 ��𝜆𝑚𝑟� 𝑟𝑑𝑟

= 𝑐𝑚�
1

0
𝐽20 ��𝜆𝑚𝑟� 𝑟𝑑𝑟

= 𝑐𝑚Ω

Where Ω is some constant. Therefore

𝑐𝑛 =
∫1
0
∑∞
𝑛=1 𝑓 (𝑟) 𝐽0 �√𝜆𝑚𝑟� 𝑟𝑑𝑟

Ω
And 𝜙 (𝑟)

∞
�
𝑛=1

𝑐𝑛𝐽0 ��𝜆𝑛𝑟�

With the eigenvalues given as above, which have to be computed for each 𝑛 using the
computer.
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2.8.4 Problem 5.9.1 (b)

5.9. Large Eigenvalues (Asymptotic Behavior) 215

Here p(x) = 1, a(x) = 1 + x, q(x) = 0, L = 1. Our asymptotic formula (5.9.10) for
the eigenvalues is

2
n7r n27r2 n2ir2

A... _ l - / (5.9.11)
JO (1 + xo)112 dx0

L3
(1 + xo)3/2I112 (23/2 _ 1)2

L 0

In Table 5.9.1 we compare numerical results (using an accurate numerical scheme on
the computer) with the asymptotic formula. Equation (5.9.11) is even a reasonable
approximation if n = 1. The percent or relative error of the asymptotic formula
improves as n increases. However, the error stays about the same (though small).
There are improvements to (5.9.10) that account for the approximately constant
error.

Table 5.9.2: Eigenvalues \n

n
Numerical answer*
(assumed accurate)

Asymptotic formula
(5.9.11) Error

1 6.548395 6.642429 0.094034
2 26.464937 26.569718 0.104781
3 59.674174 59.781865 0.107691
4 106.170023 106.278872 0.108849
5 165.951321 166.060737 0.109416
6 239.0177275 239.1274615 0.109734
7 325.369115 325.479045 0.109930

*Courtesy of E. C. Gartland, Jr.

EXERCISES 5.9

5.9.1. Estimate (to leading order) the large eigenvalues and corresponding eigen-
functions for

(pcx) + [,\v(x) + q(x))q = 0

if the boundary conditions are

(a) 4 (0) = 0 and (L) = 0

*(b) -0(0) = 0 and
d

(L) = 0

(c) 0(0) = 0 and (L) + hcb(L) = 0

5.9.2. Consider

dxj + A(1 + x)o = 0

subject to 0(0) = 0 and 46(1) = 0. Roughly sketch the eigenfunctions for A

large. Take into account amplitude and period variations.

From textbook, equation 5.9.8, we are given that for large 𝜆

𝜙 (𝑥) ≈ �𝜎𝑝�
−1
4 exp

⎛
⎜⎜⎜⎜⎜⎝±𝑖√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

= �𝜎𝑝�
−1
4

⎛
⎜⎜⎜⎜⎜⎝𝑐1 cos

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠ + 𝑐2 sin

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ (1)

Where 𝑐1, 𝑐2 are the two constants of integration since this is second order ODE. For

𝜙 (0) = 0, the integral ∫
𝑥

0 �
𝜎(𝑡)
𝑝(𝑡)𝑑𝑡 = ∫

0

0 �
𝜎(𝑡)
𝑝(𝑡)𝑑𝑡 = 0 and the above becomes

0 = 𝜙 (0)

= �𝜎𝑝�
−1
4 (𝑐1 cos (0) + 𝑐2 sin (0))

= 𝑐1 �𝜎𝑝�
−1
4

Hence 𝑐1 = 0 and (1) reduces to

𝜙 (𝑥) = 𝑐2 �𝜎𝑝�
−1
4 sin

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

Hence

𝜙′ (𝑥) = 𝑐2 �𝜎𝑝�
−1
4 cos

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑑
𝑑𝑥√

𝜆�
𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

= 𝑐2 �𝜎𝑝�
−1
4 cos

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝√𝜆

�

𝜎 (𝑥)
𝑝 (𝑥)

⎞
⎟⎟⎟⎟⎟⎠

= 𝑐2 �𝜎𝑝�
−1
4

�

𝜆𝜎
𝑝

cos

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

Since 𝜙′ (𝐿) = 0 then

0 = 𝑐2 �𝜎𝑝�
−1
4

�

𝜆𝜎
𝑝

cos

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝐿

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

Which means, for non-trivial solution, that

�𝜆𝑛�
𝐿

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡 = �𝑛 −
1
2�
𝜋

134



2.8. HW 7 CHAPTER 2. HWS

Therefore, for large 𝜆, (i.e. large 𝑛) the estimate is

�𝜆𝑛 =
�𝑛 − 1

2
� 𝜋

∫𝐿
0 �

𝜎(𝑡)
𝑝(𝑡)𝑑𝑡

𝜆𝑛 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�𝑛 − 1
2
� 𝜋

∫𝐿
0 �

𝜎(𝑡)
𝑝(𝑡)𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

2.8.5 Problem 5.9.2

5.9. Large Eigenvalues (Asymptotic Behavior) 215

Here p(x) = 1, a(x) = 1 + x, q(x) = 0, L = 1. Our asymptotic formula (5.9.10) for
the eigenvalues is

2
n7r n27r2 n2ir2

A... _ l - / (5.9.11)
JO (1 + xo)112 dx0

L3
(1 + xo)3/2I112 (23/2 _ 1)2

L 0

In Table 5.9.1 we compare numerical results (using an accurate numerical scheme on
the computer) with the asymptotic formula. Equation (5.9.11) is even a reasonable
approximation if n = 1. The percent or relative error of the asymptotic formula
improves as n increases. However, the error stays about the same (though small).
There are improvements to (5.9.10) that account for the approximately constant
error.

Table 5.9.2: Eigenvalues \n

n
Numerical answer*
(assumed accurate)

Asymptotic formula
(5.9.11) Error

1 6.548395 6.642429 0.094034
2 26.464937 26.569718 0.104781
3 59.674174 59.781865 0.107691
4 106.170023 106.278872 0.108849
5 165.951321 166.060737 0.109416
6 239.0177275 239.1274615 0.109734
7 325.369115 325.479045 0.109930

*Courtesy of E. C. Gartland, Jr.

EXERCISES 5.9

5.9.1. Estimate (to leading order) the large eigenvalues and corresponding eigen-
functions for

(pcx) + [,\v(x) + q(x))q = 0

if the boundary conditions are

(a) 4 (0) = 0 and (L) = 0

*(b) -0(0) = 0 and
d

(L) = 0

(c) 0(0) = 0 and (L) + hcb(L) = 0

5.9.2. Consider

dxj + A(1 + x)o = 0

subject to 0(0) = 0 and 46(1) = 0. Roughly sketch the eigenfunctions for A

large. Take into account amplitude and period variations.

𝜙′′ + 𝜆 (1 + 𝑥) 𝜙 = 0

Comparing the above to Sturm-Liouville form

�𝑝𝜙′�
′
+ 𝑞𝜙 = −𝜆𝜎𝜙

Shows that

𝑝 = 1
𝑞 = 0
𝜎 = 1 + 𝑥

Now, from textbook, equation 5.9.8, we are given that for large 𝜆

𝜙 (𝑥) ≈ �𝜎𝑝�
−1
4 exp

⎛
⎜⎜⎜⎜⎜⎝±𝑖√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

= �𝜎𝑝�
−1
4

⎛
⎜⎜⎜⎜⎜⎝𝑐1 cos

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠ + 𝑐2 sin

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ (1)

Where 𝑐1, 𝑐2 are the two constants of integration since this is second order ODE. For

𝜙 (0) = 0, the integral ∫
𝑥

0 �
𝜎(𝑡)
𝑝(𝑡)𝑑𝑡 = ∫

0

0 �
𝜎(𝑡)
𝑝(𝑡)𝑑𝑡 = 0 and the above becomes

0 = 𝜙 (0)

= �𝜎𝑝�
−1
4 (𝑐1 cos (0) + 𝑐2 sin (0))

= 𝑐1 �𝜎𝑝�
−1
4

Hence 𝑐1 = 0 and (1) reduces to

𝜙 (𝑥) = 𝑐2 �𝜎𝑝�
−1
4 sin

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

Applying the second boundary condition 𝜙 (1) = 0 on the above gives

0 = 𝜙 (1)

= 𝑐2 �𝜎𝑝�
−1
4 sin

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

1

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠
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Hence for non-trivial solution we want, for large positive integer 𝑛

√𝜆�
1

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡 = 𝑛𝜋

√𝜆 =
𝑛𝜋

∫1
0 �

𝜎(𝑡)
𝑝(𝑡)𝑑𝑡

=
𝑛𝜋

∫1
0
√1 + 𝑡𝑑𝑡

But ∫
1

0
√1 + 𝑡𝑑𝑡 = 1.21895, hence

√𝜆 =
𝑛𝜋

1.21895
= 2.5773𝑛

𝜆 = 6.6424𝑛2

Therefore, solution for large 𝜆 is

𝜙 (𝑥) = 𝑐2 �𝜎𝑝�
−1
4 sin

⎛
⎜⎜⎜⎜⎜⎝√𝜆�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

= 𝑐2 �𝜎𝑝�
−1
4 sin

⎛
⎜⎜⎜⎜⎜⎝2.5773𝑛�

𝑥

0 �

𝜎 (𝑡)
𝑝 (𝑡)

𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎠

= 𝑐2 (1 + 𝑥)
−1
4 sin �2.5773𝑛�

𝑥

0
√1 + 𝑡𝑑𝑡�

= 𝑐2 (1 + 𝑥)
−1
4 sin �2.5773𝑛 �−

2
3
+
2
3
(1 + 𝑥)

3
2 ��

To plot this, let us assume 𝑐2 = 1 (we have no information given to find 𝑐2). What value of
𝑛 to use? Will use di�erent values of 𝑛 in increasing order. So the following is plot of

𝜙 (𝑥) = (1 + 𝑥)
−1
4 sin �2.5773𝑛 �−

2
3
+
2
3
(1 + 𝑥)

3
2 ��

For 𝑥 = 0⋯1 and for 𝑛 = 10, 20, 30,⋯ , 80.
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2.9 HW 8

2.9.1 Problem 5.10.1

220 Chapter 5. Sturm-Liouville Eigenvalue Problems

where I is the length of 0n(x):

fa12 = dx.

Parseval's equality simply states that the length of f squared, fa f 2a dx, equals
the sum of squares of the components of f (using an orthogonal basis of functions
of unit length), (an1)2 = an fab 0na dx.

EXERCISES 5.10

5.10.1. Consider the Fourier sine series for f (x) = 1 on the interval 0 < x < L.
How many terms in the series should be kept so that the mean-square error
is 1% of f L f 2a dx?

5.10.2. Obtain a formula for an infinite series using Parseval's equality applied to
the

(a) Fourier sine series of f (x) = 1 on the interval 0 < x < L
*(b) Fourier cosine series of f (x) = x on the interval 0 < x < L

(c) Fourier sine series of f (x) = x on the interval 0 < x < L

5.10.3. Consider any function f (x) defined for a < x < b. Approximate this func-
tion by a constant. Show that the best such constant (in the mean-square
sense, i.e., minimizing the mean-square deviation) is the constant equal to
the average of f (x) over the interval a < x < b.

5.10.4. (a) Using Parseval's equality, express the error in terms of the tail of a
series.

(b) Redo part (a) for a Fourier sine series on the interval 0 < x < L.

(c) If f (x) is piecewise smooth, estimate the tail in part (b). (Hint: Use
integration by parts.)

5.10.5. Show that if

then

L(f)_-(p f)+qf,

- f'fL(f) dx = -pf dx
b

2

\
l

+

J. [p
dx) _ gf2J dx

a \a

if f and df /dx are continuous.

5.10.6. Assuming that the operations of summation and integration can be inter-
changed, show that if

f = and 9 = Nn 0n,

The Fourier sin series of 𝑓 (𝑥) = 1 on 0 ≤ 𝑥 ≤ 𝐿 is given by

𝑓 (𝑥) ∼
∞
�
𝑛=1

𝑏𝑛 sin �𝑛𝜋
𝐿
𝑥� (1)

Where

𝑏𝑛 =
1
𝐿 �

𝐿

−𝐿
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

=
1
𝐿 ��

0

−𝐿
(−1) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 +�

𝐿

0
(+1) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥�

=
1
𝐿

⎛
⎜⎜⎜⎜⎝− �−

𝐿
𝑛𝜋

cos �𝑛𝜋
𝐿
𝑥��

0

−𝐿
+ �−

𝐿
𝑛𝜋

cos �𝑛𝜋
𝐿
𝑥��

𝐿

0

⎞
⎟⎟⎟⎟⎠

=
1
𝐿 �

𝐿
𝑛𝜋 �

cos �𝑛𝜋
𝐿
𝑥��

0

−𝐿
−
𝐿
𝑛𝜋 �

cos �𝑛𝜋
𝐿
𝑥��

𝐿

0
�

=
1
𝐿 �

𝐿
𝑛𝜋

[cos (0) − cos (𝑛𝜋)] − 𝐿
𝑛𝜋

[cos (𝑛𝜋) − cos (0)]�

=
1
𝐿 �

𝐿
𝑛𝜋

[1 − cos (𝑛𝜋)] − 𝐿
𝑛𝜋

[cos (𝑛𝜋) − 1]�

We see that 𝑏𝑛 = 0 for 𝑛 = 2, 4, 6,⋯ , and 𝑏𝑛 odd for 𝑛 = 1, 3, 5,⋯ so we can simplify the
above to be

𝑏𝑛 =
1
𝐿 �

𝐿
𝑛𝜋

[1 − (−1)] −
𝐿
𝑛𝜋

[−1 − 1]�

=
1
𝐿 �

𝐿
𝑛𝜋

[2] −
𝐿
𝑛𝜋

[−2]�

=
1
𝐿 �

4𝐿
𝑛𝜋�

=
4
𝑛𝜋

Equation (1) becomes

𝑓 (𝑥) ∼
∞
�

𝑛=1,3,5,⋯

4
𝑛𝜋

sin �𝑛𝜋
𝐿
𝑥� (2)

mean-square error is, from textbook, page 213, is given by equation 5.10.11

𝐸 = �
𝐿

0
𝑓2 (𝑥) 𝜎 (𝑥) 𝑑𝑥 −

∞
�

𝑛=1,3,5,⋯
𝛼2𝑛�

𝐿

0
𝜙2𝑛𝜎 (𝑥) 𝑑𝑥 (5.10.11)

In this problem, 𝜙𝑛 = sin �𝑛𝜋𝐿 𝑥� and 𝛼𝑛 = 𝑎𝑛 =
4
𝑛𝜋 . The above equation becomes

𝐸 = �
𝐿

0
𝑓2 (𝑥) 𝜎 (𝑥) 𝑑𝑥 −

∞
�

𝑛=1,3,5,⋯
�
4
𝑛𝜋�

2

�
𝐿

0
sin2 �𝑛𝜋

𝐿
𝑥� 𝜎 (𝑥) 𝑑𝑥

= �
𝐿

0
𝑓2 (𝑥) 𝜎𝑑𝑥 −

∞
�

𝑛=1,3,5,⋯

16
𝑛2𝜋2 �

𝐿

0
sin2 �𝑛𝜋

𝐿
𝑥� 𝜎𝑑𝑥

For 𝜎 = 1 we know that

�
𝐿

0
sin2 �𝑛𝜋

𝐿
𝑥� 𝜎𝑑𝑥 =

𝐿
2
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Hence 𝐸 becomes

𝐸 = �
𝐿

0
𝑓2 (𝑥) 𝜎𝑑𝑥 −

∞
�

𝑛=1,3,5,⋯

16
𝑛2𝜋2

𝐿
2

But ∫
𝐿

0
𝑓2 (𝑥) 𝜎𝑑𝑥 for 𝜎 = 1 is just ∫

𝐿

0
12𝑑𝑥 = 𝐿, and the above becomes

𝐸 = 𝐿 −
𝐿
2
16
𝜋2

∞
�

𝑛=1,3,5,⋯

1
𝑛2

= 𝐿 −
8𝐿
𝜋2

∞
�

𝑛=1,3,5,⋯

1
𝑛2

We need to find 𝑁 so that 𝐸 = 0.01𝐿. The above becomes

0.01𝐿 = 𝐿 −
8𝐿
𝜋2

𝑁
�

𝑛=1,3,5,⋯

1
𝑛2

We need now to solve for 𝑁 in the above

0.01𝐿 − 𝐿 = −
8𝐿
𝜋2

𝑁
�

𝑛=1,3,5,⋯

1
𝑛2

0.99𝐿 �
𝜋2

8𝐿�
=

𝑁
�

𝑛=1,3,5,⋯

1
𝑛2

1.2214 =
𝑁
�

𝑛=1,3,5,⋯

1
𝑛2

A small Mathematica program written which prints the RHS sum for each 𝑛, and was
visually checked when it reached 1.2214, here is the result

In[53]:= data = Table[{i, Sum[1/ n^2, {n, 1, i, 2}]}, {i, 1, 50, 2}] // N;

Grid[Join[{{"n", "sum"}}, data], Frame → All]

Out[54]=

n sum
1. 1.
3. 1.11111
5. 1.15111
7. 1.17152
9. 1.18386
11. 1.19213
13. 1.19805
15. 1.20249
17. 1.20595
19. 1.20872
21. 1.21099
23. 1.21288
25. 1.21448
27. 1.21585
29. 1.21704
31. 1.21808
33. 1.219
35. 1.21982
37. 1.22055
39. 1.2212
41. 1.2218
43. 1.22234
45. 1.22283
47. 1.22329
49. 1.2237

Counting the number of terms needed to reach 1.2214, we see there are 21 terms (21 rows
in the table, since only odd entries are counted, the table above skips the even 𝑛 values in
the sum since these are all zero).
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2.9.2 Problem 5.10.2 (b)
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where I is the length of 0n(x):

fa12 = dx.

Parseval's equality simply states that the length of f squared, fa f 2a dx, equals
the sum of squares of the components of f (using an orthogonal basis of functions
of unit length), (an1)2 = an fab 0na dx.

EXERCISES 5.10

5.10.1. Consider the Fourier sine series for f (x) = 1 on the interval 0 < x < L.
How many terms in the series should be kept so that the mean-square error
is 1% of f L f 2a dx?

5.10.2. Obtain a formula for an infinite series using Parseval's equality applied to
the

(a) Fourier sine series of f (x) = 1 on the interval 0 < x < L
*(b) Fourier cosine series of f (x) = x on the interval 0 < x < L

(c) Fourier sine series of f (x) = x on the interval 0 < x < L

5.10.3. Consider any function f (x) defined for a < x < b. Approximate this func-
tion by a constant. Show that the best such constant (in the mean-square
sense, i.e., minimizing the mean-square deviation) is the constant equal to
the average of f (x) over the interval a < x < b.

5.10.4. (a) Using Parseval's equality, express the error in terms of the tail of a
series.

(b) Redo part (a) for a Fourier sine series on the interval 0 < x < L.

(c) If f (x) is piecewise smooth, estimate the tail in part (b). (Hint: Use
integration by parts.)

5.10.5. Show that if

then

L(f)_-(p f)+qf,

- f'fL(f) dx = -pf dx
b

2

\
l

+

J. [p
dx) _ gf2J dx

a \a

if f and df /dx are continuous.

5.10.6. Assuming that the operations of summation and integration can be inter-
changed, show that if

f = and 9 = Nn 0n,

Parseval’s equality is given by equation 5.10.14, page 214 in textbook

�
𝑏

𝑎
𝑓2𝜎𝑑𝑥 =

∞
�
𝑛=1

𝑎2𝑛�
𝑏

𝑎
𝜙2𝑛𝜎𝑑𝑥 (5.10.14)

The books uses 𝛼𝑛 instead of 𝑎𝑛, but it is the same, these are the coe�cients in the Fourier
series for 𝑓 (𝑥). We now need to find the cosine Fourier series for 𝑓 (𝑥) = 𝑥. This is given by

𝑓 (𝑥) = 𝑎0 +
∞
�
𝑛=1

𝑎𝑛 cos �𝑛𝜋
𝐿
𝑥�

Where

𝑎𝑛 =
1
𝐿 �

𝐿

−𝐿
𝑓 (𝑥) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

=
1
𝐿 ��

0

−𝐿
(−𝑥) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 +�

𝐿

0
(+𝑥) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥�

=
1
𝐿 �
−�

0

−𝐿
𝑥 cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 +�

𝐿

0
𝑥 cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥�

But

�
0

−𝐿
𝑥 cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 = −

−1 + (−1)𝑛

𝑛2𝜋2
𝐿2

�
𝐿

0
𝑥 cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 =

−1 + (−1)𝑛

𝑛2𝜋2
𝐿2

Hence

𝑎𝑛 =
1
𝐿 �
2
−1 + (−1)𝑛

𝑛2𝜋2
𝐿2�

=
2𝐿
𝜋2
�−1 + (−1)𝑛�

𝑛2
Looking at few terms to see the pattern

𝑎𝑛 =
2𝐿
𝜋2 �

−2
1
, 0,

−2
32
, 0,

−2
52
,⋯�

Therefore, we can write 𝑎𝑛 as

𝑎𝑛 =
−4𝐿
𝜋2𝑛2

𝑛 = 1, 3, 5,⋯

And

𝑎0 =
1
2𝐿 �

𝐿

−𝐿
𝑓 (𝑥) 𝑑𝑥

=
1
2𝐿 ��

0

−𝐿
(−𝑥) 𝑑𝑥 +�

𝐿

0
(+𝑥) 𝑑𝑥�

=
1
2𝐿

⎡
⎢⎢⎢⎢⎣− �

𝑥2

2 �
0

−𝐿
+ �

𝑥2

2 �
𝐿

0

⎤
⎥⎥⎥⎥⎦

=
1
2𝐿 �

− �0 −
𝐿2

2 �
+ �

𝐿2

2
− 0��

=
1
2𝐿 �

𝐿2

2
+
𝐿2

2 �

=
𝐿
2
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Hence the Fourier series is

𝑓 (𝑥) =
𝐿
2
+

∞
�

𝑛=1,3,5,⋯

−4𝐿
𝜋2𝑛2

cos �𝑛𝜋
𝐿
𝑥�

We now go back to equation 5.10.14 (but need to add 𝑎0 to it, since there is this extra term
with cosine Fourier series)

�
𝑏

𝑎
𝑓2𝜎𝑑𝑥 = 𝑎20�

𝑏

𝑎
12𝑑𝑥 +

∞
�
𝑛=1

𝑎2𝑛�
𝑏

𝑎
𝜙2𝑛𝜎𝑑𝑥

�
𝐿

0
𝑥2𝑑𝑥 = �

𝐿
2�

2

�
𝐿

0
𝑑𝑥 +

∞
�

𝑛=1,3,5,⋯
�
−4𝐿
𝜋2𝑛2 �

2

�
𝐿

0
cos2 �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

�
𝑥3

3 �
𝐿

0
= �

𝐿2

4 �
𝐿 +

∞
�

𝑛=1,3,5,⋯

16𝐿2

𝜋4𝑛4 �
𝐿

0
cos2 �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

Since ∫
𝐿

0
cos2 �𝑛𝜋𝐿 𝑥� 𝑑𝑥 =

𝐿
2 the above becomes

𝐿3

3
= �

𝐿2

4 �
𝐿 +

∞
�

𝑛=1,3,5,⋯

16𝐿2

𝜋4𝑛4
𝐿
2

𝐿3

3
= �

𝐿2

4 �
𝐿 +

∞
�

𝑛=1,3,5,⋯

8𝐿3

𝜋4𝑛4

𝐿3

3
=
𝐿3

4
+
8𝐿3

𝜋4
∞
�

𝑛=1,3,5,⋯

1
𝑛4

Simplifying

1
3
=
1
4
+
8
𝜋4

∞
�

𝑛=1,3,5,⋯

1
𝑛4

∞
�

𝑛=1,3,5,⋯

1
𝑛4

= �
1
3
−
1
4�
𝜋4

8
∞
�

𝑛=1,3,5,⋯

1
𝑛4

=
𝜋4

96

Hence
𝜋4

96
= 1 +

1
34
+
1
54
+
1
74
+⋯

Which agrees with the book solution given in back of book.

2.9.3 Problem 5.10.6
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where I is the length of 0n(x):

fa12 = dx.

Parseval's equality simply states that the length of f squared, fa f 2a dx, equals
the sum of squares of the components of f (using an orthogonal basis of functions
of unit length), (an1)2 = an fab 0na dx.

EXERCISES 5.10

5.10.1. Consider the Fourier sine series for f (x) = 1 on the interval 0 < x < L.
How many terms in the series should be kept so that the mean-square error
is 1% of f L f 2a dx?

5.10.2. Obtain a formula for an infinite series using Parseval's equality applied to
the

(a) Fourier sine series of f (x) = 1 on the interval 0 < x < L
*(b) Fourier cosine series of f (x) = x on the interval 0 < x < L

(c) Fourier sine series of f (x) = x on the interval 0 < x < L

5.10.3. Consider any function f (x) defined for a < x < b. Approximate this func-
tion by a constant. Show that the best such constant (in the mean-square
sense, i.e., minimizing the mean-square deviation) is the constant equal to
the average of f (x) over the interval a < x < b.

5.10.4. (a) Using Parseval's equality, express the error in terms of the tail of a
series.

(b) Redo part (a) for a Fourier sine series on the interval 0 < x < L.

(c) If f (x) is piecewise smooth, estimate the tail in part (b). (Hint: Use
integration by parts.)

5.10.5. Show that if

then

L(f)_-(p f)+qf,

- f'fL(f) dx = -pf dx
b

2

\
l

+

J. [p
dx) _ gf2J dx

a \a

if f and df /dx are continuous.

5.10.6. Assuming that the operations of summation and integration can be inter-
changed, show that if

f = and 9 = Nn 0n,

5.10. Approximation Properties 221

then for normalized eigenfunctions

fb
0"fgv dx = E an/jne

n=1

a generalization of Parseval's equality.

5.10.7. Using Exercises 5.10.5 and 5.10.6, prove that

00
Az df

-unan= -pfdx
n=1

b

r ll

+
fbLp( )

z-9f2I dx. (5.10.15)

a L

[Hint Let g = L(f ), assuming that term-by-term differentiation is justified.]

5.10.8. According to Schwarz's inequality (proved in Exercise 2.3.10), the absolute
value of the pointwise error satisfies

M

"0

_ z

1/2 ao
z

11,2

flx) - E anon anon -_ > IAnlan
n=1 In=M+1 n=M+1 n=M+1 (A'll00

(5.10.16)
Furthermore, Chapter 9 introduces a Green's function G(x, xo), which is
shown to satisfy

00
±n - -G(x, x). (5.10.17)-
An

Using (5.10.15), (5.10.16), and (5.10.17), derive an upper bound for the
pointwise error (in cases in which the generalized Fourier series is pointwise
convergent). Examples and further discussion of this are given by Wein-
berger [1995].

�
𝑏

𝑎
𝑓𝑔𝜎𝑑𝑥 = �

𝑏

𝑎
�
∞
�
𝑛=1

𝛼𝑛𝜙𝑛� �
∞
�
𝑛=1

𝛽𝑛𝜙𝑛� 𝜎𝑑𝑥

= �
𝑏

𝑎
�𝛼1𝜙1 + 𝛼2𝜙2 +⋯� �𝛽1𝜙1 + 𝛽2𝜙2 +⋯�𝜎𝑑𝑥 (1)
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But

�𝛼1𝜙1 + 𝛼2𝜙2 +⋯� �𝛽1𝜙1 + 𝛽2𝜙2 +⋯� = 𝛼1𝛽1𝜙21 + 𝛼1𝛽2𝜙1𝜙2 + 𝛼1𝛽3𝜙1𝜙3 +⋯
+ 𝛼2𝛽1𝜙2𝜙1 + 𝛼2𝛽2𝜙22 + 𝛼2𝛽3𝜙1𝜙3 +⋯
+ 𝛼3𝛽1𝜙3𝜙1 + 𝛼3𝛽2𝜙3𝜙2 + 𝛼3𝛽3𝜙23 +⋯
⋮

Which means when expanding the product of the two series, only the terms on the diagonal
(the terms with 𝛼𝑖𝛽𝑗𝜙𝑖𝜙𝑗 with 𝑖 = 𝑗) will survive. This due to orthogonality. To show this
more clearly, we put the above expansion back into the integral (1) and break up the
integral into sum of integrals

�
𝑏

𝑎
𝑓𝑔𝜎𝑑𝑥 = �

𝑏

𝑎
𝛼1𝛽1𝜙21𝜎𝑑𝑥 +�

𝑏

𝑎
𝛼1𝛽2𝜙1𝜙2𝜎𝑑𝑥 +�

𝑏

𝑎
𝛼1𝛽3𝜙1𝜙3𝜎𝑑𝑥 +⋯

+�
𝑏

𝑎
𝛼2𝛽1𝜙2𝜙1𝜎𝑑𝑥 +�

𝑏

𝑎
𝛼2𝛽2𝜙22𝜎𝑑𝑥 +�

𝑏

𝑎
𝛼2𝛽3𝜙1𝜙3𝜎𝑑𝑥 +⋯

+�
𝑏

𝑎
𝛼3𝛽1𝜙3𝜙1𝜎𝑑𝑥 +�

𝑏

𝑎
𝛼3𝛽2𝜙3𝜙2𝜎𝑑𝑥 +�

𝑏

𝑎
𝛼3𝛽3𝜙23𝜎𝑑𝑥 +⋯

⋮

The above simplifies to

�
𝑏

𝑎
𝑓𝑔𝜎𝑑𝑥 = �

𝑏

𝑎
𝛼1𝛽1𝜙21𝜎𝑑𝑥 +�

𝑏

𝑎
𝛼2𝛽2𝜙22𝜎𝑑𝑥 +�

𝑏

𝑎
𝛼3𝛽3𝜙23𝜎𝑑𝑥 +⋯�

𝑏

𝑎
𝛼𝑛𝛽𝑛𝜙2𝑛𝜎𝑑𝑥 +⋯

Since all other terms vanish due to orthogonality of eigenfunctions. The above simplifies
to

�
𝑏

𝑎
𝑓𝑔𝜎𝑑𝑥 =

∞
�
𝑛=1

�
𝑏

𝑎
𝛼𝑛𝛽𝑛𝜙2𝑛𝜎𝑑𝑥

=
∞
�
𝑛=1

�𝛼𝑛𝛽𝑛�
𝑏

𝑎
𝜙2𝑛𝜎𝑑𝑥�

Because the eigenfunctions are normalized, then ∫
𝑏

𝑎
𝜙2𝑛𝜎𝑑𝑥 = 1 and the above reduces to

the result needed

�
𝑏

𝑎
𝑓𝑔𝜎 𝑑𝑥 =

∞
�
𝑛=1

𝛼𝑛𝛽𝑛

2.9.4 Problem 7.3.4

7.3. Vibrating Rectangular Membrane

7.3.3 Solve
z z

09U. =at
k,

axe
+ k2

2

on a rectangle (0 < x < L, 0 < y < H) subject to

u(x,y,0) = f(x,y)

u

(O, y,
t) = 0

(L, y, t) = 0
(x, 0, t)

(x, H, t)
ZTY

= 0
0.

287

7.3.4. Consider the wave equation for a vibrating rectangular membrane (0 < x <
L, 0<y<H)

C72u 2 (0'2U a2ul
at2 - C 8x2 + ay2 J

subject to the initial conditions

u(x,y,0) = 0 and 5 (x,y,0) = f(x,y).

Solve the initial value problem if

(a) u(0, y, t) = 0, u(L, y, t) = 0, ay (x, 0, t) = 0, au (x, H, t) = 0

* (b) (0, y, t) = 0, (L, y, t) = 0, (x, 0, t) = 0, (x, H, t) = 0

7.3.5. Consider
2

z z
with k > 0.atz = c C + 22 1 - k

On

(a) Give a brief physical interpretation of this equation.
(b) Suppose that u(x, y, t) = f(x)g(y)h(t). What ordinary differential

equations are satisfied by f, g, and h?

7.3.6. Consider Laplace's equation

°2u = axe + ay?2 + az2 = 0

in a right cylinder whose base is arbitrarily shaped (see Fig. 7.3.3). The top
is z = H and the bottom is z = 0. Assume that

a u(x, y, 0) = 0
u(x, y, H) = f (x, y)

and u = 0 on the "lateral" sides.

(a) Separate the z-variable in general.

*(b) Solve for u(x, y, z) if the region is a rectangular box, 0 < x < L, 0 <
y<W,0<z<H.

2.9.4.1 part(a)

Let 𝑢 = 𝑋 (𝑥) 𝑌 �𝑦� 𝑇 (𝑡). Substituting this back into the PDE gives

𝑇′′𝑋𝑌 = 𝑐2 (𝑋′′𝑌𝑇 + 𝑌′′𝑋𝑇)

Dividing by 𝑋𝑌𝑇 ≠ 0 gives
1
𝑐2
𝑇′′

𝑇
=
𝑋′′

𝑋
+
𝑌′′

𝑌
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Since left side depends on 𝑡 only and right side depends on �𝑥, 𝑦� only, then both must be
equal to some constant, say −𝜆

1
𝑐2
𝑇′′

𝑇
=
𝑋′′

𝑋
+
𝑌′′

𝑌
= −𝜆

We obtain the following

𝑇′′ + 𝑐2𝜆𝑇 = 0
𝑋′′

𝑋
= −𝜆 −

𝑌′′

𝑌
Again, looking at the second ODE above, we see that the left side depends on 𝑥 only, and
the right side on 𝑦 only. Then they must be equal to some constant, say −𝜇 and we obtain

𝑋′′

𝑋
= �−𝜆 −

𝑌′′

𝑌 � = −𝜇

Which results in two ODE’s. The first is

𝑋′′ + 𝜇𝑋 = 0
𝑋 (0) = 0
𝑋 (𝐿) = 0

And the second is

𝜆 +
𝑌′′

𝑌
= 𝜇

𝑌′′ = 𝑌𝜇 − 𝜆𝑌

𝑌′′ + 𝑌 �𝜆 − 𝜇� = 0

With B.C.

𝑌′ (0) = 0
𝑌′ (𝐻) = 0

Starting with the 𝑋 ODE since it is simpler, the solution is

𝑋 = 𝑐1 cos �√𝜇𝑥� + 𝑐2 sin �√𝜇𝑥�
Applying 𝑋 (0) = 0 gives

0 = 𝑐1
Hence solution is

𝑋 = 𝑐2 sin �√𝜇𝑥�
Applying 𝑋 (𝐿) = 0 gives

0 = 𝑐2 sin �√𝜇𝐿�
For non-trivial solution

𝜇𝑛 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

And the eigenfunctions are

𝑋𝑛 (𝑥) = sin �𝑛𝜋
𝐿
𝑥�

We now solve the 𝑌 ODE.

𝑌′′ + �𝜆 − 𝜇𝑛� 𝑌 = 0

Assuming that �𝜆 − 𝜇� > 0 for all 𝜆, 𝜇, (we know this is the only case, since only positive

𝜆 − 𝜇𝑛 will be possible when B.C. are homogeneous Dirichlet). Then, for �𝜆 − 𝜇� > 0, the
solution is

𝑌 �𝑦� = 𝑐1 cos ��𝜆 − 𝜇𝑛𝑦� + 𝑐2 sin ��𝜆 − 𝜇𝑛𝑦�

𝑌′ = −𝑐1�𝜆 − 𝜇𝑛 sin ��𝜆 − 𝜇𝑛𝑦� + 𝑐2�𝜆 − 𝜇𝑛 cos ��𝜆 − 𝜇𝑛𝑦�
Applying B.C. 𝑌′ (0) = 0 the above becomes

0 = 𝑐2�𝜆 − 𝜇𝑛
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Hence 𝑐2 = 0 and the solution becomes

𝑌 = 𝑐1 cos ��𝜆 − 𝜇𝑛𝑦�

𝑌′ = −𝑐1�𝜆 − 𝜇𝑛 sin ��𝜆 − 𝜇𝑛𝑦�
Applying second B.C. 𝑌′ (𝐻) = 0 gives

0 = −𝑐1�𝜆 − 𝜇𝑛 sin ��𝜆 − 𝜇𝑛𝐻�
For non-trivial solution we want

sin ��𝜆 − 𝜇𝑛𝐻� = 0

�𝜆𝑛𝑚 − 𝜇𝑛 = 𝑚
𝜋
𝐻

𝜆𝑛𝑚 − 𝜇𝑛 = �𝑚
𝜋
𝐻
�
2

𝜆𝑛𝑚 = �𝑚
𝜋
𝐻
�
2
+ 𝜇𝑛 𝑚 = 0, 1, 2,⋯

Hence the eigenfunctions are

𝑌𝑛𝑚 = cos �𝑚𝜋
𝐻
𝑦� 𝑚 = 0, 1, 2,⋯ , 𝑛 = 1, 2, 3,⋯

For each 𝑛,𝑚, we find solution of 𝑇′′ + 𝑐2𝜆𝑛𝑚𝑇 = 0.The solution is

𝑇𝑛𝑚 (𝑡) = 𝐴𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� + 𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡�
Putting all these results together gives

𝑢 �𝑥, 𝑦, 𝑡� =
∞
�
𝑛=1

∞
�
𝑚=1

𝑇𝑛𝑚 (𝑡) 𝑋𝑛𝑚 (𝑥) 𝑌𝑛𝑚 �𝑦�

=
∞
�
𝑛=1

∞
�
𝑚=1

�𝐴𝑛𝑚 cos �𝑐�𝜆𝑛,𝑚𝑡� + 𝐵𝑛𝑚 sin �𝑐�𝜆𝑛,𝑚𝑡�� sin �
𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

=
∞
�
𝑛=1

∞
�
𝑚=1

𝐴𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� sin �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

+
∞
�
𝑛=1

∞
�
𝑚=1

𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡� sin �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

We now apply initial conditions to find 𝐴𝑛𝑚, 𝐵𝑛𝑚. At 𝑡 = 0

𝑢 �𝑥, 𝑦, 0� = 0

=
∞
�
𝑛=1

∞
�
𝑚=0

𝐴𝑛𝑚 sin �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

Hence

𝐴𝑛𝑚 = 0

And the solution becomes

𝑢 �𝑥, 𝑦, 𝑡� =
∞
�
𝑛=1

∞
�
𝑚=0

𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡� sin �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

Taking derivative of the solution w.r.t. time 𝑡 gives
𝜕
𝜕𝑡
𝑢 �𝑥, 𝑦, 𝑡� =

∞
�
𝑛=1

∞
�
𝑚=0

𝑐�𝜆𝑛𝑚𝐵𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� sin �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

At 𝑡 = 0 the above becomes

𝛼 �𝑥, 𝑦� =
∞
�
𝑛=1

∞
�
𝑚=0

𝑐�𝜆𝑛𝑚𝐵𝑛𝑚 sin �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

Multiplying both sides by sin �𝑛𝜋𝐿 𝑥� cos �𝑚 𝜋
𝐻𝑦� and integrating gives

�
𝐿

0
�

𝐻

0
𝛼 �𝑥, 𝑦� sin �𝑛𝜋

𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦 = 𝑐�𝜆𝑛𝑚𝐵𝑛𝑚

∞
�
𝑛=1

∞
�
𝑚=0

�
𝐿

0
�

𝐻

0
sin2 �𝑛𝜋

𝐿
𝑥� cos2 �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦

= 𝑐�𝜆𝑛𝑚𝐵𝑛𝑚�
𝐿

0
�

𝐻

0
sin2 �𝑛𝜋

𝐿
𝑥� cos2 �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦

= 𝑐�𝜆𝑛𝑚𝐵𝑛𝑚 �
𝐿
2� �

𝐻
2 �
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Hence

𝐵𝑛𝑚 =
4

𝐿𝐻𝑐√𝜆𝑛𝑚
�

𝐿

0
�

𝐻

0
𝛼 �𝑥, 𝑦� sin �𝑛𝜋

𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦

Summary of solution

𝑋𝑛 (𝑥) = sin �𝑛𝜋
𝐿
𝑥� 𝑛 = 1, 2, 3,⋯

𝜇𝑛 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

𝑌𝑛𝑚 �𝑦� = cos �𝑚𝜋
𝐻
𝑦� 𝑚 = 0, 1, 2,⋯

𝜆𝑛𝑚 − 𝜇𝑛 = �𝑚
𝜋
𝐻
�
2

𝑚 = 0, 1, 2,⋯ , 𝑛 = 1, 2, 3,⋯

𝑇𝑛𝑚 (𝑡) = 𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡�

𝑢 �𝑥, 𝑦, 𝑡� =
∞
�
𝑛=1

∞
�
𝑚=0

𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡� sin �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

𝐵𝑛𝑚 =
4

𝐿𝐻𝑐√𝜆𝑛𝑚
�

𝐿

0
�

𝐻

0
𝛼 �𝑥, 𝑦� sin �𝑛𝜋

𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦

2.9.4.2 Part (b)

In this case we have

𝑋′′ + 𝜇𝑋 = 0
𝑋′ (0) = 0
𝑋′ (𝐿) = 0

And the second spatial ODE is

𝜆 +
𝑌′′

𝑌
= 𝜇

𝑌′′ = 𝑌𝜇 − 𝜆𝑌

𝑌′′ + 𝑌 �𝜆 − 𝜇� = 0

With B.C.

𝑌′ (0) = 0
𝑌′ (𝐻) = 0

Starting with the 𝑋 ODE. The solution is

𝑋 = 𝑐1 cos �√𝜇𝑥� + 𝑐2 sin �√𝜇𝑥�

𝑋′ = −𝑐1√𝜇 sin �√𝜇𝑥� + 𝑐2√𝜇 cos �√𝜇𝑥�
First B.C. gives

0 = 𝑐2√𝜇

Hence 𝑐2 = 0 and the solution becomes

𝑋 = 𝑐1 cos �√𝜇𝑥�

𝑋′ = −𝑐1√𝜇 sin �√𝜇𝑥�
Second B.C. gives

0 = −𝑐1√𝜇 sin �√𝜇𝐿�
Hence

√𝜇𝐿 = 𝑛𝜋

𝜇 = �
𝑛𝜋
𝐿
�
2

𝑛 = 0, 1, 2,⋯
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Now for the 𝑌 solution. This is the same as part (a).

𝑌𝑛𝑚 �𝑦� = cos �𝑚𝜋
𝐻
𝑦�

𝜆𝑛𝑚 − 𝜇𝑛 = �𝑚
𝜋
𝐻
�
2

𝜆𝑛𝑚 = �𝑚
𝜋
𝐻
�
2
+ 𝜇𝑛

= �𝑚
𝜋
𝐻
�
2
+ �

𝑛𝜋
𝐿
�
2

𝑚 = 0, 1, 2,⋯ , 𝑛 = 0, 1, 2,⋯

For each 𝑛,𝑚, we find solution of 𝑇′′+𝑐2𝜆𝑛𝑚𝑇 = 0.When 𝑛 = 0,𝑚 = 0, 𝜆𝑛𝑚 = 0 and the ODE
becomes

𝑇′′ = 0

With solution

𝑇 = 𝐴𝑡 + 𝐵

And total solution is

𝑢 �𝑥, 𝑦, 𝑡� = 𝑇𝑛𝑚 (𝑡) 𝑋𝑛𝑚 (𝑥) 𝑌𝑛𝑚 �𝑦�

= 𝑇00 (𝑡) 𝑋00 (𝑥) 𝑌00 �𝑦�

= (𝐴𝑡 + 𝐵)

Since 𝑋00 (𝑥) = 1 and 𝑌00 �𝑦� = 1. Applying initial conditions gives

𝑢 �𝑥, 𝑦, 0� = 0 = 𝐵

Therefore the solution is 𝑢 �𝑥, 𝑦, 𝑡� = 𝐴𝑡. Applying second initial conditions gives

𝐴 = 𝛼 �𝑥, 𝑦�

Hence the time solution for 𝑛 = 𝑚 = 0 is

𝑇00 = 𝑡𝛼 �𝑥, 𝑦�

For each 𝑛,𝑚, other than 𝑛 = 𝑚 = 0, the time solution of 𝑇′′ + 𝑐2𝜆𝑛𝑚𝑇 = 0 is

𝑇𝑛𝑚 (𝑡) = 𝐴𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� + 𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡�
Putting all these results together, we obtain

𝑢 �𝑥, 𝑦, 𝑡� =
∞
�
𝑛=0

∞
�
𝑚=0

𝑇𝑛𝑚 (𝑡) 𝑋𝑛𝑚 (𝑥) 𝑌𝑛𝑚 �𝑦�

=
∞
�
𝑛=0

∞
�
𝑚=0

�𝐴𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� + 𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡�� cos �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

=
∞
�
𝑛=0

∞
�
𝑚=0

𝐴𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� cos �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

+
∞
�
𝑛=0

∞
�
𝑚=0

𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡� cos �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

The di�erence in part(b) from part(a), is that the space solutions eigenfunctions are now
all cosine instead of cosine and sine. When the eigenfunction is cos the sum starts from
zero. When eigenfunction is sin the sum starts from 1. Now initial conditions are applied
as in part (a).

𝑢 �𝑥, 𝑦, 0� = 0 =
∞
�
𝑛=0

∞
�
𝑚=0

𝐴𝑛𝑚 cos �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

Hence 𝐴𝑛𝑚 = 0. And the solution becomes

𝑢 �𝑥, 𝑦, 𝑡� =
∞
�
𝑛=0

∞
�
𝑚=0

𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡� cos �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

Taking derivative of the solution w.r.t. time

𝜕
𝜕𝑡
𝑢 �𝑥, 𝑦, 𝑡� =

∞
�
𝑛=0

∞
�
𝑚=0

𝑐�𝜆𝑛𝑚𝐵𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� cos �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�
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At 𝑡 = 0 the above becomes

𝛼 �𝑥, 𝑦� =
∞
�
𝑛=0

∞
�
𝑚=0

𝑐�𝜆𝑛𝑚𝐵𝑛𝑚 cos �𝑛𝜋
𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦�

Multiplying both sides by cos �𝑛𝜋𝐿 𝑥� cos �𝑚 𝜋
𝐻𝑦� and integrating gives

�
𝐿

0
�

𝐻

0
𝛼 �𝑥, 𝑦� cos �𝑛𝜋

𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦 = 𝑐�𝜆𝑛𝑚𝐵𝑛𝑚

∞
�
𝑛=0

∞
�
𝑚=0

�
𝐿

0
�

𝐻

0
cos2 �𝑛𝜋

𝐿
𝑥� cos2 �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦

= 𝑐�𝜆𝑛𝑚𝐵𝑛𝑚 �
𝐿
2� �

𝐻
2 �

Hence

𝐵𝑛𝑚 =
4

𝐿𝐻𝑐√𝜆𝑛𝑚
�

𝐿

0
�

𝐻

0
𝛼 �𝑥, 𝑦� cos �𝑛𝜋

𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦

Summary of solution

𝑋𝑛 (𝑥) = cos �𝑛𝜋
𝐿
𝑥� 𝑛 = 0, 1, 2,⋯

𝜇𝑛 = �
𝑛𝜋
𝐿
�
2

𝑛 = 0, 1, 2,⋯

𝑌𝑛𝑚 �𝑦� = cos �𝑚𝜋
𝐻
𝑦� 𝑚 = 0, 1, 2,⋯

𝜆𝑛𝑚 − 𝜇𝑛 = �𝑚
𝜋
𝐻
�
2

𝑚 = 0, 1, 2,⋯ , 𝑛 = 0, 1, 2,⋯

𝑇𝑛𝑚 (𝑡) =

⎧⎪⎪⎨
⎪⎪⎩

𝑡𝛼 �𝑥, 𝑦� 𝑛 = 𝑚 = 0
𝐵𝑛𝑚 sin �𝑐√𝜆𝑛𝑚𝑡� otherwise

𝑢 �𝑥, 𝑦, 𝑡� =

⎧⎪⎪⎨
⎪⎪⎩

𝑡𝛼 �𝑥, 𝑦� 𝑛 = 𝑚 = 0
∑∞
𝑛=1

∑∞
𝑚=1 𝐵𝑛𝑚 sin �𝑐√𝜆𝑛𝑚𝑡� cos �𝑛𝜋𝐿 𝑥� cos �𝑚 𝜋

𝐻𝑦� otherwise

𝐵𝑛𝑚 =
4

𝐿𝐻𝑐√𝜆𝑛𝑚
�

𝐿

0
�

𝐻

0
𝛼 �𝑥, 𝑦� cos �𝑛𝜋

𝐿
𝑥� cos �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦

2.9.4.3 Part (c)

Same problem, but using the following boundary conditions

𝑢 �0, 𝑦, 𝑡� = 0

𝑢 �𝐿, 𝑦, 𝑡� = 0
𝑢 (𝑥, 0, 𝑡) = 0
𝑢 (𝑥,𝐻, 𝑡) = 0

Since the boundary conditions are homogeneous Dirichlet then the 𝑋 (𝑥) ODE solution is

𝑋𝑛 = sin �𝑛𝜋
𝐿
𝑥�

𝜇 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

And 𝑌 �𝑦� ODE solution is

𝑌𝑛𝑚 �𝑦� = sin �𝑚𝜋
𝐻
𝑦�

𝜆𝑛𝑚 = �𝑚
𝜋
𝐻
�
2
+ 𝜇𝑛

= �𝑚
𝜋
𝐻
�
2
+ �

𝑛𝜋
𝐿
�
2

𝑚 = 1, 2, 3,⋯ , 𝑛 = 1, 2, 3,⋯

And the time solution is

𝑇𝑛𝑚 (𝑡) = 𝐴𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� + 𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡� 𝑚 = 1, 2, 3,⋯ , 𝑛 = 1, 2, 3,⋯
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Hence the total solution is

𝑢 �𝑥, 𝑦, 𝑡� =
∞
�
𝑛=1

∞
�
𝑚=1

𝑇𝑛𝑚 (𝑡) 𝑋𝑛𝑚 (𝑥) 𝑌𝑛𝑚 �𝑦�

=
∞
�
𝑛=1

∞
�
𝑚=1

𝐴𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝐻
𝑦�

+
∞
�
𝑛=1

∞
�
𝑚=1

𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡� sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝐻
𝑦�

At 𝑡 = 0

0 =
∞
�
𝑛=1

∞
�
𝑚=1

𝐴𝑛𝑚 sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝐻
𝑦�

Hence 𝐴𝑛𝑚 = 0 and the solution becomes

𝑢 �𝑥, 𝑦, 𝑡� =
∞
�
𝑛=1

∞
�
𝑚=1

𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡� sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝐻
𝑦�

Taking derivative

𝜕
𝜕𝑡
𝑢 �𝑥, 𝑦, 𝑡� =

∞
�
𝑛=1

∞
�
𝑚=1

𝐵𝑛𝑚𝑐�𝜆𝑛𝑚 cos �𝑐�𝜆𝑛𝑚𝑡� sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝐻
𝑦�

At 𝑡 = 0

𝛼 �𝑥, 𝑦� =
∞
�
𝑛=1

∞
�
𝑚=1

𝐵𝑛𝑚𝑐�𝜆𝑛𝑚 sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝐻
𝑦�

Therefore, using orthogonality in 2D, we find

𝐵𝑛𝑚 =
4

𝐿𝐻𝑐√𝜆𝑛𝑚
�

𝐿

0
�

𝐻

0
𝛼 �𝑥, 𝑦� sin �𝑛𝜋

𝐿
𝑥� sin �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦

Summary of solution

𝑋𝑛 (𝑥) = sin �𝑛𝜋
𝐿
𝑥� 𝑛 = 1, 2, 3,⋯

𝜇𝑛 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

𝑌𝑛𝑚 �𝑦� = cos �𝑚𝜋
𝐻
𝑦� 𝑚 = 1, 2, 3,⋯

𝜆𝑛𝑚 − 𝜇𝑛 = �𝑚
𝜋
𝐻
�
2

𝑚 = 1, 2, 3,⋯ , 𝑛 = 1, 2, 3,⋯

𝑇𝑛𝑚 (𝑡) = 𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡�

𝑢 �𝑥, 𝑦, 𝑡� =
∞
�
𝑛=1

∞
�
𝑚=1

𝐵𝑛𝑚 sin �𝑐�𝜆𝑛𝑚𝑡� sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝐻
𝑦�

𝐵𝑛𝑚 =
4

𝐿𝐻𝑐√𝜆𝑛𝑚
�

𝐿

0
�

𝐻

0
𝛼 �𝑥, 𝑦� sin �𝑛𝜋

𝐿
𝑥� sin �𝑚𝜋

𝐻
𝑦� 𝑑𝑥𝑑𝑦
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2.9.5 Problem 7.3.6

7.3. Vibrating Rectangular Membrane

7.3.3 Solve
z z

09U. =at
k,

axe
+ k2

2

on a rectangle (0 < x < L, 0 < y < H) subject to

u(x,y,0) = f(x,y)

u

(O, y,
t) = 0

(L, y, t) = 0
(x, 0, t)

(x, H, t)
ZTY

= 0
0.

287

7.3.4. Consider the wave equation for a vibrating rectangular membrane (0 < x <
L, 0<y<H)

C72u 2 (0'2U a2ul
at2 - C 8x2 + ay2 J

subject to the initial conditions

u(x,y,0) = 0 and 5 (x,y,0) = f(x,y).

Solve the initial value problem if

(a) u(0, y, t) = 0, u(L, y, t) = 0, ay (x, 0, t) = 0, au (x, H, t) = 0

* (b) (0, y, t) = 0, (L, y, t) = 0, (x, 0, t) = 0, (x, H, t) = 0

7.3.5. Consider
2

z z
with k > 0.atz = c C + 22 1 - k

On

(a) Give a brief physical interpretation of this equation.
(b) Suppose that u(x, y, t) = f(x)g(y)h(t). What ordinary differential

equations are satisfied by f, g, and h?

7.3.6. Consider Laplace's equation

°2u = axe + ay?2 + az2 = 0

in a right cylinder whose base is arbitrarily shaped (see Fig. 7.3.3). The top
is z = H and the bottom is z = 0. Assume that

a u(x, y, 0) = 0
u(x, y, H) = f (x, y)

and u = 0 on the "lateral" sides.

(a) Separate the z-variable in general.

*(b) Solve for u(x, y, z) if the region is a rectangular box, 0 < x < L, 0 <
y<W,0<z<H.

288 Chapter 7. Higher Dimensional PDEs

V Figure 7.3.3

7.3.7. If possible, solve Laplace's equation

2 2

°2u _ 8x2 + 8y2 + az22 = 0,

in a rectangular-shaped region, 0 < x < L, 0 < y < W, 0 < z < H, subject
to the boundary conditions

(a) Tx- (0, y, z) = 0,

(L, y, z) = 0,

(b) u(0,y,z) = 0,

u(L, y, z) = 0,

* (c) (0, y, z) = 0,

(L,y,z) = f(y,z),

u(L, y, z) = g(y, z),

u(x,0,z) = 0,

u(x, W, z) = 0,

u(x, 0, z) = 0,

u(x, W, z) = f(x,z),

ey(x,0,z) = 0,

ou(x, W, z) = 0,

P(x,0,z) = 0,

(x, W, z) = 0,

u(x,y,0) = f(x,y)

u(x, y, H) = 0

u(x,y,0) = 0,

u(x, y, H) = 0

8U(x,y,0) = 0

(x, y, H) = 0

(x, y, 0) = 0rz-

R- (x,y,H) = 0

Appendix to 7.3: Outline of Alternative Method to Separate
Variables
An alternative (and equivalent) method to separate variables for

82u u
,9t2 - c2 (&2U

8x2 + 9y2
oy2

)
is to assume product solutions of the form

u(x, y, t) = f (x)g(y)h(t)

(7.3.33)

(7.3.34)

By substituting (7.3.34) into (7.3.33) and dividing by c2 f (x)g(y)h(t), we obtain

1 1d2h 1d2f 1d2g
c2 h dt2 - f dx2 + g dye (7.3.35)

2.9.5.1 Part (a)

∇ 2𝑢 =
𝜕2𝑢
𝜕𝑥2

+
𝜕2𝑢
𝜕𝑦2

+
𝜕2𝑢
𝜕𝑧2

= 0

Let 𝑢 = 𝑋𝑌𝑍 where 𝑋 ≡ 𝑋 (𝑥) , 𝑌 ≡ 𝑌 �𝑦� , 𝑍 ≡ 𝑍 (𝑧). Substituting this back in the above gives

𝑋′′𝑌𝑍 + 𝑌′′𝑋𝑍 + 𝑍′′𝑋𝑌 = 0

Dividing by 𝑋𝑌𝑍 ≠ 0 gives
𝑋′′

𝑋
+
𝑌′′

𝑌
+
𝑍′′

𝑍
= 0

𝑋′′

𝑋
+
𝑌′′

𝑌
= −

𝑍′′

𝑍
Since the left side depends on 𝑥, 𝑦 only and the right side depends on 𝑧 only and they are
equal, they must both be the same constant. Say −𝜆, and we write

𝑋′′

𝑋
+
𝑌′′

𝑌
= −𝜆 (1)

𝑍′′

𝑍
= 𝜆

The problem asks to separate the 𝑧 variable, then the ODE for this variable is

𝑍′′ − 𝜆𝑍 = 0 (2)

With boundary conditions

𝑍′ (0) = 0

𝑍 (𝐻) = 𝑓 �𝑥, 𝑦�

2.9.5.2 Part(b)

We will continue separation from part(a). From (1) in part (a)
𝑋′′

𝑋
+
𝑌′′

𝑌
= −𝜆
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We now need to separate 𝑋,𝑌. Therefore
𝑋′′

𝑋
= −𝜆 −

𝑌′′

𝑌
As the left side depends on 𝑥 only and right side depends on 𝑦 only and both are equal,
then they are equal to some constant, say −𝜇

𝑋′′

𝑋
= −𝜇

−𝜆 −
𝑌′′

𝑌
= −𝜇

The 𝑥 ODE becomes

𝑋′′ + 𝜇𝑋 = 0 (1)

𝑋 (0) = 0
𝑋 (𝐿) = 0

And the 𝑦 ODE becomes

−
𝑌′′

𝑌
= −𝜇 + 𝜆

𝑌′′ + �𝜆 − 𝜇�𝑌 = 0 (2)

With B.C.

𝑌 (0) = 0
𝑌 (𝑊) = 0

Now that we have the three ODE’s we start solving them. Starting with the 𝑥 ODE (1).
The solution is

𝑋𝑛 = sin �𝑛𝜋
𝐿
𝑥�

𝜇 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

For each 𝑛 there is solution for the 𝑦 ODE

𝑌𝑛𝑚 = sin �𝑚𝜋
𝑊
𝑦�

𝜆𝑛𝑚 − 𝜇𝑛 = �
𝑚𝜋
𝑊
�
2

𝑚 = 1, 2, 3,⋯

Or

𝜆𝑛𝑚 = �
𝑚𝜋
𝑊
�
2
+ �

𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯ ,𝑚 = 1, 2, 3,⋯

And for each 𝑛 and for each 𝑚 there is a solution for the 𝑧 ODE we found in part (a),
which is

𝑍′′ − 𝜆𝑛𝑚𝑍 = 0
𝑍′ (0) = 0

The solution is, since 𝜆𝑛𝑚 > 0 is

𝑍 = 𝑐1 cosh ��𝜆𝑛𝑚𝑧� + 𝑐2 sinh ��𝜆𝑛𝑚𝑧�

𝑍′ = 𝑐1�𝜆𝑛𝑚 sinh ��𝜆𝑛𝑚𝑧� + 𝑐2�𝜆𝑛𝑚 cosh ��𝜆𝑛𝑚𝑧�
Applying B.C. 𝑍′ (0) = 0 gives

0 = 𝑐2�𝜆𝑛𝑚
Hence 𝑐2 = 0 and the solution becomes

𝑍 = 𝑐𝑛𝑚 cosh ��𝜆𝑛𝑚𝑧�
Putting all these solutions together, we obtain

𝑢 �𝑥, 𝑦, 𝑧� =
∞
�
𝑛=1

∞
�
𝑚=1

𝑐𝑛𝑚 sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝑊
𝑦� cosh ��𝜆𝑛𝑚𝑧�

Only now we apply the last boundary condition 𝑢 �𝑥, 𝑦,𝐻� = 𝑓 �𝑥, 𝑦� to find 𝑐𝑛𝑚.

𝑓 �𝑥, 𝑦� =
∞
�
𝑛=1

∞
�
𝑚=1

𝑐𝑛𝑚 sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝑊
𝑦� cosh ��𝜆𝑛𝑚𝐻�
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Applying 2D orthogonality gives

�
𝐿

0
�

𝑊

0
𝑓 �𝑥, 𝑦� sin �𝑛𝜋

𝐿
𝑥� sin �𝑚𝜋

𝑊
𝑦� 𝑑𝑥𝑑𝑦 = 𝑐𝑛𝑚 cosh ��𝜆𝑛𝑚𝐻��

𝐿

0
�

𝑊

0
sin2 �𝑛𝜋

𝐿
𝑥� sin2 �𝑚𝜋

𝑊
𝑦� 𝑑𝑥𝑑𝑦

= 𝑐𝑛𝑚 cosh ��𝜆𝑛𝑚𝐻� �
𝐿
2� �

𝑊
2 �

Hence

𝑐𝑛𝑚 =
∫𝐿
0
∫𝑊
0
𝑓 �𝑥, 𝑦� sin �𝑛𝜋𝐿 𝑥� sin �𝑚𝜋𝑊 𝑦� 𝑑𝑥𝑑𝑦

cosh �√𝜆𝑛𝑚𝐻� �
𝐿
2
� �𝑊

2
�

=
4

𝐿𝑊 cosh �√𝜆𝑛𝑚𝐻�
�

𝐿

0
�

𝑊

0
𝑓 �𝑥, 𝑦� sin �𝑛𝜋

𝐿
𝑥� sin �𝑚𝜋

𝑊
𝑦� 𝑑𝑥𝑑𝑦

Summary of solution

𝑋𝑛 = sin �𝑛𝜋
𝐿
𝑥�

𝑌𝑛𝑚 = sin �𝑚𝜋
𝑊
𝑦�

𝜆𝑛𝑚 = �
𝑚𝜋
𝑊
�
2
+ �

𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯ ,𝑚 = 1, 2, 3,⋯

𝑢 �𝑥, 𝑦, 𝑧� =
∞
�
𝑛=1

∞
�
𝑚=1

𝑐𝑛𝑚 sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝑊
𝑦� cosh ��𝜆𝑛𝑚𝑧�

𝑐𝑛𝑚 =
4

𝐿𝑊 cosh �√𝜆𝑛𝑚𝐻�
�

𝐿

0
�

𝑊

0
𝑓 �𝑥, 𝑦� sin �𝑛𝜋

𝐿
𝑥� sin �𝑚𝜋

𝑊
𝑦� 𝑑𝑥𝑑𝑦

2.9.6 Problem 7.4.2
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this case, (7.4.11), the generalized Fourier coefficient a,,,,, can be evaluated in
two equivalent ways:

(a) Using one two-dimensional orthogonality formula for the eigenfunctions
of V2¢+)4=0

(b) Using two one-dimensional orthogonality formulas

4b. Convergence. As with any Sturm-Liouville eigenvalue problem (see Sec.
5.10), a finite series of the eigenfunctions of V20 + ai = 0 may be used
to approximate a function f (x, y). In particular, we could show that if we
measure error in the mean-square sense,

2rr
(.i'E // - dx dy, (7.4.16)/

with weight function 1, then this mean-square error is minimized by the co-
efficients a., being chosen by (7.4.14), the generalized Fourier coefficients. It
is known that the approximation improves as the number of terms increases.
Furthermore, E -' 0 as all the eigenfunctions are included. We say that the
series Eaaa¢,, converges in the mean to f.

EXERCISES 7.4

7.4.1. Consider the eigenvalue problem

020+AO=0

(0, y) = 0 Ox, 0) = 0
(L, y) = 0 O(x, H) = 0.

*(a) Show that there is a doubly infinite set of eigenvalues.
(b) If L = H, show that most eigenvalues have more than one eigenfunc-

tion.

(c) Derive that the eigenfunctions are orthogonal in a two-dimensional
sense using two one-dimensional orthogonality relations.

7.4.2. Without using the explicit solution of (7.4.7), show that A > 0 from the
Rayleigh quotient, (7.4.6).

7.4.3. If necessary, see Sec. 7.5:

(a) Derive that ff (uV2v - vV2u) dx dy = f(uVv - vVu) . fn ds.
(b) From part (a), derive (7.4.5).

7.4.4. Derive (7.4.6). If necessary, see Sec. 7.6. [Hint: Multiply (7.4.1) by 0 and
integrate.]

Equation 7.4.7 is

∇ 2𝜙 + 𝜆𝜙 = 0

𝜙 �0, 𝑦� = 0

𝜙 �𝐿, 𝑦� = 0
𝜙 (𝑥, 0) = 0
𝜙 (𝑥,𝐻) = 0

And 7.4.6 is

𝜆 =

−∮𝜙∇𝜙 ⋅ 𝑛̂𝑑𝑠 +�
𝑅

�∇𝜙�2 𝑑𝑥𝑑𝑦

�
𝑅

𝜙2𝑑𝑥𝑑𝑦

∮𝜙∇𝜙 ⋅ 𝑛̂𝑑𝑠 = 0 as we are told 𝜙 = 0 on the boundary and this integration is for the

boundary only. Hence 𝜆 simplifies to

𝜆 =

�
𝑅

�∇𝜙�2 𝑑𝑥𝑑𝑦

�
𝑅

𝜙2𝑑𝑥𝑑𝑦

The numerator can not be negative, since the integrand �∇𝜙�2 is not negative. Similarly,
the denominator has positive integrand, because 𝜙 can not be identically zero, as it is an
eigenfunction. Hence we conclude that 𝜆 ≥ 0.
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2.9.7 Problem 7.4.3

294 Chapter 7. Higher Dimensional PDEs

this case, (7.4.11), the generalized Fourier coefficient a,,,,, can be evaluated in
two equivalent ways:

(a) Using one two-dimensional orthogonality formula for the eigenfunctions
of V2¢+)4=0

(b) Using two one-dimensional orthogonality formulas

4b. Convergence. As with any Sturm-Liouville eigenvalue problem (see Sec.
5.10), a finite series of the eigenfunctions of V20 + ai = 0 may be used
to approximate a function f (x, y). In particular, we could show that if we
measure error in the mean-square sense,

2rr
(.i'E // - dx dy, (7.4.16)/

with weight function 1, then this mean-square error is minimized by the co-
efficients a., being chosen by (7.4.14), the generalized Fourier coefficients. It
is known that the approximation improves as the number of terms increases.
Furthermore, E -' 0 as all the eigenfunctions are included. We say that the
series Eaaa¢,, converges in the mean to f.

EXERCISES 7.4

7.4.1. Consider the eigenvalue problem

020+AO=0

(0, y) = 0 Ox, 0) = 0
(L, y) = 0 O(x, H) = 0.

*(a) Show that there is a doubly infinite set of eigenvalues.
(b) If L = H, show that most eigenvalues have more than one eigenfunc-

tion.

(c) Derive that the eigenfunctions are orthogonal in a two-dimensional
sense using two one-dimensional orthogonality relations.

7.4.2. Without using the explicit solution of (7.4.7), show that A > 0 from the
Rayleigh quotient, (7.4.6).

7.4.3. If necessary, see Sec. 7.5:

(a) Derive that ff (uV2v - vV2u) dx dy = f(uVv - vVu) . fn ds.
(b) From part (a), derive (7.4.5).

7.4.4. Derive (7.4.6). If necessary, see Sec. 7.6. [Hint: Multiply (7.4.1) by 0 and
integrate.]

2.9.7.1 part (a)

∇ ⋅ (𝑢∇𝑣) = 𝑢∇ 2𝑣 + ∇𝑢 ⋅ ∇𝑣 (1)

∇ ⋅ (𝑣∇𝑢) = 𝑣∇ 2𝑢 + ∇𝑣 ⋅ ∇𝑢 (2)

Equation (1)-(2) leads to

∇ ⋅ (𝑢∇𝑣) − ∇ ⋅ (𝑣∇𝑢) = �𝑢∇ 2𝑣 + ∇𝑢 ⋅ ∇𝑣� − �𝑣∇ 2𝑢 + ∇𝑣 ⋅ ∇𝑢�

∇ ⋅ (𝑢∇𝑣 − 𝑣∇𝑢) = 𝑢∇ 2𝑣 − 𝑣∇ 2𝑢 + ∇𝑢 ⋅ ∇𝑣 − ∇𝑣 ⋅ ∇𝑢

But ∇𝑢 ⋅ ∇𝑣 = ∇𝑣 ⋅ ∇𝑢 so the above reduces to

∇ ⋅ (𝑢∇𝑣 − 𝑣∇𝑢) = 𝑢∇ 2𝑣 − 𝑣∇ 2𝑢

Therefore

��𝑢∇ 2𝑣 − 𝑣∇ 2𝑢� 𝑑𝑥𝑑𝑦 =�∇ ⋅ (𝑢∇𝑣 − 𝑣∇𝑢) 𝑑𝑥𝑑𝑦 (3)

But the RHS of the above is of the form �(∇ ⋅ 𝐴) 𝑑𝑥𝑑𝑦 where 𝐴 = (𝑢∇𝑣 − 𝑣∇𝑢) here.

Which we can apply divergence theorem on it and obtain ∮(𝐴 ⋅ 𝑛̂) 𝑑𝑠. Therefore, using
divergence theorem on the RHS of (3), then (3) can be written as

��𝑢∇ 2𝑣 − 𝑣∇ 2𝑢� 𝑑𝑥𝑑𝑦 = ∮(𝑢∇𝑣 − 𝑣∇𝑢) ⋅ 𝑛̂𝑑𝑠

Which is what is required to show.

2.9.7.2 Part(b)

Equation 7.4.5 is

�
𝑅

𝜙𝜆1𝜙𝜆2𝑑𝑥𝑑𝑦 = 0 if 𝜆1 ≠ 𝜆2 (7.4.5)

From part (a), we found

��𝑢∇ 2𝑣 − 𝑣∇ 2𝑢� 𝑑𝑥𝑑𝑦 = ∮(𝑢∇𝑣 − 𝑣∇𝑢) ⋅ 𝑛̂𝑑𝑠 (1)

But we know that, since both 𝑢, 𝑣 satisfy the multidimensional eigenvalue problem on same
domain, then

∇ 2𝑣 + 𝜆𝑣𝑣 = 0 (2)

𝛽1𝑣 + 𝛽2 (∇𝑣 ⋅ 𝑛̂) = 0 (3)

And similarly

∇ 2𝑢 + 𝜆𝑢𝑢 = 0 (4)

𝛽1𝑢 + 𝛽2 (∇𝑢 ⋅ 𝑛̂) = 0 (5)

Now we will use (2,3,4,5) into (1) to obtain 7.4.5. From (2), we see that ∇ 2𝑣 = −𝜆𝑣𝑣 and
from (4) ∇ 2𝑢 = −𝜆𝑢𝑢 and from (3) ∇𝑣 ⋅ 𝑛̂ = −𝛽1𝛽2𝑣 and from (5) ∇𝑢 ⋅ 𝑛̂ = −𝛽1𝛽2𝑢. Substituting
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all of these back into (1) gives

�(𝑢 (−𝜆𝑣𝑣) − 𝑣 (−𝜆𝑢𝑢)) 𝑑𝑥𝑑𝑦 = ∮𝑢 (∇𝑣 ⋅ 𝑛̂) − 𝑣 (∇𝑢 ⋅ 𝑛̂) 𝑑𝑠

�(−𝜆𝑣𝑢𝑣 + 𝜆𝑢𝑣𝑢) 𝑑𝑥𝑑𝑦 = ∮𝑢�−
𝛽1
𝛽2
𝑣� − 𝑣 �−

𝛽1
𝛽2
𝑢� 𝑑𝑠

�(𝜆𝑢 − 𝜆𝑣) 𝑢𝑣 𝑑𝑥𝑑𝑦 = ∮
𝛽1
𝛽2
[−𝑢𝑣 + 𝑢𝑣] 𝑑𝑠

(𝜆𝑢 − 𝜆𝑣)�𝑢𝑣 𝑑𝑥𝑑𝑦 = 0 (6)

We now use (6) the above to show that 7.4.5 is correct. In (6), if we replace 𝑢 = 𝜙𝜆1, 𝑣 = 𝜙𝜆1
and 𝜆𝑢 = 𝜆1, 𝜆𝑣 = 𝜆2 then (6) becomes

(𝜆1 − 𝜆2)��𝜙𝜆1𝜙𝜆1� 𝑑𝑥𝑑𝑦 = 0

We see now that for 𝜆1 ≠ 𝜆2, then ��𝜙𝜆1𝜙𝜆1� 𝑑𝑥𝑑𝑦 = 0. Which is what we asked to show.
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2.10 HW 9

2.10.1 Problem 8.2.1 (a,b)

352 Chapter 8. Nonhomogeneous Problems

In general, the partial differential equation for v(x, t) is of the same type as for
u(x, t), but with a different nonhomogeneous term, since r(x, t) usually does not
satisfy the homogeneous heat equation. The initial condition is also usually altered:

v(x, 0) = f (x) - r(x, 0) = f (x) - A(0) - L (B(0) - A(0)] = 9(x). (8.2.29)

It can be seen that in general only the boundary conditions have been made homo-
geneous. In Sec. 8.3 we will develop a method to analyze nonhomogeneous problems
with homogeneous boundary conditions.

EXERCISES 8.2

8.2.1. Solve the heat equation with time-independent sources and boundary con-
ditions

= k
82U

2 + Q(x)

u(x,0) = f(x)

if an equilibrium solution exists. Analyze the limits as t - oo. If no equilib-
rium exists, explain why and reduce the problem to one with homogeneous
boundary conditions (but do not solve). Assume

(L,t) = B* (a) Q(x) = 0, u(0,t) = A,
Tax-

(b) Q(x) = 0, (0, t) = 0, ai (L, t) = B 96 0
(c) Q(x) = 0, (0,t) = A 96 0, r(L,t) = A

* (d) Q(x) = k, u(0, t) = A, u(L, t) = B
(e) Q(x) = k, U (0, t) = 0, au (L, t) = 0
(f) Q(x) = sin 2-i-, a!i (0, t) = 0, Ou(L, t) = 0

8.2.2. Consider the heat equation with time-dependent sources and boundary con-
ditions:

2
09U =
8t k8x2 + Q(x, t)

u(x,0) = f(x).

Reduce the problem to one with homogeneous boundary conditions if

* (a) 8u(0,t) = A(t) and &u(L,t) = B(t)
(b) u(0, t) = A(t) and (L, t) = B(t)

D_X

* (c) (0, t) = A(t) and u(L, t) = B(t)
TX_

(d) u(O, t) = 0 and Ou(L, t) + h(u(L, t) - B(t)) = 0
(e) (0,t) = 0 and (L, t) + h(u(L, t) - B(t)) = 0

'67X '67X

2.10.1.1 Part (a)

Let

𝑢 (𝑥, 𝑡) = 𝑣 (𝑥, 𝑡) + 𝑢𝐸 (𝑥) (1)

Since 𝑄 (𝑥) in this problem is zero, we can look for 𝑢𝐸 (𝑥) which is the steady state solution
that satisfies the non-homogenous boundary conditions. (If 𝑄 was present, and if it also
was time dependent, then we replace 𝑢𝐸 (𝑥) by 𝑟 (𝑥, 𝑡) which becomes a reference function
that only needs to satisfy the non-homogenous boundary conditions and not the PDE
itself at steady state. In (1) 𝑣 (𝑥, 𝑡) satisfies the PDE itself but with homogenous boundary
conditions. The first step is to find 𝑢𝐸 (𝑥). We use the equilibrium solution in this case. At

equilibrium 𝜕𝑢𝐸(𝑥,𝑡)
𝜕𝑡 = 0 and hence the solution is given 𝑑2𝑢𝐸

𝜕𝑥2 = 0 or

𝑢𝐸 (𝑥) = 𝑐1𝑥 + 𝑐2

At 𝑥 = 0, 𝑢𝐸 (𝑥) = 𝐴, Hence

𝑐2 = 𝐴

And solution becomes 𝑢𝐸 (𝑥) = 𝑐1𝑥 + 𝐴. at 𝑥 = 𝐿,
𝜕𝑢𝐸(𝑥)
𝜕𝑥 = 𝑐1 = 𝐵, Therefore

𝑢𝐸 (𝑥) = 𝐵𝑥 + 𝐴

Now we plug-in (1) into the original PDE, this gives

𝜕𝑣 (𝑥, 𝑡)
𝜕𝑡

= 𝑘 �
𝜕2𝑣 (𝑥, 𝑡)
𝜕𝑥

+
𝜕2𝑢𝐸 (𝑥)
𝜕𝑥 �

But 𝜕2𝑢𝐸(𝑥)
𝜕𝑥 = 0, hence we need to solve

𝜕𝑣 (𝑥, 𝑡)
𝜕𝑡

= 𝑘
𝜕2𝑣 (𝑥, 𝑡)
𝜕𝑥

for 𝑣 (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) − 𝑢𝐸 (𝑥) with homogenous boundary conditions 𝑣 (0, 𝑡) = 0, 𝜕𝑣(𝐿,𝑡)𝜕𝑡 = 0 and
initial conditions

𝑣 (𝑥, 0) = 𝑢 (𝑥, 0) − 𝑢𝐸 (𝑥)
= 𝑓 (𝑥) − (𝐵𝑥 + 𝐴)
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This PDE we already solved before in earlier HW’s and we know that it has the following
solution

𝑣 (𝑥, 𝑡) =
∞
�

𝑛=1,3,5,⋯
𝑏𝑛 sin ��𝜆𝑛𝑥� 𝑒−𝑘𝜆𝑛𝑡

𝜆𝑛 = �
𝑛𝜋
2𝐿
�
2

𝑛 = 1, 3, 5,⋯ (2)

With 𝑏𝑛 found from orthogonality using initial conditions 𝑣 (𝑥, 0) = 𝑓 (𝑥) − (𝐵𝑥 + 𝐴)

𝑣 (𝑥, 0) =
∞
�

𝑛=1,3,5,⋯
𝑏𝑛 sin ��𝜆𝑛𝑥�

�
𝐿

0
�𝑓 (𝑥) − (𝐵𝑥 + 𝐴)� sin ��𝜆𝑚𝑥� 𝑑𝑥 = �

𝐿

0

∞
�

𝑛=1,3,5,⋯
𝑏𝑛 sin ��𝜆𝑛𝑥� sin ��𝜆𝑚𝑥� 𝑑𝑥

�
𝐿

0
�𝑓 (𝑥) − (𝐵𝑥 + 𝐴)� sin ��𝜆𝑚𝑥� 𝑑𝑥 = 𝑏𝑚

𝐿
2

Hence

𝑏𝑛 =
2
𝐿 �

𝐿

0
�𝑓 (𝑥) − (𝐵𝑥 + 𝐴)� sin ��𝜆𝑛𝑥� 𝑑𝑥 𝑛 = 1, 3, 5,⋯ (3)

Therefore, from (1) the solution is

𝑢 (𝑥, 𝑡) =
∞
�

𝑛=1,3,5,⋯
𝑏𝑛 sin ��𝜆𝑛𝑥� 𝑒−𝑘𝜆𝑛𝑡 +

𝑢𝐸(𝑥)

�������𝐵𝑥 + 𝐴

With 𝑏𝑛 given by (3) and eigenvalues 𝜆𝑛 given by (2).

2.10.1.2 Part (b)

Let

𝑢 (𝑥, 𝑡) = 𝑣 (𝑥, 𝑡) + 𝑟 (𝑥) (1)

Since 𝑄 (𝑥) in this problem is zero, we can look for 𝑟 (𝑥), since unique equilibrium solution
is not possible due to both boundary conditions being insulated. The idea is that, if we
can find 𝑢𝐸 then we use that, else we switch to reference function 𝑟 (𝑥) which only needs

to satisfy the non-homogenous boundary condition 𝜕𝑢𝐸(𝐿)
𝜕𝑥 = 0 but does not have to satisfy

equilibrium solution. Let

𝑟 (𝑥) = 𝑐1𝑥 + 𝑐2𝑥2

𝜕𝑟
𝜕𝑥

= 𝑐1 + 2𝑐2𝑥

At 𝑥 = 0, second equation above reduces to

0 = 𝑐1

Hence 𝑟 (𝑥) = 𝑐2𝑥2. Now
𝜕𝑟
𝜕𝑥 = 2𝑐2𝑥. At 𝑥 = 𝐿, this gives 2𝑐2𝐿 = 𝐵 or 𝑐2 =

𝐵
2𝐿 , therefore

𝑟 (𝑥) =
𝐵
2𝐿
𝑥2

The above satisfies the non-homogenous B.C. at the right, and also satisfies the homogenous
B.C. at the left. Now we plug-in (1) into the original PDE, this gives

𝜕𝑣 (𝑥, 𝑡)
𝜕𝑡

= 𝑘 �
𝜕2𝑣 (𝑥, 𝑡)
𝜕𝑥

+
𝜕2𝑢𝐸 (𝑥)
𝜕𝑥 �

𝜕𝑣 (𝑥, 𝑡)
𝜕𝑡

= 𝑘 �
𝜕2𝑣 (𝑥, 𝑡)
𝜕𝑥

+
𝐵
𝐿�

= 𝑘
𝜕2𝑣 (𝑥, 𝑡)
𝜕𝑥

+ 𝑘
𝐵
𝐿

Hence
𝜕𝑣 (𝑥, 𝑡)
𝜕𝑡

= 𝑘
𝜕2𝑣 (𝑥, 𝑡)
𝜕𝑥

+
𝑘𝐵
𝐿
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We now treat 𝑘𝐵𝐿 as forcing function. So the above can be written as

𝜕𝑣 (𝑥, 𝑡)
𝜕𝑡

= 𝑘
𝜕2𝑣 (𝑥, 𝑡)
𝜕𝑥

+ 𝑄 (2)

The above is now solved using eigenfunction expansion, since no steady state equilibrium
solution exist. Let

𝑣 (𝑥, 𝑡) =
∞
�
𝑛=0

𝑎𝑛 (𝑡) 𝜙𝑛 (𝑥) (3)

Where the index starts from zero, since there is a zero eigenvalue, due to B.C. being

Neumann. 𝜙𝑛 (𝑥) are the eigenfunctions of the corresponding homogenous PDE 𝜕𝑣(𝑥,𝑡)
𝜕𝑡 =

𝑘𝜕
2𝑣(𝑥,𝑡)
𝜕𝑥 with homogenous BC 𝜕𝑣(0,𝑡)

𝜕𝑡 = 0, 𝜕𝑣(𝐿,𝑡)𝜕𝑡 = 0. This we solved before. The eigenfunctions
are

𝜙𝑛 (𝑥) = cos �𝑛𝜋
𝐿
𝑥�

With eigenvalues

𝜆𝑛 =
𝑛2𝜋2

𝐿2
𝑛 = 0, 1, 2,⋯

Notice that 𝜆0 = 0. Substituting (3) into (2) gives
∞
�
𝑛=0

𝑎′𝑛 (𝑡) 𝜙𝑛 (𝑥) = �𝑘
∞
�
𝑛=0

𝑎𝑛 (𝑡)
𝑑2𝜙𝑛 (𝑥)
𝑑𝑥2 � + 𝑄

Term by term di�erentiation is justified, since 𝑣 (𝑥, 𝑡) and 𝜙𝑛 (𝑥) both solve the same ho-

mogenous B.C. problem. Since
𝑑2𝜙𝑛(𝑥)
𝑑𝑥2 = −𝜆𝑛𝜙𝑛 (𝑥) the above equation reduces to

∞
�
𝑛=0

𝑎′𝑛 (𝑡) 𝜙𝑛 (𝑥) = �−𝑘
∞
�
𝑛=0

𝑎𝑛 (𝑡) 𝜆𝑛𝜙𝑛 (𝑥)� + 𝑄

Now we expand 𝑄, which gives
∞
�
𝑛=0

𝑎′𝑛 (𝑡) 𝜙𝑛 (𝑥) = −𝑘
∞
�
𝑛=0

𝑎𝑛 (𝑡) 𝜆𝑛𝜙𝑛 (𝑥) +
∞
�
𝑛=0

𝑞𝑛𝜙𝑛 (𝑥)

By orthogonality

𝑎′𝑛 (𝑡) + 𝑘𝑎𝑛 (𝑡) 𝜆𝑛 = 𝑞𝑛
case 𝑛 = 0

𝑎′0 (𝑡) + 𝑘𝑎0 (𝑡) 𝜆0 = 𝑞0
But 𝜆0 = 0

𝑎′0 (𝑡) = 𝑞0

But since 𝑄 = 𝑘𝐵
𝐿 is constant, then 𝑘𝐵

𝐿 = ∑∞
𝑛=0 𝑞𝑛𝜙𝑛 (𝑥) implies that 𝑘𝐵𝐿 = 𝑞0𝜙0 (𝑥). But 𝜙0 (𝑥) = 1

for this problem. Hence 𝑞0 =
𝑘𝐵
𝐿 and the ODE becomes

𝑎′0 (𝑡) =
𝑘𝐵
𝐿

Hence

𝑎0 (𝑡) =
𝑘𝐵
𝐿
𝑡 + 𝑐1

case 𝑛 > 0

𝑎′𝑛 (𝑡) + 𝑘𝑎𝑛 (𝑡) 𝜆𝑛 = 𝑞𝑛
Since all 𝑞𝑛 = 0 for 𝑛 > 0 the above becomes

𝑎′𝑛 (𝑡) + 𝑘𝑎𝑛 (𝑡) 𝜆𝑛 = 0

Integrating factor is 𝜇 = 𝑒𝑘𝜆𝑛𝑡. Hence 𝑑
𝑑𝑡
�𝑎𝑛 (𝑡) 𝑒𝑘𝜆𝑛𝑡� = 0 or

𝑎𝑛 (𝑡) = 𝑐2𝑒−𝑘𝜆𝑛𝑡
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Therefore the solution from (3) becomes

𝑣 (𝑥, 𝑡) =
𝑘𝐵
𝐿
𝑡 + 𝑐1 + 𝑐2

∞
�
𝑛=1

𝑒−𝑘𝜆𝑛𝑡 cos ��𝜆𝑛𝑥� (4)

Now we find the initial conditions on 𝑣 (𝑥, 𝑡). Since 𝑢 (𝑥, 0) = 𝑣 (𝑥, 0) + 𝑟 (𝑥) then

𝑣 (𝑥, 0) = 𝑓 (𝑥) −
𝐵
2𝐿
𝑥2

Hence equation (4) at 𝑡 = 0 becomes

𝑓 (𝑥) −
𝐵
2𝐿
𝑥2 = 𝑐1 + 𝑐2

∞
�
𝑛=1

cos ��𝜆𝑛𝑥�

We now find 𝑐1, 𝑐2 by orthogonality.

case 𝑛 = 0

�
𝐿

0
�𝑓 (𝑥) −

𝐵
2𝐿
𝑥2� cos ��𝜆0𝑥� 𝑑𝑥 = �

𝐿

0
𝑐1 cos ��𝜆0𝑥� 𝑑𝑥

But 𝜆0 = 0

�
𝐿

0
�𝑓 (𝑥) −

𝐵
2𝐿
𝑥2� 𝑑𝑥 = �

𝐿

0
𝑐1𝑑𝑥

�
𝐿

0
�𝑓 (𝑥) −

𝐵
2𝐿
𝑥2� 𝑑𝑥 = 𝑐1𝐿

𝑐1 =
1
𝐿 �

𝐿

0
�𝑓 (𝑥) −

𝐵
2𝐿
𝑥2� 𝑑𝑥

case 𝑛 > 0

�
𝐿

0
�𝑓 (𝑥) −

𝐵
2𝐿
𝑥2� cos ��𝜆𝑚𝑥� 𝑑𝑥 = �

𝐿

0
𝑐2

∞
�
𝑛=1

cos ��𝜆𝑛𝑥� cos ��𝜆𝑚𝑥� 𝑑𝑥

= 𝑐2
𝐿
2

𝑐2 =
2
𝐿 �

𝐿

0
�𝑓 (𝑥) −

𝐵
2𝐿
𝑥2� cos ��𝜆𝑛𝑥� 𝑑𝑥

Therefore the solution for 𝑣 (𝑥, 𝑡) is now complete from (4). Hence

𝑢 (𝑥, 𝑡) = 𝑣 (𝑥, 𝑡) + 𝑟 (𝑥)

=
𝑘𝐵
𝐿
𝑡 + 𝑐1 + �𝑐2

∞
�
𝑛=1

𝑒−𝑘𝜆𝑛𝑡 cos ��𝜆𝑛𝑥�� +
𝐵
2𝐿
𝑥2

Where 𝑐1, 𝑐2 are given by above result. This completes the solution.

2.10.2 Problem 8.2.2 (a,d)

352 Chapter 8. Nonhomogeneous Problems

In general, the partial differential equation for v(x, t) is of the same type as for
u(x, t), but with a different nonhomogeneous term, since r(x, t) usually does not
satisfy the homogeneous heat equation. The initial condition is also usually altered:

v(x, 0) = f (x) - r(x, 0) = f (x) - A(0) - L (B(0) - A(0)] = 9(x). (8.2.29)

It can be seen that in general only the boundary conditions have been made homo-
geneous. In Sec. 8.3 we will develop a method to analyze nonhomogeneous problems
with homogeneous boundary conditions.

EXERCISES 8.2

8.2.1. Solve the heat equation with time-independent sources and boundary con-
ditions

= k
82U

2 + Q(x)

u(x,0) = f(x)

if an equilibrium solution exists. Analyze the limits as t - oo. If no equilib-
rium exists, explain why and reduce the problem to one with homogeneous
boundary conditions (but do not solve). Assume

(L,t) = B* (a) Q(x) = 0, u(0,t) = A,
Tax-

(b) Q(x) = 0, (0, t) = 0, ai (L, t) = B 96 0
(c) Q(x) = 0, (0,t) = A 96 0, r(L,t) = A

* (d) Q(x) = k, u(0, t) = A, u(L, t) = B
(e) Q(x) = k, U (0, t) = 0, au (L, t) = 0
(f) Q(x) = sin 2-i-, a!i (0, t) = 0, Ou(L, t) = 0

8.2.2. Consider the heat equation with time-dependent sources and boundary con-
ditions:

2
09U =
8t k8x2 + Q(x, t)

u(x,0) = f(x).

Reduce the problem to one with homogeneous boundary conditions if

* (a) 8u(0,t) = A(t) and &u(L,t) = B(t)
(b) u(0, t) = A(t) and (L, t) = B(t)

D_X

* (c) (0, t) = A(t) and u(L, t) = B(t)
TX_

(d) u(O, t) = 0 and Ou(L, t) + h(u(L, t) - B(t)) = 0
(e) (0,t) = 0 and (L, t) + h(u(L, t) - B(t)) = 0

'67X '67X
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2.10.2.1 Part (a)

Let

𝑢 (𝑥, 𝑡) = 𝑣 (𝑥, 𝑡) + 𝑟 (𝑥, 𝑡) (1)

Since the problem has time dependent source function 𝑄 (𝑥, 𝑡) then 𝑟 (𝑥, 𝑡) is now a reference
function that only needs to satisfy the non-homogenous boundary conditions which in this
problem are at both ends and 𝑣 (𝑥, 𝑡) has homogenous boundary conditions. The first step
is to find 𝑟 (𝑥, 𝑡). Let

𝑟 (𝑥, 𝑡) = 𝑐1 (𝑡) 𝑥 + 𝑐2 (𝑡) 𝑥2

Then
𝜕𝑟 (𝑥, 𝑡)
𝜕𝑥

= 𝑐1 (𝑡) + 2𝑐2 (𝑡) 𝑥

At 𝑥 = 0

𝐴 (𝑡) = 𝑐1 (𝑡)

And at 𝑥 = 𝐿

𝐵 (𝑡) = 𝑐1 (𝑡) + 2𝑐2 (𝑡) 𝐿

𝑐2 (𝑡) =
𝐵 (𝑡) − 𝑐1 (𝑡)

2𝐿
Solving for 𝑐1, 𝑐2 gives

𝑟 (𝑥, 𝑡) = 𝐴 (𝑡) 𝑥 + �
𝐵 (𝑡) − 𝐴 (𝑡)

2𝐿 � 𝑥2 (2)

Replacing (1) into the original PDE 𝑢𝑡 = 𝑘𝑢𝑥𝑥 + 𝑄 (𝑥, 𝑡) gives
𝜕
𝜕𝑡
(𝑣 (𝑥, 𝑡) − 𝑟 (𝑥, 𝑡)) = 𝑘

𝜕2

𝜕𝑥
(𝑣 (𝑥, 𝑡) − 𝑟 (𝑥, 𝑡)) + 𝑄 (𝑥, 𝑡)

𝜕𝑣
𝜕𝑡

−
𝜕𝑟
𝜕𝑡

= 𝑘
𝜕2𝑣
𝜕𝑥2

− 𝑘
𝜕2𝑟
𝜕𝑥2

+ 𝑄 (𝑥, 𝑡)

But 𝜕2𝑟
𝜕𝑥2 =

𝐵(𝑡)−𝐴(𝑡)
𝐿 , hence the above reduces to

𝜕𝑣
𝜕𝑡

= 𝑘
𝜕2𝑣
𝜕𝑥2

+ 𝑄 (𝑥, 𝑡) − 𝑘
𝐵 (𝑡) − 𝐴 (𝑡)

𝐿
+
𝜕𝑟
𝜕𝑡

(3)

Let

𝑄̃ (𝑥, 𝑡) = 𝑄 (𝑥, 𝑡) +
𝜕𝑟
𝜕𝑡
− 𝑘

𝐵 (𝑡) − 𝐴 (𝑡)
𝐿

then (3) becomes

𝜕𝑣
𝜕𝑡

= 𝑘
𝜕2𝑣
𝜕𝑥2

+ 𝑄̃ (𝑥, 𝑡)

The above PDE now has homogenous boundary conditions

𝑣𝑡 (0, 𝑡) = 0
𝑣𝑡 (𝐿, 𝑡) = 0

And initial condition is

𝑣 (𝑥, 0) = 𝑢 (𝑥, 0) − 𝑟 (𝑥, 0)

= 𝑓 (𝑥) − �𝐴 (0) 𝑥 + �
𝐵 (0) − 𝐴 (0)

2𝐿 � 𝑥2�

The problem does not ask us to solve it. So will stop here.

2.10.2.2 Part (d)

Let

𝑢 (𝑥, 𝑡) = 𝑣 (𝑥, 𝑡) + 𝑟 (𝑥, 𝑡) (1)

Since the problem has time dependent source function 𝑄 (𝑥, 𝑡) then 𝑟 (𝑥, 𝑡) is now a reference
function that only needs to satisfy the non-homogenous boundary conditions which in this
problem are at both ends and 𝑣 (𝑥, 𝑡) has homogenous boundary conditions. The boundary
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condition 𝑟 (𝑥, 𝑡) need to satisfy is

𝜕𝑟
𝜕𝑥

(𝐿, 𝑡) + ℎ𝑟 (𝐿, 𝑡) − ℎ𝐵 (𝑡) = 0

𝑟 (0, 𝑡) = 0 (2)

Let

𝑟 (𝑥, 𝑡) = 𝑐1 (𝑡) 𝑥 + 𝑐2 (𝑡)

Since 𝑟 (0, 𝑡) = 0 then 𝑐2 = 0. Now we use the right side non-homogenous B.C. to solve for
𝑐1. Plugging the above into the right side B.C. gives

𝑐1 + ℎ𝑐1𝐿 − ℎ𝐵 (𝑡) = 0

𝑐1 =
ℎ𝐵 (𝑡)
1 + ℎ𝐿

Hence

𝑟 (𝑥, 𝑡) = ℎ𝐵(𝑡)
1+ℎ𝐿𝑥 (3)

The rest is very similar to what we did in part (a). Replacing (1) into the original PDE
𝜕𝑢(𝑥,𝑡)
𝜕𝑡 = 𝑘𝜕

2𝑢(𝑥,𝑡)
𝜕𝑥 + 𝑄 (𝑥, 𝑡) gives

𝜕
𝜕𝑡
(𝑣 (𝑥, 𝑡) − 𝑟 (𝑥, 𝑡)) = 𝑘

𝜕2

𝜕𝑥
(𝑣 (𝑥, 𝑡) − 𝑟 (𝑥, 𝑡)) + 𝑄 (𝑥, 𝑡)

𝜕𝑣
𝜕𝑡

−
𝜕𝑟
𝜕𝑡

= 𝑘
𝜕2𝑣
𝜕𝑥2

− 𝑘
𝜕2𝑟
𝜕𝑥2

+ 𝑄 (𝑥, 𝑡)

But 𝜕2𝑟
𝜕𝑥2 = 0 hence the above reduces to

𝜕𝑣
𝜕𝑡

= 𝑘
𝜕2𝑣
𝜕𝑥2

+ 𝑄 (𝑥, 𝑡) +
𝜕𝑟
𝜕𝑡

(4)

Let

𝑄̃ (𝑥, 𝑡) = 𝑄 (𝑥, 𝑡) +
𝜕𝑟
𝜕𝑡

Then (4) becomes

𝜕𝑣
𝜕𝑡 = 𝑘

𝜕2𝑣
𝜕𝑥2 + 𝑄̃ (𝑥, 𝑡)

The above PDE now has homogeneous boundary conditions

𝑣 (0, 𝑡) = 0
𝜕𝑣 (𝐿, 𝑡)
𝜕𝑡

= 0

And initial condition is

𝑣 (𝑥, 0) = 𝑢 (𝑥, 0) − 𝑟 (𝑥, 0)

= 𝑓 (𝑥) −
ℎ𝐵 (0)
1 + ℎ𝐿

𝑥

The problem does not ask us to solve it. So will stop here.

2.10.3 Problem 8.2.5

8.3. Eigenfunction Expansion with Homogeneous BCs 353

8.2.3. Solve the two-dimensional heat equation with circularly symmetric time-
independent sources, boundary conditions, and initial conditions (inside a
circle):

= rC 8r (r 8 ) + Q(r)
with

u(r, 0) = f (r) and u(a, t) = T.

8.2.4. Solve the two-dimensional heat equation with time-independent boundary
conditions:

au _ k (82U + a2u
at ax2 W2

subject to the boundary conditions

u(0, y, t) = 0 u(x, 0, t) = 0
u(L, y, t) = 0 u(x, H, t) = g(x)

and the initial condition

u(x,y,0) = f(x,y)
Analyze the limit as t -' oo.

8.2.5. Solve the initial value problem for a two-dimensional heat equation inside a
circle (of radius a) with time-independent boundary conditions:

au = kV2u
at

u(a,0,t) =
u(r, 9, 0) =

g(9)
f(r,9)

8.2.6. Solve the wave equation with time-independent sources,

a2u 2 82u
at2 = C ax2 + Q(x)

u(x,0) = f(x)

a u(x,0) = g(x),

if an "equilibrium" solution exists. Analyze the behavior for large t. If
no equilibrium exists, explain why and reduce the problem to one with
homogeneous boundary conditions. Assume that

* (a) Q(x) = 0, u(0, t) = A,
(b) Q(x) = 1, U(0, t) = 0,

(c) Q(x) = 1, u(0, t) = A,

u(L, t) = B
u(L,t) = 0
u(L, t) = B

[Hint: Add problems (a) and (b).]
: (d) Q(x) = sin , u(0, t) = 0, u(L, t) = 0
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𝜕𝑢 (𝑟, 𝜃, 𝑡)
𝜕𝑡

= 𝑘 �
𝜕2𝑢
𝜕𝑟2

+
1
𝑟
𝜕𝑢
𝜕𝑟

+
1
𝑟2
𝜕2𝑢
𝜕𝜃2 �

|𝑢 (0, 𝜃, 𝑡)| < ∞
𝑢 (𝑎, 𝜃, 𝑡) = 𝑔 (𝜃)
𝑢 (𝑟, −𝜋, 𝑡) = 𝑢 (𝑟, 𝜋, 𝑡)

𝜕𝑢
𝜕𝜃

(𝑟, −𝜋, 𝑡) =
𝜕𝑢
𝜕𝜃

(𝑟, 𝜋, 𝑡)

With initial conditions 𝑢 (𝑟, 𝜃, 0) = 𝑓 (𝑟, 𝜃). Since the boundary conditions are not homoge-
nous, and since there are no time dependent sources, then in this case we look for 𝑢𝐸 (𝑟, 𝜃)
which is solution at steady state which needs to satisfy the nonhomogeneous B.C., where
𝑢 (𝑟, 𝜃, 𝑡) = 𝑣 (𝑟, 𝜃, 𝑡) +𝑢𝐸 (𝑟, 𝜃) and 𝑣 (𝑟, 𝜃, 𝑡) solves the PDE but with homogenous B.C. There-
fore, we need to find equilibrium solution for Laplace PDE on disk, that only needs to
satisfy the nonhomogeneous B.C.

∇ 2𝑢𝐸 = 0
𝜕2𝑢𝐸
𝜕𝑟2

+
1
𝑟
𝜕𝑢𝐸
𝜕𝑟

+
1
𝑟2
𝜕2𝑢𝐸
𝜕𝜃2

= 0

With boundary condition

|𝑢𝐸 (0, 𝜃)| < 𝜃
𝑢𝐸 (𝑎, 𝜃) = 𝑔 (𝜃)
𝑢𝐸 (𝑟, −𝜋) = 𝑢𝐸 (𝑟, 𝜋)

𝜕𝑢𝐸
𝜕𝜃

(𝑟, −𝜋) =
𝜕𝑢𝐸
𝜕𝜃

(𝑟, 𝜋)

But this PDE we have already solved before. But to practice, will solve it again. Let

𝑢𝐸 (𝑟, 𝜃) = 𝑅 (𝑟)Θ (𝜃)

Where 𝑅 (𝑟) is the solution in radial dimension and Θ(𝜃) is solution in angular dimension.
Substituting 𝑢𝐸 (𝑟, 𝜃) in the PDE gives

𝑅′′Θ +
1
𝑟
𝑅′Θ +

1
𝑟2
Θ ′′𝑅 = 0

Dividing by 𝑅 (𝑟)Φ (𝜃)
𝑅′′

𝑅
+
1
𝑟
𝑅′

𝑅
+
1
𝑟2
Θ ′′

Θ
= 0

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
= −

Θ ′′

Θ
Hence each side is equal to constant, say 𝜆 and we obtain

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
= 𝜆

−
Θ ′′

Θ
= 𝜆

Or

𝑟2𝑅′′ + 𝑟𝑅′ − 𝜆𝑅 = 0 (1)

Θ ′′ + 𝜆Θ = 0 (2)

We start with Φ ODE. The boundary conditions on (3) are

Θ(−𝜋) = Θ (𝜋)
𝜕Θ
𝜕𝜃

(−𝜋) =
𝜕Θ
𝜕𝜃

(𝜋)

case 𝜆 = 0 The solution is Φ = 𝑐1𝜃 + 𝑐2. Hence we obtain, from first initial conditions

−𝜋𝑐1 + 𝑐2 = 𝜋𝑐1 + 𝑐2
𝑐1 = 0

Second boundary conditions just says that 𝑐2 = 𝑐2, so any constant will do. Hence 𝜆 = 0 is
an eigenvalue with constant being eigenfunction.
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case 𝜆 > 0 The solution is

Θ(𝜃) = 𝑐1 cos√𝜆𝜃 + 𝑐2 sin√𝜆𝜃
The first boundary conditions gives

𝑐1 cos �−√𝜆𝜋� + 𝑐2 sin �−√𝜆𝜋� = 𝑐1 cos �√𝜆𝜋� + 𝑐2 sin �√𝜆𝜋�

𝑐1 cos �√𝜆𝜋� − 𝑐2 sin �√𝜆𝜋� = 𝑐1 cos �√𝜆𝜋� + 𝑐2 sin �√𝜆𝜋�

2𝑐2 sin �√𝜆𝜋� = 0 (3)

From second boundary conditions we obtain

Θ ′ (𝜃) = −√𝜆𝑐1 sin√𝜆𝜃 + 𝑐2√𝜆 cos√𝜆𝜃
Therefore

−√𝜆𝑐1 sin �−√𝜆𝜋� + 𝑐2√𝜆 cos �−√𝜆𝜋� = −√𝜆𝑐1 sin �√𝜆𝜋� + 𝑐2√𝜆 cos �√𝜆𝜋�

√𝜆𝑐1 sin �√𝜆𝜋� + 𝑐2√𝜆 cos �√𝜆𝜋� = −√𝜆𝑐1 sin �√𝜆𝜋� + 𝑐2√𝜆 cos �√𝜆𝜋�

√𝜆𝑐1 sin �√𝜆𝜋� = −√𝜆𝑐1 sin �√𝜆𝜋�

2𝑐1 sin �√𝜆𝜋� = 0 (4)

Both (3) and (4) are satisfied if

√𝜆𝜋 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯
𝜆 = 𝑛2 𝑛 = 1, 2, 3,⋯

Therefore

Θ𝑛 (𝜃) =
𝜆=0
⏞̃𝐴0 +

∞
�
𝑛=1

𝐴̃𝑛 cos (𝑛𝜃) + 𝐵̃𝑛 sin (𝑛𝜃) (5)

I put tilde on top of these constants, so not confuse them with constants used for 𝑣 (𝑟, 𝜃, 𝑡)
found later below. Now we go back to the 𝑅 ODE (2) given by 𝑟2𝑅′′ + 𝑟𝑅′ − 𝜆𝑛𝑅 = 0 and
solve it. This is Euler PDE whose solution is found by substituting 𝑅 (𝑟) = 𝑟𝛼. The solution
comes out to be (Lecture 9)

𝑅𝑛 (𝑟) = 𝑐0 +
∞
�
𝑛=1

𝑐𝑛𝑟𝑛 (6)

Combining (5,6) we now find 𝑢𝐸 as

𝑢𝐸𝑛 (𝑟, 𝜃) = 𝑅𝑛 (𝑟)Θ𝑛 (𝜃)

𝑢𝐸 (𝑟, 𝜃) = 𝐴̃0 +
∞
�
𝑛=1

𝐴̃𝑛 cos (𝑛𝜃) 𝑟𝑛 + 𝐵̃𝑛 sin (𝑛𝜃) 𝑟𝑛

=
∞
�
𝑛=0

𝐴̃𝑛 cos (𝑛𝜃) 𝑟𝑛 +
∞
�
𝑛=1

𝐵̃𝑛 sin (𝑛𝜃) 𝑟𝑛 (7)

Where 𝑐0 was combined with 𝐴0. Now the above equilibrium solution needs to satisfy the
non-homogenous B.C. 𝑢𝐸 (𝑎, 𝜃) = 𝑔 (𝜃). Using orthogonality on (7) to find 𝐴𝑛, 𝐵𝑛 gives

𝑔 (𝜃) =
∞
�
𝑛=0

𝐴̃𝑛 cos (𝑛𝜃) 𝑎𝑛 +
∞
�
𝑛=1

𝐵̃𝑛 sin (𝑛𝜃) 𝑎𝑛

�
2𝜋

0
𝑔 (𝜃) cos (𝑛′𝜃) 𝑑𝜃 = �

2𝜋

0

∞
�
𝑛=0

𝐴̃𝑛 cos (𝑛𝜃) cos (𝑛′𝜃) 𝑎𝑛𝑑𝜃 +�
2𝜋

0

∞
�
𝑛=1

𝐵̃𝑛 sin (𝑛𝜃) cos (𝑛′𝜃) 𝑎𝑛𝑑𝜃

=
∞
�
𝑛=0

�
2𝜋

0
𝐴̃𝑛 cos (𝑛𝜃) cos (𝑛′𝜃) 𝑎𝑛𝑑𝜃 +

∞
�
𝑛=0

0

�����������������������������������������
�

2𝜋

0
𝐵̃𝑛 sin (𝑛𝜃) cos (𝑛′𝜃) 𝑎𝑛𝑑𝜃

= 𝐴̃𝑛′�
2𝜋

0
cos2 (𝑛′𝜃) 𝑎𝑛𝑑𝜃
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For 𝑛 = 0

�
2𝜋

0
𝑔 (𝜃) 𝑑𝜃 = 𝐴̃0�

2𝜋

0
𝑑𝜃

𝐴̃0 =
1
2𝜋 �

2𝜋

0
𝑔 (𝜃) 𝑑𝜃

For 𝑛 > 0

�
2𝜋

0
𝑔 (𝜃) cos (𝑛𝜃) 𝑑𝜃 = 𝐴̃𝑛�

2𝜋

0
cos2 (𝑛𝜃) 𝑎𝑛𝑑𝜃

𝐴̃𝑛 =
1
𝜋 �

2𝜋

0
𝑔 (𝜃) cos (𝑛𝜃) 𝑑𝜃

Similarly, we apply orthogonality to find 𝐵̃𝑛 which gives (for 𝑛 > 0 only)

𝐵̃𝑛 =
1
𝜋 �

2𝜋

0
𝑔 (𝜃) sin (𝑛𝜃) 𝑑𝜃

Therefore, we have found 𝑢𝐸 (𝑟, 𝜃) completely now. It is given by

𝑢𝐸 (𝑟, 𝜃) = 𝐴̃0 +
∞
�
𝑛=1

𝐴̃𝑛 cos (𝑛𝜃) 𝑟𝑛 + 𝐵̃𝑛 sin (𝑛𝜃) 𝑟𝑛

𝐴̃0 =
1
2𝜋 �

2𝜋

0
𝑔 (𝜃) 𝑑𝜃

𝐴̃𝑛 =
1
𝜋 �

2𝜋

0
𝑔 (𝜃) cos (𝑛𝜃) 𝑑𝜃

𝐵̃𝑛 =
1
𝜋 �

2𝜋

0
𝑔 (𝜃) sin (𝑛𝜃) 𝑑𝜃

The above satisfies the non-homogenous B.C. 𝑢𝐸 (𝑎, 𝜃) = 𝑔 (𝜃). Now, since 𝑢 (𝑟, 𝜃, 𝑡) =
𝑣 (𝑟, 𝜃, 𝑡) + 𝑢𝐸 (𝑟, 𝜃), then we need to solve now for 𝑣 (𝑟, 𝜃, 𝑡) specified by

𝜕𝑣 (𝑟, 𝜃, 𝑡)
𝜕𝑡

= 𝑘 �
𝜕2𝑣
𝜕𝑟2

+
1
𝑟
𝜕𝑣
𝜕𝑟

+
1
𝑟2
𝜕2𝑣
𝜕𝜃2 �

(8)

|𝑣 (0, 𝜃, 𝑡)| < 𝜃
𝑣 (𝑎, 𝜃, 𝑡) = 0
𝑣 (𝑟, −𝜋, 𝑡) = 𝑣 (𝑟, 𝜋, 𝑡)

𝜕𝑣
𝜕𝜃

(𝑟, −𝜋, 𝑡) =
𝜕𝑣
𝜕𝜃

(𝑟, 𝜋, 𝑡)

Let 𝑣 (𝑟, 𝜃, 𝑡) = 𝑅 (𝑟)Θ (𝜃) 𝑇 (𝑡). Substituting into (8) gives

𝑇′𝑅Θ = 𝑘 �𝑅′′𝑇Θ +
1
𝑟
𝑅′𝑇Θ +

1
𝑟2
Θ ′′𝑅𝑇�

Dividing by 𝑅 (𝑟)Θ (𝜃) 𝑇 (𝑡) ≠ 0 gives
1
𝑘
𝑇′

𝑇
=
𝑅′′

𝑅
+
1
𝑟
𝑅′

𝑅
+
1
𝑟2
Θ ′′

Θ
Let first separation constant be −𝜆, hence the above becomes

1
𝑘
𝑇′

𝑇
= −𝜆

𝑅′′

𝑅
+
1
𝑟
𝑅′

𝑅
+
1
𝑟2
Θ ′′

Θ
= −𝜆

Or

𝑇′ + 𝜆𝑘𝑇 = 0

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
+ 𝑟2𝜆 = −

Θ ′′

Θ
We now separate the second equation above using 𝜇 giving

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
+ 𝑟2𝜆 = 𝜇

−
Θ ′′

Θ
= 𝜇
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Or

𝑅′′ +
1
𝑟
𝑅′ + 𝑅 �𝜆 −

𝜇
𝑟2
� = 0 (9)

Θ ′′ + 𝜇Θ = 0 (10)

Equation (9) is Sturm-Liouville ODE with boundary conditions 𝑅 (𝑎) = 0 and bounded at
𝑟 = 0 and (10) has periodic boundary conditions as was solved above. The solution to (10)
is given in (5) above, no change for this part.

Θ𝑛 (𝜃) =
𝜆=0
⏞𝐴0 +

∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝜃) + 𝐵𝑛 sin (𝑛𝜃)

=
∞
�
𝑛=0

𝐴𝑛 cos (𝑛𝜃) +
∞
�
𝑛=1

𝐵𝑛 sin (𝑛𝜃) (11)

Therefore (9) becomes 𝑅′′ + 1
𝑟𝑅

′ + 𝑅 �𝜆 − 𝑛2

𝑟2
� = 0 with 𝑛 = 0, 1, 2,⋯. We found the solution

to this Sturm-Liouville before, it is given by

𝑅𝑛𝑚 (𝑟) = 𝐽𝑛 ��𝜆𝑛𝑚𝑟� 𝑛 = 0, 1, 2,⋯ ,𝑚 = 1, 2, 3,⋯ (12)

Where √𝜆𝑛𝑚 =
𝑎
𝑧𝑛𝑚

where 𝑎 is the radius of the disk and 𝑧𝑛𝑚 is the 𝑚𝑡ℎ zero of the Bessel
function of order 𝑛. This is found numerically. We now just need to find the time solution
from 𝑇′ + 𝜆𝑛𝑚𝑘𝑇 = 0. This has solution

𝑇𝑛𝑚 (𝑡) = 𝑒−√𝑘𝜆𝑛𝑚𝑡 (13)

Now we combine (11,12,13) to find solution for 𝑣 (𝑟, 𝜃, 𝑡)

𝑣𝑛𝑚 (𝑟, 𝜃, 𝑡) = Θ𝑛 (𝜃) 𝑅𝑛𝑚 (𝑟) 𝑇𝑛𝑚 (𝑡)

𝑣 (𝑟, 𝜃, 𝑡) =
∞
�
𝑛=0

∞
�
𝑚=1

𝐴𝑛 cos (𝑛𝜃) 𝐽𝑛 ��𝜆𝑛𝑚𝑟� 𝑒−√𝑘𝜆𝑛𝑚𝑡 +
∞
�
𝑛=1

∞
�
𝑚=1

𝐵𝑛 sin (𝑛𝜃) 𝐽𝑛 ��𝜆𝑛𝑚𝑟� 𝑒−√𝑘𝜆𝑛𝑚𝑡

(14)

We now need to find 𝐴𝑛, 𝐵𝑛, which is found from initial conditions on 𝑣 (𝑟, 𝜃, 0) which is
given by

𝑣 (𝑟, 𝜃, 0) = 𝑢 (𝑟, 𝜃, 0) − 𝑢𝐸 (𝑟, 𝜃)
= 𝑓 (𝑟, 𝜃) − 𝑢𝐸 (𝑟, 𝜃)

Hence from (14), at 𝑡 = 0

𝑓 (𝑟, 𝜃) − 𝑢𝐸 (𝑟, 𝜃) =
∞
�
𝑛=0

∞
�
𝑚=1

𝐴𝑛 cos (𝑛𝜃) 𝐽𝑛 ��𝜆𝑛𝑚𝑟� +
∞
�
𝑛=1

∞
�
𝑚=1

𝐵𝑛 sin (𝑛𝜃) 𝐽𝑛 ��𝜆𝑛𝑚𝑟� (15)

For each 𝑛, inside the 𝑚 sum, cos (𝑛𝜃) and sin (𝑛𝜃) will be constant. So we need to ap-
ply orthogonality twice in order to remove both sums. Multiplying (15) by cos (𝑛′𝜃) and
integrating gives

�
𝜋

−𝜋
�𝑓 (𝑟, 𝜃) − 𝑢𝐸 (𝑟, 𝜃)� cos (𝑛′𝜃) 𝑑𝜃 = �

𝜋

−𝜋

∞
�
𝑛=0

�
∞
�
𝑚=1

𝐴𝑛𝐽𝑛 ��𝜆𝑛𝑚𝑟�� cos (𝑛𝜃) cos (𝑛′𝜃) 𝑑𝜃

+�
𝜋

−𝜋

∞
�
𝑛=1

�
∞
�
𝑚=1

𝐵𝑛𝐽𝑛 ��𝜆𝑛𝑚𝑟�� sin (𝑛𝜃) cos (𝑛′𝜃)

The second sum in the RHS above goes to zero due to ∫
𝜋

−𝜋
sin (𝑛𝜃) cos (𝑛′𝜃) 𝑑𝜃 and we end

up with

�
𝜋

−𝜋
�𝑓 (𝑟, 𝜃) − 𝑢𝐸 (𝑟, 𝜃)� cos (𝑛𝜃) 𝑑𝜃 = 𝐴𝑛�

𝜋

−𝜋
cos2 (𝑛𝜃)

∞
�
𝑚=1

𝐽𝑛 ��𝜆𝑛𝑚𝑟� 𝑑𝜃

We now apply orthogonality again, but on Bessel functions and remember to add the
weight 𝑟. The above becomes

�
𝑎

0
�

𝜋

−𝜋
�𝑓 (𝑟, 𝜃) − 𝑢𝐸 (𝑟, 𝜃)� cos (𝑛𝜃) 𝐽𝑛 ��𝜆𝑛𝑚′𝑟� 𝑟𝑑𝜃𝑑𝑟 = 𝐴𝑛�

𝑎

0
�

𝜋

−𝜋
cos2 (𝑛𝜃)

∞
�
𝑚=1

𝐽𝑛 ��𝜆𝑛𝑚𝑟� 𝐽𝑛 ��𝜆𝑛𝑚′𝑟� 𝑟𝑑𝜃𝑑𝑟

= 𝐴𝑛�
𝑎

0
�

𝜋

−𝜋
cos2 (𝑛𝜃) 𝐽2𝑛 ��𝜆𝑛𝑚′𝑟� 𝑟𝑑𝜃𝑑𝑟

Hence

𝐴𝑛 =
∫𝑎
0
∫𝜋
−𝜋
�𝑓 (𝑟, 𝜃) − 𝑢𝐸 (𝑟, 𝜃)� cos (𝑛𝜃) 𝐽𝑛 �√𝜆𝑛𝑚𝑟� 𝑟𝑑𝜃𝑑𝑟

∫𝑎
0
∫𝜋
−𝜋

cos2 (𝑛𝜃) 𝐽2𝑛 �√𝜆𝑛𝑚𝑟� 𝑟𝑑𝜃𝑑𝑟
𝑛 = 0, 1, 2,⋯ ,𝑚 = 1, 2, 3,⋯
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We will repeat the same thing to find 𝐵𝑛. The only di�erence now is to use sin 𝑛𝜃. repeating
these steps gives

𝐵𝑛 =
∫𝑎
0
∫𝜋
−𝜋
�𝑓 (𝑟, 𝜃) − 𝑢𝐸 (𝑟, 𝜃)� sin (𝑛𝜃) 𝐽𝑛 �√𝜆𝑛𝑚𝑟� 𝑟𝑑𝜃𝑑𝑟

∫𝑎
0
∫𝜋
−𝜋

sin2 (𝑛𝜃) 𝐽2𝑛 �√𝜆𝑛𝑚𝑟� 𝑟𝑑𝜃𝑑𝑟
𝑛 = 0, 1, 2,⋯ ,𝑚 = 1, 2, 3,⋯

This complete the solution.

Summary of solution

𝑢 (𝑟, 𝜃, 𝑡) = 𝑣 (𝑟, 𝜃, 𝑡) + 𝑢𝐸 (𝑟, 𝜃)

=
∞
�
𝑛=0

∞
�
𝑚=1

𝐴𝑛 cos (𝑛𝜃) 𝐽𝑛 ��𝜆𝑛𝑚𝑟� 𝑒−√𝑘𝜆𝑛𝑚𝑡+
∞
�
𝑛=1

∞
�
𝑚=1

𝐵𝑛 sin (𝑛𝜃) 𝐽𝑛 ��𝜆𝑛𝑚𝑟� 𝑒−√𝑘𝜆𝑛𝑚𝑡 + 𝑢𝐸 (𝑟, 𝜃)

Where

𝑢𝐸 (𝑟, 𝜃) = 𝐴̃0 +
∞
�
𝑛=1

𝐴̃𝑛 cos (𝑛𝜃) 𝑟𝑛 + 𝐵̃𝑛 sin (𝑛𝜃) 𝑟𝑛

𝐴̃0 =
1
2𝜋 �

2𝜋

0
𝑔 (𝜃) 𝑑𝜃

𝐴̃𝑛 =
1
𝜋 �

2𝜋

0
𝑔 (𝜃) cos (𝑛𝜃) 𝑑𝜃

𝐵̃𝑛 =
1
𝜋 �

2𝜋

0
𝑔 (𝜃) sin (𝑛𝜃) 𝑑𝜃

And

𝐴𝑛 =
∫𝑎
0
∫𝜋
−𝜋
�𝑓 (𝑟, 𝜃) − 𝑢𝐸 (𝑟, 𝜃)� cos (𝑛𝜃) 𝐽𝑛 �√𝜆𝑛𝑚𝑟� 𝑟𝑑𝜃𝑑𝑟

∫𝑎
0
∫𝜋
−𝜋

cos2 (𝑛𝜃) 𝐽2𝑛 �√𝜆𝑛𝑚𝑟� 𝑟𝑑𝜃𝑑𝑟
𝑛 = 0, 1, 2,⋯ ,𝑚 = 1, 2, 3,⋯

And

𝐵𝑛 =
∫𝑎
0
∫𝜋
−𝜋
�𝑓 (𝑟, 𝜃) − 𝑢𝐸 (𝑟, 𝜃)� sin (𝑛𝜃) 𝐽𝑛 �√𝜆𝑛𝑚𝑟� 𝑟𝑑𝜃𝑑𝑟

∫𝑎
0
∫𝜋
−𝜋

sin2 (𝑛𝜃) 𝐽2𝑛 �√𝜆𝑛𝑚𝑟� 𝑟𝑑𝜃𝑑𝑟
𝑛 = 0, 1, 2,⋯ ,𝑚 = 1, 2, 3,⋯

Where √𝜆𝑛𝑚 =
𝑎
𝑧𝑛𝑚

where 𝑎 is the radius of the disk and 𝑧𝑛𝑚 is the 𝑚𝑡ℎ zero of the Bessel
function of order 𝑛.

2.10.4 Problem 8.3.3

Problem Solve the initial value problem

𝑐𝜌
𝜕𝑢
𝜕𝑡

=
𝜕
𝜕𝑥 �

𝐾0
𝜕𝑢
𝜕𝑥�

+ 𝑞𝑢 + 𝑓 (𝑥, 𝑡) (1)

Where 𝑐, 𝜌, 𝐾0, 𝑞 are functions of 𝑥 only, subject to conditions 𝑢 (0, 𝑡) = 0, 𝑢 (𝐿, 𝑡) = 0, 𝑢 (𝑥, 0) =
𝑔 (𝑥). Assume that eigenfunctions are know. Hint: let 𝐿 = 𝑑

𝑑𝑥
�𝐾0

𝑑
𝑑𝑥
� + 𝑞

solution

Because this problem has homogeneous B.C. but has time dependent source (i.e. non-
homogenous in the PDE itself), then we will use the method of eigenfunction expansion.
In this method, we first need to find the eigenfunctions 𝜙𝑛 (𝑥) of the associated PDE without
the source being present. Then use these 𝜙𝑛 (𝑥) to expand the source 𝑓 (𝑥, 𝑡) as generalized
Fourier series. We now switch to the associated homogenous PDE in order to find the
eigenfunctions. This the same as above, but without the source term.
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𝜕𝑢
𝜕𝑡

=
1
𝑐𝜌

𝜕
𝜕𝑥 �

𝐾0
𝜕𝑢
𝜕𝑥�

+
𝑞
𝑐𝜌
𝑢 (2)

𝑢 (0, 𝑡) = 0
𝑢 (𝐿, 𝑡) = 0
𝑢 (𝑥, 0) = 𝑔 (𝑥)

We are told to assume the eigenfunctions 𝜙𝑛 (𝑥) are known. But it is better to do this
explicitly, also needed to find the weight. Let 𝑢 = 𝑋 (𝑥) 𝑇 (𝑡). Then (2) becomes

𝑇′𝑋 =
1
𝑐𝜌
𝐾′0𝑋′𝑇 +

1
𝑐𝜌
𝐾0𝑋′′𝑇 +

𝑞
𝑐𝜌
𝑋𝑇

Dividing by 𝑋𝑇 gives
𝑇′

𝑇
=
1
𝑐𝜌
𝐾′0
𝑋′

𝑋
+
1
𝑐𝜌
𝐾0
𝑋′′

𝑋
+
𝑞
𝑐𝜌

As the right side depends on 𝑥 only, and the left side depends on 𝑡 only, we can now
separate them. Using −𝜆 as separation constant gives

𝑇′ + 𝜆𝑇 = 0

And for the 𝑥 part
1
𝑐𝜌
𝐾′0
𝑋′

𝑋
+
1
𝑐𝜌
𝐾0
𝑋′′

𝑋
+
𝑞
𝑐𝜌

= −𝜆

𝐾′0𝑋′ + 𝐾0𝑋′′ + 𝑞𝑋 = −𝜆𝑐𝜌𝑋 (2A)
(𝐾0𝑋′)

′ + 𝑞𝑋 = −𝜆𝑐𝜌𝑋

We now see this is Sturm-Liouville ODE, with

𝑝 = 𝐾0
𝑞 ≡ 𝑞
𝜎 = 𝑐𝜌

And

𝐿 [𝑋] =
𝑑
𝑑𝑥 �

𝐾0
𝑑𝑋
𝑑𝑥 �

+ 𝑞𝑋

𝐿 ≡
𝑑
𝑑𝑥 �

𝐾0
𝑑𝑋
𝑑𝑥 �

+ 𝑞

Where

𝐿 [𝑋] = −𝜆𝑐𝜌𝑋

The solution to S-L, with homogeneous B.C. is given as

𝑋 (𝑥) =
∞
�
𝑛=1

𝑎𝑛𝜙𝑛 (𝑥)

When we plug-in this back into (2), and incorporate the time solution from 𝑇′ + 𝜆𝑛𝑇 = 0,
we end up with solution for (2) as

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑎𝑛 (𝑡) 𝜙𝑛 (𝑥) (3)

Where now the Fourier coe�cients became time dependent. We now substitute this back
into the original PDE (1) with the source present (the nonhomogeneous PDE) and obtain

𝑐𝜌
∞
�
𝑛=1

𝑎′𝑛 (𝑡) 𝜙𝑛 (𝑥) =
∞
�
𝑛=1

𝑎𝑛 (𝑡) 𝐿 �𝜙𝑛 (𝑥)� + 𝑓 (𝑥, 𝑡) (4)

We now expand 𝑓 (𝑥, 𝑡) using same eigenfunctions found from the homogeneous PDE
solution (we can do this, since eigenfunctions found from Sturm-Liouville can be used to
expand any piecewise continuous function). Let

𝑓 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑓𝑛 (𝑡) 𝜙𝑛 (𝑥) (5)
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Hence (4) becomes

𝑐𝜌
∞
�
𝑛=1

𝑎′𝑛 (𝑡) 𝜙𝑛 (𝑥) =
∞
�
𝑛=1

𝑎𝑛 (𝑡) 𝐿 �𝜙𝑛 (𝑥)� +
∞
�
𝑛=1

𝑓𝑛 (𝑡) 𝜙𝑛 (𝑥) (6)

But from above, we know that 𝐿 �𝜙𝑛 (𝑥)� = −𝜆𝑛𝑐𝜌𝜙𝑛 (𝑥), hence (6) becomes

𝑐𝜌
∞
�
𝑛=1

𝑎′𝑛 (𝑡) 𝜙𝑛 (𝑥) = −𝑐𝜌
∞
�
𝑛=1

𝜆𝑛𝑎𝑛 (𝑡) 𝜙𝑛 (𝑥) +
∞
�
𝑛=1

𝑓𝑛 (𝑡) 𝜙𝑛 (𝑥)

∞
�
𝑛=1

𝑐𝜌𝑎′𝑛 (𝑡) 𝜙𝑛 (𝑥) + 𝑐𝜌𝜆𝑛𝑎𝑛 (𝑡) 𝜙𝑛 (𝑥) =
∞
�
𝑛=1

𝑓𝑛 (𝑡) 𝜙𝑛 (𝑥)

∞
�
𝑛=1

(𝑎′𝑛 (𝑡) + 𝜆𝑛𝑎𝑛 (𝑡)) 𝑐𝜌𝜙𝑛 (𝑥) =
∞
�
𝑛=1

𝑓𝑛 (𝑡) 𝜙𝑛 (𝑥)

By orthogonality, (weight is 𝑐𝜌) then from the above we obtain

𝑎′𝑛 (𝑡) + 𝜆𝑛𝑎𝑛 (𝑡) = 𝑓𝑛 (𝑡)

The solution to the above is

𝑎𝑛 (𝑡) = 𝑒−𝜆𝑛𝑡�
𝑡

0
𝑓𝑛 (𝑠) 𝑒𝜆𝑛𝑠𝑑𝑠 + 𝑐𝑒−𝜆𝑛𝑡

To find constant of integration 𝑐 in the above, we use initial conditions. At 𝑡 = 0

𝑐 = 𝑎𝑛 (0)

Hence the solution becomes

𝑎𝑛 (𝑡) = 𝑒−𝜆𝑛𝑡�
𝑡

0
𝑓𝑛 (𝑠) 𝑒𝜆𝑛𝑠𝑑𝑠 + 𝑎𝑛 (0) 𝑒−𝜆𝑛𝑡

= 𝑒−𝜆𝑛𝑡 �𝑎𝑛 (0) +�
𝑡

0
𝑓𝑛 (𝑠) 𝑒𝜆𝑛𝑠𝑑𝑠�

To find 𝑎𝑛 (0), from (3), putting 𝑡 = 0 gives

𝑔 (𝑥) =
∞
�
𝑛=1

𝑎𝑛 (0) 𝜙𝑛 (𝑥)

Applying orthogonality

�
𝐿

0
𝑔 (𝑥) 𝜙𝑛 (𝑥) 𝑑𝑥 = 𝑎𝑛 (0)�

𝐿

0
𝜙2𝑛 (𝑥) 𝑐𝜌𝑑𝑥

𝑎𝑛 (0) =
∫𝐿
0
𝑔 (𝑥) 𝜙𝑛 (𝑥) 𝑑𝑥

∫𝐿
0
𝜙2𝑛 (𝑥) 𝑐𝜌𝑑𝑥

And finally, to find 𝑓𝑛 (𝑡), which is the generalized Fourier coe�cient of the expansion of
the source in (5) above, we also use orthogonality

�
𝐿

0
𝑓 (𝑥, 𝑡) 𝜙𝑛 (𝑥) 𝑑𝑥 = 𝑓𝑛 (𝑡)�

𝐿

0
𝜙2𝑛 (𝑥) 𝑐𝜌𝑑𝑥

𝑓𝑛 (𝑡) =
∫𝐿
0
𝑓 (𝑥, 𝑡) 𝜙𝑛 (𝑥) 𝑑𝑥

∫𝐿
0
𝜙2𝑛 (𝑥) 𝑐𝜌𝑑𝑥

Summary of solution

The solution to 𝑐𝜌𝜕𝑢𝜕𝑡 =
𝜕
𝜕𝑥
�𝐾0

𝜕𝑢
𝜕𝑥
� + 𝑞𝑢 + 𝑓 (𝑥, 𝑡) is given by

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑎𝑛 (𝑡) 𝜙𝑛 (𝑥)

Where 𝑎𝑛 (𝑡) is the solution to

𝑎′𝑛 (𝑡) + 𝜆𝑛𝑎𝑛 (𝑡) = 𝑓𝑛 (𝑡)

Given by

𝑎𝑛 (𝑡) = 𝑒−𝜆𝑛𝑐𝜌𝑡 �𝑎𝑛 (0) +�
𝑡

0
𝑓𝑛 (𝑠) 𝑒𝜆𝑛𝑐𝜌𝑠𝑑𝑠�
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Where

𝑓𝑛 (𝑡) =
∫𝐿
0
𝑓 (𝑥, 𝑡) 𝜙𝑛 (𝑥) 𝑑𝑥

∫𝐿
0
𝜙2𝑛 (𝑥) 𝑐𝜌𝑑𝑥

And

𝑎𝑛 (0) =
∫𝐿
0
𝑔 (𝑥) 𝜙𝑛 (𝑥) 𝑑𝑥

∫𝐿
0
𝜙2𝑛 (𝑥) 𝑐𝜌𝑑𝑥

2.10.5 Problem 8.3.5

8.4. Eigenfunction Expansion Using Green's Formula 359

where c, p, KO, and q are functions of x only, subject to the conditions

u(0, t) = 0, u(L, t) = 0, and u(x, 0) = g(x).

Assume that the eigenfunctions are known. [Hint: let L d: (KoA) +q]

8.3.4. Consider
11

8t a(x) a f Ko(x)YX-J (Ko > O,o > 0)

with the boundary conditions
Land

initial conditions:

u(x, 0) = g(x), u(0, t) = A, and u(L, t) = B.

*(a) Find a time-independent solution, uo(x).
(b) Show that limi_.,.. u(x, t) = f (x) independent of the initial conditions.

[Show that f (x) = uo(x).]

*8.3.5. Solve
8u =kV2u+f(r,t)
8t

inside the circle (r < a) with u = 0 at r = a and initially u = 0.

8.3.6. Solve
8u _ 8zu

c?t 8x2
+ sin 5x a-ze

subject to u(0, t) = 1, u(7r, t) = 0, and u(x, 0) = 0.

*8.3.7. Solve 8u02u
8t

_
8x2

subject to u(0, t) = 0, u(L, t) = t, and u(x, 0) = 0.

8.4 Method of Eigenfunction Expansion
Using Green's Formula
(With or Without Homogeneous Boundary
Conditions)

In this section we reinvestigate problems that may have nonhomogeneous boundary
conditions. We still use the method of eigenfunction expansion. For example,
consider

z
PDE:

at kaxz + Q(x, t) (8.4.1)

Since this problem has homogeneous B.C. but has time dependent source (i.e. non-
homogenous in the PDE itself), then we will use the method of eigenfunction expansion.
In this method, we first find the eigenfunctions 𝜙𝑛 (𝑥) of the associated homogenous PDE
without the source being present. Then use these 𝜙𝑛 (𝑥) to expand the source 𝑓 (𝑥, 𝑡) as
generalized Fourier series. We now switch to the associated homogenous PDE in order to
find the eigenfunctions. 𝑢 ≡ 𝑢 (𝑟, 𝑡). There is no 𝜃. Hence

𝜕𝑢 (𝑟, 𝑡)
𝜕𝑡

= 𝑘 �
𝜕2𝑢
𝜕𝑟2

+
1
𝑟
𝜕𝑢
𝜕𝑟 �

(1)

𝑢 (𝑎, 𝑡) = 0
|𝑢 (0, 𝑡)| < ∞
𝑢 (𝑟, 0) = 0

We need to solve the above in order to find the eigenfunctions 𝜙𝑛 (𝑟). Let 𝑢 = 𝑅 (𝑟) 𝑇 (𝑡).
Substituting this back into (1) gives

𝑇′𝑅 = 𝑘 �𝑅′′𝑇 +
1
𝑟
𝑅′𝑇�

Dividing by 𝑅𝑇
1
𝑘
𝑇′

𝑇
=
𝑅′′

𝑅
+
1
𝑟
𝑅′

𝑅
Let separation constant be −𝜆. We obtain

𝑇′ + 𝑘𝜆𝑇 = 0

And
𝑅′′

𝑅
+
1
𝑟
𝑅′

𝑅
= −𝜆

𝑅′′ +
1
𝑟
𝑅′ = −𝜆𝑅

𝑟𝑅′′ + 𝑅′ + 𝜆𝑟𝑅 = 0

This is a singular Sturm-Liouville ODE. Standard form is

(𝑟𝑅′)′ = −𝜆𝑟𝑅

Hence

𝑝 = 𝑟
𝑞 = 0
𝜎 = 𝑟

We solved 𝑅′′ + 1
𝑟𝑅

′ + 𝜆𝑅 = 0 before. The solution is

𝑅𝑛 (𝑟) = 𝐽0 ��𝜆𝑛𝑟�
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Where √𝜆𝑛 is found by solving 𝐽0 �√𝜆𝑛𝑎� = 0. Now that we know what the eigenfunctions
are, then we write

𝑢 (𝑟, 𝑡) =
∞
�
𝑛=1

𝑎𝑛 (𝑡) 𝐽0 ��𝜆𝑛𝑟� (2)

Where 𝑎𝑛 (𝑡) is function of time since it includes the time solution in it. Now we use the
above in the original PDE with the source in it

𝜕𝑢 (𝑟, 𝑡)
𝜕𝑡

= 𝑘∇ 2𝑢 + 𝑓 (𝑟, 𝑡) (3)

Where ∇ 2𝑢 = −𝜆𝑢. Substituting (2) into (3), and using 𝑓 (𝑟, 𝑡) = ∑∞
𝑛=1 𝑓𝑛 (𝑡) 𝐽0 �√𝜆𝑛𝑟� gives

∞
�
𝑛=1

𝑎′𝑛 (𝑡) 𝐽0 ��𝜆𝑛𝑟� = −𝑘
∞
�
𝑛=1

𝜆𝑛𝑎𝑛 (𝑡) 𝐽0 ��𝜆𝑛𝑟� +
∞
�
𝑛=1

𝑓𝑛 (𝑡) 𝐽0 ��𝜆𝑛𝑟�

∞
�
𝑛=1

(𝑎′𝑛 (𝑡) + 𝑘𝜆𝑛𝑎𝑛 (𝑡)) 𝐽0 ��𝜆𝑛𝑟� =
∞
�
𝑛=1

𝑓𝑛 (𝑡) 𝐽0 ��𝜆𝑛𝑟�

Applying orthogonality, the above simplifies to

𝑎′𝑛 (𝑡) + 𝑘𝜆𝑛𝑎𝑛 (𝑡) = 𝑓𝑛 (𝑡)

The solution is

𝑎𝑛 (𝑡) = 𝑒−𝑘𝜆𝑛𝑡�
𝑡

0
𝑓𝑛 (𝑠) 𝑒𝑘𝜆𝑛𝑠𝑑𝑠 + 𝑐𝑒−𝑘𝜆𝑛𝑡

To find constant of integration 𝑐 in the above, we use initial conditions. At 𝑡 = 0

𝑐 = 𝑎𝑛 (0)

Hence the solution becomes

𝑎𝑛 (𝑡) = 𝑒−𝑘𝜆𝑛𝑡�
𝑡

0
𝑓𝑛 (𝑠) 𝑒𝑘𝜆𝑛𝑠𝑑𝑠 + 𝑎𝑛 (0) 𝑒−𝑘𝜆𝑛𝑡

= 𝑒−𝑘𝜆𝑛𝑡 �𝑎𝑛 (0) +�
𝑡

0
𝑓𝑛 (𝑠) 𝑒𝑘𝜆𝑛𝑠𝑑𝑠�

To find 𝑎𝑛 (0), from (2), putting 𝑡 = 0 gives

0 =
∞
�
𝑛=1

𝑎𝑛 (0) 𝐽0 ��𝜆𝑛𝑟�

Hence 𝑎𝑛 (0) = 0. Therefore 𝑎𝑛 (𝑡) becomes.

𝑎𝑛 (𝑡) = 𝑒−𝑘𝜆𝑛𝑡�
𝑡

0
𝑓𝑛 (𝑠) 𝑒𝑘𝜆𝑛𝑠𝑑𝑠

And finally, to find 𝑓𝑛 (𝑡), which is the generalized Fourier coe�cient of the expansion of
the source in (3) above, we also use orthogonality

�
𝑎

0
𝑓 (𝑟, 𝑡) 𝐽0 ��𝜆𝑛𝑟� 𝑟𝑑𝑟 = 𝑓𝑛 (𝑡)�

𝑎

0
𝐽20 ��𝜆𝑛𝑟� 𝑟𝑑𝑟

𝑓𝑛 (𝑡) =
∫𝑎
0
𝑓 (𝑟, 𝑡) 𝐽0 �√𝜆𝑛𝑟� 𝑟𝑑𝑟

∫𝑎
0
𝐽20 �√𝜆𝑛𝑟� 𝑟𝑑𝑟

Summary of solution

The solution to 𝜕𝑢(𝑟,𝑡)
𝜕𝑡 = 𝑘 �𝜕

2𝑢
𝜕𝑟2 +

1
𝑟
𝜕𝑢
𝜕𝑟
� + 𝑓 (𝑟, 𝑡) is given by

𝑢 (𝑟, 𝑡) =
∞
�
𝑛=1

𝑎𝑛 (𝑡) 𝐽0 ��𝜆𝑛𝑟�

Where 𝑎𝑛 (𝑡) is the solution to

𝑎′𝑛 (𝑡) + 𝑘𝜆𝑛𝑎𝑛 (𝑡) = 𝑓𝑛 (𝑡)

Given by

𝑎𝑛 (𝑡) = 𝑒−𝑘𝜆𝑛𝑡�
𝑡

0
𝑓𝑛 (𝑠) 𝑒𝑘𝜆𝑛𝑠𝑑𝑠
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Where

𝑓𝑛 (𝑡) =
∫𝑎
0
𝑓 (𝑟, 𝑡) 𝐽0 �√𝜆𝑛𝑟� 𝑟𝑑𝑟

∫𝑎
0
𝐽20 �√𝜆𝑛𝑟� 𝑟𝑑𝑟

2.10.6 Problem 8.3.6

8.4. Eigenfunction Expansion Using Green's Formula 359

where c, p, KO, and q are functions of x only, subject to the conditions

u(0, t) = 0, u(L, t) = 0, and u(x, 0) = g(x).

Assume that the eigenfunctions are known. [Hint: let L d: (KoA) +q]

8.3.4. Consider
11

8t a(x) a f Ko(x)YX-J (Ko > O,o > 0)

with the boundary conditions
Land

initial conditions:

u(x, 0) = g(x), u(0, t) = A, and u(L, t) = B.

*(a) Find a time-independent solution, uo(x).
(b) Show that limi_.,.. u(x, t) = f (x) independent of the initial conditions.

[Show that f (x) = uo(x).]

*8.3.5. Solve
8u =kV2u+f(r,t)
8t

inside the circle (r < a) with u = 0 at r = a and initially u = 0.

8.3.6. Solve
8u _ 8zu

c?t 8x2
+ sin 5x a-ze

subject to u(0, t) = 1, u(7r, t) = 0, and u(x, 0) = 0.

*8.3.7. Solve 8u02u
8t

_
8x2

subject to u(0, t) = 0, u(L, t) = t, and u(x, 0) = 0.

8.4 Method of Eigenfunction Expansion
Using Green's Formula
(With or Without Homogeneous Boundary
Conditions)

In this section we reinvestigate problems that may have nonhomogeneous boundary
conditions. We still use the method of eigenfunction expansion. For example,
consider

z
PDE:

at kaxz + Q(x, t) (8.4.1)

This problem has nonhomogeneous B.C. and non-homogenous in the PDE itself (source
present). First step is to use reference function to remove the nonhomogeneous B.C. then
use the method of eigenfunction expansion on the resulting problem.

Let

𝑟 (𝑥) = 𝑐1𝑥 + 𝑐2
At 𝑥 = 0, 𝑟 (𝑥) = 1, hence 1 = 𝑐2 and at 𝑥 = 𝜋, 𝑟 (𝑥) = 0, hence 0 = 𝑐1𝜋 + 1 or 𝑐1 = −

1
𝜋 , hence

𝑟 (𝑥) = 1 −
𝑥
𝜋

Therefore

𝑢 (𝑥, 𝑡) = 𝑣 (𝑥, 𝑡) + 𝑟 (𝑥)

Where 𝑣 (𝑥, 𝑡) solution for the given PDE but with homogeneous B.C., therefore

𝜕𝑣 (𝑥, 𝑡)
𝜕𝑡

=
𝜕2𝑣 (𝑥, 𝑡)
𝜕𝑥2

+ 𝑒−2𝑡 sin 5𝑥 (1)

𝑣 (0, 𝑡) = 0
𝑣 (𝜋, 𝑡) = 0

𝑣 (𝑥, 0) = 𝑢 (𝑥, 0) − 𝑟 (𝑥) = 0 − �1 −
𝑥
𝜋
� =

𝑥
𝜋
− 1

We now solve (1). This is homogeneous in the PDE itself. To solve, we first solve the
nonhomogeneous PDE in order to find the eigenfunctions. Hence we need to solve

𝜕𝑣 (𝑥, 𝑡)
𝜕𝑡

=
𝜕2𝑣 (𝑥, 𝑡)
𝜕𝑥2

This has solution

𝑣 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑎𝑛 (𝑡) 𝜙𝑛 (𝑥) (2)

With

𝜙𝑛 (𝑥) = sin ��𝜆𝑛𝑥� 𝑛 = 1, 2, 3⋯
𝜆𝑛 = 𝑛2 𝑛 = 1, 2, 3⋯

Plug-in (2) back into (1) gives
∞
�
𝑛=1

𝑎′𝑛 (𝑡) 𝜙𝑛 (𝑥) =
∞
�
𝑛=1

𝑎𝑛 (𝑡) 𝜙𝑛 (𝑥) + 𝑒−2𝑡 sin 5𝑥

=
∞
�
𝑛=1

𝑎𝑛 (𝑡)
𝜕2

𝜕𝑥2
𝜙𝑛 (𝑥) + 𝑒−2𝑡 sin 5𝑥

But 𝜕2

𝜕𝑥2𝜙𝑛 (𝑥) = −𝜆𝑛𝜙𝑛 = −𝑛𝜙𝑛, hence the above becomes
∞
�
𝑛=1

𝑎′𝑛 (𝑡) 𝜙𝑛 (𝑥) + 𝑛2𝑎𝑛 (𝑡) 𝜙𝑛 (𝑥) = 𝑒−2𝑡 sin 5𝑥
∞
�
𝑛=1

�𝑎′𝑛 (𝑡) + 𝑛2𝑎𝑛 (𝑡)� sin (𝑛𝑥) = 𝑒−2𝑡 sin 5𝑥
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Therefore, since Fourier series expansion is unique, we can compare coe�cients and obtain

𝑎′𝑛 (𝑡) + 𝑛2𝑎𝑛 (𝑡) =

⎧⎪⎪⎨
⎪⎪⎩
𝑒−2𝑡 𝑛 = 5
0 𝑛 ≠ 5

For the case 𝑛 = 5

𝑎′5 (𝑡) + 25𝑎5 (𝑡) = 𝑒−2𝑡

𝑑
𝑑𝑡
�𝑎5 (𝑡) 𝑒25𝑡� = 𝑒23𝑡

𝑎5 (𝑡) 𝑒25𝑡 = �𝑒23𝑡𝑑𝑡 + 𝑐

=
𝑒23𝑡

23
+ 𝑐

Hence

𝑎5 (𝑡) =
𝑒−2𝑡

23
+ 𝑐𝑒−25𝑡

At 𝑡 = 0, 𝑎5 (0) =
1
23 + 𝑐, hence

𝑐 = 𝑎5 (0) −
1
23

And the solution becomes

𝑎5 (𝑡) =
1
23
𝑒−2𝑡 + �𝑎5 (0) −

1
23�

𝑒−25𝑡

For the case 𝑛 ≠ 5

𝑎′𝑛 (𝑡) + 𝑛2𝑎𝑛 (𝑡) = 0
𝑑
𝑑𝑡
�𝑎𝑛 (𝑡) 𝑒𝑛

2𝑡� = 0

𝑎𝑛 (𝑡) 𝑒𝑛
2𝑡 = 𝑐

𝑎𝑛 (𝑡) = 𝑐𝑒−𝑛
2𝑡

At 𝑡 = 0, 𝑎𝑛 (0) = 𝑐, hence

𝑎𝑛 (𝑡) = 𝑎𝑛 (0) 𝑒−𝑛𝑡

Therefore

𝑎𝑛 (𝑡) =

⎧⎪⎪⎨
⎪⎪⎩

1
23𝑒

−2𝑡 + �𝑎5 (0) −
1
23
� 𝑒−25𝑡 𝑛 = 5

𝑎𝑛 (0) 𝑒−𝑛
2𝑡 𝑛 ≠ 5

To find 𝑎𝑛 (0) we use orthogonality. Since 𝑢 (𝑥, 𝑡) = 𝑣 (𝑥, 𝑡) + 𝑟 (𝑥), then

𝑢 (𝑥, 𝑡) = �
∞
�
𝑛=1

𝑎𝑛 (𝑡) sin (𝑛𝑥)� + �1 −
𝑥
𝜋
�

And at 𝑡 = 0 the above becomes

0 = �
∞
�
𝑛=1

𝑎𝑛 (0) sin (𝑛𝑥)� + �1 −
𝑥
𝜋
�

Or
𝑥
𝜋
− 1 =

∞
�
𝑛=1

𝑎𝑛 (0) sin (𝑛𝑥)

Applying orthogonality

�
𝜋

0
�
𝑥
𝜋
− 1� sin (𝑛′𝑥) 𝑑𝑥 = 𝑎𝑛′ (0)�

𝜋

0
sin2 (𝑛′𝑥) 𝑑𝑥
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Therefore

𝑎𝑛 (0) =
∫𝜋
0
� 𝑥
𝜋 − 1� sin (𝑛𝑥) 𝑑𝑥

𝜋
2

=
2
𝜋 �

𝜋

0
�
𝑥
𝜋
− 1� sin (𝑛𝑥) 𝑑𝑥

=
2
𝜋 �
−�

𝜋

0
sin (𝑛𝑥) 𝑑𝑥 + 1

𝜋 �
𝜋

0
𝑥 sin (𝑛𝑥) 𝑑𝑥�

=
2
𝜋

⎡
⎢⎢⎢⎢⎣− �

− cos (𝑛𝑥)
𝑛 �

𝜋

0
+
1
𝜋 �

sin (𝑛𝑥)
𝑛2

−
𝑥 cos (𝑛𝑥)

𝑛 �
𝜋

0

⎤
⎥⎥⎥⎥⎦

=
2
𝜋 ��

cos (𝑛𝜋)
𝑛

−
1
𝑛�
+
1
𝜋 ��

sin (𝑛𝜋)
𝑛2

−
𝜋 cos (𝑛𝜋)

𝑛 � − �
sin (0)
𝑛2

−
0 cos (0)

𝑛 ���

=
2
𝜋 ��

−1𝑛

𝑛
−
1
𝑛�
+
1
𝜋 �

0 −
𝜋 (−1)𝑛

𝑛 ��

=
2
𝜋 �

(−1)𝑛

𝑛
−
1
𝑛
−
(−1)𝑛

𝑛 �

=
−2
𝑛𝜋

Therefore 𝑎5 (0) =
−2
5𝜋 . Hence

𝑎𝑛 (𝑡) =

⎧⎪⎪⎨
⎪⎪⎩

1
23𝑒

−2𝑡 + �−25𝜋 −
1
23
� 𝑒−25𝑡 𝑛 = 5

−2
𝑛𝜋𝑒

−𝑛2𝑡 𝑛 ≠ 5

Where

𝑢 (𝑥, 𝑡) = 𝑣 (𝑥, 𝑡) + 𝑟 (𝑥)

= �
∞
�
𝑛=1

𝑎𝑛 (𝑡) sin (𝑛𝑥)� + �1 −
𝑥
𝜋
�

2.10.7 Problem 8.4.1 (b)

8.4. Eigenfunction Expansion Using Green's Formula 363

even if the boundary conditions are homogeneous. In fact, it is this derivation that
justifies the differentiation of infinite series of eigenfunctions used in Sec. 8.3.

We now have two procedures to solve nonhomogeneous partial differential equa-
tions with nonhomogeneous boundary conditions. By subtracting any function that
just solves the nonhomogeneous boundary conditions, we can solve a related problem
with homogeneous boundary conditions by the eigenfunction expansion method. Al-
ternatively, we can solve directly the original problem with nonhomogeneous bound-
ary conditions by the method of eigenfunction expansions. In both cases we need
the eigenfunction expansion of some function w(x, t):

00

w(x, t) = E a,, (t)0n(x)
n=1

If w(x, t) satisfies the same homogeneous boundary conditions as 0n(x), then we
claim that this series will converge reasonably fast. However, if w(x, t) satisfies
nonhomogeneous boundary conditions, then not only will the series not satisfy the
boundary conditions (at x = 0 and x = L), but the series will converge more slowly
everywhere. Thus, the advantage of reducing a problem to homogeneous boundary
conditions is that the corresponding series converges fasts r.

EXERCISES 8.4

8.4.1. In these exercises, do not make a reduction to homogeneous boundary con-
ditions. Solve the initial value problem for the heat equation with time-
dependent sources

au
= ka 22 +Q(x,t)

u(x,0) = f(x)
subject to the following boundary conditions:

(a) u(0,t) = A(t),

* (b) (0, t) = A(t),
TX_ YX_

(L, t) = B(t)

8.4.2. Use the method of cigenfunction expansions to solve, without reducing to
homogeneous boundary conditions:

8u 82u_
k 8x2at

u(x,0) = f(x)
u (O, t) _

B
A }constants.

( )

8.4.3. Consider

[Ko(x)
l

c(x)P(x) at = ax
1

+ 9(x)u + f (x, t)

Let

𝑢 (𝑥, 𝑡) ∼
∞
�
𝑛=0

𝑏𝑛 (𝑡) 𝜙𝑛 (𝑥) (1)

Where in this problem 𝜙𝑛 (𝑥) are the eigenfunctions of the corresponding homogenous PDE,
which due to having both sides insulated, we know they are given by 𝜙𝑛 (𝑥) = cos �𝑛𝜋𝐿 𝑥�

where now 𝑛 = 0, 1, 2,⋯ and 𝜆𝑛 = �
𝑛𝜋
𝐿
�
2
. That is why the sum above starts from zero and not

one. We now substitute (1) back into the given PDE, but remember not to do term-by-term
di�erentiation on the spatial terms.

∞
�
𝑛=0

𝑏′𝑛 (𝑡) 𝜙𝑛 (𝑥) = 𝑘
𝜕2𝑥
𝜕𝑢2

+ 𝑄 (𝑥, 𝑡)
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But 𝑄 (𝑥, 𝑡) ∼ ∑∞
𝑖=0 𝑞𝑛 (𝑡) 𝜙𝑛 (𝑥) so the above becomes

∞
�
𝑛=0

𝑏′𝑛 (𝑡) 𝜙𝑛 (𝑥) = 𝑘
𝜕2𝑢
𝜕𝑥2

+
∞
�
𝑛=0

𝑞𝑛 (𝑡) 𝜙𝑛 (𝑥)

Multiplying both sides by 𝜙𝑚 (𝑥) and integrating

�
𝐿

0

∞
�
𝑛=0

𝑏′𝑛 (𝑡) 𝜙𝑛 (𝑥) 𝜙𝑚 (𝑥) 𝑑𝑥 = �
𝐿

0
𝑘
𝜕2𝑢
𝜕𝑥2

𝜙𝑚 (𝑥) 𝑑𝑥 +�
𝐿

0

∞
�
𝑛=0

𝑞𝑛 (𝑡) 𝜙𝑛 (𝑥) 𝜙𝑚 (𝑥) 𝑑𝑥

Applying orthogonality

𝑏′𝑛 (𝑡)�
𝐿

0
𝜙2𝑛 (𝑥) 𝑑𝑥 = �

𝐿

0
𝑘
𝜕2𝑢
𝜕𝑥2

𝜙𝑛 (𝑥) 𝑑𝑥 + 𝑞𝑛 (𝑡)�
𝐿

0
𝜙2𝑛 (𝑥) 𝑑𝑥

Dividing both sides by ∫
𝐿

0
𝜙2𝑛 (𝑥) 𝑑𝑥 gives

𝑏′𝑛 (𝑡) =
𝑘∫

𝐿

0
𝜕2𝑢
𝜕𝑥2𝜙𝑛 (𝑥) 𝑑𝑥

∫𝐿
0
𝜙2𝑛 (𝑥) 𝑑𝑥

+ 𝑞𝑛 (𝑡) (1A)

We now use Green’s formula to simplify ∫
𝐿

0
𝜕2𝑢
𝜕𝑥2𝜙𝑛 (𝑥) 𝑑𝑥. We rewrite 𝜕2𝑢

𝜕𝑥2 ≡ 𝐿 [𝑢] and let
𝜙𝑛 (𝑥) ≡ 𝑣, then

�
𝐿

0

𝜕2𝑢
𝜕𝑥2

𝜙𝑛 (𝑥) 𝑑𝑥 = �
𝐿

0
𝑣𝐿 [𝑢] 𝑑𝑥

But we know from Green’s formula that

�
𝐿

0
(𝑣𝐿 [𝑢] − 𝑢𝐿 [𝑣]) 𝑑𝑥 = 𝑝 �𝑣

𝑑𝑢
𝑑𝑥

− 𝑢
𝑑𝑣
𝑑𝑥�

𝐿

0

In this problem 𝑝 = 1, so we solve for ∫
𝐿

0
𝑣𝐿 [𝑢] 𝑑𝑥 (which is really all what we want) from

the above and obtain

�
𝐿

0
𝑣𝐿 [𝑢] 𝑑𝑥 −�

𝐿

0
𝑢𝐿 [𝑣] 𝑑𝑥 = �𝑣

𝑑𝑢
𝑑𝑥

− 𝑢
𝑑𝑣
𝑑𝑥�

𝐿

0

�
𝐿

0
𝑣𝐿 [𝑢] 𝑑𝑥 = �𝑣

𝑑𝑢
𝑑𝑥

− 𝑢
𝑑𝑣
𝑑𝑥�

𝐿

0
+�

𝐿

0
𝑢𝐿 [𝑣] 𝑑𝑥

Since we said 𝜙𝑛 (𝑥) ≡ 𝑣 , then we replace these back into the above to make it more explicit

�
𝐿

0

𝜕2𝑢
𝜕𝑥2

𝜙𝑛 (𝑥) 𝑑𝑥 = �𝜙𝑛 (𝑥)
𝑑𝑢
𝑑𝑥

− 𝑢
𝑑𝜙𝑛 (𝑥)
𝑑𝑥 �

𝐿

0
+�

𝐿

0
𝑢𝐿 �𝜙𝑛 (𝑥)� 𝑑𝑥

But 𝐿 �𝜙𝑛 (𝑥)� = −𝜆𝑛𝜙𝑛 (𝑥) and above becomes

�
𝐿

0

𝜕2𝑢
𝜕𝑥2

𝜙𝑛 (𝑥) 𝑑𝑥 = �𝜙𝑛 (𝑥)
𝑑𝑢
𝑑𝑥

− 𝑢
𝑑𝜙𝑛 (𝑥)
𝑑𝑥 �

𝐿

0
− 𝜆𝑛�

𝐿

0
𝑢𝜙𝑛 (𝑥) 𝑑𝑥 (2)

We are now ready to substitute boundary conditions. In this problem we know that
𝑑𝑢
𝑑𝑥
(𝐿, 𝑡) = 𝐵 (𝑡)

𝑑𝜙𝑛 (𝐿, 𝑡)
𝑑𝑥

=
𝑑
𝑑𝑥

cos �𝑛𝜋
𝐿
𝑥�
𝑥=𝐿

= −
𝑛𝜋
𝐿

sin �𝑛𝜋
𝐿
𝑥�
𝑥=𝐿

= 0

𝜙𝑛 (𝐿, 𝑡) = cos �𝑛𝜋
𝐿
𝑥�
𝑥=𝐿

= cos (𝑛𝜋) = (−1)𝑛

𝑑𝜙𝑛 (0, 𝑡)
𝑑𝑥

=
𝑑
𝑑𝑥

cos �𝑛𝜋
𝐿
𝑥�
𝑥=0

= 0

𝜙𝑛 (0, 𝑡) = cos �𝑛𝜋
𝐿
𝑥�
𝑥=0

= 1

𝑑𝑢
𝑑𝑥
(0, 𝑡) = 𝐴 (𝑡)
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Now we have all the information to evaluate (2)

�
𝐿

0

𝜕2𝑢
𝜕𝑥2

𝜙𝑛 (𝑥) 𝑑𝑥 = �𝜙𝑛 (𝐿)
𝑑𝑢
𝑑𝑥
(𝐿) − 𝑢 (𝐿)

𝑑𝜙𝑛 (𝐿)
𝑑𝑥 � − �𝜙𝑛 (0)

𝑑𝑢
𝑑𝑥
(0) − 𝑢 (0)

𝑑𝜙𝑛 (0)
𝑑𝑥 �

− 𝜆𝑛�
𝐿

0
𝑢𝜙𝑛 (𝑥) 𝑑𝑥

Which becomes

�
𝐿

0

𝜕2𝑢
𝜕𝑥2

𝜙𝑛 (𝑥) 𝑑𝑥 = �(−1)
𝑛 𝐵 (𝑡) − 0� − (𝐴 (𝑡) − 0) − 𝜆𝑛�

𝐿

0
𝑢𝜙𝑛 (𝑥) 𝑑𝑥

= (−1)𝑛 𝐵 (𝑡) − 𝐴 (𝑡) − 𝜆𝑛�
𝐿

0
𝑢𝜙𝑛 (𝑥) 𝑑𝑥 (3)

Now we need to sort out the ∫
𝐿

0
𝑢𝜙𝑛 (𝑥) 𝑑𝑥 term above, since 𝑢 (𝑥, 𝑡) is unknown, so we can’t

leave the above as is. But we know from 𝑢 (𝑥, 𝑡) ∼ ∑∞
𝑛=0 𝑏𝑛 (𝑡) 𝜙𝑛 (𝑥) that 𝑏𝑛 (𝑡) =

∫𝐿
0
𝑢𝜙𝑛(𝑥)𝑑𝑥

∫𝐿
0
𝜙2𝑛(𝑥)𝑑𝑥

by

orthogonality. Hence ∫
𝐿

0
𝑢𝜙𝑛 (𝑥) 𝑑𝑥 = 𝑏𝑛 (𝑡) ∫

𝐿

0
𝜙2𝑛 (𝑥) 𝑑𝑥. Using this in (3), we finally found

the result for ∫
𝐿

0
𝜕2𝑢
𝜕𝑥2𝜙𝑛 (𝑥) 𝑑𝑥

�
𝐿

0

𝜕2𝑢
𝜕𝑥2

𝜙𝑛 (𝑥) 𝑑𝑥 = (−1)
𝑛 𝐵 (𝑡) − 𝐴 (𝑡) − 𝜆𝑛𝑏𝑛 (𝑡)�

𝐿

0
𝜙2𝑛 (𝑥) 𝑑𝑥

But ∫
𝐿

0
𝜙2𝑛 (𝑥) 𝑑𝑥 = ∫

𝐿

0
cos2 �𝑛𝜋𝐿 𝑥� 𝑑𝑥 =

𝐿
2 hence

�
𝐿

0

𝜕2𝑢
𝜕𝑥2

𝜙𝑛 (𝑥) 𝑑𝑥 = (−1)
𝑛 𝐵 (𝑡) − 𝐴 (𝑡) − 𝜆𝑛𝑏𝑛 (𝑡)

𝐿
2

(4)

Substituting the above in (1A) gives

𝑏′𝑛 (𝑡) =
𝑘 �(−1)𝑛 𝐵 (𝑡) − 𝐴 (𝑡) − 𝜆𝑛𝑏𝑛 (𝑡)

𝐿
2
�

𝐿
2

+ 𝑞𝑛 (𝑡)

𝑏′𝑛 (𝑡) =
2
𝐿
𝑘 �(−1)𝑛 𝐵 (𝑡) − 𝐴 (𝑡) − 𝜆𝑛𝑏𝑛 (𝑡)

𝐿
2�
+ 𝑞𝑛 (𝑡)

=
2
𝐿
𝑘 �(−1)𝑛 𝐵 (𝑡) − 𝐴 (𝑡)� − 𝑘𝜆𝑛𝑏𝑛 (𝑡) + 𝑞𝑛 (𝑡)

Or

𝑏′𝑛 (𝑡) + 𝑘𝜆𝑛𝑏𝑛 (𝑡) = 𝑞𝑛 (𝑡) +
2
𝐿
𝑘 �(−1)𝑛 𝐵 (𝑡) − 𝐴 (𝑡)�

Now that we found the di�erential equation for 𝑏𝑛 (𝑡) we solve it. The integrating factor is
𝜇 = 𝑒𝑘𝜆𝑛𝑡, hence the solution is

𝑑
𝑑𝑡
�𝜇𝑏𝑛 (𝑡)� = 𝜇𝑞𝑛 (𝑡) + 𝜇

2
𝐿
𝑘 �(−1)𝑛 𝐵 (𝑡) − 𝐴 (𝑡)�

Integrating

𝜇𝑏𝑛 (𝑡) = �𝜇𝑞𝑛 (𝑡) 𝑑𝑡 +�𝜇
2
𝐿
𝑘 �(−1)𝑛 𝐵 (𝑡) − 𝐴 (𝑡)� 𝑑𝑡 + 𝑐

Or

𝑏𝑛 (𝑡) = 𝑒−𝑘𝜆𝑛𝑡�𝑒𝑘𝜆𝑛𝑡𝑞𝑛 (𝑡) 𝑑𝑡 +�𝑒𝑘𝜆𝑛𝑡
2
𝐿
𝑘 �(−1)𝑛 𝐵 (𝑡) − 𝐴 (𝑡)� 𝑑𝑡 + 𝑐𝑒−𝑘𝜆𝑛𝑡

The constant of integration 𝑐 is 𝑏𝑛 (0), therefore

𝑏𝑛 (𝑡) = 𝑒−𝑘𝜆𝑛𝑡�𝑒𝑘𝜆𝑛𝑡𝑞𝑛 (𝑡) 𝑑𝑡 +�𝑒𝑘𝜆𝑛𝑡
2
𝐿
𝑘 �(−1)𝑛 𝐵 (𝑡) − 𝐴 (𝑡)� 𝑑𝑡 + 𝑏𝑛 (0) 𝑒−𝑘𝜆𝑛𝑡

The above could also be written as

𝑏𝑛 (𝑡) = 𝑒−𝑘𝜆𝑛𝑡�
𝑡

0
𝑒𝑘𝜆𝑛𝑠𝑞𝑛 (𝑠) 𝑑𝑠 +�

𝑡

0
𝑒𝑘𝜆𝑛𝑠

2
𝐿
𝑘 �(−1)𝑛 𝐵 (𝑠) − 𝐴 (𝑠)� 𝑑𝑠 + 𝑏𝑛 (0) 𝑒−𝑘𝜆𝑛𝑡

Now that we found 𝑏𝑛 (𝑡), the last step is to determine 𝑏𝑛 (0) . This is done from initial
conditions

𝑢 (𝑥, 0) ∼
∞
�
𝑛=0

𝑏𝑛 (0) 𝜙𝑛 (𝑥)
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By orthogonality

𝑏𝑛 (0) =
∫𝐿
0
𝑓 (𝑥) 𝜙𝑛 (𝑥) 𝑑𝑥

∫𝐿
0
𝜙2𝑛 (𝑥) 𝑑𝑥

=
2
𝐿 �

𝐿

0
𝑓 (𝑥) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

This complete the solution. Summary of result

The solution is

𝑢 (𝑥, 𝑡) ∼
∞
�
𝑛=0

𝑏𝑛 (𝑡) 𝜙𝑛 (𝑥)

Where

𝑏𝑛 (𝑡) = 𝑒−𝑘𝜆𝑛𝑡�
𝑡

0
𝑒𝑘𝜆𝑛𝑠𝑞𝑛 (𝑠) 𝑑𝑠 +�

𝑡

0
𝑒𝑘𝜆𝑛𝑠

2
𝐿
𝑘 �(−1)𝑛 𝐵 (𝑠) − 𝐴 (𝑠)� 𝑑𝑠 + 𝑏𝑛 (0) 𝑒−𝑘𝜆𝑛𝑡

Where

𝑏𝑛 (0) =
2
𝐿 �

𝐿

0
𝑓 (𝑥) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

And

𝑞𝑛 (𝑡) =
2
𝐿 �

𝐿

0
𝑄 (𝑥, 𝑡) cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

And

𝜆𝑛 = �
𝑛𝜋
𝐿
�
2

𝑛 = 0, 1, 2, 3,⋯

2.10.8 Problem 8.4.3

8.4. Eigenfunction Expansion Using Green's Formula 363

even if the boundary conditions are homogeneous. In fact, it is this derivation that
justifies the differentiation of infinite series of eigenfunctions used in Sec. 8.3.

We now have two procedures to solve nonhomogeneous partial differential equa-
tions with nonhomogeneous boundary conditions. By subtracting any function that
just solves the nonhomogeneous boundary conditions, we can solve a related problem
with homogeneous boundary conditions by the eigenfunction expansion method. Al-
ternatively, we can solve directly the original problem with nonhomogeneous bound-
ary conditions by the method of eigenfunction expansions. In both cases we need
the eigenfunction expansion of some function w(x, t):

00

w(x, t) = E a,, (t)0n(x)
n=1

If w(x, t) satisfies the same homogeneous boundary conditions as 0n(x), then we
claim that this series will converge reasonably fast. However, if w(x, t) satisfies
nonhomogeneous boundary conditions, then not only will the series not satisfy the
boundary conditions (at x = 0 and x = L), but the series will converge more slowly
everywhere. Thus, the advantage of reducing a problem to homogeneous boundary
conditions is that the corresponding series converges fasts r.

EXERCISES 8.4

8.4.1. In these exercises, do not make a reduction to homogeneous boundary con-
ditions. Solve the initial value problem for the heat equation with time-
dependent sources

au
= ka 22 +Q(x,t)

u(x,0) = f(x)
subject to the following boundary conditions:

(a) u(0,t) = A(t),

* (b) (0, t) = A(t),
TX_ YX_

(L, t) = B(t)

8.4.2. Use the method of cigenfunction expansions to solve, without reducing to
homogeneous boundary conditions:

8u 82u_
k 8x2at

u(x,0) = f(x)
u (O, t) _

B
A }constants.

( )

8.4.3. Consider

[Ko(x)
l

c(x)P(x) at = ax
1

+ 9(x)u + f (x, t)
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u(x,0) = g(x) u(0, t) = a(t)

u(L, t) = ,Q(t).

Assume that the eigenfunctions 0,a(x) of the related homogeneous problem
are known.

(a) Solve without reducing to a problem with homogeneous boundary con-
ditions.

(b) Solve by first reducing to a problem with homogeneous boundary con-
ditions.

8.4.4. Reconsider
z

= kz + Q(x, t)
u(x,0) = f(x) u(O,t) = 0

u(L, t) = 0.

Assume that the solution u(x, t) has the appropriate smoothness, so that it
may be represented by a Fourier cosine series

u(x, t) _ cn(t) cos
nLx

.

n-0

Solve for dcn/dt. Show that c satisfies a first-order nonhomogeneous or-
dinary differential equation, but part of the nonhomogeneous term is not
known. Make a brief philosophical conclusion.

8.5 Forced Vibrating Membranes and Resonance
The method of eigenfunction expansion may also be applied to nonhomogeneous
partial differential equations with more than two independent variables. An in-
teresting example is a vibrating membrane of arbitrary shape. In our previous
analysis of membranes, vibrations were caused by the initial conditions. Another
mechanism that will put a membrane into motion is an external force. The linear
nonhomogeneous partial differential equation that describes a vibrating membrane
is

02u
c3tz

= c2Vzu + Q(x, y, t), (8.5.1)

where Q(x, y, t) represents a time- and spatially dependent external force. To be
completely general, there should be some boundary condition along the boundary
of the membrane. However, it is more usual for a vibrating membrane to be fixed
with zero vertical displacement. Thus, we will specify this homogeneous boundary
condition,

u = 0, (8.5.2)

2.10.8.1 Part (a)

From problem 8.3.3, we found the eigenfunctions 𝜙𝑛 (𝑥) from the Sturm-Liouville to have
weight

𝜎 = 𝑐𝜌

Let

𝑢 (𝑥, 𝑡) ∼
∞
�
𝑛=1

𝑏𝑛 (𝑡) 𝜙𝑛 (𝑥)

Substituting the above in the PDE gives

𝜎
∞
�
𝑖=1
𝑏′𝑛 (𝑡) 𝜙𝑛 (𝑥) = 𝐿 [𝑢] + 𝑓 (𝑥, 𝑡)
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Where 𝐿 = 𝜕
𝜕𝑥
�𝐾0

𝜕
𝜕𝑥
� + 𝑞. Following same procedure using Green’s formula on page 35, we

obtain

𝜎
𝑑𝑏𝑛 (𝑡)
𝑑𝑡

+ 𝑘𝜆𝑛𝑏𝑛 (𝑡) = 𝑓𝑛 (𝑡) +
𝑘√𝜆𝑛 �𝛼 (𝑡) − (−1)

𝑛 𝛽 (𝑡)�

∫𝐿
0
𝜙2𝑛 (𝑥) 𝜎𝑑𝑥

(1)

Where

𝑓 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑓𝑛 (𝑡) 𝜙𝑛 (𝑥)

𝑓𝑛 (𝑡) =
∫𝐿
0
𝑓 (𝑥, 𝑡) 𝜙𝑛 (𝑥) 𝜎𝑑𝑥

∫𝐿
0
𝜙2𝑛 (𝑥) 𝜎𝑑𝑥

The solution to (1) is found using integrating factor.

𝑑𝑏𝑛 (𝑡)
𝑑𝑡

+ �
𝜆𝑛
𝜎 �

𝑏𝑛 (𝑡) =
1
𝜎
𝑓𝑛 (𝑡) +

𝑘
𝜎√𝜆𝑛 �𝛼 (𝑡) − (−1)

𝑛 𝛽 (𝑡)�

∫𝐿
0
𝜙2𝑛 (𝑥) 𝜎𝑑𝑥

Hence 𝜇 = 𝑒
𝜆𝑛
𝑐𝜌 𝑡 and the solution becomes

𝑏𝑛 (𝑡) = 𝑒
−𝜆𝑛

𝜎 𝑡

⎛
⎜⎜⎜⎜⎜⎜⎝
1
𝜎 �

𝑒
𝜆𝑛
𝜎 𝑡𝑓𝑛 (𝑡) 𝑑𝑡 +

𝑘
𝜎√𝜆𝑛

∫𝐿
0
𝜙2𝑛 (𝑥) 𝜎𝑑𝑥

�𝑒
𝜆𝑛
𝜎 𝑡 �𝛼 (𝑡) − (−1)𝑛 𝛽 (𝑡)� 𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎟⎠ + 𝑐𝑒

−𝜆𝑛
𝜎 𝑡

Where 𝑐 is found from

𝑏𝑛 (0) = 𝑐

And 𝑏𝑛 (0) is found from initial conditions

𝑔 (𝑥) =
∞
�
𝑛=1

𝑏𝑛 (0) 𝜙𝑛 (𝑥)

𝑏𝑛 (0) =
∫𝐿
0
𝑔 (𝑥) 𝜙𝑛 (𝑥) 𝜎𝑑𝑥

∫𝐿
0
𝜙2𝑛 (𝑥) 𝜎𝑑𝑥

This complete the solution. Summary

Solution is

𝑢 (𝑥, 𝑡) ∼
∞
�
𝑛=1

𝑏𝑛 (𝑡) 𝜙𝑛 (𝑥)

Where

𝑏𝑛 (𝑡) = 𝑒
−𝜆𝑛

𝜎 𝑡

⎛
⎜⎜⎜⎜⎜⎜⎝
1
𝜎 �

𝑒
𝜆𝑛
𝑐𝜌 𝑡𝑓𝑛 (𝑡) 𝑑𝑡 +

𝑘
𝜎√𝜆𝑛

∫𝐿
0
𝜙2𝑛 (𝑥) 𝜎𝑑𝑥

�𝑒
𝜆𝑛
𝜎 𝑡 �𝛼 (𝑡) − (−1)𝑛 𝛽 (𝑡)� 𝑑𝑡

⎞
⎟⎟⎟⎟⎟⎟⎠ + 𝑏𝑛 (0) 𝑒

−𝜆𝑛
𝜎 𝑡

𝑏𝑛 (0) =
∫𝐿
0
𝑔 (𝑥) 𝜙𝑛 (𝑥) 𝜎𝑑𝑥

∫𝐿
0
𝜙2𝑛 (𝑥) 𝜎𝑑𝑥

𝜎 = 𝑐𝜌

2.10.8.2 Part (b)

The first step is to obtain a reference function 𝑟 (𝑥, 𝑡) where 𝑢 (𝑥, 𝑡) = 𝑣 (𝑥, 𝑡) + 𝑟 (𝑥, 𝑡). The
reference function only needs to satisfy the nonhomogeneous B.C.

We see that

𝑟 (𝑥, 𝑡) = 𝛼 (𝑡) +
𝛽 (𝑡) − 𝛼 (𝑡)

𝐿
𝑥
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does the job. Now we solve the following PDE

𝑐𝜌
𝜕𝑣
𝜕𝑡

=
𝜕
𝜕𝑥 �

𝐾0
𝜕𝑣
𝜕𝑥�

+ 𝑞 (𝑥) 𝑣 + 𝑓 (𝑥, 𝑡)

𝑣 (0, 𝑡) = 0
𝑣 (𝜋, 𝑡) = 0

𝑣 (𝑥, 0) = 𝑔 (𝑥) − �𝛼 (0) +
𝛽 (0) − 𝛼 (0)

𝐿
𝑥�

Using Green’s formula, starting with

𝑣 (𝑥, 𝑡) =
∞
�
𝑖=1
𝑏𝑛 (𝑡) 𝜙𝑛 (𝑥)

Where we used = instead of ∼ above now, since both 𝑣 (𝑥, 𝑡) and 𝜙𝑛 (𝑥) satisfy the homoge-
nous B.C., and where 𝑏𝑛 (𝑡) satisfies the ODE

𝜎
𝑑𝑏𝑛 (𝑡)
𝑑𝑡

+ 𝜆𝑛𝑏𝑛 (𝑡) = 𝑓𝑛 (𝑡) (1)

Where 𝜎 = 𝑐𝜌 and

𝑓 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑓𝑛 (𝑡) 𝜙𝑛 (𝑥)

𝑓𝑛 (𝑡) =
∫𝐿
0
𝑓 (𝑥, 𝑡) 𝜙𝑛 (𝑥) 𝜎𝑑𝑥

∫𝐿
0
𝜙2𝑛 (𝑥) 𝜎𝑑𝑥

The solution to (1) is found using integrating factor 𝜇 = 𝑒
𝜆𝑛
𝜎 𝑡, hence

𝑏𝑛 (𝑡) = 𝑒
−𝜆𝑛

𝜎 𝑡
1
𝜎 �

𝑒
𝜆𝑛
𝜎 𝑡𝑓𝑛 (𝑡) 𝑑𝑡 + 𝑏𝑛 (0) 𝑒

−𝜆𝑛
𝜎 𝑡

And 𝑏𝑛 (0) is found from initial conditions 𝑣 (𝑥, 0)

𝑔 (𝑥) − �𝛼 (0) +
𝛽 (0) − 𝛼 (0)

𝐿
𝑥� =

∞
�
𝑖=1
𝑏𝑛 (0) 𝜙𝑛 (𝑥)

𝑏𝑛 (0) =
∫𝐿
0
𝑔 (𝑥) − �𝛼 (0) + 𝛽(0)−𝛼(0)

𝐿 𝑥�𝜙𝑛 (𝑥) 𝜎𝑑𝑥

∫𝐿
0
𝜙2𝑛 (𝑥) 𝜎𝑑𝑥

This complete the solution. Summary

Solution is given by

𝑢 (𝑥, 𝑡) = �
∞
�
𝑖=1
𝑏𝑛 (𝑡) 𝜙𝑛 (𝑥)� + 𝑟 (𝑥, 𝑡)

= �
∞
�
𝑖=1
𝑏𝑛 (𝑡) 𝜙𝑛 (𝑥)� + 𝛼 (𝑡) +

𝛽 (𝑡) − 𝛼 (𝑡)
𝐿

𝑥

Where

𝑏𝑛 (𝑡) = 𝑒
−𝜆𝑛

𝜎 𝑡
1
𝜎 �

𝑒
𝜆𝑛
𝜎 𝑡𝑓𝑛 (𝑡) 𝑑𝑡 + 𝑏𝑛 (0) 𝑒

−𝜆𝑛
𝜎 𝑡

And

𝑏𝑛 (0) =
∫𝐿
0
𝑔 (𝑥) − �𝛼 (0) + 𝛽(0)−𝛼(0)

𝐿 𝑥�𝜙𝑛 (𝑥) 𝜎𝑑𝑥

∫𝐿
0
𝜙2𝑛 (𝑥) 𝜎𝑑𝑥

And

𝑓𝑛 (𝑡) =
∫𝐿
0
𝑓 (𝑥, 𝑡) 𝜙𝑛 (𝑥) 𝜎𝑑𝑥

∫𝐿
0
𝜙2𝑛 (𝑥) 𝜎𝑑𝑥

Where 𝜎 = 𝑐𝜌
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2.10.9 Problem 8.5.2

8.5. Forced Vibrating Membranes and Resonance 371

is a particular solution of

ti 2dty
+ wov = f (t)

What is the general solution? What solution satisfies the initial conditions
y(O) = yo and g(0) = vo?

8.5.2. Consider a vibrating string with time-dependent forcing:

z z

atz = cz 8x2 + Q(x, t)
u(0, t) = 0 u(x, 0) = f(x)

u(L,t) = 0 5(x,0) = 0.

(a) Solve the initial value problem.
*(b) Solve the initial value problem if Q(x, t) = g(x) cos wt. For what values

of w does resonance occur?

8.5.3. Consider a vibrating string with friction with time-periodic forcing

02 2 2

0-t2 = c axz -pet + g(x) coswt

u(0, t) = 0 u(x, 0) = f(x)
u(L,t) = 0 gf(x,0) = 0.

(a) Solve this initial value problem if 3 is moderately small (0 < Q <
2cir/L).

(b) Compare this solution to Exercise 8.5.2(b).

8.5.4. Solve the initial value problem for a vibrating string with time-dependent
forcing.

z

at2 = cz 8xz + Q(x, t), u(x, 0) = f (x), St (x, 0) = 0,

subject to the following boundary conditions. Do not reduce to homoge-
neous boundary conditions:

(a) u(0, t) = A(t), u(L, t) = B(t)
(b) u(0, t) = 0, (L,t) = 0

(c) P; (0, t) = A(t), u(L, t) = 0

8.5.5. Solve the initial value problem for a membrane with time-dependent forcing
and fixed boundaries (u = 0),

2 = c2 V2u + Q(x, y, t),

2.10.9.1 Part (a)

Let

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐴𝑛 (𝑡) 𝜙𝑛 (𝑥)

Where we used = instead of ∼ above, since the PDE given has homogeneous B.C. We know

that 𝜙𝑛 (𝑥) = sin �√𝜆𝑛𝑥� for 𝑛 = 1, 2, 3,⋯ where 𝜆𝑛 = �𝑛𝜋
𝐿
�
2
. Substituting the above in the

given PDE gives
∞
�
𝑛=1

𝐴′′𝑛 (𝑡) 𝜙𝑛 (𝑥) = 𝑐2
∞
�
𝑛=1

𝐴𝑛 (𝑡)
𝑑2𝜙𝑛 (𝑥)
𝑑𝑥2

+ 𝑄 (𝑥, 𝑡)

But 𝑄 (𝑥, 𝑡) = ∑∞
𝑛=1 𝑞𝑛 (𝑡) 𝜙𝑛 (𝑥), hence the above becomes

∞
�
𝑛=1

𝐴′′𝑛 (𝑡) 𝜙𝑛 (𝑥) = 𝑐2
∞
�
𝑛=1

𝐴𝑛 (𝑡)
𝑑2𝜙𝑛 (𝑥)
𝑑𝑥2

+
∞
�
𝑛=1

𝑔𝑛 (𝑡) 𝜙𝑛 (𝑥)

But
𝑑2𝜙𝑛(𝑥)
𝑑𝑥2 = −𝜆𝑛𝜙𝑛 (𝑥), hence

∞
�
𝑛=1

𝐴′′𝑛 (𝑡) 𝜙𝑛 (𝑥) = −𝑐2
∞
�
𝑛=1

𝜆𝑛𝐴𝑛 (𝑡) 𝜙𝑛 (𝑥) +
∞
�
𝑛=1

𝑔𝑛 (𝑡) 𝜙𝑛 (𝑥)

Multiplying both sides by 𝜙𝑚 (𝑥) and integrating gives

�
𝐿

0

∞
�
𝑛=1

𝐴′′𝑛 (𝑡) 𝜙𝑚 (𝑥) 𝜙𝑛 (𝑥) 𝑑𝑥 = −𝑐2�
𝐿

0

∞
�
𝑛=1

𝜆𝑛𝐴𝑛 (𝑡) 𝜙𝑚 (𝑥) 𝜙𝑛 (𝑥) 𝑑𝑥 +�
𝐿

0

∞
�
𝑛=1

𝑔𝑛 (𝑡) 𝜙𝑚 (𝑥) 𝜙𝑛 (𝑥) 𝑑𝑥

𝐴′′𝑛 (𝑡)�
𝐿

0
𝜙2𝑛 (𝑥) 𝑑𝑥 = −𝑐2𝜆𝑛𝐴𝑛 (𝑡)�

𝐿

0
𝜙2𝑛 (𝑥) 𝑑𝑥 + 𝑔𝑛 (𝑡)�

𝐿

0
𝜙2𝑛 (𝑥) 𝑑𝑥

Hence

𝐴′′𝑛 (𝑡) + 𝑐2𝜆𝑛𝐴𝑛 (𝑡) = 𝑔𝑛 (𝑡)

Now we solve the above ODE. Let solution be

𝐴𝑛 (𝑡) = 𝐴ℎ𝑛 (𝑡) + 𝐴
𝑝
𝑛 (𝑡)

Which is the sum of the homogenous and particular solutions. The homogenous solution
is

𝐴ℎ𝑛 (𝑡) = 𝑐1𝑛 cos �𝑐�𝜆𝑛𝑡� + 𝑐2𝑛 sin �𝑐�𝜆𝑛𝑡�
And the particular solution depends on 𝑞𝑛 (𝑡). Once we find 𝑞𝑛 (𝑡), we plug-in everything
back into 𝑢 (𝑥, 𝑡) = ∑∞

𝑛=1𝐴𝑛 (𝑡) 𝜙𝑛 (𝑥) and then use initial conditions to find 𝑐1𝑛, 𝑐2𝑛, the two
constant of integrations. We will do this in the second part.

2.10.9.2 Part (b)

Now we are given that 𝑄 (𝑥, 𝑡) = 𝑔 (𝑥) cos (𝜔𝑡). Hence

𝑔𝑛 (𝑡) =
∫𝐿
0
𝑄 (𝑥, 𝑡) 𝜙𝑛 (𝑥) 𝑑𝑥

∫𝐿
0
𝜙2𝑛 (𝑥) 𝑑𝑥

=
cos (𝜔𝑡) ∫𝐿

0
𝑔 (𝑥) 𝜙𝑛 (𝑥) 𝑑𝑥

∫𝐿
0
𝜙2𝑛 (𝑥) 𝑑𝑥

= cos (𝜔𝑡) 𝛾𝑛
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Where

𝛾𝑛 =
∫𝐿
0
𝑔 (𝑥) 𝜙𝑛 (𝑥) 𝑑𝑥

∫𝐿
0
𝜙2𝑛 (𝑥) 𝑑𝑥

is constant that depends on 𝑛. Now we use the above in result found in part (a)

𝐴′′𝑛 (𝑡) + 𝑐2𝜆𝑛𝐴𝑛 (𝑡) = 𝛾𝑛 cos (𝜔𝑡) (1)

We know the homogenous solution from part (a).

𝐴ℎ𝑛 (𝑡) = 𝑐1𝑛 cos �𝑐�𝜆𝑛𝑡� + 𝑐2𝑛 sin �𝑐�𝜆𝑛𝑡�
We now need to find the particular solution. Will solve using method of undetermined
coe�cients.

Case 1 𝜔 ≠ 𝑐√𝜆𝑛 (no resonance)

We can now guess

𝐴𝑝𝑛 (𝑡) = 𝑧1 cos (𝜔𝑡) + 𝑧2 sin (𝜔𝑡)
Plugging this back into (1) gives

(𝑧1 cos (𝜔𝑡) + 𝑧2 sin (𝜔𝑡))′′ + 𝑐2𝜆𝑛 (𝑧1 cos (𝜔𝑡) + 𝑧2 sin (𝜔𝑡)) = 𝛾𝑛 cos (𝜔𝑡)
(−𝜔𝑧1 sin (𝜔𝑡) + 𝜔𝑧2 cos (𝜔𝑡))′ + 𝑐2𝜆𝑛 (𝑧1 cos (𝜔𝑡) + 𝑧2 sin (𝜔𝑡)) = 𝛾𝑛 cos (𝜔𝑡)
−𝜔2𝑧1 cos (𝜔𝑡) − 𝜔2𝑧2 sin (𝜔𝑡) + 𝑐2𝜆𝑛 (𝑧1 cos (𝜔𝑡) + 𝑧2 sin (𝜔𝑡)) = 𝛾𝑛 cos (𝜔𝑡)

Collecting terms

cos (𝜔𝑡) �−𝜔2𝑧1 + 𝑐2𝜆𝑛𝑧1� + sin (𝜔𝑡) �−𝜔2𝑧2 + 𝑐2𝜆𝑛𝑧2� = 𝛾𝑛 cos (𝜔𝑡)
Therefore we obtain two equations in two unknowns

−𝜔2𝑧1 + 𝑐2𝜆𝑛𝑧1 = 𝛾𝑛
−𝜔2𝑧2 + 𝑐2𝜆𝑛𝑧2 = 0

From the second equation, 𝑧2 = 0 and from the first equation

𝑧1 �𝑐2𝜆𝑛 − 𝜔2� = 𝛾𝑛

𝑧1 =
𝛾𝑛

𝑐2𝜆𝑛 − 𝜔2

Hence

𝐴𝑝𝑛 (𝑡) = 𝑧1 cos (𝜔𝑡) + 𝑧2 sin (𝜔𝑡)

=
𝛾𝑛

𝑐2𝜆𝑛 − 𝜔2
cos (𝜔𝑡)

Therefore

𝐴𝑛 (𝑡) = 𝐴ℎ𝑛 (𝑡) + 𝐴
𝑝
𝑛 (𝑡)

= 𝑐1𝑛 cos �𝑐�𝜆𝑛𝑡� + 𝑐2𝑛 sin �𝑐�𝜆𝑛𝑡� +
𝛾𝑛

𝑐2𝜆𝑛 − 𝜔2
cos (𝜔𝑡)

Now we need to find 𝑐1𝑛, 𝑐2𝑛. Since

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐴𝑛 (𝑡) 𝜙𝑛 (𝑥)

=
∞
�
𝑛=1

�𝑐1𝑛 cos �𝑐�𝜆𝑛𝑡� + 𝑐2𝑛 sin �𝑐�𝜆𝑛𝑡� +
𝛾𝑛

𝑐2𝜆𝑛 − 𝜔2
cos (𝜔𝑡)� sin �𝑛𝜋

𝐿
𝑥�

At 𝑡 = 0 the above becomes

𝑓 (𝑥) =
∞
�
𝑛=1

�𝑐1𝑛 +
𝛾𝑛

𝑐2𝜆𝑛 − 𝜔2
� sin �𝑛𝜋

𝐿
𝑥�

=
∞
�
𝑛=1

𝑐1𝑛 sin �𝑛𝜋
𝐿
𝑥� +

∞
�
𝑛=1

𝛾𝑛
𝑐2𝜆𝑛 − 𝜔2

sin �𝑛𝜋
𝐿
𝑥�

Applying orthogonality

�
𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0

∞
�
𝑛=1

𝑐1𝑛 sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +�

𝐿

0

∞
�
𝑛=1

𝛾𝑛
𝑐2𝜆𝑛 − 𝜔2

sin �𝑛𝜋
𝐿
𝑥� sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥

�
𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = 𝑐1𝑛�

𝐿

0
sin2 �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 +

𝛾𝑛
𝑐2𝜆𝑛 − 𝜔2

�
𝐿

0
sin2 �𝑛𝜋

𝐿
𝑥� 𝑑𝑥
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Rearranging

�
𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 −

𝛾𝑛
𝑐2𝜆𝑛 − 𝜔2

�
𝐿

0
sin2 �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 = 𝑐1𝑛�

𝐿

0
sin2 �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

𝑐1𝑛 =
∫𝐿
0
𝑓 (𝑥) sin �𝑚𝜋𝐿 𝑥� 𝑑𝑥

∫𝐿
0

sin2 �𝑛𝜋𝐿 𝑥� 𝑑𝑥
−

𝛾𝑛
𝑐2𝜆𝑛 − 𝜔2

=
2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 −

𝛾𝑛
𝑐2𝜆𝑛 − 𝜔2

We now need to find 𝑐2𝑛. For this we need to di�erentiate the solution once.

𝜕𝑢 (𝑥, 𝑡)
𝜕𝑡

=
∞
�
𝑛=1

�−𝑐�𝜆𝑛𝑐1𝑛 sin �𝑐�𝜆𝑛𝑡� + 𝑐�𝜆𝑛𝑐2𝑛 cos �𝑐�𝜆𝑛𝑡� −
𝛾𝑛

𝑐2𝜆𝑛 − 𝜔2
𝜔 sin (𝜔𝑡)� sin �𝑛𝜋

𝐿
𝑥�

Applying initial conditions 𝜕𝑢(𝑥,0)
𝜕𝑡 = 0 gives

0 =
∞
�
𝑛=1

𝑐�𝜆𝑛𝑐2𝑛 sin �𝑛𝜋
𝐿
𝑥�

Hence

𝑐2𝑛 = 0

Therefore the final solution is

𝐴𝑛 (𝑡) = 𝑐1𝑛 cos �𝑐�𝜆𝑛𝑡� +
𝛾𝑛

𝑐2𝜆𝑛 − 𝜔2
cos (𝜔𝑡)

And

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐴𝑛 (𝑡) sin �
𝑛𝜋
𝐿
𝑥�

Where

𝑐1𝑛 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 −

𝛾𝑛
𝑐2𝜆𝑛 − 𝜔2

Case 2 𝜔 = 𝑐√𝜆𝑛 Resonance case. Now we can’t guess 𝐴𝑝𝑛 (𝑡) = 𝑧1 cos (𝜔𝑡) + 𝑧2 sin (𝜔𝑡) so we
have to use

𝐴𝑝𝑛 (𝑡) = 𝑧1𝑡 cos (𝜔𝑡) + 𝑧2𝑡 sin (𝜔𝑡)
Substituting this in 𝐴′′𝑛 (𝑡) + 𝑐2𝜆𝑛𝐴𝑛 (𝑡) = 𝛾𝑛 cos (𝜔𝑡) gives

(𝑧1𝑡 cos (𝜔𝑡) + 𝑧2𝑡 sin (𝜔𝑡))′′ + 𝑐2𝜆𝑛 (𝑧1𝑡 cos (𝜔𝑡) + 𝑧2𝑡 sin (𝜔𝑡)) = 𝛾𝑛 cos (𝜔𝑡) (2)

But

(𝑧1𝑡 cos (𝜔𝑡) + 𝑧2𝑡 sin (𝜔𝑡))′′ = (𝑧1 cos (𝜔𝑡) − 𝑧1𝜔𝑡 sin (𝜔𝑡) + 𝑧2 sin (𝜔𝑡) + 𝑧2𝜔𝑡 cos (𝜔𝑡))′

= −𝑧1𝜔 sin (𝜔𝑡) − �𝑧1𝜔 sin (𝜔𝑡) + 𝑧1𝜔2𝑡 cos (𝜔𝑡)�

+ 𝑧2𝜔 cos (𝜔𝑡) + �𝑧2𝜔 cos (𝜔𝑡) − 𝑧2𝜔2𝑡 sin (𝜔𝑡)�
= −2𝑧1𝜔 sin (𝜔𝑡) − 𝑧1𝜔2𝑡 cos (𝜔𝑡) + 2𝑧2𝜔 cos (𝜔𝑡) − 𝑧2𝜔2𝑡 sin (𝜔𝑡)

Hence (2) becomes

−2𝑧1𝜔 sin (𝜔𝑡)−𝑧1𝜔2𝑡 cos (𝜔𝑡)+2𝑧2𝜔 cos (𝜔𝑡)−𝑧2𝜔2𝑡 sin (𝜔𝑡)+𝑐2𝜆𝑛 (𝑧1𝑡 cos (𝜔𝑡) + 𝑧2𝑡 sin (𝜔𝑡)) = 𝛾𝑛 cos (𝜔𝑡)
Comparing coe�cients we see that 2𝑧2𝜔 = 𝛾𝑛 or

𝑧2 =
𝛾𝑛
2𝜔

And 𝑧1 = 0. Therefore

𝐴𝑝𝑛 (𝑡) =
𝛾𝑛
2𝜔
𝑡 sin (𝜔𝑡)

Therefore

𝐴𝑛 (𝑡) = 𝐴ℎ𝑛 (𝑡) + 𝐴
𝑝
𝑛 (𝑡)

= 𝑐1𝑛 cos �𝑐�𝜆𝑛𝑡� + 𝑐2𝑛 sin �𝑐�𝜆𝑛𝑡� +
𝛾𝑛

2𝑐√𝜆𝑛
𝑡 sin (𝜔𝑡)
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We now can find 𝑐1𝑛, 𝑐2𝑛 from initial conditions.

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐴𝑛 (𝑡) 𝜙𝑛 (𝑥)

=
∞
�
𝑛=1

�𝑐1𝑛 cos �𝑐�𝜆𝑛𝑡� + 𝑐2𝑛 sin �𝑐�𝜆𝑛𝑡� +
𝛾𝑛

2𝑐√𝜆𝑛
𝑡 sin (𝜔𝑡)� sin �𝑛𝜋

𝐿
𝑥� (4)

At 𝑡 = 0

𝑓 (𝑥) =
∞
�
𝑛=1

𝑐1𝑛 sin �𝑛𝜋
𝐿
𝑥�

𝑐1𝑛 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

Taking time derivative of (4) and setting it to zero will give 𝑐2𝑛. Since initial speed is zero
then 𝑐2𝑛 = 0. Hence

𝐴𝑛 (𝑡) = 𝑐1𝑛 cos �𝑐�𝜆𝑛𝑡� +
𝛾𝑛

2𝑐√𝜆𝑛
𝑡 sin (𝜔𝑡)

This completes the solution.

Summary of solution

The solution is given by

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐴𝑛 (𝑡) 𝜙𝑛 (𝑥)

Case 𝜔 ≠ 𝑐√𝜆𝑛

𝐴𝑛 (𝑡) = 𝑐1𝑛 cos �𝑐�𝜆𝑛𝑡� +
𝛾𝑛

𝑐2𝜆𝑛 − 𝜔2
cos (𝜔𝑡)

And

𝑐1𝑛 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 −

𝛾𝑛
𝑐2𝜆𝑛 − 𝜔2

And

𝛾𝑛 =
∫𝐿
0
𝑔 (𝑥) 𝜙𝑛 (𝑥) 𝑑𝑥

∫𝐿
0
𝜙2𝑛 (𝑥) 𝑑𝑥

And 𝜆𝑛 = �
𝑛𝜋
𝐿
�
2
, 𝑛 = 1, 2, 3,

Case 𝜔 = 𝑐√𝜆𝑛 (resonance)

𝐴𝑛 (𝑡) = 𝑐1𝑛 cos �𝑐�𝜆𝑛𝑡� +
𝛾𝑛

2𝑐√𝜆𝑛
𝑡 sin (𝜔𝑡)

And

𝑐1𝑛 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥
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2.10.10 Problem 8.5.5 (b)

8.5. Forced Vibrating Membranes and Resonance 371

is a particular solution of

ti 2dty
+ wov = f (t)

What is the general solution? What solution satisfies the initial conditions
y(O) = yo and g(0) = vo?

8.5.2. Consider a vibrating string with time-dependent forcing:

z z

atz = cz 8x2 + Q(x, t)
u(0, t) = 0 u(x, 0) = f(x)

u(L,t) = 0 5(x,0) = 0.

(a) Solve the initial value problem.
*(b) Solve the initial value problem if Q(x, t) = g(x) cos wt. For what values

of w does resonance occur?

8.5.3. Consider a vibrating string with friction with time-periodic forcing

02 2 2

0-t2 = c axz -pet + g(x) coswt

u(0, t) = 0 u(x, 0) = f(x)
u(L,t) = 0 gf(x,0) = 0.

(a) Solve this initial value problem if 3 is moderately small (0 < Q <
2cir/L).

(b) Compare this solution to Exercise 8.5.2(b).

8.5.4. Solve the initial value problem for a vibrating string with time-dependent
forcing.

z

at2 = cz 8xz + Q(x, t), u(x, 0) = f (x), St (x, 0) = 0,

subject to the following boundary conditions. Do not reduce to homoge-
neous boundary conditions:

(a) u(0, t) = A(t), u(L, t) = B(t)
(b) u(0, t) = 0, (L,t) = 0

(c) P; (0, t) = A(t), u(L, t) = 0

8.5.5. Solve the initial value problem for a membrane with time-dependent forcing
and fixed boundaries (u = 0),

2 = c2 V2u + Q(x, y, t),

372 Chapter 8. Nonhomogeneous Problems

u(x,y,0) = f(x,y), (x,y,0) = 0,

if the membrane is

(a) a rectangle (0 < x < L, 0 < y < H)
(b) a circle (r < a)

*(c) a semicircle (0 < 0 < ir,r < a)
(d) a circular annulus (a < r < b)

8.5.6. Consider the displacement u(r, 0, t) of a forced semicircular membrane of
radius a (Fig. 8.5.1) that satisfies the partial differential equation

1 82u 1 8
C

8u\ 1 82u
c2 8t2 r 8r r

8r J + r2 882
+ 9(r' 0, t)'

u=0
(Zero displacement) Figure 8.5.1

with the homogeneous boundary conditions:

u(r, 0, t) = 0, u(r, ir, t) = 0, and

and the initial conditions

(a, 0, t) = 0

u(r, 0, 0) = H(r, 0) and 5 (r, 9, 0) = 0.

*(a) Assume that u(r, 0, t) = E F, a(t)4(r, 0), where 0(r, 0) are the eigen-
functions of the related homogeneous problem. What initial conditions
does a(t) satisfy? What differential equation does a(t) satisfy?

(b) What are the eigenfunctions?
(c) Solve for u(r, 0, t). (Hint: See Exercise 8.5.1.)

8.6 Poisson's Equation
We have applied the method of eigenfunction expansion to nonhomogeneous time-
dependent boundary value problems for PDEs (with or without homogeneous bound-
ary conditions). In each case, the method of eigenfunction expansion,

u = E ai(t)Oi,

The solution to the corresponding homogeneous PDE

𝜕2𝑢
𝜕𝑡2

= 𝑐2∇ 2

Is

𝑢 (𝑟, 𝜃, 𝑡) =
∞
�
𝑛=0

∞
�
𝑚=1

𝑎𝑛 (𝑡) 𝐽𝑛 ��𝜆𝑛𝑚𝑟� cos (𝑛𝜃) +
∞
�
𝑛=1

∞
�
𝑚=1

𝑎𝑛 (𝑡) 𝐽𝑛 ��𝜆𝑛𝑚𝑟� sin (𝑛𝜃)

Where 𝜆𝑛𝑚 are found by solving roots of 𝐽𝑛 �√𝜆𝑛𝑚𝑎� = 0. To make things simpler, we will
write

𝑢 (𝑟, 𝜃, 𝑡) = �
𝑖
𝑎𝑖 (𝑡) Φ𝑖 (𝑟, 𝜃)

Where the above means the double sum of all eigenvalues 𝜆𝑖. So Φ𝑖 (𝑟, 𝜃) represents
𝐽𝑛 �√𝜆𝑛𝑚𝑟� {cos (𝑛𝜃) , sin (𝜃)} combined. So double sum is implied everywhere. Given this,
we now expand the source term

𝑄 (𝑟, 𝜃, 𝑡) = �
𝑖
𝑞𝑖 (𝑡) Φ𝑖 (𝑟, 𝜃)

And the original PDE becomes

�
𝑖
𝑎′′𝑖 (𝑡) Φ (𝜆𝑖) = 𝑐2�

𝑖
𝑎𝑖 (𝑡) ∇ 2 (Φ𝑖 (𝑟, 𝜃)) +�

𝑖
𝑞𝑖 (𝑡) Φ𝑖 (𝑟, 𝜃) (1)

But

∇ 2 (Φ𝑖 (𝑟, 𝜃)) = −𝜆𝑖Φ𝑖 (𝑟, 𝜃)

Hence (1) becomes

�
𝑖
𝑎′′𝑖 (𝑡) Φ𝑖 (𝑟, 𝜃) + 𝑐2𝜆𝑖𝑎𝑖 (𝑡) Φ𝑖 (𝑟, 𝜃) = �

𝑖
𝑞𝑖 (𝑡) Φ𝑖 (𝑟, 𝜃)

�
𝑖
�𝑎′′𝑖 (𝑡) + 𝑐2𝜆𝑖𝑎𝑖 (𝑡)�Φ𝑖 (𝑟, 𝜃) = �

𝑖
𝑞𝑖 (𝑡) Φ𝑖 (𝑟, 𝜃)

Applying orthogonality gives

𝑎′′𝑖 (𝑡) + 𝑐2𝜆𝑖𝑎𝑖 (𝑡) = 𝑞𝑖 (𝑡)

Where

𝑞𝑖 (𝑡) =
∫𝑎
0
∫𝜋
−𝜋
𝑄 (𝑟, 𝜃, 𝑡) Φ𝑖 (𝑟, 𝜃) 𝑟𝑑𝑟𝑑𝜃

∫𝑎
0
∫𝜋
−𝜋
Φ2
𝑖 (𝑟, 𝜃) 𝑟𝑑𝑟𝑑𝜃

The solution to the homogenous ODE is

𝑎ℎ𝑖 (𝑡) = 𝐴𝑖 cos �𝑐�𝜆𝑖𝑡� + 𝐵𝑖 sin �𝑐�𝜆𝑖𝑡�
And the particular solution is found if we know what 𝑄 (𝑟, 𝜃, 𝑡) and hence 𝑞𝑖 (𝑡). For now,
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lets call the particular solution as 𝑎𝑝𝑖 (𝑡). Hence the solution for 𝑎𝑖 (𝑡) is

𝑎𝑖 (𝑡) = 𝐴𝑖 cos �𝑐�𝜆𝑖𝑡� + 𝐵𝑖 sin �𝑐�𝜆𝑖𝑡� + 𝑎
𝑝
𝑖 (𝑡)

Plugging the above into the 𝑢 (𝑟, 𝜃, 𝑡) = ∑𝑖 𝑎𝑖 (𝑡) Φ𝑖 (𝑟, 𝜃), gives

𝑢 (𝑟, 𝜃, 𝑡) = �
𝑖
�𝐴𝑖 cos �𝑐�𝜆𝑖𝑡� + 𝐵𝑖 sin �𝑐�𝜆𝑖𝑡� + 𝑎

𝑝
𝑖 (𝑡)�Φ𝑖 (𝑟, 𝜃) (2)

We now find 𝐴𝑖, 𝐵𝑖 from initial conditions. At 𝑡 = 0

𝑓 (𝑟, 𝜃) = �
𝑖
�𝐴𝑖 + 𝑎

𝑝
𝑖 (0)�Φ𝑖 (𝑟, 𝜃)

Applying orthogonality

�
𝑎

0
�

𝜋

−𝜋
𝑓 (𝑟, 𝜃)Φ𝑗 (𝑟, 𝜃) 𝑟𝑑𝑟𝑑𝜃 = �

𝑎

0
�

𝜋

−𝜋
�
𝑖
�𝐴𝑖 + 𝑎

𝑝
𝑖 (0)�Φ𝑖 (𝑟, 𝜃)Φ𝑗 (𝑟, 𝜃) 𝑟𝑑𝑟𝑑𝜃

�
𝑎

0
�

𝜋

−𝜋
𝑓 (𝑟, 𝜃)Φ𝑗 (𝑟, 𝜃) 𝑟𝑑𝑟𝑑𝜃 = �𝐴𝑗 + 𝑎

𝑝
𝑗 (0)��

𝑎

0
�

𝜋

−𝜋
Φ2
𝑗 (𝑟, 𝜃) 𝑟𝑑𝑟𝑑𝜃

�𝐴𝑖 + 𝑎
𝑝
𝑖 (0)� =

∫𝑎
0
∫𝜋
−𝜋
𝑓 (𝑟, 𝜃)Φ𝑖 (𝑟, 𝜃) 𝑟𝑑𝑟𝑑𝜃

∫𝑎
0
∫𝜋
−𝜋
Φ2
𝑖 (𝑟, 𝜃) 𝑟𝑑𝑟𝑑𝜃

Taking time derivative of (2)

𝜕𝑢 (𝑟, 𝜃, 𝑡)
𝜕𝑡

= �
𝑖
�−𝐴𝑖𝑐�𝜆𝑖 sin �𝑐�𝜆𝑖𝑡� + 𝑐�𝜆𝑖𝐵𝑖 cos �𝑐�𝜆𝑖𝑡� +

𝑑𝑎𝑝𝑖 (𝑡)
𝑑𝑡 �Φ𝑖 (𝑟, 𝜃)

At 𝑡 = 0

0 = �
𝑖
�𝑐�𝜆𝑖𝐵𝑖 +

𝑑𝑎𝑝𝑖 (0)
𝑑𝑡 �Φ𝑖 (𝑟, 𝜃)

Hence 𝐵𝑖 = 0. Therefore the final solution is

𝑢 (𝑟, 𝜃, 𝑡) = �
𝑖
�𝐴𝑖 cos �𝑐�𝜆𝑖𝑡� + 𝑎

𝑝
𝑖 (𝑡)�Φ𝑖 (𝑟, 𝜃)

Where

�𝐴𝑖 + 𝑎
𝑝
𝑖 (0)� =

∫𝑎
0
∫𝜋
−𝜋
𝑓 (𝑟, 𝜃)Φ𝑖 (𝑟, 𝜃) 𝑟𝑑𝑟𝑑𝜃

∫𝑎
0
∫𝜋
−𝜋
Φ2
𝑖 (𝑟, 𝜃) 𝑟𝑑𝑟𝑑𝜃

This complete the solution.
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2.11 HW 10

Math 322 (Smith): Problem Set 10

Due Wednesday Dec. 7, 2016

1-4) For the following problems, determine a representation of the solution in terms of a
symmetric Green’s function. Use appropriate homogeneous boundary conditions for the
Green’s function. Show that the boundary terms can also be understood using homoge-
neous solutions of the differential equation.

d2u

dx2
= f(x), 0 < x < 1, u(0) = A,

du

dx
(1) = B (1)

d2u

dx2
+ u = f(x), 0 < x < L, u(0) = A, u(L) = B, L 6= nπ (2)

d2u

dx2
= f(x), 0 < x < L, u(0) = A,

du

dx
(L) + hu(L) = 0 (3)

d2u

dx2
+ 2

du

dx
+ u = f(x), 0 < x < 1, u(0) = 0, u(1) = 1 (4)

1

2.11.1 Problem 1

version 040417

𝑑2𝑢
𝑑𝑥2

= 𝑓 (𝑥) ; 0 < 𝑥 < 𝐿; 𝑢 (0) = 𝐴;
𝑑𝑢
𝑑𝑥
(1) = 𝐵

Note: I used 𝐿 for the length instead of one. Will replace 𝐿 by one at the very end. This
makes it more clear. Compare the above to the standard form (Sturm-Liouville)

−
𝑑
𝑑𝑥 �

𝑝
𝑑𝑢
𝑑𝑥�

+ 𝑞𝑢 = 𝑓 (𝑥)

Therefore it becomes

−
𝑑
𝑑𝑥 �

𝑝
𝑑𝑢
𝑑𝑥�

= −𝑓 (𝑥)

𝑝 (𝑥) = 1

Green function is 𝐺 (𝑥, 𝑥0) (will use 𝑥0 which is what the book uses, instead of 𝑎, as 𝑥0 is
more clear). Green function is the solution to

𝑑2𝐺 (𝑥, 𝑥0)
𝑑𝑥2

= 𝛿 (𝑥 − 𝑥0)

𝐺 (0, 𝑥0) = 0
𝑑𝐺 (𝐿, 𝑥0)

𝑑𝑥
= 0

Where 𝑥0 is the location of the impulse. Since 𝑑2𝐺(𝑥,𝑥0)
𝑑𝑥2 = 0 for 𝑥 ≠ 𝑥0, then the solution to

𝑑2𝐺(𝑥,𝑥0)
𝑑𝑥2 = 0, which is a linear function in this case, is broken into two regions

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩
𝐴1𝑥 + 𝐴2 0 < 𝑥 < 𝑥0
𝐵1𝑥 + 𝐵2 𝑥0 < 𝑥 < 𝐿

The first solution, using 𝐺 (0, 𝑥0) = 0 gives 𝐴2 = 0 and the second solution using 𝑑𝐺(1,𝑥0)
𝑑𝑥 = 0

gives 𝐵1 = 0, hence the above reduces to

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩
𝐴1𝑥 𝑥 < 𝑥0
𝐵2 𝑥0 < 𝑥

(1)
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We are left with constants to 𝐴1, 𝐵2 to find. The continuity condition at 𝑥 = 𝑥0 gives

𝐴1𝑥0 = 𝐵2 (2)

The jump discontinuity of the derivative of 𝐺 (𝑥, 𝑥0) at 𝑥 = 𝑥0, gives the final equation

�
𝑑
𝑑𝑥
𝐺 (𝑥, 𝑥0)�

𝑥0<𝑥
− �

𝑑
𝑑𝑥
𝐺 (𝑥, 𝑥0)�

𝑥<𝑥0

=
−1
𝑝 (𝑥0)

= −1 (2A)

Since 𝑝 (𝑥) = 1 in this problem. But

𝑑𝐺 (𝑥, 𝑥0)
𝑑𝑥

=

⎧⎪⎪⎨
⎪⎪⎩
𝐴1 𝑥 < 𝑥0
0 𝑥0 < 𝑥

(3)

Hence (2A) becomes

0 − (𝐴1) = −1

Therefore

𝐴1 = 1 (4)

Solving (2,4) gives 𝐵2 = 𝑥0. Hence the Green function is, from (1)

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩
𝑥 𝑥 < 𝑥0
𝑥0 𝑥0 < 𝑥

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

And 𝑑𝐺(𝑥,𝑥0)
𝑑𝑥0

where now derivative is w.r.t. 𝑥0, is

𝑑𝐺 (𝑥, 𝑥0)
𝑑𝑥0

=

⎧⎪⎪⎨
⎪⎪⎩
0 𝑥 < 𝑥0
1 𝑥0 < 𝑥

We now have all the information needed to evaluate the solution to the original ODE.

𝑢 (𝑥) =

particular solution

�����������������������������
�

𝑥

0
𝐺 (𝑥, 𝑥0) 𝑓 (𝑥0) 𝑑𝑥0 +

boundary terms

�������������������������������������������������������������������������
�𝑝 (𝑥0) 𝐺 (𝑥, 𝑥0)

𝑑𝑢 (𝑥0)
𝑑𝑥0

− 𝑝 (𝑥0) 𝑢 (𝑥0)
𝑑𝐺 (𝑥, 𝑥0)
𝑑𝑥0

�
𝑥0=𝐿

𝑥0=0

Since 𝑝 (𝑥0) = 1 then

𝑦 (𝑥) = �
𝑥

0
𝐺 (𝑥, 𝑥0) 𝑓 (𝑥0) 𝑑𝑥0 + �𝐺 (𝑥, 𝑥0)

𝑑𝑢 (𝑥0)
𝑑𝑥0

− 𝑢 (𝑥0)
𝑑𝐺 (𝑥, 𝑥0)
𝑑𝑥0

�
𝑥0=𝐿

𝑥0=0

Let 𝑢ℎ = �𝐺 (𝑥, 𝑥0)
𝑑𝑢(𝑥0)
𝑑𝑥0

− 𝑢 (𝑥0)
𝑑𝐺(𝑥,𝑥0)
𝑑𝑥0

�
𝑥0=𝐿

𝑥0=0
, hence

𝑢ℎ = 𝐺 (𝑥, 𝐿)
𝑑𝑢 (𝑥0)
𝑑𝑥0

(𝐿) − 𝑢 (𝐿)
𝑑𝐺 (𝑥, 𝑥0)
𝑑𝑥0

(𝐿) − 𝐺 (𝑥, 0)
𝑑𝑢 (𝑥0)
𝑑𝑥0

(0) + 𝑢 (0)
𝑑𝐺 (𝑥, 𝑥0)
𝑑𝑥0

(0)
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But

𝐺 (𝑥, 𝐿) = 𝑥
𝑑𝑢 (𝑥0)
𝑑𝑥0

(𝐿) = 𝐵

𝑑𝐺 (𝑥, 𝑥0)
𝑑𝑥0

(𝐿) = 0

𝐺 (𝑥, 0) = 0
𝑑𝐺 (𝑥, 𝑥0)
𝑑𝑥0

(0) = 1

𝑢 (0) = 𝐴

Then

𝑢ℎ = 𝑥𝐵 + 𝐴

We see that the boundary terms are linear in 𝑥, which is expected as the fundamental
solutions for the homogenous solution as linear. The complete solution is

𝑦 (𝑥) = �
𝐿

0
𝐺 (𝑥, 𝑥0) 𝑓 (𝑥0) 𝑑𝑥0 + (𝑥𝐵 + 𝐴)

= �
𝐿

0
𝐺 (𝑥, 𝑥0) 𝑓 (𝑥0) 𝑑𝑥0 + 𝑥𝐵 + 𝐴

= �
𝑥

0
𝑥0𝑓 (𝑥0) 𝑑𝑥0 +�

𝐿

𝑥
𝑥𝑓 (𝑥0) 𝑑𝑥0 + 𝑥𝐵 + 𝐴

For example, if 𝑓 (𝑥) = 𝑥, or 𝑓 (𝑥0) = 𝑥0 then (but remeber, we have to use −𝑓 (𝑥) since we
are using S-L form)

𝑦 (𝑥) == �
𝑥

0
𝐺 (𝑥, 𝑥0) (−𝑓 (𝑥0))𝑑𝑥0 +�

1

𝑥
𝐺 (𝑥, 𝑥0) (−𝑓 (𝑥0))𝑑𝑥0 + (𝑥𝐵 + 𝐴)

= −�
𝑥

0
𝑥0𝑥0𝑑𝑥0 −�

1

𝑥
𝑥𝑥0𝑑𝑥0 + 𝑥𝐵 + 𝐴

= − �
𝑥30
3 �

𝑥

0
− 𝑥 �

𝑥20
2 �

1

𝑥
+ 𝑥𝐵 + 𝐴

= − �
𝑥3

3 �
− 𝑥 �

1
2
−
𝑥2

2 �
+ 𝑥𝐵 + 𝐴

= 𝐴 −
1
2
𝑥 + 𝐵𝑥 +

1
6
𝑥3

To verify the result, this was solved directly, with 𝑓 (𝑥) = 𝑥, giving same answer as above.

In[39]:= DSolve[{u''[x] ⩵ x, u[0] ⩵ A0, u'[1] ⩵ B0}, u[x], x]

Out[39]= u[x] →
1
6
6 A0 - 3 x + 6 B0 x + x3

In[40]:= Expand[%]

Out[40]= u[x] → A0 -
x
2
+ B0 x +

x3

6


And if 𝑓 (𝑥) = 𝑥2, or 𝑓 (𝑥0) = 𝑥20, then

𝑦 (𝑥) = �
𝑥

0
𝑥0 �−𝑓 (𝑥0)� 𝑑𝑥0 +�

𝐿

𝑥
𝑥 �−𝑓 (𝑥0)� 𝑑𝑥0 + 𝑥𝐵 + 𝐴

= −�
𝑥

0
𝑥0𝑥20𝑑𝑥0 − 𝑥�

1

𝑥
𝑥20𝑑𝑥0 + 𝑥𝐵 + 𝐴

= − �
𝑥40
4 �

𝑥

0
− 𝑥 �

𝑥30
3 �

1

𝑥
+ 𝑥𝐵 + 𝐴

= − �
𝑥4

4 �
− 𝑥 �

1
3
−
𝑥3

3 �
+ 𝑥𝐵 + 𝐴

= 𝐴 −
1
3
𝑥 + 𝐵𝑥 +

1
12
𝑥4

To verify the result, this was solved directly, with 𝑓 (𝑥) = 𝑥2, giving same answer as above.
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In[41]:= DSolve[{u''[x] ⩵ x^2, u[0] ⩵ A0, u'[1] ⩵ B0}, u[x], x]

Out[41]= u[x] →
1
12

12 A0 - 4 x + 12 B0 x + x4

In[42]:= Expand[%]

Out[42]= u[x] → A0 -
x
3
+ B0 x +

x4

12


This shows the benefit of Green function. Once we know 𝐺 (𝑥, 𝑥0), then changing the source
term, requires only convolution to find the new solution, instead of solving the ODE again
as normally done.

2.11.2 Problem 2

𝑑2𝑢
𝑑𝑥2

+ 𝑢 = 𝑓 (𝑥) ; 0 < 𝑥 < 𝐿; 𝑢 (0) = 𝐴; 𝑢 (𝐿) = 𝐵; 𝐿 ≠ 𝑛𝜋

Solution

Compare the above to the standard form

−
𝑑
𝑑𝑥 �

𝑝
𝑑𝑢
𝑑𝑥�

+ 𝑞𝑢 = 𝑓 (𝑥)

−𝑝𝑢′′ + 𝑞𝑢 = 𝑓 (𝑥)

Therefore

𝑝 (𝑥) = −1

Green function is the solution to
𝑑2𝐺 (𝑥, 𝑥0)

𝑑𝑥2
+ 𝐺 (𝑥, 𝑥0) = 𝛿 (𝑥 − 𝑥0)

𝐺 (0, 𝑥0) = 0
𝐺 (𝐿, 𝑥0) = 0

Where 𝑥0 is the location of the impulse. Since 𝑑2𝐺(𝑥,𝑥0)
𝑑𝑥2 = 0 for 𝑥 ≠ 𝑥0, then the solution to

𝑑2𝐺(𝑥,𝑥0)
𝑑𝑥2 + 𝐺 (𝑥, 𝑥0) = 0, is broken into two regions

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩
𝐴1 cos 𝑥 + 𝐴2 sin 𝑥 𝑥 < 𝑥0
𝐵1 cos 𝑥 + 𝐵2 sin 𝑥 𝑥0 < 𝑥

The first boundary condition on the left gives 𝐴1 = 0. Second boundary conditions on the
right gives

𝐵1 cos 𝐿 + 𝐵2 sin 𝐿 = 0

𝐵1 = −𝐵2
sin 𝐿
cos 𝐿

Hence the solution now looks like

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩

𝐴2 sin 𝑥 𝑥 < 𝑥0
−𝐵2

sin 𝐿
cos 𝐿 cos 𝑥 + 𝐵2 sin 𝑥 𝑥0 < 𝑥

But

−𝐵2
sin 𝐿
cos 𝐿 cos 𝑥 + 𝐵2 sin 𝑥 = 𝐵2

cos 𝐿 (sin 𝑥 cos 𝐿 − cos 𝑥 sin 𝐿)

Using trig identity sin (𝑎 − 𝑏) = sin 𝑎 cos 𝑏−cos 𝑎 sin 𝑏, the above can be written as 𝐵2
cos 𝐿 sin (𝑥 − 𝐿),

hence the solution becomes

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩

𝐴2 sin 𝑥 𝑥 < 𝑥0
𝐵2

cos 𝐿 sin (𝑥 − 𝐿) 𝑥0 < 𝑥
(1)

Continuity at 𝑥0 gives

𝐴2 sin 𝑥0 =
𝐵2

cos 𝐿 sin (𝑥0 − 𝐿) (2)

186



2.11. HW 10 CHAPTER 2. HWS

And jump discontinuity on derivative of 𝐺 gives
𝐵2

cos 𝐿 cos (𝑥0 − 𝐿) − 𝐴2 cos 𝑥0 = −
1

𝑝 (𝑥)
= 1

𝐵2
cos 𝐿 cos (𝑥0 − 𝐿) − 𝐴2 cos 𝑥0 = 1 (3)

Now we need to solve (2,3) for 𝐴2, 𝐵2 to obtain the final solution for 𝐺 (𝑥, 𝑥0). From (2),

𝐴2 =
𝐵2

cos 𝐿 sin 𝑥0
sin (𝑥0 − 𝐿) (4)

Plug into (3)
𝐵2

cos 𝐿 cos (𝑥0 − 𝐿) −
𝐵2

cos 𝐿 sin 𝑥0
sin (𝑥0 − 𝐿) cos 𝑥0 = 1

𝐵2
cos 𝐿 cos (𝑥0 − 𝐿) −

𝐵2
cos 𝐿 sin (𝑥0 − 𝐿)

cos 𝑥0
sin 𝑥0

= 1

𝐵2 cos (𝑥0 − 𝐿) − 𝐵2 sin (𝑥0 − 𝐿)
cos 𝑥0
sin 𝑥0

= cos 𝐿

𝐵2 �cos (𝑥0 − 𝐿) − sin (𝑥0 − 𝐿)
cos 𝑥0
sin 𝑥0

� = cos 𝐿

𝐵2 (sin 𝑥0 cos (𝑥0 − 𝐿) − cos 𝑥0 sin (𝑥0 − 𝐿)) = cos 𝐿 sin 𝑥0
But using trig identity sin (𝑎 − 𝑏) = sin 𝑎 cos 𝑏 − cos 𝑎 sin 𝑏 we can write above as

𝐵2 (sin (𝑥0 − (𝑥0 − 𝐿))) = cos 𝐿 sin 𝑥0
𝐵2 sin 𝐿 = cos 𝐿 sin 𝑥0

𝐵2 =
cos 𝐿 sin 𝑥0

sin 𝐿
Now that we found 𝐵2, we go back and find 𝐴2 from (4)

𝐴2 =
cos 𝐿 sin 𝑥0

sin 𝐿
1

cos 𝐿 sin 𝑥0
sin (𝑥0 − 𝐿)

=
sin (𝑥0 − 𝐿)

sin 𝐿
Therefore Green function is, from (1)

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩

sin(𝑥0−𝐿)
sin 𝐿 sin 𝑥 𝑥 < 𝑥0

cos 𝐿 sin 𝑥0
sin 𝐿

1
cos 𝐿 sin (𝑥 − 𝐿) 𝑥0 < 𝑥

Or

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩

sin(𝑥0−𝐿)
sin 𝐿 sin 𝑥 𝑥 < 𝑥0

sin 𝑥0
sin 𝐿 sin (𝑥 − 𝐿) 𝑥0 < 𝑥

(5)

It is symmetrical. Here is a plot of 𝐺 (𝑥, 𝑥0) for some arbitrary 𝑥0 located at 𝑥 = 0.75 for
𝐿 = 1.
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Problem 2 Green function. x0=0.75

Now comes the hard part. We need to find the solution using

𝑦 (𝑥) =

particular solution

�����������������������������
�

𝑥

0
𝐺 (𝑥, 𝑥0) 𝑓 (𝑥0) 𝑑𝑥0 +

boundary terms

�������������������������������������������������������������������������
�𝑝 (𝑥0) 𝐺 (𝑥, 𝑥0)

𝑑𝑢 (𝑥0)
𝑑𝑥0

− 𝑝 (𝑥0) 𝑢 (𝑥0)
𝑑𝐺 (𝑥, 𝑥0)
𝑑𝑥0

�
𝑥0=𝐿

𝑥0=0
(6)
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The first step is to find 𝑑𝐺(𝑥,𝑥0)
𝑑𝑥0

. From (5), we find

𝑑𝐺 (𝑥, 𝑥0)
𝑑𝑥0

=

⎧⎪⎪⎨
⎪⎪⎩

cos(𝑥0−𝐿)
sin 𝐿 sin 𝑥 𝑥 < 𝑥0

cos 𝑥0
sin 𝐿 sin (𝑥 − 𝐿) 𝑥0 < 𝑥

(7)

Now we plug everything in (6). But remember that 𝐺 (0, 𝑥0) = 0, 𝐺 (𝐿, 𝑥0) = 0, 𝑢 (0) = 𝐴, 𝑢 (𝐿) =
𝐵 . Hence

Δ = �𝑝 (𝑥0) 𝐺 (𝑥, 𝑥0)
𝑑𝑢 (𝑥0)
𝑑𝑥0

− 𝑝 (𝑥0) 𝑢 (𝑥0)
𝑑𝐺 (𝑥, 𝑥0)
𝑑𝑥0

�
𝑥0=𝐿

𝑥0=0

= 𝐺 (𝑥, 𝐿)
𝑑𝑢 (𝐿)
𝑑𝑥0

− 𝑢 (𝐿)
𝑑𝐺 (𝑥, 𝐿)
𝑑𝑥0

− 𝐺 (𝑥, 0)
𝑑𝑢 (0)
𝑑𝑥0

+ 𝑢 (0)
𝑑𝐺 (𝑥, 0)
𝑑𝑥0

= 0 − (𝐵) �
cos (𝑥0 − 𝐿)

sin 𝐿 sin 𝑥�
𝑥0=𝐿

− 0 + (𝐴) �
cos 𝑥0
sin 𝐿 sin (𝑥 − 𝐿)�

𝑥0=0

= − (𝐵) �
1

sin 𝐿 sin 𝑥� + (𝐴) �
sin (𝑥 − 𝐿)

sin 𝐿 �

= −𝐵
sin 𝑥
sin 𝐿 + 𝐴

sin (𝑥 − 𝐿)
sin 𝐿

But 𝑝 = −1, hence the above becomes

Δ = −𝐺 (𝑥, 𝐿)
𝑑𝑢 (𝐿)
𝑑𝑥0

+ 𝑢 (𝐿)
𝑑𝐺 (𝑥, 𝐿)
𝑑𝑥0

+ 𝐺 (𝑥, 0)
𝑑𝑢 (0)
𝑑𝑥0

− 𝑢 (0)
𝑑𝐺 (𝑥, 0)
𝑑𝑥0

= 0 + (𝐵) �
cos (𝑥0 − 𝐿)

sin 𝐿 sin 𝑥�
𝑥0=𝐿

+ 0 − (𝐴) �
cos 𝑥0
sin 𝐿 sin (𝑥 − 𝐿)�

𝑥0=0

= + (𝐵) �
1

sin 𝐿 sin 𝑥� − (𝐴) �
sin (𝑥 − 𝐿)

sin 𝐿 �

= 𝐵
sin 𝑥
sin 𝐿 − 𝐴

sin (𝑥 − 𝐿)
sin 𝐿

We see that the boundary terms are linear combination of sin and cosine in 𝑥, which is
expected as the fundamental solutions for the homogenous solution as linear combination
of sin and cosine in 𝑥 as was found initially above. Equation (6) becomes

𝑦 (𝑥) = �
𝑥

0
𝐺 (𝑥, 𝑥0) 𝑓 (𝑥0) 𝑑𝑥0 + 𝐵

sin 𝑥
sin 𝐿 − 𝐴

sin (𝑥 − 𝐿)
sin 𝐿 (8)

Now we can do the integration part. Therefore

�
𝑥

0
𝐺 (𝑥, 𝑥0) 𝑓 (𝑥0) 𝑑𝑥0 = �

𝑥

0
�
sin (𝑥 − 𝐿)

sin 𝐿 sin 𝑥0� 𝑓 (𝑥0) 𝑑𝑥0 +�
𝐿

𝑥
�
sin 𝑥
sin 𝐿 sin (𝑥0 − 𝐿)� 𝑓 (𝑥0) 𝑑𝑥0

We can test the solution to see if it correct. Let 𝑓 (𝑥) = 𝑥 or 𝑓 (𝑥0) = 𝑥0, hence

�
𝑥

0
𝐺 (𝑥, 𝑥0) 𝑓 (𝑥0) 𝑑𝑥0 = �

𝑥

0
𝑥0 �

sin (𝑥 − 𝐿)
sin 𝐿 sin 𝑥0� 𝑑𝑥0 +�

𝐿

𝑥
𝑥0 �

sin 𝑥
sin 𝐿 sin (𝑥0 − 𝐿)� 𝑑𝑥0

=
sin (𝑥 − 𝐿)

sin 𝐿 �
𝑥

0
𝑥0 sin 𝑥0𝑑𝑥0 +

sin 𝑥
sin 𝐿 �

𝐿

𝑥
𝑥0 sin (𝑥0 − 𝐿) 𝑑𝑥0

=
sin (𝑥 − 𝐿)

sin 𝐿 (−𝑥 cos 𝑥 + sin 𝑥) + sin 𝑥
sin 𝐿 (−𝐿 + 𝑥 cos (𝑥 − 𝐿) − sin (𝑥 − 𝐿))

=
−𝑥 cos 𝑥 sin (𝑥 − 𝐿)

sin 𝐿 +
sin 𝑥 sin (𝑥 − 𝐿)

sin 𝐿 − 𝐿
sin 𝑥
sin 𝐿 +

𝑥 cos (𝑥 − 𝐿) sin 𝑥
sin 𝐿 −

sin 𝑥 sin (𝑥 − 𝐿)
sin 𝐿

=
−𝑥 cos 𝑥 sin (𝑥 − 𝐿)

sin 𝐿 − 𝐿
sin 𝑥
sin 𝐿 +

𝑥 cos (𝑥 − 𝐿) sin 𝑥
sin 𝐿

=
1

sin 𝐿 (−𝐿 sin 𝑥 + 𝑥 cos (𝑥 − 𝐿) sin 𝑥 − 𝑥 cos 𝑥 sin (𝑥 − 𝐿))

Hence the solution is

𝑢 (𝑥) =
1

sin 𝐿 (−𝐿 sin 𝑥 + 𝑥 cos (𝑥 − 𝐿) sin 𝑥 − 𝑥 cos 𝑥 sin (𝑥 − 𝐿)) + �𝐵
sin 𝑥
sin 𝐿 − 𝐴

sin (𝑥 − 𝐿)
sin 𝐿 �

=
1

sin 𝐿 (−𝐿 sin 𝑥 + 𝑥 cos (𝑥 − 𝐿) sin 𝑥 − 𝑥 cos 𝑥 sin (𝑥 − 𝐿) + 𝐵 sin 𝑥 − 𝐴 sin (𝑥 − 𝐿))

To verify, the problem is solved directly using CAS, and solution above using Green
function was compared, same answer confirmed.
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In[81]:= f = x;

L0 = 1;

A0 = 1;

B0 = 2;

computerSolution = u[x] /. First@DSolve[{u''[x] + u[x] ⩵ f, u[0] ⩵ A0, u[L0] ⩵ B0}, u[x], x];

mySolUsingGreenFunction = 1/ Sin[L0] (-L0 Sin[x] + x Cos[x - L0] Sin[x] - x Cos[x] Sin[x - L0] + B0 Sin[x] - A0 Sin[x - L0]);

Simplify[computerSolution - mySolUsingGreenFunction]

Out[87]= 0

2.11.3 Problem 3

𝑑2𝑢
𝑑𝑥2

= 𝑓 (𝑥) ; 0 < 𝑥 < 𝐿; 𝑢 (0) = 𝐴;
𝑑𝑢
𝑑𝑥
(𝐿) + ℎ𝑢 (𝐿) = 0

Solution

Compare the above to the standard form

−
𝑑
𝑑𝑥 �

𝑝
𝑑𝑢
𝑑𝑥�

= 𝑓 (𝑥)

−𝑝𝑢′′ = 𝑓 (𝑥)

Therefore

𝑝 (𝑥) = −1

Green function is the solution to
𝑑2𝐺 (𝑥, 𝑥0)

𝑑𝑥2
= 𝛿 (𝑥 − 𝑥0)

𝐺 (0, 𝑥0) = 0
𝑑
𝑑𝑥
𝐺 (𝐿, 𝑥0) + ℎ𝐺 (𝐿, 𝑥0) = 0

Where 𝑥0 is the location of the impulse. Since 𝑑2𝐺(𝑥,𝑥0)
𝑑𝑥2 = 0 for 𝑥 ≠ 𝑥0, then the solution to

𝑑2𝐺(𝑥,𝑥0)
𝑑𝑥2 = 0, is broken into two regions

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩
𝐴1𝑥 + 𝐴2 𝑥 < 𝑥0
𝐵1𝑥 + 𝐵2 𝑥0 < 𝑥

The first boundary condition on the left gives 𝐴2 = 0. Second boundary conditions on the
right gives

𝐵1 + ℎ (𝐵1𝐿 + 𝐵2) = 0
𝐵1 (1 + ℎ𝐿) = −ℎ𝐵2

𝐵1 =
−ℎ𝐵2
1 + ℎ𝐿

Hence the solution now looks like

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩

𝐴1𝑥 𝑥 < 𝑥0
�−ℎ𝐵2
1+ℎ𝐿

� 𝑥 + 𝐵2 𝑥0 < 𝑥

But

�
−ℎ𝐵2
1 + ℎ𝐿�

𝑥 + 𝐵2 = �
−ℎ𝐵2
1 + ℎ𝐿�

𝑥 +
𝐵2 (1 + ℎ𝐿)
1 + ℎ𝐿

=
𝐵2 (1 + ℎ𝐿 − ℎ𝑥)

1 + ℎ𝐿
Hence

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩

𝐴1𝑥 𝑥 < 𝑥0
𝐵2(1+ℎ𝐿−ℎ𝑥)

1+ℎ𝐿 𝑥0 < 𝑥
(1)

Continuity at 𝑥0 gives

𝐴1𝑥0 =
𝐵2 (1 + ℎ𝐿 − ℎ𝑥0)

1 + ℎ𝐿
(2)
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And jump discontinuity on derivative of 𝐺 gives
𝐵2

cos 𝐿 cos (𝑥0 − 𝐿) − 𝐴2 cos 𝑥0 = −
1

𝑝 (𝑥)
= 1

−ℎ𝐵2
1 + ℎ𝐿

− 𝐴1 = −
1

𝑝 (𝑥)
= 1 (3)

We solve (2,3) for 𝐴1, 𝐵2. From (3)
−ℎ𝐵2
1 + ℎ𝐿

− 𝐴1 = 1

𝐴1 =
−ℎ𝐵2
1 + ℎ𝐿

− 1

=
−ℎ𝐵2
1 + ℎ𝐿

−
(1 + ℎ𝐿)
1 + ℎ𝐿

=
−ℎ𝐵2 − 1 − ℎ𝐿

1 + ℎ𝐿
Substituting in (2)

−ℎ𝐵2 − 1 − ℎ𝐿
1 + ℎ𝐿

𝑥0 =
𝐵2 (1 + ℎ𝐿 − ℎ𝑥0)

1 + ℎ𝐿
(−ℎ𝐵2 − 1 − ℎ𝐿) 𝑥0 = 𝐵2 (1 + ℎ𝐿 − ℎ𝑥0)
−ℎ𝐵2𝑥0 − 𝑥0 − ℎ𝐿𝑥0 = 𝐵2 + ℎ𝐿𝐵2 − ℎ𝑥0𝐵2

𝐵2 (−ℎ𝑥0 − 1 − ℎ𝐿 + ℎ𝑥0) = 𝑥0 + ℎ𝐿𝑥0

𝐵2 =
(1 + ℎ𝐿) 𝑥0
−1 − ℎ𝐿

=
− (1 + ℎ𝐿)
1 + ℎ𝐿

𝑥0

= −𝑥0
Hence

𝐴1 =
−ℎ𝐵2 − 1 − ℎ𝐿

1 + ℎ𝐿

=
−ℎ (−𝑥0) − 1 − ℎ𝐿

1 + ℎ𝐿

=
ℎ𝑥0 − 1 − ℎ𝐿
1 + ℎ𝐿

=
ℎ𝑥0
1 + ℎ𝐿

−
1 + ℎ𝐿
1 + ℎ𝐿

=
ℎ𝑥0
1 + ℎ𝐿

− 1

Therefore (1) becomes

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩
� ℎ𝑥0
1+ℎ𝐿 − 1� 𝑥 𝑥 < 𝑥0
−𝑥0(1+ℎ𝐿−ℎ𝑥)

1+ℎ𝐿 𝑥0 < 𝑥
(1)

But
−𝑥0 (1 + ℎ𝐿 − ℎ𝑥)

1 + ℎ𝐿
= 𝑥0

(−1 − ℎ𝐿 + ℎ𝑥)
1 + ℎ𝐿

= 𝑥0 �
ℎ𝑥

1 + ℎ𝐿
−
1 + ℎ𝐿
1 + ℎ𝐿�

= 𝑥0 �
ℎ𝑥

1 + ℎ𝐿
− 1�

Hence (1) becomes

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� ℎ𝑥0
1+ℎ𝐿 − 1� 𝑥 𝑥 < 𝑥0

� ℎ𝑥
1+ℎ𝐿 − 1� 𝑥0 𝑥0 < 𝑥

(2)

We see they are symmetrical in 𝑥, 𝑥0. Here is a plot of 𝐺 (𝑥, 𝑥0) for some arbitrary 𝑥0 located
at 𝑥 = 0.75, ℎ = 1, for 𝐿 = 1.
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Problem 3 Green function. x0=0.75

We need to find the solution using

𝑦 (𝑥) = �
𝑥

0
𝐺 (𝑥, 𝑥0) 𝑓 (𝑥0) 𝑑𝑥0 + 𝑝 (𝑥0) �𝐺 (𝑥, 𝑥0)

𝑑𝑢 (𝑥0)
𝑑𝑥0

− 𝑢 (𝑥0)
𝑑𝐺 (𝑥, 𝑥0)
𝑑𝑥0

�
𝑥0=𝐿

𝑥0=0
(3)

The first step is to find 𝑑𝐺(𝑥,𝑥0)
𝑑𝑥0

. From (2), we find

𝑑𝐺 (𝑥, 𝑥0)
𝑑𝑥0

=

⎧⎪⎪⎨
⎪⎪⎩

ℎ𝑥
1+ℎ𝐿 𝑥 < 𝑥0
ℎ𝑥
1+ℎ𝐿 − 1 𝑥0 < 𝑥

(4)

Now we plug everything in (3). But remember that 𝐺 (0, 𝑥0) = 0,
𝑑𝐺(𝐿,𝑥0)
𝑑𝑥 = −ℎ𝐺 (𝐿, 𝑥0) , 𝑢 (0) =

𝐴, 𝑑𝑢(𝐿)𝑑𝑥 = −ℎ𝑢 (𝐿) . Hence

Δ = �𝐺 (𝑥, 𝑥0)
𝑑𝑢 (𝑥0)
𝑑𝑥0

− 𝑢 (𝑥0)
𝑑𝐺 (𝑥, 𝑥0)
𝑑𝑥0

�
𝑥0=𝐿

𝑥0=0

= 𝐺 (𝑥, 𝐿)
𝑑𝑢 (𝐿)
𝑑𝑥0

− 𝑢 (𝐿)
𝑑𝐺 (𝑥, 𝐿)
𝑑𝑥0

− 𝐺 (𝑥, 0)
𝑑𝑢 (0)
𝑑𝑥0

+ 𝑢 (0)
𝑑𝐺 (𝑥, 0)
𝑑𝑥0

= 𝐺 (𝑥, 𝐿) (−ℎ𝑢 (𝐿)) − 𝑢 (𝐿) (−ℎ𝐺 (𝑥0, 𝐿)) − 0 + (𝐴) �
𝑑𝐺 (𝑥, 0)
𝑑𝑥0

�

=
0

���������������������������������������������− 𝐺 (𝑥, 𝐿) ℎ𝑢 (𝐿) + 𝑢 (𝐿) ℎ𝐺 (𝑥, 𝐿) + 𝐴 �
ℎ𝑥

1 + ℎ𝐿
− 1�

𝑥0=0

= 𝐴�
ℎ𝑥

1 + ℎ𝐿
− 1�

Now we do the integration, From (3), and since 𝑝 = −1 then we obtain

𝑦 (𝑥) = �
𝑥

0
𝐺 (𝑥, 𝑥0) 𝑓 (𝑥0) 𝑑𝑥0 − 𝐴�

ℎ𝑥
1 + ℎ𝐿

− 1�

=

particular solution

�����������������������������������������������������������������
�

𝑥

0
𝐺 (𝑥, 𝑥0) 𝑓 (𝑥0) 𝑑𝑥0 +�

𝐿

𝑥
𝐺 (𝑥, 𝑥0) 𝑓 (𝑥0) 𝑑𝑥0 −

boundary terms

�������������������
𝐴 �

ℎ𝑥
1 + ℎ𝐿

− 1�

We see that the boundary terms are linear combination 𝑥, which is expected as the funda-
mental solutions for the homogenous solution as linear in 𝑥 as was found initially above.
Plugging values From (3) for 𝐺 (𝑥, 𝑥0) for each region into the above gives

𝑦 (𝑥) = �
𝑥

0
�

ℎ𝑥
1 + ℎ𝐿

− 1� 𝑥0𝑓 (𝑥0) 𝑑𝑥0 +�
𝐿

𝑥
�
ℎ𝑥0
1 + ℎ𝐿

− 1� 𝑥𝑓 (𝑥0) 𝑑𝑥0 − 𝐴�
ℎ𝑥

1 + ℎ𝐿
− 1�

This completes the solution. Now we should test it. Let 𝑓 (𝑥) = 𝑥 or 𝑓 (𝑥0) = 𝑥0 and compare
to direction solution. The above becomes
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𝑦 (𝑥) = �
ℎ𝑥

1 + ℎ𝐿
− 1��

𝑥

0
𝑥20𝑑𝑥0 + 𝑥�

𝐿

𝑥
�
ℎ𝑥0
1 + ℎ𝐿

− 1� 𝑥0𝑑𝑥0 − 𝐴�
ℎ𝑥

1 + ℎ𝐿
− 1�

= �
ℎ𝑥

1 + ℎ𝐿
− 1� �

𝑥30
3 �

𝑥

0
+ 𝑥�

𝐿

𝑥
�
ℎ𝑥20
1 + ℎ𝐿

− 𝑥0� 𝑑𝑥0 − 𝐴�
ℎ𝑥

1 + ℎ𝐿
− 1�

= �
ℎ𝑥

1 + ℎ𝐿
− 1� �

𝑥3

3 �
+ 𝑥 �

ℎ
1 + ℎ𝐿

𝑥30
3
−
𝑥20
2 �

𝐿

𝑥
− 𝐴�

ℎ𝑥
1 + ℎ𝐿

− 1�

= �
ℎ𝑥

1 + ℎ𝐿
− 1� �

𝑥3

3 �
+ 𝑥 �

ℎ
1 + ℎ𝐿

𝐿3

3
−
𝐿2

2
−

ℎ
1 + ℎ𝐿

𝑥3

3
+
𝑥2

2 �
− 𝐴 �

ℎ𝑥
1 + ℎ𝐿

− 1�

=
1

6 (1 + 𝐿ℎ)
�−ℎ𝐿3𝑥 − 3𝐿2𝑥 + ℎ𝐿𝑥3 + 𝑥3� − 𝐴 �

ℎ𝑥
1 + ℎ𝐿

− 1�

=
1

6 (1 + 𝐿ℎ)
�𝑥3 (1 + ℎ𝐿) − 𝑥 �ℎ𝐿3 + 3𝐿2�� + 𝐴 �1 −

ℎ𝑥
1 + ℎ𝐿�

=
1

6 (1 + 𝐿ℎ)
�𝑥3 (1 + ℎ𝐿) − 𝑥𝐿2 (ℎ𝐿 + 3)� + 𝐴 �

1 + ℎ (𝐿 − 𝑥)
1 + ℎ𝐿 �

To verify, the problem is solved directly, and solution above using Green function was
compared, same answer confirmed.

In[152]:= ClearAll[x, L0, y, A0, h]

f = x;

computerSolution = u[x] /. First@DSolve[{u''[x] ⩵ f, u[0] ⩵ A0, u'[L0] + h u[L0] ⩵ 0}, u[x], x];

mySolUsingGreenFunction =
1

6 (1 + L0 h)
x3 (1 + h L0) - x L0^2 (h L0 + 3 ) + A0

1 + h (L0 - x)

1 + h L0
;

Simplify[computerSolution - mySolUsingGreenFunction]

Out[156]= 0

2.11.4 Problem 4

𝑢′′ + 2𝑢′ + 𝑢 = 𝑓 (𝑥) ; 0 < 𝑥 < 𝐿; 𝑢 (0) = 0; 𝑢 (𝐿) = 1

Solution

Since the coe�cient on 𝑢′ is 2, then the Integrating factor is 𝜇 (𝑥) = 𝑒∫2𝑑𝑥 = 𝑒2𝑥. Multiplying
the ODE by 𝜇 (𝑥) gives

𝑒2𝑥𝑢′′ + 2𝑒2𝑥𝑢′ + 𝑒2𝑥𝑢 = 𝑒2𝑥𝑓 (𝑥)
𝑑
𝑑𝑥
�𝑒2𝑥𝑢′� + 𝑒2𝑥𝑢 = 𝑒2𝑥𝑓 (𝑥)

To keep the solution consistent with the class notes, we now multiply both sides by −1 in
order to obtain the same form as used in class notes. Hence our ODE is

−
𝑑
𝑑𝑥
�𝑒2𝑥𝑢′� − 𝑒2𝑥𝑢 = −𝑒2𝑥𝑓 (𝑥)

We now see from above that

𝑝 (𝑥) = 𝑒2𝑥

Once we found 𝑝 (𝑥), we now find the Green function. The Green function is the solution
to

𝑑2𝐺 (𝑥, 𝑥0)
𝑑𝑥2

+ 2
𝑑𝐺 (𝑥, 𝑥0)

𝑑𝑥
+ 𝐺 (𝑥, 𝑥0) = 𝛿 (𝑥 − 𝑥0)

𝐺 (0, 𝑥0) = 0
𝐺 (𝐿, 𝑥0) = 0

Where 𝑥0 is the location of the impulse. We first need to find fundamental solutions to the
homogeneous ODE. The solution to 𝑢′′ + 2𝑢′ + 𝑢 = 0 is found by characteristic method.
𝑟2 + 2𝑟 + 1 = 0, hence (𝑟 + 1)2 = 0. Therefore the roots are 𝑟 = −1, double root. Hence the
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fundamental solutions are

𝑢1 = 𝑒−𝑥

𝑢2 = 𝑥𝑒−𝑥

Therefore

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩
𝐴1𝑢1 + 𝐴2𝑢2 𝑥 < 𝑥0
𝐵1𝑢1 + 𝐵2𝑢2 𝑥 > 𝑥0

=

⎧⎪⎪⎨
⎪⎪⎩
𝐴1𝑒−𝑥 + 𝐴2𝑥𝑒−𝑥 𝑥 < 𝑥0
𝐵1𝑒−𝑥 + 𝐵2𝑥𝑒−𝑥 𝑥 > 𝑥0

The first boundary condition on the left end gives 𝐴1 = 0 from the first region. The second
B.C. on the right end, gives

𝐵1𝑒−𝐿 + 𝐵2𝐿𝑒−𝐿 = 0

𝐵1 = −
𝐵2𝐿𝑒−𝐿

𝑒−𝐿
= −𝐵2𝐿

Hence the above solution now reduces to

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩

𝐴2𝑥𝑒−𝑥 𝑥 < 𝑥0
−𝐵2𝐿𝑒−𝑥 + 𝐵2𝑥𝑒−𝑥 𝑥 > 𝑥0

Simplifying −𝐵2𝐿𝑒−𝑥 + 𝐵2𝑥𝑒−𝑥 = 𝐵2 (𝑥 − 𝐿) 𝑒−𝑥, the above can be written as

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩

𝐴2𝑥𝑒−𝑥 𝑥 < 𝑥0
𝐵2 (𝑥 − 𝐿) 𝑒−𝑥 𝑥 > 𝑥0

(1)

Continuity at 𝑥0 gives

𝐴2𝑥0𝑒−𝑥0 = 𝐵2 (𝑥0 − 𝐿) 𝑒−𝑥0

𝐴2𝑥0 = 𝐵2 (𝑥0 − 𝐿) (2)

And jump discontinuity on derivative of 𝐺 gives

𝑑
𝑑𝑥
𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩

𝐴2 (𝑒−𝑥 − 𝑥𝑒−𝑥) 𝑥 < 𝑥0
𝐵2 (1 − 𝑥 + 𝐿) 𝑒−𝑥 𝑥 > 𝑥0

Hence (important note: we use −1
𝑝(𝑥0)

below and not 1
𝑝(𝑥0)

because we started with −𝑑
𝑑𝑥
�𝑝𝑑𝑦𝑑𝑥�+⋯

instead of + 𝑑
𝑑𝑥
�𝑝𝑑𝑦𝑑𝑥� +⋯ )

𝐵2 (1 − 𝑥0 + 𝐿) 𝑒−𝑥0 − 𝐴2 (𝑒−𝑥0 − 𝑥0𝑒−𝑥0) =
−1
𝑝 (𝑥0)

=
−1
𝑒2𝑥0

= −𝑒−2𝑥0

Dividing by 𝑒−𝑥0 to simplify gives

𝐵2 (1 − 𝑥0 + 𝐿) − 𝐴2 (1 − 𝑥0) = −𝑒−𝑥0 (3)

We solve (2,3) for 𝐴1, 𝐵2. From (3)

𝐵2 =
−𝑒−𝑥0 + 𝐴2 (1 − 𝑥0)

1 − 𝑥0 + 𝐿
(4)

Substituting in (2)

𝐴2𝑥0 =
−𝑒−𝑥0 + 𝐴2 (1 − 𝑥0)

1 − 𝑥0 + 𝐿
(𝑥0 − 𝐿)

𝐴2𝑥0 (1 − 𝑥0 + 𝐿) = −𝑒−𝑥0 (𝑥0 − 𝐿) + 𝐴2 (1 − 𝑥0) (𝑥0 − 𝐿)
𝐴2 (𝑥0 (1 − 𝑥0 + 𝐿) − (1 − 𝑥0) (𝑥0 − 𝐿)) = −𝑒−𝑥0 (𝑥0 − 𝐿)

𝐴2 =
−𝑒−𝑥0 (𝑥0 − 𝐿)

𝑥0 (1 − 𝑥0 + 𝐿) − (1 − 𝑥0) (𝑥0 − 𝐿)

=
1
𝐿
𝑒−𝑥0 (𝐿 − 𝑥0)
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Hence, from (4)

𝐵2 =
−𝑒−𝑥0 + � 1𝐿𝑒

−𝑥0 (𝐿 − 𝑥0)� (1 − 𝑥0)

1 − 𝑥0 + 𝐿

= −
1
𝐿
𝑥0𝑒−𝑥0

Therefore the solution (1) becomes

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩

1
𝐿𝑒
−𝑥0 (𝐿 − 𝑥0) 𝑥𝑒−𝑥 𝑥 < 𝑥0

1
𝐿𝑥0𝑒

−𝑥0 (𝐿 − 𝑥) 𝑒−𝑥 𝑥 > 𝑥0
(5)

Or

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩

(𝐿−𝑥0)
𝐿 𝑥𝑒−𝑥0−𝑥 𝑥 < 𝑥0

(𝐿−𝑥)
𝐿 𝑥0𝑒−𝑥0−𝑥 𝑥 > 𝑥0

(5)

We see they are symmetrical in 𝑥, 𝑥0. Here is a plot of 𝐺 (𝑥, 𝑥0) for some arbitrary 𝑥0 located
at 𝑥 = 0.75 for 𝐿 = 1.

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.01

0.02

0.03

0.04

x

G
(x
,x
0)

Problem 4 Green function. x0=0.75

We now need to find the solution using

𝑦 (𝑥) =

particular solution

�����������������������������
�

𝑥

0
𝐺 (𝑥, 𝑥0) 𝑓 (𝑥0) 𝑑𝑥0 +

homogeneous solution/boundary terms

�������������������������������������������������������������������������
�𝑝 (𝑥0) 𝐺 (𝑥, 𝑥0)

𝑑𝑢 (𝑥0)
𝑑𝑥0

− 𝑝 (𝑥0) 𝑢 (𝑥0)
𝑑𝐺 (𝑥, 𝑥0)
𝑑𝑥0

�
𝑥0=𝐿

𝑥0=0
(6)

The first step is to find 𝑑𝐺(𝑥,𝑥0)
𝑑𝑥0

. From (5), we find

𝑑𝐺 (𝑥, 𝑥0)
𝑑𝑥0

=

⎧⎪⎪⎨
⎪⎪⎩

−𝑥𝑒
−𝑥−𝑥0

𝐿 − 𝑥𝑒−𝑥−𝑥0(𝐿−𝑥0)
𝐿 𝑥 < 𝑥0

𝑒−𝑥−𝑥0(𝐿−𝑥)
𝐿 − (𝐿−𝑥)𝑥0𝑒−𝑥−𝑥0

𝐿 𝑥 > 𝑥0
(7)

Now we plug everything in (3). But remember that 𝐺 (𝑥, 0) = 0, 𝐺 (𝑥, 𝐿) = 0, 𝑢 (0) = 0, 𝑢 (𝐿) =
1, 𝑝 (𝑥) = 𝑒2𝑥 . The following is the result of the homogeneous part

Δ = �𝑝 (𝑥0) 𝐺 (𝑥, 𝑥0)
𝑑𝑢 (𝑥0)
𝑑𝑥0

− 𝑝 (𝑥0) 𝑢 (𝑥0)
𝑑𝐺 (𝑥, 𝑥0)
𝑑𝑥0

�
𝑥0=𝐿

𝑥0=0

= �𝑒2𝐿�𝐺 (𝑥, 𝐿)
𝑑𝑢 (𝐿)
𝑑𝑥0

− �𝑒2𝐿� 𝑢 (𝐿)
𝑑𝐺 (𝑥, 𝐿)
𝑑𝑥0

− �𝑒2(0)�𝐺 (𝑥, 0)
𝑑𝑢 (0)
𝑑𝑥0

+ �𝑒2(0)� 𝑢 (0)
𝑑𝐺 (𝑥, 0)
𝑑𝑥0

= 0 − 𝑒2𝐿 (1)

𝑥<𝑥0 branch from (7)

���������������������������������������
�−
𝑥𝑒−𝑥−𝑥0
𝐿

−
𝑥𝑒−𝑥−𝑥0 (𝐿 − 𝑥0)

𝐿 �
𝑥0=𝐿

− 0 + (0)

= −𝑒2𝐿 �−
𝑥𝑒−𝑥−𝐿

𝐿
−
𝑥𝑒−𝑥−𝐿 (𝐿 − 𝐿)

𝐿 �

= 𝑒2𝐿 �
𝑥𝑒−𝑥−𝐿

𝐿 �

=
𝑥𝑒𝐿−𝑥

𝐿
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Now we complete the integration, From (3)

𝑢 (𝑥) =

particular

�����������������������������
�

𝑥

0
𝐺 (𝑥, 𝑥0) 𝑓 (𝑥0) 𝑑𝑥0 +

homogeneous

���������
�
𝑥𝑒𝐿−𝑥

𝐿 �

= �
𝑥

0
𝐺 (𝑥, 𝑥0) 𝑓 (𝑥0) 𝑑𝑥0 +�

𝐿

𝑥
𝐺 (𝑥, 𝑥0) 𝑓 (𝑥0) 𝑑𝑥0 +

𝑥𝑒𝐿−𝑥

𝐿
Plug-in in values From (5) 𝐺 (𝑥, 𝑥0) for each region,

𝑢 (𝑥) = �
𝑥

0

from 𝑥>𝑥0 branch in (5)

�����������������������
�
(𝐿 − 𝑥)
𝐿

𝑥0𝑒−𝑥0−𝑥� 𝑔 (𝑥0) 𝑑𝑥0 +�
𝐿

𝑥

from 𝑥<𝑥0 branch in (5)

�����������������������
�
(𝐿 − 𝑥0)
𝐿

𝑥𝑒−𝑥0−𝑥� 𝑔 (𝑥0) 𝑑𝑥0 +
1
𝐿
𝑥𝑒−𝑥+𝐿

This completes the solution. Now we should test it. Let 𝑓 (𝑥) = 𝑥 or 𝑓 (𝑥0) = 𝑥0. But since we
multiplied by −𝑒2𝑥 (integrating factor) at start, we should now use 𝑔 (𝑥0) = −𝑒2𝑥0𝑥0 as 𝑓 (𝑥0)
below.The above becomes

𝑢 (𝑥) = �
𝑥

0
�
(𝐿 − 𝑥)
𝐿

𝑥0𝑒−𝑥0−𝑥� �−𝑒2𝑥0𝑥0� 𝑑𝑥0 +�
𝐿

𝑥
�
(𝐿 − 𝑥0)
𝐿

𝑥𝑒−𝑥0−𝑥� �−𝑒2𝑥0𝑥0� 𝑑𝑥0 +
𝑥𝑒𝐿−𝑥

𝐿

= −
(𝐿 − 𝑥) 𝑒−𝑥

𝐿 �
𝑥

0
𝑥20𝑒𝑥0𝑑𝑥0 −

𝑥𝑒−𝑥

𝐿 �
𝐿

𝑥
(𝐿 − 𝑥0) 𝑥0𝑒𝑥0𝑑𝑥0 +

𝑥𝑒𝐿−𝑥

𝐿
(8)

But

�
𝑥

0
𝑥20𝑒𝑥0𝑑𝑥0 = −2 + 𝑒𝑥 �2 + 𝑥2 − 2𝑥�

�
𝐿

𝑥
𝑒𝑥0 (𝐿 − 𝑥0) 𝑥0𝑑𝑥0 = 𝑒𝐿 (𝐿 − 2) + 𝑒𝑥 �2 + 𝐿 − 2𝑥 − 𝐿𝑥 + 𝑥2�

Hence (8) becomes

𝑢 (𝑥) = −
(𝐿 − 𝑥) 𝑒−𝑥

𝐿
�−2 + 𝑒𝑥 �2 + 𝑥2 − 2𝑥�� −

𝑥𝑒−𝑥

𝐿
�𝑒𝐿 (𝐿 − 2) + 𝑒𝑥 �2 + 𝐿 − 2𝑥 − 𝐿𝑥 + 𝑥2�� +

𝑥𝑒𝐿−𝑥

𝐿
Which can be simplified to

𝑢 (𝑥) =
1
𝐿
𝑒−𝑥 ��3𝑒𝐿 − 2� 𝑥 + 𝐿 �2 + 𝑒𝑥 (𝑥 − 2) − 𝑥𝑒𝐿��

For 𝐿 = 1, the above becomes

𝑢 (𝑥) = 𝑥 − 2
𝑥
𝑒𝑥
+
2
𝑒𝑥
+ 2𝑥

𝑒
𝑒𝑥
− 2

Verification

To verify the above, a plot of the solution was compare to Mathematica result. Here is plot
of the result. My solution gives exact plot as Mathematica.

In[773]:=

ClearAll[L, x, f]

f = x;

computerSolution = u[x] /. First@DSolve[{u''[x] + 2 u'[x] + u[x] ⩵ f, u[0] ⩵ 0, u[L] ⩵ 1}, u[x], x]

Out[775]=
ⅇ-x 2 L - 2 ⅇx L - 2 x + 3 ⅇL x - ⅇL L x + ⅇx L x

L

In[778]:= mysolution = -(L - x) Exp[-x]/ L (-2 + Exp[x] (2 + x^2 - 2 x)) - x Exp[-x]/ L (Exp[L] (L - 2) + Exp[x] (2 + L - 2 x - L x + x^2)) + x/ L Exp[L - x];

Simplify[mysolution]

Out[779]=
ⅇ-x -2 + 3 ⅇL x + L 2 + ⅇx (-2 + x) - ⅇL x

L

In[780]:= (mysolution - computerSolution) // Simplify

Out[780]= 0

In[781]:= L = 1;

p1 = Plot[computerSolution, {x, 0, 1}, PlotRange → All, ImageSize → 300, PlotLabel → "Mathematica answer", PlotStyle → Blue, GridLines → Automatic,

GridLinesStyle → LightGray];

In[783]:= p2 = Plot[mysolution, {x, 0, 1}, PlotRange → All, ImageSize → 300, PlotLabel → "Manual solution, Green function method", PlotStyle → {Red},

GridLines → Automatic, GridLinesStyle → LightGray];
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Out[575]=
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Mathematica answer
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Manual solution
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2.12 HW 11

Math 322 Homework 11

Due Wednesday Dec. 14, 2016

1. (a) Use the method of images to solve

∇
2u(x) = f(x) (1a)

in a semi-infinite 2D domain with boundary condition u(x, 0) = h(x).

(b) Use the method of images to solve

∇
2u(x) = f(x) (1b)

in a semi-infinite 2D domain with boundary condition ∂u(x, 0)/∂y = h(x).

(c) (a) Use the method of images to solve

∇
2u(x) = f(x) (1c)

in a semi-infinite 3D domain with boundary condition ∂u(x, 0, z)/∂y = h(x, z).

2. Using the method of images, solve

∇
2u(x) = f(x) (2)

in the 2D domain x ≥ 0, y ≥ 0 with boundary conditions u(0, y) = g(y) and u(x, 0) = h(x).

1

The following are the general steps used in all the problems below :

1. Image points were placed to satisfy homogenous boundary conditions for Green
function using the solution for infinite domain.

2. The Green formula was applied to determine the particular solution and the bound-
ary terms.

3. Derivative of Green function was found and used in the result found above.

4. The role of 𝑥⃗0, 𝑥⃗ was reversed in the final expression to express the final result as
𝑢 �𝑥⃗� instead of 𝑢 �𝑥⃗0�.

2.12.1 Problem 1

2.12.1.1 Part (a)

Green function on infinite domain, which is the solution to

∇ 2𝐺�𝑥⃗, 𝑥⃗0� = 𝛿 �𝑥⃗ − 𝑥⃗0�

Is given by

𝐺∞ �𝑥⃗, 𝑥⃗0� =
1
2𝜋

ln (𝑟)

=
1
2𝜋

ln ��𝑥⃗ − 𝑥⃗0��

=
1
2𝜋

ln
⎛
⎜⎜⎜⎜⎝�

(𝑥 − 𝑥0)
2 + �𝑦 − 𝑦0�

2
⎞
⎟⎟⎟⎟⎠

=
1
4𝜋

ln �(𝑥 − 𝑥0)2 + �𝑦 − 𝑦0�
2
�

By placing a negative impulse at location 𝑥⃗∗0 = �𝑥0, −𝑦0�, the Green function for semi-infinite
domain is obtained
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(x0, y0)+

(x0,−y0)−

x

y

Region where solution exist

𝐺�𝑥⃗, 𝑥⃗0� =
1
2𝜋

ln (𝑟1) −
1
2𝜋

ln (𝑟2)

=
1
2𝜋

ln ��𝑥⃗ − 𝑥⃗0�� −
1
2𝜋

ln ��𝑥⃗ − 𝑥⃗∗0��

=
1
4𝜋

�ln �(𝑥 − 𝑥0)2 + �𝑦 − 𝑦0�
2
� − ln �(𝑥 − 𝑥0)2 + �𝑦 + 𝑦0�

2
��

=
1
4𝜋

ln
(𝑥 − 𝑥0)

2 + �𝑦 − 𝑦0�
2

(𝑥 − 𝑥0)
2 + �𝑦 + 𝑦0�

2 (1)

The following is 3D plot of the above Green function, showing the image impulse and
showing that 𝐺 = 0 at the line 𝑦 = 0 (marked as red)

Out[24]=

The Green function in (1) is now used to solve ∇ 2𝑢 �𝑥⃗� = 𝑓 �𝑥⃗�, with 𝑢 (𝑥, 0) = ℎ (𝑥). Starting
with Green formula for 2D

�𝑢�𝑥⃗�∇ 2𝐺�𝑥⃗, 𝑥⃗0� − 𝐺 �𝑥⃗, 𝑥⃗0� ∇ 2𝑢 �𝑥⃗� 𝑑𝐴 = ∮�𝑢 �𝑥⃗� ∇𝐺 �𝑥⃗, 𝑥⃗0� − 𝐺 �𝑥⃗, 𝑥⃗0� ∇𝑢 �𝑥⃗�� ⋅ 𝑛̂ 𝑑𝑠

= ∮�𝑢 �𝑥⃗� ∇𝐺 �𝑥⃗, 𝑥⃗0� − 𝐺 �𝑥⃗, 𝑥⃗0� ∇𝑢 �𝑥⃗�� ⋅ �− ̂𝚥� 𝑑𝑠

= ∮�𝐺 �𝑥⃗, 𝑥⃗0� ∇𝑢 �𝑥⃗� − 𝑢 �𝑥⃗� ∇𝐺 �𝑥⃗, 𝑥⃗0�� ⋅ ̂𝚥 𝑑𝑠

=
∞

�
−∞

⎛
⎜⎜⎜⎜⎝𝐺 �𝑥⃗, 𝑥⃗0�

𝜕𝑢 �𝑥⃗�
𝜕𝑦

− 𝑢 �𝑥⃗�
𝜕𝐺 �𝑥⃗, 𝑥⃗0�

𝜕𝑦

⎞
⎟⎟⎟⎟⎠
𝑦=0

𝑑𝑥

But ∇ 2𝐺�𝑥⃗, 𝑥⃗0� = 𝛿 �𝑥⃗, 𝑥⃗0� and ∇ 2𝑢 �𝑥⃗� = 𝑓 �𝑥⃗�, therefore the above becomes

�𝑢�𝑥⃗� 𝛿 �𝑥⃗, 𝑥⃗0� 𝑑𝐴 −�𝐺�𝑥⃗, 𝑥⃗0� 𝑓 �𝑥⃗� 𝑑𝐴 =
∞

�
−∞

⎛
⎜⎜⎜⎜⎝𝐺 �𝑥⃗, 𝑥⃗0�

𝜕𝑢 �𝑥⃗�
𝜕𝑦

− 𝑢 �𝑥⃗�
𝜕𝐺 �𝑥⃗, 𝑥⃗0�

𝜕𝑦

⎞
⎟⎟⎟⎟⎠
𝑦=0

𝑑𝑥
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Since ∫∫𝑢 �𝑥⃗� 𝛿 �𝑥⃗, 𝑥⃗0� 𝑑𝐴 = 𝑢 �𝑥⃗0�, the above reduces to

𝑢 �𝑥⃗0� −�𝐺�𝑥⃗, 𝑥⃗0� 𝑓 �𝑥⃗� 𝑑𝐴 =
∞

�
−∞

⎛
⎜⎜⎜⎜⎝𝐺 �𝑥⃗, 𝑥⃗0�

𝜕𝑢 �𝑥⃗�
𝜕𝑦

− 𝑢 �𝑥⃗�
𝐺 �𝑥⃗, 𝑥⃗0�
𝑑𝑦

⎞
⎟⎟⎟⎟⎠
𝑦=0

𝑑𝑥

𝑢 �𝑥⃗0� =�𝐺�𝑥⃗, 𝑥⃗0� 𝑓 �𝑥⃗� 𝑑𝐴 +
∞

�
−∞

⎛
⎜⎜⎜⎜⎝𝐺 �𝑥⃗, 𝑥⃗0�

𝜕𝑢 �𝑥⃗�
𝜕𝑦

− 𝑢 �𝑥⃗�
𝜕𝐺 �𝑥⃗, 𝑥⃗0�

𝜕𝑦

⎞
⎟⎟⎟⎟⎠
𝑦=0

𝑑𝑥

(2)

And since 𝐺�𝑥⃗, 𝑥⃗0� = 0 at 𝑦 = 0, therefore

𝑢 �𝑥⃗0� =�𝐺�𝑥⃗, 𝑥⃗0� 𝑓 �𝑥⃗� 𝑑𝐴 +
∞

�
−∞

⎛
⎜⎜⎜⎜⎝−𝑢 �𝑥⃗�

𝜕𝐺 �𝑥⃗, 𝑥⃗0�
𝜕𝑦

⎞
⎟⎟⎟⎟⎠
𝑦=0

𝑑𝑥

And since 𝑢 �𝑥⃗� = ℎ (𝑥) at 𝑦 = 0, then

𝑢 �𝑥⃗0� =�𝐺�𝑥⃗, 𝑥⃗0� 𝑓 �𝑥⃗� 𝑑𝐴 −
∞

�
−∞

ℎ (𝑥)
⎛
⎜⎜⎜⎜⎝
𝜕𝐺 �𝑥⃗, 𝑥⃗0�

𝜕𝑦

⎞
⎟⎟⎟⎟⎠
𝑦=0

𝑑𝑥 (3)

�
𝑑𝐺�𝑥⃗,𝑥⃗0�

𝑑𝑦 �
𝑦=0

is now evaluated to complete the solution. Using 𝐺�𝑥⃗, 𝑥⃗0� in equation (1),

therefore
𝑑𝐺 �𝑥⃗, 𝑥⃗0�

𝑑𝑦
=

1
4𝜋

𝑑
𝑑𝑦
�ln �(𝑥 − 𝑥0)2 + �𝑦 − 𝑦0�

2
� − ln �(𝑥 − 𝑥0)2 + �𝑦 + 𝑦0�

2
��

=
1
4𝜋

⎛
⎜⎜⎜⎜⎜⎜⎝

2 �𝑦 − 𝑦0�

(𝑥 − 𝑥0)
2 + �𝑦 − 𝑦0�

2 −
2 �𝑦 + 𝑦0�

(𝑥 − 𝑥0)
2 + �𝑦 + 𝑦0�

2

⎞
⎟⎟⎟⎟⎟⎟⎠

Evaluating the above at 𝑦 = 0 gives
⎛
⎜⎜⎜⎜⎝
𝑑𝐺 �𝑥⃗, 𝑥⃗0�

𝑑𝑦

⎞
⎟⎟⎟⎟⎠
𝑦=0

=
1
4𝜋

⎛
⎜⎜⎜⎝

−2𝑦0
(𝑥 − 𝑥0)

2 + 𝑦20
−

2𝑦0
(𝑥 − 𝑥0)

2 + 𝑦20

⎞
⎟⎟⎟⎠

=
−1
𝜋

⎛
⎜⎜⎜⎝

𝑦0
(𝑥 − 𝑥0)

2 + 𝑦20

⎞
⎟⎟⎟⎠

Replacing the above into (3) gives

𝑢 �𝑥⃗0� =�𝐺�𝑥⃗, 𝑥⃗0� 𝑓 �𝑥⃗� 𝑑𝐴 +
𝑦0
𝜋 �

∞

−∞

ℎ (𝑥)
(𝑥 − 𝑥0)

2 + 𝑦20
𝑑𝑥

Using the expression for 𝐺�𝑥⃗, 𝑥⃗0� from (1), the above result becomes

𝑢 �𝑥0, 𝑦0� =
1
4𝜋

∞

�
𝑥=−∞

∞

�
𝑦=0

ln
(𝑥 − 𝑥0)

2 + �𝑦 − 𝑦0�
2

(𝑥 − 𝑥0)
2 + �𝑦 + 𝑦0�

2𝑓 �𝑥, 𝑦� 𝑑𝑦𝑑𝑥 +
𝑦0
𝜋

∞

�
−∞

ℎ (𝑥)
(𝑥 − 𝑥0)

2 + 𝑦20
𝑑𝑥

And finally, order of 𝑥⃗, 𝑥⃗0 is reversed giving

𝑢 �𝑥, 𝑦� =
1
4𝜋

∞

�
𝑥0=−∞

∞

�
𝑦0=0

ln
(𝑥0 − 𝑥)

2 + �𝑦0 − 𝑦�
2

(𝑥0 − 𝑥)
2 + �𝑦0 + 𝑦�

2𝑓 �𝑥0, 𝑦0� 𝑑𝑦0𝑑𝑥0 +
𝑦
𝜋

∞

�
−∞

ℎ (𝑥0)
(𝑥0 − 𝑥)

2 + 𝑦2
𝑑𝑥0

2.12.1.2 Part (b)

This is similar to part (a), and the image is placed on the same location as shown above,
but now the boundary conditions are di�erent. Starting from equation (2) in part (a)

𝑢 �𝑥⃗0� =�𝐺�𝑥⃗, 𝑥⃗0� 𝑓 �𝑥⃗� 𝑑𝐴 +
∞

�
−∞

⎛
⎜⎜⎜⎜⎝𝐺 �𝑥⃗, 𝑥⃗0�

𝜕𝑢 �𝑥⃗�
𝜕𝑦

− 𝑢 �𝑥⃗�
𝜕𝐺 �𝑥⃗, 𝑥⃗0�

𝜕𝑦

⎞
⎟⎟⎟⎟⎠
𝑦=0

𝑑𝑥 (1)
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But now
𝜕𝐺�𝑥⃗,𝑥⃗0�

𝜕𝑦 = 0 at 𝑦 = 0 and not 𝐺�𝑥⃗, 𝑥⃗0� = 0 as in part (a). This means the image is a

positive impulse and not negative as in part (a). Therefore 𝐺�𝑥⃗, 𝑥⃗0� becomes the following

𝐺�𝑥⃗, 𝑥⃗0� =
1
2𝜋

ln (𝑟1) +
1
2𝜋

ln (𝑟2)

=
1
2𝜋

ln ��𝑥⃗ − 𝑥⃗0�� +
1
2𝜋

ln ��𝑥⃗ − 𝑥⃗∗0��

=
1
4𝜋

�ln �(𝑥 − 𝑥0)2 + �𝑦 − 𝑦0�
2
� + ln �(𝑥 − 𝑥0)2 + �𝑦 + 𝑦0�

2
�� (2)

The following is 3D plot of the above Green function, showing that showing that
𝜕𝐺�𝑥⃗,𝑥⃗0�

𝜕𝑦 = 0
at 𝑦 = 0 (marked as red)

Out[3]=

Green function, semi-infinite 2D, x0 at (1,1) and image at (1,-1) part(b)

Since
𝜕𝐺�𝑥⃗,𝑥⃗0�

𝜕𝑦 = 0 at 𝑦 = 0 then (1) becomes

𝑢 �𝑥⃗0� =�𝐺�𝑥⃗, 𝑥⃗0� 𝑓 �𝑥⃗� 𝑑𝐴 +
∞

�
−∞

⎛
⎜⎜⎜⎜⎝𝐺 �𝑥⃗, 𝑥⃗0�

𝜕𝑢 �𝑥⃗�
𝜕𝑦

⎞
⎟⎟⎟⎟⎠
𝑦=0

𝑑𝑥

But
𝜕𝑢�𝑥⃗�

𝜕𝑦 = ℎ (𝑥) at 𝑦 = 0, hence the above reduces to

𝑢 �𝑥⃗0� =�𝐺�𝑥⃗, 𝑥⃗0� 𝑓 �𝑥⃗� 𝑑𝐴 +
∞

�
−∞

𝐺�𝑥⃗, 𝑥⃗0�𝑦=0 ℎ
(𝑥) 𝑑𝑥 (3)

Evaluating 𝐺�𝑥⃗, 𝑥⃗0� at 𝑦 = 0 gives

𝐺�𝑥⃗, 𝑥⃗0�𝑦0=0
=

1
4𝜋

�ln �(𝑥 − 𝑥0)2 + �𝑦 − 𝑦0�
2
� + ln �(𝑥 − 𝑥0)2 + �𝑦 + 𝑦0�

2
��
𝑦=0

=
1
4𝜋

�ln �(𝑥 − 𝑥0)2 + 𝑦20� + ln �(𝑥 − 𝑥0)2 + 𝑦20��

=
1
4𝜋

ln ��(𝑥 − 𝑥0)2 + 𝑦20�
2
�

=
1
2𝜋

ln �(𝑥 − 𝑥0)2 + 𝑦20�

Substituting the above in RHS of (3) gives

𝑢 �𝑥⃗0� =
∞

�
𝑥=−∞

∞

�
𝑦=0

𝐺�𝑥⃗, 𝑥⃗0� 𝑓 �𝑥, 𝑦� 𝑑𝑦𝑑𝑥 +
1
2𝜋

∞

�
−∞

ln �(𝑥 − 𝑥0)2 + 𝑦20� ℎ (𝑥) 𝑑𝑥

Reversing the role of 𝑥⃗0, 𝑥⃗ gives

𝑢 �𝑥⃗� =
∞

�
𝑥0=−∞

∞

�
𝑦0=0

𝐺�𝑥⃗, 𝑥⃗0� 𝑓 �𝑥0, 𝑦0� 𝑑𝑦0𝑑𝑥0 +
1
2𝜋

∞

�
−∞

ln �(𝑥0 − 𝑥)2 + 𝑦2� ℎ (𝑥0) 𝑑𝑥0

2.12.1.3 Part (c)

In infinite 3D domain, the Green function for Poisson PDE is given by

𝐺�𝑥⃗, 𝑥⃗0� =
−1
4𝜋𝑟
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Where 𝑟 is given by

𝑟 =
�
(𝑥 − 𝑥0)

2 + �𝑦 − 𝑦0�
2
+ (𝑧 − 𝑧0)

2

𝑥⃗0 = �𝑥0, 𝑦0, 𝑧0� is the location of the impulse. Since 𝜕𝐺
𝜕𝑦 = 0, then the same sign impulse is

located at 𝑥∗0 = �𝑥0, −𝑦0, 𝑧0�, and the Green function becomes

𝐺�𝑥⃗, 𝑥⃗0� =
−1
4𝜋𝑟0

−
1

4𝜋𝑟∗0

=
1
4𝜋

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
−

1

�(𝑥 − 𝑥0)
2 + �𝑦 − 𝑦0�

2
+ (𝑧 − 𝑧0)

2
−

1

�(𝑥 − 𝑥0)
2 + �𝑦 + 𝑦0�

2
+ (𝑧 − 𝑧0)

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1)

Using Green formula in 3D gives

�𝑢�𝑥⃗�∇ 2𝐺�𝑥⃗, 𝑥⃗0� − 𝐺 �𝑥⃗, 𝑥⃗0� ∇ 2𝑢 �𝑥⃗� 𝑑𝑉 =��𝑢 �𝑥⃗� ∇𝐺 �𝑥⃗, 𝑥⃗0� − 𝐺 �𝑥⃗, 𝑥⃗0� ∇𝑢 �𝑥⃗�� ⋅ 𝑛̂ 𝑑𝑥𝑑𝑧

=��𝑢 �𝑥⃗� ∇𝐺 �𝑥⃗, 𝑥⃗0� − 𝐺 �𝑥⃗, 𝑥⃗0� ∇𝑢 �𝑥⃗�� ⋅ �− ̂𝚥� 𝑑𝑥𝑑𝑧

=��𝐺�𝑥⃗, 𝑥⃗0� ∇𝑢 �𝑥⃗� − 𝑢 �𝑥⃗� ∇𝐺 �𝑥⃗, 𝑥⃗0�� ⋅ ̂𝚥 𝑑𝑥𝑑𝑧

= �
∞

−∞
�

∞

−∞

⎛
⎜⎜⎜⎜⎝𝐺 �𝑥⃗, 𝑥⃗0�

𝜕𝑢 �𝑥, 𝑦, 𝑧�
𝜕𝑦

− 𝑢 �𝑥⃗�
𝜕𝐺 �𝑥, 𝑦, 𝑧, 𝑥⃗0�

𝜕𝑦

⎞
⎟⎟⎟⎟⎠
𝑦=0

𝑑𝑥𝑑𝑧

But ∇ 2𝐺�𝑥⃗, 𝑥⃗0� = 𝛿 �𝑥⃗, 𝑥⃗0� and ∇ 2𝑢 �𝑥⃗� = 𝑓 �𝑥⃗�, and the above becomes

�𝑢�𝑥⃗� 𝛿 �𝑥⃗, 𝑥⃗0� 𝑑𝑉−�𝐺�𝑥⃗, 𝑥⃗0� 𝑓 �𝑥⃗� 𝑑𝑣 =
∞

�
−∞

∞

�
−∞

⎛
⎜⎜⎜⎜⎝𝐺 �𝑥⃗, 𝑥⃗0�

𝜕𝑢 �𝑥⃗�
𝜕𝑦

− 𝑢 �𝑥⃗�
𝜕𝐺 �𝑥⃗, 𝑥⃗0�

𝜕𝑦

⎞
⎟⎟⎟⎟⎠
𝑦=0

𝑑𝑥𝑑𝑧

But �𝑢�𝑥⃗� 𝛿 �𝑥⃗, 𝑥⃗0� 𝑑𝑉 = 𝑢 �𝑥⃗0�, hence

𝑢 �𝑥⃗0� −�𝐺�𝑥⃗, 𝑥⃗0� 𝑓 �𝑥⃗� 𝑑𝑉 =
∞

�
−∞

∞

�
−∞

⎛
⎜⎜⎜⎜⎝𝐺 �𝑥⃗, 𝑥⃗0�

𝜕𝑢 �𝑥⃗�
𝜕𝑦

− 𝑢 �𝑥⃗�
𝜕𝐺 �𝑥⃗, 𝑥⃗0�

𝜕𝑦

⎞
⎟⎟⎟⎟⎠
𝑦=0

𝑑𝑥𝑑𝑧

Rearranging

𝑢 �𝑥⃗0� =�𝐺�𝑥⃗, 𝑥⃗0� 𝑓 �𝑥⃗� 𝑑𝑉 +
∞

�
−∞

∞

�
−∞

⎛
⎜⎜⎜⎜⎝𝐺 �𝑥⃗, 𝑥⃗0�

𝜕𝑢 �𝑥⃗�
𝜕𝑦

− 𝑢 �𝑥⃗�
𝜕𝐺 �𝑥⃗, 𝑥⃗0�

𝜕𝑦

⎞
⎟⎟⎟⎟⎠
𝑦=0

𝑑𝑥𝑑𝑧 (2)

But �
𝜕𝑢�𝑥⃗�

𝜕𝑦 �
𝑦=0

= ℎ (𝑥, 𝑧) and we impose �
𝜕𝐺�𝑥⃗,𝑥⃗0�

𝜕𝑦 �
𝑦=0

= 0, therefore the above becomes

𝑢 �𝑥⃗0� =�𝐺�𝑥⃗, 𝑥⃗0� 𝑓 �𝑥⃗� 𝑑𝑉 +
∞

�
−∞

∞

�
−∞

𝐺�𝑥⃗, 𝑥⃗0�𝑦=0 ℎ
(𝑥, 𝑧) 𝑑𝑥𝑑𝑧 (3)

Evaluating 𝐺�𝑥⃗, 𝑥⃗0�𝑦=0 gives

𝐺�𝑥⃗, 𝑥⃗0�𝑦=0 =
1
4𝜋

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
−

1

�(𝑥 − 𝑥0)
2 + �𝑦 − 𝑦0�

2
+ (𝑧 − 𝑧0)

2
−

1

�(𝑥 − 𝑥0)
2 + �𝑦 + 𝑦0�

2
+ (𝑧 − 𝑧0)

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
𝑦=0

=
1
4𝜋

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1

�(𝑥 − 𝑥0)
2 + 𝑦20 + (𝑧 − 𝑧0)

2
−

1

�(𝑥 − 𝑥0)
2 + 𝑦20 + (𝑧 − 𝑧0)

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= −
1

2𝜋�(𝑥 − 𝑥0)
2 + 𝑦20 + (𝑧 − 𝑧0)

2

Using the above in (3) results in

𝑢 �𝑥⃗0� =�𝐺�𝑥⃗, 𝑥⃗0� 𝑓 �𝑥⃗� 𝑑𝑉 −
1
2𝜋

∞

�
−∞

∞

�
−∞

1

�(𝑥 − 𝑥0)
2 + 𝑦20 + (𝑧 − 𝑧0)

2
ℎ (𝑥, 𝑧) 𝑑𝑥𝑑𝑧
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And finally reversing the role of 𝑥⃗0, 𝑥⃗ gives the final answer

𝑢 �𝑥⃗� =�𝐺�𝑥⃗, 𝑥⃗0� 𝑓 �𝑥⃗0� 𝑑𝑉0 −
1
2𝜋

∞

�
−∞

∞

�
−∞

1

�(𝑥0 − 𝑥)
2 + 𝑦2 + (𝑧0 − 𝑧)

2
ℎ (𝑥0, 𝑧0) 𝑑𝑥0𝑑𝑧0

2.12.2 Problem 2

Green function in 2D on infinite domain, which is the solution to

∇ 2𝐺�𝑥⃗, 𝑥⃗0� = 𝛿 �𝑥⃗ − 𝑥⃗0�

Is given by

𝐺∞ �𝑥⃗, 𝑥⃗0� =
1
2𝜋

ln (𝑟)

A negative impulse is placed 𝑥⃗1 = �𝑥0, −𝑦0� and another negative impulse at 𝑥⃗2 = �−𝑥0, 𝑦0�
and positive one at 𝑥⃗3 = �−𝑥0, −𝑦0�. The following is a diagram showing the placement of
images.

(x0, y0)+

(x0,−y0)−

x

y

Region where solution exist

(−x0, y0)−

(−x0,−y0)+

The resulting Green function becomes

𝐺�𝑥⃗, 𝑥⃗0� =
1
2𝜋

ln (𝑟) − 1
2𝜋

ln (𝑟1) −
1
2𝜋

ln (𝑟2) +
1
2𝜋

ln (𝑟3)

Or

𝐺�𝑥⃗, 𝑥⃗0� =
1
4𝜋

ln �(𝑥 − 𝑥0)2 + �𝑦 − 𝑦0�
2
� −

1
4𝜋

ln �(𝑥 − 𝑥0)2 + �𝑦 + 𝑦0�
2
�

−
1
4𝜋

ln �(𝑥 + 𝑥0)2 + �𝑦 − 𝑦0�
2
� +

1
4𝜋

ln �(𝑥 + 𝑥0)2 + �𝑦 + 𝑦0�
2
� (1)

The following is 3D plot of the above Green function, showing the image impulse and
showing that 𝐺 = 0 at the line 𝑦 = 0 and also at line 𝑥 = 0. (Lines marked as red and blue)

Out[5]=

Now that the Green function is found, it is used to solve ∇ 2𝑢 �𝑥⃗� = 𝑓 �𝑥⃗�, with 𝑢 (𝑥, 0) = ℎ (𝑥),

202



2.12. HW 11 CHAPTER 2. HWS

𝑢 �0, 𝑦� = 𝑔 �𝑦� .Starting with Green formula for 2D

�𝑢�𝑥⃗�∇ 2𝐺�𝑥⃗, 𝑥⃗0� − 𝐺 �𝑥⃗, 𝑥⃗0� ∇ 2𝑢 �𝑥⃗� 𝑑𝐴 = ∮
𝑠1
�𝑢 �𝑥⃗� ∇𝐺 �𝑥⃗, 𝑥⃗0� − 𝐺 �𝑥⃗, 𝑥⃗0� ∇𝑢 �𝑥⃗�� ⋅ 𝑛̂ 𝑑𝑠

+∮
𝑠2
�𝑢 �𝑥⃗� ∇𝐺 �𝑥⃗, 𝑥⃗0� − 𝐺 �𝑥⃗, 𝑥⃗0� ∇𝑢 �𝑥⃗�� ⋅ 𝑛̂ 𝑑𝑠

To simplify the notation, from now on, 𝐺 is used of 𝐺�𝑥⃗, 𝑥⃗0�, and also 𝑢 instead of 𝑢 �𝑥⃗�.
The line 𝑠1 in the above is the line 𝑥 > 0, 𝑦 = 0 and 𝑠2 is the line 𝑥 = 0, 𝑦 > 0. Therefore the
above becomes

�𝑢∇ 2𝐺 − 𝐺∇ 2𝑢 𝑑𝐴 = ∮
𝑠1
(𝑢∇𝐺 − 𝐺∇𝑢) ⋅ �− ̂𝚥� 𝑑𝑠 +∮

𝑠2
(𝑢∇𝐺 − 𝐺∇𝑢) ⋅ (− ̂𝚤) 𝑑𝑠

Or

�𝑢∇ 2𝐺 𝑑𝐴 −�𝐺∇ 2𝑢 𝑑𝐴 =
∞

�
0
�𝐺
𝜕𝑢
𝜕𝑦

− 𝑢
𝜕𝐺
𝜕𝑦 �

𝑦=0
𝑑𝑥 +

∞

�
0
�𝐺
𝜕𝑢
𝜕𝑥

− 𝑢
𝜕𝐺
𝜕𝑥 �

𝑥=0
𝑑𝑦

But ∇ 2𝐺�𝑥⃗, 𝑥⃗0� = 𝛿 �𝑥⃗, 𝑥⃗0� and ∇ 2𝑢 �𝑥⃗� = 𝑓 �𝑥⃗�, hence the above reduces to

�𝑢�𝑥⃗� 𝛿 �𝑥⃗, 𝑥⃗0� 𝑑𝐴 −�𝐺𝑓�𝑥⃗� 𝑑𝐴 =
∞

�
0
�𝐺
𝜕𝑢
𝜕𝑦

− 𝑢
𝜕𝐺
𝜕𝑦 �

𝑦=0
𝑑𝑥 +

∞

�
0
�𝐺
𝜕𝑢
𝜕𝑥

− 𝑢
𝜕𝐺
𝜕𝑥 �

𝑥=0
𝑑𝑦

But �𝑢�𝑥⃗� 𝛿 �𝑥⃗, 𝑥⃗0� 𝑑𝐴 = 𝑢 �𝑥⃗0� therefore

𝑢 �𝑥⃗0� −�𝐺𝑓�𝑥⃗� 𝑑𝐴 =
∞

�
0
�𝐺
𝜕𝑢
𝜕𝑦

− 𝑢
𝜕𝐺
𝜕𝑦 �

𝑦=0
𝑑𝑥 +

∞

�
0
�𝐺
𝜕𝑢
𝜕𝑥

− 𝑢
𝜕𝐺
𝜕𝑥 �

𝑥=0
𝑑𝑦

Or

𝑢 �𝑥⃗0� =�𝐺𝑓�𝑥⃗� 𝑑𝐴 +
∞

�
0
�𝐺
𝜕𝑢
𝜕𝑦

− 𝑢
𝜕𝐺
𝜕𝑦 �

𝑦=0
𝑑𝑥 +

∞

�
0
�𝐺
𝜕𝑢
𝜕𝑥

− 𝑢
𝜕𝐺
𝜕𝑥 �

𝑥=0
𝑑𝑦

Since 𝐺�𝑥⃗, 𝑥⃗0� = 0 at 𝑦 = 0, and 𝐺�𝑥⃗, 𝑥⃗0� = 0 at 𝑥 = 0, the above becomes

𝑢 �𝑥⃗0� =�𝐺𝑓�𝑥⃗� 𝑑𝐴 −
∞

�
0
�𝑢
𝜕𝐺
𝜕𝑦 �

𝑦=0
𝑑𝑥 −

∞

�
0
�𝑢
𝜕𝐺
𝜕𝑥 �

𝑥=0
𝑑𝑦

Since 𝑢 �𝑥⃗� = ℎ (𝑥) at 𝑦 = 0 and 𝑢 �𝑥⃗� = 𝑔 �𝑦� at 𝑥 = 0 then

𝑢 �𝑥0, 𝑦0� =�𝐺𝑓�𝑥⃗� 𝑑𝐴 −
∞

�
0

ℎ (𝑥) �
𝜕𝐺
𝜕𝑦 �

𝑦=0
𝑑𝑥 −

∞

�
0

𝑔 �𝑦� �
𝜕𝐺
𝜕𝑥 �

𝑥=0
𝑑𝑦 (2)

�𝑑𝐺
𝑑𝑦
�
𝑦=0

and �𝜕𝐺𝜕𝑥 �𝑥=0
are now evaluated to complete the solution. Using 𝐺�𝑥⃗, 𝑥⃗0� in equation

(1) gives

𝜕𝐺
𝜕𝑦

=
1
4𝜋

⎛
⎜⎜⎜⎜⎜⎜⎝

2 �𝑦 − 𝑦0�

(𝑥 − 𝑥0)
2 + �𝑦 − 𝑦0�

2

⎞
⎟⎟⎟⎟⎟⎟⎠ −

1
4𝜋

⎛
⎜⎜⎜⎜⎜⎜⎝

2 �𝑦 + 𝑦0�

(𝑥 − 𝑥0)
2 + �𝑦 + 𝑦0�

2

⎞
⎟⎟⎟⎟⎟⎟⎠

−
1
4𝜋

⎛
⎜⎜⎜⎜⎜⎜⎝

2 �𝑦 − 𝑦0�

(𝑥 + 𝑥0)
2 + �𝑦 − 𝑦0�

2

⎞
⎟⎟⎟⎟⎟⎟⎠ +

1
4𝜋

⎛
⎜⎜⎜⎜⎜⎜⎝

2 �𝑦 + 𝑦0�

(𝑥 + 𝑥0)
2 + �𝑦 + 𝑦0�

2

⎞
⎟⎟⎟⎟⎟⎟⎠

Evaluating the above at 𝑦 = 0 results in

�
𝜕𝐺
𝜕𝑦 �

𝑦=0
=

1
4𝜋

⎛
⎜⎜⎜⎝

−2𝑦0
(𝑥 − 𝑥0)

2 + 𝑦20

⎞
⎟⎟⎟⎠ −

1
4𝜋

⎛
⎜⎜⎜⎝

2𝑦0
(𝑥 − 𝑥0)

2 + 𝑦20

⎞
⎟⎟⎟⎠

−
1
4𝜋

⎛
⎜⎜⎜⎝

−2𝑦0
(𝑥 + 𝑥0)

2 + 𝑦20

⎞
⎟⎟⎟⎠ +

1
4𝜋

⎛
⎜⎜⎜⎝

2𝑦0
(𝑥 + 𝑥0)

2 + 𝑦20

⎞
⎟⎟⎟⎠

Or

�
𝜕𝐺
𝜕𝑦 �

𝑦=0
=
𝑦0
𝜋

⎛
⎜⎜⎜⎝

1
(𝑥 + 𝑥0)

2 + 𝑦20
−

1
(𝑥 − 𝑥0)

2 + 𝑦20

⎞
⎟⎟⎟⎠ (3)
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Finding 𝜕𝐺
𝜕𝑥 gives

𝜕𝐺
𝜕𝑥

=
1
4𝜋

⎛
⎜⎜⎜⎜⎜⎜⎝

2 (𝑥 − 𝑥0)

(𝑥 − 𝑥0)
2 + �𝑦 − 𝑦0�

2

⎞
⎟⎟⎟⎟⎟⎟⎠ −

1
4𝜋

⎛
⎜⎜⎜⎜⎜⎜⎝

2 (𝑥 − 𝑥0)

(𝑥 − 𝑥0)
2 + �𝑦 + 𝑦0�

2

⎞
⎟⎟⎟⎟⎟⎟⎠

−
1
4𝜋

⎛
⎜⎜⎜⎜⎜⎜⎝

2 (𝑥 + 𝑥0)

(𝑥 + 𝑥0)
2 + �𝑦 − 𝑦0�

2

⎞
⎟⎟⎟⎟⎟⎟⎠ +

1
4𝜋

⎛
⎜⎜⎜⎜⎜⎜⎝

2 (𝑥 + 𝑥0)

(𝑥 + 𝑥0)
2 + �𝑦 + 𝑦0�

2

⎞
⎟⎟⎟⎟⎟⎟⎠

Evaluating the above at 𝑥 = 0 results in

�
𝜕𝐺
𝜕𝑥 �

𝑥=0
=

1
4𝜋

⎛
⎜⎜⎜⎜⎜⎜⎝

−2𝑥0
𝑥20 + �𝑦 − 𝑦0�

2

⎞
⎟⎟⎟⎟⎟⎟⎠ −

1
4𝜋

⎛
⎜⎜⎜⎜⎜⎜⎝

−2𝑥0
𝑥20 + �𝑦 + 𝑦0�

2

⎞
⎟⎟⎟⎟⎟⎟⎠

−
1
4𝜋

⎛
⎜⎜⎜⎜⎜⎜⎝

2𝑥0
𝑥20 + �𝑦 − 𝑦0�

2

⎞
⎟⎟⎟⎟⎟⎟⎠ +

1
4𝜋

⎛
⎜⎜⎜⎜⎜⎜⎝

2𝑥0
𝑥20 + �𝑦 + 𝑦0�

2

⎞
⎟⎟⎟⎟⎟⎟⎠

Or

�
𝜕𝐺
𝜕𝑥0

�
𝑥=0

=
1
𝜋

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑥0
𝑥20 + �𝑦 + 𝑦0�

2

⎞
⎟⎟⎟⎟⎟⎟⎠ −

1
𝜋

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑥0
𝑥20 + �𝑦 − 𝑦0�

2

⎞
⎟⎟⎟⎟⎟⎟⎠

=
𝑥0
𝜋

⎛
⎜⎜⎜⎜⎜⎜⎝

1

𝑥20 + �𝑦 + 𝑦0�
2 −

1

𝑥20 + �𝑦 − 𝑦0�
2

⎞
⎟⎟⎟⎟⎟⎟⎠ (4)

Substituting (3,4) into (2) gives the final answer

𝑢 �𝑥0, 𝑦0� =
∞

�
0

∞

�
0

𝐺�𝑥⃗, 𝑥⃗0� 𝑓 �𝑥⃗� 𝑑𝑥𝑑𝑦

−
𝑦0
𝜋

∞

�
0

ℎ (𝑥)
⎛
⎜⎜⎜⎝

1
(𝑥 + 𝑥0)

2 + 𝑦20
−

1
(𝑥 − 𝑥0)

2 + 𝑦20

⎞
⎟⎟⎟⎠ 𝑑𝑥

−
𝑥0
𝜋

∞

�
0

𝑔 �𝑦�

⎛
⎜⎜⎜⎜⎜⎜⎝

1

𝑥20 + �𝑦 + 𝑦0�
2 −

1

𝑥20 + �𝑦 − 𝑦0�
2

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑑𝑦

Reversing the role of 𝑥⃗, 𝑥⃗0 gives

𝑢 �𝑥, 𝑦� =
∞

�
0

∞

�
0

𝐺�𝑥⃗, 𝑥⃗0� 𝑓 �𝑥0, 𝑦0� 𝑑𝑥0𝑑𝑦0

−
𝑦
𝜋

∞

�
0

ℎ (𝑥0)
⎛
⎜⎜⎜⎝

1
(𝑥0 + 𝑥)

2 + 𝑦2
−

1
(𝑥0 − 𝑥)

2 + 𝑦2

⎞
⎟⎟⎟⎠ 𝑑𝑥0

−
𝑥
𝜋

∞

�
0

𝑔 �𝑦0�

⎛
⎜⎜⎜⎜⎜⎜⎝

1

𝑥2 + �𝑦0 + 𝑦�
2 −

1

𝑥2 + �𝑦0 − 𝑦�
2

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑑𝑦0

Where 𝐺�𝑥⃗, 𝑥⃗0� is given by equation (1). This complete the solution.

The following is 3D plot of the solution (for small area is first quadrant) generated using
Mathematica using

𝑓 (𝑥) = −20𝑒−(𝑥−4)
2−�𝑦−5�

2

𝑔 �𝑦� = 10 sin �5𝑦�
ℎ (𝑥) = 5 cos (2𝑥)

204



2.12. HW 11 CHAPTER 2. HWS

Out[194]=

This is a contour plot of the above solution

Out[186]=
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2.13 HW 12

2.13.1 Problem 12.2.1

Show that the wave equation can be considered as the following system of two coupled
first-order PDE

𝜕𝑢
𝜕𝑡

− 𝑐
𝜕𝑢
𝜕𝑥

= 𝑤 (1)

𝜕𝑤
𝜕𝑡

+ 𝑐
𝜕𝑤
𝜕𝑥

= 0 (2)

Answer

The wave PDE in 1D is 𝜕2𝑢
𝜕𝑡2 − 𝑐

2 𝜕2𝑢
𝜕𝑥2 = 0. Taking time derivative of equation (1) gives

(assuming 𝑐 is constant)
𝜕2𝑢
𝜕𝑡2

− 𝑐
𝜕2𝑢
𝜕𝑥𝜕𝑡

=
𝜕𝑤
𝜕𝑡

(3)

Taking space derivative of equation (1) gives (assuming 𝑐 is constant)
𝜕2𝑢
𝜕𝑡𝜕𝑥

− 𝑐
𝜕2𝑢
𝜕𝑥2

=
𝜕𝑤
𝜕𝑥

(4)

Multiplying (4) by 𝑐

𝑐
𝜕2𝑢
𝜕𝑡𝜕𝑥

− 𝑐2
𝜕2𝑢
𝜕𝑥2

= 𝑐
𝜕𝑤
𝜕𝑥

(5)

Adding (3)+(5) gives

𝜕2𝑢
𝜕𝑡2

− 𝑐
𝜕2𝑢
𝜕𝑥𝜕𝑡

+ 𝑐
𝜕2𝑢
𝜕𝑡𝜕𝑥

− 𝑐2
𝜕2𝑢
𝜕𝑥2

=
𝜕𝑤
𝜕𝑡

+ 𝑐
𝜕𝑤
𝜕𝑥

𝜕2𝑢
𝜕𝑡2

− 𝑐2
𝜕2𝑢
𝜕𝑥2

=
𝜕𝑤
𝜕𝑡

+ 𝑐
𝜕𝑤
𝜕𝑥

But the RHS of the above is zero, since it is equation (2). Therefore the above reduces to

𝜕2𝑢
𝜕𝑡2

− 𝑐2
𝜕2𝑢
𝜕𝑥2

= 0

Which is the wave PDE.

2.13.2 Problem 12.2.2

Solve
𝜕𝑤
𝜕𝑡

− 3
𝜕𝑤
𝜕𝑥

= 0 (1)

with 𝑤 (𝑥, 0) = cos 𝑥

Answer

Let

𝑤 ≡ 𝑤 (𝑥 (𝑡) , 𝑡)

Hence
𝑑𝑤
𝑑𝑡

=
𝜕𝑤
𝜕𝑡

+
𝜕𝑤
𝜕𝑥

𝑑𝑥
𝑑𝑡

(2)

Comparing (2) and (1), we see that if we let 𝑑𝑥
𝑑𝑡 = −3 in the above, then we obtain (1).

Hence we conclude that 𝑑𝑤
𝑑𝑡 = 0. Therefore, 𝑤 (𝑥 (𝑡) , 𝑡) is constant. At time 𝑡 = 0, we are

given that

𝑤 (𝑥 (0) , 𝑡) = cos 𝑥 (0) 𝑡 = 0 (3)

We just now need to determine 𝑥 (0). This is found from 𝑑𝑥
𝑑𝑡 = −3, which has the solution

𝑥 = 𝑥 (0) − 3𝑡 . Hence 𝑥 (0) = 𝑥 + 3𝑡. Therefore (3) becomes

𝑤 (𝑥 (𝑡) , 𝑡) = cos (𝑥 + 3𝑡)
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2.13.3 Problem 12.2.3

Solve
𝜕𝑤
𝜕𝑡

+ 4
𝜕𝑤
𝜕𝑥

= 0 (1)

with 𝑤 (0, 𝑡) = sin 3𝑡

Answer

Let

𝑤 ≡ 𝑤 (𝑥, 𝑡 (𝑥))

Hence
𝑑𝑤
𝑑𝑥

=
𝜕𝑤
𝜕𝑥

+
𝜕𝑤
𝜕𝑡

𝑑𝑡
𝑑𝑥

(2)

Comparing (2) and (1), we see that if we let 𝑑𝑡
𝑑𝑥 =

1
4 in (2), then we obtain (1). Hence we

conclude that 𝑑𝑤
𝑑𝑥 = 0. Therefore, 𝑤 (𝑥, 𝑡 (𝑥)) is constant. At 𝑥 = 0, we are given that

𝑤 (𝑥, 𝑡 (0)) = sin (3𝑡 (0)) 𝑥 = 0 (3)

We just now need to determine 𝑡 (0). This is found from 𝑑𝑡
𝑑𝑥 =

1
4 , which has the solution

𝑡 (𝑥) = 𝑡 (0) + 1
4𝑥 . Hence 𝑡 (0) = 𝑡 (𝑥) − 1

4𝑥. Therefore (3) becomes

𝑤 (𝑥, 𝑡 (𝑥)) = sin �3 �𝑡 (𝑥) −
1
4
𝑥��

= sin �3𝑡 −
3
4
𝑥�

2.13.4 Problem 12.2.4

Solve
𝜕𝑤
𝜕𝑡

+ 𝑐
𝜕𝑤
𝜕𝑥

= 0 (1)

with 𝑐 > 0 and

𝑤 (𝑥, 0) = 𝑓 (𝑥) 𝑥 > 0
𝑤 (0, 𝑡) = ℎ (𝑡) 𝑡 > 0

Answer

Let

𝑤 ≡ 𝑤 (𝑥 (𝑡) , 𝑡)

Hence
𝑑𝑤
𝑑𝑡

=
𝜕𝑤
𝜕𝑡

+
𝜕𝑤
𝜕𝑥

𝑑𝑥
𝑑𝑡

(2)

Comparing (2) and (1), we see that if we let 𝑑𝑥
𝑑𝑡 = 𝑐 in (2), then we obtain (1). Hence we

conclude that 𝑑𝑤
𝑑𝑡 = 0. Therefore, 𝑤 (𝑥 (𝑡) , 𝑡) is constant. At 𝑡 = 0, we are given that

𝑤 (𝑥 (𝑡) , 𝑡) = 𝑓 (𝑥 (0)) 𝑡 = 0 (3)

We just now need to determine 𝑥 (0). This is found from 𝑑𝑥
𝑑𝑡 = 𝑐, which has the solution

𝑥 (𝑡) = 𝑥 (0) + 𝑐𝑡 . Hence 𝑥 (0) = 𝑥 (𝑡) − 𝑐𝑡. Therefore (3) becomes

𝑤 (𝑥, 𝑡) = 𝑓 (𝑥 − 𝑐𝑡)

This is valid for 𝑥 > 𝑐𝑡. We now start all over again, and look at Let

𝑤 ≡ 𝑤 (𝑥, 𝑡 (𝑥))

Hence
𝑑𝑤
𝑑𝑥

=
𝜕𝑤
𝜕𝑥

+
𝜕𝑤
𝜕𝑡

𝑑𝑡
𝑑𝑥

(4)

Comparing (4) and (1), we see that if we let 𝑑𝑡
𝑑𝑥 =

1
𝑐 in (4), then we obtain (1). Hence we
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conclude that 𝑑𝑤
𝑑𝑥 = 0. Therefore, 𝑤 (𝑥, 𝑡 (𝑥)) is constant. At 𝑥 = 0, we are given that

𝑤 (𝑥, 𝑡 (𝑥)) = ℎ (𝑡 (0)) 𝑥 = 0 (5)

We just now need to determine 𝑡 (0). This is found from 𝑑𝑡
𝑑𝑥 =

1
𝑐 , which has the solution

𝑡 (𝑥) = 𝑡 (0) + 1
𝑐𝑥 . Hence 𝑡 (0) = 𝑡 (𝑥) − 1

𝑐𝑥. Therefore (5) becomes

𝑤 (𝑥, 𝑡) = ℎ �𝑡 −
1
𝑐
𝑥�

Valid for 𝑡 > 𝑥
𝑐 or 𝑥 < 𝑐𝑡. Therefore, the solution is

𝑤 (𝑥, 𝑡) =

⎧⎪⎪⎨
⎪⎪⎩
𝑓 (𝑥 − 𝑐𝑡) 𝑥 > 𝑐𝑡

ℎ �𝑡 − 1
𝑐𝑥� 𝑥 < 𝑐𝑡

2.13.5 Problem 12.2.5

2.13.5.1 Part (a)

Solve
𝜕𝑤
𝜕𝑡

+ 𝑐
𝜕𝑤
𝜕𝑥

= 𝑒2𝑥 (1)

with 𝑤 (𝑥, 0) = 𝑓 (𝑥)

Answer Let

𝑤 ≡ 𝑤 (𝑥 (𝑡) , 𝑡)

Hence
𝑑𝑤
𝑑𝑡

=
𝜕𝑤
𝜕𝑡

+
𝜕𝑤
𝜕𝑥

𝑑𝑥
𝑑𝑡

(2)

Comparing (2) and (1), we see that if we let 𝑑𝑥𝑑𝑡 = 𝑐 in the above, then we obtain (1). Hence

we conclude that 𝑑𝑤
𝑑𝑡 = 𝑒

2𝑥. Hence

𝑤 = 𝑤 (0) + 𝑡𝑒2𝑥

At 𝑡 = 0, 𝑤 (0) = 𝑓 (𝑥 (0)), hence

𝑤 = 𝑓 (𝑥 (0)) + 𝑡𝑒2𝑥 (3)

We just now need to determine 𝑥 (0). This is found from 𝑑𝑥
𝑑𝑡 = 𝑐, which has the solution

𝑥 = 𝑥 (0) + 𝑐𝑡 . Hence 𝑥 (0) = 𝑥 − 𝑐𝑡. Therefore (3) becomes

𝑤 (𝑥 (𝑡) , 𝑡) = 𝑓 (𝑥 − 𝑐𝑡) + 𝑡𝑒2𝑥

2.13.5.2 Part (b)

Solve
𝜕𝑤
𝜕𝑡

+ 𝑥
𝜕𝑤
𝜕𝑥

= 1 (1)

with 𝑤 (𝑥, 0) = 𝑓 (𝑥)

Answer Let

𝑤 ≡ 𝑤 (𝑥 (𝑡) , 𝑡)

Hence
𝑑𝑤
𝑑𝑡

=
𝜕𝑤
𝜕𝑡

+
𝜕𝑤
𝜕𝑥

𝑑𝑥
𝑑𝑡

(2)

Comparing (2) and (1), we see that if we let 𝑑𝑥𝑑𝑡 = 𝑥 in the above, then we obtain (1). Hence

we conclude that 𝑑𝑤
𝑑𝑡 = 1. Hence

𝑤 = 𝑤 (0) + 𝑡

At 𝑡 = 0, 𝑤 (0) = 𝑓 (𝑥 (0)), hence the above becomes

𝑤 = 𝑓 (𝑥 (0)) + 𝑡
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We now need to find 𝑥 (0). From 𝑑𝑥
𝑑𝑡 = 𝑥, the solution is ln |𝑥| = 𝑡 + 𝑥 (0) or 𝑥 = 𝑥 (0) 𝑒𝑡. Hence

𝑥 (0) = 𝑥𝑒−𝑡 and the above becomes

𝑤 = 𝑓 �𝑥𝑒−𝑡� + 𝑡

2.13.5.3 Part (c)

Solve
𝜕𝑤
𝜕𝑡

+ 𝑡
𝜕𝑤
𝜕𝑥

= 1 (1)

with 𝑤 (𝑥, 0) = 𝑓 (𝑥)

Answer Let

𝑤 ≡ 𝑤 (𝑥 (𝑡) , 𝑡)

Hence
𝑑𝑤
𝑑𝑡

=
𝜕𝑤
𝜕𝑡

+
𝜕𝑤
𝜕𝑥

𝑑𝑥
𝑑𝑡

(2)

Comparing (2) and (1), we see that if we let 𝑑𝑥𝑑𝑡 = 𝑡 in the above, then we obtain (1). Hence

we conclude that 𝑑𝑤
𝑑𝑡 = 1. Hence

𝑤 = 𝑤 (0) + 𝑡

At 𝑡 = 0, 𝑤 (0) = 𝑓 (𝑥 (0)), hence the above becomes

𝑤 = 𝑓 (𝑥 (0)) + 𝑡

We now need to find 𝑥 (0). From 𝑑𝑥
𝑑𝑡 = 𝑡, the solution is 𝑥 = 𝑥 (0) + 𝑡2

2 . Hence 𝑥 (0) = 𝑥 − 𝑡2

2
and the above becomes

𝑤 = 𝑓 �𝑥 −
𝑡2

2 �
+ 𝑡

2.13.5.4 Part (d)

Solve
𝜕𝑤
𝜕𝑡

+ 3𝑡
𝜕𝑤
𝜕𝑥

= 𝑤 (1)

with 𝑤 (𝑥, 0) = 𝑓 (𝑥)

Answer Let

𝑤 ≡ 𝑤 (𝑥 (𝑡) , 𝑡)

Hence
𝑑𝑤
𝑑𝑡

=
𝜕𝑤
𝜕𝑡

+
𝜕𝑤
𝜕𝑥

𝑑𝑥
𝑑𝑡

(2)

Comparing (2) and (1), we see that if we let 𝑑𝑥𝑑𝑡 = 3𝑡 in the above, then we obtain (1). Hence

we conclude that 𝑑𝑤
𝑑𝑡 = 𝑤. Hence

ln |𝑤| = 𝑤 (0) + 𝑡
𝑤 = 𝑤 (0) 𝑒𝑡

At 𝑡 = 0, 𝑤 (0) = 𝑓 (𝑥 (0)), hence the above becomes

𝑤 = 𝑓 (𝑥 (0)) 𝑒𝑡

We now need to find 𝑥 (0). From 𝑑𝑥
𝑑𝑡 = 3𝑡, the solution is 𝑥 = 𝑥 (0) + 3𝑡2

2 . Hence 𝑥 (0) = 𝑥 − 3𝑡2

2
and the above becomes

𝑤 = 𝑓 �𝑥 −
3𝑡2

2 �
𝑒𝑡
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Chapter 3

study notes

3.1 Heat PDE inside disk

We only did steady state. i.e. 𝑢𝑡 = 0. Hence using polar coordinates the dependent variable
is 𝑢 (𝑟, 𝜃). No time dependency. The heat PDE becomes

∇ 2𝑢 (𝑟, 𝜃) = 0 (1)

𝑟2
𝜕2𝑢
𝜕𝑟2

+ 𝑟
𝜕𝑢
𝜕𝑟

+
𝜕2𝑢
𝜕𝜃2

= 0 (2)

𝑢𝑟𝑟 +
1
𝑟
𝑢𝑟 + 𝑢𝜃𝜃 = 0 (3)

With 0 < 𝑟 < 𝑎 and 0 < 𝜃 < 2𝜋. The boundary conditions are

𝑢 (𝑟, −𝜋) = 𝑢 (𝑟, 𝜋)
𝜕𝑢 (𝑟, −𝜋)

𝜕𝜃
=
𝜕𝑢 (𝑟, 𝜋)
𝜕𝜃

|𝑢 (0, 𝜃)| < ∞
𝑢 (𝑎, 𝜃) = 𝑓 (𝜃)

Solution is

𝑅0 (𝑟) = 𝑐1 𝜆 = 0
𝑅𝑛 (𝑟) = 𝑐2𝑟𝑛 𝜆 > 0
Θ𝑛 (𝜃) = {cos (𝑛𝜃) , sin (𝑛𝜃)} 𝑛 ≥ 0

Hence solution is

𝑢 (𝑟, 𝜃) =
∞
�
𝑛=0

𝐴𝑛𝑟𝑛 cos (𝑛𝜃) + 𝐵𝑛𝑟𝑛 sin (𝑛𝜃)

3.1.1 Mean value principle (steady state, heat PDE, disk)

Temperature at center of any disk is the average of all points on the disk boundary

3.1.2 Maximum value principle (steady state, heat PDE, disk)

Temperature inside the disk can not be the maximum of all points. Proof by contradiction,
using the mean value.
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3.1.3 Minimum value principle (steady state, heat PDE, disk)

Temperature inside the disk can not be the minimum of all points. Proof by contradiction,
using the mean value.

Maximum/Minimum principle can be used to proof well possdness and uniqueness of
Laplace PDE.

Solvability conditions ∇ 2𝑢 = 0 implies total thermal energy in any closed region is constant.

This implies total flux is zero, or ∫
Ω
∇𝑢.𝑛̂ = 0. i.e. no heat flow across boundaries.

3.1.4 Heat PDE Outside disk

∇ 2Ψ = 0

Boundary conditions,

Ψ(∞,𝜃) = 𝑢0𝑦 = 𝑢0𝑟 sin𝜃
Ψ (𝑎, 𝜃) = 0

Solution is

Ψ(𝑟, 𝜃) = 𝑐1 ln � 𝑟
𝑎
� + 𝑢0 �

𝑟2 − 𝑎2

𝑟 � sin𝜃

Note, when 𝑟 = 𝑎, Ψ(𝑎, 𝜃) = 0. Use

𝑢𝑥 =
𝜕Ψ
𝜕𝑦

𝑢𝑦 = −
𝜕Ψ
𝜕𝑥

where 𝑢𝑥, 𝑣𝑥 are horizontal and vertical components of fluid velocity in Cartesian coordi-
nates. Also

𝑢𝑟 =
1
𝑟
𝜕Ψ
𝜕𝜃

𝑢𝜃 = −
𝜕Ψ
𝜕𝑟

= −
𝑐1
𝑟
− 𝑢0 �

𝑟2 − 𝑎2

𝑟2 � sin𝜃

For radial and angular components of the fluid velocity in polar coordinates. Circulation
is

�
2𝜋

0
𝑢𝜃𝑟𝑑𝜃 = −2𝜋𝑐1

Bernoulli relation

𝑝 +
1
2
𝜌 �𝑢2𝜃 + 𝑢2𝑟 � = 𝑐

𝑝 +
1
2
𝜌𝑢2𝜃 = 𝑐 at 𝑟 = 𝑎

Lift is

𝑓𝑦 = −𝑎�
2𝜋

0
𝑝 sin𝜃𝑑𝜃

= 𝑎𝜌�
2𝜋

0
�−
𝑐1
𝑟
− 𝑢0 �

𝑟2 − 𝑎2

𝑟2 � sin𝜃�
2

sin𝜃𝑑𝜃

Negative circulations, means velocity above disk is higher than below. This means lower
pressure above, hence lift.
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3.2 Easy way to get the signs for Newton’s cooling law.

Newton’s cooling law says
flux 𝑞⃗

�����������(−𝑘0∇𝑇) ⋅ �−𝑛⃗� ∝ (𝑇Ω − 𝑇𝑏𝑎𝑡ℎ)

(−𝑘0∇𝑇) ⋅ �−𝑛⃗� = −𝐻 (𝑇Ω − 𝑇𝑏𝑎𝑡ℎ)

Where 𝑇Ω is the temperature of the surface of body and 𝑇𝑏𝑎𝑡ℎ is the temperature of the
outside.

In the above the proportionality constant 𝐻 > 0 always. So −𝐻 is always a negative number.

The above works in all cases. 1D, 2D and 3D and in any configuration. Here is how to use
it. Direction of flux vector 𝑞⃗ = −𝑘0∇𝑇 is always from hot to cold. We start by drawing 𝑞⃗.
Now we compare the direction 𝑞⃗ of to the direction of the reverse of outer normal 𝑛⃗ to the
surface. In other words, we compare the direction of 𝑞⃗ to the inner normal (not the outer
normal), since we are looking at −𝑛⃗.

These two vectors are always parallel. They could be in either same direction or in reverse
directions.

If direction of 𝑞⃗ and the inner normal are in the same direction, then the sign on the left
is positive. i.e. (−𝑘0∇𝑇) ⋅ �−𝑛⃗� is a positive quantity (since cos (0) = 1).

If the direction of 𝑞⃗ and inner normal are in the opposite direction, then the sign of
(−𝑘0∇𝑇) ⋅ �−𝑛⃗� is negative (since cos �1800� = −1).

Hence always use (−𝑘0∇𝑇) ⋅ �−𝑛⃗� = −𝐻 (𝑇Ω − 𝑇𝑏𝑎𝑡ℎ) for 𝐻 > 0. Examples are given below.
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hot
cold

~q
~n

We see that ~q and the inner
normal are in opposite direction,
hence sign in the left is negative.
Therefore

-ve = (−H)(Thot − Tcold)

-ve = (-ve)(+ve)

-ve = -ve

Signs OK.

hot

cold
~q

~n

We see that ~q and the inner
normal are in opposite direction,
hence sign in the left is negative.
Therefore

-ve = (−H)(Thot − Tcold)

-ve = (-ve)(+ve)

-ve = -ve

Signs OK.

cold
hot

~q
~n

We see that ~q and the inner
normal are in same direction,
hence sign in the left is positive.
Therefore

+ve = (−H)(Tcold − Thot)

+ve = (-ve)(-ve)

+ve = +ve

Signs OK.

cold

hot
~q

~n

We see that ~q and the inner
normal are in same direction,
hence sign in the left is positive.
Therefore

+ve = (−H)(Tcold − Thot)

+ve = (-ve)(-ve)

+ve = +ve

Signs OK.

ho
t

cold

~q

~n

We see that ~q and the inner
normal are in opposite direction,
hence sign in the left is negative.
Therefore

-ve = (−H)(Thot − Tcold)

-ve = (-ve)(+ve)

-ve = -ve

Signs OK.

hot

~q

~n

We see that ~q and the inner
normal are in same direction,
hence sign in the left is positive.
Therefore

+ve = (−H)(Tcold − Thot)

+ve = (-ve)(-ve)

+ve = +ve

Signs OK.

co
ld

214


	Introduction
	links
	syllabus

	HWs
	summary pf HWs
	HW 1
	HW 2
	HW 3
	HW 4
	HW 5
	HW 6
	HW 7
	HW 8
	HW 9
	HW 10
	HW 11
	HW 12

	study notes
	Heat PDE inside disk
	Easy way to get the signs for Newton's cooling law.


