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1 HW)S

1.1 Problem 3.5.2

3.5.2. (a) Using (3.3.11) and (3.3.12), obtain the Fourier cosine series of z2.

(b) From part (a), determine the Fourier sine series of z3.

111 Parta
Equation 3.3.11, page 100 is the Fourier sin series of x
x= an sin (n%x) -L<x<L (3.3.11)
Where
B, = % (-1 (3.3.12)

2
The goal is to find the Fourier cos series of x2. Since K tdt = %, then x? = 2 K tdt. Hence from

3.3.11
x2=2f[2 anin(nzt)]dt
0 lp=1 L

Interchanging the order of summation and integration the above becomes

[ee]

X _22( fsm(nLt)dt)

n=1
— [—2L 2L
= Z —B,, cos|n x) + —B,
“\nn nm
— —2L T - . 2L
= ;EB’I cos (nzx) +§B”E 1)
But a Fourier cos series has the form
s Bl 2
X 0+ ,12::1 n COS{n X (2)
Comparing (1) and (2) gives
-2L
A, =—B8,
nmn
Using 3.3.12 for B, the above becomes
—2L 2L
An — ( 1)n+l
nm onm
2
2L
o
nmn
And
— . 2L
m=2m—
— E n+1 %
nrm

L2 < n+1 1

—HZZH

n=1



00 n+l 1
But} _, (-1)7" — = 12, hence the above becomes
4L n?
07 212
[2
"3

Summary The Fourier cos series of x? is

2=Ap+ ), A (E)
X 0 Encosan

n=1
2 2L\
==+ ), (-)"[=] cos (nzx)
3 4~ nm L

1.1.2 Part (b)

Since

X
x3 = 3f 2dt
0

Then, using result from part (a) for Fourier cos series of #* results in
X 0 P
= 3f [AO + E A, cos (n—t)]dt
0 n=1 L
x 12 & 2L\’
_ 3f —dt+ 3f 3 (1" (—) cos (nft) dt
0 3 0 n=1 nrt L
2
— 2L Tt
=L%(t), +3 21 (-D" (E) f: oS (nzt) dt
n=
. e X
2L sin (n—t
_L2x+32( 1)( )[ (nL )]
n_
0

nrt
L

2
— L 2L T A\T
=x+3 3 () (2] [sin (n )|
x n:1”n( )(nn) sin(n

3
=2+ (3-4) Y ()" (%) sin (n%x)
n=1

Using 3.3.11 which is x = 220:1 B, sin (n%x), with B, = % (—1)"+1 the above becomes

0

2L e S (LY
x3:L27§1E(—1) 1s.m(n%x)+(E’>-4)nzl(—1) (E) sm(n%x)

Combining all above terms

3
X3 = Z L2 "+1+(3 4) (-1)" ( I;_c) lsin(n%x)

Will try to simplify more to obtain B,
& 13 1) n
3=V (1) — |2+ 3-4)— (—)
x ;::1( ) nn[ +( )(nn)lsm an
& 213 1\
= Z (-1)" — [—1 +(3x2) (—) l sin (nzx)
v nmn nm L

Comparing the above to the standard Fourier sin series x> = ¥ B sm( z ) then the above is the
required sin series for x> with

3 2
B, = (-1)" % [—1 +(3x%x2) (nl_n) ] sin (n%x)

Expressing the above using B, from x! to help find recursive relation for next problem.

Will now use the notation ‘B, to mean the B,, for x'. Then since 'B, = % (-1 )"+1 (-1)" ( ) for x,

then, using °B,, as the B, for x%, the series for x> can be written

E( 1" LZ[—£ +6( ZLZ)]sin(n%x)

n= 1

_E( 1" Lz[lB +6( 2L2)]sin(n%x)

n=1



Where now

L
3B, = (-1)"L? [B}1 +6 (2_n2n2)]

The above will help in the next problem in order to find recursive relation.

1.2 Problem 3.5.3

m odd.

\T/ T TTTT LT T ANT/) TT T TTTTTTOOT SUos — — m——m— —ee—— ———-m— -

3.5.3. Generalize Exercise 3.5.2, in order to derive the Fourier sine series of 2™,

Result from Last problem showed that
~ U
= X, Bhsin (1 7x)
X 24Bn sin {nyx

1B, = (-1)" (—%)

nrt

And
=) (-1)"12

n=1

This suggests that

© = i (-1)" L? [3Bn +(5%x4%x3x%x2) (2%)]sin (n%x)

n=1

3 ny2|1 L

an(—l) L Bn+6 Zﬁ
ném

And in general
—~ L
— nr2|m-2
XM = E(—1) L [m B, + m! (2W)

Where

m2B, = (-1)" [? [’”‘4Bn +(m - 2)! (

neT

1B, + (3x2) (aninz)] sin (n%x)

]sin (n%x)

L

2|

The above is a recursive definition to find x™ Fourier series for m odd.

1.3 Problem 3.5.7

*3.5.7. [Evaluate
1 1 1 1
TEtETRET
using (3.5.6).
Equation 3.5.6 is
¥ L 4% . nx Sing% sin? sm7—zx
2| T T e e T T
Letting x = g in (3.5.6) gives
3£ 55 75
12 [2 412 n% sin% sin% Sin%
el R - TR
12 412 = sin3§ sin5§ sin7§
@Mt Te e T T

B G =R

2 41? 1 1 1 )

(3.5.6)



Hence
1? Lz_ 412 1 1 1
5_1__?(_¥+§_ﬁ”')
_L_Z__ﬁ(l_l+l_l...)
8 3 33 5 73
”_3_(1_l+l_l...)
4x 3 5 73
Or
n3_1 1 1 1
32 3 5 78

1.4 Problem 3.6.1

*3.6.1. Consider 0
T < To
flz)=¢ 1/A zo<z<zT0+A
0 >0+ A

Assume that zo > —L and g + A < L. Determine the complex Fourier
coefficients c,,.

The function defined above is the Dirac delta function. (in the limit, as A — 0). Now

L .
S f F ()" dx
TN

1 o+A 1 inZx
= — - L d
2L fxo AC T

n_qxp+A
m—=Xx
e L

11
2L A

Us

in
L

Xo
1 L [ mnx]xoﬂ
—_ e L

2L Ainm

= - 1 (ein%(x0+A) _ein%xo)
12nAm

X0

) ) A
1Z —1Z =
0ty

) from the above

. T
. . . .. . . lTl*(X
Since = sinz. The denominator above has 2i in it. Factoring out e

gives

nAmn i2
Now the form is sin (z) is obtained, hence it can be written as

LT A
emz(x0+i) . T A
T A ("EE)

n A .. T A
COS nz Xg + 7 + 1s1n nz Xg + 7 ) ( 7'(A)
sin|{n—-—

Anmt L2

Cy, =

1.5 Problem 4.2.1

4.2.1. (a) Using Equation (4.2.7), compute the sagged equilibrium position ug(z)
if Q(z,t) = —g. The boundary conditions are u(O) = 0 and u(L) = 0.

(b) Show that v(z,t) = u(z,t) — ug(z) satisfies (4.2.9).




1.5.1 Part (a)

Equation 4.2.7 is

%u 2%u
P (x) 0—,t2 TOW + Q (x/ t) P (x) (4.27)
Replacing Q(x,t) by —¢
2%u 2%u

p(x)ﬁ = Tow —gp(X)

At equilibrium, the string is sagged but is not moving.

This is equilibrium position.
Sagged due to only weight of
string

92
Therefore ﬁ = 0. The above becomes

J%u
0=To— > —8p ()
This is now partial differential equation in only x. It becomes an ODE

dPug _8p)
dx2 TO
With boundary conditions ug (0) = 0,ug (L) = 0. By double integration the solution is found. Inte-
grating once gives

d+1

dug gp (s)
dx j(; TO

Integrating again

uE:f( gp(z)dz+c1)ds+cz
0 \Wo

= fx (f g?(z)dz)ds + foxclds +cy
f f p (z)dzds + c1x + ¢ 1)

Equation (1) is the solution. Applying B.C. to find ¢y, c;. At x = 0 the above gives

0=C2

The solution (1) becomes

uE:Tﬁf fp(z)dzds+c1x (2)
0vo Yo

L s
Ozif fp(z)dzds+c1L
= LTof fp(z)dzds

Substituting this into (2) gives the final solution

(fp(z)dz)dH( (fp(z)dz)ds)x (3)

And at x = L the above becomes



If the density was constant, (3) reduces to

X _ L
uE:g—pfsds+ ﬁf sds | x
To Jo LTy Jo

_gpxt gp L2
T Ty 2 LTy 2
2
:8_P(x__£x)
To\2 2

Here is a plot of the above function for g =9.8,L =1,Ty =1, p = 0.1 for verification.

sagged equilibrium position uE
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1.5.2 Part (b)
Equation 4.2.9 is
u Ty J%u
-—=— 4.2.9
Itz p(x) Ix? ( )
Since
d?u d%u
p (x) Sz = Togzt Qx, ) p(x) 1)
And
u d%u
PO =Sz =Tosg +QUHp () (2)
Then by subtracting (2) from (1)
%u ?u %u %u
PO 55 —p () S5 =Tos5 + QNP -To5 - QxHp()
Pu  Pug\ . (*u Pugp
A P L P e

. 2 92 92
Since v (x, f) = u (x, ) —ug (x, ) then du _ Ju_

2% . 2u  Pug
a2 T 9 I

a2 T o2 ox2”

and therefore the above equation

becomes
9%v v
p (x) 57 = Togz
v Ty %
ErEr
9%v

Which is 4.2.9. QED.

1.6 Problem 4.2.5

4.2.5. Derive the partial differential equation for a vibrating string in the simplest
possible manner. You may assume the string has constant mass density
Po, you may assume the tension Tj is constant, and you may assume small
displacements (with small slopes).




Let us consider a small segment of the string of length Ax from x to x+ Ax. The mass of this segment
is pAx, where p is density of the string per unit length, assumed here to be constant. Let the angle
that the string makes with the horizontal at x and at x + Ax be 0 (x,t) and 0 (x + Ax, ) respectively.
Since we are only interested in the vertical displacement u (x, t) of the string, the vertical force on
this segment consists of two parts: Its weight (acting downwards) and the net tension resolved in
the vertical direction. Let the total vertical force be F,. Therefore

weight net tension on segment in vertical direction
/_H " -
F,= - pAxg + (T (x + Ax,t)sin O (x + Ax, t) = T (x, ) sin O (x, t))
. . . . . ulx,
Applying Newton’s second law in the vertical direction F, = ma, where a, = ;g Y and m = pAx,

gives the equation of motion of the string segment in the vertical direction

9%u (x, 1) . .
prT = —pAxg + (T (x + Ax, t)sin O (x + Ax, t) — T (x, t) sin O (x, t))
Dividing both sides by Ax
?u(x,t) o (T (x + Ax)sin O (x + Ax, t) — T (x) sin 0 (x, t))

P—on pé Ax
Taking the limit Ax — 0

%u (x, 1) d .
T =-pg + % (T (x, t) sin 6 (X, t))
Assuming small angles then % =tan0 = % = sin 0, then we can replace sin 0 in the above with
Ju . .
=~ giving
%u (x, 1) d du (x,t)
T (T(x’t) 9% )
Assuming tension T (x, f) is constant, say T, then the above becomes
%u (x, 1) d (du(x,t)
gz 8T Toa_x( ox )

%u (x, 1) Ty %u (x,t)
i p  Ix?

Setting % = ¢ then the above becomes

Pu(x,t)  ,d%u(x,t)
P A
Note: In the above g (gravity acceleration) was used instead of Q (x,t) as in the book to represent
the body forces. In other words, the above can also be written as
2 2

ZutD L2250 o
This is the required PDE, assuming constant density, constant tension, small angles and small
vertical displacement.

1.7 Problem 4.4.1

4.4.1. Consider vibrating strings of uniform density py and tension Tp.

*(a) What are the natural frequencies of a vibrating string of length L fixed
at both ends?

*(b) What are the natural frequencies of a vibrating string of length H,
which is fixed at z = 0 and “free” at the other end [i.e., 8u/0z(H,t) =
0]? Sketch a few modes of vibration as in Fig. 4.4.1.

(c) Show that the modes of vibration for the odd harmonics (i.e., n =
1,3,5,...) of part (a) are identical to modes of part (b) if H = L/2.
Verify that their natural frequencies are the same. Briefly explain using
symmetry arguments.




1.7.1 Part (a)

The natural frequencies of vibrating string of length L with fixed ends, is given by equation 4.4.11
in the book, which is the solution to the string wave equation

< . [T e . ( mc
u(x,t) = ;::1 sin (nzx) (An cos (nft) + B, sin (nft))

The frequency of the time solution part of the PDE is given by the arguments of eigenfucntions
A, cos (n%ct) +B,, sin (n%ct). Therefore n%c represents the circular frequency w,. Comparing general
form of coswt with cos (n%ct) we see that each mode 7 has circular frequency given by
us
w, =Nn—
! L

. e .
Forn=1,2,3,---. In cycles per seconds (Hertz), and since w = 2nf, then 2nf = n—. Solving for f
gives
TiC
fu= nﬁ

:ni

Where ¢ = | /% in all of the above.

1.7.2 Part (b)

Equation 4.4.11 above was for a string with fixed ends. Now the B.C. are different, so we need
to solve the spatial equation again to find the new eigenvalues. Starting with u = X (x) T () and

2 2
substituting this in the PDE 2 u(:'t) = 22D \ith 0<x < H gives
ot Ix?
T"X = *TX"”
1 T// B X/I B A
AT X

Where both sides are set equal to some constant —A. We now obtain the two ODE’s to solve. The
spatial ODE is

X"+ AX=0
X(@©0)=0
X' (H)=0
And the time ODE is
T” + AT =0

The eigenvalues will always be positive for the wave equation. Taking A > 0 the solution to the
space ODE is

X (x) = Acos (\/Xx) + Bsin (\/Xx)
Applying first B.C. gives
0=A
Hence X (x) = Bsin (\/Xx) and X’ (x) = BV cos (\/Kx) Applying second B.C. gives
0 =-BVAcos (\/XH)

Therefore for non-trivial solution, we want \/XH = gn for n =1,3,5, -+ or written another way

1
\/XHZ(TI—E)T( n=123,:-

1\ 7\’
A”:((H_E)ITI) 1’121,2,3,"'

These are the eigenvalues. Now that we know what A, is, we go back to the solution found before,
which is

Therefore

u(x, t) = 5:11 sin (\//\_nx) (An cos (\/A_nct) + B, sin (\/A_nct))



And see now that the circular frequency w, is given by

wnz\/ac

(n - %) T
= —_— = 1’ 2, 3,
7 ¢ n
In cycles per second, since w =27nf then
ik
omf, = 2 ¢
(-3)
fn = H
The following are plots for n =1,2,3,4,5 for t = 0--- 3 seconds by small time increments.

N

c n=1,23--

10

(*solution for HW 5, problem 4.4.1%)

flx_, n_, t_] := Module[{HO =1, ¢ = 1, lam},
lam = ((n - 1/2) Pi/HO);

Sin[lam x] (Sin[lam c t])

1
Table[Plot[f([x, 1, t], {x, O, 1}, AxesOrigin -> {0, 0}], {t, 0,3, .25}];

p = Labeled[Show[

10}
Mode n=1 vibration, from t=0 to t=3 seconds

Mode n=3 vibration, from t=0 to t=3 seconds
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05

0.2 0.4 6 0.8 1.0

1.0+

>Mode n=4 vibration, from t=0 to t=3 seconds

Mode n=5 vibration, from t=0 to t=3 seconds

1.7.3 Part (c)

For part (a), the harmonics had circular frequency w, = %c. Hence for odd n, these will generate

n WM T T
Tealogl gl . 1
T¢37e5707 1)

(”’%)” Lo, 2("’%)“ .
For part (b), w, = —5 When H = > this becomes w,, = - Looking at the first few modes

gives
1 1 1 1
2(1— E)n 2(2— E)n 2(3— E)n 2(4— E)n
c, c, c, c,
L L L L

3n b5n 7
e, 2 2t e ()
L L L L

Comparing (1) and (2) we see they are the same. Which is what we asked to show.

1.8 Problem 4.4.3

4.4.3. Consider a slightly damped vibrating string that satisfies

&%u u Su
Pogez = Togmz ~ P

(a) Briefly explain why 8 > 0.

*(b) Determine the solution (by separation of variables) that satisfies the
boundary conditions

u(0,t) =0 and wu(L,t)=0
and the initial conditions
du
u(z,0) = f(z) and Z(2,0) = g(a).

You can assume that this frictional coefficient 8 is relatively small
(8% < anpTo/L?).
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1.8.1 Part (a)

Pu T tu du

Pog = o5 PG,
The term —ﬁ% is the force that acts on the spring segment due to damping. This is the Viscous
damping force which is proportional to speed, where 8 represents viscous damping coefficient. This

. . . . .o Ju Jdu
damping force always opposes the direction of the motion. Hence if = > 0 then -~ should come

out to be negative. This occurs if § > 0. On the other hand, if % < 0 then —ﬁ% should now be

positive. Which means again that § must be positive quantity. Hence only case were the damping
force always opposes the motion of the string is when g > 0.

1.8.2 Part (b)

Starting with 1 = X (x) T () and substituting this in the above PDE with 0 < x < L gives
poT”X = T;TX" - BT'X
pT” BT _ X7 _
To T ToT X
Hence we obtain two ODE’s. The space ODE is

-A

X" +AX =0
X(0)=0
X(L)=0

And the time ODE is
T” + BT’ +c*AT =0
T(0) = f()
T7(0) = g (x)

The eigenvalues will always be positive for the wave equation. Hence taking A > 0 the solution to
the space ODE is

X (x) = Acos (\/Xx) + Bsin (\/Zx)
Applying first B.C. gives
0=A
Hence X = Bsin (\/Xx) Applying the second B.C. gives
0 = Bsin (\/ZL)

Therefore

Hence the space solution is
EOO nm
2 , Sin 3 X 1)

Now we solve the time ODE. This is second order ODE, linear, with constant coefficients.

TI/ T/
pIT” BT _

-A
T, T T, T

Po B
—T"+ =T +AT=0
Ty Ty

T
R L U
Po Po
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Where in the above A = A, for n=1,2,3,---. The characteristic equation is 7> + ¢?fr + ¢2A = 0. The

roots are found from the quadratic formula

-B+ VB2 -4AC

2= 2A

2
+ (ﬁ) _4T0)

Po

717'[2

Replacing A = (T) , gives

We are told that > < 4pyT;;, what this means is that % - n? (4pOT0§) < 0, since n?> > 0. This

means we will get complex roots. Let

2
A =n2(4p, Ty | - 2
OOLZ

Hence the roots can now be written as

"n2=-5—

B, VA

200~ 2po

Therefore the time solution is

B

T, () =e '

This is sinusoidal damped oscillation. Therefore
B

T = i e '

n=1

A
A, cos £i,‘
2pg

Combining (1) and (2), gives the total solution

o B
nio\ -t
u(x,t) = 2 sin (Tx)e 20
n=1

[An cos

+B,

VA,
2po

A, cos ﬂif + B,, sin ﬂif
2po 2po

(VA
sin| —t
2pg

]+ B, sin

VA,
2po

]]

2)

)

Where b, constants for space ODE merged with the constants A,, B,, for the time solution. Now we

are ready to find A,, B, from initial conditions. At t =0
N

x) = ), sin|—x
fw=3 (5

Multiplying both sides by sin (%x) and integrating give

)

S

LLf(x) sin (%x) dx = j;L i sin (%x

n=1

Changing the order of integration and summation

Hence

) sin (%x) A, dx

T . (nm
—x|sin|—x

\[(;Lf(x)sin($x)dx:g:lz‘lnJ(;Lsin(mL

)dx
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To find B,,, we first take time derivative of the solution above in (3) which gives
L A A A A
u (x,t) = 2 sin (—x) "2 VA [\/_ ] VA (\/_t]]

-—2A, sin + B,,— cos
2po
_k
— isin(ﬂx)e 2pg
L

2po "2pg
2pg

: A, cos ﬂt + B, sin ﬂt
2po 2pg

At t = 0, using the second initial condition gives

\/A
gx) = E sin (—x) - iAn sin (Ex)
"2py  2po L
Multiplying both sides by sin (Tx) and integrating gives

[ (225 [ S (o o e 5 L )2

n=1

Changing the order of integration and summation

‘[;Lg(x)sin(%x)dxziBnﬂﬁszn(%x)sm( )dx E%AnﬁLsin(anx)bm(%x)
\/_L B, L

2P02 2py "2

:é(Bﬂ ﬁA)
2 n

"2p0  2po

Hence

Bmﬂ - iAn = Eng(x)sim(@x)dx

2p0  2po
( fg(x)sm(_x)d +2£p0 )i/’%

This completes the solution. Summary of solution
VA, (VA
+ B, sin| —t
2P0 2po

B

u(x,t) = i sin (nfnx) o 20
n=1
a= [ r@sin(Ta)
( f g @psin (") dx -+ 2%014 )f/PZO

A_Tl (4p0TO 2) 52

A, cos

1.9 Problem 4.4.9

4.4.9 From (4.4.1), derive conservation of energy for a vibrating string,

dE _ ,0udu|"

=", (4.4.15)

where the total energy E is the sum of the kinetic e?nergy,2 defined by
ol' 3 (-‘?ﬁ"‘)2 dz, and the potential energy, defined by fOL < (§%) dz.

1 L {ou\? c u
E—Efo(z)d Ef(ax) ax

dE_1d L3uzd+fi H(2u)
dt 24t ot T 2ar Jy \ox)] P

Hence

Moving % inside the integral, it becomes partial derivative

R RS &
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But
d (du\’ 9 (dudu\ Pudu Judu du d*u
%(E) :E(Eﬁ):ﬁEJrEW:Z(EW) @
And
2 (@)2 -2 Pugu  oudu _ou Fu @)
Jt \ dx ot \ dx dx dxdt dx  dx dxdt dx dxdt

Substituting (2,3) into (1) gives
f du d*u 2 c? LZQ %u i
dt 2 ot 2 dx dxot
du d*u L (914 %u
‘fo (Eﬁ)d’”c . el
> then the above becomes
d_E_f du 82 s L&uo”zd
it Jy \ ot e | Ll N roer
L (du 9u L 814 %u
_ 2 -z - 2 _
=¢ fo (8)& &xZ)dx” fo o oo
L (du J%u du d%u
_ 2 g bl
- ¢ fo (at &x2)+(o"x8x&t)dx )
But since the integrand in (4) can also be written as

9 (ud) _ Puou gud
dx\ ot dx|  Oxdtdx It Ix

a
g _ 297
But 2 atz

Then (4) becomes
dE d (dudu
ar € f o"x(&t ax)d
_ o 2uomy
dt dx 0

Which is what we are asked to show. QED.
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