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0.1 Summary table

For 1𝐷 bar

Left Right 𝜆 = 0 𝜆 > 0 𝑢 (𝑥, 𝑡)

𝑢 (0) = 0 𝑢 (𝐿) = 0 No
𝜆𝑛 = �

𝑛𝜋
𝐿
�
2
, 𝑛 = 1, 2, 3,⋯

𝑋𝑛 = 𝐵𝑛 sin �√𝜆𝑛𝑥�
∑∞
𝑛=1 𝐵𝑛 sin �√𝜆𝑛𝑥� 𝑒−𝑘𝜆𝑛𝑡

𝑢 (0) = 0 𝜕𝑢(𝐿)
𝜕𝑥 = 0 No

𝜆𝑛 = �
𝑛𝜋
2𝐿
�
2
, 𝑛 = 1, 3, 5,⋯

𝑋𝑛 = 𝐵𝑛 sin �√𝜆𝑛𝑥�
∑∞
𝑛=1,3,5,⋯ 𝐵𝑛 sin �√𝜆𝑛𝑥� 𝑒−𝑘𝜆𝑛𝑡

𝜕𝑢(0)
𝜕𝑥 = 0 𝑢 (𝐿) = 0 No

𝜆𝑛 = �
𝑛𝜋
2𝐿
�
2
, 𝑛 = 1, 3, 5,⋯

𝑋𝑛 = 𝐴𝑛 cos �√𝜆𝑛𝑥�
∑∞
𝑛=1,3,5⋯𝐴𝑛 cos �√𝜆𝑛𝑥� 𝑒−𝑘𝜆𝑛𝑡

𝑢 (0) = 0 𝑢 (𝐿) + 𝜕𝑢(𝐿)
𝜕𝑥 = 0

𝜆0 = 0
𝑋0 = 𝐴0

tan �√𝜆𝑛𝐿� = −𝜆𝑛
𝑋𝜆 = 𝐵𝜆 sin �√𝜆𝑛𝑥�

𝐴0 +∑
∞
𝑛=1 𝐵𝑛 sin �√𝜆𝑛𝑥� 𝑒−𝑘𝜆𝑛𝑡

𝜕𝑢(0)
𝜕𝑥 = 0 𝜕𝑢(𝐿)

𝜕𝑥 = 0
𝜆0 = 0
𝑋0 = 𝐴0

𝜆𝑛 = �
𝑛𝜋
𝐿
�
2
, 𝑛 = 1, 2, 3,⋯

𝑋𝑛 = 𝐴𝑛 cos �√𝜆𝑛𝑥�
𝐴0 +∑

∞
𝑛=1𝐴𝑛 cos �√𝜆𝑛𝑥� 𝑒−𝑘𝜆𝑛𝑡

For periodic conditions 𝑢 (−𝐿) = 𝑢 (𝐿) and 𝜕𝑢(−𝐿)
𝜕𝑥 = 𝜕𝑢(𝐿)

𝜕𝑥

𝜆𝑛 = �
𝑛𝜋
𝐿
�
2
, 𝑛 = 1, 2, 3,⋯

𝑢 (𝑥, 𝑡) =
𝜆=0
⏞𝑎0 +

𝜆>0

�����������������������������������������������������������������������∞
�
𝑛=1

𝐴𝑛 cos ��𝜆𝑛𝑥� 𝑒−𝑘𝜆𝑛𝑡 +
∞
�
𝑛=1

𝐵𝑛 sin ��𝜆𝑛𝑥� 𝑒−𝑘𝜆𝑛𝑡

Note on notation When using separation of variables 𝑇 (𝑡) is used for the time function
and 𝑋 (𝑥) , 𝑅 (𝑟) , Θ (𝜃) etc. for the spatial functions. This notation is more common in other
books and easier to work with as the dependent variable 𝑇,𝑋,⋯ and the independent
variable 𝑡, 𝑥,⋯ are easier to match (one is upper case and is one lower case) and this
produces less symbols to remember and less chance of mixing wrong letters.
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0.2 section 2.3.1 (problem 1)2.3. Heat Equation With Zero Temperature Ends

EXERCISES 2.3

55

2.3.1. For the following partial differential equations, what ordinary differential
equations are implied by the method of separation of variables?

(a) au ka (r2u)

* at r ar &

a2u a2u
*

(C) 09x2 + ft2 = o

&U 04U

*(e) at = k
a 44

a2u 2 02U

ate ax

2.3.2. Consider the differential equation

z
2+A0=0.

Determine the eigenvalues \ (and corresponding eigenfunctions) if 0 satisfies
the following boundary conditions. Analyze three cases (.\ > 0, A = 0, A <
0). You may assume that the eigenvalues are real.

(a) 0(0) = 0 and 0(-,r) = 0
*(b) 0(0) = 0 and 5(1) = 0

(c) !LO (0) = 0 and LO (L) = 0 (If necessary, see Sec. 2.4.1.)

*(d) 0(0) = 0 and O (L) = 0

(e) LO (0) = 0 and O(L) = 0

*(f) O(a) = 0 and O(b) = 0 (You may assume that A > 0.)

(g) ¢(0) = 0 and LO
(L)

+ cb(L) = 0 (If necessary, see Sec. 5.8.)

2.3.3. Consider the heat equation

OU 82U

at - kax2
subject to the boundary conditions

u(0,t) = 0 and u(L,t) = 0.

Solve the initial value problem if the temperature is initially

(a) u(x, 0) = 6 sin s (b) u(x, 0) = 3 sin i - sin i

(b) -` = k
09x22

- v0 ax

(d)

* (f)
=c

* (c) u(x, 0) = 2 cos lmE (d) u(x, 0)
1 0 < x < L/2
2 L/2<x<L

0.2.1 part (a)

1
𝑘
𝜕𝑢
𝜕𝑡

=
1
𝑟
𝜕
𝜕𝑟 �

𝑟
𝜕𝑢
𝜕𝑟 �

(1)

Let

𝑢 (𝑡, 𝑟) = 𝑇 (𝑡) 𝑅 (𝑟)

Then
𝜕𝑢
𝜕𝑡

= 𝑇′ (𝑡) 𝑅 (𝑟)

And
𝜕
𝜕𝑟 �

𝑟
𝜕𝑢
𝜕𝑟 �

=
𝜕𝑢
𝜕𝑟

+ 𝑟
𝜕2𝑢
𝜕𝑟2

= 𝑇𝑅′ (𝑟) + 𝑟𝑇𝑅′′ (𝑟)

Hence (1) becomes
1
𝑘
𝑇′ (𝑡) 𝑅 (𝑟) =

1
𝑟
(𝑇𝑅′ (𝑟) + 𝑟𝑇𝑅′′ (𝑟))

Note From now on 𝑇′ (𝑡) is written as just 𝑇′ and similarly for 𝑅′ (𝑟) = 𝑅′ and 𝑅′′ (𝑟) = 𝑅′′ to
simplify notations and make it easier and more clear to read. The above is reduced to

1
𝑘
𝑇′𝑅 =

1
𝑟
𝑇𝑅′ + 𝑇𝑅′′

Dividing throughout 1 by 𝑇 (𝑡) 𝑅 (𝑟) gives
1
𝑘
𝑇′

𝑇
=
1
𝑟
𝑅′

𝑅
+
𝑅′′

𝑅
Since each side in the above depends on a di�erent independent variable and both are
equal to each others, then each side is equal to the same constant, say −𝜆. Therefore

1
𝑘
𝑇′

𝑇
=
1
𝑟
𝑅′

𝑅
+
𝑅′′

𝑅
= −𝜆

The following di�erential equations are obtained

𝑇′ + 𝜆𝑘𝑇 = 0
𝑟𝑅′′ + 𝑅′ + 𝑟𝜆𝑅 = 0

In expanded form, the above is
𝑑𝑇
𝑑𝑡
+ 𝜆𝑘𝑇 (𝑡) = 0

𝑟
𝑑2𝑅
𝑑𝑟2

+
𝑑𝑅
𝑑𝑡
+ 𝑟𝜆𝑅 (𝑟) = 0

1𝑇 (𝑡) 𝑅 (𝑟) can not be zero, as this would imply that either 𝑇 (𝑡) = 0 or 𝑅 (𝑟) = 0 or both are zero, in which
case there is only the trivial solution.
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0.2.2 Part (b)

1
𝑘
𝜕𝑢
𝜕𝑡

=
𝜕2𝑢
𝜕𝑥2

−
𝑣0
𝑘
𝜕𝑢
𝜕𝑥

(1)

Let

𝑢 (𝑥, 𝑡) = 𝑇𝑋

Then
𝜕𝑢
𝜕𝑡

= 𝑇′𝑋

And
𝜕𝑢
𝜕𝑥

= 𝑋′𝑇

𝜕2𝑢
𝜕𝑥2

= 𝑋′′𝑇

Substituting these in (1) gives
1
𝑘
𝑇′𝑋 = 𝑋′′𝑇 −

𝑣0
𝑘
𝑋′𝑇

Dividing throughout by 𝑇𝑋 ≠ 0 gives
1
𝑘
𝑇′

𝑇
=
𝑋′′

𝑋
−
𝑣0
𝑘
𝑋′

𝑋
Since each side in the above depends on a di�erent independent variable and both are
equal to each others, then each side is equal to the same constant, say −𝜆. Therefore

1
𝑘
𝑇′

𝑇
=
𝑋′′

𝑋
−
𝑣0
𝑘
𝑋′

𝑋
= −𝜆

The following di�erential equations are obtained

𝑇′ + 𝜆𝑘𝑇 = 0

𝑋′′ −
𝑣0
𝑘
𝑋′ + 𝜆𝑋 = 0

The above in expanded form is
𝑑𝑇
𝑑𝑡
+ 𝜆𝑘𝑇 (𝑡) = 0

𝑑2𝑋
𝑑𝑥2

−
𝑣0
𝑘
𝑑𝑋
𝑑𝑥

+ 𝜆𝑋 (𝑥) = 0

0.2.3 Part (d)

1
𝑘
𝜕𝑢
𝜕𝑡

=
1
𝑟2
𝜕
𝜕𝑟 �

𝑟2
𝜕𝑢
𝜕𝑟 �

(1)

Let

𝑢 (𝑡, 𝑟) ≡ 𝑇𝑅

Then
𝜕𝑢
𝜕𝑡

= 𝑇′𝑅

And
𝜕
𝜕𝑟 �

𝑟2
𝜕𝑢
𝜕𝑟 �

= 2𝑟
𝜕𝑢
𝜕𝑟

+ 𝑟2
𝜕2𝑢
𝜕𝑟2

= 2𝑟𝑇𝑅′ + 𝑟2𝑇𝑅′′

Substituting these in (1) gives
1
𝑘
𝑇′𝑅 =

1
𝑟2
�2𝑟𝑇𝑅′ + 𝑟2𝑇𝑅′′�

=
2
𝑟
𝑇𝑅′ + 𝑇𝑅′′

Dividing throughout by 𝑇𝑅 ≠ 0 gives
1
𝑘
𝑇′

𝑇
=
2
𝑟
𝑅′

𝑅
+
𝑅′′

𝑅
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Since each side in the above depends on a di�erent independent variable and both are
equal to each others, then each side is equal to the same constant, say −𝜆. Therefore

1
𝑘
𝑇′

𝑇
=
2
𝑟
𝑅′

𝑅
+
𝑅′′

𝑅
= −𝜆

The following di�erential equations are obtained

𝑇′ + 𝜆𝑘𝑇 = 0
𝑟𝑅′′ + 2𝑅′ + 𝜆𝑟𝑅 = 0

The above in expanded form is
𝑑𝑇
𝑑𝑡
+ 𝜆𝑘𝑇 (𝑡) = 0

𝑟
𝑑2𝑅
𝑑𝑟2

+ 2
𝑑𝑅
𝑑𝑟

+ 𝜆𝑟𝑅 (𝑟) = 0

0.3 section 2.3.2 (problem 2)

2.3. Heat Equation With Zero Temperature Ends

EXERCISES 2.3

55

2.3.1. For the following partial differential equations, what ordinary differential
equations are implied by the method of separation of variables?

(a) au ka (r2u)

* at r ar &

a2u a2u
*

(C) 09x2 + ft2 = o

&U 04U

*(e) at = k
a 44

a2u 2 02U

ate ax

2.3.2. Consider the differential equation

z
2+A0=0.

Determine the eigenvalues \ (and corresponding eigenfunctions) if 0 satisfies
the following boundary conditions. Analyze three cases (.\ > 0, A = 0, A <
0). You may assume that the eigenvalues are real.

(a) 0(0) = 0 and 0(-,r) = 0
*(b) 0(0) = 0 and 5(1) = 0

(c) !LO (0) = 0 and LO (L) = 0 (If necessary, see Sec. 2.4.1.)

*(d) 0(0) = 0 and O (L) = 0

(e) LO (0) = 0 and O(L) = 0

*(f) O(a) = 0 and O(b) = 0 (You may assume that A > 0.)

(g) ¢(0) = 0 and LO
(L)

+ cb(L) = 0 (If necessary, see Sec. 5.8.)

2.3.3. Consider the heat equation

OU 82U

at - kax2
subject to the boundary conditions

u(0,t) = 0 and u(L,t) = 0.

Solve the initial value problem if the temperature is initially

(a) u(x, 0) = 6 sin s (b) u(x, 0) = 3 sin i - sin i

(b) -` = k
09x22

- v0 ax

(d)

* (f)
=c

* (c) u(x, 0) = 2 cos lmE (d) u(x, 0)
1 0 < x < L/2
2 L/2<x<L

0.3.1 Part (d)

𝑑2𝜙
𝑑𝑥2

+ 𝜆𝜙 = 0

𝜙 (0) = 0
𝑑𝜙
𝑑𝑥

(𝐿) = 0

Substituting an assumed solution of the form 𝜙 = 𝐴𝑒𝑟𝑥 in the above ODE and simplifying
gives the characteristic equation

𝑟2 + 𝜆 = 0
𝑟2 = −𝜆

𝑟 = ±√−𝜆

Assuming 𝜆 is real. The following cases are considered.

case 𝜆 < 0 In this case, −𝜆 and also √−𝜆, are positive. Hence both roots ±√−𝜆 are real
and positive. Let

√−𝜆 = 𝑠

Where 𝑠 > 0. Therefore the solution is

𝜙 (𝑥) = 𝐴𝑒𝑠𝑥 + 𝐵𝑒−𝑠𝑥

𝑑𝜙
𝑑𝑥

= 𝐴𝑠𝑒𝑠𝑥 − 𝐵𝑠𝑒−𝑠𝑥
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Applying the first boundary conditions (B.C.) gives

0 = 𝜙 (0)
= 𝐴 + 𝐵

Applying the second B.C. gives

0 =
𝑑𝜙
𝑑𝑥

(𝐿)

= 𝐴𝑠 − 𝐵𝑠
= 𝑠 (𝐴 − 𝐵)
= 𝐴 − 𝐵

The last step above was after dividing by 𝑠 since 𝑠 ≠ 0. Therefore, the following two
equations are solved for 𝐴,𝐵

0 = 𝐴 + 𝐵
0 = 𝐴 − 𝐵

The second equation implies 𝐴 = 𝐵 and the first gives 2𝐴 = 0 or 𝐴 = 0. Hence 𝐵 = 0.
Therefore the only solution is the trivial solution 𝜙 (𝑥) = 0. 𝜆 < 0 is not an eigenvalue.

case 𝜆 = 0 In this case the ODE becomes

𝑑2𝜙
𝑑𝑥2

= 0

The solution is

𝜙 (𝑥) = 𝐴𝑥 + 𝐵
𝑑𝜙
𝑑𝑥

= 𝐴

Applying the first B.C. gives

0 = 𝜙 (0)
= 𝐵

Applying the second B.C. gives

0 =
𝑑𝜙
𝑑𝑥

(𝐿)

= 𝐴

Hence 𝐴,𝐵 are both zero in this case as well and the only solution is the trivial one 𝜙 (𝑥) = 0.
𝜆 = 0 is not an eigenvalue.

case 𝜆 > 0 In this case, −𝜆 is negative, therefore the roots are both complex.

𝑟 = ±𝑖√𝜆

Hence the solution is

𝜙 (𝑥) = 𝐴𝑒𝑖√𝜆𝑥 + 𝐵𝑒−𝑖√𝜆𝑥

Which can be writing in terms of cos, sin using Euler identity as

𝜙 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

Applying first B.C. gives

0 = 𝜙 (0)
= 𝐴 cos (0) + 𝐵 sin (0)

0 = 𝐴

The solution now is 𝜙 (𝑥) = 𝐵 sin �√𝜆𝑥� . Hence

𝑑𝜙
𝑑𝑥

= √𝜆𝐵 cos �√𝜆𝑥�
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Applying the second B.C. gives

0 =
𝑑𝜙
𝑑𝑥

(𝐿)

= √𝜆𝐵 cos �√𝜆𝐿�

= √𝜆𝐵 cos �√𝜆𝐿�

Since 𝜆 ≠ 0 then either 𝐵 = 0 or cos �√𝜆𝐿� = 0. But 𝐵 = 0 gives trivial solution, therefore

cos �√𝜆𝐿� = 0

This implies

√𝜆𝐿 =
𝑛𝜋
2

𝑛 = 1, 3, 5,⋯

In other words, for all positive odd integers. 𝑛 < 0 can not be used since 𝜆 is assumed
positive.

𝜆 = �𝑛𝜋2𝐿 �
2

𝑛 = 1, 3, 5,⋯

The eigenfunctions associated with these eigenvalues are

𝜙𝑛 (𝑥) = 𝐵𝑛 sin �𝑛𝜋
2𝐿
𝑥� 𝑛 = 1, 3, 5,⋯

0.3.2 Part (f)

𝑑2𝜙
𝑑𝑥2

+ 𝜆𝜙 = 0

𝜙 (𝑎) = 0
𝜙 (𝑏) = 0

It is easier to solve this if one boundary condition was at 𝑥 = 0. (So that one constant
drops out). Let 𝜏 = 𝑥 − 𝑎 and the ODE becomes (where now the independent variable is 𝜏)

𝑑2𝜙 (𝜏)
𝑑𝜏2

+ 𝜆𝜙 (𝜏) = 0 (1)

With the new boundary conditions 𝜙 (0) = 0 and 𝜙 (𝑏 − 𝑎) = 0. Assuming the solution is
𝜙 = 𝐴𝑒𝑟𝜏, the characteristic equation is

𝑟2 + 𝜆 = 0
𝑟2 = −𝜆

𝑟 = ±√−𝜆

Assuming 𝜆 is real and also assuming 𝜆 > 0 (per the problem statement) then −𝜆 is negative,
and both roots are complex.

𝑟 = ±𝑖√𝜆

This gives the solution

𝜙 (𝜏) = 𝐴 cos �√𝜆𝜏� + 𝐵 sin �√𝜆𝜏�

Applying first B.C.

0 = 𝜙 (0)
= 𝐴 cos 0 + 𝐵 sin 0
= 𝐴

Therefore the solution is 𝜙 (𝜏) = 𝐵 sin �√𝜆𝜏�. Applying the second B.C.

0 = 𝜙 (𝑏 − 𝑎)

= 𝐵 sin �√𝜆 (𝑏 − 𝑎)�
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𝐵 = 0 leads to trivial solution. Choosing sin �√𝜆 (𝑏 − 𝑎)� = 0 gives

�𝜆𝑛 (𝑏 − 𝑎) = 𝑛𝜋

�𝜆𝑛 =
𝑛𝜋

(𝑏 − 𝑎)
𝑛 = 1, 2, 3⋯

Or

𝜆𝑛 = �
𝑛𝜋
𝑏−𝑎
�
2

𝑛 = 1, 2, 3,⋯

The eigenfunctions associated with these eigenvalue are

𝜙𝑛 (𝜏) = 𝐵𝑛 sin ��𝜆𝑛𝜏�

= 𝐵𝑛 sin �
𝑛𝜋

(𝑏 − 𝑎)
𝜏�

Transforming back to 𝑥

𝜙𝑛 (𝑥) = 𝐵𝑛 sin �
𝑛𝜋

(𝑏 − 𝑎)
(𝑥 − 𝑎)�

0.3.3 Part (g)

𝑑2𝜙
𝑑𝑥2

+ 𝜆𝜙 = 0

𝜙 (0) = 0
𝑑𝜙
𝑑𝑥

(𝐿) + 𝜙 (𝐿) = 0

Assuming solution is 𝜙 = 𝐴𝑒𝑟𝑥, the characteristic equation is

𝑟2 + 𝜆 = 0
𝑟2 = −𝜆

𝑟 = ±√−𝜆

The following cases are considered.

case 𝜆 < 0 In this case −𝜆 and also √−𝜆 are positive. Hence the roots ±√−𝜆 are both real.
Let

√−𝜆 = 𝑠

Where 𝑠 > 0. This gives the solution

𝜙 (𝑥) = 𝐴0𝑒𝑠𝑥 + 𝐵0𝑒−𝑠𝑥

Which can be manipulated using sinh (𝑠𝑥) = 𝑒𝑠𝑥−𝑒−𝑠𝑥

2 , cosh (𝑠𝑥) = 𝑒𝑠𝑥+𝑒−𝑠𝑥

2 to the following

𝜙 (𝑥) = 𝐴 cosh (𝑠𝑥) + 𝐵 sinh (𝑠𝑥)
Where 𝐴,𝐵 above are new constants. Applying the left boundary condition gives

0 = 𝜙 (0)
= 𝐴

The solution becomes 𝜙 (𝑥) = 𝐵 sinh (𝑠𝑥) and hence
𝑑𝜙
𝑑𝑥 = 𝑠 cosh (𝑠𝑥) . Applying the right

boundary conditions gives

0 = 𝜙 (𝐿) +
𝑑𝜙
𝑑𝑥

(𝐿)

= 𝐵 sinh (𝑠𝐿) + 𝐵𝑠 cosh (𝑠𝐿)
= 𝐵 (sinh (𝑠𝐿) + 𝑠 cosh (𝑠𝐿))

But 𝐵 = 0 leads to trivial solution, therefore the other option is that

sinh (𝑠𝐿) + 𝑠 cosh (𝑠𝐿) = 0
But the above is

tanh (𝑠𝐿) = −𝑠
Since it was assumed that 𝑠 > 0 then the RHS in the above is a negative quantity. However
the tanh function is positive for positive argument and negative for negative argument.
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The above implies then that 𝑠𝐿 < 0. Which is invalid since it was assumed 𝑠 > 0 and 𝐿
is the length of the bar. Hence 𝐵 = 0 is the only choice, and this leads to trivial solution.
𝜆 < 0 is not an eigenvalue.

case 𝜆 = 0

In this case, the ODE becomes

𝑑2𝜙
𝑑𝑥2

= 0

The solution is

𝜙 (𝑥) = 𝑐1𝑥 + 𝑐2
Applying left B.C. gives

0 = 𝜙 (0)
= 𝑐2

The solution becomes 𝜙 (𝑥) = 𝑐1𝑥. Applying the right B.C. gives

0 = 𝜙 (𝐿) +
𝑑𝜙
𝑑𝑥

(𝐿)

= 𝑐1𝐿 + 𝑐1
= 𝑐1 (1 + 𝐿)

Since 𝑐1 = 0 leads to trivial solution, then 1 + 𝐿 = 0 is the only other choice. But this
invalid since 𝐿 > 0 (length of the bar). Hence 𝑐1 = 0 and this leads to trivial solution.
𝜆 = 0 is not an eigenvalue.

case 𝜆 > 0

This implies that −𝜆 is negative, and therefore the roots are both complex.

𝑟 = ±𝑖√𝜆

This gives the solution

𝜙 (𝑥) = 𝐴𝑒𝑖√𝜆𝑥 + 𝐵𝑒−𝑖√𝜆𝑥

= 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

Applying first B.C. gives

𝜙 (0) = 0 = 𝐴 cos (0) + 𝐵 sin (0)
0 = 𝐴

The solution becomes 𝜙 (𝑥) = 𝐵 sin �√𝜆𝑥� and
𝑑𝜙
𝑑𝑥

= √𝜆𝐵 cos �√𝜆𝑥�

Applying the second B.C.

0 =
𝑑𝜙
𝑑𝑥

(𝐿) + 𝜙 (𝐿)

= √𝜆𝐵 cos �√𝜆𝐿� + 𝐵 sin �√𝜆𝐿� (1)

Dividing (1) by cos �√𝜆𝐿� ,which can not be zero, because if cos �√𝜆𝐿� = 0, then 𝐵 sin �√𝜆𝐿� =
0 from above, and this means the trivial solution, results in

𝐵 �√𝜆 + tan �√𝜆𝐿�� = 0

But 𝐵 ≠ 0, else the solution is trivial. Therefore

tan �√𝜆𝐿� = −√𝜆

The eigenvalue 𝜆 is given by the solution to the above nonlinear equation. The text book, in
section 5.4, page 196 gives the following approximate (asymptotic) solution which becomes
accurate only for large 𝑛 and not used here

�𝜆𝑛 ∼
𝜋
𝐿 �
𝑛 −

1
2�
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Therefore the eigenfunction is

𝜙𝜆 (𝑥) = 𝐵 sin �√𝜆𝑥�

Where 𝜆 is the solution to tan �√𝜆𝐿� = −√𝜆.

0.4 section 2.3.3 (problem 3)

2.3. Heat Equation With Zero Temperature Ends

EXERCISES 2.3

55

2.3.1. For the following partial differential equations, what ordinary differential
equations are implied by the method of separation of variables?

(a) au ka (r2u)

* at r ar &

a2u a2u
*

(C) 09x2 + ft2 = o

&U 04U

*(e) at = k
a 44

a2u 2 02U

ate ax

2.3.2. Consider the differential equation

z
2+A0=0.

Determine the eigenvalues \ (and corresponding eigenfunctions) if 0 satisfies
the following boundary conditions. Analyze three cases (.\ > 0, A = 0, A <
0). You may assume that the eigenvalues are real.

(a) 0(0) = 0 and 0(-,r) = 0
*(b) 0(0) = 0 and 5(1) = 0

(c) !LO (0) = 0 and LO (L) = 0 (If necessary, see Sec. 2.4.1.)

*(d) 0(0) = 0 and O (L) = 0

(e) LO (0) = 0 and O(L) = 0

*(f) O(a) = 0 and O(b) = 0 (You may assume that A > 0.)

(g) ¢(0) = 0 and LO
(L)

+ cb(L) = 0 (If necessary, see Sec. 5.8.)

2.3.3. Consider the heat equation

OU 82U

at - kax2
subject to the boundary conditions

u(0,t) = 0 and u(L,t) = 0.

Solve the initial value problem if the temperature is initially

(a) u(x, 0) = 6 sin s (b) u(x, 0) = 3 sin i - sin i

(b) -` = k
09x22

- v0 ax

(d)

* (f)
=c

* (c) u(x, 0) = 2 cos lmE (d) u(x, 0)
1 0 < x < L/2
2 L/2<x<L

0.4.1 Part (b)

𝜕𝑢
𝜕𝑡

= 𝑘
𝜕2𝑢
𝜕𝑥2

Let 𝑢 (𝑥, 𝑡) = 𝑇 (𝑡) 𝑋 (𝑥), and the PDE becomes
1
𝑘
𝑇′𝑋 = 𝑋′′𝑇

Dividing by 𝑋𝑇 ≠ 0
1
𝑘
𝑇′

𝑇
=
𝑋′′

𝑋
Since each side depends on di�erent independent variable and both are equal, they must
be both equal to same constant, say −𝜆 where 𝜆 is assumed to be real.

1
𝑘
𝑇′

𝑇
=
𝑋′′

𝑋
= −𝜆

The two ODE’s are

𝑇′ + 𝑘𝜆𝑇 = 0 (1)

𝑋′′ + 𝜆𝑋 = 0 (2)

Starting with the space ODE equation (2), with corresponding boundary conditions 𝑋 (0) =
0, 𝑋 (𝐿) = 0. Assuming the solution is 𝑋 (𝑥) = 𝑒𝑟𝑥, Then the characteristic equation is

𝑟2 + 𝜆 = 0
𝑟2 = −𝜆

𝑟 = ±√−𝜆

The following cases are considered.

case 𝜆 < 0 In this case, −𝜆 and also √−𝜆 are positive. Hence the roots ±√−𝜆 are both real.
Let

√−𝜆 = 𝑠

Where 𝑠 > 0. This gives the solution

𝑋 (𝑥) = 𝐴 cosh (𝑠𝑥) + 𝐵 sinh (𝑠𝑥)
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Applying the left B.C. 𝑋 (0) = 0 gives

0 = 𝐴 cosh (0) + 𝐵 sinh (0)
= 𝐴

The solution becomes 𝑋 (𝑥) = 𝐵 sinh (𝑠𝑥). Applying the right B.C. 𝑢 (𝐿, 𝑡) = 0 gives

0 = 𝐵 sinh (𝑠𝐿)
We want 𝐵 ≠ 0 (else trivial solution). This means sinh (𝑠𝐿) must be zero. But sinh (𝑠𝐿) is
zero only when its argument is zero. This means either 𝐿 = 0 which is not possible or 𝜆 = 0,
but we assumed 𝜆 ≠ 0 in this case, therefore we run out of options to satisfy this case.
Hence 𝜆 < 0 is not an eigenvalue.

case 𝜆 = 0

The ODE becomes
𝑑2𝑋
𝑑𝑥2

= 0

The solution is

𝑋 (𝑥) = 𝑐1𝑥 + 𝑐2
Applying left boundary conditions 𝑋 (0) = 0 gives

0 = 𝑋 (0)
= 𝑐2

Hence the solution becomes 𝑋 (𝑥) = 𝑐1𝑥. Applying the right B.C. gives

0 = 𝑋 (𝐿)
= 𝑐1𝐿

Hence 𝑐1 = 0. Hence trivial solution. 𝜆 = 0 is not an eigenvalue.

case 𝜆 > 0

Hence −𝜆 is negative, and the roots are both complex.

𝑟 = ±𝑖√𝜆

The solution is

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

The boundary conditions are now applied. The first B.C. 𝑋 (0) = 0 gives

0 = 𝐴 cos (0) + 𝐵 sin (0)
= 𝐴

The ODE becomes 𝑋 (𝑥) = 𝐵 sin �√𝜆𝑥�. Applying the second B.C. gives

0 = 𝐵 sin �√𝜆𝐿�

𝐵 ≠ 0 else the solution is trivial. Therefore taking

sin �√𝜆𝐿� = 0

�𝜆𝑛𝐿 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯

Hence eigenvalues are

𝜆𝑛 =
𝑛2𝜋2

𝐿2
𝑛 = 1, 2, 3,⋯

The eigenfunctions associated with these eigenvalues are

𝑋𝑛 (𝑥) = 𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥�

The time domain ODE is now solved. 𝑇′ + 𝑘𝜆𝑛𝑇 = 0 has the solution

𝑇𝑛 (𝑡) = 𝑒−𝑘𝜆𝑛𝑡

For the same set of eigenvalues. Notice that there is no need to add a new constant in the
above as it will be absorbed in the 𝐵𝑛 when combined in the following step below. The
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solution to the PDE becomes

𝑢𝑛 (𝑥, 𝑡) = 𝑇𝑛 (𝑡) 𝑋𝑛 (𝑥)

But for linear system the sum of eigenfunctions is also a solution, therefore

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑢𝑛 (𝑥, 𝑡)

=
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡

Initial conditions are now applied. Setting 𝑡 = 0, the above becomes

𝑢 (𝑥, 0) = 3 sin 𝜋𝑥
𝐿
− sin 3𝜋𝑥

𝐿
=

∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥�

As the series is unique, the terms coe�cients must match for those shown only, and all
other 𝐵𝑛 terms vanish. This means that by comparing terms

3 sin �𝜋𝑥
𝐿
� − sin �

3𝜋𝑥
𝐿 � = 𝐵1 sin �𝜋𝑥

𝐿
� + 𝐵3 sin �

3𝜋
𝐿
𝑥�

Therefore

𝐵1 = 3
𝐵3 = −1

And all other 𝐵𝑛 = 0. The solution is

𝑢 (𝑥, 𝑡) = 3 sin �𝜋
𝐿
𝑥� 𝑒−𝑘�

𝜋
𝐿 �

2
𝑡 − sin �

3𝜋
𝐿
𝑥� 𝑒

−𝑘� 3𝜋𝐿 �
2
𝑡

0.4.2 Part (d)

Part (b) found the solution to be

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡

The new initial conditions are now applied.

𝑓 (𝑥) =
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� (1)

Where

𝑓 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
1 0 < 𝑥 ≤ 𝐿/2
2 𝐿/2 < 𝑥 < 𝐿

Multiplying both sides of (1) by sin �𝑚𝜋𝐿 𝑥� and integrating over the domain gives

�
𝐿

0
sin �𝑚𝜋

𝐿
𝑥� 𝑓 (𝑥) 𝑑𝑥 = �

𝐿

0
�
∞
�
𝑛=1

𝐵𝑛 sin �𝑚𝜋
𝐿
𝑥� sin �𝑛𝜋

𝐿
𝑥�� 𝑑𝑥

Interchanging the order of integration and summation

�
𝐿

0
sin �𝑚𝜋

𝐿
𝑥� 𝑓 (𝑥) 𝑑𝑥 =

∞
�
𝑛=1

�𝐵𝑛 ��
𝐿

0
sin �𝑚𝜋

𝐿
𝑥� sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥��

But ∫
𝐿

0
sin �𝑚𝜋𝐿 𝑥� sin �𝑛𝜋𝐿 𝑥� 𝑑𝑥 = 0 for 𝑛 ≠ 𝑚, hence only one term survives

�
𝐿

0
sin �𝑚𝜋

𝐿
𝑥� 𝑓 (𝑥) 𝑑𝑥 = 𝐵𝑚�

𝐿

0
sin2 �𝑚𝜋

𝐿
𝑥� 𝑑𝑥
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Renaming 𝑚 back to 𝑛 and since ∫
𝐿

0
sin2 �𝑚𝜋𝐿 𝑥� 𝑑𝑥 =

𝐿
2 the above becomes

�
𝐿

0
sin �𝑛𝜋

𝐿
𝑥� 𝑓 (𝑥) 𝑑𝑥 =

𝐿
2
𝐵𝑛

𝐵𝑛 =
2
𝐿 �

𝐿

0
sin �𝑛𝜋

𝐿
𝑥� 𝑓 (𝑥) 𝑑𝑥

=
2
𝐿

⎛
⎜⎜⎜⎜⎝�

𝐿
2

0
sin �𝑛𝜋

𝐿
𝑥� 𝑓 (𝑥) 𝑑𝑥 +�

𝐿

𝐿
2

sin �𝑛𝜋
𝐿
𝑥� 𝑓 (𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎠

=
2
𝐿

⎛
⎜⎜⎜⎜⎝�

𝐿
2

0
sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 + 2�

𝐿

𝐿
2

sin �𝑛𝜋
𝐿
𝑥� 𝑑𝑥

⎞
⎟⎟⎟⎟⎠

=
2
𝐿

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− cos �𝑛𝜋𝐿 𝑥�
𝑛𝜋
𝐿

�

𝐿
2

0

+ 2
− cos �𝑛𝜋𝐿 𝑥�

𝑛𝜋
𝐿

�

𝐿

𝐿
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
2
𝑛𝜋

⎛
⎜⎜⎜⎜⎝�− cos �𝑛𝜋

𝐿
𝑥��

𝐿
2

0
+ 2 �− cos �𝑛𝜋

𝐿
𝑥��

𝐿

𝐿
2

⎞
⎟⎟⎟⎟⎠

=
2
𝑛𝜋 ��

− cos �
𝑛𝜋
𝐿
𝐿
2�
+ cos (0)� + 2 �− cos (𝑛𝜋) + cos �𝑛𝜋

2
���

=
2
𝑛𝜋

�− cos �𝑛𝜋
2
� + 1 − 2 cos (𝑛𝜋) + 2 cos �𝑛𝜋

2
��

=
2
𝑛𝜋

�cos �𝑛𝜋
2
� + 1 − 2 cos (𝑛𝜋)�

Hence the solution is

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡

With

𝐵𝑛 =
2
𝑛𝜋

�cos �𝑛𝜋
2
� − 2 cos (𝑛𝜋) + 1�

=
2
𝑛𝜋

�1 − 2 (−1)𝑛 + cos �𝑛𝜋
2
��

0.5 section 2.3.4 (problem 4)
56 Chapter 2. Method of Separation of Variables

[Your answer in part (c) may involve certain integrals that do not need to
be evaluated.]

2.3.4. Consider

k02,

subject to u(0, t) = 0, u(L, t) = 0, and u(x, 0) = f (x).

*(a) What is the total heat energy in the rod as a function of time?

(b) What is the flow of heat energy out of the rod at x = 0? at x = L?

*(c) What relationship should exist between parts (a) and (b)?

2.3.5. Evaluate (be careful if n = m)

L nzrx m7rxsin L sin L dx forn>0,m>0.

Use the trigonometric identity

*2.3.6. Evaluate

sin asin b = 2 [cos(a - b) - cos(a + b)] .

L n7rx m7rx
cog L cc

L
dx for n > O, m > 0.

Use the trigonometric identity

cos a cos b = 2 [cos(a + b) + cos(a - b)] .

(Be careful if a - b = 0 or a + b = 0.)

2.3.7. Consider the following boundary value problem (if necessary, see Sec. 2.4.1):

= k
82U

with au (0, t)=O, au (L, t) = 0, and u(x, 0) = f (x).at ax2 ax ax

(a) Give a one-sentence physical interpretation of this problem.

(b) Solve by the method of separation of variables. First show that there
are no separated solutions which exponentially grow in time. [Hint:
The answer is

u(x, t) = Ao + > cos nix .

n=1

What is An?

0.5.1 Part (a)

By definition the total heat energy is

𝐸 = �
𝑉
𝜌𝑐𝑢 (𝑥, 𝑡) 𝑑𝑣

Assuming constant cross section area 𝐴, the above becomes (assuming all thermal proper-
ties are constant)

𝐸 = �
𝐿

0
𝜌𝑐𝑢 (𝑥, 𝑡) 𝐴𝑑𝑥

But 𝑢 (𝑥, 𝑡) was found to be

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡
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For these boundary conditions from problem 2.3.3. Where 𝐵𝑛 was found from initial
conditions. Substituting the solution found into the energy equation gives

𝐸 = 𝜌𝑐𝐴�
𝐿

0
�
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡� 𝑑𝑥

= 𝜌𝑐𝐴
∞
�
𝑛=1

�𝐵𝑛𝑒
−𝑘� 𝑛𝜋𝐿 �

2
𝑡�

𝐿

0
sin �𝑛𝜋

𝐿
𝑥� 𝑑𝑥�

= 𝜌𝑐𝐴
∞
�
𝑛=1

𝐵𝑛𝑒
−𝑘� 𝑛𝜋𝐿 �

2
𝑡

⎛
⎜⎜⎜⎜⎜⎝
− cos �𝑛𝜋𝐿 𝑥�

𝑛𝜋
𝐿

⎞
⎟⎟⎟⎟⎟⎠

𝐿

0

= 𝜌𝑐𝐴
∞
�
𝑛=1

𝐵𝑛𝑒
−𝑘� 𝑛𝜋𝐿 �

2
𝑡 𝐿
𝑛𝜋

�− cos �𝑛𝜋
𝐿
𝐿� + cos (0)�

= 𝜌𝑐𝐴
∞
�
𝑛=1

𝐵𝑛𝑒
−𝑘� 𝑛𝜋𝐿 �

2
𝑡 𝐿
𝑛𝜋

(1 − cos (𝑛𝜋))

=
𝐿𝜌𝑐𝐴
𝜋

∞
�
𝑛=1

�
𝐵𝑛
𝑛
(1 − cos (𝑛𝜋)) 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡�

0.5.2 Part (b)

By definition, the flux is the amount of heat flow per unit time per unit area. Assuming
the area is 𝐴, then heat flow at 𝑥 = 0 into the rod per unit time (call it 𝐻 (𝑥)) is

𝐻|𝑥=0 = 𝐴 𝜙�
𝑥=0

= −𝐴𝑘
𝜕𝑢
𝜕𝑥
�
𝑥=0

Similarly, heat flow at 𝑥 = 𝐿 out of the rod per unit time is

𝐻|𝑥=𝐿 = 𝐴 𝜙�
𝑥=𝐿

= −𝐴𝑘
𝜕𝑢
𝜕𝑥
�
𝑥=𝐿

To obtain heat flow at 𝑥 = 0 leaving the rod, the sign is changed and it becomes 𝐴𝑘 𝜕𝑢
𝜕𝑥 �𝑥=0

.

Since 𝑢 (𝑥, 𝑡) = ∑∞
𝑛=1 𝐵𝑛 sin �𝑛𝜋𝐿 𝑥� 𝑒

−𝑘� 𝑛𝜋𝐿 �
2
𝑡 then

𝜕𝑢
𝜕𝑥

=
∞
�
𝑛=1

𝐵𝑛
𝑛𝜋
𝐿

cos �𝑛𝜋
𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡

Then at 𝑥 = 0 then heat flow leaving of the rod becomes

𝐴𝑘
𝜕𝑢
𝜕𝑥
�
𝑥=0

= 𝐴𝑘
∞
�
𝑛=1

𝑛𝜋
𝐿
𝐵𝑛𝑒

−𝑘� 𝑛𝜋𝐿 �
2
𝑡

And at 𝑥 = 𝐿, the heat flow out of the bar

−𝐴𝑘
𝜕𝑢
𝜕𝑥
�
𝑥=𝐿

= −𝐴𝑘
∞
�
𝑛=1

𝐵𝑛
𝑛𝜋
𝐿

cos �𝑛𝜋
𝐿
𝐿� 𝑒−𝜅�

𝑛𝜋
𝐿 �

2
𝑡

= −𝐴𝑘
∞
�
𝑛=1

𝐵𝑛
𝑛𝜋
𝐿

cos (𝑛𝜋) 𝑒−𝜅�
𝑛𝜋
𝐿 �

2
𝑡

= −𝐴𝑘
∞
�
𝑛=1

(−1)𝑛 𝐵𝑛
𝑛𝜋
𝐿
𝑒−𝜅�

𝑛𝜋
𝐿 �

2
𝑡

0.5.3 Part (c)

Total 𝐸 inside the bar at time 𝑡 is given by initial energy 𝐸𝑡=0 and time integral of flow of
heat energy into the bar. Since from part (a)

𝐸 = 𝐿
𝜌𝑐𝐴
𝜋

∞
�
𝑛=1

𝐵𝑛
𝑛
𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡 (1 − cos (𝑛𝜋))

Then initial energy is

𝐸𝑡=0 = 𝐿
𝜌𝑐𝐴
𝜋

∞
�
𝑛=1

𝐵𝑛
𝑛
(1 − cos (𝑛𝜋))
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And total heat flow into the rod (per unit time) is �−𝐴𝑘
𝜕𝑢
𝜕𝑥 �𝑥=0

+ 𝐴𝑘 𝜕𝑢
𝜕𝑥 �𝑥=𝐿

�, therefore

𝐿
𝜌𝑐𝐴
𝜋

∞
�
𝑛=1

𝐵𝑛
𝑛
𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡 (1 − cos (𝑛𝜋)) = �

𝑡

0
�−𝐴𝑘

𝜕𝑢
𝜕𝑥
�
𝑥=0

+ 𝐴𝑘
𝜕𝑢
𝜕𝑥
�
𝑥=𝐿
� 𝑑𝑥

= 𝐴𝑘�
𝑡

0
�
𝜕𝑢 (𝐿)
𝜕𝑥

−
𝜕𝑢 (0)
𝜕𝑥 � 𝑑𝑥

But
𝜕𝑢 (𝐿)
𝜕𝑥

−
𝜕𝑢 (0)
𝜕𝑥

=
𝜋
𝐿

∞
�
𝑛=1

𝑛𝐵𝑛 (−1)
𝑛 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡 −

𝜋
𝐿

∞
�
𝑛=1

𝑛𝐵𝑛𝑒
−𝑘� 𝑛𝜋𝐿 �

2
𝑡

=
𝜋
𝐿 �

∞
�
𝑛=1

𝑛𝐵𝑛 (−1)
𝑛 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡 −

∞
�
𝑛=1

𝑛𝐵𝑛𝑒
−𝑘� 𝑛𝜋𝐿 �

2
𝑡�

Hence
𝐿𝜌𝑐𝐴
𝜋

∞
�
𝑛=1

𝐵𝑛
𝑛

exp−𝑘�
𝑛𝜋
𝐿 �

2
𝑡 (1 − cos (𝑛𝜋)) = 𝐴𝑘𝜋

𝐿 �
𝑡

0
�
∞
�
𝑛=1

𝑛𝐵𝑛 (−1)
𝑛 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡 −

∞
�
𝑛=1

𝑛𝐵𝑛𝑒
−𝑘� 𝑛𝜋𝐿 �

2
𝑡� 𝑑𝑥

0.6 section 2.3.5 (problem 5)

56 Chapter 2. Method of Separation of Variables

[Your answer in part (c) may involve certain integrals that do not need to
be evaluated.]

2.3.4. Consider

k02,

subject to u(0, t) = 0, u(L, t) = 0, and u(x, 0) = f (x).

*(a) What is the total heat energy in the rod as a function of time?

(b) What is the flow of heat energy out of the rod at x = 0? at x = L?

*(c) What relationship should exist between parts (a) and (b)?

2.3.5. Evaluate (be careful if n = m)

L nzrx m7rxsin L sin L dx forn>0,m>0.

Use the trigonometric identity

*2.3.6. Evaluate

sin asin b = 2 [cos(a - b) - cos(a + b)] .

L n7rx m7rx
cog L cc

L
dx for n > O, m > 0.

Use the trigonometric identity

cos a cos b = 2 [cos(a + b) + cos(a - b)] .

(Be careful if a - b = 0 or a + b = 0.)

2.3.7. Consider the following boundary value problem (if necessary, see Sec. 2.4.1):

= k
82U

with au (0, t)=O, au (L, t) = 0, and u(x, 0) = f (x).at ax2 ax ax

(a) Give a one-sentence physical interpretation of this problem.

(b) Solve by the method of separation of variables. First show that there
are no separated solutions which exponentially grow in time. [Hint:
The answer is

u(x, t) = Ao + > cos nix .

n=1

What is An?

𝐼 = �
𝐿

0
sin �𝑛𝜋𝑥

𝐿
� sin �𝑚𝜋𝑥

𝐿
� 𝑑𝑥

Considering first the case 𝑚 = 𝑛. The integral becomes

𝐼 = �
𝐿

0
sin2 �𝑛𝜋𝑥

𝐿
� 𝑑𝑥 =

𝐿
2

For the case where 𝑛 ≠ 𝑚, using

sin 𝑎 sin 𝑏 = 1
2
(cos (𝑎 − 𝑏) − cos (𝑎 + 𝑏))

The integral 𝐼 becomes 2

𝐼 =
1
2 �

𝐿

0
cos �𝑛𝜋𝑥

𝐿
−
𝑚𝜋𝑥
𝐿

� − cos �𝑛𝜋𝑥
𝐿

+
𝑚𝜋𝑥
𝐿

� 𝑑𝑥

=
1
2 �

𝐿

0
cos �

𝜋𝑥 (𝑛 − 𝑚)
𝐿 � − cos �

𝜋𝑥 (𝑛 + 𝑚)
𝐿 � 𝑑𝑥

=
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin �𝜋𝑥(𝑛−𝑚)𝐿
�

𝜋(𝑛−𝑚)
𝐿

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐿

0

−
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin �𝜋𝑥(𝑛+𝑚)𝐿
�

𝜋(𝑛+𝑚)
𝐿

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐿

0

=
𝐿

2𝜋 (𝑛 − 𝑚) �
sin �

𝜋𝑥 (𝑛 − 𝑚)
𝐿 ��

𝐿

0
−

𝐿
2𝜋 (𝑛 + 𝑚) �

sin �
𝜋𝑥 (𝑛 + 𝑚)

𝐿 ��
𝐿

0
(1)

But

�sin �
𝜋𝑥 (𝑛 − 𝑚)

𝐿 ��
𝐿

0
= sin (𝜋 (𝑛 − 𝑚)) − sin (0)

2Note that the term (𝑛 − 𝑚) showing in the denominator is not a problem now, since this is the case where
𝑛 ≠ 𝑚.
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And since 𝑛 − 𝑚 is integer, then sin (𝜋 (𝑛 − 𝑚)) = 0, therefore �sin �𝜋𝑥(𝑛−𝑚)𝐿
��
𝐿

0
= 0. Similarly

�sin �
𝜋𝑥 (𝑛 + 𝑚)

𝐿 ��
𝐿

0
= sin (𝜋 (𝑛 + 𝑚)) − sin (0)

Since 𝑛 + 𝑚 is integer then sin (𝜋 (𝑛 + 𝑚)) = 0 and �sin �𝜋𝑥(𝑛+𝑚)𝐿
��
𝐿

0
= 0. Therefore

�
𝐿

0
sin �𝑛𝜋𝑥

𝐿
� sin �𝑚𝜋𝑥

𝐿
� 𝑑𝑥 =

⎧⎪⎪⎨
⎪⎪⎩

𝐿
2 𝑛 = 𝑚
0 otherwise

0.7 section 2.3.7 (problem 6)

56 Chapter 2. Method of Separation of Variables

[Your answer in part (c) may involve certain integrals that do not need to
be evaluated.]

2.3.4. Consider

k02,

subject to u(0, t) = 0, u(L, t) = 0, and u(x, 0) = f (x).

*(a) What is the total heat energy in the rod as a function of time?

(b) What is the flow of heat energy out of the rod at x = 0? at x = L?

*(c) What relationship should exist between parts (a) and (b)?

2.3.5. Evaluate (be careful if n = m)

L nzrx m7rxsin L sin L dx forn>0,m>0.

Use the trigonometric identity

*2.3.6. Evaluate

sin asin b = 2 [cos(a - b) - cos(a + b)] .

L n7rx m7rx
cog L cc

L
dx for n > O, m > 0.

Use the trigonometric identity

cos a cos b = 2 [cos(a + b) + cos(a - b)] .

(Be careful if a - b = 0 or a + b = 0.)

2.3.7. Consider the following boundary value problem (if necessary, see Sec. 2.4.1):

= k
82U

with au (0, t)=O, au (L, t) = 0, and u(x, 0) = f (x).at ax2 ax ax

(a) Give a one-sentence physical interpretation of this problem.

(b) Solve by the method of separation of variables. First show that there
are no separated solutions which exponentially grow in time. [Hint:
The answer is

u(x, t) = Ao + > cos nix .

n=1

What is An?

0.7.1 part (a)

This PDE describes how temperature 𝑢 changes in a rod of length 𝐿 as a function of
time 𝑡 and location 𝑥. The left and right end are insulated, so no heat escapes from these
boundaries. Initially at 𝑡 = 0, the temperature distribution in the rod is described by the
function 𝑓 (𝑥).

0.7.2 Part (b)

𝜕𝑢
𝜕𝑡

= 𝑘
𝜕2𝑢
𝜕𝑥2

Let 𝑢 (𝑥, 𝑡) = 𝑇 (𝑡) 𝑋 (𝑥), then the PDE becomes
1
𝑘
𝑇′𝑋 = 𝑋′′𝑇

Dividing by 𝑋𝑇 ≠ 0
1
𝑘
𝑇′

𝑇
=
𝑋′′

𝑋
Since each side depends on di�erent independent variable and both are equal, they must
be both equal to same constant, say −𝜆. Where 𝜆 is assumed real.

1
𝑘
𝑇′

𝑇
=
𝑋′′

𝑋
= −𝜆

The two ODE’s generated are

𝑇′ + 𝑘𝜆𝑇 = 0 (1)

𝑋′′ + 𝜆𝑋 = 0 (2)
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Starting with the space ODE equation (2), with corresponding boundary conditions 𝑑𝑋𝑑𝑥 (0) =

0, 𝑑𝑋𝑑𝑥 (𝐿) = 0. Assuming the solution is 𝑋 (𝑥) = 𝑒𝑟𝑥, Then the characteristic equation is

𝑟2 + 𝜆 = 0
𝑟2 = −𝜆

𝑟 = ±√−𝜆

The following cases are considered.

case 𝜆 < 0 In this case, −𝜆 and also √−𝜆 are positive. Hence the roots ±√−𝜆 are both real.
Let

√−𝜆 = 𝑠

Where 𝑠 > 0. This gives the solution

𝑋 (𝑥) = 𝐴 cosh (𝑠𝑥) + 𝐵 sinh (𝑠𝑥)
𝑑𝑋
𝑑𝑥

= 𝐴 sinh (𝑠𝑥) + 𝐵 cosh (𝑠𝑥)

Applying the left B.C. gives

0 =
𝑑𝑋
𝑑𝑥

(0)

= 𝐵 cosh (0)
= 𝐵

The solution becomes 𝑋 (𝑥) = 𝐴 cosh (𝑠𝑥) and hence𝑑𝑋𝑑𝑥 = 𝐴 sinh (𝑠𝑥). Applying the right B.C.
gives

0 =
𝑑𝑋
𝑑𝑥

(𝐿)

= 𝐴 sinh (𝑠𝐿)
𝐴 = 0 result in trivial solution. Therefore assuming sinh (𝑠𝐿) = 0 implies 𝑠𝐿 = 0 which
is not valid since 𝑠 > 0 and 𝐿 ≠ 0. Hence only trivial solution results from this case.
𝜆 < 0 is not an eigenvalue.

case 𝜆 = 0

The ODE becomes
𝑑2𝑋
𝑑𝑥2

= 0

The solution is

𝑋 (𝑥) = 𝑐1𝑥 + 𝑐2
𝑑𝑋
𝑑𝑥

= 𝑐1

Applying left boundary conditions gives

0 =
𝑑𝑋
𝑑𝑥

(0)

= 𝑐1

Hence the solution becomes 𝑋 (𝑥) = 𝑐2. Therefore
𝑑𝑋
𝑑𝑥 = 0. Applying the right B.C. provides

no information.

Therefore this case leads to the solution 𝑋 (𝑥) = 𝑐2. Associated with this one eigenvalue,
the time equation becomes 𝑑𝑇0

𝑑𝑡 = 0 hence 𝑇0 is constant, say 𝛼. Hence the solution 𝑢0 (𝑥, 𝑡)
associated with this 𝜆 = 0 is

𝑢0 (𝑥, 𝑡) = 𝑋0𝑇0
= 𝑐2𝛼
= 𝐴0

where constant 𝑐2𝛼was renamed to𝐴0 to indicate it is associated with 𝜆 = 0. 𝜆 = 0 is an eigenvalue.

case 𝜆 > 0
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Hence −𝜆 is negative, and the roots are both complex.

𝑟 = ±𝑖√𝜆

The solution is

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

𝑑𝑋
𝑑𝑥

= −𝐴√𝜆 sin �√𝜆𝑥� + 𝐵√𝜆 cos �√𝜆𝑥�

Applying the left B.C. gives

0 =
𝑑𝑋
𝑑𝑥

(0)

= 𝐵√𝜆 cos (0)

= 𝐵√𝜆

Therefore 𝐵 = 0 as 𝜆 > 0. The solution becomes𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� and 𝑑𝑋
𝑑𝑥 = −𝐴√𝜆 sin �√𝜆𝑥�.

Applying the right B.C. gives

0 =
𝑑𝑋
𝑑𝑥

(𝐿)

= −𝐴√𝜆 sin �√𝜆𝐿�

𝐴 = 0 gives a trivial solution. Selecting sin �√𝜆𝐿� = 0 gives

√𝜆𝐿 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯

Or

𝜆𝑛 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

Therefore the space solution is

𝑋𝑛 (𝑥) = 𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� 𝑛 = 1, 2, 3,⋯

The time solution is found by solving
𝑑𝑇𝑛
𝑑𝑡

+ 𝑘𝜆𝑛𝑇𝑛 = 0

This has the solution

𝑇𝑛 (𝑡) = 𝑒−𝑘𝜆𝑛𝑡

= 𝑒−𝑘�
𝑛𝜋
𝐿 �

2
𝑡 𝑛 = 1, 2, 3,⋯

For the same set of eigenvalues. Notice that no need to add a constant here, since it
will be absorbed in the 𝐴𝑛 when combined in the following step below. Since for 𝜆 = 0

the time solution was found to be constant, and for 𝜆 > 0 the time solution is 𝑒−𝑘�
𝑛𝜋
𝐿 �

2
𝑡,

then no time solution will grow with time. Time solutions always decay with time as the

exponent −𝑘 �𝑛𝜋𝐿 �
2
𝑡 is negative quantity. The solution to the PDE for 𝜆 > 0 is

𝑢𝑛 (𝑥, 𝑡) = 𝑇𝑛 (𝑡) 𝑋𝑛 (𝑥) 𝑛 = 0, 1, 2, 3,⋯

But for linear system sum of eigenfunctions is also a solution. Hence

𝑢 (𝑥, 𝑡) = 𝑢𝜆=0 (𝑥, 𝑡) +
∞
�
𝑛=1

𝑢𝑛 (𝑥, 𝑡)

= 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡

0.7.3 Part c

From the solution found above, setting 𝑡 = 0 gives

𝑢 (𝑥, 0) = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥�
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Therefore, 𝑓 (𝑥) must satisfy the above

𝑓 (𝑥) = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥�

0.7.4 Part d

Multiplying both sides with cos �𝑚𝜋𝐿 𝑥� where in this problem 𝑚 = 0, 1, 2,⋯ (since there was
an eigenvalue associated with 𝜆 = 0), and integrating over the domain gives

�
𝐿

0
𝑓 (𝑥) cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0
cos �𝑚𝜋

𝐿
𝑥� �𝐴0 +

∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥�� 𝑑𝑥

= �
𝐿

0
𝐴0 cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +� cos �𝑚𝜋

𝐿
𝑥�

∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� 𝑑𝑥

= �
𝐿

0
𝐴0 cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +�

𝐿

0

∞
�
𝑛=1

𝐴𝑛 cos �𝑚𝜋
𝐿
𝑥� cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

Interchanging the order of summation and integration

�
𝐿

0
𝑓 (𝑥) cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0
𝐴0 cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +

∞
�
𝑛=1

𝐴𝑛�
𝐿

0
cos �𝑚𝜋

𝐿
𝑥� cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 (1)

case 𝑚 = 0

When 𝑚 = 0 then cos �𝑚𝜋𝐿 𝑥� = 1 and the above simplifies to

�
𝐿

0
𝑓 (𝑥) 𝑑𝑥 = �

𝐿

0
𝐴0𝑑𝑥 +

∞
�
𝑛=1

𝐴𝑛�
𝐿

0
cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

But ∫
𝐿

0
cos �𝑛𝜋𝐿 𝑥� 𝑑𝑥 = 0 and the above becomes

�
𝐿

0
𝑓 (𝑥) 𝑑𝑥 = �

𝐿

0
𝐴0𝑑𝑥

= 𝐴0𝐿

Therefore

𝐴0 =
1
𝐿
∫𝐿
0
𝑓 (𝑥) 𝑑𝑥

case 𝑚 > 0

From (1), one term survives in the integration when only 𝑛 = 𝑚, hence

�
𝐿

0
𝑓 (𝑥) cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = 𝐴0�

𝐿

0
cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 + 𝐴𝑚�

𝐿

0
cos2 �𝑚𝜋

𝐿
𝑥� 𝑑𝑥

But ∫
𝐿

0
cos �𝑚𝜋𝐿 𝑥� 𝑑𝑥 = 0 and the above becomes

�
𝐿

0
𝑓 (𝑥) cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = 𝐴𝑚

𝐿
2

Therefore

𝐴𝑛 =
2
𝐿
∫𝐿
0
𝑓 (𝑥) cos �𝑛𝜋𝐿 𝑥� 𝑑𝑥

For 𝑛 = 1, 2, 3,⋯

0.7.5 Part (e)

The solution was found to be

𝑢 (𝑥, 𝑡) = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡

In the limit as 𝑡 → ∞ the term 𝑒−𝑘�
𝑛𝜋
𝐿 �

2
𝑡 → 0. What is left is 𝐴0. But 𝐴0 =

1
𝐿
∫𝐿
0
𝑓 (𝑥) 𝑑𝑥 from

above. This quantity is the average of the initial temperature.
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0.8 section 2.3.8 (problem 7)

2.3. Heat Equation With Zero Temperature Ends 57

(c) Show that the initial condition, u(x, 0) = f (x), is satisfied if

f (x) = Ao + E A. cos00

n=1

(d) Using Exercise 2.3.6, solve for AO and An(n > 1).
(e) What happens to the temperature distribution as t -+ oo? Show that

it approaches the steady-state temperature distribution (see Sec. 1.4).

*2.3.8. Consider
8u 02u& = kax2 - au.

This corresponds to a one-dimensional rod either with heat loss through the
lateral sides with outside temperature 0° (a > 0, see Exercise 1.2.4) or with
insulated lateral sides with a heat sink proportional to the temperature.
Suppose that the boundary conditions are

u(0,t) = 0 and u(L,t) = 0.

(a) What are the possible equilibrium temperature distributions if a > 0?
(b) Solve the time-dependent problem [u(x, 0) = f (x)] if a > 0. Analyze

the temperature for large time (t --+ oo) and compare to part (a).

*2.3.9. Redo Exercise 2.3.8 if a < 0. [Be especially careful if -a/k = (n7r/L)2.]

2.3.10. For two- and three-dimensional vectors, the fundamental property of dot
products, A B = IAI[BI cos9, implies that

IA - BI < IAIIBI. (2.3.44)

In this exercise we generalize this to n-dimensional vectors and functions,
in which case (2.3.44) is known as Schwarz's inequality. [The names of
Cauchy and Buniakovsky are also associated with (2.3.44).]

(a) Show that IA - -yBi2 > 0 implies (2.3.44), where ry = A B/B B.
(b) Express the inequality using both

00 00 b

n.
n=1 n=1 Cn

*(c) Generalize (2.3.44) to functions. [Hint: Let A A. B mean the integral
J L A(x)B(x) dx.]

2.3.11. Solve Laplace's equation inside a rectangle:

2
=

02u 02u
V U

axe
+ 8y2 = 0

subject to the boundary conditions

u(0,y) = g(y) u(x,0) = 0
u(L, y) = 0 u(x, H) = 0.

(Hint: If necessary, see Sec. 2.5.1.)

0.8.1 part (a)

Equilibrium is at steady state, which implies 𝜕𝑢
𝜕𝑡 = 0 and the PDE becomes an ODE, since

𝑢 ≡ 𝑢 (𝑥) at steady state. Hence

𝑑2𝑢
𝑑𝑥2

−
𝛼
𝑘
𝑢 = 0

The characteristic equation is 𝑟2 = 𝛼
𝑘 or 𝑟 = ±�

𝛼
𝑘 . Since 𝛼 > 0 and 𝑘 > 0 then the roots are

real, and the solution is

𝑢 = 𝐴0𝑒�
𝛼
𝑘 𝑥 + 𝐵0𝑒

−�
𝛼
𝑘 𝑥

This can be rewritten as

𝑢 (𝑥) = 𝐴 cosh �
�
𝛼
𝑘
𝑥� + 𝐵 sinh �

�
𝛼
𝑘
𝑥�

Applying left B.C. gives

0 = 𝑢 (0)
= 𝐴 cosh (0)
= 𝐴

The solution becomes 𝑢 (𝑥) = 𝐵 sinh ��
𝛼
𝑘 𝑥�. Applying the right boundary condition gives

0 = 𝑢 (𝐿)

= 𝐵 sinh �
�
𝛼
𝑘
𝐿�

𝐵 = 0 leads to trivial solution. Setting sinh ��
𝛼
𝑘𝐿� = 0 implies �

𝛼
𝑘𝐿 = 0. But this is not

possible since 𝐿 ≠ 0. Hence the only solution possible is

𝑢 (𝑥) = 0

0.8.2 Part (b)

𝜕𝑢
𝜕𝑡

= 𝑘
𝜕2𝑢
𝜕𝑥2

− 𝛼𝑢

𝜕𝑢
𝜕𝑡

+ 𝛼𝑢 = 𝑘
𝜕2𝑢
𝜕𝑥2

Assuming 𝑢 (𝑥, 𝑡) = 𝑋 (𝑥) 𝑇 (𝑡) and substituting in the above gives

𝑋𝑇′ + 𝛼𝑋𝑇 = 𝑘𝑇𝑋′′

Dividing by 𝑘𝑋𝑇 ≠ 0
𝑇′

𝑘𝑇
+
𝛼
𝑘
=
𝑋′′

𝑋
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Since each side depends on di�erent independent variable and both are equal, they must
be both equal to same constant, say −𝜆. Where 𝜆 is assumed real.

1
𝑘
𝑇′

𝑇
+
𝛼
𝑘
=
𝑋′′

𝑋
= −𝜆

The two ODE’s are
1
𝑘
𝑇′

𝑇
+
𝛼
𝑘
= −𝜆

𝑋′′

𝑋
= −𝜆

Or

𝑇′ + (𝛼 + 𝜆𝑘) 𝑇 = 0
𝑋′′ + 𝜆𝑋 = 0

The solution to the space ODE is the familiar (where 𝜆 > 0 is only possible case, As found
in problem 2.3.3, part d. Since it has the same B.C.)

𝑋𝑛 = 𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑛 = 1, 2, 3,⋯

Where 𝜆𝑛 = �
𝑛𝜋
𝐿
�
2
. The time ODE is now solved.

𝑑𝑇𝑛
𝑑𝑡

+ (𝛼 + 𝜆𝑛𝑘) 𝑇𝑛 = 0

This has the solution

𝑇𝑛 (𝑡) = 𝑒−(𝛼+𝜆𝑛𝑘)𝑡

= 𝑒−𝛼𝑡𝑒−�
𝑛𝜋
𝐿 �

2
𝑘𝑡

For the same eigenvalues. Notice that no need to add a constant here, since it will be
absorbed in the 𝐵𝑛 when combined in the following step below. Therefore the solution to
the PDE is

𝑢𝑛 (𝑥, 𝑡) = 𝑇𝑛 (𝑡) 𝑋𝑛 (𝑥)

But for linear system sum of eigenfunctions is also a solution. Hence

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑢𝑛 (𝑥, 𝑡)

=
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑒−𝛼𝑡𝑒−�

𝑛𝜋
𝐿 �

2
𝑘𝑡

= 𝑒−𝛼𝑡
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥� 𝑒−�

𝑛𝜋
𝐿 �

2
𝑘𝑡

Where 𝑒−𝛼𝑡 was moved outside since it does not depend on 𝑛. From initial condition

𝑢 (𝑥, 0) = 𝑓 (𝑥) =
∞
�
𝑛=1

𝐵𝑛 sin �𝑛𝜋
𝐿
𝑥�

Applying orthogonality of sin as before to find 𝐵𝑛 results in

𝐵𝑛 =
2
𝐿 �

𝐿

0
sin �𝑛𝜋

𝐿
𝑥� 𝑓 (𝑥) 𝑑𝑥

Hence the solution becomes

𝑢 (𝑥, 𝑡) =
2
𝐿
𝑒−𝛼𝑡 �

∞
�
𝑛=1

��
𝐿

0
sin �𝑛𝜋

𝐿
𝑥� 𝑓 (𝑥) 𝑑𝑥� sin �𝑛𝜋

𝐿
𝑥� 𝑒−�

𝑛𝜋
𝐿 �

2
𝑘𝑡�

Hence it is clear that in the limit as 𝑡 becomes large 𝑢 (𝑥, 𝑡) → 0 since the sum is multiplied
by 𝑒−𝛼𝑡 and 𝛼 > 0

lim
𝑡→∞

𝑢 (𝑥, 𝑡) = 0

This agrees with part (a)
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0.9 section 2.3.10 (problem 8)

2.3. Heat Equation With Zero Temperature Ends 57

(c) Show that the initial condition, u(x, 0) = f (x), is satisfied if

f (x) = Ao + E A. cos00

n=1

(d) Using Exercise 2.3.6, solve for AO and An(n > 1).
(e) What happens to the temperature distribution as t -+ oo? Show that

it approaches the steady-state temperature distribution (see Sec. 1.4).

*2.3.8. Consider
8u 02u& = kax2 - au.

This corresponds to a one-dimensional rod either with heat loss through the
lateral sides with outside temperature 0° (a > 0, see Exercise 1.2.4) or with
insulated lateral sides with a heat sink proportional to the temperature.
Suppose that the boundary conditions are

u(0,t) = 0 and u(L,t) = 0.

(a) What are the possible equilibrium temperature distributions if a > 0?
(b) Solve the time-dependent problem [u(x, 0) = f (x)] if a > 0. Analyze

the temperature for large time (t --+ oo) and compare to part (a).

*2.3.9. Redo Exercise 2.3.8 if a < 0. [Be especially careful if -a/k = (n7r/L)2.]

2.3.10. For two- and three-dimensional vectors, the fundamental property of dot
products, A B = IAI[BI cos9, implies that

IA - BI < IAIIBI. (2.3.44)

In this exercise we generalize this to n-dimensional vectors and functions,
in which case (2.3.44) is known as Schwarz's inequality. [The names of
Cauchy and Buniakovsky are also associated with (2.3.44).]

(a) Show that IA - -yBi2 > 0 implies (2.3.44), where ry = A B/B B.
(b) Express the inequality using both

00 00 b

n.
n=1 n=1 Cn

*(c) Generalize (2.3.44) to functions. [Hint: Let A A. B mean the integral
J L A(x)B(x) dx.]

2.3.11. Solve Laplace's equation inside a rectangle:

2
=

02u 02u
V U

axe
+ 8y2 = 0

subject to the boundary conditions

u(0,y) = g(y) u(x,0) = 0
u(L, y) = 0 u(x, H) = 0.

(Hint: If necessary, see Sec. 2.5.1.)

�𝐴̄ − 𝛾𝐵̄�2 = �𝐴̄ − 𝛾𝐵̄� ⋅ �𝐴̄ − 𝛾𝐵̄�

Since �𝐴̄ − 𝛾𝐵̄�2 ≥ 0 then

�𝐴̄ − 𝛾𝐵̄� ⋅ �𝐴̄ − 𝛾𝐵̄� ≥ 0

Expanding

�𝐴̄ ⋅ 𝐴̄� − 𝛾 �𝐴̄ ⋅ 𝐵̄� − 𝛾 �𝐵̄ ⋅ 𝐴̄� + 𝛾2 �𝐵̄ ⋅ 𝐵̄� ≥ 0

But 𝐴̄ ⋅ 𝐵̄ = 𝐵̄ ⋅ 𝐴̄, hence
�𝐴̄ ⋅ 𝐴̄� − 2𝛾 �𝐴̄ ⋅ 𝐵̄� + 𝛾2 �𝐵̄ ⋅ 𝐵̄� ≥ 0

Using the definition of 𝛾 = 𝐴̄⋅𝐵̄
𝐵̄⋅𝐵̄ into the above gives

�𝐴̄ ⋅ 𝐴̄� − 2
𝐴̄ ⋅ 𝐵̄
𝐵̄ ⋅ 𝐵̄

�𝐴̄ ⋅ 𝐵̄� +
�𝐴̄ ⋅ 𝐵̄�

2

�𝐵̄ ⋅ 𝐵̄�
2 �𝐵̄ ⋅ 𝐵̄� ≥ 0

�𝐴̄ ⋅ 𝐴̄� − 2
�𝐴̄ ⋅ 𝐵̄�

2

𝐵̄ ⋅ 𝐵̄
+
�𝐴̄ ⋅ 𝐵̄�

2

𝐵̄ ⋅ 𝐵̄
≥ 0

�𝐴̄ ⋅ 𝐴̄� −
�𝐴̄ ⋅ 𝐵̄�

2

𝐵̄ ⋅ 𝐵̄
≥ 0

�𝐴̄ ⋅ 𝐴̄� �𝐵̄ ⋅ 𝐵̄� − �𝐴̄ ⋅ 𝐵̄�
2
≥ 0

�𝐴̄ ⋅ 𝐴̄� �𝐵̄ ⋅ 𝐵̄� ≥ �𝐴̄ ⋅ 𝐵̄�
2

But �𝐴̄ ⋅ 𝐵̄�
2
= �𝐴̄ ⋅ 𝐵�2 since 𝐴̄ ⋅ 𝐵̄ is just a number. The above becomes

�𝐴̄ ⋅ 𝐴̄� �𝐵̄ ⋅ 𝐵̄� ≥ �𝐴̄ ⋅ 𝐵�2

And 𝐴̄ ⋅ 𝐴̄ = �𝐴̄�2 and �𝐵̄ ⋅ 𝐵̄� = �𝐵̄�2 by definition as well. Therefore the above becomes

�𝐴̄ ⋅ 𝐵�2 ≤ �𝐴̄�2 �𝐵̄�2

Taking square root gives

�𝐴̄ ⋅ 𝐵� ≤ �𝐴̄� �𝐵̄�

Which is Schwarz’s inequality.

0.9.1 Part b

From the norm definition

�𝐴̄� = ��𝑥2 + 𝑦2 + 𝑧2

Then

�𝐴̄ ⋅ 𝐴̄� = �𝐴̄�2 =�𝑥2 + 𝑦2 + 𝑧2
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Hence

�𝐴̄�2 =
∞
�
𝑛=1

𝑎2𝑛

�𝐵̄�2 =
∞
�
𝑛=1

𝑏2𝑛

And

𝐴̄ ⋅ 𝐵̄ =
∞
�
𝑛=1

𝑎𝑛𝑏𝑛

Therefore the inequality can be written as

�𝐴̄ ⋅ 𝐵̄�
2
≤ �𝐴̄�2 �𝐵̄�2

�
∞
�
𝑛=1

𝑎𝑛𝑏𝑛�
2

≤ �
∞
�
𝑛=1

𝑎2𝑛� �
∞
�
𝑛=1

𝑏2𝑛�

0.9.2 Part c

Using 𝐴̄ ⋅ 𝐵̄ for functions to mean ∫
𝐿

0
𝐴 (𝑥) 𝐵 (𝑥) 𝑑𝑥 then inequality for functions becomes

��
𝐿

0
𝐴 (𝑥) 𝐵 (𝑥) 𝑑𝑥�

2

≤ ��
𝐿

0
𝐴2 (𝑥) 𝑑𝑥� ��

𝐿

0
𝐵2 (𝑥) 𝑑𝑥�

0.10 section 2.4.1 (problem 9)

2.4. Worked Examples with the Heat Equation

Table 2.4.1: Boundary Value Problems
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EXERCISES 2.4

*2.4.1. Solve the heat equation 8u/8t = k82u/8x2, 0 < x < L, t > 0, subject to

8x(O,t)0 t>0

(L, t)0 t>0.

(a) u(x,0) =
0 x < L/2
1 x>L/2

(c) u(x, 0) = -2 sin L

(b)
u(x,0)=6+4cos31rx

(d) u(x, 0) = -3 cos jLx

The same boundary conditions was encountered in problem 2.3.7, therefore the solution
used here starts from the same general solution already found, which is

𝜆0 = 0

𝜆𝑛 = �
𝑛𝜋
𝐿
�
2

𝑛 = 1, 2, 3,⋯

𝑢 (𝑥, 𝑡) = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡

0.10.1 Part (b)

𝑢 (𝑥, 0) = 6 + 4 cos 3𝜋𝑥
𝐿

Comparing terms with the general solution at 𝑡 = 0 which is

𝑢 (𝑥, 0) = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥�
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results in

𝐴0 = 6
𝐴3 = 4

And all other 𝐴𝑛 = 0. Hence the solution is

𝑢 (𝑥, 𝑡) = 6 + 4 cos �
3𝜋
𝐿
𝑥� 𝑒

−𝑘� 3𝜋𝐿 �
2
𝑡

0.10.2 Part (c)

𝑢 (𝑥, 0) = −2 sin 𝜋𝑥
𝐿

Hence

−2 sin 𝜋𝑥
𝐿
= 𝐴0 +

∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥� (1)

Multiplying both sides of (1) by cos �𝑚𝜋𝐿 𝑥� and integrating gives

�
𝐿

0
−2 sin �𝜋𝑥

𝐿
� cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0
�𝐴0 cos �𝑚𝜋

𝐿
𝑥� + cos �𝑚𝜋

𝐿
𝑥�

∞
�
𝑛=1

𝐴𝑛 cos �𝑛𝜋
𝐿
𝑥�� 𝑑𝑥

= �
𝐿

0
𝐴0 cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +�

𝐿

0

∞
�
𝑛=1

𝐴𝑛 cos �𝑚𝜋
𝐿
𝑥� cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

Interchanging the order of integration and summation

�
𝐿

0
−2 sin �𝜋𝑥

𝐿
� cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0
𝐴0 cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +

∞
�
𝑛=1

𝐴𝑛�
𝐿

0
cos �𝑚𝜋

𝐿
𝑥� cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

Case 𝑚 = 0

The above becomes

�
𝐿

0
−2 sin �𝜋𝑥

𝐿
� 𝑑𝑥 = �

𝐿

0
𝐴0𝑑𝑥 +

∞
�
𝑛=1

𝐴𝑛�
𝐿

0
cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

But ∫
𝐿

0
cos �𝑛𝜋𝐿 𝑥� 𝑑𝑥 = 0 hence

�
𝐿

0
−2 sin �𝜋𝑥

𝐿
� 𝑑𝑥 = �

𝐿

0
𝐴0𝑑𝑥

𝐴0𝐿 = −2�
𝐿

0
sin �𝜋𝑥

𝐿
� 𝑑𝑥

𝐴0𝐿 = −2

⎛
⎜⎜⎜⎜⎜⎝−

cos �𝜋𝑥𝐿 �
𝜋
𝐿

⎞
⎟⎟⎟⎟⎟⎠

𝐿

0

= −
2𝐿
𝜋 �− cos �

𝜋𝐿
𝐿 �

+ cos �
𝜋0
𝐿 ��

= −
2𝐿
𝜋
(− (−1) + 1)

= −
4𝐿
𝜋

Hence

𝐴0 =
−4
𝜋

Case 𝑚 > 0

�
𝐿

0
−2 sin �𝜋𝑥

𝐿
� cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = �

𝐿

0
𝐴0 cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 +

∞
�
𝑛=1

𝐴𝑛�
𝐿

0
cos �𝑚𝜋

𝐿
𝑥� cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

One term survives the summation resulting in

�
𝐿

0
−2 sin �𝜋𝑥

𝐿
� cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 =

−4
𝜋 �

𝐿

0
cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 + 𝐴𝑚�

𝐿

0
cos2 �𝑚𝜋

𝐿
𝑥� 𝑑𝑥
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But ∫
𝐿

0
cos �𝑚𝜋𝐿 𝑥� 𝑑𝑥 = 0 and ∫

𝐿

0
cos2 �𝑚𝜋𝐿 𝑥� 𝑑𝑥 =

𝐿
2 , therefore

�
𝐿

0
−2 sin �𝜋𝑥

𝐿
� cos �𝑚𝜋

𝐿
𝑥� 𝑑𝑥 = 𝐴𝑚

𝐿
2

𝐴𝑛 =
−4
𝐿 �

𝐿

0
sin �𝜋𝑥

𝐿
� cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥

But

�
𝐿

0
sin �𝜋𝑥

𝐿
� cos �𝑛𝜋

𝐿
𝑥� 𝑑𝑥 =

−𝐿 (1 + cos (𝑛𝜋))
𝜋 �𝑛2 − 1�

Therefore

𝐴𝑛 = 4
(1 + cos (𝑛𝜋))
𝜋 �𝑛2 − 1�

= 4
(−1)𝑛 + 1
𝜋 �𝑛2 − 1�

𝑛 = 1, 2, 3,⋯

Hence the solution becomes

𝑢 (𝑥, 𝑡) =
−4
𝜋
+
4
𝜋

∞
�
𝑛=1

(−1)𝑛 + 1
�𝑛2 − 1�

cos �𝑛𝜋
𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
𝐿 �

2
𝑡

0.11 section 2.4.2 (problem 10)

70 Chapter 2. Method of Separation of Variables

*2.4.2. Solve
z

= k8-z with 8 (0, t) = 0

u(L, t) = 0

u(x,0) = f(x)

For this problem you may assume that no solutions of the heat equation
exponentially grow in time. You may also guess appropriate orthogonality
conditions for the eigenfunctions.

*2.4.3. Solve the eigenvalue problem

d2,0

dx2
- _AO

subject to

0(0) = 0(27r) and ;jj(O) =

dx

(21r).

2.4.4. Explicitly show that there are no negative eigenvalues for

d2O

x
_ -A subject to dz (0) = 0 and (L) = 0.

2.4.5. This problem presents an alternative derivation of the heat equation for a
thin wire. The equation for a circular wire of finite thickness is the two-
dimensional heat equation (in polar coordinates). Show that this reduces
to (2.4.25) if the temperature does not depend on r and if the wire is very
thin.

2.4.6. Determine the equilibrium temperature distribution for the thin circular
ring of Section 2.4.2:

(a) Directly from the equilibrium problem (see Sec. 1.4)

(b) By computing the limit as t - oo of the time-dependent problem

2.4.7. Solve Laplace's equation inside a circle of radius a,

I .92U
V 2U

r Or (r 8r) + rz 902 = 0,

subject to the boundary condition

u(a,9) = f(9).

(Hint: If necessary, see Sec. 2.5.2.)

𝜕𝑢
𝜕𝑡

= 𝜅
𝜕2𝑢
𝜕𝑥2

Let 𝑢 (𝑥, 𝑡) = 𝑇 (𝑡) 𝑋 (𝑥), then the PDE becomes
1
𝜅
𝑇′𝑋 = 𝑋′′𝑇

Dividing by 𝑋𝑇
1
𝜅
𝑇′

𝑇
=
𝑋′′

𝑋
Since each side depends on di�erent independent variable and both are equal, they must
be both equal to same constant, say −𝜆. Where 𝜆 is real.

1
𝜅
𝑇′

𝑇
=
𝑋′′

𝑋
= −𝜆

The two ODE’s are

𝑇′ + 𝑘𝜆𝑇 = 0 (1)

𝑋′′ + 𝜆𝑋 = 0 (2)

Per problem statement, 𝜆 ≥ 0, so only two cases needs to be examined.

Case 𝜆 = 0

The space equation becomes 𝑋′′ = 0 with the solution

𝑋 = 𝐴𝑥 + 𝑏

Hence left B.C. implies 𝑋′ (0) = 0 or 𝐴 = 0. Therefore the solution becomes 𝑋 = 𝑏. The
right B.C. implies 𝑋 (𝐿) = 0 or 𝑏 = 0. Therefore this leads to 𝑋 = 0 as the only solution.
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This results in trivial solution. Therefore 𝜆 = 0 is not an eigenvalue.

Case 𝜆 > 0

Starting with the space ODE, the solution is

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

𝑑𝑋
𝑑𝑥

= −𝐴√𝜆 sin �√𝜆𝑥� + 𝐵√𝜆 cos �√𝜆𝑥�

Left B.C. gives

0 =
𝑑𝑋
𝑑𝑥

(0)

= 𝐵√𝜆

Hence 𝐵 = 0 since it is assumed 𝜆 ≠ 0 and 𝜆 > 0. Solution becomes

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥�

Applying right B.C. gives

0 = 𝑋 (𝐿)

= 𝐴 cos �√𝜆𝐿�

𝐴 = 0 leads to trivial solution. Therefore cos �√𝜆𝐿� = 0 or

√𝜆 =
𝑛𝜋
2𝐿

𝑛 = 1, 3, 5,⋯

=
(2𝑛 − 1) 𝜋

2𝐿
𝑛 = 1, 2, 3⋯

Hence

𝜆𝑛 = �
𝑛𝜋
2𝐿
�
2

𝑛 = 1, 3, 5,⋯

=
(2𝑛 − 1)2 𝜋2

4𝐿2
𝑛 = 1, 2, 3⋯

Therefore

𝑋𝑛 (𝑥) = 𝐴𝑛 cos �𝑛𝜋
2𝐿
𝑥� 𝑛 = 1, 3, 5,⋯

And the corresponding time solution

𝑇𝑛 = 𝑒
−𝑘� 𝑛𝜋2𝐿 �

2
𝑡 𝑛 = 1, 3, 5,⋯

Hence

𝑢𝑛 (𝑥, 𝑡) = 𝑋𝑛𝑇𝑛

𝑢 (𝑥, 𝑡) =
∞
�

𝑛=1,3,5,⋯
𝐴𝑛 cos �𝑛𝜋

2𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
2𝐿 �

2
𝑡

=
∞
�
𝑛=1

𝐴𝑛 cos �
(2𝑛 − 1) 𝜋

2𝐿
𝑥� 𝑒

−𝑘� (2𝑛−1)𝜋2𝐿 �
2
𝑡

From initial conditions

𝑓 (𝑥) =
∞
�

𝑛=1,3,5,⋯
𝐴𝑛 cos �𝑛𝜋

2𝐿
𝑥�

Multiplying both sides by cos �𝑚𝜋2𝐿 𝑥� and integrating

�
𝐿

0
𝑓 (𝑥) cos �𝑚𝜋

2𝐿
𝑥� 𝑑𝑥 = �

⎛
⎜⎜⎜⎝

∞
�

𝑛=1,3,5,⋯
𝐴𝑛 cos �𝑚𝜋

2𝐿
𝑥� cos �𝑛𝜋

2𝐿
𝑥�
⎞
⎟⎟⎟⎠ 𝑑𝑥

Interchanging order of summation and integration and applying orthogonality results in

�
𝐿

0
𝑓 (𝑥) cos �𝑚𝜋

2𝐿
𝑥� 𝑑𝑥 = 𝐴𝑚

𝐿
2

𝐴𝑛 =
2
𝐿 �

𝐿

0
𝑓 (𝑥) cos �𝑛𝜋

2𝐿
𝑥� 𝑑𝑥
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Therefore the solution is

𝑢 (𝑥, 𝑡) =
2
𝐿

∞
�

𝑛=1,3,5,⋯
��

𝐿

0
𝑓 (𝑥) cos �𝑛𝜋

2𝐿
𝑥� 𝑑𝑥� cos �𝑛𝜋

2𝐿
𝑥� 𝑒−𝑘�

𝑛𝜋
2𝐿 �

2
𝑡

or

𝑢 (𝑥, 𝑡) =
2
𝐿

∞
�
𝑛=1

��
𝐿

0
𝑓 (𝑥) cos �

(2𝑛 − 1) 𝜋
2𝐿

𝑥� 𝑑𝑥� cos �
(2𝑛 − 1) 𝜋

2𝐿
𝑥� 𝑒

−𝑘� (2𝑛−1)𝜋2𝐿 �
2
𝑡

0.12 section 2.4.3 (problem 11)

70 Chapter 2. Method of Separation of Variables

*2.4.2. Solve
z

= k8-z with 8 (0, t) = 0

u(L, t) = 0

u(x,0) = f(x)

For this problem you may assume that no solutions of the heat equation
exponentially grow in time. You may also guess appropriate orthogonality
conditions for the eigenfunctions.

*2.4.3. Solve the eigenvalue problem

d2,0

dx2
- _AO

subject to

0(0) = 0(27r) and ;jj(O) =

dx

(21r).

2.4.4. Explicitly show that there are no negative eigenvalues for

d2O

x
_ -A subject to dz (0) = 0 and (L) = 0.

2.4.5. This problem presents an alternative derivation of the heat equation for a
thin wire. The equation for a circular wire of finite thickness is the two-
dimensional heat equation (in polar coordinates). Show that this reduces
to (2.4.25) if the temperature does not depend on r and if the wire is very
thin.

2.4.6. Determine the equilibrium temperature distribution for the thin circular
ring of Section 2.4.2:

(a) Directly from the equilibrium problem (see Sec. 1.4)

(b) By computing the limit as t - oo of the time-dependent problem

2.4.7. Solve Laplace's equation inside a circle of radius a,

I .92U
V 2U

r Or (r 8r) + rz 902 = 0,

subject to the boundary condition

u(a,9) = f(9).

(Hint: If necessary, see Sec. 2.5.2.)

𝑑𝜙2

𝑑𝑥2
+ 𝜆𝜙 = 0

𝜙 (0) = 𝜙 (2𝜋)
𝑑𝜙
𝑑𝑥

(0) =
𝑑𝜙
𝑑𝑥

(2𝜋)

First solution using transformation

Let 𝜏 = 𝑥 − 𝜋, hence the above system becomes

𝑑𝜙2

𝑑𝜏2
+ 𝜆𝜙 = 0

𝜙 (−𝜋) = 𝜙 (𝜋)
𝑑𝜙
𝑑𝜏

(−𝜋) =
𝑑𝜙
𝑑𝜏

(𝜋)

The characteristic equation is 𝑟2 + 𝜆 = 0 or 𝑟 = ±√−𝜆. Assuming 𝜆 is real. There are three
cases to consider.

Case 𝜆 < 0

Let 𝑠 = √−𝜆 > 0

𝜙 (𝜏) = 𝑐1 cosh (𝑠𝜏) + 𝑐2 sinh (𝑠𝜏)
𝜙′ (𝜏) = 𝑠𝑐1 sinh (𝑠𝜏) + 𝑠𝑐2 cosh (𝑠𝜏)

Applying first B.C. gives

𝜙 (−𝜋) = 𝜙 (𝜋)
𝑐1 cosh (𝑠𝜋) − 𝑐2 sinh (𝑠𝜋) = 𝑐1 cosh (𝑠𝜋) + 𝑐2 sinh (𝑠𝜋)

2𝑐2 sinh (𝑠𝜋) = 0
𝑐2 sinh (𝑠𝜋) = 0 (1)

Applying second B.C. gives

𝜙′ (−𝜋) = 𝜙′ (𝜋)
−𝑠𝑐1 sinh (𝑠𝜋) + 𝑠𝑐2 cosh (𝑠𝜋) = 𝑠𝑐1 sinh (𝑠𝜋) + 𝑠𝑐2 cosh (𝑠𝜋)

2𝑐1 sinh (𝑠𝜋) = 0
𝑐1 sinh (𝑠𝜋) = 0 (2)

Since sinh (𝑠𝜋) is zero only for 𝑠𝜋 = 0 and 𝑠𝜋 is not zero because 𝑠 > 0. Then the only other
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option is that both 𝑐1 = 0 and 𝑐2 = 0 in order to satisfy equations (1)(2). Hence trivial
solution. Hence 𝜆 < 0 is not an eigenvalue.

Case 𝜆 = 0

The space equation becomes
𝑑𝜙2

𝑑𝜏2 = 0 with the solution 𝜙 (𝜏) = 𝐴𝜏 + 𝐵. Applying the first
B.C. gives

𝜙 (−𝜋) = 𝜙 (𝜋)
−𝐴𝜋 + 𝐵 = 𝐴𝜋 + 𝐵

0 = 2𝐴𝜋

Hence 𝐴 = 0. The solution becomes 𝜙 (𝜏) = 𝐵. And 𝜙′ (𝜏) = 0. The second B.C. just gives
0 = 0. Therefore the solution is

𝜙 (𝜏) = 𝐶

Where 𝐶 is any constant. Hence 𝜆 = 0 is an eigenvalue.

Case 𝜆 > 0

𝜙 (𝜏) = 𝑐1 cos �√𝜆𝜏� + 𝑐2 sin �√𝜆𝜏�

𝜙′ (𝜏) = −𝑐1√𝜆 sin �√𝜆𝜏� + 𝑐2√𝜆 cos �√𝜆𝜏�

Applying first B.C. gives

𝜙 (−𝜋) = 𝜙 (𝜋)

𝑐1 cos �√𝜆𝜋� − 𝑐2 sin �√𝜆𝜋� = 𝑐1 cos �√𝜆𝜋� + 𝑐2 sin �√𝜆𝜋�

2𝑐2 sin �√𝜆𝜋� = 0

𝑐2 sin �√𝜆𝜋� = 0 (3)

Applying second B.C. gives

𝜙′ (−𝜋) = 𝜙′ (𝜋)

𝑐1√𝜆 sin �√𝜆𝜋� + 𝑐2√𝜆 cos �√𝜆𝜋� = −𝑐1√𝜆 sin �√𝜆𝜋� + 𝑐2√𝜆 cos �√𝜆𝜋�

2𝑐1√𝜆 sin �√𝜆𝜋� = 0

𝑐1 sin �√𝜆𝜋� = 0 (2)

Both (3) and (2) can be satisfied for non-zero√𝜆𝜋. The trivial solution is avoided. Therefore
the eigenvalues are

sin �√𝜆𝜋� = 0

�𝜆𝑛𝜋 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯
𝜆𝑛 = 𝑛2 𝑛 = 1, 2, 3,⋯

Hence the corresponding eigenfunctions are

�cos ��𝜆𝑛𝜏� , sin ��𝜆𝑛𝜏�� = {cos (𝑛𝜏) , sin (𝑛𝜏)}

Transforming back to 𝑥 using 𝜏 = 𝑥 − 𝜋

{cos (𝑛 (𝑥 − 𝜋)) , sin (𝑛 (𝑥 − 𝜋))} = {cos (𝑛𝑥 − 𝑛𝜋) , sin (𝑛𝑥 − 𝑛𝜋)}

But cos (𝑥 − 𝜋) = − cos 𝑥 and sin (𝑥 − 𝜋) = − sin 𝑥, hence the eigenfunctions are

{− cos (𝑛𝑥) , − sin (𝑛𝑥)}
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The signs of negative on an eigenfunction (or eigenvector) do not a�ect it being such as
this is just a multiplication by −1. Hence the above is the same as saying the eigenfunctions
are

{cos (𝑛𝑥) , sin (𝑛𝑥)}

Summary

eigenfunctions

𝜆 = 0 arbitrary constant

𝜆 > 0 {cos (𝑛𝑥) , sin (𝑛𝑥)} for 𝑛 = 1, 2, 3⋯

Second solution without transformation

(note: Using transformation as shown above seems to be easier method than this below).

The characteristic equation is 𝑟2 + 𝜆 = 0 or 𝑟 = ±√−𝜆. Assuming 𝜆 is real. There are three
cases to consider.

Case 𝜆 < 0

In this case −𝜆 is positive and the roots are both real. Assuming √−𝜆 = 𝑠 where 𝑠 > 0, then
the solution is

𝜙 (𝑥) = 𝐴𝑒𝑠𝑥 + 𝐵𝑒−𝑠𝑥

𝜙′ (𝑥) = 𝐴𝑠𝑒𝑠𝑥 − 𝐵𝑠𝑒−𝑠𝑥

First B.C. gives

𝜙 (0) = 𝜙 (2𝜋)
𝐴 + 𝐵 = 𝐴𝑒2𝑠𝜋 + 𝐵𝑒−2𝑠𝜋

𝐴�1 − 𝑒2𝑠𝜋� + 𝐵 �1 − 𝑒−2𝑠𝜋� = 0 (1)

The second B.C. gives

𝜙′ (0) = 𝜙′ (2𝜋)
𝐴𝑠 − 𝐵𝑠 = 𝐴𝑠𝑒2𝑠𝜋 − 𝐵𝑠𝑒−2𝑠𝜋

𝐴�1 − 𝑒2𝑠𝜋� + 𝐵 �−1 + 𝑒−2𝑠𝜋� = 0 (2)

After dividing by 𝑠 since 𝑠 ≠ 0. Now a 2 by 2 system is setup from (1),(2)
⎛
⎜⎜⎜⎜⎝
�1 − 𝑒2𝑠𝜋� �1 − 𝑒−2𝑠𝜋�
�1 − 𝑒2𝑠𝜋� �−1 + 𝑒−2𝑠𝜋�

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝐴
𝐵

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Since this is 𝑀𝑥 = 𝑏 with 𝑏 = 0 then for non-trivial solution |𝑀| must be zero. Checking the
determinant to see if it is zero or not:

�
�1 − 𝑒2𝑠𝜋� �1 − 𝑒−2𝑠𝜋�
�1 − 𝑠𝑒2𝑠𝜋� �−1 + 𝑠𝑒−2𝑠𝜋�

� = �1 − 𝑒2𝑠𝜋� �−1 + 𝑒−2𝑠𝜋� − �1 − 𝑒−2𝑠𝜋� �1 − 𝑒2𝑠𝜋�

= �−1 + 𝑒−2𝑠𝜋 + 𝑒2𝑠𝜋 − 1� − �1 − 𝑒2𝑠𝜋 − 𝑒−2𝑠𝜋 + 1�

= −1 + 𝑒−2𝑠𝜋 + 𝑒2𝑠𝜋 − 1 − 1 + 𝑒2𝑠𝜋 + 𝑒−2𝑠𝜋 − 1
= −4 + 2𝑒2𝑠𝜋 + 2𝑒−2𝑠𝜋

= −4 + 2 �𝑒2𝑠𝜋 + 𝑒−2𝑠𝜋�

= −4 + 4 cosh (2𝑠𝜋)
Hence for the determinant to be zero (so that non-trivial solution exist) then −4+4 cosh (2𝑠𝜋) =
0 or cosh (2𝑠𝜋) = 1 which has the solution 2𝑠𝜋 = 0. Which means 𝑠 = 0. But the assumption
was that 𝑠 > 0. This implies only a trivial solution exist and 𝜆 < 0 is not an eigenvalue.

case 𝜆 = 0

The space equation becomes
𝑑𝜙2

𝑑𝑥2 = 0 with the solution 𝜙 (𝑥) = 𝐴𝑥 + 𝐵. Applying the first
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B.C. gives

𝐵 = 2𝐴𝜋 + 𝐵
0 = 2𝐴𝜋

Hence 𝐴 = 0. The solution becomes 𝜙 (𝑥) = 𝐵. And 𝜙′ (𝑥) = 0. The second B.C. just gives
0 = 0. Therefore the solution is

𝜙 (𝑥) = 𝐶

Where 𝐶 is any constant. Hence 𝜆 = 0 is an eigenvalue.

Case 𝜆 > 0

In this case the solution is

𝜙 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

𝜙′ (𝑥) = −𝐴√𝜆 sin �√𝜆𝑥� + 𝐵√𝜆 cos �√𝜆𝑥�

Applying first B.C. gives

𝜙 (0) = 𝜙 (2𝜋)

𝐴 = 𝐴 cos �2𝜋√𝜆� + 𝐵 sin �2𝜋√𝜆�

𝐴 �1 − cos �2𝜋√𝜆�� − 𝐵 sin �2𝜋√𝜆� = 0

Applying second B.C. gives

𝜙′ (0) = 𝜙′ (2𝜋)

𝐵√𝜆 = −𝐴√𝜆 sin �2𝜋√𝜆� + 𝐵√𝜆 cos �2𝜋√𝜆�

𝐴√𝜆 sin �2𝜋√𝜆� + 𝐵 �√𝜆 − √𝜆 cos �2𝜋√𝜆�� = 0

𝐴 sin �2𝜋√𝜆� + 𝐵 �1 − cos �2𝜋√𝜆�� = 0

Therefore ⎛
⎜⎜⎜⎜⎝
1 − cos �2𝜋√𝜆� − sin �2𝜋√𝜆�

sin �2𝜋√𝜆� 1 − cos �2𝜋√𝜆�

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝐴
𝐵

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠ (3)

Setting |𝑀| = 0 to obtain the eigenvalues gives

�1 − cos �2𝜋√𝜆�� �1 − cos �2𝜋√𝜆�� + sin �2𝜋√𝜆� sin �2𝜋√𝜆� = 0

1 − cos �2𝜋√𝜆� = 0

Hence

cos �2𝜋√𝜆� = 1

2𝜋�𝜆𝑛 = 𝑛𝜋 𝑛 = 2, 4,⋯

�𝜆𝑛 =
𝑛
2

𝑛 = 2, 4,⋯

Or

�𝜆𝑛 = 𝑛 𝑛 = 1, 2, 3,⋯
𝜆𝑛 = 𝑛2 𝑛 = 1, 2, 3,⋯

Therefore the eigenfunctions are

𝜙𝑛 (𝑥) = {cos (𝑛𝑥) , sin (𝑛𝑥)}
Summary

eigenfunctions

𝜆 = 0 arbitrary constant

𝜆 > 0 {cos (𝑛𝑥) , sin (𝑛𝑥)} for 𝑛 = 1, 2, 3⋯
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0.13 section 2.4.6 (problem 12)

70 Chapter 2. Method of Separation of Variables

*2.4.2. Solve
z

= k8-z with 8 (0, t) = 0

u(L, t) = 0

u(x,0) = f(x)

For this problem you may assume that no solutions of the heat equation
exponentially grow in time. You may also guess appropriate orthogonality
conditions for the eigenfunctions.

*2.4.3. Solve the eigenvalue problem

d2,0

dx2
- _AO

subject to

0(0) = 0(27r) and ;jj(O) =

dx

(21r).

2.4.4. Explicitly show that there are no negative eigenvalues for

d2O

x
_ -A subject to dz (0) = 0 and (L) = 0.

2.4.5. This problem presents an alternative derivation of the heat equation for a
thin wire. The equation for a circular wire of finite thickness is the two-
dimensional heat equation (in polar coordinates). Show that this reduces
to (2.4.25) if the temperature does not depend on r and if the wire is very
thin.

2.4.6. Determine the equilibrium temperature distribution for the thin circular
ring of Section 2.4.2:

(a) Directly from the equilibrium problem (see Sec. 1.4)

(b) By computing the limit as t - oo of the time-dependent problem

2.4.7. Solve Laplace's equation inside a circle of radius a,

I .92U
V 2U

r Or (r 8r) + rz 902 = 0,

subject to the boundary condition

u(a,9) = f(9).

(Hint: If necessary, see Sec. 2.5.2.)

The PDE for the thin circular ring is

𝜕𝑢
𝜕𝑡

= 𝑘
𝜕2𝑢
𝜕𝑥2

𝑢 (−𝐿, 𝑡) = 𝑢 (𝐿, 𝑡)
𝜕𝑢 (−𝐿, 𝑡)

𝜕𝑡
=
𝜕𝑢 (𝐿, 𝑡)
𝜕𝑡

𝑢 (𝑥, 0) = 𝑓 (𝑥)

0.13.1 Part (a)

At equilibrium 𝜕𝑢
𝜕𝑡 = 0 and the PDE becomes

0 =
𝜕2𝑢
𝜕𝑥2

As it now has one independent variable, it becomes the following ODE to solve

𝑑2𝑢 (𝑥)
𝑑𝑥2

= 0

𝑢 (−𝐿) = 𝑢 (𝐿)
𝑑𝑢
𝑑𝑥
(−𝐿) =

𝑑𝑢
𝑑𝑥
(𝐿)

Solution to 𝑑2𝑢
𝑑𝑥2 = 0 is

𝑢 (𝑥) = 𝑐1𝑥 + 𝑐2
Where 𝑐1, 𝑐2 are arbitrary constants. From the first B.C.

𝑢 (−𝐿) = 𝑢 (𝐿)
−𝑐1𝐿 + 𝑐2 = 𝑐1𝐿 + 𝑐2

2𝑐1𝐿 = 0
𝑐1 = 0

Hence the solution becomes

𝑢 (𝑥) = 𝑐2
The second B.C. adds nothing as it results in 0 = 0. Hence the solution at equilibrium is

𝑢 (𝑥) = 𝑐2

This means at equilibrium the temperature in the ring reaches a constant value.

0.13.2 Part (b)

The time dependent solution was derived in problem 2.4.3 and also in section 2.4, page
62 in the book, given by

𝑢 (𝑥, 𝑡) = 𝑎0 +
∞
�
𝑛=1

𝑎𝑛 cos �𝑛𝜋𝑥
𝐿
� 𝑒−𝑘�

𝑛𝜋𝑥
𝐿 �

2
𝑡 +

∞
�
𝑛=1

𝑎𝑛 sin �𝑛𝜋𝑥
𝐿
� 𝑒−𝑘�

𝑛𝜋𝑥
𝐿 �

2
𝑡

As 𝑡 → ∞ the terms 𝑒−𝑘�
𝑛𝜋𝑥
𝐿 �

2
𝑡 → 0 and the above reduces to

𝑢 (𝑥,∞) = 𝑎0
Since 𝑎0 is constant, this is the same result found in part (a).
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