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0.1 Summary table

For 1D bar
Left Right A=0 A>0 u(x,t)
nr 2
u(0)=0|ul)=0 No An=(T) m=1,23, ¥, By sin (VA,x) ekt
X, = B, sin (VA,x) =
)
Jdu(L) An = E) = 1/3/5/"' 0 : —kA,,t
u@=0| —=0 No 2L N B, sin (y/A,,x) e7*n
dx Xn — Bn SlIl (\/A_nx) n—1,3,5,--- n ( n )
du(0) An:(n_n) In:1/3/5/"' [eS] —kA t
=0 |u(l)=0 No 2L N A, cos (A, x) e n
dx Xn — An COS (\/A_nx 1’1—1,3,5'“ n (ﬂ )
8u(L) AO = 0 tan (\/A_HL) = _/\n o0 . —kAt
u@ =0 |u(l)+———=0 Ag + B, sin (VA,x)e™n
0) (L) + 5 Xo— Ay | X, = By sin(yinx 0+ 2y, Busin (VA,x)
2
Ju(0) Ju(L) Ap=0 A, = (”—n) ,n=1,2,3, 00 kA
=0 =0 L Ag+ X7 A, cos (VA,x) e*Ant
x dx X = Ay X, = A, cos (\//\_nx) 0 n=1°"" ( n )
For periodic conditions u (-L) = u (L) and au(;;L) = agiL)
nm\?
A, = (T) ,n=1,23,-
A>0
A=0 @ 0
u(x,t)=a + Z A, cos (\/A_nx) ekt Z B, sin (\/A_nx) e~kAnt
n=1 n=1

Note on notation When using separation of variables T (f) is used for the time function
and X (x),R(r),® (0) etc. for the spatial functions. This notation is more common in other
books and easier to work with as the dependent variable T, X, --- and the independent
variable f,x,--- are easier to match (one is upper case and is one lower case) and this
produces less symbols to remember and less chance of mixing wrong letters.




0.2 section 2.3.1 (problem 1)

2.3.1. For the following partial differential equations, what ordinary differential
equations are implied by the method of separation of variables?

u kO [ Bu Ou 0%u Ou
*®) B =T (’"ar) ®) 5 = o " "5
&u  0%u du k8 [ ,0u
) gtz =0 @ % =75 (’ ar)
Ou &u ou _ ,0%
*©) 3 = ko *@ BE =

0.2.1 part (a)

1du 1&(8u)

kot~ rar\ar @
Let
ut,ry=T({)R(r)
Then
T eRrE
And

() _du P
ar r&r Car 70')72
=TR’ (r)+ rTR” (v)

Hence (1) becomes
%T’ (HR () = } (TR’ (r) + rTR” (7))

Note From now on T’ () is written as just 7’ and similarly for R’ (r) = R’ and R” (r) = R"” to
simplify notations and make it easier and more clear to read. The above is reduced to
1 1
-T'R=-TR"+TR”
k r
Dividing throughout EI by T (t) R (r) gives
1T 1R R”
_—— = —— 4 —
kT rR R
Since each side in the above depends on a different independent variable and both are
equal to each others, then each side is equal to the same constant, say —A. Therefore
1T 1R R”
- = —— 4 — =
kT rR R
The following differential equations are obtained
T"+AkT =0
rR” +R"+rAR =0

-A

In expanded form, the above is

T
a1 +AKT(t) = 0

dt
d’R  dR
Tﬁ + E +T’/1R(7’) =0

LT (#) R (r) can not be zero, as this would imply that either T (f) = 0 or R(r) = 0 or both are zero, in which
case there is only the trivial solution.



0.2.2 Part (b)

1du d°u wvydu

Kot~ o2 kox 1)
Let
u(x,t)=TX
Then
5_14 =T'X
ot
And
u ,
P =X'T
Tu_ xop
dx?

Substituting these in (1) gives

Y = xor - Qxor
k B k

Dividing throughout by TX # 0 gives
1T X" v X
kT X kX
Since each side in the above depends on a different independent variable and both are
equal to each others, then each side is equal to the same constant, say —A. Therefore
1T _ X" oX
kT~ X kX
The following differential equations are obtained
T"+AkT =0
X7 = 2X +AX =0
The above in expanded form is

daT
— +AKT(t) =0

it
dZX UOdX+AX()—O
i2  k dx A=

0.2.3 Part (d)

1du 1 0 2814
%m—ﬁzﬁsﬂ @
Let
u(t,r)=TR
Then
% _ R
ot
And

a\"ar) =T TR

= 2rTR’ + r*TR”

0 (z&u)zz Ju 28214

Substituting these in (1) gives
=1 (2rTR’ + TR")
Pl !
2
=-TR"+TR”
r

Dividing throughout by TR # 0 gives
1T 2R" R”
- = —— 4 —
kT rR R



Since each side in the above depends on a different independent variable and both are
equal to each others, then each side is equal to the same constant, say —A. Therefore

1T 2R R’ _

- == -A
kT rR * R
The following differential equations are obtained
T+ AkT =0

rR” + 2R’ + ArR =0

The above in expanded form is

T
— 4 AKT(®) =0

dt
d2R+2dR+/1 R(r)=0
7’drz dr IR =

0.3 section 2.3.2 (problem 2)

2.3.2. Consider the differential equation
d%¢
P + ¢ =0.
Determine the eigenvalues A (and corresponding eigenfunctions) if ¢ satisfies
the following boundary conditions. Analyze three cases (A > 0,A =0,A <
0). You may assume that the eigenvalues are real.

(a) #(0) =0 and ¢(7) =0
*(b) ¢(0) =0 and ¢(1) =0

(c) %(O) =0 and %(L) = 0 (If necessary, see Sec. 2.4.1.)
*(d) ¢(0) =0 and %(L) =0

() Z2(0) = 0 and p(L) =0
*(f) #(a) =0 and ¢(b) = 0 (You may assume that A > 0.)

(g) ¢(0) =0 and %(L) + ¢(L) = 0 (If necessary, see Sec. 5.8.)

0.3.1 Part (d)

d>¢ 3
ﬁ'FAd)—O
$(0)=0
o .\ _
Zw=0

Substituting an assumed solution of the form ¢ = Ae’* in the above ODE and simplifying
gives the characteristic equation

P+A=0
r?=-A

r=+V-A

Assuming A is real. The following cases are considered.

case A <0 In this case, —A and also V-A, are positive. Hence both roots +v-A are real
and positive. Let

V-A =5
Where s > 0. Therefore the solution is

¢ (x) = Ae*™ + Be™*

d
ot = Ase’™ — Bse™*
dx



Applying the first boundary conditions (B.C.) gives
0=¢(0)
=A+B
Applying the second B.C. gives

_d¢
O_dx(L)

= As - Bs
=s(A-B)
=A-B

The last step above was after dividing by s since s # 0. Therefore, the following two
equations are solved for A, B

0=A+8B
0=A-B

The second equation implies A = B and the first gives 2A = 0 or A = 0. Hence B = 0.
Therefore the only solution is the trivial solution ¢ (x) = 0. A <0 is not an eigenvalue.

case A =0 In this case the ODE becomes

d>
i
dx?
The solution is
¢(x)=Ax+B
d¢
T-A
dx
Applying the first B.C. gives
0=¢(0)
=B
Applying the second B.C. gives
d¢
=— (L
0=—"(@)
=A

Hence A, B are both zero in this case as well and the only solution is the trivial one ¢ (x) = 0.
A =0 is not an eigenvalue.

case A > 0 In this case, —A is negative, therefore the roots are both complex.

r=+ivA

Hence the solution is
P (x) = AeiVAx 4 Bemivix
Which can be writing in terms of cos, sin using Euler identity as

¢ (x) = Acos (\/Xx) + Bsin (\/Xx)

Applying first B.C. gives

0=¢(0)
= Acos(0) + Bsin (0)
0=A

The solution now is ¢ (x) = Bsin (\/Xx) . Hence

Z—f = \/XB cos (\/Xx)



Applying the second B.C. gives
0=2w)

= VABcos (\/ZL)

= VAB cos (\/XL)
Since A # 0 then either B = 0 or cos (\/XL) = 0. But B = 0 gives trivial solution, therefore

Cos (\/XL) =
This implies

VAL = ”7” n=1,35,

In other words, for all positive odd integers. n < 0 can not be used since A is assumed

positive.

A= (i)2 n=1,3,5-

The eigenfunctions associated with these eigenvalues are

¢, (x) =B, sm( I n=1,3,5,--

ZL)

0.3.2 Part (f)

dqu
) +Ap =0

¢ (a) =

¢ () =
It is easier to solve this if one boundary condition was at x = 0. (So that one constant
drops out). Let 7 = x —a and the ODE becomes (where now the independent variable is 7)

chZ) (T)

+Ap (1) =0 (1)
With the new boundary conditions qb(O) =0and ¢ (b—a) = 0. Assuming the solution is
¢ = Ae’", the characteristic equation is
P?+A=0
r?=-A

r=+V-1

Assuming A is real and also assuming A > 0 (per the problem statement) then —A is negative,
and both roots are complex.

r=+ivA

This gives the solution
¢ (1) = Acos (\/XT) + Bsin (\/}[)

Applying first B.C.

0=¢(0)
= Acos0+ Bsin0
=A

Therefore the solution is ¢ (7) = Bsin (\/XT) Applying the second B.C.
0=¢(b-a)
= Bsin (VA (b-0))



B =0 leads to trivial solution. Choosing sin (\/Z (b- a)) =0 gives

VA, (b-a) = nn
\/A—:n_n n=1273...
" (b-a) "

A, = (g)2 n=1,2,3-

The eigenfunctions associated with these eigenvalue are

¢, (1) = B, sin (\//\—n’[)

=B, sin( e ’l')
(b—-a)

Transforming back to x

¢, (x) = B, sin ((bnj(a) (x - a))
0.3.3 Part (g)
d?
ﬁ + AQZ) =0
$(0)=0
d¢
— (L L)=0
L W+oW)
Assuming solution is ¢ = Ae™, the characteristic equation is
”+A1=0
r2=-A

r=+V-A
The following cases are considered.

case A <0 In this case —A and also V-A are positive. Hence the roots +v-A are both real.
Let

V-A =5
Where s > 0. This gives the solution
¢ (x) = Ape™ + Boe™

SX _ »,—SX SX
£ cosh(sx) =° i

” to the following

Which can be manipulated using sinh (sx) = >

¢ (x) = A cosh (sx) + Bsinh (sx)
Where A, B above are new constants. Applying the left boundary condition gives

0=¢(0)
=A
The solution becomes ¢ (x) = Bsinh(sx) and hence Z—q; = scosh (sx). Applying the right
boundary conditions gives
do
0=¢@)+— (L)

= Bsinh (sL) + Bs cosh (sL)
= B (sinh (sL) + s cosh (sL))
But B = 0 leads to trivial solution, therefore the other option is that
sinh (sL) + scosh (sL) = 0
But the above is
tanh (sL) = —s

Since it was assumed that s > 0 then the RHS in the above is a negative quantity. However
the tanh function is positive for positive argument and negative for negative argument.



The above implies then that sL < 0. Which is invalid since it was assumed s > 0 and L
is the length of the bar. Hence B = 0 is the only choice, and this leads to trivial solution.
A <0 is not an eigenvalue.

case A =0
In this case, the ODE becomes
2
-0
The solution is
P(x)=cix+cp
Applying left B.C. gives
0=¢(0)
=0,
The solution becomes ¢ (x) = c;x. Applying the right B.C. gives

_ ¢
0=pW)+=2 (L)

= ClL +C
=0 (1 + L)
Since ¢; = 0 leads to trivial solution, then 1 + L = 0 is the only other choice. But this

invalid since L > 0 (length of the bar). Hence ¢; = 0 and this leads to trivial solution.
A =0 is not an eigenvalue.

case A >0

This implies that —A is negative, and therefore the roots are both complex.

r:ii\ﬁ

This gives the solution
¢ (x) = AeiVAx 4 Bemivix
= Acos (\/Xx) + Bsin (\/Xx)
Applying first B.C. gives

¢ (0) =0 = Acos(0) + Bsin (0)
0=A

The solution becomes ¢ (x) = Bsin (ﬁx) and
d
£ = VAB cos (\/Xx)

Applying the second B.C.

_ 49
0=2W+o M)

— VB cos (\/XL) + Bsin (\/ZL) (1)

Dividing (1) by cos (\/XL) , which can not be zero, because if cos (\/ZL) =0, then Bsin (\/XL) =
0 from above, and this means the trivial solution, results in

B (\/X + tan (\/KL)) =0
But B # 0, else the solution is trivial. Therefore

tan (\/ZL) = —\/X

The eigenvalue A is given by the solution to the above nonlinear equation. The text book, in
section 5.4, page 196 gives the following approximate (asymptotic) solution which becomes
accurate only for large  and not used here

3 (-3)



10

Therefore the eigenfunction is
¢, (x) = Bsin (\/Xx)

Where A is the solution to tan (ﬁL) = —\/X.

0.4 section 2.3.3 (problem 3)

2.3.3. Consider the heat equation

ou _ o
ot 0z?’

subject to the boundary conditions
u(0,t)=0 and u(L,t)=0.

Solve the initial value problem if the temperature is initially

(a) u(z,0) = 6sin 272 (b) u(z,0) = 3sin ZX —sin :”'T’
nz 10 <L/2
*x(c) u(z,0) =2cos 3= (d) u(:c,O):{ 2 L/<2:<:c</L
0.4.1 Part (b)
du *u
it Ix2
Let u (x,t) = T (t) X (x), and the PDE becomes
1
“T'X = X"'T
k
Dividing by XT # 0
1 T/ 3 X//
kT X

Since each side depends on different independent variable and both are equal, they must
be both equal to same constant, say —A where A is assumed to be real.

1 T/ 3 X// 3 A
kKT X
The two ODE’s are
T +kAT =0 1)
X"+ AX = 0 (2)

Starting with the space ODE equation (2), with corresponding boundary conditions X (0) =
0, X (L) = 0. Assuming the solution is X (x) = ¢, Then the characteristic equation is

P+A=0
r?=-A
r=xvV-1

The following cases are considered.
case A <0 In this case, -1 and also V-1 are positive. Hence the roots +1/-A are both real.
Let

V-A=s
Where s > 0. This gives the solution

X (x) = A cosh (sx) + Bsinh (sx)
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Applying the left B.C. X (0) = 0 gives
0 = Acosh (0) + Bsinh (0)
=A
The solution becomes X (x) = Bsinh (sx). Applying the right B.C. u (L, t) = 0 gives
0 = Bsinh(sL)
We want B # 0 (else trivial solution). This means sinh (sL) must be zero. But sinh (sL) is
zero only when its argument is zero. This means either L = 0 which is not possible or A = 0,

but we assumed A # 0 in this case, therefore we run out of options to satisfy this case.
Hence A < 0 is not an eigenvalue.

case A =0
The ODE becomes
a2x

a2 =0

The solution is
Xx)=cx+c
Applying left boundary conditions X (0) = 0 gives
0=X(0)
=,
Hence the solution becomes X (x) = ¢c;x. Applying the right B.C. gives
0=X(L)
=L

Hence c¢; = 0. Hence trivial solution. A = 0 is not an eigenvalue.

case A >0
Hence —A is negative, and the roots are both complex.
r=xiVA
The solution is
X (x) = Acos (\/Xx) + Bsin (\/Xx)
The boundary conditions are now applied. The first B.C. X (0) = 0 gives

0 = Acos(0) + Bsin (0)
=A

The ODE becomes X (x) = Bsin (\/Xx) Applying the second B.C. gives

0 =Bsin (\/XL)
B # 0 else the solution is trivial. Therefore taking
sin (\/XL) =0
VA,L=nn  n=1,23,--
Hence eigenvalues are

nm?

Lz
The eigenfunctions associated with these eigenvalues are

A, = n=1,2,3,

. (nm
X, (x) = B, sin (Tx)
The time domain ODE is now solved. T’ + kA,,T = 0 has the solution

Tn (t) — e—kAnt

For the same set of eigenvalues. Notice that there is no need to add a new constant in the
above as it will be absorbed in the B, when combined in the following step below. The
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solution to the PDE becomes
Uy (x, 1) = Ty, (£) X, (x)
But for linear system the sum of eigenfunctions is also a solution, therefore
u(x,t) = Dy, (x,1)
n=1

[ey) 2
= E B, sin (n_nx) e_k(T) !
n=1 L

Initial conditions are now applied. Setting t = 0, the above becomes

[o¢]

3
u(x,0) = 381n%x—sin%x _nz:l nsm(nfnx)

As the series is unique, the terms coefficients must match for those shown only, and all
other B, terms vanish. This means that by comparing terms

. (TXx . [3mx . (Tix . (3
3sm(—)—sm —— | =B;sin (—) + Bysin| —x
L L L L

Therefore

And all other B,, = 0. The solution is

Tt R 3n —k(s—n)zt
u(x, t) = 3sin(zx) It _gin (Tx)e L

0.4.2 Part (d)

Part (b) found the solution to be
u(x,t) = i B, sin (%x) e_k(%)zt
The new initial conditions are now a;;iied
Fx) = Z B, sin (—x) 1)
Where

)1 O0<x<Lf2
f(x)_{z IR<x<lL

Multiplying both sides of (1) by sin (%x) and integrating over the domain gives

j;]Lsin(%x)f(x)dx:f [ZB S.1n(mL7-(x)81n(nL7T )]dx

Interchanging the order of integration and summation

L 0 L
f sin (@x)f(x) dx = Z [Bn (f sin (@x) sin (Ex) dxﬂ
0 L n=1 0 L L
But £ sin —x) sin (%x) = 0 for n # m, hence only one term survives

j(;Lsm(—x)f(x)dx—B fsm( x)dx
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L
Renaming m back to n and since L sin? (@x) dx = % the above becomes

L
3 L
fo sin(%x) f @dx = 3B,

2 L
B, = I . sin (nfnx)f(x) dx
2( 3 nm L nmn
=7 j;z sin (Tx)f(x) dx + f_ sin(fx)f(x) dx)
L
2 = L
=1 j{;z sin (nfnx) dx +2 . sin (n_nx) dx)
nrt [: nrt L
2
2 —cos(fx) o —cos (Tx)
L nm nm
L 0 L L

,_,I —_—
@)
@}
0

Ii) + cos (0)

+2 [— cos (nm) + cos (n?n)])

=3

nmn nmn
— oS (7) +1—-2cos(nm) +2cos (?))

cos (nyn) +1-2cos (nn))

SInF[e 5[e 5w

— e~ — —

Hence the solution is
2

— (NPT k()
’t - Bn (_ ) '
u(x,t) nz::l sin T x|e
With
2

B,=— (cos (E) —2cos(nm) + 1)
nm 2

= % (1 —2(-1)" + cos (%))

0.5 section 2.3.4 (problem 4)

2.3.4. Consider
ou_, 0%

ot oz?’
subject to u(0,t) = 0,u(L,t) =0, and u(z,0) = f(z).

*(a) What is the total heat energy in the rod as a function of time?
(b) What is the flow of heat energy out of the rod at z =07 at £ = L?
*(c) What relationship should exist between parts (a) and (b)?

0.5.1 Part (a)
By definition the total heat energy is
E= f pcu (x,t) dv
1%

Assuming constant cross section area A, the above becomes (assuming all thermal proper-
ties are constant)

L
E= f peu (x, t) Adx
0

But u (x, ) was found to be

nr

(o] n _ _2
u(x,t) = ansin(Tnx)e KT
n=1
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For these boundary conditions from problem 2.3.3. Where B, was found from initial
conditions. Substituting the solution found into the energy equation gives

L& nrt k(" Zt
E= cAf anin(—x)e (T) )dx
- _k(ﬂ)zt L nn
= pcAnE1 (Bne L f sin (Tx) dx)

0
nr L
0 nm\2, | —COS | —Xx
_ pea 3 5,4) [J]
n=1 5B 0
. k("™ L
= pcA 2 B,e M)t 2 (— cos (”TTCL) + cos (0))

=1 nrt

g, o~ L
= pcA Z B,e \L — (1 - cos (nn))

n=1
_ LpcA G & ~ —k(%)zt
=== Z}l[n (1 - cos (nm))e ]

0.5.2 Part (b)

By definition, the flux is the amount of heat flow per unit time per unit area. Assuming
the area is A, then heat flow at x = 0 into the rod per unit time (call it H (x)) is

Hlx:O = A ¢|x:0

Similarly, heat flow at x = L out of the rod per unit time is
Hl = Ad|,

=-Ak —
dx

x=L

To obtain heat flow at x = 0 leaving the rod, the sign is changed and it becomes Ak %

x=0
l’lﬂz

Since u (x,t) = X" | B, sin (%x) e T)'* then

U . Nm nT o\ ("2
£=ZBHTCOS(TX)€ (T)t

Then at x = 0 then heat flow leaving of the rod becomes

du — N7t _k(ﬂ)z,;
= Ak Y =B, T
T

n=1

Ak —
ox 120

And at x = L, the heat flow out of the bar
du

—Ak ==
ox

X NT T\ (7
) :—AkZBnTcos(TL)eK(L)t
x=L n=1

- . N7 nm 2
A ()
;1;1 "I cos (nm)e

nr )zt

d nm
— Ak Y (-1)" B, 2T
;:1:( ) Bure

0.5.3 Part (c)

Total E inside the bar at time f is given by initial energy E;_; and time integral of flow of
heat energy into the bar. Since from part (a)

A 3 B, k("
E:L&E—ne k(L)t(l—cos(nn))
t n=1

Then initial energy is

Eio=L— Z % (1 = cos (nm))

n=1



And total heat flow into the rod (per unit time) is (—A az + Ak Z—Z ), therefore
x=0 x=L
A X B, iy t d d
L&Z—”e"h)fa—cos(m))_f( A2 a2 )dx
TC n=1 n 8x x=0 &x x=L

—Akf (Qu(L) 8u(0))dx
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But
Ju(l) Ju(0) Y _k(ﬂ)zt 0 k(m)zt
- == B, (-1 L)' —— B L
dx ox L ngln n( ) nglﬂ n€
ad nm\2 had nm\2
=z (2 nB, (1) e TV 3 g, HT) f)
L n=1 n=1
Hence
LpcA X B k(1) Ak & 2, @ 2
PT( nz:;l?”exp KT) "1 = cos (nm)) = - 0 (E”B”(_l)ne k() t_nz::lane k() t)dx

0.6 section 2.3.5 (problem 5)

2.3.5. Evaluate (be careful if n = m)

L

. AT . MAT

/ sin — sin dz forn>0,m>0.
0 L L

Use the trigonometric identity

sinasinb = % [cos(a — b) — cos(a + b)].

L
I= f sin(@)sm(@)dx
0 L L

Considering first the case m = n. The integral becomes

L L
I= f sin? (@)dx =—
0 L 2

1
sinasinb = > (cos(a —b) — cos (a + b))

For the case where n # m, using

The integral | becomesﬂ

f (nnx THRX) (nnx + T’I”ITCX)d
2 COSs I COSs I I X

f nx(n m) nix (n + m)
—cos| —— |dx
2 L
L L
. mix(n—m) . nix(n+m)
L fem (2 ) | [sin ()

2 mt(n—m) 2 nt(n+m)

L L
0 0

L ( . (nx(n—m)))L L ( . (nx(n+m)))L
=——|sin - sin
27t (n — m) L 0 21t (n + m) L 0

( . (nx(n—m)))L . .
sin| ———= || =sin(n(n—m))—sin (0)
0

But

L

(1)

Note that the term (1 — m) showing in the denominator is not a problem now, since this is the case where

n+m.
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L
And since n —m is integer, then sin (7 (n — m)) = 0, therefore (sin (ﬂx('z_m)) = (. Similarly
0

L
(sin (M)) = sin (1 (n + m)) — sin (0)
0

L
Since n + m is integer then sin (7 (n + m)) = 0 and (sin (HX(Tm))) = 0. Therefore
0

L mmx\ . (mnx L n=m
f sin (—) sm(—)dx =4 2
0 L L 0  otherwise

0.7 section 2.3.7 (problem 6)

2.3.7. Consider the following boundary value problem (if necessary, see Sec. 2.4.1):

ou 0%y

.y Ou o Ou _ _
a = k@ with a(o, t) =0, E(L, t) = 0, and u(x,O) = f(:c)

(a) Give a one-sentence physical interpretation of this problem.

(b) Solve by the method of separation of variables. First show that there
are no separated solutions which exponentially grow in time. [Hint:
The answer is

nnxT

(o o]
u(z,t) = Ao+ »_ Ane *** cos 7

n=1

What is A\,?

0.71 part (a)

This PDE describes how temperature u changes in a rod of length L as a function of
time f and location x. The left and right end are insulated, so no heat escapes from these
boundaries. Initially at ¢ = 0, the temperature distribution in the rod is described by the
function f (x).

0.7.2 Part (b)

du _ J*u
ot ox?
Let u(x,t) = T(t) X (x), then the PDE becomes
1
[TX=X"T
Dividing by XT # 0
17 X"
kT~ X

Since each side depends on different independent variable and both are equal, they must
be both equal to same constant, say —A. Where A is assumed real.
1 T/ X/I
T x -0
The two ODE’s generated are
T’ +kAT =0 (1)

X" +AX =0 (2)
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Starting with the space ODE equation (2), with corresponding boundary conditions Z—)x( 0) =
0, c;_); (L) = 0. Assuming the solution is X (x) = ¢™*, Then the characteristic equation is
P+A=0
r?=-A
N
The following cases are considered.

case A <0 In this case, -1 and also V-A are positive. Hence the roots +V-A are both real.
Let

V-A=s
Where s > 0. This gives the solution
X (x) = A cosh (sx) + Bsinh (sx)
aX
T Asinh (sx) + B cosh (sx)
Applying the left B.C. gives
ax
0= I (0)
= Bcosh (0)
=B
The solution becomes X (x) = A cosh (sx) and hencei—f = Asinh (sx). Applying the right B.C.
gives
aX
0=— (L
- (D)
= Asinh (sL)

A = 0 result in trivial solution. Therefore assuming sinh(sL) = 0 implies sL = 0 which
is not valid since s > 0 and L # 0. Hence only trivial solution results from this case.
A <0 is not an eigenvalue.

case A =0

The ODE becomes
d?X _ 0
dx?
The solution is

X(x)=cix+c

ax
O
Applying left boundary conditions gives
dX
0=—
)
= C1

Hence the solution becomes X (x) = c,. Therefore Z—f = 0. Applying the right B.C. provides
no information.

Therefore this case leads to the solution X (x) = ¢,. Associated with this one eigenvalue,

. . dT, . .
the time equation becomes d—to =0 hence T, is constant, say a. Hence the solution uq (x, t)
associated with this A =0 is

Up (x, t) = XOTO
=0
= AO

where constant c,a was renamed to Ay to indicate it is associated with A = 0. A = 0 is an eigenvalue.

case A >0
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Hence —-A is negative, and the roots are both complex.

r:—_ki\/X

The solution is

X (x) = Acos (\/Xx) + Bsin (\/Kx)
d—X = - AV sin (\/Xx) + BV cos (\/Xx)

dx
Applying the left B.C. gives
X
0= T (0)
= BV cos 0)
=BVA

Therefore B =0as A > 0. The solution becomes X (x) = A cos (\/Xx) and Z—f = —A\/X sin (\/Xx)
Applying the right B.C. gives

dX
=— (L
= —AVAsin (\/XL)
A =0 gives a trivial solution. Selecting sin (\/XL) =0 gives

VAL=nn n=1,23,
Or

Therefore the space solution is
n
Xn(x):Ancos(Tnx) n=1,2,3,---

The time solution is found by solving

dT
— kAT, =0

This has the solution
T,(t) = ekt

VlTIz
:e‘k(T)t n=1,2,3,

For the same set of eigenvalues. Notice that no need to add a constant here, since it
will be absorbed in the A, when combined in the following step below. Since for A = 0

nm\2
the time solution was found to be constant, and for A > 0 the time solution is e_k(T) !

then no time solution will grow with time. Time solutions always decay with time as the

2
exponent —k (nfn) t is negative quantity. The solution to the PDE for A > 0 is
u, (x,t) =T, () X, (x) n=0,1,23,--

But for linear system sum of eigenfunctions is also a solution. Hence

u(x,t) =uy_o(xt)+ i u, (x,t)

n=1

o~ nm _k(ﬂ)zt
=Ag+ ), A (— ) L
0 nz::l 5 COS T x|e

0.7.3 Partc

From the solution found above, setting t = 0 gives

u(x,0)=Ag+ Z A, cos (%x)

n=1
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Therefore, f (x) must satisfy the above

fx)=Ap+ ZAn coS (nfnx)

0.7.4 Partd

Multiplying both sides with cos (%x) where in this problem m =0,1,2, --- (since there was
an eigenvalue associated with A = 0), and integrating over the domain gives

[s¢]

L L
f f (x) cos (@x) dx = f coS (@x) (AO + E A, cos (Ex)) dx
0 L 0 L o L
L o0
= fo Ap cos (?x) dx + fcos (%x) 1;1 A, cos (nfnx) dx
L L &
= j;) Ag cos (%x) dx + j(; ,1221 A, cos (%x) cos (nfnx) dx
Interchanging the order of summation and integration
L L o0 L
f f (x) cos (@x) dx = f Ag cos (@x) dx + E A, f coS (@x) coS (n_nx) dx (1)
0 L 0 L n=1 0 L L
case m =0

When m = 0 then cos (%x) =1 and the above simplifies to
L L oo L -
f F(x)dx = f A+ ) Anf COS(—x) dx
0 0 oy 0 L
But I;L cos (%x) dx = 0 and the above becomes

fOLf(x)dx:fOLAodx
= AL

Therefore

Ay = %ﬁf(x)dx

case m >0

From (1), one term survives in the integration when only n = m, hence

L L L
f f (x)cos (@x) dx = Ay f cos (@x) dx + A, f cos? (@x) dx
0 L 0 L 0 L

But l;L cos (%x) dx = 0 and the above becomes

L L
fo f (x) cos (%x) dx = AmE
Therefore

A, = %£Lf(x) cos ("Tnx) dx

Forn=1,2,3,---

0.7.5 Part (e)

The solution was found to be

- nm _k(ﬂ)zt
u(x,t)=Ag+ Y A Cos(—x)e L
()= Ag + 3 Aycos( 7

nrt

2
In the limit as t — oo the term e_k(T) * 0. What is left is Ay. But Ay = %£Lf(x) dx from
above. This quantity is the average of the initial temperature.
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0.8 section 2.3.8 (problem 7)

- oE v

*2.3.8. Consider 5 o
u u
T
This corresponds to a one-dimensional rod either with heat loss through the
lateral sides with outside temperature 0° (a > 0, see Exercise 1.2.4) or with
insulated lateral sides with a heat sink proportional to the temperature.

Suppose that the boundary conditions are
u(0,t) =0 and u(L,t)=0.
(a) What are the possible equilibrium temperature distributions if a > 0?

(b) Solve the time-dependent problem [u(z,0) = f(z)] if @ > 0. Analyze
the temperature for large time (¢ — 0o) and compare to part (a).

au.

0.8.1 part (a)

Equilibrium is at steady state, which implies % = 0 and the PDE becomes an ODE, since
u = u(x) at steady state. Hence

Pu «a 0
=
dx2  k

The characteristic equation is P = % orr= i\/%. Since a > 0 and k > 0 then the roots are

u= Aoe‘/%x + Boe_‘/%x

u (x) = Acosh (\/%x) + Bsinh (\/%x)

0=u(0)
= A cosh (0)
=A

real, and the solution is

This can be rewritten as

Applying left B.C. gives

The solution becomes u (x) = Bsinh (\/%x) Applying the right boundary condition gives

0=u(L)

v )

B = 0 leads to trivial solution. Setting sinh (\/%L) = 0 implies \/%L = 0. But this is not

possible since L # 0. Hence the only solution possible is

ux)=0
0.8.2 Part (b)
du kc92u _
ot dx2 au
u N B k82u
ot T TG

Assuming u (x,t) = X (x) T () and substituting in the above gives
XT  +aXT =kTX"”

Dividing by kXT # 0

L

kT

+ XN
kX
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Since each side depends on different independent variable and both are equal, they must
be both equal to same constant, say —A. Where A is assumed real.

1T « X"
iTTrTx A
The two ODE’s are
1T «
kT TR
X//_
x =

Or
T"+(a+Ak)T=0
X"+ AX =0

The solution to the space ODE is the familiar (where A > 0 is only possible case, As found
in problem 2.3.3, part d. Since it has the same B.C.)

. (nT
Xn:anm(Tx) n=12,3,---

2
Where A, = (%n) . The time ODE is now solved.

dT
dtn +(a+A,k)T,=0
This has the solution
Tn (t) — e—(oz+)tnk)t
nm\2
= e_ate_(f) kt

For the same eigenvalues. Notice that no need to add a constant here, since it will be
absorbed in the B, when combined in the following step below. Therefore the solution to
the PDE is

uy (x, 1) =T, (1) X;, (x)
But for linear system sum of eigenfunctions is also a solution. Hence

u(x,t)= i u, (x,t)

n=1

s nm\2
= Z B, sin (Ex) et (TR
n=1 L

nm\2

- nm
— et B qin (2L ~(%F) ket
e nz::l nsm( T x)e
Where ¢ was moved outside since it does not depend on 7. From initial condition
- nm
u(x,0)=f(x = B sin(—x)
(0,0 = f() = 2 Bysin (7
Applying orthogonality of sin as before to find B, results in
2 b nm
B, = Zj(; sin (Tx)f(x) dx

Hence the solution becomes

2 (&t 2
u(x,t) = —e (Z [f sin (Ex)f(x) dx] sin (Ex)e (T) kt)

L n=1 0 L L
Hence it is clear that in the limit as t becomes large u (x,t) — 0 since the sum is multiplied

by e and a > 0
tlim u(lx,t)=0

This agrees with part (a)
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0.9 section 2.3.10 (problem 8)

2.3.10. For two- and three-dimensional vectors, the fundamental property of dot
products, A - B = |A||B| cos#, implies that

|A - B| < |A||Bj. (2.3.44)
In this exercise we generalize this to n-dimensional vectors and functions,
in which case (2.3.44) is known as Schwarz’s inequality. [The names of
Cauchy and Buniakovsky are also associated with (2.3.44).]
(a) Show that |A —yB|? > 0 implies (2.3.44), where y = A- B/B - B.
(b) Express the inequality using both
o0
bn
3 anea’t.
Cn

n=1

oC
A-B=) asb,=
n=1

*(c) Generalize (2.3.44) to functions. [Hint: Let A - B mean the integral
f A(z)B(z) dz.]

Since |A - yB|2 > 0 then

Expanding
(A-A)—y(A-B)—y(B-A)+y2(B-B)20
But A-B=B- A, hence
(A A)=2y(A-B)+12(B-B) >0

Using the definition of y = % into the above gives

(A-A)—zg(A-BM ((2:3: (B-B)=0
PO IR L
(A-B)

(A-A)(B-B)-(A-B)' 20
(A-A)(B-B)=(4-B)
But (4-B)" = |4 B[ since A-B is just a number. The above becomes
(A-A)(B-B)>|A-B]

And A-A = |/1|2 and (B : B) = |B|2 by definition as well. Therefore the above becomes

Taking square root gives

Which is Schwarz’s inequality.

091 Partb

From the norm definition

Then
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Hence
A" = Y, a2
n=1
B = Y
n=1
And

(4 B)j <|af'f
[Zon) () (5)

0.9.2 Partc

Using A - B for functions to mean £L A (x) B (x) dx then inequality for functions becomes

L 2 L L
A(x)B(x)d < A% (x)d B2(x)d
([, awmern] <([ 0 [ e

0.10 section 2.4.1 (problem 9)

*2.4.1. Solve the heat equation du/0t = k8%u/8z2, 0 < z < L, t > 0, subject to

fu
E(O,t)-—o t>0

Bu
a(Lt)=0 t>0

(a) u(z,O):{ 0 ;;’L‘ﬁ (b) u(z,O)=6+4.cos,3"Tz
(c) u(zx,0) = —2sin T%r (d) u(x,0) = —3cos gz—z

The same boundary conditions was encountered in problem 2.3.7, therefore the solution
used here starts from the same general solution already found, which is

/\0:0
2
nm
Anz(f) n=1,2,3,
& nm _k("_n)zt
B=Ag+ Y A (— ) 3
u(x,t) 0 ;;l ncos|—=x]e

0.10.1 Part (b)

3
u (x,0) :6+4cos%x

Comparing terms with the general solution at ¢ = 0 which is

u(x,0)=Ag+ E A, cos (nfnx)

n=1
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results in
Ag=6
Az =4
And all other A, = 0. Hence the solution is

3 _
u(x,t)=6+4cos(fnx)e k(L

0.10.2 Part (c)

X
,0) = —2sin —
u (x,0) sin I
Hence

-2sin %x =Ap+ nz::l A, cos (nfnx) (1)

Multiplying both sides of (1) by cos (@x) and integrating gives
L . (TX mm L mm mT nm
j(; -2 sm( 7 ) coS (Tx) dx = j; (AO cos (Tx) + cos (Tx) Z A, cos ( T x)) dx
= J Aocos () [ 3, v () os ()
=J, 0 cos (x| dx ) & n CO8 | x| cos | x| dx

Interchanging the order of integration and summation

L . (TX mm nm
j(; —28111( I )cos(—x)dx—f Aocos(—x)dx+ZA f cos( I )cos(fx)dx
Case m =0

The above becomes

L L
f —-2sin (E) dx f Agdx + 2 A, f coS (Ex) dx
0 L o 0 L

But £ cos )dx = 0 hence
L L
f —ZSin(n—x)dx = f Apdx
0 L
AOL——2f sm( )
cos (2)Y
Al = -2[-—=5=
L 0

o)

- 2@+
TC

4L
o
Hence
-4
Ay = —
Casem >0

L L o0 L
j(; —-2sin (%x) coS (%x) dx :fo Ag cos (%x) dx+n§::lAnj(; cos(%x) cos(%x) dx

One term survives the summation resulting in

L 4 oL L
f —2sin (nx) coS (@x) dx = — f coS (@x) dx + A, f cos? (@x) dx
0 L L Tt 0 L 0 L



25

But £L cos (%x) dx =0 and £L cos? (%x) dx = %, therefore

L L
f —Zsin(nx)cos(m )dx—A —
0 L L 2

-4 L mx nm
A, =— sm(—) cos (—x) dx
0

L L L
But
L rmx nm —-L (1 + cos (nm))
f sin (—) coS (—x) dx =
0 L L T (n2 - 1)
Therefore
A, = (1 + cos (nm))
4 (n2 - 1)
-1)" +1
=4— n:1,2,3,---
T (n2 - 1)

Hence the solution becomes

wioy = 2 2 OO o (1) 4
n 1

(-1

0.11 section 2.4.2 (problem 10)

*2.4.2. Solve
du Pu Ou
u(L,t)=0
u(z,0) = f(z).

For this problem you may assume that no solutions of the heat equation
exponentially grow in time. You may also guess appropriate orthogonality
conditions for the eigenfunctions.

du  J*u
a9
Let u(x,t) = T(t) X (x), then the PDE becomes
Lpx =xrr
K
Dividing by XT
17 _ X
T X

Since each side depends on different independent variable and both are equal, they must
be both equal to same constant, say —A. Where A is real.

1 T X" _
kT X
The two ODE’s are
T +kAT =0 1)
X"+ AX =0 (2)

Per problem statement, A > 0, so only two cases needs to be examined.
Case A =0
The space equation becomes X"’ = 0 with the solution

X=Ax+b

Hence left B.C. implies X’ (0) = 0 or A = 0. Therefore the solution becomes X = b. The
right B.C. implies X (L) = 0 or b = 0. Therefore this leads to X = 0 as the only solution.



This results in trivial solution. Therefore A = 0 is not an eigenvalue.

Case A >0

Starting with the space ODE, the solution is

X(x) = Acos (\/Zx) + Bsin (\/Xx)
= = -AVAsin (\/—x) + BV cos (\/—x)

dx
Left B.C. gives

aX
OZE(O)
=BV

Hence B = 0 since it is assumed A # 0 and A > 0. Solution becomes
X (x) = Acos (\/Xx)
Applying right B.C. gives
0=X(L)
= Acos (\/XL)

A = 0 leads to trivial solution. Therefore cos (\/XL) =0or

Vi=ZZ  u=135,.

2L
Cn-Dmn
= T n= 1, 2,3
Hence
2
An:(g) n=1,3,5,
2n —1)* 72
= T n=1,23--
Therefore
Xy (x) = Ay cos(zzz ) n=1,3,5,
And the corresponding time solution
nr 2
Tn:g‘k(z)t n=1,3,5-

Hence

ui’l (x/ t) = XnTn
had nmy\2
u(x,t) = E A, cos (ﬂx) )t

n=135, - 2L
2
_ EA COS((Zn Ll)n )e_ ((znz—Ll)n)t

From initial conditions

f(x) = 123:‘5 A, COS( )

n=

Multiplying both sides by cos (m—fx) and integrating

f f(x)cos(—x)dx—f(

=135,

%, Avcos{7)cos( 37

Jos
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Interchanging order of summation and 1ntegrat10n and applying orthogonality results in

f f (x) cos (—x)dx =A g

A, = Zfo f(x)cos(Z—Zx)dx



Therefore the solution is

[s¢]

u(x,t):% E

n=1,3,5,-

or

u(x,t) = % g}l [jjf (x) cos (%x) dx} cos (%x) e_k(

0.12 section 2.4.3 (problem 11)

| [fOL f (x) cos (Z—Zx) dx] cos (Z_Zx) e—k(%)zt

*2.4.3. Solve the eigenvalue problem

¢
&z =

subject to
_ d¢ . _ d¢

d¢?

E + /\QZ) =0
¢ (0) = ¢ (2n)
o o _ 3¢
dx = dx (m)
First solution using transformation
Let 7 = x — i, hence the above system becomes
dgp?
F + Agb =0
¢ (=m) = ¢ (n)
ag .\ _ ¢
27 (== (m)

The characteristic equation is 7> + A = 0 or r = +V-A. Assuming A is real. There are three

cases to consider.

Case A <0

Let s = \/3 >0
¢ (1) = 1 cosh (s7) + ¢ sinh (s7)
¢’ (1) = scq sinh (s7) + sc, cosh (s7)
Applying first B.C. gives
¢ (-m) = ¢ (1)
1 cosh (s7) — ¢, sinh (st) = ¢; cosh (sm) + ¢, sinh (s7)
2¢, sinh (s7t) =0
¢y sinh (sm) =0
Applying second B.C. gives
¢’ (-m) = ¢’ (1)
—scq sinh (s7t) + scp cosh (sm) = scq sinh (s7t) + scy cosh (sm)
2¢; sinh (s7t) =0

¢y sinh (sm) =0

27

(1)

(2)

Since sinh (sn) is zero only for s = 0 and s7t is not zero because s > 0. Then the only other
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option is that both ¢; = 0 and ¢, = 0 in order to satisfy equations (1)(2). Hence trivial
solution. Hence A < 0 is not an eigenvalue.

Case A =0

2
The space equation becomes j% = 0 with the solution ¢ (7) = A7 + B. Applying the first

B.C. gives

¢ (-m) = ¢ (n)
-Ant+B=An+B
0=2An

Hence A = 0. The solution becomes ¢ () = B. And ¢’ (t) = 0. The second B.C. just gives
0 = 0. Therefore the solution is

p(r)=C

Where C is any constant. Hence A = 0 is an eigenvalue.

Case A >0

¢ (1) = c1 cos (\/XT) + ¢y sin (\/}c)
Q' (1) = —clﬁsin (\/ZT) + czx/z coS (\/XT)
Applying first B.C. gives
¢ (-m) = ¢ (n)
€1 COS (\/Xn) — ¢y sin (\/Xn) = (1 COS (\/Xn) + cp sin (\/Xn)
2c, sin (\/Zn) =0
C, sin (\/Xn) =0 (3)
Applying second B.C. gives
¢’ (-m) = ¢’ (1)
cl\/zsin (\/Kn) + cz\/x cos (\/Xn) = —clﬁsin (\/Xn) + cz\/z CoS (\/XT()
2C1\/XSiIl (\/Xn) =0
1 8in (\/Zn) =0 (2)

Both (3) and (2) can be satisfied for non-zero VA7. The trivial solution is avoided. Therefore
the eigenvalues are

sin (\/Xn) =0

VA, T =nm n=1,23--
Ap=n®>  n=1,23,

Hence the corresponding eigenfunctions are

[cos (\//\_nf) ,sin (\//\_nr)] = {cos (n1),sin (n7)}

Transforming back to x using t =x -7

{cos (n (x — m)),sin (n (x — 1))} = {cos (nx — nm),sin (nx — nmn)}

But cos (x — ) = —cosx and sin (x — ) = —sinx, hence the eigenfunctions are

{—cos (nx) , — sin (nx)}
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The signs of negative on an eigenfunction (or eigenvector) do not affect it being such as
this is just a multiplication by —1. Hence the above is the same as saying the eigenfunctions
are

{cos (nx), sin (nx)}

Summary

’ ‘ eigenfunctions

A =0 | arbitrary constant

A >0 | {cos(nx),sin (nx)} forn=1,2,3 -

Second solution without transformation

(note: Using transformation as shown above seems to be easier method than this below).

The characteristic equation is > + A = 0 or r = +V-A. Assuming A is real. There are three
cases to consider.

Case A <0
In this case —A is positive and the roots are both real. Assuming V-1 = s where s > 0, then
the solution is
¢ (x) = Ae* + Be™*
¢’ (x) = Ase®* — Bse™*
First B.C. gives

¢ (0) = ¢ (2m)
A+ B = Ae*™ + Be T
A(1-e¥")+B(1-e>7) =0 1)

The second B.C. gives
¢’ (0) = ¢’ (2m)
As — Bs = Ase®™ — Bse %7
A(1-e¥")+B(-1+e%7) =0 (2)
After dividing by s since s # 0. Now a 2 by 2 system is setup from (1),(2)

1=} )l -()

Since this is Mx = b with b = 0 then for non-trivial solution |M| must be zero. Checking the
determinant to see if it is zero or not:

o et R e R e

= (—1 + 7T 4 25T — 1) - (1 — 2T — 2T ¢ 1)
=142 +e2T 114>+ 27 -1

= —4 + 2057 4 2757

=—4+2 (ezs7T + e‘zS”)

= —4 + 4 cosh (2sm)

Hence for the determinant to be zero (so that non-trivial solution exist) then —4+4 cosh (2s7) =
0 or cosh (2sm) =1 which has the solution 2s7 = 0. Which means s = 0. But the assumption
was that s > 0. This implies only a trivial solution exist and A <0 is not an eigenvalue.

case A =0

2
The space equation becomes % = 0 with the solution ¢ (x) = Ax + B. Applying the first
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B.C. gives
B=2An+B
0=2Amn

Hence A = 0. The solution becomes ¢ (x) = B. And ¢’ (x) = 0. The second B.C. just gives
0 = 0. Therefore the solution is

¢(x)=C

Where C is any constant. Hence A = 0 is an eigenvalue.

Case A >0

In this case the solution is

¢ (x) = Acos (\/Xx) + Bsin (\/Xx)

P’ (x) = ~AVAsin (\/Xx) + BVA cos (\/Xx)
Applying first B.C. gives
¢ (0) = ¢ (2n)
A = Acos (ZH\/X) + Bsin (271\5)
A (1 ~ cos (2n\/X)) ~ Bsin (271\/1) =0
Applying second B.C. gives
¢’ (0) = ¢’ (2m)
BVA = —AVAsin (271\5) + BV cos (ZR\/X)
AVAsin (an/i) +B (\/Z ~ VA cos (2n\/Z)) =0
Asin (ZH\/X) +B (1 — COoS (ZN\/X)) =0
Therefore

1 - cos (271\5) —sin (271\/1) A
[ sin (ZN\/X) 1 - cos (Zﬂﬁ)] [B

Setting |M| = 0 to obtain the eigenvalues gives

_ [8] 3)

(1 — cos (27’(\/1)) (1 — cos (27’(\/1)) + sin (Zﬂ\/X) sin (27’(&) =0
1 - cos (271\/1) =0
Hence
CcoS (271\/1) =1
on\d, =nm n=2,4,--
1, = g n=24,
Or
A, =n n=12,3,
A, = n? n=1,2,3,

Therefore the eigenfunctions are
¢, (x) = {cos (nx), sin (nx)}

Summary

eigenfunctions

A =0 | arbitrary constant

A >0 | {cos(nx),sin (nx)} forn=1,2,3---
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0.13 section 2.4.6 (problem 12)

2.4.6. Determine the equilibrium temperature distribution for the thin circular
ring of Section 2.4.2:

(a) Directly from the equilibrium problem (see Sec. 1.4)
(b) By computing the limit as t — oo of the time-dependent problem

The PDE for the thin circular ring is

ou  J*u
o = Fom
u(-L,t)=u(L,t)
du(=L,t) Jdu(L,t)
ot ot
u(x,0) = f(x)

0.13.1 Part (a)

At equilibrium % = 0 and the PDE becomes

As it now has one independent variable, it becomes the following ODE to solve
d?u (x)
dx2 0
u(=L)=u(L)

du du
(L) = (D)

. d%u .
Solution to - =0 is
dax
ux) =cix+c,

Where cy, ¢, are arbitrary constants. From the first B.C.

u(-L)=u(L)
—c1L+cy;=c1L+c¢y
2e;L =0
c1=0
Hence the solution becomes
u(x) =c

The second B.C. adds nothing as it results in 0 = 0. Hence the solution at equilibrium is

u(x) =cy

This means at equilibrium the temperature in the ring reaches a constant value.

0.13.2 Part (b)

The time dependent solution was derived in problem 2.4.3 and also in section 2.4, page

62 in the book, given by

s nmnx 2 0 nmnx 2
u(x, ) =ag+ Y, a,cos (%) ) Y a,sin (”Lﬂ) )t

n=1 n=1

nmx

2
As t — oo the terms e_k( o)t — 0 and the above reduces to
u (x,00) = ap

Since a4, is constant, this is the same result found in part (a).
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