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1.1. links CHAPTER 1. INTRODUCTION

1.1 links

1. [Professor Minh-Binh Tran web page|

2. class web page [http:/www.math.wisc.edw/ minhbinh/Math319.htm|
3.

4. [canvas.wisc.edu| Needs login



http://www.math.wisc.edu/~minhbinh/
http://www.math.wisc.edu/~minhbinh/Math319.htm
https://www.math.wisc.edu/~eramos/
https://canvas.wisc.edu/courses/9147

1.2. syllabus CHAPTER 1. INTRODUCTION

1.2 syllabus

Math 319: Techniques in Ordinary Differential Equations

Instructor: Minh-Binh Tran
e Office: B312 Sterling Hall
e cmail: minhbinh@math.wisc.edu

e WWW home page: http://www.math.wisc.edu/~minhbinh with home-
work and exam information)

Office hours: Mondays 9:50 - 10:50 a.m, Fridays 13:10 - 14:10 p.m.

TAs Office hours:

Ramos, Eric: Wednesdays 3:30-5:30 p.m. and 1 more hour by appointments.
Enkhtaivan, Enkhzaya: Tuesdays and Thursdays 9-10 a.m. and 1 more hour by
appointments.

Textbook: Elementary Differential Equations and Boundary Value Problems,
Boyce and DiPrima, 10th Ed.

Sylabus: We will cover the following material from the book:

Chapter 1. Introduction

Chapter 2. First Order Differential Equations

Chapter 3. Second Order Differential Equations

Chapter 5. Series Solutions of Second Order Linear Equations

Chapter 6. The Laplace Transform

Chapter 7. Systems of First Order Linear Equations

Course website: Available through LearnQUW.

Homework:
e There will be 10-11 homeworks.
e The lowest homework score will be dropped.

e Homework is assigned weekly on Friday and collected at the beginning of
lecture the following Friday.

e Rules for homework submission: All homework should be written clearly.
- You are required to prepare your homework assignments on your own
(but are allowed to work on the problems with others). Writings up the
solution on your own is a way to ensure you understand all of the relevant
concepts completely.

- All homework should be submitted in hard copy before the start of
lecture on the day it is due (hand in to me or slide under the door of my
office).

- Consulting solutions from prior years or using collections of solutions
found on the internet is not allowed in the course.

- No credit for copied or unexcused late homework. Valid excuses for late
homework are illness or family emergency.
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2.1. HW1 CHAPTER 2. HWS

21 HWI1

Note on plots: Some of these problems requires plotting. These were done both by hand
and also by the computer but only the computer version of the plot was included.

2.1.1 Section 1.2 problem 1

Solve each of the following and plot the solution for different y, values.

2111 parta

d
~ =y +5,y(0) = yo

dy
- -5
ar Y

This is first order, linear ODE of the form v’ + p(t)y = g (t) where p () = 1,4 (f) = 5. Since
both p(t),g(t) are continuous on the real line, then by theorem 1, a solution exists and is

unique. Now the ODE is solved.

The Integrating factor is el = ¢t Multiplying both sides by e gives

% (yet) = Be!

Integrating
ye! :5fetdt+c

=5¢' + ¢

Hence
y(t)=5+ce! (1)

Applying initial conditions gives

Yo=5+c

c=1Yp—-5
The complete solution from (1) becomes
y(t):5+(yo—5)e‘t teR

As t — oo the solution approaches y (t) = 5.The following plot gives the solution y () for few
values of y,
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ylt]

-20 -15 -10 -05 0.0 0.5 1.0 8

2112 partb

d

= = -2y +5,5(0) = yo
dy
iy =
I +2y=>5

This is first order, linear ODE of the form v’ + p (t)y = g (t) where p(t) = 2,g(t) = 5. Since
both p(t),g(t) are continuous on the real line, then by theorem 1, a solution exists and is
unique. Now the ODE is solved.

Integrating factor is 2t = o2t Multiplying both sides by ¢* gives

%(yem) — 52t

Integrating
ye?t =5 ertdt +c
5
_ 22ty
Se *¢e
Hence
5
y(O) =2 +ce? M
Applying initial conditions gives
=24
Yo=75
3 5
€=Yo~5

The complete solution from (1) becomes
y(H)=25+(yo-25)e2  teR

As t — oo the solution approaches y () = 2.5. The following plot gives the solution y (t) for
few values of v,
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part b

-20 -15 -10 -05 0.0 0.5 1.0

211.3 partc

d

d—f =-2y+10,y(0) =y
dy
— +2y=10
ar Y

This is first order, linear ODE of the form v’ + p (t)y = g (t) where p(f) = 2,¢ (t) = 10. Since
both p(t),g(t) are continuous on the real line, then by theorem 1, a solution exists and is
unique. Now the ODE is solved.

Integrating factor is 2l = g2t Multiplying both sides by ¢ gives

4 (yeZt) =10e%

dt
Integrating
ye? =10 erfdt +c
=5¢% + ¢
Hence
y(t) =5+ce? 1)
Applying initial conditions gives
Yo=5+c
c=1Yp-5

The complete solution from (1) becomes
y(t)=5+(y0—5)e‘2t teR

As t — oo the solution approaches y (t) = 5. The following plot gives the solution y (t) for few
values of y,
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partc

100

ylt]

-1001

-200+

-20 -15 -10 -05 0.0 0.5 1.0
t

Discussion of differences In all solutions the term with e and ¢=% in it will vanish as t — +oo.

Hence for t > 0 all solution approach a constant value as t — oo, which is 5 for part (a) and
(c) and 2.5 for part (b). Since part(b,c) has ¢7? term, these will approach the asymptote
faster (converges faster) than part (a) which has ¢ term.

2.1.2 Section 1.2, problem 2

21.21 part (a)

dy _ _
=¥ =5y0) =y

dy
o V= -5
This is first order, linear ODE of the form y" + p (t)y = g (t) where p (t) = -1, g (t) = -5. Since
both p(t),g(t) are continuous on the real line, then by theorem 1, a solution exists and is

unique. Now the ODE is solved.

Integrating factor is e =t Multiplying both sides by e~ gives

% (ye‘t) = —5¢!

Integrating
yet = -5 fe‘tdt +c

=5et+c
Hence

y(t)=5+ce (1)
Applying initial conditions gives

Yo=5+c

c=1Yp—-5

The complete solution from (1) becomes

y(t):5+(y0—5)et teR
9
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The following plot gives the solution y (t) for few values of v

part a
‘ ‘ 7 — -8
10/ / 5
e
5t — ] -2
= 0 —
> —0
_5F 1
—_—
_107 \ -
2
—157‘ | | | ‘ ‘f 5
-20 -15 -10 -05 0.0 0.5 1.0 8

21.2.2 part (b)

d
= =2y-5y0) =y

dy
— -2y=-5

a7

This is first order, linear ODE of the form vy’ + p () y = g (t) where p () = -2, g (t) = =5. Since
both p(t),g(t) are continuous on the real line, then by theorem 1, a solution exists and is

unique. Now the ODE is solved.

Integrating factor is o2 = 2t Multiplying both sides by ™% gives

% (ye—Zt) — _Ge2t
Integrating
ye? = -5 f e?tdt + ¢
=25 +¢
Hence
y(t) = 2.5+ ce? 1)
Applying initial conditions gives
Yo=25+c
c=1yg—25

The complete solution from (1) becomes
y() =25+ (yo-25)¢  teR
The following plot gives the solution y (t) for few values of v,

10
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art b

T p T — _8
10¢ _5

2

5F -2

= 0 <

> Sl — 0
) \ \_ 1
-10f ] 2

s

. . : . . : 2

-20 -15 -10 -05 0.0 0.5 1.0 8

21.2.3 part (c)

=2y -10,y(0) =y

dy

2—_
ar ~ Y

This is first order, linear ODE of the form y’ +p (t)y = g (t) where p (t) = -2, g (t) = -10. Since
both p(t),g(t) are continuous on the real line, then by theorem 1, a solution exists and is
unique. Now the ODE is solved.

Integrating factor is o2 = 2, Multiplying both sides by e gives

% (ye‘Zt) —10e72

Integrating
10 [[edt+c

=5¢2 +¢

Hence
y(t) =5+ ce? (1)
Applying initial conditions gives
Yo=5+c
¢=Yo~—

The complete solution from (1) becomes
y(t):5+(y0—5)62t teR
The following plot gives the solution y (f) for few values of

11
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partc
30 T T T T T T —_— -8
20 ] -5
-2
10 ]

_ _—
S0 — 0
-10¢ —_1
-20 2

‘ ‘ ‘ ‘ ‘ ) 5

-20 -15 -10 -05 0.0 0.5 1.0 8

t

Discussion of differences In all solutions the term with ef and % in it will vanish as t — —co.
Hence for t < 0 all solution approach a constant value as t — —oo, which is 5 for part (a)
and (c) and 2.5 for part (b). Since part(b,c) has ¢? term, these will diverge faster for large ¢
than part (a) which has ¢/ term.

2.1.3 Section 1.3, problem 7

In each of the problems below, verify that each given function is the solution to the ODE

v —y=0;y; (t) = ¢';y, (t) = cosh(t).

For y; (t), taking derivatives of y; gives y; = €', y} = ¢'. Substituting into the ODE gives
el—el=0

Which is the RHS in the original ODE. Hence vy (t) is solution to the ODE.

For y, (t), taking derivatives of y, gives y; = sinh (t),y5" = cosh (t). Substituting into the ODE
gives

cosh () — cosh(t) =0
Which is the RHS in the original ODE. Hence y; () is solution to the ODE.

21.4 Section 1.3, problem 8

Y +2y -3y =0y, () = ey, () = .

For vy, (t): Taking derivatives of y; gives y; = —3¢™,y{ = 9¢73!. Substituting into the ODE
gives

9e73 +2(-3e7%) - 3 (e73) = 97 — 6™ — 3¢
=0
Which is the RHS in the original ODE. Hence y; () is solution to the ODE.
For y, (t): Taking derivatives of y, gives y5 = ¢!, 5 = ¢'. Substituting into the ODE gives

el +2et —3et =0

12
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Which is the RHS in the original ODE. Hence y; (t) is solution to the ODE.

2.1.5 Section 1.3, problem 9
ty' =y =25y, (t) = 3t + 12
Taking derivative of y; gives y; = 3 + 2t. Substituting into the ODE gives
E(3+2t)— (3t +12) =3t + 22 -3t — 12
=2

Which is the RHS in the original ODE. Hence vy (t) is solution to the ODE.

2.1.6 Section 1.3, problem 10
Y@ + 4y + 3y =ty (1) = %;yz (t)y=et+ é

For y;: Taking derivative of y; gives y; = %,yi’ =0,y7" =0, y(14) = 0. Substituting into the
ODE gives

t

0+0+3 (—) =t

3
Which is the RHS in the original ODE. Hence y; (f) is solution to the ODE.
For y,: Taking derivatives of y, gives y5 = ¢/ + %,yé’ =et,yy’ = —et,y$Y = ¢t Substituting
into the ODE gives

t
et —4et +3 (e‘f + 3) =et—det+3e7t 4+t
=t

Which is the RHS in the original ODE. Hence y, (f) is solution to the ODE.

2.1.7 Section 1.3, problem 15

Determine the value of r for which the given ODE has solution in the form y = ¢"*
Yy +2y=0

Assume the solution is of the form Ae'" where A is arbitrary constant. Substituting this into
the ODE gives

Are +2Ae" =0
Since ¢* # 0 and A # 0 (else trivial solution), then dividing thought by Ae" gives
r+2=0

Hence

13
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The solution is
y(t) = Ae™?

2.1.8 Section 1.3, problem 16
Determine the value of r for which the given ODE has solution in the form y = ¢"*

y'-y=0
Assume the solution is of the form Ae'f where A is arbitrary constant. Substituting this into
the ODE gives

Ar?et — Ae = 0
Since ¢* # 0 and A # 0 (else trivial solution), then dividing thought by Ae" gives
?-1=0
Hence
r==+1

The solution is

y(t) = cre™t + et

2.1.9 Section 2.1 problem 1

draw direction field for the given ODE. Based on inspection, describe how the solutions
behave for large t. Find general solution to the ODE and use to determine how solution
behaves as t — oo

Y +3y=t+e?

2.1.9.1 Part (a)

This is first order, linear ODE of the form v’ + p(t)y = g () where p () = 3,g(t) = t + e
Since both p(t), g () are continuous on the real line, then by theorem 1, a solution exists
and is unique.

First the ODE is written such that " is on one side, and everything else on the other side.
v =-3y+t+e?
=f (L)
Global view: For fixed y, as t — oo,y’ — oo and for t — —oco,y’ — c0. Att =0,y = -3y +1.

For each value of y = {-1,0,1} and for each ¢t = {-1,0,1} the RHS is calculated and the slope
y’ is drawn as tangent at that point.

14



CHAPTER 2. HWS

2.1. HW1
t=-1 t=0 t=1
y=-1|y =3-1+e2=9 |y =3+0+e=4 Y =3+1+e2~4
y=0 |y =-1+e®~6 yY=0+e"=1 Y =0+1+e2~1
y=1 |y =-3-1+e2=3 |y =-3+0+e"=-2 |y =-3+1+e?~-2

The above data gives i’ at at coordinates

{{_1/ _1} ’ {0/ _1} ’ {1/ _1} ’ {_1/ 0} ’ {0/ 0} ’ {1/ 0} ’ {_1/1} ’ {0/1} ’ {1/1}}
A sketch was now made by hand as well using the computer. The computer version is given
below.

problem 1, direction fields of y(t)

2 N\ \ \
/ NN N
S0 e
A
o I A A
R S A A
N
o 'R T B B B

2.1.9.2 Part (b)

The solutions for large positive t appear to approach an asymptote straight line with positive
slope. This is confirmed by next part.

2.1.9.3 Part (c)

Yy +3y=t+e?

This is first order, linear ODE of the form v’ + p(t)y = g(t) where p(t) = 3,g(t) = t + 2.
Since both p (t),g(t) are continuous on the real line, then by theorem 1, a solution exists

and is unique. Now the ODE is solved.

Integrating factor is ¢, and multiplying both sides by this results in

dit (e3ty) = te3t + ¢t

15



2.1. HW1 CHAPTER 2. HWS

Integrating
ety = fte3fdt + fetdt +c
t 1
:€3t(§—§)+€t+C
Therefore
y= L +e 2 4+ ce3 teR
3 9

. . 1 .
For large positive ¢, the term é dominates and y(f) ~ >t. Hence the solution as t — co

approaches asymptote line with slope 1. For t - —oo the solution grows exponentially in the
negative half plane. The sign of ¢ determines which direction the solution grows to since
¢3! increases faster than ™% for negative t.

2.1.10 Section 2.1 problem 2

draw direction field for the given ODE. Based on inspection, describe how the solutions
behave for large t. Find general solution to the ODE and use to determine how solution
behaves as t — oo

y -2y =te?

2.1.10.1 Part (a)

First the ODE is written such that y” is on one side, and everything else on the other side.

y =2y +te?

Global view: As t — oo,y — co and as t = —oo,y’ — co. And iy’ =0 at point t =0,y = —%.

For each value of y = {-1,0,1} and for each ¢t = {-1,0,1} the RHS is calculated and the slope
y’ is drawn as tangent at that point.

t=-1 t=0 t=1
y=-1|y=-2-#~-9 |y =-2+0=-2 |y =2+¢?~-18
y=0 |y =-e¥=~-7 y =0 Y =0+e2=01
y=1 |y =2-~-5 |y =2 Y =2+e¢%=21

The above data gives y” at at coordinates
{{_1/ _1} s {O/ _1} s {11 _1} ’ {_1/ O} ’ {O/ 0} s {1/ O} s {_1/1} s {0/1} ’ {111}}

A sketch was now made by hand as well using the computer. The computer version is given
below.

16
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problem 2, direction fields of y(t)

2.1.10.2 Part (b)

The solutions for large positive t appear to grow exponentially. This is confirmed by next
part.

2.1.10.3 Part (c)

y/ _ 2y — te—Zt
This is first order, linear ODE of the form v’ +p (t)y = g (t) where p (t) = -2,¢ (t) = te™?'. Since

both p(t),g(t) are continuous on the real line, then by theorem 1, a solution exists and is
unique. Now the ODE is solved.

Integrating factor is ¢7?', and multiplying both sides by this results in

% (e—Zty) — fo Mt

Integrating
ey = f te™4dt + ¢
b1
U A
¢ ( 4 16) ¢
Hence
t 1
T e
For large positive ¢, the term ¢~ (i - %) — 0 and what is left is ¢?’c which grows exponen-
tially.

tlim y(t) = ce’t

For large negative t, the solution grows exponentially in the negative half plane.

17
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2.1.11 Section 2.1 problem 3

draw direction field for the given ODE. Based on inspection, describe how the solutions
behave for large t. Find general solution to the ODE and use to determine how solution
behaves as t — oo

v +y=tet+1

21.11.1 Part (a)

First the ODE is written such that " is on one side, and everything else on the other side.
y=-y+tet+1

For each value of y = {-1,0,1} and for each ¢t = {-1,0,1} the RHS is calculated and the slope
y’ is drawn as tangent at that point.

t=-1 t=0 t=1
y=-1|y =1-¢e+12-07 |y =1+1=2 |y =1+el+1~23
y=0 |y =0-€e+1x-17 |y =1 yY=0+el+1=%13
y=1 |y =-1-e'+1=2-07 |y =-1+1=0|y =1+e!+1=03

The above data gives y” at at coordinates
{{_11 _1} ’ {0/ _1} ’ {1/ _1} ’ {_1/ 0} s {01 0} ’ {11 0} s {_111} ’ {011} ’ {1/ 1}}

A sketch was now made by hand as well using the computer. The computer version is given
below.

problem 3, direction fields of y(t)

Ao N N N ]
AR BN N ,
1 AW . e
2k ** * . S N il
R — T T
IR e T
ES //////’//’//’/
y
\ T 7 s P
N | 7 il 4
2 ~ / / / A )
1 / 7 A
/ / 1 A
/ / /
_al / / / / ]
2 -1 0 1 2 3 4

2.1.11.2 Part (b)

The solutions for large positive t appear to approach an asymptote line y (t) = 1. This is
confirmed by next part.

18
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2.1.11.3 Part (c)

yV+y=tet+1
This is first order, linear ODE of the form vy’ + p (t)y = g () where p(t) = 1,¢(t) = te™?! +1.

Since both p (t),g(t) are continuous on the real line, then by theorem 1, a solution exists
and is unique. Now the ODE is solved.

Integrating factor is ¢/, and multiplying both sides by this results in

% (ety) =t+et

ety:ftdt+fetdt+c

1
=t +e+c
2

Integrating

Hence

1
y:EtZe‘t+1+ce‘t
1
=e (=2 +c|+1
¢ (2 c)

For large positive t, the term e (%tz + c) — 0 and what is left is 1. Hence the solution as

t — oo approaches asymptote line y (f) = 1.

tlim yt) =1

2.1.12 Section 2.1 problem 4

draw direction field for the given ODE. Based on inspection, describe how the solutions
behave for large t. Find general solution to the ODE and use to determine how solution
behaves as t — oo

y’+¥:3COSthOI't>0

21.12.1 Part (a)
First the ODE is written such that y” is on one side, and everything else on the other side.

Yy = —% + 3 cos2t

For each value of y = {-1,0,1} and for each t = {1,2,3} the RHS is calculated and the slope
y’ is drawn as tangent at that point.

19
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t=1 t=2 t=3

/ ~ I_l ~ _ /_1 ~
y=-1]y =1+3cos2=-025 |y =7 +3cos4=-15 y—3+3cos6~3.2
y=0 |y =3cos2=-1.25 Y =0+3cos4d = -2 Y =0+3cos6 =29

) — ~ I__l — /__1 ~
y=1 |y =-1+8cos2~=-225|y =--+3cos4d=-25 |y =--+3cos2t =25

A sketch was now made by hand as well using the computer. The computer version is given
below.

problem 4, direction fields of y(t)

)
4
-

—

—

(4
| —
i
\}s
b

/

———
—

¥(

L o
P
Ve
N

—

Y >
T
//
|
Q
-

e

{

S

S
f/ﬂ\\/ /f

0 2 4 6 8 10

2.1.12.2 Part (b)

The solutions for large positive t appear to oscillate, but it is hard to see that from the few
points above, as more points is needed and only after using the computer plot and solving
it did this become more clear.

21.12.3 Part (c)

v+ }% =3cos2t

This is first order, linear ODE of the form iy’ +p (t)y = g (f) where p (t) = %,g (t) =3 cos2t. p(t)
is singular at t = 0 (not continuous at that point) while g (t) is continuous on the whole real
line, then by theorem 1, a solution exists and is unique only if the initial condition is not
at tp = 0. The solution found is valid on an interval that excludes t = 0 but includes f,. The
problem says to solve this on t > 0 which bypasses t = 0. Now the ODE is solved.

1
t

Integrating factor is el 1 = gt = t, and multiplying both sides by this results in

% (ty) = 3t cos 2t

Integrating
tysztcos(2t)dt+c (1)
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Using fuclv =uv— fvdv, let u=t,dv=cos(2t) > du=1,0= %sin (2t), hence

1 1
ftcos 2Hdt = Etsin (2t)—f§sin (2 dt

1 1
= Etsin (2t) + 7 ©08 (2t)

Equation (1) becomes
1 1
ty =3 (Etsin (2f) + 1 Cos (2t)) +c

3 3 2t
Y= > sin (21f) + 1 COSt( )

cos(2t)

C
+ - t>0
t

In the limit as { — oo the terms ; — 0 and — 0, therefore

. 3.
tlggy (t) = 5 sin (2f)

Hence the solution is sinusoidal at large t.

2.1.13 Section 2.1 problem 13

Find the solution to the given initial value problem. y’ -y = 2te* with y(0) =1

This is first order, linear ODE of the form v’ +p (t)y = g (t) where p (t) = -1, ¢ (t) = 2te?. Since
p(t),g (t) are continuous on the real line, then by theorem 1, a solution exists and is unique.

Integrating factor is ol = ot Multiplying both sides by this results in

d
g (ye‘t) = 2te!
Integrating

yet = thetdt +c (1)

Using fudv = uv — fvdv, letu=tdv=e"—du=1,0v=c¢, hence

f tetdt = tet — f eldt

= tel — ¢!
Therefore (1) becomes
yet=2 (tet - et) +c
y=2 (teZt - eZt) + cet
= 2% (t - 1) + ce!

Applying initial conditions gives

1=2e(0-1) + ce®

1=-2+c

c=3
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Hence the general solution is

y =22 (t—1)+ 3¢

Here is a plot of the solution

teR

problem 2.1 (13) solution
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2.1.14 Section 2.1 problem

Find the solution to the given initial

0.5 1.0 1.5 20
t

0.0

14

value problem. y’ + 2y = te™? with y (1) =0

This is first order, linear ODE of the form v’ + p (t)y = ¢ (t) where p () = 2, ¢ (t) = te?. Since
p(t),g (t) are continuous on the real line, then by theorem 1 a solution exists and is unique.

Integrating factor is 2l = g2t Multiplying both sides by ¢ gives

Integrating

d
o (yeZt) =t

1
ye?t = Etz +c

Applying initial conditions

Hence the solution (1) becomes

— N -

Yy

(1)

1
y =t +ce?

Zp2p-2t _ 1 o2t
2

—e 2 (2 - 1) teR

N
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Here is a plot of the solution

problem 2.1 (14) solution
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2.1.15 Section 2.1, problem 29

Consider vy’ + iy = 3 + 2 cos (2t) with y (0) = 0. (a) find the solution and describe its behavior
for large t. (b) Determine ¢ for which the solution first intersects the line y = 12.

2.1.15.1 Part (a)

This is first order, linear ODE of the form v’ +p (t)y = g (t) where p (t) = i,g (t) =3+2cos(2t).
Since p (t),g(t) are continuous on the real line, then by theorem 1 a solution exists and is
unique.

1 t 1
Integrating factor is e4 a2 ez, Multiplying both sides by e’ gives
t

d( ¢t £ L
T (ye4) = 3e4 + 2e4 cos2t

Integrating
t t t
yet = 3feidt + 2er cos (2t)dt + ¢ 1)

t
f etdt = 4e4 For the second integral, 1ntegrat10n by parts is used. Using f udv = uv — f vdv,

let u = cos (2t),dv = e4 — du=-2sin(2t),v = 464 hence
I= er cos (2t) dt
t t
=4cos(2t)es — f(—2 sin (2t)) 4e4dt

t t
=4cos(2t)es + 8fsin (2t) e4dt

t t
Applying integration by parts again on f sin (2t) e4dt. Let u = sin(2t),dv = e4, hence du =
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t
2 cos (2t),v = 4e4. Therefore the above becomes

t t t
I=4cos(2t)es + 8(4 sin (2t) e4 — chos (2t)4eZdt)
t t t
=4cos(2t) et + 32sin (2t) et — 64fcos (2t)e4dt

t
ButI = er cos (2t) dt, hence the above is
t t

I =4cos(2t)e4 + 32sin (2t) e4 — 641

Solving for I
t t
651 = 4 cos (2t) e + 32sin (2t) e4
4 t32 t
I= G cos (2t) et + r sin (2t) e4

Putting these results back into (1) gives

t t t
yet = 3fefldt +2er cos (2t)dt + ¢
i 4 £ 32 i
=3 (464) +2 (% cos (2t) et + G sin (2t)e4) +c
Hence

4 32
y=12+2 (@ cos (2t) + o sin (2t)) + e

8 64
- ; -4t
=12 + o5 CoS 2H) + oz Sin (2t) + ce
Applying initial conditions

8 64
0 =12+ — cos (0) + — sin (0) + ce®

65 65
=12+ 8 +
e
12 8
c=-12-—
65
_ 788
65
Hence the general solution is
8 64 788
y() =12+ &5 008 (2t) + = sin (2t) - Ee“” teR (2)

As t becomes very large, the term %e“” — 0 and the solution only contains sinusoidal.

8 64
}Lrgy H=12+ & cos (2t) + 5 sin (2t)
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2.1.15.2 Part (b)

Solving for ¢t when y =12 results in

8 64 788
12 =12 + — cos (2) + — sin (2t) - —e™#
65 65 65
8 64 788
0= —cos(2t) + — sin (2f) - —e#

65 65 65
It is not clear what method is supposed to be used to solve the above for ¢ since it is non-
linear. So y(t) was first plotted and by inspection y (t) cross the line y = 12 at about ¢ = 10.
Then using computer root finding with search starting at ¢ = 10 the required value of t was
found to be

t =10.0658

Here is a plot of the solution given in (2)

problem 2.1 (29) solution

y(t)
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22 HW2

2.2.1 Section 2.2 problem 1

Solve iy’ = x—;

This is first order non-linear ODE. In the form i’ = f (x, y). The function f (x, y) is continu-
ous everywhere except at the line y = 0. Now the ODE is solved by separation

dy
Yax =7
ydy = x%dx
Integrating
f ydy = f x2dx
2 3
L=

Since initial conditions is not gives, the solution is left in implicit form (as mentioned in
discussion class, Thursday Sept. 29, 2016)

y

2:§x3+c0 y#0

2.2.2 Section 2.2 problem 2

x
y(1+x3)

This is first order non-linear ODE. In the form iy’ = f (x, y). The function f (x, y) is con-

tinuous everywhere except at line y = 0 and at line x = —-1. Now the ODE is solved by
separation
dy x?
y— =
dx (1 + x3)
2
X
dy = dx
™ (1 + x3)
Integrating

. 2 d .
To integrate [ ——dx let u = 1+ x°, hence ﬁ = 3x2. Therefore the integral becomes
X

(i)
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2

X du 1 du 1 1

——=z|—=zInlu/=zIn |1 + x3|. Hence the above becomes
u 3x 3 u 3 3

Since initial condition is not gives, the solution is left in implicit form

y2:§ln|1+x3|+c1 y#0,x#-1

2.2.3 Section 2.2 problem 3
Solve y’ = —?sinx

This is first order non-linear ODE. In the form ' = f (x, y). The function f (x, y) is continu-

ous everywhere and g—J; = —2ysin (x) is also continuous everywhere but unbounded at y = —co.
This is separable, assuming y # 0 and dividing by y* the ODE becomes
1 dy

]FE = —Sin(X)

d
Y~ —sin () xdx
y

f;l—z :—fsin(x)dx

1
——=cos(x)+c

Integrating

— <

—=-cos(x) +¢

<

Therefore the solution is

1
c1—cos(x)

y(x) = y#0

The reason for y # 0 was the assumption to divide by y? above. Another solution is

y(x)=0

2.2.4 Section 2.2 problem 4

3x2-1
3+2y

Solve i’ =

This is first order non-linear ODE. In the form i’ = f (x, y). The function f (x, y) is continu-
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ous everywhere except at 3+2y=0ory = —g. Now the ODE is solved by separation.

(3+2y)%:3x2—1

(3 + Zy) dy = (?)x2 - 1) dx
Integrating

f(3+2y)dy:f(3x2—1)dx

Y +3y=x>-x+c

Complete the square

2 2
y2+3y+(§) :x3—x+c+(§)

Since initial condition is not gives, the solution is left in implicit form.

2.2.5 Section 2.2 problem 5
Y = cos? (x) cos? (2]/)

This is first order non-linear ODE. In the form i’ = f (x, y). The function f (x, y) is continu-
ous.

g_]y( = cos? (x) 2 cos (2y) (—2 sin (Zy))

= —4cos? (x) cos (2y) sin (2y)

Which is continuous everywhere and bounded. Hence a solution exist and is unique. Now
the ODE is solved by separation.

Case cos? (Zy) #0

To divide by cos? (Zy), then for cos? (Zy) # 0 or cos (2y) #0or2y+# (n + %) TTory# (n + %) %
for all integers.
;d_y = cos? (x)
cos? (Zy) dx
f d—y = fcosz (x) dx 1)
cos? (Zy)
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Now f Y %tan (Zy) and

cos2(2y)
f cos? (x)dx = f 1+CZﬂdx

_ f(l , cos (2x))dx
2 2
1 1 sin (2x)

= —-X+4+ -
X722

x N sin (2x)
2 4

+C1

+C

Hence (1) becomes

1 x  sin (2x)
> tan (2y) =3 + 1

+C

1
tan (2y) = x + =sin (2x) + ¢
(29) = x + 5 sin (22)
Since initial condition is not gives, the solution is left in implicit form.

Case cos? (Zy) =0

This is when cos (Zy) =0or2y= (n + %) TTOry = (n + 1) g for all integers. In this case the

2
y={nrs

{ tan (Zy) =x+ % sin(2x) +c¢  cos? (Zy) #0

solution is

N R

Summary of solution y (x)

T

(n + %) > cos? (Zy) =0

2.2.6 Section 2.2 problem 6

N =

Solve xy’ = (1 - yz)

Nl =

_12
This is nonlinear first order of the formy’ = f (x, y) where f (x, y) = < Z ) . This is continuous

everywhere except at x = 0. ODE is solved by separation.

Case1-y>#0
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NI =

Or y? #1 or y # +1, then dividing by (1 - yz)
f dy — (dx

_= [ =

(-p)2 77

arcsin (y) =lnlx]+c¢

and integrating

y(x) =sin(Inx| +c)
Hence the solution is
y(x) =sin(Inlx| +c) y#+l,x#0
Case1-42=0

Then
y(x)=+1

Summary of solutions

y(x)=sin(Inx|+¢) y#=+L,x#0
y(x)=+1 x#0

2.2.7 Section 2.2 problem 7

x—e™*

dy _
Solve e

This is non-linear first order ODE of the form i’ = f (x, y). The function f (x, y) is continuous
everywhere except at y which is the solution of ¢/ + y = 0. Using a computer, this is y, =
-0.567143 ---. The ODE is solved by separation

f(y+ey)dy:f(x—e"‘)dx

2 2

x

y—+eyz—+e‘x+c
2 2

Hence the solution is given by

Y+2eV-x2-2e%=¢c;  y#Y,

2.2.8 Section 2.2 problem 8

dy x?
Solve —= = Lo

This is non-linear first order ODE of the form " = f (x, y) where f (x, y) is continuous every-
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where except at y = £1. The ODE is solved by separation
(1+12)dy = x2dx
3,3
y + % = ? +C1
Hence the solution is given by

Y +3y-x°=c y ==l

Since initial condition is not gives, the solution is left in implicit form.

2.2.9 Section 2.3 problem 1

1. Consider a tank used in certain hydrodynamic experiments. After one experiment the
tank contains 200 L of a dye solution with a concentration of 1 g/L. To prepare for
the next experiment, the tank is to be rinsed with fresh water flowing in at a rate of
2 L/min, the well-stirred solution flowing out at the same rate. Find the time that will
elapse before the concentration of dye in the tank reaches 1% of its original value.

To reduce confusion, let x be the substance which causes the concentration in the die. Let
Q(t) be the mass (normally called the amount, but saying mass is more clear than saying
amount) of x at time t. Hence Q (0) = 200g since initial concentration was 1[¢/L] and the
volume is 200[L].

The goal is to find an ODE that describes how Q () changes in time. That is, how the mass
of x in the tank changes in time. Knowing the mass of x at any time in the tank, gives the
concentration also, since the tank volume is fixed at 200[L]. So the concentration can always

Q) .
200" Using

be found using
dQ
dat
Where R;, is rate of x moving into the tank, i.e. how many grams of x is being poured in
per minute, which is zero, since fresh water is moving in. R,,; is rate of x moving out, i.e.
how many grams of x is leaving the tank per minute. This is found as follows

< _Q(t)[gram]xz[ L ]
min

= Rjy — Ryt (1)

ot 200  [L]
2 [gram]
B ﬁQ(t) [min]
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Hence (1) becomes

dQ

— =0-100Q()
= -100Q (1)
Solving the ODE, for Q(f) # 0
dQ
— = -100dt
Q
In|Q| = ~100¢ + ¢

Since Q represent mass, it can not be negative, then there is no need to use |Q|.

InQ = -100t + ¢
Q (t) — Ae—lOOt

At t =0,Q(0) =200[g], hence A =200 from the above. The solution becomes
Q (t) = 200e~100¢
Since initial Q was 200[g] then 1% of that is 2. Solving for time gives
2 = 200¢~100%
0.01 = ¢~1%0%
In (0.01) = —100¢,

Solving on the computer gives

ty = 460.517[min]

Hence it takes 460.517 minutes for the mass of x to reach 1% of its original amount of 200
gram. This is also the same amount of time for the concentration of x to reach 1% of its
original amount of 1 [g/L]. It is easier to work with mass in the ODE, and then convert to
concentration when needed.

2.2.10 Section 2.3 problem 2

————p - - -

2. A tank initially contains 120 L of pure water. A mixture containing a concentration of
y g/L of salt enters the tank at a rate of 2 L/min, and the well-stirred mixture.leaves ﬂ_iﬂ:c
tank at the same rate. Find an expression in terms of y for the amount of salt in the tank
at any time . Also find the limiting amount of salt in the tank as t — 0.

Let y (t) be the mass of salt at time ¢ in the tank in grams. Hence y (0) = 0 since tank initially
contains pure water. The goal is to find an ODE that describes how y (f) changes in time.
That is, how the mass of salt in the tank changes in time. Using
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— =Ry = Ryt (1)

Where R;, is rate of mass of salt moving into the tank, i.e. how many grams of salt is being

poured in per minute, which is
R. = [ gram] %2 L
n =V min

2y [gram]

min

And R, is rate of salt moving out, i.e. how many grams of salt is leaving the tank per
minute. This is found as follows

gl

T 120 [L] min
1 gram
B @y (t)[ min ]
Hence (1) becomes
dy (t) 1
JAC A A T

With y (0) = 0. The ODE is linear and first order, of the form vy’ + p (f)y = g(t) with p(t) = %

and g (t) = 2y. Since both p(t), g (t) are continuous then a solution exist and is unique.
1
"+ —y=2
Yy *ey =<
[adt _ =t
Integrating factor is ¢/ 60" = e60", therefore

d1, 1,
E (660 y) = 27/@60

Integrating
ot =t
ey = 2yf660 dt
1
ew’
= 2‘)/T +C
60
=t
=120yee +c
Hence

—t
y () =120y + ¢

In the above, y (t) is the mass of salt in grams in the tank at time . Hence the concentration
of salt in the tank at time ¢ can always be found by dividing y (f) by the volume of the tank.
In the limit, as t — oo then from above

tlim y(t) =120y
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2.2.11 Section 2.3 problem 3

3. A tank originally contains 100 gal of fresh water. Then water containing % Ib of salt p»..‘lj
gallon is poured into the tank at a rate of 2 gal/min, and the mixture is allowed to leave at
the same rate. After 10 min the process is stopped, and fresh water is poured into the tank
at a rate of 2 gal/min, with the mixture again leaving at the same rate. Find the amount of
salt in the tank at the end of an additional 10 min.

This problem is solved in two stages. The first ODE is used to find what the amount of salt

in the tank will be after 10 minutes. Then a new ODE is set up, with this value as its initial
conditions, in order to find the amount of salt in the tank after an additional 10 minutes.

First 10 minutes

Let y, (t) be the mass of salt at time ¢ in the tank in lIbs. Hence y; (0) = 0 since tank initially
contains pure water. The goal is to find an ODE that describes how y; (t) changes in time.
That is, how the mass of salt in the tank changes in time. Using

dyy

dt

Where R;, is rate of mass of salt moving into the tank, i.e. how many lbs of salt is being
poured in per minute, which is

1{ b gallon
Rin =5 X2 :
2 | gallon min

&
=1—
min

And R, is rate of salt moving out, i.e. how many grams of salt is leaving the tank per
minute. This is found as follows

= Rip = Rout (1)

R - 1 () [Ib] 2 gallon
ot~ 100 [gauon] min

— l (t) i
= 507" | min
Hence (1) becomes

dy; (t) 1
AV -

With y; (0) = 0. The ODE is linear and first order, of the form i’ +p () y = g (t) with p (f) = %
and g (t) = 1. Since both p(t), g (t) are continuous then a solution exist and is unique.

1
1+ =1y =1
A1 50]/1

34



2.2. HW2 CHAPTER 2. HWS

. o [mdt St
Integrating factor is e’ 50" = e%", therefore

dt n

Integrating
1 1
eﬁty = f 50’ dt
Lt
=50e50" + ¢
Hence

—t
Y1 (f) =50 + c50

To find ¢, from initial conditions

0=y:(0)
=50+c¢
c=-50

Hence the solution to the first phase is
yp (t) =50 - 505;5
=50 (1 - 65__‘;)
After t = 10 minutes
y; (10) =50 (1 - e?l)

The above value is now used as initial conditions for new problem. The new problem will use
t = 0 as initial time for simplicity, but it is understood that 10 minutes has already elapsed
in global scale.

Second phase

Let y; (t) be the mass of salt at time ¢ in the tank in grams. Hence
¥2(0) = y1 (10)
-1
=50 (1 - e?)

From phase one above, this is the amount of salt in Ibs in the tank at this moment. The goal
is to find an ODE that describes how y, (t) changes in time. That is, how the mass of salt in
the tank changes in time. Using

d
% = Rjy — Rout (2)
Where R;, is rate of mass of salt moving into the tank, i.e. how many lbs of salt is being

poured in per minute. But now R;, = 0 since fresh water is poured in. And R,,; is rate of salt
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moving out, i.e. how many Ibs of salt is leaving the tank per minute. This is found as follows

_» (t) [Ib] o 2|gallon]
out 100 [gallon] min

1 Ib
= 542 () [—]

min

Hence (2) becomes

dy, () 1

1
= _%yz (t)

The ODE is linear and first order, of the form vy’ + p(t)y = g (t) with p (t) = 51—0 and g(f) = 0.
Since both p(t), g (t) are continuous then a solution exist and is unique. This is separable.

dyz 1

Y2 - _%dt
t
In |y2| = —5—0 +C1
~t
Yo () = ce% (3)

-1

To find ¢, from initial conditions y, (0) = 50 (1 - e?), hence
-1
50 (1 —es5 ) =c
Hence the solution (3) to the second phase is
-1 —t
Y () = 50 (1 - e?)e%
After t = 10 minutes (which will be 20 in global scale)
-1y -1
Y, (10) = 50 (1 - e?) es
= 7.4205 Ibs

Therefore after 20 minutes from the global initial time (or 10 minutes from the start of
the second phase), the mass of salt in tank is 7.4205 Ibs. Therefore the concentration at the

. . 74205 [ b Ib
same moment, if needed, will be === [ —_| = 0.074 1.
100 | gallon gallon
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2.2.12 Section 2.3 problem 4

4. A tank with a capacity of 500 gal originally contains 200 gal of water with 100 Ib .of salt
in solution. Water containing 1 Ib of salt per gallon is entering at a rate of 3 gal/min, and
the mixture is allowed to flow out of the tank at a rate of 2 gal/min. Find the amount
of salt in the tank at any time prior to the instant when the solution begins to ovcrﬂ@\a
Find the concentration (in pounds per gallon) of salt in the tank when it is on the pom}‘
of overflowing. Compare this concentration with the theoretical limiting concentration 1
the tank had infinite capacity.

Let y () be the mass of salt at time f in the tank in Ibs. Hence y(0) = 100 since tank initially
contains that much salt. The goal is to find an ODE that describes how y (t) changes in time.
That is, how the mass of salt in the tank changes in time. Using
dy
dt
Where R;, is rate of mass of salt moving into the tank, i.e. how many lbs of salt is being
poured in per minute, which is

[ Ib ] [ gallon]
R;,, =1 X3

gallon min

i
=3|—
min

And R,,; is rate of salt moving out, i.e. how many lbs of salt is leaving the tank per minute.
This is found as follows

= Rin = Rout 1)

R

(2)

min

_y() [b] [ gallon]
) [gallon]

Where V (t) is the volume of the whole mixture at time t. This is different from earlier
problems where volume was constant. This is because in this problem the rate of pouring
into the tank is larger than the rate of flow out of the tank. The volume at time ¢ can easily
be found as

V (t) = 200 [gallon| + 3

gallon] { [min] - 2 [ gallon

i min

] f[min
min

= (200 +¢t) [gallon]

This means at any time ¢, there will be 200 + ¢ gallons of mixture in the tank. This value
is now used in (2) above to complete the solution. Note that the tank will overflow when
200 + t = 500 since 500 is the maximum size of the tank. Going back to (2) now it becomes

I y (1) [1b] %2 gallon
out = 200 + ¢ [gallon] min

_ 2y
200 + ¢
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Therefore (1) becomes
/ 2y

: 200 + ¢
This is linear ODE of first order of the form v’ + p (t)y = g (t) where p(t) = ﬁ and g ().
Both are continuous for t > 0 hence there will be a unique solution for t > 0. Now the ODE
is solved using an integration factor

dy 2
- 4+ =
dt 200+t
1
The integrating factor is ezf w0+, To evaluate f 200% dt let u =200 ++¢, hence — =1 and the
integral becomes f —-du = In |u| Therefore f Mdt ln [200 + t| and the 1ntegrat1ng factor is

2200+ = 1200 + > = (200 + £)°. Therefore now that the integrating is found, the solution
can be written as

d

= (¥ (200 + H?) = 3(200 + )°
Integrating both sides gives

(200 + H% =3 f (200 + 12 dt

d 3 200+£)°
Let u =200 +t¢, thend—t’:t, hence f(200+t)2dt:fu2du:%+c1:( 3+)

the above becomes

+ 1. Therefore

3
= (200 + #)° + ¢

3
(200 + 12 = 3(M + cl)

Solving for y (t) gives

y(f) = (200 + £) +

(3)

(200+1)°

Now c is found from initial conditions. Given that y (0) = 100, then from the above

100 = 200 + 5
200)
=200+ 25000
¢ = (-100) (40000)
= -4 x10°
Therefore the solution (3) becomes
4 x10°
(H) = (200 + t) - ——— (4)
Y (200 + 1)

Now the above ODE is only valid until the tank overflows. This value of time is found by
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solving 200 + t = 500 for ¢, which gives t = 300. Hence (4) becomes

4x106
= - <t<
y(t) = (200 +t) 200117 0<t<300 (5)

At t = 300 minutes, the mass of salt in Ibs is therefore y (300) which is
4x10°
y(300) = (200 +300) - ————
(200 + 300)
=484 [lbs]

And since the volume now is 500 gallons, then the concentration at time # = 300 minutes is

484 lbs — 0.968 Ibs
500 | gallon | gallon

If the tank had infinite capacity, then using the solution found in (5) and dividing by current
volume, which was found before to be 200 + t and then taking the limit t — oo gives the

Ibs

answer. Let p (f) be now the concentration in [ ] at any time ¢. Then

gallon
(200 + 1) — 1€ (200 4 1) - 2
p (i’) — (200+t) — (200+t)
V(b 200 + t
o 4x108
T 200+t

Ast — oothen p (t) — 1. Therefore at 300 minutes the concentration is 96.8% of the theoretical
limit. The following is a plot of p(t) as function of time. At ¢ = 0 the concentration is 0.5
since this is the initial condition.

Problem 2.3 number 4

09+

0.7F

concentration

0.6-

0 50 100 150 200 250 300
Time (minutes)

2.2.13 Section 2.4 problem 1

Determine an interval which the given initial value problem is valid. (t -3)y’ +In(t)y = 2t
with y (1) = 2.
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This is linear first order ODE. In standard form it becomes y’ + %y = i—;, and comparing

toy +p(t)y = g(t) then

In (£)

= —=

pt)=1—3

2t

t) = —

§t)=1—
p (t) is not not continuous at t = 3 and also at ¢t = 0 since In (0) = —co. g (t) is not continuous
at t = 3. Therefore the region must include initial point, which is f =1 but not include t = 3

nor { = 0. Hence

0<t<3
And for forward only ODE the region is

1<t<3

2.2.14 Section 2.4 problem 2

Determine an interval which the given initial value problem is valid. ¢ (t —4)y" + y = 2t with

y(2) =1
This is linear first order ODE. In standard form it becomes y’ +
toy +p(t)y = g(t) then

1

w0’ = and comparing

P(f)=t(t_4)

2
g(t)zm

p (t) is not continuous at t = 0 and ¢ = 4 while g (f) is not continuous at t = 4. Therefore the
region must include initial point, which is t = 2 but not include ¢ = 4 nor t = 0. Hence

O0<t<4
And for forward only ODE the region is
2<t<4

2.2.15 Section 2.4 problem 3

Determine an interval which the given initial value problem is valid. y’ + tan (f)y = sin(f)
with y (rr) = 0.

This is linear first order ODE. Comparing to v' + p () y = g () then

p(t) = tan ()
g (f) = sin ()

3n

g (t) is continuous everywhere but p (t) is not continuous at { , ==, g, > } therefore the

N A
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. e 3n . o e . e s e . .
region must be between > and —- since the initial point 7 is inside this region. Hence

n<t<15
2 OTC

2.2.16 Section 2.4 problem 4

Determine an interval which the given initial value problem is valid. (4 - t2) y + 2ty = 3t2
with y(-3) = 1.

3t? .
Yy = —, and comparing

(+-#)

This is linear first order ODE. In standard form it becomes y’+ 2

(+-#)

toy +p(t)y = g(t) then

p(t) = (-p)
312
g(t) = m
p (t) is not not continuous at > = 4 or t = +2 and the same for g (t). Therefore the region
must include initial point, which is t = -3 but not include t = +2. Hence
-0 <t< -2
And for forward only ODE the region is
-3<t<-2

2.2.17 Section 2.4 problem 5

Determine an interval which the given initial value problem is valid. (4 - tz) Y+ 2ty = 3t?
with y (1) = -3.
2t 3t2

(4—t2)y = and comparing

This is linear first order ODE. In standard form it becomes i’ +

toy +p(t)y = g(t) then

2t
p(t) - (4_ tZ)

312
gt = m

p (#) is not not continuous at > = 4 or t = +2 and the same for g (t). Therefore the region
must include initial point, which is t =1 but not include t = +2. Hence

—2<t<2
And for forward only ODE the region is
1<t<2
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2.2.18 Section 2.4 problem 6

Determine an interval which the given initial value problem is valid. In(f)y" +y = talm with

y(2)=3.

This is linear first order ODE. In standard form it becomes i’ + Ly = ;, and com-
In(f) tan(t) In(t)

paring to v’ + p (t)y = g () then

1
)= —
p(#) ™G
= —————
$0 = e m®
When f =1 then In (t) = 0 and p(t) becomes unbounded. And since for real ¢ then f must
remain positive, else In (t) becomes complex. Then p () says that t > 0 and ¢ # 1. Looking
at g(f) then tan(t) = 0 when t = {---, -7, 7, ---} hence the region that includes initial point

to = 2 must be inside these. Therefore the singular points are t =1, -7, 7 and t > 0. Putting
all these together, the region is

1<t<m
And for forward only ODE the region is

2<t<m
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23 HW33

2.3.1 Section 2.5 problem 1

Sketch the graph of f (y) vs. y and determine critical points and classify each as stable or

not stable. 2 =ay+by%a>0,b> 0,15 >0

dt
f(y) = ay + by’
The following is sketch of f (y) fora=1,b=1.0rf (y) =y+y?

f(y) vs. y for a=1,b=1

The critical points are solution of

fly)=0
Y (a + by) =0
Therefore the critical points are
y1=0
Yo = %ﬂ (not in domain)
Or
y1=0
Y2 =-1

Notice that since a > 0,b > 0, then y, < 0. Here is sketch of the direction field.
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Yy
A sketch of direction fields
y_o| ,
~a ~A A
~a A —a
y=—a/bF - -

Therefore y = 0 is not stable, and y = _7” is stable. However, since 1 > 0, then y = — will

not be reached. Per discussion, only lines above y, are to be considered. In the following
problem, since —co < y < oo, then all lines will be considered. This is the only difference
between this problem and the next one.

2311 Appendix

This is extra. The problem is also solved to determined which is the stable and which is the
unstable critical points. But using direction field as above, is simpler method. The ODE is

dy _ 2 P
- = ay + by*. This is separable

dy
y(a+by) =

fﬁ:fdx 1)

. dy . . . o s A B _
For the integral f o)’ partial fractions is used to split it. Let m + ke W)

Integrating

, therefore

A(a+by)+By:1
Aa+y(Ab+B) =1
Hence comparing terms, gives
Ab+B=0
Aa=1
Solving for A, B, gives
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Hence the integral becomes

Let u = a + by,— du = bdy, hence faizy = %f% = %lnlul = %ln|a+by| and the above

becomes
dy _ 1, bl
fy(a+by)_alnly| abln|a+by|
—11 11 b
= - n|y|—; n|a+ y|

a

1
= . (ln |y| —1In |a + by|)

1
Y
a la+by
Hence (1) becomes
1
- s |:x+c
a |a+by
Where c is constant of integration. Therefore
In|——| = ax + ac
a+ by
Let ac = ¢y a new constant. Then
In a-i—yby =ax+ ¢y
y — plX+Co
a+by ¢
Y
= Ce™x
a+by 0¢

Solving for y
y = aCope™ + byCpe™
y (1 = bCye™) = aCpe™

_aCepe™
Y= A" bCoe)
C
limy = lim — -0
X—00 X—00 — - bCO
e
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Since a > 0 then ¢** — oo as x — oo and the above simplifies to

. EICO
Imy=—c
_ a
b

Since the limit goes to the point —g then this point is stable equilibrium and the point y =0
is not stable.

2.3.2 Section 2.5 problem 2

Sketch the graph of f (y) vs. y and determine critical points and classify each as stable or

not stable. v _ ay+by2;u >0,b>0,-00 <yp< o0

dt
f(y) = ay + by?
This is the same problem as above, with same direction field. But now the phase line will
include both critical points. The critical points are from above

y1=0
_4
Yo = b
Or
y1=0
Yo = -1

For a =1,b =1. Here is sketch of the direction field.

()
A sketch of direction fields
y_o| ,
~a ~A A
~a A —a
y=—a/bF - -

Therefore y = 0 is not stable, and y = _7” is stable. The following is the phase line for this
problem
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Phase line
Yy
00
unstable critical point y=20

stable critical point y=—a/b

2.3.3 Section 2.6 problem 1

Determine if (2x +3) + (Zy - 2) Z—Z =0 is exact and solve if so.

M(x,y) N(x,y)
(2x +3) + (2y—2)E =0

ODE is exact if %/I = %\:. Applying this to the above gives

M,
Iy

IN
~- =0

Therefore, it is exact. Before solving, it is always best to apply singular point analysis
on f (x, y) in order to determined if the solution is unique or not. Writing the ODE as

% =f (x, y) = _((Zzyxj)) shows that this is non-linear first order and applying theorem 2, shows

that f (x) is not continuous at y = 1. Now the ODE is solved. Setting up the two equations

M M=2v+3 1)
dax
A4
&—y:N:Zy—Z (2)
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Integrating (1) w.r.t. x gives

8—\I]dx = f2x + 3dx
dx

\If:x2+3x+f(y) (3)

Therefore

Comparing the above to (2) shows that f’ (y) = 2y — 2. By integrating f (y) is found to be
fly)=y" -2y +c
Substituting f (_1/) back into (3) gives W (x,y(x))
‘I/(x,y(x)) =x? +3x + (yz -2y + c)

. d .
However, since ¥ =0, then W = ¢;, where c; is some constant. Therefore the above can
be written as
x2+3x+(y2—2y+c) =0

Combining constants and simplifying gives the implicit solution for y (x) as

X2+3x+y2-2y=cg y#1 (4)

2.3.4 Section 2.6 problem 2

Determine if (Zx + 4y) + (2x - Zy) % = 0 is exact and solve if so.
Mxy) N{x)

(2x +4y) + (2x - Zy);l—z =0

ODE is exact if %A = i—l;l. Applying this to the above gives

M,
Iy
N _,
ox

Therefore the ODE is not exact.

2.3.5 Section 2.6 problem 3

Determine if (3x2 - 2xy + 2) + (6y2 -x%+ 3) Z—i =0 is exact and solve if so.
M(xy) N(xy)
dy

(3x2—2xy+2)+ (6y2—x2+3)£ =0
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ODE is exact if %/I = %\:. Applying this to the above gives

Jd
M _ .
dy
oN _,
dx X

—(3x2—2xy+2)

W ShOWS that thlS is

. ps d
Hence the ODE is exact. Writing the ODE as % =f (x, y) =

. . . . 1 1
non-linear first order and applying theorem 2, shows that f (x) is not continuous at y = +/ gxz -3

Now the ODE is solved. Setting up the two equations

o ,
_— = = — 1
P M =3x°-2xy +2 1)
oV

a—y:N:6y2—X2+3 (2)

Integrating (1) w.r.t. x gives

f a&—\jdx = f(3x2 - 2xy + 2) dx
\I/:x3—x2y+2x+f(y) (3)
Therefore
oy = (v)

Equating the above to (2) gives

—x2+f’(y) =6y? - x> +3
f(v)=6y"+3
Integrating the above w.r.t. y gives
f(y) :2y3+3y+c
Substituting f (_1/) back into (3) gives W (x,y(x))
\I/(x,y(x)) =x>-x?y+2x+ 2 +3y +c
However, since %\If =0, then W = ¢;, where ¢; is some constant. Therefore the above can

be written as

3

X -xPy+2x+ 2P + 3y +c=¢

Combining constants and simplifying gives the implicit solution for y (x) as

X -xty+2x+2y° +3y =,

The above solution is valid only for y # iJ%xz - %
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2.3.6 Section 2.6 problem 4

Determine if (2xy2 + Zy) + (2x2y + Zx) Z—Z = 0 is exact and solve if so.
M(x,y) N(x,y)
dy

(2xy2 + Zy) + (2x2y + Zx)ﬁ =

0

ODE is exact if %A = l;—i’. Applying this to the above gives

8_M =dxy +2
Iy
JIN
o =4xy +2

—(nyz +2y)

shows that this is
(2x2y+2x)

Hence the ODE is exact. Writing the ODE as Z—Z =f (x, y) =

non-linear first order and applying theorem 2, shows that f (x) is not continuous at y = —

for x # 0. Now the ODE is solved under these assumptions. Setting up the two equations

IV
_—= = 2
e M = 2xy~ + 2y (1)
Y
a—y:N:2x2y+2x (2)
Integrating (1) w.r.t. x gives
IV
f de = f (nyz + Zy) dx
W = x2y% +2yx + f (y) (3)
Therefore
IV

i 2x%y + 2x + f (y)
Equating the above to (2) gives

2x%y + 2x + f (y) = 2x%y + 2x
f'{y)=0

Integrating the above w.r.t. y gives

fly)=c
Substituting f (y) back into (3) gives W (x,y(x))
Y (x,y (x)) = x?y? + 2yx +C

. d .
However, since E‘If =0, then W = ¢;, where ¢; is some constant. Therefore the above can
be written as

Xy +2ux+c =0
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Combining constants and simplifying gives the implicit solution for y (x) as

2,2 —1
xXye +2yx = ¢, y;t?,x;to

2.3.7 Section 2.6 problem 5

. e d —(ax+by) . .
Determine if = = ( ) is exact and solve if so.
dx bx+cy

M (x,y) N (x,y)

(ax + by) + (bx + cy)g—z =0

ODE is exact if %/I = %\:. Applying this to the above gives
IM

— =b
9y
JIN
-y
Ix
~(ax+b
Hence the ODE is exact. Writing the ODE as ;ﬂ = f (x, y) = (bax+ J shows that this is
x x+cy

. . . . -b
non-linear first order and applying theorem 2, shows that f (x) is not continuous at y = Tx

Now the ODE is solved under these assumptions. Setting up the two equations

A4
_ = = 1
P M =ax+by (1)
Y
8—y=N=bx+cy (2)

Integrating (1) w.r.t. x gives

aa—\jdx = f (ux + by) dx

Y = gxz +byx + f (y) (3)

Therefore

IV
&—y = bx+f’ (y)

Equating the above to (2) gives
bx+f’(y) =bx+cy
f(y)=cy

Integrating the above w.r.t. y gives
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Where k is constant. Substituting f (y) back into (3) gives W (x,y(x))

1
v (x,y(x)) = gxz + byx + Ecy2 +k

However, since %\P =0, then W = k;, where k; is some constant. Therefore the above can
be written as

1
gxz + byx + Ecyz +k=k

Combining constants and simplifying gives the implicit solution for y (x) as

1
;xz + byx + Ecyz =k,
ax? + 2byx + cy? = 2k, = k,

Summary of solution

o+ 2byx v =k,  y# =

c

2.3.8 Section 2.6 problem 6

—(ax—by)

is exact and solve if so.
bx—cy

Determine if & _
dx
M(x,y) N(x,y)

(ax - by) + (bx - cy)% =0

ODE is exact if %A = &B—I;]. Applying this to the above gives

M _
e
IN _
===

-b

b

Hence the ODE is not exact.

2.3.9 Section 2.6 problem 7

. . . . d . .
Determine if (ex siny — 2y sin x) + (ex cosy + 2 cos x) ﬁ = 0 is exact and solve if so.

M(x,y) N(x,y)
(ex siny—Zysinx) + (ex cosy + ZCosx)d—y =0
dx
ODE is exact if 2% = 2. Applying this to the above gi
is exact if 2~ = 5°. Applying this to the above gives
M

=¢* —25si

5 cosy —2sinx
IN | .
o ¢ cosy —2sinx
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Hence the ODE is exact. Writing the ODE as Z—z =f (x, y) = (etsiny2ysins) shows that this is

e¥cosy+2cosx

non-linear first order and applying theorem 2, shows that f (x) is not continuous at y = arccos (_2 Cosx).

eX

Now the ODE is solved under these assumptions. Setting up the two equations

A%
_— = = ¥ gj — 1
P M =e*siny —2ysinx (1)
IV
_—= = X
oy N =e*cosy +2cosx (2)
Integrating (1) w.r.t. x gives
IV : :
xdx = f(e" siny — 2y sin x) dx
\I’:exsiny+2ycosx+f(y) (3)
Therefore
IV

8_]/ =e‘cosy +2cosx + f’ (y)

Equating the above to (2) gives
e‘cosy +2cosx + f’ (y) =e‘cosy +2cosx
f{y) =0
Hence
flv)=c
Where ¢ is constant. Substituting f (y) back into (3) gives W (x,y(x))
‘I’(x,y(x)) =e'siny +2ycosx +c
However, since i‘l’ =0, then W = ¢y, where c; is some constant. Therefore the above can
be written as
e‘siny +2ycosx+c=c;
Combining constants and simplifying gives the implicit solution for y (x) as
-2 cos x)

e‘siny +2ycosx = ¢, Y # arccos (

Since ¢ is constant, then ¢y = 0 is allowed value. This implies e* sin y +2y cosx = 0 is allowed,
which means y (x) = 0 is solution also, since when y = 0 then ¢*sin (0) + 2(0) cos x gives zero.
Hence a second solution is

y(x)=0

Summary

. -2
e'siny +2ycosx =c¢, Y # arccos (%)
y(x) =0 Co = 0
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2.3.10 Section 2.6 problem 8

Determine if (ex siny + By) - (3x —e*sin y) Z—Z =0 is exact and solve if so.

M(xy) N(xy)

(ex siny + 3y) + (—Sx + e*sin y)g—z =0

ODE is exact if %A = l;—i’. Applying this to the above gives

oM o

—&y =e*siny +3
c9N_ .
o =-3+¢'siny

Hence the ODE is not exact

2.311 Section 2.6 problem 9

Determine if (ye"y cos 2x — 2¢™¥ sin 2x + Zx) + (xe® cos 2x — 3) z—z =0 is exact and solve if so.
M(x,y) N(x,y)

~d
(ye"y cos 2x — 2e™ sin 2x + Zx) + (xe*¥ cos 2x — 3)% -0

ODE is exact if %/I = %\:. Applying this to the above gives

M
5y " e*¥ cos 2x + yxe™ cos 2x — 2xe™¥ sin 2x
JIN
o = e cos 2x + xye™ cos 2x — 2xe™¥ sin 2x
Hence the ODE is exact. Now the ODE is solved. Setting up the two equations
IV
i M = ye¥ cos 2x — 2e™Y sin 2x + 2x (1)
IV
— =N=xe"cos2x-3 (2)
Iy
Integrating (1) w.r.t. x gives

—dx = f (yexy cos 2x — 2 sin 2x + 2x) dx

V= yfexy cos 2xdx — 2 fexy sin 2xdx + 2 fxdx +f (y) (3)
Let
I= f eV cos 2xdx
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y
Using integration by parts. Let u = cos2x,dv = e¥ — du = -2sin (2x),v = 67, hence

I:uv—fvdu

eV 2
= —cos2x + — fexy sin 2xdx
Yy y
Applying integration by parts again to f e sin 2xdx, where now u = sin2x,dv = e¥ — du =

2cos (2x),v = ? Therefore the above becomes

evy 2 (e evy
I=—cos2x + —|—sin2x — f—Zcostdx
y y\y y

evy 2 (e 2
= — CoS2x + — (— sin2x — — fe"y Cos Zxdx)
y y\y y

But I = f " cos 2xdx and the above becomes

ey 2 (e 2
I=—cos2x+ - (— sin 2x — —I)
y y\y y

Solving for I

evy 2e*Y 4
I=—cos2x+ y2 sin2x — ?1
4 ey 2e*Y
I+—21:—0052x+ > sin 2x
Y y y
y>+4)  eY 2%
I > = —cos2x + > sin 2x
y y y
2 Xy 2 Xy
e e
= 2y — cos2x + Zy — sin 2x
y-+4y y-+4 y
Therefore
Xy 26%Y
f e cos2xdx = Ze cos 2x + 26 sin 2x (4)
y-+4 y-+4

Similarly I = f e¥¥ sin 2xdx is solve by integration by parts. Let ev = ¢, u = sin2x — du =
2co82x,v = ?, hence
Xy 2
I= & sin 2x — — fexy cos 2xdx
Y y
For fexy cos 2xdx, let u = cos2x,dv = e — du = -2sin2x,v = i and the above becomes
e 2 (e 2
I=—sin2x——|—cos2x + — fexysiHZxdx
y y\y y
But f ¥ sin2xdx = I and the above becomes

vy 2 (e 2
I=—sin2x— - (— cos2x + —I)
y y\y y
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Solving for I

ey 26X 4
I=—sin2x - cost+—21

y y? Y
4 ery 26y
[+ —I=—sin2x— —-cos2x
y y Y
Y4\ eV 20"
I >— | = — sin2x - —-cos 2x
y y Y
2 &Yy 2 26%Y
= > — sin 2x — > > CcOS 2x
y-+4y Y +4y
Hence
XY 26X
f e’ sin 2xdx = Ze sin 2x — 26 Cos 2x (5)
ye+4 y2+4
Substituting (4,5) into (3) gives
v —y(yz +4cost+ y2+431n2x -2 " +4sm2x— y2+40052x +x +f(y)
Simplifying
2 XYy 2 XY 2 Xy 4exy
_ye ye . (L 5
V= " +4cos2x+ y2+4s1n2x— y2+4sm2x+ y2+40052x+x +f(y)
2%y 4%V
= yyzi-zl cos 2x + y26+4 cos 2x + x2 +f(y)
VP )
:exycos(Zx)(y2+4 + y2+4) +x +f(y)
= 'Y cos (2x) dvy +22+ f(y)
y>+4
Therefore
W = e%cos (2x) + X2 + f (y) (6)
Therefore
oV
B_y = xe™ cos (2x) + f’ (y)

Equating the above to (2) gives

xe™ cos (2x) + f7 (y) = xe" cos2x -3

f(y)=-3

Hence

fly)=-3y+c
Where c is constant. Substituting f (y) back into (6) gives
v (x,y (x)) = e cos(2x) + x2 -3y + ¢
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. d .
However, since E\If =0, then W = ¢;, where ¢; is some constant. Therefore the above can
be written as

eV cos(2x) +x2 -3y +c=¢
Combining constants and simplifying gives the implicit solution for y (x) as

e cos (2x) + x2 -3y = ¢,

2.3.12 Section 2.6 problem 10

Determine if (% + 6x) + (Inx - Z)Z—Z = 0;x > 0 is exact and solve if so.
M(x,y) N(
S xy)
y W _
x+6x + (Inx 2)dx =0

ODE is exact if %A = &B—I;]. Applying this to the above gives

M 1
i
IN 1
dx  x
. ). dy —(%*'69‘) . .
Hence the ODE is exact. Writing the ODE as = = f (x,y) = -5 shows that this is

non-linear first order and applying theorem 2, shows that f (x) is not continuous at x = ¢2.

Now the ODE is solved under these assumptions. Setting up the two equations

IV y

—=M==+6x (1)
ax X
8—\11 =N=Ilnx-2 (2)
9y
Integrating (1) w.r.t. x gives

IV y

gdx = f(; + 6X) dx
W =yln(x) + 322 + f () (3)

No need to use In x| since the problem said that x > 0. Therefore

oV
5y S @+ s (v)
Equating the above to (2) gives
In(x) + £ (y) = In (x) - 2
f'v)=-2

Hence

f(y):—2y+c
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Where c is constant. Substituting f (y) back into (3) gives W (x,y(x))
\If(x,y(x)) =yln(x) +3x> -2y +c

. d .
However, since E\Ij =0, then W = ¢;, where ¢; is some constant. Therefore the above can
be written as

yln(x) +3x* -2y +c=¢
Combining constants and simplifying gives the implicit solution for y (x) as

yln(x)+3x* -2y =c, x>0;x#¢é?

2.3.13 Section 2.6 problem 11
Determine if (x In (y) + xy) + (y In (x) + xy) Z—Z =0;x > 0;y > 0 is exact and solve if so.
M(xy) N(xy)

(xln (y) +xy) + (yln(x) +xy);i—z =0

ODE is exact if %A = &B—I;]. Applying this to the above gives

M _x . x(+y)
dy y y
J Yy y1+x)
—_— =t 4 yy=—
Jx x X

Hence this ODE is not exact.

2.3.14 Section 2.6 problem 12

1 d . .
J Y = 0 is exact and solve if so.

Determine if ——— +

3 3 dx
(@+2)2  (242)2 x
M(xy) N(xy)
d
- 3t z 3 d_z =0
(2+p2)” (2+p?)?
ODE is exact if %A = %\C]. Applying this to the above gives
oM -3 x -3xy
e e
(+?) (2 +2)
IN -3 y -3xy
Pl el ;
(@) (P4p2)?
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Hence ODE is exact. Writing the ODE as Z—z = f(x,y) = — = _?x shows that this is
(222

non-linear first order and applying theorem 2, shows that f (x) is not continuous at y = 0.

Now the ODE is solved under these assumptions. Setting up the two equations

ARV S 1)
ax (xz +y2)5
AN ©
8y (x2+y2)§

Integrating (1) w.r.t. x gives

(x +y7)?
Let u = x* + 2, then Z—z = 2x. Substituting this into [ ——dx gives
(x2+y2)§
x x du
[——=w= [ 55
(xz + yz)g ug 2x
1 =3
=3 u2du
-1
1
-3+
2
1
=1 +/()
U2
1
== 1 +f(]/)
(< + )"
Hence
W £ () )
(2 +2)°
Therefore
v 1 3
3y —a @) @)+ )
— Y 3 +f/ (y)
(x +y?)?
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Equating the above to (2) gives

y i (y) _ Yy -
(32 +2)° (32 +2)°
f'(y)=0
Hence
fly)=c

Where c is constant. Substituting f (y) back into (3) gives W (x,y(x))

\I/(x,y(x)) = —;1 +c

(24

. d .
However, since E‘If =0, then W = ¢y, where c; is some constant. Therefore the above can

be written as

1

-——+c=0

(2 +2)°

Combining constants and simplifying gives the implicit solution for y (x) as
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24 HWH4

2.41 Section 2.6 problem 19

Question Show that x%y° + x(l +y2) vy’ = 0 is not exact, and then becomes exact when
multiplied by p (x, y) = xl? and then solve.
Solution The first step is to apply theorem two and also check where the ODE is singular.
Writing it as
dy —x2y?
- = X - v
dx f( y) x(l +y2)
This is non-linear first order ODE. There is a pole at x = 0. From theorem two, this says that

unique solution is not guaranteed to exist since the first condition which says that f (x, y)
must be continuous, was not satisfied. Now the ODE is solved.

PR
X283 + x (1 + yz)y’ =0

Hence
M (x, y) = x%y°
N(x,y) = x(l +y2)
An ODE is exact when %/1 = (Z—Z:. These are now calculated to see if the ODE is exact or not
oM
=3 2,2
dy Yy
IN 1412
dx Y

The above shows that that il; # i—f therefore the ODE is not exact. Multiplying the original
ODE by given integrating factor it becomes

(yx2y3) + px (1 + yz) y =0

1

v +x_y3x(1 +y2)y’:0
x+}%(l+y2)y’:0

Now M =xand N = ;—3 (1 + yz). Checking that the new M, N are indeed exact.
oM

ET
N _,
adx
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The new ODE is exact. Now the ODE is solved using the standard method.

d
i i) =M=x (1)
Jx
AY (x, y) _ 1
5 :N:]F(1+y2) (2)
Integrating (1) w.r.t x gives
W=+ fy) 3)
IV
o =)
Comparing the above to (2) in order to solve for f’ (y) gives
1+
f (v ) - y3y
2
f(y)=f1;3y dy +c (4)

1 2
We need now to solve f %dy

1+y? 1 e
f % dy:flﬁdy+fﬁdy

1 1
__2_y2+f§dy
1

= —2—y2 +1H|y|

Using the above solution in (4) gives

1
f(y):—2—y2+ln|y|+c

Using the above in (3) gives
1

1
\P:Exz—z—yz+ln|y|+c

But %I: = ¢y, therefore the above simplifies to, after collecting all constants to one

1xz—i+ln|}/|:C x#0

23

Checking y = 0 as solution, shows that putting y =0 in f (x, y) = i)
Xty

= 0. Hence y =0 is

also a solution.
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Summary The solutions are

le 1 Inly|=C #0,y#0
zx 2—yz+ny X Y

y=0 x#0

2.4.2 Section 2.6 problem 20

Question Show that (% —2¢7*sin x) + (M) Yy’ =0 is not exact, and then becomes
exact when multiplied by p (x, y) = ye* and then solve.

Solution First we will check where the ODE is singular. Writing it as

MY e sin x
dy = f ( X, ) y
dx Yy cosy+2e ¥ cosx
y

This is non-linear first order ODE. We see a pole at y = 0. Hence y # 0. From theorem two,
this says that that unique solution is not guaranteed since first condition which says that
f (x, y) must be continuous, was not satisfied.

M (x, y) = 22 e rsinx
cosy +2e* cosx
N (x, y) =
y
An ODE is exact when %/I = i—N These are now calculated to see if the ODE is exact or not

oM | . 1
—— =Inysiny + —cosy
9y y
N Jd (1 1 -1_ | —2e™* .
— = —|-cosy+ —2¢"cosx|=—2¢Fcosx— —2¢ ¥ sinx = (cosx + sin x)
dx dx\y y

From above we see that %A # 2—2’ therefore the ODE is not exact. Multiplying the original
ODE by given integrating factor it becomes

siny , cosy +2e*cosx) ,
yT—Ze sinx |+ u y =0
x(siny . ) (cosy+2e cosx) ,

e 7—26 sinx | + ye* y =0

(e"siny—Zysinx + e cosy+Zcosx)y 0
Now
M = ¢e*siny — 2ysinx
N

=e‘cosy+2cosx
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Checking now the new M, N are indeed exact.

oM ,
&_y =e*cosy—2sinx
N ,
5% ¢ cosy —2sinx
The new ODE is exact. Now the ODE is solved using the standard method.
IV (x, y) _
a—x:M:e"siny—ZySinx (1)
A\Y (x, y) _
8—y:N:excosy+ZCosx (2)
Integrating (1) w.r.t x gives
\I/:e"siny+2ycosx+f(y) (3)

IV ,
c9_y =e‘cosy+2cosx+ f (y)

Comparing the above to (2) in order to solve for f’ (y) gives
e‘cosy +2cosx + f’ (y) =e‘cosy+2cosx
f'(v)=0
flv)=c )
Substituting the above into (3) gives
W =e'siny +2ycosx +c
But Z—f = ¢y, therefore the above simplifies to, after collecting all constants to one

e‘siny +2ycosx =C y#0

2.4.3 Section 2.6 problem 21

Question Show that y+ (2x - yeY ) Yy’ = 0is not exact, and then becomes exact when multiplied

by u (x, y) =y and then solve.

Solution
M (x, y) =y
N(x,y) =2x —yeY
An ODE is exact when %/I = ‘;—Z;[ . These are now calculated to see if the ODE is exact or not
oM
1
dy
JON _y
ox
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From above we see that %/I # %\: therefore the ODE is not exact. Multiplying the original
ODE by given integrating factor it becomes

wy + u (2x - yey)
v+ (2xy - yzey)

y' =
y' =

Now
M=y?
N = 2xy — y?e¥
Checking now the new M, N are indeed exact.
oM
T -9
Ay s
N 5
ax Y
The new ODE is exact. Now the ODE is solved using the standard method.
oV (x, _
—( y) =M= Y
Jx

oV (x, _
% = N = 2xy — y%e! (2)

? (1)

Integrating (1) w.r.t x gives

W=y?x+ f (y) (3)
IV ,
8_]/ =2yx+f (y)
Comparing the above to (2) in order to solve for f’ (y) gives

2yx + f’ (y) = 2xy — ye!
f(v) = v
fly)=- [ perdy+c (4)
The integral f y?eYdy can be found using integration by parts. Let u = y?,dv = ¢/ — du =

2y,v = &Y, therefore
fyzeydy = fudv

= uv—fvdu
= eV —2fyeydy

Applying integration by parts again to f yeYdy, where now u =y, dv=¢ - du =1,v = ¢/, the
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above becomes

f y2eVdy = y?e¥ — 2 (yey - f eydy)
= y2e¥ -2 (yey - ey)
= y2e¥ — 2yeY + 2V
= ey(y2—2y+2)
Therefore from (4)
f(y) = —ey(y2—2y+2)+c
Substituting the above into (3) gives
W:yzx—ey(y2—2y+2) +c

But Z—i] = ¢y, therefore the above simplifies to, after collecting all constants to one

y2x—ey(y2—2y+2):C

2.4.4 Section 2.6 problem 22

Question Show that (x +2)siny + (x cos y) vy’ =0 is not exact, and then becomes exact when

multiplied by u (x, y) = xe* and then solve.
Solution
M(x,y) = (x+2)siny

N(x,y) =Xxcosy

An ODE is exact when %A _ N These are now calculated to see if the ODE is exact or not

ax'
= (X+2) O
Y CosYy

55 = oSy

From above we see that %A # i—lj therefore the ODE is not exact. Multiplying the original
ODE by given integrating factor it becomes

p(x+2)siny +pu (xcosy)y’ 0
xe* (x +2)siny + xe* (x cos y) y =0

Now
M = (x%" + 2xe") siny
N

= x%¢* cosy
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Checking now the new M, N are indeed exact.

oM
e (xzex + 2xex) cosy
N _ 2xe¥ cosy + x%e¥ cosy = (xze" + 2xe") cosy
dx
The new ODE is exact. Now the ODE is solved using the standard method.
AY (x, y) _
— M = (2 ;
- M = (x e+ 2xe") siny 1)
AY (x, y)
_— N = 2 X 2
3y N = x“e* cosy (2)
Integrating (2) w.r.t y as it is simpler than integrating (1) w.r.t. x, gives
Y= f x%e* cosydy = x%e* siny + f (x) (3)
v

5 = 2xe* siny + x%e* siny + f’ (x)
Comparing the above to (1) in order to solve for f’ (x) gives
2xe* siny + x2e* siny + f' (x) = (xzex + 2xex) siny
f)=0
fx)=c (4)
Substituting the above into (3) gives
W = x%e*siny + ¢

dv . . .
But - = Co, therefore W = ¢; and the above simplifies to, after collecting all constants to
one

2

xe*siny=C

2.4.5 Section 2.6 problem 23

Ny—M,

Question Show that if = Q where Q is function of y only, then M + Ny’ = 0 has

integrating factor of form u (y) = of Q)
Solution Given the differential equation

dy (x) _

dx 0

M (x, y) + N (x, y)

Multiplying by u (y) results in
uM + uNy' =0
The above is exact if
J (pM) d (yN)

dy dx
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Performing the above, taking into account that y depends on y only, results in
dy M  JN
oy TRy
y Yy x
The above is first order ODE in p

du IN M
ay . Fax Tty
IN oM
du ox  dy
i
Yy
IN_ oM
Let Q= M If Q depends on y only, then the above ODE is separable. Hence
du
—HQ()
—-=Q;ydy
- o)

Integrating both sides gives

il = [Q()av+c
|#| — efQ(y)dy+C

u(y) = el Qv)y

Where A is some constant, which can be taken to be 1 leading to the result required to show.
IN M

The above procedure works only when Q = i y happened to be function of y only. This
complete the proof.

2.4.6 Section 2.6 problem 24

Ny-M
Question Show that if xM_yIf] = R where R is function of xy only, then M + Ny’ = 0 has
integrating factor of form u (x, y). Find the general formula for p.

Solution Given the differential equation
M (x y) +N (x y)
Let u (t) where t = xy. Multiplying the above with u (t) gives

/J(t)M(x y) +y(t)N(x y) Z(x) 0

(X) —0

The above is exact when
JuM  JuN
dy  Ix
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Hence
au M Jdu IN
1
8yM #8y &xN Hox @
However,
d dudt d
F - @)
y dt dy at”
And
o _duot _du

ox  drdx  dt? (3)

Substituting (2,3) into (1) gives

du oM du JIN
g MA b= NG
du N IM
g (M 9N) = g —p

du (t) ((Z_N - %4)

it [J(xM—yN)

(%-%)

In the above, u depends on t only, where t is function of xy only. If % depends on ¢
xM-y
(aN aM)
only, then the above can be considered a separable first order ODE in p. Let R(t) = ﬁ
Y

and the above can be written as
du (f)
——~ =uR (¢t
o K (®)

Since separable, then

d“ O _ reyar

f@=IMt
U
ln|y|:fRdt+C

|IJ| _ oJ Rit+C

(Ll :AefRdt

Where A is constant of integration which can be taken to be 1. Hence p = e/ Rét This works
only if R is function of ¢ only.
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2.4.7 Section 2.7 problem 20

20. Convergence of Euler’s Method. It can be shown that under suitable conditions on f,
the numerical approximation generated by the Euler method for the initial value problem
Yy =f(t,y), y(to) = yo converges to the exact solution as the step size 4 decreases. This is
illustrated by the following example. Consider the initial value problem

yi=1l—t+y,  ylo)=yo.
(a) Show that the exact solution is y = ¢(¢) = (yo — to)e' ™ + .
(b) Using the Euler formula, show that
yk=(1+h)}’k—1+h_htk71, k=1>2’

(c) Noting that y; = (1 4+ h)(yo — &) + t1, show by induction that

Yn = (1+h)n(y0_t(])+tn (1)

for each positive integer n.

(d) Consider a fixed point ¢ > ¢, and for a given n choose h = (¢t — ty) /n. Then t,, = t for
every n. Note also that 7 — O asn — oco. By substituting for #in Eq. (i) and letting n — oo,
show that y, — ¢(t) as n — oc.

Hint: lim (1 4+ a/n)" = €°.

2471 parta

y=1-t+y
y(to) = Yo
This is linear first order ODE. Writing it as ¥’ —y = 1 — £, then the integrating factor is
u=eJ%=¢" and the ODE becomes

d
dt (ye‘t) =e'(1-1)
Integrating both sides

yet = fe‘t(l—t)dt+c

= fe‘tdt—fte‘tdt+c (1)
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But fte‘tdt = fudv where u =t,dv=¢"* — du=1,v = —e!, hence

fte‘tdt = uv—fvdu
= —te‘t+fe‘fdt

=—tet—et
Putting this result in (1) gives
yet = -t - (—te‘t - e‘t) +c
=—t+tet+et +c
=tet+c
Therefore solving for y gives
y=t+ce
The constant ¢ is now found from initial conditions.
Yo = to + celo
c= (yo - fo) e'o
Substituting ¢ found back into (2) gives the final solution
y=t+ (yo - to) e loet
= (yo - to) etto +t

24.7.2 Partb

Euler formula is

yk = hf (tk—llyk—l) + ]/k—l k = 1/2/ 3/ te

(2)

(3)

(1)

Where in this problem f (tk_l,yk_l) is the RHS of y’ =1 -t + y but evaluated at f;_;. Hence

f (tk—lryk—l) =1-t1 +Yia
Substituting this into (1) gives
ye =h (1 =ty + Vo) + Ve
=h—htyg + Y1 + Y

:(1+h)yk_1+h—htk_1 k=1,2,3,-

Which is the required formula asked to derive.
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2473 Partc
The formula given y; = (1 + h) (yo - to) + t; can be found as follows. Since

y1 = Yo +hf (to, o)
=y0+h(1—t0+y0)
=1yo+h—ht; + hy,
Adding t, - t; to the above will not changed anything, hence
Y1 =Yo+h—hty +hyo+1to — o
But t; =ty + h by definition, hence the above becomes, by replacing t, +  above with t;
Vi=Yo+t —htp+hyo—to
Simplifying
1= (yo—fo) +h(}/0—t0) +h
= (1+1) (yo—to) + 1

Now the question will be answered. Need to show that y,, = (1 + h)" (Vo - t0)+tn is true, using

induction. This is true for k =1 as shown above. Now assuming it is true for k, we then
need to show it is true for k + 1.

By assumption, it is true for k, hence
ye =1+ (yo—to) + 1 (1)
But using Euler formula
Vet = Vi + 1 (e i)
:yk"'h(l_tk"‘yk) (2)
Substituting (1) into RHS of (2)
Vsl = ((1 +h)f (yo - to) + tk) +h (1 -+ ((1 +h)f (yo - to) + tk))
= (L+h) (yo — to) + t + B — Ity + 1 (L + 1) (o — to) + 1)
=+ 1) (yo—to) + te + h—hte + R (A + 1) (yo - to) + Ity
=@ +1)* (yo—to) + t + h+h (1 +h) (o to)
But t; + h = t,1 by definition, hence
Yerr = U+ 1) (Yo —to) + b + 1A+ 1) (yo — to)
= 1+ 1) (yo — to) L +h) + by
= 1+ (yo — to) + e

The above shows it is true for k +1 given it is true for k. Therefore, it is true for any positive
integer n.
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2474 Partd
Using

Yu = L+1)" (yo—to) +t,
Replacing h = 57 in the above gives

n

Yn = (1 + (tn;to))” (vo —to) + t

Taking the limit

t, —to\\"
lim y,, = lim (1+(nn 0)) (yo—t0)+nli_r)1010tn

n—00 n—00

But lim,,_, t, = t, hence replacing all t, with ¢ in the above gives

. . t—to\\"
hmyn:hm(1+( no)) (yo—t0)+t

n—oo n—-oo

Using hint that lim,_,, (1 + g)n = ¢ the above simplifies to
y (t) = nll_)Holo Yn

= e(HO) (yo - to) +t
Which is the analytical solution found in part (a).

2.4.8 Section 3.1 problem 1

Find the general solution to y”" + 2y’ — 3y = 0.

This is second order, linear, constant coefficient ODE. Letting y = ¢'* and replacing this into

the ODE gives
e”(rz+2r—3) =0

Since e # 0, the above reduces to what is called the characteristic equation of the ODE

P+2r-3=0

Which can be written as (r—1) (r + 3) = 0. Hence r; = 1,7, = =3. Therefore the solution is

y(t) = cre! + cpe?

Where cy, c; are constants which can be found from initial conditions. Hence the general

solution is

y(t) = crel + cpe™!

2.4.9 Section 3.1 problem 2

Find the general solution to y”” + 3y’ + 2y = 0.
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This is second order, linear, constant coefficient ODE. The characteristic equation of the
ODE

P4+3r+2=0

Which can be written as (r + 1) (r + 2) = 0. Hence r; = —1,r, = —=2. Therefore the solution is
y(t) = cre! + cpe?t

Where cy,c; are constants which can be found from initial conditions. Hence the general
solution is

y(t) = cret +cpe?

2.410 Section 3.1 problem 3
Find the general solution to 6y -y -y = 0.

This is second order, linear, constant coefficient ODE. The characteristic equation of the

ODE

6r2—r-1=0
—b+Vb2—4ac  1++/1-4(6)(-1 1+V1424 145 1 -1
Hence r = o = 12( L TR Hence r; = > = 5 Therefore the

solution is
y(t) = ciet + cpe™

Where cy,c; are constants which can be found from initial conditions. Hence the general

solution is
3 _
y(t) =cre2 +cye’

2.411 Section 3.1 problem 4
Find the general solution to 2y -3y’ +y = 0.

This is second order, linear, constant coefficient ODE. The characteristic equation of the

ODE

212 -3r+1=0

—beVP2-dac  3+49-4(2)(1)  3+1
Hence r = P = 1 =0

y(t) = ciet + cpe™

1 L
.Hencer; =1,r, = > Therefore the solution is

Where cy, c; are constants which can be found from initial conditions. Hence the general
solution is

1
y () = cret + cpe2’
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2.412 Section 3.1 problem 5

Find the general solution to y”” + 5y’ = 0.

This is second order, linear, constant coefficient ODE. The characteristic equation of the
ODE

2 +5r=0

Which can be written as 7 (r + 5) = 0, hence r{ = 0,7, = —5.Therefore the solution is
y(t) = cret + cpe?t

Where cy,c; are constants which can be found from initial conditions. Hence the general
solution is

y(t) = ¢ +cpe™

2.413 Section 3.1 problem 6

Find the general solution to 4y” — 9y = 0.

This is second order, linear, constant coefficient ODE. The characteristic equation of the
ODE

412 -9 =0

9 9 3 3 3 .
Therefore 1% = Jorr= J_r\/; =+ Hence r; = >12 = —E.Therefore the solution is
y(t) = cre! + cpe?

Where cy, c; are constants which can be found from initial conditions. Hence the general

solution is
3

3 ~2t
y(t) =cre2 +cye 2

2.414 Section 3.1 problem 7

Find the general solution to y” -9y’ + 9y = 0.

This is second order, linear, constant coefficient ODE. The characteristic equation of the
ODE is

P2-9r+9=0

—b£Vb2—4ac  9+\BI-4()(9)  9+V81-36  9+V45  9+3+5
Hence r = = = > ===

2a
Therefore the solution is

9+3v5  9-3v5

2 ,7’2——2 .

. Hence r| =

y(t) = cre! + cpe?t

Where cy,c; are constants which can be found from initial conditions. Hence the general
solution is

9+3v5 9—3\/5t
y(t)=cie 2 " +ce 2
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2.415 Section 3.1 problem 8

Find the general solution to y”" -2y’ -2y = 0.

This is second order, linear, constant coefficient ODE. The characteristic equation of the
ODE is

2-2r-2=0

_ 2_ _ _
Hence r = bi‘/zl; dac _ 2++/1 ;1(1)( 2 _ 2¢«/24+8 _ 2¢;/E _ Zii\/g 14 \/§ Hence r, =1+ \/5 ry =

1 — /3. Therefore the solution is

y(t) = ciet + cpe™

Where cy, c; are constants which can be found from initial conditions. Hence the general
solution is

y(t) = cle(“‘/g)t + cze(l_\/g)t
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25 HW)S

2.5.1 Section 3.1 problem 9

Find the solution to " +y" -2y = 0;y(0) =1,y (0) = 1 and sketch the solution and describe
its behavior as t increases.

solution
The characteristic equation is found by substituting y = ¢” into the ODE and simplifying,
giving
P+r-2=0
(r+2)(r-1=0

Hence the roots are r; = =2,7, = 1. Roots are real and distinct. The two solutions are

The general solution is linear combination of the above two solutions
Y=y + Gl
=72 + cpet

Now ¢y, ¢, are found from initial conditions. Applying first initial condition (y(0) = 1) to
the general solution gives

1:C1+C2 (1)

Taking time derivative of the general solution gives v’ (t) = —2c;e™ + cpe. Applying second
initial condition to this results in

1= —2C1 +Cy (2)
Equation (1,2) are now solved for ¢y, c,. From (1), ¢; =1 —¢,. Substituting this into (2) gives

1:—2(1—C2)+C2

=-2+ 2C2 +Cy
=-2+ 3C2
Hence ¢, = % =1. Therefore c; =1 -1 = 0. Hence
1 = 0
Cy = 1

Substituting these back into the general solution gives

y(t)=¢
Since the solution is exponential, it will grow in time and blows up. Here is sketch of the
solution.
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solution to 3.2 problem 9

20
15}

£ 10-

0.0 0.5 1.0 1.5 2.0 2.5 3.0

2.5.2 Section 3.1 problem 10

Find the solution to y”” + 4y’ + 3y = 0; (0) = 2,3’ (0) = -1 and sketch the solution and describe
its behavior as t increases.

solution
The characteristic equation is found by substituting y = ¢” into the ODE and simplifying,
giving
P +4r+3=0
r+3)(r+1)=0
Hence the roots are r; = -3,r, = —1. Roots are real and distinct. The two solutions are
yp=et
yp=e
The general solution is linear combination of the above two solutions
Yy=ay el
= cre73 + cpet

Now ¢y, c; are found from initial conditions. Applying first initial condition (y(0) = 2) to
the general solution gives

2:C]+C2 (1)

Taking time derivative of the general solution gives y’ (t) = —=3c;e™> — c,e™. Applying second
initial condition to this results in

~1 = -3¢; - ¢, (2)
Equation (1,2) are now solved for ¢y, c,. From (1), c; = 2 — ¢,. Substituting this into (2) gives
-1=-32-¢c))—¢,
=—6+3c, -0
=-6+2c,
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Hence ¢, = —1*6 = 2.5. Therefore cq =2-25=0.5. Hence
C1 = 0.5
Cy = 25

Substituting these back into the general solution gives
y(t) = 0.5¢73 + 2.5¢7t

At t becomes large, both solutions decay to zero. So we expect the general solution to go to
zero very fast. Here is a sketch.

solution to 3.2 problem 10

2.0»“
1.5}
£ 1.0f

0.5}

0.0

2.5.3 Section 3.1 problem 11

Find the solution to 6y —5y" +y = 0,y (0) = 4,y’ (0) = 0 and sketch the solution and describe
its behavior as t increases.

solution

The characteristic equation is found by substituting y = ¢ into the ODE and simplifying,
giving
6r> —5r+1=0

— Vh2—
Hence 11, = 2_b L 4ac, where A = b? — 4ac = 25 - (4) (6) = 1. Since A > 0, the roots will be

real and distinct. The roots are

-b  Vb?-4ac

"2=45-%
= 2a 2a

5 1
= — 4+ —
1212
1 1 - .
Hence the roots are r; = 572 = 3. Roots are real and distinct. The two solutions are

Y
y1=e2

1
yZ = e3
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The general solution is linear combination of the above two solutions

Y=yt
1 1

=t =t
= C]€2 + C2€3

Now ¢y, ¢, are found from initial conditions. Applying first initial condition (y(0) = 4) to
the general solution gives

4:C1+C2 (1)

1 1
Taking time derivative of the general solution gives y’ () = %cleit + %cze?. Applying second
initial condition to this results in

1 1
0= Ecl + ECZ (2)

Equation (1,2) are now solved for ¢, c;. From (1), ¢; = 4 — ¢,. Substituting this into (2) gives

1 1
025(4—C2)+§C2

=2-—cp+=c
22737

=2- —Cp
6
Hence ¢, = 12. Therefore ¢; =4 -12 = —-8. Hence
1= -8
Cy = 12

Substituting these back into the general solution gives
1 1
y(t) = ~8e2' +12¢3"

1 1 1
Since e2’ grows faster than e3' and since e2’ has negative coefficient, then the solution will
go to —co as f increases. Here is sketch of the solution

solution to 3.2 problem 11

y(t)

0.0 0.5 1.0 1.5 2.0 25 3.0
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2.5.4 Section 3.1 problem 12

Find the solution to y” + 3y’ = 0; (0) = —2,1' (0) = 3 and sketch the solution and describe
its behavior as t increases.

solution

The characteristic equation is found by substituting y = ¢” into the ODE and simplifying,
giving

?+3r=0
r(r+3)=0
Hence the roots are r; = 0,r, = —3. Roots are real and distinct. The two solutions are
=1
yp =

The general solution is linear combination of the above two solutions

y=cp+ et

Now ¢y, ¢, are found from initial conditions. Applying first initial condition (y(0) = -2) to
the general solution gives

—-2=c1+0c (1)
Taking time derivative of the general solution gives i’ (t) = —3c,¢™>. Applying second initial
condition to this results in

3=-3c, (2)
Hence ¢, = —1. Therefore c¢; = —1. Substituting these back into the general solution gives
y(t)=-1-¢3

As t — oo, the term ¢! — 0 and we are left with —1. Hence lim,_,, y (t) = -1. Here is sketch
of the solution

solution to 3.2 problem 12

-1.0f
-11F

-1.2r

y(t)

-1.3}

-1.4f

-1.5¢

0.0 0.5 1.0 1.5 2.0 25 3.0
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2.5.5 Section 3.1 problem 13

Find the solution to " + 5y’ + 3y = 0;y(0) = 1,1’ (0) = 0 and sketch the solution and describe
its behavior as t increases.

solution

The characteristic equation is found by substituting y = ¢” into the ODE and simplifying,
giving
2 +5r+3=0

Hence ry, = ;—b + #, where A = b? — 4ac = 25 — (4) (3) = 13. Since A > 0, the roots will be

real and distir;lct. Thz:‘ roots are
-b  Vb?%-4ac
Mp=s-*t—F—
¢ 2a 2a

-5 13

-5
Hence the roots are r; = S+t 5=

The general solution is linear combination of the above two solutions
-5 V13 -5 Vi3
_ (T+T)t TT)f
y=cie
Now ¢y, c; are found from initial conditions. Applying first initial condition (y(0) = 1) to
the general solution gives

+ Cze(

1:C1+C2 (1)

Taking time derivative of the general solution gives

v0=a(3+ @](—ﬁ) ol 2 @)(_g)

Applying second initial condition to this results in

O:cl[_—5+@]+cz(%5—§) (2)

2 2
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From (1), ¢; =1 -¢, and from (2)

-5 «/1_3 -5 13
=(l-c)|—=—+—|+c|=—-—
2 2 2 2
5 13 5 13 5 13
:—+—+—2——C2——C2——C2
2 2 2 2 2 2
5 V13
=3t Vi
pe2 1
273 2
_ -5++13
2413
Therefore c; =1 + 53 and the solution becomes
2V13
_(,,5-Vi3 (%5+§)f —5+\/_( )
y) =1+ e
2413 2413
_(70F) 5B [3+F) [5+r) (z-%)
=e + e
2413 2413
_ (R 5\/_ 13 (7+5) [5\/_3+13) (2-E)
=e + —

v
+
[y
(O8]
N
—_
ol
I3
w
sl
=
N ———

:21—6 26e(?5+g)t+(5\/ﬁ—13) 6(75 7 + (-5VI3 +13)ec (# @)f]
:21_6 26‘3(%5 ) +5\/_e(75 7) —13e(_75 Z) —5\/_e(75‘
21_6 136(;+g)t"'5‘/ﬁe(75 g) 5\/_3(?5_§)t+133(?5_ )t]

Here is sketch of the solution showing that y —» 0 as t — o

solution to 3.2 problem 13
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2.5.6 Section 3.1 problem 14

Find the solution to 2y” +y’' -4y = 0;y(0) = 0,5’ (0) = 1 and sketch the solution and describe
its behavior as t increases.

solution

The characteristic equation is found by substituting y = ¢” into the ODE and simplifying,
giving
2r7+r-4=0

Hence 71, = g #, where A = b? —4ac =1 - (4) (2) (-4) = 33. Since A > 0, the roots will

be real and digtinct. %Fhe roots are
-b  Vb?%-4ac

19 = — %
12 2a 2a

V33

1 .
+ = The two solutions are

_1+@)t

4 4

Hence the roots are r; =

The general solution is linear combination of the above two solutions

_1+@)t (_1_@)t
4 4 4 4
+ e

y= cle(

Now ¢y, ¢, are found from initial conditions. Applying first initial condition (y(0) = 0) to
the general solution gives
0= C1+C (1)
Taking time derivative of the general solution gives
, 1V (), (1 V8 [iF)
yt)=c _Z+T6 +cy e

Applying second initial condition to this results in

1:C1[_1+@)+C2[_1_@) 2)

4

4 4 4 4
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From (1), ¢; = —¢, and from (2)

4 4
_1 V3B 1 V3B
Ty Ty TR T T
V33
)

2 .
Therefore ¢c; = — and the solution becomes

V33

SRVET V33

Since —i + @ =1.186 and —i - % = -1.686 then the above can be written as
Y= 2 1set _ ie—l 186t
\33 \33
~1.186¢

Then we see that as t — oo the second term e — 0 and we are left with ¢118¢ which will

go to oo for large t. Hence
thm y(t) =00
Here is sketch of the solution

solution to 3.2 problem 14

120}
100}
80F

40F
20F

...........................

2.5.7 Section 3.1 problem 15

Find the solution to y” + 8y’ -9y =0,y (1) =1,y (1) = 0 and sketch the solution and describe
its behavior as t increases.

solution

The characteristic equation is found by substituting y = ¢ into the ODE and simplifying,
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giving
?+8-9=0
r-1)@r+9 =0

Hence the roots are r; =1,r, = 9. The two solutions are

The general solution is linear combination of the above two solutions
y =ciel + e

Now ¢y, ¢, are found from initial conditions. Applying first initial condition (y (1) =1) to the
general solution gives

1 = cqe! + cpe™ (1)
Taking time derivative of the general solution gives
Y () = c1ef = 9cpe™!
Applying second initial condition to this results in
0 = ¢yt = 9cpe™ (2)

1—C2€_9 -1

=e 1 —ce’!9 and from (2)

From (1), ¢; = 5
0= (e‘l - cze‘lo) el —9cye™?
=1-ce™® = 9cpe™
=1l+c, (—e‘g - 96_9)

0=1+c, (—106‘9)

Hence
1
_ 19
cp = —¢
2710
_ _ 1 1.4 401 49 .
Therefore ¢; = e — e 0 =71 - 5696 10 =1 - e 1= e 1 and the solution becomes
9
_ 2 g 9 -9t
= —elet + —¢%
Y710 10
_ zet—l + le9‘9t
10 10

Then we see that as f — oo the second term ¢°~

to oo for large t. Hence

% — 0 and we are left with ¢/~! which will go

tlim y(t) =00

Here is sketch of the solution.

86



2.5. HW) CHAPTER 2. HWS

solution to 3.2 problem 15
50[ : : :

40f

y(t)

20f

10}

\\\\\\\\\\\\\\\\\\\\\\

2.5.8 Section 3.1 problem 16

Find the solution to 4y —y = 0;y(-2) =1,y’ (-2) = -1 and sketch the solution and describe
its behavior as t increases.

solution

The characteristic equation is found by substituting y = ¢” into the ODE and simplifying,
giving
42 -1=0

1 .
Hence the roots are r; = +-. The two solutions are

1,
Yo=¢€ 2
The general solution is linear combination of the above two solutions
o,
Yy =cCe2 +ce 2
Now ¢y, ¢, are found from initial conditions. Applying first initial condition (y(-2) =1) to
the general solution gives

1=ce! +cpe 1)

Taking time derivative of the general solution gives
11 1
(t) = Zcqe2’ — Zpe 2
Y (B =5c1e2 =50

Applying second initial condition to this results in

1 e
-1 =—cqe
€1

1
1- 5C2¢ (2)
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1—626

From (1), ¢; = — = e —cy¢? and from (2)
1 1
-1= > (e—czez)e 1- 52
1 1 1
= — — =y — =Cpe
2 2% 27
1
= - —cye
;@
Hence
1 3
L S G |
=5 +e 5¢

3 _ 3
Therefore c; = e — (—e 1)62 =e-—

1 .
> se=—5¢ and the solution becomes

L1
Y= 12 +cpe 2

1 4 3 il
= ——eed' + Z¢le2!
2 2

t

t t
= —1el+§ + §3_1_§
2 2

t

1t ) 1 144 . .
Then we see that as f — oo the second term ¢ - 2 — 0 and we are left with —EeHz which will

go to —oo for large t. Hence
tlim y(t) = —o0

Here is sketch of the solution.

solution to 3.2 problem 16

o
-10¢

=201
-25¢

2.5.9 Section 3.2 problem 1

3t
Find the Wronskian of the given pair of functions e2e 2

solution
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-3
We are given y; (t) = e2,y, () = e2 '

, hence by definition, the Wronskian is

yi () yo(b)

W: / 4
y1 () yy(t)
_3t

o2 2 -2
2e 3¢ 2
-3t t

= —p2 —Dp2
> e e
-7t

= —¢2
2

2.5.10 Section 3.2 problem 2

Find the Wronskian of the given pair of functions cost,sint

solution

We are given y, (t) = cost,y, (t) = sint, hence by definition, the Wronskian is

yi () v (b)

W = 4 /
y1 () vy (b)
| cost sin t
—sint cost

= cos? t + sin® ¢t
=1

2.511 Section 3.2 problem 3

Find the Wronskian of the given pair of functions e, te=

solution

We are given y; () = e7%,y, (t) = te™?, hence by definition, the Wronskian is

W =

yi(t) ya(b)
yi () vy ()

e—2t

= _26—2t

—4t

te—Zt

e—2t _ 2te—2t

(e‘Zt) (e‘Zt - 2te‘2t) + e 2tpe2t
e

—4 _Dpem4t 4 DfeH
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2.5.12 Section 3.2 problem 4
Find the Wronskian of the given pair of functions x, xe*
solution

We are given y; (x) = x, 1, (x) = xe*, hence by definition, the Wronskian is

y1 (x) v (x)
y1() vy (x)

W=

X xe*

1 &+ xe*
= (x) (" + xe*) — xe*
= xe* + x%e* — xe*

2

= x%e*

2.5.13 Section 3.2 problem 5
Find the Wronskian of the given pair of functions e’ sint, e cost

solution

We are given y; (t) = e’ sint,y, (t) = ¢’ cost, hence by definition, the Wronskian is

yi () ya (b)
yi(t) ()

el sint el cost

W =

elsint +efcost efcost—elsint

(et sin t) (et cost — el sin t) —efcost (et sint + e cos t)
= e sintcost — 2 sin® t — e cos tsin t — e cos? t

= —e2gin®t — ¢2 cos? ¢t
= —2¢% (sin2 t + cos? t)

= —2¢?

2.5.14 Section 3.2 problem 6

Find the Wronskian of the given pair of functions cos? 6,1 + cos 26

solution
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We are given y; (6) = cos? 0,1, (0) =1 + cos 20, hence by definition, the Wronskian is

y1(0) y2(6)

y1(0) y2(0)
cos? 0 1+ cos20

—2cosfOsinf -2sin20

= -2c0s? 0sin 20 — (1 + cos 20) (-2 cos O sin 6)

= —2co0s? 0sin 20 — (=2 cos O sin O — 2 cos O sin O cos 20)

= —2cos? 0sin 20 + 2 cos O sin O + 2 cos O'sin O cos 20

W =

Using cos26 = 2cos? 6 —1 And sin20 = 2sin 6 cos 6 the above becomes
W = —2cos? 9 (2sin 0 cos 0) + 2 cos O sin O +2cos€sin9(200829—1)

= —4cos® Osin 0 + 2 cos Osin 6 + 4 cos® O'sin O — 2 cos Osin O

= —4cos® Osin 6 + 4 cos® Osin O

=0
We could also see that W = 0 more directly, by noticing that y; = cos? 0 = 1-sin® 6 and since

.2 1 1

sin® 6 = 5 — - cos 20 then

y1 = cos? 0
1 1
=1—(§—§COSZQ)
:1+1COSZQ
2 2

1
=5 (1 + cos26)

Therefore, y; = %yz. Hence y; is just a scaled version of y; and so these are two solutions
are not linearly independent functions, (parallel to each others in vector space view) and
so we expect that the Wronskian to be zero.
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26 HW6

2.6.1 Section 3.4 problem 1

Find the general solution of ¥’ -2y’ +y =0
Solution:

The characteristic equation is found by substituting y = ¢ into the ODE and simplifying,
giving

?-2r+1=0
r-D(@r-1)=0
Hence r =1 double root. Therefore the two solutions are
yp = ¢
yp = te!

And the general solution is linear combination of the above solutions

y = ciel + cptet

2.6.2 Section 3.4 problem 2

Find the general solution of 9y + 6y’ +y =0
Solution:

The characteristic equation is found by substituting y = ¢ into the ODE and simplifying,
giving

92 +6r+1=0
b+ Vb?-4ac -6+ +V36-36 1
r = = _-—
2a 18 3

Hence r = —% double root. Therefore the two solutions are

—
y1=e3

iy
Yo =tes

And the general solution is linear combination of the above solutions
-1 -1

=t =t
y=rcie3 +cpted

2.6.3 Section 3.4 problem 3
Find the general solution of 4y -4y’ -3y =0

Solution:
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The characteristic equation is found by substituting y = ¢ into the ODE and simplifying,
giving

42 —4r-3=0
_ b+ Vb —4ac 4+V16+48 4+8 1x2 1
- 2a - 8 -8 2 2

3 1 .
Hence r; = > T2 =5 Therefore the two solutions are

r

ot

yl =e2
1
Y2 = e?!
And the general solution is linear combination of the above solutions
3 1

3 .y
Yy =ce2 +cpe 2

2.6.4 Section 3.4 problem 4
Find the general solution of 4y” + 12y’ +9y =0

Solution:

The characteristic equation is found by substituting y = ¢ into the ODE and simplifying,
giving
4% +12r+9=0

b= Vb2 - 4ac 12+ +v144-144 -3

"= 20 8 -

Hence r = _73 double root. Therefore the two solutions are

-3
V1= e2!
2
yz =te2
And the general solution is linear combination of the above solutions

-3 -3

=t —t
y=rcie2 +cpte?

2.6.5 Section 3.4 problem 5
Find the general solution of vy -2y’ +10y = 0

Solution:

The characteristic equation is found by substituting y = ¢ into the ODE and simplifying,
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giving
2-2r+10=0

b+ Vb?2—-4ac 2+V4-40 2++V-36 2+6i 143
— = = = = =+ 01
2a 2 2 2

Hence r; =1+ 3i,7, =1 - 3i. Therefore the two solutions are

7

Yy = o130t = ptpidt
Yy = etel®

And the general solution is linear combination of the above solutions, the complex exponen-
tial can be converted to trig functions cos, sin using the standard Euler identities, resulting
in

y = e (c; cos 3t + ¢, sin 3t)

2.6.6 Section 3.4 problem 6
Find the general solution of y" — 6y’ + 9y =0

Solution:

The characteristic equation is found by substituting y = ¢ into the ODE and simplifying,
giving

rP—6r+9=0
(r-3°=0
Hence r = 3. Double root. Therefore the two solutions are
yp=¢
Y, = te*

And the general solution is linear combination of the above solutions

y = c1e® + cpte®t

2.6.7 Section 3.4 problem 7
Find the general solution of 4y” + 17y’ +4y =0

Solution:

The characteristic equation is found by substituting y = ¢” into the ODE and simplifying,
giving
42 +17r+4 =0

_ -bxVP-dac  -17++289-64 -17+V225 -17+15

r= =
2a 8 8 8
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-17-15 -17+15 1 .
Hence r| = s = hn=—]—"=-1 Therefore the two solutions are
_ At
h=e
1,
yz =e 4

And the general solution is linear combination of the above solutions

1
_ 1
y=cre +cpet

2.6.8 Section 3.4 problem 8
Find the general solution of 16y” + 24y’ + 9y =0
Solution:
The characteristic equation is found by substituting y = ¢” into the ODE and simplifying,
giving
16r2 +24r+9=0

b VPP—dac  -24++576-4(16)(9) 24 3

2a 32 32 4

Hence r = —Z. Double root. Therefore the two solutions are

r

3,
y1=e 4

3,
yz =tfe 4

And the general solution is linear combination of the above solutions

_3 _3
y=cie 4 +cpte 4

2.6.9 Section 3.4 problem 9
Find the general solution of 25y — 20y’ + 4y =0

Solution:

The characteristic equation is found by substituting y = ¢ into the ODE and simplifying,
giving
2517 -20r+4=0

_ —bxVP?-dac  20++/A00-4(25) (@) 20 2

"= 24 50 50 5

Hence r = ; Double root. Therefore the two solutions are

2
y1 =65

2
Yo = tesd
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And the general solution is linear combination of the above solutions

2t 2t
Y =c1e5 +cptes

2.6.10 Section 3.4 problem 10
Find the general solution of 2y + 2y’ +y =0

Solution:

The characteristic equation is found by substituting y = ¢” into the ODE and simplifying,
giving

22 +2r+1=0
b+ Vb2 -4ac 2++4-42)1) -2+xV-4 -2+2i —1+i
Y = = = = = — 4+ —
2a 4 4 4 2 2
Hence r; = _?1 + é,rz = _?1 - é Therefore the two solutions are
1 -1, i
= e( 2 Z)t = e?teit
a4 -1, i
Yo = e( 2 +2)t _ o7 teat

And the general solution is linear combination of the above solutions, the complex exponen-
tial can be converted to trig functions cos, sin using the standard Euler identities, resulting
in
y= e%lt (cl €oS E + ¢y sin E)
2 2

2.6.11 Section 3.5 problem 1

Find the general solution of i’ — 2y’ — 3y = 3¢*
Solution:

The first step is to solve the homogenous ODE and find y;, then find a particular solution
Y, to the inhomogeneous ODE, then add both solutions y; +y, in order to find the complete
solution.

Finding v,
We need to solve homogenous ODE
y' -2y -3y=0
The characteristic equation is found by substituting y = ¢” into the above ODE and simpli-
fying, giving
?-2r-3=0
r+1)(r-3)=0
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Hence r; = —1,7, = 3. Therefore the two solution are
yp=e
y=¢
And the homogeneous solution is linear combination of the above solutions

Yy, = cre”t + cpe’t

Finding y,

Now we need to find one particular solution to
y// _ Zy’ _ 3y — 3€2t
We guess y, = Ae*. Hence

Y, = 2Ae*
vy = 4Ae*
Substituting this into the original ODE in order to solve for A gives
4Ac% -2 (2A6%) - 3 (Ae?) = 3¢
-3A¢?" = 3¢

Hence A = -1 and therefore

y, =~

Therefore the general solution is

Y=YntYp

= cre”t + 03t — e

2.6.12 Section 3.5 problem 2

Find the general solution of y’* + 2y’ + 5y = 3sin 2t
Solution:

The first step is to solve the homogenous ODE and find y;, then find a particular solution
Y, to the inhomogeneous ODE, then add both solutions y; +y, in order to find the complete
solution.

Finding v,
We need to solve homogenous ODE
v’ ' +2y +5y=0

The characteristic equation is found by substituting y = ¢ into the above ODE and simpli-
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fying, giving
P +2r+5=0

B —b + Vb? - 4ac B —2+44-20 _2+4-16 -2+4i

2a 2 2 2
From before, we know the solution is of the form

r

Y, = €7t (c1 cos 2t + sin 2t)

Where

y1 = et cos2t

Yo = e 'sin 2t
Finding y,
Now we need to find one particular solution to

vy’ +2y" +5y =3sin2t

We guess y, = Acos?2t + Bsin 2t hence

Yp = —2Asin 2t + 2B cos 2t
Yy = —4Acos2t —4Bsin 2t
Substituting these back into the original ODE in order to solve for A, B gives
Yy + 2y, + 5y, = 3sin2t
—4A cos2t —4Bsin 2t + 2 (-2A sin 2t + 2B cos 2t) + 5 (A cos 2t + Bsin 2f) = 3sin 2t
—4A cos2t —4Bsin 2t — 4Asin 2t + 4B cos 2t + 5A cos 2t + 5B sin 2t = 3sin 2t
(A+4B)cos2t+ (B—4A)sin2t = 3sin 2t
Hence
A+4B=0
B-4A=3
From first equation, A = —4B, and the second equation becomes B-4(-4B) = 3 or B+16B =3

3 -12
or B= o hence A = - therefore

12 2t Ssint
= —— COS — S1n
=77 17

Therefore the general solution is
Y=YntYp

t . 12 3 .
=¢7" (cq cos2t + sin2t) — — cos 2t + — sin 2t
17 17

2.6.13 Section 3.5 problem 3

Find the general solution of y”’ -y’ — 2y = -2t + 4#?

Solution:
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The first step is to solve the homogenous ODE and find y;,, then find a particular solution
Y, to the inhomogeneous ODE, then add both solutions y;, +y, in order to find the complete
solution.

Finding y;
We need to solve homogenous ODE

y' -y -2=0
The characteristic equation is found by substituting y = ¢” into the above ODE and simpli-
fying, giving

?—r-2=0

(r+1)(r-2)=0
Hence r; = —1,7, = 2 and therefore

Y, = cret + cpe?t
Finding y,
Now we need to find one particular solution to

Y —y -2y = -2t +4f?

We guess y, = Ay + Ait + A,t2. Therefore

y;,j = Al + 2A2t
y;,/ = 2A2

Substituting these back into the original ODE gives
24, — (Ay +24At) = 2 (Ag + Ast + Apt?) = =2t + 42
t0(2A, — A} —2Ap) + t(=2A, — 2A;) + 12 (-2A,) = -2t + 412
Hence

2A2—A1—2A0:0

—2A2 - 2A1 = —2
—2A2 = 4
From the last equation, A, = -2, and from the second equation A; = _2+_2(_2) = 3 and from
the first equation 2(-2) -3 -2A; = 0 hence Ay = % = —g, Therefore
yP = AO + Alt + Aztz
— +3t - 212
)
Therefore the general solution is
Y=YntYp

7
= cie™t + cpe?t - 5+ 3t - 212
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2.6.14 Section 3.5 problem 4

Find the general solution of y”’ + y’ — 6y = 12¢% + 12¢72*
Solution:

The first step is to solve the homogenous ODE and find y;,, then find a particular solution
Y, to the inhomogeneous ODE, then add both solutions y;, +y, in order to find the complete
solution.

Finding v
We need to solve homogenous ODE
y'+y -6y=0
The characteristic equation is found by substituting y = ¢” into the above ODE and simpli-
fying, giving
P+r-6=0
(r+3)(r-2)=0
Hence r; = -3,r, = 2 and therefore
Y = et + cpe?t
Finding y,
Now we need to find one particular solution to
Yy’ +y -6y =12¢3 + 127
We guess y, = Ae* + Be™?. Therefore

y, = 3Ae* —2Be™
vy =9Ae" + 4Be7
Substituting these back into the original ODE gives
vy +y, — 6y, =126 +12¢7%
9Ae* + 4Be™? + 3Ae™ — 2Be ' — 6 (A + Be?) = 126 + 12¢72
e (9A +3A-6A) + e (4B — 2B — 6B) = 123 + 12¢72
6Ac — 4Be =126 + 1207

Comparing coefficients gives

Hence
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And the final solution is

Y=Ynt+tYp
= cre73 + cpe?t + 203 — 3072

2.6.15 Section 3.5 problem 5

Find the general solution of y” — 2y’ — 3y = -3te™
Solution:

The first step is to solve the homogenous ODE and find y;, then find a particular solution
Yp to the inhomogeneous ODE, then add both solutions y;, +y, in order to find the complete
solution.

Finding v,
We need to solve homogenous ODE
y' =2y -3y=0
The characteristic equation is found by substituting y = ¢”* into the above ODE and simpli-
fying, giving
r?-2r-3=0
(r=3)(r+1)=0
Hence r; = 3,7, = -1 and therefore
Y, = e + et
Finding v,
Now we need to find one particular solution to
y” =2y -3y = -3te”!
Guess for t is Ag + Bot and the guess for e~ is Cte™ (where we multiplied by f since ™' shows
up in the homogenous solution. Therefore the product is
Y, = (Ag + Byt) Cte™*
= AoCte™" + CByt?e!
Let AjC = A,CBj = B, and the above becomes
y, = Ate™ + Bt?e
=(A+Bt)te!

3

o hence

Substituting these back into the ODE and solving for A, B gives B = g and A =
Yp = (At + Btz) et
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And the final solution is
Y=YntYp
3 3
— 3t —t t —t2 —t
c1et + cpet + (_16 *3 )e

2.6.16 Section 3.5 problem 6

Find the general solution of vy + 2y’ = 3 + 4sin 2t
Solution:

The first step is to solve the homogenous ODE and find y;, then find a particular solution
Y, to the inhomogeneous ODE, then add both solutions y;, +y, in order to find the complete
solution.

Finding v,
We need to solve homogenous ODE
y'+2y' =0
The characteristic equation is found by substituting y = ¢”* into the above ODE and simpli-
fying, giving
?+2r=0
r(r+2)=0
Hence r; = 0,7, = -2 and therefore
Y =1+ e
Finding y,
Now we need to find one particular solution to
Yy’ +2y =3+4sin2t
Guess that y, = At + Bcos2t + Csin 2t, hence

Yp = A—2Bsin2t +2Ccos2t
y, = —4Bcos2t —4Csin 2t
Substituting back into
Yy +2y, =3 +4sin2t
—4B cos2t —4Csin2t + 2 (A - 2Bsin 2t + 2C cos 2t) = 3 + 4 sin 2t
—4Bcos2t —4Csin2t + 2A — 4B sin 2t + 4C cos 2t = 3 + 4 sin 2¢
(-4B + 4C) cos2t +2A + (—4C — 4B) sin 2t = 3 + 4 sin 2t
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Hence
2A =3
1=-C-B
0=-B+C

From first equation, A = g, From third equation, B = C and from the second equation 1 = -2B

or B= _71, hence C = _71, and the particular solution is

3t Leos2t— Leinot
= — — COS — —S1n
Y=3'775 2

Hence the complete solution is

3 1 1

2t :
=C1 + et + =t— =—cos2t— =—sin2t
y=c+t0o ' 75 2111
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2.7 HW7

2.7.1 Section 3.6 problem 1

Use method of variations of parameters to find particular solution and check your solution
using method of undetermined coefficients. ' — 5y’ + 6y = 2¢!

solution
The general solution is

Y=Yn+Y
Where y;, is the solution to the homogenous ode -5y’ +6y = 0 and y, is a particular solution
which is found using variations of parameters and also using undetermined coefficients to
compare with.

Finding v,

Since ODE has constant coefficients, then the characteristic equation is used. It is given
by > =57+ 6 = 0 or (r—3) (r - 2) = 0. Therefore the roots are r; = 3,r, = 2. Hence the two
fundamental solutions are

yp=¢e'

Yya=¢

And the homogenous solution is therefore given by

2t

Yn =1+ 22
= 1% + ¢ e*

Finding y, using variation of parameters

First step is to find Wronskian W given by

3t 2t

e
W(t) = Y s | =267 =3 ==
vy sl |3t 2e%

Letting ¢ (t) = 2¢' therefore the particular solution is

Yp () = ug () y1 () + up () yo (1)
Where
—2t 1]

¢ ¢ 2t2t 3t
u1(t)=—fyzLM;g()dt:—f%dtsz%dtsze‘”dtzZ[e_—z = —¢2

He(t) e3¢t et B et )
MZ(t):f%dt:f?dt:_zfﬁdt:_zfe tdt = -2 _—1 =2¢t

And
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Hence the particular solution becomes
Yp = tiy1 + U2l
— (_e—Zt) o3t 4 Dpto2t
= —el +2¢
= et
Therefore the general solution is
Y=Untyy
=163 + cye? + ¢t

Finding y, using undetermined coefficients

From the form of g (t) in the problem, particular solution is assumed to be

y, = Ael
Hence

y, = Ael

y = Aef

Plugging back into the original ODE gives
Yy — 5y, + 6y, = 2¢'
Aet —5A¢! + 6Ae = 2¢!
Dividing by ¢’ # 0 gives

A-B5A+6A=2
2A =2
A=1
Therefore
Yp = e

Which agrees with variation of parameters particular solution found earlier. Therefore the
same general solution is obtained as expected. QED.

2.7.2 Section 3.6 problem 2

Use method of variations of parameters to find particular solution and check your solution
using method of undetermined coefficients. y”’ —y’ — 2y = 2¢”*

solution
The general solution is

Y=YntYp
Where yj, is the solution to the homogenous ode y”" -y’ -2y = 0 and y, is a particular solution
which is found using variations of parameters and also using undetermined coefficients to
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compare with.
Finding v,

Since ODE has constant coefficients, then the characteristic equation is used. It is given
by > —r—-2=0or (r+1)(r-2) = 0. Therefore the roots are r; = -1,r, = 2. Hence the two
fundamental solutions are
n=e
yp=¢
And the homogenous solution is therefore given by
Yn = C1Y1 T 22
= cre”t +cpe?

Finding y, using variation of parameters

First step is to find Wronskian W given by
et ot

—et 202

Y1 Y2

/ /

Y1 V2

= 2¢ + ¢l = 3¢

W () =

Letting ¢ (t) = 2¢™! therefore the particular solution is

Yp (8) = ug (D y1 (8) + uz () y2 ()

Where
_ (Whg®, et __%fe_t _ 2
1y () = f—w dt = it == [ Sar=—Zt
And
y1(Hg () e et 2 fe‘Zt 2 f 3 2 [e3t 2
H= | m—=dt= | ——dt=—=- | —dt = - dt=="—[=-Z2
2 () f W 3¢f 3) @%73)°¢ Y

Hence the particular solution becomes
Yp = W1 + Ul

— —%t e—t_ %e—3t62t
9

. . 2 . .
We notice something here. The extra term —§e‘t above is constant times one of the funda-

mental solutions (one of the solutions to the homogenous equation), which is y; in this
case found earlier. But adding a multiple of a fundamental solution to a particular solution

gives another particular solution. So the term ~2¢7t will be merged with the term from the
homogenous solution. Therefore the general solution is

Y=Ynt+tYp

2 2

R 2t —t
=cie" + et ——tet ——e
1 2 3 9

—t
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We can now combine ge‘t that shows up from the particular solution with the c;e™ term
from the homogenous solution, since c; is arbitrary constant, which simplifies the above to

Y=YntYp
~t 22,
=" + et = gte

Finding y, using undetermined coefficients

From the form of ¢(f) in the problem, and since ¢ is already one of the fundamental
solutions, then particular solution is assumed to be

y, = Ate”!
Hence
yp=A (e‘t - te‘t)
y =A (—e‘t —et+ te‘t)
=A (—Ze‘t + te‘t)

Plugging back into the original ODE gives

vy v, — 2y, =2

A (—Ze‘t + te‘t) -A (e‘t - te‘t) —2Ate™" = 2¢7
Dividing by ¢! # 0 gives
A2+ -AQ-1H)-2At=2
t(A+ A-2A)-2A-A=2
-3A=2
A=—
3
Therefore
_21‘ .
= —te
Which agrees with variation of parameters particular solution found earlier. Therefore the
same general solution is obtained as expected. QED.

2.7.3 Section 3.6 problem 3

Use method of variations of parameters to find particular solution and check your solution
using method of undetermined coefficients. y” + 2y’ +y = 3¢”*

solution
The general solution is

Y=Yn+tYp
Where yj, is the solution to the homogenous ode y” +2y’ +y = 0 and y,, is a particular solution
which is found using variations of parameters and also using undetermined coefficients to
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compare with.
Finding v,

Since ODE has constant coefficients, then the characteristic equation is used. It is given by
r2+2r+1=0or (r +1)(r +1) = 0, Therefore the roots are duplicate r; = —1. Hence the two
fundamental solutions are

yp=¢"'

yp = te”!
And the homogenous solution is therefore given by

Yn =11 T C2Y2
=cie”t + cpte

Finding y, using variation of parameters

First step is to find Wronskian W given by

—t —t

te

Y1 Y2

/

Y1 Y2

= (e) (et —te) + (te) ()
e 2t _ o2t 4 o2t
2t

W () =

—et et —tet

e

Letting ¢ (t) = 3¢™! therefore the particular solution is

Yp (8) = ug () y1 () + uz (H) y2 ()
Where

_ (rbgw®,  tet(Ee) 3
ul(t)—_det——det——3ftdt——§t2
And

—t (2t
uz(t):fylLv\f(t)dt:fﬂdt:SIdt:Bt

2t

Hence the particular solution becomes

Yp = Y1 + U2ly2
3
_ 2\ —t
= (—Et )e + 3t (te™!)
3
= ——t2c7t + 3t%e7!

3
:_tZ —t
5 e
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Therefore the general solution is
Y=YntYp
~t 30
=cie" +cote” + Et e

Finding y, using undetermined coeflicients

From the form of g (f) = 3¢ in the problem, we want to try ™' but since ¢ is already one of
the fundamental solutions, we then look at te™* but this is also one fundamental solutions,
then we look for t?¢f. Hence

y, = AtPe”
Hence
y,=A (Zte‘t - tze‘t)
yy = A (Ze‘t —2te™t — (Zte‘t - tze‘t))
=A (Ze‘t —2te™t —2te”t + tze‘t)

=A (Ze‘t —4te! + tze‘t)
Plugging back into the original ODE gives
vy +2y, +y, =3¢
A(2e7 - ate™ + 2e7t) + 2A (2t - 2e7t) + A2et = 3¢
Dividing by ¢! # 0 gives
A(2-4t+12)+2A(2t-2) + AP =3
t(-4A+4A)+ 1?2 (A-2A+A)+2A =3
3
A=3
Therefore

3,
Yp = Ete
Which agrees with variation of parameters particular solution found earlier. Therefore the
same general solution is obtained as expected. QED.

2.7.4 Section 3.6 problem 4

Use method of variations of parameters to find particular solution and check your solution

using method of undetermined coefficients. 4y — 4y’ + y = 16eé
solution
The general solution is

Y=Y+l

Where yj, is the solution to the homogenous ode 4y -4y’ +y = 0 and y, is a particular solution
which is found using variations of parameters and also using undetermined coefficients to
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compare with.
Finding v,

The first step is to put the ODE in standard form, with the coefficient of y”” being one. Hence
it becomes

1 L
v -y + V= 4e2
Since ODE has constant coefficients, then the characteristic equation is used. It is given by

2 -r+ % =0 or (r - %) (r - %) = 0, Therefore the roots are duplicate r = % Hence the two

fundamental solutions are

o
yZ = te2

And the homogenous solution is therefore given by

Yn =11 T 22
it 1t
= 12" + cote2

Finding y, using variation of parameters

First step is to find Wronskian W given by

1 1

=t =t

ez te2

1 1 1

toot 1, ot
e2 +51,‘e2

Y1 Yo _
vy %ei

1 1 1 1 N1 12
= (eZt) (eZt + EtEZt) - (teZt) (Eezt)

1 1
=el + —te' — —te!
e 26 26

W (t) =

:et

t
Letting g (f) = 4e2 therefore the particular solution is

Yp (8) = ug () y1 (£) + 1 () y2 (£)
Where

1
te2

ul(t):—fyzLWg(t)dt:—fﬁdt:—4ftdt:—2t2
And

uz(t):f&ﬁdt:f@dt:élfdtzélt

e
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Hence the particular solution becomes
Yp = U1l + U2l
ot ot
= (-22) ez’ + 4t (teZ )
1, 1
= —2t%2" + 4t?e2
1
= 2123
Therefore the general solution is
Y=YntYp
it it 1t
=102 +cyte? + 2t%e?

Finding y, using undetermined coefficients

t t t
From the form of g () = 4e2 in the problem, we want to try e2 but since e2 is already one of

t
the fundamental solutions, we then look at tez but this is also one fundamental solutions,
t

then we look for #?¢2. Hence
Yy = Afez
Hence
o1t
v, = A2te? + Etzei)

i i LA
yy = A(2% +te? +te? + thez)

t t

b t1 0t
= A(2e2 + 2tez + theZ)

Plugging back into the original ODE gives
1 !
Yo —Yp + gy = 42
£ L R 2 L R 1 £ £
A (262 + 2te? + thez) - A(Ztez + Etzez) + ZAtzeZ = 4e2
t
Dividing by e2 # 0 gives
Al2+2t+ 1t2 A2t + 1t2 + 1At2 =4
4 2 477
t(RA-2A) + 1A— 1A+ 1A +2A =4
4 27 4 B

A=2
Therefore
yp = 220
Which agrees with variation of parameters particular solution found earlier. Therefore the
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same general solution is obtained as expected. QED.

2.7.5 Section 3.6 problem 5

. : /7 - E
Find the general solution of " +y =tant for 0 <t < >
solution
The general solution is

Y=Yn+tYp
Where yj, is the solution to the homogenous ode y” +y = 0 and y, is a particular solution
which is found using variations of parameters.

Finding v,
Since ODE has constant coefficients, then the characteristic equation is used. It is given by
r2+1 =0 or r = +i. Hence the two fundamental solutions are
Y1 = cost
Yo = sint
And the homogenous solution is therefore given by

Yn = C1Y1 T QY2
=cycost+cysint

Finding y, using variation of parameters

First step is to find Wronskian W given by

cost sint

Y1 Yo

Vi Y2

Let g (t) = tant, therefore the particular solution is

Yp (£) = ug () y1 (£) + 1z () y2 (£)

= cos?t +sin’t =1

W) =
® —sint cost

Where
0 Y2 (t)g(t)dt fsinttani.‘dtL f . tsmtdt fsttdt
uy(t)=- | = dt=—- | ————dt =— | sint——dt = -
! W (t) 1 cost cost
1—cos? ¢ 2r—1 1
=—fﬂdt=f&dt:fcost——dt
cost cost cost
1
:fcostdt—f—dt
cost
:sint—fsectdt
= sint — In (sec(t) + tan(t))
And

_yig®) _fcosttant _f sin ¢ _f, _
up (t) = —W(t) dt = —1 dt = cost—COStdt— sint dt = —cost
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Hence the particular solution becomes
Yp = Y1 + U2l2
= (sint — In (sec(t) + tan(t))) cost + (- cos t) sin
= —cos (t) In (sec(t) + tan(t))
Therefore the general solution is
Y=Untyy
=y cost + cpsint — cos (t) In (sec(t) + tan(t))

2.7.6 Section 3.6 problem 6

Find the general solution of i’ + 9y = 9sec? 3t for 0 < t < %
solution
The general solution is

Y=Ynt+Yp
Where y, is the solution to the homogenous ode y” + 9y = 0 and y, is a particular solution
which is found using variations of parameters.

Finding v,
Since ODE has constant coefficients, then the characteristic equation is used. It is given by
r2+9 =0 or r = +3i. Hence the two fundamental solutions are

Y1 = cos 3t

Yo = sin 3t
And the homogenous solution is therefore given by

Yn =1+ Y2
= ¢1 €08 3t + ¢, sin 3t

Finding y, using variation of parameters

First step is to find Wronskian W given by

W(t) = i Yof _ [ cos3t - sindt =3cos?t+3sin’t=3
vi yy| |-3sin3t 3cos3t
Let g(t) = ﬁ, therefore the particular solution is
Yp (8) = uy () y1 (£) + 1z () y2 (£)
Where

A (t)g(t) 9sin (3t) f sin (3t)
t = - T dt=-3 ] —=
u (t) = f W (t) 3 cos? (3t) cos? (3t)
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Let u = cos (3t), hence d— = -3sin3t —» dt = ey and the above integral becomes
sin (3t) du 1 —1 -1
t)=- = =—
i (B =-3 f —-3sin 3t f u? 2= u  cos3t sec(3t)
And
y1 () g () 9 cos 3t f 1 f
t) = t= | ————dt = t= t)dt=1 t t

uy (f) 0 ——d T oo (3t)d 3 o5 (3D dt =3 | sec(3t) dt = In (sec(3t) + tan(3t))

Hence the particular solution becomes
Yp = trly1 + U2l
= —sec (3t) cos 3t + In (sec(3t) + tan(3t)) sin 3t
= -1 + In (sec(t) + tan(t)) sin 3¢
Therefore the general solution is
Y=Yn+tYp
= ¢1 oS8 3t + ¢ sin 3t — 1 + sin 3t In (sec(t) + tan(t))

2.7.7 Section 3.6 problem 7

Find the general solution of y”’ + 4y’ + 4y = t72¢7% for t > 0
solution
The general solution is

Y=YntYp
Where y;, is the solution to the homogenous ode y” + 4y’ + 4y = 0 and y, is a particular
solution which is found using variations of parameters.

Finding v

Since ODE has constant coefficients, then the characteristic equation is used. It is given by
r>+4r+4 =0 or (r+2)(r+2) = 0. Hence double root r = -2 and the fundamental solutions
are

yp=e?
yp = te?
And the homogenous solution is therefore given by
Yn =1 + Y2
=167 + cyte™?

Finding y, using variation of parameters
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First step is to find Wronskian W given by

Yy y2 e te?! o2t —2t —2t (1,2t
W(t) = = ) ) ( F—2te ) + 2e (te )
vy oy |F2e7 e - 2te
=e~4 —2te™4 4 D4
— it

Let g (t) = t72¢72, therefore the particular solution is
Yp () = ug () y1 () + up () y2 (1)
Where

2 2
1y () = — &%%Qm:—f”tt _fﬂw “In

And

—2t4—2
up (f) = @%%QM=f %e Lt = fﬂﬂ

Hence the particular solution becomes
Yp = U1l1 T U2lY2
=—In|t|e? - %te‘zt
=—?In|t - e?
Therefore the general solution is

Y=YntYp
=cre? +opte? —e 2 In|t - e

We can combine ¢ % that shows up from the particular solution with the c;e™? term from
the homogenous solution, since c; is arbitrary constant, which simplifies the above to

y=cie? +cyte? —e 2 Int|

2.7.8 Section 3.6 problem 8

. . 7 _ 1 E
Find the general solution of y” +4y =3—— for 0 <t < 3
solution

The general solution is

Y=YntYp
Where y;, is the solution to the homogenous ode y” + 4y = 0 and y, is a particular solution
which is found using variations of parameters.

Finding v,

Since ODE has constant coefficients, then the characteristic equation is used. It is given by
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2 +4 =0 or r = +2i. The fundamental solutions are
Y1 = cos2t
Yo = sin2t
And the homogenous solution is therefore given by
Yn =1+ Y2
= 1 COS 2t + ¢y sin 2t

Finding y, using variation of parameters

First step is to find Wronskian W given by

2t in 2t
we = =] ST 0 cos22t + 25in2 2 = 2
vy Yo |-2sin2t 2cos2t
Let g(t) = 2t’ therefore the particular solution is
Yp (£) = uy () y1 (£) + 1z () yo (£)
Where
__ [®8®), __ (sin@)3 __§f _3
u (t) = W 77 ) Zsmar i dat =
And
iy (1) = f (g (t) cos (2t) 3 f cos (Zt)
w2\t = W (#) st Y7 2) s (2t)
Let u = sin2t — du = 2 cos 2tdt and the above integral becomes

3 rcos(2t) du 3
uy (t) > f T oos 2t f —du = = Inu| = - In|sin 2¢|

Hence the particular solution becomes
Yp = Y1 + Uly2
_ 3 %+31|'%|‘m
= —tcos 2 [nlsin2¢|sin
Therefore the general solution is
Y=YntYp

_ 3 3 . .
= ¢y cos 2t + ¢, sin 2t — Et cos 2t + 2 5in (2t) In |sin 2¢|
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2.8 Quizz

1. Let y1,¥2, ...,y be differentiable (real-valued) solutions of the following
system of differential equations

diyr

E = a11y1 + -+ a1nYn,
dys

s = a21Y1 + -+ a2nYn,
dy

d_tn Ap1Y1 + -+ QunlYn,

for some constant a;; > 0. Suppose that

ast — 0o,Vi = 1,--- ,n. Are the functions y1, ys, ..., y, necessarily linearly
dependent?

What we know (given): We have state space representation of a system in the form Y’ = AY,

where y1,1,, ---,y, are the states, and we are told the system goes to stable equilibrium Y = 0,
as t — oo when starting from any initial point in the n dimensions state space. The original
system is described by a single n'" degree one differential equation, and is broken down to
n first order differential equation. These are y;,15,---,y,,. The system is coupled, since each
y; (t) depends on all other y; (t).

Solution The only way I can see to answer this question in concrete way, is to resort to using
the Wronskian. Writing down the Wronskian W (f) of the functions y; (t),v, (t), -+, y, (t) we
obtain

Y1 Y2 vt Yn

Vi Y2 o Yn

W =\vi v o w
ygn—l) ygl—l) . y1(1n—1)
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In the limit, as t — oo, since we are told y; — 0, then the above becomes

0 0 0
vy (1) yé ® @
lim W () = yi’ O O y;' (t)
(n 1) ) y(n 1) &) - (n 1) (t)

Since, at least, one row becomes all zero, then the determinant above is zero (from linear
algebra). Therefore

lim W () = 0

We could conclude now that yq,1,, - ,y, are therefore linearly dependent functions since
we found that W (¢) = 0 at some point. However, the Wronskian being zero at some point
does not necessarily imply that the functions are linearly dependent. So the Wronskian test
is not conclusive when it gives zero when evaluated at one point, and we need another test
to do. The following are the important facts about using the Wronskian

1. If W(t) # 0 at any point ¢ (in the interval of interest) = vyq,y,,---,y, are linearly
independent (in that interval).

2. If y1,y, -+, y, are analytic (differentiable) functions and linearly dependent (in the
interval of interest) = W (t) = 0 at every point ¢ in the interval.

3. If W(t) =0 at every point ¢ (in the interval of interest) and y; (£),y, (t), -, y, (r) are all

analytic functions = v, (t),y, (t), -+, y,, () are linearly dependent in that interval.

4. If W(t) = 0 at one point ¢ (or at countable number of points) in the interval of interest
= test is not conclusive.

The above are results from Linear algebra. We see from the above, that W(t) =0 at t = o
does not imply that the functions are necessarily linearly dependent. In this case, we would
use a different test if we are given the functions, by writing

Ciy1+CYp + -+ ¢y, =0

And then we would try to find constants cy,c;, -, c,, not all zero, which would satisfy the
above. If we can find such constants, only then we can conclude that yy,y,, -+, y, are linearly
dependent since If the functions are linearly independent, then ¢; = 0 will be the only
possible solution.

In conclusion The functions y; (t),y, (t), -+, y, (t) are not necessarily linearly dependent,
even though W (t) = 0 in the limit as t — oco.
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2.9 Example problem from lecture Nov 30, 2016

This is complete solution of class example (example 2). Math 319, lecture Nov. 30. 2016.

Solve the differential equation
2y" (B) +y (£) + 2y (8) = g (1)
y(©0)=0
y' (0)=0

1 5<t<20
g@z{

Where

0  otherwise
Using Laplace transform method.
Solution

The first step is to find the Laplace transform of the forcing function g (¢). The function g (¢)
is

g(t

1 [ |

| |

| |

| |

| |

5 20
. . . ) 0 t<c
We now write g (f) in terms of the unit step function u, (t) defined as u, = { ) . as

>c

follows
g (£) = us () — 1z (£) 1)
Now we use the property that
Llu ) f(t-o)) = e 2{f )}
To obtain the Laplace transform of g () in (1) as follows
Zlg (b)) = Llus (b)) - Ly (1))
= e L1} - 725 2(1}
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But Z{1} = %, hence the above becomes

glg (t)] — e—5s§ _ 6—2052

Now that we found . [g (t)}, we go back to the original ODE and take the Laplace transform
of the ODE, which results in

Zly o)+ 2y 0+ 22y 0} = Z{g 0]
Let Y(s) = J{y (t)], then the above becomes

2{s2Y (5) = sy (0) — v/ (O)} + {sY () -y (0} + 2Y (5) = Z{g (B}
But y (0) = ¥’ (0) = 0 and the above reduces to

e—55 _ 6_205
252Y (s) +sY (s) +2Y (s) =
Solving for Y (s) gives
-5s _ ,—10s
Y (s) = L e
s (252 +s+ 2)
e—5s e—ZOS

- 5(252+s+2)_s(252+s+2) @)

—5s
We now need to find the inverse Laplace transform of Y (s). Looking at m,the first step
S| £5“+S

is to use the property

() F (- 0) & eF (s)

Comparing the expressions, we see that

e—5$

us(t) f(t—c) = m

(3)

Where
1

f = s(2sz+s+2)

(4)

Therefore, we just need to find inverse Laplace transform of

S22 tst2)” Using partial fractions

1 A Bs+C

s2+s+2) s 22+s+2

5(25 +s+2) S 5°+S
1:A(252+s+2)+(Bs+C)s
1=2As?+ As+2A + Bs® + Cs
1=2A+5(A+C)+s>A+B)

(5)
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Therefore
1
A==
2
A+C=0
2A+B =0

Hence from the second equation C = —%, and from the third equation B = -1 Therefore (5)
becomes
1
1 11 —s—;
N —
5(252+s+2) 25 282+s5+2
11 1 -1-2s
=4+ -———-—
2s 2282 +s5+2
11 s 11
T 2s 28%+s+2 22524542
The first term above is easy, we know that
11 1
—— = = (6)
2s 2
Now we will find inverse Laplace transform of second term in (5A)
by completing the squares in the denominator. Let

(5A)

S

. For this w rt
2., LOr this we sta

22 +s+2=a(s+b*+c
:a(52+b2+2bs)+c

= as® + ab® + 2bas + ¢

2
Hence a =2,2ab=1orb = jz and ab? + ¢ = 2, hence c:2—2(31) :2—2(11—6) :2—% = %,
Therefore
252 +5+2=2 s+1 2+15
- 4 8
We now re-write second term in (5A), which is — as 52 . We did this because we
255+5+2 s+1 +E
8
wanted this to be in the form #, therefore
S 1 5
2(s+ = 2+E 2 1 2+E
5T 8 ST 16
Now we let =35+ i, therefore the above becomes
15 : 1 g 1 1
-7 3
§~/z+%_5:§[~2+9_1~2+§] @
IR IR IR
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Using # & cos (at) then

= _;1 15t
———= S e tcos|[—
24D 16

t
The reason for ¢ ¢ being there, is because we evaluated F(s) at F (s + i) This used the shift
property
F(s+a)=ef(t)

t
Therefore F(s + }1) = e 4f(t). Now we do the second term in (7). Since ~21 =
S

15 15 157
16 16

. a . .
then, now using 7.7 ©sin (at) we obtain
15

1 g 1 ( /15 ]
€ 1 Sll’l
15 gQ 15

16 16

c\|<.n

o)}
0\

t
And we remember to add e 4 again, due to the shift in s. Therefore (7) becomes

s o 1 _:i 151L 1 _i 1 151L
——— & —|e icos|q[—t|-—e sin|4/—
282 +s5+2 2 16 4 [15 16

16

) )

This complete the second term in (5A). Now we will do the third term in (5A) which is

P, which is
1 3 1
22 +5+2 1\2 15
2&+—)+—
8
1 1
=5 —
(S+Z) +1_6
15
_ 1 16
~ . [15 2
24/1 G+i)-+§
Hence
15

- 481“(5) Y
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Now we put all the results back together.
1 11 s 11
s(22+5+2) 25 27+5+2 22574542

1 e

= (\/ﬁcos(@t)—sin(@t))—l( 2 i [\/E ))
2 2415 4 4
We can simplify this more

INEN

2

t
1 1 4 V15 V15 V15
_— = - - ¢ (VlS cos(—t) - sin(—t) + ZSin(—tD
s(22+4s5+2) 2 2415 4 4 4
t
1 e 4

sl { B

Using this back in (2), where we want to evaluates

e5s .
—_ 1ves
5(232+s+2) 8
—5s

m & us5 (t) f(t - 5)
Where

—(t-5

1 e1 V15 (V15
f(t—5):5—Z\E[x/ﬁcos(T(t—5))+sm(T(t—5)])

The above complete the first term in (2). The second term in (2) is the same, but the delay
now is 20 instead of 5. Hence

e—ZOs
m & uy (t) f (t - 20)

With the same function f (t) found above. Therefore, the final inverse transform now is

(t) — 8_55 6—205
Y 5(252+s+2) 5(252+s+2)

= (u5 (t) f (£ = 5) — ug (£) (£ - 20))
Where

—(t-20)

1 e V15 V15
t-20)==- (\/15 cos (— (t- 20)) + sin (— (t- 20))]
f 2 24/15 4 4

This complete the solution. The final solution is

y () = us (t) [% - % (\/Ecos [@ (t - 5)) + sin(@ (t - 5)])]

—(t-20)

i (t)[% _ "2\;1_5 (\/Ecos(g (t_ZO)) +sin(\/_ )]]

15
— (t-20
= (t-20)
Here is a plot of the above solution
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solution to Math 319 problem using Laplace Transform
0.6F

0.4r

y(t)

0.2

-0.2F \/ ]
0 10 20 30 40
t

References

1. Lecture notes Nov. 30, 2016 by Professor Minh-Binh Tran. Math dept. Univ. Of Wis-
consin Madison.

2. Wikipedia web page on Laplace transform properties.

124



2.10. HWS8

CHAPTER 2. HWS

210 HWS

2.10.1 Section 6.1 problem 7
Find Laplace Transform of f (t) = cosh (bf)

bt , —bt
e’ +e
5 then

solution Since cosh (bt) =
_ 1
- bt 4 b
ZLcosh (bt) = 53(6 Fte t)

= % (ffebt + 33‘“)

But

For s > b and

For s < b. Hence

_ 1( 1 1
Fcosh (bt) = E (ﬁ + m)
52
T2

For s > ||

2.10.2 Section 6.1 problem 8
Find Laplace Transform of f (t) = sinh (bt)

bt_ —bt
e —e
> then

solution Since sinh (bt) =
1
i - bt _ b
Zsinh (o) = 5 (" - ")
1
_ b -b
=5 (.,S”e t— Ze t)
But, as we found in the last problem
Lt = — s>b

And
1

Pt
¢ s+b

s<b
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Therefore
1( 1 1
1k _ifr 1 .
#sinh (bt) Z(S—b s+b) s>b;s<b
b
=2, s > |b|

2.10.3 Section 6.1 problem 9

Find Laplace Transform of f (t) = ¢ cosh (bt)

solution Using the property that
ef(t) = F(s—a)
Where f (t) = cosh (bt) now. We already found above that cosh (bt) < #, for s > |b|. In

other words, F(s) = ﬁ, therefore

(s—a)

etcosh(ht) = ——~2
©) (s —a)* - b2

s—a>|b|
2.10.4 Section 6.1 problem 10

Find Laplace Transform of f (t) = e sinh (bt)

solution Using the property that

e f(t) & F(s—a)

Where f (t) = sinh (bf) now. We already found above that sinh (bt) < #, for s > |b]. In

other words, F(s) = #, therefore

¢ sinh (bt) = s—a>|b|

(s —a)* — b2

2.10.5 Section 6.2 problem 17

Use Laplace transform to solve y(4) -4y +6y”" -4y +y=0fory(0) =0, (0) =1, (0) =
O, y/// (0) =1

Solution Taking Laplace transform of the ODE gives

Ely(4)] - 43[}/”’] + 63[]/’} - 43[3/} + 3[}/] =0 (1)
Let g[y] =Y (s) then
4 {y(4)} = s*Y (s) — 5%y (0) — %y’ (0) — sy’ (0) — v’ (0)
=5*Y (s) -s3(0) —s®(1)-s(0) -1
=stY(s)—s> -1
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And
g{y”’} = $3Y (s) — sy (0) — sy’ (0) —y”’ (0)
=353Y (s)—s2(0)—s(1) -0
=353Y(s)-s
And
g[y”} = s2Y (s) - sy (0) — i’ (0)
=52Y (s)—s(0) -1
=52Y(s) -1
And

=Y -y
=5Y(s)
Hence (1) becomes
(s*Y (5) — 52 =1) =4 (s*Y () =) + 6 (s2Y (5) = 1) =4 (sY (s)) + Y (5) = 0
Y(s)(st—4s® + 652 45 +1) —s2 -1 +45-6 =0

Therefore
s2—4s+7
Y =
(s) s — 453 + 652 —4s5+1
_52—4s+7
(s-1)*
2 4 7
=— i S4"’ 1 (2)
(s-1)° (-1 (s-1)
But

£ (s-1)?-1+2s
-1 -1t
G S SR CES )
-1* -1 (-1

11 (s—1) 1

T G- oD o1
1 1 1 1

T AT T T
1 2 1

T o1 -1y
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And
4s :4(5—1)+1
s-1" (-1
_g b, !
-1 -1
4 4
Teo) o1

Therefore (2) becomes

Y(S)_(1+2+1)(4+4)+7
-1 6= 6-1Y \6-107 -1 -1
1 2 4
= 2~ 3+ 1
(=17 (-1" (-1
Now using property the shift property of F(s) together with

3)

1

S_Z —t

1 12
32
1 3
£ %

Therefore
1

(s-1)°
1 2
(s-1)° 2
1 B
(s-1)" 6

And (3) becomes

1 2 4 2 B
5 = 5+ 4<=>ett—2 el—|+4|et—
(s=1) (s=1) (s=1) 2 6

2
=elt—elt? + gett3

Hence

2
y(t) =¢ (t— 2+ 5tf’)

2.10.6 Section 6.2 problem 18

Use Laplace transform to solve y(4) -y=0fory(0)=1y0)=0,4y"0)=1,y"(0)=0
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Solution Taking Laplace transform of the ODE gives
2y - 2y} =0 (1)
Let g{y} =Y (s) then
Z {y(4)} = s*Y (s) — 5%y (0) — %y’ (0) — sy’ (0) — v’ (0)

=5*Y (s)-s3(1)-5*(0)—s(1) -0

=s*Y(s) - -5
Hence (1) becomes

Y (5) -2 -s-Y(s)=0

Solving for Y (s) gives
s> +s
st-1

Y(s) =

But, Hence above becomes, where a =1

o < cosh (f)

Hence

y (t) = cosh (at)

2.10.7 Section 6.2 problem 19
Use Laplace transform to solve y(4) -4y =0fory(0)=1,¥"(0) =0,y (0)=-2,y"" (0) =0
Solution Taking Laplace transform of the ODE gives
L@} -azly} =0 1)
Let _?[y] =Y (s) then
7 {y(4)] = sV (s) — sy (0) — %y’ (0) — sy’ (0) — y"”” (0)

=5%Y (s) -s3(1)=s2(0)—s(-2) -0

=s%Y (s)—s® +2s
Hence (1) becomes

s4Y (s) -3 +25-4Y(s) =0
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Solving for Y (s) gives

$3—2s
Y(s) = I
s> —2s
T (2-2)(2+2)
5(52—2)
B (52—2) (sz+2)
s
(#+2)

Using cos (at) &= ﬁ, the above becomes, where a = V2

> & COos (\/Et)

(52 + 2)
Hence

y(t) = cos (\/Et)

2.10.8 Section 6.2 problem 20
Use Laplace transform to solve y” + w?y = cos2t; w? #4; y(0) =1,y (0) = 0

Solution Let Y (s) = ¥ [y (t)]. Taking Laplace transform of the ODE, and using cos (af) <
gives

s2+q2

s2Y (s) — sy (0) =/ (0) + w?Y (s) = (1)

s2+4
Applying initial conditions

2Y (s) = s + w?Y (s) =
Y (s) — s+ w=Y (s) 211

Solving for Y (s)
s
s2+4

Y (s) (sz +a)2) L
S
@+ (2 +a?)  (#+w?)

Y(s) = (2)

But
S _As+B Cs+D

F+4)(2+a?) (2+4) (% +w?)
S:(AS+B)(SZ+Q)2)+(CS+D)(52+4)
s =4D + As® 4+ Bs? 4+ Cs® + Bw? + s2D + 4Cs + Asw?

s = (4D + Bw?) + 5 (4C + Aw?) +s?(B+ D) + 5> (A + C)
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Hence
4D +Bw? =0
4C + Aw? =1
B+D=0
A+C=0
Equation (2,4) gives A = w21_4,C = 4—1(02 and (1,3) gives B=0,D = 0. Hence

(52 + 4) ZSZ + a)z) B (wzl— 4) (52 j— 4) ’ (4 —10)2) (52 jwz)

Therefore (2) becomes

Y(s)—( 1 ) s +( 1 ) s N s
\w?2-4 (52+4) 4-w? (sz+a)2) (sz+a)2)

_ ( 1 ) s, (5 -~ a)z) s
w?-4)(2+4) \4-0?)(2+0?)
Using cos (at) < ﬁ, the above becomes

! s 5-w?) s 1 o4 (329 t
(a)2—4) (s2+4) +(4_wz) (2 +?) = (w2_4)c08( )+(4_w2)cos(a))

2 _

= (w21—4) cos (2t) + (ZZ - Z) cos (wt)

Hence
2

y(t) = (a)zl_ 4) cos (2t) + (22 — 4) cos (wt)

(a)2 - 5) cos (wt) + cos (2t)
w? -4

2.10.9 Section 6.2 problem 21

Use Laplace transform to solve y” -2y’ + 2y = cost; y(0) =1,y (0) =0

Solution Let Y (s) = & [y (t)]. Taking Laplace transform of the ODE, and using cos (at) <
S

—— gives
22 8

(SZY (s) —sy (0) -y’ (0)) -2 (SY (5)-y (0)) +2Y(s) = 2 : (1)

+1
Applying initial conditions

Y (5)—s-2(sY(s)-1) +2Y(s) =

s2+1
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Solving for Y (s)

S2Y (s) —s—25Y(s) + 2+ 2Y (s) = ;

Y(s)(sz—25+2)—s+2:

Y () = S 0
(52+1)(52—25+2) (52—25+2) (52—25+2)
But
s _ As+B Cs+D
(F+1)(2-25+2) (2+1) F-2542
s:(As+B)(sz—25+2)+(Cs+D)(52+1)
s=2B+D —2As? + As® + Bs?* + Cs® + s°D + 2As — 2Bs + Cs
s=2B+D)+sQRA-2B+C)+s>(2A+B+D)+s3(A+C)
Hence
2B+D =0
2A-2B+C =1
-2A+B+D=0
A+C=0
Solving gives A = é,B = —;,C = —é,D = g, hence
s 1 s-2 1 s-4
(2+1)(2-25+2) 5(2+1) 52-25+2
1 s 2 1 1 s 4 1

(3)

= — — — — — + —
5s2+1 5s2+1 582-25+2 552-25+2
Completing the squares for

2-2s+2=a(s+b)’+d
:a(52+b2+2bs)+d
= as® + ab® + 2abs + d
Hence a =1,2ab = -2, (ub2+d) =2, hence b= -1,d =1, hence
2-25+2=(s-17%+1
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Hence (3) becomes

S 1 s 2 1 1 S +4 1
(s2+1)(s2-25+2) 55°+1 55241 5(6-1°+1 5(-1)°+1
1 s 2 1 1(s-1)+1 4 1
= — — — — — + —
55241 5s2+1 5(3-1%+1 5(-17°+1
1s 21 1 (-1) 1 1 LA 1
552+1 552+1 5(s-1°+1 5(s-1°+1 5(s-17%+1
1 s 2 1 1 (s-1) 3 1
= — — — — — + —
55241 5s2+1 5(3-1°+1 5(-17°+1
Therefore (2) becomes
1 2 1 1 -1 3 1 2
Y(S):_zs TE2+1 & . 2) tz 2, Sz - 2
552+1 5s°+1 5(-1)°+1 S5S(-1)"+1 (s-1)"+1 (s-1)“+1
1 s 21 1 -1 3 1 (s-1)+1 2
“52+1 52+1 5 2 .5 7, T 7 2
55241 5s°+1 5(-1)"+1 S5(GE-1)"+1 (s-1)"+1 (s-1)°+1
1 s 21 1 (s-1) 3 1 ,_6-1) 1 2

=— - = — + = + -

552+1 552+1 5(s-1%+1 5(s-17%+1 (s-1°+1 (s-17%*+1 (s-1>2+1
1 s 21 4 (s-1) 2 1

= — —_ — + = —_—

55241 55241 5(s-1P%+1 5(-17°+1

. S . a .
Using cos (at) & 5 —,sin(at) < 5— and the shift property of Laplace transform, then

1 s <=)1 ®
52+1 5 %
2 1 <=)2 in (t)
52+1 500
4 (s—1) 4,
——Z‘f:—eCOSt
S5(-1)°+1 5
2 1 8, .
& —e'sint

56-1°+1 5
Hence

1 2 4 2
y(t) = 5 cos (t) - = sin (t) + get cost— get sin t

1 : t to
g(cost—231nt+4e cost—2e smt)

2.10.10 Section 6.2 problem 22
Use Laplace transform to solve y”’ -2y’ + 2y =e™%;y(0) = 0,/ (0) =1

Sf)lution Let Y(s) = & Iy (t)}. Taking Laplace transform of the ODE, and using ¢! < ﬁ
gives

1
(PY© -5y -y ©) -2(sY(©) -y ) +2Y($) = — (1)
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Applying initial conditions gives
1
S2Y (s) =1 —-2sY (s) +2Y (s) = —
s+1

Solving for Y (s)

1
Y(s)(s2-25+2)-1= —
(s)(s s ) ]
1 1
Y(s) = + = (2)
(s+1)(52—25+2) §5—25+2
But
1 A Bs+ C
= —+ 5
(s+1)(s2-25+2) s+1 s$2-25+2
1=A(2-25+2)+(Bs+C)(s+1)
1=2A+C+ As® + Bs?> —2As + Bs + Cs
1=QA+C)+5(-2A+B+C)+s*>(A+B)
Hence
1=2A+C
0=-2A+B+C
0=A+B

. . 1, 1,3
Solving gives A = =, B = —¢,C = -, therefore

1 11 N 55t 3
(s+1)(s2-2s+2) 5s+1 s2-2s+2
11 1 s 3 1

== - + 4=
55+1 552-25+2 552 -25+2

Completing the square for s —2s+ 2 which was done in last problem, gives (s — 1)2 +1, hence
the above becomes

1 11 1 s 3001
= - = 5 tto———
(s+1)(s2-25+2) 5s+1 5G6-1*+1 5(s-1)7+1
_11 16-D+1 3 1
55+1 5(s-1%+1 5(s-17°+1
11 1 (s-1) 1 1 3 1
=E ~E 7 - E 7 -t & 2
55+1 5(-1)°+1 5(-1)"+1 5(-1)"+1
11 1 (s-1) 2 1
5 5 2 tz 2
55+1 5(-1)°+1 5(s-1)+1
Therefore (2) becomes
11 1 (s-1) 2 1 1

Y(s) == - = + = +
55+1 5(s-172+1 5(-1%+1 (s-17°+1
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Using cos (at) & -, sin (at) & # and the shift property of Laplace transform, then

s2+a2’
11 1,
—— = e
5s+1 5
1 -1 1
—(S—z)@—etcost
S5(6-1"+1 O
2 1 2
—————— & —¢'sin
5(s-17%+1 5

1
W :}etSint
S — +

Hence
1 1 2
y(t) = =et - =efcost + —e'sint + ef sint
5 5 5
1
=z (e‘t —elcost + 7et sin t)

2.10.11 Section 6.2 problem 23
Use Laplace transform to solve y”’ + 2y’ +y =4e;y(0) = 2, (0) = -1
Solution Let Y (s) = & {y (t)}. Taking Laplace transform of the ODE, and using ¢! & =

gives s+1
(YO -5y ) -y @) +2(sY©) -y @) + Y () = %

Applying initial conditions gives

(1)

(SZY(S)—ZS +1) +2@6Y () =2)+Y(s) = %

Solving for Y (s)

4
Y 24254+1)-25+1-4=—
(s)(s S ) s o1
4
Y 2425+41)= ——+25s-1+4
(s)(s S ) 17
4 2 1 4
Y(s) = + > -

- (s+1)(52+25+1) (sz+25+1) (32+25+1) * (52+25+1)

But (s2 + 25 + 1) = (s + 1), hence
) L 14
s+1)° G+1% (+17° (s+1)7°

Y (s) (2)
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But
25 _s+1-1
s+17  (s+1)
(s + 1) 1
@+1) (s +1)?
1 1
S Ts+1 (s+ 1)2
Hence (2) becomes
4 1 1 1 4
Y(s) = 5+ -2 5 = 5+ 5 (3)
(s+1) s+1 (s+1) (s+1) (s+1)

. . . 1 2 1
We now ready to do the inversion. Since 5 < — and ; < t and

shift property e” f (t) < F (s — a), then using these into (3) gives

=)
e —_—
s+1)° 2
1
2m<:>2€_t
1 t
2( 1)2@2e‘t
s+
1 1
e
(s+1)2
4 -t
GrD) — 4e7't
s+

Now (3) becomes
Y (s) & 4et (;) +2e7t = 2¢7tt — et + de7Mt
=t (22 +2-2t -t +4t)
=et (22 +t+2)
2.10.12 Section 6.3 problem 25
Suppose that F(s) = ,CZ[f (t)} exists for s > a > 0.
1. Show that if c is positive constant then g{f (ct)] =-F (E) for s >

2. Show that if k is positive constant then # ! {F (ks)} = p f ( )

3. Show that if a,b are constants with a2 > 0 then ! {F (as + )} = %eTf(

Solution
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2.10.12.1 Part (a)

From definition,
Z{f ()= f F et et
0

Let ¢t = 7, then when t = 0,7 = 0 and when t = 00,7 = o0, and ¢ = %. Hence the above
becomes

Zren)= [ reo ks
1 o 8
=sz FoyeWae

We see from above that ¥ { f (ct)] is %F (Z) .Now we look at the conditions which makes the
above integral converges. Let

<k e”tg (i)|

e

Where k is some constant. Then

f f(t)e t<kf ettt () gt
= kj:o e_t(é_”)dt

But £ iz converges 1f -—a>0or
s>ca

Hence this is the condition for fo f) et to converge. Which is what we required to
show.

2.10.12.2 Part (b)

From definition

A=)
kf ( Joa

Let i =17. When t =0,7 =0 and when t = 0o, 7 = c0. % =k, hence the above becomes

A1 oo
= f " f () D

We see from above that 3{%f( )} is F (sk). In other words, £~ {F (ks)} = f( )
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2.10.12.3 Part (c)

From definition

Al
= %j:o e%f(é) estdt

Let 2 =t1,att=0,7=0and at t = 0,7 = 00. And Z—i = a, hence the above becomes

g{le% f(f)} _1 fo " T f (1) e (adr)

a a a

= f e bt f(7) e~ TN g
0

:f f(T)e_T(S”+b)dT
0

-bt

We see from the above, that 3{%37]‘ (2)} = F(sa + b). Now we look at the conditions which
makes the above integral converges. Let
|f (’l’) e—t(sa+b)| <k |eate—t(sa+b)|

Where k is some constant. Then

foo f (t) e—t(sa+b)dt <k foo eute—t(sa+b)dt
0 0
= kfoo e—i’(SEH-b—u)dt
0

But fo e 00t converges if sa +b-a>0orsa>a-bors>1- Z

2.10.13 Section 6.3 problem 26

2”+1Tl!

Find inverse Laplace transform of F(s) = -

Solution

We know from tables that

Hence

2.10.14 Section 6.3 problem 27

25+1

Find inverse Laplace transform of F(s) = YRR
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Solution

2s 1

F(s) = +
O =7 a+5 2 75

2
But4_sz+4s+5:4(s+%) + 4, hence

2s 1
F(s) = > + >
4(s+£) +4 4(s+5) +4
s 1 1
= 2 Tg 2
2(s+—) +2 (s+§) +1
1 s 1 1
=5 7ty )
(s+§) +1 (s+§) +1
11
:1 S+§_E +]_ 1
250 1) 11 Hs41) 41
(S+E) + (S+§) +
1 s+; 11 11
= — —_— + —
260 1) 11 H(s+ 1) 41 A
(S+E)+ (S+E)+ (S+E)+
1 s+-=
= —2— M
) +1
(s+2) ¥
Now we read}sl to do the inversion. Using e ™ f (t) < F (s + a) and using sin (at) < #, and
cos (at) = e, then
1
1 s+3 11
- 2 = e 2 cos(t)
2 1 ,
(S+£) +
Hence

f(t)= %e_%t cos (t)

2.10.15 Section 6.3 problem 28

1

Find inverse Laplace transform of F(s) = R IT
Solution
1

1 1
2 _ ) T 1
9s 12s +3 952_§S_|_5 9(5_1)( ;)




CHAPTER 2. HWS

2.10. HWS8
But
1 A B
1 1 * 1
6-Dfs-3) 71 -3
1 3
A 1 = E
=
( 5 s=1
(&9,
\6-1) 2
Hence
1 1(3 1 3 1
-sl5=-5 M
9s2-12s+3 9|2s-1 24_1
3
Using
; 1
M =
s—a
Then (1) becomes
1 1(3, 34
— & —|=el - =e3
952 -12s+3 912 2
= let _ leéf
6 6
1 1
=z le-<)
2.10.16 Section 6.3 problem 29
2 ,—4s
Find inverse Laplace transform of F(s) = 62:_ N
solution
32 e—4s
F(S) = ES ~ 1
2
Using
uc () f(t —¢) & e“F(s) 1)
Since
1 1t
1T
572
Then using (1)
(=4

et — = uy(t)e?

573
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Hence
e e ® e Lig
E _1 — Eu4(t)€2(t )
573
1
2
1 )
= —uy(t)e2
0
1 t
= — t)e2
2“4( )e
Therefore

1 t
f= Sl () e2

ps. Book answer is wrong. It gives

t

1 AN
£ =5us(3)e2
2.10.17 Section 6.3 problem 30

0<t«l1

1
Find Laplace transform of f (¢¥) =
P f( ) { 0 t>1
solution

Writing f (t) in terms of Heaviside step function gives

f ) =ug(t) —uy(t)

Using
1
l/lc (t) [t e_csg
Therefore
. 1 1
Flug () = e~ =~
s s
1
Ll () = e
Hence

1 1
Lug (t) —up (D)} = B —e_sg
:1(1—e‘5) s>0

s
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2.10.18 Section 6.3 problem 31

1 0<t<l1

0 1=<t<2
Find Laplace transform of f (t) =

1 2<t<3

0 t>=3

solution

Writing f (t) in terms of Heaviside step function gives

f () =ug(t) —ug (t) +up (t) —us (t)
Using

1
u. (t) — E_CS;

But f (t) =1 in this case. Hence F(s) = % Therefore

1 1 1 1
P e =% — g5 4 Zg25 — L3
F) s s s s
1
:—(1—e‘5+e‘25—e‘35) s>0
s

2.10.19 Section 6.3 problem 32
Find Laplace transform of f (f) =1+ Yo" (-1)" uy (¢)
solution
Using
1
u.(t) = e -
S

Therefore
2n+1 2n+1
3{1 + 3 Dy (t)} = A1} + 3{ 3 )y (t)}
k=1

k=1
1 2n+1

1
— k= —ks
_—+§:—1—
S k:1( ) Se

142



2.10. HWS8 CHAPTER 2. HWS

_N+1
Since |e”®| <1 the sum converges. Using ZIOV a, = (l ;_T ) Where |r] <1. So the answer is
) 2n+1 1 1 _ (_8—5)271+2
A1+ Y (D (t)} = -(—]
{ k§ K s\ 1-(-e)
1(1- (_e)—(2n+2)s
sl 1tes

Since 21 + 2 is even then

2n+1 —(2n+2)s
3{1 + ), -1 (t)} = 1(1”—) s>0
k=1 5

1+es

2.10.20 Section 6.3 problem 33

Find Laplace transform of f(f) =1+ E;zl (—1)k u (t)

solution
Using
1
u.(t) =e CS;
Therefore
3{1 + 3 -1 iy (t)} = 2l + 3{2 (-1 u, (t)}
k=1 k=1
1 & 41
=-4+ ) () -es
s g; s
1 18
=—+- ), (-
s s ,;
1 18 .
— _ _ _p—S
s * s ,Z;'( e)
But

[o¢]

.
Rr=r— <1
k=1 -r

Since s > 0 then|e™| < 1. So the answer is
1 1T - 1 1 €7
s s1-(ce®) s sltes
_l4e” e
sl 4e)
1

=— 0
s(1+es) e
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2.10.21 Section 6.4 problem 21

.’Q 21. Consider the initial value problem

Vi+y=g®, y0)=0, y(0) =0,
where

gty = up(t) + Y (D (1).

k=1
(a) Draw the graph of g(¢) on an interval such as 0 <t < 6. Compare the graph with
that of f(¢) in Problem 19(a).

(b) Find the solution of the initial value problem.

(c) Let n =15 and plot the graph of the solution for 0 < ¢ < 60. Describe the solution
and explain why it behaves as it does. Compare it with the solution of Problem 19.

(d) Investigate how the solution changes as n increases. What happens as n — c0?

2.10.21.1 Part (a)

A plot of part (a) is the following

i 6.4 (21) part (a) plot
0.8 | | |
0.6 | | | | |
045 | |
0.2F : |
t : ) r | ‘
T 2r 3n 4 Sn 6rnr

And a plot of part(a) for problem 19 is the following
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i 6.4 (19) part (a) plot
L | I T
0.5 : | |
I i l i I ‘
7:r 2:71 3i7r 4:71' 5571' 6rn
050 i L ;

We see the effect of having a 2 inside the sum. It extends the step u. () function to negative
side.
2.10.21.2 Part (b)

The easy way to do this, is to solve for each input term separately, and then add all the
solutions, since this is a linear ODE. Once we solve for the first 2-3 terms, we will see the
pattern to use for the overall solution. Since the input g (¢) is u (t) + Ezozl (—1)k Uy (1), we will
first first the response to uq (f), then for —u, () then for +u,, (), and so on, and add them.

When the input is 1 (t), then its Laplace transform is %, Hence, taking Laplace transform
of the ODE gives (where now Y (s) = (y (t)))

1
(s2Y () = sy (0) + ¥/ (0)) + Y (5) = -
Applying initial conditions
1
LY (s) + Y (s) = S

Solving for Y (s) (called it Y (s) since the input is uq ()

Yo(s) =

5(52+1)
1 S
T 2+1

Hence
Yo () =1—cost

We now do the next input, which is —u,, (t), which has Laplace transform of —?, therefore,
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following what we did above, we obtain now

e—T[S

5(52 +1)

ol
B s 241

The effect of ¢ is to cause delay in time. Hence the the inverse Laplace transform of the
above is the same as y, (t) but with delay

Yr (£) = —un (£ (1 = cos (t = 7))

—275
Similarly, when the input is +u,, (t), which which has Laplace transform of ET, therefore,
following what we did above, we obtain now

Y7 (s) =

e—2ns

:e—Zns 1_ 5
s s2+1

The effect of ™2™ is to cause delay in time. Hence the the inverse Laplace transform of the
above is the same as y, (t) but with now with delay of 27, therefore

Yar () = +itgr () (1 = cos (t - 27))
And so on. We see that if we add all the responses, we obtain

Y () = Yo () + Y () + Yo () + -+
= (1 -cost) —u, (t) (1 = cos (t = 7)) + i, (t) (1 = cos (t = 27)) — ---

Yy (S) =

y () =1 —cost) + 211: (—1)k U, (t) (1 = cos (t — km)) 1)
k=1

2.10.21.3 Part (c)
This is a plot of (1) for n =15
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6.4 (21) part (c) plot

-15 LA .

We see the solution growing rapidly, they settling down after about ¢ = 50 to sinusoidal wave
at amplitude of about +15. This shows the system reached steady state at around ¢ = 50.

To compare it with problem 19 solution, I used the solution for 19 given in the book, and
plotted both solution on top of each others. Also for up to t = 60. Here is the result

y(®)

0L “ﬂ‘ [ — problem 19
20

|/ — problem 21
Il

=20

|/ \
-30f 1 Y

We see that problem 19 output follows the same pattern (since same frequency is used), but
with double the amplitude. This is due to the 2 factor used in problem 19 compared to this
problem.

2.10.21.4 Part(d)

At first, I tried it with n = 50,150,250, 350,450, 550. I can not see any noticeable change in
the plot. Here is the result.
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n =450

Even at n = 2000 there was no change to be noticed.

_ n = 2000
20}

mV/\/\/\/\A/\ |
4W1MWVWVM° i

-20

—

This shows additional input in the form of shifted unit steps, do not change the steady state
solution.
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211 HWI

2.11.1 Section 6.6 problem 1
Question: Establish

L feg=gef

2 fo(s1+%)=f081+f08

3. fo(soh)=(fog)oh

211.1.1 Part (a)

From definition
fhogt= [ fE-ng@d

d
Let u = t — 7, hence ﬁ = -1. When 7 = —o0 — u = 400 and when 7 = +00 — u = —oo0, hence

the above becomes
fOeg®= [ fu)ge-u-d)
Pulling the minus sign outside and changi::; the integration limits
foog®= [ gt fud

But since u is arbitrary, we can relabel u as 7 in the above. Hence the above RHS can be
written as

foogt)= [ ge-0f@ar

But f_:g(t —17) f(1)d7 = g (H) ® f (£), hence
fhegt)=gt)®f(t)
QED.

2.11.1.2 Part (b)

From definition
FO(@O+20)= [ fE-0(sm+g@)dr

By linearity of the integral operation, we can break the integral above

[ fe-0@@+a @)= [ fe-0a@dr [ fe-0g@d
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But f_:f(t -7)g1(n)dt = f(t) ®g (t) and f_:f(t -17)g1(v)dt = f (t) ® g, (t), hence the above
becomes

[ Fe-0(s @+ 5 @)dr=(f0 02 0)+ (fH o5 0)
Therefore
fFOo(EM+80)=(fOog®)+(fHeg®)
QED.

2.11.1.3 Part (c)

From definition

(feg)en) = L(f@g)(T)h(t—T)dT

:f|ff(Tl)g(T—Tl)dTl]h(t—T)dT

R R

:fff(Tl)g(T—Tl)h(t—T)dTldT
RYR

By Fubini, we can change order of integration

(Fegem®= [ [ fang@-mn-ndun

:ff(ﬁ)” g(T—Tl)h(t—T)dT]dTl
R R

By translation, if we add 7, to 7 for both functions in the inner integral above, we obtain

«f®@®hﬂﬂ=J;f@DL&g«T+ﬁ%ﬂﬂhG—&+TﬂM4dﬁ

=ff(ﬁ)[fg(T)h((t—Tl)—T)dT]dTl
R R

But now we see that inner integral is f){ g(h(t-11)-1)dTr = (g ® h) (t — 71), hence the above
becomes

«f®@®hﬂﬂ=1;ﬂﬁﬂg®00—foﬁl

=(fe(son)®
QED

2.11.2 Section 6.6 problem 2

Find an example showing ( f @1) (f) need not be equal to f ()
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Solution Let f (f) = ¢!, hence

(fo1)® =j:f(t—’()><1d’c

= fte(t‘f)dr

0

=0 T
|5

7=0

- _ [e(t—t) - e(t—O)]
—[e-e]

--(1-¢)

=el -1

Which is not the same as ¢/. QED

2.11.3 Section 6.6 problem 3

Show that ( f® f) (t) is not necessarily non-negative, using f (t) = sin (f)
Solution From definition
t
(Fof) = [ sin(@sin(t-de
0
Using sin AsinB = % (cos (A = B) — cos (A + B)) on the integrand gives

t

1
(f@f)(t):foE(cos(r—(t—1))—cos(1+(t—T)))dT
:%j:cos(f—(t—r))dr—%j:cos(t)d”[

1 t 1t
= —f COS(ZT—t)dT——f cos (t)dt
2Jo 2Jo

For the second integral above, since it is w.r.t 7, then we can pull cos () outside, which gives

1 (sin@Rr-H\" 1 t
(f@f)(t)_E(T) _O—ECOS(t)‘[(;dT

=

1 1
=1 (sin (2t — t) — sin (-t)) — Etcost
_ L (sin (8 + sin () - St cost
= 4 Sin S11 2 COS

1
= Esint—itcost
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Let t = 27t then
(Fof)®=0-3@n
=-7

Which is negative. Hence we showed that ( f® f) () can be negative at some t. QED.

2.11.4 Section 6.6 problem 4

Find Laplace transform of f (t) = f (t- T)Z cos (271)dt

Solution We see that
f(t) =2 ®cos(2t)
Therefore, using convolution theorem
Z{f ) = 2|2} Zicos (21))

But 3{1‘2] = :—3 and Z{cos (2t)} °_ hence the above becomes

2
“lro)=(3) ()
201
T 2244

2.11.5 Section 6.6 problem 5

Find Laplace transform of f (t) = K e =D sin (1) dt

Solution We see that
f(t) =et@sin(t)
Therefore, using convolution theorem
ZIf )= 2t} Lsin @)

1
s2+1°

Z{f )=

But #le'} = — and #{sin (1)} =

hence the above becomes
(s+1) (52 + 1)

2.11.6 Section 6.6 problem 6

Find Laplace transform of f(f) = K (t—1)e'dr

Solution We see that
fh=tee
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Therefore, using convolution theorem

Z{f )=z 2|
But Z{t} = 512 and °?[e’f} = ﬁ, hence the above becomes

“Arol=(3)(=)

2.11.7 Section 6.6 problem 7

Find Laplace transform of f (f) = K sin (t — ) cos tdt

Solution We see that
f(t) =sin(t) ® cos ()
Therefore, using convolution theorem

Z|f (t)} = Plsint} Llcost}

But #{sint} = and Fcost} = el 1, hence the above becomes

“r0)= (1) (25)

2.11.8 Section 6.6 problem 8

Find the inverse Laplace transform of F (s) = using convolution theorem.

_r
54(52+l)

Solution We see that

Hence, using convolution theorem

t3
f(t) = g@SiIlt

1 ot
:—f(t—’c)3sin1d’(
6 Jo

Integrate by parts. fudv = uv—fvdu. Letu=(t- 7)3 ,dv=sint - du =-3(t - T)z ,U=—COST,
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hence

g 3 . _ 3 t ! 2
j(;(t—’() sint dt = —[(t—'c) COST]O—L =3(t-1)" (—cos 1) d’[)

N =

3 3 ! 2 )
—[(t - —(t- - - d
[(t )" cost—(t-0) COSO] 3]; (t—1)° (cost) dt
-10-£3]- t — 1) d )
[0 t ] 3]; (t-1)" (cost) dt

3 —3ft (1‘—’[)2 (cos 1) dT)
0

N —= N = NP N

Integrate by parts. Let u = (t - T)2 ,dv =cost — du=-2(t-1),v =sint, hence
1 t 1 [ t
3 fo (t—1)’sint dr = c (t3 -3 -((t — 1)’ sin T); - j:) -2 (t-1)sin Td’c])

= ! (t3 -3 —((t— t)2 sint — (1,‘—0)2 sinO); +2ft (t-1) SianT])
I 0

6
1 [ t

:—(t3—3 0+2f (t—T)SianT])
6 i 0

1 t
= —(t3—6f (t—T)sianT)
6 0

Integrate by parts. Let u = (t — 7),dv = sint — du = —-1,v = — cos 7, hence above becomes

o= [P gl Lo
- - dt = -6|(-(t- - d
6]; (t—1)sintdr t (- (¢t T)COST)O j(;cos*c T

-6 [— ((t=t)cost — (t —0) cos0) — (sin T)g])

£ -6[-(0-t) —sint])

£ - 6(t—sint))

N e N o N A e

e N e

36t + 6sint)
Hence

f(#®) == (P -6t+6sint)

N =

2.11.9 Section 6.6 problem 9

S

Find the inverse Laplace transform of F (s) = ———
(s+1)(52+4)

using convolution theorem.

Solution We see that

1 S
Cs+1s2+4
= (e‘t) Z(cos2t)

F(s)
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Hence, using convolution theorem

f(t) =e't®cos2t

¢
:f et cos 27 dt
0

Integrate by parts. fudv = uv - fvdu. Let u = cos27,dv = e — du = -2sin27,v = ¢ ¢,
hence

¢ ; t
f e =D cos 2t dt = (cos 216‘(”))0 - f e"=9) (=2sin 27) dt
0 0
¢
= (cos 2te~ =D — cos Oe‘(t‘o)) +2 f e~ sin 27d7t
0

t
= (COS 2t - e‘t) + 2f e~ 7 sin 27dt
0
Integrate by parts. Let u = sin27,dv = e*~? — du = 2 cos 27,v = ¢ 9, hence

i t ,
f e~ cos 27 dt = (cos 2t—et) +2 (sin 2’[6‘(t‘T))0 —f e"t=92 cos ZTdT]
0 | 0

. t
cos2t—e t) +2 (sin 2te~ (=0 — O) -2 f e~ cos ZTdT]
| 0
r t
) +2|sin2t -2 f et cos 2TdT]
| 0

= (
(cos 2t —et
= (

cos2t —et +251n2t—4f e~ (=0 cos 27dt

Hence
t t
f e =1 cos 2t dt + 4 f e~ (1) cos 21dT = cos2t — et + 2sin 2t
0 0
t
5 f e~(=0) cos 2tdT = cos 2t — et + 2sin 2t
0
t 1
f e =0 cos 2tdt = = (cos 2t —et +2sin Zt)
0 5
Therefore

1
f)= 5 (cos 2t—et +2sin 2t)

2.11.10 Section 6.6 problem 10

Find the inverse Laplace transform of F (s) = using convolution theorem.

(s+1)2(sz+4)
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Solution We see that
1
F(s)= ————
€ (s+1)2s*+4
1
= ,Cf(te‘t) 3(5 sin Zt)

Hence, using convolution theorem

1
f=tet® 5 sin 2t
1
=5 f (t—1)e *Dsin2t
0

1 ot 1 ot
=— f te~ =D sin 27 dt — = f e~ gin 27 dr
2Jy 2Jy
The first integral is
¢ ¢
f te~tDgsin 27 dr = tf e~ =D sin 27 drt
0 0

This is similar to one we did in problem 10 but now we have sin27. Using integration by
parts again as before gives

t 1
tf e tDgin2r dr =t (g (Ze‘t —2cos2t +sin 2t))
0

_t
"5

t
Now we need to evaluate the second integral £ te~*=9 sin 27 dr. This can also be done using

(ZE‘t —2cos2t +sin Zt)

integration by part. But I used CAS here, the result is

t 1
f e~ gin 27 dt = = (~4e7 + (4 - 10f) cos 2t + (3 + 5t) sin 2¢)
0

Therefore
f)=2t (2¢7 =2 cos (2t) + sin (21)) - 1L (~4e7 + (4 10f) cos (2t) + (3 + 5¢) sin (2¢))
25 225
— 2 —t 3 1 —t
= 55¢ —gcos2t—%sm2t+gte

2.11.11 Section 6.6 problem 11

Find the inverse Laplace transform of F (s) = % using convolution theorem.

Solution We see that
1
2 +1

F(s) =G(s) = G(s) L(sint)

Hence, using convolution theorem

t
F() =g ®sint = f sin (t - 7) g (7) d

0
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Or
t
= — )sin (7)d
£ fog(t 7)sin (v) dt
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3.1. week 3 CHAPTER 3. DISCUSSION

3.1 week 3

319 Discussion Week 3

September 20, 2016

1. Draw a direction field for the given differential equation. Determine the behavior
of y as t — oo. If this behavior depends on a chosen initial condition, describe the
dependency.

(a) ¥ =y
(b) ¥ =yly —6).

2. Determine the values of r for which e is a solution to 3" — ¢/ — 2¢e™ = 0.

3. Solve the following differential equations. If initial conditions are provided, solve
the resulting initial value problem.

(a) ¥ —y = 2te?.

(b) ¥ +y = 5sin(2t).

(c) ty + 2y =sin(t),y(n/2) = 1.
(d) ¥ =y(1 —y),y(0) =2.
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3.2 week 4

319 Discussion Week 4

September 27, 2016

1. Solve the given differential equation.

(a) ' = sin®(t) cos®(y);
2

(b) v = 135,

(c) zy' =1+y%

2. Consider a tank used in certain hydrodynamics. After one experiment the tank
contains 500 L of a dye solution with a concentration of 2 g/L. To prepare for the
next experiment, the tank is to be rinsed with fresh water flowing in at a rate of 5
L/min, the well stirred solution flowing out at the same rate. Find the time that

will elapse before the concentration of dye in the tank reaches 50% of its original
value.

3. Determine an interval in which the solution of the given initial value problem is
certain to exist.

(8) o/ +sin(t)y = cos(t), y(0) = 0;
(b) #(t— 1)y =y, y(1/2) = 1;
(c) log(t)y' +y = tan(t), y(2) = 5.
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3.3 week 5

319 Discussion Week 5

October 4, 2016

1. Compute the following partial derivatives.

(a) Oy(z3 + 2z + €%).
(b) 0z (3ye® + y?z?).
(c) Oy(cos(x) + 3log(z +y)).

2. The following problems involve equations of the form dy/dt = f(y). In each
problem sketch the graph of f(y) versus y, determine the critical points, and
classify each one as asymptotically stable or unstable. In each case, draw the
phase line.

(a) dy/dt =y +y°, yo < 0.
(b) dy/dt =¢e¥ —1
(c) dy/dt =y(y —1)(y — 2),y0 > 0.

3. Determine whether each of the following equations is exact. If it is exact, find the
solution.

(a) (zlog(y) +zy) + (ylog(z) + zy)y’ =0
(b) (92° +y—1)— (dy — )y’ =0
(c) (e*cos(y) + 3y + 2x) 4+ (3x — e sin(y) + 2y)y'.

162



3.4. week 7 CHAPTER 3. DISCUSSION

3.4 week 7

319 Discussion Week 7

October 18, 2016

1. In the following problems, show that the given equation is not exact, but becomes
exact when multiplied by the given integrating factor . Solve the resulting equa-
tion.

(a) y+ 2z —ye’)y' =0, u=y;

(b) 2*y® +a(1+y*)y =0,n= 5.

2. Use Euler’s method to find approximate values of the solution to v’ = 3% +t, y(0) =
latt=.5with h=.1

3. In each of the following problems, find the general solution to the given equation:

(a) ¥+ 3y — 10y = 0;
(b) y"+y —y=0.

163



3.5. week 8 CHAPTER 3. DISCUSSION

3.5 week 8

319 Discussion Week &

November 1, 2016

1. In the following problems, find the solution to the given initial value problem.
Describe the behavior of the solution as t increases.
(a) 2y" =3y +y =0;y(0) =2,4/(0) = 1/2.
(b) ¥ —y — 2y =0;y(0) = —1,4/(0) = 2.
(c) ¥"+3y =0;y(0) = —2,y'(0) = 3.

2. In each of the following problems, compute the Wronskian of the given pair of
functions.

a

)
b)
()
(d) e®sin(x ) e’ cos(x).

tan(t) cos(t)
log(z), x3
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3.6 week 9

319 Discussion Week 9

November 1, 2016

1. In the following problems, find the general solution to the given differential equa-
tion.
(a) ¥ — 6y +9y = 0;
(b) ¥ +4y' + 4y = 0;
(c) 49" +4y' +y=0.
2. In the following problems, find the general solution to the given differential equa-
tion.
(@) ¥'—y —2y=1t-1;
(b) y" — 2y — 3y = 3¢
(c) ¥ + 2y + by = 3sin(2t);
(d) "+ 2y =3+ 4sin(2¢).
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3.7. week 10 CHAPTER 3. DISCUSSION

3.7 week 10

319 Discussion Week 10

November 9, 2016

1. In the following problems, find a particular solution to the given equation using
the method of variation of parameters, as well as the method of undetermined
coefficients.

(a) 4y" — 4y +y = 16€t/?;
(b) ¥ +2y +y=3e""
(c) ¥"+2¢ +y=te.

2. In the following problems, find the general solution to the given differential equa-
tion.

(a) ¥ +y=tan(t),0 <t < 7m/2;
(b) y" +4y = 3csc(2t),0 < t < 7.
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3.8 week 11

319 Discussion Week 11

November 15, 2016

1. In the following problems, find the general solution to the given differential equa-
tion.

(a) " +4y =3csc(2t),0 < t < m;

(b) y" + 2y = 3+ 4sin(2t);

(€) ¥ +2 +y=te;

(d) " + 16y = g(t), where g(t) is an arbitrary continuous function;

(e) t>y" —2y =3t —1,t > 0, given that t* and t~! are solutions to the equation
t2y" — 2y = 0.
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3.9 week 13

319 Discussion Week 12

November 28, 2016

1. Compute the Laplace transform of the following functions:

(a)
(b)
()
)
)

cosh(bt), where b is some constant;

sinh(bt), where b is some constant;
t;
(d) t

(e) cos(bt), where b is some constant (Hint: cos(bt) =

cosh(bt), where b is some constant;

it e~ bit ):
2 I

(0 f(t)—{t’ el

1, 1<t<o0.

2. Compute the inverse Laplace transform of the following functions:

3 .
(a) 2440

2s+1 .
(b) 52—823—1—2’

(C) (5_41)3 .
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3.10 week 14
319 DISCUSSION WEEK 14

(1) In the following problems, express the given function in terms of the functions

u(t), then compute its Laplace transformation.

1, 0<t<1
(a) f(t)=<20, 1<t<?2
2, t>2;
1, 0<t<1
(b) f(£) =43, 1<t<?2
0, t>2;
2, 0<t<?2
(©) f(t>={1’ oo

(2) Solve the given initial value problem using the Laplace transformation.
(a) ¥ +2y +y =4e7",y(0) = 2,5/(0) = —1;

(b) y" — 2y + 2y = cos(t),y(0) = 1,4/(0) = 0;

t, 0<t<l1

NSIROREORT

@)M+y={
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4.1 Final exam, Dec. 22, 2016
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