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CHAPTER 1. INTRODUCTION

Took this course in Spring 2015 to learn a little about mechanics.

Instructor: professor [Stefan Westerhoff] Office hrs: During the fall semester, office hours
are Wednesdays 1:30 to 3:30 PM

class web page



http://www.physics.wisc.edu/people/stefanwesterhoff
https://learnuw.wisc.edu/

1.1. Syllubus

CHAPTER 1. INTRODUCTION

1.1 Syllubus

Classes:

Discussion Section:

Instructor:
E-mail:
Office:

Office Hours:

TA:

E-mail:

Textbook:

Homework

Mechanics
Physics 311
Fall 2015

Monday, Wednesday, Friday 11:00 am - 11:50 am
Van Hise 494

Session 1 (DIS 303): Thursdays 1:20 pm - 2:10 pm
Chamberlin Hall 2108

Session 2 (DIS 301): Thursdays 2:25 pm - 3:15 pm
Van Vleck B235

Stefan Westerhoff

stefan.westerhoff@wisc.edu

Chamberlin Hall, Room 4209

Wednesdays 1:30 pm - 3:30 pm, or by appointment
(no office hours on Sep. 9 & Oct. 14)

James Hanson
jehanson2@wisc.edu

S.T. Thornton, J.B. Marion,
Classical Dynamics of Particles and Systems,
5t Edition, Brooks/Cole, 2004

Homework is assigned each Friday to be handed in 7 days later in class. Teamwork is en-
couraged in solving the homework problems, but the write-up must be entirely your own
work. Homework and exam solutions will be posted on the course page which is accessible

via LearnQUW.

Examinations and Grades

There will be two in-class midterms and a final exam. Final grades will be based on the
midterms (20 % each), the final exam (40 %), and the homework (20 %).

Other Helpful Books

(1) L.D. Landau & E.M. Lifshitz, Mechanics, 3'9 ed., Butterworth-Heinemann, 1976
(2) V. Barger & M. Olsson, Classical Mechanics: A Modern Perspective, McGraw-Hill, 1973
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Class Schedule

Sep 2, 4

Sep 9

Sep 11
Sep 14
Sep 16, 18
Sep 21

Sep 23

Sep 25, 28
Sep 30, Oct 2
Oct 5

Oct 7

Oct 9, 12

Oct 14

Oct 16

Oct 19, 21, 23

Oct 26, 28
Oct 30
Nov 2, 4

Nov 6
Nov 9, 11

Nov 13
Nov 16
Nov 18
Nov 20
Nov 23, 25
Nov 30

Dec 2
Dec 4, 7

Dec 9, 11
Dec 14

Dec 17

1. Newtonian Mechanics.
—— Introduction. Newton’s Laws.

2. Lagrangian Mechanics.

—— Motivation. Principle of Least Action.

—— Euler-Lagrange Equations.

—— Lagrange Equations of Motion.

—— Conservation Laws. Mechanical Similarity.
—— Lagrange Multipliers.

3. Oscillations.

—— Equilibrium. Free Oscillations in One Dimension.
—— Damped Oscillations. Phase Space.

—— Forced Oscillations.

—— Nonlinear Oscillations.

4. Gravitation and Central Force Motion.
—— Gravitational Fields.

—— Tidal Forces.

Midterm 1

—— Two-Body-Problem.

—— Kepler’s Laws. Stability of Orbits.

5. Systems of Particles.

—— Elastic Collisions. Inelastic Collisions.
—— Motion of Bodies with Variable Mass.
—— Scattering in a Central Force Field.

6. Noninertial Reference Frames.
—— Langrangian and Equations of Motion in Noninertial Frames.
—— Motion Relative to the Earth. Foucault Pendulum.

7. Motion of a Rigid Body.

—— Rigid Bodies.

Midterm 2

—— Inertia Tensor.

—— Principal Axis Transformation. Parallel-Axis Theorem.

—— Equations of Motion. Euler Angles.

—— Symmetric Top in a Gravitational Field. Stability of Rotation.

8. Coupled Oscillations.
—— Two Coupled Harmonic Oscillators.
—— Systems with N Degrees of Freedom.

9. Hamiltonian Dynamics.
—— The Canonical Equations.

—— Virial Theorem.

Final Exam (5:05 pm - 7:05 pm, room TBA).
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CHAPTER 3. EXAMS

3.1 first midterm

3.1.1 practice exam

3111 questions

Mechanics
Physics 311
Fall 2012
Midterm 1 (October 5, 2012)

There are 50 minutes permitted for the complete examination. Do not discuss the exam
at any time. Answer the questions in a transparent way. For partial credit you must show
your work. The exam is closed book, but you are allowed to bring one letter size note sheet
which must be an original copy (no Xeroxes) in your handwriting. Calculators, computers,
cellphones, or any other electronic devices are not permitted.

Good luck !

Problem 1 (15 points)

Two blocks of equal mass M are connected by a cord of length I. One block is placed on a
smooth horizontal table, the other block hangs over the edge. The cord is heavy and has
a total mass m.

(a) (1 point) How many generalized coordinates are needed to describe the system?

(b) (6 points) Determine the Lagrangian of this system.

(¢) (6 points) From the Lagrangian, obtain the differential equation(s) governing the motion
of the system.

(d) (2 points) Find the acceleration of the blocks in the special case that the mass of the
cord can be neglected (m = 0).

...continued on next page...
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3.1. first midterm CHAPTER 3. EXAMS

Problem 2 (15 points)

An object of mass m slides on a horizontal, friction-free table. A light, inextensible string,
which passes through a small hole in the table, attaches the mass to a second body of mass
M. The second body hangs below the table as shown below.

(a) (1 point) How many generalized coordinates are needed to describe the system?

(b) (4 points) Determine the Lagrangian of the system.

(c) (5 points) Determine the differential equation(s) governing the motion of the system.
(d) (3 points) For the special case that r is constant, solve the resulting equation(s) and
interpret your results.

(e) (2 points) What are the integrals of motion for this system?

11
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3.1.1.2 my solution to practice exam
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3.1.1.3 key solution to practice exam
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3.1. first midterm CHAPTER 3. EXAMS

« /

Problem 1

Consider a small ball of radius s and moment of inertia I rolling off of a
sphere of radius R. At what angle does the ball leave the surface of the sphere if
it is gently displaced from the top (i.e. total energy is equal to potential energy
of a stationary ball at the top)?

A lot of the new difficulty of this problem (relative to the particle sliding off
of a sphere) comes from setting up the constraints correctly.

The Lagrangian (without constraints) is given by:

%m(f2 +1%6%) + %Iéﬁ? — mgrcos 6

The distance from the center of the big sphere to the center of the small
sphere is R + s, so the natural constraint for that is r = R + s. We also need
to constrain the rolling of the ball relative to the motion of the ball along the
sphere. The simplest constraint that will work is setting the arclength along
the ball to the arclength along the surface of the sphere, i.e. RO = s¢ (I was
being overly cautious when I said that this wouldn’t work in discussion). So
the constraint function is given by Ai(r — R — s) + A2(R8 — s¢) and now our
equations of motion become:

mi — mr6? + mgcosf + A =0

m(r?0 + 2r#f) + mgrsind + \yR =0

“ I$—Aas=0

With some substitutions from the constraint equations and their time deriva-
tives we can reduce this to:

—m(R + )6 + mgcosf + A1 =0

m(R + 5)%6 + mg(R + s)sin 6 + (g)zlé =0

And to completely solve this problem we need to use conservation of energy.
The Hamiltonian (total energy) of the system is given by

%m(i‘2 +726%)+ %Idlbz +mgrcosf = %m(R+s)20.2 + %I(géf +mg(R+s)cosf

And since the ball has been ’gently pushed’ from the top of the sphere we
have

%m(R+ s)? + %I(%)2 62 + mg(R + s)cos = mg(R+ s)

17




3.1. first midterm CHAPTER 3. EXAMS

The ball will leave the surface of the sphere when the constraint force (cor-
responding to the normal force) that keeps the radius fixed changes signs, i.e.
when \; = 0. So we have

m(R + s)§* = mgcos
Putting these two together we have
1_R 2] gcosf

1 2 _
[Em(R+s) +§I(;) m+mg(R+s)cos€-—mg(R+s)

[m(R +o)?+ 1(?)2 +om(R + s)2] cos0 = 2m(R + 5)2
2m(R + s)?
3m(R+ )2 + I(£)2

which you can see reduces to % when I = 0, consistent with the simpler
version of the problem.

cosf =

18
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Problem 2

The Lagrangian of a free particle in a magnetic field is given by L = %m(:ic2 +
.2 K . . . . .
9%) + q(AgE + Ayy), where A is the magnetic vector potential (whose curl is
the magnetic field). Consider the field given by A; = ay, Ay = 0. Find the
equations of motion and solve them. Find an integral of motion that is not
energy and confirm that it is conserved.

The Lagrangian in this case is given by

1 . . .
Em(a:2 +9?) + qoys
So the equations of motion are given by
mZ+qay =0
myj—qat =0
Let 8 = £ and note that we have %' + 8§ = 0 and therefore

T+ B2 =0

Which is the equation of a harmonic oscillator in . The same equation can
be derived for 4, so we know the solution must have the form

i = Acos(Bt + ¢)

¥ = Bcos(Bt + )

Plugging these into the original equations constrains A, ¢, B, and % relative
to each other. Assume without loss of generality that ¢ = 0, then you can show
that the solution must be of the form

= Acosft

y = Asin 8t

So integrating gives the full solution:

A
T = 1T+ — sinft

B

A
Yy="%0 — -Ecosm

For the integral of motion notice that the Lagrangian has no z dependence,

therefore the corresponding generalized momentum %% must be conserved.

a—L—de— o
or oy

19




3.1. first midterm CHAPTER 3. EXAMS

Plugging in the solution we got gives

mA cos At + qa(yo — g cos ft) = gawo

which is in fact a conserved quantity. There actually is an analogous gener-
alized momentum for y but it is less obvious why it should be conserved.

20
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Problem 4

Consider an anharmonic (or nonlinear) spring with potential energy V =
1kr? + Zar* (k,a > 0) spinning at some fixed angular frequency wo with a
mass at the end. What are the equilibrium positions of the system as a function
of wp and which equilibria are stable?

The coordinates in this problem are given by

T = 1 coswot
y = rsinwgt
with derivatives
T = 7 coswpt — rwp sin wot

Y = 7sinwpt + rwp cos wpt

So our kinetic energy is given by

T= %m(r’2 +r2wl)

And our Lagrangian is

4

L= %m(ﬁ2 +r2wl) - %kr2 - %ar

K,,, Giving equation of motion J

mi = —(k —wd)r —ar?

This is at equilibrium when # = 0 or in other words (k — wd)r + ar® = 0.

This is always solved by » = 0, but it is also solved by r = 4/ “—'?a_—k If
wg < k then these solutions are imaginary and unphysical. Although it’s a little
unusal relative to polar coordinates the way we set up the coordinate system
allows negative r, so both of the equilibria are physical once ¥ < w2, although
they look very similar. The stability of the equilibrium is determined by the
derivative of the force as a function of position, which is & (—(k—wd)r—ar®) =
—(k —w?) — 3ar?. At r = 0 this is negative (and therefore stable) when w2 < k
and positive (and therefore unstable) when k < wg. At the other two equilibria
we have —(k — wg) — 3a“'—gﬂ_—k = 2(k — w3). So these equilibria are stable only if
the r = 0 equilibrium is unstable, i.e. when w2 < k.

For the critical w? = k case we have mi* = —ar3 for the equations of motion.
The second derivative test fails to determine stability, since it gives 0, so we
need to consider the fourth derivative of the energy (the third derivative of the
force) which is —6a, which is always negative and therefore stable.

21
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Problem 3

Consider a double pendulum (i.e. a rod attached to another rod by a hinge)
with both rods the same length £, where the inner rod is constrained to rotate
at a fixed angular velocity wp. What is the frequency of small oscillations of the
system if there is no gravity?

While it would be possible with constraints it would be simpler to set this
problem up directly in terms of the coordinates. The coordinates are given by
(where 6 is the angle of the second pendulum relative to some fixed vertical
axis) .

z = {(coswot + cos §)

y = £(sinwgt + sin 6)
The time derivatives of these are

& = —£(wo sinwot + fsin 6)

3 = £(wo cos wot + 6 cos §)

So our kinetic energy is (using the trig identity sinasinb + cosacosb =
cos(a — b))

T= %m(a’v2 +9%) = %mlz(é2 + w? + 2wof cos(8 — wot))

(i; And there is no potential energy since the system is somewhere where there’s )
no gravity (like space). So now we have the equation of motion is

me26—2me2wq sin(f—wot) (6 —wo ) +2me2wof sin(§—wot) = me2h+2me2w3 sin(f—wot) = 0

Now since we're free to change coordinate systems, a more transparent co-
ordiante system would be ¢ = 6 — wot, ¢ = 8 — wp, ¢ = 6. In these coordinate
we have

m82$ + 2m22w§ sing =0
Which we know from experience is the equation of motion of a pendulum.

In particular in the small ¢ approximation this becomes

meé + 2m£2wg¢ =0

d+2ip=0
So the frequency of small oscillations is given by w = v/2wp. This form
makes sense in terms of dimensional analysis. We could have figured out at the

beginning that that answer needed to be of the form w = #wo for some fixed
number #.

3.1.3 First midterm

First midterm was hard. We only had only 50 minutes, 2 large problems with many parts
each.

22




3.1. first midterm CHAPTER 3. EXAMS

3.1.3.1 questions

Mechanics
Physics 311
Fall 2015
Midterm 1 (October 14, 2015)

There are 50 minutes permitted for the complete examination. Do not discuss the exam at any
time. Answer the questions in a transparent way and explain your answers. Just providing
the final answer is not sufficient - you must explain how you got there! For partial credit, you
must show your work.

The exam is closed book, but you are allowed to bring one letter size note sheet which must be
an original copy (no Xeroxes) in your handwriting. Calculators, computers, cellphones, or any
other electronic devices are not permitted.

Good luck !

Problem 1 (15 points)

A bead slides along a smooth wire bent in the shape of a parabola z = cr?, where c is a constant.
The wire rotates with angular velocity w about the vertical symmetry axis and is placed in a
uniform gravitational field g parallel to the axis of rotation.

(1) (6 points) Find the Lagrangian for the bead using  as generalized coordinate.
(2) (6 points) Find the differential equation of motion.

(3) (3 points) Find the value of ¢ that allows the bead to rotate in a circle of radius R with
constant angular velocity w.

...continued on next page...

Problem 2 (15 points)

A simple pendulum of mass m and length ! is attached to a mass M that is free to move in a
single dimension along a frictionless horizontal surface.

(1) (5 points) Find the Lagrangian of the system.

(2) (4 points) From the Lagrangian, obtain the differential equation(s) governing the motion of
the system.

(3) (2 points) What are the integrals of motion for this system?
(4) (2 points) Determine the motion of the pendulum in the limit M > m.

(5) (2 points) How do we need to move M so that the pendulum hangs “motionless” at some
constant angle 6.7 Determine 6,.

23
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CHAPTER 3. EXAMS

3.1.3.2 Kkey solution to first midterm
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3.1. first midterm
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CHAPTER 3. EXAMS

3.2 second midterm

3.21 practice exam

3.211 (questions

Mechanics
Physics 311
Fall 2012
Midterm 2 (November 16, 2012)

There are 50 minutes permitted for the complete examination. Do not discuss the exam
at any time. Answer the questions in a transparent way. For partial credit you must show
your work. The exam is closed book, but you are allowed to bring one letter size note sheet
which must be an original copy (no Xeroxes) in your handwriting. Calculators, computers,
cellphones, or any other electronic devices are not permitted.

Good luck !

Some formulae:

2E0?
U(r):—g D1 tecoso e= 3
r r ma
=t m=2 T -
ma 2a G(my +mo)

Problem 1 (15 points)

A moving particle of mass m; collides elastically with a target particle of mass my which is
initially at rest. If the collision is head-on, show that the incident particle loses a fraction
4m/M of its original kinetic energy, where m is the reduced mass and M = m; + mo.

...continued on next page...
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Problem 2 (15 points)

Two spacecraft (A and B) are in circular orbit about the Earth, traveling in the same
plane in the same directional sense. Spacecraft A is in low Earth orbit and spacecraft B
is in geosynchronous orbit. The astronauts on board spacecraft A want to meet those on
spacecraft B. To do so, the astronauts on A must fire their propulsion rocket and change
the speed of A from v; to v, when spacecraft B is in the right place in its orbit for each
spacecraft to reach the rendezvous point at apogee at the same time (see figure).

(a) (8 points) Show that the required speed boost for spacecraft A is

Vg 2rp

U1 TA+TH

where r4 and rg are the radii of the initial circular orbits of the two spacecraft.

(b) (5 points) Show that the time T it takes spacecraft A to reach apogee is

3
T— T <TA+TB>E
VGM 2 ’

where M is the mass of the Earth. What approximations did you make?

(¢c) (2 points) Show that in order for A and B to meet at apogee,

T
—180° (1 — —
b = 180 ( 12) ’

where T is in hours.

apogee

3.2.1.2 my solution to practice exam

3.21.21 Problem1l SOLUTION:

!/
U10m
V1 ¢
o—» © -
mi ma ¢
ate)
Vg mo
Before collision After collision

Conservation of Linear momentum gives

My = M0} + mpvy

28
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Conservation of energy gives
1 1

Emlv% =5 (0’1)2 + %mz (vé)z +Q

But since this is elastic collision, then Q = 0. Hence the above becomes
2 2
myof = my (o) + my (v5) (2)
The goal now is to eliminate v, from (1) and (2) and solve for v] in terms of v; to be able
to answer the question. Let % =y, then (1,2) can be written as
1

v = 0] + Y0, (A1)
2 2
v? = (Ui) +y (vé) (A2)
We now move the m; terms to one side,
V] — U] = YU, (C1)
2 2
vt - (21) = () (C2)
Dividing (2) by (1), using long division (this step is tricky, must be careful), gives
2
d-()
7 T
01—
v+ 0] =0, (3)

We now replace v in (C1) with what (3) giving
v -] = 7/(01 +vi)
U1 =YL = YU+
vl(l—y) =v’1(1+y)
(1-7)
(1 + y)

We achieved our goal of finding v] in terms of v;. Now to answer the question. The question
is asking to find

(4)

v =101

T, - T}
- (5)

Which is the fraction of kinetic energy loss of 7;. So now we calculate the above, and see
if it gives the answer we are asked to show.

A=

L 1m(0’)2
_Mmurm

1
Emlv{‘
2
v? - (vi)
ot
Using (4) into the above gives
2
o (. (=)
. (vl (1+y))
A= 2
U
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But y = =2, expanding the above gives

ml’

(m% +m3 + 2m1m2) - (m% +m3 - 2m1m2)

(my + m2)2
Simplifying
4mqmy
(my +my)
MMy 1

©(my + my) (my + my)

But m = % which is the reduced mass, and M = m; + m,. So the above becomes
1 2

A_4m
M

Which is the result we are asked to show.
3.21.2.2 Problem 2 SOLUTION:
Part(a)

Let v; be the speed in the lower circular orbit. Let v, be the speed at the perigee just after
speed boost. Let GM = u. Since

30



3.2. second midterm CHAPTER 3. EXAMS

raAtr v
Where a = 22 then 0—2 can now be evaluated
2

N 2 /7
il
A
2 2
= v _——
A ¥p ra+7p

21’A

= .2 -
ra+7p

_ [2(ratrp) =21y
a Ypa+71p

21’3

ra+71g
Part(b)

Using the period for an ellipse given in the formulas and dividing this by half, since we
are looking for half the period, then

a3
T, =ny| =————
P G (ml + Mearth)

rA+TB 3
()
G (m1 + Me)
Assuming the mass of the satellite (177) is much smaller than M,,,,, then the above becomes
T, - T (r A+ 1g )3
GM, 2

Part(c)

The time it takes B to travel one circle (27) is

3
T. =27 B
¢ \JGM

Therefore, the angle B travels during T, is found by the equating the ratios

om 2T GM
— o
a T,
But 6y = m - a (assuming the diagram given, where « is the angle between B and the

apogee, while 0 is the angle between B and the perigee). Therefore we use the above to
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solve for 6,

T — 60
T, _
71— 0 GM
GM
m—=0p=Tpy[—5-
"B
GM
60 =T — TP r_3
B
T (r A+ 7B )3 GM
=7 — 3
GM, 2 3
Therefore
Fa+rg\
6y = |1 -4/ 22
27’3
3.21.3 key solution to practice exam
Mednanic s
'Ph.:,«.u 3) - Fall 2012
Midresm 2 - Solubong
4. enievahon 6% Momentum MV, = MY+, v,
L] " (2
" ilm' it :'l. M'Vn“ * ?','Ml V:'l
-1 L t W
'(:r'r. - z ™MV, -;‘m.\/, . MtV,_'L
' TVt ™M, vt
2:«.\ Vl: '.

\ 2 \
- m T - m
2 Ivb z_M. (v.—_—'

2
) | "
Vz) r3M Y,
=2 mvtal ™ 1
= 3 m, 1 2
2 V‘ +2M'(—:Vl')

™M '
- MV, ."_\?'vl *J'Mlvz'l
L

2
&) 0=-M2V,Vl'+5‘_,“z(|*%})vz.z
se Vv, = 2% M,
M4+ tny
1, -%'

kS
s & V_“._ L m
1, ™M, v2 M (mrmy)

So t-\‘&\ “=N\*M‘
)

Gak  me My 1T 4m
M . Tm W
=
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2. (&) Bist, we need e velowh of A in L€0

ties

Mol

f‘ = ?‘59 s

ond withn Ly mr,y,

T LY [}
Ta - LR PR % \/,’: oK
™~ oo ™M Ta

fext, We Needk vhe velout of A ©n +he ellpheat 4Avaas Lo

oshi}y ot (u“ﬁ“'

T
TA = ?'_ l'_ 1}

=
l+ e ™M ok 1+

Onll Ovtn ‘et =My V,

LT S
\’A s ™A v, ! = V:: s (l+¢.§
~m ol 1te LARY'Y
2
So \_‘," = l+e
\Ad
Q-r ec«.nh\'c.'h, e, )4.)._ 2a = \'An’e r$=(|+._)o.,
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i o B, "/ 4
) fq+t“
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(b) e Kme of dansfes s a kd!-(nn'od of e ellphiear

oy Qe ©1brt
& 2
Keples 2 Teaw (i e agpronivation
M+ mE M )
So 'f:‘ i'rA = _‘. 2"" 3’2

Y
P
X

®

P (fars ) w

360°
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3.2.2 Review Problems by TA
3.2.2.1 questions

311 Midterm 2 Review

November 12, 2015

1) (a) Since we often visualize precesssing orhits as elliptical orbits with a rotating apogee (really
this is only an approximation) it’s natural to wonder what kind of force gives these orbits precisely.

Show that the force law that gives rise to orbits of the form

a(l —e?)

@) = 1+ e cos(B8)

Note that this gives an apsidal angle of 1) is of the form

k
F(r):fﬁfi

73

(b} Newton originally considered this problem to analyze precessing orbits. Show that not only is
it true that r(7) = ro(FF) where ro(?) is an ordinary gravitational orbit, but in fact r(t) = ro(f) and
A(t) = B0, (t) where r(t) and 6(¢) are the trajectory as a function of time of the precessing orbit and
ro(t) and 0y (t) are the trajetory as a function of time of an ordinary orbit {you can work backwards,
starting from the trajectory and showing that its acceleration corresponds to the force law found in
part {a). This fact is not actually special to gravitational orbits; Newton showed that you can speed
up the angular velocity of an arbitrary orbit in an arbitrary central potential by adding a carefully

chosen % force).

2) (a) Suppose that you are in a spaceship that s trapped at the center of a uniform spherical
cloud of dust with density p and radius E. What is the escape velocity of this configuration (i.e. what
i3 the minimum velocity you would need, starting from the center of the cloud, to escape to infinity)?

{b) You do not have encugh fuel to escape the clond, but you have managed to achieve a circular
orbit of radius 79, You see a dereliet spaceship that may have more fuel at a larger civcular orbit {still
inside the cloud) of radius 1. What dv do you need to achieve an elliptical transfer orbit from radius
ro to radius 1?7 {Note that gravity inside the dloud is of the form F(r) = —kr for some constant k so
orbits are centered ellipses.)

{¢) Show that the energy of the transfer orbit is the average of the energies of the two circular

orbits.
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3) You encounter a strange central foree with potential
V(r) =k(r —a){4r? — 1lar + 9a2%)

For what radii are circular orbits stable? Is the creular orbit with radius 7 = a stable? Why or

why not? You may have to graph the effective potential to answer this question.

4} (a) Two spheres of mass m and me and radius 71 and 7o start off at rest in space a distance of
d apart {(center to center). Determine their speeds and positions when they collide.
{b) The two spheres are chemically reactive and explode a little bit. Determine the coefficient of

restitution (> 1) necessary for the objects to achieve escape velocity.

3.2.2.2 key solution to review problems

311 Midterm 2 Review Solutions

November 14, 2015

1) (a) We need the Binet equation

We have that the orbit is

1 1+4ecos(Bh)

D)

d? ( 1\ —Bccos(B0)
ra W) T a(l—e?)

\

S0 we get

dez \r -

a2 /1 1 B2 1+ ecos(B8)
< >+?’a(1752)+(1’ﬂ2’ a(l — £2)

B La-;!
T a(l-¢?) +d - )7‘
And
B B2 a-pe
) = Ta(l—eDmr2 mrd

Now since y = 80 (there was a typo in the problem) we have 8202 = (2 where £p is the angular momentum of
f 24! it 0 8!

the original we have

k @
L
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(Typically this theorem is stated in terms of S~ rather than §.)

(b} For an ordinary particle in a gravitational potential we have

k

T

1 . ;
Lo = am('rg +r262) +
The equations of motion are

ok
miy — mrgl? 4+ — =0
7o

mrgéo + 2mT0T'090 =0
For the precessing orbit we have

4

2mr?

1 . ; k _
L= m(ig+ 3+ — (157
The equations of motion are

m?"fmrt‘)2+£7 (17572)ﬁ =0
72 mrs

mrf + Imrif =0

Making the substitation 7o — 7 and 8y — 80 clearly leaves the seeond equation of motion unchanged so we only
need to check the first equation of motion. The first equation of motion for both orbits with the effective potential

is

. 23 k
mig — —03 +5=0
o
2 k A
o R gt g
[ — + r2 (1-s )mrs
And then since 8202 = 2 we get immediately
k8 > € > 4
mi 4+ — — =g =0
R— 5 mer3 5 mrd
2
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Confirming the solution.

2) (a) We know that the gravitational force on an object near a spherical mass of radius R and uniform density

p is given hy

* r<R
F(T):fam’rijw(?‘)zim r r

: 3 | B Rar

So to get the potential energy (and then the escape velocity) we need to integrate:

UGy = — /Too F(r)dr

92 r2-3R? r<R
= gTerp .
—2&  R<r

Which tells us that the potential energy at r = 0 (with U(co) = 0) is
U(0) = —2rGmpR?
So escape velocity is the velocity which gives a kinetic energy equal to —U(0) or more specifically

v =+/4drGpR

b) The easiest way to do this problem is to remember that the equations of motion for a particle in an
¥ ¥ 1 I
F(r) = —k,r force separates in Cartesian coordinates (md = —ksz, miyj = —kyy). So the centered elliptical orbit of

a particle in such a central force has z and y eoordinates that are just oscillatory:

r = xgcoswt
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Y = Yo sinwt

{where we chose our coordinate system so that the sine and cosine would be simple.) A transfer orbit in this

case would be of the form

8
|

= rg coswt

y = 7y 8inwt

So that the perigee/semi-minor axis (these are the same thing when F(r) = —ksr) is the radius of the smaller
orbit and the apogee/semi-major axis is the radius of the larger orbit. The y velocity in the circular orbit (y =

rosinwt) at the perigee is

And the v velocity in the transfer orbit at the perigee is

4
v; =rw= 7‘1\/§7TG;7

So we get just

dv = brq/ %WG)O

(¢) The total energy (setting U(0) = 0 now for convienence, but this doesn’t change that the transfer orbit

energy 15 the average of the two circular orbit energies) of the smaller circular orbis is
Ey = 2muwrg = 8 Gmpr?
0 = 2mwry = grGmprg

and likewise

8
2 7Gmpr?

Ey = 2muw*r? = 3

For the transfer orbit notice that B =T+ V = m(v2 + v2) + $k(a? + y?) = mu? + Fha? + fmo2 + Sky?
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And since x; = ¢ and y; = y1 and for a circular orbit %mvz + %kzg = %mvg + %kyg = %E we get the required

result

B, = %WGmp(Tg +73)

3) To check stahility we need to look at

3 V') 3 3(5a — 4r)

7 V() v 10a%— 15ar + 672

_ 30(a—r)*
~ 7(10a2—15ar{672)

The polynomial 10a® — 15ar + 6r2 is always positive for positive a and r (the easiest way to see this without
plotting is to calculate the minimum value for a fixed a).

So we have that circular orbits are stable except at r = o where the quantity exactly vanishes. The stability test
is inconchusive. To look at the effective potential for the r = a orbit we need to figure out the angular momentum.
The force is given by

F(r) = —U'(r) = —2k(10a% — 15ar + 672)
Soat r=a
F(a) = —2ka?
So we have an angular velocity given hy m62a = 2ka? and the angular momentum is
2 =m0 = 2kma®
So the effective potential is

5
Uess(r) = k(r — a)(4r? — 1lar 4 9a%) + k%

(As a sanity check note that the units are consistent.) Plotting this (with a = 1) and looking near a we have
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Which looks very flat at a (which is to be expected since the second derivative is 0), but still clearly should

correspond to a stable orbit, which it does, since the 4th derivative is positive:

5
UL = 120655 >0

4) You ean determine the speeds with conservation of energy and momentum and you can determine the position

with the fact that the center of mass is stationary (which is a consequence of conservation of momentum):

Gmyme
B, = TTame
0 d
1 1 Gmym,
5, e o Lo o GG
! 2m1v1 * 2m2v2 71+ 7o
P=0

Py =myv1 +mave
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Which can be solved to give

Qmas

— AU
my(ma + ma)

vy ==+

2m1

ma(my + ms)

vg =F AU

where AU = Gmymes (T}rm — %)

(I was lazy an solved this with Mathematica, but it is doable. A pro tip is that once you have one of v or v
you can immediately get the other by noting that the problem is symmetric between mi and ma, 80 you just need
to flip the labels and the sign.) The sign of the velocities doesn’t really matter, other than the fact that they need
t0 be in the opposite direction.

The center of mass is located at =22 —d away from my’s initial position towards mg. When they collide there

my+my

my

R (r1 + 72) away from my’s final

is a total distance of 71 + 72 between them, so the center of mass is located

position towards me, 50 my is %(d — 71 — T2) away from its initial position towards me and by symmetry

is %(d — 71 — 7o) away from its initial position towards my. As a sanity check note that the total distance

. sheres g 2 my _ hich makes sons
traveled by both spheres is Ty, (d—r1—m2) + o (d—71—172) = d —r1 — re, which makes sense. If ma > my
we get that mq travels d — r1 — r2 and mg doesn’t move, which also makes sense.

(b) By conservation of momentum we have
Y !
mv] = —Mgvs

In order for both objects to escape (by the constancy of the center of mass, if one object escapes the other must as
well) the total energy needs to be 0. So we have
o Grumg

1 p 1
SMavy + Smevy
1+ 72

2 2

=0

Solving these two equations gives

—2molJ
my(mey + ma)

ma(my + ma)

42



3.2. second midterm CHAPTER 3. EXAMS

_ Gmymg
r1+7T2

where U = . T chose the signs so that the solution would make sense relative to the sign choice i the
first part (if you choose v1 and v{ to both be positive that corresponds to mq and me somehow shooting past cach
other after the explosion.)

The coefficient of restitution is the ratio of the relative speed before and after the collision. So in this case we

get

|/ AU - e AU

€ = ‘

—2m, U _ —2maU
ma(my+ma) mi(mit+ma)

VAT

my _ jmy
my my

V=0

my g
ey kst
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3.2.3 Exam, Nov 16, 2015
3.2.3.1 questions

Mechanics
Physics 311
Fall 2015
Midterm 2 (November 16, 2015)

There are 50 minutes permitted for the complete examination. Do not discuss the exam at any
time. Answer the questions in a transparent way and explain your answers. Just providing
the final answer is not sufficient - you must explain how you got there! For partial credit, you
must show your work.

The exam is closed book, but you are allowed to bring one letter size note sheet which must be
an original copy (no Xeroxes) in your handwriting. Calculators, computers, cellphones, or any
other electronic devices are not permitted.

Good luck !

Problem 1 (15 points)

A neutron in a reactor makes an elastic head-on collision with the nucleus of a carbon atom
initially at rest. What fraction of the neutron’s kinetic energy is transferred to the carbon
nucleus? (The mass of the carbon nucleus is about 12 times the mass of the neutron.)

~ ...continued on next page...

Problem 2 (15 points)

The orbit of a particle of mass m in a central force field F(r) is a circle passing through the
origin, )
r(0) = rocosf 0€l-n/2,7/2] ,

where r is the distance from the center of the force, 8 is the angular displacement, and ry is the
distance from the center of the force at 8 = 0, i.e., the diameter of the circle.
(1) (5 points) Using the equation of the orbit

2 1\ 1 mr?

-~ (= =_"_F

d6? (r) t: £2 ™) v
where £ is the magnitude of the conserved angular momentum, show that the central force F(r)
varies like the inverse of the fifth power of r according to
2r2¢% 1

Fr)=- m 8

(2) (5 points) Find the potential energy U(r) corresponding to F(r), write the total mechanical
energy of the particle, and define the effective potential Ues(r). Sketch the shape of Uess(r).

(3) (5 points) Does an inverse fifth-power force law allow stable circular orbits about the force
center? Argue qualitatively based on the sketch of Ugss(r) in (2), but also perform the calcula-
tion.
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3.2. second midterm

3.2.3.2 key solution

Mechanics
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3.3 Finals

3.3.1 practice exam

3.3.11 (questions

Mechanics
Physics 311
Fall 2012
Final Exam (December 17, 2012)

There are 120 minutes permitted for the complete examination. Do not
discuss the exam at any time. Answer the questions in a transparent way.
For partial credit you must show your work. The exam is closed book, but
you are allowed to bring one letter-size note sheet which must be an original
copy (no Xeroxes) in your handwriting. Calculators, computers, cellphones,
or any other electronic devices are not permitted.

Good luck !

—b+vb2—4ac

az? + bxr + ¢ = 0 has solutions = = oh

Euler Equations:
Liin— (I — L) waws =7y

Iywy — (Is — ) wswy = Ty
Iyws — (I — L) wywy =73

(Page 1 of 4)
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Problem 1 (15 points)

A chain of mass m and length L rests with (1 — a)L of its length on a table top and aL
of its length hanging over the smooth edge. The coefficient of friction of the tabletop is p.

(1) (5 points) What is the maximum value, «., for which the chain remains stationary?
(2) (10 points) If « is larger than a., when released the chain will slide off the table. What
is the velocity of the chain when the last link leaves the table?

Hint: to calculate the final velocity in (2), you can use the work-energy theorem: if one
or more external forces act upon a body causing its kinetic energy to change by AT, then
the work done by the net force is equal to AT

Problem 2 (15 points)

A particle moves with velocity vy on a horizontal plane on the surface of the Earth. Show
by explicitly solving the equations of motion in the non-inertial frame that the particle will
move in a circle and that the radius of the circle is

Vo

T 2w,

)

where w, is the vertical component of the Earth’s angular velocity vector . You may
neglect centrifugal forces.

Problem 3 (15 points)

A frisbee is thrown into the air in such a way that it has a small wobble. Air friction
exerts a torque —cd, where ¢ is a constant, on the rotation of the frisbee. Let x3 be the
symmetry axis of the frisbee (see below).

(1) (5 points) Use Euler’s equations to show that ws, the component of & in the direction
of the symmetry axis, decreases exponentially with time.

(2) (10 points) Show that the angle a between the symmetry axis and & decreases with
time if I3 is larger than I = I; = I;. This is the reason why frisbees work so well: air
friction diminishes the wobble for a flat (frisbee-shaped) object.

Hint: For (2), express « in terms of

Vw? + w3

w3

tana =

and use Euler’s equations to find a solution for w? +w3. Together with the solution for ws
from part (1), this should give

(11
tana = (tanayp) e Ct(’ ’3)
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Problem 4 (15 points)

Consider the simple model for the carbon dioxide molecule CO5 shown below. Two end
particles of mass m are bound to the central particle of mass M via a potential function
that is equivalent to two springs with spring constant k. Consider motion in one dimension
only, along the z-axis.

(1) (5 points) Determine the Lagrangian of the system.

(2) (5 points) Find the eigenfrequencies of the system.

(3) (5 points) Find the eigenvectors and describe the normal mode motion; i.e., find the
relative amplitudes of oscillations for the three masses for each normal mode.
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¥ inal Exam - &oh-\»'oms
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Z:‘m—\
= A - (|-o(‘_)/4=0
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/‘ L
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)= ? 9 - ‘{3 (L-x)g,/u
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L
Fox = 1m * = s
;[ ' [z z 3“‘"/-))( ]“L - IM%/-)(]“L

% M%(lf/«)[, (l-,“) - m«a/uL(l-.‘)

}
= % M‘/g"

=

Vo = 4 (1o (1-a1) L "2 i) L]
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2m Vx

So Ve = 2 Vg Wa (@)
\./5 =~ 2 \/y U& (l)
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» (\-/yf 1'\./.3) 2 (a)t(\/-‘—c'\/,)
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-2&‘(—\;‘
= V€)= v, e

Se
V,( (&\

w

Vo Cos(2uw,t)

Vo () = -V, Sia (203, 4)

Solue for  X[4) and (&)
. V.
% = XQ" 2—?‘)2 S-’l\(?.(.\zé)

9% e ?-_l/‘ié s (2w, ¢)

= the ohd'cd. Moved A & Licle tyty cadlny R
w\-\ug

/
L 1o (% N
R = (x-x)" 4 (44 ) = (2%)
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Prbolem 3
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T s - (£,-T) W, 0 0y =-cd,t
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1
&
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3.3.2 Offical finals, 2015
3.3.21 (questions

Mechanics
Physics 311
Fall 2015
Final Exam (December 17, 2012)

There are 120 minutes permitted for the complete examination. Do not discuss
the exam at any time. Answer the questions in a transparent way and explain
your answers. Just providing the final answer is not sufficient - you must
explain how you got there! For partial credit, you must show your work.

The exam is closed book, but you are allowed to bring one letter size note sheet
which must be an original copy (no Xeroxes) in your handwriting. Calculators,
computers, cellphones, or any other electronic devices are not permitted.

Good luck !

az? + bz + ¢ = 0 has solutions = = “ﬂ@
sin(a £+ ) = sinacos B % cos asin 3
cos(a £ ) = cos acos § F sin asin §

Euler Equations:
Loy — (I - B)wyws =7

Lo —(I3—Lh)wswi =7 .
Lws— (I —L)wiwy =73

(Page 1 of 4)
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Problem 1 (15 points)

You are charged with designing a pendulum clock for use on a gravity-free spacecraft. The
mechanism is a simple pendulum, i.e., a mass m at the end of a ma§slgss rod ?f length l hun_g
from a pivot, about which it can swing in a plane. To provide artificial gravity, the pivot is
forced to rotate at a frequency w in a circle of radius R in the same plane as the pendulum arm
(see Figure). amy=l Vel Al fSec

(1) (8 points) Determine the Lagrangian of the system. v . .

(2) (7 points) Determine the equation of motion.and shf)w that thg n}otlon of this pend.ulu}xln
is identical to the motion of a simple pendulum in a uniform gravitational field. What is the
strength of this field?

M yﬂ\ m
l
.,‘._s\ 0
/
I th\
\ ,’ X
\ »
\~_’

Problem 2 (15 points)

Consider a bucket of radius R that is spinning with a constant angular velocity w about the
symmetry axis, i.e., the vertical axis through the center of the bucket. Determine the shape of
the surface of the water in the bucket by deriving an equation which describes the shape as a
function of r, the distance from the center of the bucket.

chet
Problem 3 (15 points)

A rigid body is undergoing force-free rotation about one of its principal axes. In class, we showed
that in the case that all principal axes are distinct and I3 > I, > I, rotation about the x;- and

zr3-axes is stable, but rotation about the zy-axis is not. Now consider the case that two. of the -
moments of inertia are equal, ’11_3_12__

(1) (13 points) Is the rotation about the corresponding axes z; and z, stable or unstable? To
check this, apply a small pertubation to the rotation, for example

@ = w1 + A\Zg + uis

for the rotation about x;, where A(t) and p(t) are small quantities. Find the solution for A and
1 as a function of time. Do a similar galculation for the rotation about x;.

(2) (2 points) Does the answer depefid on whether I3 is greater or less than I; = I5?

A
"
Tz N twx A
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AR

O

. v
- \‘./
2

Problem 4 (15 points)

A thin hoop of radius R and mass M is suspended from a single point and oscillates in its own
plane. A point-like mass M is constrained to move along the hoop. The moment of inertia of
the hoop for rotations about the center of mass is Icp = M R2.

(1) (5 points) Consider small oscillations and determine the Lagrangian of the system. Neglect
all terms of order higher than quadratic in small quantities (6, ¢, ...).

(2) (5 points) Show that the two eigenfrequencies are

[2 [
wp = Eg, Wy = % .

(3) (5 points) Determine the amplitude ratios for the two normal modes and describe the oscil-
lation of the system for these modes. Identify the symmetric and the antisymmetic mode.

yl\
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3.3.2.2 key solution

Medhanics
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=) . .
L-= é ~m (7‘1-&;31)
= %M § LR Srt + 21 (6 4 Sint (0 tut)
- 2RW2 (6 +w) Sawt SalB+wt)
t LR ot it + £ (6+0) Gast(B v i)

+ 2RWE(6+W) Lot Coa(e-«-ut')}
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HWs

41 HW1
411 Problem1

1. (5 points)
A particle is projected with an initial velocity vy up a slope that makes an angle «
with the horizontal. Assume frictionless motion and calculate the time required for the
particle to return to its starting point. Find the time for vy = 2.4m/s and o = 26°.

SOLUTION

The vertical component of motion is only considered since that is the component that
changes due to the action of gravity.

|

. vg cos(a)

The equation of motion in the vertical y direction is given by F = ma. Hence

74

my"” = -mg
y'=-8
Integrating once gives
y -y (0) =gt

Where 1’ (0) = vgsin(a). The time for the particle to reach a final velocity of zero in the
vertical direction is now find by solving the above for ¢

y;inal = y, (0) -8t
Where y;; ., = 0. Solving the above for the time ¢ gives

0=vgsina — gt

vpsina
t= =
g

Hence the total time to reach back to its starting point is twice the above time, which is

total time =2 (UO S a)

8
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For o = 20 degree and v, = 2.4% and g = 9.81?2, the total time is found from

2.4 sin 20° )

total time = 2
9.81

=| 0.167 second

41.2 Problem 2

2. (10 points)
Two blocks of unequal mass are connected by a string over an ideal pulley (whose mass
is negligible and that rotates with negligible friction). If the coefficient of kinetic friction
is pg, what angle 6 allows the mass to move at a constant speed?

SOLUTION

The free body diagram is shown below for each mass.

A T T
positive /
T positive

A

I
2mg silﬂ/ I
|

|

2mg cos 6 :

mg
2mg

The acceleration of each body is the same. Let this acceleration be 4. From the above
free body diagram of the 2m body the equation of motion is now derived (using positive
direction as show)

ZF =2ma

2mgsin O — yFy—T = 2ma
Using Fy = 2mg cos 0 the above becomes
2mgsin 0 — py2mgcos 0 — T = 2ma (1)

The tension T in the string is found from the free body diagram of the smaller hanging mass
since the tension T is same. From the free body diagram of the small mass the equation of
motion is

Hence
T=m (a + g)
Substituting T in (1) gives
2mgsin 0 — p2mg cos 6 —m (a + g) = (2m)a
2¢sin @ — p2gcos 0 —g = 3a
Therefore

2 1
a=3 gsin@—ykgcosﬁ—ig
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For constant speed, 2 = 0 at some angle 6.. The above reduces to

2( . 1
3 (gsm 0. — uxg cos 6, — Eg) =0

sin 0, — uy cos 0, — 5= 0
sin @, — pgcos O, = % (2)
To solve this, the following identity is used
Rsin (6, + a) = R(sin 6, cos a + cos 6, sin a) (3)
Comparing the RHS of (3) with the LHS of (2) gives
Rcosa =1 (4)
Rsina = -y (5)

Dividing (5) by (4) gives tana = -y, or
a=tan™! (—yk) = —tan™! (yk)
Squaring (4) and (5) and adding gives

2

R?cos?a + R?sin®a =1+ pi?

R=1+u2
Therefore the equation Rsin (0 + a) = % becomes

1
wll+y%sin(66+a) =3

sin (BC —tan™! (,uk)) = ;
21+ 12

0. - tan™! (yk) = sin”! !

24/1 +y%

Therefore

_ il
0, = sin

1
— | +tan™! (pk)
21+ ?
1 1) =30°. As iy increases,

For the case of no friction, where p; = 0 the above gives 0, = sin~ (2

the angle O, will increase. (in the limit, as y; — o0, 0, — 90°). This is a plot showing how
the angle changes as yj increases.

Angle for constant speed vs. p
8orFr————m——m ————————

60

N
o

Out[40]=

6 (degrees)

N
o

.....................
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41.3 Problem 3

3. (10 points)
A small box of mass m is in contact with a large box of mass M as shown in the picture.
A force F pushes on the large box. Because of friction, the small box will not fall if F
is large enough. How large does F need to be? Take into account all frictional forces
and assume that the coefficients of friction at all surfaces are u, for static and puy for
kinetic friction.

SOLUTION

Looking at the case where the small mass m is not moving (not sliding down the side), and
considering both M + m as one body. Let the horizontal acceleration of both bodies be a

m

E F,=(M+m)a
F—uyM+m)g=(M+m)a
_ F- M +myg (1)
(M + m)
The small mass m is now considered. The static friction force between m and M has to be

larger than the weight mg so that m does not move and fall. This implies f, = u,N must
be larger than the weight mg

This is the static fric-
tion. Maximum value of
this friction force must
be larger than the weight
mg to keep the mass from
sliding \

\

1 ey

ps N ’}
9

This implies the following condition is required

uN = mg (@)

Where N is the normal force on m. But
ma=N

From (1) we find

_ (- uM+m)g
N‘m( M +m) )
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Therfore (2) becomes

/M4PﬂMM+wﬂzm

(M + m)
Hence
F— (M +m)g > 5(M+ m)
S
F> 5(M+ m) + p(M + m)g
S
1
> (M+ M)g(— + ‘le)
Hs
Hence

F>M+ m)g(ltl—syk)

41.4 Problem 4

4. (5 points)
Show that the terminal velocity of a falling object is given by

1
_ (M9 (N ()
Ut—[( CQ)+(262> ] 202
if the drag force F, has both a linear and quadratic term in v:

F,=c1v+ cyv?

SOLUTION

From the free body diagram

F, = c1v + cov?

The equation of motion is
E Fy — my//
mg — (c1y’ + co(y'?) = my”

At the terminal velocity the body is not accelerating. Setting y”” = 0 in the above gives an
equation to solve for the terminal velocity (where now y’ is written as v;)

mg = (c10; + ¢07) = 0
0?7 + c1oy —mg =0
This is a quadratic equation in v;, hence the roots are given by

-b  Vb?-4ac

Oy = — +
2a 2a
_ o, \[CF + 4cymg
- 2C2 o 2C2
—C c 2 m
_a, (o) me
2C2 2C2 Co

Since the terminal velocity v; has to be positive as indicated in the diagram above, then
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the solution is the positive root given by

2
= a s
Ut - 2C2 + (202) + Cy

41.5 Problem 5

5. (10 points)
A projectile is fired with an initial velocity vy = 500m/s in a direction making an angle
a = 30° with the horizontal. We want to study the effect of air resistance on the range
of the projectile. Assume that the drag force has the form F, = kmwv, where m and v
are the mass and velocity of the projectile and & is a constant.

(1) Solve the equations of motions and determine the time 7" required for the full tra-
jectory.

(2) Use a computer to draw the trajectories of the projectile for £ = 0 (no air resistance),
k = 0.001, £k = 0.01 and k£ = 0.1. From your plots, estimate roughly the range for the
different k.

SOLUTION

4151 Part (1)

The following is the free body diagram used to solve this problem.

‘ FBD for vertical motion ‘

p] kmy'(t) »
Vo sina / # positive
/ A
/ |
|
/ «a _ |
Vg COS (v mg

‘ FBD for horizontal motion

km x/(t)<_O

,,,,, » Positive

In the vertical direction, with positive taken upwards as shown in the diagram, the equation
of motion is given by

DiFy = my”
-mg — kmy" = my”’
y'+ky' =g (1)

In the horizontal direction, the equation of motion is
EFX = mx"
= mx"’ (2)

The initial conditions for equation of motion in the vertical direction are y(0) = 0,3’ (0) =
vgsina and the initial conditions for the equation of motion in the horizontal direction are
x(0) =0,x" (0) = vygcos a.
Equation (1) is now solved. The characteristic equation is A2 + kA = 0 or A(A +k) = 0,
hence the roots are A = 0,1 = —k, and therefore the homogeneous solution is

Y, () = A+ Bek

The particular solution is now found. Let y, (f) = ct where c is some constant. Substituting
this into (1) gives

kc=-g
-
Tk

74



41. HW 1 CHAPTER 4. HWS

Hence the particular solution is y, () = —%t , and the complete solution in the y direction is

y (&) =yn () +y, ()
= (A+Be*) -
(A+Bet) p
The initial conditions are now applied to determine the constants A, B. (Initial conditions
must be used in the complete solution and not the homogeneous solution). When t = 0,
y(0) = 0 and the above gives

A=-B
Since i’ (f) = —Bke ™t — ‘% and since v’ (0) = vgsina, then at t =0
. 8
=-Bk-%
Vg Sin o p
(& vpsina
B[ 25)

Using values for the constants A, B, the complete solution for equation of motion in the
vertical direction becomes

y(t) = (A + Be‘kt) - %t

_ (g . vosina)_(g . vosina)e_kt_gt
k

[ [
Hence
_ (8t kyysina 8
y(t) = (T) (1—3 t)— Et (3)
The duration time T is now found by solving for y = 0 from (3). Hence

_ (8§ tkyysina _k g
0—(k—2)(1—€ T)_ET

_ (8§ tkyysina T
- (o ®
An analytical solution based on perturbation method for this is given in the text book at
page 67 as

T ~ 2ugsina (1 _ kvosina)
8 3¢

However in this solution equation (4) was solved numerically instead for T for the numerical
values given in this problem, and the results are summarized on the following table

k T (sec)
0.001 | 50.5427
0.01 | 47.2597
0.1 | 34.3395

The equation of motion in the x direction is now solved. This equation is given above in
(2) as x”” + kx’ = 0. The characteristic equation is A2 +kA =0 or A(A+k) =0, hence the
roots are A = 0,1 = -k, and therefore, the homogeneous solution is
x, () = A+ Be™*
Since there is no forcing function, the complete solution is the same
x(t) = A+ Be ™ (5)
The constants are found from the initial conditions. At t = 0
0=A+B
A=-B
Since x’ (t) = —Bke™*, then at t = 0
vy cosa = —Bk
—0p COS &
k

Substituting the above values for A, B into (4) gives the solution for the motion in the
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horizontal direction

x() =2 C;S“ (1-e™) 6)

4152 Part (2)

The following shows the projectile path for each different k value.

Projectile for different k values

3000 e N 0.001 ‘
: ~ : ]
2500 f"/ \/ .
L \\ ]

2000 1

< 1500F .

1000; / 0.01 “n.,‘ _
500 | / 01 \

L L L L 1 L L L L L
0 5000 10000
x(t)

15000

20000

From the above, an estimate of the range for each k is given in the following table

k range (meters)
0.001 21500
0.01 16500
0.1 4100

41.6 Problem 6

6. (10 points)
Find the Taylor series expansion of

(1) f(z) = cos z about x = 0,
(2) f(z) = cosh z about z = 0,
(3) f(z) = In x about x = 2,
(4) f(z) = 5 about x = —1,
(5) f(z) = V14 x about x = 0.

Check out Appendiz A of Thornton/Marion if you are unfamiliar with Taylor expansions.

SOLUTION

function f(x) approximation
F(@) = F(wo) + hf (o) + 102" (z0) + ...

-
-
a
N\

o h=(x—x9) =z
v

s

7
point of expansion

41.6.1 Part (1)

f(x) = cos (x) about x =0
f(x)=f@O)+hf (0)+ %hzf” 0) + %h3f”’ 0) + %h‘*f(‘” )+ -

= cos (0) + x (- sin (0)) + %xz (- cos (0)) + %xa sin (0) + 21—4x4 cos (0) + -+

1. 1
:1__2+_4_...
2 Tt
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4.1.6.2 Part (2)
f (x) = cosh (x) about x =0

’ 7 1" 1
f )= fQ0)+hf (0)+ hzf 0) + h3f (0)+Ih4f @) + -

1 1 1
= cosh (0) + x (sinh (0)) + Ex (cosh (0)) + gx3 sinh (0) + ﬂx‘L cosh (0) + -

1. 1
=1+ + —xt+
2 Tt

41.6.3 Part(3)
f(x) =In(x) about x =2

’ 1" 1" 1
f@)=f@)+hf" (2)+ hzf (2) + h3f (2)+ah4f @)+

1 1 2 1 6
:1“‘2’”’“2’(5) *E‘x‘z)z(ﬁ) 502 (E) e[
x=2 =2 x=2

=
x-2 1(x—2)2+1(x—2)3 1(x—2)4+
2 2 4 3 8 4 16
x-2 (x—2)2+(x—2)3 (x—2)4+
2 8 24 64

=1In(2) +

=In(2) +
4.1.6.4 Part(4)
fx) = xl—z about x = -1
f)=f()+hf (-1)+ %hzf” (-1) + %h?’f”’ (-1) + lh4f(4) (-1) + -
:1+(x+1)(;—§)
:1+(x+1)(:—i)+%(x+1)2(§) +1) ( 214)+—( 1) (120)+
=142 +1)+3(x+1)°+4(x+1)> +5x+1)*+--

41.6.5 Part(5)
f(x) =+V1+xabout x =0

7 1 144 1 1224 1
fx)=f@O)+hf" (0)+ —hzf 0) + §h3f 0) + Ih4f(4) )+ -

X

6

- ( ) 12[ -1 ] +13[ 3 ] L1 4[ -15

=l+x S| = x| — Cyil —

2V1 +x 2 \aa+n02)_, © (Ba+wi) , 2 lea+xp
2 3 5

R x___4+...

2 8 16 128
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4.1.7 HW 1 key solution

Mechanic s
Physics 31 - Ul 2018
Homewsota Set 4 = Solutong

(l)rob\em 1

?os‘.ku X-ditedhon vp e ‘ﬂo‘zc 2 \S-\-arl\'ra ar botem

¢ 5
/ol d

Fres a2 mx o= T Mg Sino
)'0 = ‘%J.’A\O( t =« \fe

t=-%%£“’“ él‘l'\/oé

X=0 oo £20 (S¥art) and £=¢, (ietum) , so
%%Sina ez V,

2V,
% Sindl

DN ¢ =

2. 2.4 "/s
T q8m/g Sin26°

S for o= 20" awk ~I°=2.lf‘§ L.

?

= Ll S
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(PIO'OleM 2
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?7«‘&

=/«. 2mq e

Z_F*-Zmﬁ&‘ns-g-mz=m§so gnr .;l:O

(o askand .‘)gr.d)

So

2m% YN~} —-/4“2m% [73% ) -M% =0

= 2 (e - Ju tese) = 4
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() Sn© - é = )‘u m
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. F-N-ueg = M
1= Pyl 2
N =M x
)A‘N"M% = Q0
wy » N= =
/45
e N
3D = X:;:}?_:_M_'_
() = 12-:
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il
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=) F= (Hfﬂ\\. (/‘{" -r/,‘“) }
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—
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42 HW 2

421 Problem1

1. (5 points)
Two blocks of equal mass m are connected by an extensionless uniform string of length
l. One block is placed on a smooth horizontal table, the other block hangs over the edge,
the string passing over a frictionless pulley. Determine the Lagrangian of the system
and find the acceleration of the blocks, assuming the mass of the string is negligible.

SOLUTION
1. .2 note: r = v
T = smT y
xr m (
‘ —& — — zero P.E.
Y
|
- vy U= 1—m92y
T =3smy
L=T-U

Where U is the potential energy of the whole system and T is the kinetic energy of the
whole system. The two masses will have the same speed since the string does not stretch.
This means ¥ =

1 1
T = —mi? + —mif?
2 2

Since % = i, we can write the above as

T = mi?
The potential energy U, using zero as the level shown in the above diagram is
U =-mgy
Hence the Lagrangian is L=T - U or
L = mif? + mgy
To find equation of motion
d dL  JL _
dtdy dy
But % =mg and %% = % (Zmy) = 2mijj, hence the above becomes
2mij—mg =0
Or
=3

This is an acceleration in the downward direction as down was taken positive as shown in
the diagram. Since both masses move with same acceleration (magnitude is the same, but
direction is ofcourse is as shown in the diagram), then the acceleration of the top mass is
also the same

N 109
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4.2.2 Problem 2

2. (5 points)
Use the Euler-Lagrange equation to show that the shortest path between two points in
a plane is a straight line. Hint: An element of length in a plane is ds = v/dz? + dy? =

1+ (%)2611'.

SOLUTION

ds = \[dx? + dy?
Therefore we want to minimize
2
dy )2
]:fds:fwldx2+dy :f\/1+(a) dx:f\/1+(y) dx

Hence
2
f=4/1+ (y')
And the Euler Lagrangian equation is j_j; - % (j—yf,) =0, but
7 _,
Iy
af 1 2

dy 2 /1+(]/')2

. 0 . J .
And since % (7{) = 0 then this mean that a—;, = ¢ where c is some constant. Hence

1
P ()
Y =cy/1+ (y’)2

() =i+ ())

=cC

Squaring both sides

Where ¢; is new constant. Hence

. dy . .
Where c;3 is new constant. So the above says that % is constant. In other words, a line,
since line has constant slope. The solution to the above is

y=m=xC3Xx

Where m is some constant and c; is the slope. This is the equation of a line.

90



4.2. HW 2 CHAPTER 4. HWS

4.2.3 Problem 3

3. (10 points)
The point of support of a simple pendulum is being elevated at a constant acceleration
a. Use Lagrange’s method to find the differential equation of motion and show that for
small oscillations, the period T of the pendulum is

l
g+a

T=2r

SOLUTION

The coordinate system is as shown below. U = 0 is taken when the pendulum is hanging
in the vertical position before the base starts moving upwards.

Y Y

| |

I L X

U = mgl(1 — cos ) + at?
_____ A_l —lcos®

|
1y = %atz

CSv—=¢ - T U=0

at time t =0 at some later time

Therefore,
1
U =mgl(1-cosb) + Eatz

Where y = %atz is the distance the pendulum moves upwards in time f since it has constant
acceleration. We now need to obtain the kinetic energy. Resolving the velocity of the
pendulum bob in the horizontal and in the vertical direction gives

& =10cos0O

iy =10sin 0 + at

Therefore
02 — x2 + yz
2 2 i
= (l@) cos? 0 + (l@) sin® 0 + a2£2 + 2atl0 sin O
= 20? + a?t*> + 2atl0sin O
Hence
T=ime?
=-m
Mo
= 1m (1292 + a®t? + 2atl0 sin 6)
2
Now that U and T are determined, the Lagrangian L is computed
L=T-U
L (2. 22 ) qi L
= Em(l 0° + a“t +2atl€sm6) - mgl (1 —cos0) + Eat

Hence

JdL A

30 matlO cos 6 — mgl sin O
And

JdL :
— = ml?0 + matlsin 0
20

91



4.2. HW 2 CHAPTER 4. HWS

Hence
d JL 0 s , .
—— = ml“0 + mal sin 0 + Omatl cos O
dt Jo
Therefore the Euler Lagrangian equation is
JL dJL 0
90  dtdo

matl® cos O — mgl sin O — (mlzé + mal sin O + Omatl cos 9) =0
—mglsin @ — ml?0 — mal sin 6 = 0

Hence

é+§$n6+§an0=o

For small oscillations sin @ = 0 and the above becomes

reoft )

Which is now in the form 6 + 026 = 0 where v, = 2?71 is the undamped natural radian

frequency, and T is the period of oscillation in seconds. hence

21
T=—
Wy

27

424 Problem 4

4. (10 points)
A ball of mass m, radius R, and moment of inertia [ = %mR2 rolls down a moveable
wedge of mass M without slipping. The angle of the wedge is 6 and it is free to slide
without friction on a smooth horizontal surface. Find the acceleration of the wedge.

SOLUTION

There are 2 generalized coordinates in this problem. One for the motion of center of mass
of m and one for the motion of the wedge M itself. The positive directions are taken as
shown in this diagram

coordinate for M

—

coordinate for m motion

No slip: Rw =z

2 generalized coordinates: x and z
The first step is to determine the kinetic energy T and potential energy U of the whole

system. For mass M

T 1M'2
= -Mx
M=5
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For the rolling mass m since it has both rotational motion and translation motion then
1 1

T, = 5m [Ge+zcos 0) + (zsin 0)] + Ela)z 1)
Where in the above the term (X + Z cos 6)2 +(zsin 8)2 is the translation velocity of the rolling
mass. Since the motion is without slip, then we can now relate w to z using

Rw =z

Hence (1) becomes
512

1 . 2 .. .01 1
T, = Em[(x+zcos@) + (zsin 0) ]+§I(R)

ButI = §R2m, hence the above reduces to

1 1

T, = =m [(x +2c0s0)* + (¢sin 6)2] + —mz?

2 5

Now that the overall T is found from
T=Ty+T,
= lsz + 1m [(x +2c0s0)* + (¢sin 9)2] + 1mzz
2 2 5

1 1 1
= —Mi? + —m [xz + 22 cos2 0 + 2%z cos O + 22 sin? 6] + gmzz

2 2

= lsz + 1m (xz + 52 + 242 cos 0) + 1mzz
2 2 5
1

1 7
= EMXZ + mez + mixz cos 6 + Emzz

Now we find U. The potential energy comes from the rolling mass losing U as it moves
down. Assuming zero U is at top of the wedge, the distance it moves it zsin 6. Hence

U = -mgzsin 0
Now the Lagrangian is found L = T — U, hence

1,0, 1 . g 7 . :
L= (Esz + smi* + mizcos 0 + Bmzz) + mgz sin O

Let us find the equation of motion for m, which has acceleration Z first, then find the
equation of motion for M which is the required acceleration ¥

JL
55 = Mg cos 0
JdL . _
Fri mx cos 0 + 5z
d JL . 7 .
pris v mx cos 0 + 5z
Therefore, using Euler-Lagrangian equation
dJdL JL
@z 9z

7
mi cos 0 + gmz—mgcose =0

Hence
Zz?(gsin@—kcos@) (2)
We now apply Euler-Lagrangian equation to find X
JL 0
ox
JL . L
— = Mx + mx + mzcos 6
ox
d JL o
—— =MX+mX +mZcos6
dt ox
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Therefore

Mix +mXx +mZcos@ =0
X (M +m) = —-mZcos 6

But we found % earlier. Hence using (2) into the above gives
5
X(M+m) = —m; (gsin@ —Xcos@)cos@
. 5 5
XM+m)= ;mxcos 0 - ;mgsm@cos@
) 5 ., 5
X(M+m) - ;mxcos 0= —m;gsm 6 cos 6
. 5 2 5 .
XM+ m) - ;m cos 0] = —;mgsm@cos@

5 .
—-mgsin
-mgsin 0 cos 0

X =
((M +m) — gm cos? 6)
_ —5mgsin6cos O
~ 7(M +m) —5mcos? 0
Hence
3 = _gsin0cosh
5 cos? 6—7(M;m)

4.2.5 Problem 5

5. (10 points)
Use Lagrange’s equations to determine the equations of motion of a particle constrained
to move in a plane in a central force field. Show that the angular momentum of the
particle is conserved.

SOLUTION

In a central force field, the force on the particle depends only on the magnitude of the
direct distance r between the particle and the center of the force. Let the force be located
at the origin, then the force on the particle depends only on the magnitude of the position
vector r of the particle and not on the angular position of the particle.

F=F(r#

Where # is a unit vector pointing in the direction of the force. If the force F causes the
distance r between the particle and the origin (where the source of force is assumed) to
become smaller, then this force is attractive and it is assigned a negative sign. There are 2
degrees of freedom, hence there are two generalized coordinates. It is easier to use polar
coordinates (r, 0) where r is the distance of the particle from the origin, and 0 is the angle
from the x axis

Yy particle
A r///O xr = rcosb
- y =rsinf
- /9\ o
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The kinetic energy is

1, .
T = S (x2 +y2)

But x = rcos6, hence ¥ = #cos0 —rfsin6 and y = rsin 0, hence i = #sin0 + r6 cos 6,
therefore
Y _ . 2

2+t = (fcos@ - r@sm@) + (i’sm@ + r@cos@)

= (#2 cos? 0 + 262 sin® 0 - 2r0 cos O'sin 0) + (i sin® 0 + 1262 cos? 0 + 2r#0 sin 0 cos 0)

= 2 cos? O + 1202 sin® 6 + 2 sin® O + 1202 cos? 6

= 2 4 2P
Hence in polar coordinates

1 .
- 2 4 2002
T= S (r +7r°0 )
And
u(r)=Vvi)
Therefore the Lagrangian
L=T-V

= %m (1"2 + r292) -V ()

Therefore
% o - AV (r)
dr or
JdL ,
&_1" = mr
d JL .
EE = mr

Hence the equation of motion for the linear (radial) coordinate r is

) A%
(mr92 - %) —mi=0

L, dV
mi = mro? — A4y
ar
Vi
But -2 = £ (7) then
mi = mr6? + £ (r) 1)
Now the equation of motion in the 6 coordinate is found.
JL "
0
JdL )
3 mr?0
dJdL d y
E% = E (mr 6)
. oL d (o
Hence, since 5= 0 then - (mr 8) =0or
mr?6 =constant (2)

Therefore (2) shows that the angular momentum Iw is conserved (where I is mr?, the
moment of inertia). This is called the integral of motion.

95



4.2. HW 2 CHAPTER 4. HWS

4.2.6 Problem 6

6. (10 points)
Atwood’s machine consists of two weights of mass m; and my connected by an ideal
massless string of length [ that passes over a frictionless pulley of radius R and moment
of inertia I. Show that the acceleration of the system is

__(mi—myg
my+me+I/R?

SOLUTION

Rw = % (no slip) K E — 11,2

N | =

_,___l _ - = =

Since both masses will move with same speed %, then the total kinetic energy of the system
is

1 1 1
T = —mi® + —mpi® + ~lw?
27 T2 T2
Assuming no slip, we can relate w to & using Rw = %, hence the above becomes

rol o1 ,2+1I(x)2
—zmlx Zmzx >'\R

Lof, o 1
= =—Xx"|\m m
7 1 2 R2

Using U = 0 as the level shown where the pulley is located, then
V=-mxg-my(l-nR-x)g
Hence the Lagrangian L is
L=T-V

—2 (m1+m2+ ) (=myx —my (Il -nR-x))g
1.
—2 (m1+m2+—)+(m1x+mzl—m2nR X1y) &
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Hence

And

Therefore

Therefore

JdL

a—x:(ﬂﬁ—mz)g
JdL
8—56—.7( m1+m2+ﬁ
d JL I
Ea—x—x m1+m2+ﬁ
4dL _JL _
dt dx  dx
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4.27 HW 2 key solution

Mechanics
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™
V= T
X
™M
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N L= x* +M%X‘
oL - d %—L = = © Dens w
X ot ox O "% ks
o [i-®
Z
Problem 2

the ove Lengn berween 0o poinvs (¥, ,4,) and (Kz,tj_‘)
s

L= (as - (xzm? i
x,

(AR N b‘ s dy
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43 HW3

431 Problem1

1. (5 points)
A uniform rope of total mass m and total length [ lies on a table, with a length z hanging
over the edge. Find the differential equation of motion.

SOLUTION
« — — l___z_ — > C.M. at half way
s
- VR
» Phd
/// S
'z

The top portion of the rope moves with same speed as the hanging portion. Hence z is
used to describe the motion as the generalized coordinate. From the above

U= 1 (z) 1 z2
“\F\T)EE T T e
1 1/(1- 1
Tz—(z)m22+— T 2 = —z2
2\1 2 l 2

In finding U we used % since the center of mass of the hanging part is half way over the
length. So the potential energy is taken from the center of mass. In the above, Z is used
for both parts of the rope, since both parts move with same speed. Applying Lagrangian
equations gives

L=T-U
= 1mzz + ! (i) mg
2 2\ 1
Hence
JL z
9z 1"
d JL .
oz "
And therefore
dJdL JL _
dt oz dz
mz — %mg =0
z
Z=18

When z = 0 then the acceleration is zero as expected. When z = é then z = %g and when
z = [ then Z = ¢ as expected since in this case the rope will all be falling down on its own
weight due to gravity and should have g as the acceleration.
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4.3.2 Problem 2

2. (10 points)
A particle of mass m perched on top of a smooth hemisphere of radius R is disturbed
slightly, so that it begins to slide down the side. Use Lagrange multipliers to find the
normal force of constraint exerted by the hemisphere on the particle and determine the
angle relative to the vertical at which it leaves the hemisphere.

SOLUTION

constraint f(r,0) =r— R=0
T = Im(#? + r26?)
A U = mgrsinf

polar position (r, )

Generalized coordinates used r, 6

There are two coordinates 7, 0 (polar) and one constraint
f@r0)=r-R=0 (1)
Now we set up the equations of motion for m
1 .
- 2 4 12092
T = S (r + 10 )
U = mgrsin 0
L=T-U
1 .
= 5m (?2 + r262) — mgrsin 0
Hence the Euler-Lagrangian equations are

dL IL  If

g ar O @
ddL IL _df
296 a0 307" )
But
aa_
dtor
L .
g—g.:mrz@
d (JdL ) ..
Z1Z=) 2 ; 2
dt(&@) m(er9+r 9)
L _ 6% — in 6
w-mr mgs
JL 0
50 - mgr cos
af
W‘l
af
%_0
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Hence (2) becomes
mi —mr6? + mgsin@ + A = 0 (4)
And (3) becomes
m (21*1"6' + rzé) +mgrcos0 =0
r0 + 270 + gcos 0 =0 (5)

We now need to solve (1,4,5) for A. Now we have to apply the constrain that » = R in the
above to be able to solve (4,5) equations. Therefore, (4,5) becomes

~mRO? + mgcosO+ A =0 (4A)
RO +gcosO =0 (5A)

Where (4A,5A) were obtained from (4,5) by replacing r = R and # = 0 and # = 0 since we
are using that » = R which is constant (the radius).

From (5A) we see that this can be integrated giving

RO? +2¢sinf +c=0 (6)
Where c is constant. Since if we differentiate the above with time, we obtain

2RO0 +2¢0cosO =0

RO +gcos0 =0
Which is the same as (5A). Therefore from (6) we find 62 to use in (4A). Hence from (6)
62 = —ZI%sin6+c

To find c we use initial conditions. At t =0, @ = 90° and 6 (0) = 0 hence

g
=22
TR

Therefore

02 = —2%sm0 +2}%

- 2% (1-sin 6)
Plugging the above into (4A) in order to find A gives
“mR (2% (1—sin 9)) L mgsing+A =0
A=m (Zg(l - sin@)) —mgsin@
A =2mg —2mgsin 0 — mg sin 0
= mg (2 - 3sin )
Now that we found A ,we can find the constraint force in the radial direction

of
N=A=

=mg (2 —3sin )
The particle will leave when N = 0 which will happen when

2-3sin6 =0
2
0 =sin"" (=
sin (3)
=41.80

Therefore, the angle from the vertical is
90 —41.8 = 48.2°
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Particle will leave when N = 0

—\af
N =A5:

4.3.3 Problem 3

3. (10 points)
Consider the object shown in the figure below, which has a half-sphere of radius a as the
bottom part and a cone on top. The center of mass (P) is at a distance b from the ground
when the object is standing upright. Let I be the moment of inertia. Find the frequency
of small oscillations if the object is disturbed slightly from its upright position. What
happens if a =b or b > a?

SOLUTION

h=a— (a —b)cosf
U = mgh = mg(a — (a — b) cos ¢

From the above, we see that the center of mass has height above the ground level after
rotation of

h=a-(a-b)cosB
Taking the ground state as the floor, the potential energy in this state is
U =mgh
=mg(a — (a - b) cos 0)

And the kinetic energy

1.
T =-10°
2
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Hence the Lagrangian is

L=T-U
1 .
= E162—mg(a—(u—b)cos@)

Therefore the equation of motion is

doL L
dtdd 90
Ié—i(lléz—mg(a—(a—b)cose) =0
20 \2
. 0
19+%mg(a—(a—b)cose):0
Ié—&iemg(a—b)cosG:O

16 + mg (a—b)sin 0 = 0
For small 6,sin 6 ~ 6, hence the above becomes
+ MQ —
I
Therefore the natural angular frequency is

mg(a—b)
e

When a = b then w, = 0 and the mass do not oscillate but remain at the new positions.
When b > a then w,, is complex valued. This is not possible, as the natural frequency must
be real. So center of mass can not be in the upper half.

0 0

4.3.4 Problem 4

4. (15 points)
A sphere of radius r, mass m, and moment of inertia I = %mrQ is contrained to roll without
slipping on the lower half of the inner surface of a hollow cylinder of inside radius R (which
does not move). Let the z-direction go along the axis of the cylinder.
(1) Determine the Lagrangian, the equations of motion, and the period for small oscilla-
tions. Ignore a possible motion in the z-direction.
(2) Determine the Lagrangian in the more general case where the motion in the z-direction
is included. Describe the motion in the z-direction.

SOLUTION
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2 generalized coordinates 6,¢ but
constraint reduces this to one coor-
dinate 6

Part (1): There are two coordinates are 6, ¢, but due to dependency between them (no slip)
then this reduces the degree of freedom by one, and there is one generalized coordinate 6.
The constraints of no slip means

f(0,0)=R-10-rp =0
Which means the center of the small disk move in speed the same as the point of the disk
that moves on the edge of the larger cylinder as shown in the figure above.

1 . 1 .
T =162+ om(R-1) o)’
U =mgh=mg(R-(R—-r)cos0)

Using I = ger and using ¢ = @6‘ from the constraint conditions, then T becomes

2
T = 1 (%mrz) ((R;r) 9) + %m ((R —7) 9)2

21\5
1 2y 1 2 )
_gm(R—T‘) 3] +§TI/I(R—7’) 6

_7 2 A2
= 10m(R r)° 0
Hence
L=T-U
7 )
= Em(R—r)ZQZ—mg(R—(R—r)cosQ)
And
oL _ (R-r)sinf
59 = "8 1) sin
oL 7 )
- = = R_ 9
76 = 5" R=7)
Therefore the equation of motion is
dJdL JL
dtdo IO
7 .
gm(R—r)26+mg(R—r)sin6=0
0+ sino=0
5 (R-7)
5
For small angle
N 5¢
0+ 7R - r)e =0

The frequency of oscillation is

_ 58
“n = \/7(R—r)
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Using w,, = ZTH then the period of oscillation is

27 7(R-7)
T = =271

%8 58

7(R-r)

Part (2):

There are now two generalized coordinates, 6 and z. The sphere now rotates in 2 angular
motions, ¢ which is the same as it did in part 1, and in addition, it rotate with angular
motion, & which is rolling down the z axis. The new constraint is that

fil@,z)=z-ra=0 1)

So that no slip occurs in the z direction. This is in additional of the original no slip
condition which is

f2(0,¢) = R-n0-r$ =0 (2)
The following diagram illustrates this

6%>_z;___3

The sphere is now distance z
away from the origin. There
is new constraint now as
shown

Now there are translation kinetic energy in the z direction as well as new rotational kinetic
energy due to spin a. Therefore

part(1) due to moving in z

1 .0 1 a2 1 1
— I 4 = _ “mi2 + 142
T= 21(1) + 2m((R r) 9) + 2mz + Zla
U =mgh=mg(R-(R-r)cos0)
Notice that the potential energy do not change, since it depends only on the height above

the ground. Using [ = gmrz and from constraints (1,2) then T becomes

2
/_q/b— a2

1(2 R-7 .\ 1 2 1 1(2 )2y
T:E(gmrz)( - 9) +§m((R—r)9) +§mzz+§(gmr2) (;)
2

1 R-7r). 1 . 1 1 %
= (gmrz) (1’—21,‘)62 + Em (R — 7’)2 82 + ETI’IZZ + (gmi’z) 1’_2

7 . 7
_ Y7 .2
= 10m(R r) 6% + mmz

Hence the Lagrangian is

L=T-U

7 ) 7
2 %)
—10m(R r) 6 +10mz mg (R - (R —r)cos0)

This part only now asks for motion in z direction. Hence
JL
9z
JdL 7
3
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Since & = 0 then
Jz
dJL 0
dt dz
Hence i—l_; is the integral of motion. Or
7 5= 0
—mz =
5
or
2=0
z=c

Where c is constant. This means the sphere rolls down the z axis at constant speed.

4.3.5 Problem 5

5. (10 points)
Consider a disc of mass m and radius a that has a string wrapped around it with one
end attached to a fixed support and allowed to fall with the string unwinding as it falls.
(This is essentially a yo-yo with the string attached to a finger held motionless as a fixed
support.) Find the equation of motion of the disc.

SOLUTION

This is first solved using energy method, then solved using Newton method.

constraint: ya = 0

Energy method
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o o Sy
Constraint is f (y, 9) =y—a6 =0. Hence 6 =~
U= -mgy

2 2
2
33 (2) 3
= Llimyz + %myz
= ?Imyz
Hence
L=T-U
3 ,
= MY+ mgy
Therefore
JdL
ay "
JL 3 |
2"
doL 3 |
atay ~ 2™
And the equation of motion becomes
ddL JL _
dt oy dy
3
Sy —mg = 0
2
y=38

Newton method

Using Newton method, this can be solved as follows. The linear equation of motion is

(positive is taken downwards)
F =mj
=T +mg = mjy
And the angular equation of motion is given by

Ta=10
Due to constraint f(y, 6) =y —a0 =0, then

Y_§
a

Using the above in (2) gives
Ta=12
a
_ Y
T=1I 2
Replacing T in (1) with the T found in (3) results in

mij = _I;/_z + mg

y I
y(m+a—2) =mg

mg
_m—l- !
2

114

(1)

(2)

(3)



4.3. HW 3 CHAPTER 4. HWS

ButI = %ma2 then the above becomes

Which is the same (as would be expected) using the energy method

4.3.6 HW 3 key solution
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44 HW 4

441 Problem1

1. (5 points)
The damping factor A of a spring suspension system is one-tenth the critical value. Let
wp be the undamped frequency. Find (i) the resonant frequency, (ii) the quality factor @,
(iii) the phase angle ® when the system is driven at frequency w = wy/2, and (iv) the
steady-state amplitude at this frequency.

SOLUTION:
Note that A = @o. We are told that A = 0.1w, in this problem.

4411 part(1)

The resonant frequency (for this case of under-damped) occurs when the steady state
amplitude is maximum

Sl AN

b=
\/(a)g - a)z)z +412w?

This happens when the denominator is minimum. Taking derivative of the denominator
w.r.t. w and setting the result to zero gives

di) ((a)(z) - a)z)z + 4/\2a)2) =0
2 (0} - ?) (20) + 8A%w = 0
82w + 4w® - dwwi =0
202+ w? - w2 =0

w? = w§ -2A%

Taking the positive root (since @ must be positive) gives

@ = o — 272

When A = 0.1w, the above becomes

w = \/a) -2
VlOO

= 0.98995w, rad/sec

4.41.2 part(2)
Quality factor Q is defined as
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Therefore
Q=4.975
4.41.3 Part(3)
Given
X () + 2Ax" + wix = ieiwt 1)
m

Assuming the particular solution is x, (f) = Be“! where B = be'® is the complex amplitude
and b is the amplitude and ¢ is the phase of B. We want to find the phase. Plugging x, (t)
into (1) and simplifying gives

Hence

Since A = 0.lwy and w = % the above becomes

2 (0.1wg) 2
¢ = tan~! [—0 22
3-(2)
0 2
= tan"* (-0.13333)
= -0.13255 rad
4414 Part(4)

The steady state amplitude is b from above, which is found as follows

b? = BB
b
Where B* is the complex conjugate of B = ———>——. Therefore
wh—w 2 iw
£
b= =
2
\/(a)g - a)Z) +4A%w?
_/ 1
T m 12\ 2 2
\/(a)g - (%) ) +4 (0.1a)0)2 (?)
_f 1
" 0572508
1326
mawp

But mwj = k, the stiffness, hence the above is

b= 1.3216{
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442 Problem 2

2. (10 points)

A string of length 21 is suspended at points A and B located on a horizontal line. The
distance between A and B is 2d, with d < [. A small, heavy bead can slide on the string
without friction. Find the period of the small-amplitude oscillations of the bead in the
vertical plane containing the suspension points.

Hint: The trajectory of the bead is a section of an ellipse (why?). Move the origin to the
equilibrium point and use a Taylor expansion to get an approximate expression for the
trajectory around the equilibrium point. Apply Lagrange.

SOLUTION:

The locus the bead describes is an ellipse, since in an ellipse the total distance from any
point on it to the points A, B is always the same

eih/pse

In an ellipse, these two
segments always add to
same length. In this ex-
ample, this is 2/

To obtain the potential energy, we move the bead a little from the origin and find how
much the bead moved above the origin, as shown in the following diagram

origin

s2 = h? + (d+ )2
(21 — 5)2 = h? + (d — x)?

From the above, we see that, by applying pythagoras triangle theorem to the left and to
the right triangles, we obtain two equations which we solve for / in order to obtain the
potential energy

2 =12+ (d+x)?

Ql-sP? =h+d-x7
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Solving for h gives

d2
h:\h—l—z\/lz—xz

Therefore
y=H-h
42
=H-/1- l_zm
Hence
U =mgy

42
= mg[H— 1- Z—ZVlz—xz)
The kinetic energy is
1
_ )
T = S (x + 1 )

Therefore the Lagrangian is

L=T-U
1 d?
= —m(a‘c2+y2)—mg H-/1- VP2 -x2
2 12
The equation of motion in the x coordinate is now found. From
JL 1 d? (-2x)
- = _mg 1 - —
dx 2 2 \2 — 52
B 1 2  x
-8 2\
And
dJL
dt dx
Applying Euler-Lagrangian equation gives
dJdL JL _
dtdx Jdx
2 x
X+g\1-— =

or

_27’(
_a)o
1
=271
g 2
7 1-%

12
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443 Problem 3

3. (10 points)

A rod of length L rotates in a plane with a constant angular velocity w about an axis fixed
at one end of the rod and perpendicular to the plane of rotation. A bead of mass m is
initially at the stationary end of the rod. It is given a slight push so that its initial speed
along the rod is wL. Find the time it takes the bead to reach the other end of the rod.

4.4.3.1 SOLUTION method one

The velocity of the particle is as shown in the following diagram

y .
A w:e
rw Ve =17cosf —rwsinb
r Vy =7sinf 4 rwcos 6
7 > L

velocity diagram

There is no potential energy, and the Lagrangian only comes from kinetic energy.

= V24 V2
= (¥ cos O — rw sin 9)2 + (7sin 6 + rw cos 6)2

Exapnding and simplifying gives

2 2

v? = i? + P

Hence
1
= 2 (2 + 12,2
L= i (r + r‘w )
And the equation of motion in the radial r direction is

dt or  ar
d | 5
—mi—mrw* =0

dt
Hence the equation of motion is

P —rw? =0

The roots of the characteristic equation are +w, hence the solution is
r(t) = ce®t + cpe @t
At t =0, r(0) =0 and 7 (t) = Lw. Using these we can find ¢y, c,.
O=c1+0
But 7 (t) = wcye®t — wepe™®t and at t = 0 this becomes
Lw = we; —wey
From (2,3) we solve for ¢y, c,. From (2), ¢; = —¢, and (3) becomes
Lw = -wcy —wey
Low -1
=202
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Hence ¢; = %L and the solution is

r(t) = c1e®t + cpe @t
1

— _Lewt _ lLe—a)t
2 2

ewt _ e—wt
{5
2

r(f) = L (sinh wt)

Or

To find the time it takes to reach end of rod, we solve for t, from

L=L (sinh a)tp)

1 =sinhwt,
Hence
wt, = sinh™ (1)
= (0.88137
Therefore
t, = O'Sig sec

4.4.3.2 another solution

Let the local coordinate frame rotate with the bar, where the bar is oriented along the x
axis of the local body coordinate frame as shown below.

Y

z,y is Rotating (body) frame of reference
X,Y is inertial (fixed) frame of reference

1

=g
(1]
3,8

U="Tre +W0 X7

The position vector of the particle is r = ir where i is unit vector along the x axis. Taking
time derivative, and using the rotating vector time derivative rule which says that Z—? =

(d—A) + @ X A where w is the angular velocity of the rotating frame then
relative

F =Ty +@WXT 1)

To find the acceleration of the particle, we take time derivative one more time

d._d : :
%r:E(rrel)+a)xr+a)xr

But % (e1) = Fre1 + w X 1 by applying the rule of time derivative of rotating vector again.
Therefore the above equation becomes

Ei’:i’rel+a}><ifrel+d)><r+a)><i‘

Replacing 7 in the above from its value in (1) gives

P =P + WX Tt @ XP+ @0 X (Fr + @0 X T)
=P + O X ot @ XP+ @0 X Ty + @ X (@ X T)
=Ty + 2 (W X Ty) + @ Xr + 0 X (0 X 1)

But w is constant (bar rotate with constant angular speed), hence the term @ above is zero,
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and the above reduces to
F=Fp+2(@Xt,) +0X(wXT7) (2)

The above is the acceleration of the particle as seen in the inertial frame. Now we calculate
this acceleration by preforming the vector operations above, noting that r = ir,w = ko,
hence (2) becomes

= it + 2 (kw X if,y) + ko X (ko X ir)

=N
|

it + 2 (jwhy) + ko X (jor)

= ifyq + 2 (jworyg) — iw?r
= i(?rel - a)zr) +7 Qi)

The particle has an acceleration along x axis and an acceleration along y axis. We are

interested in the acceleration along x since this is where the rod is oriented along. The

scalar version of the acceleration in the x direction is
Ay = Fpy — W%
Using F, = ma, and since F, = 0 (there is no force on the particle) then the equation of
motion along the bar (x axis) is
Prol — w?r=0
The roots of the characteristic equation is +w, hence the solution is
r(t) = cie’t + cpe@t
Att =0, r(0) =0 and 7 (t) = Lw. Using these we can find cy, c;.
O=c1+0c (3)
But #(t) = wce®t — weye™t and at t = 0 this becomes
Lw = wcy —wey (4)
From (3,4) we solve for ¢y, c,. From (3), ¢; = —¢, and (4) becomes
Lo = -wcy — wey
Lw -1
2= 0" 2

1 L
Hence ¢; = SL and the solution is

r(t) = cie®t + cpe™@t
1 1

= ELe‘”t — ELB_wt

ot _ pmwt
ey
= L (sinh wt)
To find the time it takes to reach end of rod, we solve for ¢, from

L=L (sinh a)tp)

1 =sinhwt,
Hence
wt, = sinh™! 1)
= 0.88137
Therefore
t, = 088137 .
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444 Problem 4

4. (10 points)
Consider a harmonic oscillator with wy = 0.5s7!. Let 2y = 1.0m be the initial amplitude
at t = 0 and assume that the oscillator is released with zero initial velocity. Use a computer
to plot the phase-space plot (& versus x) for the following damping coefficients \.
(1) A= 0.05s71 (weak damping)
(2) A=0.25s"" (strong damping)
(3) A = wy (critical damping).

SOLUTION:
Starting with the equation of motion for damped oscillator
X"+ 2% + wix =0
The solution for cases 1,2 (both are underdamped) is
x = e M(Acoswyt + Bsinwg,t) (1)
Where w; = /w3 — A2. While the solution for case (3), the critical damped case is
x=(A+tB)eM (2)
For (1) above, at t = 0 we obtain
1=A
Hence (1) becomes x = e~ (cos w;t + Bsin w,t), and taking derivative gives
& = —Ae M (cos wyt + Bsin wyt) + e M (~wy sin wyt + Bwy cos w,t)

At t = 0 we have

O:—A+Ba)d
A
B=—
Wy

Hence the complete solution for (1) is

A

x=eM (cos wgt + — sin wyt (3)
wgq

i = —Ax + e M (—wysin wyt + A cos w,t) (4)

Now we find the solution for (2), the critical damped case. At t =0
1=A
Hence (2) becomes x = (1 + tB) e, and taking derivative gives

¥=BeM-A(1+tB)eM

Att=0
0=B-A4
=A
Hence the solution to (2) becomes
x=(14+At)e M (5)
F=AeM-A1+ At)e M (6)

Now that the solutions are found, we plot the phase space using the computer, using
parametric plot command

4441 case (1)

For A = 0.05, and wy = /w3 — A2 = V0.52 — 0.052 = 0.4975, then equations (3,4) become
x = 005 (o8 0.4975¢ + 0.1005 sin 0.4975¢) (3A)
i = —0.05x + ¢~095 (—0.4975 sin 0.4975¢ + 0.05 cos 0.4975¢) (4A)

Here is the plot generated, showing starting point (1,0) with the code used
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Phase plot, 50 seconds, case(1)

out[59]= >

i

-0.5 0 0.5

am = 0.05;
wn = 0.5;
wd = Sqrt[wn~2 - lam™2];

x = Exp[-lam t] (Cos[wd t] + lam/wd Sin[wd t]);

y = -lam x + Exp[-lam t] (-wd Sin[wd t] + lam Cos[lam t]);
ParametricPlot [{x, y}, {t, 0, 50}, Frame -> True,
GridLines -> Automatic, GridLinesStyle -> LightGray,
FrameLabel -> {{"v(t)", Nomnel}, {"x(t)",

"Phase plot, 50 seconds, case(1)"}}, Epilog -> Disk[{1, 0},

ImageSize -> 400]

4.4.4.2 case (2)

.02],

For A = 0.25, and w, = y/wj — A2 = V0.52 — 0.252 = 0.433, equations (3,4) become

x = ¢ 9% (cos 0.433t + 0.5774 sin 0.433t)
i = —0.05x + ¢025 (_0.433 sin 0.433¢ + 0.05 cos 0.433f)

Here is the plot generated where the starting point was (1,0)

Phase plot, 50 seconds, case(2)

02 T T T T T T ]
0.1F .
0.0F - 1
out[150]= > 1
-0.1 7
-02F .

_03 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

02 0.0 0.2 0.4 0.6 0.8 1.0

x(t)

This below is a zoomed in version of the above close to the origin

Phase plot, 50 seconds, case(2), zoom in
T T

N

0.10

0.05

out[151= >

—-0.05

~0.10 \

—0.15 I I I I
-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10

()
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4.4.4.3 case(3)

For this case, equations (5,6) are used. For A = 0.5, equations (5,6) become

x = (1+0.5t)e 0
i = 0.5¢05t — 0.5 (1 + 0.5¢) 05t

Here is the plot generated, showing starting point (1,0) with the code used

Phase plot, 50 seconds, case(3)

0.0
out[155]= >
-0.1F

P S S S S SR SR
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
X(t)

lam = 0.5;
x = (1 + lamxt) Exp[-lam t];
y = lam*Exp[-lam t] - lam*(1 + lam t) Exp[- lam t]
ParametricPlot [{x, y}, {t, 0, 30}, Frame -> True,
GridLines -> Automatic, GridLinesStyle -> LightGray,
FrameLabel -> {{"v(t)", Nomnel}, {"x(t)",
"Phase plot, 50 seconds, case(3)"}}, Epilog -> Disk[{1, 0}, .02],
ImageSize -> 500, PlotRange -> {{-.3, 1.2}, {-.3, .2}},
PlotTheme -> "Classic"]

445 Problem 5

(5A)
(6A)

5. (15 points)

initial velocity.

z as a function of time and use a computer program to plot x(t) for 0 < ¢ < 2s.

critically damped case.

damped case.

A damped harmonic oscillator has a period of free oscillation (with no damping) of T =
1.0s. The oscillator is initially displaced by an amount zy = 0.1 m and released with zero

(1) Consider the case that the oscillator is critically damped. Determine the displacement

(2) Now consider the case that the system is overdamped. Determine the displacement
as a function of time and use a computer program to plot x(¢) for damping coefficients
(i) A =227s7!, (ii) A = 47s™! and (iii) A = 107s™! for 0 < ¢ < 2s. Compare to the

(3) Now consider the case that the system is underdamped. Determine the displacement
as a function of time and use a computer program to plot x(t) for damping coefficients (i)
A=5.0s"1, (ii)) A =1.0s7", and (iii) A = 0.1s7! for 0 < ¢ < 2s. Compare to the critically

SOLUTION:

. 2n 21
Since wy = ol then wy = - =2n.
0

4451 Part (1)
For critical damping A = @, and the solution is
x(t) = (A + Bt)e M
¥(t) =Be M- A(A+Bt)eM

(1)
(2)

Initial conditions are now used to find A,B. At t =0, x(0) = x; = 0.1. From (1) we obtain

xO:A
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And since % (0) = 0, then from (2)

0=B-AA
B=AA
:AXO

Putting values found for A, B, back into (1) gives
x(t) = (xg + Axpt) e M
Since this is critical damping, then A = wy = 27, hence

x (t) = (xg + 2mxyt) 2™

1 2=
N = —27t
x(t) = (10 + 10t)e

A plot of the above for 0 <t < 2s is given below

Finally, since x; = 0.1 meter, then

Part(1) critical damped

0.10F
0.08F

0.061

—
—
~

out[179]= X

0.04F

0.02F

0.007\ L L L L 1 L L L L 1 L L L L 1 L L L L 1
0.0 0.5 1.0 1.5 2.0
time (sec)

4452 Part(2)

For overdamped, A > w, the two roots of the characteristic polynomial are real, hence no
oscillation occur. The solution is given by

x(t) = Ae(_M\/r“’%)f N Be(—)\-\/Az__ﬁ,g)t .

A, Bare found from initial conditions. When ¢ = 0 the above becomes
Xo=A+B (2)
Taking derivative of (1) gives

() =A (—A a2 - wg) e(—/\+,//\2_w§)t +B (—A _ 2z a)g) e(_/x_ //\Z_wg)t

At t =0 the above becomes

0:(—A+,/A2—a)g)A+(—A— AZ—wg)B (3)

We have two equations (2,3) which we solve for A, B. From (2), A = xy— B, and (3) becomes

0= —A+‘//\2—w§)(xo—B)+(—/\— AZ—wg)B
0= —A+./A2—w0)x0 (A+ Az—w) (/\— AZ—wg)B

0={-A+ /lz—w) -2B /lz—a)

T

(/\+ AZ (Z)XO

B= (4)

24JA? - wk
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Using B found in (4) then (3) now gives A as
A= X — B

(—/\ L2 wg) %o
24JA% - w2

(—/\ + A2 - mg)

:xo—

=X 1-

:xo

Hence the complete solution from (1) becomes

- aB) ()

A
x (t) = xg

. —A+ A% - f e(—/\—,/AZ—wé)t
2,JA? — w3 2,JA2 — w3

The above is now used for each case below to plot the solution..

44521 case (i) A=22mwy=2mx=0.1, hence (5) becomes

227 + 4/(2.210)? - (271)? (_z.zm,/(z.zn)z_(znf)t 0| 22 \(2.270)? - 27)?
+

x() =01

e .
2+/(2.27)% - 2n)* 24/(2.210)* - (2m)°

— 0.173—4.0322t —-0.07 e—9.791t

A plot of the above for 0 < t < 2s is given below

Part(2.1) overdamped, A=2.2 7t

0.10r
0.08F

0.06

—~
S
~

out[297]= X

0.04F

0.02r

ocoO[ 0 —
0.0 0.5 1.0 1.5 2.0
time (sec)

44522 case (ii) A =4n wy=2mx5=0.1, hence (5) becomes

()

(—2.2n—\/(2.2ﬂ)2—(2n)2)t

47 + \/(471)2 - (2n)? (—4n+\/(4n)z—(2n)2)t 01 —47 + \/(471)2 ~(2n)? (—4n—\/(4n)z—(2n)2)t
+ e

x() =01 e

24/@n)* - 2n) ' 24/(dn)* - 2n)?

= 0.1077¢ 16836 — 0,00774¢723-44%%

A plot of the above for 0 <t < 2s is given below
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Part(2.2) overdamped, A=4 7T

0.10(~

0.08F 1

0.061 ]

—
—

out[310]= X<

0.04F 1

0.02F ]

0.00F D

1 L L L L 1

0.0 05 10 15 2.0
time (sec)

44523 case (iii) A =107, wg =21, xy = 0.1, hence (5) becomes

107 + \/(1071)2 - (271)2 (—1071+\/(107I)2—(2n)2)t 01 -107 + \/(1071)2 - (271)2 (—1071—\/(1071)2—(271)2)1?
e +0. e
24/10m)% - 2m)? 2+/(107)% - (270)?

= 0.101 ¢"063473 _ 0,001034¢ 621!

x(t) =01

A plot of the above for 0 <t < 2s is given below

Part(2.3) overdamped, A=10 5T

010k~

0.08F J
ouzta: X 0.06+ 2

0.04F 1

00 05 10 15 20
time (sec)

To compare to the critical damped case, the above three plots are plotted on the same
figure against the critical damped case in order to get a better picture and be able to
compare the results

Comparing critical damped response to overdamped

0.10F

0.08F increased damping
0.06

0.04F

0.02f

critical

damping

0.00r
0.0 0.5 1.0 1.5 2.0
time (sec)

From the above we see that critical damping has the fastest decay of the response x (f). As
the damping increases, it takes longer for the response to decay.
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4.4.5.3 Part(3)

For the underdamped case, the solution is given by
x(t) = e M (A cosw,t + Bsin wyt) (1)

Where w; = yJwf — A2 and A, B are constant of integration that can be found from initial
conditions. And

% (t) = —Ae™M (A cos wyt + Bsinw,t) + e M (- Aw, sin wyt + Bw, cos w,t) (2)
Applying initial conditions x (0) = xy then (1) becomes

Xg=A

Applying initial conditions X (0) = 0 then (2) becomes

0 = —Axo + Bwy

Replacing A, B back into the solution (1) gives the solution

Wq
We now use the above solution for the rest of the problem

44531 case(i) A=55",wy=2mx =01, hence wy = \Jw? — A2 = \/(271)? - 52 = 3.8051

and (3) becomes

A
x(t) =e M (xo cos wyt + 220 in a)dt) (3)

(5)(0.1)
3.8051

= 75 (0.1 cos (3.8051¢) + 0.1314 sin (3.8051¢))

A plot of the above solution x (t) for 0 < t < 2s is given below

x(f) = e (0.1 cos (3.8051¢) + sin (3.8051t))

Part(3.1) underdamped, A=5 per sec

0.10r
0.08F

0.061

—
=

out[600]= X

0.04F

0.02F

0.00r

0.0 05 10 15 20
time (sec)

44532 case(ii) A =1s',wy = 2r,xy = 0.1, hence wy; = \Jwi - A2 = \J@r)?-12 =

6.2031 and (3) becomes

(1) (0.1)
6.2031

= ¢t (0.1 cos (6.2031¢) + 0.016 sin (6.2031¢))

A plot of the above solution x (t) for 0 < t < 2s is given below

x(t) = 0.1 cos (6.2031¢) +

sin (6.20311‘))
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Part(3.2) underdamped, A=1 per sec

0.10F ]

0.05] ]

Out[596]= :>:'</ I /\ ]
0.00 /

N

~0.05] ]

0.0 0.5 1.0 1.5 2.0
time (sec)

44533 case(iii) A =01s",wy =27, x = 0.1, hence wy = \Jw3 — A2 = \/(271)2 -012 =

6.2824 and (3) becomes

0.1)(0.1) .

= ¢7014(0.1 cos (6.2824t) + 0.001592 sin (6.2824t))

A plot of the above solution x (t) for 0 < t < 2s is given below

x(t) = e Ol (0.1 cos (6.2824t) +

Part 3 3) underdamped A 0 1 per sec

0.10 ' -
005\ /\ / |

ouger. = 0-00]
-0.05;

_0_10:7‘ I A T

0.0 05 1.0 15 2.0

time (sec)

To compare to the critical damped case, the above 3 plots are now plotted on the same
figure against the critical damped case in order to get a better picture and be able to
compare the results

Comparing critical damped response to underdamped

0.10r )
decreased damping
critical
0.05r
% 0.00
-0.05r
-0.101 | \01 | f
0.0 0.5 1.0 1.5 2.0

time (sec)

As the damping becomes smaller, more oscillation occur. The case for A = 557! had the
smallest oscillation.

136



4.4. HW 4 CHAPTER 4. HWS

4.4.6 HW 4 key solution
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45 HW )5

451 Problem1

1. (5 points)
A spring of spring constant k supports a box of mass M, which contains a block of mass
m. If the system is pulled downward a distance d from the equilibrium position and then
released, it starts to oscillate. For what value of d does the block just begin to leave the
bottom of the box at the top of the vertical oscillations?

SOLUTION:

inital conditions

y(0) = d,y(0) =0

mLl

The block of mass m will leave the floor of the box when the vertical acceleration is large
enough to match the gravity acceleration g. The equation of motion of the overall system
is given by

Yy’ +wgy =0 (1)
Where wy is the undamped natural frequency
3 k
D=\ M+ m
The solution to (1) is
y = Acos wyt + Bsin wyt (2)
Initial conditions are used to find A, B. Since at t = 0, y (0) = d, then from (2) we find
A=d
Taking derivative of (2) gives
Y = —Awgsin wyt + Bwg cos wyt (3)

Att =0,y (0) =0, this gives B = 0. Therefore the full solution (2) becomes
y = d cos wpt
The acceleration is now found as
Y = —wod sin wyt
y

The period is T, = %7; After one T, from release the box will be the top. Therefore, the

" = —w?d cos wyt

acceleration at that moment is
y’ (TP) = —wdd cos woT),
= —wjd cos2n
= w3d
The condition for m to just leave the floor of the box is when the above acceleration is the
same as g.

wid=g

g
i= 2
wf
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Therefore

d

§(M+m)

4.5.2 Problem 2

2. (15 points)
(1) Show that the Fourier series of a periodic square wave is

4 1 1
f(t) = — |sin(wt) + 3 sin(3wt) + R sin(bwt) + .| ,
T

where

fit) = 41 for O<wt<m 27 <wt<3m,..
flt) = —1 for m<wt<2m, 37m<wt<dnm,...

(2) Use the result from above to find the steady-state motion of a damped harmonic
oscillator that is driven by a periodic square-wave force of amplitude Fy. In particular,
find the relative amplitudes of the first three terms, A, Az, and As, of the response function
z(t) in the case that the third harmonic 3w of the driving frequency coincides with the
frequency wy of the undamped oscillator. Assume a quality factor of @) = 100.

SOLUTION:

4521 Part (1)

The function f (f) is an odd function, therefore we only need to evaluate b, terms. To more
clearly see the period, the definition of f (t) is written as

+1  0<t<Z, .
f(t):{ W

4 2n
-1 —<t< =,
w [

Therefore the period is
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Finding b,
TP
f (b sin (nwt) d

0

[ f “ (+1) sin (nawt) dt + f < (1) sin () dt]
0 n

[

b4 27
fw sin (nwt) dt — fw sin (nwt) dt]
0 T

@

B [_COS (naﬁf)}g ~ [_cos (na)t)]zj]

AlE e|':\IJ|N ’\’|‘e=|H

S

ENES

nw 0 nw z

w 1 z 1 =
=— (—— [cos (nwt)]§ + — [cos (nwt)] 7 )
T\ nw nw @

= (oo )~ con @] s 1022 s )

nmn
_1 (- [cos (nm) — 1] + [cos (2nT) — cos (nm)])
nm

1
= (- cos(nm) +1 + cos (2nm) — cos (nm))
T
1 —_—
= —2cos (nm) + cos (2nm) +1
T

= i (1 = cos (nmn))
nmn

And since 7 is an integer, then cos (nm) = (-1)" and the above reduces to
2

b, = —(1-(-1)"
w=—(1- 1))
Therefore
i n= 1, 3, 5, ees
bn - nm
0 otherwise
Hence

f®= Y, b,sin(wnt)
n=1,3,5,---

= E insin(amt)

=135,
Writing down few terms to see the sequence

f)= % {sin (wt) + %sin Bwt) + %sin (Bwt) + ;sin (7wt) + }

4522 Part (2)

When the system is driven by the above periodic square wave of amplitude F, the steady
state response is the sum to the response of each harmonic in the Fourier series expansion of
the forcing function. Since the steady state response of a second order system to F,, sin (nwt)
is given by

F,/m

2
\/(a)g -~ (na))z) + 412 (nw)?
Where the phase 6, is defined as

Y, () = sin (nwt + 96,,)

—2A (nw)

5, =tan™t ———=
" Wi - (nw)?
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Then the steady state response to f () = FO% sin (wnt) is given by

n 1 3,5,
ad 4 Fo/m .
Yes (1) = E — 0 : sin (nwt + 0,,) 1)
n=1,35, \/ (mg - (na))Z) +4A2 (na))2

4F, i 1 sin (nwt + 0,,)
=135, 1 ( 2 2)? 2 (nw)?
3191 w§ — (nw) ) + 4A% (nw)

Looking at the first three responses gives

yo ) = 4F0 sin (wt + 67) 1 sin (3wt + 03) 1 sin (5wt + 05) N
T\ J(@d - w2) 40207 2 \J(wd - GwP) + 412Gl (@B - Gw?) + 412 5wy
()
We are told that 3w = wg or w = %wo and in addition, using using Q = ﬁ we find
100 = =2
S22
@Wo
A= —
200
Using this A and given value of @ then the phase 6, becomes
-2A
o, = tan™! —(na))z
w(z) - (nw)
[y (@)
o 2w (75)
2
i)
= 3n
tan” —————
10012 - 900
Using the above phase in (2) give
4F, sin (%t +tan™! %) % sin (a)ot + g) é sin (S%t +tan™!
Yss (F) = + +

2 _ (@0

ERCIE
. (2] . w -1 3

4 F, |50 (—t —tan”~ %) 1 sin (a)ot + ) 1 sin (S?t + tan ﬁ) .

™m 640 009 [1 102 409a) 4
810000 10000 32400 = 0

P (@) (i) v (@) 2 [e3-(6

a)022 4010
L)) a5

+ ...

4F, sin (0 333wt — tan ™! % sin (wot + Z) sin (1.6667w0t +tan™! 3;—0)
==-011125 +33.333 22 10,1249 .
TTm 0 a)o a)o

The relative amplitudes of A;, A3, A5 are given by
{1.125, 33.333, 0.11249}

We see that the third harmonic (n = 3) has the largest amplitude, since this is where 3w = w.

In normalized size, dividing all amplitudes by the smallest amplitude gives

(A1, As, As) = {10,296, 1)

normalized

4.5.3 Problem 3

3. (5 points)
If the solar system were imbedded in a uniform dust cloud of density p, what would be the
force on a planet a distance r from the center of the Sun?

SOLUTION:

!The third harmonic 7 = 3 has g phase since tan™! (c0) = =
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dust %loud solar system

The total force on the planet m is due to the mass inside the region centered at the center
of the sun. The mass outside can be ignored since its effect cancels out. Let the radius of
the sun be R;,,, then the total mass that pulls the planet toward the center of the solar
system is given by

4
Miotar = Mgy, + 577 (1’3 - Rg’un) p

The force on the planet is therefore

GMtotalm o
r
4
G (Msun +5m (r3 — Rg’un) p) m

= — r
72

Where 7 is a unit vector pointing from the sun towards the planet m and G is the gravitational
constant and p is the cloud density.

F=

4.5.4 Problem 4

4. (10 points)
(1) What is the speed (in km/s) for a satellite in a low-lying orbit close to Earth? Assume
that the radius of the satellite’s orbit is roughly equal to the Earth’s radius.
(2) Show that the radius for a circular orbit of a synchronous (24-h) Earth satellite is about
6.6 Earth radii.
(3) The distance to the Moon is about 60.3 Earth radii. From this, calculate the length of
the sidereal month (the period of the Moon’s orbital revolution).

SOLUTION:

4541 Part (1)

The force on the satellite is mr,w? where , is taken as the earth radius since this is low-lying
orbit. Therefore

GM,m 2
2 - e
Te
2
But v = r, where v is the satellite speed we want to find. Hence w? = % and the above
becomes
GM, v?
— r —_—
7
GM,
0=
re

B \/ (6.67408 x 10-11) (5.972 % 1024)

6.371 x 106
= 7909 .6 meter/sec

= 7.9 km/sec
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4.54.2 Part (2)

Let the radius of the satellite orbit be r. Using
GM,m

where v = ZT—R where T, is the period of the satellite. But for synchronous satellite, this

period is 24 hrs. Hence the above becomes

3

W=

(6.67408 X 10-11) (5.972 X 1024)

2
2n
( 24(60)(60) )

= 4.224 x 107 meter

But radius of earth is r, = 6.371 X 10° meters. Hence

ro 4224x107 663
r.  6371x106

4.5.4.3 Part (3)

earth (r¢)
From
GM,m 5
oo mrw
GM,
B Y
GM, _(2n\’
3 »
We solve for T, hence
2 |GM,
T, B r3
27 27
TP = =
\/% (6.67408x10-11)(5.972x102%4)
3 3
((60.3)(6.371x106))

=2.3698 x 10° sec
Therefore, in days, the above becomes

_ 2.3698x10°
P (24) (60) (60)
= 27.428 days
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455 Problem 5

5. (15 points)
(1) A particle is subject to an attractive force f(r), where r is the distance between the
particle and the center of the force. Find f(r) if all circular orbits are to have identical
areal velocities.
(2) The orbit of a particle moving in a central field is a circle passing through the origin,
r = 1o cos(f). Show that the force law is inverse-fifth power.

SOLUTION:

4551 Part(1)

From the above diagram, where we have two particles of same mass m in two circular
orbits. The area of each sector is given by

0
A=—r2
2r
The time rate of each sector area is
R @
Similarly
X @

Since we have a central force, then this force attracts each mass with a force given by
f = mr6?. Therefore f, = mr;0f, Similarly f, = mr,03. Substituting for 6 from these
expressions back into (1) and (2) gives

dA f fi 13
bl S O S | 1B
dt mry 2 (1B)
dAZ _ fl 7’% (QB)
dt — \\mry 2

We are told the areal speeds are the same, therefore equating the above gives
dA;  dA,

Similarly

dt — dt

hA_ L1
mry 2 mry 2
Sii_fan

mri 4 mry 4

flr“i’ :fzrg
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Hence

This says that, since we using the same mass, that the force f(r) on a mass is inversely
proportional to the cube of the mass distance from the center. To see this more clearly, let
ry =1 then

1
fr, = _3f71
)

So if we move the mass from r; =1 to say 3 times as far to r, = 3, then the force on the
same mass becomes 217 smaller than it was.

4.5.5.2 Part(2)
The orbit first is plotted as follows

Clear[r0, r]

r0 = 1;

r[angle ] := r0 Cos[angle]

xyData = Table[{r[a] Cos[a], r[al] Sin[al}, {a, 0, 2 Pi, .13}];

ListLinePlot[xyData, GridLines -> Automatic,

GridLinesStyle -> LightGray, AxesOrigin -> {0, 0},

AxesLabel -> {x, y}, BaseStyle -> 14, PlotTheme -> "Classic",
AspectRatio -> Automatic]

Which produces the following plot

Using 8.21 in textbook, page 293

2 (1\ 1 ur?
467 () ETErY W

Where p is the reduces mass, ! is the angular momentum and F(r) is the force we are
solving for. Since r = ry cos 0 then

@1\ d(d1\_d(d 1

@(;)_% %;)_%(%rocose)
_d ((-1)(-sin0)
AN )

o d sin 0

~do rocosze)

[ cos6 25sin’ 0

B (ro cos? 6 i 1o cos39)

(1 +2sin26
| rpcos6  rycos3 O

(2)

2
But from r = rycos 0 we see that cos6 = ri and sin?6 =1 - cos20 =1 - (ri) , hence (2)
0 0
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becomes

do2 \r

Therefore (1) becomes

Solving for F(r)

(2P 1
ol vl P

The above shows that the force is an inverse fifth power.
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46 HW6

4.6.1 Problem1

1. (5 points)
An Earth satellite has a speed of 28,070 km/h when it is at its perigee of 220km above
Earth’s surface. Find the apogee distance, its speed at apogee, and its period of revolution.

SOLUTION:

From the vis-viva relation

a(2 1
Operigee = | (_ - _) (1)

mrp a

Where m is the reduced mass and a = GM,,;,4,Ms,, Which reduces to GM,,,, and known
constant called the Standard gravitational parameter which for earth is (From table)

2 _ 398600 km®/s2
m

And
r, = 220 + 6378
= 6598 km

Where 6378 is the equatorial radius of earth. And vp,e., = 28070 km/h. Therefore, we use
(1) to solve for a, the length of the semimajor axes of the elliptical orbit of the satellite
around the earth. From (1), by squaring both sides

a(Z 1)
m\r, a

28070 \? 298600 2 1
60 X 60 220+ 6378 a

[

=N

Solving for a gives
a = 6640 km
Hence the apogee distance is

2a = 13280 km

We can also find

rpa=2a-1,
= 13280 - 6598

= 6682 km

When the satellite is at the apogee, it will be above the earth at height of
ha =715 = Vearth
= 6682 — 6378
=304 km
The period T is given by
23
T=2m o
m
| 66403
=2n
398600
= 5385 sec

5385
"~ 60 % 60

=1.496 hr
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4.6.2 Problem 2

2. (5 points)
A spacecraft is in circular orbit 200 km above Earth’s surface. What minimum velocity
kick must be applied to let the spacecraft escape from Earth’s influence? What is the
spacecraft’s escape trajectory with respect to Earth?

SOLUTION:
The total energy is
_1 o
E= Emr + ueffective

The escape velocity is when Ueffecrive = 0 , therefore
12
0=-u-+

2mr?

GM,m
*—, hence the above becomes

But angular momentum [ = mrv and U =

GM,m  m?r*v?
r 2mr?
GM,m  mv?
ju— + _—
r 2
GM, 2
S (1)
r 2
Now we are given that the satellite was at r = 200 + 6378 = 6578 km (this is r, for the new
orbit as well). Using GM, = 398600 km?/s? from tables then we solve now for v in (1), which

will be the new velocity. Hence

0=

~ 398600 v?

6578 2
v =11.009 km/sec

Before this, the spacecraft was in circular orbit. So its speed was

al
V. =+ —-—
¢ mr

~ [398600
Y 6578

= 7.784 km/sec

The difference is the minimum speed kick needed, which is
11.009 — 7.784 = 3.225 km/sec

This orbit is parabolic since U,ff.ctive = 0 as seen on the Upffective vS. r graph. parabolic is
the first orbit beyond elliptic that do not contain turn points. The next orbit is hyperbolic.
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4.6.3 Problem 3

3. (15 points)

respectively.

A comet is observed to have a speed v when it is at a distance r from the Sun. Its direction
of motion makes an angle ¢ with the radius vector from the Sun.
(1) Find the eccentricity of the comet’s orbit.

(2) If the velocity of the comet is expressed as ¢ times the Earth’s velocity and its distance
to the Sun as d astronomical units, show that the orbit of the comet is hyperbolic, parabolic,
or elliptic, depending on whether the quantity ¢*d is greater than, equal to, or less than 2,

SOLUTION:

4.6.31 Part (1)

Eccentricity is defined as (for all conic sections)

e =

Where a = GM,,,m and [ is the angular
[

Therefore (1) becomes

2EI?

1+
ma?

(1)

momentum

mlr X ol

mrosin ¢

.2
. 2E (rv sin cp)

e= — 7
m (GMSMH)
The energy of the comet is given by E = o2 - GMS—””m, then the above becomes
2 7
1 GMgym . 2
2 (Emvz - f) (rv sin cp)
e= |1+ 5
A m (GMsyn)
1 5 GMgum
_ iy Z(Emv o ) rosin ¢ 2
B m GMgyy,
\
= i (2 2GMa | (rosing z
r GMg,,,

4.6.32 Part (2)

Let v = gqv, where v,

is earth velocity around the sun and let r = dr, where r, is the

astronomical unit (the distance between the earth and sun) then result of part (1) becomes

e=A1+ ((qve)z .

2GM,,,,
dr,

dr.qu, sin ¢ 2
ISt g
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Looking at the earth/sun system, we know that

2
GMsunmearth _ Megrin U,

7% Te

GMSMVI
re
GM.,,,, = r,0>

Sun eve

Replacing GM;,, in (2) by the above result gives

e |
Ao )]
\/1 +1g9% - 3) (dq sin gi))

24 —
:\/1+ 1 7 2)(dqsin¢)2

We are now ready to answer the final part. If g°d = 2 then e = 1 which means it is parabolic.

=2

- Ye

+

If 4°d > 2 then ( Z 2) is positive and the expression inside /- is larger than one, and hence

e > 1, which means the orbit is hyperbolic. Finally, if 4°d < 2 then (%) is negative, and

the expression inside 4/ is less than one, which means ¢ <1 and hence the orbit is elliptic.

4.6.4 Problem 4

4. (10 points)
If the minimum and maximum velocities of a moon rotating around a planet are v,,;, =
v — vy and Ve = U + vg, show that the eccentricity is given by
Vo

€= — .
v

SOLUTION:

The angular momentum / is constant. At perigee, where the speed is maximum, we have
I, = mogaxty

And at apogee, where the speed is minimum, we have
la = MUnin'yq

Since [ is constant, then

MUmax?p = MOUmin?y

Umax"p = Umin’a 1)
But
r,=a(l+e)
rp,=a(l-e)

Hence (1) becomes
Umax?@ (1 - 6) = Uminf (1 + 6)
Umax (1 - 6) = Umin (1 + 6)
Umax ~ €¥Umax = Umin 1 €Umin
Umax ~ Umin = € (vmin + Umax)

Umax ~ Umin
e= ———

Umin T Umax
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Replacing vy, = v + v and v,;, = v — vy gives
_ (v +vp) = (v —1vy)
(v +vg) + (v —"19)
_ 2?)0
T 2w
_ Y
T

4.6.5 Problem 5

5. (15 points)
When a spacecraft is placed into geosynchronous orbit, it is first launched, along with a
propulsion stage, into a near circular low Earth orbit (LEO) using a booster rocket. Then
the propulsion stage is fired and the spacecraft is transferred to an elliptical “transfer”
orbit designed to take it to geosynchronous altitude at orbital apogee. At apogee, the
propulsion stage is fired again to take it out of the elliptical orbit back into a circular (now
geosynchronous) orbit.

(1) Calculate the required velocity boost Av; to move the satellite from its circular low
Earth orbit into the elliptical transfer orbit.

(2) Calculate the required velocity boost Awvy to move the satellite from the elliptical
transfer orbit into the geosynchronous circular orbit.

Avy

SOLUTION:
Velocity at Velocity at
cirular GEO apogee of
orbit ellipse

V47‘/3

Hohwann transfer ellipse

/V1, Vo AVis
Velocity in Velocity at
LEO perigee of
circular ellipse
orbit
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4.6.5.1 Part (1)

In this calculation, the standard symbol u is used for GM,,,y, which is the Standard gravi-
tational parameter (in class, we used % for this same parameter). For earth

1 = 398600 km’/s2
The first step is to find a for the transfer ellipse. This is given by

_ Ripo + Rgro

B 2
Next, we first find V3, which is velocity in the LEO circular orbit just before initial kick to
V,. Since this is circular, the speed is given by

m
Riro

Next step is to find V;, which is the speed at the perigee of the ellipse (the transfer orbit).
This is given by the standard vis-viva relation

v, = u( . )

Ripo @

V1:

Where Riro = 7perigee fOr the ellipse. Now that we found V; and V7, then
AVip=V,-V;

|%
2 1
Ve e
Ripp 4 Rieo

When at the apogee of the transfer ellipse, the speed is given by

. 2 1
> [JRGEO a

We now want to be of GEO circular orbit, hence

1
Rcro

4.6.52 Part (2)

V4:

And therefore, the speed boost is
AV34 = V4 - V3

N
Rceo #RGEO a
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now  jue M= S.Q'lc-lou' &3
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(Pm'nlu\« L
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(V"Vo) M rm"‘ s (Vi‘\/o) M rm‘

= Tmax _ VeV,
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also o= ""2 _Mmax arsd Gy = & (14e)
= |+ e = r_'"‘_"_ = 2 Cenax
Lo
. »
Vv,
ViV, rmq“ * r“’l
2
- i
V-\/‘ + Ve \lo
J Vg
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L]

Vo
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=
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47 HW 7

471 Problem1

. (10 points)

If a problem involves forces that cannot be derived from a potential (for example frictional
forces), Lagrange’s equations become

d(oLy_oL_
dt \ 9¢; dg; '

where the @); are the generalized forces not derivable from a potential. The @); are defined
through

- Or
A .
Qi 9

Use this formalism for the following example.

A particle of mass m moves in a plane under the influence of a central force of potential
U(r) and also of a linear viscous drag —mk(dr/dt). Set up Lagrange’s equations of motion
and show that the angular momentum decays exponentially.

SOLUTION:

Using polar coordinates. The position vector of the particle is

N

7=1?+1r00 (1)

We now find the Lagrangian

T= %m (fz + r292)
Uu=vi()

L= %m (,-,2 + r292) -V(r)

Since we are asked about the angular momentum part, we will just find the equation of
motion for the 6 generalized coordinates.

JL 0
20
JL 26
— = mr
20
Hence the EQM is
d .
E (1’1’”’26) = QQ

Where Qg is the generalized force corresponding to generalized coordinate 6. From (1)

a7 = dr# + rd66

Hence

d?’_drA_'_ do ,
it dt
=it +r00

Therefore, the drag force can be written as

dr
dt
= —mk (# + r00) (2)

T = —mk
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Applying the definition of Qg = F. % gives

Qp = —mk (W + r@é) : % (r? + r@é)
= —mk (i’f’ + r@é) : (ré)
= —mkr?6 (3)
Now that we found Qgy, the EQM is
% (mrzé) = —mkr?6

We notice the same term on both sides (but for a constant k). The above is the same as
d
—(2) = -kZ
o (2)
The solution must be exponential Z = e~ + C where C is some constant. This means
mr?Q = e + C

But mr26 is the angular momentum. Hence, for positive k, the angular momentum decays
exponentially with time.

4.7.2 Problem 2

2. (10 points)
In the lecture, we derived a formula for the percentage increase in speed necessary to
transfer a spacecraft from low Earth orbit of radius rq to an elliptical orbit with the Moon
at the apogee at distance ry.

(1) Find the fractional change in the apogee 071/ry as a function of a small fractional
change in the ratio of required perigee speed vy to circular orbit speed v, d(vo/v.)/(vo/ve).

(2) If the speed ratio is 1% too great, by how much would the spacecraft miss the Moon?

SOLUTION:

4721 Part (1)
From class notes, we found

(2 2rq 2

v, \r+r, \[1+2
rn
Where v, is the velocity in the circular orbit just before speed boost, and v, is the speed

at the perigee of the ellipse just after the speed boost, and 7, is the perigee distance and

5[ %
(UC). To make the calculation easier, let % = z.

(%) f

r1 is the apogee distance. We need to find

Then we have

Hence
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1
2
But [HZ,_D) = z so the above becomes
"1
oz 1106 [ 2
or;  2zdor |1+ 2
n
11(. 6 o\
=—-2—[1+2
2z| org o]
-2
11 o
21+ ) (ke
2z ri) ory\rg

11 A\
= 5> 2(-1) (1 + :—1) (=7,) r{z]

11l 2 o,

2z (1+r_0)2r1

Since zro = 72 the above simplifies to
(+3)
oz 11|, 1 7,
R .
ory 2z 140 2
1
1 7o
=-z
2 2 (1 + :—“)
1 7o

= -z
2 ri(r1+71,)
We want to find %, therefore the above can be written as

o6z ol 1,
z r 2(r +71,)

. or
Or in terms of 71

the above becomes
1
ory 0z 2(71 +7,)
oz 7,

. v,
Since z = v—”, the reduces to

c

4722 Part (2)

For 6(—”_2) = 0.01 then

(%)

6& =0.01 (2(7’1 + 1’0))
1 Ty
Using rqg = —r; in the above gives
5 (Tl + —7’1)
=L =012
=122

This means that or; is 22% of r;. The spacecraft will miss the moon by 22% of r. (This
seems like a big miss for such small speed boost error)
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4.7.3

Problem 3

3.

(10 points)
A particle of mass m moves in a circular orbit of radius r = a under the influence of the
central attractive force F(r) = —cexp(—br)/r?, where ¢ and b are positive constants.

1) What is the effective potential energy in terms of r and the angular momentum ¢7

Your answer may contain an integral.)

2) Write down the Lagrangian of the system. Derive the equation of motion.
3) For what values of b will this orbit be stable?
)

(
(
(
(
(

4) Find the apsidal angle ¥ for nearly circular orbits in this field.

SOLUTION:

4731 Part (1)

One way to find U,sf (r) is to find the Largrangian L and pick the terms in it that have r
without time derivative in them.

1 1 )
T = Emifz + EerQZ
To find U (r), since we are given f (r) and since f (r) = —&gy), then
U@)=- | f@dr
Ce—rb
= f 2 dr
Hence
L=T-U
1 1 . —rb
= —mi? + ~mr?6? - f ©_dr
2 2 12
Hence

1. b
Uess (r) = EerGZ—fcerz dr

In terms of | = mr?0, the above can be written as

1 . ce"
Uepr (1) = 510~ [ S

Or, it can also be written, as done in class notes, as

1 12 ce "t
Uy ()= 5~ | S

4.7.32 Part (2)

Hence

1 1, B
L = —mi? + —mr?6? — f c« dr
2 2 r2
JL . ce’t
_ 2
Fr A
L
5 = mi

The equation of motion for r is
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Written in terms of angular momentum, since 0 = # (integral of motion) where / is the
angular momentum, the above becomes

lZ
my — ﬁ =F (1’) (1)
For 0,
JL —0
0
JdL 20
— = mr
00
The equation of motion for 0 is
d .
274\ —
7 (mr 9) =C

Where C is some constant. The full EQM for 6 is
m (2ri6 +120) = 0
26 +2ri0 =0

4.7.3.3 Part (3)

To check for stability, since this is circular orbit, the radius is constant, say a. Then we

2
perturb it by replacing a by x + 2 where x < a in the equation of motion m# — 4 ()

mrd
and it becomes
ZZ
mi— ———==F(x+a)
m(x + a)
P(x+a)
mb&z¥+F(a+x)

Since x < a4, we expand (x + a)_3 in Binomial and obtain

12 x\ 73
mx = —3(1+—) +F(a+x)
ma a
Taylor expansion
12 3x
v ——=|1-—+-|+F(a)+xF () +
ma a

2
Since circular orbit, then 7 = 0 and the EQM motion becomes —# = F(a). Using this to

replace ml—; with in the above expression we find
3
mi ~ —F (a) (1 - zx) + F(a) + xF’ ()
3x
= —F(a)+F(a)7 + F(a) + xF’ (a)

:F(a)%x + xF’ (a)

Hence
mx + (—F (a) C%x —xF’ (a)) =0
. 3
mx + (—ZF(a) -F (a)) x=0
—ba
This perturbation motion is stable if (—%F(a) -F (a)) > 0. But F(a) = —Cea and F’ (a) =

ce®  peemb
— + , hence
a a

A= —§F(a) - F (a)
a

3( ceba ce™®  pee~b
= —— |- — 5 —+
a a a a

180



4.7. HW 7 CHAPTER 4. HWS

We want the above to be positive for stability. Simplifying gives

3cetr ceab peeab
A= 2 2  a
3 2ce bt pee—b
T2 g
3 2ce — ghce=b

72

—ba

- C‘;Z 2 - ab)

Therefore, we want (2 —ab) > 0 or 2 > ab or

2
b<-=
a

4.7.3.4 Part (4)

Time to
P

travel = -2

The angle 1 is found from

=0 (1)

Where T), is the period of oscillation due to the perturbation from the exact circular orbit,
and O is the angular velocity on the circular orbit. But

[

0= — (2)
ma
But from part(3) we found that
12
-—= =F(a)
ma

| = \/=F (a) ma3

Therefore (2) becomes

0=~ L\/ —F (a) ma3

~ ma2
_ |-F(a)
a ma

We now find T),. Since the perturbation equation of motion, from part (3) is m5€+(—§F (a) - F (a)) X =

0, which is of the form

2
@p

[—51; (a) - F’ (a)]
P+ | =0

m

(-2F@-F @)

Then, the natural frequency is w = , therefore

2n \/—§F<a> P @)

m

T,=2n |[—— 0
g \/ ~2F(a)- F (a)
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Equation (1) now becomes

T

P
Y =-—L0

2

/—F (a)
\/ °F(a) - F' (a)

~F (a)
—3F (a) — aF’ (a)
F(a)
3F (a) + aF’ (a)
ce™ab bee™
But F(a) = - (a) = 5+ then the above becomes
_Ce—bu
_ a2
V=" 3F @+ aF (@)
_Ce—ba
_ a?
=n ce~ba ce=ab bee=ab
\ 3(- = +a = + -
_ Ce—ba
_ a?
=T 3ce’b‘1 ce= 4 ghce—ab
N Va2 S O —
_Ce_bﬂ
=T
—3ceba 4 (ace‘“b + azbce‘“b)
B -1
B -3 +a+a%b
Hence
i
V=T

4.7.4 Problem 4

4. (10 points)
A ball is dropped from a height i onto a horizontal pavement. If the coefficient of restitution
is €, show that the total vertical distance the ball goes before the rebounds end is h(1 +
€2)/(1 — €%). What is the total length of time that the ball bounces?

SOLUTION:
The first time the ball falls from height & it will have speed of v; = /2gh just before hitting

the platform, which is found using
1
mgh = Emv%
On bouncing back, it will have speed of v] = ¢4/2gh. It will then travel up a distance of
hy = &2h which is found by solving for h;from
1 2
mghy = 5™ (01)
The second time it it falls back it will have speed of v, = £4/2¢h;. When it bounces back
up, it will have speed v} = ¢24/2¢h; and now it will travel up a distance of i, = ¢*h which is
found by solving for h, from

mghy = %m (vé)z

This process will continue until the ball stops. We see that the distance travelled at each
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bouncing is

A = {h, 22,26, 265, -+, 26%h)

We added 2 to each bounce after the first one to count for going up and then coming
down the same distance. The first time it will only have one 4. We now can calculate total

distance travelled A as
A=h+2eh+2eth + -
= h(l +26% 4+ 26t + )
The above can be written as
A:h(2+252+254+ ---)—h

But since ¢ <1 the series sum is
1
1—¢2

242624264+ =2) 2 =2
n=0

Therefore (1) becomes
2h
1-¢2
2h-h(1-¢?)
=2
2h —h + he?
1- &2

Hence total distance is

(1)

To find the total time of all ball bounces, we need to find the time it takes to travel in each

bounce. The time it takes to fall distance & is /Zg—h, using the information we found about

each /; from above, we now set up the sequence of times we we did for distances

oh \/ 262h \/ 264h \/ 266H
Atime: —,2 ,2 ,2 st
8 8 g 8

Adding the times gives

2h 2¢2h 2¢4h 2¢%h
A=,[—+2 +2 +2
g g g g
2h
:w/—(1+2€+2£2+2£3+2€4---)
g
2h
:,/E(2+2e+252+2g3+2s4---)—
2h & 2h
= —225”— —
g n:O g

But 2 EZOZO e = Zi, hence the above becomes

_2n(2-a-¢)
x5
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Hence total time is

4.7.5 Problem 5

5. (10 points)
A particle of mass m strikes a wall at an angle 6 with respect to the normal. The collision
is inelastic with coefficient of restitution e¢. Find the rebound angle of the particle after
collision with the wall.

SOLUTION:

First we make a diagram showing the geometry involved

vcos
=
vsin 6 evsin

before collision

after collision

We resolve the incoming velocity into its x,y components and apply conservation of linear
momentum to each part. The vertical component remain the same after collision since it
is parallel to the wall. Hence

v, =0, =vcosH

y
While the x component will change to

y

vy = €v, = €vsin O
By definition of ¢. Therefore we see that after collision
evsin @

tana =

Hence

a = arctan (¢ tan )

184



47. HW 7

CHAPTER 4. HWS

4.7.6 HW 7 key solution

Mechanies
?k“s:c.x QN -Fall 2018

Homewor, Set 7 - Se(.uhb'\ss

Peoblem 4

L=Ltei* s tmdo* -0W

%&-\ue&'td woidingtes 1,8
%%L.-%—L:-Q; Coadn Q:=F':§j;:
S — d—f

in polos (oordimates, AP =dr ¥ + s de &

~d
* Ve, dr 2, de g
L old L
So - d
‘5"“(*0[_2\'-"\(4\'“139
ol¢
= Q‘—= ¥ = -ML-:QL:— Q9=VF9=—ML‘;‘.%€'_
Eq\u-LNrnuﬁg_ 2Guakons
d 2L . 2
2N - = e e 2 3 =
L8 iR  -mbLé e L= met o
fo  with Q_L_' = mel @
oe

O=loc”

(o3

4 - _(ar =
¢

185



4.7. HW 7 CHAPTER 4. HWS

2
(larb'o\cm'z.
(') Pucu#nno_ el eade neuuer.’ hmagm Q SPQCICM.?,I-
gpm lows Eathoist - “he Hoon 3
!‘3 = 2t = J 2z
Ve Tt Og = U+ Foye
Ve Speed ©n Ureolor odot of rodis o (LEoY
Vo = S(’u* needed 4o ba on ellipKeat fﬂk Uit Heon at apesee

We ated §r—r' Qay o Lux\hog -g_(_“o/v;)

(VG/U‘)
g‘s}l talwlatre d(VoA‘:) : ] (=2) (- &)
Aar, z(Vo/v‘) (l*ro/r.)'l A%
SD d(\‘%(_)
(v./VL) - l c Zro |
ds, 2 (%Y (Y
%y
2l e D
2 (|¢r°/(,) A
o Vo
¢ .Ei;: 2(!-1-% ?—l% Yo
[ - ./‘/c_)
Qnd 31 (.:Ke and [, = GOR; ) ‘r_—‘: ~ 0 7
Se E_"_- ~ 2 \Xi S(VDIVLZ
f' Co (Vo/v‘)
(68 ooue 4hs rmenns
(2) {Fl:l = 2.C0 . I% = IZD% .,.,

Hat the above
Gﬂ;nm‘nkon ay o

&'Qﬁuu&"ﬁl h; bto(‘v\
dowsn )

186



47. HW 7

CHAPTER 4. HWS

Peolem 3
0 Oty = = Scm 'y

-be

=c§€ okr
Py

_ 00
s Br

L mrét-{- F(P)

v
= e - C

er | mr -

187



4.7. HW 7 CHAPTER 4. HWS
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48 HW 8

481 Problem1

1. (15 points)
Consider the case where a fixed force center scatters a particle of mass m according to
an inverse-cube force law F(r) = k/r®. If the initial velocity of m is v, show that the
differential cross section is

kn? (7 —0)

o(0) = muv26% (2w — 0)2 sinf

SOLUTION:

Starting from

S d
6, (b) = 4 (1)

But

[ =bV2mE
I? = b? (2mE)

Hence (1) becomes

- S — (1A)

2
"min 7’2 1- E — b_
E

In this problem, since F(r) = %, therefore since F (r) = -VU

k
uw:—fﬁm
k

T2
Then (1A) becomes
o0 b
%@:f dr (1B)
"min 7-2 1- L — E
\ 2r2E 12
Let z = - then 2 = . When r = oo then z = 0 and when r = Tmin then z = L Now we
’ dz 72 "min
need to find 7,;,. We know that when E = Uffective then r = 75, But
2
ueffective = 2 +U()
3 12 N k
C2mr2 212

Hence

E= ueffective
12 k
= +

2 2
2mrmin 2rmin

? + mk
2
min

- 2mr
Solving for r,;,
) 1 + mk
rmin = ZmE
12 k
= — 4+ —
2mE  2E

(2)
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But 2 = b?> (2mE) then (2) becomes

b? 2mE)
2 _ -
"min = o F T OE
k
_q2, K
=b+ °F
Therefore
k
=402+ — 3
rmln 2E ( )

Now we can finish the limits of integration in (1B). When r = r;;,, then z =

"min

ol
IN
Q
-

now (1B) becomes (where we now replace r* by le)

6o (b) = b dr
0 2
"min 1’2 1- k b

_bfv“ﬁ —
/_ 2 2
2E

_ bf1’h2+2kE dZ
0

_2(k 2
1 z(2E+b)

Using CAS, it gives f% v sin~ (zx/ﬁ). Using this result above, where a = (% + bZ)

gives

k
O, (b) = sin~! (z\/ 5F + sz
’_ + bZ 0
1 k
—— |sin”! | ——=1/— + b2 | -sin"} (0)
— 4+ b2 b2 + i 2E
\] ! 2E
— sm_1 1) - 0]
e
’_ + bZ 2
Now we solve for b. Squaring both sides
¥ n?
0f=———
L2 4
T b
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. _1_ 9
Using E = 5mv* then

) b? 72

SN

mv?

0

k
482 (W +b2) = bZ 2

k403
— + 4050 - P*r® = 0
mo
k462
b? (403 - m?) = ——2
(465 - ) 2
k462
2 2 2\ _ 0
b (7'( —490) = W
2
2 k403
mo? (n2—465)
26 k
b= (4)

ER (712 - 49%)
05

- Where 0; is the scattering angle. Therefore the above becomes

s O,
b_z(r?) k

But 6, (b) = g -

n@s

\/m(n2 (62 - 2706, + n2))

\/ 210, - 62 ©)

b
sin O

Now we are ready to find o (6;)

o (6,) = ab

From (5)

27'(9 -02)
0(2779 - 02 )
Therefore
b db
sin 0, |dO;

7'[—95 k 7_(2 k
v\ m(2n0,-62) m(2m0,-62)

sin 6 v (2n0, - 62)
-0 k
v m(2n6,-62) a

sinf; v (2n0, - 62)
(m—0y)k G
~ mosin 0; ., (27165 3 63)2
kr? (- 6,)
 m?sin 0, (26, - 93)2

o (65) =

km? (1t — O)
mv262 (21 — 6,)* sin 6,
Hard problem. Time taken to solve: 6 hrs.

o (6s) =
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482 Problem 2

2. (10 points)
(1) A warship fires a projectile due South at a southern latitude of 50°. The shells are
fired at 37° elevation with a speed of 800 ms~!. Neglecting air resistance, calculate by how
much the shells will miss their target and in what direction.

(2) A batter hits a baseball a distance of 200 ft in a roughly flat trajectory. Should he take
the Coriolis force into account? Neglect air resistance, assume the elevation angle is 15°,
and the location is Yankee Stadium (or Wrigley Field, if you prefer).

SOLUTION:

4821 part (1)

(€

z into the page (east)

local
body
Z  frame

300 projectile (south)

Using
1
X = ga)gtB’ cos A — wt? (ZO cos A — 1o sin /\) + Xot + xg
Y = ot — wt?igsin A + yj 1)
z = zot — Egt + wtxycos A + zp

Where {xo,yo, ZO} are the initial speeds in each of the body frame directions and {xo,yo, zo}
are the initial position of the projectile at t = 0. Let vy = 800 m/s? and 6 = 37°. We are given
that

Yo = —vgcos O

ZO =7 sin 6

5(0 =0
The minus sign for i, above was added since the direction is south, which is negative y

direction for the local frame. And we are given that x; = yy, = zy = 0. Substituting these in
(1) gives (where A = 50°)

1
x = gwgte’ cos A — wt? (vysin O cos A + vy cos O sin A)
y=-(vgcosO)t (2)
1
z = (vysin )t — Egi‘2

The drift due to the Coriolis force is found from the x component. The projectile will drift
west (to the right direction of its motion) since it is moving south. We can now calculate
this x drift. We know that @ = 7.3 X107 rad/sec (rotation speed of earth), so we just need
to find time of flight f. From

z= ZO - gt
=vpsin 0 — gt
vpsing _ 800sin(37(555))

9.81
Hence total time of flight is twice this which is t; =100 sec. Now we use this time in the x

The projectile time up (when z first becomes zero) is f = =~ 50 sec.
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equation in (2) above
1 5 3 0 -5 2 ) 0 0 i B0
x= 5(7.3><10 ) (9.81) (100)° cos (50°) - (7.3 x 1075) (100)* (800 sin 37° cos 50° + 800 cos 37° sin 50°)

= -532

So it will drift by about 532 meter to the west (since negative sign). In the above g = 9.81
was used. This does not include all the terms such as the centrifugal acceleration. But
9.81?2 is good approximation for this problem.

4822 part (2)

Taking Latitude as 42° (New York). Therefore A = 42° and 6 = 15°. Initial conditions are
Yo =VycosO
zo = Vpsin 0
X% =0
Where V), is the initial speed the ball was hit with (which we do not know yet), and
Xo = Yo = 2o = 0. Using

1 3 2 (- .. .
x = ga)gt cos A — wt (zo cosA =1 sm/\) + Xot + X
y = it — wt?kgsin A + v, (1)
. 1 2 2 .
z = zpt — Egt + wtkycos A + zg
Then applying initial conditions the above reduces to
1
X = ga)gt3 cos A — wt? (Vysin@cos A — Vycos Osin A)
y=(VocosO)t (2)
1
z=(Vysin0)t - Egt2
From y (tf) = (Vg cos 0) t; then, since we are told that y (tf) =200 ft,

200(0.3048) = (Vj cos 0) t (3)
Where ¢/ is time of flight. But time of flight is also found

z= ZO - gt
= Vysin6 — gt
And solving for z = 0, which gives VOSTM. So time of flight is twice this or
2Vysin 0
tp = T
Substituting the above into (3) to solve for V|, gives
2Vysin 0

200 (0.3048) = (V, cos 0)

60.96 = %V& (cos15°) (sin15°)

,  (60.96)(9.81)
0™ 2¢0s15%sin150
=1196.0

Hence
Vo =34583 m/s
Now we can go back and solve for time of flight ¢;. From
200(0.3048) = (Vcos 0) t¢
200 (0.3048)
" 34583 (cos15)
=1.825 sec

te
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Using (2) we solve for x, the drift due to Coriolis forces.
1
X = ga)gt3 cos A — wt* (Vysin@cos A — Vycos Osin A)

1
=3 (7.3 x1075) (9.81) (1.825)° cos 42° - (7.3 x 107%) (1.825)* (34.58 sin 15 cos 420 + 34.58 cos 150 sin 42°)

= 4.897 x 10~ meter

So the ball will drift about 5mm. This is too small and the ball player can therefore ignore
Coriolis forces when hitting the ball.

48.3 Problem 3

3. (5 points)
A bullet is fired straight up with initial speed vy. Show that the bullet will hit the ground
west of the initial point of upward motion by an amount 4w v§ cos /(3 g?), where X is the
latitude and w is the angular velocity of Earth’s rotation. Ignore air resistance.

SOLUTION:

Initial conditions are
=0
Zp = U
5(0 = 0

And xy = yy = zp = 0. Using
1 3 2 (- .. .
X = ga)gt cos A — wt (zo cosA =1y sm/\) + Xot + X
y = ot — wt?iysin A + y 1)
1
z =zt - Egt2 + Wtk cos A + z
The reduce to (using initial conditions) to
L 2
X = —wgt’ cos A — wt vy cos A
y=0 2)
1
= vot — =gt
Z=0t =58

To find time of flight of bullet (going up and then down again), from z = v, — gt, we solve
for z = 0, which gives t = Z(;_O. So time of flight is twice this amount

200
tf = — secC

8

To find the amount x the bullet moves during this time, we use (2) and solve for x

1
x (tf) = ga)gt]% cosA — wtj%vo cos A

1 (200)3 (200)2
=-wg|—| cosA-—w|—| yycosA
3 g g
8v3 43
= —w% cosA—a)% cos A
3 g g
8 3
= (— - 4) (a)v—g CcoS )\)
3 8
4 v
—ga)—zcosA

3
This means when it lands again, the bullet will be —ga}v—g cos A meters relative to the original

point it was fired from (the origin of the local body frame). Since the sign is negative, it
means it is west.
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484 Problem 4

4. (10 points)
A bug crawls with constant speed in a circular path of radius b on a phonograph turntable
rotating with constant angular speed w. The bug’s path is concentric with the center of
the turntable. If the bug’s mass is m and the coefficient of static friction for the bug on
the table is u, how fast (relative to the turntable) can the bug crawl before it starts to slip
if it goes (1) in the direction of rotation and (2) opposite to the direction of rotation?

SOLUTION:

48.4.1 Part(1)

x,y is local frame that
rotates with angular velocity
Y w. X,Y is inertial frame. 7

is position vector of ant

relative to x,y local frame,

and the ant is moving with
) velocity 7 relative to its local
v frame

w > X

7= bcos 6i + bsin 6]
V=T +@XT (1)
But
— d—>
Urel = Er
= —bOsin 67 + b0 cos 67
And

& X7 = wk x (bcos@7+ bsin@?)
= bw cos 87— bw sin 07
Hence (1) becomes
U= (—b@ sin 07 + b0 cos 67) + (ba) cos 6] - bw sin 63
= 7(—179 sin 6 — b sin 6) +7(b9 cos 0 + bw cos 9)
The above is the velocity of the ant, in the inertial frame, using local body unit vector i].
Now we find the ant acceleration, given by
4=, +2 (wﬁx?}wl) + (a')% x?) + wk X (cT’) x?)
But @ = 0 since disk has constant @ then
@ =ty + 2 (0k XTpy) + wk x (& x7) 1)
But
d

Ayl = Egrel
= 7(—179 sin 6 — b6? cos 9) +7(b9 cos 0 — b6? sin 9)
Since Bug moves with constant speed, then 6 = 0 and the above becomes

By = 7(—1992 cos 8) +7(—b92 sin 9)
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Now the Coriolis term 2 (0_5 X 5}31) is found
2 (5 X ?J’rel) =2 (a)% X (—b@ sin 67 + b0 cos 67))
=2 (—a)bé sin 87— bw0 cos 6?)
Now the & x (cT} x?’) is found
@ X (5 x?) = wk X (ba)cos 6] — bw sin 67)
= —bw? cos 0f — bw? sin 67
Hence (1) becomes
@ = Gy + 2 (0k X Tpy) + wk x (& x7)

= ?(—b@z Ccos 6) +7(—b92 sin 9) +2 (—a)b@ sin 97— bw6 cos 9?) — baw? cos 01 — bw? sin 67

= 7(—17@2 cos 6 — 2bw0 cos 6 — bw? cos 6) +7(—b92 sin 6 — 2wb0 sin O — bw? sin 9)
Since this is valid for all time, lets take snap shot when 0 = 0, which gives

a=1i(-b0? - 2bw0 - baw?)

So when 6 = 0, the ant acceleration (as seen in inertial frame) is tc_)wards the center of the
disk with the above magnitude. If the ant speed is V then V = b0 and the above can be

re-written in terms of V as

—

2
a= —i(7 +2Vw + ba)z)
The ant will starts to slip, when the force preventing it from sliding radially in the outer

2
direction equals the centrifugal force m (VT +3Vw + ba)z)Hence

\e
pmg =m (7 +2Vaw + ba)z)

VZ
7+2Va)+ba)2—yg:0

V2 +2Vbw - (ubg + bw?) = 0
This is quadratic in V, hence

V= —22ba) + %\/4172@2 +4 (—ybg + bzwz)

= —bw + \/bza)z — ubg + bPw?

= —bw * [2V?w? — ubg

_ / HE

V =-bw + bw 2_19(0_2
/ HE

:ba)( 2—bw—2—1)

When Ant is moving the opposite direction of rotation, then the Coriolis term 2 (a)z X ?}rel)
will have the opposite sign from the above. Then means the final answer will be

Since V > 0 then

4.8.42 Part(2)

(V2
a= —i(? - 2Vow + ba)z)

Which means

_wa
2

=bw + \/bzwz — ubg + b*w?

= bw * [2b%2w? — ubg

1% + %\/4192(02 +4 (—/Jbg + bza)z)
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_ / HE
V=bw + bw 2—ba)—2

_ HE

—ba)(1/2——bw2 +1)

Or

48.5 Problem 5

5. (10 points)
(1) Show that the small angular deviation € of a plumb line from the true vertical (toward
the center of the Earth) at a point on Earth’s surface is

B Rw? sin A\ cos A

"~ go— Rw?cosz\

€ )

where ¢o is the acceleration due to gravity, A is the latitude, and R is the radius of the
Earth.

(2) Use a computer to plot € as a function of latitude. At what latitude do we observe the
largest deviation, and how large is it?

SOLUTION:

4851 Part(l)

N>

$=F%-dXDxR
Using a X (bxc) =b(a-c)—c(a-b) the above becomes
§=30-(@(&-R)- (@ @)R)
=% - (& (& - R) - 0?R)
Then using
gXgo=ggQo(sine)n 1)

Where 7 is perpendicular to plane of ¢,g; which is & in this case. Then the LHS of the
above is

But R x g, = 0 since they are in same direction, also g, X gy = 0 and the above becomes
§X§0=—5(5'§)X§0 (2)
But
- 3 Tt
@ - R :a)Rcos(E —/1)
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Therefore (2) becomes
Fx T = —a)Rcos(g —A)(B X %o
But & X gy = —~wgpsin (g - A) %, hence the above becomes
-, Tt . T A
gX8 = a)Rcos(E —A)a)gosm(E —A)x
Now we go back to (1) and apply the definition, therefore

wR cos (g - A) wgp sin (g - A)fc =g9o (sine) &

wR cos (g - A) wgo Sin (g - /\) = g9o (sin¢)
wR cos (g - A) wgop Sin (g - /\)
880
~ Rw? cos (g - /\) sin (g - /\)
8

But sin (g - A) = cos A and cos (g - /1) = sin A hence the above becomes

sine =

Rw?sin A cos A

sine = (3)
8
To find g = [g], since § =y - (5 (5 . ﬁ) - a)zﬁ), then taking dot product gives
8]=%-3

=[%-(@(@-R) - *R)]-[g0 - (@ (@ R) - oK)

ignore. All w* powers. too small
(@ (@ R)-wR) + (@ (@ K) - a?R) - (@ (@ -K) - 2R)
~ 8- 2% (& (@ - R) - w?R)

: ((a) cos Aff + wsin A2) (a)R cos (g - A)) - a)ZR,%)
(

: (a) cos A + w sin /\2) (wRsinA) — a)ZRZ)
= ¢5 - (-2802) - (w?Rsin A cos A + (w?Rsin® A - w?R) 2)
= §5 — (~280 (@?R sin® A - w2R))
= g3 + 2gpw?R sin® A — 2gow?R
= g% + 2g0@?R (1 - cos? A) — 2ggw?R
= g5 + 290w?R — 2¢p@?R cos? A — 2gqw?R
= g5 — 2g0w?R cos? A

Therefore (3) becomes

Rw?sin A cos A
9% — 290w?R cos? A

Since ¢ is small, then sin ¢ =~ ¢, therefore

sine =

Raw?sin A cos A

ER
9% — 2g0w?R cos? A
The solutions has an extra gy in the denominator. I am not sure why. I will what is given
for part(2) to plot it.

4.8.5.2 Part(2)

This plot shows the maximum ¢ is at A = 45°. Here is the code used and the plot generated

RO = 6371%1073; (*earth radiusx)

omega = 7.27%107(-5); (*earth rotationx*)

g0 = 9.81;

e[lam_] := (RO omega”™2 Sin[lam] Cos[lam])/(g0 - RO omega~2 Cos[lam]~2)*180/Pi;
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newTicks[min , max ] := Table[{i, Round[i*180/Pi]}, {i, 0, Pi/2, .1}];

Plot[e[lam], {lam, O, Pi/2}, Frame -> True,

FrameLabel -> {{"\[CurlyEpsilon] degree", None}, {"\[Lambda] (degree)",
"Part(2) solution"}}, GridLines -> Automatic,

FrameTicks -> {{Automatic, Automatic}, {newTicks, Automaticl}}]

Part(2) solution

T T T

0.08 - .

0.06 - .

€ degree

out[80]=
0.04 g

0.00F 4

0 6 11 17 23 29 34 40 46 52 57 63 69 74 80 86

A (degree)

4.8.6 HW 8 key solution
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49 HWI

491 Problem1

1. (5 points)
A rigid body of arbitrary shape rotates freely under zero torque. Use Euler’s equations to
show that the rotational kinetic energy and the magnitude of the angular momentum are

constant.
SOLUTION:
Euler solid body rotation equations are
(I = I3) wyws — [, =0 (1)
(Is = I) w3y — La, =0 (2)
(I = L) wywy — Iza3 = 0 (3)

Where I3, I, I; are the body moments of inertia around the principal axes. Multiplying both
sides of (1) by I;w; and both sides of (2) by [,w, and both sides of (3) by Izw; gives

a)la)za)31112 - 0)10)20)31113 - I%a)la')l =0 (1A)
0)1(1)2(1)31213 - 0)10)20)31112 - I%Cl)zd)z =0 (QA)
0)10)20)311[3 - w1w2w31213 - 132)0)3(1')3 =0 (3A)

Adding (1A,2A,3A) gives (lots of terms cancel, that has w;w,w3 in them)

I%aqd)l + I%a)zd)z + 150)362)3 =0 (4)
But (4) is the same thing as
1d
——L?=0
2dt

where L is the angular momentum vector
L = {hwy, hwy, w3}
Hence
12 =L-L={Bw} Bwd, Bwl)
Therefore, and since the I’s are constant, we find
Zo2= 5 [2Bar i, 2Bawndrn, 2Bwsirs)
= [Ifa)ld)l,Iga)zd)z, I%a)3d)3} (5)

Comparing (5) and (4), we see they are the same. This means that %%H =0orL?is a
constant. Which implies L or the angular momentum is a constant vector.

To show that rotational kinetic energy is constant, we need to show that % (w - L) (which is
the kinetic energy) is constant, where w = {w;, w,, w3} is the angular velocity vector. But

1d 1, :
But we found that L = 0 since L is constant. Hence the above becomes
1d 1
—(w-)==w-L
T (w- L) @ (6)

If we can show that @ -L = 0 then we are done. To do this, we go back to Euler equations
(1,2,3) and now instead of multiplying by [;w; as before, we now multiply by just w; each
equation. This gives

w1w2w312 - a)la)za)313 - Ila)ld)l =0 (1C)
a)1a)2a)3l3 - CL)16L)26L)311 - 120)20‘)2 =0 (2C)
0)10)20)311 - 0)10)20)312 - 13(1)362)3 =0 (BC)

Adding gives (lots of terms cancel, that has w;w,w; in them)

Ila)ld)] + 120)20.)2 + I3a)3a')3 =0 (7)
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But the above is the same as (6), with a factor of ! This means @ -L = 0 or %(a) -L)=0
or that the rotational kinetic energy is constant. Which is what we are asked to show.

49.2 Problem 2

2. (10 points)

A uniform block of mass m and dimensions a by 2a by 3a spins about a long diagonal with
angular velocity &.

(1) Using a coordinate system with the origin at the center of the block, calculate the
inertia tensor.

(2) Find the kinetic energy.
(3) Find the angle between the angular velocity & and the angular momentum L.

(4) Find the magnitude of the torque that must be exerted on the block if & is constant.

SOLUTION:

Lo
3a

2a 4

Ql
\
o

X3

4921 Part(1)
We first find I (called ] for now) around the origin of the inertial frame X, X;, X5 then use

parallel axes theorem to find I at the center of the cube at a = {%a, a, ga}. The volume of
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the cube is a (2a) (3a) = 64°

a 24 a
T =p f dx; f dX, f dXs (X3 + X3)
20 3a a 24 3a
=p f Xmf dxzxzf dX3]+p f Xmf dXzf dX;;X%]
0 0 0

=p a(3a)f dX2X2]+p a(2a)f dX3X3]

' x3\* x5
=p a(Sa)(—z) +p a(2a)( ) ]
| 374 374

[, L@ (3a)°
=p 3&27] + Y [2ﬂle

:3 8a® i 27a
= a2 a4 —
PIPT 3| TP 3
= p8a® + —4115
_p p 3
= 26a°p
26
= Zaz (6a3p)
13
= gMaz
And
a 20 a
Ji2 :—Pf dX1f dXzf dX3 (X1X3)
0 0 0
a 20 3a
- o f XydXy f X,dX, [ dx;
0
) () -
- p 4
2),\2 ),
3 a%\ (4a? 3
“TP )T
= -3a°p
3 2(e
=gt (6a p)
1
:—EMHZ
And

20
o= [, [, [ axs 00
24
—pf deXl Xzf X3dX3
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And J5; = ]2 and
a 24 a
fzzzpf dX1f dXzf dX; (X2 + X3)
0 0 0
[ a 24 3a a 20 3a
=p f X2dX, f ix, f dX3]+p f X, f ix, dX3X§]
Yo 0 0 0 0 0
[ X3 a X3 3a
=p (—1) (2a) Ba)|+p a(2a)(—3)
3 3
| 0 0
— 3 3 3
. i(za)(aa)]+p 2(20)" ;‘) l
[ 6a° o log? 27a
= a —_—
Pl |7P1™" 3
= p2a5 +18a°p
=20a°p
20
= Zﬂz (6a3p)
20
:Mgﬂz
And
a 211 a
Jos =—p dX1 dX; f dX3(X2X3)
0 0
a 2u a
= —p le deXZf X3dX3
0 0 0
X% 2a X% 3a
(3]
0 0
442\ (9a?
=7\ 7
— _9(15p
9 2(p3
=gt (6a p)
9
= ——Ma?
6
And J3; = Ji3 and J3, = J»3 and
20
Jas = p f ix, f ix, f aXs (X2 + X3)
24 3a a 24 3a
=p f X2dX, f ix, f dx3] f e f X2dX, f dx3]
0 0
X3 a X3 2a
=p (—) (2a)(Ba)|+p a(—z) 3a
3 3
| 0 0
[ 3 8 3
=p _% (2a) (3a)] +p a(%) 311]
= p2a® + p8a®
=10a°p
_ 10
= 5 (6ep)
10
—Mz(l
Therefore
13 1 3
PR
J=Ma*|-- = -2
5 5 of
4 6 6
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We now find I around the center of the cube where the position vector of the center is

72

S (1 3
a= {Ea,a —a}. Therefore

And

And

And 121 = 112 And

And

In =] —M(EQ - “%)
= Ma2§ -M (a% + a%)

2
13 3
= Mazg —M[a2 + (Ea) J

13
= — Md?
P

Lip = J1 — M (-aqay)

()

=0

Ii3 = J13 — M (-aya3)

——Mazé—M (L4 Ea
B 4 272

=0

Ly = ]2 —M(E)Z _”%)

= Maz% —M(a% + a%)

w23 (3

Ipz = Jo3 — M (-azas)
9 3
= —Mazg -M (— (a) Ea)
=0

And 131 = 131 and 132 = 123 and

I3 = J33 —M(EQ - a%)

= Ma2¥ -M (a% + a%)

,10 1\
:Mag—M Ea +a

5
= —Ma?
12
Therefore the moment of inertia tensor around the center of mass is
13
o 0 0
I=Ma|0 2 0
00 2

12
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4.9.2.2 Part(2)

.. L1
The kinetic energy is @ - L where w = {w, wp, w3} and

L=Iw
% 0 O0)(w
=Ma?|0 2 0||w;
0 0 % w3
B Ma2w,
= ﬁMazcuz
gMaza)Lq,

Hence

1 1/(13 10 5
T = EC() -L = E (—Maza)lz + EMﬂzwg + EMQZCU%)

1
= M (1302 +10w3 + 5w2)

Since body is rotating around the long diagonal. The long diagonal has length \/ a2 + (2a)* + (3a)* =
\/ﬂa, therefore

w

V14a

1 13 4 9
T= - Ma?w? (2 +10( = | +5(=
24T (14+ (14)+ (14))

7

2 1,2,3)
14

\/_

@ {a,2a,3a} =

and the above becomes

= ﬁMﬁlza}Z
4.9.2.3 Part(3)
Using
w L =|w||L|cos B
0 w - L
cosf = ——
|ewl |L|
4,02 2
_ 24Ma w
/ 13 2 10 2 2
CL)% +a)%+a)§ (EMaza)l) + (EMHZCL)2) + (—ZMIZZCU3)
4, o5 o
_ ﬁMﬂ w
2 2 2 2 2 2
N 20 30 B2 10 22_‘“) (i 23_“’)
\/(m) () + () \/(uM” ) + (M) + (M
gMazcu2
Va2 [ BT A 2442
w 1008Maw
14
_ 24
7
1008
= 0.92951
Hence
6 = 21.640
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4.9.2.4 Part(4)
Since

d

Toxternal = E( )inertial

_d
_E(L)body_'_wXL

But % (L), dy = 0 since L = Iw and I is constant and w is constant. Therefore

T=wXL

=w X lw
w1 11 0 0 (0]

=lay | X0 LI, O0||lwy
W3 0 0 I3 w3
(1] L,

=Wy X 120)2
w3) \zws
i j k

=|lw, w, w3
Ly hw; Izws

=i (lzwyws — hwyws) — j (Zwsw, — [Jwws) + k (Lw,wy — [ wiwy)
wyw3 (I3 = I)

= [wzw; (I; - 13)

wowy (I = Iy)

The above are Euler equations for constant w, and could have been written down directly
from Euler equations by setting all the @; = 0 also.

Now, since w = \/% {1,2,3} and I; = %MaZ, I, = %MaZ, I3 = 15—2Ma2, Therefore the above

torque becomes

5 10
. 1° (E 5
_ W s 2|a(B_ 5
T= 14Ma 3(12 o
10 13
2(5 - ﬁ)
5
a)Z 2
—_ 2
= 14Ma 21
)
_5
28
= w?Ma?| -
7
1
T8
-0.1786
= w?Ma?| 0.1429
-0.0357

Units check: %ML2 = [N][L] units of torque. OK. The above is the external torque exerted
on the block.
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493 Problem 3

3. (10 points)
Consider a simple top consisting of a heavy circular disc of mass m and radius a mounted
at the center of a thin rod of mass m/2 and length a. The top is set spinning at a rate S
with the axis at an angle 45° with the vertical.

(1) Show that there are two possible values of the precession rate ¢ such that the top
precesses steadily at a constant value of § = 45°.

(2) Calculate the numerical values for ¢ if S = 900rpm and a = 10 cm.

(3) If a top is set spinning sufficiently fast and is started in a vertical position, the axis
remains steady in the upright position. This is called a “sleeping top.” How fast must the
top spin to sleep in the vertical position?

SOLUTION:

4931 Part(1)

Starting with the Euler equations for Gyroscope precession, equations 9.71. in textbook,
page 371, Analytical mechanics, 6th edition, by Fowles and Cassiday

Mglsin 0 = 1,0 + 1,S¢ sin 0 - I,¢* cos O sin 0

0= Iy% (qb sin 9) —1,SO + 1,0 cos 0 (1)
0=1LS
Where the spin of the disk S around its own z body axis is
S=vy+dcosO

Instead of drawing this again, which would take sometime, I am showing the diagram from
the book above, page 371 for illustration

]

\ X" (line of nodes)
(a) (b)

Figlu'c 9.7.1 The \imp]x- gyroscope.

In (1), the length I is the distance from center of mass of the combined disc and rod, to
the origin of the inertial frame. This will be [ = g M is the total mass of both the disc and

the rod, which will be M = zm

We are told that O (t) is constant. Hence 6 = 0 and first equation in (1) becomes
Mglsin 0 = L,S¢ sin 0 — I,¢ cos O sin O
Mgl = I,5¢ — I,¢* cos O
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This is quadratic in ¢. Solving gives
I,p? cos 6 — 1,5 + Mgl =
b= b+ Vb2 — dac
2a
LS+ \/IZZSz — 41, cos OMgl
- 2cos 0l

The only thing left is to calculate I, and I, for the disc and the rod about the mass center,
then use parallel axes theorem to move this to the pivot, which is the origin of the inertial
frame.

(2)

Due to symmetry, the center of mass for both disk and rod is located distance g from pivot.

Hence [ = g For the disc, its moment of inertial around the spin axes at its center of mass
is

a2

(L) gige = m—

And along the y axis I, = m . Since the distance of the center of mass from the pivot is 2,
we need to adjust I, by this dlstance using parallel axes. Hence
(1), = em(2)
Y/ disk 4 2
1
= —a’m

2

For the rod, it only has moment of inertial around y at the end of the rod. From tables

(Iy)md = (%) (2—2) Therefore

a
Iz = m?
1 m a?
Iy = (Iy)disk * (Iy)rod - Eazm M 23
= %azm
3

From (2), and using 6 = 45° we find, using M = m + % = gm and [ = g

LS+ \/12252 — 41, cos OMgl

4) - 2 cos Qly (3)

4.9.3.2 Part(2)

For 6 = 45° and S = 900 rpm, which is 94.248 rad/sec. a = 0.1 meter and [ = g = 0.05 meter
(3) becomes

(mé) (94.248)i\/( ) (94.248)? —4( azm) cos (45 (%)) (gm) (9.8) (0.05)

. 2con 8 ) (o)
0.1 0.1) 3
( )(94 248)+m\/( ) (94.248)? —4( ©0.1) )cos (45(%)) (5)(9.8) (0.05)
2cos (45 (1)) (5 (0.1 m)

E ((‘”) )(94 248) §\/((01’ ) (94.248) —4( 0.1) )Cos (45(%)) (g)(9.8) (0.05)
" 4cos (45( )) (0.1 4 cos (45 ( 180)) (0.1)

=49.983 + 48.398 rad/sec

Or

¢ = 939.47 or 15.13 rpm
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4.9.3.3 Part(3)

From (2) above, repeated below

LS+ \/1352 — 41, cos OMgl
= 2cos 01,

Since ¢ must be real, then I25? — 4], cos OMgl must be either positive or zero.
S§% — 41, cos BMgl > 0

2> 41, cos OMgl

2T

For 6 = 0 the above becomes
@ Mgl
SA?

The above is the condition on spin speed S for keeping 6 = 0. Hence

4(§a2m) (gm) (9.8)1

&)

[

2>

156.8
> o)
156.8

(0.1)
> 784

(0.05)

Therefore

S> V784

> 28 rad/sec

S >267.31 RPM

4.9.4 Problem 4

4. (10 points)
Determine the principal moments of inertia and the corresponding principle axes about
the center of mass of a homogeneous circular cone of height h and radius R. (You might
find it easier to calculate the moments in a reference frame with the origin at the apex
first, and then transform to the center of mass system.)

SOLUTION:

4.9.4.1 Solution using Cylindrical coordinates

Will show the solution using Cylindrical coordinates. Then later will also show the solution
using Cartesian coordinates. Using Cylindrical coordinates
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r, 0, z are the cylinderical coordinates

The limits of volume integration will be from z=0---h and 6 =0---27. For r, it depends

. R - R .. .
on z. Since % = %, then r = 7% therefore the limit for r =0--- 72 This is when the tip of
the cone at the origin as follows

r_z
R~ h
- h
z
2 -~
x
oo 3M L 3

The density is p = —7-. The center of mass is ; distance away from the base or ;h from

the tip. The moment of inertia is found at the origin (which is the tip of the cone also),
then moved to the center of mass using parallel axes theorem. We know from Cartesian
coordinates that the inertia matrix is found using

v +z2  —xy -z
J=p f f f —xy x*>+z2  —yz |dzdydx
-xz  —yz X+

Therefore, in cylindrical coordinates this becomes, after using the mapping x =rcos 60,y =
rsin@,z =z

Y T [ sin®@ +22 —r2cos@sin@ —rcos Oz
h .
J=p f f f —rcos0z  r*cos? 0 +z2 —rsin Oz |rdrdOdz
0vJo Yo )
—rcos 0z —rsin 0z r2

Due to symmetry, the off diagonal elements will be zero. So we only have to perform the
following integration

R r2sin 0 + 22 0 0
h 27 72
] = Pf f f 0 r2cos? 0+ 22 0 |rdrdOdz
0Jo Yo 0 2
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For J;; we find

R

(r2 sin® 0 + zz) rdrd6dz

z h 21
(r2 sin? 6) rdrdOdz + pf f f
0o Yo

22rdrdOdz

h 27 72 h 27 %z
= pf dzf dao f (r3 sin? 8) dr|+ pf zzdzf do f rdr
o Yo 0 0 0 0

4Kt 2 4

h
_ pR4 h pR2 25
= T(Zﬁ,f(\) Z4dZ+ Eﬁzﬂ g !

p R* [25 ]h Rz 1

v o R
p R*1® , I’
=n=——+ pR°n—
a5 TP
7%,
= R4 + pR*1—
20 5
. 3M
Using p = —7. the above becomes
I = 3M 1
"7 mR%20
3M 3M
= —R*+ —n?
20 5

pR

2 h?

2

3M

h 27 4 %Z h 27 72
pf dzf sin” 64O [—] + pf zzdzf do [—]
o Yo 4] 0 0 2
o R4 fh . f2n 2 o R2 fh . f2n
A g0+ 2= (a4

17 oZ zO 81n96+2h2 Oz Zo 0

R () 6 1 o
= B—f Z4dz [— — ~sin (28)] +
0 0

I
21 f Z4dz
0

h3

— R4 + ——R%m—
T niR2h &

5

==

For J,, it will be the same as the above, since the only difference is cos? 6 instead of sin® 0

in the integrand. Therefore

3M
= _R2+
]22 20

For the final entry (the easy one) we have

R
h 21 wZ
Jsz=p f f f r?rdrd0Odz

0vo Yo

R
h 2 [ 4 e

:pff [—] dodz

ovo [4]
4

R h 271
p f 24dz | do
0

T4t

Yy

3M
—
5

R4 h
= B—an z4dz
0

Using p = fT]\fh the above becomes

_ 3M 1R
T ARZh20 AT

J33
6

= —MR?
20

225
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Therefore
Mp2  3Myo
20R + 5h » 03M 0
_ 3Mpp | 3My o
J= 0 20R + 5h . 0
0 0 ~ MR?

10

Using [;; = If]-m +M (azéij - aiaj), we now find I. The vector from the origin to the center of

mass is 4 = {0, 0, Zh}, hence

o= ) -]

2
3M 3M 3
=—R?+ —K2-M|=h
20 5 4
3 3
= —MR? + —Mh?
20 80
And
I = Iy
And
2 2
3 3 3
Isn = —MR? — —h| —|=h
o =gy (5] - (3]
3
= —MR?
10
Therefore the final inertial matrix around the center of the mass of the cone is
352, 342
20R + soh . 0 . 0
_ 352, 340
I=M 0 zoR + SOh 3O
0 0 —~R?2

10

4.9.4.2 Solution using Cartesian coordinates

Will find mass moment of inertia tensor at center of base of cone, then use parallel axes
to move it to the center of mass of cone.

R _ _h A
r ~ h—z I
|
|
T3 | h
- |
|
—_ _ \ 4
R > Y
x
We basically want to perform this integral
Z=h Y= YEma)  =max) (P +22 -y —xz
J=p f f f —xy x*+z>  —yz |dzdydx
220 y=YCmin)  x=x(ymin) -xz —yz x> +y?

The limit on z is easy. It is from z = 0 to z = h. Now at specific z, we need to know the
limit on y. The radius r at some z distance from the origin is r = Rt as shown above,
which is by proportions. Therefore the limit of integration for y is from y = —r to +r. Now
we need to find the limit on x. At some specific y distance from origin, we see from the

following diagram
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R(h-z)
h

We see from the above that x> = 2 —y? but r = , hence the limit on x is from

R(-2) | R(i-2) >
- (T) -y> to + (T) —y?. Now that we found all the limits, the integration is

R(h-z) ( R(h-z) )z_yz

h T h y2 + 22 —Xy -Xz
J=p f f f —xy x> +z2  —yz |dzdydx
N ( Ria) )2_y2 -xz  —yz X+
h
Where p = ;’R—Afh.Using computer algebra software to do the integration (too messy by hand),
the above gives
Lam2 o+ 2 AR
] = 0 “MI?+ ~MR? 0
3 MR2
0 0 MR
Now we use parallel axis to find I at center of mass. The center of mass is at @ = {0, 0, %h},
hence
Iy =Jn —M(EQ - a%)
2
1 3 1
= —Mh? + —MR? - M |-h
oM MR M (4 )
3 3
= —MR? + —Mh?
207" T80
And
Ly = J1p = M (-a147)
=0-M(0)
=0
And

Ii3 = J13 — M (-aya3)

3 11\3
— a2° N el g
= -Ma 1 M( (2a) 2a)

=0
And 121 = 112 And
Iy = J» —M(ﬁz - ‘Z%)

2
1 3 1
= —Mh? + —MR? —M(—h)

10 20 1
3 3

= 2 MR? + = M2
20" T80
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And
I3 = Jp3 — M (=a3a3)
=0-M(0)
=0

And 131 = 131 and 132 = 123 and
I3 = J33 —M(EQ - a%)

SERYIS M[(ih) ) (ih)z]

3
= —MR?
10
Therefore the moment of inertia tensor around the center of mass
ZR2+ 2 0 0
_ 352, 342
I=M 0 2OR + 8Oh 3O
2
0 0 ER

Which is the same as using Cylindrical coordinates (as would be expected).

495 Problem 5

5. (15 points)
A homogeneous slab of thickness a is placed on top of a fixed cylinder of radius R whose
axis is horizontal (as in the Figure below).

(1) Determine the Lagrangian of the system.
(2) Derive the equations of motion and determine the frequency of small oscillations.

(3) Show that the condition for stable equilibrium of the slab, assuming no slipping, is
R > a/2.

(4) Use a computer to plot the potential energy U as a function of the angular displacement
f for a slab of mass M = 1kg and

(a) R=20cm and a = 5cm, and
(b) R=10cm and a = 30 cm.

(5) Show that the potential energy U(€) has a minimum at § = 0 for R > a/2, but not for
R < a/2.

SOLUTION:
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4.9.5.1 Part (1)

current position of center of mass
ROsinf _w (“L y)

5 cosf
position of mass
of mass at

equilibrium

origin

The system has three degrees of freedom (x, Y, 9). But they are not independent. Because
if we know 6 (t), we can find x (f) and y (t) (for small angle approximation) as shown below
in equations (1) and (2).

The cylinder itself does not move or rotate. Only the slab has rotational and translational
motion. When the slab center of mass at C it is in equilibrium. When the slab center of
mass at point C’ the location of the center of mass is (x, y), where from the diagram above
we see that (for small angle 9)

x:(R+§)sin6—R6(:os@ 1)

y:(R+§)cosQ+RQSin9 (2)

The distance from C’ to O which is the zero reference for potential energy is therefore
(assuming mass of slab is M)

U= Mgy
- Mg (RGSinQ n (g +R) cos 6)
Let the moment of inertial of the slab around the axis of rotation be I therefore
1

o1
T=5162+§M(x2+y2) (3)

Now, we write %* + /> above in terms of 6 using (1) and (2). (Initially I did not know if we
should do this or not. So I left the original solution as an appendix in case that was how
we are supposed to do it). Using this method below, we find only one equation of motion,
not three as in the solution in the appendix.

X = (R + g) O cos 6 — (R90089 +RO0sin 0)
y= —(R + g) Osin O + (Résine +RQQCOSQ)
Hence (using CAS for simplification) we find
¥ = }192 (a cos O + 2RO sin 6)°
Similarly for ? we find
i = 3192 (asin 6 — 2RO cos O)°
Hence (3) becomes

1.0 1 .
T = 5182 + gMez ((acos 0+ 2ROsin 0)* + (asin O - 2RO cos 0)°)
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And the Lagrangian is
L=T-U

1 .. 1 .
= 5192 + §M62 ((a cos 6 + 2RO sin 6)2 + (asin 6 — 2RO cos 8)2) - Mg (RQ sin 6 + (g + R) cos 9)

4952 Part(2)

JL 1 .
_ : 2
g = M (8asin0+2R0(-gcos 0 + RO?))
JL 1 -
_ 2 202
79_1(4”” M+4MR6)6
d JdL o1 3
_ 2002 4 — 2 2092
Y TRT: 2MR260 +4(4I+aM+4MR6)6
Hence
dJL IL _
dtdo 290

| | .
16+ M (a? +4R202) 0 - ~agMsin 0 + MRO (gcos0+ReE2) =0
For small angles, we use sin0 =~ 6 and cos 0 ~ 1, 62 = 0 and 6% ~ 0. The above becomes
| |
16 + ZMaZQ - 508M6 + MROg = 0
N 1 1
0 (I + ZMaZ) +0 (MRg - EagM) =0

The above is now in the form 6 + w360 = 0, therefore the natural frequency is

[

12
(I+ZQM)

4.9.5.3 Part(3)

Mg(R—%a)
I+iu2M
harmonic motion), otherwise the solution will contain pure exponential term and it will

blow up. Hence we need

For stable equilibrium, we need > 0 in order to obtain an oscillator (simple

1
Mg(R——a)>0
2
R ! >0
- —a
2

R>—-a

4954 Part(4)

Here is a plot of Mg (RQ sin 0 + (g + R) Ccos 9), for small angle, using M = 1kg. For parts (a)
and (b)
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potential energy as function of the angle, part(a) potential energy as function of the angle, part(b)
2.261
2.450+
2.25¢
) e
3 224 3 2.445¢
2 =2
ou319= g 223L T
=1 =
2.440+
2221
2211
T | 24351, | ‘ N
I T 9 © Q@ o o ©o o T I I T 99 Qo o o o - I
| |

6 (degree) 6 (degree)

We see from the above, that in part(b), where R < g, the potential energy at 6 = 0 is not
minimum. This implies 6 = 0 is not a stable equilibrium. While in part(a) it is stable.

4955 Part(5)
(o) = Mg (Re sin 6 + (g + R) cos 9)

Hence to find where the minimum is

1
U’ (0) = gROcos O — 581 sin 6
Setting this to zero and for small angle we obtain

1
0=gRO - Egu@

1
0=0¢(R-=
This implies 6 = 0 is where the minimum potential energy is. We know this is stable

equilibrium. Therefore we expect U” (0 = 0) to be positive for a local minimum (from
calculus). We now check the condition for this.

u”o) = —%g((a —2R) cos O + 2RO sin O)
At 6 = 0 we obtain
u’@=0)= —%g(u —2R)
For the above to be positive, then

a—-2R <0
2R >a

R>a
2

The above is the condition for having stable equilibrium at 8 = 0. If R < g, then at 6 =0
the slab will not be stable, which is not we have shown in part(3).
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4.9.5.6 Appendix. Second Solution of problem 5
4.9.5.6.1 Part(l) In this solution, we find three equations of motion.
1 ., 1
— 2702 2 L 2
T= 519 +§M(x +y)
Hence the Lagrangian is

L=T-U

1. 1 a
— 2 .2 2 :
= SI6% + EM(x +1 )—Mg(R@sm9+(§ +R)cos9)

49562 Part(2) For0

JdL ) a .
30 = —Mg(R(sm6+ OcosH) - (5 +R)sm6)
dL :
>0 =10
i‘?—L. =10
dt 90
Hence
ddL  JL
dtdo 90

19+Mg(R(sin9+ 6 cos 6) — (g +R)sin6) =0
For small angles, we use sin 0 = 6 and cos 0 = 1, and the above becomes
Ié+Mg(2R8— (g +R) 9) =0
. 1
I@+Mg(R— Ea)@ =0
Mg (R~
g\R—34

I
The above is now in the form 6 + w36 = 0, therefore the natural frequency is

1
Mg (R - Ea)
I

0 + 6=0

Wy =

For x, we have

Hence

)

dt dx Jdx
Mx=0

For y we also obtain

Mij =0

The rest follows as first solution above and will not be repeated.
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Problem 2
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410 HW 10

410.1 Problem1

1. (10 points)
Show that the total energy associated with each normal mode of oscillation is separately
conserved.

SOLUTION:

The motion in each normal mode is de-coupled from each other mode. Each motion is
a simple harmonic motion in terms of normal coordinates, and reduces to second order
differential equation of the form

i + wfn; = 0 (1)

Where i ranges over the number of modes. The number of modes is equal to the number
of independent degrees of freedoms in the system. Each mode oscillates at frequency w;.
Since this is a simple harmonic motion, its energy is given by

1 1
Ei= Emm? + Ekinz‘z (2)
Where k; is the effective stiffness of the mode and w? = % Therefore k; = m;w?.

To show that E is conserved, we need to show that ‘Z—f = 0. Hence from (2)

JE; s .
LU (mia)iz ) it

But from (1) we see that #j; = —w?7;. Substituting into the above gives
JE; . .
0—,—; = m;1); (—wl‘zﬂi) + (mia)iz) it
=0

Therefore energy in each mode is constant.

4.10.2 Problem 2

2. (10 points)
A uniform horizontal rectangular plate of mass M, length L, and width W rests with its
corners on four similar vertical springs with spring constant k. Assume that the center of
mass of the plate is restricted to move along a vertical line. Find the normal modes of
vibration and prove that their frequencies are in the ratio 1 : /3 : v/3. (This problem is
simpler if you decide beforehand what the normal modes are and then use the appropriate
generalized coordinates so that the equations of motion are decoupled from the start.)

SOLUTION:

' k
‘W/ﬁ'k/;__%__éf_\,y
-z 1

k Iig Sk

degrees of freedom: z, 64,65
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Kinetic energy is
1 1. ., 1 .
T = -Mz*+ -0 + S1,03
FVE ot T 5hts
Where [; is moment of inertia of plate around axis y, and I, is moment of inertia of plate
around axis x. These are (from tables) :

= Ly
h 12

L= L2
27 12

The potential energy is

1\ (1w ) (1 (L
U=4(-K22)+4| K[ 6] |+4]|3K([Z6,
2 2°\2 2°\2
2 2
W L
:21<z2+21<(—91) +21<(—92)
2 2
1

1
=2Kz? + EKW@% + EI<L26§

Where small angle approximation is used in the above. Hence the Lagrangian is
L=T-U
1. 1 . 1 . 1 1
= EMz2 + 5116% + E1205 —2Kz% - E1<w29§ - EI<Lze§
Equation of motion for z

JdL
z —4Kz
oLz
0z
Hence
Mz + 4Kz =0
Equation of motion for 6,
IL -KW20
20, !
JdL .
(9_61 = 116]

Hence
L6, + KW?0; =0
Similarly, we find
1,0, + KL20, = 0
Therefore
[M]g+[Klg=0
M 0 0)(z 4K 0 0\(z 0
0 I 0||6;(+]0 KW? 0 [{6,]=]|0
0 0 I)\6, 0 0 KI?)\6, 0
Which leads to

4K - Mw? 0
det 0 KW2 - 11w2
0 0 Iza)

AK3[2W? — MK2L2w2W? — 41, K2[2w? — 41, K2w?*W? + MI;KL?w* + MLKw*W? + 41 LKaw* - M1112w6 0
(KL? - 0?L) (KW? - w?;) (Mw? - 4K) = 0
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Therefore
K12
w1 = —_
2
KW?
Wy = Il
4K
Wa = -
3 M
Using I; = 11—2MW2, I, = %MLZ, the above become
SR, \/
ML2 M
_ KW \/
w2 =12y =
3 4K _»
D3ENM T VM
Hence Z—l === \/— 22 — /3. Therefore
2

a)l:a)zza)gzl:l:\/g

&.|.’_\
&~

w1 Wy w3z =

4.10.3 Problem 3

3. (15 points)
A pendulum of mass m and length [ is attached to a support of mass M that can move on

a frictionless horizontal track as shown on the figure below. Find the normal frequencies
and the normal modes of (small) oscillations. Sketch the normal modes.

SOLUTION:
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Kinetic energy is

1 1 . 2 . 2
T= Esz +om ((x +10cos0) + (I0sin 6) )
1 1 ) . )
= EMJ’CZ + S (xz + 1262 cos? 0 + 210 cos 0 + 1262 sin? 6)
1 1 ) )
= —Mi? + S (5(2 + 2x16 cos 0 + 1292)

2
And potential energy is
U = —mgl cos 0
Hence the Lagrangian
L=T-U
1o o 1 s o 2492
= EMX + Em(x +2x10 cos 0 + 70 )+mglcost9
Now we find equations of motions. For 0
oL = ¥10 sin 6 Isin 6
59 = mxl0 sin mglsin
JL 1 .
ke S (chl cos 0 + 2126)
=m (J’cl cos O + 129)
d JL i . 0
790 = m(xlcos@—xl@sm6+l 6)

Hence

dJdL JL
dtdo 90
m (5&1 cos 0 — 10 sin O + 129) +mxlOsin O + mglsin 0 = 0
mil cos O + ml?6 + mglsin 6 = 0 (1)
Now we find equation of motion for x
JL 0
ox
JdL ) o
g :Mx+m(x+l(9(:ost9)
d JL . :
= . .. _ 2 .
FTiEr Mx+m(x+ 16 cosO - 16 sm@)
Hence
ddL JL _
dt dx  dx
Mjé+m(5€+lécos6—lézsin9) =0
¥ (M + m) +mlO cos 0 — ml6?sin 0 = 0 (2)

Now we can write them in matrix form [M] g+ [K]g =0, from (1) and (2) we obtain, after
using small angle approximation cos 0 ~ 1,sin 0 ~ 0 and also 6 ~ 0

M+m ml 5€+O 0 |{x|_[O
ml m2|{6) (0 mgl)\o] |o

Now assuming solution is g (t) = ae'®! then the above can be rewritten as

—w? (M + m) —w?ml )(al _[0 )

as 0

~w?ml  mgl - mPw?
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These have non-trivial solution when
det —w? (M + m) —w?ml _
—w?ml  mgl - mlw?
MPma* - glm*w? - Mglmaw? =0
w? (MPmaw? - glm? — Mglm) = 0

g m+M

Hence w = 0 is one eigenvalue and w = /5 —— is another.
w1 = 0
_ 5_;(M+m)
D2ENTTM

Now that we found w; we go back to (1) to find corresponding eigenvectors. For wq, (1)

becomes
0 0 a1 0
0 mgl)\ax 1o

Hence from the second equation above
Oa11 + mgla21 =0

So a1; can be any value, and a,; = 0. So the following is a valid first eigenvector

2 = an
"o
For w, (1) becomes

() oaem - (H) -]
(B g (5 0)

I M I M

From first equation we find

g(M+m)
_(7 M

g(M+m)

)(M+m)a12—(7 i

(M + m) app + mlﬂzz =0

mlﬂzz =0

ml

Hence a;, = - o 22 So the following is a valid second eigenvector
o,
a,=| Mrm)
ax»
Therefore

X =apf + aphs
0 = anm + axpn,

Where 7; are the normal coordinates. Using relation found earlier, then

X =4d11M (2)
= _ML_JTH)‘ZZan + a1 (3)
Hence from (2)
X
m= —a
And now (3) can be written as
ml X
= _(M n m)ﬂma—11 + a2
Therefore
0 1  mix

= — 4+ —
2 ay  a;p (M+m)
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ml

———q
To sketch the mode shapes. Looking at a; = [aélJ and a, = ( (V4m) 22

az)
ml
1 ) T (M+m)
0 1

So in the first mode shape, the mass M moves with the pendulum fixed to it in the same

orientation all the time. So the whole system just slides along x with 6 = 0 all the time.
ml

(M+m)

and normalizing

we can write

In the second mode, x move by factor to 0 motion. For example, for M < m, then
!

mode 2 is [_1 ], hence antisymmetric mode. If M = m then we get [_15) antisymmetric, but

now the ratio changes. So the second mode shape is antisymmetric, but the ratio depends
on the ratio of m to M.

410.3.1 Appendix to problem 3

This is extra and can be ignored if needed. I was not sure if we should use s = [0 as the
generalized coordinate instead of 6 in order to make all the coordinates of same units.
So this is repeat of the above, but using s = /0 transformation. Starting with equations of
motion

(M +m) + mlO cos 0 —ml6?sin@ = 0
0
COZS +m%sin9 =0
Will now use s = [0 transformation, and use s as the second degree of freedom, which is
the small distance the pendulum mass swings by. This is so that both x and s has same
units of length to make it easier to work with the shape functions. Hence the equations of
motions become

moO + mx

. § s 2 (s
X (M + m) + ml- cos (—) — ml— sin (Y) =0
5

I l 12
s .. ) 8 (_):
ml+mx ; +mlsm 0

We first apply small angle approximation, which implies cos? — 1,sin (;) - ; and also

Q

@}

n
—~
~1®

2
7—2 — 0, therefore the equations of motions becomes
IM+m)+ms=0
5 + - + 83 0
m- +mi—+ms- =
! ! Il

And now we write the matrix form

M+m m||x 0 0 |fx 0
N g =
m mJ\3 0 m)\s 0
Now assuming solution is g (t) = ae’!, then the above can be rewritten as
-w?*M+m)  —w’m (o 0
2 g 2 = (1)
—wm ms —mw* )\ ay 0
These have non-trivial solution when

dot (—wz M+m) —w’m

—w?m mé — maw?
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g (M+m)

is another.
—7 is anothe

Hence w =0 is one eigenvalue and w =

a)le

(M+m)
W2 = V% Mm

Now that we found w; we go back to (1) to find corresponding eigenvectors. For wq, (1)

becomes
O 0 a1 _ 0
O m% 1121 B O

0&11 + m‘%aﬂ =0

Hence from the second equation above
Oﬂ]] + m%am =0
So a1, can be any value, and a,; = 0. So the following is a valid first eigenvector

For w, (1) becomes

g (M+m) g (M+m)
_(7 M )(M+m) _(7 M )m a2 _ |0
_(gw) m§_m(§w) ay) |0

I M M

From first equation we find

g(M+m)
_(7 M

g(M+m)

)(M+m)a12—(7 M

(M + Wl) a1p + Mdyy = 0

)Wlﬂlzz =0

m . . . .
Hence a, = ~ Gt 122 So the following is a valid second eigenvector
__" 4
a, :[ (M-+m1) 22]
ax»
Therefore

X =4y + aph
0 = ajpn + axpn,

Where 7); are the normal coordinates. Using relation found earlier, then

X =aym (2)
m
0 = —mazth + axpty (3)
Hence from (2)
_x
m i

And now (3) can be written as
m X

Aryn— + 01
M +m) 22a11 2212

Therefore
7] mx 1

= — + —
ay  (M+m)ay

2

m

. ay T im) 122 . .
To sketch the mode shapes. Looking at a; = 0 and a, = and normalizing
a2
we can write
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(%

So in the first mode shape, the mass M moves with the pendulum fixed to it in the same
orientation all the time. So the whole system just slides along x with 6 = 0 all the time.
In the second mode, x move by —— factor to 6 motion. For example, for M < m, then
1

), hence antisymmetric mode. If M = m then we get (_15) antisymmetric, but

(M+m)

mode 2 is (
1

now the ratio changes. So the second mode shape is antisymmetric, but the ratio depends
on the ratio of m to M.

first mode shape 10

second mode shape

410.4 Problem 4

4. (15 points)
Consider the simple model for the carbon dioxide molecule COy shown below. Two end
particles of mass m are bound to the central particle M via a potential function that is
equivalent to two springs with spring constant k. Consider motion in one dimension only,
along the z-axis. Find the normal frequencies and the normal modes. Make a rough sketch
of the normal modes.

SOLUTION:
L1 L2 T3

e — —>
m  k L m
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Kinetic energy

1 1 1

Potential energy
1 1
U = Sk (= x1)” + 5k (3~ x2)°

Hence the Lagrangian

L=T-U
1,1, 1 5 1 2 1 2
= me% + EMX% + me% - Ek(xz -x1)" - Ek(xg, — Xp)
EOM for x;
JL
8_x1 =k (2 —x1)
JL ]
&—xl = mXxq
d JL o
dt o,
Therefore
mjél —k(xz—xl) =0
mb&l + kx1 — ka =0 (1)
EOM for x,
JL
o —k (xp = x1) + k (x3 — x)
JL Mi
- = X
Iy 2
d JL i
Ea—xz = MXZ
Therefore
Mjé2+k(x2—x1)—k(x3—x2) =0
MX'Z + ka — kx1 - kX3 + ka =0
MXZ + 2kX2 - kxl - kX3 =0 (2)
EOM for x5
JL
8_x3, = —k (x3 - xp)
JL ]
&_5c3 = mXs
d JL o
dtogg 3
Therefore

mis +k(xz3—x) =0
mxs + kxs —kxy =0 (3)
Now we can write equations (1,2,3) in matrix form [M]g + [K]g = 0 to obtain
m 0 0)(x k -k 0)(x 0
0 M O0||x|+]|-k 2k —k||x|=]0
0 0 m)\x; 0 -k k)\x3 0

Now assuming solution is g (t) = ae’!, then the above can be rewritten as

k- ma)z -k 0 aq 0
ko 2%k-Me? &k ||a|=]0 4)
0 —k k—mw?J\az) \0
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These have non-trivial solution when

k — mw? -k 0
det| -k 2k — Mw? —k =0
0 —k k — mw?

w? (k - ma)z) (—Mma)z + Mk + ka) =0

Hence we have 3 normal frequencies. One of them is zero.

0)120

k
Wy = —

m

M +2m
W3 =

Mm
For each normal frequency, there is a corresponding eigen shape vector. Now we find these
eigen shapes. For w;, and from (4)

k -k 0)(a 0
-k 2k -kl|lay|=|0
0 -k k)\as 0
Hence
ka; —kay + 0az =0
—kay + 2kay —kaz =0
0ay —kay + kaz =0
Or
ap—a, =0
—a1+2a,—a3=0
—ay,+a3 =0
1
Hence a; = a, and a, = a3. So |1| is first eigenvector. Now we find the second one for w;.
1
From (4) and using w = \/g
k-ms -k 0 Y(a1) (0
-k 2%-M- -k ||a]=|0
0 —k k- m% as 0
0 -k 0)(ay 0
k 2%-M= —k||a,|=|0
0 —k 0 J\as 0
Hence
—kay =0
—ka; + (2k —ME) a, —kaz =0
m
—kay =0
Or
a, =0
—a1+a2(2—]\—4)—a3 =0
m
a, =0
1
hence a, =0 and a; = —a3. So | 0 | is second eigenvector. Now we find the third one for wj.
-1
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I
ap

as

I

as

as

From (4) and using w = kMAZim
M+2m
k—m (km) -k 0
M+2m
K 2% —M(k L ) K
M+2m
0 -k k—-m (kw)
M+2m
ok M _]1{\/1+2 ’
—k 2k — k—— —k
M+2m
0 —k k—-k m
Hence
M+2
k(l— m)al—kaZ:O
M+2
—kﬂ1+k(2— il m)HZ—kag,:O
M +2m
—kﬂ2+k(1— M )ﬂ3:O
Or
M +2m 0
- a;—a; =
M 1~ 42
(s M +2m 0
—-a - a, —az =
1 - 243
<1 M +2m 0
—-a - as =
2 M 3
1
Solution is: a; = a3, a, = —i—/lma3 So _zﬁm is third eigevector. To sketch the mode shapes,
1
will use the following diagram
M 72 mode 1 75
A A/
1 K~ - - - - - 71T - - - = = =7
N~ s
N T~ s
h N O - g

N s
AN
_2m / <7 mode 2
M
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4.10.5 HW 10 key solution

Medranics
?k-a.s.'u 30 -Falt 201§
Homewyort Set 10 — Soludong

Problem 4
total eneqy of the r-th normal mode:
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. . . &
AR Y zr 2 {5’ Lu.ht 2,_’ W, [5' Lu.sr
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N

Refo.]

/Ay oy, & ~ o(- Siawd, &
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*
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+

2
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2
2
& Ep = 21. LJ,," [ Ve L°5L""'é f}‘: Siaed, &
+ 2/4’0‘- u&u)r‘- srf»\h)"h
+/.4,t 006\ hn),-b + \7.-1 S-‘/\‘Q,(z
- 2)«- Ve Lows, d ‘-'t\u),t ]
et [reo)
- Z f /‘r [
O Q
E8
Ec = ‘2“. ’-‘)f ‘Pr\

Ne ‘“‘ﬁ‘a o% eadn nairal mode o d‘qwc.,\-gb-' S aser ved un
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Problem 2

I €

— K.

S&mmcha -'M’\.' ¢y +hal dha Ahres. natmol modey ale

) 4he ‘o(.n\g moves vp and down ardh does net sotatre
(&) the plake covaves abost the Qre ¥, e s of masd Lxel
(;) +he plave rokakes Qboud he (At ¥ phe cedo af wass Lixnad

- . 1 2
cose () ff=§ﬂ(ﬁ3) J= 1 (4w) ¥,
o ®
= Mx, ¢+ 4U xy =0 = Q.=J;
\ . 2 = iy L kN
case (<o) % = f,.(eg) U= e (4w) (I 9,_)
o1 $malt osuillations
L
7#*! ‘3_.91.
b, €,
$,7 W3 g xl ax,
"/l
2 L3 = L . M=
» Wy 3 T 2 e £t Wig
= o L2
= 41 9‘ + ‘f“ ; e'z = O
L 12 « AL
@ e, * — 8, =0 e)l W, P
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3
o () A3 £,(6) O+ wa(fe)

= L 2
1, 7 MJ
<y "2“ N co = ‘_z__‘i
So (e e (&) AR e, =© » / =
A the fapoeny ra¥e s
(,).:‘,J.‘:‘.Js R | -'E :,{3 m

Wy=dy W degenciacy L
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Problem 3

Qenes aled weoidiates X

ih the dneskial ame Ko, 4o Ko = Xt L giner
Yo 2(1- wse )

Rp? %+ L& B
Qo L6 Sine
¢ & « &
= ’r=iﬂii*lm(x‘,+3°)

2

> . 2
"%,N{t‘*im[()'(«-lécme\ +(ﬂ96‘-'49\]
Q= Mgy, * maﬂ(l- wse )

- ] - ° kN
Small oscl@bons : Ax LM+ foa (x¢8)
—

J = m qt (l-lf%l) =}_m%£9 = gt

( ol-'un.‘u duny all deems 3*, ézgt, . 2 )
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XS]
Se Ah = (’—":) =0 2
Dx" Jo 270 .
A=Ay = (3:95) =0
Agy = o\ | My
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7
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(Pfo'bluv\ 4

The Lutu,,..r'a.‘ of the Sydtem S
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v, «
t— ety e—
.7 Xn X3
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My =M 2 mg, Au’(g,'l.’) = K
My, = M ¢
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(K-Mu" )l (2w -M) - W (K- mus) -Q(K-MQI\ =0

f 1]
1\ .
&) (U- mest) [(K—mo‘\ (2u-hut) - 2u*) =0
) (K- M) [ 2 - MUY - 2mb ¢ mit s ® 2wl =0
& W (k-me*) (mMQ - MK - 2muk) = ©
" g J o, B
= et We =y m O ifat R \
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411 HW For honors extra credit only

Mechanics
Physics 311
Fall 2015
Problems for Honors Credit (10/23/15, due 12/4/15)

You will need the help of a computer to find the solutions and to produce plots of the results.
Teamwork is encouraged in solving the problems.

The Restricted Three-Body Problem and the 5 Lagrange Points

1. Read Chapter 7.4 from Analytical Mechanics by Fowles and Cassiday. A copy of the
chapter is attached.

2. Determine the coordinates of the five Lagrange points L to Ls for the Earth-Moon system.
Describe the behavior of the effective potential function in the neighborhood of these points.

3. Show by explicit calculation that the gradient of the effective potential function vanishes
at L, and Ls.
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Chapter 5

Study and cheat sheets

5.1 Note added Nov 12, 2015

Looking at Example 5.3, textbook page 190, Physics 311.

Nasser M. Abbasi

Define d®

In[81]:= Clear[x, r, a, p, GO, m];

dphi = -p GO0 /Sqrt[l+ (r/a)*2-2r/aCos[x]]

GO p
out[82)= —
1+ r? _ 2rcCos[x]
a2 a
Integrate it over 0 to 2 7
In[83]:= u = Int[dphi, x]
a2<1+%—72rcos[x]) x 4dar
out[83}= -112G0p g 2 EllipticF|—, - ] /
(a-r)? 2 (a-r)?
J r? 2rCos[x]
1+ — -
a? a
Evaluate it over the limit
mea= | U0=m ((u/. x>2Pi) - (u/.x-0))
ar+:j) g . dar
——=L @ Elllptch[— - ]
out[84]= —
2r 2
1- —+t=

Printed by Wolfram Mathematica Student Edition

273




5.1. Note added Nov 12, 2015 CHAPTER 5. STUDY AND CHEAT ...

2 | on_example_5_3_in_text.nb

Find dU/dr and plot it for » = 0 to 4, and see where it is zero. These will be the

equilibrium points. Give “a” some value to plot

In(85]:= Plot[Evaluate[D[UO, r] /. {a>10,p->1,G0->1, m>1}],
{r, 0, 10}, GridLines -» Automatic, GridLinesStyle - Gray, Frame - True,

FrameLabel » {{"dU/dr", None}, {"r", "Example 5.3 in text"}},

BaseStyle » 12, ImageSize - 400]

Example 5.3 in text

oof[— " " T 77
\
—

-0.5 \

. \
\

dU/dr

out[8s]=

We see from above that du/dr is zero only at r=0. Also r=0 is not a stable point. (as shown in text).

Find ‘ZZ Y at = 0 to verify the text book result

2
In(g6] Limit[D[UO, {zr, 2}] /. p>M/(2Pia), £~ 0]
GO mM
Out[86]= -
2a3

Printed by Wolfram Mathematica Student Edition
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