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CHAPTER 1. INTRODUCTION

Took this course in Spring 2015 to learn a little about mechanics.

Instructor: professor [Stefan Westerhoff] Office hrs: During the fall semester, office hours are
Wednesdays 1:30 to 3:30 PM

class web page



http://www.physics.wisc.edu/people/stefanwesterhoff
https://learnuw.wisc.edu/

1.1. Syllubus

CHAPTER 1. INTRODUCTION

1.1 Syllubus

Classes:

Discussion Section:

Instructor:
E-mail:
Office:

Office Hours:

TA:

E-mail:

Textbook:

Homework

Mechanics

Physics 311
Fall 2015

Monday, Wednesday, Friday 11:00 am - 11:50 am
Van Hise 494

Session 1 (DIS 303): Thursdays 1:20 pm - 2:10 pm
Chamberlin Hall 2108

Session 2 (DIS 301): Thursdays 2:25 pm - 3:15 pm
Van Vleck B235

Stefan Westerhoff

stefan.westerhoff@wisc.edu

Chamberlin Hall, Room 4209

Wednesdays 1:30 pm - 3:30 pm, or by appointment
(no office hours on Sep. 9 & Oct. 14)

James Hanson
jehanson2@wisc.edu

S.T. Thornton, J.B. Marion,
Classical Dynamics of Particles and Systems,

5" Edition, Brooks/Cole, 2004

Homework is assigned each Friday to be handed in 7 days later in class. Teamwork is en-
couraged in solving the homework problems, but the write-up must be entirely your own
work. Homework and exam solutions will be posted on the course page which is accessible

via LearnQUW.

Examinations and Grades

There will be two in-class midterms and a final exam. Final grades will be based on the
midterms (20 % each), the final exam (40 %), and the homework (20 %).

Other Helpful Books

(1) L.D. Landau & E.M. Lifshitz, Mechanics, 3'4 ed., Butterworth-Heinemann, 1976
(2) V. Barger & M. Olsson, Classical Mechanics: A Modern Perspective, McGraw-Hill, 1973
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Class Schedule

Sep 2, 4

Sep 9

Sep 11
Sep 14
Sep 16, 18
Sep 21

Sep 23

Sep 25, 28
Sep 30, Oct 2
Oct 5

Oct 7

Oct 9, 12

Oct 14

Oct 16

Oct 19, 21, 23

Oct 26, 28
Oct 30
Nov 2, 4

Nov 6
Nov 9, 11

Nov 13
Nov 16
Nov 18
Nov 20
Nov 23, 25
Nov 30

Dec 2
Dec 4, 7

Dec 9, 11
Dec 14

Dec 17

1. Newtonian Mechanics.
—— Introduction. Newton’s Laws.

2. Lagrangian Mechanics.

—— Motivation. Principle of Least Action.
—— Euler-Lagrange Equations.

—— Lagrange Equations of Motion.

—— Conservation Laws. Mechanical Similarity.
—— Lagrange Multipliers.

3. Oscillations.

—— Equilibrium. Free Oscillations in One Dimension.
—— Damped Oscillations. Phase Space.

—— Forced Oscillations.

—— Nonlinear Oscillations.

4. Gravitation and Central Force Motion.
—— Gravitational Fields.

—— Tidal Forces.

Midterm 1

—— Two-Body-Problem.

—— Kepler’s Laws. Stability of Orbits.

5. Systems of Particles.

—— Elastic Collisions. Inelastic Collisions.
—— Motion of Bodies with Variable Mass.
—— Scattering in a Central Force Field.

6. Noninertial Reference Frames.
—— Langrangian and Equations of Motion in Noninertial Frames.
—— Motion Relative to the Earth. Foucault Pendulum.

7. Motion of a Rigid Body.

—— Rigid Bodies.

Midterm 2

—— Inertia Tensor.

—— Principal Axis Transformation. Parallel-Axis Theorem.

—— Equations of Motion. Euler Angles.

—— Symmetric Top in a Gravitational Field. Stability of Rotation.

8. Coupled Oscillations.
—— Two Coupled Harmonic Oscillators.
—— Systems with N Degrees of Freedom.

9. Hamiltonian Dynamics.
—— The Canonical Equations.
—— Virial Theorem.

Final Exam (5:05 pm - 7:05 pm, room TBA).
4



Chapter 2

Lecture notes

Local contents

2.1 Dec. 3, 2015, symmetrictopnotes| . . . . .. ... ... Lo L




CHAPTER 2. LECTURE NOTES

So
2‘. ? Ln.a—m»a.. Muthplias

h a uple of eXanaley, e '\avz_/.\.\d wasbvedary  do fedluce the
Nombes o%. wordirates .

éxcx—‘\\c_ 2 S-‘Mfk Perdlolum

Coordurates %, 4 Conabroant : )(zf nl P l" =9

L the euakions of Coaghont Cue of the S%am\

‘Z,J(a,; )=o) C=n 2 N, N portodtas

JEUE o m equabens of
[S-LRE L WNS

e askodnky te oMl holonomoc |

€ o {ystem i Subject 4o Nelonomec coashvainty, thae vy Gl
O fex o% Qopu ordirakey A tumy of caha the Lusvony 0§ mobon,

Ose gl«- Fonm Lo loch re.(—umu o e onshoats

ln dne 2.\(&.‘){;: N e

4: - L cre

= /Ac_ & as the LOAL-,) oeydirade in the Calwm&'o.l
QA the  2uabon of Mokon have the  (onshveual
“boZI\-M“ Gl ve do Aok hav 4o woi abagk
the wnilVaal




2.1. Dec. 3, 2015, symmetric top notes CHAPTER 2. LECTURE NOTES

2.1 Dec. 3, 2015, symmetric top notes
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CHAPTER 3. EXAMS

3.1 first midterm

3.1.1 practice exam

3111 questions

Mechanics
Physics 311
Fall 2012
Midterm 1 (October 5, 2012)

There are 50 minutes permitted for the complete examination. Do not discuss the exam
at any time. Answer the questions in a transparent way. For partial credit you must show
your work. The exam is closed book, but you are allowed to bring one letter size note sheet
which must be an original copy (no Xeroxes) in your handwriting. Calculators, computers,
cellphones, or any other electronic devices are not permitted.

Good luck !

Problem 1 (15 points)

Two blocks of equal mass M are connected by a cord of length I. One block is placed on a
smooth horizontal table, the other block hangs over the edge. The cord is heavy and has
a total mass m.

(a) (1 point) How many generalized coordinates are needed to describe the system?

(b) (6 points) Determine the Lagrangian of this system.

(¢) (6 points) From the Lagrangian, obtain the differential equation(s) governing the motion
of the system.

(d) (2 points) Find the acceleration of the blocks in the special case that the mass of the
cord can be neglected (m = 0).

...continued on next page...
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Problem 2 (15 points)

An object of mass m slides on a horizontal, friction-free table. A light, inextensible string,
which passes through a small hole in the table, attaches the mass to a second body of mass
M. The second body hangs below the table as shown below.

(a) (1 point) How many generalized coordinates are needed to describe the system?

(b) (4 points) Determine the Lagrangian of the system.

(c) (5 points) Determine the differential equation(s) governing the motion of the system.
(d) (3 points) For the special case that r is constant, solve the resulting equation(s) and
interpret your results.

(e) (2 points) What are the integrals of motion for this system?

11
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3.1.1.2 my solution to practice exam
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3.1.1.3 key solution to practice exam
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3.1. first midterm CHAPTER 3. EXAMS

3.1.2 Review to first midterm

By James Hanson

Problem 1

Consider a small ball of radius s and moment of inertia I rolling off of a
sphere of radius R. At what angle does the ball leave the surface of the sphere if
it is gently displaced from the top (i.e. total energy is equal to potential energy
of a stationary ball at the top)?

A lot of the new difficulty of this problem (relative to the particle sliding off
of a sphere) comes from setting up the constraints correctly.

The Lagrangian (without constraints) is given by:

%m(i‘2 +1r%6%) + %Iq.ﬁz — mgrcos 6

The distance from the center of the big sphere to the center of the small
sphere is R + s, so the natural constraint for that is r = R + s. We also need
to constrain the rolling of the ball relative to the motion of the ball along the
sphere. The simplest constraint that will work is setting the arclength along
the ball to the arclength along the surface of the sphere, i.e. R = s¢ (I was
being overly cautious when I said that this wouldn’t work in discussion). So
the constraint function is given by A;(r — R — s) + A2(R8 — s¢) and now our
equations of motion become:

mi"—mréz—i-mgcose-l—)\l =0

m(rzﬁ + 21'7"9) +mgrsinf + AR =0

‘«.« I —Aos=0

With some substitutions from the constraint equations and their time deriva-
tives we can reduce this to:

—m(R + 5)6* + mgcosf + A1 =0

m(R + 5)%6 + mg(R + s)sin 6 + (%)215 =0

And to completely solve this problem we need to use conservation of energy.
The Hamiltonian (total energy) of the system is given by

%m(i‘2 +726%)+ %Iqlﬁz +mgrcosf = %m(R+s)26"2 + %1(%9)2 +mg(R+s)cosf
And since the ball has been ’gently pushed’ from the top of the sphere we
have

%m(R+ 5)? + %I(—?Y 62 + mg(R + s)cos 6 = mg(R + s)

17



3.1. first midterm CHAPTER 3. EXAMS

The ball will leave the surface of the sphere when the constraint force (cor-
responding to the normal force) that keeps the radius fixed changes signs, i.e.
when \; = 0. So we have

m(R + s)§* = mgcos
Putting these two together we have
1 R 5] gcosd

1 2, 1Byl geosb _
[Zm(R+s) +2I(s)] R+s+mg(R+s)cos€-—mg(R+s)

[m(R +o)+ 1(?)2 +om(R + s)2] cos0 = 2m(R + 5)2
2m(R + s)?
3m(R+ )2 + I(£)2

which you can see reduces to % when I = 0, consistent with the simpler
version of the problem.

cosf =

18
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CHAPTER 3. EXAMS

Problem 2

The Lagrangian of a free particle in a magnetic field is given by L = %m(:ic2 +
.2 K . . . . .
9%) + q(Ag + Ayy), where A is the magnetic vector potential (whose curl is
the magnetic field). Consider the field given by A; = ay, Ay = 0. Find the
equations of motion and solve them. Find an integral of motion that is not
energy and confirm that it is conserved.

The Lagrangian in this case is given by

1 . . .
Em(a:2 +9?) + qoyi
So the equations of motion are given by
mZ+qay =0
myj—qat =0
Let 8 = £ and note that we have %' + 8§ = 0 and therefore

T+ p%=0

Which is the equation of a harmonic oscillator in . The same equation can
be derived for 4, so we know the solution must have the form

i = Acos(Bt + ¢)

9 = Bcos(Bt + )

Plugging these into the original equations constrains A, ¢, B, and % relative
to each other. Assume without loss of generality that ¢ = 0, then you can show
that the solution must be of the form

= Acosft

y = Asin 8t

So integrating gives the full solution:

A
T = 1T+ —sinft

B

A
Yy="%0 — -Ecosm

For the integral of motion notice that the Lagrangian has no z dependence,

therefore the corresponding generalized momentum %% must be conserved.

a—L—de— o
or oy

19
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Plugging in the solution we got gives

mA cos At + ga(yo — g cos ft) = gawo

which is in fact a conserved quantity. There actually is an analogous gener-
alized momentum for y but it is less obvious why it should be conserved.

20
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Problem 4

Consider an anharmonic (or nonlinear) spring with potential energy V =
1kr? + Zar* (k,a > 0) spinning at some fixed angular frequency wo with a
mass at the end. What are the equilibrium positions of the system as a function
of wp and which equilibria are stable?

The coordinates in this problem are given by

T = 1 coswot
y = rsinwgt
with derivatives
T = 7 coswpt — rwp sin wot

Y = 7sinwpt + rwp cos wot

So our kinetic energy is given by

T= %m(r’2 +r%w})

And our Lagrangian is

4

L= %m(ﬁ2 +r2wl) - %kr2 - %ar
K,,, Giving equation of motion J

mi = —(k —wd)r — ar?

This is at equilibrium when # = 0 or in other words (k — wd)r + ar® = 0.

This is always solved by » = 0, but it is also solved by r = 4/ “—'?a_—k If
wg < k then these solutions are imaginary and unphysical. Although it’s a little
unusal relative to polar coordinates the way we set up the coordinate system
allows negative r, so both of the equilibria are physical once ¥ < w3, although
they look very similar. The stability of the equilibrium is determined by the
derivative of the force as a function of position, which is & (—(k—wd)r—ar®) =
—(k —w?) — 3ar?. At r = 0 this is negative (and therefore stable) when w2 < k
and positive (and therefore unstable) when k < wg. At the other two equilibria
we have —(k — wg) — 3a“'—gﬂ_—k = 2(k — w3). So these equilibria are stable only if
the r = 0 equilibrium is unstable, i.e. when w2 < k.

For the critical w? = k case we have mi* = —ar3 for the equations of motion.
The second derivative test fails to determine stability, since it gives 0, so we
need to consider the fourth derivative of the energy (the third derivative of the
force) which is —6a, which is always negative and therefore stable.

21
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Problem 3

Consider a double pendulum (i.e. a rod attached to another rod by a hinge)
with both rods the same length £, where the inner rod is constrained to rotate
at a fixed angular velocity wp. What is the frequency of small oscillations of the
system if there is no gravity?

While it would be possible with constraints it would be simpler to set this
problem up directly in terms of the coordinates. The coordinates are given by
(where 6 is the angle of the second pendulum relative to some fixed vertical
axis) .

z = {(coswot + cos §)

y = £(sinwgt + sin 6)
The time derivatives of these are

& = —£(wo sinwot + fsin 6)

3 = £(wo cos wot + 6 cos §)
So our kinetic energy is (using the trig identity sinasinb + cosacosb =
cos(a — b))
1 2, oy _ L1 o000 2 j
T= §m(z +9%) = Eme (6% + w§ + 2w cos(f — wot))

(i; And there is no potential energy since the system is somewhere where there’s )
no gravity (like space). So now we have the equation of motion is

mE26—2me2uwq sin(6—wot) (§—wp)+2mewof sin(8—wot) = me2f+2me2wi sin(6—wot) = 0

Now since we're free to change coordinate systems, a more transparent co-
ordiante system would be ¢ = 6 — wot, ¢ = 0 — wp, ¢ = 6. In these coordinate
we have

m82$ + 2m22w§ sing =0

Which we know from experience is the equation of motion of a pendulum.
In particular in the small ¢ approximation this becomes

me2p + 2mePwio = 0

d+2ip=0
So the frequency of small oscillations is given by w = v/2wp. This form
makes sense in terms of dimensional analysis. We could have figured out at the

beginning that that answer needed to be of the form w = #wq for some fixed
number #.

22




3.1. first midterm CHAPTER 3. EXAMS

3.1.3 First midterm

First midterm was hard. We only had only 50 minutes, 2 large problems with many parts
each.

3.1.3.1 questions

Mechanics
Physics 311
Fall 2015
Midterm 1 (October 14, 2015)

There are 50 minutes permitted for the complete examination. Do not discuss the exam at any
time. Answer the questions in a transparent way and explain your answers. Just providing
the final answer is not sufficient - you must explain how you got there! For partial credit, you
must show your work.

The exam is closed book, but you are allowed to bring one letter size note sheet which must be
an original copy (no Xeroxes) in your handwriting. Calculators, computers, cellphones, or any
other electronic devices are not permitted.

Good luck !

Problem 1 (15 points)

A bead slides along a smooth wire bent in the shape of a parabola z = cr?, where c is a constant.
The wire rotates with angular velocity w about the vertical symmetry axis and is placed in a

uniform gravitational field g parallel to the axis of rotation.

(1) (6 points) Find the Lagrangian for the bead using 7 as generalized coordinate.

(2) (6 points) Find the differential equation of motion.

(3) (3 points) Find the value of ¢ that allows the bead to rotate in a circle of radius R with
constant angular velocity w.

e

\ |

...continued on next page...
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Problem 2 (15 points)

A simple pendulum of mass m and length [ is attached to a mass M that is free to move in a
single dimension along a frictionless horizontal surface.

(1) (5 points) Find the Lagrangian of the system.

(2) (4 points) From the Lagrangian, obtain the differential equation(s) governing the motion of
the system.

(3) (2 points) What are the integrals of motion for this system?
(4) (2 points) Determine the motion of the pendulum in the limit M > m.

(5) (2 points) How do we need to move M so that the pendulum hangs “motionless” at some
constant angle 6.7 Determine 6.

24
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3.1.3.2 Kkey solution to first midterm

Medhanics
(I)Lnd-s-'c& 21 - Fali 2018

Hidtern 4 - Solobons

Peoblem 4

(l) ’f: %‘_M (*1*51* .a.t) )("—'fCD»SO'
= ¢ SAD
=lm(i-’+r"é" 3 2 :
2 2= cr = 2:2cre
'PL}czr"r
O’M%2=m%cr7’ and Gtk O
So | (%4 ot 2,22 2
L:im r-rrw-l-ll-crr)-macf

) ?_L_= m (¢ 8% & bcte (—l)-ZM%C\"
r
DL o on 12+ Bl y)
e
A : 3 %L - c—l gL =
R, =) s Be  atr o °

.o '3 ° kN o 2
Forlbct et +8ctreltrwt-teted +2%cr =0

=3L§: (\+lpc",‘)+ Fohlde « r(ch-wl\=°

25



3.1. first midterm CHAPTER 3. EXAMS

2
(3) =R P ;‘:;:O
2
= 23_(,—..\1’0 & C=%

Q{Oh‘tm 2

1) Set V=0 at ®=0

cheose X and B ai %cnuq({éd oer dirnted

/f = 1 22
w3 N ox
U" = 0
toordiarey 00 M ove %=+ &sine

Xz x + 06 wio
ﬂ"’ - ¢ tov&

S = €6 gne

A =% m[ (x+06 was) + &+ 8* srel
™~ ()'("1— o ole+ 256 ¢ wio + 01 S" S-‘A‘G)

on (%2 + PR + 2%60 oto)

O,= Moy Yy = = M%C tor &

L= é (M) %" é m (6 +2%68wsO)

+ mae ColC

26



CHAPTER 3. EXAMS

3.1. first midterm
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3.2 second midterm

3.21 practice exam

3.211 (questions

Mechanics
Physics 311
Fall 2012

Midterm 2 (November 16, 2012)

There are 50 minutes permitted for the complete examination. Do not discuss the exam
at any time. Answer the questions in a transparent way. For partial credit you must show
your work. The exam is closed book, but you are allowed to bring one letter size note sheet
which must be an original copy (no Xeroxes) in your handwriting. Calculators, computers,
cellphones, or any other electronic devices are not permitted.

Good luck !

Some formulae:

U(r):—g P —1+ecost
r r
& a
p=_—_ E| = —
b mao |1 2a

T? =

2F(?
mao?

2
4w 3

G(my + ms) “

Problem 1 (15 points)

A moving particle of mass m; collides elastically with a target particle of mass my which is
initially at rest. If the collision is head-on, show that the incident particle loses a fraction
4m/M of its original kinetic energy, where m is the reduced mass and M = m; + mo.

...continued on next page...
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Problem 2 (15 points)

Two spacecraft (A and B) are in circular orbit about the Earth, traveling in the same
plane in the same directional sense. Spacecraft A is in low Earth orbit and spacecraft B
is in geosynchronous orbit. The astronauts on board spacecraft A want to meet those on
spacecraft B. To do so, the astronauts on A must fire their propulsion rocket and change
the speed of A from v; to vy when spacecraft B is in the right place in its orbit for each
spacecraft to reach the rendezvous point at apogee at the same time (see figure).

(a) (8 points) Show that the required speed boost for spacecraft A is

(%) 27’3

(2 rA+7TB

where 74 and rp are the radii of the initial circular orbits of the two spacecraft.

(b) (5 points) Show that the time 7" it takes spacecraft A to reach apogee is

T — s (7“,4—&—7’3)3
- VGM 2 ’

where M is the mass of the Earth. What approximations did you make?

(c) (2 points) Show that in order for A and B to meet at apogee,

T
0, = 180° (1 — —
0 80( 12)’

where T is in hours.

apogee

3.2.1.2 my solution to practice exam

3.21.21 Problem1l SOLUTION:
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/
V1.0 my
V1 /(p
o—» O B
my m2 ¢
/O
) mo
Before collision After collision
Conservation of Linear momentum gives
M0 = My 0] + Myvy (1)

Conservation of energy gives
1 1 2 1 2
2 _ — / - ’
Emlvl = 2m1 (vl) + 2m2 (02) +Q
But since this is elastic collision, then Q = 0. Hence the above becomes

2 2
myvt = my (Ui) + 1My (vé) (2)
The goal now is to eliminate v, from (1) and (2) and solve for v} in terms of v, to be able
to answer the question. Let % =y, then (1,2) can be written as
1

v = v} + 74 (A1)
o = (o) + (o) (A2)
We now move the m; terms to one side,
v -0} = v} (C1)
- (o) =y (es) (c2)

Dividing (2) by (1), using long division (this step is tricky, must be careful), gives
2 ’ 2
A-)
S )
01+ 0] =0y (3)
We now replace v in (C1) with what (3) giving
v —-v] = y(vl +vi)
U1 =YL = YU+
] (1—y) =v] (1+y)
)
1 1 (1 + 7/)

We achieved our goal of finding v] in terms of v;. Now to answer the question. The question

(4)
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is asking to find
T, -T]
-1 1 5
- 5)
Which is the fraction of kinetic energy loss of m;. So now we calculate the above, and see if
it gives the answer we are asked to show.

A

lmvz 1m(v’)2
21 — 5y \Uy

1 2
140
2y

2
2 ’

Using (4) into the above gives

But y = Z%, expanding the above gives

: ( (-5

i

T ! (1+:§—2)
A= 5 !
U1
2
_m2
v% - U%( :111 )2
(1+32)
= ml
07
2
1-5)
mq
=1- —5
(1+52)
mi
2
—1- (my —1mp)
- 2
(my +my)
2 2
_ (my +my)” — (my —my)
- 2
(my +my)
(m% +m3 + 2m1m2) - (m% +m5 - 2m1m2)
- (my + mz)z
Simplifying
_ 4.7’1111712
(my + )
m17’n2 1

- (my +my) (my + my)
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mim . .
But m = # which is the reduced mass, and M = m; + m,. So the above becomes
1 2

A_4m
M

Which is the result we are asked to show.

3.21.2.2 Problem 2 SOLUTION:
Part(a)

Let v; be the speed in the lower circular orbit. Let v, be the speed at the perigee just after
speed boost. Let GM = u. Since

01 =
N 74
2 1
U2 =4\ |H A a

Where a = rA;rB , then % can now be evaluated
2
(%) _
01 B
B 2(7’A+7’B)—27’A
B Ypa+7p
_ 27’3
a ra+7
Part(b)

Using the period for an ellipse given in the formulas and dividing this by half, since we are
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looking for half the period, then

a3
T,=m4|———
P G (ml + Mearth)

3
(%)
G(ml + Me)

Assuming the mass of the satellite (7;) is much smaller than M,,,;,, then the above becomes

T ra+1rp\3
T (A B)

P oML V2
Part(c)

The time it takes B to travel one circle (27) is

3
TC =27 G_M

Therefore, the angle B travels during T, is found by the equating the ratios

3

R
274 =2

271 GM

&
a T,
But ) = m—a (assuming the diagram given, where « is the angle between B and the apogee,

while 0 is the angle between B and the perigee). Therefore we use the above to solve for 6

2n] 2
Zn_nG_M

77—60 TP
Ty 3
7'(—80 GM
0. =T GM
TT—0p = —
N
GM
Qo—n—Tp E

Therefore
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3.2.1.3 key solution to practice exam

Mednanre §
’Ph“m’u 3n - Fal

2012

Midtem 2 - Solubong

enlevahon 6% Momentum

MViE My tm, v

4.
L L ener _|_ Y \ 2
¥ DU O S AR é”‘z\/s‘l
. ! 3 T
'ﬁ“ru - ;_M.‘/, - i‘m‘\/.' M:,Vl't
P = 2
! %M'vlt ™, V]t
B v
= LI | 2
zmlv' 'im, (V,’%Vz) #%M;V{z
=2 T \ ) )
LM.V‘ ""2—1\'\. ;!.' Vl')
iR A AV
& O=-m,V,V,' 4} M2\
¢ 3 My ("" e )Vz
So Vv, = 2% M,
M4+ My
\
ﬁ. LS AL M 4wt
1, ™M, vz2 LT TN
So wh M=, xmy
)
Gk s My LT be o
M T M
/
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2. (o) %‘u&, We need the velouh of A ia LE0

Vs oL
MrA

next, e Need vhe velowy of A ©n +he ellpheat 4vaay fac
otk ot (ao.«‘au.

T
VA = ?'_ l._ )

=
l+ e M & 1+e

GAlk OVt Ae._ = M Ta Vy

1o,
="'V, ) D V=2 Q+)
m ol 1+ e m
)
So Y} = l+e
\Ad
% eccenimaly e, e 2a=T,trg g =1+ a
= +e = s _zr_‘_
VA*“;
So V}_ 2 \’3
— m
v, Ca + r‘
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3.2.

(b) +he Bme of Hansfu s a hul!-(wioa of ‘e ellpheal

'\-fa—\)gu orbrt
2
Kegles 2 e c‘;::\ s
H-rmAﬁ M)
S A=z 21, - A 2« 3
2 A"
2van' ®
. _ T fatTg )3/2 o
VC\H 2
360°
24K

) B i ia %wdanckfpnoq; o‘b“. So W=

©,=120°"-w T

= |8°o_ 360°‘r
249 K
T w

(1-25)

= |go®
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3.2.2 Review Problems by TA
3.2.2.1 questions

311 Midterm 2 Review

November 12, 2015

1) {a) Since we often visualize precesssing orbits as clliptical orbits with a rotating apogee {really
this is only an approximation) it’s natural to wonder what kind of force gives these orbits precisely.

Show that the force law that gives rise to orbits of the form

a(l — &%)
r) = 1+ € cos(30)

{Note that this gives an apsidal angle of %) is of the form

(b) Newton originally considered this problem to analyze precessing orbits. Show that not only is
it true that v(0) = ro(80) where ro(¢) is an ordinary gravitational orbit, but in fact r(t) = ro(¢) and
8(t) = BOy(t) where r(t) and 0(¢) are the trajectory as a funetion of time of the precessing orbit and
ro(t) and 0 (t) are the trajetory as a function of time of an ordinary orbit (you can work backwards,
starting from the trajectory and showing that its acceleration corresponds to the force law found in
part {a). This fact is not actually special to gravitational orbits; Newton showed that you can speed
up the angular velocity of an arbitrary orbit in an arbitrary central potential by adding a carefully

chosen X force).
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2) {a) Suppose that you are in a spaceship that is trapped at the eenter of o uniform spherieal
cloud of dust with density p and radius B. What is the escape velocity of this configuration (i.e. what
is the minimum velocity you would need, starting from the center of the cloud, to escape to infinity)?

(b) You do not have enough fuel to escape the cloud, but you have managed to achieve a cireular
orhit of radius ro. You see a derelict spaceship that may have more fuel at a larger circular orbit {still
inside the cloud} of radius r1. What dv do you need to achieve an elliptical transfer orbit from radius
ro to radius r17 (Note that gravity inside the cloud is of the form F(r) = —kr for some constant k so
orhits are centered ellipses.)

(¢) Show that the energy of the transfer orbit is the average of the encrgics of the two cireular

orhits.

3) You encounter a strange central force with potential

Vir)=k(r —a) (47"2 — 1lar+ 9a2)

For what radii are civcular orbits stable? Is the circular orbit with radius r = a stable? Why or

why not? You may have to graph the effective potential to answer this question.

4) (a) Two spheres of mass mq and mg and radius 71 and 7o start off at rest in space a distance of
d apart (center 10 center). Determine their speeds and positions when they collide.
{b) The two spheres are chemieally reactive and explode a little bit, Determine the coefficient of

restitution (> 1) necessary for the objects to achieve escape velosity.
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3.2.2.2 key solution to review problems

311 Midterm 2 Review Solutions

November 14, 2015
1) (a) We need the Binet equation
a2 /1 1 mr?
@ (*) = o
We have that the orbit is

70~ a(l—#)

1 1+ & cos(0)

5 () -2y

So we get

d? /1 1 B 5. 1+ ecos(80)
ﬁ<;)+;7a(1—57)+(liﬂ 7 a(l—¢2)

_P 21
“ai-m TAA);
And
22 1. B2)2
Flr)= ga(l —ﬁ€2)m7“2 - ( m/ig)

Now since 8y = 80 (there was a typo in the problem) we have 8202 = 2 where £ is the angular momentum of

the original we have

k 2z
Fr)= %+ (- )%
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(Typically this theorem is stated in terms of 871 rather than 8.)

(b) For an ordinary particle in a gravitational potential we have
1 ; k
-2 2092
Ly = §m(T0 +r508) + v
The equations of motion are

mry — mr093 + =0
”

Sbof =

mrgt% —+ Zm”l‘o’f"oe‘o =0

For the precessing orbit we have

L= lm(T'2 +1262) + L (1-87% %
2 0 ovo r 2mr?
The equations of motion are
; k 02
w4+ (10 g
mr —mrt© + =z ( ﬂ )st

mr2f —+ Ymrif = 0

Making the substitation ro — 7 and 8y — 50 clearly leaves the second equation of motion unchanged so we only

need to check the first equation of motion. The first equation of motion for both orbits with the effective potential

is

. 2 k
mry — —03 +-—5=0
mri 72
L2k N
mi— ——+ 5 —(1-p5"7 =
mrs + r2 (-8 )mTS
And then since 202 = €2 we get immediately
" % 2 08 2 &
mr+4 — — - — B =
-l f mrd f mrd
2
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Confirming the solution.

2} (a) We know that the gravitational force on an object near a spherical mass of radius R and uniform density

p 15 given by

Py = CmM@) _ 4xGmp | 7 7 <R

2
T 3 | R R<r

So to get the potential energy (and then the escape velocity) we need to integrate:

Ulr) = — /Too F(r)dr

9 r2—3R? r<R
= gﬂ'Gmp .
2%  R<r

Which tells us that the potential energy at » =0 (with U(co) =0) is
U(0) = —27rGmpR>
So escape velocity is the velocity which gives a kinetic energy equal to —U(0) or more specifically

v =+/4dnGpR

(b) The easiest way to do this problem is to remember that the equations of motion for a particle in an
F(r) = —ker force separates in Cartesian coordinates (mi = —ksz, my = —ksy). So the centered elliptical orbit of

a particle in such a central force has ¢ and y coordinates that are just oscillatory:

T = xpcoswt
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Yy = Yo sinwt

(where we chose our coordinate system so that the sine and cosine would be simple.) A transfer orbit in this

case would be of the form

T = 75 Co8 Wi

y = rsinwé
So that the perigee/semi-minor axis (these are the same thing when F(r) = —k,r) is the radius of the smaller

orbit and the apogee/semi-major axis is the radius of the larger orbit. The y velocity in the circular orhit (y =

rosinwt) at the perigee is

And the y velocity in the transfer orbit at the perigee is

4
v; =riw = 7"1\/57er

So we get just

v = bry/ %WCP

(¢) The total energy (setting U(0) = 0 now for convienence, but this doesn’t change that the transfer orbit

energy is the average of the two circular orbit energies) of the smaller circular orbit is
Ey = 2mw?r? = 8 Gmpr?
o = 2mwry = gwlGmprg
and likewise
By — o2 — 8 Crmor?
1 = L 7‘1 = §7T mpTl

For the transfer orbit notice that £ =T +V = 1m (2 + u) + k(22 + y*) = Imo? + 1ka? + %mvz + 1ky?
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And since z; = 79 and y; = y1 and for a circalar orbit %mvg + %sz = %mvz + %kyQ = %E we get the required

result

B, = %ﬂ'Gmp('rg +73)

3} To check stability we need to look at

3 . Vir) 3 3(5a —4r)
r VI 10a2 — 15ar + 672

_ 30(a—r)?
~ r(10a2—-15ar+677)

The polynomial 10a® — 15ar + 672 is always positive for positive a and r (the easiest way to see this without
plotting is to caleulate the minimum value for a fixed a).

S0 we have that circular orbits are stable except at 7 = o where the quantity exactly vanishes. The stability test
is inconclusive. To look at the effective potential for the 7 = o orbit we need to figure out the angular momentum.
The force is given by

F(ry = -U'(r) = —2k(10a® — 15ar + 672)

Soatr=a

F(a) = —2ka?
So we have an angular velocity given by mf%a = 2ka® and the angular momentum is
2 = m%rt0? = 2kma’®
So the effective potential is

5
U.ps(r) = k(r — a)(47? — 1lar + 942 +ka—
rf 2

(As a sanity check note that the units are consistent.) Plotting this {with a = 1) and looking near a we have
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1.0 12 1.4

Which looks very flat at a (which is to be expected since the second derivative is 0), but still clearly should

correspond to a stable orbit, which it does, since the 4th derivative is positive:

5
UHr) = 120k% > 0

e

4) You can determine the speeds with conservation of energy and momentum and you can determine the position

with the fact that the center of mass is stationary (which is a consequence of conservation of momentum):

Gmyme
B, = Tmme
o d
1 Gmyme
B o 2 2 et
. 2m1v1 & 2m2v2 71+ 7o
B=0

Py =myv +mpvs
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Which can be solved to give

where AU = Gmymag <7“1741rr2 — %)

(I was lazy an solved this with Mathematica, but it 15 doable. A pro tip is that once you have one of vy or vy
you can immediately get the other by noting that the problem is symmetric between ne; and me, 80 you just need
to flip the labels and the sign.) The sign of the velocities doesn’t really matter, other than the fact that they need
to be in the opposite direction.

The center of mass is located at %d away from my’s initial position towards mgy. When they collide there
is a total distance of r1 + 72 between them, so the center of mass is located "2 (1 + 72) away from mu’s final

ma

i (d — 71— ) away from its initial position towards mg and by symmetry mo

position towards mag, 50 my i8
is ™ (d — r; — o) away from its initial position towards my. As a sanity check note that the total distance

my+my

traveled by both spheres is % (d—r1—r2)+ %(d, 71 —12) = d — 11 — ro, which makes sense. I mo > my

we got that my travels d — r1 — ro and mg doesn’t move, which also makes sense.

(b) By conservation of momentum we have
E— !
mivy = —mav)

In order for both objects to escape (by the constancy of the center of mass, if one object escapes the other must as

well) the total energy needs to be 0. So we have

1 o 1 o Gmamg
—mvy + vy — —— =0
2 1 2 2 1+ 12
Solving these two equations gives
72mQU

ml(ml + m2)

72m1U
ma(my +ms)
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3.2.

where U = 7%"};’;2 T chose the signs so that the solution would make sense relative to the sign choice in the
first part (if you choose v and v} to both be positive that corresponds to mq and mg somehow shooting past each

other after the explosion.)
The coefficient of restitution is the rasio of the relative speed before and after the collision. So in this case we

get
__2mg o 2m
‘ b AU — i AU |
—2m1 U —2maU
mi(mitma)

e =
‘ my(my+ma)

VAT
) VT

my g
my ey

1 1
Gmyme (r1+m — E)
- Gmymg
[t )
d
= 1
d—r1—7To
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3.2.3 Exam, Nov 16, 2015

3.2.3.1 questions

Mechanics
Physics 311
Fall 2015
Midterm 2 (November 16, 2015)

There are 50 minutes permitted for the complete examination. Do not discuss the exam at any
time. Answer the questions in a transparent way and explain your answers.  Just providing
the final answer is not sufficient - you must explain how you got there! For partial credit, you
must show your work.

The exam is closed book, but you are allowed to bring one letter size note sheet which must be
an original copy (no Xeroxes) in your handwriting. Calculators, computers, cellphones, or any
other electronic devices are not permitted.

Good luck !

Problem 1 (15 points)

A neutron in a reactor makes an elastic head-on collision with the nucleus of a_carbon atom
initially at rest. What fraction of the neutron’s kinetic energy is transferred to the carbon
nucleus? (The mass of the carbon nucleus is about 12 times the mass of the neutron.)

~ ...continued on nezt page...
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Problem 2 (15 points)

The orbit of a particle of mass m in a central force field F(r) is a circle passing through the
origin, :

r(6) = rocosf 0e[-n/2,m/2] ,
where r is the distance from the center of the force, 8 is the angular displacement, and 7g is the
distance from the center of the force at 8 = 0, i.e., the diameter of the circle.
(1) (5 points) Using the equation of the orbit

@ \r) =

d? (1) 1 mr?

where £ is the magnitude of the conserved angular momentum, show that the central force F'(r)
varies like the inverse of the fifth power of r according to

_ 2r26? 1

F(r)= T

(2) (5 points) Find the potential energy U(r) corresponding to F(r), write the total mechanical
energy of the particle, and define the effective potential Uess(r). Sketch the shape of Uess(r).

(3) (5 points) Does an inverse fifth-power force law allow stable circular orbits about the force
center? Argue qualitatively based on the sketch of Uesf(r) in (2), but also perform the calcula-
tion.
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3.2.3.2 key solution

Medhanics
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3.3 Finals

3.3.1 practice exam

3.3.11 (questions

Mechanics
Physics 311
Fall 2012
Final Exam (December 17, 2012)

There are 120 minutes permitted for the complete examination. Do not
discuss the exam at any time. Answer the questions in a transparent way.
For partial credit you must show your work. The exam is closed book, but
you are allowed to bring one letter-size note sheet which must be an original
copy (no Xeroxes) in your handwriting. Calculators, computers, cellphones,
or any other electronic devices are not permitted.

Good luck !

. _ 2_
ar? + bx + ¢ = 0 has solutions x = =bEvbi—dac w

Euler Equations:
Lo — (I — I3)waws =7

Lwy— (I3 — L) wswy =7
Iyws — ([T — L) wiwy =13

(Page 1 of 4)
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Problem 1 (15 points)

A chain of mass m and length L rests with (1 — a)L of its length on a table top and oL
of its length hanging over the smooth edge. The coefficient of friction of the tabletop is u.

(1) (5 points) What is the maximum value, ., for which the chain remains stationary?
(2) (10 points) If « is larger than o, when released the chain will slide off the table. What
is the velocity of the chain when the last link leaves the table?

Hint: to calculate the final velocity in (2), you can use the work-energy theorem: if one
or more external forces act upon a body causing its kinetic energy to change by AT, then
the work done by the net force is equal to AT.

Problem 2 (15 points)

A particle moves with velocity vy on a horizontal plane on the surface of the Earth. Show
by explicitly solving the equations of motion in the non-inertial frame that the particle will
move in a circle and that the radius of the circle is

Vo

2w,

)

where w, is the vertical component of the Earth’s angular velocity vector . You may
neglect centrifugal forces.
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Problem 3 (15 points)

A frisbee is thrown into the air in such a way that it has a small wobble. Air friction
exerts a torque —cd, where ¢ is a constant, on the rotation of the frisbee. Let x3 be the
symmetry axis of the frisbee (see below).

(1) (5 points) Use Euler’s equations to show that ws, the component of & in the direction
of the symmetry axis, decreases exponentially with time.

(2) (10 points) Show that the angle o between the symmetry axis and & decreases with
time if I3 is larger than [ = I; = I,. This is the reason why frisbees work so well: air
friction diminishes the wobble for a flat (frisbee-shaped) object.

Hint: For (2), express « in terms of

Jw? 4+ w2

w3

tana =

and use Euler’s equations to find a solution for w? + w3. Together with the solution for ws
from part (1), this should give

et
tana = (tan ) e Ct(l 13)

55



3.3. Finals CHAPTER 3. EXAMS

Problem 4 (15 points)

Consider the simple model for the carbon dioxide molecule COy shown below. Two end
particles of mass m are bound to the central particle of mass M via a potential function
that is equivalent to two springs with spring constant k. Consider motion in one dimension
only, along the x-axis.

(1) (5 points) Determine the Lagrangian of the system.

(2) (5 points) Find the eigenfrequencies of the system.

(3) (5 points) Find the eigenvectors and describe the normal mode motion; i.e., find the
relative amplitudes of oscillations for the three masses for each normal mode.
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3.3.1.2 key solution
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Probolem 3
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3.3.2 Offical finals, 2015

3.3.2.1 questions

Mechanics
Physics 311
Fall 2015
Final Exam (December 17, 2012)

There are 120 minutes permitted for the complete examination. Do not discuss
the exam at any time. Answer the questions in a transparent way and explain
your answers. Just providing the final answer is not sufficient - you must
explain how you got there! For partial credit, you must show your work.

The exam is closed book, but you are allowed to bring one letter size note sheet
which must be an original copy (no Xeroxes) in your handwriting. Calculators,
computers, cellphones, or any other electronic devices are not permitted.

Good luck !

az? + bz + ¢ = 0 has solutions z = ﬁ@
sin(a £ B) = sinacos B + cosasin B
cos(a £ B) = cosacos B Fsinasin 3

Euler Equations:
Liin — (I — )waws =7

Lwy— (I3 —L)wswy =73 .
Lws—(I1 — L) wiwe =73

(Page 1 of 4)
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Problem 1 (15 points)

You are charged with designing a pendulum clock for use on a gravity-free spacecraft. The
mechanism is a simple pendulum, i.e., a mass m at the end of a massless rod of length [ hung
from a pivot, about which it can swing in a plane. To provide artificial gravity, the pivot is
forced to rotate at a frequency w in a circle of radius R in the same plane as the pendulum arm
(see Figure). amy =l Vel Padfsec

(1) (8 points) Determine the Lagrangian of the system.

(2) (7 points) Determine the equation of motion and show that the motion of this pendulum
is identical to the motion of a simple pendulum in a uniform gravitational field. What is the
strength of this field?

',f"s\ 6
’ R
|I wt\
\ ,I X
\
\‘_"/
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Problem 2 (15 points)

Consider a bucket of radius R that is spinning with a constant angular velocity w about the
symmetry axis, i.e., the vertical axis through the center of the bucket. Determine the shape of
the surface of the water in the bucket by deriving an equation which describes the shape as a
function of 7, the distance from the center of the bucket.

Problem 3 (15 points) che

A rigid body is undergoing force-free rotation about one of its principal axes. In class, we showed
that in the case that all principal axes are distinct and I3 > I, > I;, rotation about the z;- and
z3-axes is stable, but rotation about the z,-axis is not. Now consider the case that two of the -
moments of inertia are equal, L=5h

(1) (13> points) Is the rotation about the corresponding axes x; and z; stable or unstable? To
check this, apply a small pertubation to the rotation, for example

W= w1 + Ay + ,u:i:3

for the rotation about z;, where A(t) and u(t) are small quantities. Find the solution for A and
1 as a function of time. Do a similar calculation for the rotation about z,.

(2) (2 points) Does the answer depejid on whether I5 is greater or less than I; = I»?

A
N
G = )\3(' —t—wzx +/AI}
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e é . i _ g
(24
Problem 4 (15 points)

A thin hoop of radius R and mass M is suspended from a single point and oscillates in its own
plane. A point-like mass M is constrained to move along the hoop. The moment of inertia of
the hoop for rotations about the center of mass is Iy = M R2.

(1) (5 points) Consider small oscillations and determine the Lagrangian of the system. Neglect
all terms of order higher than quadratic in small quantities (6, ¢, ...).

(2) (5 points) Show that the two eigenfrequencies are

[2 [
w) = Eg, Wy = % .

(3) (5 points) Determine the amplitude ratios for the two normal modes and describe the oscil-
lation of the system for these modes. Identify the symmetric and the antisymmetic mode.

y/\
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3.3.2.2 key solution
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Problem 2
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s
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Chapter 4

HWs

41 HW1
411 Problem1

1. (5 points)
A particle is projected with an initial velocity vy up a slope that makes an angle «
with the horizontal. Assume frictionless motion and calculate the time required for the
particle to return to its starting point. Find the time for vy = 2.4m/s and o = 26°.

SOLUTION

The vertical component of motion is only considered since that is the component that
changes due to the action of gravity.

Vo

— - v cos(a)

The equation of motion in the vertical y direction is given by F = ma. Hence

’’

my” = —-mg
y'=-8
Integrating once gives
y -y (0)= gt

Where y’ (0) = vypsin(a). The time for the particle to reach a final velocity of zero in the
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vertical direction is now find by solving the above for ¢
y;inal = y/ (0) -8t
Where y; ., = 0. Solving the above for the time t gives

0=vgsina — gt

; Vo sina
8

Hence the total time to reach back to its starting point is twice the above time, which is

total time =2 (Wi%)

For @ = 20 degree and v, = 2.4? and g = 9.81?2, the total time is found from

2.4 sin 20° )

total time = 2
9.81

=| 0.167 second

41.2 Problem 2

2. (10 points)
Two blocks of unequal mass are connected by a string over an ideal pulley (whose mass
is negligible and that rotates with negligible friction). If the coefficient of kinetic friction
is ur, what angle 8 allows the mass to move at a constant speed?

,.

SOLUTION

The free body diagram is shown below for each mass.
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A T T
positive /
Frg = uF'y T positive
A
2mg siu‘)/

|
I
|
I
2mg cos 0 ‘
mg
2mg

The acceleration of each body is the same. Let this acceleration be a. From the above free
body diagram of the 2m body the equation of motion is now derived (using positive direction

as show)
EP = 2ma
2mgsin O — Fy—T = 2ma
Using Fy = 2mg cos 6 the above becomes
2mgsin 0 — y2mg cos 6 — T = 2ma (1)

The tension T in the string is found from the free body diagram of the smaller hanging mass
since the tension T is same. From the free body diagram of the small mass the equation of
motion is

Hence
T=m (a + g)
Substituting T in (1) gives
2mgsin 0 — p2mg cos 0 —m (u + g) = (2m)a
2gsin @ — y2gcos0 — g =3a

Therefore
2( . 1
a=3 gsin6 — yggcos 0 — 28

For constant speed, a = 0 at some angle 0. The above reduces to

2( . 1
3 (gsm 0. — uxg cos 0. — Eg) =0

sin 0, — uy cos 0, — 5= 0
1
sin 0, — uy cos 0, = 5 (2)
To solve this, the following identity is used
Rsin (6, + a) = R(sin 6, cos a + cos 6, sin a) (3)
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Comparing the RHS of (3) with the LHS of (2) gives
Rcosa =1 (4)
Rsina = —uy (5)
Dividing (5) by (4) gives tana = —y; or
a=tan™! (—yk) = —tan™! (yk)
Squaring (4) and (5) and adding gives
RZcos? @ + R?sin”a = 1 + 13

R =41+

Therefore the equation Rsin (60 + a) = % becomes

1
A1+ 2sin(0, +a) = 5

1

sin (0, —tan™ () = ———
(O = tan™ (1)) = —=— ;
1
0. —tan™ (#k) =sin”! | ——
21+ 12

Therefore

-1
0, = sin

1 -1
——|+tan " (u
2.1+ 2 ()
1

For the case of no friction, where y; = 0 the above gives 6, = sin™! (5) = 30°. As y increases,

the angle 6, will increase. (in the limit, as y; — o0, 0, — 90°). This is a plot showing how
the angle changes as y; increases.

Angle for constant speed vs. p

80 F7

60

40
Out[40]=

6 (degrees)

20+

0.0 0.5 1.0 1.5 2.0
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41.3 Problem 3

3. (10 points)
A small box of mass m is in contact with a large box of mass M as shown in the picture.
A force F pushes on the large box. Because of friction, the small box will not fall if F
is large enough. How large does F need to be? Take into account all frictional forces
and assume that the coefficients of friction at all surfaces are g for static and py for

kinetic friction.

7

SOLUTION

Looking at the case where the small mass m is not moving (not sliding down the side), and
considering both M + m as one body. Let the horizontal acceleration of both bodies be a

(M +m)g
fffff »positive T
Nz
M »-r

-
1(M +m)g
(M +m)g

E F, =M+ m)a
F-uyM+m)g =M+ m)a
F—
o= oM+ mg A
(M +m)
The small mass m is now considered. The static friction force between m and M has to be
larger than the weight mg so that m does not move and fall. This implies f; = u;N must
be larger than the weight mg
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This is the static fric-
tion. Maximum value of
this friction force must
be larger than the weight
mg to keep the mass from
sliding \

\

4 —>»N

s N W;
g

This implies the following condition is required
usN > mg
Where N is the normal force on m. But
ma=N
From (1) we find

B F— u(M + m)g
N_m( (M +m) )

Therfore (2) becomes

ysm(F_Hk(Mer)g) > mg

(M + m)
Hence
F— (M +m)g > 5(M+ m)
F> 5(M+ m) + (M + m)g
1
> (M+ m)g(— + uk)
Hs
Hence

F>M+ m)g(“ﬁ—s“k)
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41.4 Problem 4

4. (5 points)
Show that the terminal velocity of a falling object is given by

1
(M9 (Y] (1)
Ut_[( CQ>+<2CQ>] 262
if the drag force F), has both a linear and quadratic term in v:

F,=c1v+ cyv?

SOLUTION
From the free body diagram

F, = c1v + cov?

The equation of motion is
2 E=my”
mg — (c1y’ + co(y'?) = my”

At the terminal velocity the body is not accelerating. Setting y”” = 0 in the above gives an
equation to solve for the terminal velocity (where now y’ is written as v;)

mg = (c10; + ¢07) = 0
CoU? + €0 — mg =0
This is a quadratic equation in v, hence the roots are given by

-b N Vb2 — 4ac

Ut:

20" a
_ o, \[C3 +dcymg
2cy 2cy
¢ ( o )2 mg
=— /== +—
2¢c, 2¢cy Cy

Since the terminal velocity v; has to be positive as indicated in the diagram above, then the
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solution is the positive root given by

2
= a s
Ut - 2C2 + (202) + Cy

41.5 Problem 5

5. (10 points)
A projectile is fired with an initial velocity vy = 500 m/s in a direction making an angle
a = 30° with the horizontal. We want to study the effect of air resistance on the range
of the projectile. Assume that the drag force has the form F, = kmwv, where m and v
are the mass and velocity of the projectile and k is a constant.

(1) Solve the equations of motions and determine the time 7" required for the full tra-
jectory.

(2) Use a computer to draw the trajectories of the projectile for £ = 0 (no air resistance),
k =0.001, £ = 0.01 and k£ = 0.1. From your plots, estimate roughly the range for the
different k.

SOLUTION

4151 Part (1)

The following is the free body diagram used to solve this problem.

‘ FBD for vertical motion ‘
kmy'(t)

Vg sin «v /‘ ‘ positive
/ A
/ |
|
fa\ [

-
Vp COS v mg

‘ FBD for horizontal motion

kma' (t)a—0

,,,,, » Positive

In the vertical direction, with positive taken upwards as shown in the diagram, the equation
of motion is given by

2Fy = my”
-mg — kmy’ = my”
y'+ky == (1)
In the horizontal direction, the equation of motion is

ZFX = mx"”

—kmx" = mx"’ (2)
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The initial conditions for equation of motion in the vertical direction are y(0) = 0,1’ (0) =
vpsina and the initial conditions for the equation of motion in the horizontal direction are
x(0) =0,x" (0) = vy cos a.
Equation (1) is now solved. The characteristic equation is A2+ kA = 0 or A (A + k) = 0, hence
the roots are A =0, 4 = —k, and therefore the homogeneous solution is
Yn H=A+ Be 7kt
The particular solution is now found. Let y, () = ct where c is some constant. Substituting
this into (1) gives
ke=-g

-8

k
Hence the particular solution is y, () = —%t, and the complete solution in the y direction is

c

y (&) =yn () +y, ()
= (A+Bek) -S4
(A+Bet) p
The initial conditions are now applied to determine the constants A, B. (Initial conditions
must be used in the complete solution and not the homogeneous solution). When ¢ = 0,
y(0) = 0 and the above gives

A=-B
Since i’ (f) = —Bke ™t — ‘% and since v’ (0) = vgsina, then at t =0
. 8
=-Bk-%
Vo Sin o p
(& vpsina
B[ 25)

Using values for the constants A, B, the complete solution for equation of motion in the
vertical direction becomes

y () =(A+Be™) - %t

(8§ . vosina g vosina) ., &
- ({0 (e

Hence

y(t) = (‘M]){ﬂ) (1 _ e—kt) _ %t (3)

The duration time T is now found by solving for y = 0 from (3). Hence

_ (8§ tkyysina _k g
0—(k—2)(1—€ T)_ET

_ (8§ tkyysina T
- (oo “
An analytical solution based on perturbation method for this is given in the text book at
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page 67 as

2vp sina kvg sina
T~ %0 (1 _ ko )
8 38

However in this solution equation (4) was solved numerically instead for T for the numerical
values given in this problem, and the results are summarized on the following table

k T (sec)
0.001 | 50.5427
0.01 | 47.2597
0.1 | 34.3395

The equation of motion in the x direction is now solved. This equation is given above in (2)
as X + kx’ = 0. The characteristic equation is A% + kA = 0 or A (A + k) = 0, hence the roots
are A = 0,1 = -k, and therefore, the homogeneous solution is

x, () = A+ Be™*
Since there is no forcing function, the complete solution is the same
x(t) = A+ Be ™ (5)
The constants are found from the initial conditions. At t =0
0=A+B
A=-B
Since x’ (t) = —Bke ™", then at t = 0

vgcosa = —Bk
—0g COS ¥
k
Substituting the above values for A,B into (4) gives the solution for the motion in the
horizontal direction

B =

x(t) = % C]?S & (1 - e‘kt) (6)

4152 Part (2)

The following shows the projectile path for each different k value.
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Projectile for different k values

3000}

2500

2000}

1500 |

1000 f

500

/ 0.01 "\‘

\K‘x

5
M

From the above, an estimate of the range

10000 15000 20000

x(t)

for each k is given in the following table

k range (meters)
0.001 21500
0.01 16500
0.1 4100

41.6 Problem 6

6. (10 points)
Find the Taylor series expansion of

(1) f(z) = cos z about x = 0,
(2) f(z) = cosh z about = = 0,
(3) f(x) =In = about z = 2,
(4) f(z) = 5 about x = —1,
(5) f(z) =1+ z about z = 0.

Check out Appendiz A of Thornton/M

SOLUTION

arion if you are unfamiliar with Taylor expansions.

function f(z) approximation
(IE) = f(Io)/+ hf,(iljo) + %hzfﬂ(ﬂfo) + ...

7
point of expansion
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41.6.1 Part (1)

f (x) = cos(x) about x =0
’ 144 1424 1
f @) = f0)+hf (0) + hzf (0) + h3f 0+ D0 + -

= cos (0) + x (- sin (0)) + %x (- cos (0)) + %xg’ sin (0) + lx4 cos (0) + -+

24
1. 1
:1__2+_4_...

2 Tt

4.1.6.2 Part (2)
f (x) = cosh (x) about x =0

f(x)=f0)+hf (0)+ hzf”(0)+ h3f”’(0)+%h4f(4)(0)+~~

1 1 1
= cosh (0) + x (sinh (0)) + Ex (cosh (0)) + gx3 sinh (0) + ﬂx‘L cosh (0) + -+
1

1
=1+ + —xt+ o
T

4.1.6.3 Part(3)
f(x) =In(x) about x =2

FO) > F Q) +hf @)+ SR @)+ SIPF7 @)+ O @) + -

1 1 1 -6
:1n(2)+(x—2)(;) +§(X—2) (_x_z) +8(x_2) (F) +ﬂ(x_2)4(g) 4 ..
x=2 =2 x=2 x=2

X
x-2 1(x—2)2+1(x—2)3 1(x—2)4+
2 2 4 3 8 4 16
x-2 (x—2)2+(x—2)3 (x—2)4+
2 8 24 64

=In(2) +

=In(2)+

41.6.4 Part(4)

f(x) = xl—z about x = -1

FO) > (1) +hf (1) + %hz £77(<1) + %1& £ (<1) + lh‘l FO (1) + -

-2 1 6 24 1 120
:1+(x+1)(g) +§(x+1)2(g) +6(x+1) (x ) +ﬂ( 1) (F) + -
x=-1 x=-1 x=-1 x=-1

:1+(x+1)(:—i)+%(x+1)2(§) +1) ( 24)+—( 1) (120)+

:1+2(x+1)+3(x+1)2+4(x+1) +5(x+1) + -
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41.6.5 Part(5)
f(x) =+V1+xabout x =0
f(x)=f(O)+hf (0)+ %hzf” 0) + %}F’f”’ 0) + %h‘*f(‘*) )+ -

- ( 1 ) +12[ -1 ] +13[ 3 ] L1 4( -15 ] .
= X X — el — YR
2V1+x) g 2 laa+wz) _ © \sa+n2)_ 2 lea+n2)

x x* ¥ 5
=1+ -+ - —x
2 8 16 128

4,
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4.1.7 HW 1 key solution

Mechanic s
?ka&'c\\ al - Fall 2018
Homeor Seb 4 - Soludong
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/ot 4
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).6 = ‘%J.’Ad t =+ «9

LI R N RR S A
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%%Sinu ez Vo

2V,

% Sindkl
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- q.8 " /g2 Sin 26°
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(I)l colem 2

W-0xs down +the qlo?g ) ga'aa on mats  (2m)

?7“&,

=/«.. 2m3 [NY=%

zc‘(:ZM%&‘ne-g-mz;‘M&’O ghr ;{:O

(tonsrand .‘;u.d)
So
Zn\% $a0 —/4,“2”\% tesB =mg =D
= 2 (sne - fu ese) = 4
Solve $oc & :
2 (sne -/A“ yi-Siate V=4
= Sao - 1 = P J1-sae
o s:,.’a—s.‘.\e‘r%, =/": (1- sia'e)
(&) (1 +)AK\" St - She + (:-' —/4: )'—'0
& b2 V- aGepd) (4 -pt)
Sine = ‘/ )" ) (5 P“)
2 (l-r},.:)
_ |:_./|-(|—q/,,}+/«.}~4}«:) '

2 (I-t/.:)
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XY
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3500
= Drag force coefficient
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> 1500
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10
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42 HW 2

421 Problem1

1. (5 points)
Two blocks of equal mass m are connected by an extensionless uniform string of length
[. One block is placed on a smooth horizontal table, the other block hangs over the edge,
the string passing over a frictionless pulley. Determine the Lagrangian of the system
and find the acceleration of the blocks, assuming the mass of the string is negligible.

SOLUTION
1.2 note: r = v
x m C
‘ — & — — zero P.E.
|
Y
|
- Y U = 1—mg2
T = 5my
L=T-U

Where U is the potential energy of the whole system and T is the kinetic energy of the whole
system. The two masses will have the same speed since the string does not stretch. This
means X = jy

T= %ma’cz + %myz
Since X = i, we can write the above as
T = mip?
The potential energy U, using zero as the level shown in the above diagram is
U =-mgy

Hence the Lagrangian is L =T - U or

L = mi? + mgy
To find equation of motion

4oL oL _

atdy’ dy
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But ‘;—; = mg and %% = % (Zmy) = 2mijj, hence the above becomes
2mij—mg =0
Or

j=1

This is an acceleration in the downward direction as down was taken positive as shown in
the diagram. Since both masses move with same acceleration (magnitude is the same, but
direction is ofcourse is as shown in the diagram), then the acceleration of the top mass is

also the same

N 109

4.2.2 Problem 2

2. (5 points)
Use the Euler-Lagrange equation to show that the shortest path between two points in
a plane is a straight line. Hint: An element of length in a plane is ds = /dx? + dy? =

1+ (%>2d.r.

SOLUTION

ds = \[dx? + dy?
Therefore we want to minimize
2
[ f dy / )2
]:fd5=f dx2+dy:f 1+(E)dx:f 1+(y)dx

Hence
2
f=A1+ ()
And the Euler Lagrangian equation is z—ch - % (5—5,) =0, but
9 g
Iy
of _1 2y
Vi)
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. ) . .
And since % (7{) = 0 then this mean that 5—;, = ¢ where c is some constant. Hence
1 2y’
1y
1+ (y’)

Squaring both sides

Where c; is new constant. Hence

Where ¢, is new constant. Therefore
Y = =+c3
Where c; is new constant. So the above says that Z—Z is constant. In other words, a line, since
line has constant slope. The solution to the above is
Y =m=xc3x

Where m is some constant and cj is the slope. This is the equation of a line.

4.2.3 Problem 3

3. (10 points)
The point of support of a simple pendulum is being elevated at a constant acceleration
a. Use Lagrange’s method to find the differential equation of motion and show that for
small oscillations, the period T of the pendulum is

l
g+a

T =2r

SOLUTION

The coordinate system is as shown below. U = 0 is taken when the pendulum is hanging in
the vertical position before the base starts moving upwards.
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AY AY
| |
U =mgl(1 — cos0) + 5at?
_____ A_l —lcosf
|
1y = %atz
Cv=¢ - U=0
at time ¢t =0 at some later time

Therefore,
L
U =mgl(l—-cos0)+ Eat

1 5. . - . .

Where y = Eatz is the distance the pendulum moves upwards in time ¢ since it has con-
stant acceleration. We now need to obtain the kinetic energy. Resolving the velocity of the
pendulum bob in the horizontal and in the vertical direction gives

% =10cos 0O

7 =10sin6 + at

Therefore
v* =i+
2 2 )
= (19) cos? 0 + (16) sin® 0 + a2 + 2atl0 sin O
= 1202 + a2 + 2atl0 sin O
Hence
I,
T =-mv
2

1 . .
= om (1292 + a2 + 2atl0 sin 9)

Now that U and T are determined, the Lagrangian L is computed

L=T-U
1 . . 1
=5m (1262 + a?t? + 2atl0 sin 6) —mgl (1 - cos6) + Eatz
Hence
oL = matlo 0 /sin O
g = Matld cos 0 —mglsin
And
JL )
— = ml?0 + matlsin 6
20
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Hence
d JL 0 s , .
—— = ml“0 + mal sin 0 + Omatl cos O
dt Jo
Therefore the Euler Lagrangian equation is
JL dJL 0
90  dtoo

matl® cos O — mgl sin O — (mlzé + mal sin O + Omatl cos 9) =0
—mglsin @ — ml?0 — mal sin 6 = 0

Hence

é+§$n6+§an0=o

For small oscillations sin @ = 0 and the above becomes

bo(E2) -

Which is now in the form 0 + w26 = 0 where w, = 2?71 is the undamped natural radian

frequency, and T is the period of oscillation in seconds. hence

27
T=—
a)n

27

424 Problem 4

4. (10 points)
A ball of mass m, radius R, and moment of inertia [ = %mR2 rolls down a moveable
wedge of mass M without slipping. The angle of the wedge is 6 and it is free to slide

without friction on a smooth horizontal surface. Find the acceleration of the wedge.

SOLUTION

There are 2 generalized coordinates in this problem. One for the motion of center of mass of
m and one for the motion of the wedge M itself. The positive directions are taken as shown
in this diagram
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coordinate for M

—
—

T

coordinate for m motion

No slip: Rw =z

2 generalized coordinates: z and z

The first step is to determine the kinetic energy T and potential energy U of the whole
system. For mass M

T 1M 2
= —Mx
M= 2
For the rolling mass m since it has both rotational motion and translation motion then
1 1
T, = Em [(jc + Z cos 9)2 + (zsin 6)2] + Elwz 1)

Where in the above the term (X + Z cos 6)2 + (zsin 6)2 is the translation velocity of the rolling
mass. Since the motion is without slip, then we can now relate w to z using

Rw =z

Hence (1) becomes

) o s o1 1 (2\?
Ty = Em[(x+zcosﬁ) +(2sin 0) ]+§I(E)

But I = %Rzm, hence the above reduces to

1 1
T, = S [(x +2cos 0)* + (zsin 9)2] + Emzz

Now that the overall T is found from

T=Ty+T,
= lMa'c2 + 1m [(x +2cos 0)* + (zsin 6)2] + 1mrzz
2 2 5
= %Mﬁcz + %m [5(2 + 22 cos? 0 + 2iz cos O + 22 sin? 6] + %mzz
= Imz s L (32 + 22 + 2%z cos 0) + Lz
2 2 5

1

= —Mi? + 1ma‘cz + mxzcos 6 + Zmzz
2 2 10

Now we find U. The potential energy comes from the rolling mass losing U as it moves
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down. Assuming zero U is at top of the wedge, the distance it moves it zsin 6. Hence
U=-mgzsin®
Now the Lagrangian is found L = T - U, hence

1o, 1 g 7 . :
L= (Esz + smi* + mizcos 0 + Emzz) + mgz sin O

Let us find the equation of motion for m, which has acceleration Z first, then find the equation
of motion for M which is the required acceleration X

dL

55 ~ M8 cos 0

L 7

Fri mx cos 0 + Emz

doL_ T
T = mX COS 51’YlZ

Therefore, using Euler-Lagrangian equation

7
mx cos 0 + ng—mgCOSG =0

Hence

Zz?(gsin@—kcos@) (2)

We now apply Euler-Lagrangian equation to find X
JL —0
dx

— = Mx + mx + mzcos 6
ox

d L e
—— = MX + mX + mZcos 6
dt dx

Therefore
dJdL JL 0
dtdx  dx
Mx +mx +mZcos@ =0

XM+ m) =-mZcos6
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But we found % earlier. Hence using (2) into the above gives
5
X(M+m) = —m; (gsin@ —XCOSG)COSQ
. 5  , 5
XM +m) = amxcos 0 - amg&n@cose
5 5
¥ (M +m) - ;mx cos? 0 = —m;gsin O cos O
. 5 0y 5 .
XM+ m) - amcos o) = —;mgsm@cos@

5 .
—Zmgsin 6 cos 0

¥ =
((M +m) — gm cos? 9)
_ —5mgsin6BcosO
~ 7(M + m) - 5m cos? 0
Hence
¥ = 5¢sin 60 cos 0
5 cos? 9—7(Mr::m)

4.2.5 Problem 5

5. (10 points)
Use Lagrange’s equations to determine the equations of motion of a particle constrained
to move in a plane in a central force field. Show that the angular momentum of the
particle is conserved.

SOLUTION

In a central force field, the force on the particle depends only on the magnitude of the direct
distance r between the particle and the center of the force. Let the force be located at the
origin, then the force on the particle depends only on the magnitude of the position vector
r of the particle and not on the angular position of the particle.

F=F@)#

Where # is a unit vector pointing in the direction of the force. If the force F causes the
distance r between the particle and the origin (where the source of force is assumed) to
become smaller, then this force is attractive and it is assigned a negative sign. There are 2
degrees of freedom, hence there are two generalized coordinates. It is easier to use polar
coordinates (7, ) where r is the distance of the particle from the origin, and 6 is the angle
from the x axis
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Yy particle
A , //-/CD xr =17cosf
- y =rsinf
- 0\ >$
The kinetic energy is
1

- 2, 52
T= S (x + )
But x = rcos 0, hence i = #cos 0—r0sin 0 and y = rsin 0, hence i = #sin 0 +r0 cos 0, therefore
C\2 ' . 2
2+ = (i’cos@ - r@sm@) + (ifsm@ + r@cos@)
= (1’*2 cos2 6 + 1202 sin” 6 — 2r#6 cos Bsin 6) + (1”2 sin 0 + 1262 cos? 0 + 2ri@'sin O cos 6)
= 2 cos?2 6 + 262 sin” 6 + i2 sin” O + 1262 cos? O
= 211262
Hence in polar coordinates
1 .
T=-m (7"2 + r202)
2
And
u(r) =V
Therefore the Lagrangian
L=T-V

= %m (7”2 + r292) -V

Therefore
JdL ,
5 = m
d JL .
prieriallld
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Hence the equation of motion for the linear (radial) coordinate r is

(mr92 _ve) ‘;'r(r)) —mi =0

A%
mi = mro? — ®
ar
But _agir) = f(r) then
mi = mro? + f (r) (1)
Now the equation of motion in the 0 coordinate is found.
JL 0
90
JdL .
56" mr?0
dJL d .
—_— = = 29
796 = a ("°0)
. JL d (o
Hence, since 55 = 0 then - (mr 8) =0 or
mr?0 =constant (2)

Therefore (2) shows that the angular momentum [w is conserved (where I is mr?, the moment
of inertia). This is called the integral of motion.
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4.2.6 Problem 6

6. (10 points)
Atwood’s machine consists of two weights of mass m; and my connected by an ideal
massless string of length [ that passes over a frictionless pulley of radius R and moment
of inertia I. Show that the acceleration of the system is

(my —ma)g
my +me+ I[/R2

SOLUTION

Rw = & (no slip) K E —

-~

Tw?

N~

_I___l - - - =

Since both masses will move with same speed £, then the total kinetic energy of the system

1S

1 .01 .1
T = Emlxz + Emzxz + Ela)2
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Assuming no slip, we can relate w to & using Rw = %, hence the above becomes
(2

1, 1 , 1/(%
T = —myx° + —myx” + —I(—)
2 2 2 \R

1, I
:Ex m1+m2+R2

Using U = 0 as the level shown where the pulley is located, then
V=-mxg-my(l-nR-x)g

Hence the Lagrangian L is

L=T-V
=5 Z(ml + 1y + ) (—mx —my (I- R - x)) g
1
=5 z(ml + My + — )+(m1x+m2l mymR — xmy) g
Hence
JL
&_x =(my —my)g
And
JL I
5 =X my +my + R_

doL _ (. .1

—_— = m R

dtox \"M MY R
Therefore

dJdL JL _
dt dx  dx
I
m1+m2+R2 —(my—my)g =0
Therefore
_ (m1-mp)g
m1+m2+é
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4.27 HW 2 key solution

Mechanic s
'P‘uas.‘u 31 - Fall 2018

Homewerta Sar 2 - Sd.d'h‘on&

P

Problem 4
m
m— T
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N L=M>.<’11‘M%X'
oL -4 L. = w Do s
Sx dt dr O mY L
o [z-2
Z
Problem 2

The orc Le..ﬂﬂv\ between two pointi (’l')‘.'st\ and. (KZASz)

Y ¥,

L= gols = ( lﬂa"' Ay

X,

R b‘ = oy
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43 HW3

431 Problem1

1. (5 points)
A uniform rope of total mass m and total length [ lies on a table, with a length z hanging
over the edge. Find the differential equation of motion.

SOLUTION
« — — l_—_z_ — > C.M. at half way
s
¢’ / :
» - .
/// - -U—=0-—
lZ

The top portion of the rope moves with same speed as the hanging portion. Hence z is used
to describe the motion as the generalized coordinate. From the above

(X (E) __1(Z
“T\F\T)EE T T e
1/z 1(l-z 1

—_ 2 (*),,2 , 2 _ 152

T= ()mz +2( ; )mz 2mz

In finding U we used % since the center of mass of the hanging part is half way over the
length. So the potential energy is taken from the center of mass. In the above, z is used
for both parts of the rope, since both parts move with same speed. Applying Lagrangian
equations gives

L=T-U
1 _2+1 z2
= omz+ 2|5 |mg
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Hence

And therefore

JdL  z

9z 18
d JL .
T = Me
ddL JL
dt 9z 9z

When z = 0 then the acceleration is zero as expected. When z = ! then z = %g and when
z = | then Z = g as expected since in this case the rope will all be falling down on its own
weight due to gravity and should have g as the acceleration.

4.3.2 Problem 2

2. (10 points)
A particle of mass m perched on top of a smooth hemisphere of radius R is disturbed
slightly, so that it begins to slide down the side. Use Lagrange multipliers to find the
normal force of constraint exerted by the hemisphere on the particle and determine the
angle relative to the vertical at which it leaves the hemisphere.

SOLUTION

constraint f(r,0) =r— R =0
T = im(i* + r262)
A U = mgrsinf

polar position (r,#)

Generalized coordinates used r, 0
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There are two coordinates 7, 0 (polar) and one constraint
f(r,0)=r-R=0 (1)

Now we set up the equations of motion for m
1 .
- 2 4 2092
T= oM (r + 170 )

U =mgrsin®
L=T-U

= %m (# + r262) — mgrsin 6

Hence the Euler-Lagrangian equations are
dJdL JL A& f

Gior ar Thg 7Y 2)

4oL oL 9f g

dtdd 90 00 (3)

But
doL |
ator

JL 26
26"

d (JdL : N

—_ (== ? 2

7 (89) m(ZrVG +r 9)
oL ur0? ~ mgsin 0
— =mro* —-m
P 9 sin
JL 5
5g = 8T cos
of
L1
ar
of
30 = 0

Hence (2) becomes
mi —mr6? + mgsin@ + A = 0 (4)

And (3) becomes
m (21*1'*6' + rzé) +mgrcos0 =0
r0 +2i0 + gcos O = 0 (5)

We now need to solve (1,4,5) for A. Now we have to apply the constrain that » = R in the
above to be able to solve (4,5) equations. Therefore, (4,5) becomes

~mRO? + mgcosO+ A =0 (4A)
RO +gcosO =0 (5A)
Where (4A,5A) were obtained from (4,5) by replacing r = R and # = 0 and 7 = 0 since we
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are using that » = R which is constant (the radius).
From (5A) we see that this can be integrated giving
RO? +2¢sinO +c=0 (6)
Where c is constant. Since if we differentiate the above with time, we obtain
2RO0 + 2¢O cosO =0
RO +gcosO =0
Which is the same as (5A). Therefore from (6) we find 62 to use in (4A). Hence from (6)
0> = 2L sin 0 +c
To find ¢ we use initial conditions. At t =0, 6 = 90° and 6 (0) = 0 hence
c=2=
Therefore

02 = —Z%Sinﬁ +2}%

- 2% (1-sin 6)
Plugging the above into (4A) in order to find A gives
—-mR (2% (1 -sin 6)) +mgsinf@+A=0
A=m (Zg(l - sin@)) —mgsin@
A =2mg —2mgsin 6 — mg sin 0
=mg (2 - 3sin0)
Now that we found A ,we can find the constraint force in the radial direction

of
N=A=

=mg (2 —3sin )
The particle will leave when N = 0 which will happen when

2-3sin6=0
2
0 =sin™' =
sin (3)
=41.80

Therefore, the angle from the vertical is
90 — 41.8 = 48.20
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Particle will leave when N = 0

_\of
N =\5;
constraint, force A 4

4.3.3 Problem 3

3. (10 points)
Consider the object shown in the figure below, which has a half-sphere of radius a as the
bottom part and a cone on top. The center of mass (P) is at a distance b from the ground
when the object is standing upright. Let I be the moment of inertia. Find the frequency
of small oscillations if the object is disturbed slightly from its upright position. What

happens if a = b or b > a?

SOLUTION
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a— (a —b)cosf
mgh = mg(a — (a — b) cos 0

h
U

From the above, we see that the center of mass has height above the ground level after
rotation of

h=a-(a-b)cosO
Taking the ground state as the floor, the potential energy in this state is
U = mgh
=mg(a—(a—Db)cos0)
And the kinetic energy
1

T = ~16?
2

Hence the Lagrangian is

L=T-U

1 .
= E162—mg(a—(a—b)cos@)

Therefore the equation of motion is

ddL JL

TET T

Ié—1(1192—mg(6l—(11—b)0089) =0
20 \2

. d
16+8—9mg(a—(a—b)cost9) =0

. 0
16—%mg(a—b)c036—0

160 + mg(a—b)sin6 =0
For small 6,sin 6 ~ 6, hence the above becomes
. -b
+ Mg (@ )8 =

0 0
I
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Therefore the natural angular frequency is

mg(a—b)
wn =N

When a = b then w,, = 0 and the mass do not oscillate but remain at the new positions. When
b > a then w,, is complex valued. This is not possible, as the natural frequency must be real.
So center of mass can not be in the upper half.

4.3.4 Problem 4

4. (15 points)
A sphere of radius r, mass m, and moment of inertia I = %mrQ is contrained to roll without
slipping on the lower half of the inner surface of a hollow cylinder of inside radius R (which
does not move). Let the z-direction go along the axis of the cylinder.
(1) Determine the Lagrangian, the equations of motion, and the period for small oscilla-
tions. Ignore a possible motion in the z-direction.
(2) Determine the Lagrangian in the more general case where the motion in the z-direction
is included. Describe the motion in the z-direction.

SOLUTION
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/
No slip condition/
I (R —

(R—m)0=r¢ I
|

2 generalized coordinates 6,¢ but
constraint reduces this to one coor-
dinate 6

Part (1): There are two coordinates are 0, ¢, but due to dependency between them (no slip)
then this reduces the degree of freedom by one, and there is one generalized coordinate 0.
The constraints of no slip means

f(0,0)=R-10-rp =0
Which means the center of the small disk move in speed the same as the point of the disk
that moves on the edge of the larger cylinder as shown in the figure above.

1 . 1 2
_ Lrio
T_§w>+§m«R—n@
U =mgh=mg(R-(R-r)cos0)
Using I = %mrz and using ¢ = @9 from the constraint conditions, then T becomes

2
-7) . 1 .
T = %(%mrz)((Rr T)Q) + Em ((R—r) 6)2

1 . 1 .
= gm(R—r)262+§m(R—r)292

7 )
= Em(R—r)2 02

Hence
L=T-U
7 .
= Em(R—r)ZQZ—mg(R—(R—r)cos@)

And

JdL .

36 = -mg(R—-r)sin 0

L 7 )

0,)—6. = EWI(R—T) 0
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Therefore the equation of motion is

4oL oL _
dtod 90

7 N

gm(R—r)29+mg(R—r)sin9:0

0+ = sin@ =0
s (R-7)
5
For small angle
" 5¢
0 0=0
t7 (R-71)
The frequency of oscillation is
58
@n = \/ 7(R-7)
. _2n . . . .
Using w,, = - then the period of oscillation is
27 7(R-7r)

T = =27

[ 58 5¢
7(R-r)

Part (2):

There are now two generalized coordinates, 0 and z. The sphere now rotates in 2 angular
motions, ¢ which is the same as it did in part 1, and in addition, it rotate with angular
motion, & which is rolling down the z axis. The new constraint is that
fila,z)=z-ra=0 (1)

So that no slip occurs in the z direction. This is in additional of the original no slip condition
which is

f2(60,0)=R-1)0-1¢ =0 (2)
The following diagram illustrates this

Y\
GEBY,

The sphere is now distance z
away from the origin. There
is new constraint now as
shown
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Now there are translation kinetic energy in the z direction as well as new rotational kinetic
energy due to spin a. Therefore

part(1) due to moving in z

1._. 1 N2 1 1
— 2742 4 = _ Ss2 4 ST42
T=1¢ +2m((R r0) + Smz? + Sl
U =mgh=mg(R-(R-r)cos0)

Notice that the potential energy do not change, since it depends only on the height above
the ground. Using I = Emr2 and from constraints (1,2) then T becomes

¢ 2
—N— o
2 0
1(2 R-71). 1
T == |=mr? ( 1’)9 + m((R—r)Q + mz + mrz (E)
215 r r
1 (R- ) 1 , 1 1 z
:(gmr) 2 Em(R 1?0 +2mz +(5 )—2
7 7
_ A2 L2
1Om(R r) 6% + 1Om:z
Hence the Lagrangian is
L=T-U
_7 m(R—-r) 0% + 7 mz? —mg (R — (R - 1) cos )
~ 10 10 g
This part only now asks for motion in z direction. Hence
JdL
dz
L 7 |
5, = 5
Since 2% = 0 then
Jz
dJL
dt dz
Hence 'Z—i is the integral of motion. Or
7 . 0
—mzZ =
5
or
z=0
zZ=c

Where c is constant. This means the sphere rolls down the z axis at constant speed.
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4.3.5 Problem 5

5. (10 points)
Consider a disc of mass m and radius a that has a string wrapped around it with one
end attached to a fixed support and allowed to fall with the string unwinding as it falls.
(This is essentially a yo-yo with the string attached to a finger held motionless as a fixed

support.) Find the equation of motion of the disc.

SOLUTION

This is first solved using energy method, then solved using Newton method.

constraint: ya = 0

Energy method
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o o Y
Constraint is f (y, 9) =y—a6 =0. Hence 6 =~
U= -mgy
1 ., 1
T = =16% + —mi?
2 2
1

= Llimyz + %myz
= ?Imyz
Hence
L=T-U
3 ,
= MY+ mgy
Therefore
JdL
7y "8
JL 3
2"
doL 3 |
diay = 2"
And the equation of motion becomes
ddL JL
dt oy dy
3
Sy —mg = 0
2
y=338

Newton method

Using Newton method, this can be solved as follows. The linear equation of motion is

(positive is taken downwards)
F=mj
=T +mg = mjy
And the angular equation of motion is given by

Ta =160

133
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Due to constraint f (y, 6) =y —a0 =0, then

Y_4
a
Using the above in (2) gives
Ta=12
a
_ Y
T=1 e

Replacing T in (1) with the T found in (3) results in
N iy
mij = =1 3 +mg

Which is the same (as would be expected) using the energy method
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4.3.6 HW 3 key solution
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44 HW 4

441 Problem1

1. (5 points)
The damping factor A of a spring suspension system is one-tenth the critical value. Let
wp be the undamped frequency. Find (i) the resonant frequency, (ii) the quality factor @,
(iii) the phase angle ® when the system is driven at frequency w = wp/2, and (iv) the
steady-state amplitude at this frequency.

SOLUTION:
Note that A, = wg. We are told that A = 0.1w, in this problem.

4411 part(1)

The resonant frequency (for this case of under-damped) occurs when the steady state am-
plitude is maximum

SN

b=

\/(a)g - wz)z +4A2w2

This happens when the denominator is minimum. Taking derivative of the denominator w.r.t.
@ and setting the result to zero gives

% ((a)g - a)2)2 + 4/\2a)2) =0
2 (a)o ) (—2w) + 812w = 0
812w + 4w® - dwwi =0
202 + w? - w¢ =0
w? = wt - 2A?
Taking the positive root (since w must be positive) gives
@ = Jwi —2A2

When A = 0.1w, the above becomes

w = \/a) -2
VlOO

= 0.98995w, rad/sec
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4.41.2 part(2)

Quality factor Q is defined as

Therefore

Q=4975

4.41.3 Part(3)

Given

i iwt

x” (1) +2Ax + w%x = =—¢

(1)

Assuming the particular solution is x, () = Be"”* where B = be'? is the complex amplitude
and b is the amplitude and ¢ is the phase of B. We want to find the phase. Plugging x, (f)
into (1) and simplifying gives

Hence

Since A =

NS

B =

2

Wy — w* + 2w

2Aw

— 0 ftan-l
¢ =0-tan (a)g

—2Aw

@

|

|

— w2

|

—2(0.1awy) 70

)2

_ -1
= tan ( )

0.lwg and w = ? the above becomes

)
o (2

¢ = tan™! [
0 \2

= tan~! (-0.13333)
= —-0.13255 rad
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4.41.4 Part(4)

The steady state amplitude is b from above, which is found as follows

b* = BB*
f

Where B* is the complex conjugate of B = ——2——. Therefore

wE-w2+21iw

3=

\/(a)(z) - a)z)2 +4A%w?
f 1

2
"l G s (29
f 1

M J0.572 508

= 1.3216L2
mawyj

But mw? = k, the stiffness, hence the above is

b= 1.3216{

4.4.2 Problem 2

2. (10 points)

A string of length 2/ is suspended at points A and B located on a horizontal line. The
distance between A and B is 2d, with d < [. A small, heavy bead can slide on the string
without friction. Find the period of the small-amplitude oscillations of the bead in the
vertical plane containing the suspension points.

Hint: The trajectory of the bead is a section of an ellipse (why?). Move the origin to the
equilibrium point and use a Taylor expansion to get an approximate expression for the
trajectory around the equilibrium point. Apply Lagrange.

SOLUTION:

The locus the bead describes is an ellipse, since in an ellipse the total distance from any
point on it to the points A, B is always the same
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In an ellipse, these two
segments always add to
same length. In this ex-
ample, this is 2/

To obtain the potential energy, we move the bead a little from the origin and find how much
the bead moved above the origin, as shown in the following diagram

origin

52 =h? 4 (d + )2
(20 — 5)2 = h? + (d — z)?

From the above, we see that, by applying pythagoras triangle theorem to the left and to the
right triangles, we obtain two equations which we solve for / in order to obtain the potential
energy

2 =2+ (d +x)?

@1 -3 =K+ (d-x)?

d2
h= \/1—1—2\/lz—x2

y=H-h

Solving for h gives

Therefore

dz
=H- 1_l_2 lZ_xZ
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Hence

U =mgy
42
=mg|H - 1—1—2\/lz—x2
The kinetic energy is
1
T =om (e +i)

Therefore the Lagrangian is

L=T-U
1 d?
= om (5(2 +y2) —mg[H— 1- l—z'\/lz—xz]

The equation of motion in the x coordinate is now found. From

JL 1 dz (-2x)
2N TR e
2 x
=-mg\1- 4 Ny
And
d JdL .
T - M
Applying Euler-Lagrangian equation gives
dJdL JL
dtdx  dx
2 x

For very small x, we drop the x? term and the above reduces to
X +g4/1 P 0
X _— =
SN T E

Hence the undamped natural frequency is

or
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The period of small oscillation is therefore

_27’(
_a)o
1
=27
g d?
I 1_1_2

4.4.3 Problem 3

3. (10 points)
A rod of length L rotates in a plane with a constant angular velocity w about an axis fixed

at one end of the rod and perpendicular to the plane of rotation. A bead of mass m is
initially at the stationary end of the rod. It is given a slight push so that its initial speed
along the rod is wL. Find the time it takes the bead to reach the other end of the rod.

4.4.3.1 SOLUTION method one

The velocity of the particle is as shown in the following diagram

y .
A w:e
rw Ve =7cosf — rwsin
T Vy = 7sin6 + rwcos 6
>$

7
velocity diagram

There is no potential energy, and the Lagrangian only comes from kinetic energy.

R = V2412
= (7cos B — rwsin 6)2 + (7sin 6 + rw cos 8)2

Exapnding and simplifying gives

? = i? + rPw?

Hence
L= 1m (7"2 + rza)z)
2
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And the equation of motion in the radial » direction is

dJdL JL
g ar
d_. 2 _
o mro® = 0
Hence the equation of motion is
i—rw?=0

The roots of the characteristic equation are +w, hence the solution is
r(t) = cie’t + cpe@t
Att =0, r(0) =0 and 7 (t) = Lw. Using these we can find cy, c;.
O=c1+0
But #(t) = wce®t — weye™t and at t = 0 this becomes
Lw = wc; —wey
From (2,3) we solve for ¢y, c,. From (2), ¢; = —¢, and (3) becomes

Lw = -wcy — wey

Lw —1L
Cp= — = —
27 2w 2

1 L
Hence ¢, = 5L and the solution is

r(t) = c1e®t + cpe @t
1

— _Lewt _ lLe—wt
2 2

e(ut _ e—a)t
=L[—

r(t) = L(sinh wt)

To find the time it takes to reach end of rod, we solve for ty from

L = L(sinhwt,)

1 = sinh wt,
Hence

wty = sinh™! 1

= 0.88137
Therefore
0.88137
tp = sec
@
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4.4.3.2 another solution

Let the local coordinate frame rotate with the bar, where the bar is oriented along the x
axis of the local body coordinate frame as shown below.

Y

x,y is Rotating (body) frame of reference
X,Y is inertial (fixed) frame of reference

17:7?rel+&jx7?

The position vector of the particle is » = ir where i is unit vector along the x axis. Taking
time derivative, and using the rotating vector time derivative rule which says that i—? =

A . . .
(d—) + @ X A where w is the angular velocity of the rotating frame then
relative

F=Ty+wXr (1)
To find the acceleration of the particle, we take time derivative one more time
d .
ET
But %(frel) = ¥, + @ X 1, by applying the rule of time derivative of rotating vector again.
Therefore the above equation becomes
d

Ei‘zi‘rel+a)xi@el+a’)xr+(uxif

Replacing # in the above from its value in (1) gives

d . : :
:E(rrd)+a}><r+a)><r

F =T+ 0 X T+ @ XP+ @ X () + 0 X T)
= Fro + W X ot @ XF 4+ @ X Ty + @ X (@ X 1)
=Frop + 2 (W X Fppp) + O X+ @0 X (0 X T)

But w is constant (bar rotate with constant angular speed), hence the term @ above is zero,
and the above reduces to

P =P+ 2 (Xt +wX(w0X7T) (2)

The above is the acceleration of the particle as seen in the inertial frame. Now we calculate
this acceleration by preforming the vector operations above, noting that r = ir,w = ko,
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hence (2) becomes
¥ =it + 2 (kw X it,,) + ko X (kw X ir)
= iFy + 2 (ja)i’rel) + kw X (ja)r)

2y

= ifyq + 2 (jwiyg) — iw
= i(?rel - C‘)Zr) +J Qi)
The particle has an acceleration along x axis and an acceleration along y axis. We are
interested in the acceleration along x since this is where the rod is oriented along. The
scalar version of the acceleration in the x direction is

Ay = P — W2

Using F, = ma, and since F, = 0 (there is no force on the particle) then the equation of
motion along the bar (x axis) is

Fro — 0?1 =0
The roots of the characteristic equation is +w, hence the solution is
r(t) = c1e®t + cpe@t
Att =0, r(0) =0 and 7(t) = Lw. Using these we can find cy, c;.
O=c1+0c (3)
But 7 (t) = wcye®t — weye™t and at t = 0 this becomes
Lw = wcy —wey (4)
From (3,4) we solve for ¢y, c,. From (3), ¢; = —c, and (4) becomes

Lw = -wcy — wey

Lw —1L
Cp= — = —
27 2w 2

Hence ¢; = %L and the solution is

r(t) = c1e®t + cpe @t

- lLewt _ lLe—wt
2 2

e(ut _ e—a)t
{5
2

= L (sinh wt)
To find the time it takes to reach end of rod, we solve for ty from
L = L(sinhwt,)
1 =sinhwt,
Hence
wty = sinh™! 1
= 0.88137
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Therefore

0.88137
= — secC

==

444 Problem 4

4. (10 points)
Consider a harmonic oscillator with wy = 0.5s57!. Let 2o = 1.0m be the initial amplitude
at t = 0 and assume that the oscillator is released with zero initial velocity. Use a computer
to plot the phase-space plot (& versus x) for the following damping coefficients A.
(1) A=0.05s""! (weak damping)
(2) A =0.25s7! (strong damping)
(3) A = wp (critical damping).

SOLUTION:

Starting with the equation of motion for damped oscillator
X"+ 2% + wix =0

The solution for cases 1,2 (both are underdamped) is

x = e M(Acoswyt + Bsinwgyt) 1)

Where w,; = /w3 — A2. While the solution for case (3), the critical damped case is
x=(A+tB)eM (2)
For (1) above, at f = 0 we obtain
1=A
Hence (1) becomes x = e~ (cos wgt + Bsin wgt), and taking derivative gives
i = —Ae™M (cos wyt + Bsin wyt) + e M (—w, sin wyt + Bw, cos w,t)

At t =0 we have

0= -7+ Bay
A
B=2
Wy
Hence the complete solution for (1) is
A
x=eM (cos wgt + — sin wyt (3)
wq
¥ = —Ax + e M (—wysin wyt + A cos w,t) (4)

Now we find the solution for (2), the critical damped case. At t =0
1=A
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Hence (2) becomes x = (1 + tB) ™™, and taking derivative gives
¥=BeM-A(1+tB)eM

Att=0
0=B-A
=A
Hence the solution to (2) becomes
x=(1+At)e M (5)
F=AeM-A(1+At)e M (6)

Now that the solutions are found, we plot the phase space using the computer, using para-
metric plot command

4441 case (1)

For A = 0.05, and w,; = y/w3 - A2 = ¥0.52 — 0.052 = 0.4975, then equations (3,4) become

x = e790% (cos 0.4975t + 0.1005 sin 0.4975t) (3A)
& = —0.05x + 709 (~0.4975 sin 0.4975t + 0.05 cos 0.4975¢) (4A)

Here is the plot generated, showing starting point (1,0) with the code used

Phase plot, 50 seconds, case(1)

0.2+
= 00
out[59]= > I
0.2+
-4 . o
-0.5 0.0 0.5 1.0
x(t)
am = 0.05;

wn = 0.5;
wd = Sqrt[wn"2 - lam™2];
x = Exp[-lam t] (Cos[wd t] + lam/wd Sin[wd t]);
y = -lam x + Exp[-lam t] (-wd Sin[wd t] + lam Cos[lam t]);
ParametricPlot [{x, y}, {t, 0, 50}, Frame -> True,
GridLines -> Automatic, GridLinesStyle -> LightGray,
FrameLabel -> {{"v(t)", None}, {"x(t)",
"Phase plot, 50 seconds, case(1)"}}, Epilog -> Disk[{1, 0}, .02],
ImageSize -> 400]
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4.4.4.2 case (2)

For A = 0.25, and w, = y/wj - A2 = V0.52 — 0.252 = 0.433, equations (3,4) become

x = 7922 (cos 0.433t + 0.5774 sin 0.433t) (3A)
i = —0.05x + 7025 (_0.433 sin 0.433¢ + 0.05 cos 0.433f) (4A)

Here is the plot generated where the starting point was (1,0)

Phase plot, 50 seconds, case(2)
Nk 77— 71—

Out[150]=

X(t)

This below is a zoomed in version of the above close to the origin

Phase plot, 50 seconds, case(2), zoom in
T T

0.10
0.05

-0.05

~0.10F \

-0.15 . . . L
-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10

v(t)

out[151]=

x(t)

4.4.4.3 case(3)

For this case, equations (5,6) are used. For A = 0.5, equations (5,6) become
x = (1+0.5t)e 0 (5A)
& =0.5e70% —0.5(1 +0.5t) e 0 (6A)
Here is the plot generated, showing starting point (1,0) with the code used
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Phase plot, 50 seconds, case(3)
0.2 T T
0.1
_ 0.0
Out[155]= E ok J
-0.2
-0.3 L
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
X(t)

lam = 0.5;
x = (1 + lam*xt) Exp[-lam t];
y = lam*Exp[-lam t] - lam*(1 + lam t) Exp[- lam t]

ParametricPlot [{x, y}, {t, 0, 30}, Frame -> True,
GridLines -> Automatic, GridLinesStyle -> LightGray,
FrameLabel -> {{"v(t)", Nomel}, {"x(t)",
"Phase plot, 50 seconds, case(3)"}}, Epilog -> Disk[{1, 0},
ImageSize -> 500, PlotRange -> {{-.3, 1.2}, {-.3, .2}},
PlotTheme -> "Classic"]

445 Problem 5

.02],

5. (15 points)

A damped harmonic oscillator has a period of free oscillation (with no damping) of Ty =
1.0s. The oscillator is initially displaced by an amount xq = 0.1 m and released with zero
initial velocity.

(1) Consider the case that the oscillator is critically damped. Determine the displacement
x as a function of time and use a computer program to plot x(¢) for 0 < ¢ < 2s.

(2) Now consider the case that the system is overdamped. Determine the displacement
as a function of time and use a computer program to plot x(t) for damping coefficients
(i) A =227s7!, (ii)) A = 47s™!, and (iii) A = 107s™! for 0 < ¢ < 2s. Compare to the
critically damped case.

(3) Now consider the case that the system is underdamped. Determine the displacement
as a function of time and use a computer program to plot x(t) for damping coefficients (i)
A=5.0s"1, (ii)) A=1.0s7!, and (iii) A = 0.1s7* for 0 < ¢ < 2s. Compare to the critically
damped case.

SOLUTION:

. 2n 2n
Since wy = T then wg = - =2m.
0
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4451 Part (1)

For critical damping A = w; and the solution is

x(t) = (A+Bt)e M (1)
% (f) = BeM - A(A+Bt)e M (2)
Initial conditions are now used to find A,B. At t =0, x(0) = xy = 0.1. From (1) we obtain
xXg=A
And since % (0) = 0, then from (2)
0=B-AA
B=AA
= Axg

Putting values found for A, B, back into (1) gives
x(t) = (xg + Axpt) e M
Since this is critical damping, then A = wy = 27, hence
x (t) = (xg + 2mxyt) 2™

Finally, since x; = 0.1 meter, then
1 2n
H=|— ¢ —27t
*®) (10 10 )e
A plot of the above for 0 < t < 2s is given below

Part(1) critical damped
otofn —

0.08} !

o
-

=
out[179]= X

0.06} 1
0.04} 1

0.02} 1

0.00} - —

0.0 0.5 1.0 1.5 2.0
time (sec)

4452 Part(2)

For overdamped, A > w, the two roots of the characteristic polynomial are real, hence no
oscillation occur. The solution is given by

() = Ae(—m,/AZ-wg)t N Be(—A-,/AZ-a;g)t (1)
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A, Bare found from initial conditions. When ¢ = 0 the above becomes
Xg = A+B
Taking derivative of (1) gives

()= A (—A a2 - wg) e(—/\+,//12_w§)t +B (—A _ 2z a)g) e(_/\_ //\Z_wg)t

At t =0 the above becomes

0:(—A+,/A2—a)g)A+(—A— AZ—wg)B

(2)

(3)

We have two equations (2,3) which we solve for A, B. From (2), A = xy — B, and (3) becomes

0= —A+,/A2—w5)(x0—3)+(—/\— AZ—a)g)B
0= —A+./A2—w0)x0 (/\+ AZ—wO) (—/\— /lz—a)(%)B

O0=[-A+ /lz—a)) -2B /lz—a)

T

(/\+ AZ (2)x0
B =

T

24JA2 - wk
Using B found in (4) then (3) now gives A as
A= X — B

(—/\+"A2 a)g) X0

:xo—
24JA?2 - wk
( /1+wM2—w)
Z\IA _CL)O
A+ A2 — w3
24JA? -

Hence the complete solution from (1) becomes

x(t) = xg

: e X0 :

The above is now used for each case below to plot the solution..
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44521 case (i)

A =221, wy =27, x5 = 0.1, hence (5) becomes
© =01 221+ w/(z.Zn)2 - (271)2 (—2.27‘(+1/(2.2n)2—(2n)2)t
x(t) =0.

24/(2.2m)% - (2n)?

—2.21 + +J(2.21)* - 2n)?
+0.1
/ 2 2
2+4/(2.270)° - (2n)
— 0.178_4'0322t -0.07 8—9,7911?
A plot of the above for 0 <t < 2s is given below
Part(2.1) overdamped, A=2.2 7T
0.10[-
0.08}
0.06f
out[297]= L;/ i
0.04
0.02f
OOO : I | A B R Lo
0.0 0.5 1.0 1.5 2.0
time (sec)

44522 case (ii)

A =41, wy =27, x9 = 0.1, hence (5) becomes
x() =01

= 0.1077¢~ 168361 — 00077462344

47 + \/(471)2 - (2n)? (—4n+\/(4n)2—(2n)2)t —47 + \/(471)2 ~(2n)? (—47‘1— (4n)2—(2n)2)t
e +0.1 e
2+/(4m)? - (2m)?

24/@n)? - 2n)?
A plot of the above for 0 <t < 2s is given below
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Part(2.2) overdamped, A=4 7T

010F~ -

0.08} -

0.06} 1

z
out[310]= X

0.04} -

0.02} 1

0.00} —

0.0 0.5 1.0 1.5 2.0
time (sec)

44523 case (iii) A =107, wy =27, x9 = 0.1, hence (5) becomes

107t + \/(1071)2 - (271)2 (-1on+,/(1on)2—(zn)z)t 01 -107 + (1071)2 - (271)2 (—1077—\/(1071)2—(27'()2)15
e + 0. e
2+/(107)* - 2m)? 24/(10m)% - (2m)?

= 0.101 ¢70-63473 — 0.001034¢ 62197
A plot of the above for 0 <t < 2s is given below

x(t) =01

Part(2.3) overdamped, A=10 7t

010~

0.08r 1
outa < 0.06F 1

0.04F 1

00 05 10 15 20
time (sec)

To compare to the critical damped case, the above three plots are plotted on the same figure
against the critical damped case in order to get a better picture and be able to compare the
results
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Comparing critical damped response to overdamped

0.08F increased damping

0.02F

critical

damping

0.00F

0.0 0.5 1.0 1.5 2.0
time (sec)

From the above we see that critical damping has the fastest decay of the response x (f). As
the damping increases, it takes longer for the response to decay.

4.4.5.3 Part(3)

For the underdamped case, the solution is given by

x(t) = e M (A coswyt + Bsin wyt) 1)

Where w; = /w3 — A2 and A, B are constant of integration that can be found from initial
conditions. And
% (t) = —Ae™M (A coswyt + Bsinwyt) + e M (—=Aw, sin wyt + Bw, cos wyt) (2)
Applying initial conditions x (0) = xy then (1) becomes
Xg = A
Applying initial conditions X (0) = 0 then (2) becomes
0= —AXO + Bwy
A
T
wgq
Replacing A, B back into the solution (1) gives the solution
A
x(t) =e M (xo cos wyt + g sin a)dt) (3)
Wy
We now use the above solution for the rest of the problem
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44531 case(i) A=55",wy=2mx =01, hence w; = \Jw? — A2 = 4/(2n)* - 52 = 3.8051

and (3) becomes

(5)(0.1)
3.8051

= 75 (0.1 cos (3.8051¢) + 0.1314 sin (3.8051¢))

x(t) = e (0.1 cos (3.8051t) + sin (3.8051t))

A plot of the above solution x (t) for 0 < t < 2s is given below

Part(3.1) underdamped, A=5 per sec

T T

0.10F
0.08f

0.06

)
-

Qut[600]= ;/
ui600] 0.041

0.02F

0.00r

0.0 0.5 1.0 1.5 2.0
time (sec)

44532 case(ii) A =1s",wy=2mx; =01, hence w; = \Jwi — A2 = \/(271)2 -12 = 6.2031

and (3) becomes

1) (0.1)
6.2031
= ¢t (0.1 cos (6.2031¢) + 0.016 sin (6.2031¢))

x(t) = e10.1 cos (6.2031¢) + sin (6.20311‘))

A plot of the above solution x (t) for 0 < t < 2s is given below
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Part(3.2) underdamped, A=1 per sec

T T T T T T T T T T T T T T T T

0.05) ]

Out[596]= L>_<‘/ I /\ ]
0.00 e

N

~0.05) ]

0.0 0.5 1.0 1.5 2.0
time (sec)

44533 case(iii) A =01s!,wy = 27, xy = 0.1, hence w; = yJwi - A2 = \/(271)2 -012 =

6.2824 and (3) becomes

01O .
6.2824

= ¢7014(0.1 cos (6.2824t) + 0.001592 sin (6.2824t))

A plot of the above solution x (t) for 0 < t < 2s is given below

x(f) = e 0l (0.1 cos (6.28241) + in (6. 2824t))

Part 3 3) underdamped /\ 0 1 per sec

0.10 | ]
0.05\ /\ / —f

out[591]= g 0-00
—0.05?—
o0 N

0.0 05 1.0 15 2.0

time (sec)

To compare to the critical damped case, the above 3 plots are now plotted on the same figure
against the critical damped case in order to get a better picture and be able to compare the
results
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Comparing critical damped response to underdamped

0.101 1
decreased damping
critical
0.05F 1
< 0.00

-0.05¢ 1
_O' 1 O L L 1 1 ) 1 L ]
0.0 0.5 1.0 1.5 2.0

time (sec)

As the damping becomes smaller, more oscillation occur. The case for A = 557! had the
smallest oscillation.
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4.4.6 HW 4 key solution

1
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O. 3 _:._ Damping coefficient
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45 HW )5

451 Problem1

1. (5 points)
A spring of spring constant k supports a box of mass M, which contains a block of mass
m. If the system is pulled downward a distance d from the equilibrium position and then
released, it starts to oscillate. For what value of d does the block just begin to leave the
bottom of the box at the top of the vertical oscillations?

SOLUTION:

inital conditions
y(0) =d,5(0) =0

mL

The block of mass m will leave the floor of the box when the vertical acceleration is large
enough to match the gravity acceleration g. The equation of motion of the overall system is
given by

Yy’ +wiy =0 (1)
Where w, is the undamped natural frequency
B k
@o = M+m
The solution to (1) is
y = Acoswyt + Bsin wyt (2)

Initial conditions are used to find A, B. Since at t = 0, y(0) = d, then from (2) we find
A=d
Taking derivative of (2) gives
Y = —Awgsin wyt + Bwgy cos wyt (3)
Att =0,y (0) =0, this gives B = 0. Therefore the full solution (2) becomes

y = dcos wyt

174



4.5. HW 5 CHAPTER 4. HWS

The acceleration is now found as

Y = —wod sin wyt

Y’ = —wjd cos wyt

The period is T, = 577; After one T, from release the box will be the top. Therefore, the
acceleration at that moment is
y’ (TP) = —wjd cos woT,
= —wid cos 21
= wid
The condition for m to just leave the floor of the box is when the above acceleration is the
same as g.

wid=g
g
d==
w}
Therefore
d= § (M + m)

4.5.2 Problem 2

2. (15 points)
(1) Show that the Fourier series of a periodic square wave is

4 1 1
f(t) = = |sin(wt) + 3 sin(3wt) + R sin(bwt) + ...|
7r

where

flt) = +1  for O<wt<m, 27 <wt<3m,..
flt) = =1 for 7m<wt<2m 3r<wt<dm,...

(2) Use the result from above to find the steady-state motion of a damped harmonic
oscillator that is driven by a periodic square-wave force of amplitude Fy. In particular,
find the relative amplitudes of the first three terms, A;, A3, and As, of the response function
z(t) in the case that the third harmonic 3w of the driving frequency coincides with the
frequency wy of the undamped oscillator. Assume a quality factor of ¢ = 100.

SOLUTION:
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4521 Part (1)

The function f (t) is an odd function, therefore we only need to evaluate b, terms. To more
clearly see the period, the definition of f (t) is written as

+1 O<t<Z, ..
f()= Sn

i 2
-1 —<t< =,
[ [

Therefore the period is

Finding b,
T?’
f(t) sin (nwt) dt

S—

0

“ (+1) sin (newt) df + f (<D sin (nat) dt]
0 I

@

brd 2n
f “ sin (nawt) dt - f “ sin (nwt) dt]
0 TU

[}

w cos (nwt) v cos (nwt) 2?7
el e

—_—
A

nw nw

m
[}

0

_ Y (_i [cos (na)t)]og + % [cos (nwt)]z%)
= nl_n (— [Cos (na)g) - cos (0)] + | cos (na)%—() — cos (na)g)])

= i (= [cos (nmt) —1] + [cos (2nm) — cos (nm)])
nmn

= N (=cos (nm) +1 + cos (2nmn) — cos (nm))
nm

-2 cos (nm) + cos (2nm) +1

2
= — (1 -cos(nn))
nmn
And since 7 is an integer, then cos (nm) = (-1)" and the above reduces to
2
b, =—(1-(-1)"
w=—(1-¢1")

Therefore

L u=135,-
nrt
0 otherwise
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Hence

f(t)= i b, sin (wnt)
n=13,5,--

— 4
= E — sin (wnt)
n=135,- "7
Writing down few terms to see the sequence

f(t)= % {Sin (wt) + %Sin Bwt) + ésin Bwt) + ;Sin (7wt) + }

4522 Part (2)

When the system is driven by the above periodic square wave of amplitude Fj, the steady
state response is the sum to the response of each harmonic in the Fourier series expansion of
the forcing function. Since the steady state response of a second order system to F, sin (nwt)
is given by

F,/m

2
\/(wg — (nw)’)” + 472 (nw)’
Where the phase 9, is defined as

Y, () = sin (nwt + 9,,)

-2A
6, = tan™! —(na))z
a)g - (nw)
Then the steady state response to f (1) = %" .- FO% sin (wnt) is given by
« 4 Fo/m .
Yss (1) = E — 0 > sin (nwt + 0,,) (1)
n=135 \/(wg — (nw)’)” +4A2 (nw)*
4Fy, K 1 sin (nwt + 0,,)

=— ) =

nm ., _{35 N \/(a)g _ (nw)z)z + 422 (nw)*

Looking at the first three responses gives

4F, sin (wt + 01) 1 sin Bwt + 03) 1 sin (5wt + 05)
yss(t)zn_m > +§ —~ 2+g — -
\/(wg - 0?)" + 41202 \/(wg - Bw)*)” + 442 Bw) \/(mg - (5w)*)” + 442 (5w)
2)
We are told that 3w = wy or w = %a)o and in addition, using using Q = (2‘)—2 we find
100 = =2
24
@Wo
A= —
200
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Using this A and given value of @ then the phase 6, becomes

—2A
0, = tan™! —(na))z
wh - (nw)
(@)
_ tan! 2(3) ()
2
w - (n3)
- 10012 - 900
Using the above phase in (2) giveﬂ
sin (224 + tan~! > L T Lsin (5 °1‘+tan1i
4Fy 3 800 3 sm (a)of + 5) 5 320

=) ) ) J(w%—<3%>2)2+4<%>2<32ﬂ>2+J(wé—(s%ffﬂ(%f

. wo . wo -1 3
4R, sm(—t—tan %) 1s1n (a)ot+ ) 1sm(5?t+tan ﬁ) .

T m 640 009 [T 102 4090) 4
810000 10000 32400 0

Yss () =

-1 3 n . 13
AF sin (0 333wyt — tan —) sin (wot + = sin (1.6667w0t + tan —)
= 22011125 20/ 4 33, 333—22) +0.11249 . VA
TTm O (UO Cl)o

The relative amplitudes of A;, A3, A5 are given by
{1.125,33.333,0.11249}

We see that the third harmonic (n = 3) has the largest amplitude, since this is where 3w = w.
In normalized size, dividing all amplitudes by the smallest amplitude gives

{A1, A3, As) = {10,296,1}

normalized

4.5.3 Problem 3

3. (5 points)
If the solar system were imbedded in a uniform dust cloud of density p, what would be the
force on a planet a distance r from the center of the Sun?

SOLUTION:

!The third harmonic 7 = 3 has g phase since tan! (c0) =
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dust (lroloud solar system

The total force on the planet m is due to the mass inside the region centered at the center of
the sun. The mass outside can be ignored since its effect cancels out. Let the radius of the
sun be Ry, then the total mass that pulls the planet toward the center of the solar system
is given by

4
Miotar = Mgy, + 577 (7’3 - Rg’zm) p

The force on the planet is therefore
GMiotarmm
-7
2

4
G (MW + 57 (P = R3) p) m

F=

2

r
Where 7 is a unit vector pointing from the sun towards the planet m and G is the gravitational
constant and p is the cloud density.

4.5.4 Problem 4

4. (10 points)
(1) What is the speed (in km/s) for a satellite in a low-lying orbit close to Earth? Assume
that the radius of the satellite’s orbit is roughly equal to the Earth’s radius.
(2) Show that the radius for a circular orbit of a synchronous (24-h) Earth satellite is about
6.6 Earth radii.
(3) The distance to the Moon is about 60.3 Earth radii. From this, calculate the length of
the sidereal month (the period of the Moon’s orbital revolution).

SOLUTION:

4541 Part (1)

The force on the satellite is mr,w? where 7, is taken as the earth radius since this is low-lying
orbit. Therefore

GM,m )
5 = MW
Te
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But v = r,w where v is the satellite speed we want to find. Hence w? = 2:2—2 and the above
becomes ‘
GM, ©?

/GME
0=
re

B \/ (6.67408 x 1011 (5.972 x 10%¢)

6.371 x 106
= 7909 .6 meter/sec
= 7.9 km/sec

4542 Part (2)

Let the radius of the satellite orbit be r. Using
GM,m
2

N

= mrw

where v = ZT—H where T, is the period of the satellite. But for synchronous satellite, this period

is 24 hrs. Hence the above becomes

(SIS

[SS I

(6.67408 x 10711) (5.972 x 10%4)

2
21
( 24(60)(60) )

4.224 x 107 meter

But radius of earth is r, = 6.371 X 10° meters. Hence
r 4.224x107

— =~ 663
r, 6371 x 106
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4.54.3 Part (3)

W= 2T

Ty
T} is sidereal period
N e moon

=

T

earth (r¢)
From
GM,m )
2 = mrw
GM,
B¢
GM, _(2n\?
B »
We solve for T, hence
2 |GM,
T, - r3
27 21
TP = =
\/ CM, (6.67408x10-11)(5.972x1024)
3 3
((60.3)(6.371x109))

=2.3698 x 10° sec

Therefore, in days, the above becomes
_ 2.3698 X 100
P (24) (60) (60)
= 27.428 days

455 Problem 5

5. (15 points)

areal velocities.

r = 1o cos(f). Show that the force law is inverse-fifth power.

(1) A particle is subject to an attractive force f(r), where r is the distance between the
particle and the center of the force. Find f(r) if all circular orbits are to have identical

(2) The orbit of a particle moving in a central field is a circle passing through the origin,

SOLUTION:
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4551 Part(l)

From the above diagram, where we have two particles of same mass m in two circular orbits.
The area of each sector is given by

7]
A=—r?
2
The time rate of each sector area is
dA, 6
& =20 W
Similarly
dA, 6
R @)

Since we have a central force, then this force attracts each mass with a force given by
f = mr6? Therefore f, = mri63, Similarly f,, = mry63. Substituting for 6 from these
expressions back into (1) and (2) gives

a4 _ [ R
dt — \\mry 2 (1B)
ady _ Lﬁ (2B)
dt — \\mr 2

Similarly
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We are told the areal speeds are the same, therefore equating the above gives
dA, _dA,

dt — dt

hi_ 1A
mry 2 mry 2

S fars
mry 4 mry 4
flr‘i’ :fzr%
Hence
fn 12
fro 1

This says that, since we using the same mass, that the force f(r) on a mass is inversely
proportional to the cube of the mass distance from the center. To see this more clearly, let
r1 =1 then

1
frz = _3f”1
)

So if we move the mass from r; =1 to say 3 times as far to r, = 3, then the force on the same

1 .
mass becomes > smaller than it was.

4.55.2 Part(2)
The orbit first is plotted as follows

Clear[r0, r]

r0 = 1;

rlangle_] := r0 Cos[angle]

xyData = Table[{r[a] Cos[al], rla] Sin[al}, {a, 0, 2 Pi, .1}];

ListLinePlot[xyData, GridLines -> Automatic,

GridLinesStyle -> LightGray, AxesOrigin -> {0, 0},

AxesLabel -> {x, y}, BaseStyle -> 14, PlotTheme -> "Classic",
AspectRatio -> Automatic]

Which produces the following plot
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0.4

Using 8.21 in textbook, page 293

a2 (1) 1 ur?
202 () YeETErY W

Where p is the reduces mass, [ is the angular momentum and F (r) is the force we are solving

for. Since r = ry cos 6 then
ey _dfd1)_d(d 1
do2\r] do\dor) do\dOrycos6

_d ((-1)(~sinB)
~do\ rycos20 )
_d [ sin0

~ d6 \rycos? 6)

: [ cos 0 25sin’ 0 )

+
rocos2 0  rycosd O

.2
:[ 1 +2$1n 6] 5

rocos @  rgcos® O

2
But from r = rycos O we see that cosO = % and sin0 = 1 - cos?20 =1 - (%) , hence (2)
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becomes

do2 \r

r 0
5
272
N
=|- =
5
(1 2rf-2r
A\ r3
PP+ 2rg -2
= ;<
B 21’% -2
==
Therefore (1) becomes
2r5 -1 1 _ _V_zp(r)
r r 12
215 — 12 + 12 ur?
3 AL
Solving for F(r)
212 2
F(r) = =2
ur
_ 25\ 1
by

The above shows that the force is an inverse fifth power.
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4.5.6 HW 5 key solution
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2
pfo'ol(m 2
W g¥Y= 2 Cace

Tl ¢ 2
~cnus -1
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o s .
-iﬂdt ""\Ne
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So
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46 HW6

461 Problem1

1. (5 points)
An Earth satellite has a speed of 28,070 km/h when it is at its perigee of 220 km above
Earth’s surface. Find the apogee distance, its speed at apogee, and its period of revolution.

SOLUTION:

From the vis-viva relation

a2 1
Uperigee = \| (_ - _) (1)

mrp a

Where m is the reduced mass and a = GM,,,y,M., Which reduces to GM,,,4, and known
constant called the Standard gravitational parameter which for earth is (From table)

2 _ 398600 km®/s2
m

And
Ty = 220 + 6378
= 6598 km

Where 6378 is the equatorial radius of earth. And v, g, = 28070 km/h. Therefore, we use (1)
to solve for a, the length of the semimajor axes of the elliptical orbit of the satellite around
the earth. From (1), by squaring both sides

) a(Z 1)
v=—|=--
m\r, a

N

( 28070 ) = 398600 (—2 - 1)
60 x 60 220+ 6378 a
Solving for a gives

a = 6640 km
Hence the apogee distance is

2a = 13280 km
We can also find
rp=2a-1,
= 13280 - 6598
= 6682 km
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When the satellite is at the apogee, it will be above the earth at height of

ha =Ta = Vearth
= 6682 — 6378

= 304 km
The period T is given by
23
T=2m o
m
66403
398600
= 5385 sec
5385

= =1. h
50 % 60 1.496 hr

= 4Tt

4.6.2 Problem 2

2. (5 points)
A spacecraft is in circular orbit 200 km above Earth’s surface. What minimum velocity
kick must be applied to let the spacecraft escape from Earth’s influence? What is the
spacecraft’s escape trajectory with respect to Earth?

SOLUTION:
The total energy is
1,
E= Emr + ueffective

The escape velocity is when Ueffective = 0 , therefore
lZ

0=-U+
2mr?

GM,m

But angular momentum [ = mrv and U = , hence the above becomes

GM,m  m?r’v?
r 2mr?
GM,m  mv?
— + [
r 2
GM 2
S AL (1)
r 2
Now we are given that the satellite was at r = 200 + 6378 = 6578 km (this is r, for the new

orbit as well). Using GM, = 398600 km3/s? from tables then we solve now for v in (1), which

0=
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will be the new velocity. Hence

398600 2

78 2
v =11.009 km/sec

Before this, the spacecraft was in circular orbit. So its speed was

mr

/398600
~V 6578
=7.784 km/sec
The difference is the minimum speed kick needed, which is

11.009 — 7.784 = 3.225 km/sec

This orbit is parabolic since U, foetive = 0 as seen on the U,¢fective vs. r graph. parabolic is the
first orbit beyond elliptic that do not contain turn points. The next orbit is hyperbolic.

4.6.3 Problem 3

3. (15 points)
A comet is observed to have a speed v when it is at a distance 7 from the Sun. Its direction
of motion makes an angle ¢ with the radius vector from the Sun.

(1) Find the eccentricity of the comet’s orbit.

(2) If the velocity of the comet is expressed as ¢ times the Earth’s velocity and its distance
to the Sun as d astronomical units, show that the orbit of the comet is hyperbolic, parabolic,
or elliptic, depending on whether the quantity ¢*d is greater than, equal to, or less than 2,
respectively.

SOLUTION:

4.6.3.1 Part (1)
Eccentricity is defined as (for all conic sections)

2E2

e=q/1+—
mao

(1)
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Where @ = GMy,,,m and [ is the angular momentum
l=m|rxo
= mrosin ¢

Therefore (1) becomes

. Jl s ZE(rvsin(p)z

m (GMa)*
The energy of the comet is given by E = %mvz - GMST“”T”, then the above becomes
1 5 GMgum . 2
2 (Emv - f) (rv sin ¢>)
e= |1+ 3
\ m (GMSMW)
1 5 GMgum
_ iy Z(Emv o ) rusin ¢ 2
B m GM;,p,
\

Lo (o2 2 rosing\’
= v —
r GM,,,,

4.6.32 Part (2)

Let v = gv, where v, is earth velocity around the sun and let r = dr, where r, is the astronom-
ical unit (the distance between the earth and sun) then result of part (1) becomes

: 2
2 2GM,,, \ (dr.qv, sin
e:$+w@— %ﬂ(ﬁ@mﬂ @)

Looking at the earth/sun system, we know that

2
GMsun Megrth— MeartnUe

T’g Te

GMsun 02
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Replacing GM;,, in (2) by the above result gives

2 2 d . 2
oo (- 2 Feing)
e

AL

. 2
- \/1 (o) - 2703) (dq S;:Mp)

:\/1+ q2_§) (dqsingb)z
Zd_
:\/1+ 1 : 2)(dqsin¢)2

We are now ready to answer the final part. If g°d = 2 then ¢ = 1 which means it is parabolic.
24
If 4°d > 2 then (qlsz) is positive and the expression inside 4/ is larger than one, and hence

e > 1, which means the orbit is hyperbolic. Finally, if 4%d < 2 then (qz[fT_z) is negative, and the

expression inside /. is less than one, which means e <1 and hence the orbit is elliptic.

4.6.4 Problem 4

4. (10 points)
If the minimum and maximum velocities of a moon rotating around a planet are v,,;, =
v — vg and Vpee = v + v, show that the eccentricity is given by
Vo

e =— .
v

SOLUTION:

The angular momentum / is constant. At perigee, where the speed is maximum, we have
I, = Muygaxty

And at apogee, where the speed is minimum, we have
la = MUnin'yq

Since [ is constant, then

MUmaxTp = MOmin’y

Umax"p = Umina 1)
But
r,=a(l+e)
rp,=a(l-e)
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Hence (1) becomes
Umax? (1 - e) = Unminf (1 + e)
OUmax (I-e)= Omin (I+e)
Umax ~ €Umax = Umin 1 €0min

Umax ~ Umin = € (vmin + Umax)
e = Umax ~ Umin
Umin T Umax

Replacing vy, = v + v and v,;, = v — vy gives

_ (v + 1) — (v —1)
(0 + 1) + (v -1yp)
_200

T 20

_Y

)

4.6.5 Problem 5

5. (15 points)

geosynchronous) orbit.
Earth orbit into the elliptical transfer orbit.

transfer orbit into the geosynchronous circular orbit.

Avy

When a spacecraft is placed into geosynchronous orbit, it is first launched, along with a
propulsion stage, into a near circular low Earth orbit (LEO) using a booster rocket. Then
the propulsion stage is fired and the spacecraft is transferred to an elliptical “transfer”
orbit designed to take it to geosynchronous altitude at orbital apogee. At apogee, the
propulsion stage is fired again to take it out of the elliptical orbit back into a circular (now

(1) Calculate the required velocity boost Av; to move the satellite from its circular low

(2) Calculate the required velocity boost Avs to move the satellite from the elliptical

SOLUTION:
198



4.6. HW 6 CHAPTER 4. HWS

Velocity at Velocity at
cirular GEO apogee of
orbit ellipse

Hohwann transfer ellipse

/V1, Vo AVia
Velocity in Velocity at
LEO perigee of

circular ellipse
orbi

4.6.51 Part (1)

In this calculation, the standard symbol u is used for GM,,,s;, which is the Standard gravita-
tional parameter (in class, we used % for this same parameter). For earth

1 = 398600 km’/s2

The first step is to find a for the transfer ellipse. This is given by

, — Reeo + Reo
2
Next, we first find V3, which is velocity in the LEO circular orbit just before initial kick to
V,. Since this is circular, the speed is given by

[ u
V. =
! Rieo

Next step is to find V;, which is the speed at the perigee of the ellipse (the transfer orbit).
This is given by the standard vis-viva relation

Vv, = y( 2 -1) 8

Ripo @
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Where R;ro = Tperigee fOr the ellipse. Now that we found V, and V7, then
AV, =V, -

V RLEO a RLEO

When at the apogee of the transfer ellipse, the speed is given by

. 2 1
> HRGEO a

We now want to be of GEO circular orbit, hence

1
R¢eo

4.6.52 Part (2)

V4:

And therefore, the speed boost is
AVay = V4 -

V RGEO V RGEO a
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471 Problem1

. (10 points)

If a problem involves forces that cannot be derived from a potential (for example frictional
forces), Lagrange’s equations become

d (0L oL

where the (; are the generalized forces not derivable from a potential. The @); are defined
through

o7
i:F’ .
@ dq;

Use this formalism for the following example.

A particle of mass m moves in a plane under the influence of a central force of potential
U(r) and also of a linear viscous drag —mk(dr’/dt). Set up Lagrange’s equations of motion
and show that the angular momentum decays exponentially.

SOLUTION:

Using polar coordinates. The position vector of the particle is

7=17+r00 1)

We now find the Lagrangian

T = %m (fz + 1’292)
U=V

L= %m (,-,2 + r292) -V

Since we are asked about the angular momentum part, we will just find the equation of
motion for the O generalized coordinates.

JL 0
0
JdL 26
— = mr
20
Hence the EQM is
d )
5 (mrze) =Qy
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Where Qg is the generalized force corresponding to generalized coordinate 6. From (1)

d7 = dr? + rd60

Hence
dr _dr_ do .
Fri ar+ra
= i? +r00

Therefore, the drag force can be written as
dr

F = —mk—
(o

= —mk (# + r00) (2)
Applying the definition of Qy = F - ;—JZ gives
d

Qg = —mk (i’? + 1’99) T (r? + r@é)
= —mk (ﬁ’ + r@é) - (ré)
= —mkr?6 (3)
Now that we found Qg, the EQOM is
% (mrzé) = —mkr?0

We notice the same term on both sides (but for a constant k). The above is the same as
d
— (Z) = -kz
5@
The solution must be exponential Z = ¢™* + C where C is some constant. This means
mr?0 = e + C

But mr?0 is the angular momentum. Hence, for positive k, the angular momentum decays
exponentially with time.

4.7.2 Problem 2

2. (10 points)
In the lecture, we derived a formula for the percentage increase in speed necessary to
transfer a spacecraft from low Earth orbit of radius rq to an elliptical orbit with the Moon
at the apogee at distance ry.

(1) Find the fractional change in the apogee dry/r; as a function of a small fractional
change in the ratio of required perigee speed vy to circular orbit speed v, d(vo/v.)/(vo/ve).

(2) If the speed ratio is 1% too great, by how much would the spacecraft miss the Moon?

SOLUTION:
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4721 Part (1)

From class notes, we found

[ 27’1 2
v, \r+r, 1+:—“
1

Where v, is the velocity in the circular orbit just before speed boost, and v, is the speed at
the perigee of the ellipse just after the speed boost, and r is the perigee distance and rq is

)
g

the apogee distance. We need to find . To make the calculation easier, let % =z. Then
c

we have

Hence

1
2
But [HL’O) = z so the above becomes

"1
o0z 116 2
or;  2zdor |1+ 2
5}
11(. 6 o\
=——[2— |1+ —
2z 67’1 4]
-2
11 r o (r
=——[2C-D1+-2] —|=2
2z ( )( rl) 6r1(r1))

11
2z

11l o2 o,

2z (1+r_0)2r1
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Since Lro = 72 the above simplifies to
(+3)

oz _1h, 1 1

ory 2z (1 LT ) 2

1 7,

= -z
2 r% (1 + r—“)
1 7,

= -z
2 ri(ry+71,)
We want to find %, therefore the above can be written as

o6z ol 1,
z r 2(ry +71,)

or
—L the above becomes

41
ory oz 2(71 +7,)
rO

Or in terms of

1 z

. v,
Since z = -2, the reduces to

e

4722 Part (2)

()
(%)

= 0.01 then

For

6& =0.01 (zw)
7"1 7’0

. 1 . .
Using ry = /1 in the above gives

1
r+ @7’1)

11’
60 1

ory (
— =0.01|2
1

=1.22

This means that or; is 22% of r;. The spacecraft will miss the moon by 22% of r;. (This
seems like a big miss for such small speed boost error)
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4.7.3 Problem 3

3. (10 points)
A particle of mass m moves in a circular orbit of radius » = a under the influence of the
central attractive force F(r) = —cexp(—br)/r?, where ¢ and b are positive constants.

1) What is the effective potential energy in terms of r and the angular momentum ¢7

Your answer may contain an integral.)

2) Write down the Lagrangian of the system. Derive the equation of motion.
3) For what values of b will this orbit be stable?
)

(
(
(
(
(

4) Find the apsidal angle ¥ for nearly circular orbits in this field.

SOLUTION:

4.7.3.1 Part (1)

One way to find U, (r) is to find the Largrangian L and pick the terms in it that have r
without time derivative in them.

1 1 .
T = —mi? + =mr26?
2 2
To find U (r), since we are given f (r) and since f (r) = —agy), then
Ur=- | fdr
Ce—rb
= f 2 dr
Hence
L=T-U
1 1 .. b
= Emi’2 + Emrzez - f Cé;z dr
Hence

1 . ce”™?
Upsr (r) = Emr292—f = dr

In terms of | = mr?0, the above can be written as

ce

1 . —rb
Uysr () = 516~ [

Or, it can also be written, as done in class notes, as

1 2 ce™?
Uiy )= 37~ | S
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4.7.3.2 Part (2)

L= 1mi'z + 1mr2t9'2 - f ce”’ dr
2 2 r2
Hence
JL _ . ce™"?
5, = mro- — 7
JL _
W =mr

The equation of motion for r is

—rb
m?—(mr@z— d ) =0

e—rb
=0
7,2

mi — mr6? = F (r)

my — mro? +

Written in terms of angular momentum, since 0 = —3 (integral of motion) where [ is the
angular momentum, the above becomes

12
my — % =F (l’) (1)
For 0,
JL 0
20
JdL 20
— = mr
d0
The equation of motion for 6 is
d .
T (erQ) =C

Where C is some constant. The full EQM for 0 is
m (2ri6 + rzé) =0
20 + 2ri0 = 0

4.7.3.3 Part (3)

To check for stability, since this is circular orbit, the radius is constant, say a. Then we

2
perturb it by replacing a by x + a where x < a in the equation of motion mj¥ — # = F(r) and
it becomes
2
mi - —————= =F(x+a)

m(x + a)

2 -3
mx = M +F(a+x)
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. -3 . . . .
Since x < a4, we expand (x + 2) ~ in Binomial and obtain

12 x -3
mbt:—3(1+—) +F(a+x)
ma a
Taylor expansion
I? 3x
v ——=|1-—+-|+F(@)+xF () + -
ma a

2
Since circular orbit, then # = 0 and the EQM motion becomes —ml—a3

replace L with in the above expression we find
ma3
3
mXx ~ —F (a) (1 - %) + F (a) + xF’ (a)
3x
= —F(a)+F(a); + F (a) + xF’ (a)

3
—F(a) 7’5 +xF (a)
Hence

mx + (—F (a) %x —xF’ (a)) =0
mx + (—ZP(u) -F (a)) x=0

This perturbation motion is stable if (—SF (a) - F (a)) > 0. But F(a)

ce™®  peem®
-— + ——, hence
a

A= —gF(a) —F' (a)
a

3( cebe ce™®  peeab
= —— |- — 5 +
a a a a

We want the above to be positive for stability. Simplifying gives

3cetr e poeb
A= @2 a2  a

_ 2cebr pee—b
T2 q
3 2ce™ — gbee=b

72

—ba
= - (@-ab)
Therefore, we want (2 —ab) > 0 or 2 > ab or
b<?
a

215
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4.7.3.4 Part (4)

Time to

T
travel = -

The angle ¢ is found from

=Lg (1)

Where T, is the period of oscillation due to the perturbation from the exact circular orbit,
and 0 is the angular velocity on the circular orbit. But

. l
0~ —
ma?

(2)

But from part(3) we found that

2

[
T @

[ = \/=F (a) ma3

Therefore (2) becomes

. 1
0 ~ w\/—F (a) ma®

_ [F@
B ma

We now find T,,. Since the perturbation equation of motion, from part (3) is m5€+(—§F (a) - F (a)) X =

0, which is of the form

2
o

[—§F (a) - F (a)J
i+ | k=0

m
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(—%F(a)—l—"’(a))

Then, the natural frequency is w = , therefore

o \/—§P<a>—F' @

T, m
T, =2 ”
=21 |—— @
’ —2F(a) - F (a)
Equation (1) now becomes
T
='p
2

/—F (a)
\/ 2F(a) - F' (a)
\/ _F(a)

3F (a) — aF’ (a)

F(a)
3F (a) + aF’ (a)

h a
“ __ then the above becomes

But F(a) = ——— " and F (a) =

ce—ba
a2

V=" 3F @+ aF @)

ce~ba
a2

3 _ce‘b’l ta ce~ab + bee=ab
N\ a2 a2 a

ce—ba
a2

ce~ba ce=®qbce=ab
__3 5 + | —
a

_Ce—bﬂ

—3ceba + (ace‘”b + azbce‘“b)

1]
&/

-1
-3 +4+a+a%b

1
1’D =T \ 3-a(1+ab)

Hence
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4.7.4 Problem 4

4. (10 points)
A ball is dropped from a height h onto a horizontal pavement. If the coefficient of restitution
is €, show that the total vertical distance the ball goes before the rebounds end is h(1 +
€2)/(1 — €?). What is the total length of time that the ball bounces?

SOLUTION:
The first time the ball falls from height / it will have speed of v; = 4/2gh just before hitting

the platform, which is found using

1
mgh = Emv%

On bouncing back, it will have speed of v = &/2¢h. It will then travel up a distance of
hy = &2h which is found by solving for h;from

mghy = %m (01)2

The second time it it falls back it will have speed of v, = €4/2¢h;. When it bounces back

up, it will have speed v} = £24/2¢h; and now it will travel up a distance of h, = ¢*h which is
found by solving for h, from

mghy = %m (Ué)z

This process will continue until the ball stops. We see that the distance travelled at each
bouncing is
A = {h,2¢%h,2¢%h, 265, -+, 262h)

We added 2 to each bounce after the first one to count for going up and then coming down
the same distance. The first time it will only have one 1. We now can calculate total distance
travelled A as

A=h+2e2h+2e*h + ---
:h(1+252+254+ )

The above can be written as

A=h(2+22+2e4+ )= h 1)
But since ¢ <1 the series sum is
& 1
24262 42et 4. =2) 2 =2
e e nz:%e T2
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Therefore (1) becomes

_2h—h(1—52)

Hence total distance is

To find the total time of all ball bounces, we need to find the time it takes to travel in each
bounce. The time it takes to fall distance / is lzg—h, using the information we found about

each /; from above, we now set up the sequence of times we we did for distances

2h 2¢2h 2¢%h 2¢%h
Atime: —,2 ,2 ,2 7
8 8 8 8

Adding the times gives
A /2h \/ 2e2l \/ 2elh \/ 2661
= (1+2&+2& +2¢63 4 26t
8
2h 2h
=4[ = (2426 + 262+ 263 + 264 ) - [=
8 8
/2h & /
= 228 — —

00 1
But2), &' = 2;, hence the above becomes

_n(2-a-e
i)
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Hence total time is

4.7.5 Problem 5

5. (10 points)

collision with the wall.

A particle of mass m strikes a wall at an angle  with respect to the normal. The collision
is inelastic with coefficient of restitution e. Find the rebound angle of the particle after

SOLUTION:

First we make a diagram showing the geometry involved

v cos 6
=
__ _wvsind

before collision

after collision

We resolve the incoming velocity into its x,y components and apply conservation of linear
momentum to each part. The vertical component remain the same after collision since it is

parallel to the wall. Hence

/ —
Z)y—vy—UCOSQ

While the x component will change to
v, = €v, = €vsin O
By definition of ¢. Therefore we see that after collision

evsin 6

tana =

Hence

a = arctan (¢ tan 0)
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4.7.6 HW 7 key solution

1
Mechanies
‘Ph“s;c: AN -Fall 2018
Homewort. Set 7 - Solubons
Peoblem 4
L= ém\”’" + ?l_ w2 et - 00)
%zmo.(.'ted woidingtes 1,8
i'b—':‘-lé=Qc Gt Q.‘=E'%—;‘
A % 7, £
hete | e =-aml d¥
dt
én polos wordimates, AP =dr ¥ +r de &
and B
V‘=°§.;= i $+r°‘l‘—ié
So - de A
F=-mb ai ¢ —MC\r”l._B' &
ol¢
= Qf= v, =—1-L-al—1- Qa=rF9="“‘(‘fl—i‘i
ev‘ﬂ-ld’ﬂrd'ﬁ; @Quakony
n o 3‘&:_2 R wiwe L= meto
S0 with 2_: = met @
d 4 - de . o | st "¢
= e =-0p - ¢ = - Ldd = | l:=loe
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prob\bv« 2

(') ?uctnl-o.ao. nefease ncua.sm-, 4o Mmlgﬁ Q .S‘Pﬁctcu_?rl-
2»“ lows Eadhodst 4 e Yeoon 9

!‘3: 2n - 2
Ve YTaw, 'VH,:.,‘,

Ve s Speed ©a Greolar odoit of rodiuy o (LE0Y)

Vo = §pend newsted <o be oa ellphaat path withh Hoon ab apegte

Vo,
Ve need §‘-_-E' as & Ynchion o M
]

(\lo/v‘)
A lehn
O, alutare d{"%,‘) _ ! (-2) (_&)
ar, 2_(\19/“) (“fo/r‘)‘ A%
So d(v%c)
(v‘/ﬁ.) - [ ‘, Zro |
dr, 2 (Y%A (e "&) w
LY}
L e 2
= (‘*r./rl) <
© Vo
¢ .Svl'_: 2(!-\»‘;—‘. :—'1 _)_% e
) © o/v‘_)
and vt CzRg amd [,z boRe ‘;.‘:e.vo ;
Se

DR s(“/u)j

¢ ' r' (Ve /V(_ )

(0% woue ¥y means
Har the above
Qﬂ;nﬁnk‘on Q) o

ol Gharentnal hay biolen
dowon )

' 2.00. 1% = 12o% "
\
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Proolem 3
(d))

O = - (€ de

-br
= c,( £ olr
e
1
= 1 7- £
€= Fme +2mr1 + V)

ce V()
mre’ - =

1Y)
~
1]

= M rét -+ F(P)
-br

> 2 e
mre ~ C )

‘aL = M e d‘a—Lgmr
e olt @
.
" MT ~meB tC = X5
s
1 -br
s = ©

or | MF = — 4 C
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(3)  Condbion %ot stable ot (fom clan)

rtan% F'a) <0

So Q—Bﬂ- a a-b& 2
-c + - C b+ -—) 20
a® 3 o ( *
-ba ~bo.
e be
= » +
] ¢ T (d T < O
& -2 + b <o or |2 >b
al
(%) () /2

'zr\z ﬂ[3+q¢l°~)
'V?_

e L3+ o ce° (b+}) 1

2 ~ba
a (-cg/iI)

_JIL

'W['Zs-a(bf%'_)]

n

v [3- (a'nz)]-"‘

= W [ l-o.l::\dh'

Se W
= Ji-ab
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5
Qro“em Lf'
Velotily wnth hidh e balt
\ 2
readhey the g(.-m e 2{(5& me zmv = M%k
= V': 2gh
Velowh afle ¥re bounce : ‘.3‘: g

ht’tk\ a QA qq:n\ bounce @

22 2%
Velocky afine the Second bosace e
Vl
1 2
IQ-V" _ £v|
kugd &9(\'-! $econd boonce - h = ?...-3 = =
P
-SZ‘V =€’fh
3
=)  total staace
A= +2h+2e%h+ ..
201 2n
= h (-1¢2 28
n=o
= Q
no.)}.;;c Z av =z — gu Ief <
ne l=¢
2
A d= h (—|+‘ E.")
= ~l+g* 42 L+e* W m
- e* 1-g%

225



4.7. HW 7

CHAPTER 4. HWS

6
q:r e fokal Bme ¢
1 2 = ﬁ_ 2;‘2
%rn?‘m E‘ﬁ£=h = "V%
) - 2h Zeih
alt Qom b tt=y=— = 3 £¢
Golt G 3 \/ :
gﬁ\( g.gn h" é."- 2-&“"\ - szé
3
- 2%t % ...
= éby - L+ 2eidr
= ,(2-1' (1+ 2+ 26 +.)
3
@
[ (v T 2e7)
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2
2 - —
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i \ éi’ol— - % |-£’
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(r)ra'olem S

Component of velouh aleg the wall W yadha~ged

\I,: z V Sinl
) ' ( walt doey nel
s LYE_ - _lg.l.l mwc.)
, 9 ' V (o8&

2 vy ] = &V tose-

h
Ve [ vieatererv? A

——
@ |[y'= v \[S.*..‘e-e A7

s 9. = W §a8
add (PN =
‘ EV (o3&
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48 HW 8

481 Problem1

1. (15 points)

Consider the case where a fixed force center scatters a particle of mass m according to
an inverse-cube force law F(r) = k/r®. If the initial velocity of m is v, show that the
differential cross section is

kw2 (m—0)
o(0) = muv2 6% (27 — 0)? sinf
SOLUTION:
Starting from
© dr
00 (b) = v o [2Em_2mU 1 @
PN TR TR
But
[ =bV2mE
I? = b? (2mE)
Hence (1) becomes
00 dr
0= | s
min r —————
2 RE 2
00 b
- [ (1A)
"min 7’2 1- E — E
\| E
In this problem, since F(r) = %, therefore since F (r) = -VU
k
U =- [ ar
r
_k
22
Then (1A) becomes
00 b
%@:f dr (1B)
"min 7-2 1- L — E
2r2E 12

dr
Z

Let z = ! then
r d

1
= ——. When r = co then z = 0 and when 7 = r;, then z =
zZ
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need to find 7,;,. We know that when E = Uffective then r = 75, But

Hence

Solving for r,;,

But > = b? (2mE) then (2) becomes

Therefore

Now we can finish the limits of integration in (1B). When r = r,;, then z =

12
ueffective =—+U()

2mr?
B 12 N k
T 2mr2 212

E= ueffective

_ Bk
Zmrrznin 27’12nin
P+ mk
2mr?
) 12 + mk
re. =
min sz
12 k
= — 4+ —
2mE  2E

, _RR@mE) Kk

in = +
Fmin = 75 P T oF

k
=P+ —
2E
k
. = bZ + —
rmll’l 2E

now (1B) becomes (where we now replace r> by le)

ﬁmin 2 - L - g
r \| 1 2r2E r2

0 z?b 1
f | T (‘;zdz)

00 b
dr

kz
1- 2 _pep2
2. k
b‘*’ﬁ 2E

1
:bfvb2+£; _ iz
0

1
kZZ 2.2
ﬂl—i—bz

1

3 bf1/b2+2kE dz
0

_2(k 2
1 z(2E+b)
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Using CAS, it gives f
gives

\/% = 7 sin”" (zv/a ) Using this result above, where a = (% + bz)

1

2,k
\/b +5F

6o (b) =

sin™! (z\/ i + sz
/:f;}; 2F
J——+b2—sm4«»
/:f;}; [““‘ 2F
sm (1) O

Tt

/_+b25

Now we solve for b. Squaring both sides
b2 2

T
62 = —
k 124
5t b
. 1,
Using E = 5mv* then
b2 2
=7
(m + bz)
k
46} | — + 1?| = >
mo?
k482 462192 2 =0
mo?
k463
2(102 _ -2\ _ 0
b (460 — Tt ) = _W
k463
2( 2 2\ _ 0
b (T( —460) = W
2
2 = k465
mo? (nz - 466)
20 k
p="2 (4)

v \\m (712 - 49%)
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05

— > Where 0; is the scattering angle. Therefore the above becomes

i O,
b_z(z‘z) k

But 0 (b) = 7 -

n@s

\/m(n2 (62 - 20, + m2))

5
\/ 216, — 62 ©)

b

sin 9

\/ 216, 92

v(2n6 - 92)

Now we are ready to find o (6;)

db

009= 55 |

From (5)

Therefore
b db

sin O d_Gs

n—04 k TCZ k
v m(2m0,-62) m(2m0,-62)

sin O v (27165 - 93)

n—0g k
v m(2n0,-62) G

sin0; v (2n6, - 62)
_(m-0y)k 72
= : >

mov sin O, 0 (27165 _ 93)

kr? (1t — O)

muv? sin 6, (27165 - 63)2

0 (05) =

ki (- 6,)
mv262 (21 — 6,)* sin 6,
Hard problem. Time taken to solve: 6 hrs.

o (95) =
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482 Problem 2

2. (10 points)
(1) A warship fires a projectile due South at a southern latitude of 50°. The shells are
fired at 37° elevation with a speed of 800 ms—!. Neglecting air resistance, calculate by how
much the shells will miss their target and in what direction.

(2) A batter hits a baseball a distance of 200 ft in a roughly flat trajectory. Should he take
the Coriolis force into account? Neglect air resistance, assume the elevation angle is 15°,
and the location is Yankee Stadium (or Wrigley Field, if you prefer).

SOLUTION:

48.21 part (1)

(€

z into the page (east)

local
/ body
Z  frame

300 projectile (south)

Using
1 3 2 (- . . .
x = ga)gt cos A — wt (zo cos A =1 sm/\) + Xot + X
y= yot—a)tszO sin A +y0 (1)
. 1 2 2.
z = zot — Egt + wt kg cos A + zp
Where {xo,yo, ZO} are the initial speeds in each of the body frame directions and {xo,yo, zo}

are the initial position of the projectile at t = 0. Let vy = 800 m/s?> and 6 = 37°. We are given
that

Yo = —vgcos O

Zg = vpsin O

X =0
The minus sign for j; above was added since the direction is south, which is negative y
direction for the local frame. And we are given that x; = vy = zy = 0. Substituting these in

232



4.8. HW 8 CHAPTER 4. HWS

(1) gives (where A = 50°)
1 3 2 . .
X = ga)gt cos A — wt= (vysin 6 cos A + vy cos Osin A)
y=—(vgcosO)t (2)
1
z = (vysin O)t — Egtz

The drift due to the Coriolis force is found from the x component. The projectile will drift
west (to the right direction of its motion) since it is moving south. We can now calculate
this x drift. We know that = 7.3 X 10~ rad/sec (rotation speed of earth), so we just need
to find time of flight ¢. From

z=13y—-gt
=vysin 0 — gt

T

vpsin® _ 800sin(37( 555 )
- 9.81
Hence total time of flight is twice this which is t; =100 sec. Now we use this time in the x

equation in (2) above

~ 50 sec.

The projectile time up (when z first becomes zero) is t =

x = % (7.3 x1075) (9.81) (100)° cos (50°) - (7.3 x 1075) (100)* (800 sin 37° cos 50° + 800 cos 37° sin 50°)

= -532

So it will drift by about 532 meter to the west (since negative sign). In the above g = 9.81
was used. This does not include all the terms such as the centrifugal acceleration. But 9.81?2
is good approximation for this problem.

4.8.2.2 part (2)

Taking Latitude as 42° (New York). Therefore A = 420 and 6 = 15°. Initial conditions are
Yo =VpcosO
Zg = Vpsin @
%o =0
Where V) is the initial speed the ball was hit with (which we do not know yet), and xy =
Yo = zg = 0. Using

1
X = ga)gt?’ cos A — wt? (ZO cos A — ijpsin /\) + Xt + X
y= yot - a)tszO sin A + Yo (1)

z:zot—igt + wt kg cos A + z;
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Then applying initial conditions the above reduces to
X = %a)gt3 cos A — wt? (Vysin@cos A — Vycos Osin A)
y=(VocosO)t
z=(VysinO)t - %gt‘2

From y (tf) = (Vg cos 0) t; then, since we are told that y (tf) =200 ft,
200(0.3048) = (Vi cos 0) t¢
Where ¢/ is time of flight. But time of flight is also found
z=2y—gt
= Vysin6 — gt

And solving for z = 0, which gives VOSTM. So time of flight is twice this or

2Vysin 0
tp=——
8
Substituting the above into (3) to solve for V|, gives
2Vysin 0

200 (0.3048) = (V, cos 0)

60.96 = %V@ (cos15°) (sin15°)

,  (60.96)(9.81)
0™ 2¢0s15%sin150
=1196.0

Hence
Vo =34583 m/s
Now we can go back and solve for time of flight ¢;. From
200(0.3048) = (Vcos 0) t¢
200 (0.3048)
" 34583 (cos15)
=1.825 sec

te

Using (2) we solve for x, the drift due to Coriolis forces.

1
x = ga)gt?’ cos A — wt? (VysinOcos A — Vjycos Osin A)

(2)

(3)

1
=3 (7.3 x1075) (9.81) (1.825)° cos 42° - (7.3 x 10%) (1.825)* (34.58 sin 15° cos 420 + 34.58 cos 15 sin 42°)

= 4.897 x 1073 meter

So the ball will drift about 5mm. This is too small and the ball player can therefore ignore

Coriolis forces when hitting the ball.
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483 Problem 3

3. (5 points)
A bullet is fired straight up with initial speed vg. Show that the bullet will hit the ground
west of the initial point of upward motion by an amount 4w vy cos /(3 g*), where X is the
latitude and w is the angular velocity of Earth’s rotation. Ignore air resistance.

SOLUTION:

Initial conditions are
=0
ZO =17
jC() =0

And xy = yp = zg = 0. Using
1 3 2 (. A .
x= ga)gt cos A — wt (zo cosA =1 sm/\) + Xot + X
y = ot — wt?igsin A + y (1)
. 1 2 2.
z = zpt — Egt + wtkycos A + z;
The reduce to (using initial conditions) to
L 2
X = zwgt’ cos A — wtvycos A
y=0 (2)
1
= vt — =gt?
Z=0t =58

To find time of flight of bullet (going up and then down again), from z = vy — gt, we solve
for z = 0, which gives t = Z;—O. So time of flight is twice this amount

2’00
tf = — secC
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To find the amount x the bullet moves during this time, we use (2) and solve for x

1
x(tf) = ga)gt}o’r cosA — cut%vo cos A

1 (200)3 (200)2
=-wg|—| cosA-w|—| yycosA
3 g g
803 43
= —w% CosA—w% Ccos A
3 g g
8 3
= (— —4) (a)v—g Cos /\)
3 g
4 3
= ——a)@ cos A
3 2

3
This means when it lands again, the bullet will be —ng—g cos A meters relative to the original

point it was fired from (the origin of the local body frame). Since the sign is negative, it
means it is west.

48.4 Problem 4

4. (10 points)
A bug crawls with constant speed in a circular path of radius b on a phonograph turntable
rotating with constant angular speed w. The bug’s path is concentric with the center of
the turntable. If the bug’s mass is m and the coefficient of static friction for the bug on
the table is u, how fast (relative to the turntable) can the bug crawl before it starts to slip
if it goes (1) in the direction of rotation and (2) opposite to the direction of rotation?

SOLUTION:

48.41 Part(l)

x,y is local frame that
rotates with angular velocity
w. X,Y is inertial frame. 7
is position vector of ant
relative to x,y local frame,
and the ant is moving with
Y velocity 7 relative to its local
v frame

-~

When Ant is moving in direction of rotation:
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7= bcos 6i + bsin 6]
V=T, + & XT 1)
But
— d—>
Orel = Er
= —bOsin 67 + b0 cos 67
And

@ XT = wk X (bcos@?+ bsin@?)
= bw cos 97— bw sin 07
Hence (1) becomes
U= (—b@ sin 6 + b cos 87) + (ba) cos 6] — bw sin 63
= ?(—b@ sin 6 — bw sin 6) +7(b9 cos 0 + bw cos 6)

The above is the velocity of the ant, in the inertial frame, using local body unit vector i].
Now we find the ant acceleration, given by

4=, +2 (mﬁx?}rel) + (d)% x?) + wk X (5’) x?)
But @ = 0 since disk has constant @ then
@ =ty + 2 (0K XTpy) + wk x (& x7) 1)
But
d

Ay = E?}M

= ?(—bé sin 0 — b6? cos 9) +7(b9 cos 0 — b6? sin 9)

Since Bug moves with constant speed, then 6 = 0 and the above becomes
Ay = 7(—1992 cos 9) +7(—b92 sin 9)

Now the Coriolis term 2 (5 X 5,61) is found

2(& xBy) = 2 (wk x (~bO sin 07 + b6 cos 0]

=2 (—a)bé sin 6] — bw0 cos 6?)
Now the @ x (c?) x?’) is found
@ X (5 x?) = wk X (ba)cos 6] — bw sin 07)

— —
= —bw? cos 0i — bw? sin 0
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Hence (1) becomes
7 = Gy + 2 (0k X Tpy) + wk x (& x7)
= 7(—1792 oS 6) +7(—b92 sin 6) +2 (—wb@ sin 0] — b6 cos 6?) — bw? cos 07 — baw? sin 0]
= ?(—béz cos 6 — 2bw0 cos 6 — bw? cos 6) +7(—b92 sin 0 — 2wb0 sin O - bw? sin 6)
Since this is valid for all time, lets take snap shot when 0 = 0, which gives
@ =1i(-b6? - 2bw0 - ba?)
So when 6 = 0, the ant acceleration (as seen in inertial frame) is towards the center of the

disk with the above magnitude. If the ant speed is V then V = b0 and the above can be
re-written in terms of V as

(V2
a= —i(7 +2Vw + ba)z)

The ant will starts to slip, when the force preventing it from sliding radially in the outer

2
direction equals the centrifugal force m (V? +3Vw + ba)z)Hence

V2
pmg =m (7 +2Vw + ba)Z)

2

%
7+2Va)+ba)2—yg:0

V2 + 2Vbw — (ubg + b*w?) = 0
This is quadratic in V, hence

V= —22ba) + %\/4192@2 +4 (—ybg + bza)z)

= b + \[lPw? — ubg + P22

= —bw * [2b%w? — ubg

[ HE

V=-bw + bw Z_ba)_z
_ HE

—b‘”(\/z‘W‘)

When Ant is moving the opposite direction of rotation, then the Coriolis term 2 (a)% X 5rel)
will have the opposite sign from the above. Then means the final answer will be

A
a= —i(7 -2Vw + ba)z)

Since V > 0 then

4842 Part(2)
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Which means

2bw 1
= — 4+ —

2 2
=bw + \/bza)z — ubg + bPw?

= bw * [2b2w? — ubg
V:ba)+ba),/2—lilu—g2

:bw( 2 K8 +1)

1% \/4b2a)2 +4(—pubg + Pw?)

ba?

48.5 Problem 5

5. (10 points)

the center of the Earth) at a point on Earth’s surface is

B Rw? sin X cos A

€
go — Rw?cos?2 X '

Earth.

largest deviation, and how large is it?

(1) Show that the small angular deviation € of a plumb line from the true vertical (toward

where gg is the acceleration due to gravity, A is the latitude, and R is the radius of the

(2) Use a computer to plot € as a function of latitude. At what latitude do we observe the

SOLUTION:

4851 Part(l)

<>
N>

&L
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$=%0-@ XD xR
Using a X (bxc) =b(a-c)—c(a-b) the above becomes
$=5%- (@ (@ R)- (@ &)R)
=% - (@ (@ - R) - 0?R)
Then using
$XGo =990 (sine)n (1)

Where 7 is perpendicular to plane of ¢, g, which is & in this case. Then the LHS of the above
is

g% = [%0- (@ (3 R) - ?R) | xZ,
=50 %50~ (@ (@ R) xF) + (02K x Fo)

— —

But R X go = 0 since they are in same direction, also gy X gy = 0 and the above becomes
§xgo=- (3 R)x g (2)
But
@ -ﬁszcos(g—/\)
Therefore (2) becomes
gXgy= —a)Rcos(g —A)a X o
But & X gy = —~wgpsin (g - A) %, hence the above becomes
— - TC . Tt ~
X8 = a)Rcos(E —/\)a)gosm(E —A)x
Now we go back to (1) and apply the definition, therefore

Tl . (T :
wR cos (E - A) wgp sin (E - /\)3% =g9o (sine) &

wR cos (g - A) wgp sin (g - /\) = g9o (sin¢)
wR cos (% - A) wgo sin (g - /\)
880
_ Rw? cos (g - /\) sin (g - /\)
) g

But sin (g - A) = cos A and cos (g - /\) = sin A hence the above becomes

sine =

e = Rw?sin A cos A )
8
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To find g = [g], since § =y - (c_’u (c_J . I_é) - wzﬁ), then taking dot product gives
¢l =2
= [0~ (@(@ R) ~w™R)][%0 - (@ (@ R) - ?R)]
ignore. All w* powers. too small
=5-28- (& (@ R) - w?R) + (& (@ - R) - 0?R) - (& (@ - R) - »?R)
(@ (@ - R) - 0?R)

: ((a) cos Aff + wsin A2) (a)R cos (g - A)) - a)ZR.%)
(@ cos A + wsin A2) (@R sin A) - w?Rg)
= 85— (-2802) - (w?Rsin A cos A + (w?Rsin® A - w?R) 2)
= 85— (~280 (@?R sin® A - w2R))
= g3 + 2gpw?R sin® A — 2gow?R
= g% + 2g0@?R (1 - cos? A) - 2ggw?R
= g% + 2gpw?R — 2gpw?*R cos? A - 2gow?R
= g5 — 2gw?R cos? A
Therefore (3) becomes
Rw?sin A cos A
9% — 2g0w?R cos? A

Since ¢ is small, then sin ¢ = ¢, therefore

sine =

Raw?sin A cos A

&=

g% — 2gpw?R cos? A
The solutions has an extra g, in the denominator. I am not sure why. I will what is given for
part(2) to plot it.

4.8.5.2 Part(2)
This plot shows the maximum ¢ is at A = 45°. Here is the code used and the plot generated

RO = 6371%1073; (*earth radius*)

omega = 7.27%107(-5); (*earth rotationx)

g0 = 9.81;

e[lam_] := (RO omega”™2 Sin[lam] Cos[lam])/(g0 - RO omega™2 Cos[lam]~2)*180/Pi;
newTicks[min , max ] := Table[{i, Round[i*180/Pil]}, {i, 0, Pi/2, .1}];

Plot[e[lam], {lam, O, Pi/2}, Frame -> True,

FrameLabel -> {{"\[CurlyEpsilon] degree", None}, {"\[Lambda] (degree)",
"Part(2) solution"}}, GridLines -> Automatic,

FrameTicks -> {{Automatic, Automatic}, {newTicks, Automaticl}}]
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Part(2) solution
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49 HWI

491 Problem1

1. (5 points)
A rigid body of arbitrary shape rotates freely under zero torque. Use Euler’s equations to
show that the rotational kinetic energy and the magnitude of the angular momentum are

constant.
SOLUTION:
Euler solid body rotation equations are
(I - ) wows — L1y = 0 (1)
(I3 - 1) wswy — i, =0 (2)
(I — ) wywy — 33 =0 (3)

Where [, I,,I3 are the body moments of inertia around the principal axes. Multiplying both
sides of (1) by I;w; and both sides of (2) by L,w, and both sides of (3) by Izw; gives

w1w2w31112 - w1w2w31113 - I%wld)l =0 (1A)
0)10)20)312[3 - 0)10)20)31112 - I%a)zd)z =0 (2A)
(1)1(1)20)31113 - 0)10)20)31213 — I§O)3OI)3 =0 (3A)

Adding (1A,2A,3A) gives (lots of terms cancel, that has w;w,w; in them)

I%a)la')l + I%a)zd)z + I§w3d)3 =0 (4-)
But (4) is the same thing as
1d
Zo12=0
2dt

where L is the angular momentum vector
L = {hwy, Lhwy, zws}
Hence
I?=L-L= [I%a)%, Bw?, I%a)%}
Therefore, and since the I’s are constant, we find

1d 1 _ _ .
EELZ =5 [2Bw;dr, 2Bwairy, 2Bwsis)
= {I%a)ld)]llngd)ZI I§w3w3} (5)

Comparing (5) and (4), we see they are the same. This means that %%Lz =0orL%isa
constant. Which implies L or the angular momentum is a constant vector.

To show that rotational kinetic energy is constant, we need to show that % (w - L) (which is
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the kinetic energy) is constant, where w = {wy, w,, w3} is the angular velocity vector. But
1, )

But we found that L = 0 since L is constant. Hence the above becomes

1d 1 .
If we can show that @ -L = 0 then we are done. To do this, we go back to Euler equations
(1,2,3) and now instead of multiplying by [;w; as before, we now multiply by just w; each
equation. This gives

0)10)20)312 - 0)10)20)313 - Ila)la‘)l =0 (1C)
w1w2w3l3 - w1w2w311 - Iza}zd)z =0 (QC)
(1)1(1)26()311 - a)la)za)312 - 130)362)3 =0 (3C)

Adding gives (lots of terms cancel, that has w;w,w; in them)
Ila)ld)] + Iza)zd)z + I3CL)3C(')3 =0 (7)

But the above is the same as (6), with a factor of % This means @ -L =0 or %(a) -L)=0 or

that the rotational kinetic energy is constant. Which is what we are asked to show.

49.2 Problem 2

2. (10 points)
A uniform block of mass m and dimensions a by 2a by 3a spins about a long diagonal with
angular velocity .

1) Using a coordinate system with the origin at the center of the blOCk7 calculate the
g g
inertia tensor.

(2) Find the kinetic energy.
(3) Find the angle between the angular velocity & and the angular momentum L.

(4) Find the magnitude of the torque that must be exerted on the block if & is constant.

SOLUTION:
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— 3
X2 a:{%7a'7§a}
A
3a "LIQ
:133_ (, > L]
2a g A » X1

4921 Part(l)

We first find I (called | for now) around the origin of the inertial frame X;, X,, X3 then use
parallel axes theorem to find I at the center of the cube at a = {%a, a, ga}. The volume of the
cube is a (2a) (3a) = 6a°.

a 20 a
Ju = Pf Xmf dXzf dX; (X% +X§)
0 0 0
[ ~a 20 3a a 20 3a
=p f X, f X, X2 f dX3]+p f X, f X, dX3X§]
Yo 0 0 0 0 0
[ 20 a
= p|a(3a) f dX2X§]+p a(2a) f dX3X§]
| 0 0
[ XS 2a X3 3a
=p a(3a)(?2) a(2a)(?3)
| 0 0
00 3
=p _3a2%] +p |2a2%l

2743
2]

tp

[ . 843
= p|3a2—
P~ a 3

3
= p8a® + p&a5
3
= 26a°p
= %az (6a3p)
13

= —Ma?
3
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And
a 2a a
J12 :—Pf dX1f dXzf dX3 (X1X5)
0 0 0

a 20 3a
=-p f deXl f deXz dX3
0 0 0
Xz a X2 2a
]
0 0

o[3)(5)

-3a°p

3
—gaz (6a3 p)
1

= ——Mag?
5 a

a 2a a
_'Df Xmf dXZf dX3 (X1X3)
0 0 0
a 24 a
—pf deX]f Xzf X3dX3
0 0 0

3a

x2\"  (x2
o5 =(3)
0 0

And

J13

Il
|
o]
N
T
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And ]21

And

= J1» and

a 24 a
J2 = Pf dXq f dX; f dX; (X2 + X3)
0 0 0

[ ~a 24q 3a
= X2dX ax dx ]+
PJ; 1 1f0 2j[; 3
o
=p (—1) (24) (3a)
0

=p a— (2a) (3a)] +p

X3 3a
+ pla(2a) (—3) ]
3 0

3
a(2a) (3;) l
27a

0[]

3
3

611

= p2a5 +18a°p
=20a°p

_2 2 (60%)

20 ,

a 20 a
Joz =-p f dXq f dXs f dX3 (X, X3)
0 0 0

20
= —pf le deXZf X3dX3
0 0 0
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And J3; = J13 and 3, = J»3 and

24
Jis = p f ix, f ixX, f aXs (X2 + X32)
20 3a a 20 3a
wf&ﬂJd&fﬂ% fmfxwdjﬂ
0 0 0
X3 2a
a(—) 3a]
3 0
a 8a” 3a
3

3 a
=p (X?) (2a)(Ba)|[+p
:a3 0
=p 3(2a)(3a)]+p

= p2a° + p8a°
=10a°p
10
_ 2 (g3
= ga (6{1 p)
10
= M—a?
6
Therefore
B 1 3
5 o6 8
_ 2 1 2|
=M= =
3 2?2 W
4 6 6

We now find I around the center of the cube where the position vector of the center is

1 3
a= {Ea, a, Ea}. Therefore

In =] —M(EQ - a%)
= Maz%3 -M (a% + a%)

2

13 3

= Ma®>—= - M|a® + (=
a 3 [a +(2LZ)]

_13M2
BT R

And
Iip = J1 — M (-aqa;)

ek ()

=0
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And
Lz = J13 - M (-aya3)
3 11\3
i) 3
=0
And I; = I;; And
Iy = Jp — M (@ - a3)

= M2 M (& + )

]

5
= ZMa?
G a
And
Ips = Jo3 — M (-ayas)

9 3
= —Mazg —M (— (ll) Eﬂ)
=0
And 131 = 131 and 132 = 123 and
I3 = J33 —M(EQ - a%)

= MaZ% -M (a% -+ a%)

2
1 1
= Mazzo -M [(Ea) + az]

5

= —Ma?
12
Therefore the moment of inertia tensor around the center of mass is
13
o 0 0
I=Ma|0 g 0
00 2

12
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4.9.2.2 Part(2)

.. L1
The kinetic energy is @ - L where w = {wy, wp, w3} and

L=Iw
% 0 O0)(w
=Ma?|0 2 0||w;
0 0 % w3
B Ma2w,
= ﬁMazcuz
gMaza)Lq,

Hence

1 1/(13 10 5
T = EC() -L = E (—Maza)lz + EMﬂzwg + EMQZCU%)

1
= M (1302 +10w3 + 5w2)

Since body is rotating around the long diagonal. The long diagonal has length \/ a2 + (2a)* + (3a)* =
\/ﬂa, therefore

@ @
w=—1{a,2a,3a} = —1{1,2,3}
V14a V14
and the above becomes
1 13 4 9
T = —Ma?w?|= +10|— | +5(=
24T (14 " (14) " (14))
7
= ﬁMﬁlza}Z
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4923 Part(3)

Using
w L =|w||L|cosB
w-L
cosf = ——
|l |L|
4, 5 o
_ ﬁMﬂ @
2 2 2 [(1Byr o 2 (10 2 2 5 a2 2
Wi + wy + wiy[| pMatwr | +| ZMa‘w, ) + | pMatws
4, 5 o
3 ﬁMﬂ w
2 2 2 2 2 2
N 20 3o B2 10 22_“)) (i 23_“))
\/(m) () +(35) \/(le” i) +lEmed) +(GMe
gMaza)z
o2 37 ar2,4,02
w 1008Ma(‘)
14
_ 24
7
1008
= 0.92951
Hence
9 = 21.64°
4.9.2.4 Part(4)
Since
d
Lexternal = E( )inertial
d

:E(L)bodyJ“wXL
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d . . .
But " (L), dy = 0 since L = Iw and I is constant and w is constant. Therefore

T=wXL
=wXlw

w1 I, 0 0)fan
wy | X0 L, Of|w,
w3 0 0 L)\ws
w1 L,

wy | X Lw,

ws) \lzws

i Ji k

Wy Wy W3

Ly hw, Izws

i ([zwyw3 — hwows) — j (zwswy — [Jjwws) + k (Lw,wy — [Lwiwy)
wyws (I3 = I)

wzwi (I - 1I3)

wpwi (I = Ih)

The above are Euler equations for constant w, and could have been written down directly
from Euler equations by setting all the @; = 0 also.

Now, since w =

torque becomes

\/%{1,2,3} and I; = gMaz,Iz = gMaz,k = 15—2Ma2, Therefore the above
5 10
. [elz-%)
Y EY )
T= 14Ma 3(12 12)
10 13
2(5-3)
_3
w2 2
= —Ma?
11 a 21
2
_5
28
= w?Ma?| :
7
1
" 28
-0.1786
= w?Ma?| 0.1429
-0.0357

Units check: %ML2 = [N][L] units of torque. OK. The above is the external torque exerted
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on the block.

49.3 Problem 3

3. (10 points)
Consider a simple top consisting of a heavy circular disc of mass m and radius ¢ mounted
at the center of a thin rod of mass m/2 and length a. The top is set spinning at a rate S
with the axis at an angle 45° with the vertical.

(1) Show that there are two possible values of the precession rate (;5 such that the top
precesses steadily at a constant value of 6 = 45°.

(2) Calculate the numerical values for ¢ if S = 900rpm and a = 10 cm.

(3) If a top is set spinning sufficiently fast and is started in a vertical position, the axis
remains steady in the upright position. This is called a “sleeping top.” How fast must the
top spin to sleep in the vertical position?

SOLUTION:

4931 Part(l)

Starting with the Euler equations for Gyroscope precession, equations 9.71. in textbook,
page 371, Analytical mechanics, 6th edition, by Fowles and Cassiday

Mglsin 6 = 1,6 + [,S¢ sin 6 — I,¢* cos Osin 6

0= Iy% (cp sin 9) —1,SO + ,O¢ cos O 1)
0=15
Where the spin of the disk S around its own z body axis is
S=1+¢dcosO

Instead of drawing this again, which would take sometime, I am showing the diagram from
the book above, page 371 for illustration
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\ x’ (line of nodes)
(a) (b)

Figure 9.7.1 The simple gyroscope.

In (1), the length [ is the distance from center of mass of the combined disc and rod, to the
origin of the inertial frame. This will be [ = g M is the total mass of both the disc and the

rod, which will be M = gm

We are told that O (t) is constant. Hence 6 = 0 and first equation in (1) becomes
Mglsin 0 = L,S¢ sin 0 - I,¢? cos O sin O
Mgl = L,S¢ — I,¢* cos 0
This is quadratic in ¢. Solving gives

I,p? cos 6 — I,S¢ + Mgl = 0

. —bx Vb2 -4ac
¢ = 2a
LS+ \/12252 — 41, cos OMgl

= 2
2 cos GIy 2)

The only thing left is to calculate I, and I, for the disc and the rod about the mass center,
then use parallel axes theorem to move this to the pivot, which is the origin of the inertial
frame.

Due to symmetry, the center of mass for both disk and rod is located distance % from pivot.
Hence | = g For the disc, its moment of inertial around the spin axes at its center of mass is

a2

(L) g = M=

2
And along the y axis [, = m%. Since the distance of the center of mass from the pivot is g,
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we need to adjust I, by this distance using parallel axes. Hence

a2 a\?
(Iy)disk -y o (E)

1
= —a’m
2

For the rod, it only has moment of inertial around y at the end of the rod. From tables
m ﬂz
(1) = (3)(%) Therefore

a
IZ = TI/I?
1 m a?
Iy - (Iy)dzsk (Iy)rod - Eazm * E?
= %azm
3

From (2), and using 6 = 45° we find, using M = m + % = gm and [ = g

LS+ \/12252 — 41, cos OMgl

(]B - 2 cos Qly (3)

4932 Part(2)

For 0 = 45° and S = 900 rpm, which is 94.248 rad/sec. a = 0.1 meter and [ = g = 0.05 meter
(3) becomes

(%) 4248 = \/ (m;)z (94.248)" ~ 4 3a2m) cos (45 (15)) (3m) 9.8) 009

2.cos (45 (180)) (gazm)
( (0.1) ) (94.248) + m\/( 1) ) (94.248)% — 4 ( (0.1) ) cos (45 (180)) (g) (9.8) (0.05)

B 2cos (45 (1)) (5 (0.1 m)

3 (‘0 1) )(94 248) 3\/ ((01’ ) (94.248) —4( (0.1) )COb (45(%)) (g)(9.8) (0.05)
"~ 4cos (45(L)) (0.1)? 1 cos (45 () (0.1)?
=49.983 + 48.398 rad/sec

Or

¢ =

¢ =939.47 or 15.13 rpm
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4.9.3.3 Part(3)

From (2) above, repeated below

LS+ \/1352 — 41, cos OMgl
= 2cos 01,

Since ¢ must be real, then I25? — 4], cos OMgl must be either positive or zero.
% — 41, cos BMgl > 0

2> 41, cos OMgl

2T

For 6 = 0 the above becomes
@ Mgl
SR?

The above is the condition on spin speed S for keeping 6 = 0. Hence

4(§a2m) (gm) (9.8)1

o]

[

2>

156.8
> o)
156.8

(0.1)
> 784

(0.05)

Therefore

S> V784

> 28 rad/sec

S >267.31 RPM

494 Problem 4

4. (10 points)
Determine the principal moments of inertia and the corresponding principle axes about
the center of mass of a homogeneous circular cone of height h and radius R. (You might
find it easier to calculate the moments in a reference frame with the origin at the apex
first, and then transform to the center of mass system.)

SOLUTION:
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4.9.4.1 Solution using Cylindrical coordinates

Will show the solution using Cylindrical coordinates. Then later will also show the solution
using Cartesian coordinates. Using Cylindrical coordinates

r,0, z are the cylinderical coordinates

The limits of volume integration will be from z=0---h and 6 =0--- 2. For r, it depends on

z. Since % = thenr= Ez, therefore the limit for r = 0--- %z. This is when the tip of the
cone at the origin as follows

R r _ z
R h
T h
z
g =P =Y
ﬁ/
T

The density is p = :R—A;Ih The center of mass is Z distance away from the base or Zh from
the tip. The moment of inertia is found at the origin (which is the tip of the cone also),
then moved to the center of mass using parallel axes theorem. We know from Cartesian

coordinates that the inertia matrix is found using

v +2z2  —xy -z
J=p f f f —xy ¥ +z2  —yz |dzdydx
-xz  -yz x4y

Therefore, in cylindrical coordinates this becomes, after using the mapping x =rcos 0,y =
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rsin@,z =z

R 2sin?@+22 —r2cos@sin® —rcosOz

27
J = pf f fh —rcosOz  1?cos?O+z> —rsin Oz |rdrdOdz

—rcos 0z —rsin 0z r?

Due to symmetry, the off diagonal elements will be zero. So we only have to perform the
following integration

kR (r2sin? 6 + 22 0 0
h 27T EZ
] = Pf f f 0 r2cos? 0 +2z%2 0 |rdrdOdz
0vJo Yo 0 0 2

For J;; we find

h 27 %z
Jip = pf f f (rz sin 6 + zz) rdrdOdz
0Jo Jo
I 27 21 %
= pf f (r sin? 9 rdrd@dz+pf f f 22rdrd0dz
0Jo Jo

R

h 27T E 27T zZ
fdzf d@f (r sm@dr +pf 2dzf d@f rdr
o Yo 0 0
h 27 27T 7
=pf dzf sin Qde[ ] +pf Zdzf d@[—]
o Yo 2
2 h
pR?
fo 4dzf0 sin” 0dO + Eﬁf 4dzf0 do

oo 1 T pRZ_ h
a |V _ L [ 4
j;z dz[2 1 sm(ZG)]0 + 77 znf dz

Il
i)

Using p = —- the above becomes

th
M1 SM I8
— R4+ S R2p
R 20 R2h s
3M . 3M
=2V R 2
20 5

For J,, it will be the same as the above, since the only difference is cos? 6 instead of sin® 0

Jiu =
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in the integrand. Therefore
3M 3M
= —R?>+ —n?
J22 = 20 5

For the final entry (the easy one) we have

h 27 %z
Jss=p f f f r’rdrdOdz
0o Yo
R

27T nZ
=p f f [ ] 464z
270
§h4 f Adz f 40
_pR f4
- 277 dz
T4l
pR4 A7
T 4nt [_]
R*
=P —27th®

20 K

Using p = —7. the above becomes

3M 1 R4
Jss = T Ran 20 1A 2"

— 6MR2
20

h5

Therefore
%Rz + %hz 0
- SMp2  3Myo
] = 0 2OR += h

3 2
0 0 1—OMR

Using I = I7" + M (a25;; -
mass is a = {0, 0, Zh}, hence

b = (Do M )_M[(gh)z ; (Oz>]

2

3M 3M 3

= _—R2+—h2-M|=h
20 5 4
3 3

- RZ h2
20M 80M

And
I = Iy

270

aiaj), we now find I. The vector from the origin to the center of



49. HW 9 CHAPTER 4. HWS

And
2 2
3 3 3
Iss = —MR%2 - M|[=h| - [=h
o =g (3] - (31
3
= —MR?
10
Therefore the final inertial matrix around the center of the mass of the cone is
352, 342
20R +80h \ 203 i 0
I1=M 0 %R + %I’l 30
3p2
0 0 10R

4.9.4.2 Solution using Cartesian coordinates

Will find mass moment of inertia tensor at center of base of cone, then use parallel axes to
move it to the center of mass of cone.

R _ _h A

r ~ h—z I

|

|

T4 | b
5 |
|
— Y oy
x
We basically want to perform this integral
s=h Yma)  max) (422 —xy -xz
J=p f f f —xy  x*>+z2  —yz |dzdydx

220 y=yGmin)  x=x(ymin) -xz -yz X’ +y?

The limit on z is easy. It is from z = 0 to z = h. Now at specific z, we need to know the limit
on y. The radius r at some z distance from the origin is r = R(]:Z) as shown above, which is
by proportions. Therefore the limit of integration for y is from y = —r to +7. Now we need
to find the limit on x. At some specific y distance from origin, we see from the following

diagram
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>y
We see from the above that x> = 72 — y? but r = @, hence the limit on x is from
2 2
- (#) -2 to + (@) — y%. Now that we found all the limits, the integration is
R(h—z) RO-2\_
h 7 (%52) v+z2  —xy  -xz
J=p f f f —xy x*+z>  —yz |dzdydx
0 K= R -xz  —yz X+
R

Where p = %.Using computer algebra software to do the integration (too messy by hand),
the above gives

Lam2 . 3arp2
10Mh + 20MR 1 i 0 , i 0
]: 0 EMh + Z)MR ; 0
0 0 ~ MR?

10

Now we use parallel axis to find I at center of mass. The center of mass is at @ = {O, 0, ih},

hence
Ijy =i — M (@ - a3)
2
1 3 1
— M2+ ~MR2 - M|~h
10"+ oM M(4 )
3 3
. RZ -~ h2
20 MR+ goM
And
Lip = J1p = M (-aqa;)
—0-M(0)
=0

272



49. HW 9 CHAPTER 4. HWS

And
Lz = J13 - M (-aya3)

3 11\3
g3
=0

And I; = I;; And
Iy = Jp — M (@ - aj)

2
1 3 1
= —Mh? + —MR? —M(—h)

10 20 4
3 3
= 2 MR + M2
20+ 50
And

Iz = Jo3 — M (-ayas)
— 0-M(0)
=0

And 131 = 131 and 132 = 123 and
Ig = Ja3 — M (% - a3)

:%MW—MH?Y‘G@j

_ 3 MR2
10
Therefore the moment of inertia tensor around the center of mass
“R2+ 22 0 0
_ 3p2, 342
I=M 0 zoR + 8Oh 0

3 52
0 0 ER

Which is the same as using Cylindrical coordinates (as would be expected).
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495 Problem 5

5. (15 points)
A homogeneous slab of thickness a is placed on top of a fixed cylinder of radius R whose
axis is horizontal (as in the Figure below).

(1) Determine the Lagrangian of the system.
(2) Derive the equations of motion and determine the frequency of small oscillations.

(3) Show that the condition for stable equilibrium of the slab, assuming no slipping, is
R>a/2.

(4) Use a computer to plot the potential energy U as a function of the angular displacement
0 for a slab of mass M = 1kg and

(a) R=20cm and a = 5cm, and
(b) R=10cm and a = 30 cm.

(5) Show that the potential energy U(f) has a minimum at § = 0 for R > a/2, but not for
R <a/2.

SOLUTION:
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4951 Part (1)

current position of center of mass
RO sin 6 /V(Ly)

position of mass
of mass at
equilibrium

origin

The system has three degrees of freedom (x, Y, 6). But they are not independent. Because if
we know 0 (t), we can find x (t) and y () (for small angle approximation) as shown below in
equations (1) and (2).

The cylinder itself does not move or rotate. Only the slab has rotational and translational
motion. When the slab center of mass at C it is in equilibrium. When the slab center of mass
at point C’ the location of the center of mass is (x,y , where from the diagram above we see
that (for small angle 0)

x:(R+g)sin8—R9(:osQ (1)

y=(R+35)cos0+ROsinG )

The distance from C’ to O which is the zero reference for potential energy is therefore
(assuming mass of slab is M)

u = Mgy
= Mg (RQ sin 0 + (g + R) oS 6)
Let the moment of inertial of the slab around the axis of rotation be I therefore
1. . 1
_ 2 2, o0
T—EIQ +§M(x +y) (3)

Now, we write > + /> above in terms of 0 using (1) and (2). (Initially I did not know if we
should do this or not. So I left the original solution as an appendix in case that was how
we are supposed to do it). Using this method below, we find only one equation of motion,
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not three as in the solution in the appendix.
i = (R + g) 0 cosO - (R90089 +R6981n6)
= —(R + g) §'sin 6 + (ROsin 0 + RO\ cos 6)
Hence (using CAS for simplification) we find
¥ = }192 (a cos O + 2RO sin 6)°
Similarly for ? we find
% = 3192 (asin 6 — 2RO cos O)°
Hence (3) becomes
T= %192 + %Méz ((acos 0+ 2ROsin 0)” + (asin O - 2RO cos 6)*)

And the Lagrangian is
L=T-U

1 0 1 0 ) 2 . 2 . a
= S16% + =M0 ((acos 6 + 2RO sin 6)* + (asin 6 — 2RO cos 6) )—Mg(RGsm6+(§+R)COSG)

4952 Part(2)

gL _ 1M (ga sin 6 + 2RO (—g cos 6 + RQZ))
20 2
JL 1 )
_ 2 202
5 = 7 (41 + @M+ 4MR*6) 0
d&L_ 2 52 1 2 202\ A
E&—Q_zMR 00 +Z(4I+aM+4MR6)9
Hence
ddL JL
dtdo J0

16 + }LM (a2 + 4R26%) 0 - %agM sin @ + MRO (g cos 0 + R0?) = 0
For small angles, we use sin0 = 6 and cos 0 ~ 1, 62 = 0 and 6% = 0. The above becomes
16 + }LMaZQ - %agMG + MROg =0
0 (I + }LMaz) +0 (MRg - %agM) =0
Mg (R - %a)

0 + -
(I + ZQZM)

0=0
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The above is now in the form 6 + w30 = 0, therefore the natural frequency is
1
Mg (R - Eﬂ)

12
(I+leM)

Wy =

4.9.5.3 Part(3)

1
Mg(R—zﬂ)
(I + %aZM)

motion), otherwise the solution will contain pure exponential term and it will blow up. Hence

> 0 in order to obtain an oscillator (simple harmonic

For stable equilibrium, we need

we need

1
Mg|R—-=a|>0
R ! >0
2a
1
R > —-a
2

4.9.5.4 Part(4)

Here is a plot of Mg (R@ sin @ + (g + R) cos 6), for small angle, using M = 1kg. For parts (a)
and (b)

potential energy as function of the angle, part(a) potential energy as function of the angle, part(b)
2.261
24501
2.25¢
) )
3 2.24 3 2.445¢
= =3
oupiol & o 23 S
=1 =1
24401
2.22f
2.21
2.435L,

6 (degree) O (degree)

We see from the above, that in part(b), where R < g, the potential energy at 6 = 0 is not
minimum. This implies 6 = 0 is not a stable equilibrium. While in part(a) it is stable.

4.9.5.5 Part(5)
U(6) = Mg (R@ sin 6 + (g + R) cos 9)

Hence to find where the minimum is
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1
U’ (0) = gROcos O — 781 sin 6
Setting this to zero and for small angle we obtain

1
0=gRO - Ega@

1
0= Qg(R—Ea)

This implies 6 = 0 is where the minimum potential energy is. We know this is stable
equilibrium. Therefore we expect U” (0 = 0) to be positive for a local minimum (from
calculus). We now check the condition for this.

u” (o) = —%g((a —2R) cos O + 2RO sin O)
At 6 = 0 we obtain
u”e=0)= —%g(u —2R)
For the above to be positive, then

a-2R <0
2R > a

R>a
2

The above is the condition for having stable equilibrium at 6 = 0. If R < %, then at 6 = 0 the
slab will not be stable, which is not we have shown in part(3).
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4.9.5.6 Appendix. Second Solution of problem 5
4.9.5.6.1 Part(l) In this solution, we find three equations of motion.
1 ., 1
— 2702 2 L 2
T = 519 +§M(x +y)
Hence the Lagrangian is
L=T-U

1. 1 a
— 2 .2 2 :
= S16% + EM(x +1 )—z\/Ig(R@s1ne+(E +R)cos9)

49562 Part(2) Foro

JdL ) a .
30 = —Mg(R(sm6+ O cosH) - (5 +R)sm6)
JdL :
>0 =10
ia—L. =10
dt 90
Hence
dJdL JL
dtdd 90

19+Mg(R(sin9+ 6 cos 6) — (g +R)sin6) =0
For small angles, we use sin 0 = 6 and cos 0 = 1, and the above becomes
Ié+Mg(2R8— (g +R) 9) =0

N 1
I@+Mg(R—§a)6=0

M (R - 111)
6 + 8—28 =0
I
The above is now in the form 6 + w36 = 0, therefore the natural frequency is
Mg (R - %a)
Wy = f
For x, we have
JL
= =
JL
i
dJL
dt dx
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Hence
dJdL JL _
dt dx  Ix
Mx=0
For y we also obtain
Mijj=0

The rest follows as first solution above and will not be repeated

4.9.6 HW 9 key solution
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Problem 2
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W % %

1,° ¢ J f ( (x;+x3") dx, dx, dxy
-4
i % -4
¢
) b2 £ x
< g o f dxy O\XJ (X;f)(3)
~bfy -,
by " S
1 )
= R & f [xzx3+5x3]’9d«x;
~5 *
/2
sga [ (ex e 2 () e
“Sh
S
I 3 2 [/ end
= SG. [ 3 Xy ¥ I N2 X;] -bh.

(k2

(N £ 2 [@+GB))= 2 ma
£, 2] &+ 3ayr]: g mat

1,2 B lar ay)e § -

282



49. HW 9 CHAPTER 4. HWS

3 o o
T " ey
o I * ma % :
e iz
(] o f_
12

(2) (‘:; WA , e A porint 6“"5 e d-'ﬂaonhl

A ! ()?'1'2;;_*3;3)

n e
*L'-

- W i
W= = A
g 3

r

/(_ i - 2
= 2 w L o
| L[ 1B ot 10 4ot s 3&5
o Lia TR 12 14 PR

283



49. HW 9 CHAPTER 4. HWS

S
AL I 1%+ 2204315
“69‘5 " =
=Y NP Jl"cz"-#’&" \/13‘4-20‘“5"
= o0.924¢
= &= 216°
{®

Z.= f‘(.:)' -(I‘L‘TJ.)QL bs)3

L 8
= 0 - ™% (o.s) @ 2.3
2 T
= - 5 ma st
28
T, = fz‘:"a." (Is"Iu)‘JJ‘—);

T T
: o - M4 (s-) 2 3
(TR (&4

] . X
- Mo w

v

t3 - 13 ‘;)3 e (I. _iL) ‘—J. Ql
= o - M (a-ig ©F 2
(% §
- [} T 2
- ’;’8 mMma &

284



49. HW 9 CHAPTER 4. HWS

(Pm‘a\-(tm 4

>3
x
(4))
need {3 and £'={1 :
e Lt (AL  obeut the Summedy AX3)
'ﬁs Rl 9 4
'I« = 1 + 7 1 = (T) 9} (about one
] '#M- 'ro-l Vod 2 3 Ehcl)
'I.‘ = ‘l‘m"‘ &\qlo..a&\ the
ot centy of mats,
l.'\ the Put\‘ .‘
the dose
N a\?*
=) ‘hse - & Me T m(;)
= ; ma®

285



49. HW 9 CHAPTER 4. HWS

fom sy &’f' I

I' SO'nl e

gaf 9=(An.;\.=9°’ (5 hey e Joluhony

(5‘ 43&',.‘&. [Ii/ LpM%h T, m&°]

2 woso,

N d>= Ty (|+/ i #M%v{. me,‘)

271, wi® G Sl
/-h‘:\% 43=15°‘33
Meme S  (man o} tep)
(2) S = Wy = Qoo rem = %00 - :—:—: = 94.2 8!

8, = 48

& = %Maz = 3

5. w4

Mh (meim)ia . 3

js ) imal Zo

A s YV /3 3 v
o e )® e it CEEE L]

431.3 cpm (1% 0.9683)

=) :p = 1S.t rpen q;xaa = 929.¢ ey

slow

286



49. HW 9 CHAPTER 4. HWS

(3) a Qlap,,% -\'o() hay ea= onshk, = O°

Since @ musy be real,

1:3100;. H Qﬂ&ki' (“N90=0)
A e N LT ¢
= O, z 1_3 H%L\ T, = 2 112

e

A ne "me Mast §Pin Lt MOIe Wan, 2674 em :

287



49. HW 9 CHAPTER 4. HWS

(l)noblem Lf xs ﬂ\ x37
R
H 1
it — ——x
-~
-
Y&~
/ | o
X

%’M Sy“mdv-; = ’_f. =T, = I3

(P e abeve heice o?, axey, ’;cdj e g“ “#J. y b0

f"; Oue e ?,Mc.‘n.\ MOvwr ek i‘.

Ve slutat e T Km the  Syskem X, XX Cenvas ) amdk hen
maba a ?wml\d-m(u ’N&-.)Qumuh‘m 4o x: ";‘X;‘

I TR Y
T T2

2q ) Ay

= 3 "

K f“’f‘**f (+*+22%) rae
o d °

1.: 1, 5 5 gkzx;fx,"+x;‘ Yo

288



49. HW 9 CHAPTER 4. HWS

\0

h
= _._F\*‘f qu
‘“'Sglerﬁ R

(]

h

[ 4 B a%e 4 8¢
=g 20 S n "

= we [2L° R‘fk.‘.slﬂll_"&]

= &M
neS e Sa% Ondh \/:é‘Rl\_‘ n W8T o

> £=1,= 2n (Re4n)

(=]

3 g(x."+xf\d\l= 3 S  cdr do d2

R
:%

h
:2“3_{ d*f r3dr
o o

P ! qE*
=2—rrg_([;,‘f]° da
o

alo 13

[} R
2ng ( Lon 2t de
[~

“ h
:21rg lz%%islb

sl %

[1]

3 MR
(Y~}

289



49. HW 9

CHAPTER 4. HWS

fo hanslerm Ao %) Xg Xy | e need the posrhon of the Coner

of mas

>
because of 4he Symmetry ) the Contes of a3y s on Me X3- Qs

Lev  (0,0,2:) be te caues of mars , With
A
oo
fav
in [ g%
S ,(::d\{: §d¢ Sa d%j - Ar
[ o 4
W R

: R [£a4] =&wrin
{ov=v= § &% o g . TR
© o iveh
=‘% h
N cews of mans s e+ (0, 6,2 W)

290



49. HW 9 CHAPTER 4. HWS

now  jave ec.m\\c.\v an'y “heorem

\- i - 2 F—— ‘ .
f;\') : J-,-J H[d S,;‘) Q‘Qo]

- L)-1,- ‘%Hk‘ = 3 (R W) - [% Mht

20

. 3 1 2 _ 9
- ZOH« +(2_0 E)Hh

2

= 3 1, 1 2
= SRRz )

Y ﬂ - PO
{1—fz-ﬁhk‘z’an(ﬂ*(‘_h)

! 3 2 q a !
= - =2 M + 2 = 1 ( males {ens
= E— H R
io

=)

291



49. HW 9 CHAPTER 4. HWS

Problemm §

e Q\%‘ te $hows +the slab rotared &rw&v\ e a.-%lg &
g»m. ity egoilhavm eo‘\:k'oa) al eguilbaum , Yhe
Coatqch 90;1\5 i3 Q arah dhe onR of mags 1 C. )
ol obakoa, the (ontadk poiat & P and the Rt

02 magy 1§ C_’

(\) go: e Lo-tfﬂ.ﬁ&n‘ we neek the } aad 4 (Joh'h'b-‘

of +the cents of mass
Ac' = A&
(Swmat &)

—
-r;a O‘;"-AC' H

b ]
the oerdrates of € afe

. X=(Rt2)sne - RE os&

Y: (R+ i;:_) i@ + RO Sin &

292



49. HW 9 CHAPTER 4. HWS

So 5(=[(R*?-_)w.se--ﬂccss-rﬂe&:n9]é

(% wie+Re S:no)é

I- (R« ?_\s:na + RS ¢t RO wss] e

=z~ 2 sne R&w;o)é
z

)'(11'.:‘)'L = (%—: *F\l&‘) él

= (rewe R.nus-' ’(3% H(*tﬁst)*z‘tiél

Poh..kn\ eangy Q = M%k&
= Mg [(Re2) wo +Rosns]

So “4he Lo%-mT‘a.. ity

o [ (‘% k') ez ] - H%[(Gh 3 ) e +R® §inb ]

=l
L 2

293



CHAPTER 4. HWS

49. HW 9

oL _ 4 UL _p

(3 N moko a oL
€3] egueiion of A AN

oL S* MR + H%(R#%) A
e
’HBR $a® - Mﬁﬂe wie

ST HMAate + f“\cb 2 Sine - MR & cose-

"

%= eln( §ens) 1]

— =
.

22 e e ﬂﬂlihﬁ % Sin & —H%Rewso
R T _
_sln(fnet) ] - 2870 nRT =0

@ [n(ﬂ‘;«a‘e")vrl & + HRt & &"

_M%[

S ® —&ewoel = O

Nip

o't e«e 6% «<o Sho X &

§or smalt osuMatoas,

s M) 8 + Ha (R-3) & =0

294



49. HW 9 CHAPTER 4. HWS

16

. My&-2)
= e+ —— & =0
Ma*
z 7

§o the ?(l&*.a(-vu‘ gﬂ Jorall oyulalend Y

Hq (R-%)

W=
Ha | ¢
&

(3)  +he dyglem s Shable for oclamon Gtesrah © =0 If

Mq (R- 3
L >0
v
h_‘TG + T—
= R> 2
(«) ?oh»!\'a\ e,.w_.a.‘ FEY

J(e) = Mq [ (R+5) oss + Res-xe]

295



49. HW 9 CHAPTER 4. HWS

7

u(e) 1Vl

] o = N
N wm w

7] o o & o
) ||||||||||IIIII|H‘|lHlHIIlIIIllII

3 A ok
4
£ 1
§oF
P T
woon
RS
§§
s
3 o
p ® =
[ ]
Y
3
§

296



49. HW 9 CHAPTER 4. HWS

18

(S) ?—‘—) = n I~3 S e *Re'ﬁo59]
os = 8

%:9 = H}{- ;_“_ 8 + R ore - RO S-’né‘l
Y-

2

Se YY) - _a
e’ H% (% ")
é=o
S R . a a
° e PG 5 R> 3

297



4.10. HW 10 CHAPTER 4. HWS

410 HW 10

410.1 Problem 1

1. (10 points)
Show that the total energy associated with each normal mode of oscillation is separately
conserved.

SOLUTION:

The motion in each normal mode is de-coupled from each other mode. Each motion is
a simple harmonic motion in terms of normal coordinates, and reduces to second order
differential equation of the form

fii + wfn; =0 1)

Where i ranges over the number of modes. The number of modes is equal to the number of
independent degrees of freedoms in the system. Each mode oscillates at frequency w;. Since
this is a simple harmonic motion, its energy is given by

1 1
E;i= Emz‘fh2 + Ekiniz (2)

Where k; is the effective stiffness of the mode and w? = ﬁ Therefore k; = m;w?.

To show that E is conserved, we need to show that ?—f = 0. Hence from (2)

JE;
a_tl = mn)f; + (mia)iz ) NiMi

But from (1) we see that 7j; = —w?7,. Substituting into the above gives

a .
% = m;1; (—a)fni) + (miwiz ) niMi

=0

Therefore energy in each mode is constant.
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410.2 Problem 2

2. (10 points)
A uniform horizontal rectangular plate of mass M, length L, and width W rests with its
corners on four similar vertical springs with spring constant k. Assume that the center of
mass of the plate is restricted to move along a vertical line. Find the normal modes of
vibration and prove that their frequencies are in the ratio 1 : /3 : v/3. (This problem is
simpler if you decide beforehand what the normal modes are and then use the appropriate
generalized coordinates so that the equations of motion are decoupled from the start.)

SOLUTION:

degrees of freedom: z, 01,05

Kinetic energy is
1 ., 1 ., 1 .
T= 5Mz2 + 5116% + E1295

Where I; is moment of inertia of plate around axis y, and I, is moment of inertia of plate
around axis x. These are (from tables) :

I, = 1sz
1712
1= L
27 12

The potential energy is

o) (30 e

2 2
= 2Kz2 + 2K V—Ve +2K 59
2 1 272

1 1
= 2Kz? + E1<wze§ + EI<L20§
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Where small angle approximation is used in the above. Hence the Lagrangian is
L=T-U

1 1 ., 1 . 1 1
= EMzz + E1119% + E12@5 - 2Kz% - 2KW292 - =KIL?03

Equation of motion for z

JL "
dz z
JdL M
- = z
0z
Hence
Mz +4Kz =0
Equation of motion for 6,
dL
— = -KW?0
90, !
oL Lo
&91 — 11Y1

Hence
L6, + KW?0; =0
Similarly, we find
L,0, + KL20, = 0
Therefore
[M]g +[K]lg =0
M 0 0)(z 4K 0 0\(z 0
0 I, 0l|6,({+]0 KW?2 0 [|6,]=]|0
0 0 L)J\6, 0 0 KIL?J\6, 0
Which leads to

4K — Mw? 0
det 0 KW2 — Ila)z
0 0

AK3L2W2 — MK2L2w2W? — 41, K?[20? — AL, K2w?W? + ML KL2w* + MLKw*W? + 41, ,Kw* - MI;Lw® =
(KL? - 2L) (KW? - w?I;) (Maw? - 4K) =
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4.10. HW 10
Therefore
KI2
w1 = —_
2
KW2
Wy = Il
4K
Wa = -
TN Mm
Using I; = 11—2MW2, I, = %MLZ, the above become
LK, \/
ML2 M
_ KW \/
©2 =\ 12 ye =
_ [4K 5
PINM VM
Hence Z—l === \/— 22 — /3. Therefore
2
wl:a)zzwg:l:l:\/g
Or

w1 Wy w3z =

é‘.|.’_\
&~
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410.3 Problem 3

3. (15 points)
A pendulum of mass m and length [ is attached to a support of mass M that can move on
a frictionless horizontal track as shown on the figure below. Find the normal frequencies
and the normal modes of (small) oscillations. Sketch the normal modes.

SOLUTION:

Kinetic energy is

1 1 . 2 , 2
T=-Mi®+=-m ((x +16 cos @) + (l@ sin e) )
2 2
1 1 . . .

= Esz +-m (xz + 1262 cos? O + 2x10 cos O + 1262 sin® 9)
1 1 . _
_ +2 02 : 202
= EMX + Em(x +2x10 cos O + [0 )

And potential energy is
U = -mglcos 0
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Hence the Lagrangian

L=T-U
Lo, 1 5 1/ 2 A2
= EMX + Em(x +2x10 cos O + 70 )+mglcos€
Now we find equations of motions. For 0
oL = ¥10 sin 6 Isin O
50 = mxl0 sin mglsin
JL 1 .
Fr il (le0086+2126)
= m(jclcos(9+129)
d JL . . 0
790 - m(xlcos@—xl@sm6+l 9)

Hence

4oL JL
dto6 96
m (5&1 cos 0 — ¥l0sin O + 129) +mxl0 sin 0 + mglsin 6 = 0
mil cos O + ml?6 + mglsin 6 = 0 (1)
Now we find equation of motion for x
JdL
= =0
% :Mx+m(x+lt9cos@)
%% :Mjé+m(§t+lécose—lézsin6)
Hence
ao o
dt dx  Jdx
th+m(x+lécos€—lézsin6) =0
% (M +m) +mlb cos 0 — ml6?sin 6 = 0 (2)

Now we can write them in matrix form [M]g + [K]g =0, from (1) and (2) we obtain, after
using small angle approximation cos 6 ~ 1,sin 0 = 6 and also 6% ~ 0

M+m ml|(x N 0 0 |[fx]_|[O
ml m2|{6) (0 mgl)\o] |o
Now assuming solution is g (t) = ae'®! then the above can be rewritten as

—w? (M + m) —w?ml ap| (0 1)
~w?ml  mgl - mPw?)\ay) |0
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These have non-trivial solution when
det —w? (M + m) —w?ml _
—w?ml  mgl - mlw?
MPma* - glm*w? — Mglma?
w? (MPmaw? - glm? — Mglm)

0
0

. . m+M
Hence w = 0 is one eigenvalue and w = ‘%T is another.

a)lz()

g (M+m)
I M

Wy =

Now that we found w; we go back to (1) to find corresponding eigenvectors. For wy, (1)

becomes

0 0 a1 0
0 mgl)\axn 1o
Hence from the second equation above

Oa11 + mgla21 =0

So a1; can be any value, and a,; = 0. So the following is a valid first eigenvector

a:ﬂn
o

_(EM)(M+m) _(SM)MZ (

For w, (1) becomes

I M I M

() g 50

I M I M

From first equation we find

g(M+m)
_(7 M

g(M+m)

)(M+m)a12—(7 i

(M + m) aip + mlﬂzz =0

ml

Hence a;, = - ) 22 So the following is a valid second eigenvector
_ ml a
a,=| Mm)
ax»
Therefore

X =apf + aphs
0 = anm + axpn,
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Where 17); are the normal coordinates. Using relation found earlier, then

X =anm 2)
0= —(Mnjrlm) (M) + A1) (3)
Hence from (2)
X
m= —a
And now (3) can be written as
ml
= —mﬂlzza—11 + i
Therefore
0 1 mlx

= — 4+ —
2 ayp  app (M +m)

ml

. apy ~ M 122 ..
To sketch the mode shapes. Looking at a; = 0 and ay =| M+m) and normalizing we

a2
ml
1 ) ~ (M+m)
0 1

So in the first mode shape, the mass M moves with the pendulum fixed to it in the same
orientation all the time. So the whole system just slides along x with 6 = 0 all the time. In

™ factor to @ motion. For example, for M < m, then mode
(M+m)
I

-1 —-
2is [1 ], hence antisymmetric mode. If M = m then we get [ 12] antisymmetric, but now the

can write

the second mode, x move by

ratio changes. So the second mode shape is antisymmetric, but the ratio depends on the
ratio of m to M.

41031 Appendix to problem 3

This is extra and can be ignored if needed. I was not sure if we should use s = [0 as the
generalized coordinate instead of 6 in order to make all the coordinates of same units. So
this is repeat of the above, but using s = /6 transformation. Starting with equations of motion

¥ (M +m) +mlO cos 0 —ml6?sin0 = 0

) 0
mo + mxcols + m‘% sin@ =0
Will now use s = [0 transformation, and use s as the second degree of freedom, which is the
small distance the pendulum mass swings by. This is so that both x and s has same units of

length to make it easier to work with the shape functions. Hence the equations of motions
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become

) § s 2 s
X (M + m) + ml- cos (—) - mll—2 sin (f) =0
s

I l
m- + mx )+m‘gsin(§)20
/ l l

We first apply small angle approximation, which implies cos? — 1,sin (;) - ; and also

Q

@}

n
—~
~1®

&2
s . .
7 — 0, therefore the equations of motions becomes

IM+m)+ms=0
5 1 S

85 _
ml+mxl+mll—0

And now we write the matrix form

M+m m||x N 0 O |[x]_ (O
m mJ\s 0 m% s] o
Now assuming solution is g (f) = ae’!, then the above can be rewritten as
-0?*M+m)  —w’m (o 0
2 g 2 = (1)
—wm ms = mw* )\ ay 0
These have non-trivial solution when

—w? (M -
det(a)(2+m) w?*m ]:0
—w?m m——ma)
1
—Y(gma) - Mimaw* +Mgma)2):O
2
wz(ST ~ Minw? +Mg ):0

- fon)-

g (M+m)

Hence w = 0 is one eigenvalue and w = /5 —— is another.
w1 = 0
_ 5_;(M+m)
D2ENTTM

Now that we found w; we go back to (1) to find corresponding eigenvectors. For wy, (1)

becomes
0 0 a1 _ 0
0 m% ar B 0
0a11+m‘%a21:0
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Hence from the second equation above
Oall + m%am =0

So a1, can be any value, and a,; = 0. So the following is a valid first eigenvector
1 = an
o

g (M+m) g (M+m)
‘(77) M+m) = (17)’“

(& M+m) g g (M+m) - 0
(Z 7 )m m; m(Z v ) 22
From first equation we find

g (M +m)
_(7 M

For w, (1) becomes

Mmdayy = 0

)(M+m)a12_ (%(M;/—Im))

(M + m) a1p + Mdyy = 0

m . . . .
Hence a,; = ~ Gt 122 So the following is a valid second eigenvector
" 4
ay = [ (M+m) 22]
a2
Therefore

X =41 +aph
0 = appn + axpm,

Where 7); are the normal coordinates. Using relation found earlier, then

X =anm (2)
m
= —mﬂzzﬂl + a1 (3)
Hence from (2)
__x
m o

And now (3) can be written as
m X N
=y — +a
(M + m) 22 an 212

Therefore
6 mx 1

+ -
(M + m) a1

Mo =

a2

m
. ann ~ e 122 .
To sketch the mode shapes. Looking at a; = 0 and a, = " and normalizing we
a2
can write
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(%

So in the first mode shape, the mass M moves with the pendulum fixed to it in the same

orientation all the time. So the whole system just slides along x with & = 0 all the time. In

the second mode, x move by factor to 0 motion. For example, for M < m, then mode
1

-m
(M+m)
-1 —-
2 is [1 ), hence antisymmetric mode. If M = m then we get [ 12] antisymmetric, but now

the ratio changes. So the second mode shape is antisymmetric, but the ratio depends on
the ratio of m to M.

< - —» < — — —

first mode shape 10

second mode shape
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410.4 Problem 4

4. (15 points)
Consider the simple model for the carbon dioxide molecule COy shown below. Two end
particles of mass m are bound to the central particle M via a potential function that is
equivalent to two springs with spring constant k. Consider motion in one dimension only,
along the z-axis. Find the normal frequencies and the normal modes. Make a rough sketch
of the normal modes.

SOLUTION:
L1 L2 T3
—> — —>
m k k m

Kinetic energy
1 1 1
Potential energy

1 1
u= Ek(xz —xy) Ek(xa ~x)°

309



4.10. HW 10 CHAPTER 4. HWS

Hence the Lagrangian

L=T-U
1 1. 1 1
= me% + EMX% + me% - Ek (XZ - Xl)z - Ek(X3 - X2)2
EOM for x;
JL
(9_x1 =k (x —x7)
JL )
—=1m
ox
d JL o
dt o,
Therefore
mb&l —k(x2—x1) =0
m5&1 + kx1 — kXZ =0 (1)
EQM for x,
JL
o, =~k (x = x1) + k (x3 — xp)
JL _ Mi
o, 2
d JL .
%8_352 = MXZ
Therefore
Mjé2+k(x2—x1)—k(x3—x2) =0
Mj(.TZ + ka — kxl - kX3 + ka =0
Mi, + 2kX2 - kx1 - kX3 =0 (2)
EOM for x;3
JL
8_x3, =~k (x3 - xp)
JL )
&_5(3 = mXs
d JL .
—_——=m
T
Therefore

m5€3 +k(x3—x2) =0
m5€3 + kX3 - ka =0 (3)
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Now we can write equations (1,2,3) in matrix form [M]g + [K]g = 0 to obtain
m 0 0 5&1 k -k 0 X1 0
0 M Of[x|+|-k 2k —k||x|=]|0
0 0 m 5(','3 0 -k k X3 0

Now assuming solution is g (t) = ae’”!, then the above can be rewritten as

k — mw? —k 0 a 0
-k 2k-Mw? -k ||ay[=]0 (4)
0 -k k — mw?)\a; 0
These have non-trivial solution when
k — maw? -k 0
det| -k 2k — Mw? —k =0
0 —k k — mw?

@? (k - mw?) (~-Mmw? + Mk + 2km) = 0

Hence we have 3 normal frequencies. One of them is zero.

0)1:0

k
Wy = —

m

M +2m
“3 = Mm

For each normal frequency, there is a corresponding eigen shape vector. Now we find these
eigen shapes. For w;, and from (4)

k -k 0)(a 0
-k 2k —kf[ay|=]0
0 -k k)\as 0
Hence
ka; —kay + 0az =0
—kaqy + 2kay — kaz =0
0a, —kay + kaz =0
Or
a—a,=0
-a1+2a,—a3=0
—a,+a3 =0
1
Hence a; = a, and a, = a3. So |1 is first eigenvector. Now we find the second one for w,.
1
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From (4) and using w = \/g
k

k- m— -k 0 aj 0
& 2%-M- -k ||a]=|0
0 -k k- m% as 0
0 -k 0 )(ay 0
—k 2%-M= —kf|a,|=|0
0 -k 0 as 0
Hence
—ka2 =0
k
—kal + (Zk —M—) a, — ka3 =0
m
—ka2 =0
Or
ap = 0
—a1+a2(2——)—a3 =0
ap = 0
1
hence 2, = 0 and a; = —a3. So | 0 [ is second eigenvector. Now we find the third one for ws.
-1
From (4) and using w = kMAZim
M+2m
k —-m (km) —k O a
M+2m
k 2% —M(k L ) & o
0 K k—m (kMAf’”) a3
M+2
k—k— —k 2 0 a
-k 2k-kTE % ||a
M+2
0 —k k—k ;4’” a3
Hence
M+2
k(l— m)ul—kaZ:O
M+2
—ka1+k(2— m)HZ—kag,:O
M +2m
—kﬂ2+k(1— M )ﬂ3:O
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Or
M +2m
1- a| —dpy = 0
( M+ Zm)
—-aq + 2 - ﬂz—ﬂ3:0
- M +2m 0
-a - ag =
2 M 3
1
Solution is: a1 = a3, a; = —]\2—4ma3 So —Zﬁm is third eigevector. To sketch the mode shapes,
1
will use the following diagram
™ n2 mode 1 p5
A A A
1 ~< - - - - - 71T - - - - - = 71
N T < - Ve
AN -~ - s
h N O T~ -~ - < 7
N s T~
N . b —1
N
_2m \7 mode 2
M
mode 3
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Problam 2 T
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3
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S
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7
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Problem L
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411 HW For honors extra credit only

Mechanics
Physics 311
Fall 2015
Problems for Honors Credit (10/23/15, due 12/4/15)

You will need the help of a computer to find the solutions and to produce plots of the results.
Teamwork is encouraged in solving the problems.

The Restricted Three-Body Problem and the 5 Lagrange Points

1. Read Chapter 7.4 from Analytical Mechanics by Fowles and Cassiday. A copy of the
chapter is attached.

2. Determine the coordinates of the five Lagrange points L to Ly for the Earth-Moon system.
Describe the behavior of the effective potential function in the neighborhood of these points.

3. Show by explicit calculation that the gradient of the effective potential function vanishes
at L4 and L5.
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5.1. Note added Nov 12, 2015 CHAPTER 5. STUDY AND CHEAT ...

Chapter 5

Study and cheat sheets

5.1 Note added Nov 12, 2015

Looking at Example 5.3, textbook page 190, Physics 311.

Nasser M. Abbasi

Define d®

In(81 Clear([x, r, a, p, GO, m];

dphi = -p GO /Sqrt[l+ (r/a)*2-2r/aCos[x]]

GO p

1 = r?  2rcCos([x]
a? a

Integrate it over 0 to 2 7

out[82]= -

u = Int[dphi, x]

out[83]= =

a? (l+ﬁ—72rcos[x]) x 4dar
2
2G0p 2 B EllipticF|=, - ] /
(

gl = )2 2 (a-r)2

Evaluate it over the limit

U0=m((u/.x>2Pi)-(u/.x-0))

4G0m pEllipticK[- 225 ]

(a-r)?

out[84]= —

2r 2
l_T+a_2 326




5.1. Note added Nov 12, 2015 CHAPTER 5. STUDY AND CHEAT ...

2 | on example 5 3 in text.nb

Find dU/dr and plot it for » = 0 to 4, and see where it is zero. These will be the

equilibrium points. Give “a” some value to plot

In[85]:= Plot[Evaluate[D[UO, r] /. {a>10,p->1,G0>1, m>1}],
{r, 0, 10}, GridLines - Automatic, GridLinesStyle -» Gray, Frame - True,

FrameLabel -» {{"dU/dr", None}, {"r", "Example 5.3 in text"}},
BaseStyle » 12, ImageSize - 400]

Example 5.3 in text

00f—

—

durdr

L

o
/

out[8s]=
-1.5 \
-2.0 \
0 2 4 6 8 10
r
We see from above that du/dr is zero only at r=0. Also r=0 is not a stable point. (as shown in text).
Find ”ﬁrﬁ’ at 7 = 0 to verify the text book result
o= | Limit[D[UO, {r, 2}]1 /. p->M/ (2Pia), r- 0]
GOmM
out[8é]= - —
2 a3

Printed by Wolfram Mathematica Student Edition
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