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0.1 Problem 1

Mechanics

Physics 311
Fall 2015

Homework 4 (10/2/15, due 10/9/15)

1. (5 points)
The damping factor λ of a spring suspension system is one-tenth the critical value. Let
ω0 be the undamped frequency. Find (i) the resonant frequency, (ii) the quality factor Q,
(iii) the phase angle Φ when the system is driven at frequency ω = ω0/2, and (iv) the
steady-state amplitude at this frequency.

2. (10 points)
A string of length 2 l is suspended at points A and B located on a horizontal line. The
distance between A and B is 2 d, with d < l. A small, heavy bead can slide on the string
without friction. Find the period of the small-amplitude oscillations of the bead in the
vertical plane containing the suspension points.
Hint: The trajectory of the bead is a section of an ellipse (why?). Move the origin to the
equilibrium point and use a Taylor expansion to get an approximate expression for the
trajectory around the equilibrium point. Apply Lagrange.

...continued on next page...

SOLUTION:

Note that 𝜆𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 𝜔0. We are told that 𝜆 = 0.1𝜔0 in this problem.

0.1.1 part(1)

The resonant frequency (for this case of under-damped) occurs when the steady state am-
plitude is maximum

𝑏 =
𝑓
𝑚

��𝜔
2
0 − 𝜔2�

2
+ 4𝜆2𝜔2

This happens when the denominator is minimum. Taking derivative of the denominator w.r.t.
𝜔 and setting the result to zero gives

𝑑
𝑑𝜔

��𝜔2
0 − 𝜔2�

2
+ 4𝜆2𝜔2� = 0

2 �𝜔2
0 − 𝜔2� (−2𝜔) + 8𝜆2𝜔 = 0
8𝜆2𝜔 + 4𝜔3 − 4𝜔𝜔2

0 = 0
2𝜆2 + 𝜔2 − 𝜔2

0 = 0
𝜔2 = 𝜔2

0 − 2𝜆2

Taking the positive root (since 𝜔 must be positive) gives

𝜔 = �𝜔
2
0 − 2𝜆2

When 𝜆 = 0.1𝜔0 the above becomes

𝜔 =
�
𝜔2
0 − 2 �

1
10
𝜔0�

2

=
�
98
100

𝜔2
0

= 0.98995𝜔0 rad/sec
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0.1.2 part(2)

Quality factor 𝑄 is defined as

𝑄 =
𝜔𝑑
2𝜆

= �𝜔
2
0 − 𝜆2

2𝜆

= �𝜔
2
0 − (0.1𝜔0)

2

2 (0.1𝜔0)

=
𝜔0√1 − 0.12

0.2𝜔0

= √1 − 0.12

0.2
Therefore

𝑄 = 4.975

0.1.3 Part(3)

Given

𝑥′′ (𝑡) + 2𝜆𝑥′ + 𝜔2
0𝑥 =

𝑓
𝑚
𝑒𝑖𝜔𝑡 (1)

Assuming the particular solution is 𝑥𝑝 (𝑡) = 𝐵𝑒𝑖𝜔𝑡 where 𝐵 = 𝑏𝑒𝑖𝜙 is the complex amplitude
and 𝑏 is the amplitude and 𝜙 is the phase of 𝐵. We want to find the phase. Plugging 𝑥𝑝 (𝑡)
into (1) and simplifying gives

𝐵 =
𝑓
𝑚

𝜔2
0 − 𝜔2 + 2𝜆𝑖𝜔

Hence

𝜙 = 0 − tan−1 �
2𝜆𝜔

𝜔2
0 − 𝜔2 �

= tan−1 �
−2𝜆𝜔
𝜔2
0 − 𝜔2 �

Since 𝜆 = 0.1𝜔0 and 𝜔 = 𝜔0
2 the above becomes

𝜙 = tan−1

⎛
⎜⎜⎜⎜⎜⎜⎝
−2 (0.1𝜔0)

𝜔0
2

𝜔2
0 − �

𝜔0
2
�
2

⎞
⎟⎟⎟⎟⎟⎟⎠

= tan−1 (−0.13333)
= −0.13255 rad
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0.1.4 Part(4)

The steady state amplitude is 𝑏 from above, which is found as follows

𝑏2 = 𝐵𝐵∗

Where 𝐵∗ is the complex conjugate of 𝐵 =
𝑓
𝑚

𝜔2
0−𝜔2+2𝜆𝑖𝜔

. Therefore

𝑏 =
𝑓
𝑚

��𝜔
2
0 − 𝜔2�

2
+ 4𝜆2𝜔2

=
𝑓
𝑚

1

�
�𝜔2

0 − �
𝜔0
2
�
2
�
2
+ 4 (0.1𝜔0)

2 �𝜔0
2
�
2

=
𝑓
𝑚

1

�0.572 5𝜔
4
0

= 1.3216
𝑓

𝑚𝜔2
0

But 𝑚𝜔2
0 = 𝑘, the sti�ness, hence the above is

𝑏 = 1.3216𝑓𝑘

0.2 Problem 2

Mechanics

Physics 311
Fall 2015

Homework 4 (10/2/15, due 10/9/15)

1. (5 points)
The damping factor λ of a spring suspension system is one-tenth the critical value. Let
ω0 be the undamped frequency. Find (i) the resonant frequency, (ii) the quality factor Q,
(iii) the phase angle Φ when the system is driven at frequency ω = ω0/2, and (iv) the
steady-state amplitude at this frequency.

2. (10 points)
A string of length 2 l is suspended at points A and B located on a horizontal line. The
distance between A and B is 2 d, with d < l. A small, heavy bead can slide on the string
without friction. Find the period of the small-amplitude oscillations of the bead in the
vertical plane containing the suspension points.
Hint: The trajectory of the bead is a section of an ellipse (why?). Move the origin to the
equilibrium point and use a Taylor expansion to get an approximate expression for the
trajectory around the equilibrium point. Apply Lagrange.

...continued on next page...

SOLUTION:

The locus the bead describes is an ellipse, since in an ellipse the total distance from any
point on it to the points 𝐴,𝐵 is always the same
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In an ellipse, these two
segments always add to
same length. In this ex-
ample, this is 2l

ellipse

To obtain the potential energy, we move the bead a little from the origin and find how much
the bead moved above the origin, as shown in the following diagram

s 2l − s

d+ x d− x

origin
x

A
B

H =
√
l2 − d2

h

y = H − h

s2 = h2 + (d+ x)2

(2l − s)2 = h2 + (d− x)2

From the above, we see that, by applying pythagoras triangle theorem to the left and to the
right triangles, we obtain two equations which we solve for ℎ in order to obtain the potential
energy

𝑠2 = ℎ2 + (𝑑 + 𝑥)2

(2𝑙 − 𝑠)2 = ℎ2 + (𝑑 − 𝑥)2

Solving for ℎ gives

ℎ =
�
1 −

𝑑2

𝑙2
√𝑙2 − 𝑥2

Therefore

𝑦 = 𝐻 − ℎ

= 𝐻 −
�
1 −

𝑑2

𝑙2
√𝑙2 − 𝑥2
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Hence

𝑈 = 𝑚𝑔𝑦

= 𝑚𝑔
⎛
⎜⎜⎜⎜⎝𝐻 −

�
1 −

𝑑2

𝑙2
√𝑙2 − 𝑥2

⎞
⎟⎟⎟⎟⎠

The kinetic energy is

𝑇 =
1
2
𝑚 �𝑥̇2 + 𝑦̇2�

Therefore the Lagrangian is

𝐿 = 𝑇 − 𝑈

=
1
2
𝑚 �𝑥̇2 + 𝑦̇2� − 𝑚𝑔

⎛
⎜⎜⎜⎜⎝𝐻 −

�
1 −

𝑑2

𝑙2
√𝑙2 − 𝑥2

⎞
⎟⎟⎟⎟⎠

The equation of motion in the 𝑥 coordinate is now found. From

𝜕𝐿
𝜕𝑥

=
1
2
𝑚𝑔
�
1 −

𝑑2

𝑙2
(−2𝑥)

√𝑙2 − 𝑥2

= −𝑚𝑔
�
1 −

𝑑2

𝑙2
𝑥

√𝑙2 − 𝑥2
And

𝑑
𝑑𝑡
𝜕𝐿
𝜕𝑥

= 𝑚𝑥̈

Applying Euler-Lagrangian equation gives

𝑑
𝑑𝑡
𝜕𝐿
𝜕𝑥

−
𝜕𝐿
𝜕𝑥

= 0

𝑥̈ + 𝑔
�
1 −

𝑑2

𝑙2
𝑥

√𝑙2 − 𝑥2
= 0

For very small 𝑥, we drop the 𝑥2 term and the above reduces to

𝑥̈ + 𝑔
�
1 −

𝑑2

𝑙2
𝑥
𝑙
= 0

Hence the undamped natural frequency is

𝜔2
0 =

𝑔
𝑙 �

1 −
𝑑2

𝑙2
or

𝜔0 =
�
𝑔
𝑙�

1 −
𝑑2

𝑙2
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The period of small oscillation is therefore

𝑇 =
2𝜋
𝜔0

= 2𝜋
1

�
𝑔
𝑙�1 −

𝑑2

𝑙2

0.3 Problem 3

3. (10 points)
A rod of length L rotates in a plane with a constant angular velocity ω about an axis fixed
at one end of the rod and perpendicular to the plane of rotation. A bead of mass m is
initially at the stationary end of the rod. It is given a slight push so that its initial speed
along the rod is ωL. Find the time it takes the bead to reach the other end of the rod.

4. (10 points)
Consider a harmonic oscillator with ω0 = 0.5 s−1. Let x0 = 1.0m be the initial amplitude
at t = 0 and assume that the oscillator is released with zero initial velocity. Use a computer
to plot the phase-space plot (ẋ versus x) for the following damping coefficients λ.
(1) λ = 0.05 s−1 (weak damping)
(2) λ = 0.25 s−1 (strong damping)
(3) λ = ω0 (critical damping).

5. (15 points)
A damped harmonic oscillator has a period of free oscillation (with no damping) of T0 =
1.0 s. The oscillator is initially displaced by an amount x0 = 0.1m and released with zero
initial velocity.
(1) Consider the case that the oscillator is critically damped. Determine the displacement
x as a function of time and use a computer program to plot x(t) for 0 ≤ t ≤ 2 s.
(2) Now consider the case that the system is overdamped. Determine the displacement
as a function of time and use a computer program to plot x(t) for damping coefficients
(i) λ = 2.2 πs−1, (ii) λ = 4 πs−1, and (iii) λ = 10 πs−1 for 0 ≤ t ≤ 2 s. Compare to the
critically damped case.
(3) Now consider the case that the system is underdamped. Determine the displacement
as a function of time and use a computer program to plot x(t) for damping coefficients (i)
λ = 5.0 s−1, (ii) λ = 1.0 s−1, and (iii) λ = 0.1 s−1 for 0 ≤ t ≤ 2 s. Compare to the critically
damped case.

0.3.1 SOLUTION method one

The velocity of the particle is as shown in the following diagram

θ

velocity diagram

x

y
ω = θ̇

ṙ

rω Vx = ṙ cos θ − rω sin θ

Vy = ṙ sin θ + rω cos θ

There is no potential energy, and the Lagrangian only comes from kinetic energy.

𝑣2 = 𝑉2
𝑥 + 𝑉2

𝑦

= (𝑟̇ cos𝜃 − 𝑟𝜔 sin𝜃)2 + (𝑟̇ sin𝜃 + 𝑟𝜔 cos𝜃)2

Exapnding and simplifying gives

𝑣2 = 𝑟̇2 + 𝑟2𝜔2

Hence

𝐿 =
1
2
𝑚 �𝑟̇2 + 𝑟2𝜔2�
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And the equation of motion in the radial 𝑟 direction is

𝑑
𝑑𝑡
𝜕𝐿
𝜕𝑟̇

−
𝜕𝐿
𝜕𝑟

= 0

𝑑
𝑑𝑡
𝑚𝑟̇ − 𝑚𝑟𝜔2 = 0

Hence the equation of motion is

𝑟̈ − 𝑟𝜔2 = 0 (1)

The roots of the characteristic equation are ±𝜔, hence the solution is

𝑟 (𝑡) = 𝑐1𝑒𝜔𝑡 + 𝑐2𝑒−𝜔𝑡

At 𝑡 = 0, 𝑟 (0) = 0 and 𝑟̇ (𝑡) = 𝐿𝜔. Using these we can find 𝑐1, 𝑐2.

0 = 𝑐1 + 𝑐2 (2)

But 𝑟̇ (𝑡) = 𝜔𝑐1𝑒𝜔𝑡 − 𝜔𝑐2𝑒−𝜔𝑡 and at 𝑡 = 0 this becomes

𝐿𝜔 = 𝜔𝑐1 − 𝜔𝑐2 (3)

From (2,3) we solve for 𝑐1, 𝑐2. From (2), 𝑐1 = −𝑐2 and (3) becomes

𝐿𝜔 = −𝜔𝑐2 − 𝜔𝑐2

𝑐2 =
𝐿𝜔
−2𝜔

=
−1
2
𝐿

Hence 𝑐1 =
1
2𝐿 and the solution is

𝑟 (𝑡) = 𝑐1𝑒𝜔𝑡 + 𝑐2𝑒−𝜔𝑡

=
1
2
𝐿𝑒𝜔𝑡 −

1
2
𝐿𝑒−𝜔𝑡

= 𝐿 �
𝑒𝜔𝑡 − 𝑒−𝜔𝑡

2 �

Or

𝑟 (𝑡) = 𝐿 (sinh𝜔𝑡)

To find the time it takes to reach end of rod, we solve for 𝑡𝑝 from

𝐿 = 𝐿 �sinh𝜔𝑡𝑝�
1 = sinh𝜔𝑡𝑝

Hence

𝜔𝑡𝑝 = sinh−1 (1)
= 0.88137

Therefore

𝑡𝑝 =
0.88137

𝜔 sec
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0.3.2 another solution

Let the local coordinate frame rotate with the bar, where the bar is oriented along the 𝑥
axis of the local body coordinate frame as shown below.

X

Y

x

y

~r
m

x, y is Rotating (body) frame of reference

X,Y is inertial (fixed) frame of reference

~i
~j

~v = ~̇rrel + ~ω × ~r

ω

~r = r~i

~ω = ω~k

The position vector of the particle is 𝒓 = 𝒊𝑟 where 𝒊 is unit vector along the 𝑥 axis. Taking
time derivative, and using the rotating vector time derivative rule which says that 𝑑𝑨

𝑑𝑡 =

�𝑑𝑨
𝑑𝑡
�
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒

+ 𝜔 × 𝑨 where 𝜔 is the angular velocity of the rotating frame then

𝒓̇ = 𝒓̇𝑟𝑒𝑙 + 𝜔 × 𝒓 (1)

To find the acceleration of the particle, we take time derivative one more time
𝑑
𝑑𝑡
𝒓̇ =

𝑑
𝑑𝑡
(𝒓̇𝑟𝑒𝑙) + 𝜔̇ ×𝒓 + 𝜔 × 𝒓̇

But 𝑑
𝑑𝑡
(𝒓̇𝑟𝑒𝑙) = 𝒓̈𝑟𝑒𝑙 + 𝜔 × 𝒓̇𝑟𝑒𝑙 by applying the rule of time derivative of rotating vector again.

Therefore the above equation becomes
𝑑
𝑑𝑡
𝒓̇ = 𝒓̈𝑟𝑒𝑙 + 𝜔 × 𝒓̇𝑟𝑒𝑙+ 𝜔̇ ×𝒓 + 𝜔 × 𝒓̇

Replacing 𝒓̇ in the above from its value in (1) gives

𝒓̈ = 𝒓̈𝑟𝑒𝑙 + 𝜔 × 𝒓̇𝑟𝑒𝑙+ 𝜔̇ ×𝒓 + 𝜔 × (𝒓̇𝑟𝑒𝑙 + 𝜔 × 𝒓)
= 𝒓̈𝑟𝑒𝑙 + 𝜔 × 𝒓̇𝑟𝑒𝑙+ 𝜔̇ ×𝒓 + 𝜔 × 𝒓̇𝑟𝑒𝑙 +𝝎 × (𝝎 × 𝒓)
= 𝒓̈𝑟𝑒𝑙 + 2 (𝜔 × 𝒓̇𝑟𝑒𝑙) + 𝜔̇ ×𝒓 + 𝜔 × (𝜔 × 𝒓)

But 𝜔 is constant (bar rotate with constant angular speed), hence the term 𝜔̇ above is zero,
and the above reduces to

𝒓̈ = 𝒓̈𝑟𝑒𝑙 + 2 (𝜔 × 𝒓̇𝑟𝑒𝑙) + 𝜔 × (𝜔 × 𝒓) (2)

The above is the acceleration of the particle as seen in the inertial frame. Now we calculate
this acceleration by preforming the vector operations above, noting that 𝒓 = 𝒊𝑟, 𝜔 = 𝒌𝜔,
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hence (2) becomes

𝒓̈ = 𝒊𝑟̈𝑟𝑒𝑙 + 2 (𝒌𝜔 × 𝒊𝑟̇𝑟𝑒𝑙) + 𝒌𝜔 × (𝒌𝜔 × 𝒊𝑟)

= 𝒊𝑟̈𝑟𝑒𝑙 + 2 �𝒋𝜔𝑟̇𝑟𝑒𝑙� + 𝒌𝜔 × �𝒋𝜔𝑟�

= 𝒊𝑟̈𝑟𝑒𝑙 + 2 �𝒋𝜔𝑟̇𝑟𝑒𝑙� − 𝒊𝜔2𝑟

= 𝒊 �𝑟̈𝑟𝑒𝑙 − 𝜔2𝑟� + 𝒋 (2𝜔𝑟̇𝑟𝑒𝑙)

The particle has an acceleration along 𝑥 axis and an acceleration along 𝑦 axis. We are
interested in the acceleration along 𝑥 since this is where the rod is oriented along. The
scalar version of the acceleration in the 𝑥 direction is

𝑎𝑥 = 𝑟̈𝑟𝑒𝑙 − 𝜔2𝑟

Using 𝐹𝑥 = 𝑚𝑎𝑥 and since 𝐹𝑥 = 0 (there is no force on the particle) then the equation of
motion along the bar (𝑥 axis) is

𝑟̈𝑟𝑒𝑙 − 𝜔2𝑟 = 0

The roots of the characteristic equation is ±𝜔, hence the solution is

𝑟 (𝑡) = 𝑐1𝑒𝜔𝑡 + 𝑐2𝑒−𝜔𝑡

At 𝑡 = 0, 𝑟 (0) = 0 and 𝑟̇ (𝑡) = 𝐿𝜔. Using these we can find 𝑐1, 𝑐2.

0 = 𝑐1 + 𝑐2 (3)

But 𝑟̇ (𝑡) = 𝜔𝑐1𝑒𝜔𝑡 − 𝜔𝑐2𝑒−𝜔𝑡 and at 𝑡 = 0 this becomes

𝐿𝜔 = 𝜔𝑐1 − 𝜔𝑐2 (4)

From (3,4) we solve for 𝑐1, 𝑐2. From (3), 𝑐1 = −𝑐2 and (4) becomes

𝐿𝜔 = −𝜔𝑐2 − 𝜔𝑐2

𝑐2 =
𝐿𝜔
−2𝜔

=
−1
2
𝐿

Hence 𝑐1 =
1
2𝐿 and the solution is

𝑟 (𝑡) = 𝑐1𝑒𝜔𝑡 + 𝑐2𝑒−𝜔𝑡

=
1
2
𝐿𝑒𝜔𝑡 −

1
2
𝐿𝑒−𝜔𝑡

= 𝐿 �
𝑒𝜔𝑡 − 𝑒−𝜔𝑡

2 �

= 𝐿 (sinh𝜔𝑡)
To find the time it takes to reach end of rod, we solve for 𝑡𝑝 from

𝐿 = 𝐿 �sinh𝜔𝑡𝑝�
1 = sinh𝜔𝑡𝑝

Hence

𝜔𝑡𝑝 = sinh−1 (1)
= 0.88137
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Therefore

𝑡𝑝 =
0.88137

𝜔 sec

0.4 Problem 4

3. (10 points)
A rod of length L rotates in a plane with a constant angular velocity ω about an axis fixed
at one end of the rod and perpendicular to the plane of rotation. A bead of mass m is
initially at the stationary end of the rod. It is given a slight push so that its initial speed
along the rod is ωL. Find the time it takes the bead to reach the other end of the rod.

4. (10 points)
Consider a harmonic oscillator with ω0 = 0.5 s−1. Let x0 = 1.0m be the initial amplitude
at t = 0 and assume that the oscillator is released with zero initial velocity. Use a computer
to plot the phase-space plot (ẋ versus x) for the following damping coefficients λ.
(1) λ = 0.05 s−1 (weak damping)
(2) λ = 0.25 s−1 (strong damping)
(3) λ = ω0 (critical damping).

5. (15 points)
A damped harmonic oscillator has a period of free oscillation (with no damping) of T0 =
1.0 s. The oscillator is initially displaced by an amount x0 = 0.1m and released with zero
initial velocity.
(1) Consider the case that the oscillator is critically damped. Determine the displacement
x as a function of time and use a computer program to plot x(t) for 0 ≤ t ≤ 2 s.
(2) Now consider the case that the system is overdamped. Determine the displacement
as a function of time and use a computer program to plot x(t) for damping coefficients
(i) λ = 2.2 πs−1, (ii) λ = 4 πs−1, and (iii) λ = 10 πs−1 for 0 ≤ t ≤ 2 s. Compare to the
critically damped case.
(3) Now consider the case that the system is underdamped. Determine the displacement
as a function of time and use a computer program to plot x(t) for damping coefficients (i)
λ = 5.0 s−1, (ii) λ = 1.0 s−1, and (iii) λ = 0.1 s−1 for 0 ≤ t ≤ 2 s. Compare to the critically
damped case.

SOLUTION:

Starting with the equation of motion for damped oscillator

𝑥′′ + 2𝜆𝑥′ + 𝜔2
0𝑥 = 0

The solution for cases 1,2 (both are underdamped) is

𝑥 = 𝑒−𝜆𝑡 (𝐴 cos𝜔𝑑𝑡 + 𝐵 sin𝜔𝑑𝑡) (1)

Where 𝜔𝑑 = �𝜔
2
0 − 𝜆2. While the solution for case (3), the critical damped case is

𝑥 = (𝐴 + 𝑡𝐵) 𝑒−𝜆𝑡 (2)

For (1) above, at 𝑡 = 0 we obtain

1 = 𝐴

Hence (1) becomes 𝑥 = 𝑒−𝜆𝑡 (cos𝜔𝑑𝑡 + 𝐵 sin𝜔𝑑𝑡), and taking derivative gives

𝑥̇ = −𝜆𝑒−𝜆𝑡 (cos𝜔𝑑𝑡 + 𝐵 sin𝜔𝑑𝑡) + 𝑒−𝜆𝑡 (−𝜔𝑑 sin𝜔𝑑𝑡 + 𝐵𝜔𝑑 cos𝜔𝑑𝑡)

At 𝑡 = 0 we have

0 = −𝜆 + 𝐵𝜔𝑑

𝐵 =
𝜆
𝜔𝑑

Hence the complete solution for (1) is

𝑥 = 𝑒−𝜆𝑡 �cos𝜔𝑑𝑡 +
𝜆
𝜔𝑑

sin𝜔𝑑𝑡� (3)

𝑥̇ = −𝜆𝑥 + 𝑒−𝜆𝑡 (−𝜔𝑑 sin𝜔𝑑𝑡 + 𝜆 cos𝜔𝑑𝑡) (4)

Now we find the solution for (2), the critical damped case. At 𝑡 = 0

1 = 𝐴
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Hence (2) becomes 𝑥 = (1 + 𝑡𝐵) 𝑒−𝜆𝑡, and taking derivative gives

𝑥̇ = 𝐵𝑒−𝜆𝑡 − 𝜆 (1 + 𝑡𝐵) 𝑒−𝜆𝑡

At 𝑡 = 0

0 = 𝐵 − 𝜆
𝐵 = 𝜆

Hence the solution to (2) becomes

𝑥 = (1 + 𝜆𝑡) 𝑒−𝜆𝑡 (5)

𝑥̇ = 𝜆𝑒−𝜆𝑡 − 𝜆 (1 + 𝜆𝑡) 𝑒−𝜆𝑡 (6)

Now that the solutions are found, we plot the phase space using the computer, using para-
metric plot command

0.4.1 case (1)

For 𝜆 = 0.05, and 𝜔𝑑 = �𝜔
2
0 − 𝜆2 = √0.52 − 0.052 = 0.4975, then equations (3,4) become

𝑥 = 𝑒−0.05𝑡 (cos 0.4975𝑡 + 0.1005 sin 0.4975𝑡) (3A)

𝑥̇ = −0.05𝑥 + 𝑒−0.05𝑡 (−0.4975 sin 0.4975𝑡 + 0.05 cos 0.4975𝑡) (4A)

Here is the plot generated, showing starting point (1, 0) with the code used

Out[59]=

-0.5 0.0 0.5 1.0

-0.4

-0.2

0.0

0.2

x(t)

v(
t)

Phase plot, 50 seconds, case(1)

am = 0.05;
wn = 0.5;
wd = Sqrt[wn^2 - lam^2];
x = Exp[-lam t] (Cos[wd t] + lam/wd Sin[wd t]);
y = -lam x + Exp[-lam t] (-wd Sin[wd t] + lam Cos[lam t]);
ParametricPlot[{x, y}, {t, 0, 50}, Frame -> True,
GridLines -> Automatic, GridLinesStyle -> LightGray,
FrameLabel -> {{"v(t)", None}, {"x(t)",

"Phase plot, 50 seconds, case(1)"}}, Epilog -> Disk[{1, 0}, .02],
ImageSize -> 400]
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0.4.2 case (2)

For 𝜆 = 0.25, and 𝜔𝑑 = �𝜔
2
0 − 𝜆2 = √0.52 − 0.252 = 0.433, equations (3,4) become

𝑥 = 𝑒−0.25𝑡 (cos 0.433𝑡 + 0.5774 sin 0.433𝑡) (3A)

𝑥̇ = −0.05𝑥 + 𝑒−0.25𝑡 (−0.433 sin 0.433𝑡 + 0.05 cos 0.433𝑡) (4A)

Here is the plot generated where the starting point was (1, 0)

Out[150]=

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
-0.3

-0.2

-0.1

0.0

0.1

0.2

x(t)

v(
t)

Phase plot, 50 seconds, case(2)

This below is a zoomed in version of the above close to the origin

Out[151]=

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10
-0.15

-0.10

-0.05

0.00

0.05

0.10

x(t)

v(
t)

Phase plot, 50 seconds, case(2), zoom in

0.4.3 case(3)

For this case, equations (5,6) are used. For 𝜆 = 0.5, equations (5,6) become

𝑥 = (1 + 0.5𝑡) 𝑒−0.5𝑡 (5A)

𝑥̇ = 0.5𝑒−0.5𝑡 − 0.5 (1 + 0.5𝑡) 𝑒−0.5𝑡 (6A)

Here is the plot generated, showing starting point (1, 0) with the code used



15

Out[155]=

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
-0.3

-0.2

-0.1

0.0

0.1

0.2

x(t)
v(
t)

Phase plot, 50 seconds, case(3)

lam = 0.5;
x = (1 + lam*t) Exp[-lam t];
y = lam*Exp[-lam t] - lam*(1 + lam t) Exp[- lam t]
ParametricPlot[{x, y}, {t, 0, 30}, Frame -> True,
GridLines -> Automatic, GridLinesStyle -> LightGray,
FrameLabel -> {{"v(t)", None}, {"x(t)",

"Phase plot, 50 seconds, case(3)"}}, Epilog -> Disk[{1, 0}, .02],
ImageSize -> 500, PlotRange -> {{-.3, 1.2}, {-.3, .2}},
PlotTheme -> "Classic"]

0.5 Problem 5

3. (10 points)
A rod of length L rotates in a plane with a constant angular velocity ω about an axis fixed
at one end of the rod and perpendicular to the plane of rotation. A bead of mass m is
initially at the stationary end of the rod. It is given a slight push so that its initial speed
along the rod is ωL. Find the time it takes the bead to reach the other end of the rod.

4. (10 points)
Consider a harmonic oscillator with ω0 = 0.5 s−1. Let x0 = 1.0m be the initial amplitude
at t = 0 and assume that the oscillator is released with zero initial velocity. Use a computer
to plot the phase-space plot (ẋ versus x) for the following damping coefficients λ.
(1) λ = 0.05 s−1 (weak damping)
(2) λ = 0.25 s−1 (strong damping)
(3) λ = ω0 (critical damping).

5. (15 points)
A damped harmonic oscillator has a period of free oscillation (with no damping) of T0 =
1.0 s. The oscillator is initially displaced by an amount x0 = 0.1m and released with zero
initial velocity.
(1) Consider the case that the oscillator is critically damped. Determine the displacement
x as a function of time and use a computer program to plot x(t) for 0 ≤ t ≤ 2 s.
(2) Now consider the case that the system is overdamped. Determine the displacement
as a function of time and use a computer program to plot x(t) for damping coefficients
(i) λ = 2.2 πs−1, (ii) λ = 4 πs−1, and (iii) λ = 10 πs−1 for 0 ≤ t ≤ 2 s. Compare to the
critically damped case.
(3) Now consider the case that the system is underdamped. Determine the displacement
as a function of time and use a computer program to plot x(t) for damping coefficients (i)
λ = 5.0 s−1, (ii) λ = 1.0 s−1, and (iii) λ = 0.1 s−1 for 0 ≤ t ≤ 2 s. Compare to the critically
damped case.

SOLUTION:

Since 𝜔0 =
2𝜋
𝑇0
, then 𝜔0 =

2𝜋
1 = 2𝜋.
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0.5.1 Part (1)

For critical damping 𝜆 = 𝜔0 and the solution is

𝑥 (𝑡) = (𝐴 + 𝐵𝑡) 𝑒−𝜆𝑡 (1)

𝑥̇ (𝑡) = 𝐵𝑒−𝜆𝑡 − 𝜆 (𝐴 + 𝐵𝑡) 𝑒−𝜆𝑡 (2)

Initial conditions are now used to find 𝐴,𝐵. At 𝑡 = 0, 𝑥 (0) = 𝑥0 = 0.1. From (1) we obtain

𝑥0 = 𝐴

And since 𝑥̇ (0) = 0, then from (2)

0 = 𝐵 − 𝜆𝐴
𝐵 = 𝜆𝐴
= 𝜆𝑥0

Putting values found for 𝐴,𝐵, back into (1) gives

𝑥 (𝑡) = (𝑥0 + 𝜆𝑥0𝑡) 𝑒−𝜆𝑡

Since this is critical damping, then 𝜆 = 𝜔0 = 2𝜋, hence

𝑥 (𝑡) = (𝑥0 + 2𝜋𝑥0𝑡) 𝑒−2𝜋𝑡

Finally, since 𝑥0 = 0.1 meter, then

𝑥 (𝑡) = �
1
10
+
2𝜋
10
𝑡� 𝑒−2𝜋𝑡

A plot of the above for 0 ≤ 𝑡 ≤ 2𝑠 is given below

Out[179]=

0.0 0.5 1.0 1.5 2.0

0.00

0.02

0.04

0.06

0.08

0.10

time (sec)

x(
t)

Part(1) critical damped

0.5.2 Part(2)

For overdamped, 𝜆 > 𝜔0 the two roots of the characteristic polynomial are real, hence no
oscillation occur. The solution is given by

𝑥 (𝑡) = 𝐴𝑒
�−𝜆+�𝜆2−𝜔2

0�𝑡 + 𝐵𝑒
�−𝜆−�𝜆2−𝜔2

0�𝑡 (1)
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𝐴,𝐵 are found from initial conditions. When 𝑡 = 0 the above becomes

𝑥0 = 𝐴 + 𝐵 (2)

Taking derivative of (1) gives

𝑥̇ (𝑡) = 𝐴 �−𝜆 +�𝜆
2 − 𝜔2

0� 𝑒
�−𝜆+�𝜆2−𝜔2

0�𝑡 + 𝐵 �−𝜆 − �𝜆
2 − 𝜔2

0� 𝑒
�−𝜆−�𝜆2−𝜔2

0�𝑡

At 𝑡 = 0 the above becomes

0 = �−𝜆 +�𝜆
2 − 𝜔2

0�𝐴 + �−𝜆 − �𝜆
2 − 𝜔2

0� 𝐵 (3)

We have two equations (2,3) which we solve for 𝐴,𝐵. From (2), 𝐴 = 𝑥0 − 𝐵, and (3) becomes

0 = �−𝜆 +�𝜆
2 − 𝜔2

0� (𝑥0 − 𝐵) + �−𝜆 − �𝜆
2 − 𝜔2

0� 𝐵

0 = �−𝜆 +�𝜆
2 − 𝜔2

0� 𝑥0 − 𝐵 �−𝜆 +�𝜆
2 − 𝜔2

0� + �−𝜆 − �𝜆
2 − 𝜔2

0� 𝐵

0 = �−𝜆 +�𝜆
2 − 𝜔2

0� 𝑥0 − 2𝐵�𝜆
2 − 𝜔2

0

𝐵 =
�−𝜆 +�𝜆

2 − 𝜔2
0� 𝑥0

2�𝜆
2 − 𝜔2

0

(4)

Using 𝐵 found in (4) then (3) now gives 𝐴 as

𝐴 = 𝑥0 − 𝐵

= 𝑥0 −
�−𝜆 +�𝜆

2 − 𝜔2
0� 𝑥0

2�𝜆
2 − 𝜔2

0

= 𝑥0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −

�−𝜆 +�𝜆
2 − 𝜔2

0�

2�𝜆
2 − 𝜔2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑥0

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝜆 + �𝜆
2 − 𝜔2

0

2�𝜆
2 − 𝜔2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Hence the complete solution from (1) becomes

𝑥 (𝑡) = 𝑥0

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝜆 + �𝜆
2 − 𝜔2

0

2�𝜆
2 − 𝜔2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
𝑒
�−𝜆+�𝜆2−𝜔2

0�𝑡 + 𝑥0

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−𝜆 +�𝜆
2 − 𝜔2

0

2�𝜆
2 − 𝜔2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
𝑒
�−𝜆−�𝜆2−𝜔2

0�𝑡 (5)

The above is now used for each case below to plot the solution..
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case (i)

𝜆 = 2.2𝜋,𝜔0 = 2𝜋, 𝑥0 = 0.1, hence (5) becomes

𝑥 (𝑡) = 0.1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2.2𝜋 + �(2.2𝜋)
2 − (2𝜋)2

2�(2.2𝜋)
2 − (2𝜋)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
𝑒
�−2.2𝜋+�(2.2𝜋)2−(2𝜋)2�𝑡

+ 0.1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2.2𝜋 + �(2.2𝜋)
2 − (2𝜋)2

2�(2.2𝜋)
2 − (2𝜋)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
𝑒
�−2.2𝜋−�(2.2𝜋)2−(2𝜋)2�𝑡

= 0.17𝑒−4.032 2𝑡 − 0.07 𝑒−9.791𝑡

A plot of the above for 0 ≤ 𝑡 ≤ 2𝑠 is given below

Out[297]=

0.0 0.5 1.0 1.5 2.0

0.00
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0.04

0.06

0.08

0.10

time (sec)

x(
t)

Part(2.1) overdamped, λ=2.2 π

case (ii)

𝜆 = 4𝜋,𝜔0 = 2𝜋, 𝑥0 = 0.1, hence (5) becomes

𝑥 (𝑡) = 0.1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4𝜋 + �(4𝜋)
2 − (2𝜋)2

2�(4𝜋)
2 − (2𝜋)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
𝑒
�−4𝜋+�(4𝜋)2−(2𝜋)2�𝑡

+ 0.1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−4𝜋 +�(4𝜋)
2 − (2𝜋)2

2�(4𝜋)
2 − (2𝜋)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
𝑒
�−4𝜋−�(4𝜋)2−(2𝜋)2�𝑡

= 0.1077𝑒−1.6836𝑡 − 0.00774𝑒−23.449𝑡

A plot of the above for 0 ≤ 𝑡 ≤ 2𝑠 is given below
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Out[310]=
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Part(2.2) overdamped, λ=4 π

case (iii)

𝜆 = 10𝜋,𝜔0 = 2𝜋, 𝑥0 = 0.1, hence (5) becomes

𝑥 (𝑡) = 0.1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

10𝜋 + �(10𝜋)
2 − (2𝜋)2

2�(10𝜋)
2 − (2𝜋)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
𝑒
�−10𝜋+�(10𝜋)2−(2𝜋)2�𝑡

+ 0.1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−10𝜋 +�(10𝜋)
2 − (2𝜋)2

2�(10𝜋)
2 − (2𝜋)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
𝑒
�−10𝜋−�(10𝜋)2−(2𝜋)2�𝑡

= 0.101 𝑒−0.634 73𝑡 − 0.001034𝑒−62.197𝑡

A plot of the above for 0 ≤ 𝑡 ≤ 2𝑠 is given below

Out[314]=
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Part(2.3) overdamped, λ=10 π

To compare to the critical damped case, the above three plots are plotted on the same figure
against the critical damped case in order to get a better picture and be able to compare the
results
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critical 

damping

2.2 pi

4 pi

10 pi

increased damping

0.0 0.5 1.0 1.5 2.0

0.00
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0.10

time (sec)

x(
t)

Comparing critical damped response to overdamped

From the above we see that critical damping has the fastest decay of the response 𝑥 (𝑡). As
the damping increases, it takes longer for the response to decay.

0.5.3 Part(3)

For the underdamped case, the solution is given by

𝑥 (𝑡) = 𝑒−𝜆𝑡 (𝐴 cos𝜔𝑑𝑡 + 𝐵 sin𝜔𝑑𝑡) (1)

Where 𝜔𝑑 = �𝜔
2
0 − 𝜆2 and 𝐴,𝐵 are constant of integration that can be found from initial

conditions. And

𝑥̇ (𝑡) = −𝜆𝑒−𝜆𝑡 (𝐴 cos𝜔𝑑𝑡 + 𝐵 sin𝜔𝑑𝑡) + 𝑒−𝜆𝑡 (−𝐴𝜔𝑑 sin𝜔𝑑𝑡 + 𝐵𝜔𝑑 cos𝜔𝑑𝑡) (2)

Applying initial conditions 𝑥 (0) = 𝑥0 then (1) becomes

𝑥0 = 𝐴

Applying initial conditions 𝑥̇ (0) = 0 then (2) becomes

0 = −𝜆𝑥0 + 𝐵𝜔𝑑

𝐵 =
𝜆𝑥0
𝜔𝑑

Replacing 𝐴,𝐵 back into the solution (1) gives the solution

𝑥 (𝑡) = 𝑒−𝜆𝑡 �𝑥0 cos𝜔𝑑𝑡 +
𝜆𝑥0
𝜔𝑑

sin𝜔𝑑𝑡� (3)

We now use the above solution for the rest of the problem
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case(i)

𝜆 = 5𝑠−1, 𝜔0 = 2𝜋, 𝑥0 = 0.1, hence 𝜔𝑑 = �𝜔
2
0 − 𝜆2 = �(2𝜋)

2 − 52 = 3.8051 and (3) becomes

𝑥 (𝑡) = 𝑒−5𝑡 �0.1 cos (3.8051𝑡) +
(5) (0.1)
3.8051

sin (3.8051𝑡)�

= 𝑒−5𝑡 (0.1 cos (3.8051𝑡) + 0.1314 sin (3.8051𝑡))
A plot of the above solution 𝑥 (𝑡) for 0 ≤ 𝑡 ≤ 2𝑠 is given below
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Part(3.1) underdamped, λ=5 per sec

case(ii)

𝜆 = 1𝑠−1, 𝜔0 = 2𝜋, 𝑥0 = 0.1, hence 𝜔𝑑 = �𝜔
2
0 − 𝜆2 = �(2𝜋)

2 − 12 = 6.2031 and (3) becomes

𝑥 (𝑡) = 𝑒−𝑡 �0.1 cos (6.2031𝑡) +
(1) (0.1)
6.2031

sin (6.2031𝑡)�

= 𝑒−𝑡 (0.1 cos (6.2031𝑡) + 0.016 sin (6.2031𝑡))
A plot of the above solution 𝑥 (𝑡) for 0 ≤ 𝑡 ≤ 2𝑠 is given below
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Part(3.2) underdamped, λ=1 per sec

case(iii)

𝜆 = 0.1𝑠−1, 𝜔0 = 2𝜋, 𝑥0 = 0.1, hence 𝜔𝑑 = �𝜔
2
0 − 𝜆2 = �(2𝜋)

2 − 0.12 = 6.2824 and (3) becomes

𝑥 (𝑡) = 𝑒−0.1𝑡 �0.1 cos (6.2824𝑡) +
(0.1) (0.1)
6.2824

sin (6.2824𝑡)�

= 𝑒−0.1𝑡 (0.1 cos (6.2824𝑡) + 0.001592 sin (6.2824𝑡))
A plot of the above solution 𝑥 (𝑡) for 0 ≤ 𝑡 ≤ 2𝑠 is given below
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Part(3.3) underdamped, λ=0.1 per sec

To compare to the critical damped case, the above 3 plots are now plotted on the same figure
against the critical damped case in order to get a better picture and be able to compare the
results



23

decreased damping
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Comparing critical damped response to underdamped

As the damping becomes smaller, more oscillation occur. The case for 𝜆 = 5𝑠−1 had the
smallest oscillation.


	Problem 1
	part(1)
	part(2)
	Part(3)
	Part(4)

	Problem 2
	Problem 3
	SOLUTION method one
	another solution

	Problem 4
	case (1)
	case (2)
	case(3)

	Problem 5
	Part (1)
	Part(2)
	Part(3)


