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Chapter 1

Introduction

Took this course in Fall 2015.
Instructor: professor (B Ross Barmish| Office Hours: Wednesday 1:00-2:30 PM



http://directory.engr.wisc.edu/ece/Faculty/Barmish_B/

1.1. Syllabus CHAPTER 1. INTRODUCTION

1.1 Syllabus

ECE 332 — Handout Organization

e Course Organization

Lectures: B. R. Barmish (3613 Engineering Hall)
E-mail: barmish@engr.wisc.edu

Office Hours: Wednesday 1:00-2:30 PM

e No Official Course Textbook
I will draw on material from the following textbooks on Reserve:

B. C. Kuo and F. Golnaraghi, Automatic Control Systems, John Wiley
and Sons, Ninth Edition, New York.

R. C. Dorf and R. H. Bishop, Modern Control Systems, Prentice Hall,
Eleventh Edition, New York.

J. J. DiStefano, A. R. Stubberud and I. J. Williams, Feedback and Control
Systems, Schaum’s Outline Series, McGraw-Hill, New York.

Given the classical nature of the material, there are also hundreds of
sources on the web providing coverage of the ECE 332 topics with many
illustrative examples demonstrating the theory covered in class.

e Course Grading Components

Test 1: 25%; Tuesday, September 29, 2015

Test 2: 30%; Thursday, November 12, 2015

Test 3: 35%; Thursday, December 10, 2015
Homework: 10% (Total of 7-10 Assignments)
Instructor Discretion: Maximum 10% in any category

e Cancellations and Makeup Classes

No lectures on Thursday October 1, Tuesday November 3 and Tuesday
December 15; no office hours on Wednesday September 30.

Makeup or Review Classes: Scheduled for 6 PM on Wednesday Septem-
ber 23, Wednesday November 18 and Wednesday December 9.

e Additional Points

Course Announcements: via e-mail

Homework: E = excellent; S = satisfactory; U = unsatisfactory
Matlab/Simulink: Both used heavily in course
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1.1. Syllabus CHAPTER 1. INTRODUCTION

ECE 332 — Handout Overview

Catalog Data: Modelling of continuous systems; computer-aided solu-
tion to systems problems; feedback control systems; stability, frequency
response and transient response using root locus; frequency domain and
state variable methods.

Prerequisites: ECE 330 or consent of instructor.

No Required Textbook: I have a number of books on reserve. In
previous offerings of this course, I have used:

B. C. Kuo and F. Golnaraghi Automatic Control Systems, John Wiley
and Sons.

Instructor: Professor B. Ross Barmish, ECE Department

Goals: This junior/senior level course develops the fundamentals associ-
ated with the analysis, design and simulation of automatic control systems.

Prerequisites by Topic:

1. Linear differential equations with constant coefficients

2. Laplace transforms and transfer functions for linear systems

3. Elementary matrix manipulations (such as determinant and inverse)
4. Adequate familiarity with computers and use of various packages; the
specific package used in this course is Matlab/Simulink

Topics:

Modelling of dynamic systems in a control context

Block diagrams, signal flow graphs and Mason’s Rule

Feedback in a sensitivity, linearization, disturbance context
Steady state behavior of feedback systems

Time response with emphasis on second order systems

Stability analysis: criteria of Routh, Nyquist and Kharitonov
The root locus and its variants

Frequency response: Bode analysis of feedback systems

. Compensator design methods: PID, lead/lag and root locus methods
10. Closed loop considerations: frequency response and Nichol’s plot

© 0N oW

Computer Usage:
Extensive use of Simulink and Matlab on weekly homework
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Chapter 2

Class notes

2.1 Summary table

These are my notes taken during lectures. Any errors in these notes, then all blames to me
and not to the instructor.

date day event Topic

1. Sept 3, 2015 Thursday | First class Introduction, Laplace transforms

2. Sept 8, 2015 Tuesday Closed loop and Simulink review

3. Sept 10, 2015 | Thursday | HW 1 Steady state and transient responses, differ-
ent feedback loops

4. Sept 15, 2015 | Tuesday Performance specs, steady state error

5. Sept 17, 2015 | Thursday MIMO matrix of transfer functions, MIMO
in a feedback loop.

6. Sept 22, 2015 | Tuesday HW 2 Armature controlled DC motor with
MIMO Example. signal graph

7. Sept 23, 2015 | Wednesday | make up Start of signal graph and Mason rule. Ma-
son gain

8. Sept 24, 2015 | Thursday HW3 Mason example, benefits of feedback, non-
linear systems

9. Sept 29, 2015 | Tuesday Exam 1 First exam

10. Oct. 1, 2015 | Thursday | No class

11. Oct. 6, 2015 | Tuesday Sensitivity Sensitivity of transfer function with change
of parameters

12. Oct. 8, 2015 | Thursday | Noise rejection Design controls to reject noise and distur-
bances using feedback

13. Oct. 13, 2015 | Tuesday HW4. Second order Noise rejection, second order systems, dom-

inant pole method




2.1.

Summary table

CHAPTER 2. CLASS NOTES

14. Oct. 15, 2015 | Thursday | Second order More second order, Overshoot and reso-
nance calculations.

15. Oct 20, 2015 | Tuesday Design for k Feedback using user specified time specs
for response

16. Oct 22, 2015 | Thursday | Stability/Ruth Routh stability table examples, stability, ex-
amples

17. Oct 27, 2015 | Tuesday Root Locus Starting on root locus, how K affect poles
locations

18. Oct 29, 2015 | Thursday Root Locus More root locus, more lemmas, up to
lemma 4

19. Nov. 3, 2015 | Tuesday No lecture

20. Nov 5, 2915 | Thursday | Root Locus Finished Root Locus, all 9 lemmas. Exam-
ples given

21. Nov 10, 2015 | Tuesday Extension Root Locus | Review mid term 2, started extension root
locus (will be on final)

22. Nov 12, 2015 | Thursday | Exam 2 Hard exam

23. Nov 17, 2015 | Tuesday Starting Nyquist Started Nyquist. What it does and how to
make Nyquist path

24. Nov 19, 2015 | Thursday | More Nyquist More Nyquist. 2 examples. Handout given

25. Nov 24, 2015 | Tuesday More Nyquist More Nyquist. Using for stability, gain and
phase margins

26. Nov 26, 2015 | Thursday | thanks giving No class

27. Dec 1, 2015 | Tuesday Starting Bode Start Bode frequency analysis

28. Dec 4, 2015 | Thursday | More Bode More Bode analysis and examples

29. Dec 8,2015 Tuesday Bode gain and phase | Effects of delay on Bode, gain and phase
margins.

30. Dec 10,2015 | Thursday | Final exam Finals




2.2. Lecture 1, Thursday Sept. 3, 2015 CHAPTER 2. CLASS NOTES

2.2 Lecture 1, Thursday Sept. 3, 2015

Introduction to Laplace transform, handouts, syllabus overview



2.3. Lecture 2, Tuesday Sept. 8, 2015, ... CHAPTER 2. CLASS NOTES

2.3 Lecture 2, Tuesday Sept. 8, 2015, Closed loop and
Simulink review

Discussion on Laplace transform. We want to be able to switch from ¢ to s domain and
back. For tough ones, use tables. In Matlab use syms. Examples shown how to use syms in
Matlab and obtain the Laplace and inverse Laplace transforms. Use of expand and simplify
commands.

Closed loop can be used to improve performance. An example given of a mass spring
damper. Steps of solution

1. Model the system

2. Convert to Laplace domain

3. analyze in Laplace domain

4. Convert result to time domain

Control engineers need a model to analyze. Example is mx” +cx’ + kx = u (). We can always
find transfer function TF assuming system is at rest initially. Need to know basic relation

k
,7% = sKY (s) assuming all initial conditions are zero. Back to the above equation. Take

Laplace transform we obtain
_Y(s) 1

G = U(s) ms2+cs+k

(1)

We see if the open loop does what we want. If it does, no need for feedback. If open loop
response is not good, then we use feedback to improve the response.
Behavior of open loop: Let u(t) =1 (unit step). What is y (#)? From (1)
Y(s) = G(s)U(s)

But A1} = % then the above becomes

1 1
ms? +cs+ks
To get y (t) we need to inverse Laplace the above. Let m =1,c =10,k =1 then

1 1
y(H) =" {— }

2+10s+1s

Y(s) =

There are 3 possibility of behavior of this system depending on roots of the denominator.
Real roots implies y () involves only exponential. If the roots are complex, the result contain
harmonics. The over solution will look like e=? cos (---).

Reader: For the above example, find y (t) for ¢ = 1,c = 10. Use partial fractions to find the
inverse Laplace transform, then sketch y (t) for each.

Now overview was given on using Simulink. Examples of using basic blocks explained.

Classical responses of system shown.



2.4. Lecture 3, Thursday Sept. 10, 2015, ... CHAPTER 2. CLASS NOTES

2.4 Lecture 3, Thursday Sept. 10, 2015, Steady state and

transient responses

Open loop vs. closed loop. In closed loop we add a controller to obtain desired response.

error signal

\ feed forward path
R(s) E(s) U(s
% H{(s) G(s) >Y (s)
controller plant

Another possibility is to put the controller in the feedback path

error signal

R(s) T \E(s)
D > G(s) >Y(s)

plant

H{(s)

controller

feed back path

Now we will find the closed loop TF for the feed forward path configuration.

Y (s) = E(s)H(s) G(s)
E(s) =R(s)-Y(s)
Substituting the second equation in the first gives
Y(s) = (R(s) = Y(s) H(s) G (s)
=R(s)H(S)G(s) =Y (s)H (s) G(s)
Hence
Y(s)(L+H(s)G(s)) =R(s)H(s) G (s)
Y(s) _ H()G(s)
R(s) 1+H(@s)G(s)

Y(s)

Reader: Do the above for the feedback path configuration. We should get —

G(s)

R(s) — 1+H(s)G(s)

Reader: For the feedforward case, find the error transfer function %

Working with the feedforward case. E = R—Y. We want E = 0 for tracking. Most common

choices of H(s) are

1. H =k a constant. Called proportional or pure gain.

9



2.4. Lecture 3, Thursday Sept. 10, 2015, ... CHAPTER 2. CLASS NOTES

2. H=k + ks—z The second term is an integrator. This is called PI controller.

3. H=1k + k2 sks. This is called PID. Note that s is derivative. So if there is lots of
noise in the E signal, this will cause problems since derivative of noise generated large
signal (large actuating signal). So it is safe to use an integrator, but not always save
to use derivative, unless we know that the error signal will always be smooth.

For example, let G (s) = ﬁ with a unit step (%) input. Then in the openloop, Y (s) = ﬁ% or
y(t) = % - %e‘Zt. Now we close the loop, using the feedforward configuration and add a pure
gain controller k. Hence

Y HG
R 1+HG
1
_ "
1
1+ kﬁ
_ k
s+ (2+k)
Now R (s) = %, hence
1 k
Y(E)= ————
) ss+(2+k)
And
steady state response ~ transient response
k k
f) = _ — —t(k+2)
y(#) K+ 0 P 23

By design, we want y () to track  (t) which is unit step in this case. Also we want the transient
response to go away quickly. In this example, only when k very large do we approach a
steady state close to one. But in practice having very large gain is not good due to sensitivity
problems. (will talk about sensitivity later in the course). Also large k might lead to actuating
signal that can not be satisfied. Note also, no matter how large k is, we can’t obtain perfect
tracking. Some application might require perfect tracking.

Reader: Redo the analysis above using integrator only controller. i.e. H(s) = é and see if
y () will now track the input at steady state.

Final value theorem: Suppose F(s) = % is stable, then

lim f (t) = limsF (s)
t—oo s—0

10



2.5. Lecture 4, Tuesday Sept. 15, 2015, ... CHAPTER 2. CLASS NOTES

2.5 Lecture 4, Tuesday Sept. 15, 2015, Performance
specs, steady state error

Watch today for email on HW1 solution and HWZ2. See this you tube on steady state error
PP

Today we will spend more time on final value theorem. Then talk about typical specs for
control system.

F.V.T. is important for tracking. Given F (s), does f (f) have a final value? ie. does lim,_,, f ()
exist? Sometimes infinity is allowed as final value. But many times we do not have a final
value, such as for period signals such as cos ().

When can we apply F.V.T. ? In practice, F (s) should be stable. This means the poles should
be in the left half plane. But we allow one pole to be at the origin. Example ﬁ & ¢'. How

about ﬁ%? Final value still exist.

Reader Consider F(s) = Slzi

When F (s) is stable, then lim;_,, f (t) = lim,_,qsF(s).

Specification of control system: Consider classical response

y()

I
I
I
I
I
1

Ptime

rise tllme settling time

Some specifications are settling time, and rise time (time to go from 10% to 90% of the step
input) and amount of overshoot. Other specifications are given in terms of damping and
sensitivity and steady state error. Steady state error is important and we will talk more about
it today.

How to measure quality of tracking? Study E (s). What steady state error we accept depends

. s . . E() 1
on the application. The error transfer function is X6~ HECE"

Now consider a step input,

1
hence R (s) = " and the error becomes

1 1

N Y TS Yel)

11



2.5. Lecture 4, Tuesday Sept. 15, 2015, ... CHAPTER 2. CLASS NOTES

Assuming F.V.T. applies (i.e. E (s) is stable) then
lim e (¢) = lim sE (s)
t—o0 s—0
T N1+HG) GE)
B 1
T 1+H©O)G(0)
Example, if G(s) =

1
1+H(0)G(0)

% in it as a factor. This means an integrator. Hence an integrator in H (s) guarantees that
error goes to zero when the input is step.

. 4 .. .
T then lim,_, e(t) = S which is not good. We want this to be zero.

So for to be zero, we want H (0) G (0) to be very large. This means H (s) should have

1

Reader For the mass spring damper, G = ———

design H (s) leading to zero steady state

k.
error for step command. Use S in H(s).

What if the input is ramp? which is Slz? Then

1 1

21+ H(s)G(s)

lim e (t) = lim sE (s)

t—o0 s—0

I 1 1
=lim-——7+———

s—0s1 +H(S)G(S)
i 1

=lim ————
s—0 sH (S) G (S)

E(s) =

So now we need H (s) to have 512 factor in it, so that it becomes very large at s = 0 and cause

the error to go to zero. This means 2 integrator in series. This means to track r(t) = t* we
need k + 1 integrators in H (s) to get zero error at steady state.

Finally for any signal r(t) = 21‘20 a;t', we need k + 1 integrators, since the largest term is the
only term that needs to be satisfied, due to linearity of the system. So given a complicated
polynomial, we look at the largest power and this tells us how many integrators we need for
zero steady state error.

12



2.6. Lecture 5, Thursday Sept. 17, 2015, ... CHAPTER 2. CLASS NOTES

2.6 Lecture 5, Thursday Sept. 17, 2015, MIMO matrix
of transfer functions

Today lecture on more complicated systems. So far we talked about SISO in the most
common configuration

error signal

\ feed forward path
R(s) E(s) U(s
% H(s) G(s) >Y(s)
controller plant

But systems come in more complicated forms. We need to reformulate complicated systems
this the above common configuration form to be able to analyze them. There can be multiple
inputs and multiple outputs as well, more blocks, loops, etc.. To illustrate, given this system

b N
Hy(s)G(s)(R(s) — Hy(s)Y (s))

How to find %? We can go to first principles. Use signal analysis. The goal is to find i

R(s)
without all the intermediate variables. i.e we want % to be a function of only the shown

blocks transfer functions Hy, H,, H3, G. Hence
Y = H, (R - HyY) + H;G (R - H3Y)
Solve for Y in terms of R from the above
Y = H,R - HoH;Y + H;GR - H,GH,Y
Y (1 + H,H3 + H{H3G) = R(H, + H;G)

Hence
Y  Hy+HG
R~ 1+ H,H; + H{H;G
H, + H,G

" 1+ Hy (H, + H,G)
But for more complicated systems, with more loops and inner blocks, this process can

become more complicated and one can make mistakes. We need a more systematic way.
Next lecture we will look at Mason formula to do the above.

For the rest of the lecture we will look at multiple input, multiple output (MIMO). Motivation
example, is an electric circuit with say 2 input ports (voltages V3, V;) and 2 output ports,

13



2.6. Lecture 5, Thursday Sept. 17, 2015, ... CHAPTER 2. CLASS NOTES

way V3, Vy. In block diagram we draw

% 4>Y1 (S)
G(s)

UQ(S)

—> 4>Y2(3)

In the above G (s) will now be a matrix of G;;(s) transfer functions. The above is the open
loop block diagram of a 2 input/2 outputs system. Internally, there can be cross coupling.
Meaning, one input can affect all of some of the other outputs. Like this

%—: ——————— :4>Y1(5)
Ua(s)
o N > YQ(S)
G(s)

So we need a transfer function G;; (s) from each input U; to each output V;. So need a total
of 4 transfer functions in this case.

(Yl <s>] _ (Gu () Gi (s))
Y> (s) Ga1 () Gna(9)

Y1 (s) = Gyq () Uy (8) + Gra (8) Uz ()
Y2 (s) = Gy () Uy (8) + Goz () Uz (s)
Suppose we want to find Gy, (s) only. How to do this?
"o
Ui (s) Up=0

In practice, this is done by shorting the input U, (i.e making the input U, zero) and then
supplying the input U; only and then measuring the output at port Y.

Uy (s)
Uy (s)

Expanding

Gi1(s) =

Reader Create transfer function model for this circuit

(OF}
Ry

14



2.6. Lecture 5, Thursday Sept. 17, 2015, ... CHAPTER 2. CLASS NOTES

In the above, there are 2 input voltages U,, U, and 2 outputs Y, Y,. Notice in the above we
can not use the impedance method and use the voltage divider as in the first problem in
HW1. We need to setup 2 loop equations and solve. Another possibility is to short U; and
then solve the circuit without U; and then short U, input and then solve the circuit again.

Reader solution

We first set up the 2 loops, and obtain these 2 equations

1 1
ul—uzzll R1+a —Izg

1 1
Ozlz(a'i‘LS'f'Rz)—Ila

And the output equations are

1
Y=, -1,) —
1=(h 2)Cs
Y, = LR,

Solving (1,2) for I, I, gives

1+ Cs(Ry + Ls) (uq — uyp)

Ry +Ls+Ry(1+Cs(Ry+ Ls))
Uy —Up

I, =
27 R, +Ls+ R, (1 + Cs (R, + Ls))

1

Using these in the output equations gives

3 1+ Cs(Ry + Ls) (ug — uyp) _ Uy — Uy 1
V" \R,+Ls+ R, (1 +Cs(Ry + Ls)) Ry, +Ls+R;(1+Cs(R,+Ls))/ Cs
Y, = h R

27 Ry+Ls+R; (1+Cs(Ry +Ls)) 2

These can be written in matrix form as

Ry+Ls Ry+Ls
[YlJ _ [ R+ Ls+ Ry L+ Co(Ry+L) R2+Ls+R1(112+Cs(R2+Ls))J (“1]
2 2

Y u
2 Ry+Ls+Ry(1+Cs(Ry+Ls))  Ro+Ls+R;(1+Cs(Ry+Ls)) ) \ 2

More generally, given m inputs and r outputs then

rx1 rxm mx1
—_ —_— =

Y =G U

15
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2.6. Lecture 5, Thursday Sept. 17, 2015, ... CHAPTER 2. CLASS NOTES

So G is an r X m matrix.
Y; ()

KATI®

Uy=0 for k#j
Now we are ready to take a MIMO open loop block and imbed it in a feedback loop as we

did with SISO. The process is the same, but now we have to be careful with order since
these are now matrices and not scalars. Given the system

m X 1
G(s rxl1
U(s)——p G) Y (s)
7 rXm \
7 \
¥ 1
This is multi-line input This is multi-line output

Now we want to add a controller as before. Hence we obtain

Input signals

R(Sgrxl

EH(S)mXT— S — G(S)rxm_ - —

controller plant

feedback with MIMO system

Say we want Y; to track input R;. So now we want the closed loop transfer function as we
did with SISO, but now we have to do it using vectors and matrices. So order is important.
As before we write

closed loop T.F. matrix
Y(s)= (I+G(s)H () G(s)H(s)R(s)

In the above, the closed loop transfer function is (I + G(s) H (s))_1 where [ is the identity
matrix or size r X r

Y(s) = (I + G(s) H(s)) G(s)H(s) R(s)
, 1 2 2 -1 , »
Example, given G (s) =| , i LH(s) = 5 1 find closed loop transfer function (I + GH) ~ GH
= 3 :

First,

i

1 -2 -1
GH = i _3 1
s+1 s



2.6. Lecture 5, Thursday Sept. 17, 2015, ...

CHAPTER 2. CLASS NOTES

Then

3
_ 1 0) (-2-2
(I+GH)1GH:[ )+(_i_3

s+1

01
3

§°+s

1

1 - 3 1
1 2 4 3 1 2
s s+1 s+1 s s+1

— _4s3+1§Jsz— 5—4
35°+7s

" 43+10s2—25-4
1

— 2(—253—5sz+s+2)

_l2

1

_B3_ 2 _3_ 1_
453+10s2-25—4 ( 878"+ +1)][ s 2 s2 1 ]

352475

3 2 1
(—55 —-10s +s+4) —5(5—1) 5

27 —2s3-5524542

% (-55° ~ 105> +5 + 4)

253 -552+5+2

Verify using Matlab syms.

4 1 2

s2+4s+3

3 2)
(35 +7s 453+10s2-25—4

s+1 s s+1
(s+1)2
—253-552+5+2
1 3s3+652-55—4
2 —253-552+45+2

— (=1 +1) ]

12 1(r3 2
—>s2(3s +7) > (35% + 652~ 55 - 4)

17



2.7. Lecture 6, Tuesday Sept. 22, 2015, ... CHAPTER 2. CLASS NOTES

2.7 Lecture 6, Tuesday Sept. 22, 2015, Armature
controlled DC motor with MIMO

Reminder, class tomorrow at 6 pm. No class Oct. 1, 2015. Test on sept 29. Exam everything
up to and including MIMO.

Consolidating example We will cover main points in class so far, from modeling, to finding
T.F. to building block diagrams and MIMO. The example is to model Armature controlled
DC motor. From physical system to differential equations.

independently applied field current

back emf T1(s)

> r arm a@d torque

Applying kirchoff voltage rule on the circuit gives

Ji
Va(®) = Raig + Ly + Ky (1)
Where k@ is the backemf voltage induced by the rotating arm and w is the angular velocity

de

— of the motor arm. In addition, we have a mechanical relation between the applied torque

t; and i,

dw )
JE = kpi, — 11 (2)

Finally

tp = ki, (3)

The above are the three equations needed. Let k; = k, = k,,. Taking Laplace transform of
each gives

18



2.7. Lecture 6, Tuesday Sept. 22, 2015, ... CHAPTER 2. CLASS NOTES

V,(s) =R,1,(s) +sL,I,(s) + sk,,0 (s) (1A)
sJW (s) = kpl, () = T () (2A)
Tp (s) = k1, (s) (3A)

Notice that W(s) is the Laplace transform of w and that w = Z—? or W(s) = s0(s), hence

@ = 0(s). Now we build the block diagram from the above three equations. The input is

V,(s) and the output is O (s). From the above we find
V,(s)—k,W(s)
I — a m
«(8) R, +sL
kaa (S) - TL (S)
Js

W(s) =

And the block diagram is

6(s)
Va(s)”
step input. Does it go to one? Note, every RLC circuit is stable circuit. Called passive circuit.

Reader: Find the transfer function Consider step input. Find steady state 0 (co) for

Reader answer

I get this
E = R (s) — s6k,,
km - kL
=E - -
0=t ((Ra L) 7] )
Hence
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_ km B kL
LU i)

) k, —k K, —k
B=Rée) ((Ra +5) 52]) 5k ((Ra +30) s2J)

km - kL km - kL
0 (1 + sk ((Ra +sl) 52])) =R ((Rﬂ +sl) 52])
o)

0(s) (Ry+sL)s?]

ROy kin ((RI:T;;LSZJ)
_ km B kL
2] (R, + sL) + sk, (k,, — k1)
~ k, —k;
~ S3JL + s2JR, + sk2, — sk, k.
— (km B kL) 1

]L 3 2 R, k%l_kka
s +stp s T

What if we have another output of interest? say I, (s) as output? And what if we have another
input, a disturbance d (t) as shown

second output

—>Ya(s)
First input /
Va(s) 14(s) /

+ T1(s) 1] W(s) |1
— qul-Ra . < > Js hd

+

D(s) Disturbance (second input)

0(s) = Y1 (s)

First output

Reader Find the MIMO transfer function

(9 (S)J _ [Tll le) [Va (S))
I, (s) Ty Ty){D(s)

Where T;; is the transfer function from V, (s) to 6 (s), and Ty, is the transfer function from
0 (s) to D (s) and T»; is the transfer function from V, (s) to I, (s) and T, is the transfer function
from D (s) to I, (s).

0(s) = T11V,(s) + T12D (s)
I,(s) = To1V, (s) + TeD (s)
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Hence
=

We now start on signal graph. First we convert block diagram to signal graph. The block
become a branch, and the variable become a node.

Then we will start on Mason rule, which uses the signal graph to obtain the transfer function.
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2.8 Lecture 7, Wednesday Sept. 23, 2015, Start of signal
graph and Mason rule

6PM lecture. Makeup lecture.
On Monday there will be extra office hrs. Exam on Tuesday.

Example. Lets say we have X;, X, as variables, and U as input and Y as output. Then given

X1+aX2:U
X, - 3X, = 3U
Y:X1 +2X2

The goal is to solve for Y in terms of U without all the variables X;, X, involved. This can
be solved of course using algebra:

>> clear all

>> syms X1 X2 U Y alpha beta
>> eql=X1l+alpha*X2==U;

>> eq2=beta*xX1-3*xX2==3x*U;

>> eq3=Y==X1+2%X2;

>> [X1,X2]=solve(eql,eq2,X1,X2)

X1 =

(3% (U + Uxalpha))/(alpha*beta + 3)
X2 =

-(3*%U - Uxbeta)/(alphaxbeta + 3)

>> subs(Y)
>> pretty(ans)

3 (U+ Ualpha) (37U - U beta) 2

alpha beta + 3 alpha beta + 3

Using Mason method, we first rewrite the equations so that the variables are on the LHS.
In the above, this becomes

Xlzu—aXz
X2=ﬁX1—2X2—3U

Next, we first set up a signal graph. Each variable becomes a node, like this
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Note: At each node, all incoming branch gains are added. We now setup the loop gains. A
loop must not visit a node more than once. There are two loops here. The gains on them
are [—aﬁ, —2]. Next, we find all the forward paths from U to Y. A forward path must not
visit same node more than once. There are 4 forward paths. The gains on each are

M; = (-3)(2) = -6
Ma = (1) (8) (2) = 28
M;=(1)(1) =1

My = (-3) (-) (1) = 3a

Now we defined Mason delta A
A=1- E loop gains + Z loop gains 2 at times — Z loop gains 3 at times ---

In the above, when looking for loop gains 2 at times, the loops must not be sharing a node.
Same for loop gains 3 at times and higher sums. In our example, this gives

A=1- E loop gains
=1-(-ap-2)
=3+ap
Finally, we define A;, which is Mason A but with the forward path M; removed from the
graph. There are 4 forward paths in this problem, so there are Aj, A, A3, A4. Each time we

remove a forward path, we find A again using the above Mason rule method. In this problem
we see that

A =1
Ay =1
Ay=1-(-2)=3
Ay =1
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Finally, we apply the Mason gain formula

Y Tl M
u- A
=01+ (28) ) + (1) (3) + Ba) (1)
B 3+ap
_a+2-3
- 3+ap

. Y .
Reader Find g for this graph

Second example. Here we take a circuit and obtain the equations, then use signal graph in
order to use Mason rule to obtain the transfer function

Ry C

) 3 n
Vout

B I I

Solving the circuit loops gives (all in Laplace domain)

(Rl + SL) 11 - IzLS - Vin (S) =0
1

(R2 + —) Iz + LSIZ - IlLS =0
Cs

Vout (S) =Ryl

Now the variables are I3, I,, so we need to have these on the LHS. To do this, do this trick:
Add I to each side of the first equation, and add I, to each side of the second equation, this
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gives
Il = (Rl + SL) Il - IZLS - Vin (S) + 11

1
12 = 12 + (R2 + a) Iz + LSIZ - IlLS

Now set up the signal graph

&=+ Ry+Ls+1

Vi I
n -1 1
o—> 70 -

Ry

1—{—R1+LS

Reader: Find % for the above.

1
Vour _ X MiA;
V., 1-Yone at time + 2 at times
_ (1) (-L3) (Ry)
1—Z(R1+Ls+1)+(é +R2+Ls+1)+Z(R1 +Ls+1)(é +R2+Ls+1)
LSRZ
1—(R1+R2+é+2Ls+2)+(R1+Ls+1)(R2+é+Ls+1)
_ LSR2
1
= (Ry +Ls) (CLs? + CRps +1)

Now we take a block diagram and convert to signal graph. Given

error signal

\ feed forward path
R(s) E(s) Uls
D H(s) G(s) ™Y (s)
controller plant
We know that Yo _ _HEGCE) and that o ___ 1 Use Mason to show the above.

R(s) ~ 1+H(s)G(s)

Reader Find g for this

R(s) ~ 1+H(s)G(s)"
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2.8.1 MIMO Practice problems

ECE 332 — Handout MIMO Practice Problems

Problem 1: A system with inputs u;,us outputs v,y and intermediate
states x1, x9 and x3 is described by the differential equations

T = w9 — T3 + uy + 3uy;
fz = —31’1 + xr3 — 4UQ;
Ty = —2T9 + Uq;
y1 = 2x1 — x3 + uy;
Yo = Ty + T2 — Ug.

For this MIMO system, find the associated open loop transfer function
matrix G(s). Express each entry of G(s) as a quotient of polynomials
with numerator and denominator factored, if possible.

Problem 2: (a) Consider a MIMO 2 x 2 controller H(s) connected in
a classical unity feedback configuration to the system G(s) in Problem 1.

With
H(s) = [fj H,

use syms in Matlab to find the closed loop transfer function matrix 7'(s).
You may wish to check your solution by calculating by hand.

(b) Is the closed loop stable? Explain.
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Hendost  MIMQ Problem Solutions

Tokecf wikh Zero nitial 0nditions
SXi(3) = Xo(5) - %5 (3) 1 Ui (5)+ 3V, ()
SXa(9) = =3X,(8) * Xs(5) - HU (5)

SX3(9 = - +U0)
Solve (algebra) and obtan wih D(s): o5t 6
Xit5) 6-513)0,65) + Bs-Hs-2)Unt9)

X.(5) = L [ (3-25U.(5) - (45+45) U, (5
26 <D(s)[© 25)06) - ]

X9 - L [(S9)U 0O *Bs+18)U0)
50 O] [(

Now Yi(s) = +2X(5) -X5(8)r Ui(5)
S Nal9) = X (9 X()- Uns)

We gow Substitote X((9) iako Y\, (s)
and after some algeb’a obtan

Y (s) = $*3 Ui (s) 2(35-n)
5?-5%6 Shs46
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Y2 (5) = SQ— 35+ o Ui(s) (53(. 51+ 1§s+8) U, ()

53f55+6 S3f55+€
-
Heace gy = 5% 3 2(35-11)
2 S-S5+ 6
S-5%6
1
$-35+6 _(53*5"”85*8)
§ 35546 Pe55+6
/ﬂ’-\ o

The CLTF matrix is
T = [T+ GIRE) 605 Higs)

Sobst. G(s), Hs), we cvn Matlah code (syms)
a0d obk a0

$%85", 15 -y hésss
T(s) = o

51 25%4108+195 40 [+ Sugsig) 25 &g
—‘g

(b) Notice denominator poly above s*4 + 28”3 + 108”2 + 195 - 40
Finding roots of this poly, use roots([1 2 10 19 -40]) in Matlab,
and observe one root is 1.15 and the rest have real part < 0
Hence system is unstable.
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2.9 Lecture 8, Thursday Sept. 24, 2015, Mason, benefits
of feedback, non-linear systems

Exam 1 on Tuesday Sept. 29, 2015. Closed book, closed notes. There will be office hours
Monday 1-3 pm.

Keywords for exam:

1. Modeling, basic circuit or spring mass damper.

2.

S

7.
8.

Block diagrams. Go from model to block diagram. Laplace and transfer function.
For example, given a mass/spring, find the ODE and use Laplace to find the
transfer function

Block diagram, open loop vs. closed loop. Classic unity feedback
Know basic Laplace and inverse Laplace
Given TF, and R (s) find Y (s)

Steady state error. Know when to use F.V.T. This is related to tracking. The more
complicated the signal, the more integrated we need. This is called the integrator
principle.

MIMO basics. Matrix transfer function. Watch out for order here.

4 or 5 questions.

Now for one more Mason problem. We use Mason any time we want to find a transfer

function. Find % for this signal graph

There are 4 forward paths from U to Y, here they are, with the associated Mason A

M = abcde, A1 =1
M, =afhe,Ay =1 -1
Mj =afcde, Az =1
M,y = abhe, Ay =1—-1i
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We need ¥ = Zo ppe K,j,i,beg, dl, fhl g, bhl h
e need ;; = = —. The loops are { ,i,1,bcg,dl, fhl g, g,fcg], ence

A=1-(k+i+j+dk+fhl g+bhl g+ fcg) + (ki +kj +ij + kdl + jbeg + jfcg) — (kif)
Hence

Z _ E?:l MiAi

u A

3 abcde (1) + afhe (1 — 1) + afcde (1) + abhe (1 — i)
1= (k+i+j+dk+fhl g+bhl g+ fcg)+ (ki +kj + ij + kdl + jbcg + jfcg) — (kif)

Next topic we will start on is the benefits of feedback. So far we talked about tracking only.
Other benefits are

1. Linearization
2. Sensitivity
3. Disturbances

We can use feedback to pre compensate a nonlinear system to make it approximately linear.
Given a non-linear device, say diode, with input U = X which represent voltage and output
Y which is nonlinear function of the input such as Y = NX can we use feedback to make the
output closed to linear?

”static” nonlinear device

U=X Y =NX

Warning: When the system is non-linear, we can not use transfer functions and can not use
Laplace. These are only for linear systems. Transfer functions and Laplace transforms are
used only when the system is linear. So how do we analyze non-linear system? We use time
domain. For example, if Y = X?

R(s) i@ > H(s) & nonlinear | V(%) »Y (s)

These are not transfer functions

Closed loop is nonlinear. We need relation between R (s) and Y (s)

There are two type of nonlinearity, saturations and dead-zone. Dead zone is an area where
the input is not yet sufficient to cause any output to be generated, it might be a threshold
for the device to start operating. Here is a typical output from a non linear device
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Reader For this open loop, if x = 2sint, sketch y(f). Another example

R — N(x)
R(s) 104, K @ =2(R = N(@))| yonlinear | V() »Y (5)
We know
Y = N(x) 1)
and
x=2(R-Y)
hence 2Y = 2R - x and
X
Y=R-Z 9
- 8

(1) and (2) must both hold. For each R input, we solve (1,2) for Y, x and plot them. For
example, for R = {0,0.1,0.2, ---} for each R (i) we solve for Y (i)

R |Y=R-
X

0 0—%

0.1 01—g

02| 02-3

For each line in the above, such as —32—6, 01- ;f, ---, we now draw this line on top of the original
Y (x) plot, and see where this line intersect with the original Y (x). The point of intersection
is the new value of Y. This is done for each entry of R, so we obtain
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Y = N(z)
X
_5\\\\9.1—%
TR
-1 "3 b AP T
Sohg !
So we obtain this table
X
R Y_R_E
0 0
0.1 0
0.2 0
big 3
: 1

Reader: calculate and obtain closed loop. We might obtain this

Y = N(z)

-1.5 —

W=

T

Ll

1.5

dead zone shrunk and linear zone extended

We see that dead zone has shrunk (good) and linear region increased (good).

Reader: Redo with k = 10. For large K we should obtain

Y = N(z)

dead zone shrunk and linear zone extended
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2.10 Lecture 9, Tuesday Sept. 29, 2015, First exam

First exam
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2.11 Lecture 10, Thursday Oct. 1, 2015, No lecture

No lecture today
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2.12 Lecture 11, Tuesday Oct. 6, 2015, Sensitivity of
transfer function

Today lecture on sensitivity. Definition of sensitivity: percentage change in magnitude of
transfer function T (s) per one percent change of parameter « in the transfer function. We
normally make this parameter be a. This could be R (resistance) or C (capacitance) and so
on. We call this ST which is read as the sensitivity of the T (s) with respect to changes in a.
Therefore
AT
SL=a-
a«
_ATa
T AaT
_dTa
T daT
We then have to evaluate S} at the nominal value of the parameter a = a. Therefore

T _dTa

X a=qy da'T a=ag

@ is given numerical value. It is meant to be the value that the parameter « fluctuate around
and will be given in the problem to use.

For example, given this circuit

+
Q R Vout

Let R be the parameter that will change and let amount of change be AR and we want to
Vout(s)
Vin(s)

find the sensitivity of change in the transfer function T (s) = to changes in R.

We know that
RCs

T =
)= T RGs
Say that R = Ry + AR where R, is the nominal value of resistance R and AR is the amount of
variation it has. Hence (1) becomes
Ry + AR)C
T(s) = (Ro ) Cs
1+ (Rg+ AR)Cs
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To find S} we let R = a and apply the definition ST = Z—Z%azao Hence
Tl a
Sl=—=
“ daT
_d [ aCs a
~ da\1+aCs) 2C
1+aCs

Assume C =1 and assume nominal value of R is 1 also. This means oy = 1. The above
becomes

T d( as ) o 5 1+as
a = a5 = 2
da \1+ as o (sa +1)° s
1

T sa+1

Evaluate at @ = @y =1 then

T 1

Tazag 541
Next step is to replace s = jw and plot the magnitude in frequency domain

A plot is

Example 1

T
1.0
0.8

0.6

~
o
ouel= &

04l

0.2

0.0
I

Examples below shows to calculate S} for difference parameters.

212.01 Examplel

Given the signal graph
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1+s
R(s) —7 >Q > Y(s)
a
T(s)= —L=
1-a()

B s

T 1+s(1-a)
hence

r_adl o —(-s)s
= Tia - —\q 1)
1+(s—a) (@A-a)s+1)
B as
S (A-a)s+1)
Let s = jw and let & = ay = 3 then above becomes
3jw
T _
Sa =12 2jw
|ST| _ 3w
V1 + 4w?

The plot is

Example from lecture

ou13l= &

0.5r

0.0

The above curve give the percentage of change in T when a changes by one percentage. We
just need to determine the magnitude plot, we normally do not worry above phase when
doing sensitivity analysis. The above plots says that T (s) is not sensitive to changes in «a
when the frequency is near DC, and as w increases, the sensitivity increases. For 1% change
in a, at high w, the magnitude of T (s) changes by 1.5%
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2121 Example 2

Given the circuit

‘

‘/out

Let us see how T(s) = “//Lt((ss)) changes when L changes. So we make L as our a here. The
nominal @y =1 and we also take C =1.

Ls as as?

T(s) = T = 1~ 2
Ls+— as+- os°+1
Cs s

Hence

_adT 1

sr=2l 1
Tda as?+1
Let s = jw a = ap =1 and the above becomes

Hence
1

L -w?

Notice that at w =1 there is resonance. Here is the plot

[Sal =

Example from lecture

w
T

N

}\A ™
=]
outf15l= &

w

The above says that when @ near 1, then the transfer function is very sensitive to changes
in L. For 1% change in L, the magnitude of the transfer function become very large at that
frequency. This can cause problems, so we need to avoid getting close to @ =1 and must
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stay above it for safe operations.

212.2 Example 3

Given this circuit

° R § Vout

Now we will find the S! for each parameter in the circuit. These are R, L, C, each time we
fix all the parameters, except the one in interest, and call that one « and repeat the steps
we did in the earlier examples.

Vout (S) _ R _ RCs

Vin(s) R+é+LS ~ RCs+LCs2+1

T(s)=

Let a =R,and let C=1,L =1 and let ay =1 as well. Hence

T(s) = as
T 2+as+1

Hence

_adTl

" Tda
1+
T P2+as+1

Sa

We now switch to w domain
1-w?
sT=—“
1-w*+ajw
o4

2

=1
N
1-w?+jw
Hence
1-o?|

5] =
’ (1 - w2)2 + w?

Be careful to use [1 — w?| above and not just 1 - w? since these are norms. Plotting the above
gives
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Example from lecture, for R sensitivity

1.0F
0.8

__06F

s

=]

ou19)= @
= 04f

0.2

0.0F

We see from above that T'(s) is least sensitive to changes in R when w =1 and that the
maximum change is 1%

We now repeat the above, but for C. Hence now a = C, and L =1,R = 1. Therefore
RCs

RCs+ LCs?2 +1
as

T as+s2+1

T(s) =

Hence

_adT

" Tda

3 1

S as?+as+1

We now switch to w domain and set @« =1 which gives
1

:1—a)2+]'a)

Sa

Sk

Hence
1

(1 - w2)2 +w?

[Sa] =

Plotting the above gives

Example from lecture, for C sensitivity

=1
oui20= &

0.4

0.2

0.0

o
N}
w
IN
o
)

The maximum occurs near w = 0.7. Finally, we now look at sensitivity against changes in L.
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Hence now @« = L, and C =1,R =1. Therefore

RCs
T (s) =
®) = RGs+Ic 71
s
Cas+s2+1
Hence
adT
ST = -
* Tda
~ —as?
T as+as+1
We now switch to w domain and set @« =1 which gives
2
)
go L)
1-w?+jw
Hence

(4)2

|5 =
’ (1 - a)z)z + w?

Plotting the above gives

Example from lecture, for L sensitivity

0.8F

—

=1

ou22= &

04f

0.2

0.0

o
N}
w
IN
o
o

The maximum occurs near w = 1.14.

2.12.3 Example 4

Given this circuit
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@ ) -

Let the nominal values be C = 1,L; = 1 and L, = 1. We will find S! for each of these
parameters now one at a time as in the above example.

LzS LzCSz
T(s) = T = >
(L1+L2)S+a (L1+L2)CS +1

When a = L; then (after putting C =1,L, = 1) the above becomes

g2

TE) = ——
©) (@+1)s2+1
Hence

adTl

ST=—"—

¢ Tda

_ —as?

T (a+1)s2+1

We now switch to w domain and set @« =1 which gives
2

. w
Sa = 1-2w?
Hence
2
n.
551 = 1 - 202]
The plot is

Example from lecture, for L1 sensitivity

0.8

~ 06k
I~
outf28]= &

0.4r

0.2

0.0
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We see that |S£| blows up at w = iz and at w =1, S£| = 1. We now consider a = L, then

(after putting C =1,L; =1) the transfer function becomes

() = as?
S Q+a)s?+1

Hence
ST = ﬁd_T
Tda
s+
S (@+1)s?+1
We now switch to w domain and set @« =1 which gives

1 - w?
T _
Sa = 1-2w?
Hence
T| _ |1_C‘)2|
551 = 1 - 202]

The plot is

Example from lecture, for Ly sensitivity
T

2.0F

K
3 1
out[30=

0.5

0.0F

w

We see that now at low frequency T (s) is sensitive to L, while it is not sensitive to changes in
L,. Finally, looking at a = C then (after putting L, =1,L; = 1) the transfer function becomes

as
T —
) 2as% +1
Hence
adT
Sl==-—
“ Tda
3 1
205 +1
We now switch to w domain and set @« =1 which gives
1
Sl=——
Y 1-2w?
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Hence
1

T| =
¢l = 1 -20?

The plot is

Example from lecture, for C sensitivity

25F
20

):_\1 L
=1
ouatE @

S

1.0

05

0.0

We see that |SI| blows up at @ = %
In conclusion, we can use these plots to determine how each component affect the transfer
function. We do not want the transfer function to be sensitive to changes in components.
If we know the range of operating frequencies, we can now know which components can
cause most problems and may be spend more money to buy better quality component for
that specific one.
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2.13 Lecture 12. Thursday Oct 8, 2015, control to reject
noise and disturbances

First midterm and second HW returned. Review of midterm results given.

In this lecture we will continue to talk about benefits of feedback (see Lecture 8, Thursday
Sept. 24, 2015). We talked about sensitivity and reducing nonlinearity in the plant, now we
will talk about the third benefit which is noise or disturbance rejection.

Classical setup is the following

N (s) external noise
U(s) +
—> G1 (S) n GQ(S) — Y(S)

There are many physical examples that can be represented using the above. For example,
the above can be a communication channel with noise affecting the data transmission in
the channel. The above is written as

_Y(s) Y (s)
Y(S) = u—(s) o U(S) + N_(S) UZON(S)
= GlGZU + GzN

Classical approach to reducing the disturbance effect is to setup the feedback as follows

N(s)

R(s) sl Hy(s) Gl(s)Jé—>Gg(s)

\/

HQ(S)

The design problem is now to pick the appropriate H; (s) and H; (s) to reduce N (s) effect on
the system. Let us study the closed loop transfer function

Y (s) Y (s)

Y(s) = RG) NZOR(S) + NG) R:ON(S)
S TeeHRE Y TreeER
Pick H, first. Let H, = ﬁ then the above becomes
_ G1GyH,

R(s) + G, N(s)

Y(s) = 22271
®=3TH 1+Hy
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And let H; = @ where « is a very large gain value. Then above reduces to
GG
Y= 2R () +
lim Y(S) = G1G2R (S)
a—00

Which is good. This is what we wanted. So N (s) effect has no been eliminated. But this
method has the following disadvantages

1. If GG, = 1%5 then H, becomes GlG = s + 1. This is not good. We normally do not

1-2
want to have differentiators in the loop as they cause problems we talked about early

in the course.

s242s5+1

2. Another problem. Lets say GG, = 52+2 - Then H, = , and we still have the
same problem as above since after long d1v1s1on, we see this is still 1 +s. There was a
hidden differentiator in there. In general, if the numerator has degree less than the
denominator in G;G, then H, that results will have a differentiator.

How to fix the above? The fix is to introduce a low pass filter, called H;p (s). So that instead
of using H, (s) we use H, (s) H;p(s). Low pass filter attenuate high frequency noise. The
simplest low pass filter is

1
(es + 1)k

Where k is an integer specified by the designer and € > 0. Now we introduce frequency. This
is done by letting s = jw. Imaging we have this system

Hip(s) =

Harmonics at

frequency w
—® Hpp(s)

s = jw

Hip (]a)) is called the frequency response. It is complex valued. Has magnitude and phase.

Example: ¢ =1,k =1 then Hp (]a)) = — and |Hyp| = and phase <H;p =0- tan™! w

\/+_
Plotting the magnitude |H; p| gives

[H (jw)|

So back to using H;p in our original problem, which is noise rejection. As we said, we now
will use HyH|p in place of H,. Does H;p mess up the cancellation of G;G, as we had before?
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It depends on the noise type. For low frequency noise, then |[Hp| will be close to 1 and hence
H,H;p will remain very close to H,. But if the noise is high frequency, then |H;p| is much
smaller than one, and hence H,H;p will be much smaller than original H,. For example, if
w =1, then H, is attenuated by about 30%. Next time, we will build more on this topic.
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2.14 Lecture 13. Tuesday Oct 13, 2015, Noise rejection,
second order systems

Today we will finish noise attenuation, then start on second order systems. The classical
method of noise attenuating is based on this feedback system block diagram

N(s) noise source

+ %+
R(s) —»T—» Hi(s) —» G1(s) + Ga(s) »Y(s)

Ha(s)

We often have systems where noise or disturbance comes in between the input and the
output. Without N (s) we would have perfect open loop. The classical approach to noise
attenuation is as shown in the above diagram, which is to add H; (s) and H, (s) with the idea
to reduce the effect of N(s) while at the same time to preserve R(s) input signal and not

affect it. For H; (s) we use large pure gain a, this is for attenuation. For H, (s), we start with

what is called the inversion method, which is to use H, (s) = o As discussed in last lecture,
192

this method looks good in math, but not good in practice, since H, (s) becomes improper
transfer function. Now we will explain a more practical method, which is to introduce a

low pass filter Hyp = - which will reject noise frequency and also make H, (s) become

(es+1)
proper. We will use H; (s) = ﬁHLF (s) instead of just Hj (s) = ﬁ as before.

We need to pick ¢, k. Both are positive. To design for H;p (s) we need to know something
about N (s). We need to know the frequency content of N (s) so we can design H; p (s) to block
most of frequency content of N (s) while allowing all the content of R (s) to pass through. We
assume R (s) frequency is all in the passband of the low pass filter. This is done in frequency
domain.

e )] = | — e

(eja) +1)k i |ejw +1|k ) (\/ezwz +1)k (gza)z +1)§

The plot of |HLP (]a))| might now look like this

[H (jw)|

-~

N
[NE

We can make the filter closed to desired by boosting k and decreasing ¢.
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Second order systems

We will now start on second order systems. We want to study transient response. So far, we
said nothing about transient response. Final value theorem give the steady state response
(when it exists, if the system is stable) but not what happens in between. The system could
have undesired transient response before getting to the steady state. For example, we could
want to send the response to zero very quickly, but this can cause bad transient response.

Why consider only second order systems?

1. Many physical systems are second order system

2. Many systems can be well approximated by second order system, using the method
of dominant poles.

3. Math is much simplified when using second order system than higher order

When we design, say RLC circuit we get second order system. Same for mass spring damper.
When the system is higher order, we use dominant pole method to approximate the system
to second order. But after approximate to second order and doing the analysis on the second
order, we should go back and simulate the original higher order system numerically (say
using simulink) and compare the second order approximation with the full order system to
make sure the approximation used produces close enough results.

Dominant pole method

Imagine 6th order system. We can ignore poles much further away from the imaginary axis,
since these indicate modes that attenuate very fast

; Dominant poles
«
44» - >

These poles can be ignored )/ N
/
X\
/
X , \\ /
! |
|

|
A" hY |
P2y A T
| I
\ I
X X
\ /
Ny
N,

imaginay axis

In many practical systems, § > a and the poles further to the left can be ignored since
these are modes which disappear very quickly. So we are left with the two dominant poles
s12 = —a * jw. Generic second order system is given by

w;

G(s) =
®) §2 + 28w,s + w?

Where w,, is the natural frequency and & is the damping ratio. Consider a unit step input
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R(s) = % For practical system, 0 < & < 1.
Y(s) = G(s)R(s)
B w? 1
C 24 28w,s+ w?2s

The inverse Laplace transform of the above is
e_gwnt

\/1__52 sin (a)dt + qb)

To plot the above in Matlab, here is small code

yH)=1- (1)

t=0:.1:45;

z=0.707;

wn=.2;

y=0@(t,z,wn) 1- exp(-zxwn*t)/sqrt(1-z"2).*sin(wn*sqrt(1-z"2)*t+acos(z));
plot(t,y(t,z,wn));

To use Matlab step() command, here is small code

z=0.707;

wn=.2;

s=tf('s");

sys= wn~2/(s"2+2xz*wn*s+wn"2) ;

step(sys);

In (1), w, is the damped natural frequency given by w; = @, V1 — &2 and ¢ = cos™! &. (In our
_£2

textbook, ¢ was defined as ¢ = tan™" : f ,
—<

common definition of sin¢ = V1 - &2 and cos¢ = & as used by Nise text and other, hence

but this seems strange to me. I will use the more

_1 V12
¢ =tan™! 5" from now on).
What if we are not given a standard second order system transfer function such as G(s) =
25
25 ) . (ﬁ)lo 10
T Ve can convert this to standard by doing G (s) = i .552+5S+10 and now apply

and then scale the output by 2.5.

10
the result to oo

For undamped case, & = 0, the response is pure harmonics with no damping. The harmonics
have w,, frequencies. We will now look at poles and zeros of G (s) in complex domain. Poles

2
of G(s) = Lz are

sz+2£wns+a}n
512 = —Ew, = \JwF (£2-1)

= —Ew, + w,VE2 -1
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For underdamped, £ <1 the above can be written as

S10 = =Wy * jw, V1 = &2
= —&un ija)d

The following diagram shows the main components on the s space plot

imaginary axis

K- - - |Wd
| Jwn |
| AN phase
| R real axis
—Quwn,
-1 Wyq
¢ = tan™t —=
Ewy,

¢ is called the damped phase.
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2.15 Lecture 14. Thursday Oct 15, 2015, More second
order, Overshoot and resonance

Will now determine the maximum overshoot called OS,,,,, as shown in this diagram

max overshoot secondary overshoot

time ¢

We will use % =0 to find y,,. Since % = 0 will generate many solutions, we will take the
first one.

( ) e_éwnt ( )

H=1- sin (wyt +

y o at + ¢

Then
dy e—g(unt ) e—gwnt
— =0=¢8w,—=sin(wyt + Q) - —=w,; cos |w,t +
o N (d ¢) o (d ¢)

0 =£&sin (a)d + qb) - \/1——52(:08 (a)dt + ¢) (1)
To solve this, since cos¢ = & and sin¢ = \/1——52
then (1) becomes
0 = cos¢sin (a)dt + gb) — Sin ¢ cos (a)dt + gi))

Using sin (A — B) = cos Asin B — sin A cos B the above can be written as (using A = ¢)
0 = sin (¢ — (wat + )

Hence

sin (wyt) =0

The solution is w; = w,V1 - &%t = kn for k = 0,1,2,---. We pick k =1 since this is the first
one after t = 0, hence

W, V1 = &2 = T
Tt

bnax = —————
o= &2

Tt

Wq

To find Y. () = ¥ (tmax), we plug the above t,,,, back in the original solution which is
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e—éa)nt

y(t)=1- sin (a)dt + ¢)). Hence

Osmax =Yy (tmax) -1

_ (1 3 e~ Wntmax sin (a)dtmax + ¢)) 1 (2)

Vi-e

Reader: Show that the above reduces to
-n&

OSmax = eVi-2

TC

wpV1-E2

Reader solution: substitute f,,,, = in (2) gives

o5 e—&un(wn /1_52) ‘ ( ( n ) )
max = ————sin|wy | — | +
V1-¢&2 Ny ?

_7-16

e\/l—gz

:—msin(n+¢)

But sin (71 + qb) = —sin ¢ which is —v1 - &2, hence the above becomes

e
OSmaX ‘ (_ vi-— 52)
1-&2

Notice the overshoot do not depend on w,,. It only depends on damping. There are two
ways to change damping. Either change the system itself, or add a controller to compensate.

Second main property of second order system is resonance. This arises in the frequency
context. When the frequency the system is operating at is close to the natural frequency of
the system. We are now interested in |G (]a))| vs. w. We will call the resonance frequency w,

and |G (ja)r) = M,. From

wy

T 24+ 28w,5 + w?

2
o) - =
\/(a),% - a)z) +4E2ww?

G(s)

To find where this is maximum,
d ,
|G (jw)| =0
2
To simplify, we will instead use |G (]a))| to get rid of the square root of the denominator
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giving

4

G (jo)| = o
| (]CU)| (a),zz—a)z)2+4cfzw,%a)2

Then the maximum is where the denominator is minimum. Hence

d 2

o ((a),% - a)z) + 4520),%0)2) =0
w

2 (a)% - a)z) 2w + 852w%a) =0

w, = w, 1 -2&2

So the above w, is where G (]a)) is maximum. To find M, we plug-in is @, in place of w in

G (jeo)|
Reader:
Show that
, 1
R e
Reader answer:
From
2
6 ()| = —

\/(a),zZ - w2)2 +4&2ww?

Replacing w in the above by w, = w, V1 — 2£% and working out the algebra gives |G (ja) = wr)
1
2541-82°
syms wn w z positive

assume (z>0&z<1)

To verify, here is small Matlab code

wr = wn*sqrt(1-2*z72);
G_mag = wn~2/sqrt( (wn"2-w"2)72 + 4%z~ 2*wn"2*w"2)
G_mag = simplify(subs(G_mag, w , wr))

1/(2%zx(1 - 2z72)7(1/2))
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2.16 Lecture 15. Tuesday Oct 20, 2015, Feedback using
user specified time specs

We have the standard second order system

w;

C 24+ 28w,5 + w?

G(s)

The magnitude of the frequency response, for 0 < C <1 would look something like

As C becomes smaller (system less damped) then at resonance, the amplitude of the steady
1

212

state response will increase, since M, = |G (ja),)

Second order system typical concerns are

1. Overshoot
2. Resonance

3. rise time f, which is the time for the response to go (first time) from 10% to 90% of its
steady state final value.

4. Settling time t;, which is the time for the response to reach and stay within certain
band/range around the final value. Typically within 2% of the final value (steady state).

What to do when these requirements (some or all) do not meet our requirements? We add a
controller and use feedback. Today we will talk about adding a controller (pure gain k) and
feedback to address the problem of designing to meet the requirement of specification made
on amount of overshoot while keeping the final steady state value within some acceptable
limit.
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Lets take the open loop G (s) and say we have C = 0.01, then the overshoot
ymax = 1 + OSmaX
=1+eVi-2
~7(0.01)
— 1 4 pV1-001Y
=1.9691

This is almost two times the steady state final value which is one in this example. This is not
good (it depends on the application as well). We will now start on the overshoot design
problem. We add feedback and pure gain controller

2

w’”,
524+2Cwn s+w?2

G(s) =

We will create the user specs. We want yi%, < y. For example, y = 1.2. Remember that

when adding controller k and using feedback, the final value will no longer be one. Since
with k present, yis® will no longer be one (as mentioned above), so we now need another
specification which says by how much the new steady state response can deviate from the
original steady state response (which is one in this example). So we write
|ygzsew _yss| €
Or, since y5 =1 (for this example only, since the input is step), then the above becomes
e -1 < e

For example, if ¢ = 0.1, then the above says that the new steady state response (final value)
should remain within 10% of the steady state response before adding the feedback and the
controller.

new steady state

original state state

So now we have two specifications to meet by using feedback with the controller in place.
We need to see if we can find k which meets both the above design requirements. Again, the
design requirements are

1yl <y

2. |y -1|<e
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Once we add the feedback and the controller, we obtain a closed loop transfer function

KG(s)
T(s) = —————
©=17KcE
wf
_ sz+25a)ns+a)%
N Ka),zl
1+ 52+2&uns+w%
_ Kw? (1)
$2 + 28w, s + w2 (1 + K)

So the new T (s) has different natural frequency, given by (will call @,, C the new w,, and the
new C ).

@2 = w2 (1+K)
or

@, = w,\(1 +K) (2)
Re-scalling (1) gives

Kw? _
@,
T(s) = o
2t 2
§% +2=—Cw,Ss + ©;

Cay,

We want éw” =1 to obtain the same form of the standard second order system. Hence, using

@

-1 (2.1)

(3)

Ka)%
(ZJ%

And we call as A which is scaling term. Hence

3 Kw? _ K
T w2(1+K) 1+K
Therefore, T (s) can now be written in standard second order system as
K @2
T(s) = _
) (1 + K) s% + 20,5 + @F

Where C is given by (3) and @, is given by (2). Summary is below before we go to next stage
and design for K

(4)
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T(s) @i
S) = =
1+K)s%+2lw,s + @2

Now we find to find K which meets %, < y and |y?§ Y- 1| < ¢ at the same time. We start

yrw. <. Since we know that
.
new _— 1 + e\/l,zz

Ymax

Then, since system is linear, then yji{%y is just just the constant (%) times the above, or

K
Yimax = (1 - K)

-nl
1+ e@)

So our requirement becomes

—nl
1+e1-2 | <
1+1<[ e )—7
n
eVi-Z <y -1
YA+ B-K
K

1+K

Taking natural logs gives

-nC - ln(y(l +K)—K)
Vi-22 K

By multiplying both sides by -1, this will change the inequality sign from < to > and the
above becomes

niC y(1+K)-K
\/1—522_1n( K )

niC 1 ( K )
——— n —_—
Vi-2 y(1+K)-K
Moving all terms to one sides gives

O R

y(1+K)-K) =C

Or, same as above

K V1 -2
In _C <1 (5)
y(1+K)-K) ncC
The above complete the specification for ¥ < v. We now work on the second specification
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|y§1§w —1| < ¢. Since the new system is scaled by %, then yi™” = %(yss but y, = 1, then
K . .
Yy = oK Therefore, this requirement says

K
1+K

-1l <¢

. K K K
Since % < 1 then |m< - 1| =1- X and the above becomes

<
1+k-°¢

1+K) -K
—— < ¢
1+K
1 <
1+K_€
Therefore we now have two specifications ready for design. They are

1. (A) F(K)=1n (y(1+1§<)—K) :;2 <1 which comes from y¥% <y

2. (B) ﬁ < ¢ which comes from |y5”§w - 1| <e

We now start the design for finding K. Suppose that user specification is that ¢ = 0.1 and
y =1.2. Assume also that ¢ = 0.1. We start with (B) abov

1
1+K
1

<01
1+K ™~

1+K>10
K>9

We now work on (A). Recall that { = (iK) = —((iiK)’ he

_2
ln( K ) 1_C <1

nce

y(1+K)-K nC
0.1
K (1+K)
In <1
121 +K)-K) g 0.1
V(1+K)

ln(0.21<+1.2)0.1n 1+K)-(01)" <1

K 1
In (—) —OVK +099 <1

02K+12) n

Reader: Plot F (K) = %\/K +0.99 ln( K )

0.2K+1.2

INote that K < -1 is also a solution, but we are looking for positive gain. Also K < —1 do not work with
the second constraint below.

59



2.16. Lecture 15. Tuesday Oct 20, 2015, ... CHAPTER 2. CLASS NOTES

Here is a plot of F(K) above

flk_] := Loglk/(0.2 k + 1.2)] 10/Pi Sqrt[k + 0.99]

Plot[{1, f[k1}, {k, .3, 3}, Frame -> True, GridLines -> Automatic,
GridLinesStyle -> LightGray,

FrameLabel -> {{"F(k)", None}, {k, "Value of F(k) as k changes"}}]

3
out[3ed)= =

We see from the above, that for F (K) <1 the largest K is around K = 1.9.

Reduce[f[k] <=1 && k > 0, k, Reals]
0 < k <= 1.90086

But our requirement for [y2%” — 1| < ¢ said we needed K > 9. This means we are not able to
meet user specifications to find K which satisfies both A and B at the same time.

Reader: How much does the y specs has to be relaxed so that we can find K with ¢ = 0.1
kept the same as above?

Reader: How much does the ¢ specs has to be relaxed so that we can find K with y =1.2
kept the same as above?

Reader: With C = 0.1, find the region in the (e, ;/) space for which a spec meeting K exist.
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2.17 Lecture 16. Thursday Oct 22, 2015, Routh stability

Today lecture is on stability and how to use Routh table to check for stability. We will use
BIBO stability. BIBO stable system is one which has bounded output for all time, when the
input is also bounded for all time. Analytically, a system can be determined if it is stable
from the convolution definition of system response given by

t
y (b =f0r<t—r>g<T>dT (1)

Where 7 (t) is the input, and g (t) is the impulse response of the system. For bounded input,
which means |r (t)| < B where B is some constant that do not depend on time, the output y (t)
magnitude can be now found from (1) as follows

t
ol=|/ re-ngmar

Sj:|r(t—’[)g('[)|d’c
1
= | re-olls@ldc

t
< Bfo |g(T)|dT

Therefore, for |y (t)| to be bounded, which means |y (t)| < C where C is some constant, then
we need f |g (T)| dt < co. This means that a system is BIBO is fo |g (t)|dt < oo where g () is

the impulse response of the system. The following are examples how to use the above to
determine BIBO stability.

Example: Given G (s) = ﬁ check if it is BIBO stable. The impulse response is g(t) = e'.

Hence gx) |et|dt = LOO eldt = e’f|;0 = oo so this is not BIBO stable.

We can also see that this is not stable, since it has one pole in the RHS.

1

Example: Given G(s) = el check if it is BIBO stable. The impulse response is g (f) = e™".

Hence Ex’ le~t|dt = Lw etdt = —e‘t|OO =1 so this is BIBO stable.
0
We can also see that this is stable since it has no poles in the RHS.

Therefore, as long as a system has no poles in the RHS, then it is BIBO stable. One way to
check if there are poles in the RHS and how many there are, without actually solving for the
roots or without doing the above integration, is to use Routh-Hurwitz table. We will look
at three cases. When the first column in the table has no zeros (classical case), and when
the first column has a zero, and when a whole row in the table has zeros, and see how to
handle each case. We will do this using three examples of each case.

Example 1: Given G (s) = % where D (s) = 3s* +10s® + 552 + 5s + 2. We set up Routh table

as follows

61



2.17. Lecture 16. Thursday Oct 22, 2015, ... CHAPTER 2. CLASS NOTES

s 3 [5]2
3110 |5
21352

1 _§ 0
S 7
91 210

Looking at the first numerical column (i.e. second column in the table above), we see there
are two sign changes. This means there are 2 poles in the RHS. Which also means this
system is not BIBO stable.

Reader: Check the roots using Matlab using roots command and verify the above.

Example 2: Given G (s) = % where D (s) = 4s* +10s® + 552 +12.5s + 5. We set up Routh table

as follows

st | 4 5 |5
2110 | 125
2|0 5

Since we have zero at the pivot, then we change it with ¢ and continue as follows

st 4 5 |5
S| 10 [125

§2 € 5
s'[125-2

s0 5

We now take the limit as ¢ — 0 from above, and see that a sign change between the third
and fourth row and then another sign change from the fourth to the fifth row. So this is not
sable system.

Example 3: Given G (s) = % where D (s) = s + 25° + 85* + 1253 + 2052 + 205 + 165 + 16. We

set up Routh table as follows

s|1]81]20|16
12112116

st 12112116
$$10]0

Since we have row of zeros. To handle this, we take the polynomial from the row above,
which is A (s) = 2s* + 12s% + 16 and take its derivative, giving A’ (s) = 8s% + 24s, and use this
to replace the row of zeros, so we end up with
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1] 8 |20]16
121216
sf12(12 16
$3| 8|24
And now we continue as before

118 1]2]16
12112116
st 2112116
s | 8 |24
| 6 |16
s | &8

3
s |16

So there is no sign change, so this is stable.

Another example. Given this system

P w

Ry (s) G » Yo(s)

and we want to find

The above is called master/slave controller design. Where G =
(s+1)(s+2)

if the transfer function from any input to any output is BIBO stable or not. We use Mason
rule to obtain the denominator, which is Mason A. The signal graph is

-1
Ry 1 0 G 5y 1 Ly

1

Rg% ;»16

1

Mason delta is

A:l—(—G+G+G2)+(—GG):1—2G2

K

then A = s* + 6s® + 13s% + 125 + 4 — 2k? and now we setup Routh table
(s+1)(s+2)

Hence for G =
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st 1 13 4 - 2k?
s3 6 12
s2 11 4 — k2
1 | 108+12k2
S 11
sO | 4-2k?
108+12k?

Therefore for no sign change we need > 0 which is always true, and we want also

11
4-2k*>0or |k < V2 as the condition for stability.

1

Final example. For G(s) = find conditions for stability.

54433 +kys2+4s+kq
4
S 1 k2 kl
s3 3 4
3ky—4
52 2 kl
o
4(%)—%1
51
3p—1
3
SO kl

3kp-3

The condition is
following

>0 or k, > % and k; > 0. We see the region of stability to be the

Reader For G (s) = and H (s) = 2s + k find k for stable system in the following

1
s2(s+1)(s+2)

>Y(s)

T G(s)
H(s)
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2.18 Lecture 17, Tuesday Oct 27, 2015, Starting on root
locus

Suppose we want to know how does the controller affect pole locations? Routh table just
tells us if the system is stable or not and how many poles are in the RHS, but it does not tell
us how the poles behave as the gain K changes. Suppose our controller H (s) is a function
of (K, Ky, ---) where we the designer set the values of these K; for example, selecting K; for
overshoot specification as we did before. Now we will talk about how to select K for other
purpose, which is pole locations of the closed loop system. Closed loop pole location gives
us many information about the system, and pole locations are informative about behavior
of closed loop response. For example

imaginary

|

|

|

|

! .
I real axis
T

|

|

|

|

The above diagram tell us about the speed of the response or speed of decay. e is indicator
of speed to decay of response. If we have large ¢ then the system will go to its final value
(steady state much faster). There is also what is called the damping cone. This is the cone
where the poles lie inside.

imaginary
~ o dampling cone

9 f SO real axis

The angle 0 above is informative about damping. Large damping implies small angle 6.
Suppose we have combination of needs: speed of decay of response and low damping, hence
we have region where we want the poles be located.
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imaginary

region of poles \\

{ o[> real axis
N

So many performance specs (but not all) can be found by location of poles. Suppose that the
open loop pole locations are not desired, and we want to move them to desired region. We
use feedback with controller K such that these locations are moved to the desired location
in the closed loop poles. Root locus is such method to allow us to do this in systematic way
(computer aided design) rather by trial and error. The classical setup for root locus design

is this
R G(s)H(s) ——»Y (s)

Suppose we designed controller H(s) and are not happy with the pole locations. i.e. G (s) H (s)
are given. We need to select K > 0 to move the poles to desired location. We view G (s) H (s)
above as the open loop system.

Root locus is the locus of the closed loop in the complex plane obtained by changing K
from 0 to oo.

A common sense approach to use root locus. Example:

R(s)

+
- 1 »
a B >Y(s)

K _ K
s(s+2)+k  s2425+K
the pole location are s = -1 + V1 — k. Now we increase K from 0 and see how the locus of the
poles change. We get this

and

The open loop poles are at s =0 and s = -2. The closed loop is T (s) =

So for large k the poles will move outside the cone of interest.
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Reader: How large can K be to satisfy damping constraint of a = 45°?

k=00
NN a = 459
k=0—e
P OkzO

Formal root locus. Will develop 9 lemmas. Each lemma gives more information about the
N(s)

locus. We begin with G (s) H (s) which is the open loop. Write it as D6 where it is proper
(degree of numerator (m) < degree of denominator (n)). Closed loop is T (s) = 1f§gH

find closed loop poles, we write

1+KGH=0
N(s)

1+K—==

+ D @) 0

D(s)+ KN(s)=0

Observer that, for K # 0, the above have n poles.
Lemma 1 root locus has n branches for K > 0.

Root locus (R.L.) geometry: Central idea. A point s is on R.L. if 1 + KGH = 0 for some K
value. GH = —%. Hence the phase of GH is . And the corresponding magnitude of K is |GLH|
So to decide of point s is on the R.L. quickly, look at the angle. For example, for open loop
poles s = -2 and s = 0, and suppose to want to know if some point s* is on the R.L., then
we draw this

Then
<«GH=-0,-0,#mn

Then s* is not on the root locus path.
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2.19 Lecture 18, Thursday Oct 29, 2015, More root locus

Reminder: No lecture Tuesday Nov 3. Makeup lecture on Wed. Nov 18 at 6 pm.

Will continue root locus. We are using the classical setup

R(s) by G(s)H(s) .Y (s)

We want to study the behavior of closed loop poles as K changes from zero to infinity. There
is a geometric condition which is the driver behind root locus. It is the angle condition. This
condition says that a point s* is on R.L. iff phase of open loop G (s) H (s) evaluated at s* is 7t

<G()HEO) . =7
When the point s* is on the R.L., then the corresponding gain is (notice, this is valid only
after we decided the point s* is on R.L.)

1
k= —-——
COHGI_.
Let us now look at G (s) H(s) with two zeros and three poles.
(s —z1) (s —29)

(5 - Pl) (S - Pz) (S - P3)

G(s)H(s) =

We want to know if point s* is on R.L.

%!

How to know if s* on R.L.? We check the angle < G(s) H(s)|_. and see if it 7. We do this
graphically, like this
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We look at the angle each pole and zero makes with the point s*, then

<GEHE)_. = (01+0,) — (1 + Yo+ 3)

i.e. we add the zero angles, and subtract the poles angles. Angle is always measured counter
clock wise from the horizontal line as shown. If the above adds to 7 then the point s* is on
R.L. The gain K in this case is
K = 1 _ 1 _ |(s—p1)(s—p2) (s—p3)| _ D1DyD3
CIGEHE) ezl s-zy) (s-2)l  didy
|(s=1)(s=p2)(s-s)|

Where D; is the size of the vector from each pole p; to s* and d is the length of the vector
from each zero z; to s

o
|d 4 /D3
o 0 2| 3

Back to the 9 lemmas. When used together, enable us to draw R.L. for any system.
Lemma 1: R.L. has n branches, where 7 is number of open loop GH poles.

Lemma 2: We talk about very small K and very large K. When K is very small, R.L. is at the

open loop poles. This means R.L. always starts from the open loop pole locations. When
(s+1)(s-2)
s+4)° ’

poles at s = —4, this is where R.L. starts from. Since it has zero at s = -1 and zero at s = 2,
then this is where 2 of the branches will end up at. This also means for large gain K the
closed loop is not stable, since it ends up at s = 2.

K is very large, R.L. is at open loop zeros. For example GH =

the open loop has

Since n = 5 in the above, so we have 5 branches. Two of these end up at s = -1 and s = 2.
What about the other three? Those will end up infinity. And we need to check if there will
be stable or not.

Lemma 3 (called the number criterion) Which real axis points are on the R.L. ? Since
complex poles lead to angle cancellations when point s* being checked for is on the real
axis, then only poles and zeros of the open loop decide if a point s* is on R.L. or not. A
real axis point s* is on R.L. iff the number of real axis poles and zeros (taking multiplicity
into account) found as we travel towards s* from the right side is odd.

(s+2)(s-5)*(s2+85+20)
(s+1)2(s3—1)(52+s+1)

Example: GH = . R.L. has 7 branches since n = 7 from lemma 1. From
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lemma 2, we know R.L. starts from open loop poles and end up at open loop zeros. Now
we find which part of the real axis are on R.L. We use lemma 3. We just need to mark the
open loop pole and zeros that are on the real axis for this. All complex poles and zero have
no effect. Hence the diagram is

pole, multiplicity 2
] zero, multiplicity 2

_A4A_ _ AN
4p-2 1 1 \ 5 Not on R.L.

Not on R.L. (even)
On R.L. (odd)

Not on R.L. (even)
On R.L. (odd)

This system is unstable at high gain K and also unstable to low gain K. There are 2 branches
that do not end up at zeros since n = 7 and m = 5. Next we need to check what happens
when k — oo after counting for the open loop zeros, since we know what happens in this

case. How does phase behave when k — co? When K is very large, we can approximate

_ w - RyS™ _ Rlejme
GH = D(s) ~ RyS" ~ Ryel"®
R.L. Hence

= Ael"m0 Therefore we need (m —n) 0 = n for a point to be on

0 =

+ M (Q2mn)

m-—n
From some integer M. Lemma 4 will be discussed more next time.
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2.20 Lecture 19, Nov. 3, 2015. No lecture
2.21 Lecture 20, Nov. 5, 2015. Roots Locus completed

Reminder: Exam 2 on Nov 12 Thursday. Learn relation between damping ratio ¢ and
damping cone. Exam will cover up to root locus. Will finish root locus today. Quick reminder
of lemmas covered so far

1. Mark open pole loops (where R.L. starts) and open loop zeros.

2. Tells us that R.L. starts at open loop poles and ends up with open loop zeros. Some
branches left will end up at +oco

3. Tells us what happens on the real axis. The segments that R.L. will travel over on the
real axis. Called the "odd" lemma

04
4. Tell us how to generate the asymptotes of R.L. using 6 = M Example, for

n =6,m =3, (where n,m are number of open loop poles and zeros respectively) then
6 =600+ k120O fork=0,1,-

Reader: With n —m > 2 argue that closed loop is unstable. (answer: with n —m > 2, an
asymptote will be moving to the RHS. Hence one of the branches will eventually move to
the RHS for large gain, which means unstable).

Lemma 5: This lemma for finding from which point on the real axis the asymptotes will
start. The centroid is given by
B Epoles - Zzeros

c =
n—m

The above is for poles and zeros of the open loop, not the closed loop!. For example,

for GH = — &2 180%K3%0 _ 450 1 900. So the
(s+1)(s+6)(s+8)* T
asymptotes are

then o, = -8.75 and the angles at 6 =

A
\/0/4{;\
\/\)450

9 AN

4 N
7 N

1
Example. GH = m
Lemma 3: Real axis, use the odd criteria. Lemma 4: Find the asymptotes and the centroid.

Lemma 1: n = 3,m = 0. Lemma 2: Start from open loop poles.
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0-1-2 180+k360
o= =-1.0=

= 60° + k120. The result is this root locus

1209
Z
/_\/ \600
/

-2 -1~

We still need to find where the break away points are and where root locus intersects the
imaginary axis at.

Reader: Without using root locus, find the gain K what makes the closed loop unstable.
(answer: use Routh table).

Lemma 6: This lemma tells us where the break points are on the real axis. Solve 2—5 =0.

Note not all solution points will be valid. Using the above example GH = then the

1
s(s+1)(s+2)°
characteristic polynomial is

K+GH=0
(s+1)(s+2)+K=0
K=-53-3s2-2s
dK )
I —35°—6s—2
Hence we solve —3s?2 —65—-2 = 0, and find s = -1.577 and s = —0.423. But s = —1.577 is not on
root locus (from above) so only s = —0.423 is on root locus, and that is the breakaway point.

Lemma 7 Departure angle. R.L. depart each pole. We want to find the departure angles.
Use

2<Zi_z<pi:18ooik3600 k:0/1/'“

Where E<z,- is sum of all angles from all zeros to the pole in question (the one we want to
find the departure angle from) and 2<pi is the sum of all the angles from each pole to the
pole in question. In the above, the left side will contain only one unknown, which is 6, the
angle of departure of that one pole. Do the above for each pole at a time.

Lemma 8 Apply the same method as lemma 7, but now do it for each zero at a time to
find the arrival angles at each zero.

Lemma 9 Find where root locus crosses the imaginary axis. Use Routh table for this.

s2+45+8
s2(s+4)

Example: GH = Reader: reproduce the solution below
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Root Locus

N~
3

N
T

=
o
T

[N
T

o
2

o

o
3
T

Imaginary Axis (seconds™)
KN

H
N (4]

)

4

N
R

‘ ‘ ‘
5 4 3 2 1 0 1
Real Axis (seconds™)

-3
ok
&

K

Reader: Do this problem sent to us by email also. Find root locus for G = —————
s(s+4)(sz+4s+20)

EXAMPLE 2 Find 2L fov um\'j feedinck YHem Wikl G (sk
C\(S) =

S(S + 4 s%r s+ 20)

Le

See my HW6 for more detailed root locus steps.

2.21.1 Summary of root locus
1. Mark on plot all open loop poles and open zero locations.

2. R.L. starts from open loop poles and ends up at open loop zeros. Some will end up
at +oo when n —m > 0 (which is almost always the case)

3. Mark on real line where R.L. exist. Use the odd criteria.
Z Ezl . i.e. sum of all poles minus sum of all zeros.

n is number of poles, and m is number of zeros (these are for the open loop, not the
closed loop!)

4. Find centroid of asymptotes ¢ =

1809+360°
n-m

5. Find asymptotes angles. 0 =
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6. Find breakaway points. From 1+ KG = 0 find k = f (s) and solve 2—5 =0 for s. These are
locations where the breakaway and break-in points on root locus will be.

7. Find departure angles for each pole (the complex ones, the ones on real line will have
180% and arrival angles for the zeros (also complex ones). This can be done using
Z<zi - E<pi— = 180° + 360%, where in the LHS, we have one unknown angle each
time. This is the angle of either the departure of arrival. Then solve for it. The above
is sum of angles that all other poles and zeros make with the point in question. See
HW 6 for details.

8. Find where root locus crosses the imaginary line. Find K which makes the closed loop
unstable. Then solve for the polynomial above that row in Routh table for this K and
solve for s. This will be where it crosses the imaginary line. See HW6 for details.
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2.22 Lecture 21, Nov 10 2015, Extension Root Locus

Review of what will be on midterm on Thursday

1.
2.
3.

Not cumulative
Mason rule

Benefits of feedback. Nonlinear block. Can’t use Mason. We solve graphically. Ask
what is the new relation, given the old relation. Dead zone is lessened. Saturation

moved further away. We can make the system closer to linear. Second benefit is

adTl

sensitivity. SI = =— Sensitivity is function of frequency, defined as % change in T

(transfer function) per unit % change in parameter a. Evaluate at nominal «, then
switch to s = jw and look at magnitude of S%.

Disturbance rejection. Avoid inversion, use low pass filter.

2
Wi

Second order system. 5. Benefits of second order system: Well understood.

5242w, s+ws
_nc
Can model many systems as second order. We talked about overshoot e¥1-¢*. Rise

time, resonance frequency, and location of resonance. Talked about damping cone.

Stability: Using Routh table. If polynomial has one sign change in its coefficient, then
it is unstable right away, no need to even use Routh table. How to handle one zero in
first column. How to handle a row of zeros. We can use Routh table to find K which
makes the system unstable. Also we talked about shifted polynomial. One where we
want all poles below some p.

Last topic was root locus. Ability to generate simple R.L. If n —m > 2 then system is
unstable at large gain even if all poles are in the LHS.

Today will start with extended root locus. If the open loop transfer function has a parameter,
say 0 and we are not confident of its value, we want to know what happens as 0 increases.
But we can not use standard root locus, as 0 is inside the GH itself and not a multiplier
like K before. We need to convert it the transfer function to be in the form 1 + 6G where G
is derived from original open loop G and is called the Fictitious system model. Here is an
example. Given this original system

+ 52+2

Hf—> ST (510)s5 12521 (1+0)s+4

\/

Warning, we can not use the original root locus 9 lemma’s on the above as it stand. We have
to convert it to Fictitious system model first as follows. The closed loop poles are obtained

from
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G
T =
1+G

Hence set the denominator to zero to find the closed loop poles
. s2+2
s4+(5+8)s3+252+(1+6)s+4+(52+2)

Which means
s4+(5+6)s3+252+(1+6)s+4+(sz+2)+sz+2:0
Now factor out 6 which becomes
s>+

1+0 =
st +53+3s2+5+6

3

: . ~ = s°+s

The above is now in the form of 1 + KG as before, but now G = -—5——. Now we can
544553 +352+5+6

apply root locus on the above. Example. Consider the following system with uncertain pole
at —p

H G

+ 1 10s+11
—»O—» @2 [ | (s+tp)(s+3)

We want root locus with respect to p. Covert to Fictitious system model as above.

\/

1+GH=0
1 10s +11
1+ > =
s +2(s+p)(s+3)

. P +324+25+6 _
P33 102 +16s +11

3 2

~ $°+35°+25+6

Where G = ———+———.
s443s3+252+165+11

should get this

In this form, we can now apply root locus. Using Matlab we

>> s=tf('s');
>> sys=(8"3+3%s72+2%s+6) / (s74+3*s"3+2*s"2+16*s+11) ;
>> rlocus(sys)
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Root Locus
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2.23 Lecture 22, Nov 12 2015, second exam

Exam 2
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2.24 Lecture 23, Nov 17 2015, Started Nyquist

There are two more HWs for the course. The final Exam will emphasis Nyquist and Bode.
The rest of the course will cover Nyquist and Bode. Nyquist is considered the hardest part
of the course. For motivation, we are moving to frequency domain now. So far we have not
worked much in frequency domain. Now it will be the main emphasis. We will develop tools
in the frequency domain. Some of the tools we did was Routh table for stability and second
order system analysis. We did cover some frequency domain when we did noise attenuation
and using low pass filter.

Nyquist method is a view of stability in the frequency domain. Why we care about this. We
already have stability tools? Such as Routh table and Root locus also does tell us something
about stability. Because Nyquist tells us more. Nyquist gives new information about stability
and shows new ways a system can become unstable.

We have Routh table to check for stability. But Routh table assumes the model is perfect.
But what if the model is not certain? What is there is amplifier that has frequency drift?
This is called model imperfection.

The main measures of stability are gain and phase margins. This tells us how tolerant the
model to imperfections. Nyquist is a graphical description of stability, while Routh table is
algebraic. Engineers use Nyquist since it is considered CAS based method.

2.24.1 What is the Nyquist criteria?

We will generate contour in complex plane, look at the contour and say right away if the
system is stable or not. We will generate I'y contour. I'gy is directed and closed curve. We
use GH which is the open loop transfer function to generate I'5; . Then by looking at I'y
we will say if the closed loop is stable or not.

2.24.2 Preliminary example

Suppose we have generated I'cy that looks like the following (we will later learn how to
generate I'gy).

>0

Ten

L
N
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Now we apply the Nyquist criteria: The closed loop transfer function (we assume we have
unity feedback), is stable, iff the number of net clockwise encirclements of the critical point
-1 on the real axis is equal to the number of unstable RHP poles of the open loop transfer
function (strictly in the RHP). So we need to learn how to count encirclements. For this,
we draw straight line from the point -1 on the real line, outwards. It does not matter which
direction we draw the line. Any one will end up giving the same result. This is due to how
we will do the counting of the encirclements around -1. To show this, the above graph is
redrawn below with 3 lines on it. (but we only need one, any one will do).

ray 3

\ S
Ten \ A

In the above we have randomly drawn 3 lines (or rays). Now we count the number of times
the straight line cross the I'y graph. Each time it crosses I';y we count the direction of I' g
at that point, if it is clock wise, or anticlock wise. We add one when it is clock wise, and
subtract one when it is counter clock wise. For example, for ray 1 in the above diagram, we
see that there are 2 counter clock wise crossings, and one clock wise crossing. There for
the final result is one counter clock wise crossing. This is the same as saying the result is -1
clock wise crossing. So think of counter clock wise as negative numbers, and clock wise as
positive numbers and simply add them. If the final number that results from the above, is
the same as the number open open loop poles in the RHP, then the system is stable.

Reader: The other rays (lines 2 and 3) will give the same final result of one counter clock
net encirclements. Show this.

Example, suppose we have GH which has two unstable poles in the RHP such as one with
denominator (s —1) (sz +s+ 2) (s — 6), then when we draw I'; and count the encirclements,
and find that the net number of clock wise encirclements is also 2, then we know the closed
loop is stable.

Now that we know how to interpret I'; and how to use it to find if the closed loop is stable
or not, we need to learn how to generate I';y. The plan is to become an expert in generating
I'cy and also learn how to use it to obtain other stability information from it. To generate
I' gy, we first generate I', which is called the Nyquist contour. Then we map I to I'y. But
first we need to generate I'. The first step is to mark all the open loop poles on the complex
plane (we do not need to mark the open loop zeros, but we can do that as well if we want).
The we draw a counter clock wise curve around that incloses all these poles in the RHP. If
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there are any open loop poles on the imaginary axis, we draw small circle around them to
bypass them. Here are two examples

open loop poles

- -
b

Example of I" for open loop that
has no poles on the imaginary axis.
Let R — o0

Now we show an example of T for the case when the open loop transfer function GH has
poles on the imaginary axis.

open loop poles

on imaginery §

axis. By pass. 1\
\

Example of I" for open loop that
has additional three poles on the
imaginary axis. Let R — oo and let
e—0
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2.25 Lecture 24, Nov 19 2015, More Nyquist

The plane for today is more Nyquist, as well as next lecture. Then a HW set on Nyquist.
Nyquist is most difficult subject in this course. When practising, use Matlab to verify the
result.

Quick summary of Nyquist: We are interested in frequency based stability. This will take us
to frequency analysis and Bode plots next.

Now that we learned how to draw I', the next step is to learn how to map I to I'gy since it is
I'cy that we will use to count encirclements to determine if the closed loop is stable or not.

How to map I' to I'cy? We take each point on I and map it to new curve, which will be I'gy.

/

Map T to T Pan

ey

Use this tqg
determine closed
loop stability

¥

Nyquist says that the closed loop is stable iff I';y net clock wise encirclement of -1 is the
same number as the open loop poles that are strictly in the RHS. In the above example,
there is one open loop in the RHS, but we see that Iy encircles -1 two times in clockwise.
Hence this shows that the closed loop is not stable.

2.25.1 Mechanism of I';y generation

First we start with a simple example. Given this system G =
unstable, and has one pole in the RHS which is s = 5.

S .
105> Where the open loop is

The closed loop TF is
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G

1+G
S

T (1-02s)+s
S
T 1+08s

Y
R

So the closed loop is stable, since it has no poles in the RHS. So we expect that I'gy to
encircle —1 one time only, in clockwise, since that is the number of open loop poles in RHS.
So we start by drawing I'. And we start to map I to I'gy.

5
\

We start always from s = joo And go down on jw axis of the I' path. We call this branch 1.

When s = jeo then % ~ % ~ -5, this means that on branch 1 on I, the starting point will
map to s = -5 on the I'gy path. So we have this diagram now

starting point P ~ o

\ ~ ~ N
S Pen
. F A
segmen ~_y \
\
\
. 1
5 -5
segment 2 /‘ \\\
segment 3

Now we move down the +jw axes and map segment 1 to I'gy. At segment 1, where s = jw,
then G = - ;25 =1 Ojg)(‘ 3 Now we need to see the real part and imaginary part to be able
—U. -0.2{jw

to see the mapping to I';y. Hence we write
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_

“= 102 (jw)
jo 1402(jw)
- 1-02(jw) 1+ 02 (jw)
_Jjw - 0.2w?
~ 1+0.04w

Therefore the real part is 1_+ 00 41 and the imaginary part is m.So starting from large
positive w going down the segment one, we see that the real part is negative and the
imaginary part is negative. This means I'y will be somewhere in the second quadrant. We
do not care about the shape of I'y that results from mapping segment one. We just know
so far is starts from -5 and remains in the second quadrant. What is important in Nyquist,
is where I'y crosses the imaginary and real axis, and now its shape in between. To get
the crossing with the real axis, we set the imaginary part of GH to zero. And to get the

imaginary axis crossings, we set the real part of GH to zero.

. -0.202
To find where I'gy crosses the real axis, then from o (;Zw =0 we find w = 0. And to find
. . . W .
where I'cy crosses the imaginary axis, then from ——- =0 we also get w = 0. So there is

only one point where I'y crosses the axes, which is the origin. At w =0, we see that G =0,
therefore the full segment one now maps to I'gy as in the following diagram

starting point

T~
segment one T
. r X _maps to this GH
segment [N
8 \‘ NN
\
-5

segment 2 — Y

segment 3

Now we go to segment 2. Along this segment (we are still moving down the imaginary axis),
along this, the real part of GH is negative, and the imaginary part is also negative. We the
mapping is now in the third quadrant of I'5y. We also know this will be the case due to
symmetry about the real axis. So now I'gy will look as the following
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starting point
g point ___

N
N segment one

T < _maps to this
segment 1 NN
\‘ AN
segment 2 — ‘; =7

~ segment P
maps to this

segment 3

Now we just need to do segment three. For this segment s = Re/” with R becoming very
large and 0 going from —90° to 0° and then to +90° in the I path. But since G = ﬁ then
Re’ Rel’ -

G= o2 ni® ~ Toand? for large R. Hence G = -5 as well for segment three. This means all
of segment three in I, maps to the one point s = -5 in T'gy. So the T'cy; will not change. Here

is the final result

starting point —| - DR

_ > ~ segment one
= < maps to this

segment 3 NN N

maps to —5 \\ 2

~

X\

— 5\

r
segment 1 \V

T
segment 2 v 7
- — — -~ segment P
maps to this

segment 3

Now that we have build 'y, we can find the number of net encirclements around -1. We
see that there is one clock wise encirclement. But this is the same as the number of unstable
open loop poles. Therefore the closed loop is stable (as we knew before). But this shows

. _ 5(1-05)
how to Nyquist to find out. We now do a second example. Let GH = A0 L0 5"

Reader: Is the closed loop stable? Use Routh table to find out. The closed loop denominator
is P (s) = 0.025s> +0.15s% + 0.15s = 5 = 0. This is not stable closed loop. Use Nyquist to confirm.
Here is the result using Matlab

s=tf('s');

sys=b5*(1-0.5%s)/(s*(1+0.1%s)*(1-0.25%s) ) ;

close all;

nyquist1([2.5 -5],[0.025 0.15 -1 0]) %use http://ctms.engin.umich.edu/CTMS/Content/Intz
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60

40

20

Imag Axis
o
+

20t

40 | -

-60

-10 0 10 20 30
Real Axis

2.25.2 Nyquist Handouts
2.25.21 Nyquist Handout 1

The following is Handout 1 Nyquist.
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N\,I G st Example
(From Class)

We cons)der

Gls)H () = 5(1-0.55)
5 (1+0.5)(1-0.2%)
0 cla ssical un 1 by ?eedbcuk con 1Clgur0.tlo(l
/‘/(‘O(G A’o ‘5:300
GH ™V -2065 0O
=025’

Aloﬂg@)

went Be Gl and £ 6
to determine %uao\farrt

rotionoliz ¢ G(bw) H3w) = 5( -.5]) w)
&;t:;?@% Coryugte JW (1o 'J W)

= Aw(l 0. Uw)(HO.leu) 5(| 05\)“)) (1- OZBJ»)

Mw") (1+ Ok25uW")

alqebra denom vo for wtO
1" e
w (te*l)*‘J‘“( +5)
deaom
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Hence o
fe GHw H(yw) = —w(g‘%”ns)
deqg oM
Im GOHWIHyw) = - W (%22,5)_

donn

Hence, Glong ©, Ke <0 and Ty < 0 means
qﬂ(’alf\ s wn QIO (Jc\mrd %uadrmt)

Note that there cre no QX Crosswgs
since Re ¥ 0 and Im# 0.

A‘Dﬂg@/ S5S=¢ €a¢ with Cb 80105 from

90" to -90° Now GH~ 5 R
£ ed
7 SO PGH IS AN Qrc ot \HQ\(\lt"l gomg Lo
qu° ko ;qo"

ND

wete of O, S
A]mg@) lgy 'S the conjwa [ ©. 5
we cellect w.rt. feal awrs and see T
N QT wuw no axial ccossmoes—
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A‘O()g@) S = QQACP wolkh Qﬁoo Gna CP
gomg Loty —G0° o G0°. Now
6H ~ 5(-05%e*®)
di“’(o‘\ﬂef‘d’) (-0.2599"")

~No4 P().Slt\\‘e const.
R2e™?

SO FGH \S an \Ogm\’fes\ma\ afC tw}r\mg
aoovt the Or1g\0 £eom ?600 o -180°

Note: Ofben, a Computer Senera+€9
Ny gust plot does not show Soch arcs.
Aso arcs &t lﬁ{qn\b\‘ Ol @ O]Cben Not Shown
Howevel, we Show such arcs sine they

¢
‘nelp US draw%lot. Now combmmg resolts
from ®®é£ we obtwn

Ve (nclusions : We have
"6 O net Clokwse
/"g’ K 20 v lecnents oJL -1 +\')O‘
e \} X > Re N\{cbuut demands
B u\ | Cw enc. Smc_p,&hfre
. 5% mmng)bf 15 one Ok right half

, NS
AR pleve pde. Ho 5

®

The following is my derivation of the above reader
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B 5(1 — 0.5s)

"~ 51+ 0.1s)(1 — 0.25s)

_ 5(1 - 0.5jw)

" jw( + 0.1jw)(1 - 0.25jw)

Multiply by complex conjugate of the denominator

5(1 - 0.5jw) (~jo (1 - 0.1jw)(1 + 0.25]w))
B jo @ +01jw)(1 - 0.25jw) (~jo (1 - 0.1jw)(1 + 0.25]w))
-0.0625w* - 0.5jw® - 1.75w? - 5jw
0.000625w° + 0.0725w* + w?
~(0.5j0° + 5w) - w? (0.0625 +1.75)

@2 (1+0.01w?) (1 +0.062502)

2 2
—jw (% + 5) - w? ((‘1}—6 + 1.75)

@2 (1+0.0102) (1+0.062502)

Hence
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—w? (%2 + 1.75)
Re(G) =

@2 (1+0.0102) (1 +0.062502)

wz

(1+0.0102) (1 + 0.062502)
— (w? +28)
(1+0.0102) (16 + @?)
100 (w? +28)
(100 + @2) (16 + ?)
(59
@2 (1+0.01w2) (1 +0.062502)
-16 (%2 + 5)

w (1 + 0.01a)2) (16 + w2)

Im (G) =

(A)2

2

@ (100 + ?) (16 + w?)
800 (w? +10)

W (100 + w?) (16 + a)2)

-1600 ( + 5)

Therefore

Rl = 100 (w? + 28) . 800 (w2 +10)
°(C) = (100 + @2) (16 + w?)’ m(G) = @ (100 + w?) (16 + ?)

Important note: The net number of encirclements around -1 must match the number
of unstable open loop poles. But what sense depends on the initial I being clockwise or
anti-clockwise. If I was anti-clockwise (like we use in class), then we want the net clockwise
encirclements around -1 to match the number of unstable open loop poles. If I" was clockwise
(like other books use), then we want the net anti-clockwise encirclements around —1 to match
the number of unstable open loop poles.

2.25.2.2 Nyquist Handout 2
2.25.21.3 Emailed on Monday Nov 23, 2015
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Nyquist Example

Consider

H(s): S0
G(s) ) 5(5*2{(5’*‘0

Since G(s)H(s) has poles at +)2 and -j2, it is necessary
to choose the Nyquist path not passing these points. The
Nyquist path is divided into eight sections as shown.

)

S-plane

W)
-§2 > (Li9]

f (an

On E;c. (IV): We let s = te‘w(c *0), 6 varies from +90° to
-90* in clockwise direction. Then,

50 -30
G(s)H(s) = ——= = mg
sceje

Thus, the GH plot of Sec. (IV) is a semicircle with infinite
radius, and starts from -90° to +90° in the counterclockwige
direction.
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On Sec. (VIII): We let s = Rej* {R*), » varies from -90°
to +90° in the counterclockwise direction. Then,

50 ~43%
G(s)H(8) = - = Qe
FORL

Thus, the GH-plot of Sec. (VIII) goes around the origin .
twice (729') in the clockwise direction.

On Sec. (I11): We let s = J2 + ced? (e+0), 0 varies Erom
+90° to -90° in the clockwise direction. Then
50

G(s)H(s) =
02 43 2 + 32 + ey (44 gace!® + 21V 4 4y

or

Ga(s) = ———3L——p e/ -0 + 135"

32(2 + 312)j48e
As 0 is varied from + 90° to -90° along the Nyquist path
[Sec. (I1)], GH varies from 45° to 225° at infiniry.

Section (V1) is the mirror image of Sec. (11). The entire
Nyquist plot of G(s)H(s) is shown in the following figure.

pite

48

-j7.+ee’°
(6x-%0°)

close d loop s vnstable! 2 ENCIR(LENwN
The WHEN ZERD REQUIRED

225221

2.25.2.2.2
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2.26 Lecture 25, Tuesday Nov 24 2015, gain and phase
margins

We will spend few minutes going over where we are. Today we will talk about: Discussion
of Nyquist examples. Embellishment of Nyquist theory, Bridge into Bode analysis.

We have solution of last lecture example. We will talk about gain, phase margin and frequency
response. Then we will go to Bode plot. We will take Bode analysis into design. This means
we will design a controller based on Bode plot. Example from class (last lecture). Open
loop is

~ 5(1 - 0.5s)
"~ s(1+ 0.1s)(1 — 0.25s)

Review of the method in the handout that was send to class.

1. Mark the open loop poles on I plot

2. Make I to encircle all RHP open loop poles and small circle around all open loop
poles on the imaginary axis.

3. Map I to I';y segment by segment. For the segments on the imaginary axis, we do
not have to do both, due to symmetry. (complex conjugate).

4. The important part is the real axis and the imaginary axis crossings. To do this, we
need to find Re (GH) and Im (GH). There might not be any crossings.

50

@D See last lecture for solution

The second example was emailed. Which is GH =

and go over it.

2.26.1 Gain and Phase margin

The most classical case is discussed. This is where the open loop is stable, and also the
closed loop is stable. This means GH (s) has no poles in RHP. Imagine that we obtain I'y
that looks like this

Cou
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Closed loop is stable (since it has zero net clockwise encirclement around -1). Note that
if closed loop is unstable, then we can not talk about gain and phase margins. This only
applied to closed loop which is already stable. If a point in the figure above is very close to
—1 then are close to being unstable. This are dangerous if I'gy is close to —1. (this is for this
classical case). For example, say the true system is yG (s) H(s), but our I'gy is based on just
G (s)H (s) and vy is the small variation of the true system. G (s) H (s) is our math model of the
true system approximation. So we need to know the margin of safety because the system
can be unstable if y is large enough. Assume y is an uncertain gain. Call it now K. example,
an amplifier gain. The math model used to generate I';y is based on K =1.

Reader: What does K do to the Nyquist I'gy plot?

K scales the I'gy. The scaling is centered at the origin. So large K magnifies I';;; and small
K contracts I'gy. So we need to find the largest K., and still be stable. We need K, a <1

or
1

Kmax

This is called the gain margin. We express this in dB

1
(Kmax)dB =20 loglo E

For example, if a = 0.5 then (Ky,ax) ;; = 64B. The gain margin is a measure of safety. We can
get K. also using Routh table. We can also have two sided gain margin

TN
s

Assume the GH now has one pole in RHP. So we want to have one net clockwise encirclement.
So the I'cy plot shows that the closed loop is stable. But to maintain stability we need Ka <1
and Kp > 1. This means for closed loop stability, we need

1 1
- <K< -

B a
This is two sided gain margin. Now we talk about phase margin. So far we have not talked
about phase of GH (s). Suppose the true system is G (s) H (s) @? where 6 is the phase error.
How does small phase error affect stability? Could large phase error destabilize the closed
loop? Consider now the classical case (again, this is where open loop is stable, and closed
loop remain stable). Here is an example I'y which we will use to analyze the effect of phase
margin
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unit circle e/T'gg \unit circle
phase margin

\1 L

rotated clockwise by 6 if 0 is negative.

How does multiplying G (s) H (s) by ¢/changes the above I'cy? Each point z on T' gy now go
to zel. So T ¢y rotates counter clock wise around the origin if 6 > 0 and rotates clock wise
if 0 < 0. How large the angle 6 become before the closed loop become unstable? We draw a
unit circle around origin as shown and extend a straight line to where I'gy intersects the
unit circle. The angle between this line and negative real axis is the phase margin. If 6 <0,
then it will rotate anti clockwise, and will become unstable after rotating —pm, where pm, is
the phase margin.
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2.27 Lecture 26, Thursday Nov. 26 2015, thanks giving,
no class

No class. Thanks giving day
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2.28 Lecture 27, Tuesday December 1 2015, Start Bode
frequency analysis
Reminder: Final exam on December 10. Final topic of course is Bode analysis. We touched

on frequency response before but did not go heavily into frequency based design. When we
look at the open loop transfer function, we would like to quickly find the frequency response.

The frequency response is defined as the magnitude and phase of the transfer function,
when viewed as complex function, which happens when we replace s by jw where w is the

frequency. i.e |GH (]a))| and <GH (]a)) are the frequency response.

Bode method is better for design in frequency domain than Nyquist as it is easier to determine
the magnitude and phase. Nyquist plot already have frequency response information in it,
but hard to read.

|GH (jw)|

A
H
phase \

reading magnitude and phase from Nyquist plot

So if we plot the magnitude and phase, as w changes we get something like

GH(jw)| angle (or phase) of GH (jw)

/\ /\

Simple motivating example: Say G (s) = % We will now use G (s) as the open loop. We

+15°
could also use G (s) H (s). We know that the |G (]a))| = \/11T and <G (]a)) = —tan"! (w7). To
+T°w

easily see what happens to phase as w changes, we draw line from the pole, which we know
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isats = —% and the angle between this line and the real axis is the phase.

Jw

We now drawn the |GH (]a))l and <GH (]a)) on two separate plots

G (jw)

S
) —_

phase

What bode analysis allows us to do, is to quickly make the magnitude and phase plots of
more complicated transfer functions using approximations. We break the frequency into
low region approximation and high frequency approximation and then join these curves

together. The low frequency approximation is when v <« 1 where then we say |G (]a))| =1
and for large frequency approximation is when w >> - where then we say |G ]a))| 0. For
plotting |G jw | for the y axis, which is |G jw | we use log gain(G), which is dB. i.e. log

gain(G) = 2010g10 |G ]a) | So for w < % we find 20 loglOO = 0. The x axis, which is the
frequency, is drawn using log,  scale and not linear w scale. So each step on the x axis
jumps by 10 times it last value. Each step is called a decade, as follows
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20l0g10|G(jw)| (dB)

log1ow
100 1000 910

1
T T T

s

1

ViZa?
2010g,, |G (jw)| = 2010g,,1 - 201og,, V1 + 1202
=0-10log,, (1 + 72w?)

Now we go back to the first example G (s) = ﬁ, then |G (]a))| = hence

Now we apply the Bode approximation. When w > % (large frequency approximation), we
get
20log,, |G (]a))| =0-10log,, (Tza)z)
= -20log,  Tw

So for large w the |G (]a))| (in db) has a slope of —20 per decade. So we have the following
approximation of the magnitude

slope —45° per decade

Notice: the phase plot break point starts the slope from 1(1)—Tvalue, and goes down —45° per

decade. The magnitude starts from the % break point and goes down -20 db per decade.

Reader: Do Bode plot for G(s) = 1 + ts. Everything now is flipped from last example of
G(s) =

147s”
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‘G(]w)l (dB) slope +20 dB per decade

angle

+45° per decade

logi1ow

A= - =
ilz

.
107

Now we build on this for more complicate transfer functions. Key remark: Using
log,, (ABC) = log, A +log, B =log,,C

Then if ABC was complicated transfer function, we break it into simple functions and make
bode plot for each, and then just add them to make the over all bode plot. For phase we use

<(ABC) = <A+ «B+ «C
1

. 1
Here is an example. Let G(s) = 109171009 For T100:

7 = 100, so the break point is

1
0= 0.01.
. o 1 . . 1
For ——, if we write it as — then 7 =10, and the break points for this term are — = 0.1.
1+10s 1+1s 10

These values will go on the xaxis (w). Looking at the magnitudes, we plot each transfer
function on its own, like this

. w rad/sec
200 ________> \ /\720 db per
decade, starting
from 0.1. This
plot represent the

—40 L— transfer

1+10s

290 db per function
|G(jw)| (db) decade, starting

from 0.01. This

plot represent the

1
TTi00; transfer
function

Next, we add them. We see that from 0.01 to 0.1, only one TF is active, so the slope is —20
db per decade. But from 0.1 to 1 and beyond, both transfer functions are active, and so the
slope become —40 db per decade. So the result becomes
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001 0,1 ; w rad/sec

—320 dB per decade

—20

—40 dB per decade

[ SR 7

SN 1 S ‘

|G(jw)] (db)

Now we will do the phase plot. We show each TT phase plot separately, then add them. For
phase plot, each transfer function effect will extend up to 2 decades only. This is different
from the magnitude plot. We go one decade before the break point, and one decade after
the break point. This means each TF will contribute —45° slope per decade, but only for the
two decades around the break point.

0.001 .01 0.1 1 w rad/sec
phase . »
/1 { U S \

This plot for
ﬁ and starts
—90% L - - _ _ one decade before

0.1 and ends up
one decade after.

This plot for

71“1003 and starts Then. its ]
one decade before contribution
stops.

0.01 and ends up
one decade after.
Then its
contribution
stops.

is active, so the slope is —45° per decade.

Next, we add them. From 0.001 to 0.1 rad/sec
1+100s

0.01 to 1 rad/sec, The second transfer function ﬁ is active. After 1 rad/sec, the contribution
stops. So the result becomes
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) 0.001 .01 0.1 1 w rad/sec
phase * . .
'/:\%450 per idecade
L) S ‘ | |
; |
: |
900 | _______X ’/\ —%)()0 per decade

e

<
B ‘

45° per decade

Reader: Sketch ——~ The Denominator has break point at 100. The Numerator has break

. 1+0.01s
point at 10.

Bode Diagram

Magnitude (dB)
= [ N
o 6] o

(2}
T
I

(2]
(o=}
T

Phase (deg)
8

1 1 1 1
10° 10* 102 10° 10
Frequency (rad/s)

Notice that the 1 + 7s is very important here. We can’t apply any of the approximation
if the transfer function was not in this form. For example ﬁ. But we can easily convert
everything to the 1 + 7s form. For example
+30) (s + 50
Gl = EFVE+50)
(s +20) (s +100)

(1)
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This is not the standard form. We convert each one at a time. Hence

(s+30):30(;—0+1)

(s+50):50(i+1)

50
(s+20)—20(s +1)
~7\20
S
+100) =100 (—— +1
(5:+100) (100 )

Hence (1) becomes

~60)60) (5+1)(5+1)

~ (20) (100) (zio + 1) (1% + 1)

S S
515+
S S
(1) (5 +)
The effect of the constant 0.75 is to just shift the magnitude plot by 201og, ; 0.75. This constant

will not affect the phase plot. (if it is positive, as in this example). For negative, it subtracts
180° from the phase.

G(s)

=0.75
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2.29 Lecture 28, Thursday December 4 2015, More
Bode analysis

Today we will finish bode approximation and look at the "sign" issue. Then we will move
. . . . 1 .

to margin analysis and design using Bode. Suppose we have G(s) = 3. There is a pole

of order k at zero. For this, we need separate Bode analysis. Since G(ja)) = Lk, hence
jw

|G (]a))| = ﬁ So log gain(G) = —20klog, w. This is exact. No straight line approximation as

we did before. It falls off at —20k dB/decade at all frequencies, starting from @ = 0.01 rad/sec.

So at w = 0.01, we have |G (]a))| = —20k log (0.01). So for k = 3, we get 120 dB. Then it will fall

by —60 dB/decade (not 20 dB/decade, since we have factor 3). What about the phase? Since

<Lk = —90k degree. So it is —90k° at all frequencies. Not from one decade before to one
jw

decade after as we did for the approximation, as this is exact. Similarly for zero at s = 0 of

order k, as in G (s) = s*. It will all be reverse. The phase will be +90k° and the magnitude

will have slope of +20k dB/decade.

Now we consider another special case. Which is second order system

wh
s2 + 2Lw,s + w?

G (s)

Where 0 < C < 1. If the poles are complex, we can’t use the straight line approximation,
since we can not put it in the form of (1 + %) Only if the roots are real can we do this. For

complex poles, we need special handling to make Bode plot. We start by rewriting G (s) as

1

GE) =
—2+2m—5+1

. 1

G(]a)):a) C

Now consider when w < w,,. Then G (]a)) ~ 1 or 0 dB. When w > w, then will fall off by
—40 dB/decade since we have 2 poles.
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|G(jw)| dB —20 dB/decade

T
| —40 dB/decade
S0 J) S SR Qo

A0 --r--r r—---

Notice that this has approximation errors when damping C is very small. What about the
phase? Since poles are complex, then at w = 0 the phase cancel each others. So phase is
zero at w = 0. For large w, one pole phase goes to 90° and another to 90°, so phase is +180°.
But the poles are in the denominator, so phase is —180°.

phase ()0
—45Y
—909
—135°
—180°

Reader: Consider numerator with complex poles

. . . " _ . n — L / frd —1
Now will talk about the issue with "signs". Suppose G (s) = .— hence G (]a)) = o) therefore
|G (]w)l = ﬁ, so log gain is the same as G(s) = ﬁ, which is the standard form, but
the phase is not the same. Now the pole is in the RHS. But since in the denominator, then
phase is ~180° and not 0° as before. This means initial phase is at ~180° and not at 0°. Now,

when w is very large, now the phase goes to +90°. But since in the denominator, the phase
goes to —90°. Hence the phase plot only changes for ﬁ and not the magnitude. The phase
plot will be
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1

phase plot for G(s) =

1—7s

—90°

—1359

—180°

1

The magnitude plot is the same as for G(s) = -—. Remember to change this to standard
1

form G(s) = ——
1+-€—
[ (%)

We now go to design and margins. Example. Given open loop G (s) =

. oo 1
so that the corner frequency is more clear now that it is (;)

2500
;a;:giglgas. We use bode

plot to find gain and phase margins. Always use the open loop transfer function, and not
the closed loop. First we find corner frequencies. Need to write the above in standard for

1
s(5) (g +1) (50) (55—0 +1)
1
S S
(+1)(5+1)
So corner frequencies are 5 and 50 rad/sec. The gain 10 causes a 20log, 10 = 20 dB shift

in the magnitude. We always start from @ = 0.01. The pole at s = 0 always starts at 40 dB,

since 20 logloé = —20log,,0.01 = 40 dB. Here is the bode plot using Matlab. See HW8 for
more examples how to make Bode plot approximation by hand.

G (s) = 2500

=10
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Bode Diagram

a
o

o
T

o
o
.

Magnitude (dB)

=
o
o

L=
©oul
s'=)

:

Phase (deg)
iR
3

-270 =

10° 10t 10
Frequency (rad/s)
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2.30 Lecture 29, Dec 8 2015, Bode gain and phase,
effects of delay

Final exam on thursday. Three main topics on final: Root locus, Nyquist and Bode analysis.

Root locus: Know how to draw it and make inferences. What is important is the axis crossings.
We can make some inferences without drawing also. For example, what happens at high
frequency? Is the system stable or not at high gain? If the difference between number of
poles and zeros is over two, then we know the system will be not stable at high gain since
we know that some of the asymptotes will end up at infinity. Where do asymptotes begin?
At centeroid. We also covered the variant of root locus, where the system is in the form

2
G _S +ps+6 .
(S) (s+8)3

form and only then apply root locus.

We can’t apply Root locus on this form. We have to first convert it to standard

For Nyquist, need to know how to do the mapping from I' to I'gy. Make sure to get the
cossing correct. Count number of open loop poles. Then count number of net clockwise
encirclements around -1 and see if they match. Then the closed loop is stable, else it is not.
We can also make the system stable by increasing the gain. We looked at effect of delay on
Nyquist. It will cause the plot to rotate, which can cause it to become unstable.

For Bode, learn how to make quick sketch. Must first convert G (s) to standard form for
approximation. We also looked at issue of signs. The difference between 1 + 7s and 1 — 7s.
The magnitude remain the same, but the phase changes. Learn how to read gain and phase
margins from Bode plots.

Now back to the lecture.

If there is pure gain H (s) = K, then its effect is only on the magnitude, not on the phase. It
will cause the magnitude to shift by 20log, K.

1

25(1+3)

For the gain and phase margin. For example. Given G (s) = The gain is % and there

is corner frequency at 2 rad/sec. Here is the Bode plot
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Bode Diagram

T T T T T

N
o

'_\
6]
T

1

T

10 8

Magnitude (dB)

T

30 8

Phase (deg)

0 n 1 ool " " ool " IS | " " ool
10t 10° 10t 102 10° 10
Frequency (rad/s)

The gain margin is at frequency where phase is —180°. Notice that in this example, the phase
actually is never —180° but can get as close to it as we want. So in theory, this has infinite
gain margin. The phase has to actually dip below —180° to get an actual crossing. Matlab
reports infinite gain margin also. The frequency at which phase is -180° is called w,. and
the frequency at which magnitude is 0 dB is called w,.. From the plot the phase margin is
about 76°.

So a gain only controller H (s) = K only affects the magnitude but not the phase.

Now we will talk about the effect of delay on Bode plot. If we have ¢7%T in forward path,
then since |e7“T| =1, the delay only affects the phase and not the magnitude. Nyquist plot
rotates clock wise by amout T at @ = 1. For bode, as w increases, the phase will decrease
more and more. So starting with a system that has postive phase margin, as w is increased
for some T, we will see the phase margin decreasing, and the system can become unstable.
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phase margin

is reduced \\

—1800

phase

N

\ Original phase bode plot

AN
v

N
~

modifed phase due to delay
‘\—/

Reader: How large can T be in the example above before the system become unstable?

Reader: Make a bode plot of this system

10

+
>

s+1

—sT

31.5 -
14+30s

52
g5+l
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2.31 Lecture 30, Dec 10 2015, Final exam

Final exam.
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CHAPTER 2. CLASS NOTES

2.32 Cheat sheet

2.32.1 Laplace Transforms for exam

2.32.2

time Laplace
impulse o (t) 1
delayed impulse O(t—a) e’
unit step u(t) %
delayed unit impulse u(t—a) %e‘“s
ramp t 512
parabolic t2 533
0 P (s)
scaled f (at) %F (2)
ef(t) F(s—a)
£ F(s)
derivative (@) sF(s) - f(0)
second derivative £ (@) s?F (s) —sf (0) = ' (0)
integrator ﬂ f(r)dr %F (s)
delay in time ft—a)u(t-a) e"F(s)
convolution fteg(t) F(s)G(s)
e~ (t) #
el azz_asz
(1 - e‘”t) u(t) - (:Hl)
sin (at) u () 5
cos (at) u (t) 52;2
ot a
e~ sin (at) u (f) @
e cos (at) u (t) e

Partial fractions

1 A

B

A= lim

GraG+h) G+a  G+D)

s-a (5 + D)

B = lim

s—-b (S + El)
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1 __A B C
(s+a)(s+b)2_(5+a) (5+D) (s +b)>

= lim
$2-a (g + b)

B= hmi !
"~ sobds \(s+a)

C = lim
s=-b (s + a)°

a2 +1)

For B, C, expand now and compare coefficients (but there should be faster way)

2.32.3 Final value

Suppose F (s) = D() is stable, then

tlirn f(t) = lir% sF (s)

F (s) is allowed to have only one pole at origin and still use FVT. But if F (s) has more than
one pole at the origin, or unstable, we can’t use FVT to determine lim;_,, f (t).

2.32.4 Tracking

Eo) _ 1
R(s) ~ 1+GH®

in G (s) H (s). Since we want GH to be very large for s = 0. And integrator is 1 If the input is

To have lim;_,, e(t) = 0 when the input R (s) is step, we need to have integrator

ramp ¢, then we need in GH. If the input is #* then we need 5 in the controller and so on.

2.32.5 Second order system

2 _
Wy
G(s) = m, Ystep (1) =

e~Con
—nC 1= C
shoot is ¢¥1-, Resonance frequency w, = w, V1 - 22, and |G (w,)| =

(sm w, V1 -t + cp) where ¢ = cos™! {. Maximum over-

1

20y/1-C2
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31 HW1

3.1.1 Problems

ECE 332

Homework 1

1. For the circuit below, find the transfez function 5: :).

ANV *
+

+ R1 .
Vi R2 FCl v

11

2. Find the inverse Laplace transforms of the following:
(a) F(s) = Gy
(b) F(s) = sreammm
(c) F(s) = Hgsia:
10(s+2 —3
(d) F(s) = s¥siihme
3. A system is described by the differential equation
y(4) + y(3) + 5y(2) + 7y(1) +y= u® + 2@ + 3D + Tu
Find the transfer function g(%

4. For the system in Problem 3, find the step response using the Matlab toolbox Simulink
(see handout).

(a) Plot your output for 30 seconds and comment. Please include descriptive titles
and axis labels.

(b) In view of the result in (a), a feedback gain K is introduced into the system.
This leads to a system with 7y(") replaced by (7 + K)y"). Using Simulink, find
a suitable value of K so that the unstable oscillations in (a) are eliminated. Plot
30 seconds of the step response for the stabilized system. (Note: Try not to use
an excessively large gain if avoidable.)

For this problem submit the two plots as well as a copy of the Simulink schematic file
used to generate the plots (only one schematic is needed). Please enlarge the necessary
blocks so that all of the numbers inseide are visible, e.g. the transfer function block.

3.1.2 Problem 1 solution

Let the input impedance be Z;, and the output impedance be Z,,, then
Zout = RZHch
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1

. To find Z,,;,, we use the parallel
C15

Where Z, is the capacitor impedance given by Z. =

formula
1 1 1

= — 4+ —
Zout RZ ch
ZC1 + RZ

RZZC1

Therefore
RyZ 4
Zout = 7 =
a1t Ry

Now we find the input impedance, which is
Zin =Ry + R2||Zc1
RZZC
=Ri+ 0——
' Z + R
Simplifying gives
_ Ri(Zey + Ro) + RoZ ey

s
" ch + R2

Now voltage divider is used, which gives
VZ (S) — Zout
Vi (s) Ziy

RoZe,
ZCl +Ry
Ry(Zey +Rp)+RoZe,
ch +Ry
RZZC1
Ry (Ze, + Ry) + RyZ,
RyZ,,
RiZ., + RiRy + RyZ,.,
1

R
+-L+1
Ze,

1
&+R1Cs+1

Ry
R,
(R1 + Rz) + R2R1CS

Ry
Ry

Hence the transfer function is

Vals) _ Ry

G(s) = Vi)  (Ri+Ry)+RyR;Cs

The above is a low pass filter since making s = jw gives
Ry
(R1 + Ry) + Rk Cjw
117
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Ry
R1 +R2 :

As the frequency w — oo then |G(w)| —» 0 and as w — 0, |G(w)| —

transfer function attenuate large frequencies.

3.1.3 Problem 2 solution
3.1.3.1 Part (a)

F(s) =

1
(s+2)%"

Using the Laplace transform property

F(s—a) = e"f ()
Where f (t) is the inverse Laplace transform of F (s). And also using the property
1 tn—l

o -1

Then, combining (1) and (2) gives

-1
( 1)n at t"
sSs—a

o)
For a = -2 and n = 4 the above becomes

1
e e
(s +2)* 3! 6

3.1.3.2 Part (b)

F(s) = Using the computer, the factors are first found

1
s3+552+8s5+4 "

P +52+8+4=(s+1)(s+2)°

Applying partial fractions decomposition on gives

(s+1)(s+2)°
1 A B C

7= + + 2

s+1)s+2)° 6+1) (s+2) (s+2)
Multiplying both sides by (s +1) and evaluating at s = -1 gives

3 1
S (s+27
A=1
Multiplying both sides by (s + 2)* and evaluating at s = -2 gives
B 1
(s + D,

C=-1

118
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Therefore (1) now becomes
1 1 B 1
7= + - 2
(s+1)(s+2)° G+1) (+2) (s+2)
(5 +2°+ B+ +1) - (6+1)
- (s +1) (s +2)°
_ 2B +3s+Bs?+3Bs+s2+3
- (s +1) (s +2)°
Comparing numerator of RHS and LHS gives
1=02B+3)+(B+3B)s+(B+1)s?

Comparing coefficients (powers of s) gives 1 = 2B+3 or B = —1. Therefore the partial fraction
decomposition of (1) becomes

1 111
(+1)(s+2)2  (+1)  (542)  (s42)

The inverse Laplace transform is now applied to each term in the RHS and using F (s - 1) <
e™ f () which results in

1 1 1

61D 670 ear 0

—t e—Zt

—e

=| et (1 —et- te‘t)

3.1.3.3 Part (c)

752 +485+62 . . Sy
F(s) = ﬁ. The denominator can be written as s (32 +7s+ 10) which is now factored to

s(s +2) (s +5). Applying partial fractions on this gives gives

7s% + 48s + 62
F(s) = s s

s(s+2)(s+5)
A B C
= — + +
s s+2 s+5
Hence
A iy 7485462 _ 62
0 (51245 10
. 724485+ 62  7(4)+48(-2) + 62
B = lim = =
s—>(-2) s(s+5) -2(-2+05)
. 72 +485+62 7(25) +48(-5) + 62 1
C= lim = - _
s—(-5) s(s+2) —-5(-5+2) 5
Therefore

621 1 1 1
F§)=—+ ——-——-———
10s s+2 b5s+5
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The inverse Laplace transform is

62 1
) = — -2t _ _ ,-bt
() 10+e 56

For t > 0.

3.1.3.4 Part (d)
10(s+2)
s(sz+4)(s+1)

says that

F(s) = e”*. This is solved using time shifting property of Laplace transform, which

Z{ft-a))=e>F(s)

Where F (s) is the Laplace transform of f (). We see that 2 =1 in the above. So we just need

————| and then time shift (delay) the result by the amount a which is 1 in
s(sz+4)(s+1)

10(s+2)
s(sz+4)(s+1)

10 (s + 2) _é+ B +Cs+D
s(sz+4)(s+1)_5 (s+1) (sz+4)

this case. Applying partial fractions on ives

(1)

Hence
A = lim 10(s +2) _
s—=0 (52 + 4) (s+1)
S—>—15(52+4) T 5
Therefore (1) becomes
10(s+2) _5 2 +CS+D
s(sz+4)(s+1) T s (s+1) (52+4)
5+ 1)(?+4) -2 ((*+4)) + (Cs+D)(s) s +1)
- 5(52+4)(s+1)

10(s+2) =5(s+1)(s2 +4) = 2(5) ((s? +4)) + (Cs + D) (s) (s + 1)
10s + 20 = 125 + sD + Cs? + Cs® + s?D + 5s? + 35> + 20
=5(12+D)+20+s*(C+D+5)+(C+3)s®
Comparing coefficients gives

12+D =10
D=-2
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And
0=C+D+5
C=-D-5
=-3
Therefore

B N Cs+D
(s+1) (sz+4)

10(s +2) A
5
5 2 3s+2
s
5
s

s(sz+4)(s+1) -

s (+D)  (2+4)
2 s 2

R -3 _ 3
G+D C(2+4) (2+4) )
Using tables, »1 (52;2) = cos (at) , hence #! ( (Szi 4)) = cos 2. Also, from tables .~ (sziuz) _
sin (at), hence £ (ZL) = sin2t. The complete the inverse Laplace transform of _106+2)
s+ 3(52+4)(s+1)
is now found to be
10 2
g(t) = 71| ot 2
s(sz+4)(s+1)

=5-2¢"" -3 cos2t —sin 2t

Therefore the final answer is just a time shifted version of the above, which is
fB=gt-1)

=|5-2¢"D _3cos2(t-1)—sin2(t-1)

For t > 1 and zero otherwise.

3.1.4 Problem 3 solution

Taking Laplace transform of both sides, and assuming zero for all initial conditions gives
sYY (s) +s3Y (s) + 552Y (s) + 7sY (s) + Y (s) = s3U (s) + 252U (s) + 3sU (s) + 7U (s)
Y (s) (54 +53 4552+ 75 + 1) = U(s) (53 +25% 4+ 35 + 7)
Y(s) S +252+43s+7
U(s) s*+s3+552+7s+1

3.1.5 Problem 4 solution
3.1.5.1 Part (a)

Simulink model was setup and run for 30 seconds. The step response shows that the plant
is not stable. This is due to the numerator having roots with positive real parts
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-1.1803 + 0.0000i
-0.1608 + 0.00001
0.1706 - 2.28881
0.1706 + 2.28881

>> double(solve(s~4+s~3+5*xs"2+7*s+1==0,s))

The following diagram show the simulink model and the output

"y model * - Simulink student use =10lx|
File Edit View Display Diagram Simulation Analysis Code Tools Help
G| EBe-E-ed®Pp = ¥y o Qv
model |
o [Famodel
a
=
S+22+3s+7 ]
> L
sH+s3+582+7s+1
Step Transfer Fcn output
\
i
= |
i
» !
Ready 351% od,é45A 4
I
output —1olx| /
/
/

File Tools View Simulation Help

Ready

CHEICLE

“C- £ @

Unstable
plant

Offset=' T=30.0

3.1.5.2 Part (b)

Replacing 7y™® with (7 + k) y¥ in the given differential equation leads to the following transfer

function

SPY (5) +53Y (s) + 552Y (s) + (7 + k)sY (s) + Y (s) = s3U (s) + 252U (s) + 3sU (s) + 7U (s)
Y (s) [s4+s3 + 5s? +(7+k)s+1] = Ll(s)(s3 + 252 +35+7)

Hence

Y(s) _ §34252435+7
U(s)  s4+s3+582+(7+k)s+1

To determine what range of values for k to use, Routh stability table is first applied to the

denominator polynomial
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1 5 1
1 7+k
-2+k) 1
(T N S 0
—(2+k)

Therefore, for no sign change in the first column, we need - (2+k) >0or2+k <0or k < -2

— _ 2
and we also need % 0 or % > 0 which means k% + 9k + 15 > 0. The roots of

this quadratic are k = -2.2087,k = —6.7913. Putting all these conditions together gives the
range of value on k for a stable system as

-6.79 < k < -2.208

So any k in this range can be used. Here is the response using simulink using 4 different

values of k, all within the above range to keep the system stable, showing that all the responses
are stable, using the same 30 seconds duration.

-lolx] -Io/x]
File Tools View Simulation Help L

File Tools View Simulation Help

- 0P8 5-|a-0 |Fd- @ |20k ® |- |a L |Fa-

o
o
a
Ef
<

]
°
=
E
<

=-6 K=-5
_lolx -Iolx
File Tools View Simulation Help > File Tools View Simulation Help .
@-|sOP®|%-|g-[C-|F

@ 4@ E

=-|a F A

Amplitude

Ready Offset= T=300 | Ready Offset= T=300

K=-4 K=-3
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3.1.6 HW 1 key solution

-

ECE 332 Homework 1 Solutions
1. By voltage division, we know that V; = .Z—il—Z—vl’ and in this case, Z; = R; and
1+ 242
P
Zz=RZ//;ZT =“'—_i' Say V_1=1volt
VO R+ —
sC‘
Therefore,
L3
801
1 Ry
e 2tse 5Cy
- R - 1 R
o E(rrg)eg
Ry + - 11 1 1
Ao
V, = Ry Since V_1 is not necessarily one volt, the quantity on the
RiRyCis + (R + Ry) right hand side is the required transfer function V_2(s)/V_1(s)
2. (a)
F(s) = rogme = 1) = £ —L
MR R (T
1) = ()
= gte v
t3e—2t
1) = Su)
(b)
Fls) = 1 _ 1 _ 11 1
VT S5t +8s+4 +1)(s+2)? s+1 s+2 (s+27
ft)y = L7Y(F(s))
) = (e“' —e % - te'”) u(t)
(c)
F(s) = 7s% + 48s + 62 - 7s® 4+ 48s + 62
T 847524105 s(s+2)(s+5)
6.2 1 1
Fs) = T+s+2—_—+——
) = (6;2 ye o -5‘) u(t)
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(d)
_ 10s+2) . ,[3 SHs+i %
r F(s) s(s2+4)(s+ l)e = 10 [s s2+4  s+1

5 3s+2 2 5 s 2 2
-8 e e —8 __3 — —
Be [s Z+4 s+l] Be [s T+4 s2+4 s+1]

£ {5 — 3cos[2(t = 1)] - sinf2(t — 1)] - 2"V} u(t - 1)

3. Given the differential equation

y(4) + y(a) + 5y(2) + 7y(l) + y= u(3) + 2u(2) + 3u(1) + Tu
Taking the Laplace Transform of both sides yields:

SAY(s) + s3Y (s) + 552Y (s) + TsY(s) + Y (s) = s°U(s) + 252U (s) + 3sU(s) + TU(s)

Y(s) s +2%+3s+7
U(s)  s*+s3+5s2+7s+1

4. (a) The transfer function depicting a system which is unstable. The output oscillates
about the point y = 7. (approximatally)

(b) K = —3 or K = —4 seem to work well.

Simulink Schematic for Homwork #1 Problem 4.

O——Gme ]
o N oy
53425243547 Output
S1op Input s4153455247541
" Transfer Fen ’ |
Scope

Unstable System Response.

Stable System Response. K =-3

Amplitude
Amplitude

0 10 20 30 0 10 20 30
Time, seconds Time, seconds

% Matlab script file used to generate the plots.

subplot(221), plot(time,yunst), grid, xlabel(’Time, seconds’)

ylabel (’Amplitude’), title(’Unstable System Response.’)

subplot(222), plot(time,y), xlabel (’Time, seconds’), ylabel(’Amplitude’)
grid, title(’Stable System Response. K = -37)

You may wish to ignore the code above if you have been succesful making Simulink run

125



3.2. HW 2 CHAPTER 3. HWS

3.2 HW 2

3.2.1 Problem 1

Problem 1: Determine the step, ramp and parabolic steady-state errors of the following
unity-feedback control systems. The forward-path transfer functions are given

Gls Hs) o — 1000
@ GEIHE) = 7510 1+ 10s)

1000

(b) GO = 25 T00)

(¢) Gls)Hs) = sSst s+ D)

(d) What relationships can you find between the number of poles of G(s) at the origin and
the type of input signal for which there is a constant stcady-state error (# 0)? If there
is a relation, state it; if there is no relation, give the evidence (o support your claim.

SOLUTION:

In all of these systems, the feedback block diagram is configured as follows

feed forward path

R(s) +E(s)
H(s) m—®1 G(s) Y (s)
controller plant
E(s) 1

R(s) = 1+H(s)G(s)

Since we are looking at steady state, we need to obtain the transfer function between E (s)
and R (s). Given that E(s) = R(s) — Y(s) and Y (s) = E(s) G(s) H(s) then we solve these two
equations for E (s) by eliminating Y (s) giving

E(s) =R(s)—E(s)G(s)H(s)

E(s) L1+ G(s)H(s)) = R(s)

E(s) _ 1

R(s) 1+G(s)H(s)
The above is is the transfer function used for the different R (s) signals: unit step u (t), ramp
t, and parabolic 2.
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3.21.1 part (a)

1000

019109 Since the number of poles at zero is zero,

The open loop transfer function is

the system ty[)eﬂ is zero.

. . . 1 .
When the input is a unit step u(t), then R(s) = < Using the steady state error transfer
function found above gives

R(s)
E(s) = — 7
O =T cwHe
1 1
1 1 1 (1+ES)(1+1OS) _1(1+Es)(l +10s)
Tsq,_ 1000 T 1 T a1
1+ (1+0.1s)(1+10s) (1 + ES) (1 +10s) + 1000 st+ st 1001

We see that the poles are located at s = 0,5 = =5.05 + 31.233i. Therefore this is stable E (s) as
the real parts of the poles are negative. We are allowed one pole at the origin. Applying the
final value theorem gives
ess = lim e (t) = lim sE (s)
f—o0 s—0
1
1000
(1+0.15)(1+10s)
1
1000

limg_,9(140.1s)(1+10s)
1

~ 141000

= lim
=01 +

Hence
1

s = 1001
When the input is a ramp, then R(s) = 512’ therefore

_ R{(s)
T 1+ G(s)H(s)
1 1

-2 1000
1+ —0
(1+0.1s)(1+10s)

E (s)

There are two poles at the origin and the other two poles are the same as above at s =
-5.05 + 31.233i. Since there are two poles at the origin, the final value is not defined (taken
from now on as infinity in order to be compatible with the text book result and notation).

IThe system type is the number of poles at zero of the open loop transfer function G (s) H (s).
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Finally, when the input is 2, then R (s) = 533 and

2 1
EO= 3T coa0
2 1

53 14 1000

(1+0.15)(1+10s)
2(1+ 0.1s) (1 + 10s)

= 81 +01s) (1 +10s) + 10003
_ 2(1+0.1s) (1 +10s)

53 (s2 +10.1s +1001)

There are now three poles at the origin s = 0. As above, this means the final value is taken
as infinity.

3.21.2 part (b)

1000

The open loop transfer function is AT I06e100)°

There is one pole at the origin which means
the system type is one.

When the input is a unit step, then R(s) = % and

1 R (s)
E(s) = ——————
® = T3 CoH
1 1 ~ 1 _ (1+10)(s+100)0 (1 +10)(s +100)
S sq4 00 . 1000 5(1+10)(s+100) +1000  11s2 +1100s + 1000

S1+10)+100)  ° + (1+10)(s+100)

The poles are at s = -0.9175,s = -99.08. This is stable E (s) and we can now apply the final
value theorem
ess = lim e (f) = lim sE (s)
t—oo s—0
1

s
1000

s(1+10)(s+100)
1

=lims
s—0

1+ lims_)o

1000
s(1+10)(s+100)

Hence

e, =0
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When the input is a ramp, then R(s) = S% and

E(s) = R—(S)
1+ G(s)H(s)
1 1
) 1000
s(1+10)(s+100)
1
- 2 4 10005
(1+10)(s+100)

(1 +10) (s +100)

= $2(1 +10) (s + 100) + 1000s
(1 +10) (s + 100)

s (1152 +1100s + 1000)

There is one pole at the origin s = 0 and the other two poles are the same at s = -0.9175,5 =
-99.08. This is stable. Applying the final value theorem gives

s = tli_)rgloe(t) = il_l’)% SE (s)

1 1
= lim 5 1000
S(1+10)(s+100)
) 1
= lim ) 1000
(1+10)(s+100)

(1 +10) (s +100)
= 205 (1 +10) (s + 100) + 1000
_ (1+10)(100)
~ 1000

Hence
e, =1.1
When the input is a 2, then R (s) = s% and

E)=— RO
1+ G(s)H(s)
2 1
-3 1000
s(1+10)(s+100)
2

) 100052
(1+10)(s+100)

_ (2)(11) (s +100)
"~ s2(11s + 2100)

There are now two poles at the origin. Therefore final value is taken as infinity.
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3.21.3 part (c)

K(1+2s)(1+4s)

. There are two poles at the origin which means
sz(sz+s+1)

The open loop transfer function is

the system type is 2.

When the input is a unit step, then R(s) = % and

R
E(s) = #
1+ G(s)H(s)
1 1
s K(1+25)(1+4s)
1+ 52(52+s+1)
B 1
- K(1+2s)(1+4s)
5(s2+s+1)
s (52 +5+ 1)
s2(s2+5+1) + K(1+25) (1 +4s)

We have to now assume that E (s) is stable to be able to apply the final value theorem as this
depends on the value of k which is not given in the problem. Therefore

sy = tli_)Ige(t) = £1_I)I6 SE (s)

i 1
- ll_l,%s ;1 K(1+25)(1+4s)
52(52+s+1)

. s? (52 +5+ 1)
= lim

520 52 (52 +5+1) + K(1 +25) (1 + 4s)
0
K

Which means
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When the input is a ramp, then R(s) = S% Applying the final value theorem gives

s = tli_)rgloe(t) = il_I)% SE (s)

= lims
s—0

=lims
s—0

=lims
s—0

=lims
s—0

Hence

1 1
2 K(1+25)(1+4s)
1+ 52(52+s+1)
1
2 K(1+2s)(1+4s)
(52+s+1)
(52 +5+ 1)

s2(s2+s+1) + K(1+25) (1 +4s)

ess =0

When the input is #? then R (s) = 553 and

s = tli_)néloe(t) = %1_1)1(1) sSE (s)

=lims
s—0

=lims

s—0

Hence

3.21.4 Part (d)

= lim (2

2 1
33 K(1+25)(1+4s)
1+ 52(52+s+1)
2 (52 +5+ 1)

$52(2 45 +1) + K(1+25) (1 +4s)

)

Summary of results from the above parts is

G(s)H(s) | system type (number of poles at origin) | e, step | e, ramp | e >
t(a) 000 0 T o o
part{a (019015105 1001 -
+2s)(1+4s
part(c) m 2 0 0 E

From the above table, we see that as the system type (number of poles at origin of the open
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loop G (s) H (s)) increases, then the system can handle more signal types while still producing
zero steady state error (this is good). The input signal that gives constant (non zero) steady

state error per system type is summarized below.

System type (open loop number of poles at origin) | Input that gives constant nonzero e
0 step (to)
1 ramp (tl)
2 parabolic (t2)

So the relation between number of poles at origin of open loop and the type of signal that
gives constant non zero steady state error can be written as

if the system type is m then nonzero constant ey is generated by signal #".

3.2.2 Problem 2

Problem 2: Consider the linear control system shown

100

{ . 1:*\L

and let R()=1.5t. What is the steady state crror?

SOLUTION:

|
~
b

T (0.05s +1)(0.05s +1)

Let the first input R (s) be Uy (s) and the second input (the constant 0.25) be U, (s), then

Y(s) = |(2 + %) E(s)+ U, (s)]G(s)

And

E(s) = Uy (s) =Y (s)
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Hence
E(s) = U (s) - [(2 + %) E(s) + U, (s)}G(s)
UCH YR ECECRAEES

E(s) (1 + (2 + %) G(s)) = Uy (s) — Uy (s) G(s)
Uy (s) — U (5) G (s)
1+ (2+ %)G(s)

E(s) = 1)

To obtain the error transfer function from E (s) to Uj (s), the input U, (s) is set to zero. To
obtain the error transfer function from E (s) to U, (s), the input Uj (s) is set to zero. Applying
these to (1) gives

o
Uy ()1, 14 (2 + %) G(s)
E6) G )

U, (s)

U;=0 ) 1+(2+§)G(s)

In Matrix form,

! ~GGs) U (s)
E(s) = 1+(z+§)c(s) 1+(2+§)G(s) U, (5)
But U (s) = 15—25 and U, (s) = %, and the above becomes
___100 1.5
1 (0.055+1) =
E(S) - [1+(2+1) 100 1+(2+1)—100 ][Osﬁ)
s/ (0.05s+1)% s/ (0.05s+1)% s
Hence
E1(s) Ex(s)
15 (0.05s + 1) 10000

E(s) = — -
() = 5 0.00255% + 0152 + 2015 +100.0 _ 55 + 4052 + 804005 + 20000

The poles of the first term are —19.751 + 282.83i ,s = -0.497,s = 0, Hence this is stable and
have at most one pole at origin. Then using F.V.T. gives

€ssy = ll_I)% sE1 (s)

' (0.05s + 1)
=1lim1.5
50 0.0025s3 + 0.152 + 201s + 100
=0.015

For E, (s), the poles are at , s = =19.75 + 282.83i,s = —0.498, Hence this is stable. Therefore
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using F.V.T. gives

essz = ll_{% SEZ (S)

) 10000s
= lim

s—0 53 + 4052 + 80400s + 40000
=0

Hence
ess = lim sE (s)
s—0
=0.015-0
=0.015

3.2.3 Problem 3

Problem 3: Consider the closed loop system

and assume the following:
(i) The steady state error for a step inpul is zero.

Y(s
(ii) The denominator of the closed loop transfer function % (also called the

characteristic polynomial of the closed loop system) is $'+4s’ +6s+4.
Find the transfer function G(s). Also find the steady state error if the input is a unit ramp.
(Hint: Let n(s) and d(s) be the numerator and denominator of G(s). Express the closed
loop transfer function as a function of n(s) and d(s) )

SOLUTION:
Let G(s) = %. The closed loop transfer function is

(s
Y)_ GG _ %ﬁ _ NG
R(s) 1+G@)‘1+g%"D@y+N@)

We are given that D (s) + N (s) = s> + 4s + 65 + 4. The error transfer function is
E(s) _ 1 1 3 D (s)
R(s) 1+G(s) 14N  D(s)+N(s)
D(s)

Substituting for D (s) + N (s) in the above with the given polynomial results in
E(s) D(s)
R(s) s3+4s2+65+4

1)
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We are told that lim,_,ysE (s) = 0 when R (s) = % Applying this to (1) gives

1 D (s)

553 + 452 + 65 + 4

E (s) above is stable since the poles are at —2,-1 + i with another pole at zero. Hence F.V.T.
can be applied to E (s)

E(s) =

ss = ll_r)% sE(s)

1 D (s)
553+ 452465 +4
. D(s)
= lim —=
s—0 4
We are also told that the above is zero. Hence

=lims
s—0

s—0 4
The above implies that D (s) must contain only s terms and no constant terms, since we
want D (s) = 0 when s = 0.

Assuming proper transfer function G (s) where degree of N (s) < degree of N (s), then D (s)
can be s% or s> + 452, or s> +4s? + 6s, since any of these will give lim,_, ? = 0. But D (s) can
not be s? for example, else G (s) will not proper G(s).

There are actually an infinite number of D (s) polynomials which meets this condition (if we

use fractions for the coefficients). Below is an example of two possible D (s) choices and the
corresponding G (s)

Dy (s) = s° + 4s? + 65

Then

4
s3+452+65

G(s) =

For steady state when input is ramp, using the above G (s) gives
1 s +4s%+6s

(5_253 +4s2 + 65+ 4
> +45+6

ess = lims
s—0

=1l
2055+ 452 + 65+ 4
Hence
es = 1.5
Another choice is D, (s) = s° + 4s2. Using this, G(s) = %. Using this, and when the input
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is ramp then

e, = lims
s—0

1 s3 + 4¢2
253 4452 + 65+ 4
) s2 +4s
= lim
s—0 83 4+ 452 + 65 + 4
=0

So the steady state error for ramp depends on which G (s) is used.

3.2.4 Problem 4

Problem 4: Two feedback systems are shown in Figure | and Figure 2.

+ K u K,
I — — >y
s 4s+1
Figure 1: Feedback System 1
- Kl) >
I 4s+1 )
Figure 2: Feedbuck System 2
(a) Let K, = 1. Determine the values of K, for system | and K, and K, for system 2 so

that both of the systems exhibit zero steady error to step inputs and such the steady
state error o a unit ramp is 1 in both cascs.

(b) Suppose K, changes from 1 to 1+8. Show that the steady state error with this
perturbed K, is still zero to a unit step input, for Figure 1. Also show that this is not
the case for Figure 2.

(¢) A control engineer would prefer the system in Figure 1 to the one in Figure 2. Do you
agree with this statement? Justify.

SOLUTION:

3.2.41 Part(a)

For system 1. Using K, = 0 we first obtain expression for E (s) and Y (s)
E(s)=R(s)-Y(s)

Y@= E(S)(%)(élsl-kl)
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Solving for E (s) from the above two equations gives

E(S) = R(S) - (E(S) 5(41:—:-1))

Ky 3
E(s)(l + s(4s+1)) =R(s)

s(ds+1)

E(S):R(S)m

When R (s) = % we want e,, = 0, therefore

ess =0 = y_r)%sE (s)

) s(ds+1)
0=Ilim————

s—0s(4s+1) + K;
. s(ds+1)

= lim
s—0 K1

0

= e

The above is true for any K; since the numerator is already zero. Considering now the ramp

input. When R (s) = é we want e, = 1, hence
ess =1 =limsE (s)
s—0
.1 s(ds+1)
1=lims-————"—
s—0 s2s(4s+1) + Ky
4s+1
=lim ——
s—0 S (4.5 + 1) + Ky
1
=%
Therefore

For system 2

E(s) =R(s)—Y(s)
But

Y(s) = l,I(s)Kg,45 1
And

U(s) =R(s)Ky, —Y(s)
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Hence (2) becomes

K
Y(s) =(R(s)K, - Y
(s) = (R(s) Ky =Y (s)) P
KyK3
4s +1
KoKs

Y (s) = R(s) —2L—
1+

Ky )
Y(s)(1+ 4s+1) = R(s)

K3

(3)

Substituting (3) into (1) gives
KyK;
4s+1+ Kj

KyK3
45+1+K;

E(s) =R(s)—R(s)

E(s) = R(s) (1 (4)

When R(s) = % we want e,, = 0, hence

ess =0 = ii_I)%SE (s)

o1
0 =lims- (1 -
s—0 §

_q KrK3
14K,

K>K;3
45+1+K;

For the above to be true, then

KoK _
Tk, = 1 ()

We now obtain a second equation from the ramp condition. When R (s) = 512 we want e;; =1,
hence

ess =1 = limsE (s)

s—0
1 K>K
1=lims= (1- —22_
s—0 §2 4S+1+K3
o1 KK,
=lim-|{1-—————
s—0 S 45+1+ K5
. 1 4S+1+K3—(K2K3)
=lim -
s—=0 S 4S+1+K3
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Replacing K;Kj3 in the above with 1 + K3 found in (5) gives

o 1 (4s+1+Kz3—-(1+k3)
1=1im-
4s +1+ Kj

1 4s
lim-|———
s—0 S (4S+1+K3)
3 4
 limg_,o (4s +1 + K3)

Hence 1+ K3 =4 or

K3:3

Now that we found K3 we go back to (5) and solve for K,
KoKy
1+K;
_1+Kj3
27K,
_1+3

3

Hence

Summary

system1| 1 | NA|NA
system 2 | N/A

[ | HN
(O8]

3.2.4.2 Part (b)

For system 1.

E(s) =R(s)=Y(s)

Ki1+6
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Hence
E@ﬁduﬁ—@@ﬂ§;1i)
ol B2 o
EO)=RO) —z 7
s 4s+1
_R(s) s(ds+1)

s(4s+1)+K;(1+0)

When R (s) = % then
ess = lim sE (s)
s—0
s(ds+1)
= lim
s—0s(4s+1)+ Ky (1+0)
_ limg_ps(4s +1)
K (1+9)
B 0
K (1+90)
The above is zero for any K; and any perturbation 6 since the numerator is already zero.

This is the same condition we found in part(a). Perturbing K; has no effect on the result of
ess for step input.

For system 2

E(s) =R(s) - Y(s) 1)
But
1+0
Y () = U@ Ky @
And
U(s) =R(s)Ky, —Y(s)
Replacing U (s) into (2)
Y () = (R(5) Ky = Y (5)) Kyl
©) = R K=Y () Ks -
K3 (1 + 6) _ K2K3 (1 + 6)
Y(S)(l T a1 ) =RO—A
KpK3(1+0)
Y (s) = R(s) @
_R (S) K2K3 (1 + 6) (3)

45 +1+ K31 +0)
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Substituting Y (s) from (3) into (1) gives

KyK5 (1 +0)
4s+1+K3(1+90)
KyK5 (1 +0)
_%+1+Kg1+@)

E(s) = R(s) —R(s)

=R (s) (1

When R (s) = %and using the F.V.T. gives
ess = lim sE (s)
s—0
. 1 K2K3 (1 + 6)
=lims-(1-
s—0 S 45+1+ K3 (1 +0)
B K2K3 (1 + 6)
45s+1+K3(1+90)
KK (1 +6)
1+K3(1+0)
For the above e, to be zero, then the condition is that
K2K3 (1 + 6) _
1+K;(1+06)

= lim (1

s—0

or

K2K3(1+6):1+K3(1+6)
1
KoKy — Ky = ——
2483 3 1+06

Using K; = g and K; = 3 found in part (a) then the above becomes

433_ 1
3 T 140

1= —
1+6

— 4

(4)

But this is impossible since the RHS must be either larger than one or smaller than one
(depending on the sign of 6). This means if K; is perturbed from unity, then it is no longer
possible to obtain zero steady state error for a step input with the same k;, k3.

3.2.4.3 Part(c)

I agree. For first system, it gives e, = 0 for a step input regardless of the value of K; or K,
as was shown in part (b) above. But for system two, e,; = 0 for step input only when using
specific values of K;. Any small change in K, the steady state error is no longer zero. In
other words, system one is more robust in this regard to changes in K; and it is therefore

the preferred system.

141



3.2. HW 2 CHAPTER 3. HWS

3.2.5 Problem 5

Problem 5: A importunt problem for television camera systems is the jumping and
wobbling of the picture due to movement of the camera. This effect occurs when the
camera is mounted on a moving truck or airplane. A system has been designed (shown
below) which is intended to reduce the effect of rapid scanning motion. A maximum
scanning motion of 25% is expected.

amplifier motor
v K, + K K, v
camera $T,+1 : : st +1 b
¢ » bellows
speed speed
Ki
tachometer

25
(a) Determine the stcady state crror of the system for a step input V,(s)=—. Assume
]
that T, is “negligible” and K, =K, =1.
(b) Determine the necessary loop gain K K, when a 1° /sec steady state error is
allowable. (Same assumptions as Part (a))

(¢) Show that the step response of the system is of the form
k
v ()=— l—c“”}
0=

under the assumptions in Part (a). Express k and q in terms of the system parameters.

(d) The scttling time is defined as the lime it takes for the step response to be within 2%
of the steady state valuc. Given the expression of the step response determined in Part
(¢), derive the expression for the settling time of v,. Also, find the loop gain K K
so that the settling time of v, is less than or equal to 0.04 sec. Take T, =0.4sec as

the motor time constant.

SOLUTION:

3.2.5.1 Part (a)

We first need to find 5::) From the block diagra
Ko
Vi (s) = E(5) K, 1551, 1)
And
E(s)=V, s
(5) =V (s) m - KV (s) (2)

“Notice that the problem is saying E (s) is the variable to the left of the amplifier K, and this solution is
based on this and not on using E (s) = V,,(s) - V. (s)
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Replacing V,, (s) in (2) with (1) gives
K, K,
E(S)=VC(S)( )_KtE(S)Ka(1+ )

1+s14 ST
K K
E@s) |1+ KK "_|l=v, g
(S)( t “(1+51m)) C(S)(1+51g)

Kg

E (S) _ 1+stg

vV (S) B Ky

c 1+ KK, (1+s*rm)
Hence
E(s) _ [ 1+sty Kg
Ve(s) — \1+s1g | 1457, +KK Ky

When V,(s) = %,Kg = K; =1 then E (s) from above becomes

25 (1 + s1,, 1
E(s) = —
s \1+st, | (1+K,Kp) + 57
The above E (s) has one pole at the origin, and has a pole at s = ;—] and a pole at s = —w.
g m

Hence this is stable (assuming K,K,, > -1). Applying F.V.T. gives

€ss = ll_{% sE (s)

1+ 1
:lim25( ST’")

s—0 1+s7 ) 1+ KKyp) + 575
Hence
25
“TI1TKK,

3.2.5.2 Part(b)

When e, is one degree per second, then from the above
25

1=——
1+K,K,

K,K,, = 24
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3.2.5.3 Part(c)
Vip(s)

Vie(s)
(2) into (1) found in part (a) above to obtain an expression for V (s)

K, K,
Vi) = (V<”@A- )—KJ@@QK41+M )
g m

K, K.K KK K
W@@+ﬁ4ﬂ:m@ gL
1+ sty (1+STg) (1 +st,,)

To find the step response, we find the closed loop

Hence the closed loop transfer function is
KoKqKy
Vi (s) _ (1+57g)(l+s7m)
Vo) 1 4 KuKiKe

1+sty,
1 KeKaKi
(1 + STg) 1+ STm) + K, KK,
Using same assumptions as part (a), and now using that 7, is negligible so that —— (1+ j ~1
S'L'g
in the above and using V, (s) = - since we are told in this part it is a step input (should we

have used 2 agaln here? It is not clear, but it says step input so I thlnk - should be used in
this part), then the above simplifies to

no= (3 gy
s] (1 +st,)+K,K,
1 K,K,,
T s (1L+K,K,) +st,,
KK, 1 1
wéﬁﬁﬁﬁ)

Tm

We now need to find the inverse Laplace transform. Using partial fractions

K. K, \1 1 A B
( ; m); AN 14K, K )
Tim Tm
Hence
. (KK, 1 K,K,,
A =lim 1+K,,K, = 1+K.K
s—=0\ T, —= +5s + K, K,
And
B y K,K,1 KK, 1 K,K,,
= 1m - = = —
s “UKnKa) Ty S Ty —1HKnKo) 1+K,K,
Tm Tm
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Now that we found A, B using partial fractions, we replace these values in (3) to obtain V, (s)
KK, 1 KK, 1

5 T+K,K (4)

1+K,K;s 1+K,K, nla

Tm

Vy(s) =

Now we can apply inverse Laplace transform. Hence

K K K K _L+KmKa
vy (1) = am e )y ()
1+K,K, 1+K,K,
K,K,, _L+KiKq
= — |1 - Tm t
1+K,K, ( ¢ u(t)
Let
_ 1+K,K,
==
and
k — KaKm
Tm

Then v, () can be written as required

v, (1) = S (1 - e‘qt) u(t)

3.2.5.4 Part(d)

We first need to find the steady state v (t). From (4) found above in part (c)
KK, 1 KK, 1
1+K,K,s 1+K,K,*KnKa |

Tm

Vy(s) =

Then applying F.V.T. assuming stability
Vi (c0) = hHOl sV (9)
S—

i o| KeK 1 KiK,, 1
s—>0 [1+K,K;s 1+K,K, 3l |
KK, "
1+K,K,
_k
g

Let the settling time be t,, then we want to solve for ¢, from
vp (£s) = 0.98V, (c0)
k k
= (1-e7%) = 0.98-
q q
1-e7 =0.98
e~ = 0.02
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Taking natural logs on both sides gives
—qts = In (0.02)
gt, = 3.912

Hence

3.912

T (1+KyK,
tm

Using t,, = 0.4 seconds in the above gives
. 1.5648
* 1+K,K,
For t; < 0.04 then
1.5648 <0.04
(1 +K,K,)
1.5648

0.04
1+K,K, >39.12

1+K,K, >

Hence

KK, > 3812
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3.2.6 HW 2 key solution

ECE 332

- HW #2  Solutions

s +101s +1
1-@) W.() = 7057001
| = 1 = =
Culew = 1001 Colrazp = Culprbots = *°
s(s +10)(s + 100)
C“'ngp =0 ellm =1 e-lp'“hd‘ -
s2(s> +s+1)
1-(c) W,(s)= s2(s® +s+1)+ K(1+ 2s)(1 + 4s)
1
Cl'Lq, =0 e-lmw =0 e"ll’""’"“ =E

1-(d) Systems with e_ Lq =k (being k finite and different from 0) have G(s) with no
poles at the origin (s = 0); Systems with e_ Lm =k (being k finite and different from 0)

have G(s) with one pole at the origin; Systems with e_l =k (being k finite and
different from 0) have G(s) with two poles at the origin.
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2
. 100
1 . .
Bs) = RG)+ (0055 +1)(0.05s + 1) D)
1+ 2+—) 100 1+(2+1) 100
s ) (0.05s + 1)(0.05s + 1) 5] (0055 + 1)(005s + 1)
Where D(s) is the constant input D(s) = O—fé
So lime(t) = lim sE(s)
o $(0.05s +1)(0.055 + 1) 025 _ ~100s 15
~ 0 * 50055+ 1)(0.05s + 1)+ (25 + 100 s $(0.05s +1)(005s + 1) + (25 + 1100 7
15
= m =0015

3 Let G(s)= %, where n(s) and d(s) are polynomials. Then
E) 1 1 d)
RG) 1+G(s) 14+ 36) "~ d(s)+n(s)
d(s)
nes)
Y6)__G(s) _ d(s) _ n(s)
R(s) 1+G(s) 14+ 26) ~ d(s)+n(s)
d(s)

Since the denominator of the closed loop function is s° +4s? + 65+ 4 then we have
n(s)+d(s)=s’ +4s> + 6s +4

Now, since the steady state error for a step input is zero, we have

. e d(s) s d(s) 1
El—ISSE(S)_1-l—x»lo?sn(s)+d(s) R(S)_I-l—lgss3+4s2+6s+4 ] =0
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The equation above implies that l.i_rgd(s) =0, or in other words d(s) = s p(s), where p(s)
is a polynomial. So just take

d(s)=s’ +4s* +68
and as consequence we have

ns)=4

4
O e -

Note that this is not the only possible answer.

The steady state to a unit ramp is

s +4s’+68 1
+48’ +68+4 §°

. e _5_
I.IESE(S)_I.%SS3 _4-]‘5

4-(a) First find the transfer functions for cach system

) Y(s) - KK,
F : =

g I R 6 s+ D+ KK,
piee 2. YO __ KKK,

"R() (4s+1)+K\K,
Next calculate the steady state error due to a step.

. W.()= R(S)— Y(s) = Rs) 1— Y&
Figure 1: W,(s) = R(¢) Y(s)-R(s)[l R(.s)]

KK,
€9 =R

45 +5
E(i)»: R(S)Ls2 +5+ K,Ko]

i 4% +5
c'L' —1-1-"34s’+s+K,Ko =0
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Figure 2: Wy(s) = R(s)- Y(s) =R(s) 1- R(s)}
K,K.,K
K RRe
| E (SF R(s{l (4s+1)+K,K, ]
) (4s+1)+ KK, -K,K,K,
E(S)" R(s{ (4s+1)+K,K, ]

I . s+ + KK, - KKK,
ol T W8T As+1)+KK,

Ny _1+KK, ~ KKK,
“lee T 14K, K,

0 #

When 1+K,K, -K,K,K, =0 then the step response will have zero steady-state
error. The constants K, and K, will be chosen so that this is true.
Now that we know that both of the systems have zero steady-state error to step

inputs, we can say that for each transfer function, TF(s), the DC gain (gain at
frequency zero) is 1 which means TF(0) = 1 for both systems.

Next, we can find the steady state error due to unit ramp. From the equations above,
we see the pattern is W, (s) = R(s)[l - ’I'F(s)] which means that

i L= TF(G) _ d(TF(s))|
0 s ds L_o

) 1
ol =i~ TR =

Given that we want c,l_, =1, we have the following cquations for systems that
we're studying

_d(TRs)| _ (8s+DKK, [ _ 1

ds |, @+s+KK)'|, KK, =1

. 1
Figure 1: X,

=K, =1

_d(TRs))|  _ _4KK, _
ds |, (+K,)

= 4K,K, = (1+K,)? *

Figure 2:
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From equation # we get 1+ K, = K,K, . Substituting thins into equation * we get
41+K,)=(1+K,)*=>K,=-1 or K,=3
Solving for K, in equation * we find that

_1+K,
27 K3

4
So, we get K, =0 or K, =3 but K, =0 is not feasible.
The final result is then

4
K =1 K2=-§ K,=3

4-(b) Let K, =1+

45 +5 48 +5

Figure 1: =1li = lim =
1gure C-Lq, ,n_B 452+S+K1K0 -0 4s2+S+K1(1+8) 0

which is independent of 3.

_  @Bs+1)+ KK, ~K,KK,
: =]
Figure 2: e[, = lim (4s+1)+ KK,

(s +D+K,(1+8)- KK, (1+8)
Ol = lim (4s+1)+K,(1+9)

Substituting with the results obtained in Part (a) we get
3-34

[+ =
"Lw 1+3+33
Hence, the steady state error is not zero in this case

4-(c) I agree because the first system is clearly robust to variations in K,, while the
second is not.
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5. Under stated assumption, the error TF is

E(s)) _ 1
Vi(s) 1+ pefim

A straightforward calculation with V.(s) = 25/s leads to

. 25
eog = I sEG) = TR,
5-(b) The condition
%
1+ KoKy

leads to K K, = 24.

5-(c) With R(s) =1/s, a Mason calculation gives bellows output

K Km K
Vils) = TR R —
s(s+ Hhalm)  s(s + q)
where
K K 14+ K,
K — a m ; q — + aKm .
Tm Tm

Now, the inverse Laplace transform gives the desired result.

5-(d) Enforcing the error requirement

o) = K e < 002K

q q

at t =0.04

leads to
1+ KaKm) > 4

04q > 4; ie., 0.04( 04 >

with resulting loop gain requirement, K, K, > 39.
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3.3 HW 3
3.3.1 Problem 1
1. Consider the system with transfer function

Ks+1
G(s) = ; .
(8) = ¥ T (K + bt 1

(a) For K = 1, find the sensitivity S,f of this transfer function with respect
to k assuming nominal value & = 2. Then plot is magnitude as a function

of frequency.

(b) Repeat (a) with K = 100 and compare the effect of a large loop
gain on the sensitivity. '

SOLUTION:
Ks+1
G(s) =
©) 3+s2+(K+k)s+1
3.3.1.1 Part (a)
For K =1 the above becomes
s+1
G(s) =
®) P+s2+(1+k)s+1
Hence
sG = d_GE
k7 dk G

_i s+1 k
S dks3+s2+(1+k)s+1 s+1

$3+52+(1+k)s+1

—s(s+1) k(s3+sz+(1+k)s+1)

(s+ks+52+s3+1)2 s+1

3 —ks
1+ (1 +k)s+s2+s3

At nominal k = 2 the above becomes

K2 ™ 35+ 52 +53 +1
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Let s = jw then
sG = —2 (]w) — _ij
Y g+ () + (o) 1 T (Be-e?) +(1-0?)

Taking the magnitude
2w

V=02 + (30 - wd)’

Here is a plot of |S¢| as function of w

[S¢] =

Problem 1, part (a)

15F .
© 10F 1
- L i
Out[126]= £ I
05F .
0.0F ]
0 1 2 3 4 5

w (rad/sec)

3.3.1.2 Part (b)
For K =100 the transfer function becomes
Ks+1
G(s) =
©) $3+s2+(K+k)s+1
100s +1
s3+s2+(100+k)s +1
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Hence
c dG k

% =G

d 1005 + 1 k
Cdks3+s2+(100+k)s+1 | 100s+1

$3+52+(100+k)s+1

~5(100s + 1) k(s®+ 52+ (100 + k)s +1)
B 2
(1005 +ks+5s2+s3+ 1) 100s +1
—ks

- 100s + ks +s2 +s3 +1
At nominal k = 2 the above becomes

SGl B -2s
Flk=2 7 1005 + 25 + s + 3 +1
B -2s
1025 +s2+s3+1
Let s = jw then
G —2 (ja))
5 = — 2 . \3
102jw + (jw)” + (jw) +1
3 —2jw
C102jw - w? - jwd +1
—2jw

j (1020 - w3) + (1 - w2)
Taking the magnitude
2w

\/ (1- w2)2 + (1020 - a)3)2

Here is a plot of |S¢| as function of @

IS¢] =
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Problem 1, part (b)

0.081 1

0.06 1

(Dx | i
ou156]= £ 0.04| ]

0.02 y

T
1

0.00

1 I I I I 1 I I I I 1 I I I 1 I I I 1 I I I I 1 I I I I 1

0 5 10 15 20 25 30

w (rad/sec)

We clearly see that as K became much larger, resonance occurs near w = 10. This shows
that sensitivity of transfer function to changes in k, depends on the value of K.
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3.3.2 Problem 2

2. In many instances, steady state errors in control system are due to some non-linearities
such as dead zooes. A ‘Class B’ amplifier is a typical example of a device having a
dead zone where it takes ~1 Volt of input signal to turn on the transistor. Once the
device is on, however, it can be assumed to function linearly. The Class B amplifier in
Figure 1 can be characterized mathematically (assuming a 1V threshold voltage and
Vec = 00) by N(-) which is given by:

0 if —1<U<]1,
Y={U—1 ifU> 1,
U+l fU< -1

Vee

Qn

Y
3n
Qp -

=Vee

Figure 1: Class B Amplifier Circuit

(a) Develop aplotof Y  versus R with K = | in F igure 2.

R(:). E(s) 1 K H NG Y(s)

Figure 2: Feedback System

(b) If r(t) = 5sin(t), sketch y(t).

(c) Now let K = 10 and develop a plot of Y(s) versus R(s!. Com.ment,. on the
difference in the output due to the sinusoid - consider amplitude, distortion, etc.

(d) Comment on the change to ¥(s) versus R(s) if the gain block K were placed in
the feedback loop instead of the forward path.

SOLUTION:
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3.3.2.1 Part (a)

R(s) 4iO4> K v = K(R — N(@)) yonlinear | V() »Y (5)

From the above we see that

Y = N(x) 1)
The plot of Y (x) is given below based on the definition given in the problem

Nonlinear device

outle49l= >

At the output of the controller we have

x=k(R-N ()
x=k(R-Y)
x=kR-kY
X
Y:R_E (2)

Equations (1) and (2) must both hold. We now setup a table of R and corresponding Y
values, and using k =1 for this part, we obtain

R Y =R -x | solution of Y = N(x) | Y at solution
0 -X x=0 0
0.1 01-x x=0 0
0.2 02-x :
see program :

Small code was written to finish the above table, using R = -2 --- 2 range with increments of
0.1. Here is the generated table, followed by the plot
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3.3. HW 3

Y at solution

-0.45

-0.35

-0.25

-0.15

-0.05

.05

.15

.25

.35

.45

r-x/k

solution of N(x)

-1.45

-1.35

-1.25

-1.15

-1.05

.05

.15

.25

.35

.45

r-x/k

. =X

-1.9-x
-1.8-x
-1.7-x
-1l.6-x
-1.5-x
-1.4-x
-1.3-x
-1.2-x
-1.1-x

-1.-x
-0.9-x
-0.8-x
-0.7-x
-0.6-x
-0.5-x%
-0.4-x
-0.3-x
-0.2-x
-0.1-x

1-x
.2-X

.3-X%

LA4-x

.5-x

.6-X%X

.1-x

.8-x

.9-x

1-x
.2-X

.3-x

L4-x

.b-x

.6-x

.71-x

.8-x

.9-x

-2.

-1.9
-1.8

-1.7
-1.6

-1.5
-1.4

-1.3
-1.2

-1.1

-1.

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1
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And plot of Y vs. R is below

Nonlinear device after feedback

10 r T T /,\7
L,
R
,
0.5 o
7
R
— e
X 0.0 ~’
out[57]= > : /’
R
/',
-0.5+ e
L,
7
R
-1.0 g
) L I I . . I I |
-3 -2 -1 0 1 2 3

This below is the above plot, but with the original device output without feedback, in order
to better see the effect of feedback with k = 1.

Nonlinear device

no feedback

r feedback k=1

For k =1, the dead zone did not change. But the slope became small after x = +1

3.3.2.2 Part (b)

When r(t) = 5sin (t), the following table shows result for t = -2.. 2.
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t r = 5 sin(t) r-x/k solution of N(x)=r-x/k|Y at solution
-2. -4.54649 -4.54649-x -2.77324 -1.77324
-1.9 -4.7315 -4.7315-x -2.86575 -1.86575
-1.8 -4.86924 -4.86924-x -2.93462 -1.93462
-1.7 -4.95832 -4.95832-x -2.97916 -1.97916
-1.0 -4.99787 -4.99787-x -2.99893 -1.99893
-1.5 -4.98747 -4.98747-x -2.99374 -1.99374
-1.4 -4.92725 -4.92725-x -2.96362 -1.96362
-1.3 -4.81779 -4.81779-x -2.9089 -1.9089
-1.2 -4.6602 -4.6602-x -2.8301 -1.8301
-1.1 -4.45604 -4.45604-x -2.72802 -1.72802
-1. -4.20735 -4.20735-x -2.60368 -1.60368
-0.9 -3.91663 -3.91663-x -2.45832 -1.45832
-0.8 -3.58678 -3.58678-x -2.29339 -1.29339
-0.7 -3.22109 -3.22109-x -2.11054 -1.11054
-0.6 -2.82321 -2.82321-x -1.91161 -0.911606
-0.5 -2.39713 -2.39713-x -1.69856 -0.698564
-0.4 -1.94709 -1.94709-x -1.47355 -0.473546
-0.3 -1.4776 -1.4776-x -1.2388 -0.238801
-0.2 -0.993347 -0.993347-x -0.993347 0
-0.1 -0.499167 -0.499167-x -0.499167 0

R 3. 0. % 0 0
0.1 0.499167 0.499167-x 0.499167 0
0.2 0.993347 0.993347-x 0.993347 0
0.3 1.4776 1.4776-x 1.2388 0.238801
0.4 1.94709 1.94709-x 1.47355 0.473546
0.5 2.39713 2.39713-x 1.69856 0.698564
0.6 2.82321 2.82321-x 1.91161 0.911606
0.7 3.22109 3.22109-x 2.11054 1.11054
0.8 3.58678 3.58678-x 2.29339 1.29339
0.9 3.91663 3.91663-x 2.45832 1.45832

1. 4.20735 4.20735-x 2.60368 1.60368
1.1 4.45604 4.45604-x 2.72802 1.72802
1.2 4.6602 4.6602-x 2.8301 1.8301
1.3 4.81779 4.81779-x 2.9089 1.9089
1.4 4.92725 4.92725-x 2.96362 1.96362
1.5 4.98747 4.98747-x 2.99374 1.99374
1.6 4.99787 4.99787-x 2.99893 1.99893
1.7 4.95832 4.95832-x 2.97916 1.97916
1.8 4.86924 4.86924-x 2.93462 1.93462
1.9 4.7315 4.7315-x 2.86575 1.86575
2. 4.54649 4.54649-x 2.77324 1.77324

the following is the plot of the output with the feedback for k =1
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Nonlinear device

no feedback

1+ feedback with r=5 sin(t), k=1

-
-
.~
-

P
-
A

Matlab code to plot the solution

Jmatlab code to generate plot for part(b), HW3, problem 2
ECE 332

close all; clear all,;

figure

t=0:.1:10;

f=0(x) (x+1).*%(x<-1)+(x-1).*(x>1)+0; %non-linear device

r = 5 *sin(t); %input

k =1; %change to 10 for second part

x = fsolve(@(x) f(x)-(r-x/k),r);

plot(t,f(x));
grid;
title('output of 5*xsin(t), k=1');

3.3.2.3 Part (c)

Now k =10, and part(b) was repeated. the following table shows result for t = -2 ... 2.
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t r = 5 sin(t) r-x/10 solution of N(x)=r-x/10]|Y at solution
-2. -4.54649 -4.54649-x -5.04226 -4.04226
-1.9 -4.7315 -4.7315-x -5.21045 -4.21045
-1.8 -4.86924 -4.86924-x -5.33567 -4.33567
-1.7 -4.95832 -4.95832-x -5.41666 -4.41666
-1.6 -4.99787 -4.99787-x -5.452061 -4.452061
-1.5 -4.98747 -4.98747-x -5.44316 -4.44316
-1.4 -4.92725 -4.92725-x -5.38841 -4.38841
-1.3 -4.81779 -4.81779-x -5.2889 -4.2889
-1.2 -4.6602 -4.6602-x -5.14563 -4.14563
-1.1 -4.45604 -4.45604-x -4.96003 -3.96003
-1. -4.20735 -4.20735-x -4.73396 -3.73396
-0.9 -3.91663 -3.91663-x -4.46967 -3.46967
-0.8 -3.58678 -3.58678-x -4.1698 -3.1698
-0.7 -3.22109 -3.22109-x -3.83735 -2.83735
-0.6 -2.82321 -2.82321-x -3.47565 -2.47565
-0.5 -2.39713 -2.39713-x -3.0883 -2.0883
-0.4 -1.94709 -1.94709-x -2.67917 -1.67917
-0.3 -1.4776 -1.4776-x -2.25236 -1.25236
-0.2 -0.993347 -0.993347-x -1.81213 -0.812133
-0.1 -0.499167 -0.499167-x -1.36288 -0.362879
0. 0. 0.-x 0 0
0.1 0.499167 0.499167-x 1.36288 0.362879
0.2 0.993347 0.993347-x 1.81213 0.812133
0.3 1.4776 1.4776-x 2.25236 1.25236
0.4 1.94709 1.94709-x 2.67917 1.67917
0.5 2.39713 2.39713-x 3.0883 2.0883
0.6 2.82321 2.82321-x 3.47565 2.47565
0.7 3.22109 3.22109-x 3.83735 2.83735
0.8 3.58678 3.58678-x 4.1698 3.1698
0.9 3.91663 3.91663-x 4.46967 3.46967
1. 4.20735 4.20735-x 4.73396 3.73396
1.1 4.45604 4.45604-x 4.96003 3.96003
1.2 4.6602 4.6602-x 5.14563 4.14563
1.3 4.81779 4.81779-x 5.2889 4.2889
1.4 4.92725 4.92725-x 5.38841 4.38841
1.5 4.98747 4.98747-x 5.44316 4.44316
1.6 4.99787 4.99787-x 5.45261 4.452061
1.7 4.95832 4.95832-x 5.41666 4.41666
1.8 4.86924 4.86924-x 5.33567 4.33567
1.9 4.7315 4.7315-x 5.21045 4.21045
2. 4.54649 4.54649-x 5.04226 4.04226

And the following is the plot of the result
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Nonlinear device

2| | | no feedback

feedback, k=10, r=5 sin\(t

The above plot shows that with k = 10, the dead zone has shrunk to almost zero, and the
output of the nonlinear device is now linear. This is good. This is another plot, for larger
range of input values.

Nonlinear device

61 ‘ ‘ ‘ no feedback

4 feedback, k=10, r=5sin(t)

As range of input values become large, the output of the feedback linear device approaches
the open loop device output. This is outside the dead zone region as can be seen from the
above. Very close to the origin, there is very small non-linearity remains, but it is hard to
see.

3.3.2.4 part (d)

When the gain k is in the feedback loop, as shown in the following diagram
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R(s) i@ T=R-kY nonlinear | V(%) »Y (5)
b K
Therefore
x=R-kY
(R-x)
Y =
k

Before, when the gain was in the feedforward, Y = R - Z, so now k affects R as well. Using
this new x, the above plot was reproduced for the case of 7 (t) = 5sin (f).

the following table shows result for t = -2 ... 2.
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t r = 5 sin(t) (r-x) /10 solution of N(x)=(r-x)/10|Y at solution
-2. -4.54649 (-4.54649-x) /10 -1.32241 -0.322408
-1.9 -4.7315 (-4.7315-x) /10 -1.33923 -0.339227
-1.8 -4.86924 (-4.86924-x)/10 -1.35175 -0.351749
-1.7 -4.95832 (-4.95832-x) /10 -1.35985 -0.359848
-1.6 -4.99787 (-4.99787-x) /10 -1.36344 -0.363443
-1.5 -4.98747 (-4.98747-x) /10 -1.3625 -0.362498
-1.4 -4.92725 (-4.92725-x) /10 -1.35702 -0.357023
-1.3 -4.81779 (-4.81779-x) /10 -1.34707 -0.347072
-1.2 -4.6602 (-4.6602-x)/10 -1.33275 -0.332745
-1.1 -4.45604 (-4.45604-x) /10 -1.31419 -0.314185
-1. -4.20735 (-4.20735-x) /10 -1.29158 -0.291578
-0.9 -3.91663 (-3.91663-x) /10 -1.26515 -0.265149
-0.8 -3.58678 (-3.58678-x) /10 -1.23516 -0.235162
-0.7 -3.22109 (-3.22109-x) /10 -1.20192 -0.201917
-0.6 -2.82321 (-2.82321-x) /10 -1.16575 -0.165747
-0.5 -2.39713 (-2.39713-x) /10 -1.12701 -0.127012
-0.4 -1.94709 (-1.94709-x) /10 -1.0861 -0.0860992
-0.3 -1.4776 (-1.4776-x)/10 -1.04342 -0.0434183
-0.2 -0.993347 (-0.993347-x) /10 -0.993347 0
-0.1 -0.499167 (-0.499167-x) /10 -0.499167 0
0. 0. (0.-x)/10 0 0
0.1 0.499167 (0.499167-x) /10 0.499167 0
0.2 0.993347 (0.993347-x) /10 0.993347 0
0.3 1.4776 (1.4776-x) /10 1.04342 0.0434183
0.4 1.94709 (1.94709-x) /10 1.0861 0.0860992
0.5 2.39713 (2.39713-x) /10 1.12701 0.127012
0.6 2.82321 (2.82321-x) /10 1.16575 0.165747
0.7 3.22109 (3.22109-x) /10 1.20192 0.201917
0.8 3.58678 (3.58678-x) /10 1.23516 0.235162
0.9 3.91663 (3.91663-x) /10 1.26515 0.265149
1. 4.20735 (4.20735-x) /10 1.29158 0.291578
1.1 4.45604 (4.45604-x) /10 1.31419 0.314185
1.2 4.6602 (4.6602-x) /10 1.33275 0.332745
1.3 4.81779 (4.81779-x) /10 1.34707 0.347072
1.4 4.92725 (4.92725-x) /10 1.35702 0.357023
1.5 4.98747 (4.98747-x) /10 1.3625 0.362498
1.6 4.99787 (4.99787-x) /10 1.36344 0.363443
1.7 4.95832 (4.95832-x) /10 1.35985 0.359848
1.8 4.86924 (4.86924-x)/10 1.35175 0.351749
1.9 4.7315 (4.7315-x) /10 1.33923 0.339227
2 4.54649 (4.54649-x) /10 1.32241 0.322408

And the following is the plot
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Nonlinear device

no feedback

-

- gain in feedback, k=10, r=5 sin(t)

We see the effect of reducing R (since it is now divided by k > 1) and the output from the
non-linear device is not as good as when the gain was in the feedforward. The dead zone
has returned back and the output after the dead zone is much smaller in amplitude than

the original open loop output. Putting the gain in the feedback loop does not appear to be
a good choice in this case.
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3.3.3 Problem 3

3. The block diagram of a feedback control system is shown in Figure 3

J] G4(3) I

Figure 3. Block Diagram

(a) Apply Mason’s gain formula to the block diagram to find the transfer functions

C(s)
N(s)

C(s)
R(s)

N=0 R=0

Express C(s) in terms of R(s) and N(s) when both inputs are applied simultane-
ously.

(b) Find the desired relation among the transfer functions G,(s), Ga(s), Gs(s), G_‘(")'
Hy(s) and Hy(s) so that the output C(s) is not affected by the disturbance signal
N(s) at all.

SOLUTION:

3.3.3.1 Part(a)

The first step is to convert the block diagram to signal flow diagram. By assigning variables
as shown below, the following signal diagram we drawn

Gi(s)
+ S e + 83 e4 +17%es C(s)

G[(S] G}(&) Ga(&) it
T ¥ N(s)

Hi(s) Ha(s)

Converted to signal flow as
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C(s)

For finding )

are

then N (s) is set to zero. There are two forward paths from R (s) to C (s) they

M; ={1,1,G1, Gy, G3,1} = G1G,G3
M, =1{1,1,G4, 1} = G4
The corresponding Mason deltas are
A =1
Ay =1-(Gy)(-1)=1+G,
The loops, one at a time are
L1 = (Gp) (-1),(G1) (G2) (=H1), (G2) (G3) (=H2) , (1) (G1) (G2) (G3) (1) (1), (G4) (1) (1)
= -Gy, —G1G,H;, —HG,G3, -G1G,G3, -Gy
Two at a time are

Ly = {(G2) (-1) x (Gg) (1) (1) (W)}

= GGy
Hence
A=1- E (—G2 - G1G2H1 - H2G2G3 - G1G2G3 - G4) + Z G2G4
=1+ Gy + GiGyH; + HyG,G3 + G1G2G3 + Gy + GGy
Hence
Cls) _ XMiA,
R (s) A
B G1GG3 (1) + G4 (1 + Gp)
"1+ G, + G,G,H; + HyGyG3 4+ G1GyG3 + Gy + Gy Gy
Hence

C(S) _ G1G2G3+G4+G4G2
R(s) - 1+Gp+G1GoH1+HpGyG3+G1GpG3+Gy+Gr Gy
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For finding €0 then R (s) is set to zero. There is now one forward path from N (s) to C(s)

N(s)
M;={,1}=1
The corresponding Mason deltas are
A1 =1-{(G) (1) + (G1) (G) (=H1)} =1 + G, + G1GoHy
The loops remain the same as above. Hence the mason delta do not change. Therefore

C(s)  2XMA;
N(s) A

_ (1) 1 + G, + G1G,Hy)
1+ Gy + G1GyH | + HyGyG3 + G1GyGs + G4 + GGy

Hence

C(S) _ 1+G2+G1G2H1
N(S) - 1+G2+G1G2H1+H2G263+G1G263+G4+G2G4

3.3.3.2 Part (b)

Since
1+ Gy, + GiGyH;
1+ Gy +GiGyHy + H2G2G3 + G1G2G3 + Gy + GGy
Then we want 1 + G, + G;G,H; = 0 or for the denominator
1+ Gz + G1G2H1 + H2G2G3 + G1G2G3 + G4 + G2G4

to be very large. Both of these will cause C (s) to remain zero for any value of N (s). But since

C(s) = N (s)

the denominator is the same as for = then making this very large will also affect €© \which
R(s) R(s)

we do not want to. Hence the choice left is
1+ Gz + G1G2H1 =0

170



3.3. HW 3 CHAPTER 3. HWS

3.3.4 Problem 4

Consider the signal flow graph shown in Figure 3.

Figure 3: Signal Flow Graph

(a) ldentify all the forward paths and their loop gains.

(b) Identify all the loops.
(c) Find the transfer function from Y, to Y7 and from Y} to Y; using Mason’s rule.

SOLUTION:

3.3.4.1 Part (a)

For the %, There are two forward paths. The following diagrams shows them with the gain

on each.

m c, 3
Vw ’

Fi1 = G1G2G3G4Gs = GgGs

F1 = G1G2G3G4G5
FZ = G6G5

Now Ay is found for each forward loop. Ay is the Mason A but with F; removed from the
graph. Removing F; removes all the loops, hence

A1:1
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When removing F, what remains is L, and L3, hence
Ay =1-(Ly +Lj)
=1-(-HyG; - H3G3)
= 1 + (H2G2 + H3G3)

Y2 . . .
For the o there is one forward path F; =1, the associated A is
1

+ E (=G2H3) (-G4GsHy) + (-G2H,) (-Hg) + (-G3H3) (-He)

one at a time two at a time

=1+ Gsz + G3H3 + G4G5H4 + H6 + G2G3G4G5H5 + G2H2G4G5H4 + G2H2H6 + G3H3H6

3.3.4.2 Part(b)

There are 8 loops. The following diagrams shows the loops with the gains
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|—7 = GGGSHSHl L8 = GGG5H4H3H2H1

Azl—(Ll+L2+L3+L4+L5+L6+L7+L8)
+ (L1Ls + L1Ly + L1Lg + LyLy + LyLg + LzLg + L3Ly) — L1L3Lg

Therefore
one at a time

A=1+ H1G1 + H2G2 + H3G3 + H4G4G5 + H5G2G3G4G5 + H6 — G5G6H1H5 - G6G5H4H3H2H1
(1)

two at time
three at time

—_———
+ H1G1H3G3H6
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3.3.4.3 Part (c)

For G(s) = ?, and using result found above in part (a) and part (b)
1

_ (G1G2G3G4Gs) + GeGs (1 + Hy Gy + H3Gs)
- A

Where A is given in (1) found in part(b). To obtain %
1

Y, A
Y, A
one at a time two at a time
1+ GyHy + GaHs + G4GsHy + Hg + G3G3G4GsHs + GaHyG4GsHj + GaHaH + GHaH,
B A
_ 1+ G2H2 + G3H3 + G4G5H4 + H6 + G2G3G4G5H5 + G2H2G4G5H4 + G2H2H6 + G3H3H6
B A

174



3.3. HW 3 CHAPTER 3. HWS

3.3.5 HW 3 key solution

. = Ks+1
LOG) = ooy (kv ms sl
(a) 56 = 9G . & —(Ks+1)

_ , k
Ok 'GT (T +s+(K+k)s+1)f L Ks+T

S+t +(K+k)s+1

9 — —ks
TS r S (K k)s+1

. i ) ki

57069 = o e mD)| = [T )
SC(jw)| = kw

[s¢6) V(=) + (K + k) — )

When k =2 and K = 1, |S§(jw)| = 20

V(L =) + (3w — )
See printout below.

b) When k = 2 and K = 100, |SE(jw)| = 2
®) [s¢Gw V(=) + (102 — w?)?
See printout below.

Plot of Sensitivity — K = 1 Plot of Sensitivity —— K = 100

2 0

> >

2 2

& 3

B B50.1

2 3

3 =]

z z

g g

s s
o G NGE o i NG
107" 10° 10' 10° 107 10° 10’ 10°

Frequency, rad/sec Frequency, rad/sec

w=logspace(-1,2,1000);

SGk = 2%w./(sqrt((1-v."2).72 + (3+v-v."3).72));

SGk1 = 2#w./(sqrt((1-v."2).72 + (102#w-v."3).72));
subplot(221),semilogx(w,SGk) ,grid,title(’Plot of Semsitivity -- K = 1?)
xlabel ('Frequency, rad/sec’),ylabel('Magnitude of Sensitivity’)
axis([le-1 1e2 0 2])

subplot(222),semilogx(w,SGk1),grid,title(’Plot of Sensitivity -- K = 100’)
xlabel ('Frequency, rad/sec’),ylabel(’Magnitude of Sensitivity’)
axis([te-1 12 0 .2])
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2. (a) [ K=1,thenU=R-Y = Y=R-U
For R = {...,-2,-1,0,1,2,3,...} draw the line Y = R — U. The intersection
points give the correspondeing values of Y.
Transfer Function Between Y and U

5 N N N T T T

Output, Y

Resulting Y versus R:

Transfer Function Between Y and R Resultant Output, y(t)
B ‘
= ! =
= =
34 S
-2}
-5 0 5 0 5 10
Input, r(t) Time, seconds
0 -5 0 5 (b) r(t) = 5sin(t). Using the
: : : transfer function between Y
42 and R, we can generate y(t)
g‘ 3 graphically by “bouncing” r(t)
o4 A (left) off of the transfer func-
8 6 @ tion graph (upper left) onto
g = y(t) (top). The time at which
8 the output becomes greater
‘0 than 1 occrus at t =sin~!(}).
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(c) When A" = 10, then

U=10R-Y) = Y=R-

For |[R| < Y =0
For R> L Y=U-1
U=Y+1#

*

U
10

(From N(-))

Plugging # into » weget Y = R — (ij—l) =10 =10R-Y -1

11Y =10R-1 =

Transfer Function K=10

— 10 1
Y—H-R—Tr

Resultant Output, y(t)
5 - 5 .
> 5 g
3 ob A < of ...\ S R
g° r g° 5
o : (@] :
_ : 5 ’
-5 0 5 0 5 10
Input, R Time, seconds
In general, | |
0 if —<R<—
" KUK
KR-1 . 1
Y = f
K+1 ' R>%
KR+1 | 1
f -
k+1 1 B<-x

As for y(t), the amplitude approaches 1 as K — oo and the missing middle section
of the output diminishes to zero.

(d) When we plasce the gain in the feedback loop, there is no effect on the missing
middle section of the ouput. Instead, the slope decreases so that in the limit we
have a flat output signal which would theoretically have no distortion.

Transfer Function K=10

0.4 .
02 :

> z
3 o -
po] .
o z
-02 ;
-04 :

°-5 0 5
Input, R

0.4

02

Output, y(t)

-02

-0.4
0

177

Resultant Output, y(t)

)
Time, seconds
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In general, 0 i —l<R<1
Y = L. (R-1) if R>1
) K+1
1 .
_ 1) if R<-l
FETAA

The key here is that the “circuit” connected to node Y; can affect (and most likely
will) the transfer function between Y; and Y;. For instance, if ¥; were 10 and Y,
were defined to be zero, then Y; would not equal Y;.

3. (a) fz: = Gn(s)Gz(s)%:(s)+G4(s)
%%% _ 1+ Gi(s)Ga(s)Hy(s)
S)lp=o A
where
A =1+ Gi(s)Ga(s)Hi(s) + Ga(s)Gs(s)Ha(s) + Ga(s)Ga(s) Hi(s)Ha(s) + Ga +
GiG:Gs
V()= Zg| R+ | N

(b) When 1 + G\(s)G2(s)H,(s) =0, Y(s) is not affected by N(s).
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(a) Forward paths and their respective loop gains for the E- transfer function:
= G163G3G4G5 Al =1
M; = GG Ay =14+GH, + GaH;

Forward paths and their respective loop gains for the % transfer function:

Ml =1
Ay = 14G  Hy+ G Hs+ GuGs Hi+ He+ G2G3GuGs Hs + G1GuGs Hs Hy+ G, Ha He +
GaH3He

(b) All loops:
A =1+ G H) +GyHy + GaHs + G4GsHy + He + G2G3G4Gs Hs — GsGeHy Hs —
GsG5H1H3H3H4+G GaH,H:+G, GqG5H1H4+G1H1H6+GQG4G5H2H4+G2H2H3+
G3H3H6 - GstGsHlH;-;Hs + G|G:4H| HaHG

Y G1G2G3G4Gs + G4GsGe(1 + GaHy + Gy Hiy)

(c) Y, A
E 1+ GyHa + GaHs + G4Gs Hy + He + G2G3G(Gs Hs
Y.<

A
| GgHquGqu + GQHQHG + GzHaHs
N A

The key here is that the “circuit” connected to node Y; can affect (and most likely
will) the transfer function between Y| and Y;. For instance, if ¥} were 10 and ¥,
were defined to be zero, then ¥; would not equal Y;.
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3.4 HW 4
3.4.1 Problem 1

Problem 2: Consider the block diagram set-up for the disturbance at-
tenuation problem formulated in lecture with

s+1

() = 5105 1 100
and
Gals) = —
2 s+ 2

(a) Design control blocks Hi(s) and Hs(s) such that the following two

specifications are satisfied: First,
|Y(J'W)

N(jw)

| <0.01

for all frequencies w > 0. Second, the output y(t) should respond to
command to r(¢) in approximately the same manner in the closed loop as
in the open loop; i.e. for the closed loop, we desire

Y (s) = G1(s)Ga(s)R(s).
Note: In class, we did not fully solve for Hi; i.e., we never found the con-

stant a.. In this homework, a specific solution is sought.

(b) To make your solution “proper,” introduce a second order lowpass
filter as appropriate and solve for the filter parameter e.

(c) For the compensated system resulting from (b), generate a frequency
response plot for the closed loop transfer function |Y (jw)/R(jw)| and com-
pare it to the target transfer function |G jw)G2(jw)|. Plot the error be-
tween these two frequency responses as a function of the frequency w > 0.

SOLUTION:

3.411 Part (a)

The second condition which says that the closed loops should approximate the open loop

response, implies that we should use H; (s) = =, i.e. to apply the inversion. This is because
192

Y(s) _ HiGiGy . Y6) 1

Re) = LHGGH o and this becomes e G,G, when we set H, = e and also by

making H; = @ where « is a large gain. So now we just need to worry about finding « s.t.
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<0.01 for all w > 0.

| ¥(je)
N(je)

Y(s) _ Gy

We know that NG~ TC.GmH” but since we are using the inversion, this reduces to
Y(s) G
N(s) 1+H;

By setting H; (s) = @ and using G, = i and moving to the frequency domain, the above

becomes
) 1
Y(jw) o 1 1

Ngw)_1+a__Qw+2)ﬂ+a):(1+aﬁw+2CP+M

Taking the magnitude

Y (o) _ !

NOw) -Jﬂ+afw2+4a+af

We want the above to be smaller than 0.01 for all w, which implies
1

<0.01

VO + P 02+ 401+ a)
1

A+alw?+4(1+a)
1+ a)? w2 +4(1 +a)® >10000

>1mm0—4a+af

<0.012

2
w
(1+0c)2
) 10000
w* 2 >~
1+a)

10000
w > 7~ 4
1+a)

The smallest « to allow the above is when @ = 0, hence we need to solve for a from

10000
5 —-4=0
1+a)
10000
- —4=0
1+ a)
1 4
(1+a)> 10000
10000
1 +a)®> = —— =2500
1+a=>50
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Hence
a>49

Therefore H; (s) = &« where a > 49 and H; (s) = This complete this part.

_
G1(5)Ga(s)”

3.41.2 Part(b)

One problem with the above inversion method for finding H, (s) = is that H, (s) becomes

L
G1Gy
improper:
1 1
H; (s) = GG, 1

2+105+100 5+2
(s? +10s +100) (s + 2)
s+1
5% +125% +120s + 200
s+1
H, (s) is improper, since the numerator has a degree larger than the denominator. This
introduces differentiator in the feedback loop which is something we do not like to have.

1 1
E by (E)HLP (S) where HLP (S) = (et D)

where k is an integer and ¢ is some parameter, both are positive. The goal is to block high
frequency noise content and also make (GL) Hj p (s) become a proper transfer function. We

1G2
Y(jw)

N(jew)

We will now replace H, = is a low pass filter

k

also want to make sure remain less than 0.01.

Let
1 1
H, (s) = _
2 G162 (es + 1)k
4122 +120s+200 1
(s+1) (es + 1)

The degree of the numerator is 3. So we want k to be at least 2 (it can be more), so that
the denominator has at least degree 3 as well. If we want strict proper, then we make k = 3.
Using k = 2 we now have

H, (5) 1 1
s) = ]
2 G1Gy (5 + 1)
V(i
Therefore, M now becomes
N(]w)
Y(s) G
NON (;;)
1+ GleHl G162 (€s+1)2
L
— s+2a (1)
(es+1)?
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Where we used a for H;. We now move to the frequency domain and take the magnitude in
order to solve for e. We will use the same « found in part (1), otherwise, there will be two
free parameters to adjust at the same time, which would make this a hard problem, and the
problem seems to indicate we are to use same « value found in part (1) although it did not
say that explicitly. Therefore (1) becomes (using a = 49)

(es+1)?

Y(S) — 5+2
N(s)  (es+1)*+49

Hence
(gje1)’
jw+2

Y (]a)) _

N(jw) - |(€ja) + 1)2 + 4_9|

ecw +1

- |-e2w? +1 + 2¢jw + 49)

) \/4620)2 + (50 - €2a)2)2
Hence
(eza)2 + 1)2

) (a)2 + 4) (4€2a)2 + (50 - eza)Z)z)

We now find w where

is maximum, which is the same as where the above is maximum.

N(je)
The above is maximum when the denominator is minimum. Hence
d 2
2 2,2 2,2\ =
%(w +4)(4e w +(50—é w ) )—O
Solving for w from the above using computer algebra (the algebra is too complicated to do
by hand. May be there is a short cut) in terms of ¢, and plugging the solution w,,, back to

Y(i
% and setting the result to 0.01 and solving numerically for ¢ that satisfy the equation

Jw
gives

e =0.0197
— Y{j)
To verify this, a small demo was made to plot NGa)
Jw
v(i
1\% using k = 2,¢ = 0.0197 and the maximum magnitude was checked to be
jw
just less than 0.01

for different ¢ values. The following

plot shows
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epsilon ] 0.0197
w i
H(s) Magnitude plot
0.010f T TR T T
0.008
[}
3 0.006
S
©
£ 0.004
0.002
0 200 400 600 800 1000
w (rad/sec)
3.4.1.3 Part (c)
We will now use
Hl = 4:9

Y(s)

R(s)

H1G1Gy
1+H1G1GyHy

And plot

1 1

H, =
27 G1G; (0.01975 +1)?

H1G1G,

R(s) 1+ H;G,;G,H,

While

G,G,

R(s)

49G,G,

1 1
1+49GGy— —
1™2616G, (0.01975+1)2

s+1 1

49 s2410s+100 5+2
1

(0.0197s+1)?

s+1 1 2

(0.0197s +1)* + 49

B s+1 1
T 2+10s+100s + 2

The following plot shows |@ vs. |G1G,| side by side

184
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Y(s) _



3.4. HW 4

CHAPTER 3. HWS

open loop Gl G2

Compensated closed loop

H(s) Magnitude plot

H(s) Magnitude plot

0.010

0.010
0.008 0.008
Q @
° °
Outy348}= 2 0.006 2 0.006
£ 0.0041 £ 0.004}

0.002f 0.002}F

0 100 200 300 400 500 600 0 100 200 300 400 500 600

w (rad/sec) w (rad/sec)

The following plot shows both on the same plot

H(s) Magnitude plot

magnitude

compensated open loop

300
w (rad/sec)

400

500

600

The following plot show difference between the magnitudes

|G1 G2|-|compensated|

T T T T T

0.0014 ]
0 oowzf»
o,oom;
0 0008;

out[386]=

|difference|

0 oooef»
o,oooaf»
0 0002;
0 oooo; ‘ ‘ ‘ ‘ ‘

0 100 200 300 400 500 600

w (rad/sec)

Observations:

From the above difference plot, we see that the maximum difference between |G, G,| and the

ﬂ| occurred at around @ = 350 and had value of about 0.0014. This
1+H,G1GyHy

value seems relatively small, and seems to indicate that H; and H; used for compensation
were a good choice.

compensated
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3.4.2 HW 4 key solution

Distucbance Attenuat 100 foblern
By Ma son's Rule :

Vi) = Gals) N(S)
Lt 1, (s) Hils)G, () Guls)

bHS) Gls) Guls) _Rly)

1FH (5 H,(9) G,(96,(9)
< - PR
L€b H( 0( HQ (5) 66 (\-a’cef Mod! 5\)

Q9 wLEN lOLO‘PQS‘j)

So
V()= Gl N9 + d GG iy
(+d | 1+

Waat
]@_@f)} ¢ plat all wro

Itd

¢ 0.0!

’ (auyrﬁ) (Ho!)
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5 J— «.0l
B s
ooffies to SCUtJbH
<4 ¢ 0.0!
2 (144)
= q v ¥4
lois take o = 50
. R
(9 Now we brog 0 lowpass = Heeld) s’
Now deﬁ)aod

‘ Gy (hw) \ < .0l
H?{ HLP(&’)
50
=5 |-

Jwi? < 0.0l

l+50
@Awu)

Experimenting with various values of epsilon, we arrive at epsilon = 0.01 as reasonable for satisfaction
of the performance specification above. For this value of epsilon, we plot the quantity above
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"

) Y(w)
N (3w

)92_@_‘*9 /
l+of Hip(ow)

1073 Plot of [Y(jw)/N(jw)| with Lowpass Filter
T H T T T T T

Ot 1 L 1 I | i 1 I i E
0 100 200 300 400 500 600 700 800 900 1000
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(@) Torget: Myw) = G, (yw) G (s
Aol Afyw) = o6, )G, bw)

3 ~ ol Hip (yw)
brcoe Elyw *Thw) - Alyw) Plot

10 Plot of Absolute Error for with Target G 1(jw)Gz(jw) ’ E b UJ) '
T T T T T T T T T

i 1 1 1 1 1 1 1 L
0 100 200 300 400 500 600 700 800 900 1000
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3.5 HWJ)5
3.5.1 Problem 1

Problem 1: Performances specifications for a second order system

2
Wy

$2 + 2Cwns + w?

G(s) =

with 0 < { < 1 require that the maximum overshoot to a step input not
exceed 30% and that the settling time be less than 0.25 seconds. Using
the settling time approximation

3.2

Cwy”
find and sketch the region in the complex plane where the two poles need
to be located.

L

SOLUTION:

There are two inequalities to satisfy. The first is given by the settling time requirement

= - <025 1)

Wy

The second is given by the overshoot requirement
__nt
e -2 <03 (2)

From (2), taking the log of both sides gives
niC

i-e

Multiplying both sides by —1 changes the inequality from < to >

<1n(0.3)

Tt

1-¢C

N

Simplifying gives
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Squaring both sides and solving for C

2 1.204\°
-z ( n )
% > 014688 (1- ()
1146 8872 > 0.14688
22 > 0.12807

Since C has to be positive then the positive root is used giving

C > 0.35787

Back to the (1) specifications, which says
3.2
Cwy,
Cw, >12.8

<0.25

For each ¢; > 0.3578, we solve for w, from Cw,, > 12.8. This will give full description of where
the poles are located.

imaginary axis

A

X wny/1— (2

I wnl

| AN

[ N real axis
—Cuwn

[

[
XI_ -

Here is a plot of the (C, w,) space showing allowed values of C, w,.
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In69:= RegionPlot[1l >z > 0.35787 &&zw > 12.8, {z, 0, 1}, {w, 0, 50}, GridLines -» Automatic, GridLinesStyle - LightGray, Frame - True,
FrameLabel -» {{"w,", None}, {"&", "Region of allowed & and w,"}}, BaseStyle » 14, Epilog - {
{Dashed, Line[{{0.3578, 0}, {0.3578, 35}}], Line[{{0, 12.8}, {1, 12.8}}1},
Text["£=0.358", {0.358, 0}],
Text["w,=12.8", {0.084, 14.9}]
13l

Region of allowed ¢ and w),

40F

Wp

out[69)=

1
1
1
1
|
1
1
1
1
1
1
1
1
1
1
1
|

4
1
1
1
1
1
1
1
1

By taking each point ({, w,) from the above plot, then the pole location with coordinates
—Clw, +w, V1 - (? is generated. The following shows the final result, showing the region where
the poles have to be located in order to meet the performance requirements.

In456]= p = Normal @RegionPlot[1l >z > 0.35787 &&zw > 12.8, {z, 0, 1}, {w, 0, 50}];
pts = DeleteDuplicates@Flatten[Cases[p, Polygon[x ] :» x, Infinity], 1];
data = {-First@# Last@#, Last@# Sqrt[l - (Firste#) ~2]} & /@pts;
data2 = {-First@#Last@#, -Last@# Sqrt[l - (First@e#) ~2]} & /@pts;
ListPlot[Union[data, data2], AxesOrigin - {0, 0}, AxesLabel » {"Re", "Im"} , PlotLabel -» "Region of poles in co

ImageSize - 500]
Region of poles in complex S plane
40r

20r

Out{460]=

-10

20}

40+

The above diagram shows the location of each pair of poles as a small dot. Complex poles
come in pair of conjugates. One pole will be above the real axis and its pair below the real
axis.
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3.5.2 Problem 2

Problem 2: For the system shown in the figure below, find gains K
and K; so that the maximum overshoot of the output ¢(t) to a unit step
input r(t) is about 20% and that the rise time is approximately 0.05 sec-
onds. Find the resulting closed loop transfer function C(s)/R(s) and
simulate the step response in Matlab. In your solution, use the rise time
approximation

¢ o L= 04167C+2917¢°

r

wn

c(s)

SOLUTION:

The closed loop transfer function, in terms of K and K; can be found using either Mason
rule or simple block reduction. For this problem block reduction seems easier.

E(s) G B(s) C
R p(s) |1 ;(3)
(8) —0 11 K.Gp(s) "| 30s g
_Gp(s) 1
1+K:Gp(s) 20s
R(s) —» + gpfs()’ - > C(s)
WK IR o) 208

KGyp
20s(1+K+Gp)+KGp > C(s)
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Using G, = % the above becomes
100
C(s) K(1+o.2s)
R(s) 100 100
20s (1 + K 1+O.25) +Kios
~ 100K
~ 20s(1 + 0.2s + 100K;) + 100K
3 100K
452 + (20 + 2000K;) s + 100K
~ 25K
524 (54 500K;) s + 25K
2
The standard form is “"__ therefore by comparing to the above we find
s%+20wys+wi
w? = 25K
w, = 5VK 1)

And
5+ 500K, = 2Cw,
o]
5 + 500K,
(=—-

2
I~ 2)

Hence the transfer function is

Cl) _ w;
R(s) 2+ 2Lw,s + w?
5+500K; T .
Where v, = 5VK and { = ovK We now apply the user specifications in order to determine

K and K;. From the overshoot requirement, we write
o
e V- <02 (3)
And from the rise time requirements we have
1-0.4167C + 2.917¢2

Wy,

:

=0.05 (4)

From (3) and (4) we can now solve for w, and C and this allow us to find K and K; by using
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(1,2). From (3), taking logs and solving for C gives
7iC

<1n(0.2)

:ﬂ
™Y

™
N

> In (5)

j
Y
N

Tt
Vi-22
22 > (1.6094)" (1 - ©?)
2% > 2.5902 - 2.5902(>
(m? +2.5902) 22 > 2.5902
2.5902
(m? +2.5902)

>1.6094

Hence

C > 0.456
Any 0.456 < C <1 can be used. In order to find w,, let us choose

=046

For the rest of the calculations . From (4) we find

1 - 0.4167 (0.46) + 2.917 (0.46)>

Wy,

=0.05

14256
©0.05

Wy

Therefore

w,, = 28.512 rad/sec

Now that we found C and w,,, we use (1,2) to find the gains. From (1)

Wy, = 5VK
w? 285122
K —

~ 25 25

Therefore

K =32.517

And from (2)
‘= 5 + 500K;

10VK

5 + 500K,

10v32.517

0.46 =
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Hence
K; =0.04246
The final transfer function is
C(s) 25K
R(s) s2+(5+500K;)s + 25K
25(32.517)

= 52+ (5 + 500 (0.04246)) s + 25 (32.517)

Cs) 812.93
R(s) ~ s2+26.235+812.93

Matlab is used to simulate the step response, and to also verify the user requirements are
met.

close all;
clear all;
s =tf('s");
sys = 812.93/(s72+26.23*s+812.93) ;
step(sys)
grid
Step Response
1.2 ; : ‘
l |- =
0.8
3
2
=06
=
<
0.4+
0.2+

O Il Il Il Il Il Il Il
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time (seconds)

The step information was also verified using the command stepinfo() which showed the
specifications was indeed met.

stepinfo(sys)

RiseTime: 0.0549
SettlingTime: 0.2916
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SettlingMin: 0.9225
SettlingMax: 1.1963
Overshoot: 19.6310
Undershoot: 0O
Peak: 1.1963
PeakTime: 0.1229

3.5.3 Problem 3

Problem 3: A system with adjustable gain K and open loop transfer
function ,
Os) = — Ks(2203 +1)

s* + 5s% 4+ 10s + 15
connected in a classical unity feedback configuration. Use the Routh-
Hurwitz criterion to find the range of K for which closed loop stability is

assured.

SOLUTION:

c Ks (ZOS2 + 1)

®) = T 525105+ 15

In classical unity feedback, the closed loop transfer function T (s) is

G (s)

T(s) =
® =156
Ks (20s% +1)
~ (s* + 552 + 105 +15) + Ks (2052 +1)
Ks (20s% +1)

~ 4+ 20Ks® + 552 + (10 + K)s + 15
Applying Routh-Hurwitz to the denominator D (s) = s* + 20Ks® + 5s? + (10 + K) s + 15 gives

st 1 5 15
3 20K (10 + K)
5 20K(5)=(10+K)
’ (20K(5) (10+K))20K 15
CORB-T0+K) (1 k)-20K(15)
1
§ 2 20K(5)—(10+K) 0 0
20K
0 15

Simplifying gives
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st 1 5 15
s3 20K (10 + K)
2 1 _
s T (99K - 10) 15
1 2
s' | =5 (5901K2 — 980K +100) 0
s0 15

For stability, we need the first column to be positive. Hence the conditions are

20K >0

1 (99K - 10) > 0
20K

T (5901I<2 — 980K + 100) >0

The first just says that K > 0. The second says 99K -10 > 0 or K > g. Now for the third

condition

TS (5901I<2 — 980K + 100) >0

) 10 . .
Sln.ce K> o is required, then ———
This means the above becomes

is negative quantity since 10 —99K is negative for K > g.

5901K2 - 980K + 100 < 0

Notice the change of inequality from > to < since we multiplied both sides by a negative
quantity (10 — 99K) to cancel it out. But 5901K? — 980K + 100 < 0 can not be satisfied with a

positive K > g. For example, using the minimum allowed K which is %, then the value of
5901K? — 980K + 100 becomes

99 99

But it needs to be negative. So there does not exist K which makes the closed loop stable.

10\° 10
5901 [ —| -980(= | +100 = 61.218

3.5.4 Problem 4
Problem 4: Consider the system with open loop transfer function

K
Gls) = s(1+7Ts)
is connected in a unity feedback configuration. Given a > 0, the speci-
fication is that all closed loop poles have real part less than —a. Show
how the Routh-Hurwitz criterion can modified to address this problem.
Subsequently, for 7" = 1, find and sketch the region in the (a, K) plane
associated with closed loop stability.

SOLUTION:
198



3.5. HW 5 CHAPTER 3. HWS

Given G (s) = S(TKTS) then the closed loop transfer function is
Gared 6) = 1=
B K
s(1+Ts)+K
B K
C Ts2+s5+K

Therefore D (s) = Ts? + s + K. For the closed loop poles with real part to be less than —a, let
s1 = s +a. Then s = s; —a. We apply Routh-Hurwitz to D (s) but with s = s; — a. The new
denominator polynomial becomes

D(s;) = T(sy —a)’ + (51— a) + K
Expanding gives
D(s;) = T(s% + a? —ZSla) +s5-a+K
= Ts} +5; (1 - 2Ta) + (Ta? - a + K)
Routh table applied to the above polynomial is

s2 T Ta*>—a+K
si| 1-2Ta 0
$9 | Ta?-a+K

We need all entries in the first column to be same sign (positive in this case, since T = 1)
for stability to hold (This is in addition to having the poles be with real part less than —a).
For T =1 the above becomes

2 1 a2+a+K
s 1-2a 0

The conditions for stability are
1-2a>0
a(l-a)+K>0

The first condition gives a > % The second condition gives

K>a2-a

Here is plot of the region in the (g, K) plane associated with closed loop stability.
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Region of allowed a and K

400
300f

« 200f
out[1]= [

100}

3.5.5 Problem 5

Problem 5: An automatic depth control system for a submarine is de-
picted in the figure below. The depth is measured by a pressure trans-
ducer. For what values of K will the systern be stable? Take H(s) = 1
and submarine transfer function

(s +2)
Gls) = o001
R(s) + )
< h
desiced Y2 i %;E dQ\?(Jg)
depbh actuator
H(S)

Presswe mea so rem ent

SOLUTION:

The closed loop transfer function is

KG(s) -
T(s) = —————
1+ HKG (s) -
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(5+2)°

Replacing H(s) =1 and G = 21001

the above becomes

K(s+2)% 1

T(s) = 52+0.01§2
K(s+2)% 1
$2+0.01 s

~ K(s +2)
(824 0.01) + K(s +2)°
~ K(s +2)°
s3 + Ks2 + (0.01 + 4K) s + 4K
The Routh table for D (s) = s® + Ks? + (0.01 + 4K) s + 4K is

s? 1 0.01 + 4K
s> K 4K
st | 4K -3.99 0
s0 4K
Therefore for stability we need
K>0
4K > 3.99
4K >0

The first and the third conditions give K > 0. From the second condition, K > % = 0.9975.

Therefore

K >0.9975

To verify, here is the step response for k = 0.9974 and k = 0.9976, showing one is unstable
and the second is stable.

close all; clear all;
s =tf('s');

G = (8+2)72/(s872+0.01);
k = .9974;
sys = feedback(kxG*1/s,1);

subplot(2,1,1);
step(sys);
title(sprintf ('k=%f',k)); grid

subplot(2,1,2);

k = .9976;

sys = feedback(kxG*1/s,1);
step(sys);

title(sprintf ('k=%f"',k)); grid
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1ot k=0.997400
5 T I [ I I I

[}

©

2

5 0

E

<

-5 I 1 . : I I
0 1 2 3 4 5 6 ! ¢
Time (seconds) x10°
k=0.997600
2 T I [ I I I

) _

e

2

=

£

g _

0 1 L . : I I
0 2 4 6 8 10 12 1

Time (seconds) %104
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3.5.6 HW 5 key solution

1) HOMEWORK OVERSHOOT SETTLING:
Performance specifications for a second-order system require that the maximum over-
shoot to a step input must not exceed 1.3 (80% overshoot) and that the settling time
should be less than 0.25 seconds. Interpret these requirements in terms of desired (
and w,. Plot the region in the s-plane where the two poles of the system would need
to be located in order to meet these design specifications.

For maximum overshoot, use Ymax =1 = A

o 32
For settling time, use ¢, = o
Yoo £ 13 <015
TS/ e

).3 __l S e /=5
-hroq 2 -m3/Ji-g*
low & w8/ [7g*
L1 S n%t
L yma s ),3198"
£2 0,35%]

L@ 3z 043989

oL

[}

The above shaded region represents cos 6 = 0.358. The 0 in the above figure is
cos1(0.358)=69°
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For the settling time constraint, we have,

.25 7 5%

M%&UJ'“

fé%‘“\\ 7 \2°%
Mﬂ\‘\s Cuwes ‘OM\‘)’ to

Since we want both conditions to be satisfied, the allowed region for the poles is
the common shaded region from the above two figures:
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2) HOMEWORK OVERSHOOT

1. Overshoot

Problem 3: For the system shown in the figure below, find gains K and K, so that
the maximum overshoot of the output c(t) to & unit step input 7(t) is about 20% and
the rise time is approximately 0.05 seconds. Find the resulting closed loop transfer

function C(s)/R(s) and simulate the step response in Matlab.

-» C(S)

E(s) .
R(s) 20N I » q'(,)-‘_f% -

Bl

14

E(s)
+
R
© K

c(s)

l

E(s) = R(s) —C(s)

A(s) = E(s) * K — B(s) * K;
100
B(s) = A(s) * Gp(s) = A(s) * 17025

1
C(s) = B(s) * 308

B(s) = 20s * C(s)
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1+ 0.2s
100

1+0.2s
100

A(s) = B(s) *

= 20s * C(s) *

20s + 4s?
100

A(s) + K.B(s)
K
A(s) + K:B(s)
K

= C(S)*

E(s) =

R(s) - C(s) =

(C(s) ) __—205130452) + K,(20s * C(5))

R(s)—C(s) = e

20s + 452
100K

K,(20s)
K

R(s)—C(s) = C(s) * + C(s)

20s +4s?  K,.(20s)
C(s) [ 100K + e +1
C(s) 1
R(s) 20s+4s?  K,(20s)
100k T kK T1
~ 1
" 205 +4s?  2000Ks 100K
T00K 100K " TO0K
_ 1
~ 20s + 452 + 2000K,s + 100K
100K
_ 100K
"~ 452 4 (2000K; + 20)s + 100K

] = R(s)

_ 25K
~ 52 4+ (500K, + 5)s + 25K
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ng

Percent maximum overshoot = 100e V1=

Maximum overshoot = 20%

3
N

= 1.61

iz
¢ = 1.611— 2

7'[2(2 )
250 - 17¢
n2(% = 2.59 — 2.5972
(n? + 2.59){% = 2.59

2.59

¢ = (% + 2.59) /
¢ =0.456

_1-04167¢+ 2.917¢%

T wn

t, = rise time = 0.05 s

_ 1-0.4167 (0.456) + 2.917(0.456)
= .

0.050, = 1416 /
w, = 28.33 .

0.05

0<¢<1
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Y(

s)

Wy

2

R(s) ~ 52 + 2{wys + w?

C(s) _

2

5K

R(s) ~ s%+ (500K, + 5)s + 25K

2 % (0.456) * (28.33) = 500K, +5

K, = 0.0417

w? = 25K

(28.33)? = 25K

K =321

y()

0.8

0.6

0.4

0.2

Unit Step Response

,,,,,,,,,,,

0.

4

0.5

t (seconds)

0.

6
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Ks(20s2+1)
%+ 552 4+ 10s + 15

G(s) =

is connected in a classical unity feedback configuration. Find the range of gains A for

which closed loop stability is assured.

Y _ 66
R(s)  1+G(s)
®) Ks(20s? +1)
s% + 552 + 10s + 15
= s Ks(20s2 + 1) -
41552+ 10s+1
s Ks(20s? + 1)
5% + 552+ 10s + 15
= 5% 1 552 4 10s + 15 + Ks(20s% + 1)
S4‘ + 532 + 103 + 15
Ks(20s® + 1)
$% + 552+ 10s + 15
= $7 1 5s2 + 105 + 15 + Ks(20s + 1)
st + 5s? 4 10s + 15
Ks(20s? + 1)
= 5% + 552 + 10s + 15 + Ks(20s% + 1)
K(20s® + 1s)
=54 + 552 + 10s + 15 + 20Ks3 + Ks
ST (057 + 15)

= 5%+ 20Ks3 + 552 + s(10 + K) +15 _
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5 (5
S 20k (0K) O
52 PK-10 15 O
20K
’ {vo++<)(99+<-ao)-g-ooox’$ o o
99K -10)
SO

5 "% 0 o
To avod sign chaages 200 O =2 K 7O
@ PK-10 o =7 Kw_%

® (IO+K)(99K 10) - 6000 K2 FO

2  -590IK*+990 K- 100 ¥ O A

* No realvdluzo K _'_‘

salwfien K above
> Syskem @ vnstabk Jor c_iﬂ real I¢,
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K
G(s) = m
connected in classical unity feedback configuration. Given a > 0, the specification for
this system is that all c10§eq‘ loop poles have real part, less than —q. That 1s, all closed
loop poles should lie to the left of the line z = —q in the complex plane. Show how

the Routh-Hurwitz criterion can be modified to address this problem. Subsequently,

with T = 1. find the region in the (a, K) plane associated with closed loop stability.

@ o‘gﬁz S,=S+a . Now S, be\% &f&
05 zero @ ke S bemﬁ Q@f& of - Q.

> G@s) = K
G-a)( i ST-aT)

Jbtain chardctecistic egoation S,
(5) = 'Té.i r (I -2a.T)S, -a + a*T +{C
( Lok at 1+GH , H=1)

S,z T -+ a’Tr K

81 "QO,TF O

S° -a-+@tTK

For exampk, we can sbtain a stable

‘ ‘ 2

T‘/'O) (-2aT r O  K+Q Tar0

Tl = a«

Sbem 1}
(Or reverse me%ualif‘ae%z“ Kygl a

IR
2
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oo K20
szl/?, i< ? ’/"‘

5) PROBLEM 3:

Problem 3: 5, automatic depth control system for a submarine is depicted in the figure

below.

Qesired — 4 Oepth Y(s)
deth =0« e ¢

actuvator

)

H(s)
pressure measvrement

The depth is measured by a pressure transducer. For what values of the actuator K will
the system be stable? The submarine has an approximate transfer function

_(s+0.2)?
Gl = oo
and the transducer may be taken to be
H(s)=1.
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go) So—K—Je— % =«
/{‘L beg. G2
E”\/ 5% +-0l

Hey =
Meg) = &) K (s+2)?
[tegle)  ~ $¢s% ¢-0l) K (st2)
KistaR 4 s(s2kel)  K(sr2)t + s(s%41)
5(51+.0l)

S Ks* £ (.ot +4K)s + 4k

Reatin  table
S Lol 4K o die k(o +9k) = 1R
# K YK o K
= (ol -4) 49k 2 0
s' A o
Y k> 399 ®
m K ko &) C

en sues  Stability
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3.6 HW 6

3.6.1 Problem 1

Problem 1

The open-loop transfer functions of a unity negative feedback control system are given
as follows:

(a) Gls) = qrmmameTsr
(b) G(s) = {a’+a+hzus+ll

{C) G(S) - -‘\'!.’1-21-{»10!

3(8+5)(#+10;)

For each of these, plot the root locus for 0 € K < +0o without using any computer

SOLUTION:

3.6.1.1 Part(a)

»Y(s)

1
R(S) K s(s+2)(s+5)(s+10)

1. n =4 (The number of open loop poles), m = 0 (The number of open loop zeros).

2. Root Locus (R.L.) starts at the open loop poles s =0,s = -2,x = -5,5 -~ 10 when k = 0.
Since there are no open loop zeros, the branches will end up at +co

3. On the real axis, R.L. exists on segments based on number of poles and zeros to the
right of the segment. If this sum (including multiplicity) is odd, then the segment is
on the R.L., else it is not. The plot below shows the segments found.

\

—-10 -5 =2

2 poles—3; zeros _ (0-2-5-10)
n-m - 4

=-425

4. Center of asymptotes is now found using o =
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0 0 0 0
5. The asymptotes angles are 0 = % fork = 0,1, . Hence § = 222259

The R.L. is updated below

= 450 +£90°.

N\ 7
\ s
AN s
N 900 v
N /\ g )
A Ve
0 AN
90 74_254* . /Xlso
e

\/

6. Finding the break away points. We need to find where on the two segments shown
above the root locus will break away from the real line. Since
1+G=0
K
N e 0696 10) 0
K=-s5(s+2)(s+5)(s+10)
K = —s* —17s% — 80s — 100s

Then we now solve for s
dK 3 2
o = —4s° — 515 —-160s —100 =0

0 = 4s% + 515 + 160s + 100

The roots are s = -8.287,s = —0.835,5 = —3.632. Not all these points will be break away
points. Looking at the segments on the real line, we see that s = -0.835 and s = -8.287
are on the R.L. but s = -3.632 is not. We mark these points now on the current plot
and update the plot again

N s
\ s
\ v
\ 7
\ P 4
break way \ . break away
4\ N ,
—e g\\=/ _ -
— _EV N\
10 —s.28 \"2-0.83
s
P \
Va N\
s \
s AN
7 \

7. Departure angles from poles. It is clear that R.L. depart from open loop poles on the
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real axis as shown, moving towards the break away points. Hence the plot now looks
like the following

8. We now extend the branch from the break away points towards the asymptotes, since
there are no zeros, no need to calculate arrival angles. The branch will move to the
asymptotes. So we end up with the following

N s

A 7
N V.
N\
N s

&

It is important to remember that root locus will always be symmetric with respect to
the real axis.

9. Now the only lemma left is to find where R.L. crosses the imaginary axis. For this
we use Routh stability stable as follows. Since the characteristic polynomial is K +
s(s+2)(s+5)(s+10) =0 then

P(s) = s* +17s% + 80s% + 100s + K

st 1 80 | K
s3 17 100

52 74.118 K

s! | 100 — 0.229K

s0 K
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We just need to find where it cross the imaginary axis. Setting the s! row to zero
gives K = 436.68. This means the closed loop will become unstable for k > 436.68.
To find where R.L. crosses the imaginary axes, we go back to the even polynomial
s? (the row above the line s') in above Routh table, which yields 74.118s%> + K = 0 or
74.118s> + 436.68 = 0, therefore s = +2.43i. This complete R.L. Here is the final plot

K =
& K=o
N\ s
N\ 7/
N\
AN
N 7 K = 436
N K243
AN Ve
N Ve
\ p 4
N Ve
N\ s, K=0
4,26 |
= N oml [s=0
Ve 7 N
, N\
Ve N\
Ve \
Ve AN
N
AN
N ;—2.43
\
K=o 3N
K=
3.6.1.2 Part(b)
4
1
B(s) > K Zrs72)(s+D) >Y(s)
K

Gl = (sz+s+2)(s+1)

1. n =3 (The number of open loop poles), m = 0 (The number of open loop zeros).

2. Root Locus (R.L.) starts at the open loop poles s = —-1,s = 0.5 +1.323i when k = 0.
Since there are no open loop zeros, the branches end up at oo

3. On the real axis, R.L., since one pole on the real axis, then the R.L. segment is to the
left of the only pole, which is s = -1
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-
-1
4. Center of asymptotes is now found. ¢ = Zpolemnzeros _ (C1705°09) _ _ g7
n-m 3
0 0 0 0
5. The asymptotes angles are 0 = M for k =0,1,---. Hence 0 = w =600 +

k120°. Therefore the R.L. now looks hke the followmg

—0.5+1.323:%
X

/
/
/
/

1200/\/

/
origin
Qﬁi /

120"

—05—1323z \
\

6. Break away points. There is no break away points, since there are no segments between
. . . dK
two poles on the real line. We can see this also if we try to solve —= = 0 as follows

1+G=0
K
+ =
(52+s+2)(s+1)
K:(sz+s+2)(s+1)
K=s%+2s>+3s+2

Then we now solve for

dK )
— =35+4s+3=0
ds

The solution gives only complex roots. So we go to the next lemma.

7. Departure angles from poles. It is clear that R.L. depart from open loop pole on the
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real axis s = —1 as shown moving to —co along one of the asymptotes. But we need to
find departure angles from the two complex poles s = —0.5+1.323i. For s = -0.5+1.323i,
let this unknown angle be 6; and we write

This is the angle we
are solving for now —0.5+ 1.323
01 %
/1
;|
;|
/o
/ |
_____ < ,/92 r origin
_]_ |
I
|
I
103
>'<—_
—0.5 — 1.3234

Z<Zi_ 2<pi:1800+k3600 k:0/1/”'

zeros poles
- (91 + 6y + 93) =180° + k360°
91 = —1800 - 92 - 93 - k3600

We see from the diagram that 65 = 90° and 0, = tan™ (%) = 70°, hence from above

0, = -180° — 70° - 90° — k360°
= -340°
=20°
By symmetry (R.L. is symmetric with respect to the real axis), the departure angle

for the other complex pole s = —0.5 —1.323i must be —20°. We can calculate it to make
sure it is indeed —20° as follows.
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—0.5 + 1.323¢
X—
|
1”61 = +90°
|
|
|
| ..
_____ , origin
= T
T\ e, 5 —70°
\
N
A
This is the angle we 0 N
are solving for now W——_ —" 3 ;'<7_
—0.5 —1.323¢

Let 05 be the departure angle for the lower complex pole s = —0.5 —1.323i, then

Y zi— D pi =180 +k360° k=01,

zeros poles
— (61 + 0, + 03) = 180° + k360"
05 = —-180° - 0, — 0; — k360°
But 9, = -70° and 0; = -90° then 65 = -180° + 70 + 90 = -20° as expected. The root
locus plot is now updated

01 = 20°

—0.541.323: /
)é‘f

—0.667 /A .
_____ - ¢ 60 origin
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8. We now extend R.L. to the asymptotes, since there are no zeros, there is no need to
calculate arrival angles and we end up with the following

/
/

/ 01 = 20°
—0.5 + 1.323i 77
>Z/v

~0.667 /OA .
_____ < % Orlgln

9. Now the only lemma left is to find where R.L. crosses the imaginary axis. For this
we use Routh stability stable as follows. Since the characteristic polynomial is K +
(sz+s+2)(s+1) =0 then

P(s)=s®+2s2+3s+ K +2

3 1 3
2 2 K+2
1| A

S 2

O K+2

We need K = 4 (by setting the s' row to zero). This means system will be unstable for
k > 4. To find where R.L. crosses the imaginary axes, we go back to the s> polynomial
above the line s! in Routh table, which yields 252 + K+2 =0 or 252 + 6 = 0, therefore
s = +1.73i. This complete R.L. Here is the final plot
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/

/ 1.732
X/MQOO
—0.54+1.3232
+ 7 —-f//'

~0.667 ;)A .
_____ < _K( Orlgln

3.6.1.3 Part(c)

+ 2
R(s) -~ K R eEs ) > Y (s)
K (s2 +2s +10)
G(s) =
s(s+5) (s +10)

1. n =3 (The number of open loop poles), m =2 (The number of open loop zeros).

2. Root Locus (R.L.) starts at the open loop poles s =0,s = =5,5 = =10 when k = 0 and
two of the branches end up at zeros s = -1 + 3i. One branch will end up at +co.

3. On the real axis, there is R.L. segment between s = 0,5 = -5 and another segment
to the left of s = -10. No R.L. segment exist between s = -5 and s = -10. Current
diagram now looks like the following
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3.6. HW 6
—14+ 3
@)
-
~10 -5 s=0
@)
—1—-3
4. Center of asymptotes is now found. ¢ = Zpoles-nzeros _ 1-CLTD _ g3
n-m 1
0 0 0 0
5. The asymptotes angles are 0 = W for k=0,1,---. Hence 0 = M =180 +

k360°. Therefore the R.L. now looks like the following

—1+3¢
asymptotes )
/ _ 80°
-~ -
0o
—1—-3%
6. Finding the break away points
1+G=0

K (s2 +2s +10)
+ =
s(s+5)(s+10)
s(s+5)(s+10)+K(52+25+10)
s(s+5)(s+10)

s(s+5) (s +10) + K(s2 +25+10) = 0
—s(s+5) (s +10)

(s2 + 25 +10)
—s3 — 1552 — 50s
s2 +254+10

K=
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We now solve for‘Z—Is< =0
dK 0
ds
d (—s®—15s% - 50s _
ds\ $2+2s+10 |
s* + 453 +10s? + 300s + 500
2 =0
(s2 +2s +10)

st + 453 +10s? + 300s + 500 = 0

The roots are {s = 2.43 + 5.895i,s = —1.727,s = —7.12} We want breakaway between s = 0
and s = -5, hence only valid value is —1.727. We now go to the next lemma.

7. Departure angles from poles. Since poles are all on the real axis, the angles of departure
are as shown below. The root locus plot now appears as follows

-1+ 3¢
o

~ break away
205 //

- - - - < > < 0
~10 =5 { 5=

o
-1 31

8. Since there are zeros, we now need to calculate arrival angles. There are two angles
to calculate since there are two zeros. But we really need to calculate one, since the
other will be symmetrical. Let us pick the top zero. s = -1+ 3i. Let its unknown arrival
angle be 0,. This is the angle we want to solve for. So we set up the following diagram
to use for the calculation

_1+329 \j@"co find
0 1

//////// :\\/ 05
e _ age ,///92X //0§=‘::\‘8\:U
—10 ) |
N
—1—-3:
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E<Zi_ Z<Pi=1800+k3600 k=01,

zeros poles

(64 + 61) - (92 + 93 + 95) = 1800 + k3600

Now we do a little geometry to calculate the angles. 6, = 90°,0, = tan™ (103—_1) =

18.435°,05 = tan™! (Z) = 36.8° and 05 = 180 — tan™! (%) = 108.43°. The above now
becomes
(90° + 0;) — (18.435° + 36.8" + 108.43%) = 180° + k360°
6, = 180° — 90° + 18.435° + 36.8° + 108.43° + k360°
= 253.67°
= -106.33°

Therefore, the arrival angle at the lower zero will be —253.67° or 106.33°. The root
locus now is as follows

—-1-3:

9. The only lemma left is to find where R.L. crosses the imaginary axis. But we do not
have to do this, since the zeros are to the left of the imaginary axis and the third
branch goes to —co. So we are done. The above is the final root locus.
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3.6.2 Problem 2

Problem 2

The steering control system for a mobile robot for security pur has a unity negative
feedback with P yoce
_ KR(s+1)s+5)

T s(s+15)(s+2)

G(s)

(a) Sketch the root locus for Q) < A < +00 without using any computer tool.
(b) Verify your plot in (a) using Matlab.
(¢) Find K for all breakaway points on the real axis.

SOLUTION:
3.6.21 parta
R(s) 1 K _ 82425410 Y (s)
2 s(515)(s+10) >
GEs) = K(s+1)(s+5)
s(s+1.5)(s+2)

1. n =3 (The number of open loop poles), m =2 (The number of open loop zeros).

2. Root Locus (R.L.) starts at the open loop poles s =0,s = -1.5,5s = -2 when k = 0 and
two of the branches end up at zeros s = -1 and s = —5. One branch will end up at +co.

—1.5

3. On the real axis, the following diagram shows the segments.
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—-1.5

Y poles—Y,zeros _ -3.5—-(-6) _

4. Center of asymptotes is now found. o = = 2.5
n-m 1
0. 13600 0413600
5. The asymptotes angles are 6 = 1804150 for k = 0,1, . Hence 0 = 2% _ 1800 4
n—m 1

k360°. So the asymptote is the real axis itself. This is clear since all zeros and poles
are on the real axis.

6. Break away points.
1+G=0
K(s+1)(s+5)
s(s+15)(s+2)
s(s+1.5)(s+2)+K(s+1)(s+5) _
s(s+1.5) (s +2) B
s(s+15)(s+2)+K(s+1)(s+5)=0

0

_ —s(s+1.5)(s+2)
 (s+1)(s+5)
-5 —-3.55% = 35
s2+65+5
Then we now solve for‘fi—fzo

dK
%_0

d (-s>—3.55>-3s\

%( s2+6s+5 )_

s* +12s° + 3352 + 355 + 15

64 41293 + 4652 + 605 + 25 -
s* +125% + 3352 + 355 +15.0 = 0

The roots are s = -0.823 + 0.57i,s = -8.619,s = —-1.735 We want breakaway between
s = -1.5 and s = -2, since these are two poles facing each others, one of the breakaway
points is s = —1.735 on that segment. The complex root is discarded since it is not on
the real line. The point s = -8.619 is valid since it is on a segment on the real line. It
will be a break-in point since it is on a segment with only a zero on it. So the current
plot is now as follows
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break-in breakway
LO
L‘|3 —
|
o > > P<—Oe
o |0 0
— | —
© 2
i i
—
|

7. Departure angles from poles. Since poles are all on the real axis and no complex zeros
exist, then the angles of departure are as shown above. There is nothing to do in this
step.

8. Since all the zeros are on the real axis, there is nothing to do for this step. We just
need to connect the break away branches to the break-in point on the real axis as
follows

9. Now the only lemma left is to find where R.L. cross the imaginary axis. Again, we do
not have to do this since the zeros are all to the left of the imaginary axis and the third
branch goes to —co. So we are done. The following is the final plot. Since we need
to have 3 branches (since n = 3) and m = 2, then one of the branches going into the
break in point at s = —8.619 will go towards the zero at s = -5, but the other branch
go to —co. We do not know which of the two branches will go to the zero and which
will to go —co. It does not really matter. We pick the bottom branch going to the zero
and the top branch going to —co. So the final plot is
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same branch
N third branch
// -
—oo< v g
=
0
\
sarﬁe branch
//‘
3.6.2.2 Part(b)
>> s=tf('s');
>> sys=((s+1)*(s+5)/(s*(s+1.5)*(s+2)))
sys =
sT2 +6 s+ 5
s”3 + 3.5 82+ 3 s
Continuous-time transfer function.
>> rlocus(sys)
Root Locus
4 T T T
3 | - -
HA 2 - -
‘0
©
c
S 1 :
)
20 o —x 1
<
>
(@]
a
E ot :
3+ 4
_4 | | | | | | | 1
-16 -14 -12 -10 -8 -6 -4 -2 0 2

Real Axis (seconds'l)
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3.6.2.3 Part(c)

The gain K any point on the roots locus is given by multiplying the distances from each
pole to the that point, divided by the product of the distances from all the zeros to the same
point. This comes from

1+ KGopenloop =0

1
K=

| Gopenloop |

In other words, if we want to find gain at some point r, then

« - LIl
1] 1z

Since the first breakaway point in this case is = -1.735 (the break away point), then the
above becomes

¢ _ (1735)(1.735 - 1.5) (2 - 1.735)

(1.735-1) (5 -1.735)
The above was done by just looking the diagram of the root locus and measuring the distance
from each pole to the breakaway point, and similarly for the zeros. The above reduces to

K =0.045

For the second break-in point in this case is r = -8.617, therefore
_ (8:617)(8.617 —1.5) (8.617 - 2)
B (8.617 —1) (8.617 — 5)

The above was done by just looking the diagram of the root locus and measuring the distance
from each pole to the break-in point, and similarly for the zeros. The above reduces to

K =14.73
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3.6.3 HW 6 key solution
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1@ Root locws for K (5% 25+10)

PO\QS O) ‘5,"]0 63*” 15 SQ'.(, 505
2or0$ -1y 43, -1 )2
¥ brenches =3
ASb]mptObeJ Qk«)1D0 - 1%0
-2
6-/1 -5-10‘(-.-&-;)3)_(_‘_;)3):_'5
3-2
dk . o (5% 25+10) (35 305+ 50)
ds 51*4-‘-(834—[057‘., 2005+ 50 = O
5= 24 f:)f)'@c( (d'SCC(fd)
&a q Sz - 1,12 ' 5:_’(‘“(()‘56”())

Axig (Qoobh Hor wil2) 3 9
S+ (5¢K)S  b60+K)S
0055‘“5 > | 50+1K ( )

| FIOK = 0
< oI5k 10K (@ (1519 (50+2¢) - 10K

S) G ‘ ' 1S5+K
50 b b- 10K
depar tures ) van shes onl\j fir

ESk\ma{e GeOWONS vsmg ﬁrrﬂoia K=0
(2 LR Provise below) vm

_._4 )L N 7@

| AT
“w jg
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K(ex( o185y - Klsabsxsy
S5 Y s+2) 3+ 358> « 38

2 Gy =

) Aw"(m-. b,—(lg -2
Zexvs. . .=\, -5 ...

’ Root e obt sined Lolle
Lo See L. AT END OF SOLOT R

- ten . Bolrakamiy PoDaK.: I
o (22« bsa s34 5-(—,3),!;,(5{4—345'&& 83X 2s + & D

S4 + (224 335+ 358 415 =0

o ‘7 T . . S a:&ézr;;(;]‘l' one .YLR,Q_ M(S-h
Question 1(a) Question 1(b)

20 — :

2 \/
10 :
@ 3 1f :
% :
< - :
o 0 o 0 a3 ;
E = :
= =1 :

-10 /"\
2 0

2 — -3 ~
-%0 -10 0 10 20 2
Real Axis Real Axis
Question 1(c) Quaestion 2(b)
20 v 10 - T
10 : 5 ,
g ° : g °
E : E
-10t : -5
- : : -10
2-%0 -10 0 10 20 -10 -5 0 5 10
Real Axis Real Axis
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3.7 HW7

3.7.1 Problem 1

1. For each of the open loop transfer functions below, assume a classical unity feedback
connection and sketch the Nyquist plot. Find the values of the gain K > 0 for which

closed loop stability is guaranteed.

(a) G(s)H(s) = srterss

(b) G(s)H(s) = £

SOLUTION:

3.7.1.1 Part(a)

GH—L 1)
- s(sz+s+4)

The poles of the open loop are at s = 0 and s = 0.5 +71.94. So we draw I which encloses all
the poles in the RHS making sure we avoid the pole at s = 0 by making small circle. Here is
the result. (we do not care about open loop poles in the LHS).

I(GH)

(2)

We now start by mapping each segment from I' to I'gy. Starting with segment 2. We see that

K K ‘
lim ————— = lim — = ocoe/¢
s—>05(52+5+4) s=0 s
Where 6 goes from +90° to —90° in T. This means on I'cy segment (2) will map to a very
large circle which goes from —90° to +90° (anti-clockwise). We update the plot after making
each segment so we see the progress.
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We now go to segment 4inT.

K K ‘
lim ——————— = lim — = 0¢7%
5—>°°s(52+s+4) 57§

Where 6 goes from —90° to +90° on I'. This means on I'gy segment (4) will map to a very

small circle which goes from +270° to —270° on I'cy. This is 1.5 circle rotation in clockwise
that goes from around 540°. updating the plot gives

We now do segment 1. For this we need to find the real and imaginary part of GH since we
need the axis crossings. From (1)

TR ) (o) a(e) T (=)o

Multiply numerator and denominator by complex conjugate denominator gives
K - (4w — @) — w?
A )
K (-0 - ) - )
(] (4a) - a)3) - a)2) (—] (4a) - a)3) - a)z)
-iK (40) - a)3) - Kaw?
w® - 7w* +16w?
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Hence
Re(GH) = — &
e(GH) = w*-T7w? +16
1 (GH) — -K (40) - a)3) K (a)2 - 4)

06— Tt + 1602 o (a)4 702 4+ 16)

To find the crossing. I' gy will cross the real axis when Im (GH) = 0, hence

K(w?-4)
0
13 (a)4 - 7w? + 16)
K(w?-4)=0
w?-4=0
w? =4
w = +2 rad/sec
Then
GH(2) = 57—
(2) + () +4(22)
_ K
(-78) + (-4) + (j8)
_ 'k
4

So | T'gy will cross the real axis at —0.25K.

Since K > 0, this will be somewhere on the negative real axis. To find where I'y crosses the
imaginary axis we set Re (GH) = 0, hence
-K ~
wt =702 +16
Which gives w = +co. When w = +oo then GH (+c0) = 0*. This means the crossing at origin.
This makes sense, as the small circle around the origin shrinks to zero size.

0

To find where segment (1) maps to, we see that for v = +c0, Re (GH) < 0 and Im (GH) > 0,
so it starts in first quadrant. = 0%, Re (GH) < 0 and Im (GH) < 0, which means segment (1)
starts in the first quadrant but ends in the third quadrant.

Now for segment (3). we see that w = 07, Re (GH) < 0 and Im (GH) > 0, which means segment
(3) starts in the first quadrant. @ = —co then Re(GH) < 0 and Im (GH) < 0 which means
segment (3) in gy starts in quadrant 1 and ends up in quadrant 3. There will be crossing
at the real axis at —~0.25K. Therefore the plot now looks like this
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We are now ready to answer the final question about stability and K. Since open loop has
zero poles in RHS, then we need to have zero net clock wise encirclements around -1 for
the closed loop to be stable. Only condition that will meet that, is to keep the crossing
point —0.25K to the right of —1. This means we need 0.25K < 1. This insures zero clockwise
encirclements. This means

K<4
To verify, Routh table is used to determined K using the closed loop transfer function. The
closed loop is given by
GH

T =
1+ GH
K

s(sz+s+4)+K
K
3 +s24+45+K

Hence the Routh table is

S 1 |4
s 1 K
st |4-K

91 K

For no sign change in first column, we need K > 0 and 4 - K > 0. Which means K < 4 as was
found above. Verified OK.
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3.7.1.2 Part(b)

_ K(s+1) K(s+1)

GH = = 1
$2(s+2) s3+2¢2 @

The poles of the open loop are at s = 0 (two poles) and s = —2. So we draw I" which encloses
all the poles in the RHS making sure we avoid the poles at s = 0 by making small circle.
Here is the result. (we do not care about open loop pole in the LHS and about the zeros of
the open loop).

S(GH)

We now start by mapping each segment from I to I'y. Starting with segment 2. We see that
K(s+1)

im ——— =lim — = ooe
s—0 83 + 252 s—0 §2

Where 0 goes from +90° to —90° in T. This means on I'cy segment (2) will map to a very

large circle which goes from —180° to +180°. This is a full circle in the anti-clockwise. We

update the plot after making each segment so we see the progress.

-2j6

We now go to segment 4 in I'.

K(s+1) Ks K .
1 =1 — =1 — = _]29
sliglo s3 + 2s2 slg?o s SIE?O g2 Oc

Where 6 goes from —90° to +90° on I'. This means on I'cy segment (4) will map to a very
small circle which goes from +180° to —-180° on I'cy. This is basically a full circle in clockwise
around zero. updating the plot gives
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I T IUUURRREEEE s T Ten

1 ) A o
. \\(2) R - /r\ R
—1 / -1 \/4/

We now do segment 1. For this we need to find the real and imaginary part of GH since we
need the axis crossings. From (1)

CK@+1)  K(w+1)  K(jw+1)
8 +282 (]-a))3+2(]-w)2 T —jwd - 2w?
Multiply numerator and denominator by complex conjugate denominator gives

K(ja) + 1) (jw3 - sz)

M= T 207 (0 —202)
j(-Ka?®) - (Kw* + 2Kaw?)
B w* (a)z + 4)
Hence
- (Ko* +2K0?)
Re (GH) =
w? ((uz + 4)
Tm (GH) = Ke? K

w* (a)2 + 4) ) (a)2 + 4)
To find the crossing. I'gy will cross the real axis when Im (GH) = 0, hence
-K
S ——
w (a)z +4
w = +oo rad/sec

Therefore

GH (joo) = lim

Il
g
|

So 'y will cross the real axis at 0. Which is where the small circle shrinks to zero. To find
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where I'y crosses the imaginary axis we set Re (GH) = 0, hence

- (Ko* + 2Ka?)
=0
w? (a)2 + 4)

Kw* +2Kw? =0
w? (a)z + 2) =0

Hence

w=0
And

Since w has to be real. Then w = 0 is only used. When w = 0 then GH (]0) = lim,,_,g K1) =

—jw3-2w?
lim,,_, SZ = Hence I'gy will cross the imaginary axis at co.

To find which quadrants segment (1) maps to, we see that for positive w then Re(GH)
is negative and Im (GH) is negative (since K > 0). Therefore segment (1) maps to third
quadrant. And for segment (3), we see that negative w then Re (GH) is negative and Im (GH)
is positive (since K > 0). Therefore segment (3) maps to first quadrant

Therefore the plot now looks like this

3 S
r

Can
This will
shrink to /
zero (2)

@J ‘

After the small circle shrinks to zero, and since the crossing on the real axis was found at 0
then the final plot looks like

< 3/
R
-1 1 -1 4
®) 4

We are now ready to answer the final question about stability and K. Since open loop has
zero poles in RHS, then we need to have zero net clockwise encirclements around -1 for
the closed loop to be stable. We see that there is no encirclements around -1. No matter
what K > 0 value is. So the closed loop is stable for all positive K. To verify, Routh table is

—
)
N .
=

4 T
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used to determined K using the closed loop transfer function. The closed loop is given by
GH

“1+GH
K(s+1)

:s3+252+K(s+1)

Hence the Routh table is

s3 1 K
2 2 K
T 2KK_K

S 2 2

sY K

For no sign change in first column, we need K > 0 and g > 0. Which is always true since K
is positive. Verified OK.

3.7.2 Problem 2

2. The Nyquist plot for a transfer function KG(s) is shown below for K =1 and w > 0.
Assuming a unity feedback configuration with G(s) having no poles in the closed right

half plane, find the ranges for K > 0 under which closed loop stability is assured.

§ I

\\\‘~ \\_j//%iAL//a/// > Re

Since there is zero open loop poles in RHP, we need zero net clockwise encirclements around
—1. This means we need to keep point —0.5 to the right of -1 and keep the point -2 to the
left of 1. In other words, we need to satisfy
05K <1
2K >1

SOLUTION:

K<2
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And
1
K> -
2
Hence the range of stable closed loop is for K to meet the following requirement
05<K<?2

3.7.3 Problem 3

3. (a) For the attitude control system shown below, assume that the velocity feedback

gain K, is zero and sketch the Nyquist for open loop system G(s)H(s).

| |
1 L '
e.r + ;' 1 0‘ 1 ' - e
- K ™ £ M2 >
- ! '
Ly P

(b) For the closed loop system above, for what range of gains K > 0 is stability assured?

(c) Now consider the case with both gains K and K, non-zero. Using an appropriate

Nyquist plot, find the range for these gains under which closed loop stability is assured.

SOLUTION:

3.7.3.1 Part(a)

When K, = 0 the open loop is GH = Ksl2 This has no poles in RHP and two poles at zero.
Hence I' is
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S(GH)
r
(1)
@)
-~ = R(GH)
(3) (4)
We start at segment 2.
lim — = lim —— = coe20

s—0 §2 e—0 (eefe)

As 0 goes from +90° to —90° on T segment 2 goes from -180° to +180 on 'y with oo radius
in anti-clockwise. Hence the plot now looks as follows

For segment 4 in I'. We have

lim — = lim
5—00 § R—o0 (Re]Q)

0 goes from —90° to +90° on T, segment 4 goes from +180° to 180 on 'y with 0 radius in
clockwise. Hence the plot now looks as follows

— -2i0
7 = Oe

&

|
e

Now
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Hence Re (GH) = %2 and there is no imaginary part. Therefore, there is no crossing on
the real axis. There is crossing on the imaginary axis at w = +co which occurs at GH = 0.
This is when the small circle shrinks to zero size. It is clear that segment 1 will map to third

quadrant and segment 3 will map to second quadrant since there is no crossing. The final

plot is
Pan
This will
[ shrink to
3/ ’ '/ Zero (2),
R

4!

After the small circle shrinks to zero, and since the crossing on the real axis was found at 0
then the final plot looks like

x

)

Ten
@)
R4
-1 1 -1 4/
(3) 4

Since open loop has zero poles in RHP, we need I' g5 to have zero net clockwise encirclements.
Since I'y has no crossing on the real axis that depends on K then I'gy will remain as shown
for any K. So closed loop is stable for all K > 0. To verify, we set the Routh table for the
closed loop polynomial

&

3.7.3.2 Part(b)

The closed loop is given by

Hence the Routh table is

910

We see that there is no sign change in first column, no matter what K is.
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3.7.3.3 Part (c)
We first find the closed loop transfer function. Let E (s) be the error (just after the summing
junction) then
E=0,-0-K,0
1
0= EKS—2

2
From the second equation E = 9%, hence the first equation becomes
0s?

= 0r =6~ K;s0

32
%+9+K059=9r

S2
Q(E +1+Kvs):67

Therefore the closed loop transfer function T (s) = 9 is

0,
0 1
R B—
0, T+ 14K
_ K
"~ 2+ KK,s +K

We now find the open loop transfer function with unity feedback using the closed loop
transfer function. Since T (s) = % where G (s) is the closed loop transfer function, then

letting G (s) = g we have

K G
s2+KK,s+K 1+G
N
_ D
- N
1+5
N
" N+D

Therefore N = K and N + D = s? + KK,s + K which means D (s) = s> + KK,s. Therefore the
open loop transfer function is

N K
G = — = —
®) =5 = Z7 kK.
Hence
K
GH = s(s+KKy)

Therefore, the | open loop has a pole at s =0 and at s = -KK, |

Assuming positive gains, —KK, is in the LHP. Hence the open loop is stable. Which means
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the Nyquist plot should have zero net clockwise encirclement around -1 for the closed loop
to be stable.

We now start by mapping each segment from I to I'y. Starting with segment 2. We see that
1 1

=lim — =

lim ———— = lim —5— = coe /9
s—0 s +sKK, s—0sK, ¢-0¢eK,

Where 0 goes from +90° to —90° in T. This means on 'y segment (2) will map to a half
circle which goes from —90° to +90° in anti-clockwise.

- _ T N

o

oy b @)
. @ ? R . ;

We now go to segment 4inT.

=i K_l' 1 _O—jZQ
s 4 KK, s Rom R0
Where 6 goes from —90° to +90° on I'. This means on I'cy segment (4) will map to a very

small circle which goes from +180° to —-180° on I'cy. This is basically a full circle in clockwise
around zero. updating the plot gives

\Y, —e_ T Ten
(1) h ARRREEERES
YOI AR .
~ 7 —R TN R
(3) /()
To find the intersections,
2 .
CH = K _ K _ K (—a) —]a)KKU)
2 +5KK,  —w? +jwKK, (-2 +jwKK,) (~w? - jwKK,)
_ —Kw?-joK?K, K KK,

Ko?K2 + 0t KK+ w? ' K2wKZ + @’

- K?K,
v and Im (GH) = T When Re(GH) = 0, we get w = +co.

When means GH = 0 at this frequency. So I'gy crosses the imaginary axis at the origin.

Hence Re(GH) =
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When Im (GH) = 0, we also get w = +co which also means I'gy crosses the real axis at zero.
By continuation, and since segment 1 must follow segment 4, then segment 1 maps to third
quadrant in 'y and segment 3 must map to quadrant 2 in I'cy. As ¢ — 0 the small circle
become a point at origin and we get the final plot

——e T Ten
1) N 3/
2/
2 1 '
N (2) | - 4 »

-1 - I -1 /\
/ intersection gt origin

Since the intersection is always at the origin, I'cy will never move to the left passed -1 to
make any encirclement around —1. We need at least one net encirclement for the closed

loop to be unstable. Hence| the closed loop is stable for all positive K, K,, |.

To verify, we show Routh table for the closed loop found above, which is X The

s2+KKys+K”
Routh table is
| 1 |K
s! | KK, | 0
O] K

For positive K, K,,, we see that there can not be a sign change. Hence closed loop is stable
for all K, K,. (Note, I assume K, K, > 0. Verified this with instructor via email).
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3.7.4 Problem 4

4. A level control system and its transfer function model is depicted below. Assuming
zero delay (T = 0), use Matlab to generate the appropriate Nyquist plot which can be
used to analyze closed loop stability. Take

10 3.15 1

Gals) = —7+ G6) = 3577 = @ T A 7 T

llydr‘:ulic
—
Actuator Delay Tank
| -1 |
+ Sf
(O—1 G4 (5) A G(s) [ovel

Gg(f)) I[‘_

(b) Using the Nyquist plot from part (a), estimate the gain and phase margins.
(c) With time delay T > 0, explain in detail what is meant by the following: “The

appropriate Nyquist plot is obtained from the plot in Part (a) by a frequency dependent

angular rotation.” For the case when T'= 1, is the closed loop stable? Explain.

SOLUTION:
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3.7.4.1 Part(a)

The open loop transfer function T(s) is G4 (s)e*TG (s) Gy (s). For T = 0, we have

T(s) = Ga(s) G (5) G (s)

_ 10 315 1
o 54+130s+1 s
5 +3+1

The Nyquist plot is (using the program I wrote which shows I' and I'y side by side)

Ro g— =22
.897 .91 ! show arrow
-n € — (0087 x 091 yg 5065 o]

1 04
out[142)= ‘ 02
) N
B LA

In the limit, as R becomes very large we obtain

o - show arrow
“n € — (2087 X p—— =091 y g— 065 0

3

)

out[142)=

-10

Here is also Matlab nyquist output (zoomed in version)
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s=tf('s');
sys=10/(s+1)*(3.15)/(30*s+1)*1/(s~2/9+s/3+1) ;
sys =

850.5

90 s74 + 363 s”3 + 1092 s72 + 846 s + 27
nyquist ([850.5],[90 363 1092 846 27])

Nyquist Diagram
T T

4 e
3F //
\
ol AN
B3 T~
< S
>0 + — ]
g ~
@ 4 Ve
g f
2+ ‘:“
\
3+ \
N\
4 \
5 AN
L v

Real Axis

3.7.4.2 Part(b)

For the gain margin, the I';y curve crosses the real axis at about —0.41. Therefore we need

041K 0 <1
For stability. Hence
1
K =—=24
max 041 39

In dB, the above becomes
gm =20log, ,2.439
=774 db

For the phase margin, we draw a unit circle and find the intersection with Iy and estimate
the angle between the line from origin to the intersection and the —180° line. As follows
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=
File Edit View Insert Tools Desktop Window Help M
DEds MR LL- E0E a0

Nyquist Diagram
o P T

2l

Imaginary Axis

-2 1.5 -1 0.5 0 0.5
Real Axis

The angle seems to be approximately between 30° and 35°. This is the phase margin. To get
exact values, Matlab margin command can be used as follows

s=tf('s');
sys=10/(s+1)*(3.15)/(30*s+1)*1/(s~2/9+s/3+1) ;
sys =

850.5

90 s74 + 363 873 + 1092 s”2 + 846 s + 27

>> [Gm,Pm,~,”] = margin(sys)

Gm =

2.3854

Pm =

35.6025

Converting the Gm value given in Matlab to dB, gives the result shown above. Matlab gives
35.60 as the exact phase margin.

3.7.4.3 Part(c)

Let the open loop GH when T =0 (which is what we analyzed in part (b)) be called GH (s)
which can be written, in frequency domain as

GH (s)ls:jw = |GH| ¢/

Where both the magnitude |GH| and the phase 0 in the above, are functions of the frequency
w. The above is polar representation of the complex quantity GH (]a)) When T > 0, then

the open loop is now ¢*TGH (s), which can be written in frequency domain as

e7TGH (jw) = |e7*T||GH] =T
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In other words, magnitudes multiply and phases are added. But [e7“T| =1, so the above is
¢ 7TGH (jw) = |GH] /=T

We see that the resulting open loop has the same magnitude as before, but its phase has
change. We subtract angle wT from the original phase 6. subtract angle T is the same as
rotating the complex vector representation clockwise wT. So this causes the whole Nyquist
plot, which is a frequency plot GH (]a)) , to just rotate by wT clockwise (since negative angle)
to what it was before. This makes I'y become closer to 1. This is illustrated in the following
diagram

e “Tlay

kwise by wT'

When T =1, the angle is @ radians. Since we found the phase margin to be 35° or about 0.61
radians, then the closed loop, which corresponds to the open ¢ 7*TGH (]a)) , will have new
phase reduced by w radians. Since phase margin is measured at 0dB angle (or w =1 radian,

or 57.3%. This is larger than the phase margin 35°. Therefore the new system is | unstable |.
I'cy will rotate and will cross over —1.

after clockwise rotation by wT” where T'= 1. Unstable.

What the above shows, is that adding delays eT makes the system less stable (closer to
becoming unstable). Delays causes the phase margin to reduce. We can find the amount of

0
delay T before the system becomes unstable. We need wT < 35° or T < io < 0.611 seconds.
This is the maximum delay T we can have before the closed loop phase margin is all used
up and the system become unstable.
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3.7.5 HW 7 key solution

1. For each of the open loop transfer functions below, assume a classical unity feedback

connection and sketch the Nyquist plot. Find the values of the gain K > 0 for which

closed loop stability is guaranteed.

(a) G(s)H(s) = siersy

(b) G(s)H(s) = B3

“ G H(s) = 5 W :
S(sh s+4 ) Is K;zé?s
- small awle :$: Eejig /ieie
=1
GONS)| : 56 |[°
6 - - = J
\512(9 4Ee]6 o€
‘ ® ®
. B‘ﬁ cixcle <= Rej‘?

GON| . K oD
‘s:ee)"’ S ent 0¢ ?

. h)»\ey\ S:éw
K
JW-WHjwWra)

fq(smm‘s .
:Jw

K(-w'-jwE-w))
(4-wyw’+ w? )

I feGotG ) to | - k(4w =0
D C¥055 Real axis at w=Q
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R{quﬂgw)}:o B ;k__”_‘i_:o
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2
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Re { G 5@3(\‘(}5&3};‘):; .- %
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GONE) = S(or2)

© <- b eje
K 3‘29
a5 e 32° -
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® S=€ej¢ .
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]
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2. The Nyquist plot for a transfer function KG(s) is shown below for K = 1 and w 2 0.
Assuming a unity feedback configuration with G(s) having no poles in the closed right

half plane, find the ranges for K > 0 under which closed loop stability is assured.

| Im

T L e Stable when . -
 Joscecz|
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3. (a) For the attitude control system shown below, assume that the velocity feedback

gain K, is zero and sketch the Nyquist for open loop system G(s)H(s).

‘kv

(b) For the closed loop system above, for what range of gains K > 0 is stability assured?

(c) Now consider the case with both gains K and K, non-zero. Using an appropriate

Nyquist plot, find the range for these gains under which closed loop stability is assured.

>
©

@ s-5° o

S= Re =
G(S)‘ LK S
sipedt T eIzt Oe
@I St au\) :)
G K
sf)v\) - (;\)2
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k- jw KK,
L\)41‘ U\fk k\/

To ‘F\'Y\Ol the YOQ\ axn's CYOGQ‘MQ
et — WK K, =

2 o cvossing foy  ocw< oo

To {ind imaj{ytwa axis Cressings
[et - kw’=0o

2 Mo ch§§\‘1‘3 {;r 0< W < o

ANo ~PY\C§,‘(C|€W\O"\+5 0{ (-1, 0) ‘};Y Q“Z K, k\/ >D
So, the system is sable for Gl k>o

Ky >o
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4. A level control system and its transfer function model is depicted below. Assuming
zero delay (T = 0), use Matlab to generate the appropriate Nyquist plot which can be
used to analyze closed loop stability. Take

10 3.15 1
Ga(s) = L G(s) = 30511 Gy(s) = OO

llydtv:ulic
d
Velocny____ J(]_
Actuator Delay Tank
| -5 |
+ ST
O 64(9) | [ G5 [T level

Float

Gg(ﬁ)

(b) Using the Nyquist plot from part (a), estimate the gain and phase margins.
(c) With time delay T > 0, explain in detail what is meant by the following: “The

appropriate Nyquist plot is obtained from the plot in Part (a) by a frequency dependent.

angular rotation.” For the case when T' = 1, is the closed loop stable? Explain.

261



3.7. HW 7 CHAPTER 3. HWS

clear a
R=1000;
svec = -R:R/100000:R;
s=svec*i;
thvec = -pi/2:pi/360:pi/2;
for j = length{svec)+l:length(svec)+length(thvec)

s(j) = R.*cos(thvec(j-length(svec))) + R.*sin(thvec(j-length(svec))).*i;

cle; clf;

end

T=0;
GA = 10./(s+l);

G = 3.15./(30.*s+1);

GF = 1./((s.72./9)+(s./3)+1);
DEL = exp(-T.*s);

GH = GA.*DEL.*G.*GF;

Re = real(GH);

Im = imag(GH) ;

plot(Re, Im)

hold on

x=-1:.1:1;
y=sqgrt{l-x."2);
y2=~sqrt(l-x."2);
plot(x,v, 't--",%x,y2, 'xr--")
plot(-1,0, ‘xx")

20 T T T T T T

151

_20 L L L ] L Il 1
-5 0 5 10 15 20 25 30 35
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c) You need to rotate the plot by the phase corresponding to the
appropriate delay and reexamine the -1 point to check for stability. Due
to e =e¢/"factor, some points will be rotated more than others,
depending upon the frequency.

P> s = tf('s?')

Transfer function:
s

>> G_a = 10/ (s+1)

Transfer function:
10

>> D = exp(-s)

Transfer function:
exp(-1*s) * (1)

>> G = 3.15/(30*s+1)

Transfer function:
3.15

>> G_f = 1/(s"2/9+s/3+1)

Transfer function:

0.1111 s™2 + 0.3333 s + 1

>> OL = G_a*D*G*G_f

Transfer function:

exp(-1*%s) * -
3.333 5”4 + 13.44 73 + 40.44 s™2 + 31.33 s + 1

>> nyquist (OL)

>> axis([-2 2 -2 2])

>>
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Imaginary Axis

Nyquist Diagram

4b. A level control system with delay of { = 1.

15

0.5~

System,'-oﬁf

T

| Phase Margin (deg): -12.3 *
Defay Margin (sec): -0.256 -

| Atfrequency (rad/sec): 0.836
ff’ Closed Loop Stable? No

t
System: OL
Gain,Margin (dB): -1.52
At frequency (rad/sec): 0.731
Closed\Loop Stable? No
- -

o
Real Axis

0.5

265



3.8. HW 8 CHAPTER 3. HWS

3.8 HWS8

3.8.1 Problem 1

1. Derive a model for the open-loop transfer function for the system whose frequency
response plots are given on the last page. Turn in the plot with the straight-line Bode
approximations of phase and log gain drawn on top of the true Bode plot. Will the
closed-loop system be stable with negative unity-feedback? What are the gain and

phase margins? .

Bode plot for Problem 1.
Magnitude Response

T

_ac- M N H vos s 1,°° 10‘ 10
10 B Frequency (rad/sec)

Phase Response

Phase deg

SOLUTION:

The first step is to find number of poles and number of zeros. Looking at the phase plot, we
see that at high frequency the phase is —270°. Therefore, there are 3 more poles than zeros.
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(A pole adds —90° at high frequency and zero adds +90°). Now we look at the magnitude
plot and look for any slope change in the positive direction. There is none. The slope starts
at —20 dB/decade and remains negative going to —40 dB/decade, then —60 dB/decade.

This implies there are no zeros since a zero makes the slope positive. We now know that
there are 3 poles and no zeros.

Next we look at where the phase starts. We see it starting at —90°. This means this is type
1 system (i.e. one pole at the origin.). So now we can say that our system has this general
form

K
s(l + i) (1 + i)
11 T

A pole at zero always starts at 40 dB at low frequency since 20 log% = -20logw, and using
@ = 0.01 as the small frequency value (by convention), we obtain -20log0.01 = 40 dB. It
drops by —20 dB/decade. Now we need to find the locations of the break points 7; and 7,
(also called corner frequencies).

G(s) =

To find 7; we draw an asymptotic lines between the first segment which has slop of -20
dB/decade and the next segment which has slope of —40 dB per decade and look for the
intersection point. We find it is 7; = 1 rad/sec as illustrated below. Similarly between the
second segment which has slope of —40 dB/decade and the third segment which has slope
of —60 dB/decade we find the intersection to be around 7; =~ 10 rad/sec
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Bode plot for Problem 1.

—80-- i :.“u“ el 0
’ Frequency (rad/sec)

10

Frequency (rad/sec)

Now that we found the corner frequencies, our system has this form

G(s) = K
- s(1+s)(1+%)

The only thing left is to determine gain K. This is done by looking at low frequency. By
convention this is w = 0.01 rad/sec. At w = 0.1 we see the gain is about 45 dB, and since the
slope is —20 dB/decade we go back one decade, and conclude that magnitude at w = 0.01
rad/sec must be 65 dB.

Since pole at zero at 40 dB, then the difference, which is 25 dB, must be due to the gain K.
Hence we solve for K from

20logK =25

25
K =102 =17.78
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Therefore our system is now complete. The open loop transfer function is

17.78

GO = D)

Now we Draw the magnitude straight line approximation (this below was drawn by hand
using drawing program. This is not computer generated)

|G(jw)| db : ’/Odb per decade |
\ \

0.01 0.1 1 10 100 log(w) rad/sec

Now we draw the phase straight line approximation. Phase goes down by —45° for each pole,
starting one decade before the corner frequency, and ending one decade after the corner

frequency. This is only for the approximation factors in the form 1; . For the exact pole %, it

T

starts at —90° and remains over the whole frequency range. For 7; = 1 rad/sec, we start from
0.1 up to 10 rad/sec. For t; =10 rad/sec, we start from 1 rad/sec up to 100 rad/sec. Using this
information, below is sketch of the phase straight line approximation.
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phase (degree)

phase (degree) ~  F - - - -k - - - -k - - - - ——m—— =~
—90°

1350 F—-——--"F-—-"-""-"~—"~"~-"[F~-~"—"—-——-"—————-

B e e e i i

By Ll i el S

1
.
0.01 0.1 log(w) rad/sec

Below is the straight line approximation on top of the true bode plot as required to show.

s=tf('s'); sys=17.78/(sx(1+s)*(1+s/10))
bode (sys)
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HWS8, problem1, ECE 332

100 : .
—~ 50 L g trepeny ke
m Y ShS" s
cl apt

) Or

©

E

T 50t

(@)

©

= 400t

1 L Lol 1 L0l L IR | I Lol L L4
- —= T T T T T LB B i T LB R B T T T T T

Phase (deg)
%

270 & A | R | AR A S Fi——
1072 107" 10° 10" 102 103
Frequency (rad/s)

Since the open loop is stable as it has poles at {0, -1, 0.1}, then the closed loop will be stable
if there is zero net clock wise encirclement around -1. This translates to having positive

is unity and positive gain margin with phase is

phase margin when magnitude of |G (ja)gc)

-180°.

To find the gain margin and the phase margins, we first plot our approximation of the system

found above: G (s) = % using the bode command. Here it is, showing on it the w,,
S S 0

frequency (where phase is —-180°) and the corresponding |G (ja)pc) in dB found, which we

will use to find the gain margin from
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HWS8, problem 1, approximation of the system

50 k .
a \
=
[} Or m_ _
S System: sys
g Frequency (rad/s): 3.19
CEU -50 | Magnitude (dB): 4 n
_100 il i i PR | i i PR i j R -
90 T L R AL | T L B B | T L B A | m
System: sys
> Frequency (rad/s): 3.2
L Phase (deg): -180
o -180 [} i
(%2}
©
e
o}
_270 | j j PR S S | j j PR S | j j PR S S | =

107 10° 10t 10
Frequency (rad/s)

We see that at -180°, the frequency is 3.2 rad/sec. This is called w,.. Going back to the

magnitude plot, we see that at w,. then |G (prc) . 4 dB. This means the gain margin

GMdB is
GMdB = —4 dB

Notice that GM 5 is negative of |G(ja)pc)

which is

5 The reason is due to the definition of GM,j,

GMdB =20 logm |(;(];w)
pc

|G(j“)PC)|dB
But |G (ja)pc)l =10 20 . Substituting this in the above gives
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1

|G(j“’PC)|dB
10 20
|G(jmp,;)|dB
=-20log ;10 20

- |G (ja’m)
= |G (j“)w) B

GM,p = 20 log10

5 log,,10

Therefore, GMy;, is the negative of |G (ja)pc) "

as read from bode plot. Since GM ;5 < 0 then

closed loop is not stable |. To find the phase margin. we find the frequency w,, which is

where magnitude plot is at 0 dB. We see that the frequency is w,,, = 4 rad/sec as shown in
the plot below.

HWS, problem 1, approximation of the system

50 k -
)
S
(D) 0r .\ n
©
= System: sys
S Frequency (rad/s): 4.01
g ~0f Magnitude (dB): -0.0374 §
-100 ket e A e A S N i
-90 T T T T L | T T T LA | T T T L | =

System: sys
Frequency (rad/s): 3.98
Phase (deg): -188

|

Phase (deg)
N
8

270 bt ] A e N A =
107t 10° 10t 102
Frequency (rad/s)

At w,,,, the phase is ~188°. Subtracting 180° from this phase gives —7°. Hence
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phase margin = —7°

Phase margin must be positive for stable closed loop stable.| The closed loop is not stable.

Note that both the phase margin and the gain margin must be positive for stable closed
loop system.

3.8.2 Problem 2

2. Given the fomud loop transfer function for a negative unity-feedback system

o) = (s +5)(s +3)
Gle) s+ )P +s+4)

(a) investigate the stability of the system using both Nyquist and Bode in Matlab,
(b) find the gain a.nd. phase margins from each method and their corresponding
crossover frequencies. Display the gain and phase margins on the plots where

they occur.
SOLUTION:
The open loop
Gle) = 5 (s(j- :)5()523:533— 4)
has poles at s =0,s = -1 and s = —% + \/75]', therefore it is stable. So we expect the closed

loop to be stable only if the Nyquist plot has a net of zero clockwise encirclement around —1.
When looking at the bode plot, the rules are these. The closed loop is stable, if both these
conditions are met:

1. The gain margin GMy, is positive. Or in other words, if |G (jcugc) " is negative as read

from the bode plot.

2. The phase margin is positive.

3.8.2.1 Part(a)

Here is Nyquist plot

s=tf('s');
sys=(s+5) *(s+3) /(s*(s+1)* (s~ 2+s+4));
nyquistl(sys)
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Imag Axis

40

30 -
20

10

-10
-20
-30

-40

Nyquist plot, problem 2, HW8

\ \ \ \
5 10 15 20 25
Real Axis

.
30 35

It shows there is one encirclement around —-1. We can zoom in to make sure:

Imag Axis

10

Nyquist plot, problem 2, HW8

Real Axis

The above shows that the closed loop is not stable. We will now look at Bode plot. Here is
the result, where I showed the gain and phase margins on the generated Matlab plot. This
shows that the gain margin is negative, hence not stable, and it also shows that the phase
margin is negative, also indicating it is not stable.
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HWS8, problem 2

» f e e Y
Gliwr)| “w P I ) el el

& ~ 1608 200 1 onsh)
=)

®

@) |

_-03 | S

c | \V TN

[@)] l . \\

© /‘T\\ ‘

= |

/N Y ~

o)

[0}
©
SN

(0]

7]

(]
c
o

Frequency (rad/s)

We can also ask Matlab to give us the margins and the corresponding break frequencies.
Matlab was correct and found that the closed system is also not stable:

>> [gm,pm,gwc,pwc]=margin(sys)
Warning: The closed-loop system is unstable.
> In ctrlMsgUtils.warning (line 25)
In DynamicSystem/margin (line 65)
gm =

0.4254

pm =

-42.9450

gwc =

1.9239

pwc =

2.4785

Notice that Matlab gives the gain margin GM in linear value. We see it says GM = 0.4254
above, which is -7.42 dB. Since it is negative, then closed loop is not stable.
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3.8.2.2 Part(b)

We can display the cross over frequencies using Matlab either by using the margin command
or using the GUI by using the mouse as shown below. First we find the frequency where the
phase is ~180°, this is called w,.. We see it is 1.93 rad/sec. Then using the mouse, we locate
this frequency on the magnitude plot and read |G(jw)| in dB. We see that |G(jw)| in dB is
positive, hence GM is negative, and closed loop is not stable.

Figure 1 -0 il

Eile Edit View Insert Tools Desktop Window Help ~
D5 de | b [AAUDEL- (80880

Bode plot, problem 2, HW8

100
System: sys

o 50— . Frequency (rad/s): 1.92 n Use it to locate
= '-'V Magnitude (dB): 7.43 ‘\ .
P L] magnitude here.
© —
= 0r . 7
2 .
= ~
= .
@
= 50

e . :
= -135 N
@ \
< \
@ -180 1 ' — Find frequency at -180 phase
« ' System: sys |
=
0 295 - Frequency (rad/s): 1.93 1 —]

Phase (deg): -180
-270 & ‘ ‘ : =
102 107 10° 10" 102

Frequency (rad/s)

To determine the stability using phase margin, we do the reverse. We locate the frequency
where the magnitude is zero dB using the mouse. This is called wg,. We see it is at 2.48
rad/sec. Then on the phase plot, we locate the phase at this frequency using the mouse. We
see it is —228°. Adding -180° gives —48°. Since this is negative, then the close loop is not
stable.
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_io/x|
File Edit View Insert Tools Desktop Window Help ~
NDoHe | BARANODEAL-|E|0E 0D
- Bode plot, problem 2, HW8
T .
Find frequency
where magnitude
— 0T System: sys 3 .
8 ~ Frequency (rad/s): 2.48 is0Odb
= - _ Magnitude (dB): 0.0485
g ~u | I
2 —
S
@©
=
.50 |- 4
1 1 .l
B= = : w 1
=18 N 1 Locate phase at this
) frequency in order to
@ -180 - A — . .
8 \ find phase margin
o A
225 - n /,-» _ /
System: sys < L
Frequency (rad/s): 2.48
-270 = == == Phase (deg): -223
102 107 10° 10 102
Frequency (rad/s)

Using Nyquist to determine stability, we plot Nyquist. Then make a unit circle around the
origin to locate the gain and phase margin, as illustrated below

A%
//__\\
s N
/ 1 N\
/ Gm \
/ ; \
_1,
| >
P@L - / R
- -7 \ /
\ /
N %
N b

Locating gain and phase margin on Nyquist plot

Plotting the Nyquist plot using Matlab, and zooming in, and making a unit circle (Circle
was added by hand on top of the Matlab Nyquist plot), one can measure the gain and phase

margin as below
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=10|X
File Edit View Insert Tools Desktop Window Help
Dddek|[RaA0PRL- 2|08 |aDO
Nyquist Diagram
‘ -
10 - \ )
Phase margin = -42 degree
8- GM=*‘\1/(2-34) =0.42 (angle between real line and
O\ intersection with circle)
6 ™~
\\
-

al S~ ystem: sys
2 Real: -1
x tem:
é R E"m e Imag: 0.746

2dB Real: -2.34

‘%‘ 2 - Imag: -0.0198 4dB Frequency (rad/s): 2.35
e e 6dB —
i) Frequency (radfs):-193
Eor —

2= - .

- /‘//
4 ///,
6~ ///
/
/
b | | 1
2.6 2.4 2.2 -2 -1.8 -1.6 1.4 1.2
Real Axis

3.8.3 Problem 3

3. The block diagram shown in Figure 1 represents a model of a hydroelectric alternator,
turbine, and penstock with transfer function G\ () being given by

25(1 + 5s)

Gils) = (s3+49.277s% + 25.7725 + 2.526)

The parameter values are T =1, K = 0.05, M = 10, and D = 1 with L(s) = 0.

R(s)
+

t G1(s)

1-Ts

140.57s

L(s)
__:é)*__

1

C(s)

Ms+ D

1
K

Figure 1: Hydroelectric System Block Diagram

(a) Using the Bode plots, genereated using Matlab if you wish, find the maximum
value of K to retain stability.

(b) Find the gain margin, phase margin and the corresponding crossover frequencies
and label them on the Bode plots.

SOLUTION:
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3.8.3.1 Part (a)

The open loop transfer function is

G) = 25(1 + 5s) 1-Ts 1
) = $ 4207752 + 25.7725 + 2.526 \1+ 0.5Ts | \Ms + D
We start with T=1,M =10,D =1,K = 1.

G 25(1 + 5s) 1-s 1
S) =
s3 +42.277s2 + 25.772s + 2.526 \1 + 0.55 ) \10s + 1

And make a bode plot, then find the |G (ja)pc)

at corresponding —180°.

HWS8, problem 3

1

K

|

50 — .
O System: sys
S 5ot Frequency (rad/s): 0.636 .
c Magnitude (dB): -3.79
%
= -100 ]
_150 I ool I ool I | | I
360 \ | . , -
g 180 m ]
o
° System: sys
2 Frequency (rad/s): 0.637
£ 0r Phase (deg): 180 \'
_180— 1 el i [ R S | i [ R S | i gl s
1072 10t 10° 10t 102 10

Frequency (rad/s)

But the phase do not cross —180°. This indicates an infinite gain margin. Similarly we find
that the phase margin is infinite. Hence we conclude that we can make K as close to zero
(since it is in denominator) as we want, while keeping the system stable and can make it as

large as we want. Note that we are assuming that gain itself can only be positive here.
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3.8.3.2 Part (b)

Both the gain and the phase margin are infinite. There is no corresponding crossover
frequencies.

3.8.4 Problem 4

Problem 4; The open loop transfer function of a position control system is
_ K(1+01s)

s(1+02s)(1+04s)
Assume a negative unity feedback configuration.

(a) Sketch the Bode diagram for K = 1 (Do Not Use MATLAB). Find the gain margin,
gain-crossover frequency, phase margin and the phase-crossover frequency for the
system.

(b) Use MATLAB to cheqk your plot
(c) Determine the value of K which will satisfy the following design criteria
1. A phase margin of 55°.

G(s)

2. A gain margin of 26 dB.

SOLUTION:

3.8.4.1 part(a)

G@s) =

For the magnitude, the corner frequencies are at s = 0,5 = 5,5 = 2.5 for the poles and s =10
for the zeros. The pole at zero starts at 40 dB (we use w = 0.01 as starting point by convention)
with slope of —20 dB/decade. Each pole in the denominator adds a —20 dB/decade slope,
while each zero adds +20 dB/decade. Here is the magnitude plot approximation
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—20 db/decade +20 db/decade

40
20

0
—20
—40

—60

40 - - b= -4t — J__J___'___I___' ________
| I |
20 F-a-- _'__'*_—_4Qab_/6:e6a_de_:__
0 [ 70T 0T T TS 1760 fibjdetade
- etade
20 F -9 -—--4 R T I T
40 - ‘C___'___'__.
| ! ! —40 db/decade
—60 F-—9-—-—4- -+ e R I I
I R B B /J__J___
| | | | I I
R == === =
| | | I
———: ——————— Bt e e
|_|_|___|___|___|__.
I I

For the phase, since this is type 1 system, it starts at —90° at the w = 0.01. This stays for all
the range of frequencies. At w =5 and w = 2.5, A —45° slope is added. This slope extends
one decade before the corner frequency up to one decade above it. At @ =10 rad/sec, we
add +45Y for the zero. Here is the result
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—90° for pole at zero
. . / ..+ —459 per decade for 2.5
—90° T | . | |
o | —459 per decade for 5
—135" -5 - T T
| | | +45" per decade for zero at 10
—180° Fr— "~ —:\K,V/———
| | . | |
—2250 FrTAa T AN T T T T T
[ [ [ [ [
270 rr--~-r=A- -~ -
| | [ | |
e e R e
| | [ | |
| | L. | | |
0.01 0.1 1 2510 100
Add all segments
—900 for pole at zero
—900—|—|—':\(r'4—|——r—r
| [ A |
1350 eSS -
| | o | |
—180° [ r T ST - -
| | N |
—2250_7_7__171_:7_1_7_7___'
[ [ I [
—2700_7_7_‘.7".7‘._7_7____
| [ e |
e T T e e
| [ | |
| ILOILD5IO D| |
10
0.01 0.1 ggl i HNLO%
Add all segments

Now to answer the part about the gain and phase margins. For this, we show both |G (]a))|
and phase plot that we sketched above in one diagram and mark on them the gain and
phase related quantities. This is the result.

283



3.8. HW 8

CHAPTER 3. HWS

. N
4o : > Y § - —
IG}OP))C\E 70 g 1o B L VS
K} DA\J)W vec
0 1A W
o ENVIN
- 5 S DY N i
~Ho \éﬁ’ \ b -
ﬁ/ ‘ RN
e N | A1 T = R S N |
o %Su" .
_,_?0 —70 /y‘7 Ao — ~
Nz
Phwe. .
.,135—0 \\\/ .
- o
-9 N x ./ V=
N |
’ ool o WS | £5 T, @ lo (e (w)

In next part, we use Matlab to get accurate margin values, which shows that gain margin
is 30 dB and phase margin is 64°. The gain cross over frequency is 7 rad/sec and the phase
cross over frequency is 0.92 rad/sec. The closed loop is stable.

3.8.4.2 Part(b)
Using Matlab

284



3.8. HW 8 CHAPTER 3. HWS

clear

s=tf('s');

sys=tf( (1+s/10)/(s*(1+s/5)*(1+s/2.5)));
bode (sys) ;

grid

[gm,pm,gcw,pcw] =margin(sys)
gm =

30.0007

pm =

64.4735

gew =

7.0711

pcw =

0.9260

HW 8, problem 4, part(b)

50

o

-50

Magnitude (dB)

Phase (deg)

-225 e e
10t 10° 10t 10?
Frequency (rad/s)

3.8.4.3 Part(c)

3.8.4.3.1 Part(l) For phase margin of 55° we want the phase at —-125° to correspond to
0 dB in the magnitude plot. At phase —125° the frequency is 1.3 rad/sec from the plot. At
this frequency the magnitude is —-3.55 dB and not zero dB. Hence positive gain margin of
3.55 dB. We want to shift this up to 0 dB. So we need to solve for additional gain from
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20log,, K = 3.55
3.55
K= 10(5)
=15

Hence

K=15

To verify, here is the Matlab margin command, which shows the phase margin is indeed
now 55° when using K = 1.5

clear

s=tf('s');

K=1.5;

sys=tf( Kx (1+s/10)/(s*(1+s/5)*(1+s/2.5)));
bode (sys) ;

grid
[gm,pm,gcw, pcw] =margin(sys)
gm =

20.0005

pm =

55.3798

gew =

7.0711

pcw =

1.2991

3.8.4.3.2 Part(2) At -180° in the phase plot, we want the corresponding gain margin

to be 26 dB which means we want |G (ja)gc)| = —26 dB. Currently, we see that at —180°, the

frequency is 7.1. The magnitude is —30 dB at this frequency. We want magnitude to be —-26
4

dB instead. Hence we want to shift up by 4 dB the magnitude plot, or K = 10(5) =1.585
K =1.585

To verify, here is the Matlab margin command, which shows the gain margin is close to 26
dB now using K =1.585. (Matlab gives gm =18.92 which is 25.54 dB)
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clear

s=tf('s');

K=1.585;

sys=tf( Kx (1+s/10)/(s*(1+s/5)*(1+s/2.5)));
[gm,pm,gcw,pcw] =margin(sys)
gm =

18.9279

pm =

54.0559

gew =

7.0711

pcw =

1.3568

>> 20%1og10(gm)

25.5420
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3.8.5 HW 8 key solution

Problem 1:

1. Derive a model for the open-loop transfer function for the system whose frequency response plots
are given on the last page. Turn in the plot with the straight line Bode approximations of phase and
log gain drawn on top of the true Bode plot. Will the closed loop system be stable with negative
unity-feedback? What are the gain and phase margin?

A

.'I_ 6’135 at -270° 1 3% moce. pales frhen 2e0€s
omyf Sterts gt —F0° 4 ] pole s O v
Phuse (s 4 fe€rest  Dbetneen | + 10! 2 poles on'
loi qo.n Chaages at+ 1 +10! poles are l 10
at w=| ™/ log Qo= 12
20 log IC 2 22
K=12.6
|6/5) H(sY = <lsoMd)se)) ‘
- (==
. /
/
S
Woe = WS rad/g
)
logy gan lé(jwln” = 0 6M-o

AN e nan g,

The ¢ ¥ fean
N

Stable )

15 Mﬂra\uvm’\y

C()ﬁc = L"Smc)/s

L 6(uge) = ~150°

@M = 180~ 150% = 0°

F

Mz PM =0

mocginally Skble]
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-80 i = ”1.%0 : - 10' 10
. Frequency (rad/sec)

oo b : «}’::::::f SRR )
B » w v 10' ) 10
- Frequency (rad/sec)
Remark:

This problem has no single correct solution. Any solution, backed up
with a valid reasoning is acceptable.
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Problem 2:

2. Given the forward loop transfer function for a negative unity-feedback system
(s+5)(s+3)
s(s+1)(s3+s+4)

(a) investigate the stability of the system using both Nyquist and Bode in Matlab,
(b) find the gain and phase margins from each method and their corresponding
crossover frequencies. Display the gain and phase margins on the plots where

G(s) =

they occur. )
First a SUMMARY. Then supporting plots to follow
Z) Nyvgo st It is easy to verify (for example use Routh) that closed loop is
= ' unstable. Hence there are no gain and phase margiiis.
Wee =12 ™| @223 ,_
Wgc:l\qe‘lr‘{f’/&mmj X=—73 y‘-LCS'/

6M= 20 log( 73g)

| oM<= -7.Y4 A m This is not really a gain margin. But it reflects the decibel
deficiency in the closed loop

~1

S ) 2\
d M= Fan( 7%, )

LR

— =
16m=-41,0 | negative  berause unstble
-— - Samecomment here. THis is not really a phase margin.
)goa € It reflects the phase deficiency.

(A)Pc': ‘\C[Z rﬁ[)/s
_,')%L':—Z."(%rf"’lc)/s

6Mz O —7,4¢

E€ME -7,u6 Jb |

7 g = =223 H1$0°

lorz —13°]

. J

Note that Bode and Nyquist lead to the same "phony" gain and phase
margins.
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Bode Diagram

Magnitude (dB)
N EN
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S
=

i H i H i

<
1
i

7 T e e e ey
[ i | 1

ST e m———

.. System g
Frequency (rad/sec): 2.48
Magnitude (dB): -0.0175

-
! i
3 : :
i

; System: g ;
f - Frequency (rad/sec): 1.92 . | \,l'\

Magnitude (dB): 7.46 ! \\ !
= N
|
| H
| H H
| H H 1N

TR T S R R

!
o i
[
\ .
1

fod

-40

Phase (deg)

S U SpUn I g,

T
1
1
i
1

S .
|

I
Vo :
T System: ¢
IR R S B-- - Frequency (rad/sec): 2.48 |
: : Systemg N\ Phase (deg): -22
;. Frequency (rad/sec): 1.92 | ‘g iyl oo
. Phase (deg): -180 j e ‘
I I b i i

S e o= e I PV s gy

10°

~Frequency—(rad/sec)

Nyquist Diagram

. 1.5

05}

Imaginary Axis
<o

-0.

ot

e

- System: g

Real: -2.36
Imag: -0.0171

Frequency (rad/sec): 1.92 ‘

System: g
" Real: -0.73
Imag: 0.681

Frequency (rad/sec)

1248

Real Axis
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Problem 3:

3. The block diagram shown in Figure 1 represents a model of a hydroelectric alternator,
turbine, and penstock with transfer function G\ (s) being given by"

Gils) = . 25(1 + 5s)
BT (¥ 4927757 1 25.7725 + 2.526)

The parameter values are T =1, K = 0.05, M = 10, and D = 1 with L(s) = 0.
L(s)

1-Ts +1F 1 C(s)

R(s)

+ Gis) 1+0.57s | Ms+D

1
K

Figure 1: Hydroelectric System Block Diagram

(a) Using the Bode plots, genereated using Matlab if you wish, find the maximum
value of K to retain stability.

(b) Find the gain margin, phase margin and the corresponding crossover frequencies
and label them on the Bode plots.

Multiplying all the factors and simplifying, we get,
G(s) H(s)=

fo ey N{)—5) )
ek (£S5 FTe=S5)tT7) :
;t@z+£/‘ﬁ%7?514~?€7742&+%§le}m__g }Q%HL)_*
-1256% 1005 +15S |
= l((§55+2%.“1'gq 16u7.3531332.56° ¥$2.254+ 2. 5)

— —
[w?cf().swa/s{ |9 aaa==1,275b
?W«oé (’)\L(Gskf'."d/§ @5 l?éc
R —— .
[6M= 1,27db)] rr T
lgMz= \ 6~ 1%0
[gr=_¢°)
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€l 15

R yf?é“jg;t‘mf

20
' : System: g
[T0 ) A—— . Frequency (rad/sec): 0.51
i
~— 0 B T W: H 4.
% . : ystem: g i
8 S0U Bt it requency (rad/sec): 0.465 7
2
[=
[o))
©
=
_ Frequency (rad/sec): 0.51 o
4 Phase (deg): 180
=2
[0]
8
=
e

10° 10

Frequency (rad/seé)

Note: The inequality above for K describes the minimal value for stability. Note that
the problem statement asks for the maximum value. In fact, arbitrarily large K > 0
leads to stability.
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Problem 3: Part (b):

>> G 1 = 25%(1+5%s)/(8"3+49.277*s"2+25,772*s+2.526)

Transfer function:
125 s + 25

s"3 + 49.28 s”2 + 25.77 s + 2.526
>> H 1 = (1-s)/(1+.5%s)

Transfer function:
-s + 1

>> H 2 = 1/(10*s+1)

Transfer function:

>> K FB = 1/.05

K FB =

20
>> trans HE ALT = G_1*H 1*H 2*K FB

Transfer function:
-2500 8”2 + 2000 s + 500

o et e ey e e e e e et o Attt o o o fanis et St e i s At A e et e et S s e At kS e A e ks e

5 s*b + 256.9 s™4 + 647.3 573 + 332.5 s”2 + 52.29 s + 2,526

>> bode (trans_ HE ALT)
>>
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3.8. HW 8
Bode Diagram
Problem 3. A Hydroelectric Alternator/Turbine/Penstock Configuration
50 LSS SRR v s 0 5 [ S S R S 25
. System: trans_HE_ALT
0 f—— ~Gain-Margin-(dB): -24:7 !
At frequency (rad/sec): 0.51
o | Closed Loop Stable? No :
T . . e e e e . .
[0) .
3 50 "
= :
5 :
= .
= :
-100 -
-150 :
360
270 T T S R R T
D 180 :
kA .
9 :
g 90|~ .....................
: System: trans_HE_ALT
[ e AR Phase Margin (deg): -123
. Delay Margin (sec): 1.39 :
. Lo . At frequency (rad/sec): 2.98 ::
1)) ~ieei-i-iiiiif Closed Loop Stable? No i
10° 10" 10" 10' 107 10°

Frequency (rad/sec)
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Problem 4:

Problem 4; The open loop transfer function of a position control system is
_ K(1+01s)
) = i+ 025)1+ 0ds)
Assume a negative unity feedback configuration.

(a) Sketch the Bode diagram for K = 1 (Do Not Use MATLAB). Find the gain margin,

gain-crossover frequency, phase margin and the phase-crossover frequency for the
system.

(b) Use MATLARB to check your plot

(c) Determine the value of K which will satisfy the following design criteria
1. A phase margin of 55°.
2. A gain margin of 26 dB.

K (1+0.16)
Wa  8ls) = " Tlroadfmamn +=0,1,0,2,0.4
K= | Ok pouads
f\ﬁ VA \ z\ S\I‘ SNJ l O
. phase © 25, .5, 1,25,50, joo
kat’\ 4 7 7 7 7
Wt
20420 / Z(Blo%(ﬂaol%ﬂﬂ =70
‘I Lns __l; 3 ) } )
0.1 1™ 10 0o 100a At gain crossover, estimate phase
o v /"\ & ~6o to be about '.—130 degrees. So
s \\ phase margin about 50 degrees.
\"40
- S A4 1] 1, fia 3
N Xt Plldbc CIOSS0UVLL, IUS gaul 1S
p apprnvimn’rp]y -40 db. So-gain
4 margine is about 40db N\
15,5 1w 50
S .| el ) [
o ’ T — T K T
! | « \O 100 (VT
[
406 {8 ((’Hs [ _
& A0
‘ / Woe
ko \\.’/ i o v\c\e %
s AN g R
© (av P4
e ool
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Part (b)

Problem 4

1
e |

"

!

.

.

1y

M .....
e
! @ i}
BV |
/. ig
S P .
| EEE |
X 2 =% |
! m 2o
—-te- PP oo
_.D - ....mh... - .r
S N
it = R
..m.m 1 1
a2 -
e —
=z
o & ]
EEE A
hwn | |
B E I |
sed |
=

(g spryubey

A0
-6
-8
a0
135 |

i Syatarm g

| Frequency (radfsec): 0.825 :

| Phase (deg): 118

| Systam: g

E

{Bep) aseug

Frequency (radfsec)

297



3.8. HW 8 CHAPTER 3. HWS

s

)L(ﬂ%é: J0.87% ch/sj d=-114°
2”&«“}?@:7.0? MC)/SB may* 29,698

6rm=29.6db= 30.2 |
QM= 64°

Problem 4: Part (c):

From the above plot, we see that K=1 satisfies the required criterion.

To find value of K that satisfies the criterion exactly, we can proceed as
follows — More precisely, we obtain a K which approximately meets both specs.

oH=76J8 | drz= Ss° L0
29.6-726 7 %6dp. B=\15° D W
20 \C)% K=736db €on  plot
K= 1,511 Wee = [, 832rad/s
: D E. Gr S o Ocege plot
! moust  be  shifted g
- 3|664;) b
at o gqm}lc-'l’.sﬁ?. 10 loq K=%,66
K= 152
1G>l b + @Az $6° K. 152
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4.1. First exam CHAPTER 4. EXAMS

4.1 First exam

411 questions

ECE 332 - Test #1 September 29, 2015

INSTRUCTIONS: Closed notes and closed book. Be sure your name is on the
exam booklet(s). Answer all questions showing your work.

QUESTION 1 (25%): (a) For the system with block diagram below, wifh R(s)
and D(s) corresponding to unit steps, find 6(s) as a quotient of 2 polynomials.
(b) With K = 1, supply a few lines of Matlab code to find the closed loop poles.

D(s)
b
Res) $ K 30) 2 Q)
y s+6 - s(s+1)
10
s+10

QUESTION 2 (25%): A tank with its transfer function G(s) = 32+g—s+6 is con-
nected with a PID controller H(s) = K; + I—? + K3s in a classical unity feedback
configuration. (a) Find gains Kj, Ky and K3 so that the resulting closed loop
transfer function is T'(s) = -%5. (b) For this T(s), find the step response y(t).

QUESTION 3 (25%): The open loop system with input u, output y and param-
eter ¢ described by differential equation (50 + 10¢)% + (100 + 10¢)y = 3u(t). (a)
Find the open loop transfer function. (b) For this open loop system with a unit
step input, is there a choice of parameter ( leading to lim; . y(t) = 1?7 Explain.

QUESTION 4 (25%): A single-input two-output system with transfer function
matrix G(s) is connected in a classical unity feedback configuration with con-
troller having 1 x 2 transfer function matrix H(s). (a) Given the four matrix
entries G11(s) = 1/s,Gai(s) = 1, Hi1(s) = 0, Hi2(s) = 2, find y;(¢) with inputs
r1(t) = 0 and 75(t) being a unit step. (b) Write a Matlab code using symbolic
computation to find the closed loop transfer function matrix.
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4.1.2 key solution

Barmish 2{”5 l ECE 331- Test # 1 Solotioas
@ 31 sq@ic&d&tmln Os)= 2AK__ L 9
‘ 3(5“)(51'6) 5 + S(.S-H) i

a:'qeb“i e YK [+ 20K S
QK(SHO){» ‘1(54 G)Csno) \ S(s41)(stG) (St10) —

dve to 0

= ZSQtQKJf 32) S+ 20 K +120, q)) P'[' W 6 g0 20 ©J
5%+ 11sHh165%: GOs™ 20ks |  Coots(p)

Calevlate T(9F GE&H 6)| S ) K v Ka v IS
@ \’T —_—LTHGLS)H " = {52*.53*6}_—-———)

-5‘_—y— Kss4|‘5+ 2 “ )(K,+K¢+|(3S)
{134

5&31&2) _ .
i+ sqme -: Chioose '%5 +Ki5+ By = (5¢3)(s¢2)

K- |K’m & Wy=6 ._) T(9) = _5 5 By ,sﬁ,sgfb

- i )_ﬁ -L
06 5!\1% 3«): e 5t H& 23 T 6(5 ‘L ;5

h ’ } t?ar*wl frac
oe, = (50+\o€)sY(5) +f00+/10%) Y (9 = :BU(s)
10 3 ' By FVFF & ssum &crnpomqlm
U(S) (50“05)50!004!0? it G?pﬂes Im" \ll‘t) z L 5?@)

‘ =3 . Hene n,ﬂ- ¢ Bosts, mlust 56t 5(7 s
00"'0'{ ‘,b*,of c Q{: -

However when €7 -4.7 . .
R wher 2T dene 1543/ =9 5= By ousragLe !
S NoT exists’ FVT dogy nvt[ %Py fi vpsiae Case!

(—\

@ T(s) - EI*G(QH(SJG( _{( |
o s)u(s) ; J [%|(02] (1))
e “"JF.B[J“}@%H

\LV(S)" j[: }][‘;J : [Us) : So 3%&7:!' ° 2 G= [tgs1]

H: [0513

5 =2t TE t e(zr@w

s
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4.2 Second exam

421 questions

ECE 332 - Test #2 November 12, 2015

INSTRUCTIONS: Closed notes and closed book. Be sure your name is on the
exam booklet(s). Answer all questions showing your work.

QUESTION 1 (25%): For the disk storage data-head positioning system depicted
in the block diagram below, find the conditions on Kp and Kp for which all the
closed loop poles have real part less than ¢ = —1.0 Depict the stability region in
the (Kp, Kp) plane.

RO_5() ) L Y(s)
KP+SKD —> .S'Z(S+5)
JI Controller Head dynamics

VéUESTION 2 (25%): A system with transfer function G(s) = 1/(s + 0.5) is
connected in a standard unity feedback configuration with controller H(s) = K/s.
Find the sensitivity of the closed loop transfer function with respect to variations in
the controller gain about K = 1. Plot the magnitude of this function and determine
the frequency at which the sensitivity is a maximum.

QUESTION 3 (25%): Consider the second order system with transfer function

aZ

= 5
s2 +2azs

G(s)

and pure gain controller controller H(s) =  conncected in unity fcedback configu-
ration. Select the tunable parameter 3 such that the undamped natural frequency
of the closed loop is wy, = /. Then, given a unit step input, determine the value
of the tunable parameter o > 0 leading to maximum percentage overshoot which

is approximately 10%. Formula: 0S4 = e Vi@

QUESTION 4 (25%): A nonlinear device with input-output relationship given
by Y = 2|X]| if |X| < 2 and Y =4 for |X| > 2 is connected in a classical unity
feedback configuration with pure gain controller H(s) = 10. (a) Generate a sketch
for the input-output relationship Y versus R. (b) For the resulting closed loop
system and find and sketch the output y(t) when the command input is given
by r(t) = 8sint.
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4.2.2 key solution

Becemsh ECE 332-Test # 2 - Solvtions
s @ 1 o it .o = 5% 55+ Kos + K
m 9% 5+%) denomiagry
o asswe roots ¢ & sUb“ ohe o{ closoale Des)
?ovt 0 S+L| KOh(? expand
53 ' Ko-T Foe Stabilty B
52 9, H'KDWP 3“\}'\(9 1§ Yo
Y-KptKevO
S 3Hy-¥-15
T2 | D HoriHete
S Y-ioMp Ko< y+kp )
‘@ T(s)Po _L K S -
St5s M ; 4T . 2(2shs)
g TS e’ dK Bt g, a0
T al
] o
Sk 73{ 15_2@@) S(2511), &,5‘ S(is+ 1)
Qs*rse 2K)? 57 8si

\ 4 .
) 'S"(W)' T Wihw? T pht Iook@ IS 25 :

2-2(0’)2’ * L0, Wy and )
T(9) ( w a few po.nts

@ W . eors) . P EE
() H-GSIRE) Sazd-"’? B Wy =d{5 o f ’

K= 2514542

Now '(6): 28uwn = 2642 235 Cj
29" +d on 7 =[S =
Nom eﬁuate e' S/J'—F‘ Take |cgs 'J‘li e -23 &= %_._;'15 ) 3, _9;

+
@ | ] o x/ " A X - lO(?—Y)\z} Y=g.{

O
toborcegt when R= 4,2

Hene fur Cloted |0(ir AN A’X

. \ 4
l \ 2 $ mcreasnf
et . 3 /outr"' chpped
: ! s |‘ 'FA(

-y l 43 L
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4.3 Final exam

4.3.1 questions

ECE 332 - Test #3 December 10, 2015

INSTRUCTIONS: Closed notes and closed book. Be sure your name is on the
exam booklet(s). Answer all questions showing your work.

Question 1 (25%): For the open loop transfer function G(s) = (s+p)/(s%+0.25ps)
connected in a classical unity feedback configuration, find and sketch the Root Lo-

cus corresponding to variations p > 0.

Question 2 (25%): A transfer function G(s) = K(s + a) /(s +b)(s + c)\with
one real zero and two real poles has log gain of -20db at w = 0 and phase plot
shown below. Estimate the transfer function parameters a, b, c and K.

0 ¥ v T T

50

Phase (deg)

107 y 10¢ 10! 10¢ 167 10* 10* 10
Frequency (rad/s)

Question 3 (25%): Answer TRUE or FALSE and provide a brief explanation.
(a) When loop transfer function G(s) = K (s°418s*+13s3+s2+5+1)?/(s*+8s+2)7
is connected in a classical unity feedback configuration, the resulting closed loop
system will be stable when K > 0 is suitably large.

(b) For open loop transfer function G(s)H(s) = K (s + 5)°/(s — 10)°, for K > 0
suitably large, the Nyquist plot will have five net clockwise encirclements of the
critical point s = —1.

(c) When the transfer function G(s) = 1/(s® + 3s® + bs + 5) is connected con-
nected in a classical unity feedback configuration, the resulting closed loop system
will have a gain margin of 20 decibels.

Question 4 (25%): For the system G(s) = (1—s)/(s*+3s+1) connected in a unity
feedback configuration, generate a Nyquist plot and estimate the phase margin.
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4.3.2 key solution

D&r«:lgh ECE 332 - Test #9 - Solutions

Need £ ctibiovs $ystem: D(s) = S\';+ gu.ls 6;‘5+P
SoD(3)=0 gwes 1+ p((0.2551) Y BL Forbhis  Apply lermas
2 braocres ) K" —SW Only 180° asynptotes
! Centr@d, arrivals de par U
K= 0, AL @ o-1, |‘< =0° RL e -y 0_0__1§§9_?- Re&.l axcs from

Breafaw Gy : €~ Im ‘BQ f?R"-'A GNO Vess than - 4
VY Y Routh, g6 wmag @

d
ézssf')(ﬁéﬂ) g!;-s 5] = 5= -W46, - 0,53

@ Uswa decades below and above fir phase, estimate
the breekpownts L =, L -0, L = 10,000

& & 8 These are
must be  most bep Mzﬁ,_t.ep J %
azerv a RH e
Lu? po poke phase
$
Get estimare G(s) =K_(1+5) ot ;:j?enr
20 Vop K= 20 TrsLsPfrer s) we |
K- o 100 10,000 =105(5e1)
“ 105 Aol be- -100) (St 40,0
@(@) FALSE, 0-m = Y ®) K ?:'13(;(:{7 bs-vo  G-10 )((5113050)'

‘Mples RHP asymptote, Unshuble fur K large
(b TRuE. For K large AL qoes 10 -5. Noasymptotes. So stable system nqust

be refleiteg | j ot 7
e o1 - K< 10
Ygust encircle ment cant . (€) TRVE $'3 5k for srunly

@ X Aleng®,5= jw Gy <G " g;ég;:)“ GM = bpro

0 e Glqedra [ . . (l-w1)+3'wL _ =40 db
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o SR CEXT ® be im , o3
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