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Chapter 1

Introduction

Took this course in Fall 2014. Part of MSc. in Engineering Mechanics.

Instructor: professor Gheorghe Craciun

Syllabus

The course introduces methods to solve mathematical problems that arise in areas of ap-
plication such as physics, engineering, chemistry, biology, and statistics. Roughly speaking,
we can divide these problems into two categories: (i) equilibrium (statics problems), and
(ii) departures from equilibrium (dynamics problems).

The first part of the course will be devoted to the study of equilibrium: linear algebra
provides a unifying framework for discrete equilibrium problems from several application
areas. This algebraic structure is also the basis for numerical solution of both discrete and
continuous equilibrium systems.

In the continuous case, equilibrium mechanics leads to boundary value problems for
di�erential equations: in one dimension, one finds ordinary di�erential equations, e.g.,
Sturm-Liouville equations; for higher dimensional systems, one finds partial di�erential
equations, e.g., Laplace’s equation, Poisson’s equation and the equations for Stokes flow.
After review of some basic techniques for solving di�erential equations, asymptotic methods
for the global analysis of ordinary di�erential equations will be introduced (boundary layer
theory and WKB theory). The calculus of variations will also enable us to understand the
di�erent formulations of mechanics (by Newton, Lagrange and Hamilton).
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2.1. tuesday sept 2, 2014 CHAPTER 2. MY CLASS NOTES

2.1 tuesday sept 2, 2014

covered parts of chapter 1. LU decomposition. We go from 𝐴𝑥 = 𝑏 to 𝑈𝑥 = 𝑐 where 𝑈
contains the pivots on the diagonal and zeros in the lower triangle. To find 𝑐 we use 𝐿𝑐 = 𝑏
where 𝐿 has ones on the diagonal, and has the multipliers used to obtain 𝑈 just below the
diagonal and has zero everywhere else. Putting these togother gives 𝐿𝑈𝑥 = 𝑏. And this is
the whole point of LU decomposition. For each new 𝑏′ we find 𝑐′ from 𝐿𝑐′ = 𝑏′ and then
find 𝑥 from 𝑈𝑥 = 𝑐′. We do not need to do the pivoting again to obtain 𝑈 and 𝐿 again. It
is done once. It is. The cost now is 𝑛2 each time to solve for 𝑥. i.e. the elimination is done
only once.

The above is valid for any 𝐴. It does not have to be symmetric.

We go one step further. Let 𝑈 = 𝐷�̃� where 𝐷 is diagonal matrix and contains the pivotes
on the diagonal. Again, 𝐴 do not have to be symmteric for this.

Now, if 𝐴 is symmetric, then �̃� = 𝐿𝑇 and now we get special case of 𝐴 = 𝐿𝐷𝐿𝑇 .

If in addition, 𝐴 has all positive pivots, then we can write 𝐷 = √𝐷√𝐷, and 𝐴 = 𝐿𝐷𝐿𝑇

becomes 𝐴 = �̃��̃�𝑇 where �̃� = 𝐿√𝐷

Did 1.2.1 to practice the pivoting and finding 𝐿𝑈.
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3.1. HW 1, Due sept 18, 2014 CHAPTER 3. HWS

3.1 HW 1, Due sept 18, 2014

3.1.1 Problem 1.2.7

Figure 3.1: the Problem statement

Solution

Multiplying 𝐿𝑆 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
𝑙21 1 0
𝑙31 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
−𝑙21 1 0
−𝑙31 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Since 𝐿𝑆 = 𝐼 then 𝐿 = 𝑆−1 by definition.

3.1.2 Problem 1.2.8

Figure 3.2: the Problem statement

Solution

Multiplying 𝐿𝑆 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
𝑙21 1 0
𝑙31 𝑙32 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
−𝑙21 1 0
−𝑙31 −𝑙32 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0

−𝑙21𝑙32 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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3.1. HW 1, Due sept 18, 2014 CHAPTER 3. HWS

Since 𝐿𝑆 ≠ 𝐼 then 𝐿 is not the inverse of 𝑆. Now let 𝑆 = 𝐸 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 −𝑙32 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
−𝑙21 1 0
−𝑙31 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
−𝑙21 1 0

𝑙21𝑙32 − 𝑙31 −𝑙32 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
and now evaluating 𝐿𝑆 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
𝑙21 1 0
𝑙31 𝑙32 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
−𝑙21 1 0

𝑙21𝑙32 − 𝑙31 −𝑙32 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore, with the new 𝑆 matrix, now 𝐿 is the inverse of 𝑆 since 𝐿𝑆 = 𝐼

3.1.3 Problem 1.2.9

Figure 3.3: the Problem statement

Solution

3.1.3.1 Part (a)

Take any random 2 × 2 matrix 𝐴 =
⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
𝑐 𝑑

⎞
⎟⎟⎟⎟⎠, By elimination 𝑈 =

⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
0 𝑑 − 𝑏 𝑐𝑎

⎞
⎟⎟⎟⎟⎠ and 𝐿 =

⎛
⎜⎜⎜⎜⎝
1 0
𝑐
𝑎 1

⎞
⎟⎟⎟⎟⎠.

Now 𝐿𝑈 is found, giving back 𝐴 as expected
⎛
⎜⎜⎜⎜⎝
1 0
𝑐
𝑎 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
0 𝑑 − 𝑏 𝑐𝑎

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
𝑐 𝑑

⎞
⎟⎟⎟⎟⎠

𝑈𝐿 is found
⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
0 𝑑 − 𝑏 𝑐𝑎

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 0
𝑐
𝑎 1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

𝑎 + 1
𝑎𝑏𝑐 𝑏

1
𝑎𝑐 �𝑑 −

1
𝑎𝑏𝑐� 𝑑 − 1

𝑎𝑏𝑐

⎞
⎟⎟⎟⎟⎟⎠

Comparing 𝐿𝑈 and 𝑈𝐿 above, it can be seen that by setting 𝑏 = 0 the 𝐿𝑈 =
⎛
⎜⎜⎜⎜⎝
𝑎 0
𝑐 𝑑

⎞
⎟⎟⎟⎟⎠ while

𝑈𝐿 =
⎛
⎜⎜⎜⎜⎝
𝑎 0

1
𝑎𝑐𝑑 𝑑

⎞
⎟⎟⎟⎟⎠, which means they will be di�erent as long as 𝑑 ≠ 𝑎. So picking any 𝐴 matrix

which has 𝑏 = 0 and which 𝑑 ≠ 𝑎 will work. An example is

𝐴 =
⎛
⎜⎜⎜⎜⎝
1 0
5 2

⎞
⎟⎟⎟⎟⎠
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3.1. HW 1, Due sept 18, 2014 CHAPTER 3. HWS

To verify, 𝑈 =
⎛
⎜⎜⎜⎜⎝
1 0
0 2

⎞
⎟⎟⎟⎟⎠ and 𝐿 =

⎛
⎜⎜⎜⎜⎝
1 0
5 1

⎞
⎟⎟⎟⎟⎠, hence 𝐿𝑈 =

⎛
⎜⎜⎜⎜⎝
1 0
5 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 0
0 2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1 0
5 2

⎞
⎟⎟⎟⎟⎠ while 𝑈𝐿 =

⎛
⎜⎜⎜⎜⎝
1 0
0 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 0
5 1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1 0
10 2

⎞
⎟⎟⎟⎟⎠. They are di�erent.

3.1.3.2 Part (b)

Take any random 2 × 2 matrix 𝐴 =
⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
𝑐 𝑑

⎞
⎟⎟⎟⎟⎠ , then 𝐴

2 =
⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
𝑐 𝑑

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
𝑐 𝑑

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑎2 + 𝑏𝑐 𝑎𝑏 + 𝑏𝑑
𝑎𝑐 + 𝑐𝑑 𝑑2 + 𝑏𝑐

⎞
⎟⎟⎟⎟⎠ Now

solving
⎛
⎜⎜⎜⎜⎝
𝑎2 + 𝑏𝑐 𝑎𝑏 + 𝑏𝑑
𝑎𝑐 + 𝑐𝑑 𝑑2 + 𝑏𝑐

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1 0
0 1

⎞
⎟⎟⎟⎟⎠

gives 4 equations for 𝑎, 𝑏, 𝑐, 𝑑

𝑎2 + 𝑏𝑐 = 1
𝑎𝑏 + 𝑏𝑑 = 0
𝑎𝑐 + 𝑐𝑑 = 0
𝑑2 + 𝑏𝑐 = 1

Gives the following solutions

𝑎 = −1, 𝑏 = 0, 𝑐 = 0, 𝑑 = −1
𝑎 = 1, 𝑏 = 0, 𝑐 = 0, 𝑑 = −1
𝑎 = −1, 𝑏 = 0, 𝑐 = 0, 𝑑 = 1
𝑎 = 1, 𝑏 = 0, 𝑐 = 0, 𝑑 = 1

Any of the above solutions will satisfy 𝐴2 = 𝐼. For example, using the first one gives

𝐴 =
⎛
⎜⎜⎜⎜⎝
−1 0
0 −1

⎞
⎟⎟⎟⎟⎠

3.1.3.3 Part (c)

As was done above, the following set of equations are solved.
⎛
⎜⎜⎜⎜⎝
𝑎2 + 𝑏𝑐 𝑎𝑏 + 𝑏𝑑
𝑎𝑐 + 𝑐𝑑 𝑑2 + 𝑏𝑐

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0 0
0 0

⎞
⎟⎟⎟⎟⎠

Hence

𝑎2 + 𝑏𝑐 = 0
𝑎𝑏 + 𝑏𝑑 = 0
𝑎𝑐 + 𝑐𝑑 = 0
𝑑2 + 𝑏𝑐 = 0

Solution is

eq1:=a^2+b*c=0;eq2:=a*b+b*d=0;eq3:=a*c+c*d=0;eq4:=a^2+b*c=0;
solve({eq1,eq2,eq3,eq4},{a,b,c,d});
{a = a, b = b, c = -a^2/b, d = -a}, {a = 0, b = 0, c = 0, d = d}

Since we are looking for non-zero elements in 𝐵, then the first solution {𝑎 = 𝑎, 𝑏 = 𝑏, 𝑐 =
− 𝑎2

𝑏 , 𝑑 = −𝑎} is used. For example, letting 𝑎 = 1, 𝑏 = 2, 𝑐 = −1
2 , 𝑑 = −1 gives

𝐵 =
⎛
⎜⎜⎜⎜⎝
1 2
−1
2 −1

⎞
⎟⎟⎟⎟⎠

To verify
⎛
⎜⎜⎜⎜⎝
1 2
−1
2 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 2
−1
2 −1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0 0
0 0

⎞
⎟⎟⎟⎟⎠
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3.1. HW 1, Due sept 18, 2014 CHAPTER 3. HWS

3.1.3.4 Part (d)

Let 𝐶 =
⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
𝑐 𝑑

⎞
⎟⎟⎟⎟⎠ ,𝐷 =

⎛
⎜⎜⎜⎜⎝
𝑒 𝑓
𝑔 ℎ

⎞
⎟⎟⎟⎟⎠, hence we want 𝐶𝐷 = −𝐷𝐶. To simplify this, let the diagonal be

zero in both cases. This reduced the equations to 4 unknowns. Hence Let 𝐶 =
⎛
⎜⎜⎜⎜⎝
0 𝑏
𝑐 0

⎞
⎟⎟⎟⎟⎠ ,𝐷 =

⎛
⎜⎜⎜⎜⎝
0 𝑓
𝑔 0

⎞
⎟⎟⎟⎟⎠ and

𝐶𝐷 =
⎛
⎜⎜⎜⎜⎝
0 𝑏
𝑐 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
0 𝑓
𝑔 0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑏𝑔 0
0 𝑐𝑓

⎞
⎟⎟⎟⎟⎠

𝐷𝐶 =
⎛
⎜⎜⎜⎜⎝
0 𝑓
𝑔 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
0 𝑏
𝑐 0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑐𝑓 0
0 𝑏𝑔

⎞
⎟⎟⎟⎟⎠

Hence we want to solve

⎛
⎜⎜⎜⎜⎝
𝑏𝑔 0
0 𝑐𝑓

⎞
⎟⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎜⎝
𝑐𝑓 0
0 𝑏𝑔

⎞
⎟⎟⎟⎟⎠ Hence this reduces to just solving

𝑏𝑔 = −𝑐𝑓

Let 𝑏 = 𝑛, 𝑐 = −𝑛, 𝑔 = 𝑛, 𝑓 = 𝑛 which satisfies the above. I.e. 𝑛 × 𝑛 = − (−𝑛 × 𝑛) ⇒ 𝑛2 = 𝑛2,
therefore

𝐶 =
⎛
⎜⎜⎜⎜⎝
0 𝑛
−𝑛 0

⎞
⎟⎟⎟⎟⎠ ,𝐷 =

⎛
⎜⎜⎜⎜⎝
0 𝑛
𝑛 0

⎞
⎟⎟⎟⎟⎠

To verify, 𝐶𝐷 =
⎛
⎜⎜⎜⎜⎝
0 𝑛
−𝑛 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
0 𝑛
𝑛 0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑛2 0
0 −𝑛2

⎞
⎟⎟⎟⎟⎠ and 𝐷𝐶 =

⎛
⎜⎜⎜⎜⎝
0 𝑛
𝑛 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
0 𝑛
−𝑛 0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−𝑛2 0
0 𝑛2

⎞
⎟⎟⎟⎟⎠ hence

𝐷𝐶 = −𝐶𝐷. Let 𝑛 = 2 for example, then

𝐶 =
⎛
⎜⎜⎜⎜⎝
0 2
−2 0

⎞
⎟⎟⎟⎟⎠

𝐷 =
⎛
⎜⎜⎜⎜⎝
0 2
2 0

⎞
⎟⎟⎟⎟⎠

3.1.4 Problem 1.3.2

Figure 3.4: the Problem statement

Solution

𝐴 =
⎛
⎜⎜⎜⎜⎝
3 6
6 8

⎞
⎟⎟⎟⎟⎠

Hence 𝑈 =
⎛
⎜⎜⎜⎜⎝
3 6
0 −4

⎞
⎟⎟⎟⎟⎠ and 𝐿 =

⎛
⎜⎜⎜⎜⎝
1 0
2 1

⎞
⎟⎟⎟⎟⎠, therefore 𝐷 =

⎛
⎜⎜⎜⎜⎝
3 0
0 −4

⎞
⎟⎟⎟⎟⎠. 𝐷 has the pivots on its diagonal.

The pivots is the diagonal of 𝑈. Therefore

𝐿𝐷𝐿𝑇 =
⎛
⎜⎜⎜⎜⎝
1 0
2 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
3 0
0 −4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 0
2 1

⎞
⎟⎟⎟⎟⎠

𝑇

=
⎛
⎜⎜⎜⎜⎝
3 6
6 8

⎞
⎟⎟⎟⎟⎠ = 𝐴

9
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Since not all the pivots are positive and the matrix is symmetric, then this is not positive
definite (P.D.). This can be confirmed by writing

𝑥𝑇𝐴𝑥 = �𝑥1 𝑥2�
⎛
⎜⎜⎜⎜⎝
3 6
6 8

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠

= 𝑥1 (3𝑥1 + 6𝑥2) + 𝑥2 (6𝑥1 + 8𝑥2)
= 3𝑥21 + 12𝑥1𝑥2 + 8𝑥22

We now need to complete the squares.

𝑥𝑇𝐴𝑥 = 3 (𝑥1 + 𝑎𝑥2)
2 + 𝑐𝑥22

= 3 �𝑥21 + 𝑎2𝑥22 + 2𝑎𝑥1𝑥2� + 𝑐𝑥22
= 3𝑥21 + �3𝑎2 + 𝑐� 𝑥22 + 6𝑎𝑥1𝑥2

Comparing to 3𝑥21 + 12𝑥1𝑥2 + 8𝑥22 we see that 𝑎 = 2 and 𝑐 = 8 − 3𝑎2 = 8 − 12 = −4, hence

𝑥𝑇𝐴𝑥 = 3 (𝑥1 + 2𝑥2)
2 − 4𝑥22

This shows that 𝑥𝑇𝐴𝑥 is not positive for all 𝑥 due to the −4 term. For example, if 𝑥 = {1, −1}
then 𝑥𝑇𝐴𝑥 = −1. Basically, we obtain the same result as before. For a symmetric matrix
𝐴, if not all the pivots are positive, then the matrix is not P.D. Using 𝑥𝑇𝐴𝑥 is another
method to answer the same question. After completing the squares, we look to see if all
the coe�cients are positive or not.

3.1.5 Problem 1.3.6

Figure 3.5: the Problem statement

Solution

A counter example is 𝑎 = 8, 𝑏 = 2, 𝑐 = 4. We see that 𝑎 + 𝑏 > 2𝑐 but 𝑎𝑐 = 16 and 𝑐2 = 16,
hence 𝑎𝑐 is not greater than 𝑏2. So 𝑎 + 𝑐 > 2𝑏 do not guarantee that 𝑎𝑐 > 𝑐2. Therefore, we
also can not guarantee that the matrix is P.D. this comes from the pivots. The pivots of

𝐴 =
⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
𝑏 𝑐

⎞
⎟⎟⎟⎟⎠ are {𝑎, 𝑐 −

𝑏2

𝑎 }. Since 𝑎 > 0 as given, then we just need to check if 𝑐 − 𝑏2

𝑎 > 0. This

means 𝑎𝑐 − 𝑏2 > 0. But since we can’t guarantee that 𝑎𝑐 > 𝑏2 then this means the second
pivot can be negative. Hence the matrix 𝐴 with such property can not be guaranteed to
be P.D.

3.1.6 Problem 1.3.7

Figure 3.6: the Problem statement

10
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Solution

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
1 1 1
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

To show if 𝐴 is P.D., we need to show that all the pivots are positive. This is the same as
showing that 𝑥𝑇𝐴𝑥 > 0 for all non-zero 𝑥.To obtain the pivots, we generate the 𝑈 and look
at the diagonal values. From the above, we obtain

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
1 1 1
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

𝑈

�������������⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence using 𝑙1 = 1 we see that the pivots are not all positive. There are zero pivot. Hence
𝐴 is not P.D. For

𝐴′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
1 2 2
1 2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
0 1 1
0 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

𝑈

�����������⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
0 1 1
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence all the pivots are positive. Therefore 𝐴′ is P.D. We can write it as 𝐿𝐷𝐿𝑇

𝐴′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑇

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
0 1 1
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.1.7 Problem 1.3.8

Figure 3.7: the Problem statement

Solution

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐 1 1
1 𝑐 1
1 1 𝑐

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑐 > 2 is enough to guarantee row dominant matrix. For P.D., looking at 𝑥𝑇𝐴𝑥 = (𝑥1 + 𝑥2 + 𝑥3)
2+

(𝑐 − 1) �𝑥21 + 𝑥22 + 𝑥23� shows that 𝑐 − 1 > 0 is the condition for P.D. which implies 𝑐 > 1. Hence

11
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it is enough that 𝑐 > 1.

3.1.8 Problem 1.3.11

Figure 3.8: the Problem statement

Solution

For 𝐹1 = 𝑥2 − 𝑥2𝑦2 + 𝑦2 + 𝑦3, we find 𝜕𝐹1
𝜕𝑦 = −2𝑥2𝑦 + 2𝑦 + 3𝑦2 = 0 at 𝑥 = 0, 𝑦 = 0. And

𝜕𝐹1
𝜕𝑥 = 2𝑥 − 2𝑥𝑦2 = 0 at 𝑥 = 0, 𝑦 = 0. Now we need to look at the P.D. of

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕2𝐹1
𝜕𝑥2

𝜕2𝐹1
𝜕𝑥𝜕𝑦

𝜕2𝐹1
𝜕𝑥𝜕𝑦

𝜕2𝐹1
𝜕𝑦2

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2 − 2𝑦2 −4𝑥𝑦
−4𝑥𝑦 −2𝑥2 + 2 + 6𝑦

⎞
⎟⎟⎟⎟⎠

At 𝑥 = 0, 𝑦 = 0 the above becomes
⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕2𝐹1
𝜕𝑥2

𝜕2𝐹1
𝜕𝑥𝜕𝑦

𝜕2𝐹1
𝜕𝑥𝜕𝑦

𝜕2𝐹1
𝜕𝑦2

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2 0
0 2

⎞
⎟⎟⎟⎟⎠

This is already in 𝑈 form. Since the diagonal is all positive, then this is P.D., which means
it is true for 𝐹1 �𝑥, 𝑦�. Now we check 𝐹2 �𝑥, 𝑦�

𝐹2 �𝑥, 𝑦� = cos 𝑥 cos 𝑦. Hence 𝜕𝐹1
𝜕𝑦 = − sin 𝑦 cos 𝑥 = 0 at 𝑥 = 0, 𝑦 = 0. And 𝜕𝐹1

𝜕𝑥 = − sin 𝑥 cos 𝑦 = 0
at 𝑥 = 0, 𝑦 = 0. Now we need to look at the P.D. of

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕2𝐹1
𝜕𝑥2

𝜕2𝐹1
𝜕𝑥𝜕𝑦

𝜕2𝐹1
𝜕𝑥𝜕𝑦

𝜕2𝐹1
𝜕𝑦2

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
− cos 𝑥 cos 𝑦 sin 𝑦 sin 𝑥
sin 𝑦 sin 𝑥 − cos 𝑦 cos 𝑥

⎞
⎟⎟⎟⎟⎠

And at 𝑥 = 0, 𝑦 = 0 the above becomes
⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕2𝐹1
𝜕𝑥2

𝜕2𝐹1
𝜕𝑥𝜕𝑦

𝜕2𝐹1
𝜕𝑥𝜕𝑦

𝜕2𝐹1
𝜕𝑦2

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−1 0
0 −1

⎞
⎟⎟⎟⎟⎠

Hence this is not P.D, since the pivots are negative. To answer the part about 𝐹1 having
global minimum. The point 𝑥 = 0, 𝑦 = 0 is local minimum for 𝐹1 = 𝑥2 − 𝑥2𝑦2 + 𝑦2 + 𝑦3 since⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕2𝐹1
𝜕𝑥2

𝜕2𝐹1
𝜕𝑥𝜕𝑦

𝜕2𝐹1
𝜕𝑥𝜕𝑦

𝜕2𝐹1
𝜕𝑦2

⎞
⎟⎟⎟⎟⎟⎟⎠ was found to be P.D. at 𝑥 = 0, 𝑦 = 0. But this is not global minimum. Only

when the function can be written as quadratic form 𝑥𝑇𝐴𝑥 will the local minumum be global
minumum. In this case, 𝐹1 can approach −∞, hence this is the global minimum.

Taking the limit lim𝑥1→−∞ 𝐹1 = �1 − 𝑦2�∞. Taking the limit of this as 𝑦 → ∞ gives −∞. Here
is a plot of 𝐹1 around 𝑥 = 0, 𝑦 = 0 showing it is a local minimum

F1 = x^2 - x^2 y^2 + y^2 + y^3
Plot3D[F1, {x, -3, 3}, {y, -3, 3},
PlotLabel -> "F1 function", AxesLabel -> {x, y}]
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Figure 3.9: plot of the above

3.1.9 Problem 1.4.5

Figure 3.10: the Problem statement

Solution

The equation of the line is 𝑦 = 𝐶, hence we obtain 4 equations.

𝑏1 = 𝐶
𝑏2 = 𝐶
𝑏3 = 𝐶
𝑏4 = 𝐶

or
𝐴
⏞⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1
𝑏2
𝑏3
𝑏4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

13



3.1. HW 1, Due sept 18, 2014 CHAPTER 3. HWS

Hence now we set 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏

�1 1 1 1�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐶 = �1 1 1 1�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1
𝑏2
𝑏3
𝑏4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4𝐶 = �1 1 1 1�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1
𝑏2
𝑏3
𝑏4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4𝐶 = 𝑏1 + 𝑏2 + 𝑏3 + 𝑏4

Hence 𝐶 = 𝑏1+𝑏2+𝑏3+𝑏4
4 , Which is the average. Using calculus, to minimize 𝐸 = (𝑏1 − 𝐶)

2 +
(𝑏2 − 𝐶)

2 + (𝑏3 − 𝐶)
2 + (𝑏4 − 𝐶)

2

𝑑𝐸
𝑑𝐶

= −2 (𝑏1 − 𝐶) − 2 (𝑏2 − 𝐶) − 2 (𝑏3 − 𝐶) − 2 (𝑏4 − 𝐶)

0 = 8𝐶 − 2𝑏1 − 2𝑏2 − 2𝑏3 − 2𝑏4
8𝐶 = 2𝑏1 + 2𝑏2 + 2𝑏3 + 2𝑏4

𝐶 =
𝑏1 + 𝑏2 + 𝑏3 + 𝑏4

4
Which is the same found using 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏 solution.

3.1.10 Problem 1.4.7

Figure 3.11: the Problem statement

Solution

3.1.10.1 Part (a)

For 𝑦 = 𝐶 we obtain the following equations

𝑏1 = 𝐶
𝑏2 = 𝐶
𝑏3 = 𝐶

Hence
𝐴
⏞⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1
𝑏2
𝑏3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Applying 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏 gives

�1 1 1�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝐶 = �1 1 1�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1
𝑏2
𝑏3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

3𝐶 = 𝑏1 + 𝑏2 + 𝑏3

𝐶 =
𝑏1 + 𝑏2 + 𝑏3

3
Therefore 𝑦 = 𝐶 = 𝑏1+𝑏2+𝑏3

3 = 0+3+12
3 = 5, or

𝑦 = 5

3.1.10.2 Part (b)

For 𝑦 = 𝐶 + 𝐷𝑡 we obtain the following equations

𝑏1 = 𝐶 + 𝐷𝑡
𝑏2 = 𝐶 + 𝐷𝑡
𝑏3 = 𝐶 + 𝐷𝑡

Applying the numerical values gives results in

0 = 𝐶
3 = 𝐶 + 𝐷
12 = 𝐶 + 𝐷 (2)

Hence
𝐴

�������⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 1
1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝐶
𝐷

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
3
12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Applying 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏 gives
⎛
⎜⎜⎜⎜⎝
1 1 1
0 1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 1
1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝐶
𝐷

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1 1 1
0 1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
3
12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
3 3
3 5

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝐶
𝐷

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
15
27

⎞
⎟⎟⎟⎟⎠

Now we solve this using Gaussian elimination. First 𝑈 is found
⎛
⎜⎜⎜⎜⎝
3 3
3 5

⎞
⎟⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎝
3 3
0 2

⎞
⎟⎟⎟⎟⎠

Hence 𝐿 =
⎛
⎜⎜⎜⎜⎝
1 0
1 1

⎞
⎟⎟⎟⎟⎠ and 𝐿𝑐 = 𝑏, then

⎛
⎜⎜⎜⎜⎝
1 0
1 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
15
27

⎞
⎟⎟⎟⎟⎠ now 𝑐 is found by forward substitution,

giving

⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
15
12

⎞
⎟⎟⎟⎟⎠

Now we solve 𝑈𝑥 = 𝑐 or
⎛
⎜⎜⎜⎜⎝
3 3
0 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝐶
𝐷

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
15
12

⎞
⎟⎟⎟⎟⎠ by backward substitution, the result is

⎛
⎜⎜⎜⎜⎝
𝐶
𝐷

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−1
6

⎞
⎟⎟⎟⎟⎠

Hence the line is

𝑦 = −1 + 6𝑡

Here is a plot of the fit found above

15
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b = {0, 3, 12}; t = {0, 1, 2};
p1 = ListPlot[Transpose[{t, b}], PlotStyle -> Red];
p2 = Plot[-1 + 6 t, {t, -.5, 3}, PlotTheme -> "Detailed",
FrameLabel -> {{"y(t)", None}, {"t", "Fit by least squares"}}];
Show[p2, p1]

Figure 3.12: Plot of the above

3.1.10.3 Part c

For 𝑦 = 𝐶 + 𝐷𝑡 + 𝐸𝑡2 we obtain the following equations

𝑏1 = 𝐶 + 𝐷𝑡 + 𝐸𝑡2

𝑏2 = 𝐶 + 𝐷𝑡 + 𝐸𝑡2

𝑏3 = 𝐶 + 𝐷𝑡 + 𝐸𝑡2

Applying the numerical values gives results in

0 = 𝐶
3 = 𝐶 + 𝐷 + 𝐸
12 = 𝐶 + 2𝐷 + 4𝐸

Hence
𝐴

�����������⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 1 1
1 2 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶
𝐷
𝐸

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
3
12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now we solve this using Gaussian elimination. We do not need to use 𝐴𝑇𝐴 least squares
since the number of rows is the same as number of columns. First 𝑈 is found

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 1 1
1 2 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 1
0 2 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 1
0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

16
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Hence 𝐿 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
and 𝐿𝑐 = 𝑏, then

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
3
12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
now 𝑐 is found by forward

substitution, giving

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
3
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now we solve 𝑈𝑥 = 𝑐 or

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 1
0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶
𝐷
𝐸

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
3
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
by backward substitution, giving

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶
𝐷
𝐸

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence the solution is

𝑦 = 3𝑡2

Here is a plot of the fit

b = {0, 3, 12}; t = {0, 1, 2};
p1 = ListPlot[Transpose[{t, b}], PlotStyle -> Red];
p2 = Plot[3 t^2, {t, -.5, 3}, PlotTheme -> "Detailed",
FrameLabel -> {{"y(t)", None}, {"t", "Fit by least squares"}}];
Show[p2, p1]

Figure 3.13: Plot of the above

We can see this is an exact fit since no least squares was used.

17
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3.1.11 Problem 1.4.10

Figure 3.14: Problem description

Solution

From page 40 in textbook, 𝑦 is force in spring, 𝑒 is the elongation of spring from equilibrium
and 𝑓 external force at each mass. Hence for 𝐴𝑥 = 𝑒, we see that 𝑒1 = 𝑥1, 𝑒2 = 𝑥2 − 𝑥1 and
𝑒3 = 𝑥2. Therefore

𝐴

���������⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
−1 1
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒1
𝑒2
𝑒3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

For 𝑦 = 𝐶𝑒, here 𝑦 is the internal force in spring. Hence 𝑦1 = 𝑐1𝑒1, 𝑦2 = 𝑐2𝑒2, 𝑦3 = 𝑐3𝑒3,
therefore

𝐴

���������������⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1 0 0
0 𝑐2 0
0 0 𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒1
𝑒2
𝑒3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑦3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

For 𝐴𝑇𝑦 = 𝑓, we need to find the external forces at each node first. From diagram we see
that 𝑓1 = 𝑦1 − 𝑦2 and 𝑓2 = 𝑦2 + 𝑦3, therefore

𝐴𝑇

�������������⎛
⎜⎜⎜⎜⎝
1 −1 0
0 1 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑦3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
⎛
⎜⎜⎜⎜⎝
𝑓1
𝑓2

⎞
⎟⎟⎟⎟⎠

3.1.12 Problem 1.4.11

Figure 3.15: Problem description

Solution

18
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To find 𝑦 = 𝐶𝑒. In this equation, 𝑒 is the elongation of the spring and 𝑦 is the internal force.
Hence from figure 1.7 we obtain

𝑦1 = 𝑐1𝑒1
𝑦2 = 𝑐2𝑒2
𝑦3 = 𝑐3𝑒3

Hence in matrix form
𝐶

���������������⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1 0 0
0 𝑐2 0
0 0 𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒1
𝑒2
𝑒3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑦3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

In the question 𝐴𝑇𝑦 = 𝑓, 𝑓 is the external force. Hence by balance of force at each mass,
we obtain

𝑓1 = 𝑦1 − 𝑦2
𝑓2 = 𝑦2 − 𝑦3
𝑓3 = 𝑦3

or in matrix form
𝐴

���������������⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0
0 1 −1
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑦3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓1
𝑓2
𝑓3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

To solve, since already in 𝑈 form, we will just need to do backward substitution. Hence

𝑦3 = 𝑓3
𝑦2 = 𝑓2 + 𝑓3
𝑦1 = 𝑓1 + 𝑓2 + 𝑓3

3.1.13 Problem 1.4.12

Figure 3.16: Problem description

Solution

𝐾 = 𝐴𝑇𝐶𝐴, but 𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
−1 1 0
0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
given in problem 1.4.11, and 𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1 0 0
0 𝑐2 0
0 0 𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. Hence

𝐾 = 𝐴𝑇𝐶𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
−1 1 0
0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1 0 0
0 𝑐2 0
0 0 𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
−1 1 0
0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1 + 𝑐2 −𝑐2 0
−𝑐2 𝑐2 + 𝑐3 −𝑐3
0 −𝑐3 𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

And

𝐴−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
−1 1 0
0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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And

𝐾−1 = �𝐴𝑇𝐶𝐴�
−1

= 𝐴−1𝐶−1 �𝐴𝑇�
−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
𝑐1

0 0

0 1
𝑐2

0

0 0 1
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
0 1 1
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
𝑐1

1
𝑐1

1
𝑐1

1
𝑐1

1
𝑐1
+ 1

𝑐2
1
𝑐1
+ 1

𝑐2
1
𝑐1

1
𝑐1
+ 1

𝑐2
1
𝑐1
+ 1

𝑐2
+ 1

𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Since 𝑓 = 𝐾𝑥 then 𝑥 = 𝐾−1𝑓. Since we are told 𝑓1, 𝑓2, 𝑓3 are all positive, and so the sign of 𝑥
the displacement, is determined by the sign of 𝐾−1. But 𝐾−1 has positive entries only, since
𝑐𝑖 is positive by definition. Therefore all displacements 𝑥 must be positive.

3.1.14 Problem 1.5.6

Figure 3.17: Problem description

Solution

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢′′1
𝑢′′2
𝑢′′3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0
−1 2 −1
0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢1
𝑢2
𝑢3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The solution is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢1 (𝑡)
𝑢2 (𝑡)
𝑢3 (𝑡)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= �𝑎1 cos�𝜆1𝑡 + 𝑏1 sin�𝜆1𝑡�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣11
𝑣21
𝑣31

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+�𝑎2 cos�𝜆2𝑡 + 𝑏2 sin�𝜆2𝑡�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣12
𝑣22
𝑣32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+�𝑎3 cos�𝜆3𝑡 + 𝑏3 sin�𝜆3𝑡�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣13
𝑣23
𝑣33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Where 𝜆𝑖 are the eigenvalues and 𝒗𝑖 are the corresponding eigenvectors of 𝐴. The constants
are found from initial conditions.

For the matrix 𝐴, the eigenvalues are found by solving

|𝐴 − 𝜆𝐼| = 0

Solving for eigenvalues gives 𝜆1 = 0, 𝜆2 = 1, 𝜆3 = 3 and the corresponding eigenvectors are⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
hence the solution becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢1 (𝑡)
𝑢2 (𝑡)
𝑢3 (𝑡)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝑎1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ (𝑎2 cos 𝑡 + 𝑏2 sin 𝑡)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ �𝑎3 cos√3𝑡 + 𝑏3 sin√3𝑡�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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At 𝑡 = 0
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
−1
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝑎1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑎2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑎3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

And taking derivative of the solution gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢′1 (𝑡)
𝑢′2 (𝑡)
𝑢′3 (𝑡)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝑎1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ (−𝑎2 sin 𝑡 + 𝑏2 cos 𝑡)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ �−𝑎3√3 sin√3𝑡 + 𝑏3√3 cos√3𝑡�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

At 𝑡 = 0 the above becomes
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝑎1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑏2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑏3√3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

Now (1),(2) needs to be solved for the constants. From (1)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 1
1 0 −2
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑎3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
−1
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

This is solved using Gaussian elimination.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 1
1 0 −2
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 1
0 1 −3
0 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 1
0 1 −3
0 0 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence 𝑈 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 1
0 1 −3
0 0 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐿 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
and hence 𝐿𝑐 = 𝑏 is solved first for 𝑐 using forward

substitution
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
−1
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Which gives 𝑐1 = 2, 𝑐2 = −3, 𝑐3 = 3, hence now we solved for 𝑥 from 𝑈𝑥 = 𝑐
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 1
0 1 −3
0 0 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑎3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
−3
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Giving 𝑎3 =
1
2 , 𝑎2 = −

3
2 , 𝑎1 = 0.

Now we solve for the rest of the constant in same way. From (2)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 √3
1 0 −2√3
1 1 √3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑏2
𝑏3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

This is solved using Gaussian elimination.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 √3
1 0 −2√3
1 1 √3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 √3
0 1 −3√3
0 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 √3
0 1 −3√3
0 0 6√3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence 𝑈 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 √3
0 1 −3√3
0 0 6√3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐿 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
and 𝐿𝑐 = 𝑏 is solved first for 𝑐 using forward

substitution
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0, therefore now we solved for 𝑥 from 𝑈𝑥 = 𝑐
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 √3
0 1 −3√3
0 0 6√3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑏2
𝑏3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Which gives 𝑏3 = 0, 𝑏2 = 0, 𝑎1 = 0. Now that all constants are found the final solution is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢1 (𝑡)
𝑢2 (𝑡)
𝑢3 (𝑡)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −

1
2

cos 𝑡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+
1
2

cos√3𝑡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

𝑢1 (𝑡) =
3
2

cos 𝑡 + 1
2

cos√3𝑡

𝑢2 (𝑡) = − cos√3𝑡

𝑢3 (𝑡) = −
3
2

cos 𝑡 + 1
2

cos√3𝑡

3.1.15 Problem 1.5.7

Figure 3.18: Problem description

Solution

3.1.15.1 Part (a)

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −1 0
−2 2 −1
−1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐴𝑇 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −2 −1
−1 2 −1
0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

For eigenvector 𝒗 of ones, we write

𝐴𝑇𝒗 = 𝜆𝒗

Hence
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −2 −1
−1 2 −1
0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝜆

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝜆

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Which implies 𝜆 = 0. Since 𝐴𝑇 has same eigenvalues of 𝐴 then 𝐴 has zero eigenvalue. But
the determinant of 𝐴 is the products of its eigenvalues. Since one eigenvalue is zero, then
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|𝐴| = 0, which means 𝐴 is singular.

3.1.15.2 Part (b)

To find all three eigenvalues of 𝐴 we solve |𝜆𝐼 − 𝐴| = 0. Hence

�

�

𝜆 − 3 1 0
2 𝜆 − 2 1
1 1 𝜆 − 1

�

�
= 0

𝜆3 − 6𝜆2 + 8𝜆 = 0

𝜆 �𝜆2 − 6𝜆 + 8� = 0

Hence 𝜆 = 0, 𝜆 = 2, 𝜆 = 4 .To find the eigenvectors, we solve 𝐴𝑣𝑖 = 𝜆𝑖𝑣𝑖 for each eigenvalue.
This means solving (𝜆𝑖𝐼 − 𝐴) 𝑣𝑖 = 0 for each eigenvalue. For 𝜆 = 0

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −1 0
−2 2 −1
−1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣11
𝑣21
𝑣31

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

We always set 𝑣1𝑗 = 1 and then go to find 𝑣2𝑗, 𝑣3𝑗 in finding eigenvectors. Hence we solve
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 1 0
2 −2 1
1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
𝑣21
𝑣31

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Solving gives 𝑣1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
For the second eigenvalue 𝜆 = 2 we obtain

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0
0 2 0
0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −1 0
−2 2 −1
−1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣12
𝑣22
𝑣32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0
2 0 1
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
𝑣22
𝑣32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Solving gives 𝑣2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
−1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. For the last eigenvalue 𝜆 = 4 we obtain

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 0 0
0 4 0
0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −1 0
−2 2 −1
−1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣13
𝑣23
𝑣33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0
2 2 1
1 1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
𝑣23
𝑣33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Solving gives 𝑣3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.Summary. The eigenvalues are {0, 2, 4} and the eigenvectors are

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
−1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

23



3.1. HW 1, Due sept 18, 2014 CHAPTER 3. HWS

3.1.16 Problem 1.5.11

Figure 3.19: Problem description

Solution

The elements of the diagonal of 𝐴𝐵 come from multiplying row 𝑖 in 𝐴 with column 𝑖 in 𝐵.
Therefore, looking at the diagonal elements only, we can write, using 𝑎𝑖𝑗 as element in 𝐴
and using 𝑏𝑖𝑗 as element in 𝐵

𝐴𝐵 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
𝑖
𝑎1𝑖𝑏𝑖1

∑
𝑖
𝑎2𝑖𝑏𝑖2

⋱
∑
𝑖
𝑎𝑛𝑖𝑏𝑖𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence the trace of 𝐴𝐵 is

𝑡𝑟 (𝐴𝐵) = �
𝑖
𝑎1𝑖𝑏𝑖1 +�

𝑖
𝑎2𝑖𝑏𝑖2 +⋯+�

𝑖
𝑎𝑛𝑖𝑏𝑖𝑛

But the above can be combined as

𝑡𝑟 (𝐴𝐵) = �
𝑘
�
𝑖
𝑎𝑘𝑖𝑏𝑖𝑘 (1)

Now if we consider 𝐵𝐴, then the result comes from multiplying row 𝑖 in 𝐵 with column 𝑖
in 𝐴

𝐵𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
𝑖
𝑏1𝑖𝑎𝑖1

∑
𝑖
𝑏2𝑖𝑎𝑖2

⋱
∑
𝑖
𝑏𝑛𝑖𝑎𝑖𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence the trace of 𝐵𝐴 is

𝑡𝑟 (𝐵𝐴) = �
𝑖
𝑏1𝑖𝑎𝑖1 +�

𝑖
𝑏2𝑖𝑎𝑖2 +⋯+�

𝑖
𝑏𝑛𝑖𝑎𝑖𝑛

But the above can be combined as

𝑡𝑟 (𝐵𝐴) = �
𝑘
�
𝑖
𝑏𝑘𝑖𝑎𝑖𝑘 (2)

Looking at (1) and (2) above we can see that both traces contain the same elements, but
arranged di�erently. The indices can be changes in the sum without changing the value
of the sum. This can be seen more directly by looking at specific example of 2 × 2 case.

Let 𝐴 =
⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
𝑐 𝑑

⎞
⎟⎟⎟⎟⎠ , 𝐵 =

⎛
⎜⎜⎜⎜⎝
𝑒 𝑓
𝑔 ℎ

⎞
⎟⎟⎟⎟⎠, hence the elements on the diagonal of 𝐴𝐵 are

⎛
⎜⎜⎜⎜⎝
𝑎𝑒 + 𝑏𝑔

𝑐𝑓 + 𝑑ℎ

⎞
⎟⎟⎟⎟⎠

while for 𝐵𝐴 the result is

⎛
⎜⎜⎜⎜⎝
𝑎𝑒 + 𝑐𝑓

𝑏𝑔 + 𝑑ℎ

⎞
⎟⎟⎟⎟⎠. We see that the trace is the same.
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3.1.17 Problem 1.5.12

Figure 3.20: Problem description

Solution

det (𝐴 − 𝜆𝐼) is a polynomial in 𝜆. Hence it can be factored in its roots as

det (𝐴 − 𝜆𝐼) = 𝑃 (𝜆) = (𝜆1 − 𝜆) (𝜆2 − 𝜆) (𝜆3 − 𝜆)⋯ (𝜆𝑛 − 𝜆)

Assuming there is 𝑛 eigenvalues. When 𝜆 = 0 (which is the independent variable now, and
not any specific eigenvalue, then (1) becomes

det (𝐴) = 𝑃 (0) = 𝜆1𝜆2𝜆3⋯𝜆𝑛
Hence

det (𝐴) = 𝜆1𝜆2𝜆3⋯𝜆𝑛
Which is what we are asked to show.

3.1.18 Problem 1.5.13

Figure 3.21: Problem description

Solution

det (𝐴 − 𝜆𝐼) = 𝑃 (𝜆) = (𝜆1 − 𝜆) (𝜆2 − 𝜆) (𝜆3 − 𝜆)⋯ (𝜆𝑛 − 𝜆) (*)

Let look at the case of 𝑛 = 2

𝑃 (𝜆) = (𝜆1 − 𝜆) (𝜆2 − 𝜆)
= 𝜆2 − 𝜆 (𝜆1 + 𝜆2) + 𝜆1𝜆2

Hence the coe�cient of (−𝜆)𝑛−1 which is −𝜆 is (𝜆1 + 𝜆2) which is the sum of the eigenvalues.
Lets look at 𝑛 = 3

𝑃 (𝜆) = (𝜆1 − 𝜆) (𝜆2 − 𝜆) (𝜆3 − 𝜆)
= −𝜆3 + 𝜆2 (𝜆1 + 𝜆2 + 𝜆3) − 𝜆 (𝜆1𝜆2 + 𝜆1𝜆3 + 𝜆2𝜆3) + 𝜆1𝜆2𝜆3

So the pattern is now clear. The coe�cient of (−𝜆)𝑛−1 is the sum of all the eigenvalues of
𝐴.
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For det (𝐴 − 𝜆𝐼), looking at 𝑛 = 2 we write

det (𝐴 − 𝜆𝐼) = det
⎛
⎜⎜⎜⎜⎝
𝑎11 − 𝜆 𝑎12
𝑎21 𝑎22 − 𝜆

⎞
⎟⎟⎟⎟⎠ = (𝑎11 − 𝜆) (𝑎22 − 𝜆) − 𝑎21𝑎12

= 𝜆2 − 𝜆 (𝑎11 + 𝑎22) + (𝑎11𝑎22 − 𝑎21𝑎12)

We see in this case that the coe�cient of (−𝜆)𝑛−1 = −𝜆 is the trace of 𝐴. Lets look at 𝑛 = 3

det (𝐴 − 𝜆𝐼) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 − 𝜆 𝑎12 𝑎13
𝑎21 𝑎22 − 𝜆 𝑎23
𝑎31 𝑎32 𝑎33 − 𝜆

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (𝑎11 − 𝜆)det
⎛
⎜⎜⎜⎜⎝
𝑎22 − 𝜆 𝑎23
𝑎32 𝑎33 − 𝜆

⎞
⎟⎟⎟⎟⎠ − 𝑎12 det

⎛
⎜⎜⎜⎜⎝
𝑎21 𝑎23
𝑎31 𝑎33 − 𝜆

⎞
⎟⎟⎟⎟⎠ + 𝑎13 det

⎛
⎜⎜⎜⎜⎝
𝑎21 𝑎22 − 𝜆
𝑎31 𝑎32

⎞
⎟⎟⎟⎟⎠

= (𝑎11 − 𝜆) �𝜆2 − 𝜆 (𝑎22 + 𝑎33) + (𝑎22𝑎33 − 𝑎23𝑎32)�

− 𝑎12 (𝑎21𝑎33 − 𝜆𝑎21 − 𝑎31𝑎23) + 𝑎13 (𝜆𝑎31 + 𝑎21𝑎32 − 𝑎22𝑎31)
= −𝜆3 + 𝜆2 (𝑎11 + 𝑎22 + 𝑎33) − 𝜆 (𝑎11𝑎22 − 𝑎12𝑎21 + 𝑎11𝑎33 − 𝑎13𝑎31 + 𝑎22𝑎33 − 𝑎23𝑎32)
+ (𝑎11𝑎22𝑎33 − 𝑎11𝑎23𝑎32 − 𝑎12𝑎21𝑎33 + 𝑎12𝑎31𝑎23 + 𝑎21𝑎13𝑎32 − 𝑎13𝑎22𝑎31)

We see again that the coe�cient of (−𝜆)𝑛−1 = 𝜆2 is the trace of 𝐴. So by construction we
can show that coe�cient of (−𝜆)𝑛−1 is the trace of 𝐴. But we showed above that coe�cient
of (−𝜆)𝑛−1 is the sum of all the eigenvalues of 𝐴. Hence the sum of all the eigenvalues of
𝐴 = 𝑡𝑟 (𝐴)
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3.2 HW 2, Due Oct 2, 2014

3.2.1 Problem 1.6.2

Figure 3.22: the Problem statement

In the incidence matrices, the rows indicate the edges, and the columns are the nodes.
We put −1 for the node that the edge leaves and +1 for the node that the edges arrives at.
Arrows are used to indicate direction.

𝐴1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 +1 0 0
0 −1 1 0
0 0 −1 +1
1 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝐴2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 +1 0 0 0
0 −1 +1 0 0
0 0 −1 +1 0
0 0 0 −1 +1
0 0 −1 0 +1
−1 0 +1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We first note that matrix 𝐴1 rank 𝑟 = 3,𝑚 = 4, 𝑛 = 4.

In 𝐴1𝑥 = 𝑏, the vectors 𝑏 have to be in the column space of 𝐴1. These are vectors in 𝑅𝑚 = 𝑅4,
that span space of dimension 𝑟 = 3. Since there is a cycle (starting from node 1 we end up
at node 1 again by following the edges), this means that all the potentials at each node
must be the same. But if the potential at each node is the same, then there can be no flow
of current. Since flow of current represent the edge, it means each edge will have zero
value. So 𝑏 must be all vectors/edges that add up to [0, 0, 0, 0] vector. For the case of 𝐴𝑇

1 ,
we obtain the matrix

𝐴𝑇
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 1
+1 −1 0 0
0 +1 −1 0
0 0 +1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑁 �𝐴𝑇
1 � in the space of 𝑅𝑚 = 𝑅4 with vectors that span dimension space 𝑚− 𝑟 = 4 − 3 = 1. So

a line. So one basis vector is all what is needed.

And now we ask about the nodes of this graph. What values can they have? This is the
graph associated with this matrix
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1

2 3

41

42

3

A1
T

Figure 3.23: graph associated with this matrix

We now ask, what values should the nodes have in order for the edges to have zero flow in
them? It is clear the nodes must all be equal [1, 1, 1, 1] since if the potential is same at each
node, then there will be no flow (i.e. zero potential di�erence) on the edges. Therefore

𝑁�𝐴𝑇� = [1, 1, 1, 1]

We also know from fundamental theory of linear algebra, that 𝑅 (𝐴) is orthogonal to 𝑁�𝐴𝑇� .

3.2.2 Problem 1.6.3

Figure 3.24: Problem description

The matrix 𝐴2 has rank 𝑟 = 4,𝑚 = 6, 𝑛 = 5.The number of independent rows (edges) is 𝑛−1
or 5 − 1 = 4 which is its rank. These can be read from the graph directly. Any 4 edges, as
long as they do not complete a cycle, will qualify. Hence the edges that meet this condition
are

6, 5, 4, 2
6, 5, 4, 1
6, 5, 3, 2
6, 5, 3, 1
6, 4, 3, 2
6, 4, 3, 1
5, 4, 2, 1
5, 3, 2, 1
4, 3, 2, 1

Notice that we could not have selected for example 6, 5, 4, 3 since 5, 4, 3 are in one loop.

The 𝑁�𝐴𝑇
2 � has 𝑚 − 𝑟 = 6 − 4 = 2 dimensions. Now we take the edges on each loop. Since

the loop is the null space. Since there are two loops, this give us the two independent rows.
The left loop has

𝑒𝑑𝑔𝑒 (1) + 𝑒𝑑𝑔𝑒 (2) − 𝑒𝑑𝑔𝑒 (6) = [1, 1, 0, 0, 0, −1] (1)

Second loop has

𝑒𝑑𝑔𝑒 (3) + 𝑒𝑑𝑔𝑒 (4) − 𝑒𝑑𝑔𝑒 (5) = [0, 0, +1, +1, −1, 0]
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In other words, we put a 0 for the edge that is not there and put a +1 for the edge the goes
one direction and −1 for the edge that goes in the opposite direction. For example, in (1)
we put 1 for edge(1) since edge(1) is in the loop. We put 0 for edge (3) since edge (3) is
not in the loop at all. We put −1 for edge(6) since it goes in the opposite direction from
the others. It is arbitrary which direction is positive and which is negative, as long as one
is consistent. Notice the above two basis vectors span 𝑁�𝐴𝑇

2 � and live inside 𝑅6 since 𝑚 = 6
in this case.

3.2.3 Problem 1.6.5

Figure 3.25: Problem description

Since 𝐴𝑥 = 0 then we set up the equations from incidence matrix one for each edge as
follows

xk x j

x j  xk  0

Figure 3.26: plot for prob 1.6.5

If we assign one node any arbitrary value, say 𝑥𝑘 = 1, then 𝑥𝑗 = 1 as well. But then any node
on the other side of 𝑥𝑗, say 𝑥𝑖 will now have value 1 as well. By transitivity, all other nodes
will end up with the same value assigned to the first node. Hence all nodes have the same
value.

For the case of a two nodes not connect. Assume the nodes are 𝑥1 and 𝑥4 and that there
is no edge between them. Now assume there is an edge 𝑥1𝑥2 and edge 𝑥2𝑥3 and edge
𝑥3𝑥4. Since 𝑥2 = 𝑥1 since 𝐴𝑥 = 0 then this implies 𝑥3 = 𝑥2 = 𝑥1 as well. This also implies
𝑥4 = 𝑥3 = 𝑥2 = 𝑥1 or 𝑥1 = 𝑥4 even though there is no direct edge.

3.2.4 Problem 1.6.6

Figure 3.27: Problem description

Proof by contradiction: Assuming there is no loop. Hence the graph must be a spanning
tree. But by definition, a spanning tree with 𝑁 nodes have 𝑁 − 1 edges. But we are given
that number of edges is the same as the number of nodes. Hence the assumption is not
valid, and there must be a loop, called the fundamental loop or fundamental cycle.
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3.2.5 Problem 1.6.7

Figure 3.28: Problem description

The fundamental theorem of linear algebra says that vectors in 𝑅 (𝐴) are orthogonal to
vectors in 𝑁�𝐴𝑇�. 𝐴𝑥 gives the vectors in 𝑅 (𝐴) which is the potential di�erence. While

currents 𝑦 which results in 𝐴𝑇𝑦 = 0 are in 𝑁�𝐴𝑇�. The following diagram illustrates this

NAT
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y

currents y which
results in ATy  0
live in this space

Potentials x which
result in zero potential
difference live in
this space. i.e. Ax  0

Potential differences due
to x live in this space,
ie Ax vectors

AT

0

0
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Nasser M. Abbasi
092414

Figure 3.29: Plot for Problem 1.6.7

3.2.6 Problem 2.1.2

Figure 3.30: Problem description

Figure 2.1 is the following
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Figure 3.31: Figure 2.1 in book.

The 𝐴𝑜 matrix, is the incidence matrix. Since we have 6 edges, the matrix will have 6 rows.
Since we have 4 nodes, there will be 4 columns. The matrix is

𝐴𝑜 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 +1 0 0
−1 0 +1 0
0 −1 +1 0
0 −1 0 +1
−1 0 0 +1
0 0 −1 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence 𝐴𝑇
𝑜𝐴𝑜 is

𝐴𝑇
𝑜𝐴𝑜 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 0 0 −1 0
1 0 −1 −1 0 0
0 1 1 0 0 −1
0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 +1 0 0
−1 0 +1 0
0 −1 +1 0
0 −1 0 +1
−1 0 0 +1
0 0 −1 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

And the 𝐶 matrix is 𝑚 ×𝑚 where 𝑚 = 6 since this is the number of rows in 𝐴𝑜. Hence

𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1 0 0 0 0 0
0 𝑐2 0 0 0 0
0 0 𝑐3 0 0 0
0 0 0 𝑐4 0 0
0 0 0 0 𝑐5 0
0 0 0 0 0 𝑐6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Therefore

𝐴𝑇
𝑜𝐶𝐴𝑜 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 0 0 −1 0
1 0 −1 −1 0 0
0 1 1 0 0 −1
0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1 0 0 0 0 0
0 𝑐2 0 0 0 0
0 0 𝑐3 0 0 0
0 0 0 𝑐4 0 0
0 0 0 0 𝑐5 0
0 0 0 0 0 𝑐6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 +1 0 0
−1 0 +1 0
0 −1 +1 0
0 −1 0 +1
−1 0 0 +1
0 0 −1 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

𝐴𝑇
𝑜𝐶𝐴𝑜 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1 + 𝑐2 + 𝑐5 −𝑐1 −𝑐2 −𝑐5
−𝑐1 𝑐1 + 𝑐3 + 𝑐4 −𝑐3 −𝑐4
−𝑐2 −𝑐3 𝑐2 + 𝑐3 + 𝑐6 −𝑐6
−𝑐5 −𝑐4 −𝑐6 𝑐4 + 𝑐5 + 𝑐6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We notice that the diagonal entry on 𝐴𝑇
𝑜𝐶𝐴𝑇

𝑜 matches the sum on the rest of the row.

3.2.7 Problem 2.1.3

Figure 3.32: Problem description

From problem 2.1.2, we found

𝐴𝑜 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 +1 0 0
−1 0 +1 0
0 −1 +1 0
0 −1 0 +1
−1 0 0 +1
0 0 −1 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We first start by removing the last column, hence 𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 +1 0
−1 0 +1
0 −1 +1
0 −1 0
−1 0 0
0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which means 𝑥 is 3 × 1

vector now.

We are given that 𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and 𝑓 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, hence we need to solve the equilib-
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rium equation −𝐴𝑇𝐶𝐴𝑥 = 𝑓 − 𝐴𝑇𝐶𝑏, but 𝑏 = 0, hence this becomes

−𝐴𝑇𝐶𝐴𝑥 = 𝑓

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0
−1 0 1
0 −1 1
0 −1 0
−1 0 0
0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0
−1 0 1
0 −1 1
0 −1 0
−1 0 0
0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 1 1
1 −3 1
1 1 −3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

We now solve the above by Gaussian elimination which gives

𝑥 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
−1
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

To solve for 𝑦 we use the first equation of the equilibrium equation after elimination, which
is given on page 92 of the textbook as

⎛
⎜⎜⎜⎜⎝
𝐶−1 𝐴
0 −𝐴𝑇𝐶𝐴

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑦
𝑥

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

𝑏
𝑓 − 𝐴𝑇𝐶𝑏

⎞
⎟⎟⎟⎟⎠

The first equation gives

𝐶−1𝑦 + 𝐴𝑥 = 𝑏

And for 𝑏 = 0 this becomes

𝑦 = −𝐶𝐴𝑥

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0
−1 0 1
0 −1 1
0 −1 0
−1 0 0
0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
−1
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

or

𝑦 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
−1
−1
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑦 now is the edges, it is the flow. Hence the above says that in figure 2.1 network, shown
again below
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Figure 3.33: plot for 2.1.2

That there is now flow over edges 1, 2, 3 (the outer cycle) and flow is only on the inner
edges 4, 5, 6 in opposite direction shown.

3.2.8 Problem 2.1.6

Figure 3.34: Problem description

The first node needs 𝑁 − 1 edges to connect to the other 𝑁. The second node needs 𝑁 − 2
edges to connect to the other nodes. We do not count the first one since it is already
connected by now. The third node needs 𝑁 − 3 edges, and so on. The last node needs no
edges, since by the time it is reach, it already has an edge from all the others to it. Hence

𝑚 = (𝑁 − 1) + (𝑁 − 2) +⋯ + (𝑁 − 𝑁)

=
𝑁
�
𝑖=1
(𝑁 − 𝑖)

=
𝑁
�
𝑖=1
𝑁 −

𝑁
�
𝑖=1
𝑖

= 𝑁2 −
1
2
𝑁 (𝑁 + 1)

= 𝑁2 −
1
2
𝑁2 −

1
2
𝑁

=
1
2
𝑁2 −

1
2
𝑁

Hence

𝑚 =
1
2
𝑁 (𝑁 − 1)
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3.2.9 Problem 2.1.12

Figure 3.35: Problem description

A tree is drawn with arbitrary directions

1

2

3

4

5

grounded

1

2

3
4

Figure 3.36: Tree for problem 2.1.12

Before grounded node 5 the 𝐴 matrix is

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 +1 0 0 0
0 −1 0 +1 0
0 0 −1 +1 0
0 0 0 +1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

When node 5 is grounded, then column 5 is removed, now the matrix becomes

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 +1 0 0
0 −1 0 +1
0 0 −1 +1
0 0 0 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

And its inverse is

𝐴−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 0 +1
0 −1 0 +1
0 0 −1 +1
0 0 0 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.2.10 Problem 2.2.1

Figure 3.37: Problem description
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3.2.10.1 part(a)

𝑄 = 1
2
�𝑦21 +

1
3𝑦

2
2� and constraint 𝑟 = 𝑦1 + 𝑦2 − 8 = 0 hence 𝐿 = 𝑄 + 𝑥𝑟 where 𝑥 here is the

Lagrange multiplier. Hence

𝐿 = 1
2
�𝑦21 +

1
3𝑦

2
2� + 𝑥 �𝑦1 + 𝑦2 − 8�

Therefore
𝜕𝐿
𝜕𝑦1

= 𝑦1 + 𝑥

𝜕𝐿
𝜕𝑦2

=
1
3
𝑦2 + 𝑥

𝜕𝐿
𝜕𝑥

= �𝑦1 + 𝑦2 − 8�

In matrix form it becomes

∇𝐿 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1
0 1

3 1
1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

Solving by Gaussian elimination gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
6
−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.2.10.2 Part(b)

We now compare (1) above to the equilibrium matrix equation given by
⎛
⎜⎜⎜⎜⎝
𝐶−1 𝐴
0 𝐴𝑇𝐶𝐴

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑦
𝑥

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

𝑏
𝑓 − 𝐴𝑇𝐶𝑏

⎞
⎟⎟⎟⎟⎠

Which for 𝑏 = 0 becomes ⎛
⎜⎜⎜⎜⎝
𝐶−1 𝐴
0 𝐴𝑇𝐶𝐴

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑦
𝑥

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
𝑓

⎞
⎟⎟⎟⎟⎠

From the above, and comparing to (1) we see that 𝐴 =
⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ , 𝐶

−1 =
⎛
⎜⎜⎜⎜⎝
1 0
0 1

3

⎞
⎟⎟⎟⎟⎠ , 𝑦 =

⎛
⎜⎜⎜⎜⎝
𝑦1
𝑦2

⎞
⎟⎟⎟⎟⎠ , 𝑓 = 8.

Hence we first solve for 𝑥

𝐴𝑇𝐶𝐴𝑥 = 𝑓

�1 1�
⎛
⎜⎜⎜⎜⎝
1 0
0 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ 𝑥 = 8

4𝑥 = 8
𝑥 = 2

Now the first equation is used to solve for 𝑦

𝐶−1𝑦 + 𝐴𝑥 = 0
𝑦 = 𝐶𝐴𝑥

⎛
⎜⎜⎜⎜⎝
𝑦1
𝑦2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1 0
0 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ 𝑥

⎛
⎜⎜⎜⎜⎝
𝑦1
𝑦2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1 0
0 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ 2
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Hence the optimal 𝑦 is
⎛
⎜⎜⎜⎜⎝
𝑦1
𝑦2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2
6

⎞
⎟⎟⎟⎟⎠

Which is the same as in part(a). At this point, 𝑄 is now evaluated

𝑄min =
1
2 �
𝑦21 +

1
3
𝑦22�

=
1
2 �
22 +

1
3
62�

= 8

The dual quadratic is given on page 101 of the text

−𝑃 (𝑥) = −
1
2
(𝐴𝑥 − 𝑏)𝑇 𝐶 (𝐴𝑥 − 𝑏) − 𝑥𝑇𝑓

And for 𝑏 = 0 it becomes

−𝑃 (𝑥) = −
1
2
𝑥𝑇𝐴𝑇𝐶𝐴𝑥 − 𝑥𝑇𝑓

But from above, 𝐴 =
⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ , 𝐶 =

⎛
⎜⎜⎜⎜⎝
1 0
0 3

⎞
⎟⎟⎟⎟⎠ , 𝑓 = 8 hence

−𝑃 (𝑥) = −
1
2
𝑥𝑇 �1 1�

⎛
⎜⎜⎜⎜⎝
1 0
0 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ 𝑥 − 8𝑥

𝑇

= −
1
2
𝑥𝑇4𝑥 − 8𝑥𝑇

= −2𝑥𝑇𝑥 − 8𝑥𝑇

But 𝑥𝑇𝑥 = 𝑥2 so the above can be written as

−𝑃 (𝑥) = −2𝑥2 − 8𝑥
𝑃 (𝑥) = 𝑥 (2𝑥 + 8)

To find where it is maximum, since 𝑑𝑃
𝑑𝑥 = 0 = 4𝑥 + 8 hence 𝑥 = −2 . Therefore, −𝑃 (𝑥) is

maximized at same 𝑥 where 𝑄 (𝑥) is minimized.

3.2.11 Problem 2.2.2

Figure 3.38: Problem description

𝑄 =
1
2
�𝑦21 + 𝑦22 +⋯+ 𝑦2𝑚�

Constraints in 𝑦1 + 𝑦2 +⋯ + 𝑦𝑚 = 1. Solving for 𝑦1 from the constrains and substitute the
result in 𝑄. Hence

𝑦1 = 1 − �𝑦2 + 𝑦3 +⋯+ 𝑦𝑚�

And 𝑄 becomes

𝑄 =
1
2
��1 − �𝑦2 + 𝑦3 +⋯+ 𝑦𝑚��

2
+ �𝑦22 +⋯+ 𝑦2𝑚��

=
1
2
�1 + �𝑦2 + 𝑦3 +⋯+ 𝑦𝑚�

2
− 2 �𝑦2 + 𝑦3 +⋯+ 𝑦𝑚� + �𝑦22 +⋯+ 𝑦2𝑚��

=
1
2
+
1
2
�𝑦2 + 𝑦3 +⋯+ 𝑦𝑚�

2
− �𝑦2 + 𝑦3 +⋯+ 𝑦𝑚� +

1
2
�𝑦22 +⋯+ 𝑦2𝑚�
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Hence
𝜕𝑄
𝜕𝑦2

= �𝑦2 + 𝑦3 +⋯+ 𝑦𝑚� − 1 + 𝑦2 = 0

𝜕𝑄
𝜕𝑦3

= �𝑦2 + 𝑦3 +⋯+ 𝑦𝑚� − 1 + 𝑦3 = 0

⋮
𝜕𝑄
𝜕𝑦𝑚

= �𝑦2 + 𝑦3 +⋯+ 𝑦𝑚� − 1 + 𝑦𝑚 = 0

The above can be written as

2𝑦2 + 𝑦3 +⋯+ 𝑦𝑚 = 1
𝑦2 + 2𝑦3 +⋯+ 𝑦𝑚 = 1

⋮
𝑦2 + 𝑦3 +⋯+ 2𝑦𝑚 = 1

In matrix form,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 ⋯ 1
1 2 1 ⋯ 1
1 1 2 ⋯ 1
1 1 1 ⋱ 1
1 1 1 ⋯ 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦2
𝑦3
𝑦4
⋮
𝑦𝑚

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
⋮
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Solving this gives

𝑦2 = 𝑦3 = ⋯ = 𝑦𝑚 =
1
𝑚

This was done by solving for 𝑚 = 3, 4, 5⋯ on the computer and seeing the result is always
1
𝑚 . Now we solve for 𝑦1. Since

𝑦1 = 1 − �𝑦2 + 𝑦3 +⋯+ 𝑦𝑚�

Then

𝑦1 = 1 − �
1
𝑚
+
1
𝑚
+⋯+

1
𝑚�

= 1 − (𝑚 − 1)
1
𝑚

= 1 − �1 −
1
𝑚�

=
1
𝑚

Therefore, all 𝑦𝑖 have the value
1
𝑚

Now the last part is solved, which asks to solve the same problem using Lagrange multiplier.
Since there is one constraint, then 𝑛 = 1 and since there are 𝑚 number of 𝑦 variables, there
will be 𝑛 + 𝑚 or 𝑚 + 1 equations.

𝐿 = 𝑄 + 𝑥𝑅

Where 𝑅 is the contraints. The above becomes

𝐿 =
1
2
�𝑦21 + 𝑦22 +⋯+ 𝑦2𝑚� + 𝑥 �𝑦1 + 𝑦2 +⋯+ 𝑦𝑚 − 1�
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Now we take the derivatives and set up the system of equations

𝜕𝐿
𝜕𝑦1

= 𝑦1 + 𝑥 = 0

𝜕𝐿
𝜕𝑦2

= 𝑦2 + 𝑥 = 0

⋮
𝜕𝐿
𝜕𝑦𝑚

= 𝑦𝑚 + 𝑥 = 0

𝜕𝐿
𝜕𝑥

= �𝑦1 + 𝑦2 +⋯+ 𝑦𝑚 − 1� = 0

In matrix form the above is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 ⋯ 1
0 1 0 ⋯ 1
0 0 1 ⋯ 1
0 0 0 ⋱ 1
1 1 1 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑦3
⋮
𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
⋮
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Solving this also gives the same answer as above, which is

𝑦𝑖 =
1
𝑚

and the Lagrange multipler is found, using any of the above equation, such as 𝑦1 + 𝑥 = 0
to be

𝑥 = − 1
𝑚

3.2.12 Problem 2.2.4

Figure 3.39: Problem description

We want to maximize 𝑄 = 4𝑦1 + 4𝑦2 subject to 𝑦21 + 4𝑦22 = 1. Hence

𝐿 = 𝑄 + 𝑥 �𝑦21 + 4𝑦22 − 1�

= 4𝑦1 + 4𝑦2 + 𝑥 �𝑦21 + 4𝑦22 − 1�

And
𝜕𝐿
𝜕𝑦1

= 4 + 2𝑥𝑦1 = 0 (1)

𝜕𝐿
𝜕𝑦2

= 4 + 8𝑥𝑦2 = 0 (2)

𝜕𝐿
𝜕𝑥

= 𝑦21 + 4𝑦22 − 1 = 0 (3)

Or

𝑦1 =
−2
𝑥

(1)

𝑦2 =
−1
2𝑥

(2)

𝑦21 + 4𝑦22 = 1 (3)
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From (1),(2) we see that 𝑦1 = 4𝑦2. Substituting in (3) gives

�4𝑦2�
2
+ 4𝑦22 = 1

16𝑦22 + 4𝑦22 = 1

𝑦2 = ±�
1
20

Hence

𝑦1 = ±�
16
20

= ±
�
4
5

So the corners are �±�
4
5 , ±�

1
20
�. Here is a plot of the ellipse showing the 4 corners given

by the above solution to verify

a = 1;
b = (1/2);
y1 = Sqrt[4/5]; y2 = Sqrt[1/20];
Graphics[
{
Circle[{0, 0}, {a, b}],
{EdgeForm[Thick], LightGray, Rectangle[{-y1, -y2}, {y1, y2}]}
},
Axes -> True]

Figure 3.40: plot for prob 2.2.4

3.2.13 Problem 2.2.6

Figure 3.41: Problem description

From the duality statement on page 100 of the text, we can complete this sentence similarly
by saying

The minimum distance to the surface 𝐴𝑇𝑦 = 𝑓 equals the maximum distance to the
hyperplanes which go through those hyperplanes.
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3.3 HW 3, Due Oct 16, 2014

3.3.1 Problem 2.2.7

Figure 3.42: the Problem statement

The objective function is 1
2 ‖𝑑‖

2 where 𝑑 is the distance from origin the plane. Hence

𝑄�𝑦� = 1
2
�𝑦21 + 𝑦22 + 𝑦23�. The constraint 𝑅 = 𝑦1 + 2𝑦2 + 2𝑦3 − 18. Therefore, the Lagrangian is

𝐿 �𝑦, 𝑥� = 𝑄 �𝑦� + 𝑥𝑅

=
1
2
�𝑦21 + 𝑦22 + 𝑦23� + 𝑥 �𝑦1 + 2𝑦2 + 2𝑦3 − 18�

Now we set up the optimization problem

𝜕𝐿
𝜕𝑦1

= 𝑦1 + 𝑥 = 0

𝜕𝐿
𝜕𝑦2

= 𝑦2 + 2𝑥 = 0

𝜕𝐿
𝜕𝑦3

= 𝑦3 + 2𝑥 = 0

𝜕𝐿
𝜕𝑥

= 𝑦1 + 2𝑦2 + 2𝑦3 − 18

In Matrix form
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 0 2
0 0 1 2
1 2 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑦3
𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
18

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

Comparing the above to the standard form given
⎛
⎜⎜⎜⎜⎝
𝐼 𝐴
𝐴𝑇 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑦
𝑥

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
18

⎞
⎟⎟⎟⎟⎠

We see that 𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. Now we solve (1) using Gaussian elimination

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 0 2
0 0 1 2
1 2 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 0 2
0 0 1 2
0 2 2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 0 2
0 0 1 2
0 0 2 −5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 0 2
0 0 1 2
0 0 0 −9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Hence 𝑈 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 0 2
0 0 1 2
0 0 0 −9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and 𝐿 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
1 2 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. Therefore 𝐿𝑐 = 𝑥 or

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
1 2 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3
𝑐4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
18

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence 𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0, 𝑐4 = 18. Now solving 𝑈𝑥 = 𝑐
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 0 2
0 0 1 2
0 0 0 −9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑦3
𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
18

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence solution is Solution is:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑦3
𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
4
4
−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

So the Lagrangian multiplier is 𝑥 = −2 . Now we can calculate the distance

𝑑 = �𝑦
2
1 + 𝑦22 + 𝑦23

= √22 + 42 + 42

= 6

3.3.2 Problem 2.2.8

Figure 3.43: the Problem statement

3.3.2.1 Part(i)

Let us assume that

𝑦 = 𝑘 × [1, 2, 2]

where 𝑘 is this multiple. This means 𝑦1 = 𝑘, 𝑦2 = 2𝑘, 𝑦2 = 2𝑘. In other words, the vector is

𝑦 = [𝑘, 2𝑘, 2𝑘]

But since the constraint is 𝑦1 + 2𝑦2 + 2𝑦3 = 18 this substituting the values of each 𝑦𝑖 in the
constraint gives

𝑘 + 2 (2𝑘) + 2 (2𝑘) = 18
9𝑘 = 18
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Hence

𝑘 = 2

Using this 𝑘, the vector is

𝑦 = [𝑘, 2𝑘, 2𝑘]
= [2, 4, 4]

Hence the norm of the vector is

�𝑦� = �𝑦
2
1 + 𝑦22 + 𝑦23

= √22 + 42 + 42

= 6

3.3.2.2 Part(ii)

Using

18 ≤ 3 �𝑦� (1)

�𝑦� ≥ 6

Therefore minimum length of 𝑦 must be 6.

In (1), 18 = 𝑓 from the equation 𝐴𝑇𝑦 = 𝑓 and 3 = ‖𝐴‖. This means the

𝑦𝑚𝑖𝑛 =
𝑓
‖𝐴‖

3.3.3 Problem 2.2.9

Figure 3.44: the Problem statement

The primal problem is minimization of 𝑄�𝑦� over 𝑦 (unconstrained optimization), and the

dual problem is maximization of −𝑃 (𝑥) over 𝑥. The minimum of 𝑄�𝑦� is the maximum of
−𝑃 (𝑥). This is the weak duality. In this problem, the point on the line must also be on a
point on the plane since the line is constrained to be on the plane.

So the distance to the plane can not be larger than the distance to the line. The distance
to the plane is represented by −𝑃 (𝑥) and the distance to the the line is represented by 𝑄�𝑦�.
So this leads to

−𝑃 (𝑥) ≤ 𝑄 �𝑦�

3.3.4 Problem 2.2.10

Figure 3.45: the Problem statement

The figure mentioned in the problem is
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Figure 3.46: figure mentioned in problem 2.2.10

To find distance to 𝑆, we need to solve

(distance to S)2 = min
𝑥
(𝐴𝑥 − 𝑏)𝑇 (𝐴𝑥 − 𝑏)

= min
𝑥

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ 𝑥 −

⎛
⎜⎜⎜⎜⎝
15
10

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ 𝑥 −

⎛
⎜⎜⎜⎜⎝
15
10

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

= min
𝑥
(𝑥 − 10)2 + (2𝑥 − 15)2

= min
𝑥
5𝑥2 − 80𝑥 + 325

Hence 𝑑
𝑑𝑥
�5𝑥2 − 80𝑥 + 325� = 10𝑥 − 80 hence 𝑥 = 80

10 = 8. Therefore

𝐴𝑥 =
⎛
⎜⎜⎜⎜⎝
16
8

⎞
⎟⎟⎟⎟⎠

To find 𝑦 we need to solve

(distance to T)2 = min
𝐴𝑇𝑦=0

�𝑏 − 𝑦�2 = min
𝐴𝑇𝑦=0

𝑦𝑇𝑦 − 2𝑏𝑇𝑦 + 𝑏𝑇𝑏

= min
𝐴𝑇𝑦=0

⎛
⎜⎜⎜⎜⎝
𝑦1
𝑦2

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
𝑦1
𝑦2

⎞
⎟⎟⎟⎟⎠ − 2

⎛
⎜⎜⎜⎜⎝
15
10

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
𝑦1
𝑦2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
15
10

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
15
10

⎞
⎟⎟⎟⎟⎠

= 𝑦21 − 30𝑦1 + 𝑦22 − 20𝑦2 + 325

Need to minimize the above subject to 𝐴𝑇𝑦 = 0 or �2 1�
⎛
⎜⎜⎜⎜⎝
𝑦1
𝑦2

⎞
⎟⎟⎟⎟⎠ = 0, or 2𝑦1+𝑦2 = 0. Therefore,

we setup an optimization problem

𝐿 = 𝑄 + 𝑥𝑅

= 𝑦21 − 30𝑦1 + 𝑦22 − 20𝑦2 + 325 + 𝑥 �2𝑦1 + 𝑦2�

And
𝜕𝐿
𝜕𝑦1

= 2𝑦1 − 30 + 2𝑥 = 0

𝜕𝐿
𝜕𝑦2

= 2𝑦2 − 20 + 𝑥 = 0

𝜕𝐿
𝜕𝑥

= 2𝑦1 + 𝑦2 = 0

Hence
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 2
0 2 1
2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

30
20
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Solving gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
2
16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

𝑦 =
⎛
⎜⎜⎜⎜⎝
𝑦1
𝑦2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−1
2

⎞
⎟⎟⎟⎟⎠

Since now we know the optimal 𝐴𝑥 and 𝑦, we can find the lengths.

‖𝐴𝑥‖ =
�
�

⎛
⎜⎜⎜⎜⎝
16
8

⎞
⎟⎟⎟⎟⎠
�
�
= 8√5

and

�𝑦� =
�
�

⎛
⎜⎜⎜⎜⎝
−1
2

⎞
⎟⎟⎟⎟⎠
�
�
= √5

and

‖𝑏‖ =
�
�

⎛
⎜⎜⎜⎜⎝
15
10

⎞
⎟⎟⎟⎟⎠
�
�
= 5√13

Therefore

�8√5�
2
+ �√5�

2
= �5√13�

2

325 = 325

OK, verified.

3.3.5 Problem 2.2.16

Figure 3.47: the Problem statement

The constraint is 𝑥1+𝑥2+⋯+𝑥𝑚 = 1 and the objective function is
1
2 ‖𝑑‖

2 = 1
2
�𝑥21 + 𝑥22 +⋯+ 𝑥2𝑚�.

Hence

𝐿 =
1
2
�𝑥21 + 𝑥22 +⋯+ 𝑥2𝑚� + 𝑥 (𝑥1 + 𝑥2 +⋯+ 𝑥𝑚 − 1)

Setting up

𝜕𝐿
𝜕𝑥1

= 𝑥1 + 𝑥 = 0

𝜕𝐿
𝜕𝑥2

= 𝑥2 + 𝑥 = 0

⋮
𝜕𝐿
𝜕𝑥𝑛

= 𝑥𝑛 + 𝑥 = 0

𝜕𝐿
𝜕𝑥

= 𝑥1 + 𝑥2 +⋯+ 𝑥𝑚 − 1 = 0
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Or in matrix form
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 ⋯ 1
0 1 0 ⋯ 1
0 0 1 ⋯ 1
0 0 ⋯ 1 1
1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
⋮
𝑥𝑚
𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
⋮
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Solving, for specific 𝑚 to be able to see the pattern gives for 𝑚 = 3
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Solution is:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3
1
3
1
3
−1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

So 𝑥𝑖 =
1
𝑚 so the distance is

�𝑥21 + 𝑥22 +⋯+ 𝑥2𝑚� =
�
𝑚�

1
𝑚�

2

= √𝑚

3.3.6 Problem 2.4.1

Figure 3.48: the Problem statement

Figure 2.10 is

Figure 3.49: Figure 2.10 in book

𝑚 is number of bars, and 𝑁 is number of nodes. Truss is stable if 𝑚 ≥ 2𝑁 − 𝑟 where 𝑟 is the
number of constraints. For determining rigid motion and mechanism, we need to solve
𝐴𝑥 = 0 and look at the solutions.
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𝑁 (nodes) 𝑚(bar) 𝑟 𝑛 = 2𝑁 − 𝑟 determinate? 𝑚 = 𝑛 indeterminate? 𝑚 > 𝑛 stable?

1 4 5 4 4 No yes stable

2 4 4 4 4 Yes No stable

3 4 3 4 4 No No mechanism

For case (3), since it is neither determinate nor indeterminate, we need to look at 𝐴𝑥 = 0.
But it is clear that the truss in (3) will not move as a rigid body, but will deform. It is not
stable. The table below summarizes the results.

3.3.7 Problem 2.4.4

Figure 3.50: the Problem statement

1 2

3 4

y1

y2

y3

f 2H

f 2V External 
forces

Internal 
forces

N  4,m  3,r  4

f 1H

f 1V

Figure 3.51: Figure for problem 2.4.4

The 𝐴 matrix is found from 𝐴𝑇𝑦 = 𝑓. where 𝑓 is a column vector of length 4 since there are
2 nodal forces, and each has 2 components. This represents a force at each node. So we
first find 𝐴𝑇. To do this, we resolve internal forces 𝑦 to balance the external nodal forces
𝑓. We assume there are nodal forces only on nodes 1, 2 in the above diagram and that
𝑓3 = 𝑓4 = 0.

Clearly 𝑓1𝑉 = 𝑦1 to make forces balance in the vertical direction at node 1 and that 𝑓2𝑉 = 𝑦3
for similar reason on node 2. On node 1, assuming 𝑦2 is in positive, so in tension, then
−𝑓1𝐻 = 𝑦2 and +𝑓2𝐻 = 𝑦2. If we had assumed 𝑦2 is in the negative direction then we will get
same result but signs reversed.

Therefore

𝑓1𝑉 = 𝑦1
𝑓2𝑉 = 𝑦3
𝑓1𝐻 = −𝑦2
𝑓2𝐻 = 𝑦2
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Hence 𝐴𝑇𝑦 = 𝑓 becomes

𝐴𝑇

�������������⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑦3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓1𝐻
𝑓1𝑉
𝑓2𝐻
𝑓2𝑉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0
−1 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The matrix 𝐴 has rank 3 and the same for 𝐴𝑇. For 𝐴𝑇𝑦 = 𝑓 to have solution, then 𝑓 must
be in the column space of 𝐴𝑇. For solution, (equilibrium) we need ∑𝑓𝑖𝐻 = 0 and ∑𝑓𝑖𝑉 = 0
and moments about a point zero.

3.3.8 Problem 2.4.10

Figure 3.52: the Problem statement

Figure 3.53: Figure for problem 2.4.10

With the new truss as above, the number of bars 𝑚 = 7, and the number of nodes is 𝑁 = 5.
The number of constraints 𝑟 = 4 (two from each support). Hence

𝑛 = 2𝑁 − 𝑟
= 10 − 4
= 6

Therefore 𝑚 > 𝑛 and 𝐴 is not square. Hence not statically determinate.

3.3.9 Problem 2.4.11

Figure 3.54: the Problem statement
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Work over the first bar, of say length 𝐿1 is

𝑊𝑖 = �𝜎1𝜖1𝑑𝑉

= �
𝑦1
𝐴1

𝑒1
𝐿1
𝐴1𝑑𝐿

= 𝑦1
𝑒1
𝐿1
�𝑑𝐿

= 𝑦1
𝑒1
𝐿1
𝐿1

= 𝑦1𝑒1
Therefore, the sum all the truss is 𝑦1𝑒1 + 𝑦2𝑒2 +⋯+ 𝑦𝑚𝑒𝑚 or

𝑊𝑡𝑜𝑡𝑎𝑙 = �𝑦1 𝑦2 ⋯ 𝑦𝑚�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑒1
𝑒2
⋮
𝑒𝑚

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑦𝑇𝑒 (1)

But

𝐴𝑇𝑦 = 𝑓

�𝐴𝑇𝑦�
𝑇
= 𝑓𝑇

𝑦𝑇𝐴 = 𝑓𝑇

𝑦𝑇 = 𝑓𝑇𝐴−1 (2)

Substituting (2) into (1) gives

𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑓𝑇𝐴−1𝑒 (3)

But

𝑒 = 𝐴𝑥

Hence (3) becomes

𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑓𝑇𝐴−1𝐴𝑥
= 𝑓𝑇𝑥

This is an expression of the work done by external forces at nodes. So this says the internal
work equals the external work.

3.3.10 Problem 2.4.12

Figure 3.55: the Problem statement

The potential energy is 𝑃 (𝑥) = 1
2𝑥

𝑇𝐴𝑇𝐶𝐴𝑥 − 𝑓𝑇𝑥. This is minimum at 𝐴𝑇𝐶𝐴𝑥 = 𝑓. Hence

𝑃min (𝑥) =
1
2
𝑥𝑇𝐴𝑇𝐶𝐴𝑥 − �𝐴𝑇𝐶𝐴𝑥�

𝑇
𝑥

=
1
2
𝑥𝑇𝐴𝑇𝐶𝐴𝑥 − 𝑥𝑇𝐴𝑇𝐶𝑇𝐴𝑥

But 𝐶 = 𝐶𝑇 since diagonal matrix, then

𝑃min (𝑥) = −
1
2
𝑥𝑇𝐴𝑇𝐶𝐴𝑥

−𝑃min (𝑥) =
1
2
𝑥𝑇𝐴𝑇𝐶𝐴𝑥

But strain energy is the quadratic term in 𝑃 (𝑥), which is 1
2𝑥

𝑇𝐴𝑇𝐶𝐴𝑥. Hence they are the
same, which is what we are asked to show.
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3.3.11 Problem 2.4.17

Figure 3.56: the Problem statement

If we have a bar 1, then the elongation is due to total motion of bar two nodes due to
motion of all bar attached as was shown on page 124 of the text, which is

𝑒1 = 𝑥1 cos𝜃1 − 𝑥3 cos𝜃1 + 𝑥2 sin𝜃1 − 𝑥4 sin𝜃1
The second bar 2 which could have one joint common with the bar 1, say (𝑥3, 𝑥4) displace-
ment, will then add to these when bar 2 itself deforms. Hence for bar 2 we have

𝑒2 = 𝑥5 cos𝜃2 − 𝑥3 cos𝜃2 + 𝑥6 sin𝜃2 − 𝑥4 sin𝜃2
Where in the above 𝑥3, 𝑥4 are kept the same as bar 1 since the joint is common. Now if bar
3 had joint (𝑥1, 𝑥2) common with bar 1, it will have

𝑒3 = 𝑥1 cos𝜃3 − 𝑥7 cos𝜃3 + 𝑥2 sin𝜃3 − 𝑥8 sin𝜃3
When assembling the 𝐴𝑥 matrix the pattern given should result using trigonometric rela-
tions.
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3.4 HW 4, Due Oct 30, 2014

3.4.1 Problem 3.1.1

Figure 3.57: the Problem statement

x

0

1


x

1

fdx

Notice, we integrate 
from 1 to x, to pick 
up the natural 
boundary conditions 
at x=1

Figure 3.58: Figure for 3.1.1

Starting with the di�erential equation for 𝑢 (which is the longitudinal deformation of the
bar along the 𝑥 axis)

−𝑐
𝑑2𝑢
𝑑𝑥2

= 𝑓 (𝑥)

And using 𝑓 (𝑥) = 1 − 𝑥 and integrating both sides gives

−𝑐
1

�
𝑥

𝑑2𝑢
𝑑𝜏2

𝑑𝜏 =
1

�
𝑥

(1 − 𝜏) 𝑑𝜏

−𝑐 �
𝑑𝑢
𝑑𝜏�

1

𝑥
= �𝜏 −

𝜏2

2 �
1

𝑥

But 𝑑𝑢
𝑑𝑥 = 𝑤, and 𝑤 (1) = 0, hence the above becomes

−𝑐 [𝑒 (1) − 𝑒 (𝑥)] = ��1 −
12

2 �
− �𝑥 −

𝑥2

2 ��

But 𝑐𝑒 = 𝑤, hence the above can be written as

− [𝑤 (1) − 𝑤 (𝑥)] =
1
2
− 𝑥 +

𝑥2

2
But 𝑤 (1) = 0, hence

𝑤 (𝑥) =
1
2
− 𝑥 +

𝑥2

2
To find 𝑢 (𝑥) , we use the relation that

𝑐
𝑑𝑢
𝑑𝑥

= 𝑤 (𝑥)

This is the same as 𝑐𝑒 = 𝑤 (𝑥), since strain 𝑒 = 𝑑𝑢
𝑑𝑥 . So we integrate one more time, but this

time, we integrate from 0 to 𝑥 instead from 1 to 𝑥. This is in order to pick up the essential
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boundary conditions on 𝑢 at 𝑥 = 0, since 𝑢 (1) is not known, it would be an error to use the
first integration limits used earlier above. Hence

𝑥

�
0

𝑐
𝑑𝑢
𝑑𝜏
𝑑𝜏 =

𝑥

�
0

𝑤 (𝜏) 𝑑𝜏

𝑐
𝑥

�
0

𝑑𝑢
𝑑𝜏
𝑑𝜏 =

𝑥

�
0

1
2
− 𝜏 +

𝜏2

2
𝑑𝜏

𝑐 [𝑢]𝑥0 = ��
𝜏
2
−
𝜏2

2
+
𝜏3

6 ��
𝑥

0

𝑐 (𝑢 (𝑥) − 𝑢 (0)) = �
𝑥
2
−
𝑥2

2
+
𝑥3

6 �

But 𝑢 (0) = 0 since fixed there. This is the essential boundary conditions we are give. The
above now simplifies to

𝑢 (𝑥) =
1
𝑐 �
𝑥
2
−
𝑥2

2
+
𝑥3

6 �

3.4.2 Problem 3.1.2

Figure 3.59: the Problem statement

Since 𝑐𝑒 = 𝑤 (𝑥), then 𝑤 (𝑥) = (1 − 𝑥) 𝑒 and since 𝑒 = 𝑑𝑢
𝑑𝑥 then

𝑤 (𝑥) = (1 − 𝑥)
𝑑𝑢
𝑑𝑥

But −𝑑𝑤
𝑑𝑥 = 𝑓, hence integrating both sides gives

−
1

�
𝑥

𝑑𝑤
𝑑𝜏
𝑑𝜏 =

1

�
𝑥

𝑓𝑑𝜏

− [𝑤]1𝑥 = 𝑓
1

�
𝑥

𝑑𝜏

− (𝑤 (1) − 𝑤 (𝑥)) = 𝑓 (1 − 𝑥)

But 𝑤 (1) = 0 , hence

𝑤 (𝑥) = 𝑓 (1 − 𝑥)

We found from above that 𝑤 (𝑥) = (1 − 𝑥) 𝑑𝑢𝑑𝑥 , therefore

(1 − 𝑥)
𝑑𝑢
𝑑𝑥

= 𝑓 (1 − 𝑥)

𝑑𝑢
𝑑𝑥

= 𝑓

Integrating one more time to find 𝑢 (𝑥)

�
𝑥

0

𝑑𝑢
𝑑𝜏
𝑑𝜏 = �

𝑥

0
𝑓𝑑𝜏

[𝑢]𝑥0 = 𝑓𝑥
𝑢 (𝑥) − 𝑢 (0) = 𝑓𝑥

But 𝑢 (0) = 0, hence

𝑢 (𝑥) = 𝑓𝑥
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3.4.3 Problem 3.1.4

Figure 3.60: the Problem statement

Since −𝑑𝑤
𝑑𝑥 = 𝑓, then integrating from 0 to 1, gives

−
1

�
0

𝑑𝑤
𝑑𝜏
𝑑𝜏 =

1

�
0

𝑓𝑑𝜏

− [𝑤 (1) − 𝑤 (0)] =
1

�
0

𝑓𝑑𝜏

If 𝑤 (1) = 0 and 𝑤 (0) = 0, then this implies
1

�
0

𝑓𝑑𝜏 = 0

Therefore the only possibility for solution is that
1

�
0

𝑓𝑑𝜏 = 0. For example, a constant none

zero 𝑓 will not work, since this will result in 𝑓 = 0 which is a contradiction.

3.4.4 Problem 3.1.5

Figure 3.61: the Problem statement

The general solution is 𝑢 = 𝑢ℎ+𝑢𝑝. For the homogeneous solution 𝑢ℎ = 𝐴+𝐵𝑥, now we find
the particular solution. By inspection we see that 𝑢𝑝 = −𝑒𝑥 satisfies the di�erential equation.
Hence

𝑢 = 𝐴 + 𝐵𝑥 − 𝑒𝑥

We now apply the boundary conditions to find 𝐴,𝐵. At 𝑥 = 0,

0 = 𝐴 − 𝑒0

0 = 𝐴 − 1
𝐴 = 1

Therefore 𝑢 = 1 + 𝐵𝑥 − 𝑒𝑥. At 𝑢 = 1 we find

0 = 1 + 𝐵 − 𝑒1

𝐵 = 𝑒 − 1

Hence the solution is

𝑢 = 1 + (𝑒 − 1) 𝑥 − 𝑒𝑥
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3.4.5 Problem 3.1.6

Figure 3.62: the Problem statement

Using −𝑑𝑤
𝑑𝑥 = 𝑓, integrating both sides

−
1

�
𝑥

𝑑𝑤
𝑑𝜏
𝑑𝜏 =

1

�
𝑥

𝑓𝑑𝜏

− [𝑤 (𝜏)]1𝑥 = (1 − 𝑥) 𝑓
− (𝑤 (1) − 𝑤 (𝑥)) = (1 − 𝑥) 𝑓

𝑤 (𝑥) = (1 − 𝑥) 𝑓

Since 𝑤 (1) = 0 . Now we use 𝑐𝑒 = 𝑤 (𝑥) to solve for 𝑢. Since 𝑒 = 𝑑𝑢
𝑑𝑥 . For 0 ≤ 𝑥 ≤

1
2 we solve,

using 𝑐 = 1

𝑐
𝑑𝑢
𝑑𝑥

= (1 − 𝑥) 𝑓
𝑥

�
0

𝑑𝑢
𝑑𝜏
𝑑𝜏 =

𝑥

�
0

(1 − 𝜏) 𝑓𝑑𝜏

[𝑢 (𝜏)]𝑥0 = 𝑓 �𝜏 −
𝜏2

2 �
𝑥

0

𝑢 (𝑥) − 𝑢 (0) = 𝑓 �𝑥 −
𝑥2

2 �

But 𝑢 (0) = 0, hence the solution is

𝑢 (𝑥) = 𝑓 �𝑥 −
𝑥2

2 �
0 ≤ 𝑥 ≤

1
2

(1)

We now integrate over the second half, where 𝑐 = 2

𝑐
𝑑𝑢
𝑑𝑥

= (1 − 𝑥) 𝑓
𝑥

�
1
2

2
𝑑𝑢
𝑑𝜏
𝑑𝜏 =

𝑥

�
1
2

(1 − 𝜏) 𝑓𝑑𝜏

2 [𝑢 (𝜏)]𝑥1
2
= 𝑓 �𝜏 −

𝜏2

2 �
𝑥

1
2

2 �𝑢 (𝑥) − 𝑢 �
1
2��

= 𝑓

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
�𝑥 −

𝑥2

2 �
−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
−
�1
2
�
2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2𝑢 (𝑥) − 2𝑢 �
1
2�
= 𝑓 �−

1
2
𝑥2 + 𝑥 −

3
8�

(2)
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To find 𝑢 �12� we use the earlier solution (1) above 𝑢 �12� = 𝑓

⎛
⎜⎜⎜⎜⎜⎜⎝
1
2 −

� 12 �
2

2

⎞
⎟⎟⎟⎟⎟⎟⎠ = 3

8𝑓, hence (2)

becomes

2𝑢 (𝑥) −
3
4
𝑓 = �−

1
2
𝑥2 + 𝑥 −

3
8�
𝑓

2𝑢 (𝑥) = �−
1
2
𝑥2 + 𝑥 −

3
8
+
3
4�
𝑓

𝑢 (𝑥) = �−
1
4
𝑥2 +

1
2
𝑥 +

3
16�

𝑓

To verify, let us check that 𝑢 (𝑥) = 3
8𝑓 also using the second solution above. Let 𝑥 = 1

2 in the
above, we find

𝑢 �
1
2�
=
⎛
⎜⎜⎜⎜⎝−
1
4 �

1
2�

2

+
1
2
1
2
+
3
16

⎞
⎟⎟⎟⎟⎠ 𝑓

=
3
8

Therefore the solution 𝑢 (𝑥) is continuous and smooth at 𝑥 = 1
2 where the elasticity changes.

This is a plot of the solution

Figure 3.63: Figure for 3.1.6

3.4.6 Problem 3.2.2

Figure 3.64: the Problem statement
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The general form of 𝑃 (𝑢 (𝑥)) is

𝑃 (𝑢 (𝑥)) =
1

�
0

⎡
⎢⎢⎢⎢⎣
1
2
𝐶 �

𝑑𝑢 (𝑥)
𝑑𝑥 �

2

− 𝑓 (𝑥) 𝑢 (𝑥)
⎤
⎥⎥⎥⎥⎦ 𝑑𝑥 (1)

We will use theorem proved in class that function �̄� (𝑥) minimizes 𝑝 (�̄�) i�
1

�
0

𝐶
𝑑�̄�
𝑑𝑥
𝑑𝑣
𝑑𝑥
− 𝑓𝑣𝑑𝑥 = 0

For any test function 𝑣 (𝑥). However, this test function must satisfy the essential conditions
on 𝑢 (𝑥). Therefore, since we are told 𝑢 (1) = 𝑢 (0) = 0, then it follows that 𝑣 (1) = 𝑣 (0) = 0.
Now we apply Integration by part to (1)

�𝐶
𝑑�̄�
𝑑𝑥
𝑣�

1

0
− 𝐶

1

�
0

𝑑2�̄�
𝑑𝑥2

𝑣𝑑𝑥 −
1

�
0

𝑓𝑣𝑑𝑥 = 0

𝐶 �
𝑑�̄�
𝑑𝑥
�
𝑥=1

𝑣 (1) −
𝑑�̄�
𝑑𝑥
�
𝑥=0

𝑣 (0)� − 𝐶
1

�
0

𝑑2�̄�
𝑑𝑥2

𝑣𝑑𝑥 −
1

�
0

𝑓𝑣𝑑𝑥 = 0

Since 𝑣 (1) = 𝑣 (0) = 0 the above reduces to

−𝐶
1

�
0

𝑑2�̄�
𝑑𝑥2

𝑣𝑑𝑥 =
1

�
0

𝑓𝑣𝑑𝑥

Since 𝑣 (𝑥) is arbitrary function (other than having the same essential boundary conditions
as 𝑢 (𝑥)) then the above implies

−𝐶
𝑑2�̄�
𝑑𝑥2

= 𝑓 (2)

Now we can apply this result to the problem at hand, which is to find �̄� which minimizes

𝑝 (𝑢) =
1

�
0

⎡
⎢⎢⎢⎢⎣
1
2 �
𝑑𝑢
𝑑𝑥�

2

+ 𝑥𝑢
⎤
⎥⎥⎥⎥⎦ 𝑑𝑥 (3)

By comparing (3) and (1), we see that 𝐶 = 1 and 𝑓 = −𝑥, hence from (2), we need to solve

−
𝑑2�̄�
𝑑𝑥2

= −𝑥

or
𝑑2�̄�
𝑑𝑥2

= 𝑥 (4)

With the boundary conditions �̄� (0) = �̄� (1) = 0. The homogeneous solution to (4) is �̄�ℎ (𝑥) =
𝐴𝑥 + 𝐵. Let the particular solution be �̄�𝑝 (𝑥) = 𝑐1𝑥3, then applying this to (4) gives

6𝑐1𝑥 = 𝑥

Hence 𝑐1 =
1
6 and �̄�𝑝 (𝑥) =

1
6𝑥

3. Therefore the general solution is

�̄� (𝑥) = �̄�ℎ (𝑥) + �̄�𝑝 (𝑥)

= 𝐴𝑥 + 𝐵 +
1
6
𝑥3

We now apply the essential conditions on the above. Which results in two equations to
solve for 𝐴,𝐵

�̄� (0) = 0 = 𝐵

�̄� (1) = 0 = 𝐴 +
1
6

Hence 𝐵 = 0,𝐴 = −1
6 , and the solution is

�̄� (𝑥) = −
1
6
𝑥 +

1
6
𝑥3

or

�̄� (𝑥) = −
𝑥
6
�1 − 𝑥2�
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3.4.7 Problem 3.2.3

Figure 3.65: the Problem statement

We need to find �̄� (𝑥) which minimizes the functional 𝑄 (𝑤 (𝑥)) =
1

�
0

𝑤2

2 𝑑𝑥 with constraint

𝑑𝑤
𝑑𝑥 = 𝑥. Since we have a constraint, we need to set up a Lagrangian minimization. Hence
we want to minimize

𝐿 (𝑤, 𝜆) =
1

�
0

𝑤2

2
− 𝜆 �

𝑑𝑤
𝑑𝑥

+ 𝑥� 𝑑𝑥

Where 𝜆 is the Lagrangian. Now we follow the standard method, but work with 𝐿 instead
of 𝑄.

𝐿 ((𝑤 + 𝑣) , 𝜆) = 𝐿 (𝑤, 𝜆) +
𝛿𝐿 (𝑤, 𝜆)
𝛿𝑥

𝑣 +⋯

Hence
𝛿𝐿 (𝑤, 𝜆)
𝛿𝑥

𝑣 = 𝐿 ((𝑤 + 𝑣) , 𝜆) − 𝐿 (𝑤, 𝜆)

=
1

�
0

(𝑤 + 𝑣)2

2
− 𝜆 �

𝑑 (𝑤 + 𝑣)
𝑑𝑥

+ 𝑥� 𝑑𝑥 −
1

�
0

𝑤2

2
− 𝜆 �

𝑑𝑤
𝑑𝑥

+ 𝑥� 𝑑𝑥

=
1

�
0

1
2
�𝑤2 + 𝑣2 + 2𝑣𝑤� − 𝜆 �

𝑑𝑤
𝑑𝑥

+
𝑑𝑣
𝑑𝑥
+ 𝑥� −

𝑤2

2
+ 𝜆 �

𝑑𝑤
𝑑𝑥

+ 𝑥� 𝑑𝑥

=
1

�
0

1
2
�𝑣2 + 2𝑣𝑤� − 𝜆

𝑑𝑣
𝑑𝑥
𝑑𝑥

=
1

�
0

1
2
𝑣2𝑑𝑥 +

1

�
0
�𝑣𝑤 − 𝜆

𝑑𝑣
𝑑𝑥�

𝑑𝑥

But for small variation 𝑣 the term
1

�
0

1
2𝑣

2𝑑𝑥 is always positive and can be made as small as

needed. Hence we ignore it, and what is left is

𝛿𝐿 (𝑤, 𝜆)
𝛿𝑥

𝑣 =
1

�
0
�𝑣𝑤 − 𝜆

𝑑𝑣
𝑑𝑥�

𝑑𝑥

Since we want 𝛿𝐿(𝑤,𝜆)
𝛿𝑥 = 0 for a minimum, and the above must be valid for any non trivial

𝑣 then
1

�
0
�𝑣𝑤 − 𝜆

𝑑𝑣
𝑑𝑥�

𝑑𝑥 = 0
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Applying integration by parts to
1

�
0

𝜆𝑑𝑣
𝑑𝑥𝑑𝑥 where ∫𝑢𝑑𝑣 = [𝑢𝑣] − ∫ 𝑣𝑑𝑢. Let 𝑢 = 𝜆, 𝑑𝑣 = 𝑑𝑣

𝑑𝑥 ,

hence the above becomes

0 =
1

�
0
�𝑣𝑤 − 𝜆

𝑑𝑣
𝑑𝑥�

𝑑𝑥

=
1

�
0

𝑣𝑤 𝑑𝑥 −

by parts

�����������1

�
0

𝜆
𝑑𝑣
𝑑𝑥
𝑑𝑥

=
1

�
0

𝑣𝑤 𝑑𝑥 −

⎡
⎢⎢⎢⎢⎢⎣(𝜆𝑣)

1
0 −

1

�
0

𝑑𝜆
𝑑𝑥
𝑣𝑑𝑥

⎤
⎥⎥⎥⎥⎥⎦

Assuming 𝑣 (0) = 𝑣 (1) = 0, then the above reduces to
1

�
0

𝑣𝑤 +
𝑑𝜆
𝑑𝑥
𝑣𝑑𝑥 = 0

1

�
0
�𝑤 +

𝑑𝜆
𝑑𝑥 �

𝑣𝑑𝑥 = 0

Since this is valid for any 𝑣 , therefore

𝑤 +
𝑑𝜆
𝑑𝑥

= 0

Hence the 𝑤 (𝑥) which minimizes
1

�
0

𝑤2

2 𝑑𝑥 with constraint 𝑑𝑤
𝑑𝑥 = 𝑥 is

𝑤 (𝑥) = −
𝑑𝜆
𝑑𝑥

3.4.8 Problem 3.2.10

Figure 3.66: the Problem statement

For a beam, the equation of deflection is 𝑢(4) = 1. The solution is given by integrating 4
times resulting in

𝑢′′′ (𝑥) = 𝑥 + 𝑐1

𝑢′′ =
𝑥2

2
+ 𝑐1𝑥 + 𝑐2

𝑢′ =
𝑥3

6
+ 𝑐1

𝑥2

2
+ 𝑐2𝑥 + 𝑐3

𝑢 =
𝑥4

24
+ 𝑐1

𝑥3

6
+ 𝑐2

𝑥2

2
+ 𝑐3𝑥 + 𝑐4

Since 𝑢 (0) = 0 then 𝑐4 = 0 and since 𝑢′ (0) = 0 then 𝑐3 = 0, hence

𝑢 (𝑥) =
𝑥4

24
+ 𝑐1

𝑥3

6
+ 𝑐2

𝑥2

2
Now, assuming the beam has length 1. Then on the other end, we have also 𝑢 (1) = 0, then

𝑢 (1) = 0 =
1
24
+ 𝑐1

1
6
+ 𝑐2

1
2

(1)

And since also 𝑢′ (1) = 0, then

𝑢′ (1) = 0 =
1
6
+ 𝑐1

1
2
+ 𝑐2 (2)
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From (1) and (2) we can solve for 𝑐2, 𝑐1, giving 𝑐2 =
1
12 , 𝑐1 = −

1
2 , hence

𝑢 (𝑥) =
𝑥4

24
−
1
12
𝑥3 +

1
24
𝑥2

Now we can find 𝑀(𝑥) since 𝑀(𝑥) = 𝑐𝑑
2𝑢
𝑑𝑥2 , hence

𝑀(𝑥) =
𝑥2

2
−
1
2
𝑥 +

1
12

If we had used 𝑀 = 𝑢′′ directly (from page 173 on text, where 𝑐 = 1 now), then the solution
would be

𝑀𝑥 + 𝑐1 = 𝑢′

𝑀𝑥2

2
+ 𝑐1𝑥 + 𝑐2 = 𝑢

At 𝑢 (0) = 0 then 𝑐2 = 0, hence 𝑀𝑥2

2 + 𝑐1𝑥 = 𝑢 and from 𝑢 (1) = 0 we obtain 𝑀
2 + 𝑐1 = 0 or

𝑀 = − 𝑐1
2 . But we are now stuck since we can’t find 𝑐1.

So to find 𝑀, we must first find 𝑢 (𝑥) and then find 𝑀 = 𝑐𝑢′′ after solving for 𝑢 completely.

3.4.9 Problem 3.2.12

Figure 3.67: the Problem statement

For a beam, the equation of deflection is 𝑢(4) = 0. The solution is given by integrating 4
times resulting in

𝑢′′′ (𝑥) = 𝑐1
𝑢′′ = 𝑐1𝑥 + 𝑐2

𝑢′ = 𝑐1
𝑥2

2
+ 𝑐2𝑥 + 𝑐3

𝑢 = 𝑐1
𝑥3

6
+ 𝑐2

𝑥2

2
+ 𝑐3𝑥 + 𝑐4

For 𝑢 (0) = 0 gives 𝑐4 = 0 and 𝑢′ (0) = 1 gives 𝑐3 = 1 and 𝑢 (1) = 0 gives 0 = 𝑐1
1
6 + 𝑐2

1
2 + 1 and

𝑢′ (1) = −1 gives −1 = 𝑐1
1
2 + 𝑐2 + 1

Hence we need to solve these

−1 = 𝑐1
1
2
+ 𝑐2 + 1

0 = 𝑐1
1
6
+ 𝑐2

1
2
+ 1

For 𝑐1, 𝑐2. The solution is: 𝑐1 = 0, 𝑐2 = −2. Hence

𝑢 (𝑥) = −𝑥2 + 𝑥

A plot is

59



3.4. HW 4, Due Oct 30, 2014 CHAPTER 3. HWS

Figure 3.68: Plot for 3.2.12

3.4.10 Problem 3.3.3

Figure 3.69: the Problem statement

3.4.11 Problem 3.3.4

Figure 3.70: the Problem statement

3.4.12 Problem 3.3.5

Figure 3.71: the Problem statement
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3.5 HW 5, Due Nov 20, 2014

3.5.1 Problem 4.1.1(d)

Figure 3.72: the Problem statement

𝑓 (𝑥) = 𝑒𝑥 =
∞
�
𝑘=−∞

𝑐𝑘𝑒𝑖𝑘𝑥 (1)

Where

𝑐𝑘 =
1
2𝜋

𝜋

�
−𝜋

𝑒𝑥𝑒−𝑖𝑘𝑥𝑑𝑥

=
1
2𝜋

𝜋

�
−𝜋

𝑒(1−𝑖𝑘)𝑥𝑑𝑥

=
1
2𝜋 �

𝑒(1−𝑖𝑘)𝑥

1 − 𝑖𝑘 �
𝜋

−𝜋

=
1

𝜋 (1 − 𝑖𝑘) �
𝑒𝜋(1−𝑖𝑘) − 𝑒−𝜋(1−𝑖𝑘)

2 �

But 𝑒𝑧

2 −
𝑒−𝑧

2 = sinh (𝑧), hence the above reduces to

𝑐𝑘 =
1

𝜋 (1 − 𝑖𝑘)
sinh (𝜋 (1 − 𝑖𝑘)) (2)

Substituting (2) into (1) gives

𝑒𝑥 =
∞
�
𝑘=−∞

1
𝜋 (1 − 𝑖𝑘)

sinh (𝜋 (1 − 𝑖𝑘)) 𝑒𝑖𝑘𝑥

Here are few terms in the series generated using symbolic software:

ClearAll[x, k, n, f, ck]
ck[k_, x_] := 1/(2 Pi) Integrate[Exp[x] Exp[-I k x], {x, -Pi, Pi}]
f[k_, x_] := ck[k, x]*Exp[I k x];
term[n_] := If[n == 0, N@f[0, x], N@Simplify@ComplexExpand[f[-n, x] + f[n, x]]]
tbl = Table[{k, Simplify@TrigToExp@ck[k, x]}, {k, -5, 5, 1}];
Grid[Join[{{"k", "C_k"}}, tbl], Frame -> All]
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𝑘 𝐶𝑘

−5 (1−5𝑖)𝑒−𝜋−(1−5𝑖)𝑒𝜋

52𝜋

−4
� 1
34−

2𝑖
17 �𝑒

−𝜋�𝑒2𝜋−1�

𝜋
−3 (1−3𝑖)𝑒−𝜋−(1−3𝑖)𝑒𝜋

20𝜋

−2
� 1
10−

𝑖
5 �𝑒

−𝜋�𝑒2𝜋−1�

𝜋

−1 −
� 14−

𝑖
4 �𝑒

−𝜋�𝑒2𝜋−1�

𝜋
0 − 𝑒−𝜋−𝑒𝜋

2𝜋
1 (1+𝑖)𝑒−𝜋−(1+𝑖)𝑒𝜋

4𝜋

2
� 1
10+

𝑖
5 �𝑒

−𝜋�𝑒2𝜋−1�

𝜋
3 (1+3𝑖)𝑒−𝜋−(1+3𝑖)𝑒𝜋

20𝜋

4
� 1
34+

2𝑖
17 �𝑒

−𝜋�𝑒2𝜋−1�

𝜋
5 (1+5𝑖)𝑒−𝜋−(1+5𝑖)𝑒𝜋

52𝜋

Here is a plot of Fourier series of 𝑒𝑥 for 𝑘 increasing range to compare with 𝑒𝑥. To generate
this plot the terms with 𝑐−𝑘+𝑐𝑘 were added in order together to obtain a real valued function
before plotting. Plotting was done from 𝑥 = −𝜋⋯𝜋. We see as more terms are added, the
approximation improves. At 20 terms, the approximations became very good. Here is the
plot

ck = 1/(2 Pi) Integrate[Exp[x] Exp[-I k1 x], {x, -Pi, Pi}]
f[k_] := (ck /. k1 -> k)*Exp[I k x];
fs[n_] := Sum[Simplify[f[-k] + f[k]], {k, 1, n}] + f[0];
tbl = Table[Plot[{fs[n], Exp[x]}, {x, -Pi, Pi}, Frame -> True, Axes -> False,
FrameLabel -> {{"f(x)", None},
{"x", Row[{"Using " <> ToString[n] <> " terms"}]}},
PlotStyle -> {Dashed, Red}], {n, 1, 20, 1}];
Grid[Partition[tbl, 4]]
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Figure 3.73: Plot for problem 4.1.1

The even part of 𝑒𝑥 are given by 𝑒𝑥+𝑒−𝑥

2 = cosh 𝑥 and the odd part is 𝑒𝑥−𝑒−𝑥

2 = sinh 𝑥. For 𝑒𝑖𝑥,

the even part is 𝑒𝑖𝑥+𝑒−𝑖𝑥

2 = cos 𝑥 and the odd part is 𝑒𝑖𝑥−𝑒−𝑖𝑥

2 = 𝑖 sin 𝑥

3.5.2 Problem 4.1.2

Figure 3.74: the Problem statement

3.5.2.1 Part (a)

Since 𝑓 (−𝜋) = −𝑓 (−𝜋) then 𝑓 (𝑥) is an odd function. For an odd function all the 𝑎𝑘 = 0 since
these go with the even part.

3.5.2.2 Part(b)

𝑏𝑘 =
1
𝜋

𝜋

�
−𝜋

𝑓 (𝑥) sin (𝑘𝑥) 𝑑𝑥

=
1
𝜋

⎛
⎜⎜⎜⎜⎜⎝

0

�
−𝜋

𝑓 (𝑥) sin (𝑘𝑥) 𝑑𝑥 +
𝜋

�
0

𝑓 (𝑥) sin (𝑘𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎠

=
1
𝜋

⎛
⎜⎜⎜⎜⎜⎝

0

�
−𝜋

− sin (𝑘𝑥) 𝑑𝑥 +
𝜋

�
0

sin (𝑘𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎠
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Changing the limits of integration changes the sign, hence the above can be written as

𝑏𝑘 =
1
𝜋

⎛
⎜⎜⎜⎜⎜⎝

𝜋

�
0

sin (𝑘𝑥) 𝑑𝑥 +
𝜋

�
0

sin (𝑘𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎠

=
2
𝜋

𝜋

�
0

sin (𝑘𝑥) 𝑑𝑥

=
2
𝜋 �

− cos 𝑘𝑥
𝑘 �

𝜋

0

=
−2
𝜋𝑘

[cos 𝑘𝑥]𝜋0

=
−2
𝜋𝑘

[cos 𝑘𝜋 − cos 0]

=
2
𝜋𝑘

(1 − cos 𝑘𝜋) 𝑘 = 1, 2, 3,⋯

Hence

𝑏𝑘 =

⎧⎪⎪⎨
⎪⎪⎩

4
𝜋𝑘 𝑘 = 1, 3, 5,⋯
0 𝑘 = 2, 4, 6,⋯

Hence using 𝑓 (𝑥) =
∞
�
𝑘=1
𝑏𝑘 sin 𝑘𝑥, we can write the Fourier series of 𝑓 (𝑥) as

𝑓 (𝑥) =
∞
�

𝑘=1,3,⋯

4
𝜋𝑘

sin 𝑘𝑥

=
4
𝜋

sin 𝑥 + 4
3𝜋

sin 3𝑥 + 4
5𝜋

sin 5𝑥 +⋯

=
4
𝜋 �

sin 𝑥 + 1
3

sin 3𝑥 + 1
5

sin 5𝑥 +⋯�

Here is a plot showing the Fourier series approximation to the square wave from 𝑥 = −𝜋⋯𝜋
as more terms are added

Clear[f, k, x];
f[x_, k_] := Sum[2/(Pi n) (1 - Cos[n Pi]) Sin[n x], {n, 1, k}];
tbl = Partition[Table[
Plot[{Sign[x], f[x, k]}, {x, -Pi, Pi},
Exclusions -> None, PlotLabel -> Row[{"k=", k}],
PlotStyle -> {Thin, Red}], {k, 1, 20,2}], 3];
Grid[tbl, Frame -> All]
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Figure 3.75: Plot for problem 4.1.2

3.5.3 Problem 4.1.3

Figure 3.76: the Problem statement

3.5.3.1 Part(a)

We first need to determine the Fourier series for 𝛿 (𝑥) and 𝛿 (𝑥 + 𝜋). For 𝛿 (𝑥) we find

𝑎0 =
1
2𝜋

𝜋

�
−𝜋

𝛿 (𝑥) 𝑑𝑥 =
1
2𝜋

𝑎𝑘 =
1
𝜋

𝜋

�
−𝜋

𝛿 (𝑥) cos 𝑘𝑥𝑑𝑥 = 1
𝜋

(since cos 0 = 1)

𝑏𝑘 =
1
𝜋

𝜋

�
−𝜋

𝛿 (𝑥) sin 𝑘𝑥𝑑𝑥 = 0 (since sin 0 = 0)

Hence

𝛿 (𝑥) =
1
2𝜋

+
∞
�
𝑘=1
𝑎𝑘 cos 𝑘𝑥

=
1
2𝜋

+
1
𝜋

∞
�
𝑘=1

cos 𝑘𝑥

=
1
2𝜋

+
1
𝜋
(cos 𝑥 + cos 2𝑥 + cos 3𝑥 +⋯)
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Now to determine Fourier series for 𝛿 (𝑥 + 𝜋)

𝑎0 =
1
2𝜋

𝜋

�
−𝜋

𝛿 (𝑥 + 𝜋) 𝑑𝑥 =
1
2𝜋

𝑎𝑘 =
1
𝜋

𝜋

�
−𝜋

𝛿 (𝑥 + 𝜋) cos 𝑘𝑥𝑑𝑥 =
(−1)𝑘

𝜋
(since cos (−𝑘𝜋) = cos 𝑘𝜋 = (−1)𝑘)

𝑏𝑘 =
1
𝜋

𝜋

�
−𝜋

𝛿 (𝑥) sin 𝑘𝑥𝑑𝑥 = 0 (since sin (−𝑘𝜋) = 0)

Hence

𝛿 (𝑥 + 𝜋) =
1
2𝜋

+
∞
�
𝑘=1
𝑎𝑘 cos 𝑘𝑥

=
1
2𝜋

+
1
𝜋

∞
�
𝑘=1

(−1)𝑘 cos 𝑘𝑥

=
1
2𝜋

+
1
𝜋
(− cos 𝑥 + cos 2𝑥 − cos 3𝑥 +⋯)

Therefore

2𝛿 (𝑥) − 2𝛿 (𝑥 + 𝜋) = 2 �
1
2𝜋

+
1
𝜋
(cos 𝑥 + cos 2𝑥 + cos 3𝑥 +⋯)� − 2 �

1
2𝜋

+
1
𝜋
(− cos 𝑥 + cos 2𝑥 − cos 3𝑥 +⋯)�

=
1
𝜋
+
2
𝜋
(cos 𝑥 + cos 2𝑥 + cos 3𝑥 +⋯) − 1

𝜋
+
2
𝜋
(cos 𝑥 − cos 2𝑥 + cos 3𝑥 − cos 5𝑥 +⋯)

=
2
𝜋
(2 cos 𝑥 + 2 cos 3𝑥 + 2 cos 5𝑥 +⋯)

=
4
𝜋
(cos 𝑥 + cos 3𝑥 + cos 5𝑥 +⋯)

Hence
𝑑𝑓
𝑑𝑥

=
4
𝜋
(cos 𝑥 + cos 3𝑥 + cos 5𝑥 +⋯)

Hence

𝑓 (𝑥) =
4
𝜋 �

sin 𝑥 + 1
3

sin 3𝑥 + 1
5

sin 5𝑥 +⋯�

3.5.3.2 Part (b)

We first need to determine the Fourier series for 𝛿 (𝑥) and 𝛿 (𝑥 + 𝜋). For 𝛿 (𝑥) we find

𝑐𝑘 =
1
2𝜋

𝜋

�
−𝜋

𝛿 (𝑥) 𝑒−𝑖𝑘𝑥𝑑𝑥 =
1
2𝜋

Hence

𝛿 (𝑥) =
∞
�
𝑘=−∞

𝑐𝑘𝑒𝑖𝑘𝑥

=
∞
�
𝑘=−∞

1
2𝜋
𝑒𝑖𝑘𝑥

=
1
2𝜋

�1 + 𝑒−𝑖𝑘𝑥 + 𝑒𝑖𝑘𝑥 + 𝑒−2𝑖𝑘 + 𝑒2𝑖𝑘 +⋯�

=
1
2𝜋

(1 + 2 cos 𝑘𝑥 + 2 cos 2𝑘𝑥 + 2 cos 3𝑘𝑥 +⋯)

Now to determine Fourier series for 𝛿 (𝑥 + 𝜋)

𝑐𝑘 =
1
2𝜋

𝜋

�
−𝜋

𝛿 (𝑥 + 𝜋) 𝑒−𝑖𝑘𝑥𝑑𝑥 =
1
2𝜋
𝑒𝑖𝑘𝜋 =

1
2𝜋

cos 𝑘𝜋 =
(−1)𝑘

2𝜋
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Hence

𝛿 (𝑥 + 𝜋) =
∞
�
𝑘=−∞

(−1)𝑘

2𝜋
𝑒𝑖𝑘𝑥

=
1
2𝜋

�1 − 𝑒−𝑖𝑥 − 𝑒𝑖𝑥 + 𝑒−2𝑖𝑥 + 𝑒2𝑖𝑥 − 𝑒−3𝑖𝑥 − 𝑒3𝑖𝑥 +⋯�

=
1
2𝜋

�1 − �𝑒−𝑖𝑥 + 𝑒𝑖𝑥� + 𝑒−2𝑖𝑥 + 𝑒2𝑖𝑥 − �𝑒−3𝑖𝑥 + 𝑒3𝑖𝑥� +⋯�

=
1
2𝜋

(1 − 2 cos 𝑥 + 2 cos 2𝑥 − 2 cos 3𝑥 +⋯)

Therefore

2𝛿 (𝑥) − 2𝛿 (𝑥 + 𝜋) = 2 �
1
2𝜋

(1 + 2 cos 𝑥 + 2 cos 2𝑥 + 2 cos 3𝑥 +⋯)� − 2 �
1
2𝜋

(1 − 2 cos 𝑥 + 2 cos 2𝑥 − 2 cos 3𝑥 +⋯)�

=
1
𝜋
(1 + 2 cos 𝑥 + 2 cos 2𝑥 + 2 cos 3𝑥 +⋯) − 1

𝜋
(1 − 2 cos 𝑥 + 2 cos 2𝑥 − 2 cos 3𝑥 +⋯)

=
1
𝜋
(4 cos 𝑥 + 4 cos 3𝑥 + 4 cos 5𝑥 +⋯)

=
4
𝜋
(cos 𝑥 + cos 3𝑥 + cos 5𝑥 +⋯)

Hence
𝑑𝑓
𝑑𝑥

=
4
𝜋
(cos 𝑥 + cos 3𝑥 + cos 5𝑥 +⋯)

Therefore

𝑓 (𝑥) =
4
𝜋 �

sin 𝑥 + 1
3

sin 3𝑥 + 1
5

sin 5𝑥 +⋯�

Which is the same as above using the 𝑎𝑘, 𝑏𝑘 method.

3.5.4 Problem 4.1.4

Figure 3.77: the Problem statement

From above we found that the Fourier series for square wave is

𝑓 (𝑥) =
4
𝜋 �

sin 𝑥 + 1
3

sin 3𝑥 + 1
5

sin 5𝑥 +⋯�

Therefore at 𝑥 = 𝜋
2 , the above becomes

1 =
4
𝜋 �

sin 𝜋
2
+
1
3

sin 3𝜋
2
+
1
5

sin 5𝜋
2
+⋯�

Hence

𝜋 = 4 �sin
𝜋
2
+
1
3

sin 3𝜋
2
+
1
5

sin 5𝜋
2
+⋯�

= 4 �1 −
1
3
+
1
5
−
1
7
+⋯�
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3.5.5 Problem 4.1.5

Figure 3.78: the Problem statement

We found that only the 𝑏𝑘 survive for the Fourier series of the wave function. They are

𝑏𝑘 =

⎧⎪⎪⎨
⎪⎪⎩

4
𝜋𝑘 𝑘 = 1, 3, 5,⋯
0 𝑘 = 2, 4, 6,⋯

Applying Parseval’s formula leads to

𝜋 �𝑏21 + 𝑏23 + 𝑏25 +⋯� =
𝜋

�
−𝜋

�𝑓 (𝑥)�2 𝑑𝑥 = 2𝜋

Where we used only the odd 𝑏𝑘 terms since all others are zero. The above becomes

𝜋
⎛
⎜⎜⎜⎜⎝�
4
𝜋�

2

+ �
4
3𝜋�

2

+ �
4
5𝜋�

2

+⋯
⎞
⎟⎟⎟⎟⎠ = 2𝜋

𝜋
⎛
⎜⎜⎜⎜⎝
1
𝜋24

2 +
1
𝜋2 �

4
3�

2

+
1
𝜋2 �

4
5�

2

+⋯
⎞
⎟⎟⎟⎟⎠ = 2𝜋

⎛
⎜⎜⎜⎜⎝4

2 + �
4
3�

2

+ �
4
5�

2

+⋯
⎞
⎟⎟⎟⎟⎠ = 2𝜋

2

𝜋2 = 8
⎛
⎜⎜⎜⎜⎝1 + �

1
3�

2

+ �
1
5�

2

+⋯
⎞
⎟⎟⎟⎟⎠

Hence

𝜋2 = 8 �1 +
1
9
+
1
25
+⋯�

3.5.6 Problem 4.1.8

Figure 3.79: the Problem statement

ps. In the solution below, I was using 𝑇 when I should be using 𝑇
2 in all the limits. Need to

correct later. Or just let period be 2𝑇 then the math works ok.

In this problem, the basic idea is to observe that when the period was 2𝜋 then

𝑓 (𝑥) =
∞
�
𝑘=0
𝑎𝑘 cos 𝑘𝑥 +

∞
�
𝑘=1
𝑏𝑘 sin 𝑘𝑥

𝑓 (𝑥) =
∞
�
𝑘=−∞

𝑐𝑘𝑒𝑖𝑘𝑥
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Now when the period is a general value 𝑇 we use �2𝜋𝑇 𝑘� in place of just 𝑘. So the above

becomes

𝑓 (𝑥) =
∞
�
𝑘=0
𝑎𝑘 cos �𝑘

2𝜋
𝑇
𝑥� +

∞
�
𝑘=1
𝑏𝑘 sin �𝑘

2𝜋
𝑇
𝑥� (1)

𝑓 (𝑥) =
∞
�
𝑘=−∞

𝑐𝑘𝑒
𝑖� 2𝜋𝑇 𝑘�𝑥

(2)

We now need to determine 𝑎𝑘, 𝑏𝑘, 𝑐𝑘 using (1) and (2) in similar way we did when the period
was 2𝜋.

To find 𝑎𝑘 we multiply (1) by cos �𝑚2𝜋
𝑇 𝑥� where 𝑚 is some integer between 1⋯∞, and

integrating from −𝑇 to 𝑇 gives
𝑇

�
−𝑇

𝑓 (𝑥) cos �𝑚
2𝜋
𝑇
𝑥� 𝑑𝑥 =

𝑇

�
−𝑇

∞
�
𝑘=0
𝑎𝑘 cos �𝑘

2𝜋
𝑇
𝑥� cos �𝑚

2𝜋
𝑇
𝑥� 𝑑𝑥 +

𝑇

�
−𝑇

∞
�
𝑘=1
𝑏𝑘 sin �𝑘

2𝜋
𝑇
𝑥� cos �𝑚

2𝜋
𝑇
𝑥� 𝑑𝑥

=
∞
�
𝑘=0

𝑇

�
−𝑇

𝑎𝑘 cos �𝑘
2𝜋
𝑇
𝑥� cos �𝑚

2𝜋
𝑇
𝑥� 𝑑𝑥 +

∞
�
𝑘=1

𝑇

�
−𝑇

𝑏𝑘 sin �𝑘
2𝜋
𝑇
𝑥� cos �𝑚

2𝜋
𝑇
𝑥� 𝑑𝑥

Due to orthogonality between the sin and cos, all the product of sin cos vanish, and only
one term in the product of cos cos remain which is the one when 𝑘 = 𝑚, hence the above
reduces to

𝑇

�
−𝑇

𝑓 (𝑥) cos �𝑚
2𝜋
𝑇
𝑥� 𝑑𝑥 =

𝑇

�
−𝑇

𝑎𝑚 cos �𝑚
2𝜋
𝑇
𝑥� cos �𝑚

2𝜋
𝑇
𝑥� 𝑑𝑥

Since 𝑚 is arbitrary, we can rename it back to 𝑘 to keep the same naming as before.
𝑇

�
−𝑇

𝑓 (𝑥) cos �𝑘
2𝜋
𝑇
𝑥� 𝑑𝑥 =

𝑇

�
−𝑇

𝑎𝑘 cos2 �𝑘
2𝜋
𝑇
𝑥� 𝑑𝑥 (3)

When 𝑘 = 0 we find
𝑇

�
−𝑇

𝑓 (𝑥) 𝑑𝑥 =
𝑇

�
−𝑇

𝑎0𝑑𝑥

= 2𝑎0𝑇

Hence

𝑎0 =
1
2𝑇

𝑇

�
−𝑇

𝑓 (𝑥) 𝑑𝑥

Notice, when 𝑇 = 𝜋, the above reduces to 𝑎0 =
1
2𝜋

𝜋

�
−𝜋

𝑓 (𝑥) 𝑑𝑥. Now to find 𝑎𝑘 for 𝑘 ≥ 1, then

from (3)
𝑇

�
−𝑇

𝑓 (𝑥) cos �𝑘
2𝜋
𝑇
𝑥� 𝑑𝑥 =

𝑇

�
−𝑇

𝑎𝑘 cos2 �𝑘
2𝜋
𝑇
𝑥� 𝑑𝑥

= 𝑎𝑘𝑇

Hence

𝑎𝑘 =
1
𝑇 �

𝑇

−𝑇
𝑓(𝑥) cos �𝑘

2𝜋
𝑇
𝑥� 𝑑𝑥

Notice that when 𝑇 = 𝜋 the above reduces to 𝑎𝑘 =
1
𝜋

𝜋

�
−𝜋

𝑓(𝑥) cos(𝑘𝑥) 𝑑𝑥 as before.

Now we find 𝑏𝑘 similarly. We multiply (1) by sin �𝑚2𝜋
𝑇 𝑥� where 𝑚 is some integer between

1⋯∞, and integrating from −𝑇 to 𝑇 gives
𝑇

�
−𝑇

𝑓 (𝑥) sin �𝑚
2𝜋
𝑇
𝑥� 𝑑𝑥 =

∞
�
𝑘=0

𝑇

�
−𝑇

𝑎𝑘 cos �𝑘
2𝜋
𝑇
𝑥� sin �𝑚

2𝜋
𝑇
𝑥� 𝑑𝑥 +

∞
�
𝑘=1

𝑇

�
−𝑇

𝑏𝑘 sin �𝑘
2𝜋
𝑇
𝑥� sin �𝑚

2𝜋
𝑇
𝑥� 𝑑𝑥

Due to orthogonality between the sin and cos, all the products of sin cos vanish, and only
one term in the product of sin sin remain which is the one when 𝑘 = 𝑚, hence the above
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reduces to
𝑇

�
−𝑇

𝑓 (𝑥) sin �𝑚
2𝜋
𝑇
𝑥� 𝑑𝑥 =

𝑇

�
−𝑇

𝑏𝑚 sin �𝑚
2𝜋
𝑇
𝑥� sin �𝑚

2𝜋
𝑇
𝑥� 𝑑𝑥

Since 𝑚 is arbitrary, we can rename it back to 𝑘 to keep the same naming as before.
𝑇

�
−𝑇

𝑓 (𝑥) sin �𝑘
2𝜋
𝑇
𝑥� 𝑑𝑥 =

𝑇

�
−𝑇

𝑏𝑘 sin2 �𝑘
2𝜋
𝑇
𝑥� 𝑑𝑥

= 𝑏𝑘𝑇

Hence

𝑏𝑘 =
1
𝑇�

𝑇𝑇𝑓 (𝑥) sin �𝑘
2𝜋
𝑇
𝑥� 𝑑𝑥

Notice that when 𝑇 = 𝜋 the above reduces to 𝑏𝑘 =
1
𝜋

𝜋

�
−𝜋

𝑓 (𝑥) sin (𝑘𝑥) 𝑑𝑥 as before. We now

find 𝑐𝑘.

𝑓 (𝑥) =
∞
�
𝑘=−∞

𝑐𝑘𝑒
𝑖�𝑘 2𝜋𝑇 �𝑥

Multiplying both side by 𝑒
−𝑖�𝑚 2𝜋

𝑇 �𝑥
and integrating over the period

𝑇

�
−𝑇

𝑓 (𝑥) 𝑒
−𝑖�𝑚 2𝜋

𝑇 �𝑥
𝑑𝑥 =

∞
�
𝑘=−∞

𝑇

�
−𝑇

𝑐𝑘𝑒
𝑖�𝑘 2𝜋𝑇 �𝑥

𝑒
−𝑖�𝑚 2𝜋

𝑇 �𝑥
𝑑𝑥

All terms other than ones which 𝑘 = 𝑚 remain. Hence the above becomes
𝑇

�
−𝑇

𝑓 (𝑥) 𝑒
−𝑖�𝑚 2𝜋

𝑇 �𝑥
𝑑𝑥 =

𝑇

�
−𝑇

𝑐𝑚𝑒
𝑖�𝑚 2𝜋

𝑇 �𝑥
𝑒
−𝑖�𝑚 2𝜋

𝑇 �𝑥
𝑑𝑥

=
𝑇

�
−𝑇

𝑐𝑚𝑑𝑥

Therefore, since 𝑚 is now arbitrary, we rename it back to 𝑘 and simplifying
𝑇

�
−𝑇

𝑓 (𝑥) 𝑒
−𝑖�𝑘 2𝜋𝑇 �𝑥

𝑑𝑥 = 2𝑇𝑐𝑘

𝑐𝑘 =
1
2𝑇

𝑇

�
−𝑇

𝑓 (𝑥) 𝑒
−𝑖�𝑘 2𝜋𝑇 �𝑥

𝑑𝑥

3.5.7 Problem 4.1.10

Figure 3.80: the Problem statement

The 𝑎0 term in the Fourier series of cos2 𝑥 is the constant term. Hence it is the constant
that is closest to cos2 𝑥 in the square sense. Therefore

𝑎0 =
1
2𝜋

𝜋

�
−𝜋

cos2 𝑥𝑑𝑥

=
1
2𝜋

𝜋

�
−𝜋

cos2 𝑥𝑑𝑥

=
1
2
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To find the multiple of cos 𝑥 which is closest to cos3 𝑥, we find 𝑎1 term in the Fourier series
of cos3 𝑥 since that is the term which has 𝑎1 cos 𝑥 in it. Hence

𝑎1 =
1
𝜋

𝜋

�
−𝜋

cos3 𝑥 cos 𝑥𝑑𝑥

=
1
𝜋 �

3𝜋
4 �

=
3
4

3.5.8 Problem 4.1.11

Figure 3.81: the Problem statement

The function we are approximating using Fourier series is

f[x_] := Piecewise[{{1 + x/Pi, x < 0}, {1 - x/Pi, x >= 0}}];
Plot[f[x], {x, -Pi, Pi}]

Figure 3.82: Plot for problem 4.1.11

Since it is even, we only need to determine 𝑎𝑘

𝑎𝑘 =
1
𝜋

𝜋

�
−𝜋

𝑓 (𝑥) cos 𝑘𝑥𝑑𝑥 = 2
𝜋

𝜋

�
0

�1 −
𝑥
𝜋
� cos 𝑘𝑥𝑑𝑥

=
2
𝜋 �

1 − cos 𝑘𝜋
𝑘2𝜋 �

Hence

𝑓 (𝑥) = 𝑎0 +
∞
�
𝑘=1
𝑎𝑘 cos 𝑘𝑥

=
1
2
+
2
𝜋 �

1 − cos𝜋
𝜋 � cos 𝑥 + 2

𝜋 �
1 − cos 2𝜋

4𝜋 � cos 2𝑥 + 2
𝜋 �

1 − cos 3𝜋
9𝜋 � cos 3𝑥 +⋯

=
1
2
+
2
𝜋 �

2
𝜋�

cos 𝑥 + 2
𝜋 �

2
9𝜋�

cos 3𝑥 + 2
𝜋 �

2
25𝜋�

cos 5𝑥 +⋯

=
1
2
+
4
𝜋2 cos 𝑥 + 4

9𝜋2 cos 3𝑥 + 4
25𝜋

cos 5𝑥 +⋯

Here is a plot showing the approximation as more terms are added. The label of each plot
show the number of terms used. The more terms we use, the better the approximation
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ck = (2/Pi) Integrate[(1 - x/Pi) Cos[k x], {x, 0, Pi}];
upTo[n_, x_] := (1/2) + Sum[(ck /. k -> m)* Cos[m x], {m, 1, n}];
tbl = Table[Plot[upTo[m, x], {x, -Pi, Pi},
PlotLabel -> Row[{"terms used =", m}]], {m, 0, 18, 2}];
Grid[Partition[tbl, 3], Frame -> All]

Figure 3.83: Plot for problem 4.1.11 part 2

3.5.9 Problem 4.1.16

Figure 3.84: the Problem statement

The first step is to obtain the 𝑎𝑘, 𝑏𝑘 coe�cients by expanding the boundary value of the
solution using Fourier series. On the boundary

𝑢0 =

⎧⎪⎪⎨
⎪⎪⎩
1 0 < 𝜃 < 𝜋
0 −𝜋 < 𝜃 < 0

Hence

𝑎0 =
1
2𝜋

𝜋

�
0

𝑑𝜃 =
1
2

And

𝑎𝑘 =
1
𝜋

𝜋

�
0

cos 𝑘𝜃𝑑𝜃 = 1
𝑘𝜋

[sin 𝑘𝜃]𝜋0 = 0
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And

𝑏𝑘 =
1
𝜋

𝜋

�
0

sin 𝑘𝜃𝑑𝜃 = 1
𝑘𝜋

[− cos 𝑘𝜃]𝜋0 = 0 =
−1
𝑘𝜋

[cos 𝑘𝜋 − cos 0]

= �
2
𝜋
,
2
3𝜋
,
2
5𝜋
,⋯�

Only odd values of 𝑘 survive. Now that we found the Fourier coe�cient, we use them in
the solution given in equation (22), page 276 on the book

𝑢 (𝑟, 𝜃) = 𝑎0 + 𝑏1𝑟 sin𝜃 + 𝑏3𝑟3 sin 3𝜃 + 𝑏5𝑟5 sin5 𝜃 +⋯

=
1
2
+
2
𝜋 �

𝑟 sin𝜃 + 1
3
𝑟3 sin 3𝜃 + 1

5
𝑟5 sin5 𝜃 +⋯�

At the origin, let 𝑟 = 0

𝑢 (0, 𝜃) =
1
2

3.5.10 Problem 4.1.19

Figure 3.85: the Problem statement

A sketch of the function (string) is below.

Clear[x, f, p];
f[x_, p_] := Piecewise[{{(-x - Pi)/(Pi - p), x < -p},
{(x + p)/p - 1, -p < x < 0}, {x/p, 0 < x < p},
{(x - Pi)/(p - Pi), p < x < Pi}}]
Plot[f[x, .8 Pi], {x, -Pi, Pi}, Frame -> True,
FrameLabel -> {{"f(x)", None}, {x, "problem 4.1.19"}}]

Figure 3.86: Plot for problem 4.1.19
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Since 𝑓 (𝑥) is odd, we only need to determine 𝑏𝑘

𝑏𝑘 =
2
𝜋

𝜋

�
0

𝑓 (𝑥) sin 𝑘𝑥𝑑𝑥

=
2
𝜋

⎛
⎜⎜⎜⎜⎜⎝

𝑝

�
0

𝑥
𝑝

sin 𝑘𝑥𝑑𝑥 +
𝜋

�
𝑝

𝑥 − 𝜋
𝑝 − 𝜋

sin 𝑘𝑥𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎠

=
2
𝜋

⎛
⎜⎜⎜⎜⎝
sin 𝑘𝑝 − 𝑘𝑝 cos 𝑘𝑝

𝑘2𝑝
+
𝑘 �𝜋 − 𝑝� cos 𝑘𝑝 + sin 𝑘𝑝 − sin 𝑘𝜋

𝑘2 �𝜋 − 𝑝�

⎞
⎟⎟⎟⎟⎠

=
2 �𝜋 sin 𝑘𝑝 − 𝑝 sin 𝑘𝜋�

𝑘2𝑝𝜋 �𝜋 − 𝑝�

For 𝑘 = 2

𝑏2 =
�𝜋 sin 2𝑝 − 𝑝 sin 2𝜋�

2𝑝𝜋 �𝜋 − 𝑝�

=
𝜋 sin 2𝑝

2𝑝𝜋 �𝜋 − 𝑝�

For zero, we need

0 = 𝜋 sin 2𝑝
sin 2𝑝 = 0

Hence

𝑝 =
𝜋
2

3.5.11 Problem 4.1.20

Figure 3.87: the Problem statement

Two functions 𝑓, 𝑔 are if the inner product is zero
1

�
−1

𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥 = 0. Hence

1

�
−1

𝑃2𝑃0𝑑𝑥 =
1

�
−1

�𝑥2 − 1� 𝑑𝑥 = �
𝑥3

3
− 𝑥�

1

−1
= 0

And
1

�
−1

𝑃2𝑃1𝑑𝑥 =
1

�
−1

�𝑥2 − 1� 𝑥𝑑𝑥 = �
𝑥4

4
−
𝑥2

2 �
1

−1
= 0

Now let 𝑃3 = 𝑥3 − 𝑐𝑥, we want this to be orthogonal to 𝑃0, 𝑃1, 𝑃2. Hence
1

�
−1

𝑃3𝑃0𝑑𝑥 =
1

�
−1

𝑥3 − 𝑐𝑥𝑑𝑥 = �
𝑥4

4
− 𝑐

𝑥2

2 �
1

−1
= �

1
4
− 𝑐

1
2�
− �

1
4
− 𝑐

1
2�

0 = 0
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This equation did not help us find 𝑐. We try the next one
1

�
−1

𝑃3𝑃1𝑑𝑥 =
1

�
−1

�𝑥3 − 𝑐𝑥� 𝑥𝑑𝑥 = �
𝑥5

5
− 𝑐

𝑥3

3 �
1

−1
= �

1
5
− 𝑐

1
3�
− �−

1
5
+ 𝑐

1
3�
=
2
5
−
2
3
𝑐

2
5
−
2
3
𝑐 = 0

𝑐 =
2
5
3
2

=
3
5

Hence

𝑃3 = 𝑥3 −
3
5
𝑥

3.5.12 Problem 4.1.26

Figure 3.88: the Problem statement

The proposed solution is

𝑢 �𝑥, 𝑦� = ��𝑏𝑘𝑙 sin 𝑘𝑥 sin 𝑙𝑦
�𝑘2 + 𝑙2�

(1)

To see if this solves

−𝑢𝑥𝑥 − 𝑢𝑦𝑦 = 𝑓 =��𝑏𝑘𝑙 sin 𝑘𝑥 sin 𝑙𝑦 (1A)

we will take (1) and substitute in the LHS of Poisson equation (1A) and see if we get the
RHS of (1A) which is 𝑓.

𝜕𝑢
𝜕𝑥

= ��𝑏𝑘𝑙𝑘 cos 𝑘𝑥 sin 𝑙𝑦
�𝑘2 + 𝑙2�

𝜕2𝑢
𝜕𝑥2

=��−𝑏𝑘𝑙𝑘2 sin 𝑘𝑥 sin 𝑙𝑦
�𝑘2 + 𝑙2�

(2)

And
𝜕𝑢
𝜕𝑦

= ��𝑏𝑘𝑙 sin (𝑘𝑥) 𝑙 cos 𝑙𝑦
�𝑘2 + 𝑙2�

𝜕2𝑢
𝜕𝑦2

=��−𝑏𝑘𝑙 sin (𝑘𝑥) 𝑙2 sin 𝑙𝑦
�𝑘2 + 𝑙2�

(3)

Substituting (2) and (3) in the LHS of (1A) gives

−𝑢𝑥𝑥 − 𝑢𝑦𝑦 =��𝑏𝑘𝑙𝑘2 sin 𝑘𝑥 sin 𝑙𝑦
�𝑘2 + 𝑙2�

+��𝑏𝑘𝑙 sin (𝑘𝑥) 𝑙2 sin 𝑙𝑦
�𝑘2 + 𝑙2�

= ��𝑏𝑘𝑙𝑘2 sin 𝑘𝑥 sin 𝑙𝑦 + 𝑏𝑘𝑙 sin (𝑘𝑥) 𝑙2 sin 𝑙𝑦
�𝑘2 + 𝑙2�

= ��
�𝑏𝑘𝑙 sin 𝑘𝑥 sin 𝑙𝑦� �𝑘2 + 𝑙2�

�𝑘2 + 𝑙2�

= ��𝑏𝑘𝑙 sin 𝑘𝑥 sin 𝑙𝑦

Which is 𝑓. Hence 𝑢 �𝑥, 𝑦� = �� 𝑏𝑘𝑙 sin 𝑘𝑥 sin 𝑙𝑦
�𝑘2+𝑙2�

is the solution verified.
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3.5.13 Problem 4.3.3

Figure 3.89: the Problem statement

3.5.13.1 Part(a)

𝑓 (𝑥) =
1
2𝜋

∞

�
𝑘=−∞

𝛿 (𝑘) 𝑒𝑖𝑘𝑥𝑑𝑘

=
1
2𝜋

�𝑒𝑖𝑘𝑥�
𝑘=0

=
1
2𝜋

3.5.13.2 Part(b)

𝑓 (𝑥) =
1
2𝜋

∞

�
𝑘=−∞

𝑒−|𝑘|𝑒𝑖𝑘𝑥𝑑𝑘

=
1
2𝜋

⎛
⎜⎜⎜⎜⎜⎝

0

�
𝑘=−∞

𝑒𝑘𝑒𝑖𝑘𝑥𝑑𝑘 +
∞

�
0

𝑒−𝑘𝑒𝑖𝑘𝑥𝑑𝑘

⎞
⎟⎟⎟⎟⎟⎠

=
1
2𝜋

⎛
⎜⎜⎜⎜⎜⎝

0

�
𝑘=−∞

𝑒𝑘(1+𝑖𝑥)𝑑𝑘 +
∞

�
0

𝑒𝑘(−1+𝑖𝑥)𝑑𝑘

⎞
⎟⎟⎟⎟⎟⎠

=
1
2𝜋

⎛
⎜⎜⎜⎜⎝�
𝑒𝑘(1+𝑖𝑥)

1 + 𝑖𝑥 �
0

−∞
+ �

𝑒𝑘(−1+𝑖𝑥)

−1 + 𝑖𝑥 �
∞

0

⎞
⎟⎟⎟⎟⎠ (1)

Looking at the first integral result

�
𝑒𝑘(1+𝑖𝑥)

1 + 𝑖𝑥 �
0

−∞
=

1
1 + 𝑖𝑥

−
𝑒−∞(1+𝑖𝑥)

1 + 𝑖𝑥
=

1
1 + 𝑖𝑥

Where we looked at real part of 𝑒−∞(1+𝑖𝑥) = 0 so that we can make 𝑒−∞(1+𝑖𝑥) to be zero.

Looking at the second integral result

�
𝑒𝑘(−1+𝑖𝑥)

−1 + 𝑖𝑥 �
∞

0
=
𝑒∞(−1+𝑖𝑥)

−1 + 𝑖𝑥
−

1
−1 + 𝑖𝑥

= −
1

−1 + 𝑖𝑥

Where we looked at real part of 𝑒∞(−1+𝑖𝑥) = 0 so that we can make 𝑒∞(−1+𝑖𝑥) to be zero.
Hence, using the above two results in (1) gives

𝑓 (𝑥) =
1
2𝜋 �

1
1 + 𝑖𝑥

−
1

−1 + 𝑖𝑥�

=
1
2𝜋 �

1
1 + 𝑖𝑥

+
1

1 − 𝑖𝑥�

=
1
2𝜋 �

(1 − 𝑖𝑥) + (1 + 𝑖𝑥)
(1 + 𝑖𝑥) (1 − 𝑖𝑥) �

=
1
2𝜋 �

2
1 + 𝑥2 �

=
1
𝜋

1
1 + 𝑥2
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3.5.14 Problem 4.3.5

Figure 3.90: the Problem statement

3.5.14.1 Part(a)

For 𝑓 (𝑥) = 𝛿 (𝑥)

2𝜋
∞

�
−∞

𝛿2 (𝑥) 𝑑𝑥 = 2𝜋 lim
𝑛→∞

∞

�
−∞

𝛿 (𝑥) 𝑔𝑛 (𝑥) 𝑑𝑥

Where 𝑔𝑛 (𝑥) is sequence of Gaussian functions. The RHS above becomes

2𝜋
∞

�
−∞

𝛿2 (𝑥) 𝑑𝑥 = 2𝜋 lim
𝑛→∞

𝑔𝑛 (0)

But lim𝑛→∞ 𝑔𝑛 (0) = ∞ hence

2𝜋
∞

�
−∞

𝛿2 (𝑥) 𝑑𝑥 = ∞

Now ̂𝑓 (𝑘) = 1 for the Dirac delta. Hence

̂𝑓 (𝑘) =
∞

�
−∞

(1) 𝑒−𝑖𝑘𝑥𝑑𝑥

=
∞

�
−∞

𝑒−𝑖𝑘𝑥𝑑𝑥

= �
𝑒−𝑖𝑘𝑥

−𝑖𝑘 �
∞

−∞
=

1
−𝑖𝑘

�𝑒−𝑖𝑘∞ − 𝑒+𝑖𝑘∞� =
1
−𝑖𝑘

(0 − ∞) = ∞

Hence verified for 𝛿 OK.

3.5.14.2 Part(b)

For 𝑓 (𝑥) = 𝑒−
𝑥2
2 then

2𝜋
∞

�
−∞

�𝑓 (𝑥)�2 𝑑𝑥 = 2𝜋
∞

�
−∞

�𝑒−
𝑥2
2 �

2

𝑑𝑥

= 2𝜋
∞

�
0

𝑒−𝑥2𝑑𝑥

= 2𝜋 �√
𝜋
2 �

= 𝜋
3
2

Now ̂𝑓 (𝑘) for the above function is

̂𝑓 (𝑘) =
∞

�
−∞

𝑓 (𝑥) 𝑒−𝑖𝑘𝑥𝑑𝑥

=
∞

�
−∞

𝑒−
𝑥2
2 𝑒−𝑖𝑘𝑥𝑑𝑥

= 𝑒−
𝑘2
2 √2𝜋
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Hence
∞

�
−∞

� ̂𝑓 (𝑘)�
2
𝑑𝑘 =

∞

�
−∞

�𝑒−
𝑘2
2 √2𝜋�

2

𝑑𝑘

= 2𝜋
∞

�
−∞

�𝑒−
𝑘2
2 �

2

𝑑𝑘

= 2𝜋
∞

�
0

𝑒−𝑘2𝑑𝑘

= 2𝜋 �
�
𝜋
2 �

= 𝜋
3
2

Which is the same as before. Hence verified.

3.5.15 Problem 4.3.6

Figure 3.91: the Problem statement

For 𝑓 (𝑥) = 𝑒−
𝑥2
2

𝑊2
𝑥 =

∫∞

−∞
𝑥2 �𝑓 (𝑥)�2 𝑑𝑥

∫∞

−∞
�𝑓 (𝑥)�2 𝑑𝑥

=
∫∞

−∞
𝑥2 �𝑒−

𝑥2
2 �

2

𝑑𝑥

∫∞

−∞
�𝑒−

𝑥2
2 �

2

𝑑𝑥

=
∫∞

0
𝑥2𝑒−𝑥2𝑑𝑥

∫∞

0
𝑒−𝑥2𝑑𝑥

=
√𝜋
4
√𝜋
2

=
1
2

Now ̂𝑓 (𝑘) = ∫
∞

−∞
𝑓 (𝑥) 𝑒−𝑖𝑘𝑥𝑑𝑥 = ∫

∞

−∞
𝑒−

𝑥2
2 𝑒−𝑖𝑘𝑥𝑑𝑥 = 𝑒−

𝑘2
2 √2𝜋, hence

𝑊2
𝑘 =

∫∞

−∞
𝑘2 � ̂𝑓 (𝑘)�

2
𝑑𝑥

∫∞

−∞
� ̂𝑓 (𝑘)�

2
𝑑𝑥

=
∫∞

−∞
𝑘2 �𝑒−

𝑘2
2 √2𝜋�

2

𝑑𝑥

∫∞

−∞
�𝑒−

𝑘2
2 √2𝜋�

2

𝑑𝑥

=
2𝜋∫

∞

0
𝑘2𝑒−𝑘2𝑑𝑥

2𝜋∫
∞

0
𝑒−𝑘2𝑑𝑥

=
√𝜋
4
√𝜋
2

=
1
2
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Hence

𝑊𝑥𝑊𝑘 = �
1
2�

1
2
=
1
2

But uncertainty principle says that 𝑊𝑥𝑊𝑘 ≥
1
2 . Hence verified OK.

3.5.16 Problem 4.3.7

Figure 3.92: the Problem statement

3.5.16.1 Part(a)

Using 4L(1), let 𝑓 (𝑥) = 𝑒−
𝑥2
2 , which has ̂𝑓 (𝑘) = ∫

∞

−∞
𝑒−

𝑥2
2 𝑒−𝑖𝑘𝑥𝑑𝑥 = √2𝜋𝑒−

𝑘2
2 , hence 𝑑

𝑑𝑥𝑓 (𝑥) will
have the transform 𝑖𝑘 ̂𝑓 (𝑘), therefore,

ℱ�
𝑑
𝑑𝑥
𝑓 (𝑥)� = ℱ�−𝑥𝑒−

𝑥2
2 � = 𝑖𝑘√2𝜋𝑒−

𝑘2
2

Therefore 𝑥𝑒−
𝑥2
2 has the transform −𝑖𝑘√2𝜋𝑒−

𝑘2
2

3.5.16.2 Part(b)

Let 𝑓 (𝑥) = 𝑥𝑒−
𝑥2
2 , which has ̂𝑓 (𝑘) = −𝑖𝑘√2𝜋𝑒−

𝑘2
2 from part(a). But 𝑑

𝑑𝑥𝑓 (𝑥) = 𝑒−
𝑥2
2 − 𝑥2𝑒−

𝑥2
2 .

Hence the transform of 𝑑
𝑑𝑥𝑓 (𝑥) = 𝑖𝑘

̂𝑓 (𝑘). Therefore

ℱ�𝑒−
𝑥2
2 − 𝑥2𝑒−

𝑥2
2 � = 𝑖𝑘 �−𝑖𝑘√2𝜋𝑒−

𝑘2
2 �

ℱ �𝑒−
𝑥2
2 � − ℱ�𝑥2𝑒−

𝑥2
2 � = 𝑘2√2𝜋𝑒−

𝑘2
2

But ℱ�𝑒−
𝑥2
2 � = √2𝜋𝑒−

𝑘2
2 , hence

ℱ�𝑥2𝑒−
𝑥2
2 � = √2𝜋𝑒−

𝑘2
2 − 𝑘2√2𝜋𝑒−

𝑘2
2

ℱ�𝑥2𝑒−
𝑥2
2 � = √2𝜋𝑒−

𝑘2
2 �1 − 𝑘2�

Therefore

ℱ�𝑥2𝑒−
𝑥2
2 � = √2𝜋𝑒−

𝑘2
2 �1 − 𝑘2�

3.5.17 Problem 4.3.10

Figure 3.93: the Problem statement
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Let �̂� (𝑘) be the Fourier transform of 𝑢 (𝑥). Using ℱ�𝑑𝑢
𝑑𝑥
� = 𝑖𝑘�̂� (𝑘) and ℱ(𝛿) = 1, then

applying Fourier transform on the ODE gives

𝑖𝑘�̂� (𝑘) + 𝑎�̂� (𝑘) = 1

Solving for �̂� (𝑘)

�̂� (𝑘) (𝑎 + 𝑖𝑘) = 1

�̂� (𝑘) =
1

𝑎 + 𝑖𝑘
Hence, from page 310 in text book, it gives the inverse Fourier transform for the above as

𝑢 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
𝑒−𝑎𝑥 𝑥 > 0
0 𝑥 < 0

3.5.18 Problem 4.3.21

Figure 3.94: the Problem statement

Comparing the integral equation
∞

�
−∞

𝑒−�𝑥−𝑦�𝑢 �𝑦� 𝑑𝑦 − 2𝑢 (𝑥) = 𝑓 (𝑥) (1)

with the one in the textbook, page 322 in example one, where the Fourier transform of
∞

�
−∞

𝑒−�𝑥−𝑦�𝑢 �𝑦� 𝑑𝑦 = 𝑓 (𝑥)

Is given as
2

1 + 𝜔2 �̂� (𝜔) = ̂𝑓 (𝜔)

The only di�erence is that in this problem we have an extra −2𝑢 (𝑥) term, whose Fourier
transform is −2�̂� (𝜔). Hence the Fourier transform for (1) becomes

2
1 + 𝜔2 �̂� (𝜔) − 2�̂� (𝜔) = ̂𝑓 (𝜔)

Solving for �̂� (𝜔)

�̂� (𝜔) �
2

1 + 𝜔2 − 2� = ̂𝑓 (𝜔)

�̂� (𝜔)
⎛
⎜⎜⎜⎜⎝
2 − 2 �1 + 𝜔2�

1 + 𝜔2

⎞
⎟⎟⎟⎟⎠ = ̂𝑓 (𝜔)

�̂� (𝜔) =
1 + 𝜔2

−2𝜔2
̂𝑓 (𝜔)

We need to write the above as �̂� (𝜔) = −1
2 𝑓 +

1
2𝑔. Hence

�̂� (𝜔) =
−1
2

̂𝑓 (𝜔) +
1

−2𝜔2
̂𝑓 (𝜔) (2)
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Let 𝑓 (𝑥) = 𝑒−|𝑥|, then

̂𝑓 (𝜔) =
∞

�
−∞

𝑓 (𝑥) 𝑒−𝑖𝜔𝑥𝑑𝑥

=
∞

�
−∞

𝑒−|𝑥|𝑒−𝑖𝜔𝑥𝑑𝑥

=
0

�
−∞

𝑒𝑥𝑒−𝑖𝜔𝑥𝑑𝑥 +
∞

�
0

𝑒−𝑥𝑒−𝑖𝜔𝑥𝑑𝑥

= �
𝑒𝑥(1−𝑖𝜔)

1 − 𝑖𝜔 �
0

−∞
+ �

𝑒−𝑥(1+𝑖𝜔)

1 + 𝑖𝜔 �
∞

0

=
1

1 − 𝑖𝜔
−

1
1 + 𝑖𝜔

=
(1 + 𝑖𝜔) − (1 − 𝑖𝜔)
(1 − 𝑖𝜔) (1 + 𝑖𝜔)

=
2

1 + 𝜔2

Hence using (2)

�̂� (𝜔) =
−1
2

̂𝑓 (𝜔) +
1

−2𝜔2
̂𝑓 (𝜔)

=
−1
2

2
1 + 𝜔2 +

1
−2𝜔2

2
1 + 𝜔2

= −
1
𝜔2

Hence

𝑢 (𝑥) =
−1
2𝜋

∞

�
−∞

1
𝜔2 𝑒

𝑖𝜔𝑥𝑑𝜔

Using tables 𝑢 (𝑥) = −1
2 |𝑥|.

3.5.19 Problem 4.3.27

Figure 3.95: the Problem statement

The equation is

𝑑4𝐺 (𝑥)
𝑑𝑥4

− 2𝑎2
𝑑2𝐺 (𝑥)
𝑑𝑥2

+ 𝑎4𝐺 (𝑥) = 𝛿

Taking Fourier transform, and using 𝑑𝑛𝐺
𝑑𝑥𝑛 ⟹ (𝑖𝑘)𝑛 �̂� (𝑘) ,hence 𝐺′ (𝑥) ⟹ 𝑖𝑘�̂� (𝑘) , 𝐺′′ (𝑥) ⟹

−𝑘2�̂� (𝑘) , 𝐺′′′′ (𝑥)⟹ (𝑖𝑘)4 �̂� (𝑘) = 𝑘4�̂� (𝑘). Therefore the Fourier transform of the above di�er-
ential equation is

𝑘4�̂� (𝑘) + 2𝑎2𝑘2�̂� (𝑥) + 𝑎4�̂� (𝑘) = 1

Solving for �̂� (𝑘)

�̂� (𝑘) �𝑘4 + 2𝑎2𝑘2 + 𝑎4� = 1

�̂� (𝑘) =
1

𝑘4 + 2𝑎2𝑘2 + 𝑎4

=
1

�𝑘2 + 𝑎2�
2
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To find 𝐺 (𝑥) we need to find the inverse Fourier transform.

𝐺 (𝑥) =
1
2𝜋

∞

�
−∞

1

�𝑘2 + 𝑎2�
2 𝑒

𝑖𝑘𝑥𝑑𝑘

With the help of computer, I obtained the following result

𝐺 (𝑥) =
(1 + 𝑎 |𝑥|)
4𝑎3

𝑒−𝑎 |𝑥|
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3.6 HW 6, Due Dec 10, 2014

3.6.1 Problem 1

Draw bifurcation diagrams for the normal form of the transcritical bifurcation: 𝑑𝑥
𝑑𝑡 = 𝑟𝑥− 𝑥

2,

and of the pitchfork bifurcation: 𝑑𝑥
𝑑𝑡 = 𝑟𝑥 − 𝑥

3

Solution:

3.6.1.1 Part(a) transcritical bifurcation

For transcritical bifurcation 𝑑𝑥
𝑑𝑡 = 𝑓 (𝑟, 𝑥) = 𝑟𝑥 − 𝑥

2. The critical points are 𝑥∗ = 0 and 𝑥∗ = 𝑟.

There are 3 cases to consider. 𝑟 = 0, 𝑟 < 0 and 𝑟 > 0.The the vector field plot is first made,
using 𝑥 as the x-axis, and using 𝑥′ as the y-axis.

Using Mathematica,a plot of the 3 above cases was generated

Figure 3.96: plot for problem 1

To plot the Bifurcation diagram, we have to now use 𝑟 as the x-axis and use 𝑥 for the y-axis.
This was done by hand similar to what the textbook at page 50 shows.

stable

stable

unstable

unstable

Figure 3.97: second plot for problem 1

3.6.1.2 Part (b) pitchfork bifurcation

𝑑𝑥
𝑑𝑡 = 𝑟𝑥 − 𝑥

3. The critical points are 𝑥 �𝑟 − 𝑥2� = 0, hence 𝑥∗ = 0 and 𝑥∗ = ±√𝑟. When 𝑟 = 0
then 𝑥′ = −𝑥3. So it approaches 𝑥 = 0 from the right and approaches 𝑥 = 0 from the left.
Hence 𝑥∗ = 0 is stable in this case. When 𝑟 < 0, then only 𝑥∗ = 0 is fixed point (since we
can’t have complex values). So this is similar to 𝑟 = 0 case. When 𝑟 > 0 then there are 3
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critical points now 𝑥∗ = 0, −√𝑟,√𝑟. The following Bifurcation illustrates these cases (from
textbook, Nonlinear Dynamics and Chaos, page 56)

Figure 3.98: pitchfork bifurcation

3.6.2 Problem 2

Find a 2D dynamical system that undergoes Hopf bifurcation, and explain why the Hopf
bifurcation occurs.

Solution:

Hopf bifurcation requires a minimum of 2D system to occur. Hopf bifurcation shows up
when spiral changes from stable to unstable (or vice versa) with a new periodic solution
showing up. So Hopf bifurcation considers when a 2D system with stable fixed point losses
the stability at this point when a parameter changes. So changes in the parameters, causes
one of the eigenvalues of the Jacobian to become positive, causing instability. An example
from the textbook is given by

𝑟′ = 𝜇𝑟 − 𝑟3

𝜃′ = 𝜔 + 𝑏𝑟2

The phase portrait is shown in figure below from the text book. This shows that when
𝜇 < 0, the origin was stable. (spiral in). But when 𝜇 > 0, a limit cycle show up with radius
𝑟 = √𝜇 and inside this radius, it is spiral out, hence the origin became unstable, moving to
the limit cycle, and outside the limit cycle, it is stable and state trajectory moves towards
the limit cycle. Here is the diagram from the text

Figure 3.99: phase portrait
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The eigenvalues of the Jacobian, evaluated at the origin (critical point) is shown to be
𝜆 = 𝜇 ± 𝑖𝜔. So as 𝜇 changes from negative to positive, the system moves from being stable
to unstable.

3.6.3 Problem 4.4.6

Figure 3.100: Problem description

Using the form 𝑓 (𝑧) = 𝑧
1
2 , taking derivative w.r.t. gives 𝑓′ (𝑧) = 1

2
1

𝑧
1
2
. But 𝑧 = 𝑥 + 𝑖𝑦, hence

𝑓′ (𝑧) =
1
2

1

��𝑥 + 𝑖𝑦�
=
1
2

��𝑥 − 𝑖𝑦�

��𝑥 + 𝑖𝑦���𝑥 − 𝑖𝑦�
=
1
2
��𝑥 − 𝑖𝑦�

�𝑥2 + 𝑦2
=
1
2
1
|𝑧|�

�𝑥 − 𝑖𝑦�

But ��𝑥 − 𝑖𝑦� = �̄�
1
2 where �̄� is complex conjugate of 𝑧. Hence

𝑓′ (𝑧) =
1
2 |𝑧|

�̄�
1
2

3.6.4 Problem 4.4.7

Figure 3.101: the Problem statement

A function 𝑓 (𝑧) is analytic if it satisfies conditions as given in 4P, page 334

Figure 3.102: Problem description

3.6.4.1 Part(a)

𝑓 = |𝑧|2 = 𝑥2 + 𝑦2

Using 4P part(1), then 𝑖𝜕𝑓𝜕𝑥 = 𝑖2𝑥 and 𝜕𝑓
𝜕𝑦 = 2𝑦. Hence they are not the same. Therefore

not analytic.
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3.6.4.2 Part(b)

𝑓 = Re (𝑧) = 𝑥

𝑖𝜕𝑓𝜕𝑥 = 𝑖 and
𝜕𝑓
𝜕𝑦 = 0, hence not analytic.

3.6.4.3 Part(c)

𝑓 = sin 𝑥 cosh 𝑦 + 𝑖 cos 𝑥 sinh 𝑦
= 𝑢 �𝑥, 𝑦� + 𝑖𝑣 �𝑥, 𝑦�

Since

𝑖
𝜕𝑓
𝜕𝑥

= 𝑖 �cos 𝑥 cosh 𝑦 − 𝑖 sin 𝑥 sinh 𝑦� = 𝑖 cos 𝑥 cosh 𝑦 + sin 𝑥 sinh 𝑦 (1)

And
𝜕𝑓
𝜕𝑦

= sin 𝑥 sinh 𝑦 + 𝑖 cos 𝑥 cosh 𝑦 (2)

We see that (1) and (2) are the same. Hence analytic.

𝜕𝑢
𝜕𝑥

=
𝜕𝑣
𝜕𝑦

𝜕𝑢
𝜕𝑦

= −
𝜕𝑣
𝜕𝑥

3.6.5 Problem 4.4.17

Figure 3.103: Problem description

Figure 3.104: Problem description

3.6.5.1 Part (a)

The mapping 𝑤 = 1
2
�𝑧 + 𝑧−1� is
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𝑤 =
1
2 �
𝑟𝑒𝑖𝜃 +

1
𝑟
𝑒−𝑖𝜃�

=
1
2 �
𝑟 (cos𝜃 + 𝑖 sin𝜃) + 1

𝑟
(cos𝜃 − 𝑖 sin𝜃)�

=
1
2 ��

𝑟 +
1
𝑟 �

cos𝜃 + 𝑖 �𝑟 −
1
𝑟 �

sin𝜃�

=
1
2 �
𝑟2 + 1
𝑟 � cos𝜃 + 𝑖 1

2 �
𝑟2 − 1
𝑟 � sin𝜃

For example, for unit circle, 𝑟 = 1 and 𝑤 = cos𝜃. Hence all points on unit circle map to
𝑋 = cos𝜃. i.e. the link between 𝑋 = −1⋯1. To answer the question, it might be easier to
write

𝑤 =
1
2 �
�𝑥 + 𝑖𝑦� +

1
𝑥 + 𝑖𝑦�

=
1
2

⎛
⎜⎜⎜⎜⎝�𝑥 + 𝑖𝑦� +

𝑥 − 𝑖𝑦
�𝑥 + 𝑖𝑦� �𝑥 − 𝑖𝑦�

⎞
⎟⎟⎟⎟⎠

=
1
2

⎛
⎜⎜⎜⎜⎝�𝑥 + 𝑖𝑦� +

𝑥 − 𝑖𝑦
�𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

=
1
2

⎛
⎜⎜⎜⎜⎝𝑥 + 𝑖𝑦 +

𝑥
�𝑥2 + 𝑦2�

− 𝑖
𝑦

�𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

Write as 𝑤 = 𝑋 + 𝑖𝑌

𝑤 =
1
2

⎛
⎜⎜⎜⎜⎝𝑥 +

𝑥
�𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ + 𝑖

⎛
⎜⎜⎜⎜⎝
1
2

⎛
⎜⎜⎜⎜⎝𝑦 −

𝑦
�𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

Hence for point (𝑥, 0) it maps to 𝑤 = 1
2
�𝑥 + 1

𝑥
�+ 𝑖0 = 1

2
�𝑥

2+1
𝑥
�. Since 𝑥 > 1 then 1

2
�𝑥

2+1
𝑥
� maps

to all point on 𝑋 that are larger than 𝑋 = 1

3.6.5.2 Part(b)

For 0 < 𝑥 < 1, then from 𝑤 = 1
2
�𝑥 + 1

𝑥
�, we see that for example, of 𝑥 = 1/3 then 𝑋 =

1
2
�1
3 + 3� > 1.

3.6.5.3 Part(c)

For 𝑧 = 𝑖𝑦, then 𝑥 = 0, and the mapping becomes

𝑤 = 𝑖 �
1
2 �
𝑦 −

1
𝑦��

Hence

𝑌 =
1
2 �
𝑦 −

1
𝑦�

So

𝑦 = 0 → 𝑌 = ∞
𝑦 = 1 → 𝑌 = 0
𝑦 = −1 → 𝑌 = 0
𝑦 > 1 → 0 < 𝑌 < 1
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3.6.6 Problem 4.4.23

Figure 3.105: the Problem statement

3.6.6.1 Part(a)

We need to transform to 𝑋𝑌 plane using conformal mapping to be able to solve it in the
standard Cartesian system instead of on the quarter circle. Since the angle is 450 we need
to map it to the full 1800. So this mapping will work 𝑤4 = 𝑒4𝑖𝜃. So a point on 𝑒𝑖450 will map
to 𝑒𝑖1800 and point at 𝑒𝑖00 will map to 𝑒𝑖00, hence the top half plane is where the new 𝑋𝑌
coordinates is. So we need to solve

𝑈𝑋𝑋 + 𝑈𝑌𝑌 = 0 (1)

In the upper half plane, then transform the solution back to �𝑥, 𝑦� space. Solution to (1) is
𝑈 = 𝑎𝑋 + 𝑏𝑌. Since 𝑈𝑋𝑋 = 0 and 𝑈𝑌𝑌 = 0, hence this solution satisfies (1). We now need to
figure how to map this back to �𝑥, 𝑦�. Using

𝑤 = �𝑥 + 𝑖𝑦�

𝑤4 = �𝑥 + 𝑖𝑦�
4
= 𝑥4 + 4𝑖𝑥3𝑦 − 6𝑥2𝑦2 − 4𝑖𝑥𝑦3 + 𝑦4

= �𝑥4 − 6𝑥2𝑦2 + 𝑦4� + 𝑖 �4𝑥3𝑦 − 4𝑥𝑦3�

Hence 𝑋 = �𝑥4 − 6𝑥2𝑦2 + 𝑦4� and 𝑌 = 4𝑥3𝑦 − 4𝑥𝑦3. So the solution is

𝑈 = 𝑎𝑋 + 𝑏𝑌 = 𝑎 �𝑥4 − 6𝑥2𝑦2 + 𝑦4� + 𝑏 �4𝑥3𝑦 − 4𝑥𝑦3�

Where 𝑎, 𝑏 are constant found from boundary conditions.

3.6.7 Problem 6.1.11

Figure 3.106: the Problem statement

3.6.7.1 Part(a)

𝑢′′ − 9𝑢 = 0

This is constant coe�cients second order ODE. It can solved by finding the zeros of its
characteristic equation 𝜆2 − 9 = 0, hence 𝜆 = ±3, therefore the solution is

𝑢 (𝑡) = 𝐷𝑒3𝑡 + 𝐶𝑒−3𝑡
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We notice this is not stable ode.

3.6.7.2 Part(b)

𝑢′′ − 5𝑢′ + 4𝑢 = 0

This is also constant coe�cients second order ODE. It can solved by finding the zeros of
its characteristic equation 𝜆2 − 5𝜆 + 4 = 0. Solution is 𝜆 = {4, 1}, therefore the solution is

𝑢 (𝑡) = 𝐷𝑒4𝑡 + 𝐶𝑒𝑡

This is also not stable ode.

3.6.7.3 Part(c)

𝑢′′ + 2𝑢′ + 5𝑢 = 0

This is also constant coe�cients second order ODE. It can solved by finding the zeros of
its characteristic equation 𝜆2 + 2𝜆 + 5 = 0, Solution is: 𝜆 = {−1 + 2𝑖, −1 − 2𝑖}, therefore the
solution is

𝑢 (𝑡) = 𝐷𝑒(−1+2𝑖)𝑡 + 𝐶𝑒(−1−2𝑖)𝑡

= 𝑒−𝑡 �𝐷𝑒2𝑖𝑡 + 𝐶−2𝑖𝑡�

Which can be written as

𝑢 (𝑡) = 𝑒−𝑡 (𝑑 cos 2𝑡 + 𝑐 sin 2𝑡)

3.6.8 Problem 6.1.12

Figure 3.107: Problem description

3.6.8.1 Part(a)

From the solutions, we see that roots of the characteristic equation are {1, −1}, which means
the characteristic equation is

𝑝 (𝜆) = (𝜆 − 1) (𝜆 + 1) = 𝜆2 − 1

Which implies the ODE is 𝑢′′ − 𝑢 = 0

3.6.8.2 Part(b)

Since the solution contains no damping (no 𝑒−𝑡 term), and only contain oscillation, then it
means the ode much contain only friction term, hence the ode is of the form

𝑢′′ + 𝑞𝑢 = 0

Since oscillation frequency is 2, then 𝜆1 = 2𝑖, 𝜆2 = −2𝑖 so to be able to contain the sin/cos
shown as the solutions. Hence
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𝑝 (𝜆) = (𝜆 − 2𝑖) (𝜆 + 2𝑖) = 𝜆2 + 4

Therefore

𝑢′′ + 4𝑢 = 0

3.6.8.3 Part(c)

Let

𝑢 (𝑡) = 𝐴𝑢1 + 𝐵𝑢2

Where 𝐴,𝐵 are constants of integration. Then 𝑢 (𝑡) = 𝐴 + 𝐵𝑡 or 𝑢′ = 𝐵 or 𝑢′′ = 0

3.6.8.4 Part(d)

Since the solution contains damping (has 𝑒−𝑡 term), and since oscillation oscillation exist,
then the solution must be of form

𝑢′′ + 𝑝𝑢′ + 𝑞𝑢 = 0

The roots of the characteristic equation are therefore 𝜆1 = −1 + 𝑖, 𝜆2 = −1 − 𝑖. Hence

𝑝 (𝜆) = (𝜆 − (−1 + 𝑖)) (𝜆 − (−1 − 𝑖)) = 𝜆2 + 2𝜆 + 2

Therefore the ODE is

𝑢′′ + 2𝑢′ + 2𝑢 = 0

3.6.9 Problem 6.2.2

Figure 3.108: the Problem statement

3.6.9.1 Part(1)

Since eigenvalues of 𝐴 are real and positive, then not stable

3.6.9.2 Part(2)

Since eigenvalues of 𝐴 are real and negative, then stable

3.6.9.3 Part(3)

(real) skew symmetric matrix always have pure imaginary eigenvalues. Hence phase plane
is circles. This is called marginally stable.
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3.6.9.4 Part(4)

And example of negative definite is

⎡
⎢⎢⎢⎢⎣
−1 0
0 −1

⎤
⎥⎥⎥⎥⎦ , and skew symmetric is

⎡
⎢⎢⎢⎢⎣
0 2
−2 0

⎤
⎥⎥⎥⎥⎦, hence

⎡
⎢⎢⎢⎢⎣
−1 0
0 −1

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣
0 2
−2 0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
−1 2
−2 −1

⎤
⎥⎥⎥⎥⎦

The eigenvalues are found from �
𝜆 + 1 −2
2 𝜆 + 1

� = 0 or (𝜆 + 1)2 + 4 = 0, hence (𝜆 + 1)2 = −4 or

𝜆 + 1 = ±2𝑖, therefore 𝜆 = −1 ± 2𝑖

Hence the eigenvalues have negative real part and imaginary parts. This is stable, and
spiral due to the sin/cos which will result in the solution. It will spiral in, since the real
part is negative.

3.6.10 Problem 6.2.12

Figure 3.109: the Problem statement

𝑢′1 = 𝑢1 − 𝑢21 − 𝑏𝑢1𝑢2 = 𝐹1 (𝑢1, 𝑢2)
𝑢′2 = 𝑢2 − 𝑢22 + 𝑐𝑢1𝑢2 = 𝐹2 (𝑢1, 𝑢2)

We first need to find critical points by solving 𝐹1 (𝑢1, 𝑢2) = 0 and 𝐹2 (𝑢1, 𝑢2) = 0

From 𝐹1 (𝑢1, 𝑢2) = 0 we obtain

𝑢1 (1 − 𝑢1 − 𝑏𝑢2) = 0

Hence 𝑢1 = 0 or 𝑢1 = 1 − 𝑏𝑢2. looking at the second equation 𝐹2 (𝑢1, 𝑢2) = 0 which gives

𝑢2 (1 − 𝑢2 + 𝑐𝑢1) = 0

Hence 𝑢2 = 0 or 𝑢2 = 1 + 𝑐𝑢1.

Considering the case of 𝑢1 = 0, then 𝑢2 = 1, and when 𝑢1 = 1 − 𝑏𝑢2, then

𝑢2 = 1 + 𝑐 (1 − 𝑏𝑢2)
= 1 + 𝑐 − 𝑐𝑏𝑢2

𝑢2 + 𝑐𝑏𝑢2 = 1 + 𝑐

𝑢2 =
1 + 𝑐
1 + 𝑐𝑏

And when 𝑢2 = 0 then 𝑢1 = 1 and when 𝑢2 =
1+𝑐
1+𝑐𝑏 then 𝑢1 = 1 − 𝑏𝑢2 = 1 − 𝑏

1+𝑐
1+𝑐𝑏 . Hence the

critical points are
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𝑢1 = 0, 𝑢2 = 0
𝑢1 = 0, 𝑢2 = 1
𝑢1 = 1, 𝑢2 = 0

𝑢1 = −
(𝑏 − 1)
𝑏𝑐 + 1

, 𝑢2 =
1 + 𝑐
1 + 𝑐𝑏

To find stability, we evaluate the Jacobian at each of the critical points. The Jacobian is

𝐽 =

⎡
⎢⎢⎢⎢⎢⎢⎣

𝜕𝐹1
𝜕𝑢1

𝜕𝐹1
𝜕𝑢2

𝜕𝐹2
𝜕𝑢1

𝜕𝐹2
𝜕𝑢2

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝜕�𝑢1−𝑢21−𝑏𝑢1𝑢2�

𝜕𝑢1

𝜕�𝑢1−𝑢21−𝑏𝑢1𝑢2�

𝜕𝑢2
𝜕�𝑢2−𝑢22+𝑐𝑢1𝑢2�

𝜕𝑢1

𝜕�𝑢2−𝑢22+𝑐𝑢1𝑢2�

𝜕𝑢2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡
⎢⎢⎢⎢⎣
(1 − 2𝑢1 − 𝑏𝑢2) −𝑏𝑢1

𝑐𝑢2 1 − 2𝑢2 + 𝑐𝑢1

⎤
⎥⎥⎥⎥⎦

At point 𝑢1 = 0, 𝑢2 = 0 we obtain 𝐽 =
⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦ this has eigenvalues 𝜆 = 1 (double). Hence not

stable node.

At point 𝑢1 = 0, 𝑢2 = 1 we obtain 𝐽 =
⎡
⎢⎢⎢⎢⎣
1 − 𝑏 0
𝑐 −1

⎤
⎥⎥⎥⎥⎦ which has eigenvalues: {1 − 𝑏, −1}. Hence if

𝑏 > 1 then both are stable. (negative), hence stable node. But if 𝑏 < 1 then one is stable
and the other is not. Which means unstable saddle point.

At point 𝑢1 = 1, 𝑢2 = 0 we obtain 𝐽 =
⎡
⎢⎢⎢⎢⎣
−1 −𝑏
0 1 + 𝑐

⎤
⎥⎥⎥⎥⎦, eigenvalues: 𝑐 + 1, −1. Hence if 𝑐 < −1 then

both are stable, and we have stable node. If 𝑐 > −1 then one is stable and the other is not,
so we have unstable saddle.

3.6.11 Problem 6.2.13

Figure 3.110: the Problem statement

𝑢′𝑟 = −𝑎𝑢𝑟 − 𝑏𝑢𝑟𝑢𝑚 + 𝑐𝑢𝑟𝑢𝑝 = 𝐹1 �𝑢𝑟, 𝑢𝑚, 𝑢𝑝�

𝑢′𝑚 = −𝑑𝑢𝑚 + 𝑒𝑢𝑟𝑢𝑚 = 𝐹2 �𝑢𝑟, 𝑢𝑚, 𝑢𝑝�

𝑢′𝑝 = 𝑓𝑢𝑝 − 𝑔𝑢2𝑝 − ℎ𝑢𝑟𝑢𝑝 = 𝐹3 �𝑢𝑟, 𝑢𝑚, 𝑢𝑝�

We first need to find critical points by solving 𝐹1 �𝑢𝑟, 𝑢𝑚, 𝑢𝑝� = 0 and 𝐹2 �𝑢𝑟, 𝑢𝑚, 𝑢𝑝� = 0 and
𝐹3 �𝑢𝑟, 𝑢𝑚, 𝑢𝑝� = 0. Solving using computer algebra gives

eq1:=-a*u[r]-b*u[r]*u[m]+c*u[r]*u[p]=0;
eq2:=-d*u[m]-e*u[r]*u[m]=0;
eq3:=f*u[p]-g*(u[p])^2-h*u[r]*u[p]=0;
solve({eq1,eq2,eq3},{u[r],u[p],u[m]});
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𝑢𝑚 = 0, 𝑢𝑝 = 0, 𝑢𝑟 = 0

𝑢𝑚 = −
𝑎
𝑏
, 𝑢𝑝 = 0, 𝑢𝑟 = −

𝑑
𝑒

𝑢𝑚 = 0, 𝑢𝑝 =
𝑓
𝑔
, 𝑢𝑟 = 0

𝑢𝑚 = −
𝑎𝑒𝑔 − 𝑑𝑐ℎ − 𝑐𝑓𝑒

𝑒𝑏𝑔
, 𝑢𝑝 =

ℎ𝑑 + 𝑓𝑒
𝑒𝑔

, 𝑢𝑟 = −
𝑑
𝑒

𝑢𝑚 = 0, 𝑢𝑝 =
𝑎
𝑐
, 𝑢𝑟 = −

𝑎𝑔 − 𝑐𝑓
𝑐ℎ

We now need to find the Jacobian and evaluate it at each of the above points to determine
the type of stability.

jac:=Matrix([[diff(eq1,u[r]),diff(eq1,u[m]),diff(eq1,u[p])],
[diff(eq2,u[r]),diff(eq2,u[m]),diff(eq2,u[p])],
[diff(eq3,u[r]),diff(eq3,u[m]),diff(eq3,u[p])]]);

Which gives

𝐽 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑏𝑢𝑚 + 𝑐𝑢𝑝 − 𝑎 −𝑏𝑢𝑟 𝑐𝑢𝑟
−𝑒𝑢𝑚 −𝑒𝑢𝑟 − 𝑑 0
−ℎ𝑢𝑝 0 −2 𝑔𝑢𝑝 − ℎ𝑢𝑟 + 𝑓

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

At point 𝑢𝑚 = 0, 𝑢𝑝 = 0, 𝑢𝑟 = 0, 𝐽 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑎 0 0
0 −𝑑 0
0 0 𝑓

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
so assuming all 𝑎, 𝑑, 𝑓 are positive, this

shows this point is not stable. It is unstable spiral since one of the eigenvalues is positive.

At point 𝑢𝑚 = − 𝑎
𝑏 , 𝑢𝑝 = 0, 𝑢𝑟 = −𝑑

𝑒 , 𝐽 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑏 𝑎𝑏 − 𝑎 𝑏𝑑𝑒 −𝑐𝑑𝑒
𝑒 𝑎𝑏 𝑒𝑑𝑒 − 𝑑 0
0 0 ℎ𝑑𝑒 + 𝑓

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2𝑎 𝑏𝑑𝑒 −𝑐𝑑𝑒
𝑒 𝑎𝑏 0 0
0 0 ℎ𝑑𝑒 + 𝑓

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

eigenvalues are �−𝑎 − √𝑎 (𝑎 + 𝑑), √𝑎 (𝑎 + 𝑑) − 𝑎,
1
𝑒
�𝑓𝑒 + 𝑑ℎ��. So for positive parameters√𝑎 (𝑎 + 𝑑)−

𝑎 > 0, hence not stable .

At 𝑢𝑚 = 0, 𝑢𝑝 =
𝑓
𝑔 , 𝑢𝑟 = 0, 𝐽 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐𝑓𝑔 − 𝑎 0 0

0 −𝑑 0
−ℎ𝑓𝑔 0 −2 𝑔𝑓𝑔 + 𝑓

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, eigenvalues: −𝑑, −𝑓, −1

𝑔
�𝑎𝑔 − 𝑐𝑓� .

Therefore, for positive parameters, this is stable node.

3.6.12 Problem 6.2.19

Figure 3.111: the Problem statement

𝑢′ = −𝑎𝑢𝑣 = 𝐹1 (𝑢, 𝑣)
𝑣′ = 𝑎𝑢𝑣 − 𝑏𝑣 = 𝐹2 (𝑢, 𝑣)
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The critical points are 𝑢 = 𝑎𝑛𝑦, 𝑣 = 0.

3.6.12.1 Part(a)

If 𝑢 > 𝑏
𝑎 , then we write 𝑢 = 𝑏+𝜀

𝑎 for 𝜀 > 0. Substituting in 𝑣′ = 𝑎𝑢𝑣 − 𝑏𝑣 results in

𝑣′ = 𝑎
𝑏 + 𝜀
𝑎

𝑣 − 𝑏𝑣

= 𝑏𝑣 + 𝜀𝑣 − 𝑏𝑣
= 𝜀𝑣

Hence 𝑣′ > 0 and the epidemic spreads.

3.6.12.2 Part(b)

If 𝑢 < 𝑏
𝑎 , then we write 𝑢 = 𝑏−𝜀

𝑎 for 𝜀 > 0, Substituting in 𝑣′ = 𝑎𝑢𝑣 − 𝑏𝑣 results in

𝑣′ = 𝑎
𝑏 − 𝜀
𝑎

𝑣 − 𝑏𝑣

= 𝑏𝑣 − 𝜀𝑣 − 𝑏𝑣
= −𝜀𝑣

Hence 𝑣′ < 0 and the epidemic slows down.

3.6.12.3 Part(d)

From second equation, 𝑣 (𝑡) = 𝐴𝑒∫(𝑢(𝑡)𝑎−𝑏)𝑑𝑡, hence when 𝑢 (𝑡) = 𝑏
𝑎 , then 𝑣 (𝑡) = 𝑘. A constant

𝑢0.
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Chapter 4

cheat sheet

Fourier Transform formulas

�̂�(𝑘) = �
∞

−∞
𝑢(𝑥)𝑒−𝑖𝑘𝑥 𝑑𝑥

𝑢(𝑥) =
1
2𝜋 �

∞

−∞
�̂�(𝑘)𝑒𝑖𝑘𝑥 𝑑𝑘

�̂�(𝑘) = �̂�(𝑘)ℎ̂(𝑘)

𝑢(𝑥) = 𝑔(𝑥)ℎ(𝑥)⟺ �̂�(𝑘) ∗ ℎ̂(𝑘) = �̂�(𝑘) = �
∞

−∞
�̂�(𝑘 − 𝜏)ℎ̂(𝜏) 𝑑𝜏

�̂�(𝑘) = �̂�(𝑘)ℎ̂(𝑘)⟺ 𝑔(𝑥) ∗ ℎ(𝑥) = 𝑢(𝑥) = �
∞

−∞
𝑔(𝑥 − 𝜏)ℎ(𝜏) 𝑑𝜏

𝑒𝑖𝑥𝑑𝑢(𝑥)⟺ �̂�(𝑘 − 𝑑)
𝑢(𝑥 − 𝑎)⟺ 𝑒−𝑖𝑎𝑘�̂�(𝑘)

𝑑𝑢
𝑑𝑥

⟺ 𝑖𝑘�̂�(𝑘)

�
𝑥

𝑎
𝑢(𝑥) 𝑑𝑥⟺

�̂�(𝑘)
𝑖𝑘

+ 𝑐𝛿(𝑘)

Fourier Series formulas

𝑓(𝑥) = 𝑎0 +
∞
�
𝑘=1

(𝑎𝑘 cos(𝑘𝑥) + 𝑏𝑘 sin(𝑘𝑥))

𝑎0 =
1
2𝜋 �

𝜋

−𝜋
𝑓(𝑥) 𝑑𝑥

𝑎𝑘 =
1
𝜋 �

𝜋

−𝜋
cos(𝑘𝑥)𝑓(𝑥) 𝑑𝑥 = 𝑐𝑘 + 𝑐𝑘

𝑏𝑘 =
1
𝜋 �

𝜋

−𝜋
sin(𝑘𝑥)𝑓(𝑥) 𝑑𝑥 = 𝑖(𝑐𝑘 − 𝑐−𝑘)

𝑓(𝑥) =
∞
�
−∞
𝑐𝑘𝑒𝑖𝑘𝑥

𝑐𝑘 =
1
2𝜋 �

𝜋

−𝜋
𝑓(𝑥)𝑒−𝑖𝑘𝑥 𝑑𝑥

square wave
Fourier series⟷

∞
�

𝑘=1,3,5,…

4
𝜋𝑘

sin(𝑘𝑥)

𝑓(𝑥) Fourier series⟷
∞
�
−∞
𝑐𝑘𝑒𝑖𝑘𝑥

𝑓(𝑥) Fourier transform⟷
1
2𝜋 �

∞

−∞
̂𝑓(𝜔)𝑒𝑖𝜔𝑥 where 𝜔 =

2𝜋
𝑇
𝑘

𝛿(𝑥) Fourier series⟷
1
2𝜋

+
1
𝜋
(cos 𝑥 + cos 2𝑥 + cos 3𝑥 + … )

𝑥 Fourier series⟷ 2�
sin 𝑥
1

−
sin 2𝑥
2

+
sin 3𝑥
3

− … �

𝑥 Fourier series⟷ 2�
sin 𝑥
1

−
sin 2𝑥
2

+
sin 3𝑥
3

− … �

| sin(𝑥)| Fourier series⟷

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑎0 = 2
𝜋

𝑎𝑘 =

⎧⎪⎪⎨
⎪⎪⎩
0, k odd.
4
𝜋
� 1
1−𝑘2

� , k even.

�̂�(𝑘) = ̂𝑓(𝑘)�̂�(𝑘) 𝐹−1⟷𝐻(𝑥) = 𝑓(𝑥) ⊛ 𝑔(𝑥) = �
∞

−𝑖𝑛𝑓𝑡𝑦
𝑓(𝜏)𝑔(𝑥 − 𝜏) 𝑑𝜏

𝑢(𝑥) = 𝑓(𝑥) ⊛ 𝑔(𝑥)
�̂�(𝑘) = ̂𝑓(𝑘)�̂�(𝑘)
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1. When period 𝑇 is not 2𝜋 replace 𝑘 by
2𝜋
𝑇 𝑘 in all formulas for Fourier series.

2. Plancherel formula 2𝜋∫
∞

−∞
|𝑓(𝑥)|2 𝑑𝑥 =

∫∞

−∞
| ̂𝑓(𝑘)|2 𝑑𝑘

3. Parseval’s formula ∫𝜋

−𝜋
|𝑓(𝑥)|2 𝑑𝑥 =

2𝜋
∞
∑
𝑘=1

|𝑐𝑘|2

4. Parseval’s formula again 2𝜋𝑎20 +
𝜋 �𝑎21 + 𝑏21 + 𝑎22 + 𝑏22 + … � = ∫

∞

−∞
𝑓2(𝑥) 𝑑𝑥

5. Inner products 2𝜋∫
∞

−∞
𝑓(𝑥)�̄�(𝑥) 𝑑𝑥 =

∫∞

−∞
̂𝑓(𝑘) ̄�̂�(𝑘) 𝑑𝑘

6. integration by parts ∫𝑢𝑣′ = [𝑢𝑣]−∫𝑢′𝑣
so pick the one that is easy to di�eren-
tiate for 𝑢 and the one that is easy to
integrate for 𝑣.

7. properties of odd and even functions
Let 𝑜, 𝑒 be odd and even functions,
then 𝑒 + 𝑒 = 𝑒, 𝑜 + 𝑜 = 𝑜, 𝑒 × 𝑒 = 𝑒, 𝑜 × 𝑜 =
𝑒, 𝑜 × 𝑒 = 𝑜, 𝑒𝑒 = 𝑒,

𝑒
𝑜 = 𝑜

8. trig identities

sin2(𝑥) =
1
2
−
1
2

cos(2𝑥)

cos2(𝑥) = 1
2
+
1
2

cos(2𝑥)

sin3(𝑥) =
3
4

sin(𝑥) − 1
4

sin(3𝑥)

cos3(𝑥) = 3
4

cos(𝑥) − 1
2

cos(2𝑥)

sin(2𝑥) = 2 sin(𝑥) cos(𝑥)
cos(2𝑥) = cos2(𝑥) − sin2(𝑥)

= 1 − 2 sin2(𝑥)
= 2 cos2(𝑥) − 1

tan(2𝑥) = 2 tan(𝑥)
1 − tan2(𝑥)

sin(𝐴 ± 𝐵) = sin(𝐴) cos(𝐵) ± cos(𝐴) cos(𝐵)
cos(𝐴 ± 𝐵) = cos(𝐴) sin(𝐵) ∓ sin(𝐴) sin(𝐵)

� cos𝑛(𝑥) 𝑑𝑥 = cos𝑛−1(𝑥) sin(𝑥)
𝑛

+
𝑛 − 1
𝑛 � cos𝑛−2 𝑑𝑥

=
1
2

cos 𝑥 sin 𝑥 + 𝑥
2

n even

=
1
3

cos2 𝑥 sin 𝑥 + 2
3

sin 𝑥 n odd

� sin𝑛(𝑥) 𝑑𝑥 =
− sin𝑛−1(𝑥) cos(𝑥)

𝑛
+
𝑛 − 1
𝑛 � sin𝑛−2 𝑑𝑥

=
−1
2

sin 𝑥 cos 𝑥 + 𝑥
2

n even

=
−1
3

sin2 𝑥 cos 𝑥 − 2
3

cos 𝑥 n odd

�𝑥𝑛𝑒𝑎𝑥 𝑑𝑥 =
1
𝑎
�𝑥𝑛𝑒𝑎𝑥 − 𝑛�𝑥𝑛−1𝑒𝑎𝑥 𝑑𝑥�

9. exp/trig

sin(𝑥) = 𝑒𝑖𝜃 − 𝑒−𝑖𝜃

2𝑖

cos(𝑥) = 𝑒𝑖𝜃 + 𝑒−𝑖𝜃

2
𝑟𝑒𝑖𝜃 = 𝑟 (cos(𝜃) + 𝑖 sin(𝜃))

ln(𝑟𝑒𝑖𝜃) = ln(𝑟) + 𝑖𝜃 + 2𝑘𝜋𝑖

𝐹(𝑒−
𝑥2
2 ) = �

∞

−∞
𝑒−

𝑥2
2 𝑒−𝑖𝑘𝑥 𝑑𝑥 = 𝑒−

𝑘2
2 √2𝜋

𝐹(𝑒−𝑥2) = 𝑒−
𝑘2
4 √𝜋

�
∞

0
𝑒−𝑥2 𝑑𝑥 = √𝜋

2

�
∞

−∞
𝑒−𝑥2 𝑑𝑥 = √𝜋

Laplace

1. To find solution to Laplace on disk, or
radius 𝑟, use polar. The solution is

𝑢(𝑟, 𝜃) = 𝑎0 + 𝑎1𝑟 cos(𝜃) + 𝑏1𝑟 sin(𝜃)
+ 𝑎2𝑟2 cos(2𝜃) + 𝑏2𝑟2 sin(2𝜃)…

Where the 𝑎𝑘 and 𝑏𝑘 found from find-
ing Fourier series of 𝑢(𝑟, 𝜃) evaluated
at boundary as normally done.
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2. solution inside the circle is

𝑢(𝑟, 𝜃) =
1
2𝜋

= �
𝜋

−𝜋

1 − 𝑟2

1 + 𝑟2 − 2𝑟 cos(𝜃 − 𝜁) 𝑑𝜁
If we are given 𝑢0 = 𝛿 at point on circle
as boundary conditions, use the above
formula, much easier.

misc. items

1. The function that minimizes

∫𝑏

𝑎
1
2 (𝑢

′(𝑥))2 − 𝑓𝑢(𝑥) 𝑑𝑥 is the solution
of 𝑢″(𝑥) = 𝑓

2. every function is made up of odd/even
parts

𝑓odd part =
𝑓(𝑥) − 𝑓(−𝑥)

2

𝑓even part =
𝑓(𝑥) + 𝑓(−𝑥)

2

references:

1. schaum’s mathematical handbook of formulas and tables by Spiegel

2. http://www.integraltec.com/math

3. http://en.wikipedia.org/wiki/Integration_by_reduction_formulae

Ax  z a b

c d

x1

x2


z1

z2

a b

0 d  b c
a

x1

x2


z1

z2  z1
c
aRow 

elimination
2 pivots

multiplier

A  LU, where U 
a b

0 d  b c
a

,L 
1 0

c
a 1

A  LDLT

Only if A 
symmetric

Only if all 
pivots >0

A  LL T

L  D L

To solve Ax  b, Solve Lz  b for z then solve Ux  z for x

Nasser M. Abbasi 092814

If xTAx  0 for x  0 then positive definite Pivots all>0 (this definition usually 
applied to symmetric matrices

For fitting, First build Ax  b

then solve x from ATAx  ATb

A

Ax

bx

The x which minimized Ax  b2

is least squares solution

Ax  b2  Ax  bTAx  b

If Ax  b has no solution, then solve ATAx  ATb,

hence x  ATA1
ATb, is least squares solution

To show quadratic form xTAx is positive everywhere

see if you can complete the squares. If so, then yes.

p1m1x1  m2x22  p2x2
2

This will be the pivots These will be the multipliers

xTAx minumum is also global

min only if A is positive definite

Ax  e

Ce  y

ATy  f ATCAx  f

x1

x2

e  x2  x1

e potential difference (elongation)

x potential (node displacement)

y flow (internal spring forces)

f external nodal forces (applied node forces)

Number of 
columns = number 
of nodes

Number 
of rows is 
number 
of edges

Incidence matrix

If A is an n  n square matrix with n

linearly independent eigevectors

then A  SS1 where S is matrix

with its columns the eigenvectors

and  is diagonal matrix of the eigenvalues

Solution to vectored second order ode. Supposed we have

2 second order ODE (coupled, say 2 masses), then the

solution to

M d2u

dt2
 ku  0 is

u1t

u2t
 a1 cos1t  b1 sin1t

v11

v12

 a2 cos2t  b2 sin2t
v12

v22

Where v s are the 2 eigenvectors and 1
2  1 and 2

2  2

Content of this box is from Strang text book

sum of squares:

if given 2x1
2  8x1x2  11x2

2 write it as

2x1  ax22  bx2
2 and solve for a,b

A
square/invertible

 LU
symmetric

 LDLT
positive pivots

 L D D LT  LL T

ATCAIs called the stiffness matrix K

e  elongation of springs

x  mass displacement

c elasticity

y forces in spring

f external forces

y  CAx

K  ATCA

spring potential

Px  1

2
kx2  1

2
xTATCAx  xTf
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Px  1

2
xTAx  xTb has min at Ax  b

Qx  1

2
yTC1y  yTb has min at C1y  b

ATy  f is the constraint

L
y

 C1y  b  AxT  0

L
x

 ATy  f  0

C1 A

AT 0

y i

x


b

f

L  Qx  xTATy  f

 1
2

yTC1y  yTb  xTATy  f

 1
2

yTC1y  yTb  Axy  xTf

Px  xTAx  xTb has min at Ax  b
Qx  yTC1y  yTb has min at C1y  b
Use with optimization 
problems and constraint
Q is called the objective 
function

Lagrangian Lx,y is minimized w.r.t y
and at same time maximized w.r.t. x

structures

fH

fV

y1y2

m  2bars
N  3joints
r  4restrictions
n  2N  rd.o. f

If n /= m, then not 
statically determinate 

ATy  f

y  Ce

e  Ax

Hence ATCe  f or ATCAx  f

continuous structure

3

2 1
300

600

A  d

dx
,AT   d

dx

x

Above table From Strang book

note:   e

L
,  y

A
,c  y

e  A

L
 EA

L

If A is PD, then quadratic Px  1

2
Ax,x  x,b is

min at Ax  b or x  A1b and its miniumum is

PA1b   1

2
Ax,x   1

2
b,A1b

Use calculus to find min of the polynomial in x1,x2

cu  qu  0 is solved by u  Aex q/c  Aex q/c
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