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Chapter 1

Introduction

Took this course in Fall 2014. Part of MSc. in Engineering Mechanics.

Instructor: professor (Gheorghe Craciun|

Syllabus

The course introduces methods to solve mathematical problems that arise in areas of appli-
cation such as physics, engineering, chemistry, biology, and statistics. Roughly speaking, we
can divide these problems into two categories: (i) equilibrium (statics problems), and (ii)
departures from equilibrium (dynamics problems).

The first part of the course will be devoted to the study of equilibrium: linear algebra
provides a unifying framework for discrete equilibrium problems from several application
areas. This algebraic structure is also the basis for numerical solution of both discrete and
continuous equilibrium systems.

In the continuous case, equilibrium mechanics leads to boundary value problems for differ-
ential equations: in one dimension, one finds ordinary differential equations, e.g., Sturm-
Liouville equations; for higher dimensional systems, one finds partial differential equations,
e.g., Laplace’s equation, Poisson’s equation and the equations for Stokes flow. After review of
some basic techniques for solving differential equations, asymptotic methods for the global
analysis of ordinary differential equations will be introduced (boundary layer theory and
WKB theory). The calculus of variations will also enable us to understand the different
formulations of mechanics (by Newton, Lagrange and Hamilton).


http://www.math.wisc.edu/~craciun/
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2.1 tuesday sept 2, 2014

covered parts of chapter 1. LU decomposition. We go from Ax = b to Ux = c where U
contains the pivots on the diagonal and zeros in the lower triangle. To find ¢ we use Lc = b
where L has ones on the diagonal, and has the multipliers used to obtain U just below the
diagonal and has zero everywhere else. Putting these togother gives LUx = b. And this is
the whole point of LU decomposition. For each new b’ we find ¢’ from L¢’ = b’ and then find
x from Ux = ¢’. We do not need to do the pivoting again to obtain U and L again. It is done
once. It is. The cost now is n? each time to solve for x. i.e. the elimination is done only once.

The above is valid for any A. It does not have to be symmetric.

We go one step further. Let U = DU where D is diagonal matrix and contains the pivotes
on the diagonal. Again, A do not have to be symmteric for this.

Now, if A is symmetric, then U = LT and now we get special case of | A = LDLT |

If in addition, A has all positive pivots, then we can write D = VDD, and A = LDLT
becomes| A =LLT |where I = LVD

Did 1.2.1 to practice the pivoting and finding LU.
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3.1 HW 1, Due sept 18, 2014

3.1.1 Problem 1.2.7

1.2.7 From the multiplication LS show that
L=l Ly 1 is the inverseof S=|—1;;, 1
l,, 0 1 TR

§ subtracts multiples of row 1 and L adds them back.

Figure 3.1: the Problem statement

Solution

Multiplying LS gives

1 001 00 100

Iy 1 0||-l,; 1 0|=(0 1 O

I3y 0 1)\-I5 0 1 001
Since LS = I then L = S~! by definition.
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3.1.2 Problem 1.2.8

1.2.8 Unlike the previous exercise, show that

1 1
L=|1, 1 is not the inverse of S=| —1, 1
r}i :32 1 _!31 _'{32 1

If S is changed to

1 1
E= 0 l ‘_121 I.
0 -l t|]|-ty, 0 1

show that E is the correct inverse of L. E contains the elimination steps as they are actually
done—subtractions of multiples of row 1 followed by subtraction of a multiple of row 2.

Figure 3.2: the Problem statement

Solution

Multiplying LS gives

1 0 0)f1 0 0 1 00
Iy, 1 O||-,y 1 o0|=| 0 10
lap Ip 1)\-lsn —lyp 1) \=lnlz 01
1 00
Since LS # I then L is not the inverse of S. Now let S = E = [0 0 —121 1 0]=
0 -l 1)\-I3; 0 1
1 0 0
—Iy 1 0] and now evaluating LS gives

121132_131 _132 1

1 0 O 1 0 O 1 00
121 1 0 —121 1 Ol=10 1 0
Isn I 1\ilsp =13 —l3 1) \0 0 1

Therefore, with the new S matrix, now L is the inverse of S since LS =1
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3.1.3 Problem 1.2.9

129 Find examples of 2 by 2 matrices such that

(a) LU#UL

(b) A?= —I, with real entries in A
(¢c) B?=0, with no zeros in B

(d) CD= —DC, not allowing CD =0.

Figure 3.3: the Problem statement

Solution

3.1.3.1 Part (a)

a
Take any random 2 X 2 matrix A = d} By elimination U =
c

a b 1 0

cland L =1, .
0 d-b- -1
Now LU is found, giving back A as expected

1 0)fa b | [a b
S 1Jlo d-bs) |c d
1
a b 1 0 u+;bc b
(o d—bf](f 1)_(1c(d1bc) d—lbc]
a a a a a

Comparing LU and UL above, it can be seen that by setting b = 0 the LU =

UL is found

4 0] while
c d

a

UL = , which means they will be different as long as d # a. So picking any A matrix

¢
which has b = 0 and which d # a will work. An example is

=¥
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1 0)({1 O 10 .
= while UL =
5 1)]10 2 5 2

To verify, U =
1 0Jf1 0
0 2){5 1

3.1.3.2 Part (b)

0 10
and L = , hence LU =
2 5 1

10 2

1 0
= [ J They are different.

Take any random 2 X 2 matrix A =

b
¢ ), then A? =
c d

a blfa b a2 +bc ab+bd
— Now
c dli\lc d ac+cd d%®+bc
a2 +bc ab+bd (10
ac+cd d+bc|] (0 1

a®+bc=1
ab+bd =0
ac+cd =0
d?+bc=1

solving

gives 4 equations for a,b,c,d

Gives the following solutions
a=-1,b=0,c=0,d=-1
a=1,b=0,c=0,d=-1
a=-1,b=0,c=0,d=1
a=1,b=0,c=0,d=1

Any of the above solutions will satisfy A2 = I. For example, using the first one gives
-1 0
A=
0 -1

As was done above, the following set of equations are solved.
a?>+bc ab+bd [0 0
ac+cd d2+bc| (0 0O

a® +bc=0
ab+bd =0
ac+cd =0
d?+bc=0

3.1.3.3 Part (c)

Hence
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Solution is

eql:=a"2+b*c=0;eq2:=a*xb+b*d=0;eq3:=a*c+c*d=0;eqd:=a"2+b*xc=0;
solve({eql,eq2,eq3,eq4},{a,b,c,d});

{a=a,b=b, c=-a2/b,d=-a}, {a=0,b=0, c=0, d-=4d}

Since we are looking for non-zero elements in B, then the first solution {# = 4,b = b,c =

a? . . _ _ _ 1 _ .
—7,11 = —a} is used. For example, letting a =1,b =2,¢c = _E’d = -1 gives

To verify

3.1.34 Part (d)

b
Let C = (a d),D = (6 i} hence we want CD = —-DC. To simplify this, let the diagonal be
¢ 8

b
zero in both cases. This reduced the equations to 4 unknowns. Hence Let C = [ 0 ,D =
c
0
( / ) and
g 0
0 bjfo
cD - f _ bg 0
c 0Jlg 0 cf
0
DC = [0 b) _{¢f O
g 0)lc O 0 bg
0 cf . . .
Hence we want to solve = - Hence this reduces to just solving
cf 0 bg
bg = —cf
Let b = n,c = —n,¢ = n, f = n which satisfies the above. Le. n xn = —(-nxn) = n®> = n?,

therefore

<o i)l

10
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0 0 2.0 0 0 -n2 0
" o " and DC = " o I hence
-n 0)Jln O 0 -n? n 0Jl-n 0 0 n?

DC = -CD. Let n = 2 for example, then

To verify, CD =

-2 0

ar

0 2)
C =

3.1.4 Problem 1.3.2

1.3.2 Factor 4= [Z 2} into A = LDL”. Is this matrix positive definite? Write x' Ax as a

combination of two squares.
Figure 3.4: the Problem statement

Solution

A=

3 6
6 8

3 6 10 3 0
Hence U = 0 4) and L = (2 J, therefore D = (0 4). D has the pivots on its diagonal.

The pivots is the diagonal of U. Therefore

A A

Since not all the pivots are positive and the matrix is symmetric, then this is not positive
definite (P.D.). This can be confirmed by writing

o

= x1 (3x7 + 6Xxy) + Xy (6x1 + 8xp)
= 3x% +12x1x, + 813

11
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We now need to complete the squares.
xTAx = 3 (x; + ax,)* + cx3
=3 (x} + a?23 + 2ax1%7) + 23
=3x% + (3a2 + c) X5 + 6ax;x,
Comparing to 3x% + 12x1x, + 8x5 we see that a =2 and ¢ = 8 — 34> = 8 =12 = -4, hence
xTAx = 3 (x; + 2xp)% — 422

This shows that xT Ax is not positive for all x due to the —4 term. For example, if x = {1, -1}
then xT Ax = —1. Basically, we obtain the same result as before. For a symmetric matrix A, if
not all the pivots are positive, then the matrix is not P.D. Using x” Ax is another method to
answer the same question. After completing the squares, we look to see if all the coeflicients
are positive or not.

3.1.5 Problem 1.3.6

1.3.6 In the 2 by 2 case, suppose the positive coefficients a and ¢ dominate b in the sense
that a + ¢ > 2b. Is this enough to guarantee that ac > b? and the matrix is positive definite?
Give a proof or a counterexample.

Figure 3.5: the Problem statement

Solution

A counter example is a = 8,b = 2,c = 4. We see that a + b > 2c but ac =16 and c® =16, hence
ac is not greater than b?. So a + ¢ > 2b do not guarantee that ac > c?. Therefore, we also can

b
not guarantee that the matrix is P.D. this comes from the pivots. The pivots of A = (Z J
c

2 2
are {a,c — b;}. Since a > 0 as given, then we just need to check if ¢ - b; > (0. This means

ac — b? > 0. But since we can’t guarantee that ac > b? then this means the second pivot can
be negative. Hence the matrix A with such property can not be guaranteed to be P.D.

12
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3.1.6 Problem 1.3.7

1.3.7 Decide for or against the positive definiteness of

1 1 1 1. 1 4
A=|1 1 1] and A'=|1 2 2|
1 1 1 P id 3

Write A as /,d, 1] and write A’ as LDL",
Figure 3.6: the Problem statement

Solution

To show if A is P.D., we need to show that all the pivots are positive. This is the same as
showing that xTAx > 0 for all non-zero x.To obtain the pivots, we generate the U and look
at the diagonal values. From the above, we obtain

Hence using I; =1 we see that the pivots are not all positive. There are zero pivot. Hence A
is not P.D. For

L

111 (111) (111
A=l122|=lo11[=]0 11
123 lo12 loo1

13
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Hence all the pivots are positive. Therefore A’ is P.D. We can write it as LDLT

100100100T
A'=[1 1 0]f0 1 Off1 1 ©
11 1)10 0 1)\1 1 1

1 0 0)(f1 0 O)f1 1 1
={1 1 0O 1 0|0 1 1
11 1)\0 0 1)\0 0 1

3.1.7 Problem 1.3.8

1.3.8 If each diagonal entry a; is larger than the sum of the absolute values |a;;| along the
rest of its row, then the symmetric matrix A is positive definite. How large would ¢ have to be

m

Jo7 this statement to apply? How large does ¢ actually have to be to assure that A is positive
Zzfinite? Note that

xTAx =(x; + x5 + x3)% + (e — D(xF + x% + x3);

when is this positive?

Figure 3.7: the Problem statement
Solution

c 11
A=11 ¢ 1
1 1 ¢

¢ > 2 is enough to guarantee row dominant matrix. For P.D., looking at x” Ax = (x; + x, + x3)°+
(c-1) (x% + x5+ x%) shows that ¢ —1 > 0 is the condition for P.D. which implies ¢ > 1. Hence
it is enough that c > 1.

14



3.1. HW 1, Due sept 18, 2014 CHAPTER 3. HWS

3.1.8 Problem 1.3.11

1.3.11 A function F(x, y) has a local minimum at any point where its first derivatives F/dx
and dF/dy are zero and the matrix of second derivatives

&*F  @*F
- dx*  Gxdy
FF  PF

dxdy @y’

s positive definite. Is this true for F; =x* —x?y? + p? + y* and F, =cos xcos y at x=y
=0? Does F, have a global minimum or can it approach — «c?

Figure 3.8: the Problem statement

Solution

For Fl = x2_x2y2+y2+y3’ we find ‘2_1;1 — _2x2y+2y+3y2 —0atx = O,y - 0. And
%1 =2x-2xy?> =0 at x = 0,y = 0. Now we need to look at the P.D. of

J%F;  9%F )
722 axoy | _ (272 —dxy
h h —dxy  -2x*+2+ 6y
Ixdy  Iy?
At x =0,y = 0 the above becomes
or o
ax2  9xdy | _ 20
hH PR 2
dxdy  Iy?

This is already in U form. Since the diagonal is all positive, then this is P.D., which means
it is true for F; (x, y). Now we check F, (x, y)

&Fl . aFl :
F; (x,y) = cosx cosy. Hence Sy = sinycosx = Oatx=0,y =0. And —, = —sinxcosy =0
at x = 0,y = 0. Now we need to look at the P.D. of
?F1 9’k ) ,
92 Jxdy —cosxcosy sinysinx
2 2 = . .
oh h sinysinx  —COSYCosX
oxdy  Iy?
And at x =0,y = 0 the above becomes
9%F;  9%Fy
o2 axy|_|71 O
d%F;  9%Fy 0 -1
Ixdy  Iy?

Hence this is not P.D, since the pivots are negative. To answer the part about F; having

15
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global minimum. The point x = 0,y = 0 is local minimum for F; = x? - x*)2 + y* + y® since

Jd%F;  9%Fy
2
[ ;szl ‘;’ﬁif ] was found to be P.D. at x = 0,y = 0. But this is not global minimum. Only
Ixdy Iy

when the function can be written as quadratic form xT Ax will the local minumum be global
minumum. In this case, F; can approach —co, hence this is the global minimum.

Taking the limit lim, _, ., F; = (1 - yz) oco. Taking the limit of this as y — co gives —co. Here
is a plot of F; around x = 0,y = 0 showing it is a local minimum

F1 =x"2 -x"2y72 +y72 + y~3
Plot3D[F1, {x, -3, 3}, {y, -3, 3},
PlotLabel -> "F1 function", AxesLabel -> {x, y}]

Fy function

Figure 3.9: plot of the above

16
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3.1.9 Problem 1.4.5

145 The best fit to by, by, bs, b, by a horizontal line (a constant function y = C) is their
average C =(b; + b, + by + b,)/4. Confirm this by least squares solution of

Ax

Il

1

il | b,
Cl=

|rer= |,

1

From calculus, which C minimizes the error E=(h, — C)* + - + (b, —¢)*?
Figure 3.10: the Problem statement

Solution

The equation of the line is ¥ = C, hence we obtain 4 equations.

bl = C
bz = C
by=C
by=C
or
A
1 by
1 b
c=|7?
1 by
1 by
Hence now we set ATAx = ATb
1 by
1 b
t111)f|c=(1111)|°
1 bs
1 by
by
by
aC=(111 1)
bs
by

4C:b1+b2+b3+b4

by+by+b3+by

Hence C = y

, Which is the average. Using calculus, to minimize E = (b; - C)2 +
17
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(by — ) + (bs — C) + (by — C)?
%g:—Qah—C)—2@2—C)—2w3—c)—2@4—c)

0 = 8C — 2b, — 2b, — 2bs — 2b,
8C = 2by + 2by + 2bs + 2by
by +by,+b3+0y
4
Which is the same found using AT Ax = ATb solution.

C=

3.1.10 Problem 1.4.7

1.4.7 For the three measurements b =0, 3, 12 at times t =0, 1, 2, find

(1) the best horizontal line y=C
(i1) the best straight line y=C + D¢
(iii) the best parabola y=C + Dt + Et*.

Figure 3.11: the Problem statement

Solution

3.1.10.1 Part (a)

For y = C we obtain the following equations

Hence

18
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Applying ATAx = ATb gives

1 by
11 1)f1lc=(1 1 1)|b
1 bs
3C = bl + bz + b3
by + by + by
C=
3
o~ Dbytbo+by  0+3+12
Therefore y = C = 3 T3 =5 0r
y=>

3.1.10.2 Part (b)

For y = C + Dt we obtain the following equations
b; =C+ Dt
by, = C + Dt
by = C + Dt

Applying the numerical values gives results in
0=C
3=C+D
12=C+D(2)

Hence

[N
N —, O

12
Applying ATAx = ATb gives

10 0
[111] C 111)
11 = 3
01 2 D] lo1 2
1 2 12
3 3)(c) (15
3 5]\D] |27

Now we solve this using Gaussian elimination. First U is found

3 3 3 3
H
3 5 0 2

19
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10 10 15
Hence L = (1 1) and Lc = b, then [1 )(Cl] = [ ] now c is found by forward substitution,

1] |27
L. C1 15
1vIin =
& & Cy 12

Now we solve Ux = ¢ or [3 3¢ = 15] by backward substitution, the result is
0 2J\D) |12
C -1
b)-[)
Hence the line is
y=-1+6t

Here is a plot of the fit found above

b = {0, 3, 12}; t = {0, 1, 2};

pl = ListPlot[Transpose[{t, b}], PlotStyle -> Red];

p2 = Plot[-1 + 6 t, {t, -.5, 3}, PlotTheme -> "Detailed",
FrameLabel -> {{"y(t)", None}, {"t", "Fit by least squares"}}];
Show[p2, p1]

Fit by lasst squares

rT T 11 rrrr| 1T 111111 [ 111 T T T

L ___.-'"J.f

15k o ]

l,-—"ffa
10 - f}).—-"'f it
z | g

" %l - o 1 —==%+b6¢

0 L ]

~ ®
o
-

0 o i

-5 | PRSI | 1 L 1 1 1 |

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 3.12: Plot of the above

20



3.1. HW 1, Due sept 18, 2014 CHAPTER 3. HWS

3.1.10.3 Partc

For y = C + Dt + E*> we obtain the following equations
by = C + Dt + Ef?
by, = C + Dt + Ef?
by = C + Dt + Ef?

Applying the numerical values gives results in

0=C
3=C+D+E
12=C+2D +4E
Hence
A
—N——
1 0 0)(C 0
1 1 1|{D|=1]3

1 2 4J\E 12
Now we solve this using Gaussian elimination. We do not need to use ATA least squares
since the number of rows is the same as number of columns. First U is found
100 1 00 100
11 1({—=]0 1 1|—=f0 1 1
1 2 4 0 2 4 0 0 2

100 1 0 0)(cy 0
Hence L = |1 1 0|and Lc = b, then [1 1 Of|c;| = | 3 | now c is found by forward
1 21 1 2 1)\cs 12
1 0
substitution, giving |¢, [ =3
C3 6
1 0 0)(C 0
Now we solve Ux =cor (0 1 1||D|=]|3]|by backward substitution, giving
0 0 2)J\E 6
C 0
D|=]0
E 3
Hence the solution is
y =3t

Here is a plot of the fit

21
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b =40, 3, 12}; t = {0, 1, 2};

pl = ListPlot[Transpose[{t, b}], PlotStyle -> Red];

p2 = Plot[3 t~2, {t, -.5, 3}, PlotTheme -> "Detailed",
FrameLabel -> {{"y(t)", None}, {"t", "Fit by least squares"}}];
Show[p2, pi]

Fit by l2ast squeres

¥t

=L f‘f’.-"f i
A
T _,—'-'_FH-'—F-
0 TT———" .
—0.5 0.0 0.5 1.0 1.5 1.0 25 3.0

Figure 3.13: Plot of the above

We can see this is an exact fit since no least squares was used.

3.1.11 Problem 1.4.10

1.410 In a system with three springs and two forces and displacements write out the
equations e = Ax, y = Ce, and ATy =f. For unit forces and spring constants, what are the

displacements?
3 C f‘l » X1 " ]
3 2090/
E C3

Figure 3.14: Problem description
22
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Solution

From page 40 in textbook, y is force in spring, e is the elongation of spring from equilibrium
and f external force at each mass. Hence for Ax = e, we see that e; = xq,¢, = x, — x; and
ez = xp. Therefore

A
—N—

1 0 €1
X1

-1 1 ( ) =1lé
X2

0 1 €3

For y = Ce, here y is the internal force in spring. Hence y; = cye1, 1, = c2€;, Y5 = c3e3, therefore
/—j{%

cg 0 0)(e 4]

0 o Offlea|=|v2

0 0 c/les) \ys
For ATy = f, we need to find the external forces at each node first. From diagram we see
that f1 =y, —y, and f, =y, + y3, therefore

AT
—_—

1 -1 o) (A
o 1 1|27 |
Y3

3.1.12 Problem 1.4.11

1.411 Suppose the lowest spring in Fig. 1.7 is removed, leaving masses m;, m,, My hanging
from the three remaining springs. The equation e = Ax becomes

€y 1 0 0 Xy
e, |=1-1 1 0l]=x
[ 0 -1 1] %3

Find the corresponding equations y = Ce and ATy=f, and solve. tthlast equatic:n for y.
This is the determinate case, with square matrices, when the factors in ATCA can be inverted

separately and y can be found before x.

Figure 3.15: Problem description

Solution

To find y = Ce. In this equation, e is the elongation of the spring and y is the internal force.

23
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Hence from figure 1.7 we obtain

Y1 =16
Y2 = 0263
Y3 = C3€3
Hence in matrix form
C
—_—

Cq 0 0 €1 Y1
0 o Offlea|=|uy2
0 0 c/les) \ys

In the question ATy = f, f is the external force. Hence by balance of force at each mass, we

obtain
fi=yi-1
fa=v2-V3
fa=ys
or in matrix form
—

1 -1 0)\(nr) (/1
0 1 -1fly2|=]|/2
0 0 1My) \f3

To solve, since already in U form, we will just need to do backward substitution. Hence

Y3 = f3
Va=fa+f3
n=fitfatfs

3.1.13 Problem 1.4.12

1412 For the same 3 by 3 problem find K =A47CA and A™" and K~ '. If the forces
fis fo, f are all positive, acting in the same direction, how do you know that the

displacements x,, X, X, are also positive?

Figure 3.16: Problem description

Solution

24
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1 0 0 ¢ 0 0
K=ATCA,but A=[-1 1 0]givenin problem 1.4.11,andC=|0 ¢, 0 | Hence
0 -1 1 0 0 c

T
1 0 0y O O0)1 0 O
K=ATCA=[-1 1 0/]0 ¢ O||-1 1 0
0 -1 1J{0 0 ¢Jlo -1 1

C1+C —Cy 0

= —Cy Cp+C3 —C3

0 —C3 C3
And
-1
1 0 0 10
Al=l-1 1 o] =1 1
0 -1 1 11
And
-1
K‘1:ATCA)
-1
:A—lc—l(AT)
1
100); 9 9)1 11
={1 1 0ll0 * o0 11
2
11 1)o o L 01
c3
1 1 1
A T R
O T B
— —+= —+—+—

1 a 0 a & 4
Since f = Kx then x = K™1f. Since we are told fy, f,, f5 are all positive, and so the sign of x
the displacement, is determined by the sign of K™!. But K™! has positive entries only, since
c; is positive by definition. Therefore all displacements x must be positive.
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3.1.14 Problem 1.5.6

1.5.6 Solve the second-order system

> "1 ~F § 2 0
d_’z“‘+ -1 2 —1{u=0 with up=|—1}| and wup=|0].
’ 0 -1 1L = 0

These initial conditions do not activate the zero eigenvalue (sec the following exercises).

Figure 3.17: Problem description

Solution

The solution is

uq () 011 12 U13
uy (1) | = (al Ccos \/A_lt + by sin \//l—lt) Uy +(a2 coS \/A_zt + b, sin \/A_zt) Uy +(a3 oS \//\—315 + bs sin \//\_3t) Up3
us (t) U31 U3 Us3

Where A; are the eigenvalues and v; are the corresponding eigenvectors of A. The constants
are found from initial conditions.
For the matrix A, the eigenvalues are found by solving
JA-All=0
Solving for eigenvalues gives A; = 0,1, =1,A; = 3 and the corresponding eigenvectors are
1) (-1} (1
11,1 0 |,]-2] hence the solution becomes

1 1 1

up (1) 1 -1 1

uy (t)| = a1 |1|+ (aycost+bysint)| 0 |+ (a3 cos V3t + bs sin \/gt) -2

uz (t) 1 1 1

Att=0

2 1 -1 1
“1|=a|1|+ay| 0 |+a3]|-2 (1)
-1 1 1 1
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And taking derivative of the solution gives

), (f) 1 -1 1
uy (t) [ = a1 |1+ (—aysint + by cost)| 0 |+ (—a3\/§sin V3t + b3\/§cos \/gt) -2
uj (f) 1 1 1
At t = 0 the above becomes
0 1 -1 1
0|=ar|[1]|+by| 0 [+b5V3]|2 (2)
0 1 1 1

Now (1),(2) needs to be solved for the constants. From (1)
1 -1 1)(a) (2
1 0 -2|lay|=]-1
1 1 1)\as -1
1 -1 1 1 -1 1 1 -1 1
This is solved using Gaussian elimination. (1 0 -2({—]|0 1 -3|—|0 1 -3
1 1 1 0 2 0 0 0 6

1 -1 1 100
Hence U=[0 1 -3|,L=|1 1 0fand hence Lc = b is solved first for c using forward
0 0 6 121
substitution
1 0 0)( 2
11 0fle,|=]-1
12 1)) 41

Which gives ¢; = 2,c, = -3, ¢3 = 3, hence now we solved for x from Ux =c¢
1 -1 1 aq 2
0 1 -3||lay|=]-3
0 0 6)la) |3

. . 1 3
Giving a3 = 2= =5,01 = 0.

Now we solve for the rest of the constant in same way. From (2)
1 -1 3 )\(a) (0
1 0 =2v3||p]=]0
1 1 3 /) (o
1 -1 3 1 -1 3 1 -1 3
This is solved using Gaussian elimination. |1 0 2v3|-=10 1 -3v3|-=|0 1 -33
1 1 3 02 0 0 0 6V3
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1 -1 3 100
Hence U = |0 1 —3\/§ ,L =11 1 0fand Lc = b is solved first for ¢ using forward
0 0 6V3 121
substitution
1 0 0)(c 0
1 1 0fflcy|=]0
1 2 1)les) o

c1 =0,c0 =0,c3 =0, therefore now we solved for x from Ux =¢
1 -1 3 \(a) (O
0 1 -3V3||p|=|0
0 0 6v3)lp) (o

Which gives b3 = 0,b, = 0,a; = 0. Now that all constants are found the final solution is

uq (t) 1 -1 1 1
u, (£) | = ~5 cost| 0 [+ 5 cos V3| -2
Us (t) 1 1

Hence
3 1
uqy (b = Ecost + Ecos\/gt

uy (t) = — cos V3t

3 1
uz (t) = 5 cost + 5 cos V3t

3.1.15 Problem 1.5.7
1.5.7 Suppose each column of A4 adds to zero, as in

§ =1 0
A=|-2 2 —1|. '
-1 -1 1

(a) Prove that zero is an eigenvalue and A is singular, by showing that the vector of ones
is an eigenvector of A7. (A and A" have the same eigenvalucs, but not the same eigenvectors.)
(b) Find the other eigenvalues of this matrix A, and all three eigenvectors.

Figure 3.18: Problem description

Solution
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3.1.15.1 Part (a)

3 -1 0
A=[-2 2 -1
-1 -1 1
3 -2 -1
AT=1-1 2
0 -1 1
For eigenvector v of ones, we write
ATy = v
Hence
3 -2 -1)[1 1
-1 2 -1f|1{=A|1
0 -1 1)1 1
0 1
0[=Al1
0 1

Which implies A = 0. Since AT has same eigenvalues of A then A has zero eigenvalue. But
the determinant of A is the products of its eigenvalues. Since one eigenvalue is zero, then
|A] = 0, which means A is singular.

3.1.15.2 Part (b)

To find all three eigenvalues of A we solve |AI — A| = 0. Hence
A=-3 1 0
2 A=-2 1 |=0
1 1 A-1
A3 —6A2+81=0
A(A2-61+8)=0

Hence A = 0,1 =2,1 = 4.To find the eigenvectors, we solve Av; = A;v; for each eigenvalue.
This means solving (A;I — A)v; = 0 for each eigenvalue. For A =0

3 -1 0 011 0
-2 2 -1 U211 = 0
-1 -1 1 031 0
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We always set v;; =1 and then go to find v;, v3 in finding eigenvectors. Hence we solve

-3 1 0)f1 0
2 -2 1 U1 = 0
1 1 -1 O31 0

1
Solving gives v; = | 3| For the second eigenvalue A = 2 we obtain
4
200 3 -1 0))\(vi2 0
0 2 0|]-1-2 2 -1 Uy | = 0
002 \-1 -1 1))\ux 0
11 0)(1) (0
2 01 Uy | = 0
1 11 (%] 0
-1
Solving gives v, = [ -1|. For the last eigenvalue A = 4 we obtain
2
4 00 3 -1 0))\(v1s 0
0 4 0]-1-2 2 -1 U3 | = 0
004/ (-1 -1 1)/{wys) (0
11 0)(1 0
2 21 U3 | = 0
113 OU33 0
-1
Solving gives v; = | 1 [.Summary. The eigenvalues are {0,2,4} and the eigenvectors are
0
1) (-1) (-1
31,[-11,
4) \ 2 0
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3.1.16 Problem 1.5.11

1511 Why is the sum of entries on the diagonal of AB equal to the sum along the diagonal
of BA? In other words, what terms contribute to the trace of AB?

Figure 3.19: Problem description

Solution

The elements of the diagonal of AB come from multiplying row i in A with column i in B.
Therefore, looking at the diagonal elements only, we can write, using a; as element in A
and using b;; as element in B

§ a1y
AB = ; ibip
Ei] ibin
Hence the trace of AB is
tr(AB) = E a1y + E fgibip + -+ + E pibin
But the above can be combined asl | |

tr(AB) = D} 3 by 1)
ko

Now if we consider BA, then the result comes from multiplying row 7 in B with column 7 in
A

X byian
1

Y byiap
BA = i

21: byiin
Hence the trace of BA is
tr(BA) = E buai + E byip + -+ + 2 byittin
But the above can be combined asl | 1

tr (BA) = ), ) bui (2)
P

Looking at (1) and (2) above we can see that both traces contain the same elements, but
arranged differently. The indices can be changes in the sum without changing the value of
the sum. This can be seen more directly by looking at specific example of 2 x 2 case. Let
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Ao [ae+bg

while
cf + dh)

b
¢ ],B = (e i } hence the elements on the diagonal of AB are

c d g
(ae+cf

for BA the result is ] We see that the trace is the same.

bg + dh

3.1.17 Problem 1.5.12

1.512 Show that the determinant equals the product of the eigenvalues by imagining that
the characteristic polynomial is factored into

det(Ad — AT) = (g — WAy — &) -+ (Ay— ), *)

and making a clever choice of 4.

Figure 3.20: Problem description

Solution
det (A — Al) is a polynomial in A. Hence it can be factored in its roots as
det (A=A =P(A) = (4 =A) (A2 =) Az =A) - (A, = A)

Assuming there is n eigenvalues. When A = 0 (which is the independent variable now, and
not any specific eigenvalue, then (1) becomes

det (A) = P(O) = A1A2A3 /\n
Hence
det (A) = /\1/\2/\3 An

Which is what we are asked to show.
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3.1.18 Problem 1.5.13

1.513 Show that the trace equals the sum of the eigenvalues, in two steps. First, find the
coefficient of (—A)" "' on the right side of (*). Next, look for all the terms in

a;;—4 3 Ayp
" Ayy — A a
det(d — Al)=det | "~ B o
gy Qya alLFl "]‘

which involve (—A)"~ . Explain why they all come from the main diagonal, and find the
coefficient of (— )"~ ! on the left side of (*). Compare.

Figure 3.21: Problem description
Solution

det(A-AD =PA) = (A -A) (A=) (A3 =A)--- (4, = A) (*)

Let look at the case of n =2
P(A)=(A1-21) (A2 - A)
= /\2 - /\ (/11 + /\2) + /\1A2
Hence the coefficient of (—/\)n_1 which is —A is (A; + A,) which is the sum of the eigenvalues.
Lets look at n =3
P(A) =1 -2 (A2 - 1) (A3 - 1)
= -A3+ A2(Ay + Ay + A3) = A (A Ay + AqA5 + ApA3) + A A1,

So the pattern is now clear. The coefficient of (-1)"" is the sum of all the eigenvalues of A.
For det (A — Al), looking at n = 2 we write
app—A  ap

det (A — Al) = det [
apx ap —

/\) = (a31 = A) (agp — A) — axa13

= A2 = A(ayq + ay) + (a1180p — Ay a1p)
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We see in this case that the coefficient of (—)\)n_1 = —A is the trace of A. Lets look at n =3

ayp— A ap a13
det (A - AI) = det as1 dyy — A dp3
a3 azp  axz—A

Ay — A a a a a Ayy — A
= (ﬂ]] - /\) det 22 23 —ayp det 21 23 +dq3 det 21 22
ap  ap—A az; az;z—A a3 a4z
= (a11 - 1) (Az — Aay + as3) + (ax033 — 01230132))

— ayp (A1033 — Adpy — a31023) + ay3 (Adzy + dp1a3; — A22031)
= —A3 + A2 (a1 + agy + az3) — A (ay10 — 1201 + 11033 — A13031 + Axplizz — Ax303))
+ (a11a2033 — 01103037 — A12091433 + (12031023 + A2101303 — A13022031)
We see again that the coefficient of (—/1)”_1 = A2 is the trace of A. So by construction we
can show that coeflicient of (—/\)n_] is the trace of A. But we showed above that coefficient

of (<1)"! is the sum of all the eigenvalues of A. Hence the sum of all the eigenvalues of
A=tr(A)
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3.2 HW 2, Due Oct 2, 2014

3.2.1 Problem 1.6.2

16.2 Write down the incidence matrices 4, and A, lor the [ollowing graphs:

I3 4

2 23

For which right sides does A4, x =5 have a solution? Which vectors are in the nullspace of
AT?

Figure 3.22: the Problem statement

In the incidence matrices, the rows indicate the edges, and the columns are the nodes. We
put -1 for the node that the edge leaves and +1 for the node that the edges arrives at. Arrows
are used to indicate direction.

-1 41 0 0 O

-1 +1 0 O 0 -1 41 0 O

A = 0 -1 1 0 A, = 0 0 -1 41 0
0 0 -1 +1 0 0 0 -1 +1

1 0 0 -1 0O 0 -1 0 +1

-1 0 +1 0 O

We first note that matrix A; rank r =3,m =4,n = 4.

In A;x = b, the vectors b have to be in the column space of A;. These are vectors in R = R*,
that span space of dimension r = 3. Since there is a cycle (starting from node 1 we end up at
node 1 again by following the edges), this means that all the potentials at each node must be
the same. But if the potential at each node is the same, then there can be no flow of current.
Since flow of current represent the edge, it means each edge will have zero value. So b must
be all vectors/edges that add up to [0, 0,0, 0] vector. For the case of A{, we obtain the matrix

1 0 0 1
p_ |1 -1 0 0
"o +1 21 o0

0 0 +1 -1

N(Af) in the space of R" = R* with vectors that span dimension space m—r=4-3=1. So
a line. So one basis vector is all what is needed.
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And now we ask about the nodes of this graph. What values can they have? This is the
graph associated with this matrix

1 4
14 >
2 4
) la Y3
3

Figure 3.23: graph associated with this matrix

We now ask, what values should the nodes have in order for the edges to have zero flow in
them? It is clear the nodes must all be equal [1,1,1,1] since if the potential is same at each
node, then there will be no flow (i.e. zero potential difference) on the edges. Therefore

N(AT) =[1,1,1,1]

We also know from fundamental theory of linear algebra, that R (A) is orthogonal to N (AT) .

3.2.2 Problem 1.6.3

1.6.3 The previous matrix 4, should have n — 1 independent rows; which are they? There

should also be m—n + 1 independent vectors in the nullspace of 4%, one from each loop;
which are they?

Figure 3.24: Problem description

The matrix A, has rank r = 4,m = 6,n = 5.The number of independent rows (edges) is n -1
or 5—-1 = 4 which is its rank. These can be read from the graph directly. Any 4 edges, as
long as they do not complete a cycle, will qualify. Hence the edges that meet this condition
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are
6,5,4,2
6,5,4,1
6,5,3,2
6,5,3,1
6,4,3,2
6,4,3,1
5,4,2,1
5,3,2,1
4,3,2,1
Notice that we could not have selected for example 6,5, 4,3 since 5,4,3 are in one loop.
The N (Ag) has m —r = 6 —4 = 2 dimensions. Now we take the edges on each loop. Since

the loop is the null space. Since there are two loops, this give us the two independent rows.

The left loop has

edge (1) + edge (2) — edge (6) = [1,1,0,0,0,-1] 1)

Second loop has

edge (3) + edge (4) —edge (5) = [0,0, +1, +1,-1,0]

In other words, we put a 0 for the edge that is not there and put a +1 for the edge the goes
one direction and -1 for the edge that goes in the opposite direction. For example, in (1) we
put 1 for edge(1) since edge(1) is in the loop. We put 0 for edge (3) since edge (3) is not in
the loop at all. We put -1 for edge(6) since it goes in the opposite direction from the others.
It is arbitrary which direction is positive and which is negative, as long as one is consistent.
Notice the above two basis vectors span N (Ag) and live inside R® since m = 6 in this case.

3.2.3 Problem 1.6.5

1.6.5 I A is the incidence matrix of a connected graph and Ax = 0, show that x, =x, = --.
= x,. Each row of Ax =0 is an equation x; — x;, = 0; how do you prove that x; = x, even
when no edge goes from node j to node k?

Figure 3.25: Problem description

Since Ax = 0 then we set up the equations from incidence matrix one for each edge as
follows
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Figure 3.26: plot for prob 1.6.5

If we assign one node any arbitrary value, say x; =1, then x; =1 as well. But then any node
on the other side of x;, say x; will now have value 1 as well. By transitivity, all other nodes
will end up with the same value assigned to the first node. Hence all nodes have the same
value.

For the case of a two nodes not connect. Assume the nodes are x; and x4 and that there is no
edge between them. Now assume there is an edge x;x, and edge x,x; and edge x;x,. Since
X, = x1 since Ax = 0 then this implies x3 = x, = x; as well. This also implies x4 = x3 =x, = x3
or x; = x4 even though there is no direct edge.

3.2.4 Problem 1.6.6

1.6.6 In a graph with N nodes and N edges show that there must be a loop.

Figure 3.27: Problem description

Proof by contradiction: Assuming there is no loop. Hence the graph must be a spanning
tree. But by definition, a spanning tree with N nodes have N —1 edges. But we are given that
number of edges is the same as the number of nodes. Hence the assumption is not valid,
and there must be a loop, called the fundamental loop or fundamental cycle.

3.2.5 Problem 1.6.7

1.6.7 For electrical networks x represents potentials, Ax represents potential differences, y
represents currents, and A"y = 0 is Kirchhofl’s current law (Section 2.3). Tellegen’s theorem
says that Ax is perpendicular to y. How does this follow from the fundamental theorem of
lingar algebra?

Figure 3.28: Problem description
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The fundamental theorem of linear algebra says that vectors in R(A) are orthogonal to
vectors in N (AT). Ax gives the vectors in R(A) which is the potential difference. While

currents y which results in ATy =0 are in N (AT). The following diagram illustrates this

R(AT)

: < | R&

N (A) AT Potential differences due
. . to x live in this space,
Potentials x which ie Ax vectors

result in zero potential
difference live in

this space. i.e. Ax = 0 y\ N(AT) 0 b
R / ‘Q ¢

currents y which //O&‘Q,&&
results in ATy = 0 <////(§,z‘°QQQQ}Q
live in this space S

SRR

Plot_prob_1_6_7.vsdx 3 %$ \*\Q;
NN
AQ’Q Q:b'()
®

Figure 3.29: Plot for Problem 1.6.7

3.2.6 Problem 2.1.2

21.2 (a) Compute the 4 by 4 matrices A} A, and AJCA, for the network in Fig. 2.1.
Notice that like the original Ay, its columns add up to the zero column.

(b) Verify that removing the last row and column of AJCA, leaves A"CA in equation (7).
What is A7 A7

(¢) Show that this A7 4 is positive definite by applying one of the tests in Chapter 1 (for
example, compute the determinants or the pivots).

Figure 3.30: Problem description

Figure 2.1 is the following
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Xz

Fig. 2.1. Four nodal variables and six edge variables.

Figure 3.31: Figure 2.1 in book.

The A, matrix, is the incidence matrix. Since we have 6 edges, the matrix will have 6 rows.
Since we have 4 nodes, there will be 4 columns. The matrix is

-1 41 0 0
-1 0 +1 O
0 -1 +1 O
0 -1 0 +1
-1 0 0 +1
0 0 -1 +1

Hence Al A, is
-1 +1 0 O
-1 -1 0 0 -1 0)f-1 0 +1 O
0O -1 -1 0 00 -1 +1 O
0O 0 1|10 -1 0 +1
O 0o 1 1 1)J)]-1 0 0 +1

ATA, =

0 0 -1 +1
3 -1 -1 -1
I I T |
I R T R |
1 -1 -1 3
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And the C matrix is m X m where m = 6 since this is the number of rows in A,. Hence

cqc 0 00 O O
0 c;c OO 0O O
co 0 0 cg O 0 O
0 0 0 ¢g¢ 0O O
0 0 0 0 ¢5 O
0 0 O 0 ¢
Therefore
cqg 00 0 O O)f-1 +41 0 O
-1 -1 0 0 -1 0}{0 ¢¢ O O O Off-1 0 +1 O
ATCA, = 1 0 -1 -1 0 0|0 O ¢g O O OJ]|]O0O -1 +1 O
0 1.1 0 0 1|0 0 0 ¢ 0 O -1 0 +1
0O 0 0 1 1 1J]0 © 0 s O]|-1 0 0 +1
0 0 0 0 ¢)lO 0 -1 +1
Hence
€1+ Cy+cs -1 —Cy —Cs
ATCA, = -1 C1+c3+cy —C3 —Cy
—Cy —C3 Cy+C3+ ¢ —Cq
—Cs —Cy4 —Cq Cy+ C5+ Cg

We notice that the diagonal entry on ATCA! matches the sum on the rest of the row.

3.2.7 Problem 2.1.3

21.3 For the triangular network in Fig. 2.1, let fi=f;=f;=1and f,= —3. With C =T and
b =0, solve the equilibrium equation —ATCAX =J. (Note that f, and x, do not enter,
because x, = 0 and the last column of 4, was removed.) Solve also for y, and describe the
flows through the network.

Figure 3.32: Problem description
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From problem 2.1.2, we found

We first start by removing the last column, hence A =

vector now.

We are given that C =

o O o o =

0

equation —~ATCAx = f — ATCb, but

o O O - O

0

o O = O O

0

o O = = O

o = O O O

0

S o ~r o 0o o o

o O O © o =

o O © O~ O

o~ © o o o o

-1
0

+1
0

-1

-1
0
0

0 0
+1 0
+1 0

0 +1

0 +1
-1 +1

1

1

, hence this becomes

o O © = O O
o O = O O O

o B O O O O

_ o O O o O
e}

-3
1
1

1
-3
1

which means x is 3 x 1

and f = |1/, hence we need to solve the equilibrium

—ATCAx = f
0
1 |({x

"1

1 X9 .
0 X3 1
0 X4
-1
1 X1 1
1 Xy | = 1
-3 X3 1

We now solve the above by Gaussian elimination which gives
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To solve for y we use the first equation of the equilibrium equation after elimination, which
is given on page 92 of the textbook as

ct A y| b
[o ~ATCA (x \f-ATcw
The first equation gives
Cly+Ax=b
And for b = 0 this becomes
y=-CAx
100 0O0O0)f-1 1 0
0100 O0O0ff-1 0 1 4
:_001000 0 -1 1 4
0001O0O0|f0 -1 O 4
000O0T1O0ff-1 0 O
000O0O0OT1J){0O 0 -1
or
0
0
|0
e
-1
-1

y now is the edges, it is the flow. Hence the above says that in figure 2.1 network, shown
again below
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Xz

Fig. 2.1. Four nodal variables and six edge variables.

Figure 3.33: plot for 2.1.2

That there is now flow over edges 1,2,3 (the outer cycle) and flow is only on the inner edges
4,5,6 in opposite direction shown.

3.2.8 Problem 2.1.6

21.6 Suppose a network has N nodes and every pair is connected by an edge. Find m, the
number of edges.

Figure 3.34: Problem description

The first node needs N-1 edges to connect to the other N. The second node needs N-2 edges
to connect to the other nodes. We do not count the first one since it is already connected
by now. The third node needs N — 3 edges, and so on. The last node needs no edges, since
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by the time it is reach, it already has an edge from all the others to it. Hence

m=N-1)+(N-2)+---+(N-N)
N
=2 (N-i)
l;l N
=Y N-Dii
i=1 i=1

1
= N2 - 2NN +1)
1,1

=N2--N?2-_-N
2 2
_1N2 1N
2 2
Hence
1
m:EN(N—l)

3.2.9 Problem 2.1.12

2112 Draw a network with no loops (a tree). Check that with one node grounded the
incidence matrix A is square, and find A~ *. All entries of the inverse are 1, —1, or 0.

Figure 3.35: Problem description

A tree is drawn with arbitrary directions

—£ grounded

Figure 3.36: Tree for problem 2.1.12
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Before grounded node 5 the A matrix is

-1 41 0 0 O
0 -1 0 +1 O
0 0 -1 +1 O
0 0 0 +1 -1

When node 5 is grounded, then column 5 is removed, now the matrix becomes

-1 41 0 O

[0 -1 0 +1

o 0o 1w

0 0 0 +1

And its inverse is

-1 -1 0 +1

yEm 0 -1 0 +1

0 0 -1 +1

0 0 0 +1

3.210 Problem 2.2.1

2.21 Minimize Q@ = }{(y} +1y3) subject to y, + y, =8 in two ways:

(a) Solve dL/dy =0, 8L/éx =0 for the Lagrangian L =Q + x;(y, + y, —8).
(b) Solve the equilibrium equations (with b= 0) for x and y.
What is the optimal y, and what is the minimum of ¢? What is the dual quadratic —P(x),

and where is it maximized?

Figure 3.37: Problem description

3.2.10.1 part(a)

Q= %(y% + %y%) and constraint r = y; + y, —8 = 0 hence L = Q + xr where x here is the

Lagrange multiplier. Hence

1 1
L= 5(]/%+§y§)+x(y1 +1,-8)
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Therefore
JL
8_y1 =htx
JL 1
8_3/2 3Y2 +Xx
JdL

In matrix form it becomes

01 W1 0
1
VL=[0 5 1||y2|=]0 1)
1 1 0J\x 8
Solving by Gaussian elimination gives
!
y2|=| 6
x -2

3.2.10.2 Part(b)

We now compare (1) above to the equilibrium matrix equation given by

ct A |y b
0 ATCA (x) ) (f—ATCb]
Which for b = 0 becomes
ct oA \(y) (o
(0 Atca)(x) f)

From the above, and comparing to (1) we see that A = (

1 1 0
’C_l ) [ 1),y: [yl],f ) 8.
1 0 5 yz

Hence we first solve for x

ATCAx=f

ol -

47



3.2. HW 2, Due Oct 2, 2014

CHAPTER 3. HWS

Now the first equation is used to solve for y
Cly+ Ax=0
y=CAx

)= S
)< S
)<

Which is the same as in part(a). At this point, Q is now evaluated

Hence the optimal y is

1 1
Qmin = E (]/% + gy%)

1 1
— 22 _62
=8

The dual quadratic is given on page 101 of the text
1
P (@) = 5 (Ax - b)' C(Ax-b) - «Tf
And for b = 0 it becomes

1
-P(x) = —ExTATCAx —-xTf

1 1 0
But from above, A = ,C = ,f = 8 hence
1 0 3
1 1 0}(1
-P(x)=—-—=xT(1 1 x —8xT
() 2 ( )(0 3)(1]
1
= ——xTdx — 8xT
2x x — 8x
= 2xTx — 8xT

But xTx = x2 so the above can be written as
~P(x) = —2x> - 8x
P(x)=x(2x+8)

o e . . dp
To find where it is maximum, since — = 0 = 4x + 8 hence | x = -2

dx

maximized at same x where Q (x) is minimized.
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3.2.11 Problem 2.2.2

222 Find the nearest point to the origin on the plane y; + y, + ... + ¥ = 1 by solving for
v,. substituting into Q =4(y? + ... + y2), and minimizing with respect to the other y’s. Then

solve the same problem with Lagrange multipliers.

Figure 3.38: Problem description

1
Q=5 +sB++uh)
Constraints in y; + y, + --- + v, = 1. Solving for y; from the constrains and substitute the
result in Q. Hence
yi=1-(y2+ys+ - +Vu)
And Q becomes

:%([l‘(yz+y3+-~-+ym)]2+(y%+---+y3n))
:%(1+(y2+y3+...+ym)2_2(y2+y3+...+ym)+(y§+ +y%1))
1 1 1
:E+E(y2+y3+...+ym)2_(y2+y3+...+ym)+§(y%+ +y2m)
Hence

d

8_Q:(yz+y3+---+ym)—1+y2:0

Y2

d

(9_Q:(3/2+}/3+"‘+]/m)_1+]/3=0

Y3

0

a_Q:(yZ"‘%"‘”""ym)—l"‘ym:O

Ym

The above can be written as
2y + Yz + Y =1
Vot+2ys+ -y, =1

Votys+-+2y, =1

49



3.2. HW 2, Due Oct 2, 2014 CHAPTER 3. HWS

In matrix form,

2 1 1 N() (1
121 1] ys 1
112 1[lys|=|1
111 1] : :
111 2)\y,.) 1
Solving this gives
1
Y2=Ys=""=Ym= 7

This was done by solving for m = 3,4,5--- on the computer and seeing the result is always

1 .
—~. Now we solve for y;. Since

y1=1=(y2+ys+ - +Yp)
Then

Therefore, all y; have the value %

Now the last part is solved, which asks to solve the same problem using Lagrange multiplier.
Since there is one constraint, then n =1 and since there are m number of y variables, there
will be n +m or m +1 equations.

L=Q+xR

Where R is the contraints. The above becomes

L=%(y%+y%+---+y%1)+x(yl +yp+ e+ Y1)
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Now we take the derivatives and set up the system of equations
oL + 0
_—= x =
&yl Ukt

ﬁ— +x=0
&yz_yZ te
aL
Yy,

JL
I :(]/1 +]/2+"'+]/m—1):0

In matrix form the above is

100 (1) (0
010 1|y,

001 1||ys| =0
000 ] |
111 o)lx) 1

Solving this also gives the same answer as above, which is

yi:%

and the Lagrange multipler is found, using any of the above equation, such as y; + x =0 to

be

3.212 Problem 2.2.4

2.2.4 Find the rectangle with corners at points (+y,, +y,) on the ellipse yZ + 4y = 1, such

that the perimeter 4y, + 4y, is as large as possible.

Figure 3.39: Problem description

We want to maximize Q = 4y; + 4y, subject to y2 + 4y3 = 1. Hence

L=Q+x(vi+43-1)
=4 +4y2+x(y%+4y§—1)
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And
JL
— =4+2xy; =0 (1)
%
JL
— =4+8xy, =0 (2)
Y,
JL
S SVit4-1=0 3)
Or
-2
V1= > (1)
-1
V2= 5 (2)
yi+dys=1 (3)

From (1),(2) we see that y; = 4y,. Substituting in (3) gives

2
(42) + 43 =1
162 +4y% =1

Y2 =% x
V20
_+,/E_+\/Z

N=*N20 = *V5

So the corners are (J_r\/g J_r\/;). Here is a plot of the ellipse showing the 4 corners given

by the above solution to verify

Hence

a=1;

b = (1/2);

yl = Sqrt[4/5]; y2 = Sqrt[1/20];

Graphics[

{

Circle[{0, 0}, {a, b}],

{EdgeForm[Thick], LightGray, Rectanglel[{-y1, -y2}, {y1, y2}1}
s

Axes -> True]
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Figure 3.40: plot for prob 2.2.4

3.213 Problem 2.2.6

2.26 The minimum distance to the surface ATy =f equals the maximum distance to the

hyperplanes which N
Complete this statement of duality.

Figure 3.41: Problem description

From the duality statement on page 100 of the text, we can complete this sentence similarly
by saying

The minimum distance to the surface ATy = f equals the maximum distance to the hyper-
planes which go through those hyperplanes.
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3.3 HW 3, Due Oct 16, 2014

3.3.1 Problem 2.2.7

2.27 How far is it from the origin (0,0, 0) to the plane y, + 2y, + 2y, = 18? Write this
constraint as A7y = 18, and solve for y in

UT ﬂ [iHﬂ

Figure 3.42: the Problem statement

The objective function is % ||d||* where d is the distance from origin the plane. Hence Q (y) =
% (y% + Y5+ y%) The constraint R = y; + 2y, + 2y; — 18. Therefore, the Lagrangian is
L(y,x) = Q(y) + xR

=%(y%+y%+y§)+X(y1+2yz+2y3—18)

Now we set up the optimization problem

oL + 0
_—= X =
ayl yl
oL +2 0
_—= X =
Yz 72
oL =1y3+2x=0
Y3 ST
oL
a—x :]/1 +2y2+2y3—18
In Matrix form
1 0 0 1)(py 0
01 0 2(|y _ 0 (1)
0 01 2(lys 0
1 2 2 0)\x 18

Comparing the above to the standard form given
I A |0
AT 0)lx) (18

Yy
X
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1
We see that A =|2|. Now we solve
2
1 001 10
010 2 01
%
001 2 00
1 2 20 0 2
1 00 1
010 2
Hence U = and L =
001 2
000 -9

Hence 1 = O, Cy = 0, C3 = 0, Cy = 18.

Hence solution is Solution is:

o o O =

(1) using Gaussian elimination

0 1 1 00 1 1 00 1
0o 2 010 2 01 0 2
— —
1 2 0O 01 2 001 2
2 -1 0 02 -5 00 0 -9
1 000
01 00
. Therefore Lc = x or
0010
1 2 21
1 0 0 0)(q
010 Offca|_
001 0ffcs]|
12 2 1)le) 18

Now solving Ux =c

W
Y2

Y3
X

0
1
0
0

o = O

18

W
Y2

Y3
X

So the Lagrangian multiplier is | x

-2 | Now we can calculate the distance

d=\yi+y5+v3
= V22442 +42

=6
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3.3.2 Problem 2.2.8

2.28 The previous question brings together several parts of mathematics if you answer it
more than once:

(i) The vector y to the nearest point on the plane must be on the perpendicular ray.
Therefore y must be a multiple of (1, 2, 2). What multiple lies on the plane y, + 2y, + 2y,
= 18? What is the length of this y?

(i) Since AT =[122] has length (1 +4+4)!/? =3, the Schwarz inequality for inner
products gives

ATy < | A| Iyl or 18<3jy].

What is the minimum possible length || y||? Conclusion: The distance to the plane A"y = is

LSI/NAL-

Figure 3.43: the Problem statement

3.3.2.1 Part(i)

Let us assume that
y=kxI[1,2,2]

where k is this multiple. This means y; =k, y, = 2k, y, = 2k. In other words, the vector is
y = [k, 2k, 2k]

But since the constraint is y; + 2y, + 2y3; = 18 this substituting the values of each y; in the
constraint gives

k+2(2k) +2(2k) =18
9k =18

Hence

k=2

Using this k, the vector is
v = [k, 2k, 2k]
=[2,4,4]

vl = V¥t + v + 43
=V22+ 42+ 42

=6

Hence the norm of the vector is
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3.3.2.2 Part(ii)

Using
18 <3y (1)
vl = 6

Therefore minimum length of y must be 6.

In (1), 18 = f from the equation ATy = f and 3 = ||A||. This means the
f

in=——
It = A

3.3.3 Problem 2.2.9

2.29 In the first example of duality—“the minimum distance to points equals the
maximum distance to planes”—how do you know immediately that maximum < minimum?
In other words explain weak duality: The distance to any plane through the line is not greater
than the distance to any point on the line.

Figure 3.44: the Problem statement

The primal problem is minimization of Q (y) over y (unconstrained optimization), and the

dual problem is maximization of —P (x) over x. The minimum of Q (y) is the maximum of
—P (x). This is the weak duality. In this problem, the point on the line must also be on a
point on the plane since the line is constrained to be on the plane.

So the distance to the plane can not be larger than the distance to the line. The distance
to the plane is represented by —P (x) and the distance to the the line is represented by Q (y)
So this leads to

~P(x) < Q(y)

3.3.4 Problem 2.2.10

2210 Ifb=(15, 10)in the geometry example of Fig. 2.4, what are the optimal Ax and y and
what are the lengths in [ Ax ||+ || y||2 = |b}|*?

Figure 3.45: the Problem statement

The figure mentioned in the problem is
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T = all
vectors with

2 N[ ]=0
[ }[}'?:l

Fig. 2.4. Projection of b onto orthogonal subspaces 5 and T.
Figure 3.46: figure mentioned in problem 2.2.10

To find distance to S, we need to solve

(distance to S)2 = mxin (Ax - b)T (Ax -b)

- 6-()
n X - X -

1 10 1 10
= mxin (x - 10)2 + (2x - 15)2

= min 5x2 — 80x + 325
X

=mi
X

Hence % (59(2 - 80x + 325) =10x — 80 hence x = % = 8. Therefore

16

8
2

distance to T)> = min ||b - y||” = min yTy — 26Ty + b7b

( ;= min o -y = min y'y - 207y

T T T
Y L0 N 120 B R I R IR RS R
ATy:O Yo Yo 10 Yo 10 10

= y2 - 30y; +y3 — 20y, + 325

Ax =

To find y we need to solve

Y1

Need to minimize the above subject to ATy =0 or (2 1)[
Y2

] =0, or 2y; + y, = 0. Therefore,
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we setup an optimization problem

L=Q+xR
= y3 = 30y; + 3 - 20y, + 325 + x (2y1 + 1)
And
=Dy — 2x =
m y1—30+2x =0
oL =2 20+x=0
3y2_ 72 te
0’)x:2y1+y2:0
Hence

2 0 2)\(wn 30
0 2 1||y2|=120
2 1 0)\«x 0
Solving gives
| (-1
V=12
X 16

Hence

G-

Since now we know the optimal Ax and y, we can find the lengths

lAx]| = [186) -85
and
=[5 )1 -
and
15
bl = [10] =5v13
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Therefore
(8V8) + (V5 = (5vi3)
325 =325
OK, verified.

3.3.5 Problem 2.2.16

2.216. In m dimensions, how far is it from the origin to the hyperplane x; + x, + ---+ x,,
= 1? Which point on the plane is nearest to the origin?

Figure 3.47: the Problem statement

o L. . . . .1 1
The constraint is x; +x,+---+x,, = 1 and the objective function is 5 ld|? = 5 (x% +X3 4+ x,zn)
Hence

L:%(x%+x§+-~-+x%1)+x(x1+x2+~~+xm—1)

Setting up

JdL

a—ﬁ—x1+x:0

JdL

&—xz:x2+x:0

JdL

&xn_x”+x:0

JdL

£:x1+x2+---+xm— =0
Or in matrix form

10 1)(x

01 11| x2

00 1 1 =

00 -~ 1 1f|xy, :

11 1 1 0)\«x 1

Solving, for specific m to be able to see the pattern gives for m =3

1 0 0 1)(x 0
01 0 1||x| [0
001 1||lx| |0
111 0)lx) U1
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Solution is:

1

X1 %

Xy _ %

X3 =

o

So in% so the distance is

1\2
2 42 4+ o4 2 = m(a)

= Vi
3.3.6 Problem 2.4.1

2441 Write down m, N, r, and n for the three trusses in Fig. 2.10, and establish whic'h is
statically determinate, which is statically indeterminate, and which one has a mechanism.

Describe the mechanism (the uncontrolled deformation).

Figure 3.48: the Problem statement

Figure 2.10 is

Fig. 2.10. Trusses with m > n (indeterminate), m = n (determinate), m<n (unstable).

Figure 3.49: Figure 2.10 in book

m is number of bars, and N is number of nodes. Truss is stable if m > 2N — r where r is
the number of constraints. For determining rigid motion and mechanism, we need to solve

Ax =0 and look at the solutions.

61



3.3. HW 3, Due Oct 16, 2014

CHAPTER 3. HWS

N (nodes) | m(bar) | r | n =2N —r | determinate? m = n | indeterminate? m > n stable?
1 4 5 4 4 No yes stable
2 4 4 4 4 Yes No stable
3 4 3 4 4 No No mechanism

For case (3), since it is neither determinate nor indeterminate, we need to look at Ax = 0.
But it is clear that the truss in (3) will not move as a rigid body, but will deform. It is not
stable. The table below summarizes the results.

3.3.7 Problem 2.4.4

2.4.4 For the truss in Fig. 2.10c, write down the equations ATy =f in three unknowns
V1, V2, Vs to balance the four external forces fy, fi, fi', fi7. Under what condition on these
forces will the equations have a solution (allowing the truss to avoid collapse)?

Figure 3.50: the Problem statement

f
flV 2V External
forces
1CL>f1H Y2 5 fa,
Internal
yl y3 forces

Figure 3.51: Figure for problem 2.4.4

The A matrix is found from ATy = f. where f is a column vector of length 4 since there are
2 nodal forces, and each has 2 components. This represents a force at each node. So we first
find AT. To do this, we resolve internal forces y to balance the external nodal forces f. We
assume there are nodal forces only on nodes 1,2 in the above diagram and that f; = f, = 0.

Clearly f1y = y; to make forces balance in the vertical direction at node 1 and that f,, = y3
for similar reason on node 2. On node 1, assuming y, is in positive, so in tension, then
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—f1g = y» and +foy = y,. If we had assumed y, is in the negative direction then we will get
same result but signs reversed.

Therefore
fiv=mn
fav=y3
fiH="V2
for =12
Hence ATy = f becomes
AT
——
0 -1 0 fun
1 0 ol|” N fw
0 1 0|7 |fou
00 1)V |t
Hence
0 1 00
A=[(-1 01 0
0 0 01

The matrix A has rank 3 and the same for A”. For ATy = f to have solution, then f must be
in the column space of AT. For solution, (equilibrium) we need Y} f;y = 0 and ¥ f;y = 0 and
moments about a point zero.

3.3.8 Problem 2.4.10

2.410 If we create a new node in Fig. 2.10a where the diagonals cross, is the resulting truss
statically determinate or indeterminate?

Figure 3.52: the Problem statement
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)

o\

Figure 3.53: Figure for problem 2.4.10

With the new truss as above, the number of bars m = 7, and the number of nodes is N = 5.
The number of constraints » = 4 (two from each support). Hence

n=2N-r
=10-4
=6

Therefore m > n and A is not square. Hence not statically determinate.

3.3.9 Problem 2.4.11

2.4.11 In continuum mechanics, work is the product of stress and strain integrated over the
structure: W = { e dV. If a bar has uniform stress ¢ = y/4 and uniform strain ¢ = ¢/L, show
by integrating over the volume of the bar that W = ye. Then the sum over all bars is W,
= yTe; show that this equals f”x.

Figure 3.54: the Problem statement

Work over the first bar, of say length L, is

Wi = f01€1dV

Y1 e
= | 2= —AdL
ALyt
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Therefore, the sum all the truss is yie; + yoe, + -+ + Y€, OF

€
Wiotal = [y1 Y2 - ym] 6:2
€m
=y'e (1)
But
Aly=f
(aTy) =5
y'A=f1
y'=fra” (2)
Substituting (2) into (1) gives
Wiotar = fTA e (3)
But
e=Ax

Hence (3) becomes
Wiotar = fTA™ Ax
= fTx
This is an expression of the work done by external forces at nodes. So this says the internal
work equals the external work.

3.3.10 Problem 2.4.12

2.4.12 At the equilibrium x = K~ 'f, show that the strain energy U (the quadratic term in P)
equals — P, and therefore U = Q,;,.

Figure 3.55: the Problem statement

The potential energy is P (x) = %xTATCAx — fTx. This is minimum at ATCAx = f. Hence
1 T
P () = ExTATCAX - (ATCAx) «x

1
= szATCAx —xTATCT Ax
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But C = CT since diagonal matrix, then
1
Py (%) = —szATCAx
1
—P i () = ExTATCAx

But strain energy is the quadratic term in P (x), which is %xTATCAx. Hence they are the
same, which is what we are asked to show.

3.3.11 Problem 2.4.17

2417 For networks, a typical row of ASCA, (say row 1) is described on page 92: The
diagonal entry is X¢;, including all edges into node 1, and each —¢; appears along the row. It
is in column k if edge i connects nodes 1 and k. (ATCA is the same with the grounded row
and column removed.) The problem is to describe 47CA, for trusses, and the idea is to put
together the special ALCA, found in the previous exercise (a 4 by 4 matrix for each bar).

(a) Suppose bar i goes at angle 0; from node 1 to node k. By assembling the AJCA, for
each bar, show how the 2 by 2 upper left corner of A CA, contains

Tc;c0820;  Ze;cosb;sin b,
X ¢; cos B, sin B, Z¢;sin? 0,

(b) Where do those terms appear (with minus signs) in the first two rows? All rows of
ATCA, add to zero.

Figure 3.56: the Problem statement

If we have a bar 1, then the elongation is due to total motion of bar two nodes due to motion
of all bar attached as was shown on page 124 of the text, which is

e1 = X1 cos 01 — x3 cos 01 + xp sin 01 — x4 sin 04

The second bar 2 which could have one joint common with the bar 1, say (x3, x,) displacement,
will then add to these when bar 2 itself deforms. Hence for bar 2 we have

ey = X508 Oy — x3 €08 Oy + X Sin O — x4 5in O,

Where in the above x3,x, are kept the same as bar 1 since the joint is common. Now if bar
3 had joint (x1,x,) common with bar 1, it will have

e3 = X1 €os O3 — x7 cos O3 + x; Sin O3 — xg Sin 03

When assembling the Ax matrix the pattern given should result using trigonometric relations.
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3.4 HW 4, Due Oct 30, 2014

3.41 Problem 3.1.1

3.1.1 For a bar with constant ¢ but with decreasing f=1—x, find w(x) and u(x) as in
equations (8-10).

Figure 3.57: the Problem statement

0,
|
e
: 1 1 Notice, we integrate
: | from 1 to x, to pick
| : J. fdx up the natural
: : boundary conditions
| : X at x=1
1, }

Figure 3.58: Figure for 3.1.1

Starting with the differential equation for u (which is the longitudinal deformation of the
bar along the x axis)
d*u
o2 =fW)
And using f (x) =1 - x and integrating both sides gives
1

1
d?u
—C ﬁd”c = f(l—”()d’[
X

X
(] [T
Cde_T 2x
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But Z—Z = w, and w (1) = 0, hence the above becomes

—cle(1)-e(x)] = [(1 - ;) - (x— x;)]

But ce = w, hence the above can be written as
1 x?
— 1) — = — x4+ —
[w(@)—w(x)] 5 X >

But w (1) = 0, hence
1 x
w(x) = 5% + 5
To find u (x) , we use the relation that

u
c— =w(x
T =)
This is the same as ce = w (x), since strain e = —z So we integrate one more time, but this
time, we integrate from 0 to x instead from 1 to x. This is in order to pick up the essential
boundary conditions on u at x = 0, since u (1) is not known, it would be an error to use the
first integration limits used earlier above. Hence

T
0 0
d 1 2
o[ Zar= v+ Zan
dt 2
0 0
2 3\ T
clul = A
0 2 2 6]

x

———+

2 2 6

But u (0) = 0 since fixed there. This is the essential boundary conditions we are give. The

above now simplifies to
1 2 3
u@:_@_£+£)

c\2 2 6

x? x3)

C(M(X)—M(O))=(

3.4.2 Problem 3.1.2

3.1.2 For a hanging bar with constant f but weakening elasticity ¢(x)=1—x, find the
displacement u(x). The first step w = (1 — x) f is the same as in (9), but there will be stretching
even at x = | where there is no force. (The condition is w = ¢ du/dx = 0 at the free end, and

e =0 allows du/dx #0.)

Figure 3.59: the Problem statement
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Since ce = w (x), then w(x) = (1 — x) e and since e = Z—Z then
du
wx)=01-x) =

dw . . . .
But ——— = f, hence integrating both sides gives

f—dT_fde
—umi:ijT

—w@)-wx)=f1A-x)
But w (1) =0, hence
wx) = f(1-2)

We found from above that w(x) = (1 — x) Z—z, therefore
du
(1—x)— =f(1-x)
du
dx =f
Integrating one more time to find u (x)

f e f fFdt
[u]’ = fx
u(x)-u) = fx
But u (0) = 0, hence

u(x) = fx

3.4.3 Problem 3.1.4

3.1.4 With the bar still free at both ends, what is the condition on the external force f in
order that — ? = f(x), w(0) = w(1) = 0 has a solution? (Integrate both sides of the equation
X

from 0 to 1.) This corresponds in the discrete case to solving Ag y = f; there is no solution for
most f, because the left sides of the equations add to zero.

Figure 3.60: the Problem statement
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o = f, then integrating from 0 to 1, gives

ince - — =
Scedx

1

1
dw
—fEdT_fde

0 0
1

@) -w(O)] = [fdu
0

If w(1) = 0 and w(0) = 0, then this implies

fde:o

0
1

Therefore the only possibility for solution is that f fdt = 0. For example, a constant none

0
zero f will not work, since this will result in f = 0 which is a contradiction.

3.4.4 Problem 3.1.5

315 Find the displacement for an exponential force, —u"=¢* with u(0)=u(1)=0.

Note that A + Bx is the general solution to —u’=0; it can be added to any particular
solution for the given f, and A and B can be adjusted to fit the boundary conditions.

Figure 3.61: the Problem statement

The general solution is u = u, + u,. For the homogeneous solution u;, = A + Bx, now we find
the particular solution. By inspection we see that u, = —¢* satisfies the differential equation.
Hence

u=A+Bx-¢"

We now apply the boundary conditions to find A,B. At x =0,

0=A-¢°

0=A-1

A=1
Therefore u =1+ Bx —e*. At u =1 we find

0=1+B-¢!
B=e-1

Hence the solution is

u=1l+(E-1)x-¢*
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3.4.5 Problem 3.1.6

31.6 Suppose the force f is constant but the elastic constant ¢ jumps from ¢ = 1 for x < %lto
¢ =2 for x> 1. Solve —dw/dx =f with w(1) =0 as before, and then solve ¢ du/dx = w with
u(0) = 0. Even if ¢ jumps. the combination w = ¢ du/dx remains smooth.

Figure 3.62: the Problem statement

Using —i—z: = f, integrating both sides

—-—w—fﬁT

@l =-vf
- w@)= - f
W) =(1-2)f

. . d 1
Since w (1) = 0. Now we use ce = w (x) to solve for u. Since e = ﬁ. For 0 < x < 5 we solve,
using c =1

L =1-0f

—ﬁ—]h—ﬂﬁf

u(x)—u(O):f(x——z)

But u (0) = 0, hence the solution is

2
u(x):f(x—%) 0<x< 1)
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We now integrate over the second half, where c = 2

cg—z:(l—x)f

X du X
[25de = [ far
f f
2

2

2x
2[u(T)]z =f T——]

2
oo -4
wo-uff- st

1 . . 1 1 3
To find ”(5) we use the earlier solution (1) above M(E) = f[E - T] = gf, hence (2)

becomes
2u(x)—?1f: —%x2+x—§)f
2u (x) = —%x2+x—§+2)f
u(x) = —}lx2+%x+%)f

To verify, let us check that u (x) = g f also using the second solution above. Let x = % in the

above, we find
1 (1), 11,38
= 12lz) Y22t el

8

Therefore the solution u (x) is continuous and smooth at x = % where the elasticity changes.
This is a plot of the solution

72



3.4. HW 4, Due Oct 30, 2014 CHAPTER 3. HWS

1 1 3

2 1 x? 1
InpBa}= u[x J == Piecewise[{{(——x‘ P=H4 =], =X X 1}, {x— —,0<cxx —}H
4 2 16 2 2 2

Plot[u[x], {x, 0, 1}, PlotTheme + "Detailed", Frame + True,
FramelLabel -+ {{"u(x)}", None}, {"x", "Solution for problem 3.1.6"}}]

Soletion for problem 3.1.6

(R T L EEL A e T
[ e E
o4l LT
o3|
E
Outle4l= 3 02} — u(x)
01 /,
pold
Al 1 1 1 1 1 1
o 0.2 0.4 0.6 0.8 1

Figure 3.63: Figure for 3.1.6

3.4.6 Problem 3.2.2

3.2.2 What function u(x) with u(0) =0 and u(1) = 0 minimizes

1 du 2
Pl = J [% (E—) + x u{x‘j:l dx?
0 x

Figure 3.64: the Problem statement

The general form of P (u (x)) is

1 1 _(du(x) 2
P(u(x»:f Ec( = ) — F O u ()| dx (1)

0
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We will use theorem proved in class that function # (x) minimizes p () iff

1
dii dv
JCEE —fvdx =0

For any test function v (x). However, this test function must satisfy the essential conditions
on u (x). Therefore, since we are told u (1) = u(0) = 0, then it follows that v (1) = v(0) = 0.
Now we apply Integration by part to (1)

1 1 1
dil d*a
[CEU] - Cfﬁvdx - ffvdx =0
0 0 0
1 1
d*u
_00(0)]—Cf@vdx— ffvdx =0
x= 0 0
Since v (1) = v(0) = 0 the above reduces to
1 1
d?al
—Cf@vdx = ffvdx
0 0

Since v (x) is arbitrary function (other than having the same essential boundary conditions
as u (x)) then the above implies

c dn
dx| _

dn
1) - —
10() dx

d%n
—C@ =f (2)

Now we can apply this result to the problem at hand, which is to find # which minimizes

( )_j 1 (du 2+
p(u) = J Ve xXu
By comparing (3) and (1), we see that C =1 and f = —x, hence from (2), we need to solve
d?
dx?

dx (3)

=—x
or
d?u
dx?
With the boundary conditions # (0) = # (1) = 0. The homogeneous solution to (4) is i, (x) =
Ax + B. Let the particular solution be i, (x) = ¢;x%, then applying this to (4) gives

=x (4)

6ci1x =x
1

-%°. Therefore the general solution is

Hence ¢; = % and i, (x) =
i (x) = iy (x) + 11 (x)

1,
:Ax+B+6x
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We now apply the essential conditions on the above. Which results in two equations to solve
for A,B

7 (0) =
a(l):O:A+%

Hence B=0,A = —%, and the solution is

1 1
n(x)=—=x+-x°
6 6
or
x
_ 2
u(x)——g(l—x)

3.4.7 Problem 3.2.3

3.23 What function w(x) with dw/dx = x (and unknown integration constant) minimizes

L 32
N= | —dx?
o= [ L

With no boundary condition on w this is dual to Ex. 3.2.2.

Figure 3.65: the Problem statement

2
We need to find @ (x) which minimizes the functional Q (w(x)) = f %dx with constraint

dw . . . T .
— = x. Since we have a constraint, we need to set up a Lagrangian minimization. Hence we

dx
L(w,A) = f——/\(—+x)dx

want to minimize

Where A is the Lagrangian. Now we follow the standard method, but work with L instead
of Q.

OL (w, A

oL(w,A) .

L((w+0v),A)=L(w,A)+
ox
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Hence
oL (w, A)
ox

v=L({(w+v),A)-L(w,A)

1 2

_ ([(w+0) d(w + v) w? dw

—Oj‘ 5 —/\( Ix +x)dx—f?—/\ a+x dx
1

= Of% (Uz + ZUw) - AZ—de
1

1
1 d
=f—vzdx+f ow - 122 ) dx
. 2 . dx

1
But for small variation v the term f %vzdx is always positive and can be made as small as

0
needed. Hence we ignore it, and what is left is

6L(w,A)U_j‘ vw /\dU dx
ox B ; dx

SL(w,A)

Since we want
then

= 0 for a minimum, and the above must be valid for any non trivial v

1
f(vw—Ad—v)dx =0
dx

0
1
Applying integration by parts to fAZ—de where fudv = [uv] - fvdu. Let u = A, do = &
0

E)

hence the above becomes
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Assuming v (0) = v (1) = 0, then the above reduces to
1

dA
fvw +—uovdx =0
. dx

=
f w +—|ovdx=0
dx

0
Since this is valid for any v, therefore

w +dA—0
dx

1
. e e . w? . . dw .
Hence the w (x) which minimizes 7dx with constraint o T Xis
0

w(x):—a

3.4.8 Problem 3.2.10

3.2.10 Ifthe ends of a beam are fixed (zero boundary conditions) and the force is f = 1 with
¢ =1, solve d*u/dx* =1 and then find M. Why does it have to be done in that order?

Figure 3.66: the Problem statement

For a beam, the equation of deflection is u® = 1. The solution is given by integrating 4 times
resulting in

u” (x) =x+c
2

, X
W= + X+ ¢y
L X x?
u' = €+c13 + Cox + C3
x x3 x?
u= ﬂ+clg+c23+03x+c4
Since u (0) = 0 then ¢4 = 0 and since #’ (0) = 0 then c3 = 0, hence
xt x3 x?
u(x) = 21 +c1€ +023
Now, assuming the beam has length 1. Then on the other end, we have also u (1) = 0, then
u(l):0:21—4+01%+c2% 1)
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And since also u’ (1) = 0, then
1 1
u’(l):0=6+61§+c2 (2)

From (1) and (2) we can solve for c,, c;, giving ¢, = 1 € = —%, hence

127

4
X 1 1
_Y _lai e
w =

2
Now we can find M (x) since M (x) = c%, hence

2 1 1
M (.X) = E — Ex + E
If we had used M = u” directly (from page 173 on text, where ¢ =1 now), then the solution
would be
Mx+cy=u
Mx?

— +CX+Cr=1U
P 1 2

2
At u(0) = 0 then ¢, = 0, hence MTX + cyx = u and from u (1) = 0 we obtain %A +c; =0 or

C .
M= —31. But we are now stuck since we can’t find ¢;.

So to find M, we must first find u (x) and then find M = cu” after solving for u completely.

3.4.9 Problem 3.2.12

3.212 What is the shape of a uniform beam under zero force, f=0and ¢ = 1, if u(0) = u(1)
=( at the ends but du/dx(0)=1 and du/dx(1) = —1? Sketch this shape.

Figure 3.67: the Problem statement

For a beam, the equation of deflection is u® = 0. The solution is given by integrating 4
times resulting in

u" (x) =c

" o_
U =cx+0cy

x2
u =c—+cx+c3
2
x> x?
U=C— +C— +C3x+C
1g Ty +6 4

For u (0) = 0 gives ¢4, =0 and u’ (0) =1 gives c3 =1 and u (1) = 0 gives 0 = clé + CZ% +1 and

u' (1) = -1 gives -1 = 01% +cp+1
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Hence we need to solve these

1
—1:C1§+C2+1

0 ! + ! +1
=0-+0=

'e " %2
For ¢y, ¢,. The solution is: ¢; =0,c, = —2. Hence

u(x) =-x*+x

A plot is
Plot[x -x"*2, {x, 0, 1}, Frame » True, AspectRatio » Autcmatic,
FrameLabel -+ {{"u(x)", None}, {"x", "solution to u''"'(x)=0"}}]
solution to u™(x)=0
025 : T T . T
0.20
= 0.15
outz4}= = 0.10
0.05
0.00 .
0.0 02 04 0.6 0.8 1.0

Figure 3.68: Plot for 3.2.12

3.4.10 Problem 3.3.3

3.3.3 Discrete divergence theorem: Why is the flow across the “cut” in the figure equal to the
sum of the flows from the individual nodes 4,B,C,D? Note: This is true even if flows like
d, —dg from nodes like A are nonzero. If the current law holds and each node has zero net flow,
then the exercise says that the flow across every cut is zero.

Figure 3.69: the Problem statement
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3.4.11 Problem 3.3.4

3.3.4 Discrete Stokes theorem: Why is the voltage drop around the large triangle equal to
the sum of the drops around the small triangles? Note: This is true even if voltage drops like
d, +d, +dg around triangles like ABC are nonzero. If the voltage law holds and the drop
around each small triangle is zero, then the exercise says that d, +d, +d; +d, +ds + ds
=0

Figure 3.70: the Problem statement

3.412 Problem 3.3.5

3.3.5 On a graph the analogue of the gradient is the edge-node incidence matrix A,. The
analogue of the curl is the loop-edge matrix R with a row for each independent loop and a
column for each edge. Draw a graph with four nodes and six directed edges, write down A,
and R, and confirm that RA, =0 in analogy with cur] grad =0.

Figure 3.71: the Problem statement
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3.5 HW 5, Due Nov 20, 2014

3.5.1 Problem 4.1.1(d)

41.1 Find the Fourier series on —7n <x <= for
(a) f(x)=sin’x, an odd function
(b} f(x)=|sin x|, an even function
(c) f(x)=x? integrating either x* cos kx or the sine series for f=x
(d) f(x)=e*, using the complex form of the series.
What are the even and odd parts of f(x)=e¢* and f(x)=e™?

Figure 3.72: the Problem statement

fx)=e = )] e (1)
k=—c0
Where

T

o = — [ e ™ dx
21
Tt
e

1 .
— (1-ik)x 4
e X
27
-7

1 [e(-ikx I
"2 [ 1-ik ]
-7
1 o(1=iK) _ p~m(1-ik)
T -k [ 2 ]

But % - % = sinh (z), hence the above reduces to

aT sinh (7 (1 - ik)) (2)

Substituting (2) into (1) gives

(o]

1 .
= i -1 ikx
o kgmﬂ 1 - ik) sinh (7t (1 - ik)) e

Here are few terms in the series generated using symbolic software:
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ClearAll[x, k, n, f, ckl]

ck[k_, x_] := 1/(2 Pi) Integrate[Exp[x] Exp[-I k x], {x, -Pi, Pil}]

flk_, x_] := cklk, x]*Exp[I k x];

term[n_] := If[n == 0, NOf[0, x], N@Simplify@ComplexExpand[f[-n, x] + fl[n,
tbl = Table[{k, Simplify@TrigToExp@cklk, x1}, {k, -5, 5, 1}];
Grid[Join[{{"k", "C_k"}}, tbl], Frame -> All]

k C
(1-5i)e”™—(1-5i)e™

= 02T
» (5% )e (@)
3 (1-3i)e" T (1-3)e™
(1 ‘)2071( )
E_é e (271

_2 1 i "
o (3-5)e (@)

_e‘nn—e”

(A+0e R+

1 i 4m
(E+g)ﬁ_n(€2n—l)
(1430)e T =(143i)e™

) 2‘207'(
A (545 ) (@)

(145i)e~ "= (145i)e™
5271

Here is a plot of Fourier series of ¢* for k increasing range to compare with ¢*. To generate
this plot the terms with c_; + ¢, were added in order together to obtain a real valued function
before plotting. Plotting was done from x = -7 --- 7. We see as more terms are added, the
approximation improves. At 20 terms, the approximations became very good. Here is the

plot

ck = 1/(2 Pi) Integratel[Exp[x] Exp[-I k1 x], {x, -Pi, Pi}]
flk_] := (ck /. k1 -> k)*Exp[I k x];

fs[n_] := Sum[Simplify[f[-k] + f[k1], {k, 1, n}] + £[0];
tbl = Table[Plot[{fs[n], Exp[x]}, {x, -Pi, Pi}, Frame -> True, Axes -> Fal
FrameLabel -> {{"f(x)", None},

{"x", Row[{"Using " <> ToString[n] <> " terms"}]}},
PlotStyle -> {Dashed, Red}], {n, 1, 20, 1}];
Grid[Partition[tbl, 4]]
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Uszing 1 tarms Uzingz I tarms Uzing 3 terms Uszing 4 tarms
i i i
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= ' = ¢ . PN
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Figure 3.73: Plot for problem 4.1.1

eX+e™¥ ef—e™
2

The even part of ¢* are given by = cosh x and the odd part is = sinh x. For ¢, the

ezx+e—1x elx_e—lX

= cosx and the odd part is =isinx

even part is

3.5.2 Problem 4.1.2

412 Asquare wave has f(x) = — 1 on the left side —n < x <0and f(x) = + 1 on the right
side 0<x<m.

(1) Why are all the cosine coefficients a; =0?

(2) Find the sine series I b, sin kx from equation (6).

Figure 3.74: the Problem statement
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3.5.2.1 Part (a)

Since f (-m) = —f (-7) then f (x) is an odd function. For an odd function all the a; = 0 since
these go with the even part.

3522 Part(b)
by = % f () sin (kx) dx
=3 n
:% _f £ () sin (kx) dx + Of () sin (kx) dx]

0 T
:% f —sin (kx) dx + f sin (kx) dx]

- 0
Changing the limits of integration changes the sign, hence the above can be written as

by = %( f sin (kx) dx + f sin (kx) dx]

0 0

Tt

2
- = f sin (kx) dx
TC
0
2 [—coskx]7T

k

Tt
0

=— [cos kx]}y

= — [coskm — cos 0]
Ttk

2
= — (1 - coskn) k=1,2,3,
Ttk

Hence

. = k=135
“T1 o k=246,

Hence using f (x) = Ebk sin kx, we can write the Fourier series of f(x) as
k=1
fx) = i isinkx
k=1,3,‘..7—(k
4

. . 4
= —sinx+ —sin3x+ —sin5x + ---
T 3mn 5n

4 ( 1 . 1 .
= —|sinx+ -=sin3x+ =sinbx + ---
T 3 5
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Here is a plot showing the Fourier series approximation to the square wave from x = -7 --- 7t
as more terms are added

Clear[f, k, x];

flx_, k_] := Sum[2/(Pi n) (1 - Cos[n Pi]) Sin[n x], {n, 1, k}];
tbl = Partition[Tablel[

Plot [{Sign([x], flx, k1}, {x, -Pi, Pi},

Exclusions -> None, PlotLabel -> Row[{"k=", k}],

PlotStyle -> {Thin, Red}], {k, 1, 20,2}], 3];

Grid[tbl, Frame -> All]

k=1 k=3 k=5
1.0 LOF 1.0
0.3 03 03

Figure 3.75: Plot for problem 4.1.2
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3.5.3 Problem 4.1.3

41.3 Find this sine series for the square wave f in another way, by showing that
(a) df/dx =20(x)—28(x + =) extended periodically
4
(b) 28(x)— 28(x -+ m) = —(cos x + cos 3x + ---) from (10)
Fis

Integrate each term to find the square wave f.

Figure 3.76: the Problem statement

3.5.3.1 Part(a)

We first need to determine the Fourier series for 6 (x) and 6 (x + 7). For 6 (x) we find

1 ¢ 1
ao:%fé(x)dng

1 T
a = ;fé (x) coskxdx =
Tt

(since cos0=1)

TC
1
by = —fé (x)sinkxdx =0  (since sin0 = 0)
Tt

Hence
1 (o)
o0(x)=—+ k
(x) 7 kglak cos kx
1 1 &
= —+ — ) coskx
2n - mig

1 1
= — + —(cosx + cos2x + cos3x + ---)
2n m

Now to determine Fourier series for 6 (x + 1)

1 [ 1
t= 5= [olc+mdr= 5
-7
1 (-1)"
a = —fé (x + m) coskxdx = ——  (since cos(-km) = coskmn = (_1)k)
e Tt

1 T
by = ;fé (x)sinkxdx =0  (since sin (—km) = 0)
=Tt
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Hence
1 o
6(x+71):ﬁ+k§=:1akcoskx
1 18 &
=—+—),(-1 k
7 ”;;1( )" coskx
1
= —+ —(-cosx+cos2x —cos3x + -*)
2 T
Therefore
1 1 1 1
20(x)=20(x+m) =2|— + — (cosx + cos2x +cos3x+ ) [-2|— + — (—cosx + cos2x — cos3x + --+)
2n T 2n T

1 1 2
= —+ —(cosx +cos2x + cos3x + ---) — — + — (cos x — cos 2x + cos 3x — cosbx + --+)
T T T T

2
= —(2cosx +2cos3x+2cosbx + )
Tt

4
= — (cosx + cos3x + cosbx + -++)
T
Hence
d 4
—f = — (cosx + cos3x + cosbx + --+)
dx
Hence

£ = 2 (sinx+ S sindx + L sin5xe+
X)=—|SInx — S1N OX — S11N DX
T 3 5

3.5.3.2 Part (b)

We first need to determine the Fourier series for 6 (x) and 6 (x + 7). For 6 (x) we find

TT
1 . 1
-— s —1kxd -
-7
Hence
k:—OO
- 2 Leikx
(L2
_ zi (1 4ok pikx | g2k | p2ik )
i

1
= 2—(1+2coskx+20082kx+20083kx+ o)
e

Now to determine Fourier series for 6 (x + )

n k
1 . 1 . 1 (-1)
— —ikx 1, — ikt _ kmt =
Ck ané (x+ m)e ™™ dx 27Ze o coskm -
-
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Hence
00 k
(-1)"
6 X+ = _elkx
( ™) kgm 21
=—|1- e‘i" — ei" + e‘Zix + €2ix - e—3ix — e3ix + - )
27 (
1 o o -
= 2_ (1 _ (e—lx + elx) + e 2ix 4 p2ix _ (e—3zx + e3zx) " )
o4
1
= o (1-2cosx+2cos2x—2cos3x + --)
Therefore

1 1
20(x) - 20(x+m) = 2[% (1+2cosx+2cos2x+2cos3x+ ---)]—2[£ (1-2cosx+2cos2x—2cos3x+ )

1 1
=—(1+2cosx+2cos2x+2cos3x+ ) — —(1—-2cosx+2cos2x —2cos3x + --+)
Tt T
1
=—(4cosx+4cos3x+4cosbx+ )
Tt

4
= — (cosx + cos3x + cosbx + ---)
Tt

Hence

df
— = —(cosx + cos3x + cosbx + )
dx 7

Therefore

£ = 2 (sinx+ S sinde+ L sin5x+
X)=—|SInx — S1N OX — S1N DX
T 3 5

Which is the same as above using the a;, by method.

3.5.4 Problem 4.1.4

414 At x=rn/2 the square wave equals 1. From the Fourier series at this point find the
alternating sum that equals =:

a=4(1—3+4-5 )

Figure 3.77: the Problem statement

From above we found that the Fourier series for square wave is

£ =2 (sinx+ S sindx+ L sin5x+
X)=—|SInx — S1N OX — S1N OX
T 3 5
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Therefore at x = g, the above becomes

1 2 (s + = sin3= + = sin5o +
= —|sin—+ =-sin3— + =sin5— + ---
7 (P TSIy Ty
Hence
n 1 = -
nm=4|sin—+ =-sin3— + =sinb— + ---
[ +3 )
1 1 1
=4(1--+=-—-=+
3 5 7

3.5.5 Problem 4.1.5

4.1.5 From Parsevals formula the square wave sine coefficients satisfy

n(b? + b3 + ---)=.r If{lezdx=j 1dx=2n.

SR

Derive another remarkable sum n% = 8(1 + 5+ %+ ).
Figure 3.78: the Problem statement

We found that only the b; survive for the Fourier series of the wave function. They are

. = k=135
71 o k=246

Applying Parseval’s formula leads to
m (7 + B+ B+ = [ Gof dx =2

Where we used only the odd by terms since all others are zero. The above becomes

4\2 (4\ (4
nl{=) +|=—] +|=—] +-|=2r

T 3 5n
142+1 42+1 42+ =2
nnz 2 \3 2 \5 e

2 2

4 4
2+ +|=| +--|=272

3 5
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Hence

3.5.6 Problem 4.1.8

4.1.8 Suppose f has period T instead of 2, so that f(x) = f(x + T).Its graph from —T/2 to
T/2 is repeated on each successive interval and its real and complex Fourier series are

2nx 2nx o0
f(x)=a,+a, cos —- T + b, sin T + oo = z c}efﬂuﬂ“_
— o0

Multiplying by the right functions and integrating from —T/2 to T/2, find &, by, and c,.
Figure 3.79: the Problem statement

ps. In the solution below, I was using T when I should be using g in all the limits. Need to
correct later. Or just let period be 2T then the math works ok.

In this problem, the basic idea is to observe that when the period was 2r then

fx) = Z”k cos kx + Zbk sin kx

k=0 k:]

fx) = Z Ckeikx

k=—00

Now when the period is a general value T we use (z?nk) in place of just k. So the above

becomes

fx) = Zak COS( —x) Ebksm( —x) (1)
Fo= 3T 2)

k=—00
We now need to determine ay, by, ¢, using (1) and (2) in similar way we did when the period
was 27.

To find a; we multiply (1) by cos (mz?nx) where m is some integer between 1---co, and

integrating from -Tto T gives

— 2

ff (x) cos ( —x) dx = [k Oak cos ( —x) coS (m—x) dx + jT‘kElbk sm( —x) cos ( Tnx) dx
@ o o 2

= lglak cos ( —x) cos (m?x) dx + kzle‘bk sin (ka) cos ( ;x) dx

90



3.5. HW 5, Due Nov 20, 2014 CHAPTER 3. HWS

Due to orthogonality between the sin and cos, all the product of sin cos vanish, and only
one term in the product of coscos remain which is the one when k = m, hence the above

reduces to
p 2 - 2 2
Tt Tt Tt
[f (x) cos (me) dx = jT‘am cos (me) cos (me) dx

Since m is arbitrary, we can rename it back to k to keep the same naming as before.

T T
2 2
f () cos (k—”x) dx = f 4y COS? (k—”x) dx 3)
T T
T T
When k = 0 we find
T T
ff(x)dx: faodx
T Gy
= ZﬂoT

Hence

T
1
ag = ﬁ_j;f(x)dx

T
Notice, when T = 7, the above reduces to ay = iff (x)dx. Now to find g, for k > 1, then

-7t

T T

2 2
ff(x)cos Ky dx=fakcosz kx| dx
A T T

from (3)

= akT

a = %f_TTf(x) coS (sznx) dx

e
Notice that when T = 7t the above reduces to a; = %ff(x) cos(kx) dx as before.

=Tt

Hence

Now we find by similarly. We multiply (1) by sin (mz?nx) where m is some integer between

1--- o0, and integrating from —T to T gives

T T T
2 — 2 2 — 2 2
[f (x) sin (m%x) dx = Zfak coS (k?nx) sin (anx) dx + Zfbk sin (anx) sin (m%x) dx

k:0_T k=1_T

Due to orthogonality between the sin and cos, all the products of sin cos vanish, and only
one term in the product of sinsin remain which is the one when k = m, hence the above
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reduces to

T T
. 27 ) 21\ . 27
JT‘f (x) sin (m?x) dx = lbm sin (me) sin (me) dx

Since m is arbitrary, we can rename it back to k to keep the same naming as before.

T T
2 2
ff (x) sin (k?nx) dx = fbk sin? (k?nx) dx
-T -T
= ka

Hence
1 2
= = f TTf (x)sin (k?nx) dx

Tt
Notice that when T = 7t the above reduces to by, = %ff (x) sin (kx) dx as before. We now find

-
Ck-

Fo= 3l Th

k=—c0
2n

Multiplying both side by e_i(mT)x and integrating over the period
T
ff ) o g 2 fcke Gy
T k==coZp

All terms other than ones which k = m remain. Hence the above becomes
T

ff (x)e dx = fcmei(sz )x l( ) “dx

-T
T

= fcmdx

-T
Therefore, since m is now arbitrary, we rename it back to k and simplifying

ff (x)e dx =2Tcy

Lo i)
c=— [ F@e VT dx
2T:£
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3.5.7 Problem 4.1.10

4110 What constant function is closest in the least square sense to f=cos’x? What
multiple of cos x is closest to f= cos®x?

Figure 3.80: the Problem statement

The a, term in the Fourier series of cos? x is the constant term. Hence it is the constant that
is closest to cos?x in the square sense. Therefore

TC
1
ag= — f cos? xdx
271
=Tt

1 T
= f cos? xdx
27
=Tt
B 1
2

To find the multiple of cosx which is closest to cos® x, we find 4; term in the Fourier series

of cos® x since that is the term which has a; cos x in it. Hence

T
1
a, = —fcos3xcos xdx
n
-7t

_1 3
T\ 4
3

4

3.5.8 Problem 4.1.11

4.1.11 Sketch the graph and find the Fourier series of the even function f=1—|x|/x
(extended periodically) in either of two ways: integrate the square wave or compute (with

ay=1%)
I [F 2= x
a,‘=EJ._xf(x)coskx dx = EL (l - ;)coskxdx.
Figure 3.81: the Problem statement

The function we are approximating using Fourier series is
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f[x_] := Piecewise[{{1 + x/Pi, x < 0}, {1 - x/Pi, x >= 0}}];
Plot[f[x], {x, -Pi, Pi}]

Figure 3.82: Plot for problem 4.1.11

Since it is even, we only need to determine a;

s T
1 2
o = —ff(x)coskxdx - —f(1 - f)coskxdx
T T T
-1 0
_ 2 (1-coskn
n k27t
Hence
f(x)=ay+ Zak cos kx
k=1
1 2(l-cosm 2 (1-cos2m 2 (1—-cos3m
=—+—|———|cosx+ —|————|cos2x+ — | ———]cos3x + ---
2 i i 4m i i
1 2(2 2 (2 2( 2
=—+—|—=|cosx+ —|—|cos3x + — | == |cosbx + ---
2 7m\m 7 \9m 7 \25m
1+ 4 + 4 3x + 4 5x +
= -+ —cosx+ — cos3x + — cos5x + ---
2 2 9m? 257

Here is a plot showing the approximation as more terms are added. The label of each plot
show the number of terms used. The more terms we use, the better the approximation

ck = (2/Pi) Integrate[(1 - x/Pi) Coslk x], {x, 0, Pil}];

upTo[n_, x_] := (1/2) + Sum[(ck /. k -> m)* Cos[m x], {m, 1, n}];
tbl = Table[Plot[upTo[m, x], {x, -Pi, Pi},

PlotLabel -> Row[{"terms used =", m}]], {m, O, 18, 2}];
Grid[Partition[tbl, 3], Frame -> All]
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terms used =0 terms used =2 terms used =4
10} Or
f.2 \ LY
[ u
Fd
sk 0.6} sk
o4 L 0al N
o2k 02 \
o o -
-3 -2 -1 1 2 3 -3 -2 -1 1 2 3 -3 3 b} 1 2 3
terms uzed =0 terme uzed =8 terms uzed =10
P4

Figure 3.83: Plot for problem 4.1.11 part 2

3.5.9 Problem 4.1.16

41.16 If the boundary condition for Laplace’s equation is u, =1 for 0 <6 <7 and us =0
for —n < 0 <0, find the Fourier series solution u(r, f) inside the unit circle. What is u at the

origin?
Figure 3.84: the Problem statement

The first step is to obtain the a;, by coefficients by expanding the boundary value of the
solution using Fourier series. On the boundary

1 0<6<m
MOZ
0 - m<6<0

Hence

1 [ 1

=— [do==

%0 2n0f 2
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And

1 1
a = ;fcos k6do = po [sink6]; =0
0

And

1 1
b, = —fsink@d@ = — [-coskO]" =0 = — [coskm — cos 0]
nJ krt 0 k

s
2 2 2
LI
Only odd values of k survive. Now that we found the Fourier coefficient, we use them in the
solution given in equation (22), page 276 on the book
u(r,0) = ag + byrsin 0 + byr® sin 36 + bsr sin® O + ---
1 2

==+ —|rsin0+ 1r3sin36+ 11’5sin‘r’8+
2 m 3 5

At the origin, let r =0

1
M(O,@):E

3.5.10 Problem 4.1.19

4.1.19 A plucked string goes linearly from f(0)=0 to f{p)=1 and back to f(n)=0. The
linear part f= x/p reaches to x = p, followed by f=(n — x)/(n — p} to x = n. Sketch f as an

odd function and find a plucking point p for which the second harmonic sin 2x will not be
s heard (b, =0).

Figure 3.85: the Problem statement

A sketch of the function (string) is below.

Clear[x, f, pl;

flx_, p_] := Piecewise[{{(-x - Pi)/(Pi - p), x < -p},
{(x+p)/p -1, -p<x <0} {x/p, 0<x<p},

{(x - Pi)/(p - Pi), p < x < Pi}}]

Plot[f[x, .8 Pil], {x, -Pi, Pi}, Frame -> True,
FrameLabel -> {{"f(x)", None}, {x, "problem 4.1.19"}}]
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05

Fx}
=
=

05k

Figure 3.86: Plot for problem 4.1.19

Since f (x) is odd, we only need to determine by

2 T
b= = f F () sin kxdx
0

Tt

p
= E(IE sinkxdx+fx_n sinkxdx]
e p p-m

0 p

2 [ sinkp — kp coskp . k (n - p) coskp + sinkp — sinkmt
Tt k2p k2 (n - p)
2 (n sinkp — psin kn)
k?pm (n - p)
Fork=2
(n sin2p — psin 27'()
bz =
2pm (7’( - p)
_ msin2p
2pmt (n - p)
For zero, we need
0 =msin2p
sin2p =0
Hence
T
P=35
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3.5.11 Problem 4.1.20

41.20 Show that P,=x?—1 is orthogonal to Py=1 and P, =x over the interval

—1<x< 1. Can you find the next Legendre polynomial by choosing ¢ to make x* —¢x
orthogonal to Py, Py, and P,?

Figure 3.87: the Problem statement

1
Two functions f, g are if the inner product is zero f f(x)g(x)dx = 0. Hence
-1

1 1 3
szPodx = f(xz—l)dx = (3 —x) =0
-1 -1 —
And
1 1

Now let P3 = x — cx, we want this to be orthogonal to Py, P;, P,. Hence
1 1

foo\t 11y (11
fPaPde = fx3 —cxdx = (x_ - cx—) = (— - c—) - (— - c—)
4 2 4 2 4 2
-1 -1 -1
0=0
This equation did not help us find c. We try the next one
1

1 1 1 1 2 2
fP3P1dX=f(x3—cx)xdx:(x——cx—) :(——c—)—(——+c—):———c
Y 5 3)

] 5 3 5 3 5 3
2 2 0
—— —C =
5 3
23
c=—=
52
3
5
Hence
3
Py=x3-=
3 =X 5x
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3.5.12 Problem 4.1.26

41.26 If f has the double sine series I by, sin kx sin Iy, show that Poisson’s equation
— Uy, — ,, = f is solved by the double sine series u = XX by, sin kx sin Iy/(k* + 1?). This is the
solution with u =0 on the boundary of the square —nw <x, y<m.

Figure 3.88: the Problem statement

The proposed solution is
( ) Ezbkl sin kx sin ly 1)
(k2 +12)
To see if this solves

=f= Zzbkl sin kx sin ly (1A)
we will take (1) and substitute in the LHS of Poisson equation (1A) and see if we get the
RHS of (1A) which is f.

du 2 E byik cos kx sin ly

dx (k2 +2)
Ceoppe
And |
vy Slzlk(zkjc—)llz ;08 Iy
oy

Substituting (2) and (3) in the LHS of (1A) gives
_ byk? sin kx sin ly by sin (kx) 12 sin ly
~L2 (k2 + 12) " 22 (k2 +12)
3 byk? sin kx sin ly + by sin (kx) I sin ly
) (k2 + )
B (b sinkxsin ly) (k2 + 12)
) (k2 + lz)
= ZEbkl sin kx sin ly

Which is f. Hence u (x, y) Ezbkl S s the solution verified.

(k2+12)
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3.5.13 Problem 4.3.3

4.3.3 Find the inverse transforms of

(a) f(k)=8(k) (b) f(k)=e ™ (separate k<0 from k> 0).

Figure 3.89: the Problem statement
3.5.13.1 Part(a)

f(x)::é%i:[‘é(k)e*xdk

. 1
T [elkx]kzo T o

3.5.13.2 Part(b)

[s¢]

1 .
fo =5 [ eMetk
2
nJ
1 0 )
=5 f ekekxdk + f e‘keikxdk)
& Vc=—c0 0
1( ¢ 7
= f 1+ gk 4 f ek(—1+ix)dk]
(P 0
1 (T eka+in P k(1) 1°
== . + . 1)
2t || 1 +ix - —1+1x0
Looking at the first integral result
k(+in) 1 1 g~ oo(L+ix) 1
1+ix _00_1+ix 1+ix  1+ix

Where we looked at real part of e~

oo(1+ix)

Looking at the second integral result

(o)

ok(=1+ix)
-1 +ix

0

eOO(—1+ix) 1 1

“1+ix -1+ix —1+ix

= 0 so that we can make ¢~*1+%) to be zero.

Where we looked at real part of eI+ = 0 so that we can make ¢*(1*™ to be zero. Hence,
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using the above two results in (1) gives
1

)= 5

1
1+ix

1+ix

1
-1 +ix

: )
+ -
1-ix

2

1
ol + a2

3.5.14 Problem 4.3.5

1+ x2

1
T on

1 (A —ix)+ (1 +ix)
T o (1+ix)(1—ix))
1

T on
1

435 Verify Plancherel's energy equation for f=d and f= e~ Infinite energy is allowed.

Figure 3.90: the Problem statement

3.5.14.1 Part(a)
For f (x) =0 (x)

2nf62 (x)dx =27 7}1_)m f(S (x) g, (x) dx

Where g, (x) is sequence of Gaussian functions. The RHS above becomes

2 f & (x)dx = 27 lim g, (0)

But lim,_, ., g, (0) = oo hence

2nf62(x)dx:oo
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Now f (k) =1 for the Dirac delta. Hence

Fk) = f (1) ey

[s¢]

= f e kxdx

—00

—ik | T =ik

Hence verified for 6 OK.

3.5.14.2 Part(b)

¥2
For f(x) =e 2 then

27zf|f(x)|2 dv=2n [

—00

2
e 2

dx

[s¢]

=27 f e dx

0

)

2

A

2

Il
S|
N

Now f (k) for the above function is

o0}

Fk) = f F ) ey

-0
Q2

X .
= f e 2 e kxdy

—00

_E
=e 2V21
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Hence
(o) A ) o) 2 2
f|f(k)| dk:fe‘? 2| dk
[ k2 2
. f 7| dk

Which is the same as before. Hence verified.

3.5.15 Problem 4.3.6

436 What are the half-widths W, and W, of the bell-shaped function f=e™*"? and its
transform? Show that equality holds in the uncertainty principle.

Figure 3.91: the Problem statement

2

For f(x) =¢ 2

W2 = [2|f e ax
: [1f @ dx

o | _2f
f x2le 2
—00

dx
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2 2
Now f (k) = f_ : f(x) e~ikx gy = f_ : e 2ekrgy = e_% \/2_71, hence
12
W2 = Lk -
[ N f (k)| dx
[
[l

21 fo K2e~F dx

£ dx

2
dx

kz
e 2271

2

22m| dx

- 2n£we‘k2dx
\/7?

_a 1
Vo2
2

Hence

1 /1 1
Wi =43V2 73

But uncertainty principle says that W, W > % Hence verified OK.

3.5.16 Problem 4.3.7

437 What is the transform of xe *72? What about x2e */2, using 4L?

Figure 3.92: the Problem statement

3.5.16.1 Part(a)

2 2

R N 00 ﬁ . _©
Using 4L(1), let f (x) A: e 2, which has f (k) = f_m e 2e ®dx = \2me” 2, hence d%f (x) will
have the transform ikf (k), therefore,

k2

A9 o) = e ) — i
/(Ef(x))—J( xe )—1k 27te

x2 k2
Therefore xe” 2 has the transform —iky2me 2
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3.5.16.2 Part(b)

2 X2 x2

X n K2
Let f (x) = xe 2, which has f (k) = —=ikv2me 2 from part(a). But d%f (x) =¢ 2 —x% 2.Hence
the transform of ;—x f(x) =ik f (k). Therefore

2 2

x K2
,97(6_7 - xze_T) =ik (—ik\/2ne_7)
x2 x2 K2
37(3_?) - 9(3(26_7) = k®\2me 2
x2 K2
But Y(e_T) = V2me 2, hence

x2 K2 K2
9‘(3(26_7) =V2me 2 —k2\2me 2

2

k2
y‘(ng‘?) =\2ne 7 (1 - kz)
Therefore

x2 K2
37(383‘7) =\2ne 2 (1 - kz)

3.5.17 Problem 4.3.10

4310 Solve the differential equation

j—:-!-au:&{x)

by taking Fourier transforms to find (k). What is the solution u (the Green's function for
this equation)?

Figure 3.93: the Problem statement

Let i1 (k) be the Fourier transform of u (x). Using .7} (Z—Z) = ikii (k) and .7(6) = 1, then applying
Fourier transform on the ODE gives
ikt (k) + ati (k) =1
Solving for i (k)
(k) (a+ik) =1
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Hence, from page 310 in text book, it gives the inverse Fourier transform for the above as

e x>0
u(x) =
0 x<0

3.5.18 Problem 4.3.21

43.21 Apply Fourier transforms to [*, e ™ *lu(y)dy — 2u(x) =f(x) to show that the
solution is u= —1f + ig, where g comes from integrating f twice. (Its transform is
g=1/iw)*) If f =e ' find u and verily that it solves the integral equation.

Figure 3.94: the Problem statement

Comparing the integral equation

(o]

L[}_h_ﬂu(y)dy——Zu(x):_f(x) 1)
with the one in the textbook, p_;ge 322 in example one, where the Fourier transform of
fe‘lx—y|u (y) dy = f(x)
Is given as B
i) = f @)

The only difference is that in this problem we have an extra —2u (x) term, whose Fourier
transform is -2t (w). Hence the Fourier transform for (1) becomes

it () - 201 () = f ()

1+ w?
Solving for # (w)

10 -2) = fl@)

2-2(1+a?))
it (w) iz |~ f ()
1 2,
(@) = — 7 f @)
We need to write the above as I (w) = %f + %g. Hence
-1, 1 .
(@) = f @+ 5 f @) @
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Let f (x) = e M, then

N

f (@)

T f(x) eI gy

o0

f ol pmiwx gy

= fo eXeTi ¥ dx + Te‘xe‘iwxdx
—o0 0
pX(1-iw) ° o X(1+ia) 1°
- [ 1-iw ]_ 1+iw
1 1

1w 1+iw
(1 +iw) - (1 -iw)
(1 -iw) 1+ iw)
2

1+ w?

Hence using (2)
A _1 A 1 A
(@) = 5 @)+ 55/ @)
12 N 1 2
T 21+w? 2021+ w?

Hence

Using tables u (x) = _71 x|

3.5.19 Problem 4.3.27

43.21 Take Fourier transforms in the equation d*G/dx* —2a*d*G/dx* + a*G =4 to find
the transform G of the fundamental solution. How would it be possible to find G?

Figure 3.95: the Problem statement

The equation is
d*G (x) _y 2clzG(x)
dx* dx?
107
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a'G NN ’ A 7
= (ik)” g (k) hence G’ (x) = ikg(k),G" (x) =

—k?g (k), G (x) = (ik)4 ¢ (k) = k*3 (k). Therefore the Fourier transform of the above differen-
tial equation is

Taking Fourier transform, and using

K42 (k) + 2a2K2% (x) + a*3 (k) = 1

Solving for g (k)
g (k) (K* + 2% + a*) =1
o 1
§(k) = k* + 2a2k2 + a*
B 1
(2 +a)

To find G (x) we need to find the inverse Fourier transform.

1 1
G =5 [ ek
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3.6 HW 6, Due Dec 10, 2014

3.6.1 Problem 1

Draw bifurcation diagrams for the normal form of the transcritical bifurcation: % =rx - x?,

dx_ 3

and of the pitchfork bifurcation: — =

rx —Xx

Solution:

3.6.1.1 Part(a) transcritical bifurcation

For transcritical bifurcation d_JtC = f(r,x) = rx — x%. The critical points are x* =0 and x* = r.

There are 3 cases to consider. ¥ = 0,7 < 0 and r > 0.The the vector field plot is first made,
using x as the x-axis, and using x’ as the y-axis.

Using Mathematica,a plot of the 3 above cases was generated

r=0 case r=0 case r<0 case

1

flxA} ?
-2

-3

-4

Figure 3.96: plot for problem 1

To plot the Bifurcation diagram, we have to now use r as the x-axis and use x for the y-axis.
This was done by hand similar to what the textbook at page 50 shows.
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X
stable
stable L T
- .!l NN EREE R r
l unstable
unstable +**" rlr

Figure 3.97: second plot for problem 1

3.6.1.2 Part (b) pitchfork bifurcation

% = rx — x°. The critical points are x(r—xz) = 0, hence x* = 0 and x* = ++/r. When r = 0
then x’ = —x>. So it approaches x = 0 from the right and approaches x = 0 from the left.
Hence x* = 0 is stable in this case. When r < 0, then only x* = 0 is fixed point (since we can’t
have complex values). So this is similar to r = 0 case. When r > 0 then there are 3 critical
points now x* = 0, —/r, /. The following Bifurcation illustrates these cases (from textbook,

Nonlinear Dynamics and Chaos, page 56)
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stable

Stable ——— - - - - - - unstable

stable

Figure 3.98: pitchfork bifurcation

3.6.2 Problem 2

Find a 2D dynamical system that undergoes Hopf bifurcation, and explain why the Hopf
bifurcation occurs.

Solution:

Hopf bifurcation requires a minimum of 2D system to occur. Hopf bifurcation shows up
when spiral changes from stable to unstable (or vice versa) with a new periodic solution
showing up. So Hopf bifurcation considers when a 2D system with stable fixed point losses
the stability at this point when a parameter changes. So changes in the parameters, causes
one of the eigenvalues of the Jacobian to become positive, causing instability. An example
from the textbook is given by

v o=ur—r3

60 =w +br?

The phase portrait is shown in figure below from the text book. This shows that when p <0,
the origin was stable. (spiral in). But when u > 0, a limit cycle show up with radius r = \/u
and inside this radius, it is spiral out, hence the origin became unstable, moving to the limit
cycle, and outside the limit cycle, it is stable and state trajectory moves towards the limit
cycle. Here is the diagram from the text
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O\

<o p >0

Figure 8.2.3

Figure 3.99: phase portrait

The eigenvalues of the Jacobian, evaluated at the origin (critical point) is shown to be
A = u +iw. So as p changes from negative to positive, the system moves from being stable

to unstable.

3.6.3 Problem 4.4.6

4.46 The derivative df/dz of an analytic function is also analytic; it still depends on the
combination z = x + iy. Find df /dz if f=14+z+2z>+ .-« or f=z'* (away fromz=0).

Figure 3.100: Problem description

1
Using the form f (z) = z2, taking derivative w.r.t. gives f’ (z) = %

Je-u) i) 1 (x-i)

1 )
(x+iy) 2\/(x+iy)\/(x—iy) 2 \x2+y2 20

1
But (x - iy) = z2 where Z is complex conjugate of z. Hence

f@=3

NI =

f'(@) =

1
72
Iz|
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3.6.4 Problem 4.4.7

4.4.7 Are the following functions analytic?

(@) f=|z|*=x"+y?
(b) f=Rez=x

(c) f=sin z=sin x cosh y + i cos x sinh y.

Can a function satisfy Laplace’s equation without being analytic?
Figure 3.101: the Problem statement

A function f (z) is analytic if it satisfies conditions as given in 4P, page 334

4P A function f(z) is analytic at z = a if in a neighborhood of that point

(1) it depends on the combination z = x + iy and satisfies idf /0x = &f /0y -
(2) its real and 1mag1nary parts are connected by the Cauchy-R:emann

equations u, =5, and u, = — s,
(3) it is the sum of a convergent power series ¢y + ¢;(z —a) + ¢(z — a)? +-

Figure 3.102: Problem description

3.6.4.1 Part(a)

f=kf=x2+12
Using 4P part(1), then i‘;—i = i2x and % = 2y. Hence they are not the same. Therefore

not analytic.

3.6.4.2 Part(b)
f=Re(z) =x
If

Of . of :
i=—=1iand Erie 0, hence not analytic.
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3.6.4.3 Part(c)

f =sinxcoshy +icosxsinhy

=u (x,y) + v (x,y)

Since
s =i (cosxcoshy - zsmxsmhy) =icosxcoshy +sinxsinhy
And
J
a—f; =sinxsinhy +icosxcoshy

We see that (1) and (2) are the same. Hence analytic.

Ju _ Jdv
ox  dy
Ju  Jv
dy  dx

3.6.5 Problem 4.4.17

4.417 For the map w = }(z +z ')in Fig. 415, what happens to points z = x > 1 on the real
axis? What happens to points 0 < x < 12 What happens to the imaginary axis z =iy?

Figure 3.103: Problem description
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-
]
1]

-

PR
i
Vs oes

X

N
o

w-plane

[

z-plane

Fig. 4.15. The map from z to w= 4z +z" '),

Figure 3.104: Problem description

3.6.5.1 Part (a)

The mapping w = % (z + z‘l) is

g
Il

rel? + —¢~10
r

.. 1 .
r(cos@+zsm6)+;(cos@—zsm@))

1 , 1)\ .
(r+—)cos9+z(r——)s1n9)
r r

2 +1 1(rr-1\ .
cos O +i— sin 8
r 2 r

NI NI- NI-= N

For example, for unit circle, r = 1 and w = cos 0. Hence all points on unit circle map to
X = cos 0. i.e. the link between X = —1---1. To answer the question, it might be easier to

write
. 1
((x +iy) + — iy)

(x+ iy) + (x+ :/)_(Zg—zy)J

w =

Nl = NI =

N =

N =

X+iy+

, X =1y
(x +iy) + —(x2+y2 ]

)

Yy

(2 +?)
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Write as w =X +1Y

. . 1 1 . 1 [ x?+1 . 1 [ x®+1
Hence for point (x,0) it maps to w = > (x + ;) +10 = > ( " ) Since x > 1 then > ( " ) maps

to all point on X that are larger than X =1

3.6.5.2 Part(b)

For 0 < x <1, then from w = % (x + i), we see that for example, of x =1/3 then X = % (% + 3) >
1.

3.6.5.3 Part(c)

For z = iy, then x = 0, and the mapping becomes

i)

Hence
Yzl(y_l)
2\7 vy
So
y=0—-Y =00
y=1-Y=0
y=-1-Y=0

y>1-0<Y<1

3.6.6 Problem 4.4.23

4.423 Solve Laplace’s equation in the 45° wedge if the boundary condition is u = 0 on both
sides y=0and y=x.

(a) Where does F(z) = z* map the wedge?
(b) Find a solution with zero boundary conditions other than u =0.

Figure 3.105: the Problem statement
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3.6.6.1 Part(a)

We need to transform to XY plane using conformal mapping to be able to solve it in the
standard Cartesian system instead of on the quarter circle. Since the angle is 45° we need

to map it to the full 180°. So this mapping will work w? = ¢4, So a point on ¢45”
180"

will map
to e and point at ¢ will map to ¢, hence the top half plane is where the new XY
coordinates is. So we need to solve

Uxx +Uyy =0 (1)

In the upper half plane, then transform the solution back to (x, y) space. Solution to (1) is
U =aX +bY. Since Uxx = 0 and Uyy = 0, hence this solution satisfies (1). We now need to
figure how to map this back to (x, y). Using

(x + iy)
(x + iy)4 = x4 + 4ix%y - 6x%y? — dixy® + it
(x* — 6322 + ) +i (42 — 4ay?)

w

4

w

Hence X = (x4 — 6x%y% + y4) and Y = 4x% — 4x°. So the solution is

U=aX+bY =a (x4 - 6x2y + y4) +b (4x3y - 4xy3)

Where 4,b are constant found from boundary conditions.

3.6.7 Problem 6.1.11

6.1.11 Find the solution with arbitrary constants C and D to

{a) w'—9% =0 (by w' —5u+4u=0 () u'+2u +5u=10

Figure 3.106: the Problem statement

3.6.7.1 Part(a)
u” —9u =0

This is constant coefficients second order ODE. It can solved by finding the zeros of its
characteristic equation A% -9 = 0, hence A = +3, therefore the solution is
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u(t) = De® + Ce™3
We notice this is not stable ode.
3.6.7.2 Part(b)

u” -5u"+4u =0

This is also constant coefficients second order ODE. It can solved by finding the zeros of
its characteristic equation A2 —5)1 +4 = 0. Solution is A = {4,1}, therefore the solution is

u (t) = De* + Cet
This is also not stable ode.
3.6.7.3 Part(c)
u’ +2u"+5u=0
This is also constant coefficients second order ODE. It can solved by finding the zeros of

its characteristic equation A2 421 +5 = 0, Solution is: A = {1 + 2i,—1 — 2i}, therefore the
solution is

u (t) = Del=1+20t 4 Ce(-1-20)t

=t (DEZit + C—Zit)

Which can be written as

u(t) = et (dcos2t + csin2t)

3.6.8 Problem 6.1.12

6.1.12 Find an equation u” + pu’ + gu =0 whose solutions are

(a) e'e ! (b) sin 2t,cos 2t (c) L.t (d) e "sinte ‘cost

Figure 3.107: Problem description
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3.6.8.1 Part(a)

From the solutions, we see that roots of the characteristic equation are {1,-1}, which means
the characteristic equation is

pA=A-1D(A+1)=A2-1
Which implies the ODE is u” —u =0

3.6.8.2 Part(b)

Since the solution contains no damping (no ¢ term), and only contain oscillation, then it
means the ode much contain only friction term, hence the ode is of the form

u” +qu=0

Since oscillation frequency is 2, then A; = 2i,A, = —2i so to be able to contain the sin/cos
shown as the solutions. Hence

p(A)=(A-2i)(A+2)=A2+4

Therefore

' +4u=0

3.6.8.3 Part(c)
Let

u(t) = Auq + Buy
Where A, B are constants of integration. Then u(t) = A+Btoruw’ =Boru” =0

3.6.8.4 Part(d)

Since the solution contains damping (has e”’ term), and since oscillation oscillation exist,
then the solution must be of form

u’ +pu' +qu=0
The roots of the characteristic equation are therefore A; = -1 +1i,1, = -1 —i. Hence
pA)=A-(-1+))A-(-1-10) =A2+21 +2

Therefore the ODE is
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w’ +2u" +2u=0

3.6.9 Problem 6.2.2

6.2.2 What types of critical points can u' = Au have if
(1) A is symmetric positive definite
(2) A is symmetric negative definite
(3) A is skew-symmeltric
(4) A 1s negative definite plus skew-symmetric (choose example).

Figure 3.108: the Problem statement

3.6.9.1 Part(1)

Since eigenvalues of A are real and positive, then not stable

3.6.9.2 Part(2)

Since eigenvalues of A are real and negative, then stable

3.6.9.3 Part(3)

(real) skew symmetric matrix always have pure imaginary eigenvalues. Hence phase plane
is circles. This is called marginally stable.

3.6.9.4 Part(4)

-1

And example of negative definite is o 1l and skew symmetric is [ O]’ hence [ 0
0 2| |-1 2
-2 0| [-2 4

The eigenvalues are found from

0

—+

A+1 =2

=0or (A +1)*>+4=0, hence (A +1)* = -4 or
A+1

A +1 = +2i, therefore A = -1 £ 2i

Hence the eigenvalues have negative real part and imaginary parts. This is stable, and spiral
due to the sin/cos which will result in the solution. It will spiral in, since the real part is
negative.
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3.6.10 Problem 6.2.12

6.2.12 With internal competition the predator-prey system might be
Wy =y — U2 —buty, Uy =My — U3+ cuyl,
Find all equilibrium points and their stability (for ¢ <1 and ¢> 1). Which points make

sense biologically?

Figure 3.109: the Problem statement

’ _ 2 —
uy = uy —uy — buguy = Fy (uy, up)

_ 2 _
Up = Uy — Uy + cuqily = Fy (g, up)

We first need to find critical points by solving F; (uy, 1) = 0 and F; (11, u) =0

From F; (11, u,) = 0 we obtain

ul(l—ul—buz)zo

Hence u; =0 or u; =1 — bu,. looking at the second equation F; (111, 1) = 0 which gives

Mz(l—M2+CM1):O

Hence u; =0 or uy =1+ cuy.

Considering the case of u; =0, then u, =1, and when u; =1 - bu,, then

uy =1+ c(l-buy)

=1+c—cbu,
Uy +cbuy, =1+c
1+
u2_1+cb

1+c

And when u, = 0 then u; =1 and when u, = —

then u; =1-bu, =1- b%. Hence the
critical points are
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uy =0,u, =0
up =0,up, =1
uy=1Luy, =0

b-1) 1+c
sl T v

u =

To find stability, we evaluate the Jacobian at each of the critical points. The Jacobian is

& @ 3(u1 —u%—huluz) 8(u1—u%—bu1u2)

Jo|7m | Jur oz _ | =2uy = bup) —buy
& & &(uz—u%+cu1u2) c?(uz—u%+cu1u2) Cliy 1- 2L£2 + iy
duy  dup duq duyp

At point u; = 0,u, = 0 we obtain | = this has eigenvalues A =1 (double). Hence not

stable node.

[1-b 0

At point u; = 0,u; =1 we obtain | = . which has eigenvalues: {1 - b,-1}. Hence if
C a—

b > 1 then both are stable. (negative);hence stable node. But if b <1 then one is stable and
the other is not. Which means unstable saddle point.

-1 -b
At point u; =1,u, = 0 we obtain | = [ 0 1 ], eigenvalues: c +1,-1. Hence if c < -1 then
+C

both are stable, and we have stable node. If ¢ > —1 then one is stable and the other is not,
so we have unstable saddle.

3.6.11 Problem 6.2.13

6.213 According to Braun, reptiles, mammals, and plants on the island of Komodo have
populations governed by

u, = — au, — bu,, + cuu,
W, = —du,, + e,

B R
Uy = fuy — gy — huu,,.

Who is eating whom? Find all equilibrium solutions u*.

Figure 3.110: the Problem statement
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up = —au, — buuy, + cuu, = Fy (ur, Uy, up)
uy,, = —du,, +eu,u,, = F, (ur, um,up)

/- 2 —
uy = fu, — gu, — hu,u, = F3 (ur, Uy, up)

We first need to find critical points by solving F; (ur, Uy, up) =0and F, (ur, um,up) =0 and
F; (ur, U, up) = 0. Solving using computer algebra gives

eql:=-axu[r]-b*xulr]*ul[m]+cxul[r]*ulpl=0;
eq2:=-d*u[m] -e*u[r]*u[m]=0;
eq3:=f*ulp]-g*(ulp])~2-h*ul[r]*ulp]=0;
solve({eql,eq2,eq3},{ulr] ,ulpl ,ulml});

Uy, :0,up =0,u, =0

a
Uy = _E,

u,=0,u, =—-
p r e

f

Uy, :O,up = g,u, =0

r=

ebg P eg e
_a8=<f
ch

__aeg—dch—cfeu :hd+feu d

m
a
Uy, :O,M;7 = E,ur =

We now need to find the Jacobian and evaluate it at each of the above points to determine
the type of stability.

jac:=Matrix([[diff(eql,ulr]),diff(eql,ulm]),diff(eql,ulpl)],
[diff(eq2,ulr]),diff(eq2,ulm]),diff(eq2,ulpl)],
[diff(eq3,ulr]),diff(eq3,ulm]),diff(eq3,ulpl)]1]);

Which gives
—buy, +cu,—a - —bu, cu,
= —ely, —eu, —d 0
—hu, 0 —2gu, —hu, + f
-a 0 0
At point u,, = 0,u, =0,u, =0,] =| 0 -d 0 |so assuming all 4,d, f are positive, this
0 0 f

shows this point is not stable. It is | unstable spiral |since one of the eigenvalues is positive.
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bi-a be 2 20 b2 —cf
. a d ba ¢ ¢ a ¢ ¢ .
At point u,, = -+, u, = 0,u, = —,] = es e-—d 0 =| ¢ O 0 |, eigen-
d d
0 0 hz + f 0 0 I’lz + f

values are {—a —+a(a+d),\a(@a+d) —a, % (fe + dh)} So for positive parameters va (a + d)—-a >
0, hence not stable .
cg -a 0 0
At u, =0, u, = é”r =0,] = 0 —d 0 , eigenvalues: —d,-f, —é (ag - cf) .
it ol
hg 0 Zgg +f

Therefore, for positive parameters, this is stable node.

3.6.12 Problem 6.2.19

6.2.19 (Epidemic theory). Suppose u(t) people are healthy at time ¢ and v(z) are infected. If
the latter become dead or otherwise immune at rate b and infection occurs at rate g, then
u' = —aun, v =auv— bu.

(a) Show that ¢' >0 if u> b/a, so the epidemic spreads.

(b) Show that ¢’ <0 if u < b/a, so the epidemic slows down. (It never starts if uy < b/a)
{c) Show that E=u+v—{b/a)logu is constant during the epidemic.

(d) What is v,,,, (When u=b/a) in terms of u,?

Figure 3.111: the Problem statement
u' = —auv = Fy (u,v)
,U/

= auv —bv = F, (u,0)

The critical points are u = any,v = 0.

3.6.12.1 Part(a)

If u> %, then we write u = bJ:Tg for ¢ > 0. Substituting in v’ = auv - bv results in

b+e

v =a v—bo
=bv+ev-"bo
= ¢ev

Hence v" > 0 and the epidemic spreads.
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3.6.12.2 Part(b)

Ifu< g, then we write u = b% for € > 0, Substituting in v’ = auv - bo results in

b-¢
v =a v—bv
=bv—cv-bo
= —¢v

Hence v" < 0 and the epidemic slows down.

3.6.12.3 Part(d)

From second equation, v () = Ael (”(t)”_b)dt, hence when u (¢) = g, then v (t) = k. A constant .
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cheat sheet

Fourier Transform formulas

(k) = f " (e d

1 .
u = f_ G
(k) = G(k)h(k)
u(x) = gh(x) & 3(k) » (k) = (k) = f ) gk —
(k) = g(k)(k) <= g(x)  h(x) = u(x) = f ) g(x -

ey (x) = ik - d)

u(x — a) = e wg(k)
du .
= = ikii(k)

fu(x) dx & (k)

5(k
K Tl
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Fourier Series formulas

f(x)=ag+ i (ar cos(kx) + by sin(kx))
k=1

1 TC
ag = ﬂj:nf(x)dx

a, = 1 fn cos(kx)f(x)dx = ¢c; + ¢,
() dt Ttn

TC

by = % f_ sin(kx) f(x) dx = i(cq — ¢_)

T)h(t)dt -
f@) =D ce

1 ‘
Ck = 7 f F(x)e ™ dx

(]
Fourier series 4 .
square wave = ¢ 2 — sin(kx)
k=13,5,.. ¢
Fourier series -
f@) = Dot
—00
Fourier transform 1 SN . 27
f(x) — — f(w)e'’* where w = —
2 J_o T
Fourier series 1 1
o(x) —> 5 + — (cosx + cos2x + cos 3x + ...
TC s
Fourier series sin x sin 2x sin 3x
X - - ..
1 2 3
Fourier series sin x sin 2x sin 3x
X — 2 - - ..
1 2 3
a _ 2
F . . 0 - n
. ourier series
|sin(x)] < 0, k odd.
G =34/ 1
- (—1_k2) , keven.

(0e]

A = f30) & HE = 0500 = [ foge-nde

—infty
ulx) = f(x) ® ¢(x)
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In[18]:=

Out[16]

In[15]:

Out{15]

In[17]:

Out[17]

In[18]):

out[18]

. When period T is not 27 replace k by

. Parseval’s formula f_ Z If()Pdx =

. integration by parts f uv’ = [uv] - f u'v

. properties of odd and even functions

Integrate [Sin[x] Cos[k x], x]

Cos[x] Cos[k=x] +kS8in[x] Sin[k x]

-1+ k2

= Integrate[Cos[x] Cos[k x], x]

-Cos[kx] Sin[x] + kCos[x] Sin[k x]

-1 + k2

- Integrate[Sin[x] Sin[k x], x]

-k Cos[kx] 8in[x] + Cos[x] Sin[k x]

-1+ K?

= Integrate[Cos[x] Sin[k x], x]
kCos[x] Cos[kx] +S8in[x] Sin[k x]

1- k2

21, . . .
?k in all formulas for Fourier series.

Plancherel formula 27 j: T If)Pdx =
[ 1R dk

S .2
271 3} |ckl
k=1

Parseval’s formula again 2ma3 +
n(@+R+a3+b3+..)= [ fAx)dx

Inner products 27 f_ : f(x)g(x)dx =
I foz(k)di

so pick the one that is easy to differen-
tiate for u and the one that is easy to
integrate for v.

Let 0,e be odd and even functions, then

e+e=e,0+0=0,eXe=¢,0X0=¢,0Xe=
e e
0'(_3 = 3,; =0

128

8. trig identities

1 1
.2
=——= 2
sin“(x) 575 cos(2x)
1 1
2 —— - 2
cos(x) > + 5 cos(2x)
3 1
sin’(x) = 7 sin(x) — 1 sin(3x)

cos3(x) = 1 cos(x) — > cos(2x)
sin(2x) = 2 sin(x) cos(x)
cos(2x) = cos?(x) — sin’(x)
=1-2 sinz(x)
=2 cos?(x) -1
2 tan(x)
1 - tan’(x)
sin(A + B) = sin(A) cos(B) + cos(A) cos(B)
cos(A £ B) = cos(A) sin(B) F sin(A) sin(B)

n-1 : _
f cos™(x) dx = cos”_(W)sin@) LI ! f cos" 2 dx

n even

tan(2x) =

n n
) X

= —cosxsinx + —
2 2

1

— 2
= = COS
3

n odd

: 2
xsinx + = sinx

—sin" " (x) cos(x) s 1

f sin? dx
n n

f sin” (x) dx =
-1 X

= —sinxcosx + —
2 2

-1
= —8in®xCoSX — = COS X
3 3

1
f x"e™ dx = ; (x"e‘”‘ -n f x1ex dx)

1 even

n odd
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9. exp/trig
i0 _ p=if
sin(x) =
in(x) 2
0i0 4 o=i0
cos(x) = —

rel? = r(cos(0) + isin(6))

In(re'®) = In(r) + i0 + 2kmi
2 2

Fe?) = f:

k2

F(e‘xz) = e_T\/E
f‘x’ e dx = ﬁ
0 2
f e dx = \r

2
k\/Z_Tl

e ze gy =7

Laplace

1. To find solution to Laplace on disk, or
radius r, use polar. The solution is

u(r, 0) = ag + ayrcos(0) + byrsin(6)
+ ayr? cos(20) + byr? sin(20) ...

references:

misc.

Where the a; and b, found from find-
ing Fourier series of u(r, 0) evaluated at
boundary as normally done.

solution inside the circle is

1 [ 1-12
ur,0) = o f_n 1+72-2rcos(0 - 0)dC
If we are given 1, = 6 at point on circle
as boundary conditions, use the above
formula, much easier.

items

T%’le function that minimizes
f %(u'(x))2 — fu(x)dx is the solution
a

of u”(x)=f

every function is made up of odd/even
parts

_f) - f(=x)
fodd part — f
feven part = f(X) +2f(_X)

1. schaum’s mathematical handbook of formulas and tables by Spiegel

2. http://www.integraltec.com/math|

3. http://en.wikipedia.org/wiki/Integration by reduction formulae|
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AX=2—»/ ab X1 o\, ) n
c d X B 7z Row \ X2 22—21{':%:
2 2 elimination A

multiplier

-b = 1 Jomyia Only if all A
symmetric pivots >0 L= JBL
To solve Ax = b, Solve Lz = b for z then solve Ux = z for x
|f XTAX > 0 for X + O then positive deﬁnite_> Pivots all>0 (this definition usually

applied to symmetric matrices

b 1 0 Zhivots
A=LU,WhereU=<(aJd . ),L:(C )—» A:LDLT—>A:|~_|~_T

To show quadratic form xTAx is positive everywhere If Ax = b has no solution, then solve ATAx = ATh,
see if you can complete the squares. If so, then yes.| hence x = (ATA)'ATh, is least squares solution
pl(mlxl +M2xX2)? +Pp2x3

xTAx minumum is also global - —
ST . imum 1S a\so global The x which minimized [|Ax — b]|2
t -« SN min only if A is positive definite . )
) A is least squares solution
This will be the pivots  These will be the multipliers e =potential difference (elongation) A
x =potential (node displacement) S T~ -
A y =flow (internal spring forces) =< A AN
>y CAX f =external nodal forces (applied node forces) /\ X /\ \\\ . b )
~ - ~ /
Ce = y - - v .
ATCAX =f e = elongation of springs A —b||? = (Ax — b)T(AX — b)

X = mass displacement

For fitting, First build Ax = b

X1 e ¢ =elasticity
1 =X ~x y =forces in spring then solve x from ATAx = ATh
1 f =external forces ode 1
X2 If Ais an n x n square matrix with n wdge | . odge 3 A:F o 7?}
linearly independent eigevectors < edge 2 . 1o -t
Number of then A = SAS~! where S is matrix
columns = number i : i
of nodes with its columns the eigenvectors T
Nomper and A is diagonal matrix of the eigenvalues K= A'CA
number . .
of etges A=SAS ' — QAQT. spring potential
Incidence matrix sum of squares: P(x) = %kxz = %XTATCAX —-x'f
if given ZX% + 8xix; + 11)(% write it as AT CA|S called the stiffness matrix K
2(x1 +axz)2 + bx3 and solve for a,b
Solutontoveetored second orderode Suppos v hve square/invertible symmetric 1 Positive pivots DJ/DLT = ([
2 second rder ODE (coupled, Say 2 masses), then the A = LU nd LDL = L DL LL
Siluton fo
. ug(t) . Vi1 i
ML L ku=0is — a;coSm1t + by Sinwyt +a,C0sw,t + by sinwot
Uz(t) V12

Where Vv's are the 2 eigenvectors and w? = 1; and 03 = 1,

- Che sum -of the dlagonal entries is the trace of A. Tt equals the sum of thc
dlues. The product of the eigenvalues equals the determinant of A.

éig
™ - _If A is real and symmetric then

(1] its eigenvalues are all real
@) its exgenvectors can be chosen.orthonormal (perpendlcuiar with Iength om:)

() 4=0AQ7'=0AQ"
If A is also positive definite then

(4) its eigenvalues are not only real but posmve

Content of this box is from Strang text book
Nasser M. Abbasi 092814
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—
P(x) = £x"Ax —xTb has min at Ax = b oL _ oy T
Q) = 1y"™Cly—ybhasminatCly = b oy ~CYThrA0 =0
ATy = f is the constraint % —ATy—f=0
X
L = Q(x) +x"(ATy —f) >~
= lyTC‘ly— o+ xT(ATy — f
2 y y—1) c1l A Vi b
_ 1Tely —yTh 4 (AX)Y — XTF AT 0 x )\ f
5Y y-y (AX)y )

P(x) = XTAx —x"b has min at Ax = b Lagrangian L(x,y) is minimized w.r.t y

Q(x) =y"Cly—yTbhasminat Cly = b and at same time maximized w.r.t. X

et If Ais PD, then quadratic P(x) = L(Ax,x) - (x,b) is
min at Ax = b or x = A~1b and its miniumum is 2

Qis called the objective

function P(A—lb) N _L(AX X> - _i(b A_1b> 5 60° 1
structures 2 ! 2\
ATy = f Use calculus to find min of the polynomial in x1,x2 3
> 7 ‘ y=Ce . _ e y Yy _ oA _ EA
H e - Ax note.E—T,GZK,ngze—L:T
fy Hence ATCe = f or ATCAx = f

CONTINUOUS
displacement or potential u
strain e = du/dx
bar forces w = ce

DISCRETE
nodal unknown x
elongation ¢ = Ax
spring forces y = Ce

m = 2(bars)
N = 3(joints)

r = 4(restrictions)
n = 2N-r(d.o.f)

continuous structure

If n /= m, then not
statically determinate

The two T
contains all t

Fig. 1.11. The four subspaces and the action of A.

equilibrium ATy =/
incidence matrix A
diagonal matrix C
transposed matrix A7

matrix equation 47CAx =/

fixed (or grounded) node

unstretched spring

equilibriom - dw/dx =f
differential operator d/dx
multiplication by c(x)
transposed operator —d/dx

. . . d du
differential equation — = (L e =f
displacement boundary condition u(0) =0

stress boundary condition w(1)=0

Above table From Strang book

Jairs of subspaces and the action of A are illustrated in-Fig. 1.11—which
he information in the fundamental theorem.
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5.1. mid term CHAPTER 5. EXAMS

5.1 mid term

5.1.1 questions and key

Math 703 — MIDTERM EXAM — Fall 2014

YOUR NAME:

10
1.(30 points) (a) Consider the matrix M = [ 0 1 . What is the connection between a 3 x 3 matrix
00

[ =1ge]

A and the matrices AM and M A? What is the inverse of the matrix M?

y A obtzinecl  PHown A oddi Yo d‘\rgt Column
e (;K(A Wf% %\LKA oo(:[wo%A.

. . MA addr %ﬁ«r&ﬁm
s dotnimd m{%‘?;t m%_k

3 2 1
(b) Is the matrix M = ( 21 0 ) positive definite? Explain your answer.
10

Not Tw&!\\rt d/cﬁmi# because M = 0.

(¢) True or false: there exist 2 x 2 matrices A and B such that AB = 0, but A # 0 and B # 0. Explain your

answer. .
2 3\ /3 775 = <O 0>
([:Ne, ; 2 1 /%22 0 o°
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31
1 3
and D is a diagonal matrix. Use this factorization to write the quadratic form 27 Az as a sum of two squares.

A=(50)G 8 60

‘ 2 2
3 3(,\+J_Z3Cz 4*%‘“3‘-2

2.(80 poinis) (a) Factor the matrix A = ( ) into a product A = LDLT, where L is lower triangular

i

i

YA x

(b) Solve the 2nd order system d;ﬁ + ( _(f _é ) w=0,

67MWS are ({) owd <—‘| , itk “igenindues 1 &3

Iu“,) = (Ouo\nt + by c;»»t) < “> + (a;cmﬁ‘t' 4—&,%@"@\ <-ll>

(c) What is the dimension of the nullspace of an incidence matrix A of a square-shaped graph? Fxplain your

. o 5o linas [dlipace () =4
6\,%,(/\ Qg conne
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3. (30 points) (a) In n dimensions, what is the distance from the origin to the hyperplane
21+ V29 4 . A S, =17 (Hint: you may use the formula 1 +2+3+ ...+ n= %)

: ; ool Hiane
/WNL O(iﬁw g YZ@»(’L%@«A\ O’J‘"L‘( :&L WM

%WW7$°E:&A<‘{L“ +@d+@&i“
| o laae =t @ (3)

%’\‘MDV 9t As

91 Col X = z TLSL\« '“1‘(}\1, WS*L&M g
n ()
UDCu \3 Q+2+ +ﬂ> (\

{(b) Consider an A-shaped truss with fixed supports at the two bottom nodes. Is this truss statically

determinate or indeterminate? Fxplain your answer.
£ (r% Gw&’(m{m:k

i dges o freedes =
. = Shatically datocuinale

77

(c) Consider a solid bar with constant force f = 1, but such that the elastic constant jumps from ¢ = 2 for
0<z<1/2,toc=3for1/2 <z < 1. Calculate the displacement u and the bar forces w.

W = Q%OM = A
TN

w(#) ﬁ%S:Q ")Ob‘ =
3

U\(/’;) =
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O

a; 0{/1'5’{%@

) is non-singular (i.e.,

0 9
ooa o
Q o

4.(10 points) (a) True or false: if a,b,¢ > 0, then the matrix 4 = ( :

det A # 0).

Jot A = i -2 ave 7 O

eeste @B ST < abe
2

/WMQ/ :

(b) How many 3 x 3 matrices A have the property that 43 = I?

. <al( olakiow "3/ 120" o oved o
Mww ey s e i R hare Hus @mra—%)

{c) It a network has N edges, and every pair of nodes is connected by an edge, how many nodes does it have?

“sqta%y\,ad(f/):?N:.Y}_(z_—Q)So Yﬁwaf\l:O

(d) If two solid bars are identical except one has ¢ = 1 and the other has ¢ = 2, which one is more flexible?
Explain your answer.

\1‘{4, bar with c=- e
\ﬁ(7@y" dILC F(ACQM) o 4“k s
(WL Wk(e o

pe b vde =
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5.2 final

5.21 questions and key

Math 703 — FINAL EXAM - Fall 2014

YOUR NAME:

1.(30 points) (a) Use the method of Lagrange multipliers to minimize the objective function
Q(v1,%2) = y# + 3y3 subject to the constraint y; + yp = 4.

(b) What is the dual quadratic —P(z) for problem above, and where is it maximized? Explain your answer.

(c) True or false: there exist 2 x 2 positive definite matrices A and B such that AB = 0, but BA # 0.
Explain your answer.
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- 2.(80 points) (a) Consider the piecewise constant function g(x) defined on [—, 7] as follows: g(z) = 5 on
[-%, %], and g(x) = 1 otherwise, and extended periodically with period 27 on (=00, 00).
Use the integral formulas for Fourier coefficients to calculate the trigonometric series decomposition of g(z)

on (—00,00). Include all the details of your computation.

(b) Find the trigonometric series decomposition for the function g(z) in a different way: express g% in terms
of delta functions, and integrate each term in the trigonometric series decomposition for the delta function.

Include all the details of your computation.
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3.(80 points) (a) Calculate the Fourier transform of the function A(z) = e~ %I,

(b) Verify Plancherel’s energy equation for the solution you obtained above for h(z).

(c) Apply the Fourier transform to the equation a%{f— + b% + cH = 6 and calculate the transform H of
its fundamentgl solution. Choose some numbers a,b, ¢ for which you can easily take the inverse Fourier
transform of H to calculate H, and check that it satisfies the equation above.
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4.(10 points) (a) Explain why the derivative of the Dirac delta function has the property
00
f(z)6'(z)dz = — f'(0) for any smooth function f(z).

(b) Give an example of a pitchfork bifurcation with bifurcation parameter A such that the origin is unstable
for A < 0. Explain your answer.

/ = p—
c) Is the origin a stable fixed point of the 2nd order system z’ =2z-y ? Explain your answer.
g Yy =-z+2y
(d) Is the equation  cosz + S42& 4 cos32 4 —ging 4 822 4 sinde 4, trigonometric identity or

not? Explain your answer.
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