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1 Problem 1.2.7

1.27 From the multiplication LS show that

1 1
L=l Ly |1 is the inverseof S=| -1, 1
| -1, 01

§ subtracts multiples of row 1 and L adds them back.

Figure 1: the Problem statement

Solution

Multiplying LS gives

1 0 01 00 1 00

lz] 1 0 —121 1 0|=|0 1 O

by 0 1fl-ly 0 1) lo o 1
Since LS = I then L = S7! by definition.



2 Problem 1.2.8

1.2.8 Unlike the previous exercise, show that

1 1
L=, 1 is not the inverse of S=| —1, 1
iyl 1 —l3y —ly 1

If S is changed to

1 1
E= 0 1 ‘_121 I.
0 —&, 1||=t, 01

show that E is the correct inverse of L. E contains the elimination steps as they are actually
done—subtractions of multiples of row 1 followed by subtraction of a multiple of row 2.

Figure 2: the Problem statement

Solution

Multiplying LS gives

1 0 O0)f 1 0 0 1 00
by 1 0|l-y, 1 o|l=| 0o 10
lap I 1)\-lsx I 1) \-lnlxa 0 1
1 0 O0)f1 OO0 1 0 0
Since LS # I then L is not the inverse of S. NowletS=E=(0 1 0|[-,; 1 0|=]| -Iyn 1 0
0 -y 1J —l3 0 1 bilyp =13 I3 1
and now evaluating LS gives
1 0 0 1 0 O 1 0 0
b 1 ol -y 1 o|=lo 1 0
syl 1\l =1l -l 1) (0 0 1

Therefore, with the new S matrix, now L is the inverse of S since LS =1



3 Problem 1.2.9

1.29 Find examples of 2 by 2 matrices such that

(a) LU#UL

(b) A?= —1, with real entries in A
(¢c) B?=0, with no zeros in B

(d) CD= —DC, not allowing CD =0.

Figure 3: the Problem statement

Solution

3.1 Part (a)

Take any random 2 X 2 matrix A =

b L a b 1 0 .
, By elimination U = cland L ={, . Now LU is
d 0 d-b- 1
1 0}fa b | [(a b
S1)lo d-v5) (c d
a a
1
a b 1 0 a+ -bc b
[o d—bf](c 1]_[1c(d—1bc) d—lbc]
a a a a a

Comparing LU and UL above, it can be seen that by setting b = 0 the LU = [

a

found, giving back A as expected

UL is found

0
“ ]while UL =
c d

a 0
Yed df
a

which means they will be different as long as d # a. So picking any A matrix which has b = 0 and
which d # a will work. An example is
10
A=

1 1
0 and L = 0 , hence LU = o = o while UL =
2 51 5 1J10 2 5 2

10
{ 2]. They are different.

ool 3

1
To verify, U = 0

10



3.2 Part (b)
, _[a b] a b](ﬂ b]_[a2+bc ab+bd] ,
Take any random 2 X 2 matrix A = , then A? = = Now solving
c d c d)\c d} \ac+cd d*>+bc
a®>+bc ab+bd |1t o
[ac +cd d*+ bc] - [O 1]
gives 4 equations for 4,b,¢,d
a?+bc=1
ab+bd =0
ac+cd=0
d?>+bc=1

Gives the following solutions
a=-1,b=0,c=0,d=-1
a=1,b=0,c=0,d=-1
a=-1,b=0,c=0,d=1
a=1,b=0,c=0,d=1

Any of the above solutions will satisfy A% = I. For example, using the first one gives
-1 0
A=
0 -1

As was done above, the following set of equations are solved.

a2 +bc ab+bd [0 0
ac+cd d+bc) |0 0

3.3 Part (c)

Hence
a?+bc=0
ab+bd =0
ac+cd=0
d?+bc=0

Solution is

eql:=a"2+b*c=0;eq2:=a*b+b*d=0;eq3:=a*xc+c*d=0;eqd:=a"2+b*c=0;
solve({eql,eq2,eq3,eq4},{a,b,c,d});
{a=a, b=b, c=-a2/b,d=-a}, {2a=0, b=0, c=0, d=4d}

2
Since we are looking for non-zero elements in B, then the first solution {a =a,b=b,c = —%,d = —a}is



. _ _ I
used. For example, letting a =1,b = 2,c = —-7,d = -1 gives

To verify
[1 2](1 2] [0 0]
1 1 =
-5 “Jl- -1 00
3.4 Part (d)
a b e f e . .
Let C = ,D = P hence we want CD = —-DC. To simplify this, let the diagonal be zero in
¢ g
. . 0 b 0 f
both cases. This reduced the equations to 4 unknowns. Hence Let C = ,D = 0 and
¢ 8
0 bl(o b
cD = fl_[bs O
c 0J\g 0 cf
DC = 0 f110 b _|e f 0
g 0Jlc O 0 bg
bg 0 0
Hence we want to solve | > =- f Hence this reduces to just solving
0 cf 0 bg
bg = —cf
Let b =n,c=-n,g =n, f = n which satisfies the above. Le. n X n = — (-n X n) = n? = n?, therefore

ool

0 n|(0 n n? 0 0 n|[0 =n -n?2 0
= and DC = = hence DC = -CD.
-n 0){n O 0 -n? n 0Jl-n 0 0 n?

Let n = 2 for example, then

To verify, CD =




4 Problem 1.3.2

132 Factor 4 = I:z ;} into A= LDL". Is this matrix positive definite? Write x’ Ax as a

combination of two squares.

Figure 4: the Problem statement

Solution

3 6
A=
6 10 3 0
and L = , therefore D =
-4 2.1 0 —4
pivots is the diagonal of U. Therefore
T
r |1 0}f3 0}{1 0O 3 6
LDL" = = =A
2 1)10 -4J12 1 6 8

Since not all the pivots are positive and the matrix is symmetric, then this is not positive definite
(P.D.). This can be confirmed by writing

AT Ax = (xg )(i Z] [ij

=Xq (3X1 + 6XZ) + Xy (6.7(1 + 8x2)

3
Hence U = . D has the pivots on its diagonal. The

= 3x2 +12x1x, + 8x3
We now need to complete the squares.
xTAx = 3 (x; + axy)* + cx3
=3 (x% +a?x3 + Zaxlxz) +cx2
=3x3 + (3112 + c) X3 + 6ax;x,
Comparing to 3x% + 12x,x, + 8x3 we see that a =2 and ¢ = 8 - 34> = 8 - 12 = —4, hence
xTAx = 3 (x1 + 2xp)% — 423

This shows that xT Ax is not positive for all x due to the —4 term. For example, if x = {1,-1} then
xTAx = -1. Basically, we obtain the same result as before. For a symmetric matrix A, if not all the
pivots are positive, then the matrix is not P.D. Using x” Ax is another method to answer the same
question. After completing the squares, we look to see if all the coefficients are positive or not.



5 Problem 1.3.6

1.3.6 In the 2 by 2 case, suppose the positive coefficients a and ¢ dominate b in the sense
that a 4 ¢ > 2b. Is this enough to guarantee that ac > b? and the matrix is positive definite?
Give a proof or a counterexample.

Figure 5: the Problem statement

Solution

A counter example is 2 = 8,b = 2,c = 4. We see that a + b > 2c but ac = 16 and c? = 16, hence ac is not
greater than b?. So a + ¢ > 2b do not guarantee that ac > 2. Therefore, we also can not guarantee

a
that the matrix is P.D. this comes from the pivots. The pivots of A =

Poq
] are {a,c - ;}. Since a >0
c
2
as given, then we just need to check if c - % > 0. This means ac — b > 0. But since we can’t guarantee

that ac > b? then this means the second pivot can be negative. Hence the matrix A with such property
can not be guaranteed to be P.D.

6 Problem 1.3.7

1.3.7 Decide for or against the positive definiteness of

| 1. 1 1
A=]1 1 1 and A'=]1 2 2
1 1 1 12 3

Write A as /,d, 1] and write A’ as LDL",
Figure 6: the Problem statement

Solution

=
_ o
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To show if A is P.D., we need to show that all the pivots are positive. This is the same as showing
that xT Ax > 0 for all non-zero x.To obtain the pivots, we generate the U and look at the diagonal
values. From the above, we obtain

u
——

e e )

11 1 11
1 1|—=10 0 O
11 0 00

Hence using I; =1 we see that the pivots are not all positive. There are zero pivot. Hence A is not
P.D. For

/—’L
111 111 111
A=|1 2 2(—-|0 1 1[—|f0 1 1
1 2 3 01 2 0 01
Hence all the pivots are positive. Therefore A’ is P.D. We can write it as LDLT
T
10 10 100
A'=11 1 0|{0 1 Ofj1 1 0
1 1 1){lo0 0 1)1 1 1
1.0 0)f1 0 0 1
=11 1 0|0 1 O 1
111 01 01

7 Problem 1.3.8

1.3.8 If each diagonal entry a; is larger than the sum of the absolute values |a;;| along the
rest of its row, then the symmetric matrix A is positive definite. How large would ¢ have to be

in
il N |
A= c 1
1 1 ¢

{27 this statement to apply? How large does ¢ actually have to be to assure that A4 is positive
Z=finite? Note that

xTAx =(x; + x5 + x3)% + (e — D(xF + x% + x3);

~hen is this positive?

Figure 7: the Problem statement

Solution
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c 11
A=]1 ¢ 1
1 1 ¢

¢ > 2 is enough to guarantee row dominant matrix. For P.D., looking at xTAx = (x; +x, + x3)2 +

(c-1) (x% + x5+ x%) shows that c —1 > 0 is the condition for P.D. which implies ¢ > 1. Hence it is
enough that ¢ > 1.

8 Problem 1.3.11

1.3.11 A function F(x, y) has a local minimum at any point where its first derivatives 8F/dx
ind AF/dy are zero and the matrix of second derivatives

&*F @*F
. dx*  dxdy
FF  F

e

E‘xﬁy ay

‘s positive definite. Is this true for F; =x?—x?y? 4 p? 4 y* and F, =cosxcosy at x=y
=0? Does F, have a global minimum or can it approach — «c?

Figure 8: the Problem statement

Solution

JF JF
For F; = x? — x%y* + y* + 13, we find 19_; =-2¢%y+2y+3y* =0at x =0,y =0. And 5= =2x - 2xy* = 0
at x =0,y = 0. Now we need to look at the P.D. of

d%F; 9%k,

? 99§z9y _ (2 —2y ? —4xy
Th IR 4xy 26242
Ty P Xy X +2+ 6y

At x =0,y = 0 the above becomes
d%F;  9%Fy
Iz  Ixdy | _ 20
d%F;  9?F | T 0 2
dxdy  dy?

This is already in U form. Since the diagonal is all positive, then this is P.D., which means it is true
for F; (x, y). Now we check F, (x, y)

JF . JF .
F,(x,y) = cosxcosy. Hence a—; = -sinycosx = 0 at x = 0,y = 0. And == = —sinxcosy = 0 at
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x =0,y = 0. Now we need to look at the P.D. of

Ix2  Ixdy
Jd%F;  9%F
oxdy Iy

J%F;  9%F ) )
[— cosxcosy sinysinx ]

sinysinx —cosycosx
And at x = 0,y = 0 the above becomes

2%F;  9%F

Ix2  dxdy | _ -1 0
0%F;  J%F | T 0 -1
oxdy  Iy?
Hence this is not P.D, since the pivots are negative. To answer the part about F; having global
2’F;  9%F
.. . _ A .. 2 2.9 2 3 . dx2 dxd
minimum. The point x = 0,y = 0 is local minimum for F; = x* — x“y* + y* + y° since 2F, (?ZFf was
axdy  Iy?

found to be P.D. at x = 0,y = 0. But this is not global minimum. Only when the function can be
written as quadratic form xT Ax will the local minumum be global minumum. In this case, F; can
approach —co, hence this is the global minimum.

Taking the limit lim, _, . F; = (1 - yz) co. Taking the limit of this as y — oo gives —co. Here is a plot
of F; around x = 0,y = 0 showing it is a local minimum

F1 =x"2 - x"2y72 + y"2 +y~3
Plot3D[F1, {x, -3, 3}, {y, -3, 31},
PlotLabel -> "F1 function", AxesLabel -> {x, y}]
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Fy function

Figure 9: plot of the above

9 Problem 1.4.5

1.4.5 The best fit to b, b,, by, b, by a horizontal line (a constant function y = C) is their
average C=(b; + b, + by + b,)/4. Confirm this by least squares solution of

Ax=| |[c1=

1
!
I b,
1
From calculus, which C minimizes the error E={b, — C)* + -+ + (b, —c)*?

Figure 10: the Problem statement

Solution



The equation of the line is y = C, hence we obtain 4 equations.

or

Hence now we set ATAx = ATh

b1=C

b2:C

b3=C

b4=C
A

1 by

1 b
c=|7

1 by

1 b,
1
1
C={1111
He=(119)
1

ac=(111 1)

4C=b1+b2+b3+b4

14

Hence C = M, Which is the average. Using calculus, to minimize E = (b; — C)2 + (by — C)2 +

(b3 — C)* + (by — C)?

0=8C—2b1—2b2—2b3—2b4
8C = 2b1 +2b2 +2b3 +2b4
bl +b2+b3+b4

Which is the same found using AT Ax = ATb solution.

2(by = C)=2(by - C) =2 (bs - C) = 2 (by - C)



10 Problem 1.4.7

15

1.4.7 For the three measurements b =0, 3, 12 at times t =0, 1, 2, find

(i) the best horizontal line y= ¢
(i1) the best straight line y=C + D¢
{ili) the best parabola y = C + Di + Et*.

Figure 11: the Problem statement

Solution

10.1 Part (a)

For y = C we obtain the following equations

by =C
b, =C
by=C
Hence
A
1 by
1{C =|b,
1 bs
Applying ATAx = ATb gives
1 by
(11 1)r|c=(1 1 1)|p,
1 bs
3C=b;+by+bs
b1 +by + b3
=
Therefore y =C = % = 0+33+12 =5, or
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10.2 Part (b)

For y = C + Dt we obtain the following equations

bl =C+Dt
b2 =C+ Dt
b3 =C+ Dt
Applying the numerical values gives results in
0=C
3=C+D
12=C+D(2)
Hence
A
—_—
10 0
C
11 =(3
D
1 2 12
Applying ATAx = ATb gives
10 0
(1 1 1) c] 11 1]
11 = 3
01 2 D 01 2
1 2 12
3 3|(C] (15
3 5)\D) |27

Now we solve this using Gaussian elimination. First U is found
3 3 3 3
_)
35 0 2
10 10 15
Hence L = and Lc = b, then = now c is found by forward substitution, giving
11 1 1)\ 27
Cq _ 15
o) |12

3 3
Now we solve Ux = ¢ or
0 2

15
] by backward substitution, the result is

C—
D] |12

Hence the line is

Here is a plot of the fit found above
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b = {0, 3, 12}; t = {0, 1, 2};

pl = ListPlot[Transpose[{t, b}], PlotStyle -> Red];

p2 = Plot[-1 + 6 t, {t, -.5, 3}, PlotTheme -> "Detailed",
FrameLabel -> {{"y(t)", None}, {"t", "Fit by least squares"}}];
Show[p2, p1i]

Fit bty lezst squerss

| S IR I L E O U S N AN R R PN A G S L AN R PN S S e T DN AN BTN P S
_-"---'.'
15E .-_____.-" .
-
-~
.~
10 f,x”f .
= | P
A | : - 1 — —1+6t
L 3
.-"'"-f
.
Ok '#.#"J Pl
— L 1 1 L 1 1 1 |
—0.5 0.0 0.5 1.0 1.5 20 2.5 3.0

Figure 12: Plot of the above

10.3 Partc

For y = C + Dt + Et?> we obtain the following equations
by = C + Dt + Ef?
by, = C + Dt + Ef?
by = C+ Dt + Ef?
Applying the numerical values gives results in
0=C
3=C+D+E
12=C+2D +4E
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Hence

[
N — O B
N =
m O 0O
Il

12

Now we solve this using Gaussian elimination. We do not need to use ATA least squares since the
number of rows is the same as number of columns. First U is found

1 00 1 00 1 00
11 1|—|0 1 1|—|0 1 1
1 2 4 0 2 4 00 2
1 00 1 0 0l 0
Hence L=(1 1 O|and Lc=b,then|1 1 Of|c;|=|3 | now c is found by forward substitution,
1 21 1 2 1){cs 12
1 0
giving (¢, [ =13
c3 6
1 0 0)(C 0
Now we solve Ux =cor (0 1 1[|D|=]|3]|by backward substitution, giving
0 0 2J\E 6
C 0
D|=|0
E 3
Hence the solution is
y =3t

Here is a plot of the fit

b = {0, 3, 12}; t = {0, 1, 2};

pl = ListPlot[Transpose[{t, b}], PlotStyle -> Redl];

p2 = Plot[3 t~2, {t, -.5, 3}, PlotTheme -> "Detailed",
FrameLabel -> {{"y(t)", None}, {"t", "Fit by least squares"}}];
Show [p2, p1]




Fit by l=ast squeres

[ =]

Ln
T

¥k

--""-
:I [ = .-__'_'_'__,_,-:-"' :
0.5 0.0 0.5 1.0 1.5 2.0 25 3.0

Figure 13: Plot of the above

We can see this is an exact fit since no least squares was used.

11 Problem 1.4.10

19

1.410 In a system with three springs and two forces and displacements write out the
equations ¢ = Ax, y = Ce, and ATy =/, For unit forces and spring constants, what are the

displacements?
= ¢ fio x . :
4 C3
Figure 14: Problem description
Solution

From page 40 in textbook, y is force in spring, e is the elongation of spring from equilibrium and f
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external force at each mass. Hence for Ax = e, we see that ¢; = x1,¢; = x, — x; and e3 = x,. Therefore

e N

1 0 e
X1

_1 1 ( ) = 62
X2

0 1 e3

For y = Ce, here y is the internal force in spring. Hence y; = c1eq, 1y = ce5,y3 = c3e3, therefore
4

Cq 0 0 eq 1
0 Cy 0 e =Y
0 0 cz)\es Y3

For ATy = f, we need to find the external forces at each node first. From diagram we see that
f1=1y1—Yy and f, =y, + y3, therefore

A
1 a o[ (n
o 1 1| |

Ys

12 Problem 1.4.11

1.411 Suppose the lowest spring in Fig. 1.7 is removed, leaving masses m;, m,, My hanging
from the three remaining springs. The equation e = Ax becomes

€y ]. 0 0 Xy
E’z = _I 1 U xz
£y 0 -1 1] x5

Find the corresponding equations y = Ce and ATy=f, and solve. tthlast equatiqn for y.
This is the determinate case, with square matrices, when the factors in ATCA can be inverted

separately and y can be found before x.
Figure 15: Problem description

Solution

To find y = Ce. In this equation, e is the elongation of the spring and y is the internal force. Hence
from figure 1.7 we obtain

h1=a6a

Y2 =262

Y3 = C3€3



Hence in matrix form

C
—_—

C1 0 0 €1 n
0 Cy 0 e =1Y2
0 0 c3)\e3 Y3

21

In the question ATy = £, f is the external force. Hence by balance of force at each mass, we obtain

fi=vi-u
fa=v2-ys
fa=ys
or in matrix form
—

1 -1 0)(n] [h
0 1 -1l|y2|=|f2
0 0 1)) \fs

To solve, since already in U form, we will just need to do backward substitution. Hence
Y3 = f3
Yy2=f2+f3
ni=fitfatfs

13 Problem 1.4.12

1442 For the same 3 by 3 problem find K=A4"CA and 4™ and K~ ' If the forces
fis f2s fr are all positive, acting in the same direction, how do you know that the

displacements x,, X, X; are also positive?

Figure 16: Problem description

Solution



22

1 0 0 cc 0 0
K=ATCA,but A=|-1 1 0|given in problem 1.4.11,andC=|0 ¢, O [ Hence
0 -1 1 0 0 c
T
1 0 0

Cq 0 0 1 0
K=ATCA=|-1 1 0|0 ¢ O|f-1 1

0
0
0 -1 1J{0 0 )10 -1 1

0 —C3 C3
And
-1
1 0 0 10
Al=1-1 1 o] =[1 1
0 -1 1 11
And
-1
K-lz(ATCA)
-1
:A—lc—l(AT)
1
100)f; 00 11
=11 1 oll0 £ o 11
C2 1
11 1J)lo o = 0 1
c3
1 1 1
R T !
B I
- =4+ = —+—+=
1 c1 (%] 1 2 c3

Since f = Kx then x = K™!f. Since we are told f;, f,, f3 are all positive, and so the sign of x the
displacement, is determined by the sign of K~!. But K™! has positive entries only, since c; is positive
by definition. Therefore all displacements x must be positive.
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14 Problem 1.5.6

1.5.6 Solve the second-order system

N "1 ~% B 2 0
d_:‘+ —1 2 —1|u=0 with us=|—1} and up=|0].
: 0 —1 1 —1 0

These initial conditions do not activate the zero eigenvalue (see the following exercises).

Figure 17: Problem description

Solution

The solution is

uy () 11 012 013
Uy ()= (a1 cos \/A_lt + by sin \/A_lt) Uy +(a2 cos \/A_Zt + b, sin \/A_zt) Voo +(a3 cos \/A—g,t + b3 sin \//\—31‘) Vo3
uz (t) U31 U3 Us3

Where A; are the eigenvalues and v; are the corresponding eigenvectors of A. The constants are
found from initial conditions.

For the matrix A, the eigenvalues are found by solving

[A-All=0
1) (-1} (1
Solving for eigenvalues gives A; = 0,1, =1, A3 = 3 and the corresponding eigenvectors are |1{,| 0 |,[-2
1) \1 1
hence the solution becomes
uq () 1 -1 1
uy ()| =a1|1|+ (aycost +bysint)| 0 |+ (a3 cos V3t + bs sin \/gt) -2
uz (f) 1 1 1
Att=0
2 1 -1 1
“1|=a|1|+ay| 0 |+az|-2 1)

-1 1 1 1
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And taking derivative of the solution gives

uf (t) 1 -1 1
uhy(t)| = ay|1|+ (-agsint +bycost)| 0 [+ (—a3\/§ sin V3t + bs\/g cos \/gt) -2
uj (t) 1 1 1
At t = 0 the above becomes
0 1 -1 1
0f=ay|1|+b,y| 0 |+b3V3]| -2 )
0 1 1 1

Now (1),(2) needs to be solved for the constants. From (1)
1 -1 1)(ay 2
1 0 =2fla|=]-1
1 1 1)\a) |41

1 -1 1 1 -1 1 1 -1 1
This is solved using Gaussian elimination. (1 0 -2(—=[0 1 -3|—=|(0 1 -3
11 1 0 2 0 0 0 6
1 -1 1 100
Hence U=|0 1 -3|,L=|1 1 O0fandhenceLc = b is solved first for c using forward substitution
0 0 6 1 21

1 0 0)fc 2
1 1 0lfea|=1]-1
1 2 1)le) |41
Which gives ¢; = 2,¢, = -3, ¢c3 = 3, hence now we solved for x from Ux = ¢
-1 1)y 2
0 1 -3|la|=]-3

.. 1 3
GlVlng as = E,ﬂz = —E,ﬂl =0.

Now we solve for the rest of the constant in same way. From (2)
1 -1 3 \(a) (0
1 0 -2v3||b|=]0
1 1 3/l o
1 -1 3 1 -1 3 1 -1 3
This is solved using Gaussian elimination. [1 0 2\3[—=l0 1 -3v3[—=|0 1 =33
1 1 3 02 0 0 0 6V3
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1 -1 3 100
Hence U=|0 1 -3v3|,L=[1 1 0]and Lc=b is solved first for c using forward substitution
0 0 6V3 121
1 0 0ffcy 0
1 1 0ffce]=10
1 2 1){cs 0

c1 =0,¢0 =0,c3 = 0, therefore now we solved for x from Ux = ¢
1 -1 3 \(a) (0
0 1 -3v3||b|=]0
0 0 6v3)lbs) o

Which gives b3 = 0,b, = 0,a; = 0. Now that all constants are found the final solution is

uy (t) -1 1
1

U, (H) | = -3 cost| 0 |+ 5 €os V3t| -2

us (f) 1 1

Hence
3 1
uy () = = cost + = cos V3t
2 2
uy (£) = — cos V3t

3 1
uz () = =3 cost+ ECOS\/gt

15 Problem 1.5.7

1.5.7 Suppose each column of A adds to zero, as in

§ =1 @
A=|-2 2 —1 '
-1 -1 1

(a) Prove that zero is an eigenvalue and A is singular, by showing that the vector of ones
is an eigenvector of A7. (A and A" have the same eigenvalucs, but not the same eigenvectors.)
(b) Find the other eigenvalues of this matrix A, and all three eigenvectors.

Figure 18: Problem description

Solution



15.1 Part (a)

3 -1 0
A=[-2 2 -
-1 -1 1
3 -2 -
Al=]-1 2 -1
0 -1 1
For eigenvector v of ones, we write
ATy = Ao
Hence
3 -2 -1}(1
-1 2 -1|j1{=A
0 -1 1)1
0
0]=A4
0

1
1
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Which implies A = 0. Since AT has same eigenvalues of A then A has zero eigenvalue. But the
determinant of A is the products of its eigenvalues. Since one eigenvalue is zero, then |A| = 0, which

means A is singular.

15.2 Part (b)

To find all three eigenvalues of A we solve |AI - A| = 0. Hence

A-3

1

2 A=2

1

1

0

A=1

=0

A3-612+81=0
A(A2—6A+8)=O

Hence A = 0,4 = 2,4 = 4.To find the eigenvectors, we solve Av; = A;v; for each eigenvalue. This
means solving (4,1 — A)v; = 0 for each eigenvalue. For A =0

3 -1
-1-2 2
-1 -1

0
-1
1

We always set vy; =1 and then go to find vy, v3; in fi

-3 1
2 =2
1 1

0
1
-1

011 0
U1 = 0
031 0

nding eigenvectors. Hence we solve

1 0
U1 = 0
031 0
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1
Solving gives v; = |3 | For the second eigenvalue A = 2 we obtain
4
2 00 3 -1 0}||{vr2 0
02 o|-[-2 2 -1f|lun|=|0
0 0 2) (-1 -1 1]J/\vs 0
-1 1 0|f1 0
2 01 Uon 0
1 1 1 U3p 0
-1
Solving gives v, =|-1|. For the last eigenvalue A = 4 we obtain
2
4 00 3 -1 0}|(vis 0
0 4 0f-|-2 2 -1 U3 | = 0
0 0 4 -1 -1 1 U33 0
1 1 0)f1 0
2 21 U3 | = 0
1 1 3 0U33 0
-1
Solving gives v; = | 1 |.Summary. The eigenvalues are {0,2,4} and the eigenvectors are
0
-1] (-1
31,1-1{,
2)10

16 Problem 1.5.11

1541 Why is the sum of entries on the diagonal of AB equal to the sum along the diagonal
of BA? In other words, what terms contribute to the trace of AB?

Figure 19: Problem description

Solution

The elements of the diagonal of AB come from multiplying row i in A with column i in B. Therefore,
looking at the diagonal elements only, we can write, using 4;; as element in A and using b;; as element
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in B
Z a1;by
1

Y agibip
AB i

2 anibin

1

Hence the trace of AB is
tr(AB) = D aybu + Y, agibip + -+ + Y, auibiy
i i i

But the above can be combined as

tr (AB) = Ek: E xibi 1)
Now if we consider BA, then the result comes from nllultiplying row 7 in B with column i in A
? briaiy
BA — ; baiip

Zi] byitin
Hence the trace of BA is
tr(BA) = Z byian + 2 baiftip + -+ + E byiin
i i i
But the above can be combined as

tr(BA) = 3 D) b (2)
ko

Looking at (1) and (2) above we can see that both traces contain the same elements, but arranged
differently. The indices can be changes in the sum without changing the value of the sum. This can

b
be seen more directly by looking at specific example of 2 x 2 case. Let A = [a d),B = [e i], hence
¢ 8

ae +c
the elements on the diagonal of AB are f

ae + bg
cf +dh

while for BA the result is .
bg + dh
We see that the trace is the same.
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17 Problem 1.5.12

1512 Show that the determinant equals the product of the eigenvalues by imagining that
the characteristic polynomial is factored into

det(A — AT) = (g — WAy — &) -+ (Ay— ), *)

and making a clever choice of A.
Figure 20: Problem description

Solution
det (A — Al) is a polynomial in A. Hence it can be factored in its roots as
det (A=A =P) = (41 =) (A2 =) (A3 =A) - (A, = )

Assuming there is n eigenvalues. When A = 0 (which is the independent variable now, and not any
specific eigenvalue, then (1) becomes

det (A) =P (O) = /\1A2A3 An
Hence
det (A) = /\1/\2A3 An

Which is what we are asked to show.

18 Problem 1.5.13

1513 Show that the trace equals the sum of the eigenvalues, in two steps. First, find the
coefficient of (—A)" "' on the right side of (*). Next, look for all the terms in

ap;—4 thg Qyp

q o = A a n

det(d — Al)=det | 2! i ¢
dy L) Ay "1

which involve (—A)"~'. Explain why they all come from the main diagonal, and find the
coefficient of (—2)"" ! on the left side of (*). Compare.

Figure 21: Problem description

Solution
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det(A-AD=PA) = (A -A) (A=A (A3 -4)--- (A, = A) (*)
Let look at the case of n =2
PA)=A-A)(A-A)
= Az -A (/\1 + /12) + /11/12

Hence the coefficient of (—)l)”_1 which is —A is (A1 + A) which is the sum of the eigenvalues. Lets look
atn=3

P(A)=A1-A) (A= 21) (A3 -4)
=-A3+ )2 (Al + Az + A3) -A (/\1/\2 + /\1/\3 + A2A3) + /\1/\2A3
So the pattern is now clear. The coefficient of (-1)"" is the sum of all the eigenvalues of A.
For det (A — Al), looking at n = 2 we write
-A
det (A - AI) = det (all 12 ] = (ﬂu - A) (ﬂzz - /\) — 1412
a axp —A
= A% = A(ay + az) + (41189 — az1017)

We see in this case that the coefficient of (—)L)"_1 = —A is the trace of A. Lets look at n =3

app—-A  ap a13
det(A-Al) =det| ay ap-A  apy
a1 asp azz— A
Ay — A a a a a Ayy — A
= (all - /\) det [ 22 z ] —daip det [ 21 2 ) +dq3 det[ 21 2 ]
asp azz— A a3 ax—A as1 a3

= (a1 = A) (A2 = A (ag + a33) + (a20833 — a3037))

— a1y (91033 — Adyy — a3123) + a13 (Aazy + ap1a3; — Axaz;)

= A3+ A2 (ayy + ax + az3) — A (1189 — A1p0p1 + 411053 — A13031 + Ax0z3 — Ap303))
+ (11092033 — A1102303) — 12021433 + 12031023 + Ap141303) — A13022031)

We see again that the coefficient of (-1)""" = A2 is the trace of A. So by construction we can show
that coefficient of (—/1)”_1 is the trace of A. But we showed above that coefficient of (—)\)n_1 is the sum
of all the eigenvalues of A. Hence the sum of all the eigenvalues of A = tr(A)
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