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Chapter 1

Lecture notes

This book is compilation of my own write up based on note taking during this course given
by Professor B. Ross Barmish. This book includes all the material for this course archived
in one place.

Most of the time I followed what was being said, but sometimes I added additional text.
Therefore, If there are any errors in these notes, all blame goes to me (the student) and
not to the instructor of the course.

I 'added copy of all my HWs in the appendix at the end. The key solutions are also included.

1.1 Summary of lecture topics covered

# date topics

1 Tuesday Sept. 3 Introduction. Mechanical system to ODE to state space

2 Thursday Sept. 5 discrete time state equation, into to nonlinear state space

3 Tuesday Sept. 9 more non-linear state space, linearization, electric circuit,
Laplace transform

4 Thursday Sept. 11 State space realization

5 Tuesday Sept. 16 State space realization, Mason rules and examples using
it.

6 Thursday Sept. 18 Realization theorem, MIMO, state space feedback

7 Tuesday Sept. 23 controllability, observability, Mapping using T

8 Thursday Sept. 25 Pole assignment, design using state space feedback

9 Tuesday Sept. 30 Separation theorem, Observer design

10 | Thursday Oct. 2 No lecture

11 Tuesday Oct. 7 2:30 | Vector spaces preliminaries, norms, piecewise and uni-
form convergence

12 | Tuesday Oct. 7 6:00 | first midterm

13 | Thursday Oct. 9 Norms, convergence

14 | Tuesday Oct. 14 More on convergence

15 | Thursday Oct. 16 More on convergences, 4 lemmas

16 | Tuesday Oct. 21 Solution of state space using fundamental matrix, its prop-
erties

17 | Thursday Oct. 23 How to determine ¢, LTI vs. LTV

18 | Tuesday Oct. 28 Solving state equation

19 | Thursday Oct. 30 Start of physical controllability, linear independence of
time vectors

20 | Tuesday Nov 4 More on controllability LTV

21 | Thursday Nov 6 Analytic functions, M test for controllability, LTT




22 | Thursday Nov 6, 6pm | second exam

23 | Tuesday Nov 11 No class

24 | Thursday Nov 13 Controllability of LTV, Cayley Hamilton, differential Con-
trollability

25 | Tuesday Nov 18 Observability of LI'Vm duel system, transition matrix,
Canonical decomposition

26 | Thursday Nov 20 More on Canonical decomposition, starting stability

27 | Tuesday Nov 25 No class

28 | Thursday Nov 27 Holiday

29 Tuesday Dec 1 Stability, Hurwitz

30 | Thursday Dec 4 More robust stability, q’s and intervals. Start of Lyapunov
stability

31 Tuesday Dec 9 Review of topics for finals, Routh table examples, future
courses

32 | Thursday Dec 11 Final exam

1.2 Lecture 0. Tuesday September 3, 2014

Instructor: [B. Ross Barmish|



http://directory.engr.wisc.edu/ece/Faculty/Barmish_B/

1.21

Official Syllabus from school website

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

University of Wisconsin - Madison
College of Engineering [EGR]
Last Offered: 2013 Fall [1142]
Direct Link to this Syllabus :

http://aefis.engr.wisc.edu/index.cfm/page/CourseAdmin.ViewABET?coursecatalogid=181&pdf=True

1.
2.
3.

E CE 717, Linear Systems

Credits : 3 Contact Hours :

Textbook and Materials : Linear System Theory and Design; C. T. Chen; latest; No Year
Given

Specific Course Information :

Brief description of the content of the course (Course Catalog Description) :
Equilibrium points and linearization; natural and forced response of state equations;
system equivalence and Jordan form; Lyapunov, asymptotic, and BIBO stability;
controllability and duality; control-theoretic concepts such as pole-placement, stabilization,
observers, dynamic compensation, and the separation principle.

. Pre-requisites or Co-requisites : Math 340 or cons inst

Specific Goals for the Course :

Course Outcomes :
ABET Student Learning Qutcomes :



1.2.2 Handout, Syllabus

Barmish 2014

ECE 717 — Handout Description

Audience: This course is intended for graduate students interested in the fundamentals
of linear systems. The contents of the course are particularly relevant to areas such as
control, communications, signal processing, power systems and circuits. The coverage of
material will be suitable for students outside ECE.

Prerequisites: Math 340 or consent of instructor.

Topics: Various models in time and frequency domain, linearization, transformations
and realizations, canonical forms and equivalent systems, minimal realizations, pole as-
signment and stability and robustness, Lyapunov functions, vector space concepts for
time-varying systems, fundamental matrix solutions, mathematics of controllability, ob-
servability and duality, Jordan forms, spectral theory, functions of matrices, decoupling
and compensator design, state estimators and Luenberger observers, separation of esti-
mation and control, linear quadratic regulators.

Lectures: Professor B. R. Barmish



1.2.3 Handout, Organization

Barmish 2014

ECE 717 — Handout Organization

e Lectures

B. R. Barmish

Office: 3613 Engineering Hall

E-mail: barmish@engr.wisc.edu

Office Hours: Wednesday 1:30-3:00 PM

o Recommended Textbook

W. J. Rugh, Linear System Theory, Prentice Hall, New York.

e Additional References

C. T. Chen, Linear System Theory and Design, Oxford University Press, New York.
T. Kailath, Linear Systems, Prentice-Hall, New York.

R. W. Brockett, Finite Dimensional Linear Systems, Wiley, New York.

P. J. Antsaklis and A. N. Michel, Linear Systems, McGraw-Hill, New York.

o Homework

Approximately weekly

o Computer Use

Matlab and Simulink

e Grading

Test 1: 25%
Test 2: 25%
Test 3: 25%
Homework & Special Problem: 25%

The instructor may exercise up to 5% discretion in grading categories above.

e Scheduling Information

No lectures on October 2, November 11 and November 25.
Makeup: Reserve 6 PM on October 7, November 6, December 11.
Test 1: Tuesday October 7 (in class OR @ 6 PM)

Test 2: Thursday November 6 (in class OR @ 6 PM)

Test 3: Thursday December 11 (in class OR @ 6 PM)

No Office Hours: October 1 and November 12

e Discussion of Prerequisites

Differential equations, Laplace Transforms and transfer functions, matrix algebra, clas-
sical feedback control or state space systems. Use of Matlab and Simulink.

1.3 Lecture 1: Introduction, mechanical system to ODE
to state space

Handout organization: Approximately one HW per week. About 9 in total.
Will give back detailed key solution. Requires using Matlab and simulink. See handouts.

What is state space model? Given m inputs to system and r outputs. The input are the
controls (since we can manipulate them). This is the vector u(t). The states of the system
are x(f) and the output is y(t). A simple example of spring mass damper is now given.

C
- {—

The differential equation is
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my” +cy’ +ky = f(t)

Let x; = y,x, =y’ be the two states, hence x] = x, and x; = % - ixl - %xz. Therefore the
state space representation is

A e

y=(1 0 (2) + [01£ ()

More generally,

x' = Ax + Bu
y=Cx+Du
Reader: Find LTT for y” + 6y" — 2y = 2u(t)

Answer:

x’l 0 1 0 X1 0

0 0 1 Xy |+ 0 u(t)
x5 2 -6 0)\x3 1

=
N
Il

X1
y=(1 0 0)]x, |+ [0]u(®)
X3
The matrix A has one on the superdiagonal. What if the input had additional term? Such
du

u o, . .. .
as —- or Fg in it? We need a state space realization to handle this.
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1.4 Lecture 2. Thursday September 5 2014

1.4.1 Handout, Pendulum on moving cart

Hﬁodout Cart- Peadulum

m (5] !
X

"M(E :
u
| . M
o]
[
J
Mim)dly s mlcoso d'e
ai? dtt

[v)sm\)s fevction

¢ Cay - mdsi e(éitﬁ)i

dt
Moment of ertic

+ md cos 9'3’_\; . (Teml’)d'e
¢ :

-

& Viscous foiceion

¥ do +m5€sm@=0
- dt

feader: Wih State x= [y
& | fing he

a
d%/da
Lpearized Syskem e
fz—_((«].B,C.D) for e%u\hbrwm (X)u)’(OJ 0)

1.4.2 Lecture: Discrete time state space, introduction to nonlinear
state space

Reader: Recall the mass, spring, damper with k,c,m and we generated the second order
ODE for it. Let u = 0 be the input. Initial conditions are y(0) =1,y’(0) = 0.

Experiment with various values of the parameters k,m,c and observe variety of responses.
Also consider u(t) as unit step.
Reader: Consider discrete time state equation
x(k +1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

with zero initial conditions. Solve for x(N) and y(N).

x(1) = Ax(0) + Bu(0)

x(2) = A(Ax(0) + Bu(0)) + Bu(1)
= A%x(0) + ABu(0) + Bu(1)

x(3) = A(A?x(0) + ABu(0) + Bu(1)) + Bu(2)
= A3x(0) + A2Bu(0) + ABu(1) + Bu(2)

Hence
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N-1
x(N) = ANx(0) + )] AN-1*Bu(k)
k=0

In solving continuous time state equations, the solution will contain terms such as sin/cos
and exponential and t multipliers. These are the only things that come up in linear system
theory.

Sometimes an LTT system is stable and sometimes it is not stable.

Stable vs. not stable: if A has all its eigenvalues with real part negative, then it is stable,
else not stable. But even if one one eigenvalue had real part which is positive, it might still
be stable. This depends if the initial conditions activate the mode with this eigenvalue. For
Example

1

0 -1
the initial conditions are x;(0) = 0 and x,(0) = 1, then x;(t) = 0 even though the eigenvalue
was positive.

A=

J,B = 0, then x] = x; and x5 = —x,. Then x; = ¢'x;(0) and x, = ¢'x,(0). Now if

Now we will talk about non-linear systems. Consider

X] = x1Xp + uxz
X5 = Xp + 2XX3

/
X3—X2+X3

More generally, x” = f(x, u). There are no A, B, C, D in nonlinear system. there is only f(x, u)
and g(x, u). To linearize this, we need to talk about equilibrium. There is stable and there
is unstable equilibrium. Always linearize around the stable equilibrium point. To find (%, )
solve x’ = 0. i.e. it is when f(x, %) = 0.

How does linearization work? Since we assume f(x,u) is smooth function, we expand in
Taylor series around equilibrium (X, i)

zero at equilibrium

_ 9f1 1 9*f, 2
fl (X + AX) = f(xeq) + g Axq + E F (Axl) +
Uz m) 1 lx,m)
d 1 92
+ &—f Avy + > Wf; (Axy)? +

2l m) 2 lz,m)

d 1 92

i AX3 —fl (AX3)2 +

dx 2 9x3
31(z,m) 3z m

Similarly for each f;(x,u). For small Ax we obtain, after dropping all higher order terms

dh A . h
dx1  dxp dxy,
o . o
f(J_C + Ax) —|dxy  Idxp axy,
a Uy . O
z9x1 &xz 8xn

Two roles for the small Ax: approximates linear behavior, and remain around domain of
influence so system returns to x,,.

A
Reader Argue that incremental dynamics are now Ax’ = Z—i Ax
Xeq
Reader: Generalize to f (x, u) instead of just f (x): Define (%, %) s.t. f (%, 71) = 0. So that above
become f (¥ + Ax, i + Au) then
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Ju;  duy Ay,
B (a + Au) = duy  duy Ay,
I w9
du;  duy duy,

Can also introduce the output equation y = g (x,u) and now obtain linearized C,D as we
did above for A, B, but now using g (x, u) in place of f (x,u)

1.5 Lecture 3. Tuesday September 9 2014 (non-linear
state space, linearization, Laplace)

Linear systems are described by A,B,C,D. as in

x' = Ax + Bu
y=Cx+ Du
For non-linear systems we have
x' = f(x,u)
y=g(x,u)

We assume f, g are smooth and solution exists (may be using numerical). We talked about
equilibrium point (x,u). This can be stable or unstable equilibrium.

We want to linearize the equations above. Linearization must be done about a stable point.
Do not linearize around an unstable equilibrium. The linearized system

A B
d d
Ax' = —f Ax + —f Au
dx () du ()
eq eq
So solution, near x,; is
x (£) = x5 + Ax
Output equation is
C D
d d
Av= 281 A+ 2 A
dx du
(v, (v,

And

y(t) :g(x,y) + Ay
Reader: Distinction between domain of attraction and linear approximation.
Region of attraction: Domain of initial states that converges to x,,.

Yo _ _5 O _
o = Zrem- Reaall, %dtk = $KF (s)

with initial added. Example, Z{f’ (t)] = sF (s) - £ (0) and A f” (1)} = s2F (s) - sf (0) - f' (0).

Transfer functions: Motivating example. Given H (s) =

Note: H (s) is derived assuming all initial conditions are zero.
Reader: Find H (s) for y” + 6y’ + 7y = 5u(t) and find the state space realization.

Suppose we are given A,B,C,D. There is SISO (single input, single output) and MIMO
(multiple input, multiple output).
Consider

x' = Ax + Bu

y=Cx+Du
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Take Laplace transform results in X (s) = (s - A)_1 BU (s) and the output becomes
Y(s) = C(sI - A)'BU + DU
=(C@I-A'B+D)U
Hence

Y _
H(s) = =C(l-4) 'B+D

R i L
Wl LC 70

Find SISO H(s) for the above. Writing loop equations, using v = Ri for voltage across
resistor, results in

Reader:

t
di 1
Ri+Ld—; +Efz'd7=u(t)
0
Taking derivative gives
di  d%

1
R—+L—+-i=u'(t
gl o=

t
Do 1.
The output equation is y = - [idr
0

-2 2 1 1 2 -1
),B:[ ),C:(O ],D:[ 1). Find MIMO H(s). Can

1
Reader: Given A =
3 4 -1 0 -1 2 1

solve using syms.

Given transfer function matrix, can we find state space realization” Remark on MIMO:
m

Consider Y,.1(5) = Hyy(s)U,ux1(s), so the i output is ¥ H;i(s)Uj(s). So entry Hyi(s) in the
j=1

matrix transfer function is the transfer function between the j* input to the i"* output.

Y
Hi(s) = U,
This suggests experimental method to find H;(s). Zero out all inputs except for one. Measure
the output at the port of interest. This finds H(s) between the input which is not zero and

the output port being measured.
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1.6 Lecture 4. Thursday September 11 2014

1.6.1 Handout, Mason

Barmish
N—
ECE 717 — Handout -
Class Discussion Points Preceding Mason’s Rule
o Input and Output Nodes
o Forward Path
e Loop
e Self Loop
e Branch gain
¢ Path Gain
o Nontouching Parts of a Graph
Let Ui, and Y,,; denote input and output nodes respectively. Then, with
~ all other inputs set to zero, we have
You _ Tp MiAg
Un A

where

A = 1— Y [loop gains]+ 3" [products of gains of pairs of nontouching loops]—- - -

and Ay is the value of A for that part of the graph not touching the k-th
forward path.

1.6.2 Lecture: state space realization

State space realization. Fundamental to state space.

H(s) = &

U-— S®scb —Y

system

Assume we do not have to look inside the system and we want to model the system? When
we model the system, we have idea of what is relevant. The input and the output. From
the input/output point of view, it does not matter what the internal of the system are. The
constraint is only that the internal states are bounded.

Given system (A, B,C, D), we write H,(s), which is the realization of this system, as

H.(s) = C(sI - A'B+D
This is called the transfer function of the system. Let H(s) be some given transfer function
matrix, of dimensions r X m, where r is the number of outputs and m is the number of

inputs. Each entry in this transfer function matrix is a ratio of two polynomials in s. We
say that H(s) is a realization of };(A, B,C, D) if H.(s) = H(s).
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In other words, we say H(s) is a realization, if we can find }(A,B,C,D) or construct
(A, B,C, D) such that H,(s) = H(s).

When is H(s) realizable? i.e. given some H(s), can we find }(A, B,C, D) whose transfer
function is this H(s)?

Is the set of realizable transfer functions common or rare? If we can realize H(s), then let
Y, be a realization. Now do the "Gedankan" experiment. Pick any non singular n X n matrix
T, and form

A=TAT™!
B=TB
C=cCr?!
D=D

Hence
H,(s)=C@I-A)'B+D
=CT YsI-TAT ) 'TB+D
=CT'(SITT' -TAT ) 'TB+D
= CTY(T(sI - A)T"H)'TB+D
=CT'T(sI - A)'T-'TB+D
=C(sI-A)'B+D

So we see that C, A, B, D has the same realization as A, B, C,D. So if one realization exist,
then there are infinite number of realization that can be found using the T transformation
as above.

Reader: How does state x relates to state ¥ under T7?.

Let ¥ = Tx, then
X =Tx
=T (Ax + Bu)
= T(AT'% + T"'Bu)
=TAT'% + TT'Bu
= A% + Bu

So new system is the same as original before transformation. The big question is: When is

H(s) realizable. We start with SISO, after that we will talk about MIMO. Let H(s) = % be

some given H(s) that we want to realize. Define a proper T.F. as one which has deg (N (s)) <
deg (D (s)). Define a strict proper T.F. as one which has deg (N (s)) < deg (D(s)).

Every proper T F. is realizable. In this, the word proper is important. Is the improper case
important? Example was given for a system where the input is step function, showing the
output is Dirac delta 6(t).

$3+3s2+25+4

S o7 5. the associated

Theorem 1: If H(s) is proper, then it is realizable. Example: H(s) =
ODE is y” + 6y” =2y =7y = 4u” + 3u” + 2u’ + 4u.

A recipe to realize H(s): If H(s) is proper, make it strict proper by long division and write
it as Hyroper(S) = 7 + Hyprict(8). Doing long division gives

—21s% +10s + 32

H=4+
34652 —-25—-7

Reader: Verify the following is a realization of the above H(s):
0
A= 1

,B ,C=(32 10 -21),D=[4]

N © O
N © =
Il
_ o O
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We generalize the above to H(s) = y + fj;% Notice we always keep the leading
0 1 0 0

term in the denominator as unity. Realization of thisis A =| 0 0 1 |,B=]0|,C=
-ay -0 —Qy 1

(.30 B1 /32)1D: [V]

Reader: Propose a realization for general case. Mason rule is used to generalize to n X n
case.

HW 1 assigned.

1.7 Lecture 5. Tuesday September 16 2014

1.7.1 Lecture: Mason rule and examples

We were talking about realization. Every proper transfer function H (s) is a realization of
some E (A,B,C,D). We saw the recipe before, but not the justification.

5 4 3 2

52475 +195°+255°+165+4
) . _ . o . _ 5
Reader: Consider H (s) S ied s 1S there a realization with n = 5 states? Yes.

Now, do the realization. What about with n = 6 states? How about with n < 5 states? If
there is zero/pole cancellation. So do factorization first.

If we have a transfer function, then minimal realization is one with no cancellations. If
the system is uncontrollable or unobservable, there will always be some cancellation. Any
system that is controllable and observable is minimal.

Mason rule:

For multi-input, start by zeroing out all input except for one that is of interest. Example
given of using Mason rule now. See handout of Mason that was given during the class.
Example now given for electrical network. The first step is to find the equations. Once the
equations are found, then Mason rule is used to find the transfer function between one
input and the output.

21 3)(x) (1
Reader: Solve |4 0 -2[|x,|=|2|using Mason rule. I did this, see note on my pages.
1 2 -1)\x; 0

HW 2 assigned.

1.8 Lecture 6. Thursday September 18 2014
(Realization theorem, MIMO, state feedback)

If the transfer function H (s) is proper, then is it realizable. (SISO for now). Reminder:
Need to show this for the general case.

Proof: We must find Z (A, B, C, D) such that H, (s) = H (s) where H, (s) is the transfer function
obtained from E (A,B,C,D) and H (s) is the transfer function we are given. We propose

0 1 o - 0 0

0 0 1 - 0 X , 0

_ . . . . . _ Br=18"""+Bu—28"""+--+Bo —_1-
A=| : : - ¢ |- Let H(s) =y + T vo—— and propose B = | :
o - 0 0 1 0

&y —ayp —az o Ty 1

and propose C = (50 B - B 1) and D = [)/], now we need to show that H, (s) = H(s)
using Mason rule.

Reader: Use Mason rule to show that this realization works. Now what about MIMO?

H H
Assume we are given H(s) = 1) Hia () . We can do each on its own, then need to
Hy; (s) Hp (s)
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"patched" to show that the matrix of them all work. Example using 2 x 2.

If each Hj(s) is proper, let Z = Ajj, Bi;, Cij, Djj be realization for H;;(s). Note each A;
ij

Ay, 0 0 0 B;; O
A 0 0 B
can be different size. Propose A = 12 and B = | and C =
0 A21 0 0 By
0 Ay 0 By

0
0
0
D D
andD =| " 12]

Cn C2 0 O
We need to calculate

H,(s)=CGI-A)'B+D

H
Now we claim (A4, B, C, D) is realization of [ 1 () Hi (S))

Hy (5) Hy(s))

Ay 0 0 0Y \(By 0

:[CH Cp O 0)51— 0 A, 0 0 B, 0
0 0 Cpy Cy 0 0 Ay 0 0 By
0 0 0 Ay 0 By

D D
L [Pu Dr
Dy Dy

Reader: The above reduces to

H.(s) = C11 (5T = Ayy) ' By +Dyy Cra(sI— Agp) ™ By + Dy
Cy (sl - AZl)_l By + Dy Cyp (sl - Azz)_1 By + Dy,

What about other dimensions?

Hyy(s) Hia(s)
Reader: Propose realization with H (s) that is 3 X 2. i.e. | Hy; (s) Hyy (s)| . Try it. What
Hzy (s) Hz (s)
should A,B,C, D look like? Note: Even though H;; (s) might each be minimal, when we
obtain the realization, it might no longer be minimal. Some realization are "nicer” than
others for analysis and design.

0 1 0 0
Motivation example: A =| 0 0 1 [,b=]0[,C= (ﬂo B1 [32). When we add feed-
-y —a; —ap 1

back, we ask what is the effect of feedback? This system is nice to study feedback. We
often add feedback to improve time performance. u (t) = kyx; + kpx; + k3x3 + v where v is
new input. We can pick k;. The closed loop becomes

0 1 0 0
xX=|0 0 1 |+[0](kyx1 + kpxo + kzxz + 0)
-y -] —Qy 1
Reader Determine the new A matrix from the old.
0 1 0 0
x' = 0 0 1 +|0|v
ki—ayg ky—a; kz—ay 1

Notice: State feedback preservers the companion form of A and b. Find closed form transfer
function.

Bo + Bis + Bos®
s° + (ag — k3)s* + (a1 — k) s + (ag — k1)
Note: k; affects one coefficient each. So poles of closed loop can be arbitrarily assigned
anywhere we want.

H.losed =



1.9 Lecture 7. Tuesday September 23 2014

1.9.1 Handout, linearization

ECE 717 — Handout Linearization

We now slightly generalize on the definition of equilibrium given in class.
Indeed, we consider the nonlinear state space system

&= f(r,u); y=g(z,u)

with f and g assumed continuously differentiable. Then a pair (T, @) is
said to define an equilibrium if f(Z,w) = 0. Hence, if at some time t* > 0,
we see state z(t) = Z, then, with constant input u(t) = u for t > t*, the
state will remain at z(t*) and the output will remain at y = g(=, u).

Now, motivated by series expansion, for an equilibrium pair (Z,u), we
define linearization matrices (A,B,C,D) whose entries are given as follows:

dfi
A has (i, j)-th entry / |@m)

(9:(;j

. of;
B has (i, 7)-th entry o, |@m)

dgi
L

dgi
U

for + and j in their appropriate ranges. Now, the key idea underlying

the application of these ideas is as follows: If A is strictly stable (all its

eigenvalues have negative real part), it is often possible to use the linearized

(incremental) system

C has (i, j)-th entry

| (Z,u)

D has (i, j)-th entry |@7)

At = AAx + BAu; Ay =CAzxz+ DAu

to approximate suitably small deviations then for z(¢) and u(t) about the
equilibrium pair (z,u7). That is, the actual state is recovered from the
incremental system as x(t) =~ T + Ax(t) and y(t) =~y + Ay(t).

As seen in Homework Satellite, the ideas above can be extended even fur-
ther to address linearization about a trajectory pair (z*(t),w*(t)). That is,
in the definitions of (A, B,C, D) above, we use these time-varying quan-
tities in lieu of (Z,w), when evaluating the partial derivatives; i.e., the
linearization is time-varying.



1.9.2 Handout, transformation

ECE 717 — Handout Transformation

We consider state space systems ¥ = (A, B,C, D) and 3 = ([1, B,C, f))
each with m inputs, r outputs and n states. We further assume that these
systems are input-output equivalent; i.e.,

Then assuming compatible matrix dimensions above, the question arises
whether there there exists a nonsingular transformation matrix 7' such
that

A=TAT™, B=TB; C=CT™'; D=D.
To address this issue, we develop some necessary conditions which such a
matrix T must satisfy. Reader: If T" exists, verify that it must true that

B=TB: AB=TAB; A’B=TA’B;---A""'B=TA""'B.
Next, we define the pair of n x nm block matrices
Cs =[B AB A’B-.-A"'B;
Cs =[B AB A’B..-A"'DB)

which are called controllability matrices. Based on the preceding discus-
sion, the conditions are expressed compactly as

Cs. = TCs.

We now consider 2 cases. For single-input systems, the controllability
matrices above are square. Hence, if Cy is nonsingular, we solve above
and obtain

T = CsCy, L

More generally, for a system with multiple inputs, since the controllabil-
ity matrices are non-square, we cannot invert them. To solve for T, we
consider the case when

rank Cy = n. ()

Then, it follows that the n x n matrix CxC{ is invertible (Reader) and we
obtain solution

T = csCL [excl]

To summarize, if Condition (x) is satisfied above, we say that ¥ satisfies
the controllability rank condition and we have a straightforward way to
find the transformation matrix T.

20
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1.9.3 Lecture: controllability, observability

0 0 0 —a
3,462 1 00 -
Reader: Consider H(s) = y + 4ﬁ35 ;ﬁzs Zﬁﬁﬁo and show that A = M ,B =
s*+a3s +apsc+as+ag 010 —ay
0 01 —3
Po
p1

5 ,C = (O 00 1),D = [)/] is a realization.
2

Ps

We established realization before, when we obtained the controllable form. One way is to
use Mason rule. Another way is using syms and find C (sI - A)'B+D.

This realization is called the observable canonical form. Some realizations are better than
other for different things. For state estimation, observable form is better, for state control,
the controllable form is better.

Reader: Generalized reader above to proper H(s), can use Mason.

Reader: Even more general. Suppose Y’ (A, B, C, D) is a realization of SISO transfer function
H(s), show that ¥ (AT, CT, BT, DT) is also realization. So H, (s) = C, (sI — A,) ' B, + D, where

-1
C.=BT,A, =A"T,B,=C". So H, (s) = BT (SI - AT) CT + D. Since this is SISO, it is scalar,
so its transpose do not change. Take the transpose of the above gives

H,(s)=C ((sl - AT)_l)TB +D

=C(l-A)'B+D
Reader: For MIMO get H, (s) = H (s)
Transformation: }; —» T — ), where ) is equivalent. Design in ) , then when design is
completed, transform back to Y.
Handout: Given H (S)Z =H (S)E when can )] be transformed to controllable or observable
forms using T? Necessary conditions for existence of T is that
C.=TC

Where C is the controllability matrix for the original }; and C, is controllability matrix for
the Y, . For SISO, if C is invertible, then T = C,C!. What is MIMO? system is good if rank
C is n. i.e. controllable system. When this is satisfied, we say (A, B) is controllable pair.

Reader: (A, B) is controllable pair implies CC” is invertible. Proof: Assume p (C) = 1, show
that CCT is invertible. Use proof by contradiction. Assume no inverse,hence this means
there is non-zero vector ¥ s.t. CC'x¥ = 0, so xTCC"x =0 or y'y =0, so y =0 or C'x = 0, but
x # 0 so contradiction.

There is also observability rank condition. Reader: Mimic the controllability analysis
C
. CA :
above for pair (A, C). Sketch steps: Develop Q = _ |- We need to relate Q to Q, using
C A'n—l
T. Since C, = CT!, then C,A, = (CT‘l) (T‘lAT) = CA. So we get condition that p (Q) =n
is necessary condition for existence of T.

If the controllability failed, try the observability.

Reader: Show the controllability canonical form always satisfies p (C) = n. i.e. if we can
put the system in the controllable form, then it is controllable. To show, start with 3 x 3
matrix and find its C to show it is 3.

Reader: Can controllable form fail to be observable? (yes).

Reader: Consider H(s) = st % and study the controllability and observability rank.

2+425+1 s
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More generally, if H (s) has no pole/zero cancellation, then it is minimal and C and Q both

have rank n (full rank). So if there is no pole/zero cancellation, then it is both controllable
sz+s+1)(s3+252+4)

and observable. Consider H (s) = ( , try and see.

(52+s+1)2(s+1)2

1.10 Lecture 8. Thursday September 25 2014 (Pole
assignment, state feedback)

Review: We talked about transformation while preserving transfer functions. Can we find
transformation to a specific target? Role of C (controllability matrix) and Q (observability
matrix). Reader: Suppose A is selected randomly and so is B, example within normal
distribution, find probability that rank C is n. The probability is 1. So almost all (A, B)
are controllable. But if some entries of A, B are hardwired to some specific values due to
design, they the chance of getting uncontrollable (4, B) starts to increase. For example, the
controllable canonical form of A has hardwired entries in A. Even when we get close to be
uncontrollable numerically we will get into more problems.

Now we talk about nice properties of companion forms. Let us use n = 4 for illustration. Pole
assignment: Select k s.t. A + Bk has pre-specified eigenvalues. Here A has bad eigenvalues,
but A+ Bk will have good eigenvalues. Note, we are using controllable canonical form, also
assume we have access to all states. This is simple

0 1 0 0 0
0 0 1 0 0
Adwea = A+Bk=| (ko ki ky ks)
—OZO —0(1 —0(2 —(X3 1
0 1 0 0
| o 0 1 0
| o 0 0 1

—kO—OKO kl—al kz—az k3—6¥3
Hence
det (A = Acgsea) = A* + (@ — k3)° A% + (@ — kp)® A2 + (@ — k) A + (ctg — ko) (1)

Now pick target eigenvalues, say Ay, A1, A,, A3 (if complex, use complex conjugates). The
desired

P(A)=(A=-2A0)(A=A1)(A=2) (A= A3)
=AM+ A3 + s A2 + A + o 2)
Equate (1) and (2)
M o523 + A2 + A+ ay = A4+ (a3 — kg)° A3 + (ap — kp)® A2 + (aq — k) A + (g — ko)

Equate like coefficients, we obtain

ko =ap—ajp
ki=ay-0a]
ky=ap,—-a;
ks =a3-a3

Example: See handout. Given system A is 3x 3 and B is 3x1, (A, B) is not in controllable
form. The open loop eigenvalues are —0.222,1.11+/1.8. Then transform to controllable form,
then design in the controllable form, then transform back to original system to set the k
in the original system. To set controllable form, det (AI — A) and this gives the last row of
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Acompanion- This is all what we need.

0 1 0
Aomp=0 0 1
1 -4 2
0
Beomp = | 0
1

Assuming original A is controllable, we find T = C Ccl

comporiginal

Reader: Design k such that 3 eigenvalues are A = -2, so p* = (/\+2)3. compare to
det (/\I - Ammp). This gives kg, now transform back to original A.

closed loop A + Bk,but A = TAT™!,B=TB, k = kT

We will now do observer design. State estimation and observer design.

u

— > (AB,C,D)—> y

We see y,u and need to estimate state x. i.e. supposed we are given few states and we need
from these to estimate all other states.

u
——{>(AB,C,D) > y

estimator

Use Lvenberger observer to build estimator.

u

> (A,B,C,D)

estimator

T

Observer equations
X :A?Z+Bu+L(y—y)
L is called the observer gain matrix, which we design.
¥ =(A-LC)X+ Bu+ LCx
Reader: Adding Du to y do not add affect design.
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How does this observer perform? The error is e = x - ¥, so
e = (Ax+Bu)—(A9~c+Bu+L(y—y))
=(A-LC)(x-X)
=(A-LC)e
We want e — 0 fast. So we need to design L to make (A - LC) do so.

If (A, C) is observable pair, then eigenvalues for (A — LC) can put anywhere by choice of L.
If (A, C) is observable, then (AT, CT) is controllable pair using duality.

1.11 Lecture 9. Tuesday September 30 2014

1.11.1 Handout, controllability criterion

ECE 717 — Handout Criterion

Here is a small “Reader” exercise to see if you have fully absorbed the im-
plications of the controllability rank condition: Suppose that the pair (A4, B)
is given and that there exists some non-zero vector o and a complex num-
ber A such that

ol A= \aT
and

o’'B=0.

Show that (A, B) cannot be a controllable pair.
Remark: It can also be shown that the existence of such a pair A and « is
necessary for lack of controllability. The proof of this necessity condition

is not considered here because it requires tools which will not be covered
until much later in the course.

1.11.2 Lecture: Separation theorem, observer design

Oct. 2, no class. Things covered today not on exam. Exam covers up to HW3. Solution to
HW3 will be send oct6. Test on Thursday Oct. 7.2014. Closed books, closed notes, open
minds. Remember Mason rules and realization.

We studied controllers (state space feedback) and studied observers. What happens when
we combine them? Recall
X = AX + Bu + L(Cx - CX)

Where ¥ is the full estimated state from the observer. The idea is to look a the error and
use L to reduce the error.

¥ =(A-LC)X+LCx+ Bu

How good is this observer? Study error e = x — ¥. In perfect world, e — 0 quickly with no
overshoot. Find

Do some algebra
¢ =(A-LC)e

note on initial states: ¥ (0) # x (0). We want to pick L which is nxr dimensions so that A—LC
has desired eigenvalues. We want L to be stabilizing. At bare minimum we want A - LC
stable. What can we do to generate the eigenvalues of (A —-LC)?. If (A,C) is observable,
then we can make eig (A — LC) any value we want. Consider SISO system where (A, C) is
observable Then rank of the observability matrix ® is n. Then since (A, C) is observable,
by duality, (AT, CT) is controllable. We will use now the controllability results fro pole

assignment that tells us we can select gain K s.t. (AT + CTK) with desired eigenvalues.

I wrote this below for a HW assignment, I copy it here. For example of pole assignment
for the observer (A-LC).
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We need to determine L such that the eigenvalues of (A—-LC) are A; = -1 and A, = -2.
Before showing the design steps using the actual data given in the problem, the design
steps are given below for the general case.

1.11.3 Design steps for finding L

1.
2.

10.

11.
12.
13.

Input is A, C and set of desired eigenvalues A;

Verify that (A4,C) is observable. If so then let A, = AT,B, = CT, hence (4,, B,) is
controllable.

Find controllability matrix C (A,, B,)

. Write down the controllability companion form for A,, B,. Let them be called A,, B,.

To do this, we only need to find the characteristic polynomial for A, and read the
coefficients in reverse and change the signs. B, will always have zeros other than the
last row.

Find controllability matrix C (/TO, Eo)

. Find T = CC!

. Find the closed loop matrix [Ao + 1§01~<] where K = [ko, ki, -+, k,_1] is the gain matrix

we looking to determine.
Find the characteristic polynomial of [AO + BOK], it will be a function of k;

Set up the desired polynomial p (1) = (A - A,) (A = A,) --- (A = A,_1) where A; are the
desired eigenvalues given.

Compare coefficients of polynomial from step (9) with the polynomial of step (7)
and solve for k;

Now we have found K = [kg, ky, -+, k,_1]. Convert it to K using T as follows: K = KT
Find L = -KT. This completes the design.

The observer A matrix now becomes [A — LC]

Now we will start talking about combining controller/observer systems. The key result is
separation theorem. This system

u

——»Zmamm——>y

This can have states that are
hidden, which can blow up

can have states we want to control, that can not be observed/measured. We need an
observer

u=kX+v

u
Q+ »> (AB,C,D) y
K |-

observer

| ~/

X
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We now have 2n equations, n for the observer and n for the original }] system. They are
cross coupled. Assuming (A, B) and (A, C) are controllable and observable, and without
loss of generality, let v = 0 then we have

u

X' = Ax + Bk¥
¥ =AX+ Bkx + LC (x — %)

So now we have
2nx2n called Augmented A,

x’ B A Bk X
¥] |LC A+Bk-LC) |x

We have A + Bk stable and we know that A - LC is stable by design. But we do not know if
A, is stable. (the augmented A above). We know eigenvalues of A, is the eigenvalues of
(TA+T‘1) if T is not singular. So let us make special

1)

I 0
Hence T7! = ( I} now calculate
I O)A Bk I 0
(TA,T) =
I -II\LC A+Bk-LC]J\-I I
(A Bk (I o
|lA-LC LCc-AJ(-I I
(A+Bk Bk
| 0 A-LC

Since diagonal matrix, then the eigenvalues on the diagonal. So the eigenvalues are the
union of the eigenvalues of A + Bk and eigenvalues of A—LC. So A, is stable if A+ Bk and
A~ LC are stable.

HW3 assigned.

1.12 Lecture 10. Thursday October 2 2014 (no lecture)

No lecture.

1.13 Lecture 11. Tuesday October 7, 2014, 2:30 PM
(Vector spaces preliminaries, norms)

Test at 6 pm, 75 min, closed notes, closed books. no cheat sheet. Talked little about what

can be on the exam. Does there exist T that takes 3, — i, ? depends on controllability and

observability. There are canonical forms: controllable (good for feedback) and observable

(good for state estimation). We talked about duality and observer design. State feedback
control.

Vector spaces preliminaries:

Most common vector space is R". x = {x1,xp, ---,x,,}. Need vector spaces where vectors are
functions. For this, the function space must have these three operators defined on it: +, X, 0.
The first + is addition, as in X + ¥ or f; (f) + f, (). Second is scalar multiplication, as in
5% = 5{x1,%p, -+ ,x,} = {5x1,5x,, --+,5x,,} and the third is the zero vector {0,0,0, ---}.

Examples: We can have spaces of vectors that are infinite dimension sequences.
Reader: Consider the continuous functions on [0,1] as vector spaces.

Reader: Generalize to n-dimensional continuous functions on time interval [0, T]
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Now we will talk about another important function space. This is the space of bounded
functions. A function f (¢) is said to be bounded on [0, T] if 3 some > 0 s.t. |f (t)| < p for
all t € [0, T]. Bounded functions need not be continuous.

Reader: Consider associated vector spaces B ([0, T]) where B means bounded (I do not
understand this)

Reader: Generalize to B ([0, T],R"™)

A critical point in solving x’ = Ax is to know where solution sequence converges to actual
solution. Convergence in function spaces. Need ||| defined so we can say ||x(k) - x*” — 0 as
k — 0. So need notion of norm. Vector spaces with norm are called normed vector spaces.
A norm is mapping from X to the reals, where X is the vector space. Norm must satisfy
the following

Lo

2. For any ¥ € X and A real, then ||A%]| = A |[¥]

3. Triangle inequality: for any x,y € X, ||x + y|| < llxll + |||

On R" we typically use the Euclidean norm defined as |[%|| = \/x% +x3 + -+ + x2. We should
write this as llxIl,- Other norms are possible, such as x| = max {|x], |x2|, -+, |x,|} and also

n

lIxll, = E |x;l which is used in control theory. Reader: Verify these are norms. Need to
=1

check the triangle inequality.

Reader: Verify that max is norm. i.e given two vectors, say a = {3,6,8} ,b = {4,8,18} then
show that max {a + b} < max {a} + max {b}

Now consider vector spaces of m X n matrices. A norm |[[M|| = /A ax (MTM). Reader:

Verify for n =1 this reduces to L2 norm above. i.e. this become normal vector llll, norm.
1 1 2 1 2
Proof: For example, let M = o) then M|l = |Apax 5 4l but A« w = 5, hence

IMIl = V5. Now [[Mll, = V12 + 22 = V/5. The same.

1.14 Lecture 12. Tuesday October 7 2014, 6:00 PM.
First exam

First exam.

1.15 Lecture 13. Thursday October 9 2014. Default
norms, convergence, Picard

Will finish material on vector spaces today. Next we will solve state space equation.
Default norms:

There are many norms in R”, we will use ||| to indicate default Euclidean norm vs. ||| |
for maximum norm (the norm of the vector is its maximum component) Same idea will
be used for other vector spaces. For matrix norm, we will talk about induced norm. Say
M € R"™ " is a matrix. (i.e. matrix of dimensions m,n with elements in the real. Then define

IMI| = max [Mx]| for all |[%]| =1 (1)

What this means, is that we apply Mx to all vectors ¥ which has norm ||7c’||2 =1, and look
at the generated vector v = Mx, then apply standard vector norm to v (Euclidean) as in
lloll,. We pick the largest norm |[[v]|, that results. We call this norm as the norm of M. This
value is the induced norm of ||M]|.
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Reader: Does the above definition define a norm? Recall a norm ||| must satisfy three
properties from last lecture. For the zero matrix, easy to show. Scaling is also easy. Now
for the triangle inequality, which says [|[M; + M;|| < [[M;]| + [[M;]|. Show this.

Reader: Show that (1) is equivalent to [|M]| = max M2 gor all ||75|| #0

1

Reader: Show that (1) is equivalent to [|M|| = /A nax (MTM) where A, (MTM) means

the the largest eigenvalue of MTM. Sketch of proof was given, but needs more time to
understand it.

Reader: Find the matrix norm induced by [|x||_,

We will use the space of bounded functions and the subset of this space we will use most
are the bounded continuous functions over some interval. note: Any continuous function
is bounded function. We will call it B ([tq, t;], R").

A function f(#) is bounded if ||f ()| < p for some B < 0. The continuous functions
C([ty, t],R") € B, We need a norm for C ([ty,t], R"). We will use ||f|| as the norm, which is
the largest value of the function over [t(, f;]. Make sure not to confuse || f || and || f (t)||. The
first one is called the induced norm. i.e.

Il = max [l @ 2

to<t<t,

While ||f (#)| is just normal Euclidean norm, and is defined only for specific t. i.e. we fix
t =ty then calculate ||f (to)||, but ||f|| has no t in it. So this is the norm over the whole range
and defined as in (2) above.

Reader: Show that (2) defines a norm. (I have a side note here about for non-negative
functions, check what this is for??)

Now we will talk about norms on B where f (t) is not necessarily continuous function.

/" f(t)

p t

When f (f) is not continuous, we will use sup instead of max in the definition, i.e. we write
(2) as

£l = sup [l @] (24)

We need one more thing before going to solve the state equation, which is

t t
Reader: Show that ff (B dt)| < f”f (t)||dt question: ask about what norm this is [||| here.
0 0

Use Riemann sum to proof this?

t t
Reader: Similarly, using matrix norms, show that f At)dt|| < f ||A (t)|| dt where A is now
0 0

matrix in R"™<"
Convergence:

e . C e .
A sequence {x},_, in a normal vector space X is said to converge to x* € X if

lim ||x - xk” -0

k—o0

1+2) (1 14+ 1
Example: lim;_,, k1= or we can just write L
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k
But vector ( 1 ] does not converge.

k
Reader:what about convergence of this function, defined over 0 <t < T

! f(t)

p t

—
=T

For pointwise convergence, at t = 0,f(0) =1, and for 0 < t < % < T, f(t) =1 -kt hence

the limit goes to 1 also. So this converges pointwise. Since ||f; - f|| = maxyq<r||f ®)] =1,
it does not converge uniformly. For uniform convergence, we need to have || fr—f || — 0 as
k — co. In space of bounded functions, we always mean uniform convergence.

Summary: f; — f in B mean uniform convergence. But f; (t) — f*(t) mean pointwise.
Reader: Show that uniform convergence implies pointwise convergence. Proof:
Ific = £, = max|lfic &) - £ B
<|Ife- £

But if f) converges uniformly to f then ||f; - f||I — 0 as k — oo, hence

i 0 - 7] =0
I}Ln(}ofk ) =f()

Therefore, fy () converges to f (t) pointwise. QED.
HW4 assigned.

1.16 Lecture 14. Tuesday October 14 2014 (More on
convergence, the 4 lemmas)

Notes on first exam:
If one can put state space in controllable canonical form, then this implies it is controllable.

Lack of cancellation of poles/zero in a transfer function implies minimal system. Hence it
is observable and controllable.

If H(s) is proper, then it is realizable (can obtain A, B, C, D). However, if it is not proper H(s)
then we can’t decide. It might still be possible to obtain A, B,C, D. Think of an example.

But if we are given (A, B,C, D) then H(s) = C(s] — A)"'B + D must come out to be proper by
construction.

Next goal is to solve the state space equation. All our solutions live in the space of bounded
functions B ([ty, t;],R")

In these notes, I will use f* for the uniform convergence limit and use f*(t) for pointwise
limit.

Uniform convergence: Lemma 1
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*

Suppose f; — f* convergence uniformly in B, i.e. ||fk -f
and not f* (¢), then this means uniform convergence, then

— 0 (notice, when we write f~

t t
lim | fx(v)dt= | f*(7r)dt
o v

In words, if a sequence of functions converges to some limit, then the limit of the integral
is the integral of the limit. This only applies for uniform converges. This does not hold
(most of the time) for pointwise convergence.

Reader: proof this. Here is a case where the above fails for pointwise convergence. Note:
A sequence of functions fy (t), converges pointwise, if when we fix t to some specific f,
then the sequence f; (f;) converges to some limit. I.e. we have to fix t and only after that,
generate the sequence and see if |f ()| converges to some f* (fy) as k — co. This can be
written as | fr(to)—f* (t0)| < € wherever n > N where N is some integer. Given the function
shown below

fi(t)

\/

1 1

k

where in the above, f(0) =0 and f(t) =k for 0 <t < % To find pointwise limit f*(t): At

t=0,fx(0)=0,and at 0 <t < %, fx () =k and for t > % it is already zero. Hence as k — oo
we see that f (t) — 0 everywhere. So f* =0 is the pointwise limit.

Back to the proof of the lemma above for uniform convergence.

proof of lemma:

t t
ervor (k) = fr()ydt— | f(r)dr
fro-|

t
=\ [Fe@- 5 @i
to

t
< [Ife@-r @]
to

Since uniform convergence. But the above is
t

t
[lfc@ - @ldrs [max|fco - o]
) to

But now max || fr(t)—f~ (t)|| is fixed, so we can take it out of the integral

t
f dt
to

t
[lfc@ -1 @]l dr < max]fe - £l ¢~ t0)
to

t
f”fk (1) - f* ()] d7 < max |fy - f*
to

But since we assumed f; (t) convergence uniformly then limy_,, ||fk —f|| = max ||fk - f|| =

t t
0, therefore RHS above is zero. Hence f”fk (r)-f~ (T)” dt =0 or ffk (t) - f*(r)dz]|| =0

to fo
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t t t
or | fr(r)—f*(v)dt =0orlim;_,, | fx(x)dt— | f*(r)dt =0 or
j frs ]

t t
lim | fx()dt= | f*(7)dr
k_)m;[ ;0[‘

Which is the lemma we wanted to proof.
Series in bounded spaces:
We will look at Series in B ([t(, 1], R")

We now look at series of functions f (t) in B. And use Weierstrass M-test to see if the series
converges or not. Looking at partial sum

k
(k) =Y fi (1)

i=1
where f;(t) € B. Does this converge? If we can find constants M s.t. ||f1|| < M;, (M; can for
example be the sup norm of f;(t)), and if then we can determine that EMi < oo then we

=1
say that S(k) — S*€B Z
uniform

(need an example, see references)

Solving state space:

Now we start talking about solving the state space equation x’ = A(t) x (t). We start with
the zero input case. Only initial conditions will drive this system. We look at using Picard
iterations to solve it. By integration both sides of the above, we obtain

t
x () - x(0) = fA(’C)x(T)dT
0
Define x° = x (0) and define this iteration scheme for k =0,1,2, ---

t
A+ = 40 4 f A (1) 2 (1) dr
0

Reader:
1t - 1

For A)=|0 t+1 £ |anda®=|1[find x3(t)
0 1 -2 1

Done in class. Direct integration.
Reader:

For scalar x’ = ax show that Picard iteration gives x = e"x (0).
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Proof:
t
¥l :x0+fax0dT:x0+ax0t
0
¢
- for
t
:x0+fa X0 + axOt
0
tZ
= 20 + ax% + a2x0—
2
¥ =x0+ [ ax?dr

=20+

¢
0
¢ 2
fa (xo + ax% + aszE) drt
0
3

2

t
= x0 + ax0t + a2x 5 + a3x9

2X3

and so on. Hence the result is

I
x® = x(t) :x0(1+at+a25+a3— + )

—x(0) Z (at)
= x(0) e”t

Reader

Show the solution for scalar time varying x’ = a(f) x using Picard. This should become
t

k

0
(need to work it out).

Convergence of Picard iterate x*(t):
Helpful function is IT(t) = f |A (7)lld7. It has the following properties
0

1. T1(0) =
2. TI(t) is not decreasing
d
3. 41() = A
The above is reader, need to show.

Lemma 1:

The Picard iterate x* (t) € B ([ty, ;;],R") for all k. We want to show that for each k, x® (¢) is
bounded. This is done using induction.

proof:

For k = 0, it is clear that x° = x(0) is bounded, since initial conditions. Now assume that
for some k it is true that x* () is bounded, then we need to show that for k + 1 it is also
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bounded. Form

t
(1) = 20 4 f A7) 2k (1) dr
0
t
[ @) = {|x° + fA (1) 2K (1) dt
0
t
< || + fA (1) XK (1) dt
0
t
<[+ [la@a@]ar
0
t
<2+ [nacue @ e
0

t
<[]+ [ 1A @l (sup | @) e
0

Since sup ||xk (t)” is fixed, then we can remove it out of the integral

t
[+ @) < ||x°)] + sup [|** @) fIIA (Dlldz
0

t
But f |A(7)lldt = 7t (t) which is non-decreasing. So it was take its maximum value 7 ()

we cgn limit the above from below and write
[ @ <[5 + sup [ )| 71 (1)

Therefore we just showed that x**1 (t) is bounded. Since sup [|x* (|| is bounded by assump-
tion.

1.17 Lecture 15. Thursday October 16 2014 (More on
converges, Lemmas)

We have x’ (t) = A(t)x(t),x(0) = x° with Picard iterate x(0) = x°(t). Define x**1(t) =
t

X0+ fA(T)xk (t)dr for k=0,1,2,---
0

This sequence lives in the bounded space B ([t;, t;]R"). Lemma 1 from last lecture shows
that x* (f) is bounded. i.e. x* (t) € B. Now we go to lemma 2

lemma 2:

Convergence: The Picard iteration satisfy

”xO” Hk+1 (t)

(k+1)!
for k=0,1,2,---. Notice the LHS is norm in R" (pointwise convergence) since we used x (t)
inside.

[k 1(t) — K (t)|| <
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proof: By induction. For k =0,

t
e () - 20 (1) = x0+fA(T)xO(T)deOH
0

t
- fA (1) 2 (1) dt
0

t
< [la@ @) e
0
t
< [1a@i | @) dx
0
t
= [l @) f 1A (7)]|d
0

But IT(¢) = fIIA (7)lldt and IT(f) is non decreasing. It maximum is I1(¢;) Hence

I ) = 2° 0] < [l (|| TL (1)

So true for k = 0. Now assume lemma is true for k and we need to show it is true for k + 1.

We form
t
- [xo + f A (7)1 (1) df]
0

t t
_ f A7) ¥ (2)dr - f A7) 1 (1) dr
0 0

t
||xk+1 (£) — xk (t)|| [xo + fA (7)xk (7)dt
0

t
= [A® (@ - @) dx
0

t
< [a@ (& @ -2 @)z
0

t
< [14@I(# @ -1 @) dx
0

e

Since we assumed it is true for k, i.e. ”(xk (7) — xk1 (T))” <

Then the above becomes
[l 1% (=) 0||

is true by assumption.

) - xam<jMA(m
0
|”jMAamHHﬂdr
But H(T) ||A (7)|| then dIT = ||A (7)||dt and the above can be written as
ol t
[l (1) = 2 ()| < @ f I1% (1) dI1
"0

1l (H <T>)f

k! k+1
~ ”xO” Hk+1 (t) Hk+l (0)
Ok k+1 k+1
But IT(0) = 0 from properties of I, then the above reduces to
Hk+1 (t)

et ) = < @) < [«

(k+1)!
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and this proofs the lemma.
Lemma 3:

xk () converges to the some limit. We need to show that x (t) converges uniformly to some
x*(t) € B([tp, t1],R"). When we say a function converges in bounded space B, we always
mean uniform convergence.

proof:

We need to generate a telescoping sequence, as in x® = (x(4) - x(s)) + (x(3) - x(z)) + (x(z) - x(l))+
(x(l) -~ x(O)) +x© which mean

n-1
X (0 =20 (1) + 3 (K1 (1) - 2K (1)
k=0

We now need to use the M-test to bound ||kar1 (t) —xk (t)||. From lemma 2

0) L(t)
o =, < sup el T i - X (k+1)1,
Since IT is non-decreasing, then we can bound the above from below by some M; =
|| O" ) so now can use M-test
(k+1)! °

L)
EMk - ” 0”2 (k+1)1'
-l -

Since ¥, My is finite, then by the M-test we conclude that ¥,”, ( k1 ) will converge to

some limiting value, which implies x in the limit will also converge (uniformly) to some
limit x*

Lemma 4:

The x* obtained from lemma 3 solves the state equation x" = A (t) x (t)

k+1

proof: We know that x**! = x0 + f A (1) x¥ (1) d and we also know that x*+! (t) will converge

uniformly to some limit x*(f) by lemma 3. Taking the limit of both sides of the Picard
iteration formula above gives

lim 415 = lim (xo ) + fo A () dT)

t
(1) =0 (1) + lim f A0 (0)dr
— 00 O
To take the limit inside the integral, we need to first show that A () x* () converges uni-

formly to A (7)x" (1)

converges uniformly to say z
—

|| Axk - |l () = 21|

<A@z

But ||A ()] is bounded, hence A (7) x* (t) converges uniformly and now we can take the limit
inside the integral.

t
x* () =x0 + f klim A (1) x* (1) dt
g k—o
But limy_,, x* (f) = x* (t) by lemma 3, hence the above becomes
t
() =0+ f A(D)x* (1) dr
0

This proofs the lemma.

We now need to establish uniqueness. Which means we need to show that x* is the only
solution to x’ = A(t) x(¢)

We will use what is called Granwall’s inequality.
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t
If u (t) and O (t) are non-negative continuous functions on [0, f] satisfying O () < f u(t)0(r)dr

0
then O (t) = 0 everywhere. Now we assume there are two solutions to state equation. x] = Ax;
and xj = Ax,. Therefore

t
1®-1 0= [A@n (@)dr
0

t
%0 -%0= [A@x@d
0

Hence

t
It ()= 22 O = || [ 4(0) (11 (1) = 3 () e
0
t
< f 1A (z) (1 (1) = % (D))l T
0

t
< [1IA@IIE (@) - @)l e
0
Let x;(t) = x,(t) = O(t) and A(t) = u(t) then by Granwall inequality x; (f) — x, (t) = 0 or
x1 = xp. Therefore the solution to state space is unique.

Can we get unique solution to the state space problem? For large family of A(t) we can.
We need to formulate the fundamental matrix.

1.18 Lecture 16. Tuesday October 21 2014

Properties of @ (¢, 7).

We developed Picard for solution of linear time varying x’ = A (f) x in the last two lectures.
Established: That solution exist and the solution is unique. Some disadvantages of Picard
method are

1. Each time the initial conditions x° changes, we have to run the method again to find
the solution.

2. No closed form solution, so we lose insight by not being able to do some qualitative
analysis on the solution if it were analytical solution.

3. LTI system always have closed for solution, and for many LTV, there is also closed
form solution, so we should try to find closed form solution.

4. If input u () changes, we have to run Picard method again

To find closed form solution, we need to obtain what is called the fundamental matrix.
Let X%, X%, ... X% be n linearly independent initial conditions for a system with 7 states.

1 0 0
For example, for n = 3, always take these as X" = |0, X% =|1|,X% =|0]| and so on for
0 0 1

more states. For each one of these X%, let W be the corresponding solution of x’ = A (f) x.
ie. W1(0)= X%, w2(0) = X2, W3(0) = X%, ie.

Yi)=A@) W (t)
Now form the fundamental matrix solution
W)= (Wi w2 - wre)

Each W' is n x 1, and there are n such columns, hence W (t) is 7 X n matrix. Any solution
can now be found with the help of this W (t), for any initial conditions. Remark: Matrix
W (t) satisfies the state equation.

W (t)=A)W(t)
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At t = 0,¥ (0) has n linearly independent columns by construction. What about for ¢ > 0?

Reader: Show that W (f) has n linearly independent columns for ¢ > 0. Proof: By contradic-
tion. Assume at t*, W (#*) no longer has linearly independent columns. Then there exist
vector X (t*) not zero s.t. W ()X (t*) = 0. This implies that x’ () = 0, which means that
x (t) = 0, hence contradiction.

1 t)fx
Example: Let x| = x; + tx,, x5 = x,. Hence x’ = [0 1)( 1). Now let X% =
X2

linearly independent initial conditions. We use this to solve the state equation. Next to

1
) to be one
0

0
use the second X% = 1 and repeat the process. So we end up with two solutions. These
make up W matrix. Using X%, we see that x; (0) = 1,x,(0) = 0. Now we solve the state

t
e
equation. xj = xy + txp, x5 = x5 (t). This results in W! () = (0) Now using initial conditions

1
_tzel‘
x1(0) = 0,x, (0) = 1 we solve the same state equation again, this results in W2 (¢) = [2 ],

ot
hence
1o
e =t
W (t) = [O 2 t ]

e

DSolve[{x1'[t] == x1[t] + t x2[t], x2'[t] == x2[t], x1[0]
{x1[t], x2[t]}, t]

{{x1[t] -> E"t, x2[t] -> 0}}
DSolve[{x1'[t] == x1[t] + t x2[t], x2'[t]
{x1[t], x2[t]}, t]

{{x1[t] -> (E"t t72)/2, x2[t] -> E"t}}

=1, x2[0] == 0},

x2[t], x1[0] == 0, x2[0] == 1},

Now that we have found W (t) we need to find the general solution to x’ = A(t)x(t) + B(t)u
with given any x (0) (this initial condition has nothing to do with X% used to find W (t), this
is the actual initial condition for the problem itself.

Assume the general solution is
x(t)=W(H)O(t)

where 0 (t) is some function to be found. Plugging this solution into the state space equation,
we obtain

wHomH+vYmHo =AY HOE +B{)u
But W’ (t) = A(t) W (t), so the above simplifies to
Ve () =Bt)u
0t =W 1({t)B(tu
Integrating

t
Q(t)—Q(O)Zf\I’_l(T)B(T)M(T)dT
0

But 0(0) = W~1(0) X (0) where X(0) is the initial conditions. (why??). Hence the above
becomes

t
6(t) = ¥-1(0)X(0) + f\y-l (1) B (1) u (1) dr
0
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Therefore, since x (t) = W (t) 6 (t) . Then

t
X () = W (t) [\y—l (0) X (0) + f W1 (1) B (1) u () dT]
0
t
— W)W (0)X(0)+W (5 f\y—l (1) B (1) u (1) dr
0

t
-y (Hw (O)X(O)+f‘lf(t)\lf‘1 (1) B (1) u (1) d
0

Let
Y(HW (1) =D(t1)

called the transition matrix, then the above becomes

t
x(t):(D(t,O)X(O)+f(1)(t,T)B(T)u(T)dT
0

Reader: Find @ (¢, 7) for the last example, and then find x (f) for unit step u (f).
Properties of ®(t, 7):

1. ®(0,0) = I. Note that W (t) does not depend on the actual initial conditions for the
problem. (these are eigenfunctions of the system).

9. ®(t3, 1) = @ (ts, ty) D (b, 11). Proof: W B W1 (1) = WB)W-1 QW)W (1) = WE) W) =
W (3) w1 (1)

3. D (ty, t1) = Oty ty-1) P (ty1, ty—) - P (tp, t1)
4 Dt b)) =1
5. @ (tl tO) = q)—l (tO/ t)

ID(tT)
FI

6. @ (t,7) satisfies the state equation under appropriate conditions. proof:
ABOW()

- ‘9‘;“:” Wl(r) = AW EHWL(r) = AF)D (¢, 7). But we can’t differen-

JdD(t,7)
at

IV (HWY (1)
ot

tiate w.r.t. 7 in the above. Reader: Think about

t t
side note: Remember this %ff (t, 7)dt = f%f (t,dt+ f(t, T)|T:t

to fo

1.19 Lecture 17. Thursday October 23 2014

How to determine e

Summary: We solve x" = A (t) x (t) + B (t) u () with X (0) = xY. We assumed continuity on A, B
(piecewise continuous is OK). First step was to find W (t), where W (¢) = (\Ifl () w2() --- wr (t)).
This matrix is n X n and is not unique. Now we formed @ (t, 1) = W (1)W1 (1) called the
transition matrix, which is unique (Q:; How can @ (t, ) be unique if W is not?). Then we

found

t
x()=®E0XO)+ [0DB@u@dr
0
We can also easily get the output equation as well. Which is
t
y(H) =C{)D(t0)X(0)+ fC(t)(D(t,T)B(T)L[(T)dT +D(t)u(t)
0

Today we will talk about LTT (linear time invariant), where A, B,C, D matrices are now
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constants and do not depend on time

x' = Ax(t) + Bu (t)

y=Cx(t)+ Du(t)
Where now A, B,C, D are constant matrices. We want to find solution to this as special case
of LTV.Is @ (t, 7) easy to get now? Would we still need Picard iterations? Yes, it is easier to

get and we do not need to use Picard iterations to solve the LTI. We will introduce matrix
exponential ¢/ where A is matrix. Define as

B 242
t _
et =T+ At + o +
o Akik
P k!

Is this even well defined? We ask, is it convergent sum? Let us view the partial sum
Sk as sequence in space of bounded functions and show that this converges uniformly.
Sk = Ei'(:o Al,—'t. This is an n X n matrix, it is continuous since we only get polynomials in
t as entries in this matrix. View as vector in space of bounded functions B ([0, T], M">").
The norm of this space is the sup norm since this is a bounded space. Now let us look at

1Sk (DIl
lISkll, = sup [ISy (@)l

k Al

=sup ||} =

k
<X
But [|A/| = IAA -+ All < [IAIl|All -+ ||All = [|All' so the above becomes
o AL

Isell, < Y=,
i=0 :
Now we use Weierstrass M test. Let M = (|| Al t)i then we need to see if EZO Al_—/fconverges.
But '
00 i

i!

i=0
Since it converges, then this implies that e converges uniformly. So we found out that e”!
is continuous and converges uniformly. So it is well defined definition we have above. OK,
now we have introduced ¢4, but now we need to see how to use it to solve the LTI

reader: ¢/ is fundamental matrix W (t) for LTI system x’ = Ax. One thing to check is that
at t = 0 the matrix W (0) has 7 linearly independent columns. We also need each column
to be a solution of the state equation W’ = AW. Since

d d A%
Zoa_ 2
Tl (I+At+ T + )

A3t
:O+A+A2t+—2' + o

Az
:A(I+At+—+---)
2!
= Aett

Therefore, e/ satisfies the state equation. What about transition matrix? Let

O(T)=V(HWY (1)

-1
— At (eAT)

-1
Reader: Show that (eAT) = ¢~AT,



40

e/\lt
Proof: (For case of distinct eigenvalues only): Using e = V V-1 which is
ot
-1 -1 -1
et = VAV then (eAt) = (VAV‘l) , but for matrices, (AB)™" = B"1A"!, hence (eAt) =
e—Ali’
-1
VIWA)T = VATV but ATl = , hence (eAt) = ¢4, QED. Therefore

At
e n
the above becomes @ (t, ) = eAfe™47. Question: I assumed distinct eigenvalues for A in the

above proof for the reader. What about if A has repeated eigenvalues?

Reader: Show that efe=47 = ¢4t To show this, use the series definition above, multiply
things out and simplify. To do

So now that we showed e4! is fundamental matrix for X’ = Ax we can write the state
solution using it as

t
x(f) = AOX (0) + f AtDBy (1) dr
0

Note: in LTV, @ (t,7) was a function of 2 parameters t and 7. Here ¢A¢~? is function of
only one parameter, which is the difference t — 7.

Some properties of ¢4:

1. Reader: show that ¢! commute with A. i.e. AeA! = eAtA.

2. Reader: is eAf1eA2 = pAlhi+h2)?

3. Reader: Is e/ = pA1+42?

4. Reader: Is efe2 = ¢2¢42? (no, in general).

How to determine e4!:

There are many ways to determine e (18 or more). We will cover two ways. One uses the

eigenvector/eigenvalues approach and one is good for hand calculations

First method: This method assume there are n distinct eigenvalues and n distinct eigenvec-
tor. This method will not work as is if there are no n distinct eigenvalue. Most of A matrices
have distinct eigenvalues, unless we hardcoded some values in them in practice. Now, let

v!,72,---v" be the n eigenvectors and let A1, 1,, - A, be the eigenvalues. Where Av' = A;0'.
Form the modal matrix V = (vl v? v”). This matrix diagonalizes A. Hence we write
VIAV = A

Ay 0 0 O
Ay 0 0

Where A = 02 ol hence we have
0 0 0 A,

A=VAV-]
o0 (VAv—l)k $k

eAt = E o

k=0
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VV~! cancel leaving

P s
k
Ay 0 0
0 A 0 0,
0 -~ 0
={o 0 0 4,
— -1
=V, o v

= V k=0 k! V—l
0 0
00 /\Etk
0 0 0 Ek:O k!
e 0 0 0
0 2 0 0| _
=V %
0 o - 0

0 0 0 et
Next time we will look at the other method to find e

HW5 assigned.

1.20 Lecture 18. Tuesday October 28, 2014 (solving the
state equation)
Summary of where we are: In middle of solving the state equation. We did LTV. In the

case of LTI, we end up with e, We found it using using the first method. When has has
distinct eigenvalues then we write

et 0 0
eAt=v[fo - o |V
0 0 eMt

Where V is called the modal matrix. (it has as its columns the eigenvectors of A). If we
scale the eigenvectors, they still remain eigenvectors.

Reader: Show ¢ is invariant under scaling of V.

2 0
Example: x} = 2x; and x, = -3x; — 3x,. We want to find ¢!. Hence A = [ . The

1 0
eigenvalues are Ay = 2,1, = -3 and the corresponding eigenvectors are v; = [ 3],01 = [1}
5

hence V =

1 0
3 1) ,therefore

1 0
Notice at t = Othen ¢4 = [O ]
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Reader: Show that %e"‘t =A

k
What if we take the k" derivative? then %em = Ak

We will now do another example with complex eigenvalues. Let A = [ 1), eigenvalues

1. 1 1. 1
are/\lzizx/g—E,AZ:_El 3_E
Reader: Find ¢! for the above.

1. 1
7V3-3
1

We will find the eigenvectors to make the modal matrix. The eigenvectors are (

VI LAl L1
and ( 2 . 2), hence V = (2 1 2 2 1 2), therefore

1. 1
1. 1 1. 1 (——z\/§——)t 1. 1 1. 1\~
At -iV3—-= —=iV3—-=|le\ 2 2 0 -1V3—-= —-iy3--=
et =12 2 2 2 1 1 2 2 2 2
1 1 0 evg) L 1 1
%6—%7%.\@*_ %E%i\ﬁh%t*_ %’.\/&;%z—% V3t %’.\/geéi\/iz—%t %i 3exp(—1(%i\@+ %))_ %i 3;(%1‘*/57%)
= 1.1 ) ) .
%i\ﬁf‘(zl 3—5)7 %i 3exp(—t(%i\/§+ %)) %E—%t—% \/3r+ %(éi\ﬁf—%ti éi 38-%t—% \/§r+ éi\/ge%u@-%t

Now we will show another method to find e*. This is using Laplace transform.

Reader: Show that e = #~1(sI - A)™'. Why is this true?
X = Ax
sX(s) —x(0) = AX(s)
X (s)(sI - A) = x(0)
X (s) = (sI - A x(0)
x(t) = L1(sI- A) 7 x(0)

Compare to x () = e2'x (0) we see that eA' = Z~1(sI - A)™" for any x (0)

Now we will given the third method to find e*. This is called expansion of natural frequen-
cies method. Here we allow repeated eigenvalues. In the first method (using modal matrix)
the eigenvalues has to be distinct. Let the eigenvalues be Ay, A4, -, A,, with correspond-
ing multiplies n,,71,,---,1,,. We will propose a form for e# with some unknowns, then
solve for these unknowns. Since all solution must have exp and t multipliers (for repeated
eigenvalues), let

m n;=1

et =Y DYy tkeltt 1)

i=1 k=0

k
Where Y (k, i) are the unknowns. To find Y} ;, we use %e““ = AF. Let us implement this on
the first example we did above
2 0
A=

Ay =2,A; = -3, hence m = 2, and the multiplies are n; =1,n, =1, hence using (1) gives

eAt = YolleZt + Y0,2€_3t (2)
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We have 2 equations above in 2 unknowns Yj;, Y ,. We solve for these, then using (2) gives

1 0 0 0
e, Solving gives Y = [_3 0],Y0,2 = [3 1} hence (2) becomes
5 5

Lets now do repeated eigenvalues. See my expansion of natural frequencies method notes
for this larger example and more examples using this method using a symbolic function
written to process this method.

1.21 Lecture 19. Thursday October 30 2014
(Controllability)

Today will be on controllability of 2 = (A, B). We talked before about controllability for
LTI. We said that when rank of the controllability matrix is n then (A, B) is controllable.
This is an algebraic view. When (A, B) is controllable, it means we can do some useful
transformations. We talked about minimal realization. These are all algebraic properties.
Today will talk about what physically it means for system to be controllable. This is the
physical meaning to saying p (C) = n. Also, if we want to manipulate the input we need

physically controllability.

Physically controllability has to do with only A, B, from x" = Ax + Bu. It is about the ability
to steer the system with an input. What this means, for given state X (0) we want to be able
to transfer the system to new state X (t). This is called the target state.

So system is controllable at ¢, if the following is true: (Note, we the "at " is important,
since this is now LTV and system can change from time to time, so we always talk about
controllability at some specific time with LT'V).

Formal definition of physical controllability: Given any initial conditions x (t;) = X
any target state x* then there exist a future time t; > ¢y, and input u (t) over [fy,t;] leading
to x(t1) = x*.

Notice there is not constraint on u (t), it can be anything and as large as needed. (but the
time interval to arrive at target state must be finite).

Phase space diagram showing u(t) moving state
from x(t0) to x*

There can be many u (t) which will do the above, but we only need to find one. Why "at
to" is important? Looking at 2 extreme cases

1. B(t) = 0 then clearly the system is not controllable. No input.

2. B(t) = I the identity matrix. Reader: Show the system is always controllable with
such B (f).

There are cases in between the above extreme cases where it is not clear. For example,
given

Xp=x1+u

Xo =Xy +U
Not controllable. This is not coupled. We can control x; state on its own, and x, on its
own, but not both at same time which would be necessary for complete controllability.
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Reader: If system is controllable at t(, is it controllable at t; < #? Yes. (but need to
understand the argument given).

Suppose we have 2 vectors and they are time dependent. So we need to define what linear
independent means in this case (when the vectors depend on time as well).

On linear independence of time vectors:

Let
A®O=[fu®, frz), - fi,0)]
fo) = [fa®), f22 (), -, f2, ()]

fu(®) = [fnl ®), fn2 (t)/"'/fnp (t)]

We say that f; vectors are L.D. (Linear dependent) on time interval [ty, t;] if the following

occurs: There exist aq, ay, -+, a, not all zero, such that Zaifi () = 0 for all ¢t = [ty t].
=1
Otherwise they are L.I. l

Examples: f; (t) = —t, f, (t) = #? on [0,2]. Can we find &y, a, such that a;f; (t) + axf, (t) = 0.
No. So L.I, notice that the same « has to be used for all .

Reader: Show that f; (f) = [1,£], f, () = [2,#*] is L1 on [-2,2]
Reader: Show [1,t, £2,..., t”] are L.I. on any [ty, t] with t; > ¢,
Reader: Show [et, et el ] are L.I. on any [ty, t;] with £ > £,

Reader: Does being L.I. on [t t;] implies L.I. on [t(’), ti] where [t(’), t{] 2 [fo, t1]? Yes. What
about if [t(’), ti] C [to,#1]? NO. Not necessarily.

f1(®)

fa2(t)

Theorem: Given f; and [t t;], define matrix F () = , so F(t) is n X p size matrix.

fu ()

Now define the Gramian

b
Wi = f F ) FT () dt
to
Then f;(t) are L.I. on [ty, t;] iff W[ty t1] is not singular. Proof:

o~

Necessity: Assume f; are L.I. Show 3 not singular. Proof by contradiction. Assume W

singular then 3@ = 0 for nonzero @ vector. Also @'3Id@ = 0. Hence f a’Wadt = 0 or
t1 "

fﬁZTF (t)FTadt. Let FTa = &(t) and a"F (t) = &7 (t). Then we have fzélz (t)dt = 0 which

tO l:].

implies & (t) = 0 identically. But this means F'@ = 0, which means f; are L.I. But this is

contradiction to assumption. Hence f; are L.I. implies W not singular.

Now to proof the sufficiency: Assume 3J not singular, show f; are L.I. Proof by contradiction.
Assume f; are L.D., then @ exist such that @'F (t) = 0 which implies "W = 0. But this
means J is singular. Which is contradiction. This complete the proof that f; () are L.I. on
[to, t1] iff Wty, t1] is not singular.

1.22 Lecture 20. Tuesday November 4 2014.
(Controllability of LTV)

No lecture next Tuesday. Second midterm next Thursday at 6 pm.

Keywords for test 2: Not cumulative. Covers material from first exam. Test 2, starts with
vector spaces, definition of vector space, norms, sequences, convergence. We used space of
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bounded function B ([ty, f;], R"). This is a function space. Can be made of vector functions.
The default convergence in this space is uniform convergence. But there is a weaker
convergence called pointwise. This is important for integrals (we can move the limit inside
if the function converges uniformly).

Picard iterations. M-test to test for uniform convergence. Solution of state equation us-
ing Picard iterations. We proofed many things about Picard, such as convergence and
uniqueness. We used Granwall’s inequality.

We looked at negative aspects of Picard iterations. We want closed form. Using fundamental
matrix W (t). Once we have W (f) we have solution for any input. W (t) is not unique, but
@(t,7)is. (1) =W () W (r). We also talked at LTI It simplifies. We used W (t) = et
We looked at three methods to find e4f.

Back to lecture. We are talking about controllability of x’ () = A(t)x(t) + B (t)u (t). We
started talking about physical controllability. This is the ability to take the system from
x (tp) to x(t;) for t; > ty by using some u (t).

How to test controllability of LTV system? Define W = f FFTdt and check of W is not

singular. In our case F = @ (ty, 7) B (7).

Theorem:| LTV system is controllable at t; iff the rows of F = @ (t;, 7) B(7) are linearly independent

time functions on [ty, t;] for some t; > t;,. From last lecture, we defined
51
Wity t) = [ @ (o, DB@BT (@ (to,7)dr
to

W (ty, t;) must be not singular for the system to be controllable at t,.

Proof: Sufficiency <. We need to proof this: If W not singular, then LTV is controllable
at fy. For necessity = we need to proof this: If LT'V is controllable at ¢, then W is not
singular.

We start with Sufficiency. Let W be not singular. Let x (ty), x (#;) be arbitrarily given states,
where x (t;) is the target state at time f;. We must be able to construct u (f) that steers

t
the system from x(ty) to x(t;). i.e. we want x(t;) = D (t1,f) x (tp) + f@ (t, 7)B(t)u(r)dr.

fo

Pre-multiplying both sides by ® (¢, t;) gives

I t O(to,7)
D(ty, t1)x(t) = O(to, t1)D(t, to) x(ty) + fq’(fo, t1)@(t, T) B(t)u(t)dt

fo

t
Dty, t)x(ty) = x (t) + f D(ty, T)B(0)u(r)dt

to

t
Plty, t)x(t) - x(to) = [ Do, DB(Iu(D)r
to

Let
u(t) = ~BH (D)@ (ty, YW (to, 11) [D(t1, to)x(to) — x(t1)]
Reader Show that this u(f) leads to x(ty) — x(t1)

We now do proof of necessity = If LTV is controllable at f, then W is not singular.
Equivalently, show that if LTV is controllable at t, then rows of @ (ty, 7) B(7) are linearly
independent. Proof by contradiction: Assume W is singular but LTV is controllable at
to and show a contradiction. Since W is singular, then there exist a vector @ # 0 s.t.
ald (ty, 7)B(t) = 0 for all T € [ty,t;]. Now construct x(f),x(t;). Let x(t;) = @ and let
x(t;) = 0 (i.e. the origin vector in the state space). Since LTV is controllable, then there
exist u () such that
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X(t) = @ (t, 1) x (1) + [ (DB (D)de

to
= D (b, ty) G + fcp (t,7) B(1) (1) dr
fo

Pre-multiply by @ (fy, ;) both sides gives
I t1 (D(to,’f)
D (to, tr) x (t1) = D (to, 1) D (b1, fo) & + ch(to, t) @ (t, ) B(D)u(r)dt

fo

So the above becomes

Pty ) x(0) =T + [® (o, DB (D u(0)de
to
Now pre-multiplying both sides by a’
t
GO (ty, 1) x (ty) = 37a + f AT (ty, 7) B () u (v) dt
to

=T—= _

But a'a = ||0c|| and a7® (ty,t;) x (t;) = 0 since x (t;) = 0, hence the above becomes
t

= ol + f 3T (to, 7) B (1) u (1) dr

fo

But we assumed a’® (ty, 7) B(7) = 0 above, hence the above reduces to

2
= |l

Which means a = 0. But this contradicts our assumption that & # 0. Hence our assumption
that W is singular but LTV is controllable at t; has been found to produce a contradiction.
Hence it must be that out assumption of W being singular is not valid. QED.

Advanced reader: The proof of necessity above contains an error. Try to find it.

Remark: There are infinite many controls u () that can take x (t;) to x (t;) . We considered
one of them in the above proof u(t) = BT (t) ®T (t5, 1) W1 (ty, t1) [D (to, t1) x (1) — x ()]. In
this u special in some sense?

Minimum energy theorem: Suppose E is controllable at f, i.e, controllability W (ty,t)

is not singular. So we can steer x(t;) to x(f;). So given pair x(ty),x(t;) and as associ-
t t

ated control law u (t), define the energy E (u) = f uludt = f ||u||2 dt. This gives energy

to to
needed. u(t) used above in the proof minimizes E (1). Next lecture we will show that
u(t) = BT (1) DT (ty, 1) WL (ty, 1) [P (to, 1) x (1) — x (tp)] is energy minimizer.

1.23 Lecture 21. Thursday Nov. 6, 2014, 2:30 PM
(controllability, Gramian, proofs)

W (to, t1) = f @ (ty, 7) B (7) BT (1) @7 (ty, 7) d is called the controllability Gramian. Is there

a shorter method to check for controllability other having to build W (ty, t;) and check it is
not singular? The short cut will be sufficient for LTV. For LTT, this short cut with minor
change. will become sufficient and necessary for controllability (it will lead to the rank
condition on the pair A, B).

Lemma: Consider n X m matrix, we called it F () of continuous and smooth functions
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on [ty, t;]. This means each column is a vector functions. Suppose further that the matrix
J(t) = (F () F () - Fo-D (t)). This is of size nxnm. If I (t) has rank n for some t* € [t,, ],
then it follows that F? () are all linearly independent time functions on [ty, t;].

Proof by contradiction. Suppose we have such t* € [ty, {;] where rank J (t) = n, and assume
F (¢) are all linearly dependent time functions. Hence we can find & # 0, s.t. @'F () = 0.
This mean F (t) = 0, so that all columns of J (t) are zero. Hence rank of 3 (¢) is not n. Hence
FO (¢) are all linearly independent time functions. QED.

Is this useful to study controllability? Use

F (1) = @ (t, 7) B(1)

Hence
do (t dB
F o) = 2050 4 010 ED
dt dt
. 2D (t, 7) do (ty,t)dB(t) dD(ty, 7)dB (1) d?B (1)
Fr(m = dt B(m+ dt drt * drt dt + @ (to, 7) dz2

Reader: Generalize to many Al using recursive formula.

Let M, (7) = B(1), then
dM (1)

My (1) = —A (O My (D) + —
T

Fork=0---n-2.
Reader: Show the above is true.

Now we will use the above lemma. System is controllable at ¢, if there exist t* > ¢, such
that rank(M (")) = n

t t 1
Example: Let x’ = (Cots 2] (le + (t] u (t). Is this controllable at t; = 0?
e Xo

1
Mo(t)=(t]
Ml(t):—(COSt t)(l)_'_[O]
et 2|t 1
_( —cost+t? )
(e 2t)+1

1 —cost+t?
t —(et+2t)+1

Hence
M(t) = [

Check the determinant. If it is not zero, then rank is 2 and hence controllable. Need to
use t* > 0 to find numerical solution for determinant to check if zero or not. Basically we
need to check if there exist t* > t where the above matrix is not singular.

Few words about analytic functions: Of we have smooth function f (t) and f (f) = 0 on some
region [ty, t;] with ty # ¢, then this means f (f) = 0 on all time t and not just in this region.
This is because an analytical function can not have any place with its derivative does not
exist (no sharp corners). Also, for analytic functions, we can expand them locally around
a point using Taylor series. Now we make a bridge to LTT. We need more result about
linear independence.

Lemma: Suppose F (t) is analytic on [t, t;], (this is the new addition for LTI, which we did
not use for LTV), define

SO=(F®) F@) -~ Fi@ )

Notice, there are infinite many columns now. Unlike with LTV. Now the lemma says: F; (t)
are L.I. on [ty, t;] iff rank 3 (t) = n for some t* € [y, 1] .

Proof: sufficiency: <. Assume rank 3 (t) = n for some t* € [ty,t;] we need to show that
F; (t) are L.I. on [ty, t1]. By contradiction: Assume 3 () = n for some t* € [ty, t;] but F; (t) are
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L.D. on [fy,t;]. Hence there exist vector @ # 0 such that oF; (t) = 0. Hence F(t) = 0 and it
follows that F’ (t) = 0 etc.. for all columns of 3 (f). Hence rank 3J (t) # n. QED.

necessity: =. Assume F; () are L.I. on [fy, ;] we need to show that there exist t* € [ty, t1]
such that rank 3 (#*) = n. Proof by contradiction. Assume F; () are L.I. on [ty, ;] but no
such #* exist, so rank 3 (') < n for all [ty, t;]. Pick any ¢ in the range and expand F () around
t* using Taylor (since analytic)

oo (k) (¢ _ 4\k
F() = Z# (1)
k=0 :

Since rank rank 3 (t*) < n, then there exist vector @ # 0 such that a3 (+*) = 0. Now multiply
(1) by @’ we get a’F(t) = 0 (Reader) on [t* — ¢, + ¢]. But since we assumed F (f) analytic,
then F (t) = 0 everywhere. Which contradicts that F; () are L.I. on [ty, t;]. QED.

1.24 Lecture 22. Thursday Nov. 6, 2014, 6:00 PM.
Second Exam

1.25 Lecture 23. Tuesday November 11 2014 (no
lecture)

No lecture

HW6 assigned.

1.26 Lecture 24. Thursday November 13 2014 (physical
controllability)

Went over second exam: Meaning of uniform convergence. Many had trouble with part (c)
of first problem. For problem three use the commute property. Much easier that calculus.

Now back to lecture. We said before that

IW=(F® F@ - FD@ ) (1)

We were talking about Linear independence and we had these functions F (t). We had the
extra condition that they are analytic and wanted to check of there linearly independent
on [ty, t1]. Yes they are iff rank 3 () = n for all ¢ € [ty, #1]. This was the stepping stone to
physical controllability of LTI system. For LTI the Gramian matrix W (f,,t) simplifies to

the controllability matrix C = [B AB - A”‘lB].

Reader: If LTT system is controllable at t, then it is controllable for every t. So in LT, we
do not need to keep saying at t; and we drop it, and just saying that LTT is controllable,
period. This implies for any f. Proof: Suppose (A, B) is controllable at f; = 0,. we need
to show it is controllable at t; > t;. Argument: Since it is controllable at t; we can find
u (t) to steer the system to x(t(’)). Now shift u (t) by t;, hence u (t - t{)) is applied again to
show it will take the system from x (té) to x (t;). Note: I am not sure I follow this argument.

Need to check with the prof. on this. I do not understand how applying u (t - tf)) makes it
controllable at t.

Now we build 3 () for LTT. Instead of using @ (f, t) B (t) for the F (f) functions, we now use
¢~'B, since LTL. Hence (1) becomes

J() = (e—AtB —oAtAB e AtA2B ... (_1)n At ANB ) (2)

At

The system is controllable iff rank 3 (f) = n Since e’ is non-singular, we factor it out

J(t)=e(B -AB A?B - (-1)'A"B -
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The sign do not affect the rank, so we make all the signs the same

S(t)ze‘At(B AB A2B ... A"B )

A

And since e is always non-singular, it does not affect the rank, so we write

3(M)=(B AB A2B .. A™B A"B ..

Now, we need to find a way to remove all terms beyond A" 'B. To do this we use Cayley
Hamilton. This says that for matrix A of size n X n with characteristic polynomial A (1) =
det (AI — A) then A(A) = 0.

2 0 0
Example: Given A=|1 -4 0f, then A(A)=det(AI-A)=(1-2)(A+4)(A-4)=213-A2 -
2 -1 3

14A + 24, hence by Cayley Hamilton we have

A3 — A2 —14A +24] =

o O O
o O O
o O O

Reader: Using Cayley Hamilton show that
p(B AB A?B - A™'B A'B -)=p(B AB A’B - A"'B)
Hence 3 (t) = C is controllable iff p (C) =n

We need to show that columns from 7 to co do not contribute to rank of J (£). This means
A" is linear combination of [I, A A%, ... ,A”‘l}. Using Cayley Hamilton applied for Ak we
obtain that
n-1
0= A"+ Y aAl
i=0

n-1 ‘
A" = Y Al
i=0

Hence A" is linear combination of {I, A A%, ... ,A”‘l}. We now do the same for A"*! to show
it is linear combination of A" and all the other matrices, and so on. Hence all matrices A
after n —1 do not contribute to rank of J (). This complete the proof that J () reduces to
C for LTT systems.

More on controllability: Differential controllability. We will start with LTV. We say 2
is differentially controllable at f, if we can get to new state in as small time as we want.
If given ¢ > 0, arbitrary small, and any x(f;) state, then there exist u (f) steering x (ty) to
X (to + 6) .

Reader: Give criteria and short cut for differential controllability at t,. Use W (o, ty + ¢€).
For LTI, use short cut M.

For LTT: Reader: If Z is controllable, then it is always differentially controllable. But this
is not necessarily true for LT'V. To show, let
t1

xl = eAhx0 4 fe(tl‘T)Bu (1) dt

fo
&

x¢ = eAex0 + fe("‘T)Bﬁ (1)dr
to
Relate u (t) to 7 (t) so that we can get to x! in as short time as we want. Note: The above is
not clear to me, need to clean up.

Controllability with bounded control: i.e. we now have a bound on the magnitude of u (t).
There is whole theory on controllability with bounded input. Next we will do the same
with observability, using duality to speed all the derivations by using results obtained from
the controllability. We will later study decomposition, then stability.



1.27 Lecture 25. Tuesday November 18 2014

1.27.1 Handout, Observability summary

ECE 717 — Handout Observability Summary

For the continuous LTV system X
T = A(t)x+ B(t)u; y(t) = Cx(t) + D(t)u

the definition of “observability at” ¢, will first be given.

Reader: Does observability at to imply observability at ¢, > ty7 ¢ < to?

Gramian Condition for Observability: We begin with z(t;) = 2"

and
y(t) = C(t)d(t, to)xo + C(t) /Ot O(t, 7)B(T)u(r)dr + D(t)u(t).

We want to determine 2.

Reader: The integral above and Du(t) do not matter in the develop-
ment of a criterion. Hence, without loss of generality, we consider out-
put y(t) = C(t)®(t,to)z" and obtain the condition

[T (7, 10)CT () ()@ (7 to)dra® = [ @7 (1) CT (r)y(r)dr.
This motivates defining Gramian
Wo(t07 tl) = /Otl CI)T(Ta tO)OT(T)O(T)(I)(T7 tO)dT

whose nonsingularity for some t; > ¢y is both necessary and sufficient for
observability at ty. This being the case, we recover the initial state

10 =W, b0, 1) [ 7 (7. 10)C7 (r)y(7)dr.

Reader: Notice the the ideas above can equally well be stated in terms
of linear independence of functions. Namely, > is observable at ¢, if and
only if the rows of the matrix ®7(7,¢,)CT (1) are linearly independent on
some time interval [tg, ¢1].

Reader: With dual system ¥ = (A”(t),CT(t), B'T), DT (t)), establish:
(i) X is observable at ¢, if and only if ¥* and controllable at ¢y. (i) X is
controllable ¢ if and only if 3* and observable at .
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Reader: For the case of a “smooth” system, consider shortcut matrices

Lo(t) = C(t); Lisi(t) = Li()A(t) + thk(t); k=0,1,...n—2

and

L(t) =

| Ln1(t) ]
Now provide a sufficient condition for observability at ¢;. This summary

is completed by considering the LTT case where we drop “at t;” and bring
analyticity into play to arrive at

rankOy = n

as the necessary and sufficient condition for observability.

1.27.2 Lecture: Canonical decomposition theorem

We already talked about algebraic observability (observability matrix). We also talked
about the observer design. Now we want to talk about physical observability. Starting with
LTV system

X)) =A)xt)+B@)ul(t)
y() =CB)x(t)+DE)ul)
Formal definition of physical observability: System is observable at ¢, if the following

condition holds: With x (t;) = x° unknown, suppose u (t) and y () are known, then there
exist time t; > ¢, such that x (t)) can be determined from knowing u (t) and y (f) over [ty, t].
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This is true for any x ().

U(t) ] oo y(t)

observer

!
X(to)

Definition from Chen book: pair (A (t),C (t)) is observable at t; iff there exists time ¢; > £,
t

such that the n X n matrix W, (t,, ;) = f@T (7,t) CT (1) C (1) @ (1, ty) dT where @ (t,7) is the
to
state transition matrix for x’ (f) = A (t) x (t) is nonsingular.

Controllability of the primal system equals the observability of the duel. If system is
observable at f, what about at ¢ > t,? The answer is not necessarily. What about for ¢ < t,?
The answer is yes. We can always solve for x (0)

not function of ¥ can be ignored

t
() = COD(E, )0 + C () f O (t,7)B(1)u()dr + D (B (t)
to
j(t) = C(HD(t, to)x°
Pre-multiply by ®7 (t,t,) CT (1) and integrate
Wito,t)

t t
f ®T (7, 15) CT (1) § (t) dr = [ f ®T (1, ,) CT (1) C (1) D (1, £g) d | x°
to to

Since observable we can invert W, hence

t
2 = W (t, 1) f o7 (7, 1) CT (1) 7 (1) de
to
So system is observable iff W is non-singular for ¢ > ;. This means rows of ® (t,t,) C (1)

are linearly independent.

Reader express state transition matrix for the duel system (A, B,C, D) where

A=-AT
B=-CT
C=8T
D=D

Hence, the duel system
¥ () = -AT O - CTOu®)
FH =B OXE)+D Hu®
Now we will establish the relation between the system transfer matrix ® for the primal and
the duel. For the primal, we have
dv-1(1)

_wp-l
n W (H) A(t)
Take the transpose of both sides gives
dwre]
———=—ATO[Y (0] (1)
Now for the duel, we have
P
T0 _Awvo

dt



53

However A (t) = —AT () therefore the above becomes

d¥ -
PO - Ao @)
Comparing LHS and RHS of (1) and (2) we see that
[wim] =v @ 3)

The above also mean that
[wim] = o
Now taking the inverse of both sides
W) =9t (4)
(3) and (4) is all what we need to establish that
O,7) =T )P ()
—[wT o] W@
= [w1o] Wi
T
=[w@we ]
=0T (1,1)

Hence

d(t,7) = D7 (1, 1) (5)

Now we describe the short cut method to determine observability. For n — 1 differential
system

Lo (5) = C (D)

d
L () = Ly () A(H) + ELk (t)

For k = 0---n — 2. Then the system is observable at f, iff there exist t; > t; such that

Lo (t1)
piin=p| 1 |-
Ln—l(tl)
0 1 ¢t
Example: A(t) = |2 -t ¢ ,C(t):(l ¢ e—t)
1 -2 1

Lith=(1 t ¢

0 1 ¢
Ll(t):(l t e‘t) 2 -t ¢ +(0 1 —e‘t)=(e‘t+t3 212 -2t t+tet)
1 -2 1
0 1 ¢t
L)=(et+P 2-2-2e t+tel)|2 ~t |+ (-e?+32 -20+27" 1+e +tef) =
1 -2 1

(t-et —2 (20t +2-2) +tel + 32 et —dt+t (207 + 2 -2) =2t + £ t4el +t(e+£)—ef (207 +.
Hence

1 t et
L= et + 18 22 -2t t+ tet
t—e—f—tz(Ze-’+t2—2)+tef+3t2 3e—f—4t+t(2e—f+t2—2)—2tef+t3 t+ef+t(e-f+t3)—ef(ze-f+t2—2)+2tef+1

The rank of the above must be 3 for observable system.
Canonical decomposition theorem:

We want minimal realization. Canonical transformation: System Z = (A,B,C,D) can be
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transformed to equivalent system via non-singular matrix T.

A*=TAT™!
B*=TB
Cr=CT!
D'=D

Which has the following structure. A* is block structure of the form

Ay Al Al B%
A=l 0 A, Ap|B=|B,[C=(0 C, Ci)
0 0 A 0

A7; means controllable but not observable, A}, means controllable and observable and A
means not controllable.

Hence, since x* = Tx, then the 2 is
x” = Ax" + B'u(t)
y=Cx"+D"u(t)
So the controllable and observable part is 2 = (A}, B, C:,). And The not controllable
and not observable part is Z = (A%, 0,C3). I\CIi)tice that

H{, (s) = H(s)
Minimal realization is both controllable and observable.

Original A, B,C,D can be anything, and we can always find T to do the above transforma-
tion.
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(Handout, Kharitonov’s Theorem)

CHAPTER 5
The Spark: Kharitonov’s Theorem

Synopsis

This chapter is devoted to the seminal theorem of Kharitofide tech-
nical ideas underlying the proof serve as a pedagogicgbstestone for
development of the more general value set concept whichesnifiany
results in later chapters. In fact, the Kharitonov rectanghich we in-
troduce is actually a value set corresponding to a rathaiaEed uncer-
tainty structure.

5.1. Introduction

The main result in this chapter, Kharitonov's Theorem, addes a rather speci
ized problem—robust stability of an interval polynomiaffdy. The elegance of tt
solution immediately sets one’s thought processes in mptie., seeing such a di
matic breakthrough for the robust stability problem foeiwal polynomials, one ca
not help but wonder what powerful results are possible forengeneral robustne
problems. In a sense, most of the chapters to follow arenesials to the new way
thinking which comes from the proof of Kharitonov’s Theorem

5.2. Independent Uncertainty Structures

In this section, we introduce the independent uncertainticgire. Results for th
highly specialized structure should not be viewed as anritdélf. With this simple
theory under our belts, however, we are prepared to dealmdtte general polytop
and multilinear uncertainty structures in the chapterstiod.

Perhaps the most compelling motivation for the study of pashelent uncertain
structures is derived from the following scenario: An emgingenerates a fixed mo
for a control system and obtains the associated charaatesislynomial p(s). Al-
though the presence of parametric uncertainty is ackn@elédthe dependence
g is complicated and highly nonlinear. Despite the fact thatuncertainty structu
is too complicated to analyze mathematically, it is stilpiontant to know somethir
about the degree of robustness. In such cases, a sound antgranebe made for in
position of an independent uncertainty structure. For etanusing an independe
uncertainty structure, we can use the theory in this chaptéetermine what percel
age variations in the coefficients of polynomjgk) can be tolerated.

It is also worth noting that in many cases, a more complicategrtainty structul
admits a certain type of overbounding by an independentrtaiogy structure. Henc
once we have results for the independent case, we ofterncdifficient condition
for the more complicated case at hand. To illustrate, afterlmunding a complicat
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5.3 Interval Polynomial Family 57

uncertainty structure by an independent uncertainty gtrac one might compute
robustness margin of 13% when the true robustness margPts 1t can be argue
that the conservatism resulting from overbounding is nititet when the performan
specification is still met.

DEFINITION 5.2.1 (Independent Uncertainty Structure): An uncertain poiyired
n .
p(s.a) = ai(a)s
2,

is said to have amdependent uncertainty structuieeach componeng; of g enter:
into only one coefficient.

EXERCISE 5.2.2 (Independent Uncertainty Structure): Does the uncertalynomial

p(s,q) = S+ (01 + 402+ 6)S*+ (01 — 304)S+ (Go+ 5)

have an independent uncertainty structure? Explain.

5.3. Interval Polynomial Family

In this section, we define interval polynomial families ahd toncept of lumpin
By lumping, we mean combining uncertainties so as to obtdesaription of the san
family of polynomials involving a smaller number of uncentparameters.

DEFINITION 5.3.1 (Interval Polynomial Family): A family of polynomials? =
{p(-,q) : g € Q} is said to be annterval polynomial familyif p(s,q) has an inde
pendent uncertainty structure, each coefficient depenaisnemusly ong andQ is a
box. For brevity, we often drop the word “family” and simplgfer to#? as aninterval
polynomial

EXAMPLE 5.3.2 (Simple Interval Polynomial): An interval polynomial faiyi &
arises from the uncertain polynomial describeddtg, q) = (5+ 04)s* + (3+ 03)s> +
(24 qp)S* + (44 q1)s+ (64 qo) with uncertainty boundgy | < 1 fori =0,1,2,3,4.

EXAMPLE 5.3.3 (Some Coefficients Fixed): Notice that the definition of mate poly-
nomial does not rule out the possibility that some coeffis@fp(s, ) are fixed rathe
than uncertain; e.g., considpfs,q) = (5+q4)s* +38° + (24 92)* + (4+q1)s+ 6
with a given boxQ for the uncertainty bounding set.

EXAMPLE 5.3.4 (Lumping Interval Polynomials): The uncertainty represéion ofter
involves a certain type of redundancy. For example(#q) = s>+ (5+ gz + 203) S +
(6+ 201 + 5q4)s+ (3+ o) and boundsg;| < 0.5 fori =0,1,2,3,4, one can “lump
the uncertainty as follows: Define new uncertain parameéjges 5+ g + 2093, G1 =
6+ 2q1 + 504 anddo = 3+ go, @ new uncertainty bounding sétby 2.5 < §p < 3.5,
2.5< G, <9.5and 35< §, < 6.5 and a new uncertain polynomia(s;§) = s>+ s> +
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58 5 The Spark: Kharitonov's Theorem

G5+ Go. We call &2 = {p(-,4) : § € Q} alumped versiomf the original family.%” anc
leave it to the reader to verify tha? = .

EXERCISE 5.3.5 (Lumping with More Complicated Dependence): The objeativéis
exercise is to demonstrate that lumping is possible witheaomplicated depender
ong. To this end, consider an interval polynomial fami# described by

p(s,q) = (5+ €™ cosqp)s + (sin(dz + da) +4)s+ (gsas + €%7)

and|qgi| <1fori=1,2,...,7. Provide a characterization of a lumped versignof
.

EXERCISE 5.3.6 (A Lumping Theorem): This exercise generalizes on the onwea
Indeed, consider an interval polynomial fami¥y = {p(-,q) : g € Q} with p(s,q) hav-
ing coefficients depending continuously gnProve that there exists a second inte
polynomial famﬂyﬂ7 — {p(-,6) : § € Q} with fi(s,g) of the form (s, &) = I, Gis
and, moreovery = &.

5.4. Shorthand Notation

In view of the discussion of lumping above, we henceforthkweith an uncertai
polynomial of the form

plsc) = 5 as

when dealing with an interval family. Such a family is conplg described by tF

shorthand notation .

p(s,q) = ;[qr,qﬂé

with [g, ;"] denoting the bounding interval for tikeh component of uncertainty.
In the context of this convenient abuse of notation, we céerte p(s,q) as arninterval
polynomial

5.5. The Kharitonov Polynomials

In order to describe Kharitonov’s Theorem for robust stahie first define fou
fixed polynomials associated with an interval polynomiahilg 7. In the definitior
below, note that the polynomials are fixed in the sense thgttba bounds;~ andg;"
enter into the description but not tgethemselves. We also emphasize that the nu
of polynomials is four—independent of the degreep(d, ). That is, four is a mag
number.

DEFINITION 5.5.1 (The Kharitonov Polynomials): Associated with the intéipaly-
nomialp(s,q) = 3 old,q;"]s are the four fixedKharitonov polynomials

Ki(S) =0y + 0 S+ S+ 038+ 0y S+ 058 + 088+
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5.6 Kharitonov’s Theorem 59

Ka(S) = + 0 S+ 0 S+ 0SS+t + 05+ 05+ -+
K3(9) =0 + 0y S+ +03S+0is + 058 + 058+
K4(S>:Q6+q—1FS+q582+q553+q284+q§35+qgs6+....

EXAMPLE 5.5.2 (Construction of Kharitonov Polynomials): The Kharitonoelyno-
mials are easily constructed by inspection. To illustréte,four Kharitonov polync
mials corresponding to the interval polynomial

p(s.q) = [1,2]S° + [3,4]s* + [5,6]s> + [7,8]* + [9, 10]s+ [11,12]
are

Ki(S) =11+ 95+ 852+ 68>+ 3s* + <,
Ka(s) = 124 10s+ 75° 4 58° + 4s* + 25°;
K3(S) = 12+ 95+ 75°+ 65+ 4s* + &°;
Ka(s) = 114 10s+ 85% 4 58° + 35* + 25°.

5.6. Kharitonov’'s Theorem

We now present the celebrated theorem of Kharitonov (19a@8d)also illustrat
its application. The proof of the theorem is relegated tortévet two sections.

THEOREM 5.6.1 (Kharitonov (1978a)):An interval polynomial family?? with invari-
ant degree is robustly stable if and only if its four Kharitarpolynomials are stable

EXAMPLE 5.6.2 (Application of Kharitonov’s Theorem): For the intervallpoomial
p(s.q) = [0.25,1.25/s>+ [2.75,3.25/5 + [0.75,1.25]s+ [0.25,1.25),

the four Kharitonov polynomials are

Using the classical Hurwitz criterion, it is easy to verifyat all four Kharitonov poly
nomials above are stable. Hence, we conclude that the aitpolynomial family it
robustly stable.

EXERCISE 5.6.3 (Application of Kharitonov’s Theorem): Consider the intakpoly-
nomial family which is given in Example 5.5.2. Is it robussiable?
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60 5 The Spark: Kharitonov’s Theorem

5.7. Machinery for the Proof

For some readers, there is a temptation to skip sectionaioamg technical proof
For the case of Kharitonov’'s Theorem, however, the autheigce is to continu
reading. The ideas introduced in this section and the nexatathe heart of mai
generalizations presented in later chapters. In addittma geometrical ideas in t
proof suggest ideas for computer-aided analysis. Mostihgtée proof makes use
the so-called Kharitonov rectangle. This rectangle is ot taspecial type of “vall
set” which plays a major role in later chapters.

5.7.1. The Kharitonov Rectangle

In this subsection, we consider an elementary geometryigmubkGiven an interve
polynomialp(s,q) = S o[ ,¢"]s and a fixed frequencg = wy, describe the set
possible values thai( jup, q) can assume agranges over the bo®. More formally
we want to describe the subset of the complex plane given by

P(jan, Q) = {p(jwn,q) : q € Q}.

We call p(jan, Q) the Kharitonov rectanglat frequencyw = ay. To justify this name
we now prove thap(jan, Q) is a rectangle with vertices which are obtained by e\
ating the fourfixedKharitonov polynomial€; (s), K2(s), K3(s) andKa(s) ats= ja;
i.e., the vertices op( jan, Q) are precisely th&;(jay).

To establish rectangularity, we examine the real and insgiparts ofp(jwy,q).
Indeed, we first observe that

Re fjan,a) = 3 ai(jan)' = do— 020f + dac — G + gl — -+

i even

and
| - 1 N 3 5 7 9
mp(on,OD—j Edq.(on) = (1 — g3y + Os) — Q7 + Qo :
iodd

Notice that nay which enterdRe [ jan,q) enterdm p(jwn,q) and vice versa. In vie
of this decoupling between real and imaginary parts, th@&gty, Q) consists of a
complex numberg such that

Re 7= o — 02005 + GatX) — Gl + gt — -+
for some admissiblg € Q and
Im z= . — 30k + G508 — 7 + o) — -+

for some admissiblg € Q.

We now argue that the set of all generatable pdRs zIm z) above is a rectang
which is obtained by finding the minimum and maximum value®eff jay,q) anc
Im p(jwn,q) with respect tag € Q. Indeed, since eaa) enters only one coefficie
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5.7 Machinery for the Proof 61

of p(s,q), for Re g jwy,q), we can minimize or maximize each term individuall
obtain

min Re ijao, 6) = 6 — 0 f + oy f — 0§ o + g f — -
= Re kg (jay)
and
maxRe {j,q) = o — 0 @B +aj & — dg @S + g & — -
= Re k(jan).

As far aslm p(jan,q) is concerned, one must pay attention to the sigagfn
deciding whether to usg~ or ¢." when minimizing or maximizing. Keeping this iss
in mind, foray > 0, we obtain

min Im p(jceo, A) = A o — G5 &6 + G & — I e + -+
and similarly, foray < O,

min 1m p(j b, ) = G 6 — ds &6 + G W5 — Gy 65 + -+
Combining these two cases, we arrive at

ImKs(jan) if ap > 0;

g Im p(en,a) = { ImKq(jan) if ao <O.

For the maximization problem, the same type of reasonirnggsléa

Im Ka(jan) if an>0;

ré]e%xlm p(jan,q) = { ImKs(jap) if ap <O.

Thus far, our arguments indicate thatj wo, Q) is bounded by the rectangle gi
in Figure 5.7.1; i.e., iz € p(ja, Q) anday > 0, then

Re K (jan) < Re z< Re kg(jay);

Im Kz (jap) <1mz<Im Ky(jan).

To complete the argument, we now claim that this boundinrege is precisely equ
to p(jan, Q). Thatis, every value in this rectangle is realizable by sgrae). Indeed
by viewingRe g jan,q) as a mapping ofqo, 02,04, ...) to R andIm p(jwn,q) as ¢
mapping from(qi, s, 0s, . ..) to R, a simple intermediate value argument guarat
that for eacle satisfying the two inequalities above, there exists sonoedaintyq; €
Q such thatp(jan,q;) = z In summary, the sep(jwy, Q) is precisely the rectanc
depicted in Figure 5.7.1.
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62 5 The Spark: Kharitonov’s Theorem
Im
ImKs(joo) * Yl
p(jawo,Q)
ImKsg(jaw) [ 0/ o
Re K (jawo) Re K(jwp) Re

Figure 5.7.1. The Kharitonov Rectangle tog > 0

We now relate the vertices of the rectanglgwp, Q) to the Kharitonov polynom
als:

Southwest Vertex= Re K (jap) + jim Ks(jay)

= Re K (jan) + jim Ky (jap)
= Ki(jan);

Northeast Vertex= Re K(jawy) + jim Ka(jay)
= Re K(jap) + jim Ka(jwp)
= Ko(ja);

Southeast Vertex= Re K (jap) + jim Kz(ja)
= Rekg(jan) + jim Ka(ja)
= Ks(jan);

Northwest Vertex= Re K (jan) + jim Ka(jwp)
= Re Kg(jan) + jim Ka(jap)
= Ka(ja).

This leads to our final depiction of théharitonov rectanglgiven in Figure 5.7.2. Tt
key point to note is that each vertex is associated with augiharitonov polynomia
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5.7 Machinery for the Proof 63
Im

Ka(jao) Ka(jwo)

® /o

p(jaw,Q)

o/ ®

Ka(jawo) Ks(jwo)
Re

Figure 5.7.2. Simplified Kharitonov Rectangle fiog > 0

EXERCISE 5.7.2 (Kharitonov Rectangle faiy < 0 andwy = 0):  Sketch the Kharitonc
rectanglep(jwn, Q) for ay < 0 with vertices carefully labeled. Fos = O, notice the

p(jan, Q) = [gy. a5 ]-

REMARKS 5.7.3 (Motion of Kharitonov Rectangle): Thus far, the discussadrthe
Kharitonov rectangle has been in the context of a frozernuaqyw = wy. We now
entertain the notion of sweeping the frequency. Indeed,egiatw = 0 and imagin
w increasing. This results in motion of the Kharitonov regian That is, we have
rectangle moving around the complex plane with verti€g$w) obtained by evalui
tion of the Kharitonov polynomials. Generally, the dimems of this rectangle va
with the frequencyw.

EXAMPLE 5.7.4 (lllustration of Motion): For the interval polynomial
p(s,q) = [0.25,1.25/s> + [2.75,3.25/5>+ [0.75,1.25]s+ [0.25,1.25]

which we analyzed in Example 5.6.2, we illustrate the motibthe Kharitonov rec
anglep(jw, Q) in Figure 5.7.3 for twenty frequencies evenly spaced betwee- 0
andw = 1. Notice that this rectangle beginsaat= 0 as an interval on the positive r
axis and then moves from the first to the second quadrasmtiasncreased.
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64 5 The Spark: Kharitonov’s Theorem

0.6 - | s

Im 0.2 F - L

02} | -

-0.6 | | | | | ‘ | |
-3 25 -2 15 -1 -05 O 0.5 1 1.5
Re

Figure 5.7.3. Motion of Kharitonov Rectangle for Examplé.8.

5.7.5. Angle Considerations

In this subsection, we review some basic facts about theeari@ polynomial as
function of frequency. We include the proof of the well-knolemma below becau
the underlying ideas are useful in later chapters. In a obsaétting, the lemma belc
is often credited to Mikhailov (1938).

LEMMA 5.7.6 (Monotonic Angle Property): Suppose that(s) is a stable polynomig
Then the angle of (Qw) is a strictly increasing function ab € R. Furthermore, aso
varies from0 to +oo, J p(jw) experiences an increment offy2.

PRroOF: First, we writep(s) = K[]i_;(s— z), whereK € R andRe z < 0 fori =
1,2,...,n. The angle op(jw) is given by

Ap(Jw)zzﬁKfizi(jw—Za)-

With 6(w) = 4 (jw— z) and the aid of Figure 5.7.4, we make the following obse
tions, noting that; lies in the strict left half plane: I is purely real, then as varies
from O to+, 6 (w) is strictly increasing and experiences a net increment/@f If z
is complex, we work witlg in combination with its conjugatg. Now, asw increase
from 0 to+oo, the corresponding anglés(w) are strictly increasing and contribut
net increment total oft. The proof of the lemma is completed by summing ovel
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Im

Re

Figure 5.7.4.6 (w) is a Strictly Increasing Function @b

6(w). B

EXERCISE 5.7.7 (More General Angle Considerations): Suppp$s) is ann-th ordel
polynomial withn; roots in the strict left half plane an@ roots in the strict right ha
plane. Assume that; +n, = n and show that asv varies from 0 to+, Jp(jw)
experiences a total change in angle(of — ny)17/2. Also modify the result to alloy
for the case whep(s) has some roots on the imaginary axis.

5.7.8. The Zero Exclusion Condition

In this subsection, we introduce the Zero Exclusion CoaditiThe technical ide:
associated with this condition arise time and time agaiaughout the remainder
this text. Since we are currently working within the framekof interval polynomials
the lemma below is not stated in full generality; the mostegehversion which w
provide is given in Theorem 7.4.2. In addition to facilitagithe proof of Kharitonov’
Theorem, the lemma below is also of practical use becausggests a simple test f
robust stability which is easy to implement in graphics.

LEMMA 5.7.9 (Zero Exclusion Condition) Suppose that an interval polynomial fan
2 ={p(-,9) : q € Q} has invariant degree and at least one stable memlfesgp).
Then is robustly stable if and only ifz O is excluded from the Kharitonov rectan:
at all nonnegative frequencies; i.e.,

0¢ p(jw,Q)

for all frequencieso > 0.
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Proor: We first justify the restriction to nonnegative frequenci&s this end, not
thatz € p(jw, Q) if and only if z* € p(—jw, Q). Hence, without loss of generality, \
restrict our attention tov > 0.

To establish necessity, we assume thatis robustly stable and must prove t
0¢ p(jw,Q) for all w € R. Proceeding by contradiction, suppose that p(jw*, Q)
for some frequencyw* € R. Thenp(jw*,q*) =0 for someg* € Q; i.e., the polynomie
p(s,g*) has a root as = jw* which contradicts robust stability o#.

To establish sufficiency, we assume that f(jw, Q) for all w € R and must sho
thatZ is robustly stable. Proceeding by contradictionfis not robustly stable, the
p(s,qt) is unstable for somg* € Q. Now, for A € [0,1], let

p(s,A) = p(sAgt+(1-2)d°)

and notice thatp(5,A) € & becauseAg + (1—-A)q° € Q. Moreover, forA = 0,
B(s,0) = p(s,q°) has all roots in the strict left half plane and far= 1, (s 1) =
p(s,g%) has at least one root in the closed right half plane. Sincedbis of p(s,A)
depend continuously oh (Lemma 4.8.2), there existsi € [0, 1] such thatp(s,A*)
has a root on the imaginary axis. Equivalenplyjw*, A *gt + (1—A*)q®) = 0 for some
w* € R. This implies that 0= p(jw*,Q), which is the contradiction we seell

REMARKS 5.7.10 (Real Versus Complex Coefficients): When working with thea
Exclusion Condition for the complex coefficient case, we nanlonger restrict a
tention tow > O; i.e., we cannot exploit the fact thate p(jw,Q) if and only if
Z' € p(—jw,Q). In this case, the lemma above requires a minor modificatidm:
der the standing hypothese#, is robustly stable if and only if & p(jw, Q) for all
w € R. This arises in Chapter 6 when we consider the complex caftigersion o
Kharitonov’s Theorem.

5.8. Proof of Kharitonov's Theorem

The proof of necessity is trivial; i.e., # is robustly stable, it follows that the fo
Kharitonov polynomials are stable becaugés) € & for i =1,2,3,4. To establis
sufficiency, we assume that the four Kharitonov polynomaaé¢sstable and must prc
that & is robustly stable. Proceeding by contradiction, suppleae® is not robustl
stable. Using the standard notatipfs,q) = z{‘zo[qi‘,qﬁ]i we consider two cases.
Casel: 0€ [qy,q3]. Recalling the invariant degree assumption, it must bettrat,
andg have the same sign. Without loss of generality, say thatigrs©fq, andq;;
are positive. Then it follows that at least one of the four Kiiemov polynomials, ca
it Ki(s), has coefficient of”, which is positive, and coefficient &f, which is nonpos
itive. This contradicts the assumed stabilitypf(s) because a stable polynomial m
have nonzero coefficients which all have the same sign.

Case 2: 0¢[dy,0g]- Sincep(j0,Q) = [gy,0g] is the Kharitonov rectangle a = 0,
we have 0Z p(j0,Q). On the other hand, sinc&’ is not robustly stable, we knc
by the Zero Exclusion Condition (Lemma 5.7.9) that @(jw*, Q) for somew* € R.
Now, using the fact that @ p(j0,Q), the continuous motion of the vertickg jw) of
p(jw, Q) guarantees that there must be some frequéncyO for whichz = 0 pierce:
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5.9 Formula for the Robustness Margin 67

the boundary of the rectangf# jd, Q). Without loss of generality, assume that 1
piercing occurs on the southern boundaryp(f®, Q) as shown in Figure 5.8.1. Als

Im

A

Ks(jw) moves

this way

T
_

( k(i) Ka(i)

Ki1(j@) moves this way

Re

Figure 5.8.1. Piercing the Boundary of the Kharitonov Reglta

note thatz = 0 cannot be coincident witk; (j @) or K3(j@) because&;(s) andK3z(s)
are assumed stable. To complete the proof, we exploit agitytinf the K; (jw) and
the Monotonic Angle Property (Lemma 5.7.6). Namely, &@b > 0 suitably small, i
follows that
0° < 4K3(j(@+dw)) < 9P
and
180 < LKy (j(@+0w)) < 270

We now have the contradiction which we seek because sinadtensatisfaction «
the two angle inequalities above makes it impossible fosthighern boundary of tt
rectanglep(j(@+ d®), Q) to remain parallel to the real axifl

5.9. Formula for the Robustness Margin

For an interval polynomial family, by combining the resulifsthis chapter witt
those of Chapter 4, we obtain the robustness margin fornnfiasand Barmish (198¢
To this end, we describe amth order interval polynomial family with stable nomir
po(s) and variable uncertainty boumd> O by writing

n—1 _

Pr(s,0) = Po(s) +r _;[_givgi]g'

We view theg > 0 above as scale factors which determine the aspect ratithge
uncertainty bounding s&€),. Letting &7, denote the resulting family of polynomia
our objective is to provide a formula for the robustness nmarg

'max = SUp{r : & is robustly stablg.
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68 5 The Spark: Kharitonov’s Theorem

To obtain the desired formula, we first argue that Kharitcmd®heorem enables
to reduce the robustness margin problem to four separatdgons for the uncerta

polynomials{ po(s) + qpui(s) }i;, where
PL1(S) = —&0— E15+ £ + &35° — &8 — €55 + &L+ -+

P12(S) = &0+ £15— £2F° — £35° 4 48" + €58 — &6 — -+ -;
P13(S) = &0 — £15— £ + £35° + &48" — €58 — & + -+ -}
PLa(S) = —E0+ E1S+ €25 — £38° — &4S* + &5 + €650 — - -

Now, applying Theorem 4.7.6 and taking the worst case wispeet toi = 1,2, 3,4,
we arrive at the formula

) 1
M 1<a Ada(—H~1(po)H (p1i))

5.10. Robust Stability Testing via Graphics

The Zero Exclusion Condition (see Lemma 5.7.9) suggestsplsigraphical prc
cedure for checking robust stability—watch the motion & haritonov rectang
p(jw,Q) as w varies from 0 to+c and determine by inspection if the condit
0¢ p(jw,Q) is satisfied. This raises the following question: Can we fioohe fi-
nite precomputableutoff frequencyw. > 0 such that GZ p(jw,Q) for all w > w.?
That is, can we terminate the frequency sweep at the frequen¢ w?

The existence ofy is easily established using the invariant degree conditiio+
deed, suppose thats,q) = z{‘:o[qi‘,qﬁ]sﬁ and, without loss of generality, assume-
g, >0fori=0,1,...,n. Then given any| € Q, itis easy to see that fap > 0,

n—1 _
IMQWZ%W—%$d
i=

Since the right-hand side tends+@o asw — +oo, it follows that for any prescribe
B > 0 there exists amg. > 0 such thatp(jw,q)| > p for all w > w.. Hence, 0Z
p(jw,Q) for all w > .

In fact, we can easily compute an appropriate For example, one can take to
be the largest real root of the polynomial

n-1
flw=0g,0"- Y g w'.
n i; i

Other possibilities for estimatingy, (often less conservatively) are suggested 1
classical bounds on the roots of a polynomial. For exampléJarden (1966), it i
seen that the roots of a fixed positive coefficient polynomia) = " ,as lie in a
disc of radius
max{ag,ay,...,an 1}

a :

R=1+
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0.5
0.4
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Figure 5.10.1. Graphical Robust Stability Test for Exanpl0.1

Hence, for the interval polynomigl(s,q), with g,, > O, it follows that an appropria
cutoff frequency is given by

max{q’,q;,...,q"
a)(::l+ {q07q1_7 7qn—1}.
On
ExAMPLE 5.10.1 (lllustration of Graphics Method): We consider the intépalyno-
mial family &2 = {p(-,q) : q € Q} described by

p(s,q) = s°+[3.954.05 + [3.95,4.05/s* + [5.95,6.05)s>
+ [2.95,3.05/s% + [1.95,2.05]s+ [0.45,0.55].

In accordance with Lemma 5.7.9, the first step in the graphesafor robust stabilit
requires that we guarantee that at least one polynomia¥ims stable. Using tk
midpoint of each interval above, we obtajts, q°) = &£ + 48° + 4s* + 65 4 38 +
25+ 0.5, whose roots arg, ~ —3.2681,53 ~ —0.1328+0.9473], 45 ~ —0.0731+
0.7190j andss ~ —0.3201.

Next, in accordance with the discussion of cutoff freques@bove, we compt
the largest real root of the test polynomféltv); that is, with

f(w) = w® — 4.05w° — 4.05w* — 6.05w° — 3.05w> — 2.050— 0.55,

we obtaina, ~ 5.1023 as an acceptable cutoff frequency for the requiredikimmv
rectangle plot. In Figure 5.10.1, we provide a “zoom” of teguired plot using 1C
evenly spaced frequencies in the critical range @ < 1. For w in this range, th
Kharitonov rectangle makes its closest approach t00. Since 0Z p(jw,Q), we
conclude that the family of polynomial®’ is robustly stable.
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70 5 The Spark: Kharitonov’s Theorem

5.11. Overbounding via Interval Polynomials

As mentioned in the introduction to this chapter, the inchef@at uncertainty stru
ture is restrictive because uncertain parameters tygieatler into more than one co
ficient. For such “dependent” uncertainty structures, wesater two alternatives: Tl
first alternative is to develop more general results; thighéstopic of later chaptel
The second alternative is the so-calgerbounding methqdvhich is described b
low. One warning, however, is in order: Although the ovenbding method is easy
use, it may lead to unduly conservative results; i.e., wg ohtain sufficient conditior
for robustness. In short, associated with overboundingiiade-off between ease
use and degree of conservatism.

In the remainder of this section, we no longer require thgmpaialsp(s,q) to
have an independent uncertainty structure, and, in addiois not necessarily
box. We begin with the uncertain polynomials,q) = 3, a; (q)s and an uncertain
bounding se@ which is closed and bounded. Assuming the coefficient fonst; (q)
depend continuously oy we define the bounds

g = [12'8 ai(q)
and
0 =maxai(q)
0eQ

and simply observe that the family of polynomia#% described by

n

Plsa)=3 4 .a" E

is a superset of”. Therefore, any robustness property which holds for therwvat
polynomial family 2 must hold for22. In particular, robust stability of? implies
robust stability of<?. Note, however, that the converse is not true. These poia
illustrated via the examples below.

EXAMPLE 5.11.1 (Success of Overbounding): Consider the family of polyredat”’
described by

p(s,q) =s* + (5+0.2q102 + 0.1 — 0.102)S° + (6 + 3q102 — 40p) S
+ (6+ 601 — 8a)s+ (0.5 30102)

and uncertainty bounftj| < 0.25 fori = 1,2. The objective is to determine whet
Z is robustly stable. To this end, we compute bounds

Qo = minao(a)=_ min . (0.5-3maz) =03125;
0 = maxao(e) = _ max (05~ 3aq0p) = 0.6875;
0, = g;ig a1(q) = _0.25n§1(iq?§025 (64601 — 80p) = 2.5;
o = Te%x () = —0.25@3?0.25 (6-+ 601~ 8az) = 9.5
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Similar computations yield, =4.8125q;} =7.18757; =4.9475 andjj =5.0375
Hence, an interval polynomial family? used for overbounding is described by

P(s,0) = &+ [4.94755.03755% + [4.81257.1875
+[2.5,9.5]s+ [0.31250.6875.

By applying Kharitonov’s Theorem to the overbounding fam# above, it is straight-
forward to verify that the four Kharitonov polynomials arisle. Hence, from the
robust stability of4?, we conclude that the original family? must also be robustly
stable.

EXERcCISE 5.11.2 (Failure of Overbounding): In this exercise, the objects/to illus-
trate how overbounding can fail. To this end, consider tmeilfaof polynomials.%”
given in Wei and Yedavalli (1989); i.e., the family is described by

p(s,q) =s*+5°+ 2052+ 5+

with uncertainty bounding sép = [1.5,4]. Argue thatZ’ is robustly stable but the
overbounding family

p(s,0) =s*+ 5>+ [3,8]% + s+ [1.5,4]

has an unstable Kharitonov polynomial.

5.12. Conclusion

In a sense, Kharitonov’s Theorem raises more questionsitlaaswers. To illus-
trate the type of questions suggested by Kharitonov’s Térapwe consider the robust
Schur stability problem for an interval polynomial fami¥: Indeed, if the associated
four Kharitonov polynomials have all their roots in the inée of the unit disc, does
it follow that &7 is robustly Schur stable? If not, does it suffice to test polgrals
associated with all the vertices @f? More generally, for what type of root location
regions does a Kharitonov-like extreme point result hold# Tist of possible ques-
tions seems endless. In Chapter 13, we characterize claksesegions for which
2-stability of the polynomials associated with the extreromts of theQ box implies
robustZ-stability of the associated interval polynomial family.

Notes and Related Literature

NRL 5.1 The paper by Faedo (1953) appears to have provided impontaiviation for Kharitonov’
work.

NRL 5.2 Kharitonov’s original proof is based on the Hermite—Bielldeorem; e.g., see Gant-
macher (1959). Indeed, consider a polynonpigd) decomposed into even and odd pats) =
Pever($) 4 Shbdd(S?). Then, according to the Hermite—Biehler Theorets) is stable if and
only if pever(X) @nd pogq(X) have highest order coefficients of the same sign and negatalte
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72 5 The Spark: Kharitonov’s Theorem

distinct interlacing roots; e.g., if polynomigl's) has odd degree and 1 < Xg2 < - < Xgm and
Xo,1 < Xo2 < -+ < Xom are the roots oPeverX) and pogd(X), respectively, themy 1 < g1 <
X02 < X2 < -+ < Xom < Xem. The key idea behind the original proof of Kharitonov's The
rem is as follows: Given an interval polynomial famiif, one creates “root intervals” for the
even and odd parts. The endpoints of these intervals areiats=bwith the Kharitonov poly-
nomials. Subsequently, it is argued that satisfaction efrtiot interlacing condition for eact
Kharitonov polynomial implies satisfaction of the rootentcing condition for the entire fam
ily. The Hermite—Biehler line of attack is not pursued irsttéxt because we want to explain i
many results as possible within the unifying framework dtiessets. The Kharitonov rectang|
is in fact an example illustrating the more general valuesatept of Chapter 7.

NRL 5.3 The key ideas underlying our proof of Kharitonov’s Theoresme from Dasgupta (198
and Minnichelli, Anagnost and Desoer (1989). More spedificeve note that Dasgupta (1988
exposes the rectangular geometnpofw, Q) and Minnichelli, Anagnost and Desoer (1989) e
ploits rectangularity and the Zero Exclusion Condition lbdain a simple proof of the theorem.

NRL 5.4 The paper by Frazer and Duncan (1929) appears to be the first the Zero Exclusior
Condition in a robust stability context.

NRL 5.5 For more complicated uncertainty structures, Wei and Yakig989) propose a trans
formation technique in lieu of overbounding. Their apptoawvolves applying a-dependent
linear transformation to the even or odd partspt$, g). As a simple illustration, tak@(s) =
Pever(S%) + Spodd(S%) and supposeR(q) andl (q) are positive functions a. Defining the trans-
formed polynomialp(’s, q) = R(q) Pever(S%) + 1(0) podd(S%), it is easy to show that robust stabi
ity remains invariant and in some cases, a reduction of ceasem may result. The potentia
for further research involving such methods is illustretgdhe family %2 in Exercise 5.11.2. A
robust stability test based on overbounding by an intergbirpmial is inconclusive but multi-
plication of the even part by/4j and the odd part by unity leads to an interval polynomial vehc
robust stability is easily verified by Kharitonov’s Theorem

NRL 5.6 There are a number of papers in the literature involvingsi@mations aimed at fa-
cilitating robust stability analysis. For example, usihg shifted circles in Petersen (1989), ol
can deal with the so-called Delta transform for a discretetsystem; for similar extreme poin
results involving Delta transformation, see also Soh ()9%he paper by Vaidyanathan (199(
provides another example of a transformation used for elisgime problems.

NRL 5.7 Some alternatives to the technique described in Sectidh &4 given in papers by
Djaferis (1991) and Pujara (1990). These papers desciiteeadit overbounding families whict
are sometimes useful.

NRL 5.8 Rather than working with the original coefficients, one cansider a bounding box
B in the space of Markov parameters. By breakingnath order p(s) into its even and odd
parts aga(s) = Peverl &) + Shhdd(S%), @ continued fraction expansion fpgyqd(X) / Pever(X) leads

to the set of Markov parameters; see Gantmacher (1959n =If2m, we obtain parameters
(bo,by,...,bom-1), and ifn=2m— 1, we obtain(b_1, by, .. .,bom_1). With this representation,
robust stability is guaranteed if and only if two distingwesl polynomials are stable. For e
ample, ifn = 2m and the boxB is described by, < b < bi+ fori =0,1,2,...,2m—1, the

first distinguished polynomial has Markov parametésg, by ,b; ,...,bJ ;) and the second
distinguished polynomial has Markov parametgys,b, b3 ... b, ); see Hollot (1989) for
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further elaboration. Of course, a fundamental limitatibnhese results is that the relations
between the Markov parameters and the original parametgesierally quite complicated. Tl
complication motivates interesting research problemsliing system identification for robt
control.

NRL 5.9 We mention a body of work aimed at generalization of Khantés Theorem tescat:
tering Hurwitz polynomialsFor example, in papers by Bose (1988), Kim and Bose (1984
Basu (1989), the uncertain polynomialls, q) is replaced by a multivariate uncertain polynor
p(s1,%,---,%,q) and interval bounds on the coefficients are imposed.

1.28.1 Lecture: Stability, duel systems
No class next Tuesday.

Note, for LTV, the duel system

But for LTI, the duel system is

~ -1 -
Reader: show that for the duel & (t,7) = ®7 (r, ) and that [WT ()] =T ()
Summary of LT and LTV:

ABCDe AT,CT,BT,D
Duality (LTT) x'(t) = Ax(t) + Bu(t) x'(t) = ATx(t) + CTu(t)
y(H) = Cx(t) + Du(®) . y(t) = BTx(t) + DTu(t)

primal < duel
A(t), B(t), C(t), D(t) = -AT(t),CI(t), BT(t), D (t)
Duality (LTV) D(ty, 1) &= PT(1, 1)
X' (t) = A(t)x(t) + B(Hu(t) Z/(t) = —AT(t)z(t) + CT(to(t)
y(t) = C(H)x(£) + D(H)u(t) - w(t) = BT (t)z(t) + DT ()u(h)

controllability ~ Gramian | W(to, 1) = [ ®(ty, )B(x)BT (1) (ty, 7) dt
(LTV) 0

observability Gramian | W,(ty, t;) = fttlch(T, to)CT(T)C(7)D(, t,) dt
(LTV) 0
Controllability Matrix (LTI) | C = [ B| AB | A2B | .- | A"1B |
Controllability Matrix | M = [ M, ‘ M, ‘ ‘ M, 4 ]
(LTV)
My = B(t), My =AM + =M; for k=01 -2
C
CA

Observability Matrix (LTI) | Q =| CA?

CAn—l
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Observability Matrix (LT'V)

L) =| L,

Ln—l
Lo(t) = C(), L1 (B) = Li(HA(t) + %Lk(t) fork=0--n-2

definition of physical control-
lability (LTT)

System is controllable if for any initial state x, and any final state
x1; J input u(t) that transfer x; to x; in finite time.

definition of physical control-
lability (LTV)

System is controllable at ¢, if 3 input u over [f, ;] that transfers
x(tp) to any x(t;) where t; > t,

definition of physical observ-
ability (LTT)

System is observable if 3 time t; > ¢, such that knowing input u
and output y over [ty, t;] suffices to determine state x(f;)

definition of physical observ-
ability (LTV)

System is observable at t; if the following condition holds: With
x(ty) = x° unknown, suppose u(t) and y(t) are known, then there
exist time t; > t; such that x(¢y) can be determined from knowing
u(t) and y(t) over [fy,t;]. This is true for any x(t,)

State solution (LTV). A(f)
commutes with itself, i.e.
A(t)A(t) = A(1)A(t) then

W) = e J, A@dc
O(t,7) = W(HY (1)
o, 1) = el 4O

x(t1) = D(t1, to)x(to) + lotl D(t1, 1)B(r)u(1) dt

State solution (LTV)

A(t) does not commutes
with itself, but A(f) com-
mutes with its integral. i.e.

t t
A(t)e£ A(t)dr e£ A(T)dTA(t)
then the same applied as
above.

x(t) = Dlty, to)a(ho) + [ Pltr, DB(u(r) dn

State solution (LTV)

None of the above condi-
tions apply. This is the hard
case. Need to actually solve
for @(t, 7) by solving the state
equations.

x(t1) = D(t1, to)x(to) + lotl D(t1, T)B(r)u(1) dt

State solution (LTT)

x(t) = eA00x(tg) + [ " A0 By (7) dr

State solution (LTT) with ty =
0

0]
x(ty) = eA(tl)x(O) + fl eA(tl—T)Bu(T) dr

Back to canonical decomposition. Notice that decomposition is for LTT only, not for LT'V.

Stability:

n

system characteristic equation P(s) = Z a;s'. Let us assume all signs of P(s) is the same to

start with (if they are the same, then the polynomial is not stable. Also, assume all are
positive. (we can always multiply by -1 to force this if needed.)

To find roots of P(s) we can solve and check if Re(.) of each root is negative. If so, we
say the system is stable. But we can check for stability without finding the roots using
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Routh-Hurwitz. The proof is complicated. To use, here is an example for n =5
a| das das 0
ag a, ag 0

HHurwitz: 0 a; az ds

o o o O

0 ag dp 4dy

0 0 a| ds das

Now find A; for each leading principle minor. Hence

Al =m
]
Az -
ap dz
41 d3 ds
A3 =140 4y 44
0 a, as

The system is stable if all A; > 0. A necessary condition for stability is that all 4; must be
same sign. But this is not sufficient. Therefore, always start by checking for this. If there is
sign change, no need to do Hurwitz, since not stable. Otherwise, have to do the above to
determine stability.

Example: P (s) = s> + 3s? + 3s + 1.

HH urwitz =

S = W
W W -
—_ o O

A1 =1,A, =8,A; =8, hence stable.

Reader: Suppose we want to check for stable where Re (.) of all roots are such that Re(.) <
—a. Modify P (s) to become P (s + a). Now we want to generalize to robust control. When
we created 2 = (A, B,C, D) we have an approximation to the system. So we have actually
Apye = A+ AA, ie. some perturbation of A on both sides. So the true A can become
unstable. So we want P(s)+ some perturbation. Consider

Py (8) = 8" +a,_15"" 1 + -+ + a5 where now we way that a; < 4; < af and the limits are known.
This is called interval polynomial.

This is robustly stable no matter what values of 4; can have between the limits. The robust
analysis problem was solved only in the last 30 years. Motivation for solution. Assume
we have only 2 a; which are a;,4,. Each with known limits. Hence we have the following
diagram.

ar aj

One approach is to make grid and solve for each combination, but this will become very
large as more a’s are added. But Kharitonov’s theorem reduces this to only 4 parameters.
See hand out on Kharitonov’s theorem. So we only have to check stability for 4 different
polynomials instead of thousands and millions of them as the case would be with the grid
method.
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1.29 Lecture 27. Tuesday, November 25 2014 (no
lecture)

No lecture.

1.30 Lecture 28. Thursday November 27 2014 (holiday)

Holiday

1.31 Lecture 29. Tuesday December 1 2014

1.31.1 Lecture: Stability, Hurwitz

Next 3 lectures will be on stability. One HW on stability due next Tuesday As well the
special problem.

When dealing with linear systems, we form the characteristic polynomial P(s). If we know
the location of the roots, we can also find other properties.

reader: if P(S) is stable and we reverse the order of the coefficients to obtain P(s), is P(s)
stable?

Next we look at interval polynomial. P(s) = s" + E;:Ol a;s'. We are interested in robust
stability where each coefficients a; has some range of values it can take
a; <a; <af

Robust stability: This polynomial is stable no matter what values a4; takes in this range.
There are also robust tracking, robust damping, robust dynamic systems and other area
where robustness is applied.

We can ask: How sensitive is system due to change in parameters? For n,4; coefficients
there is 2" vertices If the extreme points define stable polynomial (i.e. max and min values
of each interval), we would expect it to be stable for values in between.

Kharitonov theorem gave 4 fixed polynomials to check for stability of robust polynomial.
We define the four polynomials as

Ki(s) = af + afs + ays® + a3s® + ...
Ky(s) = ag + ajs + a3s® + a}s® + ..
K3(s) = af + ajs + ays® + a3s® + ajst
Ky(s) = ay + afs + ajs® + a3s® + agst

Kharitonov theorem The uncertain polynomial P(s) is robustly stable iff the above four
polynomials are stable.

The proof of necessity is easy. The sufficiency proof is hard.

Examples: Let P(s) = s® + 4s? + 5s + 2. This is stable by construction (s +1)?(s + 2). Roots are
negative. Suppose we have interval polynomial P(s) = s® + [3.5,4.5]s? + [4.5,5.5]s + [1.5,2.5]
then the four polynomials are

Ki(s) =s® + 4.5 + 555 +1.5
Ky(s) = s +3.552 + 4.55 + 2.5
Ks(s) = s® + 4.5 +4.55 +1.5
Ky(s) = s® +3.552 + 5.5 + 2.5

For low order polynomials, sometimes have to check less than 4 polynomials Sometimes
only need to check 3 or just 2 as some will come up duplicate.
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reader: check stability of the above.

If we start with stable polynomial P(s), we can ask, by what percentage can we perturb the
coefficients while preserving stability? Similar to asking for radius of stability.

How to set it up? How to use percentage?

P(s) =53 +4(1 + €)s®> + 5(1 + €)s + 2(1 + €)
=P +4[1-€1+€ls?+5(1-¢,1+€)s+2[1-¢,1+¢]

For € <1 we know it is stable. If € denotes the percentage perturbation, we want

€may = SUPE€ : 8.t. robust stability is guaranteed

HW?7 assigned.

1.32 Lecture 30. Thursday December 4 2014

1.32.1 Lecture: Stability, Lyapunov

On the special problem: up to 10 points of the course. Due same time as last HW. Today
topic is related to special problem. can be done with computer simulation or theory.

Back to robust stability. Important to distinguish between dependent and independent

uncertainty When we have intervals [a;,4;] then each coefficient is independent of any

other coefficient. But we can also have coefficients that are dependents on each others, or

correlated. When we do, we call them g’s and write P(s,q) = s" + ZZ;(l) ar(q)s*. For example
P(s,q) = s° + (6 +q1 + 202)5* + (g1 + 4)s + (g5 + 6 + )

This generalized the interval polynomial because we can now write

n-1

P(s,q) =s" + E qksk
k=0

This framework handles non-linear dependence on 4. For example, assume we have problem
with interval matrix. i.e. study the stability of interval matrix

-1+g(1) 2+4g(2)
ag=| 7 !
q@)  -2+4q(4)
Where |(i)] < r. We now find the determinant of A(g) as function of g; which comes to
P(s) = 8> + 53 = 4 = q1) + (2= 94 = 201 + 7192 — 295 — 132)

reader: how large r can be with robust stability still guaranteed

We can over-bound by applying Kharitonov polynomials. Let r = % then
P(s) = s® +[2,4]s + ...

And now check stability of the four polynomials. Note that, if the result is negative, i.e.
Kharitonov polynomials say that P(s) is not stable, it might still be stable. So then we need
to try other tests to check. An example is now given using P(s) = s* + s> + 2qs® + s + g where
1.5 < gleq4 and by over-bounding, we obtain the interval polynomial

P(s) = s* + 3 + 2[-1.5,4]s® + s + [1.5,4]

reader: Show the above leads to 4 polynomials which one or more will be unstable, hence
by over-bounding, we conclude it is not stable. But the it is robustly stable, which can be
verified using Routh table.

Lyapunov Lemma:

This is important for non-linear systems. For linear systems it is not as important. It is
also useful with dependent certainty. To start with, let us forget about uncertainty for now.
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Initial 4 = 0 and consider X = Ax. Lyapunov method will generalize. But using eigenvalues
to check for stability will only work in linear systems.

What does Lyapunov says about stability of X = Ax? Need energy like function V(x) =
=30 x2.

We will study behavior of V(x(t)) along trajectory x(t). If V(x) goes to zero, then x(f) = 0. It
is easier to study scalar function V(x) for stability.

AV ()

To determine if V(x) goes to zero, we look at o < 0
dv d
= T
it~ dx
=xTAx + xTx

= xTAx + (Ax)Tx
=xTAx +xTATx
=xT(A+ A)x
iff (A + AT) is negative definite, then stable. But this definition of V(x) is not satisfactory.

-2 3
but A+ AT =
3 -4

so not stable. (ps. I must have copied something wrong. Since is stable, need to check
notes with someone else).

Here is a counter example. Consider stable system A = [ -

So this energy function V(x) = x'x is not good and need to try a better one.

lemma the n X n matrix A is stable the following conditions is satisfied: Given any n x n
positive definite symmetric matrix Q, the equation ATP + PA = —Q has positive definite
symmetric solution P

Back to the above example. Solving it, using Q = ( :) (1) ], gives
with(LinearAlgebra):
A:=<<-1,3;0,-2>>;
[-1 3]
A= [ ]
[ 0 -2]

P,s:=LyapunovSolve(A,<<-1,0;0,-1>>);

[ 1.25000000000000 0.250000000000000]
P, s := [ 1, 1.
[0.250000000000000 0.250000000000000]

Eigenvalues(P);
[1.30901699437495 + 0. I 1]
[ ]
[0.190983005625053 + 0. I]

Back to energy function. Use V(x) = x'Px instead of V(x) = x'x. If stable, this energy
. . . do _ T
function will satisfy — = —x"Qx < 0.

So for robust stability, use Lyapunov method above and not the eigenvalues method.
perturbation on A:

Consider system & = [AD + AA(q)]x and g is bounded as before, and we are interested in
robust stability. g above can even be time changing and the method will still work. But
eigenvalues method will not work here. Assuming A, is stable without loss of generality,
the system is stable if
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AminQ

AA@)I, <
IAADI, < 57

1.33 Lecture 31. Tuesday September 9 2014 (Review

finals, Routh table)

Review of material for finals:

1.
2.

® N & e

9.

not cumulative
state transition

controlability, definitions, short cut M method. Gramian matrix, LIT and LTV cases.
Cayley Hamilton

Duality for finding conditions for stability.

canonical decomposition. Minimal realization.

Hurwitz matrix, Routh table.

Robust stability, Kharitonov polynomials

uncertainty with correlated and uncorrelated parameters in the polynomial.

For robust stability, use lyapunov method.

Rest of lecture, examples on using Routh table. Showing it can shed more light on the sys-
tem stability more than Hurwitz matrix. For example, it can tell one how many eigenvalues
are unstable as well.

Review of future courses offered in the department. ECE 817,730,719. Taking math 521 is
important for graduate work also. Optimal control vs. analysis direction of study.

1.34 Lecture 32. Thursday December 11 2014. Final

Exam



Chapter 2
HW’s

These are all my HW’s. See the key solutions above for the official solution.

21 HW1

211 CQuestions

Barmish

ECE 717 — Homework Newton

For the mass-spring system depicted on the next page, the input u(t) is taken
to be the displacement of the supporting platform.

(a) Apply Newton’s Laws to obtain the two governing differential equations
of motion in sq, s and w.

(b) With states taken to be x; = $1,79 = S9, 23 = %,m = % and out-
puts y1 = 81,2 = S9, obtain linear time-invariant state equations in the

matrix form & = Ax + Bu, y = Cx + Du.

(¢) Use Simulink to obtain the unit step response for y; and yo using normal-
ized parameter values k1 = ks = 0.5, m; = 1,my = 2. Assume the system is
initially at rest; i.e., z(0) = 0.

(d) Experiment in your simulation with other values of the parameters to
see the variety of possibilities for y;(t) and ya(t).

(e) For the state space system & = Az + Bu, y = Cxz + Du above with
parameters indicated in part (c), use syms in Matlab to obtain the transfer

functions Hi(s) from u to y; and Hs(s) from u to ys.

(f) Using transfer function H;(s), find the differential equation relating out-
put y1 to input w.

79



i.‘._sl(i)_y. S.(t)

M, —JGSM'\.__'I__ m, —n—

5i(1), S;(t) and U (L) are
drsplacements from egoilihriom

Barmish

ECE 717 — Homework Satellite

The motion of a satellite in earth orbit is modelled using polar coordi-
nates (r, 6, ¢) with corresponding thrust components (u,, ug, uy). Now, with m
denoting the mass, the kinetic energy is given by

m . . .

5[7‘2 + (r¢)? + (16 cos ¢)?]

and the potential energy is

p_ _km
r
where £ is a fixed constant. For this system with Lagrangian defined by
L=K-P,
the dynamic behavior of the system is modelled as
atoi o "
i% — % = (t)
dtog o0 N7
i% — % =u (t)
atoy o

(a) Define states 1 = r, o = 7, 3 = 0, x4 = 0, x5 = ¢, 156 = &, in-
puts u; = u,, ug = ug, uz = Uy and outputs y; =1, yo = 0, y3 = ¢. Now gen-
erate state equations and ouput equations in the standard form & = f(z, u);
y=g(z,u).

(b) Of particular interest (for example, for communication satellites), we con-
sider a circular equatorial orbit obtained from (a) with r(¢) = constant = ry;
6 = constant = w; ¢(t) = constant = 0; u(t) = constant = 0 and r3w? = k.
Argue that the satellite will remain in this orbit in the absence of distur-
bances to the system. Hence, describe a steady state solution to the state
equation.

(c) Assuming the satellite strays slightly from the trajectory in (b), de-
scribe the state space pair (A, B) associated with linearization of the system.

Take 79 = mg = 1 and again use rjw® = k.

(d) An alert engineer makes the observation: “The incremental dynamics
for the azimuthal angle is decoupled from the rest of the system.” Explain
more fully what is meant by this statement.

80



Barmish

ECE 717 — Homework Wave Theory

The objective in this problem is to show that some situations which do not
appear to be amenable to our state equation paradigm can actually be “mas-
saged” into our required & = f(z) format. Indeed, we begin with the so
partial differential equation

0*¢ 0% :

92 o sin ¢
from the theory of nonlinear waves. This is the so-called Sine-Gordon equa-
tion.

(a) If we are seeking a travelling wave solution with velocity v, it is obtained
by assuming the special form

o(x,t) = o(x — vt).
Now, taking
( =x—t,

find the ordinary differential equation which ¢ must satisfy.

(b) Next, with state assignment

$1:¢~57 xQZZ?,

obtain state equations of the form

&= f(z).

(c) A special case of the above is the so-called “kink” solution. Assuming
velocity satisfying
0<ov<l,

find special initial conditions z1(0), x2(0) resulting in closed form solution

21(¢) = 4tan™? (exp(—ﬁ)) :

This is the famous “kink” solution. When it was first discovered, it was

surprising to wave theorists because it is rather unusual for a highly nonlinear
partial differential equation to admit a closed form solution.

81
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Barmish

ECE 717 — Homework Robotic Manipulator

A single-link robotic manipulator with a flexible joint is modelled via the
pair of second order differential equations

d*0, ,
IW + mgl SlHQl + k’(@l - 92) = O;
d*0
J?; — k(0 — 6,) = F(t)

where 6; and 6, are angular positions, I and J are moments of inertia, m,[
and g are respectively, link mass, length and the gravitational constant, k
is the link spring constant and f is the applied force.

(a) Obtain a nonlinear state space model & = f(x,u) for this system.
Note: Four states are needed.

(b) Using equilibrium point Z,7 = (0,0), obtain a linearized state space
model (A, B).

(c¢) Using normalized unit-free constants I = J = mgl = k = 1, de-
termine if the linearized model which you obtained is stable.

Barmish

ECE 717 — Homework Time-Varying

Typically, the linear time varying system & = A(t)z cannot be solved in
closed form; numerical methods are needed. However, for some special cases,
a closed form solution can be found in an ad hoc manner. Indeed, consider
the state equation
t
T = l P L ] x

4t
0 1+¢2

with initial condition z(0) = xy with components z1¢, x29. Using basic cal-
culus manipulations, find the solutions z1(¢) and z5(¢). Then with 219 = 1,
find lim;_,» 2(t). Reader: Even though the time-varying eigenvalues of A(t)
are negative, notice that xs(t) does not tend to zero.

2.1.2 Problem 1

part (a)

Starting with the assumption that the ground surface is smooth and there is no friction.
Assuming that all parts are moving in the positive direction to the right. Taking a snap
shot when s, > s; so that the spring k;, is in compression. Spring k; is in compression by
also assuming that s; > u at this instance.

Any other assumptions will also lead to the same set of equations as long as they are used
in consistent way when finding the forces in the springs.

Starting with drawing a free body diagram of each body showing all forces acting on them
based on the above assumption, and then using F = ma to find the equation of motion of
each body m;,m,. The free body diagrams is shown below
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k2(82 —51)
]{72(82 — 81) ]{?1(81 — u)

Now F = ma is applied to each body to obtain the equation of motions. For mass m,
mysy =~k (s, = 51)
k
57 = ——= (s~ 1)
ma
And for mass m;
mysy =k (s = s1) —ky (51— 1)

2 1
Si’ =—(s5—51)— — (57— u)
my my

Part (b)

Now the state space equations are found.

!/ A —
X1 =51 X1 =81 =3
Xy = Sp % Xy =8y =Xy
k k k k
— o =gl =22 - -4 —y) = 2 - - -
X3 =87 Y3 =51 =3 (52 = 51) m1 (51— u) ml (2 —x1) m (v1 —u)
— ! ky
X4 =5, Xy =5y = T (52 —=81) === (x2 — x1)
X3
Xy
= ko k k
x1 (-2 - =2 2y + —u
my k my my 1
2 2
mle m2x2
Hence
A(nxn) Blnxim)
nxm
’ 0 0 10
X} X1 0
x, 0 0 01 X,
A= (2 k) k2 oo oll T |ar®
x3 mq mq nmq x3 my
X, Ll ~ g ofl) o
ny ma
o (xy) D
1 0 0 0)fx 0
e 21+ [ ue
Yo 01 0 0Jfxs 0
Xy

The above is in the form of x” = Ax+ Bu and y = Cx + Du where r = 2 is number of outputs,
m =1 is the number of input and n = 4 is the number of states.



Part(c)
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Using k; = k; = 0.5,m; = 1,m; = 2 and x(0) = 0 now the unit step response for y;,y, is
found using Simulink. With the above values the system becomes

X, o 0 1
%l o 0 o0
4| -1 05 0
x,) (025 -025 0

X1
) (1 0 0 0)|x
) (01 0 0)|xg

X4

0 X1 0
1 0
21007 luw

01]x3 0.5
0 X4 0

0
+ u(t

0 (t)

Using simulink, state space block was used to implement the above. A step input source
was used. Demux was used to send the y; and y, responses to two different time scopes.
Simulation was set for 40 seconds to obtain long enough view of the response. The following
figure shows the step response and the model used.

Y

X' =Ax+Bu
y = Cx+Du —

Step State Space

Fundion Block Parameters: State-Space

State Space

State-space model:
dx/dt = Ax + Bu
y=Cx+ Du

~Parameters

¥1

[» X

A:

<) <Student Version> : yi - o]
File Tools View Simulation Help e

SRS A EEEEE
BOD 0|

y1 step response

0 = 10 15 20 25 30 B 40
Time (secs)

Ready mfm

) <student verson> oy I3l

File Tools View Simulation Help B

[[0010;000 1;-10.500;0.25 -0.25 0 0]
B:

[[0;0;.5;0]
©

[[1000;0100]
D:

[[0;0]

Initial conditions:

o

Absolute tolerance:

auto

State Name: (e.g., 'position')

9 oK Cancel

Help ‘

=

Apply |

S|@|aw i 0 Ff|HRER|S
BQP®| @

y2 step response

0 5 10 15 20 25 30 3B 40
Time (secs)

Ready [Offset=0 [T=40.000

Part(d)

Different values of k;,k, are used to see the effect on the responses. When the spring
stiffness increased, the frequency of oscillation increased. For example, this is a simulation
using k; = 0.5,k = 10,m; = 1,mp = 2 and x(0) = 0. With the above values the system

becomes
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xi 0 0 1 0)(x; 0
x5 0 0 0 1(fx 0
2| = 2| fu
xg -10.5 10 0 Offx3 0.5
Xy 5 -5 0 0){x 0
X1
1 00O 0
Y2 *2 + u(t)
Y2 01 00 X3 0
X4
The step response for yy, v, is
) <Student Version> 3 MI=EA[ ) <studont version> :y: ||
File Tools View Simulation Help B File Tools View Simulation Help B
Gle|law O H|F EEARNB 8|@|a< i O|F|MHHNER| B
AOP 0| @3 BOP O | @

y2 step response y1 step response

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Time (secs) Time (secs)

Ready Offset=0 [T=40.000 | Ready Offset=0 [T=40.000
Part (e)
Given
x' = Ax + Bu
y=Cx+Du

Applying the Laplace transform to the above and using zero initial conditions gives the
following result. In the following, X (s) is the Laplace transform of x (t), Y (s) is the Laplace
transform of y (t), and U (s) is the Laplace transform of u (f)

sX (s) = AX(s)+ BU(s)
Y (s) = CX(s)+ DU ((s)

The first equation above gives X (s) = (s — A)_1 BU (s). Substituting this value of X (s) in the
second equation above results in

Y (s) = C (sl — A) ' BU(s)

Where DU (s) was not used since D is zero matrix in this example. Therefore the system
transfer function matrix is

Y (s) 1
G = — :C I—A B
0= g =C6I-A)
Using numerical values of A, B, C from part(c) gives
-1
1000 0 0 10 0
100 0|l f0o1 00 0 0 01 0
G(s) = S -
0100 0010 -1 05 00 0.5
0 00 1) (025 -025 0 O 0

Hence G (s) is a 2 x 1 vector. The first entry is the transfer function between u and y; and
the second entry is the transfer function between u and y,. The above is evaluated using
Matlab syms as follows
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[0010;0001;-10.500;0.25 -0.25 0 0];
[00 .50]";

C=[1 000;0100];

syms s

G=Cx*inv(s*eye(4)-A)*B

G =

(4*%s~2 + 1)/(8%s~4 + 10*s~2 + 1)

1/(8*s~4 + 10%s~2 + 1)

A
B

From above, the transfer functions are

Yi(s) | 45?41
H, (s) = UG) — 8s%+10s2+1
_ Yz(s) _ 1
H (s) = UGs)  8s4+10s2+1

Part (f)
Using H; (s) above
Y (s) (8s* +10s2 +1) = (4s2 +1) U (s)

And taking inverse Laplace transform gives (each s adds one derivative in time)

d* 4 a2
B=F +10=2 +y1 (1) = 475 +u ()

2.1.3 Problem 2

The kinetic energy is given by

m, 2 ) 2
K= 5 (r + (np) + (r@coscp) )
And the potential energy is
P=-—

r

Where k is constant and m is mass of satellite. The Lagrangian is
L=K-P
_m (o, \2 . 2\ km
=7 (r + (rcp) + (r@coscz)) ) + -
The equations of motions of the mass m in each degree of freedom r, 0, ¢ are given by

d JL. JL
EW_W:W(D (1)
d JL JL
$8—9—%—”9(t) (2)
d JL JL

= uy (1) (3)
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Part (a)

Starting with (1) gives find oL _ mrd? + mr (9 oS </))2 _ b and 2 = i, hence (1) becomes
g g ar 2 ar

mi — mr (q)z + (9 oS ¢)2) + kr—T = u, (t)

Hence
, ; : 2\ k1
= r(gbz + (Gcosqb) )— 5+~ (t)
Similarly for (2), % =0 and g—g = mOr? cos? ¢, and
d JL so . o - _
190 " m (Qr cos” ¢ + 2011 cos® ¢ — 20¢r cos ¢ sin qb)

= mr cos ¢ (r cos ¢ + 207 cos ¢ — 20¢r sin qb)
And (2) becomes
mr cos ¢ (Qr cos ¢ + 20i cos ¢ — 20¢r sin qb) = ug (t)

o 26 (7 —¢rsing) = t
rcos ¢ + (rcosqb qbrsmqb) mrcoscpu@()
0 =-20 (i — ¢rsi t
7 Cos @ (rCOS(p qbrsm(())+mrcos¢u9()
Hence
5 200 o a 1
0= - + 29¢tanq§ + mﬂ@ (t)
Similarly for (3), j—;; = -mr?0? cos ¢ sin ¢ and Z—j.) = mr?¢, and %j—; =m (2r1”qi> + rzc'ﬁ) hence

(3) becomes
mr (ngi) +r (gi) + 62 cos ¢ sin gi))) = ug ()

. " . 1
2 + 1 + r6? cos psin ¢ = — U (t)

Hence

¢ = —@ - 62 cos psin + #uqﬁ (t)




The state space becomes

Xy =7 x] i
Xy =7 x5 7
x3=0 ixg _ 9:
x4 =0 Xy 0
X5 = ¢ X5 ¢
Xe = ¢ X6 ¢

X2

Xq

2
— XX + 2x4xg tan xs +
1

X6

f1(x,u)
fa(x,u)
f3(x,u)
falx,u)
f5(x, u)
S (x, 1)

The output equation is now found. y; =7 =x1,y, = 0 = x3,y3 = ¢ = x5, hence

y1) (1 00 0
=10 0 1 0
ys) 0 0 0 0

Part (b)

7

r¢? + r6? cos? ¢ — 752 + %ur 03]

0

2 . 1
—;97" + ZQCP tangi) + m”@ (t)

¢

2. o : 1
—=p — 0% cos psind + —u, (1)

ko1
X1 (x% + (x4 cos x5)2) - =+ —u,(t)
X1 m

1

mx? cos? xs o ()

_ o O

o O O

— 2 oxg — X2 COS X5 SN X5 + —— 11, (£)
- ¥2%6 ~ X} 5SINX5 + o3l

X1
X2
X3
X4

X5

X6

Applying the values given to the state vector x results in

X1 r

Xo 2

X3 9
X = =\ .=

X4 0

X5 ¢

Xe ¢

And

u, 0
u= Ug | = 0
M(f) 0

o
0

wt

IR
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It is seen that the state vector x now has zero in all the components that can change the
orbit from being in the equatorial orbit. Since the input u = 0 then this state will not

change. The satellite will remain in this orbit.
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Part(c)

To obtain x” at (x + Ax, &t + Au) then f (X + Ax, @1 + Au) is evaluated using Taylor expansion
and higher order terms are ignored. This results in the A, B matrices as follows

0 since equilibrium

o ——"" g of
fx+Ax, i+ Au) = f(x, ) + &—Ax + a—Au +H.O.T
X =% u -
In matrix form, the above is
9f1 If1 If1 9f1 f1 f1
(9_xle1 a—szxz a—xéAx6 ﬂAMl a—uzAuz 3—u3AM3
9f2 9fs 9f2 9fs 9fs 9f2
a—MAxl a_szxz a—xéAx6 (9—ulAM1 3—1/12A1/l2 T%AI/%
fG+Aoa+An=| f N
%1 Axl 9% AXz 9% AX6 ) iy Au1 E Auz E Al/lg, -
Therefore
h oh . .. ofh N
dx;  Ixp dxg Axq du;  Jdup  dug
axl 8x1 ¢9X6 A 2 (91/[1 (9112 (91/13 Aul
: . X . :
fE+Ax,n+Au)=]| - ' A3 +| - : Ay
: .. . X, . . .
4 Au3
: : Axs : :
e e .. ... ... % Axg) |2fe 2f6 2fe
axl axz (9}(6 (J_C,it) (91/[1 &uz (91/[3 (J_(,l_l)

T
Each component in the above is now evaluated and A, B are evaluated at X = (ro 0 wt w O 0) S0 =

(0 0 0) in order to obtain A, B. Since f; (x,u) = x,, then 2_2

=1 and all other values are
zero. Since f; (x,u) = x; (x% + (x4 cOS x5)2) - kz + Zu, () then
ber m
07f2 2 2 k
&—361 = (x6 + (x4 COS X5) ) + Zx_‘;’
9fa
22 _po
5x2
of2
&X3
d
8_2 = 2X1X4 COS
of2
83('5
of2

(9X6

=0
2 x5

= —2x1x5 COS X5 Sin x5

=0



Since f3(x,u) = x4 then

2
—x—x4x2 + ZX4X6
1

Since f5(x,u) = x¢ then

sin xs

93

8x4
1

COos

X5

dfs

ug () then
5

cos? x,
9fa
8x1
ofs __2
8X2 X1
ofa
83(3
dIfy
8__%4 = —x—1X2 + 23(6

9fs

sin x5

COS X5

2u g sec? x5 tan xs

= 2x4xq sec? (x5) +
8.7(5

I

=2x,tanx
EPS 4 5

2

mxj

ax6

2 2 . 1
—Zx,Xg — X2 COS X5 Sin x5 + — 1, (f) then
o X2%6 — Xy 5 5+ 2 ¢ ()

Therefore, the linearized A matrix i

0

2 2 k
(x6 + (x4 CcOS X5) ) + ZE

0
0

0
21/1
i 0

2fs
ﬁxl

2fs
(9X2

9fe

&X3

ife

(9.7C4

9fe

8x5

2fs
8x6

1

2

= —m—x%uq)
: 2

= —sz

=0

= —2X4 COS X5 Sin X5

= —x5 cos? x5 + x5 sin® xs

2
= —-——X
X1 2

0

2X1X4 COS

1

2X5

sin x5

2
-——Xx;+2

X2t 2%
0

—2x4 COS X5 8in X5

COS X5

0
—2x1xﬁ COS X5 Sin X5

0

2ug sec? x5 tan xs

2x4%g sec? (x5) +
mx%
0

—x2 cos? x5 + x5 sin® xs

90

=1 and all other components are zero. And since f, (x,u) =

=1 and all other components are zero. Finally, since fq (x,u) =

0
0

0

2x4 tan xs
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T
The above is evaluated at X = (ro 0 wt w O 0) = (O 0 0) which results in
0 1 0 0 0 0
(0 + (w cos 0)2) + 2% 0 0 2rgw cos? 0 —-2row? cos0sin 0 0
0
0 0 0 1 0 0
A= 2 2 sin0 2 2ug sec?(0) tan(0)
0 @ 0 ~ 0)+2(0) — =0 2w (0) sec= (0) + R — 2w tan (0)
0 0 0 0 0 1
~2.(0) ~20) 0 —2wcos0sin0 —w? o820 + w?sin2 0 ~20)
mrg o o
0 1 0 O 0 O
w2+2§3 0 0 2w 0 0
0
B 0 0 0 1 0 O
0 200 0 0 0
o
0 0 0 0 0 1
0 0 0 0 -w? 0
Using ry =1,m =1 and k = r3w? then the above becomes
0 0 0 0 O
302 0 0 20 0 O
0 0 0 1 0 0
A=
0 20 0 0 0 O
0 0o 0 0 0 1
0 0 0 -w? 0
The B matrix is now found. Since fl (x,u) = xp, then % =0 fori =1---3. And since
fal(x,u) =x; (x% + (x4 COS X5) ) - £ + ur (t) then 8f2 == and the other two components are
zero. Since f3 (x,u) = x4 then =2 f3 =0fori=1---3. And since f, (x,u) = ——x4x2+2x4x6 Sinxs
X5
f4 _ 1 _
R xsu@ ) then = —mx% prvT and the other two components are zero. Since f5 (x, u) =
Xg then af5 =0fori=1---3. Finally, since f4 (x,u) = ——x2x6 X3 oS X5 Sin x5 + —u¢ (t) then
% 1

-~ = — and the other two components are zero. Hence the B matrix becomes
LS

0 0 0

0 0

m

0 0 0

B = 1

0 ma? cos? x5 0

0 0 0
1

0 0 —

3
=
—N

T
The above is evaluated at X = (ro 0 wt w 0 O) which results in

0 0 0 0 0 0

L0 ol [+ o o

m m

0 0 0 0 0 0

B = 1 = 1

0 mr cos2 0 0 0 m_r(z) 0

0 0 0 0 0 0
1 1

0 0 m_r% 0 0 m_r%




And using rp =1, m =1 it reduces to

o O B O O O
_ O O O O O

o O O © = O

Part d

The linearized A matrix found above is

0 1 00j{0 O

32 0 020|0 0

0 0 0100
A= 1

0 200 0 0 0

0 0 000 1

0 0 00 -0 0
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This shows that due to zeros everywhere in the linkage between the states 7,7/, 0, 0" and the
states ¢, ¢’, these states are decoupled. What this means is that motion can be analyzed
in the ¢, ¢’ states as its own system without having to carry along other terms from the
other states. This simplifies both the analysis and design for these parts of the system since
they are decoupled from each others. The above decoupling is also present in the B and

C matrices.

2.1.4 Problem 3

part (a)

ot

5= 5e(5) -2 (@5)- (@) - %%

Using chain rule, and using % =1and £ = the

And

do
dc

)3 = el

P 9 (¢ d¢p 9C ¢ do
o2 o”t((?t) t(d_CE) ( (o )) ( (o ))at

d2
_ 2P0
dc2
Hence the PDE becomes the ODE
&> 2p
d_CZ - vzd_C2 = SlH(P(C)

Hence the differential equation is

Part (b)

Letx; =¢,x, = dC’ hence

X2

d _dg
n=¢) @ [M=y
N e ol A i
27 xzzd_CZ 1-02

dqﬁ d2¢
dc) ac
(¢< ))(—v)

(1)

n the following, ¢ is written as ¢ to make the notation more clear, but it is meant to be the special form

¢ that is being used in all these calculations
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Hence x” = f (x) becomes

Part (c)

Equation (1) is solved, and then the result is compared to the so called "kink" solution
provided in order to determine what the constant of integration are. The constant of

integration will be x; (0) and x, (0). Starting by multiplying both sides of (1) by Z—qg results

in
dpdp . do
(1 - '02) d_CZd_C = Sln(ﬁ)%
Or
d*¢ dop
(1-?)— 7z gcc = sin gdo

Now both sides are integrated. The RHS gives f sin ¢pd¢ = - cos ((p) +c; and the LHS gives

f(l—UZ)%Z_‘gdc:(l ?) = (i(g)

2

This is becuase if (Z—(é) is differentiated, using chain rule, the result will be the integrand.
1 (20" o 2

Since differentiating -~ (E) w.r.t. C gives iz which is the integrand in the LHS. No

need to introduced a new integration of constant again here as it can be absorbed with c;.
Therefore, the result after integration once is

(1-02) 1 f¢)__m4@+q @

To make some progress now, assuming the following initial conditions x; (0) = 0 = ¢ and

X (0)=0= %. Using these initial conditions results in

=1
Equation (2) now becomes
()
dc 2
1-cos (gb) ) (1 - vz)
1 dp 2

= (3)
1—cos(cp) dc 1-22

From trigonometric tables the relation sing = £, 1_020 °% is used, therefore /1 - cos (gb) =
J_r\/zsing and (3) becomes

1 dp 2
£V2sin 2 4C Vi-?
+ a¢ = 2 dc
sin 2 1-02
2
Doing integration again
s [ 22 ‘f@ )
Vi-o?

SlH -
2



94

From tables (or using substitutions) f =2In (t ( )) hence (4) becomes

Sln =

2o tan (£ )) =@

tan(?) = exp (i ji)

Therefore
% = arctan (i exp (51__%))
(01 sarctan 0o S22
If (o = 0 then
= 4arctan (i exp (\/%))

This is the answer we are asked to show. Hence the initial conditions needed to obtain
this answer are x; (0) = 0 and x, (0) =

2.1.5 Problem 4
The robotic arm coupled differential equations are
107 + mglsin0; + k(61— 0,) =0
— k(61 -62) =F (1)

Part a
Let
X1 = 81 Xi 91 61 X3
d /
x; = 0, & x| (62 l sz B l X4 .
- - m . - m .
X3 = ’1 x’3 61’ Tg S1n 0] + T (61 - 62) o8 Simmxq — } (xl - .X'z)
’ ’ ” k 1 1
Xy = 62 Xy 62 j (81 - 62) + TF (t) } (Xl - x2) + EF (t)
fl (x/ M)
— f2 (X, u)
f3 (xr 1/[)
f4 (xl 1/[)

Where u, the input, is F () in this example, but the letter u is used since it is the common
notation.

Part b
Let equilibrium point be (%, #) = (0,0). The system is now linearized around this point.
dh h h o Ifi
ox1  dx; dx3  dxy Axq u
on o on ol [ |5
- = _ axl z9x2 l9X3 3x4 2 &_
f(X+Ax, i+ Au) = s s s Ifs Axs + 9_}’2 Au
axq dxy dxs dxy du
o s s | \Axg) |22
v dxp dx dxg) g I’ (z,m)
0 0 10 Axq 0
0 0 01 Axy 0 A
= + u
—ngl COSXp — é I% 00 Axz| |0
k 1
- -—- 00 Ax -
J J (x,71) ‘ e



95

The above is evaluated at (%, i) = (0,0) giving

0 0 1 0
A 0 0 01

k k

o 3 00

—_-0O O O

Part c

Using values [ = ] = mgl = k =1, the A matrix becomes

0 0 10
o o0 01
-2 1 00

1 -100

The real part of the eigenvalues of this matrix are

A=[0 01 0;0001;-2100;1 -100];
EDU>> real(eig(A))

ans =

2.9302e-18

2.9302e-18

-3.1554e-30

-3.1554e-30

There is no positive real part. The real part of the eigenvalues are effectively zero. They
are pure complex conjugate values. Hence the system is stable (sometimes also called
marginally stable in this case).

21.6 Problem 5

solution

With initial conditions 1 (0) = 10
x7 (0) X0

X, () is first solved since it does not depend on x; (t) and then the solution is used to solve
for x (). The differential equation for x; (¢) is

dX2 _ -4t
it 1+2°72
d —4t
ﬁ = dt
X2 1+1¢2
Integrating
1
Inx, =1In 5| +e¢
(1 + t2)
1
Xy =¢C >
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When ¢ = 0, x, (0) = x50, hence ¢ = x5y and

%2 (1) = (142

Now since x; () was found, it is used to obtain x; (t). The differential equation for x; (t) is

dxl t +
—— =X +X
a1+
dxl + t 1
dt 1+t 20(1+t2)2
t
—d
The integrating factor is I = ef ne = (1 + tz), hence the solution to the above is
d(Ixq) = xp9 3
(1 + tz)
Integrating

Hence, dividing by I gives the final solution
G

t
xq (t) = Y07zt (1 t2)
+

When ¢ = 0,x; (0) = x;9, hence ¢, = x1g and the solution becomes
t X10

xq (t) =Y \/m

Now we are asked to let x;y =1, hence x; (t) becomes

oy 1
xl()—xzom"‘\/ﬁ

Now taking the limit of x (t),_,  gives

x1(t) =0

Using Matlab syms, these can be solved as follows

clear all

syms x1(t) x2(t) t x10 x20
eql=diff(x1l,t)== -t/(1+t"2)*x1+x2;
eq2=diff (x2,t)== -(4xt)/(1+t~2)*x2;
[x1S01,x2S0l1]=dsolve(eql,eq2,x1(0)==1)
x1S0l =

1/(t~2 + 1)°(1/2) + (C2xt)/(t"2 + 1)
x2S0l =

Cc2/(t"2 + 1)~2
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2.1.7 key solution

SOLUTION NEWTON

’QPP‘j'%’ Newton's law m, | I?(u(e) S ﬁ))
b, (5:0-5(6)
ma ij:z - kz (5.&)-5,“:))
‘“'ﬂ"}l |

@ Viith  Staly voriables  x.(t) £ S(L), % (¢) 2SH
Ta(t) = gg: X, () - ds, and obtain stale ©guatians
1" matrix focm. 5 o I O , c?
W)z (8, O O L X4 [py [LE

O

2

a B




-

measored oobputé: d.iopla@men[o ;Jj mMaunped
S Y (k) = Xi(t)
Ya (&) = Xy &)

In matcix form H(b) =ﬁ)? 8 gj:c(t)

Smulation

é-) %t—ﬂ}”'{ ~4:)

NE! ()

P
® ®
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L L o
3 5 [7e) ol ) — o = n — i
el o

ssssss
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Part (e): Simple Matlab code
syms s

k 1=0.5;

k 2 =0.5;

m_1-=1;
m_2 = 2;

A=[0010;0001;-(k_1+k 2/m_1k 2/m_100;...
k_2/m_2 -k_2/m_2 0 0];

[0; 0; k_1/m_1; 0];

=[1000];

[0100];

1
2

pu

C_1%inv(s*eye(4) - A*B + D
C_2%inv(s*eye(4) - AY*B + D

T T T OO

1
2

Mith output

>> H 1=
(4*s"2+1)/(8*s"4+10*s"2+1)
>>» H 2 =
1/(8*s"4+10*s"2+1)
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S_o|ut|on Sate llite

Cﬂlcolahrzs? deryvatives 10 Lagraﬁje S eguatiens,

we obtain

M (P - re)de) cosd®) - rd'el+k )= U (&)
ret) @

to simply notation , drop A
m(&ricos’ + 2rtd cos’d -2r'6¢ cosd sing)

. = ©
m(¢r2+raézco\5§f}«5fﬂ¢f2rfgb) = 'LL¢ ©

Substitsle stale vaciables aod re-wrile vectorrally

. %
X, X105 cos ks » x XE- R+ U
% | = % oo om
X L
‘3 JI 2—;5'_:"'..-.5.‘<I - 2“1)55 Biﬂ:{;s + UZ "
X, X, — R
| ;: ’ COS %5 m X coS ks
B oo® X¢ ,
in; ~ %1 cos x o -2
e 4 COSX 0NN LYy Xy, U,
() Yoo X Y%

fx), u {Jf o



=

Yo e X, Yo% Y3 = X%s and 0 ve cbor /matrix form

O O
o o |xX®)
J O

gu(mu(@) = Cx(k) " lineac

bt %1y =0, %= wt, %= W,
X = Xeg =0 and uUE)z O 1 * and obtan

. e ] ®
S T [f’l
r2 s ,i o
w 3 or=p o
e O
@) | -
0 |

= /

Le., all staleo remaoin at- Eheir constaat value except
¢ ® which chaaeep at a constant rale (ao it

;',sbou]d) HG‘GUZJ Ehe traje(.f:orj remains ;: ved - Thareﬁre

an @%u{{nbr\um solotion @ gwﬁn fy
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fo
A
X(t) = | ©° ; W) =0
wt
w
O
O
(b incremental e%ua{:ions:ﬂﬁ(ﬁ) = @f/&%fﬁ)
QK
+ _JC/ALLC{:) . £0,u'e)
QU o, wriey Ay(e) = a@f/ Ax(e) *.@5/ AU)
- AT e ) urte)

%r!};rm;
yi@’dD Use k- LOI @:ﬂ
DL, (£) = Dx,(t) ; Bx,(t)= BusfAr,(t) + 2w AXy )

r}j dffecentiations 10 # (with r-m, <)

DY (6) = DKy (2) 1 Aa(e) - 20 Bry(e) + DUy (e)
B (€) = BXY, (&) AR (k) = - DK )+ AU E)

ond 1 matrix  for m

%
O 1 0 ©'c O ©C o
Ax(t) = [3 0 0 W' 0 © égg
: O B e i D o ) AXE * — Oﬂu
dotte Jdw o0 o0 O e
h,:ej Lf—\.-_Q_..-____”“_-H-F-- 0o ®
);O;Porl: O o o O: Oz o O |
) o o O .0 .—u) Oj



105

o

Solvt 100 of the “4 ¢ L AX, ’ eguations are

mdepeodent ‘?f L\,Z,Q“ and 4U; only enters
nto Ars, AX, €goations ; ie, we caw decovple

the 6 -dimensicna) system into Z s maller systems

. Ol 00 o O Noo
AX @) = /[, 2
3070 02w [Ax(t) + |1 OfAu) inlractin
© 0 o ! & Q
& Subsystems
o -2w o0 ©O
aF
aad the

ﬂ)éiﬁ)‘ o A)?,(t)+[ojAa,(~t) °”5'”°‘J
o ! system

w o




106

Jpo L O

T ® siag
bxl b‘tz
—_
55[1"6): qS(X—-y{)

a) Let CL.{JM

T o= - »t L dham 01?‘&/;(

c};r - —wdt
,a.w?;_ - Q‘E- R EE
o7

- _6_;. - éév

o 2% ot
ézé _ bza _ i(a¢
< Jx.

axt S\ _’) >3 (S; ~

= (2
2129 / ax
- 51_@
>3t
5 :bji: ——bg OF =2t
¥ ot T ot >
1 —‘j ¢ > béu 2%
}(ﬁ_b{ —_auéi):__v__’
bt';» bf’z zt( at az{ . —
R
>3°
= 515




)

<)

o)

~
6’}'&]‘63 . ®, = &
Xz = i;z_
0%
;‘u‘» Ra
?(.l = Sl X
=)

Seg S|W«&q:t/\'<f'\ G.lfLCAdLQCl

0 vt [ (701

Xile) = b Un_‘(o)‘— il

T dind  xate) w{’%‘t x2(t) by

. ‘ =3 -
¥z )= x. 1) = 5 p (ijl) ( Jioo >
) o B S e o — 2
4 exp [ = E
* F ( Jl-y1>
(7=)
ool = 24 e [T )
T _ 27
f—» [+ 07(,)( in—-‘vq

¥z {o)= -~ 4 cd . 2
ITENCE it

nolt {_\A;_t o<« ey

)
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JE—

LQ'(,J du-k fi\J s.:&"u‘cm
[ = av:-’ | - ¢ 3
SRR )W?{J,::J]
X (1) : " _ﬁfi(;—r}f )
-

1+ e (Ti)
e ‘\M L‘» MM’#J

Hy(3) = Sin (x0)
Pe o
(_F} Lv’\ S Cdeﬂ-Q ;(1(%') 4((31 ; '5}”(.2 )..(L = Xo
_{L‘L"‘ X2 = ;Z|
) 7 o
®= (1) = %.(?)—_ -4 ex‘)(‘l"’ﬁ(l) v‘ J'“)]-H
Jl—vL

[i-ﬁ HF(_F_Lﬂ
‘K @X'r(

£

et WF(—jfw” ) ( JLL )J
e [ ]
[ 1+ o (i )

it

S;n()(,)
-t
S;n(x') { Sn‘ - ! \
N ! Y Ao d
e . )» 1, (MP(JI—\;Z))J
- I S;nLW 0(]
-t
ahong
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S (um[): 2 sin{zu Yo (2)

- 21_2{3« . !'tj?’a
|+ q [ +15
= Ay - 4y
(14 gt )
- c;m—l r o ,':_:E—.-
o = ‘( L m(‘\) ( I )-5
7 hew
- _ _ <
bt s & Lo ) U e i)
_______ t — _ T
L]+ O’XID( J,‘Z,v;)jz
A han g\,,(i‘) . I s.‘ﬂ(#oé) = >'<a(€) Ve(;-[,‘gcl
“C—VT f— vt



#1(t) = 2(1)

mgl
da(t) = —2

sinzq (1) — %(a:l(t) — z3(t))
#3(t) = z4(2)

. k 1

#1(6) = (@1 () = @a(®)) + SFO

Take the nominal points as (214, 250y &30, Tans fn ). then the matrices A and B

are
. Og 1 ? 0 0
: 112 08 T, )
A_ _ _ ng IL,U Lk 0 T 0 B _ 0
? 0 OL 11’ 0
: : 1
7 0 -7 0 7

Assuming that the output variable is equal to the link’s angular position, that is

y(t) = «1(t). the matrices C and D are given by

C=[1 0 0 0], D=0
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Solubon Time - \/wq mg

Begin wikh Note: Scalar eg”
)4 _ “_H_t ¥ X = a)x has §("Jt
Tt Solutwon o) 0 xy

wuwh Solutron 'Sot‘i—‘— 1
e
X,0) = € x,(?)
-2 \05 (H‘Cl) ‘:

1

' Xqte) =
- Xw So we have L\":D 1
@+L)

NOUO Sk)bs)u{\)\e N to )OC, =
X} - —t )6 + Xr)_o

1+t IRk
NOtQ The Scales Q%UOU(X\ X G(t)X + b( )U'
has S0 lution S ote) j’_q(f)df
X (4] -+ X (0) 5 b(g) ulc)dt
Hence jﬂz dt st ag
X (t) = 6’"*; 58‘"’ Xa0 OT

(l+z")1



t \ 3
- ylegelly b g e)]
X = X0 + j Yoo 4
0 (i+ T
lgebro
aqe'X b I o dt
- 1 Q —_— )
B g e
Xip
‘: t Xq_o

+

Vi L4t
So X\ r) =0 too

, AU
QQQ&Q(I US*{(‘Z the k(&ﬂb?aje Oj’ )

ms’oeac), Lt s QG Sy Lo obrLaud
X, (£)= Xio
et

' [ s to Show
and Q C)ﬂ&\\qumj' pyxercse

(1449

dOd Lhen
X’L({) —_— l"‘"

22 HW2

2.21 Questions

ECE 717 — Homework Set 2

Due Thursday, September 25, 2014
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Barmish

ECE 334 — Homework Glider

(a) The two state equations below were derived from a model for normal-
ized glider dynamics:

T = —sinxy — aaz%;

. —cosxy + a?

XT9 = —————————
T

For a = 1, characterize the set of equilibria.

(b) Verify that one of the equilibria is given by

o [ 08400
~ | —0.7854 |

(¢) Develop a Simulink Model for this nonlinear system and carry out
some simulations for initial conditions which are in some region around
the equilibrium z* in (b) above. Show your simulations in the so-called
phase plane. That is, begin at the point 2*(0) in the (z1,x2) plane and
obtain a plot of (z1(t), z2(t)).

(d) Do your simulations indicate that z* is a stable equilibrium. If so,
estimate a circular domain of attraction via simulation.

(e) Verify your result in (d) by finding the appropriate linearization matrix
and then obtaining its eigenvalues.

. Consider the signal flow graph shown in Figure 3.

Figure 3: Signal Flow Graph

(a) Identify all the forward paths and their loop gains.
(b) Identify all the loops.

(c) Find the transfer function from Y] to Yz and from Y] to Y; using Mason’s rule.
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Barmish

ECE 717 — Homework Dimension

(a) For the transfer function

1
(s+1)(s+2)

show that a realization is given by

H(s) =

1 1 0 0
A=|0 -2 1 |; B=|11|; C=[100]; D=o.
0 0 -1 —2

(b) Is the realization above minimal? Explain.

(c) When a unit step is applied to the state space system above which
is initially at rest, an engineer is surprised to see that the some of the
integrators saturate; i.e., one expects output

1 1 1 o

y(t) = LTH()U(5) = Eils(s +1)(s+2) T2 e+ 2°

Explain.

(d) With unit step input, plot all three state responses x;(t) and explain
the stable response you see in view of the saturation in (a).

Barmish

ECE 717 — Homework Realization

Given the 3 x 2 transfer function matrix

HH(S) ng(s)
H(S) = HQl(S) HQQ(S) ,
H31<S) H32(S)

whose entries are proper, describe a state space realization
> =(A,B,C,D)
in terms of the individual realizations
Xij = (Aij, By, Cij, Dij).
Then prove that your realization works by showing that

HE = H(S)
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Barmish
ECE 717 — Homework Singular Value

(a) Consider a MIMO compensator H(s) of appropriate dimension which
is connected in series with a MIMO system G(s) in a unity feedback con-
figuration. Argue that the closed loop transfer matrix is

T(s) = (I +G(s)H(s)) 'G(s)H(s).

(b) For the MIMO system with transfer function matrix

r s
s 252+3s+1
G(s) =
2 S
s—1 5241
with compensator
1
2 2
H(S) = )
9 __1
s+1

find T'(s) and generate its associated closed-loop singular value plot.

Barmish

ECE 717 — Homework Block

(a) Find the transfer function matrix Hy(s) for the LTI system ¥ described
by

(b) Find a realization for the transfer function matrix H(s) having en-
tries

—(s* —4s —5)
§3—s2—9s+9

Hll(s) = H12<S> =

s—1

(c) Is your realization in part (b) minimal? Explain.

2.2.2 Problem 1

Part (a)

561 _ —SiﬂXz_Zx% _ fl(xl’xz) =
{Xl}_{ *ﬁwl }_{fz(xlf’CZ)} T

Letting a =1, equilibrium is found by setting x = 0 giving

0 —sinx, - x2
f(xll Xz) = 0 = —cosx2+x%
X1

The following two equations are solved for x;, x,
—sinx, —x2 =0 (1)
—cosxy + X3

=0 (2)
X1
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Equation (1) gives x2 = —sin x,. Substituting this in (2) gives

—COS Xp — Sin xp

X1
Assuming the state x; is finite, the above implies —cosx, —sinx; = 0 or tanx, = -1 giving

X, = arctan (1) = _4—n +2nm

For n=0,1,2, - integer values . Substituting this value for x, back in (1) gives
x2 = —sinx,

= —sin (_ + 2nn)
—_— 1 —

4
['herefore

1 1
The equilibrium points are (%)4 ,%} and {— (%)4 ,%}. There are infinite number of

equilibrium points for different n values but using n = 0 the above are the two equilibrium
points considered. Approximate numerical values of the points are

{+0.8409, -0.7854}
{—0.8409, —0.7854}

Part (b)

The point x* was found in part(a). To verify that a point is an equilibrium point, & is
evaluated at this point to see if x = 0. Replacing x; by 0.8409 and x, by —0.7854 in

X1 —sinx, - x%

. = - cos xp+a?

X1 E—
X1

Gives

Therefore x* is an equilibrium point.

Part(c)

Simulink model was developed that implements part(a). Simulation was run for 10 seconds.
The block XYgraph was used to generate phase portrait by having x; (t) being the X input

to the block and x, (t) being the Y input to the block. Initial values of x; (0), x; (0) used are
1
1\4

near x* found above, which is x* = (E) . We see that the trajectory stays near the starting

4
point used and is a sink stable point. Increasing the simulation time has no effect, since

the trajectory will move to the sink and not leave it since it is a stable sink. The following
shows the model used, a plot of x; (t),x, () done separately, and the phase portrait plot.
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Integrator

sin(x2)

cos
2

cos(x2)

-

Integrator1

<) <Student Version> : ~|m &
HW2 problem 1 part(
ngEe«;\”pam(] File Tools View Simulation Help ~

(x1* 2-cosx2 x|

X1

0.8409
0.8409
0.8409
0.8409
0.8409
0.8409
0.8409
0.8409
08409

Amplitude

Time (secs)

“

Simulation ends here, at a

\./5.
V) \\
&
" =

/ @ \ * p sink, since this we started
¥ ‘ // near a stable point
=olx] -) <Student Version> : FI - 0] x|
Eile Tools View Simulation Help = Y Plot
© -0.7854 7

-0.7854 ,/

-0.7854 //
L -0.7854 P
% -0.7854 @ // ™
£ = /
C o < 078541 \ ¥

-0.7854 >

oy 0.8409

0 2 4 6 8 10 -0.7854 X(O ) =
Time (secs) -~
vh —0.7854
-0.7854 »
0.8409 08409 08409 08409 0.8409 ) )
. Simulation starts here, close
X Axis .
to a stable point
Part(d)

Yes, simulation indicates x* is stable equilibrium. To estimate the circular domain of
attraction, a circle centered at x* with a radius » was used. The radius was increased in
small increments. A starting initial point at the end of the radius was used to start the
simulation. If the trajectory remained inside the circle and went to the sink at x* then
the radius was increased and the simulation is run again until the trajectory no longer
remained inside the circle. The following are plots show this process for different values
of r. The result shows that the sphere of influence around x* has radius about 12.
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Small code written to generate the above plot

makePlot[f_] := Module[{r, f1, f2, eql, eq2, x10, sol, x20, t, x1, x2},
f1 = -Sin[x2[t]] - x1[t]~2;
f2 = (-Cos[x2[t]] + x1[t]~2)/x1[t];
eql = x1'[t] == f1; eq2 = x2'[t] == £2;
x10 = Sqrt[Sqrt[1/2]1]; x20 = -Pi/4;
r = x10;
sol = {x1[t], x2[t]} /. First@NDSolve[{eql, eq2, x1[0] == r, x2[0] == x20},
{x1[t], x2[t]1}, {t, 0, 100}1;
pl = ParametricPlot[{sol[[1]], sol[[2]]1}, {t, O, 40},
AxesLabel -> {"x1(t)", "x2(t}"

Hh

The following plot is another view of the above but displayed on the same plot
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Phase portrait, sphere of influence radius = 12.193
}Z'EI:'[}

xq(t)

Part(e)

The linearized A matrix for the system, which is the Jacobian of f, is now found.

7 . % .
i f — (— sinx, — ax%) — (— sin x, — ax%)
A _ axl ¢9x2 _ dxq dxy
| df2 df2 | 9 [ -cosxy+x? 9 [-cosxp+x?
axl ¢9x2 axl X1 9)(2 X1
—2ax, —COS Xp
- l(x2+cosx) L sinx
x% 1 2 X 2
Fora=1
-2x; — COS X

A= COS Xp 1 .
1+ —= —sinx,
x5 X1

The eigenvalues are found from

det(AI-A)=0
A+ 2xq COS Xy
1) =
pA) —(1 + Coszxz) A— lsinx2
X1 X1
=A24+ ) (le - Slz xz) + (cos X, —2sinx, + cos? xz)
1

If the real part of each A, is negative, then the system is stable. The numerical values of the
equilibrium points found above are substituted in p (1) and the roots of the characteristic

equation are found to determine the type of stability. For x; = 0.8409, x, = —0.7854 the
roots are

A =-1.26135 +j1.1124

The system is stable since the real part of the eigenvalues is negative. The type of stability
is a sink. For the second equilibrium point x; = —-0.8409, x, = —-0.7854 the roots are

A =1.26135+/1.1124
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At this point the system is not stable since the real part is positive. The type of instability
is a focus. The following is a summary of the result

point eigenvalues of A | stable/unstable

{x1 =0.8409,x, = -0.7854} | -1.26135 +/1.1124 Stable, sink
{x; = -0.8409,x, = -0.7854} | 1.26135+/1.1124 | Not stable, focus

2.2.3 Problem 2
SOLUTION:
Part (a)

For the ?, There are two forward paths. The following diagrams shows them with the
1
gain on each.

—Hg

Fi = G1G2G3G4Gs

F1 = G1G,G3G4Gs

F, = G¢Gs
Now Ay is found for each forward loop. Ay is the Mason A but with F; removed from the
graph. Removing F; removes all the loops, hence

A =1
When removing F, what remains is L, and L3, hence
Ay =1-(Ly +Lj)
=1-(-HyG; — H;3G3)
=1+ (HyG, + H3G3)

For the ?, there is one forward path F; =1, the associated A is
1

Al =1- E —G2H2 - G3H3 - G4G5H4 - H6 - G2G3G4G5H5
+ Y, (-GoH,) (-G4GsHy) + (—G,H,) (—Hg) + (~G3Hs) (~He)

one at a time two at a time

Part(b)

There are 8 loops. The following diagrams shows the loops with the gains
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I—? = G6GSH5H1 Lg = GaG5H4H3H2H1

Azl—(Ll+L2+L3+L4+L5+L6+L7+L8)
+ (L1Ls + L1Ly + L1Lg + LyLy + LyLg + LzLg + L3Ly) — L1L3L¢

Therefore

one at a time
A=1+ H1G1 + H2G2 + H3G3 + H4G4G5 + H5G2G3G4G5 + H6 — G5G6H1H5 - G6G5H4H3H2H1
1)

two at time

three at time

—N—
+ H1G1H3G3H6
Part (c)
For G (s) = =, and using result found above in part (a) and part (b)
Y7
G(s) = Y_1
AlFl + Aze
A
_ (G1G2G3G4Gs) + GeGs (1 + Hy Gy + H3Gs)

A
Where A is given in (1) found in part(b). To obtain %



Y, AF;
Y, A

one at a time
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two ata time

_ 1+ G2H2 + G3H3 + G4G5H4 + H6 + GzG3G4G5H5 + G2H2G4G5H4 + G2H2H6 + G3H3H6

A
_ 1+ G2H2 + G3H3 + G4G5H4 + H6 + G2G3G4G5H5 + G2H2G4G5H4 + G2H2H6 + G3H3H6
B A
2.2.4 Problem 3
Part (a)
Writing H (s) as
1
H() = ———
%) s2 +3s+2
The transfer function from A, B,C,D is
H.(s)=C(sI-A)'B+D
s 00 1 1 0 0
=(1 0 0)[{o s of-[0 -2 1 1
0 0 s 0 0 -1 -2
B 1 2
T s-1(s+2) (s-1)(s+1)(s+2)
3 (s+1)-2
B s=-D(s+1)(s+2)
(s-1)

T G-D)E+1)(5+2)

There is a zero/pole cancellation due to common factor, which results in

1

H. ()= ——
(s) s2 43542

A=[11 0;0 -2 1;0 0 -1];
B=[0;1;-2];

C=[1 0 0];

syms s;
Cxinv((s*eye(3)-A))*B
ans =

simplify(ans) %this causes pole/zero cancelation
1/(s™2 + 3%s + 2)

1/((s - Dx*(s + 2)) - 2/((s - D*(s + D*(s + 2))

Hence it is a realization of H(s)

Part (b)

(A,B,C,D) is | not a minimal realization | of H(s). The actual plant given by H(s) is a
second order. The corresponding differential equation is second order

y” () + 3y () + 2y () = u(t)

Therefore only two states are needed. These are normally taken to be the position and
the velocity (for dynamic system) (y, y’). These variables become x3, x, in the state space
formulation. However, the state space realization contains three states xj, x,, x3. Therefore

it is not minimal.

One way to check if (A, B, C, D) is minimal, is to compare the eigenvalues of A to the poles
of the transfer function to see if they are the same. In this case the eigenvalues of A are
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found from
A0 0 1 1 0
det(AI-A)=||0 A 0|-]0 -2 1| =0
0 0 A 0 0 -1
Hence solving A3 +242-1-2 =0, gives A; = -1,A;, = 1,13 = 2. However the poles of H (s)

are {-1,-2}, therefore, since the eigenvalues of A are not the same as the poles of H(s) then
the realization is not minimal.

Another way to verify if the system is minimal or not, is to check if the system is both
controllable and observable. If one of these tests fail, then it is not a minimal realization.

A=[110;0 -2 1;0 0 -11;
B=[0;1;-21;
z=ctrb(A,B)

Since the rank of the controllability matrix is less than the dimension of the matrix, then
the realization shown is not controllable, which implies it is not minimal. No need to check
for observability.

Part (c)

The differential equation of the system given by realization, not using the pole/zero can-
(s-1)

cellation is found from the transfer function tDeery Siving

77

v +2y -y-2=u"-u

When the input u (t) is a unit step, its derivative becomes a Dirac delta 6 (t) which causes
a short time spike at ¢ = 0 causing the integrator saturation. When any input contains a
derivative of unit step and higher order derivatives (doublets and triplets function), they
will cause Dirac delta to show up at t = 0. (the time the input is applied). Therefore, the
system trajectory in state space is no longer unique and hence the given state vector x can
not be used as state vector.

Part (d)

The following simulink model shows plot of the three states



124

Slj,.:‘."e:s;;;;ii:?s ;‘7 <) <Student Version> : = |I:I M

L File Tools View Simulation Help »
Ty

Integrator 0.5
x1

o
W

=
_ oe—E|

Amplitude

0.2

Integrator 1

@
=

5 Time (secs
P Integr atar 2
x3

, BV <student version> 2 _lolx]

-) <Student Versiohl _ Dil File Tools View Simulation Help 5'
File Tools View Simulation Help <

Amplitude

Amplitude

Time (secs)

The stable response shown above can be explained as follows. Even though the derivative
of the unit step causes a Dirac delta spike, its duration is very short and instantaneous
and occurs at ¢ = 0. Hence it did not affect the overall response shown in the plot above
at steady state since the transient response have died away by then.

2.2.5 Problem 4

The system transfer function is H(s) of order r X m where r is the number of the output
and m is the number of the input. Hence there are 2 inputs and 3 outputs in this example,
i.e. D has size r x m =3 X 2.

number of input (m)

Hyp(s) Hip(s)
H(s) = | H1 () Hp(s)
Hj1 (s) Hsp (s)

Let
A O 0 0 0 0
0 Ap O 0 0
Ao 0 0 Ay 0 0
0 0 0 Ay O 0
0 0 0 0 Az O
0 0 0 0 0 Az
And
B;; O
0 By
B Byy O
0 By
By O
0 Bgxp
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And
Cy Cpb, 0 0 0 0
C=l0 0 Cy Cp 0 0
0 0 0 0 Csy Csg
And
Dy Dy
D ={Dz Dp
D31 Dsp

Now H, (s) = C (sl —A)_1 B + D is evaluated to show it is the same as the given system
transfer function.

sST-Ay 0 0 0 0 0\
0 sl-Ap 0 0 0 0
ooato| O 0 sl-Ay O 0 0
0 0 0 sl-Ap 0 0
0 0 0 0 sl-Ay 0
0 0 0 0 0 sl-As

This sI — A is a diagonal matrix, then its inverse is the matrix with each elements on the
diagonal inverted. Hence the above becomes

(sI - Apy) " 0 0 0 0 0
0 (- Ap)~" 0 0 0 0
. 0 0 sl — Ay ! 0 0 0
(sI - A) 1_ ( 21) L
0 0 0 (sI = Ay) 0 0
0 0 0 0 (sI — Agp) " 0
0 0 0 0 0 (sI — Agp) !
Now C (sI - A)_1 is evaluated
(sI-Aqp) 7! 0 0 0 0 0
0 (sI-Agp) ™" 0 0 0 0
cn Cp 0 0 0 0 o
C(sI—A)_l -1, o o o 0 o 0 0 (sI-Ap1) 0 1 0 0
0 0 0 (sI-App) 0 0
0 0 0 0 Cs1 Cap 1
0 0 0 0 (sI-Az1)”~ 0
0 0 0 0 0 (s-Ag) ™
Cril-A) ™ Cra(sl-Ap) ™! 0 0 0 0
= 0 0 Canll-Ag)™" Caplsl-Ap) ™" 0 0 ]
0 0 0 0 Cai(sI-Az) ™t Cap(sT-Asp) !
Now C (sI - A)_1 B is evaluated
Cu =A™ CiaGl-Ap)™! 0 0 0 0
CGI-A)'B= 0 0 Cot (51— Ap)™" Cp(sI - Ap) ™! 0 0 J
0 0 0 0 Ca1 (5T = A31)™" Cap(sI - Ap) ™"
Which reduces to
_ B 0
Csl-A)'B=|"%
0 By
By O
-1 -1
Ci1 (I = Aj1) "Byy Cip(sl—Agp) By
-1 -1
=[Cp1 (sI = Ap1) "By Cpo (sl —Ap) By
-1 -1
Ca1(sI = Az1) Bay Csp(sl—Az) " Bap
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Finally, C (sl - A)_1 B + D is evaluated giving

Ciy (I - An) "By Cip(5I—-App) ' By} (Du D
C(I—A)'B+D=|Cy (sI - Ap) By Cop(SI-Ap) ' By |+|Dy Dy
Ca1 (I - Ag1) ' By Cap(SI—Azp) ' By) \Dsy Dsp
Cy1 (I —Ap) ' Byg + Dy Cip(SI— App)™ Byp + Dy
=|Cp (sl - A21)_1 By + Dy Cpp (sl - Azz)_1 Bjy + Do
Ca1 (S — Ag) ' Bag + D3y Cap (I = Azp)™ By + Dy

Hiq (s) Hiz(s)
But the above is | Hy; (s) Ha, (s) | which is what we are asked to show.

Hsp (s) Hsp(s)

2.2.6 Problem 5

Part(a)

Uls) £, £0) H(s)*G(s) - Y(s)

Using standard method used in SISO with attention to dimensions, one can write
E@)=U@B)-Y(s)
Y(s) =E(s)H(s) G (s)

Substituting the first equation above in the second equation to eliminate E (s) gives (the
letter s is dropped below to make the notation it more clear)

Y=(U-Y)HG
= UHG-YHG
Hence
Y+ YHG = UHG

Factoring out H (s) but since these are matrices, this operation generates an identity matrix
with ones on the diagonal now and not scalar one as the case with SISO

Y(I+HG)=UHG
Hence

Y _
G=TEO=U0+HEGE) YH(s)G(s) (1)

Which is what we asked to show. Another method is to use Mason rule. There is one
forward path given by H (s) G (s) and one loop given by —H (s) G (s) where the negative sign
is due to negative feedback, which is assumed throughout. Hence

A=1-(-H(s)G(s)

=1+H(s)G(s)
and A; =1 since removing the forward path removes the loop. Hence
A1 (H(s)G(s))
A

Since these are matrices, one uses matrix inversion in place of division , and the above
becomes

T(s) =

T(s)=(+H(s)G(s) ™ H)G ) (2)

Which is the same as (1).
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Matlab was used to plot the singular value of T (s). The plots shows 2 lines, one for each
eigenvalue, plotted from low frequency of 0.1 to 10° rad/sec. The following shows the plot

and the code used

sigma(T,logspace(-1,3));

h = findobj(gct, 'type','line');
set(h, 'linewidth',1.5);

set(h, 'color','r');

close all

s = tf('s");

G = [1/s s/(2%s~2+3%s+1); 2/(s-1) s/(s~2+1)];
H=[1/s 2; -3 -1/(s+1)];

T = inv(eye(2)+G*H)*G*H

grid
Singular Yalues
20 A B S L A T
i)
2
£
el o !
10" 10” 10" 10* 10
Freguency (rad/s)
2.2.7 Problem 6
Part (a)
The transfer function matrix is given by
H()=C(sI-A)'B+D
-1
1 00 1 2 0 1
01 -1
= sf0 1 0]-14 -1 O o+
0 0 1
0 01 0 0 1
-1
01 -1 s-1 -2 1 0
= -4 s+1 0 0 +[) (1)
0 0 1 1
0 0 s-1 1
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But
-1
s—-1 =2 dingate (A)
_ adjugate
4 s+1 O = T Iot(A) )
0 0 s-
Where

I(SI-A))=06-1D(s+1)(s-1)+2(-4(s-1))
=s3-52-95+9

And adjugate of (sI — A) is cofactor (sI — A)" where

(s+1)(s—1) 4(s-1) 0
cofactor(sI —A)=| 2(s—-1) (s+1)(s-1) 0
0 0 (s=1)(s+1)-38
Hence
adjugate (sI — A) = cofactor (sI — A)T
(s=1)(s+1) 25 -2 0
= 45 -4 (s=-1)(s+1) 0
0 0 (s-1)(s+1)-8
Therefore
) -1 2s5-2 0
| () . — P 2 _
(I=A)" = 55 —grg|4-4 -1 0
0 0 s*-9
And (1) now becomes
-1 2s-2 0 (1
H(s) L O Ny 221 0 |[o]+]°
§)= —————— - -
$3-52-95+910 0 1 ° ° 1
0 0 s2-9)J1
1
1 4s—4 s*-1 9-52 0
= - O —+
$3-52-95+9| 0 0 s%2-9 . 1
_ 1 —s?2+45+5 . 0
T 3 -52-95+9 -9 1

—s2+45+5
— -53+52495-9
s2-9
~$3+52+95-9
—(52—25—8)
= | s3-s2-95+9
s
s—1
Therefore
2
—(s —4s—5)
Hll (S) T $83-52-95+9
and
S
Hy = —
Part (b)

Given the system transfer function

H(s) = (M i)

$3-s2-95+9  s-1
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This new system has one output and two inputs. The system in part(a) had two outputs
and one input. Let

A
4= A 0
0 Ap
And
B
B=|Pu 0
0 By
And
C= (Cn ClZ)
And
D= (Dn Dlz)
Now H, (s) = C (sl - A)_1 B + D is evaluated giving
(sT - Agp) ™" 0 By O
H,.(s)=(C C _ +|\Dy; D
(s) ( 11 12) 0 I-a 0 By, ( 11 12)

B11 0

= (C11 (SI-An)™" Cip (sl - Alz)_l)

}qalD@

= (C11 (SI - Ay1) " By + Dy Crp(5I— App) ™ Bip + D12)
Now the following two equations are solved
- (52 — 45— 5)
§3-52-954+9

_ s
Cio (ST~ App) ' By + Dyp = ——

Cyq (sl - All)_l Bi1+Dy1 =

s—1
Using the companion form, the first equation above results in
0 10
Ap=(0 01
-9 9 1
B11 =|0
1
Ciu=(5 4 -1)
D11 = (O)

And for the second equation i it is first converted to strict proper transfer function by

long division, given 1+ — and now the conversion is carried out for the companion form

giving

Ap = (1)
By, = (1)
Cpp = (1)
Dyp = (1)
Therefore the realization is now found by patching the above into larger matrices as follows
0 1 00
A O 0 010
0 Ap -9 910
0 001
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And
00
B
g [Bu 0)_|0 0
0 Bp) |10
01
And
C:(Cll C12):(5 4 -1 1)
And

D=(Dy; Dip)=(0 1)

Hence in ' = Ax + Bu and y = Cx + Du it becomes

X7 0 1 0 0)fxq) (O O
x0 [0 01 0flx N 0 0ffuy
x5 -9 9 1 0f]x; 1 0|\uy
Xy 0 00 1Jlxy) \0 1
And
X1
X2 Uy
=154 -11 +(0 1
=5 492l 1))
X4

is the realization.

Part (c)

The above is | not a minimal realization | There are 4 states in the realization while the

maximum number of poles in H(s) is 3 which is located in Hq; (s). In other words, the
largest part of the system is a third order differential equation, which needs only 3 states to
fully describe. The system can be found to be not observable but it is controllable. Hence
it fails one of the tests needed to qualify as a minimal realization.
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2.2.8 key solution

x1_dot x1
» W Ll x1
X1 X1_OUT
1
u
Math
Function1
. tu?
a Math
Function
Gain1
x1A-1
x2_dot
X112 < - ;] < -
*, Lt Y
Product X2 X2_OUT
-cos(x2)
\A__A cos(u)
Gaind Fent
\u___ﬂ sinu) (&
Gain2 Fen

f r L)
Tin ST
> O Fu
LR A
ad @
- n "
'—. - ]
[y e o
L\ > >
£
A
=
Student Version of MATLAB



Phase Plot of x : (t) and xz(t)
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(d) First find partials

% = -2 % = — COS Tg;
diUl ! dl‘g 2
0fs 1 Ofy  sinxg
_— = 1 —_— N —_— .

dxq + x3 o8 L2 dz, 1

Now evaluating these at x* leads to linearization matrix

A— —1.6818 —0.7071
N 2 —.8409

Now, using eig(A) in Matlab gives A = —1.26 £+ j1.11. Hence these eigenvalues have
negative real part; i.e., the linearization is stable which is consistent with simulations.
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(2)

Forward paths and their respective loop gains for the 3};{- transfer function:
Ml = G;GzG3G4G5 Al = 1
M; = GG Az =14 G H; + GaH;

Forward paths and their respective loop gains for the % transfer function:

M1 =1

A= 1+G2H2+03H3+G4G5H4+H6+G2G3G405H5+GzG4G5H5H4+G2H2Hs+
G2 H3Hs

All loops:

A =1+G i+ Gy H; + G3Hs + G4GsHy + He + G2G2G4Gs Hs — GsGgHy Hs —
GsGeH Hy H3 Hy+G G3 Hy Hys+ G, G4Gs Hy Hy+ G, H\He+GoGGs Hy Hy+Go Hy Hg+
G3H3Hes — G3GsGeHy Hy Hg + G1GsH  H3He

Y:  G1GaG3GGs + G4GsGs(1 + GoH, + G3H3)

Y, A
Z?_ _ 1+ GgHg + G3H3 + G4G5H4 + Hg + G203G4G5H5
Y, =

A
+G2H2G4G5H4 + Gy HHe + G H3 Hg
A

The key here is that the “circuit” connected to node ¥; can affect (and most likely
will) the transfer function between Y; and Y;. For instance, if Y; were 10 and Y,
were defined to be zero, then Y; would not equal Y;.
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23 HW33

2.3.1 Questions

ECE 717 — Homework Set 3

Due Monday, October 6, 2014 @ 9 AM

Please slide under my door
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Barmish

ECE 717 — Homework Invariance

For the state space system 3 = (A, B, (), a linear feedback control

u(t) = Kz(t) + v(t)

is applied. For simplicity, assume that the system has a single input.
Hence use column vector B = b and row vector K = k.

(a) Find the transfer function for the closed loop system X.

(b) Again assuming a single input (B = b), prove that the controlla-
bility matrices for the open loop and closed loop systems have the same
rank; i.e., we say “controllability is invariant under linear state feedback.”
HINT: Show that any vector z which can be written as a linear combina-
tion of the columns of Cx, can also be written as a linear combination of
the columns of Cyx,, and vice versa.

Barmish

ECE 717 — Homework Design

Consider the LTT system > = (A, b) where

0O 0 10 0
0O 0 01 0
A_—2—100’b_1
1 =100 0

(a) Determine if this system is controllable.
(b) Find the open loop eigenvalues of the system. Is the system stable?

(c¢) Find a transformation matrix 7' taking this system to its compan-
ion canonical form .

(d) Design a feedback gain matrix K such that ¥ has two closed loop
eigenvalues at —1 + 7 and two at —1 — J.

(e) For the original system X find the gain matrix K leading to the same
closed loop eigenvalues as in (d).
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Barmish

ECE 717 — Homework Observability

Suppose X1 = (Ay, By, Ch, Dq) and Yo = (Ag, By, Cy, Dy) are two equiva-
lent systems with the same number of states n, inputs m and outputs r
and that there exits a nonsingular transformation matrix T relating their
states. Assuming the following observability rank condition is satisfied for
each system:

rank Oy, = n
where

C

CA
CA?
Oy =

L CAnil -

Now find a formula for the nonsingular transformation 7" taking > to .

Barmish

ECE 717 — Homework Observer

(a) For the harmonic oscillator described by the state equations #; = wyzs
and ¥9 = —wpr1 and measured output y = x1, design an observer gain ma-
trix L so that the error dynamics have eigenvalues \; = —1 and Ay = —2.
Note that the gains in L will be functions of wy.

(b) Develop a Simulink program to study the performance of your ob-
server. To this end, for wy = 1, 10,100, 1000, perform the following ex-
periment: With system initialized to z1(0) = x2(0) = 1 and observer
initialized to Zy = 0, generate plots of z1(¢) and Z;(¢) on the same graph
and comment on the observer’s ability to track the state. Similarly, study
the tracking of z5(t).

(c¢) With initial conditions as given in (b) above, study the performance of
the observer in the x1 — x5 phase plain. That is, compare the phase plot
of x(t) with that of Z(¢).

(d) Now tune the observer gains with the goal of improving the track-
ing performance. Once you have decided on your final set of gains, repeat
the experiment in part (c). Also explain the rationale for your choice of
gains.

(e) Notice that the initial conditions for the system and the observer are
different. Explain why the problem was formulated in this way.

2.3.2 Problem 1
Part(a)

Given
x' = Ax + bu

y=Cx
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Replacing u with kx + v results in
x' = Ax +b(kx +v)
= Ax + bkx + bv
=(A+bk)x+bv
In the above the dimensions are A,x,,, b,;x1, K1xn, V1x1, Xnx1- L he transfer function is
H,(s)=C(sI-(A+bk) b 1)

2.3.3 Part (b)

Let the controllability matrix for the open loop system (A, b) be C with some rank m, not
necessarily full rank.

C=[b Ab A% - A™p]
We need to show that the rank of closed loop controllability matrix C. will also have the
same rank .
Ca=[b (A+b)b (A+b)’b - (A+bk)""b]

Given any matrix, we know that we can perform elementary column or row operations on
it without changing its rank. In other words, column operations are rank-preserving. And
this is the main tool used to proof this.

For example, we can add the first column to the second, and this will not change the rank
of the matrix. So the idea of the is this: We will perform column operations on each column
C, to convert it back to the same corresponding column of C.

The first step is to expand C; columns in order to see more clearly what operations are
needed. Only the first 3 columns are expanded due to space limitation and this is sufficient
to show the point

Ca=[b Ab+bkb (A2 +(bk) + Abk +bkA)b -]
=[b Ab+bkb A% + bkbkb + Abkb + bkAb -] (2)

The first column of C is the same as the first column of C, so we go to the next column
which is Ab + bkb which we want to make it Ab. post-multiplying the first column by kb and
subtracting the result from the second column makes the second column become Ab.

Now we will work on the third column which is A%b + (bk)2 b + Abkb + bk Ab and search for
column operations that converts this to A%b. If we post-multiply the second column of C
by kb and subtract the result from the third column, now the third column becomes

C.1 (3) = [A%b + bkbkb + Abkb + bk Ab| — [Ab + bkb] kb
= [A%b + bkbkb + Abkb + bk Ab| — [Abkb + bkbkb]
= A2b + bkAb

We still have bkAb left to remove. So we need to do more column operations. If we now
post-multiply the first column by kAb and subtract the result from C, (3), then we finally
obtain C, (3) = A%b. We continue doing this for each column in C, converting each column
to the same columns as C.

This shows that whatever rank C had, then C, will have the same rank. This is what we
are asked to show.
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2.3.4 Problem 2

Part(a)
The controllability matrix C is
C=[v Ab A% A%]

01 0 -2
oo o 1
o0 -2
00 1

We find the rank of this matrix we can exchange the rows to convert it to row echelon form

01 0 -2 1 0 -2 0
00 0 1 01 0 -2
=
1 0 -2 0 00 1 O
00 1 O 00 0 1

We now see that it is full rank, since there are no zero pivots. Hence the rank 4. Since the
rank is the same as n the size of A therefore

the open loop system is controllable

part(b)
p(A) =IAl - Al
A0 -1 0
0 A 0 -1
121 4 0
-11 0 A
=A*+3A%2+3

Now we solve p (A1) = 0. The roots of this characteristic equation (the same as eigenvalues
of A) are found to be

Ay =-034+1.27]
Ay =-0.34-1.27j
Az = +0.34 +1.27]
Ay =+034 +1.27]

We see that there are two eigenvalues whose real part is positive, hence the

open loop system is not stable

part(c)
The target system is the companion form, which is
A 12
0 1 0 0 0
, 0 0 1 0 0
x = x+ | |u
0 0 0 1 0
—dg —ay —dp; —dj 1

Where the last row of A is taken from the characteristic polynomial terms in original A but
in reverse order and by changing the sign. The characteristic polynomial of the original A
was found above, here it is again
P(s) = ays* + a35% + a,s + ay
=st+3s2+3



149

Hence ag = 3,a; = 0,a, = 3,a3 = 0, therefore the target system is

, |0 0 1 0 0
X' = x+| |u
0 0 0 1 0
-3 0 -30 1
Now we find C,C and then find
T=CC! (3)
The controllability matrix C of the original system was found in part (a) as
01 0 -2
00 0 1
C=
10 -2 0
0 0 1
Hence
0012
C1 o 1200
0001
0100

The controllability matrix C is given by the following

C=[p A b A%

00 0 1
100 0
o1 0 -3
10 -3 0
Now we can find T using (3)
00 0 1][0 01 2
.00 1T 01200
01 0 -3|{10 001
1 0 -3 0f[0 1 00
01 0 0]
|0 0o 0 1
It .10 0
0 0 1 -1
To check T we apply it to A and see if we obtain A
A=TAT™
0 0 0o][o 0o 1 0|0 1 0 o
oo 0o 1fjo 0o 0 1ffo 0 0 1
1 -1 0 of|-=2 -1 0 0|1 -1 0 O
0 0 1 -1f|1 -1 0 0fl0 0 1
[0 1 0 0
o0 10
o 0 0 1
30 -3 0

So T has been verified OK.



150

Part(d)
Let the control input be u = Kx + v, where K = [ko ki ky k3]. Therefore the closed loop
system become

x' :Ax+E(I~<x+v)

Adlosed
= (A + l?f()x +bo

Hence
0

Aclosed =

0
0+0[kkkk]
1 00123
0

e}
o o O -
(e}

1

0o 1 0 0
0 0 1 0
o 0 0 1
ko3 ki k-3 ks

The characteristic polynomial of the closed loop A jyseq is found from
p (1) = |/\I - Aclosed|
A -1 0 0
0 A -1 0

0 0 A -1
3-ky -ki 3-ky, A-ks
=4 - /\3k3 + A2 (3 - kz) - Akl + (3 - ko) (5)

We want the above polynomial to be equal to the polynomial with the desired roots given
below, where the two unstable roots of the open loop have now been replaced with the
given two stable roots. The stable roots of the original system are not modified since they
are already stable.

A =-0.34 +1.27]
Ay = —0.34 —1.27]
Az =-1+1j
Ag=-1-j
In other words, we want to force (5) to be the same as the following desired characteristic
polynomial
Pdesign (A) = (A = A1) (A = A2) (A = A3) (A = Ay)
= (4 - (-0.34 +1.27j)) (A - (-0.34 - 1.27))) (A = (-1 +1j)) (A - (-1 -}))
= 14 +2.6813 + 5.088512 + 4.817] + 3.457 (6)
Comparing coefficients of (5) with (6) and solving for k; gives
ks = —2.68
3 -k, =5.0885
ky = —-4.817
(8 —ky) =3.457
Hence
ky = -2.68
k, = -2.0885
ky = -4.817
kg = —0.457

And the required gain vector is

K=[-0457 -4.817 -2.0885 -2.68]
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Part(e)

In the above the gain K vector was found for A based system (the controllable form),
however our original system is A. The gain vector is transformed using T found earlier

K=KT™!
K =KT
01 0 0
000 1
=[-0457 -4.817 -2.0885 -2.68]
1-10 0
0 0 1 -1

Hence

K =[-2.0885 1.6315 -2.68 -2.137]

To verify the above, we now find the eigenvalues of [A - bK] and see if it gives the same
eigenvalues we have designed for under A.

[0 0 1 o] [0
o o0 o0 1| |o
[A +bK] = +| |[-2.0885 16315 -2.68 -2.137]
-2 -1 0 0] |1
1 -1 0 0] |0
0 0 1 0
| o 0 0 1
|-4.0885 0.6315 -2.68 -2.137
1 -1 0 0

The eigenvalues of the above matrix is [—0.34 -1.27j,-0.34 +1.27j,-1-1j,-1 + 1]} and these
are the same eigenvalues used in the design under A.

2.3.5 Problem 3

Let the first system be

x] = Ay1x1 + Biu

y = Cyxy + Dyu @)
And the second system be

x5y = Axxy + Bou

y = Cyx1; + Dyu

And assume there exists a non-singular constant matrix T such that x, = Tx;. We need to
T. By applying this transformation to (1) we obtain the transformations

Ay =TA T

B, = TB,

Cp=CiT™!

D; = Dy

Now, let ©; be the observability matrix for first system given by
C
CoAp

©, =| CA3

Cp AN



Applying the above transformations to ®, results in

C, ClT_l ClT_l
Cr A, (CiT7) (TA T CLAT!
©, =| CA3 |=| (CiTY)(TAT) |=| CA3T!
CA) \(G17h) (TAT ) (AT
Therefore
0, = ®1T_1
®2T = @1
Hence
T = @2_161
2.3.6 Problem 4
Part(a)
The system is given by x’ = Ax;y = Cx
/—ég

0
X

y =m(x1

iH

wo |1%1
0 Xp

X2

The observer state estimator is given by ¥’ = A% + L (y - 9)

This diagram shows the flow for the observer

G144
C1A3

C A}
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T_l = ®1T_1

plant

A

> AB.CD

Lvenberger observer

» D> ABCD

>

T

R = AR+ Bu+L(y-5)

In our case, there is no input u(t) since it is a free system, and it simplifies to

plant

D> AB,

c.o | X,

Lvenberger observer
A

D> _AB,C,D X,

A

-y

R = AR+ Ly -¥)

And the goal is to determine L based on eigenvalue requirements. In the above diagram,

y =Cx and § = Cx.
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Now, Let the error in state estimation be e = (¥ — x), therefore the rate of change of the
error becomes

¢ =(A-LC)e

We need to determine L such that the eigenvalues of (A—-LC) are A; = -1 and A, = -2.
Before showing the design steps using the actual data given in the problem, the design
steps are given below for the general case.

Design steps for finding L

1. Input is A, C and set of desired eigenvalues A;

2. Verify that (A,C) is observable. If so then let A, = AT,B, = C', hence (4,,B,) is
controllable.

3. Find controllability matrix C(A,, B,)

4. Write down the controllability companion form for A,, B,. Let them be called A,, B,.
To do this, we only need to find the characteristic polynomial for A, and read the
coefficients in reverse and change the signs. B, will always have zeros other than the
last row.

5. Find controllability matrix C (AO, Bo)
6. Find T = CC™!

7. Find the closed loop matrix [Ao + BOK] where K = [ko, k;, -+, k,_1] is the gain matrix
we looking to determine.

8. Find the characteristic polynomial of [Ao + 1~301~<], it will be a function of k;

9. Set up the desired polynomial p (1) = (A = A,) (A = A,) --- (A = A,,_;) where A; are the
desired eigenvalues given.

10. Compare coefficients of polynomial from step (9) with the polynomial of step (7)
and solve for k;

11. Now we have found K = [kg, ky, -+, k,_1]. Convert it to K using T as follows: K = KT
12. Find L = -K'. This completes the design.

13. The observer A matrix now becomes [A — LC]

Applying the design of L to the problem

The first step is to check if (A, C) is observable. The observability matrix is
C 1 0
CA 0 Wy

Since the determinant is wg, hence not zero. Then this is invertible and full rank. Hence
(A, C) is observable. Therefore (AT, CT) is controllable pair. Lets call them (A,, B,) so that

0

Wy

we do not have to use transpose in all the notation. Hence A, = AT = (

—a)o] and B, =
0

1
Ccl = [O] Therefore we can design A, + B,K as we did for state feedback to find K, then

use K to determine L using L = K. The controllability matrix for (A,, B,) is

C=(B, A,B,)

2
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And the characteristic equation is

|sI—AT|:O
S @y -0

—y S
PL+wt=0

Hence, the controllability companion form is

- 0 1 0 1
—&yg —q —Wy 0

Therefore the transformation operator T is
T=CC™

i

01+
-wi 0

[ oo 1
B ko—a)(z) kl

It has the following characteristic polynomial
p(A) = A% = Aky + (wf — ko)

Now we want

The desired p* (1) = (A +1) (A + 2) = A2 + 31 + 2. Comparing coefficients of this polynomial
to the above gives

k1:_3
wé—kO:Z
koza)é—Z

Hence, the gain vector is found to be
K = [ko kl] = [0)3—2 —3]

The above K was designed for the controllable companion form. We need to transform it
back to the original (AT, CT) system using T found earlier

K=KT
f-2 ) o)
:(—3 wlo(wg—z))
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Therefore, the observability gain vector is found as
L=-K"

:[—%0@5—2)]

Before continuing, let us verify the eigenvalues of (A — LC) are where they should be now.

o[, S (ot

-3 @y
:[wio(a)g—Z)—a)o 0)
The eigenvalues are -1, 2. Verified.
Now we continue the observer design. The observer is the following system
¥ = At +L(y-9)
= At +L(y-C#)

Or
A y [}
—N——
5(', 0 wo Al 3 X1 52'1
o= Nl ! 10 -1 0)].
[] [—wo 0 )(z) [— (wf - 2)] ( )(sz ( )(xz)
0 @y 5(1 3
= + —
[‘a’o 0 )(xz) (‘i (- 2)) =)
0  wpl(x: 3 (x1 — &1)
—op 0 (%) -2 (3 =2) (1 - &1)
Therefore
5(1 = 0)0sz +L (1) (xl - 5C1)
&) = —wok1 + L(2) (x1 — %1)

Where L(1) =3 and L(2) = _alTo (a)(z) - 2). In part(d), we will change these values to tune

the observer. A Matlab script is written to generate L from different design eigenvalue
locations.

Part(b)

The system we are given is free system, which means it is driven only by initial conditions.
Therefore the model for the plant itself is the following, where wy = 1 was used to test
the free system before adding the observer. The states x;,x, were initialized to 1 in this
example
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<) <Student Version> : Ti

File Tools View Simulation Help ¥

(=[S

¥

B0 w &

G

O P ®| @

Time
Scope
wil
e x _h:.[:\\
s |/' =
Integrator Gain =

Integrator2

Nasser M. Abbasi
Paroblem_4_part_2_free_ssytem.vsdx

w0
-
Gain

y(t) for the free system

Time (secs)

Ready

Offset=0 T=30.000

Now we will add the observer designed in part(a) and compare the observer state estima-
tion to the actual x; of the plant. The model is the following

M |
plant view x1 only
] 1 %1
3 g
Integrator Gain
wi
1 W
- E Pd
Integrator2 Gain1

2 ]

compare x1 with x1_hat

.
Lg

—
1 x1_hat b
5 L(2) >

observer

Integrator

-w0*x1_hat+L(2)*(x1-x1_hat)

/

gan

L]

1 |*2_hat
E w

Integrator3

wi

w0™2_hat+L(1)*(x1-x1_hat)

 (x1-x1_hat)

L(1)*(x1-x1_hat)

problem_4 part_2_full

Tracking of x1 w is given the values {1,10,100,1000} rad/sec and result showing x; (¢), & (¢)

on the same plot is displayed to see how well the observer will estimate the true x; () as
the frequency changes. The result is the following
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Yellow line is original x1 and red line is estimated x1

0)021 600210
) <student Version> : compare x1 with x1_h

EEI B EEEIENE

<) <Student Version> : compare x1 with x1_h

EEIE LI

It took about 1 second for the observer to lock It took about 5 seconds now for the observer to
into x1 with good estimation after that. This lock into x1(t). The initial error was also larger.
difference is also due to using different initial

conditions

Yellow line is original x1 and red line is estimated x1

100 wo = 1000

-) <Student Version> : compare x1 with x1_| <) <Student Version> Figure 1 - o] x|
= o HE*‘(* PEH%R B AR File Edit View Insert Tools Desktop Window Help !

DCHS MR ODRA- | 0B 0D

50 T T T

AN ""h‘“‘ﬂ’”‘ "'dll\ll AU

-100 B

-200 B

-250 - B

L L I I L
0 2000 4000 6000 8000 10000 12000

Now it took about 10 seconds for the estimate to
converge, but initial error is now much larger.
Almost 250 times as large as x1(t) for the first one
second.

Initial overshoot is now larger even larger. At
about 7 seconds the estimate converged to the
actual.

Tracking of x,(t) A plot showing the true x, and %, is now given, similar to the above.
The model was changed slightly to add a sink to plot x,, %, as follows
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plant
maodel_problem_4_part b x2.png
T & | s
— = !

5 L_/

Integrator Gain
wo -

1 *®
L W x compare x2 with x2_hat
Integrator2 Gain1

view 32 only
—

J1 x1_hat é‘_l
7l s L2}
Integratar | (x11_hat)

observer E

L(1)*(x1-x1_hat)

L. 1; ¥2_hat J‘Lﬁ‘\

Integrator3 wi @7

|
w0S2_hat+L (1) wO{x1-x1_hat)

Now the frequency was set to wy =1,10,100,1000 rad/sec and the simulation was run. The
following is the result and the observations



Yellow line is original x2 and red line is estimated x2

wo = 1 rad/sec

) <Student Version> : compare x2 with x2_ha
EERIEERECEIETE

Convergence to x2 took about the same time
as with x1. About 3.5 seconds. The overshoot
is very small compared to when the
frequency is higher

wo = 100 rad/sec
) <Student Version> : compare x2 with x2_hi

gella<i|0%RK | 0a 5

'

hohoh
\

\“ A

)
o
A

\
L
I ‘U“ \\"‘ H |

Nl

-
Ul

Convergence to x2 took 2 seconds, but now we
notice that the overshoot on the negative sign
did not get worst than w=10. | was expecting
the overshoot to get worst to follow from the
last result

wo = 10 rad/sec

<) <Student Version> : compare x2 with x2_hal == i]

Sellax i NS 2 aFs 5

Convergence to x2 took about 2.5 seconds, but
we notice the overshoot on the negative sign is
larger now

@wo = 1000 rad/sec

) <Student Version> : compare x2 with x2_hal

ERIEEREEEIERE

Y WO
\MWWWW gy

The convergence do not see to change with
x2(t) as the frequency is made higher. It takes
about 2.5 second to convergence and the
overshoot remains at the same value it was for
w=100

=10l

Part(c)

The model was changed slightly to add an XY graph as follows
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plant
1 x1
S
5 | }
Integrator Gain -
P
wi XY Graph
1 b
N = >
Integrator2 Gain1
view 2 only
—
1 ¥1_hat
s
Integrator (31-x1_hat)
observer gain

-wl*x1_hat+L(2)"(x1-x1_hat) L{1)*(1-x1_hat)

L. 1 |*2_hat “;
E w
Integrator3 wi é‘—‘
)

W02 _hat+L{1)wl{x1->_hat

problem 4 cskx

The result of the simulation to generate the phase plots is shown below
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wo = 1 rad/sec

_(o/x]

XY Plot
2 :
g 1
(3]
S
B o)
s 20
s >
i
>
At
_2 L L L
-1 0 1
X Axis
X1(t)

wo = 100 rad/sec

_(o/x]

wo = 10 rad/sec

_[o]x]

XY Plot
2 .
1 L
o 0f
Z
> 1t
2t
=
X Axis
X1(t)

@o = 1000 rad/sec
IEIETES

XY Plot XY Plot
2 . 2 .
3 T 2
© -
£ £
I w O 7 e
sz = = 2
S - SEN
2t
-3
X Axis
X1(t)
Part(d)

A small Matlab program was written to tune the observer. This was done by changing
the location of the design eigenvalues and generating new L observer gain vector for each
new set of eigenvalues, then using the new L in the simulink model in part(c) to see the
effect on the phase plot. The goal is to obtain a straight line in the phase plane, since
a straight line indicates that %; is tracking x; well. Few eigenvalues are tried. This table
shows summary of each pair of eigenvalues and the corresponding L vector generated. We
show one final result which was found to be the best one from the ones tried
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eigenvalues L generated by the design script
3
[-1,-2] (original eigenvalues) 1 ( ’ 2)
[-1.5,-2] >
LI, 1 ( 2
[-2,-3] °
T L (w2 -
s (8 -6)
[-2.5,-3.5] ( ° ]
—4£.0, 0. _i 2
m (wd - 8.75)
T ~ (w2 -
T (w2 -
" (a)o 20)

Using the eigenvalues at [-4,-5] the initial overshoot was found to be become small. This
was noticed most for large frequencies. Here is the phase plot of x; — %, using the last entry
in the above table. To make it easier to compare with the original eigenvalues design, a
plot of x;,%; vs. time was also added. This plot shows more clearly that by making the
eigenvalues more negative, the convergence became faster.
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X1 estimate

wo = 1 rad/sec

X(t) and x1(t) vs. time to show effect of changing eigenvalues

(=14

dent Vers

&0 [a <« & |0

Time offset: 0

Time (sec)

= 10 rad/sec

) <student version> SUII=TEY

Time offset: 0

Time (sec)

@wo = 100 rad/sec

) <Student Version> : XY Grz - ||:||£|
XY Plot
2 .
1t _
g
o Of I £
2 E:
> 1t 4 ;
20 ]
3 :
-1 0 1
X Axis
X1(t)
@0
) <studentversion> - crapM[=1F
XY Plot
2 .
1t
3
E o O
z 2
et > 1t
i
<
2|
| -
-1 0 1
X Axis
X1(t)
") <student vesion ot GRR[=I1Y
XY Plot
2 .
2 I
©
S
.ﬁ .2 0 L
o 2
®: > 4t
2t
-3

) <student ersion> s SUI[=IFq

LT

AR AR AR 3{‘ Ayt
UL LC P T L 1 L B T
0 ‘u‘ R i ‘J W WVifh Hu' i TEVATR

TATRVRTRATA TRTATRY

0

Time offset: 0
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oo = 1000 rad/sec

=T

XY Plot

X1 estimate

o]

X(t) and x1(t) vs. time to show effect of changing eigenvalues

=100
0

Time offset: 0

Time (sec)

%snma_design_observer
%Script by Nasser M. Abbasi
%HW3, ECE 717, problem 4 part(d)

%This scripts design the oberver gain vector L to
%allow one to tune the obsever. The input is A,C

%This 1s only meant for 2x2 case for the HW assignment
%This is not a general purpose script.
%0ne can modify the location of the desired eigenvalues
%sfor the matrix (A-LC) to improve the error behavior.
%modify the lambda line below to change the locations of
%the desired eigvalues and run this script, it will print
%sthe final L vector to use in simulink

clear all;

syms w kO k1 s;

A=[0 w;-w 0O];
C=[1 0];

%slambda=[-1,-2]; %HW ones
%slambda=[-1.5,-2.5]; %design eigevalues, change as needed
lambda=[-1,-2]; %design eigevalues, change as needed

%go to the controllability framework so to be able to generate T
%and get the gain vector

Ao = A.';
Bo =C."';

controllabilityMatrix

alpha

[Bo AoxBo]l;
charpoly(Ao);

%sobtain the controllable companion form

AoCompanion
BoCompanion

[0;1];

%find the transformation T matrix
controllabilityMatrixCompanion = [BoCompanion AoCompanionxBoCompanion];
T = controllabilityMatrixCompanion*inv(controllabilityMatrix);

%snow design the controllability gain vector
AoCompanion + BoCompanionx*[kO k1];

Aclosed
Aclosed_poly
design_poly
coeff

charpoly(Aclosed);
(s—lambda(1l))*(s—lambda(2));
sym2poly(design_poly);

[0 1;-alpha(end) —-alpha(end-1)];
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%now solve for kO, kl

k0 = solve( coeff(end)==Aclosed_poly(end),k0);

kl = solve( coeff(end-1)==Aclosed_poly(end-1),kl);
gainVector = [kO k1];

gainVector = gainVectorxT;

L = —gainVector.'

Example use is

EDU>> nma_design_observer
L =

3

-(w"2 - 2)/w

Part(e)

source code listing There are two main reasons, as was explained in class. One is that
we do not know what the initial conditions that the plant starts at, and this could change
each time. But most importantly, the observer could be started at any time during the
operation of the overall system and it does not have to be started at the same instance as
the plant. Since the observer could start at later time, the initial conditions that the plant
was in have been lost and no longer available to the observer. So there will always be some
initial settling time. So having different initial conditions for the plant and the observer is
the more common case.

2.3.7 key solution

ECE 717 — Solution Set 3
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24 HWH4

241 Questions

ECE 717 — Homework Set 4

Due Friday, October 17, 2013
Please slide submissions under my door.

Barmish

ECE 717 — Homework Criterion

For the state-space system ¥ = (A, B), suppose that there exists some
non-zero vector a and a complex number A\ such that

alA = \aTl

and
a’'B = 0.

Now show that (A, B) is NOT a controllable pair. Remark: This condition
is also necessary for lack of controllability but its proof involves results to
be developed later in the course.

Barmish

ECE 717 — Homework Convergence

Consider the sequence of functions defined on [0, c0) by

t2
T + nt?

(1)

forn=1,2,3..... Find the pointwise limit f. Does this sequence converge
uniformly to 7 Explain.

Barmish

ECE 717 — Homework Integrals

Consider the sequence of functions defined on [0, 1] by
fi(t) = k(1 — %)

for k =1,2,3.... Compute

Now let f be the pointwise limit of the f; and compute the integral of f
(also from 0 to 1). Are the two computed quantities equal? Discuss.
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Barmish

ECE 717 — Homework Nonlinear Picard

For the nonlinear state equation
‘f - f(x'/ t)?

consider the Picard iteration scheme beginning with 2°(t) = 2° with iterative step
t
1) = 2"+ [ f(a ). ).
Then, for the two state nonlinear system described by
T] = COS T

and
1'2 = th’l + €7t$2,

find the first three Picard iterates z'(t), z(t) and 23(¢) corresponding to initial conditions

Also provide plots of z1(t) and z5(t) for each Picard iterate. Are your solutions converg-
ing? Discuss.

Note: To maximize learning, I suggest you do this problem by hand with the integral
for 23(t) facilitated with Matlab syms.

Barmish

ECE 717 — Homework Saturation

A scalar nonlinear system is described by

&= f(x)
with f(x) being a saturation nonlinearity given by
1
flz) = ot
for |z| < 2,
flx)=1
for x > 2 and
flz) =—1

for x < —2. Now for z(0) = 1, first plot f(z) and then, by hand, find
Picard iterates x'(t) and 2%(t).

2.4.2 Problem1

A Matrix C is rank deficient if there exist a non-zero vector a such that Ca = 0. This
means that the Null space of C is not empty. The idea of the proof is to apply this to the
controllability matrix itself to check if C is full rank or not. The left null space is used
instead. If the left null space of C is not empty, this implies Null space of C is also not
empty, hence C is rank deficient, which gives the proof.

The first step is to find C
C=[B AB A?B - A"'B]

a’C is now found to see if it produces zero row vector. If it does, then the left null space
of C is not empty.

a'C=a"[B AB A’B - A"'B]
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But a” pre-multiplied by a matrix is a’ pre-multiplied by each one of the columns of the
matrix. The above becomes

alC = [aTB a’AB aTA’B - aeTA”‘lB]
=[a"B (aTA)B (aTA)AB - (aTA)A"2B]
aT A is replaced by Aal in the above giving
a'C=[a"B (Aa”)B (1a’)AB - (Aa”)A"2B]
=[a"B A(a"B) A(aTA)B - (AaTA)A"B]
Applying aT A = AaT again on the above
a’C=[a"B A(aB) Ara"B - (AdaTA)A"B]
This process is continued until the final result is
a'C=(a"B) A(a'B) A%(a’B) -+ A"1(a"B)]
Letting a'B = 0 in the above results in
a’C=[0 0 0 - 0
Hence
a’C =0T

Since a is not zero then the above implies the left null space of C is not empty. Taking the
transpose of both sides gives

T
(aTC) =0
Cla =0
The null space of the transpose of C is not empty. Hence C? is not full rank which means

C is is not full rank (Transposing a matrix does not change its rank). This implies (A, B)
is not controllable by definition.

2.4.3 Problem 2

A function sequence f, on D is said to converge pointwise to f if lim,_,, f, (t) exist for
each t in D. This means, not only the limit needs to be found, if it exist, but there should
be a limit for each ¢ in the interval the function is defined over. If for even a single ¢, there
is no limit, then the function does not converge pointwise.

2 1

lim = lim
n—oo 1 + nt n—oo 1 + nt

When t = 0 the limit is zero. For all other values, 0 < t < co the limit is tzi = 0. So the

limit exists for each t.| The pointwise limit is the function f*(t) =0 |

Now to find if the sequence converges uniformly. A function sequence f, (t) is uniformly
convergent on D if for each € > 0 one can find an integer N such that ||f, - f|| < € and all
n > N and each t in D.The integer N here depends only on € and does not depend on t.
For pointwise convergence, N depends on both t and e.

Since the sequence convergence pointwise to f*(t) = 0 then one needs to show that

1o =1l = sup [ =7 O

goes to zero as n — oco. But f*(t) = 0 from above, hence

1o =l = sup [ @)

t2

= sup
0<t<oo

1+ nt
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2

To find the maximum of f, () = o the equation f}, (f) = 0 is first solved for ¢

d( o
dt\1+nt]

t2+nt)
(1+nt)?

Hence #(2 + nt) = 0 gives the solutions t = 0 and ¢ = —%. When t = 0 then f,(0) = 0 and
)
n 4

-T2
1+n(—3) n
n

when t = -2 then fn (_E) =
n n

. .4,
The maximum of these is — in absolute terms. Hence

Gl
O<i<oo |1 +nt| 12
Therefore
T
Taking the limit 7 — co gives
Jim I, - f], =0

Since the limit is zero, then | the sequence does convergences uniformly |

2.4.4 Problem 3

1
k
I = ft (1 - tz) dt is first evaluated. This is done using substitution Let u = 1 — 2, hence

0
du = -2tdt. When t = 0,u =1 and when t =1,u = 0. Therefore the integral becomes

0
du
1= | tuk—
Y

1

10
= zfukdu
1

uk+1

k+1
-
C2(kk+1)
1
T 2(k+1)

0

-1
2

1

[0-1]

Hence
1 1 k
. T 2 2 = 2
klgf)lc,O fk(t)dt—l}ljgo k2t (1-£) dt = lim k 2(k+1)

- 1(hm k + lim kz)

k—o0 k—o0

= 0

Let f*(t) be the pointwise limit of f;(f). At t = 0, lim_, fx(0) = 0 and at t = 1,
limy_,o fx(1)=0.For0<t<1

k
. T 2 2
kh_I){)lofk(t)—kh_I)ilokt@ t)

= lim K2tk 2(1-7)

k—oo



Since 0 <1-# <1for 0 <t <1 then In (1 - tz) is negative, hence ¢
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2
KIn(1-£2) will go to zero

in the limit much faster than k? going towards infinity. Hence

This shows that the pointwise convergence is | f*(f) =0

1
‘Therefore f Fe(B)dt =0
0

1
From the first part it was found that | lim;_,., ffk ()dt = co | and from the second part
0

1
f limy_,, fx () =0 |It is clear the quantities are the not the same. To be able to move
0

the limit inside the integral, the sequence must be uniformly convergent.

The above indirectly indicates that | fi () is not uniform convergent | This can be con-

firmed by trying to find the uniform convergence limit to show that it does not exist:

[ = £l = max|fi ) - £ (] = max|fi 1)

0<t<1

Since f*(t) = 0 identically. Hence

i = £, = max

0<t<1

K2t (1- tz)k|

Att=0, fr=0and at t =1, f; (0) = 0. The maximum value between zero and one is found

from calculus:

fe®) =0

R-2) -—2eei-2)

=0

k1-2)" (a+202-1) =0

The solution is t = iﬁ. Substituting this back into fy () gives the value (using the
+

positive root)

fk max — Kkt (1 - tz)k

Therefore
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Taking the limit of the above as k — oo gives

k
1
— - 2 —
U1l = i e (1 )

1 k
= | lim k? lim |1 -
k=00 A1 + 2k ) k—eo 1+ 2k
N
1 -_—
= | lim k? )lim 1- -k
k=0 1+ 2Kk kw[ L2
1 1
= [ lim k2 )—
k—eo 1+ 2k/ Ve
1 1
=|im zJ_
—00 e
2T

I
—_
=1
~———
=
x

= &0

Therefore since the hmlt does not go to zero, then f; (t) does not converge uniformly. This

explains why lim, ., f £ () dt f limy o fi () dt

2.4.5 Problem 4

The nonlinear state space system is given by

X (t) cos x1 (t)
[xé (t)] Jeut [ ]

toy (t) +e7Fxp (t)
0 _ X1 (0) 2
x
x(0)) -1
Let the initial guess of the solution x° be the same as initial conditions ﬂ
The first iteration gives
t
_ 04 f cosx? an
J nxd + e7Mx9

t
2 2
"‘f[ coS ]dTI
-1 -
0

With the initial conditions

2n—e™
2 ncos?2 t
({77
0
(2 N ( tcos2
-1 |\+et-1
Therefore

1 2+ tcos2
X =
2et-2

nitial guess does not have to be the same as initial conditions x (0) and can be any other value. In this
problem the initial guess is taken the same as initial conditions
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The second iteration is
t
_ 0. f cos x1 n
J nxl + e Mx}
2 t cos (2 + 1 CcOs 2)
=151+ [ el )
-1 J 17(2+170082)+e’7(1] +e’7—2)
The top integral f cos (2 + 1 cos 2) dn is evaluated using substitution. Let u = 2 + ncos2

0
hence du = cos2dn. When n = 0,u = 2 and when n = t,u = 2 + t cos2. Therefore the top
integral becomes

cos?2

1 2+t Ccos 2
= cost cos (1) du
2

t 2+t cos 2 du
f oS (2 + 1 cos 2) dn = f cos (u)
0 2

[sm (u)]2+tc052

0s 2
> (sin (2 + tcos2) — sin 2)

sec(2)sin (2 + tcos2) —tan?2 (2)

The lower integral in (1) is now evaluate. The first part is of this integral is
t

fT](2+T]COSZ)dT]: f(277+T]2COSZ)dr]:
0 0

3 ¢
n”? + T cos 2}
3
0
3

t
=t + 3 cos2 (3)

The second part is

f e + e — 2e7dn (3A)

The first part of the above is solved using integration by parts. udv = uv - f vdu. Let

u=r1?do=e",du=2n0=-e", therefore

¢ t
f nPe~dn = [—nze‘”]t + f 2ne~du
0 0 Jo
¢
= —t2e7t + 2f ne du
0

t
The integral f ne~du is solved also by integration by parts. udv = uv — f vdu. Let u =

0
n,dv=e",du=1,0=—e, therefore

t ¢
f e ldn = —t?e7t + 2 ([—ne"?]; + fe‘”du)
0 0

=—t2et+2 (—te‘t + [—e‘”]g)

= —t2¢t +2 (—te‘t —et+ 1)

= —t2et = 2tet — 27t 4+ 2
The remaining parts of (3A) are direct integrations that requires no special treatment,
hence (3A) becomes

t

fnze"l +e 2 —2¢7dn = (—tze‘t —2te™t — 27t + 2) + +2[e

= (—tze‘t —Dtet— et 4 2) ! (e‘Zt - 1) +2 (e‘t - 1)

1 1
=5 2te™t — t2e7t — Ee‘Zt (4)
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Putting (4),(3) and (2) into (1) gives

2 sec(2)sin (2 + tcos2) —tan2

2 _

) T 2 L cosa 4 Lo otet — 2t - L
3 +§COS > e e 28

Hence the second iteration results in

) [ 2 +sec(2)sin (2 + tcos2) —tan?2
xXc =

£ 1 _ 1 _
—1+t2+§COS2+E—2t€t—tzet—ie 2t

The third iteration x° is now found using

x3 :x0+ff(x2)dr/
0

2 t cos x?
(3 fla =g
-1 o g +e x5

(2) f[ 2+sec(2)sin(2+17(2032)—tanZ
= +

3 d
“1+n2+ % cos2 + % —2ne 1 — e - %e‘zn 1

The top integral (x?) could not be evaluated using syms. A numerical solution is needed.
The lower integral which gives the second state can be evaluated directly and requires no
special treatment, giving

1+ (1/6)x(-1 + E~(-3%t)) - ((1/2)*(-1 + E~(2xt) - 2x%t))/E~(2%t)

+ 172 - (2 + tx(2 + £))/E°t +(1/D)*(-1 + (1 + 2%t + 2xt~2)/E~(2%t)) +
(1/3)*%(6 + (-6 - t*(6 + t*x(3 + t)))/E~t)*Cos[2] +

(1/2)*(-1 + Cosh[t] - Sinh[t]) + Sec[2] 2*((-t)*Cos[2 + t*Cos[2]] +
Sec[2]*Sin[2 + t*Cos[2]] - Tan[2]) - (1/2)*t~2xTan[2]

A small function was written using syms to evaluate the Picard iterations and plot the
solution. For the third iteration x> the first state was not solved due to complexity of the
integral. Numerical solution would be needed. The following plots show the first state and
the second state.

x =2 First state @t =72+ tcos(2)
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Source code

function res = nma_x(k)

%sfunction to evaluate Picard iterations

%by Nasser M. Abbasi, ECE 717, Fall 2014, HwW4, problem 4

if k==0
res = [2;-1];
else
syms z t;
last = nma_x(k-1);
x1 = last(1l); x2=last(2);
x1 = subs(x1,t,z);
X2 = subs(x2,t,z);
res = [2;-1] + int( [cos(sym(x1));zxxl+exp(—z)=*x2],z,0,t);
end
res;
end

%sscript to plot the Picard iterations
%sNasser M. Abbasi, HW4, ECE 717

0);
1);

x0=nma_x
x1=nma_x
X2=nma_x(2);
x3=nma_x(3);
max_t=40; max_y=10;

_—~ o~~~

close all; set(0, 'DefaultAxesFontName', 'Times New Roman');
set (0, 'DefaultAxesFontSize',8);

set (0, 'DefaultTextFontname', 'Times New Roman'); set(0, 'DefaultTextFontSize',

subplot(2,2,1);

h(1l)=plot([0,max_t],[x0(1),x0(1)]);

grid on; set(h(1l),'linewidth',1.5); set(h(1l),'color','r');
xlim([@,max_t]); ylim([-2,5]);

title('$$x~0_1 = 2$$', 'FontSize', 12, 'interpreter', 'latex');

subplot(2,2,2);

h(2)=ezplot(x1(1l),[0,max_t]);

grid on; set(h(2),'linewidth',1.5); set(h(2),'color','r"); ylim([-40,5]);
title('$$x~1_1 = 2+t \cos(2) $$', 'FontSize', 12,'interpreter', 'latex');
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12);
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subplot(2,2,3);

h(3)=ezplot(x2(1),[0,max_t]);

grid on; set(h(3),'linewidth',1.5); set(h(3),'color','r'); ylim([0,10]);

title('$$x72_1 = \sec(2) \sin(2+t\cos(2))-\tan(2)$$', 'FontSize', 12, 'interpreter', 'latex');

ax=axes('Units', 'Normal', 'Position',[.075 .075 .85 .85],'Visible', 'off');
set(get(ax, 'Title'), 'Visible','on')
title('First state');

%snow do x_2

figure;

max_t=20; max_y=600;

subplot(2,2,1);

h(1l)=plot([0,max_t],[x0(2),x0(2)]);

grid on; set(h(1l),'linewidth',1.5); set(h(1l),'color','r');
xlim([0,max_t]); ylim([-max_y,max_yl);

title('$$x"0_2 = -1%$$', 'FontSize', 12, 'interpreter', 'latex');

subplot(2,2,2);

h(2)=ezplot(x1(2),[0,max_t]);

grid on; set(h(2),'linewidth',1.5); set(h(2),'color','r'); ylim([-max_y,max_y]l);
title('$$x~1_2=t"2+e"{-t}-2 $$', 'FontSize', 12, 'interpreter', 'latex');

subplot(2,2,3);

h(3)=ezplot(x2(2),[0,max_t1);

grid on; set(h(3),'linewidth',1.5); set(h(3),'color','r'); ylim([-max_y,max_y]l);
title('$$x"2_2 = -1+t 2+\frac{t"3}{2}\cos(2)+\frac{1}{2}-2 t e{-t}-t"2 e~{-t}-\frac{l}{2}e"{-

subplot(2,2,4);

h(4)=ezplot(x3(2),[0,601);

grid on; set(h(4),'linewidth',1.5); set(h(4),'color','r'); ylim([0,6000]);
title('$$x"3_2%$$ (too large to type)', 'FontSize', 12,'interpreter','latex');

ax=axes('Units', 'Normal', 'Position',[.075 .075 .85 .85], 'Visible', 'off');

set(get(ax, 'Title'), 'Visible', 'on")
title('Second state');

Example using Picard iteration function Example use is

EDU>> nma_x(0)

2

-1

EDU>> nma_x (1)

t*cos(2) + 2

exp(-t) + t72 - 2

EDU>> nma_x(2)

(sin(t*cos(2) + 2) - sin(2))/cos(2) + 2

(t~3%cos(2))/3 - 2*t*xexp(-t) - t~2*exp(-t) - exp(-2%t)/2 + t°2 - 1/2
EDU>> nma_x(3)

Warning: Explicit integral could not be found.

int (cos((sin(z*cos(2) + 2) - sin(2))/cos(2) + 2), z == 0..t) + 2
exp(-t)/2 + exp(-3*t)/6 - (sin(2) - sin(t*cos(2) + 2) +
txcos(2)*cos(t*cos(2) + 2))/cos(2)"3

- exp(-t)*x(t~2 + 2%t + 2) + (exp(-2*t)*(2%t + 1))/2 +

t72 - (cos(2)*x(exp(-t)*(t~3 + 3*t~2 + 6%t + 6) - 6))/3 +
(exp(-2xt)*(4*t~2 + 4xt + 2))/8 - (£72%sin(2))/(2*cos(2)) - 5/12
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Convergence of solution using numerical integration

Picard iteration was integrated numerically due to difficulty of obtaining symbolic solution
for each step. The following sequence of plots shows the convergence of each iteration. The
first state required about 60 iterations to converge to the numerical ODE solver solution.
The following shows the sequence of the iterations for the first state. Each one of these
plots is 20 seconds long, and the title shows the iteration number.

First state iterations
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k=49 k=50 k=51 k=52
21 2.1 2.1 2.1
2.0 2.0 2.0 2.0
189 19 19 19
18 1.8 1.8 1.8
1.7 1.7 1.7 1.7
16 1.6 1.6 1.6
15 15 15 15
] 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
k=53 k=54 k=55 k=56
21 2.1 2.1 2.1
2.0 2.0 2.0 2.0
18 19 19 19
=18 1.8 1.8 1.8
17 1.7 1.7 1.7
16 1.6 1.6 1.6
15 15 15 15
0 10 15 2 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
k=57 k=58 k=59 k=60
2.1 2.1 2.1 2.1
2.0 2.0 2.0 2.0
19 19 19 19
1.8 18 18 18
17 17 17 17
1.6 1.6 1.6 1.6
15 1.5 1.5 1.5
0 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

second state iterations

converge. The following is the sequence of the iterations

It also took about 60 Picard iterations for the second state to
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k=25 k=26 k=27 k=28
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effect of changing At on convegence

Since numerical integral was used, it would be useful to see what effect changing the sam-
pling period on convergence. Three different values of At were tried. They are (0.01,0.005, 0.001),
with units in seconds. There was no visible effect on the result. Running the program for 80
iterations for each case, they all converged to the same solution at the end. The following
plots shows the result
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effect of changing initial guess on convegence

Since initial guess can be any value, other than the initial conditions, it would be useful
to see what effect, if any, changing the guess would have on convergence.

It was found that changing the guess to be different from initial conditions, resulted in
different shape at the end of the 80 iterations. This indicates the guess used have an effect
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on speed of convergence. More analysis is required to inverstigate this more.

For example, this plot shows the difference at the end of 80 iterations, all using the same
sampling time, with the only difference is that one used the initial conditions [2, -1] as the
guess, and the second used [0,1] as the guess. One can see the final solution is different.

=Y

File Edit View Insert Tools Desktop Window Help >

28 At = 0010, guess = [0, 1] z30

Sampling 0.01
guess=[0,-1]
80 Picard iterations
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time(sec) 'MQZ\ Eff t f . dff t
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— g

) <Student Version> Figure 1 _|olx||  8uess affects convergence at
File Edit View Insert Tools Desktop Window Help £l the end of 80 iterations USing
NEds [ MRAOBEL- 2| 0B|aD I same sampling time

2, At = 0.010 x5

Sampling 0.01
guess=[2,-1]
80 Picard iterations

Conclusion

Picard iteration does converge for this non-linear system. Numerical integration was re-
quired to allow higher number of iterations to be performed, as it was not possible to do
more than 3 iterations using symbolic computation.

It was found that changing the guess value from initial conditions does have an effect on
convergence. But more analysis is needed to study this effect.

Function to do numerical Picard iterations

function mnma_picard()

%version oct 17, 2014

%study of picard iteration method for non-linear state space system
%Matlab 2013a

%The following parameters can be changed: max simulation time,
%stime spacing between each sample, initial conditions, and

%initial guess.

%by Nasser M. Abbasi

close all

number_of_iterations
initial_conditions
initial_guess

100; %How many Picard iterations to do?
[2 -1]; %initial conditions for x_1 and x_2
[2 -1]; %initial guess

max_time = 50; %simulation time in seconds

delT = 0.02; %»time spacing for sampling, numerical integration
nSamples = round(max_time/delT);

first_K = bsxfun(@times, initial_guess,ones(nSamples,2));
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next_K
t

zeros (nSamples,2) ;
delT*[0; cumsum (ones (nSamples-1,1))]; %used for numerical

%obtain numerical ODE45 solution to use to compare with
odeTime = 0:delT:max_time-delT;
[odeTime,0DE45_solution] = 0de45(@rhs,odeTime,initial conditions);

for n = 1:number_of_iterations
for i = 1:nSamples numerical integration as time is increased
%t vector above hold incremental time values.
next_K(i,1) = initial_conditions(1) + delT*trapz(cos(first_K(1:1,1)));
z = t(1:1) .*xfirst_K(1:i,1)+exp(-t(1:1)) .*first_K(1:1i,2);
next_K(i,2) = initial_conditions(2) + delT*trapz(z);
end

makePlot(first_K,t,n,delT,initial_guess,max_time,0DE45_solution);
first_K = next_K;
end
function dxdt=rhs(t,x)
dxdt = [cos(x(1));t*x(1)+exp(-t)*x(2)];
end
end

function makePlot(x,t,n,delT,guess,max_time,0DE45_solution)
if n==
scrsz = get(groot, 'ScreenSize');
figure('Position', [.25*scrsz(3) .35*scrsz(4) .b5*scrsz(3) .b*scrsz(4)]);
set (0, 'DefaultAxesFontName', 'Times New Roman');
set (0, 'DefaultAxesFontSize',10);
set (0, 'DefaultTextFontname', 'Times New Roman');
set (0, 'DefaultTextFontSize', 12);

end

minY1 = -1;
maxY1 = 2.5;
minY2 = -10;
maxY2 = 1000;

subplot(1,2,1);

hold off;

plot(t,x(:,1));

hold on;
plot(t,0DE45_solution(:,1),'r:');
title(sprintf ('$$x_17{%d}, \\Delta t=%3.3f, guess=[%d,%d]$3$',n,delT,guess(1l),gue
xlabel('time(sec)');

ylim([minY1,maxY1]);

x1im([0,max_time]);

subplot(1,2,2);

hold off;

plot(t,x(:,2));

hold on;

plot(t,0DE45_solution(:,2),'r:');

title(sprintf ('$$x_27{%d}$$',n), 'FontSize', 14, 'interpreter', 'latex');
xlabel('time(sec) ');

ylim([minY2,maxY2]) ;

x1im([0,max_time]) ;

drawnow

end

integration

ss(2)), 'FontSi:



2.4.6 Problem 5 (corrected after)
The following plot shows f (x)

forcing function f(x)
1.0f T C '
0.5

= 00
-05
-1.0}- ;
-4 -2 0 2
kS

t
() =20+ [£(2(0),7)dr
0
t
—1+ [f)dr
/

t
1
:1+f—d’[
2
0
1

=1+ =t
2

Therefore

xl(t):1+%t

Now for the second iteration

t
@ (1) =5+ [f(x (), 7)de
0

t
1
:x0+ff(1+§’l')d1’
0
For 0 <t <2 then f(l + %T) = % (1 + %T), Therefore

t

1 1
) (1) = 40 — —
X9 () =x +f2 (1+27)d1

0

For t > 2, f(t) =1, then
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Therefore
1+L+ £ t<2
X2 (f) = 2 .8 =

A plot of x2(t) is shown below

I | 1 1 1 1 I I I

E R ,/_,-"
3.{:‘__ f/

[ e

e
2 I~ /_,.f'-;-’
{38 [ ._/__/"-'-;- ] — x2(t)
20F ,_.-f"’f i
-
-

1.5+ --______
10f—""

il I S T T S NN TN SN SRR RN NN SR SR T 1 1 1 | I TR T R B

0.0 0 1.0 1 2.0 2 30

2.4.7 key solution

ECE 717 — Solution Set 4

Solvtien Criterion
(a)

SUH\UQOL : ﬂswme there exist o/ 4 0 and,
A compley  Such that o/TA=o"A and ("B =0,

Then AR - A8 from wmck & foll ows
that ;

¢ d'gy = d (6 AB A'B. A7B)
= (@B AQ™B No'D .- A"y B)
= 0
Heace the rows of @5 are dependent ;e
rGankK @Z {0 and (ﬁ,?)) 15 not a controlla bl e
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So'uhon lntegrals

jolafb () dt - k“jo'w-t")‘

z }ZZ
EI;I
Hence .
) i S le £)dt = OO
Raw ~ 0

Now desScribe pomtwwe et s
fle)= b B (1-g)"

kyw

= O

Hence j'f(t)dt -

SO ,[(‘0 SOO jl
hoo Jo Sb(t)db ¥ ojmdt
Not@i This s consistent with result 1

class 5 e,y above does ot Converfe
umformly to §.
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4 Problem 4

For the nonlinear state equation
&= fla,t),

consider the Picard iteration scheme beginning with z°(t) = 2° with iterative step
ket 1 0 Lok
) =2+ [ ftm).mdn.
Then, for the two state nonlinear system described by
1 = cosTy

and
L —t,.
To =1x| + e Ty,

find the first three Picard iterates 2'(¢), 2%(¢) and z3(¢) corresponding to initial conditions

Also provide plots of #1(f) and @2(t) for each Picard iterate. Are your solutions converg-
ing? Discuss.

Note: To maximize learning. I suggest you do this problem by hand with the integral
for *(t) facilitated with Matlab syms.

The nonlinear state space system is given by

(1) o t) = cosx (t)
(:1:’2 (t)> = /=) <tz1 (t) + e tay (t))

() ()
i) (0) —1

Let the initial guess of the solution z° be the same as initial conditions !.

With the initial conditions

nitial guess does not have to be the same as initial conditions z (0) and can be any other value. In this problem

the initial guess is taken the same as initial conditions.

10

201



The first iteration gives

t
z! :a:0+/ cos 1 dn
naf + e~
0
t
+/ cos 2 J
n
2n —e N
0
2 cos 2
i n
-1 e
2 tcos?2
+
t24+et—1

-1
1 24+ tcos?2
'Z' p—
24 et -2
The second iteration is

¢

0 /( cos x1 )
2=204 dn

0 nay + ey
¢

2 cos (2 4+ ncos 2)
_ +/ s dn (1)

-1 J n(2+ncos2)+e " (n?+e " —2)

The top integral / cos (2 4+ ncos 2) dn is evaluated using substitution. Let u = 2 + ncos2 hence

2
-1

Therefore

t

0
du = cos 2dn. When n = 0,u = 2 and when 1 = t,u = 2+t cos 2. Therefore the top integral becomes

t 2+t cos?2 du
/ cos (2 +ncos2)dn = / cos (u)
0 2

cos 2

1 2+t cos2
= s 2/2 cos (u) du

5 lsin (w3 ¥o2

COS

= in(24¢tcos2) —sin2
cos2(sm( + tcos2) — sin 2)

= sec (2)sin (2 + tcos2) — tan 2 (2)

The lower integral in (1) is now evaluate. The first part is of this integral is

t t
3 t
/n(2+ncos2 / 277+77 cosQ)dn— {n +§cos2}
0 0 0
2 t
=t +§c052 (3)

11
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The second part is

t
/7726_" + e 21— 2¢7"dp (3A)
0

The first part of the above is solved using integration by parts. udv = uv — / vdu. Let

u="n%dv=e"" du=2nuv=—e", therefore
‘o -7 2,-nt ' -7
n“e dn:[—ne ]0+ 2ne” "du
0 0

t
—t%e7t 4 2/ ne "du
0

t
The integral/ ne~"du is solved also by integration by parts. udv = uv — /vdu. Let u=mn,dv=
0

e " du=1,v=—e™ ", therefore
t t
/ nle dn = Tty ( —ne ’7 e"du)
0 0
2 —t
= % +2( te~ "}O)
= ( —te” by 1)
= fth 42

The remaining parts of (3A) are direct integrations that requires no special treatment, hence (3A)
becomes

t
—2nt

/7726777 + e — 27 dpy = (—tgeft —2tet —2et + 2) + {e} +2 [67’7%
-2

0

1

—t?e™t —2te™t — 2e7" +2) — 5 (e —1)+2(e"—1)

Putting (4),(3) and (2) into (1) gives

9 2 sec (2) sin (2 +tcos2) —tan2
¢ = + 1
-1 224 L ® cos2 + 1-2tet — et — L%

Hence the second iteration results in

2 + sec (2) sin (2 + ¢t cos 2) — tan 2
2 = 1 1 1
—14+t2 4 3 cos2 + 5~ 2te™t — et — 56_2t

12
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The third iteration 22 is now found using

t
23 =2+ f(:c2) dn
/

t

_(2>+/< cos 3 )dﬁ
-1 s nw? + e "x3

_(2>+/t< 2+s3€c(2)sin(2+77cos?)—tan? )dﬁ
-1 , —1+n*+ L cos2+ & —2ne 1 —nle 1 — L=

The top integral (a:‘f) could not be evaluated using syms. A numerical solution is needed. The lower

integral which gives the second state can be evaluated directly and requires no special treatment,
giving

1+ (1/6)*%(-1 + E~(-3*t)) - ((1/2)*(-1 + E~(2%t) - 2%t))/E~(2*t)

+ 172 - (2 + tx(2 + £))/E"t +(1/)*(-1 + (1 + 2%t + 2%t"2)/E"(2%t)) +
(1/3)*(6 + (-6 - t*(6 + t*(3 + t)))/E"t)*Cos[2] +

(1/2)*(-1 + Cosh[t] - Sinh[t]) + Sec[2] " 2x((-t)*Cos[2 + t*Cos[2]] +
Sec[2]#Sin[2 + t*Cos[2]] - Tan[2]) - (1/2)*t~2*Tan[2]

A small function was written using syms to evaluate the Picard iterations and plot the solution.
For the third iteration 2 the first state was not solved due to complexity of the integral. Numerical
solution would be needed. The following plots show the first state and the second state.

13
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:I.'E =2 First state x% =24 tcos(2)

10

:CE = sec (2) sin(2 +£ 003(2)) — tan(Z)

14



9:(21 =1 Second state ﬂl’é — t2 + E—t 2]
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4.1 Convergence of solution for the symbolic computation

For linear system, Picard iterations will converge to the unique solution. For non-linear system it is
not so clear. One way to check convergence is by numerically solving the system using numerical
ODE solver and plotting both the Picard iterations against the numerical solution in order to see
that the solution is getting closer the numerical solution. This was done below for t = 40sec. The
system was solved numerically and both the numerically generated z; (t) and z2 (¢) solutions were
plotted with the Picard generated x1, 29 for each iteration, on the same figure. If the Picard solution
convergence, the more iterations are made, the closer the Picard solution should approach the
numerical solution from the ODE solver. This result is given below. The numerical solution is first
plotted for the first and second state.
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Numerical solution, first state Numerical solution, second state
300k ‘ -------------------------
_____________ 250
200f----mmmes -------------------------
____________ o 1) S R A
,,,,,,,,,,, ?L’””’”"”‘E””””””” 100———--—---—--——13-——--—---—-- B CEEE PP
SR N < S
"""""""""""""" — — ] N S N S
10 15 20 5 10
time (sec) time (sec)

Now the convergence of the first state on the same plot as

compare convergence

the numerical is shown in order to

Convergence of Picard iterations, first state

U 5 -'||. 15

time (sec)

(3]
4}
----- numerical

— | xo
21 x'
1'2

il

(1)
rl

20

Similarly for the second state

16
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(0) X

(2)

Comparing each Picard iteration with numerical solution for second state

Due to the small number of iterations, it is hard to decide on convergence. To fully decide on the
issue of convergence of Picard iterations for this non-linear system, each Picard iteration will have to
be numerically integrated in order to be able to generate more iterations. In the next section below,
the numerical integration results are given, which shows the that Picard iterations for this system
does indeed converge, but the convergence is slow.

4.2 Source code

4.2.1 Function to generate Picard iterations

1 function res = nma_x (k)

2 S%function to evaluate Picard iterations

3 %by Nasser M. Abbasi, ECE 717, Fall 2014, HW4, problem 4
4 1if k==

5 res = [2;—11;

6 else

7 syms z t;

8 last = nma_x(k—1);

9 x1 = last (1l); x2=last(2);

10 x1 = subs(xl,t,z);

11 X2 = subs (x2,t,z);

12 res = [2;—=1] + int( [cos(sym(xl));z*xxl+texp(—z)*x2],2z,0,t);
13 end

14 res;

15 end

17
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4.2.2 Script to plot Picard iterations

© 0 N O U A W N e

I N N O I I N R T e
Lo B S N N = e B = S IR U R CR S )

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53

$script to plot the Picard iterations
%Nasser M. Abbasi, HW4, ECE 717

x3=nma_x

)i
max_t=40; max_y=10;

close all; set (0, 'DefaultAxesFontName', 'Times New Roman');
set (0, 'DefaultAxesFontSize', 8);
set (0, 'DefaultTextFontname', 'Times New Roman'); set (0, 'DefaultTextFontSize', 12);

subplot(2,2,1);

h(l)=plot ([0, max_t], [x0(1),x0(1)]);

grid on; set(h(l),'linewidth',1.5); set(h(l), 'color','r");
xlim([0,max_t]); ylim([—2,5]);

title('$$x"0_1 = 2$S$', 'FontSize', 12, 'interpreter', 'latex');

subplot (2,2,2);

h(2)=ezplot (x1(1), [0, max_t]);

grid on; set(h(2),'linewidth',1.5); set(h(2), 'color','r"); ylim([—40,5]);
title('$$x"1_1 = 2+t \cos(2) $$', 'FontSize', 12, 'interpreter', 'latex');

subplot (2,2,3);
h(3)=ezplot (x2 (1), [0, max_t]);
grid on; set (h(3), 'linewidth',1.5); set(h(3), ' 'color','r"); ylim([0,10]);
title('$$x"2_1 = \sec(2) \sin(2+t\cos(2))—\tan(2)$s', 'FontSize',
12, 'interpreter', 'latex");

ax=axes ('Units', '"Normal', '"Position', [.075 .075 .85 .85], 'Visible','off");
set (get (ax, 'Title'"), 'Visible', 'on")
title('First state');

$now do x_2

figure;

max_t=20; max_y=600;

subplot (2,2,1);

h(1l)=plot ([0, max_t], [x0(2),x0(2)]);

grid on; set(h(l), 'linewidth',1.5); set(h(l), 'color','r");
x1lim ([0, max_t]); ylim([-max_y,max_vy]);

title('$$x"0_2 = —1$$', 'FontSize', 12, 'interpreter', 'latex');

subplot (2,2,2);

h(2)=ezplot (x1(2), [0, max_t]);

grid on; set(h(2),'linewidth',1.5); set(h(2), 'color','r"); ylim([—max_y,max_yl);
title('$$x"1_2=t"2+e"{—t}—2 $$', 'FontSize', 12, 'interpreter', 'latex');

subplot (2,2,3);

h(3)=ezplot (x2(2), [0, max_t]);

grid on; set (h(3), ' 'linewidth',1.5); set(h(3), 'color','r"); ylim([—max_y,max_yl);

title('$$x"2_2 = —1+t"2+\frac{t”3}{2}\cos (2)+\frac{l}{2}—2 t e™{—t}—t"2
er{—t}—\frac{l}{2}e”{—2t}$$', 'FontSize',10,'interpreter', 'latex');

subplot (2,2,4);

18
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54 h(4)=ezplot (x3(2),[0,60]);

55 grid on; set (h(4), 'linewidth',1.5); set(h(4), 'color','r"); ylim([0,60001]);
56 title('$$x"3_2$$ (too large to type)',
57

58 ax=axes('Units', 'Normal', 'Position',[.075 .075 .85 .85],'Visible', 'off'");
59 set (get(ax, 'Title'"), 'Visible', 'on')

60 title('Second state');

'FontSize', 12, 'interpreter', 'latex');

4.2.3 Example using Picard iteration function

Example use is

EDU>> nma_x(0)
2
-1

EDU>> nma_x(1)

txcos(2) + 2
exp(-t) + t72 - 2

EDU>> nma_x(2)
(sin(t*cos(2) + 2) - sin(2))/cos(2) + 2
(t73%cos(2))/3 - 2xt*xexp(-t) - t"2xexp(-t) - exp(-2%t)/2 + t°2 - 1/2

EDU>> nma_x(3)

Warning: Explicit integral could not be found.

int (cos((sin(z*cos(2) + 2) - sin(2))/cos(2) + 2), z == 0..t) + 2
exp(-t)/2 + exp(-3*t)/6 - (sin(2) - sin(t*cos(2) + 2) +
t*cos(2)*cos(t*cos(2) + 2))/cos(2)73

- exp(-t)*x(t"2 + 2%t + 2) + (exp(-2%t)*x(2xt + 1))/2 +

t72 - (cos(2)*(exp(-t)*(t"3 + 3*t"2 + 6%t + 6) - 6))/3 +
(exp(-2%t)*(4xt"2 + 4xt + 2))/8 - (t"2*sin(2))/(2*cos(2)) - 5/12

4.3 Convergence of solution using numerical integration

Picard iteration was integrated numerically due to difficulty of obtaining symbolic solution for each
step. The following sequence of plots shows the convergence of each iteration. The first state required
about 60 iterations to converge to the numerical ODE solver solution. The following shows the
sequence of the iterations for the first state. Each one of these plots is 20 seconds long, and the title
shows the iteration number.

19
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4.3.1 First state iterations

k=1 k=2 k=3 k=4
5 5 5_/\/ 5
0 0 0 0 /\\
-5 -5 -5 -5
0 5 10 15 20 0 0 15 20 0 5 10 15 20 0 5 10 15 20
k=5 k=5 k=7 k=8
5/\_/ 5 5\_/\/ 5 /\‘
= q 0 /\ — 0 D-—_\
-5 -5 -5 -5
0 5 10 15 20 0 0 15 20 0 5 10 15 20 0 5 10 15 20
k=9 k=10 k=11 k=12
5‘/\—,\ 5 Sﬂ 5 //_/
0 0 N 0 0 .
~C
-5 -5 -5 -5
0 5 10 15 20 0 0 15 20 0 5 10 15 20 0 5 10 15 20
k=13 k=14 k=15 k=16
8 ] 8 8
B & & B
4 4 4 4
2 E\ﬁ /\ 2 2
0 0 — 0 0 \
N ~_
-2 -2 -2 -2
0 5 10 15 20 0 0 15 20 0 5 10 15 20 0 5 10 15 20
k=17 k=18 k=19 k=20
g ] g g
B & g §
4 4 4 4
2 2 /\ 2 2 /"
0 ] N 0 0 N
-2 -2 -2 -2
0 5 10 15 20 0 10 15 20 0 5 10 15 20 0 5 10 15 20
k=21 k=22 k=23 k=24
8 & ] 8
B & & B
4 4 4 4
2 2 /\ 2 2 /“
0 0 4 0 0 N
-2 -2 -2 -2
0 5 10 15 20 O 0 15 20 0 5 10 15 20 0 5 10 15 20
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k=37 k=38 k=39 k=40
3 3 3 3
2k / 2 2k / 2
1 1 \ 1 1
0
-1 -1 \ -1 -1 \
o 5 10 1 =20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
k=41 k=42 k=43 k=44
3 3 3 3
2k / 2 2k / 2
1 1 \ 1 1
0 0 \ 0 0 \
-1 -1 -1 -1
o 5 10 1 20 o0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
k=45 k=46 k=47 k=48
3 3 3 3
2K / 2 2k J1 2
1 1 i o 1 \
0 0
-1 -1 -1 -1
o 5 10 15 20 o0 5 10 15 =20 0 5 10 15 20 0 5 10 15 20

k=49 k=50 k=51 k=52
21 21 21 21
20 20 2.0 2.0
19 19 19 19
1.8 1.8 1.8 1.8
17 17 17 17
1.6 1.6 1.6 16
1.5 1.5 158 1.5
0 5 10 15 20 0 5 10 15 20 5 10 15 20 5 10 15 20
k=53 k=54 k=55 k=56
21 21 21 21
20 20 20 20
1.9 1.9 1.9 1.9
=18 18 18 18
17 1.7 17 17
1.6 1.6 1.6 1.6
15 15 15 15
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
k=57 k=58 k=59 k=60
21 21 21 21
2.0 2.0 2.0 2.0
19 19 19 19
1.8 1.8 1.8 1.8
17 17 17 17
1.6 1.6 1.6 16
15 15 15 15
0 5 10 15 20 0 5 10 15 20 5 10 15 20 5 10 15 20

4.3.2

It also took about 60 Picard iterations for the second state to converge. The following is the sequence

second state iterations

of the iterations
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k=1 k=2 k=3 k=4
300 300 300 300
200 200 200 200
100 100 100 100
0 0 0 0
-100 -100 -100 \ -100
-200 -200 -200 -200
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 5 10 15 20
k=5 k=6 k=7 k=8
300 300 300 300
200 200 200 200
100 100 100 100
0 0 0 0
-100 =100 =100 -100
-200 -200 -200 -200
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 5 0 15 20
k=9 k=10 k=11 k=12
300 300 300 300
200 200 200 200
100 100 100 _4——._//_\ 100
0 0 0 0
-100 =100 =100 -100
-200 -200 -200 -200
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 0 15 20
k=13 k=14 k=15 k=16
300 300 300 300
250 250 250 250
200 200 200 200
150 150 150 150
100 100 100 100
50 50 50 50
0 0 0 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
k=17 k=18 k=19 k=20
300 300 300 300
250 250 250 250
200 200 200 200
+ 150 150 150 150
100 100 100 100
50 50 50 50
0 0 0 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 0 15 20
k=21 k=22 k=23 k=24
300 300 300 300
250 250 250 250
200 200 200 200
150 150 150 150
100 100 100 100
50 50 50 50
0 0 0 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 0 15 20
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k=25 k=26 k=27 k=28
200 300 300 300
250 250 250 250
200 200 200 200
150 150 150 150
100 100 100 100
50 50 50 50
0 0 0 0
0 5 10 15 20 0 5 10 15 20 0 5 1m0 15 20 0 1m0 15 20
k=29 k=30 k=31 k=32
300 300 300 300
250 250 250 250
200 200 200 200
= 150 150 150 150
100 100 100 100
50 50 50 50
0 0 0 0
0 5 10 15 20 0 5 10 15 20 0 5 1m0 15 20 0 1m0 15 20
k=33 k=34 k=35 k=36
300 300 300 300
250 250 250 250
200 200 200 200
150 150 150 150
100 100 100 100
50 50 50 50
0 0 0 0
0 5 10 15 20 0 5 10 15 20 0 5 1m0 15 20 0 10 15 20
k=37 k=38 k=39 k=40
200 200 300 200
250 250 250 250
200 200 200 200
150 150 150 150
100 100 100 100
50 50 50 50
0 0 0 0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 1m0 15 20
k=41 k=42 k=43 k=44
300 300 300 300
250 250 250 250
200 200 200 200
F 150 150 150 150
100 100 100 100
50 50 50 50
0 0 0 0
0 5 10 15 20 0 5 1m0 15 20 0 5 10 15 20 0 1m0 15 20
k=45 k=46 k=47 k=48
300 300 300 300
250 250 250 250
200 200 200 200
150 150 150 150
100 100 100 100
50 50 50 50
0 0 0 0
0 5 10 15 20 0 5 1m0 15 20 0 5 10 15 20 0 1m0 15 20
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2.5.1 Questions

ECE 717 — Homework Set 5

Due Thursday, October 30, 2014



Barmish

ECE 717 — Homework Diagonalize

Suppose M; and M, are two n xn matrices with distinct eigenvalues which

commute; i.e.,
My My = Mo M.

Prove that there is an nonsingular matrix 7" which simultaneously diago-
nalizes M; and M,. That is, both TM, T~ and TM,T~! are diagonal.

Barmish

ECE 717 — Homework Exponentials

Consider the time-varying system & = A(f)z and assume that A(t) com-
mutes with its integral; i.e.,

A(t) [} Amydn = [ A()dn A(t).

Now prove that the matrix
U(t) = e Jo Alnydn

satisfies the state equation with initial condition W(0) = I and the state
solution is given by
't
z(t) = edo AMdng ().

(b) Again considering the LTV system & = A(t)x, instead of beginning
with the assumption that A(t) commutes with its integral, assume that
the commutation condition

A(t1)A(t2) = A(t2) A(th)

is satisfied for . Now describe the solution to the state equation.

Barmish

ECE 717 — Homework Revisit

In this homework problem, we consider the LTV system & = A(t)z and
revisit a result obtained in Homework Exponentials — under the strength-
ened hypothesis that A(t) has distinct eigenvalues for all . To this end,
we again assume that the commutation condition

A(t)Alts) = Alt2) A(t)

is satisfied for all pairs (¢1,%2). Letting A(f) be a diagonal matrix whose
entries are the eigenvalues of A(t), prove that there is a constant (time-
invariant) matrix 7" such that the matrix

U(t) = T e Ay

satisfies the state equation with initial condition W(0) = I. Note: If your
T matrix depends on time, you have not solved the problem.

217



218

Barmish

ECE 717 — Homework Transition

Find the state transition matrix ®(¢,7), in closed form, associated with
each of the A(t) matrices below. Note: Picard iteration should not be
used. A closed form is requested. For the first A(¢#) matrix, to guarantee
well-posedness, assume times t > t5 = 1.

C 42
_ t t2
A(t)_ I 1 O _7

A
A(t)_ -e—t 1 ]

2.5.2 Problem 1

Let @; be the i eigenvalue of M; and let v; be an eigenvector associated with ;. This
implies

Myv; = ajv;
Similarly, let g; be the i eigenvalue of M, and let u; be an eigenvector associated with ;.
This implies

Mau; = Biu;

We start by post multiplying M;M, with an eigenvector of M; associated with eigenvalue
a;, this results in

Mlevi = Mlevi

Where we just took advantage of commuting M;M, by changing the order in the RHS
above. But M v; = a,;0;, hence the above becomes

Mlevi = M2aivi
Since a; is scalar, we can move it to the left and obtain

M; (Myv;) = a; (Myv;)

We see now that | M,v; itself is an eigenvector of M; |

What the above means is that if v; is an eigenvector of M; associated with an eigenvalue «;,
then so will be M,v;. Now an important point follows: Since the eigenvalues are distinct,
then all the eigenvectors that belong to each eigenvalues are scalar multiple of each others.
What this means, is that M,v; is some scaled version of v; since both are in the same
eigenspace associated with «;. The eigenspace associated with an eigenvalue is just the
space spanned by all the eigenvectors of this eigenvalue. This means this space is one
dimensional in this case.

This is critical, since it then tells us that M,v; = B;v; where B; is the above scalar, which is
the eigenvalue of M,. Without this restriction, we could not say that M,v; = ;v;.

Therefore, the above means that | each eigenvector of M, is also an eigenvector of M, |

Or said in other way, the matrix M; and M, share the same eigenspaces.
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My Eigenspace of M; for a

Vv Eigenspace of M, for

M; and M, share the same eigenvectors

But this complete the proof. Since the nonsingular matrix T which diagonalizes a matrix is
made of up of the eigenvectors of the matrix. The columns of T are the eigenvectors of the
matrix. And since M;, M, share the same eigenvectors, hence the same T will diagonalize
both of them at the same time.

QED

2.5.3 Problem 2
Part (a)

. ﬁ A(n)dr L‘t A

We want to show that %\I’(t) = A(t)W (t). Where W (¢) =
will use the definition of matrix exponential

. To expand e

1 1
eM:I+M+§M2+§M3+

Therefore

LA“)‘”_HfA(T)dH (fA(T)dT)(f A(’C)d’[) y (fA(T)dT)(fA(T)dT)(fA(T)d’C)

To make it easier to see, we will expand only the first 2 terms in expansion:
L AdT_ f A(t)dt + = f A(7) drf A(7) d’c] (1)

Taking the time derivative of the above and using the product rule E (XY) = X%Y + Y%X
gives

d L‘ A(r)dt
il =g ( )

d t 1 t t
:E(I+j;A(T)dT+§[j;A(T)dTJ;A(T)dT +
0

=—I+—fA(T)dT+——[fA(T)deA(T)d’[]
(f A(T)dr)A(t)+A(t)(f A(T)dT)

Taking advantage of the commute property we write the second term above as

i\y(t)_A(t)+ [A(t)(f A(T)d’[)+A(t)(f A(T)d’[)

=A()+ =
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Therefore

+ ...

d 1 !
E\y(t) =A(H)+ > [ZA (t) (fo A(T)df)

:A(t)+A(t)j:A(T)dr+

Since all the A (¢) are on the left side, we can now factor A (t) out and obtain
()

d t
ZWH =AW (1+f0 A(T)dT+---)

Comparing the term inside (-) in the above expression above with equation (1) we see it is
W (t). (If we have expanded more terms, it would be more clear, but the idea is the same
as shown above). Therefore we conclude that

4 e _ g b0

o =A(b)e

d
E‘I’(t) =AW ()

t
Hence W (t) satisfies the state equation. Now we need to show that x (t) = e£ Al (0) is the

state solution. Since W (t) is the fundamental matrix, then each of its columns is an indepen-

dent solution to x” = A (f) x by definition. Hence a| linear combinations of the columns of W (t) gives the solt

As shown in class, we now obtain the general solution by assuming x (t) = W (t) 0 (t) and
then from this end up with the fundamental solution x (t) as

t
X(t) =W (W (0)x(0) + f\I’ W (1)B(1)u(r)dr
0

But since this is free system, so there is no input u (t) and since W (0) = I then W1 (0) = I
and the above reduces to

X(H) =Y () x(0)

" A(v)dr b

But W (t) = e£ ence

xX(t) = eﬁ Al 0)

Part (b)

We are told that
At)A(t) = A(t) A(b)

Lets integrate both sides from 0 to ¢t w.r.t to 7. The equality will remain since we are
integrating over the same interval of equal quantities, hence

t t
fA(t)A(T)dT:fA(T)A(t)dT
0 0

Now the integral on the LHS has A (t) which can be taken out of the integral, keeping the
order to the left, and the integral on RHS has A(f) which can now be taken out of the
integral, keeping the order to the right, which results in

t t
A (1) dT] =| |A(r)dt|A(t)
Jrewl\l

But the above is the assumptions we used in part (a). Therefore,

t
bfA(T)dT

A(l)

A(t)

. . t
ADAD =A@AD B A f A(r)de | =
0

Therefore we can use the same solution found in (a)

() = eb A0 o)
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2.5.4 Problem 3
Since A (t) A(t) = A(7) A(t), then from problem (2) we know that

W =e [ A

is the fundamental matrix for x’ (f) = A (t) x (). We now need to show that, given that A (¢)
has distinct eigenvalues for each ¢, the fundamental matrix can be written as
t
W (f) = T-leb A1
For some constant matrix T. The important point is that T must be constant in the above.

In addition, we need to show that the above W (f) satisfies %\If BH=ABOWY®).

The first step is to find the constant T matrix. Since A (t) A(7) = A(7) A(t) , then by selecting
7 = 0, which is the initial time, then A (t) A (0) = A (0) A (¢). Therefore, each A (t) commutes
with the same matrix A (0). i.e. A (¢;) will commute with A (0) and A (f,) will commute with
A(0) and so on. But by problem 1, we showed that when two matrices commute, then they
have the same eigenvectors. Therefore, we can select the eigenvectors of A (0) to use to
construct the T matrix from, by using the n linearly independent eigenvectors of A (0) as
the columns of T. Lets call it T;. Therefore, T is now constant and do not change. Now
that we found a constant Ty matrix to use for diagonalization of each A (t) matrix, we will
show the rest of the solution using T, . Since

1 1 o M
M=T+M+=-M2>+_M3+...=2 Y —
2 T3l Tl

Therefore, applying the above to

® 1 ; i
:ZQE(LA(T)d’C)

Since A has distinct eigenvalues at all time, we can diagonalize it using the constant T,
hence

W (f) = 25( f TalA(T)TOdT)
i=0" \YO0
t 1 rt t
:1+f TalA(T)TOdT+§f T(;lA(T)TOde TolA (1) Todt + -+
0 0 0

t t t
:1+T51(LA(T)dT)TO+%TO‘l(j(;A(T)dT)(TOTgl)(j;A(T)dT)TO+~~

All the inner TyT,? result in I since Ty is invertible, therefore the above become

2 3
W (t)=1+Ty! (j:A(T)dT)TO+ %Tgl (j;A(T)dT) TO+%T51 (]:A(T)d’[) To+ -

Pre-multiply both sides by T,

t 1 /{ ot 2 1 /{ ot 3
ToW () = Ty + f A@)dr| Ty + f A(@)dr| Ty+— f A()dr| To+ -
Post multiply both sides by Ty!, and again replacing all of the T;T;! products with I gives

TO\I’(t)Tch:IJF(fOA(T)dT)ToTﬁlJri(foA(T)dr) T0T61+§(f01\(’[)d’[) ToTy" + -

t 1/ pt 2 9 ot 3
=I+(fOA(T)dT)+5(‘[(;A(T)dT) +§(fOA(T)dT) o

— 0 Lt A(7)dt
Therefore
t
(o) = Tyteb "y W
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Given equation (1), we need now to show that it leads to %\I’(t) =AW (@).
d d ' A(r)dr
Ly = L (r5teh T
ar 0= g ( 0¢ 0
t
= T (%eL A“)‘“) T, )

Since A(7) is a diagonal matrix (by definition, it has the eigenvalues on the diagonal),
therefore it commutes with another A (t) (any diagonal matrix commutes with another
diagonal matrix). Hence

A A®) = A A(7) (3)

" A(0)d

What this means is that we can expand e£ "in power series and simplified as follows

t/\('[)d’[_ t 1 t t 1 t £ t
eh _1+fOA(T)dT+§fOA(T)deOA(T)dng!fOA(T)deOA(T)deOA(r)du---

Substituting this into (2)
d

1 t t
=T (|A - A A(7)d A (7)dTtA T
; ([ <t>+2( O [ Awdrs [ A <t>)+ ]) ;

Since A (7) commute, then using (3)

d 1 t t
—w®) =T A —(A A(T)dt + A A(7)d -l T
(="T; [ <t>+2( ® [ A@dreA® [ A@ r)+ ]) :

dt
K
K
A()

t 1 t t
1+ [ @i [ @i [ A@drs -
—————
- [TalA(t)To]T_l(I+J:A(T)d’[+%LtA(T)dTLtA(T)dT+---)TO

t
= T3 [A(t)+A(t)f A dr + -
0

=Ty (A1)

W(t) from (1)

Hence

d
$\If (H=A@)Y(¢)

2.5.5 Problem 4

Part (a)

4 2
For A(t) = [_f _(;_2], we first need to find the fundamental matrix W () and then ® (¢, 7) =

W () W~ (7). Let the 2 linearly independent initial conditions be

()

We know solve x’ = A(f) x using both of these initial conditions and obtain two linearly
independent solutions to use to construct W (t) with. Using the first initial conditions

x1(1)=1,x,(1) =0 |. The two equations to solve are

4 2
e ) 1)

% =% ()

From the second equation

—Xp =X
2=

5 d t 1 t t 1 t t t
E\I/(t):Tol(E[l+f(;A(T)dT+§f(;A(T)d’[j(;A(T)d’c+§£A(T)deO‘A(T)de(;A(T)dT+---
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Integrate both sides

t t
dx, = d
L x2 j;xl (T) T
t
X () = x5 (1) = fl 1 (1) dr

But x, (1) = 0, hence x, (t) = f x1 (7) dt. Substituting this in (1) gives
, 4 2t
x) = —?xl - t—zj; x1 (1) dt

Multiply both sides by é

tz t
—x' = -2tx - f x1 (t)dt
2 1

Taking derivative of both sides with respect to t gives

2
tx] + Exi’ = —2x1 — 2tx] — xq (t)

12
Ex’l’ +3tx] +3x; =0
27 + 6tx; +3x, = 0 3)
This second order differential is now solved for x; (f). The initial conditions is x; (1) =1
and x} (1). However, we do not know x] (1), as not given, but we can obtain it from the first
equation (1) by noting that at t =1 we find x’ (1) = —%xl 1) - l%xz(l) = —4. Therefore (3) can
now be solved for x; since we have two initial conditions. Hence the problem to solve is
2x] + 6tx] + 6x, = 0
x (1) =1
xj(1)=-4
Equation (3) is in the form of Euler equation. Euler ODE has solution of the form x; (t) = t°.
Substituting this trial solution in (3) gives

2 (a (@ —1)1972) + 6tat*™ + 6t = 0
al@-1Dt* +6at*+6t*=0
For non-trivial solution, and assuming t > 0 which is the case here, dividing the above by
t* gives
ala-1)+6a+6=0
a?+5a+6=0

Hence
a ={-2,-3}
Therefore the solution is a combination of solutions using these, which is
1, &
xq (t) = 72 + g (4)

Now we apply the initial conditions. At t =1,x; (1) =1, hence
l=c+c (5)
And
X () = —2% - 3?—5

And we have x] (1) = —4 hence

—4 =-2¢; -3¢, (6)
We now have (5),(6), which is two equations in two unknowns. The solution is

l=c+c
-4 =-2¢1 -3¢,



The solution is: ¢; = —1,c, = 2. Hence the the solution is now found, using (4), it is

-1 2
xl(t):t—2+t—3

Now that we know x; (t), we can find x, (t) from x, (f) = f x1 (1) dt, therefore

t-1 2
Xz(t):jl‘ §+¥d’l’

Hence

-1
() =2

This gives us the first column of

Now we need to do the same the X%,
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Using the second initial conditions | x; (1) =0,x, (1) =1 | The two equations to solve are

4 2

X]=-——X1 — 5X
1 t 1 2 2
Xy =X
From the second equation
d
—Xp =X
=N

Integrate both sides

t t
fldxzzflxl(f)d’c

t
12 () — x5 (1) = f1 31 (0)dt

But x, (1) =1, hence x, (f) =1 + f x1 (t)dt. Substituting this in (1A) gives
4 2 t
X]=—2X - (1 + f x1 (7) d’[)
£t .

t2

t
—x' = -2tx;-1- f x1 (1) dt
2 1

Taking derivative of both sides with respect to t gives

2
tx] + Exi’ = —2x1 — 2tx] — xq (t)

Multiply both sides by g

" 3t +3x; =0
71 + 3t + 3% =

t2x) + 6tx] +3x; = 0

(1A)
(2A)

This is the same second order differential as was found for X°! but the initial conditions
are now different. The initial conditions are x; (1) = 0 and x} (1). However, we do not know
x7 (1), as not given, but we can obtain it from the first equation (1) by noting that at t =1

we find ¥’ (1) = —%xl 1) - %xz(l) = —2. Therefore (3A) can now be solved for x; since we

have two initial conditions. Hence the problem to solve is
2x] + 6txy + 6x1 =0
x1(1)=0
xp(1)=-2

(3A)

Equation (3A) is in the form of Euler equation. Euler ODE has solution of the form
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x1 (t) = t*. Substituting this trial solution in (3A) gives
2 (a (@ = 1) 1472) + 6tat*™ + 6t = 0
ala—-1)t* +6at* +6t* =0
For non-trivial solution, and assuming t > 0 which is the case here, diving the above by t*
gives
al@-1)+6a+6=0
a?+5a+6=0
Hence
a ={-2,-3}
Therefore the solution is a combination of solutions using these, which is
€1 + €2

nB=5+3 (4A)
Now we apply the initial conditions. At t =1,x; (1) = 0, hence
O=c1+0 (5A)
And
X () = —2% - si—j

And we have x] (1) = -2 hence

-2 =-2c1 -3¢, (6A)
We now have (5A),(6A), which is two equations in two unknowns. The solution is

O=cy+0
-2 =-2¢1 -3¢,

The solution is: ¢; = —=2,¢, = 2. Hence the the solution is now found, using (4A), it is

-2 2
xl(t)zt—2+t—3

Now that we know x; (t), we can find x, (t) from x, (t) =1 + f x1 (1) dt, therefore

3

b2 2
xz(t):1+f—2+—dr
1 T

Hence

2t-1
X () = =

This gives us the second column of

Hence the fundamental matrix is

The inverse is now found.
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Therefore the state transition function is
Q1) =Y (HY (1)

-1 2 -2 2
| ¢ B¢ f 2 3

t-1 2t-1
— -7 - > (1-2)

t_z 2 =T

t
1
t—sz (t-1) —3T (t-2t)

B (—1372 (t-27) —EST (t-1) ]

_t[-Ze-20 2e-0
Pl otit-1) -(r-20)

Part (b)

2 — t
For A(t) = ( ; f)we first need to find the fundamental matrix W () and then ® (f,7) =
e

W () W1 (7). Let the two linearly independent initial conditions be

el

We know solve x’ = A(f)x using both of these initial conditions and obtain two linearly
independent solutions to use to construct W (t) with. Using the first initial conditions

x1(1)=1,x,(1) =0 |. The two equations to solve are

xj =2x; —elx, (1)
xh=etx +xp (2)
Starting with (2), x5 — x, = e”'x, this is in the form x’ + p () x = f (t) , hence the integrating
factor is eJ PO = eifdt = ¢' and the solution is
d

g (e‘txz) =et (e‘fxl)

Integrating both sides

ey (D] = f 2 (1) d
1

Zero

—_—— £
etxy () —elx, (1) = f e 2xy (1) dt
1

e7tx, () = f t e~ 2xy (1) dt
Hence 1
X = ¢ f "2t (1) da 3)
Substituting this solution in (1) gives 1

¢
Xy =2x; — e f e~ 2x (1) dt
1

!
e ?tx] — 2xe7% = - f e 2" x; (1) dt
1

Differentiating
—2e72x] + e72xy - 2xje™? + dxe7 = —e2xy (b)
e 2x) — de™x] + 5e %xy = 0
x{ —4x] +5x =0
This is a constant coefficient ODE. Its solution can be found from the characteristic
polynomial. A% —4A +5 =0, the solution is {2 +i,2 —i = 0}, hence

Xy = cqe@t 4 et
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Since the roots are complex, this can be written as sin/ cos,
x1 = cre?tett + cpete
=% (cleit + cze‘”)
=% (cq (cost +isint) + c, (cost —isint))
= e (cost(cy + ¢) + sint (icy — icy))
Let ¢c; + ¢, = A and i(c; — c;) = B, some new constants. Hence the above becomes
x1 (t) = e? (Acost + Bsint) (4)

From initial conditions, x; (1) = 1. But we are not given x] (1). We can find this from (1)
x] = 2x; — e'x, by noting that at t =1,

x' (1) =2x; (1) —elxy (1)
=2

Hence now we have the two initial conditions to find A, B from (4). At t =1, (4) becomes

1=¢*(Acosl + Bsinl) (5)
Taking derivative of (4)

x} (t) = 2¢* (Acost + Bsint) + € (—~Asint + Bcost)
And at t =1 this becomes
2 =2¢%(Acosl + Bsinl) 4+ e? (-Asinl + Bcos1) (6)

From (5),(6) we can solve for A, B,

1=e*(Acosl+ Bsinl)
2 =2¢%(Acosl + Bsinl) +e?(-Asinl + Bcos1)

. . cos1 sin1
The solution is A = e_sz =

Therefore from (4) we obtain

coslcost sinlsin t)
+
2

xq (t) = e ( 7

of coslcost+sinlsint
=e¢
o2

But cos1cost +sinlsint = cos(1l —t), hence
x1 (H) =2tV ecos(1-1t)
Now that we found x; (t) we go to (3) and find x, (t)

¢
Xy = etf e 2x, (1) dt
1

¢
= f 272D cos (1 — 1) dt
1

t
= f e2cos(l-r1)dt
1
Hence
X, = —2sin (1 - t)
Therefore, the first columns of the fundamental matrix is found

— (eZt‘z cos (1 - t))

—ef2sin (1 -t)

We now find the second column W2. Using the second initial conditions| x; (1) = 0,x, (1) =1 |.

The two equations to solve are
x] = 2x; —elx, (1A)
xh=etxy +xp (2A)
Starting with (2), x5 — x, = e”'x, this is in the form x’ + p () x = f (t) , hence the integrating
factor is e/ PO = e_fdt = ¢! and the solution is

d

5 (e‘txz) =et (e‘txl)
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Integrating both sides
t
[, (D]} = f 2 (1) dt
1
t
ety () — e lxy (1) = f 27y, (1) dt
1
t
efx, (t)—e‘lzfe‘ZTxl () dt
1

t
% () = ¢ f1 2y, (1) dr + ¢ (3A)

Substituting this solution in (1A) gives
t
x] =2x; —¢ (et f e 2" x; (1) dt + et‘l)
1
¢
Xy =2x1 — €2tf e x; (1) dt — 1
1

¢
e2tx) — 2xe7% = - f e 2x; (t)dr — ¢!
1

Differentiating
—2e72x] + e 2xy - 2xje7 + dxe7 = —e2xy (b)
e 2txy —4e72x] + 5¢?'x; = 0
x{ —4x] +5x =0
This is a constant coefficient ODE. Its solution can be found from the characteristic
polynomial. A2 —4A + 5 = 0, the solution is {2 +7,2 —i = 0}, hence
Xy = 1@t cye@Dt

Since the roots are complex, this can be written as sin/cos, giving, as above

x1 (t) = e? (Acost + Bsint) (4A)

From initial conditions, x; (1) = 0. But we are not given x} (1). We can find this from (1A)
x} = 2x; — elx, by noting that at t =1,
x' (1) =2x; (1) —elx, (1)
= —¢l
Hence now we have the two initial conditions to find A, B from (4). At t =1, (4A) becomes
0=¢e*(Acos1 + Bsinl)
0= Acosl+Bsinl (5A)
Taking derivative of (4A)
x7 (t) = 2¢* (Acost + Bsint) + € (~Asint + Bcost)
And at t =1 this becomes
—e! =2¢?(Acos1+ Bsinl) +e? (-Asinl + Bcos1) (6A)
From (5A),(6A) we can solve for A, B,

0=e?(Acosl + Bsin1)
—e! =2¢2(Acos (1) + Bsin (1)) + 2 (~Asin (1) + Bcos (1))

sin 1 —cos1

B= —Q Therefore (4A) becomes

The solution is A = —

x1 (t) = e? (Acost + Bsint)

o (sinl cost cosl sint)
=e

e e

o (sinl cost—cosl sint)
=e
e

But sin1cost - cos1sint = sin(1 — t), hence

x1 () = e sin(1-1¢)
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Now that we found x; (t) we go to (3A) and find x, (t)
X, () = ¢t flt e 2" x; (1) dt + €1
=1 4¢ j: e 2% 1sin (1 -1)dt
=l 4o j: e lsin(1-1)dt

=l 41 ft sin (1 -1)dt
=1 4et1 (—11 +cos(1-1)
=elcos(1-1)
Therefore, the second column of the fundamental matrix is found
w2 - [eZH sin (1 - t)J
e lcos(1 -1t
Hence the fundamental matrix is
W (eZt‘z cos(1-1t) e lsin(l - t))
- 2sin(1-t) etlcos(1-1)
The inverse is now found.
— [ez‘Zt cos(1-t) —e*tsin(l - t))
el2tsin(1-t) e fcos(1-t)
Therefore the state transition function, after some simplification, is
Ot,1)=VYHVY (1)
A 2cos(1-1t) e lsin(l-#))(e* % cos(1-1) —e*Tsin(l-1)
- (—et‘z sin(1-t) eflcos(l- t))(el‘2T sin(l-7) e cos(1-71) ]
B (ez(t‘” cos(t—1) —e* Tsin(t - T)]

e ?Tsin(t-1) eTcos(t-1)

2.5.6 key solution

ECE 717 — Solution Set 5



Barmish

ECE 717 — Solution Diagonalize

Let T be a matrix whose columns are eigenvectors of M;. We claim that its
columns are also eigenvectors of M. If we establish this, it follows that M;
and M, are simultaneously diagonalizable.

Indeed, suppose v is an eigenvector of M; corresponding to eigenvalue \.
Then we know that
Miv = \v.

Hence, to show that v is also an eigenvector of Ms, we observe, using the
commutating property, that

Ml[MQU] = MQMl’U = /\[MQU]

This says that Msv is also an eigenvector of M; corresponding to eigen-
value \. Since all eigenvectors for A\ are scalar multiples of each other, it
follows that

Msv = pv

for some scalar p. The equality above implies that v is an eigenvector
of My corresponding to eigenvalue p .
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So lution Exponentmls

j An)dn, -

B éopnse FMS : W)= € 5%’,&0 €0
show ¢hat .w(o)=I D Y)- AL)YE)
Dj"o//ows since €T, @ Lok aid;i, W) - d, ed;tA(n)dQ
Cdt

d_f_, [L *(J:A(n)dﬁ) ’ (‘L;A’(Q)dq)i | UA(ﬂ)dy)“”J

k)

AW+ 2 S:Am)dvz)_f*l(t)’,_, , MA&)

B 2! £
L AO200(La00),  pae (! aona)
comm(g'l:ntnoﬂ 2. k:
o ¢ et
- 22;' Act) M} . A(@)Z (jA(n)dfz)
&) e
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0 Supose Al) AlL.) T 9(@)9({,) J%ral 6. LA

Then A(e)f Am)dy, - J H(t)A(ﬂ)dz jA(vy) A(t)d7
Jﬁ(n)d’z AR) 5o commutatton holdo.

Hence solvton iy agqm

W= ol
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Homewar K Revisit -
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' [t At dn
T}]Qv\ ’\Y('t) = 6
, P Ay dg P!
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= = (p [frwdee)
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- = P = /[ ‘awd
LV ‘ A=, (-——:{—‘— > F

_ NG
_ FeL/\?)rzP»
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Solvkion Transit10n

@)
We consider Solotion 05 {he {orm

X, (L) =L . o )
1 () % X, (t) o . Now bﬁ trial

G0d error subsbitotion [ W) obbtad

v —fl]; "‘V’)(U‘[%J ] ano, with 10!
4

= |/L2

have W' (L o) :[n] y wq(w;[Z] Whith Gre 1 dgeaded
! - as regoiced:

Py - W) ¥ ) - [ M J
g i \ -
. T/l é”

-

al - o
gebre |ty 07T - 2T

IR A g 147c- 4T

done
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(b) Similac to part (@). We flrst Consioer
Solvtions of the Sorm X (¢) = (os(}t
Gnd sinilar Sorms for Xo(t) After krial and
ercof Lo x® ['o] , 0%tan u)'(t):' [Quc’os t]
God o Jé°=[°] ; Ww- ( QHSmﬂ e st
o' cost

([})Q aboue fe%usreJ a\SQbra . Subsutotion
nt o X, ecﬁuatloos th)

Now o )
oy - Y)Y () =[e st -em]

Qt st ©FCost

Ic B 4 -1
)/e cosT -€  sal
© e cosT

L€ st P
/“OLS 0{: Cl)ﬁebr(g . Cap Ve 5\'[.03 19 Mat lab
( 2(t-t)
e cos(t-t) - e‘“ Csm (¢-0)
t-2¢C T
€ ST " cos(t-t)
g
2.6 HW6

2.6.1 Questions

ECE 717 — Homework Set 6

Due Tuesday, November 18, 2014
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Barmish

ECE 717 — Homework Controllability

Show that the linear time-varying system described by

and

is controllable at ¢y = 0.

Barmish

ECE 717 — Homework P Transformation

Given a continuous LTV system ¥ = (A(t), B(t)), let
z(t) = P(t)x(t)

where P(t) is a continuously differentiable square nonsingular matrix. De-
noting the resulting the z-system by 3, establish the following result: ¥ is
controllable at t; if and only if ¥ is controllable at ;. HINT: Relate U (t)
to \Ifz(t) (I)i(lf,T> to \Ifg(t,T) and ﬁna]ly Wi(t()?tl) to Wz(to,tl) .

Barmish

ECE 717 — Homework Solve

For the LTT state equation

T = Ax
with A having distinct eigenvalues A1, \o, ..., \,,, recall that the fundamen-
tal matrix solution

can be expanded as
eAt — Z }/026)\115
i=1
(a) For n = 3, show that the following formula provides a closed form
solution for the Yj;:

n A\
Yoi= 1[I I,
j=Lj#i i — A

(b) Use the result above to obtain e’ with

1[ 3 —1
A__Z[—l 3}'
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Barmish

ECE 717 — Homework Circuit

A two-loop RLC circuit with continuously differentiable time-varying re-
sistance R(t) and input voltage u(t) is described by the pair of state equa-
tions

. I 1 u
Ty =—F5~—7= —
TR T R@)
To = 21

(a) Determine if this system is controllable at ¢, > 0.

(b) Determine if this system is differentially controllable at ty > 0.

Barmish

ECE 717 — Homework Control Effort

For the controllable LTI system ¥ = (A, B) with all eigenvalues of A in the
strict left half plane, establish the following control effort property: Given
any initial condition z(0) = 2 and any 3 > 0, there exists a control u(t)
and a future time ¢; > 0 such that

and

for all t € [0,¢4].

Barmish

ECE 717 — Homework Range

For the continuous LTV system

&= A(t)z + B(t)u

with to <t < t1, prove that an initial state z(ty) = 2° can be steered to

zero at time ¢, if and only if 2° is in the range of W (ty,t;). That is
z° € R(W(to, t1>) = {W(to, t1>T 1T € Rn}

HINT: If a vector 2° is not in the range of W (ty, 1), from matrix algebra,
there exists a non-zero vector n such that

nTz® #0

and
nTW(f(), 251) = O

2.6.2 Problem 1 Controllability

n = 2. Since A (t),b(t) are n—1 or 1 time differentiable, we can obtain M (t) = [MO (tH M, (t)]
and check that its rank is # using the theorem that 2 is controllable at f; if there exist



239

t >ty such that p (M (¢)) = n.

Mo (t) = [f

d
My () = A () My (t) + Mo (t)

e

Hence

t
M) = [(1) iz1]

The determinant is A = —¢! which is not zero for any ¢ > 0. Hence M (t) is not singular and
so has rank 2. Hence 2 is controllable at t = 0. Note: This system is not stable.

2.6.3 Problem 2 P Transformation

z=Px
z/ =P'x+Px
Hence
x' =Pl (z - Px)
=Pl (z - P'Plz)
Therefore, the state space x’ = Ax + Bu becomes
Pl (2 - P'P7lz) = AP"'z + Bu
7/ —P'P~'z = PAP~'z + PBu
z/ = P'P7'z+ PAP 'z + PBu
= (PPt + PAP™)z + PBu
Therefore
A= (PP +PAPT)
And
B(t)=P()B ()

Now the state equation solution for E is given by
t
()= E0xO + [©¢0B @D dr
0
Applying the transformation to the above results in

t
PL(H)z(H) = D (t,0) P (£)z(0) + f @ (t,7) P~ (7) Bu (7) dt
0

&(t,0) ¢ ®(t,7)
z(t) =P () D (t0) P~ (H)z(0) + J P({t)®(t,7) P (1)B(t)u(1)dt
0

t
Z(t):CTD(t,O)z(O)+fCTD(t,T)B(T)u(T)dT
0

Hence

D(t, 1) =P(t)D(t,7) P (7)
Now that we found ® (¢, 7) and B (t), we are now ready to do the proof.
Theorem: (A, B) is controllable at ¢, iff (/T, E) is controllable at t,.
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Necessity =. We need to show: If (4, B) is controllable at fy then (/T, E) is controllable at
to

Sufficiency <. We need to show: If (A,B) is controllable at f, then (A, B) is controllable
at tO

Proof of Necessity: Given that (A, B) is controllable at t,, show that (A,B) is controllable
at to.

Since (A, B) is controllable at t;, then the following controllability Gramian W (t,, ) is not
singular

t
Wito, t) = f D(ty, )B(T)BT(1)D T (ty, T)dT 1)
to

We want to show the above implies that

t
Wito, t) = [ Bto, BB (DD (ty, )x @)
to
is also not singular.

Applying the transformations found to (2) gives

t
W (tg, t) = f PO (ty, 0 P (0] P B@IIP (@) BOI [PO®(ty,7) P (0] dr
fo

t
- f P (t)® (to, 7) B (v) BT (1) PT (7) (PT (T))_1 @7 (to, 1) PT (t) dt
to

T 1
Notice in the above we used (P‘1 ('c)) = (PT (T)) . Therefore the above simplifies to

t
W (to, t) = f P(H) D (ty, 7) B(7) BT (1) @ (t,, 7) PT () dx

fo

t
=P ( f @ (ty, 7) B(7) BT (1) DT (ty, 7) d7 | PT (1)
to

=P () W(to, t) P (1)
Since W (t,t) is not singular, and P (f) is given as not singular, then P (t) W (t,, t) PT (t) is
not singular also and this implies W (ty, t) is not singular.
Proof of sufficiency: <. We need to show: If (A, B) is controllable at t; then (A, B) is

controllable at f,. Since (A, B) is controllable at ¢, then the controllability Gramian W (t, t)
is not singular

t
Wit 1) = [®(to, DB @B (0BT (1) d 3)
to
We want to show the above implies that

t
W (ty, ) = f @ (ty, 7) B (1) BT (1) DT (to, 7) dr (4)

fo
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Applying the transformations to (4) gives
t

W (t, ) = f (P10 (o, D P @] [P @ B@][P @ B®] [P OB, 1) P(0)] dr

fo

t
= [P0t 0BOB @ @ [PT@[P 0@, 0] |t

fo

t
_ f PO B, 1) B0 BT (1) (PT (1) PT ()BT (t, 1) P () dT
l‘ot
- f PL®)®(t1)B(r) BT ()BT (t,7) P (1) dr
to

t
=P (¥ [f(f (to, T) B(7) BT (1) DT (t,, 7) dT] p! (t)T
to

=P LW (t, ) PL ()"

Similar to the same argument used for the Necessity, since W (f,t) is not singular, and P (t)
is given as not singular, then P (t) W (t, ) PT (t) is not singular and this implies W (t,, ) is
not singular.

2.6.4 Problem 3 Solve

Part (a)
BAt = YOleAlt + Yoze/\zt + Y03€A3t
Where
_(A-AD(A-A3D)
BT - ) (A - Ag)
(A=A (A-1sD
27 (M- ) (A - A3)
_(A-MD(A-A)))
P M- ) (A-4p)
2
We know that eAtL 0= I and %eAt = A and %e“” = A2. So now need to verify that
= =0 t=0
using the above expressions these remain satisfied.

eAt|t_O =1

(A= A,) (A= A3l) N (A= MI) (A= A3l) N (A= M) (A= A,])
(M =A) A =A3) (A=A (A =A3) (A3 = A1) (A3 = Ap)
Using common denominator (A; — A,) (A7 = A3) (A3 — A;) results in

Yor+ Yoo + Y3 =

(A=2D) (A=A3D) (A3 = Ap) + (A=A ) (A= A3D) (A = A3) = (A-MD) (A=) (A1 = Ap)
(A1 = A2) (A = A3) (A3 — A)
(A2 = A3A = A A+ ApAsl) (A5 = Ag) + (A% = A3A = MA + A A5D) (Ag = As) = (A2 = A = M A + A1) (Ag = A2])
(A1 = A2) (A1 = A3) (A3 = A2)

Yo1 + Yoo + Yo3 =

Expanding the numerator and simplifying results in (1; — A;) (A1 — A3) (A3 — A,) I, hence
(A1 = Ap) (A = A3) (A3 - )1

Yor + Yoo + Yo3 =
o1 F Yoz o3 = S A — A) (As = Ay)

=1
Now we need to verify the second equation

d
b

dt

t=0

= MYor + A2Y02 + A3Y03
=0

d
E (Y(ne/ht + Yoze/\zt + Y03€/\3t)
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But
(A= A,D) (A= A3l) (A= M) (A-A3l) (A= M) (A=A,
MY +AY 0 + A3Y 3 = A +
PO IS T ) (- ) P (- ) (- Aa) T (= Ay) (- A)
_ —(A-M) (A = AAs) + (A=) (A=A Ay
(A1 = A2) (A1 = A3)
_ AA% - AMAy — A A3 + AAs A5
A% - AMAy — Al/\3 + AZAC’)
A (A2 = A1 = A1 A5 + AA5)
A2 — XAy = AAz + A5

=A
Now we need to verify the third equation
42
Al 42
ﬁe =A
t=0
42
ﬁ (YOleAlt + Y02€/12t + Y03€/\3t) = /\%Y(n + /\%YOZ + /\§YO3

t=0
But
) ) v 2(A=AMDA-A3D)  S(A-MDA-A3D) (A=A (A=A
A¥or+ A2Yop + A3¥0s = Ay (A=A (A =2A3) P (A= Ay) (A — Ay) tA3 (A3 = A1) (A3 = Ap)
= (A=) (Al A + (A = (A + A1) A) A3) + (A= Ag) (A= A3) A
- (A1 = A2) (A1 = A3)
_AZ(A - Ap) (A1 - Ag)
T (M=) (A - Ay)
= A2

Verified for n = 3 OK.

Part(b)

The eigenvalues are A; = -1, 1, = 2. Hence

E’At = YmeAlt + Yoze/\zt

Where
2 1] [-2 o
% —23 - 1 1
y _@A-An \[; 1Y 2] 2 Z
BT - (-1+2) A
2 2
= ] [ o
1 =37 1 1
v _A-AmD \[; ] [0 |z 3
(A=) (-2+1) -~
Hence
(1 1 1 1
pAt — 2 2let+]| 2 1216—%
2 2 T2 2
[ t
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2.6.5 Problem 4 Circuit
Part(a)

A B
—_—
1

/ o L
A |Tre T RO) |y (#)
X 1 0 0

Since A, B are continuously differentiable, we can use the short cut M based method to
determine if (A, B) is controllable at some instance of time and we do not need to compute
the controllability Gramian W. First we will find M

X1
+

X2

1
My = B(#) = | R®
0
d
My (t) = =A(t) My (1) + ﬁMo (t)
1 72 -1
"R || RO R2(t)
1 0 0

0
PRI I
_| = _[R_a)]

+

"l L O

_O_
- 1

LR

1
— 0
M= [R(()o K }
R(H)

-1

SR
The system is not controllable at t; if the determinant is zero at that instance of time. But
for the determinant to become zero means that R (t) has to become co. Therefore, assuming
R (t) remain finite for all + > 0 which is expected in a working physical system, then we
conclude the system is indeed controllable for any t, > 0.

Hence

The determinant of M is

Part(b)

A system is differentially controllable at some time ¢, if there exist u (t) which will steer
x (tp) to x (1) no matter how small t; -t is. Clearly if the system is differentially controllable
at fy, then it is also controllable at ¢, by making t; — ¢, as large as we want. The question
is asking to show the system is differentially controllable for t, > 0.

This actually follows from the fact that A, B are analytic functions. By definition, analytic
functions over [0, oo] are linearly independent iff they are linearly independent over any
sub interval no matter how small the interval is. But I think we need to proof this using
calculus. Therefore an attempt to do so is given below:

Let t; =ty + € where ¢ is the time increment we will make as small as we want. Since the
system is controllable at ¢, then W (ty, ty + ¢) is nonsingular.

Now I will use the same result used in proofing controllability itself, which is to claim the
following u (t) will steer the system from x (fy) to x (fy + ¢)

u(t)=-BT () DT (ty+ &, t) WL (to, to + &) [D (ty + &, tg) x (ty) — x (tg + €)]

To show that the above u results in system moving to x (t; + ¢) from x (f), we substitute the
above u into the state solution
tot+e
AN=D(ty+ &, tg) x(ty) + f@(to +¢,7)B(t)u(t)dr
to
And this will result in A = x (t5 + ¢).
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tote u(t)
A=ty +e ) x(ty) - f O (tg+ e, 1) B() (~BT (DT (tg+ &,7) W1 (tg, bg + ) [D (tg + £, ) x (tg) - x (t + )] T

to

W(to,to+e)

tote
= (tg + ¢,tp) x (ty) — (f D (tg + &, 7) B (1) BT () DT (tg + &, T) dT | WL (tg, to + €) [D (to + €, tg) X (tg) — x (g + €)]

to
I

=D (ty + &,tg) x (tg) = Wt tg + &) WL (tg, tg + &) [D (tg + &, tg) x (tg) — x (tg + €)]

=D (t+ &, tg) x (tg) — P (kg + €, tg) x (fg) +x (fg + €)

=x(tg+¢)

The only requirement for the above proof was the condition that W (¢, t, + ¢) is nonsingular
at t, which was established in part(a).

I give another proof just in case the above is not acceptable. Consider

t
Wito, 1) = [@(to, ) B (D) BT ()T (ty, 1)
to
We know the above is nonsingular since the system is controllable at fy > 0 from part (a).
Using P (tg, 7) = D (ty, to + €) P (ty + €, T) we can rewrite the above as

t
W(to, tl) = f(D (to, tO + E)q)(to + &, T)B (T) BT (T) (q) (to, to + €)®(t0 + &, T))TdT

fo
51

:f(I)(to,tO+e)(I)(to+e,T)B(T)BT(T)CDT(tO+E,T)(1)T(t0,t0+e)dT
to
Now @ (to, g + €) and @ (ty, ty + ¢) do not depend on 7 and can be removed outside the
integral

5]
W (tg, t) = @ (tg, tg + €) [fq) (to+&,1)B(T)BT (1) DT (ty + &, 1) dt | DT (to, ty + €)
to
The integral inside the controllability Gramian W (t, + ¢, t;), hence
W (to, £) = D (tg, tg + &) W (tg + &, 1) DT (o, tg + €)
Therefore
Wity +¢e,t) = DL (to, to+ &) W(ty, ) DT (ty, ty + €)

Since W (t,, t) is nonsingular, and since @ (¢, fy + ¢) is also nonsingular, then W (ty + ¢,t) is
also nonsingular for any ¢. Therefore the system is controllable at any time after f; no
matter how small ¢ is.

2.6.6 Problem 5 Control effort

Future state is given by
f
X (t) = eAtx () + f AU=DBy (1) dr 1)
to
Let M be the controllability matrix, which we know is nonsingular since the system is
controllable. The following u (t) will bring the system from x (ty) to x (t;)

u(t) = =BT (At-0)' M1 (A (1) — x (1)
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Substituting this in (1) shows that this is the case
tp 5]

T
Ay (t) + feA(tl‘T)Bu (7)dt = eMx (ty) + feA(tl‘T)B [—BT (eA(tl‘t)) M1 (eA(tl)x (to) — x(tl))]dT

to to
for LTI = M matrix

ty

= Aty (¢ - [ f pAli-1) BBT (eA(tl—t))TdT] M1 (eA(t1>x (tg) — x(tl))
to

= eAtx (tg) - MM (eA®x (tg) - x (1))

= eAMMx (tg) — e (tg) + x ()

=x(t)

T
Hence we know that u (t) = -BT (eA(tl‘t)) M1 (eA(tl)x (o) — x(tl)) will steer the system from
x (tp) to x(t1). Now if we set x (t;) = 0 as the goal state, then u (t) simplifies to

T
u () = —BT (A7) MleAtx (k)

This control will steer the system from state x (ty) to state 0. Now we need to show that
llu ()|l < B for any given B > 0. In the above B and x (t;) are fixed and given and do not
change with time. The same for M. This is because this is an LTT system. The only effect
on the norm of u (t) comes from ¢A*17" matrix, since this is the only quantity in the above
that changes with time. Therefore, to reduce the norm of u () is means we can change ¢
where u (t) is applied such that the resulting ¢A®17" is such that |ju (#)|| < . We might have
to make (t; —t) very small, but we can always do that in order to cause |[u (t)|| < S.

2.6.7 Problem 6 Range

Need to proof the following: x (t;) can be steered to x (t;) = 0 iff x (fy) is in range of W (t, t1).

Proof: The above is equivalent to proofing this: x(t)) can be steered to x(t;) = 0 iff
Wty t1)v = x(ty) for ¥ # 0. But the ability to steer from x(ty) to x(t) = 0 is the same
as saying the system is controllable at t,. Therefore, what we want to proof is the following

The system is controllable at ty iff W (ty, ;) v = x (ty) for ¥ # 0

Since if the system is controllable, then by definition, we can find control u (t) to steer x (¢;)
to x (t;) = 0. Now we will start by proofing the above.

Necessity: = If The system is controllable at ¢, then W (ty, t;) v = x (to) for ¥ # 0
sufficient: &= If W (ty, t;) v = x (to) for ¥ # 0 then the system is controllable at .

Proof of Necessity: Since the system is controllable at f, then we can find u (t) such that

f
¥(h) =0 =0 (ty, 1) x(tg) + [ @ (1, DB (D) u(x)dr
to
Premultiply both sides by @ (t, t;) then
1 t q)(i’o,”()
0 =D (ty, t1) D (1, to) x (tp) + fq)(tO/tl)(D(tl/T)B(T)u(T) dt

to

t
0= x(ty) + fq)(to,T)B(T)u(T)dT
to

t
—x(to) = f @ (ty, 7) B (1) u (1) dr 1)
to

Let the control be u (1) = =BT (1) @7 (t,, 7) 7 (t) for some none zero 7 (t). Since BT (t) has size
mxn and @7 (ty,t) has size n x n then 7 (t) will have size m x 1. Substituting this control law
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into (1) gives

5]
-x(ty) = [—fCD (to,7) B(7) BT (1) oT (tg, 1) dT [T (t)

to
where we moved v outside the integral since it does not depend on ¢. But

f
[t B@BT (@07 ty, 1)d = Wito, 1)
to

Hence the above becomes

W (to, t1) T (t) = X (to)
Therefore x (y) is in the range of W (¢, t;).
Proof of sufficient: < If W (ty, t;) v = x (t;) for T # 0 then the system is controllable at ;.
Since W (ty,t;) 7 (t) = x(ty) then
x(tg) = Wty 1) T (t)

51
= [f@ (to, ) B(7) BT (1) @ (ty, 7) dt

fo

5]
- f @ (ty, 7) B () BT (1) T (to, 1) 3 (1) d
to
Premultiply both sides by @ (ty, t)
5]
D (t1, 1) x (tp) = f @ (t1,1) P (ty, T) B(t) BT (1) DT (to, )T (t) dr

fo
51

0=-D(t,t)x(tp) + f(D (t1,7) B (1) BT (1) @7 (to, 1) U () d7
to
Let BT (1) @7 (ty, 7) 3 (t) = —u (t), then the above can be written as

t
0= B (ty, ) x () - f ® (t,,7) B (1) u () dr
to

Since x (t;) = 0 then the LHS above is x(¢;) then
t
x(t) = (1,0 x (to) + [ (b1, ) B (@) u(tdr

to
But the above means x (t;) is steered to x(f;) = 0. This completes the proof.

2.6.8 key solution

ECE 717 — Solution Set 6



Solutz oN Controlla b(/nL‘/
TwWo Pogslb)e solutions: Wieh
Alt) = |2 ‘et]J B(b)=[0)2
et | o

one can Use ¢(bT) from Home work Transctian
Gad use the W-test, Altecn arively, we form

M, le) = B(4) = [f)] -, M.'u?: - Alk) Mo ) »dgt My [0
]
q

Henc /%UQ{MO({) M,(L)J:(CID C?t]

-

Qe det M (t)- -@% %0 we have
cank Mw)=1. f(f al t7o0. Hence

0 s watollable at to.
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: SO'Utlon P. Trans%rmatn.;n
L find, state @cauqt(@&( Z¢):

—_— -

Z) - d PO xw) - Pexw)+ PRZE)
dt _

Py P AL e « Beue)]

"

= [ﬁ(t) +\ P(e) H(b)])((ﬁ) ¥ f@ /f_a@ug;)
Bw
(PE) Sk WP ) z(e) + P B ul)
A 5
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2.7 HW7

2.7.1 Questions

Problem 1: Consider a unity feedback control system with interval plant

(3+pl0dDs + (1 +p[~05,0.25])
'+ (34 pl=LIDs' + (6 +pl=LIDs™ + (3 +pl=L0])s + (4 + p[-05,0.75])

P(s,p) =

(a) Verify that the system is stable when p=0.
(b) Using Kharitonov’s Theorem, find the largest p> 0 such that the closed loop system
is still stable; call this value p=p,_ . the robustness margin.
. AU, 1
(c) Now instead of unity feedback, a compensator H(s) =~ is used. Determine if the
$

resulting family of polynomials is stable for p=05p . with p_ from Part (b).

Problem 2: A plant with transfer function

3s+1
O =K et
and uncertain parameters 12 < ¢ < 36and 1 < b < 2 ;5 connected in a classical
unity feedback configuration. Find the largest value of the gain K > 0. call it Ko,
under which robust stability of the closed loop is guaranteed. Note: Since there are only

two uncertain parameters, consider solving this problem via direct argument using the

Routh-Hurwitz criterion instead of Kharitonov’s Theorem.

Problem 3: The interval plant

s+ 1+ p[-1,1]
s7+ 2+ p=11])s+3

G(s) =

with variable radius of uncertainty p > 0 is compensated with controller

s 1
s—1

H(s) =

in a classical unity feedback configuration. Find the largest value of p, call it p,,4, under
which robust stability of the closed loop is guaranteed. We call p,,,. the robustness

margin.

Problem 4: Suppose po(s) and p;(s) are stable polynomials with positive coefficients.
For 0 < XA <1 define

px = (1= A)po(s) + Aps(s).

Given that py(s) is stable at the endpoints A = 0 and A = 1, an engineer claims that py(s)
will be stable for all intermediate values of A as well. Do you agree with the engineer?
Explain by providing a technical argument supporting the engineer’s point of view or

generate a counterexample showing that the claim can be false.



258

ECE 717 — Homework P Matrix

(a) For the linear time-invariant system with

[—2 4 -3 1 |
0 -5 2 -1

A= ,
0 0 —1 2
0 0 0 —4

using = I, find the solution of the associated Lyapunov equation by
hand and give the associated V function in expanded form.

(b) Verify the solution obtained in (a) via Matlab.

ECE 717 — Homework Matrix Norm

(a) Find the matrix norm of

[0.95 0.48 0.45 ]

A=1023 0.89 0.01 |,

1 0.60 0.76 0.82
by hand.

(b) Verify the solution obtained in (a) via Matlab.

ECE 717 — Homework Robustness Bound

For the linear time-invariant system described by
T=(A+AA)x

with
-1 2 1 3 7
0 -2 -1 5 -3

A=]10 0 -3 4 0 |,

0 0 0 —4 1
0O 0 0 0 -5

determine a robustness bound on ||AA|| under which this system is stable.

2.7.2 problem 1
Solution:
The plant is
(3+p[0,1])s+ (1 + p[-0.5,025])
P (s, p) =
st+ (3+p[-1,1])s* + (6 + p[-1,1]) s2 + (3 + p[-1,0]) s + (4 + p[-0.5,0.75])
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Part(a)

When p =0

3s+1

P =
®) st +33+652+3s5+4

First we find the closed loop transfer function. Using the following diagram

compensator Interval based plant

U OEO H(s) PGS, p) ~Y(s)

Y

E=U-Y
Y = EHP
Replacing E in second equation with E from the first equation
Y=(U-Y)HP
= UHP - YHP
Hence
Y (1 + HP) = UHP
The closed loop transfer function is E From the above we obtain

Y 6. HP
— = S) =
TR 1+HP

For unity feedback, H =1, the above reduces to

P(s)
1+P(s)

G (5) =

This is stable if poles of G (s) are stable. This is the same as saying the zeros of denominator
N(s)

of G, (s) all have negative real parts. Writing P (s) = o6 then
N(s)
De) N(s) 3s+1 3s+1

G = = = =
e 6) 1+ N6 D(s)+N(s) s*+3°+6s2+3s+4+3s+1 s*+35%+6s2+65+5
D(s)

We now need to check stability of the denominator of G (s) given by s* + 35> + 6s% + 6s + 5.
Using Hurwitz matrix where s* + 3s% + 652 + 6s + 5 = ays* + a3s® + ays? + a;s + ag gives
4y a3 0 0] [6 300
0 5610
H= Ag dp 4y _
0 a a5 0| [0 6 3 0
ag dp ay 0561

Hence A =6,A, =21,A53 =27,A, = 27. Since all A; > 0 then the

denominator polynomial of G (s) is stable

Hence closed loop system is stable. To verify, using the computer, the roots of s* + 3s> +
652 + 65 + 5 are {-0.296974,-0.296974, —1.20303, —1.20303}. Since they are all negative, this
verifies system is stable as well.
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Part(b)
Still using the unity compensator but now using the interval plant gives

N(s)
__PO _ b9 __ NGO
Ga(s) = 1+P0) 1+% T D(s)+N(s)
D(s.

~ (3+p10,11)s+ (1 + p[-0.5,025])
S st (34+p[-110) 2+ (64 p[-1,11)s2 + (3+p[-1,0])s + (4 + p[-05,0.75]) + (3 + p[0,1]) s + (1 + p[-0.5,0.25))

The denominator polynomial from above is
A@s)=s*+(3+p[-1,1])s> + (6 + p[-1,1]) 2 + (6 + p[-1,0] + p[0,1]) s + (5 + p[-0.5,0.75] + p[-0.5,0.25])
@)
But?]
(6+p[-1,01+p[0,1])s = (6 + p[-1,1])s
And
(5+ p[-05,0.75] + p[-0.5,0.25]) = (5 + p [-1,1])

Therefore (1) becomes

A(s)=st+(3+p[-1,1])s> + (6 + p[-L,1])s2 + (6 + p[-1,1]) s + (5 + p[-1,1])

The above is the polynomial to examine for finding the maximum p. Notice when p =0
we obtain s* + 3s® + 65 + 65 + 5 as in part(a) which is stable. Note that if the nominal
polynomial is not stable, then there will be no point in checking for robust stability. The
four Kharitonov polynomials are from the above are

K1:(5—p)+(6—p)s+(6+p)sz+(3+p)s3+s4
KZ:(5+p)+(6+p)s+(6—p)sz+ 3—p)s3+s4
K3 (5+p)+(6—p)s+(6—p)sz+(3+p)s3+s4
K4=(5—p)+(6+p)s+(6+p)sz+(3—p)53+s4

We want to find the maximum p such that the four polynomials above are still stable. We
setup the Hurwitz matrix for each and determine the condition on p needed. For K;

ap a3 0 0] [(6-p) (3+p) 0 0
ag ap ag 0] (S—p) (6+p) 1 0
0 a a3 Of | 0 (6-p) (3+p) 0
0 ay ap a4 0 (5—p) (6+p) 1

Hence A; = (6—p) > 0 which means p < 6. And A, = 21 —2p > 0 hence p < 10.5 and
A3 =27 +27p - 3p? > 0. Hence —-0.9083 < p < 9.908. A, is the same as A3 hence no new
information is obtained from it. Therefore, from K; we find the following

{p <6,p<105,-0.9083 < p < 9.908}

For K,
(6+p) 3-p) 0 0
(5+p) (6-p) 1 0
0 (6+p) (3-p) O
0 (5+p) (6-p) 1

Hence Ay = (6 + p) > 0 which means p > -6. And A, =21 +2p > 0 hence p > -10.5 and
A3z =27 -27p - 3p? > 0. Hence —9.908 < p < 0.908. A, is the same as A3 hence no new
information is obtained from it. Therefore, from K, we find the following

{p>-6,p>-105,-9.908 < p < 0.908

3Using properties of interval arithmetic [a,b] + [c,d] = [a + ¢, b+ d] and [a,b] - [c,d] = [a —d, b -]
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For K3
(6-p) (3+p) 0 0
(5+p) (6-p) 1 0
0 (6-p) (3+p) O
0  (5+p) (6-p) 1

Hence Ay = (6 - p) > 0 which means p < 6. And A; = 21 —20p > 0 hence p < 1.05 and
A3 =27 -27p-21p* > 0. Hence -1.936 < p < 0.66059. A, is the same as A3 hence no new
information is obtained from it. Therefore, from K3 we find the following

{p<6,p<1.05-1.936 < p < 0.66059)

For K,
(6+p) (3-p) 0 0
(5-p) (6+p) 1 0
0 (6+p) (3-p) O
0 (5-p) (6+p) 1

Hence Ay = (6 + p) > 0 which means p > —-6. And A, =21 +20p > 0 hence p > -1.05 and
A3 =27 +27p —21p? > 0. Hence —0.66059 < p < 1.956. A, is the same as A3 hence no new
information is obtained from it. Therefore, from K, we find the following

{p>-6.,p>-1.05,-0.66059 < p < 1.956}

We now have found all the range for p from each polynomial. We put them together in
order to determine the largest p allowed

Ky = {p <6,p <10.5,-0.9083 < p < 9.908}

K, = {p > -6,p > -10.5,-9.908 < p < 0.908}

K = {p <6,p <1.05,-1.936 < p < 0.66059}

Ky = {p>-6.,p>-1.05,-0.66059 < p < 1.956}
We see that the largest allowed positive p is

Prnax = 0.66

Part(c)
Using
1 —1(0908)—0454
p = 5Pmax = 5 (0.908) = 0.

The plant becomes

~ (3 +0.454[0,1])s + (1 + 0.454[0.5,0.25])

T T (3+0454[-1,1])s3 + (6 + 0.454[-1,1])s2 + (3 + 0.454 [—1,0]) s + (4 + 0.454 [—0.5, 0.75])

~ (3+10,0.454]) s + (1 + [-0.5 (0.454),0.25 (0.454)])

T s11 (3+[-0.454,0.454]) 53 + (6 + [~0.454, 0.454]) 52 + (3 + [-0.454, 0]) s + (4 + [-0.5 (0.454) , 0.75 (0.454)])
~ (3+1[0,0.454])s + (1 + [-0.227,0.1135])

T s15 (3+[-0.454,0.454]) 53 + (6 + [~0.454, 0.454]) 52 + (3 + [-0.454, 0]) s + (4 + [-0.227, 0.3405])

p(s)

But a + [b,c] = [a+ b, a + c], hence we can simplify the above to
[3,3.454] s + [0.773,1.1135]
+ [2.546,3.454] $3 + [5.546, 6.454] 52 + [2.546, 3] s + [3.773, 4.3405]

P =4
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Now the compensator is no longer unity but H(s) = % Hence the closed loop transfer
function is
H(s)P(s)

Gi(8) = ———
o (%) 1+H(s)P(s)
_ p(s)H(s)
- 14(1 [3,3.454]5+[0.773,1.1135]
s ) \ s4+[2.546,3.454]53+[5.546,6.454]s2+[2.546,3]s+[3.773,4.3405]
_ p(s)H (s)
- N [3,3.454]s+[0.773,1.1135]
$5-+[2.546,3.454]54-+[5.546,6.454]53+[2.546,3]52+[3.773,4.3405]s

[3,3.454] s + [0.773,1.1135]
R [2.546,3.454] s* + [5.546, 6.454] s3 + [2.546, 3] s% + [3.773,4.3405] s + [3,3.454] s + [0.773,1.1135]
But [3.773,4.3405] s + [3,3.454] s = [6.773,7.7945] s, and the above becomes
[3,3.454] s + [0.773,1.1135]
s5 + [2.546,3.454] s* + [5.546, 6.454] $3 + [2.546, 3] s2 + [6.773,7.7945] s + [0.773,1.1135]

The system is stable if the zeros of the denominator of G (s) are stable. The interval
polynomial to check for robust stability is

Gcl (S) =

s% + [2.546,3.454] s* + [5.546, 6.454] $3 + [2.546, 3] $2 + [6.773,7.7945] s + [0.773,1.1135]

The four Kharitonov polynomials from the above is

Ky = 0.773 + 6.773s + 352 + 6.4545% + 2.5465% + &5

K, = 1.1135 + 7.7945s + 2.5465 + 5.5465° + 3.454s% + §°

K3 =1.1135 + 6.773s + 2.5465% + 6.4545% + 3.454s* + s°

Ky = 0.773 + 7.7945s + 3s% + 5.5465 + 2.5465% + 5°
Finding the real part of the roots of each polynomial gives
{-1.29,-1.29,-0.119, 0.0806, 0.0806}
{-1.92,-1.92,-0.148, 0.270, 0.270}
{-1.83,-1.83,-0.171,0.186, 0.186}
{-1.42,-1.42,-0.102,0.199,0.199}

Ky
K;
Ks
Ky

Since some roots have positive real parts, the polynomials are | not stable |

2.7.3 problem 2

3s+1
st+s3+as>+s+0b
Where 12 <2 <36,1 <b < 2. The closed loop transfer function for unity feedback is
G(s)

1+G(s)
3s+1
s +53+as2+s+b

T e
3 k(3s+1)
- (s4+s3+a52+s+b)+k(35+1)
k(3s+1)
T F P +a+s(l+3k)+ b+
We need to find the largest k such that the zeros of s* + s® + as? + s (1 + 3k) + (b + k) remain
stable. Writing this using uncertainties

A=s*+35%+[12,36]s% +s(1+3k) + ([1,2] + k)

G(s)=k

Ge () =
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The four Kharitonov polynomials are
Ky =(k+1)+(1+3k)s+36s%+5>+s*
Ky =(k+2)+(1+3k)s+12s% + 5> +s*
Ky=(k+2)+(1+3k)s+125% + 3> + s
Ky =(k+1)+ (1 +3k)s+36s%+5>+s*

We want to find the maximum k such that the four polynomials above are stable. We setup
the Hurwitz matrix for each and determine the condition on k needed. For K;

a, a3 0 0] [@+3k 1 0 0

ag dp dy 0 _ 1+k 36 1 0
0 ag a3 O | 0 (143K 1 0
0 Ag dp 4dy 0 1+ k 36 1

Hence Ay =1+ 3k > 0 which means k > —. And A =107k +35 > 0 hence k > — = —0.3271
and A; = —-9k% + 101k + 34 > 0. Hence —-0.3271 < k < 11.5493. A, is the same as A; hence no
new information is obtained from it. Therefore, from K; we find the following

{k > -0.333,k > -0.3271,-0.3271 < k < 11.5493}

Looking at K,

1+3k) 1 0
2+k 12 1
0  (1+3k 1
0 2+k 12

_ o O O

Hence A; =1 + 3k > 0 which means k > _?1 And A, =35k +10 > 0 hence k > —0.285714 and
Az = -9k? + 29k + 9 > 0. Hence —0.285 < k < 3.50734. A, is the same as A; hence no new
information is obtained from it. Therefore, from K, we find the following

{k > -0.333,k > —0.285714, —-0.285 < k < 3.50734}

Looking at Kj

(1 + 3k) 1 0
2+k 12 1
0 1+3k) 1
0 2+k 12

_ o O O

This is the same as K;.Finally, looking at K,

1+3k) 1 00
2+k 12 1 0
0 (1+3k 1 0
0 2+k 12 1

This is the same as K;.We now have found all the range for k from each polynomial. We
put them together in order to determine the largest k allowed

K; = {k > -0.333,k > -0.3271,-0.3271 < k < 11.5493}
K, = {k > -0.333,k > -0.285714,-0.285 < k < 3.50734}
We see the range of positive k values for robust stability is 0 < k < 3.50734. Therefore
kpax = 3.50734

2.7.4 problem 3

s+1+p[-1,1]
s2+(2+p[—1,1])s+3
s+1

HE =0

G(s) =
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The closed loop transfer function is
H(s) G (s)
1+H()G(s)
H(s)G(s)

The denominator of the G, (s) becomes
A=(s-1)(2+(2+p[-L1])s+3) + (s +1) (s +1+ p[-1,1])
= (53 + (2 + p[—l,l])s2 + 35) - (s2 + (2+ p[—1,1])s +3) + (52 +5+ p[—l,l]s) + (s +1+ p[—l,l])
=3+ (2+p[—1,1])52+35—52— (2+p[—1,1])s—3+52+s+p[—1,1]s+s+1 +p[-1,1]
=2+ (2+p[-L1])s2 +3s - p[-1,1]s + p[-1,1]s - 2+ p[-1,1]
But p[-1,1]s - p[-1,1]s = p[-2,2]s, hence
A=s3+52(2+p[-1,1]) +s(3+ p[-2,2]s) -2+ p[-1,1]

G () =

We need to first check that the nominal polynomial is stable before checking for robust
stability. When p = 0 the denominator becomes

A=s3+2s2+35s-2

Since there is a sign change, then the nominal polynomial is not stable. This means the
closed loop is not stable. Therefore no need to do robust stability. There is no py,x.

2.7.5 problem 4

pr =1 =A)po(s) + Ap1 (s)
For 0 < A <1. We are given that

Pa=0 = Po ()
is stable and

Pa=1=p1(s)
is stable. In other-words, pj (s), p1 (s) are both stable polynomials. For any value of 0 < A <1
we then have a sum of two stable polynomials, each being multiplied by a constant.

pa(s) =L =A)po(s) + Apy (s) 1)
Let the zeros of py be r;,i =1---n where n is the order of p,(s) and let the zeros of p; (s) be
zj,j =1---m where m is the order of p; (s). Using the fundamental theorem of algebra, we
can write
Pos) = (5= 11) (5= 12) (5= 7,)
p1(s) = (s —z1) (s —zp) -~ (S — zp)

Equation (1) becomes

pa(s) = (A=A (s=r)(s—13) - (s=1p) + A5 —21) (s = 22) -~ (5~ Z) 2)
Now we will proof that p, (s) can only have negative zeros. Proof is by contradiction. Assume
that p, (s) have a positive root, say & > 0, then this root when substituted in (2) will result
in zero by definition
Ay Az

pr&) = A= (E-r)(E=-1) - (E—1) + A(E-21) (E—29) -+ (& = 2Z) (3)

Each term (£ —r;) is therefore positive quantity, since each r; is negative since p (s) is stable.
We also have (1 — A) > 0. Therefore the product shown as A; in (3) it a positive quantity.

Similarly, each term (5 - zj) is positive quantity, since each z; is negative since p; (s) is stable.
We also have A > 0. Therefore the product shown as A, in (3) it a positive quantity.

This shows that (3) is the sum of two positive quantities. Hence the sum can not be zero.
This contradicts our assumptions p, (¢) = 0 due to assuming & > 0. Therefore zeros of p, (s)
can not be positive.

Similarly, we show that & = 0 is also not possible root of p,(s). Assume & =0 is a root, then
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this leads to contradiction as above, since we will have positive quantities added to zero,
which is not possible.

Therefore, the only possible choice left is for all zeros of p,(s) to be negative.

Hence p, (s) is be stable for any 0 < A < 1. Therefore the engineer was correct. QED.

2.7.6 problem 5

The Lyapunov equation is

-2 0 0 O||puu P12 P13 Pua| [P P2 P13 pu||-2 4 -3 1 1
4 -5 0 O0||p2 P2 Pn Pu|, P2 P2 Ps pu||0 -5 2 -1 0
-3 2 -1 O0||p1izs P23 P33 Paa| |P13 Pz P33 paaf|O0O 0O -1 2 0
1 -1 2 —4f[p1a pu P3a Psal (P14 P P3¢ pua]l0O 0 0 -4 0
Hence

o o = O
o = O O
_ o O O

—4p11 4p11 - 7p12 2p12 = 3p11 - 3p13 P11 - P12 +2p13 — 6pia
4p11 - 7p12 8p12 — 10p22 4p13 = 3p12 +2p2p — 6p23 P12 - P22 t4p1a+2p23 =920 | _
2p12 = 3p11 - 3p13 4p13 = 3p12 +2p2p — 6p23 4p23 — 6p13 — 2p33 P13 = 3p14 — P23 + 2p24 + 2p33 — 5p34
P11—p12+2p13-6p1a P12 - P2 +4p1a+2p23 =924 P13 —3p1a — P23+ 2p2a +2p33 — 5paa 2p14 = 2po4 +4p34 — 8pas

(1)

There are 10 unknowns. They are py1, p12, P13, P14, P22, P23, P24, P33, P34- The 10 equations to
solve are from the upper triangle above

—4p; = -1 (1)

4p11 —=7p12=0 (2)

2p12 —3p11 —3p13 =0 (3)

P11 = P12 +2p13 = 6p14a =0 (4)

8p12 —10ppp = -1 (5)

4p13 = 3p12 + 2P — 6pp3 = 0 (6)

P12 = P22 +4p14 +2p23 =92y = 0 (7)

4py3 — 6p13 = 2p33 = -1 (8)

P13 = 3P14 — P23 + 2P2a + 2p33 = 5p3s = 0 9)
2p14 = 2pps + 4p3g — 8pas = -1 (10)

From (1) py; = i, substituting in (2) gives pyp = ;(1) -1 substituting these in (3) gives

4 7’
1\ (1
_ 2p12-3p11 2(7)_3(1)

3p13 = 2p1p = 3pp Or p13 = ——— = 3 = —;—i. Substituting these in (4) gives 6pyy =
11,13
—p12+2 17
P11 = pra +2p13 or pyy = HEEEEE - 2T %) = 51
8prp+1 8(7)“ 3
From (5) we find 8p;, = 10p, -1 hence py, = 0 - 1 From (6) 4p13—-3p12+2pp» =
13 1 3
_ 4p13-3p12+2p22 4(_8_4)_3(7)+2(ﬁ)

13
6p23. hence py; = = — - From (7) p1p —pay +4p14+2pa3 = pos,

6 =
1 3 17 13
EEOC AT A ) =

P12=P2+4p1at2pes 7 14+( 504) ( 126) 26
hence py4 = 5 = 5 = —=. And from (8), 4p23 —6p13—2p3s = -1,
13 13
4f-2)-6(-2)+1
_ Apaz—bp13+l _ ( 126) ( 34) _ 191 _
hence p33 = > = 5 = o5 From (9), p13 — 3p14 — P23 + 2P24 + 2p33 = 5pas,

13 ( 17) ( 13 )+2( 26) 2(191)
—3p14—P23+2P24+2 T84 P\ "504) \ 126 " 567 252 191
hence ps3y = PsoPap 253 Pt = and finally from (10)
17 26 191
2\ -z 2| - |+4| =z |+1

_ _ 2p1a—2pogtipza+l ( 504) ( 567) (648) 4997
2p14 = 2pp4 + 4pss = 8pus — 1, hence py = 5 = 5 = s
Therefore the solution is
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" 1 1 13 17
P11 P12 P13 P4 4 7 84 504

D s Prs P 1 3 3 26
_|P12 P22 P23 Poa| _| 7 14 126 567
P = = 13 13 1

P13 P23 P33 P34 _% _% % 469@7

P14 P24 P34 Paa "1 57 e 1sia

0.25 0.14286 -0.15476 -0.03373
0.14286 0.21429 -0.10317 -4.5855x 1072
—-0.15476 -0.10317 0.75794 0.29475
-0.03373 -4.5855x 1072  0.29475 0.27541

The associated V (x (f)) function is

V(x@®) = XTPX

1 1 13 17
- = -3 - ||X
1 ] 5 P xl
> 14 Tk T Eim 2
= [x1 X2 X3 x4] CER cRT: G
s 16 22 e ||°
AN S O /4 |
504 567 648 18144 4
1,2 13 17 L3, 18 52 Lo, 191 , 4997 ,
= =X —X1 X9 — —X1X73 — —X1X —X5 — —Xo X2 — ——X»X —X —XaX, X
471 T T2 T I oy I T 1472 g3 273 T 57 2 T 95p 3 T 3734 T 1814474

or

V (x () = 0.25x2+0.286x1x,—0.309x1 x3—0.0671 x4 +0.214x3—0.206xx3—0.091 254 +0.758x3+0.589x3x4,+0.275x2

Part(b)

Verification using Matlab

EDU>> A=[-2 4 -3 1;0 -5 2 -1;0 0 -1 2;0 0 0 -4]

-2 4 -3 1
0 -5 -1
0 0 -1 2
0 0 0 -4

EDU>> syms x1 x2 x3 x4;
EDU>> P=lyap(A',eye(4))

0.25 0.14286 -0.15476 -0.03373
0.14286 0.21429 -0.10317 -0.045855
-0.15476 -0.10317 0.75794 0.29475
-0.03373 -0.045855 0.29475 0.27541

EDU>> x=[x1;x2;x3;x4];
EDU>> V=x.'*Px*xx;
EDU>> vpa(expand(V),3)

0.25*%x172 + 0.286*x1xx2 - 0.31*x1*x3 - 0.0675*x1*x4 + 0.214*x272
- 0.206%x2%x3 - 0.0917*x2*x4 + 0.758%x372 + 0.59*x3*x4 + 0.275%x4"2

2.7.7 problem 6
Part (a)

Assuming the problem is asking for the 2-norm. This is defined as positive square root
of the largest eigenvalue of AAT. Therefore, we first find AAT, then find the eigenvalues,
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then pick the largest one in absolute terms, then take the square root.

095 0.48 0.45((0.95 023 0.6 1.3354 0.6502 1.3038
AAT =023 0.89 0.01[[048 0.89 0.76|=(0.6502 0.8451 0.8226
06 0.76 0.82][0.45 0.01 0.82 1.3038 0.8226 1.61

Now we find the eigenvalues.

A-1.3354 -0.6502 -1.3038
p(A) = |A- AAT| =| -0.6502 A -0.8451 —0.8226
~1.3038  -0.8226 A -1.61

= A3 -3.7905A2 + 1.8398 — 0.1908

The roots of this polynomials are A = 0.14584, 1 = 0.40366, 1 = 3.241. Hence the largest
eigenvalue is A = 3.241. Therefore the 2-norm is

Vv3.241 =1.8003

Part(b)

EDU>> A=[0.95 0.48 0.45;0.23 0.89 0.01;0.6 0.76 0.82];
EDU>> norm(A,2)
ans =

1.8003

2.7.8 problem 7

A=|0 0 -3 4 0
0 0 0 -4 1
0 0 0 0 -5

The robustness bound is given by IAAL, defined as

A
IAAl, = S [([QP]]

We first need to solve the Lyapunov equation to find P.
ATP+PA=-Q
Using Matlab, and use Q = I5 gives the solution P
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EDU>> A=[-12137;0 -2 -15-3;,00-340;000-41;000 0 -5]

A =
-1 2 1 3 7
0 -2 -1 5 -3
0 0 -3 4 0
0 0 0 -4 1
0 0 0 0 -5
EDU>> P=lyap(A',eye(5))
P =
0.5 0.33333 0.041667 0.66667 0.52778
0.33333 0.58333 -0.033333 0.85278 0.35595
0.041667 -0.033333 0.19167 0.076984 0.08006
0.66667 0.85278 0.076984 1.768 0.83996
0.52778 0.35595 0.08006 0.83996 0.79331

Now we find the largest eigenvalue of P

EDU>> eig(P)

0.073178
0.10973
0.21435
0.45009

2.9889

EDU>> max(ans)
2.9889

Therefore

IAA = 0.16729

b = 529889
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2.7.9 key solution

1-(a) With p =0, we get

3 3s+1
Tt 43t 68T+ 08+ 5

which is stable. The first column of the Routh-Hurwitz table is [1 3 4 2.25 5]°.

1-(b) First gencrate the four Kharitonov polynomials
p(s)=s' +(3+p)' +(6+p)s’ +(6-p)s+(5-p)
P.(s) =5 +(3+P) +(6-p)s” +(6-p)+(5+p)
Pus)=s" +(3=p)s’ +(6+p)s +(6+p)s+(5-p)
pos)=8" +(B=p)’ +(6-p)s’ +(0+p)s+(S+p)

Now using Routh-Hurwitz, for each of the above polynomials, compute the
maximum value of p for the polynomial is stable.

Routh-Hurwitz table for p,(s)

st 6+p 5-p
st 3+p 6-p
s 12+ 10p+p° 5-p
3+p
s' 0 39+9p-p)
[2+10p+p°
" 5

FFrom the table above we get p <9908 .
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Routh-Hurwitz table for p.(s)

st 1 6-p S5+p
s 34p 6-p
s 12+4p—p° 5+

3+p

s' 0 3(-9+9p+Tp7)
~12—4p+p°

g S+p

From the table above we get p <0.60.

Routh-Hurwitz table for p,(s)

st 6+p 5-p
st 3p 6+p
s —12+4p+p - 5P

p—3

s’ 3(-9-9p+7p7)
—12+4dp+p°

s 5-p
From the table above we get p <1946
Routh-Hurwitz table for p,(s)
st 6-p S+p
s 3p O+p

s —12+10p—p°  54p

p-3
5! 3(9-9p ~p3)
12-10p+p°
" S5+p

From the table above we get p <0908

Therefore. we get p_ = 0.66.

M
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1 : . -
1-(¢) Now, with the compensator H(s)=—, we get the following closed-loop transfer
S

function:
B (3+p[01]s +(1+p[-0.5.025])
k= §*+ 3+ pl=LIDs" +(0+pl—LiDs' +(3+pl=10)s” +(7+pl-05.175])s + (1 +p[-0.5,025])

And now. try p =0 and test for stability and we find that the system is unstable for
p = 0. The first column of the Routh-Hurwitz table is [1 35 -1 11.67 1]’. Therefore
the system will not be stable for any value larger than p =0 and we need not go any

further.

Problem 2
K(3s+1)

G(s) = A
(s) st+s34+as®+s+0b

where a € [12,36] and b € [1,2].

The closed-loop transfer function (with unity feedback) can be written as:

Y (s) K(3s+1)
R(s) s*+s*4as®>+(1+3K)s+ (K +b)

The first column of the Routh array is
[1 1 (a—1-3K) [(a—1-b)+(3a—T)K —9K? (K+b)]".

For stability we require:
a—1

K < :
3

K > —b,

and

1 1
= (3a—7)—\/9a2—6a—36b—|—13] <K< [(3a—7)+\/9a2—6a—36b+13]

Plugging in our extremum values for a and b and the above conditions, we find

Kinaz = 3.5073
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3. Consider
s+1+q
82+ (2+q)s+3

G(s) =
with uncertainty || < p, |g2| < p and controller H(s) = (s + 1)/(s — 1). This leads. by
Mason, to closed loop polynomial given by

p(s;q) = (s+1)(s+1+aq)+ (s = 1((s+ (2+q)s + 3)

= S+ 2+@)?+B+q —q)s+q —2
Notice above that even an infinitesimally small value of p > 0, this polynomial has a
a negative coefficient. Noting that the Routh criterion always fails if the polynomial
coefficients are not of the same sign, there is no value of p > 0 for which robust stability

is assured. Hence, there is N0 ppq, or one might equally well say ppu. = 0.

4. The engineer is wrong. It is possible to have a polynomial which is stable for A = 0
and A = 1 but unstable for some intermediate values 0 < X\ < 1. To illustrate how this
can occur, let

Po(8) = 108* + % 4+ 65 + 0.57

and

p1(s) = 1053 + 252 + 8s + 1.57

Then, with px(s) = (1 = A)po(s) + Ap1(s) it is a simply matter, using Routh Hurwitz. to

verify that py(s) is stable, p;(s) is stable but with A = 0.5 the polynomial
a(s) = (1= N)po(s) + Api(s) = 108 + 1.552 4+ 7s + 1.07

is unstable.
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2.8 special problem

2.8.1 special problem

ECE 717 — Special Problem
Consider the uncertain LTI state-space system
&= Alg)z
where € > 0 is a VERY small parameter,

0 1 0
Aq) = 0 0 1
—(b+e+3p+3¢p+20q¢) —(1+a+q) —(1+q¢+q)

and ¢ € @ is described by the known bounds
0<¢ <1 i1=12

(a) Carry out a robust stability analysis with respect to 0 < e < 0.1. For
each such € which you consider in this range, declare whether the result-
ing family of polynomials, call it P. is robustly stable. For those ¢ when
robust stability fails, provide a characterization of both the stable and
unstable subsets of (). Describe how these two sets evolve with respect
to €. Given the low order of this system, you should include a theoretical
analysis which supports any numerical computations which you perform.

(b) Instead of considering robust stability, suppose we view ¢ as a ran-
dom variable which is uniformly distributed over (). Generate a plot of
the probability of stability, call it p., versus € over the range of interest.
Can obtain a formula for p. be given? Explain.

Part(a)
The first step is to obtain the matrix A(g) characteristic polynomial
0 1 0
Alq) = 0 0 1
_<0«5+5+3Q1+3QZ+251142) —(1+q]+q2) —(1+q1+q2)
Therefore
p(s.) =[s1-4a)

S -1 0
= 0 S -1
(0.5 +e+3g; +3g; + 2q1q2) (1 +q1+ qz) s+ (1 +q1 + qz)

. ! 2,6
e+3q1+3q2+2q1q2+2 +(1+q1+q2)s+(1+q1+q2)s +s

= ay (q) +ay (q)s +a, (q) s% + a5 (q) s3

Checking for robust stability

The method of polynomial over-bounding was tried first, but it was inconclusive. The
attempt is included in the appendix. A graphical method was then tried based on the
zero exclusion principle using set value of polytope of polynomials, but that also was
inconclusive as the polygon seen crossing the zero as the frequency increased. The result
of this attempt is described in the appendix.
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.« . . . . 1
Analysis using Hurwitz matrix Using P (s) = (5 +3g1 + 392 + 2919, + E) +s (1 +q;, + ‘12) +

52 (1 +q, + ‘12) +s% with 0 < g; <1,0 < g, < 1. We setup the Hurwitz matrix for the above
polynomial to find the conditions under which it is stable.

1+ q1 + q2 1 0
H=105+¢+391+39,+2919, 1+qg1+q, O
0 1+qg1+g, 1
The leading minors are
Ar=1+g1+9

Ay =05-¢—q+q5— 4o + G
Az = A,

Hence we only need to examine two cases. For A; =1+ ¢q; + g, we see this is positive for
all g, since 0 < g; < 1.

For A, = 0.5 - ¢ —gq; + g% — g» + g5 we need to determine the conditions which makes this
positive.

0.5-e=q1+47-q2+q3>0

In other words, the minimum of A, should be positive to insure stability. This is global
minimization with constrain problem. However, an algebraic reduce method was used
instead to obtain the limits on g4, g, for each different ¢; where ¢; was incremented by 0.005
from 0 to 0.1

There are 20 increments, and for each ¢; an algebraic conditions was found on using the
computer on gq,q, which insures that A, > 0. The result is tabulated below. In addition,
3D plot of A, is given, using 41,4, as x,y and using the value of A, as the z-axis. This gives
a visual view of the A, showing that it is indeed positive all the time using the constraints
found on g; for some specific ¢ used. A typical 3D for some ¢ is shown below for illustration

The above shows that for ¢ = 0.005, A, > 0, and hence the system is stable under the
conditions 0 < g1 <0.4294,0 < g, <1.
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c conditions on i, ds
0.000 0. =gl <0.5&50. =g2 =1.
0.005|0. =gl <« 0.429289&&0. =s g2 = 1.
0.010 0. =gl<0.4&50. =g2 =1.
0.015|0. =gl <« 0.377526&580. s g2 =1.
0.020|0. =gl « 0.358579&80. =g2 =1.
0.025|0. =gl « 0.341886&50. = g2 =1.
0.030|0. =gl <« 0.326795&80. sg2=<1.
0.035|0. =gl « 0.312917&&80. s g2 =<1.
0.040 0. =gl <0.3&50. =qg2 <1.
0.045|0. =gl « 0.287868B&&0. = g2 =< 1.
0.050|0. =gl < 0.276393&&0. = g2 =<1.
0.055|0. =gl <« 0.265479&80. s g2 =1.
0.060 |0. =gl <« 0.255051&50. =g2 =<1.
0.065|0. =gl « 0.245049&50. = g2 =1.
0.070|0. =gl « 0.235425&50. = g2 =1.
0.075|0. =gl « 0.226139&50. = g2 =1.
0.0BO0|0. =gl « 0.217157&80. = g2 =1.
0.08B5|0. =gl « 0.208452 &8 0. s g2 =< 1.
0.090 0. =gl <0.2&&0. =qgq2 <1.
0.095|0. =gl <« 0.191779&&0. = g2 =<1.
0.100|0. =gl < 0.1837712&80. = g2 =<1.

Figure 2.1: conditions on q; and g, for each ¢ used for the visualization that follows

Visualization of the solution space for positive A,

Robust stability depends on positive A,. In the above, we obtained conditions on ¢, 44,4,
which when met, will insure A, > 0 and hence a stable polynomial. To visualize the solution
in 3D, where we will use ¢y, 4,, € as the three axis, and use two colors: green to indicate the
region where A, > 0 and red color for the remaining region where A, < 0. Therefore, the
space is a 3D cube enclosed in 1,1, ¢. Using the above inequalities, the 3D plots are made.

Figure 2.2: points which results in stable polynomial are green, otherwise they are red

Another 3D plot was made, using different 3D plot, called the surface plot, to help visualize
the regions in different way. (some parts of the cube are not fully shown due to limited
sampling used in producing the data).
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Red region is
unstable. This is
where the second
leading minor is
negative

Green region
indicates

stability q 2

Figure 2.3: Surface around region of stable points is colored green, otherwise red

We see from the above, that stability emerges for the region enclosed by 0 < g4; < 0.5 and
0 < g, <1 for low values of ¢ and for the region 0 < g; < 0.2 and 0 < g, <1 for the large
values of ¢. The small ¢ is, and the smaller g, is, the larger the stability region becomes.

Theoretical support for the numerical computation

Attempts were first made to obtain answer using zero exclusion condition. But both at-
tempts resulted in inclusive result, as the polygon crosses the zero point. Algebraic re-
duction was used to obtain the constraints on solving for conditions on g;, g, for making
Ay =05—-¢—qy + g% — g, + g5 positive as ¢ was incremented by small amount as shown
above. Writing A, as

A B

Ay=05-¢- (fh +q2)+ (q%+q%)
Since each 0 < g; <1 then ¢? < g;. This means that the smaller the g; becomes then A will
dominate over B more in size but they are both small, and hence A, is positive .

When both g are around mid point of their range, for example g; = %, then -A+B = —%

and the result is A, = —¢, hence not stable.

As the g; becomes larger than 1 then A does not dominate over B as much, but they are
both larger now and the difference between A, B becomes smaller again as when they were

both below %, which means now A, becomes larger, hence stable.

Here is a small table showing this variation. The above implies that the critical condition
is where both g; are close to each other in value. As they get closer to 0.5 then ¢ has to
become smaller in order to keep A, positive.
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qa |A | B | 2+B |1/2-h+B
0 [0 | D . 0.5
0.1|0.20.02|-0.18| 0.32
0.2 |0.4|0.08|-0.32| 0.18
0.3|0.6|0.18|-0.42| 0.08
0.4 0.8 |0.32|-0.48| 0.02

" [0.5[ 1. | 0.5 | -0.5 i
0.61.20.72|-0.48| 0.02
0.71.4|0.98 |-0.42| 0.08
0.81.6|1.28|-0.32| 0.18
0.9|1.8|1.62|-0.18| 0.32
%, [ | a2 a 0.5

Solving as constraint minimization problem Another attempt at theoretical support
for the numerical computation, is to view this as constraint minimization problem, where
we want to find the minimum of A, subject to constrain0 <g; <1,0<g, <land0 < ¢ <01,
then the method of Lagrangian multipliers can be used.

Let the objective function be Q = A, =0.5—¢—q; +45 — g, + 45 subject to 0< g, <1,0< g, <
1,0 < ¢ <0.1. Hence the Lagrangian L is
L=Q+A;1(1-q1) + A2 (1-q2) + A5 (01 — ) + Aagy + sy + Age
=05-¢—-q +q%—q2+q§+/\1(1—q1)+/\2(1—q2)+)\3(0.1—5)+A4q1 + Asqp + Age

Therefore
JdL
I
JdL
942
JdL
Je
JdL
e
JdL
Ay
JdL
7
JdL
E
JL
dAs
JdL
e

=—1+241—A1+/\4:0
:—1+2q2—A2+/\5:O

:—1—A3+A6:0
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And

0 0 -1 0 010 o|[a|l [1

2 0 0 -1 0 01 0fg 1

00 0 0 -100 1f|e 1
-1 0 0 0 0 0 00 0f|A] |~
0 -1 0 0 0 0 00 0f|dy|=]-1
00 -1 0 0 0 00 0[|A;] [-01
1 0 0 0 0 0 00 Of|dy 0
01 0 0 0 0 00 0[|as 0
0 001 0 0 0 00 0|4 0

Solving the above Ax = b system using least squares gave the solution as g; = 0.5,g9, =
0.5,¢ = 0.05, which is where the minimum is. Using the solution we can find A, at these
values

A, = —0.05

The above Lagrangian multiplier method to find the minimum was implemented in separate
program allowing one to change the limits of ¢ and g4, 4, to see where the minimum shows
up for each different combination. Here are few screen shots showing different results. This
method was used to verify the numerical 3D based plots shown above by verifying the
stable points are where they are shown in the 3D plots.

epsMax — —— = 0.017 epsMax — |—— - 0.024 epsMax — [—— - 0.041

q1 max = 1. q1 max e 1. q1 max = 1.

q2 max 1. g2 max e 1. . g2 max e 1.
Minumum of 4, =-0.0085 Minumum of A, =-0.012 Minumum of A, =-0.0205
ql=0.5 g2=0.5 £=0.0085 gql=0.5 g2=0.5 e=0.012 gl=0.5 g2=0.5 €=0.0205

epsMax 0.088 epsMax — [—— - 0.021 epsMax 0.089

ql max — |— - 0.41 q1 max 0.94 ql max 094

@2max — [— - 0.63 g2 max — f[—— . 0.36 q2 max 078

Minumum of 4; =0.07725 Minumum of £, =0.0928 Minumum of A, =-0.0315
gl=0.205 g2=0.315 €=0.044 gl=0.47 g2=0.18 =0.0105 ql=0.47 g2=0.3% £=0.0445
Part(b)

Plotting P, We now treat 4,4, as random variables. Stability is still decided by
Ay =05-¢c=q1+4i— R+ 43

If we call A, as the random variable Z which is now function of random variables g, 4,
renamed to be X,Y and are drawn from uniform distribution, then we can write

Z=05-¢-X+X>-Y+Y?
Then

Prizy <Z<z)= ffz(z)dz

or

Pr(Z<z)=F, () = ffz(z)dz

Where F; (z) is the cumulative distribution function. To find Pr(Z > 0) then

Pr(Z > 0) = ffz(z)dz
0
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¢ is fixed each time before finding f, (z). Hence for each ¢ there will be a different £, (z)
which we then use to find Pr(Z > 0) for robust stability, since Pr(Z > 0) is the same as
asking what is the probability that A, > 0 for a given ¢.

P, was drawn for ¢ =0---1 to see how it shows up before zooming in.

Probability system is robustly stability as function of €
1.0 S S e e -
\
T Lo Lo o ]
s L : : :
4 06F------- L S R b b e e .
= LB : : !
= Kot
'T:-' 04F---------- \.\ ____________________________________________ -
&
i '\_
(1o )| RS S e .
: gt
008, . | B : i —
0.0 0.2 0.4 0.6 0.8 1.0
€

The above shows that for 0 < ¢ < 0.1 the probability of robust stability is high. We can
zoom in to that region

Probability system is robustly stability as function of
T T T T

Probability Ay =0
(=1 [=] (=1 —
oo = = =
S A =

=]
oo
=]

=
]
n

=]
~
=

We see that at ¢ = 0.1 there is about 68% chance that the system will be stable and for ¢ = 0
the probability the system is stable is 100%.

Finding the formula for the probability P, f, (z) is the probability density function of
the random variable Z. To obtain f (z), we use the following two definitions. For random
variable Z = X + Y where X is random variable drawn from fy distribution and Y is

random variable drawn from fy distribution, then the random variable Z will be drawn
from distribution made from the convolution of fyx with fy

f2@= [ frle-fr@ds
Where fy is the pdf of the uniform distribution for Q which is defined for g4 = [0,1] as

fx(x)={1 0<x<1

0 otherwise

For Z = XY evaluation, we need a product of two random variables. This is given by

00 1
f2@= [ FOf ) s
Using the above, we can find that f; (z) for Z=05-¢- X+ X?>-Y + Y2,
Let Z; =-X-Y =-(X+Y), hence

fr@ == fue-fux
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Now let Z, = X2. Using the product formula, we write

sz (z) = j:oo fu @) fu(z/x) |1¥|dx

Therefore for Z; = -X - Y + X?> we now have Z; = Z; + Z, and now we use the addition
formula

fr@= [ fa =0 fz, 00

For —Y?, let Z4 = -Y? and using the product formula gives

o0 1
fz,(2) = —f_mfu(x)fu(Z/x) mdx

Hence we now have the following Zs = Z5 + Z, and the pdf is

0@ = [ frie=2fz @
Finally, we have Z = 0.5 — ¢ + Z5 which have the pdf

1
fz(2) = mf% (z-(05-¢)
With the help of the computer, formula for the pdf of f; (z) was obtained which was used
to generate the above plots of P,

Tt 0<g+e<025

fz(z)=1 2 (arcsec (2\/qu) —arctan (\/—1 +4q+ 48)) 025<g+e<05

0 otherwise
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2.8.2 Appendix

polynomial over-bounding method

The first method to try is the method of polynomial over-bounding If this method says
the polynomial is robustly stable, then we are done. However, if this method says the
polynomial is not robustly stable, then it can still be stable. Hence the polynomial over-
bounding method is called inconclusive, and we need to try other methods.

But we start with this method since it is simple to use to check. Using the method of
over-bounding, we first need to determine the bounds on g;. In other words, we convert
the polynomial in g to an interval polynomial in 7

- : 3 1
Jo = [qrélQn ag (q) = Orgqlgl (8 + 3q1 + 3(12 + qulh + E)

Setting up the following table

T
q1 | 92 &+ 3(]] + qu + 2’11‘72 + E

010 e+05
011 e+35
110 £+3.5
1)1 e+3+3+2+§:e+8.5
Hence
go=¢+05
And
gt = maxa =¢+85
7 = ma o(q)
And

71 = minay (q) = min (1+g: +0p)

Setting up a table

|9 |1+ +q
010 1
011 2
1 0 2
1|1 3
Hence
7 =1
And

71 = maxm () =3

And similarly, 5, = 1,75 = 3. And for 73, since it has no uncertainties, then 3 = g3 =1,
Hence the over-bounding interval polynomial is
P(sa) = [70.95 |+ a7 |s + [72 93 |* + [33. 3% ] &
=[e+05,e+85]+[1,3]s+[1,3]s>+[1,1]s°

We now construct the four Kharitonov polynomials to check for stability using Hurwitz
matrix method

Ki(s) = (e +0.5) +5+3s> +5°
Ky(s) = (e +85)+3s+5%+s°
K;(s) = (¢ +85) +s+5%+5°

Ky (s) = (e +0.5) + 35+ 3s% +5°
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1 1 0
Hence H; = |(¢ +0.5) 3 0[ and for stability we require that A; =1>0, A, =3-(¢ +0.5) =
0 11

25-¢>0and A3 =25-¢ > 0. Since 0 < ¢ < 0.1, then we see that A;,i =1---3 are all
positive. Now we consider K,.

3 10
H, =|(¢+85) 1 0] and for stability we require that A; =3 >0, A, = -5.5—-¢. We see that
0 31

A, < 0 since 0 < € <0.1. Hence

the over-bounding polynomial method was not conclusive |

Therefore we need to try a different method.

Graphical method based on zero exclusion using set value of polytope of poly-
nomials The P(s) = (e +3q1 +3q, + 2919, + %) +s (1 +q; + qz) + 52 (1 +q; + qz) + s> with
0<g; £1,0 < g, <1 is multilinear in 4. To use the value set for polytope of polynomials

and apply graphical zero exclusion method in the hope to confirm robust stability, we have
to convert the polynomial to an over-bounding affine linear polynomial in 4 by introducing

new gz = q1q4
The polynomial P(s) = (8 +3g1 +3q, + 293 + %) +s (1 +q; + qz) + 82 (1 +q;, + qz) + 5% with

0<9,<1,0<4,<1,0<g3<1and 0 < ¢ < ¢*. Hence the uncertainty bounding set Q has
8 extremes ql = (01010)/q2 = (01011)/6]3 = (011/0)1q4 = (011/1)/q5 = (1/010)/6]6 = (1/011),6]7 =
(1,1,0),4% = (1,1,1). The eight associated polynomials generated are

P(S,ql)=(€+0.5)+S+SZ+S3
)=e+2.5+s+sz+s3
q)=(5+3.5)+25+252+s3
q):(e+5.5)+23+252+s3
s,q5) =(e+35)+25+2s* +s°
q):(e+5.5)+23+252+s3
q):(e+6.5)+3s+352+s3
P(s,qg) =(¢+85) +35+3s2 +5°

From the above the nodes will be determined only by the unique polynomials. We will use
only six out of the eight above, they are

5,0) =(e+05)+s+s%+s
P ql ( 05) 2 3
):£+2.5+s+52+s3
3):(s+3.5)+23+252+s3
4):(s+5.5)+23+252+s3
P(s, 7):(e+6.5)+3s+352+s3
s,0%) = (¢ +8.5) +3s +3s2 +s
P(s,45) = (¢ +8.5) + 35 + 362 + 63

We need to check that we have at least one nominal stable polynomial in the family of
polynomials. Using P (s, q') = 05+s+s2 +5° as the stable member, we check it for stability
first:

(
P
P(s,
(

(

1 10
H={051 0
0 11

For A; =1 >0, and A, = 0.5 >0 and A; = A, > 0 as well. Hence we verified the stable
member exist. Now we need to generate the polygonal value set for each of the polynomials

4Similar to method in example 8.2.8, page 128, reference [1]
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above.
P (jw,q") = 05+ ja + (jo) + (jo)
=05+ jw - w? - jw?
= 0.5—a)2+j(a)—a)3)
And

P (joo, %) = 35 + 2 +2 (jw) + (jw)’
=35+ 2jw - 2w? — jw?
=3.5-2w? +] (20 - @)

Polynomial P(s, q3) is the same as P(s, qz), so corner ¢*> and 4> map to same point in
complex plane.

P (jo,q%) = 85 +3jw + 3 (jo) + (jw)’
=85 + 3jw - 3w? - jw?
=85-3w? +j (30 - @)

And
P (ja),q5) = (e +0.5) + jw + (ja))z + (jw)3
= (e +0.5) + jw - w? - jw?
= (e++0.5)—a)2+j(a)—a)3)
And

p (ja),q6) = (e* +3.5) + 2jw +2 (ja))2 + (ja))3
= (¢* +3.5) + 2jw — 20? — jw?
= (¢* +3.5) - 20 +j (20 - w?)

Polynomial P(s, q7) is the same as P(s, q6), so corner ¢° and ¢’ map to same point in
complex plane.

P (jw,q) = (e* +85) + 3jw + 3 (j) + (jo)
= (e +8.5) + 3jw - 3w? - jw?
= (e* +85) - 3w? +j (3w - 0°)
This diagram illustrates the mappin

20-@> b —————-T '

/Q“/:(l,l)
S0 PG, . )
Py R Bl

(0—-0®) 5t g Re

¢’ =019

S Lo
¢ <00 ¢ -wo U1 — o -
s rb@ ;:-’
&% &
&
) max{q¢ a1, +45 4
To find the cut off frequency w,., using w. = 1 + ——————, where here we use the

In
interval polynomial p (s, 17) =[e+0.5,¢+85]+[1,3]s +[1,3]s% + [1,1] s® found above. This
results in

+85,3,3
a%=1+nmxk]_ b 14e+85295+4¢=951

5This diagram shows the mapping done before converting the polynomial to linear in 4. So the original
multilinear form was used, that is why the square was mapped to triangle as shown. Zero exclusion principle
also was inconclusive in this case, and that is why an attempt was made using the linear form as described
in example 8.2.8 in [1]
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Therefore the sweep frequency from be 0 < w < 9.51 for the simulationﬂ A program
was written to simulate the value sets for this problem. For each ¢ value, the value set is
displayed over the sweep frequency to see if the polygon will include the origin or not. ¢
was changed by small increments and the simulation was run again.

Unfortunately, the result of this method was inconclusive as well

The polygons generated did include the origin as the frequency w was increased and
different ¢ tried. Below is an example running a program written to implement this method

un step stop reset

eps JI

aweep frequency w = 1.80 £ = 0.0755

6

=

2.8.3 References

1. Barmish, B. Ross. New tools for robustness of linear systems. Macmillian publishing
company, 1994.

2. Class notes, ECE 717, University of Wisconsin, Madison. Fall 2014.

3. Strang, Gilbert. Introduction to applied mathematics. Wellesley-Cambridge press,
1986.

%In the simulation, I did not have to sweep to such high frequency to see the polygon cross the zero
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2.8.4 key solution

ECE 717 — Special Problem Notes

(a) The problem can be solved analytically without recourse to numerical
computation. In is arguable that graphical computer-generated plots pro-
vide no significant insight over and above the solution obtained by hand.
We see below that the (¢ g2) rectangle includes a circular “island of insta-
bility” with radius r = y/¢. Indeed, noting that A(q) is a companion form,
its characteristic polynomial is

p(s,q) = det(sI — A(q)) = s* + a(q)s* + a(q)s + b(q, €)
where
alg) =1+aq +q
and
b(q,€) =3¢ +3q2 + 2q1g2 + 0.5 + €.

To establish the claimed result, for the positive-coefficient polynomial
above, we first generate the Hurwitz matrix

a(q) blg,e) 0
H=| 1 a(g 0
0 alg) b(ge)
Now enforcing the positive minor condition for stability, we characterize
the stable set by
a(g) > 0; a*(q) — b(g,€) > 0; b(g,e) > 0.

Over the range of variation 0 < ¢; < 1, we have a(q) > 0 and b(q,e) > 0
trivially satisfied. Hence, stability is determined by the condition

0 < a*(g) —blg,e)
(1+q + @) — (3q1 + 3q2 + 2q1q2 + 0.5 + ¢)
= G+G-g—q@+05—¢
= (1 —0.5)*+ (g2 — 0.5)* —&.
From the above, the stable set is the complement of a circular region cen-
tered at (q1,¢2) = (0.5,0.5) with radius r = y/e. Notice that as ¢ tends to

zero, the instability domain gets smaller and smaller shrinking down to a
single point when ¢ = 0.

(b) When ¢ is viewed as a random vector which is uniformly distributed
over the unit square, the probability of stability is given by

p- = 1 — area of the unstable set = 1 — me.

This can readily plotted as a straight line for 0 < e < 0.25 which is the
range guaranteeing inclusion of the unstable set within the unit square.
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Chapter 3

Appendix

3.1 my class cheat sheets

Solve state space
|

My ECE717 cheat sheet

Nonlinear system
Use Picard iterations

X' (2) = fx(2),1)
¥ =x"+ Iﬂxk’l(r),r)dr

Linear

LTI (linear time invariant)

m<l  pen <] o BIXR
#()=Ax{t) + B u(t)
™1 e wxl rcm MxXn

y()=Cx(t) + Du(t)

solution

LTV (linear time Varying)

|
) = A(x() + B{Dulr)
¥(&) = COx () + D{e)u(t)

solution

t

() = e2Hdx(to) + J' 4D By(7)dr

ty

x(t) = Ot fo)x{te) + [ @, 1)BG YuCe)ds

L]

To find e

A has distinct
eigenvalues |

Laplace inverse method

Expansion of
natural

frequencies

To find ®(z,7)

Alt) commutes with itself?
A@©)A(z) — ADA)
No

Alt) commutes with its integral?

A l)e]; ey _ ej;A(r)dr

hard, need to solve odes

|e‘1I =¥f1! (sI— A)_1| (use if repeated A(#) _ Use set of ninitial conditions
¢ eigenvalues)
YQS,N‘ 1 i)
Vil = A l good, usle short cut) %0 _ 0 xio 1
. : :
A= VAV J*I prav 0 o
ellt 0 0 n_m(i) ‘P(I) =gl I
= lf
eavl 0 -~ o |P e = ZZY(L!)‘? D(f,1) = V()P (1) For each X" solve
. 1 ko j’A(")d" 1 = A () = B(Ou(t)
Matrix of 0 0 e m{i} —number of repeated (I](f"[) =e'r o e Let solution be ¥’
eigenvectors i gigevalues |
of A
Make ¥ — (¥ w2 . ¥~ )
Y

T
Afr)dr

x(r) = e'[‘o x(to)} + I e'[ T A@ng('[)u(t)d'r
)

I
l@(t,7) = W)W (z) |
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Nasser M. Abbasi
Nov 20, 2014
dlvsdx



controllability
1

| -1
LTV LTI
I
4,B continuously differentiable | D(to,1)B(f) — et D B|
{n—1) times?
Now &* is the state transfer matrix in
No < place of ¥z, )Notice that the zin e is
multiplied by the matrix 4. Since A itselfis
have 1o solve stale space Use M short-cut. Noneed to  constant! The above does not mean A(z)
equation In order fo solve state space as in 4 is function of £

determine ®(t,z}

[fo.f1]

system is controllable at #, iff 3 finite
h > fp .t W{#o. 1) is not singular over

finite #; > #p s.t. p[M] = nwhere

system is controllable at 4, iff 3
M= [My(h).M1(11). . Mp1(t1)]
|

A\

My(t1) = B(t)
A{[,rﬁ](fl) = 7A(11)Mk(f1) + %A{[}c(ﬁ) k=0.n-2

B

Wito,11) = j' D(to, 7)B(r)BI(x )7 (to, ) dr

o

A

If LTI is controllable, then it is controllable for any z.
LTl is controllable if any one of the following is true

t
1. W(1t) = Ie“*TBBTe(“‘T)Tdr is not singular for# > 0
0
2. Letf = —e"B. Since analytic, setup F = [f.f./".--].

Use Cayley Hamilton to reduce the above to
F =[f.f./"V] then this simplifes to controllability matrix

C = [B,AB,A’B,---,A"'B]. Then the criteria becomes
p[C] = n for controllable.

3. Ifall rows of e*B are linearly independent on [0,«)

4. if all rows of (s/—4)7'B are linearly independent on
[0,0)

Nasser M. Abbasi
Nov 21, 2014
d2.vsdx
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Duality in linear time vlarying systems
I

Primal Duel

x'(t) = A()X(t) + B(u(t) ' (t) = AM)X() + BOu(t)
y(®) = COXM® +Du®) | 9@ = CORM + D)
O(to,7) = Y)Y (@) ditor) = Fito)[¥(r)]™

Lyi(t) = YDA

I
|
I
|
I
Transpose both sides i d
|
I
I

] : L YO = ADYO
G PO1 = ¥ OAD)]

L .

if A(t) = —A(t) then
1T Sd Lo -

= -ATOY )] <« & %‘P(t) = —A()P(1)

’ compare ’

v
P@t) = [PLO] = [PTO]T

Hence \ [¥(z) ]~ ‘=‘{J/T(r') \
combine

Summary

D(to,7) = DT(z,to) D(to,7) = [P 1(to)] ¥ (2)
= [¥(0)¥L(to)]" = [¥(0)¥1(to)]”

= [P (to)] P (7) @

d e arens
G YO = -ADY() (i)(to,f) = ®T(7,1p)

A(t) - _A(t) References:
1 _ -1 T 1. Principles of linear systems, Sarachick, pages 160-161
\P(t) - [lP (t)] 2. Linear system theory and design by Chen, first
-1 edition, pages 195-196
= [¥7(1)]

I:Lil(t) :I_l = lI—’T(t) Nasser M. Abbasi
Nov 18,2014
d1.vsdx

CHAP. ¢]
CONTROLLABILITY AND OBSERVABILITY 139

System #1: dx/dt = A@)x + B(t)u
Y = C(t)x + D(t)u

System #2: dw/dt = —Af(t)w + Ci(t)v
z = Bt(t)w + bf(t)v

Then system #1 is totall
Y controllable (ob i i
observable (control]able), which can be silooxf/flr\i]fnbrlrzdlf et iy et

iately from Theorems 6.10 and 6.11



“standard” Any negative definite Mathematica

matrix, say -Indenty AP + PAT = -Q
~ .~ Matrix

-
AP + PA = E_Q ! Transpose Both sides
N (AP)T + (PAT)" = QT

PTAT + APT = ¢

ot

P is symmteric. Check if P is positive AT £ AX = ¢

definite. If so, then A is stable. .
Solve for x using x = LyapunovSolve[A, c]

Solve
for x

Since x is symmetrix, then its transpose will not affect
its eigenvalues. Let P = xT. Check that P is positive
definite for stable A

Same result
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