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Chapter 1

Lecture notes

This book is compilation of my own write up based on note taking during this course given
by Professor B. Ross Barmish. This book includes all the material for this course archived
in one place.

Most of the time I followed what was being said, but sometimes I added additional text.
Therefore, If there are any errors in these notes, all blame goes to me (the student) and
not to the instructor of the course.

I added copy of all my HWs in the appendix at the end. The key solutions are also included.

1.1 Summary of lecture topics covered

# date topics

1 Tuesday Sept. 3 Introduction. Mechanical system to ODE to state space

2 Thursday Sept. 5 discrete time state equation, into to nonlinear state space

3 Tuesday Sept. 9 more non-linear state space, linearization, electric circuit,
Laplace transform

4 Thursday Sept. 11 State space realization

5 Tuesday Sept. 16 State space realization, Mason rules and examples using
it.

6 Thursday Sept. 18 Realization theorem, MIMO, state space feedback

7 Tuesday Sept. 23 controllability, observability, Mapping using T

8 Thursday Sept. 25 Pole assignment, design using state space feedback

9 Tuesday Sept. 30 Separation theorem, Observer design

10 Thursday Oct. 2 No lecture

11 Tuesday Oct. 7 2:30 Vector spaces preliminaries, norms, piecewise and uni-
form convergence

12 Tuesday Oct. 7 6:00 first midterm

13 Thursday Oct. 9 Norms, convergence

14 Tuesday Oct. 14 More on convergence

15 Thursday Oct. 16 More on convergences, 4 lemmas

16 Tuesday Oct. 21 Solution of state space using fundamental matrix, its prop-
erties

17 Thursday Oct. 23 How to determine 𝑒𝐴𝑡, LTI vs. LTV
18 Tuesday Oct. 28 Solving state equation

19 Thursday Oct. 30 Start of physical controllability, linear independence of
time vectors

20 Tuesday Nov 4 More on controllability LTV

21 Thursday Nov 6 Analytic functions, M test for controllability, LTI

5
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22 Thursday Nov 6, 6pm second exam

23 Tuesday Nov 11 No class

24 Thursday Nov 13 Controllability of LTV, Cayley Hamilton, di�erential Con-
trollability

25 Tuesday Nov 18 Observability of LTVm duel system, transition matrix,
Canonical decomposition

26 Thursday Nov 20 More on Canonical decomposition, starting stability

27 Tuesday Nov 25 No class

28 Thursday Nov 27 Holiday

29 Tuesday Dec 1 Stability, Hurwitz

30 Thursday Dec 4 More robust stability, q’s and intervals. Start of Lyapunov
stability

31 Tuesday Dec 9 Review of topics for finals, Routh table examples, future
courses

32 Thursday Dec 11 Final exam

1.2 Lecture 0. Tuesday September 3, 2014

Instructor: B. Ross Barmish

http://directory.engr.wisc.edu/ece/Faculty/Barmish_B/
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1.2.1 O�cial Syllabus from school website

Printed: Sep 2, 2014 9:17:13 PM

Copyright © University of Wisconsin - Madison 2014. All rights
reserved.

Generated by AEFIS Academic Assessment Solution. Developed by AEFIS, LLC
www.aefis.com

University of Wisconsin - Madison
College of Engineering [EGR]
Last Offered: 2013 Fall [1142]
Direct Link to this Syllabus :

http://aefis.engr.wisc.edu/index.cfm/page/CourseAdmin.ViewABET?coursecatalogid=181&pdf=True
E C E 717, Linear Systems1.
Credits : 3     Contact Hours :2.
Textbook and Materials : Linear System Theory and Design; C. T. Chen; latest; No Year3.
Given
Specific Course Information :4.

Brief description of the content of the course (Course Catalog Description) :a.
Equilibrium points and linearization; natural and forced response of state equations;
system equivalence and Jordan form; Lyapunov, asymptotic, and BIBO stability;
controllability and duality; control-theoretic concepts such as pole-placement, stabilization,
observers, dynamic compensation, and the separation principle.
Pre-requisites or Co-requisites : Math 340 or cons instb.

Specific Goals for the Course :

Course Outcomes :a.
ABET Student Learning Outcomes :b.
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1.2.2 Handout, Syllabus

Barmish 2014

ECE 717 – Handout Description

Audience: This course is intended for graduate students interested in the fundamentals
of linear systems. The contents of the course are particularly relevant to areas such as
control, communications, signal processing, power systems and circuits. The coverage of
material will be suitable for students outside ECE.

Prerequisites: Math 340 or consent of instructor.

Topics: Various models in time and frequency domain, linearization, transformations
and realizations, canonical forms and equivalent systems, minimal realizations, pole as-
signment and stability and robustness, Lyapunov functions, vector space concepts for
time-varying systems, fundamental matrix solutions, mathematics of controllability, ob-
servability and duality, Jordan forms, spectral theory, functions of matrices, decoupling
and compensator design, state estimators and Luenberger observers, separation of esti-
mation and control, linear quadratic regulators.

Lectures: Professor B. R. Barmish
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1.2.3 Handout, Organization

Barmish 2014

ECE 717 – Handout Organization

• Lectures

B. R. Barmish
Office: 3613 Engineering Hall
E-mail: barmish@engr.wisc.edu
Office Hours: Wednesday 1:30-3:00 PM

• Recommended Textbook

W. J. Rugh, Linear System Theory, Prentice Hall, New York.

• Additional References

C. T. Chen, Linear System Theory and Design, Oxford University Press, New York.
T. Kailath, Linear Systems, Prentice-Hall, New York.
R. W. Brockett, Finite Dimensional Linear Systems, Wiley, New York.
P. J. Antsaklis and A. N. Michel, Linear Systems, McGraw-Hill, New York.

• Homework

Approximately weekly

• Computer Use

Matlab and Simulink

• Grading

Test 1: 25%
Test 2: 25%
Test 3: 25%
Homework & Special Problem: 25%
The instructor may exercise up to 5% discretion in grading categories above.

• Scheduling Information

No lectures on October 2, November 11 and November 25.
Makeup: Reserve 6 PM on October 7, November 6, December 11.
Test 1: Tuesday October 7 (in class OR @ 6 PM)
Test 2: Thursday November 6 (in class OR @ 6 PM)
Test 3: Thursday December 11 (in class OR @ 6 PM)
No Office Hours: October 1 and November 12

• Discussion of Prerequisites

Differential equations, Laplace Transforms and transfer functions, matrix algebra, clas-
sical feedback control or state space systems. Use of Matlab and Simulink.

1.3 Lecture 1: Introduction, mechanical system to ODE
to state space

Handout organization: Approximately one HW per week. About 9 in total.

Will give back detailed key solution. Requires using Matlab and simulink. See handouts.

What is state space model? Given 𝑚 inputs to system and 𝑟 outputs. The input are the
controls (since we can manipulate them). This is the vector 𝑢(𝑡). The states of the system
are 𝑥(𝑡) and the output is 𝑦(𝑡). A simple example of spring mass damper is now given.

m

c

k

ft

y

The di�erential equation is
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𝑚𝑦″ + 𝑐𝑦′ + 𝑘𝑦 = 𝑓(𝑡)

Let 𝑥1 = 𝑦, 𝑥2 = 𝑦′ be the two states, hence 𝑥′1 = 𝑥2 and 𝑥′2 =
𝑓(𝑡)
𝑚 − 𝑘

𝑚𝑥1 −
𝑐
𝑚𝑥2. Therefore the

state space representation is

⎛
⎜⎜⎜⎜⎝
𝑥′1
𝑥′2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0 1
− 𝑘
𝑚 − 𝑐

𝑚

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
1
𝑚

⎞
⎟⎟⎟⎟⎠ 𝑓(𝑡)

𝑦 = �1 0�
⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠ + [0]𝑓(𝑡)

More generally,

𝑥′ = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

Reader: Find LTI for 𝑦‴ + 6𝑦′ − 2𝑦 = 2𝑢(𝑡)

Answer:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥′1
𝑥′2
𝑥′3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 0 1
2 −6 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑢(𝑡)

𝑦 = �1 0 0�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ [0]𝑢(𝑡)

The matrix 𝐴 has one on the superdiagonal. What if the input had additional term? Such

as 𝑑𝑢
𝑑𝑡 or

𝑑2𝑢
𝑑𝑡2 in it? We need a state space realization to handle this.
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1.4 Lecture 2. Thursday September 5 2014

1.4.1 Handout, Pendulum on moving cart

H c,odgu L Ca,t-  Pendu turr)

0=0

u

t 0

o)

o

J

co s 0 d--b
d b '

f r 'ct  rdr'  
; [  sro o IdO)' :

t d t  )
( nrxr.enU "I nkttc

(i- m8')&
/  u , r , , ,4q , , .L roo+ U {o *"rg-0

i  - d t  o
i l u  i l

/ ai | [,no Lhe
t e j
l e  t
L au tdL)
,br roco (X-; a,) = @

J
M+rn) d3 + m

dt - vls(ou,
/

+  c d j  .
dt

n!. cos 0 {V +

\r0€Ar tX€i, s!sl-€co

1.4.2 Lecture: Discrete time state space, introduction to nonlinear
state space

Reader: Recall the mass, spring, damper with 𝑘, 𝑐, 𝑚 and we generated the second order
ODE for it. Let 𝑢 = 0 be the input. Initial conditions are 𝑦(0) = 1, 𝑦′(0) = 0.

Experiment with various values of the parameters 𝑘,𝑚, 𝑐 and observe variety of responses.
Also consider 𝑢(𝑡) as unit step.

Reader: Consider discrete time state equation

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)
𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘)

with zero initial conditions. Solve for 𝑥(𝑁) and 𝑦(𝑁).

𝑥(1) = 𝐴𝑥(0) + 𝐵𝑢(0)
𝑥(2) = 𝐴(𝐴𝑥(0) + 𝐵𝑢(0)) + 𝐵𝑢(1)

= 𝐴2𝑥(0) + 𝐴𝐵𝑢(0) + 𝐵𝑢(1)
𝑥(3) = 𝐴(𝐴2𝑥(0) + 𝐴𝐵𝑢(0) + 𝐵𝑢(1)) + 𝐵𝑢(2)

= 𝐴3𝑥(0) + 𝐴2𝐵𝑢(0) + 𝐴𝐵𝑢(1) + 𝐵𝑢(2)
⋮

Hence
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𝑥(𝑁) = 𝐴𝑁𝑥(0) +
𝑁−1
�
𝑘=0

𝐴𝑁−1−𝑘𝐵𝑢(𝑘)

In solving continuous time state equations, the solution will contain terms such as sin / cos
and exponential and 𝑡 multipliers. These are the only things that come up in linear system
theory.

Sometimes an LTI system is stable and sometimes it is not stable.

Stable vs. not stable: if 𝐴 has all its eigenvalues with real part negative, then it is stable,
else not stable. But even if one one eigenvalue had real part which is positive, it might still
be stable. This depends if the initial conditions activate the mode with this eigenvalue. For
Example

𝐴 =
⎛
⎜⎜⎜⎜⎝
1 0
0 −1

⎞
⎟⎟⎟⎟⎠ , 𝐵 = 0, then 𝑥

′
1 = 𝑥1 and 𝑥′2 = −𝑥2. Then 𝑥1 = 𝑒𝑡𝑥1(0) and 𝑥2 = 𝑒−𝑡𝑥2(0). Now if

the initial conditions are 𝑥1(0) = 0 and 𝑥2(0) = 1, then 𝑥1(𝑡) = 0 even though the eigenvalue
was positive.

Now we will talk about non-linear systems. Consider

𝑥′1 = 𝑥1𝑥2 + 𝑢𝑥3
𝑥′2 = 𝑥2 + 2𝑥2𝑥3
𝑥′3 = 𝑥2 + 𝑥3

More generally, 𝑥′ = 𝑓(𝑥, 𝑢). There are no 𝐴,𝐵, 𝐶,𝐷 in nonlinear system. there is only 𝑓(𝑥, 𝑢)
and 𝑔(𝑥, 𝑢). To linearize this, we need to talk about equilibrium. There is stable and there
is unstable equilibrium. Always linearize around the stable equilibrium point. To find (�̄�, �̄�)
solve 𝑥′ = 0. i.e. it is when 𝑓(�̄�, �̄�) = 0.

How does linearization work? Since we assume 𝑓(𝑥, 𝑢) is smooth function, we expand in
Taylor series around equilibrium (�̄�, �̄�)

𝑓1 (�̄� + Δ𝑥) =

𝑧𝑒𝑟𝑜 at equilibrium

�������𝑓 �𝑥𝑒𝑞� +
𝜕𝑓1
𝜕𝑥1

�
(�̄�,�̄�)

Δ𝑥1 +
1
2
𝜕2𝑓1
𝜕𝑥21

�
(�̄�,�̄�)

(Δ𝑥1)
2 +⋯

+
𝜕𝑓1
𝜕𝑥2

�
(�̄�,�̄�)

Δ𝑥2 +
1
2
𝜕2𝑓1
𝜕𝑥22

�
(�̄�,�̄�)

(Δ𝑥2)
2 +⋯

+
𝜕𝑓1
𝜕𝑥3

�
(�̄�,�̄�)

Δ𝑥3 +
1
2
𝜕2𝑓1
𝜕𝑥23

�
(�̄�,�̄�)

(Δ𝑥3)
2 +⋯

Similarly for each 𝑓𝑖 (𝑥, 𝑢). For small Δ𝑥 we obtain, after dropping all higher order terms

𝑓 (�̄� + Δ𝑥) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

⋯ 𝜕𝑓1
𝜕𝑥𝑛

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

⋯ 𝜕𝑓2
𝜕𝑥𝑛

⋮ ⋮ ⋮ ⋮
𝜕𝑓𝑛
𝜕𝑥1

𝜕𝑓𝑛
𝜕𝑥2

⋯ 𝜕𝑓𝑛
𝜕𝑥𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Two roles for the small Δ𝑥: approximates linear behavior, and remain around domain of
influence so system returns to 𝑥𝑒𝑞.

Reader Argue that incremental dynamics are now Δ𝑥′ =

𝐴
�𝜕𝑓
𝜕𝑥 �𝑥𝑒𝑞

Δ𝑥

Reader: Generalize to 𝑓 (𝑥, 𝑢) instead of just 𝑓 (𝑥): Define (�̄�, �̄�) s.t. 𝑓 (�̄�, �̄�) = 0. So that above
become 𝑓 (�̄� + Δ𝑥, �̄� + Δ𝑢) then
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𝐵 (�̄� + Δ𝑢) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓1
𝜕𝑢1

𝜕𝑓1
𝜕𝑢2

⋯ 𝜕𝑓1
𝜕𝑢𝑚

𝜕𝑓2
𝜕𝑢1

𝜕𝑓1
𝜕𝑢2

⋯ 𝜕𝑓1
𝜕𝑢𝑚

⋮ ⋮ ⋮ ⋮
𝜕𝑓𝑛
𝜕𝑢1

𝜕𝑓𝑛
𝜕𝑢2

⋯ 𝜕𝑓𝑛
𝜕𝑢𝑚

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Can also introduce the output equation 𝑦 = 𝑔 (𝑥, 𝑢) and now obtain linearized 𝐶,𝐷 as we
did above for 𝐴,𝐵, but now using 𝑔 (𝑥, 𝑢) in place of 𝑓 (𝑥, 𝑢)

1.5 Lecture 3. Tuesday September 9 2014 (non-linear
state space, linearization, Laplace)

Linear systems are described by 𝐴,𝐵, 𝐶,𝐷. as in

𝑥′ = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

For non-linear systems we have

𝑥′ = 𝑓 (𝑥, 𝑢)
𝑦 = 𝑔 (𝑥, 𝑢)

We assume 𝑓, 𝑔 are smooth and solution exists (may be using numerical). We talked about
equilibrium point (𝑥, 𝑢). This can be stable or unstable equilibrium.

We want to linearize the equations above. Linearization must be done about a stable point.
Do not linearize around an unstable equilibrium. The linearized system

Δ𝑥′ =

𝐴

�����������𝜕𝑓
𝜕𝑥
�
(𝑥,𝑢)𝑒𝑞

Δ𝑥 +

𝐵

�����������𝜕𝑓
𝜕𝑢
�
(𝑥,𝑢)𝑒𝑞

Δ𝑢

So solution, near 𝑥𝑒𝑞 is

𝑥 (𝑡) = 𝑥𝑒𝑞 + Δ𝑥

Output equation is

Δ𝑦 =

𝐶

�����������𝜕𝑔
𝜕𝑥
�
(𝑥,𝑢)𝑒𝑞

Δ𝑥 +

𝐷

�����������𝜕𝑔
𝜕𝑢
�
(𝑥,𝑢)𝑒𝑞

Δ𝑢

And

𝑦 (𝑡) = 𝑔 �𝑥, 𝑦� + Δ𝑦

Reader: Distinction between domain of attraction and linear approximation.

Region of attraction: Domain of initial states that converges to 𝑥𝑒𝑞.

Transfer functions: Motivating example. Given 𝐻 (𝑠) = 𝑌(𝑠)
𝑈(𝑠) =

5
𝑠2+6𝑠+7 . Recall,ℒ

𝑑𝑘𝑓(𝑡)
𝑑𝑡𝑘

= 𝑠𝑘𝐹 (𝑠)

with initial added. Example, ℒ�𝑓′ (𝑡)� = 𝑠𝐹 (𝑠) − 𝑓 (0) and ℒ�𝑓′′ (𝑡)� = 𝑠2𝐹 (𝑠) − 𝑠𝑓 (0) − 𝑓′ (0).

Note: 𝐻 (𝑠) is derived assuming all initial conditions are zero.

Reader: Find 𝐻 (𝑠) for 𝑦′′ + 6𝑦′ + 7𝑦 = 5𝑢 (𝑡) and find the state space realization.

Suppose we are given 𝐴,𝐵, 𝐶,𝐷. There is SISO (single input, single output) and MIMO
(multiple input, multiple output).

Consider

𝑥′ = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢
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Take Laplace transform results in 𝑋 (𝑠) = (𝑠𝐼 − 𝐴)−1 𝐵𝑈 (𝑠) and the output becomes

𝑌 (𝑠) = 𝐶 (𝑠𝐼 − 𝐴)−1 𝐵𝑈 + 𝐷𝑈

= �𝐶 (𝑠𝐼 − 𝐴)−1 𝐵 + 𝐷�𝑈

Hence

𝐻 (𝑠) =
𝑌
𝑈
= 𝐶 (𝑠𝐼 − 𝐴)−1 𝐵 + 𝐷

Reader:

DC

LR

Cut yt

i

Find SISO 𝐻(𝑠) for the above. Writing loop equations, using 𝑣 = 𝑅𝑖 for voltage across
resistor, results in

𝑅𝑖 + 𝐿
𝑑𝑖
𝑑𝑡
+
1
𝑐

𝑡

�
0

𝑖 𝑑𝜏 = 𝑢(𝑡)

Taking derivative gives

𝑅
𝑑𝑖
𝑑𝑡
+ 𝐿

𝑑2𝑖
𝑑𝑡2

+
1
𝑐
𝑖 = 𝑢′(𝑡)

The output equation is 𝑦 = 1
𝑐

𝑡
∫
0
𝑖 𝑑𝜏

Reader: Given 𝐴 =
⎛
⎜⎜⎜⎜⎝
1 −2
3 4

⎞
⎟⎟⎟⎟⎠ , 𝐵 =

⎛
⎜⎜⎜⎜⎝
2 1
−1 0

⎞
⎟⎟⎟⎟⎠ , 𝐶 =

⎛
⎜⎜⎜⎜⎝
0 1
−1 2

⎞
⎟⎟⎟⎟⎠ ,𝐷 =

⎛
⎜⎜⎜⎜⎝
2 −1
1 1

⎞
⎟⎟⎟⎟⎠. Find MIMO 𝐻(𝑠). Can

solve using syms.

Given transfer function matrix, can we find state space realization? Remark on MIMO:

Consider 𝑌𝑟×1(𝑠) = 𝐻𝑟×𝑚(𝑠)𝑈𝑚×1(𝑠), so the 𝑖𝑡ℎ output is
𝑚
∑
𝑗=1
𝐻𝑖𝑗(𝑠)𝑈𝑗(𝑠). So entry 𝐻𝑖𝑗(𝑠) in the

matrix transfer function is the transfer function between the 𝑗𝑡ℎ input to the 𝑖𝑡ℎ output.

𝐻𝑖𝑗(𝑠) =
𝑌𝑖
𝑈𝑗

This suggests experimental method to find𝐻𝑖𝑗(𝑠). Zero out all inputs except for one. Measure
the output at the port of interest. This finds 𝐻(𝑠) between the input which is not zero and
the output port being measured.
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1.6 Lecture 4. Thursday September 11 2014

1.6.1 Handout, Mason

Barmish "

ECE 7LT - Handout
Class Discussion Points Preceding Mason's Rule

o Input and Output Nodes

o Forwa,rd Path

o Loop

o Self Loop

o Branch gain

o Path Gain

o Nontouching Parts of a Graph

Let [J;n ffidYout denote input and output nodes respectively. Then, with

\- all other inputs set to zero, we have

Yout _ D* MnLr

U;n A

where

A - 1- l[loop gains]+ I[products of gains of pairs of nontouching loops]

and A6 is the value of A for that part of the graph not touching the k-th
forward path.

1.6.2 Lecture: state space realization

State space realization. Fundamental to state space.

U Y
Hs  Y

U

A,B,C,D

system

Assume we do not have to look inside the system and we want to model the system? When
we model the system, we have idea of what is relevant. The input and the output. From
the input/output point of view, it does not matter what the internal of the system are. The
constraint is only that the internal states are bounded.

Given system (𝐴, 𝐵, 𝐶,𝐷), we write 𝐻∗(𝑠), which is the realization of this system, as

𝐻∗(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷

This is called the transfer function of the system. Let 𝐻(𝑠) be some given transfer function
matrix, of dimensions 𝑟 × 𝑚, where 𝑟 is the number of outputs and 𝑚 is the number of
inputs. Each entry in this transfer function matrix is a ratio of two polynomials in 𝑠. We
say that 𝐻(𝑠) is a realization of ∑(𝐴, 𝐵, 𝐶,𝐷) if 𝐻∗(𝑠) = 𝐻(𝑠).
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In other words, we say 𝐻(𝑠) is a realization, if we can find ∑(𝐴, 𝐵, 𝐶,𝐷) or construct
∑(𝐴, 𝐵, 𝐶,𝐷) such that 𝐻∗(𝑠) = 𝐻(𝑠).

When is 𝐻(𝑠) realizable? i.e. given some 𝐻(𝑠), can we find ∑(𝐴, 𝐵, 𝐶,𝐷) whose transfer
function is this 𝐻(𝑠)?

Is the set of realizable transfer functions common or rare? If we can realize 𝐻(𝑠), then let
∑ be a realization. Now do the "Gedankan" experiment. Pick any non singular 𝑛×𝑛 matrix
𝑇, and form

�̃� = 𝑇𝐴𝑇−1

�̃� = 𝑇𝐵
�̃� = 𝐶𝑇−1

�̃� = 𝐷

Hence

�̃�∗(𝑠) = �̃�(𝑠𝐼 − �̃�)−1�̃� + �̃�
= 𝐶𝑇−1(𝑠𝐼 − 𝑇𝐴𝑇−1)−1𝑇𝐵 + 𝐷
= 𝐶𝑇−1(𝑠𝐼𝑇𝑇−1 − 𝑇𝐴𝑇−1)−1𝑇𝐵 + 𝐷
= 𝐶𝑇−1(𝑇(𝑠𝐼 − 𝐴)𝑇−1)−1𝑇𝐵 + 𝐷
= 𝐶𝑇−1𝑇(𝑠𝐼 − 𝐴)−1𝑇−1𝑇𝐵 + 𝐷
= 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷

So we see that �̃�, �̃�, �̃�, �̃� has the same realization as 𝐴,𝐵, 𝐶,𝐷. So if one realization exist,
then there are infinite number of realization that can be found using the 𝑇 transformation
as above.

Reader: How does state 𝑥 relates to state �̃� under 𝑇?.

Let �̃� = 𝑇𝑥, then

�̃�′ = 𝑇𝑥′

= 𝑇 (𝐴𝑥 + 𝐵𝑢)

= 𝑇 �𝐴𝑇−1�̃� + 𝑇−1�̃�𝑢�

= 𝑇𝐴𝑇−1�̃� + 𝑇𝑇−1�̃�𝑢
= �̃��̃� + �̃�𝑢

So new system is the same as original before transformation. The big question is: When is
𝐻(𝑠) realizable. We start with SISO, after that we will talk about MIMO. Let 𝐻(𝑠) = 𝑁(𝑠)

𝐷(𝑠) be
some given 𝐻(𝑠) that we want to realize. Define a proper T.F. as one which has deg (𝑁 (𝑠)) ≤
deg (𝐷 (𝑠)). Define a strict proper T.F. as one which has deg (𝑁 (𝑠)) < deg (𝐷(𝑠)).

Every proper T.F. is realizable. In this, the word proper is important. Is the improper case
important? Example was given for a system where the input is step function, showing the
output is Dirac delta 𝛿(𝑡).

Theorem 1: If 𝐻(𝑠) is proper, then it is realizable. Example: 𝐻(𝑠) = 𝑠3+3𝑠2+2𝑠+4
𝑠3+6𝑠2−2𝑠−7 , the associated

ODE is 𝑦‴ + 6𝑦″ − 2𝑦′ − 7𝑦 = 4𝑢‴ + 3𝑢″ + 2𝑢′ + 4𝑢.

A recipe to realize 𝐻(𝑠): If 𝐻(𝑠) is proper, make it strict proper by long division and write
it as 𝐻𝑝𝑟𝑜𝑝𝑒𝑟(𝑠) = 𝛾 + 𝐻𝑠𝑡𝑟𝑖𝑐𝑡(𝑠). Doing long division gives

𝐻 = 4 +
−21𝑠2 + 10𝑠 + 32
𝑠3 + 6𝑠2 − 2𝑠 − 7

Reader: Verify the following is a realization of the above 𝐻(𝑠):

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 0 1
7 2 −

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐵 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐶 = �32 10 −21� ,𝐷 = [4]
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We generalize the above to 𝐻(𝑠) = 𝛾 + 𝛽2𝑠2+𝛽1𝑠+𝛽0
𝑠3+𝛼2𝑠2+𝛼1𝑠+𝛼0

. Notice we always keep the leading

term in the denominator as unity. Realization of this is 𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 0 1
−𝛼0 −𝛼1 −𝛼2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐵 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐶 =

�𝛽0 𝛽1 𝛽2� , 𝐷 = �𝛾�

Reader: Propose a realization for general case. Mason rule is used to generalize to 𝑛 × 𝑛
case.

HW 1 assigned.

1.7 Lecture 5. Tuesday September 16 2014

1.7.1 Lecture: Mason rule and examples

We were talking about realization. Every proper transfer function 𝐻 (𝑠) is a realization of
some �(𝐴,𝐵, 𝐶,𝐷). We saw the recipe before, but not the justification.

Reader: Consider 𝐻 (𝑠) = 𝑠5+7𝑠4+19𝑠3+25𝑠2+16𝑠+4
𝑠5+12𝑠4+56𝑠3+12𝑠2+125𝑠+54

, is there a realization with 𝑛 = 5 states? Yes.
Now, do the realization. What about with 𝑛 = 6 states? How about with 𝑛 < 5 states? If
there is zero/pole cancellation. So do factorization first.

If we have a transfer function, then minimal realization is one with no cancellations. If
the system is uncontrollable or unobservable, there will always be some cancellation. Any
system that is controllable and observable is minimal.

Mason rule:

For multi-input, start by zeroing out all input except for one that is of interest. Example
given of using Mason rule now. See handout of Mason that was given during the class.
Example now given for electrical network. The first step is to find the equations. Once the
equations are found, then Mason rule is used to find the transfer function between one
input and the output.

Reader: Solve

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 3
4 0 −2
1 2 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
using Mason rule. I did this, see note on my pages.

HW 2 assigned.

1.8 Lecture 6. Thursday September 18 2014
(Realization theorem, MIMO, state feedback)

If the transfer function 𝐻 (𝑠) is proper, then is it realizable. (SISO for now). Reminder:
Need to show this for the general case.

Proof: Wemust find�(𝐴,𝐵, 𝐶,𝐷) such that𝐻∗ (𝑠) = 𝐻 (𝑠)where𝐻∗ (𝑠) is the transfer function
obtained from �(𝐴,𝐵, 𝐶,𝐷) and 𝐻 (𝑠) is the transfer function we are given. We propose

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 0 1
−𝛼0 −𝛼1 −𝛼2 ⋯ −𝛼𝑛−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. Let 𝐻 (𝑠) = 𝛾 + 𝛽𝑛−1𝑠𝑛−1+𝛽𝑛−2𝑠𝑛−2+⋯+𝛽0
𝑠𝑛+𝛼𝑛−1𝑠𝑛−1+⋯+𝛼0

and propose 𝐵 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
⋮
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and propose 𝐶 = �𝛽0 𝛽1 ⋯ 𝛽𝑛−1� and 𝐷 = �𝛾�, now we need to show that 𝐻∗ (𝑠) = 𝐻 (𝑠)
using Mason rule.

Reader: Use Mason rule to show that this realization works. Now what about MIMO?

Assume we are given 𝐻 (𝑠) =
⎛
⎜⎜⎜⎜⎝
𝐻11 (𝑠) 𝐻12 (𝑠)
𝐻21 (𝑠) 𝐻22 (𝑠)

⎞
⎟⎟⎟⎟⎠. We can do each on its own, then need to
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"patched" to show that the matrix of them all work. Example using 2 × 2.

If each 𝐻𝑖𝑗 (𝑠) is proper, let �
𝑖𝑗
= 𝐴𝑖𝑗, 𝐵𝑖𝑗, 𝐶𝑖𝑗, 𝐷𝑖𝑗 be realization for 𝐻𝑖𝑗 (𝑠). Note each 𝐴𝑖𝑗

can be di�erent size. Propose 𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴11 0 0 0
0 𝐴12 0 0
0 0 𝐴21 0
0 0 0 𝐴22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and 𝐵 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐵11 0
𝐵12 0
0 𝐵21
0 𝐵22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and 𝐶 =

⎛
⎜⎜⎜⎜⎝
𝐶11 𝐶12 0 0
0 0 𝐶21 𝐶22

⎞
⎟⎟⎟⎟⎠ and𝐷 =

⎛
⎜⎜⎜⎜⎝
𝐷11 𝐷12

𝐷21 𝐷22

⎞
⎟⎟⎟⎟⎠. Now we claim (𝐴, 𝐵, 𝐶,𝐷) is realization of

⎛
⎜⎜⎜⎜⎝
𝐻11 (𝑠) 𝐻12 (𝑠)
𝐻21 (𝑠) 𝐻22 (𝑠)

⎞
⎟⎟⎟⎟⎠.

We need to calculate

𝐻∗ (𝑠) = 𝐶 (𝑠𝐼 − 𝐴)
−1 𝐵 + 𝐷

=
⎛
⎜⎜⎜⎜⎝
𝐶11 𝐶12 0 0
0 0 𝐶21 𝐶22

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠𝐼 −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴11 0 0 0
0 𝐴12 0 0
0 0 𝐴21 0
0 0 0 𝐴22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐵11 0
𝐵12 0
0 𝐵21
0 𝐵22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
⎛
⎜⎜⎜⎜⎝
𝐷11 𝐷12

𝐷21 𝐷22

⎞
⎟⎟⎟⎟⎠

Reader: The above reduces to

𝐻∗ (𝑠) =
⎛
⎜⎜⎜⎜⎝
𝐶11 (𝑠𝐼 − 𝐴11)

−1 𝐵11 + 𝐷11 𝐶12 (𝑠𝐼 − 𝐴12)
−1 𝐵12 + 𝐷12

𝐶21 (𝑠𝐼 − 𝐴21)
−1 𝐵21 + 𝐷21 𝐶22 (𝑠𝐼 − 𝐴22)

−1 𝐵22 + 𝐷22

⎞
⎟⎟⎟⎟⎠

What about other dimensions?

Reader: Propose realization with 𝐻 (𝑠) that is 3 × 2. i.e.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐻11 (𝑠) 𝐻12 (𝑠)
𝐻21 (𝑠) 𝐻22 (𝑠)
𝐻31 (𝑠) 𝐻32 (𝑠)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. Try it. What

should 𝐴,𝐵, 𝐶,𝐷 look like? Note: Even though 𝐻𝑖𝑗 (𝑠) might each be minimal, when we
obtain the realization, it might no longer be minimal. Some realization are "nicer" than
others for analysis and design.

Motivation example: 𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 0 1
−𝛼0 −𝛼1 −𝛼2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑏 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐶 = �𝛽0 𝛽1 𝛽2�. When we add feed-

back, we ask what is the e�ect of feedback? This system is nice to study feedback. We
often add feedback to improve time performance. 𝑢 (𝑡) = 𝑘1𝑥1 + 𝑘2𝑥2 + 𝑘3𝑥3 + 𝑣 where 𝑣 is
new input. We can pick 𝑘𝑖. The closed loop becomes

𝑥′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 0 1
−𝛼0 −𝛼1 −𝛼2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
(𝑘1𝑥1 + 𝑘2𝑥2 + 𝑘3𝑥3 + 𝑣)

Reader Determine the new 𝐴 matrix from the old.

𝑥′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 0 1

𝑘1 − 𝛼0 𝑘2 − 𝛼1 𝑘3 − 𝛼2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑣

Notice: State feedback preservers the companion form of 𝐴 and 𝑏. Find closed form transfer
function.

𝐻𝑐𝑙𝑜𝑠𝑒𝑑 =
𝛽0 + 𝛽1𝑠 + 𝛽2𝑠2

𝑠3 + (𝛼2 − 𝑘3) 𝑠2 + (𝛼1 − 𝑘2) 𝑠 + (𝛼0 − 𝑘1)
Note: 𝑘𝑖 a�ects one coe�cient each. So poles of closed loop can be arbitrarily assigned
anywhere we want.
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1.9 Lecture 7. Tuesday September 23 2014

1.9.1 Handout, linearization

ECE 717 – Handout Linearization

We now slightly generalize on the definition of equilibrium given in class.
Indeed, we consider the nonlinear state space system

ẋ = f(x, u); y = g(x, u)

with f and g assumed continuously differentiable. Then a pair (x, u) is
said to define an equilibrium if f(x, u) = 0. Hence, if at some time t∗ ≥ 0,
we see state x(t) = x, then, with constant input u(t) = u for t ≥ t∗, the
state will remain at x(t∗) and the output will remain at y = g(x, u).

Now, motivated by series expansion, for an equilibrium pair (x, u), we
define linearization matrices (A,B,C,D) whose entries are given as follows:

A has (i, j)-th entry
∂fi

∂xj
|(x,u)

B has (i, j)-th entry
∂fi

∂uj
|(x,u)

C has (i, j)-th entry
∂gi

∂xj
|(x,u)

D has (i, j)-th entry
∂gi

∂uj
|(x,u)

for i and j in their appropriate ranges. Now, the key idea underlying
the application of these ideas is as follows: If A is strictly stable (all its
eigenvalues have negative real part), it is often possible to use the linearized
(incremental) system

∆ẋ = A∆x + B∆u; ∆y = C∆x + D∆u

to approximate suitably small deviations then for x(t) and u(t) about the
equilibrium pair (x, u). That is, the actual state is recovered from the
incremental system as x(t) ≈ x + ∆x(t) and y(t) ≈ y + ∆y(t).

As seen in Homework Satellite, the ideas above can be extended even fur-
ther to address linearization about a trajectory pair (x∗(t), u∗(t)). That is,
in the definitions of (A, B, C,D) above, we use these time-varying quan-
tities in lieu of (x, u), when evaluating the partial derivatives; i.e., the
linearization is time-varying.
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1.9.2 Handout, transformation

ECE 717 – Handout Transformation

We consider state space systems Σ = (A, B, C,D) and Σ̃ = (Ã, B̃, C̃, D̃)
each with m inputs, r outputs and n states. We further assume that these
systems are input-output equivalent; i.e.,

HΣ(s) = HΣ̃(s).

Then assuming compatible matrix dimensions above, the question arises
whether there there exists a nonsingular transformation matrix T such
that

Ã = TAT−1; B̃ = TB; C̃ = CT−1; D̃ = D.

To address this issue, we develop some necessary conditions which such a
matrix T must satisfy. Reader: If T exists, verify that it must true that

B̃ = TB; ÃB̃ = TAB; Ã2B̃ = TA2B; · · · Ãn−1B̃ = TAn−1B.

Next, we define the pair of n× nm block matrices

CΣ = [B AB A2B · · ·An−1B];

CΣ̃ = [B̃ ÃB̃ Ã2B̃ · · · Ãn−1B̃]

which are called controllability matrices. Based on the preceding discus-
sion, the conditions are expressed compactly as

CΣ̃ = TCΣ.

We now consider 2 cases. For single-input systems, the controllability
matrices above are square. Hence, if CΣ is nonsingular, we solve above
and obtain

T = CΣ̃C
−1
Σ .

More generally, for a system with multiple inputs, since the controllabil-
ity matrices are non-square, we cannot invert them. To solve for T , we
consider the case when

rank CΣ = n. (∗)
Then, it follows that the n× n matrix CΣCT

Σ is invertible (Reader) and we
obtain solution

T = CΣ̃C
T
Σ

[
CΣCT

Σ

]−1
.

To summarize, if Condition (∗) is satisfied above, we say that Σ satisfies
the controllability rank condition and we have a straightforward way to
find the transformation matrix T.
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1.9.3 Lecture: controllability, observability

Reader: Consider 𝐻 (𝑠) = 𝛾 + 𝛽3𝑠3+𝛽2𝑠2+𝛽𝑠+𝛽0
𝑠4+𝛼3𝑠3+𝛼2𝑠2+𝛼𝑠+𝛼0

and show that 𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −𝛼0
1 0 0 −𝛼1
0 1 0 −𝛼2
0 0 1 −𝛼3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝐵 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛽0
𝛽1
𝛽2
𝛽3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝐶 = �0 0 0 1� ,𝐷 = �𝛾� is a realization.

We established realization before, when we obtained the controllable form. One way is to
use Mason rule. Another way is using syms and find 𝐶 (𝑠𝐼 − 𝐴)−1 𝐵 + 𝐷.

This realization is called the observable canonical form. Some realizations are better than
other for di�erent things. For state estimation, observable form is better, for state control,
the controllable form is better.

Reader: Generalized reader above to proper 𝐻 (𝑠), can use Mason.

Reader: Even more general. Suppose∑(𝐴, 𝐵, 𝐶,𝐷) is a realization of SISO transfer function
𝐻 (𝑠), show that ∑∗ �𝐴

𝑇, 𝐶𝑇, 𝐵𝑇, 𝐷𝑇� is also realization. So 𝐻∗ (𝑠) = 𝐶∗ (𝑠𝐼 − 𝐴∗)
−1 𝐵∗+𝐷∗ where

𝐶∗ = 𝐵𝑇, 𝐴∗ = 𝐴𝑇, 𝐵∗ = 𝐶𝑇. So 𝐻∗ (𝑠) = 𝐵𝑇 �𝑆𝐼 − 𝐴𝑇�
−1
𝐶𝑇 + 𝐷. Since this is SISO, it is scalar,

so its transpose do not change. Take the transpose of the above gives

𝐻∗ (𝑠) = 𝐶 ��𝑠𝐼 − 𝐴𝑇�
−1
�
𝑇
𝐵 + 𝐷

= 𝐶 (𝑠𝐼 − 𝐴)−1 𝐵 + 𝐷

Reader: For MIMO get 𝐻∗ (𝑠) = 𝐻𝑇 (𝑠)

Transformation: ∑ → 𝑇 → ∑
∗ where ∑∗ is equivalent. Design in ∑∗, then when design is

completed, transform back to ∑.

Handout: Given 𝐻 (𝑠)∑ = 𝐻 (𝑠)∑∗
when can ∑ be transformed to controllable or observable

forms using 𝑇? Necessary conditions for existence of 𝑇 is that

ℂ∗ = 𝑇ℂ

Where ℂ is the controllability matrix for the original ∑ and ℂ∗ is controllability matrix for
the ∑∗. For SISO, if ℂ is invertible, then 𝑇 = ℂ∗ℂ−1. What is MIMO? system is good if rank
ℂ is 𝑛. i.e. controllable system. When this is satisfied, we say (𝐴, 𝐵) is controllable pair.

Reader: (𝐴, 𝐵) is controllable pair implies ℂℂ𝑇 is invertible. Proof: Assume 𝜌 (ℂ) = 𝑛, show
that ℂℂ𝑇 is invertible. Use proof by contradiction. Assume no inverse,hence this means
there is non-zero vector �⃗� s.t. ℂℂ𝑇�⃗� = 0, so 𝑥𝑇ℂℂ𝑇𝑥 = 0 or 𝑦𝑇𝑦 = 0, so 𝑦 = 0 or ℂ𝑇𝑥 = 0, but
𝑥 ≠ 0 so contradiction.

There is also observability rank condition. Reader: Mimic the controllability analysis

above for pair (𝐴, 𝐶). Sketch steps: Develop ℚ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶
𝐶𝐴
⋮

𝐶𝐴𝑛−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. We need to relate ℚ to ℚ∗ using

𝑇. Since 𝐶∗ = 𝐶𝑇−1, then 𝐶∗𝐴∗ = �𝐶𝑇−1� �𝑇−1𝐴𝑇� = 𝐶𝐴. So we get condition that 𝜌 (ℚ) = 𝑛
is necessary condition for existence of 𝑇.

If the controllability failed, try the observability.

Reader: Show the controllability canonical form always satisfies 𝜌 (ℂ) = 𝑛. i.e. if we can
put the system in the controllable form, then it is controllable. To show, start with 3 × 3
matrix and find its ℂ to show it is 3.

Reader: Can controllable form fail to be observable? (yes).

Reader: Consider 𝐻 (𝑠) = 𝑠+1
𝑠2+2𝑠+1 =

1
𝑠+1 and study the controllability and observability rank.
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More generally, if 𝐻 (𝑠) has no pole/zero cancellation, then it is minimal and ℂ and ℚ both
have rank 𝑛 (full rank). So if there is no pole/zero cancellation, then it is both controllable

and observable. Consider 𝐻 (𝑠) =
�𝑠2+𝑠+1��𝑠3+2𝑠2+4�

�𝑠2+𝑠+1�
2
(𝑠+1)2

, try and see.

1.10 Lecture 8. Thursday September 25 2014 (Pole
assignment, state feedback)

Review: We talked about transformation while preserving transfer functions. Can we find
transformation to a specific target? Role of ℂ (controllability matrix) and ℚ (observability
matrix). Reader: Suppose 𝐴 is selected randomly and so is 𝐵, example within normal
distribution, find probability that rank ℂ is 𝑛. The probability is 1. So almost all (𝐴, 𝐵)
are controllable. But if some entries of 𝐴,𝐵 are hardwired to some specific values due to
design, they the chance of getting uncontrollable (𝐴, 𝐵) starts to increase. For example, the
controllable canonical form of 𝐴 has hardwired entries in 𝐴. Even when we get close to be
uncontrollable numerically we will get into more problems.

Now we talk about nice properties of companion forms. Let us use 𝑛 = 4 for illustration. Pole
assignment: Select 𝑘 s.t. 𝐴 + 𝐵𝑘 has pre-specified eigenvalues. Here 𝐴 has bad eigenvalues,
but 𝐴+𝐵𝑘 will have good eigenvalues. Note, we are using controllable canonical form, also
assume we have access to all states. This is simple

𝐴𝑐𝑙𝑜𝑠𝑒𝑑 = 𝐴 + 𝐵𝑘 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
−𝛼0 −𝛼1 −𝛼2 −𝛼3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�𝑘0 𝑘1 𝑘2 𝑘3�

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

−𝑘0 − 𝛼0 𝑘1 − 𝛼1 𝑘2 − 𝛼2 𝑘3 − 𝛼3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

det (𝜆𝐼 − 𝐴𝑐𝑙𝑜𝑠𝑒𝑑) = 𝜆4 + (𝛼3 − 𝑘3)
3 𝜆3 + (𝛼2 − 𝑘2)

2 𝜆2 + (𝛼1 − 𝑘1) 𝜆 + (𝛼0 − 𝑘0) (1)

Now pick target eigenvalues, say 𝜆0, 𝜆1, 𝜆2, 𝜆3 (if complex, use complex conjugates). The
desired

𝑃 (𝜆) = (𝜆 − 𝜆0) (𝜆 − 𝜆1) (𝜆 − 𝜆2) (𝜆 − 𝜆3)
= 𝜆4 + 𝛼∗3𝜆3 + 𝛼∗2𝜆2 + 𝛼∗1𝜆 + 𝛼∗0 (2)

Equate (1) and (2)

𝜆4 + 𝛼∗3𝜆3 + 𝛼∗2𝜆2 + 𝛼∗1𝜆 + 𝛼∗0 = 𝜆4 + (𝛼3 − 𝑘3)
3 𝜆3 + (𝛼2 − 𝑘2)

2 𝜆2 + (𝛼1 − 𝑘1) 𝜆 + (𝛼0 − 𝑘0)

Equate like coe�cients, we obtain

𝑘0 = 𝛼0 − 𝛼∗0
𝑘1 = 𝛼1 − 𝛼∗1
𝑘2 = 𝛼2 − 𝛼∗2
𝑘3 = 𝛼3 − 𝛼∗3

Example: See handout. Given system 𝐴 is 3 × 3 and 𝐵 is 3 × 1 , (𝐴, 𝐵) is not in controllable
form. The open loop eigenvalues are −0.222, 1.11±𝑗1.8. Then transform to controllable form,
then design in the controllable form, then transform back to original system to set the 𝑘
in the original system. To set controllable form, det (𝜆𝐼 − 𝐴) and this gives the last row of
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𝐴𝑐𝑜𝑚𝑝𝑎𝑛𝑖𝑜𝑛. This is all what we need.

𝐴𝑐𝑜𝑚𝑝 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 0 1
−1 −4 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐵𝑐𝑜𝑚𝑝 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Assuming original 𝐴 is controllable, we find 𝑇 = ℂ𝑐𝑜𝑚𝑝ℂ−1
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

Reader: Design 𝑘 such that 3 eigenvalues are 𝜆 = −2, so 𝑝∗ = (𝜆 + 2)3. compare to
det �𝜆𝐼 − 𝐴𝑐𝑜𝑚𝑝�. This gives 𝑘𝑐𝑜𝑚𝑝, now transform back to original 𝐴.

closed loop �̃� + �̃��̃�,but �̃� = 𝑇𝐴𝑇−1, �̃� = 𝑇𝐵, �̃� = 𝑘𝑇

We will now do observer design. State estimation and observer design.

A,B,C,D
u

y

We see 𝑦, 𝑢 and need to estimate state 𝑥. i.e. supposed we are given few states and we need
from these to estimate all other states.

A,B,C,D
u

y

estimator

Use Lvenberger observer to build estimator.

A,B,C,D
u y

estimator

+

C
-

L

yx

Observer equations

�̃�′ = 𝐴�̃� + 𝐵𝑢 + 𝐿 �𝑦 − �̃��

𝐿 is called the observer gain matrix, which we design.

�̃�′ = (𝐴 − 𝐿𝐶) �̃� + 𝐵𝑢 + 𝐿𝐶𝑥

Reader: Adding 𝐷𝑢 to 𝑦 do not add a�ect design.
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How does this observer perform? The error is 𝑒 = 𝑥 − �̃�, so

𝑒′ = (𝐴𝑥 + 𝐵𝑢) − �𝐴�̃� + 𝐵𝑢 + 𝐿 �𝑦 − �̃���

= (𝐴 − 𝐿𝐶) (𝑥 − �̃�)
= (𝐴 − 𝐿𝐶) 𝑒

We want 𝑒 → 0 fast. So we need to design 𝐿 to make (𝐴 − 𝐿𝐶) do so.

If (𝐴, 𝐶) is observable pair, then eigenvalues for (𝐴 − 𝐿𝐶) can put anywhere by choice of 𝐿.
If (𝐴, 𝐶) is observable, then �𝐴𝑇, 𝐶𝑇� is controllable pair using duality.

1.11 Lecture 9. Tuesday September 30 2014

1.11.1 Handout, controllability criterion

ECE 717 – Handout Criterion

Here is a small “Reader” exercise to see if you have fully absorbed the im-
plications of the controllability rank condition: Suppose that the pair (A, B)
is given and that there exists some non-zero vector α and a complex num-
ber λ such that

αTA = λαT

and
αTB = 0.

Show that (A, B) cannot be a controllable pair.

Remark: It can also be shown that the existence of such a pair λ and α is
necessary for lack of controllability. The proof of this necessity condition
is not considered here because it requires tools which will not be covered
until much later in the course.

1.11.2 Lecture: Separation theorem, observer design

Oct. 2, no class. Things covered today not on exam. Exam covers up to HW3. Solution to
HW3 will be send oct6. Test on Thursday Oct. 7.2014. Closed books, closed notes, open
minds. Remember Mason rules and realization.

We studied controllers (state space feedback) and studied observers. What happens when
we combine them? Recall

�̃�′ = 𝐴�̃� + 𝐵𝑢 + 𝐿 (𝐶𝑥 − 𝐶�̃�)

Where �̃� is the full estimated state from the observer. The idea is to look a the error and
use 𝐿 to reduce the error.

�̃�′ = (𝐴 − 𝐿𝐶) �̃� + 𝐿𝐶𝑥 + 𝐵𝑢

How good is this observer? Study error 𝑒 = 𝑥 − �̃�. In perfect world, 𝑒 → 0 quickly with no
overshoot. Find

𝑒′ = 𝑥′ − �̃�′

Do some algebra

𝑒′ = (𝐴 − 𝐿𝐶) 𝑒

note on initial states: �̃� (0) ≠ 𝑥 (0). We want to pick 𝐿 which is 𝑛×𝑟 dimensions so that 𝐴−𝐿𝐶
has desired eigenvalues. We want 𝐿 to be stabilizing. At bare minimum we want 𝐴 − 𝐿𝐶
stable. What can we do to generate the eigenvalues of (𝐴 − 𝐿𝐶) ?. If (𝐴, 𝐶) is observable,
then we can make 𝑒𝑖𝑔 (𝐴 − 𝐿𝐶) any value we want. Consider SISO system where (𝐴, 𝐶) is
observable Then rank of the observability matrix Θ is 𝑛. Then since (𝐴, 𝐶) is observable,
by duality, �𝐴𝑇, 𝐶𝑇� is controllable. We will use now the controllability results fro pole

assignment that tells us we can select gain 𝐾 s.t. �𝐴𝑇 + 𝐶𝑇𝐾� with desired eigenvalues.

I wrote this below for a HW assignment, I copy it here. For example of pole assignment
for the observer (𝐴 − 𝐿𝐶) .
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We need to determine 𝐿 such that the eigenvalues of (𝐴 − 𝐿𝐶) are 𝜆1 = −1 and 𝜆2 = −2.
Before showing the design steps using the actual data given in the problem, the design
steps are given below for the general case.

1.11.3 Design steps for �nding 𝐿
1. Input is 𝐴,𝐶 and set of desired eigenvalues 𝜆𝑖

2. Verify that (𝐴, 𝐶) is observable. If so then let 𝐴𝑜 = 𝐴𝑇, 𝐵𝑜 = 𝐶𝑇, hence (𝐴𝑜, 𝐵𝑜) is
controllable.

3. Find controllability matrix ℂ (𝐴𝑜, 𝐵𝑜)

4. Write down the controllability companion form for 𝐴𝑜, 𝐵𝑜. Let them be called �̃�𝑜, �̃�𝑜.
To do this, we only need to find the characteristic polynomial for 𝐴𝑜 and read the
coe�cients in reverse and change the signs. �̃�𝑜 will always have zeros other than the
last row.

5. Find controllability matrix ℂ̃ ��̃�𝑜, �̃�𝑜�

6. Find 𝑇 = ℂ̃ℂ−1

7. Find the closed loop matrix ��̃�𝑜 + �̃�𝑜�̃�� where �̃� = [𝑘0, 𝑘1,⋯ , 𝑘𝑛−1] is the gain matrix
we looking to determine.

8. Find the characteristic polynomial of ��̃�𝑜 + �̃�𝑜�̃��, it will be a function of 𝑘𝑖

9. Set up the desired polynomial 𝑝 (𝜆) = (𝜆 − 𝜆𝑜) (𝜆 − 𝜆𝑜)⋯ (𝜆 − 𝜆𝑛−1) where 𝜆𝑖 are the
desired eigenvalues given.

10. Compare coe�cients of polynomial from step (9) with the polynomial of step (7)
and solve for 𝑘𝑖

11. Now we have found �̃� = [𝑘0, 𝑘1,⋯ , 𝑘𝑛−1]. Convert it to 𝐾 using 𝑇 as follows: 𝐾 = �̃�𝑇

12. Find 𝐿 = −𝐾𝑇. This completes the design.

13. The observer 𝐴 matrix now becomes [𝐴 − 𝐿𝐶]

Now we will start talking about combining controller/observer systems. The key result is
separation theorem. This system

A,B,C,D
u

y

This can have states that are 
hidden, which can blow up

can have states we want to control, that can not be observed/measured. We need an
observer

A,B,C,D
u

y

k

x

observer

+

v

u  kx  v
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We now have 2𝑛 equations, 𝑛 for the observer and 𝑛 for the original ∑ system. They are
cross coupled. Assuming (𝐴, 𝐵) and (𝐴, 𝐶) are controllable and observable, and without
loss of generality, let 𝑣 = 0 then we have

𝑥′ = 𝐴𝑥 + 𝐵
𝑢
⏞𝑘�̃�

�̃�′ = 𝐴�̃� + 𝐵𝑘�̃� + 𝐿𝐶 (𝑥 − �̃�)

So now we have

⎛
⎜⎜⎜⎜⎝
𝑥′

�̃�′

⎞
⎟⎟⎟⎟⎠ =

2𝑛×2𝑛 called Augmented 𝐴+

���������������������������⎛
⎜⎜⎜⎜⎝
𝐴 𝐵𝑘
𝐿𝐶 𝐴 + 𝐵𝑘 − 𝐿𝐶

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
�̃�

⎞
⎟⎟⎟⎟⎠

We have 𝐴+ 𝐵𝑘 stable and we know that 𝐴− 𝐿𝐶 is stable by design. But we do not know if
𝐴+ is stable. (the augmented 𝐴 above). We know eigenvalues of 𝐴+ is the eigenvalues of
�𝑇𝐴+𝑇−1� if 𝑇 is not singular. So let us make special

𝑇 =
⎛
⎜⎜⎜⎜⎝
𝐼 0
𝐼 −𝐼

⎞
⎟⎟⎟⎟⎠

Hence 𝑇−1 =
⎛
⎜⎜⎜⎜⎝
𝐼 0
−𝐼 𝐼

⎞
⎟⎟⎟⎟⎠, now calculate

�𝑇𝐴+𝑇−1� =
⎛
⎜⎜⎜⎜⎝
𝐼 0
𝐼 −𝐼

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝐴 𝐵𝑘
𝐿𝐶 𝐴 + 𝐵𝑘 − 𝐿𝐶

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝐼 0
−𝐼 𝐼

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

𝐴 𝐵𝑘
𝐴 − 𝐿𝐶 𝐿𝐶 − 𝐴

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝐼 0
−𝐼 𝐼

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
𝐴 + 𝐵𝑘 −𝐵𝑘
0 𝐴 − 𝐿𝐶

⎞
⎟⎟⎟⎟⎠

Since diagonal matrix, then the eigenvalues on the diagonal. So the eigenvalues are the
union of the eigenvalues of 𝐴+𝐵𝑘 and eigenvalues of 𝐴− 𝐿𝐶. So 𝐴+ is stable if 𝐴+𝐵𝑘 and
𝐴 − 𝐿𝐶 are stable.

HW3 assigned.

1.12 Lecture 10. Thursday October 2 2014 (no lecture)

No lecture.

1.13 Lecture 11. Tuesday October 7, 2014, 2:30 PM
(Vector spaces preliminaries, norms)

Test at 6 pm, 75 min, closed notes, closed books. no cheat sheet. Talked little about what
can be on the exam. Does there exist 𝑇 that takes∑1 →∑

2 ? depends on controllability and
observability. There are canonical forms: controllable (good for feedback) and observable
(good for state estimation). We talked about duality and observer design. State feedback
control.

Vector spaces preliminaries:

Most common vector space is ℜ𝑛. 𝑥 = {𝑥1, 𝑥2,⋯ , 𝑥𝑛}. Need vector spaces where vectors are
functions. For this, the function space must have these three operators defined on it: +,×, 0.
The first + is addition, as in �⃗� + �⃗� or 𝑓1 (𝑡) + 𝑓2 (𝑡). Second is scalar multiplication, as in
5�⃗� = 5 {𝑥1, 𝑥2,⋯ , 𝑥𝑛} = {5𝑥1, 5𝑥2,⋯ , 5𝑥𝑛} and the third is the zero vector {0, 0, 0,⋯}.

Examples: We can have spaces of vectors that are infinite dimension sequences.

Reader: Consider the continuous functions on [0, 1] as vector spaces.

Reader: Generalize to n-dimensional continuous functions on time interval [0, 𝑇]
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Now we will talk about another important function space. This is the space of bounded
functions. A function 𝑓 (𝑡) is said to be bounded on [0, 𝑇] if ∃ some 𝛽 > 0 s.t. �𝑓 (𝑡)� ≤ 𝛽 for
all 𝑡 ∈ [0, 𝑇] . Bounded functions need not be continuous.

Reader: Consider associated vector spaces 𝐵 ([0, 𝑇]) where 𝐵 means bounded (I do not
understand this)

Reader: Generalize to 𝐵 ([0, 𝑇] , ℜ𝑛)

A critical point in solving 𝑥′ = 𝐴𝑥 is to know where solution sequence converges to actual
solution. Convergence in function spaces. Need ‖‖ defined so we can say �𝑥(𝑘) − 𝑥∗� → 0 as
𝑘 → ∞. So need notion of norm. Vector spaces with norm are called normed vector spaces.
A norm is mapping from 𝑋 to the reals, where 𝑋 is the vector space. Norm must satisfy
the following

1. �0⃗� = 0

2. For any �⃗� ∈ 𝑋 and 𝜆 real, then �𝜆�⃗�� = 𝜆 ��⃗��

3. Triangle inequality: for any 𝑥, 𝑦 ∈ 𝑋, �𝑥 + 𝑦� ≤ ‖𝑥‖ + �𝑦�

On ℜ𝑛 we typically use the Euclidean norm defined as ��⃗�� = �𝑥
2
1 + 𝑥22 +⋯+ 𝑥2𝑛. We should

write this as ‖𝑥‖2. Other norms are possible, such as ‖𝑥‖∞ = max {|𝑥1| , |𝑥2| ,⋯ , |𝑥𝑛|} and also

‖𝑥‖1 =
𝑛
�
𝑖=1
|𝑥𝑖| which is used in control theory. Reader: Verify these are norms. Need to

check the triangle inequality.

Reader: Verify that max is norm. i.e given two vectors, say 𝑎 = {3, 6, 8} ,𝑏 = {4, 8, 18} then
show that max {𝑎 + 𝑏} ≤ max {𝑎} +max {𝑏}

Now consider vector spaces of 𝑚 × 𝑛 matrices. A norm ‖𝑀‖ = �𝜆max �𝑀𝑇𝑀�. Reader:
Verify for 𝑛 = 1 this reduces to 𝐿2 norm above. i.e. this become normal vector ‖‖2 norm.

Proof: For example, let 𝑀 =
⎛
⎜⎜⎜⎜⎝
1
2

⎞
⎟⎟⎟⎟⎠, then ‖𝑀‖ =

�
⃓
⃓
⎷
𝜆max

⎛
⎜⎜⎜⎜⎝
1 2
2 4

⎞
⎟⎟⎟⎟⎠, but 𝜆max

⎛
⎜⎜⎜⎜⎝
1 2
2 4

⎞
⎟⎟⎟⎟⎠ = 5, hence

‖𝑀‖ = √5. Now ‖𝑀‖2 = √12 + 22 = √5. The same.

1.14 Lecture 12. Tuesday October 7 2014, 6:00 PM.
First exam

First exam.

1.15 Lecture 13. Thursday October 9 2014. Default
norms, convergence, Picard

Will finish material on vector spaces today. Next we will solve state space equation.

Default norms:

There are many norms in ℜ𝑛, we will use ‖‖ to indicate default Euclidean norm vs. ‖‖∞
for maximum norm (the norm of the vector is its maximum component) Same idea will
be used for other vector spaces. For matrix norm, we will talk about induced norm. Say
𝑀 ∈ ℜ𝑚×𝑛 is a matrix. (i.e. matrix of dimensions 𝑚, 𝑛 with elements in the real. Then define

‖𝑀‖ = max ‖𝑀𝑥‖ for all ��⃗�� = 1 (1)

What this means, is that we apply 𝑀𝑥 to all vectors �⃗� which has norm ��⃗��
2
= 1, and look

at the generated vector 𝑣 = 𝑀𝑥, then apply standard vector norm to 𝑣 (Euclidean) as in
‖𝑣‖2. We pick the largest norm ‖𝑣‖2 that results. We call this norm as the norm of 𝑀. This
value is the induced norm of ‖𝑀‖.
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Reader: Does the above definition define a norm? Recall a norm ‖‖ must satisfy three
properties from last lecture. For the zero matrix, easy to show. Scaling is also easy. Now
for the triangle inequality, which says ‖𝑀1 +𝑀2‖ ≤ ‖𝑀1‖ + ‖𝑀2‖. Show this.

Reader: Show that (1) is equivalent to ‖𝑀‖ = max ‖𝑀𝑥‖
‖𝑥‖ for all ��⃗�� ≠ 0

Reader: Show that (1) is equivalent to ‖𝑀‖ = �𝜆max �𝑀𝑇𝑀� where 𝜆max �𝑀𝑇𝑀� means

the the largest eigenvalue of 𝑀𝑇𝑀. Sketch of proof was given, but needs more time to
understand it.

Reader: Find the matrix norm induced by ‖𝑥‖∞
We will use the space of bounded functions and the subset of this space we will use most
are the bounded continuous functions over some interval. note: Any continuous function
is bounded function. We will call it 𝐵 ([𝑡0, 𝑡1] , ℜ𝑛).

A function 𝑓 (𝑡) is bounded if �𝑓 (𝑡)� ≤ 𝛽 for some 𝛽 < ∞. The continuous functions
𝐶 ([𝑡0, 𝑡] , ℜ𝑛) ∈ �̸�, We need a norm for 𝐶 ([𝑡0, 𝑡] , ℜ𝑛). We will use �𝑓� as the norm, which is
the largest value of the function over [𝑡0, 𝑡1]. Make sure not to confuse �𝑓� and �𝑓 (𝑡)�. The
first one is called the induced norm. i.e.

�𝑓� = max
𝑡0≤𝑡≤𝑡1

�𝑓 (𝑡)� (2)

While �𝑓 (𝑡)� is just normal Euclidean norm, and is defined only for specific 𝑡. i.e. we fix
𝑡 = 𝑡0 then calculate �𝑓 (𝑡0)�, but �𝑓� has no 𝑡 in it. So this is the norm over the whole range
and defined as in (2) above.

Reader: Show that (2) defines a norm. (I have a side note here about for non-negative
functions, check what this is for??)

Now we will talk about norms on 𝐵 where 𝑓 (𝑡) is not necessarily continuous function.

t

f(t)

When 𝑓 (𝑡) is not continuous, we will use sup instead of max in the definition, i.e. we write
(2) as

�𝑓� = sup
𝑡0≤𝑡≤𝑡1

�𝑓 (𝑡)� (2A)

We need one more thing before going to solve the state equation, which is

Reader: Show that
�
�

𝑡

�
0

𝑓 (𝑡) 𝑑𝑡
�
�
≤

𝑡

�
0

�𝑓 (𝑡)� 𝑑𝑡 question: ask about what norm this is ‖‖ here.

Use Riemann sum to proof this?

Reader: Similarly, using matrix norms, show that
�
�

𝑡

�
0

𝐴 (𝑡) 𝑑𝑡
�
�
≤

𝑡

�
0

‖𝐴 (𝑡)‖ 𝑑𝑡 where 𝐴 is now

matrix in ℜ𝑚×𝑛

Convergence:

A sequence {𝑥𝑘}
𝜃
𝑘=1 in a normal vector space 𝑋 is said to converge to 𝑥∗ ∈ 𝑋 if

lim
𝑘→∞

�𝑥∗ − 𝑥𝑘� → 0

Example: lim𝑘→∞

⎛
⎜⎜⎜⎜⎝
1 + 1

𝑘
−1𝑘𝑒−𝑘

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1
0

⎞
⎟⎟⎟⎟⎠ or we can just write

⎛
⎜⎜⎜⎜⎝
1 + 1

𝑘
−1𝑘𝑒−𝑘

⎞
⎟⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎜⎝
1
0

⎞
⎟⎟⎟⎟⎠
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But vector

⎛
⎜⎜⎜⎜⎝
−1𝑘
1
𝑘

⎞
⎟⎟⎟⎟⎠ does not converge.

Reader:what about convergence of this function, defined over 0 ≤ 𝑡 ≤ 𝑇

t

f(t)

1

k

1

T

For pointwise convergence, at 𝑡 = 0, 𝑓 (0) = 1, and for 0 < 𝑡 ≤ 1
𝑘 < 𝑇, 𝑓 (𝑡) = 1 − 𝑘𝑡 hence

the limit goes to 1 also. So this converges pointwise. Since �𝑓𝑘 − 𝑓� = max0≤𝑡≤𝑇 �𝑓 (𝑡)� = 1,
it does not converge uniformly. For uniform convergence, we need to have �𝑓𝑘 − 𝑓� → 0 as
𝑘 → ∞. In space of bounded functions, we always mean uniform convergence.

Summary: 𝑓𝑘 → 𝑓 in 𝐵 mean uniform convergence. But 𝑓𝑘 (𝑡) → 𝑓∗ (𝑡) mean pointwise.

Reader: Show that uniform convergence implies pointwise convergence. Proof:

�𝑓𝑘 − 𝑓�𝐼 = max
𝑡∈𝐼

�𝑓𝑘 (𝑡) − 𝑓 (𝑡)�

≤ �𝑓𝑘 (𝑡) − 𝑓 (𝑡)�

But if 𝑓𝑘 converges uniformly to 𝑓 then �𝑓𝑘 − 𝑓�𝐼 → 0 as 𝑘 → ∞, hence

lim
𝑘→∞

�𝑓𝑘 (𝑡) − 𝑓 (𝑡)� = 0

lim
𝑘→∞

𝑓𝑘 (𝑡) = 𝑓 (𝑡)

Therefore, 𝑓𝑘 (𝑡) converges to 𝑓 (𝑡) pointwise. QED.

HW4 assigned.

1.16 Lecture 14. Tuesday October 14 2014 (More on
convergence, the 4 lemmas)

Notes on first exam:

If one can put state space in controllable canonical form, then this implies it is controllable.

Lack of cancellation of poles/zero in a transfer function implies minimal system. Hence it
is observable and controllable.

If 𝐻(𝑠) is proper, then it is realizable (can obtain 𝐴,𝐵, 𝐶,𝐷). However, if it is not proper 𝐻(𝑠)
then we can’t decide. It might still be possible to obtain 𝐴,𝐵, 𝐶,𝐷. Think of an example.

But if we are given (𝐴, 𝐵, 𝐶,𝐷) then 𝐻(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 +𝐷 must come out to be proper by
construction.

Next goal is to solve the state space equation. All our solutions live in the space of bounded
functions 𝐵 ([𝑡0, 𝑡1] , ℜ𝑛)

In these notes, I will use 𝑓∗ for the uniform convergence limit and use 𝑓∗(𝑡) for pointwise
limit.

Uniform convergence: Lemma 1
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Suppose 𝑓𝑘 → 𝑓∗ convergence uniformly in 𝐵, i.e. �𝑓𝑘 − 𝑓∗� → 0 (notice, when we write 𝑓∗
and not 𝑓∗ (𝑡), then this means uniform convergence, then

lim
𝑘→∞

𝑡

�
𝑡0

𝑓𝑘 (𝜏) 𝑑𝜏 =
𝑡

�
𝑡0

𝑓∗ (𝜏) 𝑑𝜏

In words, if a sequence of functions converges to some limit, then the limit of the integral
is the integral of the limit. This only applies for uniform converges. This does not hold
(most of the time) for pointwise convergence.

Reader: proof this. Here is a case where the above fails for pointwise convergence. Note:
A sequence of functions 𝑓𝑘 (𝑡), converges pointwise, if when we fix 𝑡 to some specific 𝑡0,
then the sequence 𝑓𝑘 (𝑡0) converges to some limit. I.e. we have to fix 𝑡 and only after that,
generate the sequence and see if �𝑓𝑘 (𝑡0)� converges to some 𝑓∗ (𝑡0) as 𝑘 → ∞. This can be
written as �𝑓𝑘 (𝑡0) − 𝑓∗ (𝑡0)� < 𝜖 wherever 𝑛 > 𝑁 where 𝑁 is some integer. Given the function
shown below

1

k

1

f kt
k

where in the above, 𝑓 (0) = 0 and 𝑓 (𝑡) = 𝑘 for 0 < 𝑡 ≤ 1
𝑘 . To find pointwise limit 𝑓∗ (𝑡): At

𝑡 = 0, 𝑓𝑘 (0) = 0, and at 0 < 𝑡 ≤ 1
𝑘 , 𝑓𝑘 (𝑡) = 𝑘 and for 𝑡 > 1

𝑘 it is already zero. Hence as 𝑘 → ∞
we see that 𝑓 (𝑡) → 0 everywhere. So 𝑓∗ = 0 is the pointwise limit.

Back to the proof of the lemma above for uniform convergence.

proof of lemma:

𝑒𝑟𝑟𝑜𝑟 (𝑘) =
�
�

𝑡

�
𝑡0

𝑓𝑘 (𝜏) 𝑑𝜏 −
𝑡

�
𝑡0

𝑓∗ (𝜏) 𝑑𝜏
�
�

=
�
�

𝑡

�
𝑡0

𝑓𝑘 (𝜏) − 𝑓∗ (𝜏) 𝑑𝜏
�
�

≤
𝑡

�
𝑡0

�𝑓𝑘 (𝜏) − 𝑓∗ (𝜏)� 𝑑𝜏

Since uniform convergence. But the above is
𝑡

�
𝑡0

�𝑓𝑘 (𝜏) − 𝑓∗ (𝜏)� 𝑑𝜏 ≤
𝑡

�
𝑡0

max �𝑓𝑘 (𝑡) − 𝑓∗ (𝑡)� 𝑑𝜏

But now max �𝑓𝑘 (𝑡) − 𝑓∗ (𝑡)� is fixed, so we can take it out of the integral
𝑡

�
𝑡0

�𝑓𝑘 (𝜏) − 𝑓∗ (𝜏)� 𝑑𝜏 ≤ max �𝑓𝑘 − 𝑓∗�
𝑡

�
𝑡0

𝑑𝜏

𝑡

�
𝑡0

�𝑓𝑘 (𝜏) − 𝑓∗ (𝜏)� 𝑑𝜏 ≤ max �𝑓𝑘 − 𝑓∗� (𝑡 − 𝑡0)

But since we assumed 𝑓𝑘 (𝑡) convergence uniformly then lim𝑘→∞ �𝑓𝑘 − 𝑓∗� = max �𝑓𝑘 − 𝑓∗� =

0, therefore RHS above is zero. Hence
𝑡

�
𝑡0

�𝑓𝑘 (𝜏) − 𝑓∗ (𝜏)� 𝑑𝜏 = 0 or
�
�

𝑡

�
𝑡0

𝑓𝑘 (𝜏) − 𝑓∗ (𝜏) 𝑑𝜏
�
�
= 0
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or
𝑡

�
𝑡0

𝑓𝑘 (𝜏) − 𝑓∗ (𝜏) 𝑑𝜏 = 0 or lim𝑘→∞

𝑡

�
𝑡0

𝑓𝑘 (𝜏) 𝑑𝜏 −
𝑡

�
𝑡0

𝑓∗ (𝜏) 𝑑𝜏 = 0 or

lim
𝑘→∞

𝑡

�
𝑡0

𝑓𝑘 (𝜏) 𝑑𝜏 =
𝑡

�
𝑡0

𝑓∗ (𝜏) 𝑑𝜏

Which is the lemma we wanted to proof.

Series in bounded spaces:

We will look at Series in 𝐵 ([𝑡0, 𝑡1] , ℜ𝑛)

We now look at series of functions 𝑓𝑘 (𝑡) in 𝐵. And use Weierstrass M-test to see if the series
converges or not. Looking at partial sum

𝑆 (𝑘) =
𝑘
�
𝑖=1
𝑓𝑖 (𝑡)

where 𝑓𝑖 (𝑡) ∈ 𝐵. Does this converge? If we can find constants 𝑀𝑖 s.t. �𝑓𝑖� ≤ 𝑀𝑖, (𝑀𝑖 can for

example be the sup norm of 𝑓𝑖 (𝑡)), and if then we can determine that
∞
�
𝑖=1
𝑀𝑖 < ∞ then we

say that 𝑆 (𝑘) ⟶
uniform

𝑆∗ ∈ 𝐵

(need an example, see references)

Solving state space:

Now we start talking about solving the state space equation 𝑥′ = 𝐴 (𝑡) 𝑥 (𝑡). We start with
the zero input case. Only initial conditions will drive this system. We look at using Picard
iterations to solve it. By integration both sides of the above, we obtain

𝑥 (𝑡) − 𝑥 (0) =
𝑡

�
0

𝐴 (𝜏) 𝑥 (𝜏) 𝑑𝜏

Define 𝑥0 = 𝑥 (0) and define this iteration scheme for 𝑘 = 0, 1, 2,⋯

𝑥𝑘+1 = 𝑥0 +
𝑡

�
0

𝐴 (𝜏) 𝑥𝑘 (𝜏) 𝑑𝜏

Reader:

For 𝐴 (𝑡) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 𝑡 −𝑡2

0 𝑡 + 1 𝑡3

0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
and 𝑥0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
find 𝑥3 (𝑡)

Done in class. Direct integration.

Reader:

For scalar 𝑥′ = 𝑎𝑥 show that Picard iteration gives 𝑥 = 𝑒𝑎𝑡𝑥 (0).
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Proof:

𝑥1 = 𝑥0 +
𝑡

�
0

𝑎𝑥0𝑑𝜏 = 𝑥0 + 𝑎𝑥0𝑡

𝑥2 = 𝑥0 +
𝑡

�
0

𝑎𝑥1𝑑𝜏

= 𝑥0 +
𝑡

�
0

𝑎 �𝑥0 + 𝑎𝑥0𝑡� 𝑑𝜏

= 𝑥0 + 𝑎𝑥0𝑡 + 𝑎2𝑥0
𝑡2

2

𝑥3 = 𝑥0 +
𝑡

�
0

𝑎𝑥2𝑑𝜏

= 𝑥0 +
𝑡

�
0

𝑎 �𝑥0 + 𝑎𝑥0𝑡 + 𝑎2𝑥0
𝑡2

2 �
𝑑𝜏

= 𝑥0 + 𝑎𝑥0𝑡 + 𝑎2𝑥0
𝑡2

2
+ 𝑎3𝑥0

𝑡3

2 × 3
and so on. Hence the result is

𝑥∞ = 𝑥 (𝑡) = 𝑥0 �1 + 𝑎𝑡 + 𝑎2
𝑡2

2
+ 𝑎3

𝑡3

3!
+⋯�

= 𝑥 (0)
∞
�
𝑘=0

(𝑎𝑡)𝑘

𝑘!
= 𝑥 (0) 𝑒𝑎𝑡

Reader

Show the solution for scalar time varying 𝑥′ = 𝑎 (𝑡) 𝑥 using Picard. This should become

𝑥 (𝑡) = 𝑥 (0)
∞
�
𝑘=0

1
𝑘!

⎛
⎜⎜⎜⎜⎜⎝

𝑡

�
0

𝑎 (𝑡𝑑𝜏)

⎞
⎟⎟⎟⎟⎟⎠

𝑘

(need to work it out).

Convergence of Picard iterate 𝑥𝑘(𝑡):

Helpful function is Π(𝑡) =
𝑡

�
0

‖𝐴 (𝜏)‖ 𝑑𝜏. It has the following properties

1. Π(0) = 0

2. Π(𝑡) is not decreasing

3. 𝑑
𝑑𝑡Π(𝑡) = ‖𝐴 (𝑡)‖

The above is reader, need to show.

Lemma 1:

The Picard iterate 𝑥𝑘 (𝑡) ∈ 𝐵 ([𝑡0, 𝑡1] , ℝ𝑛) for all 𝑘. We want to show that for each 𝑘, 𝑥(𝑘) (𝑡) is
bounded. This is done using induction.

proof:

For 𝑘 = 0, it is clear that 𝑥0 = 𝑥 (0) is bounded, since initial conditions. Now assume that
for some 𝑘 it is true that 𝑥𝑘 (𝑡) is bounded, then we need to show that for 𝑘 + 1 it is also
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bounded. Form

𝑥𝑘+1 (𝑡) = 𝑥0 +
𝑡

�
0

𝐴 (𝜏) 𝑥𝑘 (𝜏) 𝑑𝜏

�𝑥𝑘+1 (𝑡)� =
�
�
𝑥0 +

𝑡

�
0

𝐴 (𝜏) 𝑥𝑘 (𝜏) 𝑑𝜏
�
�

≤ �𝑥0� +
�
�

𝑡

�
0

𝐴 (𝜏) 𝑥𝑘 (𝜏) 𝑑𝜏
�
�

≤ �𝑥0� +
𝑡

�
0

�𝐴 (𝜏) 𝑥𝑘 (𝜏)� 𝑑𝜏

≤ �𝑥0� +
𝑡

�
0

‖𝐴 (𝜏)‖ �𝑥𝑘 (𝜏)� 𝑑𝜏

≤ �𝑥0� +
𝑡

�
0

‖𝐴 (𝜏)‖ �sup �𝑥𝑘 (𝜏)�� 𝑑𝜏

Since sup �𝑥𝑘 (𝑡)� is fixed, then we can remove it out of the integral

�𝑥𝑘+1 (𝑡)� ≤ �𝑥0� + sup �𝑥𝑘 (𝑡)�
𝑡

�
0

‖𝐴 (𝜏)‖ 𝑑𝜏

But
𝑡

�
0

‖𝐴 (𝜏)‖ 𝑑𝜏 = 𝜋 (𝑡) which is non-decreasing. So it was take its maximum value 𝜋 (𝑡1)

we can limit the above from below and write

�𝑥𝑘+1 (𝑡)� ≤ �𝑥0� + sup �𝑥𝑘 (𝑡)�Π (𝑡1)
Therefore we just showed that 𝑥𝑘+1 (𝑡) is bounded. Since sup �𝑥𝑘 (𝑡)� is bounded by assump-
tion.

1.17 Lecture 15. Thursday October 16 2014 (More on
converges, Lemmas)

We have 𝑥′ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) , 𝑥 (0) = 𝑥0 with Picard iterate 𝑥 (0) ≡ 𝑥0 (𝑡). Define 𝑥𝑘+1 (𝑡) =

𝑥0 +
𝑡

�
0

𝐴 (𝜏) 𝑥𝑘 (𝜏) 𝑑𝜏 for 𝑘 = 0, 1, 2,⋯

This sequence lives in the bounded space 𝐵 ([𝑡0, 𝑡1]ℝ𝑛). Lemma 1 from last lecture shows
that 𝑥𝑘 (𝑡) is bounded. i.e. 𝑥𝑘 (𝑡) ∈ 𝐵. Now we go to lemma 2

lemma 2:

Convergence: The Picard iteration satisfy

����������������������𝑥𝑘+1(𝑡) − 𝑥𝑘(𝑡)� ≤
�𝑥0�Π𝑘+1 (𝑡)
(𝑘 + 1)!

for 𝑘 = 0, 1, 2,⋯. Notice the LHS is norm in ℝ𝑛 (pointwise convergence) since we used 𝑥 (𝑡)
inside.
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proof: By induction. For 𝑘 = 0,

�𝑥1 (𝑡) − 𝑥0 (𝑡)� =
�
�
𝑥0 +

𝑡

�
0

𝐴 (𝜏) 𝑥0 (𝜏) 𝑑𝜏 − 𝑥0
�
�

=
�
�

𝑡

�
0

𝐴 (𝜏) 𝑥0 (𝜏) 𝑑𝜏
�
�

≤
𝑡

�
0

�𝐴 (𝜏) 𝑥0 (𝜏)� 𝑑𝜏

≤
𝑡

�
0

‖𝐴 (𝜏)‖ �𝑥0 (𝜏)� 𝑑𝜏

= �𝑥0 (𝜏)�
𝑡

�
0

‖𝐴 (𝜏)‖ 𝑑𝜏

But Π(𝑡) =
𝑡

�
0

‖𝐴 (𝜏)‖ 𝑑𝜏 and Π(𝑡) is non decreasing. It maximum is Π(𝑡1) Hence

�𝑥1 (𝑡) − 𝑥0 (𝑡)� ≤ �𝑥0 (𝜏)�Π (𝑡1)

So true for 𝑘 = 0. Now assume lemma is true for 𝑘 and we need to show it is true for 𝑘 + 1.
We form

�𝑥𝑘+1 (𝑡) − 𝑥𝑘 (𝑡)� =
�
�

⎛
⎜⎜⎜⎜⎜⎝𝑥

0 +
𝑡

�
0

𝐴 (𝜏) 𝑥𝑘 (𝜏) 𝑑𝜏

⎞
⎟⎟⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎜⎜⎝𝑥

0 +
𝑡

�
0

𝐴 (𝜏) 𝑥𝑘−1 (𝜏) 𝑑𝜏

⎞
⎟⎟⎟⎟⎟⎠
�
�

=
�
�

𝑡

�
0

𝐴 (𝜏) 𝑥𝑘 (𝜏) 𝑑𝜏 −
𝑡

�
0

𝐴 (𝜏) 𝑥𝑘−1 (𝜏) 𝑑𝜏
�
�

=
�
�

𝑡

�
0

𝐴 (𝜏) �𝑥𝑘 (𝜏) − 𝑥𝑘−1 (𝜏)� 𝑑𝜏
�
�

≤
𝑡

�
0

�𝐴 (𝜏) �𝑥𝑘 (𝜏) − 𝑥𝑘−1 (𝜏)�� 𝑑𝜏

≤
𝑡

�
0

‖𝐴 (𝜏)‖ ��𝑥𝑘 (𝜏) − 𝑥𝑘−1 (𝜏)�� 𝑑𝜏

Since we assumed it is true for 𝑘, i.e. ��𝑥𝑘 (𝜏) − 𝑥𝑘−1 (𝜏)�� ≤ �𝑥0�Π𝑘(𝑡)
𝑘! is true by assumption.

Then the above becomes

�𝑥𝑘+1 (𝑡) − 𝑥𝑘 (𝑡)� ≤
𝑡

�
0

‖𝐴 (𝜏)‖
�𝑥0�Π𝑘 (𝜏)

𝑘!
𝑑𝜏

=
�𝑥0�
𝑘!

𝑡

�
0

‖𝐴 (𝜏)‖Π𝑘 (𝜏) 𝑑𝜏

But 𝑑
𝑑𝜏Π(𝜏) = ‖𝐴 (𝜏)‖ then 𝑑Π = ‖𝐴 (𝜏)‖ 𝑑𝜏 and the above can be written as

�𝑥𝑘+1 (𝑡) − 𝑥𝑘 (𝑡)� ≤
�𝑥0�
𝑘!

𝑡

�
0

Π𝑘 (𝜏) 𝑑Π

=
�𝑥0�
𝑘! �

Π𝑘+1 (𝜏)
𝑘 + 1 �

𝑡

0

=
�𝑥0�
𝑘! �

Π𝑘+1 (𝑡)
𝑘 + 1

−
Π𝑘+1 (0)
𝑘 + 1 �

But Π(0) = 0 from properties of Π, then the above reduces to

�𝑥𝑘+1 (𝑡) − 𝑥𝑘 (𝑡)� ≤ �𝑥0�
Π𝑘+1 (𝑡)
(𝑘 + 1)!
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and this proofs the lemma.

Lemma 3:

𝑥𝑘 (𝑡) converges to the some limit. We need to show that 𝑥𝑘 (𝑡) converges uniformly to some
𝑥∗ (𝑡) ∈ 𝐵 ([𝑡0, 𝑡1] , ℝ𝑛). When we say a function converges in bounded space 𝐵, we always
mean uniform convergence.

proof:

We need to generate a telescoping sequence, as in 𝑥(4) = �𝑥(4) − 𝑥(3)�+�𝑥(3) − 𝑥(2)�+�𝑥(2) − 𝑥(1)�+
�𝑥(1) − 𝑥(0)� + 𝑥(0), which mean

𝑥𝑛 (𝑡) = 𝑥0 (𝑡) +
𝑛−1
�
𝑘=0

�𝑥𝑘+1 (𝑡) − 𝑥𝑘 (𝑡)�

We now need to use the M-test to bound �𝑥𝑘+1 (𝑡) − 𝑥𝑘 (𝑡)�. From lemma 2

�𝑥𝑘+1 − 𝑥𝑘�
𝐼
≤ sup

0≤𝑡≤𝑡1
�𝑥0�

Π𝑘+1 (𝑡)
(𝑘 + 1)!

= �𝑥0�
Π𝑘+1 (𝑡1)
(𝑘 + 1)!

Since Π is non-decreasing, then we can bound the above from below by some 𝑀𝑘 =
�𝑥0� Π𝑘+1(𝑡1)

(𝑘+1)! , so now can use M-test

∞
�
𝑘=0

𝑀𝑘 = �𝑥0�
∞
�
𝑘=0

Π𝑘+1 (𝑡1)
(𝑘 + 1)!

= �𝑥0� �𝑒Π(𝑡1) − 1�

Since ∑∞
𝑘=0𝑀𝑘 is finite, then by the M-test we conclude that ∑𝑛−1

𝑘=0 �𝑥
𝑘+1 − 𝑥𝑘� will converge to

some limiting value, which implies 𝑥(𝑛) in the limit will also converge (uniformly) to some
limit 𝑥∗

Lemma 4:

The 𝑥∗ obtained from lemma 3 solves the state equation 𝑥′ = 𝐴 (𝑡) 𝑥 (𝑡)

proof: We know that 𝑥𝑘+1 = 𝑥0+∫
𝑡

0
𝐴 (𝜏) 𝑥𝑘 (𝜏) 𝑑𝜏 and we also know that 𝑥𝑘+1 (𝑡) will converge

uniformly to some limit 𝑥∗ (𝑡) by lemma 3. Taking the limit of both sides of the Picard
iteration formula above gives

lim
𝑘→∞

𝑥𝑘+1 (𝑡) = lim
𝑘→∞

�𝑥0 (𝑡) +�
𝑡

0
𝐴 (𝜏) 𝑥𝑘 (𝜏) 𝑑𝜏�

𝑥∗ (𝑡) = 𝑥0 (𝑡) + lim
𝑘→∞

�
𝑡

0
𝐴 (𝜏) 𝑥𝑘 (𝜏) 𝑑𝜏

To take the limit inside the integral, we need to first show that 𝐴 (𝜏) 𝑥𝑘 (𝜏) converges uni-
formly to 𝐴 (𝜏) 𝑥∗ (𝜏)

�𝐴𝑥𝑘 − 𝐴𝑥∗�
𝐼
≤ sup ‖𝐴 (𝑡)‖

converges uniformly to say z

������������������𝑥𝑘(𝑡) − 𝑥∗(𝑡)�

≤ ‖𝐴(𝑡)‖ 𝑧

But ‖𝐴 (𝑡)‖ is bounded, hence 𝐴 (𝜏) 𝑥𝑘 (𝜏) converges uniformly and now we can take the limit
inside the integral.

𝑥∗ (𝑡) = 𝑥0 +�
𝑡

0
lim
𝑘→∞

𝐴 (𝜏) 𝑥𝑘 (𝜏) 𝑑𝜏

But lim𝑘→∞ 𝑥𝑘 (𝑡) = 𝑥∗ (𝑡) by lemma 3, hence the above becomes

𝑥∗ (𝑡) = 𝑥0 +�
𝑡

0
𝐴 (𝜏) 𝑥∗ (𝜏) 𝑑𝜏

This proofs the lemma.

We now need to establish uniqueness. Which means we need to show that 𝑥∗ is the only
solution to 𝑥′ = 𝐴 (𝑡) 𝑥 (𝑡)

We will use what is called Granwall’s inequality.
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If 𝑢 (𝑡) and 𝜃 (𝑡) are non-negative continuous functions on [0, 𝑡] satisfying 𝜃 (𝑡) ≤
𝑡

�
0

𝑢 (𝜏) 𝜃 (𝜏) 𝑑𝜏

then 𝜃 (𝑡) = 0 everywhere. Now we assume there are two solutions to state equation. 𝑥′1 = 𝐴𝑥1
and 𝑥′2 = 𝐴𝑥2. Therefore

𝑥1 (𝑡) − 𝑥1 (0) =
𝑡

�
0

𝐴 (𝜏) 𝑥1 (𝜏) 𝑑𝜏

𝑥2 (𝑡) − 𝑥2 (0) =
𝑡

�
0

𝐴 (𝜏) 𝑥2 (𝜏) 𝑑𝜏

Hence

‖𝑥1 (𝑡) − 𝑥2 (𝑡)‖ =
�
�

𝑡

�
0

𝐴 (𝜏) (𝑥1 (𝜏) − 𝑥2 (𝜏)) 𝑑𝜏
�
�

≤
𝑡

�
0

‖𝐴 (𝜏) (𝑥1 (𝜏) − 𝑥2 (𝜏))‖ 𝑑𝜏

≤
𝑡

�
0

‖𝐴 (𝜏)‖ ‖(𝑥1 (𝜏) − 𝑥2 (𝜏))‖ 𝑑𝜏

Let 𝑥1 (𝑡) − 𝑥2 (𝑡) ≡ 𝜃 (𝑡) and 𝐴 (𝑡) ≡ 𝑢 (𝑡) then by Granwall inequality 𝑥1 (𝑡) − 𝑥2 (𝑡) = 0 or
𝑥1 = 𝑥2. Therefore the solution to state space is unique.

Can we get unique solution to the state space problem? For large family of 𝐴 (𝑡) we can.
We need to formulate the fundamental matrix.

1.18 Lecture 16. Tuesday October 21 2014

Properties of Φ (𝑡, 𝜏).

We developed Picard for solution of linear time varying 𝑥′ = 𝐴 (𝑡) 𝑥 in the last two lectures.
Established: That solution exist and the solution is unique. Some disadvantages of Picard
method are

1. Each time the initial conditions 𝑥0 changes, we have to run the method again to find
the solution.

2. No closed form solution, so we lose insight by not being able to do some qualitative
analysis on the solution if it were analytical solution.

3. LTI system always have closed for solution, and for many LTV, there is also closed
form solution, so we should try to find closed form solution.

4. If input 𝑢 (𝑡) changes, we have to run Picard method again

To find closed form solution, we need to obtain what is called the fundamental matrix.
Let 𝑋01, 𝑋02,⋯ ,𝑋0𝑛 be 𝑛 linearly independent initial conditions for a system with 𝑛 states.

For example, for 𝑛 = 3, always take these as 𝑋01 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑋02 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑋03 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
and so on for

more states. For each one of these 𝑋0𝑖, let Ψ 𝑖 be the corresponding solution of 𝑥′ = 𝐴 (𝑡) 𝑥.
i.e. Ψ1 (0) = 𝑋01,Ψ2 (0) = 𝑋02,Ψ3 (0) = 𝑋03. i.e.

Ψ̇ 𝑖 (𝑡) = 𝐴 (𝑡)Ψ 𝑖 (𝑡)

Now form the fundamental matrix solution

Ψ(𝑡) = �Ψ1 (𝑡) Ψ2 (𝑡) ⋯ Ψ𝑛 (𝑡)�

Each Ψ 𝑖 is 𝑛 × 1, and there are 𝑛 such columns, hence Ψ(𝑡) is 𝑛 × 𝑛 matrix. Any solution
can now be found with the help of this Ψ(𝑡), for any initial conditions. Remark: Matrix
Ψ(𝑡) satisfies the state equation.

Ψ ′ (𝑡) = 𝐴 (𝑡)Ψ (𝑡)
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At 𝑡 = 0,Ψ(0) has 𝑛 linearly independent columns by construction. What about for 𝑡 > 0?

Reader: Show that Ψ(𝑡) has 𝑛 linearly independent columns for 𝑡 > 0. Proof: By contradic-
tion. Assume at 𝑡∗ , Ψ(𝑡∗) no longer has linearly independent columns. Then there exist
vector �⃗� (𝑡∗) not zero s.t. Ψ(𝑡∗) �⃗� (𝑡∗) = 0⃗. This implies that 𝑥′ (𝑡∗) = 0, which means that
𝑥 (𝑡) = 0, hence contradiction.

Example: Let 𝑥′1 = 𝑥1 + 𝑡𝑥2, 𝑥′2 = 𝑥2. Hence 𝑥′ =
⎛
⎜⎜⎜⎜⎝
1 𝑡
0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠. Now let 𝑋01 =

⎛
⎜⎜⎜⎜⎝
1
0

⎞
⎟⎟⎟⎟⎠ to be one

linearly independent initial conditions. We use this to solve the state equation. Next to

use the second 𝑋02 =
⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ and repeat the process. So we end up with two solutions. These

make up Ψ matrix. Using 𝑋01, we see that 𝑥1 (0) = 1, 𝑥2 (0) = 0. Now we solve the state

equation. 𝑥′1 = 𝑥1 + 𝑡𝑥2, 𝑥′2 = 𝑥2 (𝑡). This results in Ψ1 (𝑡) =
⎛
⎜⎜⎜⎜⎝
𝑒𝑡

0

⎞
⎟⎟⎟⎟⎠. Now using initial conditions

𝑥1 (0) = 0, 𝑥2 (0) = 1 we solve the same state equation again, this results in Ψ2 (𝑡) =
⎛
⎜⎜⎜⎜⎝
1
2 𝑡

2𝑒𝑡

𝑒𝑡

⎞
⎟⎟⎟⎟⎠,

hence

Ψ(𝑡) =
⎛
⎜⎜⎜⎜⎝
𝑒𝑡 1

2 𝑡
2𝑒𝑡

0 𝑒𝑡

⎞
⎟⎟⎟⎟⎠

DSolve[{x1'[t] == x1[t] + t x2[t], x2'[t] == x2[t], x1[0] == 1, x2[0] == 0},
{x1[t], x2[t]}, t]
{{x1[t] -> E^t, x2[t] -> 0}}
DSolve[{x1'[t] == x1[t] + t x2[t], x2'[t] == x2[t], x1[0] == 0, x2[0] == 1},
{x1[t], x2[t]}, t]
{{x1[t] -> (E^t t^2)/2, x2[t] -> E^t}}

Now that we have found Ψ(𝑡) we need to find the general solution to 𝑥′ = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢
with given any 𝑥 (0) (this initial condition has nothing to do with 𝑋0𝑖 used to find Ψ(𝑡), this
is the actual initial condition for the problem itself.

Assume the general solution is

𝑥 (𝑡) = Ψ (𝑡) 𝜃 (𝑡)

where 𝜃 (𝑡) is some function to be found. Plugging this solution into the state space equation,
we obtain

Ψ ′ (𝑡) 𝜃 (𝑡) + Ψ (𝑡) 𝜃′ (𝑡) = 𝐴 (𝑡)Ψ (𝑡) 𝜃 (𝑡) + 𝐵 (𝑡) 𝑢

But Ψ ′ (𝑡) = 𝐴 (𝑡)Ψ (𝑡), so the above simplifies to

Ψ(𝑡) 𝜃′ (𝑡) = 𝐵 (𝑡) 𝑢
𝜃′ (𝑡) = Ψ−1 (𝑡) 𝐵 (𝑡) 𝑢

Integrating

𝜃 (𝑡) − 𝜃 (0) =
𝑡

�
0

Ψ−1 (𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

But 𝜃 (0) = Ψ−1 (0) 𝑋 (0) where 𝑋 (0) is the initial conditions. (why??). Hence the above
becomes

𝜃 (𝑡) = Ψ−1 (0) 𝑋 (0) +
𝑡

�
0

Ψ−1 (𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏
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Therefore, since 𝑥 (𝑡) = Ψ (𝑡) 𝜃 (𝑡) . Then

𝑥 (𝑡) = Ψ (𝑡)

⎛
⎜⎜⎜⎜⎜⎝Ψ

−1 (0) 𝑋 (0) +
𝑡

�
0

Ψ−1 (𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

⎞
⎟⎟⎟⎟⎟⎠

= Ψ (𝑡)Ψ−1 (0) 𝑋 (0) + Ψ (𝑡)
𝑡

�
0

Ψ−1 (𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

= Ψ (𝑡)Ψ−1 (0) 𝑋 (0) +
𝑡

�
0

Ψ(𝑡)Ψ−1 (𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

Let

Ψ(𝑡)Ψ−1 (𝜏) = Φ (𝑡, 𝜏)

called the transition matrix, then the above becomes

𝑥 (𝑡) = Φ (𝑡, 0) 𝑋 (0) +
𝑡

�
0

Φ (𝑡, 𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

Reader: Find Φ (𝑡, 𝜏) for the last example, and then find 𝑥 (𝑡) for unit step 𝑢 (𝑡).

Properties of Φ(𝑡, 𝜏):

1. Φ (0, 0) = 𝐼. Note that Ψ(𝑡) does not depend on the actual initial conditions for the
problem. (these are eigenfunctions of the system).

2. Φ (𝑡3, 𝑡1) = Φ (𝑡3, 𝑡2) Φ (𝑡2, 𝑡1). Proof:Ψ(3)Ψ−1 (1) = Ψ (3)Ψ−1 (2)Ψ (2)Ψ−1 (1) = Ψ (3) 𝐼Ψ−1 (1) =
Ψ (3)Ψ−1 (1)

3. Φ (𝑡𝑚, 𝑡1) = Φ (𝑡𝑚, 𝑡𝑚−1) Φ (𝑡𝑚−1, 𝑡𝑚−2)⋯Φ (𝑡2, 𝑡1)

4. Φ (𝑡𝑚, 𝑡𝑚) = 𝐼

5. Φ (𝑡, 𝑡0) = Φ−1 (𝑡0, 𝑡)

6. Φ (𝑡, 𝜏) satisfies the state equation under appropriate conditions. proof: 𝜕Φ(𝑡,𝜏)
𝜕𝑡 =

𝜕Ψ(𝑡)Ψ−1(𝜏)
𝜕𝑡 =

𝐴(𝑡)Ψ(𝑡)
�𝜕Ψ(𝑡)
𝜕𝑡 Ψ−1 (𝜏) = 𝐴 (𝑡)Ψ (𝑡)Ψ−1 (𝜏) = 𝐴 (𝑡)Φ (𝑡, 𝜏). But we can’t di�eren-

tiate w.r.t. 𝜏 in the above. Reader: Think about 𝜕Φ(𝑡,𝜏)
𝜕𝜏

side note: Remember this 𝜕
𝜕𝑡

𝑡

�
𝑡0

𝑓 (𝑡, 𝜏) 𝑑𝜏 =
𝑡

�
𝑡0

𝜕
𝜕𝑡𝑓 (𝑡, 𝜏) 𝑑𝜏 + 𝑓 (𝑡, 𝜏)�𝜏=𝑡

1.19 Lecture 17. Thursday October 23 2014

How to determine 𝑒𝐴𝑡

Summary: We solve 𝑥′ = 𝐴 (𝑡) 𝑥 (𝑡)+𝐵 (𝑡) 𝑢 (𝑡) with 𝑋 (0) = 𝑥0. We assumed continuity on 𝐴,𝐵
(piecewise continuous is OK). First step was to findΨ(𝑡), whereΨ(𝑡) = �Ψ1 (𝑡) Ψ2 (𝑡) ⋯ Ψ𝑛 (𝑡)�.
This matrix is 𝑛 × 𝑛 and is not unique. Now we formed Φ (𝑡, 𝜏) = Ψ (𝑡)Ψ−1 (𝜏) called the
transition matrix, which is unique (Q: How can Φ (𝑡, 𝜏) be unique if Ψ is not?). Then we
found

𝑥 (𝑡) = Φ (𝑡, 0) 𝑋 (0) +
𝑡

�
0

Φ (𝑡, 𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

We can also easily get the output equation as well. Which is

𝑦 (𝑡) = 𝐶 (𝑡)Φ (𝑡, 0) 𝑋 (0) +
𝑡

�
0

𝐶 (𝑡)Φ (𝑡, 𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏 + 𝐷 (𝑡) 𝑢 (𝑡)

Today we will talk about LTI (linear time invariant), where 𝐴,𝐵, 𝐶,𝐷 matrices are now



39

constants and do not depend on time

𝑥′ = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡)
𝑦 = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡)

Where now 𝐴,𝐵, 𝐶,𝐷 are constant matrices. We want to find solution to this as special case
of 𝐿𝑇𝑉. Is Φ (𝑡, 𝜏) easy to get now? Would we still need Picard iterations? Yes, it is easier to
get and we do not need to use Picard iterations to solve the LTI. We will introduce matrix
exponential 𝑒𝐴𝑡 where 𝐴 is matrix. Define as

𝑒𝐴𝑡 = 𝐼 + 𝐴𝑡 +
𝐴2𝑡2

2!
+⋯

=
∞
�
𝑘=0

𝐴𝑘𝑡𝑘

𝑘!
Is this even well defined? We ask, is it convergent sum? Let us view the partial sum
𝑆𝑘 as sequence in space of bounded functions and show that this converges uniformly.

𝑆𝑘 = ∑𝑘
𝑖=0

𝐴𝑖𝑡𝑖

𝑖! . This is an 𝑛 × 𝑛 matrix, it is continuous since we only get polynomials in
𝑡 as entries in this matrix. View as vector in space of bounded functions 𝐵 ([0, 𝑇] ,𝑀𝑚×𝑛).
The norm of this space is the sup norm since this is a bounded space. Now let us look at
‖𝑆𝑘 (𝑡)‖

‖𝑆𝑘‖𝐼 = sup ‖𝑆𝑘 (𝑡)‖

= sup
�
�

𝑘
�
𝑖=0

𝐴𝑖𝑡𝑖

𝑖!
�
�

≤
𝑘
�
𝑖=0

�𝐴𝑖� 𝑡𝑖

𝑖!

But �𝐴𝑖� = ‖𝐴𝐴⋯𝐴‖ ≤ ‖𝐴‖ ‖𝐴‖⋯‖𝐴‖ = ‖𝐴‖𝑖 so the above becomes

‖𝑆𝑘‖𝐼 ≤
𝑘
�
𝑖=0

‖𝐴‖𝑖 𝑡𝑖

𝑖!

Now we use Weierstrass M test. Let 𝑀𝑖 = (‖𝐴‖ 𝑡)𝑖 then we need to see if ∑∞
𝑖=0

𝑀𝑖

𝑖! converges.
But

∞
�
𝑖=0

𝑀𝑖

𝑖!
= 𝑒𝑀

Since it converges, then this implies that 𝑒𝐴𝑡 converges uniformly. So we found out that 𝑒𝐴𝑡
is continuous and converges uniformly. So it is well defined definition we have above. OK,
now we have introduced 𝑒𝐴𝑡, but now we need to see how to use it to solve the LTI.

reader: 𝑒𝐴𝑡 is fundamental matrix Ψ(𝑡) for LTI system 𝑥′ = 𝐴𝑥. One thing to check is that
at 𝑡 = 0 the matrix Ψ(0) has 𝑛 linearly independent columns. We also need each column
to be a solution of the state equation Ψ ′ = 𝐴Ψ. Since

𝑑
𝑑𝑡
𝑒𝐴𝑡 =

𝑑
𝑑𝑡 �

𝐼 + 𝐴𝑡 +
𝐴2𝑡2

2!
+⋯�

= 0 + 𝐴 + 𝐴2𝑡 +
𝐴3𝑡2

2!
+⋯

= 𝐴�𝐼 + 𝐴𝑡 +
𝐴2𝑡2

2!
+⋯�

= 𝐴𝑒𝐴𝑡

Therefore, 𝑒𝐴𝑡 satisfies the state equation. What about transition matrix? Let

Φ (𝑡, 𝜏) = Ψ (𝑡)Ψ−1 (𝜏)

= 𝑒𝐴𝑡 �𝑒𝐴𝜏�
−1

Reader: Show that �𝑒𝐴𝜏�
−1
= 𝑒−𝐴𝜏.
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Proof: (For case of distinct eigenvalues only): Using 𝑒𝐴𝑡 = 𝑉

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒𝜆1𝑡

⋱
𝑒𝜆𝑛𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑉−1 which is

𝑒𝐴𝑡 = 𝑉Λ𝑉−1, then �𝑒𝐴𝑡�
−1
= �𝑉Λ𝑉−1�

−1
, but for matrices, (𝐴𝐵)−1 = 𝐵−1𝐴−1, hence �𝑒𝐴𝑡�

−1
=

𝑉−1 (𝑉Λ)−1 = 𝑉Λ−1𝑉−1, but Λ−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒−𝜆1𝑡

⋱
𝑒−𝜆𝑛𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, hence �𝑒𝐴𝑡�

−1
= 𝑒−𝐴𝑡. QED. Therefore

the above becomes Φ (𝑡, 𝜏) = 𝑒𝐴𝑡𝑒−𝐴𝜏. Question: I assumed distinct eigenvalues for 𝐴 in the
above proof for the reader. What about if 𝐴 has repeated eigenvalues?

Reader: Show that 𝑒𝐴𝑡𝑒−𝐴𝜏 = 𝑒𝐴(𝑡−𝜏). To show this, use the series definition above, multiply
things out and simplify. To do

So now that we showed 𝑒𝐴𝑡 is fundamental matrix for 𝑥′ = 𝐴𝑥 we can write the state
solution using it as

𝑥 (𝑡) = 𝑒𝐴(𝑡−0)𝑋 (0) +�
𝑡

0
𝑒𝐴(𝑡−𝜏)𝐵𝑢 (𝜏) 𝑑𝜏

Note: in LTV, Φ (𝑡, 𝜏) was a function of 2 parameters 𝑡 and 𝜏. Here 𝑒𝐴(𝑡−𝜏) is function of
only one parameter, which is the di�erence 𝑡 − 𝜏.

Some properties of 𝑒𝐴𝑡:

1. Reader: show that 𝑒𝐴𝑡 commute with 𝐴. i.e. 𝐴𝑒𝐴𝑡 = 𝑒𝐴𝑡𝐴.

2. Reader: is 𝑒𝐴𝑡1𝑒𝐴𝑡2 = 𝑒𝐴(𝑡1+𝑡2)?

3. Reader: Is 𝑒𝐴1𝑒𝐴2 = 𝑒𝐴1+𝐴2?

4. Reader: Is 𝑒𝐴1𝑒𝐴2 = 𝑒𝐴2𝑒𝐴2? (no, in general).

How to determine 𝑒𝐴𝑡:

There are many ways to determine 𝑒𝐴𝑡 (18 or more). We will cover two ways. One uses the
eigenvector/eigenvalues approach and one is good for hand calculations

First method: This method assume there are 𝑛 distinct eigenvalues and 𝑛 distinct eigenvec-
tor. This method will not work as is if there are no 𝑛 distinct eigenvalue. Most of 𝐴matrices
have distinct eigenvalues, unless we hardcoded some values in them in practice. Now, let
𝑣1, 𝑣2,⋯𝑣𝑛 be the 𝑛 eigenvectors and let 𝜆1, 𝜆2,⋯𝜆𝑛 be the eigenvalues. Where 𝐴𝑣𝑖 = 𝜆𝑖𝑣𝑖.
Form the modal matrix 𝑉 = �𝑣1 𝑣2 ⋯ 𝑣𝑛�. This matrix diagonalizes 𝐴. Hence we write

𝑉−1𝐴𝑉 = Λ

Where Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜆1 0 0 0
0 𝜆2 0 0
0 0 ⋱ 0
0 0 0 𝜆𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, hence we have

𝐴 = 𝑉Λ𝑉−1

𝑒𝐴𝑡 =
∞
�
𝑘=0

�𝑉Λ𝑉−1�
𝑘
𝑡𝑘

𝑘!
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𝑉𝑉−1 cancel leaving

𝑒𝐴𝑡 = 𝑉�
∞
�
𝑘=0

Λ𝑘𝑡𝑘

𝑘! �
𝑉−1

= 𝑉

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜆1 0 0 0
0 𝜆2 0 0
0 0 ⋱ 0
0 0 0 𝜆𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑘

𝑡𝑘

𝑘!

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑉−1

= 𝑉

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑∞
𝑘=0

𝜆𝑘1𝑡
𝑘

𝑘! 0 0 0

0 ∑∞
𝑘=0

𝜆𝑘2𝑡
𝑘

𝑘! 0 0
0 0 ⋱ 0

0 0 0 ∑∞
𝑘=0

𝜆𝑘𝑛𝑡𝑘

𝑘!

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑉−1

= 𝑉

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒𝜆1𝑡 0 0 0
0 𝑒𝜆2𝑡 0 0
0 0 ⋱ 0
0 0 0 𝑒𝜆2𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑉−1

Next time we will look at the other method to find 𝑒𝐴𝑡

HW5 assigned.

1.20 Lecture 18. Tuesday October 28, 2014 (solving the
state equation)

Summary of where we are: In middle of solving the state equation. We did LTV. In the
case of LTI, we end up with 𝑒𝐴𝑡. We found it using using the first method. When has has
distinct eigenvalues then we write

𝑒𝐴𝑡 = 𝑉

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒𝜆1𝑡 0 0
0 ⋱ 0
0 0 𝑒𝜆𝑛𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑉−1

Where 𝑉 is called the modal matrix. (it has as its columns the eigenvectors of 𝐴). If we
scale the eigenvectors, they still remain eigenvectors.

Reader: Show 𝑒𝐴𝑡 is invariant under scaling of 𝑉.

Example: 𝑥′1 = 2𝑥1 and 𝑥′2 = −3𝑥1 − 3𝑥2. We want to find 𝑒𝐴𝑡. Hence 𝐴 =
⎛
⎜⎜⎜⎜⎝
2 0
−3 −3

⎞
⎟⎟⎟⎟⎠. The

eigenvalues are 𝜆1 = 2, 𝜆2 = −3 and the corresponding eigenvectors are 𝑣1 =
⎛
⎜⎜⎜⎜⎝
1
−3
5

⎞
⎟⎟⎟⎟⎠ , 𝑣1 =

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠,

hence 𝑉 =
⎛
⎜⎜⎜⎜⎝
1 0
−3
5 1

⎞
⎟⎟⎟⎟⎠ ,therefore

𝑒𝐴𝑡 =
⎛
⎜⎜⎜⎜⎝
1 0
−3
5 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑒2𝑡 0
0 𝑒−3𝑡

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 0
−3
5 1

⎞
⎟⎟⎟⎟⎠

−1

=
⎛
⎜⎜⎜⎜⎝

𝑒2𝑡 0
−3
5𝑒

2𝑡 + 3
5𝑒

−3𝑡 𝑒−3𝑡

⎞
⎟⎟⎟⎟⎠

Notice at 𝑡 = 0 then 𝑒𝐴𝑡 =
⎛
⎜⎜⎜⎜⎝
1 0
0 1

⎞
⎟⎟⎟⎟⎠
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Reader: Show that 𝑑
𝑑𝑡𝑒

𝐴𝑡 = 𝐴

What if we take the 𝑘𝑡ℎ derivative? then 𝑑𝑘

𝑑𝑡𝑘
𝑒𝐴𝑡 = 𝐴𝑘

We will now do another example with complex eigenvalues. Let 𝐴 =
⎛
⎜⎜⎜⎜⎝
0 1
−1 −1

⎞
⎟⎟⎟⎟⎠, eigenvalues

are 𝜆1 =
1
2 𝑖√3 −

1
2 , 𝜆2 = −

1
2 𝑖√3 −

1
2

Reader: Find 𝑒𝐴𝑡 for the above.

We will find the eigenvectors to make the modal matrix. The eigenvectors are

⎛
⎜⎜⎜⎜⎝
1
2 𝑖√3 −

1
2

1

⎞
⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎝
−1
2 𝑖√3 −

1
2

1

⎞
⎟⎟⎟⎟⎠, hence 𝑉 =

⎛
⎜⎜⎜⎜⎝
1
2 𝑖√3 −

1
2 −1

2 𝑖√3 −
1
2

1 1

⎞
⎟⎟⎟⎟⎠, therefore

𝑒𝐴𝑡 =
⎛
⎜⎜⎜⎜⎝
1
2 𝑖√3 −

1
2 −1

2 𝑖√3 −
1
2

1 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
𝑒
�− 1

2 𝑖√3−
1
2 �𝑡 0

0 𝑒
� 12 𝑖√3−

1
2 �𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1
2 𝑖√3 −

1
2 −1

2 𝑖√3 −
1
2

1 1

⎞
⎟⎟⎟⎟⎠

−1

=
⎛
⎜⎜⎜⎜⎝

1
2 𝑒

− 1
2 𝑡−

1
2 𝑖√3𝑡 + 1

2 𝑒
1
2 𝑖√3𝑡−

1
2 𝑡 + 1

6 𝑖√3𝑒
− 1
2 𝑡−

1
2 𝑖√3𝑡 − 1

6 𝑖√3𝑒
1
2 𝑖√3𝑡−

1
2 𝑡 1

3 𝑖√3exp �−𝑡 � 12 𝑖√3 +
1
2 �� −

1
3 𝑖√3𝑒

𝑡� 12 𝑖√3−
1
2 �

1
3 𝑖√3𝑒

𝑡� 12 𝑖√3−
1
2 � − 1

3 𝑖√3exp �−𝑡 � 12 𝑖√3 +
1
2 ��

1
2 𝑒

− 1
2 𝑡−

1
2 𝑖√3𝑡 + 1

2 𝑒
1
2 𝑖√3𝑡−

1
2 𝑡 − 1

6 𝑖√3𝑒
− 1
2 𝑡−

1
2 𝑖√3𝑡 + 1

6 𝑖√3𝑒
1
2 𝑖√3𝑡−

1
2 𝑡

⎞
⎟⎟⎟⎟⎠

Now we will show another method to find 𝑒𝐴𝑡. This is using Laplace transform.

Reader: Show that 𝑒𝐴𝑡 = ℒ −1 (𝑠𝐼 − 𝐴)−1. Why is this true?

𝑥′ = 𝐴𝑥
𝑠𝑋 (𝑠) − 𝑥 (0) = 𝐴𝑋 (𝑠)
𝑋 (𝑠) (𝑠𝐼 − 𝐴) = 𝑥 (0)

𝑋 (𝑠) = (𝑠𝐼 − 𝐴)−1 𝑥 (0)

𝑥 (𝑡) = ℒ −1 (𝑠𝐼 − 𝐴)−1 𝑥 (0)

Compare to 𝑥 (𝑡) = 𝑒𝐴𝑡𝑥 (0) we see that 𝑒𝐴𝑡 = ℒ −1 (𝑠𝐼 − 𝐴)−1 for any 𝑥 (0)

Now we will given the third method to find 𝑒𝐴𝑡. This is called expansion of natural frequen-
cies method. Here we allow repeated eigenvalues. In the first method (using modal matrix)
the eigenvalues has to be distinct. Let the eigenvalues be 𝜆1, 𝜆1,⋯ , 𝜆𝑚 with correspond-
ing multiplies 𝑛1, 𝑛1,⋯ , 𝑛𝑚. We will propose a form for 𝑒𝐴𝑡 with some unknowns, then
solve for these unknowns. Since all solution must have exp and 𝑡 multipliers (for repeated
eigenvalues), let

𝑒𝐴𝑡 =
𝑚
�
𝑖=1

𝑛𝑖−1
�
𝑘=0
𝑌𝑘,𝑖𝑡𝑘𝑒𝜆𝑖𝑡 (1)

Where 𝑌 (𝑘, 𝑖) are the unknowns. To find 𝑌𝑘,𝑖, we use
𝑑𝑘

𝑑𝑡𝑘
𝑒𝐴𝑡 = 𝐴𝑘. Let us implement this on

the first example we did above

𝐴 =
⎛
⎜⎜⎜⎜⎝
2 0
−3 −3

⎞
⎟⎟⎟⎟⎠

𝜆1 = 2, 𝜆2 = −3, hence 𝑚 = 2, and the multiplies are 𝑛1 = 1, 𝑛2 = 1, hence using (1) gives

𝑒𝐴𝑡 = 𝑌0,1𝑒2𝑡 + 𝑌0,2𝑒−3𝑡 (2)

𝑒𝐴𝑡�
𝑡=0

= 𝐼 =
⎛
⎜⎜⎜⎜⎝
1 0
0 1

⎞
⎟⎟⎟⎟⎠ = 𝑌0,1 + 𝑌0,2

𝑑
𝑑𝑡
𝑒𝐴𝑡�

𝑡=0
= 𝐴 =

⎛
⎜⎜⎜⎜⎝
2 0
−3 −3

⎞
⎟⎟⎟⎟⎠ = 2𝑌0,1 − 3𝑌0,2
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We have 2 equations above in 2 unknowns 𝑌0,1, 𝑌0,2. We solve for these, then using (2) gives

𝑒𝐴𝑡. Solving gives 𝑌0,1 =
⎛
⎜⎜⎜⎜⎝
1 0
−3
5 0

⎞
⎟⎟⎟⎟⎠ , 𝑌0,2 =

⎛
⎜⎜⎜⎜⎝
0 0
3
5 1

⎞
⎟⎟⎟⎟⎠, hence (2) becomes

𝑒𝐴𝑡 =
⎛
⎜⎜⎜⎜⎝
1 0
−3
5 0

⎞
⎟⎟⎟⎟⎠ 𝑒

2𝑡 +
⎛
⎜⎜⎜⎜⎝
0 0
3
5 1

⎞
⎟⎟⎟⎟⎠ 𝑒

−3𝑡

=
⎛
⎜⎜⎜⎜⎝

𝑒2𝑡 0
3
5𝑒

−3𝑡 − 3
5𝑒

2𝑡 𝑒−3𝑡

⎞
⎟⎟⎟⎟⎠

Lets now do repeated eigenvalues. See my expansion of natural frequencies method notes
for this larger example and more examples using this method using a symbolic function
written to process this method.

1.21 Lecture 19. Thursday October 30 2014
(Controllability)

Today will be on controllability of � = (𝐴, 𝐵). We talked before about controllability for
LTI. We said that when rank of the controllability matrix is 𝑛 then (𝐴, 𝐵) is controllable.
This is an algebraic view. When (𝐴, 𝐵) is controllable, it means we can do some useful
transformations. We talked about minimal realization. These are all algebraic properties.
Today will talk about what physically it means for system to be controllable. This is the
physical meaning to saying 𝜌 (ℂ) = 𝑛. Also, if we want to manipulate the input we need
physically controllability.

Physically controllability has to do with only 𝐴,𝐵, from 𝑥′ = 𝐴𝑥+𝐵𝑢. It is about the ability
to steer the system with an input. What this means, for given state 𝑋 (0) we want to be able
to transfer the system to new state 𝑋 (𝑡). This is called the target state.

So system is controllable at 𝑡0 if the following is true: (Note, we the "at 𝑡0" is important,
since this is now LTV and system can change from time to time, so we always talk about
controllability at some specific time with LTV).

Formal de�nition of physical controllability: Given any initial conditions 𝑥 (𝑡0) = 𝑋0
any target state 𝑥∗ then there exist a future time 𝑡1 > 𝑡0 and input 𝑢 (𝑡) over [𝑡0, 𝑡1] leading
to 𝑥 (𝑡1) = 𝑥∗.

Notice there is not constraint on 𝑢 (𝑡), it can be anything and as large as needed. (but the
time interval to arrive at target state must be finite).

xt0

xut

Phase space diagram showing u(t) moving state 
from x(t0) to x*

There can be many 𝑢 (𝑡) which will do the above, but we only need to find one. Why "at
𝑡0" is important? Looking at 2 extreme cases

1. 𝐵 (𝑡) = 0 then clearly the system is not controllable. No input.

2. 𝐵 (𝑡) = 𝐼 the identity matrix. Reader: Show the system is always controllable with
such 𝐵 (𝑡).

There are cases in between the above extreme cases where it is not clear. For example,
given

𝑥′1 = 𝑥1 + 𝑢
𝑥′2 = 𝑥2 + 𝑢

Not controllable. This is not coupled. We can control 𝑥1 state on its own, and 𝑥2 on its
own, but not both at same time which would be necessary for complete controllability.
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Reader: If system is controllable at 𝑡0, is it controllable at 𝑡0 < 𝑡? Yes. (but need to
understand the argument given).

Suppose we have 2 vectors and they are time dependent. So we need to define what linear
independent means in this case (when the vectors depend on time as well).

On linear independence of time vectors:

Let

𝑓1 (𝑡) = �𝑓11 (𝑡) , 𝑓12 (𝑡) ,⋯ , 𝑓1𝑝 (𝑡)�

𝑓2 (𝑡) = �𝑓21 (𝑡) , 𝑓22 (𝑡) ,⋯ , 𝑓2𝑝 (𝑡)�

⋮

𝑓𝑛 (𝑡) = �𝑓𝑛1 (𝑡) , 𝑓𝑛2 (𝑡) ,⋯ , 𝑓𝑛𝑝 (𝑡)�

We say that 𝑓𝑖 vectors are L.D. (Linear dependent) on time interval [𝑡0, 𝑡1] if the following

occurs: There exist 𝛼1, 𝛼2,⋯ , 𝛼𝑛 not all zero, such that
𝑛
�
𝑖=1
𝛼𝑖𝑓𝑖 (𝑡) = 0 for all 𝑡 = [𝑡0, 𝑡1].

Otherwise they are L.I.

Examples: 𝑓1 (𝑡) = −𝑡, 𝑓2 (𝑡) = 𝑡2 on [0, 2]. Can we find 𝛼1, 𝛼2 such that 𝛼1𝑓1 (𝑡) + 𝛼2𝑓2 (𝑡) = 0.
No. So L.I., notice that the same 𝛼 has to be used for all 𝑡.

Reader: Show that 𝑓1 (𝑡) = [1, 𝑡] , 𝑓2 (𝑡) = �𝑡2, 𝑡3� is L.I. on [−2, 2]

Reader: Show �1, 𝑡, 𝑡2,⋯ , 𝑡𝑛� are L.I. on any [𝑡0, 𝑡1] with 𝑡1 > 𝑡0

Reader: Show �𝑒𝑡, 𝑒−𝑡, 𝑒3𝑡,⋯� are L.I. on any [𝑡0, 𝑡1] with 𝑡1 > 𝑡0

Reader: Does being L.I. on [𝑡0, 𝑡1] implies L.I. on �𝑡′0, 𝑡′1� where �𝑡′0, 𝑡′1� ⊇ [𝑡0, 𝑡1]? Yes. What

about if �𝑡′0, 𝑡′1� ⊑ [𝑡0, 𝑡1]? NO. Not necessarily.

Theorem: Given 𝑓𝑖 and [𝑡0, 𝑡1], define matrix 𝐹 (𝑡) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓1 (𝑡)
𝑓2 (𝑡)
⋮

𝑓𝑛 (𝑡)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, so 𝐹 (𝑡) is 𝑛 × 𝑝 size matrix.

Now define the Gramian

𝑊[𝑡0,𝑡1] =
𝑡1

�
𝑡0

𝐹 (𝑡) 𝐹𝑇 (𝑡) 𝑑𝑡

Then 𝑓𝑖 (𝑡) are L.I. on [𝑡0, 𝑡1] i� 𝑊[𝑡0, 𝑡1] is not singular. Proof:

Necessity: Assume 𝑓𝑖 are L.I. Show ℑ not singular. Proof by contradiction. Assume 𝑊
singular then ℑ𝛼 = 0 for non-zero 𝛼 vector. Also 𝛼𝑇ℑ𝛼 = 0. Hence �𝛼𝑇𝑊𝛼𝑑𝑡 = 0 or

�𝛼𝑇𝐹 (𝑡) 𝐹𝑇𝛼𝑑𝑡. Let 𝐹𝑇𝛼 = 𝜉 (𝑡) and 𝛼𝑇𝐹 (𝑡) = 𝜉𝑇 (𝑡). Then we have
𝑡1

�
𝑡0

𝑛
�
𝑖=1
𝜉2𝑖 (𝑡) 𝑑𝑡 = 0 which

implies 𝜉 (𝑡) = 0 identically. But this means 𝐹𝑇𝛼 = 0, which means 𝑓𝑖 are L.I. But this is
contradiction to assumption. Hence 𝑓𝑖 are L.I. implies 𝑊 not singular.

Now to proof the su�ciency: Assume ℑ not singular, show 𝑓𝑖 are L.I. Proof by contradiction.
Assume 𝑓𝑖 are L.D., then 𝛼 exist such that 𝛼𝑇𝐹 (𝑡) = 0 which implies 𝛼𝑇𝑊 = 0. But this
means ℑ is singular. Which is contradiction. This complete the proof that 𝑓𝑖 (𝑡) are L.I. on
[𝑡0, 𝑡1] i� 𝑊[𝑡0, 𝑡1] is not singular.

1.22 Lecture 20. Tuesday November 4 2014.
(Controllability of LTV)

No lecture next Tuesday. Second midterm next Thursday at 6 pm.

Keywords for test 2: Not cumulative. Covers material from first exam. Test 2, starts with
vector spaces, definition of vector space, norms, sequences, convergence. We used space of



45

bounded function 𝐵 ([𝑡0, 𝑡1] , ℜ𝑛). This is a function space. Can be made of vector functions.
The default convergence in this space is uniform convergence. But there is a weaker
convergence called pointwise. This is important for integrals (we can move the limit inside
if the function converges uniformly).

Picard iterations. M-test to test for uniform convergence. Solution of state equation us-
ing Picard iterations. We proofed many things about Picard, such as convergence and
uniqueness. We used Granwall’s inequality.

We looked at negative aspects of Picard iterations. We want closed form. Using fundamental
matrix Ψ(𝑡). Once we have Ψ(𝑡) we have solution for any input. Ψ(𝑡) is not unique, but
Φ (𝑡, 𝜏) is. Φ (𝑡, 𝜏) = Ψ (𝑡)Ψ−1 (𝜏). We also talked at LTI. It simplifies. We used Ψ(𝑡) = 𝑒𝐴𝑡.
We looked at three methods to find 𝑒𝐴𝑡.

Back to lecture. We are talking about controllability of 𝑥′ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢 (𝑡). We
started talking about physical controllability. This is the ability to take the system from
𝑥 (𝑡0) to 𝑥 (𝑡1) for 𝑡1 > 𝑡0 by using some 𝑢 (𝑡).

How to test controllability of LTV system? Define 𝑊 = �𝐹𝐹𝑇𝑑𝑡 and check of 𝑊 is not

singular. In our case 𝐹 = Φ (𝑡0, 𝜏) 𝐵 (𝜏).

Theorem: LTV system is controllable at 𝑡0 i� the rows of 𝐹 = Φ (𝑡0, 𝜏) 𝐵 (𝜏) are linearly independent

time functions on [𝑡0, 𝑡1] for some 𝑡1 ≥ 𝑡0. From last lecture, we defined

𝑊(𝑡0, 𝑡1) = �
𝑡1

𝑡0
Φ (𝑡0, 𝜏) 𝐵 (𝜏) 𝐵𝑇 (𝜏)Φ𝑇 (𝑡0, 𝜏) 𝑑𝜏

𝑊 (𝑡0, 𝑡1) must be not singular for the system to be controllable at 𝑡0.

Proof: Su�ciency ⟸. We need to proof this: If 𝑊 not singular, then LTV is controllable
at 𝑡0. For necessity ⟹ we need to proof this: If LTV is controllable at 𝑡0 then 𝑊 is not
singular.

We start with Su�ciency. Let 𝑊 be not singular. Let 𝑥 (𝑡0) , 𝑥 (𝑡1) be arbitrarily given states,
where 𝑥 (𝑡1) is the target state at time 𝑡1. We must be able to construct 𝑢 (𝑡) that steers

the system from 𝑥 (𝑡0) to 𝑥 (𝑡1). i.e. we want 𝑥 (𝑡1) = Φ (𝑡1, 𝑡0) 𝑥 (𝑡0) +
𝑡

�
𝑡0

Φ (𝑡, 𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏.

Pre-multiplying both sides by Φ (𝑡0, 𝑡1) gives

Φ(𝑡0, 𝑡1)𝑥(𝑡1) =
𝐼

���������������������Φ(𝑡0, 𝑡1)Φ(𝑡1, 𝑡0) 𝑥(𝑡0) +
𝑡

�
𝑡0

Φ(𝑡0,𝜏)

�������������������Φ(𝑡0, 𝑡1)Φ(𝑡, 𝜏) 𝐵(𝜏)𝑢(𝜏)𝑑𝜏

Φ(𝑡0, 𝑡1)𝑥(𝑡1) = 𝑥 (𝑡0) +
𝑡

�
𝑡0

Φ(𝑡0, 𝜏)𝐵(𝜏)𝑢(𝜏)𝑑𝜏

Φ(𝑡0, 𝑡1)𝑥(𝑡1) − 𝑥(𝑡0) =
𝑡

�
𝑡0

Φ(𝑡0, 𝜏)𝐵(𝜏)𝑢(𝜏)𝑑𝜏

Let

𝑢(𝜏) = −𝐵𝑇(𝜏)Φ𝑇(𝑡1, 𝜏)𝑊−1(𝑡0, 𝑡1) [Φ(𝑡1, 𝑡0)𝑥(𝑡0) − 𝑥(𝑡1)]

Reader Show that this 𝑢(𝑡) leads to 𝑥(𝑡0) ⟶ 𝑥(𝑡1)

We now do proof of necessity ⟹ If LTV is controllable at 𝑡0 then 𝑊 is not singular.
Equivalently, show that if LTV is controllable at 𝑡0 then rows of Φ (𝑡0, 𝜏) 𝐵 (𝜏) are linearly
independent. Proof by contradiction: Assume 𝑊 is singular but LTV is controllable at
𝑡0 and show a contradiction. Since 𝑊 is singular, then there exist a vector 𝛼 ≠ 0 s.t.
𝛼𝑇Φ (𝑡0, 𝜏) 𝐵 (𝜏) = 0 for all 𝜏 ∈ [𝑡0, 𝑡1]. Now construct 𝑥 (𝑡0) , 𝑥 (𝑡1). Let 𝑥 (𝑡0) = 𝛼 and let
𝑥 (𝑡1) = 0 (i.e. the origin vector in the state space). Since LTV is controllable, then there
exist 𝑢 (𝑡) such that
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𝑥 (𝑡1) = Φ (𝑡1, 𝑡0) 𝑥 (𝑡0) +
𝑡1

�
𝑡0

Φ (𝑡1, 𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

= Φ (𝑡1, 𝑡0) 𝛼 +
𝑡1

�
𝑡0

Φ (𝑡1, 𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

Pre-multiply by Φ (𝑡0, 𝑡1) both sides gives

Φ (𝑡0, 𝑡1) 𝑥 (𝑡1) =
𝐼

���������������������Φ (𝑡0, 𝑡1) Φ (𝑡1, 𝑡0) 𝛼 +
𝑡1

�
𝑡0

Φ(𝑡0,𝜏)

���������������������Φ (𝑡0, 𝑡1) Φ (𝑡1, 𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

So the above becomes

Φ (𝑡0, 𝑡1) 𝑥 (𝑡1) = 𝛼 +
𝑡

�
𝑡0

Φ (𝑡0, 𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

Now pre-multiplying both sides by 𝛼𝑇

𝛼𝑇Φ (𝑡0, 𝑡1) 𝑥 (𝑡1) = 𝛼𝑇𝛼 +
𝑡

�
𝑡0

𝛼𝑇Φ (𝑡0, 𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

But 𝛼𝑇𝛼 = ‖𝛼‖2 and 𝛼𝑇Φ (𝑡0, 𝑡1) 𝑥 (𝑡1) = 0 since 𝑥 (𝑡1) = 0, hence the above becomes

0 = ‖𝛼‖2 +
𝑡

�
𝑡0

𝛼𝑇Φ (𝑡0, 𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

But we assumed 𝛼𝑇Φ (𝑡0, 𝜏) 𝐵 (𝜏) = 0 above, hence the above reduces to

0 = ‖𝛼‖2

Which means 𝛼 = 0. But this contradicts our assumption that 𝛼 ≠ 0. Hence our assumption
that 𝑊 is singular but LTV is controllable at 𝑡0 has been found to produce a contradiction.
Hence it must be that out assumption of 𝑊 being singular is not valid. QED.

Advanced reader: The proof of necessity above contains an error. Try to find it.

Remark: There are infinite many controls 𝑢 (𝑡) that can take 𝑥 (𝑡0) to 𝑥 (𝑡1) . We considered
one of them in the above proof 𝑢 (𝑡) = 𝐵𝑇 (𝜏)Φ𝑇 (𝑡0, 𝜏)𝑊−1 (𝑡0, 𝑡1) [Φ (𝑡0, 𝑡1) 𝑥 (𝑡1) − 𝑥 (𝑡0)]. In
this 𝑢 special in some sense?

Minimum energy theorem: Suppose � is controllable at 𝑡0, i.e, controllability 𝑊(𝑡0, 𝑡1)
is not singular. So we can steer 𝑥 (𝑡0) to 𝑥 (𝑡1). So given pair 𝑥 (𝑡0) , 𝑥 (𝑡1) and as associ-

ated control law 𝑢 (𝑡), define the energy 𝐸 (𝑢) =
𝑡1

�
𝑡0

𝑢𝑇𝑢𝑑𝑡 =
𝑡1

�
𝑡0

‖𝑢‖2 𝑑𝑡. This gives energy

needed. 𝑢 (𝑡) used above in the proof minimizes 𝐸 (𝑢) . Next lecture we will show that
𝑢 (𝑡) = 𝐵𝑇 (𝜏)Φ𝑇 (𝑡0, 𝜏)𝑊−1 (𝑡0, 𝑡1) [Φ (𝑡0, 𝑡1) 𝑥 (𝑡1) − 𝑥 (𝑡0)] is energy minimizer.

1.23 Lecture 21. Thursday Nov. 6, 2014, 2:30 PM
(controllability, Gramian, proofs)

𝑊(𝑡0, 𝑡1) = �
𝑡1

𝑡0
Φ (𝑡0, 𝜏) 𝐵 (𝜏) 𝐵𝑇 (𝜏)Φ𝑇 (𝑡0, 𝜏) 𝑑𝜏 is called the controllability Gramian. Is there

a shorter method to check for controllability other having to build 𝑊(𝑡0, 𝑡1) and check it is
not singular? The short cut will be su�cient for LTV. For LTI, this short cut with minor
change. will become su�cient and necessary for controllability (it will lead to the rank
condition on the pair 𝐴,𝐵).

Lemma: Consider 𝑛 × 𝑚 matrix, we called it 𝐹 (𝑡) of continuous and smooth functions



47

on [𝑡0, 𝑡1]. This means each column is a vector functions. Suppose further that the matrix
ℑ (𝑡) = �𝐹 (𝑡) 𝐹′ (𝑡) ⋯ 𝐹(𝑛−1) (𝑡)�. This is of size 𝑛×𝑛𝑚. If ℑ (𝑡) has rank 𝑛 for some 𝑡∗ ∈ [𝑡0, 𝑡1],
then it follows that 𝐹(𝑖) (𝑡) are all linearly independent time functions on [𝑡0, 𝑡1].

Proof by contradiction. Suppose we have such 𝑡∗ ∈ [𝑡0, 𝑡1] where rank ℑ (𝑡) = 𝑛 , and assume
𝐹(𝑖) (𝑡) are all linearly dependent time functions. Hence we can find 𝛼 ≠ 0, s.t. 𝛼𝑇𝐹 (𝑡) = 0.
This mean 𝐹 (𝑡) = 0, so that all columns of ℑ (𝑡) are zero. Hence rank of ℑ (𝑡) is not 𝑛. Hence
𝐹(𝑖) (𝑡) are all linearly independent time functions. QED.

Is this useful to study controllability? Use

𝐹 (𝜏) = Φ (𝑡0, 𝜏) 𝐵 (𝜏)

Hence

𝐹′ (𝜏) =
𝑑Φ (𝑡0, 𝜏)

𝑑𝜏
𝐵 (𝜏) + Φ (𝑡0, 𝜏)

𝑑𝐵 (𝜏)
𝑑𝜏

𝐹′′ (𝜏) =
𝑑2Φ (𝑡0, 𝜏)

𝑑𝜏
𝐵 (𝜏) +

𝑑Φ (𝑡0, 𝜏)
𝑑𝜏

𝑑𝐵 (𝜏)
𝑑𝜏

+
𝑑Φ (𝑡0, 𝜏)

𝑑𝜏
𝑑𝐵 (𝜏)
𝑑𝜏

+ Φ (𝑡0, 𝜏)
𝑑2𝐵 (𝜏)
𝑑𝜏2

Reader: Generalize to many 𝐹(𝑛) using recursive formula.

Let 𝑀0 (𝜏) = 𝐵 (𝜏), then

𝑀𝑘+1 (𝜏) = −𝐴 (𝜏)𝑀𝑘 (𝜏) +
𝑑𝑀𝑘 (𝜏)
𝑑𝜏

For 𝑘 = 0⋯𝑛 − 2.

Reader: Show the above is true.

Now we will use the above lemma. System is controllable at 𝑡0 if there exist 𝑡∗ > 𝑡0 such
that rank(𝑀 (𝑡∗)) = 𝑛

Example: Let 𝑥′ =
⎛
⎜⎜⎜⎜⎝
cos 𝑡 𝑡
𝑒𝑡 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
1
𝑡

⎞
⎟⎟⎟⎟⎠ 𝑢 (𝑡). Is this controllable at 𝑡0 = 0?

𝑀0 (𝑡) =
⎛
⎜⎜⎜⎜⎝
1
𝑡

⎞
⎟⎟⎟⎟⎠

𝑀1 (𝑡) = −
⎛
⎜⎜⎜⎜⎝
cos 𝑡 𝑡
𝑒𝑡 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1
𝑡

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
− cos 𝑡 + 𝑡2

− �𝑒𝑡 + 2𝑡� + 1

⎞
⎟⎟⎟⎟⎠

Hence

𝑀(𝑡) =
⎛
⎜⎜⎜⎜⎝
1 − cos 𝑡 + 𝑡2

𝑡 − �𝑒𝑡 + 2𝑡� + 1

⎞
⎟⎟⎟⎟⎠

Check the determinant. If it is not zero, then rank is 2 and hence controllable. Need to
use 𝑡∗ > 0 to find numerical solution for determinant to check if zero or not. Basically we
need to check if there exist 𝑡∗ > 𝑡 where the above matrix is not singular.

Few words about analytic functions: Of we have smooth function 𝑓 (𝑡) and 𝑓 (𝑡) = 0 on some
region [𝑡0, 𝑡1] with 𝑡0 ≠ 𝑡, then this means 𝑓 (𝑡) = 0 on all time 𝑡 and not just in this region.
This is because an analytical function can not have any place with its derivative does not
exist (no sharp corners). Also, for analytic functions, we can expand them locally around
a point using Taylor series. Now we make a bridge to LTI. We need more result about
linear independence.

Lemma: Suppose 𝐹 (𝑡) is analytic on [𝑡0, 𝑡1], (this is the new addition for LTI, which we did
not use for LTV), define

ℑ (𝑡) = �𝐹 (𝑡) 𝐹′ (𝑡) ⋯ 𝐹(𝑛−1) (𝑡) ⋯�

Notice, there are infinite many columns now. Unlike with LTV. Now the lemma says: 𝐹𝑖 (𝑡)
are L.I. on [𝑡0, 𝑡1] i� rank ℑ (𝑡) = 𝑛 for some 𝑡∗ ∈ [𝑡0, 𝑡1] .

Proof: su�ciency: ⟸. Assume rank ℑ (𝑡) = 𝑛 for some 𝑡∗ ∈ [𝑡0, 𝑡1] we need to show that
𝐹𝑖 (𝑡) are L.I. on [𝑡0, 𝑡1]. By contradiction: Assume ℑ (𝑡) = 𝑛 for some 𝑡∗ ∈ [𝑡0, 𝑡1] but 𝐹𝑖 (𝑡) are
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L.D. on [𝑡0, 𝑡1]. Hence there exist vector 𝛼 ≠ 0 such that 𝛼𝐹𝑖 (𝑡) = 0. Hence 𝐹 (𝑡) = 0 and it
follows that 𝐹′ (𝑡) = 0 etc.. for all columns of ℑ (𝑡). Hence rank ℑ (𝑡) ≠ 𝑛. QED.

necessity: ⟹. Assume 𝐹𝑖 (𝑡) are L.I. on [𝑡0, 𝑡1] we need to show that there exist 𝑡∗ ∈ [𝑡0, 𝑡1]
such that rank ℑ (𝑡∗) = 𝑛. Proof by contradiction. Assume 𝐹𝑖 (𝑡) are L.I. on [𝑡0, 𝑡1] but no
such 𝑡∗ exist, so rank ℑ (𝑡∗) < 𝑛 for all [𝑡0, 𝑡1]. Pick any 𝑡 in the range and expand 𝐹 (𝑡) around
𝑡∗ using Taylor (since analytic)

𝐹 (𝑡) =
∞
�
𝑘=0

𝐹(𝑘) (𝑡 − 𝑡∗)𝑘

𝑘!
(1)

Since rank rank ℑ (𝑡∗) < 𝑛, then there exist vector 𝛼 ≠ 0 such that 𝛼ℑ (𝑡∗) = 0. Now multiply
(1) by 𝛼𝑇 we get 𝛼𝑇𝐹 (𝑡) = 0 (Reader) on [𝑡∗ − 𝜀, 𝑡∗ + 𝜀]. But since we assumed 𝐹 (𝑡) analytic,
then 𝐹 (𝑡) = 0 everywhere. Which contradicts that 𝐹𝑖 (𝑡) are L.I. on [𝑡0, 𝑡1]. QED.

1.24 Lecture 22. Thursday Nov. 6, 2014, 6:00 PM.
Second Exam

1.25 Lecture 23. Tuesday November 11 2014 (no
lecture)

No lecture

HW6 assigned.

1.26 Lecture 24. Thursday November 13 2014 (physical
controllability)

Went over second exam: Meaning of uniform convergence. Many had trouble with part (c)
of first problem. For problem three use the commute property. Much easier that calculus.

Now back to lecture. We said before that

ℑ (𝑡) = �𝐹 (𝑡) 𝐹′ (𝑡) ⋯ 𝐹(𝑛−1) (𝑡) ⋯� (1)

We were talking about Linear independence and we had these functions 𝐹 (𝑡). We had the
extra condition that they are analytic and wanted to check of there linearly independent
on [𝑡0, 𝑡1]. Yes they are i� rank ℑ (𝑡) = 𝑛 for all 𝑡 ∈ [𝑡0, 𝑡1]. This was the stepping stone to
physical controllability of LTI system. For LTI the Gramian matrix 𝑊(𝑡0, 𝑡) simplifies to
the controllability matrix ℂ = �𝐵 𝐴𝐵 ⋯ 𝐴𝑛−1𝐵�.

Reader: If LTI system is controllable at 𝑡0 then it is controllable for every 𝑡. So in LTI, we
do not need to keep saying at 𝑡0 and we drop it, and just saying that LTI is controllable,
period. This implies for any 𝑡. Proof: Suppose (𝐴, 𝐵) is controllable at 𝑡0 = 0,. we need
to show it is controllable at 𝑡′0 > 𝑡0. Argument: Since it is controllable at 𝑡0 we can find
𝑢 (𝑡) to steer the system to 𝑥 �𝑡′0�. Now shift 𝑢 (𝑡) by 𝑡′0, hence 𝑢 �𝑡 − 𝑡′0� is applied again to

show it will take the system from 𝑥 �𝑡′0� to 𝑥 (𝑡1). Note: I am not sure I follow this argument.

Need to check with the prof. on this. I do not understand how applying 𝑢 �𝑡 − 𝑡′0� makes it
controllable at 𝑡′0.

Now we build ℑ (𝑡) for LTI. Instead of using Φ (𝑡0, 𝑡) 𝐵 (𝑡) for the 𝐹 (𝑡) functions, we now use
𝑒−𝐴𝑡𝐵, since LTI. Hence (1) becomes

ℑ (𝑡) = �𝑒−𝐴𝑡𝐵 −𝑒−𝐴𝑡𝐴𝐵 𝑒−𝐴𝑡𝐴2𝐵 ⋯ (−1)𝑛 𝑒−𝐴𝑡𝐴𝑛𝐵 ⋯� (2)

The system is controllable i� rank ℑ (𝑡) = 𝑛 Since 𝑒𝐴𝑡 is non-singular, we factor it out

ℑ (𝑡) = 𝑒−𝐴𝑡 �𝐵 −𝐴𝐵 𝐴2𝐵 ⋯ (−1)𝑛𝐴𝑛𝐵 ⋯�
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The sign do not a�ect the rank, so we make all the signs the same

ℑ (𝑡) = 𝑒−𝐴𝑡 �𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴𝑛𝐵 ⋯�

And since 𝑒−𝐴𝑡 is always non-singular, it does not a�ect the rank, so we write

ℑ (𝑡) = �𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴𝑛−1𝐵 𝐴𝑛𝐵 ⋯�

Now, we need to find a way to remove all terms beyond 𝐴𝑛−1𝐵. To do this we use Cayley
Hamilton. This says that for matrix 𝐴 of size 𝑛 × 𝑛 with characteristic polynomial Δ (𝜆) =
det (𝜆𝐼 − 𝐴) then Δ (𝐴) = 0.

Example: Given 𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0
1 −4 0
2 −1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, then Δ (𝜆) = det (𝜆𝐼 − 𝐴) = (𝜆 − 2) (𝜆 + 4) (𝜆 − 4) = 𝜆3 − 𝜆2 −

14𝜆 + 24, hence by Cayley Hamilton we have

𝐴3 − 𝐴2 − 14𝐴 + 24𝐼 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Reader: Using Cayley Hamilton show that

𝜌 �𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴𝑛−1𝐵 𝐴𝑛𝐵 ⋯� = 𝜌 �𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴𝑛−1𝐵�

Hence ℑ (𝑡) = ℂ is controllable i� 𝜌 (ℂ) = 𝑛

We need to show that columns from 𝑛 to ∞ do not contribute to rank of ℑ (𝑡). This means
𝐴𝑛 is linear combination of �𝐼, 𝐴,𝐴2,⋯ ,𝐴𝑛−1�. Using Cayley Hamilton applied for 𝐴𝑘 we
obtain that

0 = 𝐴𝑛 +
𝑛−1
�
𝑖=0
𝑎𝑖𝐴𝑖

𝐴𝑛 =
𝑛−1
�
𝑖=0
𝑎𝑖𝐴𝑖

Hence 𝐴𝑛 is linear combination of �𝐼, 𝐴,𝐴2,⋯ ,𝐴𝑛−1�. We now do the same for 𝐴𝑛+1 to show
it is linear combination of 𝐴𝑛 and all the other matrices, and so on. Hence all matrices 𝐴
after 𝑛 − 1 do not contribute to rank of ℑ (𝑡). This complete the proof that ℑ (𝑡) reduces to
ℂ for LTI systems.

More on controllability: Di�erential controllability. We will start with LTV. We say �
is di�erentially controllable at 𝑡0 if we can get to new state in as small time as we want.
If given 𝜀 > 0, arbitrary small, and any 𝑥 (𝑡0) state, then there exist 𝑢 (𝑡) steering 𝑥 (𝑡0) to
𝑥 (𝑡0 + 𝜀) .

Reader: Give criteria and short cut for di�erential controllability at 𝑡0. Use 𝑊(𝑡0, 𝑡0 + 𝜀).
For LTI, use short cut 𝑀.

For LTI: Reader: If � is controllable, then it is always di�erentially controllable. But this
is not necessarily true for LTV. To show, let

𝑥1 = 𝑒𝐴𝑡1𝑥0 +
𝑡1

�
𝑡0

𝑒(𝑡1−𝜏)𝐵𝑢 (𝜏) 𝑑𝜏

𝑥𝜀 = 𝑒𝐴𝜀𝑥0 +
𝜀

�
𝑡0

𝑒(𝜀−𝜏)𝐵�̃� (𝜏) 𝑑𝜏

Relate 𝑢 (𝑡) to �̃� (𝑡) so that we can get to 𝑥1 in as short time as we want. Note: The above is
not clear to me, need to clean up.

Controllability with bounded control: i.e. we now have a bound on the magnitude of 𝑢 (𝑡).
There is whole theory on controllability with bounded input. Next we will do the same
with observability, using duality to speed all the derivations by using results obtained from
the controllability. We will later study decomposition, then stability.
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1.27 Lecture 25. Tuesday November 18 2014

1.27.1 Handout, Observability summary

ECE 717 – Handout Observability Summary

For the continuous LTV system Σ

ẋ = A(t)x + B(t)u; y(t) = Cx(t) + D(t)u

the definition of “observability at” t0 will first be given.

Reader: Does observability at t0 imply observability at t′0 > t0? t′0 < t0?

Gramian Condition for Observability: We begin with x(t0) = x0

and

y(t) = C(t)Φ(t, t0)x
0 + C(t)

∫ t

0
Φ(t, τ)B(τ)u(τ)dτ + D(t)u(t).

We want to determine x0.

Reader: The integral above and Du(t) do not matter in the develop-
ment of a criterion. Hence, without loss of generality, we consider out-
put y(t) = C(t)Φ(t, t0)x

0 and obtain the condition

∫ t1

0
ΦT (τ, t0)C

T (τ)C(τ)Φ(τ, t0)dτx0 =
∫ t1

0
ΦT (τ, t0)C

T (τ)y(τ)dτ.

This motivates defining Gramian

Wo(t0, t1)
.=

∫ t1

0
ΦT (τ, t0)C

T (τ)C(τ)Φ(τ, t0)dτ

whose nonsingularity for some t1 > t0 is both necessary and sufficient for
observability at t0. This being the case, we recover the initial state

x0 = W−1
o (t0, t1)

∫ t1

0
ΦT (τ, t0)C

T (τ)y(τ)dτ.

Reader: Notice the the ideas above can equally well be stated in terms
of linear independence of functions. Namely, Σ is observable at t0 if and
only if the rows of the matrix ΦT (τ, t0)C

T (τ) are linearly independent on
some time interval [t0, t1].

Reader: With dual system Σ∗ = (AT (t), CT (t), B(T ), DT (t)), establish:
(i) Σ is observable at t0 if and only if Σ∗ and controllable at t0. (i) Σ is
controllable t0 if and only if Σ∗ and observable at t0.
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Reader: For the case of a “smooth” system, consider shortcut matrices

L0(t) = C(t); Lk+1(t) = Lk(t)A(t) +
d

dt
Lk(t); k = 0, 1, ..., n − 2

and

L(t) .=



L0(t)
L1(t)
·
·
·

Ln−1(t)


.

Now provide a sufficient condition for observability at t0. This summary
is completed by considering the LTI case where we drop “at t0” and bring
analyticity into play to arrive at

rankOΣ = n

as the necessary and sufficient condition for observability.

2

1.27.2 Lecture: Canonical decomposition theorem

We already talked about algebraic observability (observability matrix). We also talked
about the observer design. Now we want to talk about physical observability. Starting with
LTV system

𝑥′ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢 (𝑡)
𝑦 (𝑡) = 𝐶 (𝑡) 𝑥 (𝑡) + 𝐷 (𝑡) 𝑢 (𝑡)

Formal de�nition of physical observability: System is observable at 𝑡0 if the following
condition holds: With 𝑥 (𝑡0) = 𝑥0 unknown, suppose 𝑢 (𝑡) and 𝑦 (𝑡) are known, then there
exist time 𝑡1 ≥ 𝑡0 such that 𝑥 (𝑡0) can be determined from knowing 𝑢 (𝑡) and 𝑦 (𝑡) over [𝑡0, 𝑡1].
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This is true for any 𝑥 (𝑡0).

ut ytplant

xt0

observer

Definition from Chen book: pair (𝐴 (𝑡) , 𝐶 (𝑡)) is observable at 𝑡0 i� there exists time 𝑡1 > 𝑡0

such that the 𝑛 × 𝑛 matrix 𝑊𝑜 (𝑡0, 𝑡1) =
𝑡

�
𝑡0

Φ𝑇 (𝜏, 𝑡0) 𝐶𝑇 (𝜏) 𝐶 (𝜏)Φ (𝜏, 𝑡0) 𝑑𝜏 where Φ (𝑡, 𝜏) is the

state transition matrix for 𝑥′ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) is nonsingular.

Controllability of the primal system equals the observability of the duel. If system is
observable at 𝑡0 what about at 𝑡 > 𝑡0? The answer is not necessarily. What about for 𝑡 < 𝑡0?
The answer is yes. We can always solve for 𝑥 (0)

𝑦(𝑡) = 𝐶(𝑡)Φ(𝑡, 𝑡0)𝑥0 +

not function of 𝑥0 can be ignored

�����������������������������������������������������
𝐶 (𝑡)

𝑡

�
𝑡0

Φ (𝑡, 𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏 + 𝐷 (𝑡) 𝑢 (𝑡)

�̃�(𝑡) = 𝐶(𝑡)Φ(𝑡, 𝑡0)𝑥0

Pre-multiply by Φ𝑇 (𝜏, 𝑡0) 𝐶𝑇 (𝜏) and integrate

𝑡

�
𝑡0

Φ𝑇 (𝜏, 𝑡0) 𝐶𝑇 (𝜏) �̃� (𝑡) 𝑑𝜏 =

𝑊(𝑡0,𝑡)

���������������������������������������������������⎛
⎜⎜⎜⎜⎜⎝

𝑡

�
𝑡0

Φ𝑇 (𝜏, 𝑡0) 𝐶𝑇 (𝜏) 𝐶 (𝜏)Φ (𝜏, 𝑡0) 𝑑𝜏

⎞
⎟⎟⎟⎟⎟⎠ 𝑥

0

Since observable we can invert 𝑊, hence

𝑥0 = 𝑊−1 (𝑡0, 𝑡)
𝑡

�
𝑡0

Φ𝑇 (𝜏, 𝑡0) 𝐶𝑇 (𝜏) �̃� (𝑡) 𝑑𝜏

So system is observable i� 𝑊 is non-singular for 𝑡 > 𝑡0. This means rows of Φ𝑇 (𝜏, 𝑡0) 𝐶𝑇 (𝜏)
are linearly independent.

Reader express state transition matrix for the duel system ��̃�, �̃�, �̃�, �̃�� where

�̃� = −𝐴𝑇

�̃� = −𝐶𝑇

�̃� = 𝐵𝑇

�̃� = 𝐷

Hence, the duel system

�̃�′ (𝑡) = −𝐴𝑇 (𝑡) �̃� (𝑡) − 𝐶𝑇 (𝑡) 𝑢 (𝑡)
�̃� (𝑡) = 𝐵𝑇 (𝑡) �̃� (𝑡) + 𝐷𝑇 (𝑡) 𝑢 (𝑡)

Now we will establish the relation between the system transfer matrix Φ for the primal and
the duel. For the primal, we have

𝑑Ψ−1 (𝑡)
𝑑𝑡

= −Ψ−1 (𝑡) 𝐴 (𝑡)

Take the transpose of both sides gives

𝑑 �Ψ−1 (𝑡)�
𝑇

𝑑𝑡
= −𝐴𝑇 (𝑡) �Ψ−1 (𝑡)�

𝑇
(1)

Now for the duel, we have

𝑑Ψ̃ (𝑡)
𝑑𝑡

= �̃� (𝑡) Ψ̃ (𝑡)
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However �̃� (𝑡) = −𝐴𝑇 (𝑡) therefore the above becomes

𝑑Ψ̃ (𝑡)
𝑑𝑡

= −𝐴𝑇 (𝑡) Ψ̃ (𝑡) (2)

Comparing LHS and RHS of (1) and (2) we see that

�Ψ−1 (𝑡)�
𝑇
= Ψ̃ (𝑡) (3)

The above also mean that

�Ψ𝑇 (𝑡)�
−1
= Ψ̃ (𝑡)

Now taking the inverse of both sides

Ψ𝑇 (𝑡) = Ψ̃−1 (𝑡) (4)

(3) and (4) is all what we need to establish that

Φ̃ (𝑡, 𝜏) = Ψ̃ (𝑡) Ψ̃−1 (𝜏)

= �Ψ𝑇 (𝑡)�
−1
Ψ𝑇 (𝜏)

= �Ψ−1 (𝑡)�
𝑇
Ψ𝑇 (𝜏)

= �Ψ (𝜏)Ψ (𝑡)−1�
𝑇

= Φ𝑇 (𝜏, 𝑡)

Hence

Φ̃ (𝑡, 𝜏) = Φ𝑇 (𝜏, 𝑡) (5)

Now we describe the short cut method to determine observability. For 𝑛 − 1 di�erential
system

𝐿0 (𝑡) = 𝐶 (𝑡)

𝐿𝑘+1 (𝑡) = 𝐿𝑘 (𝑡) 𝐴 (𝑡) +
𝑑
𝑑𝑡
𝐿𝑘 (𝑡)

For 𝑘 = 0⋯𝑛 − 2. Then the system is observable at 𝑡0 i� there exist 𝑡1 > 𝑡0 such that

𝜌 [𝐿 (𝑡)] = 𝜌

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐿0 (𝑡1)
𝐿1 (𝑡1)
⋮

𝐿𝑛−1 (𝑡1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑛

Example: 𝐴 (𝑡) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 𝑡
𝑡2 −𝑡 𝑒𝑡

1 −2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐶 (𝑡) = �1 𝑡 𝑒−𝑡�

𝐿0 (𝑡) = �1 𝑡 𝑒−𝑡�

𝐿1 (𝑡) = �1 𝑡 𝑒−𝑡�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 𝑡
𝑡2 −𝑡 𝑒𝑡

1 −2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ �0 1 −𝑒−𝑡� = �𝑒−𝑡 + 𝑡3 2 − 𝑡2 − 2𝑒−𝑡 𝑡 + 𝑡𝑒𝑡�

𝐿2 (𝑡) = �𝑒−𝑡 + 𝑡3 2 − 𝑡2 − 2𝑒−𝑡 𝑡 + 𝑡𝑒𝑡�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 𝑡
𝑡2 −𝑡 𝑒𝑡

1 −2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ �−𝑒−𝑡 + 3𝑡2 −2𝑡 + 2𝑒−𝑡 1 + 𝑒𝑡 + 𝑡𝑒𝑡� =

�𝑡 − 𝑒−𝑡 − 𝑡2 �2𝑒−𝑡 + 𝑡2 − 2� + 𝑡𝑒𝑡 + 3𝑡2 3𝑒−𝑡 − 4𝑡 + 𝑡 �2𝑒−𝑡 + 𝑡2 − 2� − 2𝑡𝑒𝑡 + 𝑡3 𝑡 + 𝑒𝑡 + 𝑡 �𝑒−𝑡 + 𝑡3� − 𝑒𝑡 �2𝑒−𝑡 + 𝑡2 − 2� + 2𝑡𝑒𝑡 + 1�

Hence

𝐿 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 𝑡 𝑒−𝑡

𝑒−𝑡 + 𝑡3 2 − 𝑡2 − 2𝑒−𝑡 𝑡 + 𝑡𝑒𝑡

𝑡 − 𝑒−𝑡 − 𝑡2 �2𝑒−𝑡 + 𝑡2 − 2� + 𝑡𝑒𝑡 + 3𝑡2 3𝑒−𝑡 − 4𝑡 + 𝑡 �2𝑒−𝑡 + 𝑡2 − 2� − 2𝑡𝑒𝑡 + 𝑡3 𝑡 + 𝑒𝑡 + 𝑡 �𝑒−𝑡 + 𝑡3� − 𝑒𝑡 �2𝑒−𝑡 + 𝑡2 − 2� + 2𝑡𝑒𝑡 + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The rank of the above must be 3 for observable system.

Canonical decomposition theorem:

We want minimal realization. Canonical transformation: System � = (𝐴, 𝐵, 𝐶,𝐷) can be
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transformed to equivalent system via non-singular matrix 𝑇.

𝐴∗ = 𝑇𝐴𝑇−1

𝐵∗ = 𝑇𝐵
𝐶∗ = 𝐶𝑇−1

𝐷∗ = 𝐷

Which has the following structure. 𝐴∗ is block structure of the form

𝐴∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴∗
𝑐�̄� 𝐴∗

12 𝐴∗
13

0 𝐴∗
𝑐𝑜 𝐴∗

23

0 0 𝐴∗
�̄�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐵∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐵∗𝑐�̄�
𝐵∗𝑐𝑜
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐶∗ = �0 𝐶∗

𝑐𝑜 𝐶∗
�̄��

𝐴∗
𝑐�̄� means controllable but not observable, 𝐴∗

𝑐𝑜 means controllable and observable and 𝐴∗
�̄�

means not controllable.

Hence, since 𝑥∗ = 𝑇𝑥, then the
∗
� is

𝑥∗′ = 𝐴∗𝑥∗ + 𝐵∗𝑢 (𝑡)
𝑦 = 𝐶∗𝑥∗ + 𝐷∗𝑢 (𝑡)

So the controllable and observable part is �
𝑐𝑜
= (𝐴∗

𝑐𝑜, 𝐵∗𝑐𝑜, 𝐶∗
𝑐𝑜). And The not controllable

and not observable part is �
�̄��̄�
= (𝐴∗

�̄��̄�, 0, 𝐶∗
�̄�). Notice that

𝐻∗
𝑐𝑜 (𝑠) = 𝐻 (𝑠)

Minimal realization is both controllable and observable.

Original 𝐴,𝐵, 𝐶,𝐷 can be anything, and we can always find 𝑇 to do the above transforma-
tion.
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1.28 Lecture 26. Thursday November 20 2014
(Handout, Kharitonov’s Theorem)

CHAPTER 5

The Spark: Kharitonov’s Theorem

Synopsis

This chapter is devoted to the seminal theorem of Kharitonov. The tech-
nical ideas underlying the proof serve as a pedagogical stepping stone for
development of the more general value set concept which unifies many
results in later chapters. In fact, the Kharitonov rectangle which we in-
troduce is actually a value set corresponding to a rather specialized uncer-
tainty structure.

5.1. Introduction

The main result in this chapter, Kharitonov’s Theorem, addresses a rather special-
ized problem—robust stability of an interval polynomial family. The elegance of the
solution immediately sets one’s thought processes in motion; i.e., seeing such a dra-
matic breakthrough for the robust stability problem for interval polynomials, one can-
not help but wonder what powerful results are possible for more general robustness
problems. In a sense, most of the chapters to follow are testimonials to the new way of
thinking which comes from the proof of Kharitonov’s Theorem.

5.2. Independent Uncertainty Structures

In this section, we introduce the independent uncertainty structure. Results for this
highly specialized structure should not be viewed as an end in itself. With this simpler
theory under our belts, however, we are prepared to deal withmore general polytopic
and multilinear uncertainty structures in the chapters to follow.

Perhaps the most compelling motivation for the study of independent uncertainty
structures is derived from the following scenario: An engineer generates a fixed model
for a control system and obtains the associated characteristic polynomial p(s). Al-
though the presence of parametric uncertainty is acknowledged, the dependence on
q is complicated and highly nonlinear. Despite the fact that the uncertainty structure
is too complicated to analyze mathematically, it is still important to know something
about the degree of robustness. In such cases, a sound argument can be made for im-
position of an independent uncertainty structure. For example, using an independent
uncertainty structure, we can use the theory in this chapterto determine what percent-
age variations in the coefficients of polynomialp(s) can be tolerated.

It is also worth noting that in many cases, a more complicateduncertainty structure
admits a certain type of overbounding by an independent uncertainty structure. Hence,
once we have results for the independent case, we often obtain sufficient conditions
for the more complicated case at hand. To illustrate, after overbounding a complicated
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uncertainty structure by an independent uncertainty structure, one might compute a
robustness margin of 13% when the true robustness margin is 16%. It can be argued
that the conservatism resulting from overbounding is not critical when the performance
specification is still met.

DEFINITION 5.2.1 (Independent Uncertainty Structure): An uncertain polynomial

p(s,q) =
n

∑
i=0

ai(q)si

is said to have anindependent uncertainty structureif each componentqi of q enters
into only one coefficient.

EXERCISE 5.2.2 (Independent Uncertainty Structure): Does the uncertain polynomial

p(s,q) = s3 +(q1+4q2+6)s2 +(q1−3q4)s+(q0+5)

have an independent uncertainty structure? Explain.

5.3. Interval Polynomial Family

In this section, we define interval polynomial families and the concept of lumping.
By lumping, we mean combining uncertainties so as to obtain adescription of the same
family of polynomials involving a smaller number of uncertain parameters.

DEFINITION 5.3.1 (Interval Polynomial Family): A family of polynomialsP =
{p(·,q) : q ∈ Q} is said to be aninterval polynomial familyif p(s,q) has an inde-
pendent uncertainty structure, each coefficient depends continuously onq andQ is a
box. For brevity, we often drop the word “family” and simply refer toP as aninterval
polynomial.

EXAMPLE 5.3.2 (Simple Interval Polynomial): An interval polynomial family P

arises from the uncertain polynomial described byp(s,q) = (5+q4)s4 +(3+q3)s3 +
(2+q2)s2 +(4+q1)s+(6+q0) with uncertainty bounds|qi | ≤ 1 for i = 0,1,2,3,4.

EXAMPLE 5.3.3 (Some Coefficients Fixed): Notice that the definition of interval poly-
nomial does not rule out the possibility that some coefficients of p(s,q) are fixed rather
than uncertain; e.g., considerp(s,q) = (5+ q4)s4 + 3s3 + (2+ q2)s2 + (4+ q1)s+ 6
with a given boxQ for the uncertainty bounding set.

EXAMPLE 5.3.4 (Lumping Interval Polynomials): The uncertainty representation often
involves a certain type of redundancy. For example, ifp(s,q) = s3+(5+q2+2q3)s2+
(6+ 2q1 + 5q4)s+(3+ q0) and bounds|qi | ≤ 0.5 for i = 0,1,2,3,4, one can “lump”
the uncertainty as follows: Define new uncertain parametersq̃2 = 5+ q2 + 2q3, q̃1 =
6+ 2q1 + 5q4 andq̃0 = 3+ q0, a new uncertainty bounding setQ̃ by 2.5≤ q̃0 ≤ 3.5,
2.5≤ q̃1 ≤ 9.5 and 3.5≤ q̃2 ≤ 6.5 and a new uncertain polynomial ˜p(s, q̃) = s3+ q̃2s2+

February 10, 2010
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q̃1s+ q̃0. We callP̃ = {p̃(·, q̃) : q̃∈ Q} a lumped versionof the original familyP and
leave it to the reader to verify that̃P = P.

EXERCISE 5.3.5 (Lumping with More Complicated Dependence): The objectiveof this
exercise is to demonstrate that lumping is possible with more complicated dependence
onq. To this end, consider an interval polynomial familyP described by

p(s,q) = (5+eq1 cosq2)s
2 +(sin(q3 +q4)+4)s+(q5q

2
6 +eq7)

and|qi | ≤ 1 for i = 1,2, . . . ,7. Provide a characterization of a lumped versionP̃ of
P.

EXERCISE 5.3.6 (A Lumping Theorem): This exercise generalizes on the one above.
Indeed, consider an interval polynomial familyP = {p(·,q) : q∈ Q} with p(s,q) hav-
ing coefficients depending continuously onq. Prove that there exists a second interval
polynomial familyP̃ = {p̃(·, q̃) : q̃ ∈ Q̃} with p̃(s, q̃) of the form p̃(s, q̃) = ∑n

i=0 q̃isi

and, moreover,P̃ = P.

5.4. Shorthand Notation

In view of the discussion of lumping above, we henceforth work with an uncertain
polynomial of the form

p(s,q) =
n

∑
i=0

qis
i

when dealing with an interval family. Such a family is completely described by the
shorthand notation

p(s,q) =
n

∑
i=0

[q−i ,q+
i ]si

with [q−i ,q+
i ] denoting the bounding interval for thei-th component of uncertaintyqi.

In the context of this convenient abuse of notation, we can refer to p(s,q) as aninterval
polynomial.

5.5. The Kharitonov Polynomials

In order to describe Kharitonov’s Theorem for robust stability, we first define four
fixed polynomials associated with an interval polynomial family P. In the definition
below, note that the polynomials are fixed in the sense that only the boundsq−i andq+

i
enter into the description but not theqi themselves. We also emphasize that the number
of polynomials is four—independent of the degree ofp(s,q). That is, four is a magic
number.

DEFINITION 5.5.1 (The Kharitonov Polynomials): Associated with the interval poly-
nomialp(s,q) = ∑n

i=0[q
−
i ,q+

i ]si are the four fixedKharitonov polynomials

K1(s) = q−0 +q−1 s+q+
2 s2 +q+

3 s3 +q−4 s4 +q−5 s5 +q+
6 s6 + · · · ;
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K2(s) = q+
0 +q+

1 s+q−2 s2 +q−3 s3 +q+
4 s4 +q+

5 s5 +q−6 s6 + · · · ;
K3(s) = q+

0 +q−1 s+q−2 s2 +q+
3 s3 +q+

4 s4 +q−5 s5 +q−6 s6 + · · · ;
K4(s) = q−0 +q+

1 s+q+
2 s2 +q−3 s3 +q−4 s4 +q+

5 s5 +q+
6 s6 + · · · .

EXAMPLE 5.5.2 (Construction of Kharitonov Polynomials): The Kharitonovpolyno-
mials are easily constructed by inspection. To illustrate,the four Kharitonov polyno-
mials corresponding to the interval polynomial

p(s,q) = [1,2]s5 +[3,4]s4+[5,6]s3+[7,8]s2+[9,10]s+[11,12]

are

K1(s) = 11+9s+8s2+6s3+3s4+s5;

K2(s) = 12+10s+7s2+5s3+4s4 +2s5;

K3(s) = 12+9s+7s2+6s3+4s4+s5;

K4(s) = 11+10s+8s2+5s3+3s4 +2s5.

5.6. Kharitonov’s Theorem

We now present the celebrated theorem of Kharitonov (1978a)and also illustrate
its application. The proof of the theorem is relegated to thenext two sections.

THEOREM 5.6.1 (Kharitonov (1978a)):An interval polynomial familyP with invari-
ant degree is robustly stable if and only if its four Kharitonov polynomials are stable.

EXAMPLE 5.6.2 (Application of Kharitonov’s Theorem): For the interval polynomial

p(s,q) = [0.25,1.25]s3+[2.75,3.25]s2+[0.75,1.25]s+[0.25,1.25],

the four Kharitonov polynomials are

K1(s) = 0.25+0.75s+3.25s2+1.25s3;

K2(s) = 1.25+1.25s+2.75s2+0.25s3;

K3(s) = 1.25+0.75s+2.75s2+1.25s3;

K4(s) = 0.25+1.25s+3.25s2+0.25s3.

Using the classical Hurwitz criterion, it is easy to verify that all four Kharitonov poly-
nomials above are stable. Hence, we conclude that the interval polynomial family is
robustly stable.

EXERCISE 5.6.3 (Application of Kharitonov’s Theorem): Consider the interval poly-
nomial family which is given in Example 5.5.2. Is it robustlystable?
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5.7. Machinery for the Proof

For some readers, there is a temptation to skip sections containing technical proofs.
For the case of Kharitonov’s Theorem, however, the author’sadvice is to continue
reading. The ideas introduced in this section and the next are at the heart of many
generalizations presented in later chapters. In addition,the geometrical ideas in the
proof suggest ideas for computer-aided analysis. Most notably, the proof makes use of
the so-called Kharitonov rectangle. This rectangle is in fact a special type of “value
set” which plays a major role in later chapters.

5.7.1. The Kharitonov Rectangle

In this subsection, we consider an elementary geometry problem: Given an interval
polynomialp(s,q) = ∑n

i=0[q
−
i ,q+

i ]si and a fixed frequencyω = ω0, describe the set of
possible values thatp( jω0,q) can assume asq ranges over the boxQ. More formally,
we want to describe the subset of the complex plane given by

p( jω0,Q) = {p( jω0,q) : q∈ Q}.

We callp( jω0,Q) theKharitonov rectangleat frequencyω = ω0. To justify this name,
we now prove thatp( jω0,Q) is a rectangle with vertices which are obtained by evalu-
ating the fourfixedKharitonov polynomialsK1(s), K2(s), K3(s) andK4(s) at s= jω0;
i.e., the vertices ofp( jω0,Q) are precisely theKi( jω0).

To establish rectangularity, we examine the real and imaginary parts ofp( jω0,q).
Indeed, we first observe that

Re p( jω0,q) = ∑
i even

qi( jω0)
i = q0−q2ω2

0 +q4ω4
0 −q6ω6

0 +q8ω8
0 −·· ·

and

Im p( jω0,q) =
1
j ∑

i odd

qi( jω0)
i = q1ω0−q3ω3

0 +q5ω5
0 −q7ω7

0 +q9ω9
0 −·· · .

Notice that noqi which entersRe p( jω0,q) entersIm p( jω0,q) and vice versa. In view
of this decoupling between real and imaginary parts, the setp( jω0,Q) consists of all
complex numberszsuch that

Re z= q0−q2ω2
0 +q4ω4

0 −q6ω6
0 +q8ω8

0 −·· ·

for some admissibleq∈ Q and

Im z= q1ω0−q3ω3
0 +q5ω5

0 −q7ω7
0 +q9ω9

0 −·· ·

for some admissibleq∈ Q.
We now argue that the set of all generatable pairs(Re z, Im z) above is a rectangle

which is obtained by finding the minimum and maximum values ofRe p( jω0,q) and
Im p( jω0,q) with respect toq∈ Q. Indeed, since eachqi enters only one coefficient

February 10, 2010

;



60

5.7 Machinery for the Proof 61

of p(s,q), for Re p( jω0,q), we can minimize or maximize each term individually to
obtain

min
q∈Q

Re p( jω0,q) = q−0 −q+
2 ω2

0 +q−4 ω4
0 −q+

6 ω6
0 +q−8 ω8

0 −·· ·

= Re K1( jω0)

and

max
q∈Q

Re p( jω0,q) = q+
0 −q−2 ω2

0 +q+
4 ω4

0 −q−6 ω6
0 +q+

8 ω8
0 −·· ·

= Re K2( jω0).

As far asIm p( jω0,q) is concerned, one must pay attention to the sign ofω0 in
deciding whether to useq−i or q+

i when minimizing or maximizing. Keeping this issue
in mind, forω0 ≥ 0, we obtain

min
q∈Q

Im p( jω0,q) = q−1 ω0−q+
3 ω3

0 +q−5 ω5
0 −q+

7 ω7
0 + · · ·

and similarly, forω0 < 0,

min
q∈Q

Im p( jω0,q) = q+
1 ω0−q−3 ω3

0 +q+
5 ω5

0 −q−7 ω7
0 + · · · .

Combining these two cases, we arrive at

min
q∈Q

Im p( jω0,q) =

{

Im K3( jω0) if ω0 ≥ 0;
Im K4( jω0) if ω0 < 0.

For the maximization problem, the same type of reasoning leads to

max
q∈Q

Im p( jω0,q) =

{

Im K4( jω0) if ω0 ≥ 0;
Im K3( jω0) if ω0 < 0.

Thus far, our arguments indicate thatp( jω0,Q) is bounded by the rectangle given
in Figure 5.7.1; i.e., ifz∈ p( jω0,Q) andω0 ≥ 0, then

Re K1( jω0) ≤ Re z≤ Re K2( jω0);

Im K3( jω0) ≤ Im z≤ Im K4( jω0).

To complete the argument, we now claim that this bounding rectangle is precisely equal
to p( jω0,Q). That is, every value in this rectangle is realizable by someq∈ Q. Indeed,
by viewing Re p( jω0,q) as a mapping of(q0,q2,q4, . . .) to R and Im p( jω0,q) as a
mapping from(q1,q3,q5, . . .) to R, a simple intermediate value argument guarantees
that for eachzsatisfying the two inequalities above, there exists some uncertaintyqz ∈
Q such thatp( jω0,qz) = z. In summary, the setp( jω0,Q) is precisely the rectangle
depicted in Figure 5.7.1.
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6

-

Im

Re

p( jω0,Q)

Re K1( jω0) Re K2( jω0)

Im K4( jω0)

Im K3( jω0)

Figure 5.7.1. The Kharitonov Rectangle forω0 ≥ 0

We now relate the vertices of the rectanglep( jω0,Q) to the Kharitonov polynomi-
als:

Southwest Vertex= Re K1( jω0)+ jIm K3( jω0)

= Re K1( jω0)+ jIm K1( jω0)

= K1( jω0);

Northeast Vertex= Re K2( jω0)+ jIm K4( jω0)

= Re K2( jω0)+ jIm K2( jω0)

= K2( jω0);

Southeast Vertex= Re K2( jω0)+ jIm K3( jω0)

= Re K3( jω0)+ jIm K3( jω0)

= K3( jω0);

Northwest Vertex= Re K1( jω0)+ jIm K4( jω0)

= Re K4( jω0)+ jIm K4( jω0)

= K4( jω0).

This leads to our final depiction of theKharitonov rectanglegiven in Figure 5.7.2. The
key point to note is that each vertex is associated with a unique Kharitonov polynomial.
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6

-

Im

Re

p( jω0,Q)

K4( jω0) K2( jω0)

K1( jω0) K3( jω0)

Figure 5.7.2. Simplified Kharitonov Rectangle forω0 ≥ 0

EXERCISE 5.7.2 (Kharitonov Rectangle forω0 < 0 andω0 = 0): Sketch the Kharitonov
rectanglep( jω0,Q) for ω0 < 0 with vertices carefully labeled. Forω0 = 0, notice that
p( jω0,Q) = [q−0 ,q+

0 ].

REMARKS 5.7.3 (Motion of Kharitonov Rectangle): Thus far, the discussionof the
Kharitonov rectangle has been in the context of a frozen frequencyω = ω0. We now
entertain the notion of sweeping the frequency. Indeed, we begin atω = 0 and imagine
ω increasing. This results in motion of the Kharitonov rectangle. That is, we have a
rectangle moving around the complex plane with verticesKi( jω) obtained by evalua-
tion of the Kharitonov polynomials. Generally, the dimensions of this rectangle vary
with the frequencyω .

EXAMPLE 5.7.4 (Illustration of Motion): For the interval polynomial

p(s,q) = [0.25,1.25]s3+[2.75,3.25]s2+[0.75,1.25]s+[0.25,1.25]

which we analyzed in Example 5.6.2, we illustrate the motionof the Kharitonov rect-
anglep( jω ,Q) in Figure 5.7.3 for twenty frequencies evenly spaced between ω = 0
andω = 1. Notice that this rectangle begins atω = 0 as an interval on the positive real
axis and then moves from the first to the second quadrant asω is increased.
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Figure 5.7.3. Motion of Kharitonov Rectangle for Example 5.7.4

5.7.5. Angle Considerations

In this subsection, we review some basic facts about the angle of a polynomial as a
function of frequency. We include the proof of the well-known lemma below because
the underlying ideas are useful in later chapters. In a control setting, the lemma below
is often credited to Mikhailov (1938).

LEMMA 5.7.6 (Monotonic Angle Property): Suppose that p(s) is a stable polynomial.
Then the angle of p( jω) is a strictly increasing function ofω ∈ R. Furthermore, asω
varies from0 to +∞, 6 ) p( jω) experiences an increment of nπ/2.

Proof: First, we writep(s) = K ∏n
i=1(s− zi), whereK ∈ R andRe zi < 0 for i =

1,2, . . . ,n. The angle ofp( jω) is given by

6 ) p( jω) = 6 ) K +
n

∑
i=1

6 ) ( jω −zi).

With θi(ω) = 6 ) ( jω −zi) and the aid of Figure 5.7.4, we make the following observa-
tions, noting thatzi lies in the strict left half plane: Ifzi is purely real, then asω varies
from 0 to+∞, θi(ω) is strictly increasing and experiences a net increment ofπ/2. If zi

is complex, we work withzi in combination with its conjugatez∗i . Now, asω increases
from 0 to+∞, the corresponding anglesθi(ω) are strictly increasing and contribute a
net increment total ofπ . The proof of the lemma is completed by summing over the
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Im

z∗i

zi

θi(ω)

jω −zi

Re

Figure 5.7.4.θi(ω) is a Strictly Increasing Function ofω

θi(ω).

EXERCISE 5.7.7 (More General Angle Considerations): Supposep(s) is ann-th order
polynomial withn1 roots in the strict left half plane andn2 roots in the strict right half
plane. Assume thatn1 + n2 = n and show that asω varies from 0 to+∞, 6 ) p( jω)
experiences a total change in angle of(n1−n2)π/2. Also modify the result to allow
for the case whenp(s) has some roots on the imaginary axis.

5.7.8. The Zero Exclusion Condition

In this subsection, we introduce the Zero Exclusion Condition. The technical ideas
associated with this condition arise time and time again throughout the remainder of
this text. Since we are currently working within the framework of interval polynomials,
the lemma below is not stated in full generality; the most general version which we
provide is given in Theorem 7.4.2. In addition to facilitating the proof of Kharitonov’s
Theorem, the lemma below is also of practical use because it suggests a simple test for
robust stability which is easy to implement in graphics.

LEMMA 5.7.9 (Zero Exclusion Condition):Suppose that an interval polynomial family
P = {p(·,q) : q ∈ Q} has invariant degree and at least one stable member p(s,q0).
ThenP is robustly stable if and only if z= 0 is excluded from the Kharitonov rectangle
at all nonnegative frequencies; i.e.,

0 /∈ p( jω ,Q)

for all frequenciesω ≥ 0.
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Proof: We first justify the restriction to nonnegative frequencies. To this end, note
thatz∈ p( jω ,Q) if and only if z∗ ∈ p(− jω ,Q). Hence, without loss of generality, we
restrict our attention toω ≥ 0.

To establish necessity, we assume thatP is robustly stable and must prove that
0 /∈ p( jω ,Q) for all ω ∈ R. Proceeding by contradiction, suppose that 0∈ p( jω∗,Q)
for some frequencyω∗ ∈ R. Thenp( jω∗,q∗) = 0 for someq∗ ∈Q; i.e., the polynomial
p(s,q∗) has a root ats= jω∗ which contradicts robust stability ofP.

To establish sufficiency, we assume that 0/∈ p( jω ,Q) for all ω ∈ R and must show
thatP is robustly stable. Proceeding by contradiction, ifP is not robustly stable, then
p(s,q1) is unstable for someq1 ∈ Q. Now, for λ ∈ [0,1], let

p̃(s,λ ) = p(s,λq1 +(1−λ )q0)

and notice that ˜p(s,λ ) ∈ P becauseλq1 + (1− λ )q0 ∈ Q. Moreover, forλ = 0,
p̃(s,0) = p(s,q0) has all roots in the strict left half plane and forλ = 1, p̃(s,1) =
p(s,q1) has at least one root in the closed right half plane. Since theroots of p̃(s,λ )
depend continuously onλ (Lemma 4.8.2), there exists aλ ∗ ∈ [0,1] such that ˜p(s,λ ∗)
has a root on the imaginary axis. Equivalently,p( jω∗,λ ∗q1+(1−λ ∗)q0) = 0 for some
ω∗ ∈ R. This implies that 0∈ p( jω∗,Q), which is the contradiction we seek.

REMARKS 5.7.10 (Real Versus Complex Coefficients): When working with the Zero
Exclusion Condition for the complex coefficient case, we canno longer restrict at-
tention to ω ≥ 0; i.e., we cannot exploit the fact thatz ∈ p( jω ,Q) if and only if
z∗ ∈ p(− jω ,Q). In this case, the lemma above requires a minor modification:Un-
der the standing hypotheses,P is robustly stable if and only if 06∈ p( jω ,Q) for all
ω ∈ R. This arises in Chapter 6 when we consider the complex coefficient version of
Kharitonov’s Theorem.

5.8. Proof of Kharitonov’s Theorem

The proof of necessity is trivial; i.e., ifP is robustly stable, it follows that the four
Kharitonov polynomials are stable becauseKi(s) ∈ P for i = 1,2,3,4. To establish
sufficiency, we assume that the four Kharitonov polynomialsare stable and must prove
thatP is robustly stable. Proceeding by contradiction, suppose thatP is not robustly
stable. Using the standard notationp(s,q) = ∑n

i=0[q
−
i ,q+

i ]si , we consider two cases.
Case 1: 0∈ [q−0 ,q+

0 ]. Recalling the invariant degree assumption, it must be truethatq−n
andq+

n have the same sign. Without loss of generality, say that the signs ofq−n andq+
n

are positive. Then it follows that at least one of the four Kharitonov polynomials, call
it Ki∗(s), has coefficient ofsn, which is positive, and coefficient ofs0, which is nonpos-
itive. This contradicts the assumed stability ofKi∗(s) because a stable polynomial must
have nonzero coefficients which all have the same sign.
Case 2: 0 6∈ [q−0 ,q+

0 ]. Sincep( j0,Q) = [q−0 ,q+
0 ] is the Kharitonov rectangle atω = 0,

we have 06∈ p( j0,Q). On the other hand, sinceP is not robustly stable, we know
by the Zero Exclusion Condition (Lemma 5.7.9) that 0∈ p( jω∗,Q) for someω∗ ∈ R.
Now, using the fact that 0/∈ p( j0,Q), the continuous motion of the verticesKi( jω) of
p( jω ,Q) guarantees that there must be some frequencyω̂ > 0 for whichz= 0 pierces
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the boundary of the rectanglep( jω̂ ,Q). Without loss of generality, assume that this
piercing occurs on the southern boundary ofp( jω̂ ,Q) as shown in Figure 5.8.1. Also,

Re

Im

6

?

K3( jω̂) moves

this way

K1( jω̂) moves this way

K1( jω̂) K3( jω̂)

6

-

Figure 5.8.1. Piercing the Boundary of the Kharitonov Rectangle

note thatz= 0 cannot be coincident withK1( jω̂) or K3( jω̂) becauseK1(s) andK3(s)
are assumed stable. To complete the proof, we exploit continuity of the Ki( jω) and
the Monotonic Angle Property (Lemma 5.7.6). Namely, forδω̂ > 0 suitably small, it
follows that

00 < 6 ) K3( j(ω̂ + δω̂)) < 900

and
1800 < 6 ) K1( j(ω̂ + δω̂)) < 2700.

We now have the contradiction which we seek because simultaneous satisfaction of
the two angle inequalities above makes it impossible for thesouthern boundary of the
rectanglep( j(ω̂ + δω̂),Q) to remain parallel to the real axis.

5.9. Formula for the Robustness Margin

For an interval polynomial family, by combining the resultsof this chapter with
those of Chapter 4, we obtain the robustness margin formulasof Fu and Barmish (1988).
To this end, we describe ann-th order interval polynomial family with stable nominal
p0(s) and variable uncertainty boundr ≥ 0 by writing

pr(s,q) = p0(s)+ r
n−1

∑
i=0

[−εi ,εi ]s
i .

We view theεi ≥ 0 above as scale factors which determine the aspect ratios ofthe
uncertainty bounding setQr . Letting Pr denote the resulting family of polynomials,
our objective is to provide a formula for the robustness margin

rmax= sup{r : Pr is robustly stable}.
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To obtain the desired formula, we first argue that Kharitonov’s Theorem enables us
to reduce the robustness margin problem to four separate problems for the uncertain
polynomials{p0(s)+qp1,i(s)}4

i=1, where

p1,1(s) = −ε0− ε1s+ ε2s2 + ε3s3− ε4s4− ε5s5 + ε6s6 + · · · ;

p1,2(s) = ε0 + ε1s− ε2s2− ε3s3 + ε4s4 + ε5s5− ε6s6−·· · ;

p1,3(s) = ε0− ε1s− ε2s2 + ε3s3 + ε4s4− ε5s5− ε6s6 + · · · ;

p1,4(s) = −ε0 + ε1s+ ε2s2− ε3s3− ε4s4 + ε5s5 + ε6s6−·· · .
Now, applying Theorem 4.7.6 and taking the worst case with respect toi = 1,2,3,4,
we arrive at the formula

rmax= min
i≤4

1

λ +
max(−H−1(p0)H(p1,i))

.

5.10. Robust Stability Testing via Graphics

The Zero Exclusion Condition (see Lemma 5.7.9) suggests a simple graphical pro-
cedure for checking robust stability—watch the motion of the Kharitonov rectangle
p( jω ,Q) as ω varies from 0 to+∞ and determine by inspection if the condition
0 6∈ p( jω ,Q) is satisfied. This raises the following question: Can we find some fi-
nite precomputablecutoff frequencyωc > 0 such that 06∈ p( jω ,Q) for all ω ≥ ωc?
That is, can we terminate the frequency sweep at the frequency ω = ωc?

The existence ofωc is easily established using the invariant degree condition. In-
deed, suppose thatp(s,q) = ∑n

i=0[q
−
i ,q+

i ]si and, without loss of generality, assume that
q−i > 0 for i = 0,1, . . . ,n. Then given anyq∈ Q, it is easy to see that forω ≥ 0,

|p( jω ,q)| ≥ q−n ωn−
n−1

∑
i=0

q+
i ω i .

Since the right-hand side tends to+∞ asω → +∞, it follows that for any prescribed
β > 0 there exists anωc > 0 such that|p( jω ,q)| ≥ β for all ω > ωc. Hence, 06∈
p( jω ,Q) for all ω > ωc.

In fact, we can easily compute an appropriateωc. For example, one can takeωc to
be the largest real root of the polynomial

f (ω) = q−n ωn−
n−1

∑
i=1

q+
i ω i .

Other possibilities for estimatingωc (often less conservatively) are suggested from
classical bounds on the roots of a polynomial. For example, in Marden (1966), it is
seen that the roots of a fixed positive coefficient polynomialp(s) = ∑n

i=0aisi lie in a
disc of radius

R= 1+
max{a0,a1, . . . ,an−1}

an
.
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Figure 5.10.1. Graphical Robust Stability Test for Example5.10.1

Hence, for the interval polynomialp(s,q), with q−n > 0, it follows that an appropriate
cutoff frequency is given by

ωc = 1+
max{q+

0 ,q+
1 , . . . ,q+

n−1}
q−n

.

EXAMPLE 5.10.1 (Illustration of Graphics Method): We consider the interval polyno-
mial family P = {p(·,q) : q∈ Q} described by

p(s,q) = s6 +[3.95,4.05]s5+[3.95,4.05]s4+[5.95,6.05]s3

+ [2.95,3.05]s2+[1.95,2.05]s+[0.45,0.55].

In accordance with Lemma 5.7.9, the first step in the graphical test for robust stability
requires that we guarantee that at least one polynomial inP is stable. Using the
midpoint of each interval above, we obtainp(s,q0) = s6 + 4s5 + 4s4 + 6s3 + 3s2 +
2s+0.5, whose roots ares1 ≈−3.2681,s2,3 ≈ −0.1328±0.9473j, s4,5 ≈−0.0731±
0.7190j ands6 ≈−0.3201.

Next, in accordance with the discussion of cutoff frequencies above, we compute
the largest real root of the test polynomialf (ω); that is, with

f (ω) = ω6−4.05ω5−4.05ω4−6.05ω3−3.05ω2−2.05ω −0.55,

we obtainωc ≈ 5.1023 as an acceptable cutoff frequency for the required Kharitonov
rectangle plot. In Figure 5.10.1, we provide a “zoom” of the required plot using 100
evenly spaced frequencies in the critical range 0≤ ω ≤ 1. For ω in this range, the
Kharitonov rectangle makes its closest approach toz = 0. Since 06∈ p( jω ,Q), we
conclude that the family of polynomialsP is robustly stable.
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5.11. Overbounding via Interval Polynomials

As mentioned in the introduction to this chapter, the independent uncertainty struc-
ture is restrictive because uncertain parameters typically enter into more than one coef-
ficient. For such “dependent” uncertainty structures, we consider two alternatives: The
first alternative is to develop more general results; this isthe topic of later chapters.
The second alternative is the so-calledoverbounding method, which is described be-
low. One warning, however, is in order: Although the overbounding method is easy to
use, it may lead to unduly conservative results; i.e., we only obtain sufficient conditions
for robustness. In short, associated with overbounding is atrade-off between ease of
use and degree of conservatism.

In the remainder of this section, we no longer require the polynomialsp(s,q) to
have an independent uncertainty structure, and, in addition, Q is not necessarily a
box. We begin with the uncertain polynomialp(s,q) = ∑n

i=0ai(q)si and an uncertainty
bounding setQ which is closed and bounded. Assuming the coefficient functionsai(q)
depend continuously onq, we define the bounds

q−i = min
q∈Q

ai(q)

and
q+

i = max
q∈Q

ai(q)

and simply observe that the family of polynomialsP described by

p(s,q) =
n

∑
i=0

[q−i ,q+
i ]si

is a superset ofP. Therefore, any robustness property which holds for the interval
polynomial familyP must hold forP. In particular, robust stability ofP implies
robust stability ofP. Note, however, that the converse is not true. These points are
illustrated via the examples below.

EXAMPLE 5.11.1 (Success of Overbounding): Consider the family of polynomialsP

described by

p(s,q) = s4 +(5+0.2q1q2+0.1q1−0.1q2)s
3 +(6+3q1q2−4q2)s

2

+ (6+6q1−8q2)s+(0.5−3q1q2)

and uncertainty bound|qi | ≤ 0.25 for i = 1,2. The objective is to determine whether
P is robustly stable. To this end, we compute bounds

q−0 = min
q∈Q

a0(q) = min
−0.25≤qi≤0.25

(0.5−3q1q2) = 0.3125;

q+
0 = max

q∈Q
a0(q) = max

−0.25≤qi≤0.25
(0.5−3q1q2) = 0.6875;

q−1 = min
q∈Q

a1(q) = min
−0.25≤qi≤0.25

(6+6q1−8q2) = 2.5;

q+
1 = max

q∈Q
a1(q) = max

−0.25≤qi≤0.25
(6+6q1−8q2) = 9.5.
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Similar computations yieldq−2 = 4.8125, q+
2 = 7.1875, q−3 = 4.9475 andq+

3 = 5.0375.
Hence, an interval polynomial familyP used for overbounding is described by

p(s,q) = s4 +[4.9475,5.0375]s3+[4.8125,7.1875]s2

+ [2.5,9.5]s+[0.3125,0.6875].

By applying Kharitonov’s Theorem to the overbounding family P above, it is straight-
forward to verify that the four Kharitonov polynomials are stable. Hence, from the
robust stability ofP, we conclude that the original familyP must also be robustly
stable.

EXERCISE 5.11.2 (Failure of Overbounding): In this exercise, the objectiveis to illus-
trate how overbounding can fail. To this end, consider the family of polynomialsP

given in Wei and Yedavalli (1989); i.e., the familyP is described by

p(s,q) = s4 +s3 +2qs2+s+q

with uncertainty bounding setQ = [1.5,4]. Argue thatP is robustly stable but the
overbounding family

p(s,q) = s4 +s3+[3,8]s2+s+[1.5,4]

has an unstable Kharitonov polynomial.

5.12. Conclusion

In a sense, Kharitonov’s Theorem raises more questions thanit answers. To illus-
trate the type of questions suggested by Kharitonov’s Theorem, we consider the robust
Schur stability problem for an interval polynomial familyP: Indeed, if the associated
four Kharitonov polynomials have all their roots in the interior of the unit disc, does
it follow that P is robustly Schur stable? If not, does it suffice to test polynomials
associated with all the vertices ofQ? More generally, for what type of root location
regions does a Kharitonov-like extreme point result hold? The list of possible ques-
tions seems endless. In Chapter 13, we characterize classesof D regions for which
D-stability of the polynomials associated with the extreme points of theQ box implies
robustD-stability of the associated interval polynomial family.

Notes and Related Literature

NRL 5.1 The paper by Faedo (1953) appears to have provided importantmotivation for Kharitonov’s
work.

NRL 5.2 Kharitonov’s original proof is based on the Hermite–Biehler Theorem; e.g., see Gant-
macher (1959). Indeed, consider a polynomialp(s) decomposed into even and odd partsp(s) =

peven(s2)+ spodd(s2). Then, according to the Hermite–Biehler Theorem,p(s) is stable if and
only if peven(x) and podd(x) have highest order coefficients of the same sign and negativereal
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distinct interlacing roots; e.g., if polynomialp(s) has odd degree andxe,1 < xe,2 < · · ·< xe,m and
xo,1 < xo,2 < · · · < xo,m are the roots ofpeven(x) and podd(x), respectively, thenxo,1 < xe,1 <

xo,2 < xe,2 < · · · < xo,m < xe,m. The key idea behind the original proof of Kharitonov’s Theo-
rem is as follows: Given an interval polynomial familyP , one creates “root intervals” for the
even and odd parts. The endpoints of these intervals are associated with the Kharitonov poly-
nomials. Subsequently, it is argued that satisfaction of the root interlacing condition for each
Kharitonov polynomial implies satisfaction of the root interlacing condition for the entire fam-
ily. The Hermite–Biehler line of attack is not pursued in this text because we want to explain as
many results as possible within the unifying framework of value sets. The Kharitonov rectangle
is in fact an example illustrating the more general value setconcept of Chapter 7.

NRL 5.3 The key ideas underlying our proof of Kharitonov’s Theorem come from Dasgupta (1988)
and Minnichelli, Anagnost and Desoer (1989). More specifically, we note that Dasgupta (1988)
exposes the rectangular geometry ofp( jω,Q) and Minnichelli, Anagnost and Desoer (1989) ex-
ploits rectangularity and the Zero Exclusion Condition to obtain a simple proof of the theorem.

NRL 5.4 The paper by Frazer and Duncan (1929) appears to be the first touse the Zero Exclusion
Condition in a robust stability context.

NRL 5.5 For more complicated uncertainty structures, Wei and Yedavalli (1989) propose a trans-
formation technique in lieu of overbounding. Their approach involves applying aq-dependent
linear transformation to the even or odd parts ofp(s,q). As a simple illustration, takep(s) =

peven(s2)+spodd(s2) and suppose,R(q) andI(q) are positive functions ofq. Defining the trans-
formed polynomial ˜p(s,q) = R(q)peven(s2)+sI(q)podd(s2), it is easy to show that robust stabil-
ity remains invariant and in some cases, a reduction of conservatism may result. The potential
for further research involving such methods is illustratedby the familyP in Exercise 5.11.2. A
robust stability test based on overbounding by an interval polynomial is inconclusive but multi-
plication of the even part by 1/q and the odd part by unity leads to an interval polynomial whose
robust stability is easily verified by Kharitonov’s Theorem.

NRL 5.6 There are a number of papers in the literature involving transformations aimed at fa-
cilitating robust stability analysis. For example, using the shifted circles in Petersen (1989), one
can deal with the so-called Delta transform for a discrete-time system; for similar extreme point
results involving Delta transformation, see also Soh (1991). The paper by Vaidyanathan (1990)
provides another example of a transformation used for discrete-time problems.

NRL 5.7 Some alternatives to the technique described in Section 5.11 are given in papers by
Djaferis (1991) and Pujara (1990). These papers describe different overbounding families which
are sometimes useful.

NRL 5.8 Rather than working with the original coefficients, one can consider a bounding box
B in the space of Markov parameters. By breaking ann-th order p(s) into its even and odd
parts asp(s) = peven(s2)+spodd(s2), a continued fraction expansion forpodd(x)/peven(x) leads
to the set of Markov parameters; see Gantmacher (1959). Ifn = 2m, we obtain parameters
(b0,b1, . . . ,b2m−1), and ifn = 2m−1, we obtain(b−1,b0, . . . ,b2m−1). With this representation,
robust stability is guaranteed if and only if two distinguished polynomials are stable. For ex-
ample, if n = 2m and the boxB is described byb−i ≤ bi ≤ b+

i for i = 0,1,2, . . . ,2m− 1, the
first distinguished polynomial has Markov parameters(b−0 ,b+

1 ,b−2 , . . . ,b+
2m−1) and the second

distinguished polynomial has Markov parameters(b+
0 ,b−1 ,b+

2 , . . . ,b−2m−1); see Hollot (1989) for
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further elaboration. Of course, a fundamental limitation of these results is that the relationship
between the Markov parameters and the original parameters is generally quite complicated. This
complication motivates interesting research problems involving system identification for robust
control.

NRL 5.9 We mention a body of work aimed at generalization of Kharitonov’s Theorem toscat-
tering Hurwitz polynomials. For example, in papers by Bose (1988), Kim and Bose (1988) and
Basu (1989), the uncertain polynomialp(s,q) is replaced by a multivariate uncertain polynomial
p(s1,s2, . . . ,sn,q) and interval bounds on the coefficients are imposed.
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1.28.1 Lecture: Stability, duel systems

No class next Tuesday.

Note, for LTV, the duel system

�̃� = −𝐴𝑇(𝑡)
�̃� = 𝐶𝑇(𝑡)
�̃� = 𝐵𝑇(𝑡)
�̃� = 𝐷(𝑡)

But for LTI, the duel system is

�̃� = 𝐴𝑇

�̃� = 𝐶𝑇

�̃� = 𝐵𝑇

�̃� = 𝐷

Reader: show that for the duel Φ̃ (𝑡, 𝜏) = Φ𝑇 (𝜏, 𝑡) and that �Ψ𝑇 (𝑡)�
−1
= Ψ̃ (𝑡)

Summary of LT and LTV:

Duality (LTI)

𝐴,𝐵, 𝐶,𝐷⟺ 𝐴𝑇, 𝐶𝑇, 𝐵𝑇, 𝐷
𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)

⟺
𝑥′(𝑡) = 𝐴𝑇𝑥(𝑡) + 𝐶𝑇𝑢(𝑡)
𝑦(𝑡) = 𝐵𝑇𝑥(𝑡) + 𝐷𝑇𝑢(𝑡)

Duality (LTV)

primal⟺ duel

𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡), 𝐷(𝑡)⟺ −𝐴𝑇(𝑡), 𝐶𝑇(𝑡), 𝐵𝑇(𝑡), 𝐷𝑇(𝑡)
Φ(𝑡0, 𝜏)⟺ Φ𝑇(𝜏, 𝑡0)

𝑥′(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡)
𝑦(𝑡) = 𝐶(𝑡)𝑥(𝑡) + 𝐷(𝑡)𝑢(𝑡)

⟺
𝑧′(𝑡) = −𝐴𝑇(𝑡)𝑧(𝑡) + 𝐶𝑇(𝑡)𝑣(𝑡)
𝑤(𝑡) = 𝐵𝑇(𝑡)𝑧(𝑡) + 𝐷𝑇(𝑡)𝑣(𝑡)

controllability Gramian
(LTV)

𝑊(𝑡0, 𝑡1) = ∫
𝑡1

𝑡0
Φ(𝑡0, 𝜏)𝐵(𝜏)𝐵𝑇(𝜏)Φ𝑇(𝑡0, 𝜏) 𝑑𝑡

observability Gramian
(LTV)

𝑊𝑜(𝑡0, 𝑡1) = ∫
𝑡1

𝑡0
Φ𝑇(𝜏, 𝑡0)𝐶𝑇(𝜏)𝐶(𝜏)Φ(𝜏, 𝑡0) 𝑑𝑡

Controllability Matrix (LTI) ℂ = � 𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴𝑛−1𝐵 �
Controllability Matrix
(LTV)

𝑀 = � 𝑀0 𝑀1 ⋯ 𝑀𝑛−1 �

𝑀0 = 𝐵(𝑡),𝑀𝑘+1 = −𝐴(𝑡)𝑀𝑘 +
𝑑
𝑑𝑡𝑀𝑘 for 𝑘 = 0⋯𝑛 − 2

Observability Matrix (LTI) ℚ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶
𝐶𝐴
𝐶𝐴2

⋮
𝐶𝐴𝑛−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Observability Matrix (LTV) 𝐿(𝑡) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐿0
𝐿1
𝐿2
⋮

𝐿𝑛−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐿0(𝑡) = 𝐶(𝑡), 𝐿𝑘+1(𝑡) = 𝐿𝑘(𝑡)𝐴(𝑡) +
𝑑
𝑑𝑡𝐿𝑘(𝑡) for 𝑘 = 0⋯𝑛 − 2

definition of physical control-
lability (LTI)

System is controllable if for any initial state 𝑥0 and any final state
𝑥1 ∃ input 𝑢(𝑡) that transfer 𝑥0 to 𝑥1 in finite time.

definition of physical control-
lability (LTV)

System is controllable at 𝑡0 if ∃ input 𝑢 over [𝑡0, 𝑡1] that transfers
𝑥(𝑡0) to any 𝑥(𝑡1) where 𝑡1 > 𝑡0

definition of physical observ-
ability (LTI)

System is observable if ∃ time 𝑡1 > 𝑡0 such that knowing input 𝑢
and output 𝑦 over [𝑡0, 𝑡1] su�ces to determine state 𝑥(𝑡0)

definition of physical observ-
ability (LTV)

System is observable at 𝑡0 if the following condition holds: With
𝑥(𝑡0) = 𝑥0 unknown, suppose 𝑢(𝑡) and 𝑦(𝑡) are known, then there
exist time 𝑡1 ≥ 𝑡0 such that 𝑥(𝑡0) can be determined from knowing
𝑢(𝑡) and 𝑦(𝑡) over [𝑡0, 𝑡1]. This is true for any 𝑥(𝑡0)

State solution (LTV). 𝐴(𝑡)
commutes with itself, i.e.
𝐴(𝑡)𝐴(𝜏) = 𝐴(𝜏)𝐴(𝑡) then

Ψ(𝑡) = 𝑒
∫𝑡
𝑡0
𝐴(𝜁) 𝑑𝜁

Φ(𝑡, 𝜏) = Ψ(𝑡)Ψ−1(𝜏)

Φ(𝑡, 𝜏) = 𝑒∫
𝜏
𝑡
𝐴(𝜁) 𝑑𝜁

𝑥(𝑡1) = Φ(𝑡1, 𝑡0)𝑥(𝑡0) + ∫
𝑡1

𝑡0
Φ(𝑡1, 𝜏)𝐵(𝜏)𝑢(𝜏) 𝑑𝜏

State solution (LTV)
𝐴(𝑡) does not commutes
with itself, but 𝐴(𝑡) com-
mutes with its integral. i.e.

𝐴(𝑡)𝑒∫
𝑡
0
𝐴(𝜏) 𝑑𝜏 = 𝑒∫

𝑡
0
𝐴(𝜏) 𝑑𝜏𝐴(𝑡)

then the same applied as
above.

𝑥(𝑡1) = Φ(𝑡1, 𝑡0)𝑥(𝑡0) + ∫
𝑡1

𝑡0
Φ(𝑡1, 𝜏)𝐵(𝜏)𝑢(𝜏) 𝑑𝜏

State solution (LTV)
None of the above condi-
tions apply. This is the hard
case. Need to actually solve
for Φ(𝑡, 𝜏) by solving the state
equations.

𝑥(𝑡1) = Φ(𝑡1, 𝑡0)𝑥(𝑡0) + ∫
𝑡1

𝑡0
Φ(𝑡1, 𝜏)𝐵(𝜏)𝑢(𝜏) 𝑑𝜏

State solution (LTI) 𝑥(𝑡1) = 𝑒𝐴(𝑡1−𝑡0)𝑥(𝑡0) + ∫
𝑡1

𝑡0
𝑒𝐴(𝑡1−𝜏)𝐵𝑢(𝜏) 𝑑𝜏

State solution (LTI) with 𝑡0 =
0

𝑥(𝑡1) = 𝑒𝐴(𝑡1)𝑥(0) + ∫
𝑡1

0
𝑒𝐴(𝑡1−𝜏)𝐵𝑢(𝜏) 𝑑𝜏

Back to canonical decomposition. Notice that decomposition is for LTI only, not for LTV.

Stability:

system characteristic equation 𝑃(𝑠) =
𝑛
�
𝑖=0
𝑎𝑖𝑠𝑖. Let us assume all signs of 𝑃(𝑠) is the same to

start with (if they are the same, then the polynomial is not stable. Also, assume all are
positive. (we can always multiply by −1 to force this if needed.)

To find roots of 𝑃(𝑠) we can solve and check if Re (.) of each root is negative. If so, we
say the system is stable. But we can check for stability without finding the roots using
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Routh-Hurwitz. The proof is complicated. To use, here is an example for 𝑛 = 5

𝐻𝐻𝑢𝑟𝑤𝑖𝑡𝑧 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1 𝑎3 𝑎5 0 0
𝑎0 𝑎2 𝑎4 0 0
0 𝑎1 𝑎3 𝑎5 0
0 𝑎0 𝑎2 𝑎4 0
0 0 𝑎1 𝑎3 𝑎5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now find Δ𝑖 for each leading principle minor. Hence

Δ1 = 𝑎1

Δ2 = �
𝑎1 𝑎3
𝑎0 𝑎2

�

Δ3 =
�

�

𝑎1 𝑎3 𝑎5
𝑎0 𝑎2 𝑎4
0 𝑎1 𝑎3

�

�

⋮

The system is stable if all Δ𝑖 > 0. A necessary condition for stability is that all 𝑎𝑖 must be
same sign. But this is not su�cient. Therefore, always start by checking for this. If there is
sign change, no need to do Hurwitz, since not stable. Otherwise, have to do the above to
determine stability.

Example: 𝑃 (𝑠) = 𝑠3 + 3𝑠2 + 3𝑠 + 1.

𝐻𝐻𝑢𝑟𝑤𝑖𝑡𝑧 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 1 0
1 3 0
0 3 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Δ1 = 1, Δ2 = 8, Δ3 = 8, hence stable.

Reader: Suppose we want to check for stable where Re (.) of all roots are such that Re (.) <
−𝛼. Modify 𝑃 (𝑠) to become 𝑃 (𝑠 + 𝛼). Now we want to generalize to robust control. When
we created �= (𝐴, 𝐵, 𝐶,𝐷) we have an approximation to the system. So we have actually
𝐴𝑡𝑟𝑢𝑒 = 𝐴 + Δ𝐴, i.e. some perturbation of 𝐴 on both sides. So the true 𝐴 can become
unstable. So we want 𝑃(𝑠)+ some perturbation. Consider

𝑃𝑡𝑟𝑢𝑒 (𝑠) = 𝑠𝑛+𝑎𝑛−1𝑠𝑛−1+⋯+𝑎0 where now we way that 𝑎−𝑖 ≤ 𝑎𝑖 ≤ 𝑎+𝑖 and the limits are known.
This is called interval polynomial.

This is robustly stable no matter what values of 𝑎𝑖 can have between the limits. The robust
analysis problem was solved only in the last 30 years. Motivation for solution. Assume
we have only 2 𝑎𝑖 which are 𝑎1, 𝑎2. Each with known limits. Hence we have the following
diagram.

a1
 a1



a2


a2


One approach is to make grid and solve for each combination, but this will become very
large as more 𝑎′𝑠 are added. But Kharitonov’s theorem reduces this to only 4 parameters.
See hand out on Kharitonov’s theorem. So we only have to check stability for 4 di�erent
polynomials instead of thousands and millions of them as the case would be with the grid
method.
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1.29 Lecture 27. Tuesday, November 25 2014 (no
lecture)

No lecture.

1.30 Lecture 28. Thursday November 27 2014 (holiday)

Holiday

1.31 Lecture 29. Tuesday December 1 2014

1.31.1 Lecture: Stability, Hurwitz

Next 3 lectures will be on stability. One HW on stability due next Tuesday As well the
special problem.

When dealing with linear systems, we form the characteristic polynomial 𝑃(𝑠). If we know
the location of the roots, we can also find other properties.

reader: if 𝑃(𝑆) is stable and we reverse the order of the coe�cients to obtain �̂�(𝑠), is �̂�(𝑠)
stable?

Next we look at interval polynomial. 𝑃(𝑠) = 𝑠𝑛 + ∑𝑛−1
𝑖=0 𝑎𝑖𝑠

𝑖. We are interested in robust
stability where each coe�cients 𝑎𝑖 has some range of values it can take

𝑎−𝑖 ≤ 𝑎𝑖 ≤ 𝑎+𝑖
Robust stability: This polynomial is stable no matter what values 𝑎𝑖 takes in this range.
There are also robust tracking, robust damping, robust dynamic systems and other area
where robustness is applied.

We can ask: How sensitive is system due to change in parameters? For 𝑛, 𝑎𝑖 coe�cients
there is 2𝑛 vertices If the extreme points define stable polynomial (i.e. max and min values
of each interval), we would expect it to be stable for values in between.

Kharitonov theorem gave 4 fixed polynomials to check for stability of robust polynomial.
We define the four polynomials as

𝐾1(𝑠) = 𝑎+0 + 𝑎+1 𝑠 + 𝑎−2 𝑠2 + 𝑎−3 𝑠3 + …
𝐾2(𝑠) = 𝑎−0 + 𝑎−1 𝑠 + 𝑎+2 𝑠2 + 𝑎+3 𝑠3 + …
𝐾3(𝑠) = 𝑎+0 + 𝑎−1 𝑠 + 𝑎−2 𝑠2 + 𝑎+3 𝑠3 + 𝑎+4 𝑠4

𝐾4(𝑠) = 𝑎−0 + 𝑎+1 𝑠 + 𝑎+2 𝑠2 + 𝑎−3 𝑠3 + 𝑎−4 𝑠4

Kharitonov theorem The uncertain polynomial 𝑃(𝑠) is robustly stable i� the above four
polynomials are stable.

The proof of necessity is easy. The su�ciency proof is hard.

Examples: Let 𝑃(𝑠) = 𝑠3 +4𝑠2 +5𝑠+ 2. This is stable by construction (𝑠 + 1)2(𝑠 + 2). Roots are
negative. Suppose we have interval polynomial 𝑃(𝑠) = 𝑠3 + [3.5, 4.5]𝑠2 + [4.5, 5.5]𝑠 + [1.5, 2.5]
then the four polynomials are

𝐾1(𝑠) = 𝑠3 + 4.5𝑠2 + 5.5𝑠 + 1.5
𝐾2(𝑠) = 𝑠3 + 3.5𝑠2 + 4.5𝑠 + 2.5
𝐾3(𝑠) = 𝑠3 + 4.5𝑠2 + 4.5𝑠 + 1.5
𝐾4(𝑠) = 𝑠3 + 3.5𝑠2 + 5.5𝑠 + 2.5

For low order polynomials, sometimes have to check less than 4 polynomials Sometimes
only need to check 3 or just 2 as some will come up duplicate.
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reader: check stability of the above.

If we start with stable polynomial 𝑃(𝑠), we can ask, by what percentage can we perturb the
coe�cients while preserving stability? Similar to asking for radius of stability.

How to set it up? How to use percentage?

𝑃(𝑠) = 𝑠3 + 4(1 + 𝜖)𝑠2 + 5(1 + 𝜖)𝑠 + 2(1 + 𝜖)
= 𝑠3 + 4[1 − 𝜖, 1 + 𝜖]𝑠2 + 5(1 − 𝜖, 1 + 𝜖)𝑠 + 2[1 − 𝜖, 1 + 𝜖]

For 𝜖 ≪ 1 we know it is stable. If 𝜖 denotes the percentage perturbation, we want

𝜖𝑚𝑎𝑥 = sup 𝜖 ∶ s.t. robust stability is guaranteed

HW7 assigned.

1.32 Lecture 30. Thursday December 4 2014

1.32.1 Lecture: Stability, Lyapunov

On the special problem: up to 10 points of the course. Due same time as last HW. Today
topic is related to special problem. can be done with computer simulation or theory.

Back to robust stability. Important to distinguish between dependent and independent
uncertainty When we have intervals [𝑎−𝑖 , 𝑎+𝑖 ] then each coe�cient is independent of any
other coe�cient. But we can also have coe�cients that are dependents on each others, or
correlated. When we do, we call them 𝑞′𝑠 and write 𝑃(𝑠, 𝑞) = 𝑠𝑛 +∑𝑛−1

𝑘=0 𝑎𝑘(𝑞)𝑠
𝑘. For example

𝑃(𝑠, 𝑞) = 𝑠3 + (6 + 𝑞1 + 2𝑞2)𝑠2 + (𝑞1 + 4)𝑠 + (𝑞3 + 6 + 𝑞2)

This generalized the interval polynomial because we can now write

𝑃(𝑠, 𝑞) = 𝑠𝑛 +
𝑛−1
�
𝑘=0

𝑞𝑘𝑠𝑘

This framework handles non-linear dependence on 𝑞. For example, assume we have problem
with interval matrix. i.e. study the stability of interval matrix

𝐴(𝑞) =
⎛
⎜⎜⎜⎜⎝
−1 + 𝑞(1) 2 + 𝑞(2)
𝑞(3) −2 + 𝑞(4)

⎞
⎟⎟⎟⎟⎠

Where |𝑞(𝑖)| ≤ 𝑟. We now find the determinant of 𝐴(𝑞) as function of 𝑞𝑖 which comes to

𝑃(𝑠) = 𝑠2 + 𝑠(3 − 𝑞4 − 𝑞1) + (2 − 𝑞4 − 2𝑞1 + 𝑞1𝑞2 − 2𝑞3 − 𝑞3𝑞2)

reader: how large 𝑟 can be with robust stability still guaranteed

We can over-bound by applying Kharitonov polynomials. Let 𝑟 = 1
2 then

𝑃(𝑠) = 𝑠2 + [2, 4]𝑠 + …

And now check stability of the four polynomials. Note that, if the result is negative, i.e.
Kharitonov polynomials say that 𝑃(𝑠) is not stable, it might still be stable. So then we need
to try other tests to check. An example is now given using 𝑃(𝑠) = 𝑠4 + 𝑠3 + 2𝑞𝑠2 + 𝑠 + 𝑞 where
1.5 ≤ 𝑞𝑙𝑒𝑞4 and by over-bounding, we obtain the interval polynomial

𝑃(𝑠) = 𝑠4 + 𝑠3 + 2[−1.5, 4]𝑠2 + 𝑠 + [1.5, 4]

reader: Show the above leads to 4 polynomials which one or more will be unstable, hence
by over-bounding, we conclude it is not stable. But the it is robustly stable, which can be
verified using Routh table.

Lyapunov Lemma:

This is important for non-linear systems. For linear systems it is not as important. It is
also useful with dependent certainty. To start with, let us forget about uncertainty for now.
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Initial 𝑞 = 0 and consider �̇� = 𝐴𝑥. Lyapunov method will generalize. But using eigenvalues
to check for stability will only work in linear systems.

What does Lyapunov says about stability of �̇� = 𝐴𝑥? Need energy like function 𝑉(𝑥) =
𝑥𝑇𝑥 = ∑𝑛

𝑖=1 𝑥
2
𝑖 .

We will study behavior of 𝑉(𝑥(𝑡)) along trajectory 𝑥(𝑡). If 𝑉(𝑥) goes to zero, then 𝑥(𝑡) = 0. It
is easier to study scalar function 𝑉(𝑥) for stability.

To determine if 𝑉(𝑥) goes to zero, we look at 𝑑𝑉(𝑥)
𝑑𝑡 < 0

𝑑𝑣
𝑑𝑡
=
𝑑
𝑑𝑥
𝑥𝑇𝑥

= 𝑥𝑇𝐴𝑥 + �̇�𝑇𝑥
= 𝑥𝑇𝐴𝑥 + (𝐴𝑥)𝑇𝑥
= 𝑥𝑇𝐴𝑥 + 𝑥𝑇𝐴𝑇𝑥
= 𝑥𝑇(𝐴 + 𝐴𝑇)𝑥

i� (𝐴 + 𝐴𝑇) is negative definite, then stable. But this definition of 𝑉(𝑥) is not satisfactory.

Here is a counter example. Consider stable system 𝐴 =
⎛
⎜⎜⎜⎜⎝
−1 3
0 −2

⎞
⎟⎟⎟⎟⎠ but 𝐴+𝐴

𝑇 =
⎛
⎜⎜⎜⎜⎝
−2 3
3 −4

⎞
⎟⎟⎟⎟⎠

so not stable. (ps. I must have copied something wrong. Since is stable, need to check
notes with someone else).

So this energy function 𝑉(𝑥) = 𝑥𝑇𝑥 is not good and need to try a better one.

lemma the 𝑛 × 𝑛 matrix 𝐴 is stable the following conditions is satisfied: Given any 𝑛 × 𝑛
positive definite symmetric matrix 𝑄, the equation 𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄 has positive definite
symmetric solution 𝑃

Back to the above example. Solving it, using 𝑄 =
⎛
⎜⎜⎜⎜⎝
1 0
0 1

⎞
⎟⎟⎟⎟⎠, gives

with(LinearAlgebra):
A:=<<-1,3;0,-2>>;

[-1 3]
A := [ ]

[ 0 -2]

P,s:=LyapunovSolve(A,<<-1,0;0,-1>>);

[ 1.25000000000000 0.250000000000000]
P, s := [ ], 1.

[0.250000000000000 0.250000000000000]

Eigenvalues(P);
[1.30901699437495 + 0. I ]
[ ]
[0.190983005625053 + 0. I]

Back to energy function. Use 𝑉(𝑥) = 𝑥𝑇𝑃𝑥 instead of 𝑉(𝑥) = 𝑥𝑇𝑥. If stable, this energy
function will satisfy 𝑑𝑣

𝑑𝑡 = −𝑥
𝑇𝑄𝑥 < 0.

So for robust stability, use Lyapunov method above and not the eigenvalues method.

perturbation on 𝐴:

Consider system �̇� = �𝐴𝑜 + Δ𝐴(𝑞)� 𝑥 and 𝑞 is bounded as before, and we are interested in
robust stability. 𝑞 above can even be time changing and the method will still work. But
eigenvalues method will not work here. Assuming 𝐴𝑜 is stable without loss of generality,
the system is stable if
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‖Δ𝐴(𝑡)‖2 ≤
𝜆𝑚𝑖𝑛𝑄
2𝜆𝑚𝑎𝑥𝑃

1.33 Lecture 31. Tuesday September 9 2014 (Review
�nals, Routh table)

Review of material for finals:

1. not cumulative

2. state transition

3. controlability, definitions, short cut 𝑀 method. Gramian matrix, LTI and LTV cases.
Cayley Hamilton

4. Duality for finding conditions for stability.

5. canonical decomposition. Minimal realization.

6. Hurwitz matrix, Routh table.

7. Robust stability, Kharitonov polynomials

8. uncertainty with correlated and uncorrelated parameters in the polynomial.

9. For robust stability, use lyapunov method.

Rest of lecture, examples on using Routh table. Showing it can shed more light on the sys-
tem stability more than Hurwitz matrix. For example, it can tell one how many eigenvalues
are unstable as well.

Review of future courses o�ered in the department. ECE 817,730,719. Taking math 521 is
important for graduate work also. Optimal control vs. analysis direction of study.

1.34 Lecture 32. Thursday December 11 2014. Final
Exam



Chapter 2

HW’s

These are all my HW’s. See the key solutions above for the o�cial solution.

2.1 HW 1

2.1.1 Questions

Barmish

ECE 717 – Homework Newton

For the mass-spring system depicted on the next page, the input u(t) is taken
to be the displacement of the supporting platform.

(a) Apply Newton’s Laws to obtain the two governing differential equations
of motion in s1, s2 and u.

(b) With states taken to be x1 = s1, x2 = s2, x3 = ds1

dt , x4 = ds2

dt and out-
puts y1 = s1, y2 = s2, obtain linear time-invariant state equations in the
matrix form ẋ = Ax + Bu, y = Cx + Du.

(c) Use Simulink to obtain the unit step response for y1 and y2 using normal-
ized parameter values k1 = k2 = 0.5, m1 = 1, m2 = 2. Assume the system is
initially at rest; i.e., x(0) = 0.

(d) Experiment in your simulation with other values of the parameters to
see the variety of possibilities for y1(t) and y2(t).

(e) For the state space system ẋ = Ax + Bu, y = Cx + Du above with
parameters indicated in part (c), use syms in Matlab to obtain the transfer
functions H1(s) from u to y1 and H2(s) from u to y2.

(f) Using transfer function H1(s), find the differential equation relating out-
put y1 to input u.

;

79
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Barmish

ECE 717 – Homework Satellite

The motion of a satellite in earth orbit is modelled using polar coordi-
nates (r, θ, φ) with corresponding thrust components (ur, uθ, uφ). Now, with m
denoting the mass, the kinetic energy is given by

m

2
[ṙ2 + (rφ̇)2 + (rθ̇ cos φ)2]

and the potential energy is

P = −km

r
where k is a fixed constant. For this system with Lagrangian defined by

L .= K − P,

the dynamic behavior of the system is modelled as

d

dt

∂L
∂ṙ
− ∂L

∂r
= ur(t);

d

dt

∂L
∂θ̇
− ∂L

∂θ
= uθ(t);

d

dt

∂L
∂φ̇

− ∂L
∂φ

= uφ(t).

(a) Define states x1 = r, x2 = ṙ, x3 = θ, x4 = θ̇, x5 = φ, x6 = φ̇, in-
puts u1 = ur, u2 = uθ, u3 = uφ and outputs y1 = r, y2 = θ, y3 = φ. Now gen-
erate state equations and ouput equations in the standard form ẋ = f(x, u);
y = g(x, u).

(b) Of particular interest (for example, for communication satellites), we con-
sider a circular equatorial orbit obtained from (a) with r(t) ≡ constant = r0;
θ̇ ≡ constant = ω; φ(t) ≡ constant = 0; u(t) ≡ constant = 0 and r3

0ω
2 = k.

Argue that the satellite will remain in this orbit in the absence of distur-
bances to the system. Hence, describe a steady state solution to the state
equation.

(c) Assuming the satellite strays slightly from the trajectory in (b), de-
scribe the state space pair (A, B) associated with linearization of the system.
Take r0 = m0 = 1 and again use r3

0ω
2 = k.

(d) An alert engineer makes the observation: “The incremental dynamics
for the azimuthal angle is decoupled from the rest of the system.” Explain
more fully what is meant by this statement.

;
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Barmish

ECE 717 – Homework Wave Theory

The objective in this problem is to show that some situations which do not
appear to be amenable to our state equation paradigm can actually be “mas-
saged” into our required ẋ = f(x) format. Indeed, we begin with the so
partial differential equation

∂2φ

∂x2 −
∂2φ

∂t2
= sin φ

from the theory of nonlinear waves. This is the so-called Sine-Gordon equa-
tion.

(a) If we are seeking a travelling wave solution with velocity v, it is obtained
by assuming the special form

φ(x, t) = φ̃(x− vt).

Now, taking
ζ .= x− vt,

find the ordinary differential equation which ζ̃ must satisfy.

(b) Next, with state assignment

x1 = φ̃; x2 =
dφ̃

dζ
,

obtain state equations of the form

ẋ = f(x).

(c) A special case of the above is the so-called “kink” solution. Assuming
velocity satisfying

0 < v < 1,

find special initial conditions x1(0), x2(0) resulting in closed form solution

x1(ζ) = 4 tan−1
(
exp(− ζ√

1− v2
)

)
.

This is the famous “kink” solution. When it was first discovered, it was
surprising to wave theorists because it is rather unusual for a highly nonlinear
partial differential equation to admit a closed form solution.

;
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Barmish

ECE 717 – Homework Robotic Manipulator

A single-link robotic manipulator with a flexible joint is modelled via the
pair of second order differential equations

I
d2θ1

dt2
+ mgl sin θ1 + k(θ1 − θ2) = 0;

J
d2θ2

dt2
− k(θ1 − θ2) = F (t)

where θ1 and θ2 are angular positions, I and J are moments of inertia, m,l
and g are respectively, link mass, length and the gravitational constant, k
is the link spring constant and f is the applied force.

(a) Obtain a nonlinear state space model ẋ = f(x, u) for this system.
Note: Four states are needed.

(b) Using equilibrium point x, u = (0, 0), obtain a linearized state space
model (A, B).

(c) Using normalized unit-free constants I = J = mgl = k = 1, de-
termine if the linearized model which you obtained is stable.

;

Barmish

ECE 717 – Homework Time-Varying

Typically, the linear time varying system ẋ = A(t)x cannot be solved in
closed form; numerical methods are needed. However, for some special cases,
a closed form solution can be found in an ad hoc manner. Indeed, consider
the state equation

ẋ =

 − t
1+t2 1

0 − 4t
1+t2

 x

with initial condition x(0) = x0 with components x10, x20. Using basic cal-
culus manipulations, find the solutions x1(t) and x2(t). Then with x10 = 1,
find limt→∞ x2(t). Reader: Even though the time-varying eigenvalues of A(t)
are negative, notice that x2(t) does not tend to zero.

;

2.1.2 Problem 1

part (a)

Starting with the assumption that the ground surface is smooth and there is no friction.
Assuming that all parts are moving in the positive direction to the right. Taking a snap
shot when 𝑠2 > 𝑠1 so that the spring 𝑘2 is in compression. Spring 𝑘1 is in compression by
also assuming that 𝑠1 > 𝑢 at this instance.

Any other assumptions will also lead to the same set of equations as long as they are used
in consistent way when finding the forces in the springs.

Starting with drawing a free body diagram of each body showing all forces acting on them
based on the above assumption, and then using 𝐹 = 𝑚𝑎 to find the equation of motion of
each body 𝑚1, 𝑚2. The free body diagrams is shown below
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m2

k2(s2 − s1)
m1

k2(s2 − s1) k1(s1 − u)

Now 𝐹 = 𝑚𝑎 is applied to each body to obtain the equation of motions. For mass 𝑚2

𝑚2𝑠′′2 = −𝑘2 (𝑠2 − 𝑠1)

𝑠′′2 = −
𝑘2
𝑚2

(𝑠2 − 𝑠1)

And for mass 𝑚1

𝑚1𝑠′′1 = 𝑘2 (𝑠2 − 𝑠1) − 𝑘1 (𝑠1 − 𝑢)

𝑠′′1 =
𝑘2
𝑚1

(𝑠2 − 𝑠1) −
𝑘1
𝑚1

(𝑠1 − 𝑢)

Part (b)

Now the state space equations are found.
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1 = 𝑠1
𝑥2 = 𝑠2
𝑥3 = 𝑠′1
𝑥4 = 𝑠′2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑑
𝑑𝑡⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥′1 = 𝑠′1 = 𝑥3
𝑥′2 = 𝑠′2 = 𝑥4

𝑥′3 = 𝑠′′1 =
𝑘2
𝑚1
(𝑠2 − 𝑠1) −

𝑘1
𝑚1
(𝑠1 − 𝑢) =

𝑘2
𝑚1
(𝑥2 − 𝑥1) −

𝑘1
𝑚1
(𝑥1 − 𝑢)

𝑥′4 = 𝑠′′2 = −
𝑘2
𝑚2
(𝑠2 − 𝑠1) = −

𝑘2
𝑚2
(𝑥2 − 𝑥1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥3
𝑥4

𝑥1 �−
𝑘2
𝑚1
− 𝑘1

𝑚1
� + 𝑘2

𝑚1
𝑥2 +

𝑘1
𝑚1
𝑢

𝑘2
𝑚2
𝑥1 −

𝑘2
𝑚2
𝑥2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥′1
𝑥′2
𝑥′3
𝑥′4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

𝐴(𝑛×𝑛)

�������������������������������������⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1

− � 𝑘2
𝑚1
+ 𝑘1

𝑚1
� 𝑘2

𝑚1
0 0

𝑘2
𝑚2

− 𝑘2
𝑚2

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

𝐵(𝑛×𝑚)
�⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
𝑘1
𝑚1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑢 (𝑡)

⎛
⎜⎜⎜⎜⎝
𝑦1
𝑦2

⎞
⎟⎟⎟⎟⎠ =

𝐶(𝑟×𝑛)

�����������������⎛
⎜⎜⎜⎜⎝
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

𝐷(𝑟×𝑚)
⏞⎛⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠ 𝑢 (𝑡)

The above is in the form of 𝑥′ = 𝐴𝑥+𝐵𝑢 and 𝑦 = 𝐶𝑥+𝐷𝑢 where 𝑟 = 2 is number of outputs,
𝑚 = 1 is the number of input and 𝑛 = 4 is the number of states.
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Part(c)

Using 𝑘1 = 𝑘2 = 0.5,𝑚1 = 1,𝑚2 = 2 and 𝑥 (0) = 0 now the unit step response for 𝑦1, 𝑦2 is
found using Simulink. With the above values the system becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥′1
𝑥′2
𝑥′3
𝑥′4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1
−1 0.5 0 0
0.25 −0.25 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0.5
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑢 (𝑡)

⎛
⎜⎜⎜⎜⎝
𝑦1
𝑦2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠ 𝑢 (𝑡)

Using simulink, state space block was used to implement the above. A step input source
was used. Demux was used to send the 𝑦1 and 𝑦2 responses to two di�erent time scopes.
Simulation was set for 40 seconds to obtain long enough view of the response. The following
figure shows the step response and the model used.

Part(d)

Di�erent values of 𝑘1, 𝑘2 are used to see the e�ect on the responses. When the spring
sti�ness increased, the frequency of oscillation increased. For example, this is a simulation
using 𝑘1 = 0.5, 𝑘2 = 10,𝑚1 = 1,𝑚2 = 2 and 𝑥 (0) = 0. With the above values the system
becomes
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥′1
𝑥′2
𝑥′3
𝑥′4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1

−10.5 10 0 0
5 −5 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0.5
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑢 (𝑡)

⎛
⎜⎜⎜⎜⎝
𝑦1
𝑦2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠ 𝑢 (𝑡)

The step response for 𝑦1, 𝑦2 is

Part (e)

Given

𝑥′ = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

Applying the Laplace transform to the above and using zero initial conditions gives the
following result. In the following, 𝑋 (𝑠) is the Laplace transform of 𝑥 (𝑡), 𝑌 (𝑠) is the Laplace
transform of 𝑦 (𝑡) , and 𝑈 (𝑠) is the Laplace transform of 𝑢 (𝑡)

𝑠𝑋 (𝑠) = 𝐴𝑋 (𝑠) + 𝐵𝑈 (𝑠)
𝑌 (𝑠) = 𝐶𝑋 (𝑠) + 𝐷𝑈 (𝑠)

The first equation above gives 𝑋 (𝑠) = (𝑠𝐼 − 𝐴)−1 𝐵𝑈 (𝑠). Substituting this value of 𝑋 (𝑠) in the
second equation above results in

𝑌 (𝑠) = 𝐶 (𝑠𝐼 − 𝐴)−1 𝐵𝑈 (𝑠)

Where 𝐷𝑈 (𝑠) was not used since 𝐷 is zero matrix in this example. Therefore the system
transfer function matrix is

𝐺 (𝑠) =
𝑌 (𝑠)
𝑈 (𝑠)

= 𝐶 (𝑠𝐼 − 𝐴)−1 𝐵

Using numerical values of 𝐴,𝐵, 𝐶 from part(c) gives

𝐺 (𝑠) =
⎛
⎜⎜⎜⎜⎝
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1
−1 0.5 0 0
0.25 −0.25 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0.5
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence 𝐺 (𝑠) is a 2 × 1 vector. The first entry is the transfer function between 𝑢 and 𝑦1 and
the second entry is the transfer function between 𝑢 and 𝑦2. The above is evaluated using
Matlab syms as follows
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A=[0 0 1 0;0 0 0 1;-1 0.5 0 0;0.25 -0.25 0 0];
B=[0 0 .5 0]';
C=[1 0 0 0;0 1 0 0];
syms s
G=C*inv(s*eye(4)-A)*B
G =
(4*s^2 + 1)/(8*s^4 + 10*s^2 + 1)
1/(8*s^4 + 10*s^2 + 1)

From above, the transfer functions are

𝐻1 (𝑠) =
𝑌1(𝑠)
𝑈(𝑠) =

4𝑠2+1
8𝑠4+10𝑠2+1

𝐻2 (𝑠) =
𝑌2(𝑠)
𝑈(𝑠) =

1
8𝑠4+10𝑠2+1

Part (f)

Using 𝐻1 (𝑠) above

𝑌1 (𝑠) �8𝑠4 + 10𝑠2 + 1� = �4𝑠2 + 1�𝑈 (𝑠)

And taking inverse Laplace transform gives (each 𝑠 adds one derivative in time)

8𝑑
4𝑦1
𝑑𝑡4

+ 10𝑑
2𝑦1
𝑑𝑡2 + 𝑦1 (𝑡) = 4

𝑑2𝑢
𝑑𝑡2 + 𝑢 (𝑡)

2.1.3 Problem 2

m

r





x

y

z

The kinetic energy is given by

𝐾 =
𝑚
2
��̇�2 + �𝑟�̇��

2
+ �𝑟�̇� cos𝜙�

2
�

And the potential energy is

𝑃 = −
𝑘𝑚
𝑟

Where 𝑘 is constant and 𝑚 is mass of satellite. The Lagrangian is

𝐿 = 𝐾 − 𝑃

=
𝑚
2
��̇�2 + �𝑟�̇��

2
+ �𝑟�̇� cos𝜙�

2
� +

𝑘𝑚
𝑟

The equations of motions of the mass 𝑚 in each degree of freedom 𝑟, 𝜃, 𝜙 are given by

𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

−
𝜕𝐿
𝜕𝑟

= 𝑢𝑟 (𝑡) (1)

𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

−
𝜕𝐿
𝜕𝜃

= 𝑢𝜃 (𝑡) (2)

𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

−
𝜕𝐿
𝜕𝜙

= 𝑢𝜙 (𝑡) (3)
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Part (a)

Starting with (1) gives find 𝜕𝐿
𝜕𝑟 = 𝑚𝑟�̇�

2 +𝑚𝑟 ��̇� cos𝜙�
2
− 𝑘𝑚

𝑟2 and 𝜕𝐿
𝜕�̇� = 𝑚�̇�, hence (1) becomes

𝑚�̈� − 𝑚𝑟 ��̇�2 + ��̇� cos𝜙�
2
� +

𝑘𝑚
𝑟2

= 𝑢𝑟 (𝑡)

Hence

�̈� = 𝑟 ��̇�2 + ��̇� cos𝜙�
2
� − 𝑘

𝑟2 +
1
𝑚𝑢𝑟 (𝑡)

Similarly for (2), 𝜕𝐿
𝜕𝜃 = 0 and

𝜕𝐿
𝜕�̇�
= 𝑚�̇�𝑟2 cos2 𝜙, and

𝑑
𝑑𝑡
𝜕𝐿
𝜕�̇�

= 𝑚 ��̈�𝑟2 cos2 𝜙 + 2�̇�𝑟�̇� cos2 𝜙 − 2�̇��̇�𝑟2 cos𝜙 sin𝜙�

= 𝑚𝑟 cos𝜙 ��̈�𝑟 cos𝜙 + 2�̇��̇� cos𝜙 − 2�̇��̇�𝑟 sin𝜙�
And (2) becomes

𝑚𝑟 cos𝜙 ��̈�𝑟 cos𝜙 + 2�̇��̇� cos𝜙 − 2�̇��̇�𝑟 sin𝜙� = 𝑢𝜃 (𝑡)

�̈�𝑟 cos𝜙 + 2�̇� ��̇� cos𝜙 − �̇�𝑟 sin𝜙� = 1
𝑚𝑟 cos𝜙𝑢𝜃 (𝑡)

�̈�𝑟 cos𝜙 = −2�̇� ��̇� cos𝜙 − �̇�𝑟 sin𝜙� + 1
𝑚𝑟 cos𝜙𝑢𝜃 (𝑡)

Hence

�̈� = −2�̇��̇�
𝑟 + 2�̇��̇� tan𝜙 + 1

𝑚𝑟2 cos2 𝜙𝑢𝜃 (𝑡)

Similarly for (3), 𝜕𝐿
𝜕𝜙 = −𝑚𝑟

2�̇�2 cos𝜙 sin𝜙 and 𝜕𝐿
𝜕�̇�
= 𝑚𝑟2�̇�, and 𝑑

𝑑𝑡
𝜕𝐿
𝜕�̇�
= 𝑚�2𝑟�̇��̇� + 𝑟2�̈�� hence

(3) becomes

𝑚𝑟 �2�̇��̇� + 𝑟 ��̈� + �̇�2 cos𝜙 sin𝜙�� = 𝑢𝜙 (𝑡)

2�̇��̇� + 𝑟�̈� + 𝑟�̇�2 cos𝜙 sin𝜙 = 1
𝑚𝑟
𝑢𝜙 (𝑡)

Hence

�̈� = −2�̇��̇�
𝑟 − �̇�2 cos𝜙 sin𝜙 + 1

𝑚𝑟2𝑢𝜙 (𝑡)
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The state space becomes
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1 = 𝑟
𝑥2 = �̇�
𝑥3 = 𝜃
𝑥4 = �̇�
𝑥5 = 𝜙
𝑥6 = �̇�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑑
𝑑𝑡⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥′1
𝑥′2
𝑥′3
𝑥′4
𝑥′5
𝑥′6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̇�
�̈�
�̇�
�̈�
�̇�
�̈�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̇�
𝑟�̇�2 + 𝑟�̇�2 cos2 𝜙 − 𝑘

𝑟2 +
1
𝑚𝑢𝑟 (𝑡)

�̇�
−2
𝑟 �̇��̇� + 2�̇��̇� tan𝜙 + 1

𝑚𝑟2 cos2 𝜙𝑢𝜃 (𝑡)

�̇�
−2
𝑟 �̇��̇� − �̇�

2 cos𝜙 sin𝜙 + 1
𝑚𝑟2𝑢𝜙 (𝑡)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥2
𝑥1 �𝑥26 + (𝑥4 cos 𝑥5)2� −

𝑘
𝑥21
+ 1

𝑚𝑢𝑟 (𝑡)

𝑥4
− 2
𝑥1
𝑥4𝑥2 + 2𝑥4𝑥6 tan 𝑥5 +

1
𝑚𝑥21 cos2 𝑥5

𝑢𝜃 (𝑡)

𝑥6
− 2
𝑥1
𝑥2𝑥6 − 𝑥24 cos 𝑥5 sin 𝑥5 +

1
𝑚𝑥21

𝑢𝜙 (𝑡)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓1 (𝑥, 𝑢)
𝑓2 (𝑥, 𝑢)
𝑓3 (𝑥, 𝑢)
𝑓4 (𝑥, 𝑢)
𝑓5 (𝑥, 𝑢)
𝑓6 (𝑥, 𝑢)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The output equation is now found. 𝑦1 = 𝑟 = 𝑥1, 𝑦2 = 𝜃 = 𝑥3, 𝑦3 = 𝜙 = 𝑥5, hence

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑦3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Part (b)

Applying the values given to the state vector 𝑥 results in

𝑥 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑟
�̇�
𝜃
�̇�
𝜙
�̇�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑟0
0
𝜔𝑡
𝜔
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

And

�̄� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢𝑟
𝑢𝜃
𝑢𝜙

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

It is seen that the state vector 𝑥 now has zero in all the components that can change the
orbit from being in the equatorial orbit. Since the input 𝑢 = 0 then this state will not
change. The satellite will remain in this orbit.
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Part(c)

To obtain 𝑥′ at (�̄� + Δ𝑥, �̄� + Δ𝑢) then 𝑓 (�̄� + Δ𝑥, �̄� + Δ𝑢) is evaluated using Taylor expansion
and higher order terms are ignored. This results in the 𝐴,𝐵 matrices as follows

𝑓 (�̄� + Δ𝑥, �̄� + Δ𝑢) =
0 since equilibrium

�������𝑓 (�̄�, �̄�) +
𝜕𝑓
𝜕𝑥
Δ𝑥�

𝑥=�̄�
+
𝜕𝑓
𝜕𝑢
Δ𝑢�

𝑢=�̄�
+ 𝐻.𝑂.𝑇

In matrix form, the above is

𝑓 (�̄� + Δ𝑥, �̄� + Δ𝑢) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓1
𝜕𝑥1
Δ𝑥1

𝜕𝑓1
𝜕𝑥2
Δ𝑥2 ⋯ ⋯ ⋯ 𝜕𝑓1

𝜕𝑥6
Δ𝑥6

𝜕𝑓2
𝜕𝑥1
Δ𝑥1

𝜕𝑓2
𝜕𝑥2
Δ𝑥2 ⋯ ⋯ ⋯ 𝜕𝑓2

𝜕𝑥6
Δ𝑥6

⋮ ⋮
⋮ ⋱ ⋮
⋮ ⋮

𝜕𝑓6
𝜕𝑥1
Δ𝑥1

𝜕𝑓6
𝜕𝑥2
Δ𝑥2 ⋯ ⋯ ⋯ 𝜕𝑓6

𝜕𝑥6
Δ𝑥6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(�̄�,�̄�)

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓1
𝜕𝑢1
Δ𝑢1

𝜕𝑓1
𝜕𝑢2
Δ𝑢2

𝜕𝑓1
𝜕𝑢3
Δ𝑢3

𝜕𝑓2
𝜕𝑢1
Δ𝑢1

𝜕𝑓2
𝜕𝑢2
Δ𝑢2

𝜕𝑓2
𝜕𝑢3
Δ𝑢3

⋮ ⋮
⋮ ⋱ ⋮
⋮ ⋮

𝜕𝑓6
𝜕𝑢1
Δ𝑢1

𝜕𝑓6
𝜕𝑢2
Δ𝑢2

𝜕𝑓6
𝜕𝑢3
Δ𝑢3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(�̄�,�̄�)

Therefore

𝑓 (�̄� + Δ𝑥, �̄� + Δ𝑢) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

⋯ ⋯ ⋯ 𝜕𝑓1
𝜕𝑥6

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥1

⋯ ⋯ ⋯ 𝜕𝑓2
𝜕𝑥6

⋮ ⋮
⋮ ⋱ ⋮
⋮ ⋮

𝜕𝑓6
𝜕𝑥1

𝜕𝑓6
𝜕𝑥2

⋯ ⋯ ⋯ 𝜕𝑓6
𝜕𝑥6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(�̄�,�̄�)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ𝑥1
Δ𝑥2
Δ𝑥3
Δ𝑥4
Δ𝑥5
Δ𝑥6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓1
𝜕𝑢1

𝜕𝑓1
𝜕𝑢2

𝜕𝑓1
𝜕𝑢3

𝜕𝑓2
𝜕𝑢1

𝜕𝑓2
𝜕𝑢2

𝜕𝑓2
𝜕𝑢3

⋮ ⋮
⋮ ⋱ ⋮
⋮ ⋮

𝜕𝑓6
𝜕𝑢1

𝜕𝑓6
𝜕𝑢2

𝜕𝑓6
𝜕𝑢3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(�̄�,�̄�)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ𝑢1
Δ𝑢2
Δ𝑢3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Each component in the above is now evaluated and𝐴,𝐵 are evaluated at �̄� = �𝑟0 0 𝜔𝑡 𝜔 0 0�
𝑇
, �̄� =

�0 0 0� in order to obtain 𝐴,𝐵. Since 𝑓1 (𝑥, 𝑢) = 𝑥2, then
𝜕𝑓1
𝜕𝑥2

= 1 and all other values are

zero. Since 𝑓2 (𝑥, 𝑢) = 𝑥1 �𝑥26 + (𝑥4 cos 𝑥5)2� −
𝑘
𝑥21
+ 1

𝑚𝑢𝑟 (𝑡) then

𝜕𝑓2
𝜕𝑥1

= �𝑥26 + (𝑥4 cos 𝑥5)2� + 2
𝑘
𝑥31

𝜕𝑓2
𝜕𝑥2

= 0

𝜕𝑓2
𝜕𝑥3

= 0

𝜕𝑓2
𝜕𝑥4

= 2𝑥1𝑥4 cos2 𝑥5

𝜕𝑓2
𝜕𝑥5

= −2𝑥1𝑥24 cos 𝑥5 sin 𝑥5

𝜕𝑓2
𝜕𝑥6

= 0
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Since 𝑓3 (𝑥, 𝑢) = 𝑥4 then
𝜕𝑓3
𝜕𝑥4

= 1 and all other components are zero. And since 𝑓4 (𝑥, 𝑢) =

− 2
𝑥1
𝑥4𝑥2 + 2𝑥4𝑥6

sin 𝑥5
cos 𝑥5

+ 1
𝑚𝑥21 cos2 𝑥5

𝑢𝜃 (𝑡) then

𝜕𝑓4
𝜕𝑥1

= 0

𝜕𝑓4
𝜕𝑥2

= −
2
𝑥1
𝑥4

𝜕𝑓4
𝜕𝑥3

= 0

𝜕𝑓4
𝜕𝑥4

= −
2
𝑥1
𝑥2 + 2𝑥6

sin 𝑥5
cos 𝑥5

𝜕𝑓4
𝜕𝑥5

= 2𝑥4𝑥6 sec2 (𝑥5) +
2𝑢𝜃 sec2 𝑥5 tan 𝑥5

𝑚𝑥21
𝜕𝑓2
𝜕𝑥6

= 2𝑥4 tan 𝑥5

Since 𝑓5 (𝑥, 𝑢) = 𝑥6 then
𝜕𝑓5
𝜕𝑥6

= 1 and all other components are zero. Finally, since 𝑓6 (𝑥, 𝑢) =

− 2
𝑥1
𝑥2𝑥6 − 𝑥24 cos 𝑥5 sin 𝑥5 +

1
𝑚𝑥21

𝑢𝜙 (𝑡) then

𝜕𝑓6
𝜕𝑥1

= −
2
𝑚𝑥31

𝑢𝜙

𝜕𝑓6
𝜕𝑥2

= −
2
𝑥1
𝑥2

𝜕𝑓6
𝜕𝑥3

= 0

𝜕𝑓6
𝜕𝑥4

= −2𝑥4 cos 𝑥5 sin 𝑥5

𝜕𝑓6
𝜕𝑥5

= −𝑥24 cos2 𝑥5 + 𝑥24 sin2 𝑥5

𝜕𝑓6
𝜕𝑥6

= −
2
𝑥1
𝑥2

Therefore, the linearized 𝐴 matrix is

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
�𝑥26 + (𝑥4 cos 𝑥5)2� + 2

𝑘
𝑥31

0 0 2𝑥1𝑥4 cos2 𝑥5 −2𝑥1𝑥24 cos 𝑥5 sin 𝑥5 0

0 0 0 1 0 0

0 − 2
𝑥1
𝑥4 0 − 2

𝑥1
𝑥2 + 2𝑥6

sin 𝑥5
cos 𝑥5

2𝑥4𝑥6 sec2 (𝑥5) +
2𝑢𝜃 sec2 𝑥5 tan 𝑥5

𝑚𝑥21
2𝑥4 tan 𝑥5

0 0 0 0 0 1
− 2
𝑚𝑥31

𝑢𝜙 − 2
𝑥1
𝑥2 0 −2𝑥4 cos 𝑥5 sin 𝑥5 −𝑥24 cos2 𝑥5 + 𝑥24 sin2 𝑥5 − 2

𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The above is evaluated at �̄� = �𝑟0 0 𝜔𝑡 𝜔 0 0�
𝑇
, �̄� = �0 0 0� which results in

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
�0 + (𝜔 cos 0)2� + 2 𝑘

𝑟30
0 0 2𝑟0𝜔 cos2 0 −2𝑟0𝜔2 cos 0 sin 0 0

0 0 0 1 0 0

0 − 2
𝑟0
𝜔 0 − 2

𝑟0
(0) + 2 (0) sin 0

cos 0 2𝜔 (0) sec2 (0) + 2𝑢𝜃 sec2(0) tan(0)
𝑚𝑟20

2𝜔 tan (0)

0 0 0 0 0 1
− 2
𝑚𝑟30

(0) − 2
𝑟0
(0) 0 −2𝜔 cos 0 sin 0 −𝜔2 cos2 0 + 𝜔2 sin2 0 − 2

𝑟0
(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
𝜔2 + 2 𝑘

𝑟30
0 0 2𝑟0𝜔 0 0

0 0 0 1 0 0
0 − 2

𝑟0
𝜔 0 0 0 0

0 0 0 0 0 1
0 0 0 0 −𝜔2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Using 𝑟0 = 1,𝑚 = 1 and 𝑘 = 𝑟30𝜔2 then the above becomes

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
3𝜔2 0 0 2𝜔 0 0
0 0 0 1 0 0
0 −2𝜔 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −𝜔2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The 𝐵 matrix is now found. Since 𝑓1 (𝑥, 𝑢) = 𝑥2, then
𝜕𝑓1
𝜕𝑢𝑖

= 0 for 𝑖 = 1⋯3. And since

𝑓2 (𝑥, 𝑢) = 𝑥1 �𝑥26 + (𝑥4 cos 𝑥5)2� −
𝑘
𝑥21
+ 1

𝑚𝑢𝑟 (𝑡) then
𝜕𝑓2
𝜕𝑢𝑟

= 1
𝑚 and the other two components are

zero. Since 𝑓3 (𝑥, 𝑢) = 𝑥4 then
𝜕𝑓3
𝜕𝑢𝑖

= 0 for 𝑖 = 1⋯3. And since 𝑓4 (𝑥, 𝑢) = −
2
𝑥1
𝑥4𝑥2+2𝑥4𝑥6

sin 𝑥5
cos 𝑥5

+
1

𝑚𝑥21 cos2 𝑥5
𝑢𝜃 (𝑡) then

𝜕𝑓4
𝜕𝑢𝜃

= 1
𝑚𝑥21 cos2 𝑥5

and the other two components are zero. Since 𝑓5 (𝑥, 𝑢) =

𝑥6 then
𝜕𝑓5
𝜕𝑢𝑖

= 0 for 𝑖 = 1⋯3. Finally, since 𝑓6 (𝑥, 𝑢) = −
2
𝑥1
𝑥2𝑥6 −𝑥24 cos 𝑥5 sin 𝑥5 +

1
𝑚𝑥21

𝑢𝜙 (𝑡) then
𝜕𝑓6
𝜕𝑢𝜙

= 1
𝑚𝑥21

and the other two components are zero. Hence the 𝐵 matrix becomes

𝐵 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
1
𝑚 0 0
0 0 0
0 1

𝑚𝑥21 cos2 𝑥5
0

0 0 0
0 0 1

𝑚𝑥21

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The above is evaluated at �̄� = �𝑟0 0 𝜔𝑡 𝜔 0 0�
𝑇
which results in

𝐵 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
1
𝑚 0 0
0 0 0
0 1

𝑚𝑟20 cos2 0
0

0 0 0
0 0 1

𝑚𝑟20

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
1
𝑚 0 0
0 0 0
0 1

𝑚𝑟20
0

0 0 0
0 0 1

𝑚𝑟20

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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And using 𝑟0 = 1,𝑚 = 1 it reduces to

𝐵 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Part d

The linearized 𝐴 matrix found above is

A 

0 1 0 0 0 0

32 0 0 2 0 0

0 0 0 1 0 0

0 2 0 0 0 0

0 0 0 0 0 1

0 0 0 0 2 0

This shows that due to zeros everywhere in the linkage between the states 𝑟, 𝑟′, 𝜃, 𝜃′ and the
states 𝜙,𝜙′, these states are decoupled. What this means is that motion can be analyzed
in the 𝜙,𝜙′ states as its own system without having to carry along other terms from the
other states. This simplifies both the analysis and design for these parts of the system since
they are decoupled from each others. The above decoupling is also present in the 𝐵 and
𝐶 matrices.

2.1.4 Problem 3

part (a)

Using chain rule, and using 𝜕𝜁
𝜕𝑥 = 1 and

𝜕𝜁
𝜕𝑡 = −𝑣 then

1

𝜕2𝜙
𝜕𝑥2

=
𝜕
𝜕𝑥 �

𝜕𝜙
𝜕𝑥 �

=
𝜕
𝜕𝑥 �

𝑑𝜙
𝑑𝜁
𝜕𝜁
𝜕𝑥�

=
𝜕
𝜕𝑥 �

𝑑𝜙
𝑑𝜁 �

=
𝜕
𝜕𝜁 �

𝑑𝜙
𝑑𝜁 �

𝜕𝜁
𝜕𝑥

=
𝜕
𝜕𝜁 �

𝑑𝜙
𝑑𝜁 �

=
𝑑2𝜙
𝑑𝜁2

And
𝜕2𝜙
𝜕𝑡2

=
𝜕
𝜕𝑡 �

𝜕𝜙
𝜕𝑡 �

=
𝜕
𝜕𝑡 �

𝑑𝜙
𝑑𝜁
𝜕𝜁
𝜕𝑡 �

=
𝜕
𝜕𝑡 �

𝑑𝜙
𝑑𝜁

(−𝑣)� =
𝜕
𝜕𝜁 �

𝑑𝜙
𝑑𝜁

(−𝑣)�
𝜕𝜁
𝜕𝑡

=
𝜕
𝜕𝜁 �

𝑑𝜙
𝑑𝜁

(−𝑣)� (−𝑣)

= 𝑣2
𝑑2𝜙
𝑑𝜁2

Hence the PDE becomes the ODE
𝑑2𝜙
𝑑𝜁2

− 𝑣2
𝑑2𝜙
𝑑𝜁2

= sin𝜙 (𝜁)

Hence the di�erential equation is

�1 − 𝑣2� 𝑑2𝜙
𝑑𝜁2 = sin𝜙 (𝜁) (1)

Part (b)

Let 𝑥1 = 𝜙, 𝑥2 =
𝑑𝜙
𝑑𝜁 , hence

⎛
⎜⎜⎜⎜⎝
𝑥1 = 𝜙
𝑥2 =

𝑑𝜙
𝑑𝜁

⎞
⎟⎟⎟⎟⎠

𝑑
𝑑𝑡⟹

⎛
⎜⎜⎜⎜⎜⎜⎝
𝑥′1 =

𝑑𝜙
𝑑𝜁

𝑥′2 =
𝑑2𝜙
𝑑𝜁2

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑥2

sin 𝑥1
1−𝑣2

⎞
⎟⎟⎟⎟⎠

1In the following, �̃� is written as 𝜙 to make the notation more clear, but it is meant to be the special form
�̃� that is being used in all these calculations
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Hence 𝑥′ = 𝑓 (𝑥) becomes
⎛
⎜⎜⎜⎜⎝
𝑥′1
𝑥′2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑥2

sin 𝑥1
1−𝑣2

⎞
⎟⎟⎟⎟⎠

≡ 𝑓 (𝑥)

Part (c)

Equation (1) is solved, and then the result is compared to the so called "kink" solution
provided in order to determine what the constant of integration are. The constant of
integration will be 𝑥1 (0) and 𝑥2 (0). Starting by multiplying both sides of (1) by

𝑑𝜙
𝑑𝜁 results

in

�1 − 𝑣2�
𝑑2𝜙
𝑑𝜁2

𝑑𝜙
𝑑𝜁

= sin𝜙𝑑𝜙
𝑑𝜁

Or

�1 − 𝑣2�
𝑑2𝜙
𝑑𝜁2

𝑑𝜙
𝑑𝜁
𝑑𝜁 = sin𝜙𝑑𝜙

Now both sides are integrated. The RHS gives ∫ sin𝜙𝑑𝜙 = − cos �𝜙�+ 𝑐1 and the LHS gives

��1 − 𝑣2�
𝑑2𝜙
𝑑𝜁2

𝑑𝜙
𝑑𝜁
𝑑𝜁 = �1 − 𝑣2�

1
2 �
𝑑𝜙
𝑑𝜁 �

2

This is becuase if 1
2
�𝑑𝜙
𝑑𝜁
�
2
is di�erentiated, using chain rule, the result will be the integrand.

Since di�erentiating 1
2
�𝑑𝜙
𝑑𝜁
�
2
w.r.t. 𝜁 gives

𝑑𝜙
𝑑𝜁

𝑑2𝜙
𝑑𝜁2 which is the integrand in the LHS. No

need to introduced a new integration of constant again here as it can be absorbed with 𝑐1.
Therefore, the result after integration once is

�1 − 𝑣2�
1
2 �
𝑑𝜙
𝑑𝜁 �

2

= − cos �𝜙� + 𝑐1 (2)

To make some progress now, assuming the following initial conditions 𝑥1 (0) = 0 = 𝜙 and
𝑥2 (0) = 0 =

𝑑𝜙
𝑑𝜁 . Using these initial conditions results in

𝑐1 = 1

Equation (2) now becomes

�𝑑𝜙
𝑑𝜁
�
2

1 − cos �𝜙�
=

2
�1 − 𝑣2�

1

�1 − cos �𝜙�

𝑑𝜙
𝑑𝜁

= √2

√1 − 𝑣2
(3)

From trigonometric tables the relation sin 𝑥
2 = ±�

1−cos 𝑥
2 is used, therefore �1 − cos �𝜙� =

±√2 sin 𝜙
2 and (3) becomes

1

±√2 sin 𝜙
2

𝑑𝜙
𝑑𝜁

= √2

√1 − 𝑣2

±
𝑑𝜙

sin 𝜙
2

=
2

√1 − 𝑣2
𝑑𝜁

Doing integration again

±�
𝑑𝜙

sin 𝜙
2

=
2

√1 − 𝑣2
�𝑑𝜁 (4)
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From tables (or using substitutions) ∫ 𝑑𝜙

sin 𝜙
2

= 2 ln �tan �𝜙4 �� hence (4) becomes

±2 ln �tan �
𝜙
4 ��

=
2

√1 − 𝑣2
(𝜁 − 𝜁0)

tan �
𝜙
4 �

= exp �±
𝜁 − 𝜁0
√1 − 𝑣2

�

Therefore
𝜙
4
= arctan �± exp �

𝜁 − 𝜁0
√1 − 𝑣2

��

𝜙 (𝜁) = 𝑥1 = 4 arctan �± exp �
𝜁 − 𝜁0
√1 − 𝑣2

��

If 𝜁0 = 0 then

𝑥1 = 4 arctan �± exp � 𝜁

√1−𝑣2
��

This is the answer we are asked to show. Hence the initial conditions needed to obtain
this answer are 𝑥1 (0) = 0 and 𝑥2 (0) = 0

2.1.5 Problem 4

The robotic arm coupled di�erential equations are

𝐼𝜃′′1 + 𝑚𝑔𝑙 sin𝜃1 + 𝑘 (𝜃1 − 𝜃2) = 0
𝐽𝜃′′2 − 𝑘 (𝜃1 − 𝜃2) = 𝐹 (𝑡)

Part a

Let
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1 = 𝜃1
𝑥2 = 𝜃2
𝑥3 = 𝜃′1
𝑥4 = 𝜃′2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑑
𝑑𝑡⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥′1
𝑥′2
𝑥′3
𝑥′4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜃′1
𝜃′2
𝜃′′1
𝜃′′2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜃′1
𝜃′2

𝑚𝑔𝑙
𝐼 sin𝜃1 +

𝑘
𝐼
(𝜃1 − 𝜃2)

𝑘
𝐽
(𝜃1 − 𝜃2) +

1
𝐽 𝐹 (𝑡)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥3
𝑥4

−𝑚𝑔𝑙
𝐼 sin 𝑥1 −

𝑘
𝐼
(𝑥1 − 𝑥2)

𝑘
𝐽
(𝑥1 − 𝑥2) +

1
𝐽 𝐹 (𝑡)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓1 (𝑥, 𝑢)
𝑓2 (𝑥, 𝑢)
𝑓3 (𝑥, 𝑢)
𝑓4 (𝑥, 𝑢)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Where 𝑢, the input, is 𝐹 (𝑡) in this example, but the letter 𝑢 is used since it is the common
notation.

Part b

Let equilibrium point be (�̄�, �̄�) = (0, 0). The system is now linearized around this point.

𝑓 (�̄� + Δ𝑥, �̄� + Δ𝑢) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

𝜕𝑓1
𝜕𝑥3

𝜕𝑓1
𝜕𝑥4

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

𝜕𝑓2
𝜕𝑥3

𝜕𝑓2
𝜕𝑥4

𝜕𝑓3
𝜕𝑥1

𝜕𝑓3
𝜕𝑥2

𝜕𝑓3
𝜕𝑥3

𝜕𝑓3
𝜕𝑥4

𝜕𝑓4
𝜕𝑥1

𝜕𝑓4
𝜕𝑥2

𝜕𝑓4
𝜕𝑥3

𝜕𝑓4
𝜕𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(�̄�,�̄�)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ𝑥1
Δ𝑥2
Δ𝑥3
Δ𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓1
𝜕𝑢
𝜕𝑓2
𝜕𝑢
𝜕𝑓2
𝜕𝑢
𝜕𝑓2
𝜕𝑢

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(�̄�,�̄�)

Δ𝑢

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1

−𝑚𝑔𝑙
𝐼 cos 𝑥1 −

𝑘
𝐼

𝑘
𝐼 0 0

𝑘
𝐽 − 𝑘

𝐽 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(�̄�,�̄�)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ𝑥1
Δ𝑥2
Δ𝑥3
Δ𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
𝐽

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(�̄�,�̄�)

Δ𝑢
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The above is evaluated at (�̄�, �̄�) = (0, 0) giving

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1

−𝑚𝑔𝑙
𝐼 − 𝑘

𝐼
𝑘
𝐼 0 0

𝑘
𝐽 − 𝑘

𝐽 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐵 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
𝐽

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Part c

Using values 𝐼 = 𝐽 = 𝑚𝑔𝑙 = 𝑘 = 1, the A matrix becomes

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1
−2 1 0 0
1 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The real part of the eigenvalues of this matrix are

A=[0 0 1 0;0 0 0 1;-2 1 0 0;1 -1 0 0];
EDU>> real(eig(A))
ans =
2.9302e-18
2.9302e-18
-3.1554e-30
-3.1554e-30

There is no positive real part. The real part of the eigenvalues are e�ectively zero. They
are pure complex conjugate values. Hence the system is stable (sometimes also called
marginally stable in this case).

2.1.6 Problem 5

solution

⎛
⎜⎜⎜⎜⎝
𝑥′1
𝑥′2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
− 𝑡
1+𝑡2 1
0 −4𝑡

1+𝑡2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠

With initial conditions

⎛
⎜⎜⎜⎜⎝
𝑥1 (0)
𝑥2 (0)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑥10
𝑥20

⎞
⎟⎟⎟⎟⎠

𝑥2 (𝑡) is first solved since it does not depend on 𝑥1 (𝑡) and then the solution is used to solve
for 𝑥1 (𝑡). The di�erential equation for 𝑥2 (𝑡) is

𝑑𝑥2
𝑑𝑡

=
−4𝑡
1 + 𝑡2

𝑥2
𝑑𝑥2
𝑥2

=
−4𝑡
1 + 𝑡2

𝑑𝑡

Integrating

ln 𝑥2 = ln

⎛
⎜⎜⎜⎜⎜⎜⎝

1

�1 + 𝑡2�
2

⎞
⎟⎟⎟⎟⎟⎟⎠ + 𝑐

𝑥2 = 𝑐
1

�1 + 𝑡2�
2
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When 𝑡 = 0, 𝑥2 (0) = 𝑥20, hence 𝑐 = 𝑥20 and

𝑥2 (𝑡) =
𝑥20

�1+𝑡2�
2

Now since 𝑥2 (𝑡) was found, it is used to obtain 𝑥1 (𝑡). The di�erential equation for 𝑥1 (𝑡) is
𝑑𝑥1
𝑑𝑡

= −
𝑡

1 + 𝑡2
𝑥1 + 𝑥2

𝑑𝑥1
𝑑𝑡

+
𝑡

1 + 𝑡2
𝑥1 = 𝑥20

1

�1 + 𝑡2�
2

The integrating factor is 𝐼 = 𝑒
∫ 𝑡

1+𝑡2
𝑑𝑡 = ��1 + 𝑡

2�, hence the solution to the above is

𝑑 (𝐼𝑥1) = 𝑥20
𝐼

�1 + 𝑡2�
2

Integrating

𝐼𝑥1 = �𝑥20
𝐼

�1 + 𝑡2�
2𝑑𝑡

= 𝑥20���1 + 𝑡
2�

�1 + 𝑡2�
2 𝑑𝑡

= 𝑥20�
1

�1 + 𝑡2�
3/2𝑑𝑡

= 𝑥20
𝑡

√1 + 𝑡2
+ 𝑐2

Hence, dividing by 𝐼 gives the final solution

𝑥1 (𝑡) = 𝑥20
𝑡

1 + 𝑡2
+

𝑐2

��1 + 𝑡
2�

When 𝑡 = 0, 𝑥1 (0) = 𝑥10, hence 𝑐2 = 𝑥10 and the solution becomes

𝑥1 (𝑡) = 𝑥20
𝑡

1 + 𝑡2
+

𝑥10

��1 + 𝑡
2�

Now we are asked to let 𝑥10 = 1, hence 𝑥1 (𝑡) becomes

𝑥1 (𝑡) = 𝑥20
𝑡

1+𝑡2 +
1

��1+𝑡2�

Now taking the limit of 𝑥1 (𝑡)𝑡→∞ gives

𝑥1 (𝑡) → 0

Using Matlab syms, these can be solved as follows

clear all
syms x1(t) x2(t) t x10 x20
eq1=diff(x1,t)== -t/(1+t^2)*x1+x2;
eq2=diff(x2,t)== -(4*t)/(1+t^2)*x2;
[x1Sol,x2Sol]=dsolve(eq1,eq2,x1(0)==1)

x1Sol =

1/(t^2 + 1)^(1/2) + (C2*t)/(t^2 + 1)

x2Sol =

C2/(t^2 + 1)^2



97

2.1.7 key solution
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2.2 HW2

2.2.1 Questions

ECE 717 – Homework Set 2
Due Thursday, September 25, 2014

;
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Barmish

ECE 334 – Homework Glider

(a) The two state equations below were derived from a model for normal-
ized glider dynamics:

ẋ1 = − sin x2 − ax2
1;

ẋ2 =
− cos x2 + x2

1

x1

For a = 1, characterize the set of equilibria.

(b) Verify that one of the equilibria is given by

x∗ =

 0.8409
−0.7854

 .

(c) Develop a Simulink Model for this nonlinear system and carry out
some simulations for initial conditions which are in some region around
the equilibrium x∗ in (b) above. Show your simulations in the so-called
phase plane. That is, begin at the point x∗(0) in the (x1, x2) plane and
obtain a plot of (x1(t), x2(t)).

(d) Do your simulations indicate that x∗ is a stable equilibrium. If so,
estimate a circular domain of attraction via simulation.

(e) Verify your result in (d) by finding the appropriate linearization matrix
and then obtaining its eigenvalues.

;

;
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Barmish

ECE 717 – Homework Dimension

(a) For the transfer function

H(s) =
1

(s + 1)(s + 2)
,

show that a realization is given by

A =


1 1 0
0 −2 1
0 0 −1

 ; B =


0
1
−2

 ; C =
[

1 0 0
]
; D = 0.

(b) Is the realization above minimal? Explain.

(c) When a unit step is applied to the state space system above which
is initially at rest, an engineer is surprised to see that the some of the
integrators saturate; i.e., one expects output

y(t) = L−1H(s)U(s) = L−1 1

s(s + 1)(s + 2)
=

1

2
− e−t +

1

2
e−2t.

Explain.

(d) With unit step input, plot all three state responses xi(t) and explain
the stable response you see in view of the saturation in (a).

;

Barmish

ECE 717 – Homework Realization

Given the 3× 2 transfer function matrix

H(s) =


H11(s) H12(s)
H21(s) H22(s)
H31(s) H32(s)

 ,

whose entries are proper, describe a state space realization

Σ = (A, B, C,D)

in terms of the individual realizations

Σij = (Aij, Bij, Cij, Dij).

Then prove that your realization works by showing that

HΣ = H(s).
;
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Barmish

ECE 717 – Homework Singular Value

(a) Consider a MIMO compensator H(s) of appropriate dimension which
is connected in series with a MIMO system G(s) in a unity feedback con-
figuration. Argue that the closed loop transfer matrix is

T (s) = (I + G(s)H(s))−1G(s)H(s).

(b) For the MIMO system with transfer function matrix

G(s) =


1
s

s
2s2+3s+1

2
s−1

s
s2+1


with compensator

H(s) =


1
s 2

−3 − 1
s+1

 ,

find T (s) and generate its associated closed-loop singular value plot.
;

Barmish

ECE 717 – Homework Block

(a) Find the transfer function matrix HΣ(s) for the LTI system Σ described
by

A =


1 2 0
4 −1 0
0 0 1

 ; B =


1
0
1

 ; C =

 0 1 −1
0 0 1

 ; D =

 0
1

 .

(b) Find a realization for the transfer function matrix H(s) having en-
tries

H11(s) =
−(s2 − 4s− 5)

s3 − s2 − 9s + 9
; H12(s) =

s

s− 1
.

(c) Is your realization in part (b) minimal? Explain.
;

2.2.2 Problem 1

Part (a)

⎧⎪⎪⎨
⎪⎪⎩
�̇�1
�̇�1

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
− sin 𝑥2 − 𝑎𝑥21

− cos 𝑥2+𝑥21
𝑥1

⎫⎪⎪⎬
⎪⎪⎭
≡

⎧⎪⎪⎨
⎪⎪⎩
𝑓1 (𝑥1, 𝑥2)
𝑓2 (𝑥1, 𝑥2)

⎫⎪⎪⎬
⎪⎪⎭
= 𝒇 (𝑥)

Letting 𝑎 = 1, equilibrium is found by setting �̇� = 0 giving

𝒇 (𝑥1, 𝑥2) =

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
− sin 𝑥2 − 𝑥21
− cos 𝑥2+𝑥21

𝑥1

⎫⎪⎪⎬
⎪⎪⎭

The following two equations are solved for 𝑥1 , 𝑥2
− sin 𝑥2 − 𝑥21 = 0 (1)

− cos 𝑥2 + 𝑥21
𝑥1

= 0 (2)
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Equation (1) gives 𝑥21 = − sin 𝑥2. Substituting this in (2) gives
− cos 𝑥2 − sin 𝑥2

𝑥1
= 0

Assuming the state 𝑥1 is finite, the above implies − cos 𝑥2 − sin 𝑥2 = 0 or tan 𝑥2 = −1 giving

𝑥2 = arctan (−1) = −𝜋
4 ± 2𝑛𝜋

For 𝑛 = 0, 1, 2,⋯ integer values . Substituting this value for 𝑥2 back in (1) gives

𝑥21 = − sin 𝑥2
= − sin �−𝜋

4
± 2𝑛𝜋�

= sin 𝜋
4

=
�
1
2

Therefore

𝑥1 = ± �
1
2�

1
4

The equilibrium points are

⎧⎪⎪⎨
⎪⎪⎩
�1
2
�
1
4
, −𝜋4

⎫⎪⎪⎬
⎪⎪⎭
and

⎧⎪⎪⎨
⎪⎪⎩
− �12�

1
4
, −𝜋4

⎫⎪⎪⎬
⎪⎪⎭
. There are infinite number of

equilibrium points for di�erent 𝑛 values but using 𝑛 = 0 the above are the two equilibrium
points considered. Approximate numerical values of the points are

{+0.8409, −0.7854}
{−0.8409, −0.7854}

Part (b)

The point 𝑥∗ was found in part(a). To verify that a point is an equilibrium point, �̇� is
evaluated at this point to see if �̇� = 0. Replacing 𝑥1 by 0.8409 and 𝑥2 by −0.7854 in

⎧⎪⎪⎨
⎪⎪⎩
�̇�1
�̇�1

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
− sin 𝑥2 − 𝑥21
− cos 𝑥2+𝑥21

𝑥1

⎫⎪⎪⎬
⎪⎪⎭

Gives ⎧⎪⎪⎨
⎪⎪⎩
�̇�1
�̇�1

⎫⎪⎪⎬
⎪⎪⎭
=

⎧⎪⎪⎨
⎪⎪⎩
0
0

⎫⎪⎪⎬
⎪⎪⎭

Therefore 𝑥∗ is an equilibrium point.

Part(c)

Simulink model was developed that implements part(a). Simulation was run for 10 seconds.
The block XYgraph was used to generate phase portrait by having 𝑥1 (𝑡) being the 𝑋 input
to the block and 𝑥2 (𝑡) being the 𝑌 input to the block. Initial values of 𝑥1 (0) , 𝑥2 (0) used are

near 𝑥∗ found above, which is 𝑥∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
�1
2
�
1
4

−𝜋
4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. We see that the trajectory stays near the starting

point used and is a sink stable point. Increasing the simulation time has no e�ect, since
the trajectory will move to the sink and not leave it since it is a stable sink. The following
shows the model used, a plot of 𝑥1 (𝑡) , 𝑥2 (𝑡) done separately, and the phase portrait plot.
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Part(d)

Yes, simulation indicates 𝑥∗ is stable equilibrium. To estimate the circular domain of
attraction, a circle centered at 𝑥∗ with a radius 𝑟 was used. The radius was increased in
small increments. A starting initial point at the end of the radius was used to start the
simulation. If the trajectory remained inside the circle and went to the sink at 𝑥∗ then
the radius was increased and the simulation is run again until the trajectory no longer
remained inside the circle. The following are plots show this process for di�erent values
of 𝑟. The result shows that the sphere of influence around 𝑥∗ has radius about 12.
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Small code written to generate the above plot

makePlot[f_] := Module[{r, f1, f2, eq1, eq2, x10, sol, x20, t, x1, x2},
f1 = -Sin[x2[t]] - x1[t]^2;
f2 = (-Cos[x2[t]] + x1[t]^2)/x1[t];
eq1 = x1'[t] == f1; eq2 = x2'[t] == f2;
x10 = Sqrt[Sqrt[1/2]]; x20 = -Pi/4;
r = f x10;
sol = {x1[t], x2[t]} /. First@NDSolve[{eq1, eq2, x1[0] == r, x2[0] == x20},
{x1[t], x2[t]}, {t, 0, 100}];
p1 = ParametricPlot[{sol[[1]], sol[[2]]}, {t, 0, 40},

AxesLabel -> {"x1(t)", "x2(t}"

The following plot is another view of the above but displayed on the same plot
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Part(e)

The linearized 𝐴 matrix for the system, which is the Jacobian of 𝑓, is now found.

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕
𝜕𝑥1

�− sin 𝑥2 − 𝑎𝑥21�
𝜕
𝜕𝑥2

�− sin 𝑥2 − 𝑎𝑥21�
𝜕
𝜕𝑥1

�− cos 𝑥2+𝑥21
𝑥1

� 𝜕
𝜕𝑥2

�− cos 𝑥2+𝑥21
𝑥1

�

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

−2𝑎𝑥1 − cos 𝑥2
1
𝑥21
�𝑥21 + cos 𝑥2�

1
𝑥1

sin 𝑥2

⎞
⎟⎟⎟⎟⎟⎠

For 𝑎 = 1

𝐴 =

⎛
⎜⎜⎜⎜⎜⎝
−2𝑥1 − cos 𝑥2

1 + cos 𝑥2
𝑥21

1
𝑥1

sin 𝑥2

⎞
⎟⎟⎟⎟⎟⎠

The eigenvalues are found from

det (𝜆𝐼 − 𝐴) = 0

𝑝 (𝜆) =
�
�

𝜆 + 2𝑥1 cos 𝑥2
− �1 + cos 𝑥2

𝑥21
� 𝜆 − 1

𝑥1
sin 𝑥2

�
�

= 𝜆2 + 𝜆 �2𝑥1 −
sin 𝑥2
𝑥1

� + �cos 𝑥2 − 2 sin 𝑥2 + cos2 𝑥2�

If the real part of each 𝜆𝑖 is negative, then the system is stable. The numerical values of the
equilibrium points found above are substituted in 𝑝 (𝜆) and the roots of the characteristic
equation are found to determine the type of stability. For 𝑥1 = 0.8409, 𝑥2 = −0.785 4 the
roots are

𝜆 = −1.26135 ± 𝑗1.1124

The system is stable since the real part of the eigenvalues is negative. The type of stability
is a sink. For the second equilibrium point 𝑥1 = −0.8409, 𝑥2 = −0.785 4 the roots are

𝜆 = 1.26135 ± 𝑗1.1124
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At this point the system is not stable since the real part is positive. The type of instability
is a focus. The following is a summary of the result

point eigenvalues of 𝐴 stable/unstable

{𝑥1 = 0.8409, 𝑥2 = −0.785 4} −1.26135 ± 𝑗1.1124 Stable, sink

{𝑥1 = −0.8409, 𝑥2 = −0.785 4} 1.26135 ± 𝑗1.1124 Not stable, focus

2.2.3 Problem 2

SOLUTION:

Part (a)

For the 𝑌7
𝑌1
, There are two forward paths. The following diagrams shows them with the

gain on each.

F1  G1G2G3G4G5 F2  G6G5

𝐹1 = 𝐺1𝐺2𝐺3𝐺4𝐺5

𝐹2 = 𝐺6𝐺5

Now Δ𝑘 is found for each forward loop. Δ𝑘 is the Mason Δ but with 𝐹𝑘 removed from the
graph. Removing 𝐹1 removes all the loops, hence

Δ1 = 1

When removing 𝐹2 what remains is 𝐿2 and 𝐿3, hence

Δ2 = 1 − (𝐿2 + 𝐿3)
= 1 − (−𝐻2𝐺2 − 𝐻3𝐺3)
= 1 + (𝐻2𝐺2 + 𝐻3𝐺3)

For the 𝑌2
𝑌1
, there is one forward path 𝐹1 = 1, the associated Δ1 is

Δ1 = 1 −�−𝐺2𝐻2 − 𝐺3𝐻3 − 𝐺4𝐺5𝐻4 − 𝐻6 − 𝐺2𝐺3𝐺4𝐺5𝐻5

+�(−𝐺2𝐻2) (−𝐺4𝐺5𝐻4) + (−𝐺2𝐻2) (−𝐻6) + (−𝐺3𝐻3) (−𝐻6)

= 1 +
one at a time

�����������������������������������������������������������������𝐺2𝐻2 + 𝐺3𝐻3 + 𝐺4𝐺5𝐻4 + 𝐻6 + 𝐺2𝐺3𝐺4𝐺5𝐻5 +
two at a time

�������������������������������������������������𝐺2𝐻2𝐺4𝐺5𝐻4 + 𝐺2𝐻2𝐻6 + 𝐺3𝐻3𝐻6

Part(b)

There are 8 loops. The following diagrams shows the loops with the gains
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L1  G1H1 L2  G2H2

L3  G3H3
L4  G4G5H4

L5  G2G3G4G5H5 L6  H6

L7  G6G5H5H1 L8  G6G5H4H3H2H1

Δ = 1 − (𝐿1 + 𝐿2 + 𝐿3 + 𝐿4 + 𝐿5 + 𝐿6 + 𝐿7 + 𝐿8)
+ (𝐿1𝐿3 + 𝐿1𝐿4 + 𝐿1𝐿6 + 𝐿2𝐿4 + 𝐿2𝐿6 + 𝐿3𝐿6 + 𝐿3𝐿7) − 𝐿1𝐿3𝐿6

Therefore

Δ = 1 +
one at a time

�����������������������������������������������������������������������������������������������������������������������������𝐻1𝐺1 + 𝐻2𝐺2 + 𝐻3𝐺3 + 𝐻4𝐺4𝐺5 + 𝐻5𝐺2𝐺3𝐺4𝐺5 + 𝐻6 − 𝐺5𝐺6𝐻1𝐻5 − 𝐺6𝐺5𝐻4𝐻3𝐻2𝐻1
(1)

+
two at time

���������������������������������������������������������������������������������������������������������������������������������������������(𝐻1𝐺1𝐻3𝐺3 + 𝐻1𝐺1𝐻4𝐺4𝐺5 + 𝐻1𝐻6𝐺1 + 𝐻2𝐺2𝐻4𝐺4𝐺5 + 𝐻2𝐺2𝐻6 + 𝐻3𝐺3𝐻6 − 𝐺3𝐻3𝐺6𝐺5𝐻5𝐻1)

+
three at time

�����������������𝐻1𝐺1𝐻3𝐺3𝐻6

Part (c)

For 𝐺 (𝑠) = 𝑌7
𝑌1
, and using result found above in part (a) and part (b)

𝐺 (𝑠) =
𝑌7
𝑌1

=
Δ1𝐹1 + Δ2𝐹2

Δ

=
(𝐺1𝐺2𝐺3𝐺4𝐺5) + 𝐺6𝐺5 (1 + 𝐻2𝐺2 + 𝐻3𝐺3)

Δ
Where Δ is given in (1) found in part(b). To obtain 𝑌2

𝑌1
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𝑌2
𝑌1

=
Δ1𝐹1
Δ

=
1 +

one at a time

�����������������������������������������������������������������𝐺2𝐻2 + 𝐺3𝐻3 + 𝐺4𝐺5𝐻4 + 𝐻6 + 𝐺2𝐺3𝐺4𝐺5𝐻5 +
two ata time

�������������������������������������������������𝐺2𝐻2𝐺4𝐺5𝐻4 + 𝐺2𝐻2𝐻6 + 𝐺3𝐻3𝐻6
Δ

=
1 + 𝐺2𝐻2 + 𝐺3𝐻3 + 𝐺4𝐺5𝐻4 + 𝐻6 + 𝐺2𝐺3𝐺4𝐺5𝐻5 + 𝐺2𝐻2𝐺4𝐺5𝐻4 + 𝐺2𝐻2𝐻6 + 𝐺3𝐻3𝐻6

Δ

2.2.4 Problem 3

Part (a)

Writing 𝐻 (𝑠) as

𝐻 (𝑠) =
1

𝑠2 + 3𝑠 + 2
The transfer function from 𝐴,𝐵, 𝐶,𝐷 is

𝐻∗ (𝑠) = 𝐶 (𝑠𝐼 − 𝐴)
−1 𝐵 + 𝐷

= �1 0 0�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠 0 0
0 𝑠 0
0 0 𝑠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0
0 −2 1
0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1

(𝑠 − 1) (𝑠 + 2)
−

2
(𝑠 − 1) (𝑠 + 1) (𝑠 + 2)

=
(𝑠 + 1) − 2

(𝑠 − 1) (𝑠 + 1) (𝑠 + 2)

=
(𝑠 − 1)

(𝑠 − 1) (𝑠 + 1) (𝑠 + 2)
There is a zero/pole cancellation due to common factor, which results in

𝐻∗ (𝑠) =
1

𝑠2 + 3𝑠 + 2

A=[1 1 0;0 -2 1;0 0 -1];
B=[0;1;-2];
C=[1 0 0];
syms s;
C*inv((s*eye(3)-A))*B
ans =
1/((s - 1)*(s + 2)) - 2/((s - 1)*(s + 1)*(s + 2))
simplify(ans) %this causes pole/zero cancelation
1/(s^2 + 3*s + 2)

Hence it is a realization of 𝐻(𝑠)

Part (b)

(𝐴, 𝐵, 𝐶,𝐷) is not a minimal realization of 𝐻 (𝑠). The actual plant given by 𝐻 (𝑠) is a
second order. The corresponding di�erential equation is second order

𝑦′′ (𝑡) + 3𝑦′ (𝑡) + 2𝑦 (𝑡) = 𝑢 (𝑡)

Therefore only two states are needed. These are normally taken to be the position and
the velocity (for dynamic system) �𝑦, 𝑦′� . These variables become 𝑥1, 𝑥2 in the state space
formulation. However, the state space realization contains three states 𝑥1, 𝑥2, 𝑥3. Therefore
it is not minimal.

One way to check if (𝐴, 𝐵, 𝐶,𝐷) is minimal, is to compare the eigenvalues of 𝐴 to the poles
of the transfer function to see if they are the same. In this case the eigenvalues of 𝐴 are
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found from

det (𝜆𝐼 − 𝐴) =
�

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜆 0 0
0 𝜆 0
0 0 𝜆

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0
0 −2 1
0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

�
= 0

Hence solving 𝜆3 + 2𝜆2 − 𝜆 − 2 = 0, gives 𝜆1 = −1, 𝜆2 = 1, 𝜆3 = −2. However the poles of 𝐻 (𝑠)
are {−1, −2}, therefore, since the eigenvalues of 𝐴 are not the same as the poles of 𝐻 (𝑠) then
the realization is not minimal.

Another way to verify if the system is minimal or not, is to check if the system is both
controllable and observable. If one of these tests fail, then it is not a minimal realization.

A=[1 1 0;0 -2 1;0 0 -1];
B=[0;1;-2];
z=ctrb(A,B)
z =
0 1 -3
1 -4 10
-2 2 -2
rank(z)
2

Since the rank of the controllability matrix is less than the dimension of the matrix, then
the realization shown is not controllable, which implies it is not minimal. No need to check
for observability.

Part (c)

The di�erential equation of the system given by realization, not using the pole/zero can-
cellation is found from the transfer function (𝑠−1)

(𝑠−1)(𝑠+1)(𝑠+2) giving

𝑦′′′ + 2𝑦′′ − 𝑦 − 2 = 𝑢′ − 𝑢

When the input 𝑢 (𝑡) is a unit step, its derivative becomes a Dirac delta 𝛿 (𝑡) which causes
a short time spike at 𝑡 = 0 causing the integrator saturation. When any input contains a
derivative of unit step and higher order derivatives (doublets and triplets function), they
will cause Dirac delta to show up at 𝑡 = 0. (the time the input is applied). Therefore, the
system trajectory in state space is no longer unique and hence the given state vector 𝒙 can
not be used as state vector.

Part (d)

The following simulink model shows plot of the three states
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The stable response shown above can be explained as follows. Even though the derivative
of the unit step causes a Dirac delta spike, its duration is very short and instantaneous
and occurs at 𝑡 = 0. Hence it did not a�ect the overall response shown in the plot above
at steady state since the transient response have died away by then.

2.2.5 Problem 4

The system transfer function is 𝐻 (𝑠) of order 𝑟 × 𝑚 where 𝑟 is the number of the output
and 𝑚 is the number of the input. Hence there are 2 inputs and 3 outputs in this example,
i.e. 𝐷 has size 𝑟 × 𝑚 = 3 × 2.

𝐻 (𝑠) =

number of input (𝑚)

�����������������������⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐻11 (𝑠) 𝐻12 (𝑠)
𝐻21 (𝑠) 𝐻22 (𝑠)
𝐻31 (𝑠) 𝐻32 (𝑠)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴11 0 0 0 0 0
0 𝐴12 0 0 0 0
0 0 𝐴21 0 0 0
0 0 0 𝐴22 0 0
0 0 0 0 𝐴31 0
0 0 0 0 0 𝐴32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

And

𝐵 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐵11 0
0 𝐵12
𝐵21 0
0 𝐵22
𝐵31 0
0 𝐵32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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And

𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶11 𝐶12 0 0 0 0
0 0 𝐶21 𝐶22 0 0
0 0 0 0 𝐶31 𝐶32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

And

𝐷 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐷11 𝐷12

𝐷21 𝐷22

𝐷31 𝐷32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now 𝐻∗ (𝑠) = 𝐶 (𝑠𝐼 − 𝐴)−1 𝐵 + 𝐷 is evaluated to show it is the same as the given system
transfer function.

(𝑠𝐼 − 𝐴)−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠𝐼 − 𝐴11 0 0 0 0 0
0 𝑠𝐼 − 𝐴12 0 0 0 0
0 0 𝑠𝐼 − 𝐴21 0 0 0
0 0 0 𝑠𝐼 − 𝐴22 0 0
0 0 0 0 𝑠𝐼 − 𝐴31 0
0 0 0 0 0 𝑠𝐼 − 𝐴32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

This 𝑠𝐼 − 𝐴 is a diagonal matrix, then its inverse is the matrix with each elements on the
diagonal inverted. Hence the above becomes

(𝑠𝐼 − 𝐴)−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(𝑠𝐼 − 𝐴11)
−1 0 0 0 0 0

0 (𝑠𝐼 − 𝐴12)
−1 0 0 0 0

0 0 (𝑠𝐼 − 𝐴21)
−1 0 0 0

0 0 0 (𝑠𝐼 − 𝐴22)
−1 0 0

0 0 0 0 (𝑠𝐼 − 𝐴31)
−1 0

0 0 0 0 0 (𝑠𝐼 − 𝐴32)
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now 𝐶 (𝑠𝐼 − 𝐴)−1 is evaluated

𝐶 (𝑠𝐼 − 𝐴)−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶11 𝐶12 0 0 0 0

0 0 𝐶21 𝐶22 0 0

0 0 0 0 𝐶31 𝐶32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(𝑠𝐼−𝐴11)
−1 0 0 0 0 0

0 (𝑠𝐼−𝐴12)
−1 0 0 0 0

0 0 (𝑠𝐼−𝐴21)
−1 0 0 0

0 0 0 (𝑠𝐼−𝐴22)
−1 0 0

0 0 0 0 (𝑠𝐼−𝐴31)
−1 0

0 0 0 0 0 (𝑠𝐼−𝐴32)
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶11(𝑠𝐼−𝐴11)
−1 𝐶12(𝑠𝐼−𝐴12)

−1 0 0 0 0

0 0 𝐶21(𝑠𝐼−𝐴21)
−1 𝐶22(𝑠𝐼−𝐴22)

−1 0 0

0 0 0 0 𝐶31(𝑠𝐼−𝐴31)
−1 𝐶32(𝑠𝐼−𝐴32)

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now 𝐶 (𝑠𝐼 − 𝐴)−1 𝐵 is evaluated

𝐶 (𝑠𝐼 − 𝐴)−1 𝐵 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶11 (𝑠𝐼 − 𝐴11)
−1 𝐶12 (𝑠𝐼 − 𝐴12)

−1 0 0 0 0
0 0 𝐶21 (𝑠𝐼 − 𝐴21)

−1 𝐶22 (𝑠𝐼 − 𝐴22)
−1 0 0

0 0 0 0 𝐶31 (𝑠𝐼 − 𝐴31)
−1 𝐶32 (𝑠𝐼 − 𝐴32)

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Which reduces to

𝐶 (𝑠𝐼 − 𝐴)−1 𝐵 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐵11 0
0 𝐵12
𝐵21 0
0 𝐵22
𝐵31 0
0 𝐵32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶11 (𝑠𝐼 − 𝐴11)
−1 𝐵11 𝐶12 (𝑠𝐼 − 𝐴12)

−1 𝐵12
𝐶21 (𝑠𝐼 − 𝐴21)

−1 𝐵21 𝐶22 (𝑠𝐼 − 𝐴22)
−1 𝐵22

𝐶31 (𝑠𝐼 − 𝐴31)
−1 𝐵31 𝐶32 (𝑠𝐼 − 𝐴32)

−1 𝐵32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Finally, 𝐶 (𝑠𝐼 − 𝐴)−1 𝐵 + 𝐷 is evaluated giving

𝐶 (𝑠𝐼 − 𝐴)−1 𝐵 + 𝐷 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶11 (𝑠𝐼 − 𝐴11)
−1 𝐵11 𝐶12 (𝑠𝐼 − 𝐴12)

−1 𝐵12
𝐶21 (𝑠𝐼 − 𝐴21)

−1 𝐵21 𝐶22 (𝑠𝐼 − 𝐴22)
−1 𝐵22

𝐶31 (𝑠𝐼 − 𝐴31)
−1 𝐵31 𝐶32 (𝑠𝐼 − 𝐴32)

−1 𝐵32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐷11 𝐷12

𝐷21 𝐷22

𝐷31 𝐷32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶11 (𝑠𝐼 − 𝐴11)
−1 𝐵11 + 𝐷11 𝐶12 (𝑠𝐼 − 𝐴12)

−1 𝐵12 + 𝐷12

𝐶21 (𝑠𝐼 − 𝐴21)
−1 𝐵21 + 𝐷21 𝐶22 (𝑠𝐼 − 𝐴22)

−1 𝐵22 + 𝐷22

𝐶31 (𝑠𝐼 − 𝐴31)
−1 𝐵31 + 𝐷31 𝐶32 (𝑠𝐼 − 𝐴32)

−1 𝐵32 + 𝐷32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

But the above is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐻11 (𝑠) 𝐻12 (𝑠)
𝐻21 (𝑠) 𝐻22 (𝑠)
𝐻31 (𝑠) 𝐻32 (𝑠)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
which is what we are asked to show.

2.2.6 Problem 5

Part(a)

Using standard method used in SISO with attention to dimensions, one can write

𝐸 (𝑠) = 𝑈 (𝑠) − 𝑌 (𝑠)
𝑌 (𝑠) = 𝐸 (𝑠)𝐻 (𝑠) 𝐺 (𝑠)

Substituting the first equation above in the second equation to eliminate 𝐸 (𝑠) gives (the
letter 𝑠 is dropped below to make the notation it more clear)

𝑌 = (𝑈 − 𝑌)𝐻𝐺
= 𝑈𝐻𝐺 − 𝑌𝐻𝐺

Hence

𝑌 + 𝑌𝐻𝐺 = 𝑈𝐻𝐺

Factoring out 𝐻 (𝑠) but since these are matrices, this operation generates an identity matrix
with ones on the diagonal now and not scalar one as the case with SISO

𝑌 (𝐼 + 𝐻𝐺) = 𝑈𝐻𝐺

Hence
𝑌
𝑈
≡ 𝑇 (𝑠) = (𝐼 + 𝐻 (𝑠) 𝐺 (𝑠))−1𝐻 (𝑠)𝐺 (𝑠) (1)

Which is what we asked to show. Another method is to use Mason rule. There is one
forward path given by 𝐻 (𝑠)𝐺 (𝑠) and one loop given by −𝐻 (𝑠)𝐺 (𝑠) where the negative sign
is due to negative feedback, which is assumed throughout. Hence

Δ = 𝐼 − (−𝐻 (𝑠) 𝐺 (𝑠))
= 𝐼 + 𝐻 (𝑠) 𝐺 (𝑠)

and Δ1 = 1 since removing the forward path removes the loop. Hence

𝑇 (𝑠) =
Δ1 (𝐻 (𝑠) 𝐺 (𝑠))

Δ
Since these are matrices, one uses matrix inversion in place of division , and the above
becomes

𝑇 (𝑠) = (𝐼 + 𝐻 (𝑠) 𝐺 (𝑠))−1𝐻 (𝑠)𝐺 (𝑠) (2)

Which is the same as (1).
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Part (b)

Matlab was used to plot the singular value of 𝑇 (𝑠). The plots shows 2 lines, one for each
eigenvalue, plotted from low frequency of 0.1 to 103 rad/sec. The following shows the plot
and the code used

close all
s = tf('s');
G = [1/s s/(2*s^2+3*s+1); 2/(s-1) s/(s^2+1)];
H = [1/s 2; -3 -1/(s+1)];
T = inv(eye(2)+G*H)*G*H
sigma(T,logspace(-1,3));
h = findobj(gcf,'type','line');
set(h,'linewidth',1.5);
set(h,'color','r');
grid

2.2.7 Problem 6

Part (a)

The transfer function matrix is given by

𝐻 (𝑠) = 𝐶 (𝑠𝐼 − 𝐴)−1 𝐵 + 𝐷

=
⎛
⎜⎜⎜⎜⎝
0 1 −1
0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 0
4 −1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+
⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
0 1 −1
0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠 − 1 −2 0
−4 𝑠 + 1 0
0 0 𝑠 − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+
⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ (1)
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But
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠 − 1 −2 0
−4 𝑠 + 1 0
0 0 𝑠 − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

=
𝑎𝑑𝑗𝑢𝑔𝑎𝑡𝑒 (𝐴)

det (𝐴)

Where

|(𝑠𝐼 − 𝐴)| = (𝑠 − 1) (𝑠 + 1) (𝑠 − 1) + 2 (−4 (𝑠 − 1))
= 𝑠3 − 𝑠2 − 9𝑠 + 9

And adjugate of (𝑠𝐼 − 𝐴) is 𝑐𝑜𝑓𝑎𝑐𝑡𝑜𝑟 (𝑠𝐼 − 𝐴)𝑇 where

𝑐𝑜𝑓𝑎𝑐𝑡𝑜𝑟 (𝑠𝐼 − 𝐴) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(𝑠 + 1) (𝑠 − 1) 4 (𝑠 − 1) 0
2 (𝑠 − 1) (𝑠 + 1) (𝑠 − 1) 0

0 0 (𝑠 − 1) (𝑠 + 1) − 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

𝑎𝑑𝑗𝑢𝑔𝑎𝑡𝑒 (𝑠𝐼 − 𝐴) = 𝑐𝑜𝑓𝑎𝑐𝑡𝑜𝑟 (𝑠𝐼 − 𝐴)𝑇

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(𝑠 − 1) (𝑠 + 1) 2𝑠 − 2 0
4𝑠 − 4 (𝑠 − 1) (𝑠 + 1) 0
0 0 (𝑠 − 1) (𝑠 + 1) − 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore

(𝑠𝐼 − 𝐴)−1 =
1

𝑠3 − 𝑠2 − 9𝑠 + 9

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠2 − 1 2𝑠 − 2 0
4𝑠 − 4 𝑠2 − 1 0
0 0 𝑠2 − 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

And (1) now becomes

𝐻 (𝑠) =
1

𝑠3 − 𝑠2 − 9𝑠 + 9

⎛
⎜⎜⎜⎜⎝
0 1 −1
0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠2 − 1 2𝑠 − 2 0
4𝑠 − 4 𝑠2 − 1 0
0 0 𝑠2 − 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+
⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

=
1

𝑠3 − 𝑠2 − 9𝑠 + 9

⎛
⎜⎜⎜⎜⎝
4𝑠 − 4 𝑠2 − 1 9 − 𝑠2

0 0 𝑠2 − 9

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+
⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

=
1

𝑠3 − 𝑠2 − 9𝑠 + 9

⎛
⎜⎜⎜⎜⎝
−𝑠2 + 4𝑠 + 5
𝑠2 − 9

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝
− −𝑠2+4𝑠+5
−𝑠3+𝑠2+9𝑠−9

1 − 𝑠2−9
−𝑠3+𝑠2+9𝑠−9

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

−�𝑠2−2𝑠−8�

𝑠3−𝑠2−9𝑠+9𝑠
𝑠−1

⎞
⎟⎟⎟⎟⎟⎠

Therefore

𝐻11 (𝑠) =
−�𝑠2−4𝑠−5�

𝑠3−𝑠2−9𝑠+9

and

𝐻21 =
𝑠

𝑠−1

Part (b)

Given the system transfer function

𝐻 (𝑠) = � −�𝑠
2−4𝑠−5�

𝑠3−𝑠2−9𝑠+9
𝑠

𝑠−1
�
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This new system has one output and two inputs. The system in part(a) had two outputs
and one input. Let

𝐴 =
⎛
⎜⎜⎜⎜⎝
𝐴11 0
0 𝐴12

⎞
⎟⎟⎟⎟⎠

And

𝐵 =
⎛
⎜⎜⎜⎜⎝
𝐵11 0
0 𝐵12

⎞
⎟⎟⎟⎟⎠

And

𝐶 = �𝐶11 𝐶12�

And

𝐷 = �𝐷11 𝐷12�

Now 𝐻∗ (𝑠) = 𝐶 (𝑠𝐼 − 𝐴)
−1 𝐵 + 𝐷 is evaluated giving

𝐻∗ (𝑠) = �𝐶11 𝐶12�
⎛
⎜⎜⎜⎜⎝
(𝑠𝐼 − 𝐴11)

−1 0
0 (𝑠𝐼 − 𝐴12)

−1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝐵11 0
0 𝐵12

⎞
⎟⎟⎟⎟⎠ + �𝐷11 𝐷12�

= �𝐶11 (𝑠𝐼 − 𝐴11)
−1 𝐶12 (𝑠𝐼 − 𝐴12)

−1�
⎛
⎜⎜⎜⎜⎝
𝐵11 0
0 𝐵12

⎞
⎟⎟⎟⎟⎠ + �𝐷11 𝐷12�

= �𝐶11 (𝑠𝐼 − 𝐴11)
−1 𝐵11 + 𝐷11 𝐶12 (𝑠𝐼 − 𝐴12)

−1 𝐵12 + 𝐷12�

Now the following two equations are solved

𝐶11 (𝑠𝐼 − 𝐴11)
−1 𝐵11 + 𝐷11 =

− �𝑠2 − 4𝑠 − 5�
𝑠3 − 𝑠2 − 9𝑠 + 9

𝐶12 (𝑠𝐼 − 𝐴12)
−1 𝐵12 + 𝐷12 =

𝑠
𝑠 − 1

Using the companion form, the first equation above results in

𝐴11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 0 1
−9 9 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐵11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐶11 = �5 4 −1�

𝐷11 = �0�

And for the second equation 𝑠
𝑠−1 it is first converted to strict proper transfer function by

long division, given 1 + 1
𝑠−1 and now the conversion is carried out for the companion form

giving

𝐴12 = �1�

𝐵12 = �1�

𝐶12 = �1�

𝐷12 = �1�

Therefore the realization is now found by patching the above into larger matrices as follows

𝐴 =
⎛
⎜⎜⎜⎜⎝
𝐴11 0
0 𝐴12

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0
0 0 1 0
−9 9 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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And

𝐵 =
⎛
⎜⎜⎜⎜⎝
𝐵11 0
0 𝐵12

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
1 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

And

𝐶 = �𝐶11 𝐶12� = �5 4 −1 1�

And

𝐷 = �𝐷11 𝐷12� = �0 1�

Hence in 𝑥′ = 𝐴𝑥 + 𝐵𝑢 and 𝑦 = 𝐶𝑥 + 𝐷𝑢 it becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥′1
𝑥′2
𝑥′3
𝑥′4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0
0 0 1 0
−9 9 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
1 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑢1
𝑢2

⎞
⎟⎟⎟⎟⎠

And

𝑦 = �5 4 −1 1�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ �0 1�
⎛
⎜⎜⎜⎜⎝
𝑢1
𝑢2

⎞
⎟⎟⎟⎟⎠

is the realization.

Part (c)

The above is not a minimal realization . There are 4 states in the realization while the
maximum number of poles in 𝐻 (𝑠) is 3 which is located in 𝐻11 (𝑠). In other words, the
largest part of the system is a third order di�erential equation, which needs only 3 states to
fully describe. The system can be found to be not observable but it is controllable. Hence
it fails one of the tests needed to qualify as a minimal realization.
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2.2.8 key solution
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Phase Plot of x,(t) and xr(t)
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Domain Of Attraction
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(d) First find partials
∂f1

dx1

= −2x1
∂f1

dx2

= − cos x2;

∂f2

dx1

= 1 +
1

x2
1

cos x2;
∂f2

dx2

=
sin x2

x1

.

Now evaluating these at x∗ leads to linearization matrix

A =

[
−1.6818 −0.7071

2 −.8409

]
.

Now, using eig(A) in Matlab gives λ = −1.26 ± j1.11. Hence these eigenvalues have
negative real part; i.e., the linearization is stable which is consistent with simulations.
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2.3 HW3

2.3.1 Questions

ECE 717 – Homework Set 3
Due Monday, October 6, 2014 @ 9 AM

Please slide under my door
;
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Barmish

ECE 717 – Homework Invariance

For the state space system Σ = (A, B, C), a linear feedback control

u(t) = Kx(t) + v(t)

is applied. For simplicity, assume that the system has a single input.
Hence use column vector B = b and row vector K = k.

(a) Find the transfer function for the closed loop system Σcl.

(b) Again assuming a single input (B = b), prove that the controlla-
bility matrices for the open loop and closed loop systems have the same
rank; i.e., we say “controllability is invariant under linear state feedback.”
HINT: Show that any vector x which can be written as a linear combina-
tion of the columns of CΣ can also be written as a linear combination of
the columns of CΣcl

and vice versa.
;

Barmish

ECE 717 – Homework Design

Consider the LTI system Σ = (A, b) where

A =


0 0 1 0
0 0 0 1
−2 −1 0 0
1 −1 0 0

 ; b =


0
0
1
0

 .

(a) Determine if this system is controllable.

(b) Find the open loop eigenvalues of the system. Is the system stable?

(c) Find a transformation matrix T taking this system to its compan-
ion canonical form Σ̃.

(d) Design a feedback gain matrix K̃ such that Σ̃ has two closed loop
eigenvalues at −1 + j and two at −1− j.

(e) For the original system Σ find the gain matrix K leading to the same
closed loop eigenvalues as in (d).

;
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Barmish

ECE 717 – Homework Observability

Suppose Σ1 = (A1, B1, C1, D1) and Σ2 = (A2, B2, C2, D2) are two equiva-
lent systems with the same number of states n, inputs m and outputs r

and that there exits a nonsingular transformation matrix T relating their
states. Assuming the following observability rank condition is satisfied for
each system:

rank OΣ = n

where

OΣ =



C

CA

CA2

·
·
·

CAn−1


.

Now find a formula for the nonsingular transformation T taking Σ1 to Σ2.
;

Barmish

ECE 717 – Homework Observer

(a) For the harmonic oscillator described by the state equations ẋ1 = ω0x2
and ẋ2 = −ω0x1 and measured output y = x1, design an observer gain ma-
trix L so that the error dynamics have eigenvalues λ1 = −1 and λ2 = −2.
Note that the gains in L will be functions of ω0.

(b) Develop a Simulink program to study the performance of your ob-
server. To this end, for ω0 = 1, 10, 100, 1000, perform the following ex-
periment: With system initialized to x1(0) = x2(0) = 1 and observer
initialized to x̂0 = 0, generate plots of x1(t) and x̂1(t) on the same graph
and comment on the observer’s ability to track the state. Similarly, study
the tracking of x2(t).

(c) With initial conditions as given in (b) above, study the performance of
the observer in the x1 − x2 phase plain. That is, compare the phase plot
of x(t) with that of x̂(t).

(d) Now tune the observer gains with the goal of improving the track-
ing performance. Once you have decided on your final set of gains, repeat
the experiment in part (c). Also explain the rationale for your choice of
gains.

(e) Notice that the initial conditions for the system and the observer are
different. Explain why the problem was formulated in this way.

;

2.3.2 Problem 1

Part(a)

Given

𝑥′ = 𝐴𝑥 + 𝑏𝑢
𝑦 = 𝐶𝑥



147

Replacing 𝑢 with 𝑘𝑥 + 𝑣 results in

𝑥′ = 𝐴𝑥 + 𝑏 (𝑘𝑥 + 𝑣)
= 𝐴𝑥 + 𝑏𝑘𝑥 + 𝑏𝑣
= (𝐴 + 𝑏𝑘) 𝑥 + 𝑏𝑣

In the above the dimensions are 𝐴𝑛×𝑛, 𝑏𝑛×1, 𝑘1×𝑛, 𝑣1×1, 𝑥𝑛×1. The transfer function is

𝐻𝑐𝑙 (𝑠) = 𝐶 (𝑠𝐼 − (𝐴 + 𝑏𝑘))
−1 𝑏 (1)

2.3.3 Part (b)

Let the controllability matrix for the open loop system (𝐴, 𝑏) be ℂ with some rank 𝑚, not
necessarily full rank.

ℂ = �𝑏 𝐴𝑏 𝐴2𝑏 ⋯ 𝐴𝑛−1𝑏�

We need to show that the rank of closed loop controllability matrix ℂ𝑐𝑙 will also have the
same rank 𝑚.

ℂ𝑐𝑙 = �𝑏 (𝐴 + 𝑏𝑘) 𝑏 (𝐴 + 𝑏𝑘)2 𝑏 ⋯ (𝐴 + 𝑏𝑘)𝑛−1 𝑏�

Given any matrix, we know that we can perform elementary column or row operations on
it without changing its rank. In other words, column operations are rank-preserving. And
this is the main tool used to proof this.

For example, we can add the first column to the second, and this will not change the rank
of the matrix. So the idea of the is this: We will perform column operations on each column
ℂ𝑐𝑙 to convert it back to the same corresponding column of ℂ.

The first step is to expand ℂ𝑐𝑙 columns in order to see more clearly what operations are
needed. Only the first 3 columns are expanded due to space limitation and this is su�cient
to show the point

ℂ𝑐𝑙 = �𝑏 𝐴𝑏 + 𝑏𝑘𝑏 �𝐴2 + (𝑏𝑘)2 + 𝐴𝑏𝑘 + 𝑏𝑘𝐴� 𝑏 ⋯�

= �𝑏 𝐴𝑏 + 𝑏𝑘𝑏 𝐴2𝑏 + 𝑏𝑘𝑏𝑘𝑏 + 𝐴𝑏𝑘𝑏 + 𝑏𝑘𝐴𝑏 ⋯� (2)

The first column of ℂ𝑐𝑙 is the same as the first column of ℂ, so we go to the next column
which is 𝐴𝑏+ 𝑏𝑘𝑏 which we want to make it 𝐴𝑏. post-multiplying the first column by 𝑘𝑏 and
subtracting the result from the second column makes the second column become 𝐴𝑏.

Now we will work on the third column which is 𝐴2𝑏 + (𝑏𝑘)2 𝑏 + 𝐴𝑏𝑘𝑏 + 𝑏𝑘𝐴𝑏 and search for
column operations that converts this to 𝐴2𝑏. If we post-multiply the second column of ℂ𝑐𝑙
by 𝑘𝑏 and subtract the result from the third column, now the third column becomes

ℂ𝑐𝑙 (3) = �𝐴2𝑏 + 𝑏𝑘𝑏𝑘𝑏 + 𝐴𝑏𝑘𝑏 + 𝑏𝑘𝐴𝑏� − [𝐴𝑏 + 𝑏𝑘𝑏] 𝑘𝑏

= �𝐴2𝑏 + 𝑏𝑘𝑏𝑘𝑏 + 𝐴𝑏𝑘𝑏 + 𝑏𝑘𝐴𝑏� − [𝐴𝑏𝑘𝑏 + 𝑏𝑘𝑏𝑘𝑏]

= 𝐴2𝑏 + 𝑏𝑘𝐴𝑏

We still have 𝑏𝑘𝐴𝑏 left to remove. So we need to do more column operations. If we now
post-multiply the first column by 𝑘𝐴𝑏 and subtract the result from ℂ𝑐𝑙 (3), then we finally
obtain ℂ𝑐𝑙 (3) = 𝐴2𝑏. We continue doing this for each column in ℂ𝑐𝑙 converting each column
to the same columns as ℂ.

This shows that whatever rank ℂ had, then ℂ𝑐𝑙 will have the same rank. This is what we
are asked to show.
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2.3.4 Problem 2

Part(a)

The controllability matrix ℂ is

ℂ = �𝑏 𝐴𝑏 𝐴2𝑏 𝐴3𝑏�

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 −2
0 0 0 1
1 0 −2 0
0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We find the rank of this matrix we can exchange the rows to convert it to row echelon form
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 −2
0 0 0 1
1 0 −2 0
0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −2 0
0 1 0 −2
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We now see that it is full rank, since there are no zero pivots. Hence the rank 4. Since the
rank is the same as 𝑛 the size of 𝐴 therefore

the open loop system is controllable

part(b)

𝑝 (𝜆) = |𝜆𝐼 − 𝐴|

=
�
�
�

𝜆 0 −1 0
0 𝜆 0 −1
2 1 𝜆 0
−1 1 0 𝜆

�
�
�

= 𝜆4 + 3𝜆2 + 3

Now we solve 𝑝 (𝜆) = 0. The roots of this characteristic equation (the same as eigenvalues
of 𝐴) are found to be

𝜆1 = −0.34 + 1.27𝑗
𝜆2 = −0.34 − 1.27𝑗
𝜆3 = +0.34 + 1.27𝑗
𝜆4 = +0.34 + 1.27𝑗

We see that there are two eigenvalues whose real part is positive, hence the

open loop system is not stable

part(c)

The target system is the companion form, which is

𝑥′ =

�̃�

�������������������������������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
−𝑎0 −𝑎1 −𝑎2 −𝑎3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑥 +

�̃�
⏞⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑢

Where the last row of �̃� is taken from the characteristic polynomial terms in original 𝐴 but
in reverse order and by changing the sign. The characteristic polynomial of the original 𝐴
was found above, here it is again

𝑃 (𝑠) = 𝑎4𝑠4 + 𝑎3𝑠2 + 𝑎2𝑠 + 𝑎0
= 𝑠4 + 3𝑠2 + 3
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Hence 𝑎0 = 3, 𝑎1 = 0, 𝑎2 = 3, 𝑎3 = 0, therefore the target system is

𝑥′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
−3 0 −3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑥 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑢

Now we find ℂ, ℂ̃ and then find

𝑇 = ℂ̃ℂ−1 (3)

The controllability matrix ℂ of the original system was found in part (a) as

ℂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 −2
0 0 0 1
1 0 −2 0
0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence

ℂ−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 2
1 2 0 0
0 0 0 1
0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The controllability matrix ℂ̃ is given by the following

ℂ̃ = ��̃� �̃��̃� �̃�2�̃� �̃�3�̃��

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 −3
1 0 −3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now we can find 𝑇 using (3)

𝑇 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 −3
1 0 −3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 2
1 2 0 0
0 0 0 1
0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 0 1
1 −1 0 0
0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

To check 𝑇 we apply it to 𝐴 and see if we obtain �̃�

�̃� = 𝑇𝐴𝑇−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 0 1
1 −1 0 0
0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 1
−2 −1 0 0
1 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 0 1
1 −1 0 0
0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
−3 0 −3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

So 𝑇 has been verified OK.
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Part(d)

Let the control input be 𝑢 = �̃�𝑥 + 𝑣, where �̃� = �𝑘0 𝑘1 𝑘2 𝑘3�. Therefore the closed loop
system become

𝑥′ = �̃�𝑥 + �̃� ��̃�𝑥 + 𝑣�

=

𝐴closed

�������������̃� + �̃��̃��𝑥 + �̃�𝑣

Hence

𝐴closed =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
−3 0 −3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�𝑘0 𝑘1 𝑘2 𝑘3�

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

𝑘0 − 3 𝑘1 𝑘2 − 3 𝑘3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

The characteristic polynomial of the closed loop 𝐴closed is found from

𝑝 (𝜆) = �𝜆𝐼 − 𝐴closed�

=
�
�
�

𝜆 −1 0 0
0 𝜆 −1 0
0 0 𝜆 −1

3 − 𝑘0 −𝑘1 3 − 𝑘2 𝜆 − 𝑘3

�
�
�

= 𝜆4 − 𝜆3𝑘3 + 𝜆2 (3 − 𝑘2) − 𝜆𝑘1 + (3 − 𝑘0) (5)

We want the above polynomial to be equal to the polynomial with the desired roots given
below, where the two unstable roots of the open loop have now been replaced with the
given two stable roots. The stable roots of the original system are not modified since they
are already stable.

𝜆1 = −0.34 + 1.27𝑗
𝜆2 = −0.34 − 1.27𝑗
𝜆3 = −1 + 1𝑗
𝜆4 = −1 − 𝑗

In other words, we want to force (5) to be the same as the following desired characteristic
polynomial

𝑝design (𝜆) = (𝜆 − 𝜆1) (𝜆 − 𝜆2) (𝜆 − 𝜆3) (𝜆 − 𝜆4)

= �𝜆 − �−0.34 + 1.27𝑗�� �𝜆 − �−0.34 − 1.27𝑗�� �𝜆 − �−1 + 1𝑗�� �𝜆 − �−1 − 𝑗��

= 𝜆4 + 2.68𝜆3 + 5.088 5𝜆2 + 4.817𝜆 + 3.457 (6)

Comparing coe�cients of (5) with (6) and solving for 𝑘𝑖 gives

𝑘3 = −2.68
3 − 𝑘2 = 5.088 5

𝑘1 = −4.817
(3 − 𝑘0) = 3.457

Hence

𝑘3 = −2.68
𝑘2 = −2.088 5
𝑘1 = −4.817
𝑘0 = −0.457

And the required gain vector is

�̃� = �−0.457 −4.817 −2.0885 −2.68�
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Part(e)

In the above the gain �̃� vector was found for �̃� based system (the controllable form),
however our original system is 𝐴. The gain vector is transformed using 𝑇 found earlier

�̃� = 𝐾𝑇−1

𝐾 = �̃�𝑇

= �−0.457 −4.817 −2.0885 −2.68�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 0 1
1 −1 0 0
0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence

𝐾 = �−2.0885 1.631 5 −2.68 −2.137�

To verify the above, we now find the eigenvalues of [𝐴 − 𝑏𝐾] and see if it gives the same
eigenvalues we have designed for under �̃�.

[𝐴 + 𝑏𝐾] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 1
−2 −1 0 0
1 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�−2.0885 1.6315 −2.68 −2.137�

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 1

−4.0885 0.6315 −2.68 −2.137
1 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The eigenvalues of the above matrix is �−0.34 − 1.27𝑗, −0.34 + 1.27𝑗, −1 − 1𝑗, −1 + 1𝑗� and these
are the same eigenvalues used in the design under �̃�.

2.3.5 Problem 3

Let the first system be

𝑥′1 = 𝐴1𝑥1 + 𝐵1𝑢
𝑦 = 𝐶1𝑥1 + 𝐷1𝑢 (1)

And the second system be

𝑥′2 = 𝐴2𝑥2 + 𝐵2𝑢
𝑦 = 𝐶2𝑥1 + 𝐷2𝑢

And assume there exists a non-singular constant matrix 𝑇 such that 𝑥2 = 𝑇𝑥1. We need to
𝑇. By applying this transformation to (1) we obtain the transformations

𝐴2 = 𝑇𝐴1𝑇−1

𝐵2 = 𝑇𝐵1
𝐶2 = 𝐶1𝑇−1

𝐷2 = 𝐷1

Now, let Θ2 be the observability matrix for first system given by

Θ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶2

𝐶2𝐴2

𝐶2𝐴2
2

⋮
𝐶2𝐴𝑛−1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Applying the above transformations to Θ2 results in

Θ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶2

𝐶2𝐴2

𝐶2𝐴2
2

⋮
𝐶2𝐴𝑛−1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶1𝑇−1

�𝐶1𝑇−1� �𝑇𝐴1𝑇−1�
�𝐶1𝑇−1� �𝑇𝐴2

1𝑇−1�
⋮

�𝐶1𝑇−1� �𝑇𝐴𝑛−1
1 𝑇−1�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶1𝑇−1

𝐶1𝐴1𝑇−1

𝐶1𝐴2
1𝑇−1

⋮
𝐶1𝐴𝑛−1

1 𝑇−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶1

𝐶1𝐴1

𝐶1𝐴2
1

⋮
𝐶1𝐴𝑛−1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑇−1 = Θ1𝑇−1

Therefore

Θ2 = Θ1𝑇−1

Θ2𝑇 = Θ1

Hence

𝑇 = Θ−1
2 Θ1

2.3.6 Problem 4

Part(a)

The system is given by 𝑥′ = 𝐴𝑥; 𝑦 = 𝐶𝑥

⎛
⎜⎜⎜⎜⎝
𝑥′1
𝑥′2

⎞
⎟⎟⎟⎟⎠ =

𝐴

�������������⎛
⎜⎜⎜⎜⎝
0 𝜔0

−𝜔0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠

𝑦 =

𝐶

��������1 0�
⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠

The observer state estimator is given by �̂�′ = 𝐴�̂� + 𝐿 �𝑦 − �̂��

This diagram shows the flow for the observer

y

u A,B,C,D

L

plant

+-
ŷ y  ŷ

CA,B,C,D
x

x   Ax  Bu  Ly  ŷ

Lvenberger observer

In our case, there is no input 𝑢(𝑡) since it is a free system, and it simplifies to

yA,B,C,D

L

plant

+-
ŷ y  ŷ

CA,B,C,D
x

Lvenberger observer

x   Ax  Ly  ŷ

C
x

And the goal is to determine 𝐿 based on eigenvalue requirements. In the above diagram,
𝑦 = 𝐶𝑥 and �̂� = 𝐶�̂�.
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Now, Let the error in state estimation be 𝑒 = (�̂� − 𝑥), therefore the rate of change of the
error becomes

𝑒′ = (𝐴 − 𝐿𝐶) 𝑒

We need to determine 𝐿 such that the eigenvalues of (𝐴 − 𝐿𝐶) are 𝜆1 = −1 and 𝜆2 = −2.
Before showing the design steps using the actual data given in the problem, the design
steps are given below for the general case.

Design steps for �nding 𝐿

1. Input is 𝐴,𝐶 and set of desired eigenvalues 𝜆𝑖

2. Verify that (𝐴, 𝐶) is observable. If so then let 𝐴𝑜 = 𝐴𝑇, 𝐵𝑜 = 𝐶𝑇, hence (𝐴𝑜, 𝐵𝑜) is
controllable.

3. Find controllability matrix ℂ (𝐴𝑜, 𝐵𝑜)

4. Write down the controllability companion form for 𝐴𝑜, 𝐵𝑜. Let them be called �̃�𝑜, �̃�𝑜.
To do this, we only need to find the characteristic polynomial for 𝐴𝑜 and read the
coe�cients in reverse and change the signs. �̃�𝑜 will always have zeros other than the
last row.

5. Find controllability matrix ℂ̃ ��̃�𝑜, �̃�𝑜�

6. Find 𝑇 = ℂ̃ℂ−1

7. Find the closed loop matrix ��̃�𝑜 + �̃�𝑜�̃�� where �̃� = [𝑘0, 𝑘1,⋯ , 𝑘𝑛−1] is the gain matrix
we looking to determine.

8. Find the characteristic polynomial of ��̃�𝑜 + �̃�𝑜�̃��, it will be a function of 𝑘𝑖

9. Set up the desired polynomial 𝑝 (𝜆) = (𝜆 − 𝜆𝑜) (𝜆 − 𝜆𝑜)⋯ (𝜆 − 𝜆𝑛−1) where 𝜆𝑖 are the
desired eigenvalues given.

10. Compare coe�cients of polynomial from step (9) with the polynomial of step (7)
and solve for 𝑘𝑖

11. Now we have found �̃� = [𝑘0, 𝑘1,⋯ , 𝑘𝑛−1]. Convert it to 𝐾 using 𝑇 as follows: 𝐾 = �̃�𝑇

12. Find 𝐿 = −𝐾𝑇. This completes the design.

13. The observer 𝐴 matrix now becomes [𝐴 − 𝐿𝐶]

Applying the design of 𝐿 to the problem

The first step is to check if (𝐴, 𝐶) is observable. The observability matrix is
⎛
⎜⎜⎜⎜⎝
𝐶
𝐶𝐴

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1 0
0 𝜔0

⎞
⎟⎟⎟⎟⎠

Since the determinant is 𝜔0, hence not zero. Then this is invertible and full rank. Hence
(𝐴, 𝐶) is observable. Therefore �𝐴𝑇, 𝐶𝑇� is controllable pair. Lets call them (𝐴𝑜, 𝐵𝑜) so that

we do not have to use transpose in all the notation. Hence 𝐴𝑜 = 𝐴𝑇 =
⎛
⎜⎜⎜⎜⎝
0 −𝜔0

𝜔0 0

⎞
⎟⎟⎟⎟⎠ and 𝐵𝑜 =

𝐶𝑇 =
⎛
⎜⎜⎜⎜⎝
1
0

⎞
⎟⎟⎟⎟⎠. Therefore we can design 𝐴𝑜 + 𝐵𝑜𝐾 as we did for state feedback to find 𝐾, then

use 𝐾 to determine 𝐿 using 𝐿 = −𝐾𝑇. The controllability matrix for (𝐴𝑜, 𝐵𝑜) is

ℂ = �𝐵𝑜 𝐴𝑜𝐵𝑜�

=
⎛
⎜⎜⎜⎜⎝
1 0
0 𝜔0

⎞
⎟⎟⎟⎟⎠
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And the characteristic equation is

�𝑠𝐼 − 𝐴𝑇� = 0

�
𝑠 𝜔0

−𝜔0 𝑠
� = 0

𝑠2 + 𝜔2
0 = 0

Hence, the controllability companion form is

�̃�𝑜 =
⎛
⎜⎜⎜⎜⎝
0 1
−𝛼0 −𝛼1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0 1
−𝜔2

0 0

⎞
⎟⎟⎟⎟⎠

�̃�𝑜 =
⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

Hence the controllability matrix of the companion form is

ℂ̃ = ��̃�𝑜 �̃�𝑜�̃�𝑜�

=
⎛
⎜⎜⎜⎜⎝
0 1
1 0

⎞
⎟⎟⎟⎟⎠

Therefore the transformation operator 𝑇 is

𝑇 = ℂ̃ℂ−1

=
⎛
⎜⎜⎜⎜⎝
0 1
1 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 0
0 𝜔0

⎞
⎟⎟⎟⎟⎠

−1

=
⎛
⎜⎜⎜⎜⎝
0 1

𝜔0

1 0

⎞
⎟⎟⎟⎟⎠

Now we want

𝐴closed = �̃�𝑜 + �̃�𝑜�̃�

=
⎛
⎜⎜⎜⎜⎝
0 1
−𝜔2

0 0

⎞
⎟⎟⎟⎟⎠ +

⎡
⎢⎢⎢⎢⎣
0
1

⎤
⎥⎥⎥⎥⎦ �𝑘0 𝑘1�

=
⎡
⎢⎢⎢⎢⎣

0 1
𝑘0 − 𝜔2

0 𝑘1

⎤
⎥⎥⎥⎥⎦

It has the following characteristic polynomial

𝑝 (𝜆) = 𝜆2 − 𝜆𝑘1 + �𝜔2
0 − 𝑘0�

The desired 𝑝∗ (𝜆) = (𝜆 + 1) (𝜆 + 2) = 𝜆2 + 3𝜆 + 2. Comparing coe�cients of this polynomial
to the above gives

𝑘1 = −3
𝜔2
0 − 𝑘0 = 2

𝑘0 = 𝜔2
0 − 2

Hence, the gain vector is found to be

�̃� = �𝑘0 𝑘1� = �𝜔2
0 − 2 −3�

The above �̃� was designed for the controllable companion form. We need to transform it
back to the original �𝐴𝑇, 𝐶𝑇� system using 𝑇 found earlier

𝐾 = �̃�𝑇

= �𝜔2
0 − 2 −3�

⎛
⎜⎜⎜⎜⎝
0 1

𝜔0

1 0

⎞
⎟⎟⎟⎟⎠

= �−3 1
𝜔0
�𝜔2

0 − 2��
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Therefore, the observability gain vector is found as

𝐿 = −𝐾𝑇

= − �−3 1
𝜔0
�𝜔2

0 − 2��
𝑇

=
⎛
⎜⎜⎜⎜⎝

3
− 1
𝜔0
�𝜔2

0 − 2�

⎞
⎟⎟⎟⎟⎠

Before continuing, let us verify the eigenvalues of (𝐴 − 𝐿𝐶) are where they should be now.

(𝐴 − 𝐿𝐶) =
⎛
⎜⎜⎜⎜⎝
0 𝜔0

−𝜔0 0

⎞
⎟⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎜⎝

3
− 1
𝜔0
�𝜔2

0 − 2�

⎞
⎟⎟⎟⎟⎠ �1 0�

=
⎛
⎜⎜⎜⎜⎝

−3 𝜔0
1
𝜔0
�𝜔2

0 − 2� − 𝜔0 0

⎞
⎟⎟⎟⎟⎠

The eigenvalues are −1, −2. Verified.

Now we continue the observer design. The observer is the following system

�̂�′ = 𝐴�̂� + 𝐿 �𝑦 − �̂��

= 𝐴�̂� + 𝐿 �𝑦 − 𝐶�̂��

Or

⎛
⎜⎜⎜⎜⎝
�̂�′1
�̂�′2

⎞
⎟⎟⎟⎟⎠ =

𝐴

�������������⎛
⎜⎜⎜⎜⎝
0 𝜔0

−𝜔0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
�̂�1
�̂�2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

3
− 1
𝜔0
�𝜔2

0 − 2�

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦

�������������
�1 0�

⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠ −

�̂�

�������������
�1 0�

⎛
⎜⎜⎜⎜⎝
�̂�1
�̂�2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
0 𝜔0

−𝜔0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
�̂�1
�̂�2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

3
− 1
𝜔0
�𝜔2

0 − 2�

⎞
⎟⎟⎟⎟⎠ (𝑥1 − �̂�1)

=
⎛
⎜⎜⎜⎜⎝
0 𝜔0

−𝜔0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
�̂�1
�̂�2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

3 (𝑥1 − �̂�1)
− 1
𝜔0
�𝜔2

0 − 2� (𝑥1 − �̂�1)

⎞
⎟⎟⎟⎟⎠

Therefore

�̂�′1 = 𝜔0�̂�2 + 𝐿 (1) (𝑥1 − �̂�1)
�̂�′2 = −𝜔0�̂�1 + 𝐿 (2) (𝑥1 − �̂�1)

Where 𝐿 (1) = 3 and 𝐿 (2) = − 1
𝜔0
�𝜔2

0 − 2�. In part(d), we will change these values to tune
the observer. A Matlab script is written to generate 𝐿 from di�erent design eigenvalue
locations.

Part(b)

The system we are given is free system, which means it is driven only by initial conditions.
Therefore the model for the plant itself is the following, where 𝜔0 = 1 was used to test
the free system before adding the observer. The states 𝑥1, 𝑥2 were initialized to 1 in this
example
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Nasser M. Abbasi
Paroblem_4_part_2_free_ssytem.vsdx

Now we will add the observer designed in part(a) and compare the observer state estima-
tion to the actual 𝑥1 of the plant. The model is the following

Tracking of x1 𝜔0 is given the values {1, 10, 100, 1000} rad/sec and result showing 𝑥1 (𝑡) , �̂�1 (𝑡)
on the same plot is displayed to see how well the observer will estimate the true 𝑥1 (𝑡) as
the frequency changes. The result is the following
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0  1

Yellow line is original x1 and red line is estimated x1

0  10

It took about 5 seconds now for the observer to 
lock into x1(t). The initial error was also larger.

It took about 1 second for the observer to lock 
into x1 with good estimation after that. This 
difference is also due to using different initial 
conditions

Yellow line is original x1 and red line is estimated x1

Now it took about 10 seconds for the estimate to 
converge, but initial error is now much larger. 
Almost 250 times as large as x1(t) for the first one 
second.

Initial overshoot is now larger even larger. At 
about 7 seconds the estimate converged to the 
actual.

0  100 0  1000

Tracking of 𝑥2 (𝑡) A plot showing the true 𝑥2 and �̂�2 is now given, similar to the above.
The model was changed slightly to add a sink to plot 𝑥2, �̂�2 as follows
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Now the frequency was set to 𝜔0 = 1, 10, 100, 1000 rad/sec and the simulation was run. The
following is the result and the observations
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Yellow line is original x2 and red line is estimated x2

Convergence to x2 took about the same time 
as with x1. About 3.5 seconds. The overshoot 
is very small compared to when the 
frequency is higher

0  1 rad/sec 0  10 rad/sec

Convergence to x2 took about 2.5 seconds, but 
we notice the overshoot on the negative sign is 
larger now

0  100 rad/sec

Convergence to x2 took 2 seconds, but now we 
notice that the overshoot on the negative sign 
did not get worst than w=10. I was expecting 
the overshoot to get worst to follow from the 
last result

The convergence do not see to change with 
x2(t) as the frequency is made higher. It takes 
about 2.5 second to convergence and the 
overshoot remains at the same value it was for 
w=100

0  1000 rad/sec

Part(c)

The model was changed slightly to add an XY graph as follows
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The result of the simulation to generate the phase plots is shown below
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0  1 rad/sec

X1(t)

Nasser M. Abbasi
Problem_4_part_c.vsdx

X1(t)

X
1

(t
) 

e
st

im
a

te

X1(t)
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0  10 rad/sec

0  100 rad/sec 0  1000 rad/sec

Part(d)

A small Matlab program was written to tune the observer. This was done by changing
the location of the design eigenvalues and generating new 𝐿 observer gain vector for each
new set of eigenvalues, then using the new 𝐿 in the simulink model in part(c) to see the
e�ect on the phase plot. The goal is to obtain a straight line in the phase plane, since
a straight line indicates that �̂�1 is tracking 𝑥1 well. Few eigenvalues are tried. This table
shows summary of each pair of eigenvalues and the corresponding 𝐿 vector generated. We
show one final result which was found to be the best one from the ones tried
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eigenvalues 𝐿 generated by the design script

[−1, −2] (original eigenvalues)
⎛
⎜⎜⎜⎜⎝

3
− 1
𝜔0
�𝜔2

0 − 2�

⎞
⎟⎟⎟⎟⎠

[−1.5, −2]
⎛
⎜⎜⎜⎜⎝

3.5
− 1
𝜔0
�𝜔2

0 − 3�

⎞
⎟⎟⎟⎟⎠

[−2, −3]
⎛
⎜⎜⎜⎜⎝

5
− 1
𝜔0
�𝜔2

0 − 6�

⎞
⎟⎟⎟⎟⎠

[−2.5, −3.5]
⎛
⎜⎜⎜⎜⎝

6
− 1
𝜔0
�𝜔2

0 − 8.75�

⎞
⎟⎟⎟⎟⎠

[−3, −4]
⎛
⎜⎜⎜⎜⎝

7
− 1
𝜔0
�𝜔2

0 − 12�

⎞
⎟⎟⎟⎟⎠

[−4, −5]
⎛
⎜⎜⎜⎜⎝

9
− 1
𝜔0
�𝜔2

0 − 20�

⎞
⎟⎟⎟⎟⎠

Using the eigenvalues at [−4, −5] the initial overshoot was found to be become small. This
was noticed most for large frequencies. Here is the phase plot of 𝑥1−�̂�1 using the last entry
in the above table. To make it easier to compare with the original eigenvalues design, a
plot of 𝑥1, �̂�1 vs. time was also added. This plot shows more clearly that by making the
eigenvalues more negative, the convergence became faster.
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X1(t)
Time (sec)

X
1 
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e
X(t) and x1(t) vs. time to show effect of changing eigenvalues0  1000 rad/sec

%nma_design_observer

%Script by Nasser M. Abbasi

%HW3, ECE 717, problem 4 part(d)

%This scripts design the oberver gain vector L to

%allow one to tune the obsever. The input is A,C

%This is only meant for 2x2 case for the HW assignment

%This is not a general purpose script.

%One can modify the location of the desired eigenvalues

%for the matrix (A−LC) to improve the error behavior.

%modify the lambda line below to change the locations of

%the desired eigvalues and run this script, it will print

%the final L vector to use in simulink

clear all;

syms w k0 k1 s;

A=[0 w;−w 0];

C=[1 0];

%lambda=[−1,−2]; %HW ones

%lambda=[−1.5,−2.5]; %design eigevalues, change as needed

lambda=[−1,−2]; %design eigevalues, change as needed

%go to the controllability framework so to be able to generate T

%and get the gain vector

Ao = A.';

Bo = C.';

controllabilityMatrix = [Bo Ao*Bo];

alpha = charpoly(Ao);

%obtain the controllable companion form

AoCompanion = [0 1;−alpha(end) −alpha(end−1)];
BoCompanion = [0;1];

%find the transformation T matrix

controllabilityMatrixCompanion = [BoCompanion AoCompanion*BoCompanion];

T = controllabilityMatrixCompanion*inv(controllabilityMatrix);

%now design the controllability gain vector

Aclosed = AoCompanion + BoCompanion*[k0 k1];

Aclosed_poly = charpoly(Aclosed);

design_poly = (s−lambda(1))*(s−lambda(2));
coeff = sym2poly(design_poly);
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%now solve for k0,k1

k0 = solve( coeff(end)==Aclosed_poly(end),k0);

k1 = solve( coeff(end−1)==Aclosed_poly(end−1),k1);
gainVector = [k0 k1];

gainVector = gainVector*T;

L = −gainVector.'

Example use is

EDU>> nma_design_observer
L =
3
-(w^2 - 2)/w

Part(e)

source code listing There are two main reasons, as was explained in class. One is that
we do not know what the initial conditions that the plant starts at, and this could change
each time. But most importantly, the observer could be started at any time during the
operation of the overall system and it does not have to be started at the same instance as
the plant. Since the observer could start at later time, the initial conditions that the plant
was in have been lost and no longer available to the observer. So there will always be some
initial settling time. So having di�erent initial conditions for the plant and the observer is
the more common case.

2.3.7 key solution

ECE 717 – Solution Set 3
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2.4 HW4

2.4.1 Questions

ECE 717 – Homework Set 4
Due Friday, October 17, 2013

Please slide submissions under my door.
;

Barmish

ECE 717 – Homework Criterion

For the state-space system Σ = (A, B), suppose that there exists some
non-zero vector α and a complex number λ such that

αTA = λαT

and
αTB = 0.

Now show that (A, B) is NOT a controllable pair. Remark: This condition
is also necessary for lack of controllability but its proof involves results to
be developed later in the course.

;

Barmish

ECE 717 – Homework Convergence

Consider the sequence of functions defined on [0,∞) by

fn(t) =
t2

1 + nt2

for n = 1, 2, 3..... Find the pointwise limit f . Does this sequence converge
uniformly to f? Explain.

;

Barmish

ECE 717 – Homework Integrals

Consider the sequence of functions defined on [0, 1] by

fk(t) = k2t(1− t2)k

for k = 1, 2, 3.... Compute

lim
k→∞

∫ 1

0
fk(t)dt.

Now let f be the pointwise limit of the fk and compute the integral of f
(also from 0 to 1). Are the two computed quantities equal? Discuss.

;
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Barmish

ECE 717 – Homework Nonlinear Picard

For the nonlinear state equation
ẋ = f(x, t),

consider the Picard iteration scheme beginning with x0(t) ≡ x0 with iterative step

xk+1(t) = x0 +
∫ t

0
f(xk(η), η)dη.

Then, for the two state nonlinear system described by

ẋ1 = cos x1

and
ẋ2 = tx1 + e−tx2,

find the first three Picard iterates x1(t), x2(t) and x3(t) corresponding to initial conditions

x1(0) = 2; x2(0) = −1.

Also provide plots of x1(t) and x2(t) for each Picard iterate. Are your solutions converg-
ing? Discuss.

Note: To maximize learning, I suggest you do this problem by hand with the integral
for x3(t) facilitated with Matlab syms.

;

Barmish

ECE 717 – Homework Saturation

A scalar nonlinear system is described by

ẋ = f(x)

with f(x) being a saturation nonlinearity given by

f(x) =
1

2
x

for |x| ≤ 2,
f(x) = 1

for x > 2 and
f(x) = −1

for x < −2. Now for x(0) = 1, first plot f(x) and then, by hand, find
Picard iterates x1(t) and x2(t).

;

2.4.2 Problem 1

A Matrix ℂ is rank deficient if there exist a non-zero vector 𝜶 such that ℂ𝜶 = 0. This
means that the Null space of ℂ is not empty. The idea of the proof is to apply this to the
controllability matrix itself to check if ℂ is full rank or not. The left null space is used
instead. If the left null space of ℂ is not empty, this implies Null space of ℂ is also not
empty, hence ℂ is rank deficient, which gives the proof.

The first step is to find ℂ

ℂ = �𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴𝑛−1𝐵�

𝜶𝑇ℂ is now found to see if it produces zero row vector. If it does, then the left null space
of ℂ is not empty.

𝜶𝑇ℂ = 𝜶𝑇 �𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴𝑛−1𝐵�



182

But 𝜶𝑇 pre-multiplied by a matrix is 𝜶𝑇 pre-multiplied by each one of the columns of the
matrix. The above becomes

𝜶𝑇ℂ = �𝜶𝑇𝐵 𝜶𝑇𝐴𝐵 𝜶𝑇𝐴2𝐵 ⋯ 𝜶𝑇𝐴𝑛−1𝐵�

= �𝜶𝑇𝐵 �𝜶𝑇𝐴�𝐵 �𝜶𝑇𝐴�𝐴𝐵 ⋯ �𝜶𝑇𝐴�𝐴𝑛−2𝐵�

𝜶𝑇𝐴 is replaced by 𝜆𝜶𝑇 in the above giving

𝜶𝑇ℂ = �𝜶𝑇𝐵 �𝜆𝜶𝑇� 𝐵 �𝜆𝜶𝑇�𝐴𝐵 ⋯ �𝜆𝜶𝑇�𝐴𝑛−2𝐵�

= �𝜶𝑇𝐵 𝜆 �𝜶𝑇𝐵� 𝜆 �𝜶𝑇𝐴�𝐵 ⋯ �𝜆𝜶𝑇𝐴�𝐴𝑛−3𝐵�

Applying 𝜶𝑇𝐴 = 𝜆𝜶𝑇 again on the above

𝜶𝑇ℂ = �𝜶𝑇𝐵 𝜆 �𝜶𝑇𝐵� 𝜆𝜆𝜶𝑇𝐵 ⋯ �𝜆𝜆𝜶𝑇𝐴�𝐴𝑛−4𝐵�

This process is continued until the final result is

𝜶𝑇ℂ = ��𝜶𝑇𝐵� 𝜆 �𝜶𝑇𝐵� 𝜆2 �𝜶𝑇𝐵� ⋯ 𝜆𝑛−1 �𝜶𝑇𝐵��

Letting 𝜶𝑇𝐵 = 0 in the above results in

𝜶𝑇ℂ = �0 0 0 ⋯ 0�

Hence

𝜶𝑇ℂ = 0𝑇

Since 𝜶 is not zero then the above implies the left null space of ℂ is not empty. Taking the
transpose of both sides gives

�𝜶𝑇ℂ�
𝑇
= 0

ℂ𝑇𝜶 = 0

The null space of the transpose of ℂ is not empty. Hence ℂ𝑇 is not full rank which means
ℂ is is not full rank (Transposing a matrix does not change its rank). This implies (𝐴, 𝐵)
is not controllable by definition.

2.4.3 Problem 2

A function sequence 𝑓𝑛 on 𝐷 is said to converge pointwise to 𝑓 if lim𝑛→∞ 𝑓𝑛 (𝑡) exist for
each 𝑡 in 𝐷. This means, not only the limit needs to be found, if it exist, but there should
be a limit for each 𝑡 in the interval the function is defined over. If for even a single 𝑡0 there
is no limit, then the function does not converge pointwise.

lim
𝑛→∞

𝑡2

1 + 𝑛𝑡
= 𝑡2 lim

𝑛→∞

1
1 + 𝑛𝑡

When 𝑡 = 0 the limit is zero. For all other values, 0 < 𝑡 < ∞ the limit is 𝑡2 1
∞ = 0. So the

limit exists for each 𝑡. The pointwise limit is the function 𝑓∗ (𝑡) = 0 .

Now to find if the sequence converges uniformly. A function sequence 𝑓𝑛 (𝑡) is uniformly
convergent on 𝐷 if for each 𝜖 > 0 one can find an integer 𝑁 such that �𝑓𝑛 − 𝑓� < 𝜖 and all
𝑛 ≥ 𝑁 and each 𝑡 in 𝐷.The integer 𝑁 here depends only on 𝜖 and does not depend on 𝑡.
For pointwise convergence, 𝑁 depends on both 𝑡 and 𝜖.

Since the sequence convergence pointwise to 𝑓∗ (𝑡) = 0 then one needs to show that

�𝑓𝑛 − 𝑓�𝐼 = sup
0≤𝑡<∞

�𝑓𝑛 (𝑡) − 𝑓∗ (𝑡)�

goes to zero as 𝑛 → ∞. But 𝑓∗ (𝑡) = 0 from above, hence

�𝑓𝑛 − 𝑓�𝐼 = sup
0≤𝑡<∞

�𝑓𝑛 (𝑡)�

= sup
0≤𝑡<∞

�
𝑡2

1 + 𝑛𝑡�
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To find the maximum of 𝑓𝑛 (𝑡) =
𝑡2

1+𝑛𝑡 , the equation 𝑓
′
𝑛 (𝑡) = 0 is first solved for 𝑡

𝑑
𝑑𝑡 �

𝑡2

1 + 𝑛𝑡�
= 0

𝑡 (2 + 𝑛𝑡)
(1 + 𝑛𝑡)2

= 0

Hence 𝑡(2 + 𝑛𝑡) = 0 gives the solutions 𝑡 = 0 and 𝑡 = − 2
𝑛 . When 𝑡 = 0 then 𝑓𝑛 (0) = 0 and

when 𝑡 = − 2
𝑛 then 𝑓𝑛 �−

2
𝑛
� =

�− 2
𝑛 �

2

1+𝑛�− 2
𝑛 �
= − 4

𝑛2

The maximum of these is 4
𝑛2 in absolute terms. Hence

sup
0≤𝑡<∞

�
𝑡2

1 + 𝑛𝑡�
=
4
𝑛2

Therefore

�𝑓𝑛 − 𝑓�𝐼 =
4
𝑛2

Taking the limit 𝑛 → ∞ gives

lim
𝑛→∞

�𝑓𝑛 − 𝑓�𝐼 = 0

Since the limit is zero, then the sequence does convergences uniformly .

2.4.4 Problem 3

𝐼 =
1

�
0

𝑡 �1 − 𝑡2�
𝑘
𝑑𝑡 is first evaluated. This is done using substitution Let 𝑢 = 1 − 𝑡2, hence

𝑑𝑢 = −2𝑡𝑑𝑡. When 𝑡 = 0, 𝑢 = 1 and when 𝑡 = 1, 𝑢 = 0. Therefore the integral becomes

𝐼 =
0

�
1

𝑡𝑢𝑘
𝑑𝑢
−2𝑡

=
−1
2

0

�
1

𝑢𝑘𝑑𝑢

=
−1
2 �

𝑢𝑘+1

𝑘 + 1�
0

1

=
−1

2 (𝑘 + 1)
[0 − 1]

=
1

2 (𝑘 + 1)
Hence

lim
𝑘→∞

1

�
0

𝑓𝑘 (𝑡) 𝑑𝑡 = lim
𝑘→∞

1

�
0

𝑘2𝑡 �1 − 𝑡2�
𝑘
𝑑𝑡 = lim

𝑘→∞
𝑘2

1
2 (𝑘 + 1)

=
1
2
� lim
𝑘→∞

𝑘 + lim
𝑘→∞

𝑘2�

= ∞

Let 𝑓∗ (𝑡) be the pointwise limit of 𝑓𝑘 (𝑡). At 𝑡 = 0, lim𝑘→∞ 𝑓𝑘 (0) = 0 and at 𝑡 = 1,
lim𝑘→∞ 𝑓𝑘 (1) = 0. For 0 < 𝑡 < 1

lim
𝑘→∞

𝑓𝑘 (𝑡) = lim
𝑘→∞

𝑘2𝑡 �1 − 𝑡2�
𝑘

= lim
𝑘→∞

𝑘2𝑡𝑒𝑘 ln�1−𝑡2�
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Since 0 < 1 − 𝑡2 < 1 for 0 < 𝑡 < 1 then ln �1 − 𝑡2� is negative, hence 𝑒𝑘 ln�1−𝑡2� will go to zero
in the limit much faster than 𝑘2 going towards infinity. Hence

lim
𝑘→∞

𝑓𝑘 (𝑡) = 0

This shows that the pointwise convergence is 𝑓∗ (𝑡) = 0 .Therefore
1

�
0

𝑓∗ (𝑡) 𝑑𝑡 = 0

From the first part it was found that lim𝑘→∞

1

�
0

𝑓𝑘 (𝑡) 𝑑𝑡 = ∞ and from the second part

1

�
0

lim𝑘→∞ 𝑓𝑘 (𝑡) = 0 .It is clear the quantities are the not the same. To be able to move

the limit inside the integral, the sequence must be uniformly convergent.

The above indirectly indicates that 𝑓𝑘 (𝑡) is not uniform convergent . This can be con-

firmed by trying to find the uniform convergence limit to show that it does not exist:

�𝑓𝑘 − 𝑓�𝐼 = max
0≤𝑡≤1

�𝑓𝑘 (𝑡) − 𝑓∗ (𝑡)� = max
0≤𝑡≤1

�𝑓𝑘 (𝑡)�

Since 𝑓∗ (𝑡) = 0 identically. Hence

�𝑓𝑘 − 𝑓�𝐼 = max
0≤𝑡≤1

�𝑘2𝑡 �1 − 𝑡2�
𝑘
�

At 𝑡 = 0, 𝑓𝑘 = 0 and at 𝑡 = 1, 𝑓𝑘 (0) = 0. The maximum value between zero and one is found
from calculus:

𝑓′𝑘 (𝑡) = 0

𝑘2 �1 − 𝑡2�
𝑘
− 2𝑘3𝑡2 �1 − 𝑡2�

𝑘−1
= 0

𝑘 �1 − 𝑡2�
𝑘−1

�(1 + 2𝑘) 𝑡2 − 1� = 0

The solution is 𝑡 = ± 1

√1+2𝑘
. Substituting this back into 𝑓𝑘 (𝑡) gives the value (using the

positive root)

𝑓𝑘 max = 𝑘2𝑡 �1 − 𝑡2�
𝑘

= 𝑘2
1

√1 + 2𝑘
�1 −

1
1 + 2𝑘�

𝑘

Therefore

�𝑓𝑛 − 𝑓�𝐼 = �𝑘
2 1

√1 + 2𝑘
�1 −

1
1 + 2𝑘�

𝑘

�
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Taking the limit of the above as 𝑘 → ∞ gives

�𝑓𝑘 − 𝑓�𝐼 = lim
𝑘→∞

𝑘2
1

√1 + 2𝑘
�1 −

1
1 + 2𝑘�

𝑘

= � lim
𝑘→∞

𝑘2
1

√1 + 2𝑘
� lim
𝑘→∞

�1 −
1

1 + 2𝑘�
𝑘

= � lim
𝑘→∞

𝑘2
1

√1 + 2𝑘
� lim
𝑘→∞

⎛
⎜⎜⎜⎜⎜⎝1 −

1
𝑘

1
𝑘 + 2

⎞
⎟⎟⎟⎟⎟⎠

𝑘

= � lim
𝑘→∞

𝑘2
1

√1 + 2𝑘
�
1

√𝑒

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
lim
𝑘→∞

1

�
1
𝑘4
+ 2

𝑘3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
1

√𝑒

= �
1
0�

1

√𝑒

= ∞
1

√𝑒
= ∞

Therefore since the limit does not go to zero, then 𝑓𝑘 (𝑡) does not converge uniformly. This

explains why lim𝑘→∞

1

�
0

𝑓𝑘 (𝑡) 𝑑𝑡 ≠
1

�
0

lim𝑘→∞ 𝑓𝑘 (𝑡) 𝑑𝑡

2.4.5 Problem 4

The nonlinear state space system is given by
⎛
⎜⎜⎜⎜⎝
𝑥′1 (𝑡)
𝑥′2 (𝑡)

⎞
⎟⎟⎟⎟⎠ = 𝑓 (𝑥, 𝑡) =

⎛
⎜⎜⎜⎜⎝

cos 𝑥1 (𝑡)
𝑡𝑥1 (𝑡) + 𝑒−𝑡𝑥2 (𝑡)

⎞
⎟⎟⎟⎟⎠

With the initial conditions

𝑥0 =
⎛
⎜⎜⎜⎜⎝
𝑥1 (0)
𝑥2 (0)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2
−1

⎞
⎟⎟⎟⎟⎠

Let the initial guess of the solution 𝑥0 be the same as initial conditions 2.

The first iteration gives

𝑥1 = 𝑥0 +
𝑡

�
0

⎛
⎜⎜⎜⎜⎝

cos 𝑥01
𝜂𝑥01 + 𝑒−𝜂𝑥02

⎞
⎟⎟⎟⎟⎠ 𝑑𝜂

=
⎛
⎜⎜⎜⎜⎝
2
−1

⎞
⎟⎟⎟⎟⎠ +

𝑡

�
0

⎛
⎜⎜⎜⎜⎝

cos 2
2𝜂 − 𝑒−𝜂

⎞
⎟⎟⎟⎟⎠ 𝑑𝜂

=
⎛
⎜⎜⎜⎜⎝
2
−1

⎞
⎟⎟⎟⎟⎠ +

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝
𝜂 cos 2
𝜂2 + 𝑒−𝜂

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

𝑡

0

=
⎛
⎜⎜⎜⎜⎝
2
−1

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

𝑡 cos 2
𝑡2 + 𝑒−𝑡 − 1

⎞
⎟⎟⎟⎟⎠

Therefore

𝑥1 =
⎛
⎜⎜⎜⎜⎝
2 + 𝑡 cos 2
𝑡2 + 𝑒−𝑡 − 2

⎞
⎟⎟⎟⎟⎠

2Initial guess does not have to be the same as initial conditions 𝑥 (0) and can be any other value. In this
problem the initial guess is taken the same as initial conditions.
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The second iteration is

𝑥2 = 𝑥0 +
𝑡

�
0

⎛
⎜⎜⎜⎜⎝

cos 𝑥11
𝜂𝑥11 + 𝑒−𝜂𝑥12

⎞
⎟⎟⎟⎟⎠ 𝑑𝜂

=
⎛
⎜⎜⎜⎜⎝
2
−1

⎞
⎟⎟⎟⎟⎠ +

𝑡

�
0

⎛
⎜⎜⎜⎜⎝

cos �2 + 𝜂 cos 2�
𝜂 �2 + 𝜂 cos 2� + 𝑒−𝜂 �𝜂2 + 𝑒−𝜂 − 2�

⎞
⎟⎟⎟⎟⎠ 𝑑𝜂 (1)

The top integral
𝑡

�
0

cos �2 + 𝜂 cos 2� 𝑑𝜂 is evaluated using substitution. Let 𝑢 = 2 + 𝜂 cos 2

hence 𝑑𝑢 = cos 2𝑑𝜂. When 𝜂 = 0, 𝑢 = 2 and when 𝜂 = 𝑡, 𝑢 = 2 + 𝑡 cos 2. Therefore the top
integral becomes

�
𝑡

0
cos �2 + 𝜂 cos 2� 𝑑𝜂 = �

2+𝑡 cos 2

2
cos (𝑢) 𝑑𝑢

cos 2

=
1

cos 2�
2+𝑡 cos 2

2
cos (𝑢) 𝑑𝑢

=
1

cos 2 [sin (𝑢)]
2+𝑡 cos 2
2

=
1

cos 2 (sin (2 + 𝑡 cos 2) − sin 2)

= sec (2) sin (2 + 𝑡 cos 2) − tan 2 (2)

The lower integral in (1) is now evaluate. The first part is of this integral is
𝑡

�
0

𝜂 �2 + 𝜂 cos 2� 𝑑𝜂 =
𝑡

�
0

�2𝜂 + 𝜂2 cos 2� 𝑑𝜂 = �𝜂2 +
𝜂3

3
cos 2�

𝑡

0

= 𝑡2 +
𝑡3

3
cos 2 (3)

The second part is
𝑡

�
0

𝜂2𝑒−𝜂 + 𝑒−2𝜂 − 2𝑒−𝜂𝑑𝜂 (3A)

The first part of the above is solved using integration by parts. 𝑢𝑑𝑣 = 𝑢𝑣 − �𝑣𝑑𝑢. Let
𝑢 = 𝜂2, 𝑑𝑣 = 𝑒−𝜂, 𝑑𝑢 = 2𝜂, 𝑣 = −𝑒−𝜂, therefore

�
𝑡

0
𝜂2𝑒−𝜂𝑑𝜂 = �−𝜂2𝑒−𝜂�

𝑡

0
+�

𝑡

0
2𝜂𝑒−𝜂𝑑𝑢

= −𝑡2𝑒−𝑡 + 2�
𝑡

0
𝜂𝑒−𝜂𝑑𝑢

The integral�
𝑡

0
𝜂𝑒−𝜂𝑑𝑢 is solved also by integration by parts. 𝑢𝑑𝑣 = 𝑢𝑣 − �𝑣𝑑𝑢. Let 𝑢 =

𝜂, 𝑑𝑣 = 𝑒−𝜂, 𝑑𝑢 = 1, 𝑣 = −𝑒−𝜂, therefore

�
𝑡

0
𝜂2𝑒−𝜂𝑑𝜂 = −𝑡2𝑒−𝑡 + 2 ��−𝜂𝑒−𝜂�

𝑡

0
+�

𝑡

0
𝑒−𝜂𝑑𝑢�

= −𝑡2𝑒−𝑡 + 2 �−𝑡𝑒−𝑡 + [−𝑒−𝜂]𝑡0�

= −𝑡2𝑒−𝑡 + 2 �−𝑡𝑒−𝑡 − 𝑒−𝑡 + 1�

= −𝑡2𝑒−𝑡 − 2𝑡𝑒−𝑡 − 2𝑒−𝑡 + 2

The remaining parts of (3A) are direct integrations that requires no special treatment,
hence (3A) becomes

𝑡

�
0

𝜂2𝑒−𝜂 + 𝑒−2𝜂 − 2𝑒−𝜂𝑑𝜂 = �−𝑡2𝑒−𝑡 − 2𝑡𝑒−𝑡 − 2𝑒−𝑡 + 2� + �
𝑒−2𝜂

−2 �
𝑡

0
+ 2 [𝑒−𝜂]𝑡0

= �−𝑡2𝑒−𝑡 − 2𝑡𝑒−𝑡 − 2𝑒−𝑡 + 2� −
1
2
�𝑒−2𝑡 − 1� + 2 �𝑒−𝑡 − 1�

=
1
2
− 2𝑡𝑒−𝑡 − 𝑡2𝑒−𝑡 −

1
2
𝑒−2𝑡 (4)
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Putting (4),(3) and (2) into (1) gives

𝑥2 =
⎛
⎜⎜⎜⎜⎝
2
−1

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝

sec (2) sin (2 + 𝑡 cos 2) − tan 2
2
3 𝑡

2 + 𝑡3

3 cos 2 + 1
2 − 2𝑡𝑒

−𝑡 − 𝑡2𝑒−𝑡 − 1
2𝑒

−2𝑡

⎞
⎟⎟⎟⎟⎟⎠

Hence the second iteration results in

𝑥2 =

⎛
⎜⎜⎜⎜⎜⎝

2 + sec (2) sin (2 + 𝑡 cos 2) − tan 2
−1 + 𝑡2 + 𝑡3

3 cos 2 + 1
2 − 2𝑡𝑒

−𝑡 − 𝑡2𝑒−𝑡 − 1
2𝑒

−2𝑡

⎞
⎟⎟⎟⎟⎟⎠

The third iteration 𝑥3 is now found using

𝑥3 = 𝑥0 +
𝑡

�
0

𝑓 �𝑥2� 𝑑𝜂

=
⎛
⎜⎜⎜⎜⎝
2
−1

⎞
⎟⎟⎟⎟⎠ +

𝑡

�
0

⎛
⎜⎜⎜⎜⎝

cos 𝑥21
𝜂𝑥21 + 𝑒−𝜂𝑥22

⎞
⎟⎟⎟⎟⎠ 𝑑𝜂

=
⎛
⎜⎜⎜⎜⎝
2
−1

⎞
⎟⎟⎟⎟⎠ +

𝑡

�
0

⎛
⎜⎜⎜⎜⎜⎝

2 + sec (2) sin �2 + 𝜂 cos 2� − tan 2
−1 + 𝜂2 + 𝜂3

3 cos 2 + 1
2 − 2𝜂𝑒

−𝜂 − 𝜂2𝑒−𝜂 − 1
2𝑒

−2𝜂

⎞
⎟⎟⎟⎟⎟⎠ 𝑑𝜂

The top integral �𝑥31� could not be evaluated using syms. A numerical solution is needed.
The lower integral which gives the second state can be evaluated directly and requires no
special treatment, giving

1 + (1/6)*(-1 + E^(-3*t)) - ((1/2)*(-1 + E^(2*t) - 2*t))/E^(2*t)
+ t^2 - (2 + t*(2 + t))/E^t +(1/4)*(-1 + (1 + 2*t + 2*t^2)/E^(2*t)) +
(1/3)*(6 + (-6 - t*(6 + t*(3 + t)))/E^t)*Cos[2] +
(1/2)*(-1 + Cosh[t] - Sinh[t]) + Sec[2]^2*((-t)*Cos[2 + t*Cos[2]] +
Sec[2]*Sin[2 + t*Cos[2]] - Tan[2]) - (1/2)*t^2*Tan[2]

A small function was written using syms to evaluate the Picard iterations and plot the
solution. For the third iteration 𝑥3 the first state was not solved due to complexity of the
integral. Numerical solution would be needed. The following plots show the first state and
the second state.
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Source code
function res = nma_x(k)

%function to evaluate Picard iterations

%by Nasser M. Abbasi, ECE 717, Fall 2014, HW4, problem 4

if k==0

res = [2;−1];
else

syms z t;

last = nma_x(k−1);
x1 = last(1); x2=last(2);

x1 = subs(x1,t,z);

x2 = subs(x2,t,z);

res = [2;−1] + int( [cos(sym(x1));z*x1+exp(−z)*x2],z,0,t);
end

res;

end

%script to plot the Picard iterations

%Nasser M. Abbasi, HW4, ECE 717

x0=nma_x(0);

x1=nma_x(1);

x2=nma_x(2);

x3=nma_x(3);

max_t=40; max_y=10;

close all; set(0,'DefaultAxesFontName', 'Times New Roman');

set(0,'DefaultAxesFontSize',8);

set(0,'DefaultTextFontname', 'Times New Roman'); set(0,'DefaultTextFontSize', 12);

subplot(2,2,1);

h(1)=plot([0,max_t],[x0(1),x0(1)]);

grid on; set(h(1),'linewidth',1.5); set(h(1),'color','r');

xlim([0,max_t]); ylim([−2,5]);
title('$$x^0_1 = 2$$', 'FontSize', 12,'interpreter','latex');

subplot(2,2,2);

h(2)=ezplot(x1(1),[0,max_t]);

grid on; set(h(2),'linewidth',1.5); set(h(2),'color','r'); ylim([−40,5]);
title('$$x^1_1 = 2+t \cos(2) $$', 'FontSize', 12,'interpreter','latex');
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subplot(2,2,3);

h(3)=ezplot(x2(1),[0,max_t]);

grid on; set(h(3),'linewidth',1.5); set(h(3),'color','r'); ylim([0,10]);

title('$$x^2_1 = \sec(2) \sin(2+t\cos(2))−\tan(2)$$', 'FontSize', 12,'interpreter','latex');

ax=axes('Units','Normal','Position',[.075 .075 .85 .85],'Visible','off');

set(get(ax,'Title'),'Visible','on')

title('First state');

%now do x_2

figure;

max_t=20; max_y=600;

subplot(2,2,1);

h(1)=plot([0,max_t],[x0(2),x0(2)]);

grid on; set(h(1),'linewidth',1.5); set(h(1),'color','r');

xlim([0,max_t]); ylim([−max_y,max_y]);
title('$$x^0_2 = −1$$', 'FontSize', 12,'interpreter','latex');

subplot(2,2,2);

h(2)=ezplot(x1(2),[0,max_t]);

grid on; set(h(2),'linewidth',1.5); set(h(2),'color','r'); ylim([−max_y,max_y]);
title('$$x^1_2=t^2+e^{−t}−2 $$', 'FontSize', 12,'interpreter','latex');

subplot(2,2,3);

h(3)=ezplot(x2(2),[0,max_t]);

grid on; set(h(3),'linewidth',1.5); set(h(3),'color','r'); ylim([−max_y,max_y]);
title('$$x^2_2 = −1+t^2+\frac{t^3}{2}\cos(2)+\frac{1}{2}−2 t e^{−t}−t^2 e^{−t}−\frac{1}{2}e^{−2t}$$', 'FontSize',10,'interpreter','latex');

subplot(2,2,4);

h(4)=ezplot(x3(2),[0,60]);

grid on; set(h(4),'linewidth',1.5); set(h(4),'color','r'); ylim([0,6000]);

title('$$x^3_2$$ (too large to type)', 'FontSize', 12,'interpreter','latex');

ax=axes('Units','Normal','Position',[.075 .075 .85 .85],'Visible','off');

set(get(ax,'Title'),'Visible','on')

title('Second state');

Example using Picard iteration function Example use is

EDU>> nma_x(0)
2
-1
EDU>> nma_x(1)
t*cos(2) + 2
exp(-t) + t^2 - 2
EDU>> nma_x(2)
(sin(t*cos(2) + 2) - sin(2))/cos(2) + 2
(t^3*cos(2))/3 - 2*t*exp(-t) - t^2*exp(-t) - exp(-2*t)/2 + t^2 - 1/2
EDU>> nma_x(3)
Warning: Explicit integral could not be found.
int(cos((sin(z*cos(2) + 2) - sin(2))/cos(2) + 2), z == 0..t) + 2
exp(-t)/2 + exp(-3*t)/6 - (sin(2) - sin(t*cos(2) + 2) +
t*cos(2)*cos(t*cos(2) + 2))/cos(2)^3
- exp(-t)*(t^2 + 2*t + 2) + (exp(-2*t)*(2*t + 1))/2 +
t^2 - (cos(2)*(exp(-t)*(t^3 + 3*t^2 + 6*t + 6) - 6))/3 +
(exp(-2*t)*(4*t^2 + 4*t + 2))/8 - (t^2*sin(2))/(2*cos(2)) - 5/12
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Convergence of solution using numerical integration

Picard iteration was integrated numerically due to di�culty of obtaining symbolic solution
for each step. The following sequence of plots shows the convergence of each iteration. The
first state required about 60 iterations to converge to the numerical ODE solver solution.
The following shows the sequence of the iterations for the first state. Each one of these
plots is 20 seconds long, and the title shows the iteration number.

First state iterations
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second state iterations It also took about 60 Picard iterations for the second state to
converge. The following is the sequence of the iterations
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e�ect of changing Δ𝑡 on convegence

Since numerical integral was used, it would be useful to see what e�ect changing the sam-
pling period on convergence. Three di�erent values of Δ𝑡were tried. They are (0.01, 0.005, 0.001),
with units in seconds. There was no visible e�ect on the result. Running the program for 80
iterations for each case, they all converged to the same solution at the end. The following
plots shows the result

Sampling 0.001 sec
80 Picard iterations

Sampling 0.05 sec
80 Picard iterations

Sampling 0.01 sec
80 Picard iterations

e�ect of changing initial guess on convegence

Since initial guess can be any value, other than the initial conditions, it would be useful
to see what e�ect, if any, changing the guess would have on convergence.

It was found that changing the guess to be di�erent from initial conditions, resulted in
di�erent shape at the end of the 80 iterations. This indicates the guess used have an e�ect
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on speed of convergence. More analysis is required to inverstigate this more.

For example, this plot shows the di�erence at the end of 80 iterations, all using the same
sampling time, with the only di�erence is that one used the initial conditions [2, −1] as the
guess, and the second used [0, 1] as the guess. One can see the final solution is di�erent.

Sampling 0.01 
guess=[0,-1]
80 Picard iterations

Sampling 0.01 
guess=[2,-1]
80 Picard iterations

Effect of using different 
guess affects convergence at 
the end of 80 iterations using 
same sampling time

Conclusion

Picard iteration does converge for this non-linear system. Numerical integration was re-
quired to allow higher number of iterations to be performed, as it was not possible to do
more than 3 iterations using symbolic computation.

It was found that changing the guess value from initial conditions does have an e�ect on
convergence. But more analysis is needed to study this e�ect.

Function to do numerical Picard iterations� �
1 function nma_picard()
2 %version oct 17, 2014
3 %study of picard iteration method for non-linear state space system
4 %Matlab 2013a
5 %The following parameters can be changed: max simulation time,
6 %time spacing between each sample, initial conditions, and
7 %initial guess.
8 %by Nasser M. Abbasi
9

10 close all
11

12 number_of_iterations = 100; %How many Picard iterations to do?
13 initial_conditions = [2 -1]; %initial conditions for x_1 and x_2
14 initial_guess = [2 -1]; %initial guess
15 max_time = 50; %simulation time in seconds
16 delT = 0.02; %time spacing for sampling, numerical integration
17

18 nSamples = round(max_time/delT);
19 first_K = bsxfun(@times, initial_guess,ones(nSamples,2));
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20 next_K = zeros(nSamples,2);
21 t = delT*[0;cumsum(ones(nSamples-1,1))]; %used for numerical integration
22

23 %obtain numerical ODE45 solution to use to compare with
24 odeTime = 0:delT:max_time-delT;
25 [odeTime,ODE45_solution] = ode45(@rhs,odeTime,initial_conditions);
26

27 for n = 1:number_of_iterations
28 for i = 1:nSamples %numerical integration as time is increased
29 %t vector above hold incremental time values.
30 next_K(i,1) = initial_conditions(1) + delT*trapz(cos(first_K(1:i,1)));
31 z = t(1:i).*first_K(1:i,1)+exp(-t(1:i)).*first_K(1:i,2);
32 next_K(i,2) = initial_conditions(2) + delT*trapz(z);
33 end
34

35 makePlot(first_K,t,n,delT,initial_guess,max_time,ODE45_solution);
36 first_K = next_K;
37 end
38 function dxdt=rhs(t,x)
39 dxdt = [cos(x(1));t*x(1)+exp(-t)*x(2)];
40 end
41 end
42

43 %-------------------------------
44 function makePlot(x,t,n,delT,guess,max_time,ODE45_solution)
45 if n==1
46 scrsz = get(groot,'ScreenSize');
47 figure('Position',[.25*scrsz(3) .35*scrsz(4) .5*scrsz(3) .5*scrsz(4)]);
48 set(0,'DefaultAxesFontName', 'Times New Roman');
49 set(0,'DefaultAxesFontSize',10);
50 set(0,'DefaultTextFontname', 'Times New Roman');
51 set(0,'DefaultTextFontSize', 12);
52 end
53

54 minY1 = -1;
55 maxY1 = 2.5;
56 minY2 = -10;
57 maxY2 = 1000;
58

59

60 subplot(1,2,1);
61 hold off;
62 plot(t,x(:,1));
63 hold on;
64 plot(t,ODE45_solution(:,1),'r:');
65 title(sprintf('$$x_1^{%d}, \\Delta t=%3.3f, guess=[%d,%d]$$',n,delT,guess(1),guess(2)),'FontSize', 12,'interpreter','latex');
66 xlabel('time(sec)');
67 ylim([minY1,maxY1]);
68 xlim([0,max_time]);
69 subplot(1,2,2);
70 hold off;
71 plot(t,x(:,2));
72 hold on;
73 plot(t,ODE45_solution(:,2),'r:');
74 title(sprintf('$$x_2^{%d}$$',n),'FontSize', 14,'interpreter','latex');
75 xlabel('time(sec)');
76 ylim([minY2,maxY2]);
77 xlim([0,max_time]);
78 drawnow
79 end� �
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2.4.6 Problem 5 (corrected after)

The following plot shows 𝑓 (𝑥)

𝑥1 (𝑡) = 𝑥0 +
𝑡

�
0

𝑓 �𝑥0 (𝜏) , 𝜏� 𝑑𝜏

= 1 +
𝑡

�
0

𝑓 (1) 𝑑𝜏

= 1 +
𝑡

�
0

1
2
𝑑𝜏

= 1 +
1
2
𝑡

Therefore

𝑥1 (𝑡) = 1 + 1
2 𝑡

Now for the second iteration

𝑥(2) (𝑡) = 𝑥0 +
𝑡

�
0

𝑓 �𝑥1 (𝜏) , 𝜏� 𝑑𝜏

= 𝑥0 +
𝑡

�
0

𝑓 �1 +
1
2
𝜏� 𝑑𝜏

For 0 ≤ 𝑡 ≤ 2 then 𝑓 �1 + 1
2𝜏� =

1
2
�1 + 1

2𝜏�, Therefore

𝑥(2) (𝑡) = 𝑥0 +
𝑡

�
0

1
2 �
1 +

1
2
𝜏� 𝑑𝜏

= 1 +
1
2 ��

𝜏 +
1
4
𝜏2��

𝑡

0

= 1 +
1
2 �
𝑡 +

1
4
𝑡2�

=
𝑡2

8
+
𝑡
2
+ 1

For 𝑡 > 2, 𝑓 (𝑡) = 1, then

𝑥(2) (𝑡) = 𝑥0 +
2

�
0

1
2 �
1 +

1
2
𝑡� 𝑑𝜏 +

𝑡

�
2

𝑑𝜏

= 𝑡 +
1
2
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Therefore

𝑥2 (𝑡) =

⎧⎪⎪⎨
⎪⎪⎩
1 + 𝑡

2 +
𝑡2

8 𝑡 ≤ 2
𝑡 + 1

2 𝑡 > 2

A plot of 𝑥2 (𝑡) is shown below

2.4.7 key solution

ECE 717 – Solution Set 4
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4 Problem 4

The nonlinear state space system is given by(
x′1 (t)

x′2 (t)

)
= f (x, t) =

(
cosx1 (t)

tx1 (t) + e−tx2 (t)

)

With the initial conditions

x0 =

(
x1 (0)

x2 (0)

)
=

(
2

−1

)
Let the initial guess of the solution x0 be the same as initial conditions 1.

1Initial guess does not have to be the same as initial conditions x (0) and can be any other value. In this problem
the initial guess is taken the same as initial conditions.

10
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The first iteration gives

x1 = x0 +

t∫
0

(
cosx01

ηx01 + e−ηx02

)
dη

=

(
2

−1

)
+

t∫
0

(
cos 2

2η − e−η

)
dη

=

(
2

−1

)
+

[(
η cos 2

η2 + e−η

)]t
0

=

(
2

−1

)
+

(
t cos 2

t2 + e−t − 1

)
Therefore

x1 =

(
2 + t cos 2

t2 + e−t − 2

)

The second iteration is

x2 = x0 +

t∫
0

(
cosx11

ηx11 + e−ηx12

)
dη

=

(
2

−1

)
+

t∫
0

(
cos (2 + η cos 2)

η (2 + η cos 2) + e−η
(
η2 + e−η − 2

)) dη (1)

The top integral

t∫
0

cos (2 + η cos 2) dη is evaluated using substitution. Let u = 2 + η cos 2 hence

du = cos 2dη. When η = 0, u = 2 and when η = t, u = 2 + t cos 2. Therefore the top integral becomes∫ t

0
cos (2 + η cos 2) dη =

∫ 2+t cos 2

2
cos (u)

du

cos 2

=
1

cos 2

∫ 2+t cos 2

2
cos (u) du

=
1

cos 2
[sin (u)]2+t cos 22

=
1

cos 2
(sin (2 + t cos 2)− sin 2)

= sec (2) sin (2 + t cos 2)− tan 2 (2)

The lower integral in (1) is now evaluate. The first part is of this integral is

t∫
0

η (2 + η cos 2) dη =

t∫
0

(
2η + η2 cos 2

)
dη =

[
η2 +

η3

3
cos 2

]t
0

= t2 +
t3

3
cos 2 (3)

11
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The second part is
t∫

0

η2e−η + e−2η − 2e−ηdη (3A)

The first part of the above is solved using integration by parts. udv = uv −
∫
vdu. Let

u = η2, dv = e−η, du = 2η, v = −e−η, therefore∫ t

0
η2e−ηdη =

[
−η2e−η

]t
0

+

∫ t

0
2ηe−ηdu

= −t2e−t + 2

∫ t

0
ηe−ηdu

The integral

∫ t

0
ηe−ηdu is solved also by integration by parts. udv = uv −

∫
vdu. Let u = η, dv =

e−η, du = 1, v = −e−η, therefore∫ t

0
η2e−ηdη = −t2e−t + 2

([
−ηe−η

]t
0

+

∫ t

0
e−ηdu

)
= −t2e−t + 2

(
−te−t +

[
−e−η

]t
0

)
= −t2e−t + 2

(
−te−t − e−t + 1

)
= −t2e−t − 2te−t − 2e−t + 2

The remaining parts of (3A) are direct integrations that requires no special treatment, hence (3A)
becomes

t∫
0

η2e−η + e−2η − 2e−ηdη =
(
−t2e−t − 2te−t − 2e−t + 2

)
+

[
e−2η

−2

]t
0

+ 2
[
e−η
]t
0

=
(
−t2e−t − 2te−t − 2e−t + 2

)
− 1

2

(
e−2t − 1

)
+ 2

(
e−t − 1

)
=

1

2
− 2te−t − t2e−t − 1

2
e−2t (4)

Putting (4),(3) and (2) into (1) gives

x2 =

(
2

−1

)
+

(
sec (2) sin (2 + t cos 2)− tan 2

2
3 t

2 + t3

3 cos 2 + 1
2 − 2te−t − t2e−t − 1

2e
−2t

)

Hence the second iteration results in

x2 =

 2 + sec (2) sin (2 + t cos 2)− tan 2

−1 + t2 +
t3

3
cos 2 +

1

2
− 2te−t − t2e−t − 1

2
e−2t
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The third iteration x3 is now found using

x3 = x0 +

t∫
0

f
(
x2
)
dη

=

(
2

−1

)
+

t∫
0

(
cosx21

ηx21 + e−ηx22

)
dη

=

(
2

−1

)
+

t∫
0

(
2 + sec (2) sin (2 + η cos 2)− tan 2

−1 + η2 + η3

3 cos 2 + 1
2 − 2ηe−η − η2e−η − 1

2e
−2η

)
dη

The top integral
(
x31
)

could not be evaluated using syms. A numerical solution is needed. The lower
integral which gives the second state can be evaluated directly and requires no special treatment,
giving

1 + (1/6)*(-1 + E^(-3*t)) - ((1/2)*(-1 + E^(2*t) - 2*t))/E^(2*t)

+ t^2 - (2 + t*(2 + t))/E^t +(1/4)*(-1 + (1 + 2*t + 2*t^2)/E^(2*t)) +

(1/3)*(6 + (-6 - t*(6 + t*(3 + t)))/E^t)*Cos[2] +

(1/2)*(-1 + Cosh[t] - Sinh[t]) + Sec[2]^2*((-t)*Cos[2 + t*Cos[2]] +

Sec[2]*Sin[2 + t*Cos[2]] - Tan[2]) - (1/2)*t^2*Tan[2]

A small function was written using syms to evaluate the Picard iterations and plot the solution.
For the third iteration x3 the first state was not solved due to complexity of the integral. Numerical
solution would be needed. The following plots show the first state and the second state.

13
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4.1 Convergence of solution for the symbolic computation

For linear system, Picard iterations will converge to the unique solution. For non-linear system it is
not so clear. One way to check convergence is by numerically solving the system using numerical
ODE solver and plotting both the Picard iterations against the numerical solution in order to see
that the solution is getting closer the numerical solution. This was done below for t = 40 sec. The
system was solved numerically and both the numerically generated x1 (t) and x2 (t) solutions were
plotted with the Picard generated x1, x2 for each iteration, on the same figure. If the Picard solution
convergence, the more iterations are made, the closer the Picard solution should approach the
numerical solution from the ODE solver. This result is given below. The numerical solution is first
plotted for the first and second state.

15
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Now the convergence of the first state on the same plot as the numerical is shown in order to
compare convergence

Similarly for the second state

16
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Due to the small number of iterations, it is hard to decide on convergence. To fully decide on the
issue of convergence of Picard iterations for this non-linear system, each Picard iteration will have to
be numerically integrated in order to be able to generate more iterations. In the next section below,
the numerical integration results are given, which shows the that Picard iterations for this system
does indeed converge, but the convergence is slow.

4.2 Source code

4.2.1 Function to generate Picard iterations

1 function res = nma_x(k)
2 %function to evaluate Picard iterations
3 %by Nasser M. Abbasi, ECE 717, Fall 2014, HW4, problem 4
4 if k==0
5 res = [2;−1];
6 else
7 syms z t;
8 last = nma_x(k−1);
9 x1 = last(1); x2=last(2);

10 x1 = subs(x1,t,z);
11 x2 = subs(x2,t,z);
12 res = [2;−1] + int( [cos(sym(x1));z*x1+exp(−z)*x2],z,0,t);
13 end
14 res;
15 end

17
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4.2.2 Script to plot Picard iterations

1 %script to plot the Picard iterations
2 %Nasser M. Abbasi, HW4, ECE 717
3

4 x0=nma_x(0);
5 x1=nma_x(1);
6 x2=nma_x(2);
7 x3=nma_x(3);
8 max_t=40; max_y=10;
9

10 close all; set(0,'DefaultAxesFontName', 'Times New Roman');
11 set(0,'DefaultAxesFontSize',8);
12 set(0,'DefaultTextFontname', 'Times New Roman'); set(0,'DefaultTextFontSize', 12);
13

14 subplot(2,2,1);
15 h(1)=plot([0,max_t],[x0(1),x0(1)]);
16 grid on; set(h(1),'linewidth',1.5); set(h(1),'color','r');
17 xlim([0,max_t]); ylim([−2,5]);
18 title('$$x^0_1 = 2$$', 'FontSize', 12,'interpreter','latex');
19

20 subplot(2,2,2);
21 h(2)=ezplot(x1(1),[0,max_t]);
22 grid on; set(h(2),'linewidth',1.5); set(h(2),'color','r'); ylim([−40,5]);
23 title('$$x^1_1 = 2+t \cos(2) $$', 'FontSize', 12,'interpreter','latex');
24

25 subplot(2,2,3);
26 h(3)=ezplot(x2(1),[0,max_t]);
27 grid on; set(h(3),'linewidth',1.5); set(h(3),'color','r'); ylim([0,10]);
28 title('$$x^2_1 = \sec(2) \sin(2+t\cos(2))−\tan(2)$$', 'FontSize', ...

12,'interpreter','latex');
29

30 ax=axes('Units','Normal','Position',[.075 .075 .85 .85],'Visible','off');
31 set(get(ax,'Title'),'Visible','on')
32 title('First state');
33

34 %now do x_2
35 figure;
36 max_t=20; max_y=600;
37 subplot(2,2,1);
38 h(1)=plot([0,max_t],[x0(2),x0(2)]);
39 grid on; set(h(1),'linewidth',1.5); set(h(1),'color','r');
40 xlim([0,max_t]); ylim([−max_y,max_y]);
41 title('$$x^0_2 = −1$$', 'FontSize', 12,'interpreter','latex');
42

43 subplot(2,2,2);
44 h(2)=ezplot(x1(2),[0,max_t]);
45 grid on; set(h(2),'linewidth',1.5); set(h(2),'color','r'); ylim([−max_y,max_y]);
46 title('$$x^1_2=t^2+e^{−t}−2 $$', 'FontSize', 12,'interpreter','latex');
47

48 subplot(2,2,3);
49 h(3)=ezplot(x2(2),[0,max_t]);
50 grid on; set(h(3),'linewidth',1.5); set(h(3),'color','r'); ylim([−max_y,max_y]);
51 title('$$x^2_2 = −1+t^2+\frac{t^3}{2}\cos(2)+\frac{1}{2}−2 t e^{−t}−t^2 ...

e^{−t}−\frac{1}{2}e^{−2t}$$', 'FontSize',10,'interpreter','latex');
52

53 subplot(2,2,4);

18
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54 h(4)=ezplot(x3(2),[0,60]);
55 grid on; set(h(4),'linewidth',1.5); set(h(4),'color','r'); ylim([0,6000]);
56 title('$$x^3_2$$ (too large to type)', 'FontSize', 12,'interpreter','latex');
57

58 ax=axes('Units','Normal','Position',[.075 .075 .85 .85],'Visible','off');
59 set(get(ax,'Title'),'Visible','on')
60 title('Second state');

4.2.3 Example using Picard iteration function

Example use is

EDU>> nma_x(0)

2

-1

EDU>> nma_x(1)

t*cos(2) + 2

exp(-t) + t^2 - 2

EDU>> nma_x(2)

(sin(t*cos(2) + 2) - sin(2))/cos(2) + 2

(t^3*cos(2))/3 - 2*t*exp(-t) - t^2*exp(-t) - exp(-2*t)/2 + t^2 - 1/2

EDU>> nma_x(3)

Warning: Explicit integral could not be found.

int(cos((sin(z*cos(2) + 2) - sin(2))/cos(2) + 2), z == 0..t) + 2

exp(-t)/2 + exp(-3*t)/6 - (sin(2) - sin(t*cos(2) + 2) +

t*cos(2)*cos(t*cos(2) + 2))/cos(2)^3

- exp(-t)*(t^2 + 2*t + 2) + (exp(-2*t)*(2*t + 1))/2 +

t^2 - (cos(2)*(exp(-t)*(t^3 + 3*t^2 + 6*t + 6) - 6))/3 +

(exp(-2*t)*(4*t^2 + 4*t + 2))/8 - (t^2*sin(2))/(2*cos(2)) - 5/12

4.3 Convergence of solution using numerical integration

Picard iteration was integrated numerically due to difficulty of obtaining symbolic solution for each
step. The following sequence of plots shows the convergence of each iteration. The first state required
about 60 iterations to converge to the numerical ODE solver solution. The following shows the
sequence of the iterations for the first state. Each one of these plots is 20 seconds long, and the title
shows the iteration number.

19
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4.3.1 First state iterations

20
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4.3.2 second state iterations

It also took about 60 Picard iterations for the second state to converge. The following is the sequence
of the iterations

22
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2.5 HW5

2.5.1 Questions

ECE 717 – Homework Set 5
Due Thursday, October 30, 2014

;
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Barmish

ECE 717 – Homework Diagonalize

Suppose M1 and M2 are two n×n matrices with distinct eigenvalues which
commute; i.e.,

M1M2 = M2M1.

Prove that there is an nonsingular matrix T which simultaneously diago-
nalizes M1 and M2. That is, both TM1T

−1 and TM2T
−1 are diagonal.

;

Barmish

ECE 717 – Homework Exponentials

Consider the time-varying system ẋ = A(t)x and assume that A(t) com-
mutes with its integral; i.e.,

A(t)
∫ t

0
A(η)dη =

∫ t

0
A(η)dη A(t).

Now prove that the matrix

Ψ(t) = e
∫ t

0
A(η)dη

satisfies the state equation with initial condition Ψ(0) = I and the state
solution is given by

x(t) = e
∫ t

0
A(η)dηx(0).

(b) Again considering the LTV system ẋ = A(t)x, instead of beginning
with the assumption that A(t) commutes with its integral, assume that
the commutation condition

A(t1)A(t2) = A(t2)A(t1)

is satisfied for . Now describe the solution to the state equation.
;

Barmish

ECE 717 – Homework Revisit

In this homework problem, we consider the LTV system ẋ = A(t)x and
revisit a result obtained in Homework Exponentials — under the strength-
ened hypothesis that A(t) has distinct eigenvalues for all t. To this end,
we again assume that the commutation condition

A(t1)A(t2) = A(t2)A(t1)

is satisfied for all pairs (t1, t2). Letting Λ(t) be a diagonal matrix whose
entries are the eigenvalues of A(t), prove that there is a constant (time-
invariant) matrix T such that the matrix

Ψ(t) = T−1e
∫ t

0
Λ(η)dηT

satisfies the state equation with initial condition Ψ(0) = I. Note: If your
T matrix depends on time, you have not solved the problem.

;
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Barmish

ECE 717 – Homework Transition

Find the state transition matrix Φ(t, τ), in closed form, associated with
each of the A(t) matrices below. Note: Picard iteration should not be
used. A closed form is requested. For the first A(t) matrix, to guarantee
well-posedness, assume times t ≥ t0 = 1.

A(t) =

 −4
t − 2

t2

1 0

 ;

A(t) =

 2 −et

e−t 1

 .

;

2.5.2 Problem 1

Let 𝛼𝑖 be the 𝑖𝑡ℎ eigenvalue of 𝑀1 and let 𝑣𝑖 be an eigenvector associated with 𝛼𝑖. This
implies

𝑀1𝑣𝑖 = 𝛼𝑖𝑣𝑖
Similarly, let 𝛽𝑖 be the 𝑖𝑡ℎ eigenvalue of 𝑀2 and let 𝑢𝑖 be an eigenvector associated with 𝛽𝑖.
This implies

𝑀2𝑢𝑖 = 𝛽𝑖𝑢𝑖
We start by post multiplying 𝑀1𝑀2 with an eigenvector of 𝑀1 associated with eigenvalue
𝛼𝑖, this results in

𝑀1𝑀2𝑣𝑖 = 𝑀2𝑀1𝑣𝑖
Where we just took advantage of commuting 𝑀1𝑀2 by changing the order in the RHS
above. But 𝑀1𝑣𝑖 = 𝛼𝑖𝑣𝑖, hence the above becomes

𝑀1𝑀2𝑣𝑖 = 𝑀2𝛼𝑖𝑣𝑖
Since 𝛼𝑖 is scalar, we can move it to the left and obtain

𝑀1 (𝑀2𝑣𝑖) = 𝛼𝑖 (𝑀2𝑣𝑖)

We see now that 𝑀2𝑣𝑖 itself is an eigenvector of 𝑀1 .

What the above means is that if 𝑣𝑖 is an eigenvector of 𝑀1 associated with an eigenvalue 𝛼𝑖,
then so will be 𝑀2𝑣𝑖. Now an important point follows: Since the eigenvalues are distinct,
then all the eigenvectors that belong to each eigenvalues are scalar multiple of each others.
What this means, is that 𝑀2𝑣𝑖 is some scaled version of 𝑣𝑖 since both are in the same
eigenspace associated with 𝛼𝑖. The eigenspace associated with an eigenvalue is just the
space spanned by all the eigenvectors of this eigenvalue. This means this space is one
dimensional in this case.

This is critical, since it then tells us that 𝑀2𝑣𝑖 = 𝛽𝑖𝑣𝑖 where 𝛽𝑖 is the above scalar, which is
the eigenvalue of 𝑀2. Without this restriction, we could not say that 𝑀2𝑣𝑖 = 𝛽𝑖𝑣𝑖.

Therefore, the above means that each eigenvector of 𝑀1 is also an eigenvector of 𝑀2 .

Or said in other way, the matrix 𝑀1 and 𝑀2 share the same eigenspaces.
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M1

v
v

M2v
M2v

Eigenspace of M1 for 

M1

v

v

M2

Eigenspace of M2 for 

M1 and M2 share the same eigenvectors

But this complete the proof. Since the nonsingular matrix 𝑇 which diagonalizes a matrix is
made of up of the eigenvectors of the matrix. The columns of 𝑇 are the eigenvectors of the
matrix. And since 𝑀1,𝑀2 share the same eigenvectors, hence the same 𝑇 will diagonalize
both of them at the same time.

QED

2.5.3 Problem 2

Part (a)

We want to show that 𝑑
𝑑𝑡Ψ(𝑡) = 𝐴 (𝑡)Ψ (𝑡). Where Ψ(𝑡) = 𝑒∫

𝑡
0
𝐴(𝜏)𝑑𝜏. To expand 𝑒∫

𝑡
0
𝐴(𝜏)𝑑𝜏we

will use the definition of matrix exponential

𝑒𝑀 = 𝐼 +𝑀 +
1
2
𝑀2 +

1
3!
𝑀3 +⋯

Therefore

𝑒∫
𝑡
0
𝐴(𝜏)𝑑𝜏 = 𝐼+�

𝑡

0
𝐴 (𝜏) 𝑑𝜏+

1
2 ��

𝑡

0
𝐴 (𝜏) 𝑑𝜏� ��

𝑡

0
𝐴 (𝜏) 𝑑𝜏�+

1
3! ��

𝑡

0
𝐴 (𝜏) 𝑑𝜏� ��

𝑡

0
𝐴 (𝜏) 𝑑𝜏� ��

𝑡

0
𝐴 (𝜏) 𝑑𝜏�+⋯

To make it easier to see, we will expand only the first 2 terms in expansion:

𝑒∫
𝑡
0
𝐴(𝜏)𝑑𝜏 = 𝐼 +�

𝑡

0
𝐴 (𝜏) 𝑑𝜏 +

1
2 ��

𝑡

0
𝐴 (𝜏) 𝑑𝜏�

𝑡

0
𝐴 (𝜏) 𝑑𝜏� +⋯ (1)

Taking the time derivative of the above and using the product rule 𝑑
𝑑𝑡
(𝑋𝑌) = 𝑋 𝑑

𝑑𝑡𝑌 + 𝑌
𝑑
𝑑𝑡𝑋

gives

𝑑
𝑑𝑡
Ψ (𝑡) =

𝑑
𝑑𝑡 �

𝑒∫
𝑡
0
𝐴(𝜏)𝑑𝜏

�

=
𝑑
𝑑𝑡 �

𝐼 +�
𝑡

0
𝐴 (𝜏) 𝑑𝜏 +

1
2 ��

𝑡

0
𝐴 (𝜏) 𝑑𝜏�

𝑡

0
𝐴 (𝜏) 𝑑𝜏� +⋯�

=

0
⏞𝑑
𝑑𝑡
𝐼 +

𝑑
𝑑𝑡 �

𝑡

0
𝐴 (𝜏) 𝑑𝜏 +

1
2
𝑑
𝑑𝑡 ��

𝑡

0
𝐴 (𝜏) 𝑑𝜏�

𝑡

0
𝐴 (𝜏) 𝑑𝜏� +⋯

= 𝐴 (𝑡) +
1
2 ���

𝑡

0
𝐴 (𝜏) 𝑑𝜏�𝐴 (𝑡) + 𝐴 (𝑡) ��

𝑡

0
𝐴 (𝜏) 𝑑𝜏�� +⋯

Taking advantage of the commute property we write the second term above as

𝑑
𝑑𝑡
Ψ (𝑡) = 𝐴 (𝑡) +

1
2 �
𝐴 (𝑡) ��

𝑡

0
𝐴 (𝜏) 𝑑𝜏� + 𝐴 (𝑡) ��

𝑡

0
𝐴 (𝜏) 𝑑𝜏�� +⋯
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Therefore
𝑑
𝑑𝑡
Ψ (𝑡) = 𝐴 (𝑡) +

1
2 �
2𝐴 (𝑡) ��

𝑡

0
𝐴 (𝜏) 𝑑𝜏�� +⋯

= 𝐴 (𝑡) + 𝐴 (𝑡)�
𝑡

0
𝐴 (𝜏) 𝑑𝜏 +⋯

Since all the 𝐴 (𝑡) are on the left side, we can now factor 𝐴 (𝑡) out and obtain

𝑑
𝑑𝑡
Ψ (𝑡) = 𝐴 (𝑡)

Ψ(𝑡)

�����������������������������
�𝐼 +�

𝑡

0
𝐴 (𝜏) 𝑑𝜏 +⋯�

Comparing the term inside (⋅) in the above expression above with equation (1) we see it is
Ψ(𝑡). (If we have expanded more terms, it would be more clear, but the idea is the same
as shown above). Therefore we conclude that

𝑑
𝑑𝑡
𝑒∫

𝑡
0
𝐴(𝜏)𝑑𝜏 = 𝐴 (𝑡) 𝑒

∫𝑡0 𝐴(𝜏)𝑑𝜏

Or

𝑑
𝑑𝑡Ψ(𝑡) = 𝐴 (𝑡)Ψ (𝑡)

Hence Ψ(𝑡) satisfies the state equation. Now we need to show that 𝑥 (𝑡) = 𝑒∫
𝑡
0
𝐴(𝜏)𝑑𝜏𝑥 (0) is the

state solution. SinceΨ(𝑡) is the fundamental matrix, then each of its columns is an indepen-

dent solution to 𝑥′ = 𝐴 (𝑡) 𝑥 by definition. Hence a linear combinations of the columns of Ψ(𝑡) gives the solution 𝑥 (𝑡) .

As shown in class, we now obtain the general solution by assuming 𝑥 (𝑡) = Ψ (𝑡) 𝜃 (𝑡) and
then from this end up with the fundamental solution 𝑥 (𝑡) as

�⃗� (𝑡) = Ψ (𝑡)Ψ−1 (0) 𝑥 (0) +
𝑡

�
0

Ψ(𝑡)Ψ−1 (𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

But since this is free system, so there is no input 𝑢 (𝑡) and since Ψ(0) = 𝐼 then Ψ−1 (0) = 𝐼
and the above reduces to

�⃗� (𝑡) = Ψ (𝑡) 𝑥 (0)

But Ψ(𝑡) = 𝑒∫
𝑡
0
𝐴(𝜏)𝑑𝜏 hence

�⃗� (𝑡) = 𝑒∫
𝑡
0
𝐴(𝜏)𝑑𝜏𝑥 (0)

Part (b)

We are told that

𝐴 (𝑡)𝐴 (𝜏) = 𝐴 (𝜏)𝐴 (𝑡)

Lets integrate both sides from 0 to 𝑡 w.r.t to 𝜏. The equality will remain since we are
integrating over the same interval of equal quantities, hence

𝑡

�
0

𝐴 (𝑡)𝐴 (𝜏) 𝑑𝜏 =
𝑡

�
0

𝐴 (𝜏)𝐴 (𝑡) 𝑑𝜏

Now the integral on the LHS has 𝐴 (𝑡) which can be taken out of the integral, keeping the
order to the left, and the integral on RHS has 𝐴 (𝑡) which can now be taken out of the
integral, keeping the order to the right, which results in

𝐴 (𝑡)

⎛
⎜⎜⎜⎜⎜⎝

𝑡

�
0

𝐴 (𝜏) 𝑑𝜏

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

𝑡

�
0

𝐴 (𝜏) 𝑑𝜏

⎞
⎟⎟⎟⎟⎟⎠𝐴 (𝑡)

But the above is the assumptions we used in part (a). Therefore,

𝐴 (𝑡)𝐴 (𝜏) = 𝐴 (𝜏)𝐴 (𝑡)
implies
⇒ 𝐴(𝑡)

⎛
⎜⎜⎜⎜⎜⎝

𝑡

�
0

𝐴 (𝜏) 𝑑𝜏

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

𝑡

�
0

𝐴 (𝜏) 𝑑𝜏

⎞
⎟⎟⎟⎟⎟⎠𝐴 (𝑡)

Therefore we can use the same solution found in (a)

�⃗� (𝑡) = 𝑒∫
𝑡
0
𝐴(𝜏)𝑑𝜏𝑥 (0)
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2.5.4 Problem 3

Since 𝐴 (𝑡)𝐴 (𝜏) = 𝐴 (𝜏)𝐴 (𝑡), then from problem (2) we know that

Ψ(𝑡) = 𝑒∫
𝑡
0
𝐴(𝜏)𝑑𝜏

is the fundamental matrix for 𝑥′ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡). We now need to show that, given that 𝐴 (𝑡)
has distinct eigenvalues for each 𝑡, the fundamental matrix can be written as

Ψ(𝑡) = 𝑇−1𝑒∫
𝑡
0
Λ(𝜏)𝑑𝜏𝑇

For some constant matrix 𝑇. The important point is that 𝑇 must be constant in the above.
In addition, we need to show that the above Ψ(𝑡) satisfies 𝑑

𝑑𝑡Ψ(𝑡) = 𝐴 (𝑡)Ψ (𝑡).

The first step is to find the constant 𝑇matrix. Since 𝐴 (𝑡)𝐴 (𝜏) = 𝐴 (𝜏)𝐴 (𝑡) , then by selecting
𝜏 = 0, which is the initial time, then 𝐴 (𝑡)𝐴 (0) = 𝐴 (0)𝐴 (𝑡). Therefore, each 𝐴 (𝑡) commutes
with the same matrix 𝐴 (0). i.e. 𝐴 (𝑡1) will commute with 𝐴 (0) and 𝐴 (𝑡2) will commute with
𝐴 (0) and so on. But by problem 1, we showed that when two matrices commute, then they
have the same eigenvectors. Therefore, we can select the eigenvectors of 𝐴 (0) to use to
construct the 𝑇 matrix from, by using the 𝑛 linearly independent eigenvectors of 𝐴 (0) as
the columns of 𝑇. Lets call it 𝑇0. Therefore, 𝑇0 is now constant and do not change. Now
that we found a constant 𝑇0 matrix to use for diagonalization of each 𝐴 (𝑡) matrix, we will
show the rest of the solution using 𝑇0 . Since

𝑒𝑀 = 𝐼 +𝑀 +
1
2
𝑀2 +

1
3!
𝑀3 +⋯ =

∞
�
𝑖=0

𝑀𝑖

𝑖!
Therefore, applying the above to

Ψ(𝑡) = 𝑒∫
𝑡
0
𝐴(𝜏)𝑑𝜏

=
∞
�
𝑖=0

1
𝑖! ��

𝑡

0
𝐴 (𝜏) 𝑑𝜏�

𝑖

Since 𝐴 has distinct eigenvalues at all time, we can diagonalize it using the constant 𝑇0,
hence

Ψ(𝑡) =
∞
�
𝑖=0

1
𝑖! ��

𝑡

0
𝑇−1
0 Λ (𝜏) 𝑇0𝑑𝜏�

𝑖

= 𝐼 +�
𝑡

0
𝑇−1
0 Λ (𝜏) 𝑇0𝑑𝜏 +

1
2 �

𝑡

0
𝑇−1
0 Λ (𝜏) 𝑇0𝑑𝜏�

𝑡

0
𝑇−1
0 Λ (𝜏) 𝑇0𝑑𝜏 +⋯

= 𝐼 + 𝑇−1
0 ��

𝑡

0
Λ (𝜏) 𝑑𝜏� 𝑇0 +

1
2
𝑇−1
0 ��

𝑡

0
Λ (𝜏) 𝑑𝜏� �𝑇0𝑇−1

0 � ��
𝑡

0
Λ (𝜏) 𝑑𝜏� 𝑇0 +⋯

All the inner 𝑇0𝑇−1
0 result in 𝐼 since 𝑇0 is invertible, therefore the above become

Ψ(𝑡) = 𝐼 + 𝑇−1
0 ��

𝑡

0
Λ (𝜏) 𝑑𝜏� 𝑇0 +

1
2!
𝑇−1
0 ��

𝑡

0
Λ (𝜏) 𝑑𝜏�

2

𝑇0 +
1
3!
𝑇−1
0 ��

𝑡

0
Λ (𝜏) 𝑑𝜏�

3

𝑇0 +⋯

Pre-multiply both sides by 𝑇0

𝑇0Ψ(𝑡) = 𝑇0 + ��
𝑡

0
Λ (𝜏) 𝑑𝜏� 𝑇0 +

1
2! ��

𝑡

0
Λ (𝜏) 𝑑𝜏�

2

𝑇0 +
1
3! ��

𝑡

0
Λ (𝜏) 𝑑𝜏�

3

𝑇0 +⋯

Post multiply both sides by 𝑇−1
0 , and again replacing all of the 𝑇0𝑇−1

0 products with 𝐼 gives

𝑇0Ψ(𝑡) 𝑇−1
0 = 𝐼 + ��

𝑡

0
Λ (𝜏) 𝑑𝜏� 𝑇0𝑇−1

0 +
1
2! ��

𝑡

0
Λ (𝜏) 𝑑𝜏�

2

𝑇0𝑇−1
0 +

1
3! ��

𝑡

0
Λ (𝜏) 𝑑𝜏�

3

𝑇0𝑇−1
0 +⋯

= 𝐼 + ��
𝑡

0
Λ (𝜏) 𝑑𝜏� +

1
2! ��

𝑡

0
Λ (𝜏) 𝑑𝜏�

2

+
1
3! ��

𝑡

0
Λ (𝜏) 𝑑𝜏�

3

+⋯

= 𝑒∫
𝑡
0
Λ(𝜏)𝑑𝜏

Therefore

Ψ(𝑡) = 𝑇−1
0 𝑒

∫𝑡
0
Λ(𝜏)𝑑𝜏𝑇0 (1)
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Given equation (1), we need now to show that it leads to 𝑑
𝑑𝑡Ψ(𝑡) = 𝐴 (𝑡)Ψ (𝑡).

𝑑
𝑑𝑡
Ψ (𝑡) =

𝑑
𝑑𝑡 �

𝑇−1
0 𝑒

∫𝑡
0
Λ(𝜏)𝑑𝜏𝑇0�

= 𝑇−1
0 �

𝑑
𝑑𝑡
𝑒∫

𝑡
0
Λ(𝜏)𝑑𝜏

� 𝑇0 (2)

Since Λ (𝜏) is a diagonal matrix (by definition, it has the eigenvalues on the diagonal),
therefore it commutes with another Λ (𝑡) (any diagonal matrix commutes with another
diagonal matrix). Hence

Λ (𝜏)Λ (𝑡) = Λ (𝑡)Λ (𝜏) (3)

What this means is that we can expand 𝑒∫
𝑡
0
Λ(𝜏)𝑑𝜏 in power series and simplified as follows

𝑒∫
𝑡
0
Λ(𝜏)𝑑𝜏 = 𝐼+�

𝑡

0
Λ (𝜏) 𝑑𝜏+

1
2 �

𝑡

0
Λ (𝜏) 𝑑𝜏�

𝑡

0
Λ (𝜏) 𝑑𝜏+

1
3! �

𝑡

0
Λ (𝜏) 𝑑𝜏�

𝑡

0
Λ (𝜏) 𝑑𝜏�

𝑡

0
Λ (𝜏) 𝑑𝜏+⋯

Substituting this into (2)

𝑑
𝑑𝑡
Ψ (𝑡) = 𝑇−1

0 �
𝑑
𝑑𝑡 �

𝐼 +�
𝑡

0
Λ (𝜏) 𝑑𝜏 +

1
2 �

𝑡

0
Λ (𝜏) 𝑑𝜏�

𝑡

0
Λ (𝜏) 𝑑𝜏 +

1
3! �

𝑡

0
Λ (𝜏) 𝑑𝜏�

𝑡

0
Λ (𝜏) 𝑑𝜏�

𝑡

0
Λ (𝜏) 𝑑𝜏 +⋯��𝑇0

= 𝑇−1
0 ��Λ (𝑡) +

1
2 �
Λ (𝑡)�

𝑡

0
Λ (𝜏) 𝑑𝜏 +�

𝑡

0
Λ (𝜏) 𝑑𝜏Λ (𝑡)� +⋯��𝑇0

Since Λ (𝜏) commute, then using (3)

𝑑
𝑑𝑡
Ψ (𝑡) = 𝑇−1

0 ��Λ (𝑡) +
1
2 �
Λ (𝑡)�

𝑡

0
Λ (𝜏) 𝑑𝜏 + Λ (𝑡)�

𝑡

0
Λ (𝜏) 𝑑𝜏� +⋯��𝑇0

= 𝑇−1
0 ��Λ (𝑡) + Λ (𝑡)�

𝑡

0
Λ (𝜏) 𝑑𝜏 +⋯��𝑇0

= 𝑇−1
0 �Λ (𝑡) �𝐼 +�

𝑡

0
Λ (𝜏) 𝑑𝜏 +

1
2 �

𝑡

0
Λ (𝜏) 𝑑𝜏�

𝑡

0
Λ (𝜏) 𝑑𝜏 +⋯��𝑇0

=

𝐴(𝑡)

������������������𝑇−1
0 Λ (𝑡) 𝑇0�

Ψ(𝑡) from (1)

���������������������������������������������������������������������������������
𝑇−1 �𝐼 +�

𝑡

0
Λ (𝜏) 𝑑𝜏 +

1
2 �

𝑡

0
Λ (𝜏) 𝑑𝜏�

𝑡

0
Λ (𝜏) 𝑑𝜏 +⋯�𝑇0

Hence
𝑑
𝑑𝑡
Ψ (𝑡) = 𝐴 (𝑡)Ψ (𝑡)

2.5.5 Problem 4

Part (a)

For 𝐴 (𝑡) =
⎛
⎜⎜⎜⎜⎝
−4

𝑡 − 2
𝑡2

1 0

⎞
⎟⎟⎟⎟⎠, we first need to find the fundamental matrix Ψ(𝑡) and then Φ (𝑡, 𝜏) =

Ψ (𝑡)Ψ−1 (𝜏). Let the 2 linearly independent initial conditions be

𝑋01 =
⎛
⎜⎜⎜⎜⎝
1
0

⎞
⎟⎟⎟⎟⎠ , 𝑋

02 =
⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

We know solve 𝑥′ = 𝐴 (𝑡) 𝑥 using both of these initial conditions and obtain two linearly
independent solutions to use to construct Ψ(𝑡) with. Using the first initial conditions

𝑥1 (1) = 1, 𝑥2 (1) = 0 . The two equations to solve are

𝑥′1 = −
4
𝑡
𝑥1 −

2
𝑡2
𝑥2 (1)

𝑥′2 = 𝑥1 (2)

From the second equation
𝑑
𝑑𝑡
𝑥2 = 𝑥1
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Integrate both sides

�
𝑡

1
𝑑𝑥2 = �

𝑡

1
𝑥1 (𝜏) 𝑑𝜏

𝑥2 (𝑡) − 𝑥2 (1) = �
𝑡

1
𝑥1 (𝜏) 𝑑𝜏

But 𝑥2 (1) = 0, hence 𝑥2 (𝑡) = ∫
𝑡

1
𝑥1 (𝜏) 𝑑𝜏. Substituting this in (1) gives

𝑥′1 = −
4
𝑡
𝑥1 −

2
𝑡2 �

𝑡

1
𝑥1 (𝜏) 𝑑𝜏

Multiply both sides by 𝑡2

2

𝑡2

2
𝑥′ = −2𝑡𝑥1 −�

𝑡

1
𝑥1 (𝜏) 𝑑𝜏

Taking derivative of both sides with respect to 𝑡 gives

𝑡𝑥′1 +
𝑡2

2
𝑥′′1 = −2𝑥1 − 2𝑡𝑥′1 − 𝑥1 (𝑡)

𝑡2

2
𝑥′′1 + 3𝑡𝑥′1 + 3𝑥1 = 0

𝑡2𝑥′′1 + 6𝑡𝑥′1 + 3𝑥1 = 0 (3)

This second order di�erential is now solved for 𝑥1 (𝑡). The initial conditions is 𝑥1 (1) = 1
and 𝑥′1 (1). However, we do not know 𝑥′1 (1), as not given, but we can obtain it from the first
equation (1) by noting that at 𝑡 = 1 we find 𝑥′ (1) = −4

1𝑥1 (1) −
2
12𝑥2(1) = −4. Therefore (3) can

now be solved for 𝑥1 since we have two initial conditions. Hence the problem to solve is

𝑡2𝑥′′1 + 6𝑡𝑥′1 + 6𝑥1 = 0
𝑥1 (1) = 1
𝑥′1 (1) = −4

Equation (3) is in the form of Euler equation. Euler ODE has solution of the form 𝑥1 (𝑡) = 𝑡𝛼.
Substituting this trial solution in (3) gives

𝑡2 �𝛼 (𝛼 − 1) 𝑡𝛼−2� + 6𝑡𝛼𝑡𝛼−1 + 6𝑡𝛼 = 0
𝛼 (𝛼 − 1) 𝑡𝛼 + 6𝛼𝑡𝛼 + 6𝑡𝛼 = 0

For non-trivial solution, and assuming 𝑡 > 0 which is the case here, dividing the above by
𝑡𝛼 gives

𝛼 (𝛼 − 1) + 6𝛼 + 6 = 0
𝛼2 + 5𝛼 + 6 = 0

Hence

𝛼 = {−2, −3}

Therefore the solution is a combination of solutions using these, which is

𝑥1 (𝑡) =
𝑐1
𝑡2
+
𝑐2
𝑡3

(4)

Now we apply the initial conditions. At 𝑡 = 1 , 𝑥1 (1) = 1, hence

1 = 𝑐1 + 𝑐2 (5)

And

𝑥′1 (𝑡) = −2
𝑐1
𝑡3
− 3

𝑐2
𝑡4

And we have 𝑥′1 (1) = −4 hence

−4 = −2𝑐1 − 3𝑐2 (6)

We now have (5),(6), which is two equations in two unknowns. The solution is

1 = 𝑐1 + 𝑐2
−4 = −2𝑐1 − 3𝑐2
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The solution is: 𝑐1 = −1, 𝑐2 = 2. Hence the the solution is now found, using (4), it is

𝑥1 (𝑡) =
−1
𝑡2 +

2
𝑡3

Now that we know 𝑥1 (𝑡) , we can find 𝑥2 (𝑡) from 𝑥2 (𝑡) = ∫
𝑡

1
𝑥1 (𝜏) 𝑑𝜏, therefore

𝑥2 (𝑡) = �
𝑡

1

−1
𝜏2
+
2
𝜏3
𝑑𝜏

Hence

𝑥2 (𝑡) =
𝑡−1
𝑡2

This gives us the first column of

Ψ1 =
⎛
⎜⎜⎜⎜⎝

−1
𝑡2 +

2
𝑡3

𝑡−1
𝑡2

⎞
⎟⎟⎟⎟⎠

Now we need to do the same the 𝑋02.

Using the second initial conditions 𝑥1 (1) = 0, 𝑥2 (1) = 1 . The two equations to solve are

𝑥′1 = −
4
𝑡
𝑥1 −

2
𝑡2
𝑥2 (1A)

𝑥′2 = 𝑥1 (2A)

From the second equation
𝑑
𝑑𝑡
𝑥2 = 𝑥1

Integrate both sides

�
𝑡

1
𝑑𝑥2 = �

𝑡

1
𝑥1 (𝜏) 𝑑𝜏

𝑥2 (𝑡) − 𝑥2 (1) = �
𝑡

1
𝑥1 (𝜏) 𝑑𝜏

But 𝑥2 (1) = 1, hence 𝑥2 (𝑡) = 1 + ∫
𝑡

1
𝑥1 (𝜏) 𝑑𝜏. Substituting this in (1A) gives

𝑥′1 = −
4
𝑡
𝑥1 −

2
𝑡2 �

1 +�
𝑡

1
𝑥1 (𝜏) 𝑑𝜏�

Multiply both sides by 𝑡2

2

𝑡2

2
𝑥′ = −2𝑡𝑥1 − 1 −�

𝑡

1
𝑥1 (𝜏) 𝑑𝜏

Taking derivative of both sides with respect to 𝑡 gives

𝑡𝑥′1 +
𝑡2

2
𝑥′′1 = −2𝑥1 − 2𝑡𝑥′1 − 𝑥1 (𝑡)

𝑡2

2
𝑥′′1 + 3𝑡𝑥′1 + 3𝑥1 = 0

𝑡2𝑥′′1 + 6𝑡𝑥′1 + 3𝑥1 = 0

This is the same second order di�erential as was found for 𝑋01 but the initial conditions
are now di�erent. The initial conditions are 𝑥1 (1) = 0 and 𝑥′1 (1). However, we do not know
𝑥′1 (1), as not given, but we can obtain it from the first equation (1) by noting that at 𝑡 = 1
we find 𝑥′ (1) = −4

1𝑥1 (1) −
2
12𝑥2(1) = −2. Therefore (3A) can now be solved for 𝑥1 since we

have two initial conditions. Hence the problem to solve is

𝑡2𝑥′′1 + 6𝑡𝑥′1 + 6𝑥1 = 0 (3A)

𝑥1 (1) = 0
𝑥′1 (1) = −2

Equation (3A) is in the form of Euler equation. Euler ODE has solution of the form
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𝑥1 (𝑡) = 𝑡𝛼. Substituting this trial solution in (3A) gives

𝑡2 �𝛼 (𝛼 − 1) 𝑡𝛼−2� + 6𝑡𝛼𝑡𝛼−1 + 6𝑡𝛼 = 0
𝛼 (𝛼 − 1) 𝑡𝛼 + 6𝛼𝑡𝛼 + 6𝑡𝛼 = 0

For non-trivial solution, and assuming 𝑡 > 0 which is the case here, diving the above by 𝑡𝛼
gives

𝛼 (𝛼 − 1) + 6𝛼 + 6 = 0
𝛼2 + 5𝛼 + 6 = 0

Hence

𝛼 = {−2, −3}

Therefore the solution is a combination of solutions using these, which is

𝑥1 (𝑡) =
𝑐1
𝑡2
+
𝑐2
𝑡3

(4A)

Now we apply the initial conditions. At 𝑡 = 1 , 𝑥1 (1) = 0, hence

0 = 𝑐1 + 𝑐2 (5A)

And

𝑥′1 (𝑡) = −2
𝑐1
𝑡3
− 3

𝑐2
𝑡4

And we have 𝑥′1 (1) = −2 hence

−2 = −2𝑐1 − 3𝑐2 (6A)

We now have (5A),(6A), which is two equations in two unknowns. The solution is

0 = 𝑐1 + 𝑐2
−2 = −2𝑐1 − 3𝑐2

The solution is: 𝑐1 = −2, 𝑐2 = 2. Hence the the solution is now found, using (4A), it is

𝑥1 (𝑡) =
−2
𝑡2
+
2
𝑡3

Now that we know 𝑥1 (𝑡) , we can find 𝑥2 (𝑡) from 𝑥2 (𝑡) = 1 + ∫
𝑡

1
𝑥1 (𝜏) 𝑑𝜏, therefore

𝑥2 (𝑡) = 1 +�
𝑡

1

−2
𝜏2

+
2
𝜏3
𝑑𝜏

Hence

𝑥2 (𝑡) =
2𝑡−1
𝑡2

This gives us the second column of

Ψ2 =
⎛
⎜⎜⎜⎜⎝

−2
𝑡2 +

2
𝑡3

2𝑡−1
𝑡2

⎞
⎟⎟⎟⎟⎠

Hence the fundamental matrix is

Ψ =
⎛
⎜⎜⎜⎜⎝

−1
𝑡2 +

2
𝑡3

−2
𝑡2 +

2
𝑡3

𝑡−1
𝑡2

2𝑡−1
𝑡2

⎞
⎟⎟⎟⎟⎠

The inverse is now found.

Ψ−1 =

⎛
⎜⎜⎜⎜⎝

2𝑡−1
𝑡2

2
𝑡2 −

2
𝑡3

− 𝑡−1
𝑡2

−1
𝑡2 +

2
𝑡3

⎞
⎟⎟⎟⎟⎠

1/𝑡4
=

⎛
⎜⎜⎜⎜⎜⎝
2𝑡3 − 𝑡2 2𝑡2 − 2𝑡

𝑡2 − 𝑡3 − 𝑡2−𝑡3

𝑡−𝑡2
(𝑡 − 2)

⎞
⎟⎟⎟⎟⎟⎠
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Therefore the state transition function is

Φ (𝑡, 𝜏) = Ψ (𝑡)Ψ−1 (𝜏)

=
⎛
⎜⎜⎜⎜⎝

−1
𝑡2 +

2
𝑡3

−2
𝑡2 +

2
𝑡3

𝑡−1
𝑡2

2𝑡−1
𝑡2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
2𝜏3 − 𝜏2 2𝜏2 − 2𝜏

𝜏2 − 𝜏3 −𝜏2−𝜏3

𝜏−𝜏2
(𝜏 − 2)

⎞
⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
− 1
𝑡3𝜏

2 (𝑡 − 2𝜏) − 2
𝑡3𝜏 (𝑡 − 𝜏)

1
𝑡2𝜏

2 (𝑡 − 𝜏) − 1
𝑡2𝜏 (𝜏 − 2𝑡)

⎞
⎟⎟⎟⎟⎠

=
𝜏
𝑡2

⎛
⎜⎜⎜⎜⎜⎝
−𝜏2

𝑡
(𝑡 − 2𝜏) −2

𝑡
(𝑡 − 𝜏)

𝜏 (𝑡 − 𝜏) − (𝜏 − 2𝑡)

⎞
⎟⎟⎟⎟⎟⎠

Part (b)

For 𝐴 (𝑡) =
⎛
⎜⎜⎜⎜⎝
2 −𝑒𝑡

𝑒𝑡 1

⎞
⎟⎟⎟⎟⎠we first need to find the fundamental matrix Ψ(𝑡) and then Φ (𝑡, 𝜏) =

Ψ (𝑡)Ψ−1 (𝜏). Let the two linearly independent initial conditions be

𝑋01 =
⎛
⎜⎜⎜⎜⎝
1
0

⎞
⎟⎟⎟⎟⎠ , 𝑋

02 =
⎛
⎜⎜⎜⎜⎝
1
0

⎞
⎟⎟⎟⎟⎠

We know solve 𝑥′ = 𝐴 (𝑡) 𝑥 using both of these initial conditions and obtain two linearly
independent solutions to use to construct Ψ(𝑡) with. Using the first initial conditions

𝑥1 (1) = 1, 𝑥2 (1) = 0 . The two equations to solve are

𝑥′1 = 2𝑥1 − 𝑒𝑡𝑥2 (1)

𝑥′2 = 𝑒−𝑡𝑥1 + 𝑥2 (2)

Starting with (2), 𝑥′2 − 𝑥2 = 𝑒−𝑡𝑥1, this is in the form 𝑥′ + 𝑝 (𝑡) 𝑥 = 𝑓 (𝑡) , hence the integrating
factor is 𝑒∫𝑝(𝑡)𝑑𝑡 = 𝑒

−∫𝑑𝑡
= 𝑒−𝑡 and the solution is

𝑑
𝑑𝑡
�𝑒−𝑡𝑥2� = 𝑒−𝑡 �𝑒−𝑡𝑥1�

Integrating both sides

[𝑒−𝜏𝑥2 (𝜏)]
𝑡
1 = �

𝑡

1
𝑒−2𝜏𝑥1 (𝜏) 𝑑𝜏

𝑒−𝑡𝑥2 (𝑡) −
zero

���������𝑒−1𝑥2 (1) = �
𝑡

1
𝑒−2𝜏𝑥1 (𝜏) 𝑑𝜏

𝑒−𝑡𝑥2 (𝑡) = �
𝑡

1
𝑒−2𝜏𝑥1 (𝜏) 𝑑𝜏

Hence

𝑥2 = 𝑒𝑡�
𝑡

1
𝑒−2𝜏𝑥1 (𝜏) 𝑑𝜏 (3)

Substituting this solution in (1) gives

𝑥′1 = 2𝑥1 − 𝑒2𝑡�
𝑡

1
𝑒−2𝜏𝑥1 (𝜏) 𝑑𝜏

𝑒−2𝑡𝑥′1 − 2𝑥1𝑒−2𝑡 = −�
𝑡

1
𝑒−2𝜏𝑥1 (𝜏) 𝑑𝜏

Di�erentiating

−2𝑒−2𝑡𝑥′1 + 𝑒−2𝑡𝑥′′1 − 2𝑥′1𝑒−2𝑡 + 4𝑥1𝑒−2𝑡 = −𝑒−2𝑡𝑥1 (𝑡)
𝑒−2𝑡𝑥′′1 − 4𝑒−2𝑡𝑥′1 + 5𝑒−2𝑡𝑥1 = 0

𝑥′′1 − 4𝑥′1 + 5𝑥1 = 0

This is a constant coe�cient ODE. Its solution can be found from the characteristic
polynomial. 𝜆2 − 4𝜆 + 5 = 0, the solution is {2 + 𝑖, 2 − 𝑖 = 0}, hence

𝑥1 = 𝑐1𝑒(2+𝑖)𝑡 + 𝑐2𝑒(2−𝑖)𝑡
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Since the roots are complex, this can be written as sin / cos,
𝑥1 = 𝑐1𝑒2𝑡𝑒𝑖𝑡 + 𝑐2𝑒2𝑡𝑒−𝑖𝑡

= 𝑒2𝑡 �𝑐1𝑒𝑖𝑡 + 𝑐2𝑒−𝑖𝑡�

= 𝑒2𝑡 (𝑐1 (cos 𝑡 + 𝑖 sin 𝑡) + 𝑐2 (cos 𝑡 − 𝑖 sin 𝑡))
= 𝑒2𝑡 (cos 𝑡 (𝑐1 + 𝑐2) + sin 𝑡 (𝑖𝑐1 − 𝑖𝑐2))

Let 𝑐1 + 𝑐2 = 𝐴 and 𝑖 (𝑐1 − 𝑐2) = 𝐵, some new constants. Hence the above becomes

𝑥1 (𝑡) = 𝑒2𝑡 (𝐴 cos 𝑡 + 𝐵 sin 𝑡) (4)

From initial conditions, 𝑥1 (1) = 1. But we are not given 𝑥′1 (1). We can find this from (1)
𝑥′1 = 2𝑥1 − 𝑒𝑡𝑥2 by noting that at 𝑡 = 1,

𝑥′ (1) = 2𝑥1 (1) − 𝑒1𝑥2 (1)
= 2

Hence now we have the two initial conditions to find 𝐴,𝐵 from (4). At 𝑡 = 1, (4) becomes

1 = 𝑒2 (𝐴 cos 1 + 𝐵 sin 1) (5)

Taking derivative of (4)

𝑥′1 (𝑡) = 2𝑒2𝑡 (𝐴 cos 𝑡 + 𝐵 sin 𝑡) + 𝑒2𝑡 (−𝐴 sin 𝑡 + 𝐵 cos 𝑡)
And at 𝑡 = 1 this becomes

2 = 2𝑒2 (𝐴 cos 1 + 𝐵 sin 1) + 𝑒2 (−𝐴 sin 1 + 𝐵 cos 1) (6)

From (5),(6) we can solve for 𝐴,𝐵,

1 = 𝑒2 (𝐴 cos 1 + 𝐵 sin 1)
2 = 2𝑒2 (𝐴 cos 1 + 𝐵 sin 1) + 𝑒2 (−𝐴 sin 1 + 𝐵 cos 1)

The solution is 𝐴 = cos 1
𝑒2 , 𝐵 =

sin 1
𝑒2 . Therefore from (4) we obtain

𝑥1 (𝑡) = 𝑒2𝑡 �
cos 1 cos 𝑡

𝑒2
+

sin 1 sin 𝑡
𝑒2 �

= 𝑒2𝑡 �
cos 1 cos 𝑡 + sin 1 sin 𝑡

𝑒2 �

But cos 1 cos 𝑡 + sin 1 sin 𝑡 = cos (1 − 𝑡), hence
𝑥1 (𝑡) = 𝑒2(𝑡−1) cos (1 − 𝑡)

Now that we found 𝑥1 (𝑡) we go to (3) and find 𝑥2 (𝑡)

𝑥2 = 𝑒𝑡�
𝑡

1
𝑒−2𝜏𝑥1 (𝜏) 𝑑𝜏

= 𝑒𝑡�
𝑡

1
𝑒−2𝜏𝑒2(𝜏−1) cos (1 − 𝜏) 𝑑𝜏

= 𝑒𝑡�
𝑡

1
𝑒−2 cos (1 − 𝜏) 𝑑𝜏

Hence

𝑥2 = −𝑒𝑡−2 sin (1 − 𝑡)
Therefore, the first columns of the fundamental matrix is found

Ψ1 =
⎛
⎜⎜⎜⎜⎝
𝑒2𝑡−2 cos (1 − 𝑡)
−𝑒𝑡−2 sin (1 − 𝑡)

⎞
⎟⎟⎟⎟⎠

We now find the second columnΨ2. Using the second initial conditions 𝑥1 (1) = 0, 𝑥2 (1) = 1 .

The two equations to solve are

𝑥′1 = 2𝑥1 − 𝑒𝑡𝑥2 (1A)

𝑥′2 = 𝑒−𝑡𝑥1 + 𝑥2 (2A)

Starting with (2), 𝑥′2 − 𝑥2 = 𝑒−𝑡𝑥1, this is in the form 𝑥′ + 𝑝 (𝑡) 𝑥 = 𝑓 (𝑡) , hence the integrating
factor is 𝑒∫𝑝(𝑡)𝑑𝑡 = 𝑒

−∫𝑑𝑡
= 𝑒−𝑡 and the solution is

𝑑
𝑑𝑡
�𝑒−𝑡𝑥2� = 𝑒−𝑡 �𝑒−𝑡𝑥1�
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Integrating both sides

[𝑒−𝜏𝑥2 (𝜏)]
𝑡
1 = �

𝑡

1
𝑒−2𝜏𝑥1 (𝜏) 𝑑𝜏

𝑒−𝑡𝑥2 (𝑡) − 𝑒−1𝑥2 (1) = �
𝑡

1
𝑒−2𝜏𝑥1 (𝜏) 𝑑𝜏

𝑒−𝑡𝑥2 (𝑡) − 𝑒−1 = �
𝑡

1
𝑒−2𝜏𝑥1 (𝜏) 𝑑𝜏

𝑥2 (𝑡) = 𝑒𝑡�
𝑡

1
𝑒−2𝜏𝑥1 (𝜏) 𝑑𝜏 + 𝑒𝑡−1 (3A)

Substituting this solution in (1A) gives

𝑥′1 = 2𝑥1 − 𝑒𝑡 �𝑒𝑡�
𝑡

1
𝑒−2𝜏𝑥1 (𝜏) 𝑑𝜏 + 𝑒𝑡−1�

𝑥′1 = 2𝑥1 − 𝑒2𝑡�
𝑡

1
𝑒−2𝜏𝑥1 (𝜏) 𝑑𝜏 − 𝑒2𝑡−1

𝑒−2𝑡𝑥′1 − 2𝑥1𝑒−2𝑡 = −�
𝑡

1
𝑒−2𝜏𝑥1 (𝜏) 𝑑𝜏 − 𝑒−1

Di�erentiating

−2𝑒−2𝑡𝑥′1 + 𝑒−2𝑡𝑥′′1 − 2𝑥′1𝑒−2𝑡 + 4𝑥1𝑒−2𝑡 = −𝑒−2𝑡𝑥1 (𝑡)
𝑒−2𝑡𝑥′′1 − 4𝑒−2𝑡𝑥′1 + 5𝑒−2𝑡𝑥1 = 0

𝑥′′1 − 4𝑥′1 + 5𝑥1 = 0

This is a constant coe�cient ODE. Its solution can be found from the characteristic
polynomial. 𝜆2 − 4𝜆 + 5 = 0, the solution is {2 + 𝑖, 2 − 𝑖 = 0}, hence

𝑥1 = 𝑐1𝑒(2+𝑖)𝑡 + 𝑐2𝑒(2−𝑖)𝑡

Since the roots are complex, this can be written as sin / cos, giving, as above
𝑥1 (𝑡) = 𝑒2𝑡 (𝐴 cos 𝑡 + 𝐵 sin 𝑡) (4A)

From initial conditions, 𝑥1 (1) = 0. But we are not given 𝑥′1 (1). We can find this from (1A)
𝑥′1 = 2𝑥1 − 𝑒𝑡𝑥2 by noting that at 𝑡 = 1,

𝑥′ (1) = 2𝑥1 (1) − 𝑒1𝑥2 (1)
= −𝑒1

Hence now we have the two initial conditions to find 𝐴,𝐵 from (4). At 𝑡 = 1, (4A) becomes

0 = 𝑒2 (𝐴 cos 1 + 𝐵 sin 1)
0 = 𝐴 cos 1 + 𝐵 sin 1 (5A)

Taking derivative of (4A)

𝑥′1 (𝑡) = 2𝑒2𝑡 (𝐴 cos 𝑡 + 𝐵 sin 𝑡) + 𝑒2𝑡 (−𝐴 sin 𝑡 + 𝐵 cos 𝑡)
And at 𝑡 = 1 this becomes

−𝑒1 = 2𝑒2 (𝐴 cos 1 + 𝐵 sin 1) + 𝑒2 (−𝐴 sin 1 + 𝐵 cos 1) (6A)

From (5A),(6A) we can solve for 𝐴,𝐵,

0 = 𝑒2 (𝐴 cos 1 + 𝐵 sin 1)
−𝑒1 = 2𝑒2 (𝐴 cos (1) + 𝐵 sin (1)) + 𝑒2 (−𝐴 sin (1) + 𝐵 cos (1))

The solution is 𝐴 = sin 1
𝑒 , 𝐵 = − cos 1

𝑒 . Therefore (4A) becomes

𝑥1 (𝑡) = 𝑒2𝑡 (𝐴 cos 𝑡 + 𝐵 sin 𝑡)

= 𝑒2𝑡 �
sin 1 cos 𝑡

𝑒
−

cos 1 sin 𝑡
𝑒 �

= 𝑒2𝑡 �
sin 1 cos 𝑡 − cos 1 sin 𝑡

𝑒 �

But sin 1 cos 𝑡 − cos 1 sin 𝑡 = sin (1 − 𝑡), hence
𝑥1 (𝑡) = 𝑒2𝑡−1 sin (1 − 𝑡)
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Now that we found 𝑥1 (𝑡) we go to (3A) and find 𝑥2 (𝑡)

𝑥2 (𝑡) = 𝑒𝑡�
𝑡

1
𝑒−2𝜏𝑥1 (𝜏) 𝑑𝜏 + 𝑒𝑡−1

= 𝑒𝑡−1 + 𝑒𝑡�
𝑡

1
𝑒−2𝜏𝑒2𝜏−1 sin (1 − 𝜏) 𝑑𝜏

= 𝑒𝑡−1 + 𝑒𝑡�
𝑡

1
𝑒−1 sin (1 − 𝜏) 𝑑𝜏

= 𝑒𝑡−1 + 𝑒𝑡−1�
𝑡

1
sin (1 − 𝜏) 𝑑𝜏

= 𝑒𝑡−1 + 𝑒𝑡−1 (−1 + cos (1 − 𝑡))
= 𝑒𝑡−1 cos (1 − 𝑡)

Therefore, the second column of the fundamental matrix is found

Ψ2 =
⎛
⎜⎜⎜⎜⎝
𝑒2𝑡−1 sin (1 − 𝑡)
𝑒𝑡−1 cos (1 − 𝑡)

⎞
⎟⎟⎟⎟⎠

Hence the fundamental matrix is

Ψ =
⎛
⎜⎜⎜⎜⎝
𝑒2𝑡−2 cos (1 − 𝑡) 𝑒2𝑡−1 sin (1 − 𝑡)
−𝑒𝑡−2 sin (1 − 𝑡) 𝑒𝑡−1 cos (1 − 𝑡)

⎞
⎟⎟⎟⎟⎠

The inverse is now found.

Ψ−1 =
⎛
⎜⎜⎜⎜⎝
𝑒2−2𝑡 cos (1 − 𝑡) −𝑒2−𝑡 sin (1 − 𝑡)
𝑒1−2𝑡 sin (1 − 𝑡) 𝑒1−𝑡 cos (1 − 𝑡)

⎞
⎟⎟⎟⎟⎠

Therefore the state transition function, after some simplification, is

Φ (𝑡, 𝜏) = Ψ (𝑡)Ψ−1 (𝜏)

=
⎛
⎜⎜⎜⎜⎝
𝑒2𝑡−2 cos (1 − 𝑡) 𝑒2𝑡−1 sin (1 − 𝑡)
−𝑒𝑡−2 sin (1 − 𝑡) 𝑒𝑡−1 cos (1 − 𝑡)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑒2−2𝜏 cos (1 − 𝜏) −𝑒2−𝜏 sin (1 − 𝜏)
𝑒1−2𝜏 sin (1 − 𝜏) 𝑒1−𝜏 cos (1 − 𝜏)

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
𝑒2(𝑡−𝜏) cos (𝑡 − 𝜏) −𝑒2𝑡−𝜏 sin (𝑡 − 𝜏)
𝑒𝑡−2𝜏 sin (𝑡 − 𝜏) 𝑒𝑡−𝜏 cos (𝑡 − 𝜏)

⎞
⎟⎟⎟⎟⎠

2.5.6 key solution

ECE 717 – Solution Set 5
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Barmish

ECE 717 – Solution Diagonalize

Let T be a matrix whose columns are eigenvectors of M1. We claim that its
columns are also eigenvectors of M2.If we establish this, it follows that M1

and M2 are simultaneously diagonalizable.

Indeed, suppose v is an eigenvector of M1 corresponding to eigenvalue λ.
Then we know that

M1v = λv.

Hence, to show that v is also an eigenvector of M2, we observe, using the
commutating property, that

M1[M2v] = M2M1v = λ[M2v].

This says that M2v is also an eigenvector of M1 corresponding to eigen-
value λ. Since all eigenvectors for λ are scalar multiples of each other, it
follows that

M2v = ρv

for some scalar ρ. The equality above implies that v is an eigenvector
of M2 corresponding to eigenvalue ρ .
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2.6 HW6

2.6.1 Questions

ECE 717 – Homework Set 6
Due Tuesday, November 18, 2014

;
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Barmish

ECE 717 – Homework Controllability

Show that the linear time-varying system described by

A(t) =

 2 −et

e−t 1


and

b(t) =

 0
1


is controllable at t0 = 0.

;

Barmish

ECE 717 – Homework P Transformation

Given a continuous LTV system Σ = (A(t), B(t)), let

z(t) = P (t)x(t)

where P (t) is a continuously differentiable square nonsingular matrix. De-
noting the resulting the z-system by Σ̃, establish the following result: Σ is
controllable at t0 if and only if Σ̃ is controllable at t0. HINT: Relate ΨΣ̃(t)
to ΨΣ(t) ΦΣ̃(t, τ) to ΨΣ(t, τ) and finally WΣ̃(t0, t1) to WΣ(t0, t1) .

;

Barmish

ECE 717 – Homework Solve

For the LTI state equation
ẋ = Ax

with A having distinct eigenvalues λ1, λ2, ..., λn, recall that the fundamen-
tal matrix solution

Ψ(t) = eAt

can be expanded as

eAt =
n∑

i=1
Y0ie

λit

(a) For n = 3, show that the following formula provides a closed form
solution for the Y0i:

Y0i =
n∏

j=1,j 6=i

A− λjI

λi − λj
.

(b) Use the result above to obtain eAt with

A = −1

2

 3 −1
−1 3

 .

;
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Barmish

ECE 717 – Homework Circuit

A two-loop RLC circuit with continuously differentiable time-varying re-
sistance R(t) and input voltage u(t) is described by the pair of state equa-
tions

ẋ1 = − x1

R(t)
− x2 +

u

R(t)
;

ẋ2 = x1

(a) Determine if this system is controllable at t0 > 0.

(b) Determine if this system is differentially controllable at t0 > 0.
;

Barmish

ECE 717 – Homework Control Effort

For the controllable LTI system Σ = (A, B) with all eigenvalues of A in the
strict left half plane, establish the following control effort property: Given
any initial condition x(0) = x0 and any β > 0, there exists a control u(t)
and a future time t1 > 0 such that

x(t1) = 0

and
||u(t)|| ≤ β

for all t ∈ [0, t1].
;

Barmish

ECE 717 – Homework Range

For the continuous LTV system

ẋ = A(t)x + B(t)u

with t0 ≤ t ≤ t1, prove that an initial state x(t0) = x0 can be steered to
zero at time t1 if and only if x0 is in the range of W (t0, t1). That is

x0 ∈ R(W (t0, t1)) = {W (t0, t1)x : x ∈ Rn}.

HINT: If a vector x0 is not in the range of W (t0, t1), from matrix algebra,
there exists a non-zero vector η such that

ηTx0 6= 0

and
ηTW (t0, t1) = 0.

;

2.6.2 Problem 1 Controllability

𝑛 = 2. Since 𝐴 (𝑡) , 𝑏 (𝑡) are 𝑛−1 or 1 time di�erentiable, we can obtain𝑀(𝑡) = �𝑀0 (𝑡) 𝑀1 (𝑡)�
and check that its rank is 𝑛 using the theorem that � is controllable at 𝑡0 if there exist
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𝑡 > 𝑡0 such that 𝜌 (𝑀 (𝑡)) = 𝑛.

𝑀0 (𝑡) =
⎡
⎢⎢⎢⎢⎣
0
1

⎤
⎥⎥⎥⎥⎦

𝑀1 (𝑡) = −𝐴 (𝑡)𝑀0 (𝑡) +
𝑑
𝑑𝑡
𝑀0 (𝑡)

= −
⎡
⎢⎢⎢⎢⎣
2 −𝑒𝑡

𝑒−𝑡 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
0
1

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
𝑒𝑡

−1

⎤
⎥⎥⎥⎥⎦

Hence

𝑀(𝑡) =
⎡
⎢⎢⎢⎢⎣
0 𝑒𝑡

1 −1

⎤
⎥⎥⎥⎥⎦

The determinant is Δ = −𝑒𝑡 which is not zero for any 𝑡 > 0. Hence 𝑀(𝑡) is not singular and
so has rank 2. Hence � is controllable at 𝑡 = 0. Note: This system is not stable.

2.6.3 Problem 2 P Transformation

𝑧 = 𝑃𝑥
𝑧′ = 𝑃′𝑥 + 𝑃𝑥′

Hence

𝑥′ = 𝑃−1 (𝑧′ − 𝑃′𝑥)

= 𝑃−1 �𝑧′ − 𝑃′𝑃−1𝑧�

Therefore, the state space 𝑥′ = 𝐴𝑥 + 𝐵𝑢 becomes

𝑃−1 �𝑧′ − 𝑃′𝑃−1𝑧� = 𝐴𝑃−1𝑧 + 𝐵𝑢
𝑧′ − 𝑃′𝑃−1𝑧 = 𝑃𝐴𝑃−1𝑧 + 𝑃𝐵𝑢

𝑧′ = 𝑃′𝑃−1𝑧 + 𝑃𝐴𝑃−1𝑧 + 𝑃𝐵𝑢

= �𝑃′𝑃−1 + 𝑃𝐴𝑃−1� 𝑧 + 𝑃𝐵𝑢

Therefore

�̃� = �𝑃′𝑃−1 + 𝑃𝐴𝑃−1�

And

�̃� (𝑡) = 𝑃 (𝑡) 𝐵 (𝑡)

Now the state equation solution for � is given by

𝑥 (𝑡) = Φ (𝑡, 0) 𝑥 (0) +
𝑡

�
0

Φ (𝑡, 𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

Applying the transformation to the above results in

𝑃−1 (𝑡) 𝑧 (𝑡) = Φ (𝑡, 0) 𝑃−1 (𝑡) 𝑧 (0) +
𝑡

�
0

Φ (𝑡, 𝜏) 𝑃−1 (𝜏) �̃�𝑢 (𝜏) 𝑑𝜏

𝑧 (𝑡) =
Φ̃(𝑡,0)

�����������������������𝑃 (𝑡)Φ (𝑡, 0) 𝑃−1 (𝑡)𝑧 (0) +
𝑡

�
0

Φ̃(𝑡,𝜏)

�������������������������𝑃 (𝑡)Φ (𝑡, 𝜏) 𝑃−1 (𝜏)�̃� (𝜏) 𝑢 (𝜏) 𝑑𝜏

𝑧 (𝑡) = Φ̃ (𝑡, 0) 𝑧 (0) +
𝑡

�
0

Φ̃ (𝑡, 𝜏) �̃� (𝜏) 𝑢 (𝜏) 𝑑𝜏

Hence

Φ̃ (𝑡, 𝜏) = 𝑃 (𝑡)Φ (𝑡, 𝜏) 𝑃−1 (𝜏)

Now that we found Φ̃ (𝑡, 𝜏) and �̃� (𝑡) , we are now ready to do the proof.

Theorem: (𝐴, 𝐵) is controllable at 𝑡0 i� ��̃�, �̃�� is controllable at 𝑡0.
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Necessity ⟹. We need to show: If (𝐴, 𝐵) is controllable at 𝑡0 then ��̃�, �̃�� is controllable at
𝑡0

Su�ciency ⟸. We need to show: If ��̃�, �̃�� is controllable at 𝑡0 then (𝐴, 𝐵) is controllable
at 𝑡0

Proof of Necessity: Given that (𝐴, 𝐵) is controllable at 𝑡0, show that ��̃�, �̃�� is controllable
at 𝑡0.

Since (𝐴, 𝐵) is controllable at 𝑡0, then the following controllability Gramian 𝑊(𝑡0, 𝑡) is not
singular

𝑊(𝑡0, 𝑡) =
𝑡

�
𝑡0

Φ(𝑡0, 𝜏)𝐵(𝜏)𝐵𝑇(𝜏)Φ𝑇(𝑡0, 𝜏)𝑑𝜏 (1)

We want to show the above implies that

�̃�(𝑡0, 𝑡) =
𝑡

�
𝑡0

Φ̃(𝑡0, 𝜏)�̃�(𝜏)�̃�𝑇(𝜏)Φ̃𝑇(𝑡0, 𝜏)𝑑𝜏 (2)

is also not singular.

Applying the transformations found to (2) gives

�̃� (𝑡0, 𝑡) =
𝑡

�
𝑡0

�𝑃 (𝑡) Φ (𝑡0, 𝜏) 𝑃−1 (𝜏)� [𝑃 (𝜏) 𝐵 (𝜏)] [𝑃 (𝜏) 𝐵 (𝜏)]
𝑇 �𝑃 (𝑡) Φ (𝑡0, 𝜏) 𝑃−1 (𝜏)�

𝑇
𝑑𝜏

=
𝑡

�
𝑡0

𝑃 (𝑡)Φ (𝑡0, 𝜏) 𝐵 (𝜏) 𝐵𝑇 (𝜏) 𝑃𝑇 (𝜏) �𝑃𝑇 (𝜏)�
−1
Φ𝑇 (𝑡0, 𝜏) 𝑃𝑇 (𝑡) 𝑑𝜏

Notice in the above we used �𝑃−1 (𝜏)�
𝑇
= �𝑃𝑇 (𝜏)�

−1
. Therefore the above simplifies to

�̃� (𝑡0, 𝑡) =
𝑡

�
𝑡0

𝑃 (𝑡)Φ (𝑡0, 𝜏) 𝐵 (𝜏) 𝐵𝑇 (𝜏)Φ𝑇 (𝑡0, 𝜏) 𝑃𝑇 (𝑡) 𝑑𝜏

= 𝑃 (𝑡)

⎛
⎜⎜⎜⎜⎜⎝

𝑡

�
𝑡0

Φ (𝑡0, 𝜏) 𝐵 (𝜏) 𝐵𝑇 (𝜏)Φ𝑇 (𝑡0, 𝜏) 𝑑𝜏

⎞
⎟⎟⎟⎟⎟⎠ 𝑃

𝑇 (𝑡)

= 𝑃 (𝑡)𝑊 (𝑡0, 𝑡) 𝑃𝑇 (𝑡)

Since 𝑊(𝑡0, 𝑡) is not singular, and 𝑃 (𝑡) is given as not singular, then 𝑃 (𝑡)𝑊 (𝑡0, 𝑡) 𝑃𝑇 (𝑡) is
not singular also and this implies �̃� (𝑡0, 𝑡) is not singular.

Proof of su�ciency: ⟸. We need to show: If ��̃�, �̃�� is controllable at 𝑡0 then (𝐴, 𝐵) is
controllable at 𝑡0. Since ��̃�, �̃�� is controllable at 𝑡0, then the controllability Gramian �̃� (𝑡0, 𝑡)
is not singular

�̃� (𝑡0, 𝑡) =
𝑡

�
𝑡0

Φ̃ (𝑡0, 𝜏) �̃� (𝜏) �̃�𝑇 (𝜏) Φ̃𝑇 (𝑡0, 𝜏) 𝑑𝜏 (3)

We want to show the above implies that

𝑊(𝑡0, 𝑡) =
𝑡

�
𝑡0

Φ (𝑡0, 𝜏) 𝐵 (𝜏) 𝐵𝑇 (𝜏)Φ𝑇 (𝑡0, 𝜏) 𝑑𝜏 (4)
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Applying the transformations to (4) gives

𝑊(𝑡0, 𝑡) =
𝑡

�
𝑡0

�𝑃−1 (𝑡) Φ̃ (𝑡0, 𝜏) 𝑃 (𝜏)� �𝑃−1 (𝜏) �̃� (𝜏)� �𝑃−1 (𝜏) �̃� (𝜏)�
𝑇
�𝑃−1 (𝑡) Φ̃ (𝑡0, 𝜏) 𝑃 (𝜏)�

𝑇
𝑑𝜏

=
𝑡

�
𝑡0

𝑃−1 (𝑡) Φ̃ (𝑡0, 𝜏) �̃� (𝜏) �̃�𝑇 (𝜏) 𝑃𝑇 (𝜏)
−1 �𝑃𝑇 (𝜏) �𝑃−1 (𝑡) Φ̃ (𝑡0, 𝜏)�

𝑇
� 𝑑𝜏

=
𝑡

�
𝑡0

𝑃−1 (𝑡) Φ̃ (𝑡0, 𝜏) �̃� (𝜏) �̃�𝑇 (𝜏) �𝑃−𝑇 (𝜏)�
−1
𝑃𝑇 (𝜏) Φ̃𝑇 (𝑡0, 𝜏) 𝑃−1 (𝑡)

𝑇 𝑑𝜏

=
𝑡

�
𝑡0

𝑃−1 (𝑡) Φ̃ (𝑡, 𝜏) �̃� (𝜏) �̃�𝑇 (𝜏) Φ̃𝑇 (𝑡, 𝜏) 𝑃−1 (𝑡)𝑇 𝑑𝜏

= 𝑃−1 (𝑡)

⎛
⎜⎜⎜⎜⎜⎝

𝑡

�
𝑡0

Φ̃ (𝑡0, 𝜏) �̃� (𝜏) �̃�𝑇 (𝜏) Φ̃𝑇 (𝑡0, 𝜏) 𝑑𝜏

⎞
⎟⎟⎟⎟⎟⎠ 𝑃

−1 (𝑡)𝑇

= 𝑃−1 (𝑡) �̃� (𝑡0, 𝑡) 𝑃−1 (𝑡)
𝑇

Similar to the same argument used for the Necessity, since �̃� (𝑡0, 𝑡) is not singular, and 𝑃 (𝑡)
is given as not singular, then 𝑃 (𝑡) �̃� (𝑡0, 𝑡) 𝑃𝑇 (𝑡) is not singular and this implies 𝑊(𝑡0, 𝑡) is
not singular.

2.6.4 Problem 3 Solve

Part (a)

𝑒𝐴𝑡 = 𝑌01𝑒𝜆1𝑡 + 𝑌02𝑒𝜆2𝑡 + 𝑌03𝑒𝜆3𝑡

Where

𝑌01 =
(𝐴 − 𝜆2𝐼) (𝐴 − 𝜆3𝐼)
(𝜆1 − 𝜆2) (𝜆1 − 𝜆3)

𝑌02 =
(𝐴 − 𝜆1𝐼) (𝐴 − 𝜆3𝐼)
(𝜆2 − 𝜆1) (𝜆2 − 𝜆3)

𝑌03 =
(𝐴 − 𝜆1𝐼) (𝐴 − 𝜆2𝐼)
(𝜆3 − 𝜆1) (𝜆3 − 𝜆2)

We know that 𝑒𝐴𝑡�
𝑡=0

= 𝐼 and 𝑑
𝑑𝑡𝑒

𝐴𝑡�
𝑡=0

= 𝐴 and 𝑑2

𝑑𝑡2 𝑒
𝐴𝑡�

𝑡=0
= 𝐴2. So now need to verify that

using the above expressions these remain satisfied.

𝑒𝐴𝑡�
𝑡=0

= 𝐼

𝑌01 + 𝑌02 + 𝑌03 =
(𝐴 − 𝜆2𝐼) (𝐴 − 𝜆3𝐼)
(𝜆1 − 𝜆2) (𝜆1 − 𝜆3)

+
(𝐴 − 𝜆1𝐼) (𝐴 − 𝜆3𝐼)
(𝜆2 − 𝜆1) (𝜆2 − 𝜆3)

+
(𝐴 − 𝜆1𝐼) (𝐴 − 𝜆2𝐼)
(𝜆3 − 𝜆1) (𝜆3 − 𝜆2)

Using common denominator (𝜆1 − 𝜆2) (𝜆1 − 𝜆3) (𝜆3 − 𝜆2) results in

𝑌01 + 𝑌02 + 𝑌03 =
(𝐴 − 𝜆2𝐼) (𝐴 − 𝜆3𝐼) (𝜆3 − 𝜆2) + (𝐴 − 𝜆1𝐼) (𝐴 − 𝜆3𝐼) (𝜆1 − 𝜆3) − (𝐴 − 𝜆1𝐼) (𝐴 − 𝜆2𝐼) (𝜆1 − 𝜆2)

(𝜆1 − 𝜆2) (𝜆1 − 𝜆3) (𝜆3 − 𝜆2)

=
�𝐴2 − 𝜆3𝐴 − 𝜆2𝐴 + 𝜆2𝜆3𝐼� (𝜆3 − 𝜆2) + �𝐴2 − 𝜆3𝐴 − 𝜆1𝐴 + 𝜆1𝜆3𝐼� (𝜆1 − 𝜆3) − �𝐴2 − 𝜆2𝐴 − 𝜆1𝐴 + 𝜆1𝜆2� (𝜆1 − 𝜆2𝐼)

(𝜆1 − 𝜆2) (𝜆1 − 𝜆3) (𝜆3 − 𝜆2)

Expanding the numerator and simplifying results in (𝜆1 − 𝜆2) (𝜆1 − 𝜆3) (𝜆3 − 𝜆2) 𝐼 , hence

𝑌01 + 𝑌02 + 𝑌03 =
(𝜆1 − 𝜆2) (𝜆1 − 𝜆3) (𝜆3 − 𝜆2) 𝐼
(𝜆1 − 𝜆2) (𝜆1 − 𝜆3) (𝜆3 − 𝜆2)

= 𝐼

Now we need to verify the second equation
𝑑
𝑑𝑡
𝑒𝐴𝑡�

𝑡=0
= 𝐴

𝑑
𝑑𝑡
�𝑌01𝑒𝜆1𝑡 + 𝑌02𝑒𝜆2𝑡 + 𝑌03𝑒𝜆3𝑡��

𝑡=0
= 𝜆1𝑌01 + 𝜆2𝑌02 + 𝜆3𝑌03
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But

𝜆1𝑌01 + 𝜆2𝑌02 + 𝜆3𝑌03 = 𝜆1
(𝐴 − 𝜆2𝐼) (𝐴 − 𝜆3𝐼)
(𝜆1 − 𝜆2) (𝜆1 − 𝜆3)

+ 𝜆2
(𝐴 − 𝜆1𝐼) (𝐴 − 𝜆3𝐼)
(𝜆2 − 𝜆1) (𝜆2 − 𝜆3)

+ 𝜆3
(𝐴 − 𝜆1𝐼) (𝐴 − 𝜆2𝐼)
(𝜆3 − 𝜆1) (𝜆3 − 𝜆2)

=
− (𝐴 − 𝜆1) (𝐴𝜆1 − 𝜆2𝜆3) + (𝐴 − 𝜆2) (𝐴 − 𝜆3) 𝜆1

(𝜆1 − 𝜆2) (𝜆1 − 𝜆3)

=
𝐴𝜆21 − 𝐴𝜆1𝜆2 − 𝐴𝜆1𝜆3 + 𝐴𝜆2𝜆3

𝜆21 − 𝜆1𝜆2 − 𝜆1𝜆3 + 𝜆2𝜆3

=
𝐴 �𝜆21 − 𝜆1𝜆2 − 𝜆1𝜆3 + 𝜆2𝜆3�
𝜆21 − 𝜆1𝜆2 − 𝜆1𝜆3 + 𝜆2𝜆3

= 𝐴

Now we need to verify the third equation

𝑑2

𝑑𝑡2
𝑒𝐴𝑡�

𝑡=0

= 𝐴2

𝑑2

𝑑𝑡2
�𝑌01𝑒𝜆1𝑡 + 𝑌02𝑒𝜆2𝑡 + 𝑌03𝑒𝜆3𝑡��

𝑡=0

= 𝜆21𝑌01 + 𝜆22𝑌02 + 𝜆23𝑌03

But

𝜆21𝑌01 + 𝜆22𝑌02 + 𝜆23𝑌03 = 𝜆21
(𝐴 − 𝜆2𝐼) (𝐴 − 𝜆3𝐼)
(𝜆1 − 𝜆2) (𝜆1 − 𝜆3)

+ 𝜆22
(𝐴 − 𝜆1𝐼) (𝐴 − 𝜆3𝐼)
(𝜆2 − 𝜆1) (𝜆2 − 𝜆3)

+ 𝜆23
(𝐴 − 𝜆1𝐼) (𝐴 − 𝜆2𝐼)
(𝜆3 − 𝜆1) (𝜆3 − 𝜆2)

=
− (𝐴 − 𝜆1) (𝐴𝜆1𝜆2 + (𝐴𝜆1 − (𝐴 + 𝜆1) 𝜆2) 𝜆3) + (𝐴 − 𝜆2) (𝐴 − 𝜆3) 𝜆21

(𝜆1 − 𝜆2) (𝜆1 − 𝜆3)

=
𝐴2 (𝜆1 − 𝜆2) (𝜆1 − 𝜆3)
(𝜆1 − 𝜆2) (𝜆1 − 𝜆3)

= 𝐴2

Verified for 𝑛 = 3 OK.

Part(b)

𝐴 = −
1
2

⎡
⎢⎢⎢⎢⎣
3 −1
−1 3

⎤
⎥⎥⎥⎥⎦

The eigenvalues are 𝜆1 = −1, 𝜆2 = −2. Hence

𝑒𝐴𝑡 = 𝑌01𝑒𝜆1𝑡 + 𝑌02𝑒𝜆2𝑡

Where

𝑌01 =
(𝐴 − 𝜆2𝐼)
(𝜆1 − 𝜆2)

=

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
−3
2

1
2

1
2

−3
2

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣
−2 0
0 −2

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

(−1 + 2)
=
⎡
⎢⎢⎢⎢⎣
1
2

1
2

1
2

1
2

⎤
⎥⎥⎥⎥⎦

𝑌02 =
(𝐴 − 𝜆1𝐼)
(𝜆2 − 𝜆1)

=

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
−3
2

1
2

1
2

−3
2

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣
−1 0
0 −1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

(−2 + 1)
=
⎡
⎢⎢⎢⎢⎣

1
2 −1

2
−1
2

1
2

⎤
⎥⎥⎥⎥⎦

Hence

𝑒𝐴𝑡 =
⎡
⎢⎢⎢⎢⎣
1
2

1
2

1
2

1
2

⎤
⎥⎥⎥⎥⎦ 𝑒

−𝑡 +
⎡
⎢⎢⎢⎢⎣

1
2 −1

2
−1
2

1
2

⎤
⎥⎥⎥⎥⎦ 𝑒

−2𝑡

=
⎡
⎢⎢⎢⎢⎣
1
2𝑒

−𝑡 �𝑒−𝑡 + 1� −1
2𝑒

−𝑡 �𝑒−𝑡 − 1�
−1
2𝑒

−𝑡 �𝑒−𝑡 − 1� 1
2𝑒

−𝑡 �𝑒−𝑡 + 1�

⎤
⎥⎥⎥⎥⎦
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2.6.5 Problem 4 Circuit

Part(a)

⎡
⎢⎢⎢⎢⎣
𝑥′1
𝑥′2

⎤
⎥⎥⎥⎥⎦ =

𝐴

���������������⎡
⎢⎢⎢⎢⎣
− 1
𝑅(𝑡) −1

1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎦ +

𝐵
�⎡⎢⎢⎢⎢⎣

1
𝑅(𝑡)
0

⎤
⎥⎥⎥⎥⎦𝑢 (𝑡)

Since 𝐴,𝐵 are continuously di�erentiable, we can use the short cut 𝑀 based method to
determine if (𝐴, 𝐵) is controllable at some instance of time and we do not need to compute
the controllability Gramian 𝑊. First we will find 𝑀

𝑀0 = 𝐵 (𝑡) =
⎡
⎢⎢⎢⎢⎣

1
𝑅(𝑡)
0

⎤
⎥⎥⎥⎥⎦

𝑀1 (𝑡) = −𝐴 (𝑡)𝑀0 (𝑡) +
𝑑
𝑑𝑡
𝑀0 (𝑡)

= −
⎡
⎢⎢⎢⎢⎣
− 1
𝑅(𝑡) −1

1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1
𝑅(𝑡)
0

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

−1
𝑅2(𝑡)
0

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1
𝑅2(𝑡)

− 1
𝑅(𝑡)

⎤
⎥⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣

1
𝑅2(𝑡)
0

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
0

− 1
𝑅(𝑡)

⎤
⎥⎥⎥⎥⎦

Hence

𝑀 =

⎡
⎢⎢⎢⎢⎢⎣

1
𝑅(𝑡) 0

0 − 1
𝑅(𝑡)

⎤
⎥⎥⎥⎥⎥⎦

The determinant of 𝑀 is

Δ =
−1
𝑅2 (𝑡)

The system is not controllable at 𝑡0 if the determinant is zero at that instance of time. But
for the determinant to become zero means that 𝑅 (𝑡) has to become∞. Therefore, assuming
𝑅 (𝑡) remain finite for all 𝑡 > 0 which is expected in a working physical system, then we
conclude the system is indeed controllable for any 𝑡0 > 0.

Part(b)

A system is di�erentially controllable at some time 𝑡0 if there exist 𝑢 (𝑡) which will steer
𝑥 (𝑡0) to 𝑥 (𝑡1) no matter how small 𝑡1−𝑡0 is. Clearly if the system is di�erentially controllable
at 𝑡0, then it is also controllable at 𝑡0 by making 𝑡1 − 𝑡0 as large as we want. The question
is asking to show the system is di�erentially controllable for 𝑡0 > 0.

This actually follows from the fact that 𝐴,𝐵 are analytic functions. By definition, analytic
functions over [0,∞] are linearly independent i� they are linearly independent over any
sub interval no matter how small the interval is. But I think we need to proof this using
calculus. Therefore an attempt to do so is given below:

Let 𝑡1 = 𝑡0 + 𝜀 where 𝜀 is the time increment we will make as small as we want. Since the
system is controllable at 𝑡0 then 𝑊(𝑡0, 𝑡0 + 𝜀) is nonsingular.

Now I will use the same result used in proofing controllability itself, which is to claim the
following 𝑢 (𝑡) will steer the system from 𝑥 (𝑡0) to 𝑥 (𝑡0 + 𝜀)

𝑢 (𝑡) = −𝐵𝑇 (𝑡) Φ𝑇 (𝑡0 + 𝜀, 𝑡)𝑊−1 (𝑡0, 𝑡0 + 𝜀) [Φ (𝑡0 + 𝜀, 𝑡0) 𝑥 (𝑡0) − 𝑥 (𝑡0 + 𝜀)]

To show that the above 𝑢 results in system moving to 𝑥 (𝑡0 + 𝜀) from 𝑥 (𝑡0), we substitute the
above 𝑢 into the state solution

Δ = Φ (𝑡0 + 𝜀, 𝑡0) 𝑥 (𝑡0) +
𝑡0+𝜀

�
𝑡0

Φ (𝑡0 + 𝜀, 𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

And this will result in Δ = 𝑥 (𝑡0 + 𝜀).
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Δ = Φ (𝑡0 + 𝜀, 𝑡0) 𝑥 (𝑡0) −
𝑡0+𝜀

�
𝑡0

Φ (𝑡0 + 𝜀, 𝜏) 𝐵 (𝜏)

𝑢(𝜏)

��������������������������������������������������������������������������������������������������−𝐵𝑇 (𝑡) Φ𝑇 (𝑡0 + 𝜀, 𝜏)𝑊−1 (𝑡0, 𝑡0 + 𝜀) [Φ (𝑡0 + 𝜀, 𝑡0) 𝑥 (𝑡0) − 𝑥 (𝑡0 + 𝜀)]� 𝑑𝜏

= Φ (𝑡0 + 𝜀, 𝑡0) 𝑥 (𝑡0) −

𝑊(𝑡0,𝑡0+𝜀)

���������������������������������������������������������������⎛
⎜⎜⎜⎜⎜⎝

𝑡0+𝜀

�
𝑡0

Φ (𝑡0 + 𝜀, 𝜏) 𝐵 (𝜏) 𝐵𝑇 (𝑡) Φ𝑇 (𝑡0 + 𝜀, 𝜏) 𝑑𝜏

⎞
⎟⎟⎟⎟⎟⎠𝑊

−1 (𝑡0, 𝑡0 + 𝜀) [Φ (𝑡0 + 𝜀, 𝑡0) 𝑥 (𝑡0) − 𝑥 (𝑡0 + 𝜀)]

= Φ (𝑡0 + 𝜀, 𝑡0) 𝑥 (𝑡0) −
𝐼

���������������������������������������𝑊 (𝑡0, 𝑡0 + 𝜀)𝑊−1 (𝑡0, 𝑡0 + 𝜀) [Φ (𝑡0 + 𝜀, 𝑡0) 𝑥 (𝑡0) − 𝑥 (𝑡0 + 𝜀)]

=�����������������������������������������������������Φ (𝑡0 + 𝜀, 𝑡0) 𝑥 (𝑡0) − Φ (𝑡0 + 𝜀, 𝑡0) 𝑥 (𝑡0) +𝑥 (𝑡0 + 𝜀)
= 𝑥 (𝑡0 + 𝜀)

The only requirement for the above proof was the condition that𝑊(𝑡0, 𝑡0 + 𝜀) is nonsingular
at 𝑡0 which was established in part(a).

I give another proof just in case the above is not acceptable. Consider

𝑊(𝑡0, 𝑡1) =
𝑡1

�
𝑡0

Φ (𝑡0, 𝜏) 𝐵 (𝜏) 𝐵𝑇 (𝜏)Φ𝑇 (𝑡0, 𝜏) 𝑑𝜏

We know the above is nonsingular since the system is controllable at 𝑡0 > 0 from part (a).
Using Φ (𝑡0, 𝜏) = Φ (𝑡0, 𝑡0 + 𝜀)Φ (𝑡0 + 𝜀, 𝜏) we can rewrite the above as

𝑊(𝑡0, 𝑡1) =
𝑡1

�
𝑡0

Φ (𝑡0, 𝑡0 + 𝜀)Φ (𝑡0 + 𝜀, 𝜏) 𝐵 (𝜏) 𝐵𝑇 (𝜏) (Φ (𝑡0, 𝑡0 + 𝜀)Φ (𝑡0 + 𝜀, 𝜏))
𝑇 𝑑𝜏

=
𝑡1

�
𝑡0

Φ (𝑡0, 𝑡0 + 𝜀)Φ (𝑡0 + 𝜀, 𝜏) 𝐵 (𝜏) 𝐵𝑇 (𝜏)Φ𝑇 (𝑡0 + 𝜀, 𝜏)Φ𝑇 (𝑡0, 𝑡0 + 𝜀) 𝑑𝜏

Now Φ (𝑡0, 𝑡0 + 𝜀) and Φ𝑇 (𝑡0, 𝑡0 + 𝜀) do not depend on 𝜏 and can be removed outside the
integral

𝑊(𝑡0, 𝑡) = Φ (𝑡0, 𝑡0 + 𝜀)

⎛
⎜⎜⎜⎜⎜⎝

𝑡1

�
𝑡0

Φ (𝑡0 + 𝜀, 𝜏) 𝐵 (𝜏) 𝐵𝑇 (𝜏)Φ𝑇 (𝑡0 + 𝜀, 𝜏) 𝑑𝜏

⎞
⎟⎟⎟⎟⎟⎠Φ

𝑇 (𝑡0, 𝑡0 + 𝜀)

The integral inside the controllability Gramian 𝑊(𝑡0 + 𝜀, 𝑡1), hence

𝑊(𝑡0, 𝑡) = Φ (𝑡0, 𝑡0 + 𝜀)𝑊 (𝑡0 + 𝜀, 𝑡) Φ𝑇 (𝑡0, 𝑡0 + 𝜀)

Therefore

𝑊(𝑡0 + 𝜀, 𝑡) = Φ−1 (𝑡0, 𝑡0 + 𝜀)𝑊 (𝑡0, 𝑡) Φ−𝑇 (𝑡0, 𝑡0 + 𝜀)

Since 𝑊(𝑡0, 𝑡) is nonsingular, and since Φ (𝑡0, 𝑡0 + 𝜀) is also nonsingular, then 𝑊(𝑡0 + 𝜀, 𝑡) is
also nonsingular for any 𝜀. Therefore the system is controllable at any time after 𝑡0 no
matter how small 𝜀 is.

2.6.6 Problem 5 Control e�ort

Future state is given by

𝑥 (𝑡1) = 𝑒𝐴(𝑡1)𝑥 (𝑡0) +
𝑡1

�
𝑡0

𝑒𝐴(𝑡1−𝜏)𝐵𝑢 (𝜏) 𝑑𝜏 (1)

Let 𝑀 be the controllability matrix, which we know is nonsingular since the system is
controllable. The following 𝑢 (𝑡) will bring the system from 𝑥 (𝑡0) to 𝑥 (𝑡1)

𝑢 (𝑡) = −𝐵𝑇 �𝑒𝐴(𝑡1−𝑡)�
𝑇
𝑀−1 �𝑒𝐴(𝑡1)𝑥 (𝑡0) − 𝑥 (𝑡1)�
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Substituting this in (1) shows that this is the case

𝑒𝐴(𝑡1)𝑥 (𝑡0) +
𝑡1

�
𝑡0

𝑒𝐴(𝑡1−𝜏)𝐵𝑢 (𝜏) 𝑑𝜏 = 𝑒𝐴(𝑡1)𝑥 (𝑡0) +
𝑡1

�
𝑡0

𝑒𝐴(𝑡1−𝜏)𝐵 �−𝐵𝑇 �𝑒𝐴(𝑡1−𝑡)�
𝑇
𝑀−1 �𝑒𝐴(𝑡1)𝑥 (𝑡0) − 𝑥 (𝑡1)�� 𝑑𝜏

= 𝑒𝐴(𝑡1)𝑥 (𝑡0) −

for LTI = 𝑀 matrix

���������������������������������������⎛
⎜⎜⎜⎜⎜⎝

𝑡1

�
𝑡0

𝑒𝐴(𝑡1−𝜏)𝐵𝐵𝑇 �𝑒𝐴(𝑡1−𝑡)�
𝑇
𝑑𝜏

⎞
⎟⎟⎟⎟⎟⎠𝑀

−1 �𝑒𝐴(𝑡1)𝑥 (𝑡0) − 𝑥 (𝑡1)�

= 𝑒𝐴(𝑡1)𝑥 (𝑡0) − 𝑀𝑀−1 �𝑒𝐴(𝑡1)𝑥 (𝑡0) − 𝑥 (𝑡1)�

= 𝑒𝐴(𝑡1)𝑥 (𝑡0) − 𝑒𝐴(𝑡1)𝑥 (𝑡0) + 𝑥 (𝑡1)
= 𝑥 (𝑡1)

Hence we know that 𝑢 (𝑡) = −𝐵𝑇 �𝑒𝐴(𝑡1−𝑡)�
𝑇
𝑀−1 �𝑒𝐴(𝑡1)𝑥 (𝑡0) − 𝑥 (𝑡1)� will steer the system from

𝑥 (𝑡0) to 𝑥 (𝑡1). Now if we set 𝑥 (𝑡1) = 0 as the goal state, then 𝑢 (𝑡) simplifies to

𝑢 (𝑡) = −𝐵𝑇 �𝑒𝐴(𝑡1−𝑡)�
𝑇
𝑀−1𝑒𝐴(𝑡1)𝑥 (𝑡0)

This control will steer the system from state 𝑥 (𝑡0) to state 0. Now we need to show that
‖𝑢 (𝑡)‖ ≤ 𝛽 for any given 𝛽 > 0. In the above 𝐵 and 𝑥 (𝑡0) are fixed and given and do not
change with time. The same for 𝑀. This is because this is an LTI system. The only e�ect
on the norm of 𝑢 (𝑡) comes from 𝑒𝐴(𝑡1−𝑡) matrix, since this is the only quantity in the above
that changes with time. Therefore, to reduce the norm of 𝑢 (𝑡) is means we can change 𝑡
where 𝑢 (𝑡) is applied such that the resulting 𝑒𝐴(𝑡1−𝑡) is such that ‖𝑢 (𝑡)‖ ≤ 𝛽. We might have
to make (𝑡1 − 𝑡) very small, but we can always do that in order to cause ‖𝑢 (𝑡)‖ ≤ 𝛽.

2.6.7 Problem 6 Range

Need to proof the following: 𝑥 (𝑡0) can be steered to 𝑥 (𝑡1) = 0 i� 𝑥 (𝑡0) is in range of𝑊(𝑡0, 𝑡1) .

Proof: The above is equivalent to proofing this: 𝑥 (𝑡0) can be steered to 𝑥 (𝑡1) = 0 i�
𝑊(𝑡0, 𝑡1) 𝑣 = 𝑥 (𝑡0) for �⃗� ≠ 0. But the ability to steer from 𝑥 (𝑡0) to 𝑥 (𝑡1) = 0 is the same
as saying the system is controllable at 𝑡0. Therefore, what we want to proof is the following

The system is controllable at 𝑡0 i� 𝑊(𝑡0, 𝑡1) 𝑣 = 𝑥 (𝑡0) for �⃗� ≠ 0

Since if the system is controllable, then by definition, we can find control 𝑢 (𝑡) to steer 𝑥 (𝑡0)
to 𝑥 (𝑡1) = 0. Now we will start by proofing the above.

Necessity: ⟹ If The system is controllable at 𝑡0 then 𝑊(𝑡0, 𝑡1) 𝑣 = 𝑥 (𝑡0) for �⃗� ≠ 0

su�cient: ⟸ If 𝑊(𝑡0, 𝑡1) 𝑣 = 𝑥 (𝑡0) for �⃗� ≠ 0 then the system is controllable at 𝑡0.

Proof of Necessity: Since the system is controllable at 𝑡0 then we can find 𝑢 (𝑡) such that

𝑥 (𝑡1) = 0 = Φ (𝑡1, 𝑡0) 𝑥 (𝑡0) +
𝑡1

�
𝑡0

Φ (𝑡1, 𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

Premultiply both sides by Φ (𝑡0, 𝑡1) then

0 =
𝐼

���������������������Φ (𝑡0, 𝑡1) Φ (𝑡1, 𝑡0) 𝑥 (𝑡0) +
𝑡1

�
𝑡0

Φ(𝑡0,𝜏)

���������������������Φ (𝑡0, 𝑡1) Φ (𝑡1, 𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

0 = 𝑥 (𝑡0) +
𝑡1

�
𝑡0

Φ (𝑡0, 𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏

−𝑥 (𝑡0) =
𝑡1

�
𝑡0

Φ (𝑡0, 𝜏) 𝐵 (𝜏) 𝑢 (𝜏) 𝑑𝜏 (1)

Let the control be 𝑢 (𝜏) = −𝐵𝑇 (𝜏)Φ𝑇 (𝑡0, 𝜏) �⃗� (𝑡) for some none zero �⃗� (𝑡) . Since 𝐵𝑇 (𝑡) has size
𝑚×𝑛 and Φ𝑇 (𝑡0, 𝑡) has size 𝑛×𝑛 then �⃗� (𝑡) will have size 𝑚×1. Substituting this control law
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into (1) gives

−𝑥 (𝑡0) =

⎛
⎜⎜⎜⎜⎜⎝−

𝑡1

�
𝑡0

Φ (𝑡0, 𝜏) 𝐵 (𝜏) 𝐵𝑇 (𝜏)Φ𝑇 (𝑡0, 𝜏) 𝑑𝜏

⎞
⎟⎟⎟⎟⎟⎠ �⃗� (𝑡)

where we moved 𝑣 outside the integral since it does not depend on 𝑡. But
𝑡1

�
𝑡0

Φ (𝑡0, 𝜏) 𝐵 (𝜏) 𝐵𝑇 (𝜏)Φ𝑇 (𝑡0, 𝜏) 𝑑𝜏 = 𝑊 (𝑡0, 𝑡1)

Hence the above becomes

𝑊(𝑡0, 𝑡1) �⃗� (𝑡) = �⃗� (𝑡0)

Therefore 𝑥 (𝑡0) is in the range of 𝑊(𝑡0, 𝑡1).

Proof of su�cient: ⟸ If 𝑊(𝑡0, 𝑡1) 𝑣 = 𝑥 (𝑡0) for �⃗� ≠ 0 then the system is controllable at 𝑡0.

Since 𝑊(𝑡0, 𝑡1) �⃗� (𝑡) = 𝑥 (𝑡0) then

𝑥 (𝑡0) = 𝑊 (𝑡0, 𝑡1) �⃗� (𝑡)

=

⎛
⎜⎜⎜⎜⎜⎝

𝑡1

�
𝑡0

Φ (𝑡0, 𝜏) 𝐵 (𝜏) 𝐵𝑇 (𝜏)Φ𝑇 (𝑡0, 𝜏) 𝑑𝜏

⎞
⎟⎟⎟⎟⎟⎠

=
𝑡1

�
𝑡0

Φ (𝑡0, 𝜏) 𝐵 (𝜏) 𝐵𝑇 (𝜏)Φ𝑇 (𝑡0, 𝜏) �⃗� (𝑡) 𝑑𝜏

Premultiply both sides by Φ (𝑡1, 𝑡)

Φ (𝑡1, 𝑡) 𝑥 (𝑡0) =
𝑡1

�
𝑡0

Φ (𝑡1, 𝑡) Φ (𝑡0, 𝜏) 𝐵 (𝜏) 𝐵𝑇 (𝜏)Φ𝑇 (𝑡0, 𝜏) �⃗� (𝑡) 𝑑𝜏

0 = −Φ (𝑡1, 𝑡) 𝑥 (𝑡0) +
𝑡1

�
𝑡0

Φ (𝑡1, 𝜏) 𝐵 (𝜏) 𝐵𝑇 (𝜏)Φ𝑇 (𝑡0, 𝜏) �⃗� (𝑡) 𝑑𝜏

Let 𝐵𝑇 (𝜏)Φ𝑇 (𝑡0, 𝜏) �⃗� (𝑡) = −𝑢 (𝑡), then the above can be written as

0 = −Φ (𝑡1, 𝑡) 𝑥 (𝑡0) −
𝑡1

�
𝑡0

Φ (𝑡1, 𝜏) 𝐵 (𝜏) 𝑢 (𝑡) 𝑑𝜏

Since 𝑥 (𝑡1) = 0 then the LHS above is 𝑥 (𝑡1) then

𝑥 (𝑡1) = Φ (𝑡1, 𝑡) 𝑥 (𝑡0) +
𝑡1

�
𝑡0

Φ (𝑡1, 𝜏) 𝐵 (𝜏) 𝑢 (𝑡) 𝑑𝜏

But the above means 𝑥 (𝑡0) is steered to 𝑥 (𝑡1) = 0. This completes the proof.

2.6.8 key solution

ECE 717 – Solution Set 6
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2.7 HW7

2.7.1 Questions

ECE 332 - Homework f6

Due Tlresday March 25,2OOO3

Problem l: Consicler a unity f-eedback conrrol system with interval plant

p ( s . o ) _  ,  
( 3 + p [ 0 . 1 ] ) s + ( l + p f - 0 . 5 , 0 . 2 5 ] )

l \ ' , \ Y / - s , + ( 3 + p 1 _ l , l ] ) s ] + ( 6 + p t _ l , l l ) s ] + �

(a) Verify that the system is stable when p = 9.

(b) Using Kharitonov's Theorem, f ind the largcst p > 0 such that the closed loop system
is s t i l l  s tab le;  ca l l  th is  va lue p = p, , , "^ ,  the robustness margin.

(c) Now instead of unity l 'eedback, a colnpcltsator H(s) = ] i ,  used. Determine if  the
:)

resu lt ing farn i ly ol '  polynornials is stable fclr p = 0.5 p,,,"^ with p,,, . ,^ from part (b).

Problem 2: A plant with transf'er f'unction

G(s) : r,* j#.,.r,

and uncertain parameters 12 { a 1 36 and I < b S 2 iS connecrterl in :r classical

unity feedback configuration. Find the largest value of the gairi K > 0. r:all it K,,,,,,,,

under which robust stabilitv of the closed loop is guaranteed. Note: Since there are onlv

two uncertain parameters, consider solving this problem via direct argument using the

Routh-Hurwitz criterion instead of Kharitonov's Theorem.

;

Problem 3: The interval olant

^ ,  \  s * I - r - p [ - 1 . 1 ]
v \ " r  -  

s 2  -  \ 2 .  p [ - t  t ] ) s - 3

with variable radius of uncertainty p ) 0 is compensated with controller

c l l

H1s; = l----:'  s - l

in a classical unity feedback configuration. Find the largest value of p. call rt p,,,u, uncler

which robust stabilitv of the closed loop is guaranteed. We call p,,,,,, t,he robristness

margin.

Problem 4: Suppose ps(s) and p1(s) are stable polynomiais with positir.'c cocfficients.

F o r 0 ( ) ( 1 d e f i n e

-  p > , :  ( 1  -  ) ) p n ( r )  +  ) p 1 ( s ) .

Given that p1(s) is stable at the endpoints ) : 0 and ) : 1, an engineer claims that p;(s)

will be stable fbr all intermediate values of ) as well. Do yolr agree with the eugitteer'/

Explain by proviclimg tr techrrical nrgunient sr.rplrurtirrg the' engirreer's pt-rint of vielv or

gerrerate a, ct-runterexarrrple showing that the clairl can be false.

;
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ECE 717 – Homework P Matrix

(a) For the linear time-invariant system with

A =



−2 4 −3 1

0 −5 2 −1

0 0 −1 2

0 0 0 −4


,

using Q = I, find the solution of the associated Lyapunov equation by
hand and give the associated V function in expanded form.

(b) Verify the solution obtained in (a) via Matlab.
;

ECE 717 – Homework Matrix Norm

(a) Find the matrix norm of

A =



0.95 0.48 0.45

0.23 0.89 0.01

0.60 0.76 0.82


,

by hand.

(b) Verify the solution obtained in (a) via Matlab.
;

ECE 717 – Homework Robustness Bound

For the linear time-invariant system described by

ẋ = (A + ∆A)x

with

A =



−1 2 1 3 7
0 −2 −1 5 −3
0 0 −3 4 0
0 0 0 −4 1
0 0 0 0 −5


,

determine a robustness bound on ||∆A|| under which this system is stable.
;

2.7.2 problem 1

Solution:

The plant is

𝑃 �𝑠, 𝜌� =
�3 + 𝜌 [0, 1]� 𝑠 + �1 + 𝜌 [−0.5, 0.25]�

𝑠4 + �3 + 𝜌 [−1, 1]� 𝑠3 + �6 + 𝜌 [−1, 1]� 𝑠2 + �3 + 𝜌 [−1, 0]� 𝑠 + �4 + 𝜌 [−0.5, 0.75]�
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Part(a)

When 𝜌 = 0

𝑃 (𝑠) =
3𝑠 + 1

𝑠4 + 3𝑠3 + 6𝑠2 + 3𝑠 + 4

First we find the closed loop transfer function. Using the following diagram

ps,Hs
-

+ YsUs Es
Interval based plantcompensator

𝐸 = 𝑈 − 𝑌
𝑌 = 𝐸𝐻𝑃

Replacing 𝐸 in second equation with 𝐸 from the first equation

𝑌 = (𝑈 − 𝑌)𝐻𝑃
= 𝑈𝐻𝑃 − 𝑌𝐻𝑃

Hence

𝑌 (1 + 𝐻𝑃) = 𝑈𝐻𝑃

The closed loop transfer function is 𝑌
𝑈 . From the above we obtain

𝑌
𝑈
= 𝐺𝑐𝑙 (𝑠) =

𝐻𝑃
1 + 𝐻𝑃

For unity feedback, 𝐻 = 1, the above reduces to

𝐺𝑐𝑙 (𝑠) =
𝑃 (𝑠)

1 + 𝑃 (𝑠)

This is stable if poles of 𝐺𝑐𝑙 (𝑠) are stable. This is the same as saying the zeros of denominator
of 𝐺𝑐𝑙 (𝑠) all have negative real parts. Writing 𝑃 (𝑠) = 𝑁(𝑠)

𝐷(𝑠) then

𝐺𝑐𝑙 (𝑠) =
𝑁(𝑠)
𝐷(𝑠)

1 + 𝑁(𝑠)
𝐷(𝑠)

=
𝑁 (𝑠)

𝐷 (𝑠) + 𝑁 (𝑠)
=

3𝑠 + 1
𝑠4 + 3𝑠3 + 6𝑠2 + 3𝑠 + 4 + 3𝑠 + 1

=
3𝑠 + 1

𝑠4 + 3𝑠3 + 6𝑠2 + 6𝑠 + 5

We now need to check stability of the denominator of 𝐺𝑐𝑙 (𝑠) given by 𝑠4 + 3𝑠3 + 6𝑠2 + 6𝑠 + 5.
Using Hurwitz matrix where 𝑠4 + 3𝑠3 + 6𝑠2 + 6𝑠 + 5 ≡ 𝑎4𝑠4 + 𝑎3𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0 gives

𝐻 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎1 𝑎3 0 0
𝑎0 𝑎2 𝑎4 0
0 𝑎1 𝑎3 0
0 𝑎0 𝑎2 𝑎4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 3 0 0
5 6 1 0
0 6 3 0
0 5 6 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence Δ1 = 6, Δ2 = 21, Δ3 = 27, Δ4 = 27. Since all Δ𝑖 > 0 then the

denominator polynomial of 𝐺𝑐𝑙 (𝑠) is stable

Hence closed loop system is stable. To verify, using the computer, the roots of 𝑠4 + 3𝑠3 +
6𝑠2 + 6𝑠 + 5 are {−0.296974, −0.296974, −1.20303, −1.20303}. Since they are all negative, this
verifies system is stable as well.
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Part(b)

Still using the unity compensator but now using the interval plant gives

𝐺𝑐𝑙 (𝑠) =
𝑃 (𝑠)

1 + 𝑃 (𝑠)
=

𝑁(𝑠)
𝐷(𝑠)

1 + 𝑁(𝑠)
𝐷(𝑠)

=
𝑁 (𝑠)

𝐷 (𝑠) + 𝑁 (𝑠)

=
�3 + 𝜌 [0, 1]� 𝑠 + �1 + 𝜌 [−0.5, 0.25]�

𝑠4 + �3 + 𝜌 [−1, 1]� 𝑠3 + �6 + 𝜌 [−1, 1]� 𝑠2 + �3 + 𝜌 [−1, 0]� 𝑠 + �4 + 𝜌 [−0.5, 0.75]� + �3 + 𝜌 [0, 1]� 𝑠 + �1 + 𝜌 [−0.5, 0.25]�

The denominator polynomial from above is

Δ (𝑠) = 𝑠4 + �3 + 𝜌 [−1, 1]� 𝑠3 + �6 + 𝜌 [−1, 1]� 𝑠2 + �6 + 𝜌 [−1, 0] + 𝜌 [0, 1]� 𝑠 + �5 + 𝜌 [−0.5, 0.75] + 𝜌 [−0.5, 0.25]�
(1)

But3

�6 + 𝜌 [−1, 0] + 𝜌 [0, 1]� 𝑠 = �6 + 𝜌 [−1, 1]� 𝑠

And

�5 + 𝜌 [−0.5, 0.75] + 𝜌 [−0.5, 0.25]� = �5 + 𝜌 [−1, 1]�

Therefore (1) becomes

Δ (𝑠) = 𝑠4 + �3 + 𝜌 [−1, 1]� 𝑠3 + �6 + 𝜌 [−1, 1]� 𝑠2 + �6 + 𝜌 [−1, 1]� 𝑠 + �5 + 𝜌 [−1, 1]�

The above is the polynomial to examine for finding the maximum 𝜌. Notice when 𝜌 = 0
we obtain 𝑠4 + 3𝑠3 + 6𝑠2 + 6𝑠 + 5 as in part(a) which is stable. Note that if the nominal
polynomial is not stable, then there will be no point in checking for robust stability. The
four Kharitonov polynomials are from the above are

𝐾1 = �5 − 𝜌� + �6 − 𝜌� 𝑠 + �6 + 𝜌� 𝑠2 + �3 + 𝜌� 𝑠3 + 𝑠4

𝐾2 = �5 + 𝜌� + �6 + 𝜌� 𝑠 + �6 − 𝜌� 𝑠2 + �3 − 𝜌� 𝑠3 + 𝑠4

𝐾3 = �5 + 𝜌� + �6 − 𝜌� 𝑠 + �6 − 𝜌� 𝑠2 + �3 + 𝜌� 𝑠3 + 𝑠4

𝐾4 = �5 − 𝜌� + �6 + 𝜌� 𝑠 + �6 + 𝜌� 𝑠2 + �3 − 𝜌� 𝑠3 + 𝑠4

We want to find the maximum 𝜌 such that the four polynomials above are still stable. We
setup the Hurwitz matrix for each and determine the condition on 𝜌 needed. For 𝐾1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎1 𝑎3 0 0
𝑎0 𝑎2 𝑎4 0
0 𝑎1 𝑎3 0
0 𝑎0 𝑎2 𝑎4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�6 − 𝜌� �3 + 𝜌� 0 0
�5 − 𝜌� �6 + 𝜌� 1 0
0 �6 − 𝜌� �3 + 𝜌� 0
0 �5 − 𝜌� �6 + 𝜌� 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence Δ1 = �6 − 𝜌� > 0 which means 𝜌 < 6. And Δ2 = 21 − 2𝜌 > 0 hence 𝜌 < 10.5 and
Δ3 = 27 + 27𝜌 − 3𝜌2 > 0. Hence −0.9083 < 𝜌 < 9.908. Δ4 is the same as Δ3 hence no new
information is obtained from it. Therefore, from 𝐾1 we find the following

�𝜌 < 6, 𝜌 < 10.5, −0.9083 < 𝜌 < 9.908�

For 𝐾2
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�6 + 𝜌� �3 − 𝜌� 0 0
�5 + 𝜌� �6 − 𝜌� 1 0
0 �6 + 𝜌� �3 − 𝜌� 0
0 �5 + 𝜌� �6 − 𝜌� 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence Δ1 = �6 + 𝜌� > 0 which means 𝜌 > −6. And Δ2 = 21 + 2𝜌 > 0 hence 𝜌 > −10.5 and
Δ3 = 27 − 27𝜌 − 3𝜌2 > 0. Hence −9.908 < 𝜌 < 0.908. Δ4 is the same as Δ3 hence no new
information is obtained from it. Therefore, from 𝐾2 we find the following

�𝜌 > −6, 𝜌 > −10.5, −9.908 < 𝜌 < 0.908�

3Using properties of interval arithmetic [𝑎, 𝑏] + [𝑐, 𝑑] = [𝑎 + 𝑐, 𝑏 + 𝑑] and [𝑎, 𝑏] − [𝑐, 𝑑] = [𝑎 − 𝑑, 𝑏 − 𝑐]
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For 𝐾3
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�6 − 𝜌� �3 + 𝜌� 0 0
�5 + 𝜌� �6 − 𝜌� 1 0
0 �6 − 𝜌� �3 + 𝜌� 0
0 �5 + 𝜌� �6 − 𝜌� 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence Δ1 = �6 − 𝜌� > 0 which means 𝜌 < 6. And Δ2 = 21 − 20𝜌 > 0 hence 𝜌 < 1.05 and
Δ3 = 27 − 27𝜌 − 21𝜌2 > 0. Hence −1.936 < 𝜌 < 0.66059. Δ4 is the same as Δ3 hence no new
information is obtained from it. Therefore, from 𝐾3 we find the following

�𝜌 < 6, 𝜌 < 1.05, −1.936 < 𝜌 < 0.66059�

For 𝐾4
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�6 + 𝜌� �3 − 𝜌� 0 0
�5 − 𝜌� �6 + 𝜌� 1 0
0 �6 + 𝜌� �3 − 𝜌� 0
0 �5 − 𝜌� �6 + 𝜌� 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence Δ1 = �6 + 𝜌� > 0 which means 𝜌 > −6. And Δ2 = 21 + 20𝜌 > 0 hence 𝜌 > −1.05 and
Δ3 = 27 + 27𝜌 − 21𝜌2 > 0. Hence −0.66059 < 𝜌 < 1.956. Δ4 is the same as Δ3 hence no new
information is obtained from it. Therefore, from 𝐾4 we find the following

�𝜌 > −6., 𝜌 > −1.05, −0.66059 < 𝜌 < 1.956�

We now have found all the range for 𝜌 from each polynomial. We put them together in
order to determine the largest 𝜌 allowed

𝐾1 ⇒ �𝜌 < 6, 𝜌 < 10.5, −0.9083 < 𝜌 < 9.908�

𝐾2 ⇒ �𝜌 > −6, 𝜌 > −10.5, −9.908 < 𝜌 < 0.908�

𝐾3 ⇒ �𝜌 < 6, 𝜌 < 1.05, −1.936 < 𝜌 < 0.66059�

𝐾4 ⇒ �𝜌 > −6., 𝜌 > −1.05, −0.66059 < 𝜌 < 1.956�

We see that the largest allowed positive 𝜌 is

𝜌max = 0.66

Part(c)

Using

𝜌 =
1
2
𝜌max =

1
2
(0.908) = 0.454

The plant becomes

𝑝 (𝑠) =
(3 + 0.454 [0, 1]) 𝑠 + (1 + 0.454 [−0.5, 0.25])

𝑠4 + (3 + 0.454 [−1, 1]) 𝑠3 + (6 + 0.454 [−1, 1]) 𝑠2 + (3 + 0.454 [−1, 0]) 𝑠 + (4 + 0.454 [−0.5, 0.75])

=
(3 + [0, 0.454]) 𝑠 + (1 + [−0.5 (0.454) , 0.25 (0.454)])

𝑠4 + (3 + [−0.454, 0.454]) 𝑠3 + (6 + [−0.454, 0.454]) 𝑠2 + (3 + [−0.454, 0]) 𝑠 + (4 + [−0.5 (0.454) , 0.75 (0.454)])

=
(3 + [0, 0.454]) 𝑠 + (1 + [−0.227, 0.1135])

𝑠4 + (3 + [−0.454, 0.454]) 𝑠3 + (6 + [−0.454, 0.454]) 𝑠2 + (3 + [−0.454, 0]) 𝑠 + (4 + [−0.227, 0.3405])

But 𝑎 + [𝑏, 𝑐] = [𝑎 + 𝑏, 𝑎 + 𝑐], hence we can simplify the above to

𝑝 (𝑠) =
[3, 3.454] 𝑠 + [0.773, 1.1135]

𝑠4 + [2.546, 3.454] 𝑠3 + [5.546, 6.454] 𝑠2 + [2.546, 3] 𝑠 + [3.773, 4.3405]
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Now the compensator is no longer unity but 𝐻 (𝑠) = 1
𝑠 . Hence the closed loop transfer

function is

𝐺𝑐𝑙 (𝑠) =
𝐻 (𝑠) 𝑃 (𝑠)

1 + 𝐻 (𝑠) 𝑃 (𝑠)

=
𝑝 (𝑠)𝐻 (𝑠)

1 + �1𝑠 � �
[3,3.454]𝑠+[0.773,1.1135]

𝑠4+[2.546,3.454]𝑠3+[5.546,6.454]𝑠2+[2.546,3]𝑠+[3.773,4.3405]
�

=
𝑝 (𝑠)𝐻 (𝑠)

1 + � [3,3.454]𝑠+[0.773,1.1135]
𝑠5+[2.546,3.454]𝑠4+[5.546,6.454]𝑠3+[2.546,3]𝑠2+[3.773,4.3405]𝑠

�

=
[3, 3.454] 𝑠 + [0.773, 1.1135]

𝑠5 + [2.546, 3.454] 𝑠4 + [5.546, 6.454] 𝑠3 + [2.546, 3] 𝑠2 + [3.773, 4.3405] 𝑠 + [3, 3.454] 𝑠 + [0.773, 1.1135]
But [3.773, 4.3405] 𝑠 + [3, 3.454] 𝑠 = [6.773, 7.7945] 𝑠, and the above becomes

𝐺𝑐𝑙 (𝑠) =
[3, 3.454] 𝑠 + [0.773, 1.1135]

𝑠5 + [2.546, 3.454] 𝑠4 + [5.546, 6.454] 𝑠3 + [2.546, 3] 𝑠2 + [6.773, 7.7945] 𝑠 + [0.773, 1.1135]
The system is stable if the zeros of the denominator of 𝐺𝑐𝑙 (𝑠) are stable. The interval
polynomial to check for robust stability is

𝑠5 + [2.546, 3.454] 𝑠4 + [5.546, 6.454] 𝑠3 + [2.546, 3] 𝑠2 + [6.773, 7.7945] 𝑠 + [0.773, 1.1135]

The four Kharitonov polynomials from the above is

𝐾1 = 0.773 + 6.773𝑠 + 3𝑠2 + 6.454𝑠3 + 2.546𝑠4 + 𝑠5

𝐾2 = 1.1135 + 7.7945𝑠 + 2.546𝑠2 + 5.546𝑠3 + 3.454𝑠4 + 𝑠5

𝐾3 = 1.1135 + 6.773𝑠 + 2.546𝑠2 + 6.454𝑠3 + 3.454𝑠4 + 𝑠5

𝐾4 = 0.773 + 7.7945𝑠 + 3𝑠2 + 5.546𝑠3 + 2.546𝑠4 + 𝑠5

Finding the real part of the roots of each polynomial gives

𝐾1 = {−1.29, −1.29, −0.119, 0.0806, 0.0806}
𝐾2 = {−1.92, −1.92, −0.148, 0.270, 0.270}
𝐾3 = {−1.83, −1.83, −0.171, 0.186, 0.186}
𝐾4 = {−1.42, −1.42, −0.102, 0.199, 0.199}

Since some roots have positive real parts, the polynomials are not stable .

2.7.3 problem 2

𝐺 (𝑠) = 𝑘
3𝑠 + 1

𝑠4 + 𝑠3 + 𝑎𝑠2 + 𝑠 + 𝑏
Where 12 ≤ 𝑎 ≤ 36, 1 ≤ 𝑏 ≤ 2. The closed loop transfer function for unity feedback is

𝐺𝑐𝑙 (𝑠) =
𝐺 (𝑠)

1 + 𝐺 (𝑠)

=
𝑘 3𝑠+1
𝑠4+𝑠3+𝑎𝑠2+𝑠+𝑏

1 + 𝑘 3𝑠+1
𝑠4+𝑠3+𝑎𝑠2+𝑠+𝑏

=
𝑘 (3𝑠 + 1)

�𝑠4 + 𝑠3 + 𝑎𝑠2 + 𝑠 + 𝑏� + 𝑘 (3𝑠 + 1)

=
𝑘 (3𝑠 + 1)

𝑠4 + 𝑠3 + 𝑎𝑠2 + 𝑠 (1 + 3𝑘) + (𝑏 + 𝑘)
We need to find the largest 𝑘 such that the zeros of 𝑠4 + 𝑠3 + 𝑎𝑠2 + 𝑠 (1 + 3𝑘) + (𝑏 + 𝑘) remain
stable. Writing this using uncertainties

Δ = 𝑠4 + 𝑠3 + [12, 36] 𝑠2 + 𝑠 (1 + 3𝑘) + ([1, 2] + 𝑘)
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The four Kharitonov polynomials are

𝐾1 = (𝑘 + 1) + (1 + 3𝑘) 𝑠 + 36𝑠2 + 𝑠3 + 𝑠4

𝐾2 = (𝑘 + 2) + (1 + 3𝑘) 𝑠 + 12𝑠2 + 𝑠3 + 𝑠4

𝐾3 = (𝑘 + 2) + (1 + 3𝑘) 𝑠 + 12𝑠2 + 𝑠3 + 𝑠4

𝐾4 = (𝑘 + 1) + (1 + 3𝑘) 𝑠 + 36𝑠2 + 𝑠3 + 𝑠4

We want to find the maximum 𝑘 such that the four polynomials above are stable. We setup
the Hurwitz matrix for each and determine the condition on 𝑘 needed. For 𝐾1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎1 𝑎3 0 0
𝑎0 𝑎2 𝑎4 0
0 𝑎1 𝑎3 0
0 𝑎0 𝑎2 𝑎4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 + 3𝑘) 1 0 0
1 + 𝑘 36 1 0
0 (1 + 3𝑘) 1 0
0 1 + 𝑘 36 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence Δ1 = 1 + 3𝑘 > 0 which means 𝑘 > −1
3 . And Δ2 = 107𝑘 + 35 > 0 hence 𝑘 >

−35
107 = −0.3271

and Δ3 = −9𝑘2 + 101𝑘 + 34 > 0. Hence −0.3271 < 𝑘 < 11.5493. Δ4 is the same as Δ3 hence no
new information is obtained from it. Therefore, from 𝐾1 we find the following

{𝑘 > −0.333, 𝑘 > −0.3271, −0.3271 < 𝑘 < 11.5493}

Looking at 𝐾2
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 + 3𝑘) 1 0 0
2 + 𝑘 12 1 0
0 (1 + 3𝑘) 1 0
0 2 + 𝑘 12 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence Δ1 = 1 + 3𝑘 > 0 which means 𝑘 > −1
3 . And Δ2 = 35𝑘 + 10 > 0 hence 𝑘 > −0.285714 and

Δ3 = −9𝑘2 + 29𝑘 + 9 > 0. Hence −0.285 < 𝑘 < 3.50734. Δ4 is the same as Δ3 hence no new
information is obtained from it. Therefore, from 𝐾2 we find the following

{𝑘 > −0.333, 𝑘 > −0.285714, −0.285 < 𝑘 < 3.50734}

Looking at 𝐾3
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 + 3𝑘) 1 0 0
2 + 𝑘 12 1 0
0 (1 + 3𝑘) 1 0
0 2 + 𝑘 12 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This is the same as 𝐾2.Finally, looking at 𝐾4
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 + 3𝑘) 1 0 0
2 + 𝑘 12 1 0
0 (1 + 3𝑘) 1 0
0 2 + 𝑘 12 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This is the same as 𝐾1.We now have found all the range for 𝑘 from each polynomial. We
put them together in order to determine the largest 𝑘 allowed

𝐾1 ⇒ {𝑘 > −0.333, 𝑘 > −0.3271, −0.3271 < 𝑘 < 11.5493}
𝐾2 ⇒ {𝑘 > −0.333, 𝑘 > −0.285714, −0.285 < 𝑘 < 3.50734}

We see the range of positive 𝑘 values for robust stability is 0 < 𝑘 < 3.50734. Therefore

𝑘max = 3.50734

2.7.4 problem 3

𝐺 (𝑠) =
𝑠 + 1 + 𝜌 [−1, 1]

𝑠2 + �2 + 𝜌 [−1, 1]� 𝑠 + 3

𝐻 (𝑠) =
𝑠 + 1
𝑠 − 1
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The closed loop transfer function is

𝐺𝑐𝑙 (𝑠) =
𝐻 (𝑠) 𝐺 (𝑠)

1 + 𝐻 (𝑠) 𝐺 (𝑠)

=
𝐻 (𝑠) 𝐺 (𝑠)

1 + � 𝑠+1𝑠−1
� �

𝑠+1+𝜌[−1,1]
𝑠2+�2+𝜌[−1,1]�𝑠+3�

The denominator of the 𝐺𝑐𝑙 (𝑠) becomes

Δ = (𝑠 − 1) �𝑠2 + �2 + 𝜌 [−1, 1]� 𝑠 + 3� + (𝑠 + 1) �𝑠 + 1 + 𝜌 [−1, 1]�

= �𝑠3 + �2 + 𝜌 [−1, 1]� 𝑠2 + 3𝑠� − �𝑠2 + �2 + 𝜌 [−1, 1]� 𝑠 + 3� + �𝑠2 + 𝑠 + 𝜌 [−1, 1] 𝑠� + �𝑠 + 1 + 𝜌 [−1, 1]�

= 𝑠3 + �2 + 𝜌 [−1, 1]� 𝑠2 + 3𝑠 − 𝑠2 − �2 + 𝜌 [−1, 1]� 𝑠 − 3 + 𝑠2 + 𝑠 + 𝜌 [−1, 1] 𝑠 + 𝑠 + 1 + 𝜌 [−1, 1]

= 𝑠3 + �2 + 𝜌 [−1, 1]� 𝑠2 + 3𝑠 − 𝜌 [−1, 1] 𝑠 + 𝜌 [−1, 1] 𝑠 − 2 + 𝜌 [−1, 1]

But 𝜌 [−1, 1] 𝑠 − 𝜌 [−1, 1] 𝑠 = 𝜌 [−2, 2] 𝑠, hence

Δ = 𝑠3 + 𝑠2 �2 + 𝜌 [−1, 1]� + 𝑠 �3 + 𝜌 [−2, 2] 𝑠� − 2 + 𝜌 [−1, 1]

We need to first check that the nominal polynomial is stable before checking for robust
stability. When 𝜌 = 0 the denominator becomes

Δ = 𝑠3 + 2𝑠2 + 3𝑠 − 2

Since there is a sign change, then the nominal polynomial is not stable. This means the
closed loop is not stable. Therefore no need to do robust stability. There is no 𝜌max.

2.7.5 problem 4

𝑝𝜆 = (1 − 𝜆) 𝑝0 (𝑠) + 𝜆𝑝1 (𝑠)

For 0 ≤ 𝜆 ≤ 1. We are given that

𝑝𝜆=0 = 𝑝0 (𝑠)

is stable and

𝑝𝜆=1 = 𝑝1 (𝑠)

is stable. In other-words, 𝑝0 (𝑠) , 𝑝1 (𝑠) are both stable polynomials. For any value of 0 < 𝜆 < 1
we then have a sum of two stable polynomials, each being multiplied by a constant.

𝑝𝜆 (𝑠) = (1 − 𝜆) 𝑝0 (𝑠) + 𝜆𝑝1 (𝑠) (1)

Let the zeros of 𝑝0 be 𝑟𝑖, 𝑖 = 1⋯𝑛 where 𝑛 is the order of 𝑝0 (𝑠) and let the zeros of 𝑝1 (𝑠) be
𝑧𝑗, 𝑗 = 1⋯𝑚 where 𝑚 is the order of 𝑝1 (𝑠). Using the fundamental theorem of algebra, we
can write

𝑝0 (𝑠) = (𝑠 − 𝑟1) (𝑠 − 𝑟2)⋯ (𝑠 − 𝑟𝑛)
𝑝1 (𝑠) = (𝑠 − 𝑧1) (𝑠 − 𝑧2)⋯ (𝑠 − 𝑧𝑚)

Equation (1) becomes

𝑝𝜆 (𝑠) = (1 − 𝜆) (𝑠 − 𝑟1) (𝑠 − 𝑟2)⋯ (𝑠 − 𝑟𝑛) + 𝜆 (𝑠 − 𝑧1) (𝑠 − 𝑧2)⋯ (𝑠 − 𝑧𝑚) (2)

Now we will proof that 𝑝𝜆 (𝑠) can only have negative zeros. Proof is by contradiction. Assume
that 𝑝𝜆 (𝑠) have a positive root, say 𝜉 > 0, then this root when substituted in (2) will result
in zero by definition

𝑝𝜆 (𝜉) =
Δ1

���������������������������������������������(1 − 𝜆) (𝜉 − 𝑟1) (𝜉 − 𝑟2)⋯ (𝜉 − 𝑟𝑛) +
Δ2

���������������������������������������𝜆 (𝜉 − 𝑧1) (𝜉 − 𝑧2)⋯ (𝜉 − 𝑧𝑚) (3)

Each term (𝜉 − 𝑟𝑖) is therefore positive quantity, since each 𝑟𝑖 is negative since 𝑝0 (𝑠) is stable.
We also have (1 − 𝜆) > 0. Therefore the product shown as Δ1 in (3) it a positive quantity.

Similarly, each term �𝜉 − 𝑧𝑗� is positive quantity, since each 𝑧𝑗 is negative since 𝑝1 (𝑠) is stable.
We also have 𝜆 > 0. Therefore the product shown as Δ2 in (3) it a positive quantity.

This shows that (3) is the sum of two positive quantities. Hence the sum can not be zero.
This contradicts our assumptions 𝑝𝜆 (𝜉) = 0 due to assuming 𝜉 > 0. Therefore zeros of 𝑝𝜆 (𝑠)
can not be positive.

Similarly, we show that 𝜉 = 0 is also not possible root of 𝑝𝜆(𝑠). Assume 𝜉 = 0 is a root, then
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this leads to contradiction as above, since we will have positive quantities added to zero,
which is not possible.

Therefore, the only possible choice left is for all zeros of 𝑝𝜆(𝑠) to be negative.

Hence 𝑝𝜆 (𝑠) is be stable for any 0 < 𝜆 < 1. Therefore the engineer was correct. QED.

2.7.6 problem 5

The Lyapunov equation is

𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0 0
4 −5 0 0
−3 2 −1 0
1 −1 2 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑝11 𝑝12 𝑝13 𝑝14
𝑝12 𝑝22 𝑝23 𝑝24
𝑝13 𝑝23 𝑝33 𝑝34
𝑝14 𝑝24 𝑝34 𝑝44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑝11 𝑝12 𝑝13 𝑝14
𝑝12 𝑝22 𝑝23 𝑝24
𝑝13 𝑝23 𝑝33 𝑝34
𝑝14 𝑝24 𝑝34 𝑝44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 4 −3 1
0 −5 2 −1
0 0 −1 2
0 0 0 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4𝑝11 4𝑝11 − 7𝑝12 2𝑝12 − 3𝑝11 − 3𝑝13 𝑝11 − 𝑝12 + 2𝑝13 − 6𝑝14
4𝑝11 − 7𝑝12 8𝑝12 − 10𝑝22 4𝑝13 − 3𝑝12 + 2𝑝22 − 6𝑝23 𝑝12 − 𝑝22 + 4𝑝14 + 2𝑝23 − 9𝑝24

2𝑝12 − 3𝑝11 − 3𝑝13 4𝑝13 − 3𝑝12 + 2𝑝22 − 6𝑝23 4𝑝23 − 6𝑝13 − 2𝑝33 𝑝13 − 3𝑝14 − 𝑝23 + 2𝑝24 + 2𝑝33 − 5𝑝34
𝑝11 − 𝑝12 + 2𝑝13 − 6𝑝14 𝑝12 − 𝑝22 + 4𝑝14 + 2𝑝23 − 9𝑝24 𝑝13 − 3𝑝14 − 𝑝23 + 2𝑝24 + 2𝑝33 − 5𝑝34 2𝑝14 − 2𝑝24 + 4𝑝34 − 8𝑝44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.1)

There are 10 unknowns. They are 𝑝11, 𝑝12, 𝑝13, 𝑝14, 𝑝22, 𝑝23, 𝑝24, 𝑝33, 𝑝34. The 10 equations to
solve are from the upper triangle above

−4𝑝11 = −1 (1)

4𝑝11 − 7𝑝12 = 0 (2)

2𝑝12 − 3𝑝11 − 3𝑝13 = 0 (3)

𝑝11 − 𝑝12 + 2𝑝13 − 6𝑝14 = 0 (4)

8𝑝12 − 10𝑝22 = −1 (5)

4𝑝13 − 3𝑝12 + 2𝑝22 − 6𝑝23 = 0 (6)

𝑝12 − 𝑝22 + 4𝑝14 + 2𝑝23 − 9𝑝24 = 0 (7)

4𝑝23 − 6𝑝13 − 2𝑝33 = −1 (8)

𝑝13 − 3𝑝14 − 𝑝23 + 2𝑝24 + 2𝑝33 − 5𝑝34 = 0 (9)

2𝑝14 − 2𝑝24 + 4𝑝34 − 8𝑝44 = −1 (10)

From (1) 𝑝11 =
1
4 , substituting in (2) gives 𝑝12 =

4
7
�1
4
� = 1

7 , substituting these in (3) gives

3𝑝13 = 2𝑝12 − 3𝑝11 or 𝑝13 =
2𝑝12−3𝑝11

3 =
2� 17 �−3�

1
4 �

3 = −13
84 . Substituting these in (4) gives 6𝑝14 =

𝑝11 − 𝑝12 + 2𝑝13 or 𝑝14 =
𝑝11−𝑝12+2𝑝13

6 =
1
4−

1
7−2�

13
84 �

6 = − 17
504 .

From (5) we find 8𝑝12 = 10𝑝22−1 hence 𝑝22 =
8𝑝12+1
10 =

8� 17 �+1

10 = 3
14 . From (6) 4𝑝13−3𝑝12+2𝑝22 =

6𝑝23. hence 𝑝23 =
4𝑝13−3𝑝12+2𝑝22

6 =
4�− 13

84 �−3�
1
7 �+2�

3
14 �

6 = − 13
126 . From (7) 𝑝12−𝑝22+4𝑝14+2𝑝23 = 9𝑝24,

hence 𝑝24 =
𝑝12−𝑝22+4𝑝14+2𝑝23

9 =
1
7−

3
14+4�−

17
504 �+2�−

13
126 �

9 = − 26
567 . And from (8), 4𝑝23−6𝑝13−2𝑝33 = −1,

hence 𝑝33 =
4𝑝23−6𝑝13+1

2 =
4�− 13

126 �−6�−
13
84 �+1

2 = 191
252 . From (9), 𝑝13 − 3𝑝14 − 𝑝23 + 2𝑝24 + 2𝑝33 = 5𝑝34,

hence 𝑝34 =
𝑝13−3𝑝14−𝑝23+2𝑝24+2𝑝33

5 =
− 13
84−3�−

17
504 �−�−

13
126 �+2�−

26
567 �+2�

191
252 �

5 = 191
648 , and finally from (10)

2𝑝14 − 2𝑝24 + 4𝑝34 = 8𝑝44 − 1, hence 𝑝44 =
2𝑝14−2𝑝24+4𝑝34+1

8 =
2�− 17

504 �−2�−
26
567 �+4�

191
648 �+1

8 = 4997
18144 .

Therefore the solution is
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𝑃 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑝11 𝑝12 𝑝13 𝑝14
𝑝12 𝑝22 𝑝23 𝑝24
𝑝13 𝑝23 𝑝33 𝑝34
𝑝14 𝑝24 𝑝34 𝑝44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4

1
7 −13

84 − 17
504

1
7

3
14 − 13

126 − 26
567

−13
84 − 13

126
191
252

191
648

− 17
504 − 26

567
191
648

4997
18144

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.25 0.14286 −0.15476 −0.03373
0.14286 0.21429 −0.10317 −4.5855 × 10−2

−0.15476 −0.10317 0.75794 0.29475
−0.03373 −4.5855 × 10−2 0.29475 0.27541

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The associated 𝑉 (𝑥 (𝑡)) function is

𝑉 (𝑥 (𝑡)) = 𝑋𝑇𝑃𝑋

= �𝑥1 𝑥2 𝑥3 𝑥4�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4

1
7 −13

84 − 17
504

1
7

3
14 − 13

126 − 26
567

−13
84 − 13

126
191
252

191
648

− 17
504 − 26

567
191
648

4997
18144

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1
4
𝑥21 +

2
7
𝑥1𝑥2 −

13
42
𝑥1𝑥3 −

17
252

𝑥1𝑥4 +
3
14
𝑥22 −

13
63
𝑥2𝑥3 −

52
567

𝑥2𝑥4 +
191
252

𝑥23 +
191
324

𝑥3𝑥4 +
4997
18144

𝑥24
or

𝑉 (𝑥 (𝑡)) = 0.25𝑥21+0.286𝑥1𝑥2−0.309𝑥1𝑥3−0.067𝑥1𝑥4+0.214𝑥22−0.206𝑥2𝑥3−0.091𝑥2𝑥4+0.758𝑥23+0.589𝑥3𝑥4+0.275𝑥24

Part(b)

Verification using Matlab

EDU>> A=[-2 4 -3 1;0 -5 2 -1;0 0 -1 2;0 0 0 -4]

-2 4 -3 1
0 -5 2 -1
0 0 -1 2
0 0 0 -4

EDU>> syms x1 x2 x3 x4;
EDU>> P=lyap(A',eye(4))

0.25 0.14286 -0.15476 -0.03373
0.14286 0.21429 -0.10317 -0.045855

-0.15476 -0.10317 0.75794 0.29475
-0.03373 -0.045855 0.29475 0.27541

EDU>> x=[x1;x2;x3;x4];
EDU>> V=x.'*P*x;
EDU>> vpa(expand(V),3)

0.25*x1^2 + 0.286*x1*x2 - 0.31*x1*x3 - 0.0675*x1*x4 + 0.214*x2^2
- 0.206*x2*x3 - 0.0917*x2*x4 + 0.758*x3^2 + 0.59*x3*x4 + 0.275*x4^2

2.7.7 problem 6

Part (a)

Assuming the problem is asking for the 2-norm. This is defined as positive square root
of the largest eigenvalue of 𝐴𝐴𝑇. Therefore, we first find 𝐴𝐴𝑇, then find the eigenvalues,
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then pick the largest one in absolute terms, then take the square root.

𝐴𝐴𝑇 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.95 0.48 0.45
0.23 0.89 0.01
0.6 0.76 0.82

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.95 0.23 0.6
0.48 0.89 0.76
0.45 0.01 0.82

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.3354 0.6502 1.3038
0.6502 0.8451 0.8226
1.3038 0.8226 1.61

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now we find the eigenvalues.

𝑝 (𝜆) = �𝜆𝐼 − 𝐴𝐴𝑇� =
�

�

𝜆 − 1.3354 −0.6502 −1.3038
−0.6502 𝜆 − 0.8451 −0.8226
−1.3038 −0.8226 𝜆 − 1.61

�

�

= 𝜆3 − 3.7905𝜆2 + 1.8398𝜆 − 0.1908

The roots of this polynomials are 𝜆 = 0.14584, 𝜆 = 0.40366, 𝜆 = 3.241. Hence the largest
eigenvalue is 𝜆 = 3.241. Therefore the 2-norm is

√3.241 = 1.8003

Part(b)

EDU>> A=[0.95 0.48 0.45;0.23 0.89 0.01;0.6 0.76 0.82];
EDU>> norm(A,2)
ans =

1.8003

2.7.8 problem 7

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 2 1 3 7
0 −2 −1 5 −3
0 0 −3 4 0
0 0 0 −4 1
0 0 0 0 −5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The robustness bound is given by ‖Δ𝐴‖2 defined as

‖Δ𝐴‖2 =
𝜆min [𝑄]
2𝜆max [𝑃]

We first need to solve the Lyapunov equation to find 𝑃.

𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄

Using Matlab, and use 𝑄 = 𝐼5 gives the solution 𝑃
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EDU>> A=[-1 2 1 3 7;0 -2 -1 5 -3;0 0 -3 4 0;0 0 0 -4 1;0 0 0 0 -5]

A =

-1 2 1 3 7
0 -2 -1 5 -3
0 0 -3 4 0
0 0 0 -4 1
0 0 0 0 -5

EDU>> P=lyap(A',eye(5))

P =

0.5 0.33333 0.041667 0.66667 0.52778
0.33333 0.58333 -0.033333 0.85278 0.35595

0.041667 -0.033333 0.19167 0.076984 0.08006
0.66667 0.85278 0.076984 1.768 0.83996
0.52778 0.35595 0.08006 0.83996 0.79331

Now we find the largest eigenvalue of 𝑃

EDU>> eig(P)

0.073178
0.10973
0.21435
0.45009
2.9889

EDU>> max(ans)
2.9889

Therefore

‖Δ𝐴‖2 =
1

2 (2.9889)
= 0.16729
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2.7.9 key solution
Homework Set f6 Solutions

l - (a)  Wi th P = 0.  we get

3 s + l
T F =

s t + 3 s r + 6 s r + 6 s + 5

which rs  sr rb lc .  Thc l ' i rs t  cOluntn t ) l ' thc Routh-Hurwi tz  tab le is  I l  3  42.25 5) ' .

l - (b)  F i rs t  gencr i t tc  the l 'out 'Khar i tonov polynor l ia ls

p , ( s )  =  s r  + ( 3 + p ) s r  + ( 6 + p ) s t  + ( 6 - p ) s  + ( 5 - p )

p . ( s )  =  s '  + ( 3 + p ) s '  + ( 6 - p ) s '  + ( 6 - p ) s + ( 5 + p )

p , ( s )  =  s '  +  (3  -  f ) ) s r  +  ( ( r  +  p . ) s r  +  ( ( r  +  p )s  +  (5  -  t l )

p . , ( s )  =  s '  +  ( 3  -  [ ) ) s ' 1 ( 6  -  P ) s '  +  ( 6  +  p ) s  +  ( - 5  +  p )

Now using Routh-HLrrwitz, lbr each of '  the above polynomials, compute the

maximum vit lue of p tbr the polynomial is stable.

RoLr th - l l u rw i t z  t ab l c  l o l '  p , ( s )

s '  I  6+p 5-p

st 3+p (r-p

s '  1 2  +  l o p  +  p r  5 - P

3 + f t

s '  3 ( t ) + 9 P - P t )

l 2 + l 0 p + p r

s"  5-p

I;r'onr the table above we gct p < 9.908 .
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Routh-Hurwi tz  tab le fbr  p . (s)

s' I (r-p -5+p

st  3+p 6-p

s t  l 2  +  4p  -  f r r  5+p

3 + 1 t

s '  3( -c)  + 9P + 7Pr )
- 1 2 - 4 p + p '

s"  5+p

Frclm the table above we get p < 0.66 .

RoLr th - l l L r lw i t z  t ab le  l o r  p , ( s )

s' I  6+p 5-p

st  3-p 6+p

s t  - 1 2 + 4 p + p r -  . 5 - p

f ) - 3

s '  3 ( -9  -  9p  +  7p r  )
- 1 2 . + 4 p + p l

s" -5-f l

Fnrm thc tatr lc abovc wc gct 1l < 1.94(r .

RoLrth-HLrrwitz. table l i tr  p,,(s)

s* I 6-p -5+p

st 3-f l  (r+p

st  *  12 + lop -  pr  -5+p

f ) - 3

s '  3(c)  -  t ) t ,  -  o : ,
l 2 - l 0 p + p r

s"  5+p

From the table above we get p < 0.908 .

Therefclrc, we get p,,, . , ,  = 0.66 .
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l - (c)  Now. wr th the compensator

l 'unction:

we get the f 'ol lowing closed-loop transf 'er
I

H ( s ) =  -
:)

. , . u_  (3+p l0 . l l ) s+ ( l+p [  . 0 ' 5 ' 0 ' 251 )
r r -  i  

r . l + r - , l - l . t l ) s ' + ( 6 + p l - l . l l ) s ' + ( i + p l - t . 0 1 ) s r + ( 7 + p l - 0 . 5 , 1 . 7 5 1 ) s + ( l + p l - 0 . 5 , 0 . 2 5 1 )

And now. rr.y trt  = 0 and tcst [ 'or stabil i ty and we f ind that the system rs unstable for

o = 0.  Thc l ' i rs rco lumn o l ' the l louth-Hurwrtz  tab le is  I l  3  5 - l  11.67 l ] ' .  Therefore

the system witt not be stable for any value larger than P = 0 and we need not go any

l'urther.

2. using Nlason's Rule we cornpute closed loop transfer functtort

Y(s ) 3 s * 1

+ ( 3 o - b - 9 ) > 0 .

1?(.t) 
:

with corresponrling Routh array having first column

[ 1  1 .  a - 3 ( 1 { + 1 )
3 a ( K + 1 ) - 9 ( A  r t ) ' - h - t t Ii + b)'.

Hcnce. for stabilitv, we require a - 3K

a - 3 ( K + 1 )

- 3 > 0 , K + b > 0 a n d

- g K 2 + ( 3 r l - 1 9 ) K

Tlris learls t,oK < f, X > -b and

(3a -  19)  -  r lQ"-  1O;z + 36(3a,  -  b-  9)
< I i <

1 8

admissible values of c a'tt<l b, l,lrtr

18

Nol,ing that we need these inequalities to hold for all

conclitions above force 1{ < 3 and

( r . r 2 - l e )  + @ - D
f < .  r  2 .86

[n conclusit-rn, to meet all restrictions, we take K*or: 2.86.

Problem 2

G(s) =
K(3s + 1)

s4 + s3 + as2 + s + b

where a ∈ [12, 36] and b ∈ [1, 2].

The closed-loop transfer function (with unity feedback) can be written as:

Y (s)

R(s)
=

K(3s + 1)

s4 + s3 + as2 + (1 + 3K)s + (K + b)
.

The first column of the Routh array is[
1 1 (a− 1− 3K) [(a− 1− b) + (3a− 7)K − 9K2] (K + b)

]′
.

For stability we require:

K <
a− 1

3
, K > −b,

and

1

18

[
(3a− 7)−

√
9a2 − 6a− 36b + 13

]
< K <

1

18

[
(3a− 7) +

√
9a2 − 6a− 36b + 13

]
Plugging in our extremum values for a and b and the above conditions, we find

Kmax = 3.5073

1



272

3. Consicler

G(s) :*iffi#.s
with uncertaintv lqr l  {  p,  lqzl  (  p ancl control ler H(s):  (s+ 1)/( ,s -  1).  This lc:acls.  l r1,

I\In,sorr, t'o ckrsecl loop polvnornial given b.y

p ( s , q )  :  ( s +  1 ) ( s +  1 + q r ) +  ( s -  1 ) ( ( " ' + ( 2 + q z ) . s *  3 )

:  s 3 + ( 2  + q z ) s 2 + ( 3 +  q t - r t z ) s * q t _ � 2

Notice tlbovc tlta,t even an infinitesimally snall valuc of p ) 0, this pol.vuonriill hrls ir,

tt' negtr,tive coefficient. Noting that the Routh criteriorr ti,lways fails if tfie lrelynourial

r:otrffit:ierrts are rtot of the same sign, there is no value of p> 0 for whi<:h rolrrrsl sl,abilily

is n,ssrrrerl. Hcnce, there is rro pmar or one might equally well srw p,r,,,, : 0.

4. Thc tttrgineer is wrong. It is possible to ha,ve a polvnonrial whi<rh is st,a,lrlc frrr ) - 0

trttd ): 1 but ttnsttrble for sonte intermedia,te va,lnes 0 < ) ( 1. To ilhrslra,t,c how lhis

t:a.tr occttr, lct,

rar(s) : lo.srJ + s2 + 6s + 0.57

a,ttd

pr(s)  :  1os3 + 2s2 +8s + 1.57

Then. wit,h p1(s) : (1 - ))po(r)+ )p1(.s) it is a simplv matter, using ll,out,h Hrrrwit,z. to

verifv t,hat p6(s) is stable, p1(s) is stable but with ):0.5 the polynonria,l

p.r(s) :  (1 - ))p6(s) + )pr(s) : 10s3 * 1.5s2 -tTs -r I .0T

is rrnsttrble.
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2.8 special problem

2.8.1 special problem

ECE 717 – Special Problem

Consider the uncertain LTI state-space system

ẋ = A(q)x

where ε > 0 is a VERY small parameter,

A(q) =


0 1 0
0 0 1

−(.5 + ε+ 3q1 + 3q2 + 2q1q2) −(1 + q1 + q2) −(1 + q1 + q2)


and q ∈ Q is described by the known bounds

0 ≤ qi ≤ 1; i = 1, 2.

(a) Carry out a robust stability analysis with respect to 0 < ε < 0.1. For
each such ε which you consider in this range, declare whether the result-
ing family of polynomials, call it Pε is robustly stable. For those ε when
robust stability fails, provide a characterization of both the stable and
unstable subsets of Q. Describe how these two sets evolve with respect
to ε. Given the low order of this system, you should include a theoretical
analysis which supports any numerical computations which you perform.

(b) Instead of considering robust stability, suppose we view q as a ran-
dom variable which is uniformly distributed over Q. Generate a plot of
the probability of stability, call it pε, versus ε over the range of interest.
Can obtain a formula for pε be given? Explain.

Part(a)

The first step is to obtain the matrix 𝐴(𝑞) characteristic polynomial

𝐴�𝑞� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1

− �0.5 + 𝜀 + 3𝑞1 + 3𝑞2 + 2𝑞1𝑞2� − �1 + 𝑞1 + 𝑞2� − �1 + 𝑞1 + 𝑞2�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore

𝑝 �𝑠, 𝑞� = �𝑠𝐼 − 𝐴 �𝑞��

=
�

�

𝑠 −1 0
0 𝑠 −1

�0.5 + 𝜀 + 3𝑞1 + 3𝑞2 + 2𝑞1𝑞2� �1 + 𝑞1 + 𝑞2� 𝑠 + �1 + 𝑞1 + 𝑞2�

�

�

= �𝜀 + 3𝑞1 + 3𝑞2 + 2𝑞1𝑞2 +
1
2�
+ �1 + 𝑞1 + 𝑞2� 𝑠 + �1 + 𝑞1 + 𝑞2� 𝑠2 + 𝑠3

= 𝑎0 �𝑞� + 𝑎1 �𝑞� 𝑠 + 𝑎2 �𝑞� 𝑠2 + 𝑎3 �𝑞� 𝑠3

Checking for robust stability

The method of polynomial over-bounding was tried first, but it was inconclusive. The
attempt is included in the appendix. A graphical method was then tried based on the
zero exclusion principle using set value of polytope of polynomials, but that also was
inconclusive as the polygon seen crossing the zero as the frequency increased. The result
of this attempt is described in the appendix.
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Analysis using Hurwitz matrix Using 𝑃 (𝑠) = �𝜀 + 3𝑞1 + 3𝑞2 + 2𝑞1𝑞2 +
1
2
�+𝑠 �1 + 𝑞1 + 𝑞2�+

𝑠2 �1 + 𝑞1 + 𝑞2� + 𝑠3 with 0 ≤ 𝑞1 ≤ 1, 0 ≤ 𝑞2 ≤ 1. We setup the Hurwitz matrix for the above
polynomial to find the conditions under which it is stable.

𝐻 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + 𝑞1 + 𝑞2 1 0
0.5 + 𝜀 + 3𝑞1 + 3𝑞2 + 2𝑞1𝑞2 1 + 𝑞1 + 𝑞2 0

0 1 + 𝑞1 + 𝑞2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The leading minors are

Δ1 = 1 + 𝑞1 + 𝑞2
Δ2 = 0.5 − 𝜀 − 𝑞1 + 𝑞21 − 𝑞2 + 𝑞22
Δ3 = Δ2

Hence we only need to examine two cases. For Δ1 = 1 + 𝑞1 + 𝑞2, we see this is positive for
all 𝑞, since 0 ≤ 𝑞𝑖 ≤ 1.

For Δ2 = 0.5 − 𝜀 − 𝑞1 + 𝑞21 − 𝑞2 + 𝑞22 we need to determine the conditions which makes this
positive.

0.5 − 𝜀 − 𝑞1 + 𝑞21 − 𝑞2 + 𝑞22 > 0

In other words, the minimum of Δ2 should be positive to insure stability. This is global
minimization with constrain problem. However, an algebraic reduce method was used
instead to obtain the limits on 𝑞1, 𝑞2 for each di�erent 𝜀𝑖 where 𝜀𝑖 was incremented by 0.005
from 0 to 0.1

There are 20 increments, and for each 𝜀𝑖 an algebraic conditions was found on using the
computer on 𝑞1, 𝑞2 which insures that Δ2 > 0. The result is tabulated below. In addition,
3D plot of Δ2 is given, using 𝑞1, 𝑞2 as 𝑥, 𝑦 and using the value of Δ2 as the z-axis. This gives
a visual view of the Δ2 showing that it is indeed positive all the time using the constraints
found on 𝑞𝑖 for some specific 𝜀 used. A typical 3D for some 𝜀 is shown below for illustration

The above shows that for 𝜀 = 0.005, Δ2 > 0, and hence the system is stable under the
conditions 0 ≤ 𝑞1 ≤ 0.4294, 0 ≤ 𝑞2 ≤ 1.
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Figure 2.1: conditions on 𝑞1 and 𝑞2 for each 𝜀 used for the visualization that follows

Visualization of the solution space for positive Δ2

Robust stability depends on positive Δ2. In the above, we obtained conditions on 𝜀, 𝑞1, 𝑞2
which when met, will insure Δ2 > 0 and hence a stable polynomial. To visualize the solution
in 3D, where we will use 𝑞1, 𝑞2, 𝜀 as the three axis, and use two colors: green to indicate the
region where Δ2 > 0 and red color for the remaining region where Δ2 ≤ 0. Therefore, the
space is a 3D cube enclosed in 1, 1, 𝜀. Using the above inequalities, the 3D plots are made.



Figure 2.2: points which results in stable polynomial are green, otherwise they are red

Another 3D plot was made, using di�erent 3D plot, called the surface plot, to help visualize
the regions in di�erent way. (some parts of the cube are not fully shown due to limited
sampling used in producing the data).
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q1
q2

Green region 
indicates 
stability

Red region is 
unstable. This is 
where the second 
leading minor is 
negative

Figure 2.3: Surface around region of stable points is colored green, otherwise red

We see from the above, that stability emerges for the region enclosed by 0 ≤ 𝑞1 ≤ 0.5 and
0 ≤ 𝑞2 ≤ 1 for low values of 𝜀 and for the region 0 ≤ 𝑞1 ≤ 0.2 and 0 ≤ 𝑞2 ≤ 1 for the large
values of 𝜀. The small 𝜀 is, and the smaller 𝑞1 is, the larger the stability region becomes.

Theoretical support for the numerical computation

Attempts were first made to obtain answer using zero exclusion condition. But both at-
tempts resulted in inclusive result, as the polygon crosses the zero point. Algebraic re-
duction was used to obtain the constraints on solving for conditions on 𝑞1, 𝑞2 for making
Δ2 = 0.5 − 𝜀 − 𝑞1 + 𝑞21 − 𝑞2 + 𝑞22 positive as 𝜀 was incremented by small amount as shown
above. Writing Δ2 as

Δ2 = 0.5 − 𝜀 −

𝐴

������������𝑞1 + 𝑞2� +

𝐵

������������𝑞21 + 𝑞22�

Since each 0 ≤ 𝑞𝑖 ≤ 1 then 𝑞2𝑖 < 𝑞𝑖. This means that the smaller the 𝑞𝑖 becomes then 𝐴 will
dominate over 𝐵 more in size but they are both small, and hence Δ2 is positive .

When both 𝑞 are around mid point of their range, for example 𝑞𝑖 =
1
2 , then −𝐴 + 𝐵 = −

1
2

and the result is Δ2 = −𝜀, hence not stable.

As the 𝑞𝑖 becomes larger than 1
2 then 𝐴 does not dominate over 𝐵 as much, but they are

both larger now and the di�erence between 𝐴,𝐵 becomes smaller again as when they were
both below 1

2 , which means now Δ2 becomes larger, hence stable.

Here is a small table showing this variation. The above implies that the critical condition
is where both 𝑞𝑖 are close to each other in value. As they get closer to 0.5 then 𝜀 has to
become smaller in order to keep Δ2 positive.
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Solving as constraint minimization problem Another attempt at theoretical support
for the numerical computation, is to view this as constraint minimization problem, where
we want to find the minimum of Δ2 subject to constrain 0 ≤ 𝑞1 ≤ 1, 0 ≤ 𝑞2 ≤ 1 and 0 < 𝜀 < 0.1,
then the method of Lagrangian multipliers can be used.

Let the objective function be 𝑄 = Δ2 = 0.5 − 𝜀 − 𝑞1 + 𝑞21 − 𝑞2 + 𝑞22 subject to 0 ≤ 𝑞1 ≤ 1, 0 ≤ 𝑞2 ≤
1, 0 < 𝜀 < 0.1. Hence the Lagrangian 𝐿 is

𝐿 = 𝑄 + 𝜆1 �1 − 𝑞1� + 𝜆2 �1 − 𝑞2� + 𝜆3 (0.1 − 𝜀) + 𝜆4𝑞1 + 𝜆5𝑞2 + 𝜆6𝜀

= 0.5 − 𝜀 − 𝑞1 + 𝑞21 − 𝑞2 + 𝑞22 + 𝜆1 �1 − 𝑞1� + 𝜆2 �1 − 𝑞2� + 𝜆3 (0.1 − 𝜀) + 𝜆4𝑞1 + 𝜆5𝑞2 + 𝜆6𝜀

Therefore
𝜕𝐿
𝜕𝑞1

= −1 + 2𝑞1 − 𝜆1 + 𝜆4 = 0

𝜕𝐿
𝜕𝑞2

= −1 + 2𝑞2 − 𝜆2 + 𝜆5 = 0

𝜕𝐿
𝜕𝜀

= −1 − 𝜆3 + 𝜆6 = 0

𝜕𝐿
𝜕𝜆1

= 1 − 𝑞1 = 0

𝜕𝐿
𝜕𝜆2

= 1 − 𝑞2 = 0

𝜕𝐿
𝜕𝜆3

= 0.1 − 𝜀 = 0

𝜕𝐿
𝜕𝜆4

= 𝑞1 = 0

𝜕𝐿
𝜕𝜆5

= 𝑞2 = 0

𝜕𝐿
𝜕𝜆6

= 𝜀 = 0
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And ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 −1 0 0 1 0 0
0 2 0 0 −1 0 0 1 0
0 0 0 0 0 −1 0 0 1
−1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑞1
𝑞2
𝜀
𝜆1
𝜆2
𝜆3
𝜆4
𝜆5
𝜆6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
−1
−1
−0.1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solving the above 𝐴𝑥 = 𝑏 system using least squares gave the solution as 𝑞1 = 0.5, 𝑞2 =
0.5, 𝜀 = 0.05, which is where the minimum is. Using the solution we can find Δ2 at these
values

Δ2 = −0.05

The above Lagrangian multiplier method to find the minimumwas implemented in separate
program allowing one to change the limits of 𝜀 and 𝑞1, 𝑞2 to see where the minimum shows
up for each di�erent combination. Here are few screen shots showing di�erent results. This
method was used to verify the numerical 3D based plots shown above by verifying the
stable points are where they are shown in the 3D plots.

Part(b)

Plotting 𝑃𝜀 We now treat 𝑞1, 𝑞2 as random variables. Stability is still decided by

Δ2 = 0.5 − 𝜀 − 𝑞1 + 𝑞21 − 𝑞2 + 𝑞22
If we call Δ2 as the random variable 𝑍 which is now function of random variables 𝑞1, 𝑞2
renamed to be 𝑋,𝑌 and are drawn from uniform distribution, then we can write

𝑍 = 0.5 − 𝜀 − 𝑋 + 𝑋2 − 𝑌 + 𝑌2

Then

Pr (𝑧1 ≤ 𝑍 ≤ 𝑧2) =
𝑧1

�
𝑧1

𝑓𝑍 (𝑧) 𝑑𝑧

or

Pr (𝑍 ≤ 𝑧) = 𝐹𝑍 (𝑧) =
𝑧

�
−∞

𝑓𝑍 (𝑧) 𝑑𝑧

Where 𝐹𝑍 (𝑧) is the cumulative distribution function. To find Pr (𝑍 > 0) then

Pr (𝑍 > 0) =
∞

�
0

𝑓𝑍 (𝑧) 𝑑𝑧
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𝜀 is fixed each time before finding 𝑓𝑧 (𝑧). Hence for each 𝜀 there will be a di�erent 𝑓𝑍 (𝑧)
which we then use to find Pr (𝑍 > 0) for robust stability, since Pr (𝑍 > 0) is the same as
asking what is the probability that Δ2 > 0 for a given 𝜀.

𝑃𝜀 was drawn for 𝜀 = 0⋯1 to see how it shows up before zooming in.

The above shows that for 0 ≤ 𝜀 ≤ 0.1 the probability of robust stability is high. We can
zoom in to that region

We see that at 𝜀 = 0.1 there is about 68% chance that the system will be stable and for 𝜀 = 0
the probability the system is stable is 100%.

Finding the formula for the probability 𝑃𝜀 𝑓𝑍 (𝑧) is the probability density function of
the random variable 𝑍. To obtain 𝑓𝑍 (𝑧), we use the following two definitions. For random
variable 𝑍 = 𝑋 + 𝑌 where 𝑋 is random variable drawn from 𝑓𝑋 distribution and 𝑌 is
random variable drawn from 𝑓𝑌 distribution, then the random variable 𝑍 will be drawn
from distribution made from the convolution of 𝑓𝑋 with 𝑓𝑌

𝑓𝑍 (𝑧) = �
∞

−∞
𝑓𝑋 (𝑧 − 𝑥) 𝑓𝑌 (𝑥) 𝑑𝑥

Where 𝑓𝑋 is the pdf of the uniform distribution for 𝑄 which is defined for 𝑞 = [0, 1] as

𝑓𝑋 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
1 0 ≤ 𝑥 ≤ 1
0 otherwise

For 𝑍 = 𝑋𝑌 evaluation, we need a product of two random variables. This is given by

𝑓𝑍 (𝑧) = �
∞

−∞
𝑓 (𝑥) 𝑓 (𝑧/𝑥)

1
|𝑥|
𝑑𝑥

Using the above, we can find that 𝑓𝑍 (𝑧) for 𝑍 = 0.5 − 𝜀 − 𝑋 + 𝑋2 − 𝑌 + 𝑌2.

Let 𝑍1 = −𝑋 − 𝑌 = − (𝑋 + 𝑌), hence

𝑓𝑍1 (𝑧) = −�
∞

−∞
𝑓𝑈 (𝑧 − 𝑥) 𝑓𝑈 (𝑥) 𝑑𝑥
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Now let 𝑍2 = 𝑋2. Using the product formula, we write

𝑓𝑍2 (𝑧) = �
∞

−∞
𝑓𝑈 (𝑥) 𝑓𝑈 (𝑧/𝑥)

1
|𝑥|
𝑑𝑥

Therefore for 𝑍3 = −𝑋 − 𝑌 + 𝑋2 we now have 𝑍3 = 𝑍1 + 𝑍2 and now we use the addition
formula

𝑓𝑍3 (𝑧) = �
∞

−∞
𝑓𝑍1 (𝑧 − 𝑥) 𝑓𝑍2 (𝑥) 𝑑𝑥

For −𝑌2, let 𝑍4 = −𝑌2 and using the product formula gives

𝑓𝑍4 (𝑧) = −�
∞

−∞
𝑓𝑈 (𝑥) 𝑓𝑈 (𝑧/𝑥)

1
|𝑥|
𝑑𝑥

Hence we now have the following 𝑍5 = 𝑍3 + 𝑍4 and the pdf is

𝑓𝑍5 (𝑧) = �
∞

−∞
𝑓𝑍3 (𝑧 − 𝑥) 𝑓𝑍4 (𝑥) 𝑑𝑥

Finally, we have 𝑍 = 0.5 − 𝜀 + 𝑍5 which have the pdf

𝑓𝑍 (𝑧) =
1

|0.5 − 𝜀|
𝑓𝑍5 (𝑧 − (0.5 − 𝜀))

With the help of the computer, formula for the pdf of 𝑓𝑍 (𝑧) was obtained which was used
to generate the above plots of 𝑃𝜀

𝑓𝑍 (𝑧) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝜋 0 < 𝑞 + 𝜖 ≤ 0.25
2 �arcsec �2√𝑞 + 𝜀� − arctan �√−1 + 4𝑞 + 4𝜀�� 0.25 ≤ 𝑞 + 𝜀 < 0.5

0 otherwise
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2.8.2 Appendix

polynomial over-bounding method

The first method to try is the method of polynomial over-bounding If this method says
the polynomial is robustly stable, then we are done. However, if this method says the
polynomial is not robustly stable, then it can still be stable. Hence the polynomial over-
bounding method is called inconclusive, and we need to try other methods.

But we start with this method since it is simple to use to check. Using the method of
over-bounding, we first need to determine the bounds on �̄�𝑖. In other words, we convert
the polynomial in 𝑞 to an interval polynomial in �̄�

�̄�−0 = min
𝑞∈𝑄

𝑎0 �𝑞� = min
0≤𝑞≤1

�𝜀 + 3𝑞1 + 3𝑞2 + 2𝑞1𝑞2 +
1
2�

Setting up the following table

𝑞1 𝑞2 𝜀 + 3𝑞1 + 3𝑞2 + 2𝑞1𝑞2 +
1
2

0 0 𝜀 + 0.5
0 1 𝜀 + 3.5
1 0 𝜀 + 3.5
1 1 𝜀 + 3 + 3 + 2 + 1

2 = 𝜀 + 8.5

Hence

�̄�−0 = 𝜀 + 0.5

And

�̄�+0 = max
𝑞∈𝑄

𝑎0 �𝑞� = 𝜀 + 8.5

And

�̄�−1 = min
𝑞∈𝑄

𝑎1 �𝑞� = min
0≤𝑞≤1

�1 + 𝑞1 + 𝑞2�

Setting up a table

𝑞1 𝑞2 1 + 𝑞1 + 𝑞2
0 0 1
0 1 2
1 0 2
1 1 3

Hence

�̄�−1 = 1

And

�̄�+1 = max
𝑞∈𝑄

𝑎1 �𝑞� = 3

And similarly, �̄�−2 = 1, �̄�+2 = 3. And for �̄�3, since it has no uncertainties, then �̄�−3 = �̄�+3 = 1,
Hence the over-bounding interval polynomial is

�̄� �𝑠, �̄�� = ��̄�−0 , �̄�+0 � + ��̄�−1 , �̄�+1 � 𝑠 + ��̄�−2 , �̄�+2 � 𝑠2 + ��̄�−3 , �̄�+3 � 𝑠3

= [𝜀 + 0.5, 𝜀 + 8.5] + [1, 3] 𝑠 + [1, 3] 𝑠2 + [1, 1] 𝑠3

We now construct the four Kharitonov polynomials to check for stability using Hurwitz
matrix method

𝐾1 (𝑠) = (𝜀 + 0.5) + 𝑠 + 3𝑠2 + 𝑠3

𝐾2 (𝑠) = (𝜀 + 8.5) + 3𝑠 + 𝑠2 + 𝑠3

𝐾3 (𝑠) = (𝜀 + 8.5) + 𝑠 + 𝑠2 + 𝑠3

𝐾4 (𝑠) = (𝜀 + 0.5) + 3𝑠 + 3𝑠2 + 𝑠3
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Hence 𝐻1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
(𝜀 + 0.5) 3 0

0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
and for stability we require that Δ1 = 1 > 0, Δ2 = 3− (𝜀 + 0.5) =

2.5 − 𝜀 > 0 and Δ3 = 2.5 − 𝜀 > 0. Since 0 < 𝜀 < 0.1, then we see that Δ𝑖, 𝑖 = 1⋯3 are all
positive. Now we consider 𝐾2.

𝐻2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 1 0
(𝜀 + 8.5) 1 0

0 3 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
and for stability we require that Δ1 = 3 > 0, Δ2 = −5.5−𝜀. We see that

Δ2 < 0 since 0 < 𝜀 < 0.1. Hence

the over-bounding polynomial method was not conclusive .

Therefore we need to try a di�erent method.

Graphical method based on zero exclusion using set value of polytope of poly-

nomials The 𝑃 (𝑠) = �𝜀 + 3𝑞1 + 3𝑞2 + 2𝑞1𝑞2 +
1
2
� + 𝑠 �1 + 𝑞1 + 𝑞2� + 𝑠2 �1 + 𝑞1 + 𝑞2� + 𝑠3 with

0 ≤ 𝑞1 ≤ 1, 0 ≤ 𝑞2 ≤ 1 is multilinear in 𝑞. To use the value set for polytope of polynomials
and apply graphical zero exclusion method in the hope to confirm robust stability, we have
to convert the polynomial to an over-bounding a�ne linear polynomial in 𝑞 by introducing
new 𝑞3 = 𝑞1𝑞24

The polynomial 𝑃 (𝑠) = �𝜀 + 3𝑞1 + 3𝑞2 + 2𝑞3 +
1
2
� + 𝑠 �1 + 𝑞1 + 𝑞2� + 𝑠2 �1 + 𝑞1 + 𝑞2� + 𝑠3 with

0 ≤ 𝑞1 ≤ 1, 0 ≤ 𝑞2 ≤ 1, 0 ≤ 𝑞3 ≤ 1 and 0 < 𝜀 < 𝜀+. Hence the uncertainty bounding set 𝑄 has
8 extremes 𝑞1 = (0, 0, 0) , 𝑞2 = (0, 0, 1) , 𝑞3 = (0, 1, 0) , 𝑞4 = (0, 1, 1) , 𝑞5 = (1, 0, 0) , 𝑞6 = (1, 0, 1) , 𝑞7 =
(1, 1, 0) , 𝑞8 = (1, 1, 1). The eight associated polynomials generated are

𝑃 �𝑠, 𝑞1� = (𝜀 + 0.5) + 𝑠 + 𝑠2 + 𝑠3

𝑃 �𝑠, 𝑞2� = 𝜀 + 2.5 + 𝑠 + 𝑠2 + 𝑠3

𝑃 �𝑠, 𝑞3� = (𝜀 + 3.5) + 2𝑠 + 2𝑠2 + 𝑠3

𝑃 �𝑠, 𝑞4� = (𝜀 + 5.5) + 2𝑠 + 2𝑠2 + 𝑠3

𝑃 �𝑠, 𝑞5� = (𝜀 + 3.5) + 2𝑠 + 2𝑠2 + 𝑠3

𝑃 �𝑠, 𝑞6� = (𝜀 + 5.5) + 2𝑠 + 2𝑠2 + 𝑠3

𝑃 �𝑠, 𝑞7� = (𝜀 + 6.5) + 3𝑠 + 3𝑠2 + 𝑠3

𝑃 �𝑠, 𝑞8� = (𝜀 + 8.5) + 3𝑠 + 3𝑠2 + 𝑠3

From the above the nodes will be determined only by the unique polynomials. We will use
only six out of the eight above, they are

𝑃 �𝑠, 𝑞1� = (𝜀 + 0.5) + 𝑠 + 𝑠2 + 𝑠3

𝑃 �𝑠, 𝑞2� = 𝜀 + 2.5 + 𝑠 + 𝑠2 + 𝑠3

𝑃 �𝑠, 𝑞3� = (𝜀 + 3.5) + 2𝑠 + 2𝑠2 + 𝑠3

𝑃 �𝑠, 𝑞4� = (𝜀 + 5.5) + 2𝑠 + 2𝑠2 + 𝑠3

𝑃 �𝑠, 𝑞7� = (𝜀 + 6.5) + 3𝑠 + 3𝑠2 + 𝑠3

𝑃 �𝑠, 𝑞8� = (𝜀 + 8.5) + 3𝑠 + 3𝑠2 + 𝑠3

We need to check that we have at least one nominal stable polynomial in the family of
polynomials. Using 𝑃 �𝑠, 𝑞1� = 0.5 + 𝑠 + 𝑠2 + 𝑠3 as the stable member, we check it for stability
first:

𝐻 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
0.5 1 0
0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

For Δ1 = 1 > 0, and Δ2 = 0.5 > 0 and Δ3 = Δ2 > 0 as well. Hence we verified the stable
member exist. Now we need to generate the polygonal value set for each of the polynomials

4Similar to method in example 8.2.8, page 128, reference [1]
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above.

𝑃 �𝑗𝜔, 𝑞1� = 0.5 + 𝑗𝜔 + �𝑗𝜔�
2
+ �𝑗𝜔�

3

= 0.5 + 𝑗𝜔 − 𝜔2 − 𝑗𝜔3

= 0.5 − 𝜔2 + 𝑗 �𝜔 − 𝜔3�

And

𝑃 �𝑗𝜔, 𝑞2� = 3.5 + 2𝑗𝜔 + 2 �𝑗𝜔�
2
+ �𝑗𝜔�

3

= 3.5 + 2𝑗𝜔 − 2𝜔2 − 𝑗𝜔3

= 3.5 − 2𝜔2 + 𝑗 �2𝜔 − 𝜔3�

Polynomial 𝑃 �𝑠, 𝑞3� is the same as 𝑃 �𝑠, 𝑞2�, so corner 𝑞2 and 𝑞3 map to same point in
complex plane.

𝑃 �𝑗𝜔, 𝑞4� = 8.5 + 3𝑗𝜔 + 3 �𝑗𝜔�
2
+ �𝑗𝜔�

3

= 8.5 + 3𝑗𝜔 − 3𝜔2 − 𝑗𝜔3

= 8.5 − 3𝜔2 + 𝑗 �3𝜔 − 𝜔3�

And

𝑃 �𝑗𝜔, 𝑞5� = (𝜀+ + 0.5) + 𝑗𝜔 + �𝑗𝜔�
2
+ �𝑗𝜔�

3

= (𝜀+ + 0.5) + 𝑗𝜔 − 𝜔2 − 𝑗𝜔3

= (𝜀+ + 0.5) − 𝜔2 + 𝑗 �𝜔 − 𝜔3�

And

𝑃 �𝑗𝜔, 𝑞6� = (𝜀+ + 3.5) + 2𝑗𝜔 + 2 �𝑗𝜔�
2
+ �𝑗𝜔�

3

= (𝜀+ + 3.5) + 2𝑗𝜔 − 2𝜔2 − 𝑗𝜔3

= (𝜀+ + 3.5) − 2𝜔2 + 𝑗 �2𝜔 − 𝜔3�

Polynomial 𝑃 �𝑠, 𝑞7� is the same as 𝑃 �𝑠, 𝑞6�, so corner 𝑞6 and 𝑞7 map to same point in
complex plane.

𝑃 �𝑗𝜔, 𝑞8� = (𝜀+ + 8.5) + 3𝑗𝜔 + 3 �𝑗𝜔�
2
+ �𝑗𝜔�

3

= (𝜀+ + 8.5) + 3𝑗𝜔 − 3𝜔2 − 𝑗𝜔3

= (𝜀+ + 8.5) − 3𝜔2 + 𝑗 �3𝜔 − 𝜔3�

This diagram illustrates the mapping5
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To find the cut o� frequency 𝜔𝑐, using 𝜔𝑐 = 1 +
max�𝑞+0 ,𝑞+1 ,⋯,𝑞+𝑛−1�

𝑞−1𝑛
, where here we use the

interval polynomial �̄� �𝑠, �̄�� = [𝜀 + 0.5, 𝜀 + 8.5] + [1, 3] 𝑠 + [1, 3] 𝑠2 + [1, 1] 𝑠3 found above. This
results in

𝜔𝑐 = 1 +
max {𝜀 + 8.5, 3, 3}

1
= 1 + 𝜀 + 8.5 = 9.5 + 𝜀 = 9.51

5This diagram shows the mapping done before converting the polynomial to linear in 𝑞. So the original
multilinear form was used, that is why the square was mapped to triangle as shown. Zero exclusion principle
also was inconclusive in this case, and that is why an attempt was made using the linear form as described
in example 8.2.8 in [1]
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Therefore the sweep frequency from be 0 < 𝜔 < 9.51 for the simulation6. A program
was written to simulate the value sets for this problem. For each 𝜀 value, the value set is
displayed over the sweep frequency to see if the polygon will include the origin or not. 𝜀
was changed by small increments and the simulation was run again.

Unfortunately, the result of this method was inconclusive as well

The polygons generated did include the origin as the frequency 𝜔 was increased and
di�erent 𝜀 tried. Below is an example running a program written to implement this method

2.8.3 References

1. Barmish, B. Ross. New tools for robustness of linear systems. Macmillian publishing
company, 1994.

2. Class notes, ECE 717, University of Wisconsin, Madison. Fall 2014.

3. Strang, Gilbert. Introduction to applied mathematics. Wellesley-Cambridge press,
1986.

6In the simulation, I did not have to sweep to such high frequency to see the polygon cross the zero
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2.8.4 key solution

ECE 717 – Special Problem Notes

(a) The problem can be solved analytically without recourse to numerical
computation. In is arguable that graphical computer-generated plots pro-
vide no significant insight over and above the solution obtained by hand.
We see below that the (q,q2) rectangle includes a circular “island of insta-
bility” with radius r =

√
ε. Indeed, noting that A(q) is a companion form,

its characteristic polynomial is

p(s, q) = det(sI − A(q)) = s3 + a(q)s2 + a(q)s+ b(q, ε)

where
a(q) .= 1 + q1 + q2

and
b(q, ε) .= 3q1 + 3q2 + 2q1q2 + 0.5 + ε.

To establish the claimed result, for the positive-coefficient polynomial
above, we first generate the Hurwitz matrix

H =


a(q) b(q, ε) 0

1 a(q) 0
0 a(q) b(q, ε)

 .
Now enforcing the positive minor condition for stability, we characterize
the stable set by

a(q) > 0; a2(q)− b(q, ε) > 0; b(q, ε) > 0.

Over the range of variation 0 ≤ qi ≤ 1, we have a(q) > 0 and b(q, ε) > 0
trivially satisfied. Hence, stability is determined by the condition

0 < a2(q)− b(q, ε)
= (1 + q1 + q2)

2 − (3q1 + 3q2 + 2q1q2 + 0.5 + ε)

= q21 + q22 − q1 − q2 + 0.5− ε
= (q1 − 0.5)2 + (q2 − 0.5)2 − ε.

From the above, the stable set is the complement of a circular region cen-
tered at (q1, q2) = (0.5, 0.5) with radius r =

√
ε. Notice that as ε tends to

zero, the instability domain gets smaller and smaller shrinking down to a
single point when ε = 0.

(b) When q is viewed as a random vector which is uniformly distributed
over the unit square, the probability of stability is given by

pε = 1− area of the unstable set = 1− πε.
This can readily plotted as a straight line for 0 ≤ ε ≤ 0.25 which is the
range guaranteeing inclusion of the unstable set within the unit square.
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Chapter 3

Appendix

3.1 my class cheat sheets

Solve state space

Nonlinear system
Use Picard iterations

Linear

LTI (linear time invariant)

solution

Laplace inverse method Expansion of 
natural 
frequencies
(use if repeated 
eigenvalues)

Matrix of 
eigenvectors 
of A

LTV (linear time Varying)

solution

A(t) commutes with itself?

 good, use short cut)

hard, need to solve odes
Use set of n initial conditions

Nasser M. Abbasi
Nov 20, 2014
d1.vsdx

My ECE717 cheat sheet

A has distinct 
eigenvalues

No

A(t) commutes with its integral?

yes

yes

No
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controllability

LTV

No
yes

LTI

Nasser M. Abbasi
Nov 21, 2014
d2.vsdx
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d

dt
 t  Ãt t

if Ãt  At then

x t  Atxt  Btut

yt  Ctxt  Dtut

Primal

x t  Ãtxt  B tut

yt  C txt  D tut

Duel

Transpose both sides

compare

Hence

combine

 t0,   t0  
1t0,  t01

 
1

 T

 t0,  1t0
TT

 1t0
T

 t0,  T, t0

Hence

Summary

 t0,  T, t0

 1t0
T

 1t0
TT

d
dt

 t  At t

Ãt  At

 t  1tT

 Tt1

 t
1

 Tt Nasser M. Abbasi
Nov 18,2014
d1.vsdx

References:
1. Principles of linear systems, Sarachick, pages 160-161
2. Linear system theory and design by Chen, first 
edition, pages 195-196 

d

dt
1t  1tAt

d
dt

1tT  1tAtT

 ATt1tT
d

dt
 t  At t

 t  1tT  Tt1

Duality in linear time varying systems
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ATP  PA  Q

“standard” Any negative definite 
matrix, say -Indenty 

Matrix

Solve 
for P

Mathematica

AP  PAT  Q

Transpose Both sides

APT  PAT T  QT

PTAT  APT  c

Let PT  x

xAT  Ax  c

Solve for x using x  LyapunovSolve[A, c]

Solve 
for x

Same result

Since x is symmetrix, then its transpose will not affect

its eigenvalues. Let P  xT. Check that P is positive

definite for stable A

P is symmteric. Check if P is positive

definite. If so, then A is stable.
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