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CHAPTER 1. INTRODUCTION

Fall 2013. Part of MSc. in Engineering Mechanics.

Instructor: professor [Daniel Kammer|

[school course description|

Textbook: Instructor own book.


https://directory.engr.wisc.edu/ep/faculty/kammer_daniel
http://courses.engr.wisc.edu/ema/ema542.html
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1.1 Class grading

EMA 542 - Advanced Dynamics

Semester I, 2013-2014

Basis for Final Grade: Percentage
of Grade
1) Homework - 15
2)  Two In-Class Hour Exams - 40

Exam 1 - Friday, October 11"
Exam 2 - Friday, November 22"

3)  Project 20

4)  Cumulative Final Exam - 25
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1.2 Homework solution method

Suggested Problem Solving Procedure for EMA 542

The following is a suggested format for writing up homework problems in EMA
542. While it is not required that the student follow the format completely, the following
steps prove to be useful to both the grader and the student. (Some more useful than
others.) These steps assist in developing an organized approach to problem solving for
the student. Furthermore, the steps are intended to delineate the intentions of the student
in his/her solution, preventing confusion on the part of the grader. Note that the steps 7-9
are to be performed at the same time as needed.

Each problem should (ideally) contain the following:

1. Your name
2. Problem number
3. Read problem statement
4. Write problem statement:
- Identify the given information: dimensions, constants, forces, etc.
- Write down the quantity that the problem is asking for.
5. Provide a general diagram:
- Diagram should portray the physical components of the structure that is being
analyzed.
- All points, dimensions, and angles that are referred to in the solution of the
problem should be included in the diagram or subsequent diagrams.
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- Try not to change the notation of the problem statement, unless you really

need to. (Get used to adapting to someone else’s notation.)
(Note: Steps 3, 4 and 5 are intended to give the student a physical sense of the problem,
as well as a sense for what is involved in the solution process.)
6. State the governing laws that define the mathematical model of the physical
problem:

- Provide the equations of motion and equations that define the kinematics of
the problem.

- List all the assumptions that make the equations valid for this physical
problem. (ex. Assume that all members are rigid bodies, point P is the mass
center of bar C-D, bar A-C will be idealized as a thin rod, etc.)

(Note: Assumptions that need to be made as the problem progresses can be stated as they
are used. One large section of assumptions is not needed. The point here is to prove to
yourself and to the grader that your methods are valid.)

7. Draw diagrams or partial diagrams of the system:

- Free body diagrams of all of the components that require force analysis should
be included.

- A diagram of the coordinate system is essential along with a description of its
placement and angular velocity components. (ex. “The rotating coordinate
system with base vectors x°, y°, z’ is fixed w.r.t. the platform. Therefore it
rotates with the same angular velocity as the platform. This can be expressed
in either the fixed coordinate system or the rotating coordinate system,”

@, =Q¢, =Qe,. The coordinate system origin (P) also translates with

R, =—Qb2, if (b) is the radius of the platform.

Zo Z

Fixed
| Frame

X X

- All vectors (position, velocity, acceleration, force, moment, etc.) that are
given in the problem statement should be drawn in a general configuration
with respect to the coordinate system of choice. Include angles between
vectors and base vectors (unit vectors in the directions of the coordinate axes).
Vectors that are derived may or may not need to be shown in a diagram.

- Itis important that diagrams show a general configuration of the structure
with all angles and position vectors labeled. (This is important because the
novice analyst might forget to break up a vector into components in any
general position of the coordinate system chosen to analyze the problem.
Remember that a vector must be expressed in general in order to take its
derivative.)

8. Clearly write out all of the vectors used in all equations. Make sure that the vector
is expressed in terms of the base vectors in the coordinate system of choice. (ex.
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“expressing the angular velocity of the rotating coordinate system x’, y’, z’ in
terms of the base vectors in the rotating coordinate system ey, €j, €y

@y

e g .
=08, +0e, +Q¢é, .

9. Derive the quantity (velocity, acceleration, equation of motion, etc.) that was
asked for in the problem statement:

Do this for any general configuration (symbolically) if possible. This
technique becomes cumbersome with complicated problems though.

Tell a story as you proceed with the calculations. Use diagrams with labels
every time that a new symbol is used in the calculations. Use phrases like:
“From FBD”, “Taking moments about A”, “Substituting from equation 1.”,
“noting that pt. B is a fixed point”, “the coordinate system translates with
velocity Qr and rotates....” etc.

Break up a large expression (such as that for acceleration) in to logical
components. Calculate the components and then substitute into the large

expression. (ex. G =R, + @, x (@, x p)+ b, xp+p, +2m,, X P, canbe
broken up unto the following components:

Ra" é}c&’x(ﬁjcjxﬁ)’ ajcsxﬁ’ ﬁr’ wmxﬁr' =
Carrying over units is always a good practice. Having units that work out to
the expected unit of the answer is a necessary condition for having your

answer correct.

10. Check to see if the answer makes sense physically:

Are the components in the direction that was anticipated?

Do the signs of vector components make sense?

Does the relationship between coordinates (degrees of freedom) and other
quantities make sense?

If not, try to point out where the mistake is.

It is not intended that the steps should be rigorously followed for each problem.
The point is that the student should have an organized plan of attack for each
problem that he/she is able to justify and clearly relate to a colleague. Missing steps
will certainly not result in a deduction of points. But if the student’s work is not
understandable by the grader, points will be taken off and it will be up to the
student to see the grader and reconcile their differences.

Adpvice and Things to Remember

1. Read the section in the notes before lecture.

2. Understand the derivations of the fundamental equations.
These suggestions will allow the student to get the most out of lectures. Instead
of trying to keep up with the deluge of new information presented in lectures, the
student will learn about the mathematical representations of physical quantities at
his/her own pace. Derivations will be studied in order to see how the final
equation has evolved from basic physical principles, and gain incite into the
limitations of the equations. Lecture is then an opportunity for reinforcement of
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ideas and clarification of misunderstandings. The student will be able to ask the
right questions in lecture.

3. Understand derivations and equations on a mathematical and physical level. This
skill will enable the student to use equations as a powerful tool, instead of just
attempting to repeat a procedure learned in class.

4. Derivatives of vectors can only be taken when the vectors are expressed in the
most general form.

5. Vectors such as acceleration and velocity represent physical quantities that are
independent of the coordinate system that they are expressed in. Thus the
velocity of a particle expressed in one frame is the same as the velocity of a
particle expressed in any other frame. The vector is just written in terms of
components along different base vectors. Thus the components will be different.

6. Because of 5, it may be useful to calculate the acceleration of, say, the center of a
rotating frame using a fixed coordinate system. Then the acceleration vector
(which is originally expressed in terms of fixed base vectors) can be written in
terms of the base vectors of the rotating coordinate system by using a coordinate
transformation.

7. Remember the conditions under which equations are valid. This goes hand in
hand with understanding derivations.

8. Take the work you do in this class personally. As an engineer, it is up to you to
be able to analyze a system correctly with the proper assumptions. Every mistake
can cost lives. Take pride in the power of the material you are learning and know
that some day the knowledge gained in this course will elevate the human
existence.
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1.3 Team evaluation form

EMA 542
Confidential Team Evaluation
Due: end of semester.

Please carefully consider the amount of effort and the performance that you and your teammates
put into the design project. Divide up the effort and performance according to your honest
evaluation by assigning “points” to yourself and each of your teammates. If everyone contributed
equally, then each person should be awarded the same number of points, totaling 100. This
evaluation will be kept confidential.

The results from all team members will be considered when awarding grades to each person.

Your name: Points:

Your teammates’ names:

1. Points:
2. Points:
3. Points:
4. Points:
Total: Total: 100 points.

Comments. If points are divided up unequally, please provide an explanation.

Signature: Date:
I hereby attest that this evaluation represents a fair and honest allocation of points based on my
own and my teammates true efforts.
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Project simulation moved to my Mathematica demo web page
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2.1 Initial proposal

Structural Dynamics Research Corporation (SDRC)
Disneyland project proposal

Daniel Belongia Adam Mayer

Donny Kuettel Nasser M. Abbasi

December 25, 2015

Structural Dynamics Ressarch Corporation (SDRC) ride simulation
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1 Introduction

A four-member team at Structural Dynamics Research Corporation (SDRC) has completed the preliminary
design for a new spinning ride for Disneyland.

The team includes one graduate student and three undergraduate students in Engineering Mechanics
and Astronautics, whose experience in advanced and structural dynamics will contribute to the creation
of a world-class ride. Additional skills that the team will bring to the table include extensive programming
experience in Matlab and Mathematica, as well as finite element modeling in Ansys.

The ride features two non-collinear components of angular velocity, and the head of each of the two
passengers will experience a maximum of 6¢g of acceleration. The ride is specifically designed to be light,
safe, affordable, and fun.

The team at SDRC would like to perform a more detailed design and analysis of the ride, so the
following pages provide contractors at Disneyland with an overview of what they can expect from the
ride. Safety considerations and acceleration calculations are highlighted, and some information on team
members and a project management plan are also included.

The next step after this initial proposal will be a detailed structural and failure analysis on the
system, which Disneyland can expect in December.

2 Safety considerations

The Flight Simulator will be equipped with multiple safety measures to ensure that the pilots have a fun
and exciting ride. In order to ride the Flight Simulator, each passenger must be at least 5 feet tall. This
insures that the riders can be securely fastened into the seat. Assuming an average rider weight of 175
pounds, one single rider cannot weigh more than 350 pounds.

Any more weight will induce a moment on the main arm that might be considered unsafe. A factor
of safety will be factored into the building of the arm in case two riders combined weight to be more
than 350 pounds.

This is because with the extended arm and accelerations the main arm will be subject to, it is believed
to be the first membrane to fail. In order to start the ride, it must be certain that the arm will not break
during the ride. While riding, each rider will be harnessed into his or her seat via a 3-point harness.

The harness will let the passengers fly upside-down while still secured in the cockpit. Since the Flight
Simulator will be subject to 6¢g acceleration, complementary sick bags will be provided upon starting.

In case of a medical emergency of a passenger or if it has been determined that it is unsafe to ride
mid-flight, an emergency stop will be activated which will bring the ride to an end. When activated, the
ride will right itself upwards while bringing itself to a stop about the center of the ride. This is so when
the ride stops, the passengers are not hanging upside down which would be unsafe.

14
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Design Ride

Preliminary Calculations

Simulation Modeling

Midterm Proposal et Bate
& Completed
Final Design Rimaieg
Secondary Calculations
Final Sirmulation
Final Repart
8/14/13 /313 #1313 11313 113013 14213 12/13A13 1/1/14
Figure 1: Gantt Chart showing project progress timeline
The following table describes the activities shown on the Gnatt chart above.
Activity Description
Design ride Coming up with a ride that would be functional and meets all expecta-
tions.

Preliminary calculations | With ride chosen, calculations showing the velocity and acceleration of
the rideraAZs head symbolically.

Simulation modeling Modeling the ride with a simulator with sliders to estimate the angular
velocities.

Midterm proposal When the midterm proposal of the ride is requested by the company.

Final design Finalizing how the ride will work.

Secondary calculations | After finalizing how ride will work, will compute secondary calcula-
tions to know which velocities will work to add up to give the desired
acceleration for each passenger.

Final modeling Once the angular velocities are known, make a model to show how the
ride will work when everything comes together.

Final report When the customer wants the final report to know if they would like to
purchase the ride that we have created.

Table 1: Gantt chart explanation
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3 Mathematical model of system dynamics

The velocity and acceleration of the ride object was derived such that it is valid for all time. The
derivered equations are used in a simulation program written for this proposal in order to generate the
acceleration time history and be able to modify the ride parameters more easily to find the optimal
combination to meet the given specifications of maximum 6g customer requirments.

The simulation was done assuming the ride is at steady state, hence angular accelerations are set
to zero. The following diagram illustrates the four design parameters used in the simulation and the
expressions found for the velocity and acceleration. The appendix contains the detailed derivation.

Figure 2: Showing main dimensions of ride design

The absolute velocity of the ride was found to be

= = . - . -
V (rwycoswat — w1 L) i 4+ wyrsinwstj — rwysinwstk

And the absolute acceleration is
- 7 . 2 . . 2 .
a =1 (er cos wat — rwj sin wat + wy L — wirsin wgt)
—
+ <2rw1w2 COS Wat + w1 sin wot — wa)
— . 9
+ k <—rw2 sin wot — Tw; cos w2t>

The following diagram gives the acceleration time history for the ride. This plot was generated for the
first 5 seconds of the ride in steady state. It shows that the maximum acceleration did not exceed 6g
during the simulation which included more than 5 complete cycles. The following table shows the ride
configuration used to achieve the above time history. These values are the anticipated design parameters
to use to complete the structural analysis, but these could change based on results of the structural
design.

16
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Figure 3: Time history plot for absolute acceleration of ride object for first 5 seconds

Table 2: ride configuration used in design

Length of beam (L) 1.7 meter
Height of person head above beam (r) 1.1 meter
Angular velocity of ride cabinet (ws) 0.2 Hz
Angular velocity of main vertical support column (w;) | 1.11 Hz

17
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4 Conclusion

The preliminary design for this two-passenger ride features two components of non-collinear angular
velocity, and the head of each passenger experiences a maximum of 6¢g of acceleration.

The design and calculations indicate that this will be a fun and light ride. Safety considerations
were highlighted, and a management plan and team qualifications underscore the team’s commitment
to excellence and sound engineering. A more detailed stress analysis of the system will be delivered in
December.

18
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5 Appendix

5.1 Ride velocity and acceleration derivation

@1,®1
Y

Figure 4: Ride description showing rotating coordinate system

The rotating coordinates system has its origin as shown in the above diagram. The coordinates
system is attached to the column and therefore rotates with the column. The following calculation
determines the absolute velocity of the ride object head, shown above as the circle p at distance r from
the center of beam. All calculations are expressed using unit vectors of the rotating coordinates system
and will be valid for all time. In the rotating coordinates system, the ride object appears as shown in
the following diagram Using the above diagrams, the absolute velocity vector is found as follows

4
A
\C{Jz

Figure 5: View of ride object in rotating coordinates system

19
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— — —

; =Lj 4+ rsinwsti + rcoswstk

5 e . g
P, = TWo COSWal i — rwysinwstk

=
wi k
5

N
R
N
w
—
p = —wle + wirsinwst j

=
w X

Hence

V R+pr+w><p

= 7wy COS wgt 1 — rwy smwgtk — wlL 1 + wyrsin wgtj
_
= (rwy coswyt — wi L) i 4+ wyr siantj — rwy sin wot k (1)

Now the absolute acceleration of the passengers is found

5 . . - .. -
Py = (rwg COS Wot — rw% sin w2t> 1+ (—rwg Sin wat — rwg cos w2t> k

= . = 9 e
X <7w1Lz +w1rsmw2t]> = fwle — wirsinwst

— - — —
w X p,, =wik X (ng Ccoswol 1 — rwy s1nw2tk) = TWiWsy COS Wat J

—

N L= — — — > i —
w X p=wrk X (Lj + rsinwyt ¢ +rcosw2tk) =wLi +wirsinwstj

Hence, the absolute acceleration of the ride object head is
55 A R N A
=R+pr+2<w><pr>+ (wxp>+w>< (pr)
5

N
= [ rws cos wat — rw% sin wgt) 1+ (—rw2 Sin wot — rw% cos wgt) k
-
+ 2rwiws cos wzfj + wlL 1 4+ wirsin wzf] — wle — wlr sin wot 7
Simplifying gives
- 7 . 5 . . 5 .
a = 1 | rws coswel — Tw; sinwat + wi L — wirsin wot
- . .
+ 7 <2rw1u)2 oS wot + wqr sinwst — wlL)

5
+ k (—rd;g sin wyt — rws cos wgt) (2)

5.2 Design renderings of final ride construction

The following two diagrams illustrate the completed ride construction in place, showing the main
dimensions and major components

20
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Figure 6: Showing ride seating mechanism

5.3 Parameters used in design

Material parameters used are given in the following table

Table 3: Material parameters

Material used for beam | Aluminium
E (Young’s modulus) | 70 GPa

Shear modulus 26 GPa
Bulk modulus 76 GPa
Poisson ratio 0.35
Density 2700 kg/m?

5.4 Customer feedback

10

21
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Project Team 3 Proposal Comments
I. Next time, please use only one side of the page.

2. The Introduction is good, but you don’t make any reference to the name of the ride or a figure
of it. You have a figure on the cover page, but never say that it shows your ride. You need lots
of figures within the text of the proposal to show the ride, and how it works to the customer.

3. You have a nice Gantt chart, but you never reference or discuss it within the proposal. You

need a section that contains the discussion of your project timeline.
&

4. You should add a bit more detail to your analysis procedure within the text of the report, and
not leave all of it for the appendix. Equations should be numbered in the right hand margin.

5. What about startup and shutdown? Are loads during these events important?

6. Figures in Section 5.2 would be good to include in the text of the report to illustrate how the
ride works to the customer.

5. The Conclusion is very weak. You should summarize everything you just told the customer.
This is your last chance to sell the customer on your ride. Give more details on just what you are
going to deliver to the customer if the select your ride for funding.

Otherwise, pretty good!

Figure 7: Customer feedback from the project proposal

6 References
1. Aluminium page at Wikipedia http://en.wikipedia.org/wiki/Aluminium

2. Moments of inertia page at Wikipedia http://en.wikipedia.org/wiki/List_of_moments_of_
inertia

3. Density of materials page http://physics.info/density/

4. Beam design formulas with shear and moment diagrams book, AWC council, 2007, Washington,
DC.
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2.2 Report

Disneyland ride final design report

Structural Dynamics Research Corporation (SDRC)

Daniel Belongia
Adam Mayer
Donny Kuettel
Nasser M. Abbasi

EMA 542 Advanced dynamics
University Of Wisconsin, Madison
Fall 2013
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Abstract

Dynamic analysis was completed for a new spinning ride as requested by Walt Disney Corporation.
Detailed derivation of model was completed for the main structural elements using rigid body dynamics.

Critical section was identified and maximum stress calculated to insure that the member does not fail
during operations and passengers acceleration does not exceed 6g.

Large software simulation program was completed to verify the model used and to allow selection of
optimal design parameters.

Prepared by:

Dynamic design team
Structural Dynamics Research Corporation (SDRC)

24
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1 Introduction

A four-member team at Structural Dynamics Research Corporation (SDRC) has completed the final
design for a new spinning ride for Disneyland.

The ride features two non-collinear components of angular velocity. The head of each passenger will
experience a maximum of 6g acceleration. Just before this acceleration is reached, the ride will enter
steady state. During steady state, passengers will experience a small periodic fluctuation of acceleration
that ranges between 4.8¢g and 6g but will not exceed 6g. The ride can then enter the ramp down phase and
starts to decelerate until it stops with smooth landing. All three phases of the ride have been simulated to
insure the passengers will not exceed 6g during any of the phases. The ride is specifically designed to be
light, safe, affordable, and fun. The following is an artist rendering showing loading the passengers in the
cabinet before starting the ride Once the cabinet has reached the top of the support column, the ride will

Figure 1: Artist rendering of ride after construction

start. Extensive simulation of the mathematical model of the dynamics of the model was performed to
achieve an optimal set of design parameters in order to meet the design goals as specified in the customer
requirements of a minimum weight and cost and at the same time insuring the structural members do not
fail and that the passengers will safely achieve the 6g acceleration in reasonable amount of time. The
conclusion section outlines the final design parameters found. The following diagram illustrates typical
one revolution ride for illustrations that was generated by the simulator developed specifically for this
design contract

@

Time history snap shot of typical ride revolution

Figure 2: Illustrating typical dynamic movement over four time instances for one revolution
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1.1 Gantt chart and history of design project

The design team followed the following timeline in the development of the report and the design. This is
illustrated below using Gantt chart

Design Ride
Prefiminary Calculations
Simulation Medelling
Midterm Propasal

 Start Date

Final Design & Completed

Remaining

secondary Calculations
Structural onsiderations
Final simulation

Final Repart

8/14/13 9/3/13 9/23/13 10/13/13 114213 11/23/13 12/12/13 1/1/18

Figure 3: Time line used by the design team in the development of the final project report

2 Safety considerations

The flight simulator will be equipped with multiple safety measures to ensure that passengers will have a
fun and exciting ride. In order to ride the flight simulator, each passenger must be at least 5 feet tall.
This insures that the riders can be securely fastened into the seat. Assuming an average rider weight of
175 pounds, one single rider cannot weigh more than 350 pounds.

Any more weight will induce a moment on the main arm that might be considered unsafe. A factor of
safety was factored into the building of the arm in case two riders combined weight to be more than 350
pounds. This additional weight accounts for the seating weight and the frame of the cabinet as well.

‘While the ride is in motion, each passenger will be harnessed into his or her seat via a 3-point harness.
The harness will let the passengers fly upside-down while still secured in the cockpit. Since the flight
simulator will be subject to 6g acceleration, complementary sick bags will be provided upon starting.

In case of a medical emergency of a passenger or if it has been determined that it is unsafe to ride
mid-flight, an emergency stop will be activated which will bring the ride to an end. When activated, the
ride will right itself upwards while bringing itself to a stop about the center of the ride. This is so when
the ride stops, the passengers are not hanging upside down which would be unsafe.

2.1 Locations of possible failure in the structure

Four critical sections in the structure were identified as possible failure sections. These are shown in the
following diagram. They ranked from 1 to 4 in order of possible first to fail. Hence section 1 is the one
expected to fail first.

From bending moment diagram generated during initial runs of simulation it was clear that the
bending moment at section 1 was much larger than section 3. This agrees with typical cantilever beam
model which the above have very close similarity when considering the cabinet as additional distributed
load on the beam. However, this is a dynamic design and not static, hence time dependent bending
moment and shear force diagrams are used to validate this. These diagrams were not included in the final

28




2.2. Report CHAPTER 2. PROJECT

@ ®

Beam/column Section at end of
joint; gabinet on beam

Joint section at Section in column
bottom of column below beam

@ attachment @

Figure 4: Identification of critical sections in the structure

simulation software due to time limitation to fully implement them in an acceptable manner. Due to also
time limitations analysis for section 2 and 4 were not completed. The design team felt that protecting
against failure in section 1 was the most important part at this design stage as this is the most likely
failure section. If awarded the design, the team will include full analysis of all sections using finite element
methods for most accurate results.

3 Mathematical model of system dynamics

This section explains and shows the derivation of the mathematical model and dynamic equations. These
equations are used in the implementation of the software simulator in order to test and validate the design
and select the final optimal design parameters.

3.1 Review of the model structure used in the design

There are two rigid bodies: the beam and the supporting column. The cabinet is part of the beam but
was analyzed as a rigid body on its own in order to simplify the design by avoiding the determination
of moments of inertia for a composite shaped body. The following architectural drawing shows the ride
structure. The ride consists of the main support vertical column attached to a spinning base. Attached to
one side of the column is an aluminum beam connected to the column using a drive shaft coupling that
allow the beam to spin while attached to the column. A motor supplies the power needed to spin the
shaft.

The cabinet is mounted and welded on the beam. The location of the cabinet on the beam is a
configurable parameter in the design, and was adjusted during simulation to find an optimal location
for the seating cabinet. In final design the cabinet was located at the far end of the beam to achieve
maximum passenger felt acceleration.

The passengers are modeled as one rigid body of an equal side solid cube of a mass that represents
the total mass of the passengers (maximum of 2 persons) with additional mass to account for the seating
weight and a factor of safety. The factor of safety was also an adjustable parameter in the simulation.
The following diagram shows the main dimensions of the structure used in the design.
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supporting
column

cabinet

WS

Figure 5: Main parts of the ride structure

Figure 6: Main dimensions of ride structure

3.2 Setting up the mathematical model

Euler rigid body dynamic equations of motion are used to determine the dynamic moments due to the
rotational motion of the rigid bodies. Principal Body axes, with its origin at the center of mass of each
rigid body was used as the local body fixed coordinates system. Newton method is used to obtain the
dynamics forces due to translation motion of the beam center of mass and also the center of mass of the
cabinet. The column has rotational motion only and no translation motion.

After finding the dynamic forces, the unknown reaction forces at the joint between the beam and the
column are solved for. Since these forces are functions of time, simulation was required to check that they
remain below yield strength of Aluminium during the ride duration. Analytical solution is difficult due to
the nonlinearity of the equations of motion, but a numerical solution of the equations of motion would
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have been possible.

From beam bending moment diagrams generated for this design, the cross section at the beam/column
joint was determined to be the critical section. This is the section which will have the maximum bending
moment as well maximum shear force.

During simulation, the current values of the bending moment and shear force at the joint were tracked
for each time step taken. The maximum values of these are used to determine the corresponding maximum
stress concentration on the section to insure they do not reach 0.55 of yield strength of Aluminum. 0.55
was used to protect against failure in shear which can occur before failure in tension.

In order to minimize the number of parameters to vary in the design, the width of the cabinet was set
to be the same as the beam width. The stresses in the beam are calculated based on simple beam theory
and not plate theory. Due to time limitation, finite element analysis would was not performed. Finite
element analysis would give more accurate stress calculations which would have allowed the design to be
free to use less material by using thin plate for the platform and not thick beam as was used.

The following is a summary of the main steps used in the dynamic analysis process

1. Break the system into 3 separate rigid bodies

2. Use Euler and Newton methods to determine dynamic loads on each body. Principal body fixed
axes are used with the reference point being the center of mass. (called case one analysis or w = 2).

3. Draw free body diagram for each body and balance the dynamic loading found in the above step in
order to solve for unknown reaction forces.

4. Apply these reactions forces to the second rigid body connected to the first body by reversing the
sign on all vector. These new vectors now act as external loads on the second rigid body.

5. Perform Euler and Newton analysis on the second body to find its dynamic loads needed to cause it
motion.

6. Make free body diagram for the second body to balance the external forces with the dynamic loads
and remembering to use the loads found in step 3 as external loads to this second body.

This diagram below illustrate the different coordinates axes used. The rotating coordinates system
that all forces and resolved for is the xyz. This has its origin at the joint between the beam and the
column. This coordinates system is attached to the column and rotates with the column at an absolute
angular velocity w,. Each rigid body has its own local body fixed coordinates system z’y’z’. In this
design, x'y’z’ have the origin at the center of mass of each rigid body and are aligned with the body
principal axes. Hence z'y’2’ is the same as the e1, ez, e3 axes commonly used to mean the principal axes.
Therefore w =  in all cases. Once dynamic loads are found using z'y’2’ the results are transformed
back to the zyz coordinates system. This way all the results from different rigid bodies are resolved with
respect to a common coordinates system zyz (which is itself a rotating coordinates system).
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| Principal axes is the

A
\\J @p , | same as local body

Z €3 | fixed coordinates
| system
AL
|

= N CO.S
;A ,
z /| A ’\1) .,_y

Q;.5 = wpcosfe; — wpsinbe; + wse;

The body angular velocity is the same as its
coardinates system angular velocity x'y’'z" and is
expressed as the body absolute angular velocity
but using body fixed coordinates system

Figure 7: relation between rotating coordinates system, body fixed coordinates system, and body principal axes.
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3.2.1 Summary of design input and design output

The following tables summarize the input and the output of the overall design. The tables list all the
design parameters and the meaning and usage of each. They show what is known at the start of the
design and the output from the design and simulation

Parameter name

Meaning and usage

Density of Aluminum 2700 £4, F = 69 GPa, Max tensile 125 MPa, Max yield strength 55 MPa

p X,
q Mass per unit length of the beam

L Length of the beam

Ly Distance to the center of cabinet from the left edge of the beam

h Thickness of the beam (rectangular cross section beam)

b Width of the beam and cabinet

Wp Angular acceleration of vertical column (zero at steady state)

Ws Angular acceleration of platform and cabinet (zero at steady state)

m Total mass of cabinet. 175 lbs per person, total of two persons including additional 200 lbs for seats
M Mass of main support column. Fixed in design

gLimit Maximum acceleration felt by rider. Must not exceed 6 g

Oyield Yield tensile stress for Aluminum. 55 MPa

Table 1: design input parameters

The following table shows the output of the design based on the above input. Simulation was used to
find an optimal set of input parameters in order to achieve the customer specifications

Parameter name

Meaning and usage

an, Acceleration time history experienced by passenger. Not to exceed 6g

Foela Reaction forces at joint connecting the beam with the column

Moyeld Reaction moment at joint connecting the beam with the column

Wp Column angular velocity time history

Wy Beam angular velocity time history

o Direct stress tensor at critical section (joint between beam and column)

T Shear stress tensor at critical section (joint between beam and column)

Omax Maximum direct stress recorded, must remain below yield stress for Aluminium
Tmax Maximum shear stress recorded, must remain below 0.55 of tensile yield stress
Gmax Maximum acceleration reached by riders. Must be as close as possible to 6g
Vmax Maximum velocity reached by riders. Typical value from simulation was 180 m.p.h.

Table 2: design output

11
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3.2.2 System dynamic loads and free body diagram

Before starting the derivation, the following two diagrams are given to show the dynamic loads to be
balanced with constraint forces. Two free body diagrams used. One for the beam and one for the column.

Linear
L‘] / acceleration of
T F = M c.g. of beam
—— cg = acg
CE
r_
J\ A Eulermethod and
I weight of relative zmgularcI
| cabinet ::ofm:ntum use
A W M, M,

weight of beam

‘A// <:> + Linear

Mﬂ-‘et’ d | € acceleration of
F“:e{d oL c.g. of ride
_:_ m ’/ object found
F,, = ma  vsing Newton

Applied moments and forces method
(Mweld includes all moments at L-

joint and external torque needed ‘A

to spin the beam M EuIet method and

m relative angular

momentum used

to find I\Im

Dynamic moments and
forces due to motion

Figure 8: Beam dynamics. Balancing dynamic forces to external forces and reactions

After Myeig and Flyerq are solved for, they are used (with negative signs) as known constraint forces
on the column in order to solve for the column’s own constraint forces and any external loads. The free
body diagram for the column is given below The analysis below shows all five derivations. The first
obtains Mpeam (dynamic moment to rotate the beam) using Euler method. The second finds Mcabinet
(dynamic moment to rotate the cabinet) using Euler method, the third uses Newton method to find
linear acceleration of center of mass Feapine: (dynamic force to translate the cabinet), the fourth finds the
linear acceleration of the center of the beam and F geqm and the final derivation finds Mcolumn (dynamic
moment to rotate the column).

3.3 Beam to column analysis

3.3.1 Finding M., (beam dynamic moment)

The platform is modeled as a rectangular beam. Its principal moments of inertia are given below. Let w
be the absolute angular velocity of the local body rotating coordinates z'y’2’. Let Q be the beam (the
body) absolute angular velocity. Hence
Wes = wpk+wsj
But wes = Qpody, therefore
Qbody = wpk+wsj

Qpody = wp cos fes — wp sinfe; + wses
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These loads are solved from
solving free body for the
beam. Sign change is used.

k /7 ™
These loads are ' ,’ M
l 1,
unknown for the column. T ;‘ weld !’ M ;‘ o
Solved for using balance 4 |/v' /) column-} ' ¥
equation —H A J/ 'v\ l
X \ / |
|
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/" \\\ Y / 1 | @ y ’
| s
\ ~ a
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it Column dynamic load

Figure 9: Column dynamics. Balance with and external loads and beam transferred loads.

Beam cross section
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N

Figure 10: Configuration used for finding torque and force at beam/column joint

In component form

Q1 = —wpsind
QQ = Ws

Q3 = wpcosl

13

35




2.2.

Report CHAPTER 2. PROJECT

Taking time derivative
0= ()
= — (wp sin @ + wpws cos ) e1 + wsea + (wp cos @ — wpws sin 0) e3
In component form
O = —@p sin 0 — wyws cos 0
Q2 = L.Us
Q3 = Wy cos 0 — wpws sin O
The moments of inertia of the beam using its principal axes at the center or mass are
L=>1u (R* + L%
12
1

_ 2 2
I = 55 M (h* +1)

1 2 2
Iy = 5 M (¥ + L)

Since p. = 0 (center of mass is used as reference point) then
Mpe x £p =0

Moments of inertia cross products are all zero since principal axes is used. The relative angular momentum
of the beam becomes

L, 0 0 Q
h,=10 b 0 Qs
0 0 I3 Q3

The rate of change of the relative angular momentum of the beam using Euler equations is

1 L+ Qs (Is — I2)
hy=|hy | = | L+ Q10 (I — Is)
ha L3 + Q10 (I2 — I)

Therefore, the moment needed to rotate the beam with the angular velocity specified is
M, = h,

The above components are expressed using in the beam body fixed coordinates system z'y’z’ (which is
the same as e1, ez, e3 in this case). These are converted back to the zyz coordinates system using the
following transformation

M., = My cos + M3 sin 6
M, = M,»
M. = —M,;1 sin 0 + M3 cos 0

3.3.2 Finding M., (column dynamic moment)

The main support column has one degree of freedom as it only spins around its z axes with angular
velocity wyp. Its center of mass does not translate in space. The column has a square cross section. Its
height and sectional area were fixed in the design to allow changing the beam and cabinet parameters
freely and see the effect on the joint stresses between the beam and the column as the failure point in the
design was considered to be the the joint between the beam and the column This is a case of one body
rotating around its own axes. Therefore,

M. = Iz,

14
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H T2 [2 = l_lzmcol(r2+H2)

Where

1
Iz = 1o el (27’2)
1

_ 2
= ZMcolT

6
Where mcq) is the mass of the column. Hence
1

Meolumn = 6

Mr2a,

3.3.3 Finding M pinet (cabinet dynamic moment)

The passengers including the cabinet are modeled as solid cube rigid body. The cabinet and the beam
rotate with the same absolute angular velocity and act as one solid body. They were analyzed separately
as it is easier to find the moment of inertias of each body separately than if both were combined.

The center of mass of the cabinet is at a distance % above the beam where h is the width of cube

which is the same as the beam width. Since the cabinet is attached to the platform and is a rigid body as
well, the same exact analysis that was made to the beam above can be used for the cabinet. The only
difference is that the moments of inertia I, Iz, I3 are different. In this case they are

1
Ilzlzzlgzﬁm(b2+h2)

Therefore, the body dynamic moments are

M, = L1 + Q293 (Is — I2)

M, = IO + Q103 (I — I3)

M3 = IlQl + Q2203 (I;; — 12)
The above components are expressed using the cabinet own principal axes coordinates system z'y’z’ (local
body coordinate systems) which is its principal axes in this case. These are converted back to the zyz
coordinates using the same transformation used for the beam

M, = M;j cos + Mjzsin 6

M, = M,

M. = —M; sinf + M3 cos 6
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Ls Equal sided cube
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3.3.4 Finding F upine: (cabinet dynamic linear force)

To find F,,, = ma for the cabinet, Newton method is used as follows The rotating coordinates system zyz

@p, O

Center of mass of
'Y cabinet

/ Ls o
x |

Figure 11: Rotating coordinates system xyz used to find passenger acceleration

has its origin at the beam column joint. xyz is attached to the column and rotates with the column with
angular velocity wpk. The center of mass of the cabinet shown above as the circle p, is at distance Lg
from the origin O.

All calculations are expressed using unit vectors of the rotating coordinates system and are valid for
all time. In the rotating coordinates system, point p, the center of mass of cabinet, appears as shown in
the following diagram. In this diagram 6 is the angle p makes with the z axes, where § = wst and 6 = ws
Using the above diagrams, the absolute velocity of p is found as follows
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Figure 12: View of passenger head in the rotating coordinates system xyz

b b
p=Lsj+ isinGiJr 5c059k

b b
pr = §ws cos 0i — 50-)5 sin 0k
R=0
w = wpk

wXp=—wpLsi+ wpg sin 6

Hence the absolute velocity of p is
V=R+p +wxp
b . b . . b . .
= ( gwacos 0i— 5Wasin 0k | —wpLei+ wpy sin 6

b . b . .. b
= (50.)5 cos b — prS> i+ wp§ sin 0j — iws sin 6k

The absolute acceleration of p is found from

b b b b
pr = <5w5 cosf — iwf sin 0) i— (5% sinf + iwf cos 0) k
R=0
= wyk
. b . . 2 . 2b . .
w X (wx p) =wpk X [ —wpLsi+ wp Sin 0j | = —wpLsj— Wp 5, Sin 0i
R b . b . b .
w X pr = wpk X 5&)5 cos 0i — iws sinfk | = §wpws cos 0

b b b
wx p=uwpk x (sz + isinei + 3 cos&k) = 7prsi+c'up§ sin 0
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Therefore the absolute acceleration of the passenger is
a=R+p, +2(wx pr)+ (@ X p)+w X (w x p)

(b b o . . b. . [
= <§ws cosf — iws sm@) i— (54;.15 sin 6 + §w5 cos@) k

b b ; b
+ <2§wpw5 cos9j> + (m,,stwpisinej) - (wész +w§§sin 91)
Simplifying gives
Feabinet = ma
=i (gws cosf — gw_f sinf — w,Ls — wzg sin0> m
. b 2
+Jj | bwpws cos O + Wp sin 0 —w,Ls | m
b b
-k <§wg sin 0 + §wf cos 0) m
The above is expressed using the common zyz rotating coordinate system

3.3.5 Finding Fycqm (beam dynamic translational force)

The linear acceleration of the center of mass of platform, which is located at distance % from the origin o
of the zyz rotating coordinates system. Therefore

. Mass of heam
wp ) Cop concentrated at
its mass center

M )
X ‘/ ._Lf'l24.|

P:§
w =wpk
X Ly
w = —Wp—1
p Py
pr=0
R=0
w = wpk
w X p_wpkxi,j = —wp3i
L L
w X (w x p) = wpkx <pr§i> = 7wf,§j
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Hence
acg =R+ pr +2(w X pr) + (0 X p) + w X (w X p)
— o ki 2Ly
- P2 wp 2.]
Therefore

Fieam = Macy
L.. L.
= —Mgayi— ]\4§wzj

The above is expressed using the xyz rotating coordinates system.

3.3.6 Using free body diagram and solving for constraint forces

The dynamic forces have been found from above. The are balanced with constraint forces and any external
loads using free body diagram. The following diagram shows the balance between dynamic forces and
moments and external forces. Myeia below is used to represent all constraint moments at the joint
between the beam the column, including the extra torque needed to rotate the beam Taking moments at

k
M opine: Fcabfner
v

rd
4—L54>‘ [ -
| s
weight of _;_ i

cabinet d
WL o
weight of beam b/2
ﬁ 0 =1 ¥
0
}w R N
i | \ ‘ I beam
Fu—‘eld
xIbsexm
_\//4 -
\v/ Mu-‘eld
External moments and Dynamic moments and
forces needed to balance forces due to motion

dynamic loads

point o, the left end of the beam which is the origin of the rotating coordinates system zyz

L, . b L, . b
Muyera + <§J X —Mgk) + <(LSJ+§k) X —mgk> = Mycam + Meabinet + (53 X Fbea'm) + <L5J+§k> X Feabinet

L L b
Muyera — ijgi — Lsmgi = Myeam + Meabinet + <§J X Fbcam) + (sz+§k) X Feabinet

Hence
L . L, ., b
Muyerd = ng + Lsmg ) i+ Mpeam + Meabinet + 4% Focam | + | Lsj + Ek X Feabinet

The force vector at the joint is

Fureld - ]ngk - mgk = Fbeam + Fcabznet
Fueia = (Mg + mg) k + Focam + Feabinet
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M, eid

Bending moment and shear force calculations Now that the constraint forces are solved for
from the above analysis, the bending moment and shear force diagram are formulated. The moments will
be a function of distance from the beam/column joint.

Let BM (¢) be the moments vector at distance £ along the beam length. There will be 3 components
to this moment. Bending M, torsional M, and twisting M.. Let the weight be per unit length of the

Ls |

L

— |§ o —al
1y}

mg
b rider cabinet

|

1

|
£ g Per unit _:_ A
L length | EL-

VY % | L&
|
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F‘Lt-’ef d BNI( ':;‘: ) Fu-’efa’

e

' ot
SF(S)

Bending moment diagram and loads Shear forces at a section
used to determine
bending, torsional and twisting
moments

Figure 14: Finding the bending moment at different locations along the span of the beam

beam which is% g be q. In the following, the notation (£ — x) is used to indicate that the term is effective
only when (£ — z) is positive. Let the distance to start of the cabinet be

b
2

a=Ls—

Where b is the width of the cabinet.

BM (€)= Mucts + (6 Puca) + 5 —a6k) + (5% x =5 (€~ k) (6 - o)
In component form, the bending moment will be BM, (§) and The torsion moment will be BM,, (§) and
the twisting moment will be BM; ().
Let SF (€) be the shear force vector at distance £. Hence

m
SF (€) = Fueia — aék — 7 (€~ a) (€~ )K
The above completes the mathematical derivation of the dynamics of the system. The next step is to
implement this model and use simulation to validate it and design for an optimal set of parameters.

Finding shear and direct stress from bending and shear forces The result of the above
calculations is the moments and forces at the joint between the beam and the column and using BM (&)
and SF (&) at any other section in the beam.

The next step is to use these to obtain complete description of stress state at the section. Due to lack
of time finite element analysis was not performed. Therefore, basic beam theory equations were used
for stress calculation. Care was taken to insure that the beam cross section selected had thickness not
less that its width. Having a thin beam would require analysis using plate theory making it much more
complicated. The disadvantages of this method is that the beam was much heavier than needed if thin
beam was used, but the advantage is that the stress equations used are known to be valid in this case.
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Given the moments M, M, M. and the forces F,, F,, F, all the cross section, the following equations
were used. These equations assume a rectangle beam cross section of thickness A and width b and that

h>b
M,c ]Wz%
Omax = =1 3
Iarea ﬁbh
- Vi
max — 24

Torsional stress was not fully developed in this design since it is a rectangular cross section and would
require finite element analysis. The beam is expected to fail due to bending moment M, and this is what
the rest of the analysis address. Future analysis of stress concentration will use finite element analysis
and will take torsion stress into account.

3.4 Column dynamic analysis

In the above section the constraint forces in the beam/column joints were found. These are now used as
external forces on the column with an opposite sign. Free body diagram is used for the column in order
to find the constraint forces and external loads acting on the column. The following diagram shows the
free body diagram used

These loads are solved from
solving free body for the
beam. Sign change is used.

Y
-

s T~
J hY

These loads are ! J,*’ M W \
unknown for the column. — wel !f

’ M
| * o
Solved for using balance T+| |/'v /] column-} ' ¥
equation — / 'v\
T | 4
|

A AN s e

\

\ .\“"‘- —
~ - Mu-‘e:’dZ = N @

T N g

——

Column dynamic load

Figure 15: Dynamic load balance between column and external loads

Taking moments at the joint between the column and the ground
H
T + Myetaz — Mwera + <—5k X _F'Lueld) = Mcolumn

Solving for the unknown constraint force N and the external torque T

H
Muyetaz +' T = Mcolumn — (51( X Fweld) + Muyeld

The torque T is unknown at this stage and has to be determined by other means to obtain complete
solution. This is the external torque needed to accelerate the column during ramp up and to decelerate it

during ramp down phases. Combining all the unknowns into one term called M ¢143, the above reduces to

H
Muyetazs = Meolumn — (Ek X Fweld) + Muyeld
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The balance equation for forces gives

N — ]\'fgk — F“v(gld =0
N = Mgk + Fuyeia

Now that all loads acting on the column are found, bending moment and shear force diagrams can be also
be made or finite element analysis used in order to determine the stress state inside the column at every
section.
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4 Simulation of the dynamic equations found

4.1 Review of the simulation

The simulation accepts as input all the parameters shown in table 1 on page 11. The goal of the simulation
is to verify visually the dynamics and to allow the selection of correct sizes for the structure and to insure
that the acceleration does not exceed 6¢g using the selected parameters. Based on the simulation, one
optimal set of values was selected and given in the conclusion section. The simulator displays tables
showing all the current values for stress and moments found at the beam/column joint. It keeps track of
the maximum stress values reached and uses these to determine the maximum stress using the equations
shown above.

This diagram shows an overview of the user interface. This software can be run from the project web
site located at http://12000.0rg/my_notes/mma_demos/EMA542_project/index.htm

Table of dynamic loads and

moments of inertial for the Table of critical section at the joint. Bending
three rigid bodies and shear force and current and maximum
stress values reached
Dynamic loads
jmass (rom) M, (Nm) [ M L M 5 F ; Gpm’)| & L
33500 (—83375.4[+07745.6 |+0689.6.6|-07139373 |-B3 7013 1 .6 [OOT T390 6.9
Controls to Stop/Start [cabinet U351 —OTOR [+ 00059 T [+ 001455 [~ 001285 3 [DI3915.0 [-DUT055 3 [W0T45.5 356 [000T355
And pause and step oo [T7.T00 <0000 [0 0 [+ U373 2.3 [~TRRRRA0 [~ R 0| L B g ipie L e g ik e R
And ramp down the e iokt eion bamsoies Jon)
ride
—
I — b5 e 1y Rampdown
User inout & fabioet weight = f———  0850. 1 (03825 kg) button 3D
rin — . .
Sed‘f putto e fjoen o simulation of
m I uminum - [ H
OA Y sstect Materiat | Al 6061-0 - the ride. Can
design < bea hickness — f— 130 m I~ Reset design control time
arameters e s L R i
P ot PO to optimal step and all
n ntri . n
and contro " o v ng] =i parameters dimensions
simulation s — | s0ftnguc =
[beam opaciey ——— ] 10
02
0010. e
PG
- wi()  +0002.26 1
record 5 IoaE B — sy 467 s 5 e
ecords max .
T AN . A A
g reached, as ¢ ® AN / \
. £ \\WA _
well the time N / \;‘ \/ \ Velocity of
. 0f SN
reached and Acceleration = L ™ passenger
the of passenger, 3 2 g € s 0 o 2 4 O 3 © time historv
maximum time history. - .
passengers Time scale esrees cona i e 312 g ik nd
g N 7 =2
velocity adjustable i / N //
-z ;D / W /
g ; / . / \
: Vi
2/ l
f 7 H * \\\ TR

Time history of
beam angular
velocity

Time history of
column angular
velocity

Figure 16: overview of simulator user interface
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4.2 Simulation output, time histories and discussion of results

All these tables and results below are generated from the final design using the selected final optimal

parameters.
Dynamic loads
mass (ton) |M; (Nm) | My M F; (N) Fy F; I; (kg/m®) I I3
beam [10.400 —32963 4 |+01417.3 | +02086.9 [—003307 5 |—076914 6 | +000000.0 00104344 [0001373.0 |0010434F
cabinet [0.279 —00882.5 [+00038.0 [ +00008.4 [-0D00616.9 [+001760.5 [-011906.4 [0000422 [0000422 [000042.2
column [17.100 +00000.0 [+00000.0 [+00746.5 | +000000.0 |+000000.0 [+000000.0 |022602.2 (0226022 |003732.3

Figure 17: dynamic loads at the end of ride using optimal design values

critical joint section (beam/column joint)
M (KNm) | My M, F;(kN) Fy F; oy (MPa)| oy P 7y (k Pa) Ty T
current | +0099.060 |+0001.147 | +0009.734 | -0003.924 | -0075.154 | +0083.183 | +000.5%4 |+000.007 |+000.038 | -0003.887 |-0112.731 [ +0124.774
maxmum |+0175.514 | ~0007.630 | ~0009.134 | —0013.953 [-0083.740 | ~0107.003 | +001.055 |~000.046 | +000.058 |-0023.932 |-0123.610 | +0160.305 |

Maximum direct stress was due to pending
moment. Remained Well below the yield stress
for Aluminum

Figure 18: critical section current and maximum moments and stresses

Guard limit found by trial - o ss —
. ramp— P — X

used to stop the acceleration b: ':p_g'_ ) 550 m;ﬁ -

at. (passenger acceleration pabinet weight - | R

will reach the 6g using this beamlength ~ ——— |—5 350 m

but not exceed) select Material | Aluminum 6061-0 'l

beam thickness — |—— o 100 m > Optimal parameters
beam width J_ 1.00 - found by simulation
cabinet distance -—J— 300 m

W '—J— +0.20 rad/sec? EI

(5] '—J— +0.90 radsec’ EI .

Figure 19: optimal set of parameters obtained from simulation.

acceleration/velocity recorded
max gfreached (sec)|max mph
5098 +00012.1 [+1I870

Figure 20: simulator keeps track of maximum g felt by passenger to insure it does not exceed 6g
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First 15 seconds of time
history of passenger

acceleration data
|

Due to dynamics of
motion, fluctuation of
value of acceleration
remain in steady state

4

First 15 seconds of time

history of passenger
velocity data

{

x

corrent accelenstion 04.86 g tima 1312000 sec

an

i

S e b w

curment velocity 75.07 mjs 167.90 mph

fW"f \

cusrent column spin spead 02.16 (rad/sec)

current beam spin speed 0. 70 (rad)sec)

=

[

Showing column angular
velocity profile, showing
steady increase then it
reaches steady state

\
\

Steady
state

Showing beam angular
velocity profile, showing
steady increase then it
reaches steady state

Figure 21: acceleration and velocity of passenger time history and angular velocity time history of beam and column
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6g reached, 5 second
Ramp
down

current accelenstion OQES g time :4.14900)¢/

ramp
up Velocity profile

st valosity 33.88 mys 75.80 mph

80 M
)
&0 \ /
" 40 \
20
[
25 1] 5 10 15 20 25
time (pac)
curent beam spin spead 00.00 (rad/sec)
cumrent columan spin spead 00.00 (rad/sec)
g
6
4
2
o ! i
0 5 10 15 20 b

3 10 135 20 25

tima (22)

26

time (zac)

Figure 22: time histories using the ramp down option used after reaching 6g goal

Ramp
down

Column and beam angular velocities time histories shown effect of ramp down
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4.3 Discussion and analysis of results

The following table gives the optimal design parameters found by simulation of the derived model in order
to achieve the customer requirements.

parameter value description

beam mass 10.4 ton one ton is 2000 lbs

beam width 1 meters

beam thickness 1 meters

beam length 3.5 meters

cabinet mass 560 1bs includes 2 passengers, seating, frame and factor of safety
cabinet height 1 meters

cabinet width 1 meters

column mass 17.1 ton

column cross section 3 by 3 meters

maximum bending moment M, | 175 KNm

maximum torsion moment M, 7.6 KNm

maximum twisting moment M, | 28 KNm

maximum shear force F), —15.96 KN

maximum shear force F), —85 KN

maximum shear force F, 107 KN

maximum direct stress o, 1.055 MPa Below tensile yield. Pure Aluminium has 10 MPa. and
maximum direct stress oy, 0.046 MPa Aluminium 6061-O yields at 200 MPa.
maximum direct stress o, 0.172 MPa

maximum shear stress 7, —23.94 KPa

maximum shear stress 7, —128.6 KPa

maximum shear stress 7, 150.5 KPa

Table 3: design output for loading and forces using optimal parameters found

It was found that in order to be able to achieve the 6g limit and not exceed it, the acceleration have
to put turned off well before the 6¢ is detected. This can be seen by examining the passenger acceleration

expression from above, which is

2

b b b
a=i <*O.J_<, cosf — Ewg sinf) — wpLs — w§§ sin@)

b b
+j <2§wpws cos 0 + wp§ sinf — wﬁL,;)

+k <—ng sinf — gwf cos 9>

We can see that, by letting ws and w, then the acceleration becomes

b 2b
a:i<7§wfsin97wéfsin9> +

2

j <2gwpws cosf) — wf,Ls> - kgw_f cos 6

Even though from now on the angular velocities ws and w, are constant, this does not imply that a will
become constant. Since 6 is still changing in time, then a will still fluctuate in periodic fashion from now
on. Hence the passenger acceleration can still exceed 6g if we were to turn off the ramp up acceleration
too close to 6g. For this reason the value the acceleration was turned off at 5.8¢ in order to final value of
5.98¢ as felt by the passengers.
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4.4 Cost analysis

Based on the above result and using the mass needed, the following table gives a summary of cost for
construction of the ride

item cost description

cost of Aluminum alloy 6061-O $0.8 per 1b. | can depend on market conditions
beam material cost (10.4 ton) $16,000 (10.4) (2000) (0.8)

column material cost (17.1 ton) $27,360 (17.1) (2000) (0.8)

cabinet material cost (500 Ib.) $446.5

Labor cost for construction $12,000 300 labor hrs @ 40 per hr.
Equipment and labor insurance $10,000

Management cost (one manager) $4,000 50 hrs @ $80 per hr.
Electric spindel motors for column and beam | $10,000 2 @ $5,000

Total cost $79,806

Table 4: cost estimate

The major part of the cost is for material. This is due to the use of thick beam and column. This
allowed the use of basic beam theory stress analysis. This cost however can be reduced by the use of
plate theory or numerical finite elements methods in order to be able to safely used less material and
reduce the thickness of the beam and column while insuring accurate stress calculations.
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5 Conclusions of results and future work

The final design given above meets the requirement specification that the customer provided. Using
simulation, it was possible to validate the equations found and to confirm that the beam/column section
is safe for the selected optimal parameters.

The selected parameters allow the passengers to reach almost 6g in 12 seconds using a ride that consist
of two noncollinear angular velocities. There are many different profiles that could have been selected to
achieve this goal. The set selected reached the closest to 6g without crossing over and that is why it was
selected. The following is the final design used

parameter value description

maximum g reached 598 g After many simulations this was selected.

time to reach maximum g 5.8 sec.

maximum passenger velocity reached | 180 m.p.h. calculated using finite difference from acceleration data
steady state w), reached 2.16 rad/sec. This is the column angular velocity in steady state
steady state w, reached 9.7 rad/sec. This is the beam angular velocity in steady state
initial ramp up w, 0.2 rad/sec.? column supplied ramp up angular acceleration

initial ramp up wg 0.9 rad/sec.? beam supplied ramp up angular acceleration

ramp down w, 0.2 rad/sec.? symmetrical shape to ramp-up as seen in above plot.
ramp down wg —0.9 rad/sec.? | symmetrical shape to ramp-up as seen in above plot.

Table 5: ride statistics based on optimal design parameters

The cost estimate is $79,800. The material cost was the major part of this cost. This was due to the
use of simple beam theory for stress analysis equations which required the use of a thick beam in order
for the stress equations to be valid. The maximum stress of omax = 1.055 MPa reached is well below the
yield strength of Aluminum. Therefore, the use of finite element stress analysis or advanced plate theory
would have allowed the reduction of the size of the beam while at the same time using accurate stress
calculations. This would have resulted in lower cost in material. If awarded this contract, finite element
would be used in order to lower the cost of material.

5.1 Future work and possible design improvement
The following are items that can be improved in the current design given additional time to perform

1. The beam and column weight can be reduced significantly by using plate shell stress analysis. This
should reduce the material cost. This design used simple beam theory stress analysis which required
the use of thick beam. This caused the beam to become too thick. It will be possible to have thinner
beam and still not reach the yield strength. Using finite element method will allow this investigation.

2. There are additional possible cross sections to consider for failure analysis. This design concentrated
on the most likely section based on beam theory. Using finite element software will allow one to
more easily analyze the full structure more easily than was done in current design based on simple
beam theory.

3. Torsional and twisting stress analysis were not addressed in this design due to time limitation. It is
however expected that the beam will fail in bending.
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6 Appendix

6.1 Use of simulator to validate different design parameters

These are selected screen shots showing different configurations tested during simulation in order to find
an optimal one. These show the effect of changing the dimensions of the structure and the spin rates.

Figure 23: Changing the structure dimensions to select optimal design using simulation
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3.1 First exam

Kinematic equations .
V=R + p. +@ x p

s=Vit+%at2 NP P R
Vi =V;+at a=R+pr+2(wxpr)+<wxp)+a)x<wxp)

S = %(Vi + Vit o is absolute angular velocity of rotating frame

) Length of pendulum changes with time

2 2 Length of pendulum fixed

Vi = Vi +2as

X

<
axbk

X

. Velocity diagram acceleration diagram
Y cos(5 —0) =sind
z cos(5 +0) = —sind L cosx = —sinx

Velocity diagram acceleration

jxk=i ./ B 2 R
xi = ] sin(% —6) = coso Ahen + o xA
Ix] =
ds = dX2 + dy2 sin 24 2sinAcos A
3 5 cos24 2cost A—1
% = ((ji_)t( 1+ (%) sin Asin B 5 (cos (A — B) —cos (A + B))
cos Acos B 5 (cos (A — B) +cos (A + B))
k = d_2y+ sin Acozs B 5 (sin(4A— B)+sin(A+ B))
dx2 (]_+(ﬂ)2)% _ _ i _
dx sin(a £ b) sinacosb t cosasind
1 coz{a+xh) | cosacosh Fsinasinbd
% , sin’ a %[1—cos?a]
a =S e+ “;-¢€n
-3 e cosla = % (1+cos2a) | sin(A=90) =cos A
- S e cos (a=00") = Fsina | sin(A+180) = Tsin 4
p = ;‘nl cos(a:QDr’):cosa cos (A+180) = —cos A
_ S
f pn £q R
S=a-e ? - 2a
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3.2 Second exam
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3.3 Final exam

v=eoxr Angular momentum of a rigid body
=X V=0X(WwxXr)

hg = T (about the mass center G)
hp = Iy (about the instant center A

a=axr
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€1 €2 e3
oxh=| o1 w 3
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41 HW1

411 Problem1

EMA 542
Home Work to be Handed In

1)  The cars of an amusement-park ride are attached to arms of length R which are hinged to a
central rotating collar that drives the assembly about the vertical axis with a constant angular

rate @. The cars rise and fall with the track according to the relation z = g(l —co0s26).

: : i i1
Determine for each car as it passes the position 6 = 7 rads:

a)  The expressions for the -, 8-, and ¢-components of velocity V.
b)  The @-component of the acceleration @.

Your answers should be in terms of A, R, and @.

4111 part (a)
In spherical coordinates the position vector and velocity vector of a car is given by
7= Re, + 0¢y + e,
U= R?r + RQD?(P + RQ sin szg
Since R is constant, then R = 0. It is also given that 6 = w. The above becomes
U= Rgi)?(p + Rw sin (Z)E)Q (1)
Given that

R'(77 )—h(1 2 cos 26)
sin | 7 qb—z cos

cos (cp) = % (1 -2cos20) (2)

And taking derivative w.r.t.

. 2h . .
—-¢psing = EQ sin (20)

L —2h6 sin (20) 3)
~ Rsing
Substituting the above in Eq. (1) gives
—2h0sin (26).,

U= ¢, + Rwsin ¢péy

sin ¢
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hence ¥ becomes
~2h0 sin (20)

. h
sin (arccos (ﬁ (1-2cos 26)))

U= €y + Rwsin (arccos (ﬁ (1-2cos 26))) ep

When 6 = —,sin (20) =1 and cos 26 = 0 the above becomes

4 7
N 2hw h 2
U= e¢ + Rwssin | arccos

. h 2R
sin (arccos (E))
sin (arccos (x)) = V1 — x2

N 2hw h? _,
U = —— =0, + Ran[1- 1€y
1

_R

h2
and the ¢y is Rw4/1 - — and the ¢, component is

But

hence the above becomes

Therefore, the ¢, component is
32
1-—
4R?
zero.

41.1.2 Part (b)

The 6 component of the acceleration is given from eq. (1.30) in the class handout book as
ROsin ¢ + 2RO sin ¢ + 2RO cos ¢
Since R = 0 and 6 = 0 (angular velocity is constant and the length of the swing arm is also
constant) the above expression reduces to
2R¢pw cos ¢

—2hw sin(20)

[
Reing and ¢ = arccos (ﬁ (1-2cos 26)) , the above

From Eq. (3) in part(a), using q/) =
simplifies to
—2hw sin (26)

2R p
Rsin (arccos (ﬁ (1-2cos 28)))

f (1 -2 cos26)
r — J—
@ COS | arccos > COS

—2hw sin (20)

2R -
Rsin (arccos (ﬁ (1-2cos 28)))

h 1-2cos260
w(ﬁ( —2cos ))

When 6 = g,sin (20) =1 and cos20 = 0, the O component of the acceleration becomes

—4hw a)_h
sin (arccos ( 2};)) 2R
—4hw a)_h
2| 2R
J-ts)
-2 1202
R |- %
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41.2 Problem Al

EMA 542
Home Work to be Handed In

1A) The cone rolls without slipping such that at the instant shown, @, = 4.0 rad/sec. and @, = 3.0
rad/sec2. Determine the total angular velocity and angular acceleration of the cone with respect to the
fixed xyz coordinate system. Note that it is easiest to use velocity constraints to fulfill the no slip

condition.

Let L be the side length of the cone (2 ft. in current diagram) and &, the angular velocity
vector of the cone around its own axes, and r the cone base radius. Let @y, be the angular
velocity of cone w.r.t. the rigid frame XYZ (inertial frame), Hence vector additions gives

Drotal = D¢ + @ 1)
No slipping implies
Lw, = rw,
Or
L
We = —wWy

Hence Eq. (1) becomes

—

. L
Wrotal = 1+ 7 wzk

Since % = tan 20, then r = L tan 20" and the above simplifies to
Dot = |1 + !
Wrotal = tan 200

= 14.989k

) 4k

The total angular acceleration of the cone is

But @, = 3 rad/sec? hence
Byogy = 11.241K
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41.3 Problem 3

EMA 542
Home Work to be Handed In

2)  The motion of a particle P along a fixed path is defined relative to the fixed xyz coordinate
system by the parametric equations

R=15m
¢=2trad

z=fm
_ where ¢ is in seconds. At ¢=0.25 seconds, determine:

a)  The binormal unit vector é, in xyz coordinates.
b)  The speed v and acceleration v along the path.
¢)  Thecurvature K.

d) Therate 6 at which the normal and tangent vectors rotate within the osculating plane.
€)  Why is the binormal unit vector parallel to the vector ¥, x 4,?

z

The position vector 7 can be written as
7= Rcos ¢i + Rsin ¢ + zk
Taking derivatives w.r.t in the inertial frame, and since the unit vectors ?,7,? do not change
in this frame, the following result is obtained
B = Rcos ¢i — R sin ¢i + R sin ¢ + Rep cos ] + 2k
Since R do not change with time, the above simplifies to
B = —Resin i + Rep cos ¢j + 2k
and the acceleration vector is
@ = —Rep sin ¢pi — Rd sin i — Rpep cos i
+ R¢p cos ] + R cos ] — Rpp sin ¢f
+ 2K
Since R do not change with time, the above simplifies to
@ = —R sin ¢i — Rpp cos i
+ Rp cos ¢ — R sin by
+ 2K

Since ¢ = 2t, then ¢ = 2,¢ = 0 and z = #2, 2 = 2t,2 = 2. Substituting these values in the
above two expressions for velocity and acceleration gives

T = —3sin (26) 7+ 3cos (2t)] + 2tk

7=—(1.5)4cos (28)7— (1.5)4sin (2t) ] + 2k

= —-6cos (2t)?— 6sin (2t)7 + 2k
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At t = 0.25 second,
¥ = -3sin(0.5)7 + 3 cos (0.5)] + 0.5k
= —1.4387+2.633]+ 05k  [ft/s]
7 =—6c0s(0.5)7 — 6sin (0.5)] + 2K
= —5.266i —2.877]+ 2k [ft/s?]

41.3.1 part(a)

_ —1.43817+2.633] + 0.5k

V1438 +2.633 + 0.52
_ —1.43817 +2.633] + 0.5k

3.0414
= —0.473i + 0.866 + 0.164k
and
ﬁf = (E)'E)t)?t
But
(@-2,) = (-5.2661 — 2.877] + 2k) - (~0.473 + 0.866 ] + 0.164k)
= 0.329

Hence

@, = 0.329 (~0.4731 + 0.866 ] + 0.164k)
= —0.1551 + 0.285] + 0.054k  [ft/s*]

Since @ = 4, + a,, then
a,=a-a
= (-5.2661 - 2.877] + 2K) — (~0.1557 + 0.284] + 0.054k)
= -5110{ - 3.161] + 1946k [f1/s*]

Hence
L @ _ —5110i-3.161] +1.946k
Tl T Vh1102 + 31612 + 19267

= —0.809 — 0.5] + 0.308 k
Hence
e, =¢ Xé,
= (~0.473 + 0.866 ] + 0.164k) x (~0.809i - 0.5] + 0.308 k)
H i K

=1-0.473 0.866 0.164
-0.809 -0.5 0.308

=7(0.866 x 0.308 + 0.164 X 0.5) — ] (~0.473 X 0.308 + 0.164 x 0.809) + k (0.473 x 0.5 + 0.866 X 0.809)
= 0.3497 - 0.0127] + 0.937k

4.1.3.2 Part (b)

The speed and acceleration was found above as
U=-14387+2.633 +05k  [ft/s]
d=-5266i-2877]+2k  [ft/s?]
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4.1.3.3 Part(c)

since
-2
) ==
P
MES
P
Hence

o’ |—1.4387+ 2.633] + 0.5k|2 14382 42,6332 + 052

S _ _ L= =1.465 t
P |,] |—5.110i—3.161j+1.946k| V5.1102 + 31612 + 1.9462 Ig

But

4.1.3.4 Part (d)

At t =0.25 sec.
|-1.4387 + 2.633 + 0.5|
1.465

V14382 +2.6332 +0.52

1.465
=2.076 [rad/ sec]

41.3.5 Part(c)

But ¢; x ¢, = 0 and ¢, X ¢, using the right-hand rule is ¢, hence

3x7 = [d|[2,[7,

This is a vector parallel to ¢, of magnitude [7|a,|
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41.4 Problem 4

Homework #1
EMA 542, Fall 2007

Problem #1

,'/
@f@ o
W

315 The flywheel of the gyroscope rotates about its own axis at w, = 6,000 rev/min. At
the instant_ when 6 = 120°, Ehe inner gimbal support is rotating relative to the outer
gimbal at 6 = 6 rad/s and 6 = —90 rad/s?. The corresponding rotation of the outer
gimbal about the horizontal axis is @, =10 rad/s, @, =100 rad/s2. Determine the
angular velocity and angular acceleration of the flywheel at this instant.

Please give your solution in terms of components in the reference frame illustrated above
that is attached to the inner gimbal. The y axis is oriented along the axis of the pin joint

connecting the inner gimbal to the outer gimbal and the z axis is aligned with the axis of

rotation of the flywheel.

There is local frame of reference attached to the inner gimbal as shown in the following
diagram
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€x, 6y, 8, are unit vectors that are local to the inner gimbal.
rardry . . .
I,],k are the inertial unit vectors.

Given these, the angular velocity vector of the fly wheel can be written as (in terms of local
coordinates system)

— — . -
Wrpheel = W1€x — H?y T wse;, 1)

Hence, taking derivatives

awheel = d)lgx + wl?x - é?y - gé)y + (1')2?2 + a)zgz

But @, =0 then

N .o RN > A N
Wepheel = @16y + W16, — €, — O€, + wye, (2)
But
€y = w,, X &,
= (—9] + a)l?) X €,
= (—6] x?x) + (a)lz x?x)
= ¢, —sin 0¢,
and
¢y = w,, X¢,
2
= w1l X ey
—
= w16,
and
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€, = w,, X,
= (—6] + a)ﬁ) xe,
= (=0f x2,) + (w17 x2,)
= —ggx sin a)lt + a)ﬁz

Assuming t = 0 is when the instance taken, the above becomes (we are not given time)

= —
€, = w1e;

Hence Eq. (2) becomes

Wopheel = W16x + wie, — 6?]/ - G?y + wqe,

= 1€y + Wy (6?2 —sin G?y) - é?y -6 (a)l?z) + wy (a)@’z)

= d)@x —?y (6 + wq sin 6) + a)za)]?z (3)
6000(27)

Since w; = 6000 rev/min or —_— = 2007 rad/sec, w; =10 rad/sec, @ =100 rad/sec?,0 = 6
rad/sec,0 = —90 rad/sec?, 6 = 120°,then Eq. (1) becomes

5wheel = 10@; - 6?y + 2007’(?;

| heet] = \/102 + 62 + (200m)?
= 628.43 rad/sec

and Eq. (3) becomes

N

@ 4o =1008, — 2, (=90 + 105in120°) + ¢, (2000m)

—> — 3 —
=100e, — ¢y (—90 + 10%) e, (20007)
= 100¢, + 81.34¢, + 6283.2¢,

Hence

| peet| = V1002 + 81.342 + 6283.22
= 6284.5 rad/sec’
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4.1.5 key solution

EMA 542
Home Work to be Handed In

1)  The cars of an amusement-park ride are attached to arms of length R which are hinged to a
central rotating collar that drives the assembly about the vertical axis with a constant angular

rate @. The cars rise and fall with the track according to the relation z = g(l —cos26).

. . . n
Determine for each car as it passes the position 8 = 2 rads:

a)  The expressions for the 7-, 8-, and ¢-components of velocity ¥.
b)  The 6-component of the acceleration d.

Your answers should be in terms of 4, R, and @.

NOTICE: This MATERIAL MAY
BE PROTECTED BY
Copyright Law (Title 17 US Code)
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9/i5°/93
EMA Y2 = Serinicac Coonw. IZx
2/165 2. RE,
7. RE R & AT . 3:x RE
. ro= R e, =+ S = e -+ 2 ~
— -
. -l - o
= Wa X R <. R
(-l_)i = Q /ﬁ + P g@ & = W = COAST,
2
4, s

h - ) TAKE TiMid
; ( b= ced Z@ HIFACVATIVIZ] < NS

DOTH Sivid
h siwnl2e o

:j ¢= -hés‘Nze @6:1} CO.Sq'): 2_[1(.(
R SthJ ’
N s ] .
= - h
) > ¢ >

68



41. HW 1

CHAPTER 4. HWS

SN
Vv

...Z_

-

— * PR ."N.g ¢°e.A
s = 6603¢er-6.31¢ ¢ + o

- 5 . - s Y o a -
W, X /@er = [ecos¢> e,.—6~wN¢e¢,+¢@G]x Ker

= Row \/]-(Zh“)zé‘e - ____A__("_)__ €¢
Ji-(8)?

Véz Rw i’ Z'L"n)?—
VCP = - ho on V‘P = L\w

Ji-(8)° Ji- ()"

UlingG 4} (N FIGUREE

=
®)

69




41. HW 1 CHAPTER 4. HWS
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<<|-
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EMA 542
Home Work to be Handed In

1A) The cone rolls without slipping such that at the instant shown, ®, = 4.0 rad/sec. and w, =30
rad/sec2. Determine the total angular velocity and angular acceleration of the cone with respect to the
fixed xyz coordinate system. Note that it is easiest to use velocity constraints to fulfill the no slip

condition.

73




41. HW 1

CHAPTER 4. HWS

5/%/97

Soc vrron To T2 How La
z
/Vo JeiP
S U)Z - ‘/V‘/J
N Cs
Q — ’3 o R ~
. W, = 3/ =
UJ, w-z L ‘h
i w:s J w&
-- "\R
Z -y e=20° |
2 © V, = O
6-{5 = S Pen ANGCUCAA Uizeoc(TY N3 7o A O
Sés” CONMNDITION
_{_\: T ToTAL ANGUL AR Uicoc(TY o0F CoMNA
co— — [N
n = w, T+ Wy @
—
VQ = ‘QZLCO.}ZO: L = 2co320
-
= Va = 'Q.JchcJ 20 X (©)
1 N - -
Loox pown b — s Vy = R, =
S AXi3 Q 7
. G Rz L 7av 20
ASSUIWI:: -{2.5 {
IN POS e v R =
S el il [ -
) VQ - Lﬁ-,; 7an 20 3 @
ODiRiECTrION
()

74




41. HW 1

CHAPTER 4. HWS

-2 -
/VOT'E. THAT _ﬂ.s i3 THE TCTAL AMGCOCAA
vicociTyy oF THE coni AconveE THE S AXiS.
AC30  ASS UM Wy N~
- 3 POSTIVE DOiRFECTION
s = N = . .SiNZO-i-Culs
QJZ @ > 3 p:4
oA
FOQUATING (@ » (@) :
> -w, L ces20 = L L, Tan 20
) - Wy cc3y2C = (C.JZ SINZO’fUS)nNZO
2 ; 2 : 20
= =&, ce3 2C = W, sev 20 + Wy 3N
oA - Wz = g ASSUMIZD N ©)
Sra 20 CIAON G OrrRicTien
c— ;9.
- "‘).3 = - C(.)z e'_‘s hd ";g_z-_ [Coj 205’7 SN 20/&]
S/ac 20 S/An20
— o . ry
oR Wy = - Wz €oT20F - W, A

75




41. HW 1 CHAPTER 4. HWS

- W, <oT 205

=}
€
N

4

€
(7)

il

on A= —/0.99 ~/s

, A
Now comroTe Sl

- — -
= W, + Wy
_; N - — —— —
W, = W, A+ W, % W, Dy, = O
. @, = DA @
) A G x %] 1
&)3 = ("J_) e\s -+ w‘% X w5 wws = (’.Jz
. N - _ ” -
= - Wy e + Cdz A x wz [“‘ coT ZO} - Wy _,Q_]
S/in 20

o« . 2 )
= TW, coT 207 - W A o+ w, cor20x

i /€ cor20xr - 3ceT203 - 3.4 &

i

/€Ccor 203 - 3cor ZO.j'

®
@
{'}
ot

943, 96T - $£.297F

76



41. HW 1 CHAPTER 4. HWS

EMA 542
Home Work to be Handed In

2) The motion of a particle P along a fixed path is defined relative to the fixed xyz coordinate
system by the parametric equations

R=15m
¢=2trad
z="m

where ¢ is in seconds. At t=0.25 seconds, determine:

a)  The binormal unit vector €, in xyz coordinates.
b) The speed v and acceleration v along the path.
¢)  Thecurvature K.

d) Therate 6 at which the normal and tangent vectors rotate within the osculating plane.
e)  Why is the binormal unit vector parallel to the vector v, xa,?

77




41. HW 1

CHAPTER 4. HWS

EMA 592 ~ Hompwos To: 88 Hanoeo In - % 5
; | ., 2
ﬁ\ = /-f ¢: Zf 2 = L=
e < = 0.25 sec R; /.5 ¢= 05 2 =.0625
IN CYCINDRICASC COOR DiNATRI
'\7 = R E& -+ R ij_é‘? + z /g- @
P: = O ¢’ = 2 z2 - 27
5 Vs RS + 24 = 38 + 2t A4 6
y .
\\ E¢ = ~Sing X 4 COJ¢-;-
\ .
__) () :e‘P 2 7: ~33n¢ T cho.}¢é‘ + 2t 8 @
?
N \ - —
C o R 2
[ VI
2 2 > 2 i/z
V = [.3 .Snvz¢ -3 CcJ"¢ + Y¢ ]
! . . i
= [ 9+ 9¢ ] * @
@ -c = ‘/‘1 VvV = .3.0"// H/;

78




CHAPTER 4. HWS

41. HW 1
._2_
- E“e = ['.38:N¢_z + ,3(,0)135 + Zf./g.] @
. iy
I_ 9 + qe2]*
| - -
@ € = ¢ e, = =, Y73 < +.?CC-‘}' +./694 @
EQ@ D V = “3¢'c03¢: - .3¢.JIN¢;- + Zi - o @
” 2 - ~5.2C51 - 2.%775 + 2.4 ®
@ € = 9 G = . _“ - . 7 e
|3t| = & - —é'{ = 2.970 - 2.9%/ + .327%
=-) a_e - 0-32? /‘\/Sz
o A, = .32%e, = T./5FT 4. 2P93 , 059 A @
5 @, = &-Qq, = (‘5~26‘3+./5-5')7+(‘2.P77'°297)5
+ (2-‘05"‘/);’2
A = TSor - 36T r L 996 _4
ay = [(5 1o)? o (3.060)° 4 (1. 99¢)*] 2
an = €.31C A/f5 T

79




41. HW 1 CHAPTER 4. HWS

—-3_
v? C.3/C C3.09)
QN = —_— > . =
P /
/ -
) P = /. 9CY M K= = = _C¥3n
AdlJo V = /Oé -_D e - ,3,,07/
| /. HCd
@ = 2.077 /s
- — -
Ao | eb = efKQN
2N = E:‘. = -, FO07 s - ,:5'00; +..30}“/?: @
Qs
€. xe, = [*- Y735 +.FCET «,-,/gqj]
¢« X"~ = . 7
X ['. F07x - 5007 +.,30Pj,] - gb
e E = ,2.37J -+ _/‘/Ci v . 7o/i v, 2CTT
b

- ./.3,37- , . O0P2 X

80




41. HW 1 CHAPTER 4. HWS

_Q/__

Coc.c‘/{c'ri/vs SOCVT/IiONS |

"éb - .399 % + .0/3F -~ . 939 4

®© ©

) ) ® , =
3.09/ m/s5 v= q, = 0.32% ~/s
i -4
@ '< - Oo G PJ ~
@ & = 2.077 rfs
— b
@ Lorn v AN O Q THiE UhliceciTyY Anwg
P P
ACC LA TIoN oF /9 RESPECTIVELY, AL WAYS
4
L7iE /M OICULCATING PLANE 774/7:« cAesd

PAvpoCT /5 T HIERE FORE AoOAMAL ToO 7z

~~—
TGS CULATNMG PLANIE AN PANA C i€ yake) eb

81




41. HW 1 CHAPTER 4. HWS

Homework #1
EMA 542, Fall 2007

Problem #1

0 I | /‘)’

G
<

,'/
,,;;@ ey
7

315 The flywheel of the gyroscope rotates about its own axis at w, = 6,000 rev/min. At
the instant when 6 = 120°, the inner gimbal support is rotating relative to the outer
gimbal at # = 6 rad/s and § = —90 rad/s%. The corresponding rotation of the outer
gimbal about the horizontal axis is w; =10 rad/s, &, =100 rad/s?. Determine the
angular velocity and angular acceleration of the flywheel at this instant.

-~

Please give your solution in terms of components in the reference frame illustrated above
that is attached to the inner gimbal. The y axis is oriented along the axis of the pin joint

connecting the inner gimbal to the outer gimbal and the z axis is aligned with the axis of

rotation of the flywheel.
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Givea:w, =6000(Z0) md/s w =0
whea 8=120":6=6rud/’s, 6=
- %o rnd/sj w,=10 rad s & =100 rad /52
Find w ¢ 4 at this jastand.

Solution: Fix #yz o the Flyw‘\erf’
ad fix x'y'2’ #o the owler grmbil, Select jasfonfaneous
orieatutions suck #hat J'=) ¢ T 120, Thea

we w, f-éj'fwt b, w'zwl % =c..'.;’.f-'éj'- é(&!'ﬂi')*%(‘;‘b
Setoa120° T =xco330° T~ v 30“&-) =l

W =w, (0.8660C -0.50k) —'aj»w,j =8.6¢.I-q+623.3in1/s <
w'=w,(0,86607 - o,soz) 28esT -5.0k

Z = (0.8660T -0,50k) -8 7 - 8(8.66T-5,0k)x)

HB.66T- 6] t6233E)2 T =-3737 - 5351 -102F rad/sr
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42 HW 2

421 Problem1

EMA 542
Home Work to be Handed In

3) A motor and attached rod AB have the angular motion shown in the figure below. A collar C
on the rod is located 0.25 m from A, and is moving downward with a velocity of 3 m/s and
an acceleration of 2 m/s2. Determine the velocity and acceleration of C at this instant,

Lo w,=5radss
dﬂ; @, = 2 rad/s®
] . i

’,f' e
2,
Y
0.25m y
Wy =3 rad/s
gy = 1 rad/s?
The local body coordinates frame is as follows
Z
z Y
\ 0]
\\ ¢
\
\ 2l
\ /
\ Y
\
7
7
7
S0
//
X x’
C

Note on notations used; TC/ois vector of point C in space. This vector originates from
point O to point C.

O always represents the inertial frame of reference. 7C/ 4 is a vector from point A to point
C. In this problem there are two frames of references used. The inertial frame of reference
XYZ whose origin is O, and the local body frame of reference xyz whose origin is point A.
The unit vectors for XYZ are called 7, j, k while unit vectors for local coordinates frame are

- -

ey ey,a. The following is a list of complete notations used in this problem

1. TA/ois vector of A
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2. 7C/O is vector of C

- .
3. 7 ¢ya is vector from A to C

- , . . — :
4. 1 ¢4 relative velocity of position vector r ¢4 as seen in local frame of reference

5 @ Ao is the angular velocity of coordinate system xyz, whose origin is A, as seen in
inertial frame XYZ

6. L is the length of the radius of the disk, which is given as 2m
7. Ly (t) is the current length from A of point C. At the instance required, it is 0.25m

z

Local coordinates frame

y
\
)\\ L1(t)
\
\
\
R
9/
X
Given the above, then, by standard vector additions
T'cjo=Tcgat Tao
Hence, taking derivatives
rco= Tca+t (a)A/O X TC/A) + 7 a0 (1)
Where
?A/O =Lcos¢i +Lsingj

And taking derivatives of the above
—;’)A/o = —Lq%) sin cz)_[ + Lc}b COS ¢7
The position vector of C written using local coordinates system is
7C/A = O?X —L;cos sz + Ly sin sz
Taking derivatives

7C/A =- (L1 cos 0 — Llé sin 6) E}Z + (Ll sin 0 + Llé cos 6) ?y (2)

And the following term is added to account for the fact that the local frame of reference
itself is rotating relative to the inertial frame of reference

- - - — . —
Wpi0 X Teja = wpk X (—Ll cosBOe, + L, sm@ey)

Substituting the above back to Eq.(1) results in

-

7C/O =- (L1 cos 0 —Llésin 6) ?Z + (L1 sin 0 + Llécos 9) ey

+ (a)pk X (—L1 cos 6?2 + L sin G?y)) + (—Lqi) singi + Lc}b cos¢j )
At the instance given, 6 = 0,L; = 0.25m, I:l = 3m/s, il = 2m/52,é = w,, = 3rad/ sec, 0= w,, =1

rad/sec,L =2 m, ?Z = k and ?y =j,w,=5 rad.sec,The above simplifies to
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To=-Lie, +Li0c, + (a)pk x (—LI?Z)) +Law, ]

= -3¢, +0.250,¢, - (a)pk x 0.25?2) + 2w, j

In addition, at the instance shown, ¢, = k and ¢, :7 (but this is only at the instance given.
In general it is not the case). The above simplifies to

_;’C,o = 3K +0.25w,,] - (%Z X 0.25?) + 2%7
= —3? + 0.25(1),,17 + pr?
= 3k +075] +10]
= 10.757 - 3? [m/s]
Numerically, the magnitude of the velocity vector is

= Vv10.75% + 9 = 11.161 m/s

N
T c/o

To find the acceleration, derivative of Eq. (1) is now taken
rco= Tcgat (CUA/O ><7C/A) + T 40

O L =N S .
a= rC/A+ CL)A/OX rC/A + C‘)A/OX 7’C/A+CUA/OX Vc/A+a)A/OX rC/A +rA/O
5 R =N Sy s
= rC/A+ a)A/oX TC/A +a)A/o>< rC/A+a)A/OX rC/A+a)A/o><(a)A/o>< rC/A)+rA/O

5 = 5 - - 5
=Tgat2|wao X T alt|@wao X Toa|+ wapo X (C‘)A/O X i)+ T a0 (3)

7(;/ 4 is found by differentiating Eq. (2) in the local frame giving
7C/A =- (L1 cos 0 — Llé sin 8) ?Z + (L1 sin 0 + Llé cos 8) ?y

—

(L} L] - —_ L] - (L} l2 —_

rea = —(L1 cos@—LlesiHQ) e,+ (Llesin6+L163in6+L16 cos@) e,
L1} . . . . L] -2 —
+(L1 sin@+ L;0cosO + L;0cosO+ L0cosO - L0 sin@) ey

At the instance given the above becomes

- —

= 2k +02509) k +(9+9+0.25) ]

~18.25] +0.25k
And
rca=-— (L1 cos O - Llésin 9) ?Z + (Ll sin O + Llécos 9) ?y
=075/ -3k
And

— i — . —
fcpa=0e,—LicosOe, +Lisinbe,

=-0.25k
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And
TA/O = —L(i) sin qb7 + L(i) cos ¢)7
b " .2 - - .2 -
7A/O = - (qusincp + Lo cosqb) i+ (ch cos¢ — Lo singb) i

Hence at the instance given

.2—> P g

rA/O :—L¢ Z +L¢]

2—) s
= 2wy i +2w,]

=-50i +4j
And
=5k rad/sec
And
= 2k rad/sec’
And

-

— — . -
rcja=0ey—LyicosOe, +LisinOe,

= —0.25?
Therefore, Eq. (3) becomes

a= rC/A+2(wA/OX r C/A)+(wA/Ox rC/A)+a)A/OX(a)A/OX TC/A) + TA/O

- (18.257' n 0.25?) i2 (5? x (0.757 - 3?)) n (2? X (—0.25?))

+ 5; X (5; X (—0.25;)) + (—50? + 47)

~18.25] +0.25k +2 (5? x0.75] — 5k x 3?) 507 +4]
—18.25] +0.25k +2 (5? x 0.757) 507 +4]

~1825] +0.25k +2 (—3.757) 507 +4]

= _107.57 +22.25] +0.25k

Hence

la| = V107.52 + 22.252 + 0.252
=109.78 m/s®
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4.2.2 problem 2

EMA 542
Home Work to be Handed In

3A) The circular cylindrical shell (shown) of radius R rotates about a vertical axis at the angular
velocity @ = 3t>. The shape of an oil line going from the axis-of rotation (y axis) to the outer

surface of the shell i's given by y :%(3 + xz) where the xyz axes are body axes described by

the rotating 7, j, k unit vectors as shown. Oil flows outward along the oil line at a constant
speed of s= 2.0 ft/sec. relative to the oil line. Determine the total velocity of the oil particle P
that is instantaneously located at 1.0 ft. radially outward from the y axis at time 2.0 sec.

Give answers in terms of 7, 7,k components. Use the equation A, = A +@, XA toget

your answer.

Note on notations used; 7P/Ois vector of point P in space that originates from point O,
which is the origin of the inertial frame of reference. O always represents the inertial frame
of reference. Hence TP/A is a vector from point A to point P. In this problem there are
two frames of references used. The inertial frame of reference XYZ whose origin is called
O, and the local body frame of reference xyz attached to point A which in this problem

happens to be the same as O point shown above. Hence the origin of xyz is A. The unit

vectors for XYZ are always called i, j, k while unit vectors for local coordinates frame are

ey ey,a. The following is a list of complete notations used in this problem
1. TP/A is vector from A to P

2. @ Ao is the angular velocity of vector coordinate system xyz, whose origin is A, as
seen in inertial frame XYZ

3. y(x) is the y coordinates of point P as seen in local coordinates system

4. x is the x coordinates of point P as seen in local coordinates system

Let p be the point, and as seen in the local frame xyz it will appear as follows
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P=(x,y,z)

y(x)

Using vector addition,
— — —
"poO= Tpat T a0
Where, the position of p expressed in local frame is

— - - -
rpa=0e,+x(t)e,+y(t) e,

-

:x(t)?x+%(3+x2) e,

ds = \[dx? + dy?
ds  |fdx 2+ dy 2
dt — \\at dt
~ \\at dx dt
~\adt dx
But d—i = (% (3 + x2)) = x, hence the above becomes

ds .
d_i = xV1 + x?

(4.1)

But

But % is constant and given by 2 ft/sec, therefore

2 =xV1 +x2

And since

Hence

Now taking derivatives of Eq. (1), and noting that ra 40 = 0 since the origin of the local
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—

frame coincides with the origin of the inertial frame, hence r 4 = 0

R R
r r

pa+ (wA/O X VP/A) + 7 a0 (2)

- (a'c?x n y?y) n (a) )] x(x(t) e, +y® ?y)) 10

P/O

N — —
At the instance shown, e, is aligned with i and ?yis aligned with j,hence the above
becomes

— —

T po = (a'ci +g]’) + (a)?x x(t)?) + (w?xy(t)?)
- (;27 +y7) —wx(®k
Substituting for x,1 in the above

= 2 - 2x = -
T pio = i+ j|-3tx(t)k
re (\/1 + x2 V1 + 22 )

At this instance, t = 2 sec,x = 1ft, hence
- 22 2= -

r =—i+—j-3@)k t/ sec

P/O 2 2] [f ]
=1414 i +1414j - 12k

il ()

=12.166 ft/sec

and

.
—

T pjo

4.2.2.1 Extra (finding the acceleration)

This is not required, but for practice. Now the total acceleration is found. From Eq. (2)
above it was found that

N N - - N
"po= Tpat (wA/o X VP/A) T 7 a0

Taking derivative of the above

.
—

"po= Tpat (CUA/o X r P/A) + (a)A/O X ¥pja+ @y0 X ( " pa+ (a)A/O X rP/A))) + 7 a0

= N = 5 N N = N N - =
T'piat |@Wa0 X T pa| T |{@a0 X Tpat @Wy0 X T pat+ @yoX ((UA/O X 7’P/A) + 7 40

= rP/A+2(a)A/OX rp/A)+a)A/O>< rp/A+cuA/o><(a)A/o>< rp/A)—l- rA/O (4)
But
- - 1 2\ =
rp/Azx(t)ex+§(3+x)ey
Hence
rp/A:J'cex+yey
And
rpa=xectye,
And

(ZA/O X 7P/A) =w(t)j X (J'c?x + ﬁy)

90



4.2. HW 2 CHAPTER 4. HWS

And
N — d 2__> - 1 o\~
W /0 X rP/A:E3t j X x(t)ex+§(3+x)ey
- — 1 —
= 6t x(x(t) ex+§(3+x2) ey)
And
o X Tpa=wt)jx(x() e +y®e,)
And

a0 X (@0 X Toa) =@ (®) ] % (a) )] x(x(t) e, +y® ?y))

And since A is attached to O, hence

"
—

T’A/OZO

5
Now the above is evaluated at the instance given where, e, is aligned with i and ?yis

aligned with 7, hence Eq. (4) becomes
N WL - o L - — 1 - - — — -
rpo=Xi+yj +2(a)j x(xi +yj))+(6tj x(xi +§(3+x2)j))+a)j x(a)j x(xi +yj))

At the instance shown x =1 ft,# = 2 sec and hence w = 3t*> = 12 rad/sec. Since speed of

particle is constant, then ¥ = 0 and y = 0, then the above simplifies to

rp/ozz(uj x(—i +$j))+(12j x (1 +27))+12 x (127 % (i +27))

V2

=2 ((127 X %7) + (127 X %7)) + (127 X 7)

+ (127 x 27) 112 x ((127 x 7) + (12 jx 27))

24 — - — —
- 2(——k) _12k +127 X (—12k)
V2

48 — - -
=——k-12k —144i
V2

— 1447 — 45941k
Hence

= V1442 + 45.9412 = 151.15m/ sec?

-
T pjo
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4.2.3 key solution

EMA 542
Home Work to be Handed In

3) A motor and attached rod AB have the angular motion shown in the figure below. A collar C
on the rod is located 0.25 m from A, and is moving downward with a velocity of 3 m/s and
an acceleration of 2 my/s2. Determine the velocity and acceleration of C at this instant.

Wy, =3 rad/s
@y =1 rad/s?

NOTICE: This MATERIAL MAY

BE PROTECTED BY
Copyright Law (Title 17 US Code)
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-SOGQTIO.‘\I 7O 3
ATTACH Xvz 7o PCLATIiCAM AT A
. - . -
& = _5-,/5 R = /Oj_ /'5> = ha 29 J'
V., = R =« Cx2 o+ 2
Sx2 s SA x 254 -O
(OATS rocan cog v |
P 2 > = ~ e r Ve ey
' /)r v
| > Y
= e --33 + (25)33
Y
C : ) _
| 2 /3 3 72 ‘;' - 3.4
T'»E) ] v
— . - —
ve = /0.75° 5 - 3.4

= 2(2)3 - 2 (s) °x

i
]
N
o
b1
.._
L
Ny
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-2 -

Sx (3x2) = sS4 x 0o = 0

5: 2./@ (j)(;: 2_:3,-)( .25 4 = O
ZSX,ZL = 2 (5)_4 x [ 73"5'—3_,{]
Z(:X';;‘V = -7-5.;

7 = (¢-re*)2, + (re +2ve) T,
.

1]

—[ 2 - <-25)(3)1]_:%. + [ (.25) (1) +Z(J)(3)15

25 % iv 23
/V‘ - .ij + <

3
5\1 < ["50"7-5']; +[‘I+i}‘.lf]3 " 25" %
[ZC ~ =525 X + 22 a"i + zé‘j{

94




4.2. HW 2 CHAPTER 4. HWS

EMA 542
Home Work to be Handed In

3A) The circular cylindrical shell (shown) of radius R rotates about a vertical axis at the angular
velocity @ = 3t>. The shape of an oil line going from the axis of rotation (y axis) to the outer

surface of the shell is given by y = %(3 + x2) where the xyz axes are body axes described by

the rotating i, j, k unit vectors as shown. Oil flows outward along the oil line at a constant
speed of s= 2.0 ft/sec. relative to the oil line. Determine the total velocity of the oil particle P
that is instantaneously located at 1.0 ft. radially outward from the y axis at time 2.0 sec.

Give answers in terms of i, j,k components. Use the equation ZR = A', +@,, XA to get

your answer.
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Seltiin To Lot @) wasins Ega(l=6d) omb(i=b6)
9.

Gl 7B ) = 127 % (12k) = - M4
:‘ - -h Y -
Wrep = 120 x (F437) = -2l 3§
v .2 [») _
2 = 4 S - = _ Y - o+
A = %2 <~ ;5% ~ zn%w(mm ‘1}' 3 |
\T € Y s -
l&’e\ug p = ['H\ﬁ)] _ h"‘ll DJG, = 2,822
. \y:l Dﬁi T A
P 1 A ~ - ~ a7 _ P ;: 35‘,}"“'
AWRR = Aliz ) xLVas +12d = 24t
|

\dp:—'!qs‘:‘ "‘z - q‘t‘;-(’j‘- J

96



4.3. HW 3 CHAPTER 4. HWS

43 HW3

431 Problem1

ENA S92

O

Huwr.

) . A disk D of radius 0.75 ft spins with an angular speed wy = 0.5 r/g
T with respect to the rigid but bent bar B. Tie angular speed wy is
Increasing at a rate wy = 0.25 r/s-z. Bedy B turns about a

vertical axis through 0 at a rate w =~ 1.2 r/s which is increasing
at a rate 5:1 - 0.6 r/sz‘ A fly 1s moving on the surface of the disk -
D from point ¢ to H, at a rate of 1.5 ft/sec which is increasing

. at a rate of 0.8 ft/secz. .Determine the absolute velocity and
acceleration of the fly when the fly is at point Q.

®

One rotating frame is used. The rotating coordinate system is attached to the rota-ting bar
shown above with axis xyz with its origin at point O. The vector p goes from point O to
point Q as shown in this diagram

97



4.3. HW 3 CHAPTER 4. HWS

p is vector that represents the position of point Q on the disk relative to the rotating
frame. Let current distance of point Q from center of disk be r(t) and angle be O () where
O (t) = w, as shown in this diagram

The position of Q as seen in inertial frame is therefore

To=R+p (1)

But E =0 here. And
p=(Ly+rcos0)i+ (-Lz+rsin0)j+ Lk

Hence the total velocity is

Vo=p +(w;xp) (2)
Where
p,= (i’cos@ - r@sin@)i+ (?sin@ + 70 cos 6)]'
= (fcos 0 — rw,sin 0) i + (7sin 6 + rw, cos 0) §
and

Wy X p = wif X ((Ly +7cos 0) i+ (~Ls + rsin 0) j + Lyk)
= —w1 (Ll + 7 COS 6) k + a)lei

Hence Eq. (2) becomes
Vo = (cos 0 = rwy sin 0) i + (i-sin 0 + rw, cos 0) j — wy (Ly + rcos 0) k + wLyi
= (fcos 0 — rwysin 0 + wqLy) i + (7sin 0 + rw, cos 0) j — wq (L + rcos ) k (3)
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At the snapshot, 6 =0 and 6 = w, and r = ? = 0.375 ft, and 7 = 1.5 ft/sec,L; = 2.5,L, =
0.7,L3 =1.4,w, = 0.5 rad/sec, w; = 1.2 rad/sec, Hence the above becomes

VQ :(i’+a)1L2)i+ra)2j—a)1 (L1+1")k

Now it is evaluated using the numerical values given

Vo =(15+12(0.7))i+0.375(0.5)j 1.2 (2.5 +0.375) k
= 2.34i + 0.187 5] — 3.45k

Hence

[Vo| = V2.342 + 0.18752 + 3.452
=4.1729 ft/sec

To find absolute acceleration, the derivative of Eq. (2) is

d
ag = 7 (b, + (@1%p))

=+ (@3 p,) + (@0 xp) + (01 (p, + (01 p)))
=p,+2(w; xp )+ (@7 X p) + (0 X (w1 X p)) )
Each term in the above is now found
p = % [(#cos 0 — rOsin 0) i + (¥sin 0 + 6 cos 0) f|
= ((#cos 6 - #0sin 0) - (#0sin 0 + r&sin 0 + 62 cos 0) ) i
+ ((#sin @ + 76 cos 6) + (¥0 cos 6 + rf cos O - r6?sin ) j
Hence

p,= (?cos@—Zi’Qsin@—r@sin@—rézcosﬁ)i+ (?Sine+21'f9c086+r90089—r9251n6)j

And
W X = w1f X ((fcos@ —r@sin@)i + (i’sin@ + 70 cos 9)]')
= - (1’* cos 6 — r@sin 6) k
And
(@ x p) = (@1 % ((Ly +rcos0)i + (~Ly + rsin 6) j + Lok))
= - (L1 + ¥ COS 6) k+ ((ule)l
And finally

wq X (51 X p) = wqj X (a)lj X ((L1 + rcos 0) 7 +(=Lz +rsin0)j + sz))
= Cl)lj X (—a)l (Ll + r CcOos 6) k+ C()lei)

= ~w?(Ly +rcos0) i —w?lk

Now all terms in Eq. (5) are known. Hence Eq. (5) becomes
ag = pr+2(cu1 xpr)+((u1 X p) + (5 x (@, X p))
= ('fcos 0 - 20 sin 0 — rOsin O — rH? cos 9) i+ (?sin@ +2i0 cos O + 0 cos O — r6? sin 6)]'
+2 (—a)l (7” cos O — r0 sin 6) k)
+ (—wq (L + rcos ) k + (wqLy) 1)
+ (~w? (Ly + rcos 0) i — wilyk) (6)

At snapshot time, 6 = 0, and the above simplifies to (noting that 6 = w, and 6 = @,
ag = (F - rw3) i+ Qfwy + ran) j - 2017k — @y (Ly + 1) k + @ Loi — 0F (Ly + 1)i - w}lok

= (T’ - T’C()% + d)le - a)% (Ll + 1’)) i+ (27’0)2 + 1’0.)2) ] - (2&)17’ + d)l (Ll + 7’) + O)%Lz) k
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At the instance shown r = 0— =0.375 and i = 1.5 ft/sec,i = 0.8 ft/sec?,L; = 2.5,L, = 0.7, L5 =
1.4, w, = 0.5 rad/sec, w; = 1.2 rad/sec, @, = 0.25 rad/sec?,@; = 0.6 rad/sec?, hence the above
becomes

ag = (0.8-0.375(0.52) + 0.6 (0.7) - 1.22 (2.5 + 0.375)) i
+(2(1.5)0.5 + (0.375) 0.25)
~(2(1.2)1.5 + 0.6 (2.5 +0.375) +1.22(0.7)) k

Therefore
ag = -3.013 8i +1.59385 — 6.333k (7)

Hence

|ag| = V3.01382 +1.59382 + 6.3332
= 71924 ft/sec’

4.3.2 problem 2

. EMA 542 - Homework to Hand In

3B. A gyropendulum, consisting of a disk of radius R, rotates with a constant spin rate 1,1) about

the shaft BG of length L. The shaft is pivoted to another vertical shaft at B which rotates with -
the constant rate ¢ The pivot, angle Hchanges at the constant rate 6 as shown. The Z

coordinate axis is fixed in space. The xyz coordinate system is attached to the shaft BG. The
123 coordinate system is attached to the disk. At the instant shown, 123 is aligned with xyz. -
Compute the total angular velocity and angular acceleration of the disk and express them in

- terms of the 123 body coordinates. Your solution should be in terms of 1,0,¢ and their

correspondmg tlme derivatives.

The total angular velocity w of the disk G using body coordinates {eq, e,, e3} is
we = ez + Oey + ¢ cos Oey
= Oe, + (gb cos O + tp) R (1)

To find the acceleration, the rate of change of the above vector is taken. When taking rate
of change of each unit vector e the following will be used

. g
e=w,Xe

Where w, is the angular rate that the unit vector e rotates relative to the inertial frame.
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Hence Eq. (1) becomes
d,. d . .
wg = 7 (Qez) + 7 (¢COSQ+¢)33
=0Oe, + 0 (a)62 X ez) + (cp cos 0 — PO sin O + gb) e3 + (qb cos 6 + ¢) (563 X 33) 2)
What is left is to find w,, X e; and w,, X e3.
W,, X € = (932 + (cp cos O + tp) ?3) X ey
= —(cf)cos@+gb)e1
And

Wy, X €3 = (932 + (q) cos 6 + ¢) ?3) X e3

= 631
Hence Eq. (2) becomes
@G = 9e2+9(—(q'5cose+yb)el) + (gﬁcos@—gi)ésin6+¢')e3+ (gbcos@+1/)) (931)
= e; (—Q(Qi)cos@+1j)) + 9((}5C089+¢)) + Oey + (cﬁcos@—q'bésin8+1ﬁ)e3
= Oe, + (g'ticos@—<f>ésin9+1;b')e3
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4.3.3 key solution

EMA S92
Huwx.

(::) "A disk D of radius 0.75 ft spins with an angular speed wpy = 0.5 r/s
' with respect to the rigid but bent bar ' B. The angular speed’ wy 1is
increasing at a rate w, = 0.25 r/sz. Body B turns about a

vertical axis through O at a rate w, = 1.2 r/s which is increasing
at a rate &1 - 0.6 r/sz. A fly is moving on the surface of the disk
D from point C to H, at a rate of 1.5 ft/sec which is increasing

at a rate of 0.8 ft/secz. .Determine the absolute velocity and
acceleration of the fly when the fly is at point Q.
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V/i(cc‘rv
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103




CHAPTER 4. HWS

4.3. HW 3

ACC«( 1k A Ttary

- > ~ - — -~ - S =
- X w X + D x
Lo = R+ ox (3 X 2 ¥ 2 /ér' + /a;'
—_ .
N - - -
K = Q. = (.'—J‘: A e * w, X (Ul X

R = 3. P - D502 4 ]
cjx(c?x;) = X («j,x)‘) = 10T X ['_ vy 4
—_ OO -
w x (UX/) = .5 YT
- - -:\ - C— _I( _)
wx/,a = ©, Xpo = . 3 x 2 75°) &
SX; = ",33..5-'%
N - 3 - Y -
P = O, x( 1)(;') i O, Xs + 2 - DD, X 2
g v 7 7 7T b e
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/,/; -3 -
77 /;95 - .5 AxC /«P?o‘;—) + .05 4 x 3C )< B
4 . ¥ x 4+ DC5) A x 45<
= —.093¢ < + .093F5 r. P o+ 155
,2: : L 70Go<s » [3F3F
DS x,,Z: = Q(/'O)T;’- X [ /5T r. /'}17)"__2—] |
OdxpF = -3 ¢4 B
7
dg = [-3.1_? -, IY +.706D ]:;f - N
i /,5?_3}]5 + [-3, ;;oP -, D05 - .3-6],[ |
L d, = 3o L ssrg - c. 333 4 | 7
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EMA 542 - Homework to Hand In

3B. A gyropendulum, consisting of a disk of radius R, rotates with a constant spin rate 1 about
the shaft BG of length L. The shaft is pivoted to another vertical shaft at B which rotates with
the constant rate ¢ The pivot, angle Ochanges at the constant rate 0 as shown. The Z
coordinate axis is fixed in space. The xyz coordinate system is attached to the shaft BG. The
123 coordinate system is attached to the disk. At the instant shown, 123 is aligned with xyz.
Compute the total angular velocity and angular acceleration of the disk and express them in
terms of the 123 body coordinates. Y our solution should be in terms of 1,0,¢ and their

corresponding time derivatives.

¥.y,2 6
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4.4 HW 3 different solution

441 Problem1

EMA S92

O

Huwr.

) . 'Aidisk D qf radius 0.75 ft spins with an angular speed wy = 0.5 /s
o xiq th reipec;c to the rigid but bent bar B. Tne angular speed wy is
ncreasing at a rate wy = 0.25 r/s-z. Boedy B turns about a

vertical roug :
cal axis through 0 at a rate @, = 1.2 r/s which is increasing

. 2
at a rate W = 0.6 r/s‘ - A fly is moving on the surface of the disk -
D from point C to H, at a rate of 1.5 ft/sec which is increasing

2 .
at a rate of 0.8 ft/sec Determine the absol
. ! . ute velocit d
acceleration of the fly when the fly is at point Q. v

This problem is solved in two ways, using different body coordinates system, showing that
the final answer is the same.

4.41.1 First case, body coordinates rotates with disk

Two coordinates systems are used. The first one has its origin at point O and rotates along
with the long bar. This is the one shown above with xyz coordinates. The unit vectors

- -

for this coordinates system are . e,, ¢.. This coordinates system is rotating relative to
inertial frame with angular velocity wlzy. The second coordinate system is centered at
point C and rotates with the disk D (it can be imagined to be painted on disk D to make
it more clear that it moves with the disk).

- - >

The second coordinates system (the one on the disk) will use unit vectors i, j, k. It rotates
=

with angular velocity w, k relative to the first one. The following diagram illustrates this
relation.
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k and ¢, are always pointing the same direction for all time. But only at the snap shot
shown in the problem diagram that ¢,=i and ?y = j. So this problem will be solved at

the snapshot time.

Given the above, a vector that represents the position of the center of the disk D relative
the the first coordinate system is shown in this diagram

5
It is important to see that R is rotating and not fixed in inertial frame. It is fixed in length,
but it is attached to the first coordinates system, and not to the inertial frame, hence it

rotates with first coordinate system and hence will have an R, term show up in the equations
below due to this.

E is vector that represents the position of point Q on the disk. It goes from C to Q.
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From point of view of the second coordinates system, the ant (point Q) appears to move
in straight line, since an observer standing on the disk is rotating with the same angular
velocity as the ant as it moves away from the origin of the disk.

The position of Q as seen in inertial frame is therefore

To=R+p 1)

Now 7 = (7) + (5 X 7) is applied to Eq.(1) above.

r

;Q:Rr+(51xlz)+f;}r+((52+81)xﬁ) (2)

But I_i)r since it does not change in length. Hence
7Q = (51 X R) + Br + ((52 + 51) X B) (2A)

and taking derivatives again gives

7Q = (alxR)+(51x[Rr+(51xR)D
+pr+(a)2+cu1)><pr+(a)1+a)2)><p

+ (@ +3) (3r+ (@ + ) x;))

5
In the above equation, since R does not change in length, hence all its time derivatives are
zero, and the above simplifies to

oG] (6103 <)
(@ @)% P (w1+w2)x

+(zz+zl)x(pr+((az )XP))
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o= (leﬁ)+(alx(51xﬁ))+ﬁr (3A)
+ W, Xp +a)1><p +a)1><p+a)2 P

+ (@, + ) % (p +(a)2><p+a)1><ﬁ))

Eq. (2A) and (3A) above give the answers needed. The rest is just writing down each of
the above vectors in component terms. Snapshot time is used as was described above.

4.41.2 Finding the velocity of Q

At the snapshot time,

51 =wi]
and
And

p=pi
The relative velocity of p is given by

p,=pi
And the relative acceleration of 5 is given by

p,=pi

and, at the snapshot time,
R=L,i +Igk —Ls]
All terms in Eq. (2A) are now known. Hence
Fo= (@ xR)+ 5, + ((@+ @) x 7)
= (0)17) X (L17 + sz - L37) + (fl)?) + ((O)zk + CL)17) X p?)

= —k (w1L1) + i (w1Lp) + pi + jwyp — wipk

= (a)le + P) I +wpj —w (Ll + P) k (4)

At the instance shown p = % =0.375 and p () = 1.5 ft/sec,L; =2.5,L, =0.7,L3 =14, w, =
0.5 rad/sec, w; = 1.2 rad/sec, hence Eq. (3) becomes

7o =((12)(0.7) +1.5) i +(0.5)(0375) j — (1.2) (25 +0.375) k
= 2347 +0.1875] - 3.45k
Therefore

= V2.342 + 018752 + 3.452

=4.1729 ft/sec

4.41.3 Finding the acceleration of Q
From Eq.(3A) becomes
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7Q:(leﬁ)+(alx(51xﬁ))+ﬁr (3A)
+a)2><p +a)1><p +a)1><p+a)2 P
+ (@, + ) % (p +(a)2><p+a)1><ﬁ))

Hence

?Q = (@17 X (Ll_l) + Lzz - L37)) + (0)17 X (0)17 X (L1—l) + Lz; - L37)))

0)2; + 0)17) (p7 + (0)2; X p_l) + (L)17 X p?))

Hence

-

7Q = —C;)lle + CZ)]LZ;) - 0)12L1—1> —a)%sz
vpo i
+a)2i)(t)]
- w1pk
+wpk
+Wyp
+ (a)zk +a)1j) X (f.)l +Cl)2pj —a)lpk)
Or

To=—inLik +dnLyi —wil i —wllyk
o
Fap®) ]
- w1f’;
+ cblp;

-

+Wyp
+ (0)2157 - w%p?) + (—a)lbk - CU%P7)

Collecting terms

7Q = 7 (d)1L2 - w? (L1 + p) — w3p + p) + 7 (2@2[) + cbzp) - E (a)sz + @, (L1 + p) + Zwlf))
(5)
At the instance shown p (f) = @ =0.375 and p (t) = 1.5 ft/sec,p (t) = 0.8 ft/sec?,L; = 2.5,L, =

0.7,L3 = 1.4, w, = 0.5 rad/sec, w; = 1.2 rad/sec, @, = 0.25 rad/sec?,@; = 0.6 rad/sec?, hence
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the above becomes
7o =1((06)0.7 - (1.2 (25 +0.375) - 0.5 (0.375) + 0.8)

+ 7 (2(05)1.5 + (0.25)0375)

iy

N
1

(1.22(0.7) + 0.6 (2.5 + 0.375) + 2(1.2) 1.5)

Therefore
7= -3.01387 +15938 - 6333k
Therefore
7ol = V301387 + 159387 + 63332
=7.1924 ft/sec’

4.41.4 Second case, body coordinates attached to holding bar

- - -

In this case, the local body coordinates i, j, k. is attached to the bar labeled L; and hence
does not rotate with the disk, as shown in this diagram

5

The main difference between this set up and the first case, is that now k and ¢, are still
-

pointing the same direction for all time but now also zxand i are always pointing in same
- - >

5
direction, as well as ?yand j. And now body frame i, j, k does not rotate relative to

frame ?x, ?y, ?Z. The two frames are actually fixed to each others, and only difference is

that the origin of one is displaced from the other by the vector R.

Using the same equations (2A) and (3A), the only difference is in writing down the
components of the vectors.

This term is zero now
—N—

To= (51 x R) +0 o+ (07 (2A)

This term is zero in this case
7Q: (51XR)+(51x51xR)+ﬁr+2(52x5r)+(52x5)+52x52xﬁ (3A)
Since now frame i, j, k does not rotate relative to the frame ?x, ?y, ?Z, then the above

simplifies to

p (2AA)
(51 X @y X E) +p (3AA)
Now the vector B is

N
1

B = (pcos@) +(psin6)7+0z
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The relative velocity of E is now given by
Er = (bcos@—pésin@)? + (bsin@ + pécos@)7 +0k
And the relative acceleration of B is given by
- . . - .2 -
Br = ((p cos O — pBOsin 9) - (p@ sin @ + pOsin O + pO cos 6)) i
. . .- . 2 i
+ ((p sin @ + pO cos 6) + (p@ cos O + pOcos O — pb sin 6)) j
+0k
All remaining vectors are the same as the first case. In particular
E = L17 +L2k —L37

However, this vector is now valid for all time, and not only at the snapshot. Hence Eq.
(2AA) now can be written down as

7Q = (a)lj) X (Lli +Lyk —L3j) + (bcos@—pésin@) i+ (bsin@+pécos@) j

= —k (w1Ly) + i (w1Ly) + (p cos 6 — pOsin 9) i+ (p sin 6 + p6 cos 9) i

= (culL2+;')cos€—pésin6) i +(bsin6+pécos@)j — w1l k

Since 0 = w, then

7Q = (w1L2 + pcos O — pw, sin 9) i+ (p sin 0 + pw, cos 9) j —wilik (6)
Now, at the snapshot time, 6 = 0°, hence the above simplifies to
7Q = (Cl)le + ﬁ) _l) + a)2p7 - 0)1L1 k (6A)

Comparing the above Eq. (6A) to Eq. (4) found in the first case, it is seen to be the same,
as expected. The difference is that Eq. (6) is valid for all time, while Eq. (4) is valid at the
snapshot only. Now the acceleration will be found from Eq. (3AA)

?Q = (@17 X (Ll_l) + Lz; - L37)) + (0)17 X (0)17 X (Ll—l) + Lz; - L37)))
. . .- -2 i
+ ((p cos 0 — pOsin 6) - (p@ sin@ + pOsin O + pO cos 6)) i
. . . -2 i
+ ((p sin 0 + pO cos 6) + (p@ cos 0 + pOcos B — po sin 6)) j

Hence

7Q = —C:)lLl k + C:)1L27 - a)1w1L17 - a)la)lek
: : . ) 5
+ ((p cos O — pOsin 9) - (p@ sin@ + pOsin 0 + pO cos 8)) i
: : , ) N
+ ((p sin 0 + po cos 9) + (p@ cos O + pOcos O — pf sin 9)) j

. . 2 L1
But 6 = w, and 6 = w3 and O = @,hence the above becomes

?Q = _d)lLl k + C;)le i— Cl)l(l)lLl i— a)la)lek
+ ((p cos 0 — pw, sin 6) - (f)wz sin 0 + pw, sin 0 + pw3 cos 9)) i

+ ((p sin 0 + pw, cos 6) + (f)a)Z cos 0 + pw, cos 0 — pw3 sin 9)) 7
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Collecting terms
._1}Q =7 (d)le — w?Ly + pcos 6 — 2pw, sin O — par, sin O — pw3 cos 9)
+ 7 (p sin 0 + 2pw, cos O + pa, cos O — pws sin 6)
+k (—cblLl - w%Lz) (7)
Now, at snapshot, where 0 = 0°, the above simplifies to
Vo= 1 (inko— @Ry + - pwd) + ] (2pwr + pig) 4 K (-inla - fLs) A
Comparing the Eq. (7A) above to Eq. (5) found in the first case, it is seen they are the

same. The difference is that Eq. (7) now can be used for all time, while Eq. (5) was valid
only at the snapshot.
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45 HW 4

451 Problem1

EMA 542
Home Work to be Handed In

4)  The pendulum shown in the figure consists of two rods. AB is pin-supported at A and
swings only in the Y-Z plane, whereas a bearing at B allows the attached rod BD to spin
about rod AB. At a given instant, the rods have the angular motions shown. If a collar C'is
located 0.2 m from B, has a velocity of 3.0 m/s and an acceleration of 2.0 m/s2 along the rod,
determine the velocity and acceleration of the collar at this instant.

@, =15 rad/s?
w) =4 rad/s

@, = 5 rad/s

“““““

D

@, = 6 rad/s”

The first step is to decide where to put the origin of the rotating coordinates system, and
the second step is to decide to where to attach it to.

Lets put the origin at point B and have the frame attached to the bar BD as well. This way
the relative velocity and acceleration will be simple, but the angular acceleration will be
more involved.

Therefore, this diagram shows a general configuration to help understand the set up
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General
R RN configuration

At the instance

> Y

N
1

- >
Let units vectors for rotating coordinates system be 7, j, k and for the fixed coordinates

- -5 -

system be I, |, K.
From the above, Let L be the length of Bar AB. Hence

p=pj
P, =pj

R =Lwj at snapshot only

Hence

V:R+p+5xﬁ (1)

But at snapshot, I =

V=Lwyj +p] +wipk —wpi
= —a)zpi + (La)l + p) ] + a)lpk
At snapshot, w, = 5rad/sec, w, = 4rad/sec,L = 0.5m, p = 3m/s, p = 0.2m, hence

V=-5(02) 7 +(05(4)+3)] +4(02) k
— 1745/ +08k )
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Hence

|V| —VI2+52+08 =51614  m/sec

Now to find the acceleration

Z:E+ﬁr+5xﬁr+5xﬁ+5x(§r+3xﬁ)

SR+p 4@xp 4oxpraxp +(@x(@xp)

SR+p +20xp +wxp+(@x(@xp) (3)

Now each term is found.
R =Linj +La?k =05(15) ] +05(82) K =075] +8k
p,=p
(%)

& =ayT = (@pk + (i xwpk))

= .
cu=d)11 —d)zk +a)1a)2]

-

But at snapshot I = i, hence

- - -

P = w1 —ark + wiw, |
Now all the terms have been found, then Eq. (3) becomes (valid at snapshot only)
a= (Ld)J + La)fz) + p7
+2 (a)l? + a)zz) X p7
+ (6)17 - ci)zi> + w1w27) X p7

({7 + ) (o ) x07)

Hence
a= (L@J + Lw%z) + p7
+2 (a)1pz - a)zp‘?)
+ (d)lpz + w2p7)
# (w17 + 02k} x (wrpk —wapi))
Therefore

a= (Lc‘u17 + La)f;) + p7 +2 (a)lpz - mzp?) + (a)lp? + d)zp?) + (—w1w1p7 - wzwzp7)

Collecting terms

—

a= (—Za)zp + a')zp) i+ (Ld)l +p—wip- w%p) 7 + (La)% +2w1p + d)lp) k
At snapshot, w, = 5rad/sec,w; = 4rad/sec,L = 0.5m,p = 3m/s,p = 0.2m,p = 2m/s, @ =
1.5rad/ sec?, @, = 6m/sec?, hence
1=(-2)53)+6(0.2)i + (05(1.5) +2-42(0.2) - 52(0.2)) j +(0.5(4?) +2(4)3 +1.5(0.2)) k
= —28.8? - 5.457 +32.3k

Hence

|Z| = V28.82 + 5.452 + 32.32 = 43.617m/s?
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4.5.2 Problem 2

EM 542

3/43 The mass center G of an airplane has its velocity vector given as a
function of time electronically as v, = 200j + 3t k (fr/s) where the
body axes 1, j, k are shown. Also rate gyros indicate that its
pitch rate o is constant at a = 0.1 rad/s, its roll rate g is
constant at g = 0.2 rad/s and its yaw rate vy remains zero. Fluid
is flowing along the hydraulic line G,A,B,C shown, where the portion
A,B,C 1is a circular path of radius 5 ft in the yz body plane. The
speed of all fluid particles relative to the hydraulic line is given
by € =70 - 5t (ft/s). Determine at the time ¢t = 10 seconds:

(a) the inertial velocity 3? of the fluiil particle instantaneously
at B, and

-
(b) 1its inertial acceleration ap.

Note: _Give all answers in terms of compoments along the rotating body
axes 1, j, k. Please report all terms because they will be graded

individually.

—
—

—

e

|
4

i

P

-

ﬁ&i; = 0.l rad/s

&
G
L

Let the origin of the rotating frame be G as shown. Let L be the length given by 25’, and
let  be the radius of the hydraulic line. Hence, for the fluid particle at B

5:(L+r);)+r;
o =ik

R =200] +3tk

b=

!

o=di+ ﬁ7

Hence

+wxp 1)
= (200]‘ + 3t;) + (s;) + (0’5? + ﬁ?) X ((L + r)7 + r;)

— —

j +pri

2007 +3tk) + (sk) +a(L+1r)k —ar

i (Br)+ ] 00— )+ k (Bt +5+a(L+7)

At snapshot, t = 10sec,r = 5,L = 25, = 0.2rad/sec, & = 0.1rad/sec,$ = 70 — 5t, hence the
above becomes

-

V=1(02()+ ] (200-01(5))+ k (3(10) + (70 — 50) + 0.1 (25 + 5))
7 4199.57 +53k

120



4.5. HW 4 CHAPTER 4. HWS

Hence

|V| = V12 + 199.52 + 532 = 206.42 ft/sec

To find the acceleration

:E+ﬁr+5xﬁr+5xﬁ+axﬁr+(Z)X(BXB))
:§+Br+2zxﬁr+5x5+(ax(5xﬁ))

Now each term is found.
> dé PO B - >
R:E( ):3k+(az+ﬁ])><(200]+3tk)

— 3k + (0.1? n 0.27) X (2007 n 3t?)

=3k + 20k—03tj +0.6ti

= 0.6t7 —0.3t] +23k
5 2 o
p,=8k-—]j
{07 107
@ :d7+(67xd?)+ (ﬁ7+(a7xﬁ7))
$:&?—Bd;+ﬁ7+o‘cﬂ;

:d7+67

Now all the terms have been found, then Eq. (2) becomes

Z:R+Er+25x;_3)r+c_)uxﬁ+(5x(a)><p))
— — 22
:(06tz 03t] +23k +sk—S—]
+2(0’ci +/3j)><sk

— —
1

( '+[>’]) ((L+r)]+rk)
+(0’z7+/37)x((m+ﬁ]) ((L+r)7+r;))

Hence
(06t1 03t +23k)+s;——27
+2 (—0’(57 + ﬁs?)
+&(L+r)z—dr7+ﬁr?
+ (a7+ﬁ7) X (zjz(L+r)z—dzr;> +Br?)
Therefore

— 2

:(06t1 -0.3tj +23k)+sk——]
+2(—0’cs’j +ﬁs7)
+d(L+r)Z—[ir7+ﬁr7

—c'tz(L+r)7—d2rz+ﬁ'd(L+r)?—Bzr;

121

(2)



4.5. HW 4 CHAPTER 4. HWS

Collecting terms
- - . - 52 e . .
a=1i (0.6t+2ﬁ's' +ﬁ?’+,3d(L+1’))+j (—0.3t— 57 —Zo'cs'—dr—dz(L+1’))+k (23+s +a(L+71) —o‘zzr—ﬁzr)

Since angular accelerations are constants, the above simplifies to
- - . . - 52 .2 - R
a=i (0.6t+2ﬁs‘+5a(L+r)) +j (—0.3t— T o 2ai-d (L+r)) + k(23 +5 - aPr - pr)
r
Now § = -5, hence at snapshot where, t = 10sec,r = 5,L = 25’,5 = 0.2rad/sec, & =
0.17ad/sec, s = 70 — 5t the above becomes
(70 - 50)°
5

7= 1(6+2(0.2)(70-50)+0.2(0.1)(25+5)) + 7(—3 ~2(01) (70 - 50) - 0.12 (25 + 5))

ik (23-5-012(5)-0.22(5))

=14.61 - 87.3j +17.75k

Hence

|E’| = V14.62 + 87.32 + 17.752 = 90.275 ft/sec>
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4.5.3 key solution

EMA 542
Home Work to be Handed In

4)  The pendulum shown in the figure consists of two rods. AB is pin-supported at A and
swings only in the Y-Z plane, whereas a bearing at B allows the attached rod BD to spin
about rod AB. At a given instant, the rods have the angular motions shown. If a collar C is
located 0.2 m from B, has a velocity of 3.0 m/s and an acceleration of 2.0 my/s? along the rod,
determine the velocity and acceleration of the collar at this instant.

w, = 5 radfs

@> = 6 rad/s’
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XrZ
=335 725  p= .27
5: 6’_: 7= 5—‘/2 - Q)I: +(‘)Z’£_

= > N a4 h S0
R, + wx(wx;’:)«t-Zc.)x/i tp v wXZ

<

=
°
el
i

L7955 4+ ¥ 3 + (‘/.51»5'1);( ( i - I:)

n

+ 2(49:453 )« 35 + 235 «+ (I.S'_:-zo,--ci)x .25
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EM 542

6fé3 The mass center G of an airplane has its velocity vector given as a
function of time electronically as v, = 200] + 3t k (ft/s) where the
body axes i, j, k are shown. Also rate gyros indicate that its
pitch rate & is constant at a = 0.1 rad/s, its roll rate g is
constant at B = 0.2 rad/s and its yaw rate -+ remains zero. Fluid
is flowing along the hydraulic line G,A,B,C shown, where the portion
A,B,C 1is a circular path of radius 5 ft in the yz body plane. The
speed of all fluid particles relative to the hydraulic line is given
by ¢ =70 - 5t (ft/s). Determine at the time ¢t = 10 seconds:

(a) the inertial velocity 3? of the fluiil particle instantaneously
at B, and

o
(b) 1its inertial acceleration 3p-

Note: _Give all answers in terms of components along the rotating body
axes 1, j, k. Please report all terms because they will be graded

individually.
/—_—_—_-\\
— \
_— ' \
|
2 A
G y 2
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46 HWS5

4.6.1 Problem1

EMA 542
iy Home Work to be Handed In

5A) A device for simulating conditions in space allows rotations about three orthogonal axes as

[P

illustrated in the figure. = - sl & LA ’
At this instant, the astronaut is moving as shown with a velocity vy = 5.0 ft/sec and
an acceleration a; = 32.0 ft/sec2, both relative to the capsule. Use the method of multiple-

rotating-coordinate systems, with at least two rotating coordinate systems, to determine

for the instant pictured:

(a) the inertial velocity of the astronaut's head;
(b) the inertial acceleration of the astronaut's head,

given the data in the figures. ‘
v, =5.0 ft/sec a, =32.0 ft/sec’

o, =4.0rad/sec @, =3.0 rad/sec’

w,=5.0rad/sec @&, =0.0 rad/sec®

,=6.07ad/sec @, =2.0rad/sec’

Solution

Two rotating coordinates systems are used as shown in this diagram
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L2
CS.2
Z
+ % o A
// y2
/ CS.1
. P
// X1<7
/ _ -

2
Inertial frame

2 rotating coordinates frames are used

The origin of CS 2 is at point O and attached to capsule itself. CS 1 origin is at top of
column and attached to column.

4.6.1.1 Velocity calculation

4.6.1.1.1 Motionin1l (CS 1 is the reference frame now)

VP/l = R0/1 + 0)2/1 X p2p + pr,r

The above is the velocity of point P as seen in C.S. 1. The vector Py, 8O€S from the origin

of C.S. 2 to P. And the R, is the velocity of origin of C.S. 2 as seen in C.S. 1. and p'zpr is
the velocity of P relative to C.S. 2. Therefore

Py = -3k + 2i
Py, = 5K
Ry =0
Wy = Waj + wyi = 6j + 5i
Therefore
Vo = (67 + 51) x (~3k + 2i) + 5k

=-18i +15j -7k
4.6.1.2 Motion in inertial frame (ground)

V, =Ry + w; X P, TP,
The above is the absolute velocity of point P. The vector p 1 80es from the origin of C.S.
1 to P. And the Ry is the absolute velocity of origin of C.S. 1 and p Ipr is the velocity of P

relative to C.S. 1 which we found above as V,;;. The only quantity we need to find now is
Pry At the instance shown it is simply

Py, = 12i - 3k
But the above is only valid at this instance. Now we can find the absolute velocity
plpr =-18i +15j -7k

Rl =0

w, = w1k =4k
Therefore

V, = 4k x (12i - 3k) + (~18i + 15 - 7k)
= -18i + 63j -7k

Hence |V,| = V182 + 632 + 72 = 65.894 ft/sec.
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4.6.1.3 Acceleration calculation

4.6.1.3.1 Motionin 1l (CS 1 is the reference frame now)

ayn = Ry +2 (a)Z/l X pr,r) + (@2/1 XPZp) + Wy X (“’2/1 X pr) + ﬁZp,r 1)
The above is the acceleration of point P as seen in C.S. 1.
Py = -3k + 2i
pr,r = 5k
Ro/l =0

Wy = Waj + wyi = 6j + 5i
(g = @af + (wai X wsf) + @ai + (wsf X wyi)
= 27 + (5i x 67) + 0i + (67 % 5i)
= 2j + 30k — 30k
= 2]'
To find pr,r’ which is acceleration of point p relative to CS 2, we look at each angular

acceleration on its own. Due to w; , using this diagram

02
z
A
O —+

So the point p appears to move is the opposite direction with tangential acceleration
(-3w,)j and normal acceleration 3a)§k. Now looking at effect due to w; as seen in this
diagram

— WO —>

So the point p appears to move is the opposite direction with tangential acceleration

- (\/ﬁa‘g) sin Oi — (\/ﬁd)3) cos 6k and normal acceleration — (\/1_30)32,) cos 01 + (\/ﬁw%) sin Ok
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—ian-1(3 _ 2 e =
Where 0 = tan ( 2), hence cos 6 N and sin 6 \/ﬁtherefore

due to wy

Py, =~k + (—3a) j + 3wk

due to w3

+ — (\/Ea’)g,) sin 01 — (\/1_3a')3) cos Ok — (\/ﬁw%) cos 01 + (\/ﬁw%) sin Ok

or (note wjs is negative, since it is shown in diagram as moving in clockwise circular arrow)

due to 0)2

Py = 32k +3(25)k - (VI3 (-2)) \/—_1—(\/_ (-2)) —=

= —32k + 75k — 6i — 4k — 72i + 108k
= -76i + 147k

Therefore from Eq. (1)

— (V1336) + (V1336)

3
—k
V13

|
@
~.

\/_

apy = Ry +2 (0)2/1 X Pzp,r) + (@2/1 XPZp) + Wy X (‘Uz/l X Pzp) +P,,,
ayn = 0+2((67 +5i) x 5k) + (2 X (~3k + 2i)) + (67 + 5i) x ((67 + 51) X (=3k + 24)) + (~76i + 147k)
a,n1 = —94i +10f + 326k

4.6.1.4 Motion in inertial frame (ground)

=R +2 (a)1 X plp,r) + (a')l Xplp) + Wy X (a)1 X plp) *Py, (2)
The above is the absolute acceleration of point P. At the instance shown
Py = 12i - 3k
plpr =-18i +15j -7k
Rl =0
w, = w1k =4k

and p 1oy WE found above which is a,/;, hence Eq. (2) becomes

a, = 2 (4k x (-18i + 15 - 7k)) + (3k X (12i — 3k)) + 4k X (4k x (12i - 3k)) + (~94i + 105 + 326k)
= —406i — 98j + 326k

Therefore

|a,| = V4062 + 982 + 3262
= 529.83 ft/sec’
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4.6.2 Problem 2

EMA 542
Home Work to be Handed In

5B) The thin disc of radius 1 ft. rotates with a constant angular velocity @, =10 rad/sec in

bearings A and B. The weightless arm containing the bearings rotates about the fixed point O as
shown with the angular velocity w, =1 rad/sec and angular acceleration ¢, =3 rad/sec**2. The
vertical shaft CD rotates as shown with an angular velocity @, = 2rad/sec and and angular

acceleration ¢, = 4 rad/sec**2. Calculate the absolute velocity and acceleration of point Q at the

top of the disk for the position shown.

\/ jT"OBﬁ- Z ﬂ’d/u—o

e rip _
oxX W Irjal & “=1onedfo.,
'G ] —g— —4 — -

°<;:-’—3k'>'
oy = 4 nedfsec> .

Two rotating CS are used as shown in this diagram

Second CS
y2 First CS

The origin of CS 2 and CS 1 are both at the same point is at point O

4.6.2.1 Velocity calculation
4.6.2.1.1 Motion in first CS (first CS is the reference frame now)
Von = Ropy + wppy X P * Pag,
The above is the velocity of point Q as seen in first C.S. The vector Py, 8OES from the

origin of second C.S. to Q. And the Ry is the velocity of origin of second C.S. as seen in
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first C.S. and p, or is the velocity of Q relative to second C.S. Therefore
Pog = 6i+j
= (1 X w1) k =10k
RZ/l = 0
Therefore
Von =k x (6i +j) + 10k
= —i+6j +10k

4.6.2.1.2 Motion in inertial frame (ground)
Vo =Ry + @pjpgy X Pio * Pio,
The above is the absolute velocity of point Q. The vector p, o goes from the origin of first

C.S.to Q. And the R, is the absolute velocity of origin of ﬁrst C.S. and P10 _is the velocity

of Q relative to first C.S. which we found above as V(;. The only quantlty we need to find
now is p, o At the instance shown it is simply

Pip = 6i +7j

But the above is only valid at this instance. Now we can find the absolute velocity

plQ’V = —i+ 6§ + 10k

R =0

Wfirst = W3] = 2f

Therefore
Vg =2j x (6i +j) + (~i + 6] + 10k)
=—i+6j -2k

Hence |Vp| = V12 + 62 + 22 = 6.403 ft/sec.

4.6.2.2 Acceleration calculation

4.6.2.2.1 Motion in 1 (first CS is the reference frame now)

aQ/l = RZ/l + 2 (0)2/1 X pZQ,r) + (d)z/l XPZQ) + 0)2/1 X (a)2/1 X sz) + sz/r (1)
The above is the acceleration of point Q as seen in first C.S.
Pog = 61 +j
Pogy = 10k
Ro =0

d.)z/l = a2k+ (OXk) =

To find fj, or which is acceleration of point Q relative to second CS we look at this diagram
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1
y
ro 1
j_ 2 ______ _>
i
Hence
Doy = ~w?j = -100f

Therefore from Eq. (1)

“Q/l = RZ/l +2 (0)2/1 X pZQ,T) + (d)z/l XPZQ) + (1)2/1 X (wz/l X 'DZQ) + ﬁZQ,T’
ayn =0+ 2 (k x 10k) + (3k x (6i +j)) + k x (k x (6i + j)) — 100
a,n = —9i - 83

4.6.2.2.2 Motion in inertial frame (ground)

ag =Ry +2 (a)first X plQ,r) " (d)f irst %P 1Q) T Wrirst X (wf irst % P 1Q) P,

The above is the absolute acceleration of point Q. At the instance shown

Pip = 6i +j
Prio, = Pagy = 10k
Rl = 0
CUfirsi? = a)3j = Zj

iy = —az] + (0 X wsf) = -4
and p 1oy WE found above which is a,/;, hence Eq. (2) becomes
a, =2 (2j x 10k) + (=47 x (6i + 7)) + 27 x (27 x (6i +)) + (~9i - 83j)
= 7i — 83j + 24k
Therefore
|a,| = V72 + 832 + 242

= 86.683 ft/sec’
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4.6.3 problem 1 done again
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4.6.4 key solution

EMA 542
Home Work to be Handed In

5A) A device for simulating conditions in space allows rotations about three orthogonal axes as
illustrated in the figure. ' :

s : e s
At this instant, the astrondut is moving as shown with a velocity vy = 5.0 ft/sec and
an acceleration a = 32.0 ft/ sec2, both relative to the capsule. Use the method of multiple-

rotating-coordinate systems, with at least two rotating coordinate systems, to determine

for the instant pictured:

(a) the inertial velocity of the astronaut's head;

(b) the inertial acceleration of the astronaut's head;

given the data in the figures.
v, =5.0 ft/sec a, =320 ft/sec’
o, =4.0rad/sec @& =3.0 rad/sec’

,=5.0rad/sec ~ ®,=0.0 rad/sec’®

w,=6.0rad/sec  O;= 2.0 rad/sec’
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_> -
ki = O "i‘ . 27 -34

B, X7 = CF x(27-3%) = ~/24 -/F2
/Z;r = 54

5> Vv, = ~/8x - 7 4 S

/—é = O &y, X (5,,,x/2:) = C;Tx(“/z-/f - /r)
s, x(wz,,x/%) = "72x - /08 4 ©)
n,, X : = ‘2.3 x(Z:_Ji) = 7jivs ¢z &
23, x7. = 2(¢z)x 54 = cox @

= (-2 +Crc0)s » (100+9-32)4

141




4.6. HW 5 CHAPTER 4. HWS

-3~
3, = ~Gx + %0 4 ©
Motien N O on  Fixiw COORDNATA  SYSTAM .
V- R, o+ Buoxp + A E 27 -34
-‘(.E' = o, (103 = Y03 ©)
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= ¥3; - 57 = 233 ®
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- 2 B "/_%r - 2:»
f%, = /0w § - /0(u) s - 307 - /cox

a/ox(a/ox/?): (‘/J—-rf_:)'x 237 = -72x +/5 4 @

—

E:J‘,,o x,’ot - (.SZ-rZO?‘)x (‘2;-3/9.)
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EMA 542
Home Work to be Handed In

5B) The thin disc of radius 1 ft. rotates with a constant angular velocity @, =10 rad/sec in

bearings A and B. The weightless arm containing the bearings rotates about the fixed point O as
shown with the angular velocity @, =1 rad/sec and angular acceleration o, = 3 rad/sec**2. The
vertical shaft CD rotates as shown with an angular velocity w, = 2rad/sec and and angular

acceleration ¢r; = 4 rad/sec**2. Calculate the absolute velocity and acceleration of point Q at the
top of the disk for the position shown.

by Too3-= 2 mﬂ/,,._‘,,

w1.—(,’~=-ler6'—|s-— ;
o, = | 64“
o k\k A) I'Q é_ w‘:‘.lbnhﬂ/m

]
T X
# 4l
%X,=3

®y = ‘f el /foe >
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47 HW 6

471 problem 1

EM 542 - Homework
Problem (18a)

A projectile is fired vertically upward with an initial velocity v, at a latitude 8. Determine where it
lands (i.e. where it crosses the xy plane immediately before striking).

4.7.2 problem 2

EMA 542
Home Work to be Handed In

6) A projectile is fired at latitude A with an initial velocity vector v, = yj + z'alg and
x,=y,=z,=%,=0. Itis desired to fire the projectile at an angle & = tan™ (z’a / )30) so that it

again crosses the same meridian plane just before it strikes the Earth (i.e., when z = 0.0).

a) Determine the required firing angle « in terms of the latitude A.

b) For y,=2,000 ft/sec, and a latitude of 40°, make a 3-D computer plot of the projectile's

complete trajectory as seen by an observer on the Earth.
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4.7.3 my solution
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4.7.4 key solution

EM 542 - Homework
Problem (18a)

A projectile is fired vertically upward with an initial velocity v, at a latitude 6. Determine where it
lands (i.e. where it crosses the xy plane immediately before striking).
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EMA 542
Home Work to be Handed In

6) A projectile is fired at latitude A with an initial velocity vector v, = )50} + ZOE and
x,=y,=2,=%,=0.Itis desired to fire the projectile at an angle & = tan’l(z'o / )30) so that it

again crosses the same meridian plane just before it strikes the Earth (i.e., when z = 0.0).

a)  Determine the required firing angle « in terms of the latitude A.

b) For y,= 2,000 ft/sec, and a latitude of 40°, make a 3-D computer plot of the projectile's

complete trajectory as seen by an observer on the Earth.
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Projectile’s Trajectory

jectory ——
x-y projection ----

200000

100000
y-axis (ft)

Figure 1: Particle Trajectory guer = 2000ft/sec, zvet = 16101t/ sec

If we want the particle to hit on the same meridian plane and it is going to be fired from
A = 40°, then we have to fire the projectile at an angle of a = tan~1(3tan(A)). If we have
a y velocity of 2000ft/sec then we need to have a z velocity of 5034 ft/sec. The following
figure depicts this scenario.

Projectile’s Trajectory

trajectory ——
xy prqlgction -

200000
100000

Figure 2: Particle Trajectory yye = 2000 ft/sec,zyer = 5034 ft/sec
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48 HW 7

481 Problem1

A marble repreé;ented by the particle of mass m is cons trained to move dlong a

gii{ B frictionless groove cuf: in a circular wotating pl'at‘fom of outer radius RI ) The
- platform votates zbout a vertical axis at a constant rate W. . Gonsiderj.gg that
the marble is released at 2 radius b with zero velocity relative to the platform.
[a] determine the time fox the marhle to reach the outer edge of the platform
Ly applying Newion's laws directly .
Solution

A single rotating coordinates system (body fixed) was used with its origin at the center of
disk and rotates with the disk as shown below

A
Y

Y Yo

X

The absolute velocity and absolute acceleration of the particle can now be found as follows
v=R+pr+(a)><p)

But R = 0 since the center of the C.S. does not move relative to the center of the disk.
w =-wk, p=piand p = p,i, therefore

V= prl + (—a)k X pl) = prl - a)p]
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The absolute acceleration is
a:R+ﬁﬂ{wx@+wx@fﬂwxm)
:R+pﬂ{wxp)+(wx@+(wxp)+wx(wx@
:R+¢a+zﬂvxp)+(pry+wx(pr)
But R =0, w = -wk, p = pi, p = pi, p_= pi and &= -wk = 0 since & = 0, therefore
a:;ni+2(—wkx;zﬁ+%—wk)x(—wkx;ﬁ)
= pyi = 2wp,j + (~wk) X (-wp,j)
= —a)zpri + pyi — 2wpP,j
= (-2, + py)i - 20p,j

The particular has acceleration in the x and y directions. To find how long it takes to travel
to the edge, the equation of motion in the x direction is first found.

Using Newton’s first law in the x direction, the total external forces acting in the x direction
is zero. Hence f, = ma, gives

m (—a)zpr + p'r) =0
pr—aw?p, =0

This is a second order ODE. It is constant coeflicients. The roots of the characteristic
—bxVb2-4ac _ +V4w?

2a

equation can be used for the solution. The roots are A = = +w, hence

the general solution is given by
p, = Ae®! + Bem@!
The constants A, B are found from initial conditions. When t = 0, p, = b, hence
b=A+B (1)
Taking derivative of the general solution gives
pr = wAe®! — wBe @t

But when t =0, p, (0) = 0 hence

0=wA-wB

0=A-B (2)
From Eqgs (1) and (2) the values of A, B are found to be

b

A=B=-—
2

The general solution becomes

b b
pr (t) — 5ea)t + Ee—a)t

p; (t) = bcosh (wt)
Solving for time ¢t when p, (f) = R results in
R = bcosh (wt)
1 R
t = —arccosh (—)
w b

Here is a plot showing the time it takes to reach the edge for v =1 rad/sec and R =1, as
b is changed from 1073 (very close to the origin) to 1 (the edge). Clearly when b = R the

time is zero, and when b = g the time is found to be arccosh (2) =1.31 sec.

Plot[ArcCosh[1/x], {x, 10°-3, 1}, GridLines -> Automatic,
GridLinesStyle -> LightGray, Frame -> True,
FrameLabel -> {{"t (sec)", None}, {\[Rho],

"Time to reach edge as function of starting position"l}},
PlotRange -> All, ImageSize -> 500]

The above shows that the time to reach the edge is not linear with the distance, but it is
almost linear between 20% and 80% of the distance to the edge.
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Tims 10 s2ach adg2 & Snction of stenting position

Figure 4.1: Time to reach edge as function of starting point

4.8.2 Problem 2

", A marble repreéented by the particle of mass = is constrained to move dlong a
frictionless groove cuf in a circular wotating platfors of outer radius R! The

- platform zotates sbout a vertical axis at a constant rate W. . Considerigg that
the marble is released at 2 radius b with zero velocity relative to the platform,

[a] determine the time fox the marble to reach the outer edge of the platform
by spplying Newton's laws divectly . .

Solution

The first step is to find the angular velocity vector w of the body C.S. in terms of Euler
rates.

Using the above diagram the velocity vector w can be written as (Eq. 1.99, page 85, class
notes book).

Wy sinfsing cos¢ 0] [
wy ¢ =|sin@cosdp —sing 0[16 1)
W, cos @ 0 1| (o
Therefore, in vector form the above becomes
w=1i (sin 0 sin oy + cos ¢9) +j (sin @ cos i — sin ¢0) + k (cos 0y + ) (2)

The position vector of the p is p given as (in the equation below, r represents the radius of
the satellite, which is shown in the diagram as R. It was replaced by by small r so not to
confuse this letter with the standard vector R that is commonly used in the main equations

below).
p=xi+(r+&)j+zk
Since r is constant then the relative velocity of p is

g:ﬁ+§+%
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A

(precessiox}) A

X X \Line of Nodes

2]

X

Figure 4.2: Time derivatives Euler Angles. Taken from fig 3.3-4 class notes book for EMA
642, page 79.
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48.21 part (1)
The absolute velocity of P is
v:R+pr+(a)><p)
@ X p is now calculated
wXp= i(—zsin@cosq)t[} —zsing0 — (r + &) (cos 0y + qb))
+j(zsinesinqb1j1 +zcos 0 + x cos Oy + xqb)
+k ((r + &) sin Osin gy + (r + &) cos pO — x sin O cos Py + xsin(pé)
Collecting terms, the absolute velocity is simplified to
v= i(vX + X —zsin 0 cos oy — zsin O — (r + &) (cos oy + qb))
+j(?)y + X + zsin Osin G + z cos PO + x cos OU) + x(p)

+ k(vz +2 4 (r+&)sinOsiny + (r + :S)cosqb@—xsin@cosm!}+xsin¢9)

4.8.2.2 Part (2)
The absolute acceleration of P is
“:R+ﬁr+2(wxpr)+(d’XP)erX(pr) (3)

R is given in the problem as (axi +ayj + aZk) and = ¥i+ &j + zk. The remaining term to
calculate is @

Taking derivative w.r.t time of Eq. (2) above results in

W= 1(% (sin Osin Gy + cos ¢9)) +j(% (sin 0 cos Py — sin q;@')) +k (% (cos oy + ¢))

= i(Qthcos@sinqb + 1P sin 0 cos ¢ + P sin Osin P — GO sin ¢ + 9COS¢)
+j(—9sinqb—gi)9cos¢+lﬁsinecosqb+¢Qcost9cosqb—gbgbsinesinqb)
+k(1ﬁcos@—1j}6'sir16+q5)

Since the angular accelerations are all constant, all terms above with second time deriva-
tives can be set to zero. Hence @ simplifies to

=i (—(]59 sin ¢ + 01 cos Osin ¢ + P sin O cos qb)
+j (—gi)@ cos ¢ + 10 cos 0 cos ¢ — P sin O sin q{))
k (—1{09‘ sin 9)
Now Eq. (3) can be evaluated. Each term is first evaluated. @ x p was found in part (1).
@ X p_is similar to w X p, but p is changed to p. The derivation of w x (a) X p) is too

comphcated to do by hand and was done on the computer. Here is the final result of each
component of a in as {a,,a ay,a a,}.

This is the result of evaluating Eq. (3)

a, = ax+2&0’ sin(0)y’ cos?(¢)—& (6’)2 sin(¢) cos(¢p)—-2 008(6)5’¢’+%5 sin?(0) (w’)z sin(2¢)-2&"¢"+2r0’ sin(0)Y’ cc
. . 2 1 2 1 .2 2
a, = ay=2&6" sin(0)y’ sin(¢) cos(¢p)-< (6) cosz((p)—icf cos(20) (w’) -2& cos(@)lp’cp’+§£ sin“(0) (1//) cos(2¢p)+<&"

a, = az+20'E" cos(¢)—-2£0'P" sin(P)+2 sin(0)E" Y’ sin(p)+2E sin(0)Y’' ¢’ cos(gb)+%5 sin(26) (gb’)z cos(¢)-2r0’¢’ sin
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4.8.3 key solution

constant rate ¢ and spins at a constant rate ¢

cantilevered from the satellite along the y axis
body axes, is free to vibrate transversely so that
of the antenna is assumed to move parallel to the
Considering the general position of an element P
from the outer perimeter of the satellite to be at
jocation (x, &, z), determine:

2. the inertial acceleration of dm.

The mass center C of the satellite shown moves with a velocity
— . - - . — - - s .
Ve = vxl + Vyj + vzk and an acceleration ag = axl +a j + azk relative

to inertial space denoted by axes XYZ. The satellite precesses at a

nutation 6 is also constant. An antenna, modeled by a slender rod

1. the inertial velocity of the elemental mass dm;

Give answers in terms of X, ¥, &. ¢, 8, ¢ and related time derivitives
with your answers given in terms of components along the body axes.

—

Y
and the angle of

of the xyz set of
each element dm
xz body plane.

at a distance §
the instantaneous
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represented by the’ particle of mass m is coms trained to move along a

.« %+ A marble _
dor frictionless groove cu in a circular wotating platform of outer radius RJ The
- platform wotates ebout a vertical axis at a constant rate W. . Considering that
the marble Is released at 2 radius b with zero velocity relative to the platform,
la] determine the time for the marble to reach the outer edge of the platform
by spplying Newten's laws directly . !
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49 HW S8

491 Problem1

EMA 542
Home Work to be Handed In

6A) A mass is mounted on a rigid weightless rod of length [. The rod is inclined at an angle o
with respect to the shaft AB as shown. The shaft spins with a constant angular velocity o
and precesses about a fixed vertical axis with constant angular velocity N. Determine the
bearing forces on the shaft at A and B due to the prescribed motion. Neglect the effect of
gravity.

A:SUM/E SHAFT 13
Y MASSCr IS
|
|
N |
Dﬂ(uﬁ SHAFT
& //
A e TN D‘<[ ]
w b A L v B

Figure 4.3: Problem description

To find the bearing force on the beam, the vertical force that the mass exerts on the left
edge of the beam is first found. This requires finding the acceleration of the mass m and
from that F = ma is used to find the force. Therefore, the first step is to find the absolute
acceleration vector a of the mass m treated as a particle.

The direction of the angular acceleration vector N is fixed in space. Hence the body fixed
coordinates system will have its origin at left edge of the shaft, and its y axis in the same
direction as Y axis of the reference frame (inertial frame in this case). The position vector
of m in body fixed coordinates c.s. is

p = —lcosak + Isin aj

Its relative velocity is

p,=0
Since the mass does not move relative to the c.s. It follows also that
p,=0

Now, the angular acceleration of the body fixed c.s. is
w = wK + Nj

Since K is aligned with k all the time, the above can be written using c.s. basis vectors
w = wk + Nj

This is valid for all time. Now @ is found. The only angular velocity vector which changes
direction is wk. The angular velocity vector Nj does not change direction. Therefore

= {a')k + (Nan)k)] + {Nj+0]

Since all angular velocities are zero then @k = 0 and Nj = 0. The above becomes
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Now all the terms needed have been found, the absolute acceleration vector is determined
a:R+p‘r+2(wxpr)+(a') Xp)+a)><(w><p)
= (a') Xp)+a)><(a)><p)
= (Nwi X (—l cos ak + Isin aj)) + (a)k + Nj) X ((a)k + Nj) X (—l cos ak + Isin aj))
= (Nwl cosaj + Nwlsin ak) + (a)k + Nj) X (—wlsin ai — Nl cos ai)
= '(wzlsina —wNlcosa + Nwl cos oc) +k (—Na)l sina + Nl cosa + Nwl sin a)
= w?lsin aj + N?l cos ak

Therefore, the downward vertical force on the beam is

fy =may
= mw?Isin aj
And
f: =ma,
= mN?I cos ak

Drawing a free body diagram of the beam, the reactions can be found

f

.,v

a |
1
\7 Vs

Figure 4.4: Free body diagram for shaft showing all acting loads

Taking moments around point A gives
|fy| b+ VEL =0
Vg = —mw?lsina—
B = —mwlsinar
And taking moments around point B gives
|[fy|(b+L)- V4L =0
(b+1L)
L
Now that V4 and Vj (the reactions) are found and the load on the end is also known, the

bending moment and shear diagrams can also be found if needed. Internal stress at any
section can also be found.

V4 = mw?lsina
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49.2 Problem 2

EMA 542
Home Work to be Handed In

7)  Shown below is a simple model of a oil delivery system. The vertical drive shaft spins with
a constant angular velocity @. The oil delivery tube is modeled as a slender flexible beam of
length L, total mass m, elastic modulus E, and cross sectional moment of inertia /. For

preliminary design purposes you can neglect the effects of the fluid within the tube.

The oiling system must not strike the side of its housing as it rotates, therefore, your boss
asks you to determine the following:

a)  The steady state moment, M, ata general distance, ¢, from point A along the tube.
b)  The steady state deflection, 1],, at the tip of the tube.

Assume for this design iteration that 17cos 6 << ¢sin@

Figure 4.5: Free body diagram for shaft showing all acting loads

The first step is to find the absolute acceleration a of a unit mass of tube. A body fixed
coordinates system is setup which has its origin where the tube is attached to the vertical
shaft and attached to the vertical shaft as shown in this diagram

The analysis starts by assuming the oil tube is rigid. Once the forces are found, then the
tube is assumed to be elastic in order to find the end deflection. The position vector p of
unit mass dm of length dp is shown above in gray area is

p = psin0j + p cos Ok
And p = =0. The angular velocity of the body fixed c.s. is
w = wK = wk
Since the angular acceleration w is constant, then
w=wK =wk =0
The absolute acceleration of dm is given by
a=R+pr+2(a)Xp'T)+(d)Xp)+a)X(a)Xp)
Since R = 0 and &= 0 the above simplifies to

a=wx(wxp) (1)
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> Y

/

X

—

Figure 4.6: Showing body fixed coordinates system

Hence
w X p=wkXx (psin9j+ pcos@k)
= —wpsin Oi
Therefore
W X (w X p) = wk X (—a)psin 61’)
= —w?psin Oj
Eq. (1) becomes

a = -w?psin 0j

Since
m
dm = Edp
Then the force acting on dm due the above acceleration is
dF = adm
= —w?psin Q%dpj

The force up to some point ¢ in the tube is found by integration

o m
F(c) = —f a)zp sin 0—dpj
0 L

2
2 g™
w” = sin 6

The total force is
L
F(L) = —a)zz sin Omj

At a section distance ¢ the forces are shown below

4921 Parta

Now that the force vector at a distance along the tube is found, the bending moment at a
section distance ¢ is calculated.

The weight of the tube is % per unit length, which can be modeled as uniform distributed
load. A free body diagram of the oil tube is given below. The force in the y direction is
resolved as axial force and as perpendicular force to the tube.

Resolving wz% sin Omj along the tube length, and perpendicular to the tube length gives

2

2 2
. ¢t . m . ¢ . m . .
an axial force of a)z? sin® 07 and perpendicular force w® sin 0+ cos 0 as shown in this
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> Y

/

X

—

Figure 4.7: Total force acting on tube at a given distance from the shaft

diagram. The axial force does not produce bending moment. The weight of tube is %g
per unit length and acts in the z direction. The weight is also resolved so that it acts
perpendicular to the tube as well giving %g sin @ pre unit length. Therefore for distance ¢

o . . .. m .
from the origin, the total weight is ~gcsin 0

Moment at joint
where tube is
attached to shaft

/\_

)

. Vertical reaction at
reaction alohg.thex joint where tube is
direction at joint where attached to shaft
tube is attached to shaft

X

Figure 4.8: Showing all forces acting at section distance ¢ in the tube

Therefore, the bending moment at section distance ¢ is

2
= zg_ 1 ﬂ _(T 1 )E
M(c) w > sm@LcosQ)g Lgsm@g >

3
m m
= wz% sin Gf cos 6 — 78 sin 6¢2

2
Unit check: Moment is force times distance. Hence units is A% Checking units of each
term in the RHS above it agrees.

49.22 Partb
To find end point deflection, the tube is treated as elastic and viewed as follows

For purpose of finding end point deflection at steady state, only forces acting in the
transverse direction to the tube as shown need to be considered .The end force is found
by letting ¢ = L in the above which gives the force at the free end as

L
P= a)zmz sin 6

181



4.9. HW 8 CHAPTER 4. HWS

ofp=—==—===— -

AN llll 1Ji\ul 1 quantiy to

-gsind N y determine

A QU

Weight per unit length

Figure 4.9: Looking at oil tube as a cantilever beam in order to determine end point
deflection

let 8 be the weight per unit length. Using cantilever beam end deflection formula the end
deflection is given by

_PL3 L

~ 3EI 8EI
A positive sign is given to deflection to due to P since it acts up, and the weight acts down.

Hence end point deflection is
a)zmg sin OL3 %g sin OL*
T=773Er T sE
w?ml*sin®  mgsin OL3
6EI 8EI
3 4w?*mL* sin 6 — 3mg sin OL3
- 24EI
mL3 sin 0 (4w?L - 3g)
- 24EI
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4.9.3 key solution

EMA 542
Home Work to be Handed In

6A) A mass is mounted on a rigid weightless rod of length I. The rod is inclined at an angle o
with respect to the shaft AB as shown. The shaft spins with a constant angular velocity @
and precesses about a fixed vertical axis with constant angular velocity N. Determine the
bearing forces on the shaft at A and B due to the prescribed motion. Neglect the effect of
gravity.

Y
I
|

\
h
N e i
Dmuﬁ SHAFT
4 /
D]

]
5

w b AT L
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EMA 542
Home Work to be Handed In

7)  Shown below is a simple model of a oil delivery system. The vertical drive shaft spins with
a constant angular velocity @. The oil delivery tube is modeled as a slender flexible beam of
length L, total mass m, elastic modulus E, and cross sectional moment of inertia /. For

preliminary design purposes you can neglect the effects of the fluid within the tube.

The oiling system must not strike the side of its housing as it rotates, therefore, your boss
asks you to determine the following:

a)  The steady state moment, M_, at a general distance, ¢, from point A along the tube.
b) The steady state deflection, 17,, at the tip of the tube.

Assume for this design iteration that 7)cos0 << ¢sin
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410 HWI

410.1 Problem 1

EMA 542
Home Work to be Handed In

10) A thin disk of radius  and mass  is rotating about the z axis with angular velocity @ and
angular acceleration . Use angular momentum methods and direct integration to determine
the bearing loads acting on the massless shaft at points A and B.

NCS <= M.A_SSLI:‘SS

SHAFT

Figure 4.10: Problem description

The first step is to determine the rate of the angular momentum of the disk. This will give

the torque it generates against the spinning shaft. Using free body diagram the reactions
on the beam are found.

Let the body fixed coordinates C.S. have its origin at O and attached to the shaft. Hence
C.S. rotates along with the shaft as in the following diagram

¢

/P

Oa

e

y
o

~
~
~
~
~

=X

Figure 4.11: Showing body fixed coordinates

In the relative angular momentum method the equation of motion of m is found from
M,=h,+ mp X ¥,

Where M, is torque around o and h, is the angular momentum of the disk relative to the
body fixed c.s. and p is the position vector from o to the center of mass of disk, and #, is
the absolute acceleration vector of the reference point o. But since the reference point o is
fixed in space in this problem then #, = 0 and the above reduces to

M, = h,
Where
dh, = p X pdm 1)
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dm is small unit mass of the disk given by

dm = _ZdA
Tr

where dA is the small area of the disk to be integrated over. Let s = | p| be the length of the
position vector from O, hence

p = —ssin ¢k + s cos ¢jf
p=p +wyxp

Since the angle ¢ is fixed in time, hence

p =0
In this problem
w,, = wk
Therefore
p=wixp
= wk X (—s sin ¢k + s cos qu)
=i (—ws cos qb)

Therefore Eq. (1) becomes
dh, = (=s sin gk +5 cos ) x i (~ws cos ) = ﬂdA
dh, = (] (a)s sin ¢ cos ¢) +k (a)s cos ¢ cos ¢))) —dA
Hence
hy = fA (7 (ws? sin @ cos ) + k (ws? cos ¢ cos ) %dA

Polar coordinates is used to integrate this. In polar coordinates, dA = sdsd@ where s is the
current distance from the center of the disk to the unit area, hence it goes from 0 to r, and
0 goes from 0 to 27, therefore the above becomes

0=2m1 S=7
h, = ﬂz (f (] (a)s2 sin ¢ cos qi)) +k (a)s2 oS ¢ cos cp)) sds) do
e Jo=o s=0
0=271 4 4 s=r
:% []( S—smcpcosqb)+k( S—cosqbcosgb)] do
6=0 o
m o=2n A A
_nrz j —smcpcosqb +klw —cosqbcosqb do
_ 2mm

(]( —smgbcomp) +k( ;COS(PCOS(]b))

w
= Enmrz jsing cos ¢ + k cos ¢ cos qb)

Therefore
h,=h,, +w, X h,
Where
ho,r = %nmrz (j sin ¢ cos ¢ + k cos ¢ cos ¢)
Hence

h, = gnmrz (jsingb cos ¢ + k cos ¢ cos (p) + wk X %nmrz (j sin ¢ cos ¢ + k cos ¢ cos qb)

2
= gnmrz (j sin ¢ cos ¢ + k cos ¢ cos ¢)) - i%nmrz sin ¢ cos ¢
2

W ) . a a .,
= i—-mmr sin ¢ cos ¢ +]§nmr sm¢cos¢)+k5nmr COS P COS P

Timr?

= (ia)2 sin ¢ cos ¢ + jasin ¢ cos ¢ + ka cos ¢ cos qi))
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Therefore the torque generated by the rotating disk is
M, = h,
2

TTmr

(ia)2 sin ¢ cos ¢ + jasin ¢ cos ¢ + ka cos ¢ cos qb)

A free body diagram is now made with all the reactions on the shaft and the above found
torque in order to solve for the reactions

My = 2T gsing cos ¢

Ay By

M, = 2 gcos ¢ cos ¢ T
L/ |

5 ‘;7 e

Ax My = 2 »2sing cos ¢

| L/2 L L/2 |

| 1 |

Figure 4.12: Moments and reactions on the shaft as result of disk rotation

Moment M, is a torsion torque (twisting moment) and will not be considered since it
does not affect shown reactions to be found. Only the moment in the xz plane (the M,
component) will be used to find A, B, and the moment in the yz plane (the M, component)
will be used to find A,, B,.

Taking moments at left end of the shaft, in the xz plane, gives
M, +B,L=0
M, —mmr?
B =—==
y L 2L
Taking moments at right end of the shaft, in the xz plane, gives
M,-A,L=0
romr?

Ay = Ta)z sin ¢ cos ¢

Taking moments at left end of the shaft, in the yz plane, gives
M, -B,L=0

w?sin ¢ cos ¢

2

B, = y T a sin ¢ cos

Taking moments at right end of the shaft, in the yz plane, gives
M, +AL=0
-M,  —mmr?

Ay = T T o[ asin ¢ cos ¢
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410.2 Problem 2

EMA 542
Home Work to be Handed In

9) The circular platform of radius a rotates about a vertical axis at a constant angular velocity @.
The axes %, ¥, z are body axes attached to the platform. A simple pendulum of mass 7 and
length [ is supported at A by a bearing which allows rotation about an axis at A parallel to
the z body axis. The pendulum is constrained by a torsional spring at A with spring constant
K7 which provides a torsional moment proportional to the angular displacement. The
torsional spring is designed such that when 6 =6 =0, the pendulum remains vertical for
® = constant, At position 6 =—6, as shown in the figure, the spring is undeformed.

Consider that the pendulum is disturbed so that it vibrates about the vertical position 6 =0.

a)  Determine 6, and the nonlinear equation for rotational motion of the pendulum about

the bearing A using the relative angular momentum method.

b)  For small angles, what is the natural frequency of oscillation?

I.‘_ - o F—Var‘l"o'pa'.\. |

siona | Spring
Lonstrant K.r

Figure 4.13: Problem description

Let the body fixed coordinate system has its origin at point A and attached to the spinning
disk. The following diagram shows the general configuration used to derive the equation
of motion of mass m using the relative angular momentum method.

In the relative angular momentum method, the equation of motion of m is found from
M, = hp +mp X ¥y

Where M, is summation of all moments around the reference point A and h,, is the angular
momentum of m relative to the body fixed c.s. and p is the position vector from A to the
mass m, and 7, is the absolute acceleration vector of the reference point A.

Now all the terms needed in the above equation are found.
p = Lsin 0i + L cos 0f (1)
The relative angular momentum is
h, = pXxmp (2)
The absolute angular acceleration of the body fixed coordinates system is
Wy = Wf

We need to take the time derivative of p. Since this vector is rotating relative to the reference
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Figure 4.14: Showing body fixed C.S. used in the solution

frame we use the standard method of adding the correction term

p=p +(wjxLsin6i)
In the above, only the component Lsin6i is corrected for since the body fixed axis i
does rotate as seen from the inertial frame of reference. The Lcos6j does not need to

be corrected for since the body fixed axis j is aligned to the inertial axis J all the time.
Evaluating the above gives

p = (LOcos 0i — LOsin 0) + (wj x Lsin 04)
= L0 cos 0i — LOsin 0f — Lw sin Ok
Hence h, from Eq. (2) becomes
h, = pXxmp

= (Lsin 0i + L cos 0f) x m (L6 cos 0i — LO sin 05 - Lw sin Ok)

= —[20'sin” Ok + jL2w sin® 0 — kL20 cos? 0 - i (L2w cos O'sin 6)

= —i (mL%w cos 0 sin 0) + mL2w sin® 6f — mL20k
To make it easier to differentiate, from trig tables, let cosOsin 0 = %sin (20) so that the
product rule is reduced. The above becomes

1 .
hy = —i (szza) sin 29) + mL2w sin® 0f — mL20k

The rate of change of relative angular momentum is

.d (1 . ;
h, = %hr] + (a)] X (—1§mL2a) sin20 — mLZGk))

=—i (lmsz (29) cos 26) +mL?w (2 sin 66 cos 8)]’ - mL20k
2

1 .
+k (EmLza)z sin 26) - (a)mLZB) i

Hence

. . . . 1
hy = i (-mL2w0 cos 20 - wmL20) + (2mL20w sin 0 cos 0) j + (Emszz sin 26 - mLZG) k
. . . 1 )
= i (-mL2w0 cos 20 — wmL20) + (mL20wsin (20)) j + (EmLza)z sin26 - mLZQ) k

Applying M, = hp +mp X ¥4 and since My is all the applied moments around A, these
come from the moment applied by the torsional spring, which adds kr (6 + 6;) magnitude.
The angle 6, is added to O since we are told the spring is relaxed at —6,, therefore, the
total angle from the relaxed position is the absolute sum of 6, and any additional angle.

This torsional spring moment acts counter clock wise when the pendulum swings to the
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right as shown. Now the weight of the mass m adds an mgLsin 6 moment, which acts
clockwise. Therefore M4 = hp + mp X ¥4 becomes

(kr (6 + 65) - mgLsin 0) k = i (~mL2w0 cos 20 - wmL20) + (mL20w sin (20)) j
1 i}
+ (EmLza)z sin 20 - mL26) k+mp Xiy,

#4 is the absolute acceleration of A and since w is constant, then only normal acceleration
towards the center of disk will exist and no tangential acceleration. The normal acceleration

is aw?i in the negative i direction. The above becomes
(kT (0 + 6y) — mgL sin 9) k=1 (—mL2w9 cos 20 — a)mLZQ) + (mLZQaJ sin (26))]'

1
+ (EmLza)z sin 20 — mLZG) k+m (L sin i + L cos Bj) X (—aa)zi)

=1 (—mL2w9 cos 26 — a)mLzé) + (mLZQw sin (26))]'

1
+ (EmLza)2 sin26 — mLZH) k + mLaw? cos Ok

Considering each component at a time, 3 scalar equations are generated one for i and one
for j and one for k

0 = —-mL?w0 cos 20 — wmL?0
0 = mL?Ow sin (20)
1 ..
kr (0 + 6p) — mgLsin O = szza)2 sin 20 — mL?0 + mLaw? cos 0

The third equation (for k) is the only one that contains the angular acceleration of the
mass m around A, hence that is the one used. Therefore the equation of motion is

.. 1
mL?0 — mLaw? cos 6 — mgLsin 6 — Emszz sin 20 = —k7 (6 + 0,)

i 2 1 kr (6 + 06
9—%COSQ—%SiD@—szsiHZQZ—%

410.2.1 Parta

To determine 6, we are told that the spring is vertical when 6 = 6 = 0 for constant w.
Hence from the equation of motion, letting 6 = 0 (since vertical position), results in

acuz _ kT(eo)
L ml2
L 2
6o = e radian
kr

Checking units to see the RHS has no units, since the LHS is radian (no units). Units of
kr is newton-meters per radian. Therefore

1
amLw? LMLz

kr ML

—L
T2
Hence units are verified. The equation of motion is
.. 2 1 kr(0+06
6 - cos 0~ §sin0 - Sw?sin20 = —%

41022 Partb

For small angle, cos @ =1 and sin 260 = 20, therefore, the equation of motion becomes

. aa)z g 1 kTG kT60
0 820 - ~?(20) = ——— — L0
L 120 Q0= m ik
. aa)z g kTQ kTQO
X 300 gw?+ - = 10
L L O T 2

51 g _
miz2” Y T mL2

10> 6( ky 2_2_g):_kT(6+60)
L
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Therefore, the natural frequency is

k 2
wn:\/m_zz_wz_fg rad/ sec

Checking units:

mz2~ Y T TMIZT T2 T2L

1 _1
Hence w/ﬁ = =, or per second. Hence the units match to radians per second, which is the

units of the natural frequency.

4.10.3 key solution

EMA 542
Home Work to be Handed In

the bearing loads acting on the massless shaft at points A and B.

10) A thin disk of radius r and mass m is rotating about the z axis with angular velocity @ and
angular acceleration &. Use angular momentum methods and direct integration to determine

KA <= massciss

SHAFT
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EMA 542
Home Work to be Handed In

9) The circular platform of radius a rotates about a vertical axis at a constant angular velocity @.
The axes X, y, z are body axes attached to the platform. A simple pendulum of mass m and
length [ is supported at A by a bearing which allows rotation about an axis at A parallel to
the z body axis. The pendulum is constrained by a torsional spring at A with spring constant
K7 which provides a torsional moment proportional to the angular displacement. The
torsional spring is designed such that when 6 = 6 =0, the pendulum remains vertical for
@ = constant. At position 6 =—6, as shown in the figure, the spring is undeformed.

Consider that the pendulum is disturbed so that it vibrates about the vertical position 6=0.

a) Determine 6, and the nonlinear equation for rotational motion of the pendulum about

the bearing A using the relative angular momentum method.

b) For small angles, what is the natural frequency of oscillation?

' l.‘_ ' }{— Vertical

Torsienal Sprini
tonstrant K'l'
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411 HW 10

411.1 Problem 1

EMA 542
Home Work to be Handed In

11) | The airplane shown in the figure below is in the process of making a steady horizontal turn at
the rate @,. During this motion, the dirplarie's propeller is spinning at the rate of @,. If the
propeller has two blades, determine the moments which the propeller shaft exerts on the
propeller when the blades are in the vertical position. For simplicity, assume the propeller to
be a uniform slender bar with total mass m. anvo censra L, '

Figure 4.15: Problem description

We need to write everything in using body principal axes ey, e, e3. Here is the model to
use

Body axes as principal
axes

Figure 4.16: Model used

Let @ be the absolute angular velocity of the body but written using its principal unit
vectors. The body in this case is the propeller which is shown above as a small bar. The
ey, e, e3 are the body fixed principal axes of the propeller. Therefore

w = wgey + wy sin Oey + wy, cos Oe;
But 0 = w,. This is the absolute angular velocity of the propeller itself. Hence
w = Oe;y + wp sin Oey + wy, cos Oes

We want to write everything using body principal axes to avoid taking derivatives for
moments of inertial. When using ey, e;, e; then the moments of inertia of the propeller are
constant relative to its own principal axes and also all the cross products of moments of
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inertia are zero, and only I3, I, I3 need to be used, which simplifies the equations.
0
@ = Oe; + w,0 cos Be, — Ow,, sin e,
= w,0 cos Oe, — Ow, sin Oe;
Modeling propeller as uniform slender bar
_ mL?
12

mL?
S 12
13 ~ O

~
—
|

The reference point used is the origin which is fixed on the body. Hence

Mp. x#, =0

Il 0 0 (1)1
h=[0 1, 0flw,
0 0 I3)lws
And

Iy I; @y +wyw; (I3 - 1)

hp = hz = 12 d)z tw s (11 - 13)
hs) Iz @3 +wyw; (I~ )

2
2 i _mL?
wp sm@cos@( 5 )
mL2 . . mL2
= ?w’ﬁ cos O + Ga)p cos 0 (f)
. . mL2 mL2
Q(A)p SmQ (7 — F)

mL2 .
——a)g sin 6 cos 6

122

mL .
= TC‘)PQ cos 6
0

Hence
0 (fixed point)
M, =h,+ mp. X,
= hp

When in vertical position, the angle 0 is zero, hence the dynamic moment is

mL?

Mo = Ta)peez

Converting back to xyz coordinates

mL?

—— WpWsf

M, = 1

Hence this is the torque value when 6 =0

mL? ,

T= Ta)pa)S]

o . 2 11

Check units: (ML ) 7

be in the k axes direction first. I went over this few times and do not see if I did something
wrong).

= (%) L =ForcexLength. Units agree. (I had expected the torque to

411.2 Problem 2

Let w be the absolute angular velocity of the body but written using its principal unit
vectors. The body in this case is the block. The ey, e;, e5 are the body fixed principal axes
of block. Therefore

W = w, cos ey — w, sin e, + de3
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Hawr 10 Hano I

}2. Asshown below, the homogeneous rectangular block of mass m is centrally mounted
on the shaft A — A about which it rotates with a constant speed ¢ = p. Meanwhile
the yoke is forced to rotate about the z-axis with a constant speed w,. Find the
magnitude of the torque M as a function of ¢. The center O of the block is the
origin of the z — y — z coordinates. Principal axes 1-2-3 are attached to the block
as shown, and with respect to these axes:

I11 = m(a2+b2)/l2

122 = m(bz+62)/12
Iz = m(a®+c%)/12

Figure 4.17: Problem description

We want to write everything using body principal axes to avoid taking derivatives for
moments of inertial. When using ey, e;, e3 then the moments of inertia of the propeller are
constant relative to its own principal axes and also all the cross products of moments of
inertia are zero, and only I, I,, I3 need to be used, which simplifies the equations.

W= —wo¢ sin ge; — wqu cos ¢e,
Using
m (az + bz)

12

m (b2 + cz)

12
m (a2 + c2)

12
The reference point used is the origin which is fixed on the body. Hence

13:

Mp, x#, =0

11 0 0 Cl)l
h=[0 L 0w,
0 0 I3)lws
And

W= —w,¢ sin pe; — Wy cos Pe,

W = W, CoS ey — w, Sin pe, + (Z)e3
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) (hdy w0 (I3~ 1)
hp = hz = 12 d)z +a)1a)3 (Il - 13)
h3 13 d)3 +a)1w2 (Iz - Il)

—Liw,p sin ¢ — pw, sin ¢ (I3 — I)
= | —Lwyp cos ¢ + w,P cos P (I} — I3)
—wkcosdsing (I, - I)
Pw,sing (I, — I3 — I)
=|wypcosp(ly —I3 - I)
w2 cospsin¢ (I, - I)

pa)o sin ¢ (13 - 12 - Il)

=lwopcosd(l; =13 - 1)
w?cospsing (I - I)

Hence
0 (fixed point)
—N—

MO:hp+ mp, X ¥,
= hp
Convert back to xyz coordinates using
ez = k
e, =jcos¢—ising

e; =1COsSP +jsing

Hence
M, = [pw,sing (I, — I; - ) (i cos ¢ + jsin ¢)
+ [a)op cosp(ly — Iz - 12)] (j cos ¢ —isin qb)
+w2cospsing (I, — 1) k
Or
M, = i[pa)o singcosp (I —I3 - 1)) —wypcospsing (I; — I3 - 12)]
+j[-pwosing (I - L = I) + wpcos ¢ (I, - I; - 1)
+w2cospsing (I, — ) k
Or

M, =2(I, - I) pw, sin ¢ cos @i
+pa, (—sing (=L =) + cos p (I; = I — 1)) j
+w2cospsing (I, — 1) k
So the torque M, is the i component above, Hence
M; =2(I, - I) pw, sin ¢ cos ¢pi
m (b2 + CZ) m (az + bz)

2 12

pw, sin ¢ cos ¢i

1
=Zm (c2 - az) paw, sin ¢ cos i
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4.11.3 key solution

EMA 542
Home Work to be Handed In

11)  The airplane shown in the figure below is in the process of making a steady horizontal turn at
the rate @,. During this motion, the airplane's propeller is spinning at the rate of @,. If the
propeller has two blades, determine the moments which the propeller shaft exerts on the
propeller when the blades are in the vertical position. For simplicity, assume the propeller to

be a uniform slender bar with total mass m Awe cénsta P,

215



CHAPTER 4. HWS

411. HW 10
ATTHC [/ Z 3 7< PGP ot
- 7 =3 [ = 7wl
3 = W= Wy e ¥ Sinpe, 3 Lycufe,
-7 wf .2
- — 2
\\ ‘! ,/ “"Li: I-L-. l"\j = Iz
‘<
, Ne y
Q T —
L=<

L\g = ]',_ /"\/P w, e, + (2 M A Op Sing &,
= R
. ‘AL, S ,E\,,ﬂ v o T (f K ,L,‘g" o - =
—== 1 gz . 7 | N Y
l«\w = ,,J—'Z r\) w/",fb, cedgg €, = 12 nA “fw‘*’;; C. @P=0
‘_A ~
G % L\c = (th' +,,,Uf3”\(¢/ ez_ + UWCC«)C; e_}>
4 y & , -t
- X llz-,!“"’QzS-?g és. + uJL A "“/"J”\”&ez)
== = o - 7 z e
cn @ ¢ 20 Bxhe = (0,3« 0pS)x and o€
o i y 2 -\
- E ~M (.up (.3‘) CZ
— - i 2 -
ST = ndap, @
e K - S
A /‘v\x =0 7 /M\,y,fic" P&’V L‘)Wiuiii ﬂgﬂfo .

216



411. HW 10

CHAPTER 4. HWS

# Example 21-5 s

Yy

©
Fig. 21-13

538 CH. 21 THREE-DIMENSIONAL KINETICS OF A RIGID BODY

The airplane shown in Fig. 21-13a is in the process of making a steady
horizontal turn at the rate of ,. During this motion, the airplane’s propel-
ler is spinning at the rate of w;. If the propeller has two blades, determine
the moments which the propeller shaft exerts on the propeller when the
blades are in the vertical position. For simplicity, assume the blades to be a
uniform slender bar having a moment of inertia / about an axis perpendicu-
lar to the blades and passing through their center, and having zero moment
of inertia about a longitudinal axis.

-

(a)

SOLUTION

Free-Body Diagram. Fig. 21-13b.The effect of the connecting shaft on
the propeller is indicated by the resultants Fr and Mg. (The propeller’s
weight is assumed to be negligible.) The x, v, 7 axes will be taken fixed to
the propeller, since these axes always represent the principal axes of inertia
for the propeller. Thus, £ = w. The moments of inertia /, and /; are equal
Uy=IL,=1)and I, = 0.

Kinematics. The angular velocity of the x, y, z axes observed from the X,
Y, Z axes, coincident with the x, y, z axes, Fig. 21-13c, is w = &, + w,
= wd+ wpk, so that the x, y, z components of w are

W, = w; w, =0 w, =0

P

Since = @, then & = (®),,,. Hence, like Example 21-4, the time
derivative of e will be computed with respect to the fixed X, ¥, Z axes and
then ¢ will be resolved into components along the moving x, y, z axes to
obtain (@), To do this, Eq. 20-6 must be used since e is changing
direction relative to X, Y, Z. (Note that this was unnecessary for the case in
Example 21-4.) Since @ = w; + @, then & = @, + ¢&,. Similar to Ex-
ample 20-1, the time rate of change of each of these components relative
to the X, ¥, Z axes can be obtained by using a third coordinate system x,y,
7', which has an angular velocity 1’ = w), and is coincident with the X, Y,
Z axes at the instant shown. Thus
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2z
L 05
2
|
(%7
/()
P (0N
X ’ »Y
(d)
D= (o + Q' xw

= (‘bs)x’y'z' + (d)p)x')":' + wp X (w: + wp)
=0+0+w,xo+ w,x o,
=0+0+wkxoit+tld=o0,0]j

Since the X, Y, Z axes are also coincident with the X, v, z axes at the instant
shown, Fig. 21-134, the components of & along these axes are

w,=0 Oy = w,w; @, =0

These same results can, of course, also be determined by direct calcula-
tion of (&),,.. To do this, it will be necessary to view the propeller in some
“eneral position such as shown in Fig. 21-13e. Here the plane has turned
-arough an angle ¢ and the propeller has turned through an angle i relative
to the plane. Notice that w), is always directed along the fixed Z axis and e,
follows the x axis. Thus the components of w are

W, = wy W, = —w,sin Y W, = w, cos ¥

Since w, and w, are constant, the time derivatives of these components
become *

w, =0 @, = w,,cosa,lu]x w, = wpsinz,//z/}
but ¢ = 0° and ¢ = w, at the instant considered. Thus,
@, =0 ®, = w,w, w.=0
which are the same results as those computed above.
Egquations of Motion. Using Eqs. 21-25, we have

M, = L, ~ (I, = Dw,w. = 100) — (I - 0)(0)w,

M.=0 Ans.
IM, = Lo, — (. - [Do.o, = lw,ws) = (0 = Do, o,

M, = 2lw,w, Ans.
IM. = L. — (I, — L)ww, = 0(0) — (I — Nw,0)

M.=0 Ans.
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me 70  Hawno I/v

i2. Asshown below, the homogeneous rectangular block of mass m is centrally mounted
on the shaft A— A about which it rotates with a constant speed ¢ = p. Meanwhile
the yoke is forced to rotate about the z-axis with a constant speed w,. Find the
magnitude of the torque M as a function of ¢. The center O of the block is the
origin of the z — y — z coordinates. Principal axes 1-2-3 are attached to the block
as shown, and with respect to these axes:

Lin = m(a®+8%)/12
In = m(b®+c%)/12
I33

Il

m(a® + ¢*)/12
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412 HW 11

4121 Problem1

EMA 542
Home Work to be Handed In

15) Frame SRA rotates at a constant angular velocity @ about the vertical z axis. Bar AB of total
mass m and length [ is hinged to the frame at A by a bearing which allows it to rotate in the SRA
plane at an anglar velocity Hand an angular acceleration 6 relative to the SRA frame. The motion of
the bar AB is restrained by a massless, elastic rod DB which has an unstretched length a and a

spring constant K = AF/a.

a. Determine the complete rotational equation of motion of bar AB as it vibrates through small
angles O about point A by using the relative angular momentum method and rigid body moments of

nertia.

b. Determine the resultant moments exerted by bearing A on bar AB.

Figure 4.18: Problem description

41211 Part (a)

Let A be the reference point (the point the moments will be taken about ). By using a
body axes which is also a principal body axes at point A we can use Euler equations for
the body fixed coordinates.

The absolute angular velocity of the reference frame is w. = wk and the body absolute
angular velocity is 2 = wk — 0i. This is now written in body fixed coordinates e;, e, es,

hence

Q = w (cos Oe; — sin Oey) — Oe;
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Ql = —931

(), = —sin Oe,

Q)3 = cos Oey

And
Q, = —0Oe;
Q, = -0 cos Oe;
Q; = —0Osin Oe,
And
3
3
I3~0
Hence
L 0 0)(Q
ha=0 I, 0|,
0 0 IL)lQ,

The rate of change of the relative angular momentum of the beam using Euler equations is
I Ly + Q3 (I3 - 1)
ha=|hy| =L + Q3 (1 - L)
hs)  \I3Q5 +€1Qs (I — 1)

Therefore, the moment needed to move the beam with the angular velocity specified is

given by
M, :hA+mpC><'fA

Where p, is a vector from A to mass center of bar given by ée3and #, is the absolute angular
acceleration of point A. Since the xyz rotates with constant angular velocity w, then point
A will not be accelerating in the tangential direction, but will have an acceleration inwards
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towards O which is #4, = —aw?j = —aw? (sin Oez + cos Oe,), hence
! .
mpe X ¥, = —1mzes X aw? (sin Oe; + cos Oey)

l
= —maa)zi (e3 X (sin Besz + cos Oey))

[
= —maa)zi (- cos Oey)

= Emawz cos Oe;
Therefore,
M; = LQq +Q,Q5(I; - ) + émawz cos 0
M, = L,y + Q3 (I ~ L)
M; = Q3+ 01Qy (I — 1)
Convert back to xyz using
M, =M,
M, = M, cos 0 + M3sin 6
M, = M3cos 0 — M,sin6
The above gives the dynamic moment, due to rotation of bar, about A expressed in xyz
coordinates. They will be written in full and simplified in order to obtain the solution.
Using
Q, = —0Oe;
), = —sin Oe,

Q3 = cos Oes

And
Q, = -0e;
Q, = -0 cos Oe;
Q5 = —0sin Oe,

Then, converting back to xyz coordinates

) [
M, = LQ +Q,Q5(I; - ) + Emaa)z cos @
2. 2 l
= —%6 —sin 6 cos 6 (0 - mT) + Emaaﬂ cos O
ml2 .. mP?

I
= —?8 + ? sin 8 cos O + Emaa)z cos 6

And

M, = M, cos 0 + M3zsin 0

vanish

= (1202 + Q1Q3 (Il - 13)) cos 6 + (I3Q3 + Q1Q2 (12 - Il)) sin 6

mil? . ) ml?
= —TQCOSQ—QCOSQ ? cos 0

M cos? 0 — 0 cos? 0 M
= ———0CO0S — U COS —_—
3 3

2 )
—=ml?0 cos? O

224



412. HW 11 CHAPTER 4. HWS

And
M, = M3 cos 0 — M, sin 0

vanish

. 2. ) 12
= [13Q3 +Q:Q,(, - 11)] cos 6 — [—m?@ cos 8 — 6 cos Qm? sin 6

ml? . ) mil?
= T@cos@sin@%—@cos@sinGT

2 . )
= gml 6 cosOsin

Since the problem asks to find the rotational equation of motion around A as shown, then
only M, will be used. A free body diagram is used to find the external torque around A

zZ Z

kAwhere A = Isin@

=
Y Y
/
4
X
Mueid = 0 (hinge)
Hence
[
—mgi sin 6 + kI? sin 6 = M,
I . ) . ml? ., 2 l )
-mg=sin@ +klFsin0@ = ———0 + — sin 0 cos 0 + —maw* cos O
2 3 3 2
For small angle sin® — 60 and cos & — 1, hence
l 2. 12
-mg=0 + k20 = o+ ™04 Dnaw?
2 3 3 2
ml? . ml? ! I
-0 —mo— 20 L 2
3 0 3 0 mg26+kl 0 > Maw
12 12 l l

m?@ (kl2 - m? - mgi) 0= Emaa)z

3k 3¢\, ! B

0 (—— —57)6—27’}161&)

This is the equation of motion for rotation for small angles.

412.1.2 Part(b)

We need to find F,,;, which represent reaction at the hinge A. Balance of external forces
at A gives

Fyeq — mgk — klsin 6 = ma,

Where a,, is the acceleration of center of mass of bar. Using
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kAwhere A = Isin@

Myeia = 0 (hinge)

I . .1
p—(a+§sm6)]+§(:056k

l. A
p,= (EQCOS 6)] - E@sm Ok
) I, . o ol 9
pr:E(Qcose—Q Sln@)]—§(981n9+9 COS@)k
w = wk
w = wk

_ l. oL
a)Xpr:a)kx[(EGCOSQ)]—EQSHl@k]
l.
:—wEQCOSQi

: : P ). !

@ Xp = wk X a+§sm@]+§cost9k
o)
=-@|a+5sinb|i

Ay
a)Xp:—a)(awLEsm@)z
a)x(pr):a}kx— w a+£sin6 i

2

!
:—a)z(a+§sin6)j

R=0
Hence
acg:R+pr+2(a)><pr)+a')><p+a)><(w><p)
I, . I, . .
:5(ecose—ezsine)j—E(@sin@wzcos@)k
A W A B U AR B
+2(—w§660s61)—w(a+Esm@)z—a) (a+§s1n6)]
Hence

ag=R+p +2(wxp)+adxp+wx(wxp)
. !
:i(—a)ZQCOSQ—d)(a+§sin9))
A1 . ) I .
+j 5(60089—9 sm@)—a) a+§s1n9

I, . .
-3 (Bsin9+ 620059)k
Hence from

Fyeq — mgk — klsin 6 = ma,
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We can find F,,;

I, . )
F.=mg—m3 (0sin 6 + 6% cos 0)

R
Il

. [, . . ) I
klsm@+m§(60086—6 sm@)—ma} a+§s1n6

. !
F, = -mwl6 cos 6 — mw (a + 5 sin 8)
For small angle
. .
F, = mg—m (66 + 62)

1 ,. . l
_ 2 2
Fy—k16+m§(9—6 6)—ma) (a+§6)

A [
F, = -mwlO — mw (a + 56)

Sometimes 62 can be approximated to zero for small angle. If this is allowed, then the
above simplifies to

l .
= mg—mEGG
I . ) [
F,= kl@+m§6—ma) (zz+ 58)
. _ [
F, = -mwlO - mw (a + 56)

Since 0 has been found above, all reactions at joint A can now be found.

412.2 Problem 2

/3 o  emsez o

£ Turntable A rotates‘at constant angular velocity N about the vertical z
axis and the x, y, z axes are attached to the turntable. The slender rod of
mass m and length & 1is forced to rotate at constant angular velocity n
about axis 3 relative to the platform. "[a] Determine the resultant moment
Mc' that must be applied to the system at point C in order to susta1n‘th1s
motion. Give your answer in terms of components along axes x', y z"
(i.e., ﬁc = .1 +. M o+ M ) [b] Determine the vertical components of

the bearing react1ons act1ng on the shaft at B and" D and c1ear1y show the
: d1rect1on of your answers on the sketch below.

@ E?- 9'1?» = |D 6 (where é“")

(
\ -y
o~ ¢

Lé True View
' of vod

P.qm“el

R=Nk (motion of
_ \a\a\"ﬂ'or'& )
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412.2.1 Part (a)

Let C be the reference point (the point the moments will be taken about ). It is also the
center of mass of the rod.

The absolute angular velocity of the reference frame is w., = Nk and the body absolute
angular velocity is 2 = Nk + 0i. This is now written in body fixed coordinates ej, e,, e,
hence

Q = N (sin Oe; + cos Oe,) + Oes

Therefore
(); =Nsin0
Q, =Ncos0
Qs =0
And
Q, =NOcos O
Q, =-NOsin0
Q3=0=0
And
L ~0
12
12
Hence
I, 0 0)((
h.=10 I, 0]|Q,
0 0 I3)\Q4

The rate of change of the relative angular momentum of the beam using Euler equations is
I LQg + Q5 (I3 - I)
he = |y | = | LQs + Q1Q5 (I — 1)
hs) Qs + Q10 (I - I)
Therefore, the moment needed to move the beam with the angular velocity specified is
given by
M, = hy + mp. X ¥,
Since the reference point is at the mass center of the rotating body, then p. = 0 Therefore,
M = [,Qq + Q05 (I3 ~ I)
M; = 1O, + OQ1Q3 (L - I3)
M; = I3Q3 + Q1Q; (I — I)
Convert back to x'y’z" using
M, = M;
M, = M cos0 — M, sin 0
M, = M;sin 0 + M, cos 0
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Hence

My = Q5+ O01Qy (I - )
2

= N2in 6 cos 00—
12

M, = Mycos0 - M,sin0

vanish

= [1101 + QZQ?, (13 - Iz)]COS - [IzQz + Q103 (Il - I3)]Sin 0

m . . ml? i
=—|-——NOsinf + ONsinf|0—- —||sinb

12 12
m?_ ., . , ml?
= —NO@sin” 0 + ONsin® 6—
12 12
mP?_ .,
= ?Nesm v

M, = M;sin 0 + M, cos 0
= [1101 + 0203 (13 - 12)] sin @ + [IZQZ + Q]Q3 (Il - 13)] cos 6

) ) mi? m2 . . ml?
=0ONcosOsin@|— |+ |-——N6Osin O + ONsin 6 O_E cos 0

12 12
= ON cos O'sin 0 —12 —lZNQ in 0 cos 0 — ONsin 0 6—12
= in - n in
cosOs 5 5 sin 0 cos sin @ cos 5

mz .
= ———NOsin O cos O
12

The above is the components of the resultant moment at C to sustain this motion.

412.2.2 Part(b)

The bar’s center of mass does not move in space. Hence there is no linear acceleration
associated with the bar translation. Therefore, we can set up the free body diagram now
and solve for the reactions as follows

r//*‘/i - M% / f

Dynamic loads balance with external forces
To find Fp, Taking moments at D
—2qi X Fg + (—qi) X (—mgk) =M,
~2qi X (Fyi + Fyj + Fk) - mgqj = M,
k (-2qF,) - j (~24F-) - mgqj = M.
—2qFyk + 29F.j — mgqj = M,
For vertical reactions only, hence need to find F,
mP_ .,
2qF, —mgq = ?NQ sin” 0
mP_ .,
2gF, = TNQ sin” 0 + mgq
mg

m?_ .
F, = ENQSIH26+ >

The force in the bearing F, is positive at B. hence upwards.
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To find F, at D. taking moments at B
2qi x Fp + (qi) x (-mgk) = M,
2qi X (Fyi + Fyj + F.k) + mgqj = M,
k (2qF,) - j (2qF.) + mgqj = M,
Zquk —2qF,j + mgqj = M,

For vertical reactions only, hence need to find F,

mP_ .,
—2gF, + mgq = ?NG sin” 6
mP_ .,
-2qgF, = ?NG sin® 0 — mgq
2.
F, = —m—NH sin® 6 + 8
12g

The force in the bearing F, when t = 0 is positive. but it can become negative. It depends

ol 2 A . . mg
if 1—2qN6 sin” 6 is bigger or smaller than —=

4.12.3 key solution

A ' EM 542

Turntable A rotates at constant angular velocity N about the vertical z
axis and the x, y, Zz axes are attached to the turntable. The slender rod of
mass m and length & 1is forced to rotate at constant angular velocity n
about axis 3 relative to the platform. [a] Determine the resultant moment
MC that must be applied to the system at point C in order to sustain this

motion. Give your answer in terms of components along axes x', y', z'
(i.e.s ﬁt = Mx.? + My.? + Mz,f). [b] Determine the vertical components of

the bearing reactions acting on the shaft at B and' D and clearly show the
direction of your answers on the sketch below.

(1 True View
of vod

* £ = ;
. |N=NR (motien o
plat ﬁ'or-\m)
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& : '.-"- Mi.mgmﬂ_.ﬂ_nm&
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; EMA 542
Home Work to be Handed In

15) Frame SRA rotates at a constant angular velocity @ about the vertical - axis. Bar AB of total
mass m and length [ is hinged to the frame at A by a bearing which allows it to rotate in the SRA
plane at an anglar velocity fand an angular acceleration @ relative to the SRA frame. The motion of
the bar AB is restrained by a massless, elastic rod DB which has an unstretched length @ and a
spring constant K = AF/a.

a. Determine the complete rotational equation of motion of bar AB as it vibrates through small

angles 6 about point A by using the relative angular momentum method and rigid body moments of
inertia.

b. Determine the resultant moments exerted by bearing A on bar AB.

L

SN
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© = -6 l 0= -6 !.r-—fs'mi"
)

—-wmel W, = -wb eob | I, = 3m&°

el“"= —-wems'l I =0

[ﬂfw)f”(/wafy (A)W(@v—i""

i f'(::' +w?‘w3(l‘3—];_) + m = E)(_&wzwgﬁ

. ! Fs :
= - 3mee *(-uh;s)(wms)[o— 3mi ]1-4“%@@;%(,-,9

3 . " I o 8 . | v L8
e H‘, = “'E{A’h/?.ls = ?Mfzwlﬁvu?{—ﬂ.e + ;mléﬁ_w s ©

w'-—!z‘d
Sovv-—r.l’tﬁzv .e,'(b.—.ﬂ-49 PO T TR Ofra @Am_ Eiab \..qf.

M amrrl . me %9’
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(L

i B (D R )

."‘3—:"’2;"."9"‘”6'* (-9) (w m&)(émlé— o) -

3 ra 2 ) :
Mo = =Sl 2B el

= I%":Jj +¢\mez’(rz_I')_ *M(O—'O)

P Lyesopait®
Xe=0 fn 64D

B P

St —————

&
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