up

CSE 542 Algorithms, Oakland Univ. MI, March 1988

by Nasser M. Abbasi

June 24, 2013

Part of MSCS courses.

Graduate. Grade B+

Instructor

Dr James McKay, Ph.D.

Course description

Symbolic and Algebraic computation on polynomials is several variables with coefficients in various algebraic domains, implement an algorithm for the construction of standard basis (Gronber basis) for an ideal in a polynomial ring

Text book

Data structures and Algorithms. by Aho,Hopcraft and Ullman

PIC

notes

Lost all notes. But here are some

Project Implemented a Package for addition and multiplication of matrices whose elements are Multivariate Polynomials main_line.txt

Source fiels (Pascal)

  1. hw3.pas.txt
  2. hw4.pas.txt
  3. MULMATRI.PAS.txt
  4. SEQN.PAS.txt
  5. TYPES.PAS.txt
  6. COMMAND.PAS.txt

Project for CSE 542: algebraic manipulations on Multivariate polynomials up to 59 variables

Here is the main line

writeln(' -- Project for CSE 542 Data Structure       ');  
     writeln(' --        Author naser abbasi               ');  
     writeln(' --        OAKLAND University ,MI            ');  
     writeln('this program performs algebric manipulations  ');  
     writeln('on Multivariant polynomials up to 59 variables');  
     writeln;  
     fillbicoef;           (* the bicoef to fill *)  
                           (* convert is filled too *)  
     writeln('please choose from menue');  
     writeln('A. Addition of two polynomials');  
     writeln('B. Multiplications of two polynomials');  
     writeln('C. Addition of two matrices of polynomials');  
     writeln('D. Multiplications of two matrices of polynomials');  
     writeln('E. Determinant of a polynomiale matrix');  
     writeln('F. Set up parameters');  
     writeln('Q. Quit');  
     writeln;  
     write('Menue Choice ?> '); readln(choice);  
     WHILE (choice <>'q') and (choice<>'Q') DO BEGIN  
           CASE (choice) of  
           'A','a' : addp;  
           'B','b' : mulp;  
           'C','c' : addmatric;  
           'D','d' : mulmatric;  
           'E','e' : determinant;  
           'F','f' : set_up;  
           END;  
           writeln;  
           write('Menue Choice ?> ');  
           readln(choice);  
     END;  
     write('Logging Off...');