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1.1. Links

CHAPTER 1. INTRODUCTION

1.1 Links

1. Instructor web pagehttps://cse.umn.edu/physics/yong-zhong-qian|

2. Canvas web pagehttps://canvas.umn.edu/courses/219359

1.2 Schedule

Class Detail

PHYS 3041 - 001 Mathematical Methods for Physicists
Twin Cities/Rochester | Spring 2021 | Lecture

Class Details

Status

Class Number
Session

Units

Instruction Mode
Class Components

Meeting Information
Days & Times
MoWeFr 1:25PM - 2:15PM

Enroliment Information

Class Attributes

Class Availability

Open [ ]

56625

001 Regular Academic Session
3 units

Completely Online

Lecture Required

Room
Twin Cities Remote

Career
Dates
Grading
Location
Campus

Instructor
Yongzhong Qian

Remote - set time and days

Class Capacity 90 Wait List Capacity 0
Enrollment Total 80
Available Seats 10

Notes

Wait List Total 1}

Undergraduate
1/19/2021 - 5/3/2021
Student Option

Off Campus

Twin Cities

Meeting Dates
01/19/2021 - 05/03/2021

Class Notes Students and instructors must be online at the same time, at scheduled days and times. 100% of instruction is
online with no in-person meetings. Exams are also all online.

Description

This course introduces additional mathematical topics that physics majors need to properly handle upper division physics classes

prereq: PHYS 1302, MATH 2373 (or equivalent courses)


https://cse.umn.edu/physics/yong-zhong-qian
https://canvas.umn.edu/courses/219359

1.3. Text book CHAPTER 1. INTRODUCTION

1.3 Text book

Basic Training in
Mathematics

A Fitness Program
for Science Students

R. Shankar
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1.4 syllabus

Physics 3041 (Spring 2021) Mathematical Methods for Physicists
Lectures: M W F 1:25-2:15 pm
Quizzes: F (2/12, 3/19, 4/23) 1:25-2:15 pm
Final exam: TBA

In order to take the makeup final exam, you must report conflict with the regular
final exam by the time to be announced.

Instructor: Yong-Zhong Qian (qianx007@Qumn.edu) Office hour: Tu 1-2 pm
TA Office hours:

Kivanc Bugan (bugan004@Qumn.edu) M 11 am — 12 noon, Tu 3:30—4:30 pm
Dan Cronin-Hennessy (croni028@umn.edu) F 11l am -1 pm

Outline of lectures & tentative schedule

1/20, 22, 25 Taylor series (Chapters 1, 4)

1/27, 29; 2/1 Gaussian and exponential integrals (Chapter 2)

2/3, 5, 8 Complex numbers & functions (Chapter 5)

2/12 Quiz 1: Chapters 1, 2, 4, 5

2/10, 15, 17 Matrices & determinants (Chapter 8)

2/19, 22, 24, 26; 3/1, 3, 5, 8, 10 Linear vector spaces (Chapter 9)

3/19 Quiz 2: Chapters 8, 9

3/12, 15, 17, 22, 24, 26 Ordinary differential equations (Chapter 10.1-10.4)
3/29, 31; 4/2, 12, 14, 16 Multivariable & vector calculus (Chapters 3, 7)
4/23 Quiz 3: Chapters 3, 7, 10.1-10.4

4/19, 21, 26, 28, 30; 5/3 Partial differential equations (Chapter 10.5)
TBA: Final Exam

Materials: The required textbook is Basic Training in Mathematics: A Fitness Program for
Science Students by R. Shankar. This book is rather concise and should be read before the
relevant materials are covered in lectures.

If you would like another book for more detailed exposition of the materials, Mathematical
Methods in the Physical Sciences by Mary L. Boas or Mathematical Methods for Physics and
Engineering by K. F. Riley, M. P. Hobson, and S. J. Bence is recommended.

Other materials, such as lecture notes, homework, and solutions to homework and quizzes, will
be posted on Canvas.

Online classroom courtesy: All lectures are given through Zoom. Please follow these rules
of etiquette: (1) When joining class, choose as quite an environment as possible. (2) Mute
yourself. Remember to unmute when asking a question, or when participating in other ways.
(3) Make sure to maintain and project a professional environment if you use the camera. (4)
When you show up you are joining a community intent on learning. Participate and engage.
No distracting activities. As with in-person classes: no eating, drinking, newspaper reading,
or other non-learning-related activities.
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The course: The goal of this course is to review and present the mathematical tools for
upper-division undergraduate physics courses. Particular emphasis will be given to physics ap-
plications through examples. Topics include single and multivariable calculus, complex numbers
and functions, linear algebra, vector calculus, and ordinary and partial differential equations.

This course requires that you have completed Math 1271 (Calculus I), 1272 (Calculus II), and
2373 (CSE Linear Algebra & Differential Equations). It is highly recommended that you take
Math 2374 (CSE Multivariable Calculus & Vector Analysis) concurrently. Therefore, we will
NOT repeat what you should have learned from those or equivalent courses.

To get the most out of this course, you should read the relevant part of the textbook before
it is covered in lectures (see the tentative schedule on the preceding page). If you find that
the textbook is insufficient for you to understand a topic or that you need brush up on the
materials, please consult your textbooks for Math 1271, 1272, 2373, and 2374 or read one of
the other textbooks recommended on the preceding page.

In addition, you must actively work at problem solving to know whether you fully understand
the concepts involved. Don’t fall behind! It is extremely difficult to catch up and the longer
you leave it the harder it gets. What you get out of the course will depend on the productive
effort and quality time you put into it. If you are experiencing difficulties, contact me or a TA
as soon as possible.

Lectures: Reading assignments will be announced on Canvas before lectures. You are expected
to read the relevant material before coming to class so that the lectures reinforce the concepts,
rather than presenting them for the first time. You are always encouraged to think critically
about the material presented and ask questions.

Announcements: It is occasionally necessary to change schedules, including the dates of
quizzes. Students are responsible for receiving ALL announcements made during the lecture,
by email, or on Canvas. I will try to post the most important announcements on Canvas. It
is crucial to have the correct Canvas settings so that you will receive appropriate notifications
(e.g., by email) for announcements. Missing an announcement is not an acceptable excuse for
missing a quiz or a course-related deadline. It is the sole responsibility of any student missing
a lecture to determine what course material and announcements are missed.

App for making pdf files: Homework, all the quizzes, and the final exam require submission
of clearly readable pdf files. Submission that is hard to read will receive NO credit! Please
make sure that you are able to make clearly readable pdf files by using a free app such as
Adobe Scan (https://acrobat.adobe.com/us/en/mobile/scanner-app.html) or CamScan-
ner (https://www.camscanner.com).

Phone holder: For communications during a Zoom meeting, it is very helpful to show through
the camera how you are solving a problem with pencil and paper. You may wish to do a Google
search for a goose-neck phone mount, which is a phone holder that can be mounted to a desk,
table, or bookshelf and be bent or twisted into different shapes to position the phone. By
twisting it to look down at a sheet of paper and connecting to Zoom on your phone, it’s
straightforward to show your writing and drawing.
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In-class discussion: To encourage interaction during the Zoom lectures, breakout rooms will
be used for groups to discuss some problems, usually in the form of multiple-choice (MC) ques-
tions. Each student should submit the answers individually following the discussion. Credits
will be recorded mostly based on participation. Group members are encouraged to interact
outside the lectures as well.

Homework: Homework will be posted on Canvas each Wednesday and due the following
Wednesday before the start of the lecture. Late homework will not be accepted. The graded
homework will be returned to you within a week. Solutions will be posted on Canvas.

You can discuss with other students in the class about the homework problems, but should
then solve them on your own. Infraction of this rule will be considered, and dealt with, as
academic dishonesty, i.e., cheating.

Quizzes & final exam: Three quizzes and a final exam will be given on the dates specified
at the beginning of this syllabus.

Grades will be determined based on the better of the two options:
Option 1: MC (4%), homework (16%), three quizzes (16% each), final exam (32%)
Option 2: MC (4%), homework (16%), best two quizzes (16% each), final exam (48%)

Division between grades is approximately: A (85-100), B (70-84), C (55-69), D (40-54), F (<
40). Dividing lines will not be adjusted upwards, but may be adjusted a few points downwards.
Subdivision within each grade level will be specified at the end of the course.

Regrading: If you have a dispute about your homework or quiz score, please first discuss
this with the TA who graded the problem. If you are still not satisfied, please contact me.
Regrading should be resolved within one week of receiving the graded work.

Makeup quizzes: There will be no early quizzes for any reason. As soon as you know that
you have an acceptable excuse for not taking a scheduled quiz with the class, please contact
me to discuss options and consequences.

Makeup final: There will be no early finals for any reason. To get a makeup final you must
have two finals scheduled at the same time, 3 finals scheduled on the same day, or a University
sanctioned excuse, and must submit a request form by the date to be announced.

Students with disabilities that affect their ability to participate fully in class or to meet
all course requirements are encouraged to discuss these matters with the Disability Resource
Center so that appropriate accommodations can be arranged. Please provide a copy of your
accommodation letter for the current semester to the instructor and the physics front office
(physics@Qumn.edu).

Policy & resource information can be found on the next page.
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Responsibilities: The U of M assumes that all students enroll in its programs with a serious
learning purpose and expects them to be responsible individuals who demand of themselves high
standards of honesty and personal conduct. All students are expected to behave at all times
with respect and courtesy toward their fellow students and instructors and to have the highest
standards of honesty and integrity in their academic performance. Any behavior which disrupts
the classroom learning environment or any attempt to present work that the student has not
actually prepared on his/her own, or to pass an examination by improper means, is regarded
as a serious offense which may result in the expulsion of the student from the University. The
minimum penalty for such an offense is a failing grade for this course. Aiding and abetting the
above behavior is also considered a serious offense resulting in equally severe penalties.

e Student Conduct Code

http://regents.umn.edu/sites/regents.umn.edu/files/policies/Student_Conduct_
Code.pdf

e Scholastic Dishonesty

See Student Conduct Code

e Use of Personal Electronic Devices in the Classroom
http://policy.umn.edu/education/studentresp

e Makeup Work for Legitimate Absences
http://policy.umn.edu/education/makeupwork

e Appropriate Student Use of Class Notes and Course Materials
http://policy.umn.edu/education/studentresp

e Grading and Transcripts
http://policy.umn.edu/education/gradingtranscripts

e Sexual Harassment
https://policy.umn.edu/hr/sexharassassault

e Equity, Diversity, Equal Opportunity, and Affirmative Action

http://regents.umn.edu/sites/regents.umn.edu/files/policies/Equity_Diversity_
EO_AA.pdf

e Disability Accommodations
https://diversity.umn.edu/disability
e Mental Health and Stress Management

http://www.mentalhealth.umn.edu
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2.1 number1

A person of 1.8 m in height stands in a wide open field on a clear day. The earth's radius is
approximately 6400 km. How far away is the harizon from the position of this person?

0.6 km
1.2 km
2.4 km
4 8 km
9.6 km

10
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2.2 number?2

The x-axis points downward. The upper end of a vertical spring is fixed on this axis and its lower
end is at the origin when it is relaxed. Then a block of mass m is attached to the lower end and
released from rest at the origin. The spring constant is k and the acceleration of gravity is g. Let x
be the position of the block, V(x) be the potential energy of the system, and omega be the angular
frequency for the simple harmonic oscillations (SHQ) of the block. Which of the following
statements is correct?

V(x) can be chosen as (kx"2)/2 + mgx.

V(x) can be chosen as -(kx"2)/2 - mgx.

omega = sqri(k/m).

The equilibrium position of the block is at x = 0.
The amplitude of SHO is independent of g.

11
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2.3 number 3

Given that a has the units of (Joule x meter), m is the electron mass, and h is the Planck constant,
the quantities having the dimensions of energy and length, respectively, are

am/h, him

(a*2)m/h, hi{am)

hm/a, (a"2)/(hm)
(m*2)/h, ah/(m*2)
(a*2)m/(h*2), (h"2)/(am)
none of the above

12
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24 number4

Consider a linear vector space of all 2x2 matrices. Which of the following statement is correct?

This vector space is 4-dimensional

The Pauli matrices and the identity matrix are linearly independent

The matrices in B are orthogonal to each other.

Any 2x2 matrix can be represented by a column matrix in an infinite number of ways,
A, B

A, B C

A,B,C D

None of the above.

13
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2.5 number5

We have dealt with the cases of spin 1/2 (electron, Pauli matrices) and spin 1 (homework, 3x3
matrices). Based on these cases, which of the following statements is NOT correct?

Spin operators in different directions do not commute,

The square of the spin operator in each direction, (S_i)"2, is proportional to the identity matrix.
The sum of (S_i)*2 over all directions, 52, is proportional to the identity matrix.

The operator S"2 commutes with S_i.

Spin operators in different directions share the same eigenvalues.

The operator S*2 has a single eigenvalue (i.e., fully degenerate eigenvalues)

14
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2.6 number 6

Which of the following statements is NOT correct?

The eigenvalues of the position operator are all real numbers with proper units.

The eigenvalues of the momentum operator are all real numbers with proper units.

The function delta(x-x") is an eigenfunction of the position operator X with eigenvalue x'.

The matrix of the momentum operator is diagonal in the eigenbasis of the position operator.
Following the measurement of the position of a particle, the particle is in a state for which a
subsequent momentum measurement would yield any value with the same probability.
Following the measurement of the momentum of a particle, the particle is in a state for which a
subsequent position measurement would yield any value with the same probability.

15
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2.7 number 7

Consider a spherical body of uniform density with radius R. Which of the following statements
regarding its gravitational field is NOT correct?

The field vanishes at the center.

The field vanishes at all radiir < R.

The field strength increases linearly with rat r< R.
The field strength decreases as 1/r*2 atr>=R.
The field is always directed towards the center.

16
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2.8 number 8

Consider a uniform and isctropic gas for which the number density of gas particles with velocity
between v and v + dv is f(v)dv,dv,dv;. Focus on an area element dA that is perpendicular to the z-
axis and on the wall of the gas container. Let theta be the angle between v and the +z-direction and
phi be the associated azimuthal angle. Which of the following is the correct expression for the
number of particles with velocity between v and v + dv that hit the area element over a time interval
dt?

f(v)(v_z)(dv_z)(dA)(dt)
f(v){v)(dv)(dA)(dt)
fivi(v)(dv_x){dv_y)(dv_z)(dA)(dt)
IV
"

 flv)(v"3)(cos theta)(sin theta)(dv)(d theta)(d phi)(dA)(dt)
flv){v"3)(sin theta){dv)(d theta){d phi){dA)(dt)

17
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3.1 First exam
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3.1.1 Questions

3.1.1.1 First question

Due Friday by 2:15pm Points 50 Submitting a file upload File Types pdf
Available Feb 12 at 1:25pm - Feb 12 at 2:15pm about 1 hour

Two positive charges of magnitude @ are fixed at = = —a and «, respectively,
on the z axis (a > 0). A negative charge of magnitude ¢ and mass m is free to

move along the y axis only.

(a) Find the electric potential energy of the negative charge as a function
of ». Use this result to find the net force acting on it. (10 points)

(b) By deriving a differential equation, show that for a small neighborhood
around the equilibrium position, the negative charge executes simple
harmonic oscillations. Specify the equilibrium position and the angular

frequency of oscillations. (30 points)

(c) What is the limit on the size of the small neighborhood in (b) and why?
(10 points)

3.1.1.2 Second question

Due Friday by 2:15pm Points 50 Submitting a file upload File Types pdf
Available Feb 12 at 1:25pm - Feb 12 at 2:15pm about 1 hour

Consider a real function f(z) = Adexp (—é) where 4, « are positive
parameters, = is the position variable, and ["2[f(z)]?dz = 1. Show detailed
steps leading to your results for parts (a) and (b) below.

(a) Find 4 in terms of o. (10 points)
(b) Evaluate g(k) = /72 f(z) exp(—ikz)dz, where k is a real parameter. (25 points)

(c) What are the units of o, k, 4, f(z), g(k) and why? (15 points)

21
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3.2 Second exam

Local contents
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3.2.1 Questions

3.2.1.1 First question

3/19/2021 Q2P1

Q2P1

Due Friday by 2:15pm Points 50 Submitting a file upload File Types pdf
Available Mar 19 at 1:25pm - Mar 19 at 2:25pm about 1 hour

Show detailed steps for the parts below.

(a) An explosion of energy E sends out a spherical shock wave into
the surrounding air of mass density p. Use dimensional analysis to
derive the shock front radius R as a function of time ¢ since the setoff
of the explosion. A result without any dimensionless factor is
sufficient. (25 points)

(b) Consider the Hermitian operators S, S, S3 that satisfy
Si, S;] = i 3%, €ijkSk. Show that S2 = S2 + S2 + S?
commutes with each of these three operators. (25 points)

3.2.1.2 Second question

3/19/2021 Q2P2

Q2P2

Due Friday by 2:15pm Points 50 Submitting a file upload File Types pdf
Available Mar 19 at 1:25pm - Mar 19 at 2:25pm about 1 hour

An electron is in a uniform magnetic field B= Bé . Its Hamiltonian

0 —1
is H = SZB ( . O) in the basis where its spin operator S, is
¢\ 1

1
represented by % (0 (1)) . Attime t = 0, the electron is in the

eigenstate of S, with the eigenvalue % Show detailed steps for the
parts below.

(a) Find the energy eigenvalues and eigenstates. (25 points)

(b) Find the spin state of the electron for ¢ > 0. (25 points)

23
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3.2.2 my solution to second problem (post exam)

ehB[O —i)
H=22
2mli 0

The eigenvalues can be found to be E, = f—j =hAE_ = —;h—nlj = —id where A = %. The
associated normalized eigenvectors are
1 (1
U= —
V2 (i
1 (i
Up = —
2 \/E 1

To find the spin state for t > 0, we need to solve the Schrodinger equation

La
i3 1) = Hig)

In the basis of H the above becomes

[40) (B 0)fxo
o] Lo B Jleo
N2 x1(t)
om0

ihix) () = hAxq(t)
ihixy () = —liAx,(t)

Hence

x4 (t) = —idxy(f)
x5(t) = iAxy(f)

The solution is
x1(t) = x1(0)e™M
x(t) = x(0)e™

In the original basis, this becomes

Xq(t) . .
= x1(£)v1 + x2(H) V7
Xo(t)
1 it 1 i
= —x1(0)e M| | + —=x,(0)eM 1
\/E 1 ; \/E 2 1 ( )
X1000] (1 1
What is left is to determine x;(0), x,(0). We are told that at t = 0, = since
X5(0) 0 0

is the eigenstate associated with Z of S,. Therefore the above becomes (at t = 0)

1 1 1 1 i
[OJ = @M(O)[iJ EXZ(O)[l]

11 i|[x1(0)
V2li 1){x00)

24
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Hence

[xl(())]:\/5 1 i]_l 1]

Therefore

Hence the solution (1) becomes
V2v2 (i) V22 1

_ le—z‘)\t 1 _ iemt i
2 il 2 |1

Xq(#)
Xo()

Therefore
1 . 2
X,(t) = = —iAt T iAt
1(8) 23 23
1 . i .
X, (1) = i— —iAt _ il
(1) 126 26
Or
1 . 1.
X (t) = = —1/1t+_1/1t
1(8) 26’ 23
1 . 1 .
— it  iAt
X5(t) = 2ie +2ie
Or
X1 (t) = cos(At)
X5 (t) = sin(At)
Or
B
Xy(t) = cos(e—t)
2m
B
X5(t) = sin(e—t
2m
Hence
eB
cos(%t)
[y) = ,
. e
sm(%t

25
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3.3 Third exam

Local contents
331 Questions . . . . . . . e e e 27
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3.3.1 Questions

3.3.1.1 First question

Q3P1

Due Friday by 2:15pm Points 50 Submitting a file upload File Types pdf
Available Apr 23 at 1:25pm - Apr 23 at 2:18pm about 1 hour

This assignment was locked Apr 23 at 2:18pm.

The normalized wave function of an energy eigenstate of the
i . : o 4aN1/4 pwy3/4 pwe?

harmonic oscillator is $(z) = (2) " (52)" "z exp( — 55—

™

where i, ware the mass and oscillation frequency, respectively.
When momentum is measured for this state,

(a) what are the possible values (5 points) and
(b) what is the probability of measuring a momentum between p

and p + dp(45 points)

3.3.1.2 Second question

Q3P2

Due Friday by 2:15pm Points 50 Submitting a file upload File Types pdf
Available Apr23at 1:25pm - Apr 23 at 2:18pm about 1 hour

This assignment was locked Apr 23 at 2:18pm.

Consider 4V p— A1 Ny, % = A N1 — A Ns,

dt

where p, A1, A2 are positive constants.

Given N1(0) = N2(0) = 0,

(a) find Ny (t), Nofdr) ¢ > @40 points) and

(b) justify the limiting values of N7, Nas t — of¢10 points)

27
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3.4 Final exam

Local contents
341 Questions . . . . . ... e e e 29

28
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3.4.1 Questions

Physics 3041 (Spring 2021) Final Exam

1. The electron spin is represented by the operator § = (i/2)d, where & corresponds to the
Pauli matrices. Consider the operator s,, = §- 7, where n is the unit vector with polar angle 6
and azimuthal angle ¢.

(1) Find the eigenvalues and eigenvectors of s,. (20 points)

(2) If an electron is in the spin state of s, = h/2, what are the possible results and the corre-
sponding probabilities when s,, is measured? (5 points)

2. A straight tunnel is dug between two cities on a planet of uniform mass density p (see cross
sectional view below). The effect of the tunnel on the planet’s gravity can be ignored. A train
with no engine moves on the frictionless rail in the tunnel.

(1) Derive a differential equation that governs the position of the train as a function of time.
There is no need to solve the equation for this part. (15 points)

(2) Assume that the train starts from rest at one city. Find the time required for the train to
complete a round trip between the two cities. (10 points)

L A

29
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3. In a photon gas, the number density of photons with momentum between p and p'+ dp’ is

2 dp,dp,dp.

= k) explpe/ (KT)) — 1

where c¢ is the speed of light, & is the Boltzmann constant, and 7' is the temperature of the
photon gas.

(1) Use the force law F = dp/dt to derive an expression of the pressure exerted by the photon
gas on its container. Your result should be in terms of a dimensional factor multiplied by a
dimensionless integral. (20 points)

(2) Evaluate the dimensionless integral in part (1) in terms of a numerical series. (5 points)

4. Two identical pendulums are hung from the same height and coupled with a spring. Each
pendulum consists of a string of length [ and a bob of mass m. The entire system is in a
fixed vertical plane (see figure below). The spring has a spring constant k and is relaxed when
f, = 65 = 0. The masses of the strings and the spring can be ignored. The acceleration of
gravity is g.

(1) Derive the Lagrangian of the system to the second order in 6; and 6, (i.e., including terms
up to 67, 0%, and 6,6,). (10 points)

(2) Find the normal modes and the corresponding oscillation frequencies. (15 points)
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41 HW1

Local contents

41.1 Problemslisting . . . . .. ... ... ... ... .. .. .. .. . 32
412 Problem1.6.1 . . . . . . . . e B3|
4.1.3 Problem?2 . . . . . .. 35
414 Problem3 . . . . . .. e 38]
415 Problem4 . . . . . . .. e 40!
416 keysolutionfor HW1 ... ... ... ... .. .. .. .. ... .. ... ... 45]

4.1.1 Problems listing

Physics 3041 (Spring 2021) Homework Set 1 (Due 1/27)
1. Problem 1.6.1. (20 points)
2. Consider f(xz) = (1 + z)? for (a) p=1/3 and (b) p = —2, respectively.
(1) Find the Taylor series of f(z) around z = 0. (10 points)
(2) From the form of the general term, find the interval of convergence for the series. (10 points)
(3) How many terms in the series do you need to estimate f(0.1) to within 1%? Check that the
difference between your estimate and the actual result has approximately the same magnitude
as the next term in the series. (10 points)
3. Expand f(z) = tan2? to oder z° using (a) direct Taylor expansion of tan z with a substitu-
tion (20 points), and (b) the Taylor series of sin z and cos x along with appropriate substitutions

(20 points).

4. A particle of mass m moves along the +z-axis (i.e., x > 0) with a potential energy

a b
Vig)=———,
(z) 222 x
where a and b are positive parameters.
(a) Find the equilibrium position xy. (3 points)

(b) Show that the particle executes harmonic oscillations near z = zg. (5 points)

(¢) Find the angular frequency of oscillations. (2 points)
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4.1.2 Problem 1.6.1

sin(x)
cosh(x)+2
Calculate f(0.1) from this series and compare to the exact answer obtained by using a
calculator

Expand the function f(x) = in Taylor series around the origin going up to x°.

Solution

The Taylor series of function f(x) around origin is given by (1.3.16) (= is used throughout
this HW to mean that the left side is the Taylor series approximation of f(x)).

[o0]

f) =), —f‘”)(O)

n= 0
Where f(0) is the n'* derivative of f(x) evaluated at x = 0.

Forn =0, fO%) = f(x) = SN® _ herefore £f(0) =

cosh(x)+2”

Forn=1
sin(x)
fO0) = dx(cosh(x) + 2)

_cos(x)(cosh(x) + 2) — sin(x) sinh(x)
- (cosh(x) + 2)2
_cos(x)(cosh(x) +2)  sin(x) sinh(x)
T (cosh(®) +2)%  (cosh(x) +2)°
_ cos(x) sin(x) sinh(x)

" cosh(x) +2 (cosh(x) + 2)2

The above evaluated at x = 0 becomes

1 0
M) = -
70 1+2 (1+2)7
1
3

Forn=2

d sin(x)
fO0) = dx(dx(cosh(x) + 2))
d ( cos(x)  sin(x) sinh(x))

" dx\cosh() +2  (cosh(x) + 2)°
_ —sin(x)(cosh(x) + 2) — cos(x) sinh(x)

- (cosh(x) + 2)?
(cos(x) sinh(x) + sin(x) cosh(x))(cosh(x) + 2)2 — sin(x) sinh(x)(2(cosh(x) + 2) sinh(x))
B (cosh(x) + 2)*
_ —sin(x)(cosh(x) +2)  cos(x)sinh(x)  cos(x) sinh(x)(cosh(x) + 2)2
- (cosh(x) + 2)2 B (cosh(x) + 2)2 B (cosh(x) + 2)4
_ sin(x) cosh(x)(cosh(x) + 2)2 N sin(x) sinh(x)(2(cosh(x) + 2) sinh(x))

(cosh(x) + 2)* (cosh(x) + 2)*
_ —sin(x) cos(x) sinh(x) cos(x)sinh(x) sin(x) cosh(x) 2 sin(x) sinh(x) sinh(x)
" cosh(®) +2  (cosh(x) +2)> (cosh(x) +2)2  (cosh(x) +2)° (cosh(x) +2)°
_ —sin(x) cos(x) sinh(x)  sin(x) cosh(x) 2 sin(x) sinh? (%)
" cosh(x) +2 (cosh(x) + 2)° B (cosh(x) +2)*>  (cosh(x) +2)°
The above evaluated at x = 0 becomes
N 0 0 0 0
fP0=173 ar v T
=0
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Forn =3

d d? sin(x)
fW@—aﬁﬁ@ﬁﬁﬁi»

d ( —sin(x) _cos(x)sinh(x) sin(x) cosh(x) .\ 2 sin(x) sinhz(x))

" dx cosh(x) +2  (cosh(x) + 2)2 (cosh(x) + 2)2 (cosh(x) + 2)3

_ —cos(x)(cosh(x) + 2) + sin(x) sinh(x)

- (cosh(x) + 2)2

s (- sin(x) sinh(x) + cos(x) cosh(x))(cosh(x) + 2)2 — cos(x) sinh(x)(2(cosh(x) + 2) sinh(x))

(cosh(x) +2)*
(cos(x) cosh(x) + sin(x) sinh(x))(cosh(x) + 2)2 — sin(x) cosh(x)(2(cosh(x) + 2) sinh(x))
B (cosh(x) + 2)4
) (cos(x) sinhz(x) + 2 sin(x) cosh(x))(cosh(x) + 2)3 - (sin(x) sinhz(x))(B(cosh(x) + 2)2 sinh(x))
" (cosh(x) + 2)°

The above evaluated at x = 0 gives

3 2
£0(0) = -1(1 + 2)2+ 0 2(—0 +1)(1 +42)2 -0 (1+0)1+ 24)2 ~0 . 2(o +0)1+2)° - (06)(3(1 +2) o)
1+2) (1+2) 1+2) (1+2)
) 2(1)(3)2 (1)(3)? o 0

G R LN ) CER

! 21 1
3 32 32
2

3

The process stops here, because the problem is asking for n = 3. Substituting all the
derivatives f(0) values above into

o

) = Y, =)

n=0 """

For up to n = 3 gives the following

x? x>
f) = £0) +xf D) + = fP(0) + 7 fI0) + -~
1 x? X3 2
~0+x=+ E(O) + —(——)

3 31\ 3
1 2x
*¥373%
xx
"3 9

1
When x = m the above becomes

PRAE R
"=3\10/ 7 30  (1000)9
1 1

~30 9000
300-1

~ 9000
299

~ 9000

From the calculator
299 ~ 0.0332222
9000 ~
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And from the exact expression

sin(x)  sin(0.1)
cosh(x) +2  cosh(0.1) + 2
=0.0332224

The error is about 1.67 x 1077.

41.3 Problem 2

Consider f(x) = (1 + x)! for (a) p = % and (b) p = -2, respectively. (1) Find the Taylor
series of f(x) around x = 0. (2) From the form of the general term, find the interval of
convergence of the series. (3) How many terms in the series do you need to estimate
£(0.1) to within 1% ? Check that the difference between your estimate and the actual
result has approximately the same magnitude as the next term in the series.

Solution

4131 Casep=;

1

f() = (1 +2)3
Part (1) The Taylor series is given by

x? x3
F0) % FO) +xf(©) + 570 + 2 f7/) + -+ (1)
Where £(0) = 1and f(x) = (1 +x) 5. Hence f’(O = Land f/() = 1(—%)(1 F2)3
Hence f”(0) = 32, and " (x) = _(_E)<__)(1 +Xx) 3 , hence f"(0) = ( ;)(—g) = %25),

2 5 2 5 8

and f@(x) = g(—g)(—g)(—g)(l +x)_?, hence f#(0) = g(—g)(—g)(—g) = —3%((2)(5)(8))

and on. The series in (1) becomes

1 @22 26G)x @G)8)xr @6G)8)A1) x>  (2)(5)(8)11)(14) x°
O st -t 3T w3 5 ¥ o
1 1 5 3 10 22 154
~1+3x—?x +3—4x—¥x +¥x—¥x+ (2)

The general term is found by comparing the above to the general term obtained from
binomial expansion. Since

1+x)f = [Z}co + (T]x + (Z]xz + e (3)

Comparing (2,3) shows that the general term is the binomial coefficient

W=

. Therefore

1
the Taylor series for (1 + x)3 can be written as

fmzivy

n:O 7’l

Forp = % the above becomes

1
f) = Y|

n=0 n
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Part(2)
R = lim |-
=00y 41
p
n
= lim
n—-oo
P
n+1
The Binomial coefficient [P] = — (p! Ik for when p is integer. This is not the case here.
n ni\p—nj:

where I'(p) is the

I(p+1
For non-integer p The Binomial coefficient becomes P1- __Tb1)
" T(n+1)L (p-n-+1)

Gamma function. The above ratio now becomes

T(p+1)
L T(n+1)I(p-n-+1)
R
F(n+2)F(p—n)
T(n+2)T(p - n)
= lim
=T+ DI(p - n +1)
nF(p - n)
= lim|————
[Tl —n +1)
= lim "
n—oo|p —n
Butp = %, hence the above becomes
R = lim|5 !
n—oo
g -n
= lim ! T
n—00 n-—-=
3
=1

Therefore the radius of convergence is 1. This means the Taylor series found above con-

verges to f(x) for |x| < 1.

Part 3

1

fx) = (1 +2)3
When x = 0.1

1
£(01) = (1.1)3
— 1032280115

one percent of the above is

1
m(1.032280115) = 0.01032280115
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The value 7 is now found such that

(0.1)n+1
T+ 1) < 0.01032280115

Where R, (x) is the Taylor series remainder using n terms. M is the upper bound for

IR, (0)] <M

the n + 1 derivative of f(x) any where between [0, 0.1]. Instead of trying to find M, few
calculations are used to find how many terms are needed.

Forn =0, f (0.1) =1 and the error is 1.032280115 — 1 = 032280115.

1

Forn =1, f 01) =1+ 3l01 = 1.0333333, and the error is [1.032280115 —1.0333333| =
1

0.001053218. Because this is smaller than R,(x) then only two terms are needed in the
Taylor series to obtained the required accuracy. Therefore

f(x)z1+%x

4132 Casep=-2

f@)=A+x7
Part (1) The Taylor series is

2 3
£) % FO) +f/(0) + £/ () + S 7() + -+

But f(0) =1 and f'(x) = (-2)(1 +x)°. Hence f/(0) = -2 and f”(x) = (-2)(-3)1 +x)*.
Hence f”(0) = (-2)(=3),and f"’(x) = =2(=-3)(-4)(1 + x)_5,hence £77(0) = (=2)(-3)(-4)(-5)
and so on. The above becomes
2 3
F) =1+ (2= (D33 + (DB + -
x? x3

~1-2x+ (2)(3)5 - (2)(3)(4)5 + e

~1-2x+3x%—4x3 + -+
The general term is therefore

[0e]

f) = 3"+ 1)x"

n=0

Part(2)

a
R = lim |—Z

n—o0

Ap+1
(n+1)|

1
it (n+2)

n—o0

=1

Hence the series converges to f(x) for |x| < 1.

Part 3
) =1 +x)7
Forx =0.1
FO01) =117
1
T 112
= 0.82644628
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One percent of the above is

1
ﬁ(0.8264462810) = 0.0082644628

The value 7 is now found such that

(0.1 )1’["1‘1
< 0.0082644628

IR, ()] SM(n+1)! <

Where R, (x) is the Taylor series remainder using n terms. M is the upper bound for the
n + 1 derivative of f(x) any where between [0, 0.1]. Doing few calculations gives

Forn =0, f(O.l) =1, the error is |0.82644628 — 1| = 0.1735537190.
Forn =1, f(O.l) = 0.8, the error is |0.82644628 — 0.8| = 0.02644628.

Forn =2, f (0.1) = 0.83, the error is |0.82644628 — 0.83] = 0.0035537190. Because this is
within 1% then only three terms are needed. Therefore

f(x) ~1-2x + 3x?

41.4 Problem 3

Expand f(x) = tan(xz) to order x° using (a) direct Taylor expansion. (b) The Taylor
series for sin(x) and cos x with appropriate substitution.

Solution
4.14.1 Parta
Using Taylor series
o0 xn
fx) = X3 =f"(0)
= n!

Where f(x) = tan(xz) and the expansion is around x = 0. The Taylor series for f(u) =

tan(u) is found instead of tan(xz), and then at the end u is replaced by x?. This is called
the substitution method. This simplifies the derivations. Therefore f(0) = 0. The first
derivative is

d
f(u) = - tan(w)

d (sinu)
"~ du\cosu
cos? 1 + cos

2u

cos? u
1
cos2 u

At u = 0 this gives f'(0) = 1.

The next derivative using the above result gives

d 1
fru) = E(coszu)

2cosusinu

cost u
2sinu

cos3 u
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At u = 0 this gives f@(0) = 0. The next derivative gives
d

O)(u) = 2_(

O =2+

COS U COS

sinu )
cos3 u

3u —sin u(3 cos? u(-sin u))

cos® u

cos* 1 + 3sin? u cos? u

cos® u

2costu  6sin®ucos?u

+
cos® u cos® u
2 6sin® u
7. T 4

cos?u  costu

2 6(1 — cos? u)
=" 4
cos2 u cos*u

2 6 6

+ -
cos?u  cos*u cos?u
4 6
—~ +
cos?u  costu
At u = 0 this gives f®(0) = —% + ? = 2. Since the problem is asking for order x° the

process stops here, as this is the same as order u> when u is replaced by x2.

Therefore the Taylor series for tan(u) is (for up to n = 3)
, u? u’
£ = £0) +uf ©) + 5 f0) + 2 fO©) + -+

43
z0+u+0+2§

1

3
R U+ U
3

Replacing u = x2, gives the Taylor series for tan(x?) for up to x° term as
% g g Y. P
1
tan(x?) = x% + =x°
(+?) 3

41.4.2 Partb

To obtain the above result using the Taylor series for sin(xz), cos(xz), the Taylor series

for sin(xz) and cos(xz) is found, and long division is applied using the definition of

sin(x2

tan(xz) = ) Terms with order larger than x° are ignored. The Taylor series for sin(x)
Ccos|x
is 5
Sln(x)zx—§+§—---

Using the substitution method, the Taylor series for sin(xz) becomes

6 10
() v 2o
s1n(x)~x 30 + =
6 10
, X0 X
~2_ 1
YT T 120 M
The Taylor series for cos(x) is
x> xt
cos(x)zl—E+I—---

Using the substitution method, the Taylor series for cos(xz) becomes

N X X
Cos(x)~1 TR
4 8

~1-2 . (2)
2 24
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(2
Since tan(xz) = sm((xz)) then the Taylor series for tan(xz) is
Ccos|x
2 x6 %10
-+ -
2\ ~ 3 " sl
tan(x ) = ) P a—
— ST

Performing long division and stopping when the remainder has powers larger than x°
gives

tan(xz) ~ a2+ =x0+ -
3
Which is same result as part(a).
£
o
9 Psd Io
e o
7 & |22
e o
W _ZEE —\—24—‘ -
2 21
R R
K e
3 120
2 ol
3 A
SRR 52
M'b |Lj‘A”(é 6H€L€{Q
e x’“’" = -
25 Ay Bz o A o
hene e e‘:j&] e X—!’M—"—T‘J’L@Ld
i e
b= Ty

Figure 4.1: Polynomals long division

4.1.5 Problem 4
A particle of mass m moves along the +x axis (i.e. x > 0) with potential energy
a b
VX)) == —--
) 2x? «x

Where a and b are positive parameters. (a) Find the equilibrium position xj. (b) Show
that the particle executes harmonic oscillations near x = x. (c) Find the angular fre-
quency of oscillations.

Solution

4.1.5.1 Parta

Equilibrium position is where the slope of the potential energy is zero. This position x,
is found by solving for x from

v 0
=
But
av a
— =5(-27) - b(-27?)
-a b
R
—a+ bx
=—
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Hence
—a+ bx 3
»¥ o 0
bx=a
Therefore 4
Xg = —
07}
41.5.2 Partb

Approximating V(x) around x; using Taylor series gives

(x - xo)2
2!

V(X) = V(x()) + (x - XO)V,(X()) + V”(xo) + ...

av . . . T . . .
But —— evaluated at x is zero, since this the equilibrium point. The above simplifies to

2
V(x) = V(xp) + V" (xp) + -+ (A)

Higher terms are ignored, because (x — x() is assumed small and mass remain close to

X0- But

a b
Vi(xo) = 22 %

And since xy = % from part (a), the above simplifies to

a b
V(xo) = —= — 7%
(g) (Z)
3 ab®  b?
222
b b
"2 a
162
=—=— Al
> (A1)
And
v _df-a b
dx2  dx\x3 a2
_3a b
R
At x = x the above becomes
., 3a b
Vi) = —5 - —
G G)
b4
== (A2)
Using (A1,A2) into A gives
102 (x—x)° bt
T
a2
U Gl
2a 2 ad
1b2+1 2+a2 5, b4+
N———+—|x*+ 5 - 20— | =
2a 2 b2 b)ad
1?1 1
x——— + —b? bix? - =b3x + -
2a 2a 2a3 a2
b* ) &
= gx - a—zx +
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Therefore near x, the potential energy is approximated as

V(x) % —x% - —=x (1)

The force on the mass is given by

Using V(x) in (1) the force becomes

o
But F = m~ . Hence we obtain the equation of motion as

dt2
mdz—x =F
dr2
b* b3
=3z
Therefore
d?x(t) bt b3
THF + —3X(t) =-=
d?x(t) b* b3
? + (—B)X(t) = _ﬁ (B)
Let .
b 2
mad
The equation of motion (B) becomes
x(t) &
FT2 + w X(t) = _ﬁ

But this is standard second order ode whose solution is

x(t) = Acos(wt) + Bsin(wt) + x,(f)

3
Where x,(f) is the particular solution due to the forcing function —b—z and A, B are

constants of integrations found from initial conditions. Since the forcing function is just
constant, and not function function of time, the above becomes

x(t) = Acos(wt) + Bsin(wt) + F,
= Acos(a)t + q,‘)) +F,

Therefore the motion is simple harmonic motion since cos(a)t + (f)) is harmonic. The

forcing function F, has no effect on the nature of the harmonic motion, other than adding
an extra constant displacement shift to x(t) for all time. Since there is no damping, the

particle will continue this motion forever.

The following is a plot of the solution for 10 seconds using arbitrary values for a,b, m
and with initial conditions x(0) = 1, x’(0) = 0. The solution shows the motion is harmonic
as expected.
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ClearAll([x, t, w, a, b, m];
-b3
ode = x""[t] +wx[t] == —2_;
ma
ic = {x[0] =0, x'[0] = 0};
sol = x[t] /. FirsteDSolve[{ode, ic}, x[t], t]
b® + b Cos [t Vw |

a’mw

parms={m—vl, a-1, b_.3,w_.5qrt[b—:]};
ma

sol //. parms

(-27 + 27 Cos (3 t])

O/ =

Plot[sol //. parms, {t, @, 10}, AxesLabel » {"t", "x(t)"}, BaseStyle » 14, PlotStyle - Blue]

Figure 4.2: Plot of solution

4.1.5.3 Partc

The angular frequency of oscillation is

bt
W =—
ma3
4
In radians per second. The quantity Z_S can be called the stiffness k (Newton per meter).

[k
Hence w = 4/—.
m

4.1.54 Appendix

An easier way to do part b, is to keep (x — x() intact and replace this with y at the end.
Like this

Using (A1,A2) into A gives

Vix) ~ ———
) a PARNN S
The force on the mass is given by
Fe av
~dx
b
= ~(x~%0)
2
But F = m%. Hence we obtain the equation of motion as
d2x -
m— =
dt?
b4
=—(x-x0)—
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Now let y = x — x(. the above becomes
d?y vt
Tar T e

d2y+ b4 o
mdt2 ya3 B

d2y+ v
dr? yma?’_

Which is SHM. Using this method, it is faster to show.

0
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4.1.6 key solution for HW 1

Physics 3041 (Spring 2021) Solutions to Homework Set 1
1. Problem 1.6.1. (20 points)

Let’s first try the most straightforward way:

sinx

=———= f(0)=0
/(@) coshz 4 2 1(0)
, cos T sinz sinh x , 1
= — = 0) =—
Jw) coshz +2  (coshz + 2)? 7' 3
() sinz coswsinhx  cosxsinhx + sinx coshx n 2sin x sinh? z
z - - - - P
coshz +2  (coshz +2)2 (coshz + 2)? (coshz + 2)3
sinx 2coszsinhz + sinxcoshz  2sinxsinh’x "
= — — - = f(0)=0
coshz + 2 (coshz + 2)? - (coshz + 2)3 710)
() . cosw n sinzsinhe 2(—sina sinh z + cos z cosh z) + cos z cosh « + sin x sinh
’ coshz+2  (coshz + 2)? (coshz + 2)2
2(2cosxsinh x + sinx cosh z) sinh = N 2(cos x sinh® x + 2sin x sinh x cosh ) _ bsinz sinh®
(coshz + 2)3 (coshz + 2)3 (coshz + 2)4
_ cosw n sinz sinh —sinzsinhx 4+ 3 cosx coshz
~ coshz+2  (coshz 4 2)2 (coshz 4 2)2
6(cos zsinh? x + sinxz coshzsinhx)  6sinasinh®x
(coshz + 2)3 (coshz + 2)*
_ cosw n 2sinzsinhz — 3 cosz coshx
~ coshx +2 (coshz + 2)?
6(cos  sinh® x + sin x cosh x sinh ) B 6 sin z sinh® x = f(0) = 132
(coshz + 2)3 (coshz + 2)4 T3 9 3
o oy 1O o 1) r v o
= 4 T T T e = — — e — — — —
flx) = f(0)+ f(0)x + TR T 3 3><6+ 3 9+
0.1 0.1° in0.1
J(0.1) & == = =5 ~ 00832222 t0 be compared with £(0.1) = ————— 5 = 0.0332224
Now consider a simpler way starting with
gz L shae =1 v
sy =x — 6 +-.--, coshrxr =1+ 5 +ee,
where we have ignored terms of orders higher than 2°.
fa) sinx r—23/6+ - z—a3/6+--- z—a3/6+ -
€T = = = =
coshz +2 (1+22/2+---)+2 342%2/2+--- 3(1+4+2%2/6+---)
=236+ 1 . : r a3
= %(1_I2/6+...):g(x_x‘s/G_l"g/G_'_...)zg_%+...7

where we have used (1 +y) ' =1—y+--- withy =22/6+---.
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2. Consider f(z) = (14 x)? for (a) p=1/3 and (b) p = —2, respectively.

(1) Find the Taylor series of f(z) around x = 0. (10 points)

—1 ~1(p—2 1) (p—n+1
(Hx)p:HpHp(pQ )2, PP é(p )3 4. =) ngp ntl) o,
For p =1/3,

2 5% 1024 2.5-8-(3n —4)
Ly g & @ Bt 10t "y
(1+2) ST TR ye S 3] A
and for p = —2,

(2) From the form of the general term, find the interval of convergence for the series. (10 points)

For p = 1/3, the general term is

L 12-5-8-(3n—4)

n n — 71 n
I (=1) 3nn!
So the interval of convergence is
2-5-8- —4 ntl H! 1
R = lim = lim 5-8-(3n ) ><3 (n+1) :hmmzl.
n—00 | Ay 1 n—002-5-8:(3n—4)(3n —1) 3mn! n—oo 3n —1
For p = —2, the general term is
. n+1
apz” = (=1)"(n+1)2" = R = lim = lim =1
n—00 | Ay 11 n—oo 1, + 2

(3) How many terms in the series do you need to estimate f(0.1) to within 1%? Check that the
difference between your estimate and the actual result has approximately the same magnitude
as the next term in the series. (10 points)

For p = 1/3, the second term is 0.1/3 ~ 0.033 and the third term is —0.12/9 ~ —1.1 x 1073.
So within 1% we only need to keep the first two terms: 1.1'/% ~ 1+0.1/3 ~ 1.0333. The differ-
ence between the actual result and this estimate is 1.1%/% —1.0333 ~ 1.0323 — 1.0333 = —1073,
which indeed has the same magnitude and sign as the third term.

For p = —2, the third term is 3 x 0.12 = 0.03 and the fourth term is —4 x 0.1> = —4 x 1073.
So within 1% we only need to keep the first three terms: 1.172 ~ 1 —2-0.1 +3-0.12 = 0.83.
The difference between the actual result and this estimate is 1.172 — 0.83 =~ 0.82645 — 0.83 =
—3.55 x 1073, which indeed has the same magnitude and sign as the fourth term.
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3. Expand f(x) = tan2? to oder 2° using (a) direct Taylor expansion of tan z with a substitu-
tion (20 points), and (b) the Taylor series of sin « and cos x along with appropriate substitutions

(20 points).

(a) Direct Taylor expansion of g(y) = tany

O - 0 ! = / 0 f— 1
9(0) =0, ¢'(y) gy g'(0)
J'(y) = 22 90) =0
cos3 y
2 cos 2 sin y(3 sin 2 6 sin”
g//l(y) — 3 y + y(4 y) — 5 " y = Il/(o) — 2
cos3y costy cos?y  costy
9"(0) 5 9" (0) 2 Y’
9y) = 9O+ O+ v+ 570"+ =y oy =yt ot
! y !
= [fla) =g(a®) =2+ 7 +
(b) Use Taylor series of siny and cosy
3 2
siny:y—%Jr"- , COS?J:].—%+"' ,
where we have ignored terms of orders higher than y3.
sin a3 6+ --- 3 3 3

cosy 1—y2/2+--

where we have used (1 +2)"'=1—z+ .- with 2= —y?/2+---.

6

x
y=x2:>tanx2::c2+§+---
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4. A particle of mass m moves along the +z-axis (i.e., x > 0) with a potential energy

a b
Viz)= — — —,
(@) 222
where a and b are positive parameters.
(a) Find the equilibrium position zy. (3 points)
a b a b a
Vi@)=——=+—, V) =——=+—5=0=1=~
() 3 x? (o) 3 0=

(b) Show that the particle executes harmonic oscillations near = = zy. (5 points)

, 3a  2b 3a. 20 bt
V/(.I') = ﬁ—gévﬁ(xo):;%_;%:$>o
, V" (1 b2 b4
V(z) = V(xg)+ V'(2o)(x — o) + %(z —20)? = 5 T ﬁ(:): — x0)?
b* . . b!
F = —V’(x):—g(x—xo):mx(t), y=a—xo=>mj=——y
b4
i = Y= —wy = y(t) = Asin(wt + ¢y), z(t) = zo + Asin(wt + ¢y)

(¢) Find the angular frequency of oscillations. (2 points)

4 4
o b _ b
WE——==w=1/—3

ma ma
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421 Problems listing

Physics 3041 (Spring 2021) Homework Set 2 (Due 2/3)
1. Problem 2.2.3. (10 points)
2. (a) Problem 2.2.10. (10 points)
(b) Problem 2.2.11. (10 points)
3. The probability to find a particle at position between x and x + dx is
P(x)dx = Aexp(—ax® + pz*)du,

where A, «, and 8 are positive parameters. By the definition of probability,
/ P(z)dx = 1.

Treat [ as a small parameter, i.e., for any given z, you can view P(z) as a function of g and
expand it around 3 = 0.

(a) Find A to the first order of 4. (15 points)

(b) Find the average position

T = /OO xP(z)dx

o0

to the first order of 5. (25 points)

4. A container of volume V' encloses a neutrino gas of temperature 7. The number of neutrinos
with energy between E and E + dF is

AV E?
dN = dE
<h3c3> explE/(KT)]+1

where h is the Planck constant, c is the speed of light, and & is the Boltzmann constant.

(a) Express the total energy density of the neutrino gas in terms of a dimensional factor mul-
tiplying a dimensionless integral. Show that the factor has the correct dimension. (10 points).

(b) Follow the discussion of a photon gas and evaluate the dimensionless integral. (20 points).
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4.2.2 Problem 2.2.3

Evaluate E eV¥ dx. Show that fo e‘x4dx = F(Z)

Solution

Let y = v/x. Therefore

dy 11
ix T 2VE
11
=2y
And
dx = 2ydy

When x = 0, y = 0 and when x = 1,y = 1. Substituting this back into f eV dx gives
£1 e¥ (Zydy) =2 £1 ye¥dy. This integral is evaluated using integration by parts.

1
udov = uvlé —f vdu
0

Let u = y and dv = ¢Y, then du = dy and v = &Y. The above becomes

1 1
2([0 yeydy) = Z(uvl(l) _jo‘ vdu)
1 1
= Z(yey|0 —j(; eydy)

=2((e! - 0) - e’ly)
=2(e—(e—1))
=2(e—-e+1)

=2

Hence

1
f eVidy =2
0

For the second part of the question asking to evaluate fo e dx, let

Then

When x = 0,y = 0 and when x = 0o,y = c0. Hence the above integral becomes

foo e dx = foo e‘y(ly(%_l)dy)
0 0 4

= % fo vy (1)

Comparing the above to integral (2.1.39) in the book which says

Fmy= [ yrevd
() sz y (2)
I'(n) =F(n-1) (3)
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. _1. :
Then putting n = 7 in (3) gives

Which is (1). This means that

Hence

1 > (i 1. (1
ZL y(4 1)e_ydy: ZF(Z)

To obtain the final form, the following property of Gamma functions is used
I'(n+1)=nl(n)

1
Which means that when n = v the above becomes

o))
-3

1 (1 5
ZJ; y(4 1)e_ydy = F(Z)

0 5
iy =12
[ =l

Which is what we are asked to show.

Using this in (4) shows that

Which implies

4.2.3 Problem 2.2.10 (or part a of problem 2)

(4)

Problem 2.2.10. Consider

/lt—l
I = .
0 lnt

integral equals In 2.

Think of the t in t — 1 as the a = 1 limit of t*. Let I{a) be the corresponding
integral. Take the a derivative of both sides (using t* = e®'"t) and evaluate dI/da
by evaluating the corresponding integral by inspection. Given dI/da obtain I by
performing the indefinite integral of both sides with respect to a. Determine the
constant of integration using your knowledge of 1(0). Show that the original

Figure 4.3: Problem statment

Solution
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Let

1 4a _
I(a):f ol
0 lrlt

Where a = 1 for the specific integral in this problem. The above is the parametrized
general form. Taking derivative w.r.t a gives

dI(a)_iflt”—ldt

da  da\J, Int
Ld (-1

_fo %( Int )dt
11

d
= | ——@"-1)dt 1
0 mida 1)

But
d d
E(ta 1) = %(ealnt _1)
= In(t)(e"!?) (2)

Substituting (2) into (1) gives

di@ (1 .
d; - fo — (In(e) ()

1

:f ealntdt
0
1

=f it
0

1

ta+1

a+1
0

Integrating the above is used to I(a) gives

G|
I(a):j(; 1+7

=In(1+ T)|g
=1In(1 +a) - In(1)
=1In(1 + a) a#-1

dt

When a =1 the above becomes

14-1
1) = fo %dt
=In(1+1)
~ In2)

Hence
t._

11
——dt =In(2
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4.2.4 Problem 2.2.11 (or part b of problem 2)

Problem 2.2.11. Given

e k
/ e *sinkzxdr = —
0 a“ + k‘2

o0 _ N o0 —
evaluate fo re % ginkxzdzr and fo ze %% cos kxdz.

Figure 4.4: Problem statment

Solution
4.24.1 part (1)
I= f e~ sin kxdx
0
Taking derivative w.r.t a gives
al  d{(
i E( e " sin kxdx)

0

00 d B )

= f — (™™ sin kx)dx
0 d

a
o0

= f —xe” " sin kxdx
0

(oo
=- f xe~ ™ sin kxdx
0

Which is the integral the problem is asking to find. Therefore, since I is also given as

Lthen
o d{ k
—\[(; xe xSlnkde=%(m)

a2+k2
LY
da\a? + k?

= k(-1)(a + %) 20)
2ak

(@ + 1)

Therefore
2ak

f xe~ ™ sinkxdx = 5
0 (a2 + k2)

4.24.2 part (2)

I= f e ™ sin kxdx
0
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Taking derivative w.r.t. k gives

al  d | >
s %( f e~ ™ sin kxdx)
0
= f " i(e‘“x sin kx)dx
o dk

S
- fo o sin k)

(o)
= f xe~ cos kxdx
0

Which is the integral the problem is asking to find. Therefore, since I is also given as

k
m then

j;oo xe ™ cos kxdx = %(ﬁ)
(a2 + K2) - k(2k)
(@ + 1)
a2+ K- 2K
(@ + 1)
a2 — k2

(2 + 1)

Hence
a? — k2

f xe~ ™ cos kxdx = 3
0 (a2 + kz)

4.2.5 Problem 3

3. The probability to find a particle at position between x and x + dx is
P(z)dx = Aexp(—az? + Br?)dz,

where A, «, and § are positive parameters. By the definition of probability,
/ P(x)dr = 1.

Treat § as a small parameter, i.e., for any given x, you can view P(z) as a function of § and
expand it around 3 = 0.

(a) Find A to the first order of 5. (15 points)

(b) Find the average position

T = /_OO xP(z)dx

o0

to the first order of 5. (25 points)

Figure 4.5: Problem statment

Solution

4.2.5.1 Part (a)

P(x,ﬁ) — Ae—ax2+ﬁx3
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Expanding around g = 0 by fixing x, gives

JP B? 9%p
P(x,p) =P(x,0) +f==| +5==| +-- (1)
Plyy 209,
But
P(x,0) = A= (2)
And
dP 2,53
i 3 ,—ax“+px
75 Axve (3)

No need to take more derivatives since the problem is asking for first order of . Substi-
tuting (2,3) into (1) gives

P(x,B) = Ae™®" + p Axdem ™67 ot
= Ae? 4 ﬁAx3e‘“x2 + - (4)

Using the above in the definition f_ ~ P(x)dx =1 gives

f B (Ae‘”‘x2 + ﬁAx3e‘“x2)dx =1

A(f e dx + ﬁf x3e‘“x2dx) =1 (5)

0 2
f e ™ dx =0
[o¢]

But

This is because e~*** is an even function over (00, +00) and x? is odd. Eq (5) now sim-
plifies to

A f ey =1

But f 7 ey = \/g (a > 0) because it is standard Gaussian integral. The above now

becomes

A

1
A:\/E a>0
i

X = j: " xP(x)dx

Using Eq. (4) from part (a), the above becomes

RIA

4.2.5.2 Partb

X = f x(Ae‘“x2 + ﬁAx3e‘“x2)dx
=A f xe " dx + A f Brte < dx

o 2 . a2 ) .

But f xe” ™ dx = 0 since e™™ is an even function over (—oo, +o0) and x is an odd func-
—00

tion. The above simplifies to

x = AB f xbe o dx (6)
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To evaluate the above, starting from the standard Gaussian integral given by

Tt

I(a) = f ey = [—
o a

Taking derivative w.r.t & of both sides of the above results in

0 d 2 d Tt
& — f __ pax d - —
(@) o dae * da \ «
0 > 1\ _3
= f —x2e™ "y = \/%(—E)a 2
00 3
= f X270y = ga_i

Taking one more derivative w.r.t a gives

(59

© d
I”(a) — f ExZe—axzdx — % -

2
= foo i %(—%a‘g)
- - 4p-ax? g :ﬂ 3 -2
j:oox ey = = (2a

Now the integrand is the one we want. This shows that

© 3\
f xter @ dx = —

- 4a2

Using the above result in (6) gives

x=Ap

3J%]

5
42

But A = \/% from part(a). Hence the above becomes

-

4.2.6 Problem 4

4. A container of volume V encloses a neutrino gas of temperature 7. The number of neutrinos
with energy between FE and F + dFE is

4TV E?
dN = dE
<h3c3> explE/(KT)]+1

where h is the Planck constant, c is the speed of light, and £ is the Boltzmann constant.

(a) Express the total energy density of the neutrino gas in terms of a dimensional factor mul-
tiplying a dimensionless integral. Show that the factor has the correct dimension. (10 points).

(b) Follow the discussion of a photon gas and evaluate the dimensionless integral. (20 points).

Figure 4.6: Problem statment
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Solution
4.2.6.1 Parta
4nV\ E?
dN = (L)—dE
h3c3 E
1+ ek
The total energy is therefore
Fiw = [ EdN
Hence the energy density p is
1
= — | EdN
7
4nV\ EE?
Y f H3c3 —
1+ ekT
1)\(4nV) = E3
== )5 ) [ dE
w3, E
1+ ek
4 > B3
Ry »
0 1 4 ekt

k (Boltzmann constant) has units of % where | is joule and K is temperature in Kelvin.

Hence units of ﬁ is U]U[] which is dimensionless. Let
[K]
E
X =—
kT

Therefore Z—; = % When E = 0,x = 0 and when E = o0, x = 0. Substituting this into the

integral in (1) gives

fo v P _dE = f " (XkT) | (kTdx)

1+ekT
3

— (kT fo N - i —dx 2)

Substituting (2) into (1) gives

_ 471t 4 0 x3
p= (W)“‘T) f Tre™ ()

Units of c (speed of light) 1s Where [L] is length in meters and [T] is time in seconds.

)(kT) above

Units for Planck constant & is [ i ] [T] (Joule-second). Therefore the factor (

in (3) in front of the integral has units
1 ([IAY
“Eent = ——— (&K
o ()t
——— ("

133

T [L]
_ Ul

o

Which has the correct units of energy density. Let this factor be called ® = (h3 3 )(kT)
Then (3) can be written as
00 .X3
= d
P fo 1+e* *
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4.2.6.2 Partb
The dimensionless integral found in part (a) is

00 x3
szo S (1)

1 1 1
= -2
e“+1 -1 e -1
We did the above, to make the denominator has the form ¢* — 1, which is easier to work
with following the lecture notes than working with ¢* + 1. Eq (1) now becomes

But

00 3 00 3
I:f x dx—zf X i 2)
0 e -1 0 e2r —1
The first integral has the standard form fo g:j Tdx. Hence
0 43
= (3N
L = (e

(Derivations of the above is given at the end of this problem). Now we evaluate on the
second integral in (2). Let y = 2x, then Z—Z = 2. The limits do not change. The integral
becomes
v 5
[t Ly,
0 ey—-12 16 0 eV -1
0o 13 o 13

We see that £ eyy—_ldy now has the same form as the first integral. Hence L eyy—_ldy =
(31)&(4). Putting these two results back into (2) gives the final result

1
I'=(3héMd) - 2(E(3!)5(4))

1
-enafi-o{2)
1
- (6)5(4)(1 - g)
7
= (6)E()g
2

= 2w

4
But from class handout, £(4) = Z—O. Hence
© ¥ 21 [t
f dx = —| —
g e¥+1 4190

_7714
4130
7

~120"
~ 5.6822

4

Using this in the result obtained in part (a) gives the energy density as

00 3
p:CDf T i
0 1+e*

7rt\( 4mn 4
- (m)(%)w
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Derivation of the integral

xn
eX-1

In the above, we used the result that gw dx = (n)é(n +1). For n = 3 this becomes
(BHE).

To show how this came above, we start by multiplying the numerator and denominator
of the integrand by ™. This gives

ooxne—x
fol_e_xdx (3)
Lety = e7 then
ety
l-e* 1-y
:y(1+y+y2+y3+--')
=Y+yY Y+

(oe]
= Z yk
k=1
\ —kx
= e

Using the above sum in Eq (3) gives

00 xne—x 00 [
f —dx = f X" E e *dx
o 1—e 0

k=1
)
)

(o)
= f xekxdx
k=1v0

Z_i =k When x = 0,z = 0 and when x = o0,z = 0. The above becomes

Let z = kx. Then

o0

00 yMp™X 00 17\ 1 dz
o8 LA
j;)l—e_xx 2 o \k)° (k)

k=1

(0¢] 1 (o'0)

But fo x"e*dx = n!, which can be shown by integration by parts repeatedly n times.
The above integral now becomes

00 xne—x 0 1
dx = (n!
J; 1—e> x (n)kz;lknﬂ

The sum E;o:l k}% is called the Zeta function {(n +1). When n = 3 the above result
becomes

) x3 00 1
fo dx = (3!);:‘1 -
= (31)C(4)

Which is the result used earlier.
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4.2.7 key solution for HW 2

Physics 3041 (Spring 2021) Solutions to Homework Set 2
1. Problem 2.2.3. (10 points)

Let y = /z. So fol eVidr = fol evdy? = 2f01 yeVdy = 2f01 yde¥ = 2(ye¥|y — fol evdy)
2(e—ev]j) =2[e—(e—1)] =2.

Let y = 2%, So fooc e dr = .756*””4|8° — fooo zde ™" = 4f0°O e dr = 4f00O ye vyt =
Iy revdy =T (5/4).

2. (a) Problem 2.2.10. (10 points)
Consider
1 ta 1 Int® 1 alnt 1 1
t*—1 dl d dt d dt 1
I(a):/ at == [ & —:/ ¢ —:/e"l”dt:/t“dt: .
o Int da o da Int o da Int 0 0 1+a

I(1) — 1(0) = fol(d[/da,)da = fol da/(1 +a) = In(1 + a)|§ = In2, where I(1) is the original
integral to be evaluated. Because I(0) = 0, we obtain I(1) = In2.

(b) Problem 2.2.11. (10 points)

Let I(a) = J(k) = [;° e * sin kzdx = k/(a*+k?). We obtain dI /da = — [° ze™*" sin kzdx =
—2ak/(a*+k*)?, or [[¥ xe* sinkxdr = 2ak/(a®+k?)*. Likewise, d.J/dk = [~ xe™*" cos kadx =
1/(a® + k%) — 2k%/(a® + k?)? = (a® — k%) /(a® + k?)2.
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3. The probability to find a particle at position between z and x + dx is
P(z)dr = Aexp(—ax® + pz*)dx,
where A, «, and 8 are positive parameters. By the definition of probability,

/_oo P(z)dx = 1.

oo

Treat [ as a small parameter, i.e., for any given x, you can view P(x) as a function of 5 and
expand it around S = 0.

(a) Find A to the first order of 5. (15 points)

/ P(x)dx = A/ exp(—ax® + Ba¥)dr = 1
1 N 1
ffooo exp(—ax? + fa3)dx - fix;o(l + Ba3) exp(—aa?)dx
1 Va a

= A=

= exp(—az?)de [ exp(—y2)dy V7’

where y = z+/a and we have used symmetry to obtain

/ 23 exp (—aa:z) dx = 0.

oo

(b) Find the average position

to the first order of 5. (25 points)

= /OO xP(z)dr = \/f/oo zexp (—az® + B2°) do
~ \/E/_Z x(1 + Br*) exp(—ax?)dx

= 5\/5/_00 r* exp(—az?)dr = af\/% /_oo y* exp(—y°)dy,

where we have used symmetry to obtain

/ zexp(—az?)dr = 0.

oo

Noting that

j— > 2 _ ™ d2[ o o 4 2 o Sﬁ
I(a) —/ exp(—ay”)dy = \/;:> q2 /Ooy exp(—ay”)dy = 125

B (33
x_QQﬁ(4ﬁ>_4a2'

we obtain
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4. A container of volume V encloses a neutrino gas of temperature 7. The number of neutrinos
with energy between E and E + dF is

A7V E?
dN = dE
(Fes) somro e

where h is the Planck constant, ¢ is the speed of light, and & is the Boltzmann constant.

(a) Express the total energy density of the neutrino gas in terms of a dimensional factor mul-
tiplying a dimensionless integral. Show that the factor has the correct dimension. (10 points)

The total energy density is

_ [EAN _ 4n /°° EE  4x(kT)* /°° ida
Vw3 )y explE/(KD)]+1  (he)3 )y exp(x)+ 1

3

where we have made the substitution of variable x = E/(kT). The dimensional factor is in
units of J*/(J-s-m/s)® = J/m?3, as should be for the energy density.

(b) Follow the discussion of a photon gas and evaluate the dimensionless integral. (20 points)

Using 1 +y+y>+y3+---= (1 —y)~! for |y| < 1, we obtain
1 __expltr) exp(—x) i(—l)”/ exp(—n'z) = i(—l)n_l exp(—nz),
exp(z)+1 1+exp(—x) =0 n=1

where we have set y = —exp(—x) and n =n' + 1.

Using [;° 2% exp(—az)dz = k!/o*™!, we obtain

/Ooo _ ade = /OOO z3 io:(—l)”*1 exp(—nx)dr = i(_l)nfl /OOO 25 exp(—nz)ds

exp(x) +1

n=1 n=1
= (=1)" 1 11 1 1
R Shr el S it Rt i
11 1 1 11 1 1
=6 {gtatatat e tptgtat
11 1 1 2 /(1 1 1 1
=6llmtotatat ) glptatatat
/1 1 1 1 21 21 (7! 7t
=6(l—z)(=+to+at+t—+ ) =" =" =) = —.
( 8>(14+24+34+44+ > e 4(90) 120
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4.3.1 Problems listing

Physics 3041 (Spring 2021) Homework Set 3 (Due 2/10)
1. (a) Problem 5.2.3. (5 points)
(b) Problem 5.2.4.(iv). (5 points)
(c) Problem 5.2.5. (10 points)
(d) Problem 5.3.2. (20 points)
2. (a) Problem 5.3.5. (10 points)
(b) Problem 5.3.6. (10 points)
(c) Find [;° ze™*" cos kxdx using Euler’s formula. (10 points)
3. Given the intensity pattern for the N-slit interference with separation d between adjacent
slits, show that the pattern becomes that for the single-slit diffraction with slit width ¢ when
d goes to zero but with a fixed value of Nd = a. (10 points)

4. (1) Find the roots 2, (n =1, 2, --+, N) of the complex equation z" = 1. (5 points)

(2) Find Sy = 32N

1 2n and give a geometric interpretation of the result. (10 points)

(3) Note that 1 — 2V = (1 — 2)(1 4+ 2+ 22 + - -- + zV~1). Relate this result and the roots z, to
the conditions for destructive interference among N slits. (5 points)
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4.3.2 Problem 1(a) (problem 5.2.3)
Solve for x and y given
2+3i 2

-+ —=2+9i
6+71 x+1iy

solution

Let z = x + iy be the complex number to solve for. The above becomes

2+ 3i

6+7i

(2 + 310)(6 - 7i)

(6 + 7i)(6 — 7i)

12 -14i +18i + 21

36 +49
33 +4i

=2+9 -
"T85
| 85(2+9i) - 33 - 4i

85
170 +765i - 33 - 4i

85
_ 137 +76li

85

2 .
-=2+4+9 -
z

=2+9i~-

=2+9 -

Therefore

2 137 +76li

z 8
170

2= 137+ 76l
170(137 - 761i)

(137 + 761i)(137 — 761i)
23290 - 129370i

597 890
23290 129370,

~ 597890 597890

137 761 .
T 3517 3517
But z = x + iy. Hence
137 761 .

Y 5517 3517
Comparing real and imaginary parts shows that

137
X7 3517

761
Y= 3517

4.3.3 Problem 1(b) (problem 5.2.4(iv))

Find the real part, imaginary part, modulus, complex conjugate and inverse of the fol-
1+\/§i
1-V3i

lowing (iv)

solution
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1+42i
_\/51'
_@+ﬁ0@+ﬁg
 (1-V3i)(1+V3i)
C1+43i+V2i-V243

4
16, NBR

z =

4 4
Hence the real part is % and the imaginary part is \/51\/5. Therefore we can now
write
z=x+1iy
(1%){@@)
4 4

The modulus is

o= 2+ | |
Sk

SN ANV

16 8

.

The complex conjugate of z is z*. Hence

Z'=x-1y
_(1=Ve)_[¥3+V2
| 4 4
The inverse is
1 B z"
z  zz
—_— Z*
l2I°

4

() (52)

3

16 B

3 3

4.3.4 Problem 1(c) (problem 5.2.5)

Show that a polynomial with real coefficients has only real roots or complex roots that
come in complex conjugate pairs.

solution

Let
p(z) = ag + a1z + apz% + -+ + a,z"
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be polynomial in z where g; are all real. We just need to show now that if A is a root,
then its complex conjugate A* must also a root. If the root happened to be real, then its
complex conjugate is itself. Hence nothing to do in this case. We only need to worry
about the case when the root is complex and show that its complex conjugate must also
be root.

Assuming A is a root, then by definition of a root we have

p(A) =0
=ay+ @A+ aA? + -+ + g, A"

= Z[lk/\k (1)
k=0
Therefore, replacing A by A* on both sides of (1) gives
pA) = PaA)f
k=0
But ()" = (/\k)* from complex numbers properties (equation 5.2.20 in book). The above

becomes "
p(A") = Yar(A¥)
k=0

Since gy are real coefficients, then a; = a; and the above can be written as

n

p(A) = Y ()

k=0

Using property that A*B* = (AB)" where A = a;, B = A* in the above. Now we can move
the complex conjugate outside the sum, using property that A* + B* = (A + B)". Hence

the above becomes s
n
p(A) = (ZakAk)
k=0

n
But from (1), we know that ZakAk = 0, this is because A is assumed to be a root.

k=0
Therefore the above gives

p(A*) =0
=0

The above shows that A* is also a root if A is a root. Therefore, the root can be either real,
or complex. If the root is complex, its complex conjugate is also a root. A real root is just
special case of complex root. QED.

4.3.5 Problem 1(d) (problem 5.3.2)

For the following pairs of numbers, give their polar form, their complex conjugate,
moduli, product, the quotient i—l, and the complex conjugate of the quotient
2

1+1
le—l 22:\/§—i
\2
 3+4i {1420\
17374 27 \1o3

solution
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4.3.5.1 First pair
1+i
Z1 = —F— Zy = \/5 -1
V2

The polar form of z is re'® where r = |z] and 6 = arctan(%) when z = x + iy. The first step
is to write z = x + iy

For z;

1+1i
Z1 = —F

V2

1 o1
= —+i—

V2 V2

Hence x = %,y = % Therefore |z1| = \/x% + y? = ,/% + % =1. And 0 = arctan(l) = 45°.

Therefore in polar

For z,

Zy = \/5 -1
Hence x = \/§,y = —1. Therefore |z;| = \/x2 +y? = V341 =2.And 6 = arctan(

—-300. Therefore in polar

%)

zy = re'?
= Zei(_?’o )
= 26_i6
The complex conjugate is
z; =re Y
= g_iZ
And
zy = re”0
= Zeig
And moduli is
|21l =7
=1
And
|zo| =1
And product

212y = (rleigl)(rzeiQZ)
— 7,.11,.261'(91+92)
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Butr, =1,7, = 2,0, = 45%,0, = -30°. The above becomes
242y = 0,i(45°-30°)
= 2ei(150)
= 2ei%
And the quotient 2 is
[ — 4y

z; 1%

z,  1ei02
T .

— _1 61(61 _92)
)

Butr; =1,7, = 2,0, = 45°,0, = —=30°. The above becomes

2 _ 1 1(450+300)
Zn 2
1 1(750)
2
1 5
= —p¢ 12

And the complex conjugate of the quotient is

4.3.5.2 Second pair

1T 3Ty 1-3i

3+ 4i (1+mr
2:

The polar form of z is re’” where r = |z| and 0 = arctan( ) where z = x + iy. Hence

For z;

3+4i
3-4i

. 4
32 T 42 ez arctan(g)
iarctan(—é)
V32 +42¢ 3
. " 4
ez arc an(g)

. 4
-1 arctan( 5)
e

Z1 =

1 arctan( arctan( )

&
_ fearn(2)

_ ei(106.260)
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For Zn

1 +2i)2
Zy =

1-3i
(@ +20)(1 +3i))?
(1—3i)(1 + 30)
5+ 5i\°
10
_ 25-25-50i

100

-1
= —1
2

Hencex =0,y = —%. Therefore |z;| = \/x? +y?> = /0 +i = % And 0 = arctan(—c0) =
—-90°. Therefore in polar

2, = re?
_ L)
2
1 -7
= —e
2
The complex conjugate is
z] = rre01
_ e—i(Z arctan(%))
_ ei(—106.260)
And
Z5 = 1,002
- %g%
And moduli is
|z1] =11
And
|22 =12
1
2
And product

212y = (rleigl)(rzeiQZ)

— rl rzei(el +92)

Butr, =1,7, = %, 0, =106.26°, 0, = —90°. The above becomes

1 -
2z =5 ¢/(106:26°-90°)

_ 1 i(6.267)
2
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And the quotient 2 is

22
Zq rleiel
z,  1pei02
= 1,i61-62)
T2

Butr; =1,r, = %, 0, =106.26%, 6, = —90°. The above becomes

Z1 _ 5,i(106.260+90%)
22

— 9,i(196.26")
And the complex conjugate of the quotient is

2] -6=)

2 e—i(196.260)

4.3.6 Problem 2(a) (problem 5.3.5)

Consider series

ef 430 4 ... 4 e(2n—1)i9

Sum this geometric series, take the real and imaginary parts of both sides and show that

sin(2n6
cos 0 + cos(30) + --- + cos((2n —1)0) = #
2sin0
)
And that a similar sum with sines adds up to Sl:irfge)
solution
Let
S = @0 4 p3i0 4 ... 4 p2n-1)i0 (1)

Then

020G — 621'9(61'6 + 630 4.4 e(2n—1)i6)

— o130 4 56 4 ... 4 p(2n-1)i6+2i6
— ei36 + e5i9 4o 4 €(2n+1)i9 (2)
Hence (2-1) gives
621'65 -G = e(2n+1)i6 _ ei@
S<ezi6 _ 1) — p2n+1)i6 _ ,i0

p(2n+1)i0 _ pi6

eZiG -1
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Hence
ei@(eiZnG _ 1)
TR0 1
’ (einQ(eiHG _ e—in@))
1
¢i0 (eie _ e—i@)
ein@(eine _ e—in@)
(eie - e—i@)
(einQ _ e—in@)
in6
(eiQ _ e—i@)

_ inp SIN no

S =

=e€

=e€

sin 6
sinnf

= cos(nf + isinn)—
sin O

_ cos(n6) sin(n0) N isinz(nQ)

sin 6 sin 6

But cos(n6) sin(nf) = % sin(2n60) . Therefore the above becomes

. sin(2n0) N isinz(nG)

2sin 6 sin 6
Hence
sin(2n0)
R = —
e(5) 2sin 6 (3)
)
sin“(n6)
Im(S) = 4
m(S) sin 6 (4)

Now we look at the LHS. Since S = ¢/? + 30 + ... + ¢@-1i0 then

S =(cos O +isin6) + (cos 360 +isin30) + --- + (cos(2n —1)0 + isin(2n — 1)6)
= (cos 0 + cos360 + --- + cos(2n —1)0) + i(sin O + sin 360 + --- + sin(2n — 1)0) (5)

Comparing (5) and (3,4) shows that

cos O + cos 360 + --- + cos(2n —1)0 = Re(S)
_ sin(2n0)
~ 2sinf

And

sin @ +sin 360 + --- + sin(2n — 1)0 = Im(S)
3 sin?(n0)

sin @

Which is the result we are asked to show.

4.3.7 Problem 2(b) (problem 5.3.6)

(1) Consider De Moivre’s theorem, which states that (cos 0 + i sin )" = cos 160 +isin n0.
This follows from taking the nth power of both sides of Euler’s theorem. Find the formula
for cos 46 and sin 46 in terms of cos 6 and sin 6.

(2) Given e = ¢{A*B) deduce cos(A + B) and sin(A + B)

solution
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4.3.7.1 Partl
Let n = 4, therefore, using De Moivre’s theorem gives
(cos O +isin 0)* = cos40 + i sin 46 (1)
We now expand the LHS of the above directly as follows
(cos O + isin 9)4 = (cos O + isin 6)2(cos 0 + isin 9)2 (2)

But
(cos O +isin 9)2 = cos? 0 — sin® O + 2i cos 6 sin O

Substituting the above into (2) gives
(cos O +isin 6?)4 = (c052 0 — sin® 6 + 2i cos O'sin 6) (cos2 0 — sin® 6 + 2i cos O'sin 6?)
= cos? 9(c052 0 — sin? O + 2i cos 6 sin 9)
— sin? 9((:032 0 — sin® O + 2i cos Osin 9)
+ 2icos O sin (9(cos2 6 — sin? O + 2i cos O sin 9)

Expanding the RHS above more, then the above becomes
(cos O +isin 6)* = (cos4 0 — cos? 0'sin’ O + 2i cos® O'sin 6)
- (sin2 0 cos? 0 — sin* 0 + 2i cos 6 sin® 6)
+ (21' cos® O'sin O — 2i cos Osin® 6 — 4 cos? O sin? 6)
Simplifying gives
(cos O +isin 6)4 = cos* 0 — 6 cos? Osin? 0 + 4i cos® O sin 6 + sin* 6 — 4i cos O sin® 6

= (cos4 0 + sin* 6 — 6 cos? O sin? 9) + i(4 cos 0'sin 0 — 4 cos O sin® 8)

(3)

Comparing the real and imaginary parts of (3) with the real and imaginary parts of (1)
shows that

cos40 = cos? 6 + sin* 0 — 6 cos? O sin® O

sin40 = 4 cos® Osin O — 4 cos O sin® 0

4.3.7.2 Part2

Given
oApiB — pi(A+B)

Applying Euler’s formula ™ = cos x + i sin x, on both sides of the above results in

(cos A +isin A)(cos B + isin B) = cos(A + B) + isin(A + B)
cos AcosB +icos AsinB +isin AcosB —sinBsin A = cos(A + B) + isin(A + B)
(cos A cos B — sin Bsin A) + i(cos A sin B + sin A cos B) = cos(A + B) + isin(A + B)

Comparing the real parts and the imaginary parts in the above shows that
cos Acos B —sin Bsin A = cos(A + B)

And
cos Asin B + sin A cos B = sin(A + B)
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4.3.8 Problem 2(c)

Find Loo xe™™ cos(kx)dx using Euler’s formula.

solution
Let -
I = f xe~™ cos(kx)dx
0

Then, we replace cos(kx) by ¢**

result. Therefore

, evaluate the integral, and then take the real part of the

I= Re( f xe‘“xeikxdx)
0

= Re( f ” xex(‘””k)dx)
0

. X(—a+ik)
Integration by parts. Let u = x,du = dx and dv = ¢y = e_aﬂ,k . The above now
becomes
I= Re(uvlg’ —f vdu)
0
1 o 0o ex(—a+ik)
=Re — yer(-atib)]| - f —dx (1)
—a+ ik 0 o —a-+ik
But

xex(—a+ik)|;° =0

With the assumption that Re(a) > 0. To see this more clearly, let us write e¥-*+k) = ¢=0%¢ikx,
¢ is bounded since it is a complex exponential. So the contribution comes from e~*.
Hence when a > 0, and x — oo then the exponential will go to zero, and the whole term
xe*-+k) 5 0, even though x — oo, since exponential subdues any polynomial order.
When x = 0, it is clear that xe*-**) = 0. Therefore (1) now simplifies to

00 ex(—a+ik)
I =Re|- f - dx)
o —4 + ik

= Re| - 1 f ” eX(-atik) gy
—-a + lk 0

1 pX(-a+ik) *
= Re| -
€ —a+ik —a + ik o
= Rel - 1 ex(—a+ik)|°°)
(—a + ik)? 0
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But e"(‘“ik)|;o =(0-1 = -1. The above becomes

1
I=Re —)

(—a + ik)*
- az—kz—zaik)
R (a2 -k + Zaik)
- (a2 — k2 - 2aik) (a2 — k2 + 2aik)]

R a% — k% + 2aik
= Re
2
(a2 - kz) + 4a2k2
a% — k2 , 2ak

= Re 7 +1 5

(a2 — k2) + 4422 (az - k2) + 4422

az _ k2

(az — k2)2 + 4a2k?

Hence

aZ _ k2
(az - k2)2 + 4a2k?

a2_k2

at + k* — 2a2k? + 442k?
a% — k2
at + k* + 2a2k?

a% — k?
= a>0

(@ + 1)

f xe™ ™ cos(kx)dx =
0

4.3.9 Problem 3

Given the intensity pattern for the N-slit interference with separation d between adjacent
slits, show that the pattern becomes that for the single-slit diffraction with slit width a
when d goes to zero but with a fixed value of Nd = a. (10 points)

Solution

Short version: In this version, The result for N slit Iy(6) will be used as given in lecture
notes without deriving it again, and will also use the single slit I;(0) from the lecture
notes, then show that I;(0) becomes I;(0) as d — 0 but with Nd = a.

Here Iy(0) is the average intensity for N slits at location on the screen at angle 6 and
similarly I;(0) is the average intensity for one slit at same location on the screen at angle
0. From lecture notes (lecture 3, pages 6,7) we have the expressions for Iy(6), I;(6) given
as

_ _ sin(NndAsinG) 2

In(6) = 1(0) W (1)

) ) sin(mime) °

L(0) =10) —g— (2)
A

Now we need to show that (1) gives same result as (2) when d goes to zero in the limit,
but with a fixed value of Nd = a. Replacing Nd = a in the numerator of (1) and taking
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the limit gives

( 7ta sin(6) ) 2
lim I(6) = 1(0)| lim 1

d—0 N Sil’l( mid s/iln(e) )

; (Tm sin(0) ) 2
sin{ —;
=1(0) : (3)
Nlimy o sin( i S/lln(e) )
But
7td sin(6) 7td sin(0)
lim si ~ + - z
ey sm( ) ) ) ()
. . [ d sin(6) 1td sin(60) . .
In the above we used that lim;_, sm( p ) =~ ———— This comes from Taylor series

expansion of sin function, for small angle approximation by keeping only the linear

Substituting (4) back into (3) gives

2
. [ masin(0)
in(22222)

7td sin(6)
N A

2
. [ masin(0)
sin{ 230)

rasin®) ()
A

lim In(6) = 1(0)

But Nd = a. The above simplifies to

lim Iy(6) = I(0
lim I/(6) = 1(0)
Comparing (5) with (2) shows that are the same. Hence
lim I =T
lim T (6) = T,(0)
Which is what we are asked to show.

4.3.9.1 Appendix

Here, the derivation of

. (Nndsin® 2
Sin 1

. [ mdsin®
Nsm( i )

In(6) = 1(0) (1)

is given. First, let us consider a slit located at y,, relative to the origin as show in the
diagram below

Yy ai(is (L,y) | ;
'n Y—Yn
Yn) r\j) ] — rsinf
) 5 x y = rsin
0 Y 4

0 \ T » o axis
Yp, Sin 6

Figure 4.7: Geometry for slit at location y,,
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Therefore
Tp = L2 + (y _yn)z

= 12+ (2 + 3 - 2u,)

=Jﬂ+f+%—ww

L2+y2)
2 _2
L2+y yyi’l
Lz+y2
2 2
L2+y (L2+y2)

Since v, is very small compared to (L? + y?) and it is also of order 2, then we can ignore
y y p 4 &

va
(L2+2)

the term above, giving

/2 _2yy.
k +y L2+y
1
2yy, |
[1__]
( ) ( 2)

L2+y

2y

(L2+2)

we can use (1 + x)’ =1 + px and ignore higher order terms. Hence the above becomes

But since y,, is very small compared to (L2 +y ) then the term

is very small. So

_ (Lz n yz) _ YYn
(L2 +?)
-
But % = sin 0, therefore
=r-y,sinf (2)

The electric field E,, measured at point (L, y) due to slit at y,, is
E, = Eysin(kr,, — wt)

Where k is the wave number k = . Therefore for N slits, the total E is

A
N
E=YE,
n=1
N
= ZEO sin(kr,, — wt)
n=1
N
= Eo[Im Zei(krn—a)t))
n=1
N
— EO Im Zei(krN—a)t)eik(r,,—rN))
n=1
. N .
— EO Im(ez(krN—a)t)Zezk(rn—rN))) (3)
n=1
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But

r

Substituting (4) in (3) gives

E=

n_rN:(r

— Yy Sin 6) - (r—yNsin 6)
=r-y,sin0 —r+yysin O

- (-1 sin 0

= (Nd - nd)sin 0

= (N —-n)dsin6

N
EO (Im(ei(k”N—wt) Zeik(N—n)d sin 6))
n=1

(4)

Letm =N -n. Whenn =1thenm = N —-1. When n = N then m = 0. The above now

becomes

E = Ey|Im|e

:EO Im|e

:EO Im|e

0
i(kry—wt) 2 eikmdsin@))

m=N-1

N-1
i(krn—wt) Z pikmd sin 6))

i(kry—wt) iknd sin 6))
E €
n=0

Let ¢ = kd sin 0. The above becomes

But

Substituting (6) in (5) gives

E = Eo|Im|e

N-1
E = EO(Im(ei(krN—a)t) Zeimp))

n=0

iN¢

Zemqﬁ _1-¢
e E‘p(e_ 2% ei%]¢)

ez e 2 —p2

N
(N-1)¢p Sm( > CP)

(krN wt)e 2 —_—
. (¢
Sln(z)

in( 2
(lrars 5502) S\ 5 9

@

Eo|Im]|e

(5)
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Let
(N-1¢

to = kry +
0 N 5

Substituting this in (7) gives

E = Eq(Im(e“(00))

. (N
_k s:j(ig;) (Im eiw(to—t))
= EOM sin(w(ty —t))

(¢
Sln( ) )
The electric field intensity is

I = ceyE?

zsmz(—_) sin?(w(ty — 1))

The time (period) averaged intensity is therefore

I, = % fo "t

sinz(gqb)
sinz(g)
1 zsinz(gcp)

2 sin2(§)

1
= —ceOE%

. f " sin?(w(t — )t
0

But ¢ = kdsin0 and k = 2771, then the above becomes

Sinz(NndsinQ)
_ L2 A
1(6)’177 B ZCEOEO . z(ndsine)
s { ——
A
Sin(NndsinQ) 2
1 A
= ceoBf| ————"
2 . [mdsin®
Sll'l( 1 )
At 0 = 0, we have
Sinz(NndsinH)
A
i 2
I(O)m, B éILI(IJ ZCSOEO . z(ndsine)
A

1
= NZECEOE%

(8)
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Hence
2

. Z[SIH(NndASinQ)]
_CEOEO Ttd sin
I(Q)av _ 2 sin( dA 9)
IO N2Lceo 2
. [Nmndsin 6 2
~ 1 Sin 1

T N2| . (ndsine
X pwEEy

. (Nndsin@) 2
Sin 1

- . [mdsin@
Nsm( - )

sin Nmid sin 6 2
A
. dsin
Nsm(n sAm )

Which is the formula used in the earlier derivation.

Therefore

16),. = 10)s

4.3.10 Problem 4

(1) Find the roots z,(n =1,2,---,N) of the complex equation z¥ = 1. (2) Find Sy =
Ef_l z, and give a geometric interpretation of the result. (3) Note that1-z = (1 — z)(l +z+2%+

Relate this result and the roots z,, to the conditions for destructive interference among
N slits.

solution

4.3.10.1 Partl

But 1 = ¢@™ and the above becomes
1

7 = (ei(ZR))N
1
Z,, = (cos(2m + 2m)n) + i sin(2m + (2m0)n))N n=0,1,2+,N-1

Since cos and sin are periodic with period 27t. Using De Moivre’s theorem the above
becomes

B 21 n .. (2t n
Z, = (cos(ﬁ + N(Zn)) + zsm(ﬁ + N(ZR)))

_ ei(w+ﬁ(2n))

AR o2 N1
Which is the same as ,
Z, = AF) 12N
For an example, let N = 3. Therefore we have 3 roots, given by n =1, 2, 3. They are
7, = ei(z?n) _ ,i(120%)

Z2 = gi(zn?’(Z)) = gi(%) = ei(2400)

Z3 = ei( 3 ) — (i27) — (i360°
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The roots are 120° degrees apart on the unit circle. First root has phase 0° (or 360°),
second at 120° and the third at 240°. There are only 3 unique roots, since after that, they
repeat. Here is a diagram showing the roots for N = 3 for illustration. The root with

phase 0° is the real root 1 since ¢ = 1, the other two roots are complex valued, and
complex conjugate of each others.
S(z) unit circle
z2
20°
21
1209 \ /‘ R(2)
120°
Z3

Figure 4.8: Roots of zV for case of N = 3

There are only 3 unique roots, since after moving around the unit circle once, the roots
repeat.

4.3.10.2 Part2

N
Su=Yz, (1)
n=1

It is assumed that z,, above are all the roots of ZN from part(a), even though the problem
did not say that. Hence all roots have same modulus. But differ by the phase as found
in part 1.

= =+ Iy = 160 = 2 —+ 2 = (Z)
Letz = x + iy = " where r = yx* + y* and 0 = arctan(> ). The above becomes
SN =Z1+2+ -+ 2y
= 1'% + rei02 4+ ... 4 pelON
= r(e% + ¢02 + .. + £iON)
Butr =1, hence
Sy = €01 +e% 4 ... 4 piON

From part 1, we found that

27nn
QHZT ﬂ=1,2,3,"',N (2)
Using (2) in (1), now the sum can be written as
Sn=2.¢ N 3)
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If N = 1, then the sum is just 2™ = 1. But if N > 1 then to find the partial sum, let

iz_“ i(4—n) 1'6_” iN(Z”)
Sy=eN +e\N/ e N +...4¢ N (4)
;21 4 j61 .N@n)+2n
eNSy=eN +eN+.-+e N (5)
(4-5) gives
;21 ;21 Nem-+2n
Sy—eNSy=¢eN-—-¢ N
1.2_71 1.2_71 l,N(Zn)+2n
SN(l—eN)zeN—e N
.21 .N@2n)+2n
elﬁ —e N
SN = .21
1-¢€N
l.(N+1)(2n) Z.N(27z)+2n . 1.2_71 iZ_T[
Bute™ N  =¢7 N =¢27'N = ¢'N. The above becomes

Therefore, the final result is

.21 .21

11— 11—
e N —¢ N
SN=——=—
1-€%N
=0
G = 1 N=1
N 0 N>1

For geometric interpretation. Each root z, is a unit vector, where the angle between each

2 .
root is the same. it is Wn Looking at each root as a vector in the complex plane, these
vectors originate from the origin and end up at the unit circle, each with phase which is

%ﬂ more than the vector just to the right of it as we go anticlockwise around the circle.
The first vector starts with phase 0.

The sum EL z,, is therefore the a vector sum of these N root. The easiest way to see
that this sum is zero geometrically, is to add these vectors, by putting each vector tail, at
the tip of the previous vector. To illustrate this, we will look at the case of N = 3 where

the angle between each vector is 120°. This is because %ﬂ = 120°. Using this method to

add the roots gives this

,Cﬁ
N

2

\ioo

.
Adding the roots as vectors 3(z N

120°

120°

1200\\\‘ —////
120°

Z3
unit circle

»
|

21 R(z)

R(z) ////'

The sum is always zero Vector addition using tail to tip
method. It shows the vectors

add to zero

Figure 4.9: Geometric interpretation of adding the roots. Example for N = 3

The above generalizes for any N. If the vector sum using the tail to tip method gives a
closed shape which in this case ends up back at the origin, then the vector sum is zero.
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4.3.10.3 Part3

Looking at the Electric field E at an observation point at angle 6 we obtain the following
diagram

E at observation point is sum of all E,, from each slit.
Etotar = E1 + E2o+ E3+ -+ En
=1+ eikdsine + eidesin@ NI eik:(N—l)dsinO
slit 1
d]
slit 2
d]
slit 3
slit N

Figure 4.10: Contribution of E from each slit

In the above, the E contribution from slit 1 was normalized to be E; = 1. Therefore, the
contribution of E;, from the second slit will have a phase shift relative to the first slit.
This is given by dsin 0 as seen in the diagram. For each addition slit, the phase will
increase by d sin 0. Hence the E; will have phase of 2d sin 0 and so on until the last slit
N which will have phase shift of (N —1)d sin 6.

Therefore we see that electric field at the observation point is the sum of all E, from
each slit, and given by

E:E1+E2+"'+EN
=1+ eikd sin + eik(stin 0) + eik(3d sin 6) +oeee eik((N—l)dsin 0) (1)

Now, from lecture notes, we are given the conditions for minima (i.e. destructive inter-
ference) as

dsin@z%A k=142, 2)
Substituting (2) into (1) gives
o ) i) ol o)
Replacing the first k in each term by =" since k is wave number, then the above becomes
=14 i) F)elm) , 5o, 5 on(5a)
15 AR AT L e(F)
Let ¢ = = . The above becomes

E =1+¢0 420 1 o3k 4 ... 4 oK N-1)¢ (3)

Comparing the above to the result obtain in part 1 we found that the sum of the roots
for Z" =1tobe

SN:ZO+21 + -+ 2y
= 6100 4 ¢01 4 ... 4 (0N (4)

82



43. HW3 CHAPTER 4. HWS

Where
27nn
6=~ =012 N-1 (5)
Hence (4) becomes
.21 . 2T . 2n
Sy=1+eN +27 4.+ NVY (6)

Therefore, for each different k Eq(3) is the same as (6). So (3) can be written as

E=1+z+2z%+ - +2zN"1 (7)
Where now z = ¢ with ¢ = %ﬂ But we know that
(1—zN):(1—z)(l +z+22+---+zN‘1) (8)
But (1 —zZN ) = 0 since 1 is root of zN. Hence the above becomes
0= (1—z)(1+z+zz+ +zN‘1)

Since z # 1 (unless %k happened to be exact multiple of 27t), then we conclude that
1+z+2%+ - +zN ! must be zero. This implies that
E=14+¢k0 4 pi2kd 4 pi3kd o ... 4 pk(N-1)p
=0
Under the condition of destructive interference. This says the total Electric field from

the N slits will vanish at the observation point when destructive interference condition
is applied. Which is what we are asked to show.
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4.3.11 key solution for HW 3

Physics 3041 (Spring 2021) Solutions to Homework Set 3

1. (a) Problem 5.2.3. (5 points)

2+ 3i 2 (2+3)(6-70) 2 :33+4¢Jr 2 Py
6+7 x+iy (6+7))(6—Ti) =x+1iy 85 z+1y ’
2 _ 2+9i_33+4i:85(2+9z‘)7(33+4i):137+761i
T 41y 85 85 85 '
, 170 170(137 — 7614) 170(137 — 7614)
T+ = =

137+ 761i (137 + 761i)(137 — 761i) 1372+ 7612
which gives

170 x 137 137

1372 + 7612 3517’
170 x 761 761

YZ Twmiter T 3517

(b) Problem 5.2.4.(iv). (5 points)

We first show that |z1/22| = |21]/| 22|

2l _|mtan| |ty (e —ige) | (w1 + iy (w2 — iy
29 To + 1Yo (1‘2 + iyz)(xz — iy2) .T% + y%
_ @@ Fyige) +ilzay —aage)| V(@122 + y1y2)® + (22y1 — 2192)°
w3+ s 3+ v
_ Vel i iy ety Vit tyy)  Valtul sl
x5+ Y5 x5+ 5 Vii+2 o |zl
L 1+iv2  (1+iv2)(1+4v3)  1-V6+i(v2+V3) = Re(s) 1-6
) 1—ivV3  (1—iv3)(1+iV3) 4 o 4 7
2+3 1+iv2 VI+t2 V3
(s = YOV VI VIR VSR mGr,
4 1—iv3 V1I+3 2
oo 1-VB-i(V24VE) 1 2 1-VE-i(V2HVE) 1V i(V2+VE)
4 Tz 2 4(v/3/2)? 3 '

(c) Problem 5.2.5. (10 points)

We first show that (z122)* = zj25.

(z122)" (21 4+ y1) (22 +ip)]" = (2122 — 12 +i(T1y2 + 1122)]" = 2129 — Y12 — i(T1y2 + Y122)

sz = (w4 iy) (2 +iy)" = (w1 —iy) (22 — iy2) = 2102 — Y1y2 — i(T1y2 + Y172) = (2122)"

*

It is straightforward to generalize the above result to (2™)* = (2*)™ for integers of m > 2.
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Now if z satifies
ap+ a1z + agZ? + -+ ay2" =0,

where the coefficients ag, ai, - - -, a, are real, then taking complex conjugation of both sides of
the equation gives

ap + a1z 4+ ag(2%) 4+ an(2") = 0= ag + a12" + ag(2*)? + -+ + a,(2F)" = 0.

Therefore, both z and z* are the roots of the above polynomial equation, which means the roots
are either real (z = z*) or pairs of complex conjugates.

(d) Problem 5.3.2. (20 points)

. 1414 T .7
(i) 1 = —zcos——i—zsmzze

NG 1
Zo = \/g—Z:2X

/4 * —im /4
/ =z=e s |z1] =1,

V3 —i
32 :2(

T ... Cin/6 6
cos — —isin— ) =276 = 22 = 2e/6 |5 =2
6 2 ) )

6
im /4 *
sz = @ x 96 — 26m/12’ A _ ¢ S lesm/m’ A\ 1675m/12.
2o  2e7im/6 2 29 2
o 3 + 4i 5€itan’1(4/3) i tan~—1 * —2itan~?!
(11) = 3 — 4 - 5€*itan*1(4/3) - 62 ' @) =z =€ e (4/3)7 |Zl| = 17
1+21° [A+201+30)]° [1-6+5i]" [-1+i]> 1-1-2 i
2 = = = —_— = = = — —
? 1-3i (1 —3i)(1+3i) 10 2 4 2

efiﬂ'/Q . 61'71'/2
= 2 = 2’2 = 72 R ‘2’2| =

)

N | —

—m i[2tan—1! —(m i tan—1 é
ermf2 R WAL gy et O 9¢il2 tant(4/3)+(n/2)]

2itan—1(4/3) «
¢ 2 2 (1/2)e 2

2122 =

<Zl> —  9e—il2tan™(4/3)+(n/2)]
)

2. (a) Problem 5.3.5. (10 points)

S = el 4 B0 .y 020G (30 o(n=Dif y (2n+1)if

(1 _ 621'9)5 — 0 _ e(2n+1)i9
e — et e (1 — ) (1 — cos2nf) + sin 2nb

S: = =

1 — e e~ — it 2sin 0 2sin 6

sin 2nd

- om—1)0 = —=2

Re(S) cosf + cos 30 + - -+ cos(2n — 1)0 55nd’
—_— 1 2

Im(S) — sind+sin30+ -+ sin(2n — 1) — L_cos2nd _ s

2¢inf  sinf
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(b) Problem 5.3.6. (10 points)

cos4f +isindd = (cosf + isinf)*

cos® 0 + 4 cos® 0(i sin 0) + 6 cos® A(i sin 0)? + 4 cos A(isin )® + (isinh)*
= cos’ — 6cos?Osin® @ + sin O + 4i(cos® O sin @ — cos fsin® ),

cos 46 cos*§ — 6 cos? §sin? 0 + sin? 0,

sin40 = 4(cos®fsinf — cosfsin’ ).

e ATB) = cos(A+ B) +isin(A + B)
= e = (cos A+ isin A)(cos B + isin B)
= cos Acos B —sin Asin B + i(sin A cos B + cos Asin B),
cos(A+ B) = cosAcosB —sin Asin B,
sin(A+ B) = sinAcos B + cos Asin B.

(c) Find [;° we™** cos kadx using Euler’s formula. (10 points)

00 00 ikx —ikz ) —(a—ik)z —(a+ik)z
e +e e +e
/ xe “coskxdr = / (xe™ ) ————dx = / T X dx
0 0 2 0

2
B 1[ 1 N 1 ]_(a+ik)2+(a—z’k)2_ a? — k?
= ek T arik?] T 2a—ikPatik)? (@R

where we have made the substitutions z = (a & ik)z and used fooo ze *dz =1 for a > 0.

3. Given the intensity pattern for the N-slit interference with separation d between adjacent
slits, show that the pattern becomes that for the single-slit diffraction with slit width a when
d goes to zero but with a fixed value of Nd = a. (10 points)

From the lectures, the intensity pattern for the N-slit interference is described by

_ - [sin(Nrdsinf/\) ]
1(9) —I( ) [Nsin(ﬂ'dsiﬂe/A)] .

In the limit of d — 0, sin(rdsin/\) — wdsinf/\, so we have

7o - 10 [P o [P

where we have used Nd = a. The above limiting result is the intensity pattern for the single-slit
diffraction.
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4. (1) Find the roots z, (n =1, 2, ---, N) of the complex equation 2 = 1. (5 points)

ZNzlzeiZkW’ k207 1, 2’ ”‘:>2,:6i2k71'/N.

i2(n—1)7/N i2km _ 1.

So we can take z, = ¢ . Note that values of n > N+1 do not give new roots as e

(2) Find Sy = 32N

1 zn and give a geometric interpretation of the result. (10 points)

Let ¢ = 2m/N. So z, = e'""19,

SN =1+ eid) + ei2¢ 4. _’_ei(Nfl)qS, eiqSSN — eiqﬁ +ei2¢ 4. _’_ei(Nfl)qﬁ + eiN¢
1— eiN¢ 1— ei27r

_ o — 1 _ oiNo — _ _
(1 e )SN—l e = Sy = 1 _ cio 71_€i27r/N70'

Recall that the complex number €** corresponds to a unit vector making an angle ¢ with re-
spect to the z-axis and that counterclockwise rotation of a vector by an angle ¢ corresponds
to multiplication by e*®. So Sy represents the sum of N unit vectors that form the sides of a
regular polygon. This vectorial sum vanishes because the vectors form a closed figure.

(3) Note that 1 — 2V = (1 — 2)(1 + 2z + 22 + - - + 2V71). Relate this result and the roots z, to
the conditions for destructive interference among N slits. (5 points)

The net electric field at a point on the observational screen for N-slit interference can be
represented by a sum 142422+ - -42V"1 where z = ¢’ with ¢’ = 2wdsin 0/ X being the phase
difference between the contributions from adjacent slits. When ¢’ = 2k /N or dsinf = kA/N
(k=1,2,---, N—1), z becomes the roots z, (n > 2) and the sum vanishes because 1 —z" = 0
but 1 — z # 0. For values of £ > N + 1 that are not integer multiples of N, the same roots are
repeated due to e?™ = 1.
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4.4.1 Problems listing

Physics 3041 (Spring 2021) Homework Set 4 (Due 2/24)

1. (a) Problem 8.1.1. (5 points)

(b) Problem 8.1.2, and find the expression of 6 in terms of the relative velocity. (10 points)

(c) Problem 8.2.4, for Lorentz transformation only. (5 points)

2. (a) Problem 8.3.4, but using Cramer’s rule to solve the first set of equations only. (5 points)

(b) Problem 8.3.5. (5 points)

3. (a) Problem 8.4.3. (5 points)

(b) Problem 8.4.19, proving the first result only. (5 points)

(c) Problem 8.4.20. (10 points)

4. (a) Problem 8.4.5. (10 points)

(b) Problem 8.4.8. (10 points)

(c) Problem 8.4.10. (5 points)

5. Problem 8.4.17. (5 points)

6. (a) Consider a horizontal spring-mass system. The spring has a spring constant k and is
fixed at one end. The other end is attached to a block of mass m that can move without
friction on a horizontal surface. The spring is stretched a length a beyond its rest length and
let go. Without solving the problem using Newton’s second law, find the angular frequency of
oscillations and show that it is independent of a. (5 points)

(b) Derive the Planck mass, length, and time in terms of Planck’s constant %, Newton’s con-
stant G, and speed of light ¢. Evaluate these quantities in ST units. (10 points)

(c) Identify the relevant physical quantities and use dimensional analysis to find the character-
istic length for a black hole of mass M. (5 points)
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4.4.2 Problem1(a) (8.1.1)

) ) ) cosO sinf
Given rotation matrix Ry =

:| Verify that R9+@/ = RQ/RQ

—sinf@ cosO
Solution
cos(0 +0") sin(6 +60)
Roior =| . , ) (1)
—sin(6 + 0") cos(6 + 6)
But
— cos® sin@’|| cos@ sinf
RQIRQ =
—sin@ cosO ||-sinf cosH
B — cos @’ cosO —sin@’ sinf  cos O’ sinf + sin 0’ cos 6 @)
—sin@ cosO —cos O’ sinf@ —sin O sin O + cos 6’ cos O
But from trig identities we know that
cos 8’ cos 6 —sin @’ sin O = cos(6 + &) (3)
cos 0’ sin O + sin 6’ cos 0 = sin(0 + 0’) (4)
—sin 6’ cos O — cos B’ sin 6 = —(sin 6’ cos O + cos 6’ sin O)
= —sin(6 + 0") (5)
—sin 6’ sin 0 + cos 0’ cos 6 = cos(6 + O”) (6)

Substituting (3,4,5,6) into (2) gives

cos(0 +0") sin(6+6)

R /R =
oo —sin(6 + 0”) cos(6 + 6)

Which is the same as (1). Hence

Ro+gr = RgrRg

4.4.3 Problem 1(b) (8.1.2)
Part 1

Recall from problem 1.6.4 in chapter 1, that the relativistic transformation of coordinates
when we go from frame of reference to another is

x" = xcosh @ - ctsinh 0
ct’ = —xsinh 0 + ct cosh 0
(ps. I added c to the formula as book assumes it is 1. This makes it more clear).

Where 0 is the rapidity difference between the two frames. Write this in matrix form.
Say we go to a third frame with coordinates x”’, t’, moving with rapidity 6" with respect
to the one with primed coordinates. Show that the matrix relating the doubly primed
coordinates to the unprimed ones corresponds to rapidity 0 + 6.

Part 2. Find the expression of 0 in terms of the relative velocity.

Solution
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4431 Partl
In Matrix form Lorentz transformation becomes
(x’] _ ( cosh 6 —sinh@][xJ )
ct’ —sinh® cosh@ )\ct
In the third frame (double primed), we have
[x”] _ [ cosh6” —sinh 6’](3(] @)
ct” —sinh @ cosh @ |{ct’

Substituting (1) in the RHS of (2) gives
x// B
ct”

( cosh® —sinh 9’][ coshf —sinh 6] cosh 8’ cosh 6 + sinh @’ sinh & - cosh 6’ sinh 6 — sinh 6’ ¢

(3)

cosh®’ —sinh 6’][ coshf -sinh 6](x]

—sinh® cosh® ||-sinh@® cosh@ ||ct

But

—sinh® cosh® |J|-sinh® cosh© —sinh 6’ cosh 8 — cosh 8’ sinh @ sinh 6’ sinh 6@ + cosh 6’ co

cosh(6 + 6’) —sinh(6 + 6)
~|=sinh(0 + @) cosh(@ + @)

Substituting the above in (3) gives
x” cosh(6 + 60’) —sinh(0+ 60| x @)
o) |- sinh(6 + 0”) cosh(6 + 6’) |\ ct

{ cosh(6 + 6’) —sinh(6 + 9')]

Therefore the matrix

—sinh(6 + 6’) cosh(6 + 0’)
Relates the unprimed frame to the doubly primed by rapidity 0 + 6’, which is what we
are asked to show.
4.4.3.2 Part2

Need to find the expression of 0 in terms of the relative velocity. The relative velocity it
taken as that between the unprimed (x, ct) and the one primed frame (x/, ct’).

The Lorentz transformation can also be written as

x — ot

¥ = - (1)
1-Z
2
[

t/: 622 (2)
1-Z
2

But we also can write the above in terms of rapidity 0 as given in the text book as

(x’] _ ( cosh® —sinh 9][x] 3)
ct! —sinh® cosh@ )\ct
Or
x" = xcosh 6 — ctsinh O (4)
ct’ = —xsinh 0 + ct cosh 0
t = —% sinh O + t cosh 6 (5)
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Equating (1,4) and (2,5) gives the following two equations

— vt
a Uz = xcosh 0 — ctsinh 0 (6)
[
-2
t—% X
——— = ——sinh 0 + tcosh 0 (7)
-5 ¢

Dividing Eq (6) by Eq (7) to get rid of the root term gives
x—-ot  xcosh@ —ctsinh 6
t— i—f - —%sinh@ + tcosh 0

(8)

Dividing the numerator and the denominator of RHS of the above by cosh 0 gives

x-ot x —cttanh 6
t—-= t->tanh@
C c

Now we solve for v, the relative velocity from the above by simplifying the above. This
results in

(-ot)(t - Ztanh 6) = (£ = Z)(x = cttanh 6)
c c?

2 2
X X ox?  vx
xt— —tanh O — vt2 + vt=tanh O = fx — ct* tanh O — —- + cttanh 6
c c c c
2 2
x 2 x x
v(—t2 +t=tanh 6 + — — —ttanh 9) =tx—xt+ - tanh 6 — ct? tanh 6
c 2 ¢

2
X
ol -2+ =

2
(x? - ctz) tanh 6

Therefore, the relative velocity is
v=ctanh 0

4.4.4 Problem 1(c) (8.2.4)

Find the inverse of Lorentz Transformation matrix from problem 8.1.2 and the rotation
matrix Rg. Does the answer makes sense? (You must be on top of the identities for
hyperbolic and trigonometric functions to do this. Remember: when in trouble go back
to the definitions in terms of exponential).

Solution

The Lorentz Transformation matrix from problem 8.1.2 above is

x’ B coshf -—sinh@|lx
t - —sinh@ cosh@ |\t
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Where

B cosh® —sinh©@
—sinh® cosh®d

While the rotation matrix is
cos@ sinf
RQ =
—sinf@ cosO
The question is asking to find the L' and Ry
o1 1 Ly -Lyp
0 det(LQ) —L21 L11
3 1 coshf@ sinh @
cosh? 0 —sinh? 6| sinh @ cosh 6

coshf sinh 6
( ] 0

sinh® cosh©

The inverse of the matrix undoes whatever the matrix does. Let us check this on the
above result.

~ [ cosh(-0) —sinh(—@)] ~ [cosh(Q) sinh(@)] )

Li o =
=0 —sinh(-60) cosh(-6) sinh(6) cosh(6)

We see that (2) is the same as (1). Hence the result of (1) makes sense. For the transfor-

mation matrix, we have
» 1 Ry -Rp
RQ =
det(RQ) —R21 R11

3 1 cos@ -—-sin0
0820 +sin?0|sin® cos O

cos@ -—-sinf
( ] o

sin@ cosHf

The inverse of the matrix undoes whatever the matrix does. Let us check this on the
above result.

(-60) sin(-0) (0) —sin(0)
Rio = ( cos sin ] ~ [cos sin ] W

—sin(-6) cos(—0) B sin(6) cos(6)

We see that (4) is the same as (2). Hence the result of (3) makes sense.

4.4.5 Problem 2(a) (8.3.4)

(1) Solve the following simultaneous equations using Crammer rule.

3x-y—-z=2
x—=2y-3z=0
dx+y+2z=4
solution
In Matrix form
3 -1 -1|x 2
1 -2 =-3|y|=10
4 1 2z 4
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Then, using Crammer rule

2 -1 -1 3 2 -1 3 -1 2

-2 -3 1 0 -3 1 -2 0

1 2 4 4 2 4 1 4
X=—————,y= ,Z =

3 -1 -1 3 -1 -1 3 -1 -1

-2 -3 1 -2 -3 1 -2 -3

4 1 2 4 1 2 4 1 2

But det(A) is (using expansion along the first row)

3 -1 -1
-2 -3 1 -3 -2
1 -2 -3|=3 - (-1) +(-1)
2 4 2 4 1
4 1 2
=3-4+3)+(2+12)-(1 +8)
=2
And
2 -1 -
-2 -3 0 -3 -2
-2 -3/=2 - (-1) +(-1)
2 4 2 4 1
1
=2(-4+3)+(12)-(8)
=2
And
3 2 -1
0 -3 1 -3 10
0 -3=3 -(2) +(-1)
4 2 4 2 4 4
4 4 2
=3(12) - 22 +12) - (4)
=4
And
3 -1 2
-2 0 1 0 1
1 -2 0|= -(-1) +(2)
4 4 4 4 1
4 1 4

=3(-8) + (4) + 2(1 + 8)

(A)
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4.4.6 Problem 2(a) (8.3.4)

(Done again using Gaussian elimination method)

(1) Solve the following simultaneous equations by matrix inversion

3x-y-z=2
x-=2y-3z=0
dx+y+2z=4
(2)
3x+y+2z=3
2x-3y—-z=-2
x+y+z=1
Solution
4.4.6.1 Partl
In Matrix form
3 -1 -1|x 2
1 -2 -3{ly|=10
4 1 2z 4
Then
-1
X 3 -1 -1 2
yl=(1 -2 -3 0
z 4 1 2 4

To find the matrix inverse, the method of Gaussian elimination is used.

3 -1 -1100
1 -2 -30120

4 1 2 00
Swapping R, and R,
1 -2-3010
3 -1 1100
4 1 2 00
Ry =R, - 3Ry
1 -2 301
05 81 30
4 1 2 0 0 1
R3; = R; — 4R,

)
a1
(0¢]
[
&
)

0 9 14 0 4 1
R, =9R, and Rj3 = 5R; gives
1 -2-30 1 0

0 45 72 9 -27 0
0 45 70 0 =20 5
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R3=R3—-R,
1 -2 -3 0 1 0
0 45 72 9 =27 0
O 0 -2 -9 7 5
_Rpn R
Ry=5Rs =75
1 -2 -30 1 0
72 9 27
0 1 e 0
9 7 5
0 0 1 > 33
72
RZZRZ_ER:%
1 =23 0 1 0 1 -2-30 1 0
9 72\(9 27 (72\[ 7 72\( 5
o1 0 2-(3)E) E-E)IE) B 0 75 s
9 7 5
9 5 o o0 1 = = =
0O 0 1 5 = ) 2 2 =2
R1:R1+3R3
9 7 5 27 9 15
1 -2 0 3(5) 1+3(_E) 3(—5) 1 -2 0 = —? —?
01 0 -7 =10 1 -7
9
2 -z =2 o 01 = = =
0 0 1 5 ) ;) 2 2
R1=R1+2R2
27 19 15 1 1 1
010 -7 5 4 =01 0 -7 5 4
9 7 5 5
0 01 > - - 0 01 -

Since now the LHS matrix is I, then the RHS is the inverse. Therefore

3 -1 -1
1 -2 -3
4 1 2
Using the above in (1) gives
X
y =
z

Hencex =1,y =2,z=-1.

T
2 2 2
=|-7 5 4
> 7 5
2 2 2
11
2 2 |2
5 4|0
7 5|4
2 2
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4.4.6.2 Part2

In Matrix form

3 1 2)x) (3
2 -3 -1fly|=]-2

Swapping R; and R,

R, =R, - 2R,
11 1 00 1
0-5-301 -2
31 2100
R; = Ry - 3R,

Rz = 2R2, R3 = 5R3

1 1 1 1
0 -10 -6 0 2 -4
0 -10 -5 15
R3=R3-R;
1 1 100 1
0 -10 -6 0 2 -4
00 1 5 -2 -11
R
RZ:—_lzo
1110 0 1
3 1 2
013503 3
0015 -2 -11
3
RZZRZ_ER?)
111 0 0 1 1110 0 1
010—2(5) }5—3(—2) %—%(—11):010—3 1 7
001 5 -2 11 001 5 -2-1
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Ry =R;—Rg
10 -5 2 12
010-31 7
01 5 -2 -1

Ry =R;-R,
100 -21 5
010-31 7
001 5 -2 -1

Since now the LHS matrix is I, then the RHS is the inverse. Therefore

-1

3 1 2 -2 1 5
2 -3 -1 =|-3 1 7
1 1 1 5 -2 -11
Using the above in (1) gives
X -2 1 5 3
y|l=|-3 1 7 ||-2
z 5 -2 1)1
-3
=|-4
8
Hencex = -3,y = -4,z =8.
4.4.7 Problem 2(b) (8.3.5)
For the matrix
1 2 3
A=[4 5 6
7 8 10

Find the cofactor and the inverse. Verify that your inverse does the job.

Solution

The cofactor matrix Ac has elements (AC)i]- = (—1)i+j |A|i]. where |A|ij is determinant of A
with row i and column j removed. Hence

+An —Ap +Ag
Ac=|-Ay +Ap -Axy (1)
+Az —Azp +Asz3
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Where
A =P =2
"7 ls 10
I L] B
277 10
P L D
13 78
A= 3= s
718 10
1 3
Azz— :—11
7 10
12
Ay = =-6
7 8
2 3
Az = =-3
5 6
an = 3= 6
32 46
A=t =3
33 45

Substituting all the above into (1) gives the cofactor matrix
[ 12 —(-2) +(-3)

Ac=|~(-4) +(-11) ~(-6)
+(-8) (-6) +(-3)

(2 2 -3
=4 -11 6
-3 6 -3
The inverse of A is
1
-1 _ AT
det(A)” ©

So we just need to find det(A) and transpose the cofactor matrix. But
det(A) = All - 2A12 + 3A13
By expanding along the first row. Hence

det(A) = (2) - 2(=2) + 3(=3)
=-3

(2)
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Hence (2) becomes

T
2 2 -3
A—l—_—14 11 6
3
-3 6 -3
4 -3
- 1 6
= _
-3 6 -3
2 4
3 3 1
= 2 11
3 3 2
1 -2 1
To verify
[ 2 4
2 3]|3 3 1
AATT=14 5 6.2 1 ,
3 3
7 8 10
1 -2 1
0
=10 1
0
And
2 4

3 73 123
AlA=|_2 1 |45 6
3

7 8 10
1 2 1
10 0
=101 0
0 0 1
Verified. It does the job.
4.4.8 Problem 3(a) (8.4.3)
Show that
(MN)" = NtMmt

Consequently the product of two Hermitian matrices is not generally Hermitian unless
they commute.

solution

Al is called the adjoint of matrix. It is the transpose of A followed by taking the complex
conjugate of each entry in the result. Hence for a real matrix A the adjoint is the same
as transpose, since complex conjugate of real value is itself. So we start by finding the
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transpose (MN)” then at the end apply conjugate.
(MN);; = (MN),
= ¥ MjNj;
k
= 2 MGN
k
= zk] NiMy;

- (v

if

The sum above over k, where k goes from 1 to the number of columns in M (which must
be the same as the number of rows in N for the product to be possible). The above shows
that

(MN)" = NTMT

Therefore
(MN)" = (NTMT)’
= (N7) (M)
= N'M*
A matrix A is called Hermitian if A" = A or AT = ~A. Also, any real matrix A is always
Hermitian.

Assuming M, N are Hermitian, and assuming for now that we look at the positive case.
ie. Mt = M,Nt = N. Hence
MNT = (NM)'

Now, if N, M commute, then NM = MN and the above becomes
MINt = (MN)!

Hence the product MT'N?' is Hermitian. But if N, M do not commute, then we can not
say that.

4.4.9 Problem 3(b) (8.4.19)
(1) Show that

Tr(MN) = Tr(NM) (8.4.53)

(First part only).
solution

The trace of a matrix A is the sum of elements on the diagonal. The matrix must be
square for this to apply. Hence

Tr(A) = Y, Aw

Where the sum v is over the number of rows or columns (since they are the same, since
matrix is square)

In the following, we will use the definition of matrix product given by (MN )i]. = 2 M N,
where the sum k is over the number of columns of M. Now we can write

Tr(MN) = Y ;(MN)__
= Z(ZkaNkv)
4 k
= Z(Z Nkvak)
(4 k
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Assuming N, M are square matrices, then we can replace the inner sum to be over v
instead of k, since these will be the same for square N, M. Hence the above becomes

Tr(MN) = E(ENUZ)MUU) (1)

v

Now we do the same for product NM.
Te(NM) = Y, (NM)_
(4

= g(; vaMkv)
= zv:(zk: Mkavk)

Assuming N, M are square matrices, then we can replace the inner sum to be over v
instead of k, since these will be the same for square N, M. Hence the above becomes

Tr(NM) = Z(ZMUUNUU) (2)

[

Comparing (1,2) shows they are the same. Hence Tr(MN) = Tr(NM). Note that this
solution assumed that M, N are both square matrices of the same size.

4.4.10 Problem 3(c) (8.4.20)
Consider four Dirac matrices that obey
M;M; + M;M; = 26,1 (8.4.56)
Where the Kronecker delta symbol is defined as follows
0;=1 ifi=j,0ifi#j (8.4.57)

Thus the square of each Dirac matrix is the unit matrix and any two distinct Dirac
matrices anticommute. Using the latter property show that the matrices are traceless.
(Use equation (8.4.54)

solution
Eq (8.4.54) from the book says

Tr(ABC) = Tr(BCM) = Tr(CAB) (8.4.54)
Some definitions first. Two matrices A, B anticommute means AB = —BA. A matrix is

traceless means the trace of the matrix (the sum of the diagonal elements) is zero.
There are Four Dirac matrices My, My, M3, My. Each is 4 X 4 matrix.
From MZM] + M]Ml = 26111 then
ZMiMi = 261'1'1
MiMi = 61'1'1
M;M;
Oii
Premultiplying both sides by M; gives
M;M;M;
LT M
Oji !

I

Taking trace of both sides

(MjMiMl-)
) =Tr
Oii
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But Dirac matrices anticommute. Hence M;M; = —M;M;. The above becomes

Tr(M;) = —% Tr(M;M;M;)

n

Using property Tr(MiMle-) = Tr(M]-MiMZ-) the above becomes

Tr(M;) = 1 Tr(M;M;M;)
i
S Tr(M;M?)
il
But M? = I, therefore
1
Te(M;) = - Te(M))

11
The above is possible only if Tr(M]-) = O since % is just a number. The above is like saying
n = -3n which is only possible if n = 0. Hence the trace of any Dirac matrix is zero,
which means it is traceless.

4.4.11 Problem 4(a) (8.4.5)

Show that the following matrix U is unitary. Argue that the determinant of a unitary
matrix must be unimodular complex number. What is it for this example?

1+iv3  V3(1+)

4 242
U=
-V3(1+)  i+V3
242 4

solution
A matrix U is unitary if U = U™!. Where U' means to take the transpose followed by
complex conjugate. For the above

Up Ui
—Ux  Un

1

_1 —
det(U)

(1)

But

1+iv3  V3B(1+)

4 242
det(U) =
—\3(1+)  i+V3
22 4

() ey

102



44. HW 4

CHAPTER 4. HWS

Hence (1) becomes

Now U is found.

Comparing (1,2) shows they are the same. Hence U is unitary.

i+/3 _\/5(1+i)
u—l—l 4 22
i{v3a+)  1+iV3
242 4
i+3 _\/3(1+i)
4 242
= —i
V3(1+)  1+iV3
22 4
[ . i+/3 . _\/5(1+i))
(%) e-5e
| \/5(1+i)) _.(1+z’\/§)
(5a) G
—(1—1'\/5) V3 (i-1)
4 242
V3(1-i)  -i+V3
u'l':(uT)*
T *
1+iv3 V3 (1+i)
4 242
—\3(1+)  i+V3
242 4
—1+i\/§ -3 (1+i)
- V3 (1+i) i+/3
EC
[ 153 VBa)
| Bas) B
[ 153 VB
4 242
| vBa) iy

(2)

A unimodular complex number z is one whose |z| = 1. For this example, we found above
that |U| = i. But [i| = 1. Verified.

4.4.12 Problem 4(b) (8.4.8)

Show that if

then
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Now consider F(L) = e and show by writing out the series and using L? = —I, that the

series converges to a familiar matrix discussed earlier in the chapter.

Solution
oLy? (6L)°
eQL:I+6>L+u 6Ly
2! 3!
2 3
0o -1 1 .[0o -1 1 [0 -1
=I1+0 + —6? —03 + e
1 0| 28 |1 0 311 0
But
12
0 -1
=1
[1 0
3 12
0 -1 0 1|0 -1
= =—IL = -L
1 0 1 0ff1 0
4 2r 2
0 -1 0 1] (0o -1
- =(-D(-D=1I
1 0 1 0|1
5 4
0 -1 0 1|0 -1
= :IL:L
1 0 1 0ff1 0
- 6 H4r 12
0 -1f [0 -1f|0 -1 _
1 0 1 0]f1 0
- 7 r 6 .
0 -1 0 -1|[o -1
= :—L
1 0 1 0} 1 0

And so on. Hence (1) becomes

1 1 1 1 1 1
Ol =T1+0L-—6% - —6°L + —0*T + —6°L — —0°T — —6O"L + ---

2! 3! 4! 5! 6! 7!
1 0 0 1| 1 1 of 1 .0 -1] 1 ,[1 0| 1
= +0 -=0 -=6° +—0 +=0
01 1 0| 2 o1 3 |11 o| 4 |o 1] 3
1 0] o -6] 1[62 o] 1[0 @] 1[e* o] 1[0
= + - = - = + — + =
01l |6 of 2[0 2| 316 o| 4|o o4 565
12 loa los. . gLl lgs
B 1 26 +4!6 6!6 + 6+3!6 5!6 +
- _lgs ., lps 1l loa 1o
0 3!6 +5!9 1 26 4!6 6!6 +
_cos(G) —sin 6
- sin(0) cos(0)
Hence
el = R

Where Ry is the rotation matrix in 2D.

0

-5
0
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4.4.13 Problem 4(c) (8.4.10)

Show that if H is Hermitian, then U = ¢/ is unitary. (Write the exponential as a series and
take the adjoint of each term and sum and re-exponentiate. Use the fact that exponents
can be combined if only one matrix is in the picture).

solution

A matrix H is Hermitian if H' = H. Where the dagger means to take the transpose
followed by conjugate. If H is real, then this implies the same as saying H is symmetric.
A unitary matrix U means one whose dagger is same as its inverse. i.e.

ut=u-!

Starting from the input given, expanding in Taylor series gives

u=et
. GH? GH)® GH)' (H)® (H)°
R T TR TR TSI
. H2 H® H* H° Hf
=1+1 _§_1§+Z+Z§_E“.
H2 H* H¢ _ H3 HS
:I——+___... +1H—_+_—"'
21 41 6l 3l 5!
Hence
. N H‘I‘2 H'l'4 H‘I‘6 ' . H‘I‘3 H'l'5
u :(I I TERATRS "')_1(H _T“L?_"')

Where the +i changed to —i in the above since we are taking complex conjugate. But
H' = H since matrix H is Hermitian. The above becomes

: H?> H* H° (., H® H°
LI:(I—j+Z—E---)—1(H—§+§—---)
— oiH

But e = U1 from definition of U = ¢, Therefore

ur=u-!
Hence U is unitary.
4.4.14 Problem 5 (8.4.17)
Show that
[o-a]¢-5] = a5+ (ax7) 1)

-
Where @, b are ordinary three dimensional vectors and

solution

The LHS of (1) is

[5’- E’][(—;’ : E] = (oxax +0,a, + azaz)(axbx +0yb, + ozbz)
= o3a,by + 0,0,a.b, + 0,0,a,b,

2
+0,0a,b; + oya,b, + 0

Y Yyryry Y
+ 0,0,a,by + 0,0,a,b, + 02a,b,

0,a,b,

But for Pauli matrix 02 = I. Hence the above becomes

[5’- E][ﬁ . Z] = I(axbx +a,b, + azb)+0x0yaxby+axazaxbz+ayaxaybx+ayazaybz+azaxasz+azayazby
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But 0,0, = -0,0, and 0,0, = —0,0, and 0,0, = —0,0,. (I verified these by working them

Y
out). Hence the above becomes

[5’- ﬁ][a’ . E] = I(axbx +ayb, + azb) +0x0,a,b, + 0,0,a,b, — 0,00,y + 0,0.a,b, —0,0.a,b, —0,0.a,b,
= I(a,by + a by + a;b) + (050, ) (ayby — ayby) + (0,0.)(asb, - aby) + (0,0, )(a,b, - a.b,)
(2)
Now we will simplify RHS of (1) and see if we get the same result as above.
d-bl+i0 - (7% D) = [(ayby + ayb, +a,b,) +ic - (A b)
e; 6]' (9
= I(axbx +a,b, + azbz) + i(ox oy az) lax ay a;
by b, b,
I( b, +a,b, +a,b )+1(0x oy ) (aybz —aby) ab, - b)
I(a by +ayb, +a bz) + z(Ux o, (aybz ab, aby—ab, acb, - aybx)
I(a by +a,b, +ab )+ z(ax(a b, - azby) +0,(a.by - )+az(a b, - aybx))
I(a by +a,b, +ab )+ zax(a b, - azby) +ioy,(ab, - xbz) + 1az(axby - aybx)

(3)

But from property of Pauli matrices (eq 8.4.48) in text, we have (Verified these by
working them out)

io, = 0,0, (4)
ioy = 0,0, (5)
—i0y, = 0,0, (6)

Substituting (4,5,6) into (3) gives

d-bl+i5 - (7% D) = [(ayby + ayb, + a,b,) + (0,0.)(a,b. — 0.b, ) = (0,0.)(a:by - a,b,) + (0
= I(ab, + ayb, + a.b,) + (0,0.)(ayb, - aby) + (0,0.)(axb; — aby) + (
(7)

Comparing (2,7) shows they are the same. Hence
[¢-a]o-3| =751+ (ax7)

4415 Problem6

(a) Consider a horizontal spring-mass system. The spring has a spring constant k and is
tixed at one end. The other end is attached to a block of mass m that can move without
friction on a horizontal surface. The spring is stretched a length a beyond its rest length
and let go. Without solving the problem using Newton’s second law, find the angular
frequency of oscillations and show that it is independent of a.

(b) Derive the Planck mass, length, and time in terms of Planck’s constant 77, Newton's
constant G, and speed of light c. Evaluate these quantities in SI units. (10 points)

(c) Identify the relevant physical quantities and use dimensional analysis to find the
characteristic length for a black hole of mass M.

solution
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4.4.15.1 Part (a)

I was not sure if we are supposed to solve this using dimensional analysis or using
Physics. So I solved it both ways. Please select the method that we are supposed to have
used.

Using physics

Taking the relaxed position (which is also the equilibrium position as x = 0) and spring
extension is measured relative to this, then spring potential energy is given by V(x) =

1 . . . .
Ekx2 and the Force the spring exerts on the mass is F = —kx. Using the relation

V' (x) = mw?x

Then
kx = maw?x
k = mw?
Hence
k
W =+]—
m

Where m is the mass of the block attached to the spring. We see the angular frequency
of oscillations w is independent of a. The mass will oscillated around x = 0 from x = +a
to x = —a. When it is at x = +a the force on the mass will be maximum of F = —ka and
the velocity will be zero there. When the mass at x = 0, the force is zero, but the velocity
of mass will be largest there. The maximum amplitude of the mass from equilibrium is
a.

Using dimensional analysis

Let us assume that the angular frequency of the spring depends on the attached mass
m and on the spring constant k and on the initial displacement a (we will find later that
it does not depend on a).

The units of angular frequency w is radians per second or T~!. Units of mass m is M.
Units of k are MT2 (force per unit length). And initial extension is length with units L.
Hence assuming

w = m*kYa* (1)

Using dimensional analysis we replace the above with the units of each physical quantity
which gives

T = [MI'[MT2] L

= MFHYT-2Y] 7
Comparing exponents gives
-2y = -1
x+y=0
z=0

Hencey = % and x = —% and z = 0. Therefore Eq. (1) becomes

_11
w=m 2k2

k

m

Which is the same result obtained above. This shows that @ does not depend on 4, be-
cause z = 0.
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4.4.15.2 Part (b)
Plank mass

Using dimensional analysis, let m, be the Planck mass. Using units M, L, T for mass,
length and time respectively, then the units of m, is M. Since we want m,, to be expressed
in terms of #i, G, ¢, then we write

m, = H*GYc* (1)

And then solve for x, y, z exponents such that RHS gives units of M. We know that units
of i = ML?T~! and units of G = M™'L*T 2 and units of ¢ = LT!. The above becomes

M = (ML2T) (ML3T2) (LT )
= M* [2xT—x MY [3YyT-2y] 22

= MY [ 2x+3y+z—x-2y-2

Therefore we need to satisfy the following equations

x—-y=1
2x+3y+z=0
-x-2y-z=0

1 -1 olx) (1
2 3 1|y
-1 =2 -1)\z) |0

I
e}

The augmented matrix is

1 -1 0 1
2 3 10
-1 2 -1 0
R, =R, - 2R,
1 -1 0 1
0 5 1 -2
-1 -2 -1 0
Ry =Ry + R,
1 -1 0 1
05 1 -2
0 -3 -1 1
R, = 3Ry, Ry = 5R,
1 -1 0 1
015 3 -6
0 -15 -5 5
Ry =R;+R,
1 -1 0 1
015 3 -6
00 -2 -1

System is now in echelon form, so no more transformations are needed. The system
becomes

1 -1 0|« 1
0 15 3 |ly|=|-6
0 0 2)\z -1
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i - =1 i - _ )
Last row give -2z = -1 or z = . Second row gives 15y + 3z = —6 or 15y + 3(2) = -6, or
y= —% and first row givesx —y =1or x + % =1, hence x = % The solution is
1
x 2

v|={- (2)
z

1
2
Using (2) in (1) gives
my, = *GYc*
1 11
=Hh2G 2¢2
fic

G

Units in SI Using ¢ = 299792458 m/s and /i = 1.054571817 x107* J.s, and G = 6.6743015 X
107! m3kg~1s72, the above gives

(1.054571817 X 10—34)(299792458)

m =

P (6.6743015 X 10—11)
=21764 %108 kg

Planck length

We now repeat the above method, but for Planck length which has units L. Therefore
the equation is

I, = FGYe 3)
And now we solve for x, y, z exponents such that RHS gives units of L. We know that units
of i = ML?T~! and units of G = M'L3T2 and units of ¢ = LT~!. Using dimensional
analysis, the above becomes
L = (ML2T ) (ML3T2) (LT2)
— MxLZXT—xM—yL3y T-2Y]2T-2
L= Mx—yL2x+3y+zT—x—2y—z

Therefore we need to satisfy the following equations

x-y=0
2x+3y+z=1
-x-2y-z=0

Similar steps using augmented matrix will now be done. No need to duplicate these
again. The final solution is

(4)

NI~ NI~

Using (4) in (3) gives
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Units in SI Using ¢ = 299792458 m/s and /i = 1.054571817 10734 J.s, and G = 6.6743015 x
107! m3kg~1s72, the above gives

z J (1.054571817 x 10-34) (6.6743015 x 10-11)
a (299792458)°
=1.6163 x 107> meter
Planck time
We now repeat the above method, but for Planck time which has units T. Therefore the
equation is

t, = GV (5)

And now solve for x, y, z exponents such that RHS gives units of T. We know that units
of i = ML?T~! and units of G = M™'L*T 2 and units of ¢ = LT!. The above becomes

T = (ML2T) (MLPT2) (LT1)
= M* LT XMY[3YT-2Y[ 2T %2
T = MY ] 2x+3y+z-x-2y-z

Therefore we need to satisty the following equations

x-y=0
2x+3y+z=0
-x-2y-z=1

Similar steps using augmented matrix will now be done. No need to duplicate these
again. The final solution came out to be

(6)

NI= NI =

Using (5) in (6) gives

t, = GV
1 1 5

=h2G2c 2

_[nG
V&

Units in SI Using ¢ = 299792458 m/s and #i = 1.054571817 x10734].s, and G = 6.6743015x
107! m3kg~'s72, the above gives

. (1.054571817 x 10-34)(6.6743015 x 10-11)

PN (299792458)°
=5.3912 x 10~* second

4.4.15.3 Part (c)

The characteristic length of a black hole should depend on its mass M and universal
gravitational constant G and c. Therefore

L, = M*GY¢?
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The units of G = M 1L3T~2 and units of ¢ = LT~!. The above becomes

Hence

Solving gives

Hence

L, = M*(ML3T2) (LT)

= M~*Y [3y+zT-2y-z

x-y=0
3y+z=1
2y+z=0
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4.416 key solution for HW 4

Physics 3041 (Spring 2021) Solutions to Homework Set 4

1. (a) Problem 8.1.1. (5 points)

RG:{ cosé sm&}

—sinf cos@’ —sinf cosf

cosf  sinf’ cosf sinf
—sind cosf = Bglly = { ] [ }

B cos ' cosf — sin ' sin cos ' sinf + sin @’ cos
—sinf cosf — cos @ sinf —sinf’ sin @ + cos ' cos

cos(@+6) sin(@+06) | I
—sin(@+¢) cos(@+6) | ~ 0"

(b) Problem 8.1.2, and find the expression of 6 in terms of the relative velocity. (10 points)

From the Lorentz transformation

, T — vt .
= = xcosh @ — tsinh 6,
V1—02 '
tf
t = YT _ tcosh — zsinh 0,

V1—0?

we obtain
1 sinh 6 0 _ =0 _n1 2_1
coshf = ——, sinhf = Y S amr e ze _n=n _n =
V1—12 V1—v2 coshf e?+e? np+nt p2+1
1 )
S = L= (P 4 e, = =y [
-

14w 1. 14w
—1ny/ -2
=0 . 1—wv 2nl—'u7

where v is in units of the speed of light c.

2" | | cosh# —sinh¢ | | cosh® —sinh¢’ coshf —sinh6 T
t" | | —sinh® cosh@’ | | —sinh® cosh@ —sinhé coshd t
| cosh® cosh® +sinh ¢ sinhf  — cosh§ sinh @ — sinh ¢ cosh § x
" | —sinh# cosh@ — cosh® sinh @ sinh &’ sinh @ + cosh 6 cosh t
_ | cosh(@+6) —sinh(d+6¢) T
| —sinh(@+6") cosh(d+6) t |’
where we have used

(e +e ") +e ) (e — e ) (e —e7?)

cosh & cosh § + sinh @ sinh § = 1 + 1
- QOHO =0y OOy 00 00 00 —0'+0 | —0'—0
N 4 4

010 | —0'—0

+
= % = cosh(0 +¢'),
0 —0N(O 1 0 0 L —0\(0 _ 0

. , - + 0 e (ef —
sinh & cosh @ + cosh @ sinh § = (e e )€ +e7) + (e ¢ i(e )
B QOHO 00 00 00 . Q0 _ 00 | 00 _ 00
B 4 4

010 —0'—0
= % = sinh(6 + ¢").
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(c) Problem 8.2.4, for Lorentz transformation only. (5 points)

For the Lorentz transformation,

[ coshf —sinh@ o, g, (e (f—e?)?
Ly = { _sinh@  coshd ] , |Lg| = cosh” @ — sinh” 0 = 1 — 1 =1,
coshf sinhd LeT,c coshf sinh@

p— _1 = —-— p—
Loc = [ sinh® coshé } =Ly = |Lo| [ sinh@® cosh6 } Lop.

The above result makes sense as the inverse Lorentz transformation corresponds to chang-
ing the sign of the relative velocity v — —w, which in turn changes the sign of the rapidity

— Ly v =1yl
0=35lnt = —0=3In=.

2. (a) Problem 8.3.4, but using Cramer’s rule to solve the first set of equations only. (5 points)
3r—y—z=2

x—2y—32=0
dr+y+2z2=4

“1 -1
—2 -3 1 -3 1 -2
1 -2 -3 _3’ X 2‘—(—1)‘4 2’+(—1)‘4 1'—3><(—1)+14—9—2
12
2 —1 -1
0 -2 -3
41 2| 1 2 -3 1 1]\ —2+4
S I 2<2‘ 1 2' 4‘—2 —3‘) 2 !
1 -2 -3
401 2
32 -1
10 -3
44 2] 1 - - —2x 14— 4 x (-8
y—1- - 1 _Z _21 3_43 1 _ X x ( ):2
3 -1 —1] 2 4 2 1 -3 2
1 -2 -3
412
3 —1 2
1 -2 0
41 4] 11 -2 3 1\ 2x9+4x(=5)
S _2<2'4 1‘“‘1 2 D_ 2 -
1 —2 -3
412
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(b) Problem 8.3.5. (5 points)

123 2 2 -3
M=|456 |=M=| 4 —11 6|, |M=1x2+2x2+3x(-3)=-3,
7 8 10 -3 6 -3
v o1 2 4 -3 —2/3 —4/3 1
M—lzicz_g 2 —11 6| =|-2/3 11/3 -2 |,
|M] -3 6 -3 1 -2 1
—2/3 —4/3 1 12 3 100
M7'M=|-2/3 11/3 =2 | |4 56 |=]|010
1 -2 1|78 10 001
3. (a) Problem 8.4.3. (5 points)
N)y = Z M Ny
= (MN), = ZM WNi=> MIN| = ZN}k = (NTMP),;
k

= (MN) = NTM!
For MT = M and NT = N, we have
(MN)' = NTMT = NM.

If NM = MN, ie., M and N commute, then (MN)" = MN, i.e., MN is Hermitian. Other-
wise, M N is not Hermitian.

(b) Problem 8.4.19, proving the first result only. (5 points)

Tr MN = ZMN ZZMZkNm
_ZZNM zk*ZZNkz ik

:ZNMkk:TrNM
k

(c) Problem 8.4.20. (10 points)

From the given properties of the Dirac matrices, M? = I, and for i # j,
MiMj + M]Ml =0= MZ'QMJ‘ + MZMJMZ = Mj + MlMJMl = 0,

where we have multiplied both sides of the first equality by M;. Taking trace of the two sides
of the last equality, we obtain

Tr (M] + MZM]MZ) ="Tr Mj + Tr MzMjMz ="Tr Mj + Tr ]\4]]\412
=Tr M; +Tr M; =2Tr M; =0=Tr M; =0,

where we have used Tr ABC = Tr BCA.
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4. (a) Problem 8.4.5. (10 points)

14iv3 V(1) ] 1-i/3 _ V3(1-i)
= 4 2v2 T 4 2v2
U= VB(14i)  i+v3 =U'= V3(1—i)  —itV3 ]
L 22 4 i 2v/2 4
1+iv3 VB ] 1-iv/3 V319 1
UUt = 4 22 4 23 0
V3141 i3 V3(1—i)  —it/3 01
L 22 4 | 2v/2 4

As (UY);; = [(UT);;]* and |U| = |UT|, we have |UT| = |U|*. Let |U| = re, so |UT| = re=*
UUT = |U|U | =r*=|l|=1=r=1=|U| ="

Note here | | means the determinant of a matrix, NOT the modulus of a complex number. For
the above example,

Ul — T+iv3\i+v3 V3(1+i) | V3(1+i)| . [—i+V3)i+V3 3(1+i)?
L 1 o | 22 |\ 1 T8
i3
Z‘FZ—Z—E

— 1—iv3\ —i+v3 V3(1—4) | v31—i)|  [i+V3) —i+V3 3(1—i)?
= T Tz |22 | U T8
i 3

- - i —iTr/2: *
11 i=e |U|
(b) Problem 8.4.8. (10 points)

S R B R I

-1

o _~~n)r et 8 A
F(L)=e 7; =gl gl (0L = L L=
9> 6 g 6 _
=I<1—2!+4!—"'>+L<9—3!+5!—~~>=ICOSH+Lsm9

cos 0 n 0 —sinf | | cosf —sinf
0 cosf sin @ -

0 sin 6 cos 6
(c) Problem 8.4.10. (5 points)

4  H )?  H )3 H )™
@lH:]+Z‘H+(Z ) _|_(Z ) +...+(Z ) +.--, H =H
2! 3! n!
_iHNZ  (—iHT? _iH
it _ ¢ (ZUH)T(—iHT) (—iH")
() =T il 31 nl
_>H2 _‘HS —1H\" )
i ;) ! ;,) IR <) L

n!
. oyt . .
ezH (ezH) ezHe iH

= I = ' is unitary
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5. Problem 8.4.17. (5 points)

where we have used

3
ax g: Z Z Z eijkaibjék.

6. (a) Consider a horizontal spring-mass system. The spring has a spring constant k and is
fixed at one end. The other end is attached to a block of mass m that can move without
friction on a horizontal surface. The spring is stretched a length a beyond its rest length and
let go. Without solving the problem using Newton’s second law, find the angular frequency of

oscillations and show that it is independent of a. (5 points)

Using units to indicate dimensions, we have

[k] = N/meter = kg - (meter/s?) /meter = kg /s?,

[m] = kg, [a] = meter.

[w] = 1/s = [K]*[m]°[a]” = kg*Pmeter? /s>
a+pf=02a=1,y=0=>a=1/2, f=-1/2, y=0

] = [K]2[m] 2 = [V/Rfm)]

Therefore, the angular frequency w is independent of a.

(b) Derive the Planck mass, length, and time in terms of Planck’s constant i, Newton’s con-

stant G, and speed of light ¢. Evaluate these quantities in SI units. (10 points)

Using units to indicate dimensions, we have

[A] =J-s=keg- (m/s)? s =kg m?/s,
(6] = N-m*/kg® =kg - (m/s?) - m /kg® = m®/ (kg - 5%),
[c] = m/s.

[MPI] =kg = [h]a[G]ﬁ[c]'y _ kgafﬁ . chH—SB-F’V/804—1-26-1-’Y7
a—p=120a+30+7v=0, a+28+7y=0=>a=1/2, f=-1/2, y=1/2.
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So the Planck mass is

hC 1/2
Mp, = <G> =218 x 1078 kg.

With [Mpic?] = J, it is straightforward to obtain the Planck time and length

h hG V2
Top= — = | — =539 x 107
Pl MP102 ( C5 > X S,

hG 1/2
Lpy =Ty = <c5> =1.62x 107% m.

(c) Identify the relevant physical quantities and use dimensional analysis to find the character-
istic length for a black hole of mass M. (5 points)

The relevant physical quantities are Newton’s constant G, the speed of light ¢, and the
black-hole mass M, the first two of which are fundamental to general relativity and the last of
which specifies the macroscopic property of the black hole.

Using units to denote the dimenions, we have

[G] = N-m?/kg® = kg - (m/s”) - m*/kg® = m?/(s* - kg),
[c] =m/s, [M] = kg.

length] = m = [G]*[c]’[M]" = m3+# . g~20=F . ko=t
3a+pB=1 —2a—-B=0, —a+y=0=a=1, B=-2, v=1.

So we obtain

GM

[length] = =
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4.5

HW 5
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Problems listing

Physics 3041 (Spring 2021) Homework Set 5 (Due 3/3)
1. (a) Problem 9.1.6. (5 points)
(b) Problem 9.2.1.(ii). (10 points)
(c) Problem 9.2.3. (10 points)
2. Use Tr 0, =0, 67 = I, and 0,0; = i), €10k to obtain the components of a general 2 x 2
matrix in the basis of {01, 09, 03, I}, where o; represents the Pauli matrices and I is the identity
matrix. (15 points)
3. Problem 9.2.5. (10 points)
4. Problem 9.3.5. (20 points)

5. Problem 9.5.6, but only for the proof without doing the inverse matrix part. (10 points)

6. Problem 9.5.10. (20 points)
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4.5.2 Problem1a (9.1.6)

Show that the following row vectors are linearly dependent. (1 1 0), (1 0 1), (3 2 1).

Show the opposite for (1 1 0),(1 0 1),(0 1 1).

Solution

4521 Partl

Vectors 171, 172, 172 are Linearly dependent if we can find a, b, c not all zero, such that
ﬂ‘_/)l + b‘_/}z + C‘_/)z = 6

Applying the above to the vectors we are given gives

1 1 0
al1|{+b0|+c2]=]0
0 1 0
1 1 3|la 0
1 0 2|fp[=10
01 1){c 0

Ax =0 (1)

One way is to find det(A). If det(A) = 0 then there exists non-trivial solution x. Which
means linearly dependent, otherwise linearly independent.

0 2 1 2

01

10
01

det(A) =1 -1 +3 =—2-1+43=0

Since det(A) = 0 then linearly dependent.

a
Another method is to actually solve for | b | to see if we can obtain non zero solution or

c
not. Using Gaussian elimination

Ry =R, - Ry
1 1 3
0 -1 -1
0 1 1
R3=R3+R;
11 3
0 -1 -1
0 0 O
Hence the system becomes
1 1 3|a 0
0 -1 -1|lp[=|0
0 0 0)c 0
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Last row show that c is free variable. Hence it can be any value. Second row gives
~b—c=0o0rb = —c. Firstrow gives a+b+3c = 0o0ra = -b—3c = c—3c = —2c. Therefore
the solution is

a -2c
bl=|—c
c c
-2
=c|-1

1

a -2
bl=|-1
c 1

Since we found a, b, ¢ not all zero which makes a‘71 + b‘72 + c17>2 = 0, then the vectors are
Linearly dependent .

4.5.2.2 Part2
Vectors Vy, V,, V, are Linearly independent if the only solution to
Lﬂ_/)l + b‘—}z + C‘_/)z = 6

iswhena =b =c = 0. As in part 1, we setup Ax = 0 system and solve it to find out.

1 1 0 0

al1|+Dbl0]+c|1|=]|0

0 1 1 0

O|la 0

1 0 1fb|=]0

01 1)ic 0
Ax=0 (2)

One way is to find det(A). If det(A) = 0 then there exists non-trivial solution x. Which
means linearly dependent, otherwise linearly independent.

01

11
det(a) =1 |1

01

=-1-1=-2

Since det(A) # 0 then linearly independent

Another method is to solve (2) directly. Using Gaussian elimination gives

Ry =Ry, - Ry

1 1 0

0 -1 1

0 1 1
R;=R3+R,

1 1 0

0 -1 1

0 0 2
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Hence the system becomes
1 1 O0}la 0

0 -1 1|p|=|0
0 0 2)ic 0

Last row gives ¢ = 0. Second row gives —b + ¢ = 0 or b = 0. First row givesa + b = 0 or
a = 0. Hence the solution is

a 0
bl=10
c 0

Therefore a\71 + b172 + c\72 =0 implies that a = b = ¢ = 0, then the vectors are
Linearly independent .

4.5.3 Problem 1b (9.2.1 (ii))

Repeat the above calculation of expanding the vector in Eqn (9.2.32) but in the follow-
ing basis, after first demonstrating its orthonormality. At the end check that the norm
squared of the vector comes out to be 6.

1+i3
4
1) = ,
_V3(+i)
V8
V3 (1+i)
m=| "
V3 +i
4

The vector is

V)= L 9.2.32
V)= i (9.2.32)

Solution

First we need to check the basis given are orthogonal to each others, and each have norm
of 1 each. To check orthogonality

N REXEED)
| 1+iv3 _\/§(1+i) V8
4
V3 (1+i)
_[1-iv3a _VBa-) V8
4 V8 V3 +i
4

_ (1‘i\/§)](\/§(1+i)]+(_\/§(l—i))(\/§+i)
4 V8 V8 4

(VA3 +1E) (V3 VAN +)
48 B 48

V3 +i3 —3i+3_3+\/§i—3i+\/§

44/8 44/8

=0
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Since dot product is zero, then they are orthogonal to each others. To check the norm

| 1+iV3
1+iv3 \/_(1+1 4
<I|I>_( V8 ) B+
V8
1+iv3
_ 1=V _VBa-d ¢
| 4 V8 )| B
V8
_((L=iV3))((Lriv3) +(_\/5(1—i)][_\/§(1+i))
R 4 VB V8
(-WE)1+E) (V3 WE)(B + 45
B 16 " 8
_1+3 343
= +—
16 8
i 6
16 8

=1

Since (I|I) = ||I||2 then ||I||2 =1 which means [|I]| = 1. Now we do the same for the second
basis

| VB
i \/§+i \/§
<11|11>_( (L+) )
V8 4 V3 +i
4
V3 (1+z)
_(-ivs ¥5- )
\/§ 4 3+z

(V3 -iV3 ( A +1) +[\/§—i}[\/§+i}

V8 4 4
:(\/5—1' 3) (\/§+1\/_) (V3 -i)(V3 +i)
3+3 3+1 e
8 16

6 4

8" 16

=1

which means ||II]| = 1. We finished showing the basis are orthonormal. Now we express
1+

the vector |V) =
3 +i

J in these basis. Let

V) = v1ll) + 0olII)
To find v, we take dot product of both sides w.r.t |I). This gives

V) = oy (II)
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But (I|I) = 1. Hence

v = V)
_ 1+iv3 _\/5(1+z')* L+i
4 V8 V3 +i
(13 EaivE ) 1
4 V8 3 +i
1-iV3)A+i) (=3 +i _
g *(@@@J(‘EH)
_1+i—i\/§+\/§+—3—\/§i+3i—\/§
- ; 7
_\/§(1+i—i\/§+\/§)+4(—3—\/§i+3i—\/§)
- ™G
V8 +VBi-iV24 + V24 —12-443i +12i - 43
_ v
_\/§+\/ﬁ—12—4\/§+,\/§—«/ﬂ—4x/§+12
- 48 l 48
Y 12 48 A g 43 12
B G- vg) 4(1( V& «é)
2 4B w3 12
I AR zf) (l Voo «E]
IR TP CA 2V3 6
G R B S
i(n\/_ 3I-I)+ZZ( V3 - V6 +3V2)
And
v, = (1V)
_[v3as+ \/§+i* 1+i
V8 4 V3 +i
I RCEEE)
V8 4 \/§+i
(VB-iV3)a+i) (y3-i |
S ey (AL
_\/§+i\/§—i\/§+\/§+3+\/§i—i\/§+1
_ 7 y
- ;
—&+1
B
23 1
T2V2

—1+\/§
Bl 2
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Hence

S
Il

(%(1+\/§—3\/§—\/5)+1%(1—\/§—\/5+3\/§))|1>+(1+\/g]m)
1143 -3v2 - Vo) +i7(1-V3 - V6 +3V2)

3
1z

Now we check the square of the of norm of |V)

2
2 \/5
+{1+4/=
2

= %(1+\/§—3\/5—\/5))2+(411(1—\/§—\/5+3\/§))2+[1+\/ng

=6

VP = |i(1+x/§—3\/§—\/€)+%(1—\/§—\/8+3«/§)

Verified.

4.54 Problem1c (9.2.3)

Show how to go from the basis

3 0 0
) =10 Iy = |1 [IITY = |2
0 2 5
To the orthonormal basis
0] 0]
! 1 -2
1) =0 12) =5 13) =5
0 2 1
% M
Solution
3 1
Using Gram-Schmidt method, let [1) = % =0 % = (0|. Now
0 0
12y = |II) — [1){1T)
0] [1] o
= -10 [l 0 0] 1
0] 2
"
= —101(0)

N O N = O N =
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Hence I
0
0 1
=2 bl _|F
= = = 5
1127]] ) V1+4 ,
|5 |
And
13"y = |IIT) = (IL)QUIII) + [2)¢2|III))
5
1 0 . .
* — 1 2
= —0[100]2 +V§[O$E]2
0 5 2
_Vg_
o 0
1
2 0[(0) + % 12
= — 5 | ——
, |V5
V5
_ _0<
0
12
=12 - ?
5 4
_5_
0]
12
—[2-%
24
_S_g_
o
_2
= 5
1
_5_
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Hence
137)
3) =
11371
0
_2 1
| T
1V T
| 5
0
_2¥5
= 5
\5
S
o]
_2
=1 5
1
[ V5
Therefore the orthonormal basis are
o] e
! 1 2
1) =0 12) = |5 13)=| +5
0 2 1
[ V5 ) 5 |

4.5.5 Problem 2

Use Tro; = 0,07 = [ and 0;0; = i), €;jx0y to obtain the components of a general 2 X 2
matrix in the basis of {01, 0y, 03, I}, where 0; represents the Pauli matrixes and I is the
identity matrix.

Solution

The Pauli matrices are

I i=j

We are given basis {07, 05, 03,1} to use to express general 2 x 2 with. This implies that,
we want

A App

= (101 + €0y + 0303 + ¢yl
Ay Ap

o 1|, fo | Jroo] o "
=c c c c
1ol i o Clo 1] o a
, A Agp| .
Where c; are weights to be found and is any general matrix.
Ay Ap|
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Taking the trace of the LHS and RHS of (1) gives

Ay A
Ay Ap

Tr = Tr(cy01) + Tr(cpoy) + Tr(cz03) + Tr(cyl)

All + A22 =0 Tr(al) +C Tl'(Gz) +C3 Tr((73) +Cy TI'(I)
But Tr(o;) = 0,i =1,2,3 and Tr(I) = 2. The above becomes

All + A22 = 2C4
_ A+ Ap

. @)

Cq

We have found one of the weights. Now we need to find the remaining.

Pre multiplying both sides of (1) by 0, gives

A Ap

= cla% + cp0107 + 30103 + c4011
Ay Ap

01

0 0 +1

But from properties of Pauli matrix, 02 = [and 010, = i X €12k0k = i(elzl 01 + €12207 + €12303

0 -1 0
103 and 0103 = lzk €13k0 = i(€131(71 + €13207 + 613303) = —i0y and 01l = 01, Hence the
above becomes

lO 1‘ —A11 Alzﬂ

= Cll + iC203 - iC302 + 401
10 A21 Azz

co O [1r o] . |0 —i 01
+ 1C —1C +C
0 o| o <1l i of 1o

Taking the trace again of both sides gives

An Ay
A1 Agg]

A1 + Ap =20
_ Ap1 + App

. 3)

1

We now repeat the above process.

Pre multiplying both sides of (1) by o, gives

All A12

= (107201 + CZUE + C30203 + C4(721
Ay Ap

02

0 0 -1

But from properties of Pauli matrix, 03 = [and 0,01 = i X €21k0k = i(€21101 + €1209 + €21303

-1 0 0
—io3 and 0,03 = 1}, €340k = i(€23101 + €300 + 623303) = —0; and o4 = 04, Hence the

above becomes

0 —if|Ann A ,
= —C1103 + Co] — €301 + €40,
—iAy —iAp 11 0 1 0 01 0 —i
= —(q1 +Cy —C3 +Cy
iA;, 1A 0 -1 01 1 0 i 0
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Taking the trace of both sides of the above gives

—iA21 + iAlZ = 2C2

o i Ay — An
2 2

And finally, we repeat one more time to find final coefficient cs.

Pre multiplying both sides of (1) by o3 gives

Ay Agp

= (103071 + 20309 + c3a§ + c4031
Ay Ap

03

0 -1 0
But from properties of Pauli matrix, 0% = Iand 0307 = 12, €31%0k = i(€31101 + €3120, + 631303) =

-1 0 0
i(fz and 0307 = lzk €30 = i(€32101 + €37007 + 632303) = —iGl and o3l = 03, Hence the

above becomes

1 0

0 -1

Ay —Apl Jo <] o1 10 [1 o
=cql —1Cy +C3 +Cy

—Ayq _A22A i 0 10 01 0 -1

Taking the trace of both sides of the above gives

Ay Ap]

= CliUZ - iCzUl + C3I + C4U3I
A21 AZZA

A1 — Ap =205
A —Ap
o= 2 5)
Hence the weights are from Eq. (2,3,4,5) are
o = Ay + Ay
1 —' 5
i
€y = E(Alz — A1)
o = A — Ap
3 2
_An+Ap
g = ——=
2

Therefore we can now write any A matrix as

A A
= (101 + Cp0y + C303 + C4I
Ay Ap
01 0 —i 1 0 1 0
=0 + Cy +C3 +Cy
10 i 0 0 -1 01
A21 +A12 01 1 0 —i A11 —A22 1 0 All +A22 10
= + (A1 = Ap)| . t+—F S —
2 1 0| 2 i 2 0 -1 2 0 1
(8)
Verification

As an example, let us try the above on some random matrix A say

1 2
5 99

A=
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Using (8) gives

Ay +A;p|0 1 ' 0 —i| Aj;-Axn(l 0 A+ A
A= M + i(Alz — A21) + M + —11 22
2 11 o] 2 i 2 10 11 2
But Ay =1, A1p = 2i, Ay =2, Ay = 99. Hence the above becomes
2+2il0 1 i . 0 —if 1-99(1 0] 1+99|1 O
= + —=(2i-2) + — +
2 0| 2 i 0 2 10 <1 2 101
[ 2+2i i 1’2'_2) -98
0 = 0 1(2( AN 5 0 [0 o
= | 242 1/ * 98 *
= 0 i(%(Zi—Z)) 0 0 = 0 50
-98 242i A,
> + 50 > 1(5(21 - 2))
e 98
- +Z(E(21—2)) > + 50
o
2 99

Which is the correct A matrix.

4.5.6 Problem 9.2.5

10
01

Prove the triangle inequality starting with ||V + W||2. You must use Re(V|W) < [ (V|W) |
and the Schwarz inequality. Show that the final inequality becomes an equality only if

|V) = a|W) where a is real positive scalar.

Solution

Note: I am using ||V]| to mean the norm or magnitude of a Vector and |a| for absolute

value.

The Schwarz inequality is given in 9.2.44 as
[ CVIW) T < IIVIIIWII
The triangle inequality we need to prove is given in (9.2.45)
IV + Wl < [IVI[ + [IW]]
Starting with

IV + WIP = ((V + WI(V + W))
= (VIV) + (VIW) + (WIV) + (W|W)
= (VIV) +(VIW) + (VIW)* + (W|W)
= [VIP + 2Re(VIW) + [ W]/

Applying Schwarz inequality | (VIW) | < ||[V]|[|[W]| to the above gives
IV + WIP < [[VIP + 2[[VIIIIWI| + W2

Hence the above becomes )
IV + WIP < (IVIl + W)

Which means the same as
IV + Wi < [[VI| + |[W]|

Which is the Schwarz inequality.

(9.2.44)

(9.2.44)
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4.5.7 Problem 9.3.5

You have seen above the matrix R, (9.3.19) that rotates by % about the z axis. Construct
a matrix that rotates by an arbitrary angle about the z axis. Repeat for a rotation around
the x axis by some other angle. Verify that each matrix is orthogonal. Take their products
and verify that it is also orthogonal. Show in general that the product of two orthogonal
matrices is orthogonal. (Remember the rule for the transpose of a product).

Solution
Equation 9.3.19 is
0 -1 0
T
RZ(E) =11 0 0
0 0 1

To construct rotation matrix Q, we follow this guideline.

Q. Qi Qg3
Q,(0) = Q21 Qxn
Qa1 Qs Qs
The first column of () is the representation (components) of [1’) in terms of the original
basis vectors [1), |2), |3) before rotation.

Using normal notation, this is the same as saying first column gives the components of
¢} in terms of unit original basis e,, ¢, e,. The second column of € is the components of
|2’) in terms of the original basis vectors [1), |2), |3) and third column is components of
13) in terms of the original basis vectors [1), |2), |3).

The representation is found using dot product. For example, first column of Q2 is

Qqp = A1)
Oy = (217)
Qg = Q1)

And so on for the rest of the columns. For an angle 0, a diagram helps to see the
representation. Since the dot product is the projection of [1’) on the original basis. In
other words (1|1) is the projection of [1’) on [1) and (2[1’) is the projection of [1”) on |2)
and so on. So we can read the components directly from the diagram.

3)

|3 Projection of 2') on 2)

Projection of 2') on 1)

Projection of 1') on 1)

Figure 4.11: Rotation around z by arbitrary angle 0

We see from the diagram that

(1n7)

I[L{|[1]| cos ©
cos O
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Since basis vectors have norm of 1. And
)y =112/ln’|| sin @

and (3|1") = 0 since the projection of [1”) on [3) is zero, since rotation is around z axis,
hence vectors on xy plane remain in the xy plane. The above gives us the first column
of Q). So now we have

cosO Qqp Q3

QZ(Q): sin O sz Qz3
0 Qs Qx

The second column of Q are the projections of [2) on [1), |2), |3) which are

112y = |[fll[2|| sin ©
=sinf@

But this is in the direction of negative 1) so we need to add a negative sign. Hence
112"y = —sin 6.

212"y = 112l[12"]| cos 6
= cos 6

and (3|2") = 0 since rotation in only in the xy plane. For the third column, we see that
3’) remains the same as original 3). Hence no change here. Therefore

cosf —-sinf 0
Q,(0) =[sinf@ cosO 0
0 0 1

We now do the rotation around x axis to find Q x(qb)

projection of |3’) on |2)

> [2)

projection of |2’) on |2)

Figure 4.12: Rotation around x by arbitrary angle n

We see from the diagram that
=1
And
2’y = (cos §)2) + (sin¢h)3)
And
3') = —(sin )2) + (cos ¢)3)
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Therefore
1 0 0
Qx(qj) = |0 cos¢p -sing
0 sing cos¢

Where the first column of the above matrix, is the components of 1’) expressed in terms
of1),2),3) and the second column is the components of 2’) expressed in terms of 1), 2), 3)
and third column is the components of 3’) expressed in terms of 1), 2), 3).

Now we need to verify that 3,(6) and Qx((p) are orthogonal. What this means is that
each column of the matrix is orthogonal to each other column in the same matrix. One
to way to do that is to multiply the matrix by its transpose. If we get the identity matrix
as a result, then the matrix is orthogonal.

Verify Q,(0) is orthogonal

(c0s0@ —sin@ 0][cos6 —sin6 0] !
Q,(0)Q5(0) = |sin® cosO 0lsin® cosO 0
0 0 1l 0 0 1
(c0s® —sin@ 0] cos@ sin@ 0]
=|sinf cosO O||-sinf® cosO 0
0 0 1 0 0 1]
cos? 0 + sin” O cos0sin0 —sinBcos@ 0
= [sin 6 cos O — cos 6 sin O sin® 0 + cos? O 0
i 0 0 1
1 0 0
=0 1
0 01
Verified.
Verity Q) x(qb) is orthogonal
i o T
1 0 0 1 0 0
Qx((p)Q;((p) =[0 cos¢ -sing|[0 cos¢p -—sing
0 sing cosg |0 sing cos¢
1 0 o [[r o 0
=[0 cos¢p —-sing||0 cos¢ sing
0 sing cos¢ |[[0 —sing cos¢
1 0 0
=0 cos? ¢ + sin® ¢ cos ¢ sin @ — sin ¢ cos ¢
0 sin¢cos¢@ — cos @ sing sin® ¢ + cos? ¢
10 0
=0 1 0
0 01

Verified.
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The product is

1 0 0 cos@ -sinf 0

Qx((P)Qz((P) =|0 cos¢ —sing|lsin® cosO 0
0 sing cos¢ 0 0 1
[ cosO —sin 6 0

= [cos¢psin® cosOcosp —sing

singsin@ cosOsin¢g cos@

To show that the is also orthogonal, then, using A = (Q x(¢)QZ<¢))(Qx(¢)QZ(¢))T then

cos 0 —sin @ 0 1l cos 6 —-sin @ 0

A =|cospsinf cosOcos¢p —sing|lcos¢psin® cosOcos¢dp —sing

singpsin@ cosOsing cos¢ [[singsin@ cosOsing cos@

cos 0 —sin 0 0 || cose cos P sin 0 sin(psinQ-

=|cos¢psin® cosOcosdp —sing||-sinO® cosOcos¢p cosOsing

singsinf cosOsing cos 0 —sin¢ cos ¢
Expanding gives
cos? 6 + sin? O cos 0 cos ¢ sin @ — sin 0 cos 0 cos ¢ cos Osin ¢ sin 0 - sin
A = |cos ¢ sin 6 cos O — sin O cos O cos ¢ cos? ¢rsin? O + cos? O cos? ¢ + sin’ cos ¢ sin? Osin ¢ + cos? 0 cos
sin ¢ sin 0 cos 6 — sin O cos Osin¢  sin ¢ sin O cos ¢ + cos? O'sin ¢ cos ¢ — cos P sin ¢ sin® ¢ sin? O + cos? O'si
Simplifying
1 0 0
A=|0 cos? (sin? 0 + cos? 0) + sin? ¢ cos ¢ sin? O'sin ¢ + cos? O cos ¢ sin ¢ — sin ¢ cos P
0 sin¢sin® 6 cos ¢ + cos? Osin ¢ cos ¢ — cos P sin P sin? ¢(sin2 0 + cos? 6) + cos? ¢
1 0 0
-0 cos? ¢ + sin ¢ cos ¢ sin qb(sin2 0 + cos? 19) —sin¢ cos ¢
0 sin¢cos qi)(sinz 0 + cos? 8) — cos ¢ sin @ sin? gb(sinz 0 + cos? 9) + cos? ¢
1 0 0
=10 cos? ¢ + sin® ¢ cos ¢ sin ¢ — sin ¢ cos ¢
0 sin¢cos¢ —cos@psing sin? ¢ + cos? ¢
1 00
=10 10
0 0 1

Since the result is identity matrix, then the product Q x(¢)Q . (qb) is an orthogonal matrix.
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Now need to show in general that the product of two orthogonal matrices is orthogonal.
Let A, B be both orthogonal. Hence AAT = I and BBT = I. Now
(AB)(AB)" = (AB)(BTA)
= ABBTAT

But BBT = I. Therefore

(AB)(AB)T = AIAT
= AAT
But also AAT = I. Therefore
(AB)(AB)" =1
Therefore AB is orthogonal. QED.

4.5.8 Problem 9.5.6

The Cayley-Hamilton theorem states that every matrix obeys its characteristic equation.
In other words, if P(w) is the characteristic polynomial for the matrix Q, then P((2)
vanishes as a matrix. This means that it will annihilate any vector. First prove the theorem
for a Hermitian () with nondegenerate eigenvectors by starting with the action of P(€2)
on the eigenvectors.

(Verified from the instructor that the above is the only part required to prove).
Solution

A matrix () with nondegenerate eigenvector is diagonalizable. This is by definition, as

it implies that for the matrix with n eigenvalues, it is possible to find n orthonormal
eigenvectors associated with the eigenvalues. What this means is that we can write

Q = RDR™!

Where R is n X n matrix, whose columns are the n eigenvectors of Q) and D is a diagonal
matrix which has the corresponding eigenvalues w;, w,, -+, w,, on the diagonal of D.
Since P(Q) is polynomial in (2, then we can write

P(Q) = LQF

n
da
k=0

n
Ya

k(RDR-l)k (1)

=
o

But L
(RDR—l) = RDFR1
2 /-’L
To show the above, consider (RDR—l) = (RDR—l)(RDR—l) = RDR-1RDR-! = RD?R"!
and similarly for any higher powers. Eq. (1) now becomes

n
P(Q) = Y, sRD*R
k=0

= R(}n] aka)R—l

k=0

But EZ:O a,D* = P(D), which means applying operator on D only. Hence the above
becomes

P(Q) = R P(D) R~ (2)
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(o, 0 0 0]
0 wp, 0 O
But since D is a diagonal matrix, having the structure D = ,then P(D) =
0 0 0
0 0 0 w,
Pw) 0 0 0
0 (wy) O 0
Pz . Eq (2) now becomes
0 0 0
0 0 0 plw,)
Pw) 0 0 0
0 (wp) O 0
PQ) = R Pl R
0 0 0
0 0 0 p@)
But P(w,) = p(wy) = - = p(w,) = 0, since each w; is a root of the characteristic polyno-
mial of matrix Q. Therefore the above reduces to
0 0 0 0
00 0
P(Q) =R R71
00 0
0 0 0 O]
00 0O
100 00
00 0
0 0 0 O

This proves the Cayley-Hamilton for the case of () with nondegenerate eigenvectors,
which is what we are asked to show.

4.5.8.1 Appendix

(We are not asked to do the matrix inverse part only, but I did it for practice. Not for

grading).

13 1|
Show that [0 2 0

01 4

-1
1 31

that|0 2 0
0 4 1

— 10

Solution

1

8 4
:0%
bt
5 -1
-2 1

0 | by using Cayley-Hamilton theorem. Also show

Cayley-Hamilton theorem says that a matrix Q obeys its characteristic equation. In other

words

P(Q) = 0
1,Q"+a, Q"1+ +31Q+a,=0
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Multiplying both sides of the above by the inverse Q! gives

1, Q" 1 +a, Q"2+ 42,4+ Q7 1=0

-1 -2
a, Q" " +a, 1"+ -+ 0y

Q1= 1
. 1)
1 31
We now apply the above to the first matrix. For QO = |0 2 0], we first need to find the
01 4

characteristic equation.

1 31 1 00
detf|0 2 0|-A{0 1 0Of|=0
01 4 0 01

1-4 3 1
0 2-A 0 [=0
0 1 4-A

0 0 0 2-41
0 4-Al |0 1
Q-AN2-1)E-1)=0
A% 4+712-141+8=0
A3 —7A2+141-8=0

+ =0

Therefore, using Cayley-Hamilton, the above becomes
Q%-702+140-8=0
Where now Q is the matrix itself. Multiplying both sides by Q! gives

Q2-7Q0+141-8Q71 =0
-8Q71=-0%2+70Q-14I

Q1= %(—QZ + 70— 14])
Q1= %(QZ —7Q +14]) (2)

So to find matrix inverse Q! we just need to calculate Q2 and then simplify the result.
But

13 1)1 3 1

Q*=10 2 offo 2 0

0 1 4]0 1 4

1
4
6

(e}

5
0
16

1
= |0
0
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Substituting the above in Eq. (2) gives

11105" 131 [1 0 0]
Q‘1=§ 0 4 0|-7|0 2 O|+14(0 1 ©
0 6 16] |01 4 0 0 1)
1'1105” 1 3 1 10 0
=gll0 4 0]-7j0 2 0|+140 1 0
0 6 16| [0 1 4] 00 1
8 —11 -2
=-lo 4 0
0 -1 2
[ 11 1]
1 -5 =
=0 5 o0
1 1
0 5 i

4.5.9 Problem 9.5.10

Show that the following matrices commute and find a common eigenbasis

1 01 2 1 1
M=10 0 0 N=|[1 0 -1
1 01 1 -1 2

Solution

The matrices commute if MN = NM. But

10 1l[2 1 1
MN=[0 0 0|1 0 -1

10 1)1 -1 2

3 0 3]

=10 0 0

3 0 3

And

2 1 1|1 01
NM=|1 0 -1|{o 0 0
1 -1 21 01
3 0 3
=10 0 0
3 03

We see that MN = NM therefore they commute.

Now we need to find the common eigenbasis. To do this, the eigenvalues and corre-
sponding eigenvectors for M and N are now found.

We start with matrix M.
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To find eigenvalues for M, we solve the equation
dettM - A =0

Where A represent the eigenvalues. The above becomes

1 01 1 00
det|[0 O 0[-A|0 1 0||=0
1 01 0 01

1-4 0 1
0 -A 0 [=0

1 0 1-A
(1—A)_A 1" Mo

0 1-Al |1 o
A-A)(A1=AN+A1=0
2A2-2%3=0
A22-1)=0

Hence the roots (eigenvalues) are A = 0 with multiplicity 2 and A = 2. For each A; now
we find the corresponding eigenvector [v;).

A=2
We now need to solve Mv = Av for v. This implies
M-Aov=0

1-2 0 1 |[wu] [o
0 -A 0 [w]=]0
1 0 1-4llos| |0

But A = 2 and the above becomes

(@)
|
N
(@)
=

N
I
)

Ry =R; +R,
-1 0 1
0 -2 0
0 0 0

The system becomes

0 0 0llos |0

Since last row is zero, then we have one free variable v; and two leading variables v;, v,.
Let v3 = 5. Second row gives v, = 0 and first row gives —v; + s = 0 or v; = s. Hence the
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solution is

U1 S
| =10
U3 s
1

=slo

1

Since s is free variable, we can pick any non-zero value for it. Let s = 1 and the above
becomes

U1 1
Oy = 0
[%] 1

The above is the eigenvector that corresponds to A = 2. Now we find the eigenvectors
that correspond to A = 0. Hopefully we will be able to find two of them.

A=0

We now need to solve Mv = Av for v. This implies
M-Aov=0

1-14 0 1 ||[wu| |o
0 -A 0 |[w]=10
1 0 1-Allos| |0

But A = 0 and the above becomes

R3 = R3 - Rl giVeS

Hence the system becomes

We see that v3, v, are free variables and v, is leading variables. Let v3 = s,v, = t. From
first row, v; +s = 0 or v; = —s. Therefore the solution is

U1 -S
D=1t
U3 S

-1 0

=s| 0 [+¢tf1

1 0
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Picking s =1,t = 0 gives one eigenvector as

U1 -1
Oy| = 0
(%] 1

Picking s = 0,t = 1 gives second eigenvector as

01 0
Oy = 1
[%] 0

So we were able to find two eigenvectors from one eigenvalue A = 0, which is good. This
table summarizes the result we have found so far for the matrix M

eigenvalue | multiplicity | corresponding eigenvector(s)
1
A=2 1 0
1
~1{ (0
A=0 2 0
0

Now we normalized them. This gives

eigenvalue | multiplicity | corresponding normalized eigenvector(s)
1
A=2 1 —lo
- V2
1
-1 (0
1
A=0 2 7 011
110

For the matrix N

To find eigenvalues for M, we solve the equation

det(N — AI) = 0
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Where A represent the eigenvalues. The above becomes

2 1 1 1 00
det{|1 0 -1[{-Aj0 1 0|=0
1 -1 2 0 01

2-1 1 1
1 -A -1(=0
1 -1 2-A
-1 -1 1 - 1 -A
(2-2) - + =0
-1 2-AL t 2-A} |1 -1

R-NDAR2-D)-D-Q2-A+D)+(-1+1) =0
A3 +4)2-1-6=0
A 42+ 1+6=0

Lets guess A = —1 is a root. Then the above becomes -1 -4 -1 + 6 = 0. Good. So (A +1)
is a factor. Doing long division

A —4)2+ 1 +6 25146
A+1) B

Therefore the polynomial becomes
(A2-51+6)(A+1)=0
A=2)(A=-3)(A+1)=0

Hence the roots (eigenvalues) are A = 2,4 = 3,4 = -1. For each A; now we find the
corresponding eigenvector [v;).

A=2
We now need to solve Nv = Av for v. This implies
(N-ADv=0

2-A1 1 1 |([©1 0
1 -A -1 Oy | = 0
1 -1 2-A||os| |0

But A = 2 and the above becomes

0 1 11w 0
1 -2 -1{{v| =10
1 -1 0llos| |0

Swapping R; with Rj3 so that pivot is not zero gives

1 -1 0]

Ry =Ry - Ry
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R;=R3+R,
1 -1 0
0 -1 -1
0 0 O

Hence system becomes
1 -1 0f“ 0
0 -1 -1f|jvz|=10
0 0 O0flvs 0

Free variable is v; and leading variables are v, v,. Let v3 = s. Second row gives —v,—s = 0
or v, = —s. First row gives v; — v, = 0 or v; = v, = —s. Hence solution is

U1 —S

vy =|-s

U3 s
-1
=s|-1

1

Let s =1 therefore

01 -1

vyl =1-1

U3 1

A=3
We now need to solve Nv = Av for v. This implies
(N-ADv=0
2-1 1 1 || 0
1 -A =1 ||vy
1 -1 2-Af|vs 0

But A = 3 and the above becomes

-1 1 1]|%

_ =
| |
= W
| |
_ =
Q (]
oON
1
o O

Ry =R, + R,
-1 1 1
0 -2 0
1 -1 1
Ry =R;+R,
-1 1 1
0 -2 0
0 0 0

Hence system becomes

0 0 0|los] [0
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v3 is free variable and vy, v, are leading variables. Let v; = 5. Second row gives —2v, = 0

or v, = 0. First row gives —v; +s = 0 or v; = s. Solution is

U1 S

vy =10

U3 s

1
=l

1

Let s = 1. The solution becomes

U1 1

vy =0

U3 1

A=-1

We now need to solve Nv = Av for v. This implies
(N-ADv=0

2-1 1 1 (|91 0
1 -A -1 |[|o2| =10
0

3 1 1{un 0
1 1 -1f|op|=|{0
1 -1 3 (%] 0

Swapping R, and R; to keep pivot 1 gives

1 1 -1
3 1
1 -1 3
R, = R, — 3R,
1 1 -1
0 -2 4
-1
Rs = Ry~ R,
1 1 -1
0 -2
0 -2
R3 =R3-Rp
1 1 -1
-2 4
0 O
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Hence system becomes

v3 is free variable and vy, v, are leading variables. Let v3 = s. Second row gives —2v,+4s =
0 or v, = 2s. First row gives v; + v, —s =0 or v; = v, + s = =25 + 5 = —s. Solution is

01 -

Uyl =|2s

U3 S
-1

=5s|2

1

Let s = 1, the solution becomes

01 -1

Uyl =12

U3 1

This table summarizes the result we have found so far for the matrix N

eigenvalue | multiplicity | corresponding eigenvector(s)
-1
A=2 1 -1
| 1
1
A=3 1 0
1
-1
A=-1 1 2
| 1

Now we normalized them. This gives

eigenvalue | multiplicity | corresponding normalized eigenvector(s)
1
A=2 1 )
- V3
1
1
A=3 1 —lo
- V2
-1
A=-1 |1 —|2
- \3
1
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Now we compare the eigenbasis for M and N. This table shows the final result

Operator eigenvalues | eigenbases
101 1] [1]]o
1 1
M=|0 0 0 2,0,0 $O,$0,1
101 1 1]1]0
2 1 1 1] [1] [
N=[1 0 -1||23-1 —|-1|, (o], | 2
- Al \/5 - ,\/E ’\/6
1 -1 2 |1 1 1

Looking at the above, we see that all basis are common (linear combinations of M eigen-
vectors associated with zero eigenvalue can be used to generate two of N eigenvectors).
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4.5.10 key solution for HW 5

Physics 3041 (Spring 2021) Solutions to Homework Set 5
1. (a) Problem 9.1.6. (5 points)

a(1,1,0) +b(1,0,1) + ¢(3,2,1) = (a + b+ 3¢, a + 2¢,b+ ¢) = (0,0,0),
=>a=-2c, b=—c¢, a+b+3c=0.

The above linear combination of the three row vectors is a null row vector for any nonzero value
of ¢ with a = —2¢ and b = —c. Therefore, the three row vectors are linearly dependent.

a(1,1,0) +b(1,0,1) + ¢(0,1,1) = (a + b,a+ ¢, b+ ¢) = (0,0,0),
a=-b=—-,b=—-—c=>b=c=—-—c=0=a=0.

Therefore, the above three row vectors are linearly independent.

(b) Problem 9.2.1.(ii). (10 points)

1+i
V)= { V3 +i }
1+iv3 V3(1+i)
[ 1+iV/3
R e o S REC
\_ﬁl i
(i) = [ 0 i | { j§i> } _ 3(18+1) +%:1
PN T IRV .y i) — —i i
B —i(i+\/§)\/§(l+i)_+i\/§(1+i)(\/§+i) B B .
- 5 = 0= (L) = (I|[II)* =0
13 i T+i ] (L—iV3)(1+i) V31— (V3+i)
o= (V) = [ 2 ‘ﬂﬁq{x/ﬁﬂ']* i B VB
SRS E I LR S R (i‘\@ 14 VE+ i1~ V)]
v = (1|V) = | 00 ot ] [ \}gji} _ v _\/2(“”) + <‘/§_il<‘/§+i)
2V/3 3
:%+1=1+ 5
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2
+

2

1
4 8 *

(1— 3) [1+vV3+i(1—+3)]

S e

:(116—;\/§+:)[(1+\/§)2+(1—\/§)2]+1+2 7+g
7 1 /[3\ 5 3
_8<16_4 2>+2+2 526
(c) Problem 9.2.3. (10 points)
3 0 0
l>{o}, H>[1], HI){2]
0 2 5
3 1
m=—D__Lig|_|o
(i 31 0
AT =0 = [2) = |11}, (2]2) =5 = |2) = —22_ =L - 1/0¢5
) (2127 V5 9 2/\/5
o112 2410 12
(|11 = 0, <2|HI):[O L 5}{;] N
0 [ 0 0 0
13) = |[IT)— |2)2[II)= | 2 | ——= | 1/Vb |=|2-2 | =] -2/5
5 V5 2/V5 5-2 1/5
o A+1 1 13) X ’
)= ——=—=3) = V5| =2/5 | =| —2/v5
= =T P T {1/5] {1//%]

2. Use Tr g; = 0, 03 =1, and 0,0 = i), €405 to obtain the components of a general 2 x 2
matrix in the basis of {01, 09, 03, I }, where o; represents the Pauli matrices and I is the identity
matrix. (15 points)

a b
c d 01
Tr(M) = a+d = Tr(aoy + fog + yo3 + 1) = aTr(o1) + fTr(02) +yTr(os) + 6Tr(I) = 20
a+d
T2
Tr(Moy) = Tr(ao] + Boyoy + yoz01 + 61oy) = aTr(o7) + Tr(0901) + yTr(o30:) + 6Tr(Ioy)
= oTr(I) + fTr(—ios) + yTr(iog) + 0Tr(0y) = 2

1 1 a b 01 1 b a b+ c
a—2Tr(M01)—2Tr<[C d][l 0}>—2Tr[d c]_ 5

M_[ :|—O[O'1+ﬁ0'2+’}/0'3+6.[,]—|: ]:>Tr(.7)—2
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Similarly, we obtain

o=yt =5 ([0 [T

1 1 a b
v = §Tr(MU3) = 2Tr<[ . d]

3. Problem 9.2.5. (10 points)

VA+WP=(V+WIV+W)=(V|IV)+ (V|W)+ (W|V)+ (W|W)
= VP + (VW) + (VW) + |[W|* = |V]* + 2Re(V W) + |W|?
S VP2 VW) + WP < [V 2[V[W]+ [W]? = (V] + [W])?
= |V+ W] <|V]+|W|.

For the equality |V 4+ W/| = |V| 4 |W| to hold, we must have Re(V|W) = [(V|W)| and
[(VIW)| = |V||W|. From the first condition, (V|W) is real and positive. From the second
condition (see proof of the Schwarz inequality in the textbook),

(wiv)

V)= W) =

(Viw)
W2

(Viw)*

W) = alW), o=

Because (V|W) is real and positive, a is also real and positive.

4. Problem 9.3.5. (20 points)

From the above figures, we have

- - - =
2-7 27 Zﬁ cosf —sinf 0
R.(0) = 57 ]_'7 jok | =1 sinf cosf 0
PR OEE 0 0 1
for rotation around the z-axis by an angle 6, and
- - - =
17 17 - K 1 0 0
R.(¢) = 57 ;7 j? =10 cos¢p —sing
];’7 ];’? E? 0 sing cos¢

for rotation around the z-axis by an angle ¢.
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[ cosf sinf 0 cosf —sinf 0 100
R.(O)TR.(0) = | —sinf cosf 0 sinf cosf O |=|01 0]=1I,
|0 0 1 0 0 1 0 01
[ 1 0 0 1 0 0 1 00
Ro(¢)"Ry(¢)=| 0 cosp sing 0 cos¢p —sing =0 1 0| =1,
| 0 —sing cos¢ 0 sing cos¢ 0 01
1 0 0 cosf —sinf 0 cosf —sind 0
R.(¢)R.(0)=| 0 cos¢ —sing sinff  cosf O | = | sinfcos¢ cosfcos¢ —sing
0 sing cos¢ 0 0 1 sinffsing cosfsing cos¢@
[Re(6) R (0)]" Re ()R- (6)
[ cosf sinfcos¢ sinfsing cos 6 —sinf 0
= | —sinf cosfcos¢ cosfsing sinflcos¢ cosfcos¢p —sing
| 0 —sing cos ¢ sinfsing cosfsing cos¢
1 0 0
=0 10]|=1I
| 0 01
In general, if MTM = [ and N'N = I, then we have (NM)T(NM) = MTNTNM =

MTM =1.

5. Problem 9.5.6, but only for the proof without doing the inverse matrix part. (10 points)

For a Hermitian operator 2 with non-degenerate eigenvalues, we have

Q‘Wi> = wi‘wi>7 1= ]_’ 27 .

We can then expand an arbitrary vector as

n

Zvi\wij

i=1

V)

The characteristic polynomial satisfies P(w;) = 0, so

Zvl sz (wi)|ws) =

Q)|ws)

ZO|wl

n.

|0) = P(Q2) =0.
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6. Problem 9.5.10. (20 points)

[1 0 17 2 1 1
M=|000|, N=]|1 —1
_1 0 1_ 1 -1 2
10172 1 1] [30 3]
MN=1]0 00 1 0 -1 |(=10200
_1 0 1_ 1 -1 2 i _3 0 3_
[2 1 1 101] [30 3]
NM=1]11 0 -1 000]|=000]|=MN
_1 -1 2 10 1_ _3 0 3_
1—w 0 1
M=| 0 -w 0 |=-wl-w+w=uw(2-w)=0=wy=0,0 2.
1 0 1—-w
1 0 1) [al [a+c 0 ap |
0 00 b() = 0 = 0 :>|OJM—O>— bo
1 0 1_ _CQ_ ag + Co 0 —Clo_
-1 0 1_ _ag_ —ag + C 0 GQ_ 1 1
0 -2 0 by = —2by = 0 :>|LL}A1—2>— 0 = —
1 0 —1_ _Cg_ a9 — Co 0 CLQ_ \/5 1
2—w 1 1
N = 1 —w -1 |[=QCQ-w[-wl2-w-1-2-w+1)—1+4w
1 -1 2—w
=2-ww-3)(w+1)=0=>wy=-1, 2, 3.
31 1 dy 3dy +e1 + fi 0
1 1 —1 €1 = d1+61*f1 = 0
1 -1 3 f1 d1—€1+3f1 0
1 1 1
= ]wN = —].> =d; | —2 = — | =2
1 \/6 -1
0 1 1 dg €2+f2 0
1 -2 -1 ()] = d2—262—f2 = 0
1 -1 0 fQ d2—62 0
1 1 1
= lwuy =2)=d 1 =— | 1
v =2) = vi|
1 1
—1 1 1 d3 —d3+€3+f3 0
1 -3 -1 €3 = d3—3€3—f3 = 0
I -1 -1 3 d3 —e3 — f3 0
1 1 1
| V2

It is clear from the above results that M and N share a common eigenbasis

{lony = =1), lwy =2), lwy =3)}.
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4.6 HW6

Local contents

46.1 Problemslisting . . .. ... ... ... ... .. .. .. .. .. . .. [151]
462 Problem1 (9.5.11) . . .. . . . .. 152
463 Problem2 . ... ... .. 169
464 Problem3 . . ...
4.6.5 Problem4 (9.6.2) . . . . .. ..
46.6 keysolutionforHW®6 ... ... ... ... .. .. .. .. .. ..... ... 184

4.6.1 Problems listing

Physics 3041 (Spring 2021) Homework Set 6 (Due 3/10)
1. Problem 9.5.11. (40 points)

2. Prove the following results on the commutators: [A, B+ C| = [4,B] + [A,C], [A+ B,C] =
[4,C)+ [B,C], [A,BC] = B[A,C| + [A, B]C, [AB,C] = A[B,C] + [A,C]B. (10 points)

3. Follow the discussion of s, = s, +is, for the electron spin to derive the matrix representation
of s_ = s, —is,. (20 points)

4. Problem 9.6.2, and find the solutions for z(t) and z5(t) with the initial conditions z1(0) =
x2(0) = 0 and 1(0) = v; and @2(0) = v2. (30 points)
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4.6.2 Problem1 (9.5.11)

Problem 9.5.11. Important quantum problem. Consider the three spin-1 matrices:

Lo 1o Lo =i o 10 0
Se=—=|10 1| Sy=—|4i 0 —i| S;=|00 0 [,
V2o 1 0 V2o i o0 00 -1

(9.5.55)

which represent the components of the internal angular momentum of some ele-
mentary particle at rest. That is to say. the particle has some angular momentum
unrelated to 7 x 7. The operator S? = S2 +S§ + 82 represents the total angular
momentum squared. The dynamical state of the system is given by a state vector
in the complex three dimensional space on which these spin matrices act. By this
we mean that all available information on the particle is stored in this vector.
According to the laws of quantum mechanics

o A measurement of the angular momentum along any direction will give only
one of the eigenvalues of the corresponding spin operator.

o The probability that a given eigenvalue will result is equal to the absolute
value squared of the inner product of the state vector with the corresponding
eigenvector. (The state vector and all eigenvectors are all normalized.)

o The state of the system immediately following this measurement will be the
corresponding eigenvector.

(a) What are the possible values we can get if we measure spin along the z-axis?
(b) What are the possible values we can get if we measure spin along the z or
y-axis?

(c) Say we got the largest possible value for Sy. What is the state vector immedi-
ately afterwards?

(d) If S, is now measured what are the odds for the various outcomes? Say we got
the largest value. What is the state just after the measurement? If we remeasure
Sy at once, will we once again get the largest value?

(e) What are the outcomes when S? is measured?

() From the four operators Sz, Sy, S,.S?, what is the largest number of commut-
ing operators we can pick at a time?

(g) A particle is in a state given by a column vector

3]

First rescale the vector to normalize it. What are the odds for getting the three
possible eigenvalues of S,? What is the statistical or weighted average of these
values? Compare this to (V|S,|V).

(h) Repeat all this for S,.

Figure 4.13: Problem statement

Solution
) 010 ) 0 -1 O 1 0 O
S,=—1|1 0 1 S,=—1i 0 —i S,=10 0 0
X \/E y \/E ' z
010 0 7 O 00 -1

4.6.2.1 Parta

The first step is to find the eigenvalues of S,. These are the possible values that can be
obtained when measuring the spin along the z axis. Because S, is a diagonal matrix,
its eigenvalues are on the diagonal. Hence the eigenvalues are w; = 0,w, =1, w3 = -1.
Because the eigenvalues are different, S, is not degenerate. The values are

0)1:0
a)2=1
0)3:—1
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4.6.2.2 Partb

Now we need to find the eigenvalues for S, and S,. The factor % is not included in the

following calculation, but added again at the end. This is to simplify the algebra.

For Sy

The eigenvalues are the roots of the above polynomial. They are

Adding back the factor
with it gives

For S,

The eigenvalues are the roots of the above polynomial. They are

1

V2

—w

i

|5, —wI|=0
- -1 0
i —w -i|=0
0 1 —w
-1 I -
+1 =0
) 0 —w

(~w)(@? + 2) + i(-wi) = 0

(—w)(a)2 - 1) —wi*t=0

~w¥+w+w=0
~w’ +2w =0
a)(—a)2+2)=O

a)1=O
6()2:\/5
a)3=—\/§

which was in front of S, by multiplying the above results

-

-

1

a)1=0
0)2:1
0)3:—1
IS, —wl| =0
-w 1 0
1 -wo 1]=0
0 1 —-w
1 1 1
_ =0
) 0 —w

(-w)(@?-1) - 1(-w) =0

—?+w+w=0
~w3 +2w =0
a)(2—a)2):0

a)1=O
CUZZ\/E
6()3:—\/5
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1

V2

Adding back the factor —= which was in front of S, by multiplying the above results

with it gives

0)1:0
a)2=1
0)3:—1

This table gives a summary of result found so far before going to the next part.

Spin matrix Eigenvalues found

(0 1 0
1 01 w1 =0,wy =1, w3 =-1

0 1 0

i 0 —i||w=0,w,=1,w;=-1

SZ= 00 O a)1=0,a)2=1,a)3=—1
0 0 -1

The above table shows that the possible values if we measure the spin along the x or y

axis are {0,1, -1}.

4.6.2.3 Partc

From part (b) and taking the largest eigenvalue of S, as w, = +1, the question is asking
us to find the associated eigenvector |S, = w;). This is found by solving

) .
] = 0
V2 01 0
ESRNR O | O
NG| ] Il i
1 U3 0
0 % —wW»y
In the above w, = 1. Therefore
) ]
-1 — 0
V2 01 0
1 1
A (1)
0 L _1 713 O
V2
1 .
R2=R2+$R1 gives -
1
-1 7 0
1 1
1
0 7 -1
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2

R3:R3+\/§R2 — —
1
-1 7 0
1 1
O _E —2
0 0 0]

The above is now in Echelon form. The system becomes

) , .
-1 — 0
V2 01 0
1 1 o, =10
0O —-= —||Y2
2 V2
(%} 0
0 0 0]
v3 is a free variable, and v,, v, are the leading variables. Let v3 = 5. Second row gives
. : 1 1
—%vz + %s =0orov, = %s. First row gives —v; + $vz =0orv; = ﬁvz or v, =
1{2 . . .
$($s) = 5. Hence the solution (the eigenvector) is
(4] 5
2
'()2 = %S
U3

Since s is a free variable, we will choose it so that the norm is 1. Therefore
sV1+2+1 =1
sv4d =1

s==
2

Hence the state vector for the largest value of S, is

1
1 2
1| 2 1
1 1
2
4.6.2.4 Partd
1 0 O
S;,=10 0 O
00 -1

We first need to find the eigenvectors |S, = w;) for S,. From part (a), the eigenvalues are

0)1:0
0)2:1
(1)3:—1
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For w; = 0 the associated eigenvector is found by solving

l-w;, 0 0 |[o]
0 -w; 0 |lwl|=]o

0 0 —1—a)1 O3

10 0]ln

0 0 Offval=10
00—1_03

v, is a free variable, and vy, v are the leading variables. Let v, = s. Last row gives v3 = 0.
First row gives v; = 0. Hence the solution is

01 0
vy =|s
U3 0
N
=51
0_
Choosing s = 1 gives
0
S; = w1) =1
0

For w, =1 we need to solve

l-w, O 0 Jlwu] o
0 -w, 0 [lol=]o

0 0 -1- w7 || 03 _0_

1-1 0 o |u] [0
0 -1 0 |vl=]o
0 0 -1-1|us| |o]
0 0 olfw] Jo]
0 -1 0 |o|=]0
0 0 -2f|os| |0

vy is a free variable, and v,, v5 are the leading variables. Let v; = s. Last row gives v3 = 0.
Second row gives v, = 0. Hence the solution is

01 S
Oy = 0
U3 0

1
s{0
0
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Choosing s = 1 then
1

|Sz :w2> =10
0

For w; = -1 the associated eigenvector is found by solving

l-w; 0 0 |lwn] (o
0 —Ws3 0 Oy = 0

0 0 —1—0)3 (%]

1+1 0 o |u] o]
0 1 0 |lof=|o
0 0 -1+1|us| |o]
2 0 0[] o]
0 1 Offoa|=10
00 0]los| |0

v3 is a free variable, and v;, v, are the leading variables. Let v3 = 5. Second row gives
v, = 0. First row gives v; = 0. Hence the solution is

U1 0

| =10

U3 s

0

=5|0

1

Choosing s = 1 gives

0
|5, = w3) = |0
1

Summary table for S,

eigenvalue | eigenvector

o
wy =0 S, =0) =1

a)2:1 |Sz:1>:O

0
ws=-1 |1S,=-1)=]0
1
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Calculating [(S, = a)ll\I/)I2 gives the odds of |S, = w;). W is the initial state vector.
Similarly, calculating (S, = a)ll\I’)I2 gives find the odds of |S, = w;) and similarly for
|SZ = C()3>.

W is the state vector from part (c), which is

T
2
1
W) =18, =1) = | 5
1
- 2 .
Hence the odds of |S, = 0) is
)
1
2 2
_ 2 _ Tl (L) L
.= =0 1 of || = () =3
1
L E .
And the odds for |S, = 1) is
2

(5. = wa)P = [1 0 o]*

N = §||H N =

Il

—_———

N =

SN —

N
Il

B~ =

And the odds for |S, = 1) is

5. = s’ ={|o 0 1]*

N = §||H N =

Il

o

N| —

v

N
Il

==

The odds for |S, = 0) is 50%, the odds for |S, = 1) is 25% and odds for |S, = —1) is 25%.
The total is 100% as expected.

Summary table of results so far S,

eigenvalue | eigenvector probability of this outcome

w1 = 0 |Sz = (1)1> =1 P(O) = 50%

Wy = 1 |SZ = (1)2> =10 P(l) =25%

wy=-1 | IS, =ws) =|0| | P(-1) = 25%
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1
The state just after the measurement is |S, = 1) = |0] since that is the state associated

0
with the largest eigenvalue w, = 1. This now becomes the initial state

1
W) =15.=1)=10
0

010

We know that S, = iz 1 0 1| with the eigenvalues found earlier as w; = 0,w, =

010

1, w3 = 1. Inpart (c) we found that|S, =1) =

for S, associated with its largest eigenvalue

1
NI - §|H NI
L J

which is w, = 1. Therefore the odds of this is

S, =1l =|l; = 3 (L) =L 2 ose
se=1f=||3 5 3llof| =(3) =5 =2%

This says the odds of getting again the largest value (which is 1) is not likely since it is
not the highest possible odd being only 25% with 3 possible values.

4.6.2.5 Parte
$?=52+57+53
2 2 2
010 0 =i O 1 0 O
—1101 +1'O il +]10 0 O (1)
=5 21 —1i
010 0 i O 00 -1
But

010 [o10o]lo1o] [1o1
1 01| =10 1ll1 01
010 |o1o0fo1o0 [101

Il
o
N
o
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Hence (1) becomes

1101 11 0 -1| [1 00
52:5020+5020+000
101 10 1 001
1 00l [1 00
=lo 2 ol+lo 0 0O
0 01| |00 1
2 0 0
=0 2 0
0 0 2]

Since S? is diagonal, then its eigenvalues are on the diagonal. They are all w = 2 with
multiplicity 3. It is a degenerate matrix. Since the outcome is the eigenvalue (it is a

measure of the spin angular momentum), then we see that the outcome is always 2,
since that is the only possible eigenvalue.

4.6.2.6 Partf

The operators are

200 1010 10—1'0 10 0

S?2=[0 2 0 S,=—|1 0 1 S,=—1|i 0 —i S,=(0 0 0
x\/§ y\/§ . zZ

00 2 010 0 i O 00 -1

Commutator is defined as
[M,N] = MN - NM

If [M, N] = 0 then they commute. We know that S, Sy, S, do not commute with each
others per lecture notes. So we only need to check if S commutes with S,, Sy, S, or not.

52,5, ] = $25, - 5,82

1'200‘010 1010200

=—1o 2 oll1 0 1/|-—=]1 0 1llo 2 0
\2 2
002010 01 ollo o2
(0 2 0 02 0

S Y JRE P,

V2 V2

020 02 0

000

=0 0 0

000

Hence S?, S, commute. And
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[$2,5,] = %5, - 5,82

1é()00—i0 10-—io 200
=—1lo 2 olli 0o -i|l-==|i 0o -illo 2 0
V2 . V2|
0 0 20 i 0 0o i oflo o2
(0 —2i 0 0 —2i 0
L o oil-lo o -
= —|2i =2i| — —|2i -2
V2 , V2 .
0 20 0 0 2 0
000
=0 0 0
000

Hence S?, S, commute. And

[$2,5.] = $%S. - 5.5?

200|[1 0o o]l [1 0o oll200
=lo 2 ollo 0 o|-]o 0 ollo 2 0
00 2)0o 0 -1 |00 -1]o 0 2
> 0 ol [2 0 0
=lo 0o of-lo 0 0
00 -2 |00 -2
(0 0 0
=0 0 0
00 0

Hence S?,S, commute. Therefore there are three sets of commuting operators. They

are {52, Sx}, {Sz, Sy}, {Sz, SZ}. So the maximum number of operators such that they all
commute with each others is two.

4.6.2.7 Partg

1
V) =|2
3

The normis V1+4+9 = \/ﬁ Hence the normalized state is

V) =

1
.
V4|

In part (c) we found the eigenvalues and associated eigenvector for S,. Here they are
again
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Summary table of results so far S,

eigenvalue | eigenvector
o]
w =0 S, =wy) =1
_O_‘
f
a)2:1 |SZ:CU2>:O
a)3:—1 |SZ:CU3>: 0
_1<

We will now find the odds of getting |S, = w;) given the current state vector is |V') (after
normalizing). The odds are

And

And

KS. = 0|V

Vi4

! [O 1 0]2 = 2—4 = 28.571%
= —14— . o

2
1 1 1
S, = +1|V)* = —[1 0 0] 2l = (—) = — =7143%
: Vi4 V14 14

1 2 9
(S, = 1|V = —[0 0 1] 2(] = (—) == 64.285%

Vi4

Updated summary table of results so far S,

eigenvalue | eigenvector odd of getting this eigenvalue
o
wy =0 1S, = wy) = 1| | P(O) = =, = 28.571%
_04
A
wy =1 1S, = wp) = |0] | P(1) = = =7.143%
_04
wy=-1 |18, =wy) = 0| | P(-1) = = = 64.285%
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The statistical average is

el -

4
7
= ~0.57143 (1)
The above is now compared to Now we compare (V|S,|V)
S:AV)
: 10 o]
(VI(SIV)y = —=(VI[0 0 0 [|2] 2
z \/ﬁ ( )
0 0 -1)[3

But )
1 0 01 1

S.IVy=10 0 0f[2]|=]0
00 13| [-3]
Hence Eq. (2) becomes

[ 1
1 1 *
VISIV)) = —— —[1 2 3] 0
L R
1
= ﬁ(l -9)
_ 8
14
= —0.57143 (3)

Comparing (1) and (3) shows it is the same value. This is the expectation value when
measuring S,.

4.6.2.8 Parth

Part (g) is now repeated, but using S,. We found from the above part that

1
Vy=—|2
Vi4
3
010
From part(b), we found the eigenvalues for S, = % 1 0 1|tobew; =0,y =1, w3 =
010

—1. But we did not find the associated eigenvectors yet in order to repeat part g as was
done for S,. So we need now to find the eigenvectors for S, before being able to answer
this part for S,.

For w; =0

_ 1 _
0 — 0
V2 U1 0
o9 A
e o |0
1 U3 0
0 &= 0
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Swapping R;, R; ]
1 1
' %
1
0 5 0
1
0 75 0
R3:R3—R2
- L
w ' %
1
0 7 0
|0 0 0

Now it is in echelon form. Hence the system becomes

(1 5 L
V2 V2 [[71
1 v =10
0 % 0
U3
0 0 0]

: : : : : 1 1
v3 is free variable. Let v = s. Second row gives v, = 0. First row gives $vl + $s =0

or v; = —s. Hence solution is

01 -S -1
Uy = 0l=s|0
U3 S 1
Lets = %.Therefore o
-1
) -1 |vz2
ISy =w1)=—=|0[=]0
V2 1 1
[ V2|
For w, =1
) .
- — 0
“2 V2 U1 0
RN O | Y I
R K
1 U3
O E —Wy
: -
-1 — 0
V2 01 0
RN O N O
V2 |27 [
0 L 1 U3 O
V2
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Ry = Ry + —R
2 — N2 \/E 1 ] ]
1
-1 7 0
1 1
0 5 %
1
0 7 -1
2
R3 = R3 + $R2
1
-1 % 0
1 1
0 3 %
0 0 0]

Now it is in echelon form. Hence the system becomes

[ 1
-1 5

1
0 =
0 0

. . . 1
v3 is free variable. Let v3 = s. Second row gives —502 +

V2 2\V2

0 S 1
2 2
272 = ES =S $
U3 s 1
Lets = % Therefore
R
1 2
1
Se = wp) = 5|12| = % =
1 1
L E .
For w; = -1
) .
—W3 % 0 vl
RS U | N
A K
1 U3
O % —W3
: -
1 — 0
V2 o
2o Al
V2 V2 (|72 T
1 U3
0 7 1

0

1

V2
O B

01 0
Oy | = 0
U3 0

V2

, 1 1 (2 L
gives —v; + —=v, = 0 or v; = —| —=s| = s. Hence solution is
\/_

r 1
NI~ §||H N =
L J

s=0o0rov, =

2 .
—s. First row

V2
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1
RZ = R2 - @Rl
_ ) 5
1 7 0
1 1
1
0 7 1
2
R3 = R3 - $R2
_ 1 S
1 7 0
1 1
0 0 0]

Now it is in echelon form. Hence the system becomes

[ 1
V' %

1
0 3
0 0

. . , 1
v3 is free variable. Let v3 = s. Second row gives 502+

1 1 2
gives v; + —=v, = 0 or v; = ——(——=s| = s. Hence solution is
V2 V2\ 2
01 5 1 1
2 2
Do | = —$S =s A s _\/E
U3 s 1 1

Lets = % Therefore

0

1

V2
0 4

U1 0
Oy = 0
[%] 0

1
2s:Oorvzz—

N =

r
NI+~ SH
N
L

2 .
—23. First row
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Summary table of results so far S,

eigenvalue | eigenvector
1]
V2
w1 = 0 |Sx = a)1> =10
L
V2
1]
2
1
wy =1 15y =w2) = |75
E
L 2 g
B
2
1
0)3 = —1 |Sx = C()3> = _$
E
L 2 g

The odds of getting |S, = w;) given the current state vector is |V) are now found. Ex-
pressing |V) in the eigenbasis of S, gives

V) =1 1Sy = w1) + ¢ ISy = wp) + ¢3Sy = w3)

=01 [5: =0+ [Sc =1 + ¢35, =-1) (1)

Where
1 ! 1 (-1 1 (2
-l o HH- el el
Via| V2 2 S Vi V2o V2 V1a\V2
1
amsmm-—ft & 2o ffe 2 3)- (2]
27w _\/ﬁz‘ﬁzg 14\2 V2 2/ V14\\2
1 ! 1 (1 2 3 1
1 1 1
R i 5]; T A e )
Eq. (1) becomes
[-1] [ 1] !
1 (2 - ; 1
Vy=—|—=]|| o [+ —=(V2 +2)| = |+ —=(2- V2 |-+
v @( )1 \/ﬁ( ) @( |
- 1 1
| V2] | 7 | B

The above is the representation of | V) in the eigenbasis of S,. The odds of each eigenvalue
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is the square of the coefficients |c1|2, Iczlz,

2
c3| above. Therefore

2
1 2 2
P(0) = —(—)) = = =14.286%
V14 \\2 14
2
1 1
P(+1) = —(\/E + 2)) _ —(6 L 4\2 ) — 83.263%
V14 14
1 1
P(-1) = —(2 - \/E)) = —(6 - 4\/5) = 24.51%
V14 14
Updated summary table for S,
eigenvalue | eigenvector Odds of getting this eigenvalue
=
V2
w; =0 Se=w)=| 0| |PO)=1 =14.286%
2
V2]
T
2
wy =1 1S, = w,) = % P(1) = = (6 +4v2 ) = 83.263%
1
L E 3
B
ws=-1 |15, = ws) = —% P(-1) = (6~ 4v2) = 2451%
1
L E 4

The statistical average is

wl(%) ; wz(%(6 ; 4\/5)) ; a)3(11—4(6 - 4\5)) - 0(%) ; 1(%(6 ; 4\/5)) - 1(%(6 - 4\/5))

The above is now compared to

1
VISV) = 2=V
But )

1

0 %

siVy=|% 0

1

0 %

4
= 2\2
7\/_
= 0.80812
S.IV)
_ ) -
0 — 0
V2 1
1 1
w0
0o L ol
N
0
1] | v2
1
$2=2\/§
oo Lz

(1)

(2)
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Hence Eq. (2) becomes

\2
1] 1 .
VISV) = = ﬁ[l 2 3] 242
\2
1
= ﬁ(\/i +4V2 +3V2 )
= 0.80812 (3)

Comparing (1) and (3) shows it is the same value.This is the expectation value when
measuring S,

4.6.3 Problem 2

Prove the following results on commutators:

[A,B+C]=[A,B]+[A,C]
[A+B,C]=[A,C]+[B,C]
[A,BC] = B[A,C] + [A, B]C
[AB,C] = A[B,C] +[A,C]B
Solution
4.6.3.1 Part1l

By definition of commutator, which is [A, B] = AB — BA, then

[A,LB+C]=AB+C)-(B+(O)A
=AB+AC-BA-CA
= (AB-BA)+ (AC-CA)
=[A,B] +[A,C]

4.6.3.2 Part2
By definition of commutator, which is [A, B] = AB — BA, then
[A+B,C]=(A+B)C-C(A+B)
=AC+BC-CA-CB

= (AC - CA) + (BC - CB)
= [A,C] +[B,C]

4.6.3.3 Part3

By definition of commutator, which is [A, B] = AB — BA, then
[A, BC] = A(BC) - (BC)A

Adding and subtracting BAC on the RHS gives

[A,BC] = BAC + ABC - BCA - BAC
= (BAC - BCA) + (ABC - BAC)
= B(AC - CA) + (AB - BA)C
= B[A,C] + [A, B]C
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4.6.3.4 Part4
By definition of commutator, which is [A, B] = AB — BA, then

[AB,C] = (AB)C — C(AB)
— ABC - CAB

Adding and subtracting ACB on the RHS gives

[AB,C] = ACB + ABC - CAB — ACB
= (ABC - ACB) + (ACB - CAB)
= A(BC - CB) + (AC - CA)B
= A[B,C] +[A,C]B

4.6.4 Problem 3

Follow the discussion of s, = s, + is, for the electron spin to derive the matrix represen-

tationof s_ =5, —is,

Solution

Experiments show that S, has two possible values (eigenvalues) of g, —g. Using eigen-
basis of S,

Gives

Consider S_ = S, - iS,. Then

[S.,S_1=S., S, - iS,]

=[8.,8.1-1[S., S, | (1)

But, using [Si/ S]] =1h Ek €iijk' Hence
[Szz Sx] = lhsy (2)
[S.,8,] = -ins, (3)

Substituting (2,3) into (1) gives

[S.,S_1=ihS, —i(-ihS,)

= ihS, + i?(hS,)

= ifiS, — IS

= h(iS, - S)

= (S, - iS,)

= -hS_
Therefore we see that

[S,,S_1=S5,5_-S5_S, = -hS_
This implies
S,5_.=5_5,-hS_
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Therefore

5:5-I1) = (5_5; - 5_)[)
= S5_S,[1) - hS_[1)

But S,|1) = gll) then the above becomes

h
S,S_[1) = S_Ell) - hS_[1)

h

= (E - h)S_|1>
h

= —55—|1>

The above shows that S_[1) is eigenvector (eigenstate) of S, with eigenvalue —Z which

is compatible with experiments. Because S,[2) = —ng) then let

S_[1) = cl2) (4)
We now need to find c. Taking the adjoint of both sides of (4) gives

11st = (2|
Therefore

ISt S_[1) = c*c(22)
= [c/*(212)

0
Since c is real. But (2|2) = [0 1][1] = 1. The above becomes

ISt s_1y = | (5)

To find ¢, we need now to calculate (1|ST S_[1). But

sts.=(s,-i8,) (s, -iS,)
= (St +ist)(S,—1iS,)

Since Sy, S, are Hermitian operators then St =5, and S; = §,. The above now becomes

Sts_ = (S, +iS,)(S.—iS,)
= 82 -i8,S, +15,S, + S
= 52 +52-i(S,S, - 5,5,)
=82+52-1[S,,S,]

Where [S,, §,] is the commutator. But [S,, S,] = ifi 3, €;#Sk. Usingi =1,j = 2forx, y, then
[S;,S;] = ifi(€121S1 + €122Sy + €123S3) = 1S3 = ifiS,. Therefore the above now becomes

StS_ =S+ 52— i(ihS.)
= 8% + S5 + 1S, (6)

Substituting (6) in (5) gives
(1)(S2 + S2 + 1S, )[1) = |
But 5% = 5% + S7 + 52. Hence S5 + Sj = 5% — 52. Using this in the above gives

(1]($% - 82 + 1S )11y = |ef? (7)
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h 1 hZ
But 5, = 7 0 = 7L And since there is

0 , |1 0|1 0 21 0
. Hence S = — = —
1 4o —1{lo -1 4lo 1

nothing special about the z direction, then $2 = S§ = 52. Therefore S? = S2 + S% + 82 =

R <
T+ I+ 1= Zh I. Eq. (7) now becomes
3, #
(U2 = 7 + A1) = |cf

But S.[1) = gll). This is because [1) is an eigenvector for S, with an eigenvalue Z The
above becomes

3 h2 A
AISH2 - — +7i=[1) = |c]?

4 4 2

3 W2 K2
=12 — — + —[1) = |c]?
QU2 =+ M) =l
A2y = |cf?
H2A) = |cf?
72 = |c]?

We pick
c="h

Now that c is found, then Eq. (4) above becomes
S_I1) = nl2) (8)
The same method is now repeated for finding S_|2)

S.S_12) = (S_S, - KS_)I2)
= 5_S.[2) - hS_|2)

But S,|2) = —;IZ). The above becomes

h
S,S5_|2) = _S_§|2> - hS_|2)

h
= (_E - h)S_IZ)
{2

The above shows that S_|2) is eigenvector (eigenstate) of S, with eigenvalue —% which
conflicts with experiments. This means

S_I2) = 0]2) 9)

is the only logical result. Therefore now we have all the information to find matrix
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representation of S_ using (8,9), which is

Therefore

S =

=F

[mR)y (11012
@l2) (2(0[2)

[(112) 0
212) 0
- -—0—
10 0
(]
_—O-
01 0
i1
0 0
—#
1 0]
S =5,-iS,

Which is what we are asked to show.

4.6.5 Problem4 (9.6.2)

Find the solutions x(t), x,(t) with initial conditions x;(0) = 0,x,(0) = 0 and i;(0) =

01, %2(0) = v,.

Solution

[(11S_[1)  (1|S_]2)
21S_11) (2IS_12)

S ——

L1

‘k 2% k
YTy om YTy om
- =

Figure 4.14: Coupled system to solve

The first step is to draw the free body diagram for each mass. Let us assume that first
mass is at some positive distance x; > 0 so that the first string is in tension, and that
xp > x1 > 0 so that the middle spring is in tension also, and the third spring is in
compression. Any other configuration will also work as well. Based on this, the free

body diagrams are
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ma mo
————— > i SRS
k1 2k(xe — —
2 — 1) 2k(xo — 1) kxoy
X1 i)
mzy = —kxy + 2k(xy — x1) may = —2k(xe — 1) — ko

Figure 4.15: Free body diagram

From the free body diagram, we can now write the equation of motion based on F = ma
from each mass. This gives

mX, = —kx1 + 2k(x2 - Xl)
m..X.fz = —2k(X2 - xl) - k.X'Z

or
7’7’15&1 = —kX1 + kaZ - 2kx1
mj('fz = —kaZ + 2kx1 — ka
or
mX, = xl(—k - 2k) + X2(2k)
mX2 = x1(2k) + XZ(—Zk - k)
or
. 3k 2k
X1=—""X1+—Xp
m m
. 2k k
Xyp = —Xq — 3—XZ
m m

In matrix form the above becomes

A _k 3 2 ][x
_5(:'2_ m | 2 -3 X9
O_
0

X +k 3 _2_x1<_
5('?2 mf-2 3 X9

%) + Mlx) = 10) (1)

Where the operator M is
k|3 -2
M=— (1A)
mi-2 3

1 0
In (1), the state vector is [x) is represented using basis [1) = L)} and |2) = L], since we

can write
[x) = x1[1) + x5[2)

In these basis, called the natural coordinates, we see than operator M is not diagonal.
This makes solving (1) harder, since it is now a coupled system of ODE's.

We would like to decouple (1) to make solving each ODE separate and easier. To do
this, we change the basis of M. The new basis are [I), |[II). These are the eigenvectors
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of M. Since M is Hermitian, then its eigenvalues will be real, and its eigenvectors are
orthogonal. So now we need to first find the eigenvalues of M given in (1A) by solving

det(

k

m

|
d

3 2
-2 3
k

m

-

dettM — wl) =0
1 0

-w =0
1 [O 1
w —2-

=0
3-w

This gives (we remove the factor % for now, then add it at the end to simplify the

computation)

B-w)@B-w)-4=0
w?—6w+5=0
(w-5)(w-1)=0

Hence the eigenvalues are (now we add back the factor %)

5k
w1 = —
m
k
For w; = =
2~ m
We need to solve
3k
m C()]_
%
m m
3k _k
m m
2 3k
m m
2k
m
2k
m
RZ = RZ + Rl
2%k 2k
m
0 O

k
w1 = E

2k _
m 01 _

(%] 0
2k - -
m U1 0
_ E (%] 0

m |- |
2| 1 -
m || 01 _ 0
2k Uy

I L

01 0

: . . . 2k 2k
Hence v, is free variable. Let v, = s. First row gives —0) - —5 = 0 or v; = s. Hence

solution is

1
— then
p)

Lets =
ets %

I =IM=wy) =

k
For w; = 5-
- m

1

1
V21

|
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We need to solve

3k 2k
m 2 m 01 _ 0
% 3k Bl
_ = —w, ,UZA »OA
m m
% ok 2%
m m m U1 _ 0
2 s _ckllo,)
m m m
_2k 2]
m m || V1 _
2k 2k Uy 0
m m|l|
Ry =Ry — Ry
2k 2k ]
-— —||% 0
m m —
0 0 Uz‘ 0
. : : . 2k 2k
Hence v, is free variable. Let v, = s. First row gives ——U1 - —5 = 0 or v; = —s. Hence

solution is

1

7 then

Lets =

11-1
|H>=|M=602>=$[1}

Summary table of results so far M

eigenvalue | eigenfrequncy | eigenvector
k K 1|1
wp = — - I $H
-1
k 5k 1
The transformation matrix @ becomes
@ =|in ]

(2)

11 -
V21 1
Now that we found the transformation matrix @ we can use it to transform |X) + M|x) = 0

which is the natural coordinates basis [1), |2), to the modal coordinates based on basis
I, |IT) as follows

Ix) = OIX) (3)
%) = O|X) (4)
Where
|X) = Xq|I) + X,|IT)

is the state vector in the modal coordinate and |X) is the acceleration of the state vector
in modal coordinates. Applying Eq. (3,4) to [¥) = M]|x) gives the system in the modal
coordinates as

DX + MD|X) =0
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Premultiplying both sides by ®T (since @ is real, then transpose is same as dagger),
gives

OTDIX)y + PTMDIX) =0 (5)
But by definition of the modal transformation matrixﬂ
OTp =1 (6)

And by definition of the transformation matrixE|

omp= |’
0 (00}
N )
=" (7)
Using (6,7) in (5) gives the system in modal coordinates
w0
1 X) + 1X)=0
5k
0 -
m
.. k
Xy = Ox 0
N = (8)
X2 O % XZ 0
m

The above is what solve, since it is now decoupled. Comparing (8) to (1) which is
repeated below

) 3k 2k
X1 N m o om||X1 _ 0 )
5('?2 _% % X2 0
m m
Shows clearly why (8) is much simpler to solve in the modal coordinates basis |I), |II)

since it is now decoupled, while Eq (1) which is in natural coordinates basis [1), |2) is
coupled.

Eq (8) is now solved for |X), and at the end transformed back to |x) using Eq. (3). Eq
(8) above can be written as two separate ODE’s

. k
Xl + _Xl =0
m
. 5k
Xz + —X2 =0
m
! d1 1l -1 ]2 o
IThis can also be shown for ® = — by working it out. OTPp = = = - =
V2|1 1 211 1|l 1| %o 2
10
0 1
T
1 -1 3 =2 1 -1
2This can also be shown by working it out as follows. OTMD = L L L
V2|1 1| =2 3 (V2|1 1
L
1 13 -=2{1 -1 m
which becomes ®TM® = — =
-1 1|[-2 3|1 1 g
m
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Before solving the above, the initial conditions, given in the natural coordinates, needs to
be transformed to modal coordinates. It is not clear which initial conditions we should
use, since book uses

xl(t = O) = xl(O) xl(t = O) =0
Xt =0)=x0) %E=0)=0

And in the HW pdf, we are also asked to use the following initial conditions

Xl(t:O) =0 xl(t:O) =0
XZ(t = 0) =0 xz(t = O) =0y

Should we solve it for both cases, or just the second case? I will solve the problem for
both cases, since I am not sure which to pick.

4.6.5.1 Part1l

Solving using book initial conditions

x(t=0)=x(0)  %(0)=0
x(t=0)=x0)  x(0)=0

Since |x) = ®|X) then the inverse is
1X) = @ x)
But @1 = ®T therefore

1X(0)) = @T|x1(0))

x0] 1 [t 4] [uo
%0] V2|1 1] |0
3 L 1 1- x1(0)
V2|1 1%
1m0 +x%0)
V2 |-x1(0) + x(0)
And
1X(0)) = ®T|%,1(0))
4O 1{1 1|nO) o
%50)  V2|-1 1{[0] |0
_|«@] |0 . L .
Since [ (0)} = 0 . Now that we found the initial conditions in modal coordinates, we
X2

can solve Eq. (8). Here it is again

k

X 0 ([x,] [O}
+ = (9)
X, o *|[X2f [0
X0 1 [ 1(0)+x(0)
X2(0)] V2 [=x1(0) + x2(0)
%,0) [o
X,(0] [0
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The first equation of (9) becomes

. k
Xl + _Xl = 0
m
1
X3(0) = $(x1(0) +x(0))
X1(00=0

The solution is

X;(t) = Acos

\/EtJ +B sin(\/zt] (10)
m m

Where A, B are the constants of integrations. At t = 0 and from the initial conditions,
the above becomes ,
V2

Taking time derivative of (10) gives

: k k k k
Xy =—-Ay[— sin|y/—t|+ By/— cos|y/—t
m m m m

Since X;(0) = 0 then the above becomes

k
0=By/—
m

Hence B = 0. Therefore the solution of Eq (10) is

k
Xy = %(xl(O) + .XZ(O)) COS[\/%t) (11)

Tthe second ODE in (9) is now solved.

(x1(0) + x2(0)) = A

.. 5k
Xz + EXl =0

X2(0) = —=(-x1(0) + x,(0))

ﬁly—\

X,(0) = 0

ﬁt} +B sin(\/@ t) (12)
m m

Where A, B are the constants of integrations. Att =0,
1
V2

Taking time derivative of (12) gives

. 5k . 5k 5k 5k
Xy = =Ay[— sin|y/—t|+ By/— cos|/—t
m m m m

At t = 0 the above becomes

The solution is

Xy = Acos

(—x1(0) + x,(0)) = A

5k
0=By—
m
Hence B = 0. The solution of Eq (12) becomes
1 |5k
X, = ﬁ(—xl(O) + xz(O))cos( - t] (13)
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Therefore the solution is

%(xl(O) + x,(0)) cos(\/g t)
1X) = (14)

This is the final solution. But it is in modal coordinates. This is transformed back to

natural coordinates using Eq (3)
) = PIX)

Therefore

11 —1] %(Xl(o)"'xZ(O))COS(\/gt)

vy = —
L1 %(—x1(0)+x2(0))cos(\/%t)

1 —%(M(O) +x2(0)) Cos(\/g t) — %(—xl(O) + x,(0)) cos(\/?nz t)

- 510+ 20 cos( ) + 0 + 0 cos(

2
1 (x1(0)4—x¢(0))cos(\/%;t)—k(x1(0)—-x2(0))cos(\/%§t)
-1 (15)

: (x1(0) + x5(0)) cos(\/g t) — (x1(0) = x,(0)) cos(\/%Tc t)

S

Hence

; (16)

xl(t) = > —t|+ >

11(0) +%5(0) Cos[ k] 11(0) = 1(0) COS[ 5k t]
m
11(0) + x2(0) COS[ k t] _11(0) - x(0) COS[ 5k t)

x(t) = == - . — (17)

The above is the final solution in the natural coordinates. The above is repeated using
the other initial conditions given in the PDF file.

4.6.5.2 Part2

Solving using book initial conditions

xl(t=0) =0 xl(t=0) =0
Xz(t = O) =0 Xz(t = O) =0y

Using |x) = ®|X) then
1X) = @ x)

But ® ! = ®T then
1X(0)) = @T|x1(0))

1A e
211

11 1o
V2|1 1o

X1(0)
X5(0)
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And

1X(0)) = @111 (0))

0|11 1”@(@}

%0)|  V2[-1 1][#(0)
1 PZ)1+02

\/E L_’Ul + 0y

Now that we found initial conditions in modal coordinates, we can finally solve the (8).
Here it is again

X =0 x| o]
m 0
= (18)
X5 0 Bk {1X;, 0
X:0] o]
[ X2(0)] |0}
Xi0)| 1 |o+o
0| V2|-o1+0
The first equation of (18) becomes
.. k
Xl + _Xl = O
m
Xl(O) = O

. 1
X1(0) = —(v; + vp)

V2

k . k
\/%t) + B sm(\/% t] (19)

Where A, B are the constants of integrations. Att =0,

The solution is (since SHM)

X1 = Acos

0=A

[ k
Xl :BSin( —t]
m

Taking time derivative of the above gives

) k k
X1 =By[/— cos|+/—t
m m
At t = 0 the above becomes

1 _B\/?
$(01+Uz)— -

B m 1 (0, + 0y)
e v

kv
Therefore the solution of Eq (19) is

X1 = \/g('vl + 02) SIH(& t] (20)
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The second ODE in (18) is now solved.

.. 5k
X2 + —X1 =0
m

X5(0) =
1

X5(0) = —=(-v1 + vy)

V2

) nsnl{E) o
m m

Where A, B are the constants of integrations. Att =0,
0=A

. ( [5k )
Xy = Bsin| 4/ —t
m
. 5k 5k
X, =B ZCOS Et

1 5k
—= (-0 +0,) = By~
m

V2
m
B = \/10 (-01 +0y)
Therefore the solution of Eq (21) is

X, = /- (Coy + vy) sin| 4/ 2 (22)
2 = 10k 01 0Uy) SIN -

Therefore the solution state vector is

\/g(vl + 1y) sin(\/g t) —

1X) = (23)
% (—v1 +vy) sin(\/%k t)

This is the final solution. But it is in modal coordinates. It is now transformed back to
natural coordinates using Eq (3)

The solution is

Xy = Acos

The solution (21) becomes

Taking time derivative gives

At t = 0 the above becomes

lx) = ©|X)

o _1} \/g(vl+vz)sin(\/§t)
1 1

1
V2 L % (-v1 + vy) sin(\/%t)

Therefore

Ix) =

. k Sk
1 \/;n—k (v1 + vy) sm(d; t) - 1% (-v1 +vy) sm( — t)
V2 1/;n—k(vl +vz)sin(,/%t)+ ( vl+vz)sm( %t
. k 5k
\ % (01 +07) sm(\/ -~ t) - w/% (—v1 + vy) sm Z t
- (24)
m . k " m 5kt
o (01 + Uz) sin \,Z + 20k (—Ul + '02) Sll’l Z
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Hence

x1(t) = %\/%(vl + vy) sir{\/% t) + 4 ,2£Ok (v1 — ) sin[\/% t) (25)
Xo(t) = %\/%(vl + vy) sin(\/gtJ + zmﬁ (-vg + vz)sin[\/% t] (26)

The above is the final solution in the natural coordinates.
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4.6.6 key solution for HW 6

Physics 3041 (Spring 2021) Solutions to Homework Set 6

1. Problem 9.5.11. (40 points)

1 010 1 0 — 0 10 0
Se=—7=|1 01|, Sy=—4|4% 0 =i |, S;=[00 0 |.
V2 010 V2 0 + 0 00 -1

(a) From the diagonal form of S,, we know that its eigenvalues are s, = 1, 0, —1 corre-
sponding to eigenvectors

So the possible measured values for S, are 1, 0, —1.

(b) For S,,
-5 L 0
V2 1 1 (—s,
P —fs1<iﬁ)**z(ﬂ')=sx<1fsi>=sw(1fsx><1+s$>
0 —= =S
\/5 x

—1 % 0 a; —a1+b1/\/§ 0
% —1 % by = (a1+01)/\/§—b1 = 0
\Of % f1 {01] [ bi/V2— ] {0]
1 1 1
:>sm1>a1[\/§:|2|:ﬂ]
1 1
0 5 0 as by /2 0
% 0 % by | = ((Iz-i—(?z)/\/ﬁ =10
2| [B]- i3]
1 1 1
=>‘SI=0>=(Z2 0 = —F= 0
1 V2| 4
1 % 0 as 03+53/\/§ 0
% 1 % {bg]—[(a3+c;;)/\/§+b:3]_!0]
0 % 1 C3 53/\/§+C3 0
1 1 1
¢51—1>a;[—\/§]{—\/§]
1 1
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For Sy,
Sy :/—% 0
; _i 1 i (—isy)
Vi o | TTelen ) p A malos) = allm )i s
0 ol Sy
= Sy = 1, 0,

So for both S, and S,, the possible measured values are 1, 0, and —1.

(c¢) After measuring the largest possible value of s, = 1, the state vector is

1 1 0 0

1 1 1 1
s, === V2| ==|0|+—=]|1]|+=]0
211 2lo| V2|o| 2|1

(d) If S, is measured, the possible values are 1, 0, and —1 with probabilities of (1/2)? = 1/4,
(1/v/2)? = 1/2, and (1/2)? = 1/4, respectively.

If the largest possible value of s, = 1 is measured, the state vector becomes

Because |s, = 1) differs from |s, = 1), the probability of measuring s, = 1 is

2

1 1 1
se=1s.=1)=|5[1 V2 1]]|0 || =-.
2 4
0
(e) From
=S+ S+ 52
(oo 010 A 0 —i 0
=51 01 LO 1| +5]i 0 —i i 0 —i
010 010 i 0 0 0
10 0 10 0
+100 0 00 0
00 —1 00 —1
1ot 1o -1 100 2.0 0
=50 20 +5]0 20 |+/000]|=]020]},
101 -10 1 001 00 2

the measured S? value is always 2 for any state vector because S? = 21.

(f) From the matrix representation and the results in (a) and (b), S, Sy, and S, are Hermi-
tian operators with non-degenerate eigenvalues. So if S, commutes with S, or S, they would
share the same eigenvectors and be diagonal in the corresponding eigenbasis. However, because
Sy and Sy are not diagonal in the basis where S, is diagonal, we conclude S, does not commute
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with either S, or S,,.

Although we did not solve for the eigenvectors of Sy, it is clear that they are distinct from
those of S, because S, differs from S, in the structure of matrix elements but both operators
have the same eigenvalues. So S, and S, do not commute, either.

On the other hand, S? commutes with S,, S,, and S,. Therefore, the maximum number of
commuting operators is 2, which corresponds to S? and any one of the other three (i.e., S,, or

Sy, or S,).

(g) From
1 1
V=2 |=(VIV)=[12 3]|2]|=14+4+9=14,
3 3

the normalized state vector is

N

Vie——|2|=—rolo|+—=—|1|+—21o0
Rl el R e Vi B vl

So the probabilities for measuring s, = 1, 0, and —1 are 1/14, 2/7, and 9/14, respectively. The
statistical average of the measured values is (s,) = 1x(1/14)4+0x (2/7)+(—1)x (9/14) = —4/7,
which is the same as

] 10 0 1 1 1 4
(V'|S.vy=—1[1 2 3]0 0 0 2|=—[123]] 0 |=—x.
14 00 —1 5 14 3 7

(h) The probabilities for measuring s, = 1, 0, and —1 are

2

o
1 (1+2v2+3)2 3+2V2
.= 1V = 2 = =
(s =1VOF = g L1 v2 1] 5 56 7
:1:2
1 (1-3)2 1
. =0V 2= 10 -1 2 || = ==
(5o = OV = g7 | ik B =7
i _1 )
1-2v2+3)?2 3-2V2
= — /2: — 2 :( =

respectively. The statistical average of the measured values is (s,) = 1 x (3 + 2v/2)/7 + 0 x
(1/7) + (=1) x (3 — 2v/2)/7 = 44/2/7, which is the same as

01071 2
1 1 4v2
(V'ISJVy=—=[1 2 3]|1 0 1 2 | =—x=[123]|4 :f.
142 0o10l1l3 14v/2 9 7

186



4.6. HW 6 CHAPTER 4. HWS

2. Prove the following results on the commutators: [A, B+ C| = [A, B] + [A,C], [A+ B,C] =
[A,C]+ [B,C], [A,BC] = B[A,C] + [A, B]C, [AB,C] = A[B,C] + [A, C]B. (10 points)

[A,B+C)=A(B+C)—(B+C)A=AB+ AC — BA—CA =[A,B] +[A,C]
A+ B,C] = (A+ B)C — C(A+ B) = AC + BC — CA—CB = [A,C] + B, C]
[A, BC] = ABC — BCA = ABC — BAC + BAC — BCA = [A, B|C' + B[A,C]
]

[AB,C] = ABC — CAB = ABC — ACB + ACB — CAB = A[B,C] + |A,C|B

3. Follow the discussion of s = s,-+1s, for the electron spin to derive the matrix representation
of s_ = s, —is,. (20 points)

(82, 5] = [82, 85 — iSy] =[Sz, Su] — 1[S2, S| = ihsy —i(—ihs,) = —h(s, —isy) = —hs_
[$.,8_] =8, —s_s,=—hs_ = s,s_ =s_5, — hs_

s.|1) = g\l) = 5,5_|1) = (s_s, — hs_)|1) = (s,g —hs_)|1) = —gS,H)

512) = —2j2) = 5_[1) = f2)
(1)1 = (1lsh = (1)(sa i) = (L1(6E i8] = {1[(ss + i) = {1]ss = ' (2
(1s2s-11) = €°e(2]2) = [ef
(15.5-11) = (1se i) (50— is)|1) = {183+ — 505, — 5y52)11) = {1 — 2 — i(iBs. 1)
N

3
:<1|82_52+h8z|1>21h2_§X§+E:h2:|C|2

pick ¢ = h = s_[1) = h|2), (1]s_|1) = (1|R]2) = 0, (2|s_|1) = (2[A]2) = K

8120 = —012) = s.5_[2) = (s, — he)f2) = [s-(~0) — his_]j2) = —o's_[2)

The above result appears to imply that s_|2) is an eigenstate of s, with an eigenvalue of —3h/2,
which is in conflict with experiments. So the only logical result is

s_|2) = 0]2) = (1]s_|2) = 0, (2|s_|2) = 0.

Finally, we obtain

00
s_—h{l 0]
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4. Problem 9.6.2, and find the solutions for x;(t) and z5(t) with the initial conditions z,(0) =
72(0) = 0 and #1(0) = v; and #3(0) = ve. (30 points)

3k 2k

mjtl = —kl’l + 2k($2 - 331) = —Skal + 2k:)327 fil = ——T1+ —22
m m
k 2k
m‘fg = —Qk($2 — ZL‘l) — k‘iEQ = —3k$2 + 2]6.%'1, .i'g = —371'2 + —x
m m
Cﬁ x| | =3k/m  2k/m el Al
a2 | o | | 2k/m =3k/m Ty | T
~3k/m—X\  2k/m | [ 3k 22k k .5k
‘ 2k/m 3k:/m)\’_ _E_)‘ “\m =0=AN=——, A;y = ——
—2k/m  2k/m ar | 2k —a1+by | |0 _ 1] 1|1
[Qk/m —2k/me1]_m a—b |~ lo|THEal1 =5
2k/m 2k/m || ax | 2k | ax+by | [0 B 1| 1 1
‘Qk/m ok fm {bQ]m atby | Lo | T =l =5

|z(t)) = 21 () |I) + 2 ()| 11)
N d72 xr | —% 0 rr | —(k/m)xy [ —wia
dt? Trr o 0 —% Trr o —(51{3/777,):1}[] o _W%I‘/L‘]I
So the normal modes are

w(t) = (o)) = —= [ 1 1] [ () ] _ () +as(t)

2 2(1) V2 ’

with eigenfrequencies w; = /k/m and w;; = \/bk/m , respectively.

Applying the initial conditions z1(0) = 25(0) = 0, #1(0) = vy, and Z2(0) = vy, we obtain
21(0) = z1(0) = 0, &7(0) = (v1 + v2)/V2, &1,(0) = (v1 — v2)/v/2, and the solutions

[ zr(t) ] _1[ (v1 + vo)w; ! sinwyt ]

xrr(t) V2| (v — vg)wi sinwy st

Going back to the original basis,

2(8)) = 21 (1) + 20 ()|IT) = [xl(t) ] _x(h) { 1 ] L Tult) [ | ]

mt) | T vz 1T e |t
1 (o + va)wy tsinwyt + (v) — va)wy; sinwy it
T 2| (v +vp)wytsinwst — (v) — va)wy; sinwyt |
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4.7

HW 7

Local contents

471
4.7.2
4.7.3
474
4.7.5
4.7.6

Problems listing

Problem 1 (9.7.3)
Problem 2 (9.7.8)
Problem 3
Problem 4
key solution for HW 7

4.7.1 Problems listing

Physics 3041 (Spring 2021) Homework Set 7 (Due 3/24)
1. Problem 9.7.3. (15 points)
2. Problem 9.7.8. (35 points)

3. Perform appropriate integration to show the following results regarding the Dirac delta
function (25 points):

0(az) = d(z)/]a|, where a is a real number,
o(f(x)) = Z %7 where z; satisfies f(z;) =0,
, /s

d no_ /i
dxé(x—x)fé(x x)d;n"

4. For each energy eigenstate of a particle of mass m in the infinitely-deep potential well
between x = 0 and L, find the probability distribution of the possible results when the particle
momentum is measured. (25 points)
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4.7.2 Problem1 (9.7.3)

2xh L
(a) Expand f(x) = iy 1 in an exponential Fourier series. (b) What do
—X
- <x<L
L 2 =77

1
you think is the value of ¥, ,, — where sum is over all positive odd integers?

Solution

4.7.2.1 Parta

The period is L. The function f(x) looks like the following (where L is choosing to be 2
and h =1, for illustration only)

f(x)
1.0
o.sf—
0.65—

0.2}

0.5 1.0 1.5 2.0

Figure 4.16: Plot of f(x)

L=2; h=1;

flx_] := Piecewise[{{zth ,0<xx< ;}, {Zh(%, Esxs L}}];

p = Plot[f[x], {x, @, L}, AxesLabel -» {"x", "f(x)"}, BaseStyle » 14, PlotStyle - Red];

Figure 4.17: Code used to generate the plot

The period is L. The exponential Fourier series for periodic f(x) is given by the expansion

)= 2 fulm) (1)
m
Where
fm = (mlf)
ol Qg
- j; ¢ 2)
And |m) are the basis functions given by
m) = Eeiznme m=0,+1,+2, -
Putting these together gives
@)~ X fumrd T ®
e VL
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Now f,, is found

L

22xh 1 _j2m L2h(L-x) 1 _j2zm

:fzi—ezLxdx+f u—eledx (4)
o L +L L L L

Form=20

520k 1 x+fL2h(L—x)L ;
o LL § L VL

5 L
:z—hfzxdx+f(L—x)dx
VLYo z

L
2

2] -5

2

_ 2k (117 (12 L? L2+1L2

VL 21 " 2 2 24

VLK

"2 ©)

And for m # 0, the first integral in (4) is

3oxh 1 2o o5,
——=e dx f dx
o L L LVL Jo
. —iZ e_iZHme iL 2y
Integration by parts. Letu = x,dv = e L *, thendu =1,0 = —7 = 5—e L ". The

——

L
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above now becomes

Hence

. L L
on [ iL -xe_,-hme]z_ Rl
LVL | 2rmml o Jo 2mm
2h | iL Ee_ﬁ’zmg _ 1L 2 %y I
LVL |\ 2mm |2 2nm J
L
2h | AL [L | L [ AL 2 2
LVL | 2mm |2 2rim | 27um )
2h | iL —E(—l)m ?L? [_iZHme]z
LVL | 2rim| 2 4m>m? 0
2h (L2, L2 [e iz“T’"%A]
L\/— 4drtm 412m?
2h [ il? L?
— (1" —i2mm _q
L\/— 47zm( ) 472 2[6 ])
2h [ il? L2
— (D" + -1)" -1
L\/— 47'cm( ) 4n2m2(( ) ))
2h [ il? ( 1y 12 1) 12
L\/— 47'(2m2 4m2m?2
iZhLZ 1+ 2N
LVL 4mtm LVL 4m2m?2 LVL 4m2m?2
2wy 2L 2
VL 4rm VL 412m? VL 412m?
12h\/_ Ly 2hVL 1y 2hVL
47’[711 4m 2m2 4m2m?
zh\/— h\/_ o VL
( " 2 2112 (=1) 222
zhx/fnm(—l) h\/_ " hL
2712m? 2712m? 2m2m?
VL om(-1)" + hWL (<1)" = h/L
2m2m?2

imm(-1)" + (-1)" - 1)

27t2m?

Now the second integral in (4) is evaluated

fLL 2h(LL— %)

2

Integration by parts. Letu = L-x,dv=¢' L "

VL

1

2mm 2h L _jzmm
e L dx:—f(L—x)e L “dx
LVL JL

2 l,2nmx

.21tm =5 :
e L iL

,du = —1/’():’0 =

2mm
= 2nm
L

(6)

_j2m
L . The
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integral becomes

an .2nm
f(L x)e_l Tdx = — 2 l(L—x)e_lTx] +

LVL
2h iL,

LVL

dtm

Ry

2h | —il? o] iL [ iL

) L_izn_’”E il L_Z.Zn_mx
=——|—|0-=¢ ' T2|+— | eI

_j2mm
e 1 i X
2rom| 21tm L

N [e—iz”me]L
B L\/_ 4nm 47’(2m2 L
2h [ —il? L2 ,
— —i27im —imm
_L\/— 4nm( D" - 47 ZmZ[e et ])
2h (—il? m
:L\/_ 47'(m( " - 4 2 2[1_(_1) ])
—i2hL
—— (D" - -(-1)
\/_ L4nm 4\/Z 2 2[ ]
—i2hL _ZI2RL gy 2hL 1) 2hL
\/_ L4rm 4\/— 2m? 4L m2m?2
3 —i2hmtmL Zi2hmml ) - ) Zh\/_
 4mPm? 4r2m? 4r2m?
_ —i2hmmL(-1)" - 2hL - 2L (-1)"
- 412m?
Therefore
on (L R (—imm(-1)" - (-1)" - 1)
ﬁfé(L_x)e =L 2722
2
Therefore, using (5,6,7) gives
@ m=20
£ 2
=
imm(-1)"+(-1)"-1 —inm(-1)"-(-1)"-1
L 22 _ D)y E s ) o
The above can be simplified more to
fn = 1)"-1-(-1)
L ULV

212m?2

Now, for m = £2, +4, --- even, the above becomes
VLh
— m=20
fmeven = 2
0 m # 0, even
And for or m = #1,+3, --- odd, it becomes
fmodd = 2
VL m#0,0dd
em

(7)
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Therefore only the odd terms survive. From (3)

.2nm

1,
f@) ~ N fugee

odd

_ VLh 1 —2hVL 1 AN

h 2 .2ntm
—__n T
2 % nzmze
L W
2 24 2m?
Or
h 4  j2mm
f(.X')"‘ _(1_%712”126 L ) (8)
4.7.2.2 Partb

. L,
From Eq (8), by letting x = 7, it becomes

34
h

v 4 inn N 4 ink
=511 2 2pt T ) izt

n=-—o0,0dd k=1,0dd

Replacing m = —n in the first sum above gives

L\ h L 4 . >4
=322 2 )

m=co,0dd TC k=1,0dd
h( & 4 . x4 .
=_l1- Z e~imm 2 emk
2,72 212
2 m=1odd ¢ kmtodd Tk

Combining the terms and calling the common index n gives

44 )

n=1,odd

h oo
= 5(1 - ( E % Cos(nn)))

n=1,0dd
But cos(mtn) = -1 since n and odd. The above becomes

84 5,5

n=1,0dd

but f (x = E) = [@] = h. Hence the above becomes
2 L ng
h 8
h==-1+), ==
2( % nzm-’-)
8
2=1+
% 2m2
8 1
1==) —
72 % m?
Therefore
E 1 n2
m> 8
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4.7.3 Problem 2 (9.7.8)

(i) Obtain the series in terms of sines and cosine for f(x) = ¢ in the interval -1 < x < 1.
(ii) repeat for the case f(x) = coshx. Show that

. h o0 _1 n
fx) ~ smn "l +2n§::11(+312(cosnx—nsinx))

represents e* in the interval - < x < 7t (and its periodicized version outside). Show
how you can get the series for sinh x and cosh x from the above.

solution

4.7.3.1 Part1l

The period is L = 2 in this case. The exponential Fourier series for periodic f(x) is given
by the expansion

Y=, fulm) (1)
Where
fm = (mlf)
_ f_ ZL LLe_ihmef(x)dx 2)

Putting these together gives

.2mm

F0~ B fud T ®)
Now f,, is found, using L = 2
11
fm= f_ 1 ﬁe‘m’”x f(x)dx

1 0 . 1 o
=— | e""eYdx + — f e~ e  dx (44)
il 7

The first integral in (4) gives

1 fo ; I (—imm+1)
- e—mmxexdx:_f plimm+1)x g,
V2 Jo V2 J
0

V2
— 1 e(—inm+1)x]0
V2 (=imm + 1) -1
_ 1 [
V2 (=imm +1)

1 einm—l -1
== (5)

\/E imm—-1

1 [ e(—inm+1)x

—ittm + 1 B

1- e—(—inm+1)]

195



47. HW7 CHAPTER 4. HWS

And the second integral in (4) gives

[ U iy
- oI p=X oy — f p(-imm=1)x 4,
\2 fo V2 Jo

1 |e(—inm—1)x ]1
0

\2 | —imm —1
1 ‘ 1
— (—imtm—1)x
2 (=imtm —1) [e ]0
1 ‘
- = |pl=imm=1) _
- V2 (inm +1)[e o 1]
1 1= e—inm—l
=—— (6)
V2 imm+1
Putting (5,6) together gives
1 einm—l -1 1 1= e—inm—l
fm=—F= — (7)

2 2
1 1
=—(1-et)+—=(1-¢7)
2 2
1 1 1 1
= -4 — - —
2 2e 2 2e
1 2)
=—|2-=
2 e
3 1 (2e-2
= ; -
3 2 [e-1
= 5\

And for m # 0, eq (7) becomes

1 eircm—l -1 1- e—z’nm—l
fm =1 + —

V2 \ imm -1 itm+1
1 (einme—l -1 1-— e—inme—l)

V2

Since m is integer, then the above becomes

- + —
itm —1 itm+1

1 (cos(mm)e? =1 1 - cos(rm)e?
V2 itm—1 itm+1
1 ()" 1-1 1-(-1)"e!
= —|— + —
2\ imm -1 itm+1

1 (D"t =1)Gmm +1) + (1= (-1)"e) (imm - 1)

ﬁ (trtm = 1)(imm + 1)
1 2(-1)"e -2
= o1
1 2-2(-1)"et
=5 1imne
2 1-(-1)"e?
=5 1+
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Hence (3) becomes

2 (e 101 & 21-CDet
0~ P T

m#0
e-1 & 1-(-D)"e 1 .

— + iTtmx

e m:z—oo 1+2m2

m#0
n -1 o -1

— e-1 + 1- (_1) € znnx Z ( 1) € znkx

e 1+ mPn? = 1+ 1+ w2k

Let m = —n in the first sum above. This gives

1 1_( 1)( 1) —1

0 1 1yk -1
fy= L LD T e 7 L OV

m=oo 1 4+ 71%( m) o 1+ mi2k?
-1 o0 k 1
1- 1) € immx + Z 1- (_1) € " imkx
— 1+ Trem = 1+n%k?

Now the two sums can be combined using one index, say 7, since they sum over the
same interval
1-(-1)""!

—iTnx ITInX
1+ m?n? ( e )

1
fo =2y

n=o0o

But (e‘i“”x + ei“”x) = 2 cos rtnx. The above becomes

(x) = +2 2 ~ (D
f(x) = a2z CosTnX
e—1 L, (-1)"
=—+2 —————— COS Tthx
e n=oco 6(1 + n2n2)
4.7.3.2 Part2
Now f(x) = cosh x. Therefore
- 1 2y
f@~ ) fmfe L (3)
m=—o0

Where now f,, is found, using L = 2
-7
—Immx cosh(x)dx
fn=] N

But cosh x = %(ex + e7¥). The above becomes

11
fm = f e‘”””x (e +e¥)dx

1
— 1nmxexdx+f e—inmxe—xdx)
—«( |
\/—

= ( el-imm+1)x gy 4 f 1 e(‘i“m‘l)xdx) (4)
-1
The first integral is
f ! Pl gy = 1 [e(—inm+1)x]1
-1 —irtm + 1 -1
- _1mm (el — p-teimneD)
1

— (e—inme _ einme—l)
1-imm
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Since m is integer, then =" = (-1)" and ¢™" = (-1)". The above becomes

T =" _
j:l e(—mm+1)x — T— (6 —e 1) (5)
The second integral in (4) becomes
fl e(—inm—l)xdx = — 1 [e(—inm—l)x]l
1 —imtm -1 -1
-1 _ ,
— (—imm-1) _ ,—(-inm-1)
1+imtm (e ¢ )

-1

— (e—inme—l _ einme)

Since m is integer, the above becomes

fl pimm=1)x 4, — ~(=D)" (e—l _ e) (6)
1

1+ imtm

Substituting (5,6) in (4) gives

for = L(l(_—l')’” (e )+ ﬂ(e-l _e))

242 inm 1+ imtm
1 =D L, D" 1
9 2(1—inm(€_e )+1+inm(e_e )
CEDe-e) 1 L1
B 24/2 1—imtm 1+imm

(-D"(e=e) (@ + imm) + (1 - irem)
24/2 1 - imm)(1 + inm) )

C(D"e=e)( 2

- 242 Tem? + 1)

Hence form =0,

.2ntm
Therefore f(x) ~ X~ fm%esz becomes

(e—e‘l) 1 o (—1)m(e—e‘1)i

cosh(x) ~ 7 ﬁ + m;go \/5(7—(2;112 5 1) 5 immx
m#
=) 1 g e,
2 2 m=—o0 (nzmz + 1)
m#0

As was done in part(i), Ym=-co ¢ can be rewritten as 220—1 2 cos(nmx). The above
m#0 -

reduces to
(e - e‘l) o (—1)”(6 -~ e‘l)
cosh(x) ~ —— + ), 2—————= cos(nmnx)
2 o (nznz + 1)
(=) _ .
But — = sinh 1. Therefore the above becomes

cosh(x) ~ sinh(1)[1 + 2 i ﬁ cos(nmx)
n=1
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4.7.3.3 Part3

I think now the book is asking to find the Fourier series for ¢* over —n < x < 7t in this
last part. Therefore, as before, starting with

flx) ~ Z f v 6 (1)
Where now, using L = 27 as the period, then
fu= [ =T
= e 2netdx
" -n V21
1 fﬂ (im+1)x g
- e —im X x
V27‘( -7
— 1 [e(—im+1)x]n
V21t (1 — im) -
1 . _
= |e=im+)m _ e—(—zm+1)n]
V2t (1 - im)[
_ 1 [e—imnen _ eimne—n]
- V21t (1 — im)
But "™ = (-1)"" and e™™" = (-1)" since m is integer. The above becomes
(-1)"
= =" -]
Jo V27 (1 - im)
3 (-1)"(2 sinh )
V21t (1 — im)
2 "
= — sinh 7t
V2r (-
V2 ()"
=——" gsinh
NV )s1 T
For m = 0 the above gives
V2
= —sinhn
fO ﬁ
2nm
Therefore f(x) ~ > _ fm—e L " becomes, where L = 27t now,
00 1 .2mm
¥ ~ fu—=e "
PIREN:
2 1 & 2 (-D)" .
= isinh n(—) + Z £¥ sinh 77 [—¢"™*
Y V21 M=—00,%0 \/_ (1 —im) V21
_sinh7t  sinh7 i ( )" iz
T T =55 0 (1 zm)
_ sinh 7t N sinh 7t i (-D™(1 + im) i
T T =55 40 1 -im)1 + zm)
_ sinh 7t 14+ i": D" +i-D)" meimx
T i=on 20 1+ m?
. e m
— sinh 7 1+ Z (_1) 2eimx — e zme
Tt pieao 20 L T 11 1+m
_sinhn(, f] D" s i ) m) )
Tt m=—00,#0 1+ m2 m=—o0,#0
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The first sum above becomes

o (D" o (D"
E o1+ m2 =2 211 1+ m?2 cos(nx) (3)
m=—oo, n=
And the second sum in (2) becomes
i i(—l)mmeimx _ i (-1D)(-1)"m e@
eon 20 1+ m? g m? i
o CDED k& DD e

— Z +
= B . B

Letting m = —k in the first sum above gives

D (D" e _ 21: (D) Cm) e & (D) e

- ¢

mz_m’¢01+m2 A1+ (-m)? i “1+r2
i ( 1) m e—zmx (_1)r7, eirx
2 2
= 1+m =1+ 1

Merging the two sums back together since now on same interval, and using n for the
common index

i (D)™ e i (D)'nfem™ ™
et 4o 1+ m? H1+n?\ i i
o, (D'
=-Y2 i 4
Z}l 1 2 sin(n) (4)

Substituting (3,4) back in (2) gives

eX ~ smhrc(l 22 il cos(nx) — 22(_) (sm(nx)))

T 1+ n?
Sm:”(1 22 1) 5 (cos(n) - nsm(nx))) (5)

The question is now asking to show how to use (5) to obtain the series for sinh x and

cosh x. Since
eX—e™*

2
Then substituting (5) in the RHS of the above gives

sinhx =

sinh x ~ % Sin:n (1 +2 i 1( ;1312 (cos(nx) —n sin(nx))) - Sinhn(l +2 Z 1( :r ’ (cos(n(—x)) — nsin(n(—x))

=1 n=1

- % Sin; I (1 +2 i 1( 11312 (cos(nx) —n sin(nx))) - T (1 +2 i (_ ’ 2 (cos(nx) +n sin(nx))))
n=1

_ % sin:n . 2sin:n g 1(11212 (cos(n) - nsin(nx)) - (sin;n sm:n nf:

_ % sin;lrc N ZSin:n 2 1(:_1;2 (cos(x) — nsin(n)) - sinht smhn g

_sinhﬂi(—l)n( (nx) — n sin( ))—i—(_ n( (nx) + ( )))

=— 2 11+ 5 (cos(1x) — n sin(nx 2y, cos(nx) + n sin(nx

- Sm: T Z 1( :r 2 (cos(nx) — nsin(nx) — cos(nx) —n Sin(”x)))

n=1
_ Sln; Tt i 1(:_ ) > (_n Sin(nx) -n sin(ﬂx)))
_ sinhm Z ()" 5 (=2nsin(nx))
T =1 1+n
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Hence
7 sinh © (1 n+1
sinh x ~ Sln T z (1 +)n2 n sin(nx) (6)
n=1
Similarly for
h eX+e*
X =
cos >

Then substituting (5) in the RHS of the above gives

n

1(sinh 7 & (1) ‘ sinh 7t (- ‘
coshx ~ 2\ (1 +2 Z T3 (cos(nx) —n sm(nx))) + - (1 +2 Z 5 (cos(n(—x)) — nsin(n(-
1 (sinh - h (-1)"
=_ sinh 7 (1 +2 E 1) (cos(nx) n sm(nx))) sinh 7 (1 +2 2 ) (cos(nx) +n sm(nx))))
2\ 7 T
_ 1{sinhn smh s (—1)" . sinh 7t smh < (-1)"
=5 +2 - 712:1 Ton 5 (cos(nx) — nsin(nx)) + ( - +2 712:1 Ton >(cos(nx) +n
1(sinh 7t sinh 7t (-1)" sinh 7'( smh T — |
=51 +2 - 7121 1o 5 (cos(nx) — nsin(nx)) + 21 (cos(nx) +ns
1(_sinh inh 1
=5 zsmn I + 2SI - & ;:1 1( +) (cos(nx) — nsin(nx) + cos(nx) + n sin(nx)) )
_1{_sinhm _sinhm (-1)"
=3 2 - +2 - nzl 1o 5 (cos(nx) + cos(nx)))
sinh 71 sinh 7t
= Z 2 cos(nx)
T f
Hence
sinh 7t
coshx ~ ( +2 Z cos(nx)) (7)

4.7.4 Problem 3

Perform appropriate integration to show the following results regarding the Dirac delta
function

(1) o(ax) = where a is real number. (2) 6( f (x)) >

1

O(x—x;)

af
dx i

where x; satisfies f(x;) =0

() 6(x x') =0(x - x)
Solution

4.7.4.1 Part (1)

Using the integral definition of delta function given by

1 Sl
_ ikx
&@_anmedk (1)
Then

1 o
&m:yfemﬁ

e
Case a > 0. Let u = ak. Then du = adk. The above becomes

1{1 > .
o(ax) = —(— f el”xdu)
a\2n J_

But % f ety = 0(x) by definition. Hence the above becomes

O(ax) = éé(x) (2)
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Case a < 0. Let u = ak. Then du = adk. When k = oo, u = —co and when k = —co, uu = +00.

The integral becomes
1{1 = .
o(ax) = —(—f emxdu)
a\2mn J

1 1 * ux
?ﬂ%ﬁﬁ‘ﬂ
1
= _—aé(x) (3)

Combining (2,3) gives
1
o(ax) = —0(x)
lal

4.7.4.2 Part (2)
Using

[ tpehac= % [ ofrea)e M)

Where in the RHS, the sum is over the roots of f(x), where f(x;) = 0 where x; is root of
f(x) since 6(u) is nonzero only when its argument is zero, which is at the roots of f(x).
Now, expanding f(x) near each one of its roots using Taylor series

F() = f) + (x = x)f'(x) + O(x?)

But f(x;) = 0 since x; is root, and keeping only linear terms, then (1) now becomes
[t B [ ofte—xr e

But from part (1), we found that 6(a(x — x;)) = %6(3( — x;), where now a = f’(x;). Using
this relation in the above gives

f f(x) dx—f Zlf' Z)|c5(x X;)

—00

Therefore the integrands on each side is the same. This implies

o(x — x;)
( ) Z |f’(x1)|

4.7.4.3 Part (3)

Starting from property of delta function which is
f 5 — 1) (X)X = F(x)
Taking derivative of both sides w.r.t. x gives
d / / / d
or fé(x - x")f(x")dx’ = dxf(x)
dé(x x') ., d
[ rwnin = Zfw)

d(xx)

Integration by part. Let
becomes

=dv,u = f(x’), thenv = (x —x’),du = —f(x ). The above

d d
f O = %)= F )’ = ——F(3)
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Therefore dé( y
f BN () —fé(x x’)d _F(x)d
o d(S(x )
PO f) = 06— x) 1 )
o d5(x — x') d
X—X
T g

4.7.5 Problem 4

For each energy eigenstate of a particle of mass m in the infinitely-deep potential well
between x = 0 and L, find the probability distribution of the possible results when the
particle momentum is measured.

Solution

The goal is to determine |(q5p|¢)|2 which will give the probability of measuring momen-
tum p. But

@l = [ " (el i
_ fo m(x|¢)p)*(x|¢n)dx (1)

But (x|¢,) = ¢p(x) and (x|ip,,) = ¢,,(x). From lecture notes,

1 i

(1) = ——7
% \V27th
2 Nnmx
= sin — O<x<L
Yy(x) = L L
0 otherwise

Forn =1,2,3,---. Substituting the above in (1) gives

@y = [ ()

(nnx)dx @)

px
Toevaluate] = £L e'n sm( )dx we do Integration by parts twice. Letu = sm( Lx) dv =

PIa L

= sin(@)he h] f —cos nnx)he .ﬁ dx
L —ip —ip

Since n is integer, then boundary terms are zero.

finm (L nmx\ _P*
= — cos( )e i dx
ipL L
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_iPx
= cos(@),dv = ¢ ' then du =

Doing integration by parts one more time. Let u T

_ sin(%)dx, then the above becomes

L
L

.px .px
finmt nmxy, e r Ltie' " nm  (nmx
I=— cos(—)h , + f —— sm(—)dx
ipL L —ip o —ip L L
0
fint( ki _PL finmt L 0 mmx
= —|—|cos(nm)e " —1|- — f e n sm(—)dx
ipL \ -ip ipL J L
h? nm L nmhPnm L i (nmx
= ——|cos(nm)e " —1|— —— e sm(—)dx
—ip ipL ipL ipL Jy,
fitnm Pt n?m® L _pr nmx
= 2L cos(nm)e h —1 +;727f0 e n sm(T)dx

L _;Px
But £ e ' sin(nLﬂ)dx = [. Therefore the above becomes

i2nm Pt #2n?m?
cos(nme ' -1+ ——1I

I=
L 212
Solving for I
mPn*rn®  hPnm itk
I- 212 I= 2L cos(nm)e " h -1
1(1 hznznz) onm (e 1
- = cos(nm -
212 L
_PE
. W (cos(rm)e f —1)
= sz (1 B hznznz)
pZLZ

.pL
-y
o zhznn (cos(nn)e )

—F p2L <p2L2 _ hznznz)

hznnL n _iP_L
212 — 222 ((_1) e - 1)

Substituting the above in (2) gives

1 fi*nmL " itk .
)= {0 -1
hznnL(\/ TthL ) il
= ((—1)"6 z —1)
(7'chL)(sz2 - hznznz)
nhVmhL ((—1)718_1% ~ 1)

(P2 12 — hznznz)

nhVnhL
—————— then
(r2L2-12n222)

(D plipa) = kn((—l)”e‘% - 1)

- (_1) kne L _kn

Letk, =

L L
= (—1)”kn(cos P~ _ isin P_) -k,

h h
L L
= (-1)"k,, cos % -i(-1)"k, sin % -k,

= ((—1)nkn cos % - kn) - i((—l)"kn sin %)
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Hence
LV L\’
Kplw)| = ((—1)”kn cos % - kn) + ((—1)"kn sin %)
And
2 2
2 L L
|<¢)p|1,bn)| = ((—1)nkn cos % - kn) + ((—1)”kn sin %)
L L L
= (-1)*"k2 cos? % + k2 - 2k2(-1)" cos % + (=1)*"k2 sin? %
L L L
= (-1)*"k2 cos? P s 4 k2 — 2k2(-1)" cos P~
h h h
L
= (<1)¥'R2 + K2 — 2k2(~1)" cos ’%
L
- k%(l + (1) = 2(-1)" cos ’%)
Butk, = M, therefore the above becomes

(p2L2-H2n2 7T2)

2 nhvhL ? o " pL
|<¢’p|¢n>| = [(szz ~ f’zznznz)) (1 + (-1)"" = 2(-1)" cos ?)

2H3nL L
= mrr 5 (1 + (-1 = 2(-1)" cos(p—))
(p2L2 - H2n272) h

The above gives the probability of measurement of p, wheren = 1,2, 3, ---. For illustration,
the following two tables are generated to see how the probability of measuring say p =1
and p = 2 changes as function of n. To generate this, L is taken as 1 and 7 = 1 for
simplicity.

n |Probability of measuring p=1
1 0.12302

2 0.00780329
3 0.0112922
4 0.00187694
5 0.00400658
6 0.00082832
7 0.00203605
8 0.000464782
9 0.00122967
10 0.000297121

Figure 4.18: Probability to measure p =1
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n |Probability of measuring p=2
1 0.106479
2 0.0282761
3 0.00458842
4 0.00600971
5 0.00155647
6 0.00259549
7 0.000781451
8 0.00144553
9 0.00046963
10 0.000920908

Figure 4.19: Probability to measure p = 2

n2h3PilL 5 pL
flp_,n_]:= [1+(-1) "—2(—1)"Cos[——])
(p? L2 - h? n? Pi?)? h

data = Table[ {n, Nef[p, n]}, {n, 1, 10}];

data = PrependTo[data, {"n", "Probability of measuring p=1"}];
Grid[data, Frame -» All];

Figure 4.20: Code used
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4.7.6 key solution for HW 7

Physics 3041 (Spring 2021) Solutions to Homework Set 7

1. Problem 9.7.3. (15 points)

a) Using the orthonormal basis {|m) — eimm/L, m=0, £1, £2, ---}, we can expand
VL

fl@) = 2zh/L, 0<z<L/2,
YE\ 2L —2)h/L, L)2<x<L-2'h/L, 0<a' < L/2,

as follows. Note that a change of variable ' = L — z is made to simplify the integration over

L/2<z<L.
I 1 L2 9xh L2 9a'n 2 h (L\° hV/L
0 0 0
1 L omme 2h L/2 2mrs L/2 i2mn(L—z')
o = (m|f) = —= e flx)dr = —= e L dx +/ e £ da
fupo = {mlf) = = [ f(a) Lﬁ[/o 0
2h L/QZ |: _ i2mna n (i2m7rm:| da 4h L/2 o 2m7r:ch
= xle L e L T = —— 2 Cos x
IV Jo LVL Jo L
_ 4n ™ L\’ =1y — 1 L _ —2hV/L/(mm)?, m = odd,
—=[(-1) I 5— (1) ] 3 _
VL 2mm (mm) 0, m = even.
m i2mze  h 2R e h 2h cimnzl)” + (3_12(21“)”
Flo) =3 Te = =
= — ﬁe 2 g2 = m2 2 72 ~ (2n+1)2
h 4h & 1 2(2n + D)z
=—-—— cos
2 w2 et (2n +1)2 L
(b) For z =0,
h 4h & 1 > 1 2
—0==-_= =
f@) 7 2+ 1)2 Z2n+12 8
n=0 =
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2. Problem 9.7.8. (35 points)

(i) We use the orthonormal basis {|m = 0) — \%L, Im,a = 1) — \/%cos 2MIE im0 = 2) —

2gin 2™ =1, 2, ---} to expand f(z), —L/2 <z < L/2.

For f(r) = el —1 < 2 < 1, we use the orthonormal basis {|m = 0) — %, |m,a =1) —
cosmmz, |m,a =2) — sinmrx, m=1, 2, ---} for L =2. Note that f(—z) = f(x).

I 2 [
azm:sz/ e_lxldav:/ e %dr = (1—e V2,
0 < | > \/i . \@ 0 ( )
1 1 1
(m,a=1|f) = / el cosmra de = 2/ e " cosmmrdr = / O Gl S 0 1
- 0 0

1
1— 6—1+im7r 1— e—l—imfr - 2[1 _ (71>m6—1]
1 —imm L+imr 14 (mm)?
1

by, = (m,a =2|f) = / el sinmrz dr = 0,

1

am

+Zamcosm7rx+mesmm7r:c—1—e*1+22 T Tr)mr CcOS MTT

(ii) f(z) = coshx, —1 <z < 1. Note that f(—z) = f(x).
ap = (m=0|f) = \}i/_llcoshxd:): = \2/Olcoshxd:1: = (sinh 1)v/2,
an = (ma=1lf)= [

1 [t . .
— / (6x+€—x)(6zm7rx +e—zm7rx)dx
0

1

1
cosh x cosmmx dr = 2 / cosh x cosmmx dx
1 0

2

L1 feltmT 1 eloimm g | _mltimm ] p-loimn
2<1+im7r * 1—wmm 1—wmm 1+amm >
(=1)"(e —e™') 2(—=1)™(sinh1)

I (mm)? 1y (mm)?

1
by, = (m, o = 2|f) :/ coshzsinmmx dr = 0,

1
" (sinh 1)

cos = (sinh 1
1—|—m7r mmx = (sinh 1)

f(z) —smh1+2

—1)™cosmmx
142 -
* Z 1+ (mm)? ]

(iii) For f(z) =e®, —m < x <, we use the orthonormal basis {|m = 0) — \/%, |m,a =1) —
R m, o = 2) — %, m =1, 2, ---} for L = 2m. Note that to enforce f(—m) = f(m),

we must allow two discontinuities at * = £m, which does not affect the convergence of the
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expansion within the interval —7m < x < 7.

1 7 er—e " . 2
a0—<m—0|f>—\/%/ 6xdx—\/%—(smhﬂ')\/;,
1 T 1 T ; ;
am = (m,a=1|f) = \/77/ e’ cosma dr = M/ e" (™" + e ") dw

1 |:€(1+im)7r _ 6—(1+im)'n’ e(l—im)ﬂ _ e—(l—im)ﬂ'j|

PN +

1+4+wm 1—wm
_(=1)™(e™—e)  2(—1)"(sinh7)

Qrmdve (Lt md)r
L[ T ,
bm = <m>Oé = 2|f> = ﬁ g e* sinmz dr = m /ﬂ- ez(ezmz _ 672mz)d.%‘
1 el+im)r _ —(l+im)r  (1—im)r _ o—(1—im)x
2w [ 1+ im B 1= im ]
m(—1)"(e" —e™™)  2m(—1)"(sinhT)
+m?)yr  (I+m?)yr
f(z) = sinh 7 n i 2(=1)"(sinh7) oS T — i 2m(—1)"(sinh ) ;

T — (1+ m2)7r 2 (T +md)r inmax
_ sinh~ i (cosmx — msinmax)
- o 14+m?
sinhz = er—e” _ f(l’) - f(_x _ sinh 7 i melnmx)
2 2 h— 1+ m?
2 sinh 7 i m+1m sinma
ot 1+ m?2
et te ™ flr)+ f(—x ) sinh > (2 cosmx)
coshz = 5 = 5 14 Z 1 -
_ sinh7 i ™ o8 M
- et 1 + m?2

Note that cosh(—m) = cosh 7, so we expect that its expansion is continuous at z = +7. We
obtain

sinh 7 > ™ cosmm sinh 7 >
‘h — =
coshm = [ Z 1 e ] < )

m= m=

mcoshm 1
= = -
Zl+m2 2sinh7m 2

m=1

Clearly, the expansion of sinhz is discontinuous at = +7 as it gives zero. Similarly, the
expansion of e* is also discontinuous at x = 4w, as it gives cosh, i.e., the average of the
actual values at x = %.
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3. Perform appropriate integration to show the following results regarding the Dirac delta
function (25 points):

d(ax) = d(x )/\a] Where a is a real number,

, where z; satisfies f(x;) =0,

Z Idf/dw\x

d , d
ﬁé(x—x)fé(x—x)dx

Consider a > 0 and let y = ax. We have

/_}Wﬂf)dﬂ? = i/_iié(y)dy = é = /_ @dz = 6(ax) = d(z)/a.

For a < 0, we have 0(az) = 0(—|a|x) = (|a|z) = 0(z)/|a|, where the last equality follows from
the result for a > 0. Therefore, §(azx) = 6(x)/|a| in general.

Consider Taylor expansion near a specific root z; of f(z):
f@) = flaz) + fll@)(@ —ai) + - = flla) e —z) + -,

Mre s MNx —x;))dx = 1
- / )de = / 3w =) = i

where f'(x;) = (df /dx),, and the last equality follows from d0(ax) = §(z)/|a|. Including all
roots of f(x), we have

Tide B x1+e xl - ( xz)
Z/ o lw))de = Z\f’ Z/ If’ TP V) =2 T

Note that
d T+e€ ot d
% - (S(I — q;/)f(l’/)dx/ = /ze %5(1‘ —r )f(l’,)dl‘/ + [5(:1: _ le)f(q;/)]iti
x+e d
= [t

where we have used §(z — 2') = 0 for z — 2’ # 0.

/z 6 i(5(36 —2') f(2")da' = d [ 65(17 — ) f(2')da" = if(gc)v
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4. For each energy eigenstate of a particle of mass m in the infinitely-deep potential well be-
tween x = 0 and L, find the probability distribution of the possible results when the particle
momentum is measured. (25 points)

The wavefunctions of the energy eigenstates with eigenvalues E, = n’n?h*/(2mL?) for
n=1,2 .- are

(T|tn) = Yu(x) = \/>51HT, 0<z<L,
0, elsewhere.

The wave function of the momentum eigenstate with eigenvalue p is
eipx/h
Vorh

The probability amplitude for measuring momentum p is

(|dp) = Pp(x) =

(Bolin) = / " (ol el dz = / " 62 (@) (@)de

/ 7zpz/h sm dx / 72pz/h 1n7r1:/L o efinﬂ'z/L dr
\/ V2rh / L ARVE S )

—LpL/h-‘rZTLﬂ' -1 —sz/h int __q )

\/W(—Zp/h + zmr/L —ip/h —inn/L

_ =D —wl/h 1 ( 1 B 1 )
2v/7hL p/h—nn/L  p/h+nr/L
(=1)me~ipL/m 7 [ 2nm/L } _ 1= (—1)nePL/n [ nm/L
2v/ThL (p/h)? — (nm/L)? VrhL (nm/L)? — (p/N)?

which corresponds to the probability distribution

_ 2 n7r/L 2 [1 — (_1)nefipL/hM1 _ (_l)neipL/ﬁ}
P = ool = | oL

_ { nw/L r 2[1 — (=1)" cos(pL/h)]
(nm/L)? — (p/h)? ThL

2L nm ?
== [( o (pL/h)Q] [1 — cos(nm — pL/h)]

- hm)? - TpL/h>2TSm2 (nzﬂ ZI;)

:L< nm >QSin2[(mr—pL/h)/2}
wh \nmw+pL/h) [(nm—pL/h)/2]>

Note that —oo < p < o0.
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48 HWS
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4.8.1 Problems listing

Physics 3041 (Spring 2021) Homework Set 8 (Due 3/31)
1. Problem 10.4.3. (20 points)
2. Problem 10.4.4. (30 points)
3. Problem 10.4.5. (20 points)

4. Problem 10.4.10. (30 points)
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4.8.2 Problem 1 (10.4.3)

Problem 10.4.3. Show that the first four Hermite polynomials are

Ho = 1

Hl = 2y

Hy = -2(1-2%)
2

Hy = -12(y - 3°)

coefficients to agree with the above. Show that

/ e_ngn(y)Hm(y)dy = 5nm(‘\/;2nn!)

—0o0

for different eigenvalues.

where the overall normalization (choice of ag or a1) is as per some convention
we need not get into. To compare your answers to the above, choose the starting

for the cases m,n < 2. Notice that the Hermite polynomials are not themselves
orthogonal or even normalizable, we need the weight function eV’ in the inte-
gration measure. We understand this is follows: the exponential factor converts
u's to v's, which are the eigenfunctions of a hermitian operator (hermitian with
respect to normalizable function that vanished at infinity) and hence orthogonal

(10.4.35)
(10.4.36)
(10.4.37)

(10.4.38)

(10.4.39)

Figure 4.21: Problem statement

Solution

4.8.2.1 Partl
Starting with ode (10.4.12) which is

Y () - YY) = 269 (y)

Where € = — the energy of the particle. Let the solution be
fiw

2

V) = ue 7
= e% i amym

Where

Eq. (1) can be written as

Y(y) =

(10.4.12)

(1)

(1A)
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Substituting (1) in 10.4.12 gives

a2 ( - -

a7 ue2 | —yPuez = -2ecue2

2 2 2 2

i u’e% —u e% —y2ue 2 = —2eue 2
o yes |-y

-y 2 _yZ Y 2 _y2 Y 2 _yZ _/2
e larp 5 PP - 2,5 2,55 _— 5
ueZ—uyeZ—uyeZ—ueZ—yeZ —yuez = —2¢cue 2

e e e P - 2
u”’e2 —u'ye2 —u'ye2 —ue?2 +y-ue? |-yue2 =-2cue?

2

-y
Dividing by e 2 # 0 gives
u” —u'y—u'y —u+y*u-y*u = —2eu
u” =2u'y —u = -2eu

Which becomes the Hermite ODE as given in 10.4.24
u”(y) - 2yu’(y) + 2e = Du(y) =0

From (1A)
n
W=y ma,y"
m=0
n
u' = Em(m - 1)a,y"2
m=0

Substituting the above in (10.4.24) gives

n n n
Z m(m —1)a,y"™ 2 - 2y E ma,y™ 1 + (2e - 1) E a,y" =0

m=0 m=0 m=0
n n n
Zm(m -1a,y™ 2 - ZZmamym + Z (2e =1)a,,y" =0
m=0 m=0 m=0
n n
Y m(m = a,y" 2+ Y (2e =1 -2m)a,y" =0
m=0 m=0

(10.4.24)

The first sum can start from m = 2 without affecting the sum, hence the above becomes

Zm(m ~1)a,y™ 2 + Z (2e -1 -2m)a,y™ =0

m=2 m=0

Let m’ = m — 2 in the first sum, it becomes

n-2 n
Z (m’ +2)(m’ + 1)am,+2ym' + Z (2e =1-2m)a,,y" =0
m'=0 m=0

Changing the index in the first sum from m’ back to m gives

n-2 n

Z (m+2)(m + 1)a,,y™ + Z (2e =1-2m)a,y" =0

m=0 m=0
Combining terms gives

n-2 n

20 (1 + 2)(m + Dy p + Qe =1 =2m)ay)y™ + 3] (26 =1 - 2m)ay™ =0

m=0 m=n-1

Considering the second term above for now.

n
2 (2e =1 -2m)a,y™ =0
m=n-1

e -1-2m)a,, =0 m=nm=n-1

(1B)
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Looking at case m = n
e -1-2n)a, =0

but a, # 0 since that is the highest order of the power series. If 4, = 0 then the dominant
term of the power series is lost. This means (2¢ =1 —2n) = 0 or

1
e=n+ > (10.4.34)

Looking atcasem =n -1

e-1-2(n-1))a,_; =0
2e-1-2n+2)a,.1 =0
(e +1-2n)a,_1 =0

1
Bute=n+ > hence the above becomes

1
(Z(n + E) +1- Zn)an_l =0

n+1+1-2n)a,, =0
Zan_l =0

This means
a,_ 1= 0 (2)
Now looking at case m < n — 2 from Eq. (1C) above

n-2
3 ((m+2)(m + Dayen + (2 =1 = 2m)a,,)y™ = 0
m=0
(m +2)(m +1)a,.o + (2e =1 - 2m)a,, = 0
_ —(e-1-2m)
A2 = (m+ 2)(m + 1)am

1
Bute =n+ > therefore the above becomes

-{4n+%)—1—m@

2 T i ) m 1)
—(2n —2m)
= a
(m+2)(m+1)"
2(n —m)
=— 3
m+2)(m+1) " ®)
If nis even then n—1is odd. Then a,,_; = 0 from (2). But due to the recursive formula (3),
this implies a; = a3 = a5 --- = 0. Which means all odd terms in the solution polynomial
vanish. And if n is odd, then n —1 is even. Therefore a,,_; = 0, But due to the recursive
formula (3), this implies ay = a, = a4 --- = 0. Which means all even terms in the solution

polynomial vanish.

Now Eq. (3) is the recursive relation used to determine all coefficients a;. For m = 0, (3)
gives

fy = —Nag (4)

Form =1, (3) gives
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For m =2, (3) gives

_ 2(n— 2)11
@E) 2
-22(n -2)
= —4' az

2(n -2
- 22, ©

For m =3, (3) gives

. 2(n-3)

BT BrE+)"
_ 2(n-3)-2%(n-1)
GO

22n-3)n-1
ST e, @

For m =4, (3) gives

. 2(n-4)
6 Gr)@+1
_ 2(n—-4)2%(n-2)n
GG

-23(n —4)(n - 2)n

= al ag (8)

And so on. Therefore the solution to the Hermite ODE (2) is

2 "

m=0

= ag + ay + ay? + azy® + agyt + asy® + agy® + -

2(n-1) 22(n—2)n 23(n-3)(n-1) 23(n—4)(n-2)n

Y g o 51 my’ - 6! g
9)

ay

u

_ 2 6
—ﬂ0+ﬂ1y—7’lﬂ0y - oY + ...

Which can be written as

2(1y _ 3(17 _ _
u(y) = ao(l - ny? + 2 (n4, 2)n}/4 2 46),(n 2)ny6 + )
2(n-1) 23(n-3)(n-1)
+a1(y— 3 v+ g a1y5+---)

Or
u(y) = agug + aju,

Where u4, u, are two linearly independent solutions for the second order Hermite ODE
where

22(,1—_2)71 i 25(n-4)(n-2)n 64 ...

o =1-ny’+ ———y 6!
22(n-1) 22(n-3)(n-1)
=y - — y2 + 5 ayP + -

For even n the solution u((y) will eventually terminates, and for odd # the solution u4(y)
eventually terminates. The even Hermite polynomials Hy, H, Hy, - -+ are found from u(y)
forn =0,2,4,--- and the odd Hermite polynomials H;, H3, Hs, --- are found from u(y)
forn =1,3,5, ---. The Hermite polynomials need to also be normalize at the end. The
even Hermite polynomials are the following
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Forn=0

2( _ 3(1 _ _
up(y) = ao(l —ny? - 2 (n4, 2)ny4 2zl 46)'(11 z)ny6 + )
) ’ n=0
= 5[0

Therefore
Hy(y) = a9

To find a(, the normalization f_ ” e‘yan, (Y)H,(y)dy = 2"n!\1 6, is used, where Hy(y) =
ay in this case. This gives

e oy =

| " e addy = Vr
& [ etiy=r
RENCRN

ag = 1
Hence ay =1 and
Hy(y) =1
Forn=2
22(n-2)n 23(n—4)(n-2)n
o(y) :ao(l—nyz+ e o Yot
n=
= a(1 - 212

Therefore

Ha(y) = ao(1 - 24°)
To find gy, There is an easier way to normalize H,(x) than using the normalization
integral equation as was done above. This method will be used for the rest of the problem

as it is simpler. It works as follows. H,,(y) = (1 - ZyZ) is normalized as follows. The
coefficient in front of the largest power in " is forced to be 2". In the above, the largest
power is y2. Hence n = 2. Therefore the coefficient is 22 = 4. But the coefficient is —2.
Therefore the whole expression is multiplied by —2. This means a4, = —2. Hence

Hy(y) = -2(1 - 217)
For Hy(y) (This is not required to find, but found for verification)

Forn=4

up(y) = ap|1 —ny? + TR o

22(4-2)4 ,
a7

22(7/1 — Z)n 4 23(7’1 - 4)(” ~ 2)ny6 4+ )
n=4

= ag|1 -4y +

4
= ag[1-4y% + §y4)

Therefore

4
Hy(y) = ao(l — 4 + 5y4)

Hy(y) = ag (1 — 4% + %y‘*) is normalized as follows. The coefficient in front of the largest

power in y" is forced to be 2. In the above, the largest power is y*. Hence n = 4. Therefore
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the coefficient is 2* = 16. But the coefficient is %. Therefore the whole expression is
multiplied by 12. This means ay = 12. Hence

Hy(y) = 12(1 — 4 + %y‘*)

Now the odd Hermite polynomials are found. These are found from u (y)

Forn=1

2(n - 1)]/3 . 23(n—3)(n - 1){11y5 . )

”1(y) = al(y - 3| 5|

n=1
= al]/

Hence

Hi(y) = a1y
Hi(y) = ayy is normalized as follows. The coefficient in front of the largest power in
y" is forced to be 2". In the above, the largest power is yl. Hence n = 1. Therefore the

coefficient is 2! = 2. But the coefficient is 1. Therefore the whole expression is multiplied
by 2. This means a; = 2. Hence

Hi(y) =2y

Forn =3

2(n-1) 23(n-3)(n-1)

up(y) = ﬂl(y Y v+ 5l ary° + o
) ) n=3
23-1) 3
=m\y— 31 y

Hence

H3(y) = o (y - §V3)

Hs(y) = a4 (y - §y3) is normalized as follows. The coefficient in front of the largest power

in y" is forced to be 2". In the above, the largest power is y>. Hence n = 3. Therefore

the coefficient is 2% = 8. But the coefficient is —2. Therefore the whole expression is
multiplied by —12. This means a; = —12. Hence

2
Hs(y) = —12(y - 53/3)
The following gives the final results
Ho(y) =1
Hi(y) =2y
Ha(y) = -2(1-2y°)

2
Hs(y) = —12(3/ - 5}/3)
4
Hy(y) = 12(1 — 4y + §y4)

4.8.2.2 Part2

This part verifies the results obtained in part 1 above for m,n < 2 using

(o0]

[ e H@HWy =276, (1)
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Forn=0,m=0

Eq (1) becomes

(o]

[ e HoHowy = Vr
| iy =y

But | ” ¢V’ dy is the Gaussian integral which is /7 . Hence

Vi =R
Verified.

Forn=0,m=1

Eq (1) becomes
[ e Ho )y =0

f B e‘yz(Zy)dy =0

2f ye‘yzdy =0

But y is odd, and eV is even. Hence the LHS is integral over odd function. Hence it
must be zero. Therefore
0=0

Verified.

Forn=0,m=2

Eq (1) becomes

[ erHyHmy =0

[ (20 -22))ay =0

f e‘»'/z(—z + 4y2)dy =0
-2 f eVdy + 4 f vV dy =0

But | “ e Vdy = \/n and [ “ReVdy = %, therefore the above becomes

-2+/n +4(@) =0
24/ +2ym =0

0=0
Verified.

Forn=1,m=1

Eq (1) becomes
f: eV Hy () Hi )y =2V
f: e (2y)(2y)dy = 2vm

tf ety =2vn
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But [ T ReVdy = % The above becomes
2vn =2vn

Verified.

Forn=1,m=2

Eq (1) becomes

[ ey =0

[ ()21 - 22)ay = 0
foo eV (8y3 - 4y)dy =0
8 foo eV dy — 4[00 ye Vdy =0
Both integrals in the LHS are zero, since both are odd functions. Therefore
0=0

Verified.

Forn=2,m=2

Eq (1) becomes
f_ o; eV Hy(y)Hy(y)dy = (421
[ et s
[ 16y -1692 + 4)eay =87
16 f_ Z yteVdy - 16 f_ ioyze‘yzdy +4 f_ Z ey = 8y

But [ yle¥dy = S and [ yPe¥dy = 7y and [ e¥dy = y. The above be-
comes

16(9\/5) - 16(%«/%) +4yn =8n

4
1241 =8y +4vr =8y
8y =8y

Verified. This completes the solution.
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4.8.3 Problem 3 (10.4.4)

o o (]

Problem 10.4.4. Consider the Legendre Equation
(1—2?y” — 22y +1(1+1)y =0 (10.4.40)

Argue that the power series method will lead to a two term recursion relation and
find the latter. Show that if | is an even (odd) integer, the even(odd) series will
reduce to polynomials, called Py, the Legendre polynomials of order I. Show that

P = 1 (10.4.41)
P = 2 (10.4.42)
P, = %(3952—1) (10.4.43)
Py = -1-(51' - 3z) (10.4.44)

(The overall scale of these functions is not defined by the equation, but by conven-
tion as above.) Pick any two of the above and show that they are orthogonal over
the interval —1 < z < 1.

Figure 4.22: Problem statement

Solution

4.8.3.1 Partl

The Legendre ODE is given by 10.4.40 as (L is used instead of / as it is more clear because
I looks like 1, depending on font used.)

(1-2)y” - 2xy + L(L+ 1)y = 0 (10.4.40)

Let the solution be

Then

And

Substituting the above results back in (10.4.40) gives
(1 -~ xz) Z n(n —1)a,x"? - 2x Z na,x" '+ L(L +1) E a,x" =0
n=2 n=1 n=0
Z n(n —1)a,x" 2 — x? Z n(n —1)a,x" 2 - Z 2na,x" + Z L(L+1)a,x" =0

E n+2)n+1)a, x"— Z nn-1)a,x" - Z 2na,x" + Z L(L +1)a,x" = (1)
= n=0

For n = 0 only the above gives
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(n+2)(n+1)a,x"+LIL+1)a,x" =0
2a, + L(L + 1)00 =0

L(L+1)
a, = — 5 ag

Forn =1 only Eq (1) gives

(n+2)(n+1)a, x" —2na,x" + L(L +1)a,x" =0
(3)(2)&3 — 2&1 + L(L + 1)[11 =0
_ 24, — L(L + 1)5!1

6
C2-L(L+1)

6

as

aq

And for n > 2, Eq(1) gives the recusive relation

(n+2)(n+1)a,,, —nn-1a, -2na, + L(L+1)a,)x" =0
(n+2)(n+1)a,., —n(n-1a, —2na, +L(L+1)a, =0
n+2)(n+Ma,., =mn-1)+2n-L(L +1))a,

Hence the two term recursive is

_nn-1)+2n-L(L+1) 1
R O sy T (1)

Forn=2

nmn—-1)+2n-L(L+1)
U mr) 2
2Q-1)+4-LL+1)
- @) "2
C6-L(L+1)
RV

~L(L+1)

Buta, = ay hence the above becomes

6 L(L +1)(—L(L +1) )
a, = ap

12 2
Forn =3

_nn-1)+2n-L(IL+1)
BT i )m1) 8
_3@-1)+6-L(L+1)
T T B+2(B+1) ¢
C12-L(L+1)
-7 0 B

2-L(L+1)
6

Butaz = a1, hence the above becomes

12—L(L+1)(2—L(L+1) )
a5 = aq

20 6
And so on. The solution becomes
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y= i a,x"

n=0
— 2 3 4 5
=dag+ a1X + axX* + azx” + aux” + asx” + .-

:ﬂ0+ﬂ1x— 2 ﬂox +

LL+1) , 2-LIL+1) 1 3_(6—L(L+1))(L(L+1))a0x4+(12—L(L+1))(2—L(L+1) e

6 12 2 20 6

- ao(l _MHD (6—L(L+1>)(L(L+1>)x4+ ) +a1(x+ 2-LL+1) 5 (12—L(L+ 1))(2—L(L+1) .,

2 12 2 < - ¢
Or
y(x) = agyo(x) + ayy,(x)
Where
o) =1 - L(L2+ Do (6 - Ll(é + 1))(L(L2+ 1))x4 .

Where v, y; are two linearly independent solutions. The even Legendre polynomials
are obtained from y(x) for integer L = 0, 2,4, --- and the odd Legendre polynomials are
obtained from y;(x) for integer L =1, 3,5, ---.

ForL=0
y(x) = ao(1)
Since all higher terms vanish. Choosing ay = 1 then
Po(x) =1

ForL=2

~ LL+1) , (6-LIL+1)\(LL+D),

y(x)—ao(l > X ( B > x* 4
_ ao(l _2(2+ 1)x2 ~ (6 -2(2+ 1))(2(2 + 1))x4 N )
2 12 2
= ao(l — 3x2)

Since all higher terms vanish. Choosing ay = —% then

Py(x) = %(sz ~-1)
ForL =1

Since L is odd, then y,(x) is used now.

o) = al(H 2—L(6L+1)x3 N (12—L2(0L +1))(2—L(6L +1))x5 N )
_ a1(x+ 2-(141) 5 (12— (1 +1))(2— (1 +1))x5 N )
6 20 6

=mX

Since all higher terms vanish. Choosing a; =1 then

Pi(x) =x
ForL =3
Y = afx + 2—L(L+1)x3 N (12—L(L+1))(2—L(L+1))x5 N )
6 20 6
Y . 2_3(3+1)x3 N (12_3(3+1))(2_3(3+1))x5 N )
6 20 6
= x—gx?’)
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Since all higher terms vanish. Choosing a; = —g then

P5(x) = —%(x - §x3)

= %(5)63 - Sx)
Summary
Py(x) =1
Pi(x) =x
Py(x) = %(33(2 -1)
&m:;wtw)
4.8.3.2 Part2

To show any two are orthogonal over —1 < x < 1. Selecting Py(x) and P;(x), then

1 1
f_ Po()Py(x)dx = f xdx

1 1
=51,
= 2a-1)
=0

Hence Py(x) and P;(x) are orthogonal to each others. Verified.

4.84 Problem 3 (10.4.5)

Problem 10.4.5. The functions 1, x, x2,- - - are linearly independent—there is no
way, for example, to express x> in terms of sums of other powers. Use the Gram—
Schmidt procedure to extract from this set the first four Legendre polynomials (up
to normalization) known to be orthonormal in the interval —1 < z < 1.

Figure 4.23: Problem statement

Solution

Let
{0} = {1,x,x2,x3, ]

Where |x;) =1, |xp) = x, |x3) = ¥% and so on. Let

Py = |xq)
=1

Normalizing gives

Py

Py 1 _\F
ol '
Pl
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And

Normalizing gives

Py = |xp) = Pp(Polxy)

1 1
:x‘\g“@"@

1 1
—x—Ef_lxdx

=x-0
=x

p. = Py b X _\/5
1= = = = - X
1Pl fl 2 \/? 2

_1x X 3

Py = |x3) — (Po{Polx3) + P1{(P1lx3))

And

Normalizing

\/7 \/7|x3>+\/7x( —x|x3)]
2f 2dx+§xf1xx2dx)
1

1 3 1
_[x_ +§x x3dx]
213 ], 27 J,
11
33l1- ]+
11
2@
23<>)
1
3
P,
P_
27 IPal
xz—%
1 1 1
2 _1)[,2_1
\/f_l(x 3)(x 3)t;lx
2_1
8
45
Y
8 3
5 1
=./=3|x2-=
303
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And

P3 = |xg) = (Po{Polxs) + P1{P1lxg) + Pp(P;|x4))

Normalizing

1 ! 3 1 5
Ef x3dx+§xf xx3dx+§
-1 -1
1 1
—f x3dx
2J,4
1

1 lx“" !

+_
G

2

3 [x5

-1
1 1
sl

1 3
g[l - (-] + Ex[1 - (—1)5])

-1
3 1
+ Ex[x5] 1)

1 3
g[o] + EX[Z])

3 1 . 5., 1
+§xf_1x dx+§(3x —1)f

1 N 3 /3 5 5
\g <\@ lxg) + \g x(\/; xloeg) + \@ (322 - 1)<\£ (322 - 1)|x4>]

(3x2-1)

f_ 11 (332 - 1)x3dx)

_1(3x5 - x3)dx)

+ §(3x2 - 1)(0))

Ps
Pa= -3
]
x® - x
f_i(x?’ - gx)(x3 - gx)dx
x> - %x
= F
175
_ (s 3
=\ g [© ¥

_ [0
- /& (xs

_3,
5

= \/Z (52° - 3x)

These are the first 4 Legenrdre polynomials. The scaling is different from the last problem
due to difference in method used to normalize them. The following table shows the final
result and difference in scaling.

P, Problem 10.4.5 result | Problem 10.4.4 result
1

PO (.X') E 1

Pi1(x) g X X
5 (342 l(a.2

Py(x) | 43 (32 -1) ~(3x2-1)

Ps(x) \/Z (52° - 3) (523 - 3x)
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4.8.5 Problem 4 (10.4.10)

Problem 10.4.10. Solve Laguerre’s Equation which enters the solution of the hy-
drogen atom problem in quantum mechanics

zy' +(1—2z)y +my=0 (10.4.65)

by the power series method. Show that there is a repeated root and focus on the
solution which is regular at the origin. Show that this reduces to a polynomial
when m is an integer. These are the Laguerre polynomials L,,,. Find the first four
polynomials choosing cq = 1. Show that Ly and Ly are orthogonal in the interval
0 < & < oo with a weight function e~*. (Recall the gamma function.)

Figure 4.24: Problem statement

Solution

Since the ODE is singular at x = 0 then Frobenius series is used. Let

(o)
— AS n
y=x chx
n=0
oo

= Z C, x"*s co#0
n=0

Hence
o0
Yy = )1+ s)e,x e
n=0

Y’ = Y, (n+s)(n+s—1)c,x"+2

n=0

Substituting this in the ODE (10.4.65) gives

x Y+ s)(m+s =1, ™2+ (1—x) D(n+5)c, a1 +m Y e, 3" =0

n=0 n=0 n=0
(o] (o¢] o0 (o]
M +8)(m+5 =1, a1+ Y (1 +8)e, x5 = Y (1 + 8)e, X +m Y 0, X =0
n=0 n=0 n=0 n=0
(0] [ee]
Z((n +5)n+s-1)+ (n+s))c, a1 + Z(m —(n+9)c,x"* =0
n=0 n=0

To make all power on x the same, the second sum is rewritten by shifting the index. This
gives

i((n +5)n+s-1)+ (n+5s))c, a1 + i(m —(n-14+9))c, x5 1=0
n=0 n=1

Forn=0

(n+s)(n+s-1)+ 1 +5s))c,x"1 =0
(m+s)yn+s—-1)+(n+s))cyg=0

But by definition ¢y # 0. Therefore the indicial equation is
m+s)(n+s-1)+(m+s)=0

But n = 0. This becomes

ss—1)+s=0
?—s+s=0
$2=0
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Hence root is s = 0 (repeated root). Since there is a repeated root, then this is degenerate
case. First solution y;(x) is the assumed form but with s = 0. This means

o0
y1(x) = 20 ), ¢, x"
n=0

o0
- e
n=0

And the second solution is

Yo(x) =y Inx + x° Z b, x"
n=0

=1y Inx+ Z b, x"
n=0
But this solution y,(x) is not bounded at x = 0 due to Inx blowing up at origin. The
regular solution is only y;(x). So y1(x) will be used from now on and not y,(x). Therefore

[ee)
yi(x) = Y nc,x"
n=0

vy (x) = i n(n —1)c,x" 2

n=0
Substituting the above in ODE (10.4.65) gives

o0 (o) o0
x Y nn-1e,x" 2+ (1-x) Y, ne,x L +m Y c,x" =0
n=0 n=0 n=0

(o) (ee) o0 (ee)
Z nn —1)c,x" 1 + Z ne,x" 1 — Z nc,x" + Z mc,x" =0
n=0 n=0 n=0 n=0

Z(n(n -1) +n)e, X1+ Z(m —n)c,x" =0
n=0 n=0
To make powers on x the same, the index of the first sum is shifted to give

i (m+1n+m+1))c,1x" + i(m —-n)c,x" =0
n=0

n=-1

But when n = -1 the first sum is zero. So the first sum index can start n = 0 which gives
Z((n +Dn+(m+1))c,1x" + E(m —n)c,x" =0
n=0 n=0

Now the sums are combined to give

2[((11 +1n+ m+1))c,q + (m—n)c,]x" =0
n=0
Hence recursive relation is

(n+1)n+m+1))c 4 +(m—-n)c, =0

n—m
T i+ D+ (1)
n—m
TRAnAl

Forn=0

¢, = —mcy
Forn =1

B 1-m

2714 2+1°
1-m
=1Tm(—m00)
m? —m
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Forn=2
2-m
3= ———C
370244412
2-m
= c
5 ©
2—m(m?—m
= Co
9 4
(Z—m)(m2 —m)
= c
36 0
—-m3 + 3m? - 2m
= C
36 0
Forn =3
_ n-m
4= nz+2n+1c3
3-m
_ o3
9+6+1
_3-m —m® + 3m? - 2m
~ 16 36 “
(3- m)(—m3 + 3m? —2m)
= C
(16)(36) 0
m* — 6m3 + 11m? — 6m
= C
576 0
And so on. The solution becomes
Y1(X) = co + C1X + 0% + c3x° + cgxt + -+
m? —m ) —m3 + 3m? - 2m 3 m* — 6m3 + 11m? — 6m .
= Cy — McCpyX + CoXx + CoX + CoX + .-
36 576
. +m2—m2+—m3+3m2—2m3+m4—6m3+11m2—6m4+
— -m
“ S 36 x 576 *

Setting ¢y =1, the solution is

m2—m , —m®+3m*-2m , m*-6m®+1lm*-6m ,
y1(x) =1 -mx + 7 ¥ + 6 X’ + =76 X+

For integer m these are polynomials given by

Form=20
Lo(x) =1
Since rest of terms are zero.
Form=1
Lilx)=1-x

Since rest of terms are zero.
Form=2
Ly(x)=1-2x+ %xz
Since rest of terms are zero.
Form =3

2.3, -3+3(3%)-6

3
Ly(x) =1-3x+ X+ X

3, 1
=1-3x+2x%— =53
X 2x 6X
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Since rest of terms are zero. Hence

Lo(X) =1
Lix)=1-x

1
Ly(x)=1-2x+ Exz

3 1
Ly(x) =1-3x+ Exz —~ EXS
Or
Lo(x) =1
Ll(X) =1-x

1
— 2
Ly(x) = 5(2 —4x+x )
1
_ 2_ .3
Ls(x) = 6(6 —18x 4+ 9x° —x )
The following shows that L, (x), L,(x) are orthogonal on 0 < x < co with weight ™

S S 1
j;) Ly (x)Ly(x)e *dx = j; (1- x)(E(Z —4x + xz))e‘xdx

ol 1 5
- f (——x3 +=x2 - 3x + 1)e‘xdx
.\ 2V T2

1 (o] 5 o0 (o) (o)
= _—— f x3e X dx + = f x2e ¥dx -3 f xe *dx + f e~ *dx
2Jy 2Jy 0 0

To evaluate these integrals the following relation will be used

(e}
f x"e™ = n!
0

Therefore
f e X¥dx=3!=6
0
f x2eXdx =21=2
0
f xe ¥dx=1'=1
0
And

f et = e = ~(0-1) =1
0

Using these results gives
o 1 5
[ L@La@edx =26 + 5@ -3() +1
0
=0

This shows that L;(x), L,(x) are orthogonal on 0 < x < co with weight e™*. This complete
the solution.
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4.8.6 key solution for HW 8

Physics 3041 (Spring 2021) Solutions to Homework Set 8

1. Problem 10.4.3. (20 points)

142m — 2¢ P 2(m —n) "
m+2)(m+1) " (m+2m+1) "

n:O:>H0:(1,0—>H0:1, ﬂ:1:>H1:(1,1y—>H1:2y

= 1
Hn(y) = Zamym, po1 =0, e=n+ 5 am+2 = (

m=0

2(—2
n=2=qay= ( )a0:—2a0, Hy = (1—2y%ag — Hy = —2(1 — 2%
2(1-3 2 2 2 .
n=3=a= %al =3 Hsy = (y— gyg)al — Hy=—12(y — gys)

/ [Ho(y))2e™" dy :/ ey =T

o] —

o 2 o 2 0 e 2 0 o 2 z
Hy(y)]Pe ™ dy = 4 e d :—4—/ v :—4—/ d—
/;oo[ 1w)fe Y /_Ocy ¢ Y Oa _ooe Y [oJe! ¢ Va

AR Y e
- 4%% - 203/2 - a3/2 = [Hl(y)] € dy - Qﬁ

/,Oo [Ha(y)?e " dy = 4/700 (1— 2%V dy = 4/:)0 (1— 43 + dy")e ™ dy
_ F Vr,oo 4.3
=A[Vm -2V + 4(Wﬁ)a=1] =4yr(1 -2+ ﬁ) =87
1 Ho(y)Ha(y)e ™ dy = —2/7 (1 =2y eV dy = —2(v/7 — %) =0

[ " Ho(y) Ha(y)e P dy = 0, / " ) Haly)e ¥ dy = 0

The last two results are straightforward because the integrands are odd functions of y. The
general result is [ Hp(y)Hy(y)e ™V dy = 6, (270!/T0).
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2. Problem 10.4.4. (30 points)

y = Z ™, Yy = Z mepa™ Y = m(m — 1)cpz™ 2

m=0

m=0
(1—2?)y — 2z + 11+ 1)y = Z (m —1)epa™ 2+ Z — 1) —2m+ (Il + 1)]cp,a™
m=0
_Z m— 1)epa™” 2—1—2 m—1)=2m+ 1+ 1)]cpz™
—Zm—i—Q (m' + 1)cpr o™ —|—Z m—1)=2m+ 1+ 1)]cpz™
m/=0
n—2
= Z{(m +2)(m+ 1)cmya + L1+ 1) —m(m + 1)]cp p™
m=0

+ > I +1) —m(m+ D™ =0

m=n—1

For m =n, [l(I4+ 1) —n(n+ 1)]c, = 0 = n = [ because ¢, # 0 by the definition of z" as the
term of the highest power. The other possibility of n = —[ — 1 is discarded because we are
looking for solutions of n > 0.

Form=n—1,[I(l+1)—n(n—1D]c,1 =[I(l+1) =1l —1)]ep-1 =2lch-1 =0= ¢,—1 = 0.
For0<m<n-2,

m(m+1)—1(l+1)
(m—+2)(m+1)

m-

(m+2)(m+ 1)cpmia + 11+ 1) —m(m+ 1D)]cy, =0= ¢pgn =

Therefore, for an even (odd) [, all the odd (even) terms vanish because ¢;_; = 0 and the solution
is a polynomial of the [th order with even (odd) terms only, defined as B,.

l=0=>Fy=c—>F=1
l:].:>P1:Cl£l?—>P1:(L’

—2-3 1
l=2=c = co = —3co, PQ:co(l—sz)—>P2:§(3$2—1)
2-3-4 ) ) 1
l=3=c3= 35 C1= 3% szcl(x—gav?’)—>P3:§(5x3—3x)

Clearly, f P,(z)Py(z)dx = 0 for even-odd or odd-even pairs of [ and 1.

/1 Po(x)Py(z)dz = ;/1 (32% — 1)dw = /01(3:752 )de =2} —afh =0

1 1

1 1 1 ‘
/ P (z)Py(x)dx = 2/ z(52® — 3x)dr = / z(52® — 3x)dr = 2°|y — 2|y = 0
-1 - 0

1
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3. Problem 10.4.5. (20 points)

no_1
amove !

T

1) = & = |IT') = |1T) — |1 (1|1T) —x—/ o =a

! 2 g
(II']]]/>:/ dr ==, |2) = —— _un —>P1—x
-1 3 H’\H’
|11y =2 = |I1I') = |I11) — [1)(1|1I]) — |2) 2\[[[

- o
4 2 8

! 1
<IU’IIU’>=/ (xQ—)2dx—/ (x4_,$ - )dw—f—f —=—
. 3 . 3 5

9 9 4
iy, o
3) = e = 3)\/ \[apz Y2 o1

[IV) =2 = [IV') = [IV) — |I)(1|IV) — |2)(2[IV) — |3)(3|IV)

AN PR ey o

25 5x

1 1

3 6 9 2 12 6 8
I/I/: 3 Y02 —_ 6 > - 2 _ -~ =2
(IV'|1v’) /(m 53:) dx /1(1’ 536 +25J: Hdx —|—25 T7E
V')

_W_(ﬁ_?x)\/i_ —333)\[—>P3 z® — 3x)

Following the above procedure, the general result is [i =1+ 1) = P4/ % .

|1>:1:»<J|1>=/11dx:2, Iy =

|4)
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4. Problem 10.4.10. (30 points)

= xszcnxnj y/ — Z(n + S)Cn$n+s_17 y// _ Z(n + S)(TL 45— 1)Cn£l?n+s_2
n=0 n=0 n=0
xy//+(1—x)y'—|—my:Z[(n+s)(n+s_1) (n+s s 1_,'_2 TL+S ]an—ﬁ—s
n=0
= (TL + S)anxn+sfl + Z[m . (TL + 8>]Cn5(3n+s —0
n=0 n=0

For n =0, ¢, = ¢y # 0 for the lowest term 7!, so (n + s)? = s> =0 = s = 0 (repeated). The

regular solution is

y_zcnx izncnlﬂl“‘z —TLCnJ} —chnn1+z —ncn

n=0
= Z(n' + 1) % 2™ + Z —n)epa” = Z[(n +1)%¢pi1 + (m —n)ey)z™ =0
n/=0 n=0
So we have
n—m

Cn+1 = mcna

which indicates that the series stops at n = m with the highest term z™ for integer m.

m=0:>y=co,/ veldr=ci =1, co=1—Ly=1
0

m=1=c¢ =—cy, y=co(l —2x)
/er_”dx:c%/ (1—-22+2%)edr=c2(1-2+2)=c2=1, cq=1—=L=1—2
0 0
11 1,
m=2= ¢ = —2c, 02:—101:500,y:co(1—2x+§a:)
/ er_“’dac:c%/ (1—2$+2$2)26_$d$203/ (1—4$+5$2—23¢3+Z$4)e_’6d:€
0 0 0
2. 1,
=c(l—4+5-2—-2-6+ 4) ¢ =1, 00:1—>L2:1—2x—|—§x
3 1 3 1
m=3= ¢ = -3¢y, ¢3 = —501 = 500, 3=~ =~ Y = co(l — 3z + §x2 — 6333)
/ erIdm—cg/ (1 -3z + —2* — ~2)2e "da
0 0 2 6
>0 28 4 18, 1 [
:cg/o (1— 6z +122° — 3 +Z4—§x +%m) dx
28 13 1 1
— (1 =6+12-2— T 6+ 24— 1204 o -T20) = f = 1, cg = 1
3 1
—>L3:1—3x+§x —6:1:3
OO —x OO 1 2\ —x - ) 2 1 3\ ,—x
LiLoe™%dx = (1—2)(1 —2x+ zz%)e “de = (1 =32+ -z — —x°)e “dx
5 1
—1-3+2.2--.6=0
+2 2
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4.9.1 Problems listing

Physics 3041 (Spring 2021) Homework Set 9 (Due 4/16)
1. Problem 10.2.8. (20 points)
2. Problem 10.2.11. (40 points)
3. Problem 10.3.5. (10 points)
4. Problem 10.3.8. (10 points)

5. Problem 10.3.9. (20 points)
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4.9.2 Problem 1 (10.2.8)

Problem 10.2.8. Find the solutions to

(i) (D2 42D +1)z(t) =0 with z(0) =1, (0) =0
(ii) (D*+1)z(t)=0
(iti) (D3 —3D?—-9D —5)z(t)=0 (5 is a root)
(iv) (D +1)%(D*-256)z(t) =0

Figure 4.25: Problem statement

Solution

49.2.1 Partl

The ode to solve is

X7 (t) +2x'(t) + x(t) = 0 (1)
x(0) =1
x(0)=0

This is a constant coefficient ODE. Assuming the solution has the form x = Ae* and
substituting this back in (1) gives the characteristic equation (the constant A drops out)

A2eM +20eM + M =0
(A2+420+1)eM =0
Since e # 0, the above gives

A24+21+1=0
A+1)%=0

Therefore A = —1. (double root). Since the root is double, then the basis solutions are
x1(t) = eM, x,(t) = teM and the general solution is a linear combination of these basis
solutions. Therefore the general solution is

x(t) = Ae”t + Bte™ (2)
The constants A, B are found from initial conditions. At t = 0 and using x(0) = 1 gives
1=A (3)
Solution (2) becomes
x(t) = et + Bte™! (4)
Taking derivative of (4) gives
x'(t) = —e~t + Be! — Bte™
Using x’(0) = 0 on the above gives

0=-1+B
B=1 (5)

Substituting (3,5) in (4) gives the final solution

x(t) = et +tet
=1 +tet
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49.2.2 Part2

The ode to solve is
X))+ x(t) =0

As was done in the above part, substituting x = Ae’ in the above and simplifying gives
the characteristic equation
A+1=0

Hence the roots are A% = -1 or A% = ¢7'2. There are 4 roots that divide the unit circle
equally, each is 90 degrees phase shifted (anti clockwise)from the other, starting from
first root at phase —g = —45 degrees. Hence the roots are

A1 = cos(—45) + isin(—45)
Ay = cos(45) + isin(45)

Az = cos(135) + isin(135)
Ayg = c0s(225) + isin(225)

or

M=y
V2 A2
f=y iy
V2 A2
b=t iy
V2 A2
A =———-i—
2 2
Therefore the basis solutions are
(£2)
(B =e? 2
——+i— |t
xo(t) = e( 't
R
x3(t) = e( 22
[£2)
x () =e\ * 2

The general solution is linear combination of the above basis solutions, which becomes

ALEvALNT ALEVALY P BALEVALAY SR LEFALAL
2 2 2 2 2 2 2
x(t) = cqe + cpe + cae + cye
—_ — —_ R Sy —_ PR Sy — _t
=ce2 e 2 42 @2 tege 2 @2 dgge 202

V2, 2 V2, .2 V2, .2 V2, A2
t —i—t Tt t
= eTt(cle_th + czeth) + e_Tt(c3eZTt + c4e_17t)

Using Euler relation, the above can be rewritten as

e ool e Honff

49.2.3 Part3
The ode to solve is
X" (t) = 3x"(t) = 9x'(t) = 5x(t) = 0

As was done in the above part, substituting x = Ae’ in the above and simplifying gives
the characteristic equation
A3 =3A2-91-5=0
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Since one root is 5, then the above can be written as
(A=5)(A)=0
Where
A3 -312-91 -5

A=
A=5

Using long division gives
A=(A+1)>
Therefore the roots of the characteristic equation are
A =5
Ay =-1
Ay =-1
roots A,, A3 are the same. A = —1 is a double root. Therefore the basis solutions are
x;(t) = e
xp(t) = ét
x3(t) = tet

Where t multiplies the last basis x3(t) due to the double root. The general solution is
linear combination of the above basis solutions, which gives

x(t) = c1x1(t) + cpxo(t) + c3x3(t)

= 1 + cyet + catet

4.9.24 Part4d

The ode to solve is
(D +1)*(D* - 256)x(t) = 0

This has the characteristic equation equation (A + 1)2(A4 - 256) = 0. The roots of (/\4 - 256)
are given by A* = 256. Let A? = . Therefore w? = 256 which gives w = +16.

When w = 16, then A% = 16 which gives A = +4 and when w = -16, then A2 = —16 which
gives A = +4i.

The other part (A + 1°=0 gives A = -1, double root. Therefore the roots of the charac-
teristic equation are

A =4

Ay =—4

Az =41

Ay = —4i

As = -1

Ag = -1

Root A = -1 is a double root. Therefore the basis solutions as

x1(f) = e*
Xo(f) = e
x3(t) — e4it
xy(t) = e
x5(t) = et
xg(t) = te™!

Where t was multiplied by e in x4(t) since the root is double. The solution is linear
combination of the above basis solutions, which gives

x(t) = c12x1(£) + cx5(t) + c3x3(f) + cax4(t) + c5x5(t) + cex6(t)

= C1€4t + C2€_4t + C3€4it + C4€_4it + C5€_t + C6t€_t

= e7!(c5 + teg) + cret + cpe™ + o5 sin(4t) + ¢4 cos(4t)
dit 4it

Where Euler relation was used in the last step above to rewrite c3e®" + c4e™
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4.9.3 Problem 2 (10.2.11)

Problem 10.2.11. Solve the following subject to y(0) = 1, y(0) =0

(i) F-y—2y=e*
(i) (D*-2D + 1)y =2cosz
(iti) y" + 16y = 16 cos4xr
(iv) y”’ — y = coshz

Figure 4.26: Problem statement

Solution

4.9.3.1 Partl
The ode to solve is
v -y -2y =e (1)
This is second order constant coefficients inhomogeneous ODE. The general solution is
y(x) = yu(x) + yp(x) (2)

Where y;,(x) is the solution to y” -y’ — 2y = 0 and y,(x) is any particular solution to

y”’ =y’ -2y = e**. The homogenous solution is found using the characteristic polynomial
method as was done in the above problems. Substitutingy = Ae™ iny” -y’ -2y =0
and simplifying gives

A2-1-2=0
A+1)(A-2)=0

The roots are A; = -1, A, = 2. Therefore the basis solutions are
yilx) =™ (3)
y1(x) = e
Hence y;,(x) is linear combination of the above, which gives
yn(x) = cre™ + cpe*

The particular solution is now found. Assuming y, = Ae*. But ¢ is a basis solution of
the homogeneous ode. Therefore y, is multiplied by x giving

Y, = Axe™
Substituting this back in (1) and solving for A gives

y) = Ae* + 2 Axe™
yy = 2Ae*" + 2A¢* + 4Axe™
= 4Ae* + 4 Axe™

Eq (1) becomes
(4Aezx + 4Axezx) - (Aezx + 2Axe2x) - 2(Axezx) = ¢

4 A% + 4 Axe®™ — Ae®™ — 2 Axe? — 2 Axe® = 2
4A+4Ax - A-2Ax-2Ax =1

3A=1
1
A==
3
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Hence the particular solution is

1
B = e
Therefore from (2) the general solution is
1
y(x) = cre™ + cpe®* + gxezx (4)

c1,¢p are now found from initial conditions. At x = 0, (4) becomes
1= C1+Co (5)
Taking derivative of (4) gives

1 2
'(x) = —c167 + 20,2 + =¥ + —xe**
4 37 73

At x = 0 the above gives
1
0:—C1+2C2+§ (6)

Eq (5,6) are now solved for ¢y, c;. From (5)
1 = 1- Co

Substituting this back in (6) gives

1
O:—(l—C2)+2C2+§

2
==
279
Thereforec; =1 - % = g. The final solution (4) becomes

7 2 1
y(x) = §e‘x + §ezx + gxez"

4.9.3.2 Part2
The ode to solve is
y' -2y +y=2cosx (1)
This is second order constant coefficients inhomogeneous ODE. Hence the general solu-
tion is
y(x) = yp(x) + yp(x) (2)

Where y;,(x) is the solution to y” - 2y’ + y = 0 and y,(x) is any particular solution to
Yy’ =2y’ +y = 2cosx. The homogenous is found using the characteristic polynomial
method. Substituting y = Ae™ iny”’ — 2y’ +y = 0 and simplifying gives

A2-21+1=0
A-1DA-1)=0

roots are A; =1, A, = 1. (double root). The basis solutions are therefore

yi(x) = e (3)
ya(x) = xe*

yu(x) is linear combination of the the above which gives

Yp(x) = c1e* + cpxe*
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The particular solution is now found. Assuming y, = A cos x. Taking all derivatives of
this solution gives the set {cos x, sin x}. Therefore

Yp = Acosx + Bsinx
Substituting this back in (1) to solve for A, B gives

Yy = —Asinx + Bcosx

Y, = —Acosx—Bsinx
Hence (1) becomes

Yy =2y, +y, =2cosx

(~Acosx —Bsinx) —2(—Asinx + Bcosx) + (Acosx + Bsinx) = 2cosx
—Acosx —Bsinx +2Asinx —2Bcosx + Acosx + Bsinx = 2cos x
cosx(—A—-2B+ A) +sinx(-B +2A + B) = 2cosx

—2Bcosx +2Asinx =2cosx

Hence A = 0 and B = —1. Therefore the particular solution is
Yp(x) = —sinx
Eq (2) becomes
y(x) = c1e* + coxe* —sinx (4)
c1, ¢y are now found from initial conditions. At x = 0, (4) becomes
1=¢ (5)
The solution (4) becomes
y(x) = e + cpxe* —sinx (6)
Taking derivative of (6) gives
Y (x) = e + cpe* + cpxe* — cosx
At x = 0 the above gives
0=1+c,—1 (6)
Therefore c, = 0 and now Eq (6) gives the final solution as
y(x) = e* —sinx
4.9.3.3 Part3
The ode to solve is
Yy’ +16y =16 cos 4x (1)

This is second order constant coefficients inhomogeneous ODE. Hence the general solu-
tion is
y(x) = yp(x) + yp(x) (2)

Where y;(x) is the solution to ¥ + 16y = 0 and y,(x) is any particular solution to y" +
16y = 16 cos 4x. The homogenous is found using the characteristic polynomial method.
Substituting y = Ae™ in y”” + 16y = 0 and simplifying gives
A?2+16=0
A= +4i
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The roots are A; = 4i, A, = —4i. The basis solutions are therefore
y(x) = et (3)
yo(x) = e
Therefore y;,(x) is linear combination of the the above.
yn(x) = ¢ + cpe
Which can be written, using Euler formula as
Yp(x) = cq cos 4x + ¢, sin4x

The particular solution is now found. Assuming y, = A cos 4x. Taking all derivatives of
this, the basis for i, becomes {cos 4x, sin 4x}. But cos 4x is a basis of y;,. Therefore this set
is multiplied by x. The whole set is multiplied by x and not just cos 4x because the set
was generated by taking derivative of cos 4x.

The basis set for Y, NOW becomes {x cos4x, x sin4x}. Hence Ypis linear combination of
these basis, giving trial y, as

Yp = Ax cos4x + Bxsin4x (4)
Therefore

Yy = (Acos4x — 4Ax sin 4x) + (B sin 4x + 4Bx cos 4x)
Yy = (-4Asin4x — 4Asin4x - 16 Ax cos 4x) + (4B cos 4x + 4B cos 4x — 16Bx sin 4x)
= —8Asin4x — 16 Ax cos4x + 8B cos 4x — 16Bx sin 4x

Substituting the above back in (1) gives

(-8Asin4x —16Ax cos4x + 8B cos 4x — 16Bx sin4x) + 16(Ax cos 4x + Bx sin4x) = 16 cos 4x
sin 4x(-8A — 16Bx + 16Bx) + cos 4x(-16Ax + 8B + 16 Ax) = 16 cos 4x

Hence
-16Ax + 8B+ 16Ax =16
-8A -16Bx +16Bx =0
Or
8B =16
-8A=0

First equation gives B = 2. Second equation gives A = 0. Therefore the particular solution
(4) becomes
Yp = 2xsindx

From (2), the general solution becomes

y(x) = yu(x) + y,(x)
= 1 cos4x + cp sin4x + 2x sin4x (5)

1, ¢ are now found from initial conditions. At x = 0, (5) becomes
1=¢
Hence the solution (5) becomes
y(x) = cos4x + c; sin4x + 2x sin 4x (6)
Taking derivative of the above
Y’ (x) = —4sin4x + 4c, cos 4x + 2 sin4x + 8x cos 4x

At t = 0 the above gives
0= 4C2

Hence ¢, = 0 and the final solution (6) becomes

y(x) = cos4x + 2x sin 4x
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49.3.4 Part4d
The ode to solve is
Yy’ —y = coshx (1)

This is second order constant coefficients inhomogeneous ODE. Hence the general solu-
tion is

y(x) = yp(x) + yp(x) (2)

Where y;,(x) is the solution to y”” + y = 0 and y,(x) is any particular solution to y”" + y =
cosh x. The homogenous is found using the characteristic polynomial method. Substi-
tuting y = Ae’ in y”” +y = 0 and simplifying gives

A2-1=0
A ==+1

roots are A; =1, A, = —1. The basis solutions are therefore

yi(x) =€ (3)
Yo(x) = €™

Therefore y;,(x) is linear combination of the the above.
Yp(x) = cre* + e
Which can be written, using Euler formula as
Yp(x) = c; coshx + ¢cp sinh x

The particular solution is now found. Assuming y, = A cosh x. Taking all derivatives of
this, the basis for Y, becomes {cosh x, sinh x}. But cosh x is basis of y;,. Therefore this set
is multiplied by x. The whole set is multiplied by x and not just cosh x because the set
was generated by taking derivative of cosh x.

The basis set for y, becomes {x cosh x, x sinh x}. Hence y, is linear combination of these
basis, giving trial y, as

Yp = Ax cosh x + Bxsinh x (4)
Therefore

Yy = Acoshx + Axsinhx + Bsinhx + Bx cosh x
y, = Asinhx + Asinhx + Axcoshx + Bcoshx + Bcoshx + Bxsinh x
= 2Asinhx + Axcosh x + 2B cosh x + Bxsinh x

Substituting the above back in (1) gives

(2A sinh x + Ax cosh x + 2B cosh x + Bx sinh x) — (Ax cosh x + Bxsinh x) = cosh x
sinh x(2A + Bx — Bx) + cosh x(Ax + 2B — Ax) = cosh x

Hence

2B=1
2A=0

Therefore B = %, A =0and (4) becomes

Yp = 5% sinh x
From (2), the general solution becomes
y(x) = yu(x) + yp(x)
1
= ¢y coshx + ¢, sinh x + 7% sinh x (5)
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c1,¢p are now found from initial conditions. At x = 0, (5) becomes
1=¢
Hence the solution (5) becomes
y(x) = coshx + ¢ sinh x + %x sinh x (6)

Taking derivative of the above

1 1
y'(x) = sinh x + ¢ cosh x + 5 sinh x + Ex cosh x

At t = 0 the above gives
0 = cycoshx

Hence ¢, = 0 and the final solution (6) becomes

1
y(x) = coshx + Ex sinh x

494 Problem 3 (10.3.5)
Solve x?y’ + 2xy = sinh x with y(1) = 2
Solution

Dividing by x # 0

2
The integrating factoris I = el 3% = 2inx 2 2, Multiplying both sides by this integration

factor makes the left side a complete differential

d inh
E(yxz) - XZSII;Z -
d

E(yxz) = sinhx

Integrating gives

yx? = f sinh xdx + C

yx? = coshx + C

3 coshx C

ST TR 1)
At x =1 the above becomes

2 =coshl+C

C=2-coshl

Hence the solution (1) becomes

coshx 2-coshl
y(x) = ——+

X x2

1
= P(coshx + 2 —coshl)

Where x #0
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4.9.5 Problem 4 (10.3.8)

Solve
(1 + xz)y’ =1+xy
Solution
, 1+xy
¥ =1t
1 xy
= +
14+x2 1+4x2
Therefore

, X 1
Y y1+x2_1+x2

(1)

This is linear in y first order ODE. It has the form " + p(x)y = q(x). The integration factor
is

I = oJ P)ix

X
= e_f1+x2dx

But f ﬁdx = %ln(l + xz). Therefore

Multiplying both sides of (1) by this integrating factor makes the left side a complete
differential

23
= (1 + xz) 2
Integrating gives
1 _3
= [ (1+x?) 2dx+C (2)
y\/l + x2 f( )
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To integrate f L sdx, let x = tanu, then dx = (1 + tan? u)du. Hence
(1+x2)z
f%dx = f%(l + tan? u)du
(1 + xz)E (1 + tan? u)E

1
= [————d

(1 + tan? u)%

1
S
sin2 u
(1 + cos? u)
u
_ COS : du
2

NI =

(cos2 U + sin? u)

= fcosu du

=sinu
sinu
. tanu X
Butsinuy = —==£— = = . Hence
\/1+ sin2 u \/1+tan2 u \/1+x2
COS2 u
1 X

Veap™

Therefore the final solution (2) becomes

1 X
y =
VI+x2  V1+2x2

y=x+CV1l+x? (3)

+C

4.9.6 Problem 5 (10.3.9)
Solve (a) y’ + xy = xy? (b) 3xy’ +y + x*y* = 0

Solution

4.9.6.1 Parta

The ode has the form
y +p()y = q(x)y"

Where p(x) = x,q(x) = x and m = 2. Therefore this is Bernoulli ODE. The first step is to
divide throughout by ¥ = y* which gives

%+puw*=qw> (1)

Setting
o(x) =y~ (2)
Taking derivatives of the above w.r.t. x gives

wm=%ym 3)

Substituting (2,3) into (1) gives

—v'(x) + p(x)u(x) = 4(x)
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But here p(x) = x and g(x) = x. The above becomes

-0’ (x) + xv(x) = x
v’ (x) — xv(x) = —x

This is linear ODE in v(x). The integrating factor is o] 2 = 77 Multiplying both sides
of the above by this integrating factor makes the left side a complete differential

d K2 K2
a(ve_f) =-xe 2

—xdx

Integrating gives

2 2

ve 2 = —fxe_%dx +C (4)

2
To integrate f xe 2 dx, let u = x2. Then du = 2xdx. Substituting gives

But u = x2. Therefore

Substituting the above in (4) gives

v=1+e2C
But v = y}, therefore
2
yl=1+e2C
1
y(x) = 2
1+e2C

Where C is constant of integration.

49.6.2 Partb

The ode is
3xy’ +y+x2yt =0

Dividing by 3x for x # 0 gives

’ y x4
L +A=0
Y+373Y
/+1 _ X4
Y+ 3y =3y

Now this ODE has the Bernoulli form,

Y +py = q()y™
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Where p(x) = %, g(x) = —g and m = 4. Therefore this is Bernoulli ODE. The first step is
to divide throughout by ™ = y* which gives

§+puw*=qw> (1)

Setting

o(x) =y (2)

Taking derivatives of the above w.r.t. x gives
/ _3 /
v'(x) = (%) (3)
Y
Substituting (2,3) into (1) gives
1 /
~30' @) + p)o) = 9()

But here p(x) = 3%, g(x) = —g. The above becomes

1
This is linear in v(x). The integrating factorise 5t 2 gotnx 2 % Multiplying both sides
of the above by this integrating factor make the left side a complete differential

d( 1) _ 1
ax\"x)”
Integrating gives
1
v—=x+C
x
v =x?+xC (4)

But v(x) = y~°. Therefore the above becomes
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4.9.7 key solution for HW 9

Physics 3041 (Spring 2021) Solutions to Homework Set 9

1. Problem 10.2.8. (20 points)

(D*+2D+1)x(t) =0=a*+2a+ 1= (a+1)*=0, a = —1 (repeated)
2(t)=(A+Bt)e ' = z(0)=A=1
i=Bet'—(A+Bt)e'=>i(0)=B-A=0, B=A=1
z(t)=(1+t)e"

(i) (D* + 1)a(t) = 0

P H1=0=at=—1=¢Cm o — O/ — 1 2 3
. 141 . —141 . 1+ . 1—1
in/4 i3 /4 i5m/4 T /4
== — a=¢ =——— m=c¢ =— L, az=¢e = —
0 \/é o ﬂ n \/5 s \/5

aot art ast ast Ly =Lty — iy iy
x(t) = Age™ + Ae® + Age™" 4 Aze™t = Age V2  + Aje V2 4 Aze” V2 4 Aze V2
(i) (D* — 3D% — 9D — 5)a(t) = 0

a®—3a*-9a—-5=a+a®— (4o’ +9a+5)=a*(a+1) - (4a+5)(a+1)=0
(a+1)(a? —4a —5) = (a+1)* (@ —5) =0 = a= —1 (repeated), 5
z(t) = (A+ Bt)e ' + Ce™

(iv) (D + 1)%(D* — 256)x(t) = 0

a+ 12 (a* —256) = (a + 1)%(a® — 16)(a® + 16) = (o + 1)* (o + 4) (o — 4)(a + 4i) (o — 4i) = 0
o = —1 (repeated), —4, 4, —4i, 4 = 2(t) = (A + Bt)e™ + Ce™ + Fe' + Ge™™ + He™

2. Problem 10.2.11. (40 points)

(D) j—y—2y=e*

?—a—-2=(a+)(a—-2)=0=>a=—1, 2, y(r) = Ae™® + Be*™®
1
Yp(x) = Cze®*, (D* — D —2)y,(t) = C(D + 1)(D — 2)ze* = C(D + 1)e** = 3Ce* =¥, C = 3

2z

y(7) = yo(x) + y,(z) = Ae™ + Be* + AN y0)=A+B=1

1 2 2x 1
y(x) = —Ae ™ +2Be* + (++)6 = y/(0)=—A+2B+ =0
7 2 7671 + 2621 1,621
A=- B=2 S
5 5 Y(@) 5 3
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(ii) (D* — 2D + 1)y = 2cos x = 2Re(e™)
o> —2a+1=(a—1)>=0= a=1 (repeated), y.(z) = (A + Bz)e"
yo(r) = Ce™, (D* = 2D + Dy, (z) = C(—1 — 2i + 1) = —2iCe™ = 2™ = C =i
y(7) = ye(z) + Rely,(z)] = (A + Br)e® + Re(ie™) = (A + Br)e® + Re(icosz — sinz)
=(A+ Bx)e" —sinz = y(0)=A=1
y'(z) = Be® + (A+ Bz)e® —cosz =4y (0)=B+A—-1=0, B=0
y(x) =e” —sinx
(iii) y” + 16y = 16 cos 4x = 16Re(e?)
®+16 = (a +4i)(a — 4i) =0 = o = 4i, —4i, y.(z) = A" + Be ™"
yp(r) = Cwe™™, (D? + 16)y,(x) = C(D + 4i)(D — 43)xe™”
= O(D + 4i)e™* = i8Ce™* = 16e"**, C = —
y(7) = ye(z) + Rely,(z)] = Ae™® + Be ™" + RC(—Qixe’”)
= Ae"® + Be ™" 4 Re(—2ix cos 4z + 27 sin 4x)
= Ae™ + Be ™™ 4 2zsindr = y(0) = A+ B =1

, , 1
Yy (7) = i4Ae™™ — idBe™ ™ + 2sindx + 8z cosdr = ¢/(0) =i4A —idB=0, A= B = 3
idx —idx
y(x) = % + 2z sindx = cosdx + 2z sin 4z
efte”®

(iv) " —y = coshax = =5

@ —1=(a+1)a—1)=a=—1, 1, y(z) = A~ + Be*
Ypt (2) = Cyae®, (D* = 1)y, (z) = CL(D + 1)(D — 1)ze”

m 1
= O (D + 1)e® = 20,¢% = 62 Cy=1
Yy (v) = C_ze ™, (D* = 1)y, (v) =C_(D —1)(D + 1)ze™™®
. 1
=C_(D—-1)e" =20 =" 70_:—1
_x . x(e®—e"
) = ) + s (2) 1y (0) = A~ 4 Ber + AT )
inh
= Ae™ + Be" + x51121 m, y0)=A+B=1
inh h 1
Y(z) = —Ae™ + Be® + +2MOS L Y(0)=-A+B=0, A=B= 5
e +e* wxsinhz xsinhz
y(x) = st = coshz + 5

3. Problem 10.3.5. (10 points)

2y + 2zy = sinhz, y(1) = 2

2%y + 2zy = (2%y)’ = sinhz = d(z%y) = sinh z dx, / d(z%y) = / sinh z dx
r=1 1

hz —cosh1+ 2
2%y — (2%y)p—1 = coshx — cosh 1, 2%y — 2 = coshx — cosh 1, y(z) = COSMT ZCOsh L

x2
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4. Problem 10.3.8. (10 points)

(1+2¥)y =1+uzy
r T Y= 1 ,P(:l:)——/ xdx __1/d(1+x2)__1n(1+x2)+0,
1+ 22 1+ x2 1+ 22 2 1+ x2 2

*P(I)i[ep(z)y(l’)} _ 6%ln(1+z2)di[e*%1n(1+z2)y(:p)]
T

d y(z) 1
/1 p) _
+xd:r\/1+:):2 1+ 22

d y(x) 1 y(x) :/ dx :/ dx
dz \/1—’-71’2 (1+22)32 /1422 (14 22)3/2 23(1+ 272)3/2
1/ d(1+272) 1

(

Y

-= = +C

2 14 x=2)3/2 N

V14 a?
y(z) = W+Cv1+x2—x+0\/1+x2

5. Problem 10.3.9. (20 points)
! m -m, / 1-m (yl—m)/ 1-m
Y+ p)y = a@y™ =y "y +pl)y " = qlw), T +ple)y " =q(2)

v=y"" =0+ (1—m)p(x)v = (1 —m)q(z)
(a) ¥ + zy = xy°

y/

x x
5T —=2, ——/— -+ =2, V=—-=V -2V =0
¥y dry y y
P(x) = —/xdm = —x—z + ', e P )i[ep(ﬁ)v(x)] = eéi[e_év(x)] =—x
2 ’ dr dx
) = ook, Fota) = [ s [Fa-D) =k 4o
Tole Tl ze T, e zu(r)= ze zdr= [ e 5)=¢
(1) =1+ Ce% = yla) = —— = ——
v(z) 1+ Cex
(b) 3y’ +y+a?y* =0
y o1 , d1 1, IR
3x—+— a@—iy——i—ﬁ— amv(:c)—?:w) =z
/ =—Inz+ ", 7P(z)%[ep(z)v(x)] = 61”%[67 ey (r)] = x%—v(;) =z
dv v( 1 1
- _1 = =z = =
o . /dx x+C, v(x)=2"+Czr = y(x) o)~ @1 Ca)i P
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4.10.1 Problems listing

Physics 3041 (Spring 2021) Homework Set 10 (Due 4/30)

1. (10 points) Given
/ exp(—2?)dr = /7,

make a 3D integral and use the transformation from Cartesian to spherical coordinates to

evaluate
o0
/ 2% exp(—x?)da.
0

2. Follow the lecture example of deriving the gravitational field of a thin shell and calculate
the gravitational potential of such a shell over all space. (10 points)

3. Follow the lecture example of deriving the gas pressure and calculate the number of gas
particles hitting the container per unit area per unit time. Give your answer in terms of the
net number density and the average speed of these particles. (10 points)

4. Derive the expressions of the quantum mechanical orbital angular momentum operators L,,
Ly, L. in spherical coordinates. Show that

, 10,0 L-L

ﬁgr or  h2r2

in spherical coordinates. (40 points)
5. Consider 9 (z,t) for 0 < z < L. Given that ¢(0,¢t) = ¢(L,t) = 0 and

[ Asin(2rz/L), 0<x < L/2,
1/’(33’0)*{ 0, L)2<z<L,

find 9 (x,t) that satisfies the following partial differential equation:

2 _ 15

or 2 O0x2’

where A, L, h, and p are positive constants. (30 points)
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4.10.2 Problem1

Given

f edx = \n

Make a 3D integral and use the transformation from Cartesian to spherical coordinates
to evaluate £ x2e ™ dx.

Solution
3D Spherical coordinates (ISO/Physics convention)
Az

/Polar angle
o P(r,9,0)

0 |

|

r |
| > Y

x ¢ Azimuthal angle

Figure 4.27: Spherical coordinates

The relation between the Cartesian and spherical coordinates is

x = rsin 0 cos ¢
y=rsinOsing (1)
z=rcos0

The 3D integral in Cartesian coordinates is
X=00 =00 Z=00 3
f f f e‘xz‘yz‘zzdxdydz = (ﬁ )
X=—00 y=—00 Z=—00

2

But x? + y? + z? = 2 in spherical coordinates. The above now simplifies to

X =00 =00 Z =00 > §
f f f e " dxdydz = n2
X=—00 ¥ Yy=—00 Z=—00

Changing integration from Cartesian to spherical and changing the limits accordingly.
the above becomes

00 T Pp=21 5 3
f f f e | drd6de = n2 2)
=0 6=0 Y =0
The Jacobian | is
dx dx dx
dr 6 d¢
N
J= dr do d¢ (3)
dz dz dz
dr do  do
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The relation between Cartesian and spherical in (1) shows that
dx )
— =sin6cos ¢

— =rcos 0 cos
— = -rsinOsin¢
— =sinOsin¢

—— =rcosOsin¢

— =rsinfcos ¢

— =cosH
— = —rsin@

~Z -0

Substituting the above in (3) gives

sinf@cos¢p rcosOcos¢p -—rsinOsing
] =|[sinfOsin¢ rcosOsing rsinbcosq (3)

cos @ -rsin @ 0

Expanding along the last row to find the determinant (since last row has most number
of zeros in it) gives the determinant as

rcoscos¢ -rsinOsing sinfcos¢ -rsinOsing
J =cosO +rsin0
rcos@sing rsin6Ocos@ sin@sin¢g rsinOcos @

cos 9((r cos 0 cos (p)(r sin 6 cos qb) + (r sin 0 sin (p)(r cos O'sin qb)) + rsin 8((sin 0 cos (p)(r sin 0 cos qb) +
= cos 0(r? cos O'sin 0 cos? ¢ + 1? sin 0 cos O sin qb) + rsin G(r sin” 0 cos?  + rsin® O'sin’ )

= 12 sin O cos? (9(cos2 ¢ + sin? qb) + 12 sin® Q(COSZ ¢ + sin? qb)

= r2sin 0 cos? 6 + r? sin® 6

= 2 sin G(COS2 0 + sin® 6)

Therefore

J =1*sin0
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Substituting the Jacobian in integral (2) gives

00 T Pp=21 2 3
f f f e (r2 sin Q)drdecp = 72
r=0J6=0 ¢=0
us

=21 00 3
f do sin 640 f e dr = 72
$=0 0=0 r=0
7T 00 3
27'(f sin 6d9f redr = n2
0=0 r=0
—27t[cos 9]gf re " dr = m2
r=0
0 3
-27[(-1) - 1]f re " dr = m2
r=0
0 3
—2m[-2] f e dr = n2
r=0

Since r is just an integration variable, changing it to x gives

00 1
f 2 dx = =i
0 4
Which is what we asked to show.

4.10.3 Problem 2

Follow the lecture example of deriving the gravitational field of a thin shell and calculate

the gravitational potential of such a shell over all space

Solution
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4.10.3.1 Field outside the shell

12 = (Rsinf)? + (r — Rcos0)?

Thin ring of width Rd#

Spherical shell

Figure 4.28: Problem setup

The gravitational field at point p as shown in the diagram will be determined. The point
p is at distance r from the center of the shell. Due to symmetry any radial direction can
be used as z axis.

A small ring is considered as shown. The field due to this at point p is due to vertical
contribution only, since horizontal contribution cancel out. This means field due to this
ring is given by
dm
dg = Gl_2 cosa (1)

Where dm is the mass of the ring. But dm = 0d A, where d A is the surface area of the ring
between 0 and 0 + d0.

z axis

dA = (2rRsin0) Rdo

Figure 4.29: Surface area of ring

Hence
dA = (2nR sin )Rd6

258



4.10. HW 10 CHAPTER 4. HWS

Where 27tR sin 6 is the circumference. Hence (1) becomes

dA
dg = Gal—2 cosa
0(2ntR sin 6)Rd6O
=G 7

cosa (2)

Where o is the surface mass density of the shell. But from the above diagram

r—RcosO

cosa = ]

Using this in (2) gives

dg = GG(ZT(R sin G)RdQ(r - Rcos 9)

12 [
— 2 o; 1 d
= Go(27zR sin 6)(r — R cos (9)1—3 0 (3)

| is now found from Pythagoras theorem (another option would have been to use the
cosine angle rule)

- aAXIS I = (Rsin®)? + (r — Rcos0)?
A A P
< Q
S
< l
|
~
r
v ]
Rsin 6
0 R
\J ¢

Figure 4.30: Finding !

I? = (r—Rcos 6)2 + (Rsin 6)2
=12 + R2cos?2 0 — 2rR cos O + R%sin’ O
=12+ R?>-2rRcos 0

Therefore

I =Vr2 + R2 - 2rR cos 6

Substituting this in (3) gives

(2nR2 sin 9)(r —Rcos 0)
dg = Go s—do0

(r2 +R2 - 2rRcos 9)5
The above is the field at point p due to the small ring shown. To find the contribution
from all of the shell, we need to integrate the above, which gives
O=n (271R2 sin 8)(1‘ —Rcos 0)
g= Go —do
0=0 (2 + R2 - 2rR cos 6)?

" sin@(r - R cos 0
= Go(2nR?) Sinf(r=Reos®) g (4)

0 (,,2 + R2 — 2R cos 6)5
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Let u = cos 0, then du = —sin 6d6. When 6 = 0,u =1 and when 6 = 7t,u = —1. Hence
the integral (4) becomes

¢=Go (27’(R2) sin 6(r — Ru) u

—-sin @

NI W

! (r2 + R2 - ZrRu)

- Ga(ZnRZ) fl r—Ru du

- (r2 + R2 - ZrRu)

NI W

1 T 1 Ru
= Go(2nR?) f —du - du
- (72 + R2 - 21’Ru)E - (r2 + R2 - 21’Ru)E
- GG(ZT(RZ) rfl ! ~du — R 1 “ ~du
- (r2 + R2 - ZrRu)E - (72 + R2 - 21’Ru)E
= Go(2nR?)(rl; - RIp) (5)
Where
1 1
L = 5 du (6)
o (r2 +R?2 - 2rRu)E
1 u
I = f_ 1 —du 7)

r2 + R2 - 2rRu)?
( )

To evaluate I;. Let

v?2 =12 + R2 - 2rRu

Hence

%(vz) = %(1’2 +R?% - 2rRu)

2vdv = —2rRdu

Therefore

Whenu = -1,v = Vr2 + R?2 + 2rR and whenu = 1,0 = V2 + RZ — 2rR . Hence I; becomes

VZTRE2IR | [y
I = f —(—dv)

ViZiRz2R O \rR

1 Vr2+R2-2rR 1

=—— —dv

2
'R JV2iresar 0
1 ( 1)\/r2+R2—27R
rR\ v Vr2+R2+2rR
1 Vr2+R2-2rR

=R ;) N
r2+R2+2rR

1 1 1 )
"R\N2 + R2-2rR  Vr2+ R2 + 1R

1 (VP +R2+42rR - Vr2+ R2-2/R
"R\ +r2 + R2 - 2rRVr2 + R2 + 2rR
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Since r > R, the above can be written as

1 \/(r+R)2 —\/(r—R)Z

"Rl R4 -2R22 + 4

1{(r+R)-(r—-R)

-y
1 2R
"~ o)
1 2
- 8)

Now that I; is found, similar calculation is made to evaluate I, from (7)

1 u

12 = du

3

- (,,2 +R?2 - 2rRu)z
Similar to I, Let
v* = 1>+ R?> - 2rRu

Hence
02— 12 _R2
TR

Hence I, becomes

fm (2 ‘M‘fz)(

3 dv)
VAR 'R
fV1’2+R2—2‘r‘R 02 r _Rz(_vd )
0
ViZarzagR  02(=2rR)
( 1 )( ) \/;’2+R2 2rR — 42 _R2

—2rR ViZ+R2+2rR v

vdo

1 f\/r2+R2—2r 02— 12 de
= — —_— a0
2r°R* J V2 RE R v?
1 [ f\/r2+R2—2rR 2 f\/r2+R2—2rR 2 4 de )
- v

= —— —dv
2r2R?\ J yi2irevaR 2 VERGZR P

1 Vr2+R2-2rR Vr2+R2-2rR 1
= sl [ do- (7 +R2) [ —do (9)
2r°RE\ J iz ReeaR V2+R2+2R U
The first integral in above is, and since r > R
Vr2+R2-2/R
| do =2+ RE—2rR — V2 + R2 + 2rR
r2+R2+2rR
\/ (r - R)? \/ (r + R)*
(r-=R)-(r+R)
= -2R (10)

The second integral in (9) is

f\/rZ_,_RZ_er 1 1 Vr2+R2-2rR
“do=-|-
241 R2 0 0

VR RE2R JEREaR

261



4.10. HW 10

CHAPTER 4. HWS

As was done for I;, the above simplifies to

J

Vr2

Vr2+R2-2rR 1

2
+R242/R U

2R

(11)

Substituting (10,11) back in (9) gives I,

12:

1

2r2R2

1

2r2R2

2R

2r2R2

2

—2R - (1 + RZ)(—

J)

2R
r? + R?
)
r? + R? )

|
m

—(r2 —~ RZ) + (rz + RZ)

—-2R + 2R

-1+

2r2R

|

2

|

-2 +R%2+ 12+ R?

2r2R
1

|

12 _ R2

rZ_RZ

2R
7272 _R2

(12)

Now that [; and I, are found in (8) and (12), then substituting these in (5) gives

§ = Go(2mR?)(rI; - RI)

= c;a(an2

= Ga(anZ)

1 2

2 1 2R
(2-R2) r2r2-R?

1 2R
212 - R2

|

SN—

)]

= Go(2nR?) ;E:——ZRRZZ))
cma—r)
sl 2-x)

But o(4nR2) = M, which is the mass of the shell. Hence the above becomes

_GM
8§= =

This is the field strength at distance r from the center of the shell, where » > R. This
shows that the field strength is the same as if the total mass of the shell was concentrated

at a point in its center.

Now we need to obtain the potential energy of a particle of mass m located at distance
r from the center of the shell. Taking potential energy of m to be zero at r = oo, the
potential energy is the work needed to move m from oo to distance r from center of shell.

But work done is U = - f "Fdr’ where F is the wight of m which is mg. Hence

,
u=- f —-mgdr’
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The minus sign inside the integral is because the weight acts down, which is in the
negative direction. The minus sign outside the integral is because work is done being
done to increase the U of the mass. The rule is that, if work increases the potential energy
of m, then it is negative. Since U is zero at infinity, then this work is negative. Therefore
the above becomes

Therefore the gravitational potential energy of mass m at distance r from center of shell
is

_ GMm
r

U=

4.10.3.2 Field inside the shell

dA
>
VA same solid angle

F -

dA’

Figure 4.31: Problem setup

Let P be any arbitrary location inside the shell. Then the field at P due to contribution
from dA only is
2
And the field at P due to contribution from dA’ only is
odA’
()’

The mass due to dA is pulling P upwards and the mass due to dA’ is pulling P down. If
we can show that these fields are of equal strength, then this shows the net gravitational
tield will be zero at P.

dgA’ =G

But dr—? = () where Q) is the solid angle made by the area dA as shown above. By symme-
try, this is the same solid angle made by dA’. Therefore

dA _ dA’

72 ()
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Therefore the net gravitational field is zero at P. Since P is arbitrary point. Then any
point inside the shell will have zero net gravitational field.

Potential energy of a particle of mass m inside the shell is the same as the potential
energy at surface of the shell, this is because g = 0 inside the shell.

Using the same derivation of potential energy in part 1 above gives

U= mgdr

410.4 Problem 3

Follow the lecture example of deriving the gas pressure and calculate the number of gas
particles hitting the container per unit area per unit time. Give your answer in terms of
the net number density and the average speed of these particles.

Solution

AZ
AA T This length is choosen so on
N the particles within this
distance, will reach the
I v, A\t surface in unit time At
] L
~—_]| “

Figure 4.32: Problem setup

In the above diagram v, is the average speed of particles in the z direction within At time
from hitting AA. The number of particles per unit volume with velocity ¥ and 7 + dd is
given by

dn = f(v)dv,dv,dv,

Where v above is the magnitude (speed) of 7. During interval At, the number of particles
hitting the wall is dN which is therefore given by

dN = dn(AV) (1)

Where dV is the unit volume shown in the diagram. But

AV = (0, AHAA

264



4.10. HW 10 CHAPTER 4. HWS

Therefore (1) becomes

dN = dn(v,At)AA
= f(v)dvdo,do,(v,AH)AA

The above is the number of particles hitting AA of the wall in interval At.

4.10.5 Problem 4

Derive the expressions of the orbital angular momentum operators L,, L,, L, in spherical
coordinates. Show that oL
, 14 ( , 0 ) L-L
V —

=2\ o) e

Solution

L=7xp

Where L is vector whose components are the orbital angular momentum operators
Ly, Ly, L, and7is a vector whose components are the position operators and 7 is a vector
whose components are the momentum operators and X is the vector cross product. In
Cartesian coordinates, é,, éy, e, are the orthonormal basis. Hence

& & &
L=|x y z
Px Py Pz

= éx(ypz - Zpy) - éy(xpz N pr) + éz(xpy _]/px)

Hence the corresponding components of L= [Lx, L, LZ} are

Ly =yp. - zpy
L, =zp, —xp, (1)
L,= XPy — YPx
But in Quantum mechanics, the operators p,, Py, Pz are
(7
py = —ih P
e
py = —ih 3_]/
7
p, = —ih >

Hence (1) becomes

L, =y|-ih 2 —z| —ifi i))

Jz dy
L,=z —ih 0% - x| -ih 0%))
L, = x|-if (% - y|-if %))
Or
L, =—ih y% —zo%)
L, =-in zo% - xaiz) (1A)
L, =-ih xo% - y%)
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Hence in Cartesian coordinates

=~
I
&
=
—_
N
NS
=
|
=
¥l
N—

Now the above is converted to spherical coordinates. The relation between the Cartesian
and spherical coordinates is

x = rsin 0 cos ¢

y=rsin@sing (2)

z=rcosf
We also need expression for %, a%, %. But by chain rule
Jd _ddr Jdo I dp
ox  drdx  90dx ' Jodx
d _ddr Jdo Jdo
dy " drdy " d6dy " Igdy
J _Oodr Jdo 0dp
dz drdz dO0dz Jd¢Pdz

To evaluate the above, we need to do the reverse of (2), which is to relate r, 0, ¢ to x, y, z.

From the geometry we see that
r=q/x2+y?+22 (3)

cos 0 = S (4)

Ny
tan¢ = % (5)

Therefore, from (3)
2x

1
2\x2 +y? + 22
But x = rsin 0 cos ¢ and r = y/x2 + y? + z2 . The above becomes

dr _ rsinfcos¢
dx r
= sin 0 cos ¢ (6)

dr = dx

And from (4)

d( 9) = d z
6 "~ dx X%+ y? + 22
1 2
—sin 0d0 = —= “(2x) 5 dx

X2+ 2 4 22)?
( )

But x2 + 2 + z2 = r> and z = r cos 6 and x = rsin 6 cos ¢. The above becomes

1 r cos O0(2r sin 6 cos
—-sin0d0 = —= ( 3 CP) dx

T

—1? cos O sin 6 cos ¢ p
X

r3
—cos Bsin 6 cos
qbdx

r
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Hence
96 = Cosecoscpdx
r
do 1
ol ;cos@cosg{) (7)

And from (5)

o) =)

But y = rsin 0sin ¢ and x = rsin 0 cos ¢. Therefore

12 d = —r.si?GSirup i
cos? ¢ 12 sin” 6 cos? ¢
dp —rsinfsin¢ cos? ¢
dx — 12sin® 0 cos? ¢
—sin¢
= 8
rsin 6 ®)

d
The above completes all the terms needed to find ai =2 o9, 0%

X drdx | J0dx | dpdx Hence, using

(6,7,8) above gives

sing d
rsin@% (9)

J : J 1 J
S, = sin0cos @+ - cos 0 cos P~ —

Now the same thing is repeated to find a% in spherical coordinates. From (3)

2y

1
Y 4
2 \x% + 2 + 22 Y

Buty = rsin0sin¢ and r = \/x2 + y? + z2. The above becomes

dr =

dr 3 rsin @ sin ¢

dy r
= sin @ sin ¢ (10)
And from (4)

0 d z
— 050 = ————
do Ay \[x2 + 2 + 22

1 z|2

—-sin 0d0 = —= ( y) > dy

(x2 + Y% + zz)E
But x> + y? + z2 = ¥? and z = r cos 6 and y = rsin 6 sin ¢ . The above becomes

1 r cos O(2r sin O sin
—sin 0d0 = ~5 ( 3 (P) dy

()

—12 cos O sin 6 sin ¢ p

r3
—cos@sin@sinqbd

4
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Hence
0 si
cos smcpdy
— = - cos 0sin (11)
= i
v cos O'sin ¢

And from (5)

But x = rsin 0 cos ¢. Therefore

1 1

——d¢p = ——d
cos? ¢ ¢ rsin 0 cos ¢ 4
do _ cos? ¢
dy ~ rsin6cos¢
1cos¢
=- 12
rsin O (12)

d Jdd Jd d Jd d
The above completes all the terms needed to find - = Ly 240, 0 W Hence, using

y ~ ardy " d0dy " dpdy’
(10,11,12) above gives

J . . J 1 . d  lcos¢ J
a—y-sm@sm(par+rcos@sm¢36+rsmea¢ (13)
Now the same thing is repeated to find % in spherical coordinates. From (3)
1 2z
dr = - ——=——dz
2 \x% + 2 + 22
But z = rcos 0 and r = /x? + y? + z?. The above becomes
dr _rcos@
dz  r
= cos O (14)
And from (4)
d 0 d z
—— 0080 = ————
ao dz \[x2 + 2 + 22
1 1 -3
—sin0dl0 = | ——— + z(——(x2 +y? + zz) 2(22)))dz
Vx2 +y2 + 22 2
1 z?

= - dz

2124 2 3
VX2 + Y% +z
Y (x2+y2+zz)2

2 0.2 0 .2)_ 2
:(x+y+z) Zdz

3
(x2 +y? + 22)2

But % + y? + z2 = 2 and z = r cos 6. The above becomes
21200820
sin0d6 = (_)d
r
1-cos?6

=——-idiz
p
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Hence
g 1 — cos? 0
dz ~ rsin®
3 sin® 0
" rsin@
= —% sin 0 (15)

And from (5)
d

d
o aoane) = 7 (%)
Hence, since RHS does not depend on z then
do
dz
The above completes all the terms needed to find % =
(14,15,16) above gives

=0 (16)

ddr 9do  Jdp

Fr rnil et . Hence, using

a d 1 . a
5, = Cos O-- — —sin 9£ (17)

The above completes all derivations needed to find L,, L y, Lz in Spherical coordinates.
Egs (9,13,17). Here they are in one place.

_ cing J 1 0 Jd 1lsing d 9)
5y = sin cosqbé)r cos coscp a0 0.)(]5
d & lcos¢ d
G . v - . e - 1
E» Sln981n¢8r+rCOSQSlH¢86+r51n6(9¢ (13)
d p J 1 A d 17
9z VT r sin 20 (17)
Given Eq(1A) found earlier (repeated below)
L 9 d
L, =—ih U _ZB_y)
9 d
L, =-in 25~ xz) (1A)
9 d
L, =—ih xa_)—y - yx)
And given (9,13,17), then (1A) becomes
, Jd 1 d . R | _ Jd 1 lcos¢ %
L, = —ifi|y|cos 65 — —sin 986) —Z(sm@smqbg + ;cos@sm(p% S0 qu))

L - n6 8+1 0 J sing d 90" 1 98
y = —ifi|z| sin cosqbar ~ CoS coscpa(9 rsin 090 x| cos - sm 30

, ) o d 1 ] d lcos¢p d
L, = —ifi|x sm65m¢5+ ;cos@smqb% +;sm6 29

_ . Jd 1 Jd sing J
+zhysm6cos¢$ —cos@cosqi)&g rsin@%

But x =rsinOcos ¢,y = rsin0sin @, z = r cos 0. The above becomes

L = —itlrsinosi 6&1 93 olsin 0 si 9+1 B 8+1cosqb&
« = —ifi| 7 sin 6 sin ¢ cos sin 5g )~ TcosO[sin 81n(p8r - cos smcpae

ar r rsin@ d¢
" olsin o 8+1 0 Jd sing J p 8& 1 68
y = —ifi|r cos 0| sin COSQD&Y  €0S Cosqb&6 rsin0 90 rsin 6 cos ¢| cos Ep sm 30
S o d 1 .9 lcos¢p d
L, = —1h(rsm6cos qb)(sm@smqba + ;cos Qsm¢)(9—(9 + Pl %)
ol . : J 1 Jd sing J
+ zh(rsm@smqb)(sm@coscpg —cos@cosqi)o,)(9 rsin@%)
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Simplifying gives

L — ]171 7 6 ei_ 26 i _ 6 6 i+ 26, i+ QCOS(Pi
x = ~ifi| | rsin Osin ¢ cos 5, ~sin sing 8 rcos 0 sin O sin ¢ 5, +cos sing 5 TeosO—— 26
sing d )

sin0 do

d
L,= —zh(rcos 0 sin 0 cos qb— + cos? 6 cos qb— —cos 0
. J 1 d
+ 1h(rs1n6cosqbcos 65 — Jrsin 0 cos qb%)
L, = —il|rsin® 0 ind-2 +sin0 Osing-2 + cos? -2
z = sin cosqbsm(p&r sin 6 cos ¢ cos O's (p(w cos (P‘M)

J d J
, L2 . . i
+1h(rsm Qsmqbcosqb—ar+s1n951nqbcos€cosqb89 sin qi)a(p)

Or

dJ d dJ
L, = —ifi|rsin 0 sin ¢ cos 6= — sin? Qsmqba— —rcos@sm@smqba— — cos? Qqub&6 —cos 6

cos¢ d
ar

sin 0 %
sin¢g d
sin 6 &(p

d d d d
— ] ; - 2 - in2 -
L, =-in rcos@s1n9cosqbar+cos Gcoscpa(9 cos O rsm@coscpcos(98r+sm QcoschQ)

L, = —ifi{ -rsin® O cos ¢ sin cpi + cos? gbi — rsin? O'sin ) cos qbi + sin? qZ)i
: ar o) ar o)

Or
L, = —ifi| - sin® Gsinqb% — cos? Gsinqb% - cos 6:;?%)
L,= —ifi| cos? Qcosqbai@ — COS 9222 &Z) + sin Gcoscpae)
L, = —ifi sin O cos ¢ cos O sin qf)ﬁ + cos? qb% —sin 0 sin ¢ cos 0 cos qb% + sin? qb%)

Or
. Jd cosB d
L, =—ih (sm 0 + cos? 9)smqb&6 sin@cosqjﬂ)
. d sin¢g d
L, =-in (cos 0 + sin’ 6>COS¢__COSGSII’198¢)
— 2,9 20 9
L, = —ifi| cos gb&¢+sm ¢&¢)
Or
L= —itl—si i_cos@ d
x =1 qubgg sinGCOS¢8¢)
d cos@ d
= i 1
L, =-in coscpae s " <pa¢) (18)
L T i
= —1 —_—
z a(P
The above are L, L,, L, in spherical coordinates. Therefore
L-L=1I?
= L5+ L5+ 12
But
Jd cosO d Jd cosO
2 = 12— ain -2 — —~ N =sind—
Lz = ( T sinecos¢&¢)( SINO56 ~ sing < qb&qb))
92 d (cosO d cos 0 d d cos? 0 92
— _F2|cinl H o . — |qi _ 2 h——
= —h*|sin (PQZG +smqb0.)9(sm9 s¢a¢)+ pm COS¢8¢(SIH¢86)+ -y cos ¢82¢)
92 sm¢)cosqb d cos0 Jd  cos?0
] 7 2
= —h*|sin (P&z@ G2 0 9(]5 Sm@coscpcos¢)0.)(9 i Qcos gb&qu)
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And
Jd cosO d d cosO d
2 _ _32 2 _ N b = in o—
L, =-h (cosqb86 S0 smqb&qb)(COS(P&Q s sm(P&qb))
92 d [cos O cos 6 cos? 0
— _}2 2 48 7 I i _ .2
= —h*| cos (P&ZG COS(P&@(sinQ smcpaqb) s sm(p(?(z)(cosqb&@) 20 sin
92
o s cos6 o cosO 9 cos@_2 7
= —h*|cos (P&z@ Cos¢51n¢&6(51n68¢) pm sin ¢ sm(pae +—sin26 sin (p&qu
02 , 1 2 cosf  , 9 cos’O ,  J?
= —12| cos? qbo"TQ +cos¢sm¢(sm26%) + o S qu_)—Q i sin qb%)
Y B cosgsing J cos@ ., J cos?0 &_2
= —h“|cos ¢826+ o0 &(p+—sin98m ¢89+sin288m qb(92¢
And
LZ — hZ &2
z =~ %
Hence
9%  singcos¢ 9 L cosO Jd  cos?0
2 _ _ 52| cin2 _ 2 h——
L*=-h (sm (P&ZG o2 0 &(P g COSQZ)COS(P&G + -y cos (’b(?qu)
J cos@ J cosZQ 92
—12[cos? cos ¢ sin¢ o L 07
(COS qbé’z@ sec? 0 8(]5 sin0 o P90 T sinZo (P&z(p
02
2
-#{5%)
Or
92 9% (cos? 0 cos?0
2 _ —EZ(&ZQ(sm qb+cos qi)) 32q5(s1n c052¢+ ey sin qb+1))
el _sin¢g cos ¢ N cos ¢ sin ¢
8qb sec? 0 sec? 0
—hzi Cosecos¢coscp+co sin? ¢
d0\ sin 0 sin
Which simplifies to
7?2 cos?’6 92 . 9 %2 cosO 9
[? = -1 329 + sinzthqu(coszqi)+sm gb) + % sm@&Q(COS ¢ + sin? qb))
_ 92 +c0528 92 N 92 +cos€i
- J20  sin?0d%p 9%¢p  sin6 IO
_ 2 8_2+ . cos? 0\ 92 +cos@i
B 920 sin?6 ) d2p = sin0 JO
_ 2 92 . sin® 0 + cos? 0 92 +cos€i
B 920 sin? O J2p  sin6 IO
_ 2 92 s 1 92 +cos@i
B 220  sin?0 9%}  sinO IO
Hence
L-L 1 92 1 92 +cos@i
m2r2 22\ 826 sm2682gb sin6 JO
192 1 1 9* 1cosB d (20)
12920 12s5in?69%¢p 12sin6 JO
Therefore

19(,d LL 12ri+3_2+1‘92 11 92 1cos€i
2ar\’ or r&rz 72920 " 7 sin 982¢ 2 sin 0 9O
29 92 (82 COSQ(?) 1 1 9?2

2

+ =+ ===+ — |+ 5——=—
ror = dr? 720  sin0d0)  1?sin? 0 I%¢
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But the term in the RHS above is indeed the Laplacian in spherical coordinates. Therefore
in spherical coordinates

v2 ol (9(r23) LL

r2 or ar h2r2

Which is what we are asked to show.

4.10.6 Problem 5
Consider (x, t) for 0 < x < L. Given (0, t) = ¢(L,t) = 0 and

. [ 2nx
A sm(T)

o
IA
=
IA
N |~

Eb(x/ 0) =
0

N |
IA
=
IA
h

Find 1(x, t) that satisfies the following partial differential equation

d 7% 92
i _llb — ___¢ (1)
Jt 2u Jt?
Where A, L, i, u are positive constants.
Solution

Using separation of variables, assuming the solution is

Plx, t) = X(0)T(H)

Where X(x) is function that depends on space only and T(t) is function that depends on
t only. Substituting the above into the PDE (1) gives
%2
ihXT = -——X"T
2p

Diving both sides by XT # 0 gives

. T’ h2 X

e = ———

T 2u X
2uwiT X"
T X

Since both sides are equal, and left side depends on t only and right side depends on
x only, then both must be equal to a constant. Let this constant be —A. This gives the
following two ODE’s to solve

2uiT’ 3

T 2)
XY = -1 (3)

Starting with the spatial ODE in order to determine the eigenvalues A
X"(x)+AX(x) =0 (4)

With the boundary conditions transferred from the PDE as

>
—~~
=
N

I

0
X(L) =0

There are three cases to consider. A < 0,A =0,A > 0.
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case A <0

Let A = —u? for some real . Then the ODE (4) becomes X"’ (x) — u?X(x) = 0. The roots
of the characteristic equation are +u. Hence the solution is

X(x) = Aet* + Be™#*
=A cosh(yx) +B sinh(yx)

At x = 0, the above becomes
0=A

Hence the solution now reduces to
X(x)=B sinh(px)

At x = L, this becomes
0=B sinh(yL)

But puL # 0 since L > 0 and u # 0. Therefore the only option is that B = 0. But this gives
trivial solution X(x) = 0. Therefore A < 0 is not possible.

case A =0

The ODE (4) now becomes
X"(x) =0

This has solution X = Ax + B. At x = 0 this gives 0 = B. Therefore the solution now
reduces to X(x) = Ax. At x = L this gives 0 = AL, which implies A = 0. But this gives
trivial solution X(x) = 0. Therefore A = 0 is not possible.

case A >0

In this case, the roots of the characteristic equation of ODE (4) are +iy/A . Hence the
solution can written as (by using Euler relation to convert complex exponentials to
trigonometric functions) as

X(x) = Acos(\ﬁx) + B sin(\/Xx)

At x = 0 the above gives
0=A

Hence the solution now reduces to
X(x) =B sin(\ax)

Atx =1L

0=B sin(\/z L)

For non-trivial solution this requires that sin(\/x L) =0or \/K L=nnforn=1,2,--.
Therefore the eigenvalues are

nm)?
An:(—) n=12,--
This completes the solution to the spatial part. The eigenfunctions are therefore
n
X, (x) = B, sin(fnx) n=1,2,-- (5)

Now the time domain part ODE is solved. This is ODE (2) above. Now that the eigen-
values are known, ODE (2) becomes

2ui Ty
_—==)
nT, "
T, h
T, ===\
n 2‘[11 n
o h
Tn—z—w/\nTnzo
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Ayt
S
This is linear first order ODE. The integrating factoris I = e 2 . The above now becomes

d Anfty
T,e | =0
e

Integrating gives

Ayl
T,e? =C,
Anh
T,(t) =C,e?
_iAufty
=C,e 2 *

2
But A, are the eigenvalues, given by A, = (%) forn =1,2,---. Rewriting the above
gives

i 22

izt
T,(t)=Cpe = #* (6)
But since the solution was assumed to be ¢(x, t) = X(x)T(t), then

¢n(xr t) = Xn(x)Tn(t)

But the general solution is a linear combination of all the solutions 1,,(x, t). Therefore

Z L, 1)
Z 1 ()T (t)

And using (5,6) in the above, gives

i n?n?

-t
ot B, (— )C Tz
Y(x,t) = 2 sin T x|C,e
But the two constants B,,C,, can be merged into one, say D,,. Therefore the above becomes

i n?n?

W, ) = 2::1 D, sin(nfnx)e_i 2 7)

The above is the general solution. What is left is to determine D,,. This is done from
initial conditions. At t = 0 the above becomes

2mx L
Asm(L) OSxSE 00 nm
ZZD”SIH(TX)
0 §stL n=1

The above says that D,, are the Fourier sine series coefficients of the initial conditions.

To determine D,,, orthogonality of eigenfunctions sin(%nx) is used.

Multiplying both sides of the above by sin(%x) and integration both sides from x = 0
tox =L gives

27x mrt L
L Asm( 7 )sm(Lx)dx OSxS2 L 0
f = f sm(—x) Z D, sm(—x)dx
0 L 0 L L
0 Z <x< L
L
2

[ e PP oy L R
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Casem =1

The sum above now collapses to one term only when m = n = 1, since the sin functions
are orthogonal to each others, which gives

L

2 L
fo Asm( Z )sm(L )dx—Dlj(; sinz(%x)dx

N~

J

. [2mx L
Asm( T )sm(L )dx—Dl2

(8)

2nx\ (T
Lf Asm( )sm(zx)dx

The integral L A sm( T ) sm( I )dx, is evaluated using the relation

the integral becomes

L

2
j(; Asm( Zx)sin(

Hence Eq. (8) becomes

Casem =2

1
sin AsinB = E(cos(A — B) — cos(A + B))

%x)dx

L
31 2 2
A foz E(cos(%x - %x) - cos(%x + %x))dx
Af% 2TX T p f% 27zx+7z p
— — — —x|dx - — + —x|dx
> 0cos 7 T 0cos 7 T
L L
Al r2 2 3
— fz cos(ﬂ)dx—f2 cos(ﬂ)dx]
21J, L 0 L
L
L L
Al[sn@)F [s0(F)[
2 i G
L
AL[,(nx)][i L[ (3nx\]2
—| —|sin[— || - —|sin| —
2| al"M T " ERT T,
AlL né L 371%
—|—Ssm|—\|—-— —Ssm| —
2|7 L 371 L
A(L (n) L (3
2 (7M7) "3 T
A(L L
__+_
2\t 3m
LA1+1
2 3
LA(4
m2\3
L2A
T3
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The sum above now collapses to one term only, since the sin functions are orthogonal
to each others, so only for n = 2 the sum gives a result. Hence

L

2 2 L 2

2 Asinz(ﬂ)dx = sz sinz(—nx)dx
0 L 0 L

L L
A—ZDZ—
4 2
D —1A
279

casem >3

The sum now collapses to case when m = n, since the sin functions are orthogonal to

each others. Hence
2
Asin( Zx) sm(—x)dx =D, f sin ( )

J

N~

- E

Therefore (now calling m = n since a dummy index)

L
2 2 2
D, = I foz Asin(%x) sin(nfnx)dx 9)

L
The integral I = l; ZA s1n( 2 3 ) sm( 0 )dx is evaluated using the relation

1
sinAsinB = E(cos(A — B) — cos(A + B))
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2mx nmn

The integral I becomes, where here A = < B = X
I A fé 2MX  NTX 2mx N nmx P
= — _— ] - _— _— X
2 J, cos T T cos T 7

L

= ? j: cos(—(2 —Ln)nx)dx - foz cos(—(2 +Ln)nx)dx)

L

sin( (2—”)7795) 2 l [ (2+n)mx ﬂ 2
L . L.
= —||—5—=—=| —|[sin

N | s

2-n)n (2+n)7

L L

0 0

A L [ 2-n)nx % L 2+ n)nx %
2 (2—n)n[sm( L )l _(2+n)n[sm( L )l

0 0

L L
2-n)ns 2+
Lsin(( Z)HZ) Lsin((Jrz)nz)

_A
21 @-n)n (2 +n)m
_(@-mn3 _[@mng

LA sin I Sin I

Ton|l 2-n) (2+n)
(@3 [@nns

LA (2+n)sm( T )—(2—n)sm( T

"o (2 -n)2 +n)

LA ' (2—n)n% ‘ (2+Tl)71§
= O -M2+ n)[(Z +n) sm[—L ] -(2-n) sm[—L

LA ' 271% - nng ' 271% + nng
= W (2+mn) sm[f) -2-n) sm{f))
Hence
I= 271(21? nz) ((2 + n) sin(n - gn) -2-n) sin(n + gn))
= ﬁiﬂ)(z sin(n - gn) + nsin(n - gn) - ZSin(n + gn) +n sin(n + gn))
= ﬁixnz)(Z[Sm(n - gn) - sin(n + gn)] + n[sin(n - gn) + sin(n + gn)])
= ﬁi‘nz)(—Z[Sm(n + gn) - sin(n - gn)] + n[sin(n + gn) + sin(n - gn)])

Using sin(x + y) - sin(x - y) = 2cosxsiny and sin(x + y) + sin(x - y) = 2sinxcosy on
the above gives (where x = 7,y = grc in this case)
LA

n n
I= —(—2[2 Cos Tt sin —7'(] + n|2sin 7t cos —n])
27'((4 — nz) 2 2

= —271(511 nz) (—2[—2 sin gn])
= n(iL—iz)(sm En)
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Hence (9) becomes

2

"L

2LA n
e n)
4A n
= m sin o7
—4A _(n
= —ﬂ(l’lz ~ 4) sm(zn)
Now all coefficients of the Fourier sine series are found. Therefore the solution (7)

becomes

i in?n?

Y060 = Y1) + Yalo ) + 3, D sin( D)o 7
n=3

o\ i AT LR Y nm nm o\ -
=D, sin(—x)e 2u? 4 Dysin| =—=xe 2 #2 4+ )] —sin(—) sin(—x)e 2 wi?
L L A (e —a) "2 L

4A S Y ey n e
= —sm(zx)e 2u2 4 —Asin(—x)e Y sm(—n) sm(—x)e 2 w2
37 2 i\ n(n2 - 4)

Therefore the final solution is

4A  (moy -y o | -~ A & sin(n—n) P ¥ i
,t:— . - Z‘HL2+_A. = ZluLZ o 2 . (_) ZHLZ
Y(x, t) i sm(Lx)e > sm( T x)e - ,;_o, (nz _4) sin 3 xle
Whenn =4,6,8, - then sin(%n) = 0. Therefore only odd terms survive
) . 2 . nm i tin2m2
4A _Ey A 2 _imrt,o4A4 0 & sin(— _ifn?n®,
Y(x, t) = — sin(zx)e 2u® 4 sin(—nx)e Sl C— Z ( 2 ) sin(n—nx)e 2 2
37 L 2 L T i (nz _ 4) L
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4.10.7 key solution for HW 10

Physics 3041 (Spring 2021) Solutions to Homework Set 10
1. (10 points) Given

[ esp(oaar = v,

oo

make a 3D integral and use the transformation from Cartesian to spherical coordinates to

evaluate
o0
/ 2% exp(—2?)dz.
0

/ / / e_”z_'-"z_zzdxdydz=/ e‘“zdaz/ e"-"zdy/ e dz = (V7 )
o] 0o 00 s 2 o o] ™ 27 R
/ / / e TV " drdydz = / / / e " r?sin @ drdfde
—00 J —00 J —00 0 0 0
o] T 27
:/ T2€7T2d7”/ sin9d0/ do
0 0 0

([ r2edr)x2x (27) = 47r/ r?e " dr

Jo 0
OO 2 —r2 _(\/7?)3:?:/001:26—:62([1,
0

0 4

2. Follow the lecture example of deriving the gravitational field of a thin shell and calculate
the gravitational potential of such a shell over all space. (10 points)

Due to spherical symmetry, we only need to consider the potential along
the z-axis. For a point at z = r > R, the potential is

™ 27 R? sin 0df
sin Adf

= *27TGO'R2/
0o Vr2+ R2—2rRcosf
_mGoR [T d(r* + R* —2rRcost)

r o Vr2+ R2—2rRcosf

= fQWGUR V2 + R?2 — 2rRcosf "
T 0
21GoR

_47rGoR2 _ _Gm

= T R (- R = - -

Similarly, for a point at 2’ = r < R, the potential is

™ 21 R? sin 0df T sin #df
p(r) = -G 72726”}22/
o(r) 0/0 v e o Vr2+ R2—2rRcosf

_ _7GoR /’r d(r* + R* = 2rRcosf)  2nGoR
r 0

VPt R2—2rRcos®
2 R
—— ”i” [r+R—(R—71)] = —47GoR = f%”

V2 + R2 — 2rRcosf "
0
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3. Follow the lecture example of deriving the gas pressure and calculate the number of gas
particles hitting the container per unit area per unit time. Give your answer in terms of the
net number density and the average speed of these particles. (10 points)

Consider an area element AA perpendicular to the z-axis. The number of particles with
velocity between ¢ and ¢ + dv that hit AA during an interval At is

AN =dn-AA - (v,At) = f(v)v.dvydv,do, (AAAL),

so the net number of particles hitting the container per unit area per unit time is

AN o0 o0 o0
VY _/0 /oo /OO f(w)v.dvydv,duv,

T/ S
= /2 / 2/ f(v)(v cos 0)v? sin fdvdfdg
o Jo Jo

2m /2 9] )
—/ dqb/ cosﬁsin@dﬁ/ f(v)vidv —7r/ f)v*dv
0 0 0 0

The average speed of the particles is

d 1 o0 o0 o0
v = ffvdn = / / / f(v)vduydvydv,
n nNJ-xoJ-coJ-c0
2T ™ 0o e
= 1/ / / f(v)v®sin OdvdOdp = 47r/ f(v)vidv,
nJo Jo Jo nJo

where n is the net number density. So we obtain

AN 1 _
—nu.

AAANE 4

4. Derive the expressions of the quantum mechanical orbital angular momentum operators L.,
L,, L. in spherical coordinates. Show that

, 10,0 L-L

a ﬁarr or  h%r2

in spherical coordinates. (40 points)

The orbital angular momentum operator is

P lixve e x (e o0 o L 0N _R(, 0 . 1 0
AR T\ T 0 T Y rsingas ) ~ i \P98 " “sinbog )

280



4.10. HW 10 CHAPTER 4. HWS

Yy & .
o lp
0
¢
0 x
It is clear from the above figure that
€g = €,cos0 —é,sinf), é, = ¢€,cos ¢+ €ysin g, €y, = —€,sin ¢ + €, cos ¢.
So we obtain
- h 0 1 0
L= n {(—éz sin ¢ + €, cos ¢)% — [(éz cos @ + é,sin¢) cosf — é, Sine]sin&&b}
h

Z [—éx (sin qbg + cot f cos qb;(b) +éy (cosqb 0 — cot Osin ¢0¢5> +é, i)]

4
&
I

(bln¢ + cot B cos ¢ ¢>

Ly:ih<—cos¢ +Cot951n¢>a¢>
0
L. — —ih—
. Zhaqﬁ
.7 _72 2 2 _
L-L=L,+L,+L; <sm¢ +cot9005¢a¢) (sm¢ +cot900&¢a¢>
, 0 0

—_ B2 (—cosqb +cot98m¢8¢>< cosgb +cot951n¢a¢> 87258723

0? 0 cot 0?
— _ B2 2 3 ; .
=—h {8¢2+5m ¢892 ingp—— 50 0s ¢ ¢+sm¢cot9€os¢aea¢

dsing 0 02 ) Dcos¢ O ) 02
6 ae+cot9008¢>sm¢a¢ae+cot 0 cos ¢ 96 8¢+COt 6 cos? ¢8¢>2

o? dcot o?
2, 0" sin 6~ _
+ cos 502 cos ¢ 50 ¢5 96 cosd)cot&smd)ae&b

dcosp O 0? Odsing 0 0? ]

+ cot # cos ¢

— cotfsin¢ — — cot fsin ¢ cos ¢ + cot?fsin ¢ 9 a¢+cot2981n ¢8¢2

96 00 9600

”? 0 L, 0 (1 0 & 0
_—FL <&¢2+692+00t980+C0t 9W>__h (sm 08¢2+892+C0t989>

V2—Aa+ela+éL£~Aa lajLéLg
“\Tor " o0 ¢rsin08¢ "or r 00 ¢rsin08d)

_872+é 88T18+ii2+é % 1 Q+A 9eq 1 8 1 672
- Or? 00 ror T r2002 ¢ 0¢ rsinf Or G ¢ r2sinb 89 2 sin? 6 02
9 20 13  cotfd 1 # 10,0 L-L

St ror TR T o a0 T 2smZeoe T 2or or  nEe

where we have used

dé, = é4sinfdeg + égdl, dég = é,cosfdp — é,df, déy, = —é, sinfdp — égcos Ode.
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5. Consider 9 (z,t) for 0 < z < L. Given that ¢(0,t) = ¢(L,t) = 0 and

U(x,0) = { ésm@m/L), 0 /s2 v< ];/i
find ¥ (z,t) that satisfies the following partial differential equation:
00 R
ot 2u Ox?’
where A, L, h, and p are positive constants. (30 points)
O(,1) = X (2)T(8) = ihX ()T = —h—QT( AP T S

0~ wmX@
X" = -k*X(r) = X(z) = A’sin k::zc + B’ cos kx

X(0)=X(L)=0= B =0, kL = n, k:”%, Xn(x):A’sin%x, n=1,2,-

L L AL 2 2 . nmx
2 = AI 2 in2 nmr = ( = 1 A/ = — = — 1 —_—
/0 (X, (z)]7dx = (A) /0 sin” — dx 5 = 7 X, () 7 Sin—

; 2
T = _Z;LiT(t) = Tn(t) —_ Cnefin%rzht/(%u,l/z)
M

)= 3 Xa(@)Tu(t) = Y Coe ™02, [ gin 22
n=1 n=1

L2
\/7/ (z,0) sm—d —A\/7/ smﬂsm?dx
L/2 9
CQ—A\/7/ sin? ﬂ 3:—\[ \/7

) ) eiB _ o—iB eiletB) —i(a—p) 4 g—ila+p)
sinasin § = . : S
21 21

cos(a — f3) — Cos(a + )

Crs = \[ /W [ (n — 2) G +L2)7r:v] "
- Q\E {(n S (n 3 o fg)w sin ZQ)W]
e e

4A(_ )m-i—l \/f
CQerl (2m — 1)(2m n 3) C’2m+4 07 m Oa )

A —i272ht/(uL?) 2
U(x,t) = € 2 sin Zx
4 0 1)mHlg=i@m+1)>n?ht/ (2ul?) (2m+ )7z
Z sin
(2m —1)(2m + 3) L

m=0
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Chapter 5

study notes

5.1 Using potential energy

There are two types of problems related to using potential energy. We can be given V(x)
but not at the equilibrium point, or given V(x) at the equilibrium point. If V(x) given
is not at the equilibrium point, then we first need to find xy which is the equilibrium
point. This is done by solving V’(x) = 0. Then expand V(x) near x, using Taylor series
and obtain new V(x) which is now centered around x,.

The other type of problem, is where we need to find V(x) at equilibrium, from the
physics of the problem. See MC2 as example. For the vertical pendulum problem V(x) =

1, 5 . ) e
Ekx — mgx. This is the potential energy at equilibrium.

1

We need to convert the above to V(y) = Eky2 + V(0) and only now we can write

F=-V'(y) = -maw?y

From the above, w can be found.

ky = maw?y
k

w? = —
m

Remember, we can only use F = -V’(y) = -mw?y when V() has form %ky2 + V(0). Do

not use %kx2 — mgx. There should not be linear term in V(x).

V(y) should always be 0 at equilibrium. And V(y) = %mwzyz so V'(y) = mw?y
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Vertreddisp

iy e e L e
- _A -—‘.// A - e T @ A \() \Léf ﬁf;vgﬂ “/\\‘j\"’Q 19’#@'6

5.
/ b
;&«’\-A_ b o
E B
= =)

s - s ‘é: :: M 2 r_T,i
‘_MWM&M} A i :g'; = j I{/A (} ’ -

NG e

Figure 5.1: How to do the Vibration problems

5.2 Sterling approximation

f t"e~tdt = n!
0
f thetdt = f etntetdt
0 0
_ f o(nIn(H-1) gy
0
- f ef Ot (1)
0

Where f(t) = nln(t) — t. Contribution to integral comes mostly from where f(t) is
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maximum.
f'=0
n
——-1=0
t
tmax =n

Approximating f(t) around ¢,

1
f(t) = f(tmax) + (t - tmax)f,(tmax) + E(t - tmax)zf”(tmax) + -

But f'(tnax) = 0and f”(t) = —t%. Hence the above becomes

1
f(#) = f(tmax) — E(t - tmax)zi F ..

t%nax

Replacing t,.x = 1 in the above gives
£ = nlnn) ) = (¢~ mP s+
1 1

= (nln(n)—n)—i(t—n)zz+--- (2)
Substituting (2) into (1) gives

n! ~ foo e(n ln(n)—n)—%(t—n)zidt

0
~ p(nIn(n)-n) foo 6_%(t_n)2%dt
0

o0 _1 — )21
zn”e‘”f e 2 gt
0

1

V2n

Let u = t_Tn When t = 0,u = ——— and when t = o0, u = c0. And du = dt. The above
n

Van Van

now becomes -
n! = n'e™" f ) e N2n du
an
When n > 1, the lower limit of the integral — —oco. Hence

(o]
_ 2
n! = n'e ”f e\ 2ndu

-0

~ V2nn"e"\n

1
~ \2mn"2e

5.3 Taylor series, convergence

Used to approximate function f(x) at some x knowing its values and all its derivatives
at some point xy, called the expansion point.

F@) = f00) + (=) (x0) + 53 0 (ag) + -

3

, ¥ ox

smx:x—§+§+---
¥ x4

COSX=1—E+Z—“'
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To find series for In(1 + x), do this

1
f1+xdx—ln(1 +2)+C

f(l—x+x2—x3+---)dx:1n(1 +x)+C

x? i
x—E+§—--~:ln(l+x)+C x| <1

To find C, let x = 0. Hence 0 = In(1) + C. So C = —In(1). Therefore

2 3
1n(1+x):ln(1)+x—?+§—-~- x| <1
And
1
f—dx:—ln(l—x)+C
1-x

—f(1+x+x2+x3+-~-)dx:ln(1—x)+C

2 .3
B PO =Inl-x)+C
2 3
2 .3
—x—%—%+---:ln(l—x)+c W <1

To find C, let x = 0. Hence 0 = In(1) + C. So C = —In(1). Therefore
x> x°
In(1 - x) :ln(l)—x—z—ﬁ +

And In(1 + 2x) series is found as follows

1 1
f1+2xdx—§1n(1+2x)+C

1
f(l =20+ (20 - (20 + ) = S In(l+2x) + C
( 2% 4x3 8t ) 1

X—T'i‘ 3 1 =§ln(1+2x)+C x| <1

To find C, let x = 0. Hence 0 = In(1) + C. So C = —In(1). Therefore

2x%  4x3 8t
In1+2x)=2In(1) +2[x - — + — = — ---
n( X) n(1) (x > 3 : )
And
x2 x3 0O 41
e":1+x+—'+—'+---: —
2 3! pr 12
t +x3+ 254
anx =X+ — + —=X
3 15
Some others
1 2 _ .3
— =1l-x+x"—-x"+-- x| <1
1+x
1 2, .3
=l+x+x"+x°+ - x| <1
1-x

(1+x)" = Z (fl)x”

Where (Z) is binomial coefficient (fl) =

General Binomial

n!l(a-n)!"

n(n—l)x2+ ”(”—1)(”_2)x3 T

1+x)"=1+nx+
2! 3!
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This works for positive and negative 7, rational or not. The sum converges only for |x| < 1.
So, for n = -1 the above becomes

1
T =l-x+x>-x>+--
And . -
T = Y "= 1+ 2x+ 322 +4x% + -
- X n=1
And

(1+x)p:1+px+p(p—1)x2

For small x the above approximates to

1+x)f =1+px

5.3.1 Convergence

First test, check if lim,,_,., a, goes to zero. If not, then no need to do anything. Series
does not converge. Then use ratio test. If

Ay+1
ay

<1

lim
n—oo

Then converges. if result is > 1 then diverges. If result is one, then more testing is needed.
If converges, then radius of convergence R is

R = lim il
n—=00 4y 41
|x| < R
5.3.2 Closed sums
N
Mn= —N(N +1)

n:
N

Bo-n(232)

i.e. the sum is N times the arithmetic mean.

Geometric series.

S=a+ar+ar*+ar + -

For|r| <1

5.4 Derivatives of inverse trig functions

To find y = arcsin(x), always write as x = sin(y). Then Z—; = cos(y) = 4/1- sinzy =
Vl—xz.ThenZ—z =

Hence

1
Vi’

o arcsin(x) = —
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To find y = arccos(x), write as x = cos(y). Then Z—x = —sin(y) = —/1 —cos?y = -V1 —x2.

V1-x2

d
Then % = , Hence

— arccos(x) =

dx

To find y = arctan(x), write as x = tan(y)

cos?y + sin’y = 1 and divide both sides by cos?y, hence 1 + tan?y =

dy _ 1
dx 1+tan2y T 1427

1 + tan?y. Hence

dx

d
— arctan(x) =

Yy

-1

V1 —x2

d 1
. Then = = oy’ now need to use trick that

dy
dx

Then o =

cosy’

- Therefore

1+ x2

5.5 Slit interference formulas

k is wave number.

5.6 Identities

5.6.0.1 trig and Hyper trig identities

cos(i0) = cosh(0)
sin(i0) = isinh(0O)

cos2(0) + sin?(0) = 1

1
tan?(0) = ——— -1
an“(0) cos2(0)
= sec?(6) — 1
cos?(0) 1
+1= ——
sin?(0) sin?(6)
1 1

- -1
tan?(0)  sin?(6)
cot?(6) = csc?(0) -1
cosh?(6) - sinh?(6) = 1

sin(20) = 2sin(0) cos(6)
c0s(260) = cos?(0) — sin®(0)
=2cos?(0) -1
=1 - 2sin%(9)
2 tan(0)
1 — tan?(0)
sinh(20) = 2 sinh(0) cosh(6)
cosh(20) =2 cosh2(6) -1
2 tanh(0)
1+ tanhz(Q)

tan(20) =

tanh(20) =

sin(0) = cos(g - 6)

cos(0) = sin(g - 8)

sin(A + B) = sin Acos B + cos Asin B
sin(A — B) = sin A cos B — cos Asin B
cos(A + B) = cos A cos B —sin Asin B
cos(A — B) = cos Acos B + sin Asin B

tan(A + B) tan A + tan B

n =

a 1-tan Atan B
tan A + tan B

tan(A - B) = a an

1+tan Atan B

sin?(0) = %(1 — cos(20))

cos?(0) = %(l + cos(20))

1 — cos(260)
tan?(0) = —————
an”(0) 1+ cos(26)

sin A +sin B = 2sin

sin A —sin B = 2sin

—_——m
BN
N[+
oy ]
S—  —
(@)

®)

2}
—_——mm
N

+ N
oy
N~—

B A-B
cos A + cos B = 2 cos > cos >

A+B A-B
cosA—-cosB=-2 sin( ) sin( )

1

sin AsinB = E(COS(A — B) — cos(A + B))
1

cos AcosB = E(cos(A — B) + cos(A + B))
1

sin AcosB = E(sin(A + B) + sin(A — B))

1
cos AsinB = E(sin(A + B) — sin(A - B))
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acos(wt) + bsin(wt) = A sin(a)t + qb) laws of cosine

= Acos(wt - qb) a? = b% + c? - 2bccos A

A =Va? + b?

B 5.6.0.2 GAMMA function
¢ = arctan(z)

I'(n)=m-1)!
cosx +sinx = V2 sin(x + z) (n) =(m-1)
4 I'n+1)=n(mn-1)!
COSX + sinx = \/E cos(x - %) = nl'(n)

Laws of sines (a, b, c) are lengths of triangle | 5.6.0.3 Sterling

sides and A, B, C are facing angles. Forn> 1

a b c 1
T(n+1)=n! = V2nn" 2"

sin A - sin B - sinC
5.7 Integrals

5.7.1 Integrals from 0 to infinity

(o]
f x"e™*dx = n!
0

o0 1
x"e™dx = n! use y = ax
0 an"'].

f x3e¥dx = 3!
0

00 x3
fo e = 1)

Start by multiplying numerator and denominator by e™ using 1lTy =1+y+y?+--- which

® 3N®  nx 00 3 ,—nx iQ o o 1 % 3
becomes£ X Enzle dx or Zn=1£ x°e”™dx, then use z = nx, this gives En:l ﬁ£ ze “dx

or B) X~ —:4 or 3!1&(4)
fo eix= 4r(4)

1 1 1
. 4 _ L= dy _ 1 --1 . 1 poo (5-1) _
Startby using x* = yorx = y4.then -~ = Zy(“ ),now the integral becomes 7 L y(4 )e Ydy

and compare this to l;oo Yy Ve~*dx = T(s)
1

fe‘ﬁdx:f e 2 dx
0 0

Use same method as above. Will get 2I'(2) = 2

00 -(s—1)

Core) = [ Tgd s>
C(n +1)(nt) = fom exledx n>0
=T
=T
=

c(s):nz:]l; s>1

1 1
C(4):1—4+2—4+¥+"'
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= C(4)T'(4) or (31)C(4)

(e}
f x"e™*dx = n!
0

foo e dx =T(n) = (n —1)!
0

S . (oe] x3 d ’t 00 x(471)
(6] g1ven£ ey X, Write as£ 1

f use x = asin 8
az_xz

usex =atan6
fx2+ 2

I—f xe~ % dx use u = x?
0

00 1 > 1
I= f e dyx usel = — f ey = = I
0 2J_ o 2V a

ForI = KO x"e=™dx or I = f xe ™ dx. If n is even, use the trick of I(a) = f 7 e gy

and repeated I'(a). if n is odd, use I(a) = f xe ™ dx = — (mtegratlon by parts) and

then repeated I’ (a).
GAMMA:

I'(n) = f x" e *dx
0

- ot

1

= du 1 -1 . oo L 0 1
use u = x2, then — = -x 2 and the integral becomes£ x2e*dx = £ —e

dx 2

Zfo e Pdu =\
I= f xe~ ™ sinkx dx
0

I= f xe ™ cos kx dx
0

-u? (Qudu) =

For these, we will be given I = ™ ¢=% gin kx dx and then use I (a) = fo e ™ sin kx dx and

then do the I’(a) method.

5.7.2 Integrals from -infinity to infinity

f e dx = \n

f e‘”xzdxzdg a>0
f°° ot g = \ /E a>0
oo a

f X~ gy = | for n even, use the I’(a) method

5.8 Lorentz transformation

Lorentz transformation is given by

x’ B cosh@ —sinh@|| x
ct’ - —sinh@ cosh@ ||ct
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Where 0 is called the rapidity. Also

Y= x—vt
And
v =ctanh O

5.9 Rotation matrices and coordinates transformations

Rotation matrix 2D

—cos 6 —-sinf
Rg =
sin@ cos@
Rotation matrix 3D
1 0 0

R.(0) =10 cosO@ -sin0
[0 sinf® cosO |
[ cos® 0 sino)
R,(O)=| 0 1 0
|-sin® 0 cos0,
[c0s6 —sin6 0
R,(0) =|sin® cosO 0
0 0 1)

This is how to find the above. First row, is the projection of x’, y’, z" on x. Second row is
projection of x’,y’,z" on y and so on.

Spherical coordinates

x = rsin 0 cos ¢
y=rsinOsing
z=rcos0

5.10 Matrices and linear algebra

Commutator is defined as
[M,N] = MN - NM

Where N, M are matrices.

Anti-commutator is when

[M,N], = MN + NM

Two matrices commute means MN-NM = 0. Matrices that commute share an eigenbasis.
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Properties of commutators

[A+B,C] =[A,C]+[B,C]
[A,B + C] =[A,B] +[B,C]
[A,A]l =0
[A%,B] = A[A, B] + [A, B]A
[AB,C] = A[B,C] + [A,C]B
[A, BC] = [A, BIC + B[A, C]

Matrices are generally noncommutative. i.e.

MN # NM

Matrix Inverse
A1 = L AT
|A]"

Where A, is the cofactor matrix.

Matrix inverse satisfies

ATA=T=AA"

Matrix adjoint is same as Transpose for real matrix. If Matrix is complex, then Matrix

adjoint does conjugate in addition to transposing. This is also called dagger.

S A

So dagger is just transpose but for complex, we also do conjugate after transposing. That
is all.

If A;; = Aj; then matrix is symmetric. If A;; = —A;; then antisymmetric.

Hermitian matrix is one which At = A. If A" = — A then it is antiHermitian.

Any real symmetric matrix is always Hermitian. But for complex matrix, non-symmetric

1 —i
i 2/

Unitary matrix Is one whose dagger is same as its inverse. i.e.

can still be Hermitian. An example is

At =47
ATA=1
Remember, dagger is just transpose followed by conjugate if complex. Example of uni-
tary matrix is % 1 ; . Determinant of a unitrary matrix must be complex number

whose magnitude is 1.

Also |Av| = 9] if A is unitary. This means A maps vector of some norm, to vector which
must have same length as the original vector.

A unitary operator looks the same in any basis.

Orthogonal matrix One which satisfies

AAT =
ATA=1
Al =AT

commute means [MN] = MN — NM. Also [MN], =

00
0 0)
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Another property is that det(e;) = —1. Since they are Hermitian and unitary, then a;! =
a;.

If H is Hermitian, then U = ¢! is unitary.

When moving a number out of a BRA, make sure to complex conjugate it. For example
(3v1|vp) = 3(v1|v,). But for the ket, no need to. For example (v, |3v,) = 3(v;[v,)

item (f|QIg)* = ((QUg) 1f) = (IQTI)
item when moving operator from ket to bra, remember to dagger it. (u|Tv) = (Ttulv)

item if given set of vectors and asked to show L.L, then set up Ax = 0 system, and check
|A|. If determinant is zero, then there exist non-trivial solution, which means Linearly
dependent. Otherwise, L.I.

item if given A, then to represent it in say basis ¢;, we say A,(:'? = {ex, Ae;) = {ex|Ale;). i.e
A11 = ey, Aeq) and A, = (e1, Aey) and so on.

511 Gram-Schmidt

Let the input V4, V), .-+, V, be a set of n linearly independent vectors. We want to use
Grame-Schmidt to obtain set of n orthonormal vectors, called v;,v,, -+, v,,. The notation
(V1,V;) is used to mean the inner product between any two vectors. The first vector v,
is easy to find777

Vi

- 1 1
=, M)

The second
vy = Vy —01(vq, V)

Where v; means v, but not yet normalized. Before we normalize v}, we need to show
that (v, v5) = 0. But
(v1,03) = (v1, (V2 — 010y, V2)))

Expanding the above gives
(v1,v5) = (01, Va) = (01,0101, V2))

But (vy, V;) above is just a number. We can take it out of the second inner product term
above. The above becomes

(v1,05) = (01, V) = (01, Vo) vy, 01)
But (v, v1) =1, since v; is normalized vector. The above becomes
(v1,05) = (vy, V) = (01, V)
=0

Now we normalized v,
4

U

V{03, 03)

Uy =

Now we find v3

vy = V3 = (0101, V3) + 020y, V3))
%
V{03, v3)

U3 =

And so on.

5.12 Modal analysis

given |¥(t)) + M|x(t)) = 0, find the eigenvectors and eigenvalues of M. Then @ = [V;, V;]
is 2 X 2 matrix, transformation matrix. where each column is the eigenvector of M. Then
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1X(1)) = ®T|x(t)) and |x(t)) = @ |[X(t)). The new system becomes IX(t)) + QIX(H) =0
where Q2 is now diagonal matrix with eigenvalues of M on the diagonal. Solve using this.
First transform initial conditions to X(t). Then trandform solution back to |x(t)) using
x(t)) = @ |X(1)).

5.13 Complex Fourier series and Fourier transform

Given f(x) which is periodic on 0 < x < L, so period is L, then Fourier series is

1 & g
f(x)~—L D e

n=-—0o

Where
cy = (nlf)
21

1 fo()—sznxd
= — x)e X
VL Jo
in=—

The basis are |n) = L e"T* and L is the period.

VL
Fourier transform for non periodic f(x) is (sum above becomes integral)

1 o
) = 5 f ek

Cx = f " f(x)e *dx

-0

This gives rise to

1 o
o -5) = o f £ike=) g

5.14 RLC circuit

V(s) = I(s)(R + Ls + é)

1
I(s) = ——=Vi(s)

R+L5+a

As differential equation for current

R 1
I"t)y+2=I'(t) + —=I(t) =
() +25:1'() + 751 = 0

5.15 Time evaluation of spin state

H=-u-B
eB
=5,
mE
_eBi|l 0
2me\0 -1
The eigenvalues are E, = %m, E_= —%m

L d
zhalX) = H|X)

1X)

_eBh 1 0
2m,\0 -1
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Hence
ixl(t) _ ¢B x1(t)
)| 2me|xy(t)
B
i (0) = 53— ()

e

ialt) =~ -13(0)

e

The solution is

1 .
xq(t) = ﬁe_lyt

1 .
xo(t) = ="
2

1 |e
X)y=—
| > \/E ei)/t
Where y = %
h h
|X) =c.lSy = E) +c |5y = _5>
h
. = (S =310
1 1 et
NEIRNAN s
V2 2 et
1,. .
— E(ezy/t + e—zyt)
= cosyt
Probability to measure S, = Z att > 0is P(t) = |c+|2 = cos? yt. And
h h
XY =c.lSy = E> +c|Sy = _E>
i
¢ = (Se=—5%)
11 et
IV
V2 V2 et
1,. ,
— E(ezy/i.‘ _ ez]/t)
= isinyt

Probability to measure S, = —Z att > 0is P(t) = |c_|2 = sin? yt

5.16 Pauli matrices, Spin matrices

Pauli matrices There are 3 of these. They are

01 0 —i 10
o1 = ,01 = ,01 =
L CY R PR G N

There are also sometimes called «a,, ay, ;. Not to be confused by component x, v, z of an

= I. Also they are all Hermitians

1
ordinary vector. Important property is that 02 = [
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(i.e. A' = A). This is obvious for the first and last matrix, since there are symmetric and
real (we know if a matrix is real and also symmetric, it is also Hermitian.). Another
important property is that they are unitary. i.e. A" = A7, Also any two anticommute.
This means [M, N], = MN + NM.

[ox, ay] = 2io,
For Pauli matrices, [al, ] 2i Y} €;30%. Hence

[01,02] = 2io3
[02,01] = —2i0
[01,03] = —2i0,
[03,01] = 2io,
[02, 053] = 2ioy
[03,02] = —2i0;
Eigenvalues of Pauli matrices can be only 1, -1.
Tr(o;) =0

And Pauli matrices do not commute. This means 0,0, # 0,0y.

1. .
Electron 7 spin matrices

Spin matrix | Eigenvalues | Eigenvectors

ﬁ—O 1 hooh
S.=1 g
1 0

N
.
N
%)~
Sl
S —

SN

And using [S;, S;] = ifi ¥, €;%Sk. Hence [Sy, S,] = ifiS; and [Sy, S] = —ifiS, and [S,, S;] =
—ihS3 and [52, 53] = lﬁsl and [SSI Sl] = —ihSZ and [53, 52] = —ihSl. Hence

[S:5] =
[S,.S ]_ ~iiS,
[Sx/ 521 =~
[S2, 5] = lﬁS
[S,.5:] = S,
[S.,8,] = -ins,
And
L
Si = EGZ‘
And
012 =1
And
sts, =82-82-ns,
= 12
Sts_=82-S2+1S,
= 12
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Where S? = thl.

Electron 1 spin matrices

Spin matrix Eigenvalues | Eigenvectors
HEEEE e
010 2 V2
5. = 2 1,0,-1 - L
x — _2 1 O ]. A2 \/5 0 \/E
010 1 1 1
2| V2] 2
S I T N Y
0 -i 0 2 V2 2
1 . i i
0 i O 1 1 1
2 | V2] 2
0 0 1 0 0
S,=lo 0 o L,0,=% 1 0
z — \/E, 4 \/z
00 -1 o| o] |1
And
StS, =8%-S52-hS,
= 12
StS_ =52-S2+HS,
= 12
2 00
Where S? = 2421 = #2|0 2 0.
00 2

If we are given state vector V and asked to find expectation value when measuring along

x axis, then do (V|S,|V)

5.17 Quantum mechanics cheat sheet

5.17.1 Hermitian operator in function spaces

If QQ is Hermitian operator, then it satisfies
Q)" = (v|Qlu)
( f u*(x)Q[v(x)]dx)* - f o (OQ[u(x)]dx
f w()Q[v* (0)]dx = f 0 () Q[u(x)]dx

For this, the boundary terms must vanish. For example, for the operator QO = —

5.17.2 Dirac delta relation to integral

1 (o
o) = o f_ e

d

dx
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5.17.3 Normalization condition

f W W, Dt = 1

5.17.4 Expectation (or average value)

If a system is in state of W, then we apply operator A, then the average value of the
observable quantity is the expectation integral

(4) = 1Ay
[ weAwdx
) [ wwax
Note that f_ : W(x)W(x)dx =1 if the state wave function is already normalized.
Given an operator X, acting on W(x, t) then
XW(x, t) = x¥V(x,t)

The expectation of measuring x is (assuming everything is normalized)
<X> - f W (x, HRW(x, £)dx
_ f W (x, W (x, H)dx

= (x)

Given system is in state ¢(x). What is the expectation value for x measurement. Is this
same as writing (X). Yes. it is

(plxlp)

5.17.5 Probability

The probability that position x of particle is between x and x + dx is [\W(x, t)[°dx. Hence
W (x, t)l2 is the probability density.

Note that
)= [ 1weoPax
W) = [ W@y

Given |¥) = a|\V;) + b|\W,) then the probabilities to measure a or b are

2

|al
P(a) = ———
jaf® + b)*
b
P(b) = ————
jaf? + b

5.17.6 Position operator X
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eigenvalue/eigenfunction

X|x) = x|x) Where x is eigenvalue and [x) is position vector.

orthonormal eigenbasis {x)} —

(x|x"y = 6(x — x7)
[ o dx =1

for —oo < x <

Vector form to function form | (x[¢)) = 1(x) probability at position x

Expansion of state vector [i)

) = [l = [ )

Eigenfunctions in deep well

Not defined for position operator

Operator matrix elements

(x|x[x") = x’6(x — x") Operator is diagonal matrix.

5.17.7 Momentum operator p

eigenvalue/eigenfunction

pldy) = plg,) Where p is eigenvalue and |¢,) is momentum eigenstate

orthonormal eigenbasis

flop)) —

(Bplty) = 0(p—p')
. for —co <p < 0
[ 19¢pldp =1

Vector form to function form | (x|¢,) = ¢, (%)

Expansion of state vector |{)

W) = [ lopXplpdp

General Eigenfunction

(¥ly) = 9y() = = exp( %)

Operator matrix elements

(xlplx"y = =iho(x — x’ )% Operator is not diagonal matrix.

5.17.8 Hamilitonian operator 4

H=T+V

Where T is K.E. operator and V is PE. operator. Recall that p = mvand T = %mvz. Hence

to P2

T oom’

eigenvalue/eigenfunction

Hpg ) = E,lg) Where E,, is eigenvalue (energy level)

Orthonormal basis of operator

(Wr, (OlYE, (x)) = 6(E, — Ey)

- forn=1,2,--- (check)
[ 1)@, | dE =1

{lYe )} —

Vector form to function form

(xE,) = g, (x)

Expansion of state vector [i)

|1PE> = En W/En ><1PE,, |1P>

Eigenfunctions for deep well problem

(xlpg) = P(x) = \/% Sin(%) 0<x<L E o= 2R

ron 2mL2

0 otherwise

Operator matrix elements

_K2

(x|HIX'Y = %mvz +V(x) = 6(x - x’)(% + V(x’)) =6(x - x')(—i + V()

2m dx’?

)

The ODE for deep well is derived as follows.

HIP = Eq ¢
(T+V)p=Eu
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. R
But V = Oinsideand T = & = i 4

= Hence the above becomes

_}2 42

%@wm = Ey(x)
d? 2mE
Y + () = 0
dZ
TSV + () = 0

Where k = 4/ 2’:—2]5 . The eigenvalues are k, from solving for boundary conditions at x = L.

Now solve as standard second order ODE, with BC y(0) = 0,y(L) = 0. The solution
becomes

Y(x) = Y(x) = \/% sin(k,x) O0<x<L
0 otherwise

. nrt
Where eigenvalues are k,, = /= 1,2,3,---

5.18 Questions and answers

5.18.1 Question1

Problem says that the system is in some general state ¢(x) and asks what is the proba-
bility distribution to measure momentum p ?

solution

The probability is |<¢)p|¢)|2. What goes in the bra is the eigenstate being measured. What
goes in the ket is the current state.

pld = [ @pberalppax

= [ oyl
_ f & (P ()dx
ipx
Now, for the deep well problem for 0 < x < L, we should know that ¢,(x) = NorT en
\/E sin == O<x<L
and ¢ (x) will be given. For example ¢g(x) = L L . Hence
0 otherwise

L 1 -ipx D nTx
@)= [ eT\/isin—dx
W= NI

Now evaluate this integral and at the end take the square of the modulus. This will give
the probability distribution to measure p. The above was problem 4, in HW?7.

5.18.2 Question 2

Problem says that the system is in some general state ¢(x) and asks what is the proba-
bility distribution to measure position x ?

solution
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The probability is |<x|¢)|2. What goes in the bra is the eigenstate being measured. What
goes in the ket is the current state.

oy = [ Z<x|x'><x'|¢>dx'
= [ ot wpas
= y()
Hence prob(x) = [(x9)]| = [ (x)P

5.18.3 Question 3

Problem says that the system is in some general state 1£(x) and asks what is the proba-
bility distribution to measure position x ?

solution

The probability is |<x|¢)|2. What goes in the bra is the eigenstate being measured. What
goes in the ket is the current or given eigenstate.

L
(xly) = fo G Y )l

_ f o W)
0

= P(x)
Hence the probability is |¢(x)|2. Now, for the deep well problem for 0 < x < L, we know
2 nmx
-sin—  0O<x<L
that g, (@) =4 VI *=% then
0 otherwise

Is this correct? Checked, yes correct.

5.18.4 Question 4

Problem gives that the system is in some general state ¢,(x) (i.e. momentum eigenstate,
not energy eigenstate as above, due to having done momentum measurement done
before) and then problem asks what is the probability distribution to measure position
x?

solution

The probability is |<x|¢p)|2. What goes in the bra is the eigenstate being measured. What
goes in the ket is the current eigenstate.

L
(xlpp) = j; (XXX | ydx’

- [ " 80x - )y ()
0
= ¢p(%)
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ipx

ipo s 2 Px
Hence the probability is |(pp(x)| - we know that ¢, (x) = W i then
2
2 1
@) = er
|¢P | \/ﬁ
1
~ 2mh

Which is constant. So if we measure momentum first, then ask for probability of mea-
suring position x next, it will be the above. Same probability to measure any position?
Is this correct? yes.

5.18.5 Question 5

Problem gives that the system is in some general state ¢,(x) and asks what is the proba-
bility to measure momentum p’?

The probability of measuring momentum p’ given that system is already in state [¢,) =

p) is [(hpld,)|” where
(Pprlpp) = f_ Z(CprIX)(xlqbp)dx
:~[:@@VY@@ﬁix
= [ oy, wax

—foo ! ex (—ip’x) ! ex (ip—x)dx
-0 \271H P h V27th P h

1 oo i(p—p’)x
= ﬁj:w exp(—h de

but 6(p) = i f_ : eP*dx, therefore (5(p —~ p’) = % f_ : J ) gy

Letu = %, then du = %dx. The integral becomes
f © i(v—p")u
<¢p’|¢p> = %ﬁme(p p) du
1 4
= —(2mo(p-p))
=o(p-p)

5.19 Position, velocity and acc in different coordinates
system

In polar, just remember these

7= pe,
dr = e,dp + &,pde
L dr
U=—
t
_,dp , do
~Car TPy
d, .
2150 = P
d, .
7% = 98
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5.20. Gradient, Curl, divergence, Gauss ... CHAPTER 5. STUDY NOTES

Given7 = p¢,, then

S d
U= pe,+p7e
= pe, + P¢é¢
And similarly for a.
7= (p-pd?)e, + (o +2p¢)e,

This is much better than the alternatives.

In Cylindrical
de, = eydep
déql) = —épd¢
de, =0

dr is different coordinates

Cartessian
dr = 2,dx + &,dy + &,dz
Cylindrical
dr = 2,dp + eppd¢ + 2,dz
Spherical

dr = &,dr + grd0 + 2,7 sin Od¢

v is different coordinates

Use these for finding Lagrangian.

In Cartessian

y
Polar
U= pe, + ppeg
Spherical
U= pe, + pteg + psin Oe,
R ! .1
VV(p,0,9) =2,V, + o Vot 2y o5 Vo

5.20 Gradient, Curl, divergence, Gauss flux law, Stokes

The gradient V is vector operator. In Cartessian

A

9,00
dx Yoy “9z
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5.20. Gradient, Curl, divergence, Gauss ...

In Cylindrical
V=e i +e i +e
=¢,— +eyp— +6,—
Pap " OPg T %0z
of
I
_| .9
Vf= P35
of
9z
In spherical
Voo d . 10 s 1 0
=e,— Cp——— e, ——
Pop Ppao " Ppsin6de
2f
ap
_| 1
Vf - p do
1 of
psm@%
For conservative force
F=-VV
. - _ R to _ _ oo
Notice that —fF A7 = fVV ar = fvom dVv = V(to) V(from) also 56P dr = 0 for
conservative force.
The curl in Cartessian
ey & &
= J J d
VXF= e (9—y e
F, F, F,
In Cylinderical
ey &y &
= Jd 194 a
V XF = &_p ;@ e
F, Fy F,
In Spherical
e &y e
= d 1 Jd 14
VXE=I5" —5n636 5o
F, Fy Fg
Divergence This is scalar. see cha7b.pdf
V-F

Gauss law

From Wiki

CHAPTER 5. STUDY NOTES



5.21. Gas pressure CHAPTER 5. STUDY NOTES

It states that the flux of the electric field out of an arbitrary closed surface is proportional to the
electric charge enclosed by the surface.

Gauss’s law can be used in its differential form, which states that the divergence of the electric
field is proportional to the local density of charge.

surface integral
—_—

ffﬁ-dg:fv(v-ﬁ)dv

line integral
—_—

9§P~d? :L(V x F) - ds

Also divergence of the curl is zero.

Stoke’s theorem

V- (VxF)=0
From the net

The characteristic of a conservative field is that the line integral around every simple closed
contour is zero. Since the curl is defined as a particular closed contour line integral, it follows
that curl(gradF) equals zero.

And curl of a gradient is the zero vector.

V x (VE) =0

5.21 Gas pressure

average speed of gas particles is v,,,; or take avergae of the squares of each particle

velocity and then take the square root at end. Or

_ [3RT
D=4/ —
m

Where R is the gas constant, T is gas absolute temperature and m is molar mass of each
gas particle in kg/mol.

dn
dn = f(v)dv,dv,dv,

Where dn is the number denity of gas particles (how many particles per unit volume
with velocity between v and v + dv)

Average speed of particles

_ JJ [of@dodo,do,

n
1 (oe] (o] (o]
= f f f of (v)dodv,do,
(e
- _f f f vf(v)(vz sin@)dvd@ckP
nJp=06=0"0v=0

1 27T T )
_Z f o [ sin6de f Fo)Pdo
nJe=0 6=0 v=0

1 00

= —(2m)(~ cos 0); f(v)o*do

n v=0

_ —%(271)(—1 1) f : F(o)obdo
At ™
== f . F(o)odv
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5.22. Table of study guide CHAPTER 5. STUDY NOTES

Pressure

Hence

dF = FydN
2mo,

S

= 2mov?dnAA

)dnAAvZAt

P_fﬂ
~AA
=2m f v2dn

=2m f dv, f do, f f(v)otdo,

This integral can be evaluated in spherical coordinates.

net energy density of gas

Hence

1
E= fimvzdn
1
g [
1
:Emfff(v§+v§+v§)dn
3
= imfffvgdn
3 (o] (o] (o] 2
= Emf dvxf dvyf vz f(v)dv,

= 3m f dov, f do, f 02 f (v)do,
—00 —00 0

2
P=-E
3

And E = gnKT — P = nKT for ideal gas.

5.22 Table of study guide

chapter topics

ch7c.pdf PDE’s, seperation of variables, Lagrangian method

ch7b.pdf Position, velocity and acc in different coordinates. Gradient, Curl and
Div.

ch7a.pdf Multivariable calculus. Jacobian. Gravitional field for shell, Pressure
and energy of gas

chéb.pdf First order ODE’s. Second order Constant coefficients. under,over and
critical damping

ché6a.pdf Second order ODE’s. Variable coefficient. Power series methods. Her-
mite ODE.

ch5c.pdf Function spaces. Hermitian operators. Complex Fourier series.

Fourier transform. Deep well probem

oU6b




5.23.

Questions CHAPTER 5. STUDY NOTES

ch5b.pdf Linear vector spaces and QM. Probability when making measure-

ments. Commutation. Schrodinger equation. Spin operators Sy, S, S..
Pauli matrices. Time evolution of spin state. Solving mass/spring prob-
lem using normal modes.

chb5a.pdf Linear vector spaces. Linear independence. Gram-Schmidt. Linear

operators. Finding eigenvalues and eigenvectors for matrices. Coordi-
nates transformation between orthonormal basis.

ch4.pdf Matrices and Determinants. 2D rotation matrix. Lorentz transforma-

tion. Pauli matrices. Levi-civita. Properties of determinants. Solution
to linear equations. Cramer rule. Dimensional analysis.

ch3.pdf Complex numbers. Taylor series expansion. Solving x" = 1. Integrals.

Completing the squares for f ~ etin gy, Gaussian integral, N slit in-
tererence. Single slit diffraction.

ch2.pdf Gaussian and exponential integrals. Evaluating Gaussian integral.

Evaluating " x"edx = n!. Zeta function. Gamma function. Ster-
ling formula.

chl.pdf Taylor series. Convergence test. Taylor series of common functions.

Using Taylor series to find equilibrium point for small oscillations.
Pendulum.

5.23 Questions

1.

Do all spin matrices always have same eigenvalues? this is the case for 5,5, S,
for electron. NO. depends spin number.

h h
. How do we get the probability of measuring S, = —> or 5, = - tobe %? is it because

there are two eigenvalues, and it is 50% each? see class notes lecture 5b. page 9.

h
Answer: Current state vector is |S, = §>'

h

. Does the order matter? In page 5, lecture 5B, could we do C, = (S, = 5|Sz = g) or

C. = (5. = 3IS, = 3) ? Resolved.

. Why is (V|S5,|V) gives the The statistical average of measuring S, given current

state vector is |V) ? Resolved.

. Can we just move the H operator to RHS, as in " + Mx = 0 instead of x”" = —Mx.

This way no need to work with negative eigenvalues? Yes.

. HW 5, last problem, I do not see how M, N share all the 3 eigenvectors. I get only

one common eigenvector. I also do not understand the comment in my solution
to refer to set of vectors as basis? What does this mean? Also, we know M, N
commute, and so they share a common basis, but the question is asking which
ones they share? Resolved.

. For Pauli matrices, [ai, a]-] = 2i 3} €;0y. and for spin % it is [Si, Sj] = il %, €;xSk- So

what is it for spin 1? is it still [Si, S]-] =ih Ek €ikSk ? Yes.

. I'think W(x, t) is just the eigenfunction corresponding to the eigenvalue just mea-

sured. So if the operator used is the position operator X, then it is called W(x). If
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5.24. Appendix CHAPTER 5. STUDY NOTES

the operator used is momentum operator P, we call it ¢,,(x), but should it be really

be W,(x)? If the operator is Hamiltonian H, then the eigenvalue is the energy level
E and the W is called Wg(x). Any of these are also called the wave function W(x).
Is this correct? I think so.

5.24 Appendix
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