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1 Problem 2.2.3

Evaluate f eV¥ dx. Show that f e dx = T(Z)

Solution

Let y = 4/x. Therefore

dy 11
xT2vE
11
=2y
And
dx = 2ydy

When x = 0, y = 0 and when x = 1,y = 1. Substituting this back into £1 V¥ dx gives
£1 eY (Zydy) =2 Ll yeYdy. This integral is evaluated using integration by parts.

1
udov = uvlé —f vdu
0

Let u = y and dv = ¢Y, then du = dy and v = ¢Y. The above becomes

1 1
Z(f yeydy) = Z(uvlcl) —f vdu)
0 0
1 1
:Z(yey| —f eydy)
0 Jo

-2((e1-0)- 1)

=2(e-(e-1))
=2(—-e+1)
=2
Hence .
f eVidy =2
0
For the second part of the question asking to evaluate fc e dx, let
1
X = y4
Then
dx 1 (}1—1)
ay 1

When x = 0,y = 0 and when x = oo,y = c0. Hence the above integral becomes

e[ ofol

= % fo " ey (1)

Comparing the above to integral (2.1.39) in the book which says

Fmy= [ yrevd 2
() foye y (2)
I'(n)=F(n-1) (3)



. _1, .
Then putting n = 7 in (3) gives

Which is (1). This means that

Hence
1 (3) 1 (1
— Ydy = -T'| - 4
4j;y ey =117 (4)
To obtain the final form, the following property of Gamma functions is used
I'(n+1)=nl(n)

1
Which means that when n = v the above becomes

o))
-3

co (1 5
ij; y(4 1)e_ydy:f'(1)

0 5
iy =12
[ e=r(y

Which is what we are asked to show.

Using this in (4) shows that

Which implies



2 Problem 2.2.10 (or part a of problem 2)

Problem 2.2.10. Consider

/11:—1
I = .
0 lnt

Think of the t int — 1 as the a = 1 limit of t®. Let I(a) be the corresponding
integral. Take the a derivative of both sides (using t* = e®*'™t) and evaluate dI /da
by evaluating the corresponding integral by inspection. Given dI/da obtain I by
performing the indefinite integral of both sides with respect to a. Determine the
constant of integration using your knowledge of I(0). Show that the original
integral equals 1n 2.

Figure 1: Problem statment

Solution

Let

1 ta _
I(a):f 1y
0 lnt

Where a = 1 for the specific integral in this problem. The above is the parametrized
general form. Taking derivative w.r.t a gives

dia) d fl =
da B da 0 Int

Ld (-1
o da\ Int
1

1 d
= o E%(ta—l)dt (1)

But
d d
(A _ — _ (palnt _
(1 =1) = — (et —1)
= In(t)(e"?) (2)
Substituting (2) into (1) gives

dl(a) 11 I
=2 fo — (In()(e"™"))dt

1
:f etInt gy
0

a#+-1 (3)

“1+a
Integrating the above is used to I(a) gives

@ q
I(a)_fo ——dt
= In(1 + D)’

=1In(1 +a) - In(1)
=In(1 + a) a+-1




When a =1 the above becomes

1t-1
I(1) = fo et
=In(1+1)
=In(2)
Hence
1 -
—dt = 1In(2)



3 Problem 2.2.11 (or part b of problem 2)

Problem 2.2.11. Given

oo k
e~ sinkrde = ———,
0 a“ + k
o0 _ . o0 —_
evaluate fo re %Tginkxdzr and fo e % cos kzrdz.

Figure 2: Problem statment

Solution

3.1 part (1)
= f " e " sin kxdx
0

Taking derivative w.r.t a gives
ar  d | e
i %( f e~ sin kxdx)
0
00 d B )
= f —(e™™ sin kx)dx
0 da
= f —xe~™ sin kxdx
0
=- f xe~™ sin kxdx
0

Which is the integral the problem is asking to find. Therefore, since I is also given as

k
m then
ol d k
—L xe ax SlI'lkde = %(m)
d 1
B k%(az + kz)
-2
= k(-1)(a? + k) " (2a)
2ak
)
(a2 + k2)
Therefore . ok
f xe~ ™ sin kxdx = 4 5
0 (a2 + k2)
3.2 part (2)

I= f e~ sin kxdx
0



Taking derivative w.r.t. k gives

dl  d{ r®
s %( f e ™ sin kxdx)
0
= f ” i(e‘“x sin kx)dx
o dk

S
- fo o sin k)

(o)
= f xe~ cos kxdx
0

Which is the integral the problem is asking to find. Therefore, since I is also given as

k
m then

j;oo xe ™ cos kxdx = %(#)
(a2 + K2) - k(2k)
(2 + 1)
a2+ K- 2K
(@ + 1)
aZ _ k2

(2 + 1)

Hence
a% — k2

f xe~ ™ cos kxdx = 3
0 (a2 + kz)



4 Problem 3

3. The probability to find a particle at position between x and x + dx is
P(x)dx = Aexp(—ax® + Br*)dx,

where A, «, and § are positive parameters. By the definition of probability,

/Z P(z)dx = 1.

Treat § as a small parameter, i.e., for any given x, you can view P(z) as a function of § and
expand it around 3 = 0.

(a) Find A to the first order of 5. (15 points)

(b) Find the average position

to the first order of 5. (25 points)

Figure 3: Problem statment

Solution

4.1 Part (a)

P(x,ﬁ) — Ae—ax2+ﬁx3
Expanding around $ = 0 by fixing x, gives

2 72
P(5.8) = 205,00+ L s . )
But
P(x,0) = Ae™ (2)
And
g_ll‘; = Ax3e-ax+pr® (3)

No need to take more derivatives since the problem is asking for first order of . Substi-
tuting (2,3) into (1) gives

P(x,B) = Ae™* + pA3e ™+ 4 ..
(x.6) B o

= Ae~ 4 ﬁAxB’e‘“"2 + .- (4)

Using the above in the definition f_ - P(x)dx =1 gives

f " (Ae‘”‘x2 + ﬁAx3e‘“x2)dx =1

A(f e~ dx + ﬁf x3e‘“x2dx) =1 (5)

But -
f X3Py = 0



.. a2
This is because e™**

plifies to

is an even function over (-oo, +o0) and x° is odd. Eq (5) now sim-

A f e“"xzdx =1

But f T e gy = \/g (a > 0) because it is standard Gaussian integral. The above now
—00
becomes

b
RIA

Il

—_

4.2 Partb

X = f " xP(x)dx

Using Eq. (4) from part (a), the above becomes
X = f x(Ae“sz + ﬁAx%‘“xz)dx
=A f xe % dx + A f Bxte % dx

But f xe~**dx = 0 since e~ is an even function over (=00, +00) and x is an odd func-
tion. The above simplifies to

x=Ap f xhema gy (6)
To evaluate the above, starting from the standard Gaussian integral given by

I(a) = f e \ﬁ
oo o

Taking derivative w.r.t a of both sides of the above results in

d
’ —ax — —
I'(a) = f —e dx = 7

Taking one more derivative w.r.t a gives

I// f —ax d e
oo da r= da

7]

2

oo 2 2
o (3 5

= D(Xd = —| - 2
j;ooxe X 5 20(

Now the integrand is the one we want. This shows that

0, 3vn
fx"“e“"dx: -

- 4a2




Using the above result in (6) gives

3\/E]

x=AB -
4a2

But A = \/g from part(a). Hence the above becomes

10
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5 Problem 4

4. A container of volume V encloses a neutrino gas of temperature 7. The number of neutrinos
with energy between E and F + dFE is

47V E?
dN = dE
QW%mmwwl’

where h is the Planck constant, c is the speed of light, and £ is the Boltzmann constant.

(a) Express the total energy density of the neutrino gas in terms of a dimensional factor mul-
tiplying a dimensionless integral. Show that the factor has the correct dimension. (10 points).

(b) Follow the discussion of a photon gas and evaluate the dimensionless integral. (20 points).

Figure 4: Problem statment

Solution
5.1 Parta

dE

2
N = (471\/) E

h3c3 £
1+ ek

The total energy is therefore
Fia = | EdN
Hence the energy density p is

1
:—fEdN

f (zmv) EE? EE? o
V hoc3 1+ekET

_(1)\(4nV foo E3 iE
B \% h3C3 0 L

1+ ek

4t >~ E3
" 183 f ik 1)
0 1 +ekr

k (Boltzmann constant) has units of % where ] is joule and K is temperature in Kelvin.

Hence units of — is —/—— - which is dimensionless. Let
K ik
E
X=—
kT
Therefore Z—E = ﬁ When E = 0,x = 0 and when E = o0, x = co. Substituting this into the

integral in (1) gives

f: £ _dE = foo(ka) (kTdx)

1+ekT
3

— (k)" fooo - i —dx 2)

Substituting (2) into (1) gives

3

(A N\t [T X
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Units of c (speed of light) 1s where [L] is length in meters and [T] is time in seconds.

Units for Planck constant /1 is [ i ][T] (Joule-second). Therefore the factor ( )(kT) above

in (3) in front of the integral has units

4
EORa——n
(MWD()
- )’
_ U
(LY

Which has the correct units of energy density. Let this factor be called ® = (;%)(kTYL.
Then (3) can be written as
=0 f gt dx
p= 0 1+e*

5.2 Partb
The dimensionless integral found in part (a) is

SN

1= d 1
0 er+1 * ( )
But
1 1 1
= -2

e+1 -1 “e2x-1
We did the above, to make the denominator has the form e* — 1, which is easier to work
with following the lecture notes than working with ¢* + 1. Eq (1) now becomes

) 3 0o 3
1= [ a2 [ i 2)
0 e -1 0 [ |

The first integral has the standard form L

3

[ = =6
Oe—].

(Derivations of the above is given at the end of this problem). Now we evaluate on the

second integral in (2). Let y = 2x, then Z = 2. The limits do not change. The integral
becomes

v 3
f s Ay _1 f QA
o /=12 16J, /-1
0o 13 00
We see that L eyy—_ldy now has the same form as the first integral. Hence L Sy =
(31)E&(4). Putting these two results back into (2) gives the final result

1
I'=(3hé4) - Z(E(3!)£(4))

1
-onfi-o(L)

1
-1~ )
7
= O
= 2w
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4
But from class handout, £(4) = Z—O. Hence
© xS 21t
f dx = —| —
0 e+1 4190
7 us
~4\30
7
120
~ 5.6822

Using this in the result obtained in part (a) gives the energy density as
3

- x
:@f d
p 0 1+€xx

_ 7774 47'( 4
- (@)(W)”‘T’

Derivation of the integral

X

nldx = (n)&m +1). For n = 3 this becomes

eX—

In the above, we used the result that Loo

(BHEM).
To show how this came above, we start by multiplying the numerator and denominator
of the integrand by ™. This gives
SR
fo f_ee_x dx (3)
Lety = ¢7 then
ety
1-e* 1-y
:y(1+y+y2+y3+ )
=y+y Y+

(oe]
= Z yk
k=1
N —kx
= e

Using the above sum in Eq (3) gives

[oe]

00 xne—x o0
f —dx = f X" Z e R dx
0 1-e 0 k=1
= Z f x"ekxdx
k=1+0
Z—i = k. When x =0,z = 0 and when x = o0,z = co. The above becomes
00 yMe™X o [ °(z\" dz
dx = f (—) e‘z(—)
\[(; 1—-e> kzl 0 k k
1 00
— f z"e *dz
0
1 00
— (f x”e‘xdx)
0

But [ x"e*dx = n!, which can be shown by integration by parts repeatedly n times.

Let z = kx. Then

t”ﬂgu

=~
I

1

=
I

1

The above integral now becomes

00 xne—x 0 1
dx = (n!
L 1—e> X (n )kgl kn+1




14

The sum 2121 kan is called the Zeta function ((n +1). When n = 3 the above result
becomes

00 x3 [ 1
fo dx = (3!);:]1](—4
= (31)C(4)

Which is the result used earlier.
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