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1 Problem 2.2.3

Evaluate ∫
1

0
𝑒√𝑥 𝑑𝑥. Show that ∫

∞

0
𝑒−𝑥4𝑑𝑥 = Γ�54�

Solution

Let 𝑦 = √𝑥 . Therefore

𝑑𝑦
𝑑𝑥

=
1
2
1

√𝑥

=
1
2
1
𝑦

And
𝑑𝑥 = 2𝑦𝑑𝑦

When 𝑥 = 0, 𝑦 = 0 and when 𝑥 = 1,𝑦 = 1. Substituting this back into ∫
1

0
𝑒√𝑥 𝑑𝑥 gives

∫1

0
𝑒𝑦�2𝑦𝑑𝑦� = 2∫

1

0
𝑦𝑒𝑦𝑑𝑦. This integral is evaluated using integration by parts.

𝑢𝑑𝑣 = 𝑢𝑣|10 −�
1

0
𝑣𝑑𝑢

Let 𝑢 = 𝑦 and 𝑑𝑣 = 𝑒𝑦, then 𝑑𝑢 = 𝑑𝑦 and 𝑣 = 𝑒𝑦. The above becomes

2��
1

0
𝑦𝑒𝑦𝑑𝑦� = 2�𝑢𝑣|10 −�

1

0
𝑣𝑑𝑢�

= 2�𝑦𝑒𝑦�
1

0
−�

1

0
𝑒𝑦𝑑𝑦�

= 2��𝑒1 − 0� − 𝑒𝑦|10�
= 2(𝑒 − (𝑒 − 1))
= 2(𝑒 − 𝑒 + 1)
= 2

Hence
�

1

0
𝑒√𝑥 𝑑𝑥 = 2

For the second part of the question asking to evaluate ∫
∞

0
𝑒−𝑥4𝑑𝑥, let

𝑥 = 𝑦
1
4

Then
𝑑𝑥
𝑑𝑦

=
1
4
𝑦
� 14−1�

When 𝑥 = 0, 𝑦 = 0 and when 𝑥 = ∞, 𝑦 = ∞. Hence the above integral becomes

�
∞

0
𝑒−𝑥4𝑑𝑥 = �

∞

0
𝑒−𝑦�

1
4
𝑦
� 14−1�𝑑𝑦�

=
1
4 �

∞

0
𝑦
� 14−1�𝑒−𝑦𝑑𝑦 (1)

Comparing the above to integral (2.1.39) in the book which says

𝐹(𝑛) = �
∞

0
𝑦𝑛𝑒−𝑦𝑑𝑦 (2)

Γ(𝑛) = 𝐹(𝑛 − 1) (3)
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Then putting 𝑛 = 1
4 in (3) gives

Γ�
1
4�
= 𝐹�

1
4
− 1�

= �
∞

0
𝑦
� 14−1�𝑒−𝑦𝑑𝑦

Which is (1). This means that

�
∞

0
𝑦
� 14−1�𝑒−𝑦𝑑𝑦 = Γ�

1
4�

Hence

1
4 �

∞

0
𝑦
� 14−1�𝑒−𝑦𝑑𝑦 =

1
4
Γ�
1
4�

(4)

To obtain the final form, the following property of Gamma functions is used

Γ(𝑛 + 1) = 𝑛Γ(𝑛)

Which means that when 𝑛 = 1
4 , the above becomes

Γ�
1
4
+ 1� =

1
4
Γ�
1
4�

Γ�
5
4�
=
1
4
Γ�
1
4�

Using this in (4) shows that

1
4 �

∞

0
𝑦
� 14−1�𝑒−𝑦𝑑𝑦 = Γ�

5
4�

Which implies

�
∞

0
𝑒−𝑥4𝑑𝑥 = Γ�

5
4�

Which is what we are asked to show.
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2 Problem 2.2.10 (or part a of problem 2)

Figure 1: Problem statment

Solution

Let
𝐼(𝑎) = �

1

0

𝑡𝑎 − 1
ln 𝑡

𝑑𝑡

Where 𝑎 = 1 for the specific integral in this problem. The above is the parametrized
general form. Taking derivative w.r.t 𝑎 gives

𝑑𝐼(𝑎)
𝑑𝑎

=
𝑑
𝑑𝑎��

1

0

𝑡𝑎 − 1
ln 𝑡

𝑑𝑡�

= �
1

0

𝑑
𝑑𝑎�

𝑡𝑎 − 1
ln 𝑡 �

𝑑𝑡

= �
1

0

1
ln 𝑡

𝑑
𝑑𝑎
(𝑡𝑎 − 1)𝑑𝑡 (1)

But
𝑑
𝑑𝑎
(𝑡𝑎 − 1) =

𝑑
𝑑𝑎
�𝑒𝑎 ln 𝑡 − 1�

= ln(𝑡)�𝑒𝑎 ln 𝑡� (2)

Substituting (2) into (1) gives
𝑑𝐼(𝑎)
𝑑𝑎

= �
1

0

1
ln 𝑡

�ln(𝑡)�𝑒𝑎 ln 𝑡��𝑑𝑡

= �
1

0
𝑒𝑎 ln 𝑡𝑑𝑡

= �
1

0
𝑡𝑎𝑑𝑡

=
𝑡𝑎+1

𝑎 + 1�
1

0

=
1

1 + 𝑎
𝑎 ≠ −1 (3)

Integrating the above is used to 𝐼(𝑎) gives

𝐼(𝑎) = �
𝑎

0

1
1 + 𝜏

𝑑𝜏

= ln(1 + 𝜏)|𝑎0
= ln(1 + 𝑎) − ln(1)
= ln(1 + 𝑎) 𝑎 ≠ −1
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When 𝑎 = 1 the above becomes

𝐼(1) = �
1

0

𝑡 − 1
ln 𝑡

𝑑𝑡

= ln(1 + 1)
= ln(2)

Hence
�

1

0

𝑡 − 1
ln 𝑡

𝑑𝑡 = ln(2)
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3 Problem 2.2.11 (or part b of problem 2)

Figure 2: Problem statment

Solution

3.1 part (1)

𝐼 = �
∞

0
𝑒−𝑎𝑥 sin 𝑘𝑥𝑑𝑥

Taking derivative w.r.t 𝑎 gives

𝑑𝐼
𝑑𝑎

=
𝑑
𝑑𝑎��

∞

0
𝑒−𝑎𝑥 sin 𝑘𝑥𝑑𝑥�

= �
∞

0

𝑑
𝑑𝑎
(𝑒−𝑎𝑥 sin 𝑘𝑥)𝑑𝑥

= �
∞

0
−𝑥𝑒−𝑎𝑥 sin 𝑘𝑥𝑑𝑥

= −�
∞

0
𝑥𝑒−𝑎𝑥 sin 𝑘𝑥𝑑𝑥

Which is the integral the problem is asking to find. Therefore, since 𝐼 is also given as
𝑘

𝑎2+𝑘2 then

−�
∞

0
𝑥𝑒−𝑎𝑥 sin 𝑘𝑥𝑑𝑥 =

𝑑
𝑑𝑎�

𝑘
𝑎2 + 𝑘2 �

= 𝑘
𝑑
𝑑𝑎�

1
𝑎2 + 𝑘2 �

= 𝑘(−1)�𝑎2 + 𝑘2�
−2
(2𝑎)

= −
2𝑎𝑘

�𝑎2 + 𝑘2�
2

Therefore
�

∞

0
𝑥𝑒−𝑎𝑥 sin 𝑘𝑥𝑑𝑥 =

2𝑎𝑘

�𝑎2 + 𝑘2�
2

3.2 part (2)

𝐼 = �
∞

0
𝑒−𝑎𝑥 sin 𝑘𝑥𝑑𝑥
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Taking derivative w.r.t. 𝑘 gives

𝑑𝐼
𝑑𝑘

=
𝑑
𝑑𝑘��

∞

0
𝑒−𝑎𝑥 sin 𝑘𝑥𝑑𝑥�

= �
∞

0

𝑑
𝑑𝑘
(𝑒−𝑎𝑥 sin 𝑘𝑥)𝑑𝑥

= �
∞

0
𝑒−𝑎𝑥

𝑑
𝑑𝑘
(sin 𝑘𝑥)𝑑𝑥

= �
∞

0
𝑥𝑒−𝑎𝑥 cos 𝑘𝑥𝑑𝑥

Which is the integral the problem is asking to find. Therefore, since 𝐼 is also given as
𝑘

𝑎2+𝑘2 then

�
∞

0
𝑥𝑒−𝑎𝑥 cos 𝑘𝑥𝑑𝑥 =

𝑑
𝑑𝑘�

𝑘
𝑎2 + 𝑘2 �

=
�𝑎2 + 𝑘2� − 𝑘(2𝑘)

�𝑎2 + 𝑘2�
2

=
𝑎2 + 𝑘2 − 2𝑘2

�𝑎2 + 𝑘2�
2

=
𝑎2 − 𝑘2

�𝑎2 + 𝑘2�
2

Hence

�
∞

0
𝑥𝑒−𝑎𝑥 cos 𝑘𝑥𝑑𝑥 =

𝑎2 − 𝑘2

�𝑎2 + 𝑘2�
2
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4 Problem 3

Physics 3041 (Spring 2021) Homework Set 2 (Due 2/3)

1. Problem 2.2.3. (10 points)

2. (a) Problem 2.2.10. (10 points)

(b) Problem 2.2.11. (10 points)

3. The probability to find a particle at position between x and x+ dx is

P (x)dx = A exp(−αx2 + βx3)dx,

where A, α, and β are positive parameters. By the definition of probability,∫ ∞
−∞

P (x)dx = 1.

Treat β as a small parameter, i.e., for any given x, you can view P (x) as a function of β and
expand it around β = 0.

(a) Find A to the first order of β. (15 points)

(b) Find the average position

x̄ =

∫ ∞
−∞

xP (x)dx

to the first order of β. (25 points)

4. A container of volume V encloses a neutrino gas of temperature T . The number of neutrinos
with energy between E and E + dE is

dN =

(
4πV

h3c3

)
E2

exp[E/(kT )] + 1
dE,

where h is the Planck constant, c is the speed of light, and k is the Boltzmann constant.

(a) Express the total energy density of the neutrino gas in terms of a dimensional factor mul-
tiplying a dimensionless integral. Show that the factor has the correct dimension. (10 points).

(b) Follow the discussion of a photon gas and evaluate the dimensionless integral. (20 points).

Figure 3: Problem statment

Solution

4.1 Part (a)

𝑃�𝑥, 𝛽� = 𝐴𝑒−𝛼𝑥2+𝛽𝑥3

Expanding around 𝛽 = 0 by fixing 𝑥, gives

𝑃�𝑥, 𝛽� = 𝑃(𝑥, 0) + 𝛽
𝜕𝑃
𝜕𝛽
�
𝛽=0

+
𝛽2

2!
𝜕2𝑃
𝜕𝛽2 �

𝛽=0

+⋯ (1)

But

𝑃(𝑥, 0) = 𝐴𝑒−𝛼𝑥2 (2)

And

𝜕𝑃
𝜕𝛽

= 𝐴𝑥3𝑒−𝛼𝑥2+𝛽𝑥3 (3)

No need to take more derivatives since the problem is asking for first order of 𝛽. Substi-
tuting (2,3) into (1) gives

𝑃�𝑥, 𝛽� = 𝐴𝑒−𝛼𝑥2 + 𝛽𝐴𝑥3𝑒−𝛼𝑥2+𝛽𝑥3�
𝛽=0

+⋯

= 𝐴𝑒−𝛼𝑥2 + 𝛽𝐴𝑥3𝑒−𝛼𝑥2 +⋯ (4)

Using the above in the definition ∫
∞

−∞
𝑃(𝑥)𝑑𝑥 = 1 gives

�
∞

−∞
�𝐴𝑒−𝛼𝑥2 + 𝛽𝐴𝑥3𝑒−𝛼𝑥2�𝑑𝑥 = 1

𝐴��
∞

−∞
𝑒−𝛼𝑥2𝑑𝑥 + 𝛽�

∞

−∞
𝑥3𝑒−𝛼𝑥2𝑑𝑥� = 1 (5)

But
�

∞

−∞
𝑥3𝑒−𝛼𝑥2𝑑𝑥 = 0
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This is because 𝑒−𝛼𝑥2 is an even function over (−∞,+∞) and 𝑥3 is odd. Eq (5) now sim-
plifies to

𝐴�
∞

−∞
𝑒−𝛼𝑥2𝑑𝑥 = 1

But ∫
∞

−∞
𝑒−𝛼𝑥2𝑑𝑥 = �

𝜋
𝛼 (𝛼 > 0) because it is standard Gaussian integral. The above now

becomes

𝐴
�
𝜋
𝛼
= 1

𝐴 =
�
𝛼
𝜋

𝛼 > 0

4.2 Part b

�̄� = �
∞

−∞
𝑥𝑃(𝑥)𝑑𝑥

Using Eq. (4) from part (a), the above becomes

�̄� = �
∞

−∞
𝑥�𝐴𝑒−𝛼𝑥2 + 𝛽𝐴𝑥3𝑒−𝛼𝑥2�𝑑𝑥

= 𝐴�
∞

−∞
𝑥𝑒−𝛼𝑥2𝑑𝑥 + 𝐴�

∞

−∞
𝛽𝑥4𝑒−𝛼𝑥2𝑑𝑥

But ∫
∞

−∞
𝑥𝑒−𝛼𝑥2𝑑𝑥 = 0 since 𝑒−𝛼𝑥2 is an even function over (−∞,+∞) and 𝑥 is an odd func-

tion. The above simplifies to

�̄� = 𝐴𝛽�
∞

−∞
𝑥4𝑒−𝛼𝑥2𝑑𝑥 (6)

To evaluate the above, starting from the standard Gaussian integral given by

𝐼(𝛼) = �
∞

−∞
𝑒−𝛼𝑥2𝑑𝑥 =

�
𝜋
𝛼

Taking derivative w.r.t 𝛼 of both sides of the above results in

𝐼′(𝛼) = �
∞

−∞

𝑑
𝑑𝛼
𝑒−𝛼𝑥2𝑑𝑥 =

𝑑
𝑑𝛼�

𝜋
𝛼

= �
∞

−∞
−𝑥2𝑒−𝛼𝑥2𝑑𝑥 = √𝜋 �−

1
2�
𝛼−

3
2

= �
∞

−∞
𝑥2𝑒−𝛼𝑥2𝑑𝑥 = √𝜋

2
𝛼−

3
2

Taking one more derivative w.r.t 𝛼 gives

𝐼′′(𝛼) = �
∞

−∞

𝑑
𝑑𝛼
𝑥2𝑒−𝛼𝑥2𝑑𝑥 =

𝑑
𝑑𝛼�

√𝜋
2
𝛼−

3
2 �

= �
∞

−∞
−𝑥4𝑒−𝛼𝑥2𝑑𝑥 = √𝜋

2 �−
3
2
𝛼−

5
2 �

= �
∞

−∞
𝑥4𝑒−𝛼𝑥2𝑑𝑥 = √𝜋

2 �
3
2
𝛼−

5
2 �

Now the integrand is the one we want. This shows that

�
∞

−∞
𝑥4𝑒−𝛼𝑥2𝑑𝑥 =

3√𝜋

4𝛼
5
2
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Using the above result in (6) gives

�̄� = 𝐴𝛽
⎛
⎜⎜⎜⎜⎝
3√𝜋

4𝛼
5
2

⎞
⎟⎟⎟⎟⎠

But 𝐴 = �
𝛼
𝜋 from part(a). Hence the above becomes

�̄� =
�
𝛼
𝜋
𝛽
⎛
⎜⎜⎜⎜⎝
3√𝜋

4𝛼
5
2

⎞
⎟⎟⎟⎟⎠

= 𝛼
1
2𝛽

3

4𝛼
5
2

= 𝛽
3

4𝛼
5
2−

1
2

=
3
4
𝛽
𝛼2

𝛼 > 0
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5 Problem 4

Physics 3041 (Spring 2021) Homework Set 2 (Due 2/3)

1. Problem 2.2.3. (10 points)

2. (a) Problem 2.2.10. (10 points)

(b) Problem 2.2.11. (10 points)

3. The probability to find a particle at position between x and x+ dx is

P (x)dx = A exp(−αx2 + βx3)dx,

where A, α, and β are positive parameters. By the definition of probability,∫ ∞
−∞

P (x)dx = 1.

Treat β as a small parameter, i.e., for any given x, you can view P (x) as a function of β and
expand it around β = 0.

(a) Find A to the first order of β. (15 points)

(b) Find the average position

x̄ =

∫ ∞
−∞

xP (x)dx

to the first order of β. (25 points)

4. A container of volume V encloses a neutrino gas of temperature T . The number of neutrinos
with energy between E and E + dE is

dN =

(
4πV

h3c3

)
E2

exp[E/(kT )] + 1
dE,

where h is the Planck constant, c is the speed of light, and k is the Boltzmann constant.

(a) Express the total energy density of the neutrino gas in terms of a dimensional factor mul-
tiplying a dimensionless integral. Show that the factor has the correct dimension. (10 points).

(b) Follow the discussion of a photon gas and evaluate the dimensionless integral. (20 points).

Figure 4: Problem statment

Solution

5.1 Part a

𝑑𝑁 = �
4𝜋𝑉
ℎ3𝑐3 �

𝐸2

1 + 𝑒
𝐸
𝑘𝑇

𝑑𝐸

The total energy is therefore
𝐸𝑡𝑜𝑡𝑎𝑙 = �𝐸𝑑𝑁

Hence the energy density 𝜌 is

𝜌 =
1
𝑉 �

𝐸𝑑𝑁

=
1
𝑉 �

∞

0
�
4𝜋𝑉
ℎ3𝑐3 �

𝐸𝐸2

1 + 𝑒
𝐸
𝑘𝑇

𝑑𝐸

= �
1
𝑉��

4𝜋𝑉
ℎ3𝑐3 ��

∞

0

𝐸3

1 + 𝑒
𝐸
𝑘𝑇

𝑑𝐸

=
4𝜋
ℎ3𝑐3 �

∞

0

𝐸3

1 + 𝑒
𝐸
𝑘𝑇

𝑑𝐸 (1)

𝑘 (Boltzmann constant) has units of [𝐽]
[𝐾] where 𝐽 is joule and 𝐾 is temperature in Kelvin.

Hence units of 𝐸
𝑘𝑇 is [𝐽]

[𝐽]
[𝐾] [𝐾]

which is dimensionless. Let

𝑥 =
𝐸
𝑘𝑇

Therefore 𝑑𝑥
𝑑𝐸 =

1
𝑘𝑇 When 𝐸 = 0, 𝑥 = 0 and when 𝐸 = ∞, 𝑥 = ∞. Substituting this into the

integral in (1) gives

�
∞

0

𝐸3

1 + 𝑒
𝐸
𝑘𝑇

𝑑𝐸 = �
∞

0

(𝑥𝑘𝑇)3

1 + 𝑒𝑥
(𝑘𝑇𝑑𝑥)

= (𝑘𝑇)4�
∞

0

𝑥3

1 + 𝑒𝑥
𝑑𝑥 (2)

Substituting (2) into (1) gives

𝜌 = �
4𝜋
ℎ3𝑐3 �

(𝑘𝑇)4�
∞

0

𝑥3

1 + 𝑒𝑥
𝑑𝑥 (3)
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Units of 𝑐 (speed of light) is [𝐿]
[𝑇] where [𝐿] is length in meters and [𝑇] is time in seconds.

Units for Planck constant ℎ is [𝐽][𝑇] (Joule-second). Therefore the factor � 4𝜋
ℎ3𝑐3

�(𝑘𝑇)4 above
in (3) in front of the integral has units

�
4𝜋
ℎ3𝑐3 �

(𝑘𝑇)4 =
1

([𝐽][𝑇])3� [𝐿][𝑇]
�
3 �
[𝐽]
[𝐾]

[𝐾]�
4

=
1

[𝐽]3[𝐿]3
([𝐽])4

=
[𝐽]
[𝐿]3

Which has the correct units of energy density. Let this factor be called Φ = � 4𝜋
ℎ3𝑐3

�(𝑘𝑇)4.
Then (3) can be written as

𝜌 = Φ�
∞

0

𝑥3

1 + 𝑒𝑥
𝑑𝑥

5.2 Part b
The dimensionless integral found in part (a) is

𝐼 = �
∞

0

𝑥3

𝑒𝑥 + 1
𝑑𝑥 (1)

But
1

𝑒𝑥 + 1
=

1
𝑒𝑥 − 1

− 2
1

𝑒2𝑥 − 1
We did the above, to make the denominator has the form 𝑒𝑥 − 1, which is easier to work
with following the lecture notes than working with 𝑒𝑥 + 1. Eq (1) now becomes

𝐼 = �
∞

0

𝑥3

𝑒𝑥 − 1
𝑑𝑥 − 2�

∞

0

𝑥3

𝑒2𝑥 − 1
𝑑𝑥 (2)

The first integral has the standard form ∫∞

0
𝑥𝑛

𝑒𝑥−1𝑑𝑥. Hence

�
∞

0

𝑥3

𝑒𝑥 − 1
= (3!)𝜉(4)

(Derivations of the above is given at the end of this problem). Now we evaluate on the
second integral in (2). Let 𝑦 = 2𝑥, then 𝑑𝑦

𝑑𝑥 = 2. The limits do not change. The integral
becomes

�
∞

0

𝑦3

8
𝑒𝑦 − 1

𝑑𝑦
2
=
1
16 �

∞

0

𝑦3

𝑒𝑦 − 1
𝑑𝑦

We see that ∫
∞

0
𝑦3

𝑒𝑦−1𝑑𝑦 now has the same form as the first integral. Hence ∫
∞

0
𝑦3

𝑒𝑦−1𝑑𝑦 =
(3!)𝜉(4). Putting these two results back into (2) gives the final result

𝐼 = (3!)𝜉(4) − 2�
1
16
(3!)𝜉(4)�

= (3!)𝜉(4)�1 − 2�
1
16��

= (6)𝜉(4)�1 −
1
8�

= (6)𝜉(4)
7
8

=
21
4
𝜉(4)
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But from class handout, 𝜉(4) = 𝜋4

90 . Hence

�
∞

0

𝑥3

𝑒𝑥 + 1
𝑑𝑥 =

21
4 �

𝜋4

90�

=
7
4�
𝜋4

30�

=
7
120

𝜋4

≈ 5.6822

Using this in the result obtained in part (a) gives the energy density as

𝜌 = Φ�
∞

0

𝑥3

1 + 𝑒𝑥
𝑑𝑥

= �
7𝜋4

120 ��
4𝜋
ℎ3𝑐3 �

(𝑘𝑇)4

Derivation of the integral

In the above, we used the result that ∫
∞

0
𝑥𝑛

𝑒𝑥−1𝑑𝑥 = (𝑛!)𝜉(𝑛 + 1). For 𝑛 = 3 this becomes
(3!)𝜉(4).

To show how this came above, we start by multiplying the numerator and denominator
of the integrand by 𝑒−𝑥. This gives

�
∞

0

𝑥𝑛𝑒−𝑥

1 − 𝑒−𝑥
𝑑𝑥 (3)

Let 𝑦 = 𝑒−𝑥 then
𝑒−𝑥

1 − 𝑒−𝑥
=

𝑦
1 − 𝑦

= 𝑦�1 + 𝑦 + 𝑦2 + 𝑦3 +⋯�
= 𝑦 + 𝑦2 + 𝑦3 +⋯

=
∞
�
𝑘=1

𝑦𝑘

=
∞
�
𝑘=1

𝑒−𝑘𝑥

Using the above sum in Eq (3) gives

�
∞

0

𝑥𝑛𝑒−𝑥

1 − 𝑒−𝑥
𝑑𝑥 = �

∞

0
𝑥𝑛

∞
�
𝑘=1

𝑒−𝑘𝑥𝑑𝑥

=
∞
�
𝑘=1

�
∞

0
𝑥𝑛𝑒−𝑘𝑥𝑑𝑥

Let 𝑧 = 𝑘𝑥. Then 𝑑𝑧
𝑑𝑥 = 𝑘. When 𝑥 = 0, 𝑧 = 0 and when 𝑥 = ∞, 𝑧 = ∞. The above becomes

�
∞

0

𝑥𝑛𝑒−𝑥

1 − 𝑒−𝑥
𝑑𝑥 =

∞
�
𝑘=1

�
∞

0
�
𝑧
𝑘
�
𝑛
𝑒−𝑧�

𝑑𝑧
𝑘 �

=
∞
�
𝑘=1

1
𝑘𝑛+1 �

∞

0
𝑧𝑛𝑒−𝑧𝑑𝑧

=
∞
�
𝑘=1

1
𝑘𝑛+1 ��

∞

0
𝑥𝑛𝑒−𝑥𝑑𝑥�

But ∫
∞

0
𝑥𝑛𝑒−𝑥𝑑𝑥 = 𝑛!, which can be shown by integration by parts repeatedly 𝑛 times.

The above integral now becomes

�
∞

0

𝑥𝑛𝑒−𝑥

1 − 𝑒−𝑥
𝑑𝑥 = (𝑛!)

∞
�
𝑘=1

1
𝑘𝑛+1
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The sum ∑∞
𝑘=1

1
𝑘𝑛+1

is called the Zeta function 𝜁(𝑛 + 1). When 𝑛 = 3 the above result
becomes

�
∞

0

𝑥3

𝑒𝑥 − 1
𝑑𝑥 = (3!)

∞
�
𝑘=1

1
𝑘4

= (3!)𝜁(4)

Which is the result used earlier.


	Problem 2.2.3
	Problem 2.2.10 (or part a of problem 2)
	Problem 2.2.11 (or part b of problem 2)
	part (1)
	part (2)

	Problem 3
	Part (a)
	Part b

	Problem 4
	Part a
	Part b


