
Assignment 4: Solutions

Date (April 23, 2020)

Problem 1. Consider the planar system given in polar coordinates by

ṙ = r(1− r), θ̇ = 1.

Note that x = cos t, y = sin t is a periodic solution of the system (given in rectangular
coordinates), satisfying x = 1, y = 0 at time t = 0. This solution belongs to the orbit r = 1.

1. Find the Poincaré map of the periodic solution φ(t) := (cos t, sin t).

2. Determine the stability of φ.

Solution.

1. Let us first integrate the differential equations.∫
dr

r(1− r)
=t+ C, log

r

|r − 1|
= t+ C,

r

r − 1
=C1e

t, r 6= 1.

At t = 0, r0
r0−1 = C1. (So, C1 > 0, for r0 > 1, and negative otherwise.) Substituting C1 as

given in terms of r0 into the solution, we get

r(t) =
r0e

t

r0(et − 1) + 1
, t > 0, θ = t+ c.

The Poincaré map associated with the given 2π-periodic solution is given as

P (r0) := r(2π) =
r0e

2π

r0(e2π − 1) + 1
=

r0
r0 − (r0 − 1)e−2π

.

2. To determine the stability of the solution x = cos t, y = sint associated with the orbit
r = 1, we calculate the iterations of the Poincaré map.

P 2(r0) = P (P (r0)) =
P (r0)

P (r0)− (P (r0)− 1)e−2π
=

r0
r0 + e−4π − r0e−4π

.

P 3(r0) = P (P 2(r0)) =
P (r0)

P (r0) + e−4π − P (r0)e−4π
=

r0
r0 + e−6π − r0e−6π

=
r0

r0 + e−3.(2π) − r0e−3.(2π)
.

So,

P n(r0) =
r0

r0 + e−n.(2π) − r0e−n.(2π)
.

Hence
lim
n→∞

P n(r0) = 1.
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That is, the Poincaré map tends to the periodic solution r = 1, at the limit of infinitely many
iterations.

So, the solution x = cos t, y = sin t, corresponding to the orbit r = 1 is asymptotically
stable.

Problem 2. The spread of infectious diseases such as measles, malaria or corona virus may
be modeled as nonlinear system of differential equations, the SIR model. We now study a
model that is more complicated than the basic SIR model (Problem 2, Assignment 3) where
we now allow for the recovered population to become reinfected again (SIRS model).

Again, we postulate three disjoint groups: S = S(t), the population of susceptible indi-
viduals, I = I(t), the infected population, and R = R(t) the recovered population.

We still assume that the total population is constant:

d

dt
(S + I +R) = 0, (1)

that is, S + I +R = τ > 0, for a given τ > 0.
The SIRS model is stated as

Ṡ =− βSI + µR, (2)

İ =βSI − νI, (3)

Ṙ =νI − µR, (4)

where ν, µ > 0 and β > 0 are parameters.

1. Use the restriction (1) to reduce the system to one with two equations and two unknown
fields.

Solution. Integrating equation (1) we get

S(t) + I(t) +R(t) = τ,

where τ > 0, constant, is the total population of the community prior to the onset of the
virus. Let us solve it for R and substitute it into equation (2), which together with equation
(3) give the system with two equations and two unknowns S and I:

Ṡ =− βSI − µS − µI + µτ,

İ =βSI − νI.

2. Find the critical points in two different cases: (a) τ ≥ ν
β

and (b) τ ≤ ν
β
.

Solution.

We find the equilibrium solutions

{S = τ, I = 0}, and {S0 :=
ν

µ
, I0 :=

µ

µ+ ν
(τ − ν

β
)}.

Of course, the second solution is only valid in the case τ ≥ ν
β
, for which I > 0.

3. Calculate the eigenvalues associated to the critical points in each case, (a) and (b).
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Solution.

Let u := S − τ and linearize the system about the first equilibrium point {I = 0, S = τ},
giving [

u̇

İ

]
=

[
−µ −(βτ + µ)
0 (βτ − ν)

] [
u
v

]
.

The eigenvalues are
λ1 = −µ < 0, λ2 = βτ − ν.

Note that the solution {I = 0, S = τ} is stable if τ < ν
β

(case (b)) and unstable if τ > ν
β

(case (a)).

To examine the stability of the second equilibrium point, we call u := S−S0 and v = I−I0,
and linearize the system about (S0, I0).

The linearized system is given by[
u̇
v̇

]
=

[
−βI0 − µ −βS0 − µ

βI0 βS0 − ν

] [
u
v

]
:= A

[
u
v

]
.

A calculation of the eigenvalues of the previous matrix shows that both eigenvalues have
negative real parts, and so the equilibrium solution is asymptotically stable. A simple way to
arrive at the latter result comes from the fact that

traceA < 0, detA > 0.

4. In case (a), give an interpretation of the biological significance of the stability properties
of the critical points.

Solution. Note that the equilibrium solution with I = 0 is stable below the population
threshold ν

β
, in which case the disease may day out. Whereas about the population threshold,

the infection will prevail and the disease may get established in the community.

From now on, we restrict ourselves to case (a).
5. Note that the SIRS system is only of interest in the region

∆ := {(I, S) : I, S ≥ 0, andS + I ≤ τ}.

Why?

Solution. I and S represent population groups, so they are positive, and also their sum,
I + S, cannot be greater than the total population τ.

Determine whether the I axis is invariant. What about the S-axis? What is the behavior
of the solutions restricted to the S-axis.

Solution. It is easy to see that the line I = 0 is invariant, since İ = 0 when I = 0, and so, a
solution starting with I(0) = 0 will satisfy I(t) = 0 for all time.

Biologically, it means that, for the disease to get hold in the population, there has to be
some initial infection, even if just very small.

However, the line S = 0 is not invariant: starting with S(0) = 0, it does not follow that
S(t) = 0 for all time.
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Figure 1: Invariant region ∆. Note that the vector field points inwards along the three sides
of the triangle.

6. Show that the region ∆ is positively invariant.

Solution. We need to show that, on all three sides of the triangle ∆, the vector field of the
system points inwards (or tangent to the side as it is the case along I = 0) (figure 1).

1. Along S = 0: Ṡ > 0 and İ = −νI < 0.

2. Along I = 0: İ = 0, Ṡ > 0, with solutions tending to the stable equilibrium {S =
τ, I = 0}.

3. On the line S + I = τ , we see that Ṡ = −βS(τ − S) < 0.

We split the remaining part of the proof into two parts. First, let us consider 0 < S < ν
β
.

We see that İ = I(βS−ν) < 0. That is, the vector field points to the left and downwards,
so it is pointing towards the interior of ∆. Next, let us consider τ > S > ν

β
, and calculate

İ

Ṡ
= −1 +

ν

βS
.

Hence

−1 ≤ İ

Ṡ
= −1 +

ν

βS
< 0.

Again, the vector field points inwards.

Problem 3. For each of the following systems, identify all points that lie in either an
ω−limit or an α-limit set:

• ṙ = r − r3, θ̇ = 1.

• ṙ = r3 − 3r2 + 2r, θ̇ = 1.
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Solution, part I. First, note that the equilibrium solutions of the equation are r = 0 and
r = 1, the latter is the circle of radius 1 around the origin.

The linearized equation about r = 0 is

ṙ = r, r(t) = Cet,

so r = 0 is an unstable equilibrium point. r = 0 is an α-limit set.
The linearized equation about r = 1 is

ṙ = 2(1− r), r(t) = 1− Ce−2t, |C| ≤ 1.

Hence, r = 1 is a limit cycle that positively attracts orbits. That is, r = 1 is an ω-limit set.

Solution, part II. The equilibrium solutions of the second equation are

r = 0, r = 1 and r = 2.

The linearized equation about r = 0 is ṙ = 2r showing that r = 0 is an unstable equilibrium
point, and so r = 0 is an α-limit set of the solutions.

The linearized equation about r = 1 is ṙ = −(r − 1), and so the limit cycle r = 1 an
ω-limit set.

The linearized equation about r = 2 is ṙ = 2(r−2), and so the limit cycle r = 2 an α-limit
set.
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