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1 Problem 1

The logistic population growth model is given by the first order, nonlinear di�erential
equations

𝑑𝑥
𝑑𝑡
= 𝑎𝑥 �1 −

𝑥
𝑁
�

Where 𝑥 = 𝑥 (𝑡) denotes the number of individuals of a population group at time 𝑡 ≥ 0.
𝑁 > 0, integer, is the carrying capacity, that is, the maximum number of individuals that
the environment allows (e.g. based on available resources, such as food, access to water,...).
The positive number 𝑎 represents the growth rate. (1) Obtain the exact solution of the
equation (1) corresponding to the initial data 𝑥 (0) = 𝑥0 where 0 < 𝑥0 < 𝑁. (2) Obtain
the equilibrium solutions of the problem. (3) Determine the stability of the equilibrium
solutions. (4) Let 𝑁 = 100. Plot the solution corresponding to initial data 𝑥 (0) = 50.

Solution

1.1 part 1

𝑑𝑥
𝑑𝑡
= 𝑎𝑥 �1 −

𝑥
𝑁
�

𝑥 (0) = 𝑥0

This is separable first order ODE. Therefore

𝑑𝑥
𝑎𝑥 �1 − 𝑥

𝑁
�
= 𝑑𝑡

Integrating both sides gives

�
𝑥

𝑥0

𝑑𝑧
𝑎𝑧 �1 − 𝑧

𝑁
�
𝑑𝑧 = �

𝑡

0
𝑑𝜏

1
𝑎 �

𝑥

𝑥0

𝑑𝑧
𝑧 �1 − 𝑧

𝑁
�
𝑑𝑧 = 𝑡 (1)

Applying partial fractions to 1
𝑧�1− 𝑧

𝑁 �
gives

1
𝑧 �1 − 𝑧

𝑁
�
=
𝐴
𝑧
+

𝐵
1 − 𝑧

𝑁

Hence 𝐴 = 1
�1− 𝑧

𝑁 �
𝑧=0

= 1 and 𝐵 = 1
𝑧 𝑧=𝑁

= 1
𝑁 . Therefore

1
𝑧�1− 𝑧

𝑁 �
= 1

𝑧 +
1
𝑁

1
1− 𝑧

𝑁
= 1

𝑧 +
1

𝑁−𝑧 and (1)

now becomes

1
𝑎 �

𝑥

𝑥0

1
𝑧
+

1
𝑁 − 𝑧

𝑑𝑧 = 𝑡

�
𝑥

𝑥0

1
𝑧
𝑑𝑧 +�

𝑥

𝑥0

1
𝑁 − 𝑧

𝑑𝑧 = 𝑎𝑡

But ∫ 1
𝑧𝑑𝑧 = ln |𝑧| and ∫ 1

𝑁−𝑧𝑑𝑧 = − ln |𝑁 − 𝑧| and the above becomes

ln � 𝑥
𝑥0
� − ln � 𝑁 − 𝑥

𝑁 − 𝑥0
� = 𝑎𝑡

ln
�
�

𝑥
𝑥0
𝑁−𝑥
𝑁−𝑥0

�
�
= 𝑎𝑡

ln �𝑥
(𝑁 − 𝑥0)
𝑥0 (𝑁 − 𝑥)

� = 𝑎𝑡

ln � 𝑥
𝑥0
�
𝑁 − 𝑥0
𝑁 − 𝑥 �

� = 𝑎𝑡
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Since 𝑁 > 0 and 𝑁 > 𝑥0 and 𝑥0 > 0 and since 𝑁 is the carrying capacity, then hence
𝑁 − 𝑥 > 0), therefore �𝑁−𝑥0

𝑁−𝑥 � is positive. The absolute sign can be removed and the above
simplifies to

ln 𝑥
𝑥0
�
𝑁 − 𝑥0
𝑁 − 𝑥 �

= 𝑎𝑡

Taking the exponential of both sides gives

𝑥
𝑥0
�
𝑁 − 𝑥0
𝑁 − 𝑥 �

= 𝑒𝑎𝑡

𝑥 (𝑁 − 𝑥0) = (𝑁 − 𝑥) 𝑥0𝑒𝑎𝑡

𝑥 (𝑁 − 𝑥0) = 𝑁𝑥0𝑒𝑎𝑡 − 𝑥𝑥0𝑒𝑎𝑡

𝑥 (𝑁 − 𝑥0) + 𝑥𝑥0𝑒𝑎𝑡 = 𝑁𝑥0𝑒𝑎𝑡

𝑥 �𝑁 − 𝑥0 + 𝑥0𝑒𝑎𝑡� = 𝑁𝑥0𝑒𝑎𝑡

𝑥 (𝑡) =
𝑁𝑥0𝑒𝑎𝑡

𝑁 − 𝑥0 + 𝑥0𝑒𝑎𝑡

Dividing RHS numerator and denominator by 𝑒𝑎𝑡 gives the analytical solution as

𝑥 (𝑡) =
𝑁𝑥0

𝑥0 + (𝑁 − 𝑥0) 𝑒−𝑎𝑡
𝑎 > 0

1.2 part 2

Equilibrium solution is when 𝑑𝑥
𝑑𝑡 = 0, which implies 𝑎𝑥 �1 − 𝑥

𝑁
� = 0. This gives 𝑥 = 0 or

1 − 𝑥
𝑁 = 0 which gives 𝑥 = 𝑁.

1.3 part 3

Let

𝑑𝑥
𝑑𝑡
= 𝑓 (𝑥)

= 𝑎𝑥 �1 −
𝑥
𝑁
�

Hence

𝑓′ (𝑥) = 𝑎 �1 −
𝑥
𝑁
� + 𝑎𝑥 �−

1
𝑁�

= 𝑎 − 𝑎
𝑥
𝑁
− 𝑎

𝑥
𝑁

= 𝑎 − 2𝑎
𝑥
𝑁

(1)

When 𝑥 = 0 the above shows that 𝑓′ (𝑥) = 𝑎 > 0 since 𝑎 is always positive. Since the slope
of 𝑓 (𝑥) is positive then 𝑥 = 0 is unstable equilibrium.

At 𝑥 = 𝑁 then (1) becomes 𝑓′ (𝑥) = 𝑎 − 2𝑎 = −𝑎. Since the slope of 𝑓 (𝑥) is negative then
𝑥 = 𝑁 is stable equilibrium.

1.4 part 4

When 𝑁 = 100,𝑥 (0) = 50, the solution found above 𝑥 (𝑡) = 𝑁𝑥0
𝑥0+(𝑁−𝑥0)𝑒−𝑎𝑡

now becomes

𝑥 (𝑡) =
(100) (50)

50 + (100 − 50) 𝑒−𝑎𝑡

=
5000

50 (1 + 𝑒−𝑎𝑡)

=
100

1 + 𝑒−𝑎𝑡
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The above shows that as 𝑡 → ∞ and since 𝑎 > 0 then 𝑥 (𝑡) → 100 which is 𝑁, the limiting
capacity as expected. This is plot of the above for di�erent 𝑎 > 0 numerical values.
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Figure 1: Solution 𝑥(𝑡) for di�erent 𝑎 values

x[t_, a_] := 100  1 + Exp[-a t]

p = Table[Plot[x[t, a], {t, 0, 4}, AxesOrigin → {0, 0},

PlotLabel → Row[{"a=", a}],

ImageSize → 300,

AxesLabel → {"t", "x(t)"},

BaseStyle → 12,

GridLines → Automatic,

GridLinesStyle → LightGray,

Epilog → {Red, Dashed, Line[{{0, 50}, {5, 50}}]}

], {a, {1, 2, 3, 4}}];

p = Grid[Partition[p, 2], Frame → All];

Figure 2: Code used for the above plot

Observations As the growth rate 𝑎 increases in value, the population 𝑥 (𝑡) reaches its
limiting value 𝑁 = 100 more rapidly as expected. The line shown in dashed red is the
initial population size of 50. Once limiting population size if reached, the population size
do not change any more with time.
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2 Problem 2

(1) Solve exercise 2.5, page 24, of the textbook: Find the critical points of the system

𝑥̇ = 𝑦
𝑦̇ = 𝑥 − 2𝑥3

Characterize the critical points by linear analysis and determine their attraction properties.
(2) Plot the phase plane of the system.

Solution

2.1 Part 1

This is non-linear second order system.

𝑥̇ = 𝑓1 = 𝑦

𝑦̇ = 𝑓2 = 𝑥 �1 − 2𝑥2�

The critical points are 𝑦 = 0 and 𝑥 �1 − 2𝑥2� = 0 or 𝑥 = 0 and 1 − 2𝑥2 = 0 which gives 𝑥2 = 1
2

or 𝑥 = ± 1

√2
. Hence there are 3 critical points are

�𝑥, 𝑦� = �(0, 0) , �
1

√2
, 0� , �−

1

√2
, 0��

To find the if critical points are stable or not, the system is linearized the system and each
eigenvalue is examined. The Jacobian matrix of linearized system is

𝐽 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕𝑥̇
𝜕𝑥

𝜕𝑥̇
𝜕𝑦

𝜕𝑦̇
𝜕𝑥

𝜕𝑦̇
𝜕𝑦

⎞
⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

0 1
1 − 6𝑥2 0

⎞
⎟⎟⎟⎟⎠

Point (0, 0) At this point the Jacobian matrix becomes 𝐽 =
⎛
⎜⎜⎜⎜⎝
0 1
1 0

⎞
⎟⎟⎟⎟⎠. Its eigenvalues are found

from |det (𝐴) − 𝜆𝐼| = 0 which gives

�
−𝜆 1
1 −𝜆

� = 0

𝜆2 − 1 = 0

Hence 𝜆 = ±1. Since one of the eigenvalues is positive, then (0, 0) is unstable and the whole
system is considered unstable. The second (negative) eigenvalue is stable, which leads to
(0, 0) being saddle point. (which is considered unstable)

Point � 1

√2
, 0� At this point 𝐽 =

⎛
⎜⎜⎜⎜⎝

0 1
1 − 6𝑥2 0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0 1

1 − 6
2 0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0 1
−2 0

⎞
⎟⎟⎟⎟⎠. The eigenvalues are

�
−𝜆 1
−2 −𝜆

� = 0

𝜆2 + 2 = 0
𝜆2 = −2

The solution is 𝜆1 = −√2𝑖, 𝜆2 = √2𝑖. Since this is pure complex conjugate (zero real part)
then the critical point is central point considered stable point (sometimes also called
marginally stable). The solutions around this point are periodic.



6

Point � −1
√2
, 0� At this point 𝐽 =

⎛
⎜⎜⎜⎜⎝
0 1

1 − 6
2 0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 1
1 − 6𝑥2 0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0 1
−2 0

⎞
⎟⎟⎟⎟⎠. This is the same as the

above.

The eigenvalues are 𝜆1 = −√2𝑖, 𝜆2 = √2𝑖. Which lead to a central point. The solutions
around this point are periodic.

2.2 Part 2

Writing

𝑥̇ = 𝑓1 = 𝑦
𝑦̇ = 𝑓2 = 𝑥 − 2𝑥3

The actual phase plane orbit equation can be found by solving 𝑑𝑦
𝑑𝑥 =

𝑓2
𝑓1
= 𝑥−2𝑥3

𝑦 or 𝑦𝑑𝑦 =

�𝑥 − 2𝑥3� 𝑑𝑥. Integrating gives

1
2
𝑦2 = �

1
2
𝑥2 −

2
3
𝑥4� + 𝐶

1
2
𝑦2 −

1
2
𝑥2 +

2
3
𝑥4 = 𝐶

For di�erent constant 𝐶, di�erent orbit result. But instead of plotting the above equation
for di�erent 𝐶, the phase plot is generated using two methods as it was not clear which
method to use.

First method This is the manual method. The system is linearized as above, and for each
critical point, the eigenvectors are found. From first part we found that at Point (0, 0). The
eigenvalues are 𝜆 = ±1. Hence for 𝜆 = 1 the system (𝐴 − 𝜆𝐼) 𝑣 = 0 where 𝑣 is the eigenvector
corresponding to 𝜆 becomes

⎛
⎜⎜⎜⎜⎝
0 − 𝜆 1
1 0 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−1 1
1 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Which gives from first equation −𝑣1 + 𝑣2 = 0 or 𝑣1 = 𝑣2. By assuming 𝑣1 = 1, the first

eigenvector is

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠. For 𝜆 = −1 the system becomes

⎛
⎜⎜⎜⎜⎝
0 − 𝜆 1
1 0 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 1
1 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Which gives 𝑣1 + 𝑣2 = 0 or 𝑣2 = −𝑣1. By assuming 𝑣1 = 1, the second eigenvector is

⎛
⎜⎜⎜⎜⎝
1
−1

⎞
⎟⎟⎟⎟⎠.

Now the direction along along each eigenvector is found. Starting with the first eigenvector⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ which spans from first quadrant to 3rd quadrant. We recall that the system is

𝑥̇ = 𝑦

𝑦̇ = 𝑥 �1 − 2𝑥2�

In first quadrant, 𝑦 > 0. This means from above that 𝑥̇ > 0 which means 𝑥 is increasing
in first quadrant. Also in first quadrant, 𝑥 > 0 which means when 𝑥 is close to zero such
that 1 − 2𝑥2 is positive, then 𝑦̇ > 0 from the second equation above, which means 𝑦 is
increasing also in first quadrant. In the 3rd quadrant, 𝑦 < 0 which means 𝑥̇ < 0 and hence 𝑥
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is decreasing. Also, in 3rd quadrant 𝑦 < 0 which means for 𝑥 close to zero 𝑦̇ < 0 and hence
𝑦 is decreasing as well. This means that the first eigenvector points away from the origin
in first and third quadrant.

The second eigenvector

⎛
⎜⎜⎜⎜⎝
1
−1

⎞
⎟⎟⎟⎟⎠ extends from second quadrant to 4th quadrant. In 4th quad-

rant, 𝑦 < 0 hence 𝑥̇ < 0 which means 𝑥 is decreasing (getting closer to the origin). In the 4th
quadrant, 𝑥 > 0 which for 𝑥 close to zero such that 1 − 2𝑥2 remain positive, 𝑦̇ > 0 and hence
𝑦 is increasing (getting closer to origin). Now, in the second quadrant, 𝑦 > 0 which means
𝑥̇ > 0 which means 𝑥 is increasing (getting closer to origin) and in the second quadrant
𝑥 < 0 hence for values of 𝑥 near zero, 𝑦̇ < 0 which means 𝑦 is decreasing (getting closer
to origin). Therefore on the second eigenvector all solutions move closer to origin (this is
stable eigenvector). This is how the phase plot looks now around (0, 0)

-1.0 -0.5 0.5 1.0
x

-1.0

-0.5

0.5

1.0

y

Figure 3: Manually making phase plot around (0, 0)

The next step is to manually draw the rest of the phase plot lines in each of the four regions
as follows by continuity

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

Figure 4: Manually making phase plot around (0, 0)

The same thing is done for each remaining critical point � 1

√2
, 0� , �− 1

√2
, 0� in the manual

method and will not be repeated as the same steps as above.

Now the second method is applied, which is to numerically generate phase plot directly
for the non-linear system.
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The 3 critical points are marked on the following plot. Unable point is colored in red and
the stable critical points are colored in green. The plot below shows that (0, 0) is unstable
(saddle) as shown above using the manual method and the points �± −1

√2
, 0� are central

since solutions move around it in circular orbits. (Periodic solutions).

-1.0 -0.5 0.0 0.5 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 5: Phase plot

p1 = {Red, PointSize[0.03], Point[{0, 0}]};

p2 = Green, PointSize[0.03], Point1  Sqrt[2], 0;

p3 = Green, PointSize[0.03], Point-1  Sqrt[2], 0;

p = StreamPlot[{y, x - 2 x^3}, {x, -1.25, 1.25}, {y, -1.5, 1.5},

Epilog → {p1, p2, p3}

];

Figure 6: Code used for the above plot
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3 Problem 3

(1) Solve exercise 2.3, page 23, of the textbook: We are studying the three-dimensional
system

𝑥̇1 = 𝑥1 − 𝑥1𝑥2 − 𝑥32 + 𝑥3 �𝑥21 + 𝑥22 − 1 − 𝑥1 + 𝑥1𝑥2 + 𝑥32� (A)

𝑥̇2 = 𝑥1 − 𝑥3 (𝑥1 − 𝑥2 + 2𝑥1𝑥2)

𝑥̇3 = (𝑥3 − 1) �𝑥3 + 2𝑥3𝑥22 + 𝑥33�

(a) Determine the critical points of this system. (b) Show that the planes 𝑥3 = 0 and 𝑥3 = 1
are invariant sets. (c) Consider the invariant set 𝑥3 = 1. Does this set contain periodic
solutions?

(2) Plot the phase plane of the system

Solution

3.1 Part 1.a

From the third equation, let 𝑥̇3 = 0, then

(𝑥3 − 1) �𝑥3 + 2𝑥3𝑥22 + 𝑥33� = 0

Hence 𝑥3 = 1 or 𝑥3 �1 + 2𝑥22 + 𝑥23� = 0, which gives additional solutions 𝑥3 = 0 or �1 + 2𝑥22 + 𝑥23� =
0. When 𝑥3 = 0 this becomes 1 + 2𝑥22 = 0 which does not give real solution in 𝑥2. Now, when
𝑥3 = 1 then �1 + 2𝑥22 + 𝑥23� = 0 gives 2 + 2𝑥22 = 0 which also do not give real solution.

Considering now the first and second equations in (A) and set each to zero which gives

𝑥1 − 𝑥1𝑥2 − 𝑥32 + 𝑥3 �𝑥21 + 𝑥22 − 1 − 𝑥1 + 𝑥1𝑥2 + 𝑥32� = 0 (1)

𝑥1 − 𝑥3 (𝑥1 − 𝑥2 + 2𝑥1𝑥2) = 0

When 𝑥3 = 0 the above becomes

𝑥1 − 𝑥1𝑥2 − 𝑥32 = 0
𝑥1 = 0

Which gives solutions 𝑥1 = 0 from the second equation. This results in 𝑥2 = 0 from the first
equation. Hence the point (0, 0, 0) is the first critical point.

Now, when 𝑥3 = 1 EQ (1) becomes

𝑥1 − 𝑥1𝑥2 − 𝑥32 + 𝑥21 + 𝑥22 − 1 − 𝑥1 + 𝑥1𝑥2 + 𝑥32 = 0
𝑥1 − (𝑥1 − 𝑥2 + 2𝑥1𝑥2) = 0

Or

𝑥21 + 𝑥22 − 1 = 0
𝑥2 − 2𝑥1𝑥2 = 0

Or

𝑥21 + 𝑥22 − 1 = 0
𝑥2 (1 − 2𝑥1) = 0

From the second equation above 𝑥2 = 0 or 𝑥1 =
1
2 . When 𝑥2 = 0 the first equation above

gives 𝑥1 = ±1. Hence second critical point is (±1, 0, 1). And when 𝑥1 =
1
2 the first equation

gives

1
4
+ 𝑥22 − 1 = 0

𝑥22 =
3
4

𝑥2 = ±
√3
2
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Hence critical point is �12 , ±
√3
2 , 1�

In summary, the critical points are

(0, 0, 0) , (±1, 0, 1) ,
⎛
⎜⎜⎜⎝
1
2
, ±√

3
2
, 1
⎞
⎟⎟⎟⎠

3.2 Part 1.b

A set 𝑆 is invariant, if when initial conditions are in 𝑆, then the overall solution remain in
𝑆 for all time. From the third equation in (A) for 𝑥̇3

𝑥̇3 = (𝑥3 − 1) �𝑥3 + 2𝑥3𝑥22 + 𝑥33�

= (𝑥3 − 1) 𝑥3 �1 + 2𝑥22 + 𝑥23�

The above shows that when 𝑥̇3 = 0, then 𝑥3 = 1 or 𝑥3 = 0 are the solutions. The term
1 + 2𝑥22 + 𝑥23 = 0 does not give real solutions hence not used. So only 𝑥3 = 1, 𝑥3 = 0 are only
possible solutions. Therefore these are invariant sets. Any solution with initial conditions
𝑥3 = 0 or 𝑥3 = 0 will remain in the set 𝑥3 = 0 or 𝑥3 = 0 respectively.

3.3 Part 1.c

When 𝑥3 = 1 the system reduces to

𝑥̇1 = 𝑥1 − 𝑥1𝑥2 − 𝑥32 + 𝑥21 + 𝑥22 − 1 − 𝑥1 + 𝑥1𝑥2 + 𝑥32
𝑥̇2 = 𝑥1 − (𝑥1 − 𝑥2 + 2𝑥1𝑥2)

Or

𝑥̇1 = 𝑥21 + 𝑥22 − 1 (1)

𝑥̇2 = 𝑥2 (1 − 2𝑥1)

To see if there are periodic solutions, the phase plot is drawn around the critical points

(±1, 0) , �12 , ±
√3
2
� to see if there are closed orbits or not. Here is the result for the set 𝑥3 = 1

-1.0 -0.5 0.0 0.5 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 7: Phase plot when 𝑥3 = 1
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The above shows that there are no closed orbits. This implies no periodic solutions exist.

Another way to find this without using the computer, is to do the following: We linearize
the system (1) and then determine the eigenvalues for each critical point. Since this is
second order system, then only eigenvalues that pair of complex conjugate will indicate a
periodic solution (which is consider to be stable). To linearize (1), we first find the Jacobian
matrix, which is

𝐽 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕𝑥̇1
𝜕𝑥1

𝜕𝑥̇1
𝜕𝑥2

𝜕𝑥̇2
𝜕𝑥1

𝜕𝑥̇2
𝜕𝑥2

⎞
⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
2𝑥1 2𝑥2
−2𝑥2 1 − 2𝑥1

⎞
⎟⎟⎟⎟⎠

Critical point (1, 0)

The Jacobian matrix at this point becomes

⎛
⎜⎜⎜⎜⎝
1 0
0 −1

⎞
⎟⎟⎟⎟⎠

Which has the −1, 1. Not stable. No periodic solutions around this point.

Critical point (−1, 0)

The Jacobian matrix at this point becomes

⎛
⎜⎜⎜⎜⎝
−2 0
0 3

⎞
⎟⎟⎟⎟⎠

Which has eigenvalues 3, −2. Not stable. No periodic solutions around this point.

Critical point �12 ,
√3
2
�

The Jacobian matrix at this point becomes

⎛
⎜⎜⎜⎜⎝
1 √3

−√3 0

⎞
⎟⎟⎟⎟⎠

Which has eigenvalues: 1
2 +

1
2 𝑖√11,

1
2 −

1
2 𝑖√11. This is not not stable because the real part is

positive, hence can not be periodic.

Critical point �12 ,
−√3
2
�

The Jacobian matrix at this point becomes

⎛
⎜⎜⎜⎜⎝
1 −√3
√3 0

⎞
⎟⎟⎟⎟⎠

Which has same eigenvalues as above 1
2 +

1
2 𝑖√11,

1
2 −

1
2 𝑖√11. This is not not stable because

the real part is positive, hence can not be periodic. Therefore we see that no periodic
solutions exist.

3.4 Part 2

In part 1 above, the phase plot for the set 𝑥3 = 1 is already given. The following is the
phase plot for the set 𝑥3 = 0. When 𝑥3 = 0 the system reduces to

𝑥̇1 = 𝑥1 − 𝑥1𝑥2 − 𝑥32
𝑥̇2 = 𝑥1
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The critical points are 𝑥1 = 0 from the second equation and from the first equation this
gives 𝑥2 = 0. Hence (0, 0) is the only critical point. To determine if stable or not, the
Jacobian is found

𝐽 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕𝑥̇1
𝜕𝑥1

𝜕𝑥̇1
𝜕𝑥2

𝜕𝑥̇2
𝜕𝑥1

𝜕𝑥̇2
𝜕𝑥2

⎞
⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
1 − 𝑥2 −𝑥1 − 3𝑥2
1 0

⎞
⎟⎟⎟⎟⎠

Evaluated at 𝑥1 = 0, 𝑥2 = 0 the above becomes

𝐽 =
⎛
⎜⎜⎜⎜⎝
1 0
1 0

⎞
⎟⎟⎟⎟⎠

Eigenvalues are

�
−𝜆 0
1 −𝜆

� = 0

𝜆2 = 0
𝜆 = 0

Double root. Since the system is nonlinear, and since 𝜆 = 0, then unable to determine
stability of the non-linear system from the linearized system. Will have to use the phase
plot to check stability of (0, 0) as given below.

-1.0 -0.5 0.0 0.5 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 8: Phase plot when 𝑥3 = 0

p1 = {Red, PointSize[0.03], Point[{0, 0}]};

p =

StreamPlot[{x1 - x1 * x2 - x2^3, x1}, {x1, -1.25, 1.25}, {x2, -1.5, 1.5}, Epilog → {p1}];

Figure 9: Code used for the above

From the above phase plot, it shows that (0, 0) critical point is not stable because solutions
that starts near (0, 0) move away from equilibrium.
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