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1 Questions

4 Convolution
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P4.1

This problem is a simple example of the use of superposition. Suppose that a dis-
crete-time linear system has outputs y[n] for the given inputs x[xr] as shown in Fig-

ure P4.1-1.
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Figure P4.1-1

Determine the response ¥,(n] when the input is as shown in Figure P4.1-2.
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Figure P4.1-2

(a) Express x,[n] as a linear combination of x)[n], s[n], and x3[n].
(b) Using the fact that the system is linear, determine y4[n], the response to x(n].

(c) From the input-output pairs in Figure P4.1-1, determine whether the system is
time-invariant.
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P4.2

Deterniine the discrete-time
cases.
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P4.3

Determine the continuous-time convolution of 2(¢) and k(t) for the following three

cases:
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Figure P4.3-1
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P4.4
Consider a discrete-time, linear, shift-invariant system that has unit sample re-
sponse h[n] and input x[n].
(a) Sketch the response of this system if z[n] = §n — ng), for some ny > 0, and
Rln] = ()u{n].
(b) Evaluate and sketch the output of the system if k[n] = O uln] and x[n] =
ulnl.
(c) Consider reversing the role of the input and system response in part (b). That
is,
hln] = u[n],
x{n] = Pruin]
Evaluate the system output y[n] and sketch.
P4.5

(a) Using convolution, determine and sketch the responses of a linear, time-invar-
fant system with impulse response k(t} = €™ u(t) to each of the two inputs
(1), 2,(t) shown in Figures P4.5-1 and P4.5-2. Use #(t) to denote the response
to x,(¢) and use y,(t) to denote the response to ().

2 Problem 4.1

Solution

21 parta

We need to find linear combination of x; [1], x, [1n], x3 [n] which gives x4 [1]. In other words,
looking at samples at n = 0,1,2 and adding corresponding samples gives

1
b+c=-1
c=1

a+b+c




But from second equation b = -1 -1 = -2 and from first equationa =1-b-c=1+2-1=2.
Hence
2x1 [n] =223 [n] + x5 [n] = x4 [n]

22 partb

Therefore by linearity
2y, [n] =2y, [n] + y3 [1n] = ya [1]

Hence
Yaln] =20[n+1]+06[n]+26[n—-1]-26[n-2]
2 2
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Figure 1: Plot of y[n]
2.3 partc

System is time invariant if shifted input gives same output but also shifted by the same
amount as the input is shifted by. Let us consider x; [n]. By shifting it to the right by one,
then the output should y, [1] but shifted to the right by one which is y; [n —1]

Figure 2: Plot of y,[n -1]

Shifting x; [n] by 2 now the output should be y; [n - 2]
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Figure 3: Plot of y[n - 2]

But adding x; [1] + xq [n — 1] + xq [n — 2] gives x3 [n]. Which has the output shown. Let us
now add y; [n] + y; [n = 1] + y1 [n — 2] and see if this gives same as y; [1]
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Figure 4: Plot of all shifted inputs of x;[x]

Since the above is not the same as y;[n] then the system is not time invariant.




3 Problem 4.2

Solution

3.1 Parta

By folding x[n] and shifting to the right, we see that y[0] = 2,y[1] =2+2 =4,y[2] =
2+2+2=6,y[31=8,y[4] =6,y[5] =4,y[6] =2,y[7] = 0 and y[n] = O for all other values.

L]

$ $
s s
2 2
9 9 | | N | 9 9
-2 0 2 4 6 8

Figure 5: y[n]

3.2 Partb

By folding x[n] and shifting to the right, we see that y[0] =0,y[1] =0,y[2] = 0.5,y[3] =
1,y[4] =15,y[5] =1,y[6] = 0.5,y[7] = 0 and y [n] = O for all other values.
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Figure 6: y[n]

4 Problem 4.3

Solution

41 Parta

By folding x(t) and shifting, we see that for + < 0 that y(t) = 0. And for 0 <t < 4 the
integral becomes

y(t) = ‘[:h(’[)d’[ 0<t<4



Andfor O<t-4<4o0ord<t<8

y(t):£4h(T)dT 4<t<8

= fA 1dt
-4

=4-(t-4)
=8-t
Andfor 4<t-4ort>8
y@) =0
Hence y (t) is
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Figure 7: y(t)

4.2 Partb

By folding / (t) and shifting, we see that for f < 0 that y(f) = 0. And for ¢ > 0 the integral
becomes

() = fll+th(z)dr £>0
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Hence y (t) is
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Figure 8: y(t)

4.3 Partc

By folding / (t) and shifting, we see that for -2+t < -1 or t < 1 that y(t) = 0. And for
-1 < -2+t <3 orl<t<5 the integral becomes x () itself (i.e. original x (t) but shifted to
right by 2). And for 3 < -2+t or t > 5 then y(t) = 0. Hence
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Figure 9: y(t)



	Questions
	Problem 4.1
	part a
	part b
	part c

	Problem 4.2
	Part a
	Part b

	Problem 4.3
	Part a
	Part b
	Part c


