discussion week 2

EE 3015 Signals and Systems

Spring 2020 University of Minnesota, Twin Cities

[Nasser M. Abbasi](mailto:nma@12000.org)

May 27, 2020 Compiled on May 27, 2020 at 12:27am

Contents

Questions

2 Problem 4.1

Solution

2.1 part a

We need to find linear combination of $x_1[n]$, $x_2[n]$, $x_3[n]$ which gives $x_4[n]$. In other words, looking at samples at $n = 0, 1, 2$ and adding corresponding samples gives

$$
a+b+c=1
$$

$$
b+c=-1
$$

$$
c=1
$$

But from second equation $b = -1 - 1 = -2$ and from first equation $a = 1 - b - c = 1 + 2 - 1 = 2$. Hence

$$
2x_1[n] - 2x_2[n] + x_3[n] = x_4[n]
$$

2.2 part b

Therefore by linearity

$$
2y_1[n] - 2y_2[n] + y_3[n] = y_4[n]
$$

Hence

$$
y_4[n] = 2\delta[n+1] + \delta[n] + 2\delta[n-1] - 2\delta[n-2]
$$

Figure 1: Plot of $y[n]$

2.3 part c

System is time invariant if shifted input gives same output but also shifted by the same amount as the input is shifted by. Let us consider $x_1[n]$. By shifting it to the right by one, then the output should $y_1[n]$ but shifted to the right by one which is $y_1[n-1]$

Figure 2: Plot of $y_1[n-1]$

Shifting $x_1[n]$ by 2 now the output should be $y_1[n-2]$

Figure 3: Plot of $y_1[n-2]$

But adding $x_1[n] + x_1[n-1] + x_1[n-2]$ gives $x_3[n]$. Which has the output shown. Let us now add $y_1[n] + y_1[n-1] + y_1[n-2]$ and see if this gives same as $y_3[n]$

Figure 4: Plot of all shifted inputs of $x_1[x]$

Since the above is not the same as $y_3[n]$ then the system is <u>not time invariant</u>.

Solution

3.1 Part a

By folding $x[n]$ and shifting to the right, we see that $y[0] = 2, y[1] = 2 + 2 = 4, y[2] =$ $2 + 2 + 2 = 6$, $y[3] = 8$, $y[4] = 6$, $y[5] = 4$, $y[6] = 2$, $y[7] = 0$ and $y[n] = 0$ for all other values.

3.2 Part b

By folding $x[n]$ and shifting to the right, we see that $y[0] = 0, y[1] = 0, y[2] = 0.5, y[3] =$ $1, y [4] = 1.5, y [5] = 1, y [6] = 0.5, y [7] = 0$ and $y [n] = 0$ for all other values.

Figure 6: $y[n]$

4 Problem 4.3

Solution

4.1 Part a

By folding $x(t)$ and shifting, we see that for $t < 0$ that $y(t) = 0$. And for $0 < t < 4$ the integral becomes

$$
y(t) = \int_0^t h(\tau) d\tau \qquad 0 < t < 4
$$

$$
= \int_0^t 1 d\tau
$$

$$
= t
$$

And for $0 < t - 4 < 4$ or $4 < t < 8$

$$
y(t) = \int_{t-4}^{4} h(\tau) d\tau \qquad 4 < t < 8
$$

=
$$
\int_{t-4}^{4} 1 d\tau
$$

=
$$
4 - (t - 4)
$$

=
$$
8 - t
$$

And for $4 < t - 4$ or $t > 8$

$$
y\left(t\right) =0
$$

Hence $y(t)$ is

Figure 7: $y(t)$

4.2 Part b

By folding $h(t)$ and shifting, we see that for $t < 0$ that $y(t) = 0$. And for $t > 0$ the integral becomes

$$
y(t) = \int_{1}^{1+t} h(\tau) d\tau \qquad t > 0
$$

=
$$
\int_{1}^{1+t} e^{-(\tau-1)} d\tau
$$

=
$$
\left[\frac{e^{-(\tau-1)}}{-1} \right]_{1}^{1+t}
$$

=
$$
-\left[e^{-(\tau-1)} \right]_{1}^{1+t}
$$

=
$$
-\left[e^{-(1+t)-1} \right] - e^{-(1-t)}
$$

=
$$
-\left[e^{-t} - 1 \right]
$$

=
$$
1 - e^{-t}
$$

Hence $y(t)$ is

Figure 8: $y(t)$

4.3 Part c

By folding $h(t)$ and shifting, we see that for $-2 + t < -1$ or $t < 1$ that $y(t) = 0$. And for $-1 < -2 + t < 3$ or $1 < t < 5$ the integral becomes $x(t)$ itself (i.e. original $x(t)$ but shifted to right by 2). And for $3 < -2 + t$ or $t > 5$ then $y(t) = 0$. Hence

Figure 9: $y(t)$