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1.1. Links CHAPTER 1. INTRODUCTION

1.1 Links

1. class web page (needs login) https://canvas.umn.edu/courses/158230|

2. Media page (needs login) https://www.unite.umn.edu/secure/Spring20/EE3015/|

1.2 Text book

SECOND EDITION

ALAN V. OPPENHEIM
ALAN S. WILLSKY

WITH S. HAMID NAWAB



https://canvas.umn.edu/courses/158230
https://www.unite.umn.edu/secure/Spring20/EE3015/
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1.3 syllabus

EE3015: Signals & Systems, Spring 2020

Course Description

Basic techniques for analysis/design of signal processing, communications, and control
systems. Time/frequency models, Fourier-domain representations, modulation. Discrete-
time/digital signal/system analysis. Z transform. State models, stability, feedback.
Prereq: [EE 2011, CSE Upper Division] or dept consent

Instructor

A. B (Bob) Mahmoodi

Office: Keller Hall 2-115
Phone: 612-625-3027

Email: mahmo006(@umn.edu
Office Hours: M W F 9:00-10:00 am

Lecture
MWF 10:10 — 11: 05 am Keller Hall 3-125

Discussion Sections

Wednesdays Sec. 002: A. B. Mahmoodi  12:20 — 1:10 pm Vincent Hall 213
Wednesdays Sec. 003: A. B. Mahmoodi  1:25—2:15 pm Akerman Hall 215
All discussion sections will start on January 29"

Teaching Assistants

Omer Burak Demirel

Email: demir035@umn.edu

Office Hours: Thursday Friday 9:00-10am (Keller Hall 2-276)

Jack Erhardt
Email: erhar057@umn.edu
Office Hours: M Tues 12:00-1:00pm (Keller Hall 2-276)

Text Book
Signals & Systems 2™ ed. Oppenheim & Willsky & Nawab

Computer Software
MATLAB Student version, latest version (this software is available to all CSE students)

Topics covered

Chapter 1 (1/22, 1/24)
Introduction (Sections 1.1-1.7); Continuous and discrete-time signals; Operations on
signals; Properties of signals; Elementary signals, Continuous- and discrete-time
systems; Interconnections of systems; System Properties; Intro to Convolution
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Chapter 2 (1/27 thru 1/31)
Time Domain Representations for Linear Time Invariant Systems (Sections 2.1-2.5);
Convolution; Properties of convolution; Difference and differential equations
(characterizing solutions, block diagrams & interconnections)

Chapter 3 & 4 (2/3 thru 2/21)
Fourier Representations of Signals (Sections 3.1-3.11); continuous time Fourier series
& transform and properties (sections 4.1 — 4.7)

Midterm 1, Friday Feb 28“‘, Chapters 1, 2, 3, 4

Chapter 5 & 6 & 7 (2/24 thru 3/27)
Applications of Fourier Representations (discrete time); Frequency response; Fourier
transform representation for discrete-time signals (sections 5.1- 5.8); Application to
filters (sections (6.1 — 6.7); Sampling continuous-time signals; Reconstruction of
continuous-time signals from samples (sections 7.1-7.5)

Chapter 9 (3/30 thru 4/3)
The Laplace Transform, definition and convergence properties (Sections 9.1-9.9);
Inversion; Solving Differential Equations; Transform Analysis of Systems.

Midterm 2, Friday April 3™, Chapters 5, 6, 7

Chapter 10 (4/6 thru 4/17)
Intro to Z transform (sections 10.1-10.9); inverse Z transform properties and
existence of the transform; Applications in digital signal processing.

Chapter 8 (4/20 thru 4/24)
Introduction to Communication Systems (sections 8.1-8.9); Modulation application

Chapter 11 (4/27 4/29)
Intro to Feedback System (11.1-11.5) (If time permits, review otherwise. Typically
this is covered in detail in your control systems course.

Review (5/1, 5/4) Last day of class is on 5/4.

Final Exam: 1:30 — 3:30 pm Saturday May 9", Keller Hall 3-125

Homework Assignments

Homework is assigned every week and is due the following week. The grader will grade
a random selection of problems out of all assigned. 50% of your homework problems will
be graded for correctness of your solution, and the remaining 50% will be graded based
on an attempt at a solution (please show your work). No late homework will be accepted,
except in emergency situations. 4
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Please scan your homework as a PDF file and submit it via canvas to our TA by the due
date. Paper submissions will not be accepted.

Several assigned problems require the use of MATLAB. This software package is
available to all CSE students, and on the CSE lab computers.

Grading Policy

Midterm I 25% 2/28, in lecture
Midterm II 25% 4/3, in lecture

Final Exam 35% 5/9, 1:30 — 3:30 pm
Homework 10%

Discussion Quiz 5%

Other Important Information

Student Academic Integrity and Scholastic Dishonesty:

Academic integrity is essential to a positive teaching and learning environment. All
students enrolled in University courses are expected to complete coursework
responsibilities with fairness and honesty. Failure to do so by seeking unfair advantage
over others or misrepresenting someone else’s work as your own, can result in
disciplinary action. The University Student Conduct Code defines scholastic dishonesty
as follows:

Scholastic Dishonesty:

Scholastic dishonesty means plagiarizing; cheating on assignments or examinations;
engaging in unauthorized collaboration on academic work; taking, acquiring, or using test
materials without faculty permission; submitting false or incomplete records of academic
achievement; acting alone or in cooperation with another to falsify records or to obtain
dishonestly grades, honors, awards, or professional endorsement; altering, forging, or
misusing a University academic record; or fabricating or falsifying data, research
procedures, or data analysis.

Within this course, scholastic dishonesty includes, but is not limited to, looking at and/or
copying from another’s exam, using unauthorized note sheets during exams, any
unauthorized communication during exams (including verbal and/or electronic
communications), etc. A student responsible for scholastic dishonesty can be assigned a
penalty up to and including an “F” or “N” for the course. For additional information,
refer to the student conduct code available here:
http://regents.umn.edu/sites/default/files/policies/Student_Conduct Code.pdf

Disability Accommodations:

The University of Minnesota views disability as an important aspect of diversity, and is
committed to providing equitable access to learning opportunities for all students. The
Disability Resource Center (DRC) is the campus office that collaborates with students
who have disabilities to provide and/or arrange reasonable accommodations. 5
Additional information is available on the DRC website:
https://diversity.umn.edu/disability/
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2.1 Discussion, second week

211 Questions

4 Convolution

Problems

vaSiun A

Recommended D¢

\ .2 4 (/1§ limms ellowd)

1
Probliw 4.
!

P4.1

This problem is a simple example of the use of superposition. Suppose that a dis-
crete-time linear system has outputs y[n] for the given inputs x[n] as shown in Fig-

ure P4.1-1.
Input x[n] Output y [n]

1 x[n] 1 »1ln]
—o—1 o—o———n n
-1 0 1 2 ==l 0 1 2

1 x[n] 1 ])’z["]

7Y n " *o—n
-1 0 1 2 3 -1 0 1 2 3
2

II ’ Ix;[nl 11 y3ln]

n - ®- n
-1 0 1 2 3 -1 0 1 2
Figure P4.1-1

Determine the response ¥ (n] when the input is as shown in Figure P4.1-2.

1 x4ln]
n
-1 0 l 2 3

el

Figure P4.1-2

(a) Express z,[n] as a linear combination of z[n], x:(n], and x3[n].
(b) Using the fact that the system is linear, determine y4n], the response to x,[n].

(¢) From the input-output pairs in Figure P4.1-1, determine whether the system is
time-invariant.

P4-1
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Signals and Systems
P4-2

P4.2
Determine the discrete-time convolution of x(n] and kin] for the following two
cases.
(a)
fi[n] 2
xin)
. 4 & L » n 4 L d » n
-1 0 1 2 3 a4 -l 0o 1 2 3 4
Figure P4.2-1
(b)
3e
hn]
2
x{n]
1
s ]
']
- ? - o——p—t— 11 ~—e - it
0 1 2 3 4 -1 0 1 2 3 435
Figure P4.2-2
P4.3
Determine the continuous-time convolution of 2(¢) and k(t) for the following three
cases:
(a)
x(8) h{t)
1 1
¢ I3
0 4 0 4
Figure P4.3-1
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P4.4

Convolution / Problems
P4-3

(b)
x{t) A1)
; e~ =Dy —1 : u(t+1)
r
0 1 ! -1 0
Figure P4.3-2
()
x(0) h(z}
] 5(—2)
: t !
- 0 1 3 0 2
Figure P4.3-3

P4.5

Consider a discrete-time, linear, shift-invariant system that has unit sample re-
sponse h[n] and input x[n].

(a) Sketch the response of this system if z[n] = §n — ng), for some ny > 0, and
Rln] = ()u{n].
(b) Evaluate and sketch the output of the system if k[n] = O uln] and x[n] =
ulnl.
() Consider reversing the role of the input and system response.in part (b). That
is,
k(n] = u[n],
x[n] = Fuln]

Evaluate the system output y[n] and sketch.

(a) Using convolution, determine and sketch the responses of a linear, time-invar-
fant system with impulse response k(t} = €™ u(t) to each of the two inputs
(1), 2,(t) shown in Figures P4.5-1 and P4.5-2. Use #(t) to denote the response
to x,(¢) and use y,(t) to denote the response to ().

10
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2.1.2 Problem 4.1

Solution

2121 parta

We need to find linear combination of x; [n], x; [1] , x5 [n] which gives x4 [n]. In other words,
looking at samples at n = 0,1,2 and adding corresponding samples gives

a+b+c=1
b+c=-1
c=1

But from second equation b = -1 -1 = -2 and from first equationa=1-b-c=1+2-1=2,
Hence
2x1 [n] = 2xp [n] + x5 [1n] = x4 [1]

2122 partb

Therefore by linearity
2y [n] =2y, [n] + y3 [n] = ya [n]

Hence
Yaln] =20[n+1]+0[n]+26[n-1]-26[n-2]
2 2
1
2 | | | | L g L 2
-2 -1 0 1 2 3 4
-2
Figure 2.1: Plot of y[n]
2123 partc

System is time invariant if shifted input gives same output but also shifted by the same
amount as the input is shifted by. Let us consider x; [1#]. By shifting it to the right by one,
then the output should y, [n] but shifted to the right by one which is y; [n —1]

11
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Figure 2.2: Plot of y1[n —1]

Shifting x; [n] by 2 now the output should be y; [n — 2]

9. b .2 . . . 9
22 -1 0 1 2 3 4

Figure 2.3: Plot of y;[n - 2]

But adding x; [n] + x; [n — 1] + x4 [n — 2] gives x5 [n]. Which has the output shown. Let us now
add y; [n] + y1 [n —1] + y1 [n — 2] and see if this gives same as y; [1]

12
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3
: $
3 :
g . . . . 2. 9
-2 -1 0 1 2 3 4 5

Figure 2.4: Plot of all shifted inputs of x;[x]

Since the above is not the same as y;[n] then the system is not time invariant.

2.1.3 Problem 4.2

Solution

21.31 Parta

By folding x[n] and shifting to the right, we see that y[0] = 2,y[1] = 2+2 = 4,y[2] =
2+2+2=6,y[3]1=8,y[4] =6,y[5] =4,y[6] =2,y[7] = 0 and y[n] = O for all other values.

8

“"°e
“"°e

en
TS

“ono
“ono

Figure 2.5: y[n]

21.3.2 Partb

By folding x[n] and shifting to the right, we see that y[0] = 0,y[1] = 0,y[2] = 0.5,y [3] =
1,y[4] =15,y[5] =1,y[6] = 0.5,¥[7] = 0 and y[n] = O for all other values.

13
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Figure 2.6: y[n]

2.1.4 Problem 4.3

Solution

2141 Parta

By folding x (t) and shifting, we see that for ¢t < 0 that y (t) = 0. And for 0 <t < 4 the integral

becomes

y@ﬁiﬂhﬁMT 0<t<4

t
:fld'[
0
=t

Andfor 0<t-4<4o0ord<t<8

y(t):ft:h(’[)d'c 4<t<8

4

= 1dt
t-4
=4-(t-4)
=8-t
And for 4 <t-4ort>8
y#®)=0
Hence y (t) is
0 t<0
t 0<t<4
YO=Vet aci<s
0 t>8

14
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Figure 2.7: y(t)

2142 Partb

By folding h (t) and shifting, we see that for ¢t < 0 that y () = 0. And for ¢ > 0 the integral
becomes

() = j;ch(T)dT £>0

1+t
= f e Ddr
1

e_(T_l) 1+t
=

1
~[e]

_ _[p-(@s-1) _ 1)
| ]

-]

=1-¢t

1+t

Hence y (t) is

15
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0.6
04+

0.2

Figure 2.8: y(t)

21.4.3 Partc

By folding 7 (t) and shifting, we see that for -2+t < -1 or t < 1 that y(t) = 0. And for
-1 < -2+t <3orl<t<b5the integral becomes x(t) itself (i.e. original x (f) but shifted to
right by 2). And for 3 < -2+t or t > 5 then y () = 0. Hence

0 t<1
y) =9 x(t-2) 1<t<5
0 t>5

0.8}

0.6

0.2}

L
-2

Figure 2.9: y(t)

16
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2.1.5 key solution

4 Convolution

Solutions to  Dicvicn 2 Shun
Recommended Problems
S4.1

The given input in Figure S4.1-1 can be expressed as linear combinations of x,[n],
Lz[n], sln].

x,[n]

|
T

Figure S4.1-1

(a) zn] = 2x\[n] — 2z,[n] + x4[n]
(b) Using superposition, y,[n] = 2y\[n] — 2y:[n] + ys[n], shown in Figure S4.1-2.

n

~1 0 1 2

=22

Figure S4.1-2

(c) The system is not time-invariant because an input ,(n] + z,[» — 1] does not
produce an output y,[»] + y,[n — 1]. The input z,[n] + x,[r — 1] is xy[r] +
x[n — 1] = x,[r] (shown in Figure S4.1-3), which we are told produces y,[n].
Since y,[n] # yi[n] + y\[n — 1], this system is not time-invariant.

xi[n]+x;[n—1]=x,[n]

|

0 1

Figure S4.1-3

S4-1

17
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Signals and Systems
54-2

54.2

The required convolutions are most easily done graphically by reflecting x[n] about
the origin and shifting the reflected signal.

{a) By reflecting x[n] about the origin, shifting, multiplying, and adding, we seé
that yin] = xin] * R[n] is as shown in Figure 54.2-1.

yin] ¢8

Figure $4.2-1

(b) By reflecting x[n] about the origin, shifting, multiplying, and. adding, we see
that y[n] = x[n] « k[n] is as shown in Figure $4.2-2,

¥

——e
o b—e

p

o

(=} ]

Figure $4.2.2

Notice that y[n] is a shifted and scaled version of k[=].

543

(a) It is easiest to perform this convolution graphically. The result is shown in Fig-
ure. 54.3-1.

18
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Convolution / Solutions
S4-3

y(O=x(t) « k(1)

Figure §4.8-1

(b} The convolution can be evaluated by using the convolution formula. The limits
can be verified by graphically visualizing the convolution.

@

y(t) = J-_ x(Hh (t— n)dr

= J e Dyl — Lt — + + Ldr

t+i
[Meran im0
1

0, t <0,
Let = r — 1. Then
e "dr 1-—e7, t>0
y(t) = j 0 = !
0 0, t <@
{c¢) The convolution can be evaluated graphically or by using the convelution

formula.
y(t) = fj 26t — v — 2)dr = x(t ~ 2)

So y(t) is a shifted version of x(t).

y{)

Figure 84.3-2

19



2.2. Discussion, week 3
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2.2 Discussion, week 3

2.21 Questions
Disesston 4 Pvag‘)ﬂ'u F,.,U.:.ni fr Med@raml. Wed ot lo
prblemt.  Consider Te Comvolhion Y= 1% hohy w ™
Xty = Co(nd) . [ uttey -att-y)
hity = utd+)y w41
problewaa. Clelde all Fouri Sevics Coeth of
SI‘SV\L\ ‘AH’\
X4 = Sm(@é) w Gal1n¥H
) 'C\mdc‘wu-)\.o ?
\ i PR\ g"‘ vw(_'(./;’( & w)'\,,+ b M .
‘\A.hx\‘} C\ d '9""\“""“-3 L,
PF"L'{ML ol,.).m"_ D\'}Cu_‘e Cuth‘vk‘L "’L ah w baax
YWy +\qlk\ witae Kn) =
blh\ = L\(u\: u(_n>
ﬂ&SuM ;n> \Ov\ <\
' LTI 9).5“%
coblemy The im \ve res ponse o;-o. Alﬂ“d'—
?U . L‘)(u\ h( —‘—‘ 2 1'}
N 2 T n) =
v \* \ A X1
OT\ T » p=0o & l)
X
n=o
) 4 ay 1S
Y11y Fod |c b4 =
‘\' t 3y 3 '
2.2.2 Problem 1
Solution
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2.2. Discussion, week 3

Folding 7 (7) to becomes /i (—7). Therefore, when 1+ < -1 or t < -2, then y (f) = 0 since there
is no overlap.

When -1 <1+t <1, or -2 <t <0, then there is partial overlap. In this case

1+t
y(t):f cos (nt)dt -2<t<0
1

=~ [sin (ro)l}

- % [sin (7 (1 + £)) — sin (-7)]
= l sin (1t (1 + t))
T

When 1 <1+t <3, or0<t<2,then there is partial overlap. In this case

1
y(t):f cos(mi)dt  0<t<2
t-1

= % [sin (71’[)]2_1
_ % [sin () — sin (7 (¢ — 1))]
= %1 sin (7t (t — 1))

When 3 <1+t or t > 2 then y(t) = 0 since there is no overlap any more. Hence solution is

0 t< -2
4 %sin(n(l+t)) 2<t<0
;sin(n(t—l)) 0<t<2

0 t>2

The following is a plot of y ()

21
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mySolution([t ] := Piecewise[{
{0, t<-2},
{1/PiSin[Pi (1+t)], -2< t < @},
{-1/PiSin[Pi (t-1)], @< t <2}, {0, True}}]
Plot [mySolution[t], {t, -3, 3}, PlotStyle - Red, GridLines - Automatic,
GridLinesStyle - LightGray, AxesLabel » {"t", "y (t)"}]

y(t)

Figure 2.10: Plot of y(t)

22
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2.2.3 Key solution

Distussom 4

g{)lv&.v\h % (+‘ k“’)'
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Pvf__i\_ 3 +~ = \ -t

Yse-2 YA =o+
-2 &t o j‘

-

il % ( ™ =
L Sidn
eo(nmdr = =7 \_‘

problewa. wEy = S ﬂ;—) « Cnland)

(,\)|=3_:- 3 LJL:-I'K.

- ?_ = $. ]

3 - 2
= yAd )
To oufm'\- *"|;v\A.&W\b.l-|..\ s\-rt‘\""'\) e d 3

4
15

n 7/1 —}_
%n:%m =7 1':-_‘0—/: ‘4

n=3 m:\'-i

' w?d&
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(430 (2 =4 o, Rl Fy

~N

-
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n

n
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CHAPTER 3. EXAMS

3.11 Midterm 1, oct 2001

EE 3015 Name :
Midterm 1
Oct 10" 2001
i;‘}:.
Problem 1. Obtain the impulse and 'step resp gps for the LTI system described by:
“ 5
A (15pts) B =05 um - ‘Jen)= LX) hndky 2 3——117\]" )-
B. (15 pts) h(t) = exp(-0.5 t) knes '

50+

£ YL =
Yt -fxmkumdr | hth |
-

M
Problem 2. Given the frequency response of a LTI system H(€
the steady state expression of the out put signal

eil S ITNN
= IN®
A. (10 pts) x(n) =2 cos((n/6)* n + n/5) - >

B. (10 pts) x(n) =5 sin((n/3)*n + /8)

3. Compute Fourier series coeff. For the following signals:”
A. (15 pts) x(n) =2 sin((n/3)*n + n/2) + 3 cos((W/6)*n + =/5) =7
B. (15 pts) x(t) =exp(j2nt) + exp(j3nt)
Sy = 2 C’>C-n/3 »n-«“/z’:‘“/a_) - SC"’(T'/QV‘ + n/r)
\——-umduvw-iﬂ <2, = T\/(‘,.

Ja(.‘»ﬂ B

Yy 2

My —ﬂ‘ =
o daen
=_\-j e 4 e Aﬂ_
ranl
. Wy ’ TOR
Ty /“!“‘_) (-I’) D | | eJ
= & = - i
zn A 2 ) _
-y | [ NG -_j(”‘"y“/‘
Tany o) < -

i

N\.\;g(h\ \W,(h,'m
sLLd,
xChy =8 b
% Uy =iy tlta,

W ey =l tey

} , for the following input signal find

va .
eJ n. H(C"‘)
B ey

RNy o=,

VC‘-av\ v«i\'\‘ -;rml\,: gl\«; Jfo Cefiiad
4w (6= C"/’(hlz"x)

= C ( X‘“Iﬁ/’)

4. (20 pts)Given the ma‘gnitude & phase profile of a filter find the impulse respbnse of this filter.

racj/;aw l‘\‘L 'bl‘xr'taﬂ.
Szv.@o,\weuli ™

1Hced™) ] [Pty
Lo Ty Ny B
anM
1 L as
-y Ty “Ty , <
-0 .
| it W Y Hed=y. = a.

Hene € ‘
€7 e p ALy

-('D/,_l'.

|

=7
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3.1.2 My solution to Midterm 1, oct 2001

3.1.21 Problem 1
n 1
Obtain impulse and step response for LTT described by (a) h [n] = (%) uln] (b) k() = e 2'u(t)

solution

3.1.2.1.1 Parta Letx[n]=0[n], hence
ynl=o6[n]®h(n]

(o]

= Y, olklh[n-k]

k=—00

But 6 [k] = 0 for all k except when k = 0. Hence the above reduces to
y[n]=h[n]

1 n
() v

y[nl=uln]®hn]

Let x[n] = u[n], hence

(o)

= Y] hlklx[n-k]

k=—c0
Folding x[-n], we see that for n < 0 then there no overlap with i [n]. Hence y[n] = 0 for
n < 0. As x[-n] is shifted to the right, then the convolution sum becomes

ﬂﬂ=ihm n>0
k=0

306

1+n_
This is the partial sum, given by aa_l ! where a = % <1
1+n
1
B -5
2) 1.
k=0 51
14n
1
B -
-
2
=2-22)""
=2-27" (2)

Therefore
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3.1.21.2 Partb Letx(f)=06(), hence

y@t)=u(t)®h(t)
- foo X () (t - 1) dr

=f°° 5O h(t-1)dr

=h(b)
— 05t

Let x(t) = u(t), hence

yt)=ut)®h(t)
- fm (=) h (1) dt

Folding u (-t), we see that for + < 0 then there no overlap with (1) = ¢7%57u (7). Hence
y(t) =0 for t < 0. As u[-n] is shifted to the right, then the convolution becomes

f
y[n]:fh(r)df £>0
0
f
:f e 057 dr
0
B (6—0.57)t
-0.5 0
=2 (e—O.St _ 1)

=2_ 26—0.5t
— (1 _ e—O.St)

Hence

2= 20
y(t)_{ 0 t<0

3.1.2.2 Problem 2

Given the frequency response of LTT system H (Q) for the following input signal, find the
steady state expression of the output signal. (a) x [n] = 2 cos (gn + g) (b) x[n] = 5sin (gn + g)

solution

3.1.221 Parta

] =2 (” +”)
X || = £ZCOS 61’1 5
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To find the fundamental period, cos (%n + g) = oS (g (n+N)+ g) = oS ((gn + g) + gN).

Hence need gN = m27m or % = 11—2 Hence. N =12. Therefore
O = 27
0712

And the input is x [n] = 2 cos (Qon + g) Hence the output is

y[n]=2 |H (Q0)| cos (Qon + g + argH(Qo))

31.222 Partb

[n] = 55 (” +”)
X|n| = mil—n —
R X

To find the fundamental period, sin (gn + g) = sin (g (n+ N) + g) = sin(

need gN = m27m or % = %. Hence. N = 6. Therefore

Tt Tt

TC
3 s T EN)' Hence

27
Qy=—
07 6

And the input is x[n] = 5sin (Qon + g) Hence the output is
y[n] = 5|H Q)| sin (Qon ; g + argH(QO))

3.1.2.3 Problem 3

Compute Fgurier §eries coefl. for the following signals. (a) x [1] = 2sin (gn + §)+3 cos (gn + g)
(b) x (t) = @™ 4 37t

solution

3.1.23.1 Parta For discrete periodic signal, the Fourier series coeff. a; is given by

x[n] = i akejk(%)n 1)
k=—c0
= = 2 xtme @
n=0

In this problem

[n] = 25 (T( +7'c)+3 (7‘( +n)
=2sin|=n+ = —n+—=
x[n sinfzn+ 3 cos{zn+ g

To find the common fundamental period. sin (gn + g) = sin (g (n+ N) + g) = sin ((gn + g) + gN)

T m 1 . . s s
Hence §N = m27 or N =5 hence N = 6 for first signal. For second signal cos (gn + §) we
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obtain ZN = m27 or = = 11—2 or N =12. hence the least common multiplier between 6 and 12
is N =12. Therefore

21
Qp=—
712
Hence (2) becomes
1 iz —jk(z—n)n
— 12
a = T Z x[n]e
n=0
1 4

= — Y x[n]e ko
12 =

But instead of using the above formula, an easier way is to rewrite x [n] using Euler relation
and use (1) to read off a; directly from the result. Writing x [r] in terms of the fundamental
frequency Q) gives

x[n] = 2sin (20071 + g) + 3 cos (Qon + E)

5
( Jeans3) _ ieans3) [ej(ﬂon+§) . e—f<oon+§>]
=2 % +3

2

2 LT T 3 LT T
= 2— (3156]200” - g_]fe_]ZQOn) + E (3736100” + e_]gg_]QO”)
/
1,z . 1z~ 3% 3 T
= —'elz e/2Qon _ —-e 13 g72C0m E6‘75 elQon 4 Ee ]5 =jC20n

]

Now we can read the Fourier coefficients by comparing the above to Eq(1).

This gives for k = 2,a, = }e’f and for k = -2,a_, = ~1¢77 and for k = 1,a; = gelg and for
- _ _ 3,73
k=-1,a_; = Se’s

3 .r
=25
aq >
3 .z
= ¢35
a_q 2€
1z
a2:—’g]2
]
1 _r
A,=—-e2
]
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. TU LTt
But ¢2 = jsing =jande’2 =—j Sing = —j. Hence the above becomes

3.77
=5
aq 5
3 iz
= 273
a_q 23
1. 1
ay = —<] =
J
1, .
a_zz—j(—]):l

And a; = 0 for all other k.

3.1.2.3.2 Partb For continuos time periodic signal x (t), the Fourier series coeff. a; is
given by

x(t) = ) aelFoot

k=—0c0

1 .
ap == | x(t)ekeotgt
k=T fT (£)
In this problem
x(t) = 21t | 37t
The period of ¢?™ is 1 and the period of &®™ is ; Hence least common multiplier is Ty = 2

2n .
seconds. wy = S =7 rad/sec. Both of the above terms can now be written

ALy
x(t)=¢eTo +¢ 70

= pl2wot 4 pj3wot

Comparing the above to

x(t) = Z agefkwot

k=—00

Shows that for k = 2,4, =1 and for k = 3,4, =1 and a; = 0 for all other k.

3.1.2.4 Problem 4
Given the magnitude and phase profile of this filter, find impulse response.
solution

We are given H (Q)) and need to find /i [n]. i.e. the inverse Fourier transform
1 Tt .
hin] = — f H(Q) d2dQ)
2n J_,
1 Tt . .
= o [ IH@dvs@e g
2n J_,
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But |[H (Q)| =1 and arg H (Q2) = —(Q) as given. The above reduces to

1 7 .
hin] = — f 1 Q%040
27 _g

_ L f £ Q0-n 40
21

_r
4

1 1 o1
() g

1) 1 = =
I —jz(1=n) _ j7(1-n)
_(27'()—]'(1—11) (e S )

1 1 (Ji0m _ iz
T~ nd-n) 2j

Tk (11— n) sin (g (- n))
-1 T

T nl-n) Sm(Z(”_l))
- n(nl—l) Sm(g (”_1))
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3.1.3 Midterm 1, oct 2018

EE 3015 Midterm 1 — Oct 10th 2018
(Derati. So mu)

Ca\(.u\:,.\w-) ‘i\lvl»’uj

the output sequence y[n] by applying discrete convolution.

Show your work below.

wenya L oxeby heo-ly Wi

Y= —e?

Name &ID & Uwv\

n <o Ne owf\uw “viny=o

N=o Weoy = (L =\

Wiy = [~y = (—-\3(—!) + (HOY = L+t=2
N5 YsYy= Enin (-0 = 1-\=p

ae iy = B

Problem 1. {25 pts.) Given the discrete time system with input x[n] and impulse response h[n] obtain

x[n]=[1,0,-1,1],hjnl=[1,1,-1,-1] both sequences are positive and start with n =0 position.

a “
Yy i'n"‘" wo = .
7 T e
N=s
~1

n=2 azd .\'\Lv\\

- -

n=i Wiy = (HOY « Wlel =
N=2 qizy = (D) g (3 + N0 = —tmy =mL
nz=3 Ylay = (EHED A Y L=y = = =t z- =1

K ‘jcm=L‘_‘ T B »9,"‘,]
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Problem 2. (35 pts.} The impulse response of a LTI system is given as
h{t)=u(t) -2u(t-1)+u{t-2)

Where u(t) is a unit step signal. Determine the output of this system y (t) where it's input x(t} is given as

t
ty=enr(-t) . .u(t+1 ;
x(ty=er (-t} . ul ) ity IW_H’\ wikyz e L&(f'ﬂ)
- hoty = Y m2atd o) eulb-2)
P

4
& -t
\3(—{-}—_ f Y -1 hiryde {\ i
- - ‘n(h &
\ 2
of v
feyiom V. ) _/A/]
— o <’c+.\ Lo Noowleyy
. Tt
ity me
ﬂtbiv-l: \ »'{:“V'>D =3 o 7P '% ?-i
e +
'-3(4\:} - -
fLenewz 2y tabt = 1>ty ;
| B dery a-6 ¢

- =T _
%Uﬂ'—f"f Jdr +j(_|)\e AT = 2 ~e2 g

o
{

ﬂ\*)u‘-f oSt I>z = oy 4 71

I et 2 T
‘OUrv,j N *j‘('”'é AT
] l ([-1’.‘\ —+- (l'f_)
e

= 2é -€ -
o ~e? (‘t‘-’\‘ﬂ
l_—-
-‘" 'ﬁt'}r\ - e_e -1 <.t <o
2.3“—4—_)4_{_"& o Lt 40

2 éM?. e_iﬁ(z-ﬁ‘\ b2 e
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Problem 3.{40 pts.) A discrete periodic sequence is given as x[n]

x[n] = 2sin{3nn/8 +n/2 )+ cos(mn/4 +m/3) obtain the following :
(a) {10 pts} Find the fundamental frequency and period of this signal

{b) (15 pts) The Fourier series coefficients for x(n} sequence
(c) (15 pts) fx(n) = cos { in/4 + 1if3) is an input to a sysiem with frequency response H{ e AjQ)

where
H (erj0) = (1- e Q) ) ( 2 + er|-j20)) obtain the expression for output y(n)
ey = [l KOs o)
Rie - Y -——l e
T~ e
| Heem\ = e

v ) Ca(mrfy <A

Fordumd Qu 2,22
peid!
Fomdes, ML-Q 'Q - "\\

Ray = ?-Sw:(“”Vgv ~
N

nel
() @ .3y s,-3) = N:\e
1k

¢ {2y
J . in
. ._Q.b__ ‘PT. =ﬂ/g_
- W
JH e R
‘Cl')) ¥o(ny = Zz(k\_ € J(g_ﬂ Y ) __J(jjlon *1/’_‘))
hown = }T(e -c
) Jgan <M -3 y (22,n ~74 )
-+ L ( € + €
-
LTS e
e - - T —
} T '--3—" = L-* kS | - f,,)(q.\-l-) S’HQV_ :H(C)R)
- — 3
by . SR/ IL:"‘Z. 2 ~Cn( 2 72) 4‘\9..,(111\
EM | Hee "” = JU‘Cw ™ + S,
4___ W=+
§ /" J& ol 2D 557y
ynf -
e? L" k=3 = ot =My |
|

Vo T H eM) I -\
[ ) Y )= } H(c{\‘“‘)l . C’,o( -.n +T‘/ + 4: [ L‘N IHM )*“ C;z.,(,.,_
_ BN Swfea)

N —.(l :‘—.-n/;f .
) | -’ i [ Ry %h"(m e 31%(“1»\) 2-Chlrp
’ !'4( ¢ l ___-———-‘—J"TT/" H‘[C — "‘Cv,("/q) 2 (M -
netyy [2-e L\ 7y ;

-V s,
J I
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3.1.4 My solution to Midterm 1, oct 2018
3141 Problem1

Given the discrete time system with input x [n] and impulse response / [1] obtain the output
sequence Yy [n] by applying discrete convolution.

x[n] = [1,0,-1,1],h[n] = [1,1,-1,-1]. Both sequences are positive and start with n = 0
position.

Solution

y[nl=x[n]®h[n]
Folding x[-n]. When n = 0,y[0] = 1. When n =1, then y[n] = (0)(1) + (1) (1) = 1. When
n=2y[nl =10+ 0)1)+@)(-1) = -2. When n =3,y[n] = 1)(1) + (-1)@) + (0)(-1) +
(1) =1-1-1=-1. Whenn =4,y[n]=1+1=2. Whenn =5,y[n] = -1+1 =0, when
n==6,y[6] =-1. Whenn > 6,y[n] =0.

Hence
y [1’1] = [1/ 1/ _2/ _1/ 2/ O/ _1]
3.1.4.2 Problem 2

The impulse response of LTT system is given by h(t) = u(t) — 2u(t-1) + u(t - 2) where
u (t) is unit step signal. Determine the output of this y (t) where its input x(t) is given as
x(H) =efu(t+1).

Solution

By folding x (t). See key solution. Used same method.

3.1.4.3 Problem 3

. R T . . . (37 T T T .
A discrete periodic sequence is given as x[n] = 2sin (gn + E) + cos (Zn + 5). (a) Find fun-

damental frequency of this signal. (b) Fourier series coefficients for x[n]. (c) if x[n] =

)
cos (gn + g) is an input to system with frequency response H (Q) = ;E%.Q, obtain expression
for y [n]
Solution
31431 Parta Forsin(>n+7 d 3nN = m2m or & = =. Since relatively pri

1.4.3. arta Forsin(—n+ |, we need N = m2m or - = . Since relatively prime,
hence N = 16. For cos(gn+ g) we need EN = m2m or % = %. Hence N = 8. The least
common multiplier is 16. Hence fundamental period is N = 16. Therefore Q, = %ﬂ = g.
3.1.4.3.2 Partb Since input is periodic, then

x[nl= D) aye o (1)
k=—c0
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By writing the input, using Euler relation, we can compare the input to the above and read
off a;. First we rewrite the input using common Q; as

x[n] = 2sin (3Qon + g) + cos (ZQOn + g)

Hence

[ ej(3oon+g) B e—j(3QOn+§)] e;‘(zgon+g) + e—j(zoon+§)
x[n]=2 , +
2j 2

_1 (3Q0m+3) _ L jBam+3) N 1 J200m+3) | L jeqon+d)

; e —€
] ] 2
1.7 . 1= . 1.7 . 1 _0~ |
— —,87361300'1 _ —,6_]56_]30071 + E673 6]2()011 + Ee_]s e—]2QOn
J ]

But ¢z = jsing = j and iz = —jsing = —j and dg = cos(g) +jsin(§) = %\/§]+% and

073 = cos (g) —jsin (g) = % - %\/5] Hence the above simplifies to

) ) 1 ) 1 )
x [n] = &30 4 p7/30n 4 1 (1 + \/51) 2Q0n _ 1 (1 - \/5]) o12Q0n (2)

Comparing (2) to (1) shows that

as =1

a_s =1

az_%eig :31(1+V§])
4= %e_]g - —}1 (1-3))

3.1.4.3.3 Partc The output is

y[n] = |H(Q)|Q:% CoS (gn + g + argH(Q)Q:%) (1)
But
1-¢79
|H(Q)| = m
_ -
T2t e

\/ (1 -cos Q)2 +sin?Q

\/ (2 + cos 2Q)2 + sin? (2QY)
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When Q = Z the above becomes

2 —
W5
=(0.34228
And
1-e7/0
arg H(Q) = arg el

3 (1-cosQ)+jsinQ
~ M8 21 cos 2Q) - jsin 2Q)

sin Q —sin (2Q))
1-cos Q) ~arctan (2 + cos (ZQ))

= arctan (

When Q = z the above becomes

argH(E) = arctan ﬂ - arctan[ﬂ]
4 1-cos (g) 2+cos(§)
an 3) 4
= arctan T cos (g) arctan( > )
sin (3) (1
= arctan| —————= |+ arctan | =
1-cos (Z) 2)
= arctan (2.4142) + 0.46365
=1.1781 + 0.46365
=1.6418 rad

Hence (1) becomes

y[n] = 0.3423 cos (gn + g + 1.6418)
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3.1.5 Final exam practice exam 1

ECE yog - ﬁuh.o r_lu.v;-\

S«wr\.ﬂ \
1. (25 points) The Laplace transforms of the natural and forced response for s system. are given by
3s+5 6 >80
YWy = 22 . U(g) = wmmmeimeee
() +3s42' Y 8+ 3524 2
Find ") (1), ——
(a) (::nenaturalmponsevc’ {t) 4 e A‘" 34+ 5 = __‘_:
Ny = 35+ = L— v = - s=-z. =\
e Py S+ <+
E+I G+
R= 3s%5 = X =2
S+ 2 VSsm:~| t

—t
y ez T u:“&) + 3e  ule)

& .
{ —
{b) Find the forced response y\)(t). \{“(g\: %-r E——H Y ogep @

= b= | Bo o2 = %@
A (3¢5 s.-.ob 3 5(3"2)\33"

_ ek = ?>

C= =5 s
< (5S¢ =-1 _ he
Bule) = ée_ Fule) _\. D)

[79) -
Y )= 4 @

Cp=3 Hm.ﬁocsen. Y (W) f%i\l(ﬂ{_z\fﬂ,,
(c) Find the differential equation description for this system. =0
led RVS  be  Ax) + Bé"ue\ 1‘p=(m' = a=z=]
.o AXLSB + B XS - BxoY) Xsy= %-S- wK(o)=3
s = Pf L 3B - 3B

2 4 -

{d) Find the initial conditions snd the input. '7(({’5 _ Q t,\(."(f)
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2. (15 points) Find the Fourier Tranaform of the signal

a(t) = (% [te“"““]) + (cos(2t)etu(t))

-1y FT 2
< " o™
- e\ T Ze-su
6 f-"—’-—} !-4-(.4.)7" ‘_5“; .
R , ...)
- -1 FV 4 7-3__) g: - 2y® - Z-= ” LZ;.-.:
‘te s 'J:o I’H’Q‘L H—uf‘ (H—UO)
-')VJ
' -\ T - é:_ le §
i% N } )m dw [fw©
|
_+ T A
e wldy. ——> ]w+\ I
-~ =N ——"'L"'—‘“") ¥ Jzi(‘(wn_)u)
cos2t e Ul «—> S (SLVJ*-?.)H J
AW A I
PR B e
Xcgw) = )«;—“’: dw U jrw® )
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8. {20 points) A system has impulse response
. Cod 1\" )
h(t) = -} 8t~
3 (3) we-m

Use convolution |
e uvo to find the output y(t) for an input z(t) = u(t + ) - u(t - ). Sketch y(¢) in the space

Since AS(-(:—VO ¥ xE) = 7<(€:—r\>

S EYsten) % x@) = 5 (L) x(£-n)

= i (_‘i)n [u(é-mt‘/z.)-u({-—m?’/a’-'-)J
n=o

et
i
il?_ » L
AL
L e ) . —1 :
\ { v 1 X L Y 1
Vg 5 v, ¢ Y. 2 5, 3t
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4. (25 points) Consider the system depicted below. We have zfn] = z(nT), yira] = hinjs z[n], and
¥(t) = h(t) « ys(t).

Samopl { .
%t @? ¢ i \M“]-'- s.;w: ALY ’\“m___ sivx"%t RA
? w

n 7

ATA

=5 -w,zr T
(a) Find the maximum 7 so that z(t) can be reconstructed from x[n| using a lowpsss reconsiruction filter.
anng | T v . ) It = 2
Sempling Z>rlE) <7

(b) Let 7 = 2. Sketch X;(jw) in the space provided. ¥ ¢ ({u) =§§-_x(r@"k“°"55 we= 1T

‘ls-aﬁ

K ljws)

/\/\/\/\\4\/;\/1\/%\ -
(¢) Sketch Flem). T %o T  ax 3nm Yrg

W)= 30D se YDI= Dy = G|

= $t
=
Ned™)
/\/ki\‘ /\
(@ S Biw). -R ‘ . A L

Hkgu-;) 330 o%e(

M\ 5 4_5
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He™)
.
5. (15 points) A discrete-time system is depicted below. We bave r—”] '
(Y = ?ﬁ, ‘ m U 1§
3{"] Z(l+k)“(k—ﬂ) g{n} =2+ 4c08 (... ) i Ae
M| = ——(L (16 )
X 2= (wisdeala) (g kz-q)
Yeei™)

e T

qls) _"'"'"l ' . {

§ W 3
A
™)

s

. | 3
o eead T

x W
l{ R
QAle™)
1 \ T
- -* | x
(x . %Lc"'m) ‘ w ]
] el ‘
¥ -“ . \ v § N -+ n‘
S P %I T ET |
T
V&™) y W)= G cos =[x N + 4 cosTn
‘k'\ © R
"‘T T ]‘ ttu
g I S <
201 %3
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3.1.6 Final exam practice exam 2

gef v el e
.Shvv‘\-! z
1. (20 points) An LTI system is described by the differential equation

& d d& d
Bf—,y(t) + 93—ty(t) -10y(t) = 3&—{2—3:(0 + TEEz(t) - 10z(t)

Assume the system has initial conditions y(0*) = 5, %y(t)l
u(t —~1).

ot = —28 and input z(t) =

(a) Use Laplace transforms to find the natural response. x(t\= O

SNy - °~%®\ - syle) #9541y -Ayior) -10Y(s)= O
X =o'
Nis) = S¢ +45-28 _ S ¥7T A B
B s* +8¢ - 10 (s- )(s+to) st SFIO
_ Bs T _ 2 = e S5+N _ .._3__‘3_:3
P‘... FEERTS \‘>=| - t <—| et

VO ()= Qetue) + 3 e fule)
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(b) Use Laplace transforms to find the overall output of the system. d {t—)

\/L‘\:\‘-: \i(“\’(‘t\*— 7‘”({-} Note x¢8)=0 -————‘X ‘
) <2 4+ 75— 10
{sy= 2

-5
X&) X(s)= & (-%)
'Sz +qg 10
-5 - T -0
= RAe Re *® . Ce > A= 5i+7§ \ = |
_—-_S P <+ 10 st+Q¢-1t0 o
B:’ 1;97'-&7%”0 - .-?—-: )
S (S+10) Vo= a
220  _.
C = 234510 ) = /o = &
360— s (%-1) S=—t0
SRR GD!
—j0 (-1
v (Y= ule-) + e dule-1y
) (£) )
tﬁ(LB’ G4 () j (t)
} -loCe=")
T Qetale) + 37 ey Twlem) 4 27T ey

(c) Is this system stable? Justify your answer
N ot SHHQ N&-‘wurq\ reSfbo\«w W lows “ P

48
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2. (20 points) Let a signal y(t) have FT representation

Y(jw) = e-i% (Siﬂ(%)) ( 4 )

w 9+ w?
Find y(t). 2 _ ) _ 2
X(fuﬁ: e 3™ 2._,__-——*-?'“(1“’\ %(3“)) 6+
(PR
(o) | eﬂs\t\
)= 3
X \ %e k
3 -
v—_—._l "36\ Ugy — ‘/-46 Tt
o 4 o B l =

\f({—\ = X&) 2(€)

| 20 \) <O = <
/| W ey= he et <
,,,,, -7 i O otter
1
T
: -4
r_-—- % (€ =T) 25 oe® i _ 'u-se?’t +-4¢ <«T <O
+7 £ T W b = e 3% 6 <€ <t
' o o Haer
<t ;’ .
t<0 t . 3> 4 --i‘/ e~3F t-YeT <t
\’(.t): g Jﬁe :111 \I\),EL'CB- 30 o Hewer
+-4
= | C’m]t _ _\__[&34:_ e3&——¢0
9 ey A Yet £
-3z
yet e -4 )'UC\= ‘”Ei'-—ﬁ L;_L'
° 1,73 t.L ->€
\[Lt); % € JL + % 3¢ 4
-3 o s — LT -3y ~3%
-t 32}° te*h'-'t 9 e — &
- g¢ Lc-q S 0

= X - -3
Cizf__,e—s(t q>+l—€ "-':Z
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3. {20 points) Consider the system depicted below

—y ot .y
inub nJ
12« \ I In xinl= »x(n‘:{)
—t — W= 2 sl + Sin 3'41('\:]
~\om 8w | 8% 10% n A

(a) Sketch the FT representation,in the space given SERIRE assuming 7~ = } seconds.
« Cofrespo n&"ns'\‘o ‘x[hl ws = ‘81’(
e () = ’}f 2. X lw =)

[

18n q &
\ o\

10w [ 20K 2 W
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(b} Sketch |Y'(jw)] in the space provided assuming 7 = - Hint: y(t) = z5(t) = h(t).

H(yw)': [/—}i—j + g’g’:""'j

Y~ {fri -24r 2dm
,f/ ‘
245 -y ““ '2."\11 — g
‘ﬁg(_\“)}
/'\ My -l 10T yuT 244
24 ww\ |
48r 48
1Y
24
R ‘ /T\'Z.

~301 ~WNa -'Lor( - o B ‘ 114 I:‘K—;Lﬂ 2‘01( lr"h( E:OF w

-7
(c) Determine the frequency response G(jw) of the inverse system for this system assuming

T—m Rﬁ,(’_b\/e( X(S"'B -Q(ovv\ \{(‘wa

(>L§u>3

\ Yo

l{n'
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4. (20 points) Consider the system shown below.

vit) )

Kl 2 3 Wik
4 \_ﬁl

wth = cos(Bt) + Zeos (I5t)

o W <\not
Y= 22—
\(\t ) Tt

‘(a) Find the largest sampling interval 7 such that »(2) can be uniquely reconstructed from
its samples v[n] = v(nT). w{wd

\ll(g w\
] A

—

- S 515
W= 2T = [0 =p Fe 2O ]
- 7o

(b} Find the FT representation for w(t).
\/\)('Sws«:_ T g(u——5> + T g LL*‘+'6>
Fom Sw-19) 4 2w Stew +19)

(c} Sketch the FT representation for z{t) in the space provided.

(WY =\ v W
A} = (3\* L\“)B

2§D
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5. (20 points) The system depicted below has input z(t) and output y[n]. The filter is LTI
and has impulse response kin] = é[n] + ab[n — 1] with ja} < 1.

Sample Filtver
Xt AR I 10 SN yinl
Win}
t=nT
xn)= x(nT)

\ nTo
V\‘-“_l Y & n= |
o) o \'\«c\"uu 15e
{a) Is this system stable? Prove your answer.

NSRS XTWY + LRt

TS B P I EAR A A

it
i

| xOTY| + 1\ | x@ -7

< My ()

< o

g—-\"k\b \Q
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(b} Is this system time-invariant? Prove your answer.

No gaw\(p\w\ looses values T be Yoveen

‘Saw\?\ +sm~es SL\F‘L‘LH\ “\"{\em u\-\_ Q&Oé‘-‘i
Q+ c;osrfeseo\«\é. Yo SL\ ‘C""('\ ‘\-’\V\g OK\—PU‘_* ‘QKAC‘CP*

w\\m he Aput shi—f‘r ‘t an M’rgc[m
“\ |PQ o’g: GX

{c) Is this system linear? Prove your answer.

XEY = ol X () +hx ) —=p

YNy = a4 x I + b)) + u@x,[u—r_g £ %, Tn ~1‘b
= a4 [X.\:‘Q‘*’ OLX‘YM-‘:‘} + b 1)(,}&»1’} + o X.jvwﬂ)
= a N by, WY

yes, Vinear
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3.2 Exam 1

Local contents

13.2.1 questions|. . . . .. ...

3.21 questions

EE 3015 Midterm 1 exam Friday Feb 28'". 2020

Duration 50 Minutes, One Crib sheet {8 x 11 inches) allowed — calculator allowed

no use of cell phone. Close book and notes.

Problem 1 (25 pts.)

Given an input x(t) = u(t) — u(t-3) to a LTl system with impulse
response h(t) = u(t) —u(t-2) , Obtain the output of this system y(t)

utilizing convolution method. Show all steps in obtaining the results.

(

Problem 2. (25pts)

N

Given the impulse response of a discrete time LTI system: h{n) with

h(n)=[1111-1-10] Obtain the output of this discrete system y{n)
using the convolution method when the input sequence is given by

x(n)=[0010-10].

(hint: assume the first element starts at n = 0 index point).

You can use either graphical method or analytical method however

you must show all your steps in computation.
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Problem 3 (30 pts.)

The Fourier transform of a signal x(t) is given by the following
expression:

Xw)=Y(w).e*(-j2w)

where Y(w) =2 for -2 <w<0 and Y{w)=-2 for 0< w< 2

Find time domain representation of x(t).

Problem4. (20 pts.)

The frequencyresponse of a continuous time LTI system is given by

the following magnitude and phase profile:
| | Hews| -1 {H‘"’)
- e w :
~Gos N e TIN e
b -

4 ¢4

xed)
What is the steady state time domain output y(t) for input —’IT‘T)_'—?
X(t) = cos (10001rt)+ 2 cos (@m) + 3 cos(5001t) Hw

56
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3.3 Exam 2

Local contents

3.3.1 questions|. . .
3.3.2  key solution]| .

3.3.1 questions

EE3015 — Midterm 2 — Friday April 3 2020

This exam is open book and open notes. Communication with other people is not permitted.
Write your solution to each problem in a separate document / sheet of paper. Please submit
your solutions in the order they are given in this document. If your solution relies on proofs from
an external source (book or notes), please reference this source in your solution (e.g. page
number, table number, lecture date). Submit your solutions as a PDF document to Canvas by
12:30pm. Students who took their first midterm through DRC can submit their solutions via

email (mahmo006@umn.edu) until 1:30pm.
Problem 1 (25pts)
A. (10pts) Compute the discrete Fourier transform X(ef“’) of the signal
x[n] = a®(u[n] — u[n — 5])
where |a]| < 1
B. (15pts) Given the magnitude |Z(ej“’)| and phase LZ(ej‘*’) of the discrete time

signal z[n] as shown below, find an expression for the signal z[n]. Simplify
your answer as much as possible.

2 [z(e7)| 2
1
-m/2 /4 : w4 w2

1 o] <=
=],
Z(ei®)| = T i
2, —<|w| <z
4 lo] 2
0, else

(5pts Extra Credit) Solve 1B without explicitly evaluating any integrals. Your
final answer must be correct to receive these points.

57
61
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Problem 2 (25pts)

Let the signal x(t) have Fourier transform

4 . in(2
=) (e 222)

where * represents convolution. Use the inverse Fourier transform to determine the
original signal x(t). List any properties you use from notes or from the textbook.

58




3.3. Exam 2

CHAPTER 3. EXAMS

Problem 3 (25pts)

Consider the following filtering and modulation system.

x(t) —>{ h() (% ) » 2()
y(t) T
w(t)
1] X(w)
-10 0 10 W
h(t) = % w(t) = cos(5t) + 2 cos(15t)

A. (10pts) Find the Fourier transform Y (jw) of signal y(t). Sketch Y (jw).

B. (5pts) Find the Fourier transform W (jw) of signal w(t). Sketch W (jw).

C. (10pts) Find the Fourier transform Z (jw) of signal z(t). Sketch Z (jw).
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Problem 4 (25pts)
Consider the signals
x,(t) = 3 cos(mt)
x,(t) = 2 cos(3mt)
x3(t) = 2 sin(5mt)
and
x(6) = x1(t) + x2(£) + x5(t)
A. (5pts) Let the signals x; (t), x5 (t), x5 (t) be sampled with sampling period
T = 0.4 to obtain sampled signals x, [n], x,[n], x3[n]. For each of these signals,
determine if the sampled signal can be used to recover the original signal
without aliasing. Can x(t) be recovered from these sampled signals? (e.g. can
x[n] = x4[n] + x,[n] + x3[n] be used to recover x(t) without aliasing?)
B. (10pts) Find the Nyquist frequency of x(t).
C. (10pts) Let the signal c(t) be given by
c(t) = cos(20mt)

Now suppose the signal x(t) is used to modulate the signal c(t) to produce a
signal y(t), where

y(@) = x(t)c ()

Find the highest frequency present in the signal y(t). In other words, find the
largest frequency w where Y (jw) # 0.
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3.3.2 key solution

1) a) 1) Solution 1 (Brute force)
Using the Discrete Fourier Transform analysis equation,

oS}

X(ej“) = Z x[n]e’j“”

n=-—00

Since z[n] = a™(u[n] — u[n — 5]), the only non-zero points of z[n] are n € {0,1,2,3,4}, so

X(ejw) _ —jwn

a"e

M-

n=0
4

(ae~7)"

o

n—
Since this is a partial sum of a geometric series, we can apply the formula

ul 1 — b+

Zb’“_ﬁ, o] < 1

k=0

to compute )
1 — (ae™*)5
1—ae v

X () =

ii

=

Solution 2 (Transform pairs)

Observe that
z[n] = a"uln] — a"uln — 5

= a"u[n] — a®a""Pufn — 5]
= (a™u[n]) — a°(a"u[n]) * §[n — 5]
=21[n] — a’z1[n] * 8[n — 5], x1[n] = a"uln]
Using the Fourier transform pair,
" 1
F{zi[n]} = F{a"u[n]} = Fppy——
and the time shift property,
F{a[n] % 6[n — ng]} = e 0 X (&)
we can then write
X(e™) = F{zn]}
= F{z1[n]} — d®F{a1[n] * 6[n — 5]}
= X (/) — aPe™ X (/)

1 a5675jw

1—ae % a—ae ¥
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b)

i) Solution 1 (Brute force)
I wrote all of this using X (¢’*) and z[n] instead of Z(e’*) and z[n] and I don’t want to go
back and change all of them. Soorryyyyyyyyyyy.

We use the Continuous Fourier Transform synthesis equation,

1

=3 g X (e7)e! ™ dw

a[n]
We can express X (e?*) in terms of it’s phase and magnitude. By inspecting the slope of
/X (&%), we see that /X (/%) = —w, so
X () = | X (e)] # e4X()
2, —m/2<w< —m/4
1, —m/d<w<m/4
2, /A <w<m/2

=e 7Y%

0, else
\

We take the integral in the Continuous Fourier Transform synthesis equation to be from
—7 to 7 so that the bounds are symmetric. Using the piecewise form of X (e/*) to break

up this bound into intervals, we get

1 [7 N
x[n] = 277/ X ()’ dw

1 [/ . . 1 /4 _ _ 1 [ _ _
= — 2% e 7Y % d"dw + — 1xe™ %% e?"dw + / 2% e 7Y % e dw

21 ) /2 21 J )4 27 Jr)a

—m/4 w/4 /2

_ 2z 2=y 4- L eIy 4- 2 eI gy

27 —7/2 2m —m/4 2w w/4
— #(eﬁv(n*l)) -/ ;(ejw(nfl))r/‘l + L(ejw(nfl))‘ﬂﬂ

2mj(n —1) 2 j(n—1) A j(n—1) /4

= 4( ) (2671’#(%1)/4 — e im(n=1)/2 4 ,in(n=1)/4 _ —jm(n—1)/4 4 ggin(n—1)/2 _ erﬂ(nfl)/‘l)
2mj(n —1

Rearranging terms,

1 _ _ _ _ . _
IE[TL] _ 27Tj(n - 1) ((26]7\'(71—1)/2 _ 26—jw(n—1)/2) + (26—]7T(n—1)/4 _ 6—]7r(n—1)/4) + (e]ﬂ(n—l)/él _ 26371'(71—1
1 _ _ . .
— 9eIT(n=1)/2 _ 9 —in(n-1)/2 —jm(n=1)/4 _ jjm(n—1)/4
27rj(n71)((6 e )+e e )
b otz _ L iy (L e 2 L ey
m(n—1)""2j 25 25 27
Using the definition of the sin function,
1 . 1 .
sin(x) = Z—je” - 2—],67”
, We can rewrite this as
1
(2sin(m(n —1)/2) — sin(w(n — 1)/4)) 69

m(n—1)
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ii) Solution 2 (Transform pairs) (Extra credit)

Consider a version X (e’ of X (e/*) with zero phase, that is
(X1 ()] =X ()], £Xi(e) =0
Such that ‘ o _
Xi(¢7) = [ Xy ()| )

= [X ()|

= |X ()]
Then we can write X (e/*) as

X () = |X(ejw)|ejéX(e“)

= Xy (e)e ¥
When comparing this expression with the time delay property, we can see that the phase
eI is really just shifting the signal z;[n] by 1 unit, so that

z[n] = z1[n — 1]

Effectively, this allows us to just find the inverse Fourier transform of the magnitude on it’s
own, and then apply a time shift of 1 unit at the end to account for the phase of the system.
This is a nice property that we can use in general on systems that have linear phase

To determine x1[n], we consider the rectangle wave X;(e/*) as a difference of two rectangle

waves. Specifically, define

: 2, /2 <w < m/2
XQ(C]W) =
0, else
. 1, /4 <w<7/4
Xg(e]‘”) =
0, else
or graphically,
2 2
XQ((ijw)
1
Xg(ej‘*’)
/2 /4 n wa 2

Then it is clear that 63
Xl(ej”) = XQ((ijw) — Xg(ej“’)
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and therefore

x1[n] = z2[n] — x3[n]
In table 5.2, we see the Fourier transform pair

]:__1{ ]., —W<W<W}: 51D(Wn)
0, else m
Since X»(e’*) and X3(e’¥) are already in this form, we can easily find x5[n] and z3[n] as

2sin(mn/2)

z2ln] = ™
Then 2si 2 i 4
erin] = ol — 2aln] = smf;;n/ ) Sln(;TZ/ )
and

_ _ 2sin(r(n—1)/2) sin(m(n —1)/4)
[n] = a[n - 1] = m(n —1) LGRS

2) The main focus of this problem is to break the expression up fractally, handle it in small portions,

and then build it back up into the final answer. From our initial expression,

, 4 95, SIn(2w)
X(jw) = (9+w2)*(6 ! T)
Make the definitions A
Xi(jw) = ——
10w) 9+ w?

Xo(jw) = 62 sin(2w)
So that
X(jw) = Xi(jw) * Xa(jw)

and, using the multiplication property,
x(t) = 2may(t)za(t)

i) To handle X, (jw) = ﬁ, we see that this expression has similar form to the Fourier Transform
pair found in the provided tables,
2a

a? + w?

Fle ot =

In order to apply this pair to X;(jw), we need to have it in this exact form. Therefore, we need

to say that
, 4 4 2(3)
X = = 477
1) 9tw? 6 Pt
to find that
4
i (t) = ze M 04

6
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ii) To handle X5(jw) = e*Qj”Sinf%w), we again need to break the problem up into smaller parts. We
make the additional definition that

Xy (juw) = sin(2w)

w

so that
Xo(jw) = e 2% X5 (jw)

From this, we can clearly invoke the same time shifting property that we used in problem 1(b)
to show that
za(t) = x3(t — 2)

Then, to find z3(t), we see the Fourier transform pair

1, =T <t<T; 2sin(wT
Fi 1 1}: sin(wTh)

0, else w

We again need to exactly match X3(jw) to this form to invoke the property. By rewriting

. sin(2w 1 2sin(2w
oy - ) _ 1, 2

We can then use this property to say that

1
-, —2<t<?2
w3(t) = ¢ 2
0, else
then
1 1
=, —2<t—-2<2 =, 0<t<4
0, else 0, else
In general, if something says [t| < T, this is the same as =T <t < T.
Now that we know z1(¢) and 5(t), we can use our original relation
x(t) = 2may(t)za(t)
to write ) )
4 S 0<t<4 [Fe p<t<4
z(t) = 27 * 6873‘“ %< 2 -
0, else 0, else

4) We start by computing the Nyquist frequency for each signal (), xo(t), z3(t) and =(¢). This is

twice the maximum frequency present in each signal. Then

1

WNyquist, 21 = 2 % T, fNyquist, T — ﬂwNyquism z1 = 1Hz 65
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1

WNyquist, zp — 2 3777 fNyquist, T2 — ﬂwNyquist, To — 3Hz
1
WNyquist, z3 — 2 5777 fNyquist, T3 — ﬂwNyquist, r3 — oHz
1
WNyquist, z = 2% 5777 fNyquist, Tz — %WNyquist7 z = 5Hz

a) The sampling rate 7" = 0.4 corresponds to a sampling frequency f; = % = 2.5Hz. This is less
than the Nyquist frequencies of x(t), x3(t), and z(t), so these signals cannot be recovered in

this sort of sampling scheme. However, x1(t) can be.
b) As we showed earlier, fuyquist, s = 3=WNyquist, » = DHZ

¢) By the multiplication property, for y(t) = x(t)c(t),

Y () = 5-X(jw) = Cj)

Using the properties of cosines and sines, we can quickly find that
C(jw) = md(w — 207) + w6 (w + 207)

Then )
Y (jw) = %(7['(5(&) —207) + 7 (w + 207)) * X (jw)

Using the properties of convolution with delta functions,
. 1. . 1.
Y(jw) = §X(](w —20m)) + §X(](w + 207))

This means that Y (jw) will contain all the frequencies present in X (jw), shifted either up or
down by 207 radians. As the maximum frequency in X (jw) is 57, the maximum frequency in
Y (jw) will be that shifted up by 207, so 20w + 57 = 257. This can be confirmed by finding
X (jw) and substituting this into the above expression for Y (jw), which I will not do here for

sake of legibility.
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Pase 3.

Problem 3. (25 pts.) Consider the filtering and modulation system
below: -Zdr\ S (SE)
Yy = """
X o ‘ %) ’ b ] h () -

Wit) = Ga( s1) +2 Cnlst)
b (1)
-10 \

A. (10 pts.) Sketch the Fourier Transform of signal y(t) and write up
it's expression.  Y(wy =7 Vb= Ry » Hro)
W Ey= wi=y. Wik

B. (5 pts.) Sketch the Fourier transform of signal w(t) and write up

it's expression. W (v)=7 an o~ FT
e, 2T - Wiy =T
emo ] % Lo
| A b
-\< -5 s T A F.L_a‘:I
=1 e
Ovn \LQ =\ \g C‘Aw‘-w’_-k a\:\x‘})u "f‘f*'a

\\(’ - F:_F E:)

C. (10 pts.) Sketch the Fourier transform of signal z(t) and obtain
it's expression. Ziy=2
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3.4 final exam

Local contents

[3.4.2  questions|

341

review for final exam
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3.4.2 questions

EE3015 - Final Exam — Saturday, May 9t" 2020

This exam is open book and open notes. Communication with other people is not permitted.
Write your solution to each problem in a separate document / sheet of paper. Please submit
your solutions in the order they are given in this document. If your solution relies on proofs from
an external source (book or notes), please reference this source in your solution (e.g. page
number, table number, lecture date). Submit your solutions as a PDF document to Canvas by
5:00pm. If you are registered with the DRC, please ask for additional details regarding
submission.

Problem 1 (25pts)

Consider a causal LTI system with transfer function

H(s) = -10s + 10
V= G+10)+1)
A. (5pts) Write a differential equation in terms of x(t), y(t) (and their derivatives)

realizing this system

B. (10pts) Find the impulse response h(t) of this system. Determine the ROC of
the systems transfer function.

C. (10pts) Find the unit step response of the system, i.e. compute y(t) for

x(t) = u(t)
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Problem 2 (30pts)

Consider the following block diagram representing a modulating system

cos(100t) cos(50t)
x1(t) : xa(t)
H(jw) x3(t)
X(t)
H(jw) ya(t)
y1(0 y2(t) ’
sin(100t) sin(50t)
1] X(jw)
H(jw)

A. (15pts) Sketch and label X; (jw), X, (jw), X3 (jw)

B. (15pts) Sketch and label Y, (jw), Y, (jw), Y3 (jw)
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Problem 3 (30pts)

Consider the following Analog / Digital conversion system

(t) Discretization
X (Impulse to
x(t) discrete X[n]
sequence)
p(t)
1] X(jw)
-21*1043 0 2m*10A3 W

where
p(t) = Z 8(t—kT), T=0.5x1073
k=—o0

A. (10pts) Find an expression for X (jw), the Fourier transform of x(t). Sketch and
label it.

B. (10pts) Find an expression for X, (jw), the Fourier transform of x,, (t). Sketch
and label it.

C. (10pts) Find an expression for X(e/®), the Fourier transform of x[n]. Sketch
and label it.

77



3.4. final exam

CHAPTER 3. EXAMS

Problem 4 (25pts)

Consider a signal with Fourier domain representation X (jw) of the form

-

X(w)

-100

100 @

We seek to broadcast this signal to a receiver. To achieve this, we filter and modulate
X (jw) into the signal Y (jw), which is then transmitted. Y (jw) is of the form

Y(jw)

-2001 00T

1001 200

We seek to design a receiver that can recover the signal X(jw) from the transmitted
signal Y (jw). This receiver takes the form of the following block diagram.

y(t) wit

cos(wot)

H(jw) — x(1)

A. (15pts) Determine w,. Sketch and label W (jw).

B. (10pts) Assume that H(jw) is an ideal filter (i.e. it’s Fourier Transform H(jw) is
a sum of rectangle waves). Sketch and label H(jw). Furthermore, specify what
type of filter this is, and the cutoff frequency and gain of the filter.
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Problem 5 (30pts)

Consider the causal LTI system with transfer function H(e/*), characterized by

|H(e®)]
12 i
b ¢H(e/®)
m
i w
-1m/2
A. (10pts) For x[n] = cos (%n - E), compute X(e/*), the Fourier transform of
x[n]
B. (20pts) Assume that x[n] from part (A) is fed as an input to the LTI system
characterized by H(e/®) to produce an output signal y[n]. Compute Y (e/®)
and y[n].
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Problem 6 (20pts)

Consider the difference equation

yln] = 3yln— 11+ gyln — 2] + x[n] - 2xIn — 1]

A. (5pts) Find the Z-domain transfer function of this system, H(z) = )%

B. (5pts) Identify the poles, zeroes, and ROC of the transfer function you obtained
in (A).

C. (10pts) Find the impulse response of this system, h[n]
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41 HW1
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41.1 Problem 1.8, Chapter 1

Express the real part of each of the following signals in the form Ae™ cos (a)t + (p), where
A,a,w,¢ are real numbers with A > 0 and -7 < ¢ < 7 (a) x(t) = -2, (b) % (t) =

V261 cos Bt +27), (c) x5 () = e~ sin (Bt + 70), (d) xg () = jel 271000)

Solution

4111 parta
X1 (t) =-2
Comparing the above to Ae™ cos (a)t + cp) shows that

A=2,a=0,p=0,w=0,¢ = -7

4112 partb
X, () = \/Ee]g cos (3t + 27)
Since cos (3t + 271) = cos (3t), the above becomes
X, () = V2o i cos (3t)
=2 (cos T + jsin E) cos (3t)
4 4
1 1
= \/E(E\/E +]§\/§) cos (3t)
= (1 + ]) cos (3t)

Hence the real part of x; (t) is
Re (x, (£)) = cos (3t)

Comparing the above to Ae™ cos (a)t + cp) shows that
A=1a=0,w=3,¢=0
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411.3 partc
x5 (t) = et sin (3t + )

Since sin (3t + ) = cos (3t + 70— g) = CoS (St + g), then the above becomes
x5 (t) = et cos (3t + g)

Comparing the above to Ae™ cos (a)t + q)) shows that

A=la=1lw=3¢=—
2
411.4 partd
X (8) = e(—2+100j)t
= je~2tei100t

Butj = ¢2, hence the above becomes
x4 (f) = o7 o2t /100t
_ o2 e;‘(100t+§)

=e 2 (cos (100t + g) +jsin (100t + g))

Therefore -
Re (x4 (1)) = e7% cos (1001,L + E)

Comparing the above to Ae™ cos (a)t + ¢) shows that

A=la=2w :100,¢:g

4.1.2 Problem 1.13, Chapter 1

Consider the continuous-time signal x (f) = 0 (f + 2) — 0 (f — 2). Calculate the value of E, for
the signal y (t) = f_t x(t)dt

Solution

y (t) is first found
y(t)zft 5(t+2) =6 (t—2)dr

:f_t 6(t+2)d’c—j:t 5(t - 2)dr
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0(t+2)is an impulse at t = -2 and 6 (t — 2) is an impulse at t = 2. Hence is t < -2 then the
above is zero. If -2 <t < 2 then only the first integral contributes giving 1 and if ¢t > 2 then
both integral contribute 1 each, and hence cancel each others giving y = 0. Therefore

0 t< =2
y) =41 2<t<?2
0 t>2

Now that y(f) is found, its E,, can be calculated using the definition
0 2
E,. = f ly (O dt

Hence

41.3 Problem 1.17, Chapter 1

Consider a continuous-time system with input x(t) and output y(t) related by y () = x (sin (t)).
(a) Is this system causal? (b) Is this system linear?

Solution

41.31 Parta

A system is causal if its output at time t depends only on current ¢+ and on past ¢t and
not on future t. Picking t = —m, then y(-n) = x(sin (-7)) = x(0). This shows that y(-n) =
x(0). Hence the output depends on input at future time (since 0 > -m). Therefore this
system is not causal.

41.3.2 Partb

Let input be x (t) = a,xq (t) + a,x, (t). If the output when the input is x (t) is given by y (f) =
ayyq (t) + axy, (f) where yq (t) = x1 (f) and y, (t) = x, (t) then the system is linear. From the
definition

y(f) = x(sin (t))
= a1x1 (sin (¢)) + a,x, (sin (t))
Now, y; () = x1 (sint) and y, () = x, (sint). Hence the above becomes
y(t) = x(sin(t))
= ayy () + agy, (f)

Therefore the system is linear.
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4.1.4 Problem 1.21, Chapter 1

A continuous-time signal x(t) is shown in Figure P1.21. Sketch and label carefully each of
the following signals: (a) x(t—1). (b) x(2—1) (c) x(2t +1) (d) x (4 - g)

Figure P1.21

Figure 4.1: The function x(t)

Solution

Looking at the plot, it can be constructed from unit step u(f) and ramp function r(t) as
follows

x)=-u(t+2)+r(t+2)—-rt+D)+ut+D)+u@®)-u(t-1)-rt-1)+r(t-2)

Here is an implementation
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Figure 4.2:

20

0.5

Construction the signal x(f) from unit step and ramp functions

x[t_] := -UnitStep[t +2] + Ramp[t + 2] - Ramp[t +1] +

UnitStep[t +1] +UnitStep[t] - UnitStep[t - 1] -Ramp[t -1] + Ramp[t -2];
p = Plot[x[t], {t, -3, 3}, Exclusions - None,

PlotStyle - Red,

GridLines -» Automatic, GridLinesStyle - LightGray];

41.41 Parta

Figure 4.3: Code for the above

x (t—1) is x (t) shifted to right by one unit time. Hence it becomes

x(t-1)=-u(t+D)+r(t+)-r@®)+u@+ut-1)-u(t-2)-rt-2)+r({t-3)

Figure 4.4: Part (a) plot

x[t_] := -UnitStep[t +2] +Ramp[t +2] -Ramp[t +1] +

UnitStep[t +1] +UnitStep[t] - UnitStep[t-1] -Ramp[t-1] +Ramp[t -2];
p = Plot[x[t-1], {t, -3, 3}, Exclusions - None,

PlotStyle - Red, GridLines - Automatic,

GridLinesStyle - LightGray];

Figure 4.5: Code for the above
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4142 Partb

xQ2-t)=x(-(t-2))
Hence the signal x (f) is first flipped right to left (also called reflection about the ¢ = 0 axis)
and the resulting function is then shifted to the right by 2 units. It becomes

x2-H=-u(@-H+2)+r(Q-H+2)-r(R-H+D+u(@@-H+D+uR-H)-u(@-H-1)-r(@@-H-1+r((2-1t)-2)
=—u@d-t)+r@d-)-rGBG-H+u@B-H+u@R-t)-ud-)-rA-t)+r(-t)

The flipped signal is

Figure 4.6: Part (b) signal after reflection

Now the above is shifted to the right by 2 units giving

Figure 4.7: Part (b) final plot

It also possible to first do the shifting, followed by the reflection. Same output will result.

41.4.3 Partc

x2t+1)=x (2 (t + %)) The signal is first shifted to the left by % due to the +% term, and then

the resulting signal is squashed (contraction) by factor of 2. Since the original signal is from
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-1 to 3, then after first shifting it to the left by 0.5 it becomes from —1.5 to 2.5. Hence the
original ramp that went from -2 to -1 now goes from -1.5 to -1 and the line that originally

went from -1 to 0 now goes from -1 to —% (half the length) and so on. This is the result

1.0

Figure 4.8: Part (c) plot

ClearAll([x, t];
x[t_] := -UnitStep[t +2] +Ramp[t + 2] -Ramp[t +1] +

UnitStep[t +1] + UnitStep[t] - UnitStep[t-1] -Ramp[t-1] +Ramp[t -2];
p = Plot[x[2t+1], {t, -2, 2}, PlotRange - All, Exclusions - None,

PlotStyle - Red, GridLines - Automatic, GridLinesStyle - LightGray];

Figure 4.9: Code for the above

41.4.4 Partd

x (4 - %) =x (— (é - 4)) =x (—% (t- 8)). Hence, the signal is first shifted to the right by 8 due
to the -8 term, and then the resulting signal is flipped across the t = 0 axis, and then the

resulting signal is stretched (expanded) by factor of 2 due to the multiplication by % term.
This is the result showing each step

Shift to right by 8 Now flip left-to-right Now expand by factor of 2
20f 20f 20f
15F 15} 15F
10f 10F 10F
05} 05} 05}

4 8 10 12 14 16 4 6 8 1 12 14 16 4 6 8 1 1 14 16
-05F -05F -05F
-1.0F -1.0f -1.0f

Figure 4.10: Part (d) plot
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4.1.5 Problem 1.22, Chapter 1

A discrete-time signal is shown in Figure P1.22. Sketch and label carefully each of the

following signals (a) x[n —4] (b) x[3 —n] (c) x[3n] (d) x[3n +1]

B r—
00 iy 13—

-0
e
j

Figure P1.22

Figure 4.11: The function x[n]

Solution

41.5.1 Parta

x [n — 4] is x [n] shifted to the right by 4 positions. Hence it becomes

AAAAA

Figure 4.12: Part (a) plot

x[n_] :=Piecewise[{{-1, n=-4}, {-1/2,n=-3}, {1/2, n= -2},
{1, n= -1}, (1, n =0}, {1, n =1}, {1, n=2}, {1/2, n = 3}}]

p = DiscretePlot[x[n-4], {n, -5, 8}, PlotStyle -» {Thick, Red}, AxesLabel » {"n", "x[n]"},
Axes » {True, False}, Ticks » {Range[-5, 8], Automatic}];

Figure 4.13: Code used for the above
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4152 Partb

x[3-n] = x[-(n—-3)]. Hence x[n] is first reflected to obtain x[-n] and then the result is
shifted to right by 3. This is the result showing each step

Original x[n]
L ] L ] L ] L ]
° [
e | | 1 1 1 1 1 1 & e é & é n
-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
L]
L]
Reflection
[ ] L ] [ ] L
L ] L ]
é é 1 1 1 1 1 1 1 1 ¢ é ¢ é n
-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
L[]
L]
shift to right by 3
[ [ ] [ ) [ ]
L ] L ]
& & & & & 1 1 1 1 1 1 | 1 & n
-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
L]
L)

Figure 4.14: Part (b) plot
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41.5.3 Partc

x [3n]. Sample at n = 0 remains the same. Sample at n = -1 gets the value of the sample that
was at -3 which is —%. Sample at n = -2 gets the value of the sample that was at n = -6
which is zero. Hence for all n less than -1 new values are all zero. Same for the right side.
The sample at n =1 gets the value of the sample that was at 3 which is % and sample at n = 2
gets the value of the sample that was at 6 which is 0 and all n > 1 are therefore zero. Notice
that this operation causes samples to be lost from the original signal. This is the final result

Figure 4.15: Part (c) plot

4154 Partd

x [3n +1]. Sample at n = 0 gets the value that was at n =1 which is 1. Sample at n = -1 gets
the value of the sample that was at -3 +1 = -2 which is % Sample at n = -2 gets the value of
the sample that was at n = -6 + 1 = -5 which is zero. Hence for all n < -1 all values are zero.
Same for the right side. Sample at n =1 gets the value of the sample that was at 3+1 =4
which is 0 and therefore for all n > 1 samples are zero. Notice that this operation causes
samples to be lost from the original signal. The result is
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Figure 4.16: Part (d) plot

4.1.6 Problem 1.26, Chapter 1

Determine whether or not each of the following discrete-time signals is periodic. If the
signal is periodic, determine its fundamental period (a) sin (gnn + 1) (b) x[n] = cos (g - n)

(c) x[n] = cos (gnz) (d) x[n] = cos (gn) cos (gn)

Solution

The signal x [#] is periodic, if integer N can be found that x[n] = x [ + N] for all n. Funda-
mental period is the smallest such integer N.

41.61 Parta
In this part, x [n] = sin (gnn + 1). Hence the signal is periodic if
x[n] = x[n+ N]
. [6 . (6
sin (;nn + 1) = sin (57‘( (n+ N) + 1)

6 6
= sin ((;nn + 1) + ;T(N)

The above will be true if

anN = 2mm
For some integer m and N. This is because sin has 2r period. This implies that
3 m
7 N

Therefore N = 7,m = 3. Since it was possible to find n, N integers, then it is periodic. Since
m, N are relatively prime then N =7 is the fundamental period.
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41.6.2 Partb

In this part, x[n] = cos (g - n). Hence the signal is periodic if

x[n] =x[n+ N]

(n ) n+ N
COS|— — = COS -
g " g

ol

The above will be true if

—_ =2
8 m
1 _m

16w N

For some integer N,m. It is not possible to find integers m, N to satisfy the above since 7 is
an irrational number. Hence not periodic.

41.6.3 Partc
x[n] = cos (gnZ). Hence the signal is periodic if
x[n] = x[n+ N]
cos (gnz) = cos (g (n + N)Z)
= cos (g (n2 +N? + ZnN))
= cos (gnz + g (N2 + ZnN))

The above will be true if -
3 (N2 + 2nN) =27mtm

Need to find smallest integer N to satisfy this for all n. Choosing N = 8 the above becomes
s
3 (64 +16n) = m(2n)
87 +2nm = m (2n)

Hence for all n, N = 8 satisfies the equation (since m is arbitrary integer). Therefore it is
periodic and fundamental period N = 8.
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41.6.4 Partd

Using cos AcosB = % (cos (A + B) + cos (A — B)) then

A

cos (En) cos (En) 1 (cos (En + En) + cos (zn - E11))
2 47) 2 27 4 27 4
1 3n ( )
—|cos|—n|+cos|—n
o () oo
Considering each signal separately. x [n] = cos (%n). This is periodic if
x[n] = x[n+ N]
) - 3—n( +N)
cos| 1| =cos| -~ (n

3 3n N 377N
= CoS 1 n 1

The above will be true if

INzan
3_m
8 N

It was possible to find integers N, m to satisfy this, where period N = 8. Considering the

second signal x [n] = cos (%n). This is periodic if

x[n] =x[n+ N]

cos (zn) = cos (g (n+ N))

(3439

The above will be true if

2N=2nm
1_m
8 N

It was possible to find integers N,m to satisfy this, where period N = 8. Therefore both

signals periodic with same period, the sum is therefore periodic and the fundamental period

is N =8.
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4.1.7 key solution

HW 1 Solutions

18 (a) Re{r(t)} = —2 = 2% cos(0¢ + ) L
(b) Re{za(t)) = vZcos(}) cos(3t + 27) = cos(3¢t) = &% cos(3t +0)
(c) Re{zs(t)} = e *sin(3L + %) = e *coa(3t + F)
(d) Ref{z(t)) = — e~ 5in(100¢) = e~ 5in(100t + 7)) = e~ cos(100t + 7)

e e amambial

1.13.
0, tg -2
;;r{:)-jl z(r)dt:]t (6{f+2}-6(r—2)]d¢-{ A -2<t<?
-e0 o 0, t>12
‘Therefore,

e[

17. (a) The system is not causal because the output y(t) at some time may depend on future
values of z(t). For instance, y(-n) = z(0).

(b) Consider two arbitrary inputs z,(t) and z2(2).
z(t) — yui(2) = =z, (sin(t))
z2(t) — wa(e) = 3 (sin(t))
Let z3(t) be a linear combination of z(t) and x2(t). That is,
z3(t) = az,(t) + bra(t)

where a and b are arbitrary scalars. If zy(t) is the input to the given system, then the
corresponding output ya(t) is

w(t) 3 (sin(t))
az) (sin(t)) + bzz (sin(e))

ay(t) + bya(t)

Therefore, the system is linear.
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1.21. The signals are sketched in Figure §1.21. "

(1) : *(1) 3 x(2t+])
)
|
-1 ll_r—k )_-l_| & %‘é
it ok A o -0f 0
:Vo [P 1 i\l

=1

%< (4-1’/2) 3 fl(ﬂﬁl(‘!ﬂ wit) e
2 . oo
)—_I_T Tt o | t J[ ];; t
4 6 8 n\] %
9
z(n-4) x[3-n] :[;nﬂ]
© :’ ] [ II > '41 [ l] ] |
1 ] ° | 2 I l
l- vl.
’I —‘
(a) (s
Lal) + L (0" <o)
1
o[n)-win-2] ?_ I ] ] I I
= | ol L e L
= z[n] 61z R l'¢;'u'z " O(L;-
® 4 - pigi-e §1.22 .
‘I“) ._‘C‘J

1.26. (a) Periodic, penod = 7.
(b) Not periodic.
(c) Periodic, period = 8.
(d) z[n] = (1/2)[cos(3xm/4) + cos(xn/4)]. Periodic, period = 8.
(e) Periodic, period = 16.
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Local contents

4.2.1 Problem 2.1, Chapter 2| . . . ... ... .. ... .. .. .. ... .. . ... 97
4.9.2 Problem 2.6, Chapter 2| . . . . . . ... ... ...\ 102
4.2.3  Problem 2.11, Chapter 2|. . . ... ....... ... ... ... ... ..... 106
4.2.4 Problem 2.24, Chapter 2. . . . ... ........... . ... ... ... 110
4.25 Problem 232, Chapter 2. . . .. ... ... ... ... .. 115
4.2.6 Problem 2.42, Chapter 2|. . . . . . . .. ... . 118
427 keysolution| . . . . . ... ... 120

4.21 Problem 2.1, Chapter 2

Let x[n] =6 [n]+20[n—-1]-0[n—-3] and h[n] = 26 [n + 1] +26 [n — 1]. Compute and plot each
of the following convolutions (a) y; [n] = x[n]®h[n] (b) y,[n] =x[n+2]@h[n]

Solution

4211 Parta

The following is plot of x [n],h[n]

il

h(n]
1
.
0 0 0 | 0
3 2 1 0 1 2 3 4
0 0 0 0 0
1 3 2 1 0 1 2 3

Figure 4.17: Plot of x[n], h[n]
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x[n_] :=If[n==0,1, 0];
pl = DiscretePlot[x[n] +2x[n-1] -x[n-3], {n, -3, 4},

Axes -» {True, False},

PlotRangePadding -» .25, PlotLabel -» "x[n]",
ImageSize - 300,

PlotStyle - {Thick, Red},

LabelingFunction - Above,

AspectRatio -» Automatic,

PlotRange » {Automatic, {-1, 2}}];

p2 = DiscretePlot[2x[n+1] +2x[n-1], {n, -3, 3},

Axes -» {True, False},
PlotRangePadding -» 0.25,
LabelingFunction - Above,
PlotStyle -» {Thick, Red},
PlotRangePadding - 2,

PlotLabel » "h[n]",

ImageSize - 300,

AspectRatio -» Automatic,
PlotRange -» {Automatic, {0, 2}}];

p = Grid[{{pl1, p2}}, Spacings » {1, 1}, Frame » All, FrameStyle - LightGray];

Figure 4.18: Code used for the above

Linear convolution is done by flipping / [n] (reflection), then shifting the now flipped % [1] one
step to the right at a time. Each step the corresponding entries of / [1] and x [1] are multiplied
and added. This is done until no overlapping between the two sequences. Mathematically

this is the same as

(o)

ylnl= Y} x[Klh[n -k

k:—OO

Since x [n] length is 3 and x[n] = 0 for n < 0 then the sum is

Forn=-1

3
y[nl =Y, x[klh[n-k]
k=0
3
y[-11= Y x[k1h[-1-k]
k=0

=x[0]h[-1] + x [1] R [0] + x [2] h[1] + x [3]  [2]

=D @) +@2)(0)+(0)(2) + (-1)(0)
=2
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Forn=0
3
y[0] = Y x [kl i [-k]
k=0
=x[0]h[0] + x[1]h[-1] + x[2] h [-2] + x[3] K [-3]
=0+(2)2)+0+0
=4
Forn=1
3
y[1]= Y, x[klh[1 -K]
k=0
=x[0]h[1] + x[1]R[0] + x[2] K [-1] + x [3] K [-2]
=1 (2) +(2)(0) + (0) (1) + (-1) (0)
=2
Forn=2
3
y[2]= Y x[klh[2-k]
k=0
=x[0]h[2] +x[1]h[1] + x[2] R [O] + x [3] h [-1]
=(1)(0) +(2)(2) +(0) (0) + (-1)(2)
=2
Forn=3
3
y[3]= Y x[k]h[3 k]
k=0
=x[0]h[3] +x[1]h[2] + x[2] h[1] + x[3] h [0]
=(1)(0) +(2)(0) + (0) (2) + (-1) (2)
=0
Forn=4

3

y4l= Y x[kIh[4-K]

k=0
=x[0]h[4] + x[1] 1 [3] + x[2] h [2] + x [3] L [1]
=MHO+@)O)+(0)2) +(-1)(2)
=-2
All higher n values give y[n] = 0. Therefore

y1[n] =26[n+1]+46[n]+26[n—-1]+26[n—-2]-206[n - 4]
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y[n]

Figure 4.19: Plot of y[n]

4212 Partb
First x [n] is shifted to the left by 2 to obtain x [n + 2] and the result is convolved with / [1]

The following is plot of x [n + 2], h[n]

x[n]

hin]

'
weso

Figure 4.20: Plot of x[n + 2], h[n]

Since Linear time invariant system, then shifted input convolved with h[n] will give the
shifted output found in part (a). Hence y, [1] = y; [n + 2]. Hence

Yo[n]=20[n+3]+46[n+2]+26[n+1]+26[n] -26[n-2]

To show this explicitly, the convolution of shifted input is now computed directly. Linear
convolution is

o0

ylnl= Y x[klh[n -k

k=—00
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Since x [n + 2] length is 3 and x[n] = 0 for n < -2 then the sum is

1

y[n] =Y, x[klh[n-k]

k=-2
Forn=-3
1
y[-81= Y x[klh[-3-K]
k=-2
=x[-2]h[-1]+x[-1]1h[-2] + x[0] K [-3] + x[1] h [-4]
= (1) (2) +(2)(0) + (0) (0) + (-1) (0)
=2
Forn=-2
1
y[-21= ), x[k]n[-2-k]
k=—-2
=x[-2]h[0] + x[-1]h[-1] + x[0] h [-2] + x [1] 1 [-3]
= (1) (0) + (2) 2) + 0+ (-1) 0)
=4
Forn=-1
1
y[-11= )] x[kKlh[-1-K]
k=-2
=x[-2]h[1] + x[-11h[0] + x[O] h [-1] + x [1] h [-2]
=(1)(2) +(2)(0) + 0+ (-1) (0)
=2
Forn=0
1
y[0] = ] x[k]h[0-K]
k=-2
=x[-2]h[2] + x[-1]h[1] + x[O] R [O] + x [1] h [-1]
=M O)+2)2)+0+(-1)(2)
=2
Forn=1

1

y[11= Y] x[klh[1 k]

k=-2
= x[-2]h[3] + x[-11 1 [2] + x [0] k [1] + x [1] 1 [0]
=M0)+@2)@2)+0+(-1)(0)
=4
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Forn=2
1
y[2]1= )] x[k]h[2-K]
k=-2

=x[-2]h[4] + x[-1]h[3] + x[0] K [2] + x[1] I [1]

=1)(0)+(2)(0)+0+(-1)(2)

=-2
Hence

y[n]=26[n+3]+46[n+2]+20[n+1]+26[n]-26[n-2]
Which is the shifted output found in part (a)

4.2.2 Problem 2.6, Chapter 2

Compute and plot the convolution y[n] = x[n] ® h[n] where x[n] = (%)_ u[-n-1] and
hin] =u[n-1]

Solution

It is easier to do this using graphical method. y[n] = E;:;_oox[k]h [n —k]. We could either
flip and shift x [#] or /i [n]. Let us flip and shift  [n]. This below is the result for n = 0 when
h[n —k] and x [k] are plotted on top of each others

n=0

x[k]
1
1 1 1_ 3
boul o 9 )

o . . 0 0 0
-4 -3 -2 -1 0 1 2
h[n-kK]

1 1 1 1
. . . . 0 0 0
-4 -3 -2 -1 0 1 2

Figure 4.21: Convolution sum for n =0

k
By multiplying corresponding values and summing the result can be seen to be " (%) .
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Let r = % then this sum is (ZIZO rk) -1But ¥” = é since r < 1. Therefore

k=1 1-3
3-1
3
=--1
2
_1
2

Hence y[0] = % Now, the signal & [n - k] is shifted to the right by 1 then 2 then 3 and so on.

This gives y[1],y[2],---. Each time, the same sum result which is % Here is a diagram for

n =1 and n = 2 for illustration

n=1
xIk]
1
1 1 1l 3
oo : | 0 0 0
-4 -3 -2 -1 0 1 2
hin-K]
1 1 1 1 1
. 0 0
-4 -3 -2 -1 0 1 2

Figure 4.22: Convolution sum for n =1
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n=2
x[K]
1
1 1 8
- P 9 )
¢ 7 ' . 0 0 0
-4 -3 -2 -1 0 1 2
h[n-k]
1 1 1 1 1 1
. 0
-4 -3 -2 -1 0 1 2

Figure 4.23: Convolution sum for n = 2

Therefore y[n] = % for n > 0. Now we will look to see what happens when /1 [-k] is shifted to
the left. For n = -1 this is the result

n=-1
x[K]
1
1 1 8
— oy 9
R ‘ ] 0 0 0
-4 -3 -2 -1 0 1 2
h[n-k]
1 1 1
. . .
. 0 0 0 0
-4 -3 -2 -1 0 1 2

Figure 4.24: Convolution sum for n = -1

When multiplying the corresponding elements and adding, now the element - is multiplied

1
3
w (1)) 1 1 1 _1_ (1\(1
by a zero and not by 1. Hence the sum becomes |, _, (5) — 3 Whichis > -2 ==2= (E) (5)

Therefore y[-1] = %. When K [-k] is shifted to the left one more step, it gives y [-2] which is
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n=-2
xIK]
T
1 1 8
oo : ] 0 0 0
-4 -3 2 -1 0 1 2
hin-K]
1 1
. 0 0 0 0 0
-4 -3 -2 -1 0 1 2

Figure 4.25: Convolution sum for n = -2

. 1 1 . .
We see from the above diagram that now > and ; do not contribute to the sum since both

k
are multiplied by zero. This means y[-2] = (2121 (%) ) - (% + %) = % - (% + %) = 11—8 = (%) (é)

Each time & [-k] is shifted to the left by one, the sum reduces. From the above we see that

=)
-

Hence by extrapolation the pattern is

-

31’[
T2

y[n]={ 3
2

Here is plot of y [n] = x[n] ® h[n] given by the above

Therefore the final result is
n>0

D=

n<0

1 1 1 1 1
2 2 2 2 2
1 L ] L ] L ] [ ] [ ]
. !
2L — s
162 54 18 °
r'Y n [ ] n ? n 1 n 1 n 1 n 1 n 1 n 1 n
a 22 0 2 4

Figure 4.26: Plot of y[n]
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4.2.3 Problem 2.11, Chapter 2

Let x() =u(t-3)—u(t-5) and h(t) = e*u(t). (a) compute y(t) = x(t) ® k(). (b) Compute
gt) = % @h(t). (c) How is g(t) related to y ()?

Solution

4.2.31 Part (a)
It is easier to do this using graphical method. This is plot of x(t) and h (t).

x(7) h(r)

1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
T T t T
3 5 -1 1 2 3

Figure 4.27: Plot x(t) and h(t)

pl = Plot[ (UnitStep[t - 3] - UnitStep[t-5]), {t, -3, 6},
Exclusions - None, AxesLabel » {MaTeX["\\tau"], MaTeX["x(\\tau)"]},
BaseStyle » 12, Ticks » {{3, 5}, Automatic}];

p2 = Plot [Exp[-3 t] UnitStep[t], {t, -1, 3}, AxesLabel -» {MaTeX["\\tau"], MaTeX["h(\\tau)"]},
BaseStyle -» 12, PlotRange » All];

p =Grid[{{p1, p2}}];

Figure 4.28: Code used for the above plot

The next step is to fold one of the signals and then slide it to the right. We can folder either
x (t) or h(t). Let us fold x (t). Hence the integral is

Y () = fm x(t= 1) h (2) dr

If we have chosen to fold / (t) instead, then the integral would have been

Y () = fm ¥ (D) (t = 1) dr

This is the result after folding (reflection) of x (¢)

106



4.2. HW 2 CHAPTER 4. HWS

v(T) h(T)
1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
T T T

Figure 4.29: Folding x(t)

Next we label each edge of the folded signal before shifting it to the right as follows

a(7) h(r)

15 1.0
0.8
0.6

0.5 04
0.2

Figure 4.30: Folding x(t) and labeling the edges

We see from the above that for t —=3 < 0 or for t < 3 the integral is zero since there is no
overlapping between the folded x (7) and /(7). As we slide the folded x (7) more to the right,
we end up with x (7) partially under / (7) like this

(=5 +1) (=3+1)

Figure 4.31: Shifting x(7) to the right, partially inside

From the above, we see that for 0 <t —3 < 2 (since 2 is the width of x(7) ) or for 3 <t < 5,
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then the overlap is partial. Hence the integral now becomes

t-3
y(t):f x(t-0h(mdt  3<t<5
0

t-3
= f e3Tdt
0
-1 -3
-3 [6_3T]0

— %1 [3—3(t—3) _ 1]

_ % (1-e309)

The next step is when folded x (7) is fully inside / (7) as follows

0.5

(=5+1) (=3+1)

Figure 4.32: Shifting x(7) to the right, fully inside

From the above, we see that for 0 < -5 or ¢t > 5, then the overlap is
integral now becomes
t-3
y(®) = f
t-5

x(t-1)h(t)dr 5<t<oo

The above result y (f) = %

complete. Hence the

[6_3(t_5) - e‘3(t‘3)] can be rewritten as % [(1 - 3‘6) 6_3(t_5)] if needed
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to match the book. Therefore the final answer is

0 —0<t<3
_ 14 _ ,-3¢t-3)
y(b) = 3(1 e ) 3<t<5
% (8_3(t_5) - e‘3(t‘3)) 5<t<oo

Here is a plot of the above

y(t)

0.35

0.25

0.20

0.15

0.05

Figure 4.33: y(t)

y[t_] :=Piecewise[{{0, t <3}, {1/3 (1-Exp[-3 (t-3)]), 3 <t<5},
{1/3 (Exp[-3 (t-5)] -Exp[-3 (£-3)]), t > 5}} 5

p = Plot[y[t], {t, -1, 7}, AxesLabel » {MaTeX["t"], MaTeX["y(t)"]},
PlotStyle - Red, GridLines - Automatic, GridLinesStyle - LightGray];

Figure 4.34: Code for the above
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4.2.4 Problem 2.24, Chapter 2

T rigure r<.£>

2.24. Consider the cascade interconnection of three causal LTI systems, illustrated in Fig-
ure P2.24(a). The impulse response /;[n] is

ha[n] = u[n] — uln - 2],

and the overall impulse response is as shown in Figure P2.24(b).

X[n] =3 h;[n] > hyln] > haln] > y[n]
(@
-101234567 n
(b) Figure P2.24

(a) Find the impulse response h;[n].
(b) Find the response of the overall system to the input

x[n] = 6[n] — 6[n —1].

Figure 4.35: Problem description

Solution

4241 Parta

The impulse response h[n] is given. This is the response when the input is x[n] = 6[0].

Hence
hn] = hy [n] ® (hy [n] ® hy [n])
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But h, [n] is given as hy [n] = 6[0] + 6 [1]. Hence, let H [n] = hy [n] ® h; [n], therefore

For n = 0.

For n =1.

For n = 2.

Hlnl = Y} hy[klhy[n—k]

k=—00

2
= 2 ha [kl [~ k]

k=—1

0
H[0] = Y] ha [Klhy [-K]
k=-1

= hy [-1]hy [1] + hy [0] 12 [O]
=0+1
=1

0
H[1]= Y} hy [Klhy [1-K]
k=-1

= hy [-1]hy [0] + hy [0] 1y [1]
=0+2
=2

0
H[2]= Y} by [k]hy [2-K]
k=-1

= hy [-1] 2 [3] + 12 [0] 1, [2]
=0+1
=1

And zero for all other n. Hence

Hn] = hy[n]®hy [n]
=0[n]+20[n-1]1+06[n-2]

«"n

Figure 4.36: Plot of hy[n] ® hy[n]
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h[n_] := DiscreteDelta[n] + 2 DiscreteDelta[n - 1] + DiscreteDelta[n - 2];
p = DiscretePlot[h[n], {n, -1, 5}, LabelingFunction - Above,
Axes -» {True, False}, AxesLabel -» {"n", None}];

Figure 4.37: Code for the above

Now we need to find h; [n] given that iy [n]®H [n] is what is shown in the problem. We do not
know hy [n]. so let us assume it is the sequence {; [0], /1, [0], ---}. Then by doing convolution
by folding 7, [n1] and then sliding it to the right one step at a time, we obtain the following
relations for each n.

n =0 hy[0]H;[0] =1 and since H; [0] =1 then /;[0] =1

n=1hy[11H;[0] + h; [0] H; [1] =5 and since H; [0] =1,H; [1] = 2 then k [1] + 2k, [0] = 5. But
hq[0] =1 found above. Hence h[1]+2=50r h;[1] =3

n=2 I’ll [2] Hl [0]+h1 [1]Hl [1]+I’l1 [O] H1 [2] =10 and since H1 [0] = 1,H1 [1] = 2,H1 [2] =1 then
hq [2] + 2hq [1] + k1 [0] = 10. But k4 [0] =1,k [1] = 3 found above. Hence h; [2] + (2) (3) +1 =10
or iy [2] =3

n=23 hl [3] Hl [0]+h1 [2] Hl [1]+h1 [1]H] [2] =11 and since Hl [O] = 1, Hl [1] = 2,H1 [2] =1 then
hy [3] + 2hq [2] + By [1] = 11. But hq [2] = 3, k4 [1] = 3 found above. Hence 7, [3] + (2) (3) +3 =11
or hy [3] =2

n=4hy;[4]H; [0]+h [3] Hy [1]+ 41 [2] H; [2] = 8 and since H; [0] =1,H; [1] = 2,H; [2] =1 then
hq [4] + 2Ry [3] + 1 [2] = 8. But hy [3] = 2,41 [2] = 3 found above. Hence /i, [4] +2(2) +3 =8 or
h[4] =1

n=>5 h1 [5] H1 [0] +h1 [4.] H1 [1] +h1 [3] H1 [2] = 4 and since Hl [0] =1, H1 [1] = 2,H1 [2] =1 then
hq [5] + 2hy [4] + b1 [3] = 4. But hy [4] =1,k [3] = 2 found above. Hence h; [5] +2(1)+2 =4 or
hi[5] =0

And since the output is zero for n > 5 then h; [n] = 0 for all n > 5. Therefore

hi[n]=0[n]+36[n—-1]+30[n-2]+20[n—-3]+06[n—-4]
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33
2
! !
o . L9 9 0
o 2 4 6

Figure 4.38: Plot of hy[n]

h[n_] := DiscreteDelta[n] + 3 DiscreteDelta[n-1] +

3DiscreteDelta[n - 2] + 2 DiscreteDelta[n - 3] + DiscreteDelta[n-4];
p = DiscretePlot[h[n], {n, -1, 7}, LabelingFunction - Above,

Axes » {True, False}, AxesLabel » {"n", None}];

Figure 4.39: Code for the above

4242 Partb

When the input is x [n] = 6 [n] — 6 [n — 1] then response is given by y[n] = E;:’:_m x[klh[n - k]
where /1[n] is the impulse response given in the problem P2.24 diagram. Hence we need to
convolve the following two signals

h[n]
1_1

x[n]

N +O
wt+o
>
N

Figure 4.40: Plot of x[n], h[n]

By folding x [#] and then shift it one step at a time, we see that we obtain the following
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x[n] hin]
: 10 11
8
.......... o, . ..9 .9 5
1 0 1 2 3 " 4
1 1
-1 ANV N U R O N M
' 0 2 4 6 A
Figure 4.41: Plot of x[n], h[n]
n=0(1)@1)=1
n=1E)M+@DMEG) =4
n=2(-1)(5)+1)(10)=5
n=3(-1)(10)+ (1) (11) =1
n=4(-1)11)+@1)(8) =-3
n=5(-1)8)+1)4)=-4
n=6(-1)#+1)1)=-3
n=7(-1)1)+@)(0) =-1
n=8(-1)(0)+1)(0)=0
And zero for all n > 7. This is plot of y[n]
3
s
! :
9 Il Il Il Il Il Il Il Il 9 9
-1 0 1 2 3 4 5 6 7 8 9
-3 -3
ry

Figure 4.42: Plot of y[n]
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4.2.5 Problem 2.32, Chapter 2

Solution

-2-1012 34 n  Figure P2.31

2.32. Consider the difference equation

1
yln] - iy[n — 1] = x[n], (P2.32-1)

and suppose that

x[n] = (%) u[n]. (P2.32-2)

Assume that the solution y[r] consists of the sum of a particular solution y,[n] to
eq. (P2.32-1) and a homogeneous solution yj[#] satisfying the equation

1
yaln] — 5)’;1[’1 -1 =0

(a) Verify that the homogeneous solution is given by

yaln] = A(%)

(b) Let us consider obtaining a particular solution y,[n] such that

1 1Y
yplnl = 5ypln =11 = (g) uln].

By assuming that y,[n] is of the form B(%)" for n = 0, and substituting this in
the above difference equation, determine the value of B.

(¢) Suppose that the LTI system described by eq. (P2.32-1) and initially at rest has
as its input the signal specified by eq. (P2.32-2). Since x[n] = 0 forn <0, we
have that y[n] = 0 for n < 0. Also, from parts (a) and (b) we have that y[n]

has the form
1 n 1 111
=y ol

forn = 0. In order to solve for the unknown constant A, we must specify a value
for y[n] for some n = 0. Use the condition of initial rest and egs. (P2.32-1)
and (P2.32-2) to determine y[0]. From this value determine the constant A. The
result of this calculation yields the solution to the difference equation (P2.32-1)
under the condition of initial rest, when the input is given by eq. (P2.32-2).

2.33. Consider a system whose input x(#) and output y(¢) satisfy the first-order differential

Figure 4.43: Problem description
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4251 Parta

Substituting y;, [n] = A (%) into the difference equation y;, [n] - %yh [n—1] = 0 gives

1" 1 1\
Al=] -za(=] =0
2] T27\2

Since A # 0, the above simplifies to

Verified OK.

4252 Partb

Substituting yp[nl=B (%) into y, [n] - %yp [n-1] = B%u [1] gives

1 11
3 o) =zl
1 11 1
Bl—=|1-=—]|==u[n]
3 23" 3
1 3 1
Bl—=[1-=]|==u[n]
3" 2 3
1 (-1
B(3_I’l(7 —3—nu[n]
-1
EBzu[n]
B = -2u|[n]
Hence forn >0
B=-2

Therefore
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4253 Partc

The solution is given by the sum of the homogenous and particular solutions. Hence

yn]=yplnl+y,ln]

{3

Since system initially at rest, then y[-1] = 0. The recurrence equation is given as

1
ylnl-5yln=1] = x[n]

Substituting (1) into the above and using x [n] = 317” [1] gives

1

ylnl - syln-11= zun]

At n = 0 the above becomes ,
y[0]-5y[-11=1

Buty[—l]:Oandy[O]:(A(%) —2(3%)) =A-2.Hence A-2=1or

n=0

A=3

Therefore the solution (1) becomes

1\" 1
“”]:3(5) ‘2(37)

1
. 5
$
19
3
65
216 211
— 665
1296 _
7776
9 | | | | | |
-1 0 1 2 3 4 5

Figure 4.44: Plot of y[n]
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y[n_]:=3(1/2)~n-2(1/3)"n
p = DiscretePlot[y[n], {n, -1, 5}, LabelingFunction - Above,
Axes - {True, False}, Ticks -» {Range[-1, 9], None}];

Figure 4.45: Code used for the above

4.2.6 Problem 2.42, Chapter 2

Suppose the signal x(t) = u (t + %) -u (t - %) is convolved with the signal h (t) = doot, (a)

Determine the value of wy which insures that y(0) = 0. Where y (t) = x(t) ® h (t). (b) Is your
answer to previous part unique?

Solution
4261 Parta

x(O)@h(t) = foo X (D) h(t - 1) dr

—00

Since x (t) is box function from ¢ = —% tot= %

x(t)

08}

06

04}

02

Figure 4.46: Plot of x(n)

x[t_] := UnitStep[t+1 /2] - UnitStep[t-1/2]
p = Plot[x[t], {t, -2, 2}, Exclusions - None, AxesLabel -» {"t", "x(t)"}1;

Figure 4.47: Code used for the above

Then by folding / (t) and shifting it over x (f) it is clear that only the region between 7 = —%

tot = % will contribute to the integral above since x (7) is zero everywhere else. Hence the
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integral simplifies to

y®) =x()@h(t)

1
:fjh(t—f)dT

2

1

— fz eij(t_T)dT
-1

2
1

= g/wot le P

2
1

[ o—jwot |2
1

— ejwot _
| —J@o

2
1. 1,
oot e 2190 _ 3]0
=@ _—_—

—jao

P
it 62] 0 _ e 7]@o
=e —_—

Jwo

1. 1.
elwot [ e2/¥0 _ e_EJ“’O]

Wy 2]

1. 1.
e2/¥0_"2/%0 . [(wp . .
But —— — =sin (7) using Euler relation. Hence the above becomes

ejwot (o)
t - 2_ | (_)
y(t) o sin >

When t = 0 we are told y (0) = 0. The above becomes

2 . Wy
0= —sin (—)
@y 2

A value of wy which will satisfy the above is wy = 27

426.2 Partb

The value w, found in part (a) is not unique, since any nonzero integer multiple of 27t will
also satisfy y(0) =0

119



4.2. HW 2 CHAPTER 4. HWS

4.2.7 key solution

>~ Honguor K 2 solebip,5s ¢/
\ Emall e oF looe@s 7ol cmnese i gas
‘ 5% gy mishtee s

O
21 a) @ lal= xLaJubLy =2, XCkI0LkT
sl b LT

3 e b
o1l 2 AN A

n= -1 ¢ ,Z:"J: 2
n=0 ?,Z/’Jf— L/
/\:I (9' D,j: 2
M2 . H0n3=7
N=3 Yy LAz
Ny 44 3 ==L
' N2 A ld=0
(23 = 2501+ H4SINT # 2L T 420227 =2 2L~
Qid 4

e

-Z-«l Io) iJ
-2

9, ~AJ= X[+ ¥ hlnd=  SLAS X XAy ¥ hIny
= SLw]A Yy = 2T

Shitt 57 Er] Y oy sk
9 CnT= 2600 #3T118lav1] 425040 126007~ 251t
4

?

T

. 2
3EIo7T

Scanned with CamScanner

120



4.2. HW 2 CHAPTER 4. HWS

L& compte / /o,{;-é 2 TaY= XEAJAb(AT
Y= ( /’j)—nc,fl:- (] L]z n-17

o b Ml
VLk7= wif?
EF A K
h[a-iT
<111
sl Al N /{

é};/ lh"’?—/) (Al have Lota/ (;W/,fi;: 2,
-l L,k
her gLz = ()

ezl
Let K= =] @
0o /
b (P
Gld= 2Z
PO
= ‘ » 2:: fj';\wp - ‘I /
'2' F; - ‘E' v :':,..
= ___}_’ 1-77 i !
Tt o
(ﬁ» "< O
: -l
we  hav 0Jz 5 () K
gUI= 2 €3)

Let K= —Pia-f

__l)_O ] pP-n¥l
2 5) 4

121

-
-

an’ ‘/FH ; h
3P§o(ﬂ = /3



4.2. HW 2 CHAPTER 4. HWS

’Z 1 xeo)-
— CCE-3) - Y e-5
V0F)z o o(r!/ )
hm’.\ ) Coﬁ;fc*e @ C= xCe)#H0¢) ;(l:p,h CT)Xte)OT

j\ Y&t )*’]

o L €5 €3 T

€(3 o Sy HCO) oD
£-3
2<4¢<5 9 ({)-.:J =30 ye .2 37{ P gaED)
2

(]
o
3

'é 75 cﬁ,(f}:d\ £-3 €'3t(/‘€2 —6 -3 | £- 'ECi"S) -'3(?-7.})
f—-
b) 4cél= 9)((&),,;4({,)

/
Jred) - i@f_ﬁ _ JUlEE) o SUED <(¢-5)

o € Py |

o 0= ( &eD-E0e-5)) ¥ Cf)

= hl¢e3)- b (é—B)
L canw/w’&? PRI c(‘/ﬁf /?’.51/45 e e 34#

3(
= "3 ol €- 3) - ""'5)&(14_5)

' (€ O . O
l d%/_;_/ - {C 1/t-1) j(f(5> = %({)

o 3le=5) _ 3((— %) {'75



4.2. HW 2 CHAPTER 4. HWS

Z¥
J’)‘. 1Hl= Ufnjwl,‘/[,,_,zjz SCAT £ é[”""‘fj

XCrT =D |4, LT | = by T ->L42f»_7 =2 TPl

ovrel  Spstm feyamse = bga7 vhDayehyTay

by LT & 6,003 = @[A].;g&«/]) 4 (5[/‘.7*5[’"17)
= gLl 42 $0~-1] * L2
0Tz LyLal ¥ (¢l ¢ 2 40ni7 4 §L-2])

= WAoot 2hLayT HhLa-2)
/), o oy Cacsely,  Jo 4/07.77—"0 - d .
Ten hLo7 =407 = '
h17 = 4,[/]%24,)_’0] =5 Q
:> L;C’]:E
NS h D27+ 2,,07¢ 4,001 = 10
:) 1"1527 = 3
T30 = b33t ol ro Tt bitiT= ),
hiz7= 2
NCYT= 0 TyT+26,03T44052] - 9
b, 4=/
G I5]= hisTezhde] 4r5]= ¢
b [B83=0
hled= h, [ ¢1424,057 thi4] =1

L Té61=20
hZ71 = €73 +h, 063+ b, [57=0

L) 9lds LF o4 4rdm CEnriT) = hEaT - 4



4.2. HW 2 CHAPTER 4. HWS

?. QI/L‘/-.% @Ln-IT =xIn7
Xl:/’j: (‘/3)”(/[:/,]

/46 Stz/)g éc,_ﬂ/.f\s o /ﬂa/—;}w/@- _,/ [/ng*mé’aﬁ ;Dbﬁl_—
507!;5./7@ ‘
Ynlrd- AYnl~-lJ=0

Q) vy H 9,77 A (%)
A4~ KAy = ALY - 2% A4 =O

_}37 [oASf'é"f' @/o):ﬁj SE€
Gp07 - % 4 pDo-l] A LLAT
Mokme  Gplal hes o BEY | AR
nyo
. ol -3s ol g7
BGY - 7 B4 = 0y
B-78=
R
B~-2
() 9o o 9LoT = Xog iy
~xlo]=)
@lat= A5 4ac Ry -,
=743 s
e 32 frgd = %

-7

(L



4.2. HW 2 CHAPTER 4. HWS

F 12  X(€)z v, §)-VCE¢-Q ¥, L3
o) hee) = oot \.
G 0= keavhig) © [ XD )
:‘(,L:ao E/Cf—czt;wf)«ua‘#asffz? i
= (f(-fo.g o IE T

€05

Q\‘f) ;"X/Vl'?fta) ~ @'607
glol= [0 b2t 0
o5

= ea%c/ag 5 {'V T
Z/—

—_————

C&‘w

= 0.7

S
——

= 2 e ‘0‘“‘/:?_5"@'"’0 7 O

WU Q,é
= 2 galw))
i

Jy Bl % eal d2 Zpo
we N4z  Sale )20 € ho ot T O

$n b)) ? O who, by =TUn Jorog) |

1o e (S lapres Jor G

take Vo Jimit-
/ Hqu-lq /:, f(//@ ‘f_"

Tty T lSA i itk 195 i
i T o T ety g

U
UL-/"'C‘* ‘4 c,ut/ b cons® fete A =D,

’// {/{ ONnG~ OF /5 ﬂov‘m)q,e, Cl/ ZT—ﬂ i
nEXY - go}



4.3. HW 3 CHAPTER 4. HWS

4.3 HW 3

Local contents
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4.3.1 Problem 3 Chapter 3

For the continuous-time periodic signal x (t) = 2 + cos (%nt) +4sin (%nt) determine the funda-

mental frequency w, and the Fourier series coefficients g; such that x () = EZZ_OO ae/kwot

Solution

The 51gna1 Ccos (?n ) has period ZT—T = %ﬂ Hence T; = 3 and the signal sin (%nt) has period
T

2T or T, = 2. Therefore the LCM of 3,2 is
T, 5 5
3m—6n
5
m 2
n 5

Hence m = 2 and n = 5. Therefore T = 6. Therefore

27
a)o TO
3 27
6
_n
3
Hence
x(t) =) agelkoot 1)
k=—00
Where
1 T
o = f x (£) ekt )
To
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To find 4 for the given signal, instead of using the above integration formula, we could
write the signal x (f) in exponential form using Euler relation and just read the g; coefficients
directly from the result. The signal x (f) can be written as

.2nt _.27'(1L ‘5nt _‘5nt
3 +elT d3 —el3
4

x() =2+ + -
2 21
ej2a)0t + e—ijOt ej5w0t _ e—jSa)Ot
= 2 =+ + 4 s
2 2i
L oot o L iyt :_iBawot . —j5wot
:2+§ef“’0 +§e]“’O + 2ie/P¥0t — 2je™/2w0 (3)

Comparing (3) to (1) shows that the coefficients are

ag =2

1
=3

1
ap =7
as =2j
a_s=-2j

4.3.2 Problem 10 Chapter 3

Let x [n] be real and odd periodic signal with period N = 7 and Fourier coefficients a;. Given
that a5 = j, a1 = 2j, 417 = 3j, determine the values of ay,a_1,a_5,a_3.

Solution

For discrete signal

Where

Since the signal x [n] is real, then we know that a; = a*;. And since x [#] is odd then we know
that a; is purely imaginary and odd. The Fourier coefficients repeat every N samples which
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is 7. Hence a5 = a9 = a; and a4 = a9 = a, and a7 = a;9 = a3. And since a; is odd then

ag =0

a = —a_
ap = —a_»p
az = —d_3

But we know from above that a; = a;5 = j and a, = a5 = 2j and a3 = a;7 = 3j then the above
gives

a9 =0
a-1=-]
a_, =-2j
a_z=-3j

4.3.3 Problem 16 Chapter 3

For what values of £ is it guaranteed that a; = 0?

3.16. Determine the output of the filter shown in Figure P3.16 for the following periodic
puts:
@ xi[n] = (=D"
(b) x2[n] = 1 +sin(37n + %)

n—4k

(©) x3[n] = S5__(5)" "uln — 4k
H(e™)
|

—2n _5m _19x —m st x O & sr m 197 51 27 o
3 12 2 73 3 12 2 3
Figure P3.16
Figure 4.48: Problem description
Solution

The output of discrete LTI system when the input is x[n] = a,¢" is given by y[n] =
a,H (ej“)) @™ where H (ej“’) is given to us in the problem statement. Hence, to find y[n] we
need to express each input in its Fourier series representation in order to determine the a,,.
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4.3.3.1 Parta
Here x; [n] = (-1)" = (ef”)n = ¢, To find the periodN, let x; [n] = x; [n + N] or

gnm = pi(n+N)m

= fnmeINT
2n 2 _ . . )
Hence N = 2. Therefore w, = Wn = ?n =m and xq [n] = Zk\]:()l age* o = g + a,¢™. Comparing
this to ™ shows that
ag = 0
ap = 1

Now that we found the Fourier coefficients for x; [1] then the output is

yiln] = ’:2‘%1 a,H (jkawy) "o
= a;H 0)e® + aH (]n) e
But ay =1,4; =1 and the above becomes
yy [n] = H(]n) el
From the graph of H (jka)o) given, we see that at w = 7, H (]71) = 0. Therefore
yiln] =0
4332 Partb
Here x,[n] =1 + sin (%nn + z) The first step is to find the period N
X [n] = x3 [n + NI
1+sin(3—nn+z) =1+sin 3—n(n+N)+z)
8 4 8 4

=1+sin|—n+—N+—

8 8 4
3

=1 +sin([Zn+ 2 +3—RN
8 4 8

Hence %HN = 2mm or %’ = 13—6. Since these are relatively prime, then N = 16 is the fundamental
period. Therefore

N-1 ‘
Xy [n] = Y agelo”
k=0
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2n 2n b
where w, = N"T6- 3 The above becomes

15 x

2 [n] = Y, aes" (1)
k=0

But
ay ) e
1+sin|—n+— 1+
4 2]
=145 a—%_ ¢T5 T (2)
]

Comparing (1) and (2) shows that ag =1,a5 = —]674 a_s = ——e ]4 But a_3 =a_3,16 = 443 due

to periodicity (and since we want to keep the index from 0 to 15. Therefore

ag = 1
1 :m
_ _J1
as 2]
a —le_jg
13 2]

And all other 4; = 0. Now that we found the Fourier coefficient, then the response y, [1] is

found from

N-1
Y2 [n] = 2 anH (]ka)o) elkna
k=0
= ayH (0) + a3H(j3 )e’ 8"+ a3H (113 )413 !
B 1 .= 3T U 1 —] 13n B,
‘H(O)+(2je]4)H(] 8 )6]8 +( 2 4) ( )Cj
From the graph of H(jka)o) given, we see that at o =0,H(0) =0 and at w = %,H(j%n) =1

Bn ( l3n) =1. Hence the above becomes

and that at w = =, H|j
[n] = ( 14 )d?” (_le u)a%""
Y2 2 2
But ¢73 " = ¢35 " since period is N = 16. Therefore the above simplifies to
15\ i, (1 n
Yo [n] = (2—]674)61 g + (—2—]6’ ]4)€/

() A5
e 4 8 —e 4 8

2j
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4.3.4 Problem 20 Chapter 3

(c) Determine the output y(¢) if x(¢) = cos(¢).

3.20. Consider a causal LTI system implemented as the RLC circuit shown in Figure
P3.20. In this circuit, x(¢) is the input voltage. The voltage y(t) across the capac-
itor is considered the system output.

R=1Q L=1H
—WW—— T +

+
X(t) C) == yit)
- C=1F

—  Figure P3.20

- =

(a) Find the differential equation relating x(¢) and y(¢).

(b) Determine the frequency response of this system by considering the output of
the system to inputs of the form x(¢) = e/’

(c) Determine the output y(¢) if x(#) = sin(z).

Figure 4.49: Problem description

Solution

4341 Parta

Input voltage is x (t). Hence drop in voltage around circuit is

x(b) :Ri(t)+L% +y(t)

Now we need to relate the current i (f) to y (). Since current across the capacitor is given by
i(t)y=C Z—]: then replacing i (t) in the above by C d—f gives the diffeential equation
d%y

dy

LCy” (1) + RCy' (1) +y (t) = x (1
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But L =1,R =1,C =1 therefore
vy +y ) +y)=x()

4342 Partb

Let the input x (f) = ¢“!. Therefore y () = H () ¢! where H (w) is the frequency response
(Book writes this as H (ef“’) but H (w) is simpler notation).

Hence

¥ (t) = H(w) jwe®!

’” N2 t
Yy’ () = H(w) (jw) &
= —H (w) w?d®!
Substituting the above into the ODE gives
~H () w?e®* + H (w) jwe®! + H (w) &t = e/t
Dividing by ¢! # 0 results in
~H(w) w? + H(w)jw + H(w) =1

Solving for H (w) gives

H()(-0? +jw +1) =1 1)
1

H@) = —w? +jw +1

4.3.4.3 Partc
Since we now know H (w) then the output y (f) when the input is x (t) = sin (¢) is given by

yO = Y acH (kay) oo @)

k=—00

Where g, are the Fourier coefficients of sin (f) and wy is the fundamental frequency of x (f).
Since sin (f) = sin (Z%t) then 2?71 =1and T = 27. Hence wy = 1. And since sin (t) = 21] (eft -~ e‘jf)

then a; = zlj,u_l = —21],. Eq. (2) becomes
y(t) = a_1H (—wg) e 79 + a1 H (wy) /ot

1 .1 .
=-—H(-1)e/t + =H(1)e" (3)
2 2]

132



4.3. HW 3

CHAPTER 4. HWS

Now we need to find H(-1),H (1). From (1)

1
~ (1)’ - (1) +1
B 1
ETYEE]
1

j

H(-1)

And

H(+1) 1

—(+1)? —j(+1) +1
1
-1-7+1

Therefore (3) becomes

1. 1 .
= — (Ee]t — Ee_]t)

y(t) = —cos(t)

Hence
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4.3.5 Problem 28 Chapter 3

k=1

3.28. Determine the Fourier series coefficients for each of the following discrete-time
periodic signals. Plot the magnitude and phase of each set of coefficients a.
(a) Each x[n] depicted in Figure P3.28(a)—(c)
(b) x[n] = sin(27n/3) cos(mn/2)
(¢) x[n] periodic with period 4 and

x[n] = l—sin? for0 =n=3
(d) x[n] periodic with period 12 and

x[n] =1 —sin% for0 = n <11

Figure P3.28

Figure 4.50: Problem description
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Solution

4351 Parta

First signal

The signal in P3.28(a) has period N = 7. Therefore x[n] = ij_ol 1, @"k@0) ' We need to deter-

. . 2n 2n -
mine a;. Since wy = ~ =7 then

1 N-1

E x[n] p—fkawon

ai =

We first notice that x[n] = 0 for n = 5,6 and x[n] = 1 otherwise. Hence the above sum

simplifies to

1 & 20
- jk=n
ay = ; 7;::06 7
. . M-1 M a= Lo .
Using the relation X}~ "a" = ¢ 1_,um to simplify the above where now M =5 gives
N - a#l
L 2m\
1- (e_]k7)
A = = —= k=0,1,---6
7 1-eT
. 107
11-¢77
=5 . 21
T1-e7
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This is plot of |a|

x[n_] :=DiscreteDelta[n] + DiscreteDelta[n - 1] + DiscreteDelta[n - 2] + DiscreteDelta[n - 3] + DiscreteDelta[n - 4];
ak[k_ ] :=1/7Sum[x[n] Exp[-I1k2Pi/7n], {n, @, 6}]

data = Table[ak[k], {k, @, 6}];

absAk = Abs [data] // N

(0.714286, 0.25742, 0.17814, 0.0635774, 0.0635774, 0.17814, 0.25742}
ListPlot[absAk, Mesh » All, Filling - Axis, Axes » {True, False},
Ticks -» {Range[©, 6], None}, DataRange - {©, 6},

AxesLabel -» {"k", None}, PlotLabel - "|a[k]|",
BaseStyle » 12, PlotStyle » {Thick, Red}]

[alK]l

Figure 4.51: Plot of |a]|

This is plot of the phase of a;

arg = Arg[akData] // N

{@., -1.7952, -0.448799, 0.897598, -0.897598, 0.448799, 1.7952}

ListPlot[ 180 / Pi arg, Ticks » {Range [0, 6], None},
LabelingFunction » (Callout[Round[Last[#1], ©.1], Automatic] &),
Axes » {Automatic, None}, AxesLabel » {"k", None},

PlotLabel -» "Phase in degrees", PlotRange - All, DataRange -» {0, 6},
Mesh » All, Filling - Axis]

Phase in degrees

102.9

51.4

oe
N

_25.7 3 4 5 6

-51.4

-102.9

Figure 4.52: Plot of phase of a;
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second signal

The signal in P3.28(b) has period N = 6. Therefore x[n] = EkN_Ol k@) We need to deter-

. 2n 2n
mine a;, where wg = ~ =5 Hence
1 N=1 _
ay = N x [n] e Tkwon
n=0
1 5 2n
_ jk—n
=z E x[n]e’ 6
n=0

We first notice that x[n] = 0 for n = 4,5 and x[n] = 1 otherwise, Hence the above sum
simplifies to

1Sy _p2n
ak:—Ze] 6"

6 n=0
. : M-1 M a= o .
Using the relation Y, " 'a" ={ 1_m to simplify the above, where now M = 4 gives
- a#1
L omy4
1 1 - (3_]k 6 )
= ez~ k=0,1,---5
1-¢7"%
. 87
11-¢7%
=7 o 27
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This is plot of |a|

ak[k ] :=1/6 (1-Exp[-I1k8Pi/6])/ (1-Exp[-Ik2Pi/6])
akData = Table[Limit[ak[n], n - k], {k, ©, 5}];
absAk = Abs[akData] // N

{0.666667, 0.288675, 0.166667, 0., 0.166667, 0.288675}
ListPlot[absAk, Mesh -» All, Filling -» Axis, Axes - {True, False}, Ticks -» {Range[©, 5], None},

DataRange -» {0, 5}, AxesLabel -» {"k", None}, PlotLabel » "|a[k] |", BaseStyle » 12,
PlotStyle » {Thick, Red}, PlotRange - All]

|a[k]|

Figure 4.53: Plot of |ay]

This is plot of the phase of a;

ak[k_]1:=1/6 (1-Exp[-Ik8Pi/6])/ (1-Exp[-Ik2Pi/6])
akData = Table [Limit [ak[n], n- k], {k, ©, 5}];
arg = Arg[akData] // N

{0., -1.5708, 0., 0., 0., 1.5708}

ListPlot[ 180/ Pi arg, Ticks -» {Range[@, 5], None},
LabelingFunction » (Callout[Round[Last[#1], ©.1], Automatic] &),
Axes - {Automatic, None}, AxesLabel -» {"k", None}, PlotLabel -» "Phase in degrees",
PlotRange -» All, DataRange -» {0, 5}, Mesh » All, Filling - Axis]

Phase in degrees
90.

Figure 4.54: Plot of phase of a;
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Third signal

The signal in P3.28(c) also has period N = 6. Therefore x[n] = )

. . 2
determine a;. Given that wy = ﬁn then
ay = 1 2 x [n] e7Tkwon
N

n=
5 . 271
E x[n]le?*e"

sz_Ol ael"k@0)  'We need to

Where x[0] = 1,x[1] = 2,x[2] = -1,x[3] = 0,x[4] = -1,x[5] = 2. Hence the above sum

becomes
1 I _ik2Ty _ik2"
uk:8(1+261k6—e]6 +0-¢7"%6 +2e]65)
1 I S SR
:8(1+Ze]k6—e]k6 — e *F 4 0e7%
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This is plot of |a|

ak[k ]:=1/6 (1+2Exp[-I1k2Pi/6] -Exp[-I1k4Pi/6] -Exp[-I1k8Pi/6] +2Exp[-Ik10Pi/6])
akData = Table[Limit[ak[n], n-> k], {k, @, 5}];
absAk = Abs [akData] // N

{@.5, 0.666667, 7.40149 x 107, ©.833333, 7.40149 x 10 '/, 0.666667 |

ListPlot[absAk, Mesh » All, Filling - Axis, Axes » {True, False}, Ticks » {Range[©, 5], None},
DataRange » {0, 5}, AxesLabel » {"k", None}, PlotLabel - "|a[k] |", BaseStyle - 12,
PlotStyle » {Thick, Red}, PlotRange -» All]

|a[k]|

Figure 4.55: Plot of |a]

This is plot of the phase of a;

Phase in degrees
180.

Figure 4.56: Plot of phase of g
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4352 Partb

x[n] = sin (an) cos (ng)

The first step is to find N, the fundamental period. Since sin (A) cos (B) = % (sin (A + B) + sin (A - B))
then

n n n n
x[n] = in (2n— + n—) + sin (2n— - n—))
3 2 3

(S' 2
o Zo 1)

To find the period of sin (gnn) = sin (gn(n +N)) or sin(gnn) = sin(gnn + ZRN). Hence

1
2
1
2

7 . . m 7 _
c7N = 2mum which gives & = —. Hence N = 12.

The period of sin ( nn) = sin (%n (n+ N)) or sin (%nn) = sin (%

1 1
T + gnN). Hence gnN =27mm

or ﬁ = - Hence common period is N = 12. Now that we know N then
1 N-1 _
ay = — x [n] e Tkwon
b=y 0

Where w, = i—z The above becomes
1 11 _oom
a4 =15 Zlosin (an) oS (ng)e U
1244 = 0+ sin |27~ e % 4 sin(2n2 2e1?272+ 2mo 3 ik
=0+ sin (2= ] cos sin cos sin cos|m=
r n3 s n3 s 3 s
+'24 4:]k12+ 2 ]12+ 26 6
sin (2702 | cos 7 e sin n sin nz |cos(ns)e
+ sin 2nZ cos n7 57 + sin 271 ek 128 + sin 2n9 cos ng e_jk%9
3 2 3 2
10 10 _iZm
+ sin (271?) cos( 5 )e k3710 + sin (271—) cos( ) iz 11
Which simplifies to (many terms go to zero)

12a; = —\/_e i 4 L \/—e 5 \/5 K8 %\/ge_jk%m

. 21
—]kﬁ6

COS
COS

Hence
3 g _ylém o, 20m
gk:£( ]k12 +e e _ ok —e]klz)
24

Evaluating these for k =0--- N -1 gives
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k ﬂk
0 0
—j
Ly
2 0
3 0
4 0
]
5 13
6 0
-]
7 13
8 0
9 0
101 0
]
11 1

Hence the |a;| and phase are

k a; |a] phase (degree)
0 0 0 O

1 7 ;-9
2 0 0

3 0 0

4 0 0

5 L 2 90
6 0 0 O

7 1 1 -9
8 0 0

9 0 0

10 0 0

n L2 9

4.3.6 Problem 47 Chapter 3

Consider the signal x (t) = cos (2nt) since x () is periodic with a fundamental period of 1, it
is also periodic with a period of N, where N is any positive integer. What are the Fourier
series coeflicients of x(t) if we regard it as a periodic signal with period 3?

Solution

The Fourier series coefficients for cos (27t) are found from Euler relation. Since wy = 27
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rad/sec, then
1. 1 .
cos (wnt) = —e@ot 4 —pjwot
(wot) 5 >
Comparing the above to

x(t) = E agelkeot

k=—o0

Show that a; = % and a_; = % and all other g, = 0.

Similarly, if the period happened to be 3, then wy = %ﬂ and now x(f) can be written as
cos (27tt) = cos (Bwyt). Therefore doing the same as above gives

1. 1 .

Comparing the above to x(t) = E;Zo:—oo a* @t shows that a; = % and a_3 = % and all other
ay = 0.
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4.3.7 key solution

Homework 3 solutions

3. The given signal is
S() = 34 JOUM 4 3mSR IO 4 gjm I

- %‘;m.m« 3 % ~ 22 [O) _ I U /N 4 gje-IS(AR/6)E

Pnnthh,wewwndud-thu!hﬁfundmdqumqots(l)h?sl&:t!& The
non-zero Fourier series coeficients of z(t) are:

as =2, a,-a.ga-%. as=aly= -2

3 10. Since the Fourier series coeffiecients repeat every N, we bave
a; = a5, az = a6 vand oy =ayr

Furthermore, since tbe signal is real and odd, the Fourier series coeficients a, will be purely
imaginary and odd. Therefore, ag = 0 and

@) = —a_-y, az = —a_z a3 = —8.3
Finally,
6.1 ==j, aG-3=-=2j, a.g=-3
. e ——

3.16. (a) The given signal z[n] is

M.mmmmwd&dnhlhlhmpostslSAm
=1 ay= -3/ gy = (5/2)e 0
Using, the results derived in Section 3.8, the output vz2[n] is given by

win] = i auH (F2k/16) k(2 /16)
k=0

= 0= (j/2)/0SNONNn  (419)6=10/4) (2= 16) (130
= lill(%n + ;)
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3.20. (a) Current through the capacitor = C95%.
Voltage across resistor = RC 8
Voltage across inductor = Lc—ﬁ'l
Input voltage = Voltage across resistor + Voltage across inductor + Voltage across
capacitor. |
Therefore,
z(t) = wf‘—ﬁﬂ
Substituting for R, L and C, we have
dy(t) | dy(t)
dt dt
(b) We will now use an approach similar to the one used in part (b) of the previous problem.
If we assume that the input is of the form ¢, then the output will be of the form
H(jw)e™*. Substituting in the above differential equation and simplifying, we obtain
.. : I
—w? 4 Jw+ 1

+ RCJ-%'-’- +y(t)

+ y(t) = =(¢)

H{jw)
() The signal z(t) is periodic with period 27. Since z(t) can be expressed in the form

1 taepreye _ 1 p-s@epanye
z(t) = zJ,e’ 2jc 4
the non-zero Fourier series coefficients of z(t) are

. 1
a) =¢_1 = ?j-

Using the results derived in Section 3.8 (see ©q.(3.124)), we have
w(t) o H(j)e" — a_yH(=j)e™"
1 1
d _cyt - ——a—it
(1/23)(5e" - —e)

(=1/2)(&" + &77)
- cos(t)

]

nn

3.28. (a) N=1,
ie"’"‘” sin(57k/7)
T sin(xk/T)

(b) N = 6, a; over one period (0 < k < 5) may be specified as: ao = 4/6,

(¢) N=6.
6t = 1 +4cos(xk/3) — 2cos(2xk/3).

(d) N = 12, ox over one period (0 < k < 11) may be specified as: &1 = § = af),
a;=—%=n§.ag=ﬂolherw'ne.
(e) N =4 g
1
on=14+2-1(1 - 7-;)«:-{'?1.

(f) N =12,
- 1 - -L '_k - l !.k.
ar = 1+(1 ﬁ]mm{ 3 )+2(1 75}0@[ 3 )

+ 2014 %)m{s%k)+2(—sl)* + zem(z—’;f).
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3.47. Considering z(t) to be periodic with period 1, the nonzero FS cocficients of z(t) are a; =
a_y = 1/2. If we now consider z(¢) to be periodic with period 3, then the the nonzero FS
coefficients of z(t) are &y = b_3 = 1/2.
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44 HW 4

Local contents

4.4.1 Problem 4.1(a), Chapter 4| . . ... ... ... ... .. ... ... .....

4.4.2 Problem 4.3, Chapter 4

4.4.3  Problem 4.5, Chapter 4
444 Problem 411, Chapter 4]. . . ... ..........................

445 Problem 4.19, (fEaEter A e e e
4.4.6 Problem 4.23, Chapter 4]. . . . .. ... ... ... .. ...

4.47 Problem 4.26, Chapter 4. . . . . . ... ... ... .. ... ... ... ...

4.4.8 key solution| . . . . .

441 Problem 4.1(a), Chapter 4

Find Fourier transform of (a) e2¢=Vy (t 1)

Solution

Assuming Im (w) < 2 then

X@pj‘nm%w
_ f " 2t it gy
1
_ f " 2t 2 it gy
1
2 f “ o H2+iw) gy
1

&2

" T2+iw)

[e—t(2+i(u) ]""
1

X — 62 0 -2 ,—iw
@ = g 07 ™]
__ ¢ -2 -iw
T2+ i) [ ]

e—la)

T2+ i)

4.4.2 Problem 4.3, Chapter 4

Determine the Fourier transform of each of the following periodic signals (a) sin (2nt + g)

(b) 1+ cos (6nt + g)

Solution
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4421 Parta

Since this is periodic signal, then we can not use X (w) = f_ " x (t) e7**dt which is for aperiodic
signal. Instead we need to use 4.22 in the textbook which is

X(w) = i 21,6 (w — kawg)

k:—OO

From sin (2nt + g) we see that wy = 27, hence

X(w) = i 21tad (w — 2km)
k=—c0

el . my _ 1 '(a)0t+z)_l —j(w0t+z) _(1 iZ jawot _ 1 —jE —jawot _1 iZ

Writing sin (a)ot;l- 4) = 2]_37 t-ge 1) = 2],674 e 7€ %)e shows that a; = 2]_374
1 ¢ Y

and a_; = 5 ’% and a; = 0 for all other k. Hence above simplifies to

X(w)=2n (lﬁ) 6 (w —2m) + 21 (—le‘f%) & (w + 27)
2j 2j

= ?e’gé (w —2m) - ?e_jgé(a) + 27)

4422 Partb

Since this is periodic signal, then its Fourier transform is

X(w) = i 2746 (w — kawg)

k=—0c0

From 1 + cos (6nt + g) we see that wy = 67, hence

X(w) = i 21t (w — 6kT)

k=—00
Writing 1 + cos (6nt + g) =1+ (%ei(woﬂg) + %e_j(ong)) =1+ (%eigejwot + %e_jge‘f“’ot) shows that
a; = %e’g and a_; = %e_jg and ay = 1. Therefore the above becomes
X (w) =2ma_16 (w + 6m) + 21ay0 (w) + 21a16 (w — 6m)
1 _z 1z
= 27‘((56 ]8)6(0) +6n)+2n5(a))+2n(§e’8)6(w - 6m)

= ne_jgé(a) + 671) + 270 (W) + nejgé(w —6m)

148



4.4. HW 4 CHAPTER 4. HWS

4.4.3 Problem 4.5, Chapter 4

Use the Fourier transform synthesis equation (4.8) to determine the inverse Fourier transform
of X(]a)) = |X (ja))|ej“X(jw) where |X (]a))| =2(u(w +3)—u(w-3)),4X (]a)) = —ga) +7
Solution
4.8 is

x(t) = % f ZX(a)) I (4.8)

Hence

x(f) = % f_ N | (jo)| X (@) gieot g,

= % foo 2(u(w +3)—u(w - 3)) ej(—%w+n)e],wtdw

But u (w +3) —u(w — 3) is one over w = -3 --- 3 and zero otherwise. The above simplifies to

1 j(—§w+n) ;
x(H)=— | 2\ 2 ed¥dw
27 3

1 3 .3
= —f e 2%t d
TJ_3

€jn '(—§+t)a)
= FANCANAY %

T J3

St ef"(—iﬂ)w

But ¢™ = -1 and fej(

= N(Tlﬂ)z (sin (3 (—g + t)))
bl

4.44 Problem 4.11, Chapter 4

Given the relationships y (t) = x (t)®h () and g (t) = x (3t)®h (3t) and given that x (t) has Fourier
transform X (]a)) and h (t) has Fourier transform H (ja)), use Fourier transform properties to
show that g(f) has the form g (t) = Ay (Bt). Determine the values of A and B
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Solution

The main relation to use is that if y (f) & Y (v) then y (at) = %Y(%) Therefore x (3t) &
%X(%) and 1 (3t) = %H(%) Hence since g (t) = x(3t) ® h (3t) then

ow=1x(2) ()

-3 (3 (©)(3)

But X(%) H(—) = Y(%) Therefore the above becomes

3
RERIINE)

Inverse Fourier transform gives

1
t) = -y (3t
g =3y@3h
Where in the above, we used %Y(%) < y(3t). Hence A = %,B =3

4.4.5 Problem 4.19, Chapter 4

1
jw+3'
x(t) this system is observed to produce the output y (t) = e7>'u (t) — e~#u (). Determine x (t).

Consider a causal LTI system with frequency response H (]a)) = For a particular input

Solution
y) =xt)@h(t)

Taking Fourier transform gives
Y(w) = X(w) H(w)

Hence
_ Y(w)

X(w) = H@)

1 1 (4+]'w)—(3+ja)) _ 1

But y (t) = e 3u (t)—e~*u (t), therefore, from table Y (w) =

o A+ (3+jw)(d+w) | (3+o)(++a)

and the above becomes .

(3+ja)) (4+ja))

X(w) = H@)
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But we are given that H(]a)) = ]w%B The above simplifies to

1
(3+jcu) (4+j(u)
—a
jw+3

1
Cd+jw

X(w) =

From tables
x () = e *u (b

4.4.6 Problem 4.23, Chapter 4

4.23. Consider the signal

=1 0=1=1
0 0, elsewhere

Determine the Fourier transform of each of the signals shown in Figure P4.23. You
should be able to do this by explicitly evaluating only the transform of xy(f) and
then using properties of the Fourier transform.

X4(t) Xo(t)
Xo(—t) Xo(t) Xo(t)

LN
-1 0 1 t |\ 1 t
et

(@) (b)

Xolt +1) Xolt) 0 txq(t)
7
— 0 1 t 0 1 t
(© (@ Figure P4.23
Figure 4.57: Problem description
Solution
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4461 Parta

First we find the Fourier transform of x (). Since this is a periodic, then x; () < Xj (w) and

X (@) = f xo (1) et dt

1

= f eteTiotdr
0
1 .

— f e—t(1+]&))dt
0

-1 [e—t(1+jw) ]1

:1+ja) 0

-1 (e_(ij) _ 1)

1+ jw
1— o (14iw)

1+ jw

From table 4.1, property 4.3.5, Fourier transform of x (-t) = X (-w). Hence x (-t) & X (~w).

Therefore, using the above result and taking its complex conjugate gives

o3

Xo (~w) = 1 —ja)
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Therefore the Fourier transform of xq (t) + xo (-t) &= X; (w) = Xy (w) + Xy (-w) This is by
linearity property. Hence
Xq (w) = X (w) + Xp (-w)
1-— e—(l+]'a}) 1-— e—(l—ja})
Ttjo  1-jo
(1-jw) (1 - e‘(“f“)) +(1+jw) (1 - e_(l_j“’))
(1+jw)(1-jo)
1 - ¢ (14%) - jw (1 - e_(1+j“’)) + (1 - e_(l_j“’)) + jw (1 - e_(l_j“)))

1+ w?
1— ¢ (14@) - jw +ja)e_(1+j“)) + (1 - e_(l_jw)) +jw —ja)e_(l_jw)
- 1+ w?
1— ¢ (1+j@) +ja)e_(1+j‘”) +1-¢(17%) —ja)e_(l_j‘”)
1+ w?
-l +jwe eV +1 - e — jwe el
1+ w?
1-e¢! (ej‘" + e‘j“’) — jwe™! (ej‘" - e‘f“’)
1+ w?
N
:1+a)2_1+a)2(ejw+€]w)+1+a)2 j
1 2 2w _
= e(1+a)2) cos w + msma)

The following is a plot of the above

2e'Cos[w] 2ewSin[w]
mySol = - + .
14+ w? 14+ w? 14+ w?

Plot [mySol, {w, -Pi, Pi}, Ticks -» {Range[-Pi, Pi, Pi/ 2], Automatic},
AxesLabel -» {"w", "X(w)"}, BaseStyle - 12,
GridLines » {Range[-Pi, Pi, Pi/ 2], Automatic}, GridLinesStyle - LightGray,
PlotStyle » Red]

X(w)

1.2

Figure 4.58: Plot of X(w)
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We see that X; (w) is even and real. This agrees with table 4.1, property 4.3.3 which says
that for real x () which is even, then its Fourier transform is real and even.

4462 Partb

1- —(1+ja)) 1- —(1—jw) 1- —(l—ja))
° above. Hence —x; (-t) = -X, (~w) = - el_],w = ]E,w_l . There-

We found X, (w) =

fore

1+jw

X5 (w) = Xp (w) = Xp (—w)
1o 40) g (15e)
1T+jo Jjo-1
(jo -1) (1 - e‘(“f“’)) +(1+]w) (1 - e_(l_j“’))
(1 +jo) (jo -1)
=)o )

jo -1-w?-jw
o —ja)e_(Hj“’) 1 g () £ q o (10) + jw —jwe_(l_jw)
- (1 + wz)
_ 2]0) _]-we—(1+]'a)) + e—(1+ja)) _ e—(l—ja}) _]-a)e—(l—]'a))
- (l + a)z)

2jw — jwe le TV + e leTI — el — jwelel

jo —w? -2
2w — jwe™! (ef‘“ + e‘f‘”) —e! (ef“’ -~ e‘fw)
- (1 + a)z)

v + E_ja)) 1 v _ pmjw

3 2jw
s (1 + wz)

I ) R vy
3 2jw 4o COSw L sin (w)
T i) 2 Thred) e

Hence

X (@) = | 24 %@, sn@)
PN e e?) el 0?)
= m (—2ew + 2w cos w + 2 sin (w))

We see that X, (w) is pure imaginary. This agrees with table 4.1, property 4.3.3 which says
that for real x (f) which is odd, then its Fourier transform is pure imaginary and odd.

The following is a plot of the above which shows that the imaginary part of X, (w) is odd
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Clear["Global +"];

mySol = I/ (EXp[1] (1+W"2)) % (-2EXp[1] w+ 2w Cos[w] +2#Sin[w]);

Plot [Im[mySol], {w, -Pi, Pi}, Ticks » {Range[-Pi, Pi, Pi/ 2], Automatic},
AxesLabel -» {"w", "Im(X(w))"}, BaseStyle- 12,
GridLines » {Range[-Pi, Pi, Pi/ 2], Automatic}, GridLinesStyle - LightGray,
PlotStyle - Red]

Im(X(w))

Figure 4.59: Plot of imaginary part of X(w)

4.4.7 Problem 4.26, Chapter 4

4.26. (a) Compute the convolution of each of the following pairs of signals x(#) and A(?)
by calculating X(jw) and H(jw), using the convolution property, and inverse
transforming.

@) x(®) = te Zu@), h(t) = e ¥u(®)
(i) x(t) = te”2u(t), h(r) = te"¥u(r)
(iii) x() = e 'u(@), h(®) = e'u(—1)

(b) Suppose that x(¢) = e~ u(t—2) and h(¢) is as depicted in Figure P4.26. Ver-
ify the convolution property for this pair of signals by showing that the Fourier
transform of y(¢) = x(f) * h(¢) equals H(jw)X(jw).

-1 3 t  Figure P4.26

Figure 4.60: Problem description

Solution
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4471 Parta

44711 Parti
y(t) =x(H)@h(t)

Taking Fourier transform the above, convolution becomes multiplication
Y (w) = X(w)H (w)

Given that x () = te 2y (t), then from tables X (w) = — > and given that & (t) = e*u (t) then

(2+ja))

from table 4.2 H (w) = ﬁ. Hence the above becomes

Y(w) = )
(2 + jw) (4 + ja))
Doing partial fractions. Let s = jw then
1 A B C

Q+5P(+s) @+sp 2+s d+s
A +8)+B(2+5)(d+s)+C2+s)
- Q+5)°(@d+5)

Expanding numerator

1=4A + 8B +4C + Bs% + Cs? + As + 6Bs + 4Cs
1=4A+8B+4C)+5s(A+6B+4C)+s*>(B+C)

Comparing coefficients

1=4A+8B+4C
0=A+6B+4C
0=B+C

o~

8 4
6 4
11

0O w9 >

1
=10
0

Gaussian elimination. Multiplying second row by 4 and subtracting result from first row
gives

4 8 4)(A 1

0 16 12||B|=|-1

0 1 1){C 0
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Multiplying third row by 16 and subtracting result from second row gives

4 8 4)\(A 1
0 16 12||B|=|-1
0 0 4)\C 1

Backsubstitution. Last row gives C = }L. Second row gives 16B +12C = -1 or 16B = -1-12 i),

hence 168 = -4, Hence B = —. First row gives 4A+8B +4C =1 or 4A +8 (—i) +4 (i) —1or

4A-2+1=1. Hence A= % Therefore partial fractions gives

@) 6

Q+s)2@A+s) (2+s5)?% 2+s 4+s

Replacing s back with jw

1 1 1 1 1

Y () = o
(2+]-w)2 42+jw  44+jw

N =

Applying inverse Fourier transform, using table gives

1 1
—e 2ty () + e Hu(t)

1
_ LDt _
y() = 2te u(t) 1 1

4471.2 Partii
yt)=x@t)®h(t)

Taking Fourier transform the above, convolution becomes multiplication

Y (w) = X(w)H (w)

Given that x(f) = te-?u (#), then from tables X (w) = — )2 and given that h(t) = te~4u (t)
2+jw
then from table 4.2 H (w) = ( L )2. Hence the above becomes
4+jw
1
Y(w) = 2 2
(2+ jw)” (4 + jo)

Doing partial fractions. Let s = jo then

1 A B C D
Q+sl@rs) @+sP 2+5 @+rsp  @+9)
A +sY+B(Q+5)4+5)°)+C@Q+s+D(Q+5)* @ +5))
- 2 +5)2 (4 +5)
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Expanding numerator

1=16A +32B +4C + 16D + 20sD + As® + 10Bs? + Bs® + Cs? + 852D + s°D + 8As + 32Bs + 4Cs
1=(16A+32B +4C +16D) + 5 (20D + 8A + 32B + 4C) + s (A +10B + C + 8D) + s> (B + D)

Comparing coefficients

1=16A+32B+4C +16D
0=8A+32B+4C +20D
0=A+10B+C+8D

0=B+D
Or

16 32 4 16\(A) (1

8 32 4 20(|B| |0

1 101 8l|lc| |o

o 1 0 1)\p) (o

Gaussian elimination. replacing row 2 by result of subtracting 1/2 times row 1 from row 2

16 32
0 16
1 10
0 1

Replacing row 3 by result of subtracting

16 32
0 16
0 8
0 1

Replacing row 3 by result of subtracting

16 32
0 16
0 O
0 1

Replacing row 4 by result of subtracting !

16 32
0 16
0 O
0 O

4 16)(A) (1
2 12{|B| |-
1 8flc| |o
o 1)\p) (o

1 .
1_6 times row 1 from row 3

4 16\(A 1
2 12||B| | -2
3 =

1 7€ |
o 1]\D 0

times row 2 from row 3

4 16)(4) (1
2 12||B —%
-1 =

7 M| |
o 1)\p) o

I times row 2 from row 4

4 16\(A) (1
2 12|[B| |3
-1 =1 3
7 ¢ | %
A 1l | E
8 4 32
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Replacing row 4 by result of subtracting % times row 3 from row 4

16 32 4 16|(A 1
0 16 2 12|[B| |3
-1 =
0 0 + ! C i
o 0 0 )b =
Backsubstitution phase:
—1D_—1
471
1
D=-
4

Third row gives %C +D = % or _IlC + i = % - C= 31. Second row gives 168 +2C +12D =
~ or 16B + 2(}1) + 12(}1) = -2 — B = —,. First row gives 16A + 32B + 4C + 16D = 1 or

1 1 1 1
16A+32(_Z)+4(Z)+16(Z) =1,- A= e

Therefore partial fractions gives

1 __A B __C D
Q+5)°@+s)° (+s)? 2+s (4+s)? (4+5)
1 1 11 1 1 1 1
=- - - + - + -
42 +5)? 42+s 4(4+s?® 4@+9)

Replace s back with jw
11 11 +1 1 +1 1
Ya+jo) A2HI0 A(aije) A(4+w)

Applying inverse Fourier transform, using table gives

Y(w) =

1 1 1 1
y(f) = Zte_Ztu (t) - L—Le‘Ztu (t)+ Zte“”u t) + Ze“”u (t)

44713 Part iii
y(t)=x()@h(t)

Taking Fourier transform the above, convolution becomes multiplication
Y (w) = X(w) H(w)

Given that x (t) = e”'u (t), then from tables X (w) = and given that h (t) = ¢'u (-t) then

L
(1+jw)
H(w) = L Hence the above becomes
1-jw
1 1

(1+jo) (1 -jw)

Y (w) =
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Doing partial fractions. Let s = jo then

1 1 A B
Q+51-s) (+s) 1-3

1
(1+s)

HenceA:(l) =1andB:(
s=-1

1
= -. Hence
(1-s) 2 )s:1 2

1 1 +1 1
2(]+]'a)) 21—ja)

Y(w) =

Therefore

y(t) = %e‘fu () + %etu (—t)

The above means for t <0,y () = %et and for t > 0,y (f) = %e‘t.

4472 Partb
x(®) =e Dyt -2), h(t) = u(t+1) —u(t - 3). Let us first find X (w) and H (w)

X@ = [ etDu@-2)ed

—00

:f e_(t_z)e_j(‘)tdt

2

= f e~te2e i0t it
2

— 32 fOO e—t(1+ja))dt
2
B 62 [e—t(1+jw) ]00

1+jw >
? (0 _ e—2(l+jw))

626—2(1+ja))

e
1+ jw

1+ jw
o222

1+jw
e~2jw

T 1+jw
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And
H(w) = foo u(t+1)—u(t-3)e’®dt

= f eTTwtdt
1

1_ NG
= ]; (g_]“’t)_l
1

— ]Z (e—3jw _ eja)t)

— jla)e—jw (e—]'ZaJ _ eijt)

— _]‘la)e—jw (ejZa}t _ e—j2a))

1 i eijt _ e—ij
= ——¢ E—
w J

Hence

Y (w) = H(w) X (w)

—2jw 2
¢ (——e‘]‘” sin (2a)))
w

T 1+ jw
) o
= —— 29T sin Qw)
w (1 + ]a))
) ,
= —— ¢ 3% sin Qw) (1)
w (1 + ]a))
Now,
y(#) =x®)@h(t)

- foo X () (¢ - 1) dr

Folding K (t). For t <1, then y(t) =0. For2 <1+t <6orl<t<5

1+t
() = f2 x (1) dt

1+t
— f —(T—Z)dT
2

. —(r- 2))1+t

=
(e (1+t-2) _ p—(2- 2))
(e (-1+1) _ )
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For6<1l+tort>5

f+1
y () = ft_3 x (1) dt

t+1
= f e (2
-3
__ (e—(T_Z))1+t
t-3

= _ (e—(1+t—2) _ e—(t—3—2))

- _ (e—(—1+t) _ e—(t—S))

- _ (el—t _ eS—t)
— 5t _ pl-t
Hence
0 t<1
y(t)=4q 1-et 1<t<5
et — el t>5

The above can be written as y (f)

(1-e™) @t -1)-u(t-5)+ (" —e ) u(t-5)
=u(t-1)-u(t-5 - ut-1)—u(t-5)+ (& - u(t-5)
=u(t-1)-ut-5-e"ut-1)+etu(t -5 +etu(t-5)-etu(t-5)
=u(t-1)-u(-5-etut-1)+etu(t->5)

y(t)

Taking the Fourier transform of the above from tables
1
u(t-1) = —e’ + 1o (w)
jw
1 .
u(t->5 = —e I+ 16 (w)
jw

_]'a)

etu(t-1) =

1+ jw
—5jw

> (t-5
e u( )(:)1+ja)

(2)
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Hence Y (w) is

e e o

1 . 1 .

Y (w) = —e 7 + 16 (w) — (,—6‘5]“’ + 1o (w)) -+ ,

Jw Jw 1+jo 1+jw
—jw -5jw
= .le‘f“’ - ,le‘5fw S
jw jw 1+jo 1+jw

-3jw —j -5j
_ el 162jw_1e_2jw ~ e v . e v
w \j j 1+jw 1+jw
e 3w e 3w
2(sin2w) — ——
1+jw
—3jw -3jw

2 (sin2w) — 2-
w jtw

— (eZ]'w _ e—ij)

sin 2w

‘ 1 1
= 2¢73% gin 2w (— - —)
0 jtw

= 2¢73% gin 2w ]-i-w——a)
@ (a) +])
j
w (a) + ])

= —2¢73% gin 2w

= 2¢7%1% sin 2w

Comparing the above to (1) shows they are the same.

Hence this shows that Fourier transform of x (t) ® ki () gives same answer as H () X (w)
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455 ProEIem 5.19, Ezﬁaﬁter E ................................ 180
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4.577 keysolution] . . . . ... ... 185

4.5.1 Problem 5.3, Chapter 5

Determine the Fourier transform for - < @ < 7 in the case of each of the following periodic
signals (a) sin (gn + %) (b) 2 + cos (%n + %)

solution

4511 Parta

Since the signal is periodic, then the Fourier transform is given by

X(Q) = 2r i 06 (Q - kQp) 1)

k:—OO

Where g are the Fourier series coefficients of x [n]. To determine a; we can expression x [n]

using Euler relation. To find the period, gN = m2mn. Hence % = %. Hence
N=6
Therefore Q) = % = g Now, using Euler relation
oy B )
sin (—n + —) = .
3 4 2j
1 :m .7l 1 LT .7l
_ i (ga) _ 1.7 ( —15") 9
2] 2¢ " \° @

Comparing (2) to Fourier series expansion of periodic signal given by
N-1
x[n] = E a,e/Fon
k=0
5 .
= :E:gkdeO”
k=0

3 .
= }E gkdkﬂwi
k=-2
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Since Qg = g then the above becomes

3 oy
x[n] = E ake’kgn
k=—2

Comparing the above with (2) shows that a; = Zl]e’ 7 and a_; = —zlje_j 7 and all other a4, =0
for k =-2,0,2,3. Hence (1) becomes
X(Q) =27 (El_lé (Q + Qo) + ﬂlé (Q - Qo))
1 1z
e ——,e‘f4<s(Q+ E) n —,445(0— E)
2j 3] 7 2

3
3 [ioforg)-dsfo-)

4512 Partb

Since the signal 2 + cos (gn + g) is periodic, then the Fourier transform is given by

X(Q) =21 ), @b (Q-kQp) 1)
k=—00
Where g are the Fourier series coefficients of x [n]. To determine a; we can expression x [n]
using Euler relation. To find the period, EN = m2n. Hence 1% = % Hence
N =12
Therefore Q, = % = %- Now, using Euler relation
T 71 e(6n+s)j+e (5m+5)
2+cos(—n+—) =2+
6 8 2
=2+ 1e’g (e’g”) + le_jg (e_jg”) (2)
2 2

Comparing (2) to Fourier series expansion of periodic signal given by
N-1
x[n] = )] ayelon
k=0
11
= E gkeijO”
k=0

6 .
= 2 gkg]kQO”
k=-5

Since Qg = % then the above becomes

6 oy
x[n] = E ake’kgn
k=-5
175
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Comparing the above with (2) shows that ay = 2,a; = %ef 8 and a_ = %e_j § and all other
ar = 0. Hence (1) becomes

X(Q) =2n (ﬂo(s (Q) + El_l(s (Q + Qo) + a16 (Q - Qo))

6 6
-z T i T
:4n6(Q)+ne]86(Q+g)+n6786(9—g)

= 2n (2(5 Q) + %e_jgé (Q ¥ E) ¥ %ej%é (Q - E))

4.5.2 Problem 5.5, Chapter 5

Use the Fourier transform synthesis equation (5.8)

x[n] = N X (Q) ddQ) (5.8)
277 27
X(Q) =), x[n]ed (5.9)

To determine the inverse Fourier transform of X(Q) = |X(Q)|¢2eH Q) where |X(Q)| =
1 0<1Q <= -30 .

7 4 and arg H(Q) = —. Use your answer to determine the values of n for

0 1 < |Q| <T 2

which x[n] = 0.
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solution

T
-1 X (Q)] ¢ 2 HDei M4 ()
27 27
= i fz ol arg H(Q) 0jOn 10y
27 0
1 1 -3Q
= — ¢ g0
2nJ_m
_ 1 fz ejQ(—+n) i
2nJ_=
4
11 ejo(-;m)r
277]'(_?3 + n) L -7
1ot 1) e—f%(%n)]
277]'(_73 + n) L
1 1 ej%(%-m) —j%(%3+n)
T n -3 2j
(7 +n)
BEEWHER)
=— sinf—|—+n
i (—_3 +n) 4\ 2
2
. e 3
1 S1n (Z (1’1 - 5))
= 3
i _2
=3

. . [m 3 T 3 .

Now the above is zero when sin (Z (n - E)) =0or 7 (n— E) = mmn for integer m. Hence
3 3 Qs .. . .

n—>=4m. Orn=4m+ 5. Since m is integer, and since n must be an integer as well, then

Tt

" (n - é)) = 0. The other option is to look at denominator of

there is no finite n where sin( >

. (m 3
sm| —|(n—5
M and ask where is that co. This happens when n — +co and only then x[n] = 0.

n-3

4.5.3 Problem 5.9, Chapter 5

The following four facts are given about a real signal x [n] with Fourier transform X (Q)
1. x[n]=0forn>0
2. x[0] >0

177



4.5. HW 5 CHAPTER 4. HWS

3. Im (X (Q)) = sin Q - sin (2QY)
1 (n 2 i~
4 o [ IX(QrdQ=3
Determine x [#n]
solution

From tables we know that the odd part of x[n] has Fourier transform which is jIm (X (€)).

Hence using (3) above, this means that odd part of x [#] has Fourier transform of j (sin Q — sin (2Q2))

iQ_—iQ 2Q_ —-2Q . . . .
or '(6] 2; - 2; ] ) or % (efQ — e 20 4 e‘JZQ). From tables, we know find the inverse
Fourier transform of this. Hence odd part of x [] is % On+1]-06[n-1]1-6[n+2]+6[n-2)).
So now we know what the odd part of x[n] is.

But since x [n] = 0 for n > 0 then the odd part of x[n] reduces to % On+1]-06[n+2)).

But we also know that any function can be expressed as the sum of its odd part and its even

part. But since x[n] = 0 for n > 0 then this means x[n] =2 (% Omn+1]-06[n+ 2])) for n < 0.

Hence
x[n]=06[n+1]-06[n+2] n<0

Finally, using (4) above,

L ["x@Pda=3= ¥ kiit= Y kinlf
2nJ_,

n=-—00 n=-—00

Hence

3 = 5 [<1]2 + 16 [<2]P + |x [0]

:1+1+x[n]2
x[n]2:3—2
=1

Therefore x[n] =1 or x[n] = 1. But from (2) x[0] > 0. Hence x[0]. Therefore

x[n]=0[n+1]-0[n+2]+ 06[n] n<0

4.5.4 Problem 5.13, Chapter 5

1 n

An LTT system with impulse response h; [n] = (5) u[n] is connected in parallel with another

causal LTT system with impulse response 5, [n]. The resulting parallel
interconnection has the frequency response

—12 + 5712

HQ) = 5750 70

Determine h, [n].
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solution

Since the connection is parallel, then i [n] = hy [n]+h; [n]. Or H(Q) = H; () + H, (Q). Hence

H, () = H(Q) - H; (Q)

But

o

Hy(Q) = ), hy[n]e

n=-00

S (L) e
-5

Therefore from (1) _
~12 + 5¢77¢ 3

H2 () = 12-7e7Q 420 370

Let 79 = x to simplify notation. The above becomes

12 + 5x 3

H,(Q) = -

2(Q) 12-7x+x2 3-x
~12 + 5x 3

T -3 (x-4)  (x-3)
_ 12+5x+3(x—4)
T (x=3)(x-4)
12 +5x +3x -12
(x=3)(x—4)
8x —24
(x=3)(x—-4)
~ 8(x-3)
T (x=3)(x—4)

Hence

(1)
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from tables, a"u[n] = ﬁ for |a| <1. Comparing this to the above gives
1 n
hy [n] = —2(1) u[n]

4.5.5 Problem 5.19, Chapter 5

Consider a causal and stable LTT system S whose input x[n] and output y[n] are related
through the second-order difference equation

1 1
yln]=zyln =11 - zyln-2] = x[n]

(a) Determine the frequency response H (Q) for the system S. (b) Determine the impulse
response h[n] for the system S.

solution

4551 parta

Taking DFT of the difference equation gives

Y (Q) - %e‘fQY(Q) - %e‘fZQY(Q) =X(Q)

Y (Q) (1 - %e‘]@ - %e‘fm) =X(Q)

Y(Q) 1
X(Q) B 1- %e_jQ — ée_fZQ

Let 79 = x to simplify the notation, then

Y@ 1 6 -6 6
XQ 1-L_ 12 6-x-22
6" 6

" X2ix-6 (x=2)(x+3)

Hence
_Y(Q)
H(Q) = X Q
3 -6
(e‘jQ - 2) (e‘fQ + 3)
4552 partb

Applying partial fractions

-6 A B

MO = o ) (e 73) -2 &+D)
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Hence A = —g,B = g. Therefore

6 1 6 1

HO) = 5 5a 13
31 2 1
:_gl —-jQ _1 +51 -1 41
28 38
3 1 2 1

51_ 110 514 100
1-2e7 1+ 3e7
[aking the inverse DFT using tables gives

3(1)" 2( 1\
hin] = E(E) u[n]+—(——) uln]
(3 (1\" 2 1}"
- ((3) (5] )
4.5.6 Problem 5.30, Chapter 5

In Chapter 4, we indicated that the continuous-time LTT system with impulse response

h(t) = %Vsinc(m) _ sin(Wh)

T Ttk

plays a very important role in LTT system analysis. The same is true of the discrete time
LTT system with impulse response

2%
h(n) = — sinc

Tt

Wn)  sin(Wn)
)"

(a) Determine and sketch the frequency response for the system with impulse response /1 [n].
(b) Consider the signal x[n] = sin (%) —2cos (%) Suppose that this signal is the input to
LTT systems with the following impulse responses. Determine the output in each case (i)
h [n] _ Sln’r((n?). (ii) h [n] _ Sln’]En?) " Slnr(ln?)

solution
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4561 Parta

Given h(n) = V;vsinc(%) = W We will show that H(Q) is the rectangle function by
1 Q| <2W

reverse. Assuming that H(Q) = 2 _ therefore
0  otherwise

1 W ‘
x[n] = — f X (Q)edw
27 W

1 W
= — f Mdw
27 W

1 Wn — e jWn

T 2n n

1
= — sin (Wn)
n

Which is the i [n] given. Therefore, the above shows that Sinzvn) has DFT of H(Q) as the
rectangle function. Here is sketch

H(Q)

0.8

06

0.4}

0.2

Figure 4.61: Plot of H(Q)

4.5.6.2 Partb

x [n] = sin (%n) —ZCOS(%H)

(i) I [n] = Smif). Hence y[n] = x[n] ® h[n]. Or Y(Q) = X(Q)H (Q), and then we find y [n]
by taking the inverse discrete Fourier transform. Here is the result and the code used. The

result is

y[n] =sin (%)
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ClearAll[h, x, n];

wTn TN
x[n 1] :=Sin[— —2Cos[— H
8 4
L gin[ 201,
hin_ ] := n—nSln[ o ],

X = FourierSequenceTransform[x[n], n, w, FourierParameters -» {1, 1}];
H = FourierSequenceTransform[h[n], n, w, FourierParameters -» {1, 1}];
y = InverseFourierSequenceTransform[X =« H, w, n]

Sin{n?ﬂ]

Figure 4.62: Code used to generate y[n]

Here is plot of y[n] forn =-8---8

yln]

1.0 °

051

. -1.0F

Figure 4.63: Plot of above y[n]

n(2)

m mn

. Here is the result and the code used. The result is

y[n] = 2sin(n§) —2cos (%—C)
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ClearAll[h, x, n, w];

T hn T hn
x[n_] :=Sin[— -2Cos[— 5
8 4

1 mtn
hi[n ] :=—Sin[—

tn 6

1 tn
h2[n ] := —Sin[— H

mtn 2

X = FourierSequenceTransform[x[n], n, w, FourierParameters -» {1, 1}];
H1 = FourierSequenceTransform[hl1[n], n, w, FourierParameters -» {1, 1}];
H2 = FourierSequenceTransform[h2[n], n, w, FourierParameters -» {1, 1}];
yl = InverseFourierSequenceTransform[X * H1, w, n];

y2 = InverseFourierSequenceTransform[X « H2, w, n];

y=yl+y2

-2@5[%] +2$in[n?ﬂ]

Figure 4.64: Code used to generate y[n]

Here is plot of y[n] forn=-8---8

Figure 4.65: Plot of above y[n]
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4.5.7 key solution

Homework 5 Solutions
5.3, We note from Section 5.2 that a periodic signal z[n] with Fourier series representation
z[n] = z age?t@3/N)n
k=<N>
has a Fourier transform

X(&¥) = f: 2naxd (u— %) 2

k=—co

(a) Consicer the signal zy[n] = sin(§n + §). We note that the fundamental period of the
signal z){n] is N = 6. The signal may be written as

ol = (1/2§)9F D = (1/2))e- D = (1/2)e3 ¥ ¥0 - (1/2j)e i FR,

From this, we obtain the non-zero Fourier serics coefficients ax of z;[n] in the range
—2<k<3as ‘
o= (/29 e =-(1/2j)e7%.

Therefore, in the range -7 Sw < 7w, we obtain
X(e?Y) = 2me\dlw~ 2%) +2ma_10(w + -ZGI)
(7)) {4 8(w — 2m(6) = I /46 (w + 27/6)}

(b) Consider the signal £a[n] = 2 + cos(§n + §). We note that the fundamental period of
the signal z,{n] is N = 12. The signal may be written as

) =2+ (1/2)0G D 4 (1/2)e ) =24 (1200 RS + (1/2)e 75 eI,

From this, we obtain the non-zero Fourier series coefficients ax of z2[n in the range

~-5<k<6as > )
co=2 a1=(1/2F, a_=(1/2)e7%.

Therefore, in the range ~7 < w < 7, we obtain

Vi

E]

= 4mb(w) + n{e" 88w — 7/6) + e 7" /24(w + 7/6)}

X(Y) = 2raoé(w)+2ﬂa16(u—%)+2ra_;6(w+

5.5. From the given information,

z[n)

(1/2m) . X(e¥)e " dw

Il

.
(1/27!)/ |X ()| X&) giong,,
-

(1/2m) [ '//‘ e Hueong,

-x/4
sin(§(n - 3/2))
w(n—23/2)

The signal z[n] is zero when §(n — 3/2) is a nonzero integer multiple of m or when
{n| = co. The value of (n —3/2) can never be such that it is a nonzero integer multiple
of 7. Therefore, z[n] = 0 only for n = xo00.
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5.9. From Property 5.3.4 in Table 5.1, we know that for a real signal z[n],
0d{z(n]} &5 jIm{X (™)}
From the given information,

FIm{X ()} jsinw — jsin2w

(1/2)(E — e — Y 4]

I

I

Therefcre,
od(s{al) = ZFTGIX @) = (1/2)0ln+ 1) = &n =1} = Sin+ 2+ il =2

We also know that
z{n) — z(-n]

Qd{z|n]} = 3

ard that z[n) = 0 for n > 0. Therefore,
z[n) = 20d{z(n]} = é(n + 1) -dn+2, forn< 0.
Now we only have to find 2[0]). Using Parseval’s relation, we have
= _:IX(e’”)l’dw = 3 L
n=-o0
From the given information, we can write

-1
3= P+ ¥, il = (0)® +2

n=-o

This gives 2{0] = +1. But since we are given that z[0] > 0, we conclude that z[0] = L.

Therefore,
zin} = oln] + 8fn +1] = dn+ 2]

5.13. When two LTI systems are connected in parallel, the impulse response of the overall system
is the sum of the impulse responses of the individual systems. Therefore,
hfn] = hy[n] + hz{n].
Using the linearity property (Table 5.1, Property 5.3.2),
H(e™) = Hi(e™) + Ho(™”)

Given that h[n] = (1/2)"ufn], we obtain
Hiev) = -————l
' Lojeem %e"‘-"

Therefore,
: -12 +5"% ] -2
WY = L -
Ha(e”) 12— Tei* +e-B@ 1 -ge W 1- Temiw’

Taking the inverse Fourier transform,

hgn] = —2 (%)" ufn).
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5.19. (a) Taking the Fourier transform of both sides of the difference equation, we have
Y(e) [1 = %c-j“' = %c"zj“’] = X(&).

Therefore,

Y(e¥) _ 1 1
X(@7)  1-Lesv—fetw (1 - geiw)(1+3e7)

Hejw) =

(b) Using Partial fraction expansion,

3/5 2/5
Tle 1+ ke

H(ejw) = T

Using Tazble 5.2, and taking the inverse Fourier trasform, we obtain

hin] = % (-;-)nu[n] +§ (—%)nu[n].

(a) The frequency response of the system is as shown in Figure $5.30.
(b) The Fourier transform X (¢7) of z[n] is as shown in Figure $5.30.
(i) The frequency response H (¢%) is as shown in Figure 55.30. Thereforc, y[n) =
sin(7n/8).
{ii) The frequency response H (¢7*) is as shown in Figure S5.30. Therefore, yln] =
2sin{xn/8) — 2cos(rn/4).

" L "(‘i‘) .n'c" X
. —l l— ™ o
Y + Sp 1_ -% I T >
- -Hoe W T -;’1 J A& 1{ [ w
() -y it
4 HEW) T e
b-1) ! Q—h‘) l[ J__l l
_—;ﬁ -%’c % maw ~ /s -f o ‘ﬂl‘ . “"w
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4.6 HW®G6

Local contents

4.6,1 Problem 6.20 . . . . . ... e 188
4.0,2  Problem 6.5 . . . . . .. 188
4.6.3  Problem 6.7] . . . . . . ... e e e 190
4,64  Problem 6.17 . . . . . . . . e e 192
4 Problem 6.221 . . . . . .. e 197
[4.6.6  Problem 6.27 (a,b,c,d)| . . . . . .. ... 201
4.6.7 keysolution| . . . . ... ... L 204

4.6.1 Problem 6.2

Consider a discrete-time LTT system with frequency response H(Q) = |H (Q)| ¢/2H(®) and real
impulse response & [n]. Suppose that we apply the input x [n] = sin (Qon + qbo) to this system.
The resulting output can be shown to be of the form y[n] = |H (Q0)| x [n —ny] provided that
arg H (Q)g) and Q are related in a particular way. Determine this relationship.

solution
From standard LTT theory, the output is given by
y [n] = [H (Qo)|sin (Qon + ¢ + arg (H (Q))) 1)
Comparing the above to
|H (Qo)|x [1n = 1] = |[H (Qp)| sin (Qg (1 = 1) + ¢by) (2)
Shows that
sin (Qo (n = 1) + ¢bg) = sin (Qon + ¢ + arg (H (Q)))
sin (Qon — Qong + o) = sin (Qon + o + arg (H (Qp)))

Hence we need
—Qong = arg (H (Qy))

Since the input is periodic of period 27tk for k integer, then the above can also be written as
-Qqng + 2k = arg (H (€y))

This is the relation needed.

4.6.2 Problem 6.5

Consider a continuous-time ideal bandpass filter whose frequency response is

H (@) 1 w.<|wl £ 3w,
W) =
0 elsewhere
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(a) If h(t) is the impulse response of this filter, determine a function g(f) such that ki (f) =

sin w,t
it

) g (). (b) As w, is increased, does the impulse response of the filter get more concen-

trated or less concentrated about the origin?

solution

4621 Parta

Let f(t) = %ﬁtdct which is a sinc function. The following is a sketch of H (w) and of the CTFT
of f(t), i.e. F(w) which we know will be rectangle since Fourier transform of rectangle is
sinc.

H(w) F(w)
1
1
- J » W
—3w, —we 0 we 3w, —w. 0w,
Fourier Transform of Fourier Transform of
the given filter h(t) f(t) = & sin(wet)

Figure 4.66: Sketch of CTFT of filter and sinc function

The relation between Sir;(;)ct and its CTFT is given in this sketch
f(@) F(w)
1 1
T T

0 . ~ % —o. 0 o, TV¢

Fourier Transform of

f(t) = % sin(wet) f(t) =

= = sin(wct)
Figure 4.67: Sketch of sinc function and its CTFT

Now, we know that, since & (t) = f (t) g (t), then by modulation theory, this results in 2nH (w) =
F(w) ® G (w). In this, we are given H (w) and F (w) but we do not know G (w). But looking at
H(w) and F (w), we see that if G (w) happened to be two Dirac impulses, one at —2w, and
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one at +2w,, then convolving F (w) with it, will give 2nH (w). So we need G (w) to be the
following
G(w) =21 (0 (w +2w,) + 0 (w —2w,))

And now F (w) ®G (w) will result in H (w). The factor 2t was added to cancel the 27t from the
definition of modulation theory. But cos (2w.t) has the CTFT of 7 (0 (w +2w,) + 6 (v — 2w,)).
This shows that G (w) is the Fourier transform of 2 cos (2w,t). Therefore

g (t) =2cos Quw,.t)

4622 Partb

. sin w,t . . .
Since f () = mc then we see as w, increases, the sinc function becomes more concentrated

at origin, since the first loop cut off is given by g So this gets closer to origin. And since
h(t) = f(t) (2 cos Rw.t)) then h(t) becomes more concentrated around the origin as well.

4.6.3 Problem 6.7

A continuous-time lowpass filter has been designed with a passband frequency of 1000 Hz,
a stopband frequency of 1200 Hz, passband ripple of 0.1, and stopband ripple of 0.05. Let
the impulse response of this lowpass filter be denoted by h(t). We wish to convert the filter
into a bandpass filter with impulse response

g (t) = 2h (t) cos (40007tt)

Assuming that |H (w)| is negligible for for |w| > 40007, answer the following questions. (a) If
the passband ripple for the bandpass filter is constrained to be 0.1, what are

the two passband frequencies associated with the bandpass filter? (b) If the stopband ripple
for the bandpass filter is constrained to be 0.05, what are the two stopband frequencies
associated with the bandpass filter?

solution

4.6.3.1 Parta

Let f (t) = 2 cos (40007tt). By modulation theory multiplication in time becomes convolution
in frequency (with 27 factor)

=) £ > - H@w) OF @) )

Where H (w) is the CTFT of h(t) and F (w) is the CTFT of 2 cos (40007t) which is given by
(since it is periodic)

F(w)=2 i 21,6 (w — nawg)

n=-—0o
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Where a; are the Fourier series coefficients of cos (40007t). In the above wy = 40007t. But we
know that a_; = % and a; = % from Euler relation. Hence the above becomes
1 1
F(w)=2 27'(56 (w +40007) + 2715(5 (w - 4000n))
=27 (0 (w +40007) + 6 (w —40007))

Now that we know F (w) we go back to (1) and find the CTFT of g(t) which is

G(w) = iH(a}) ® (27 (0 (w + 400071) + O (w — 400071)))

= H(w) ® ((6 (w +40007) + 6 (w — 40007)))

The above shows that bandpass filter is the lowpass filter spectrum but shifted to the right
and to the left by 40007. This is because convolution with impulse causes shifting. The
following diagram shows the result

H(w) (low pass filter)

8(w 4 40007) 6(w — 4000)
/0' w — 40007 0 40007 T w
Wpass = 1000hz wstop = 1200hz
= 20007 = 24007

G(w) (bandpass filter)

\/
Y

—40007 0 / 40007

wo = 40007 — 20007 = 20007 w1 = 40007 4 20007 = 60007

Figure 4.68: Sketch of bandpass filter

Therefore the two bandpass stop frequencies are

w1y = 60007t = 3000 hz
wy = 20007t = 1000 hz

The same on the negative side.

4.6.3.2 Partb

Per instructor, we do not need to account for ripple effect in this problem. Therefore this is
the same as part (a).
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4.6.4 Problem 6.17

For each of the following second-order difference equations for causal and stable LTT system:s,
determine whether or not the step response of the system is oscillatory: (a) y [n] +y[n —1] +

wln=21=x[n] (b) y[nl-y[n-1]+1y[n-2]=x[n]

solution
4641 Parta
Taking the DFT of the difference equation y[n] + y[n—1] + iy[n - 2] = x[n] gives
) 1 ..
Y (Q) + 7Y (Q) + Ze‘ZJQY(Q) = X(Q)

A step response means that the input is a step function. Hence x[n] = u[n]. Therefore
X(Q) = Zj;_oox[n] e /N — 2"0 e i —

The above becomes

n=0 - 1—e_jQ '
Y(Q)[1+e72+ 16_2]O I :
4 1—e72
1 1

Y(Q) = .
@ 1-e79 4 g0 4 2720

Let 79 = x for now to make it easier to factor the RHS. The above becomes

1 1
1_xl+x+ix2
1 4

T l—x4+4x+ 22
4

T A-x)(x+2)

Y (Q) =

Using partial fractions on the RHS gives

4 A B C

(1 - %) (x + 2)? _1—x+x+2+(x+2)2
CAE+2°+Br+2)(1-x)+C1-x)
- (1-x) (x +2)2

Hence
4=Ax+2*+B(x+2)(1-x)+C(1-%)
:A(x2+4+4x)+B(x—x2+2—2x)+C—Cx
= Ax%2 + 4A + 4xA - Bx — Bx2 + 2B+ C - Cx
=(4A+2B+C)+x(4A-B-C)+x*(A-B)
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Comparing coefficients gives

4A+2B+C =4
4A-B-C=0
A-B=0
. . _ 44,4
Solving gives A = 3B =35,C= 3. Hence
4
YQ=—"""—
(1-x)(x+2)
A B C

+ +
I-x x+2  (x+2)?

4 1 4 1 4 1
91-x 9x+2 3(x+2)>

But x = ¢7?. The above becomes

vy 41 4 1
( )_61—e—fﬂ+§2+e-f9+

4 1 4 1 4 1

T91-0 9 1 o) 3 1 0\
2(1509) 21+ L))
4 1 4 1 4 1

= - - + — + —
91-¢72 1814 1,0 3 \2
¢ 1+ 3¢ 4(1+ %e‘JQ)

41 4 1 11
T 91-¢72 187,10 3 \2
¢ 1+5¢7 (1+§e-10)

and (n+1)a"u[n] & !

From tables, using au[n] < Applying these to the

1-ae /@ (1—ae‘f9)2 )
above gives
y(n) = gu [n] - E%u [n] + % (n+1) (—%) u[n]
= (g—% +%(n+1)(—%) )u[n]
= (%+%(n+1)(—%) )u[n]

Q=

(1 +(n+1) (—%) )u[n]

The following is a plot of y[n]
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y[n 1:=1/3 @1+ (n+1)*%(-1/2)"n)
DiscretePlot[y[n], {n, @, 13}, PlotRange » All, AxesLabel -» {"n", "y[n]"}]

y[n]
0.7

v
0.6
0.5
0.4
0.3 ?

0.2

0.1
2 4 6 8 10 12

Figure 4.69: Plot of reponse y[n] to step input

The above shows the response is oscillatory.

4.6.4.2 Partb

This is similar to part (a) except for sign difference. Taking the DFT of the difference
equation y [n] —y[n-1] + iy [n—2] = x[n] gives

Y (Q) - e 7Y (Q) + }Ie-ZJ‘QY(Q) =X (Q)

A step response means that the input is a step function. Hence x[n] = u[n]. Therefore

X(Q) =% x[n]ed =3 e/ = 1_:_jQ. The above becomes
. 1 .. 1
_ ,Q —,2iQ) —
Y (Q) (1 e+ 46 ) .0
1 1

Y(Q) =

1-e721_ ¢ 4 }le‘zfg

Let ¢/ = x for now to make it easier to factor the RHS. The above becomes
1 1
1-X1 x4 222
4
1 4

T 1-x4—4drx+ 22
4

T 10 @-27

Y(Q) =
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Using partial fractions on the RHS gives

4 A B C

A-0@-20 1-x x-2 z-27
_A@-2°+B(x-2)1-x)+C1-x)
- (1-x) (x - 2)?

Hence
4=Ax-2"+Bx-2)1-x)+C(-%)
:A(x2+4—4x)+B(x—x2—2+2x)+C—Cx
= Ax? +4A - 4xA +3Bx - Bx2 - 2B+ C - Cx
=(4A-2B+C)+x(-4A+3B-C)+x*(A-B)

Comparing coefficients gives

4A-2B+C =4
-4A+3B-C=0
A-B=0

Solving gives A =4,B =4,C = —4. Hence

4
YQ)=—"—"7"=
1-x)(x-2)
A B C
= + +
I-x x-2 (x-27
1 1 1
=4 +4 -

But x = ¢7. The above becomes

Y@ =4 a4 1
IR S ) (e—jQ _ 2)2
_a iy ! 4 !
- -iQ N\ 2
1= (1 - 1e—19) (—2 (1 - le—JQ))
Syt 1
T e 1o \2
tme? 1-ged 4(1—1e-10)
1 1 1
=4 -
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1

From tables, using au[n] < —.
(1—116_]9)

and (n+1)a"u[n] &

Applying these to the

1-ge/Q

above gives
1 1 1\"
y (n) = 4u[n] —2§u [n] - 3 n+1) (5) un]
= (4—1—%(n+1)(%) )u[n]

:(3—%(n+1)(%) )u[n]

The following is a plot of y[n]

y[n1:=((3-1/3n+1)*(1/2)"n)
DiscretePlot[y[n], {n, @, 40}, PlotRange - All, AxesLabel -» {"n", "y[n]"}]

y[n]
3.0 R R R R R R

2.5

2.0

n
10 20 30 40

Figure 4.70: Plot of reponse y[n] to step input

The above shows the response is not oscillatory. The reason is that sign difference in y [ - 1]

term in the difference equation. y [n] -y [n-1] + iy [n-2] = x[n].
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4.6.5 Problem 6.22

R M Figure P6.21
6.22. Shown in Figure P6.22(a) is the frequency response H(jw) of a continuous-time

filter referred to as a lowpass differentiator. For each of the input signals x(¢) below,
determine the filtered output signal y(z).

(@) x(t) = cos(Qmt + 6)
(b) x(t) = cos(4mt + 0)

(¢) x()is a half-wave rectified sine wave of period, as sketched in Figure P6.22(b).
. I
(1) = sin2mt, m=1=(m+5)

0, (m+ %) = t = mfor any integer m

H (jw)| +H (jw)

(NIE]

-3

-37 éw o)

(b) Figure P6.22

£ 72 Shoawn in Fionre PA 22 ic |H( i) for a lownace filter Natermine and ckatch the

Figure 4.71: Problem description
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solution

4651 Parta

The relation between the input and output is given by

z(t) = cos(2nt + @) y(t) = |H(27)| cos(2nt + ¢ + ar}g(H(Qw))

e f[@u)

Figure 4.72: Output of LTT when input is sinuosidal

Since |H (w)| = %w then |[H (27n)| = 2 and from the phase diagram arg (H (2n)) = g Therefore

y(t) = |[H (2m)| cos 27t + 0 + arg (H ((2m))))

2 T
= —cos(Znt+ 0+ —)
3 2
But cos (x + %) = —sin (x), hence the above can be simplified to

2
y(t) = -3 sin 2nt + 6)

4652 Partb
Since |H (w)| = 0 for w = 4, then y(t) =0

4.6.5.3 Partc
X (0) =21 Y, axd (w - kay)
Looking at x (t) shows that its period is Ty = 1. Hence w = 27. The above becomes
X(w) =21 Y, @6 (w —k2nm)
k=—00

Hence
Y (w) = X (w) H (w)

But |[H (w)| = 0 outside |w| = 37. Then only k = 0,k = -1,k = +1 will go through the filter.
Hence

1
Y (w) = (2n ) @ (w - k2n))H(w)

k=-1
= (27 (ag0 (w) + a_10 (w + 27) + 410 (w — 27))) H (w) (1)
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To find ag,a_q,a;. From

1 .
A = — f x () eTkwot gt
Ty Jr,

1
= f x () e k2t gt
0

Looking at x (t) shows that its period is Ty = 1. Hence wy = 27. From above

aozj:x(t)dt

1

= fi sin (27tt) dt
0

B COS(27Tt)%
__[ 2m L

1
=5 (cosmt—=1)

1
T
And

1
a_lzf x (f) @2t dt

0

1

= f ? sin (27t) @27 dt
0

!
1
And
1 o
4y = f x () e 2t
0

1

= f ? sin (27t) e 2t
0

_J
1

Hence (1) becomes

Y (w) = (271 (16 (w) + 16 (w +2m) - 16 (w - 27’()))H(a))
iy 4 4

(2n (16 (w) + 15 (@ +27) - Ls (w - 2n))) |H (w)| e/ 28 H(@)
iy 4 4
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At w =0,Y (w) =0 since |H(w)| =0 at w = 0. And at w = 27,

Y (w) = (2n )) |H (277)| ¢/ 218 H2m)

5
e

= —j7—¢2
73

And at w = 27,

= jn%e_]g
1, .
= jm3 (+1)
3 1
= g7'(
Hence the spectrum of Y (w) is
1 1
3 3
I ® I |
—27 2T W

Figure 4.73: Y(w)

But the above is the Fourier transform of
1
y(t) = 3 cos (2mt)

Which is therefore the output of the filter.
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4.6.6 Problem 6.27 (a,b,c,d)

(c) Determine s(0) and s(), where s(7) is the step response of the filter.

6.27. The output y(z) of a causal LTI system is related to the input x(¢) by the differential
equation

dy(1) _
T +2y() = x(1).

(a) Determine the frequency response

_ Y(jo)
X(jw)

H(jw)

of the system, and sketch its Bode plot.
(b) Specify, as a function of frequency, the group delay associated with this system.
(¢) If x(r) = e 'u(t), determine Y(jw), the Fourier transform of the output.

Figure 4.74: Problem description

solution

4.6.6.1 Parta

y O +2y () =x()
Taking the Fourier transform gives

joY (@) +2Y (w) = X (w)

Y (@) (2 +j0) = X (@)
Hence
_ Y(w)
- X(w)

1
C 2+jw

H (w)

Using Matlab, the following is the Bode plot

clear all;

s =+tf('s");
sys = 1 / (2+s);
bode(sys) ;

grid
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Bode Diagram

0 I

Magnitude (dB)
R
o

Phase (deg)
A
(6

90 = . . P S ; ; I S S S | . , PR S ——
10t 10° 10? 102
Frequency (rad/s)
Figure 4.75: Bode plot
4.6.6.2 Partb

In class, it was mentioned that group delay is given by derivative of the Phase of the Fourier
transform. Since H (w) = L,, then
2+jw

arg (H (w)) = —arctan (%)

. d a . 1 . .
Hence, using the rule — arctan (ax) = —, then using a4 = - the derivative of the above
dx 1+a%x 2
becomes

d
g (H ) = -
[0
1+

2
4+ w2

—_
NI N =

2
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4.6.6.3 Partc
Since x (t) = efu (t) then now
Y (w) = X (w)H (w)

But

(o]

X(w) = x (t) eIt dt

eteTiotdr

o%go%

(o]

[ e—t(1+ja))

- (1 +ja)) .
1 ot(w) |

_ (1 +ja)) [ ] ]0
1

")

1

C1+jw

o

Assuming Re (w) > 1. Hence (1) becomes

von 1 1
(a))_(1+ja))(2+ja))

4664 Partd
To find y (f)

1 1 \__ A B
T+jw)\2+jw) 1+jo 2+ jw

Hence A = (ZL) =land B = (%)
+jw w=j +jw w=2j

= —1. Therefore

1 1
Cl+jo 2+jw

Y (w)

From tables

y(t) = (et —e2)u®

1)
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4.6.7 key solution
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47 HW 7

Local contents

4.7.1 _Problem 7.2 . . . . . .. e 210
4.7.2 _Problem 7.6l . . . . . ... 211
4.7.3 Problem 7.11| . . . . . . . .. e e 212
4.7.4 Problem 7.15 . . . . . . e 213
4.7.5 keysolution| . . . . .. ... 215

471 Problem 7.2

A continuous-time signal x(t) is obtained at the output of an ideal lowpass filter with cutoff
frequency w, = 10007 rad/sec. If impulse-train sampling is performed on x(t), which of the
following sampling periods would guarantee that x(f) can be recovered from its sampled
version using an appropriate lowpass filter? (a) T = 0.5x 107 sec. (b) T =2 x107° sec (c)
T =10"* sec

solution

Note: In all these problems, I will use Q for the digital frequency and w for the continuous
frequency.

We want the Nyquist frequency to be larger than twice w.. Hence Nyquist frequency should
be larger than 20007 rad/sec or larger than 1000 Hz.

1

S Sex10s = 2000

Translating the given periods to hertz using f = % relation, shows that (a) i

. 1 .1
Hz, (b) is 7103 = 500 Hz, (c) is o= 10000 Hz.

Therefore (a) and (c) would guarantee that x(f) can be recovered.
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4.7.2 Problem 7.6

filter that gives x(¢) as its output when y(t) is the input.

7.6. In the system shown in Figure P7.6, two functions of time, x;(#) and x;(¢), are mul-
tiplied together, and the product w(f) is sampled by a periodic impulse train. x;(¢)
is band limited to w{, and x,(#) is band limited to w>; that is,

Xi(jw) = 0,|w| = wy,
Xz(jw) = 0, |(1)| = w»y.

Determine the maximum sampling interval T such that w(z) is recoverable
from w,(¢) through the use of an ideal lowpass filter.

-, ®w; 0 —wy Wy ® Figure P7.6

Figure 4.76: Problem description

solution

The multiplication of x; (t) Xx, (t) becomes convolution in frequency domain X; (ja))@Xz (ja)).
But we know when doing convolution the width of the result is the sum of each function
width. This means the frequency spectrum of w (t) will have width of w; + w,.

Now by Nyquist theory, we know that the sampling frequency should be at least twice the
largest frequency in the signal being sampled. This means
Wsampling > 2(0)1 + 0)2)

Since w; + w; is now the largest frequency present in w (t). But wggupling = Tz_n Hence the

sampling
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above becomes
21

>2 (a)l + 0)2)
Tsampling

1 wq +w
! 2

Tsampling T

Or
4

Tsampling < ———
sampling w1 + Wy
This means the maximum possible sampling period is

Tt

Tmax -

a)1+a)2

In seconds.

4.7.3 Problem 7.11

Let X.(t) be a continuous-time signal whose Fourier transform has the property that X, (w) =0
for |w| > 20007t. A discrete-time signal

xq [n] = x, (n (0.5 X 10‘3))

Is obtained. For each of the following constraints on the Fourier transform X, (QQ) of x;, [n]
determine the corresponding constraint on X, (w).

a X;(Q) is real

b The maximum value of X; (Q) over all Q is 1.
¢ X (@ =0for T<lQ<n

d X;(Q)=X;(Q-n)

solution

The main relation to translate between continuous time frequency w (radians per second)
and digital frequency Q (radians per sample) which is used in all of these parts is the
following

Q=wT

Where T is the sampling period (in seconds per sample). i.e. number of seconds to obtain
one sample.

47.31 Parta

Since X, (Q) is the same as X, (w) (except for scaling factor) which contains replicated copies
of X, (w) spaced at sampling frequencies intervals, then if X;(Q) is real, then this means
X, (w) must also be real, since X (Q) is just copies of X, (w).
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47.3.2 Partb

If maximum value of X; (Q) is A then maximum value of X, (w) is given by AT where T is
sampling period. Hence since A =1 in this problem, then the maximum value of X, (w) will
be 0.5 x107°.

4.7.3.3 Partc

X;(Q) = 0 for %ﬂ < |Q| < 7 is translated to X, (w) = 0 for %ﬂ < |wT| £ 7t since Q = wT.

Therefore

3n1<||<n
— — a) —
4 T~ - T

But T = 0.5x 1073, hence the above becomes
3n
T (2000) < |w| < 7€ (2000)
15007t < |w| £ 20007t

Hence X, (w) = 0 for 15007 < |w| < 20007t. Actually, since X, (w) = 0 for |w| > 20007t from the
problem statement, this can be simplified to

X (w)=0 |w| > 5007

4734 Partd

X;(Q) = X,;(Q - n) is translated to X, (w) = X, (a) - E) = ) = X, (w —20007)

T
X (“’ ~ 05x103
Therefore
X (w) = X, (w —20007)

4.7.4 Problem 7.15

Impulse-train sampling of x[n] is used to obtain

(o]

glnl= Y, x[n]d[n-kN]

k:—OO

If X(Q) =0 for 3771 < |Q| < 7, determine the largest value for the sampling interval N which
ensures that no aliasing takes place while sampling x[n].

solution

This is similar to problem 7.6 above, but using digital frequency. By Nyquist theory, the
sampling frequency must be larger than twice the largest frequency in the signal. We are

. 3n . 3n
given that - < |QQ] < . Hence the largest frequency is - Hence,

3n 6
Qsampling >2 (7) = ;7‘(
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Therefore
27 S 6
=Tt
N sampling 7

Where Nggpiing is the discrete sampling period, which is number of samples. Therefore from
above

1

>
N, sampling

N, sampling <

WIN NI W

But Nygpiing must be an integer (since it is number of samples, hence
Nsampling <2

Therefore the maximum is
N=2
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4.7.5 key solution

1.2 T T e ewsupic. 4
From the Nyquist theorem, we know . aeretore, X (jw) = 0 for jw| > 5000x.
: the sam

w, = 20007. In other pling fr 1
1% 10°%, Clearl words, the sampli B lrequency in this case

y, ouly (a) and (c) satisfy ,i;":o:“di“d%nahouw be at most P = ';:-;l(ub') at
. " ) =

Fon v

where (wWo/Z) < we ~ =i

7.6. Consider the signal w(t) = zy(t)zalt). The Fourier eransform W (jw) of w(t) 18 given oY
W) = =l XaGe) » Xalgell

Since Xy(w) = 0 for fw| 2 wi and Xa(jw) = 0 for | 2 w2, we may conclude that
W (jw) = 0 for W 2w + @ nsequently, the Nyquist rate for wit) is wy = 2wt ¥ wy)-
herefore, the 1 pl period which would still allow w(t) to be recovered is
T = 2a/(w,) = ®/(¥ + wr)

Therelore, thHe GIVEN vasciumany = -

11, We know from Section 7.4 that
-
Xe™) = & T Xelgl = 2eR)/T)
k=00

(a) Since Xg(e?) is just formed by shifting and summing replicas of X (jw), we may a3
that if Xg(e™) is real, then X (jw) must also be real.

(b) Xg(e™™) consists of replicas of X (jw) which are scaled by 1/T. Therefore, il Xal
has a maximum of 1, then X (jw) will have a maximum of T=05x10"%

() The region Ix/d € |w| € in the discrete-time domain corresponds to the re
3r/(4T) S | € #/T in the continuous-time domain. Therefore, if Xale?™) ="
Imfa<|wlsw, then X (jw) = 0 for 1500% < |w| € 2000x. But since we already
X(3w) = 0 for jw] = 2000x, we have X (jw) =0 for jw| 2 1500

I}lnth‘sme.tinuliadmﬂme‘, domain cor ds to 2000w in the
time frequency domai \bia condition transiates 10 X (jw) = (j(w~2000x))

time frequencies 1 and w are
. N

7.15, In this problem we are interested in the lowest rate which x{n] may be sampled without the
possibility of aliasing. We use the approach used in Example 74 to solve ths prohlr.m.r To
find the lowest rate at which z[n] may be sampled while avoiding the possibility of aliasing.

we must find an N such that
2x i (I
'ﬁ”(’f)”"—‘a‘

Therefore, N can at most be 2.

v taaal wilal i #n) satisfies the first two conditions. it does
1 wulal = 2gin(xn/2)/(xn) sAUSHES T0E T @ em Xale?) of this
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-
factor of 2. Therefore, in sms pavr——""
1o an ideal lowpass flter with cutoff frequency #/ and 3 PasSOAnG Kos =

- 19. The Fournes rransform of z|n) is given by

v (S

This is as shown in Figure 87.19

(a) When wi < 3x/5, the Fousier transform X, (e?) of the output of the zero-insertion

gystem is 35 ghown in Figure §7.19. The output W (e™) of the lowpass Bleer is as
shown in Figure 57.19. The Fourier transform of the output of tbe decimation system
Y (el) is an expanded ot stretched out version of wi(e™). This is as shown in Figure
§7.19.
Therefore,

(b) When w1 > 3x/5, the Fourier transiorm Xy(e™) of the output of the zero-msertion
gystem is as shown in Figure §7.19. The output W(e¥) of the lowpass filter is A%

ghown in Figure 57.19.

267

AL
TS

- Figure S7.19
3 s o

The Fourier tnnsf.o:m of the output of the decimation system Y (&) is an expE
or stretched out version of W (&), This is as shown in Figure §7.19. Therefore,

vin) = 'Saw.
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7.24. We may express a(t) as s(t) = §(t) — 1, where §(t) is as shown in Figure §7.24.
We may easily show that
-] o
Sy = Y RO, k2w,

k= ~o0

From this, we oblain

S(jw) = S(jw) - 2wé(w) = Y Ma{u - k2% /T) - 2wé(w).

k=-00

t S
} 5

@

A=Y

-r -4 06 & T

(4) ) 1 L:q»)
‘MT o e 28 ﬂ, w
Figure 57.24

Clearly, S(jw) consists of impulses spaced every 2x/T.
(a) If A = T/3, then

S(iw) = Z f—s—iiiﬂélw- k2x [T) — 2né(w).

k==00

Now, since w(t) = s(t)z(t),

W) = 2-'-' T L“"‘%'ff—alxu(u - k25/T)) - 20X (3).
k==o00

Therefore, W (jw) consists of replicas of X(jw) which are spaced 27 /T apart. [n order
to avoid aliasing, war should be less that #/T. Therefore, Tomar = w fwat.

(b) 1If A = T/3, then

a0 ]
Gy = 3 LB sy  kae/T) - 20b(0).
k= =00 k
We note that S(jw) =0 for k = 0,%2,%4,-+-. Thisis as sketched m Figure 87.24

Therefore, the replicas of X (jw) in W (jw) are now spaced 47 /T apart. In order lo
avoid aliasing, was should be less that 2z /T. Therefore, Tmaz = 2% /wp-
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Local contents

4.8.1 Problem 9.3/ . . . . . ... e 218
4.8.2 Problem 9.9 . . . . . .. e 219
4.8.3  Problem 9.15 . . . . . . . e 219
484 Problem 9.32] . . . . .. e 220
4 Problem 9.401 . . . . . . . e 222
4.8.6 keysolution| . . .. ... ... .. L L 225

481 Problem 9.3

Consider the signal x (t) = e™'u (t) + e P'u () and denote its Laplace transform by X (s) What
are the constraints placed on the

real and imaginary parts of f8 if the region of convergence of X (s) is Re(s) > -3 ?
solution
The Laplace transform is

X(s) = foo x () e~stdt

—00

= f (e‘5t + e‘ﬁt) e stdt
0

= f e testdr + f e Ptestdy
0 0

= foo e~ 15+ gt 4+ foo oH(B+) g
0 0

1 ~t(5+5) " 1 —t\pts *
e I |

[e‘t(5+5)]m = [e‘°°<5+5) —1]. For this term to converge we need

For the first term
0 —(s+5)

5+ Re(s) >0 or

—(s+5)

Re(s) > -5

For the second term, let f = a +ib and let s = 0 + jw, hence the second term becomes

1 [e_t(ﬁ+s) ]“’ _ 1 [e_t((u+ib>+(a+jw))]°°

B+s o P+s o

_ 1 [e—t(a+a+j(b+w)) ]00

p+s 0

_ o~ Ha+0) pjt(b+w) ]°°

B+s 0

— L e—m(a+a)e—j00(b+w) _ 1]
B+s
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The complex exponential terms always converges since its norm is bounded by 1. For the
real exponential term, we need a + ¢ > 0 or a + Re(s) > 0 or Re(s) > —a. Since we are told
that Re(s) > -3, then

a=3

Is the requirement on real part of . There is no restriction on the imaginary part of g.

482 Problem 9.9

Given that ey (t) = ﬁ for Re (s) > Re(-a), determine the inverse Laplace transform of

2(s+2)
X))z ——— R -3
®) = 27 12 e()>
solution
Writing X (s) as
2(s+2
X(S) = L
(s+4)(s+3)
A B
= +
(s+4) (s+3)
_ 2(s+2) _2(-4+2) _ 2(s+2) _2(=8+2) _ _
Hence A = o, = 4 and B = o, T e 2, therefore the above
becomes
4 2
X(s) =

(s+4) (s+3)

. 1. .
Using e™"u (t) & — gives the inverse Laplace transform as
s+a

x () = de~#u () — 273t (1)
= (46“” - Ze‘3t) u (t)

With Re(s) > -4 and also Re(s) > —3. Therefore the ROC for both is Re(s) > -3.

48.3 Problem 9.15

Consider the two right-sides signals x (f), y (t) related through the differential equations

dx(t)
dy(t)
7 =2x (t)

Determine Y (s), X (s) along with their ROC.

solution
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The Laplace transform of 6 (t) is 1. Taking the Laplace transform of both the ODE’s above,
and assuming zero initial conditions gives

sX(s)=-2Y(s) +1 (1)
SY (s) = 2X (s) (2)

Using the second equation in the first gives

sX(s) = —2(

_ —AX(s) +s
=—
s2X (s) = —4X(s) +s

(sz+4)X(s) =5

2X(s))+1
s

ARy
Using the above in (2) gives Y (s)
s
sY (S) = Zm
2
T

Considering X (s) to find its ROC, let us write it as

A B
X(s) = 0 = > - N

(s2+4)  (s+2))(s-2/) (s+2) (s-2j)

We see that the ROC for first term is Re(s) > —Re (2]) which means Re(s) > 0 since real
part is zero. Same for the second term. Hence we see that for X (s) the ROC is Re(s) > 0.
Similarly for Y (s). Therefore the overall ROC is

Re(s) >0

4.8.4 Problem 9.32

A causal LTT system with impulse response h(f) has the following properties: (1) When the
input to the system is x (f) = €% for all ¢, the output is y (t) = %er for all t. (2) The impulse
response h(t) satisfies the differential equation

dh(t

% +2h () = e Hu(t) + bu(t)
Where b is unknown constant. Determine the system function H(s) of the system, consistent
with the information above. There should be no unknown constants in your answer; that is,
the constant b should not appear in the answer
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solution

First H(s) is found from the differential equation. Taking Laplace transform gives (assuming
zero initial conditions)

1 b
SH(S)+2H(S):S+—4+;

1 b
H(S)(2+S):S+—4+;

o 1 b
©=Gr06+2 5612
s+b(s+4)

T sGr4A)(s+2) @D

Now we are told when the input is ¢ then the output is %eZt. In Laplace domain this means
Y (s) = X (s) H(s). Therefore

11
Y(S) = 8_2 RG(S) > 2
X(s):L Re(s) > 2
s—2

Hence

Y (s)
= X_(s)
11
HE = 52
s—2

1
o 2)

H(s)

Comparing (1,2) then
1 s+b(s+4)

6 s(s+4)(s+2)

Solving for b gives

s(s+4é(s+2) st b(s+4)

s(s+4)(s+2) s
6(s+4)  (s+4)

b s(s+2) S

6 (s+4)
_s(s+2)(s+4)—6s
B 6 (s +4)
s(sz+6s+2)
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This is true for Re(s) > 2. Hence for s = 2 the above reduces to

_2(4+12+2)
T 6(2+4)
=1

Therefore (1) becomes

s+ (s+4)

HEO = i 6+2)
B 2s+4
Cs(s+4)(s+2)

2(s+2)
s(s+4)(s+2)
: 2
T s(s+4)

4.8.5 Problem 9.40

Consider the system S characterized by the differential equation

Yy () +6y” (H) + 11y () + 6y () = x(t)

(a) Determine the zero-state response of this system for the input x (t) = e™*u () (b) Determine

: . s i N4 dy
the zero-input response of the system for ¢ > 0~ given the initial conditions y (07) =1, x|,
2
-1, % =1. (c) Determine the output of S when the input is x () = e #u (t) and the initial
t=0-
conditions are the same as those specified in part (b).
Solution
4851 Parta

Applying Laplace transform on the ODE and using zero initial conditions gives

1
SBY (s) + 65%Y (s) + 11sY (s) + 6Y (s) = —
s+4
1
Y 54+652+11s+6) = —
(s)(s + 6s° +11s + ) p—y
1
Y(s) =
(s +4) (s3+ 652 +11s +6)
1
= (1)
s+d)(s+1)(s+2)(s+3)
Using partial fractions
1 A B C D

+)6+DE+26+3) 6+4d G+D 6+2) +3)
999
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Hence
e 1 ~ 1 1
T G+HDG6+)G6+I)_, (A+D(4+2)(-4+3) 6
1 1 1
b= v D6+26+3) ., (A H(T+2(1+3) 6
1 1 -1
C= G DG+DG6+D _, (2+4(2+D)(2+3) 2
1 1 1
D= 69606+ . (BEH(B+D(B3+2) 2
Hence (1) becomes
A B C D

YO =63 6D T 512 TG

11 +1 1 1 1 +1 1
© 6(s+4) 6(s+1) 2(s+2) 2(s+3)

Re(s) > -1
From tables, the inverse Laplace transform is (one sided) is

.y L 1
y() = 66 u(t)+6e u(t) 2e u(t)+ze u (t)

48.5.2 Partb

Applying Laplace transform on the ODE v’ (t) + 6y” (t) + 11y’ (t) + 6y (t) = 0 and using the
non-zero initial conditions given above gives

(Y (5) = sy (0) = sy’ (0) — ¥ (0)) + 6 (s2Y (5) — 5y (0) — ¥’ (0)) + 11 (Y () = ¥ (0)) + 6Y (s) = 0
(Y (5) =52 +5-1) +6(2Y (5) =5 +1) +11(sY (5) =1) + 6Y (5) = 0
SSY(s) -5 +5—-1+652Y(s)—65+6+11sY (s) =11 +6Y (s) =0
Y(s)(s?+652+11s+6) —s2 +5—1—-65+6-11 =0

1)

Hence

Y(s)(s2+ 652 +11s 4 6) =52 — s +1+65 - 6 +11
s2+55+6

$3+652+11s+6
3 (s+3)(s+2)
B (s+1)(s+2)(s+3)
1

= m Re (S) > -1

Y (s)

Hence the inverse Laplace transform (one sided) gives

y () =etu(t)
223
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48.5.3 Partc

This is the sum of the response of part(a) and part(b) since the system is linear ODE. Hence

1 1 1 1
_ T 4t e 12 2 -3t —t
y() = 66 u(t)+6e u(t) 2e u(t)+26 u(t)+eu(t)

1 1 1 1
= (—ge“” + ge‘t - Ee‘Zt - §€_3t + e‘t) u(t)

1 7 1 1
(—ge“” + ge‘f - Ee‘Zt + ze‘3t) u (t)
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4.8.6 key solution

9.3, Using an analysis similar to that used in Example 9.3, we know that the given signat hias a
Laplace transform of the form

1 1
b fr ey

The corresponding ROC is Re{s} > maz(~5 Re{f}). Since we are given that the ROC
is Re{s} > —3, we know that Re{f} = 3. There are no constraints on the imaginary part
of 3.

9.9. Using partial fraction expansion
. i 2
v i )
Taking the inverse Laplace transform,

z(t) = e Yu(t) - 2¢ Hu(t).

9.15. Taking the Laplace transforms of both sides of the two differential equations, we have
sX(s)=-2Y(s)+1 and sY(s) = 2X(s).
Solving for X(s) and Y(s), we obtain
8 2
X(s)= P FY and Y(s) =25 +4.

The region of convergence for both X (s) aud Y (s) is Re{s} > O because both are right-sided
signals.

9.28. (a) The possible ROCs are
(i) Refs} < -2.
(ii) =2 < Re{s} < -1,
(1ii) -1 <« Re{s} < 1.
(iv) Re{s} > 1.
(b) (i) Unstable and anticausal,
(i) Unstable and non causal.
(iii) Stable and non causal.
(1v) Unstable and causal.
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9.40. Taking the unilateral Laplace transform of both sides of the given dilierential equation, we
ret

SY(s) - s'y(07) = ay'(07) - ¥"(07) + 657 Y(s) ~ Gsw(07)
~8y(0~) + 11sY(s) = 11y(07) + 6)(s) = X(s). (§9.40-1)

(a) For the zero state response, assume that all the initial conditions are zero. Furthermore,
from the given z(t) we may determine

1

X(s) = Y L

Re{s} > -4,
From eq. (S9.40-1), we get

1
3 2 i
Y(s)[s® + 6s* + 113 + 6] s

Thercfore, 1

Y(s) = (s +4)(s° +65° +115+6)
Taking the inverse unilateral Laplace transform of the partial fraction expansion of the
above equation, we get

y(t) = %e"'u(t) - %e'“u{t) + %e‘au{l) - %e’“u{t).

(b) For the zero-input response, we assume that X(s) = 0. Assuming that the wital
conditions are as given, we obtain from (59.40-1)

Y(s) = #+8s+8 1
' #4652+ 1ls+6 s+ 1
Taking the inverse unilateral Laplace transform of the above equation, we get

p(t) = e "ult).
(c) The total response is the sum of the zero-state and zero-input responses.

y(t) = ,Ic ult) = =e=%u(t) + =e~2y(t) - -& 1),
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491 Problem 10.2

Consider the signal

Use eq. (10.3)

X|z] = HZEOO x[n]z™" (10.3)

Nn=—00
to evaluate the Z-transform of this signal, and specify the corresponding region of conver-

gence.

solution

X]z] = nio (%) uln-3]z"

n=—oo

But u [n - 3] is zero for n < 3 and 1 otherwise. Hence the above becomes

X[Z] = nzzoo (é) z N

n=3

Let m = n—3. When n = 3, m = 0 therefore the above can be written as

>
=
Il
3
I
8
—_—
a1l =

Renaming back to n

-3 oo 1 n
X|z] = 122—52(5) z™" 1)
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n
Now, looking at """ (51—2) then assuming |5z| > 1 and using the formula '~ a" = ﬁ
where = — in this case gives
5z
5 -
= \5z 1— éz—l
Hence (1) becomes
z3 1
Xzl = —
1= 15 [1 _ 12-1]
5
The above shows a pole at z =lorz=_ and a pole at z = 0. Since this is right handed

signal, then the ROC is out51de the outer most pole. Therefore ROC is

ol > ©
Z —_—
5

Which means the region is outside a circle of radius 2. Since this ROC includes the unit
circle, meaning a DTFT exist, it shows that this is a stable signal.

4.9.2 Problem 10.9

Using partialfraction expansion and the fact that

a'u[n] < ] —1az‘1 |z| > |al
Find the inverse Z-transform of
o1
*970 _z—l) (1 e B
solution
Let
1-2z71 A B
(1-z1)(1+2z1) (1-z1) * (1+227)
_ 1 _11
Hence A = (11:5:) = % = g and B = (21_-522—11)) - _ (11_3((_12); _ g Therefore the above
z7i= z- =3 2
becomes
X() =2 21
9(1-z1) 9(1+227)

The pole of first term at z7! =1 or z =1 and the pole for second term is 2z7! = -1 or z = -2.
Since the ROC is outside the out most pole, then this is right handed signal. Hence

7
xln] = gulnl + ¢ (-2)"uln]
= (g + ; (—2)") u[n]
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Which is valid when X (z) defined for |z| > 2 since this is the common region for |z| > 1 and
|z| > 2 at the same time. We notice the ROC does not include the unit circle and hence it
is not stable signal. This is confirmed by looking at the term (—2)" which grows with n with
no limit.

4.9.3 Problem 10.26

Consider a left-sided sequence x[n] with z-transform

1
(1 - %z‘l) (1 - z‘l)

a Write X (z) as a ratio of polynomials in z instead of z™!

X(z) =

b Using a partialfraction expression, express X(z) as a sum of terms, where each term
represents a pole from your answer in part (a).

¢ Determine x[#]

solution

4931 Parta

h 1
(Z—E)(Z—l)
2
- 3. 1
2_3,.1
22 -22+ 3

1
One pols at z = - and one pole at z =1.

49.3.2 Partb

X(z) =
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To do partial fractions, the degree in numerator must be smaller than in the denominator,
which is not the case here. Hence we start by factoring out a z which gives

1
X(z) =22 -
(z - 5) (z-1)
A B
=z - 1]
273
Hence
1 __A B
= - —
(z——)(z—l) z-> z-1
2
Therefore A = ( 11 ) = 11 =-2and B = (Ll) = Ll = 2. Hence the above becomes
et (37 =il 1
2
X(z):zz[— 1+—]
z—- z-1
2
1
= 222 [— I + ﬁ]
273
Pole at z = % and one at z =1.
4.9.3.3 Partc
Writing the above as
X (z) = 22X (z)

Where x; [n] < Xj (z) where ROC for X (z) is inside the inner most pole (since left sided).
Hence ROC for X (z) is |z| < % What is left is to find x; [#] which is the inverse Z transform
so rewriting this as

-1 1 4
of — + —. We want to use a"u [n] <> ——
] 1-az

3
-1 1
Xl (Z) = I + ZTl
2-3
~ _Z—l .\ Z—l
Tl 1-21
1 52
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Hence

X (z) = 222X (2)

-1 1
=2 1
2

1
1-z1

Then (since left handed) then _11 «— (%) u[-n —1]. Similarly for — —ul[-n-1].

Hence

x[n]:(%) ul-n-1]-u[-n-1]

Substituting the above in (1) gives

x[n]:Z((%) ul[-n-2]-ul[-n-2]

Where u[-n —1] is changed to u [-n — 2] because of the extra z in (1) outside, which causes
extra shift and same for u[-n —1] changed to u [-n — 2]. Therefore the final answer is

x[n]:Z(%) ul-n-2]-2ul[-n-2]

494 Problem 10.34

A causal LTT system is described by the difference equation

ynl=y[n-1]+y[n-2]+x[n-1]

¥
X(2)
indicate the region of convergence.

a Find the system function H (z) = for this system. Plot the poles and zeros of H(z) and

b Find the unit sample response of the system.

¢ You should have found the system to be unstable. Find a stable (non causal) unit sample
response that satisfies the difference equation.

solution
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4941 Parta
Taking the Z transform of the difference equation gives

Y() =z1Y (@) +2z22Y () +27 X (2)

Y (2) (1 -z1- z‘z) =z1X(2)
Y(z) z71

X(@z) 1-z1-22
z

z2-z-1

z

D

2

! 5) = -0.618 and zero at z =0

Hence a pole at z = %\/§+ % =1.618 and a pole at z = (2
Since this is a causal H(z) then ROC is always to the right of the right most pole. Hence

ROC is , ,
5+ = =1618
lz| > 2\/_+ >

Here is a plot of the poles and zeros. The ROC is all the region to the right of 1.618 pole.

Im(z)
~ALG -~

/ 0.5F

Figure 4.77: H(z) Pole Zero plot. Red points are poles. Blue is zeros
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p = Graphics|
{
{Dashed, Circle[ {0, 0}, 1]},
{PointSize[.04], {Red, Point[{-0.618, 0}]},
{Red, Point[{1.618, 0}]}, {Blue, Point[{@, ©0}]}}
}, Axes -» True, AxesLabel » {"Re(z)", "Im(z) "}, BaseStyle -» 12];

Figure 4.78: Code used for the above

49.4.2 Partb

If the input x [n] = 6 [n] then the difference equation is now
ynl=y[n-1]+y[n-2]+6[n-1]
Hence taking the Z transform gives

Y2) =z1Y (@) +z2Y () +z!
Y (2) (1 —z2- z‘l) =zl

Y@) = ——
@) 1-z1-2z2

Applying partial fractions gives

—z1 A B

SR e R e I

Hence

And

(1)
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Therefore (1) becomes

1 1 1 1 1 1
Y(z) = ( ‘/_——) —(—\/5+—)
10 2 Z_l_(_%Jr%\/g) 10 2) (_%_% 5)
1 1 1 1
_ (5‘/5‘ 5) 1 (E‘/5+ z) 1
-7 1 1 1 N 71 1 1 _
-~ 4+ = Zl— - _Z Zl—l
272 %+%\/' ( 2 2 5) (_%_%\/5)
1 z 1 1 z 1
B 5 _ 2 1 5 1- 2 -1
1-(525) ERGE
1 1 1 1
- 5\/5 1 1 a E\/g 1 1
1—(5\/34'5)2_1 1—(5—5 5)2_1

1
Now we can use the table r—
above gives

— a"u [n] for |z| > a. Taking the inverse Z transform of the

2
= (- (0.44721) (1.618)" + (0.44721) (-0.618)") u [n]

=15 o 1)

This is unstable response y[1] due to the term (1.618)" which grows with no limit as n — co.

4943 Partc
Using the ROC where 0.618 < |z|] < 1.618 instead of |z| > 1.618, then

=

2
= ((0.44721) (1.618)" u[-n - 1] + (0.447 21) (-0.618)") u [n]

which is now stable since the index on 1.618" run is negative instead of positive.

4.9.5 Problem 10.36

Consider the linear, discrete-time, shift-invariant system with input x[n] and output y[n] for
which

y[n-1]- —y[n] +y[n+1] =x[n]
is stable. Determine the unit sample response.

solution

234



49. HW 9 CHAPTER 4. HWS

Taking the Z transform of the difference equation gives
i 10
z7'Y (z) - ?Y(z) +2zY (z) = X(2)
10
Y (z) (z‘l -3 + z) = X(2)

Hence the unit sample is when x [n] = 6 [n]. Hence X (z) = 1. Therefore the impulse response
is

H(z) = —3
3
2 10
b4 32 +1
(1 _3) (1 L
(z 3) (z 3)
Applying partial fractions
A B
H(z):(z_1_3)+ —
(-3
Hence A = [ < J = _=2andB= (i) = 5 = -2, Therefore
) I = R S T R
1 1 1
H(z) = 2(2_1_3) S T
(-3
3 1 3 1
8 (%Z—l _ 1) 8 (32‘1 —1)

_3 _ 1
81-3z71 81_1,1 @
3

1
We see a pole at z =3 and a pole at z = .

For ﬁ, this is stable only for a left sided signal, this is because a which is 3 here is larger

than 1. Hence its inverse Z transform is of this is x; [n] = —Z3”u [-n —1] and for the second

1. . . . . 1 s .
term —— is stable for right sided signal, since ; < 1. Hence its inverse Z transform is
1-3z7
3

3(1\"
-3 (5) u [n]. Therefore

3 3(1\"
h[n]:—g(S)"u[—n—l]—g(g) uln]
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4.9.6 Problem 10.59

phase system.
10.59. Consider the digital filter structure shown in Figure P10.59.

x[n] —>® > + yln]

|
w|x A

|
NS

Figure P10.59

(a) Find H(<z) for this causal filter. Plot the pole-zero pattern and indicate the re-
gion of convergence.

(b) For what values of the & is the system stable?

(¢) Determine y[n]if k = 1 and x[n] = (2/3)" for all n.

10 A0 (Cancider a cional vInl whace nnilateral 7_tranefarm ic (> Shaw that the nnilat.

Figure 4.79: Problem description

solution

4.9.6.1 Part (a)
Let the value at the branch just to the right of x [#] summation sign be called A [z].

A C) Y (:)

Figure 4.80: Filter diagram
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Then we see that '
Y(z)=A®)- Zz‘lA (z)

We just need to find A (z). We see that A(z) = X(z) - gz‘lA(z). Hence A (2) (1 + gz‘l) = X(2)

or A(z) = Xk(z) - Therefore the above becomes
1+2z
3

X  k

Hence

The pole is when Iéz‘l =-lorzs= —g. Zero is when 1 —kz! =0 or kz7! =1 or z = k. Since

this causal system, then the ROC is to the right of the most right pole. Hence |z| > |3ﬂ is the
ROC.

yZ ~N
/ ’ X N

/ \

/ \
/ \
| pole zero ! -
| 4 z

3 /

Figure 4.81: Pole zero polt. ROC is |z| >]fraclk|3
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4.9.6.2 Part (b)

System is stable if it has a Discrete time Fourier transform. This implies the ROC must

include the unit circle. Hence |3ﬁ <1 or k] <3.

4.9.6.3 Part (c)

k1
-z
From part (a), the unit sample response is H(z) = — - When k =1 this becomes H (z) =
1+3z7
3
1—%2‘1
1+iz1

3

Since x[n] = (%) for all n and this is casual system, then this means x[n] = (2) uln].

Therefore

Hence from part (a)

Y(z) = H(z) X(2)
11
_ 1—22 1
1-19_.21
1+3z 1 32

11
1 e

Therefore A =

), el () e
T2

z71==-3 4
7 1 5 1
Y(z) = ) >
129 4 251 121 _ 2,11
3

Therefore

The following is a plot of the solution
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0.30 -

T T T
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[e)
N
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Figure 4.82: Plot of y[n]

7 1\ 5 (2\" |
mySol = — (- —) UnitStep[n] + — [—) UnitStep[n];
12 3 12 \3

p =
DiscretePlot [mySol, {n, @, 10}, PlotRange » {Automatic, {0, ©0.3}}, PlotStyle » Red];

Figure 4.83: Code used
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4.9.7 key solution

10.2. Using eg. (10.3),

X(z) i (%)- ufn = 3)z7"

26)

[EIEE) -~

T — L;I)-

"

I
e
L
i
-
—

10.9. Using partial-fraction expansion

o 7/9
ol e lk>2

Taking the inverse z-transform,

2
z|n] = guln] + ;(—??'u[n],
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)X (2] = he
-2z 1-27")

x(2)= __ ! -5 ZzZ

G-z )1- Z") = Z- ) (z-1)

!:) Cse Paﬂ%l U[facé/&\ f’,r{/)a/;@on e e s
xtz) as  Sum oF €5,

X (2) = =2* ) i
| WE—T %;
. /JZV/) it »
A= ,,._L_/ " = ’Z :
2‘_7—/ Z:72 W
g e 5 i
Bp= z-U 7=/ pa
e o BEC o
2 CX(ZY = ZZ(;_Z_ + 27 s g
. g G
T e X(2) as 2z %2 Z j :
. : ' 2 l z-/ ﬁ
Y- - |
,-Z" /ZZ

I v, 2w, %o/a XDC? i e/t s, o
AR RO e VN (Y Uln=1] 1))
e EO T M 21 - /LZY —’7%
T kg e rcaliy 4 trme F1FF ghes X 241
W ¥ ¥Ihi= 2 U[- ni]*l(’/z\ ”(/[ fZJ
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10.34. (a) Taking the z-transform of both sides of the given difference equation and simplifying,
we get

Y(z) - =t

X(z) 1-z1=-3-%
The poles of H(z) are at z = (1/2) £ (V5/2). H(z) basazeroat z = 0. The pole-zero
plot for H(z) is as shown in Figure $10.34. Since A[n] is causal, the ROC for H(z) bas
to be |2| > (1/2) + (V5/2).

(b) The partial fraction expansion of H(z) is

1/V8 1/v/5

A= e T T

M) =~ g (‘ "2‘/5) o] + T (l‘—;ﬁ) uln)

H(z) =

Therefore,

A Im

.
./

A
E
S

Pigure $10.34

{c) Now assuming that the ROC is (V5/2) - (1/2) < |=] < (1/2) + (V5/2), we get
hin] = % (1 +2\/5) ul-n-1]+ “% (1-—2@) uln].

10.36. Taking the z-transform of both sides of the given difference equation and simphifying, we
ret

Yiz) _ 1 . !
X(z) z='- ],€+: 1=~ l’q:“ Y

The partial fraction expansion of H(z) is

H(z) =

3/8 3/8
1=§z=t " 1-3271

H(z) ==
Since H(z) corresponds to a stable system, the ROC has to be (1/3) < |2| < 3. Therefore,
3 /1\" 3
| 2l - == - - - n -] - .
hn] 3 (3) uln] a(3] ul=n -1}
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0.59. (a) From Figure $10.59, we have

Wilz) = X(z) - ;:'luﬂ (3) = W)= x"’ﬁ%‘r
Also,
k 7 7 t,al
Wi(z) = -:3"“’1(2} - -x(ﬂl Py P
Therefore, ¥(z) - Wy(z) + Wa(z) will be
1 lz—l
Y(z) = X(:}W - "“""E{F-T‘

Finally,

Y(z) 14z
= Tt

Since H(z) corresponds to a eausal filter, the ROC will be 2] > |k|/3.

(b) For the system to be stable,

the ROC of H(z) must include the unit circle. This s

possible only if |k|/3 < 1. This implies that {k| has to be less than 3.
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LA i
455 27

S N e Hez)= e 2
e ) ‘ ) > ‘(2/)/)
determve  tespre o T 1 s el e WS

LAY = AT w bEaT
T T AT T

IK=—to
=2 )bk
== -

L » _K
()" Z . G5V bLK]
Wbk e ket U

\ Bt i z)s f}f j,z'n Lin]g
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o e e gL7=(3 H %
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<
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410 HW 10

Local contents

4.10.1 Problem 11.11 . . . . . . . . e e 245
4.10.2 Problem 11.20 . . . . . . . . e e 247
4.10.3 Problem 11.4f . . . . . . . . . . e e e e 248
4104 Problem 115 . . . . . . . e 250
4.10.5 keysolution| . . . . . . ... 253

410.1 Problem 11.1

11.1. Consider the interconnection of discrete-time LTI systems shown in Figure P11.1.
Express the overall system function for this interconnection in terms of Hy(z),

H(z), and G(2).

Y
I
S
u

+

@ > y[n]

x[n]

Y+
T
=
E
Y+

Figure P11.1

Figure 4.84: Problem description

solution

Adding the following notations on the diagram to make it easy to do the computation
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> Hol@)
\lX(z) HO(z) |
X(z) Y(2)
x[n] i@ Elz) >| Hy(2) (n]
G(z)
[E(z) H1(z) G(@) |
Figure 4.85: Annotations added
Therefore we see that
Y (z) = X(2) Hy (2) + E(2) H; (2) (1)

So we just need to determine E (z). But E (z) = X (z)-E (z) H, (z) G (z). Hence E (z) 1 + H; (z) G (2)) =
X (z) or

3 X (2)
FO=1THoce
Substituting this into (1) gives
X
Y (z) = X(2) Hy (2) + M%Hl (2)
H
Y (@) = X(2) (Ho O+ e (Z))

_ Y Hi (2)
2 _ me
X0 MO TR o6
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410.2 Problem 11.2

11.2. Consider the interconnection of discrete-time LTI systems shown in Figure P11.2.
Express the overall system function for this interconnection in terms of H(s),
Hy(5), G1(s), and Go(s).

¥+

+
x(t) ——O——| H9)

AT

(- > Hy(s) > y(t)

A

Gi(s)

Gols) [

Figure P11.2

Figure 4.86: Problem description

solution

Adding the following notations on the diagram to make it easy to do the computation

X@) |, [E@ EH2) F@ FHT Y@
x(t :@ >| Hys) >(+) > H(s) T > y(t)
FHT G
Gy(s) [
F H1 G2 F H
Gy(s) [

Figure 4.87: Annotations added
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Therefore we see that

E = X - FHle (1)
F = EHZ - FH1G1 (2)

We have 2 equations with 2 unknowns E, F. Substituting first equation into the second gives

F = (X - FH,G,) H, - FH,G,
F = XH, - FH,G,H, - FH,G,
F(1 + H,G,H, + H,G,) = XH,
XH,

F= 3
1+ H1G2H2 + H1G1 ( )

But
Y (z) = F(z) Hy (2)

Hence using (3) into the above gives

Y (z) A H
zZ) =

1+ H,G,H, + HG;
Y(z) HyH,;

X(z) 1+H,G,H,+H,G,;

410.3 Problem 11.4

For what real values of b is the feedback system stable?
11.4. A causal LTI system S with input x(¢) and output y(¢) is represented by the differ-
ential equation

d’y@) . dy@) _dx(®)
dr? +_3t—+y(t)— dt -

S is to be implemented using the feedback configuration of Figure 11.3(a) with
H(s) = 1/(s + 1). Determine G(s).

11.5. Consider the discrete-time feedback svstem denicted in Fieure 11.3(bh) with

Figure 4.88: Problem description

solution

Figure 11.3 a is the following
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ure 11.3(a) and that of a discrete-time LI'l teedback system 1r

) e (D—t| M) — (1)

1O
=z
A

Figure 4.89: figure from book 11.3(a)

Taking the Laplace transform of the ODE gives (assuming zero initial conditions)

S2Y (s) +sY (s) + Y (s) = sX (x)
Y(s) S
X(s) 2+s+1 @

From the diagram, we see that
Y(s) = E(s)H(s) (2)
But E(s) = X(s) —R(s) and R(s) = E(s) H(s) G (s). Hence

E(s) = X(s) = (E(s) H(s) G (s5))
E(s)(1 +H(s)G(s)) = X(s)
X(s)

O =1THe 00

Substituting the above in (2) gives

_ X0
Y(S) = ml‘l (S)
Y(s)  H()

X)) 1+H(@G)G(s) )

Comparing (3) and (1) shows that

H(s) 3 5
1+H@G)G(s) s2+s+1
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But we are given that H(s) = ﬁ Hence the above becomes

1
s+1 S

1 C2245+1
1+S+1G(s)

Now we solve for G (s)

1

s+l _ 5
s+1+G(s) — 2 4 5+1
s+1
1 S

s+1+G(s) T2 1s+1
S2+5+s5G(s)=s2+s+1
sG(s)=s>+s+1—-5>—s

G(s):é

4.10.4 Problem 11.5

H(s) = 1/(s + 1). Determine G(s).
11.5. Consider the discrete-time feedback system depicted in Figure 11.3(b) with

H(z) = —11— and G =1-bzL
1 zZAI

For what real values of b is the feedback system stable?
11.6. Consider the discrete-time feedback svstem depicted in Figure 11.3(b) with

Figure 4.90: Problem description

solution

Figure 11.3 b is the following
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<[] :@ e[n] > Hiz) - )_y[n]

r[n]

Figure 4.91: figure from book 11.3(b)

From the diagram Y (z) = E (z) H(z) but E (z) = X (z) - R(z) and R(z) = E (z) H (z) G (z), hence

E(z)=X(z)-E(z)H(2)G(2)
E(z)(1+H(z)G(2) = X(2)

X@
E® = rrece)

Therefore

Y(z) =E(2)H(z)

B X(z)

~ (1+H@®)G(@)
Y(z) H(z)
Xz 1+H@®G{

H(z)
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But H(z) =

5 and G (z) =1 - bz"!. Hence the above becomes

Y(z) 1-5z71
X(@) 1+ I (1-bz1)
3 1
C1-lriirop
3 1
S 2=l
3 1
2 - (% + b) z1
1 1
"2

The pole is i + g zl=lorz= i + g. For causal system the pole should be inside the unit
circle for stable system (so that it has a DFT). Therefore

1 b
-+ -|<1
4 2
1 b
-1<-+-=-x<1
4 2
1 b 1
“-1l--<=-<1--
4 2 4
5 b 3
4 2 4
10 6
-——<b< -
4 4
5
——<b<E
2 2
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4.10.5 key solution

1.2 T T e ewsupic. 4
From the Nyquist theorem, we know . aeretore, X (jw) = 0 for jw| > 5000x.
: the sam

w, = 20007. In other pling fr 1
1% 10°%, Clearl words, the sampli B lrequency in this case

y, ouly (a) and (c) satisfy ,i;":o:“di“d%nahouw be at most P = ';:-;l(ub') at
. " ) =

Fon v

where (wWo/Z) < we ~ =i

7.6. Consider the signal w(t) = zy(t)zalt). The Fourier eransform W (jw) of w(t) 18 given oY
W) = =l XaGe) » Xalgell

Since Xy(w) = 0 for fw| 2 wi and Xa(jw) = 0 for | 2 w2, we may conclude that
W (jw) = 0 for W 2w + @ nsequently, the Nyquist rate for wit) is wy = 2wt ¥ wy)-
herefore, the 1 pl period which would still allow w(t) to be recovered is
T = 2a/(w,) = ®/(¥ + wr)

Therelore, thHe GIVEN vasciumany = -

11, We know from Section 7.4 that
-
Xe™) = & T Xelgl = 2eR)/T)
k=00

(a) Since Xg(e?) is just formed by shifting and summing replicas of X (jw), we may a3
that if Xg(e™) is real, then X (jw) must also be real.

(b) Xg(e™™) consists of replicas of X (jw) which are scaled by 1/T. Therefore, il Xal
has a maximum of 1, then X (jw) will have a maximum of T=05x10"%

() The region Ix/d € |w| € in the discrete-time domain corresponds to the re
3r/(4T) S | € #/T in the continuous-time domain. Therefore, if Xale?™) ="
Imfa<|wlsw, then X (jw) = 0 for 1500% < |w| € 2000x. But since we already
X(3w) = 0 for jw] = 2000x, we have X (jw) =0 for jw| 2 1500

I}lnth‘sme.tinuliadmﬂme‘, domain cor ds to 2000w in the
time frequency domai \bia condition transiates 10 X (jw) = (j(w~2000x))

time frequencies 1 and w are
. N

7.15, In this problem we are interested in the lowest rate which x{n] may be sampled without the
possibility of aliasing. We use the approach used in Example 74 to solve ths prohlr.m.r To
find the lowest rate at which z[n] may be sampled while avoiding the possibility of aliasing.

we must find an N such that
2x i (I
'ﬁ”(’f)”"—‘a‘

Therefore, N can at most be 2.

v taaal wilal i #n) satisfies the first two conditions. it does
1 wulal = 2gin(xn/2)/(xn) sAUSHES T0E T @ em Xale?) of this
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-
factor of 2. Therefore, in sms pavr——""
1o an ideal lowpass flter with cutoff frequency #/ and 3 PasSOAnG Kos =

- 19. The Fournes rransform of z|n) is given by

v (S

This is as shown in Figure 87.19

(a) When wi < 3x/5, the Fousier transform X, (e?) of the output of the zero-insertion

gystem is 35 ghown in Figure §7.19. The output W (e™) of the lowpass Bleer is as
shown in Figure 57.19. The Fourier transform of the output of tbe decimation system
Y (el) is an expanded ot stretched out version of wi(e™). This is as shown in Figure
§7.19.
Therefore,

(b) When w1 > 3x/5, the Fourier transiorm Xy(e™) of the output of the zero-msertion
gystem is as shown in Figure §7.19. The output W(e¥) of the lowpass filter is A%

ghown in Figure 57.19.

267

AL
TS

- Figure S7.19
3 s o

The Fourier tnnsf.o:m of the output of the decimation system Y (&) is an expE
or stretched out version of W (&), This is as shown in Figure §7.19. Therefore,

vin) = 'Saw.
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7.24. We may express a(t) as s(t) = §(t) — 1, where §(t) is as shown in Figure §7.24.
We may easily show that
-] o
Sy = Y RO, k2w,

k= ~o0

From this, we oblain

S(jw) = S(jw) - 2wé(w) = Y Ma{u - k2% /T) - 2wé(w).

k==-00
269
t S
} 5
@ "
-r =406 & T s

(4) ) 1 L:q»)
‘MT o e 28 ﬂ, w
Figure 57.24

Clearly, S(jw) consists of impulses spaced every 2x/T.
(a) If A = T/3, then

S(iw) = Z f—s—iiiﬂélw- k2x [T) — 2né(w).

k==00
Now, since w(t) = s(t)z(t),

W) = 2-'-' T L“"‘%'ff—alxu(u - k25/T)) - 20X (3).

k==o0

Therefore, W (jw) consists of replicas of X(jw) which are spaced 27 /T apart. [n order
to avoid aliasing, war should be less that #/T. Therefore, Tomar = w fwat.

(b) 1If A = T/3, then

a0 ]
Gy = 3 LB sy  kae/T) - 20b(0).
k= =00 k
We note that S(jw) =0 for k = 0,%2,%4,-+-. Thisis as sketched m Figure 87.24

Therefore, the replicas of X (jw) in W (jw) are now spaced 47 /T apart. In order lo
avoid aliasing, was should be less that 2z /T. Therefore, Tmaz = 2% /wp-
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5.1 ‘Transform tables

5.1.1 Fourier table

Table of Fourier Transform Pairs

Function, f(t) Fourier Transform, F(®)
Definition of Inverse Fourier Transform | Definition of Fourier Transform
7(@) = 1 [F(@)e’™ dw F(o)= [f(t)e"dt

2w -, e
S—1,) F(w)e ™0
S(@)e’ F(o-a,)

at) 1 W
J( L r@
o] e
F(1) 27f (-w)
d" f(1) (jo)'F(o)
dt"
(=" f() d"F(w)
da)n
t Flo
[f@dr —Fw) + 7F(0)5(w)
o(1) 1
e/t 2716 (0 — @)
sen (1) 2
jo

Signals & Systems - Reference Tables
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Fourier Transform Table
UBC M267 Resources for 2005

F(t) F(w) Notes (0)
f(t) / f(t)e ™t at Definition. (1)
1 i iwt iy :
2 fw)e™ dw f(w) Inversion formula. (2)
™ —0oQ
f(—t) 27 f (w) Duality property. (3)
1
—at a
e~ "u(t) p— a constant, Re(a) > 0 (4)
—alt 20 tant, Re(a) > 0
e e a constant, Re(a) > (5)
1, if|E <1, ) _ ,sin(w) L
B(t) = {0’ if 1) > 1 2sinc(w) = 2 » Boxcar in time. (6)
1 . .
— sinc(t) B(w) Boxcar in frequency. (7)
v
0 iwf(w) Derivative in time. (8)
'@ (iw)? f(w) Higher derivatives similar. 9)
d ~
tf(t) ld— flw) Derivative in frequency. (10)
w
d? -
t2f(t) ZQEf(w) Higher derivatives similar.  (11)
et £(t) f(w — wp) Modulation property. (12)
t— tO —iwto P . .
f 3 ke ™" f(kw) Time shift and squeeze. (13)
(f*9)t) f(w)ﬁ(w) Convolution in time. (14)
0, ift<0 1 C .
u(t) = { 1 ift>0 - + 7o (w) Heaviside step function. (15)
ot —to) f(¢) e~ £(tg) Assumes f continuous at tg. (16)
elwot 216 (w — wo) Useful for sin(wgt), cos(wpt). (17)
Convolution: (fxg)t) = / ft—u)g(u)du = / fu)g(t — u) du.
oo 9 1 oo ~ 2
Parseval: / |f()|" dt = 2—/ ‘j(w)‘ dw.
NS T J_ oo
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1 sgn(w)
j—
it
u() 76() + ——
jw
iFnej"“’Ot 2z iFnd(a)—na)o)
rect(i) rSa(ﬂ)
T 2
B Bt W
g SCZ(T) rect(E)
tri(t) Sa2 (%)
Acos(zﬁ)rect(zL) Az (”cosj(zan) 5
T T T -
27
cos(w,t) 7|8 (w - wy) + (0 + w,)]
sin(@,7) Z15( - @y) - 5(w + oy)]
u(f) cos(y?) z[5((0—(00)+§(a)+a)0)]+ 2ja) 5
2 Wy, — @
. 2
u(t)Sln(a)ot) %[5(0_(00)_5((04_(00)]4_%
J 0w, — o
u(t)e ™ cos(w,t) (a+ jo)
cog +(a+ jo)*
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u(t)e™™ sin(w,t)

Wy

ol +(a+ jo)’

ool 20

a’+w’
e—ﬂ (26%) o /_27z e—oza)z /2
u(t)e ™ 1

a+ jo
u(t)te™ 1

(@ + jo)’

» Trigonometric Fourier Series

f@)=a,+ i (a, cos(w,nt) + b, sin(w,ynt))

where

a, =% [ rwa . a, :% [ &) cos(@yntydt ,and
0

b, = % Oj £ (0)sin(wynt)dt

» Complex Exponential Fourier Series

© T
f()= Z Fnejwnz ,where F, :% _[f(t)e_jwontdt
n=—ow 0
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Some Useful Mathematical Relationships

e e
cos(x)=——
(%) 5

Jx _ —Jx
sin(x)= ¢
2j

cos(x £ y) = cos(x)cos(y) F sin(x) sin(y)

sin(x  y) = sin(x) cos(y) % cos(x) sin(y)

cos(2x) = cos” (x) — sin? (x)

sin(2x) = 2 sin(x) cos(x)

2cos”(x) = 1+ cos(2x)

2sin? (x) =1 — cos(2x)

cos”(x) + sin*(x) =1

2 cos(x)cos(y) =cos(x — y) + cos(x + y)

2 sin(x)sin(y) = cos(x — y) — cos(x + y)

2sin(x) cos(y) =sin(x — y) + sin(x + )
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Useful Integrals
[cos(x)dx sin(x)

[sin(x)dx — cos(x)
[xcos(x)dx cos(x) + x sin(x)
[xsin(x)dx sin(x) — x cos(x)

J. x? cos(x)dx

2x cos(x) + (x* — 2)sin(x)

[ sin(x)dx

2xsin(x) — (x? — 2) cos(x)

.[eaxdx ﬁ
a
_[xe“xdx o™ ___L}
L a2
J‘xzeaxdx eax_ﬁ_z_x_i
a PR
dx 1
|
'[a+ﬂx 8 tlar+ fi
dx o,
e S ¢ ~
fs )
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Your continued donations keep Wikibooks running!

Engineering TablesFourier Transform Table 2

From Wikibooks, the open-content textbooks collection

< Engineering Tables
Jump to: navigation, search

Fourier transform

Signal unitary, angular frequency
glt) = Gw)=
1 oo : 1 oo :
— G(w)e™ dw —f te
T f_m (@) 5] I
1 w
reet(at) Vo = (o)

N 1 UJ‘
11 sine(at) e rect (%)

1 w
L2, — - tri | =—
12 sine”(at) ral H (era-)

. 1 i 2 d
13 tri(at) Vora2 o€ (era-)
2 = _4_2
14 g0t N
e 20

Fourier transform
unitary, ordinary frequency

G(f)=

/' g(t)e 2 gt

— - sinc (i)
a

1
a
1 et (i)
a a
1
a
1

[ (i)

a
— . sinc? (i)
al a

Remarks

The rectangular pulse and the normalized sinc function

Dua of rule 10. The rectangular function is an idealized
low-pass filter, and the sinc function is the non-causal
impulse response of such afilter.

tri isthe triangular function

Dual of rule 12.

Shows that the Gauissian function exp( - at?) isits own
Fourier transform. For this to be integrable we must have

Re(a) > 0.
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eiafg

cos(at?)
sin(at?)

ol

i

Jo(t)

1

e—afg

a=—ia

common in optics

S
) =
v, 0
= 2
]
e
&% &5
I |
e B =

e
I ~

- -

2 | =) -
o, r
= .

=
[i%]
By
3
|

3 £}

[2 2a

= 3 B a>0
Vr a2+ o? a® +4m? f2

1 1

;ﬁ “fﬂ the transform is the function itself
V V

2 rect l%) 2- l‘eCt(ﬂ—f) Jo(t) isthe Bessel function of first kind of order O, rect is

the rectangular function

Wv1— 4fr3f3
ik - & -
2(_3) T (2n f)lect(,. f) it's the generalization of the previous transform; T, (t) isthe

/1 — 4,‘,{3}03 Chebyshev polynomial of the first kind.

2i 1 T —
;f—i) -Un1(27f)

U, (t) is the Chebyshev polynomia of the second kind

V1 — wirect (%) - V1 —drfrect(wf)

Retrieved from "http://en.wikibooks.org/wiki/Engineering Tables/Fourier Transform Table 2"

Category: Engineering Tables

Views
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5.1.2 Properties tables, Feb 27, 2020

Table 1:

Properties of the Continuous-Time Fourier Series

+00 +o0
jkwot jk(2m/T)t
I(t) — E ake] ot § akc] (2m/T)
k=—00 k=—00

1 [ L 1 [ L
@ =7 /Tz(t)e’ﬂ‘w"dt =7 /Tz(t)e’”(%m"dt

Property Periodic Signal Fourier Series Coefficients
x(t) | Periodic with period T and a
y(t) [ fundamental frequency wy = 27/T by
Linearity Ax(t) + By(t) Aay, + Bby,
Time-Shifting x(t — to) apeIRoto — ¢ o=Ik(2r/ Do
Frequency-Shifting eIMwot — ejM(zw/T)tx(t) Ap
Conjugation *(t) a’y,
Time Reversal x(—t) a_g
Time Scaling xz(at),a > 0 (periodic with period T'/a) ay,
Periodic Convolution / x(7)y(t — 7)dr Tayby
Jr .
Multiplication z(t)y(t) Z apbr_;
l=—occ
dx(t) . 2
Differentiati kwoay, = jk—ay
ifferentiation it JrWoly =] T %
t .
. - (finite-valued and 1 _ 1
Integration [w'L(t)d' periodic only if ag = 0) Jkwo = Jk(27/T) e

Conjugate Symmetry
for Real Signals

Real and Even Sig-
nals

Real and Odd Signals

Even-Odd Decompo-
sition of Real Signals

x(t) real and even
x(t) real and odd

[x(t) real]

{ xe(t) = Ev{x(t)}
[x(t) real]

To(t) = Od{x(t)}

ap = a*,

Re{ar} = Re{a_y}
Sm{ar} = —Smia_}
lak| = [a—

Jar = —Fa—k

ay, real and even

ay, purely imaginary and odd

Re{ar}

JSmiax}

Parseval’s Relation for Periodic Signals

1 +oo
7 0P = 3 P

k=—oc0
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Table 2: Properties of the Discrete-Time Fourier Series

E akejkwon _ § akejk(er/N)n

x[n] =

k=<N> k=<N>

— 1 —jkwon __ 1 —jk(2m/N)n
U = Z x[n]e Mo =5 Z x[nle™

n=<N> n=<N>

Property Periodic signal Fourier series coefficients
x[n| | Periodic with period N and fun- ay Periodic with
y[n] [ damental frequency wy = 27/N by, period N
Linearity Azx[n] + By[n] Aay + By,
Time shift x[n — ng age kEm/N)no
Frequency Shift eI M@m/N )"x[n} Ap— M
Conjugation x*[n] a’y
Time Reversal z[—n] a_y
. . . iewed as
f s ltinle of 1 viewe
Time Scaling T (m) [n] = zln/m] 1 " ?S a multiple .O m —ay, | periodic with
0 if n is not a multiple of m .
period mN
(periodic with period mN)
Periodic Convolution Z zlrly[n —r] Nayby,
r=(N)
Multiplication z[nly[n] Z arbg_;
1=(N)

First Difference

Running Sum

Conjugate Symmetry
for Real Signals

Real and Even Signals
Real and Odd Signals

Even-Odd Decomposi-
tion of Real Signals

z[n| — z[n — 1]

zn: [k] (ﬁnite—valued and )
periodic only if ag =0

k=—oc
x[n| real

x[n| real and even
x[n| real and odd

zen] = Ev{z[n]}
xoln] = Od{x[n]}

[z[n] real]
[z[n] real]

Parseval’s Relation for Periodic Signals

X el = Y
n=(N)

k=(N)

(1— e—jk(QW/N))ak

1
(= ey )

ap = a*—k

Re{ar} = Re{a_r}
Smiar} = —Sm{a_i}
|ak| = la—|

Fak = —Ja

ay real and even
ay, purely imaginary and odd

Re{ar}

JSm{ag}
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Table 3: Properties of the Continuous-Time Fourier Transform

1 [ »
x(t) = %/ X (jw)e! dw

X (juw) = / ety

—00

Property Aperiodic Signal Fourier transform
(1) X(jw)
y(t) Y(jw)
Linearity ax(t) + by(t) aX (jw) +bY (jw)
Time-shifting z(t — to) e v X (jw)
Frequency-shifting eI (t) X(j(w—wp))
Conjugation x*(t) X*(—jw)
Time-Reversal x(—t) X(—jw)
1 .
Time- and Frequency-Scaling x(at) WX <£>
a a
Convolution x(t) * y(t) X(jw)Y (jw)
1
Multiplication x(t)y(t) 2—X(jw) xY (jw)
T
d : :
Differentiation in Time $$(t) JwX (jw)
t
1
Integration x(t)dt — X (jw) + 71X (0)0(w)
—00 Jw
d
Differentiation in Frequency ta(t) jd—X (Jw)
w
X(jw) = X*(—jw)
- Re{X (jw)} = Re{ X (—jw)}
gi(;rrli];gate Symmetry for Real 2(#) real Sm{X(jw)} = —Sm{X(—jw)}
X ()| = X (~je)|
g or Real and B FX(jw) = =9 X (—jw)
Siygrrri;?stry oF heal and Bved x(t) real and even X (jw) real and even
giygrlrirarllsctry for Real and Odd x(t) real and odd X (jw) purely imaginary and odd

Even-Odd Decomposition for
Real Signals

ze(t) = E{z(t)} [x(t) real]  Re{X(jw)}
To(t) = Od{w(t)} [w(t) real]  jIm{X(jw)}

Parseval’s Relation for Aperiodic Signals

2T

| wtwra= o [ xGeras

oo [o0]
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Table 4: Basic Continuous-Time Fourier Transform Pairs

Fourier series coefficients

Signal Fourier transform (if periodic)
+oo 4 I
3 apettet 2 Y apb(w — kwo) ar
k=—00 k=—00
ot B a)p = 1
o 276 (w — wo) ap =0, otherwise
T
_ ar=0a-1=73
cos wot 7[6(w — wo) + 6(w + wo)] ap, =0, otherwise
T
. 7r a1 =—0-1 =5
i T18(w —wp) — 6 %
sinwy j [6(w = wo) = 0(w +wo)] ap, =0, otherwise
Cl()zl, a'k::()vk;é()
z(t) =1 2mé(w)

resentation for any choice of

(this is the Fourier series rep—)
T>0

Periodic square wave

Lt <T too o . .
=40 2sin kwoT T kwn T, fonT.
x(t) { 0, Ti<t|<L Z Mé(w ~ ko) woly oo (Fwoli ) _ sinkwold
k T us km
and b —oo
r(t +7) = a()
+o00 ¥
27 27k 1
Zé(t—nT) 725(@0—T> aszforallk
n=—oo ke —oo
2(t) L |t <T 2sin w1} —
’ 0, |t‘ > 1Ty w
sin Wt ) B 17 |w‘ W
mt X(w) = { 0, |w|>w
5(t) 1 —
1
t — 476 o
u(t) ot (w)
5(t - tO) e—Jwto —
1
—at t §R O —
e u(t), Ref{a} > s 7l'w
t —at . 7
e jL(t), Re{a} >0 7@ L
(Z—l)!e_at“(t)a 1 B
Re{a} >0 (a + jw)™
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Table 5: Properties of the Discrete-Time Fourier Transform

1 . .
x[n] = o, X () e’ dw
. +m .
X () = Z z[nje 7"

Property Aperiodic Signal Fourier transform
z[n] X(e/*) | Periodic with
y[n] Y(e/*) [ period 27
Linearity azx[n] + by[n] aX (e?) + bY (e/)
Time-Shifting z[n — ng) e I X (1)
Frequency-Shifting e7omzn] X(e (“" wo))
Conjugation x*[n] X (e™¥)
Time Reversal x[—n] X(e™¥)
. . _ Jz[n/k], if n = multiple of k ki
Time Expansions Tpyln] = {07 if 1 £ multiple of k X (/™) |
Convolution x[n| * y[n] X ()Y (&)
1 ) .
Multiplication x[nlyln] o XY (2 )dp
T J2

Differencing in Time

Accumulation

Differentiation in Frequency

Conjugate Symmetry for

Real Signals

Symmetry for Real, Even
Signals
Symmetry for Real, Odd

Signals
Even-odd Decomposition of
Real Signals

x[n] real

x[n] real and even

x[n| real and odd

we[n] = Evfz[n]}
o[n] = Od{z[n]}

[z[n] real]
[x[n] real]

(1= €3 X (")

1 .
jw
1-— e*j‘*’X(e )

+7X (77 i O(w — 27k)

k=—o00

dX (el?)
J dw

X (e?v) = X*(e™9v) 4

Re{X (¢7)} = Re{ X (¢ )}
Sim{X(e)} = ~Sm{X (e )}
[ X ()] = [X(e7*)|

JX () = =g X ()

X (e7*) real and even

X (&%) purely

imaginary and odd
%e{X(ej“)}
JIm{X (™)}

Parseval’s Relation for Aperiodic Signals

> el =

n=-—oo

1 .
— X (e7)|%d
- [ xepas
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Table 6: Basic Discrete-Time Fourier Transform Pairs

Fourier series coefficients

Signal Fourier transform (if periodic)
; , 2rk
Z apedFET/N)n 27 Z ard (w - L) Qg
k=(N) k=—o00
— e :%TW; k + N,m+2N
Jwon o _ , k=m,m ,m Yo
e 27rl_Z: §(w — wo — 27l ax { 0, otheruise
- (b) %o irrational = The signal is aperiodic
P — 2mm
= e = k= +m,+m+ N, +m + 2N
_ _ _ _ 2 - ’ ) PR
coS won wlZ {86(w — wo — 27L) + 6(w + wo — 27l)} ak { 8 otherwise
- (b) %o irrational = The signal is aperiodic
(a) wp = Z&r
oo =, k=rr+N;r+2N,...
sin won 7 Z {6(w—wo—27l) = 0(w+wo —27l)} | ap = —2%., k=-r,—r+N,—r+2N,...
l=—o0 0, otherwise
(b) #0 irrational = The signal is aperiodic
+oo
.Z‘[n] =1 2T Z 0(w — 27l) aj = { (1)’ k=0,£N,£2N,...

l=—00

otherwise

Periodic square wave

0, N < |n|<N/2
and

27 Z ard (w— ﬁ)

k=—o00

ag
ag

sin[(27k/N)(N1+1)]

= swlerh/MWMta)l g £0,+£N, 42N, ...

N sin[27k/2N]
AL |k =0,+£N,£2N, ...

z[n + N| = x[n]

+Z d[n — kN]

D

1
ap = N for all k&

k=—o00
a"uln], |a| <1 71 S -
s d L SN sinfw(N + ;)] _
0, |n|>N; sin(w/2)

sin Wn : n 1-, 0 S w S w

s W e (1) x@={ g Wil .
O<W<m X (w)periodic with period 27
d[n) 1 —

1 -
uln] —+ Z 78(w — 2k) -
d[n — ng) e Jemno —
T

(n+ Da"uln], |a| <1 (== —
(n+r—-1)1 , 1 B
md 71,[7),]./ ‘(I,‘ <1 m
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Table 7: Properties of the Laplace Transform

Property Signal Transform ROC
z(t) X(s) R
x1(t) Xi(s) Ry
) Xo(s) Ry
Linearity azy(t) + bxo(t) | aXi(s) +0Xo(s) | At least Ry N Ry

Time shifting

Shifting in the s-Domain

Time scaling

Conjugation

Convolution

Differentiation in the Time Domain
Differentiation in the s-Domain

Integration in the Time Domain

e*olx(t)

sX(s)

d
EX(S)

EX(S)

R
Shifted version of R [i.e., s is
in the ROC if (s — s¢) is in
R]

“Scaled” ROC (i.e., s is in
the ROC if (s/a) is in R)

R

At least Ry N Ry
At least R

R

At least RN {Re{s} > 0}

Initial- and Final Value Theorems

If z(t) =0 for t < 0 and x(¢) contains no impulses or higher-order singularities at ¢ = 0, then

2(07) = lim,_, o s X (5)

If 2(t) = 0 for t < 0 and x(¢) has a finite limit as ¢ — oo, then

limy oo z(t) = lim,_o s X(s)
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Table 8: Laplace Transforms of Elementary Functions

Signal Transform | ROC
1. 6(t) 1 All s
2. u(t) % Re{s} > 0
3. —u(—t) % Re{s} <0
PR 1 Re{s} > 0
(n—1)! ! s s
5 L IRefsy <o
S 1)!u o e{s
6. e “u(t) . i - Re{s} > —Re{a}
7. —e u(—t) . _’1_ - Re{s} < —Re{a}
tn—l ot 1
8. (n— 1)!e u(t) Gt Re{s} > —Re{a}
tnfl ot 1
9. T 1)!e u(—t) Gt Re{s} < —Re{a}
10. 6(t = T) et All's
11. [cos wot]u(t) 5 juﬂ Re{s} > 0
0
12. [sinwot]u(t) S i"uﬂ Re{s} >0
0
13. [e* coswpt]u(t) E +50j)r2a+ — Re{s} > —Re{a}
0
Wo

14. [e=* sin wot|u(t)

15. u,(t) =

16. u_p(t) = u(t) * - = u(t)

n times

Re{s} > —Re{a}
All's

Re{s} >0
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Table 9: Properties of the z-Transform

Property Sequence Transform ROC
x[n] X(2) R
xl[n] Xl(Z) Rl
Ta[n] Xa(2) Ry
Linearity axy[n] + bxs[n] aXi(z) +bXs(z) At least the intersection

Time shifting

Scaling in the

z-Domain

Time reversal

Time expansion

Conjugation

Convolution

First difference

Accumulation

Differentiation
in the z-Domain

x[n — ng 27X (z)
i z[n] X (edwoz)
zix(n) X <%>
a"z[n] X(a'2)
x[—n] Xz
sl = { 5T 22T X

for some integer r
z*[n] X*(2%)
x1[n] * 29[n] X1(2)Xa(2)
z[n] — z[n — 1] (1—-2"HX(2)
2 hieoo L [K] X (2)
na[n] —zd);(z)

Initial Value Theorem
If z[n] = 0 for n < 0, then
z]0] = lim, o X (2)

of Ry and Rs

R except for the
possible addition or
deletion of the origin

R

Z()R

Scaled version of R
(i.e., |a|R = the
set of points {|a|z}
for z in R)

Inverted R (i.e., R~
= the set of points
2~! where z is in R)

Rl/k

(i.e., the set of points z/*
where z is in R)

R

At least the intersection
of Ry and Ry

At least the
intersection of R and |z| > 0

At least the
intersection of R and |z| > 1

R
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Table 10: Some Common z-Transform Pairs

Signal Transform ROC

1. 0[n] 1 All z

2. u[n] — |z > 1

3. u[l-n —1] - lz| <1

4. §[n — m] z=™m All z except
0 (if m > 0) or
oo (if m < 0)

5. a"uln] —— |2 > |e

6. —a"u[—n —1] 1752,1 |z| < |af

7. naun] (lf“j;l)Q |z| > |af

8. —na"u[—n — 1] % 2] < |ev|

9. [coswon|u[n] % |z > 1

10. [sin won]u[n] % |z > 1

11. [r" cos won|u[n] 17[21,122(?]:3]1:::22_2 |z| >r

12. [r™sinwonjuln] Irsin woz |z| > r

1—[27r coswplz— 1471222
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5.2 cheat sheet

M Fourier series. Periodic signals, Continuous time
2 .
Let wg = T—n be the fundamental frequency (rad/sec), and T, the fundamental period, then
0

x(t) =) apelkoot

k=—0c0

1 .
a = — f x (t) e7Tkwot gt
Ty J1,

M Fourier series. Periodic signals, Discrete time

Let Q, = %ﬂ be the fundamental frequency (rad/sample), and N the fundamental period,
then

N-1
x[n] = E 1,k = E a,e/kQon
k=0

k=(N)
1 N-1 . 1 )
o= Z x [n] e 7K = N E x [n] e7kCon
n=0 n=(N)

M Fourier transform. Non periodic signal, Continuous time.

1 00 .
x(t) = — f X (w) e?tdw
21 J_

X () = f (B etdr

It is also possible to obtain a Fourier transform for periodic signal. For x (t) = E;i_oo aekwot

. . 2

its Fourier transform becomes (wy = T—n)
0

X(w) =27 i a0 (w — kawy)

k=—o00

M Fourier transform. Non periodic signal, Discrete time.

1 .
x[n] = — f X (Q) ddQ)
2t J_;

X(Q) = i x [n] e

n=—00

It is also possible to obtain a Fourier transform for periodic discrete signal, where Q; = ER

X(Q)=2n i ;.0 (Q — kQy)

k=—00
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B When input to LTT system is x (t) = ¢“* and system has impulse response / (f) then output
is

y(t):f (D) x (t - 1) dr
= f h (1) e*t=dr
= oot f I (v) e dr

= dv'H (w)

Where H (w) is the Fourier transform of % (). In the above ¢! is called eigenfucntions of the
system and H (w) the eigenvalues.

B If input x (t) = acos (5wyt + 0) and H (w) is the Fourier transform of the system, then
y(t)=a |H (5a)0)| cos (bwyt + 6 + arg H (5wy))

Same for discrete time.

B Modulation. y () = x () h () in CTFT becomes Y (w) = %X(a))@H(w) where X (w)®H (w) =

f_ : X (z)H (w — z)dz. Notice the extra % factor.

B To find discrete period given a signal, write x [n] = x[n + N] and then solve for N. See
HW’s.

1 aN N altN_1 N. aN1—gN2 41
o on = oo n_ %2 n _ 2 n _—
WY "= — and 3 _ a" = — and 3 _ a — and Enle a —
. . 1 @
B Fourier transform relations. y () & Y (w) then y (at) &= ;Y(;)
. e, e —eIx
B Euler relations. cosx = S/ sinx = 2

M Circuit. Voltage cross resistor R is V (t) = Ri(t). Voltage cross inductor L is V () = L% and

. . av
current across capacitor C is i (t) = C -

M Partial fractions.

fx) A " B
(x—a)(x=b) x—a  x-b
76 A
(x=a)? X0 (x-a)’
fx) i + Bx+C
(x—a)(x2+bx+c) x—a  x2+bx+c
A B C
L I R A
(x—a)(x+d) x—a  x+d  (x+d)
X A
e ] — +
(Getd)? x+d - (x+d)?
fx) A Bx+C
(x—u)(xz—bz) x+d — x2-b2
fx) Ax+B _ Cx+D
x2—a)(x2-b x2-a x2-b
fx) Ax+B Cx+D
(x2-a)’ e ()
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B Parsevel’s. For non-periodic cont. time: foo |x (if)|2 dt = i foo X (a))|2 dw. For periodic cont.

time : %ﬁlx (B dt = Y |lax|*. For discrete: % f_z IXQPAQ ="  |x[n]*

n=—0oo

M Properties Fourier series. If a; = a”; then x(t) is real. If a; is even, then x (f) is even. For
x (t) real and odd, then a; are pure imaginary and odd. i.e. ay = —a_; , and gy = 0.

M More Fourier transform relations. Continuos time

2a
: a2 +w?
x(t) e7vt | X(w + wp)

x () et | X(w - wy)

e_altl

sin(aw
C(U ) Boxfromt=-a---a
Discrete time
T
ulnl | oo

uln-1] | e7U(Q) = 72
1
1—ge 19

d0x [n] | X(Q-Qyp)

179

a'u [n]

From above we see that unit delay in discrete time means multiplying by e7<.

B Difference equations. y[n —1] & ¢7?Y (Q). For example, given y[n] — ay[n—1] = x[n]

then applying DFT gives Y (Q) — ae7?Y (Q) = X(Q) or H(Q) = % = 1_;‘7].0.

the inverse DFT of this is a"u[n]. Need to know partial fractions sometimes. For example

From tables,

given y [n] - Zy [n-1]+ %y [n — 2] = 2x[n] then

Y(Q) - Ze‘fQY(Q) + ée‘fZQY(Q) = 2X(Q)

Y(Q)
H(Q) = —=
3 2
" (1_3,0, 1,0
(1 26 g7 )
B 2
(12 Leia) (1 - Leie
(1 ¢ )(1 27 )
And using partial fractions gives H(Q)) = . 14_]0 - 12_]0. Hence using above table gives
—Ee —ZE

1)" 1)"
hin] = (4(5) -2(3) )u[n]
M X (w)]” may be interpreted as the energy density spectrum of x (). This means ﬁ X () dw
is amount of energy in dw range of frequencies. i.e. between w and w + dw. |X (w)| is called

the gain of the system and arg (H (w)) is called the phase shift of the system. When arg (H (w))
is linear function in @ then the effect in time domain is time shift. (delay).
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B z transforms X (z) = Z‘:’:_m x[n]z™ If x[n] = X (z) then x[n -1] = z71X (2).

sin(wf)

| Sm(;x) . This has FT as rectangle

= sinc(ﬁ) and 22 = sinc(f). In class we use ——
a e X t Tt
from -w, to w. and amplitude 1.

M in digital, sampling rate is in hz, but units is samples per second and not cycles per second

as with analog.

Q:F_‘s

where F; is sampling rate in samples per second, and Q is unnormalized digital frequency
(radians per sample) and w is analog frequency (radians per second). This can also be
written as

Q=wT,
where here T; is seconds per sample (i.e. number of seconds to obtain one sample). Per

sample is used to make the units come out OK.

M Trig identities

1

sin AcosB = 5 (sin (A + B) + sin (A — B))
1

cos AcosB = 3 (cos (A + B) + cos (A - B))

1
sin AsinB = 3 (cos(A—B)—cos(A + B))

B Group delay is given by —% (arg (H (w))). For example, if H (w) = 2%@ then arg (H (w)) =

—arctan ( 2) which leads to group delay being ﬁ.

B FT of cos(w.t) has delta at +w,. each of amplitude 7. And FT of sin (w.t) has delta at
w. of amplitude ? and has delta at —w, of amplitude _]—n and % has FT as rectangle of

amplitude 1 and width from -w, to +w..

X(Q) = i x [n] e

n=—00

5 (5] on ()

n=—00

B e (3)e

n=0

1 [ ;™ _;mn
But cos (%) = E(e’ 2 +e2 ) and the above becomes
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0
g e e
g )

1

! +
Y T T
2{1- %e’fe‘JQ 1- %e_]fe‘]Q

But ¢2 =j and ¢72 = —j and the above becomes

X(Q) = - LI
2(1-3je® 1+ 5jei®

1. o 1. o
L+ je7 +1-3je”

1
2 (1 - %je‘]@) (1 + %je‘fo)

1 2 ]
n 1. 1. T o
2 1+§]e ]Q_E]e ]Q_ije 2jQ)

3 1
14 Le20
4
M Z transforms
u[n] Z
T
a'u[n] — _11
n-1 _ -1
at“un-1] | z e
n-2 _ -2
acun-2] | z i

If the ROC outside the out most pole, then right-handed signal. (Causal). If the ROC isinside
the inner most pole, then left-handed signal (non causal).
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5.3 Study notes

5.3.1 When input is complex exponential

When input is x [11] = ¢%" and system is given by H(Q) then the output is y [1n] = ¢0"H (Q)
which is the same as y [n] = /0" |H (Qp)| &/ 28 H ),

ei%0n ——l [(Q) eI " H ()

Figure 5.1: Output when input is complex exponential

Hence when the input is linear combination of complex exponentials
A, ,
Acos (Qgn + 0) = > (e](00”+9) " e—;(%m@))
A N . A . ‘
= | Z=eif) /€01 4 | —p70 | o7 201
[3e7)e (3]

Then, and since the system is linear, then the output will be scaled and linear sum of each
output corresponding to each term above. In other words, when the input is (?eje) /%" then

the output is
A i0 | ,jQon jarg H(Qg)
121 [n] = Ee] e/t |H(Q0)|e] g 0
A i(Qon+6+arg H(Qp))
= [H(Qo)| Eé’] 0 0 1)
And when the input is (ge‘je) ¢7%" then the output is
A o) —icon jarg H(-Q)
o ln] = | G790 |H (-Qg)| reHE
A —j(Qon+0-arg H(—Q))
= |H(—Q0)| e 7(Qo g 0

But for real input, which is the case here, |H(QO)| is symmetrical. Hence |H (QO)| = |H(—QO)|
and arg H (-Q() = —arg H(Q)() (see table 4.6 for these properties). Hence

A .
yo[n] = | H (Qo)l Ee—](Qon+8+argH(QO)) ©)
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Therefore, by linearity, y [n] = y; [n] + y, [1] or by adding (1) and (2)

y [7’1] — |H (QO)l éej(00n+6+argH(Qo)) + |H (QO)| ge—j(Qon+9+argH(Qo))

| | ol (Qon+0+arg H(Qy)) 4 o—j(Qon+0+arg H(CY))

2
= |H (Qg)| A cos (Qon + 6 + arg H (Q))

283



	Introduction
	Links
	Text book
	syllabus

	My solutions to some discussion problems
	Discussion, second week
	Questions
	Problem 4.1
	part a
	part b
	part c

	Problem 4.2
	Part a
	Part b

	Problem 4.3
	Part a
	Part b
	Part c

	key solution

	Discussion, week 3
	Questions
	Problem 1
	Key solution


	Exams
	practice exams
	Midterm 1, oct 2001
	My solution to Midterm 1, oct 2001
	Problem 1
	Problem 2
	Problem 3
	Problem 4

	Midterm 1, oct 2018
	My solution to Midterm 1, oct 2018
	Problem 1
	Problem 2
	Problem 3

	Final exam practice exam 1
	Final exam practice exam 2

	Exam 1
	questions

	Exam 2
	questions
	key solution

	final exam
	review for final exam
	questions


	HWs
	HW 1
	Problem 1.8, Chapter 1
	part a
	part b
	part c
	part d

	Problem 1.13, Chapter 1
	Problem 1.17, Chapter 1
	Part a
	Part b

	Problem 1.21, Chapter 1
	Part a
	Part b
	Part c
	Part d

	Problem 1.22, Chapter 1
	Part a
	Part b
	Part c
	Part d

	Problem 1.26, Chapter 1
	Part a
	Part b
	Part c
	Part d

	key solution

	HW 2
	Problem 2.1, Chapter 2
	Part a
	Part b

	Problem 2.6, Chapter 2
	Problem 2.11, Chapter 2
	Part (a)

	Problem 2.24, Chapter 2
	Part a
	Part b

	Problem 2.32, Chapter 2
	Part a
	Part b
	Part c

	Problem 2.42, Chapter 2
	Part a
	Part b

	key solution

	HW 3
	Problem 3 Chapter 3
	Problem 10 Chapter 3
	Problem 16 Chapter 3
	Part a
	Part b

	Problem 20 Chapter 3
	Part a
	Part b
	Part c

	Problem 28 Chapter 3
	Part a
	Part b

	Problem 47 Chapter 3
	key solution

	HW 4
	Problem 4.1(a), Chapter 4
	Problem 4.3, Chapter 4
	Part a
	Part b

	Problem 4.5, Chapter 4
	Problem 4.11, Chapter 4
	Problem 4.19, Chapter 4
	Problem 4.23, Chapter 4
	Part a
	Part b

	Problem 4.26, Chapter 4
	Part a
	Part b

	key solution

	HW 5
	Problem 5.3, Chapter 5
	Part a
	Part b

	Problem 5.5, Chapter 5
	Problem 5.9, Chapter 5
	Problem 5.13, Chapter 5
	Problem 5.19, Chapter 5
	part a
	part b

	Problem 5.30, Chapter 5
	Part a
	Part b

	key solution

	HW 6
	Problem 6.2
	Problem 6.5
	Part a
	Part b

	Problem 6.7
	Part a
	Part b

	Problem 6.17
	Part a
	Part b

	Problem 6.22
	Part a
	Part b
	Part c

	Problem 6.27 (a,b,c,d)
	Part a
	Part b
	Part c
	Part d

	key solution

	HW 7
	Problem 7.2
	Problem 7.6
	Problem 7.11
	Part a
	Part b
	Part c
	Part d

	Problem 7.15
	key solution

	HW 8
	Problem 9.3
	Problem 9.9
	Problem 9.15
	Problem 9.32
	Problem 9.40
	Part a
	Part b
	Part c

	key solution

	HW 9
	Problem 10.2
	Problem 10.9
	Problem 10.26
	Part a
	Part b
	Part c

	Problem 10.34
	Part a
	Part b
	Part c

	Problem 10.36
	Problem 10.59
	Part (a)
	Part (b)
	Part (c)

	key solution

	HW 10
	Problem 11.1
	Problem 11.2
	Problem 11.4
	Problem 11.5
	key solution


	study notes, cheat sheet
	Transform tables
	Fourier table
	Properties tables, Feb 27, 2020

	cheat sheet
	Study notes
	When input is complex exponential 



