University Course

Physics 5041
Mathematical Methods for Physics

University of Minnesota, Twin Cities
Spring 2019

My Class Notes
Nasser M. Abbasi

Spring 2019






Contents

2.2 HW 2
2.3 HW J

2.6 _HW G

iii



Contents CONTENTS

iv



Chapter 1

Introduction

1.1 syllabus

VTN POSTINGS MY SCORES

Topics Covered moatied Z34an-2019 at 112241 oy Josegn Kapusa
Topics fo be covered include but e nol imited {0 ordinry difierenial equations; infinte seies and sums, complex analysis; Fourier analyss, Laplace transfors, veclors, malrices, and fensors; special functions; Green's
functons: partia difierentia equations; group theory.

Textbook moatied z3an 2019 at 112241 oy Joseon Kapusia
There are many good textbooks on mathematical methods of physics. | have chosen the following one because it is inexpensive and it has nearly 1000 solved problems.

M. R. Spiegel, Advanced Mathematics for Engineers and Scientists (Schaum's Outlines).

Most of my lectures will not follow this text very closely but are instead based on a variety of sources. Here are a few | recommend:

R. V. Churchhill, Complex Variables and Applications (McGraw-Hill).

J.Mathews and R. L. Walker, Mathematical Methods of Physics (Benjamin/Cummings).

G B. Arfken and H. J. Weber, Mathematical Methods for Physicists (Academic Press).

S. Hassani, Foundations of Mathematical Physics (Allyn and Bacon).

K_F Riley, M. P Hobson and S. J. Bence, Mathematical Methods for Physics and Engineering (Cambridge).

H. Jefieys and B. Jeffreys, Methods of Mathemaical Physics (Cambridge)

G. Goertzel and N. Trall, Some Mathematical Methods of Physics (Dover)

M. Abramowitz and | A. Stegun, Handbook of Mathematical Functions (Dover),

Grading moiied 2.Jan.2010at 59PN by Joseoh Kapusa

he course grade will be determined on the basis of homework 30%, class participation 10%, two mid-terms worth 15% each, and final exam 30%. Homework will be due one week after it is assigned. A deduction of 10%
willbe assessed for every business day that the homework is late. The rational is to keep all students up to date in the course and 1o be fair o the grader. Students are expected to attend every lecture.

Homework: There will be approximately twelve homework assignments. Students are allowed to discuss the homework problems with each other. The rules are:

1. Each student must write up his or her own solutions

2 List other students you discussed the problems with

3 Ifyou used any resources other than the required text, such as books, articles, web sites, past homework solutions, and 5o on, you must list them on your homework.

Class Participation: Every Friday, beginning with week two, | will assign an in-class problem at the beginning of the second period Students wil work in groups of three to solve the problem. After 30 minutes one of the
groups will be asked to go to the board to show their solution. Notes from each group must be signed and collected, but will not be graded. That counts as class participation

terms: Mid-term exams will be given on Wednesday February 27 and Wednesday April 10. They wil be held in Tate B65
Final Exam: Thursday May 9, time and room to be announced

‘Grades will be assigned as follows (these are guaranteed, the cutoffs may turm out to be lower):

A 9010 100%

B:801090%

C:701080%

D: 5010 70%

F01050%

Office Hours modified 2-Jan-2010 at 1:37PM by Josei Kapusta

My office is 375-16 Tate Hall. Due to the broad spectrum of studens taking the course | doubt that there is a convenient time for regularly scheduled office hours. Instead students may either make an appointment o stop
by and if | am not othenwise engaged | will be happy to help.

1.2 Links

1. [class web page|



https://www.physics.umn.edu/classes/phys/2019/spring/Phys%205041.001/index.html

1.2. Links CHAPTER 1. INTRODUCTION
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211 HW 1 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 1 due Friday February 1. Show all work. Use of Mathematica,
MatLab, or similar software is not allowed.

1. (2 pts) Solve
I‘Zy/ + y2 — zyy/

2. (2 pts) Solve
2
, a

V=
T )

3. (2 pts) Solve
Y +y?+1=0

4. (2 pts) Solve

vy +y+atyle” =0

5. (3 pts) Find both a general solution and a singular solution of
22y = 2@y —4)y +y* =0

Hint: Differentiate it once.

6. (4 pts) Find the general real solution to the following equation where
A(z) is a known function.
y
Alz)y' + A'(x)y =0
()" + A'(2)y TR

7. (5 pts) Find the general real solution to the equation

3
zy"+;y:1+13

8. (5 pts) For what values of k does the equation

L (1 k
—(=+Z)y=0
Y (4*1 y

defined for 0 < 2 < oo have a solution vanishing at z = 0 and at x = co?

2.1.2 Problem 1

Problem Solve x?y’ + y? = xyy’
Solution
Rewriting the ODE as
v (= xy) + 47 =0 M

Dividing by x? # 0 gives

d—y(l—z)+£:0

dx x) 2
We see this is homogeneous of order 1. This can be confirmed by writing the above as

dy (xz - xy) +y?dx=0
dyx? — xydy + y*dx = 0

We want to find if a weight m can be found, so that the substitution y = vx™ makes the

4



21. HW1 CHAPTER 2. HWS

above ODE separable. To find m, we assign weight m to both v and dy, and a weight of 1
to both x and dx, and then try to find if there is an m which makes each term sums to the
same total weight. (in other words, we want each term units to be the same).

The term (dy) (xz) has total weight of m +2 (it is the exponents that we add). And the term

(%) (y) (dy) has total weight 1 +2m and the last term (yz) (dx) has weight 2m + 1. Therefore
we have this result for the weight of each term (there are 3 terms above).

{m+2,14+2m,1+ 2m}

We see that if m = 1 then each term will have the same total weight of 3 giving {3, 3, 3}.
So this is homogenous ODE of order m = 1. Now that we know the weight, we use the
substitution

Y =ox

Hence vy’ = v'x + v. Substituting these back into (1) gives a new ODE in v which is
separable. If it is not separable, it means we made a mistake somewhere.

(v'x + ) (x2 -~ xzv) + %2 =0
S _voxd +ux?2 — X202 + v*x% =0
3

v'x
v —voxd +oux2 =0
Dividing by x° for x # 0 gives
v
v -vv+-=0
X

v
v(1l-v)=--
X

do(l1-v) 1
dx v x
1- 1

dv( 0) = ——dx
v X
-1 1

@D Ly
v X

Integrating both sides gives

1 1
fv——dv:f—dx

v X
v—lnv=Ilnx+C

Taking exponential of both sides gives

ev—lnv =Cx
ev
—=Cx
0

Butv = % Therefore the above becomes

y
eX
? =Cx
X
¥
ex
—_=C
y
Hence the solution is
y
y = Cle; x#0 (2)

Where C; is the constant of integration. y can not be solved for directly in the above. But
we can solve for x in terms of y if needed as follows

Y
Iny=InCq; +=
ny ne4q »

_c, =Y
hly C2— X
_ ¥
x_lny—Cz (3)

5
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2.1.3 Problem 2

Problem Solve v’ = ? 5

(x+y)
Solution

Let v(x) = x+y(x). Hence v =1+’ or y’ = v" — 1. Substituting this back into the ODE
gives

This is separable.

——dv =dx
a? + v?

2 2
P [4 a
By long division —— =1 - ——. The above becomes
a2 +v2 a2 +v?

aZ
(1 - m) dU = dx

Integrating both sides gives
2

a
f(l‘m)d”:fdx
1
fdv—az dvzfdx

But f azivzdv = aizf H(l—z)zdv = alz (a arctan (2)) = %arctan (g), hence the above becomes
a

v—a (— arctan

()=
o= anreon(2) =
)=

a

v
a arctan

arctan ( ) + C
a a

-C . . .
Where C; = —, a new constant. Taking the tan of both sides gives
v (s
- = tan( + Cl)
a

But v = x + y, and the above becomes

Y =tan(—<x+z)_x+c1)

(L)

+

N

Therefore the final solution is
y:atan(y+C1)—x a#0
a
Where C; is arbitrary constant.

2.1.4 Problem 3

2
Problem Solve "' + (y’ ) +1=0
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Solution

Since y is missing from the ODE, we can convert this to a first order using ¥’ = p (x).
Therefore vy’ = Z—p and the ODE becomes

X

dp
— 1=0
Ix +p°+
dp 9
——=—(1+p)
d
P - _ix
1+ p?
Integrating both sides gives
d
P __ fdx
1+ p?

arctan (p) =-x+C
p = tan (—x + Cq)

d
But p = y’. Hence we need now to solve ﬁ = tan (—x + C;). Integrating both sides gives

y= ftan (—x+ Cq)dx
B f sin (—x + Cy)

cos (—x + Cq)

_ f—sin(x—Cl)dx

cos (x — Cq)

[ i (5= C)

cos (x — Cq)

dx

But f Vvldx = In (V), hence the above becomes
y =1In(cos(x — Cq)) + C,
Replacing —C; by new constant Cj3, the final solution becomes
y =In(cos (x + C3)) + C,

Where C,, C; are constants of integration.

2.1.5 Problem 4

Problem Solve xy’ +y + x*y*e* = 0

Solution
Dividing by x # 0 and rewriting gives
1
'y —y = (- 3,x\ .4 1
v+ -y =(=e)y (1)
A Bernoulli ODE has the form v’ + a (x) y = b (x) y* where n # 1. Comparing the above to

Bernoulli ODE form, show it is Bernoulli ODE where a (x) = i, b(x) = —x>¢*. Dividing (1)
by y* gives

1 1
1/ + — -3 — _x3ex
y4y xl/
Letting v = 4= or 20 = —3y~4% dy _ _doyt o ,
gu=Yy or—= 3y T Hence T3 Substituting this in the above gives
4
v\ dx3) «x
3dx «x
dv 3
— - —p = 3x36x
dx «x
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3
This is now linear in v. The integrating factor u = ef T 2 pBIny - x% Multiplying both
sides of the above by this integrating factor making the left side complete differential

d (1 13
dx x3v x3xe

d (1 _ gt
dx x3 ¢

1
—30 = 3€x + C
x
v = 3x3e" + Cx3

=x3(3e* + C)

Integrating gives

But v = y‘s, hence the above becomes
1
— =x°(3¢* + C)

3 1
y ==
x3 (3e¥ + C)
This shows that there are 3 solutions since the above is a cubic equation. But we can leave
the solution in implicit form

2.1.6 Problem 5

Problem Find both a general solution and a singular solution of

xz(y’)z —2(xy—4)y’ +y2=0
Solution
Rewriting the ODE as

2

y? = 2xyy’ + 8y’ + x (y') =0
Let y’ = p and the above becomes
y2+y( ) (8p+x ) 0

i

b2 — 4ac

This is quadratic in y. Solving for y = zi

y=xp=+ E\/4x2p2 -4 (8;9 + xzpz)

=xp+ \/xzp2 — 8p — x%p?

=xp+2/-2p

case one

y=xp+2y-2p
:xp+f(p) 1)

This can be written as
y=G (x, p)
Where G (x, p) = xp+f (p) This form of ODE is called the Clairaut ODE. Taking derivative
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w.r.t. X gives

, dG JdGdp
y=a-t+t5-="
dx  dpdx
But i’ = p and the above becomes
dG JdGdp
P=—-+t5-7
dx  dpdx
But i—c = p, hence the above reduces to
X
dGdp
= —— 2
0 dp dx )

G d
Then either == = 0 or = = 0.
ap dx

When Z—’; = 0 or y”” = 0 therefore the solution is
y=Cix+(C (3)

But we are solving a first order ODE. So we expect it to have one constant of integration
only. By comparing (3) with equation (1) whichisy =xp + f (p) shows that

Cy = f(Cy) =24 2G4

Then the solution will now contain one constant of integration C;. Hence the first solution

is
y= Clx + 2\/ —2C1

The second possibility comes from %C — 0. This gives

Ip
x+f’(p):0

-1

X+ 2% (-2p)2 (-2)=0

X NET 0
xy/-2p=2
—2px? = 4

2
P=

Now that we found p, we substitute it back into (1) given by v = xp + 24/=2p. Hence the
second solution is found directly as follows

Y =xp+24-2p

2 2
=——4+24/-2 -—=
X X
= +2 4
Cox x2
2 4
= —— 4+ —
X X
_2
Cx

Summary of case one From above we obtained the following two solutions

]/1 = Clx + 2\/ —2C1
2

Y2 ==

X
Where y, (x) is the singular solution since it can’t be obtained from the first solution with

9
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the constants of integrations by changing them to any value.

We now do the same steps for the case of ¥ = xp — 2+4/-2p. This follows the same steps as
above as the only difference is the sign and hence the steps will not be repeated. It gives

the solution
y3 = Clx - 2\/ —2C1

With the same singular solution. Therefore there are three solutions to this ODE and these

are summarized below
Y1 = Clx + 2\/ —2C1

_2
yz—x

yg = Clx - 2\/ —2C1

With v, (x) being the singular solution. Singular solutions do not have constant of integra-
tion in them and can not be obtained from the general solution by any substitution for
constants of integration. The general solution contain constant of integrations in them.

2.1.7 Problem 6
Problem

Find the general real solution to the following equation where A (x) is a known function

AX) Y+ A X))y + % =

Solution

Let us first assume A (x) is constant not zero. The above reduces to

This is harmonic oscillator It has the form of ¥ + w?y = 0 with w = % being the natural
frequency. The solution to this is easily found to be

Y (x) = Cq cos (wx) + Cy sin (wx)

= Cq cos (%) + C, sin (%) (1)

Since A is not constant, then we can try a similar solutio but use f (x) for the arguments
of the trigonometric functions

y(x) = Cq cos (f (x)) + C;sin (f (x)) (2)
where f (x) is function of x to be determined. Hence. From now on, we will write f instead
of f (x) to simplify notation.

Yy =-Cyif’sin (f) + Cyf’ cos (f)
v = =Cyf”sin (f) = Cy (/) cos (f) + Caf” cos (f) - Ca (£7) sin (f)
Substituting these back into the original ODE gives
42 (=Cafsin (£) = C (£7) cos () + o cos (£) = C (1) sin () +
AA (—le’ sin (f) + sz’cos( )) + Cq cos (f) + Czsm( ) =0

Collecting terms gives

cos (f) (—C1A2 ( f')2 + CRA2 7 + CLAA ' + C1)+sin (f) (—C1A2 £ - CLA% f')2 —-CLAAf + cz) =0
Since this is zero for all sin and cos then

CLA2 (') + CA2f" + CLAA'f" +Cy = 0

—Cy A2~ A2 (f7) — CLAA + Cy = 0

IThanks to hint from the Professor.

10
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Multiplying the first equation by C, and the second by C; gives
2
—CoC1A2 (f') + CBA2f" + CRBAA'f' + C1Cp = 0
2 A2 ¢ 2( g 2 2 ’ £ _
—C3A2f" — C1CA% (f7) = CRAA'f" + C1Cp = 0
Subtracting the second equation from the first gives
2 2
(—C2C1A2 (f7) +CaA%f" + CRAA'f" + clcz) - (—C%AZ f = CiCA2(f1) - CRAA'f" + clcz) -0
2 2
—CoC1A2(f') + CRA2F" + CRAA'f" + C1Cy + CRA2f" + C1CLA2 (') + CRAA'f = C1C, =0
CFA%f" + CSAA'f' + CIA%f” + CIAA'f' =0
f7(CBA% + C3A?) + f/ (CRAA" + CRAA") =0
Let us call C%A2 + C%A2 = p and C%AA’ + C%AA’ = [ for the moment. The above becomes
pf” +pf =0

Since f is missing, then we can solve the above by assuming f’ = v. The above becomes

B
iy
v+ %v = 0. This is linear in v. The integrating factor is [ = ef T

i (ef dev) =0

. Hence the ode becomes

dx
—fgdx

Since the proposed solution in (2) contains integration of constants already, we can choose
C3 =1 without affecting the final solution. Hence

=l

v=_Cze

Therefore

B
-Eq4
f(x):fe f# JCdx+C4
C3AA'+C3AA

|G
:f Cie = 42 “axldx +Cy (3)

Again, since the proposed solution in (2) contains integration of constants already, we can
choose C4 = 0. The above becomes

B
- L4
f(x):fe St gy
C3AA"+C2AA

—f—dx
2 22,2 42
:fe C2A +C1A dx

CZAA’+C2AA . .
2 1 can be simplified as follows

C3A2+C2 A2
CPAA +C2AA AN (C3+CP)  Aar
C3A2 + C2A2 A2(C3+c}) A

The expression

Hence (3) becomes
AA’

Flo) = f e T gy
= fe_f%,dxdx
_fe—lnAdx

- fAl(x)dx

11
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Therefore the solution from (2) is

y (x) = Cy cos (f (x)) + Cosin (f (x))

1 1
=C cos( Am dx) +Cy sin( A0 dx) (4)

Let us now try to verify this solution by substituting it back into the ODE. From (4), where

we now write A instead of A (x) everywhere to simplify the notation

Y (x) = —Cysin (f %dx) (f %dx)/ + C, cos (f %dx) (f %dx)/
= —(Cy sin (f %dx) % + C, cos (f %dx) %

And y” (x) becomes

Y () = —Cl(cos(fAdx)(fAdx)—+sm(fAdx)(_Al)) |
el ) 2] S [ (22
V() = —Cl(cos(fAdx)F—sm(fAdx) /)/+C2(—sm(fAdx)E—cos(fAdx) Af;’)
—Clcos(fAdx)Az+Clsln(fAdx) Czsm(fAdx)Az Czcos(fAdx)

Substituting the above expression for y,3’,y” into the original ODE A%y” + AA’y' +y =0

gives
A
— Cysin (f Adx) — C; cos (f Adx) A_)
0

or

I

A? ( Cq cos (f Adx) + C;sin (f Adx)
+AA’( Cy sin (f Adx) — + C; cos (f Adx) )+C1 cos( A0 )+C2 sin( A0 )

Simplifying gives
1 . 1 , . 1 1 ,
— Cq cos fzdx + Cysin fzdx A" — Cysin fzdx —Cy cos fzdx A
CA"f1d+CA’ f1d+c f1d+C‘f1d—O
1 Sin A X 2 COS A X 1 COS A X 2 SIn (x) X =

Canceling Citerms gives
_ 1 1 , , 1 . 1
—C, sin fzdx — C, cos fzdx A’ + CyA’ cos fzdx + C, sin fzdx =
Which simplifies to
1 1
—C, cos (f de) A"+ CyA’ cos (f de) =0

0=0

Or

Solution (4) has been verified.

2.1.8 Problem 7

Problem Find the general real solution to the equation
3
xy”+;y:1+x3

Solution

12
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We start by writing the ODE as

X%y + 3y = x + x* (1)
The solution is given by
Y=Yntlp
where y, is solution to homogeneous ODE x?y}’ + 3y, = 0 and Yp is a particular solution

to xzy;,’ +3y, =x+ x*. We start by solving the homogeneous

x?y" +3y =0
This is Euler type ODE. Using the standard substitution y = Ax’, then y’ = Arx’},y” =
Ar(r—1)x~? and the above becomes
x?Ar(r—1)x2 +3Ax =0
Ar(r—=1)x"+3Ax" =0
Since x” # 0 and A # 0 then the above simplifies to
r(r=1)+3=0
—r+3=0

Hence

-b 1
r=—= Z‘Vbz—élac

Hence the solution is

VT

j 1 i
11 -—=
+ szz 2

1 i
y:C1x§+§
1o 1
=(Cix2x2" " + Cyx2x2

i —i
5 V11 - V11
= Cl\/;elan + Cz\/;elan
i —i
~V111 —V111
= Clx/;eZ nx+C2\/;€2 e

Using Euler formula the above can now be written in terms of sin and cos

y: \/;(Cle%\/ﬁlnx_'_cze%\/ﬁlnx)

Yp = \/E(C3 coS (%\/ﬁlnx) + Cysin (%\/ﬁlnx)) (2)

Now we find the particular solution using the method of undetermined coefficients. Since
the RHS is polynomial x + x* then we guess

Yy = A+ Bx + Cx?* + Dx* + Ex*

Then i’ = B + 2Cx + 3Dx? + 4Ex® and y’ = 2C + 6Dx + 12Ex?. Substituting these back in
(1)
22 (2C + 6Dx + 12Ex?) + 3 (A + Bx + Cx? + Dx® + Ex*) = x + x*
2Cx? 4+ 6Dx3 + 12Ex* + 3A + 3Bx + 3Cx? + 3Dx® + 3Ex* = x + x*
3A+x(3B) +x>(2C +3C) + x3(6D + 3D) + BE + 12E) x* = x + x*
3A +x(3B) + x> (5C) + x3 (9D) + 15Ex* = x + x*

By comparing coeflicients the following equations are generated

A=0
3B=1
5C=0
9D =0
15E =1

13
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Hence A=0,B = %,C =0,D=0,E = 11—5 Therefore

1 1 4
yp = gx + Ex
Hence the final solution is
Y=YntYp
1 (1 1 1
= x| C;5 cos E\/ﬁlnx + Cysin E\/ﬁlnx + 3% + Ex‘l

21.9 Problem 8

Problem For what values of k does the equation
y”—(l+k)y20 (1)
4 x
defined for 0 < x < oo have a solution vanishing at x =0 and at x = o0 ?

Solution

Let us look what happens at x — oo, then the term i > E and the ODE simplifies to

1
" _Zy=0
1Y
e 2y
Which has the solutions y = {ez ,e2 } We reject the first one since it does not vanish at
-1
x — 0o, and use y = e2”". Now we assume the solution to (1) is of the form
-1

y=P(x)ez" (2)
And we now try to find P (x). Substituting this solution back into (1), given that

—x 1 -x

' — Ple7 — _Pe?
y ez —sPe
ox = > 1 =
" —P’e2 — ZPle2 —_Ple2 + —Pe2
y e > e > e 1 e

= P’e7 —PleZ + ZPe7

X

Substituting the above into (1) and canceling common term ez gives

p” P’+1P 1+kP—O
4 4 x|

k
P’ -P —=P=0
X
xP” —xP' —kP =0 (3)

To solve this for P (x), we use Frobenius series. Assuming

P(x) = Z C, X"t
n=0

P (x) = 2 (n+7)c,x1
n=0

P” (x) = i m+r)(n+r-1)c,x"2

n=0

14
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Hence (3) becomes

x Z m+r)(m+r-1)cx""2—x 2 (n+7r)c, X1 -k Z c, X" =0

n=0 n=0 n=0

o0 o0 (e}
Z m+r)(m+r-1)cx"1 - Z (n+7r)c,x"" -k Z c, X" =0
n=0 n=0 n=0

(59 (o) (o)
Z m+r)(n+r-1)c,x"" 1 - Z (nm+r-1)c,x"" 1 -k Z Cp1 X1 =0
n=0 n=1 n=1

For n = 0, and assuming ¢y # 0 then
m+r(n+r-1)c, =0
() (r=1)co =0

r(r-1)=0
Hencer=1orr=0.
Caser=1
P = 2 Cnxn+1
n=0
= 2 Cpq X"
n=1
Hence

(o)
’ _ n—-1
P = Z ne,_1x
n=1

P = 3 () (n=1) ¢, 12"
n=1
And now (3) becomes

x Y, () (n=1)cpqx" 2= x Y nc,qx =k Y g =0
n=1 n=1 n=1
Y () (n=1) ¢y x™ = Y ney g x" =k ¢ qx" =0
n=1 n=1 n=1

Y () (n=1) g x™ = Y ney g x" =k ¢ qx" =0
n=2 n=1 n=1

Z (n+1)(n)c,x™ - Z nc,_1x" —k z Cp1X" =0
n=1 n=1 n=1

Hence for n > 1 we obtain

(n+1)(n)c, —nc,_1 —kc,.1 =0

_(n+k)cn—1
" onm+1)
Forn=1
(k+1)co
C1:
2
Forn=2
C(k+2)e;  k+2)(k+1)  (k+1)(k+2)
2T72E 200 2 T T o0
Forn =3
C _(k+3)c2_(k+3)(k+1)(k+2)c _(k+1)(k+2)(k+3)c
T30 B@® Q6 T 006 @ O
Forn=4

. _(k+ 4y _(k+4)c3_(k+1)(k+2)(k+3)(k+4)c
w6 @6) 0 0B @w@e)

15
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And so on. Hence
P(x) = E Cp1X"
n=1

= coX + X% + Cox3 + cyxt + -+

_. (x+(k+1)x2+(k+1)(k+2)x3+(k+1)(k+2)(k+3)x4+(k+1)(k+2)(k+3)(k+4) -
0 2 2)(2)(3) (2)(2)(3)(3) (4) (2)(2)(3)(3) (4) (4) (5)
2 (rDE+)R (EDEED(+3)xt kD +2 (k43 (+ D

= (o (x +(k+1) BTl + T 3 3 m 1

(4)

X2 x3 x2 x3 . .
Bute* =1+x+ -+ 4. Ore’ =1 =x+ -+ = +---. So there is an exponential term

inside (4). Hence to make (4) vanish at x — oo, then k needs to be a negative integer.

Taking k = —1 makes all terms with k in them vanish, leaving
P (x) = cox

So now the solution from (2) becomes

Y () = coxe 2
Which goes to zero as x — oo since an exponential decays to zero faster that x going to
infinity.
We now need to check if negative k integer value (specifically k = =1 which we picked from

above) will also make the solution vanish as x — 0. When x — 0 the ODE becomes

X0 (5)
U

k 1
Since - > - close to x = 0. Since k is negative integer —1 then the above becomes

"+ 5y =0
y'+y=

k
To see this will go to zero as x — 0, Intuitively since - is now positive and very large,
then this is like a harmonic oscillator with very large stiffness. (Spring mass system). When
the stiffness becomes very large, the solution goes to zero (the natural frequency goes to

infinity, since w = ; which means the period goes to zero since @ = 27T) which implies
no motion. So this shows that negative integer value of k found from first part makes the
solution vanish at both x — oo and at x — 0. Actually for x — 0 we just needed k to be
negative in order to change the sign. But for x — co we found we needed k to be a negative
integer which we choose —1. So this will work for x = 0 and x = oo.

21.9.1 Appendix

I first tried to solve the give ODE directly using series method. I left this here as an
appendix, not to be graded but as a reference.

L. . .. . . . . k
x is singular point. But it is a regular singular point since lim,_, x2; = x and hence the
limit exist. Therefore assuming solution is Frobenius series

o0 (ee)
— AT no_ n+r
y=x Ecnx —chx
n=0 n=0

Therefore y' = %> (n+7)c, X" and y”’ = X" (n+7) (n+7-1)c,x"*"2, then (1)
becomes

Z m+r)(n+r-1)c,x""2 - (Z + ;) E c, X" =0

n=0 =0

Z m+r)(n+r-1)c,x""2 - = E 0, — = Z X" = 0
=0 X0 4 o
(o) o0 1 o

E m+rV(n+r-1)c,x""2 -k Z c a1 — 7 E C, " = 0

n=0 n=0 n=0

16
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But kZ;o:O c X = kZ 11X 2 and E CpxX™T = En ) X2 and the above
becomes
Z(Tl+7’)(ﬂ+1’— 1)c,x n+r-2 kzcn— n+r2__zcn_ n+r-2 — ( (2)
n=0 n=1

The first step is to obtain the indicial equation. As the nature of the roots will tell us how
to proceed. The indicial equation is obtained from # = 0 in (2) with the assumption that
co # 0. This leads to

m+ry(n+r-1)c,=0
r(r=1)cg=0
Co is always taken as non-zero. This leads to
r(r-1)=0

With solutions 71 =1 or r, = 0. (We take r; as the larger root first, since Frobenius series
solution can only guarantee solution for the larger root, when the roots differ by an integer
as this is the case).

Since r; — r; is an integer, then this tells us we can obtain a first solution y; (x) associated

with 7; =1 from the Frobenius series
yi () = D ™! 3)
n=0

But to find the second solution v, (x) associated with 7, = 0 we can try either reduction of
order method or use

Y2 (1) = Ay (¥) In () + D d,x” (4)

n=0
Where A is some constant, which can be zero, and d, are the coefficients for the sec-
ond series. We have to do the above when the roots of the indicial equation differ by

integer. Otherwise, the second solution would have been found using Frobenius series
Y (%) EZOZO c,,x"*72 like with the first solution.

OK, Now we will first find y; (x) from (3)
casery =1

Using (3)

Q\
I
Nk

(n+1)c,x"

B
I
(e}

n(n+1)c,x" 1

<\
I
Nk

B
I
o

n(n+1)c,x"1

=
Il
=

Substituting the above into (1) gives

M +1)c,x"t - (— + —) et =0
n=1 4 x n=0

i n (7’1 + 1) Cnxn_l — 411 i Cnx”” _ ; i Cnxn+1 =0
= n=0 n=0
Z n(n+1)cx" 1 - L Z X"t —k Z e, X" =0
E(Tl+1)(n+2)cn+1x - = ch 1x —kECnxn =

n=0 n=0
Forn =0
(1) (2) Cq —kCO =0
k
C1:ECO

17
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For n > 0 we obtain the recursion equation

1
m+1)(n+2)c 4 — ch_l —kc, =0

icn_1+kcn
= LD (4 2)
Forn=1
1 1 k 1 K2 1 K2
o 160 + ke _ZC0+k(ECO)_ 0tz _ 3tg 1+2k2
27 @) 6 T 6 Ve TV g
Forn=2
icl'i'kCz
“TTe®
1k K 1+2k?
_ 10 K0y
12
k K 1+2k?
_ §C0+ Co 7
12
3k+k+2Kk3
_ 24
~ )
4k + 2k3
:CO
288
And so on. Hence
Y1 (%) = cox + 0162 + X3 + czxt + -
Koo 1+2k23+ 4k+2k34+
= coX + =Ccpx* + ¢ X +c X
05T ™0 0" 24 0" 288
1.k +1+2k2 2+4k+2k3 3,
= CpX —x X x4+
0 2 24 288

k 1 1 k
= (14 st [ 4 =22+ —— (44 2K2) 2P + -
cox( +2x+(24+12 )x +288( +2Kk2) 2 + )

I could not find closed form function for the above.

Now that we found y; (x), then y; (x) is, from (4), repeated here

Y2 (¥) = Ay (0 In (x) + Y7 d,x" (4)
n=0
Since we want the solution to vanish at x = 0 then we set A = 0 and y, (x) simplifies to
Y2 () = 2 " (4)
n=0

Where dy # 0. Hence y’ (x) = E:’ZO nd,x"! and y”’ = Z:’ZO n(n-1)d,x"2. Rewriting the
ODE as xy" - (Z + k) y = 0 and now substituting the derivatives into this gives

o0 x o0
xnz:_:‘)n(n -1)d, x"? - (Z +k)n§:%dnx” =0
;:;)n(n —1)d, " - Zn}:%dnxn —k;:;)dnx” -0

(oe] 1 (oe] (o]
Zn(n ~1)d,x"1 - 1 Zdnx”“ —kz_]dnxn =0

n=2 n=0 n=0

o 1 o0 o0
1 d n__ N "=k Yy dx"=0
1;_1(”"' )(1’1) n+1X 47121 n-1X ;g nX

For n = 0 we obtain kdy = 0 which implies dy = 0 since k # 0.

18
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Forn >0
1
(n+1)(n)d,1 - Zdn—l —kd, =0
1
L i +kd,
T ) (n+1)
Forn=1
1
—do +kd1 k
_4 _=r
Forn =2
1 1 k
i 2 tkdy i +k(§d1) _dy +2k%d, p 1+ 2k?
3720 6 D )
Forn =3
k 1+2k?
0 id2+kd3 dy+4kdy 5d1+4k(d1 o ) ~ %k(2k2+5) 4 (2k3+5k)
YT @) 0 48 48 BT BTV

And so on. Hence the second solution is
Yo () = Y d,x"
n=0
=dy + dyx + dox? + dyx® + dyxt + -
1 + 2k2 2k3 + 5k
X3+ 1—( )x4+---
32 384
3
ko 1+2k2 ,  (2K%+5k)

= 1+ —
dqix +2x+d1 % xX°+d; 284

I am not sure if the above solution for y, (x) is correct. I need to check this again later.

k
= dlx + Edlxz + dl

+

19



21. HW1 CHAPTER 2. HWS

2.1.10 Key solution for HW 1

@ X()/,/+yi= XY)’/ ﬂll"r\(/}:al/"m Cx}

| 7")‘ )/ = XV -7 5__‘_/_ ~ _.Z.— ; fc"‘/f)d/‘aj/(/
A V-l
- ¢ v ' 7z
X s v € > [y = Cce
/ al
€Y ) 5 — Tr/v w= Xty
(X-r])
Leds, H o x = ——0%12" J‘f/'afu//r,
/|t —¢

uw - afnn‘)(f’)
Xty - a’ﬁz/l(%y

@ yl/ + y’/L_r /] = 0O Lacke R Var/aj/(,/,
g =y ploe -(ptel)  gperadie

. —_— .
P;v“/’an(’“ ) ;,;L

20
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@ iyt sty oy o
Oifteretide: axy e axyly! ~alyexr)y’
~2(xy )y 4 Ay =y
Fachrize!  y [ X'y =xy +éz] y
G) y':0 =» y= aar b Subhtute nh originel esuntian

2,
M/}ﬂo‘r}l ¥ JJ}\/CJ Ow// 1,7L a = é

[ =g

/

- £, - ~ C/ .S,O } Ve }; M{/Athﬁ‘ﬁl ﬂ?ﬂ
D A A ve ‘
( ) X ;‘47l €9 Pa+’L‘j ‘7&’07‘7/\'

)
8

it

- 2
) X+Cx

Sulys f('ﬁ,‘/’e, Wb Oflj Ml ei‘”‘iﬁ”" W}H\oh " ‘f'))v""('
0;4)/ £a c =0

22
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@ AZ()())/,’ +A‘(XM//A)/’+ y =0
Netice Tt o (A) = odim (X)
Lok 40 Solution ot The Horim
Vo5 o€, cosdb) v cp smfl) R ek ol o st

Ia/w"'h“an/
. / )
)//: -—(;/{/J,u{l + C, F cof
/2 “ : --C{’” ¢ r”/z
y' o= Coff[_ c f "t toaf[ -Gt - <

Satisfied if "C:;

(I)ﬁn Jo e/ n '+ Ma"’Lf'fr)

{ y =€) co foo - C"th

23
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Yp ] XMy v 3y, =0

X 0 «a i"f’;ujw‘ J‘:)nj,-,;/zm /)0,}77“_ Tr) )H - X

@ xY” v*-—ff.y < )+2c3
R
L)“ ‘i’

. J

o , - _ I R | H
ﬂen J(J") +‘? =0 = g = 2 —_ a;:"a

+ . jﬁj
&

No w X = rfxp[j"x A*] < c’/\/o/jg,[j«ﬁ’]

or cu(fg/nx) ¢ S (’Z‘T/ﬂ)
e () (50

T/‘/ /F oy X)S;L/'-%ﬂ?(]”f XXL"'/’V
1
2

8&\*3‘

.f . in LJ’ '} l/'ﬁ/;h} e "=) o« = )-j:' () -

Jp -
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& '(‘é*’f‘?)x:o

i
lz— C()m/ﬂf(.,/ 7‘7,
X

L/ .
R -2 x
2 WC Wﬂnf— )/ - e

A.f X 2P héj)c’cf

Then y v e

.
Now write y = £x) e

L— f’oly ne MtAa// vh X ,?

< n -l 4y ’é , h-2
() - L oaxn fls Enex 2 EaG)x s,
=1

n hz{( hZ 2
. }2 n -l 0
Sulsthtio: =Z {q('n-rl)am/ -na, - a”;” -
n=l
=) a = "2‘:}3—“ a, Coel 5 -+ So  Thiy
e n (1)) On d
n 2,
| X the Al
WU\A«I&[ Ie/fl 'ILD [~2 ‘pfi(/—}.)r e ) 0‘40[ ) B )
72X Xx 2
J‘p)u‘IL/M woould 90 ot f >/ - e e = e )
X 2
e = ; ) m '3’ 2 J , -
j@/‘i&, '}'el‘m;\nu ey o h + }g_ - O \é)r Lome N=14,

L= -l -2 -7, .|

J
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221 HW 2 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 2 due Monday February 11. Show all work. Use of
Mathematica, MatLab, or similar software is not allowed.

1. (4 pts) Sum the series

1 1 1 1 1

14+- - — 4 - 4=
+4 16 64+256+1024

2. (4 pts) Sum the series
1 2 3
ITRET

3. (5 pts) Sum the following series assuming that 0 < 6 < 7 for definiteness.

f(0) =sin(0) + %Sin(%) + ésin(%) + ;sin(49) +oe-

N

. (5 pts) Evaluate the series

_1)n+1n2x2n71 43)3 9I5

=
f@:n; O A T

in closed form by comparing with

. 3 ab
sin(x) = a1 + =
5. The Euler numbers are defined by
- n Egn 2n
sec(x) = T;)(_ ) (2,’1)]

(a) (1 pt) What is Ey?

(b) (4 pts) Find a recursion relation for the Es, when n > 1. Determine
Fs, Ey, Eg, Eg explicitly.

(c) (2 pts) The partial fraction expansion of the secant is
42 (—1)™2m+1)
T = (2m + 1)2 — 4k2

m=

sec(km) =

Expand the right hand side in a power series in k& and use it to evaluate the

sum o
Z (_1>m
= (2m + 1)2n+1

in terms of one or more Euler numbers.

26
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2.2.2 Problem 1

. 11 1 1 1
Fmdthesumof1+z—ﬁ—a+g+ﬁ_

Solution

We would like to combine each two consecutive negative terms and combine each two
consecutive positive terms in the series in order to obtain an alternating series which is

easier to work with. But to do that, we first need to check that the series is absolutely

convergent. The |a,| term 1s , therefore

L= lim |24
n—oo an
1
= lim 4t
n—oo| 1
471
41’[
= lim
n—oo | 4n+1
1
4

Since |L| <1 then the series is absolutely convergent so we are allowed now to group (or
rearrange) terms as follows

1 1 1 1 1 1
—+—|+ + - + +
16 64 256 1024 4096 16384

5 5 5 5
T4
5

“oa T1022a Tessa t

1 1 1
16 256 4096

5 ()
_120 42n

—ZZ(D (11) (1)

n:

4

8 »—\

n

00 n 0o n _ 1 .
But Enzo (-1) (16) has the form ano (-1)" " where r = T and since |r| <1 then by the
binomial series
MY P =T—r 42—

n=0
1

Y

Therefore the sum in (1) becomes, when using 7 = 11_6 the following

5 (16
T4 (ﬁ)
Hence
5=3
Or
S=1.176

27
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2.2.3 Problem 2

. 1 2 3
Fmdthesumofa+ﬂ+5+...

Solution

n+1
S:E n!

n=0
B n 1
=2t A
n=0 n=0
i LA
=) (n-1)!
_Z 1
= (n-1)

1
=), —+e
n:_ln!

1 1
=——+ ), —+e
(=1)! Z:On!

1
_m+€+€
—(_1)!+ e

Now to handle ﬁ, we use Gamma function definition for factorials I' (n) = (n —1)! for

positive integers, and the generalized I' (z) = £m x*"le7*dx for non positive integers. By

definition I' (—k) where k is negative integer is co. (Gamma function is defined only for
negative values other than the negative integers).

1 1
Hence — = — = 0. So the above result now simplifies to

(=1)!
S=2e

2.2.4 Problem 3
Sum the following series assuming that 0 < 6 < 7t for definiteness.

f(0) =sin(0) + % sin (20) + ésin (30) + ;sin 40) + ---
Solution

Since "0 = cos (160) + isin (n0) then the above is the same as writing

o 1 1, 1,
£(0) = Im(e'? + =9 + =39 + —0 + ...) 1)
3 5 7
.0
Let ¢'2 = x, then the above becomes
1 1 1
=Im(x® + =x* + =2 + =8 + .-
f(0) = Im(x 3x 5x 7x )
1 1 1
= Im(x(x+ §x3 + ng + §x7 + ))

1 1 1
Let g(x) =x+ gx?’ + ng + ;x7 + ---, hence the above becomes

£(6) = Im (xg (x))

=Im (x f g (x) dx) (2)
2
But ¢’ (x) =1+ 3% + §x4 +oo=1+x2+x*+x°+---. Now for |x| <1 and using Binomial
series this has the sum
’ (x) =
§W=1"73

28
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Substituting the above into (2) gives

£(6) =Tm (x f 1 szdx) 3)

1 1
fl—xzdx:fmdx
1 A

Let oy = = : Hence A(1+x)+ B(l1-x) =1 o0or A+ Ax+ B - Bx =1or

xX(A-B)+(A+B)=1. Therefore A=1-Band A=B. Hence 2B=1or B = E and also

But

A= % It follows that the above integral becomes

B
fl xzdx 1- x+ xdx

2 1-x 1+x
:E(ln(l+x)—ln(1—x))

1 1+x
=—In|—
2 1-x
Substituting the above into (3) gives
x. (1+x
0)=Im|=1
0= im(3n(i5)
0

Now, replacing x back by €'z gives

0
0 1+¢'2
f(0) = Elm[eﬂn( 6.9 ]]
1-¢'2
_io

Multiplying the numerator and denominator inside the In by e ¢ gives

dx

—-i0 1.6
1 0 ¢4 +e4
_— l_
f(@)—zhn e21n )
es —¢'n
6 -0
;9 €t +et
0 -0 -i0 .0

:Elm e2ln ﬁ
dlyed e 4 —¢'%

0 . 0
But cos (Z) =—F and sin (Z) = 5 , therefore

(4)

H —i60
€T +e1 =2cos

9 —i0
et —et :215111( )
Using these in (4) gives

1 0 2 cos (g)
f(0)= EIm €2 ln| ——~*

.. 7]
—2isin (Z)
6
1 0 cos |y

ZEIm e2lnl|i . (6)
SIDZ

Using Inz = In|z| + i arg (z), where the principal argument is used. Here z = i

()

0
COE( ) This

wlf)

29
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{9
an(2)

LS

and

gives [z| =

| D

Ccos (g)
sin (g)
(2 (2

—- > 0 for all 0 in the range 0 < 6<ntheni' >
Sll’l(z) Sll’l(z)

positive 7 direction. Hence

arg (z) = arg|i

Since since is complex in the

T
arg (z) = 5

In iCOS( ) =
sin(g) sin(g)

But we can simplify the above more using
0
cos | 1
(2 an (2
sin ( 4) an ( 4)
Inl1-1Int 0
=Inl-Intan|—
4

I tan 2
=—1n n|—
Mg

Substituting all the above back into (5) gives

Therefore we can write that

D

In

1 ;0 0
f(0) = EIm e'2 [—lntan— +iz

i3l

—11 6+" 0 Int 9+,7z
—2H1 COS2 ZSln2 n tan 12

4
_1I Qltei'91t9+in 6 n© 6
—2m cosznan4 81n2nan4 20082 2Sln2
1 ) 0 0 = 0 v} 6 n 6
=—Im|i|-sin—Intan — + —cos — |+ |—cos —Intan — + — sin —
2 2 4 2 2 2 4 2 2

Now we can take the imaginary part, giving the final answer as

1 0 0 0
f(0) = > (g cos 5 sin 5 In tan (Z))

2.2.5 Problem 4

Evaluate the series f(x) = 3% el 0 Sy ing it with
valuate the series f (x) = el D) =Xx- - 5 y comparing it wi

. xS x5

SID(X):X—§+§—"'

Solution
Since
) (_1)n+1 nzxzn_l
f=Y ,
~ (@n-1)
And since

(_1)n+1 x2n_1
2n -1)!

sin (x) = Y,

n=1
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Then we start by taking derivative of sin (x) twice, which gives

d & (-1 2n - 1) x21-2
G — 1
i ) ,Z‘l 2n-1)! @
And differentiating one more time
42 > (=1)" 2n-1) (2n - 2) x23
P e § D -2
dx? | 2n-1)!
i (-1 (4n? - 61 +2) 5213
— 2n-1)!
00 n+1 2,2n-3 00 n+l  2n-3 n+l 23
nex (-1 nx (-1)
S M A S B N S S
nz_:l (2n 1)! nz::l 2n-1)! nz::l 2n-1)
Multiplying both sides by x? gives
2 ( 1)n+1 2 2n 1 ( 1)n+1 2n-1 00 (_1)n+1 xzn_1
sm(x) 42 )1 —62 +2;::1W
( 1)n+1 2n 1
=4f (x) - 62—)!+2sin(x) (2)
Let
~ ) (_1)n+1 ann—l
800 = g‘l 2n 1)
Then (2) becomes
dZ
x? d—zsm x) =4f (x) — 69 (x) + 2sin (x)
—x? cos x = 4f (x) — 6¢ (x) + 2 sin (x) (3)
So we just need to find g (x). For this we can use (1). Writing (1) as
( 1)n+1 2n—2 ) (_1)n+1 xzn_z
— s1n (x)=2 -
E -1)! 712::1 2n-1)!
( 1)}’Z+1 2n—1 00 (_1)i’l+1 x2n_1
x— sin (x) = 2 -
E -1)! nz::l 2n-1)!
d
xd—x sin (x) = 2g (x) — sin (x)
Hence
d
x— sin (x) + sin (x)
_ dx
g = >
Using the above in (3) gives
d
42 X— sin (x) + sin (x)
xzﬁsin(x):4f(x)—6[ dx > + 2 sin (x)
—x?sin (x) = 4f (x) — 3 (x cos x + sin x) + 2sin x
Solving for f (x)
—x?sin +3x cos x + sin x
fx) = y
(1 — xz) sinx + 3x cosx
4
Or
4x3+9x5+ —1(1 xz) i x+3x X
X 30 5 =1 sin 1 cos
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2.2.6 Problem 5
The Euler numbers are defined by

sec (x) = E( 1)" (2 )'
(a) What is E,?
(b) Find recursion expansion for E,,, when n > 1. Determine E,, E4, E¢, Eg explicitly.

(c) The partial fraction expansion of secant is

(-D)" 2m + 1)
sec (k
(kr) = mzo 2m + 1)

Expand the right side in a power series in k and use it to evaluate the sum

) (_1)111
mZ=O (27’11 + 1)2n+1

In terms of one or more Euler numbers.

Solution

2.2.6.1 Part (a)

Using the formula given, we see that

sec(x) = Eg — Ex + iéf 4 %x6 + -
When x = 0 the above gives
sec(0) = E
Hence
Ey=1

2.2.6.2 Part (b)

Since cos (x) sec (x) =1 then

1 = cos x)(Z( 1)" (527;‘ Zn)

4
. . . X X
Using power series expansion for cos(x) =1- >+ 7 — - = Zk 0

-[£55 (B g)

To see the pattern, so that we can combine the product above, let us multiply few terms,
and collect on powers of x

2 4 6 E E E
:(1_x_+x__x_+ )(EO__2x2+ 44 _6x6)

(1)

2k
@ then the above

becomes

21 41 6! 2! 4. 6!

E, E E, E, E Es Ei E E
_ 0 2(_E2 _Eo), afBs B2 Eo\ s E_Ei _E _E
= (o) +x ( . )” (4! +2!2!+4!)+x ( 61 214l 412l 6!)+

E, E E, E, E E, E, E E
— 40 P 40, =2  —4) 6|20, =2, 4 "6
= (Eo) x(2!+2!)+x(4!+2!2!+4!) x(6!+4!2!+2!4!+6!)+

Therefore the above can be written as

[oe] n 1 . "
1= ;(gg (21 - 2Kk)! (2k)!E2k) (1)
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When 7 = 0 then the RHS EZ:O mEZk = Ey = 1. Hence we can rewrite the above

by starting sum from n =1 as follows
1

1=1+ Z (E = 20! (2k)'E2k)( —1)" x2n

0= le (kz:;) 21— 2K)! (2k)!E2k) (-1)"s*

Equating terms of powers of x on both sides: since left side has no x, then this implies the
coefficient of x in the RHS must be zero. This implies

C (-1) 3
,Z% (2n - 2Kk)! (2k)!E2k =0
n 1

kz::g (2n - 2Kk)! (2k)!E2k

Since we want E,,, then we make the sum stop at n —1 to isolate that term. Hence the

=0

above becomes

n-1 1 1
Eoi | + E, =
(,Z% (21 — 2k)! (2Kk)! 2") (2n — 2n)! 2n)! 2"
’i L Esi | + ! E,, =0
& @n =201k %) T @
nz_]l @l V+E, =0
S an-26)1 k) %)
n-1
2n]
E EZkJ + EZn =0
20
Therefore the recursion formula is finally found as
n-1
2n
E = — E 4
w3 0

Using (4), we now calculate E;, Ey, Eg, Eg.

For n =1 then (4) becomes

> (2)!
lg) (2 - 2k)! 2k)'
(2)!
G
= —E,
=-1
For n = 2 then (5) becomes
1 4)|
=~ X G20 (4 — 2k)! (2Kk)! Eax

k=0
)’ 4
(@' T mwaﬁg
@3 Q)
@0 (m@)E)
-1+ @ G)(-1)
- _(1-6)
=5
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For n = 3 then (5) becomes

2 (6)!
=~ o (6 — 2k)! (2k)! Ea

k=0
(6)! (6)!
( © " 622t ) <4>!E4)
(EO L OB, , OO,

(EO + 15E2 + 15E4)
=—-1+15(-1) +15(5))
= -6l

For n = 4 then (5) becomes

o (8)!

Be = _,Z% (8 — 2Kk)! (2k)!E2k
(@) (8) (8) (8)
=l o T @ T Ge) (6)!56)

~ (8)! (8)(7)(6) (5) (8)!
=~ \Fot (6)!(2)!E2 Y Fat (2)!(6)!E6)
(8) (7) (8)(7)(6) (5) (8)(7)

or 2t Twee o E6)
= - (EO + 28E2 + 70E4 + 28E6)
=—(1+28(-1)+70(5) + 28 (-61))
= 1385

= - E0+

Summary

Es = —61
Eg = 1385

Bl WINPO
ap!
=
I
€]

2.2.6.3 Partc

(-1)" 2m +1)

L @m +1)* - (2k)2
2m+1)

(2m +1)% - (2k)2

1
m+1) -
1

_ @ )
@m +1) (1 L
)y 1

e )
@m+1)?

sec (km) =

MS ||M8

3
I
(en]

SRS :1|u> :1|u>

NIE

T

=
S

(2k)?
2m+1)

3
I
o

(-1)"

Il
SRS
D¢

3
I
(en]

SRS

3
I
(e}

NoE
[SIPS
S
+
=

—_—

SRS
NoE
N |~
3
+

3

Il

(e}
~
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2n
. 2k 1 2k . . .
Assuming |—| <1then ——— = >* (=) . From Binomial series. Then the
2m+1 (1_( 2k )) n=0 \ 2m+1
2m+1

above can be written as
2n
43 D" (& 2k
k -~ =
sec{fm) = Eo(zm+1)(z(2m+1) )
Interchanging the order of summation in order to combine m terms

00 ) m 2n
sec (krt) = é Z k2n(z (-1) ( 2 ) )

- = @m+1)\2m+1
== ), k" -1 - 1
25 (3 e ) i
But since sec (x) = En O( -1)" 52’; x%", then when x = k7, this becomes
sec (k7t) = 2( -1)" (2 )| kr)*"
NV 4y Eon o von
_Z%k (-1) ) (n) (2)

Comparing (1) and (2), we see this correspondence

—ZkZ" 2(1) ) Zk2"<1> o

(2n)!
Hence
é - _q\" 22” _ EZn 2n
T(mz::o( 1) T (1" o] ()
< (_1)m _ n 1 E2n 2n
mzjo am 1 Y (_) (ﬁ) @y ™
_ 1 EZn 2n+1
- () =)
Therefore
N ) Y G Exn |, ont1
mzjo (2m +1)2"+1 =D (22(”+1)) (2n)! ()

Where E,,, are the Euler numbers found above.
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2.2.7 Key solution for HW 2

O T A L

Series

Cony é’/y{J défo/w/’cﬁx J‘,L)CC /anfl _

It

. X
@ se Trade Zreee Leks relded foe

o 2!
, - )
- VL Le
x': 2 ™ d’(){cy:/g T ) n’
€ "o ne: Ax ox PEY) ‘ n=o ’
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& f(e) = sh@+ = Sih(26) + Y r S fulig) ..

J
“e ide F16 4
T | I L4 6
= _Lm{C + 'é'g + _J_'e - ?(ﬁ N ”}
— 4:_'6: 4,/,@: / A'LQ 4% Ny A'sz—f ”7
= j.m ¢ 2 e . 7€ = E_C »+7 e
1 >3 / - 7 N
= Tm g where g = Z(foz,?z¢7z7n)_z[)
is
ot Z z e 2~
l
! =4 Z"/v '26‘4-/r/ oy 2
L= ]tz S
+Z
Now = '/Z\ (i ) + o + i b
/‘Ca/ Conay 7"@»*/‘
i g
’ ‘1
If’z /*C)‘ e + e )

~A,-flh

(cw% +4J>h1‘z)/ /”(+an2) + Qar da é]
2

£ = Imy = COJ"[bTﬂ:] “J”“ﬁ/ﬂ(h"'ﬂt) tasm %

I

- ﬁm( 0% /Z”(m ) ,;g~%(+an%)

No w £lo) = {/T,) =0 = a <0,
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-
7t 2 -l
'F = g ( ’) h X LDC‘/(J- I)—kc pe 019/"(/&,}-/”(&/

(Qn—l),l ﬁ _‘jc'f— n’z_ ‘/?M'}?A,
<4 n+} an
- 2 (-1) K, Xolg_ 22 f—’)m)nxu%
" (an -1} Ze n=t  (an-1)"
' 0/ ) h+) 2. Jh—/
Ad(xgt)-az D X o o4y
hzy (Iln—’),
A
= x" - <L XD o x ohx
3! !
fl_g_ -~ X Cof X~ + SHnx j'_/.[;(géz :J:(XCO/X-}-WV[X
Ax A

by

Ix Cor X~ A‘ZfMVC 4 Sinx 4 X Cosx

. 2 .
2x cosx 4 (on)fmx
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f ~ n E:Qh 2n
Sec(x) = g (-)) . :
n =0 ('Qh)i
(&) x=0 Sech) =
ofs > 2n
. ~ n -1)"x 275 (1) X
6) - e (‘__)) an an 2 R b
©ode J“é )l meo (am)! Jln=o ()
T)w m =h Zp ‘-}g,m g)VCJ l T)w¢ r‘ff‘)' mwﬁ?" Vani,h
order 5)/ order, For nzl
n -1 ho_ _
LS D S N B
(2n)! P (anma)t Ty o)l
JM)A’r . h ! — ’ i —
F‘?n ’l’,__(j’i_z_’__ 2n- A A A.u,_c + o (:o =0
2! (an-2)’ 4! (2n-4)! '
Note Th.t The coeff/de,ﬂt/ dre é}%omﬁz/ CﬂfT[r[/‘m”elef‘
E;‘L = ~I E;’ o f Q :“6/ @: /353
(("7 FM J‘ma// }Z Wwe Can €;«/ﬁt¢/
_,__,,—L—':—-——'L = ( )
(am+)) ~Yk [m#)) Aml
i / 2 (4h 5"
) [9‘”‘-”) =0 ('RM‘I));V‘
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e

. An
n mcQ 2""‘"’ (me ])

h =0

A

(~/)
- L{ 2Zn
T o7 f (2k) f,_,,—»-—(am SR

,/9 2n
seti) = L2 2

2
f # Lan (‘kr)
i) = -1) == 7
C()m/va/‘a ’/’b Icc(}bﬁ) = ( (9.

!
h =0 )
o'/‘dlér Z)ﬂ 0>”/ff i;! /2
, 2n
Ly - 2n - (” ') - Lgn
= 4 f 2,”( T
4 = (z2m- @n) ’
-
. Ant)
A (-})M ~ (—*l)y)(_"i
’ B > (Qn))
= (Qm‘”)ghﬂ x

40



2.3. HW 3 CHAPTER 2. HWS
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2.3.1 HW 3 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 3 due Monday February 18. Show all work. Use of
Mathematica, MatLab, or similar software is not allowed.

1. (4 pts) Consider the function f(z) = z'/™ where n is a positive integer.
The branch point is at z = 0 and the branch cut is chosen to be along the
positive x axis. How many sheets are there? What is the range of 6 corre-
sponding to each sheet?

2. (5 pts) Derive the formula

tanflzzzln <Z+Z)
2 1 — 2z

3. (5 pts) Using the formula for tan™! z from the previous problem, find the
real functions u(z, y) and v(x,y) in the expression tan™! z = u(x, y)+iv(z, y).

4. (6 pts) In the domain r > 0, 0 < 6 < 27, show that the function v = Inr
is harmonic and find its harmonic conjugate. Do this in both Cartesian and
polar coordinates.

5. (5 pts) Find the value of [ f(2)dz where f(z) = ¢* for two different
contours. C} is a straight line from the origin to the point (2,1). Cs is a
straight line from the origin to the point (2,0) followed by another straight
line from (2,0) to (2,1).

2.3.2 Problem 1

1
Consider the function f (z) = z» where 7 is a positive integer. The branch point is at z = 0

and the branch cut is chosen to be along the positive x axis. How many sheets are there?
What is the range of O corresponding to each sheet?

Solution

Following the example in the class handout, where it showed how to find the number of
1

sheets for z2, the same method is used here, which is to keep adding a multiple of 27
angles until the same result for the original principal value of the function g (z) evaluated
at 0 is obtained. This gives the number of sheets.
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Let
1
g(z) =zn
1
g(r,0) = (reie)”
1.6
g(r,0) =rue'n (1)

In the above, O is called principal argument. And now the idea is to find how many times
27 needs to be added to 0 in order to get back the same value of original of g (r, 0) at the
starting O that one picks. Adding one time 27 to 0, equation (1) becomes

1 .(6+2n)

g(r,0+2m) =rne n
1 .0 .2m
=pnent
1 .60 .2n
=yne'nen

And we add another 27, or now a total of 47

1 i(9+4n)
g(r,0+4m) =rne =
1 .0 .4m

A fad
—ynen n

1 .0 .4n

=ynene n
And so on. We keep adding 27, or a total of k (27) such that the last term above, which
k@2n)i
in term of k is e » simplifies to 1 which implies getting back original function value at
g (r,0). Hence for k times we have
1 (0+k2n)
g(r,0+k(2mn) =rne n

0 .k
;9 4k
n n

1
n

=rne

.0 .k(2m)
ene n

1

=rn
1 iQ Z.k(277) 1 1‘9 . .

We see from the above, is that only when k = n, then rnene » =rne ne2™ But 2™ =1,

therefore it reduces to

1.0
¢(r,0 +n(2m)) = rne'n
=g(r,0)
Which is the original value of the function. Therefore there are 1 sheets.
The formula that can also be used to obtain all values for this multivalued function is
1 i(g+2—nk)
g(r,0)=rne'\n " k=0,1,---n-1

Now to answer the angle 0 range question. From the above, we see the range of the angle
for each sheet is as follows

Ri:0<0<2m
Ry, :2n <60 <4n
R;:4n <0 <6bm

R,:n-1)2n <60 <n2n)
Sheet R; is called the principal sheet associated with k = 0.

2.3.3 Problem 2

Derive the formula

1 i+2z
arctanz = = In (—)
2 1—z

Solution
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Let w = arctan (z) hence
z = tan (w)
sin w

zZ =

Cosw

. eiw_e—iw eiw+e—izv

But sinw = > and cosw =

, hence the above simplifies to

olW _p—iw

2i
oW 4 p—iw

2

1 elw _ e—lw

Qe 4 et

eiw _ e—iw

zZ=—————"
piw 4 p—iw

Multiplying the numerator and denominator of the right side by e™ gives

eZiw -1
“T ey
Let ¢ = x then the above is the same as
ox2-1
1Z =
x2+1
iz<x2+1) =x2-1

xliz+iz=x%-1
Xiz+iz-x2+1=0
¥ (iz-1)+(1+iz)=0

, —(+iz)
T (iz-1)
(1 +iz)
 (1-iz)
Simplifying gives
, i(-i+z)
i(-i—2)
@)
(-2
Hence

zZ—1

—-i—z

=
Il
H
—_—
~———
N =

But x = ¢, and the above becomes
1

—7\2
v _ z. i
-1—z

We need now to decide which sign to take. Since z = tan(w), then when w = 0, z = 0

because tan (0) = 0. Putting w = 0,z = 0 in the above gives

1
=+(1)2
==+1

Hence we need to choose the + sign so both sides is positive. Hence
1

—_i\2
i _ zZ—1
—-1—z
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Now, taking the natural log of both sides gives

1
1w =In|—
—-1—z
zZ—1
11/1( ] )
—-1—z

iw =

= N1
1

i [(z+1
=-In|—
2 l—Z)

But w = arctan (z), hence the final result is

i i+z
arctan (z) = 5 In (—)
11—z

2.3.4 Problem 3

Using the formula for arctan z from the previous problem, find the real functions u (x, y)
and v (x, y) in the expression arctanz = u (x, y) + v (x, y)

Solution

Let

i i+2z )
—Inl— | =u+iv
2 (z—z)

where u = u (x, y) JO=0 (x, y) are the real and imaginary parts of arctan (z). Therefore

1 1+ 2z 1 1+z . 1+ 2z
—In|— | =<|In|—|+i|larg| — | + 2nn n=0,+1,+2,---
2 1—z 2 1— 1—z
i i+z| 1 1+ 2z
= =In|—1|-=larg| — |+ 2nm (1)
2 i—z| 2 1—z
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Where arg( ) is the principal argument. But since z = x + iy then we see that

i+2z

i+(x+iy)
i—(x+iy)
i+x+iy

— iy
x+i(1+y)
—x+i(1—y)

i—z

(2)

And the principal argument is
 +
arg (u) =arg(i+z)—arg(i—2z)
i-z
=arg(i(1-1iz)) —arg(i(l +iz))
=argi+arg(l —iz) —argi+ arg (1 +iz)
=arg(l —iz) + arg (1 + iz)
Letting z = x + iy in the above results in

g(L) = arg(1-i(x +iy)) —arg (14 (x + i)

:arg(l—ix+y)—arg(1+ix—y)
= arg ((1 +y) —ix) —arg ((1 —y) +ix)

= arctan (m) — arctan (1 J_Cy) (3)
Substituting (2,3) into (1) gives

N arctan i +2nm n=0,+1,+2,---
1+y 1-y

—l t - t a +2n
4 ( 5 |arctan T+y arctan Ty yd

Setting the above equal to u + iv shows that the real part and the imaginary parts are

(arctan( )— arctan( ad )+ 2n7’c) n=0+1,+2,---
+y -y
1 y+
v=-1In )
x2+( )

Therefore
i+z
arctan (z) = = ln (—)
2 \i-z
=u+1iv
Where u,v are given above. We see that arctan (z) is multivalued as it depends on the
value of 7.
For illustration of u (x, y) and v (x, y), the following is a plot of the above found solution
showing the real part u (x, y) for n = 0 (principal sheet)
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And the following shows u (x, y) with both 7 = 0 and 7 =1 on the same plot showing two

sheets

Plot3D[-1/2 (ArcTan[(1+Yy), -x] -ArcTan[(1-Yy), x]),
{x, -Pi/2,Pi/2}, {y, -Pi/2,Pi/2},
AxesLabel -» {"x", "y", "u(x,y)"},
BaseStyle - 14, Ticks » {{-Pi/2, 0, Pi/2}, {-Pi/2, 0, Pi/2},
Automatic}]

Figure 2.1: Real part u(x, y) using principal sheet

m1= Plot3D[{-1/2 (ArcTan[ (1 +Vy), -x] -ArcTan[(1-y), x]),
-1/2 (ArcTan[ (1+Y), -x] -ArcTan[ (1-y), x] +2Pi)},
{x, -Pi/2,Pi/2}, {y, -Pi/2, Pi/2},
AxesLabel -» {"x", "y", "u(x,y)"},
BaseStyle - 14, Ticks » {{-Pi/2, @, Pi/2}, {-Pi/2, @, Pi/2},
Automatic}]

Figure 2.2: Real part u(x, y) showing n = 0,n =1 on same plot

And the following plot shows the imaginary part v (x, y)
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2 2
Plot3D[1/4Log[M
X+ (1-y)?

AxesLabel » {"x", "y", "u(x,y)"}, BaseStyle - 14,
Ticks » {{-Pi/2, @, Pi/2}, {-Pi/2, @, Pi/2}, Automatic}]

, {x, -Pi/2, Pi/2}, {y, -1.5, 1.5},

Figure 2.3: Imaginary part v(x, 1)

2.3.5 Problem 4

In the domain r > 0,0 < 6 < 27. show that the function ©# = Inr is harmonic and find its
conjugate. Do this in both Cartesian and polar coordinates.

2.3.5.1 Part (a) Using Cartesian

A function u (x, y) is harmonic if it satisfies the Laplace PDE u,, + u,, = 0. Since
r=4/x%+ 12

u=Inr

= In/x? + 12

= éln (xz +y2)

Then

We now need to calculate u,, and u,,.

Uy = 1%111 (x2 +y2)

1 x
pbrE
_ox

= szyz

And

_Jd  x

T Oxx2 112
9 f® _ fls-fe
Ix g(x) g2

uxx

Applying the integration rule to the above, where f = x and ¢ = x* + 1/

results in
X247 - x(2x)
xx = 2
(2 +1?)

x? + y? - 2x?

(2 +2)
2 .2
- L7 (1)
(3 +?)
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Similarly
14
u, = =—In(x? + 12
) gy ( )
1
S 2x2 42
__Y
x% + 12
Applying the integration rule %f(_y; =1 /é;f £ to the above, where f=yandg=x*+y?
8\
results in

P+ -y (2)
Uyy = 2
(3 +v?)
X2 +y? - 2y?
(2+2)
B 2 -y
g @)

we need to verify that u,, +u,, = 0. Adding (1,2) gives

Now that we found u,, and u,,,

12— 22 2 -1
+

(x2 + y2)2 (x2 + yz)z

) 2 2

Uyy + uyy =

—x2+x2-y

(12 +2)

=0

Hence u = Inr is harmonic.

To find its conjugate. Let the conjugate be v (x, y). Let u be the real part of analytic function

f=u+iv
Applying Cauchy Riemann equations to f results in
o 3)
dx dy
o @)
dy Ix
From (3) and using the earlier result found for u, gives
v x

Integrating the above w.r.t. y gives

X
U:fmd]/'i‘@(]()
1
ZXImdy+®(X)

1 1
:;f1+@f@+®uo

X

.. . © . d 1 .
The above is integrated using substitution. Let u = %, then é = - and the integral becomes

1 1
U:;(IW(XdM))-FCD(X)
:j']'du+®@)

1+ u?
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But f —du = arctan (1) = arctan( ) therefore the above becomes

v = arctan (y) + D (x) (5)
Taking derivative of (5) w.r.t. x gives an ODE to solve for @ (x)
d d
v_ (arctan (y)) + @’ (x) (5A)
x  dx X

To find — arctan( ) let
w = arctan (%)
x
Now the goal is to find Z—Z The above is the same as

tan (w) = 2 6)
X
Taking derivative of both sides of the above w.r.t. x gives

d y
o tan (w) = 2

But — tan (w) = sec (w) —, and the above can be written as

dw y

2N 22— _ T

sec” (w) T 2
dvo y 1

dx ~ x2sec? (w)

(7)

1 . o .
But sec? (w) = —— and cos?w + sin?w = 1. Therefore dividing by cos?w gives 1 +

sin2 w

e sec? (w) or 1+ tan® w = sec? (w). But from (6) we know that tan (w) = %, therefore

2
1+ (%) = sec? (w). Replacing this expression for sec? (w) in (7) gives

dw _—y 1
By
y_x
2t 2
__Y
x% + 12

Now that we found — Wthh is di arctan( ) then 5A becomes

o _ -y

5 + @7
dx  Z+y? y? )
But from Cauchy Riemann equation (4) above, we know that g—; = 8 °, therefore the above
is the same as
du -y
— =- + @’
Iy (x2 ty (x))
We know what 2% is. We found this earlier which is 2 = —’—. Hence the above equation
dy dy  x2+y?
becomes
Yy Y
= oY
D’ (x) =
Therefore @ is constant, say C;. Equation (5) becomes
(x y) = arctan( ) +Cq (8)

Which is the conjugate of u = %ln (xz + yz). To verify the result in (8), we now check that
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v (x, y) is indeed harmonic by checking that it satisfies the Laplace PDE.
.

x2 + 12
AC)

(e

Ux

XX

And
X

VS
~ x(2y)

v (xz B yz)z

(4

(%

Using the above we see that

Vgx + Uy = e (2

(2+) (2+)
=0

This shows that v (x, y) obtained above is harmonic. It is the conjugate of u (x, y) .

v (x, y) is not a unique conjugate of u (x, y), since the constant C; is arbitrary.

2.3.5.2 Part (b) Using Polar coordinates

Here z = re’® and we are told that u(r,0) = Inr. To show this is harmonic in polar
coordinates, we need to show it satisfies Laplacian in polar coordinates, which is

1 1
Uy + ;lxl,, + T—ZMQQ =0

d 1 1
But u, = " Inr = - and u,, = 3 and ugg = 0. Substituting these into the above gives

1 11 _
2 rr
0=0

Therefore u = Inr is harmonic since it satisfies the Laplacian in polar coordinates. To find
its conjugate, we use C-R in polar coordinates, and these are given by

Ju 1dv 1)
dr  radb
du dv @
_— = ——
a0 ar
From (1), and since we know that % = %, then this gives
1 1dv
r rdo
Ju 1
0
Or by integration w.r.t. 0
v=0+D(r)

Where O (r) is the constant of integration (a function). Taking derivative of the above w.r.t.
r gives

dv
Y
Ep (r)
But from (2) % = —%% = 0. (Because u does not depend on 0). Hence the above results

in @’ (r) = 0 or ® = C; a constant. Therefore the conjugate harmonic function is

v(r,0) =0+C;
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Now we verify this satisfies Laplacian in Polar. From

1
[P ;Ur + 7’_2098 =0

We see since v, = 0 and v,, = 0 and vy = 1 and vgg = 0, therefore we obtain 0 = 0 also.
Hence v = 0 + C; satisfies the Laplacian.

2.3.6 Problem 5

Find the value of L f (z)dz where f (z) = €* for two different contours. C; is straight line

from the origin to the point (2,1). C; is a straight line from the origin to the point (2,0)
followed by another straight line from (2, 0) to (2,1)

Solution
Part (a) problem Part (b) problem
Y Y
(2,0) (2,0)
Ch
Cy
€T T
Figure 2.4: Showing contours for part(a) and pat (b)

23.61 Parta

Using contour C;. The line starts from (xo,yo) = (0,0) and ends at (xl,yl) = (2,1). Hence
the parametrization for this line is given by

x(t) =1 —-t)xy + txg

=2t
And
y() =1 =-1yo+ty:
=t
Now f (z) = € = e, Therefore in terms of ¢ this becomes
f(t) = p2t+it
— et(2+i)
Hence
t=1
f F(2)dz = f FO2 ()t
C1 t=0
1 -
= [ ez @yar
0

But z () = x (t) + iy (t) = 2t + it, hence z’ (f) = 2 + i and the above becomes

1
F(2)dz = f o2+ (2 1 i) dt
o) 0
1 -
= (2+i) f £t g
0

N 1
= (2+Z)((2+1))0

1

— (et(2+z'))
0
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Hence the final result is

f f(z)dz =e*" -1
G

23.6.2 Partb

Using C,. The first line starts from (xo, ]/0) = (0,0) and ends at (xl,yl) = (2,0). Hence the
parametrization for this line is given by
x(t) =1 —-1t)xg+ txq
=2t

And

y(t) =1 -ty +ty;
=0

Now f (z) = ¢ = ¢+ Therefore in terms of f the function f (z) becomes

f=e

Hence, for the line from (0, 0) to (2,0) we have

t=1
f(z)dz=ft_0 F(Oz2 () dt

1
- f 2 () dt
0

But z = x + iy = 2t since y (t) = 0. hence z’ (t) = 2 and the above becomes

F(2)dz = 2f1 2t
0

Coy

Coy
1

eZt
-2(3)

2 0
=2 -1 1)

The second line starts from (xo,yo) = (2,0) and ends at (xl,yl) = (2,1). Hence the
parametrization for this line is given by

x(t) =1 —-t)xg+ txq

=(1-1)2+2t
=2
And
y(®) =1 -1yo+ty
=t
Now f (z) = € = e, Therefore in terms of ¢ this becomes
f(t) = p2tit
Hence, for the line from (2,0) to (2,1) we have
=1
f(z)dz = f)z (t)dt
sz t=0
1 .
= f etitz (1) dt
0
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But z = x + iy = 2 + it. hence z’ () = i and the above becomes

1
f(z)dz = f ie?*itdr

Ca, 0

1

' ez+it
=1 -
1
0

— €2+i _ 32 (2)

Therefore the total is the sum of (1) and (2)

f(z)dz=e*—1+e* —¢?
G

Hence the final result is

[ f@dz=e-1 3)
C
To verify this, since ¢* is analytic then L f(z)dz - L f (z) dz should come out to be zero
2 1

(By Cauchy theorem). This is because § f(z)dz = 0 around the closed contour, going

clockwise. Let us see if this is true:

_ — | p2+i _ o2+ _
fczf(z)dz fle(z)dz [ -1] - [ -1]

-0
:fﬁf(z)dz

Verified. A small note: § f(z)dz = 0 does not necessarily mean that f (z) is analytic on
C

and inside C as some non analytic function can give zero, depending on C. But if f (z)

happened to be analytic, then § f (z) dz is always zero. But here we now that e? is analytic.
C
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2.3.7 Key solution for HW 3

RS |
\i) flz) = Z = 7 € h shests
ﬁ’ . g <¢ < i ) )
/ £lr @+ ann) = H{(r, 8/
Rl' an < 6 <Y
R, auln-1) < < Aih S <
t | e - ¢ -
| gihrs = — — L
. - , - K -
é} w= Tan Z 2= Tomw = o Yo e
2alv | o 4«‘21/\"” /
- _,.La .._E-——-—/;’—’ .:) A/Z 6 ‘t}) = f:
~ 52;"\/’{ 1
‘; aw . - Ifﬁ(‘
e (I - ’”Z)
T ]
¢ =) sz pre
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N

@ w = tan e - ﬁ,/%(x +J(}/ﬂ,9 d/ﬂl({x' 4;’(}»%

,éit(fﬁ*”@!’) B jki" v i (P + f;‘i;’{-h) -
wéﬂ) {;‘q‘f”afzﬁ

;Zdé e W ? - '}Wﬂ((iﬂlﬂ J

A (f%' T {7“32 = ;/; [}s; “ (’ﬁify}f]% A/%!{i?}»f;r[«]
o (~xt (‘zfay)) = %A(x + 4(7~;)) f}lﬁé;j}

(N
LT (2t 1)

o] o[ (8 < wem)]

Y Y
& v /y i %ﬁ' ? ¢ j <
o | -
1/ M sy o ! (fﬁ"z) + 7(n “""./} \
%5@"‘1”!2 = Mi%mn {‘ L;: o g X ( *

o, 1
+ _jj_,, A X 7 ( r ;) - /

4 x“+ (y-1) |

?MA 2 {;’» 7 (Z?[}ﬂ/f V‘é‘&/éﬂé o F '%&?n’! ;(J my “5{,"//“

. A o B ~
h{fi én H be betw cen ;Tf and j,
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@ we e LA LAy

2.
v a 2 _ L ax
wx - r= re
T
2 4 o L
.:)/ - Y‘L 97’1 r p
2, 2
«-—-‘“”"1 “Z‘L{ Q. ;2 (X N )/ ) [_/
¥ :
VAR
v ?«i“ = __,,,)S_..-—-‘ -«> V= "}L‘z” (—3—"‘ + @(){)
o IX a4yt
D L
/5—: ) 7Y x4ty
H Fent
/ / ) m - C Cony Ten
i + @ (x) =
X s y v [ e |
, B (‘l’ e -7
XV(X//) = —fﬂn X &
| :
L /
I / e
/v o= ¢ *cC /
L {
v
1 _ L= —
Po)ﬁ/‘ L'u\a,f;/;h:-./(y %—— P 7 = r 7
’)__ 2m - B _ 2—!’
r ¢ 0 = = i
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| L aea)t
L - 27%a
xta4y ‘ ) V
S. eZL/z - g € (gffx + "5/)’) = 5 ¢ (w?’”)a/f'
< c, 0
) .
(':2*,;) t/ - e;&e&' - / g 62(‘(;01(’)) + A'_J')h(/)) - /
= € v /
v 2 g
Aliag  C o g e dz = feﬂ/){ ”°§e e dy
Ca 0 )
A A 2 4 v
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anjwepy
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241 HW 4 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 4 due Monday February 25. Show all work. Use of
Mathematica, MatLab, or similar software is not allowed.

1. (6 pts) Let C' denote the square contour with corners at +2 + 2 and
which is taken in a counterclockwise direction. Use the residue theorem to
evaluate the integral [ f(z) dz for the following functions.

—Z

(&) z —62'7T/2
®) ey
) 5

2. (4 pts) Assume that f(z) is analytic on and interior to a closed contour
C and that the point zg lies inside C'. Show that

I _ 16
o (

c zZ— 2 z— 29)?

3. (5 pts) Give the Laurent series expansion, both in powers of z and in
powers of z — 1, for the following function.

1
22(1 — 2)
4. (5 pts) Evaluate the integral

/00 dx
o 1+ 24

5. (5 pts) Evaluate the following integral when a > |b|

/27r sin? 6 df
o a-+bcost
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2.4.2 Problem 1

Let C denote the square contour with corners at £2, +2i and which is taken in counter
clockwise direction. Use the residue theorem to evaluate the integral L f (x)dz for the

following functions

(a) ~—, (b) —==
Z_IE

(c) —

z(zz+8) z+1

Solution

2.4.2.1 Part (a)

C_Z
z-iZ
2

The function f (z) = has a simple pole at z = ig = 1.57i, hence it is inside the contour.

Simple pole at i

Rz

Figure 2.5: Location of pole relative to contour

Hence by residue theorem

95 f(2)dz = 27i Residue (f (2))
C

Z=2Z(

So we just need to find the residue of f (z) at z =z = ig. Since this is a simple plot, then
the residue is given by

Residue ( f (z)) Zlggl (z—2p) f(2)

. T\ e’
lim (Z — ZE) ——

LT —_ '_
z-i5 Z 12

Z=2z(

I
-
o o

=
3]

Therefore

e—Z

SE _dz = 27i (~i)
Z— 1=

C 2

=27

2422 Part (b)

COSZ

z(zz+8)

a poles at z = ii\/g = iZi\/E ~ +2.83i but these are outside the contour.

The function f (z) = has one simple pole at z = 0 which is inside the contour, and
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Sz outside pole at iv/8

Simple pole at 0
Rz

outside pole at —iV8

Figure 2.6: Location of pole relative to contour

Therefore by residue theorem, only the pole inside the contour which is at z = 0 will
contribute to the integral. So we just need to find residue at z =0

Residue (f (z)) = lim (z - z9) f (2)
z=2( Z—20
lim (2) cosz
= 1l1mi\z) ——-—-:
=0 "z (22 + 8)
] cosz
= lim
z=0 (22 + 8)
B 1
-8
Therefore
1
9§ czsz dz = an(g)
2 Z (z + 8)
4

2.4.2.3 Part (c)

z
2(z+1)

The function f (z) = has one simple pole at z = -1 which is inside the contour.

Simple pole at —1

» Rz

Figure 2.7: Location of pole relative to contour
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So we just need to find residue at z = -1

Residue (f (z)) = lim (2 -20) f (2)

Therefore

2.4.3 Problem 2

Assume that f (z) is analytic on and interior to a closed contour C and that the point z,
lies inside C. Show that

e, f(z)

Z— 2

d

Solution

)

We see that g (z) = has a simple pole at z = z;. Therefore

b8 dz=2mi by) M
C

Where b is the Residue of g (z) at z. By definition the residue of a simple pole is found
as follows

by

lim (z —zg) g (2)
Z—2Z0

= lim (z — zg) f@
z-z9 zZ -2z

= lim f’ (z)

z—2)

= f(z0)

Hence (1) becomes

SE ¢(@)dz = 2mi) f (z)

f,( )dz = (2mi) f’ (zp) (2)

Z= 20
But per lecture notes, page 46 on complex analysis, it shows that

f(2)

(z0) ~dz
fre " 2mi ~ (z- zo)
Substituting the above back into RHS of (2) results in
/) g om @
/ Z =2y 2mi (z Zo)
Therefore
5 (Z) dz = /@ 5dz
2 0 2 (z=2p)
QED.
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2.4.4 Problem 3

Give the Laurent series expansion both in powers of z and in powers of (z —1) for the

) 1
function 203

Solution
There is a pole of order 2 at z = 0 and a pole of order one at z = 1. Therefore, there is a
Laurent series expansion about z = 0 which is valid in inside a disk or radius 1 centered

at z = 0. Around z =1 there is another Laurent series expansion of the function, which is
valid inside a disk centered at z = 0 of radius 1.

Laurent series expansion around z = 0

111
22(1-2) 22(1-2)
1
:Z—2(1+z+zz+z3+---) lz| <1

1 1 ) 3
=S +t-+l+z+z22+27+ -
V4 Z

. . . . . 1
We see from the above that the residue at z = 0 is 1 which is the coefficient of - term.

Laurent series expansion around z =1

1
Let u =z -1, hence z = u +1 and the function 209 in terms of u becomes

1 11
A+u)?(~u) U1+ u)

(1)

1

(1+u)
-+ which is valid for |x| < 1 then we see that for n = -2 we obtain

(D(2-1 , (D(2-D(2-2) 5

=(1+u) Applying Binomial expansion (1 + x)" = 1+nx+n(z!_l)x2+n(n_2(n_2) 3+

But 5 =

A+u)2=1+(-2u+

2! 3!
The above is valid for [u| <1 or [z-1| <1 or 0 < z < 2. Simplifying the above gives
1
5 =1-2u+3u -4’ + -
1 -u)
Substituting the above back into (1) gives
-1 1 -1

— s=— (1-2u+3u2 -4+ )
U 1+u) u

-1 )
=—+2-3u+4u-—---
u
But since u = z — 1 then the above becomes

Zz(ll_z) _ Z__ll +2_3(Z_1)+4(Z_1)2—5(2—1)3+...

We see from the above that the residue of f(z) is -1 at z = 1.

In summary
. .1 1 . . Py e . .
1. Laurent series around z = 0 is = + - +1+z+2z%2+4 2%+ --- which is valid inside disk
centered at z = 0 of radius 1

2. Laurent series around z =1 is i +2-3(@z-1)+4(z- 1)2 -5(z- 1)3 + --- which is
valid inside disk centered at z =1 of radius 1

Note that there is another Laurent series expansions that can be found, which is for the
region 1 < |z| < oo, which is outside a disk of radius 1 centered at z = 0. But the problem
is asking for the above two expansions only.
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2.4.5 Problem 4

dx
1424

dx

Evaluate the integral £oo

solution

Since the integrand is even, then

1 o 1
Iz—f d
S

Now we consider the following contour

Cr

> > » Rz
R +R

Figure 2.8: contour used for problem 4

Therefore
0 R
56f(z) dz = ( lim [ f@)dx+ lim f F(x) dx) tlim [ fR)dz
2 R—ooJ_p RE R— o Cr
Using Cauchy principal value the integral above can be written as

R
ff(z)dz:Rhf;of_Rf(x)dx+R12rolofCRf(z)d
=27 2 Residue

. . . 1 S
Where )} Residue is sum of residues of o for poles that are inside the contour C. Therefore
the above becomes

R
Jim f f (x)dx = 27i Y} Residue— lim f F(2)dz
—R —00 CR

R—o0

© 1 . . . 1
Ioox4+1dx=2mZR651due—Rh_r>r;o CRZ4+1dZ 1)

Now we will show that limg_,, L #dz = (. Since
R

f L dz| < ML
Cr A +1 i
=|f@)| (R (2)
But
1
A ERT

Hence, and since z = R ¢/? then

1

|f (Z)lmax : |Z2 B i|min |‘Z2 + ilmin

Using the inverse triangle inequality then |Z2 - i| > |Z|2 +1 and |22 + i| > |Z|2—1, and because
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|z| = R then the above becomes

1
f @, < (R2+1)(R2-1)

1
R*-1

1 TtR
f e B
Cr

o . . . niR .
Then it is clear that as R — oo the above goes to zero since limp_,, R limg_, o i~

Therefore (2) becomes

0 . . .
1 = 0. Equation (1) now simplifies to

S
f ——dx = 27ii 3} Residue (2A)

. . 1 .
We just now need to find the residues of 717 located in upper half plane. The zeros of
1 . 1 LTl
the denominator z* +1 = 0 are at z = —1% = (61”)4, then the first zero is at €'?, and the
i(E.,_Z) i(grc) . i(%n+g) i(zn)
second zero at e'4 2/ =¢ and the third zero at ¢ =e and the fourth zero

. T 7
i\ s+ i‘n
ate'\* 2/ =¢4". Hence poles are at

21—84
ién
22:e4
i§7z
Z3:e4
izn
Z4:e4

Out of these only the first two are in upper half plane. Hence since these are simple poles,

we can use the following to find the residues

Residue (z1) = Zli_)Hzll (z=2z1) f(2)

Sy

Applying I’Hopitals rule, the above becomes
d

) . (z-2z1)

Residue (zq) = lim <——

TEE-

Similarly for the other residue

Residue (zy) = Zli_)r? (z—2) f(2)

e
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Applying I’Hopitals
: 1
Residue (zy) = hr,-% ) e
z—e 4
3 1
= —
4 (ezin)
1
= .97
4e'T
1
46%

Now that we found all the residues, then (2A) becomes

© 1 A 1 1
f m dx = 2mi -+t — =

oy

4i
1
- Lo
0 1 1 o 1
But£ mdx = Ef_oo mdx, therefore
© 1 1(1
— dx=-|=4"
fo A 2(2‘/_n)
1
2
= —"
42
1
= ——7
2V2

2.4.6 Problem 5

sinZ 0
a+bcos O

dO when a > |b|

2
Evaluate the following integral £ 8

solution

This is converted to complex integration by using z = re’® = ¢/ since r = 1. Therefore

dz = i¢'%d6 or
dz = izdO
In addition,

ei@ + e—i@
cosf = ———

And

= N= N N

P e
N

—
N
N
+
NI
N
~—

NI NI= NI= DN
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Using all of the above back in the original integral gives

sin? 0
a+bcosB
2

27T
sz
0

1

do

2

zsgz‘i(z +27)dz

+z71 j
L avb(Z2) =

Where the contour C is around the unit circle in counter clockwise direction. Therefore

ic 4az + 2bz2 + 2b 22

1991 272 —z4 -1
=-Qp—= z
ic 72 2bz? + 4az + 2b
1o 1 4 1
11wy
C Z+?Z+1

1 1 222-24-1
=i, 2 "
C (zz+7z+1)

Now we can use the residue theorem. There is a pole at z = 0 of order 2 and two poles
. 2
which are the roots of z% + 7”2 +1 =0. Hence

I=2mi Z Residue

. 2 . .
First we find the roots of z2 + fz +1 =0 to see the location of the poles and if there are
inside the unit circle or not. These are

b1 Z 9
e v B2 —4gc=-L + =
22" 2a a=-5=*3
a 1
= —— 4+ —
b2

a

=—— %

b

2
Since a > |b| then Z—z > 1 and the value under the square root is real. Hence both roots are
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real. Roots are

a | a?
21:—E+ ﬁ_l

a a2
ZZZ_E_ ﬁ_l

Now we need to decide the location of these poles. Let % = x. Where x > 1 since a > |b|.
Then the roots can be written as
z1=—x+ Vx2 -1

zp = —x—Vx% -1
Now Vx2 —1 is always smaller than x but (sz -1- x) can not be larger than 1 in magni-

tude. Hence z; will always be inside the unit disk. On the other hand, (sz -1+ x) will al-

ways be larger than 1 in magnitude (the sign is not important, we just wanted to know which
pole is smaller or larger than 1 only. Therefore we conclude that z; is inside the unit disk and z, is outside

Therefore, we need to find residue at z = 0 and z = z; and not at z = z,. The function f (z)

is from above is

1 222-z4-1

f@= 27 2\
(ZZ + ?Z + 1)

1 222-74-1

T 2(z-2)(z-2))

Residue of f (z) atz=0

Since this pole is of order n = 2, then

! ((Z —20)" f (Z))

Residue = lim

20 dz"1 (n—1)!
o d , 1 22274 -1
= lim — (Z - Zo) 27 1\
=0dz “ (zz + fz + 1)

od|,1 222-24-1
thd— Z_ZZ—
0dz) z (zz+fz+1)
d|2z2-24-1
z—0 dz 22+%Z+1
b

(42 - 423) (z2 + %az + 1) - (222 . 1) (22 + 2—”)

b

= lim 5
z—0 2a
Zz + 72 +1

-of)

Residue at z; = 2 44= -1
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Since this pole is of order 1, then the reside is

Residue = Zh_)IIZl ((z - zl)f(z))

_ ( 1 222—24—1)
= lim |(

Z—2Z1) —=
521 Ry Y.

zZ—2Z1

_ (1 222—24—1)
= hm —_—

2 z-1z,

2
-1 (z% —~ 1)
Z% Z1 — 2y

2
a a .
Let - = x, hence\/b—2 —1 = Vx%2 — 1. Therefore we can write z; = —x + Vx2 -1 and z, =

—x — Vx2 —1 and now the above becomes

Residue =

((—x + \/——1)2 1)2

-1

e o e oy
((—x + «/ﬂ)z - 1)

2 (—x+ Va2 —1)2 Va2 -1

2
But (—x + Va2 - 1) = x2+(x2 - 1)—2x\/x2 —1 = 2x2-2xVx2 — 1-1 and the above becomes

Residue = —

2
1 (2x2 - 2xVx2-1-1 —1)

2 (2x2 —2x«/ﬂ—1) V2 -1
(2x2 —2xVa2 -1 - 2)2

2 (2x2 —2x\/ﬂ—1) V-1
4 (x2 —xVaZ-1- 1)2

2 (2x2 —1-2xV+? —1) Va2 -1

2 (2 -1) - w22 =1)

(2x2 —1-2xVx2 —1) Va2 -1
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Expanding gives

(2-1) + (x\/xz——l)2 ~2(x®-1)xVa2 -1
(2x2 S1-2xVa2 - 1) Va1

(2=1) 422 (2 -1)-2(2-1)xv@ -1
(2x2 —1-2xVx2 - 1) Va2 -1

(x*-1) (x2 —1+22 —ZxM)

2x2 —1 - 2xVx2 —1) Va2 -1
(x*-1) (2x2 ~1- 2xm)

(2x2 —1 - 2xVx2 —1) Va2 -1

Residue = -2

= -2

=2

-2

Dividing numerator and denominator by (x2 - 1)

V=1 (22 - 1- 2052 1)
(2x2 -1- 2xm)

=-2Vx2 -1

Since x = % then the above becomes

Residue = -2

az
Residue = -2 7 1
We found all residues. The sum is
Y Residue = 22— 24/ % -1
i = — — — —
esidue 5 7
From the above we see now that
1 1 222-2z4-1
fﬁ dz

Zblc z (22+%ﬂz+1)

= ZLbz (Zm' Z Residue)

1 2,211 5 a? ,
i |7 D P2

Hence the final result is

22
[0 g0 =2 oV R

o a+bcosB T
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2.4.7 Key solution for HW 4

@
z‘ i .:g{ o e o~
| | i - P i £lz)d =
S R flz) - & (1242
3‘; ; f) ") i a ) = -
L . / z -2z,
- 72 o ; o ~ [
- -Z flz) dz - /'Wmh'ww?
(c:z_) £ o=, f U ‘ - 20 e = | 27 /
z - A0 {
r
vd i 7‘77 i an
Cvsz Az ) e ey
e et o o “n i /
. [ =

e T

(b)

/ z(z«;‘,;zvgz‘/(zwmz/‘z/
7

C
o
ou to.d £

: C

;v«*:wi,‘c'}}c

C

o P :
() ( zZde o (AN
&/ } o e = oda L2 ( 2/
-~ Z ‘«é—
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3} . . . #~ 4 s y 3 ¢ R >
@ Cauchy ;ve"fge?m/ formula tor firy+ ﬁdff”v“%ﬁﬁfw

o i ( f(z)d =
L(z,) = — \ — %
‘ 2377,& ) (Wg - 30/1

-

h)
AN
i

« ) Nl
Thep a /’/‘”/}" The Cc?ma,;?,)’ flfj'fﬁfﬁ{ fC@f”waga t T {Agjf~
{‘z{g)d’zu,

" ! /JM,,, e —
% (ZJ)) - ;277/; z - Za
C
E guatc mwjﬁ_ erm;,
/‘ (2= f(z)dz E
5 z =2, (z-% ) \
| S
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s ~ 7
A ; + A A=A
/) Ax L7 e > Ty 7
S — - 4 T foley z = ¢ e
5 . j i 0‘2, {,j g Ve
, 1T j+ 2
I R

Close  The  conbiur h o/Then
The  Gpeer halt oo byoesr half
/0/)4’1/;4/ i«vj’ﬂ & Sem-cirele
ot ra A "y K —= 2.

P
C}ltf“éu‘“é wprer }’la /‘f/ USe f\é,/}(/u& Ha{ftm}

+ 032
B R I

}Qefﬁumf res due ot 7::7 e

- )
Ki ) (3,'32)(‘?}423)(21‘* “v) J +-
! L a@

¢, = ‘ ) ~t

R A I ) I

~ L, | - - 7T /’”"“’{”‘ {*JQQ
L = 2 A ('L/J fkl’/) ' ?{& L] ’ A *!) ﬁ

T - = | oo
| 2(T |
{WM«J
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A+ b cose
4@ Z"'f; g?bwg
Z = e ()"{5 s A «3:733?” jné‘ = = cose = dwmmiif
24 2.

/(Z{Q% ;;}2,)

(Zl+vl€:&'r})

Az

Mw

o ;)z {
- . ( \¢ 2 A
J . Ly A 2 e A

C
nit Cire [e

T}\ e dfe "fW» f’}ﬁw/él‘“tf’%/\ez ihsidc 'h‘” wnif Cé}é /()”

) / 7 é
T%e/ are  zzo and vac of Fre 1oty Z:%f;f:/%‘g

Fﬁf J?{win:t}?ﬁﬁg S S umne ZDE' O. 7/}?64 + ) in .
J

T,
N J ot
Residue, are  T2Z ant O
: gb | b
7 !
- {}? 2
T}\ o I - Ez 5 /Mfiﬂ — sr
b/ b \ .
s
e ;
r““ wo, . f
! ( fhede = RS ;
g ) ) - 2 Y
1 I J} (]-%é‘éa/g/ &?ry;g . E
g ,,,,,,,,,,,,,,,,,,,,,,
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2.51 HW 5 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 5 due Monday March 4. Show all work. Use of Mathematica,
MatLab, or similar software is not allowed.

1. (6 pts) Evaluate the following integral for ¢ > 0 and for ¢t < 0 when wy > 0

and € — 0T .
[o%) ezwt dw
/—oo (w—i€)? —wd

2. (9 pts) Evaluate the following integrals

/OO Inxdx and /00 (Inz)? dx
n —
o 1422 o 14a?

In order to find the second one you need to consider the integral

/OO (Inz)3 dx |

1+ 22

2.5.2 Problem 1
Evaluate the following integral for f > 0 and for t < 0 when wy > 0 and € — 0*
00 eia)t
f—oo (w — ie)2 - a)(z) dw
Solution
Caset >0

We select the upper half for contour C since when ¢ > 0 the integral on upper half will
vanish as will be shown below.
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> > » Rz

Figure 2.9: Contour used for ¢ > 0

Hence
00 eia)t eiZt
[ — o= ——
-0 (W —i€)" — W} - (z —i€)” — w}
R eizt eizt
= lim (P.V.)f ————dz+ f ————z
R—oo R (z —ie)" — w} CR (z — i€)" — w3
=27 Z Residue
izt
Therefore, if we can show that limg_, L e—zdz = 0, then the above implies that
R (z—ie) —w%
foo eia)t
——dw = 2mi ), Residue (1)
oo (@ — i€)* — w? )

Now we need to find the residues inside the contour shown. There is a pole when (v — ie)2 =

w3 or w — i€ = +wy or @ = i€ + w). Hence there are two simple poles, they are

z1 = 1€ + Wy
22:i€—a)0

They are both in upper half, inside the contour (since wy > 0 and € is positive).

Sz A

Cr

e, wo 1€ + wo

Figure 2.10: Locations of poles

Now we find the residues
ez’zt

Residue (z1) = lim (z — z;)
271 (z-21)(z-2)

eizt

= lim
z—71 (z — 22)
eit(ie+w0)

~ (ie + wy) — (ie — wy)
e—teeit(uo
= (2)

20)0
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And

ezzt

(z—21)(z-2p)

Residue (zy) = lim (z — z5)
z—2p

eizt
= lim
=2 (2 - 77)
eit(ie—(uo)

B (16 - 0)0) - (l€ + CUO)
e—tee—ita)o

=5 (3)

—2(1)0
Substituting (2,3) into (1) gives

00 ei(ut ' e—teeitwo e—tee—ita)o
———dw =27 +

oo (@ —i€)* — w3 2wy —2wg

— 27 e te (eitwo _ e—ita)o)
2&)0
27 e eztwo _ e—ztwo
=" ¢ -
—2i
27 he (ezta)g _ e—ztwo)

__e -
o 2i

21
= ——e¢ " sin (tw,)
@Wo
izt
Now, to finish the solution, we must show that limp_,, LR (e—zdz = 0. But

: 2
z—i€) ~wj

eizt eizt
CR (z —1€)" — wf CR (z —i€)" — wj
)
2

(z- ie)2 - W} CR

max
izt

elZ

dz

IA

(z- ie)2 - a)%

max
ezzt

ez’zt i

(z - ie)* — wd 0

eizt

=Rn (4)

(z —ie)* - w3

max

But
. izt
ezzt |€ |

max

z=2z1)(z-2)|

(z - ie)* - w?

max min
izt

e

max

-zl Iz - 20)l
|eit(x+iy)

min

max

(z =zl . 1z —2))l
|eitx—ty|

min

max

Cz-z)l Iz -2l
|eitx| |e—ty|

(z —z9)l_, Iz —2z)l
=]

(z — zp)|

min min

max max

min

|(Z - Zl)lmin min
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Now, since y > 0 (we are in the upper half) and also since ¢ > 0, then |e‘ty| =1, which
max
occurs when y = 0. Hence the above becomes
eizt 1
z-ie)f -w2| T le-z)l -2

max

2
By inverse triangle inequality |(z — z1)| - |Z|2 + |le2 =R?+ |€2 + a)(2)| and |(z — z,)|

mi min

2
l2I” + |zof* = R? + |e? + w@|". The above becomes

eizt 1
. \2 2 < 2
(z—ie)" —awgl ~— 2R2+2|e? + wd|
Substituting the above in (4) gives

eizt 1
lim —szZ < lim R=w 5
R0 Jer (z - i€)” - wy R=eo 2R2 +2 |€2 + w5|

. R
=7 lim

R=eonR2 4 2 |€2 + w§|2

2
But 2 |€2 + a)8| is a finite value, say f8 so the above is

eizt R
lim ——dz < m lim
R Jep (2 - i€)* - wd R—co 2R? + 8
. R
And it is clear now that the above limit goes to zero. In other words, limg_,, K5 =

1
. R 0
llmR_m 5 = E =0.
+_
R2

Hence The final solution is

00 eia)t 27
f ——————dw = ——e € sin (twy)

P @o

Caset <0

Here, we must use the lower half for the contour in order for the half circle contour integral
to vanish.

e wo 1€ + Wy

> > » Rz

Cr

Figure 2.11: Contour for t <0

In this case the sum of residues is zero (since both poles are in the upper half), then we
see right away that

00 eia)t
f ﬁd&) =0 t<0
-0 W —1€) — w
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zzt
But we must show that limg_, L —Zdz = 0 here as well for the above result to be

R (z—ie)"~w}
valid. Similar to what was done earlier:
eizt‘
f —zdz
. 2
CR (z —i€)” — w}

eizt
CR (z —1€)" — wf

max
eizt
< f — dz (2.1)
H 2
CR | (z — i€)” = wj i
ez’zt
=Rn|—————— (4)
—ie)? — )2
(z—i€e)” — wj i
But
izt izt
& e,
(z —ie)* - w3 i Iz -zl Iz—2z)l .
|eit(x+iy)
< max
G-z 1G-2)l__
| ztx ty|
j— max
G-z 1z-2)
e e
— max max
G-z G-zl
]
max
“le-z) -2
Since ¥ < 0 (we are now in lower half) and also since t < 0, then |e_ty| = 1, which
max
occurs when iy = 0. Hence
eizt 1
. \2 2 S
(z—ie) —wfl -zl @2

2
But by inverse triangle inequality |(z - Zl)| L2 |z|2+|21|2 = R2+|€2 + w5| and |(z—2zy)| . >

min
|z| + |z | =R2 +|e2 + w? Hence the above becomes
0
ezzif 1
= 2
2 2 2
e 2RZ+2]e? + |

The rest follows what was done in first part. Therefore

— i) _ )2
(z —ie) wol

eizt 1
lim —2(12 < lim Rm
R=eoJer (z - Ze) — Wy R—eo 2RZ 4+ 2 |€2 + a)0|
) R
=m lim

2
R0 2R2 +2]e2 + W
2
But 2 |€2 + a)g| is finite number, say f so the above is

ezt R
lim —— Az <7 lim ——r
R Jep (2 - i€)* - wd R—eo 2R* + B
And it is clear now that the above limit goes to zero.

The final solution is

00 ela)f
f —————dw =0 t<0
—0c0 (Cl) - ie)z - a)z
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2.5.3 Problem 2

00 In?
= zdx. In order to find the second one

Evaluate the following integrals fm 1n—xdx and £

l 3
you need to consider the integral £ — xdx

Solution

2.5.3.1 Part (a)

There are two ways to find £

oo 112
plex contour integration and the second method uses £ —zdx with complex integration
1+x

to find £

lnx

Method one

Let x = i.Hencedxz—yl—zdy.Whenx:0—>y=ooandwhenx:oo—>y=O. Hence the

. 0 Inx
integral £ —dx becomes
1+x

 In (y)
= —f ) dy
o Yy + 1
Since on the RHS y is arbitrary integration variable, we can rename it back to x. Hence

the above becomes
o] ol
nx dxz—f n(x)dy
0

o 1+a2 x2+1
’ f"" lnx
1+ x2
Therefore
 Inx
£ 1+x2 dx =0

Method two

In this method will use complex integration on £ —dz to show that L ik 54z =0. The

following contour will be used.
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A
Cr

'Y
I Principal branch

1
Cro . 0<0<2m
To
branch cut >
.
R

Figure 2.12: Contour for problem 2, showing location of poles at +i

122
iz oo
- d d d d
sz(z) z+fcrof(z) z+fL1f(z) z+fCRf(z) 2

=27 E Residue

Hence
d d d dz = 27ii ¥ Resid
RE z+fcr0f(z) z+fL1f(z) z+fCRf(z) 2 = 27i ¥ Residue

In” : : .
There are two poles in ———. Residue at z; = i is
(z—1)(z+i)

In’z

Residue (i) = £1LI} (z—1) m

In’z

=1li
iz + i)
3 In?i
2
(1 ) + 'E)2
n 12
2i
2
T
_(i3)
2i
7.[2

4
2i
81

And

In?z

(z=1)(z+1)

Residue (-7) = lim (z + i)
zZ—-1

(1)

(2)

. .3 . . 3 . .
But In(—i) = In(1) + . Notice that the phase is YL and not —g since we are using
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principle branch defined as 0 < 0 < 27t. Therefore the above becomes

(m (1) + ign)z

-2i
2

Residue (1) =
2
s
-2i
B 972
8
Adding (2+3) and substituting in (1) gives

(3)

szf(z)dz+fcr0f(z)dz+lef(z)dz+LRf(Z)dz=2ni(_8—7f+98—7:,2)

focz)dz+fC f(z)dz+fo(z>dz+fC f(2)dz = 27

We will show at the end that lim, _,q L f (z)dz = 0 and that limg_,, L f(z)dz = 0. Given
}’0 R

this, the above simplifies to only two integrals to evaluate

f@@)dz+ | f(z)dz=2r° (3A)
Ly Ly
We will now work on finding { f(z)dz. Let z = re®, hence dz = dre and the integral
1
1n? o In? (ret€ ‘
f - = 22 dz = f —( )2 dre'
L1tz 0 1+(rei€)
_ e f"" (Inr+ ie)zdr
0

becomes

1 + r2e2ie
N foo In®r + 2€2 + 2ieInr
=e -
0 1+ r2e%e
Now taking the limit as € — O the above becomes

In’z ® 12y
dz = d 4
L11+ZZ z 0 1+1’2 ! ( )

We will now work on finding { f(z)dz. Let z = ref®€)_ hence dz = dre’®©) and the
2

integral becomes

In?z p fo In? (rei(zn‘e))

r

i(211—€)

= dre
L1+7 o1+ (rei(zn‘f))z

dr

_ jien-o fo (In(r) +i(2n - )y’

1+72 eZi(Zn—e)

o

_i@n—e) 0102 (r) - 21 - 6)2 +2i(2Qu—-¢€)lnr
- ¢ f 1 + 2p2i2n-e) dr

o

200N _ 2., .2 . _
_ jien-o) fO In“ (r) (471 +€ 4ne)+2z(271 e)lnrd

- r
1 + 72¢2i(2m—€)

[©e]

Taking the limit as € — 0 the above becomes

2 2 2 :
In Zdz:eiznfo In“ () — 4m? + 4milnr .

1, 1+2? oo 1+ r2eitn
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But €™ =1 and €™ =1 then the above becomes

In®z 01n% () — 472 + 4milnr
f 2t;lz=f 5 dr
,1+z 0 1+r
0 In?y 0 472 0 Inr
= dr—f dr+4 if dr
o147 o 1l+72 T o147

0012 © 4 2 |
- rzdr+f nzdr—4nif nr dr
0 1+7‘ 0 1+1" 0 1+7‘2
© In’r © 4r? © Inr © In’r
- n—zdr+f nzdr—47zif - 2dr+f L W
0 1+1’ 0 1+7’ 0 1+1’ 0 1+7’2

S | ® Inr
4n2f 2dr—4m'f - 2d1f=2713
0 1+7 0 1+7

Using (4,5) in (3A) gives

1
But fw mdr = arctan (r)go = arctan (c0) — arctan (0) = %, hence the above becomes

Sl |
472 (E) - 4m'f L B
0

2 1472
< 1
—4mi dr=0
Tl e r
Which implies
0 Inr
L 1+r2dr =0

Which is the same result obtained using method one above.

(4)

2.5.3.1.1 Appendix Here we will show that limr0_>0£ f(z)dz =0and limR_)OOL f(z)dz =
7’0 R

0.

For lim, _,q L f(2)dz, let z = rye’®. Hence dz = ryie’?d0 and the integral becomes
0

e In® (roeie) . ' In? (roeie)
lim f —zerolelede = lim lf —Z.Qrod@
1’0—>0 21—€ ]. + 7’0821 T0—>0 2m—€ 1 + 7’061
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As € — 0 the above becomes

In® (rge'®) -0 In* (rge®)
lim ————19ie’%d0 = lim zf ———"7,d0
r0—0 J o 1+ 15¢2i0 =0 Jo, 1+ rget?

lim

i| ——=—Lrydo
79—0

on 1+ 7260

0 ln2 (Foeie)

0
1+ r3el

max

IA

lim
1’0—>0 27

Tod 7}
max

0
f Vode
21

max
In? (roeie)

1+ rde®

In? (roeig)

1+ r3el?

IA

lim
ro—0

27'(7’0 lim
T0—>0

max

|ln2 (roeie)

max

< 2mrg lim .
ro—0 |1 + r2316|

min

|11’l o+ 16|

= 2117y lim ———_max
=0 [1 + rgetd|

min

max

|n? rg + (i6)° + 2i6 In g

max

= 27rp lim
0 ro—0 1- 1’%

) ln2 Ty — 47'(21"0 + 47'(1’0 In )

=27 lim 5
r9—0 1- i

roIn?r T rolnr
20 20—4712 02+4T[O 20
1-7§ 1-7§ 1-7§

=27 lim
ro—0

) ln 7‘0 1o In 1o

175

But hmr0—>0 =0 and hmro_,o =0 and 11mr0_>0 = 0 Hence all terms on the
-1

RHS above become zero in the limit. Therefore

In? (roeig) 0
lim — 4 toieVd0 = lim >
7’0—>0 2mn—e 1 + 7’06219 1’0—>0 ]. +Z

dz

Now we will do the same limg_,, L f(z)dz, let z = Re!?. Hence dz = Rie'%d0 and the
R

integral becomes

lim
R—o0

21— In2 (Reie) Ricfd6 = lim if2n—e In? (Reie) RO

e 1+ R2e20 Rooo J. 14 R2%0
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As € — 0 the above becomes
‘ 2r-€ In® (Reie) 0 . In? (Reie)
ngrgo ¢ 1 + R2¢2i0 Rie™d6 = Rh—IEol o 1+ R2%e20
21 In? (Reie)
0 1+ R2€2i6
In? (Reie)
1+ R2e%9
In* (Re”)
1 + R2¢209
in? (Re?)
=21 lim R———— 2%

R—eo |1+ R2e20|

min

RdO

< lim |i Rd6
R— o0

max

271
do

< lim
R—o0 0

max

27T
RdO

< lim
R—o0

. mR+i6f
=2 Jim R———7
In*R - 62 +2i0InR
1-R2
<o T RIn?R — 47?R + 4mRIn R
- R—o0 1 —RZ
(Rlan R RlnR]

max

=27 lim R
R—>o0

_ 42 bag—t
- 1 r TR

RIn*R . R : RInR
=0 and limg_, =0 and limg_, TR 0 Hence all terms on the

=27 lim
R—>o0

But hmR_mo

1-R2 1-R2
RHS above become zero in the limit. Therefore
2n-¢ In? (Re® , n2 2
lim ( ) Rie'?dO = lim ——dz=0
R—oo J 1+ RZEZZH R—oo J 1+ 22
R
=0
2.5.3.2 Part (b)
o0 3 00 2
We will now find £ n 'zdz in order to determine £ ln zdz. We will use the same contour
1+z 1+z

integration as part (a) above.

F(2)dz+ f F@dz+ [ F@dz+ f f(@)dz =27 ¥ Residue (1)
Ly Cro Ly Cr
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There are two poles in Residue at z; =i is

In” z
(z—i)(z+i) "

In’z

Residue (Z) = £ILI} (Z - l) m

In’z

=1li
iz + i)
_lnsi
20
() + %)’
n 12
2i

LTU 3
_(i3)
2i

.7-(3
)
2i
o

6 @

And
In®z
due (<) = 1i .
Residue (—i) Z1_)rr_1i(z+l) —(Z—i) )

In®z

= I
i =)

I’ (i)

-2
But In(-i) = In(1) + ign. Notice that the phase is 27 and not —g since we are using
principle branch defined as 0 < 0 < 27mt. Therefore the above becomes

(h1(1) +-i§7z)3
S,

S =2i
.27
~ —1§n3
-2i
277
- 16
Adding (2+3) and substituting in (1) gives

Residue (-i) =

(3)

- 27m8
16 16

f@dz+ [ @iz [ ez f(z)dz:zni(—+_
LZ C”O Ll CR

_ 18,
bﬂ@ﬁ+£%ﬂmﬂ+£ﬁ@MHJ;ﬂmﬂ—4nz

We will show below that lim, _,, L f(z)dz = 0 and that limg_,, £ f(z)dz = 0, which
1‘0 R

simplifies the above to

Lf@ﬂ+Lf@ﬁ:§ﬁi (3A)
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We will now work on finding { f(z)dz. Let z = re’, hence dz = dre’ and the integral
1

becomes

In°z 0 foo In® (reie) e
L 1+7 0 1+ (reie)z

™ (Inr+ ie)3
—ee [ gy
o 1+reee
e (ln2 1+ i%€? + 2ieIn r) (In7 + ie)
_ ezef ‘
0 1 + r2e2ie

oo (1n3 r+ 2€2Inr + 2ie In? r) + (ie 0?7 + 3e3 + 222 In r)
—_ elé'f
0

dr

dr

1 + r2e?e
Now taking the limit as € — 0 the above becomes
In® z © In’r
z 2dz = z zdr (4)
L 1+z 0 1+7r
We will now work on finding { f(z)dz. Let z = re®€)_ hence dz = dre’®©) and the
2

integral becomes

i(2m—e)

In’z i fO In® (rei@“‘e))
—dz = - 7

,1+22 © 1+ (rei(zn‘e))z

pi2n—e) f (In(r) +i(2m - e))

1+ 1,2821 (2m—€)

dre

dr

But lim,_, i(Zn—e) = ¢2" =1 and the above becomes

ln r—Q2mn- e) +2i (21 - e)lnr) (In(r)+1Q2m - e))
1+ 1,2621(271 €)

L21+Z2

0ln r—InrQ2m - e) +2i (21 - e)ln r+i(2m— e)ln r—iQm - e) +2i2 (21 - e) Inr
f 1 + 72¢2i(2m—€) d

Taking the limit as € — 0 the above becomes

dr

L, 1+ 22 1 + r2e4mi

In®r — 4m? Inr + 4miln® r + 2miIn r — i (472 + €2 - 47e) 2m — €) - 872 Inr

fO In®r — 4 Inr + 4niln® r + 2miln® r — i (270 — e) (2m - €) + 2 (47‘( + €2 —4ne)lnr
f dr

1+72

dr

0 In*r —4n? Inr + 6miln® r — i (873 + 2me? — 8n%€) - (4n2e + €3 — 4me?) - 8n2Inr
B foo 1+ 12
Taking the limit as € — 0 the above becomes

n®z p fo In® (1) =472 Inr + 67mi In® r — 8im® — 872 Inr
z = ¥

1, 1+2? 1472

fo In® (1) = 1272 In 7 + 67 In® r — 8in® ;
= r
o 1+ 72

Hence the above becomes

In®z Oln 0 Inr 0 102y 01
22 D by —12m f dr+6 f _dr—8i f
L1422 1+r2 ' 1+20 0 001+r SRR N

:—f dr+1271 f nr dr—6nif dr+8m f
0 1+ 0 1+1’2 0 ].

But £ ln—rdr = 0 from part (a) and £ Ller = E, hence the above becomes

Inz o 1p3 r
2dz=— 6mf
L21+Z 0

" dr + 4irt (5)
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Using (4,5) in (3A) gives

ff®ﬁ+ F@dz= S
L, L 4
2

w 1p3y © In?r © 137 13
[— - dr—6m’f 1n dr+4in4)+( - dr):—n4i
0 0

1472 + 72 o 1+72 4
© In?r 13

—67tif - 2dr+4i7z4 = —74
0 1+7" 4

© In2y 14—37141' — 4imtt
fo 1+27 =7 Zeni
© Iy 1374 — 16intt
Y =
0 1472 —247i
B —374i
24
73
8
Which implies
00 lnzx 3
£ 1+x2dx )

2.5.3.21 Appendix Here we will show that limr0_>0£ f(z)dz = 0and limg_,, L f(z)dz =
7’0 R
0.

For lim, _,q L f(2)dz, let z = rye’®. Hence dz = ryie’?d0 and the integral becomes
0

e In’ (roeie) o ' In (roeie)
111’11 f —z,erolelede = hm lf —Z.Qrod@
70_)0 21—€ ]. + 7’0821 T0—>0 21T—€ 1 + 7’061
As € — 0 the above becomes
In® (roeie) 0 In® (roeig)

lim [ rie%d0 = lim i [
2

. /46
1’0—>0 2m—€ 1 =+ 1’06216 1’0—)0

4
2 i

IN

lim
ro—0

[ )
2

"
2 g '0
n 1+7§e?

max

0 |1n® (roele)
1+ rdei®
1H3 (Voeie)

1+ r%e"19

IA

lim
ro—0 o

ron

max

0
f 1’0(16
21
max
1113 (Toeig)
1+ rde®
|1D3 (Yoeie)
< 27trg lim

=0 |1 + 73|

IA

lim
T0—>0

= 2777’0 lim
ro—0

max

max

min

inro+i6] |iry +i6)

max

< 2mrg lim :
0Vo—>0 |1 + r%e’9| ,

min
2

|ln7’0+19|max

But from part (a) we showed that 27t lim = 0, hence it follows that the

r0—0 |1+;%ei9|min
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RHS above goes to zero. Therefore

3 .
' In (roelg) i _ In®z
lim —227016 dO = lim —ZdZ
10—=0Jo_¢ 1+ e i0 ro—0 Cry 14z
=0

Now we will do the same limg_, L f(z)dz, let z = Re'®. Hence dz = Rie'?d6 and the
R

integral becomes
. 2n-¢ In° (Reie)
As € — 0 the above becomes
lim e —1113 (Re") Rie'%d0 = lim i 3 —1113 (re”)
RoooJ, 1+ R2e%0 R—co Jy 1+ R2e210
2 In® (Reie)
o 1+ R2e%0
In® (Reie)
1 + R2¢2i0
In’ (Reie) RO
1+ R2e201 J,
|ln3 (Reie)

=27 lim R—————tax
R—oo" |1 + R2¢2i0)|

_ 27—€ ln3 Reie
Riel’do = lim i f (Be")

. 1 + R2¢2i0 Rd6

Rd6

< lim [i
R—o0

max

277
do

< lim
R—)OO 0

max

27T

< lim
R—o0

min

IR+ 0 |in(Re”)

<27 lim R ax
= AT Rl 1-R?
' Iln R+i6]? .
But from part (a) we showed that 27 limg_,, RTZH‘&X = 0, hence it follows that the
RHS above goes to zero. Therefore
2n-e In° (Re'®) 103 2
lim (—.)Rielede = lim — S dz=0
R—oo J, 1 + R2¢20 R—eoJ 1+ 22
=0
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2.5.4 Key solution for HW 5

A (ot
O 1o e
— e -
2 -yt W, +4 ¢
- (i) -, P ST
NN >
Pl s tw riE | /

Whew 20 we cun add @ Semi-cihele in The

wpper v}la (# ‘-Zo/mw, C
T)VAJL Con‘%ﬁi'éwﬁb"' s zero —> ~ re
~R K
ay R =,
Iy RTINS Y.

) e %0’{{’ e , ( é)

1o Y S
c (t-w, ~—}’€)(¢J tW, "é) Q(«uo - 2,

B SO R
A, w, 4

- ) / /n
\/\/)\dy; *6 <o Ww e Cauy ﬂal,( a J",f’mf Circle

[pwer Llﬁ‘/ﬁ"//ﬂﬂé, Mo /)o/c’/ are Lpﬂ&/o/c/ r

‘fAM T =o0.
S
T = =27 smie £)6(4)
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90



2.5. HW 5 CHAPTER 2. HWS

A
T)w ih l('c’ﬁf‘a/ ) AX' L/X 1y @ /f’m éwk/z7~
o + X '

(%) -5 22

e

e X [’A7) da dc
N exd f (;Z:X) & f (z ta)(z-4 ff[}d

(7’—14/7L ars h /‘:’0744/\5'—

Sfdz+f;;a+f{/z+ 5{15:4, /Ae'jr( @;377
- ﬂ[ﬂ(”vg)L" (%)7 = 2n’
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b
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2.6.1 HW 6 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 6 due Wednesday March 13. Show all work. Use of
Mathematica, MatLab, or similar software is not allowed.

1. (5 pts) The rate of nuclear reactions in a star is given by the formula
R=N [ dEBe et
0

where E is energy, § = 1/kgT, « is a constant, and N is a normaliza-
tion. Evaluate this integral using the saddle point approximation when
(8a2)Y/? > 1. This is the low temperature limit appropriate for conditions
in the star.

2. (5 pts) Assume that g(zg) = 0 for a < zy < b and that ¢g~'(z) exists in
that range of x. Show that

3. (5 pts) Find the Fourier series that represents the periodic function

2 L
f(ur:)zl—l—[ilj when —§§x§0

2 L
f(a:)zl—; when 0§x§§

4. (10 pts) Consider the Fourier series for the function f(#) = 1 when
0<6f<mand f(0) = —1 when 7 < 6 < 27. Just to the right of § = 0 the first
n terms in the series exhibit a local maximum of 1+4,,. For large n, §,, =~ 0.2.
Using computer software, make plots of the series for 4 representative values
of n of your choosing for 0 < 6 < «/2 for illustration. What is the limit of
the overshoot 6,, as n — oo to 4 significant figures? Include printouts of the
programs you wrote to make the plots and to find the limit. This is called
the Gibbs phenomenon.
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2.6.2 Problem 1

1. (5 pts) The rate of nuclear reactions in a star is given by the formula
R=N [ dBpe oot
Jo

where E is energy, f = 1/kgT, a is a constant, and N is a normaliza-
tion. Evaluate this integral using the saddle point approximation when
(Ba?)Y/3 > 1. This is the low temperature limit appropriate for conditions

in the star.

Figure 2.13: Problem statement

Solution

The first step in saddle point method is to write the integral as lfo e/ (E)dE. Hence

-1

o (—5E—a£7+1n15)
R=N f ¢ dE
0

=N f " B (A)
0

Where
f(E) 2—515—0115_71 +InE 1)

The next step is to determine where f (E) is maximum. Therefore we need to solve f’ (E) =0
in order to determine E(, where f (Ej) is maximum.

We need to make this dimensionless. Multiplying both sides of the above by a? gives
1, 3 a?

—a?B+=a’E? + — =0

wp e E

Let E = xa?, then the above becomes

a a7, @
—a’f+ =’ (xa?) ? + =0
ﬁ 2 ( ) (XOZZ)
g+l loo (2)
Pro=s+i=
X2
Case 1 Ignoring the term % in (2) results in
¥2
1
—a?B+==0
ap Z
1
o2
X ap
1
X

Using this value for x we check if this is larger than or smaller than the term we ignored

. .1
which is —-.
X2

3
X2
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Since (azﬁ)% > 1, then @?B > 1 and hence x = — is much smaller than (ﬁza)3 So our
> - aZﬁ :

. . . . 1
choice of ignoring — was wrong. Hence we need to ignore the term . from (2)

3
x2

1
Case 2 Ignoring the term - results in
— X

o, 1
- ﬁ + E 3 =0
x2
S 2
—2x2a°f+1
f 0
2x2
3
—2x2a?f+1=0
3 -1
2 =
T a2
Solving gives
2
1 \3
= (z55)

But E = xa?, and from the above we the energy Ey which makes f (E) maximum as
2

EO = 0(2 —1 ’
2028

4
a’73

WIN
WIN

N

p

R

@IN

2
3

N

p

Hence

WIN

= (5)

Now that we found which value of E makes f (E) maximum, we can expand f (E) in Taylor
series around E
[ (Eo)

f(E) = f(Eo) + f" (Eo) (E — Eg) + —,
But f’ (Ep) = 0 then the above becomes, after ignoring H.O.T.

F® = £y + 520

(E-Ep)* +H.O.T

(E - Eo)? 3)

-3
Since ' (E) = - + %(){E7 + % then
-5

3 =
" (Ep) = —Z“Eoz - Ep?

-5
Since E02 > Eaz the above becomes

=S

3
f" (Eo) =~ akEg

=5 )
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Equation (A) now becomes

R=N f efO4E
- N f SfE+ 0k JE
00 f/l
= Nef(Eo) f ( )(E Eo)* AE
0

We would like to write the above as gm ey = \/g. Therefore, assuming u = E - E,

hence Z—Z =1. When E = 0 then u = —E; and when E = oo then u = co. Hence the above
becomes
o f"(Eo) »

R:Nef(EO)f e 2 “du
-E,

o 38
:Nef(EO)f TiE gy
Eo

Since E is positive, then contribution from lower limit u = —E; to the value of the integral
is Negligible. We can then let lower limit go to —co without affecting the overall result of
the integral. The above becomes

o _3F%
R:Nef(EO)f e B0 dy

.. . . 00 _ax2 T .
This is now in the form of Gaussian f e dx = \/;. Hence we can write the above,

o g = 2F
usmg a= 1 E
R = Nef(Eo) %
4Eg

_ NofEo) [0
362

-1

But f (Ep) from (1) is f (Eg) = —BEy — ozEO7 + In Ey, hence the above becomes

R = NEe PEo=akq

N‘,_.
~
NE]
;‘
o

2/3
But E, = (%) , therefore the above becomes, after some more simplifications

o 2/3 o 2/3 o -2/6
R:N(ﬁ) exp(‘ﬁ(%) ‘“(%) ]

Simplifies to

W=

- o (771

This was a hard problem. See key solution.
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2.6.3 Problem 2

2. (5 pts) Assume that g(zy) = 0 for a < o < b and that ¢g~'(x) exists in
that range of x. Show that

Figure 2.14: Problem statement

Solution

Let u = g (x), hence

du |
=8 1)
But
x=g"(gW)
=g ()
Replacing x in (1) by the above results (so everything is in terms of u) gives
du

i -1

gl

Now we take care of the limits of integration. When x = 4 then u = ¢ (2) and when x = b
then u = g(b). Now the integral I becomes in terms of u the following

g(b) du
I: -1 6 PR
fg(a) Flet w) (u)g’ (g7 w)

-1
:fwkmﬂig—gﬁku @

5@ g (g7 ()
Since we do not know the sign of ¢’ (xy), as it can be positive or negative, so we take
its absolute value in the above, so that the limits of integration do not switch. Hence (2)

becomes
@ [ flgtw) }
I= S(u)| ————%|d (3)
Jo 00 hg, o)™

We are given that there is one point x; between g (a), and g (b) where g (xy) = 0 which is
the same as saying u = 0 at that point. Hence by applying the standard property of Dirac

b
delta function, which says that f 0(0) ¢ (z)dz = ¢ (0) to equation (3) gives
a

_ flgo)
s (71 )]
But ¢! (0) = x, therefore the above becomes

b
[ rws(g@)ax

Which is the result required to show.

_ f (%)
|g’ (X0)|
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2.6.4 Problem 3

3. (5 pts) Find the Fourier series that represents the periodic function

2 L
f(:z;):1+;j when —§§33§0

2
f(a:)zl—; when 0 <z <

N | B

Figure 2.15: Problem statement

Solution

A plot of the function to approximate is (using L = 1) for illustration

f(x)
19

Figure 2.16: The function f(x) to find its Fourier series

The function period is T = L. Hence the Fourier series is given by
a4y~ 27 27
fx) ~ > + nz::l a, cos (fnx) + b, cos (Tnx)
Since f (x) is an even function, then b, = 0 and the above simplifies to
4 27
fx) ~ > + ngl a, cos (Tnx)
Where

2 3
aozzjiéf(x)dx

We can calculate this integral, but it is easier to find 4y knowing that %O represent the
average of the area under the function f (x).

. . 1L L . L .
We see right away that the area is 2 (5 E) = 5. Hence, solving L;—OL = for ag gives ag = 1.

Now we find 4,

L
2 M 2
=7 j:zf(x) cos (Tnnx) dx
2
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2
Since f (x) is even and cos (Tnnx) is even, then the above simplifies to

L
4 3 27
an—zj; f(x)cos(fnx)dx
L
4 r3 2 2
:Zj: (l—fx)cos(fnnx)dx
a5 (2 2 (3 2
= fz cos | Znx dx——fzxcos x| dx (1)
LJ, L LJ, L
L
f 21 p 1 . (2m 2
OcosLxx 2n_nsmLx
L

0

L (2 L
= —|Smm|—n-—
2nr L 2

= ——sin(ntn
2nnsm( )

=0

But

N~

L
And £2 X €OS (%nnx) dx is integrated by parts. Let u = x,dv = cos (zfnnx), hence du =1

1 . 21
and v = =— sin (Tnx). Therefore

o
fo

L

N~

2
X cos (Tnnx) dx = uv — fvdu

L
1 (2n 2 1 (27
= 5— |xsin| —nx —mfsm —nx|dx
Znm L L
L L

0 -

B Lf,Zn J
= o sin Lnx X

=5 (cos (nm) —1)

= (3 (0"-1)

2nm

Substituting these results in (1) gives

o= o) (0 -1)

= 2 ((_1)” _ 1)

100



2.6. HW 6 CHAPTER 2. HWS

. . 4
When 7 is even we see that 4, = 0 and when 7 is odd, then a, = 22 Therefore
1) 2
=—+ ), a,cos|—nx
S (T

i 4 27
iz cOS Tnx

|S

-
—~~
=
N

+

NI~ NI- O

+
|
Mg

2.6.5 Problem 4

4. (10 pts) Consider the Fourier series for the function f(f) = 1 when
0 <6 <mand f(#) = —1whennm < 6 < 27. Just to the right of # = 0 the first
n terms in the series exhibit a local maximum of 14-6,,. For large n, d,, ~ 0.2.
Using computer software, make plots of the series for 4 representative values
of n of your choosing for 0 < 6 < 7/2 for illustration. What is the limit of
the overshoot d,, as n — oo to 4 significant figures? Include printouts of the
programs you wrote to make the plots and to find the limit. This is called
the Gibbs phenomenon.

Figure 2.17: Problem statement

Solution

A plot of the above function is

f(x)
10

0.5+

(o8]
N
Lﬂ;
N
(o8]
N
-
=

Rl =
NN
4>|4
>
r\)|4
> |

-0.51

-1.0r

Figure 2.18: The function f(x) over one period

We first need to find the Fourier series of the function f (x). Since the function is odd, then
we only need to determine b,

f(x) ~ D] bysin (nx)
n=1
Where
1 271 '
b, = —~ ; f (x) sin (nx) dx
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Since f (x) is odd, and sin is odd, then the product is even, and the above simplifies to
2 7T
m:—ffammmmx
TTJo

2 7T

— f sin (nx) dx
TJo

2

( cosnx)”
I n /g

== (cos nx)zjT
nrt

-2
= — (cosnm —1)
nmn

-2 "
=— ((—1) —1)

2 n
= —(1- (1))

4
When 7 is even, then b, = 0 and when 7 is odd then b,, = —, therefore

4 o 1
fx)~= Y, =sin(m)
T =135, 1t
Which can be written as
4 & 1
~ — in((2n -1 1
0~ 2 X gy (@11 )

Next, 4 plots were made to see the approximation for n =1, 5,10, 20.

Using 1 terms Using 5 terms

10 /\ 1.0 /\\/A\//\

05} \ 05F
‘ ‘

-0.5F

3
2
-05¢F

10k N paaN
Using 10 terms Using 20 terms
10/\/\/\/\/\ WOI\AAA AA/\A
. TS 0 AR A S \S

0.5 0.5

I i 2 I i i 2|t

2 2 2 2
-0.5F -0.5
-1.0 -1.0

Figure 2.19: Fourier series approximation for different n values

The source code used is
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ClearAll[f, x, n];
flx_ /;0<x< 2Pi] := Piecewise[{{1, @ < x<Pi}, {-1, Pi< x<2Pi}}];

4
fApprox[x_, nTerms ] := o1 Sum[ Sin[(2n-1) x], {n, 1, nTerms}];
i

2n-1
Grid [Partition[Table[Plot[{f[x], fApprox[x, n]}, {x, @, 2Pi},
PlotStyle » {Blue, Red}, PlotLabel -» Row[ {"Using ", n, " terms"}],
ImageSize - 320, Ticks -» {Range[@, 2Pi, Pi/ 2], Automatic}
1,
{n, {1, 5, 10, 20}}], 2], Frame -» All, Alignment - Center, Spacings -» {1, 1}]

Figure 2.20: Source code used to generate the above plot

The partial sum of (1) is

—4N ! in((2n -1 2
fN(x)—;Z]l(Zn_l)sm(( n—1)x) 2)

To determine the overshoot, we need to first find x; where the local maximum near x = 0
is. This is an illustration, showing the Fourier series approximation to the right of x = 0.
This plot uses n = 100.

1.2+
H local max

1.0 ——1+—— — ~— —— —_—————
08
06F
04/
0.2 1l X0 where max located

L / L L L L L L L L L L L L L L L L

0.05 0.10 0.15 0.20

Figure 2.21: Finding x; where maximum overshoot is located

Hence we need to determine f’ (x) and then solve for f’ (x) = 0 in order to find x,

4 N
)= — Z cos ((2n —=1) x)
n=1

_ 25sin(2Nx)

o sinx
Derivation that shows the above is included in the appendix of this problem. Therefore
solving&zjx) = 0 implies sin (2Nx) = 0 or 2Nx = 7 (since we want to be on the right side

of x = 0, we do not pick 0, but the next zero, this means 7 is first value). This implies that
local maximum to the right of x = 0 is located at

Tt

xOZE

Therefore we need to determine fy (xp) to calculate the overshoot due to the Gibbs effect
to the right of x = 0. From (2) and using xy now instead of x gives

N
I (%) - %; (2n1— 7S ((2” -1 %)

_a(sin(gg) | sin(By) sin(55y) sin (2N -1) &)
T 1 + 3 + G 4o+ NI
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sin(mz)

But

= sinc (z), therefore we rewrite the above as

) o2 S0R) ), @b

2N/ 7 3n 5m 2N -1~
1 . i . i . (2N-1)
_ 1 sin ZN 1 S1n T(ZN 1 S nZN 1 Sin | 7t oN
- 2N gl TN 3n— TN 5n— +m+ﬁ(2N—1)nL
2N 2N 2N 2N

1 1 1 3 1 5 1 2N -1
=4|—sinc| — |+ —sinc| — |+ — sinc| — | + -+ + — sinc| ———
2N 2N 2N 2N 2N 2N 2N 2N
Therefore

(Tc)_zl, 1 +1, 3+1 5 +1. 2N -1
fN N = Nsmc N Nsmc N Nsmc 2N Nsmc N

B S R A SRR -1 DAy -\ e A1
= sinc N sinc N SInc N SInc N N

Therefore, if we consider a length of 1 and % is partition length, then the sum inside {}

above is a Riemann sum and the above becomes In the limit, as N — oo

Z\}1_{1100][]\,( ) 2f sinc (x) dx

Divide 0...1 into N partitions

dx

2|~

one partition

Figure 2.22: Converting Riemman sum to an integral

Therefore
sin (nx)
li 2
Nl—r>noo fN ( ) f
1 in
The £ ) Jx is known as Si. I could not solve it analytically. It has numerical value of

05894898772 Therefore
i f ( i ) = 2(0.5894898772)
Nosd NN )~ oW
=1.17897974

Since f (x) =1 between 0 and 7, then we see that the overshoot is the difference, which is
lim 65 =1.17897974 -1

N—-ooo
= 0.1789

For 4 decimal places. The above result gives good agreement with the plot showing that
the overshoot is a little less than 0.2 when viewed on the computer screen. The only use
for computation used by the computer for this part of the problem was the evaluation of

1 .
£ sin(x) dx. The code is

X

104



2.6. HW 6 CHAPTER 2. HWS

Integrate[Sin[Pix] / (Pix), {x, 0, 1}]
SinIntegral []

JT

N[%, 16]
0.5894898722360836

Figure 2.23: Finding the limit

2.6.5.1 Appendix

Here we show the following result used in the above solution.

_ 2sin(2Nx)

4 N
—ECOS((Zn—l)X)— ,
m — T sinx

Since cosz = Re (eiz), then cos ((2n —1)x) = Re (ei(z”_l)x). Hence the above is the same as

4 < 4N
= Z cos((2n-1)x) = —Re Z pl2n=1)x 1)
= T n=1

But

N N
2 pl@n=1)x — Z p2ixn—ix
n=1 n=1

N
=X eszn

n=1
N

_ i 2 (eZix)”

n=1

. . 1-rN . . '
Using partial sum property 22]21 1" = r——, then we can write the above using r = e* as

1- eZix
1- eZz’Nx
1= eZiNx

N 2iN.
W i@t = i (eZixl —e x)
n=1

— eix
e—ix _ pix
eZiNx -1
eix — e—ix
eZiNx -1
2i sin (x)
_ cos(2Nx) +isin(2Nx) -1
B 2isin (x)

Multiplying numerator and denominator by i gives

i si2n-1x _ icos(2Nx) —sin(2Nx) — i
| —2sin (x)
3 i(COS (2Nx)-1) sin(2Nx)
—2sinx 2 sin (x)
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sin(2Nx)
2sin(x) ’

The real part of the above is hence (1) becomes

4 ‘
— E cos((2n—-1)x) = — Re 2: pi2n=1)x
T n=1 Tt

n=1
4 (sin (2Nx)
2 sin (x)
3 zsin (2Nx)
C 7 sin(x)
Which is the result was needed to show.
2.6.6 Key solution for HW 6
~
o o AL < e
:Nydffe e :Ngo/&"e
0
-~V y.
fle)= -0F-~AE "+ ME
-2/ I

’ £
Fl&q}’ Thé J:XJ;//L /oﬁDL)IL.‘ ,F - ,_ﬂ*,;{ - f

[: I - -;f% fp/u‘fmn fev[f’/‘/el P as Ea.

Defin, x = 0€
0{(? WA[A Alp > l ’[V};L (2 7Lf(M/

which v O/Jhﬂ(_’nj,),,, /ffj»

i
| = X =3 F
{)(/_\ bn ’h\c f‘lf/fﬂ" J)\/L tht/'}'"
bolence each a‘f’lxer
X ~ T x &
0 A o L{
/}’Ad o0 ﬂl’-— ’[f Ji D/E’,

T hu }ujf,'(:g, fjnar\hj
flx) = -x, - i)é@ , A(xo/ﬂ)

f

J'mll Cam/ﬁ//,/é +) amtf ;\ )'Errn/
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G 2 m/gfz QZ 2
f(xo):«,q’;"f?; ,,;T::g_:égﬁzﬁﬁ*/:
5

Xo X ';,7(:

b

1. ‘?/L : 2
P ;2% ) 2 0
— - —_— , i —
Xo’" (‘7 XDVJ. L X

/’.
T}*;/ Tffm *\/ V’Lvtak )a/j?l‘

2
F'%) (EF)

"F[Xp) ab
Thus R~ Ne f JE e
0

k,/’_\//s_/
. L [ (%o
) /;ﬂ. R

Note Fhet K -4 ra/ai///v as T = (0.
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.— b
B 1 = g s(50)
o

?CYO) = 0 an A o < X, < é Lgf )/ = :}C’rj

Y ma
i A
dy = 9’ () Ax Then 1+ f f‘(g"'(‘y)) 5(y) ,/,l—I~———
Vims /j (5 [79)/
W/){rc 34(7) = X . Wa W Se ’ﬂia aéfa/wf& Va /ue
6‘F 5) th The J“‘i‘f"ll‘ﬂw and ke The la\'déw

[ Vomi + of ’n‘(, }/ ih 2L€jr,¢/’/’[h1 Swa ller T hau The
- > ﬁc,
[mit. This Fakes b ace bumT b7

Upptr |
Lo5s, bil 7‘/ That g//%) >0 and 7[&) co  m Tht™
teryal. Thon
T A£G o )
)57 J5 ()]
b B , ’F[Xa)
§ f(x) g[gfx)) Ax = «—-—-:”"/
; 19'(x)]

T});j ﬁénf’rw[/'zcj f’f(‘a(j/,‘f ﬁrwm.w//), ,'/ﬁ ‘?(x);o

a,f mu/ ”}')r/v)c /904% fs th The fh%frv,tj,
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: ' 2.
= M‘__Z_:_,_R cos [77!’)) -1 + L f}h[ﬁ”n)
(th}a Y n
Ha A
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2.71 HW 7 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 7 due Monday April 1. Show all work. Use of Mathematica,
MatLab, or similar software is not allowed.

1. (5 pts) Evaluate the integral

T 2
/ da;/ dy d(sin )6 (z* — y?)
0 1

2. (5 pts) Consider the linear response formula

(t) = / TGt — ()
When the input is F'(t) = e"*@(t) the output is z(t) = (1 —e *)e . What
is G(w)? What is the output if F'(t) = Fyd(t)?

3. (5 pts) By using the integral representation

_1
Y

2
Jo(x) /0 cos(x cos ) df

find the Laplace transform of J;.

4. (5 pts) A reasonably accurate description of the atomic contribution to
the dielectric function is

ew)=14+wp> J;

2 02 _ iy,
Wi — w* — 20w

There are f; electrons per molecule with binding frequency w; and damp-
ing constant ~;. The oscillator strengths f; obey the sum rule }°; f; = Z
which is the total number of electrons per molecule. Using the imaginary part
of € in the dispersion relation, show that the real part is correctly reproduced.
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2.7.2 Problem 1

1. (5 pts) Evaluate the integral

™ 2
/ dx/ dy 0(sin )6 (z* — y*)
0 1

Figure 2.24: Problem statement

Solution

f ( f 5 (sin (1) 6 )dy) dx

Since 0 (sin (x)) does not depend on y we can move it from the inner integral to the outside

integral
T ' 2 ) ) i)
_fo (5(sm(x))(f1 6(x —y) y) X 1)

Now we need to evaluate.
2
I, = f 6(x2—y2)dy
1

This is in the form of sz (y) 0 (g (y)) dy where now f (y) =landg (y) = xz—yz. Therefore

the roots of ¢ (y) are +x. We see that x has to be in the range of 1 --- 2, since that is where
y is defined over. Hence the root —x is outside this range and can not be used. So there is
only one root which is +x. Now, using the result obtained from last HW which says

2 _f (yo)
Lf@dﬂww—k@m

Therefore integral I, becomes
f()
()]

Where 1y = x is the root and where g’ (y) = -2y and where f (y) = 1. Hence the above

becomes

12 = lim
Y=Yo

I, = m(ev(x 1) -6 (x-2))

Where we added (0 (x —1) — O (x — 2)) to insure that x is 1 < x < 2. Using this result in (1)
gives (we do not need to write |x| any more since x > 0)

I:fonzl—x(G(x—l)—6(x—2))(5(sin(x))dx

21
=f1 ﬂé(sm(x))dx

Let f (x) = zl—x,g(x) = sin (x), then the above in the form

)
= [ reslee)a= 3 L0

Where x; are the zero of g (x) = sin (x) inside the range x =1 --- 2. But there are no zeros
of sin (x) in this range. Therefore this leads to

I1=0
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In other words

fn (fzé(sin(x))é(xz—yz)dy)dx=0
0 1

2.7.3 Problem 2

2. (5 pts) Consider the linear response formula
(t) = / TG — Y F)dt

— 00

When the input is F(t) = e~*6(t) the output is z(t) = (1 — e *)e™*. What
is G(w)? What is the output if F(t) = Fyo(t)?

Figure 2.25: Problem statement

Solution

2.7.3.1 Part (a)

Since
Fourier transform of output

Gw) =

(1)

Fourier transform of input

Assuming causal system, then the output x (t) is x (t) = (1 - e‘“t) e~M6 (). In other words,
we added unit step O (f) to indicate it also starts at ¢ = 0, since the input starts at ¢ = 0.
Therefore the above definition becomes
foo x (t) e @tdt
Gw) == —% .
[ F(t)eriwtdt

f_ * (1 - e‘“t) e MO (1) et dt
- f_ = e MO (F) emiwtdt

C (1 = gt pMpmivt gy
:£ ( 008 )e‘ e (2)
£ e~ Me—iwt ]t

But

foo (1 _ e—at) e Memiwt gy — foo o Meiwt gy foo o0t oM pmiwot 3y
0 0 0

_ f ® o tA+iw) gy _ f ® pHat A +io) gy
0 0

ot (A+iw) > o HatA+io) 0
- l—(/\ vio)| " ]
-1
(A +iw)
-1
(A +iw)

a+A+iw X

[e_t(Miw) ]:’ * o+ /\1 + iw

[e—t(a+/1+ia)) ]Do
0

(o]

[e—m e—itw]‘” n 1 [e—t(a+/1) e—ita)]
0

a+A+iw 0
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With the assumptionﬂ that A > 0, @ > 0, then the above simplifies to

00 . -1 1
1 —e ) e Memiwtgy = 0-1]+——1[0-1
J; ( ¢ )e ¢ (/\+ia))[ ] a+/\+ia)[ |

1 1
T (A +iw) (a+A+iw)
_ (@ + A +iw)— (A +iw)

A +iw) (a+ A +iw)
a

T A tio) @+ At io)

f * oM pmiot gy — f > ot +iw) gy
0 0

(3)
And

ot (A+iw) e
N ;
_ —1 [e—t(/\+iw) ]""
(A +iw) 0
Since we assumed that A > 0, then the above simplifies to
—Atp—iwt Jp — 0-1
fo € O riwy 01
— (4)
(A +iw)
Substituting (3,4) into (2) gives the transfer function
o
G(a)) _ (A+ia))(i¢+A+ia))
(A+iw)
Therefore
= o
Gl) = i
2.7.3.2 Part (b)
If the input is F (t) = Fy0 () then the output is
x(t) = f G (t—t') Fod (V') dt
= FyG (t) (4A)

Hence we just need to find G (t) which is the inverse Fourier transform of G (w) we found
above.

1 .
GH=o [ — el

2nd_a+ A +iw

a 00 eia)t
NI -,
2n J_o (@ + A) + iw
To integrate the the above, we will use complex contour integration. Let w = z, hence the
above becomes

G- a foo ozt

md ar iz

izt
Therefore f (z) = (af)\)ﬂz. The poleis atiz=—-(a+A) orz=i(a+ A). Since a + A > 0,

then the pole is in upper half plane. Lets find out where we will put the half circle, if it will

go on the upper half or lower half. Since numerator is ezt = ei(x+iy)t = ¢Ze ¥ and therefore,
since t > 0, then we want to choose the upper half circle, since there y is positive, which

2So that input does not blow up with time, and its follows that output also decays with time, hence a > 0
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will cause the numerator to go to zero as R — oco. This implies there is one pole inside the
upper half plane, we all what we need to do is find the residue at zy =i (a + A).

ezzt

f(z) = et Tiz The contribution from

Cr goes to zero as R
goes to oo

Rz

Figure 2.26: Contour integration used for finding inverse Fourier transform

Hence

(ﬂ)fw _ —(1)2 ' " Resid (5)
2] J_ (@ + A) + iz 2= 27 o eIane

But, since zy = i(a + A), then
Residue (zg) = lim (z - zp) f (2)
o . eizt
= z—)lil(rar-ll-/\) (z—i(a+A)) m
z—i(a+A)

(L e)( i ZfOD
z—i(a+A) z—i(a+d) (@ + A) + iz

Applying I’Hopitals gives

, 1
Residue (ZO):( lim eZZt)( lim —)

z—i(a+A) z—i(a+A) i

=—i lim ¢%
z—i(a+A)

— _ie—(a+/\)t

Now that we found the residue, then from (5)
00 izt
Gl et = (g2 ie )
— ae—(a+A)t

We have found G (t)

G@t)=ae @Mt 50
From (4A), the response is

x (t) = FoG (t)
= aFge~@+Vtg (1)
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2.7.4 Problem 3

3. (5 pts) By using the integral representation
1

" or

27
Jo(7) /0 cos(x cos 6) df

find the Laplace transform of J,.

Figure 2.27: Problem statement

Solution
Using
1 271
Jo(x) = — f cos (x cos 0) dO
21

0
Hence Laplace transform is

o(s) = fo " o () e

1 00 27T
= — f (f cos (x cos O) d@) e~ *dx
27'( 0 0

Changing order of integration

271 00
Jo (s) = %fo (fo cos (x cos G)e‘sxdx) do

LetI = Loo cos (x cos ) e™**dx. This is solved by applying integration by parts twice

—SX
Let u = cos (xcos 0),dv = ™%, hence du = —cos O sin (xcos 0) ,v = —eT. Therefore

I=[uv]] - f vdu
0

1 o 1 00
= [cos (x cos 0) e™] " —  Cos 0 f e ¥ sin (x cos 0) dx
0

1 5 0
:_E[O_l]_cos

f e ¥ sin (x cos 0) dx
0

1 0
- f e~ sin (x cos 0) dx
S S 0

Integration by parts again, let sin (x cos 0) = u, du = cos 0 cos (x cos 0) ,dv = e™*,v = —

and the above becomes

1 0 o0
P [uv]gO - f Udu)
0

S S

1 6( 1 o 6 e
— - P2 [sin (x cos O) e's"]0 + €8 f cos (x cos 0) e'sxdu)
s 15 s 0
1 cosO( 1 cos 6
= - - ——[0] + I
5 5 S S
3 1 cosB [cosB I
s 5 S
B 1 cos?0
s s2
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Solving for I gives

cos? 0 1
I+ ——1I=-
3 S
cos? 6 1
Il 5 = -
S S
(s2 + cos? 0 1
I > = -
S S
s? + cos? 0
I =1
S
S
I=——
s2 + cos? O
Therefore
o0 3 S
f(; COos (x COs 8) e dx = m (2)

Substituting (2) in (1) gives

. 1 2 s
Jos) = 21 j; s2 + cos? (Q)de

Since the above is an even function, we can rewrite as

T

A 2 2 S
Jos) = n j(; 52 + cos? (0) a6

The above can be solved using contour integration or using standard method of integration
using substitution which I think is simpler here.

Multiplying numerator and denominator of Jo (s) above by sec? (0) gives
. 25 7 sec? (6)
= — ——d0
Jo () Tt fo s?sec? (0) +1

Let u = tan (6). When 6 = 0,u = 0 and when 6 = g,u = o0, Since du = dO sec? (0). Hence

the above integral becomes, since sec? (0) = 1 + tan? (0) =1 + u?

» 25 [ 1
Jo(6) = P j(; s?sec? (0) + 1du

But sec? (0) =1 + tan? (0) = 1 + u? therefore the above becomes

N 2s 1
Jo(s) = —f ——du
° T Jy §? (1 + uz) +1
2s [ 1
= — du
T Jo (1 + 52) + 522
2s 1 1
%), 2y,
(5—2) + U
2s [ 1
= _f T
o (B
2
Let (1:—25) = A, so the integral in the form f A-iuz du = % arctan (%), hence the above
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becomes
2s 1 u
Jo(s) = —| 7= arctan —
52 52 0

__2 1 s ”
- 1+527Tlarc 8m(\/1+szu)L
.2 1 [E _ 0]

1+s27L2
1

1+ 2

2741 Appendix

This part contains attempt made using contour integration. For reference and not for
grading.

Solve

. 1 2 s
Jos) = 21 fo s2 + cos? (G)de

z+z71
)= 2

- 1 d
b= d——5=

B 27 2 74771 2 iz
54 + 2

3 1§ 4s dz
=P+
& 452+(z+1) =

Let z = ¢/, then dz = izd6O, and cos (0 , hence the above integral becomes

14s z
T 45272 4 (22 + 1)
Did not complete.

Alternative solution

Jo(x) = %fon cos (x cos 0) dO

d . . .
Let cos 6 = u, hence % = —sin 0. But cos? O+sin® O = 1, therefore sin® 6 = 1-cos? 0 = 1-12.

Hence sin ® = V1 — u2. When 6 = 0,u =1 and when 6 = 7, u = -1, therefore the above

integral now can be written as

1 1 —du
hngﬁcwwwﬁ:ﬁ

1 fl () du
= — COS \Xu
TTJd_q \/1 _ uz

Since the integrand is even, then the above becomes

2 1
Jum=;£cwwm

du

V1 — u?

And the above is what will be used as starting point. I could not solve this using complex
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contour integration, which is probably would have been easier if I knew how to do it, but
instead solved it using substitution as follows.

Changing the argument from x to a gives

2 ! d
Jo (@) = ;j(; cos (au) "

V1 - u?
u is arbitrary inside the integral so we can rename it back to x and the above becomes
2 ! dx
Jo(a) = — f cos (ax)
T Jo V1 - %2

Which is the same as (by renaming the argument again, since it better to use ¢ with Laplace
by convention, just for notation sake)

1 dx

Jo (at) = %j{; cos (atx)

1-x2
Now, the Laplace transform of ], (at) is

@)= [ oo at
— ® E ! dx —st
= j(; (nfo cos (atx) — _xz)e dt
2 (! dx s
== j(; (j;) cos (atx) — x2) e~stdt

Changing order of integration gives

Jo(s) = %fol (j:o cos (atx) e‘Stdt) \/11__xzdx

But gx’ cos (atx) e®!dt is the Laplace transform of cos (atx) which is from tables

s2+a2x2"
Hence the above simplifies to

N 2 ! 1
]0(5)=—f ’ dx

nJg 2+ a2x?\1_ 2
2s (1 1
= — dx
T Jo (sz + azxz) V1 - x2
Tt
2s a~
T 2aVa? + s2
1

Va? + 52
But we did the Laplace transform of ], (at), which is the same as ], (ax) and to get Laplace
transform of Jj (x), we just need to set @ =1 in the above result, which gives

fo (s) =

1452
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2.7.5 Problem 4

4. (5 pts) A reasonably accurate description of the atomic contribution to
the dielectric function is

fi
ew)=14+wp> ,
~ Wi — w? = 2iyw

There are f; electrons per molecule with binding frequency w; and damp-
ing constant 7;. The oscillator strengths f; obey the sum rule >, f; = Z
which is the total number of electrons per molecule. Using the imaginary part
of € in the dispersion relation, show that the real part is correctly reproduced.

Figure 2.28: Problem statement

Solution

fi
€(w) =1+ w?
(@) pzj:a)jz—a)z—Ziyja)
It is enough to work with one term in the sum above and verify what is being asked on
that term. Then it will be valid for the sum. Hence we will use the following as the starting

relation

2
a) .
e(w)=1+— 5f]. i=1,2,3,
Wi — w* = 21yjw
2
a) .
=1- 2 (1)

(a)2 — cujz) - 2iyjw

It is assumed that y is much smaller than @. In the above w is the variable quantity and
wj, Wy, yj are given parameters with known values for the problem

Oscillator
. . Plazma strength per
Dilectric frequency electron

function

W2'
e(w)=1+ — b/

(2 _ D5
w5 —w 2%y w

lied field \« ,
?E&l)e ¢ electron damping
£ binding per electron
requency
frequency

Figure 2.29: Physical meaning of terms involved

The real and imaginary parts are found by multiplying numerator and denominator by
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complex conjugate of denominator

wEf; (@2 - wf) + 200
O ) (e + 2
_ w%f]- (a) —a)]-)+2zyja)a)§f]-
(@2 - @?) - (2iyje)
. Wi (0 - @] )+2171w“)2f1
_ (w2 - wp) + 402
o ofilemef)  2ieelf,
(w2=af) +f0? (w2=af) + 2
_|4 w%fj (a)2 - wJZ) » 2y;wws f;
(w2-of) +arfar] (2= of) + 402

Hence we see that

wpfj(w? - w?)

Re(e(a)))Zl > j:112/3/'” (1)
(a)2 - a)Jz) + 47/]2a)2
2ywwif;
Im (€ () = - 4 2”f’ j=1,23,- (2)
(a)z — wjz) +4y%w?

Now, the dispersion relations for the above are, as derived in class notes

Re(e(@) =1+ = —(P.V.) f " K(a;’))dw' 3)
I (e @) =~ (P.V) N RO ()

The question is asking to use (2) in (3) in order to obtain and verify (1).
Substituting (2) into (3) gives

In(e(@)
1 o 1 2wiyiw’ fi
Re(e(a))):l——f — 2 bYy Ji o
TV oo W =W ((a)’) —wjz) +4y2 (w’)
2ywif; e ’
=1- ya;pfff ! “ do’ ()

’r _ 2
—oo (@' = w) ((a)’)2 _ a)]Z) + 492 (a)’)z
To find the poles in (5), it is easier to start from the original function
wpfj

— iV — w?
2tyjw — w;]

-b 1
The roots of the denominator are 71, = ot vaz —4ac = % + \/( 21]/]) + 4a)j2 =

1y + = 47/] + 4a) =1+, /w]z - )/]2. Hence after multiplying by the complex conjugate
as we d1d above, we obtain the new term which is w? + 2iyjw — a)jz. This one has roots

-2iy; 1 . \2 .
T34 = Zy, + 2 (21)/]-) + 4a)]~2 = -y £, /a)]z - )/]2. Therefore, we see that the poles for the
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w/

term 5 are

(@P-w?) +ar2@7y?

— / 2 2

— iy 2 _ .2
=0 = Y 7Y

r3=—iyj+ 1/a)]-z - )/]2
ry = —iyj - ]2 - ij
We now need to handle the term (w,l—_w) in (5) in order to find all the poles. To do this, we
use
1 .
— = +i1d (w’ — w)
w-w-IAN 0 -w
1 1

— _. ,_
W -w+iA 0 -w ind (" - w)

Where A is very small quantity. Adding the above two equations gives
1 1 2

— + — =
w-w-IiIA w-w+iAN o -w

1 1 1 1
== — + :
w-w 2\ -(w+iA) o - (w—-iA)
Where in the above final steps we let A" — 0 for n > 1 since A is very small. The above is
what we will use in (6). Hence (5) becomes

L YeRfi 1 ! w' /
Re(e(@)) =1 zn.[m&www+mfﬂw—w—MJ&w—nnw—mxw—mxw—uJM)

_1_yw§f]-f°° a)’—(a)—iA)+a)’—(a)+iA)( w’ )da)’
T T J @ @A) @ — (@ - i) \(@ — ) @ — 1) (@ —13) (@ — 1)
L Yvwpfi Qw’ - 2w) o’ /
‘“‘2n.[mmwww+m»wu+w—M»ﬁw—nxw—mﬂw—@ﬂw—mﬂ¢”
ywifi e (@) - ww’
=1- dw’
m j;@w—mﬂd—%ﬂM—mMM—mﬂM—%ﬂM—m)“

(5A)

There are 6 poles in total

— jv. 2 _ 42
7’1—1')/]+ Cl)] i
=iy, — 2_,2
=10~ NY 7Y
— _jv. 2 _ 42
rs = =iy + \Jwi — V3
= —jy. — 2_,2
4 = 1Y i =7
r5:a)+iA
1’6=a)—iA

Three of the above poles are in lower half plane, and three are in the upper half plane.
Here is a diagram which shows the location of the poles. Recalling that A is small quantity.
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S(s)
) A 1
° °
rs = w + 1A
°
- R(s)
°
re = w — 1A
° °
T4 T3

Figure 2.30: Location of the 6 poles

We will use the following contour

Need to find residues

Let R — > Cr
J
> > ! » R(s
- -+ (s)
[ ] [ )
T4 r3

Figure 2.31: Countour used for the integral

The integrand which is a function of @’ is analytic except for the 3 poles in the upper half.
Let the integrand be g (w’), then using residue theorem gives

R
Jim 56 ¢(@)dz = lim (P.V.) f 2 (@) da’ + lim f 2(2)dz
R— R— R R— oo Cr
=27 2 Residue
Hence

R
lim (P.V.) f g(@")dw’ =27 3 Residue— lim [ g(@)dz
R— oo R R—00 Cr

Since the denominator in (5A) has higher powers of @’ than in the numerator (6" order
vs. 2 order), then this shows that limg_,, L g(z)dz — 0, and the above reduces to
R

(P.V.) f " ¢ do = 2mi Y Residue ®8)

Therefore we just need to find the three residues at rq,7,, 75 in order to find the integral
above.
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(a)’)2 -waw’
(@ = (@ +i8)) (@’ = (@ —iA) (0" = 11) (@' = 12) (@ = 13) (@ = 14)

Residue(r;)) = lim (0’ -rp)
w’—>ry

(a)’)2 -ww’

= wl'i_rgl (0’ = (w +iA)) (@’ = (0 = iA)) (W’ = 17) (W’ = 13) (W —14)

(4 o2 =7) (o o7 59)
Tl e T o 77
e B
(0 =7 = e 0) (i = =) o o =7 = = =) (ol = = e o 7)) ol = = (=l =55
(4 62 =2) (o JoF59)
(iy7+ m]-z—y/z—(eriA))(iy]‘+ (ujzfylzf(wfiA))(iyi JeF =72 iy + Jol - 2)(11,+\/m/2 y/ZJriyj—\/mjz—y/Z)(iyiJr\/aJ/Z—y]Z+i;']+\/mjzf)//z)

Hence
Residue (1) = (iyj i sz - 7/]2)2 —@ (i)/]' * w? - 7/]2)
1 (17/] + w -y —(w+ 1A)) (17/] + w - yjz (w - 1A)) (2‘ /a) ) 2iy; (217/] n zm)
9)
And

(a)’)2 -ww’

Resid ro) = i /-
esidue(ry) = M (@' =72 e T i) (@ — (@~ 18 @ — ) @~ ) @ —r3) @ —73)

_ hm (w’ ) -ww’
o' 1y (0" = (w +iA)) (@’ — (0 —iA)) (@’ —11) (@ —13) (W —14)

(13]7 lr) 7)/7) m(l;]* lr)/ y])
(iyl - \/ﬂ— (w + iA)) (iy/- - wjz - y/ —(w - lA)) (zy] - H— rl) (zy] - wjz —ylz - 73) (zyj - W— r4)
O e
(iy]f,lwffy/zf(w +iA)) (,'y].,1 m/-zfy/zf(mfiA)) (iyjf\/m] - ]27(1)/] \/w7 - )(l)// wjz ylz ( iyj+ \/a )) (I)/] \/()] y] ( lyjf\/w/zfy]z))
B (i;// l ]2 ) 7()(1;/17 ]2 vjz)
(zyl—‘[w —y] a)-HA))(ty/— w] —v —(w~ IA))(Z}] \/w —y, iyj - \/a) A )(ﬁ/] \/m ;]2+iy/-—\/w]2—y]2)(iy/-— mfz—)/ +iyj+ \/w —;/])

Hence
Residue (1) = (iyj _ a)]-z _ 7/]2)2 v (iyj ~ ijz - yfz)
(iyj ~Joi =y (@ + iA)) (i)/]- ~Joi =y (- iA)) (—Zm) (Ziyj - ZW) (2iy))
(10)
And finally

(a)’)2 -ww’
(" =15) (" - r6) (' —1) (" = 1) (@ —13) (W —14)
= i (@) - w
w'=rs (' = 716) (@' —17) (W' = 7’2) (0" = 13) (@ —14)
(w +1A) —w(w +1A)
(@ +in = (w; = iA)) (@ + iD= 11) (@ + iD= 1) (@ + iD= 13) (@ + iA — 1)

B w? — A% + 2iwA - @w? - iAw

(2iA) (a) FiA- (i;/]- ¥ o2 - 7/]2)) (a) FiA- (iyj ~ Jo? - y]?)) (a) LiA- (—iy]- + Juw? - yf)) (a) Fib- (—i;/]- - e

Residue (r5) = lim (w’ —15)
w’'—>T5

iwh - A2
(2iA)(w+iA—i7/]-— ,/a)jz—)/]z)(a)+iA—i7/j+ ‘/wf—yf)(awmnyj— ‘/a)jz—y]z)(w+iA+i7/j+ ‘/wf—y,?)

(11)

We found all residues for I. Hence

e (') - wa’ . .
dw’ =271 Y, Residue
f—oo (" =715) (W' —16) (W' —17) (W — 1) (W —713) (W —14g) Z
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Where ); Residue is given by adding (9,10,11) giving

2
(zy] + . /w - yjz) (i)/j + /w]z - )/12)

3" Residue = (W] ) (W] R (@ —iA)) (2 /w?—yf) (2iy) (Zi)/j+2‘/a)jz—y]2)
.\ (17’1 \ JZ_VJ) _“’(WJ Vi _7/]2)
(iVj —Joi v -+ IA)) (17’] bl ’A)) (‘2\/“)1' - Vf) (Zin -2, Jwf -y} ) (2i7;)
iwA — A2
N

(2iA)(w+iA—iyj— ‘/a)]z—y]z)(w+iA—iyj+ ,/a)]z—yf)(w+iA+i7/j— ,/wf—y})(w+m+iyj+ ,/w]?—yf)

Therefore (5A) becomes

Zf]

Re(e(w)) =1- (2mi) Y, Residue

To make some progress, I had to simphfy the )} Residue by assuming y is very small

compared to w; and hence terms such as /a)Jz - )/jz — w;. Using this gives

(v + w‘)z - iy + w)

Residue =
2, Residue (i) + ;= @ + i) (iy; + w3 — (@ — i) (20)) (21, (20, + 207
N (lVJ wj ) (lVJ )
(iy]- —w; — (w + zA)) (17/] w; zA)) ( ) (Ziyj - 2a)j) (Ziy]-)

s iwA - A
(2iA)(a)+iA iyj - )(a)+1A 1yj+a)j)(a)+zA+z7/] )(a)+1A+1y]+a))

Or
_A2 2 ) — ()1 — .
Vi + w; +21y]a)] Wiy — Ww;

Residue =
z esidue (w2—2ia)7/] 20w; ~ 7/]+217/] ]+0))(817/] ]_87/] )

—y] + a) - 2iyjw; - iwy; + Ww;
(a)z = 2iwy; + 2ww;j - ;/ = 2iyjw;j + w; ) (8)/] i+ 8iyjw; )
s iwA - N
(2iA)(a)+iA iyj— )(a)+1A 17/]-+a)]-) (a)+zA+1;/] )(a)+zA+17/]+a))

Expanding the denominator in 3rd term above, lots of terms cancel since they contain
higher powers of A. Removing all terms that contain A? or higher gives

—7/]2 + a).2 +2iyjw; — iy — ww;
(a)z = 2iwy; - 20w; - 7/] + 2iyjw; + w; )(817/] s 87/] )
—7/] + a) - 2iyjw; - 0y + ww;
( - 2wy + 20w; - 7/] 2iyjw; + w7 ) (8)/] i+ 8iyjw; )
N iwA
2ihw* + 4iAw?y? — 4ifw2w] + 2iAy} + 4iAyFw? + 2iAw]

Z Residue =

+

Removing terms that contain only )/]2 since y; is small gives

cu-z +2iyjw; - wiy; - ww;
(a)2 - Ziwy] 2w; + 2iyjw; + ©; ) (81)/] - 87/] )

= 2iyjw; — iwy; + Ww;

( 21a)7/] + Zwa) = 2iyjw; + w; ) (87/]  + 8iyjw; )
wA
* 4 2,2 2,2 4 2
2Aw* + 4Aw®ys — 4Aw @] + 2AY; +4A)/]a) +2Aa)

Z Residue =

+
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Canceling all terms with Ay]z, A)/;L in them, since both are small gives

a) +2iyjw; — wiy; - Ww;
2 Residue = .
(a)z —210)7/] 2ww; + 2iyjwj + W] )(81)/] ? - 8)/] )
- 2iyjw; - iwy; + Ow;
+

( - 2iwy; + 2a)a) - 2iyjw; + w; ) (8)/] i+ 8iyjw ; )
N wA
20wt + 4A0?yF ~ AAw?w} + 200}

Canceling A in last term gives

a) +2iyjw; — wiy; - ww;
2 Residue = .
(a)z —Zza))/] 2ww; + 2iyjwj + W] )(81)/] 7= 8)/] )
- 2iyjw; — 0y + Ww;
+

( = 2iwy; + Zwa) = 2iyjw; + w; ) (8)/] i+ 8iyjw ; )
)

4 202 _ 42092 4
20% +4w?y; — 4w w; + 2w;
Expanding

2 Vi — iV — .
cu.+217/]] a)ly] Ww;

EResidue
—8w? 7/] w; + 8iw? y]w +161a)7/] +32a)7/ 16za)y] ; —1617/] 247/ a) +8zy] ;

- 2iyjw; - za))/]- +ww;

8a) ;/] w; + 8iw? Vjw; —1610)7/] +32a)y a) +16iwyw; —161)/3a)2 +247/]a) +817/] ;
w

4 292 _ 42?2 4
20% + 40%y; — 4w W] + 20);

Removing terms with )/]3 and higher, since y is small gives

Z Residue =
—8w? y] + 8iw? y]a)] + 32a);/ 161a);/] 7= 24)/ a) + 81)/] ;
- 217/] i~ la))/] + a)a)]
8a) y] + 8iw? y]a) + 320)7/ a) + 16za))/]a) + 24)/ a) + 817/] j
)
2w + 4a)27/]2 — 4a)2a)]-2 + 2a)]4
Or
This term needs to be simplified. Error somewhere
2iw?y? + iwlw? + 2wyw? - 6iY?w? — iw?
Z Residue = — ( i J Vi) Yi%) / ) + @

47/j (a)z _ w]z) (_wzy]_Z _ a)Zw]_Z + 4iw7/jw].2 + 97/]20)]-2 + a)]4) 2 (a)Z _ a)Jz) + 47/2 2

Hence the result becomes

Zf]

Re(e(w)) =1- (27i) Y Residue

The above should come out to be as shown in (1) which is

(@? - f)

Re(e(a))):l—a);%f]- 5
2 _ .2 2.2

(a) a)j) +4yiw

I was not able to fully simplify the first term in )} Residue above, I seem to have made an

error somewhere and not able to find it now, but the second terms looks OK. All complex

i terms should cancel out since the result must be real.
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2.7.6 Key solution for HW 7

7 - - " - 5 - 2 2]
() Tz Sum §oy sCua)sx™r)

o i
. 1 /
[ U a i/ 2 o/ “/E [U——— — oy I
[ vl 5 /*)/ ol % "/ T PR 9/ 2/x]
] /j; (x -7 /
v 1x}
i 5 ; zes
"fw.j);; iJ \'f"rwz, if | < fQYI(A{/ ()ﬁ}f’fm/;,/ﬂ. fﬁhﬁ ¢
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& ?/ '}:VZ\C g“” ‘é{:v?n@ 71 7
5"‘“&’&/5./';{ 5'(;’% C} N

Lk 'f 67 A ;J'/:h a—:n,j Sz we
I;L - -
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(2 §liax) 6
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| joE xR
16} ofher e
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Thus }z =0 |
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2.81 HW 8 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 8 due Monday April 8. Show all work. Use of Mathematica,
MatLab, or similar software is not allowed.

1. (10 pts) Prove the following relations.
(AB)T = BTAT
(AB)! = BAf
Tr(AB) = Tr(BA)
det AT = det A
det(AB) = det(A)-det(B)

For the last one you may assume that A and B are diagonal.

2. (7 pts) Find the eigenvalues and eigenvectors of the matrix

5 3 3

2 2 4
37 1
2 3 18
3 /1 13
4 18 6

3. (5 pts) Let U be a unitary matrix and let z; and x5 be two eigenvectors
of U with eigenvalues A; and Ay, respectively. Show that |[\| = || = 1.
Also show that if A\; # Ay then 3711‘.1'2 =0.

4. (3 pts) Calculate the determinant of the sparse matrix (sparse means that
most of the entries are zero)

|
SN

O OO . O
o O OO

OO W oo
< = OO O
— . © O O
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2.8.2 Problem 1

1. (10 pts) Prove the following relations.

(AB)Y = BTA!

(AB)! = BIAT

Tr(AB) = Tr(BA)

det AT = detA
det(AB) = det(A)-det(B)

For the last one you may assume that A and B are diagonal.

Figure 2.32: Problem statement

2821 part1 (AB)" = BTAT

Let A be an 1n,m matrix and B be an m,p matrix. Hence AB = C is an 7n,p matrix. By
definition of matrix product which is rows of A multiply columns of B then the ij element
of Cis

m
Cij = Z aikbyj
k=1
Then (AB)" = CT. Hence from above, elements of C are given by
m
cii = D, apbi 1)
k=1
Now let BTAT = Q. Where now BT is order p X m and AT is order m x n, hence Q is pXn.
m
T T
gi = 2, )" (ay)
k=1

m
= but
k=1

But 3 byaj means to multiply column i of B by row j in A, which is the same as multiplying
row j of A by column i of B. Hence we can change the order of multiplication above as

m
TEDI I (2)
k=1
Comparing (1) and (2) shows they are the same. Hence
CT=Q
Or
(AB)" = BTAT

2.8.2.2 Part2 (AB)' = BtaAt

By definition AT = (AT)*. Which means we take the transpose of A and then apply complex
conjugate to its entries. Hence the solution follows the above, but we just have to apply
complex conjugate at the end of each operation

Let A be an n X m matrix and B be m X p matrix. Hence AB = C which is 7 X p matrix. By
definition of matrix product which is row of A multiplies columns of B then the ij element

of C is

m
cij = D, anbyj
k=1
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Then (AB)Z. = (Cg)* = C;i. Hence from above

m
= (ajb:)
k=1
But complex conjugate of product is same as product of complex conjugates, hence the
above is same as

m
¢ = Z a]fkb,*d (1)
k=1

Now let BPAT = Q. Then

m

a5 = 2 (bk) (af))

kl
_Ebkl ]k

But Ekmzl b};ia}fk means to multiply complex conjugate of column 7 of B by complex conjugate
of row j in A, which is the same as multiplying complex conjugate complex of row j of A
by complex conjugate of column i of B. Hence the above can be written as

E @by (2)

Comparing (1) and (2) shows they are the same. Hence
() =0
Or
(AB)" = BtAt

2.8.2.3 Part 3 Tr(AB) = Tr(BA)

The trace Tr of a matrix is the sum of elements on the diagonal matrix (and this applies
only to square matrices). Let A be n X m And B be an m X n matrix. Hence AB is n X n
matrix and BA is m X m matrix.

Tr (AB) =

92.8.2.4 Part 4 det (AT) = det A

Proof by induction. Let base be n = 1. Hence Aj,;. It is clear that det (A) = det (AT) in

this case. We could also have selected base case to be n = 2. Any base case will work in
proof by induction.

We now assume it is true for the n — 1 case. i.e. det (A(n 1)x(n— 1)) = det (A(n 1)x(r— 1))
assumed to be true. This is called the induction hypothesis step.

We need now to show it is true for the case of 7, i.e. we need to show that det (4,,x,) =
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det (AZXH). Let

a1 A2 - Oy
a1 dypp - Oy
Anxn = . .
Ap1 Ap2 * App
Therefore
a;n dp1 o 4m
a a oo a
T _|%2 42 n2
AI’[X?’I - .
Mp Gy Oy

Now we take det (A) and expand using cofactors along the first row which gives
det (A) = ary det (Aqy) - ap et (Arp) + -+ + (=1)"" ay, det (Ay,,) (1)

Where A;; in the above means the matrix of dimensions (n—1,n—1) taken from A,, by
removing the i row and the j* column. Now we do the same for AT above, but instead of
expanding using first row, we expend using first column of AT since we can pick any row
or any column to expand around in order find the determinant. This gives

det (AT) = ay det (AT)11 — ay, det (AT)21 + oo+ (<1)" gy, det (AT)n1 (2)

For (1) to be the same as (2) we need to show that det (A7) = det (AT)11 and det (Aqp) =

det <AT)21 and all the way to det (Ay,,) = det (AT) v But this is true by assumption. Since
n
we assumed that det (A(n—l)x(n—l)) = det (Ag;q—l)x(n—l))' In other words, by the induction
hypothesis det (Ai]-) = det (AT)” since both are (n —1) X (n —1) order. Hence (1) is the
J
same as (2). This completes the proof.

2.8.2.5 Part 5 det (AB) = det (A) det (B)

Since the matrices are diagonal they must be square. And since product AB is defined,
then they must both be same dimension, say n X n.

Since A, B are diagonal, then

n
det (A) = ayag -+ Ay, = [ J i
i

n
det (B) = b11byp -+ by, = Hbff
i

Now since A, B are diagonals, then the product is diagonal. Using definition of a row from
A multiplies a column in B, we get

ai 0 0 0 bll 0 0 0 {1111711 0 0 0

0 a22 0 0 0 bzz O 0 _ 0 a22b22 O 0
0o 0 - oflo o - of | o 0 - 0
0 0 0 a,/JLO0 0 0 b, 0 0 0 ayb,,

Then we see that

det (AB) = (ay1b11) (axbyy) -+ (a,,byy)
= (a11a2p *** Ayy) (b11bgn -+ byyy)

n n
= [a:] 10
i i

= det (A) det (B)
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2.8.3 Problem 2

2. (7 pts) Find the eigenvalues and eigenvectors of the matrix

5 \/5 \/3
2 2 4

\ﬁ 7 /1

2 3 18
\ﬁ 1 13
4 18 6

Figure 2.33: Problem statement

We first need to find the eigenvalues A by solving
det (A - Al =

The above gives a polynomial of order 3.

5 3 3
2 V2 Ni| (A 00
EZ\/I—0A0=0
2 3 18
3\/T 13 0 0 A
i N5 %
5 3 3
24 N2 :
3 7 1 | _
: 37 A AR |70
3 1 13
i Vi s A
7 1 3 1 3 7
5 0 Nw |l BNz vwm |, BNz T,
2 1 B_, Zﬁﬁ_/\ 4| 2 1
18 6 4 6 4 18

) -4 VE
V-2
-

Or
5 9 90 1
——A||IA2-2A \/7 - = A \/7 A=1[)=
e R KA N e I
5 9 90 3 3
2 _ 2_2 2.2\ =
[z g) (3 0) (3 -3)
5 9 90 9
2 _ 2_ 7 2 2
(2 A)(A ZA 18) 4 2 0
~A3+71A%2-14A+8=0
A3 -7A*+141-8=0
37,2
By inspection we see that A = 2 is a root. Then by long division AT IS A2 -5) 44,

A=2
Therefore the above polynomial can be written as

(A2-51+4)(A-2) =
A-D(A-4(A-2)=
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Hence the eigenvalues are

A =1
/\2=2
/\3:4

For each eigenvalue there is one corresponding eigenvector (unless it is degenerate). The
eigenvectors are found by solving the following

AUZ' = /\ivi
(A - /\11) 0; = 0
5 3 3
2 A \/; \/; (2] 0
3 7 1 —
Vi A |- X
3 1 13 U3
i Nw o M)
For A1 =1
5 3 3
2 L NZ Na (e (0
3 7 1 —
5 570 g [|%2]7)°
3 [ B [\us) 0
4 18 6
3 SO
2 2 4 [|v1 0
3 4 1 _
: 3 Vu||®2]|7|°
3o 17 [les) 0
4 18 6
Let v; =1 and the above becomes
3 EAN K
2 2 4 |1 0
R S | I
2 3 18
3 7 |les) 0
4 18 6
We only need the first 2 equations. This results in
3 N 3 N 3 0
— -0 —0Vx =
2 V2727 V4”@
3 N 4 N 1 0
— 4+ -0 —Vh =
2 32 V18™®
From the first equation above
3 3,
2 V43
= 4
02 3 (4)
2
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Substituting in the second equation gives

5 42\l [
A Vi Y
@5T+ 18"
2
1 1
—E\/Evg—g\/i‘/gzo
V23

U3 = -3
5 2
2V3
"6
V3
3
1
V3
Hence from (4)
_3_ E(_L)
0y = 2 43 V3
2
V2
V3
1

2
Therefore the eigenvector associated with A; =1 is v by scaling it all by 3 it
1

V3

becomes

We now do the same for the second eigenvalue.

For A, =2
5 3 3
2 2 2 \/; (4] 0
3 7 1
- L _ — 5 1=10
2 372 18 || 72
3 1 18_,|\vs 0
4 18 6
1 3 3
2 2 4 |1 0
3 1 1 vy | = 0
2 3 18
3 1 1 |\v3 0
4 18 6

Let v; =1 and the above becomes

1 3 3
2 2 4 (1 0
1 1
E Z —[lo | = 0
2 3 18
3 1 1 U3 0
4 18 6
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We only need the first 2 equations. This results in
1 N \/5 N \/5
= v U3 =
2" V272 N T

1

18

1
23
From the first equation above

1
v, =222 (44)

Substituting in the second equation gives

3 1| \FU 1
N 1
\/;+3 \/5 Ty 157 =Y

3 1
0= E+E\/§\/§

This is not possible. So out choice of setting v; =1 does not work. Let us try to set v, =1

and repeat the process
f [ 01 0

1 0
18
1 1 |\vs 0

y_n

E
2 3
3
4 V18 6
Again, we only need the first two equations. This results in

L +\/§+\/5 =0
21TV NGB
\/5 +1 + ! =0
21 T3 TN T
Vi
V2 V473
= T (4A)
2
Substituting in the second equation gives
s,
Evg,—O
2
3 3 1 1
s — 2+ = . —
2% 3V 3 g% =0

1 3 3 1
g\/ﬁvg—iv3——\/§+—:0

From the first equation above

2773
1~ 3\ 3, 1
A2l =Z4h-C

03(6\/_ 2) 5V2-3

3 1
_2V273
BT 3
65 2

Hence from (4A) v, =

= 0. Therefore the eigenvector associated
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0
with A, =21is| 1 |[or by scaling it all by _iz it becomes

\2 V2

0
N 1
n2="%
1
We now do the same for the final eigenvalue

For A3 =4

Let v; =1 and the above becomes

1

=5
|
S a]®l 9 oTE
|
°\|H§|>—\u>|w
N —————————
55 -
Il
o o O

We only need the first 2 equations. This results in

3 \/5 \/5
——+ + =0
2 2 4
3 50 + 1 =0
2 32T\ 1B T
From the first equation above
3 30
5 7 \793
v, =t (4B)

2
Substituting in the second equation gives

353\/50 1
R il D A
\E?, 5| TV =Y

2
5 1 1
g\/ivg - 5‘/5\/5+ \/Evg, =0
1
\/503 - 5‘/5\/5 =0
L3\

D =
Y
1
=—-V3
3\/_
1
V3
N
Hence from (4B) v, = \/, \/— \/_ — Therefore the eigenvector associated with
2
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1

V2
Az =41is ot by scaling it all by V3 it becomes
1

\3

Therefore the final solution is

/\1:1
/\2:
/\3:4

And

2.8.4 Problem 3

3. (5 pts) Let U be a unitary matrix and let z; and x5 be two eigenvectors
of U with eigenvalues A\; and Ao, respectively. Show that |\| = || = 1.
Also show that if A\; # Ay then xiazg =0.

Figure 2.34: Problem statement

A unitary matrix U means U™} = U'. Let A,x be the eigenvalue and the associated
eigenvector. We also assume that the eigenvalue is not zero. Hence

Ux = Ax 1)
Applying 1 operation (i.e. Transpose followed by complex conjugate) on the above gives
(Ux)" = (Ax)'
XUt =Xt (2)
Multiplying (2) by (1) gives
TUTUx = xTAAx
But U is unitary, hence U" = U™ and the above becomes after replacing A*A by IA]P
FUulUx = A (x*x)
xtx = |Af (x*x)

Hence Mlz =1 or |A] =1 since this is a length, and so can not be negative. But since A is
an arbitrary eigenvalue, then any complex eigenvalue has absolute value of 1. Therefore

Ml =12zl =1

Now we consider the specific case when A; # A, but we still require that |A;] = 1 and

|A;| = 1 which was shown in first part above. We also assume for generality that the
eigenvalues are not zero.

Given that
le = /\1.7(1 (1)
Uxy = Apxp (2)
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From (1) we obtain
(Ux)" = (1))
AUt =i (3)
Multiplying (3) by (2) gives
AU Ux, = XA A,x,
dUUx, = (A’i/\z) (xJ{xz)
xix, = (/\’i/\z) (x{xz)
Since [A4| = |A,] =1 but A; # A,, therefore (/\}/\2) # 1. From the above this implies that
x{xz =0.

2.8.5 Problem 4

4. (3 pts) Calculate the determinant of the sparse matrix (sparse means that
most of the entries are zero)

|
.

S OO = O
o O OO

S O W oo
= = O O O
— s O OO

Figure 2.35: Problem statement

0 -1 000
i 0 00O
A=(0 0 3 00
0 0 01 :
0 0 0 i1

We want to expand using a row or column which has most zeros in it since this leads to
lots of cancellations and more efficient. Expanding using first row, then

i 000
0300
det (A) = 0 +idet |+0+0+0
0 01 i
00 i1
300
=il|idet|0 1 i
0 i1

~.

. 1 1
1(3det(, ]
11

ST

=312 (1-2)
=-31+1)
= -6

To verify this, we will now do expansion along the second row. To get the sign of 4, we
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use (_1)2+1 = -13 = —1. Hence

(O8]
_ o O
o O

(e]
(a]
= —_ o~

0
det (A) = —idet 0

=-i(-i(3(1-7)))
=312 (1- )
=-3(1+1)
=-6
Which is the same as the expansion using the first row. Verified OK.
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2.8.6 Key solution for HW 8

. T . , ‘
OXC (/;g)‘.j - fA” B - ;(ET)U (/;r)ej - (gTAQJ,

f
37 comprnet of (AB) =

| ; .
) mz)@j - 1.2 ATE - lg(gf)u (4, :(g*/;),j

5 Wg)f: mf}
. g A

[C) Tr (A B) d f [A E)U £ ,;/j

- 2»(45/%; - T, (84 {Tr(/%g):l/r(gﬁ))
J

!FJ' leqf/}, ffma w/bty] A_ l\/ / X/‘

\
N
>
— A
o
-
>~
L
o
>
~

(d) det AT = det A
Pro C€£/ é"/ I»l’l/uo/ﬂdﬂ/ /j;f/amg /}L 1> 'j'fug ﬂf hxn,

A+

. . e X 7,
Then  be () x(ne) Jd AT = E Az ()" ded A7)

J7
n+

= g Af[ (?))‘—*J’ Ae l"/)' (J, ,'.) = pléTLA

g 5
&U_ A ‘AI . . “, éA
= hx‘».(’ l; = éi “ /L}g = "
o/ ( ) ( e) ( o ol

dA AR = T oavb, = (,j_fl >(ﬂ) - JtA et B

-1
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Nofé.' ,("ymmz,%flrc mﬂ%fir)o

D) (FEE) 2y Ed

' _[39_ - g’_ Jz,jt[j +4
- ;(;)) NS Sy ,f(g ) = 2N+

gffc’»n fp«/uc_/,’ A,

| Sl ﬂc /eém/Z
Fivd e elgen z/ae/’f/ é/ Jo/ *7 a’g

(T - AL I) X., =0, The resrults Are

equa'ﬁfmz‘
‘ L L _L)
XI fng (ﬂ“/ {3-/ fé-“
O N

A
S ,..L)
v (a F G
Dw/( Cf}))fcy, '/Lw Jc

T)’L’Je dee OP‘/,;"J7,9n¢‘

nprmn)v'cel ts one,
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2.8. HW 8
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'Tg/(a l/]t’fm//%/am C’onjujafc =) X UT: AXX
. ‘J lf
Mu/-ﬂ/e// ()(’Uf)((/x) = (X x)()k) %
T gy o A
x'(vU)>
——
=) })}:{
, /F’f )
7 = x! (UfU)Xl = [X,’(/Q(Uh):()/ x')())&) :
X X = /
{
. o
K) X%X :) [;;ﬂﬂr )l)L )’l :/ or X, )CZ 0
- }" ) | i \'6 4\‘61'4
A - e
[SPPRNY. ) wrile X e P S
T T A P
T hen ) 2
6)“@‘/ AT n =) )):)2,
7
M teger
. —
/Thuj DY ). Then X, X, -07
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O -+ 6 0 O oo, 0
£ 0 0 o0 o It2

oAet 6 o 2 o © - (-) [J)JNL ¢ 7 ,0 ’
0 0 0 | 4 / 4
0 o 0 / \“/Vw/ A [

0/‘0uﬂ'l ’77“, fé’c'd"!&/ Now

K- (;AELL 8%/0/2)4»[
, 0
941 -4 0 0 0
(<) & det 705 | 7o ()/’Jf( )

«“—

-4

NERY)

/f‘TLCr”HVM‘n-]L = -6

S S
S oy,

¥
[
G>
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2.9.1 HW 9 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 9 due Monday April 15. Show all work. Use of Mathematica,
MatLab, or similar software is not allowed.

1. (5 pts) Calculate the metric in elliptic coordinates
a
r = §coshu cos
a . .
y = Qsmh,u sin
where a is a constant.
2. (5 pts) Show that in a general coordinate system ¢;,..;,, = g€+~ where
the covariant form is obtained by lowering the indices on the contravariant

form.

3. (5 pts) Compute all components of the affine connection in polar coordi-
nates.

4. (5 pts) Calculate the gradient, curl, divergence, and Laplacian in spherical
coordinates using tensor analysis.

2.9.2 Problem 1

Problem Calculate the metric in elliptical coordinates

a
X = Ecoshpcos@
y= gsinhysine
Solution

The coordinates in the Cartesian system are ¢ =x0 = y and the coordinates in the
other system (Elliptic) are x! = y, x> = 6. The relation between these must be known and
invertible also, meaning C = C(x) and x = x (). This relation is given to use above as

gl = gcoshycose
2= %sinhysin@
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The first step is to determine the metric tensor g;; for the Polar coordinates. This is given
by
I
8K = 05 o

The above using Einstein summation notation.

act ot 9293

S11 = 51 gl " dxl dxl
_ acl 8cl .\ 8@2 &CZ

du du  Jdu du

o\ (ac2\?
%) (%)

2
sinh u cos 9) + (g cosh i sin 9)

Il
—_
NS)
=

2

sinh? picos® 6 + cosh? 1 sin’ 9)

(cosh2 u = 1) cos? 6 + cosh? u (1 — cos? 6))

cosh? i cos? O — cos? 0 + cosh? Y= cosh? U cos? 6)

And
~ &Cl 8C1 . 8C2 acZ
812 dxl dx?2  Jxl Jx?
B aCt ot N PICR I
~ Jdu 90 du 90
a a a a
= (E sinh u cos 6) (—E cosh i sin 8) + (E cosh i sin 6) (E sinh u cos 6)
=0
The above is as expected since the coordinate system is orthogonal. And
B aCt ot N PICR I
821 = dx2dxl  Ix? dxl
~ &Cl 8C1 . &CZ acZ
90 du IO du
—(—E h i (9)(E inh 9)+(5 inh 6)(5 hysi @)
=3 cosh u sin > sinh u cos > sinh u cos > cosh y sin
=0

The above is as expected since the coordinate system is orthogonal. It is also because g;;
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is symmetric and we already found that g;, = 0. And finally
9C' 9! JC* I
82 5002 " 92 o2
_ 8C1 acl &CZ acZ
= 3090 T 90 96

PSS
55

a N2 qa
_E cosh u sin 6) + (E sinh u cos 6)

2

Il
—_—

cosh? ysm O + sinh? U cOS 6)

5
(cosh2 ( — cos? 9) + (cosh2 U= 1) cos? 9)
(cosh u = cosh? picos? 6 + cosh? t cos? 0 — cos 9)

(cosh2 u = cos? 6)

From the above we see that

g = (811 812]

821 822
B % (cosh? U= cos? 0 0
T4 ( 0 cosh? { — cos? 9)
That there are different ways to write the above, and they are all the same. For example,
we can write
_ a? (1 + sinh? y) - (1 — sin? 9) 0
8i = Z( 0 (1+ sin? ) = (1 - sin® 9))
3 % (sinh? u+ sin @ 0
T4 ( 0 sinh? u+ sin? 6)

Or we could use the double angle relations cos? 0 = % (1 + cos (260)) and cosh® u = % (1 + cosh (26))
to obtain

@[5+ cosh 20) - 5 (1 +cos (20)) 0
/A 0 % (1 + cosh (20)) — % (1 + cos (20))

3 f cosh (20) — cos (20) 0
-8 0 cosh (20) — cos (20)

2.9.3 Problem 2

Problem Show that in a general coordinates system €;,...;,, = g€’ where the covariant
form is obtained by lowering the indices on the contravariant form.

Solution

In tensor analysis, contravariant components of a tensor uses upper indices and covariant
components uses lower indices. Given a tensor in contravariant form €' then the covariant
form ¢; is obtained using

= 8ij€
Where on the right side the sum is taken over j since it is the repeated index. This operation
is called index contracting.

Therefore extending the above to all indices in €;,...;,, results in
€.

inip-in = 8itj18igjp glN]NEJUZ & (1)
But we know that, from page 123 in the Matrices notes, that the determinant of the metric
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can be written using Levi-Civita tensor as

g= 2 81,82, " 8Ny €12 N (2)

11121N
Comparing (1) and (2) shows that
€123...N = §11,82ip * Niny€ 12N
— keiliZ'“iN

Where k is constant, which in the case of €753..., this constant is g. Now need to show that
the constant is g for all cases of indices in €;;,...;,, and not for the case €1p3...n-

Looking at the case of N = 2, and let us see what happens if we change the order of the
indices.

€iriy = 8111 8irj€
And

€igiy = 8injp8injn €'
But g;,i,8i,j, is the same as g;,;,¢;,j, . So the ordering of indices does not change the constant
k. And since we found that this constant is ¢ from above, therefore we conclude that

€irig-iyy = ge]l]Z"']N (3)

2.9.4 Problem 3

Problem Compute all components of the affine connection in polar coordinates.
Solution

In polar coordinates x! = r,x% = 6, the relation to the Cartesian coordinates is

x=rcos@
y=rsin0
Using

, , ag; 0g;

k=20 \oxd " gxk  9a
We know that in polar coordinates the metric tensor is ¢11 = g, =1, and g1 = g9 = 0,
and gp1 = gg, = 0, and g = ggp = 0 or in matrix form

(10
gij_OrZ

= 1
0 2

Using (1), leti=r,j =r,k = r then
1 (981  dgn 93
ro_ ol r o "
=38 (o"r T T od

The sum is now over /, which goes from 7, 0 since these are the only coordinates. Hence
the above becomes

I’ = lgrr(ggrr + I 8grr)_i_l @r(&grr + 98 8grr)

ence is its inverse
H el t

2 ar ar ar 2 ar ar a0

21 1 (98w 98w 9gn

_2(1)(0+0 0)+2(O)((9r +— 86)

=0 (2)

Using (1), leti=17r,j = 0,k =r then
ro_ lgn(&&l + dgol 3 5ger)

br =9 or ar  dx!

The sum is now over /, which goes from 7, 0 since these are the only coordinates. Hence
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the above becomes

Ff*‘zg (ar TTor T Tor or " ar 90

21 8gre dgo0  Igor
=;DO+0-0)+ (0)(ar Jr 90

=0 (3)
Using (1), now leti =7r,j = 0,k = O then
ro_ 1glr dgol N dga1 9800
907 2° {90 ~ do i

The sum is now over /, which goes from 7, 0 since these are the only coordinates. Hence
the above becomes

, 1, (380r Igor 9g69)+l Qr(8g99 N dgo0 5899)
2

98 | Iger ag@r) " lger(agﬁ n 9800 _ &ger)
2

20 T 90 or
2

— %( )((0) + (O) _ &&_f’) (0) (&gi’e 88@9 _ &gﬁr)
r

00 = 3 B 960 | 90 90

ar ar a0
1
=—(-2
> (<21
=-r (4)
Using (1), now let i =7,j =r,k = 0. Hence we need to find I'/5. But due to symmetry in
lower indices, then I';, = I'j,, which we found in (3) to be zero. Hence

0 =0 (4)
Using (1), now leti = 0,j =,k = r then
1 o(98n , 981 98
r@ _ 2,0 T o rr
=38 ( 20 " or o

The sum is now over /, which goes from 7, 0 since these are the only coordinates. Hence
the above becomes

1 o098 98w 98w\ 1 09(98r0 980 98
2] - r0 rr rr_ rr 00 T r _ rr
=38 (a@+ar ar)+zg (ae+ar 26
1 (98w 98w dgn) 1(1
‘_(0)(a9 Jr ar)+2( )(O+O 0
=0 (6)

Using (1), now leti = 0,j = 0,k = r then
0 — 2,00 98rl dgo1  9Sor
or= 2 20 " or  od

The sum is now over I, which goes from r, 0 since these are the only coordinates. Hence
the above becomes

1 o(98r  986r 980r\ . 1 9o(980 . 9860 ISer
— 0 _ — 00 _
To=5 (88+8r or ) 725\ 90 T Tar " a0
1 &grr 8g@r 8g@r 11 87’
2(0)( 20  Ir or | T 272 0+ Ir 0
= 23 @)
1

== (7)
r

Using (1), now let i = 0,] = r,k = O which finds erQ but due to symmetry this is the same
as l"gr which is found above. Hence

1
r%=- ®)

Using (1), now leti = 0,j = 0,k = O then

1 dgor  d%o1  ISoe
o _ L1 _
Foo =38 (&9 "0 T o
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The sum is now over /, which goes from 7, 0 since these are the only coordinates. Hence
the above becomes

1 Jdgor  9gor Igee) 1 o0 9d8o0  ILo0
60 _ — .10 r ro_ 00 _
Feo = 7 ( i " 060 " 90 96
1

>3

20 00 ar

_ dgor  Igor Iges| 11
_2(0)(a9 Y90 o ) T2p 0070
=0

9)

This completes the computation. In summary

I, =0
rj =0
oo =T
=0
rg =0

1
rgr:;

1
Frgez;
e =0

2.9.5 Problem 4

Problem Calculate the gradient curl and divergence and Laplacian in spherical coordinates
using tensor analysis.

Solution

The following coordinates system convention is used

/Polar angle

\_/V
x ¢ —® Azimuthal angle

Figure 2.36: Spherical Coordinates system

2.9.5.1 Finding metric tensor g;

The coordinates in the Cartesian system are t=x0= Yy, (3 = z. And the coordinates
in the Spherical system are x! = ¢, x> = r,x> = 0. The relation between these is known
as (Note that the following depends on convention used for which is 0 and which is ¢.
Physics convention as shown in the diagram above is used here).

= rsin O cos ¢
2= rsin @sin ¢

3 =rcosb
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The first step is to determine the metric tensor g for the Spherical coordinates. This is

given by

JC 9y

8k = 05757

Since the coordinate system are orthogonal, g;; will be diagonal. Hence only g11, 822, ¢33

are non zero.

811 = 8o
ISl
dxldxl  dxlox!  odxldx!
0090 992 I IR
"9 3¢ 99 96 9 99
o\ (92\* (aC3\
:(a¢) +(&¢>) +(8¢)

= (—r sin O sin qb)z + (r sin O cos qb)z + (0)?

= 12 5in? O sin? ¢+ 72 sin? 6 cos? ¢

= 12sin% 0 (sin2 ¢+ cos? (P)

=12sin% 6
And
822 = &rr
909 9ae  agac
T Ox29x2  9x29x2  Ix2 Ix>
_ acl acl . gcz BCZ . acS &C?)
- Jr ar dr Jdr dr Jdr
I (92N (a3
-(5) +(%) (%)
. 2 . . 2 2
= (sm@cos (p) + (sm@sm q,‘)) + (cos )

= sin? O cos? ¢ + sin? 0 sin® ¢ + cos? 6
= sin? 0 (cos2 ¢ + sin? ¢) + cos? 0

= sin? 0 + cos? 0

=1
And
833 = 806
_ &Cl 0’)61 0’)C2 0’)C2 0’)C3 0’)c3
T Ox39x3  9x39x3  9x39x3
B aCt ot 9r2 9 939
90 00 96 90 90 90
PN PIASNPIES
- (55) (55 (5]

2 )2 2
= (r cos 0 cos qb) + (r cos 0 sin (p) + (-rsin 0)
= 12 cos? 0 (C082 ¢ + sin? qb) + 72 sin? 6

=12¢c0s2 0 + r2sin? O
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Hence ds? in Spherical coordinates is
ds? = gdxkdx!

1) 2\? 3\?
=81 (dx ) + 822 (dx ) 833 (dx )
=8n (d<P) + g2 (dr)? + g3 (dO)?
= 12sin2 0 (dqb) (dr)? + 2 (d6)*

From the above we see that, using the order ¢, r, O for the rows and columns
811 812 &13

8ij =821 822 §23

331 832 &33

sin’@ 0 0

= 0 1 0

0 0 r?

4

Therefore the determinant is ¢ = 7*sin? 0 and h; are given by the square root of the

diagonal elements of Sii

hy =rsin6 (A)
]’1221
]’l3 =r

2.9.5.2 Finding Gradient
v - 1 d 1 J 1 0
B hl 8x1' hz &XZI ]’l3 &X3
Where /; are given in (A) and xl = o, x2 =7,x3 = 0. Therefore

(19210
“\rsin@d¢’ Ir’ r 90

Hence given a function scalar f (¢, r, 0) then

1 &f fA 18f
f= rsm@&qb(P 8966

2.9.5.3 Finding Curl
Using h; in (A) and x! = o, x%? =1,x3 = 0 then

(VxV) = ( 53 (V) - (hzvz))
2 o=\ &(T’VQ) &Vr
(VX”)¢‘?( ar a@)
And
o> o 1 J 0
(V X V)z = Tl (ﬁ (V7)) - % (hsvs))
(V X V)r = m (&6 (T’SIH QV‘P) ¢ (TV@))
1 o"(sin 8V¢,) B IV,
~ rsin® J0 I
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And

<
<l

1 J J
X )3 =7\ ( (hyVy) = (h1V1))

1 % & )
)6 - rsin 6 (% Vi) = or (rsm QV(P))

_ 1[ 1 9V, 3(”@5)]

(
(

<
<l

X

~r|sin@ 9¢ ar
Therefore given a vector V, its curl is

9 (rVy) avr)é+ 1 [8(sin8V¢)_aV6Jé+1[ 1 9V, 5(7’V¢>)]é6

VxV= r( or 90 )% rsma|” 90 06 |7 v |sme 99~ ar

2.9.5.4 Finding Divergence

N
VV=VVi= Ve Tv (1)

1 (980, dgu 98\ _ 1 yi (9
i _ 2,5l ] 8il _ Yaif — ol il . . . .
Where I';; = °¢ (_axi T o) T a8\ 5y which simplifies to as shown in class notes

page 143 to hence above becomes
14
&Y

i _

(&)

Hence (1) becomes

d . 19 .
V~V:WV+\/§x](\/§)W

- 2% (av)
Using the covariant form the above becomes
V.V= Li ( V8 V-)
VBT

Where in class notes /; is used in place of 1/g;;, but it is it the same.

The sum is over i. From above, the spherical coordinates are xl = o, x2=r,x>=6. And

g = r*sin® 0. Hence the above becomes after expanding

1 Vrtsin? 0 d [ Vrtsin? 0 d (VrAsin?6
v.v:— ———Vy|+ = | —V, [+ | ——V
Vr4 sin? 8(]5 VEp¢ ar Srr 0 V806

1 8 rsin@v +8 rzsinﬂv N ) rzsinﬁv
T 2sin0\dp \rsin0 ?) o\ 1 ) o0\ r 7P

J J J
=3 :n : (3¢ (rV(P) 5 (1’2 sin GVV) + = (sin GVG))

oLy +1&(2v)+ 7 (sin0V)
= — ——(r

dp \rsin0 ¢ 2or 77 ¥sin0 90 sin OV
2.9.5.5 Finding Laplacian

The Laplacian is given by

vz i det (g)i

[det (g) x| Qi I
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Hence

VZ

19 (\/r‘isinze J ]+ 1 9 (\/r‘isinze J ]+ 1 9 («/r‘isinze a]
Vit sin? 6 9%1 Vr4 sin? 6 9%2 Vr4 sin? 6 9%
1 0 (r*sinf 4 L] d (r*sin6 9 L] d (r*sinf 4

r2sin @ dp \r2sin20d¢p) r2sin 6 dr 1 dr] r?>sin0d6

311 dx! S Ix? 833 RS

r2  J0

S U DA SN I SRR ) DR S (PP
_rzsineacp sin@ d¢ r2sin O dr S ar r2sin 0 00 S

1 2 1 9 & 1 J 9
= Talg 6371)2 + 2 (21’5 +r W) + Py (COS 9% + sin Qﬁ)
1 2 29 9? cos@ d 1 9?
rzsinzeyqbz—k;z—i_ﬁ—i_rzsinG%—kr_Zﬁ
92 29 1 (cosB d 92 1 92
:W-i_;a—i_r_z(E&_Q—F392)+rzsin269¢2
Therefore

Vau =

u 29u 1 [cosOdu J*u 1 J%u

— e+ | —=—+ +

ort radr r2\sin0d0 J0%]  12sin® 6 I¢p?
2 1 (COSQ

= U, + —U + —
rr r?‘ rz

1
Ug + Ugg | + ———u
0 99) Psin2@ *?

sin 8
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2.9.6 Key solution for HW 9

® x = 2 Corhu cose y = f’f)h/?,w e

2

( z
U*"”"j nn‘wf//n th /eofnrc ji: X f - y) ?([:// x 65

4

2. 2 2 a LR 2
32:*,)21» :2—7— e A [ onhmcoret Cophm f’hf]
3## = (QM Im 4 )

fH

2
/—f f)hAM

2 KN Q
@ * - :ﬁ_[co/l,ancafé
a [ﬁ“l’/‘* + SHin & 9

4
T 2
= - * y /, Coy 6 [ =
ox\2, (7)) = 2 | corhu sme + IhoA Jos-
— — t [ Y
oo = 7€ 7% 4

- Ix ,”Xf ﬂﬂ - __f_L (j‘m}'u Cod4 f’(_ld;[AMJ')hﬁ)
o = Jox = Gy se Ton e

+ (co//»,u fmé'f)(fm/?/“ cos 9’)
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©, y /% P9 9 ]
5 Ix* IxC
2

’fr,m [CC)Lur(, we /C"WW ‘ILA“L ji‘r - /) 96 ¢ N }AJ 9/‘9 =0,

"} ere Xl < )" ﬂ/t/ x)‘: ’9" yl\’lz(-b g,{' )’\J /;’07,;%,,/
re _ / 1?5" | ,!f_
w ot }’)m/(. j - - f}“ , j = 0'
J
)” énce = 2 j [ jh” 95 .} ' gjjk ho Jum

/A
5 %
3
-
“Y\__
P
(et
X
<D
1
G
(S
é
i
SN
(1
NS

-
I
o\
-—
™
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@ y/’}'ermﬂ/ aaorﬁlwéx ale mﬂﬁwiohn/ Lo j‘rl’

% ”[l“ayor%/,
X = I cord S1u7T )/: I‘J‘:Zo¢ Jihe Zz = I'Cuo
2
2. o\ fay) T 23) _
he = 90 = (;';7) 7(7{?'9 er =/
A - 2 2 LN 2.
= - (22 J %) = r
bo = 9 - ()" G2 +GF
1 (on ), (2L)', (22) < ron s
hy = 94 = (M) +(.,w ’“C;‘T

(.4 ¢
O’I\./,/y]ﬂ/*/ V‘&(/JZ(‘_/ W,% Cﬂm/pyz:”,?/ ordEr / f} e )

/

[ 7
gf‘ﬂalJe,vf GleM&»f/ are he 9x*
e
- 98 1 J¢
V:‘:ﬁ = (Jf‘) oot
- o '(/:,)
Jivergence vV =

hl — S + JES.
3. V = L .-2- (r‘q‘v) o+ — [ Sme V. P St 24
r
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2.10.1 HW 10 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 10 due Monday April 22. Show all work. Use of Mathematica,
MatLab, or similar software is not allowed.

1. (8 pts) Show that

dz  2sin(m —n)7]

L) b5 =

T T m?2—n?

where m+n > 0. Suggestion: Multiply the differential equations satisfied by
Jm and J, by x and subtract. Then use the asymptotic expression of J,(x)
for large values of z.

2. (8 pts) What linear second order differential equation does the function
™, (az®) solve? Are there any required relationships among m,n, k? Use
this to solve y" + 2%y = 0.

3. (3 pts) Prove that |J,(z)| <1 for all integer n.

4. (6 pts) Starting with the integral formula for the hypergeometric function
express the following in terms of elementary functions

oF1(1,1;2;2) and oFi(a,1;1;x)
(1)

2.10.2 Problem 1
Problem Show that

f‘” L ()], () = 2 sin (m-m3)
o X

n m?-—n?

Solution
X2} () + ] (x) + (22 = n2) ], (x) = 0

X2y () + X, () + (22 = m2) ], () = 0
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X X

1 2
0+ 300 0+ (1 0 =0

Multiplying the first ODE by xJ,, (x) and the second by xJ, (x) gives (multiplying by just x

did not lead to a result that I could use).

7’12
i + i+ x (1 - x—z) Tl =0
124 ’ mz
XJuJin + JuJm + 2|1 - ? JuJm =0
Subtracting gives
n? m?
x? x?

(X]m];'{ +]m];l +x (1 - _)]m]n) - (x]n]{é +]n]r/n + x(l - _)]n]m) =0

0

nz m2

Uy =TI + I = Tl = Xl ((1 _ x—z) _ (1 ] ?))
m2 nz

x(]m]i,{ _]n];l;) +]m]r/z _]nLln = x]m]n ((1 - ?) - (1 - _))

But the LHS above is complete diﬂerentia]ﬂ
ve (]m]rlz, - ]n];%) + ]m];i - ]n];ln = (x (]m]1,1 - ]n];ln))’
Hence using (2) in (1), then (1) simplifies to
, m2 n?
(X (]m]7,1 _]n]{n)) = XJuln ((1 - ?) - (1 - ;))
2

n®  m?
= XJuln (; - ?)

— ]m]n (nz _ mz)

X

Integrating both sides above gives

¢ Ul = Julily, = (17 = ) f"" Il

0 X

dx

Therefore
00 1
fo de = o [x (s () 7 () = [ () 1 GO

N

(1)

(2)

(3)

At x = 0 the expression x (J,, (x) J;, (x) = ], (x) ], (x)) = 0. And at x = oo we can use the

asymptotic approximation given by

]Z(X)Z\/%Sin(X%g)\/%_n(i)gcos(xn;g)

(X (]m]r,t _]n];n))’ = (]m]r,z _]n]{ﬂ) + x(]m];g _]n]‘:n)’
= ]m]1,1 _]n]T/ﬂ + x(]ilnﬂl +]m];1’ _I;J;,n _]n]{é)
= ]m]; _]n]rln + x(]m]{q/ _]n]r/r;)
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And similarly for |, (x)

3

@ [2 . (x mmn n) 1 (1)\2 ( mmn n)

=—y/—sin|lx—-—-—-|-—|- X——— =
" X ' 2 4] \or\x cos 2 4
Therefore

]n(x)]{n(x):\/%cos X———— [ —5111 zn—g)—\/iz_n(%)zcos(x—%—g)J
e

Letx—%n———a andletx—@—

2 2 1 (1 g
I, ()], (x) = \/:xcos () {—\/% sin (ﬁ) - E (;) cos (ﬂ)]

__2 cos (@) sin (,8) -\ =A== (—)2 cos (a) cos (5)

= B, then the above becomes

IS

X X Tt

= —% cos (a) sin (ﬁ) -

2
=-— cos (a) sin (ﬁ) - cos (a) cos (ﬁ) (4)

Similarly

2
Jon O 1 (x) = —i cOS ([)’) sin (@) — % (%) Ccos (ﬁ) cos (@) (5)

Substituting (4,5) into (3) gives (only the term as x — oo remains)

S 0, 0 )= 00 O
o ([ 2 cos @ysin (f) - = (}C)Z cos () cos (ﬁ)] ] [_ni cos(p)sin(e) - 2 (%)2 cos ) os (a))]
- ﬁ( Zx cos (a) sin (B) - % (;1?)2 cos (a) cos () + % cos (B) sin (a) + % (%)Z cos () cos (a))
i - cos @i ) 2 cos () sin )
= %(mz;-nz) (sin () cos (B) - cos (a) sin () (6)
But

I
=
AA/?/—\/—\
|
|
|
|
=
+
+
il

Using the above in (6) gives
[T, 2 (G —m) 3)
0 x n (m2 - nz)

Which is the result required to show. QED.
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2.10.3 Problem 2

Problem What linear second order ODE does the function x™], (axk) solves? Are there

any required relationships among 11,7, k? Use this to solve " + x%y = 0

Solution

2.10.3.1 Part (a)
We know that the Bessel ODE

2
122" (t) + 2’ (t) + (tz - (%) )z (=0 1)

I am using the order as 2 instead of 1 to make it more general. At the end, % can always

be replaced back by n.
The ODE above has solution
z(t) =] : (t)

Hence using the transformation
t = axk (2)

The solution y (x) = z (axk) will becomes
y () =) (axt)

Therefore the question now is, how does ODE (1) transforms under (2)? From (2)

Hence
1
dx 1 (t)%‘l
dt  k\a
1
1 (t\F !
=) )
Now
dz B dz dx
dr  dxdt
1
_dz 1 (t)z:‘l 5)
"~ dxak \a
And

dzz_ d (dz
a2 dr\dt
1
_d|dz 1 (t)l?‘l
~dt|dxak \a
dzdx(1 (t)%-l Ldzd 1 (t)%-l
" dx2dt | ak \a dx dt | ak \a
1 .3\2 1
_d%z 1(t)r1 IR (t)rz ©)
~dx2 | ak \a dx | a%k \ k a

Using (5,6) then ODE (1) becomes
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Writing y (x) = z (axk) so we do not have to keep writing z (axk), the above becomes

1 \2 1 1
A R M NN YO

But ¢ = ax* and the above becomes

1 .3\2 1 1
kyit k\ &2 ki 2
2x2k[y” () [% (%) ] +y (x)ai_k(% —1) (%) ]+axk[y/ (X)i(%) ]+[a2x2k_(%) ]y(x) =0

Which is simplified more as follows

2y (x) l(1)2 (X> 1— 2| ety 0 =2 )+ a2 - 2 (x) =
4 ak \x* x2k AT B 4

x2 1 (1 x 1 x a\

a? Zk(]/"( )azkz( )+y’(x)ﬁ(%—1) ﬁ)+axk(y’(x)%g)+ a2y — 5 y(x) =
1 (22 1(1 2

Zk(y"‘x’ﬁ(%)*y"’“’%(rl) ) v e (5] Jpo=

2 7" 1 X 2.2k a ’ _

kzy (x)+vy (x) ——1 x+y (x)k asx=" — E y(x) =
2

x? ”(x)+y(x)k(l—l)x+y(x)kx+(k22Zk k2 % y(x) =

x2y"” (x) + xy’ (x) + ( k2a2x2k — % y(x) =

(7)
We know that the above ODE has one solution as y (x) = Ja (axk) because this is how the
B
above was constructed. Now assuming that
w (x) = x"y (x)
= x"Ja (axk
(o)
Then w (x) is the solution we want. This means we need to express (7) in terms of w (x)
instead of y (x) in order to find the ODE whose solution is x"']« (axk).
B

Since y (x) = w (x) x™™ then

Yy () =— (X_mw)
= —mx "l + x "M’
And
7" d —-m-1
Yy’ (x) = ( mx w+ xMw )
=-—m(-m-1)x"?w—mx"" "\ —mx " + x "’
=m(m+1)x " 2w - 2w mx " + x """

Substituting the above results back into (7) gives

k?a?
x? (m (m+1)x" 2w - 2w mx ™1 + x‘mw”)+x (—mx‘m‘lw +x M’ ) (k2 22k

‘32
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Dividing by x™"

x2 (m (m +1)x 2w - 2w’ mx ! +w”)+x(—mx‘1w+w) (k2 22k kﬁgz w=0
m(m+1)w - 2xw'm + x*w” — mw + xw’ +(k22 2k k;c;z w=0
x*w” +w' (=2xm + x) + (k2a2x2k+m(m+1) m—k;—zz w=0

x*w” + (1 - 2m) xw’ +(k2a2x2k+m k;; w=0 (8)

Hence the above ODE (8) will have the solution x™Ja (axk). We can now let n = % and the
B
above ODE becomes
x2w” + (1 -2m)xw’ + (kzazka + m? kznz) w=0 9)

Has the required solution x™], (axk).

TN

To answer the final part about the relation between 7, m, k. One restriction is that m =

One relation between the order 7 and k is that m? — k?n? being a rational number. This
means

_ k2n2 —

<z

Where N, M are integers.
2.10.3.2 Part (b)

Yy’ () + 2%y (x) = 0 1)
Comparing this ODE to one found in part (a), written below again, now using y (x) to
make it easier to compare

x?y"” (x) + (1 - 2m) xy’ (x) (k2a2x2k + m? kznz)y(x) =0
- Zm)
y// (x)

To make (2) same as (1), we want (1 — 2m) =0Qorm= % Also need 2k = 4 or k = 2. Using
these the above reduces to

I a2
v (x)+(4azx2 4 = ] (x) =

1. 1
Therefore, we need also that n? = 7 in order to cancel extra term above. Hence n = T

v (x)+ = (kzazka + m? kznz)y(x) =0 (2)

Now the above becomes
v (x) + 4a’x*y (x) = 0
Finally, if we let a? = i ora= %, then the above becomes

¥’ (x) + x2y (x) =0
Therefore, we found that

1
n=—
4

1
a=-
2
k=2
1
m=—
2
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Hence the following solves the ODE
y (x) = x"], (axk)

i 37)

210.3.3 Appendix

To verify the above result, it is solved again directly. We first need to convert this ODE to
Bessel ODE. Let

1
Y =x2z(x)
Then

dy 1 _1 1
—= = —x 2z+x27
dx 2
dy 1.3 1.1 1.1 1
— =——x 2z+4 —x 2z 4+ —x 27" + x27"
dx> 4 2 2

1 3 _1 1

=—z* 2z+x 27" +x27"”

Substituting the above into (1) gives
1 3 _1 1 1
AR s x2x2z =0
1 _1 501 8
x2z" +x 272/ + xZ—Zx 21z=0

3

Multiplying both sides by x2 gives

x%z'" +x7' + (x4 -~ i) z=0 2)
Where the derivatives above is with respect to x. Now let t = x2_2 Then
dz dzdt  dz
A~ dtdx dt
And
d?z  d%z (dt dz
1 P[RS
dx?  dt? (dx) dt
d*z , dz
Sart T

Substituting the above into (2) gives
1
2 (217 ’ ’ 4
x2\xZ" +z2 )+ x(xz) +|x*-=]z=0
(22 )+ 0 + (-
Where the derivatives above is with respect to t now. This simplifies to
1
x*z +2x%7 + (x4 - Z) z=0

2
But t = x?, hence the above becomes

217 ’ 2_1 _

4te7" + 4t7" + |4t 42—0
211 ’ 2 1

tz +tz +|tc——]z=0
16

This now in the form of Bessel ODE
27" +tz + (t2 - nz) z=0
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1 ..
Where n = T Hence one solution is

z(t) =, (t)
:]411 (t)

2
But v (x) = Vxz(x) and t = %, therefore the above becomes
2
v =i (5 ®
1
Which is the same as found in part (b)

2.10.4 Problem 3

Problem Prove that |, (x)| <1 for all integers n
Solution

From the integral representation of J,, (x) for integer n
1 =
Jn () = = f cos (n@ — xsin 0) dO
U
Then

1
Un (X)l <=
Tt

T
f cos (nO — xsin 0) dO
0

max

1 7T
< - f |cos (n6 — xsinB)|__d6O
T 0 max

1 7T
=~ M, [ do
Tt 0

=—M| 7
T

max
= M|

Where [M| = |cos (nO — x sin 6)|]max over @ = 0 --- 7t. But this is 1 for the cosine function.
Hence

max

[ ()l <1

2.10.5 Problem 4

Problem Starting with the integral formula for hypergeometric function, express the fol-
lowing in terms of elementary functions ,F; (1,1,2;x) and ,F; (4,1,1; x)

Solution

oF1(a,b,c;x) = re b fo 1 11 =) (1 = ) 1)

T (b)T(c-
Tl SQT@a+n)Tb+n)x"
_F(a)F(b)Z T(c+n) n!

n=0

(2)

2.10.5.1 Part (a)

Here a =1,b =1, c = 2. Therefore, using (1) representation gives
I 1 - _

Lf A1 = 2 (1 = )Lt

raore-1J,

_ T® L dt

S TOTA)Jy 1-tx

oF1(1,1,2;x) =
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But I'(2) =1,T' (1) = 0, therefore the above becomes

£ (1,1,2;%) fl at
/’;x:
21 Ol—tx

[-ma-m]
|

_ (In(-x) -In(1-0)
__( X - X )
B _ln(l—x)

X

2.10.5.2 Part (b)

Here a = a,b =1,c = 1. Therefore (2) representation gives

JFi(a,1,1%) = I'(c) if(a+n)l“(b+n)x_”

L@ ®) = I'(c+n) n!
1 i": IF'a+n)T'A+n)x"
[(a) /= rad+n) n!
_wT@+n)x”
= T(a) n!
Looking at few values
oF1(a,1,1;x)
Ia) _
0 @ 1: 1
a+
: r(r(a)z) 2
a+2) x
2 I(a) 2_3'
T'(a+3) x
3 T'(a) 31

Using the recursive relation I' (@ + 1) = al’ (a), which works for integer and non integer 4,
then we see that

I'(a+1)=al(a)
And
Fra+2)=T((a+1)+1)
=@+1)IT'(@@a+1)
=(a+1)al (a)
And
F'a+3)=T({(a+2)+1)
=@+2)T((a+2)
=(a+2)(a+1)al (a)
And so on. Hence the above now becomes

n | ,F(a1,1;x)

01

1 arr(%)x = ax

2 w?ig”i—? =a(a+1) Z—Z,

3 —‘””"I‘f(*;’”””’g —aa+)@+2) L
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We see from the above the pattern of the sequence is as follows
2 3

oF1(a,1,1;x) =1 +ax+a(a+1)%+a(a+1)(a+2)% + - 1)
Comparing the above to the Binomial expansion given by
z? 2
(1+z)”:1+nz+n(n—1)§+n(n—1)(n—2)§+--- 2)
By replacing z — —x and n — —a, the above becomes
» (-2’ (-x)°
Q-2 " =1+(a)(x)+ () ((a) - 1) =+ (=) (-a) D) ((-a) = 2) == + -

x2 x3
:1+ax+(a)(a+1)§+(a)(a+1)(a+2)§+-~~

Comparing the above to (1) shows it is the same series. Hence
2F1(a,1,1;%) = (1-2)™

2.10.6 Key solution for HW 10
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# . 7 _
&; {3} fﬁ’}f‘,ﬁ[f&x Zlg (z) +2 ;,i’{(z;j +(Z «ﬁ/}o/ﬂ(z) o

Lef z = ax}t, Then ﬁ{f{zj = g[g}ﬁﬁ ahx T f(ﬁ)
p " Ix
j h-d -7,
(7{2’ 7{3) - ”I aﬁafx&”i J [Z)J = a}ﬁ(k’f)x v, {g/) Kl
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2111 HW 11 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 11 due Monday April 29. Show all work. Use of Mathematica,
MatLab, or similar software is not allowed.

1. (6 pts) Find the normal modes of a rectangular drum head with sides of
length L, and L.

2. (6 pts) Find the normal modes for acoustic waves in a hollow sphere of
radius R. The wave equation is

1 0%
2 —_
VY= c? Ot?

with boundary conditions 9¢/0r = 0 at r = 0 and at » = R. What is the
lowest frequency?

3. (6 pts) A sphere of radius R is at temperature 7" = 0. At time ¢t = 0
it is immersed in a heat bath of temperature 7y. What is the temperature
distribution T'(r,t) as a function of time?

4. (7 pts) Consider the Helmholz equation
V2u(r, 0) + k*u(r,0) =0

inside the circle » = R with the boundary condition u(R,6) = f(#). The
solution can be written in the form

w0 = [ FOVG(r, 0:0')d0

0

Find the Green function G.

2.11.2 Problem 1

Find the normal modes of a rectangular drum with sides of length L, and L,
solution

The geometry of the problem is
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?JA u = 0 on all edges

up = 2V

Ly
Figure 2.37: Problem to solve

Using Cartesian coordinates. Wave displacement is u = u (x, Y, t) (out of page).
Pulxyt) (o | P
_ = R R
ot? Ixz  Jdy?
0<x<L,
O<y<Ly,

Boundary conditions on x

u (O, v, t) 0
u (Lx, Y, t) =0
And boundary conditions on y
u(x,0,t)=0
u (x, Ly, t) =0
Solution

Letu=X(x)Y (y) T (t). Substituting into the PDE gives

1
C—ZT"XY =X"YT +Y"XT
1 T// 3 X// + Y/l
AT X Y
Hence, using A as first separation constant we obtain

1 TII 3 A
2T
X// + Y/l 3 A
X Y
The time ODE becomes
T +cAT =0
And the space ODE becomes
X// Y/I
—+—==-1
X Y
Separating the space ODE again
XII 3 /\ YI/ 3
X y *
Where u is the new separation variable. This gives two new separate ODE’s
X// 3
X =—f
Y//
A - =
Y ?
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Or
X" +uX=0
Y’ +Y(A-p)=
Solving for X ODE first, and knowing that y > 0 from nature of boundary conditions, we
obtain

X (x) = Acos (\/ﬁx) + Bsin (\/ﬁx)
Applying B.C. at x =0
0=A
Hence X (x) = Bsin (\/ﬁx) Applying B.C. at x = L,

0 = Bsin (\/ﬁLx)

Hence
VHLy = nm
nr\’
pn:(—) n=1,273, 1)
L,

Therefore the X,, (x) solution is
X, (x) = B, sin (;z—nx) n=1,2,3,-- )
X

Solving the Y (y) ODE using the same eigenvalues found above
2
nm
Y”+Y(/\—(—) ]:O
Ly

2 2
Y(y):Ccos A—(Z—n)y + Dsin A—(Z—n)y

X

The solution is

Applying first B.C. Y (0) = 0 gives

Hence

Applying second B.C. Y (Ly) =0

L,
Hence
2
nrt
/\_(_)L = M7 —123
L
nrTt _ mrt
L) \L,
mm
:(_) ( ) n:1’213,"',m:1/2/31'“
LJ/

Hence the Y, solution is
mm

Y,m = Dy sin (—

y) n=1,2,3,---,m=1,2,3,---
L.V

We notice that X,, (x) solution depends on 7 only, while Y,,,, (y) solution depends on 7 and
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m. Now that we found A we can we solve the time T (f) ode
Ti + Ay T = 0
T, () =E,,, cos (c /\nmt) + F,,,, sin (c /\nmt)
Combining all solution , and merging all constants into two, we find

Upm (x/ Y t) = X (X) Y, (]/) T (1)

= (B, X,,) (Dnm sin (TZ—:y)) (Enm oS (c Anmt) + F,,,; sin (c Anmt))

= B, X, sin (?y) (Epn €05 (cy et + Flesin (cy/Amt))

= X, sin (nzy y) (E'm cos (c /\nmt) F;/, sin (c Anmt))

Where E,,, F)/,, are the new constants after merging them with the other constants. Re-
naming E;,, = A, Fi;, = By, the above solution can be written as

u(x,y,t) = Z ZX x)Ymn( ) T (1)
= gni m SN (L—x) sin (nZ—:y) coS (C Anmt)
Z Z B, sin (Z—nx) sin (—y) sin (C Anmt) (3)
n=1m=1

To solve this completely, we apply initial conditions to find A,,,, B,,,. But the problem is
just asking for the normal modes. These are given by X, (x) Y,,,,, (y) Therefore forn =1, we

have the modes sin (lex) sin (L%y) ,sin (lex) sin (ZL—:y) ,sin (lex) sin (i—:y) ,---and forn =2
we have sin (i—:x) sin (Llyy) ,sin (ZL—:x) sin (i—:y) ,sin (i—:x) sin (i—:y) ,--- and so on.

n|ms= 2 3 4
1 | sin (lex) sin (Llyy)

2 | sin

|
>l

To draw these modes, let us assume that L, =1,L, = 1. This gives

n|im=1 2 3 4
1 | sin (7tx) sin (ny) sin (7tx) sin (2ny) sin (7tx) sin (37zy)

2 | sin (27tx) sin (ny) sin (271x) sin (271}/) sin (271x) sin (37'(y)

3 | sin (37x) sin (ny) sin (37tx) sin (2ny) sin (37tx) sin (37‘(]/)

The following is a plot of the above modes for illustrations with the code used to generate

these plots.
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N=1, M=1 N=1, M=2 N=1, M=3

Outf» ]=

Figure 2.38: Modes using L, =1,L, =1

makePlot[n_, m ] :=
ContourPlot [Sin[nPix] *Sin[mPiy], {x, @, 1}, {v, 0, 1},
PlotLegends - None,
Frame -» True, FrameLabel » { {None, None}, {None, Style[Row[{"N=", n, ", M=", m}], 12]}}1;
Gride@Table [makePlot[n, m], {n, 1, 3}, {m, 1, 3}]

Figure 2.39: Code used to draw above plot

The following is 3D view of the above modes.
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Out[« ]=

/‘““\“W""
RN
QQQ\

Ko

Figure 2.40: 3D view of the modes using L, =1,L, =1

in/- 1= makePlot[n , m ] :=
Plot3D[Sin[nPix] *Sin[mPiy], {x, 0, 1}, {y, 0, 1},
PlotLabel » Style[Row[{"N=", n, ", M=", m}], 12],
Boxed -> False, Axes - False

15
GrideTable [makePlot[n, m], {n, 1, 3}, {m, 1, 3}]

Figure 2.41: Code used to draw above plot

211.3 Problem 2

Find the normal modes of an acoustic waves in a hollow sphere of radius R. The wave
equation is

V2¢ (r, 0,9, t) = Cl_Z‘Ptt

With boundary conditions 1, = 0 at r = 0 and at 7 = 7. (I used r( in place of R because
wanted to use R (r) for separation of variables).

What is the lowest frequency?
solution

Let
Y (7’, 0,0, i’) =u (r, 0, (P) pmiwt

Substituting this back in the original PDE gives

V2u(r,0,¢) + i’—;u (r,0,¢)=0
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Let k = % (wave number) and the above becomes
Viu+ku=0 1)
The above is called the Helmholtz PDE. In spherical coordinates it becomes

Radial part Angular part

2 1 (cosO 1 2 0
Uy + —U, + = | ——=uUg + Ugg | + Uy + k“u =
Ty 2 \sino 0" ") T j2ginZg 97

Let u (r, 0, (p) =R((r)®(0)D (qb) and the above becomes

1 (cos@

2
R"TO® + R’T@CD 5 O'RTD + @"RTCD) + O”ROT + k’?ROT =0

24in2 0

7’2 14 sin

Dividing by RO® # 0 gives

Sin

R”+2R’+1 COSG®'+®" N 1 ®/,+k2—0
R rR 7r2\sinf O C) r2sin? 0 @ B
R// 2RI 9@/ @// @//
72 sin? 9? + 72 sin? Q;E +sin% 0 (ZTEQ 6 + 5) + K22 sin% 0 = — o

The left side depends only on r, 0 and the right side depends only on ¢. Let the second

separation constant be 72 and the above becomes

12 sin 9%” + 72 sin 8%%’ + sin 9(:;2% + %) + k%2 sin® 6 = —qu” =m? (2)
Which gives the first angular ODE as
D" +mPP =0 (2A)
We now go back to (2) to obtain the rest of the solutions. We now have
72 sin 9%” + r?sin 9;% + sin Q(Z:g% + %ﬂ) + k22 sin? O = m?
K22 + 1 (R—N + %R—/) + (COS@@ + ®N) _m
R rR) \sin0©® ©) sin?0
12,2 4 2 (R”+%5’)__(coseg+®”) m?
R rR sin0 ®@ O /) sin?6

The left side depends on r and the right side depends on 0 only. Let the separation constant
be I (I +1) where [ is integer which results in

R” 2R cos0® ©” m?
et r? (R +;E)__(sin96+5)+sin26:Z(l+1) ©)
Therefore the next angular ODE is
_(cos@@_i_g)_l_ m?
sinf @ © ) sin?@
(cos@@’ @”) m?

—1(+1)

—+ — —-1(l+1) =
00 T o) arg UFY
COS@®_’+®_" _ m2
sinf © ®

+I1(l+1) =
sin“ @ ( )

cos 6 2

®"+,—6®'+(1(1+1)—

S11

. )@ =0 4)
sin
Let z = cos 6, then flic;) i?g—; = —‘ji—@ sin 6 and

d2® d ( 17 (Q) )

q07 = o\ oo

4’0 d d®
= ———ZS'HQ— —cos 6

dz2 doe dz
4’0 de
= sin®0 - — cos O

dz? dz
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But sin?@ =1 — cos?2 6 = 1 — z2 and the above becomes
4’0 4’0 ’ d®
7O _40 ) 99,
do?  dz? dz
Using these in (4) gives
4’0 de® d®
1-2)- B e 5

o)+ (10 "
dz2 d_zz+sin6 T )T (+)_1

dz —z2

2
1-22
And finally, we obtain the final ODE, which is the radial ODE from (3)
RII 2 R’

k27’2+7’2(?+;i):l(l+1)

)@(z):O

(1—z2)®"—2z®'+(1(1+1)— )@(z) =0 (3A)

2
k2r2R + 72 (R” + ;R’) -Il+1R=0

2R +2rR’ + (k22 = 1(1 +1))R = 0

2 II1+1
R” + =R’ + k2—g R=0 (4A)
r r2
In summary we have obtained the following 4 ODE’s to solve (1A,2A,3A,4A)
D" +m?P =0 (2A)
2
(1-22)@” -220" +(1(1+1) - O(z) =0 (3A)
1-22
2 I(I+1
R” + =R’ + (k2 —~ (—2)) R=0 (4A)
r T

Solution to (2A) requires m to be integer due to periodicity requirements of solution. The
solution is @ ((p) = ¢*"?_ Equation (3A) is the associated Legendre ODE. Since we are
taking / as integer then the solution is known to be © (z) = P}" (z) + Q;" (z) where P}" (z) is
called the associated Legendre polynomial and Q] is the Legendre function of the second
kind. Finally (4A) can be converted to Bessel ODE as shown in class notes using the

transformation R (r) = “0) \which results in
2
1
(l + E)
u’ +-u' + kz——2 u=20
r r

vr

Which has solution | ! (kr). The second solution | l+1) (kr) is rejected since it is not finite
2 "2

at zero and hence makes the solution blow up at center of sphere. Therefore solution to
(4A) is

s
R(r)=C @]H% (kr)
= Cjp (kr)
Where C is arbitrary constant. Putting all the above together, then the final solution is
, eime PJ" (cos 0)
— —iwt ) ;
ED(T' 0,9, t) - { e { o ime { Q" (cos 6) {]1 (kr)

Where j; (kr) are the spherical Bessel functions. Now we need to satisfy the boundary
conditions. Since only j; (kr) depends on 7, then ¢, = 0 at r = 0 and at r = r are equivalent
to looking at R’ (r) = 0 at r = 0 and r = ry. Therefore we need to find the smallest [, k
which satisfy both conditions. This will give the lowest frequency.

I found from DLMF that the series expansion of j; (k) is
(kr) (kry? (kry*
1- + + .-
QI+ 201+3) 8Q2l+5)(2l+3)
Hence for r — 0, we can approximate the above as the following by ignoring all higher
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order terms

(k)
) = S
Which means for small 7, the derivative is
d . 1(kr)™
—ikr) = —~
)= G
At v = 0 then setting [%jl (kr)] = ( is satisfied for all I. Now taking derivative of (5)
gives 0
1-1 2 4 ! 3
i],l (kr) = I (kr) 1 (kr) N (kr) e (kr) 1 2 (kr) . 4 (kr) i
dr r+1)! 221+3) 8(21+5)(2l+3) r+1)! 221+3) 8(21+5)(2l+3)
At r = ry the above becomes
1-1 2 4 ! 3
ijl k) _ ko) 1- (kro)” (ko) R ) 1 2 (kro) 4 (kro) .
dr Q+DI|" 2@+3)  8(20+5)(2+3) Q+DI|" 2@+3)  8(20+5)(2+3)

Now we ask, for which values of [ is the above zero? If we let | — oo then we obtain

d. k)T (k)
[dr]l (kr)Lro = T @i

>0

=0

Therefore, to satisfy both [%jl (kr)] =0 and [%jl (kr)] = 0 we need | — oo. In other
r—0

r—ro
words, a very large integer. The larger [ is, the lower the radial frequency. In addition, in-

creasing k while keeping [ fixed will increase the frequency. And decreasing k while keeping
| fixed decreases the frequency. And for fixed k, increasing / decreases the frequency.

2.11.4 Problem 3

A sphere of radius R is at temperature u = 0. At time f = 0 it is immersed in a heat bath
of temperature uy. What is the temperature distribution u (r,t) as function of time?

solution

Note: I Used u(r,t) instead of T (r,t) as the dependent variable to allow using T () for
separation of variables without confusing it with the original T (7, t).

The PDE specification is, solve for u (7, t)
u,=kV3u  t>0,0<r<R

With initial conditions

u(r,0)=0
And boundary conditions

u(R,t) = ug

[ (0,t)] < o0

Where the second B.C. above means the temperature u is bounded at origin (center of
sphere). In spherical coordinates, the PDE becomes (There are no dependency on 0, ¢
due to symmetry), and only radial dependency.

1 1

=7 (ru),, 1)

To simplify the solution, let
U(r,t) =ru(rt)
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And we obtain a new PDE
1

Eut = U, (2)
And the boundary conditions u (R, t) = ug becomes U (R, t) = Rug and the initial conditions
becomes U (r,0) = 0. So we will solve (2) and not (1). But since the boundary conditions
are not homogenous, we can not use separation of variables. We introduce a reference
function w (r) which need to satisfy the nonhomogeneous boundary conditions only. Let
w (r) = Br. When r = R then Ruy = BR or B = ug When r = 0 then w = 0 which is bounded.

Hence
w (1) = ugr
Therefore, the solution now can be written as
U(r,t)=ov(rt)+ugr (3)

Where v (7, t) now satisfies the PDE but with homogenous B.C. Substituting (3) into (2)
gives
2

v = kﬁ (v (7, t) + ugyr)
v; = ko,, (r,t) (4)
We need to solve the above but with homogenous boundary conditions
v(R,t)=0
[v(0,t)] < oo

This is standard PDE, who can be solved by separation of variables. let v = F(r) T (¢),
hence (4) becomes

T'F =kF"'T
T/ F/l
k— =— =-)2
T F
Which gives
F"+A%F=0

Due to boundary conditions only A > 0 is eigenvalues. Hence solution is
F(r) = Acos(Ar) + Bsin (Ar)
At r = 0, since bounded, say 0, then we can take A = 0, leaving the solution
F (r) = Bsin (Ar)
Atr=R
0 = Bsin (AR)
For nontrivial solution

AR = nm n=1,23:-
_nm

A = —
" R

Hence eigenfunctions are

nm

F, (r) = sin (—r) n=1,23,--
R
nmy\2

The time ODE is therefore T’ + A%kT = 0 with solution T, (t) = Ane_(f) * Hence the
solution to (4) is

i nm\2
n=1 R
Therefore from (3)
a nm\2
U(r,t) = (E Ane_(F) kt Sin(%r)) + gt
n=1
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But U (r,t) = ru(r,t), hence
1 _(mmy? n
u(r,t) = (;;Ane (%) sin (%r)) + Uy
Now we find A,, from initial conditions. At t =0

1 & o (nT
0:”0"';;::114;1311“(?7’)

—rUy = Z A, sin (%r)
n=1
Therefore A, are the Fourier series coefficients of —ru
§An =— j;R g sin (%r) dr
21/10 R
= 0

A, = rsin(%r) dr

Hence the solution (5) becomes

2R & 1 _k("_ﬂ)zt nm
ur, ) =uy+uy— ¥, (-1)" —e \®/ "gi (—r
(r,t) 0+ to ;::1( ) " sin R

2R & 1 _g(rmy?
= Uy (1 + — Z (-1)" =e %) "sin (Er))
U n R

S——

Verification of solution

Verification that (7) satisfies the PDE u; = kV?u. Taking time derivative of (7) gives

2R & 1 (nm\?> (=% . (nm
Uy = —Moﬁknzz]l(—l)n g (?) e (R) tsm(?r)

And taking space derivatives of (7) gives
2R & 1 _g(mmy%n n
iy = g ;12_:1 (-1)" e R o (—nr)
2R & 1 k(i) (nm 2 (nm
- S e )
Uyy Uy — nz::l( ) ” sin r

Hence ku,, becomes

2R & 1 (% (nm\% | (nm
klxlxx = —MOEI{; (_1)n ;8 (R) t(?) Sin (?7’)

Comparing (8) and (9) shows they are the same expressions.

Verification that (7) satisfies the boundary condition.

When r = R, therefore (7) gives, when replacing r by R
2R & 1 _k(”_ﬂ)zt . (nm
R, t)=up(l+ = -1)" —¢ "\ R (—R)
u(R, 1) uo( Rﬂnz:]l( ) —e sin |
2R & 1 _k(ﬂ)zt _
=up[1+=—="Y, (-1)" = ¥
uo( Rng( ) —e sin (n7)
= U (1 + 0)
= 1,[0
But 7 is integer. Hence sin (n7t) = 0 for all n. And the above becomes
u(R,t) =uy(1+0)
Verified.
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Verification that (7) satisfies the initial conditions u (r,0) = 0 for r < R.

At t =0 (7) becomes
2R &
u(r,0) = u (1 + E 2( 1)" = sm(n;r))

_u0+§u0§](1) an ("2

2R (T 1 (2% 1  (3m 1  [(4mr
= Uy + —Uy —sm(—r)+—sm —r|—=sin|—r|+ —-sin|—r|----
T R 2 R 3 R 4 R

I could not simplify the above by hand, but using the computer, I verified numerically it
is zero for 0 < r < R for a given R and given u,.

ClearAll[R, r]

R=1; (xradiusx)

uo = 10; (+B.C. valuex)

s=Sum[ (-1)*n1/nSin[nPi/Rr], {n, 1, Infinity}] (+xobtain sumx)

Table[chop[ uoe + ::1 uo * s], {r, 0.05, R, .05}]

i(-Log[1+e' "] +Log[e ™ " (1+e'"")])

N =

{e,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0}

Figure 2.42: Obtaining the sum using the computer

2.11.5 Problem 4

Consider the Helmholtz equation

V2u(r,0) +k*u(r,0) =0 1)

inside the circle r = ry with the boundary condition u (rg, 0) = f (0). The solution can be
2
written in the form u (1, 0) = £ 7Yf(@') G(r,0;0)d0’. Find the Green function G.

solution
Iwill solve (1) directly and then compare the solution obtain to u (r, ) = £ f(O0)G(r,0,0)do’

in order to read off the Green function expression. (1) in polar coordinates becomes

11 ,
l/lrr+;1/lr+r—zl/lgg+kl/l:0

Writing u (r, 0) = R(r) © (0), the above PDE becomes
1 1
R”© + ;R’@ + r_2®”R +k*RO =0
R' 1R 10"

+-— +k>=0
R 'R 720
R/I RI @Il
Z— pr— 41k =—— =
r R r R r o) m
Where m is the separation constant. The eigenvalue problem is taken as
O"+mO =0

Due to periodicity of the solution on the disk, then ® (-7) = © (1) and @’ (-n) = O’ (n).
These boundary conditions restrict 71 to only positive integer values. Hence let m = n?
and the solution to the above becomes

®,(0) = A, cos(nb) + B, sin (n6)
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Now the radial ODE is

P— +r— +1°k?* = a?
R R

”R” +rR’ + (r2k2 -n?)R =0
1 2
R +-R' + (k2 - ”—Z)R 0
r r
This is Bessel ODE whose solutions are (since 7 are integers) is
Ry (r) = CyJy (kr) + Ey Y, (kr)

But Y, (kr) blows up at r = 0, hence it is rejected leaving solution R,, (r) = C,J,, (kr). Hence
the final solution is

u(r,0) = Y, (A, cos (n0) + B, sin (n0)) J,, (kr) (2)
m=1
Where the constant C,, is merged with the other two constants. Now, at r = ry we are told
that u (rg, 0) = f (0). Hence the above becomes

£(6) = Y] (A, cos (n0) + B, sin (n0)) ], (kro)

m=1
By orthogonality of cos (n0), sin (n0) we find the Fourier cosine and Fourier sine coefficients
A, B, as

A,J, (kro) % _ Ozn £(6) cos (n0) dO
1 27
By (krO) - = 0 f (6) sin (n6) d6

Substituting the above back into the solution found in (2) results in

u(r,0) = i l(] &) f(@ cos (n0")do’ )cos (n0) + ( fznf(Q’) sin n@/)d@’) sin (n@)]]n (kr)

| ]n (kro)
= Z ( f(0) cos (n0”) cos (n0) dO” + f (60’) sin (n6’) sin (n6) d@') I, (kr)
m=1 ] krO) 0
(3)
Using trig relations
cos AcosB = % (cos (A + B) + cos (A — B))
sin AsinB = % (cos (A — B) — cos (A + B))
Then (3) becomes
S 270
u(r, ) = mzl T (k - ( f £(0) (cos (1n (0" + 0)) + cos (n (& — 0)))de” + fo £(0") (cos (1n (0" - 0)) - cos (1 (€ + 0))) d@’) T, (kr)
Which is simplified to, after combining both integrals to one
00 27T
u(r,6)= Y — — ( F(0) (cos (1n (0" + 0)) + cos (1 (6" - 0)) + cos (1n (0 - 0)) - cosn (6" + 0)) d@’) I,
m=1 2]71 (krO) 0
< Tt Zn ’ 4 ’
_n;Zln(k )[ £(6")2cos (0 - 0)de’ |], (kr)
_ mgl“o £(0") ]n(k 5 cos (6 - 0)do l]n(kr)

Exchanging integration with summation gives

u(r,9)=f f(@)(zjn(ko)cos(Q’ 9)]n(kr))d6’

m=1

Comparing the above to

27
u(r, 6) = f F(O)G(r,6;6)d6"

0
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Shows that Green function is

o0

TC
G(r,8,0) =
.0:0)= X 1)

Where 7 is radius of disk. It is symmetric in 0 as expected.

cos (6" = 0) ], (kr)

2.11.6 Key solution for HW 11

2 2 2
O ¢, e L2¥ _, pixz L,
ax* sy* ¢ It
o<y < [/
YOy t) = F6) 56 T(Y) Separctioe of varjables

" v . 7 .
,,-L—-—[F{j'T*‘Fj//"'CUCj’] 0

f9T
"{: + "j’” < ’Lg "—‘" z CDM/’}L,.” - - ,2
f ) <t T
TI/ = "h'LCZT = T(¥)= 4‘001Wf* KIJ'MLJ{’ WZAC
) . Z
i = "_?_j o+ Coyx‘/‘J’m@f = "/0
f 9
y Fix) = A, cospx * B, SHmpx

S
and 3[}/) = Agcorgy t £, gy z
. A
Now k 13 and 7 ave rg[a/fﬂaz J’// F 'fzv = l‘
BDM»O(W/ Oth//'Hl’l{ ; {(0) = 'F(Lx) =0 =) A;L =0

ﬂ(“): g(Ly) =0 =D AJ =0
FL) = Bsifpls) =0 = plu=zmm m=l27.-

=f)7f Y):’/"?/-?/

g(ly) = Es s (gly) =0 = ¢ly
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2121 HW 12 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 12 due Monday May 6. Show all work. Use of Mathematica,
MatLab, or similar software is not allowed.

1. (5 pts) Consider the following two elements of S;

g = [p4123]
gr = [21534]

Find a third element g of this group such that g~'g1g = ¢s.

2. (5 pts) Do the following matrices form a group?

(1) () (V9)

Here z = ¢27/3. If not, add the minimum number of 2x2 matrices to form a
group. Then make a list of all possible subgroups.

3. (5 pts) The Lorentz transformation with velocity v along the x axis is
described by

(f//):M(v)(f) where M(U):ﬁu 11)>

Show that the product of two such Lorentz transformations is again a Lorentz
transformation, i.e. M (ve)M(vy) = M(vi3) and find vy, Using this result,
show that these transformations form a group.

4. (10 pts) Using [X;, X;] = ¢}, X; where ¢}; are the structure constants and
a summation over k is implied

(a) Show that cf; = —c};.
(b) Prove the Jacobi identity
[[X5, X1, Xa] + [[X5, Xi, X + [ X, Xi], X5] = 0
(c) Show that the Jacobi identity implies
cﬁjcﬁé + cé.kcff + ciic}? =0

Conditions (a) and (c) are the only conditions on the structure constants.
Any set of real numbers cfj obeying these two conditions defines a Lie algebra.
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2.12.2 Problem 1

Problem Consider the following two elements of Ss
g1 = [54123]
9o = [21534]

Find a third element ¢ of this group such that g_l 18 =<2

Solution

When ¢"lxg =, we say that y is conjugate to x using g.

3871818 = 882
818 = 882 (1)
But the class of conjugate pairs is symmetric. This means that
g '%8=8
8871828 = 881
828 = 881 (2)

We have two equations (1,2). Let us now apply ¢1,9> on them. Let ¢ = [abcde] and the
goal is to determine the unknowns a, b, c,d, e. Equation (1) becomes
[54123] [abcde] = [abcde] [21534]
[edabc] = [abcde] [21534] (1A)
Similarly for (2)
[21534] [abcde] = [abede] [54123]
[baecd] = [abcde] [54123] (2A)
OK, this is some progress. But how are we going to find a,b,c,d,e?. Let use try a =1 and
see what we get. If 2 =1 then (1A) implies ¢ = 2 and (2A) implies b = 5. Now, if b = 5

then (1A) gives d = 4 and (2A) gives a = 3. Which is conflict with our assumption that
a =1 we started with.

Let us next assume that 4 = 2 and see if we get a conflict or not. If 2 = 2 then (1A) gives
e =1and (2A) gives b = 4. Now, if b = 4 then (1A) gives d = 3 and (2A) gives a = 2. Good
no conflict so far. Now taking d = 3 then (1A) gives b = 5, which is a conflict of what we
found so far. So our starting guess of a = 2 is not correct.

Let us next assume that 2 = 3 and see if we get a conflict or not. If 2 = 3 then (1A) gives
e =5 and (2A) gives b = 1. Now using b =1 then (1A) gives d = 2 and (2A) gives a = 5,

which is conflict with our assumption that a = 3.

Let us next assume that 4 = 4 and see if we get a conflict or not. If 2 = 4 then (1A) gives
e = 3 and (2A) gives b = 2. Now using b = 2 then (1A) gives d =1 and (2A) gives a = 4.
Good. No conflict so far. So far we found a,b,e,d = 4,2,3,1. It must mean this case that
¢ = 5 since it it only entry left. Let us check if this works or not.

From above we have a candidate element to check which is
g = [42513]
Trying it on (1,2). From (1)

818 = 882
[54123] [42513] = [42513] [21534]

[31425] = [31425]
OK. Let us check (2)

828 = 881
[21534] [42513] = [42513] [54123]

[24351] = [24351]
Verified. Hence one element is ¢ = [42513] .

This means that
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[42513]_1 [54123] [42513] = [21534]

2.12.3 Problem 2

Do the following matrices for a group?

1 0)(z 0) (0 1
0 1)'lo 22)'(1 O
.27
Here z = ¢'3 . If not, add the minimum number of 2 X 2 matrices to form a group. Then
make a list of all possible subgroups.

Solution

The group G with elements ¢; must have the following properties (using matrix multiplica-
tion as the binary operation o)

1. giogjis also an element in the group G

2. Binary operation is associative: (gi ° gj) °oQx =gio° (gj ° gk)

3. There is element I called the identity element such that [ o g; = g;o[ = g; for all
gi € G

4. Each group element g; has inverse g;! such that g;og;! = g;log; =1

10 0 01
Checking the first property. Let ¢; = (O 1J,g2 = ((Z) ZZ),gg, = (1 O)’ then since ¢; is

the identity element, all products with it will also be in G. Looking at products with g,

_2001
g2g3_02210
_Oz
122 0

0 z

But ( 5 O) is not in G. Hence it is not a group since not closed under the matrix multipli-
Z ———————

cation.

Adding this as new element and calling it g

But now we see that

Is not in G. Calling the gs.

Check again if closed

[z 0 0 z2
g2g5_02220

(0 22 (0 €27y (0 1)_

1B o) Tlezr o)1 o)TH

Which is in G. Now checking all products with g3 to see if they are in G.
(0 1)(z 0) (0 %) _
832711 o)lo 2)7\z o) 7%
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Which is in G. And
0 1}(0 z} (22 0
83842 (1 o] (zz 0) ) (0 z)
But this is not in G. Adding the above as new element g
z2 0
86 = (0 z)
Checking again from the start that the group we have now is closed, which now contains

81,82, 83, 84,85, 86-
Checking all products with g,

z 0)(z O 2 0 22 0 22 0 2 0
82827 (o 2/lo 22 0 z* 0 ¢3® 0 ¢3 0 z) 86
_2001_02_
82837 g 2|1 o) |2 o "
[z 0)(0 z) (0 ) (0 2%} _
828410 2)(2 0) |t o) 7|z o)
[z 0)(0 z2) (0 ) (0 1) _
8255710 2/lz o) 7|2 o) |1 o) ™%
[z 0)(z* 0) (Z* 0) (e?™ 0) (1 0)_
8256 =10 22J/lo z) T lo B) |l o e2) |0 1)
Checking all products with g3
(0 1)(z 0) (0 2%) _
882711 o)lo 2/ |z o)™
(0 1)(0 1)_(1 0)_
83g3—1010—01—81
(0 1)(0 z) (22 0)_
884711 o)l2 o) o z) %
(0 1)(0 22} (z 0)_
885711 oflz o) lo 2) 7%
(0 1)(z%2 0) (0 z)_
88711 o)lo z) |2 o) &
Checking all products with g4
_0220_023_01_
8482—220022—230—10—83
_0201_20_
8483—220 1 ol Tlo 22 =82
_0202_230_10_
8184712 ofl2 o) Tlo 2) |0 1)7&
0 z\(0 z2 22 0 2 0 22 0 2 0
8485~ | 2 ¢, 0_024_0612;(4)_03’5_02_g6
(0 z)(z2 0) _(0 z*) (0 2%} _
8486712 ollo z) 7|4 o) |z o)
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Checking all products with g5

(0 z 20_024_02_
gsgz_zO 0 z22) |22 0) |2 0 84
(0 zZ2)(0 1) (z* 0)_
8583—Z oll1 ol " lo 2—86
(0 22)(0 z) (z* 0) (z 0)_
88471, oll2 o) lo 2) " lo 2”&
_022022_230_10_
88571, oflz o) lo 2] lo 1)7&
(0 z2\(z2 0) _(0 2} (0 1) _
88 =1, oflo z) 7|22 o) |1 o) %

Checking all products with g¢

_(#* 0)(z 0) (2 0)_ (1 0)_
86827 o o 2)7lo 270 1)7%

(22 0)(0 1) (0 z*)_
8683—0210—20—&

_(#2 0)(0 z) (0 %) (0 1) _
863410 2|2 o) |2 o) |1 o)

(22 0)(0 z2) (0 z*) (0 =z)_
8685—0220—220—220—84

_220220_240_20_
g6g6_0202_022_022_g2

Therefore the group

2 R

Is closed under matrix multiplication. To check the associative property, which says that

gi° (g]- ° gk) = (gl- ° g]-) ogk for all 4,7,k in G. But from the property of matrix multiplication,
we know this property is already satisfied since the matrices are all of same order which is
2x2. Checking that There is element I called the identity element such that [og; = g;oI = g,

10
then we see that g; = (0 1) is clearly I in this case. Checking the last property: Each
group element g; has inverse g;! such that ¢;o ¢! = ¢;!1 o g; = L In this case ;! is the

inverse.

For ¢; then g{l is itself.

Checking ¢,
-1
4 [z 0) (22 0)_
82 %o 2] Tlo z) %
. _22020_230_10_1
82782 g 2Jlo 22) " |lo 2 lo 1)°
Checking g3
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Checking for g4
-1
4 (0 z) (0 z|_
84 T2 o] T2 o)
1_0202_230_10_I
87847 2 ofl22 o) {0 2)7 o 1)”
Checking g5
-1
4 (0 22} (0 22}
& 1, o] Tlz o] 785
_022022_230_10_1
878572 oflz o) o 2)7lo1)”
Checking g

4 _20220_230_10_1
86 °86 =g 2)lo z) " lo 22 |o 1)~

OK. All elements checked. Hence G is indeed a group.

81 82 83 84 85 86
e e e e e e e e e

o A T A T

Setting up the Group table. In this table ¢; = I the identity element.

o | I 818 |8|85]|8s
I |1 8838|8586
82|82 |8 |88 |8 |!
8 |8 |8 |1 |8 |82 |8
8418|8821 |8 |85
8585|1848 &1 |8
868 |1 |8 |8 |84|8

Now we need to find all subgroups. By Lagrange theorem, we know for finite group such

as G above, all subgroups are of order that divides the order of G. This means the order
of the subgroups (if they exist) must be 2 or 3. (not counting order 1 which is just I and
order 6 which is the group G itself).

Let us consider possible subgroups of order 2 first. Since subgroup must include the identity
element ¢g; = I, then all possible subgroups of order 2 are the following

(L8], [L.gs] [18a] [Ls] |1 8]
Clearly each one of these is closed under o. Since [og; = g;oI = g; € G- But when checking

for the property that each group element g; has inverse ¢;! such that g;og71 = g7l og; =1,
then this fails unless each element is the same as its inverse. From earlier we found that

83 = &3
8 =84
&' =85

Only. This implies that out of the above 6 candidate subgroups of order 2 only the following
are subgroups

[L8s] [Lga] [Lgs]
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We found 3 subgroups so far. Now we need to consider all possible subgroups of order 3.
Candidates are

[I/g2/g3]/ [I/g2/g4]/ [I/g2/g5] 7 [ng;ge] 7 [1133184] 7 [I/g3185] 7 [I/g3/g6] 7 [I/g4/g5] 7 [I/g4/g6] 7 [I/g51g6]
There are 10 candidates subgroups of order 3 above that we need to check. Easiest check
is if the subgroup is closed. We know they satisfy the associative property.

z 0)(0 1
82°83 = 0 211 o =84

Checking [I, 2, g3]

Not closed.

Checking [I, 9, g4]

z 00 z
82°84= 0 212 o =85

Not closed.

Checking [1, g2185]

_(z 0)(0 %) _
82g5—02220—83

Not closed.

Checking [I, 2, 86]

_zOzZO_I
82°86 =g 2/l0 2|

(22 0)(z 0) (2 0)_ ;
86°82%10 z)lo 2)7lo 2)”
Closed. Associativity is met since these are matrices of same order. Let check inverse

property: Each subgroup element g; has inverse gl-_l such that g; o gi_l = gi_l og; = I. In this
case g; ! is the inverse matrix.

4 [z 0) _(Z2 0)_
82 Zog 2| Tlo 2%
_1_220_1_2 0)
8 o 2] Tlo 2%

And ggl o g6 = 1. OK. Therefore [1182,86] is indeed a subgroup.

(01 OZ_ZZO_
§3°84= 11 oJl2 o) (o z) 736

But g is not in this subgroup. Hence not closed.

_01022_20_
83°85 =11 o)lz o) " lo 2|75

But g, is not in this subgroup. Hence not closed.

For ¢,

And g;' 0 g, =I. OK. And

Checking [I, 93, g4]

Checking [1, g3,85]
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Checking [1, g3186]

(0 1)(z2 0) (0 =z)_
83°86 =11 olJlo z) |22 o] "8

But g, is not in this subgroup. Hence not closed.

(0 z)(0 z%) (z*2 0] _
84°85 =12 o)]lz o) o 278

But g5 is not in this subgroup. Hence not closed.
Checking [I , 84 g6]

(0 z)(z2 0) _(0 %) (0 2%} _
84°8 =12 ollo z) 7 { o) |z o) 7%

But g5 is not in this subgroup. Hence not closed.
Checking [I, g5, g6]

(0 2\(z2 0) _(0 %) (0 1) _
2871z o)lo zJ 7|2 o) {1 0)T

But g3 is not in this subgroup. Hence not closed.

Checking [1, 84185]

All subgroups of order 3 are checked. Therefore the following are the subgroups found.
There are 4 in total

[1.85] [1.8a] . [1.85]. [ 82 86]

Or
1 0) (0 1
0 1)1 0
1 0 0 z
0 1)'\z2 0
1 0) (0 z2
0 1)'\z 0
1 0)(z 0)(z2 0
0 1)'\0 z2)'\0 =z

2.12.4 Problem 3

The Lorentz transformation with velocity v along the x axis is described by

(-]

1
Where M (v) = \/11_7 (U ;)) Show that the product of two such transformations is again a

Lorentz transformation. i.e. M (v,) M (v1) = M (v1,) and find vq,. Using this result, show
that these transformations form a group.

solution

The following diagram is used to help in understanding what we are trying to show.
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M<U12) ( 7 t”)

Figure 2.43: Lorentz transformations involved

Given

[’: = M(0y) ’t‘]

And

) el

We need to show that, with the help of the diagram above, that

(’;] = M (0y) [’t‘) = M (0p) M (vy) (’;) = M (0y) (’;)

So we need to find M (v1,) and see if it is a Lorentz transformation also. In other words,

vi- v

(e

1

to see if M (v1,) has the form of

1 v
( 12] and need to find what vy, is. Starting by
012

finding M (v,). Given that

= )
\/7 (;; f—lt)

ﬂ

The above gives

1
x = (x +vqt)
1-0%
t = (v1x + 1)
1-0?
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Applying the transformation again on the above result gives

1 ((x +01t) + vy (0% + t)]

, _02 ,1 Uz (%) x+vlt)+(le+t)

1

2 2 2,,2

(1 +vy04)

2 _ .24 2.2
\/1—vl—vz+vzvl

1
2,22
1- vl V5 +U50] (1+0507)

(x + U1t + UU1X + vzt)
\/(l Uz) (1 R ) VX + 001t + U1X + £

X (1 + vy01) + (v + 0y)
X (vy +v7) +t(1 + vy07)

(v1+02)

+ t (1+’0201)
(vg+01)
(14+vp17)

(v1+02)
(1+Z)201) X
1 t

(14+vp07)
(1+v907)

But

1- v% - v% + v%v% 3 1+ 0102)2 — (v + 02)2

(1 + 0201)2 (1 + 0201)2
Therefore
(v1+02)
X — ; (1+op01) | [* 1)
P - 2 (1+v701) 1 ¢
1- M (1+v9v1)
(1+Uzl)1)2

Now it is in the form of Lorentz transformation. (

/7

J:N) = M (vq,) J;) Comparing this (1)

shows that
(v1+03)
1 1
M(Ulz) = - [(1+Uzvl) (1+;201)
1 - @22 (o)
(1+Uz’01)
v
But M (v) = \/1_ ( 1] By comparing to the above shows that
v
U1+ 0y
0 =
12 1+ (X%

Therefore what we did above is apply Lorentz transformation again M (v;) on result we
obtained from M (v;) and we obtained a result which also a valid Lorentz transformation.
This means the group is closed under this transformation. We need to show associativity.
Which means

M (v3) [M (v2) M (v1)] = [M (v3) M (v2)] M (v1)
M (v3) M (v12) = M (v23) M (v1) (3)
But we found from the above that M (vy) M (v1) = M (v15) results in v, = 1?;20021 . Therefore
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we can conclude that left side of (2) which is M (v3) M (v;,) will also result in

U1p + 03
U1 = 7
1+ V3012
01+0p
1+0201

But vy = , therefore the above simplifies to

01+02

0 _ 1+Z)2’01 U3
321 — 01+0
1+ 03—=

1+vp01
U1+ 0y +703 (1 + 027)1)

1+ V01 + 0301 + Uy
U1+ 0y + 03 + 030,07

1 + 0,01 + V301 + V30,

And the right side of (3) which is M (vo3) M (v) also gives
_ Uty

b12s = 1+ 01093

. Up+0
But again, v,3 = 1503032

and the above simplifies to

U403

_ 1+U302
0123 = 7 0405
1+ (4]

1+U302

_ 01 (1 +U3Uz) + 0y + U3

B 1+ V30 + 010y + 0103
U1 + 030701 + Uy + U3

B 1+ V30 + 010y + 0103

(3B)

By comparing (3A) and (3B) we see they are the same. Hence associativity is satisfied.
Next we need to check the inverse property. What this means that for each M (v;) there
exist M~! (v;) such that M (v;) M~! (v;) = I. where the identity in this case is M (0) = I since

1 10
Mo ==,

'

1 1 -
Since M (v) = \/11_? (U ;]) then M (-v) = ﬁ (—v 10) and

1 1 v 1 1 -v
M(@)M(-v) =
(©)M(-0) */1—02[0 1]\/1_02[—0 1)
3 1 1 9\(1 -o
T 1-92lo 1)l-v 1
1 (1-¢ 0
1-22\ 0 1-72
1-72(1 0
1-22{0 1

= M(0)

Which is the identity. Hence we showed that for each M (v;) there exists an inverse M (-v;).
All properties of group have been satisfied. Hence the given Lorentz transformation forms

a group.
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2.12.5 Problem 4

Using [Xl-, Xj] = CZXk where ij are the structure constants and a summation over k is

implied.

1. Show that c;-‘z- = —ci-‘]-

2. Prove the Jacobi identity [[X;, X;], Xi ]+ [[X; X¢], X;] + [[Xe, X1, X;] = 0

3. Show that the Jacobi identity implies c%c% + c}kc}’f + cfa-cZ? =0

Conditions (1,3) are the only conditions on the structure constants. Any set of real numbers
ij obeying these two conditions defines a Lie algebra.

solution

21251 Part (1)

The commutator of 2 generators (X, X;) is linear combination of the generators. Hence

(24|
[ XG] = Xi%; = X;X; = el @)
Therefore, we also have
X5, Xi| = XX; - X;X; = Xy (2)

Adding (1) and (2) gives
(XiX; = X;X;) + (X;X; = X;Xj) = kX + chXe

0= X (ci; +c;-‘l-)

0 k k
= Cij + Cji
k _ _k

212.5.2 Part (2)

Applying the commutator relation
[Xil X]] = XZX] - X]Xl
Let LHS of the Jacobi identity be A. Applying the above to each term in A gives

A= [(XX - X)X+ [(X0Xe = XiXp), X ]+ [(6X0 - XiXa), X 1)

We want to show that A = 0. Now, applying commutator relation again each term of the
above gives for the first term

[(x:X; - X;X;), Xi | = (XX, - XX3) X — Xp (XX, - X;X))
= XZX]Xk - X]Xle - XkXZX] + XkX]XZ (2)
And for the second term in (1)
[(XXk - X X)), Xi| = (X5 — XiX;) X; = X; (XX, - X X))
= XX, X; — X XiX; — XiXiXp + X X, X, (3)
And for the third term in (1)
[(XeX; - XiXi), X;| = (GX; = XiXe) X; = X; (X X; - XiXp)
= X XX — XX X; - XX X; + XXX (4)
Substituting (2,3,4) back into (1) gives
A = (XiXiXp - XXXy — XiXiX; + XX X))
+ (X]Xsz - XkX]Xl - XZX]Xk + XleX])
+ (XXX — XiXpeX; = XX X; + XXXy

We see that all terms cancel each other. Hence A = 0 which is what we wanted to show.
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21253 Part (3)
The Jacobi identity is
(1% 3], x|+ [ %] X3 + [ 1%, X0, X5 ] = 0

Applying [Xi, Xj] = céle on each term in the LHS above gives, where the summation index
| is used in each term, which is OK to do since the terms are separated from each others

0 = [e}Xy, X ] + [che X0, Xi] + [chiXi, X)]
= ol [X3, Xi] + ¢ [Xy, Xi + ¢, [ X1, X
Now, applying [XZ-, X]-] = CZ’Xm again on each term above and now using m as the summa-
tion index gives
0= cfjc;’,:Xm + c]l.kc;;?Xm + c}cic;?
= (cﬁjcﬁ + c]l-kc}’] + cfﬂ.cz?) X
— Al m )

I m m
= GijClk + CixCli T CkiClj

Which is what the problem asked to show.
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2.12.6 Key solution for HW 12

() 9= [s4123] 9,2 [21574]

whit g el gue  g7l9 929, 0r 9,97 992 ¢

A’hjwtr‘/ /m

CAe ck:

5 9 < [s41a3][31425]> [ra214)

o, :[Z/LZQJ’][;III,?‘IJS[K/,Z?/Q]
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&)
I~
4
f\
o ~
~ o
\/
RN

(1) 2 (02

z% - we  have

A' /}/ = AQ/‘, Ar AJ’A"A? Aqﬁ)‘ﬁj Afﬁ[ ’A_z
A, Ay = All’ A2 Ay = Ay Aghpr= T AY/TL‘AJ/ Arty, = A,
A, Ay Z Ar  pn sty =T Ay Ay = Az Ay Ay AryE Ay

- A»,A = A
A A‘{:A‘ Ay Ag= A Ay A= Ar Ay =T rey Ij
- ArA-~=
A p Az Ay P A py = ArA
3 |

\

p Ay

oy _)
-1 i . 4 42 p
The thverses, ace A=Az, Ay A Ay = Ay s =10
Hence Thiu 14 4 Jrowp.
The 0»‘7 Lropec sub groups ore

(1A} (LA (T A LT A Ag
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@ M(VJ)M(UI) l” v, )(l V-?) ( )( V7

/ (tyv, Vit

f(?-v'l)ﬁ‘ Vzl) V, + Vy A2

Vr’"
l‘*"n
Defme Vi
} V"'VL
l—v“VVL
2
=, ) (v, +2VV *Vz)
(V_)_V)L (‘[T;ZV)VL"' V) Vl) ( J v
[)«rV,V:_) {)"’ 2
2
2 1 2 ]—V,O(’~Vl)
[ 4'V1.LVZ Vi Vs = ,,_(,-/}_’—
= — s ()-f V‘VL)

() + U, V;_)
(l"’ U) VL)z
- S
R [)~V,1)()’sz)

clo Sure, Asre cfa‘}i vl ‘77 o lover ‘IAVDM. Ww'l'ro:,e

Thuy 4
W} 71'[/0/)"&4,”'/' on, 7 = /M[o) Vs The ld[fyﬂLV*/l

~ ~1
The invevwe for each 6)8;«&]" e m o v) = M(~V](
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@ [XA'J XJ]’-'

i

X,j XJ' -~ X] X;

b
@ [X,x] = =[x, %)= = <

& [[x ] x] (%] xc]o [0 X”']'Xj]:
/
[ X - X - X) X - X;V]—f[x‘j)(k“xl\,)(j) X[]'\L[X‘»X;‘X;X"—J){)j
» ‘) ") -

o XXXy T XXX T X Xo Xy Xh X5 X,

) X, X+
+ Xj xh X - )('ij X, - X xj XIV* X h J
fX"X
, - X X X,; + X ” h,
4 X}«LX;X)' —X;kaj J h J
’h7 j)l/‘c 0

T)\ejc 0/) CﬂnCc) /Oaﬂ" Wise

@ [[x,x] x] + (055 Jo [0 ] %) =6

2 A Loy
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O = C;J,R [Xéj Xh] + C)'lh [Xp/ X;]+ Chﬁ; [X[/ XJ’]

N L \
C'['h, ><m C/.; XM C’(f XM

) (C‘J' Co Con Cus 7 Cis Czj)Xm

f;hca hone OTL ’n\c, Xm av e Z Ers
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3.1 Exam 1

Local contents
[3.1.1 questions| . . .. ... ... . 0oL 222

3.1.1 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics
Quiz 1: Wednesday 27 February 2018 from 1:25 to 2:15 pm.

1. (5 pts) Solve the differential equation

/:I*Z/
x+y

Y
2. (5 pts) Find the harmonic conjugate to the function

_ Yy
a2t y?

1
/j_Jr_dZ
Jo 22— 2z

where the contour C is the unit circle.

3. (5 pts) Evaluate

4. (5 pts) Find the poles and their residues of the function

e

22+ w2

Figure 3.1: Questions, exam 1

222



3.2. Exam 2 CHAPTER 3. EXAMS

3.2 Exam 2

Local contents
[3.21 questions| . . . ... ... 223

3.21 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Quiz 2: Wednesday 10 April 2019 from 1:25 to 2:15 pm. Only pencil or pen
and paper are allowed.

1. (5 pts) Evaluate the integral

2m
fa) = / 40 6(sin? 6 — )
0
2. (5 pts) Evaluate the integral
(z) /'°° cosz dz
%)= —_—s
g oo (@ + @) + B2
where a and b are real constants.
3. (5 pts) A function f(z) is defined on the interval —L <z < L such that
it equals 1/(2¢) when |z| < ¢ and is zero otherwise, with € < L. (In the limit

¢ — 0 this represents a d-function, but do not take this limit.) What is its

Fourier {yamsforem?
Se~ien

4. (5 pts) Find the eigenvalues of the matrix

1
1
1

O =
= O

What is the eigenvalue corresponding to the eigenvector (1,0,-1)7

Figure 3.2: Questions, exam 2
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CHAPTER 3. EXAMS

3.3 Final exam

Local contents
[3.3.1 questions| . . . . . . ...

3.3.1 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Final Exam: Thursday 9 May 2019 from 12:30 to 3:30 pm. Only pencil or
pen and paper are allowed.

1. (5 pts) Find the eigenvalues and normalized eigenvectors of the matrix

0 e
()

2. (8 pts) The second order differential equation z2u” + fl@)w + glz)u =0
with f and g real functions is satisfied by u = z™ exp(iz™). What are f(z)
and g(z)?

3. (5 pts) The metric for the surface of a globe of the earth can be read off
from the distance formula ds? = a2dA2 + a® cos A dgp? where ) is the latitude
and ¢ is the longitude. The metric of a flat map of the world with Cartesian
coordinates z and y would be ds® = dz® + dy®. However, this does not prop-
erly represent the geometry of the globe. Therefore we make a cylindrical
projection defined by # = a¢, y = asin . Find the metric for the z and y
coordinates. Where is the distortion of the globe the greatest and where is
it the least?

4. (5 pts) Evaluate the following integral by contour integration when &2 < 1

/271' do
o Ll+kcosf

5. (5 pts) Starting with the series representation

W)=Y ey )

prove the following identity
d

xm@ (27T (2)] = — Ty ()
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6. (8 pts) Let cfj be the structure constants for a group G. Define a set of
matrices by (M;)x = -cfj = c?i, meaning the matrix M; with rows labeled
by j and columns represented by k. Show that these matrices satisfy the
same commutation relations as the generators of the group. This is called
the adjoint representation of the Lie algebra. It may be useful to recall a re-

lationship that you derived in homework 12, namely o+ G - chyclf = 0.
7. (4 pts) Consider a group consisting of the matrics
22 0 z 0
A= ( 0 =z B=10 22

where z = ¢27/3 along with the identity I. What are the characters of the
three matrices? How many classes are there?
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