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Chapter 1

Introduction

1.1

syllabus

VI POSTINGS MY SCORES

Topics Covered moatied Z34an-2019 at 112241 by Joseon Kapusia
Topics fo be covered include but e nol imited to: ordinary difierential equations; infinte seies and sums, complex analysis; Fourier analyss, Laplace transfors, veclors, malrices, and fensors; specal functions; Green's
functons: partial difierential equations; group theory.

Textbook moatied z3an 2019 at 112241 oy Joseon Kapusia
There are many good textbooks on mathematical methods of physics. | have chosen the following one because it is inexpensive and it has nearly 1000 solved problems.

M. R. Spiegel, Advanced Mathematics for Engineers and Scientists (Schaum's Outlines).

Most of my lectures will not follow this text very closely but are instead based on a variety of sources. Here are a few | recommend:

R. V. Churchhill, Complex Variables and Applications (McGraw-Hill).

J Mathews and R. L. Walker, Mathematical Methods of Physics (Benjamin/Cummings).

G B. Arfken and H. J. Weber, Mathematical Methods for Physicists (Academic Press).

S Hassani, Foundations of Mathomatical Physics (Alyn and Bacon).

K_F_Riley, M. P Hobson and S. J. Bence, Mathematical Methods for Physics and Engineering (Cambridge).

H. Jefieys and B. Jeffreys, Methods of Mathematical Physics (Cambridge)

G. Goertzel and N. Trall, Some Mathematical Methods of Physics (Dover)

M. Abramowitz and . A. Stegun, Handbook of Mathematical Functions (Dover)

Grading moiied 2.Jan.2010at 59PN by Joseoh Kapusa

he course grade will be determined on the basis of homework 30%, class participation 10%, two mid-terms worth 15% each, and final exam 30%. Homework will be due one week after it is assigned. A deduction of 10%
willbe assessed for every business day that the homework is late. The rational is to keep all students up to date in the course and 1o be fair o the grader. Students are expected to attend every lecture.

Homework: There will be approximately twelve homework assignments. Students are allowed to discuss the homework problems with each other. The rules are:

1. Each student must write up his or her own solutions

2. List other students you discussed the problems with

3 Ifyou used any resources other than the required text, such as books, articles, web sites, past homework solutions, and 5o on, you must list them on your homework.

Class Participation: Every Friday, beginning with week two, | will assign an in-class problem at the beginning of the second period Students wil work in groups of three to solve the problem. After 30 minutes one of the
groups will be asked to go to the board to show their solution. Notes from each group must be signed and collected, but will not be graded. That counts as class participation

Mid-terms: Mid-term exams will be given on Wednesday February 27 and Wednesday April 10. They will be held in Tate 865
Final Exam: Thursday May 9, time and room to be announced

‘Grades will be assigned as follows (these are guaranteed, the cutoffs may turm outto be lower):

A 9010 100%

B:801090%

C:701080%

D:50t0 70%

F01050%

Office Hours modified 2-Jan-2010 at 1:57PM by Jose Kapusta

My office is 375-16 Tate Hall. Due to the broad spectrum of students taking the course | doubt that there s a convenient time for regularly scheduled office hours. Instead students may either make an appointment or stop
by and if | am not othenwise engaged | will be happy to help.

1.2 Links

1. [class web page|



https://www.physics.umn.edu/classes/phys/2019/spring/Phys%205041.001/index.html

1.2. Links CHAPTER 1. INTRODUCTION
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21. HW1

CHAPTER 2. HWS

21 HWI1

Local contents

2.1.1 HW 1 questions| . . . . .

2.1 Problem 2
2.1.4 Problem
2.1.5 Problem 4
2.1.6  Problem 5|

[2.1.7 Problem 6|
2.1 Problem
2.1 Problem

[2.1.10 Key solution for HW 1| . . . .

211 HW 1 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 1 due Friday February 1. Show all work. Use of Mathematica,
MatLab, or similar software is not allowed.

1. (2 pts) Solve
Z‘Zy/ + yZ — zyy/

2. (2 pts) Solve
n a?

J—
Y vy

3. (2 pts) Solve
Y +y?+1=0

4. (2 pts) Solve
zy +y+alyle” =0

5. (3 pts) Find both a general solution and a singular solution of
22y? = 2@y —4)y +y* =0

Hint: Differentiate it once.

6. (4 pts) Find the general real solution to the following equation where
A(z) is a known function.
y

Alx)y" + A'(x)y + @) =0

7. (5 pts) Find the general real solution to the equation

3
1ny"+;y:1+r3

8. (5 pts) For what values of k does the equation

L (1 k
—(=+Z)y=0
Y (4*1 y

defined for 0 < 2 < oo have a solution vanishing at z = 0 and at x = co?

© o O G

10
12
16
18
26
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2.1.2 Problem 1

/

Problem Solve x2y’ + 12 = xyy
Solution

Rewriting the ODE as

y (- xy) +y* =0 M)
Dividing by x? # 0 gives

dy (Y, ¥

Z-4)+5 =0

dx ( x/)  x?
We see this is homogeneous of order 1. This can be confirmed by writing the above as

dy (x2 - xy) +1y?dx =0

dyx? — xydy + y?dx = 0
We want to find if a weight m can be found, so that the substitution y = vx™ makes the
above ODE separable. To find m, we assign weight m to both y and dy, and a weight of 1

to both x and dx, and then try to find if there is an m which makes each term sums to the
same total weight. (in other words, we want each term units to be the same).

The term (dy) (xz) has total weight of m + 2 (it is the exponents that we add). And the term

(%) (y) (dy) has total weight 1 + 2m and the last term (yz) (dx) has weight 2m + 1. Therefore
we have this result for the weight of each term (there are 3 terms above).

{m+2,1+2m,1+ 2m}

We see that if m = 1 then each term will have the same total weight of 3 giving {3, 3,3}.
So this is homogenous ODE of order m = 1. Now that we know the weight, we use the
substitution

Y =ox

Hence y’ = v'x+v. Substituting these back into (1) gives a new ODE in v which is separable.
If it is not separable, it means we made a mistake somewhere.

(v'x + ) (xz -~ xzv) + %% =0

U3 —voxd +ox? = x20% +0v%x%2 =0
3

v —voxd +oux2 =0
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Dividing by x° for x # 0 gives

v
v -vv+-=0

X
v'(l—v)z—g
X
dv(l—v)_ 1
dx v x
1- 1
dv( Z))=——dx
v X
dv(v_l)zldx
v X

Integrating both sides gives

1 1
fv——dv:f—dx

v X
v—-lnv=Inx+C

Taking exponential of both sides gives

ev—lnv =Cx
e
—=Cx
0

But v = % Therefore the above becomes

y
eX
? =Cx
X
y
ex
_=C
Y
Hence the solution is
y
y=Cier  x#0 @)

Where C; is the constant of integration. ¥ can not be solved for directly in the above. But
we can solve for x in terms of y if needed as follows

Y
Iny=InC;y +2
ny Hlx

¥
Iny—C, =2
Ily C2 P
_ y
x_lny—Cz (3)

2.1.3 Problem 2

Problem Solve v’ =
(x+y)
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Solution

Let v(x) =x+y(x). Hence " =1+ 1y’ or ¥y’ = v’ — 1. Substituting this back into the ODE
gives

v-1=—

dv_a 41
dx 02

This is separable.

dv—dx
2

By long division azzi—vz = . The above becomes

le
(1 - m) dU = dx

a
a2+v2

Integrating both sides gives
2

a
1-—|do=
f( a2+vz)dv fdx
fdv—a fa2+vzdv—fdx

But fﬁdv = aith(l—g)zdv = (a arctan( )) = larctan( ) hence the above becomes

2(1 v
v—a —arctan(—) =x+C
a a

U—aarctan(g) =x+C

v
aarctan(— =v—-x-C
a
v vV—X
arctan (—) = +Cy
a a

-C . . .
Where C; = —, a new constant. Taking the tan of both sides gives

— =tan

0 (v—x
a

+ Cl)
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But v = x + y, and the above becomes

Y :tan(w+cl)

a a
Xy :tan(y+C1)
a a

Therefore the final solution is
y:atan(y+C1)—x a#0
a
Where C; is arbitrary constant.

2.1.4 Problem 3

2
Problem Solve y” + (i) +1 =0

Solution
Since y is missing from the ODE, we can convert this to a first order using v’ = p(x).
Therefore vy’ = Z—Z and the ODE becomes
ap
—+p°+1=0
dx P
dp ”
—=-(1+p)
d
P 5 = —dx
1+p
Integrating both sides gives
d
P __ f dx
1+p?

arctan (p) =-x+C;
p = tan (—x + Cyq)

dy . . .
But p = y’. Hence we need now to solve -, = tan (=x + C;). Integrating both sides gives

y= ftan(—x + Cq)dx
3 f sin (—x + Cy)
~J cos(=x+Cy)

_ f—sin(x—Cl)dx

cos (x — Cq)

dx

X

[ i (cos (x = C1)

cos (x — Cq)



21. HW1 CHAPTER 2. HWS

But f Vvldx = In (V), hence the above becomes
y=1In(cos(x-Cy))+C,

Replacing —C; by new constant C3, the final solution becomes

y =1In(cos(x + C3)) + C,

Where C,, C3 are constants of integration.

2.1.5 Problem 4
Problem Solve xy’ +y + x*yte* = 0
Solution
Dividing by x # 0 and rewriting gives
1
v+ -y = (=) (1)
A Bernoulli ODE has the form iy’ + a (x) y = b(x) y" where n # 1. Comparing the above to

Bernoulli ODE form, show it is Bernoulli ODE where a (x) = %, b(x) = —x3¢*. Dividing (1)
by y* gives

1 1
— + 2y 3 = _x36x
y4y pcd
o p =3 or = 34 dy _ _doy! - - :
Letting v =y~ or = = =3y~ —". Hence =~ = ——=. Substituting this in the above gives

yi\ dx3) «x
ldo 1 3y
3dx  x xe
d 3
%——0233(3@’“

This is now linear in v. The integrating factor u = ef T = e8Iy = ;—3 Multiplying both
sides of the above by this integrating factor making the left side complete differential

d (1 1
e el — —1,3,x
T (x3v) x33x e

d (1 )
E;U = 3e

1
—v=3e"+C
x

v = 3x3e" + Cx®
=x3(3e* + C)

Integrating gives

9
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But v = y‘3, hence the above becomes
1
— =2 (3" +C)

3 _
Y ~ 123 (3e* + C)

This shows that there are 3 solutions since the above is a cubic equation. But we can leave
the solution in implicit form

Juny

1

y= x3 (3e* + C)

i1
3e* + C

8]

1
X

2.1.6 Problem 5

Problem Find both a general solution and a singular solution of

xz(y’)z —2(xy—4)y’ +y2=0
Solution
Rewriting the ODE as
y? = 2xyy’ + 8y’ + x? (y’)z =0
Let " = p and the above becomes
y2+y( ) (8p+x ) 0
i

This is quadratic in y. Solving for y = Zi b? — 4ac

y=xp+ E\/4x2p2 -4 (8;9 + xzpz)
=xp+ \/xzpz - 8p — x?p?

=xp +24/-2p

y = xp+2y-2p
=xp+f(p) (1)

case one

This can be written as

y=G (x, p)
Where G (x, p) =xp+f (p) This form of ODE is called the Clairaut ODE. Taking derivative

10
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w.r.t. X gives

, dG JdGdp
y=a-t+t5-=
dx  dpdx
But i’ = p and the above becomes
JdG JdGdp
P=—-+t5-7
dx  dpdx
But i—c = p, hence the above reduces to
X
dGdp
= —— 2
0 dp dx )

G d
Then either = = 0 or = = 0.
ap dx

When Z—’; =0 or y”” = 0 therefore the solution is
y=Cix+(C (3)

But we are solving a first order ODE. So we expect it to have one constant of integration
only. By comparing (3) with equation (1) whichis y =xp + f (p) shows that

Cy = f(Cy) =24 2G4

Then the solution will now contain one constant of integration C;. Hence the first solution

y= Clx + 2\/ —2C1

The second possibility comes from %C ~ 0. This gives

is

ap
x+f’(p):0
d N\
x+2%(—2p) =0
L 0NT o =
x+2§(—2p) (2) =0
x—LZO
V2
xy/-2p=2
—2px? = 4
2
P=

Now that we found p, we substitute it back into (1) given by y = xp + 24/-2p. Hence the

11
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second solution is found directly as follows

y=xp+2y-2p

Il

|

| N

+

N

[

N

|

| N
N —

Il
|
I DN
+
N
By

Summary of case one From above we obtained the following two solutions

y1 = Cix +2+/-2C
2
Y2 =7
Where y, (x) is the singular solution since it can’t be obtained from the first solution with

the constants of integrations by changing them to any value.

We now do the same steps for the case of y = xp — 24/-2p. This follows the same steps as
above as the only difference is the sign and hence the steps will not be repeated. It gives the

solution
y3 = Clx — 2\/ —2C1

With the same singular solution. Therefore there are three solutions to this ODE and these

are summarized below
= Clx + 2\/ —2C1

2
Yo=1=

X
y3 = Clx - 2\/ —2C1

With v, (x) being the singular solution. Singular solutions do not have constant of integration
in them and can not be obtained from the general solution by any substitution for constants
of integration. The general solution contain constant of integrations in them.

2.1.7 Problem 6
Problem
Find the general real solution to the following equation where A (x) is a known function
Yy
A "+ A "+ =0
)y @y + o

Solution

12
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Let us first assume A (x) is constant not zero. The above reduces to

EA
A2

This is harmonic oscillator It has the form of y”’ + w?y = 0 with w = % being the natural

y'+-=5=0
frequency. The solution to this is easily found to be

Y (x) = Cy cos (wx) + Cy sin (wx)

= Cy cos (%) + C, sin (%) (1)

Since A is not constant, then we can try a similar solutiorﬂ but use f (x) for the arguments
of the trigonometric functions

y (x) = Cy cos (f () + Cysin (f (x)) (2)
where f (x) is function of x to be determined. Hence. From now on, we will write f instead
of f (x) to simplify notation.

Yy =-Cqf’sin (f) + Cyf’ cos (f)
v = ~Cofsin (F) = Cx (£7) cos (f) + Caof” cos (f) - C (")
Substituting these back into the original ODE gives
42 (=Cafsin (£) = C (£7) cos () + Caf " cos (£) = Co (1) sin () +
AA (—le’ sin (f) + Cyf’ cos (f)) + Cq cos (f) + Cy sin (f) =0

2

sin (f)

Collecting terms gives
cos (f) (—C1A2 ( f')2 + CLAZf” + CLAA f + C1)+sin (f) (—C1A2 f = CA2( f')2 —CLAA'f" + cz) =0
Since this is zero for all sin and cos then
~C1 A% ( f')2 + CA2f" + CLAA'f' +C1 =0
~CL A2 — CuA2 (f1) = CLAAf" + Cy = 0
Multiplying the first equation by C, and the second by C; gives
—CC1 A2 (f7) + CRAZF" + CRAAf" + C1Cy = 0
—CA2f" - C1C A% ( f')2 —ClAA'f +C1C, =0

IThanks to hint from the Professor.

13
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Subtracting the second equation from the first gives
(—C2C1A2 (f7) +Caa2f” + C3An'f + clcz) - (—c%AZ -G A2 (f1) - RN + clcz) =0
~CoC1 A% ( f')2 + C3A2f" + CBAA'f' + C1Cy + CAZf" + C1Co A% ( f’)2 +C2AAf' = C1C, =0
CIA%f" + CSAA'f' + CRA%f + CJAA'f' =0
f7(C3A% + C3A?) + f/ (CRAA" + CRAA") =0
Let us call C3A% + C3A% = yp and C5AA’ + C3AA’ = B for the moment. The above becomes
uf” +pf’ =0

Since f is missing, then we can solve the above by assuming f’ = v. The above becomes

B
—dx
v+ Sv = 0. This is linear in v. The integrating factor is I = ef H

i (ef dev) =0

. Hence the ode becomes

dx
—fgdx

Since the proposed solution in (2) contains integration of constants already, we can choose
C3 =1 without affecting the final solution. Hence

f’ (x) _ e—fgdx

U:C3€

Therefore

B
- [Eq
f(x):fe Lt 1 e,
C3AA"+C2 AN

S Sl Gl
_ f Cse ~ G gy ldx + Cy (3)

Again, since the proposed solution in (2) contains integration of constants already, we can
choose C4 = 0. The above becomes

B
- [£a
f(x):fe St gy
C3AA'+C3AA

—f—dx
242,242
fe CoA2+CqA2 T g

CZAA +C2AA . .
———1— can be simplified as follows

C3A2+C2 A2
CRAA +C2AA AN (C3+CP)  Aar
C2A2 + C2A2 A2(C3+c}) A

The expression

14
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Hence (3) becomes

Flo) = f o T gy

A/
:fe_fwixdx
_f oAy

A (x)

Therefore the solution from (2) is

y (x) = Cy cos (f () + Cysin (f (x))

1 1
=C cos( Am dx) +C, sin( A0 dx) (4)
Let us now try to verify this solution by substituting it back into the ODE. From (4), where

we now write A instead of A (x) everywhere to simplify the notation
: 1 1.\ 1 1V
y (x) = -Cysin (f de) (f de) + Cp cos (f de) (f de)
. 1. \1 1 \1
e [ e [ 3]

And y” (x) becomes

0= o [ 2 ] 2 ) (22)
Or o [ ) f de) ([ 5 (57))

oo ) o 3 )l {3
- ¢, cos(fAdx) 25+ sm(fAdx) Czsm(f Adx) = Czcos(f Ad")

Substituting the above expression for y,1/,y” into the original ODE A%y” + AA’y' +y =0
gives

A? ( Clcos(fAdx)Az+Clsm(fAdx) A Czsm(fAdx)Az Czcos( — )%)
, . 1 1 1
+AA (—Cl sin (fzdx)z + C, cos (f Adx) A)+C1 cos (fA( )dx)+C2 sm(fA( ) ) 0

15
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Simplifying gives
1 ' 1 , . 1 1 ,
— Cq cos fzdx + Cysin fzdx A" — Cysin fzdx — Cy cos fzdx A
-G A fldx + A fldx e fldx + Cysi ! i) =0
1 S1n A 2 COS A 1 COS A 2SI A (x) =

Canceling C terms gives

_ 1 1 , ,
—Czsm(fzdx)—czcos(fAd )A + CA cos( )+Czsln(fA )z

Which simplifies to

\/
II

1
—C, cos (f de) A"+ CyA’ cos (

0=0

Or

Solution (4) has been verified.

2.1.8 Problem 7

Problem Find the general real solution to the equation
3
xy”+;y=1+x3
Solution
We start by writing the ODE as
X%y + 3y = x + x* 1)
The solution is given by

Y=YntYp

where 1}, is solution to homogeneous ODE xzy;l’ + 3y, = 0 and y, is a particular solution to

xzy;,’ +3y, =x+ x*. We start by solving the homogeneous

x?y"” +3y =0
This is Euler type ODE. Using the standard substitution y = Ax, then y’ = Arx’™1,y” =
Ar(r—1)x"2 and the above becomes
X2 Ar(r-1)x"2+3Ax =0
Ar(r-1)x"+3Ax" =0
Since x” # 0 and A # 0 then the above simplifies to
r(r=1)+3=0
?—-r+3=0

16
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Hence

Hence the solution is

1 1
y=Cx2" 2" +Cpyx2 2
1 i 1 -

= Cyx2x2 my Cox2x2 i

i i

=C1\/§€1nx Vi +C \/_elan
zcl\/;e%\/_lnx_'_cz\/;ei\/_lnx

Using Euler formula the above can now be written in terms of sin and cos

y = \/_(C ez\/_lnx+c \/_lnx)

Yy = \/E(CP, Ccos (%\/ﬁlnx) + Cysin (%\/ﬁlnx)) (2)

Now we find the particular solution using the method of undetermined coefficients. Since
the RHS is polynomial x + x* then we guess

Y, = A+ Bx + Cx? + Dx* + Ex*
Then ' = B+2Cx +3Dx? + 4Ex® and " = 2C + 6Dx +12Ex?. Substituting these back in (1)
x2 (ZC + 6Dx + 12Ex2) +3 (A + Bx + Cx%2 + Dx3 + Ex4) =x+x*
2Cx? + 6Dx® + 12Ex* + 3A + 3Bx + 3Cx? + 3Dx>® + 3Ex* = x + x*
3A+x(3B)+x*(2C +3C) +x3(6D +3D) + BE + 12E) x* = x + x*
3A +x(3B) + x> (5C) + x3 (9D) + 15Ex* = x + x*

By comparing coeflicients the following equations are generated

A=0
3B=1
5C=0
9D =0
15E =1

Hence A=0,B = %,C =0,D=0,E = 11—5 Therefore

1 1
yp:§x+ﬁx

4

17
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Hence the final solution is

Y=YntYp
1 (1 1 1,
= x| C;5 cos “Villnx|+ Cysin “Villnx||+ Zx + —x

2 2 3 15
21.9 Problem 8
Problem For what values of k does the equation

(2 + £y = 0 (1)
Y 4 % y=

defined for 0 < x < oo have a solution vanishing at x =0 and at x = oo ?

Solution

Let us look what happens at x — oo, then the term i > ; and the ODE simplifies to

1
" __y=0
27
x D
Which has the solutions y = {62 ,e2 } We reject the first one since it does not vanish at

-1
x — o0, and use iy = e2”. Now we assume the solution to (1) is of the form

y=">P (x)e%lx (2)
And we now try to find P (x). Substituting this solution back into (1), given that
Yy = P’e_?x — lpe_?x
2
Yy’ = Pe? — ZPle7 ~ lp’e%x + lPe%x
2 2 4
= P”e%x - P’e%x + %PeTX

Substituting the above into (1) and canceling common term e 2 gives
1 1 k
P”"-P' +-P|-[=-+-]P=0
4 4 x

k
P’ -P -=P=0
X
xP" —xP' —kP =0 (3)

18
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To solve this for P (x), we use Frobenius series. Assuming

P(x) = 2 C, X"t
n=0

P'(x) = Y, (n+1)c,x""
n=0

P” (x) = 2 m+r)(n+r-1)c,x""2
n=0
Hence (3) becomes

(e} o0 (ee]
x E m+r)(n+r—-1)c,x"" 2 —x E (n+7r)c,x™ -k Z c, X" =0
n=0 n=0 n=0

o0 o0 o
Z n+r)(n+r-1)c,x"1 - Z (n+71)c,x"" —k Z c, X" =0
n=0 n=0 n=0

[ee] (o) (0]
M +r)(n+r-1)c,x™ 1= (n+r-1)cpqx™ 1=k Y c,qx™ 1 =0
n=0 n=1 n=1

For n = 0, and assuming cy # 0 then
m+r(m+r-1)c, =0
(N(r—=1)cy=0

rir=1)=0
Hencer=1orr=0.
Caser=1
P = 2 Cnxn+1
n=0
= E Cpq X"
n=1
Hence

o0
’ _ n—-1
P = Z nc,_1x
n=1

P = 3 () (1 =1) ¢y
n=1

19
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And now (3) becomes

xZ(n)(n 1)c,_ 1x”2—x2ncn X1 - chn 1X"=0
n=1 n1

o

) () (n=1)c,qx™t - Z ne,_1x" —k Z cy_1X" =0
n=1 n=1 n=1

o

3 (1) (n=1) g x™ = D 10,2 =k D cugx" =0
n=2 n=1 n=1

o

2 (n+1)(n)c,x™ - i nc,_1x" —k i Ch1X* =0

n=1 n=1 n=1
Hence for n > 1 we obtain

(n+1)(n)c, —nc,_q4 —kc,_.1 =0

c _(1’l+k)Cn_1
" onm+1)
Forn=1
c _(k+1)c
1=
Forn=2
. _(k+2)q _(k+2)(k+1)c _(k+1)(k+2)c
27 23 2080 2 7 @@ °
Forn =3
C _(k+3)c2_(k+3)(k+1)(k+2)c _(k+1)(k+2)(k+3)c
T3 3@ 0 Y 000 @ °
Forn=4

o k+4)c,.1  (k+4)cs (k+1)(k+2)(k+3)(k+4)c
@6 @96 Qee@@e)
And so on. Hence
P(x) = Z Cpq X"
n=1
= CoX + C1X% + cpx> + cgxt + -+
_. (x+ (k+1)x2+ kD) (k+2) 5 k+DE+D(+3) , G+ D(k+2)(k+3)(k+4) o
0 2 2)(2)(3) 2)(2)(3)(3) 4) 2)(2)(3)(3)(4)(4) (5)

- (x Frenl S TE TR 3l 41 41 51

(4)

Butex:1+x+—+3—+ . Ore* —1—x+—+—+ -. So there is an exponential term
inside (4). Hence to make (4) vanish at x — oo, then k needs to be a negative integer. Taking

k = —1 makes all terms with k in them vanish, leaving
P (x) = cox
20
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So now the solution from (2) becomes

y(x) = core?
Which goes to zero as x — oo since an exponential decays to zero faster that x going to

infinity.

We now need to check if negative k integer value (specifically k = —1 which we picked from
above) will also make the solution vanish as x — 0. When x — 0 the ODE becomes

ZLIRY (5)
y -7

. k 1 . . ..
Since — > - close to x = 0. Since k is negative integer —1 then the above becomes

"+ 5y =0
y'Hy=

To see this will go to zero as x — 0, Intuitively since ~ is now positive and very large,
then this is like a harmonic oscillator with very large stiffness. (Spring mass system). When
the stiffness becomes very large, the solution goes to zero (the natural frequency goes to

infinity, since @ = 4/~ which means the period goes to zero since @ = 2rT) which implies

no motion. So this shows that negative integer value of k found from first part makes the
solution vanish at both x — oo and at x — 0. Actually for x — 0 we just needed k to be
negative in order to change the sign. But for x — co we found we needed k to be a negative
integer which we choose —1. So this will work for x = 0 and x = oo

2191 Appendix

I first tried to solve the give ODE directly using series method. I left this here as an appendix,
not to be graded but as a reference.

x is singular point. But it is a regular singular point since lim,_, xz; = x and hence the
limit exist. Therefore assuming solution is Frobenius series

o0 o
N n _ n+r
y=x chx —chx
n=0 n=0

Therefore y' = %" (n+71)c,x"" 1V and y” = X°"  (n+7) (n+r—1)c,x"""2, then (1) be-
comes

Z m+r)(n+r—-1)c,x""2 - (Z + ;) 2 X" = 0

n=0 n=0
n+ry(n+r—=1)c,x"*" = - =¥ c,x""— =y ¢, x"7" =0
2, (1) ) PO DI
n= n—O n=0
o0 1 o0
E +r)(n+r—1)c, "2~ k};)cn xr1 Z}gcnx’”’:O
But kE;O:OC 1l = kz 1 X =2 and E C, X" = 22022 C,_pX™ "2 and the above

21
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becomes
(o] o] 1 [ee]
Z m+r)(n+r—-1)cx""2 -k 2 1 X2 — 1 Z CpoX™72 =0 (2)
n=0 n=1 n=2
The first step is to obtain the indicial equation. As the nature of the roots will tell us how
to proceed. The indicial equation is obtained from 7 = 0 in (2) with the assumption that
co # 0. This leads to
m+ryn+r-1)c,=0
r(r-1)cg=0
Co is always taken as non-zero. This leads to
r(r-1)=0

With solutions 1 =1 or r, = 0. (We take rq as the larger root first, since Frobenius series
solution can only guarantee solution for the larger root, when the roots differ by an integer
as this is the case).

Since 71 — 7, is an integer, then this tells us we can obtain a first solution 1, (x) associated
with 7; =1 from the Frobenius series

y1 () = ) cx"! (3)
n=0

But to find the second solution y, (x) associated with r, = 0 we can try either reduction of
order method or use

Y2 (¥) = Ay; (0) In (x) + Y d,x" (4)
n=0
Where A is some constant, which can be zero, and d,, are the coefficients for the second series.
We have to do the above when the roots of the indicial equation differ by integer. Otherwise,
the second solution would have been found using Frobenius series 1/, (x) Z;’;O c,x"*"2 like
with the first solution.

OK, Now we will first find y; (x) from (3)
case 1y =1
Using (3)

4

(n+1)c,x"

3
Il
(e}

44

n(n+1)c,x" 1

B
I
(e}

n(n+1)c,x" 1

Y
I
—_

22
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Substituting the above into (1) gives

Z nmn+1)c,x" ! - (Z + ;) Z c, X" =0
n=1 n=0

(o]

— 1 & k
nz_:ln (n+1)c,x" 1 - 1 ;:;)cnx”” - nz:%)cnx”” =0

(ee) 1 o0 (o)
Z nn+1)c,x" 1 - 1 2_: c, X —k 2_: c,x" =0
n=1 n=0 n=0

(0] 1 (0] o
E m+1)(n+2)cpqx" — - 2 Chx" —k z Xt =0
n=0 4 n=1 n=0

Forn =0
(1)(2)c1 —keg =0
k
1 = ECO

For n > 0 we obtain the recursion equation
1
m+1)(n+2)c,p1 — 261~ ke, =0
1
-c,1 + kc,

4

= LD (4 2)
Forn=1

1 1 k 1 K2 1
JCo+key 3otk (2C0) 00t 5C0 g 1+ 2k2
CZ = = = =

k2
T3
2)3) 6 Y

Forn=2

C3 = —FV—

23
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And so on. Hence
Y1 (%) = cox + 0162 + 023 + ozt + -
ko, 142k 4k +2k°
= CoX + 50X + Co——7 T

U +1+2k22+4k+2k33+
TN T Y T g

x3+C0

k 1 1 k
=cox |1+ zx+|= + =K x2+—(4+2k2)x3+---
2 24 12 288

I could not find closed form function for the above.

Now that we found y; (x), then y; (x) is, from (4), repeated here

Y2 (%) = Ay () In (x) + D] d,x" (4)
n=0
Since we want the solution to vanish at x = 0 then we set A = 0 and y, (x) simplifies to
Yo (¥) = D dyx" (4)
n=0
Where dy # 0. Hence ¥’ (x) = ZZOZO nd,x"! and y”’ = Z:ozon (n —1)d,x"2. Rewriting the

ODE as xy" - (z + k) y = 0 and now substituting the derivatives into this gives

o0 x o0
xZn(n—l)dnx”‘z— (Z +k) Zdnx” =0

n=0 n=0

oo x o0 o0
Zn(n—l)dnx”‘l -1 Zdnx” —kZdnx” =0

n=0 n=0 n=0

(ee] 1 (e¢] o0
Z] nm-1)dx"1 - 1 Z d x" — 2_] dx"=0

n=2 n=0 n=0

[ee] 1 o0 o0
D (n+1) () dyx - 1 M dpax" =k Y, dx" =0
n=1 n=1 n=0

For n = 0 we obtain kdy = 0 which implies dy = 0 since k # 0.

Forn >0
1
(m+1) () dyiq - Zdn—l —kd, =0
] 1y + K,
T ) (n+1)
Forn=1
1
~dy + kd k
dz = 4 0 ! = dl
2 2

24
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Forn=2
1 1 k
Zdl + kdz Zdl +k (Edl) dl + 2k2d1 1+ 2k2
d3 = = = = dl
2)(3) 6 32 32
Forn =3
1 k 142k 1
5 22 tkds  d, + 4kdy _ 2t + 4k (dl 32 ) B gk(Zkz + 5) 3 (2k3 + 5k)

(3)(4) ~ 48 48 BT IR

And so on. Hence the second solution is

Yo (X) = ), d,x"
n=0
= do + dlx + d2x2 + d3x3 + d4x4 + .-

1 + 2k2 2k3 + 5k

hl x3 + dl —( )

32 384

3

kooo1+262, (2K +5k)

=dx|1+=x+d X“+d—=x°+
2 384

A

k
= dlx + Edlxz + dl

I am not sure if the above solution for y, (x) is correct. I need to check this again later.
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2.1.10 Key solution for HW 1

@ X(}//*}’.Lz >(.),)//
'Tr/ )/ = X V - fl__‘_/_
Ax
X = *VE CV - )/ =
, 2
@ )/ - _,_ﬁ—-——L" T}ﬂy “u
(X-r])
, d
Ledr  #  dns —5
/It —%

= X'*)’ - a'7La B 319
Lacke R V“f'hg‘z/(‘/z
o = )’/ /)/ - - ('Pl* /) Jgoura e
=~ +0M Xrc = fﬁL
P ( 2 Ax

2 ;L ff/wzrzz/:/
V-l
Vs
X*/
J‘f/'af :L//r/

T afan‘)(%)
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(3 XAy calxy-w) )iyt =0
D, {ferentidte g)‘,)//f.+ 52227/74 ,_‘Q()/,f ,(),/))//
—alxy M)y 4 Ayy =0
Fachrize! y”[xz)/’ v~xy+é;]:§
() y'zo = g ar+ b Julitute b originel equitian
2,
which G0 solved oW// F o= ,g)'-é

/

i, . -4
¢ Yy T x) s

Solve 12/ Miﬁ‘fé’}”f
}‘47165Pa+”"§ ‘#”’0717'“'

- 2
) X+Cx

Sulys f('ﬁ,‘/’e, Wb Oflj Ml ei‘”‘iﬁ”" W}H\oh Y )V“"('

0;4)/ £a c =0
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(6) Aty + Ay s y = 0
Motice Tt (A) = A (3)
Lok 0 solutinn  ob The o
V 5 o€ cosdb) v cp smfl) R ek ol o et

Ia/w"'h“an/
. / )
)//: -—(;/{/J,u{l + C,y F cof
/2 174 - -C“'[’/ c {'/2
y' o= Coff[_ SRS G VR A S

Satisfied if "C:;

(I)ﬁn Jo e/ n '+ Ma"’Lf'fr)

{ y =€) co foo - C"th
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s

@ x'y” +-§,7 = )+2c3
ot
'/

X
/______,_,_.\____’ 2 u
[1:7/ /P } XYn * 3y =0
X 0
The, S(r-1)* 32 =0 = 5=z =2 E,{

a re;.ﬂw J‘:Inj,-,;/w' /m}w?‘-. 'T'r) )’H =X
> 2

»’] N ex//fg;‘jax]

or cu(fg/nx) ¢ 5”“(’2‘7/"‘)
Yo - f)?/”‘ ("g%*)'* b S (@“‘)]/

T/‘/ /F oy X)S;L/'-%ﬂ?(]”f XXL"'/’V
)
2

+ .
= r

No w X - 6%/[%’\)(

=)

Eg
A

Subgtibtio, = X277 7

Yp <
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o '(‘é*’f‘?)x:o

i
}2 C()M/a,ﬁ(_‘/ 7LD
X

A x 9P nej)a.;f y

‘T’/'» n )/ - e ¥l W e Wanf’ )/ - e
-3 x
Now wm+¢ y - 4“[)() e

L— ﬁD}YnoMVw/ boox ¢

i~ ,o n - U ”6 , h-2

() = = anx” £z & naX £ Sat)x ] s,
h51 h=z{( hi X
. }2 n -l 0
Sulsthtioa: =Z {q('n-rl)am/ -na, - a”;” -
n=l
= a ""ﬂ'}ian fl_’_’_ﬂ_ -3 + So ’//h[/
nt) h("'”) ;aﬂ N
n 2 F

X >
Wgwléé ]e;{l ']LD o ‘Pd(f]’)r e 0‘40[ ﬂ¢ ‘Plc“

i
—E)X X z X
J‘p)u‘IL/M o uld 90 et f >/ - e e = )
X 2ok
e - ; " :I 2 J L~
j@/‘a&/ +9fM;V&v e, v h + }g_ -0 \é)r Lome N=1%

L= -l -2 -7

7/ J
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2.21 HW 2 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 2 due Monday February 11. Show all work. Use of
Mathematica, MatLab, or similar software is not allowed.

1. (4 pts) Sum the series

14 1 1 1 + 1 + 1
4 16 64 256 1024
2. (4 pts) Sum the series

1 2 3
TSI I

3. (5 pts) Sum the following series assuming that 0 < 6 < 7 for definiteness.

f(0) = sin(0) + %sin(29) + ésin(?ﬁ) + ;Sin(49) +

S

. (5 pts) Evaluate the series

1)n+1n2x2n 1 41,3 9.735

Z ol T e

in closed form by comparing with

3 ab
sm(x)—:r—ngg—
5. The Euler numbers are defined by
.- n Ean 2n
SGC(Z‘) = ,;0(_ ) (271)'

(a) (1 pt) What is Ey?

(b) (4 pts) Find a recursion relation for the Es, when n > 1. Determine
Fy, Ey, By, Eg explicitly.

(c) (2 pts) The partial fraction expansion of the secant is

)™(2m + 1)
sec(kr) Z 2m+1 Yy

m=0

Expand the right hand side in a power series in k£ and use it to evaluate the
sum

i (=™

= (2m + 1) tt

in terms of one or more Euler numbers.
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2.2.2 Problem 1

1
16

Solution

Findthesumof1+i——— !

1 1

o1 T 256 T 1004

We would like to combine each two consecutive negative terms and combine each two
consecutive positive terms in the series in order to obtain an alternating series which is

easier to work with. But to do that, we first need to check that the series is absolutely

.1
convergent. The |a,| term is il therefore

L= lim |21
n—oo an
1
_ hm gn+1
BLUN
4n
4n
= lim
n—oo 4n+1|
1
4

Since |L| < 1 then the series is absolutely convergent so we are allowed now to group (or

rearrange) terms as follows

1 1 1 1 1 1 1
S=1+-|-|=+—=]+ + - +
4 16 64 256 1024 4096 16384

5 5 5 5

- - - — 4 — - 4 ...
4 64 1024 16384

5 1 1 1
=—|1-—4+—=—=-—+---
4( 16 256 4096 )
500(_1)1/1

4;:0 42n

5 1\

= N =

L3 ()

n=0
n

00 nfl 00 n 1 .
But } _,(-1) (1_6) has the form , _ (-1)" 7" where r = " and since |r| <1 then by the

binomial series

MY P =T—r 42—
n=0

1
1+7r

34
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Therefore the sum in (1) becomes, when using r = 11—6 the following

5 (16
-3 (o)
Hence
5=3
Or
S=1.176

2.2.3 Problem 2

. 1 2 3
Find the sumofa+1—!+5+...

Solution

n+1
Szz n!

n=0
B n 1
n:On’ n:On'
) LA
= ) (n-1)!
=, ! +e
- A n-1)!

1
=), —+e
n=—1”!

1 1
= —+ —+e
(-1)! Z%n!

1
_m+€+€
Ty

Now to handle ﬁ, we use Gamma function definition for factorials I' (n) = (n —1)! for

00
positive integers, and the generalized I'(z) = £ x*le7*dx for non positive integers. By
definition I' (—k) where k is negative integer is co. (Gamma function is defined only for
negative values other than the negative integers).
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1 1 . .
Hence — = — = 0. So the above result now simplifies to

(-1)!
S=2e

2.2.4 Problem 3
Sum the following series assuming that 0 < 6 < 7 for definiteness.

f(0) =sin(0) + % sin (20) + %sin (36) + ;sin 40) + ---
Solution

Since e = cos (n6) + isin (16) then the above is the same as writing

£(60) = Im(e® + %eZiQ i %831'6 n 1641'6 4o )
Let eig = x, then the above becomes
£(6) = Im(x? + %x‘l + %x6 + ;xS + )
= Im(x(x + %x3 + éx5 + ;x7 + ))

1 1 1
Let g(x) =x+ §x3 + gx‘r’ + ;x7 + ---, hence the above becomes

£(6) = Im (xg (x))

=Im (x f g (x) dx) (2)
2
But ¢’ (x) =1+ 3% + §x4 +.o=1+x2+x*+x%+---. Now for |x] <1 and using Binomial
series this has the sum
§W=1—73

Substituting the above into (2) gives

£(6) =Tm (x f - _1x2dx) 3)

1 1
fl—xzdx:f(l—x)(l o

1 A B
o = 1= + Hence A(1+x) +B(1-x) =1or A+ Ax+B—-Bx =1 or

xX(A-B)+ (A+B) =1. Therefore A=1-Band A =B. Hence 2B=1or B = % and also

But

Let
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A= % It follows that the above integral becomes
1 A
dr= [+
.fl—xzx 1-x
1 1

=— | —+
2J 1-x

B

1+x
1

1+x

;ma+m—ma—@)

1 1+x
=—In
2 1-x

Substituting the above into (3) gives

o-nfsnf)

0
Now, replacing x back by ¢'2 gives

.0

1 0 [1+¢2
ﬂ@z—mF%m(+:H

2 iz

1-e¢2

-i6
Multiplying the numerator and denominator inside the In by e ¢ gives

dx

dx

-6 .0
1 0 le +e't
fO)=5ImfezIn)——7p
et —¢'1
0 -io
1 0 €t +et
=5 lmje In) =5
[0 =i -io 0
0 ed+e 4 . 0 e4 -4
But cos (Z) = > and sin (Z) == therefore

;8 -i6
e4+e4 =2cos

0

4

o (0
4 — 4 = 1 _

e e ZSIH(4)

Using these in (4) gives

1 P 2 cos (g)
f(0) ==Im|e'2In| ——
2 i (g)
isin
4
0
0 cos (Z)
= =Im|e'2 In|i
2 . [0
Sln(z)

37
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COS| —
Using Inz = In|z| + iarg (z), where the principal argument is used. Here z = i (4). This

sin(g)
i(g)
sin(g)

gives [z| = and

0
COS(Z)
. 0
Sin (Z)
0

co(2) o2

5 > 0 for all O in the range 0 < 0 < 7t then i >
ﬁn(z) ﬁn(z)

i direction. Hence

arg (z) = arg|i

Since since is complex in the positive

I
arg (z) = —
g(2) >
Therefore we can write that
0 0
cos|y cos | .
In =1 +i—

I—— | = —F—
. [0 . 06 2
sm(z) sin (—)

But we can simplify the above more using
0
cos | 1
n(? tan [

sin ( 4) an (4)

0
=Inl-Intan (—)

4

5
=—Intan|—
4

Substituting all the above back into (5) gives

Iy

In

0

1 ;8 0 .
f(@)zEIm ez l—lntanz+zg )

1 e . 06 0 mn
=—Im||lcos=+isin=][-Intan — +i—
2 2 4 2

2

1 0 o .. 0 0 .7 6 n 0
=—Im|-cos=Intan— —isin —Intan — + i— cos — — — sin —

2 2 4 2 4 2 2 2 2
_1I ) 'Qlt 6+7Z 6+ Glt 6+7z,6
—21111 s1n2nan4 20082 COSZHaH4 ZSmZ
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Now we can take the imaginary part, giving the final answer as

1 0 0 0
f(0) = > gCOSE —sinilntan (Z))

2.2.5 Problem 4

E 1 X th ) ( ) B 200 (_1)n+1n2x2n—1 _ 4x3 9x5 b . " th
valuate e series f X) = n=1 W = X - o + o + - y comparing 1t wi
3 X5

. X
SID(X):X—§+§—"'

Solution
Since
(- 1)n+1 2,2n-1
f(x)_;::l 2n—-1)!
And since

) (_1)n+1 x2n_1

sin (.X') = E W

n=1
Then we start by taking derivative of sin (x) twice, which gives

d > (1) (25 — 1) x22
— sin (x) = Y, 1)
dx —~ 2n-1)!
And differentiating one more time
P ~1)"™* 21— 1) 2n - 2) ¥213
LR S i Rk
— 2n-1)!
@ (<1)" (402 — 6n + 2) 1213
4 (2n -1)!
00 n+1 2 2n 3 ) (_1)n+1 nxzn_3 ) (_1)n+1 xzn_3
-6y, ————+2 )y, —————
g; (2n 1)! 7;1 2n-1)! ngl 2n-1)!
Multiplying both sides by x? gives
2 ( 1)n+1 2 2n 1 ( 1)n+1 2n-1 ) (_1)n+1 xzn_l
4 -6 +2 )y —
g ) = 21 2n-1)! Z 2n-1)! 2211 2n 1)
( 1)n+1 Zn 1
=4f (x) - 62—)+2sin(x) (2)

Let
) (_1)n+1 xzn_1

g =2 2n—-1)!

n=1
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Then (2) becomes

d2
x? d—zsm x) = 4f (x) — 6g (x) + 2sin (x)
—x? cos x = 4f (x) — 6¢ (x) + 2 sin (x) (3)
So we just need to find g (x). For this we can use (1). Writing (1) as
( 1)n+1 2n 2 ( 1)n+l 2n-2
_s1n(x) 22 —nz:l =11
d ( 1)n+1 2n—1 ( 1)n+1 21-1
x— sin (x) = 2 E 2— - ,121 -1
d
xa sin (x) = 2g (x) — sin (x)
Hence
d
x— sin (x) + sin (x)
_ _dx
g(x) = 5
Using the above in (3) gives
d
d2 — sin (x) + sin (x)
d —— sin(x) = 4f(x)—6[ dx > + 2 sin (x)
—x%sin (x) = 4f (x) — 3 (x cos x + sinx) + 2sin x
Solving for f (x)
—x?sin +3x cos x + sin x
f@= -
(1 - xz) sin x + 3x cos x
4
Or
X 4xz+9XS+ —1(1 x2) i x+3x X
3l 5l T ST T

2.2.6 Problem 5
The Euler numbers are defined by

[o0]

E
sec (x) = 2( -1 (227;|x2”

(a) What is Ey?
(b) Find recursion expansion for E;, when n > 1. Determine E,, E4, Eg, Eg explicitly.

(c) The partial fraction expansion of secant is
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D" 2m + 1)
k
sec (k) = n;) o 1)

Expand the right side in a power series in k and use it to evaluate the sum

i )"
= (2m + 1)21’l+1
In terms of one or more Euler numbers.

Solution

2.2.6.1 Part (a)

Using the formula given, we see that

sec(x) = Eg — 2—fo + ]Z! 4 %x6
When x = 0 the above gives
sec (0)
Hence
Ey=1

2.2.6.2 Part (b)

Since cos (x) sec (x) =1 then
1 = cos( X)(;g)( (2 ), )

: : : 2 o 2k
Using power series expansion for cos(x) =1 - T Ek 0 (2k , then the above

n*
1= [ @ 2k](z( V' )

To see the pattern, so that we can combine the product above, let us multiply few terms,
and collect on powers of x

2 4 6 E E E

E E E E E E E E
__0)+x4(_4+_2+_0)+x6(__6__4__2__0)+
4! 2121 4!

becomes

6! 214! 412! 6!

E E E E E E E E E
:xo<E0>_xz(_0+_2)+x4(_°+_2+_4)_x6(_0+_2+_4+_6)+
! ! 4! 2121 4! 6! 412! 214! 6!
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Therefore the above can be written as
(o) n 1
. E | (=1)" x2"
;12:;)(;:% (2n — 2k)! (2Kk)! Zk)( )" x

When 7 = 0 then the RHS EZ:O mEZk = Ey = 1. Hence we can rewrite the above by

starting sum from 7 =1 as follows

1 .
1‘“2(2 (21— 26)! (2K)! 2")( bt

o0 n 1 " ,
Ozzl(kz‘) (20— 20)! K] 2")( R

Equating terms of powers of x on both sides: since left side has no x, then this implies the
coefficient of x in the RHS must be zero. This implies

- (-1)" 3
E 4 (2n - 2k)' (2k)!E2k =0

E 4 (2n - 2k a2 =0

Since we want E,,,, then we make the sum stop at 7 —1 to isolate that term. Hence the above
becomes

n-1 1 . 1 .
(kEO (2n — 2k)! (2Kk)! Zk) e

n-1 1 . . L
(,; (2n - 2k)! (2k)! Zk) + Q=

n-1 (Zn)! )
(;Z;) (2n - 2k)! (2k)!E2k) +E,, =0

P
Ezk] + E2 = 0
i=o\2k ’

Therefore the recursion formula is finally found as

n-1
2n
E; =—Z( ]EZk (4)
" ~\ 2k

Using (4), we now calculate E,, Ey4, Eg, Eg.
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For n =1 then (4) becomes
0 2)!

Br=- kz:;) =201 @R
_ ()
= @EO
= —EO
=-1
For n = 2 then (5) becomes
1 4)|
=~ X G20 (4 — 2k)! (2Kk)! Eax

k=0
@, @ )
4)' (4 2)!(2)!
“4)(3)()

(EO oo " )
=-1+2)(3)(-1)
=-(1-6)
=5

For n = 3 then (5) becomes
2 (6)!

=~ 2 G2 (6 — 2k)! (2Kk)! Eax

(6)!

t @ )

6) (5)

2

(6) (5)

k=0

(6)!
(6)' 6-212)
(E0+

(EO + 15E, + 15E4)
=—-(1+15(-1)+15(5))
= -61
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For n = 4 then (5) becomes

2 2k)'(2k)'
- %EO ’ %EZ ’ (45?21)!]54 e —(2!! (6)!E6)
bty B
(e (fi)z ;7) - (8()4()7()3()6();)5) . (8()2()7) 6)

= — (Ey + 28E, + 70E, + 28E,)
= —(1+28(~1) + 70 (5) + 28 (-61))
=1385

Summary

Eo=1
E,=-1
E,=5

E, = —61
Eg = 1385

BN PO

2.2.6.3 Partc

-1)" 2m +1)

L 2m +1)* - (2k)2
2m+1)
(2m +1)% - (2k)2

1
m+1) -
1

@m +1) (1— (@7 )

@m+1)?
4 i -1)" 1
A 2m+1) (1_ (2k)2 )

@m+1)?
-G 1
T

sec (km) =

iM8uM8

De
T
—_
3

SRS :1|u> :1|»l>

(2k)?
2m+1)

3
I
o

(-1)"

[l
SIS
D¢

3
I
o
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(1_17)2) =25 (%

2m+1

2n
. 2k . . .
Assuming |m| < 1 then ) . From Binomial series. Then the above

can be written as

2n
43 D" (& 2k
k -7 =
sec (k) = Eo(zm+1)(z(2m+1) )
Interchanging the order of summation in order to combine m terms

xS o2\
sec(kﬂ)—;zk2 (Z(2m+1) (2m+1) ]

n=0
== Nk -1 - 1
25 (3 e ) W
But since sec (x) = En 0( -1)" 52’; x%", then when x = k7, this becomes
sec (k7t) = 2( -1)" (2 )| kr)*"
n E n n
- Z;) k2 (1) (2—;)!(71)2 (2)
Comparing (1) and (2), we see this correspondence
E n n
- 2k2" 2( 1" )zm) nngZ”( ' G
Hence
43 m 22n _ EZn 2n
ng:O(—l) P (1" o] ()
. (_1)m _ n 1 E2n 2n
mzjo am 1 D (_) (ﬁ) @y ™
_ 1 EZn 2n+1
or{3) )
Therefore

N G Y B Exn | ont1
mzzlo ampt Y (22<”+1>) @™

Where E,,, are the Euler numbers found above.
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2.2.7 Key solution for HW 2

G 5= dv b - - e —

Serier o,y erge,

)
_ f 3 " A M
Ty =D (1%
NZ-p
1 2 3 lited 5 e
@ 5 = -+ ’T—* ¢/1+"’ Lco}w Yelal e L
0! 1 2
/) , ) XNt 7 (hw)x}’
. 2 27 g’l()‘cvzﬁtg e T
e - n=o e ﬂ(X 01)( nzo ’ n=9 ’
- L, 42——)(* —g-XZT e S has x=1
- { i! 2!
0 .
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@ fle) = M@+ - Sih(26) + J{ L (1) “’—7” Cnl48) + -

J
s ide F16 4
T I / L4 6
i ie l o le l e ] Azf+ ..
= TM 'd o e N4 7 e * -+ E_C >~ 4 ‘7" e
L3 Ll 1,7 i
= Tm g where g = Z(foz,?z¢7z7n)_z[)
ie
aV‘VL Z = e A~
, l
‘q/ . / + Z"-+ Z"/‘, 'Zé“#'”, = '._.ZL
J} &
NDW Z) - 2 j\ ([-—Z) +T A ’f&é .’L
/‘Ca/ Cdr’u?"&‘m s
l A'_)? ‘1 —A&.
Itz { T e / e + e i
—_— - BKH & ~
/ZV‘( '-2) ) j/\ i' 6‘"‘3— [ "Aﬁ /q

47




2.2. HW 2 CHAPTER 2. HWS

A
- : ntl 2~
@‘) £ - g c ’) n zx Looles li—kc < 0[EN(/47L/V‘¢/

i
(Qn—l), + _‘jc'f— thMﬁA’
<4 ’)19) 2n
= g ("") X X 0/9 2 é [;/)V)’),,)X-Qn
- )' o -
- (a1 o n=t  (an-1)!
2n~f
L D
dx2t)- g2 D n x4y
h= (2n —I),
4 A
9: XZ* X + X L~ x phx
3,’ 5’/’
. A
. 5 ;/ 0/ - -é(xcofx-f'm\/l)}:
,Z/—j- = x coyx t Snx 07;[";,;2 7
z Ix Corx ~ A‘ZfMX‘ 4 Sinx + X Cosx

. 2 }
2x Cosx (I'X)IMX

B}
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3 A .
f fec(x) _ g (f,) 2n 2N
n =0 (‘Qh)i
(a) X =0 secl) :
_ n (-1)"x 2‘7/75 )6 CanX
6) - , . (‘__)) awn an 2
¢ ! ¢ J()éo (an)! X mzo (am)’ (20 )1
T)w m =h Zp ‘-}g,m g)VCJ l T)w¢ r‘ff‘)' mwﬁ?" Vani,h
order 5)/ ordenr, For n 2zl
n -1 ho_ _
_(—,_Q_ffﬁ o —%— (1" Capen ‘12 (1) Can-vy L (f,)”)é;
(2n)" T (20-3)! T T an ) ol C
JM)A’r . h ! — ’ i —
F‘?n ’l’,__(j’i_z_’__ 20— A A A.u,_c + o (:o =0
2! (an-2)’ 4! (2n-4)! '
Note Th.t The coeff/de,ﬂt/ dre é}%omﬁz/ CﬂfT[r[/‘m”elef‘
E;‘L = ~I E;’ o f Q :“6/ @: /353
(("7 FM J‘ma// }Z Wwe Can €;«/ﬁt¢/
. / )
(am+)) - Yk [JM)#)) Am+l

Lz

(2mt))

Gr*)"
h =0 (IRM”);V‘
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A [— );2:«,
' ? Can (hy
Com/vafa +o ICC(}WT) = f (')) - ( T

(21)!
n=0
seder by order i f
, 2n
Ly - 2n _ (") - Lgn
= 4 f 2,”( _,__//—l"’
4 = (2m- @n) ’
-
. Ant)
A (-1) ) («l)y)(_"i
’ - > (Qn))
= (Qm‘”)ghﬂ Py
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2.3.1 HW 3 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 3 due Monday February 18. Show all work. Use of
Mathematica, MatLab, or similar software is not allowed.

1. (4 pts) Consider the function f(z) = 2z'/™ where n is a positive integer.
The branch point is at z = 0 and the branch cut is chosen to be along the
positive x axis. How many sheets are there? What is the range of 6 corre-
sponding to each sheet?

2. (5 pts) Derive the formula

tan" !tz = ;ln <Z+Z>

11—z

3. (5 pts) Using the formula for tan™! z from the previous problem, find the
real functions u(z,y) and v(x,y) in the expression tan™! z = u(x, y)+iv(z, y).

4. (6 pts) In the domain r > 0, 0 < 6 < 27, show that the function u =Inr
is harmonic and find its harmonic conjugate. Do this in both Cartesian and
polar coordinates.

5. (5 pts) Find the value of [ f(2)dz where f(z) = ¢* for two different
contours. (' is a straight line from the origin to the point (2,1). Cs is a
straight line from the origin to the point (2,0) followed by another straight
line from (2,0) to (2,1).

2.3.2 Problem 1

1
Consider the function f (z) = z» where 7 is a positive integer. The branch point is at z =0

and the branch cut is chosen to be along the positive x axis. How many sheets are there?
What is the range of O corresponding to each sheet?

Solution
Following the example in the class handout, where it showed how to find the number of
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1
sheets for z2, the same method is used here, which is to keep adding a multiple of 27t angles

until the same result for the original principal value of the function g (z) evaluated at O is
obtained. This gives the number of sheets.

Let
1
g(z) =zn
1
g(r,0) = (reie)”
1 .0
g(r,0) =rie'n 1)

In the above, O is called principal argument. And now the idea is to find how many times
21 needs to be added to O in order to get back the same value of original of g (7, 0) at the
starting O that one picks. Adding one time 27 to 0, equation (1) becomes

1 .(0+2n)

g(r,0+2m) =rne n

= rnenezn

And we add another 271, or now a total of 47
1 .(0+47)

1 ,(6+4n)
g(r,0+4n) =rne

1 ‘9+.47'L

— rretn i

1,0 n

= rnelneln

And so on. We keep adding 27, or a total of k (27) such that the last term above, which in
k(2m)i
term of kis e » simplifies to 1 which implies getting back original function value at g (r, 0).

Hence for k times we have

1 (0+k2n)
g(r,0+k(2mn) =rne n
1.0, .k2n)
= iz
=rnen n
1.0 .k@2n)
=rne'ne n
1 ig ik(Zn) 1 1‘9 . .
We see from the above, is that only when k = 1, then rnene » = rne ne2™ But 2™ =1,

therefore it reduces to
g(r,0+n(2n)) = r%eig
=g8(r0)
Which is the original value of the function. Therefore there are 1 sheets.
The formula that can also be used to obtain all values for this multivalued function is

1 i(g+2—nk)
n

g(r,0) =rne'\" k=0,1,---n-1
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Now to answer the angle 0 range question. From the above, we see the range of the angle

for each sheet is as follows

Ri:0<0<2m
Ry, :2n <0 <4n
Riy:4n< 0 <6bm

R,:(n-1)2n <0 <n(2n)
Sheet R; is called the principal sheet associated with k = 0.

2.3.3 Problem 2

Derive the formula

1 i+z
arctanz = = In (—)
2 11—z

Solution
Let w = arctan (z) hence

z = tan (w)
sinw

zZ =
Cosw
izu_e—iw eiw+ —iw

— and cosw =
2i

But sinw =
eiw_e—iw

2i
ol 4 p—iw

2

1 eiw _ e—iw

T e g e

‘ elw _ e—lw
1Z=———————
elw + e—lw

, hence the above simplifies to

Multiplying the numerator and denominator of the right side by ¢ gives

eZz’w -1

iz=
e?w +1
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Let ¢ = x then the above is the same as
x? -1
x2 +1
iz(x2+1) =x%2-1

X2z +iz=x%-1

iz =

iz+iz—-x2+1=0
¥2(iz-1)+(1+iz)=0

,  —(+iz)
(iz-1)
(1 +iz)
T (1-iz)
Simplifying gives
, i(-i+2z)
i(-i-2)
_(z-1)
(-i-2)
Hence

But x = ¢, and the above becomes

We need now to decide which sign to take. Since z = tan(w), then when w = 0, z = 0

because tan (0) = 0. Putting w = 0,z = 0 in the above gives

=41

Hence we need to choose the + sign so both sides is positive. Hence
1

—i\2
i _ zZ—1
—-1—z
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Now, taking the natural log of both sides gives

1
1w =In|—
—-1—z
z—1
11/1( ] )
—-1—z

iw =

IS
1

2 i—z

But w = arctan (z), hence the final result is

i zZ+1
_ i _)

i i+z
arctan (z) = 5 In (—)
1—z

2.3.4 Problem 3

Using the formula for arctanz from the previous problem, find the real functions u (x, y)
and v (x, y) in the expression arctanz = u (x, y) + v (x, y)
Solution

Let

i i+2z )
—In|—|=u+iv

2 \i-z
where u = u (x, y) JO=0 (x, y) are the real and imaginary parts of arctan (z). Therefore
i [i+z i i+z| . i+z
—In|—|=z|In|—|+i|larg| — |+ 2nn n=0,+1,+2,--
2 \i-z 2 - 1-z
i li+zl 1 i+z
==—In|l—1|- = arg | —— +2nm (1)
2 |i-z| 2 i-z
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Where arg (:L—i) is the principal argument. But since z = x + iy then we see that

i+(x+iy)

i—(x+iy)
i+x+1y

i+2z

i—2z

i—x—1iy
x+i(1+y)
—x+i(1—y)

(2)

And the principal argument is
 +
arg (%) =arg(i+z)—arg(i—2z)
=arg(i(1-1iz)) —arg(i(l +iz))
=argi+arg(l —iz) —argi+ arg (1 +iz)
=arg(l —iz) + arg (1 + iz)
Letting z = x + iy in the above results in
i+z
— | = 1-i(x+1y)) - 1+i(x+1
arg(i ' ) arg (1 (x + i) —arg (1 +i (x + iy))

:arg(l—ix+y)—arg(1+ix—y)
= arg ((1 +y) —ix) —arg ((1 —y) +ix)

= arctan [ — fan | — 3)
= arctan T+y arctan Ty
Substituting (2,3) into (1) gives

2

X%+ (1 + y) ' —x X
— 5 +ilarctan 1 — arctan 1 + 2nm
X2+ (1 - y) tYy Y

2
i x2+(1+y) 1 -x X
=—-In — —5 arctan 1— — arctan 1 +2nm
4 x2+(1—y) ty -y
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Setting the above equal to u + iv shows that the real part and the imaginary parts are

1 _
u = —= |arctan * - arctan il + 2nm n=0,+1,+2,---
2 1+y 1-y

X2+ (y+1)2

2+ (1-y)

v=-In

Therefore

i [i+z

arctan (z) = = In (—)
2 \i-z
=u+1iv

Where u,v are given above. We see that arctan (z) is multivalued as it depends on the value
of n.
For illustration of u (x, y) and v (x, y), the following is a plot of the above found solution

showing the real part u (x, y) for n = 0 (principal sheet)

Plot3D[-1/2 (ArcTan[(1+Vy), -x] -ArcTan[(1-vVy), x]),
{x, -Pi/2, Pi/2}, {y, -Pi/2, Pi/ 2},
AxesLabel -» {"x", "y", "u(x,y)"},
BaseStyle - 14, Ticks » {{-Pi/2, @, Pi/ 2}, {-Pi/2, 0, Pi/ 2},
Automatic}]

Figure 2.1: Real part u(x, y) using principal sheet

And the following shows u (x, y) with both n = 0 and 7 =1 on the same plot showing two
sheets
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inf 1= Plot3D[{-1/2 (ArcTan[ (1+Yy), -x] - ArcTan[ (1-y), x]),
-1/2 (ArcTan[ (1+y), -x] - ArcTan[ (1-y), x] +2Pi)},
{x, -Pi/2, Pi/2}, {y, -Pi/2, Pi/2},
AxesLabel -» {"x", "y", "u(x,y)"},
BaseStyle - 14, Ticks » {{-Pi/2, @, Pi/2}, {-Pi/2, @, Pi/2},
Automatic}]

Figure 2.2: Real part u(x, y) showing n = 0,n =1 on same plot

And the following plot shows the imaginary part v (x, y)

2 1)2
1= Plot3D [1 /4 Log[%
x4+ (1-y

AxesLabel » {"x", "y", "u(x,y)"}, BaseStyle -» 14,
Ticks » {{-Pi/2, @, Pi/2}, {-Pi/2, @, Pi/2}, Automatic}]

> {x, -Pi/2, Pi/2}, {y, -1.5, 1.5},

Figure 2.3: Imaginary part v(x, y)
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2.3.5 Problem 4

In the domain r > 0,0 < 6 < 27. show that the function ©# = In7 is harmonic and find its
conjugate. Do this in both Cartesian and polar coordinates.

2.3.5.1 Part (a) Using Cartesian

A function u (x, y) is harmonic if it satisfies the Laplace PDE u,, + u,, = 0. Since
r=q/x%+ 12

u=Inr

= In /2 + 12

= éln (xz +y2)

Then

We now need to calculate u,, and u,,.

10
Uy = ——xln (x2 +y2)
1T x
S 2x2 42
X
a2+ 12
And
_Jd  x
Cdxx?+ 2

Applying the integration rule %% =1 gg;f % to the above, where f=xandg=x*+y

uxx

2

results in
X247 - x(2x)
xx = 2
(x2+2)

x? +y? — 2x?

(2 +2)
it 2 (1)

(2 +42)
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Similarly
14
u, = =—In(x? + 12
) gy ( )
1
S 2x2 42
__Y
x% + 12
Applying the integration rule %f(_y; =1 /i;f ¥ to the above, where f=yandg=x*+y?
8\
results in

2+ -y (%)
vy~ 2
(3 +v?)
x? +y? - 212
2
(42 +2)
¥2 _ 12
==Y (@)
(2 +?)
Now that we found u,, and u,,, we need to verify that u,, +u,, = 0. Adding (1,2) gives

yz_xz xz_yz
Upy + Uy = +

yy (x2 + yz)z (x2 + yz)z
yz 2

—x2+x2-y

(12 +2)

=0

Hence u = Inr is harmonic.

To find its conjugate. Let the conjugate be v (x, y). Let u be the real part of analytic function

f=u+iv
Applying Cauchy Riemann equations to f results in
o 3)
dx dy
o @)
dy Ix
From (3) and using the earlier result found for u, gives
v x
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Integrating the above w.r.t. y gives

X
U:fmdy'l‘q)(X)
1
ZXImdy+®(X)

1 1

- - Sdy + @ (x)

xf1+()y X
Y

.. . o d 1 .
The above is integrated using substitution. Let u = =, then é = — and the integral becomes

1 1
= ;( T3 2 (xdu))+CD(x)

" zdu + D (x)
But f —du = arctan (1) = arctan( ) therefore the above becomes
v = arctan (y) + D (x) (5)
Taking derivative of (5) w.r.t. x gives an ODE to solve for @ (x)
gz ch (arctan (Z)) + @ (%) (5A)

To find — arctan( ) let
w = arctan (K)
X

Now the goal is to find Z—Z}. The above is the same as
tan (w) = 2 6)
X

Taking derivative of both sides of the above w.r.t. x gives

d Y
% tan (ZU) = —F

But — tan (w) = sec (w) —, and the above can be written as

dw
sec? (w) — T —%
do_

dx ~ x2sec? (w)

(7)

sin?w

1 . C :
But sec? (w) = 7 and cos? w + sin® w = 1. Therefore dividing by cos? w gives 1 +

COS2 w

2
sec? (w) or 1+ tan® w = sec? (w). But from (6) we know that tan (w) = %, therefore 1 + (%) =
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sec? (w). Replacing this expression for sec? (w) in (7) gives

dw y 1
dx 22, (v)?
1+ (3)
y *
T 22 1 2
__Y
x% + 12
Now that we found dw which is 4 arctan (Z)’ then 5A becomes
dx dx x
v -y
— = + D’ (x
ax x>+ )
But from Cauchy Riemann equation (4) above, we know that Z—; = —%, therefore the above

is the same as

u -

R e RS

dy x2+y
We know what ou is. We found this earlier which is ou = zy 5. Hence the above equation

dy dy X4+
becomes
Y Y ’
= -Q’ (x
2+ yz 2+ yz (x)
@' (x)=0

Therefore @ is constant, say C;. Equation (5) becomes

v (x, y) = arctan ()y—c) +Cy (8)

Which is the conjugate of u = %ln (x2 + yz). To verify the result in (8), we now check that
v (x, y) is indeed harmonic by checking that it satisfies the Laplace PDE.
__Y
x% + 12
y (2x)

(2+12)

Uy

XX

And
X

iy
~ x(2y)

Oyy = (2 + yz)z
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Using the above we see that
y@)  x()

(2492 (2 +y?)
=0

Uy T+ vyy =

This shows that v (x, y) obtained above is harmonic. It is the conjugate of u (x, y) .

v (x, y) is not a unique conjugate of u (x, y), since the constant C; is arbitrary.

2.3.5.2 Part (b) Using Polar coordinates

Here z = r¢'® and we are told that u (r, 6) = Inr. To show this is harmonic in polar coordi-
nates, we need to show it satisfies Laplacian in polar coordinates, which is

1
Up + =U, + —Ugg =0
T T2 00

d 1 1 e . .
But u, = = Inr= - and u,, = - and ugg = 0. Substituting these into the above gives

111 _
2 rr
0=0

Therefore u = Inr is harmonic since it satisfies the Laplacian in polar coordinates. To find
its conjugate, we use C-R in polar coordinates, and these are given by

u 1 dv )
dr  radb
du 3 r&v ©)
20 or
From (1), and since we know that % = %, then this gives
1 1 dJv
r  rd6
dJdv _1
20
Or by integration w.r.t. 0
v=0+D(r)

Where @ (7) is the constant of integration (a function). Taking derivative of the above w.r.t.
r gives
dv

§=®'(7’)
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But from (2) % = —%z—g = 0. (Because u does not depend on 0). Hence the above results in

@’ (r) =0 or @ = C; a constant. Therefore the conjugate harmonic function is

v(r,0)=0+C,

Now we verify this satisfies Laplacian in Polar. From

1 1
[ ;’Or + r—ZTJ@Q =0

We see since v, = 0 and v,, = 0 and vg = 1 and vgg = 0, therefore we obtain 0 = 0 also.
Hence v = 0 + C; satisfies the Laplacian.

2.3.6 Problem 5

Find the value of L f (z)dz where f (z) = €* for two different contours. C; is straight line

from the origin to the point (2,1). C, is a straight line from the origin to the point (2,0)
followed by another straight line from (2,0) to (2,1)

Solution
Part (a) problem Part (b) problem
Y )
(2,0) (2,0)
Gy
Cy
x x

Figure 2.4: Showing contours for part(a) and pat (b)

23.6.1 Parta
Using contour Cy. The line starts from (xo,yg) = (0,0) and ends at (xl,yl) = (2,1). Hence
the parametrization for this line is given by
x(t) =1 -t)xy + txg
=2t
And

y(t)=A-t)yo +ty;
=t
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Now f (z) = ¢# = e, Therefore in terms of ¢ this becomes

f(t) — 62t+z't

— et(2+i)
Hence

f f@dz= [ Foz o
C

. £=0
1
= f et/ (1) dt
0

But z (t) = x (t) + iy (t) = 2t + it, hence z’ (t) = 2 + i and the above becomes

1
f2)dz = f e+ (2 4 i) dt
C1 0

1
= 2+i) f (g
0

ol(2+) )1

Hence the final result is

f f(z)dz =e*" -1

@]
2.3.6.2 Partb

Using C,. The first line starts from (xo,yo) = (0,0) and ends at (xl,yl) = (2,0). Hence the
parametrization for this line is given by
x(t) =1 -1t)xg + txq
=2t

And

y(t) =0 -ty +ty;
=0

Now f (z) = ¢ = ¢+ Therefore in terms of f the function f (z) becomes

f(t) — eZt

Hence, for the line from (0,0) to (2,0) we have

t=1
f(z)dz=f0 F(Hz2 () dt

t=

1
- f 2t () dt
0
66
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But z = x + iy = 2t since y () = 0. hence z’ (t) = 2 and the above becomes

1
f(z)dz = Zf etdt
Cay 0

o2t 1
(3
2
0
=e2-1 1)

The second line starts from (xo,yo) = (2,0) and ends at (xl, yl) = (2,1). Hence the
parametrization for this line is given by

x(t) =0 —-1t)xy +txq

=(1-1H2+2t
=2
And
y () =1 -yo+tys
=t
Now f (z) = ¢ = ¢+t Therefore in terms of f this becomes
f(t) = p2+it
Hence, for the line from (2,0) to (2,1) we have
f=1
f(z)dz = f )z (t)dt
sz t=0
1 .
— f 82+1tZ/ (t) dt
0

But z = x + iy = 2 + it. hence 2’ () = i and the above becomes

1
F(2)dz = f ie2+itdt
0

1

' 62+it
=1 -
1
0

G (2)

Ca,

Therefore the total is the sum of (1) and (2)
f f(z)dz=e?—1+e* —¢?
Co

Hence the final result is

) f(z)dz=¢*"-1 (3)
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To verify this, since ¢* is analytic then £ f(z)dz— £ f (z) dz should come out to be zero (By
2 1

Cauchy theorem). This is because § f (z)dz = 0 around the closed contour, going clockwise.

Let us see if this is true:
f(z)dz- f f(z)dz = [ez” —1] - [ez” —1]
Cy C1
=0

:ﬁf(z)dz

Verified. A small note: § f (z)dz = 0 does not necessarily mean that f (z) is analytic on and
C

inside C as some non analytic function can give zero, depending on C. But if f (z) happened

to be analytic, then 9§ f (z)dz is always zero. But here we now that e* is analytic.
C
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2.3.7 Key solution for HW 3

= y o A

‘O > Y _ A o
(G =)=z = 1r e h sheats
K . 0 < < A ) )
/ £lr @+ ann) = A{(r, 8/
Rl‘ a7 ¢ 6 < Y
R, auln-1) < < Aih S <
' ! e - ¢ -
, show o = S
N - 5 = i — W - A
é) w = ’7‘@” z > = ‘f'zw "% Cos W A ﬁ@ ‘e
2alv / A ‘L”ZW_‘ /
= _,.La “_E____—/;——’ .:) A/Z & ‘t}) = f:
~ 52;"\/’{ 1
CAw - | t a2
¢ (I - ’”Z)
T el
¢ =) -sZ p e
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N

@ w=talz - ﬁ’/’%

(x +(y) ~/4/-x.,,;(~;,_)%

s S A (P ann)

+ 4 ( i) + /-
g%‘( X%»(; )/f/) %A(X / ) eV~
7 (Q*"’“"‘ i/’
i [ ’ (f })AZ /”;'p;””i {X"") -+ r{&m?})/
= .g{. /ﬂw[}?( + () ) f
cﬁiﬂ/y" i f@j “p
e - il L
. ) 3 () e (ne)
‘f/&mﬁlz = wi—%ﬁn i{‘ L;/,) PN | an X A }/} \
Y. /i\ Cx e (y1) ’ ;’}
q R AL ]
T he Fran c:,‘f,/.é V%/mé 0 /: Fon~ " oy Wg/‘/}y
f“’z{}fén H be betw cen ~§ aal ﬁ,/
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2.
v a 2% _ L ax
3: ) r ox © r= r
T
2 4 o o -7
oy T e o T 0
2, 2
«-—-‘“”"1 “Z‘L{ Q. ;2()‘ .f)/) [_/
¥ :

— VAR
2v 2v = X =) Vv = 7L63n (T r @()‘)
o IX a4yt
v . - o=~ L
/5—: ) 7Y x4ty

H Fent
/ / ) m - C Cony Ten
i + @ (x) =
xS |
, B (‘l’ e -7
X V(x,/) - tas X o
L | :
I y
A / e
/] vV = ¢ *cC ;{
R —— N
T A
Po)ﬁ/‘ L'u\a,f;/;h:-./(y %—— P 7 = r 7
L 2a o ov
rooo¢ 0 = = o
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2.41 HW 4 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 4 due Monday February 25. Show all work. Use of
Mathematica, MatLab, or similar software is not allowed.

1. (6 pts) Let C denote the square contour with corners at £2 4+ 2 and
which is taken in a counterclockwise direction. Use the residue theorem to
evaluate the integral [ f(z)dz for the following functions.

—z

(8) 2 —ei7r/2
R )
© 5

2. (4 pts) Assume that f(z) is analytic on and interior to a closed contour
C and that the point z; lies inside C'. Show that

f’(z)dz:/c f(z)dz

C zZ— 2 (z — 20)?

3. (5 pts) Give the Laurent series expansion, both in powers of z and in
powers of z — 1, for the following function.

1
22(1 — z)
4. (5 pts) Evaluate the integral
/00 dx
o 1+at

5. (5 pts) Evaluate the following integral when a > |0|

/27r sin? 6 df
o a-+bcost
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2.4.2 Problem 1

Let C denote the square contour with corners at +2,+2i and which is taken in counter
clockwise direction. Use the residue theorem to evaluate the integral L f (x)dz for the
following functions

ez cosz z
a) —, (b) —— (c) —
@ S ) 555 @ o

Solution

2.4.2.1 Part (a)

. e* . .70 . e
The function f (z) = — has a simple pole at z = i = 1.571, hence it is inside the contour.
Z—ls
2
Sz
A
2 Simple pole at i
] C
Rz
—2 +2

—2i

Figure 2.5: Location of pole relative to contour

Hence by residue theorem

Z=Z(

§ f(2)dz = 27i Residue (f (2))
C

So we just need to find the residue of f (z) at z = z5 = ig. Since this is a simple plot, then
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the residue is given by

Residue ( f (Z))

Z=Z(

Il
=
an
N
|
N
(e}
A —
-~
o)
N
A

[l
—
g
—_
N
|
-~
(I
~—
[§
N
2

I
_
—
NI
N

Therefore

2.4.2.2 Part (b)
The function f (z) = CZSZ) has one simple pole at z = 0 which is inside the contour, and a
zZ

(z +8

poles at z = ii\/g = i2i\/§ ~ +2.83i but these are outside the contour.

R outside pole at V8

Simple pole at 0
Rz

outside pole at —iV/8

Figure 2.6: Location of pole relative to contour

Therefore by residue theorem, only the pole inside the contour which is at z = 0 will
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contribute to the integral. So we just need to find residue at z =0

Therefore

2.4.2.3 Part (c)

The function f (z) =

Residue ( f (Z))

g le_glo (z —z9) f (2)

cosz
z (22 + 8)
cosz

R

= lim

z=0 (22 + 8)
cosz (1
fmdz =27 (g)

z
2(z+1)

&
Q

Simple pole at —1

» Rz

Figure 2.7: Location of pole relative to contour

77
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So we just need to find residue at z = -1

Residue (f (z)) = lim (2~ 20) f (2)

Therefore

2.4.3 Problem 2

Assume that f (z) is analytic on and interior to a closed contour C and that the point z; lies

inside C. Show that
f@d_ ﬂmd

Z— 2

Solution

)

We see that g (z) = has a simple pole at z = z;. Therefore

55 ¢ (2)dz = 271i (by)
C

(1)

Where b, is the Residue of g (z) at z;. By definition the residue of a simple pole is found as

follows

by = lim (z —z9) g (2)
Z—2Z0

-y L2
s e
= f' (z0)

Hence (1) becomes

fﬂ@ﬂ=Qwﬁ@0

f,( )dz— (2mi) ' (zg)

Z =2

78
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But per lecture notes, page 46 on complex analysis it shows that

£z f@

" 2mi ~ (z- zo)°

dz

Substituting the above back into RHS of (2) results in

f,(z)d =27 /@) 50z
c Z—Z 27'(1 (Z—Zo)

f(zd— f(z) el

Z =2

Therefore

QED.

2.4.4 Problem 3

Give the Laurent series expansion both in powers of z and in powers of (z —1) for the

functi !
unction Zz(l—Z)

Solution
There is a pole of order 2 at z = 0 and a pole of order one at z = 1. Therefore, there is a
Laurent series expansion about z = 0 which is valid in inside a disk or radius 1 centered

at z = 0. Around z =1 there is another Laurent series expansion of the function, which is
valid inside a disk centered at z = 0 of radius 1.

Laurent series expansion around z = 0

1 11
2(1-2z) 22(1-2)
1
:Zz(l+z+z +23 +. ) |z| <1
1

1
—+- +1l+z+22+2%+-
z¢  z

1
We see from the above that the residue at z = 0 is 1 which is the coefficient of - term.

Laurent series expansion around z =1

Let u =z -1, hence z = u +1 and the function in terms of u becomes

1
22(1-2)

1 11
A+u)?(~u) U1 +u)?

1)

=(1+u)> Applying Binomial expansion (1 + x)" = 1+nx+ 10l 2 M0 D072) 3

But A+u)? 2! 3!

79



24. HW 4 CHAPTER 2. HWS

--- which is valid for |x| <1 then we see that for n = —2 we obtain

(2(2-1) , (D(2-D(2-2) ,

-2 _
QT+u)“=1+(C2u+ T 3

The above is valid for [u| <1 or [z—1| <1 or 0 < z < 2. Simplifying the above gives

1

5 =1-2u+3u?—4u° + -
1 -u)

Substituting the above back into (1) gives

-1 1 -1
— s=—(1-2u+3u2 -4+ )
u 1+u) u

_1 5
= — 42-3u+4u?---
u

But since u = z — 1 then the above becomes

1 A
2(1-2) z-1

+2-3(z-1)+4GE-1*-5@E-1°+--

We see from the above that the residue of f(z) is -1 at z = 1.

In summary

1.

. .1 1 . . e e . .
Laurent series around z = 0 is = + - +1+2z+2%+ 2%+ --- which is valid inside disk
centered at z = 0 of radius 1

. Laurent series around z =1 is i +2-3(z-1) +4(:z—1)2—5(z—1)3 + --- which is

valid inside disk centered at z =1 of radius 1

Note that there is another Laurent series expansions that can be found, which is for the
region 1 < |z| < oo, which is outside a disk of radius 1 centered at z = 0. But the problem is
asking for the above two expansions only.

2.4.5 Problem 4

Evaluate the integral £Oo

dx
1424

dx

solution

Since the integrand is even, then

1 > 1
Iz—f d
2 _oox4+1x

Now we consider the following contour
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Figure 2.8: contour used for problem 4

Therefore .
ff(z)dz:(gggoflf(x)dﬂ lim f(x)dx)+ hmf F(2)dz

Using Cauchy principal value the integral above can be written as

ff(z)dz:Rli_r)riojif(x)dx+Rli_r>rgofCRf(z)d

=27 Z Residue

. . . 1 ..
Where )} Residue is sum of residues of o for poles that are inside the contour C. Therefore
the above becomes

R
lim [ f()dy =27 ¥ Residue - lim f F(2)dz
R—o0 R R—o0 Cr

1 1
J: x4+1dx—2nzZR681due—Rh_r)r;o . Z4+1dz 1)
Now we will show that limg_,, L dz = (. Since
1
[ e s
Cr z¢+1
=|f@| (=R )
But
1
f(2)=

(zz - i) (22 + i)
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Hence, and since z = R ¢/ then

o) !

|22 + i|

<
max |22 — 1|
min min
Using the inverse triangle inequality then |Z2 - i| > |Z|2 +1 and |22 + i| > |Z|2 —1, and because

|z| = R then the above becomes

1
(2) <
|f |max (RZ + 1) (RZ _ 1)
1
CR4-1
Therefore (2) becomes
1 7R
dz| <
fCR A+17| TR
Then it is clear that as R — oo the above goes to zero since limg_,, Z—Rl = limg_, o Lg’l =
_ 1
R4
0 . . .
1= 0. Equation (1) now simplifies to
© 1
f_m P 1dx =27t Z Residue (2A)

We just now need to find the residues of % located in upper half plane. The zeros of
z*+1
1

I
4

the denominator z* +1 = 0 are at z = —1% = (ein)4, then the first zero is at ¢'2, and the
[P (3 (3w (5
se%ond zero at el(Z+5) = el(zn) and the third zero at el(‘img) = el(zn) and the fourth zero at
. s 7
e\1"72) = ¢1i" Hence poles are at
LT
z; =61
ién
ZZ =4
ign
23 =4
izn
Zp =€ 4

Out of these only the first two are in upper half plane. Hence since these are simple poles,

we can use the following to find the residues

Residue (z1) = Zli_)r? (z=-21) f (2)

, 1
S e
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Applying I’Hopitals rule, the above becomes
d
—(z-z1)
Residue (z;) = lim 22—

=5 L)
dz

Similarly for the other residue
Residue (zp) = lim (z — 2,) f (2)
Z—2p
S ETRa
Applying I'Hopitals

Residue (zp) = lim —

4815
Now that we found all the residues, then (2A) becomes

© 1 A 1 1
f 7 dx = 27 =t — =
oo X+ 1 4EZT 4€ZZ

= 2711'[\/—.5]
4

1
1
= E\/ETC
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1] 1 oo 1
But l; mdx = Eiw x—dx, therefore

441

[ &
0 x4+

1

2.4.6 Problem 5

sin?
Evaluate the following integral £2n s’ 9

solution

This is converted to complex integration by using z = re

dz = ie'%d6 or
dz = izd6
In addition,
ei@ + e—i@
0= ———
CoS >
_z+z7!
2
And
in® 6 1 1 20
sin“ @ = = — = cos
2 2
1 1 eiZ@ + e—i26
25_5( 2
11 22+ 772
2 2 2
1 1
_ 2, -2
= E - Z (Z + 2z )
Using all of the above back in the original integral gives
I fzn sin? 0 0
o a+bcosO

1

a+bcos 6

2

1/1
dx = E (E\/ETC)
1
Z\/ETC

=—=T
42
1
= —"
242

i(2+2?)a

d6 when a > |b|

C

:9€5_
a+b(z+zl

84
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Where the contour C is around the unit circle in counter clockwise direction. Therefore

I_1(p2, 1
1—1562 1\% de_Z
a

iC 4az +2bz2 +2b 22

— d
72 2bz? + 4az + 2b z

195‘1 272 741
i
C
1, 1.4 1
RYEN T
- — dZ
iS22 242,00
C b

1 1 222 -24-1
Sg_Ldz

= — >
Zblc z (zz+%az+1)

Now we can use the residue theorem. There is a pole at z = 0 of order 2 and two poles
2
which are the roots of z% + Faz +1 =0. Hence

I =27 Z Residue

2a

First we find the roots of z> + +% 11 =0 to see the location of the poles and if there are
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inside the unit circle or not. These are

2

b 1 > 1 |[2a
—— VR —dac=-L + 4[[=] -4
20" 2a T ED ( b )

B a+1 4a2 4

b2V 2

_ a4, a? .

b N2

2
Since a > |b| then :—2 > 1 and the value under the square root is real. Hence both roots are
real. Roots are

a a2
Zl__E+ ﬁ_l

a a2
Zz:_E_ ﬁ_l

Now we need to decide the location of these poles. Let g = x. Where x > 1 since a > |b|.

z1 = —x+ Vx? -1
Zp = —x—Vx2 -1
Now Vx? —1 is always smaller than x but (sz -1-x

Hence z; will always be inside the unit disk. On the other hand, (V x2 -1+ x) will always

be larger than 1 in magnitude (the sign is not important, we just wanted to know which pole is
smaller or larger than 1 only. Therefore we conclude that z; is inside the unit disk and z; is outside.

Then the roots can be written as

SN—

can not be larger than 1 in magnitude.

Therefore, we need to find residue at z = 0 and z = z; and not at z = z,. The function f (z)
is from above is

1 222-2z4-1

o= Z_z(zz+2?az+1)

1 2722 -4 -1

T 2(z-2)(z-2))

Residue of f (z) atz=10
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Since this pole is of order n = 2, then

! ((z—zO)”f<z>)

Residue = lim

a1\ (n-1)!

o d , 1 222-74-1
= lim | -2 57—

w0 dz z (22+7az+1)

d| ,1 222-24-1

=lim —|z—————
2

—0dz| z (zz+—2b”z+1)

d 222—24—1]

2a
z=0dz 2+ 7z+1

(42 - 423) (z2 + 2,4 1) - (222 _ A 1) (22 n 2_“)

. b b
= lim 5
z—0 (2 2a )
z +7z+1
2a
- _(-D[=
( >(b)
_2a
b
] a a2
Res1dueat21:—z+ b_2_1

Since this pole is of order 1, then the reside is
Residue = lim ((z - 21) f (2))

1 222-z4-1
22 (z-21) (z - 2p)
_ (1 222—24—1)

= lim | 53—

z—z1 \ Z Z—2

_ 128211

= lim ((z - 21)

zZ—2Z1

Z% Z1 — 2y
4 2
127 -2z7 +1
Z% Z1— 2y
2
-1 (z% - 1)

Z% Z1 — Zp

2
a a .
Let 5 =X hence\/b—2 -1 = Vx2 —1. Therefore we can write z; = —x + Vx2—1 and z, =
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—x — Vx2 —1 and now the above becomes

1 ((—x + \/ﬂ)z - 1)2
(_x+m)2(_x+m)-(_x_ 1)
4 ((—x + \/ﬂ)z —1)

2 (—x + Va2 —1)2 Va2 -1

Residue =

2
But (—x + Va2 - 1) =x2+ (xz - 1) —2xVx2 =1 = 2x2=2xVx2 =1 -1 and the above becomes
2
q (2x2 —2xVx2-1-1 —1)

Residue = —
2 (2x2 —2xVa2 -1 —1) Va2 -1
(2x2 ~ Va2 -1 - 2)2
2 (sz —2xVx2 -1 - 1) Va2 -1
4 (x2 —xVaZ-1- 1)2
7(Zx2 ~1-2xVx2 —1) Va2 -1
((x2 - 1) - x\/aﬁ)2
2

(2x2 —1-2xVx2 - 1) Va2 -1
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Expanding gives
(2-1) + (x\/xz——l)2 ~2(x®-1)xVa2 -1
2x2 —1 - 2xVx2 —1) Va2 -1

(2=1) +22(2-1)-2(2-1)xv@ -1
(2x2 —1-2xVx2 - 1) Va2 -1

(x*-1) (x2 —1+22 —ZxM)

2x2 —1 - 2xVx2 —1) Va2 -1
(x*-1) (2x2 ~1- 2xm)

(2x2 —1 - 2xVx2 —1) Va2 -1

Residue = -2

=-2

=-2

-2

Dividing numerator and denominator by (x2 - 1)

Va2 -1 (2x2 —1-2xVx2 - 1)
(2x2 —1-2xVx? - 1)
=-2Vx2 -1

Since x = % then the above becomes

Residue = -2

az

Residue = -2 7 1

We found all residues. The sum is

Y Residue = 22 ~24/% _1
esidue = — =24/ — —
b NP
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From the above we see now that
1 ﬁl 272 - 74 -1
= 05—
2b1c z (zz+%az+1)

= % (27’(1' Z Residue)

dz

b\b b
2
Hle- P

Hence the final result is

T gin?
[0 o= 2 oV B

o a+bcosO TP
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2.4. HW 4
2.4.7 Key solution for HW 4

OJET.
] .
i 5 ! . N /
T flz)- — ik
5} { ¢ ’ AT )‘ = z
[ I— - B o /ﬂ 4 o
- ‘;- s ‘ ;j o ~ [
- -Z flz)dz e /’Emwh%%’?’
((X} f - P f B = R . & o j/’ pol s /
z - A0
C 2 LM’/
T’

= 24, Coslo)

< T ocusrz A z
(2 iaa)(z e AR

) (2
C 1 N_,_,,.,_f

(k)

C

4

/

;o’:ui;g}}i

P
oL ?;J:C’,f

C

. P .
(c) ( =zZde o ()
¢/ } o I = oudga L2 ( 2/
- Z ‘«é—

=R

[

hade O

H

\\\\\

e ey
{ /
/. /
- /I /

e
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f’v,rf
= N / ) > ;“ , 3
Thep a /:/g/}a The k«ﬁm:fﬁ{y mf'c’."ﬁm{ bormals T A (z),

{ | {\/{Z)dlz“
'l . P W
%) - 217 4 z <
C
E guatc mwjﬁ_ erm;,
/w (A f(z)d= E
/ 5 j:M: ) (z-7, )" \
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| - % nzo
g}ii/ﬁﬁw_’g;#; o] é@tcé Z = C}; o - %wf
[~
.,_jw : :;2 2,??»A: :;"‘z"+ é’“é‘;fg’yzlﬁa,”,i/
ZJL j -z n=o ;
> } “,,,{.. — “M;MN_A =
Z:?‘vf’“wuﬂaw &f‘gﬁv"f - z * [/ . ('34})]
v‘b h[ ) ) ‘} _ -

- ‘;(.-s)m?h(zd) - ) - alz-1) 2(z )
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- g
< v ip A4
/EENKW Ax } e’/%} gz 5> Ty 9
I N Sl SV i
i J j ,,,fi, f;“ ) {’j ’ P
, 1TA j+ 2
¥ -

Clon  The cosbrur 1 oifhor
The L pper ,Zm M sr byenr }M/;‘z
/o/zzm, wiTh « Semi-cirele
ot ,’\ézéz{(xf K —= 2.

1
C}l#wk (,L/J/o{jr Aa /76/ U.sSe f\é,/}(/u& Haafcm,

+ .33
/:f}u (1’_" ’“‘)jn
- e = o

PN G (R GO G G

(

B ant

}Qefﬁumf z“r?f{d/cze,/ 0'1*( Irzt
i - ...-{-a w"""‘;“” s 02@

e — = —
K0T e e )5 %) J -l
i, = | Lt 2@
* ['32‘5:)(32“ j)(zzwag) § oAt
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a+ b cose
v < - W“;f gf‘;’j
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T - ( L Z Z) de MMLMM . /G?' -2t zl) y
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2.51 HW 5 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 5 due Monday March 4. Show all work. Use of Mathematica,
MatLab, or similar software is not allowed.

1. (6 pts) Evaluate the following integral for ¢ > 0 and for ¢t < 0 when wy > 0

and € — 0T ,
[o%) ezwt dw
/—oo (w—i€)? —wd

2. (9 pts) Evaluate the following integrals

/OO Inxdx and /00 (Inz)? dx
n —
o 1422 o 14a?

In order to find the second one you need to consider the integral

/OO (Inz)3 dx |

14+ 22

2.5.2 Problem 1

Evaluate the following integral for f > 0 and for t < 0 when wy > 0 and € — 0*

00 eia)t

f —zdw
. 2
—o0 (w — i€)" = W}
Solution

Caset >0
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We select the upper half for contour C since when ¢ > 0 the integral on upper half will
vanish as will be shown below.

Cr

> > » Rz

Figure 2.9: Contour used for t > 0

Hence
00 eiwt eizt
oo (0 — i€)" — w3 ) (z - ie) - w?
R izt eizt
R—co R (z —ie)" — w} CR (z — i€)” — w3
=2mi Z Residue
izt
Therefore, if we can show that limg_,, L _e—zdz = 0, then the above implies that
R (z—ie) —w%
—————dw = 2mi Y, Residue 1)
oo (@ —i€)* — w3 )

Now we need to find the residues inside the contour shown. There is a pole when (v — i:s)2 =

w3 or w — i€ = +wy or @ = i€ + w). Hence there are two simple poles, they are

21:i€+a)0
22=i€—a)0

They are both in upper half, inside the contour (since wy > 0 and € is positive).
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ze:wo 1€ + wo

Figure 2.10: Locations of poles

Now we find the residues

ezzt

(z—21)(z-2p)

Residue (z7) = Zhnzl (z—27)
—Z1

eizt
= lim
271 (2 — 2p)
eit(i€+(u0)

B (l€ + a)o) - (Z€ - 0)0)
e—teeitwo

= (2)

2&)0

And
ez’zt

Residue (zy) = lim (z — z,)
2oz (z-21)(z-22)

eizt

= lim
z2-23 (2 — 27)

eit(ie —wg)

B (Z€ - (Uo) - (ie + C()())
e—tee—itwo

= o (3)
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Substituting (2,3) into (1) gives

00 eia)t ' e—teeita)o e—tee—itwo
f —————dw = 2mi +
o (@ — i€)” — W 2wg —2wy

— 27 e—te (eita)o _ e—itwo)
2(1)0
27 b eita)o _ e—ita)o

= —¢ _—
Wy -2i

itwg _ ,—itwyg
2n . (e e )

2i

= ——e *sin (twy)
Wo
eizt

R (z—ie)z—cug

dz=10. But

Now, to finish the solution, we must show that limp_, L

eizt
CR (z—i€)" —w

0
<
CR
2

(z —ie)* - W} CR

eizt
f PR I L
CR (z —i€)" — wj

max
izt

elZ

dz

(z —ie)* — wf

max
eizt

eizt T

(z- ie)2 - a)g 0

ezzt

99
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But
eth |ei2t|max
—ie)? — w2 T (z=z1) (z-2)| .
(z-ie) ~wgl —Mz-z) -2,
|eizt|
< max
G-z Iz-2)
|ezt(x+zy)
— max
-zl 1z-z)l
|eztx ty|
— max
G-zl Iz-2)l__
el
— max max
-z G-z
e
S max
G-zl Iz-z)l__
Now, since y > 0 (we are in the upper half) and also since ¢ > 0, then |e_ty | =1, which
max
occurs when y = 0. Hence the above becomes
ezt 1
(z —ie)* - w3 Cez—z)l Iz -22)l

max

By inverse triangle inequality |(z _Zl)lmin > |Z|2 + |21|2 =R%+ |€ + a)0| and |(z —zp)] . >

min
2
l2I” + |Zz|2 =R>+ |€2 + a)(2)| . The above becomes

izt

1

2R2 +2)e? + wd’

e

e \2 2 S
(z —i€)” — wp i

Substituting the above in (4) gives

eizt 1
lim | ————dz< lim Rn >
RowJeg (z—ie)’ —wf Koo | 2R2 +2)e? + o
. R
=7 lim

Ro®2R2 +2(e2 + a)0|

2
But 2 |€2 + a)gl is a finite value, say f so the above is
izt
lim —————dz <7t lim ———
R Jor (z - ie)? - wd R—e 2R2 + B

o .. . R
And it is clear now that the above limit goes to zero. In other words, limg_,, IR =
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1
. R__0_
limp_, —F =5 0.
244
R2

Hence The final solution is

00 eiwt 277
f dw = -t sin (fawy)

—00 (a) - iG)Z - C()g o)

Caset <0

Here, we must use the lower half for the contour in order for the half circle contour integral
to vanish.

’LG:WO 1€ + wo

Cr

Figure 2.11: Contour for t <0

In this case the sum of residues is zero (since both poles are in the upper half), then we see
right away that

00 ei(ui
f ﬁda)ZO t<0
o (W — 1€ — Wy

izt
But we must show that limg_,, LR (,e)—zzdz = 0 here as well for the above result to be
zZ—l€ —a)O
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valid. Similar to what was done earlier:

eizt
f —2de =
CR (z —i€)" — wj

But

izt

—ie) )2
(z—1ie) wgl

eizt
< f —zdz
; 2
CR (z — i€)” — w} i
eizt
B
< ) >
CR | (z — i€)” — wj .
eizt
=Rn|———————
(z - ie)? - w3 i
|eizt|
max
G-z -2
|eit(x+iy)
< max
@z -2
|eztx ty|
— max
@z -2
e e
— max max
@zl -z
|€‘ty|

<
S z—z)l L Iz 20)

min

Since y < 0 (we are now in lower half) and also since ¢ < 0, then |e‘ty |

when y = 0. Hence
ezt

But by inverse triangle inequality |(z — z1)|

—ie)? — w2
(z-ie)" —awgl

1
<
(z —z9)l_. 1(z—22)

min

2
21 + |Zz|2 =R>+ |€2 + a)(2)| . Hence the above becomes

ezzt

N =
(z —i€)” — w} i

1

2R2 +2)e? + wd’

<

The rest follows what was done in first part. Therefore

eizt
lim

R—eo J g (z — i€)* — w

max

2
.= |z|2+|z1|2 =R%+ |€2 + a)g| and |(z — zp)|

min

1
z < lim Rm 3
R—0co 2R2 +2 |€2 + a)(2]|
) R
=7 lim

R*w2R2+2k2+wd
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2
But 2 |<—:2 + wg| is finite number, say f so the above is
ezt
lim —————dz <m lim ——
R Jep (z - i€)? — w3 R0 2R? +
And it is clear now that the above limit goes to zero.

The final solution is

00 eiwt
f ————dw =0 t<0

oo (@ —i€)* — w3

2.5.3 Problem 2

12
;Jlrx};dx. In order to find the second one

Evaluate the following integrals fn fj:—;dx and £OO

. . 0 In” x
you need to consider the integral £ T2 dx

Solution

2.5.3.1 Part (a)

oo | . .
There are two ways to find L 2;2 dx. One uses a substitution method and requires no com-

1

00 Ip?
plex contour integration and the second method uses £ n—idx with complex integration
1+x

to find fw Inx dx.

1+x2

Method one

Let x = i Hencedx:—yl—zdy.WheanOHy:ooandwhenx:oo—>y:0. Hence the
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.  Inx
integral L —dx becomes
1+x

ln(l)
o] 0 -
nx dx:f y

0 1+x2

e 2

LT

Byt
-[2Y 31
- [

Since on the RHS y is arbitrary integration variable, we can rename it back to x. Hence the

above becomes
© Ilnx dxz—foo ln(x)dy
0

S—

o 1+x2 X2 +1
5 f‘x’ lnx
1+ xz
Therefore
0 Inx
£ 1+x2dx =0
Method two

In this method will use complex integration on £ show that £ o d = 0. The

following contour will be used.
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Principal branch
0<6<2r

>

branch cut
s
R

Figure 2.12: Contour for problem 2, showing location of poles at +i

In?
F i oo
= d d d d
szf(z) z+fcrof(z) z+j;lf(z) Z + ch(Z) z

=27 2 Residue
Hence

J;

F(2)dz+ fc f@de+ [ f)dz+ fc f @) dz =27i Y Residue (1)

2
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2,

\ .
There are two poles in ———. Residue at z; = i is
(z—1)(z+i)

In’z

Residue (Z) = £ILI} (Z - l) m

In’z

=1li
iz + )

B In?i
T2
(In () +iZ)
2i
NG
2i

2

TC
__4
2i

2
8i

And

Residue (i) = lim (z + ) In? z
e = T T 2 +))

(2)

. .3 . . 3 . . o .
But In(—i) = In(1)+ . Notice that the phase is 57 and not —% since we are using principle

branch defined as 0 < 6 < 27t. Therefore the above becomes

(ln (1) + ign)z

-2
9 2
-2
B 9772

T8

Residue (-i) =

Adding (2+3) and substituting in (1) gives
2
-7

8i

(3)

972
d d d dz = omi [ 2= + 25
sz(z) z+fcmf(z) z+fL1f(z) z+fCRf(z) . m( . Si)

d d d dz = 213
sz(z) z+fcr0f(z) z+fL1f(z) 2+ CRf(z) 2= 2m
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We will show at the end that lim, _, L f(z)dz = 0 and that limg_,, £ f(z)dz = 0. Given
) R

this, the above simplifies to only two integrals to evaluate

f()dz+ | f(z)dz =27 (3A)
L, Ly
We will now work on finding { f(z)dz. Let z = re’, hence dz = dre® and the integral
1
becomes
In?z o In? (ref ,
f n—de — f (—)Zdrele
L1+z 0 1+(rei€)
oo ;)2
_ e f (Inr+ ze.) ir
o 1+ r2e%e
e f“ In?r + 262 + 2ielnr
=e . r
0 1+ 7’28216
Now taking the limit as € — 0 the above becomes
In?z © n?y
z 2dz = n—zdr (4)
L 1+z 0 1+7

We will now work on finding £ f(z)dz. Let z = re/®™€) hence dz = dre®©) and the
2

integral becomes
2

In“z iz fo In® (rei(zn‘e))

i(2mt—€)

= dre
1, 1+22 o014 (rei(2n—e))2

dr

_ ien-o fo (In(r) +i(2n - )y’

1 + r2¢2i(2m—e)

o

_ pi2n-e) f 0 n? (n-Qn- e)2 +2i(2n—¢€)ln rd

- r
1 + 72¢2i(2m—€)

200N _ 2., .2 _ . _
_ jien-o) fﬂ In“ (7) (4n +€ 4ne) +2i(2m—€)In rd
1 + r202i2n—e)

r

[©e]

Taking the limit as € — 0 the above becomes

In?z s = g2 fo In? (r) - 472 + 47ti In r

= : r
1, 1+22 oo 1+ r2ein
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But €™ =1 and €™ = 1 then the above becomes

In®z 01n% () — 472 + 4milnr
f 2dz=f 2 dr
,1+z 0 1+r
0 In?r 0 472 0 Inr
- dr - [ Zgdr i [
001+rzr 001+r2r T o147

0012 © 4 2 ]
=— nrdr+f I dr—4nif nr dr
0 1+7‘2 0 1+1’2 0 1+7‘2
Using (4,5) in (3A) gives
© n? © 4r? © Inr © I’y
- n—rdr+f T dr—47zif - dr+f " = ond
0 1+1’2 0 1+7’2 0 1+1’2 0 1+7’2

Sl | |
4n2f dr—4m'f L D
0 0o 1

1+72 + 12
But fw ﬁd” = arctan (r)go = arctan (o0) — arctan (0) = %, hence the above becomes
472 (g) —4mi j:o 112 :zdr =273
—4Tti 000 11 rzdr =0

Which implies

Lm Ly 0

1412

Which is the same result obtained using method one above.

(5)

2.5.3.1.1 Appendix Here we will show thatlim, _, (z)dz = 0 and limg_,, (z)dz =
pp 0—0 .
0

0.

For lim, _,q L f(2)dz, let z = rye’®. Hence dz = ryie’?d0 and the integral becomes
0

e In? (roeie) o ' In? (roeie)
lim f —2,67’0161 d@ = lim lf —Z.Qrod@
1’0—>0 21—€ ]. + 7’0821 T0—>0 2m—€ 1 + 7’061
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As € — 0 the above becomes

In® (rge'®) -0 In* (rge®)
lim ————19ie'%d0 = lim zf ———"7,d0
r0—0 J o 1+ 15¢2i0 =0 Jo, 1+ rget?

lim

i| ——=—Lrydo
ro—0

on 1+ 7260
0 ln2 (Foeie)
1 + r3et?

In? (roeig)

1+ r3el?

max

IA

lim
To—’O 27

Todg

max

0
f Vode
21

max
In? (roeie)

1+ rde®

IA

lim
ro—0

27'(7’0 lim
T0—>0

max

|ln2 (roeie)

max

< 27rg lim .
ro—0 |1 + r2316|

min

|11’l o+ 16|

= 2117y lim ———_max
=0 [1 + reld|

min

max

|n? rg + (i6)° +2i6 In g

max

= 27rp lim
0 r9—0 1- 1’%

) ln2 o — 47'(21"0 + 47'(1’0 In )

=27 lim 5
r9—0 1- I

roIn?r 7 rolnr
20 20—4712 02+4T[O 20
1-7§ 1-7§ 1-7§

=27 lim
ro—0

L) h’l ro 1) In ro

T
— =0 and hmro—>0 —

But hmro_>0 = 0 and lim, 0 — - = 0 Hence all terms on the

RHS above become zero in the limit. Therefore

In? (roeig) 0
lim — 5 tieVd0 = lim >
7’0—>0 2m—e 1 + 7’06219 1’0—>0 ]. +Z

dz

Now we will do the same limg_,, £ f(2)dz, let z = Re!?. Hence dz = Rie'?d6 and the
R

integral becomes

lim
R—o0

21— In2 (Reie) Ricfd6 = lim if2n—e In? (Reie) RO

e 1+ R2e0 Rooo J. 14 R2%0
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As € — 0 the above becomes
‘ 2r-€ In? (Reie) 0 . In? (Reie)
ngrgo ¢ 1 + R2¢2i0 Rie™d6 = Rh—IEol o 1+ R2%e20
21 In? (Reie)
0 1+ R2€2i6
In? (Reie)
1+ R2e%9
In* (Re””)
1 + R2¢29
in? (Re?)
=21 lim R————1&%

R—eo |1 + R2e20|

min

RdO

< lim |i Rd6
R— o0

max

271
do

< lim
R—o0 0

max

27T
RdO

< lim
R—o0

. mR+i6f
S R TR
In*R - 62 +2i0InR

1-R2

~ RIn?R-47?R+4nRInR
<21 lim

R—o0 1—R2
RIn®R 42 R, RIR
— 4T Tt
1-R2 1-R2 " 1-R?

RIn®R . R . RInR
= 0 and limg_, = 0 and limg_, TR 0 Hence all terms on the

max

=27 lim R
R—>o0

=27 lim
R—>o0

But hmR_)oo

1-R? 1-R?
RHS above become zero in the limit. Therefore
2n-¢ In? (Re® , In?z
lim %Riezede = lim ——dz=0
R—oo J 1+R€l6 R—o0 CRl+Z2
=0

2.5.3.2 Part (b)

3 2
. 00 In° z . . 00 In“z .
We will now find ! o dz in order to determine l o dz. We will use the same contour

integration as part (a) above.

F(2)dz+ f F@dz+ [ F@ydz+ f f(2)dz = 2mi ¥ Residue (1)
Ly Cro Ly Cr

110



2.5. HW 5 CHAPTER 2. HWS

There are two poles in Residue at z; =i is

In” z
(z—i)(z+i) "

In’z

Residue (Z) = £1£)I} (Z - l) m

n’z

=1li
iz + i)
B i
24
(1 1) + 'E)3
n 12
2i

LT 3
(3)
2i
.7'(3
s
2i
-3
16 @

And
_ . ) In®z
Residue (1) = le_)rr_li (z+1) m
_ lim n®z
z——i (Z - Z)
In® (~i)
T i
But In(—i) = In(1)+ i%n. Notice that the phase is gn and not —g since we are using principle
branch defined as 0 < 0 < 27t. Therefore the above becomes

(m (1) + ign)3

Residue (i) =

- (3)
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Adding (2+3) and substituting in (1) gives

-3 3
sz(z)dz+f(:yof(z)dz+ Llf(z)dz+ f(z)dz—Zm( 17; +2Z—g)

d d d iz = B
hf@)ziﬁdﬂaz+j;ﬂ@z+1;f@)z i

We will show below that lim, LL f(z)dz = 0 and that limg_,, £ f(z)dz = 0, which
VO R

simplifies the above to

ﬁf@@+ﬁf@ﬂ=%ﬁi (3A)

We will now work on finding L f(z)dz. Let z = re’®, hence dz = dre’ and the integral
1

becomes

1 3 z 00 1I13 reie .
gy f —< )2 dre'
0

2 .
L1+z 1+ (reic)
e ° (nr+ ie)3
=e —_—
0 1+ 7’2821€
[ (ln2 r + i%€% + 2ieln r) (Inr + ie)
— elEf ' dr
0 1+ 7’26216
o (ln3 r+ i2€2 Inr + 2ie In? r) + (ie In? 7 + 33 + 2122 In r)
e f YT dr
0 1 + réee
Now taking the limit as € — 0 the above becomes
Inz o p3y
dz = —dr 4
L 1 + Z2 0 1 + 7’2 ( )

We will now work on finding £ f(z)dz. Let z = re’@™=€) hence dz = dre®™€) and the
2

integral becomes
3 3 (,.,i(2m—€)
f In° z iy = fO In (re )2 @)
Ly 1+22 01 4+ ( ei(ZTc—e))

pi2n-e) f 0 (In(r) +i@2m —€))’

1 + 72¢2i(2m—€)

dr

But lim,_,€/®"¢) = ¢2™ =1 and the above becomes

mézdzz‘f~(nlr—(zn €)’ +2i@2n—€)lnr)(In(r) +iQ2m - a)r

L, 1+2 1 + r2p2i2n—e)

dr

O r-lnr@r-e)’ +2iQn-e)ln’r+iQRn-e)ln’r-i(2n-e)’ + 22 2n -l Inr
- f 1+ r2e2i2n—e)

o
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Taking the limit as € — 0 the above becomes

dr

n 2 fO In®r — 42 Inr + 4miln? r + 2miln® r — i 7 — €)* 27 — €) + 242 (4n2 +e% - 47’((—:) Inr
Z =

1, 1+7 oo 1 + r2e4mi

fo 0’7 — 42 Inr +4niln®r + 2miln® 7 — z‘(4n2 +e2 —4ne) 27 —€) - 872 lnrd
= r
o 1+ 712

fO 27 —472Inr + 6miln®r—i (8n3 +2me? — 8n2€) - (47’(26 +e3— 47’[6‘2) - 8m%In rd
= r
o 1472

Taking the limit as € — 0 the above becomes

dr

n®z p fo In® (r) — 42 Inr + 6miln? r — 8ir® — 872 In 7
7 =
1, 1+2? oo 1472

fo In® (r) = 1272 In 7 + 67i In? r — 8ir®
- r

oo 1+7?

Hence the above becomes
2

In® 0 Ip° 0 1 0 1 0 q
- szz: - (r)dr—12 f dr+6mf - rzdr—Sin3f 5
I, 1+z o 1+ o1 +7 w147

2

] © 1 | < 1
=- nrdr+12n2f ld dr—6nif nrdr+8in3f
0o 1+72 0o 1+72 0o 1+72 0o 1+72

But £ ln—rdr = 0 from part (a) and £oo Lalr = z, hence the above becomes

In’z SR r
f zdz = - 67zzf dr + 4irt (5)
Ly 1+z 0 1+

Using (4,5) in (3A) gives

dr

dr

ff@ﬁ+ F@)dz = Dt
L, L 4

© Indr © In?r © Indr 13
(— dr—6rmi [ 2dr+4in4)+( =] = nki
0 0 1 O

1472 + 7 14172 4

13
—6mf o, dr + 4in* = Zn‘*i

13 4. ..
Zﬂ4l — 4int

fo —6711
137%i — 16im*
f dr =
0 1472 —247i
—374i
2471
3

8
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Which implies

2 3
00 In“ x e
£ 1+x2dx - ?

2.5.3.21 Appendix Here we will show thatlim, £ f(z)dz = 0and limg_,, L f(z)dz =
) R
0.

For 1imro—>0£ f(z)dz, let z = r0€'?. Hence dz = r4ie’?d0 and the integral becomes
0

e In’ (roe’@) N , In® (roeie)
lim f Trolelgde = lim Zf 71’0(18
7‘0—)0 27—€ 1 + 7"03216 70_’0 2m—€ 1 + 7’0616
As € — 0 the above becomes
In® (roe?) -0 In® (roet?)
lim Trozelgde = lim lf 77’0d9
1’0—)0 Yri—€ 1 + roezle 1’0—>0 27 1 + 1’0616
fO In® (roeie)
2

"
2 ig 10
x 1+r§ei®

max
0 [1n® (roele)
1+ r3ei®

In’ (roeia )

1+ rde®

IN

lim
r0—0Jon

1"0[19

0
f ron
2m

max
In® (roele)

1+ r%ei19

|l1r13 (roe’@)
< 2717’0 lim

=0 |1+ rdei®|

min

IA

lim
ro—0

= 27trg lim
1’0—>O

max

max

inro +i6]  |nrg+ it

max

< 27rp lim .
¥ om0 |1+ r5el®]

min
mroriof’

100 3,247 = 0, hence it follows that the RHS

But from part (a) we showed that 277 lim

min

above goes to zero. Therefore

3 .
' In (roelg) 0 _ n3 2
lim 557 Noie”d0 = lim Sdz
0=20Jo 1+ rge i0 rg—0 Cry 1+z
=0
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Now we will do the same limg_,, £ f(z)dz, let z = Rei?. Hence dz = Rie'?d6 and the
R

integral becomes
2n-¢ In° (Reia)

1+ Reco "0

lim
R—>0

2n-¢ In® (Reie) "
o
T iedo = Jm i |

As € — 0 the above becomes
lim o —1n3 (Reie) Rie'd0 = lim i 3 —mg (Reie)
R—oo J 1 + R2¢2i9 R—eo Jy 1 + R2¢2i0
2r In® (Re™)
o 1+ R2e20

€

Rd6

max

IR+ 67, |in (Re)
<27 lim R
=T 1-R2
In R+i0>

But from part (a) we showed that 27 limp_,, RTZHW = 0, hence it follows that the RHS

above goes to zero. Therefore

2n-¢ In° (Reie) Ind 2
010 _ 1 _
" 2ezl‘eRzez do = Rhn;o . " szz =0

=0

lim
R—o0 e
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2.5.4 Key solution for HW 5

A Al
@ T = e ol /
£ ”"”'—:—*_‘Z A= Wi
PdA VI[ ‘ —wo . -
(tw-i€) ) -
Piole, w =z Fw, +.4¢ /
W?”n t 2o Wwe  Can add J'fm/r-—Cl}‘c‘/c Ih 7L¢1c,
wpper Aal# ‘—f’/ﬂnt, c
T)wj’ Con‘ﬁv'éw{'/bw 1/ Zzero MERN *
-R T
a;  R2A,
wis Arﬁ‘/ ~m\€){‘ " “e, i
e R (e vic)t
I - 5 - - N 39277,; + €
C (- w, i)+, ~5€) 20, o
- AT 20 9] - 25 s (w,t)
Aw, 77
s eml - cire le In 7h,
Whenw 1T <o we Can add 4 .
arle netlo $ o
lpwcr Llﬁ/ﬁ'//ﬂﬂé, /\/0 /Do/é’/ r é J
‘fllr,\ 1‘ 0.
e
T = ~27 smlw +)6(4)

Wy
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2 e de - )
g"X’L ; § ;/r/
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C’D
“( “€ A (27~ ¢
§ fdc+§1£a/a ‘f [’/’”re) Ay /Al“e €) -
“ 2 ’ (”M)ZH S(2r-¢)
b (fe )*/
y (/nrwg)'*/r\ ) (Arﬂu(z?*—é)) An
6 rL*/ ) fL-r/
s A
Ar
= ~ 27)5 ./r\ra'[(‘ 4/772’ /;_;.
! rtt) -~ I
\/—Y“/
T
P
/5
.. Dorde
L’J Ve, Incte @ qdai L = 0
T h §\es g4h 5 r1¢/
)

W)”C’l‘ rs hp"“v’r;f new, No?tc 'ﬂb Cﬂ”cc/a'f/’h

JF he (jnr)L Ferm,

118




2.5. HW 5 CHAPTER 2. HWS

}26/:’47" The coleul ot j (Az) o/a jj/z

5‘3/&*;?‘/5#}9#&#}'9/& = 20 (‘)) )
C ©y L

- _Efﬁ[i,,
L{ .
” 77 ) N
Sjp(?’ *g 9”(Z :yzf/—:(//(%\X) ”/,Zt%r,]ﬁ',)/_
Xt
L, L, ]
b
g o) 2 a/x
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I
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2.6.1 HW 6 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 6 due Wednesday March 13. Show all work. Use of
Mathematica, MatLab, or similar software is not allowed.

1. (5 pts) The rate of nuclear reactions in a star is given by the formula
R=N [ dEEBe et
0

where F is energy, § = 1/kgT, « is a constant, and N is a normaliza-
tion. Evaluate this integral using the saddle point approximation when
(8a?)Y/3 > 1. This is the low temperature limit appropriate for conditions
in the star.

2. (5 pts) Assume that g(zg) = 0 for a < xy < b and that g~ () exists in
that range of x. Show that

b
| F@)g(a)dz =
3. (5 pts) Find the Fourier series that represents the periodic function
2 L
f(x)zl—i—; when —§§x§0

f(x):1—25 when nggg

4. (10 pts) Consider the Fourier series for the function f(f) = 1 when
0<6<mand f(0) = —1 when 7 < 0 < 27. Just to the right of = 0 the first
n terms in the series exhibit a local maximum of 1+4,,. For large n, d,, = 0.2.
Using computer software, make plots of the series for 4 representative values
of n of your choosing for 0 < # < /2 for illustration. What is the limit of
the overshoot ¢,, as n — 0o to 4 significant figures? Include printouts of the
programs you wrote to make the plots and to find the limit. This is called
the Gibbs phenomenon.
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2.6.2 Problem 1

1. (5 pts) The rate of nuclear reactions in a star is given by the formula
o _BE .—aE~1/2
R=N [ dEEc e
0

where F is energy, 8 = 1/kgT, a is a constant, and N is a normaliza-
tion. FEvaluate this integral using the saddle point approximation when
(Ba?)Y/3 > 1. This is the low temperature limit appropriate for conditions
in the star.

Figure 2.13: Problem statement

Solution

The first step in saddle point method is to write the integral as Loo e/ (E)dE. Hence

-1

00 (—5E—aE7+1nE)
R=N f e dE
0

N f efO4E (A)
0

Where
f(E)= —ﬁE—oin71 +InE 1)

The next step is to determine where f (E) is maximum. Therefore we need to solve f’' (E) = 0
in order to determine E(, where f (Ej) is maximum.

We need to make this dimensionless. Multiplying both sides of the above by a? gives
1,2 o

~a?B+=a®E?7 + — =0

“p e E

Let E = xa?, then the above becomes

a s a7, @
—a?f+ =’ (xa?) ? + =0
p 2 ( ) (X(Xz)
g il oo (2)
P 2 3 x
X2
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Case 1 Ignoring the term % in (2) results in

x2
1
2
-a*f+-=0
B X
1
2
— =
=X
1
X=—
a’p
Using this value for x we check if this is larger than or smaller than the term we ignored
which is %
x2

[i]_lz 11 :(/32a)3

3 3
TGy B
azﬁ a_zﬁ aﬁz

Since (azﬁ)% > 1, then @?B > 1 and hence x = — is much smaller than (52a)3 So our
> - a2ﬁ '

NI

. . . 1 . 1
choice of ignoring — was wrong. Hence we need to ignore the term " from (2)
x2

. 1 .
Case 2 Ignoring the term - results in

., 11
- ﬁ + E_E =0
x2
s 2
=2x2a°f +1
f =0
2x2
3
-2x2a?f+1=0
3 -1
2 =
T a2
Solving gives
2
1 \3
o (20@5)
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2.6. HW 6
But E = xa*, and from the above we the energy Ey which makes f (E) maximum as
2
1 \3
Eg=a?|=—=
o=z
4
a’3
=72 2
2383
2
a3
=72 2
25[33
Hence
2
a \3
= ()

Now that we found which value of E makes f (E) maximum, we can expand f (E) in Taylor
144 (E )
FEo)+ /(B B~ E) + LA (B~ B + HOT

series around E

f(E)=
But f’ (Ep) = 0 then the above becomes, after ignoring H.O.T

f(E):f(Eo)+f (E ")(E Eo)®

(3)

-3

Since f'(E) = - + aE 2 + < ! then
3 2
f (Bg) = -k - Eq?

-5
Since E02 > Eaz the above becomes
-5

3 =5
fl/ (EO) — _Za{EOZ
(4)

Equation (A) now becomes
R=N f o/ EVE

_Nf ef(Eo
= Nef(EO) foo eﬁ(E_EO)ZdE
0
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We would like to write the above as £o° e gy = \/g Therefore, assuming u = E — E,

hence Z—Z = 1. When E = 0 then u = —E; and when E = oo then u = co. Hence the above
becomes

o0 f"(E )
R = Nef(EO)f e - “ 1
-Eg
3 p2

o 2P 2
= Nef(EO)f e 4E0u du
-E

Since Ej is positive, then contribution from lower limit # = —Ej to the value of the integral
is Negligible. We can then let lower limit go to —co without affecting the overall result of the
integral. The above becomes

00 _éﬁuz
R:Nef(EO)f e ‘0 du

- . . 0 12 m . .
This is now in the form of Gaussian f e dx = \/j . Hence we can write the above, using
SN a

_3p
a_4E0
_ NpfE) | ©
R = Ne/'ko §ﬁ
4E,
_ NofEo) [0
3p2

-1
But f (Eg) from (1) is f (Eg) = -BEg — aEf + InE, hence the above becomes

1

2 |4nE
R = NEyePEoeEs” [0
0€ 3 ﬁz
7 4m
= NEge PEo-aEq’ ~
3aEy

2/3
But Ej = (%) , therefore the above becomes, after some more simplifications

2/3 23 ~2/6
R=N(g) eo|slg] ()
26 26 26

Simplifies to
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This was a hard problem. See key solution.

2.6.3 Problem 2

2. (5 pts) Assume that g(zy) = 0 for a < g < b and that ¢g'(z) exists in
that range of x. Show that

/abf(x)(s(g(aj))da; _ f (o)

Figure 2.14: Problem statement

Solution

Let u = g (x), hence

du
o 1
7 =8 ) (1)
But
— g—l (g (x))
=g (u)
Replacing x in (1) by the above results (so everything is in terms of u) gives

d
— =g (g7 W)

Now we take care of the limits of integration. When x = a then u = g(a) and when x = b
then 1 = g (b). Now the integral I becomes in terms of u the following

I= u 6u —_—
f Fle @)o (_1( ;
_ f g(b)é(u) [—f & (u))]du )

5@ g (g7 ()
Since we do not know the sign of g’ (x(), as it can be positive or negative, so we take
its absolute value in the above, so that the limits of integration do not switch. Hence (2)

becomes
@ [ flgtw) }
I= S) | ——%|d (3)
Jo 00 hg, )™

We are given that there is one point x; between g (a), and g (b) where g (xg) = 0 which is the
same as saying # = 0 at that point. Hence by applying the standard property of Dirac delta
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b
function, which says that f 0(0) ¢ (z)dz = ¢ (0) to equation (3) gives
a

_ flg )
[ (s )
But ¢! (0) = xy, therefore the above becomes

b
[ r@s(gw)ax

Which is the result required to show.

_ f (xo0)
|g’ (xo)l

2.6.4 Problem 3

2 L
f(:L’)zl—f—; when —§§x§0

2
f(x)zl—g when 0<zx <

N |t~

3. (5 pts) Find the Fourier series that represents the periodic function

Figure 2.15: Problem statement

Solution

A plot of the function to approximate is (using L = 1) for illustration

f(x)
1.0n

Figure 2.16: The function f(x) to find its Fourier series
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The function period is T = L. Hence the Fourier series is given by
ap — 27 27
f(x) ~ > + ,;::1 a, cos (Tnx) + b, cos (Tnx)
Since f (x) is an even function, then b,, = 0 and the above simplifies to
27
~ —_— + —_—
f(x) Za cos(Lnx)
Where

2 3
aozzf_éf(x)dx

We can calculate this integral, but it is easier to find 4y knowing that %0 represent the average
of the area under the function f (x).

. .~ (1L) L . ag, L .
We see right away that the area is 2 (EE) = 5. Hence, solving —L = - for ay gives ag = 1.

= %fi f(x) cos (2%7136) dx

Since f (x) is even and cos (zfnnx) is even, then the above simplifies to
4 2 2
T
= —fz f (x) cos (Tnx) dx
f X 27 P
=7 cos | 7~nx | dx
4 L L
= - fz coS (—nx) dx — — fz X COS (—nx) dx 1)
L 0
L
J

(= g s )|
cos| —nx|dx = =— 5 sin | —nx
L nm L

I 0
L (2L
T UM T2

= % sin (7'(7’1)

=0

Now we find 4,

But
L
2

L
And £2 X cos (zfnnx) dx is integrated by parts. Let u = x,dv = cos (z—nnx), hence du =1 and

L
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2nm

1 . 27
U= sin (Tnx). Therefore
L

L

fzxcos(z—nnx)dxzuv—fvdu
0 L
L
1 (27 2 1 (27
:% X sin Tnx —%ISIH Tnx dx
L U

L (27
=——fsm —nx|dx
2nm (L )

L
2n 2
L cos(fnx)
 2nm 2n
L
0
RTINS AN
=5, coS Ln
2
L
il Gy (cos(nm)—1)
2
L
(] -

Substituting these results in (1) gives
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2.6.5 Problem 4

4. (10 pts) Consider the Fourier series for the function f(#) = 1 when
0 <6 <mand f(0) = —1 when 7 < 6 < 2m. Just to the right of § = 0 the first
n terms in the series exhibit a local maximum of 1+4,,. For large n, d,, =~ 0.2.
Using computer software, make plots of the series for 4 representative values
of n of your choosing for 0 < § < m/2 for illustration. What is the limit of
the overshoot 6,, as n — oo to 4 significant figures? Include printouts of the
programs you wrote to make the plots and to find the limit. This is called
the Gibbs phenomenon.

Figure 2.17: Problem statement

Solution

A plot of the above function is

f(x)
1.0

0.5t

(e8]
N
o
N
[
N
-
N
X

27T

IS
NS

> |
> |
N
>

~05f

~1.0f

Figure 2.18: The function f(x) over one period

We first need to find the Fourier series of the function f (x). Since the function is odd, then
we only need to determine b,

f(x) ~ Y, b, sin (nx)
n=1
Where
1 27T .
b, = — ; f (x) sin (nx) dx
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Since f (x) is odd, and sin is odd, then the product is even, and the above simplifies to
2 7T
b, = = f F () sin () dx
TTJo

2 T

z f sin (1) dx
TTJo

2

( cosnx)”
I n J

== (cos nx)Z.Jz
nrt

-2
= — (cosnm—1)
nmn

-2 ;
= o (D" =1)

2 n
= 1=

When 7 is even, then b, = 0 and when 7 is odd then b,, = %, therefore
4 & 1
fx)~= Y, =sin(mw)
T p=135,- 1
Which can be written as

4y 1
f~- ; D) sin (211 — 1) x) 1)

Next, 4 plots were made to see the approximation for n =1, 5,10, 20.
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Using 1 terms Using 5 terms
o /—\ 10 /\v/\v/\
0.5 \ 0.5
. . . .
n D 3n P n 3n pa
2 2 2 2
-0.5 -0.5
-1.0 10 NN
VAV
Using 10 terms Using 20 terms
10/\/\/\/\/\ 10[\/\;;- AaAA
. VT . \VAA S an_an g AT
0.5 0.5
. . .
I n 2 I
2 2 2
-0.5 -0.5
-1.0 -1.0

Figure 2.19: Fourier series approximation for different 7 values

The source code used is

ClearAll[f, x, n];
flx /;0<x< 2Pi] := Piecewise[{{1, @< x<Pi}, {-1,Pi< x<2Pi}}];

4 1
fApprox[x_, nTerms_] := — Sum[ Sin[(2n-1) x], {n, 1, nTer'ms}];
Pi 2n-1

Grid[Partition[Table[Plot[{f[x], fApprox[x, n]}, {x, @, 2Pi},
PlotStyle -» {Blue, Red}, PlotLabel -» Row[ {"Using ", n, " terms"}],
ImageSize -» 320, Ticks » {Range[0@, 2Pi, Pi/ 2], Automatic}

1
{n, {1, 5, 10, 20}}], 2], Frame » All, Alignment -» Center, Spacings -» {1, 1}]

Figure 2.20: Source code used to generate the above plot

The partial sum of (1) is
N

4 1 )
fn(x) = ;Z}lmsm((zn—l)x) (2)

To determine the overshoot, we need to first find x; where the local maximum near x = 0 is.
This is an illustration, showing the Fourier series approximation to the right of x = 0. This

plot uses n = 100.
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local max

"n—_—

0.8
0.6
0.4
0.2H X0 Where max located
f e
0.05 0.10 0.15 0.20

Figure 2.21: Finding x; where maximum overshoot is located

Hence we need to determine f’ (x) and then solve for f’ (x) = 0 in order to find x,

4 N
)= — Z cos ((2n —=1) x)
n=1

_ 2sin(2Nx)

m sinx
Derivation that shows the above is included in the appendix of this problem. Therefore
solving% = (0 implies sin (2Nx) = 0 or 2Nx = 7t (since we want to be on the right side

of x = 0, we do not pick 0, but the next zero, this means 7 is first value). This implies that
local maximum to the right of x = 0 is located at

Tt

XO:E

Therefore we need to determine fy (xg) to calculate the overshoot due to the Gibbs effect
to the right of x = 0. From (2) and using xy now instead of x gives

i 4 X 1 ) i
fN(fv) - %; @n-1) Sm((zn_l)ﬁf)
), wOR) wR), w0
T 1 3 5 2N -1
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sin(mz)

But

= sinc (z), therefore we rewrite the above as

) o2 S0R) ), @b

2N T 37 57 2N-1)m
oL (3 (5 . {_@N-1)
_ 1 sin 2N 1 S1n T(ZN 1 S1n 'HZN 1 S | 7¢ ON
- 2N ol TN 3n— TN 5n— +m+ﬁ(2N—1)nL
2N 2N 2N 2N

1 1 1 3 1 5 1 2N -1
=4|—sinc| — |+ — sinc| — |+ — sinc| — | + -+ + — sinc| ———
2N 2N 2N 2N 2N 2N 2N 2N
Therefore

(Tc)_zl, 1 +1, 3+1 5 +1. 2N -1
fN N = Nsmc N Nsmc N Nsmc 2N Nsmc N

B P S R - SRR -1 DRy -\ e A1
= sinc N sinc N SInc N SInc N N

Therefore, if we consider a length of 1 and I%] is partition length, then the sum inside {}

above is a Riemann sum and the above becomes In the limit, as N — oo

Z\}1_{1100][]\,( ) 2f sinc (x) dx

Divide 0...1 into N partitions

dx

Z|=

one partition

Figure 2.22: Converting Riemman sum to an integral

Therefore

N—-ooo

lim fN( ) zf sm(nx)

1
The £ sm;zx) dx is known as Si. I could not solve it analytically. It has numerical value of
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0.5894898772. Therefore
lim f ( & ) 2 (0.5894898772)
im — | =2(0.
N-o’ N2N
=1.17897974
Since f (x) =1 between 0 and 7, then we see that the overshoot is the difference, which is
A}im Oy = 117897974 — 1
=0.1789

For 4 decimal places. The above result gives good agreement with the plot showing that
the overshoot is a little less than 0.2 when viewed on the computer screen. The only use
for computation used by the computer for this part of the problem was the evaluation of

1 sin
£ 2 (nx)dx. The code is

X

Integrate[Sin[Pix] / (Pix), {x, 0, 1}]
SinIntegral []

Tt

N[%, 16]
0.5894898722360836

Figure 2.23: Finding the limit

2.6.5.1 Appendix

Here we show the following result used in the above solution.

_ 2sin(2Nx)

4 N
— Y, cos((@2n-1)x) = _
T T sinx

Since cosz = Re (eiz)’ then cos ((2n — 1) x) = Re (ei(zn'l)x). Hence the above is the same as
4 & 4 N
— Z cos((2n-1)x) = — Re Z pl2n=1)x 1)
T n=1 Tt

n=1

But

N N
Z ei(2n—1)x — Z p2ixn—ix
n=1 n=1

N

— pix 2 p2ixn
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. . N 1-rN . . .
Using partial sum property >, _ 1" = r—— then we can write the above using r = e?* as
N _ ,2iNx
Z pl@n-Dx _ p-ix eZixl e
- 2ix
—~ 1-e
_ p2iNx
_ ez.xl e
1 — p2ix
1= eZiNx
= e—ix _ pix
e2iINx _1
= eix — p-ix
eZiNx -1
 2isin (x)
cos (2Nx) + isin(2Nx) — 1
2i sin (x)

Multiplying numerator and denominator by i gives

g: in-1)x _ 1€0s (2Nx) - sin(2Nx) —i
e =
n=1 —2sin (x)
(cos @Nx) ~1) | sin (2Nx)
=1
—2sinx 2 sin (x)
The real part of the above is —S;I;(i](\g), hence (1) becomes
4 5 4N
= Z cos(2n-1)x) = — Re Z pi2n=1)x
=1 Tt n=1
_ 4 (sin(2Nx)
~ 7w\ 2sin(x)
_ 25sin(2Nx)
Cmosin(x)

Which is the result was needed to show.
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2.6.6 Key solution for HW 6
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G 2 m/gfz QZ 2
) g =7~ 24 )
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2.71 HW 7 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 7 due Monday April 1. Show all work. Use of Mathematica,
MatLab, or similar software is not allowed.

1. (5 pts) Evaluate the integral

- 2
/ dg:/ dy d(sin )6 (z* — y?)
0 1

2. (5 pts) Consider the linear response formula

o(t) = / TGt - ) F()dt

—0o0

When the input is F'(t) = e""6(t) the output is z(t) = (1 —e *)e™*. What
is G(w)? What is the output if F'(t) = Fyd(t)?

3. (5 pts) By using the integral representation

_1
Y

2
Jo(x) /o cos(z cos 6) df

find the Laplace transform of J,.

4. (5 pts) A reasonably accurate description of the atomic contribution to
the dielectric function is

Ji

2 2 _ 9~
w5 — w? — 207w

€(w) :1—|—w12DZ

There are f; electrons per molecule with binding frequency w; and damp-
ing constant ~;. The oscillator strengths f; obey the sum rule >, f; = Z
which is the total number of electrons per molecule. Using the imaginary part
of € in the dispersion relation, show that the real part is correctly reproduced.

143



27. HW 7 CHAPTER 2. HWS

2.7.2 Problem 1

1. (5 pts) Evaluate the integral

7T 2
/ dg;/ dy 6(sin )6 (z* — y?)
0 1

Figure 2.24: Problem statement

Solution

e 2
I:fo (fl 6(sin(x))6(x2—y2)dy)dx

Since 0 (sin (x)) does not depend on y we can move it from the inner integral to the outside

integral
T 2
= i 2 —y?)dy|d
I j(; 6(s1n(x))(j; 6(x y) y) X (1)

Now we need to evaluate.
2
I = f 6(x2—y2)dy
1

This is in the form of jz f (y) 0 (g (y)) dy where now f (y) =land g (y) =x2— yz. Therefore

the roots of ¢ (y) are £x. We see that x has to be in the range of 1 --- 2, since that is where
y is defined over. Hence the root —x is outside this range and can not be used. So there is
only one root which is +x. Now, using the result obtained from last HW which says

2 5 L= f(yo)
Lf@(mmd—k%ﬂ

fly)
g (v)

Where 1y = x is the root and where g’ (y) = -2y and where f (y) = 1. Hence the above
becomes

Therefore integral I, becomes

IZ = hm
Y=Yo

h=—(0(-1)-6@-2)
2 |x|
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Where we added (0 (x —1) — 0 (x — 2)) to insure that x is 1 < x < 2. Using this result in (1)
gives (we do not need to write |x| any more since x > 0)

I:j:Zl—x(G(x—l)—6(x—2))(5(sin(x))dx

2 1 .
- fl 20 (sin (1) dx

Let f (x) = zl_x’ g (x) = sin (x), then the above in the form

_ f (xo)
I—ff(x (x)t;lx Z|g(X|

Where x; are the zero of g (x) = sin (x) inside the range x =1 --- 2. But there are no zeros of
sin (x) in this range. Therefore this leads to

I=0

[ (fzé(sin(x))é(xz—yz)dy)dx=0
0 1

In other words

2.7.3 Problem 2

2. (5 pts) Consider the linear response formula

() = / TGt — ) FEd
When the input is F(t) = e"*6(t) the output is z(t) = (1 —e *)e . What
is G(w)? What is the output if F'(t) = Fyd(t)?

Figure 2.25: Problem statement

Solution

2.7.3.1 Part (a)

Since
~ Fourier transform of output

G(w) = 1)

Fourier transform of input

Assuming causal system, then the output x (f) is x (f) = (1 - e_“t) e~ MO (). In other words,
we added unit step O (t) to indicate it also starts at t = 0, since the input starts at t = 0.
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Therefore the above definition becomes
[~ x(pyeitdt
Gw) == —% :
[ Ft)ye-iwtdt
f_oo (1 - e‘“t) e MO (t) e '@tdt
[T e Mo () emietdt
£m (1 _ e—at) e—/\te—ia)tdt
- l;oo e—/\te—iwtdt

But

f = (1 _ e—at) o Mpmiwt gy — f . o Memiwt gy _ f ~ ot p= At it gy

_ f " o) gp _ f " ot Ario) gy
0 0

o~ t(A+iw) A o ta+A+io) *
[— (A +iw) ]
-
(A +iw)

+
a+A+iw
0 0
00 1
+ —_
0 a+A+iw

[e—t(A+iw)] [e—t(a+/1+iw)]oo

0

T (A +iw)
With the assumptionﬂ that A > 0, > 0, then the above simplifies to

a+A+iw 0

00 . -1 1
1= —at) ,—At —zmtdt — 0-1 - [0-1
.L (1-e)eie G VU e 0l

1 1
T (A tiw) (a+A+iw)
_(a+ A +iw) - (A +iw)

A +iw) (@ + A+ iw)
a

T A +iw)(atA+io)

f " At it gy — f " tio) gy
0 0

And

o tA+iw) 1%

- (A +iw) )
_ _1. [e—t(mm)]‘”
(A +iw) 0

-1 [ ot pmitw ]°° " 1 [e—t(a+A) pitw ]°°
0

(2)

(3)

2So that input does not blow up with time, and its follows that output also decays with time, hence a > 0
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Since we assumed that A > 0, then the above simplifies to

00 ) -1

—At —la)tdt — 0-1

fo ¢ A v 01
1

(A +iw) @)

Substituting (3,4) into (2) gives the transfer function
43

C(a)) _ (/l+ia))(¢i¢+A+ia))

(A+iw)

Therefore

G(w) = —

a+A+iw

2.7.3.2 Part (b)
If the input is F (t) = Fy0 (¢) then the output is

x(t) = f G (t—t')Fod (V') it
= F)G () (4A)
Hence we just need to find G (t) which is the inverse Fourier transform of G (w) we found
above.

1 00 o .
G=o [ ——ed
® 2m ooa+/\+ia)e @

a 00 eia)t
= — —d
27&[00 (@ +A)+iw @

To integrate the the above, we will use complex contour integration. Let w = z, hence the
above becomes

a 00 eizt
SO
® 2t J_o (@ + A) + iz z
izt
Therefore f(z) = (a+e/1)+iz' The pole is at iz = —(a¢+ A) or z = i(a + A). Since a + A > 0,

then the pole is in upper half plane. Lets find out where we will put the half circle, if it will

go on the upper half or lower half. Since numerator is ¢’ = el(XHy)t = ¢?e™¥" and therefore,
since t > 0, then we want to choose the upper half circle, since there y is positive, which
will cause the numerator to go to zero as R — oo. This implies there is one pole inside the
upper half plane, we all what we need to do is find the residue at zy =i (a + A).
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izt

f(2) = 5= The contribution from

Cr goes to zero as R
goes to oo

Rz

Figure 2.26: Contour integration used for finding inverse Fourier transform

Hence

a 00 ot N
(E) f_m mdz = (E) 27t Y, Residue 5)
But, since zy = i(a + A), then
Residue (zp) = lim (z - zp) f (2)
o eizt

= i i@+ A) —————
z—>il(rar}|-/\)(z ia+A) (@+A)+iz

= ( lim e* ) lim ————
z—i(a+A) z—i(a+d) (@ + A) + iz

Applying I’Hopitals gives

. 1
Residue (zg) = ( lim eZZt)( lim —,)
z—i(a+A) z—i(a+A) 1
=—i lim e*
z—i(a+A)
— _ie—(a+/1)t

Now that we found the residue, then from (5)

o0 izt
(%) f_ - mdz = (%)zni (~ie~t@+ )
= qe(a+Mt
We have found G (t)
G (t) = ae~(@+Mt £ 0
From (4A), the response is
x(t) = FoG (1)
= O(Foe_(“”‘)tg (t)
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2.7.4 Problem 3

3. (5 pts) By using the integral representation
1

T o

2w
Jo(7) /0 cos(x cos 6) df

find the Laplace transform of .J,.

Figure 2.27: Problem statement

Solution

Using

1 270
Jo (x) = —f cos (x cos 0) dO
21t Jy

Hence Laplace transform is

o(s) = fo " o () e

1 00 271
= — f (f cos (x cos 0) d@) e~ *dx
27'( 0 0

Changing order of integration

. 1 270 00

Jo(s) = — f (f cos (x cos 0) e_sxdx) do

2m 0 0
LetI = fw cos (x cos 0) e™**dx. This is solved by applying integration by parts twice
Let u = cos (xcos 0),dv = ™%, hence du = —cos O sin (xcos 0) ,v = —?. Therefore
I =[uv]y —f vdu
0

1 o 1 00
=3 [cos (x cos 0) 7] " —  cos 0 f e ¥ sin (x cos 0) dx
0

1 cos 0

f e %" sin (x cos 0) dx
0

=-- f e~ sin (x cos 0) dx
0

Integration by parts again, let sin (x cos 0) = u,du = cos 0 cos (xcos 0),dv = e™,v = -

149
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and the above becomes

1 cos6 o0
1=~ = 2 ol - f vdu)
0

S S

1 0 1 o 50 [
A B [sin (x cos O) e‘sx]O + €0 f cos (x cos 0) e‘sxdu)
S 5 S 0
1 cosOB( 1 cos 6
= - - ——[0] + I
s S s s
3 1 cosB [cos 81
T3 S s
1 20
1 cos2 I
S 5
Solving for I gives
cos? 0 1
I+ ——1I=-
s 15
I(l (30822 0 _ 1
5 5
(s + cos? 0 1
I|—— | =-
5
$% + cos
I(— =1
3 S
" 82+ cos20

Therefore
5

s2 + cos? (0)

f cos (x cos 0) e ¥dx = (2)
0

Substituting (2) in (1) gives

() = - f TS g
Jos 21 s2 + cos? (0)

Since the above is an even function, we can rewrite as
s

A 2 (2 S
Jos) = n L s2 + cos? (0) 46

The above can be solved using contour integration or using standard method of integration
using substitution which I think is simpler here.

Multiplying numerator and denominator of f, (s) above by sec? (0) gives
R 25 7 sec? (6)
= — ——————db
Jo ) T f(; s2sec? (0) +1

Let u = tan (6). When 6 = 0,u = 0 and when 6 = g,u = 0. Since du = dO sec? (0). Hence
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the above integral becomes, since sec? (0) = 1 + tan? (0) = 1 + u?

A 25 [ 1
Jos) = i .[(; s2sec? (0) + 1du

But sec? (6) =1 + tan® (0) = 1 + u? therefore the above becomes
1

" 25f°°
s) = — —  du
Jos) T Jo sz(1+u2)+1

2s [ 1
= —f du
T Jo (1 + 52) + s2u?
2s 1 1
=7, 2y,
(5—2) +u
2s [ 1
- E f 1452 du
()
1+s? . . 1 1 u
Let (5—2) = A, so the integral in the form f A+u2du =7 arctan (ﬁ)’ hence the above
becomes
i) 2s 1 . u
s) = — arctan
| =2 g
52 s2 /1

2 1 l (
= ———— |arctan

S o0
u
V1+s2T V1 + s? )L

3 2 1[71 O]
CVitseml2
B 1

1+ 52

2.7.41 Appendix

This part contains attempt made using contour integration. For reference and not for grad-
ing.

Solve

[OR (. —
§) = — _—
0 2nJy  $2 + cos? (6)
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z+271

2

. 1 d
b= d——5=

B 27 2 74771 2 iz
54 + 2

3 1§ 4s dz
=3
" 452+(z+1) =

Let z = /9, then dz = izd6, and cos (0) = , hence the above integral becomes

i4s z
=59 742
T 45272 4 (22 + 1)

Did not complete.

Alternative solution

Jo(x) = %fon cos (x cos ) dO

d . . .
Let cos O = u, hence £ = —sin 0. But cos? O+sin® 6 = 1, therefore sin® 6 = 1—cos? 6 = 1-u2.

Hence sin® = V1 —u2. When 0 = 0,u = 1 and when 0 = 7,u = -1, therefore the above

integral now can be written as

—1 _d
=1 onol

1 fl () du
= — COS \XUu
TTJd 4 \/1 _ uz

Since the integrand is even, then the above becomes
du

2 1
JM@=;LcwmnﬁT;

And the above is what will be used as starting point. I could not solve this using complex
contour integration, which is probably would have been easier if I knew how to do it, but
instead solved it using substitution as follows.

Changing the argument from x to a gives

2 1 d
]MM=;L€%WW :

1—u?
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u is arbitrary inside the integral so we can rename it back to x and the above becomes

2 1 d
Jo@ == fo cos (ax) x/1f—xz

Which is the same as (by renaming the argument again, since it better to use t with Laplace
by convention, just for notation sake)

Jo (at) = %j: cos (atx)

dx

V1 - x2

Now, the Laplace transform of ], (at) is

o6 = [ oty
:fooo (% fol cos (artx) \/flic_xz)e‘s’fdt
2 (! dx L
:;\[(; (fo cos (atx) \/1——952)8 tdt

Changing order of integration gives

. 2 1 0o B 1
Jo(s) = ;f(; (j; cos (atx)e tdt) \/1__xzdx

But l;oo cos (atx) e™!dt is the Laplace transform of cos(atx) which is from tables m

Hence the above simplifies to

- 2 s 1
== d
Jo ®) T fo $% + a?x? *

1—x2
25 1 1
= — dx
T Jy (32 + azxz) V1 — 2
3 2s a%
T 2aVa? + s2
1

VaZ+s?

But we did the Laplace transform of ] (at), which is the same as ] (ax) and to get Laplace
transform of ], (x), we just need to set @ =1 in the above result, which gives

fo (s) =

1+ 52
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2.7.5 Problem 4

4. (5 pts) A reasonably accurate description of the atomic contribution to
the dielectric function is

i

w? — 24w

e(w) = 1+w12pzw2
J

i~

There are f; electrons per molecule with binding frequency w; and damp-
ing constant 7;. The oscillator strengths f; obey the sum rule }°; f; = Z
which is the total number of electrons per molecule. Using the imaginary part
of e in the dispersion relation, show that the real part is correctly reproduced.

Figure 2.28: Problem statement

Solution

fi

— w? = 2iyjw

e(a)):1+a)§z 5
i @

It is enough to work with one term in the sum above and verify what is being asked on
that term. Then it will be valid for the sum. Hence we will use the following as the starting
relation

W, fj .
€(w)=1+—; 512‘ i=1,2,3,
Wi —w? = 2iyjw
2
a) .
1o 2 ®

2 _ )2) = 24v.
(a) w; ) 2iyw
It is assumed that  is much smaller than w. In the above w is the variable quantity and
wj, Wy, Vj are given parameters with known values for the problem
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Oscillator
' . Plazma strength per
Dilectric frequency electron

func;c\ion \\ /

W2 f;
E(CU):].—I_ ) P

2 .
W —w=—217v;w
J 7

applijd field l \

electron damping
(EM) binding per electron
frequency

frequency

Figure 2.29: Physical meaning of terms involved

The real and imaginary parts are found by multiplying numerator and denominator by
complex conjugate of denominator

a2 (@ —wf) + 2070
(@2 - @) - 2iyj) (w2 - wf) + 2ipj0)
wpfi(@® - @) + 200w f;
(w2 ) - (2iy0)
wpfi(@® - f) + 2y wif;

(a)2 - a)jz)z + 4)/]-261)2

€(w)=1-

I i (@-wf)  2iyeclf
= 2 2
(w2 - a)Jz) +4ytw? (a)z - w}z) +4ytw?
2 2_ 2
|y i (@?*-af) | l. 2yjwwpf
2 2
(a)z - cu]z) + 4y]2w2 (a)z - a)Jz) +4y2w?
Hence we see that
w2 fi(w? - w?
Re(e(w)) =1- il . ) j=1,2,3,- (1)
2 2
(a)2 - W ) +4yiw?
2viww?f;
Im (¢ (w)) = — Y@@yt j=1,2,3,- )

(a)7- — a)jz)z + 4y2w?

155



27. HW 7 CHAPTER 2. HWS

Now, the dispersion relations for the above are, as derived in class notes

Re (e (@) = 1 + % (P.V) f " de’ 3)
1 ® Re (e (@’
I (e @) =~ (P.V.) f_ %dw’ )

The question is asking to use (2) in (3) in order to obtain and verify (1).

Substituting (2) into (3) gives
Im(e(w’))

1~ 1 2w2yiw’ fi
Re(e(w)):l——f by J; o’
Moo @' —w ((a)’)z—wf) +47/2(a)’)2
2ywif; oo 1 ’
-1 29k “ ')
T oo (@’

-w N2 2 N2
(@) - w?) + 42 (@)
To find the poles in (5), it is easier to start from the original function
2
wp fi
2

w? = 2iyjw - W]

. -b 1 2iy; 1 C\2
The roots of the denominator are 71, = o E vaz —4ac = T] + 5\/(—21)/]') + 4a)j2 =

iy + % —4)/}?' + 46()]72 =1y £ | /cu]‘2 - )/}7'. Hence after multiplying by the complex conjugate

as we did above, we obtain the new term which is w? + 2iyiw - a)jz. This one has roots

poy = 2,1 (21' -)2+4w2——i-+ w? — 2. Therefore, w that the poles for th
34 = 2 x5 )/] ]— 7/]_ i )/]. ereiore, € see a epoeso e
[0)

_ [ 2.2
1 =1y +4Jwi =Y
a) —

—_— ,. 2 2
—_— .. 2 2
—_— .. 2 2

We now need to handle the term

in (5) in order to find all the poles. To do this, we

(w"-w)

use
1 1
— = +imd (w’ — w)
w-w-IA w-w
1 1

— = —ind(w’ —w
W -w+iIiA W -w ( )
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Where A is very small quantity. Adding the above two equations gives
1 1 2

— + — =
W -w-IiIAN v -w+iA W -w

1 1 1 1
W -w E(a)'—(a)+iA) +a)’—(a)—iA))
Where in the above final steps we let A" — 0 for n > 1 since A is very small. The above is
what we will use in (6). Hence (5) becomes

L vepfi 1 1 W
Refe(@) =1-—1 foo(a)’—(w+iA)+a)’—(a)—iA))((w’—rl)(a)’—rz)(a)’—f’g)(a)'—rzl)

:1_Vwﬁafmcw—«v—myuw—«u+M)( @’
21 J_o (@' = (@ +iA)) (@' = (w —iA)) \(0" = 11) (0" = 12) (" = 13) (" = 1g)
_qYenfi r (20’ - 20) ( o
2n J_o (@' = (0 +iA)) (@ = (@ —iA)) \(@’ = 17) (0" = 12) (@' = 73) (" = 1q)
Va);%fj ® (cu’)2 -ww’
=1 - d 4
: T j:oo (" =15) (" =76) (" = 11) (" = 12) (@ = 73) (@ —7y) “

(5A)

There are 6 poles in total

— 3 2 2
4] —l')/]'+1,0)]- —)/]

= jy. — 2 _ 42
=0 m Y Y]

— 7 / 2 2
- _q / 2 2
's = w + iA
Te = @W — iA

Three of the above poles are in lower half plane, and three are in the upper half plane. Here
is a diagram which shows the location of the poles. Recalling that A is small quantity.
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3(s)
(] A T
° °
rs = w + 1A
°
> R(s)
°
Te = W — 1A
° °
T4 r3

Figure 2.30: Location of the 6 poles

We will use the following contour

Need to find residues

Let R — Cr

<

y
Y
v
B

=

Figure 2.31: Countour used for the integral

The integrand which is a function of @’ is analytic except for the 3 poles in the upper half.
Let the integrand be g (w’), then using residue theorem gives

R
lim $g()dz= lim (P.V.) f g(@)dw’ + lim [ g@)dz
R—o R—o0 R R

= 27 Z Residue
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Hence
R
lim (P.V.) f g(@")dw’ =27 3 Residue— lim [ g(@)dz
R— o R R—00 Cr

Since the denominator in (5A) has higher powers of @’ than in the numerator (6" order vs.
2" order), then this shows that limg_, L g (z)dz — 0, and the above reduces to
R

(P.V)) f " ¢ do = 2mi Y Residue ®8)

Therefore we just need to find the three residues at rq,7,,75 in order to find the integral
above.

(a)’)2 -ww’

Residue(n) =l @1 G @ v @ (@~ @ —m @ ) @ 9 @ 1)

= lim (w) -ww’
Y o (@ = (@ +iA)) (@ = (w = i) (" = 12) (@’ 1'3)((7 74)

(i7"l + “)iz - ylz —(w+ iA)) (i;/l + “’iz - ylz —(w - iA)) (1}/ + \/ﬁ - rz) (zv] W r3) (IV/ + \/{;77 74)

12 ) ol )
(iy/ + W— (w + iA)) (iy/ + W— (w - iA)) (iyj + \/wj - 7// - (ty] \/m/ Vi ) (1)/] + \/m/z - ,_ - (—1)’]' \/u’] ~Yj )) (131 \/0’] - 7// ( ’V/ - W))
o+ o i) (i + o -2 - - i) i+ w2 =72 -y a2 = 72) ("7/‘ * \/“f Vi wivy = JoR =72 (i + JuF o+ i+ JoF 7]

Hence

(i;/j+1/a)j2—y]) —a)(z)/]+,/ 2)
(i;/]-+ w]»z—)/]z—(a)+iA)) (iyj+ cujz—y]2 zA))( 1/ ) 21)/] (217/]+2,/a) —)/])

9)

Residue (1) =

And

(w’)2 -ww’
(@’ = (w +iA)) (0" — (w —iA)) (@’ = 1r1) (@' —12) (W' —13) (W —14)

Residue(rp) = lim (0’ —1p)
(H/AVYZ

- lim ((u’)2 - ww’
w'—ry (@ = (@ +iA)) (@' = (0 = iA)) (@' = 11) (@ = 13) (@ = 14)

(iY/‘ ~Jor - -+ iA)) (iVj -yJof —7F -~ iA)) (iy; - \wF =i - 11) (’V/ -\wF =i - 13) (W; -y -7~ r4)
IR )(J( Ao~ - e ) by - (= V)
N B o R e e e | oo e

Hence
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(i)/j - . /a)/z - y]z —(w+ iA)) (i)/i -\ /a)]z - yjz —(w - iA)) (—21 /a)]Z - yjz) (21')/]- -2, /a)]z - )/12) (Zi)/j)

(10)

Residue (ry) =

And finally

(a)’)2 -ww’
@ =1 @ =10 @ =~ @ = 12) @ = 15) @ = 1)

(a)’)2 -ww’

Residue (r5) = lim (@’ —75)
w'—r5

= @ @~ @ —r) @ — 1)@ — 1

(w +iA) - @ (w +iA)
(@ +in = (w; = iA)) (@ + iD= 11) (@ + iD= 1) (@ + iD= 13) (@ + iA = 1)

B w? — A% + 2iwA - w? - iAw

) (2iA) (w +iA - (iy]- +\Jw? - yjz)) (cu +iA - (i)/]- - Jwi - )/]2)) (a) +iA - (—iyj +Jw? - ylz)) (a) +iA - (—i;/]- - ﬁ

iwA — A?
(2iA)(a)+iA—iyj— ,/w]-z—yz)(a)+iA—i)/j+ ,/a)jz—;/jz)(w+iA+i)/]-— ‘/a)]-z—y]z)(cu+iA+i)/j+ ‘/a)jz—y})

(11)

We found all residues for I. Hence
f°° (a)’)2 -waw’
—oo (@ =15) (W = 1) (@ —11) (@ = 17) (W = 73) (W —14)
Where )} Residue is given by adding (9,10,11) giving

dow’ = 2mi 2 Residue

2 Residue =
(iyj +Jof =7 = (0 + iA)) (iyj + Jof =77 (0 - iA)) (21 Jwf ~ ;/]2) (21')/]-) (21';/]- + 2w - yjz)
2
(1= ) o (1,2 )
+
(i)/]- ~Jol = yi-(w+ z'A)) (i)/j ~-Joi—vi (- z'A)) (—21 |wf ~ )/]2) (Ziyj -2\Jwf - yjz) (21')/]-)
. iwA - N?

(ZiA)(a) +iA—i)/j—,/a)j2—y]2)(a) +iA—iyj+,/a)jz—yjz)(a) +iA+i7/j—1/a)]-2—y]-2)(a) +iA+i)/j+,/w]2—)/]2)
Therefore (5A) becomes

Re(e (@) =1

2
a) .
Y@pf; (27ti) Z Residue
Tt

160



27. HW 7 CHAPTER 2. HWS

To make some progress, I had to simplify the )} Residue by assuming y is very small

compared to w; and hence terms such as a)j2 - )/].2 — w;. Using this gives

(i + w')z - iy + w)

Residue =
& s (i + wj = (@ +i0)) (iy) + @) - ( = D)) (2wy) (20;) (24y; + 20)
+ (i - a’) w (iy; - w)
(17 = @y = (@ + i) (i) = @) = (@ = i8)) (=20) (21 - 20) (2i;)

s iwA - A
(2iA)(w+iA iyj - )(a)+1A 1yj+a)]~)(cu+zA+1y] )(a)+1A+zy]+a))

Or
—7/]2 + w-2 +2iyjw; - wiyj - ww;
(cuz - 2iwy; - 2ww; = y] + 2iyjw; + ;] )(817/] . 8)/] )
—y] + a) = 2iyjw; — iwy; + Ww;
(wz —2iwy; + 20w - 7/ = 2iyjw; + w; ) (8)/] i+ 8iyjw; )
. iwA - N
(2iA)(a)+iA iyj— )(a)+1A 7/]+a)j)(a)+1A+1y] )(a)+zA+1y]+a))

Z Residue =

Expanding the denominator in 3rd term above, lots of terms cancel since they contain higher
powers of A. Removing all terms that contain A? or higher gives

Z Residue =

(a)Z—Ziwy] 20w; - y] + 2iyjw; + @ )(81)/] ; —8)/] )
—7/] +a) - 2iyjw; - 0y + Ww;
( - 2iwy; + 20w; - y] 2iy; wj + W] )(87/] wj + 8iyjw ])
+2iA4 Ar242 — A zzaz)A A~ 2
w* +4iAw*y; - didw i + 2iAy; +41Ay]a) +21Aa)

+

Removing terms that contain only )/]2 since y; is small gives
2 . .
wj +2lyjwj — wiy; - Ww;

(a)2 - Ziwy] 2w; + 2iyjw; + ©; )(81)/] - 8)/] )

- 217/] i~ la))/] + a)a)]

( 21a)7/] + 2a)a) - 2iyjw; + w; ) (87/]  + 8iyjw; )
N wA
20w + 4Aw2y? — AAw?w] + 20y} + 4AyFw? + 20w}

E Residue =

+
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Canceling all terms with Ay]z, A)/;L in them, since both are small gives

a) +2iyjw; — wiy; - Ww;
2 Residue = .
(a)z —210)7/] 2ww; + 2iyjwj + W] )(81)/] ? - 8)/] )
- 2iyjw; - iwy; + Ww;
+

( - 2iwy; + 2a)a) - 2iyjw; + w; ) (8)/] i+ 8iyjw ; )
N wA
20wt + 4A0?yF ~ AAw?w} + 200}

Canceling A in last term gives

a) +2iyjw; — wiy; - Ww;
2 Residue = .
(a)z —Zza))/] 2ww; + 2iyjwj + W] )(81)/] 7= 8)/] )
- 2iyjw; - iwy; + Ww;
+

( 210))/] + Zwa) 21)/] i+ w; ) (8)/] 4+ 81)/] ; )
@

4 292 _ 4,)2,)2 4
20% +dwy; — 4w w] + 2w

Expanding
—8w?ytw; + Biw?yw? + 161@7/] + B2wyw? —16iwyjw? — 16y w? - 24ytw? + 8iyjw}

2 Residue =

- 2iyjw; - za))/]- +ww;

8a) ;/] w; + 8iw? Vjw; —1610)7/] +32a)y a) +16iwyw; —161)/3a)2 +247/]a) +817/] ;
w

4 292 _ 42?2 4
20% + 4w%y; — 4w W] + 2w);

Removing terms with )/]3 and higher, since y is small gives

w; +21y] i a)zy]

Z Residue = ]
—8w? y] + 8iw? y] +32a);/ 161a);/] ; —24)/]a) +81)/] ;
- 217/] i~ la))/] + a)a)]
8a) y] w; + 8iw? y]a) +32w7/ a) +16za)7/]a) +24)/ a) +817/] j
)
4 24,2 _ 2,2 4
20% + 4wy — 4w Wi + 20;
Or
This term needs to be simplified. Error somewhere
2iw?y? + ia)za)-z +2wyw? - 6iy?w? — iw?
Z Residue = — ( i Vi%s Vi) J ) + w

4y; (a)z - a)Jz) (—cuz)/]2 w2w? + 4iwyjw? + 9yt a) + wj ) ) (wz _ a)jz)z +4)30?
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Hence the result becomes
2
a) .
Re(e(w)) =1- y—ljfj (271) Z Residue
T
The above should come out to be as shown in (1) which is
(@-o?)

Re (€ (@) =1 - w2f; /

2
2 _ 2) 2.2
w* - w?) +4yiw

I was not able to fully simplify the first term in )] Residue above, I seem to have made an
error somewhere and not able to find it now, but the second terms looks OK. All complex i
terms should cancel out since the result must be real.
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2.7.6 Key solution for HW 7
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2.81 HW 8 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 8 due Monday April 8. Show all work. Use of Mathematica,
MatLab, or similar software is not allowed.

1. (10 pts) Prove the following relations.

(AB)Y = BTAT
(AB)T = BTAT
Tr(AB) Tr(BA)
det AT = detA
det(AB) = det(A) - det(B)

For the last one you may assume that A and B are diagonal.

2. (7 pts) Find the eigenvalues and eigenvectors of the matrix

5 \/3 3
2 2 4

37 T
2 3 18
3 /1 13
4 18 6

3. (5 pts) Let U be a unitary matrix and let 27 and x5 be two eigenvectors
of U with eigenvalues A; and Ay, respectively. Show that |[\| = || = 1.
Also show that if A\; # Ay then xIxQ =0.

4. (3 pts) Calculate the determinant of the sparse matrix (sparse means that
most of the entries are zero)

0 — 0 0 0
00 00
0 03 00
0 00 1 2
0 00 2 1
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2.8.2 Problem 1

1. (10 pts) Prove the following relations.

(AB)Y' = BTA!
(AB)T BTAT
Tr(AB) Tr(BA)
det AT = detA
det(AB) = det(A) - det(B)

For the last one you may assume that A and B are diagonal.

Figure 2.32: Problem statement

2821 part1 (AB)' = BTAT

Let A be an n,m matrix and B be an m,p matrix. Hence AB = C is an n,p matrix. By
definition of matrix product which is rows of A multiply columns of B then the ij element

of Cis
m
cij = Y, awby
k=1
Then (AB)T = CT. Hence from above, elements of C are given by
m
ci = Y, aby 1)
k=1
Now let BTAT = Q. Where now BT is order p x m and AT is order m x n, hence Q is p X n.

gii = 2, (bx)" (akj)T
k=1

m
= E bkiﬂjk
k=1

But Y} by;a; means to multiply column i of B by row j in A, which is the same as multiplying
row j of A by column i of B. Hence we can change the order of multiplication above as

m
g = Y, aibe (2)
k=1

Comparing (1) and (2) shows they are the same. Hence
CT=0Q
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(AB)" = BTAT

2.8.2.2 Part2 (AB)' = BtAt

By definition A" = (AT)*. Which means we take the transpose of A and then apply complex
conjugate to its entries. Hence the solution follows the above, but we just have to apply
complex conjugate at the end of each operation

Let A be an n X m matrix and B be m X p matrix. Hence AB = C which is 7 X p matrix. By
definition of matrix product which is row of A multiplies columns of B then the ij element

of Cis
m
cij = Y, awby
k=1

Then (AB);.;. = (Cg)* = c}fl-. Hence from above

m

=2, (ajb:)
k=1
But complex conjugate of product is same as product of complex conjugates, hence the
above is same as

m
¢ = D @by, (1)
k=1

Now let BPAT = Q. Then

m

3= 2, (k) (af)

k=1
m
_ * %
= E Ditti
k=1

But kazl b};ia}-‘k means to multiply complex conjugate of column i of B by complex conjugate
of row j in A, which is the same as multiplying complex conjugate complex of row j of A by
complex conjugate of column i of B. Hence the above can be written as

m
g = D Tybi; (2)
k=1
Comparing (1) and (2) shows they are the same. Hence
() =@
Or
(AB)" = BtA'
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2.8.2.3 Part 3 Tr(AB) =Tr(BA)

The trace Tt of a matrix is the sum of elements on the diagonal matrix (and this applies
only to square matrices). Let A be n X m And B be an m X n matrix. Hence AB is n X n
matrix and BA is m X m matrix.

2.8.2.4 Part 4 det (AT) = det A

Proof by induction. Let base be n = 1. Hence Ayy;. It is clear that det (A) = det (AT) in this

case. We could also have selected base case to be n = 2. Any base case will work in proof
by induction.

We now assume it is true for the n — 1 case. i.e. det (A(n_l)x(n_l)) = det (A(Tn_l)x(n_l)) is
assumed to be true. This is called the induction hypothesis step.

We need now to show it is true for the case of 1, i.e. we need to show that det (A,y,) =
det (AZXW). Let

a;p 4y o 4y
apy Ay -+ dyy
Anxn = . .
Ayl App 0 Oy
Therefore
O W /7 |
a a oo a
T _|%2 42 n2
AI’[X?’I - .
My Oy Oyy

Now we take det (A) and expand using cofactors along the first row which gives
det (A) = ary det (Aqy) — ap det (Arp) + -+ + (<1)"* ay, det (Ay,,) (1)

Where A;; in the above means the matrix of dimensions (n—1,n-1) taken from A,, by

removing the i row and the j column. Now we do the same for AT above, but instead of
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expanding using first row, we expend using first column of AT since we can pick any row or
any column to expand around in order find the determinant. This gives

det (AT) = ay; det (AT)11 — ay, det (AT)21 o+ (=1)" ay, det (AT) (2)

nl

For (1) to be the same as (2) we need to show that det (A7) = det (AT)H and det (Ayp) =
det (AT)Zl and all the way to det (Aq,,) = det (AT) v But this is true by assumption. Since
n

we assumed that det (A(n_l)x(n_l)) = det (A(Tn_l)x(n_l)). In other words, by the induction

hypothesis det (Aij) = det (AT)” since both are (n —1) X (n — 1) order. Hence (1) is the same
Jt

as (2). This completes the proof.

2.8.2.5 Part 5 det (AB) = det (A) det (B)

Since the matrices are diagonal they must be square. And since product AB is defined, then
they must both be same dimension, say n X n.

Since A, B are diagonal, then
n

det (A) = apaz - ay, = [ Jau

n
det (B) = by1byy -+ by, = Hbff
i

Now since A, B are diagonals, then the product is diagonal. Using definition of a row from
A multiplies a column in B, we get

aq 0 0 0 b11 0 0 0 a11b11 0 0 0

0 azz 0 0 0 bzz O 0 _ 0 6122[?22 O 0
0o 0 - oflo o - ofl | o 0 -~ 0
0 0 0 a,JL0 0 0 by, 0 0 0 ayb,,

Then we see that

det (AB) = (ay1b11) (axnbyy) -+ (a,,byy)
= (@11092 **+ Ayy) (b11b2p *+* byyy)

n n
= [La:] 19
i i

= det (A) det (B)
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2.8.3 Problem 2

2. (7 pts) Find the eigenvalues and eigenvectors of the matrix

5 \/3 \/3

2 2 4

\/5 7 /1
2 3 18

\/3 1 13
4 18 6

Figure 2.33: Problem statement

We first need to find the eigenvalues A by solving
det(A-AI) =0

The above gives a polynomial of order 3.

5 3 3
2 Nz Vi| (A 00
EZ\/I—OAO:O
2 3 18
3 1 13 0 0 A
i N5 %
5 3 3
2 A N2 :
3 7 1 | _
: 37 A AR |70
3 1 13
zx/%z”
7 1 3 1 3 7
5 04 Nu|l BNz vwm |, BNz 5T,
2 1 B_, 2\ﬁ§_A 4| 2 1
18 6 4 6 4 18
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-2 8- - )
(-8 oo

2
5 , 9. 90 9
(E_A)(A"A 18) gt

A3 +712-141+8=0
A3 —7A2 +141 -8 =0

0

0

3_p)2
By inspection we see that A = 2 is a root. Then by long division % A% —5)1 +4.
Therefore the above polynomial can be written as

(A2-51+4)(A-2) =
A-1)(A-4)(A-2)=

Hence the eigenvalues are

/\1:1
/\2:2
Ay =4

For each eigenvalue there is one corresponding eigenvector (unless it is degenerate). The
eigenvectors are found by solving the following

A’Ul' = /\ivi
(A - AZI) 0; = 0
5 3 3
2 N Nz NL () (0
3 7 1
2 Z_ . — 0 =10
2 3 A 18 ||
3 1 1B_ 5|\ 0
4 18 6 i !
For /\1 =1
5_q 3 3
2 2 4 v 0
3 7 1
2 L_ il - 1=10
; 371 18 |72
3 1 13 U3 0
4 18 6

UZZO
O3 0

—_—
NIl W
W
NI W
gl»—\»hlw
Q
=
()

B WIN T W
—_

9

[N N
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Let v; =1 and the above becomes

3 N 4 N 1 0
— 4+ -0 —a =
2 3% V187’
From the first equation above
S B
o 2 e
i B
2

Substituting in the second equation gives

3 : \fv 1
R i) Y
\£+3 5| TV~

2
1 1

—E\/Evg - 8\6\/5 =0
123

U3 = —=5
5 2
2
"6
_ V3
T3
1
V3
Hence from (4)
32 (_L)
2 s\ 3

180
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1

V2
Therefore the eigenvector associated with A; = 1is |~

V3
_L

V3

becomes

We now do the same for the second eigenvalue.

For /12 =2

5 3 3
> 9 > >
2 2 1 (v
3 7 1
2 L - ol =
2 3 2 18 || 72
3 T 13 Vs
n 5 & 2
1 3 3
2 2 1 |(vq
31 1
bl - o, | =
2 3 18|72
3 T 1 [los
s V18 &

N1
+
ﬁ\
(]
N
+
—_
oo|’_‘ ﬁ\
(&
w
I
(@)

From the first equation above

181
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Substituting in the second equation gives

3 13 \fv 1
3N 1

\ng* 18"

[ w, '03——\/_\/54‘ —'03—0

3 1
0= §+E\/§\/§

This is not possible. So out choice of setting v; =1 does not work. Let us try to set v, =1

and repeat the process
f f (4] 0

% 1|=|0
2 3 18
3 1 1 [\vs 0

4 18 6
Again, we only need the first two equations. This results in

1 3 3
57)14'\/;4'\/;03:0
3 1 /1

\/;Ul-l-g-i' E’()g’:o

ViV
_ 2 473
= 1

From the first equation above

(4A)
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Substituting in the second equation gives

3 JE Vﬁv 1 [1

A5 \1Y3

FlEde) 1 T
4 1 3 18

2

3, 35,1, L,
2B TVET3 T Y18 T

1 3 3 1
AGRE LR AT

03(1\/5_5):§\5_1

6 2 2 3
351
vy =7 3
V23
R 3.3
Y NN EYEN - S I
Hence from (4A) v; = \/; \/:( ) = X2 \/; = 0. Therefore the eigenvector associated

N =

0
with A, =21is| 1 |[or by scaling it all by —L it becomes
V2
-V2
0
- 1
Uy = _E
1
We now do the same for the final eigenvalue
For /13 =4
5 3 3
24 N2 NI () (0
3 7 1 _
A e A

U3 0

01 0

1
18
3
2
5
3
[1 11 [\ 0
18 6
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Let v; =1 and the above becomes

3 \/E 3
2 2 4 (1 0
[1
3 —E — 1102 = 0
2 3 18

\/E 1 11 [lvs 0
4 18 6

We only need the first 2 equations. This results in
2 27\ 3%
\f - Jio
327 N187 "~

I\J

From the first equation above

T “)
Substituting in the second equation gives
3 5(3 \F v 1
2~ V3% _
\E G tyg =0
2
5 1 /1
g\/zvg, - 5‘/5\/5 + ﬁ% =0
1
\/503 - 5\/5\/5 =0

e
V2

O3 =

3 3
Hence from (4B) v, = 2 4(\f) 1\/_\/_ —

Therefore the eigenvector associated with
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Az =41is or by scaling it all by V3 it becomes

Sl =5l =

Therefore the final solution is

/\1:1
/\2:
/\3:4

And

2.8.4 Problem 3

3. (5 pts) Let U be a unitary matrix and let x; and z5 be two eigenvectors
of U with eigenvalues A\; and Ao, respectively. Show that |A\| = |[Ao] = 1.
Also show that if \; # Ay then xixz =0.

Figure 2.34: Problem statement

A unitary matrix U means U™! = U™. Let A, x be the eigenvalue and the associated eigen-
vector. We also assume that the eigenvalue is not zero. Hence

Ux = Ax 1)
Applying 1 operation (i.e. Transpose followed by complex conjugate) on the above gives
(Ux)" = (A0’
XUt =2t (2)
Multiplying (2) by (1) gives
TUTUx = xTAAx
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But U is unitary, hence UT = U™ and the above becomes after replacing A*A by AP
U Ux = AP (x*x)
x =P (x*x)

Hence IAI2 =1 or |A| =1 since this is a length, and so can not be negative. But since A is an
arbitrary eigenvalue, then any complex eigenvalue has absolute value of 1. Therefore

Al =14, =1

Now we consider the specific case when A; # A, but we still require that |[A1| =1 and [A,]| =1

which was shown in first part above. We also assume for generality that the eigenvalues are
not zero.

Given that
le = /\1X1 (1)
sz = /123(2 (2)
From (1) we obtain
t t
(Uxq)" = (A1x1)
AU =N (3)
Multiplying (3) by (2) gives
AU Ux, = xI454,5x,
U Ux, = (A14,) (xdx,)
xx, = (A1) (xx)
Since |A4] = |A5] =1 but Ay # A,, therefore (A’Mz) # 1. From the above this implies that
.l.
x1xp = 0.

2.8.5 Problem 4

4. (3 pts) Calculate the determinant of the sparse matrix (sparse means that
most of the entries are zero)

O OO = O
S O W o o
kO OO
— s, O O O

Figure 2.35: Problem statement
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0 -1 00O
i 0 00O
A=|0 0 3 0O
0 001
0 0 011

We want to expand using a row or column which has most zeros in it since this leads to lots
of cancellations and more efficient. Expanding using first row, then

i 000
0300
det (A) =0 + idet 1+0+0+0
0 01 i
00 i1
300
=ilidet|0 1 1
0 i1

~.

i(gdet(l, ]
11

130 -7))

=312 (1-2)
=-31+1)
= -6

To verify this, we will now do expansion along the second row. To get the sign of a,; we
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use (_1)2+1 =

Which is the same as the expansion using the first row. Verified OK.

—13 = —1. Hence

0
det (A) = —idet 0

188
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2.8.6 Key solution for HW 8

. T . , ‘
(D @) (/;g)‘.j - fA” B - ;(ET)U (/}r)ej - (gTAQJ,

f
,;a} CDM/’@»ewfof (A E)I =)

| , .
& ) - =4, g - ?Wa (#), - (54 ).,

Wg)f: g%/if}
. g A

[C) Tr (A B) = £ [A E)L) £ *3/}

- (B4). = T.(84)  |Tra8) =TrEY
J

W/”‘*l /JL sl

\
N
>
o~
To
-
>~
L
o
>
~

(d) det AT = JetA  ir < eqr/ frue

] ‘ - < Arue tir mxn.
PF0C€£/ G/ Ih/uo/d.q, A'f/amc /:LH y, f“ﬁ

Jb AT = E AL (U VA AL )
n+l " j:l
= g Af[ C~))‘+J a{;l"A’(JJ;) = p[¢+A

J= 5 s, b, ,
&1, 5 = ‘ 1] ‘a . Gll é}‘ -
= hl‘». ’ l; = éi “ /L}g = "
@) /4 ( ¢ ﬂ,,) ( ¢ én> ¢ a,, Lh

At AR = ’u:m b, = (TT ﬂ»}(ﬂ) s JtA et B

Py

Thea  br (h0) x (n+l)
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: ST 'ﬁtc /eém/Z
Fivd e elgen z/ae/’f/ é/ Jo/ *7 a’g

cquations  (T-A:I)xi =0, Th peslts are
| L L _L)
XI - (ﬂ‘/ {3-/ fé-“

w = (0 -7 [7)

pa
S ,..L)
v (&, 7
Dw/( Cf}))fcy, '/Lw Jc

T)’L’Je dee OP‘/,;"J7,9n¢‘

nprmn)v'cel ts one,
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2.8. HW 8
6 oere .ot T
1+ f 9 T
T ol Hfrw/%/‘w C’Dr’ju(jtﬁzc =) X (,/T: )KX
N ‘J ‘f
M owlHply ()(’Uf)((/k) = (2 X)(/U‘) )
. : A"('erj/\ =) /\/\;/
xT (VU)X
"
> [ =1
, * f ]
7 - oxt (U)X G ["‘:”"7(‘}“):0’ x')()))‘) |
X Xy, TN
i
X - Fy =4
}‘K ) X%XZ 5) [;;ﬂﬂr >' )’,l —/ or X’ )62
= ) 2 ] y 4\61&
A - e
[ YN 7L VI e A2
>¥) g ea,(é; 9,) IlL \ )()l :/ Tktn
T hen ) 2
6,-6, = 470 =) ),:/\2,
?
htegen
. - -
/Thuj i >, # )L Then Xl Xl “07
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i

0/‘0uﬂ'l ’77“, fé’c'd"!&/ Now

"er‘ P (;AELL 8%/0/2)4»[
. 0
0?1./ -x 0 0 O
(*D N p/tf% 00 2 0 ¢ s T4 ()/[%( )
’ e
0

/f‘TLCr”HVM‘n-]L = -6
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2.9.1 HW 9 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 9 due Monday April 15. Show all work. Use of Mathematica,
MatLab, or similar software is not allowed.

1. (5 pts) Calculate the metric in elliptic coordinates
a
r = §coshu cos
a . .
y = ismh,u sin
where a is a constant.
2. (5 pts) Show that in a general coordinate system ¢;,..;,, = g€+~ where
the covariant form is obtained by lowering the indices on the contravariant

form.

3. (5 pts) Compute all components of the affine connection in polar coordi-
nates.

4. (5 pts) Calculate the gradient, curl, divergence, and Laplacian in spherical
coordinates using tensor analysis.
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2.9.2 Problem 1

Problem Calculate the metric in elliptical coordinates

a
x = Ecoshycos@
a
y= Esinhpsin@
Solution

The coordinates in the Cartesian system are = x,% = y and the coordinates in the
other system (Elliptic) are x! = p,x?> = 6. The relation between these must be known and
invertible also, meaning C = C(x) and x = x (). This relation is given to use above as

a
= > cosh i cos 0
a
2= 5 sinh p sin 6
The first step is to determine the metric tensor g;; for the Polar coordinates. This is given by

BRI
8k = Ojj5 757

The above using Einstein summation notation.

aCtalt  9r? Ic?

811 = 51 gl * dxl dxl
_ acl &Cl .\ &C2 ac2

du du  Jdu Jdu

aCN\ (92\
%) (%)

2 (a
) + (E cosh i sin 9)

Il
—_
NS)
=

2

Il
—_—

=.

=

=
=

(@)

o

)]

()

sinh? {cos? 6 + cosh? 1 sin’ 6)

(cosh2 u = 1) cos? 6 + cosh? U (1 — cos? 9))

(
(

= — (cosh2 wcos? 0 — cos? 0 + cosh? U= cosh? 1 cos? 9)
(

cosh? 1 — cos? 8)
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And
aCtact 9 I3
8127 51952 * dxl dx?
_ ot ot N dC% A3
du 960 Jdu d6

( sinh u cos 6) (_E cosh y sin 6) (2 cosh u sin 6?) (2 sinh u cos 6)
0

The above is as expected since the coordinate system is orthogonal. And
SIS ISS
8217 532921 922 9l
_actag a2 ac
d0 du  dJ0 Ju

= (—g cosh u sin 8) (— sinh u cos 9) (E sinh u cos 8) ( cosh i sin 6)
=0

The above is as expected since the coordinate system is orthogonal. It is also because g;; is
symmetric and we already found that g1, = 0. And finally

ot alt 9?93

82 = 51292 - dx? dx?
_ acl 8cl acz acZ
=390 96 ' 90 96

FIASNEIAS
55

2
(_E cosh u sin 6) + (g sinh u cos 6)

2

a2
T cosh? U sin? 6 + sinh? L cos 6)
a

N

Z cosh? ( — cos? 9) + (cosh2 u = 1) cos? 6)
a

N

4
a

N

(
(
(cosh2 — cosh? i cos? 0 + cosh? i cos? 6 — cos 9)
(

=7 cosh? 1 — cos? 6)
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From the above we see that

gi = (811 812]

en g2
a® (cosh? 1 — cos? 0 0
T4 ( 0 cosh? Y= cos? 9)
That there are different ways to write the above, and they are all the same. For example, we
can write
3 a? (1 + sinh? y) - (1 — sin® 9) 0
8ij = 4 ( 0 (1 + sin? y) - (1 — sin? 9))
% (sinh? u+ sin @ 0
- 4 ( 0 sinh? u+ sin? 6)

Or we could use the double angle relations cos? 0 = % (1 + cos (20)) and cosh? p = % (1 + cosh (20))
to obtain

o ﬁ % (1 + cosh (20)) — % (1 + cos (20)) 0
8i =7 0 % (1 + cosh (20)) - % (1 + cos (20))
3 ﬁ cosh (260) — cos (26) 0
-8 0 cosh (260) — cos (20)

2.9.3 Problem 2

Problem Show that in a general coordinates system €;,...;,, = geil"'iN where the covariant
form is obtained by lowering the indices on the contravariant form.

Solution

In tensor analysis, contravariant components of a tensor uses upper indices and covariant
components uses lower indices. Given a tensor in contravariant form €' then the covariant
form €; is obtained using

€; = gij€
Where on the right side the sum is taken over j since it is the repeated index. This operation
is called index contracting.

Therefore extending the above to all indices in €;,...;,, results in

€irig--rin = 8irji8inip "+ Sinjn€ N (1)
But we know that, from page 123 in the Matrices notes, that the determinant of the metric
can be written using Levi-Civita tensor as

8= D 81582, Niy€ 12N 2)

iliZ"'iN
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Comparing (1) and (2) shows that
€123...N = 811'1821'2 ...gNiNeiliz...iN
— k€i1i2"'iN

Where k is constant, which in the case of €753..., this constant is g. Now need to show that
the constant is g for all cases of indices in €;;,...;, and not for the case €13...N-

Looking at the case of N = 2, and let us see what happens if we change the order of the
indices.

€iriy = 8111 8irj€
And

€ipiy = 8igjp8irj1 €7
But g;,/,8i,j, is the same as g;,;,¢; i, . So the ordering of indices does not change the constant
k. And since we found that this constant is ¢ from above, therefore we conclude that

€iyiyerviyy = SEV2IN (3)

2.9.4 Problem 3

Problem Compute all components of the affine connection in polar coordinates.
Solution

In polar coordinates x! = r,x?> = 0, the relation to the Cartesian coordinates is

x=rcos@
y=rsin0
Using

o1 ,(9 Igi ISk
1——gl’( gkl+ it ]) 1)

k2% \oxi  oxk 9x!
We know that in polar coordinates the metric tensor is 17 = g, =1, and g1 = g, = 0, and
921 = 8or =0, and g2 = ggp = 0 or in matrix form

1 0
8i =g 12

i _ 1 0
8= 0 712
Using (1), leti=r,j =r,k = r then
I‘;’T — 1 lr(agﬂ + agﬂ agrr)

Hence g is its inverse

B Zg ar ar o

The sum is now over /, which goes from r, 0 since these are the only coordinates. Hence
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the above becomes

ar ar ar

ar ar a0
(&gw I 5gw)

1
1“’7"” — _grr

> (&grr + &grr &grr) + %gGr(&gi’r + 8grr 8grr)

ar d0

=0 (2)
Using (1), leti=1r,j = 0,k = r then
ro_ 1glr(agrl + Igol ag@r)

:%(1)(o+0—0)+ 0)

or =9 ar or  oxl

The sum is now over /, which goes from r, 0 since these are the only coordinates. Hence
the above becomes

8y  I8or 98or\ 1 4. (980  ISe6 ISor
rGr‘zg (&r Tor "o )28 \Tar T Tar T a0

1 980 . 9ge0  98er
=;D0O+0-0)+ (0)(8r or 90

=0 (3)
Using (1), now leti =7v,j = 0,k = O then
r lglr(agel " &gel é)ggg)

00 =75 \ 90 T 90 o

The sum is now over /, which goes from r, 0 since these are the only coordinates. Hence
the above becomes

56 _ %gw(&ger + 8g9r 3 8g99) 4 ; Qr(&gﬁ’@ N 8g99 _ &geg)

20 20 ar 20 00 20
_1 98re g0 ISor
—5(1)(() <0>——) <0>( %0 - 0.)9)
1
=5 (=2r)
_ (4)

Using (1), now let i = r,j = r,k = 0. Hence we need to find I'};. But due to symmetry in
lower indices, then I';, = I'f,. which we found in (3) to be zero. Hence

0 = (5)
Using (1), now leti = 0,j =,k = r then

10 agrl &grl _ agrr
2g 90 " or  od

The sum is now over [, which goes from 7, 0 since these are the only coordinates. Hence

0
rrr -

198



29. HW 9 CHAPTER 2. HWS

the above becomes

1 0(98r  98r 98w\ 1 oo(980 , 980  IQm
g _ - r@ rr rr _ rr - 00 T _
=38 (ae+ar ar)+zg (99 or 90
1 (98 98w Igw) 1(1
5(0)(ae+ R ar)+z(2)(0+0 0
=0 (6)
Using (1), now let i = 0,j = 0,k = r then
¥4 :1 10 (981 + dgo1  9Sor
or— 9 00 ar dx!

The sum is now over /, which goes from r, 0 since these are the only coordinates. Hence
the above becomes

1 6(98n  980r 980r\ . 1 po(980 9800 9Sor
0 _ > 10 rr ro r L 66 _
For =38 (&9+ or or ) 28 96 T Tor " e
agrr &gﬁr 8g@r 11 ar?
‘_(O)(ae o or ) 2R \0t 5 70
11
272 @)
1

(7)

Using (1), now let i = 0,j = r,k = O which finds T, but due to symmetry this is the same
as I‘gr which is found above. Hence

1
= ®)
Using (1), now leti = 0,j = 0,k = O then
ro _1e dgol N dga1 9800
907 2° \ 90 = 90  9x

The sum is now over /, which goes from r, 0 since these are the only coordinates. Hence
the above becomes

1 Jdgor  9Igor Igee) 1 o0 9d8e0  ILee
10 r r 00 B
Tho =38 (&9 90 " or +zg 060 " 96 00
1 Ior  ISor 389@
5(0)(&9 + =5 = (0+0 0)
=0
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This completes the computation. In summary

I, =0
rj =0
oo =T
=0
rg =0

1
rgr:;

1
Frgez;

2.9.5 Problem 4

Problem Calculate the gradient curl and divergence and Laplacian in spherical coordinates
using tensor analysis.

Solution

The following coordinates system convention is used

Polar angle

o P(r,¢,0)

» Y

x ¢ —» Azimuthal angle

Figure 2.36: Spherical Coordinates system

2.9.5.1 Finding metric tensor g;

The coordinates in the Cartesian system are =x0C = v, 3 = z. And the coordinates
in the Spherical system are x' = ¢,x?> = r,x> = 0. The relation between these is known as
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(Note that the following depends on convention used for which is 6 and which is ¢. Physics
convention as shown in the diagram above is used here).

¢t =rsin@cos
2= rsin @sin ¢
3 =rcosb

The first step is to determine the metric tensor ¢ for the Spherical coordinates. This is given
by
a0 ad
84 = 05k gnd
Since the coordinate system are orthogonal, ¢;; will be diagonal. Hence only g1, g2, $33 are
non zero.

811 = 89
_ acl gcl o’)cz acz 0’)c3 0’)c3
Coxlaxl  gxloaxl T 9xloxd
L 9C 9t 9z I 9B I

T 36 96 T 96 3¢ | 96 99
o\ (a2\* (9C3V
:(9¢) +(&¢) +(8¢)
(—r sin O sin (]5)2 + (r sin 6 cos (p)z + (O)2

= 12 5in® O sin? ¢+ 2 sin? O cos? ¢

=12sin? 0 (sin2 ¢ + cos? qb)

=725in% 6
And
820 = &ir

_ 8C1 8C1 0’)C2 3C2 aCB (9C3

T 0x20x2  Ix29x2  9x? Ix2

B aCt 9t N ISR I N PICRIE

~or or dr Jdr dr dr
IV (92N (a3

(%) (%) +(%)

(sin 0 cos qb)z + (sin 0 sin qb)z + (cos 6)2
sin? 6 cos? ¢ + sin® @ sin® ¢ + cos? O
sin” 6 (C082 ¢ + sin? qb) +cos? 0

= sin® 0 + cos? 6

=1
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And

833 = 800
_ &Cl acl 8C2 acz 8C3 &C3
TR I0 IR o 9B I
_ 9C1 0“)C1 s 862 3C2 . ac3 ac3
d0 d6  JO dO IO IO

act\* (o2 (93’
~(30) +(5a) + (50
2 )2 2
(r cos 0 cos gb) + (1’ cos 0 sin (P) + (-rsin 0)

2 cos? 0 (C082 ¢+ sin? qb) +725in% 0
2

=12¢c0s2 0 + r2sin? O

Hence ds? in Spherical coordinates is

ds? = gdxkdx!

12 2)2 3)2
= g1 (dx ) + 822 (dx?) + gas (a°)
=8n (d¢) + g0 (dr)? + 33 (dO)?
=r2sin® 6 (d(z)) dr) +72 (d@)

From the above we see that, using the order ¢, 7, 0 for the rows and columns
811 812 &13

8ij =821 822 §23

831 832 &33

2sin’0 0 0

= 0 1 0

0 0 2

Therefore the determinant is ¢ = *sin® @ and J; are given by the square root of the diagonal

elements of g;;

Iy = rsin6 (A)
h2:1
h3:1"

2.9.5.2 Finding Gradient

G_(19 19 19
B h1c9x1'h2c9x2'h38x3
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Where &; are given in (A) and x! = ¢, x> = 7, x> = 6. Therefore

(19010
“\rsin@d¢’ Ir’ r 90

Hence given a function scalar f (¢, r, 9) then

1 &f fA 18f
Vf= rsm@&qﬁ o F 8966

2.9.5.3 Finding Curl
Using h; in (A) and x! = ¢, x? = 7,x> = O then

. dJ
(V X V)l = h2h3 (& 5 (h3V3) (hZVZ))
— R _ &(TV@) 8Vr
(Vx7), = ?(T‘%)
And
o o 1
(V X V)Z = E ( (hlvl) (hSVS))
(¥ x7) = o (2 (rsin6V,) - = (V)
r r2sin6\ 90 ¢ qb
1 é’(sin 9V¢) ~ Vg
rsin 0 20 o
And
L 1 (0 J
(V X V)3 = i, (W (hyVy) - -2 (hlvl))
S o 1 (0 Jd
(V) = —— (% V)~ 5 (rsimov,)|

[ 20)

r{sinf Jdo ar

_
Therefore given a vector V, its curl is

ItVe) V), 1 I (sin0Vy) v,). 1( 1 av, 8OK9A
ar  90) rsmeo| a0 00 |7 \smo a0 ar |

V7=
’
2.9.5.4 Finding Divergence

V.-V= VZ'VZ = %Vl + F;]V] (1)
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1 (9% 2 98ij 1 i (i 1 e 1 .
Where I’fj = Zgll - T % - a_xllj) = Egll (%) which simplifies to as shown in class notes

page 143 to hence above becomes

rj= =5 ()

Hence (1) becomes

J . 134 .
V~V:EV+@;(\/§)VJ

- 22 v
Using the covariant form the above becomes
Li( V8 V.)
B G

Where in class notes #; is used in place of /g;;, but it is it the same.

V.V=

The sum is over i. From above, the spherical coordinates are xl = P, x2 =r,x% = 6. And

g = r*sin® 0. Hence the above becomes after expanding

1 Vr4$in29v +i r4sin20V +i Vﬂsinzev
Vrd sin? 8(15 VEp¢ °)" or Srr "] 00 V806 o

1 8 rsin@v +8 rzsinQV . 0 rzsiHGV
" 25in6 dp \ rsinf ¢ ar 1 4 00 r 0

1 d d .
=5 (8(75 (rV(P) = (r sin OV, ) 20 (Slﬂ GVG))

—i LI +li(zv) ! 8( V)
T 9 \rsin0 ?) " 2ar\ 77T rsin0 00 sin Ve

V.V=

2.9.5.5 Finding Laplacian

The Laplacian is given by

v2_ i det (g)i

ldet (g) oxi| Qi O
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Hence
v | 9 (Vrisin®6 o L] 9 (Vrisin®6 o L] 9 (Vrisin®6 o
V4 sin2 6 911 811 ! Vrdsin2 0 9%2 822 Vrdsin2 0 9%3 g3 0x8

1 0 (rzsinQ 8) 1 0 (r sin 0 8) 1 0 (rzsinQ 8)

rzsineﬁ ,,281112@% * 2sin 0 dr 1 0 * 2sin 0 960 2 90
1 i 1 i 1 J 2l J 1 J 0% J
"~ 2sin6 d¢ \sin 0 do 24in 6 Jr sin ar 24in 60 960 sin 20

s 128+ i 1 @9+ 982
—r2sin29c9¢2 2 7’(97, r? 972 rzsine cos 50 sin 53

1 22 +20"+o"2+ cos 0 é’+1 92
2sin?0dP2  rdr  Ir2  r2sin0d0 12902
22 2 d 1 (cos@ 0 92 ) 1 92

“o2  rar T 2\smede T 962) T 2sm2o ag?
Therefore
, d%u 2du 1 (cosO@du J*u 1 J%u
Vo= —+-—+5|—=—+ +——
ar> rdr r?\sinf@d6 J0?] r2sin® 0 IP?
N 2 L 1 (cosB N N 1
= ~u, Ug + U _—

= e r r2 \ sin 6 0 00 72 sjnz Qu(bcp
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2.9.6 Key solution for HW 9

@) X = ;‘l Coshu core y = f’f)h/?,w e

2

( z
U*"”"j nn‘wf//n th /eofnrc ji: X f - y) ?([:// x 65

4

2. 2 2 a LR 2
32:*,)21» :2—7— e A [ onhmcoret Cophm f’hf]
3## = (QM Im 4 )

fH

2
/—f f)hAM

2 % Q
@ * - :ﬁ_[co/l,ancafé
a [ﬁ“l’/‘* + Son & 9

4
T 2
= v * y /, Coy 6 [ =
ox\2, (7)) = 2 | corhu sme + PhEA y
— — t [ Y
oo = 7€ 7% 4

- Ix ,”Xf ﬂﬂ - __f_L (j‘m}'u Cod4 f’(_ld;[AMJ')hﬁ)
e N A T

+ (co//»,u fmé'f)(fm/?/“ cos 9’)
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& 39/4 9. 99,
© - 79 / i %L]

r Ixk IxC

H“"’\ [Cc‘/’u/‘(, we /Cnyw 7LA£‘L ji‘r < /) ﬁ.gg, = }"J 9/‘6 :0,

{ r anl XA: ,@— f;na, g\’ ;J /;’07,;%,,/
")

Here X °
r_ ‘”y, g re
w }’)m/l. g '/ - f}‘, j ;0,
J
- ence = 2j /‘?l“‘ 95} - ‘ij/,, ho  Jum
Ix*: in A

—
Js
13
l\‘
G
4
S
1
S
3
"
Q

)
0

6;'3
@
{
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/ L4

N AN
. . - y -
. - PR ! A .- A
Ay gr . . . r . A h
i' 'A‘n A / 3 / j/ / 6
2

n ﬁh
b l” C‘? Cp HW)”?.L/ Co n'}f‘k v olr‘lma m‘f 79 Co v arl'\afw‘/‘,

:!/ r[ r Arh l lﬁf E Ve (D&/‘mw/‘d)l'(/)v,
; Al hy o7 _
gy d e Tt g - At el 4 /’t’rmu—&ﬁih
O i ap pair of W e
are equal
T)\C'V\ ﬂt JSam e I\/ 7Lfa¢ 07£ é

Y AL, b ecauge f,] =

t T
T/\"LJ €” 4T Ce n‘/“}ﬂn”}"’ é e
« /1} r n

r r

T" ’F;'w( 'n‘é Conjflmf (;Aoajc Al ""(n = /‘l"’h’

; 2 A
6 = Cu n‘fﬁy{f él = O V‘J}W"q{”
12(”'4 \_/\/J

L

b ~

91, Jady o Gas, €T = /'57L<7«‘J— =7
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@ y/’}'ermﬂ/ aaorﬁlwéx ale mﬂﬁwiohn/ Lo j‘rl’

¥ ”[l“ayor%/,
X= I ecorp nhw )/: roibg Sibe Zz = I'Curo
Z
2 - _ 2% 2 9y 2 072) _
hy = 90 = (;';7) 7(7{?'9 ‘(=) < /

2

= - (22)". (7 t4»_;'2;&'\: r#
bo = 900 = (3)GY) G
. = [2=)" . 2 2"1‘ = L: I“lfmzﬁ—
/1¢ = Je¢s ‘(e;zﬂ,’) (;7{’) CW

0’1 l’mﬂ/‘/ V s Wl% /d*”fw 7 4 / / Vi .

/

7
gf‘ﬂo/Je,ﬂt Glmfmwvf/ are b 9x %
L
= o7 L 72
V§ = (ar‘) roge
—_ ’l‘/:
J;Vﬂ!‘jewéc V-v = ;‘——h—;—; ;
—_ 9
- 2 [ 2 2.7 i j—- Sme V| * Io' 9; |
V'V = ?«;(r Vr + rhne 26 rJdm
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2.10.1 HW 10 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 10 due Monday April 22. Show all work. Use of Mathematica,
MatLab, or similar software is not allowed.

1. (8 pts) Show that

dz  2sin(m —n)7]

L) b5 =

T T m?2—n?

where m+n > 0. Suggestion: Multiply the differential equations satisfied by
Jm and J, by x and subtract. Then use the asymptotic expression of J,(x)
for large values of z.

2. (8 pts) What linear second order differential equation does the function
™ J, (az®) solve? Are there any required relationships among m,n, k? Use
this to solve y" + 2%y = 0.

3. (3 pts) Prove that |J,(z)| <1 for all integer n.

4. (6 pts) Starting with the integral formula for the hypergeometric function
express the following in terms of elementary functions

oF1(1,1;2;2) and oFi(a,1;1;x)
(1)
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2.10.2 Problem 1

Problem Show that

f°° L @ = 220 (n-m73)
o X

n m?-—n?

Solution
X2 () + J; (x) + (22 = n2) ], (x) = 0
X2y () + X (x) + (22 = m?) ], () = 0
Dividing both equations by x? gives
1 2
)+ =T () + (1 - ”—z)fn (x) =0
X X
1 2
)+ T () + (1 - m—z)]m (x)=0
X X

Multiplying the first ODE by xJ,, (x) and the second by xJ, (x) gives (multiplying by just x
did not lead to a result that I could use).

712

XJli + Il + X(l - _2)]111];1 =0
X
mZ

x]n];?; +]n]7ln + X(l - _2)]”]7” =0
X

Subtracting gives
n? m?
(x]m];{ +]m];l + x(l - ;)]m]n) - (x]n];r; +]n];n + x(l - ?)]n]m) =0
2

2
X Tl =Tl + Td = TJ s = o] ((1 B Z—z) } (1 ) m_)) -

2
Or
m? n®
x(]m];/i, _]n]rlr;) +]m]1/1 _]n]rln = x]m]n ((1 - F) - (1 - F)) (1)
But the LHS above is complete diﬂerentia
x(]m];{_]n];l;)'{']m]rlz_]n]r/n:(x(]mjrg_]n]r,n))l (2)

(x (]m];lq _]n]rln))’ = (]m];g _]n]rln) + x(]m];z _]n]rln),
= Jdio = Tl + X Tl + T = TnJte = Tulit)
= ]m];g _]n];n + x(]m];{t, _]n];é)
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Hence using (2) in (1), then (1) simplifies to

2 2
Tt~ = e ([1- 55 ) - (1 -5
X

2

n®  m?
= XJin)n (F - _)

12
_ ]m]n 2 2
=l (12 )
Integrating both sides above gives
’ 7\ _ 2 2 oo]m]n
X Ul =TI = (2 = m?) fo o
Therefore
* Jon (X) Ju (%) 1 , RPN
J, = o) 0 T 0= T 0 3)

At x = 0 the expression x (], (x) [, (x) = J,,, () ];; (x)) = 0. And at x = co we can use the
asymptotic approximation given by

2 | 2 1 (1)\2
]n(x)]%(x):\/%COS(X—%—(—%)[— Esin(x—%—g)—ﬁ(;) cos(x—%—g
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Let x — % I a, and let x — % - % = B, then the above becomes

1 (1 g
T () ], (x) = \/zxcos (a)[ \/%sin (,8) - E (;) oS (ﬁ)]

= —% cos (a) sin (,8) - i i (1)E cos (a) cos (ﬁ)

'y

= —i cos (a) sin (,B) -

X

2 :
= cos (a) sin (ﬁ) -
Similarly

2 , 1(1\
Jun )] (x) = —— — cos (ﬁ) sin (o) — - (;) Cos (ﬁ) cos ()

Substituting (4,5) into (3) gives (only the term as x — oo remains)

(4)

()

R

2

cos (ﬁ) cos (a)]

S e 1, 0 )= (05
2
(m2 o ([ — cos (@) sm - % (91;) cos () cos (ﬁ)] - [—% cos (ﬁ) sin (
2
= mz oy [ — cos (@) sm - % (31_() cos (a) cos (ﬁ) + % cos (ﬁ) sin (a) + % (31—6)
(mz nz) ( — cos (@) sm + nix cos ([3) sin (a))
= (m2 ) (sm (o) cos (ﬁ) cos (@) sin (ﬁ))
But
sin (a) cos (ﬁ) — cos (o) sin (ﬁ) sin (oz - ﬁ)
=sin((e= 7 =)= (-7 -3)
=sin||x > "2 X 5 1
. ( nmom mr n)
=sin(x—- — -~ - X+ — +—
2 4 2 4
. ( mrt nrt )
=sin|— - —
2 2
. Tt
= sin ((m - 1) E)
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Using the above in (6) gives
[, 2 (0n=m) )
0 x n (m2 - n2)

Which is the result required to show. QED.

2.10.3 Problem 2

Problem What linear second order ODE does the function x™], (axk) solves? Are there any
required relationships among m, 1, k? Use this to solve y”’ + x>y = 0

Solution

2.10.3.1 Part (a)
We know that the Bessel ODE

2
22" (t) + tz' (t) + (tz —~ (%) )z (t)=0 1)

I am using the order as % instead of n to make it more general. At the end, % can always be

replaced back by n.
The ODE above has solution

Hence using the transformation
t = axk (2)
The solution y (x) = z (axk) will becomes
y () =]z (axf)

Therefore the question now is, how does ODE (1) transforms under (2)? From (2)
1

~{y

Hence
1
dx 1(t)%‘1
dt  kl\a
1
1 (t\F !
=) )
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Now
dz  dzdx
dt  dxdt
_dz 1t %‘1
in ©)
And

Pz _d (d:
a2 dr \dt
1
_4 %L(E)%‘l
~ dt|dxak \a
_ i L(z)%‘l Ldzd 1(5)%‘1
~ dx2 dt | ak \a dxdt|ak \a
1 .\2 1
_d%z|1 (t)rl +dz 1 (1 . (t)rz )
" dx2 | ak \a dx | a2k \ k a
Using (5,6) then ODE (1) becomes
1) 1 (1 = 1 /#y\i! 2
17 t E_ ! t %_ ’ t ;_ a —
tz (Z (axk) [J (E) ] +z (axk) ﬁ (E —1) (;) ]+t{Z (axk) E (E) ]+(t2— (E) )z(axk) =0

Writing v (x) = z (axk) so we do not have to keep writing z (axk), the above becomes

1 \2 1 1
tZ[y" (x)[%(é)E 1] e ai—k(%—l)(é)k 2]+t[y’ @ (2) 1]+[t2—(%)2]y(x) ~0

But ¢ = ax* and the above becomes

L) 2 i1 2
e G 1 R T I B R A R
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Which is simplified more as follows

2 1 1 2
[y//( )( (; )) y (x) % (k 1) %J + axk (y/ (x) %%) + | g2x2k — % ]/(x) =
a2k //() x2 + (x) 1_1 i + axk /(x)lﬁ + | a2x2k — ﬁ : (x)_
Y 2k2 Y k x2k T B YW=
Zk(y”@c) : (xz)” (x)_(l_l) )*y’<x)f+ 2 (%) ]y -

k2 2k k ﬁ

x? 1 x a\’
Zy” () +y (x) = (——1)x+y (x)k a®x?k — 5 y(x) =

2
X%y (x) +y' (x) k (% -~ 1) x+y (x)kx + (k2a2x2k — k? % y(x) =

2.2
X2y (x) + xy’ (x) + (kzazka —~ kﬁ—(j y(x) =

(7)
We know that the above ODE has one solution as y (x) = ]% (axk) because this is how the
above was constructed. Now assuming that
w (x) = x"y (x)
= x™] : (axk)
Then w(x) is the solution we want. This means we need to express (7) in terms of w (x)
instead of vy (x) in order to find the ODE whose solution is xm]% (axk).

Since y (x) = w (x) x™™ then

d
y ()= @"w)

= —mx"" 1w + x My’

And

Y’ (x) = % (—mx‘m‘lw + x‘mw’)

=-m(-m-1)x m=lyy

20 — mx " — mx ! + x
=m(m+1)x" 2w - 2w mx"" 1 + x "
Substituting the above results back into (7) gives

kZ 2
—[86; )wx‘m =0

x? (m (m+1)x" 2w - 2w mx"™ 1 + x"”w”)+x (—mx‘m‘lw + x " ) (k2 22k
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Dividing by x™"

x? (m (m+1)x2w-2wmx ! + w”) +x (—mx‘lw +w ) (k2 2x2k _ kﬁg w=0
m(m+1)w - 2xw'm + x*w” — mw + xw’ +(k222k k;c;z w=0
x2w” +w' (=2xm + x) + (k2a2x2k+m(m+1) m—k;—zz w=0

x*w” + (1 = 2m) xw’ + (k2a2x2k +m? k;; w=0 (8)

Hence the above ODE (8) will have the solution x™ [« (axk). We can now let n = % and the
B
above ODE becomes
x2w"” + (1 -2m)xw’ + (kzazka + m? kznz) w=0 9)

Has the required solution x™], (axk).

TN

To answer the final part about the relation between 7, m, k. One restriction is that m =

One relation between the order 7 and k is that m? — k?n2 being a rational number. This
means

_ k2n2 —

<z

Where N, M are integers.
2.10.3.2 Part (b)

Yy’ () + 2%y (x) = 0 1)
Comparing this ODE to one found in part (a), written below again, now using v (x) to make
it easier to compare

x?y"” (x) + (1 - 2m) xy’ (x) (k2a2x2k + m? kznz)y(x) =0
1- 2m)
y// (x)

To make (2) same as (1), we want (1 — Zm) =0orm= % Also need 2k = 4 or k = 2. Using
these the above reduces to

I a2
v (x) + (4a2x2 4 ] y(x) =

1, 1
Therefore, we need also that n% = 7 in order to cancel extra term above. Hence nn = T Now

v (x)+ = (k2a2x2k + m? kznz)y(x) =0 (2)

the above becomes

¥ (x) + 4a’x*y (x) = 0
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2 1

1
Finally, if we let a Jora=z, then the above becomes

v’ (x) + x%y (x) = 0

Therefore, we found that

1
"t

1
)
k=2

1
=3

Hence the following solves the ODE
y (x) = x™],, (ax¥)

=V, (57

2.10.3.3 Appendix

To verify the above result, it is solved again directly. We first need to convert this ODE to
Bessel ODE. Let

1
Y =x2z(x)
Then

dy 1 _1 1

—— = =X 2z+4Xx2z

dx 2

dy 1.3 1.1 1 _1 1
— = ——=X 2z+4+ —x 22/ + —x 22/ + x27"”
dx? 4 2 2

1 .3 _1 1
= 7% 2z +x 27 +x27"

Substituting the above into (1) gives
1 3 _1 1 1
—gX Tzt 27/ +x22" |+ x2x22 =0

1 _1 501 23
x2z" +x 27" + (xz —F 2)2 =0
3
Multiplying both sides by x2 gives
1
x%z" +xz' + (x4 - Z) z=0 (2)

2
Where the derivatives above is with respect to x. Now let t = % Then

dz 3 dz dt 3 dz
dx  dtdx dt
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And
d*z  d%z (di dz
ﬁ—ﬁ(a)‘“a
d*z , dz
= E

Substituting the above into (2) gives
1
2 (217 ’ ’ 4
x“\xZ" +z2' )+ x(xzZ') +|x*-=]z=0
Where the derivatives above is with respect to t now. This simplifies to
1
x4z + 2x%7 + (x4 - Z) z=0

2
Butt = x?, hence the above becomes

217 ’ 2_1 _
4tz + 4tz + |4t 1 z=0

1
P2+t + |- —]z=0
16

This now in the form of Bessel ODE
22"+t + (P -n?)z=0
Where n = i. Hence one solution is

z(t) =], (t)
= ]411 )

2
But y (x) = Vxz(x) and t = - therefore the above becomes

2
() =V, (%) )

Which is the same as found in part (b)

2.10.4 Problem 3

Problem Prove that |J,, (x)| <1 for all integers n
Solution

From the integral representation of |, (x) for integer n

1 n
Ju (x) = = f cos (n@ — xsin ) dO
tJo

220



2.10. HW 10 CHAPTER 2. HWS

Then

1 Tt
I, )| < — f cos (N6 — xsin 6) dO
TV

max

1 TT
<= f |cos (nO —xsinO)| __dO
TC O max

1 7T
=M, [ do
0

= |M|max T
Tt
= M|

Where |M| = |cos (16 — xsin (9)|m(erX over 6 = 0 --- 7t. But this is 1 for the cosine function.
Hence

max

I ()l <1

2.10.5 Problem 4

Problem Starting with the integral formula for hypergeometric function, express the following
in terms of elementary functions ,F; (1,1,2;x) and »,F; (4,1,1; x)

Solution

2F1 (Cl,b, C;X) mf tb 1(1 t)c b= 1(1 tX) dt (1)

_ I'(o T(a+n)F(b+n)x
" T(@T b)z I'(c+n) n!

(2)

2.10.5.1 Part (a)
Here a =1,b =1,c = 2. Therefore, using (1) representation gives

2F1 (1,1,2;.7() = Wf tl 1(1 t)z - 1(1 t.’Xf) dt

T@ ot
S rraJdy 1-
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But I'(2) =1,T' (1) = 0, therefore the above becomes

£ (1,1,2;%) fl at
/’;x:
21 Ol—tx

[-ma-m]
|

_ (In(l-x) -In(1-0)
__( X - X )
B _ln(l—x)

X

2.10.5.2 Part (b)

Here a = a,b =1,c = 1. Therefore (2) representation gives
I'c) T(@a+n)T(b+n)x"
T(@)T (b) 22%) T(c+n) n!
1 QT@a@a+n)T'd+n)x"
TA+n) n!

oF1(a,1,1;%) =

Looking at few values

oF1(a,1,1;x)
T(a) _
Tw = 1
T(a+1)

I'(a)

T(a+2) ﬁ

T(a) 2!
T(a+3) x3

T'(a) 31

(@]

—_

W N

Using the recursive relation I' (a + 1) = al’ (a), which works for integer and non integer 4,
then we see that

I'(a+1)=al(a)
And
Fra+2)=T((a+1)+1)
=@+1)IT'(@a+1)
=(a+1)al (a)
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And
Fa@a+3)=T((a+2)+1)
=@+2)T((a+2)
=(a+2)(a+1)al (a)
And so on. Hence the above now becomes
n | ,F(a,1,1;x)
011
al(a)
1 T X = a;c 2
(a+1)al(a) x= x°
2 I[(a) E“’;('H'l)z! ;
(a+2)(a+1)al'(a) x> x
3 Tw E—a(a+1)(a+2)3!

We see from the above the pattern of the sequence is as follows

2 3
oF1(a,1,1;x) =1 +ux+u(a+1)%+a(a+1)(a+2)% + .- (1)
Comparing the above to the Binomial expansion given by
72 z3
(1+z)"=1+nz+n(n—1)§+n(n—1)(n—2)§+--- (2)

By replacing z — —x and n — —a, the above becomes

- (-2’ (-2
(=97 =1+ (-0) (=) + (0) () = 1) - + (-0) ()~ ) () —2) -+ o
x? . X ‘
=1+ax+(a)(a+1)§+(a)(a+1)(a+2)§+
Comparing the above to (1) shows it is the same series. Hence

F1@,1,L,x)=01-x)"
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2.10.6 Key solution for HW 10
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# . 27 _
&; {3} ,_,fﬁ’ilf‘,m[fw Zlg (z) +2 ;,i’{(z;j (7 «ﬁ/}o/ﬂ(z) o

! . okl e,
Ley 2z = ax}t, Then ﬁ{f{z)x g[g}ﬁﬁ akxt T f(ﬁ)
o X
: h-d —~1;
(7{2’ J (z) = 4 aﬁafx&”i J. [Z)J = a}ﬁ(k’f)x v, {g/) *
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2111 HW 11 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 11 due Monday April 29. Show all work. Use of Mathematica,
MatLab, or similar software is not allowed.

1. (6 pts) Find the normal modes of a rectangular drum head with sides of
length L, and L,,.

2. (6 pts) Find the normal modes for acoustic waves in a hollow sphere of
radius R. The wave equation is

1 0%

c? ot?

with boundary conditions 9¢/0r = 0 at r = 0 and at » = R. What is the
lowest frequency?

VA =

3. (6 pts) A sphere of radius R is at temperature 7" = 0. At time ¢t = 0
it is immersed in a heat bath of temperature Ty. What is the temperature
distribution T'(r,t) as a function of time?

4. (7 pts) Consider the Helmholz equation
V2u(r, 0) + k*u(r,0) =0

inside the circle r = R with the boundary condition u(R,0) = f(0). The
solution can be written in the form

u(r, ) = /0 " HO)G(r 0:0)d0

Find the Green function G.

2.11.2 Problem 1

Find the normal modes of a rectangular drum with sides of length L, and L,

232



211. HW 11 CHAPTER 2. HWS

solution

The geometry of the problem is

yA u = 0 on all edges
L,

up = 2V

Ly
Figure 2.37: Problem to solve

Using Cartesian coordinates. Wave displacement is u = u (x, Y, t) (out of page).
Pulxyt) (o | P
_ = R R
ot? Ix?  Jy?
0<x<L,
O<y<Ly,

Boundary conditions on x

u (O, Y, t) 0
u (Lx, Y, t) =0
And boundary conditions on y
u(x,0,t)=0
u (x, Ly, t) =0
Solution

Letu=X(x)Y (y) T (t). Substituting into the PDE gives

1
C—ZT"XY =X"YT +Y"XT
1 T// 3 X// + Y/l
T X Y
Hence, using A as first separation constant we obtain

1 TII 3 A
2T
X// + YII 3 /\

X Y
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The time ODE becomes

T + AT =0
And the space ODE becomes
X.Yr_,
X Y
Separating the space ODE again
X" Y”
X = Ay s
Where p is the new separation variable. This gives two new separate ODE’s
X
x - #
A
y ~ H
Or
X"+uX=0

Y’ +Y(A-p)=0
Solving for X ODE first, and knowing that y > 0 from nature of boundary conditions, we
obtain

X (x) = Acos (\/ﬁx) + Bsin (\/ﬁx)
Applying B.C. at x =0
0=A
Hence X (x) = Bsin (\/ﬁx) Applying B.C. at x = L,

0 = Bsin (/L)

Hence
VHLy = nm
nrt 2
yn:(_) n:1/2/3/“' (1)
L,

Therefore the X,, (x) solution is

X

nrt
X, (x) = B, sin (L—x) n=1,2,3, (2)

Solving the Y (y) ODE using the same eigenvalues found above

2
nm
Y'+Y|A-[—]| [=0
" ( (Lx)]
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The solution is

2 2
nm _
Y(y)—CCOS A—(L—x)y + Dsin /\—(L—x)y

Applying first B.C. Y (0) = 0 gives

Hence

2
n
0 = Dsin /\—(L—f) L,
Hence
2
/‘\—E L,=mn m=1,2,3,---
Lx y 4 4 4
n\> (mm)
2 - (4
nm (Lx) Ly
2 2
mm nm
Hence the Y, solution is
mm
Ynm:Dnmsin(L—y) n=1,23,--,m=1,23,--
Y

We notice that X,, (x) solution depends on 7 only, while Y,,,, (y) solution depends on #n and
m. Now that we found A we can we solve the time T (f) ode

T/ + Ay Ty = 0

T, () =E,,, cos (c /\nmt) + F,,,, sin (c /\nmt)
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Combining all solution , and merging all constants into two, we find

Upm (x/ Y t) = X (X) Y, (3/) T (£)

= (B,X,) (Dnm sin (?y)) (Enm Ccos (c Anmt) + F,,,,; sin (c Anmt))
Y
- B, X, sin ("Z—:y) (Epn 05 (c\Amt) + Fiesin (cy/Ayet))

= X, sin (nzy y) (E'm cos (c /\nmt) F;/, sin (c Anmt))

Where E}/,,, F},, are the new constants after merging them with the other constants. Renam-

ing E},, = Aum, Fiw = By the above solution can be written as
u(x,y,t) = 2 EX () Yo () Ty (£)
n= 1m—
Z 2 A, Sin ( L x) sin (?y) oS (c Anmt)
n=1m=1 Y
i i m SN ( x) sin (?y) sin (c Anmt) (3)
n=1m= y

To solve this completely, we apply initial conditions to find A,,,, B,,,. But the problem is
just asking for the normal modes. These are given by X, (x) Y, (y) Therefore for n =1, we

. b . U . b . 2n . b . 37
have the modes sin (—x) sin (—y) ,sin (—x) sin (—y) ,sin (—x) sin (—y) ,---and forn =2
L, Ly L, Ly L, Ly
. 27 . b . 27 . 271 . 27 . 3n
we have sin | —x|sin | —y|,sin{—x]sin|—y],sin{—x|sin{—vy], - and so on.
L, Ly L, L, L, L,

nim=1 2 3 4
TC

3 | sin i—tx) sin (%y) sin ( - x) sin (Ly y) sin ( - x) sin ( L, y)
To draw these modes, let us assume that L, =1,L, = 1. This gives

n|im=1 2 3 4

1 | sin (71x) sin (ny) sin (77x) sin (2ny) sin (71x) sin (3ny)

2 | sin (27tx) sin (ny) sin (271x) sin (27’(}/) sin (27tx) sin (371y)

3 | sin (37x) sin (ny) sin (37tx) sin (27'cy) sin (37tx) sin (371}/)

The following is a plot of the above modes for illustrations with the code used to generate

these plots.
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00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 1.0

Out[~ ]J=

Figure 2.38: Modes using L, =1,L, =1

makePlot[n_, m_ ] :=
ContourPlot [Sin[nPix] *Sin[mPiy], {x, 0, 1}, {y, 0, 1},
PlotLegends - None,
Frame -» True, FrameLabel -» { {None, None}, {None, Style[Row[{"N=", n, ", M=", m}], 12]1}}1;
GrideTable [makePlot[n, m], {n, 1, 3}, {m, 1, 3}]

Figure 2.39: Code used to draw above plot

The following is 3D view of the above modes.

237



211. HW 11 CHAPTER 2. HWS

N=1, M=1

SR
LA,
LR

out[+]=

7N
NG
R

Figure 2.40: 3D view of the modes using L, =1,L, =1

inf- 1= makePlot[n , m ] :=
Plot3D[Sin[nPix] *Sin[mPiy], {x, 0, 1}, {vy, 0, 1},
PlotLabel - Style[Row[ {"N=", n, ", M=", m}], 12],
Boxed -> False, Axes - False
15
GrideTable [makePlot[n, m], {n, 1, 3}, {m, 1, 3}]

Figure 2.41: Code used to draw above plot
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2.11.3 Problem 2

Find the normal modes of an acoustic waves in a hollow sphere of radius R. The wave
equation is

V2 (”/ 0, ¢, t) = Cl_zll’tt

With boundary conditions 1, = 0 at r = 0 and at r = 7. (I used rj in place of R because
wanted to use R (r) for separation of variables).

What is the lowest frequency?
solution
Let
Y (r, 0,, t) =u (r, 0, qb) giwt
Substituting this back in the original PDE gives
2
V2u(r,0,¢) + C;)—zu (r,6,9) =
Let k = % (wave number) and the above becomes
V2u+ku=0 1)
The above is called the Helmholtz PDE. In spherical coordinates it becomes

Radial part Angular part
2 1 (cosO 1 K2 = 0
Uy + —U, + — | —=uUg +Ugg | + Upe + ku =
T 2\ sin 0 06 2 gin oo}

Let u (r 0, (p) R(r)®(6)d (¢) and the above becomes

2 1
R"TO® + R’T@CD (

cos 0 5
6®’RTCD+®”RTCD + ®”ROT + k“ROT =0

2

2 74 sin” 6

Dividing by RO® # 0 gives

R”+2R’+1 cos@®'+®" N 1 CI>"+k2_0
R rR 7r2\sinf O C) r2sin? 0 @ B
Rl/ ZR/ 9@/ @// @//
72 sin? 6?+r sin? 6;E+sm 9((;(;566+E)+kzrzsin29=— o

The left side depends only on 7,0 and the right side depends only on ¢. Let the second
separation constant be 72 and the above becomes

R// 2R/ ‘661 @// (D//
12 SiIl2 6? + 72 sin2 Q;E + sinz (Z?{?@ 6 + 6) + k%12 SiIl2 0=- D = m? (2)
Which gives the first angular ODE as
Q" +m*P =0 (2A)

239



211. HW 11 CHAPTER 2. HWS

We now go back to (2) to obtain the rest of the solutions. We now have
R” 2R cos0® ©”
2 5in? @— + 2 sin® 0= — + sin” O — 4+ —
PERYR TR T e e T e
,(R" 2R cos0® O m?

+|l——=+ =
sin0 ® O

) + k22 sin% 0 = m?

R r R _sin29
R” 2R’ cos6® O” m2
Prr+r|—+=-=]|=- —+
! r(R rR) (sme@ @) 20

The left side depends on r and the right side depends on O only. Let the separation constant
be [ (I +1) where [ is integer which results in

R” 2R cos6@ O m?
RrRreR| 22 ) - - =1(1+1 3
r+r(R+rR) (sin9®+®) azo D @
Therefore the next angular ODE is
cos6@" O m?
- —+ — =1(l+1
(sin@@ " ®)+Sin29 (+1)
cos6@" O m?
- —+ — -I(I+1)=0
(sin9® " @) azg 0D
cos6@®" O 2
—+— |- Il+1)=0
(sin@@ i @) g IO
o7 +% ¢ [1g+1) " o-o (4)
sin O sin @ -
Let z = cos 6, then % = %5—2 = —% sin 6 and
dz@_ d ( dO 0
a0z —do\ dz
20 dz doe
:—E%sm@—gcosﬂ
e, do®
:Esm G—ECOSQ
But sin? 6 =1 — cos? @ = 1 — z2 and the above becomes
0 4’0 doe
—:—(1—22)——2
do?  dz2 dz
Using these in (4) gives
4’0 4O z de 2
E(1—z)—EHSm@(—Esm@)+(1(1+1)—1_Zz)@(z):o

2

1-22

(1—22)8”—22:@’+(l(l+1)— )@(z) =0 (3A)
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And finally, we obtain the final ODE, which is the radial ODE from (3)

144 4

R
k27’2+7’2(?+;i):l(l+1)

2
k?r2R + 12 (R” + ;R’) -I1(I+1)R=0

PR” +2rR + (K2 = 1(1+1))R =0

2 I(I+1

R”+—R’+(k2— ( > ))R:O (4A)
r r
In summary we have obtained the following 4 ODE’s to solve (1A,2A,3A,4A)
O +m?d =0 (2A)
2
(1-22)©" - 220" +|1(1+1) - O(z) =0 (3A)
1-22
2 I(I+1

R”+;R’+(k2— (r ))R=O (4A)

Solution to (2A) requires m to be integer due to periodicity requirements of solution. The

solution is @ (gb) = ¢*"?, Equation (3A) is the associated Legendre ODE. Since we are
taking / as integer then the solution is known to be O (z) = P/’ (z) + Q" (z) where P}’ (2) is
called the associated Legendre polynomial and Qj" is the Legendre function of the second
kind. Finally (4A) can be converted to Bessel ODE as shown in class notes using the

transformation R (r) = ) which results in
2
1
" 1 ’ 2 (l i E)
w’ =+ |k -
r r

ﬁ
u=20

Which has solution ]l+ 1 (kr). The second solution | 1 (kr) is rejected since it is not finite
2 "2

at zero and hence makes the solution blow up at center of sphere. Therefore solution to
(4A) is

T
R(r=C %]H% (k)
= Cjp (kr)
Where C is arbitrary constant. Putting all the above together, then the final solution is
, eime P} (cos 6)
— | piwt ! ;
p(r,0,¢,t)=]e { . { Q" (cos 0) { ji (kr)

Where j; (kr) are the spherical Bessel functions. Now we need to satisfy the boundary condi-
tions. Since only j; (kr) depends on 7, then ¢, = 0 at = 0 and at r = ;) are equivalent to
looking at R’ (r) = 0 at r = 0 and r = rg. Therefore we need to find the smallest /, k which
satisfy both conditions. This will give the lowest frequency.
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I found from DLMF that the series expansion of j; (kr) is
(k) (__Gn® Gt
L+ 1)! 2(21+3) 8Q2I+5)(2I+3)

Hence for r — 0, we can approximate the above as the following by ignoring all higher
order terms

ji (kr) = (5)

(k)
i k) = S
Which means for small r, the derivative is
d. 10"
2 = G

At r = 0 then setting [%jl (kr)] = 0 is satisfied for all /. Now taking derivative of (5) gives
T

—0

d. . 1kn" (kr)? (kr)* (kr) 2 (kr) 4 (kn)®
2 = G (l T2 +3) (845 @ +3) "')+(2l N (1 T 2@ +3) (845 2+3) )
At r = ry the above becomes
d Lk (kro)* (kro)* (kro)' 2 (kro) 4 (kro)’
[E” (kr)] BRCTENT (1 T22+3) BRI+ @+3) "']+(21+1)u (1 T220+3) TBQ@I+5@+3) )

Now we ask, for which values of [ is the above zero? If we let | — oo then we obtain

d. o M) ()
lE]l (kr)lwo = oy on T @

>0

=0

Therefore, to satisfy both [%jl (kr)] = 0 and [%jl (kr)] = 0 we need | — oo. In

r—0 r—70
other words, a very large integer. The larger [ is, the lower the radial frequency. In addition,

increasing k while keeping / fixed will increase the frequency. And decreasing k while keeping
| fixed decreases the frequency. And for fixed k, increasing I decreases the frequency.

2.11.4 Problem 3

A sphere of radius R is at temperature u = 0. At time f = 0 it is immersed in a heat bath of
temperature 1. What is the temperature distribution u (7, t) as function of time?

solution

Note: I Used u (r,t) instead of T (r,t) as the dependent variable to allow using T () for
separation of variables without confusing it with the original T (7, t).
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The PDE specification is, solve for u (7, t)
u,=kV2u  t>0,0<r<R

With initial conditions

u(r,0)=0
And boundary conditions

u(R,t) = uy

[u(0,1)] < o0

Where the second B.C. above means the temperature u is bounded at origin (center of
sphere). In spherical coordinates, the PDE becomes (There are no dependency on 0, ¢ due
to symmetry), and only radial dependency.

1 1
= (ru),, 1)

To simplify the solution, let
U(r,t) =ru(r,t)

And we obtain a new PDE

1
%ut = uﬂ (2)
And the boundary conditions u (R, t) = 1y becomes U (R, t) = Rug and the initial conditions
becomes U (r,0) = 0. So we will solve (2) and not (1). But since the boundary conditions are
not homogenous, we can not use separation of variables. We introduce a reference function
w (r) which need to satisfy the nonhomogeneous boundary conditions only. Let w (r) = Br.

When 7 = R then Ruy = BR or B = uy When r = 0 then w = 0 which is bounded. Hence
w(r) = ugr
Therefore, the solution now can be written as
Ur,t)=o(rt)+ugr (3)

Where v (r,t) now satisfies the PDE but with homogenous B.C. Substituting (3) into (2)
gives
82
v = k= (v(r,t) + ugr)

ar?
v; = kv,, (r,t) (4)
We need to solve the above but with homogenous boundary conditions
v(R,t)=0
[v(0,t)] < o

This is standard PDE, who can be solved by separation of variables. let v = F (r) T (f), hence
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(4) becomes

T'F =kF"T
T/ FII
k— = — =-A2
T F
Which gives
F” +A%F =0

Due to boundary conditions only A > 0 is eigenvalues. Hence solution is
F(r) = Acos (Ar) + Bsin (Ar)
At r =0, since bounded, say 0, then we can take A = 0, leaving the solution
F(r) = Bsin (Ar)
Atr=R
0 = Bsin (AR)

For nontrivial solution

AR =nm n=1,2,3,:-

An =
Hence eigenfunctions are

F, (r) = sin (%r) n=1,23,-

nTt

2
The time ODE is therefore T’ + A%kT = 0 with solution T, (t) = Ane_(ﬁ) “ Hence the
solution to (4) is

00 nm\2 nm
v(r,t)= Y, A e_(?) M sin (—r)
00 =234, =
Therefore from (3)
& _(1m\? nm
U(r,t) = Ae(T)ktsin(—r))+ur
( ) (7,21 n R 0
But U(r,t) = ru(r,t), hence
1 & (= zk . (hTt
u(r,t) = (; ;Ane (%) "sin (?r)) + Uy (5)
Now we find A,, from initial conditions. At t =0

1&
O:u0+;2Ansin(%1’)

n=1

— nm
—TUg = Z An sin (?7’)
n=1
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Therefore A, are the Fourier series coefficients of —ru

R R
—A, = —f g sin (%r) dr

2 0
2 R
A, = —% . rsin(%r) dr
— _% (_1)n+1 R_z
R nm
2R
= (-1)" —up
nm
Hence the solution (5) becomes
2R & 1 _k("_ﬂ)zt nm
= w a2 5 L (1)
u(r,t) =uy uomngl( ) ne sin Rr
2R & 1 _k(ﬂ)zt . (nm
=up|1+— ), (-1)" —e %/ s (— ) 7
uo( mnz::l( ) ne sin Rr (7)

Verification of solution

Verification that (7) satisfies the PDE u; = kV?u. Taking time derivative of (7) gives

2R & 21 nm\% 2 . (nm
e = =iy 3y (1) 2 () () ®)
n=

And taking space derivatives of (7) gives

2R & 1 _y(mm\%nm nm
iy = g (D" e HE) T o (—r)
n=1

R R
2R & 1 (% (nm\% . (nm
Uy = —MOH nzzll (_1)n Ee ( R ) t (?) Sin (?7’)
Hence ku,, becomes
2R & 1 (% (nm\2 . (nm
klxlxx = —Momknz_:l (_1)n ;6 ( R ) ! (?) s (?7’) (9)

Comparing (8) and (9) shows they are the same expressions.

Verification that (7) satisfies the boundary condition.

When r = R, therefore (7) gives, when replacing r by R
2R & 1 (% . (nm
u(R,t) =ug (1 + an::l (-1)" ;e (%) fsin (ER))
2R & 1 _(nm\2
= Uy (1 + E ngl (—1)n ;E k( R ) tSiH (TlT())

=u0(1+0)
:1,[0
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But 7 is integer. Hence sin (n7r) = 0 for all n. And the above becomes
u(R,t) =uy(1+0)
= U
Verified.

Verification that (7) satisfies the initial conditions u (r,0) = 0 for r < R.

At t =0 (7) becomes
u(r,0) = u (1 + 2R i (—1)” 1 sin (%r))
_u0+§u02( b sm(R )

2R (T 1 . (27 1 . (3m 1 (4n
= MO + —HO — S (—1") + —sm|—7r|—=—sm|—7r|+-—-—sm|—7r]—---
rTt R 2 R 3 R 4 R

I could not simplify the above by hand, but using the computer, I verified numerically it is
zero for 0 <7 < R for a given R and given 1.

ClearAll[R, r]

R =1; (xradiusx)

uo = 10; (+B.C. valuex)

s=Sum[ (-1)*n1/nSin[nPi/Rr], {n, 1, Infinity}] (+obtain sumx)

Table[Chop[ uo + ::1 uo * s], {r, .05, R, .65}]

N

i (-Log[1+e' "] +Log[e ™" (1+e'"")])

{e,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0}

Figure 2.42: Obtaining the sum using the computer

2.11.5 Problem 4

Consider the Helmholtz equation

V2u(r,0) + k*u(r,0) =0 1)

inside the circle = ry with the boundary condition u (ry, 8) = f (6). The solution can be
2
written in the form u (1, 0) = £ 71]"(6') G(r,0;0’)d0’. Find the Green function G.

solution
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2
I'will solve (1) directly and then compare the solution obtain to u (r, ) = £ " f(@)G(r,0,0)do
in order to read off the Green function expression. (1) in polar coordinates becomes

11 ,
urr+—ur+—2u9@+ku:0
r T

Writing u (r, 0) = R (1) © (0), the above PDE becomes

1 1
R"©+-R'© + 50O"R +k’RO = 0
r r
R” 1R 1@

— + =+ +k2=0
R rR 20O
RII R/ @//
P—tr—+rk’=——=m
R R ®
Where m is the separation constant. The eigenvalue problem is taken as
0" +mO =0

Due to periodicity of the solution on the disk, then ® (-n) = © (n) and ©’ (-7t) = O’ ().
These boundary conditions restrict 7 to only positive integer values. Hence let m = n? and
the solution to the above becomes

®,(0) = A, cos(nf) + B, sin (n6)
Now the radial ODE is

124 /

2 212 _ 2
rr—+r—+rk-=a
R R

r”R” + rR’ + (rzkz - nz) R=0

n2

1
R”+—R’+(k2——2)R:O
r r

This is Bessel ODE whose solutions are (since 7 are integers) is
R, (r) = CuJn (kr) + E,Y, (kr)

But Y, (kr) blows up at r = 0, hence it is rejected leaving solution R,, (r) = C,,J,, (kr). Hence
the final solution is

u(r,0) = Y, (A, cos (n0) + B, sin (n0)) ], (kr) (2)
m=1
Where the constant C,, is merged with the other two constants. Now, at r = ry we are told
that u (ry, 0) = f (0). Hence the above becomes

[o0]

£(0) = Y] (A, cos (n0) + B, sin (n0)) J,, (kro)

m=1

By orthogonality of cos (10), sin (n0) we find the Fourier cosine and Fourier sine coeflicients
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A, B, as

27T
A, (krg) = = f £(6) cos (n6) d6

1
n
B,J, (kro) l f £(6)sin (n6) d6

Substituting the above back into the solution found in (2) results in

o0

270 27
ul(r, 6):,;::1[(111(%& fo f(@’)cos(n@’)d@’)cos(n@)+(]n(%o) fo f(@')sin(n@')d@’)sin(n@)] 1, (kr)

) T 270 , ) ) 27 N o /
=m§=]1 T (kro) ( fo f(0’) cos (n0’) cos (n0) dO” + fo f(@)sm(n@)sm(n@)d@)]n(kr)
(3)

Using trig relations

1
cos AcosB = 5 (cos (A + B) + cos (A — B))

1
sin AsinB = > (cos (A —B) — cos (A + B))
Then (3) becomes

)

u(r,0) = E

m= 12]n(k O)

(f £(0") (cos(n (0" + 0)) + cos (n (6" — 0)))do" + fnf (") (cos (n (0" — 0)) — cos (n (6 + 6))) d@’) I, (kr)

Which is simpliﬁed to, after combining both integrals to one

o0

u(r,0) = Z 3 (k (fznf(e’ (cos(n (6" + 0)) + cos(n (0" —0)) + cos (n (0" —0)) —cosn (6" + 0)) d@’)]

m=1

00 271
:22] o U F(O)2c0s (6" - 6)deY

271
_ U fo )]n(k)cos(ﬁ e)de]]n(kr)

Exchangmg integration with summation gives

27
1 (r, 0) = f £(0) (E o s @ =0, (kr)) o’

m=1

Jn (k1)

Comparing the above to

27T
1 (r, 0) = fo F(O)G(r,6;6)d6’

Shows that Green function is

o

TC
G(r,6;,0") =
(,0:00= 2 e

Where r( is radius of disk. It is symmetric in O as expected.

cos (0" —0)], (kr)
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2.11.6 Key solution for HW 11

2 ¢ 2
@ ﬂ+ﬂ «—J;j—-(/i‘ 20 0=x = [
ax* sy " ¢ It
o< Y < Z/
¢ (x y t) = «F{")j(y)(l‘({') J"G/arff/z» of Vﬂ«r/a//fj

" Y .L —_— -
,/’f—[f g T + 5T - szjl ] o

9T
“ ‘ i Tl ,2’"
..£ + ,—‘Z z ey - Com,/7llmf Rodii
F 5 T
T kT 2 THE Aot + Bomet w=he

4

: 2
L. 'ﬂ + comgtml = TF

£ 9

y flx) = A, cospx * B, Smpx

gg) = Az ety * B Y

nd
’ L L—f A /(
Now k p oo L g are re [a,f'cl / F 7. =

2

Eouuo(w/ cond;Hime i -{:(6) = »f((.x) =0 =) A, =0

g = glly) =0 => Ay =0

F1y) = Bsifply) =0 = pla=mrm m=l23.-

W ”7’/‘2/-7/,.

J(Ly) = Beom(ily) =0 =gl ="
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2 > hL
_ oy
The k _(_f:,,,, ;
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h
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@ V Y - C‘l ’(?? ‘?r e r'zfmﬂ’ Jﬁ/ Int 6

2
l QZ(P R J ¢ =0
/ —_— -~ L Z
i ens 947 ct I

We knw Dt The  sobation hjh i1 zero or finite

S 2 0 Mgﬁu i

cod w'f)+
(,[/(r/ﬁ/é—f) = é 2 jl[k'") [\9&)[ (

L0 m=-}
+ E/ f)h(w't)] w}l!rd w = kc-
c umala/ C()Vlﬂ//hanf‘
we m/y need b a/alo// ’}7' lw /
f+an

JI(X) F*" - FZ ’(F;nuf ()

(—u (1+24) ( M" / e d 21
;‘i’—Jl[X) '~/-1 2 ,[7&”1*;)

A . 4 smx _ cogx _ S
0“7)0 - /7; X ,,-———-X oy
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QL N =0 2
Lyl =g A -, o {22
dx ! X =0 K
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2121 HW 12 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Homework 12 due Monday May 6. Show all work. Use of Mathematica,
MatLab, or similar software is not allowed.

1. (5 pts) Consider the following two elements of S5

g = [p4123]
g» = [21534]

Find a third element g of this group such that ¢='g,g = go.

2. (5 pts) Do the following matrices form a group?

SO

Here z = €?™/3_ If not, add the minimum number of 2x2 matrices to form a
group. Then make a list of all possible subgroups.

3. (5 pts) The Lorentz transformation with velocity v along the z axis is
described by

(ff/)—M(v)<f> where M(@_\/ﬁ_ﬁ(i 111)

Show that the product of two such Lorentz transformations is again a Lorentz
transformation, i.e. M(vg)M(vy) = M(vi2) and find vy,. Using this result,
show that these transformations form a group.

4. (10 pts) Using [X;, X;] = ¢}, Xi where ¢f; are the structure constants and
a summation over k is implied

(a) Show that cf; = —cf;.

(b) Prove the Jacobi identity

(X, X5, Xa] + [[XG, Xal, Xa] + [ X, Xi], X5] =0

(c) Show that the Jacobi identity implies

I m I m I m
GG + ey + ey =0
Conditions (a) and (c) are the only conditions on the structure constants.

Any set of real numbers cfj obeying these two conditions defines a Lie algebra.
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2.12.2 Problem 1

Problem Consider the following two elements of Ss
g1 = [54123]
Qo = [21534]

Find a third element ¢ of this group such that g_l 18 =<2

Solution

When ¢~lxg =y, we say that y is conjugate to x using g.

3871818 = 882
818 = 882 (1)
But the class of conjugate pairs is symmetric. This means that
g '%8=8
8871828 = 881
828 = 881 (2)

We have two equations (1,2). Let us now apply g1, ¢, on them. Let ¢ = [abcde] and the goal
is to determine the unknowns 4, b, ¢, d, e. Equation (1) becomes
[54123] [abcde] = [abcde] [21534]
[edabc] = [abcde] [21534] (1A)
Similarly for (2)
[21534] [abcde] = [abede] [54123]
[baecd] = [abcde] [54123] (2A)
OK, this is some progress. But how are we going to find a4,b,c,d,e?. Let use try 4 =1 and
see what we get. If 2 =1 then (1A) implies e = 2 and (2A) implies b = 5. Now, if b = 5 then

(1A) gives d = 4 and (2A) gives a = 3. Which is conflict with our assumption that a =1 we
started with.

Let us next assume that 4 = 2 and see if we get a conflict or not. If 2 = 2 then (1A) gives
e =1and (2A) gives b = 4. Now, if b = 4 then (1A) gives d = 3 and (2A) gives a = 2. Good
no conflict so far. Now taking d = 3 then (1A) gives b = 5, which is a conflict of what we
found so far. So our starting guess of a = 2 is not correct.

Let us next assume that 2 = 3 and see if we get a conflict or not. If 2 = 3 then (1A) gives
e =5 and (2A) gives b = 1. Now using b = 1 then (1A) gives d = 2 and (2A) gives a = 5,

which is conflict with our assumption that a = 3.

Let us next assume that 2 = 4 and see if we get a conflict or not. If 2 = 4 then (1A) gives
e = 3 and (2A) gives b = 2. Now using b = 2 then (1A) gives d =1 and (2A) gives a = 4.
Good. No conflict so far. So far we found a,b,e,d = 4,2,3,1. It must mean this case that
¢ = 5 since it it only entry left. Let us check if this works or not.
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From above we have a candidate element to check which is
g = [42513]
Trying it on (1,2). From (1)

818 = 882
[54123] [42513] = [42513] [21534]

[31425] = [31425]
OK. Let us check (2)

828 = 881
[21534] [42513] = [42513] [54123]

[24351] = [24351]
Verified. Hence one element is ¢ = [42513] .

This means that

[42513]_1 [54123] [42513] = [21534]

2.12.3 Problem 2

Do the following matrices for a group?

1 0)(z 0) (0 1
0 1)o 22)'1 0O
.27
Here z = ¢'3 . If not, add the minimum number of 2 X 2 matrices to form a group. Then
make a list of all possible subgroups.

Solution

The group G with elements ¢; must have the following properties (using matrix multiplication
as the binary operation o)

1. giogjis also an element in the group G
2. Binary operation is associative: (gi o gj) °ogr=g;° (gj ° gk)
3. There is element [ called the identity element such that [og; = g;ocI =g;forallg; € G

4. Each group element g; has inverse gi_l such that g; o gi_l = gi_l ogi=1

10 0 01
Checking the first property. Let g = (0 1),g2 = (g Zz),gg, = (1 O)’ then since g is the
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identity element, all products with it will also be in G. Looking at products with g,
[z 0}f0 1
828 =19 21 o
(0 z
|2 0

But ( 5 ) is not in G. Hence it is not a group since not closed under the matrix multipli-
Z ————
cation.

Adding this as new element and calling it g4

B 0 z
g4_22 0
(0 22
8284—Z 0
_O Z2
85—Z 0

_(z 0)(0 z
gzg5_OzzzO

(0 %) (0 €27} (0 1)_

12 o) T ez o)1 o) 8

Which is in G. Now checking all products with g3 to see if they are in G.
(0 1)(z 0) (0 z%)
8382711 o)lo 2) |z o) 7%
(0 1)(0 z) (z*2 0
8384711 o/l o) "o =z

But this is not in G. Adding the above as new element g¢
(0
86 = 0 2

Checking again from the start that the group we have now is closed, which now contains
81,82, 83,84, 85/ 86-

But now we see that
Is not in G. Calling the gs.

Check again if closed

Which is in G. And
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Checking all products with ¢

z 0Y(z O 22 0 22 0 22 0 z22 0
828259 2)lo 2 0o z* 0 ¢3® 0 €3 0 z) &6
z 0Y(0 1 0 z
82837 | 2 10)_(220_g4
(z 0 Oz_Ozz_Ozz_
g2g4—022 220_240_20_g5
[z 0)(0 z2) (0 ) (0 1
828510 2)lz o) 7|2 o) |1 o)™
[z 0)(z2 0) _(z* 0) (e?® 0) (1 0)_
8286719 2)lo z) " lo 2) o e2t) |0 1)7%
Checking all products with g3
_Ole_OzZ_
882711 o)lo 2) 7|z o)™
(0 1)(0 1) _(1 0)_
8383—1010—01—81
(01 Oz_zzO_
8384= 11 o)lz2 o) " |lo z) 7%
_OlOzz_zO_
83g5—1020—022—82
(0 1)(z2 0) _(0 =z)_
838611 oJlo z) |2 o)™
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Checking all products with g4

_0220_023_01_
§182= 12 oflo 2)7 |2 o) |1 o) ™%
_OzOl_zO_
§183 =12 ofl1 o) " lo 2) 7%
_OZOZ_Z30_1O_
S84 =12 ofl2 o) Tlo 2] |o 1)7%
_OzOzZ_ZZO_ZZO 22 0 22 0
8485= 2 o)lz o) lo 21 o 312;(4)_0 A3l o 2] =86
(0 z)(z2 0) _(0 z*) (0 2%} _
g4g6_22002_z40_20_g5
Checking all products with g5
_02220_024_02_
88271, ollo 2) 7|2 o) |2 o)
(0 Z2)(0 1) (z* 0)_
8583—ZO 10_02_86
(0 22)(0 z) (z* 0) (z 0)_
g5g4_20 ZZO_Ozz_Ozz_gz
_022022_230_10_
88571, oflz o) lo 2] lo 1)7&
_ (0 22 (22 0) _(0 2} (0 1) _
88 =1, ofJlo z) 7|22 o) |1 o) %
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Checking all products with g¢

Therefore the group

.

8682 =

8683 =

8684 =

8685 =

8686 =

10
01

N
N

(e}

N
N

(e}

N
N

L, ©

e}

I

N ©O N O N O N O N O

Z

0
0 22

N, o = o o

N O

01

I

)

N

{

0 z) (0 z2\(z2 0
2.0)'\z 0J\0 z

z

Is closed under matrix multiplication. To check the associative property, which says that

gi° (g]- ° gk) = (81’ ° gj) ogr forall i,j,k in G. But from the property of matrix multiplication,
we know this property is already satisfied since the matrices are all of same order which is
2x2. Checking that There is element I called the identity element such that [og; = gjoI = g,

10
then we see that g1 = (O 1) is clearly I in this case. Checking the last property: Each group

element ¢; has inverse gi_l such that g; o gi_l = gi_l o g; = I. In this case gi_l is the inverse.

For ¢; then g[l is itself.

Checking ¢,

Checking g3

2
8 °8& = 0 =2
0
-1 _
&3 —(1
0
10 =
83 °&3 (1
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Checking for g4
) 0 z_1 0 z
R
. 0 z)(0 z) (22 0) (10
S E P B
Checking g5
P (- - 0 z2
s =0 5) =[5
0 z2)(0 z2) (Z* © 10
& OgS:(z O)(z 0):(0 23):(0 1)21
Checking g

4 _20220_230_10_1
86 °86 =g 2)lo z) " lo 22 lo 1)~

OK. All elements checked. Hence G is indeed a group.

81 82 83 84 85 86
e e e e e e e e e

e e T O A T

Setting up the Group table. In this table ¢; = I the identity element.

o | I |8 18|8|85]|8s
I |1 883|885 ]8s
82|82 |8 |88 |8 |1
8 |8 |8 |1 |8 |8 |8
8418|882 |1 |8 |85
8585|1848 &1 |8
868 |1 |8 |8 |84|8

Now we need to find all subgroups. By Lagrange theorem, we know for finite group such as

G above, all subgroups are of order that divides the order of G. This means the order of the
subgroups (if they exist) must be 2 or 3. (not counting order 1 which is just I and order 6
which is the group G itself).

Let us consider possible subgroups of order 2 first. Since subgroup must include the identity
element ¢; = I, then all possible subgroups of order 2 are the following

265



2.12. HW 12 CHAPTER 2. HWS

[I'gZ]/ [I/gS]/ [1184]1 [I'gS]/ [I/g6]
Clearly each one of these is closed under o. Since [og; = g;°oI = g; € G,;,. But when checking
for the property that each group element g; has inverse g; ! such that i8S 1= g Lo gi =1,
then this fails unless each element is the same as its inverse. From earlier we found that

83 =83
8t =gu
85 =85

Only. This implies that out of the above 6 candidate subgroups of order 2 only the following
are subgroups

[L.83] [ 8a] [185]

We found 3 subgroups so far. Now we need to consider all possible subgroups of order 3.
Candidates are

[I,gz,gg,], [I/g21g4]/ [Lg21g5]l [11g21g6]l [I/g3/g4]/ [I/g3rg5]/ [1/83z86]r [1184z85]/ [11g41g6]/ [1r85186]

There are 10 candidates subgroups of order 3 above that we need to check. Easiest check is
if the subgroup is closed. We know they satisfy the associative property.

_2001_
8283—02210—84

Checking [1, 82183]

Not closed.

Checking [I, 2, g4]

z 0[O0 z
g2°84 = 0 2212 o =85

Not closed.

Checking [I, gz,g5]

_(z 0)(0 %) _
gzgs—ozzzo—gs

Not closed.

266



2.12. HW 12 CHAPTER 2. HWS

Checking [I, g, 6]

[z 0)(z* 0)_ ;
82°8 =y 2|lo 2|~
(22 0)(z 0) (2 0)_ ;
878270 2Jlo 2/ o )7
Closed. Associativity is met since these are matrices of same order. Let check inverse

property: Each subgroup element g; has inverse ¢;71 such that g; o ¢;! = ¢! o g; = I In this
case ¢;! is the inverse matrix.

For gz
-1

4 [z 0) (22 0)_
82—022 _Oz_g6

) -1
_1_20_20_
g6_OZ_OZZ_g2

And gg! o g6 = I. OK. Therefore [I, 9, g6] is indeed a subgroup.

(0 1)(0 z) (22 0)_
83984711 o){2 o) {0 2) 7%

But g is not in this subgroup. Hence not closed.

(0 1)(0 Z2) (z 0)_
£°85 711 o)z o) lo 2) T

But g, is not in this subgroup. Hence not closed.

(0 1)(z2 0) (0 =z)_
8386—10 02—220—84

But g4 is not in this subgroup. Hence not closed.

(0 z)(0 z%) (2% 0)_
84°85 =12 o)lz o) o 278
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And g;' 0 g, = 1. OK. And

Checking [I, 93, g4]

Checking [1, g3,g5]

Checking [1, gs,ge]

Checking [I , 84, g5]
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But g5 is not in this subgroup. Hence not closed.

(0 z\(z2 0) _(0 ) (0 2%} _
g4g6_220 0 z) {z# o) 7|z o)™

But g5 is not in this subgroup. Hence not closed.

_ (0 22 (22 0) _(0 2} (0 1) _
85°8 =1z oJlo z)7|2 o)Tl1 o) ™%

But g3 is not in this subgroup. Hence not closed.

Checking [1, g4,g6]

Checking [1, g5,g6]

All subgroups of order 3 are checked. Therefore the following are the subgroups found.
There are 4 in total

[1.83],[1.84], L85 [I. 82 86]

Or
1 0) (0 1
0 1)'\1 0
1 0) (0 z
0 1){z2 0
1 0) (0 z2
0 1)'\z 0
1 0)(z 0)(z2 0
0 1)'\0 z22)'{0 =z

2.12.4 Problem 3

The Lorentz transformation with velocity v along the x axis is described by

(f ) = M(@) (’:]

1 (% . . .
( 1) Show that the product of two such transformations is again

Vi-v2 \v
a Lorentz transformation. i.e. M (v,) M (v1) = M (v1,) and find vq,. Using this result, show
that these transformations form a group.

Where M (v) =

solution

The following diagram is used to help in understanding what we are trying to show.
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M<U12> ( 1" t”)

Figure 2.43: Lorentz transformations involved

Given
["' - M(@) x]

And

x// xl
=M
( tl/ (02) t/ )

We need to show that, with the help of the diagram above, that
x"! x’ x x
(t”) = M (vy) (t’) = M (vp) M (vy) (t) = M (vy1p) (t)

So we need to find M (v1,) and see if it is a Lorentz transformation also. In other words,

1
to see if M (v1,) has the form of \/%( 012) and need to find what vy, is. Starting by
1-v7, \V12

finding M (v,). Given that
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The above gives

1
x = (x +v1t)
1-0?
t = (v1x + 1)
1-0?

1-07 1-07

1 (x +01t) + vy (v1x + 1)

/ _ Uz /1 vz (Uz (x +vqt) + (v1x + t))
X + U1t + V01X + Uyt

\/(1 02) (1 R ) (vzx + 0U1t + VX + t)

1 X (1 + Uzvl) + t('Ul + Uz))

\/1 —’(J% —U% +'U%'U% X(UZ +Ul) + t(l + Uzvl)

(1 + 0201) X+t (o1+00) ]

1
(02+(U ;szvl)

J1- 98— + 0302 ity

(v1+07)
= ; . 1 (1+v201) (x)
1- vl ZJ%+U%ZJ% (1+0201) 1 t

(1+0201)

(1+2)2'01)
But
1- vl - vz + vzvl 3 1+ 0102)2 — (0 + 02)2

(1 + 0201) - (1 + 0201)2
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Therefore
, (v1+02)
Yo 1 | mee|(r 1
t/l - 2 (1+Uzvl) 1 ¢ ( )
1 - 0¥ o)
(1+Uzvl)

’7

X X
Now it is in the form of Lorentz transformation. (t”) = M (vqy) t)' Comparing this (1)

shows that
(v1+0v3)
1 1
M (012) = —2 [(1+Uzvl) (1+;2v1)]
1 - 222 (o,
(1+0201)
v
But M (v) = \/11_7 (v 1). By comparing to the above shows that
U1+ 0y
0 =
12 1+ (X%

Therefore what we did above is apply Lorentz transformation again M (v;) on result we
obtained from M (v;) and we obtained a result which also a valid Lorentz transformation.
This means the group is closed under this transformation. We need to show associativity.
Which means

M (v3) [M (v2) M (v1)] = [M (v3) M (v2)] M (07)

M (v3) M (v12) = M (v23) M (v1) (3)
But we found from the above that M (vy) M (v1) = M (v15) results in vy, = 111:1;2 . Therefore
201
we can conclude that left side of (2) which is M (v3) M (v;,) will also result in
U1p + U3
U3y = —————
321 1+ 03012
But vy, = 110 , therefore the above simplifies to
14001
01+02
_ 14+vy01 03
U321 = W
1+vp01

U1+ 0y + 03 (1 + 0201)

1+ VU1 + U301 + U
V1 + Uy + U3 + 03050
— 1 2 3 3v2v1 (3A)
1+ V01 + U301 + V30
And the right side of (3) which is M (vo3) M (v;) also gives

U1 + Ug3

(] =
123 1+ 01023
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. Up+0 . .
But again, vy3 = ——— and the above simplifies to
> ©23 1+v3vp

U+0

U1 2703

_ 1+U302
U123 = 7 w403

1+0—=—

1+U302

_ 01 (1 +U3Uz) + 0y + U3

B 1+ V30 + 010y + 0103
U1 + 030901 + Uy + U3

= (3B)
1+ V30 + U107 + 0103

By comparing (3A) and (3B) we see they are the same. Hence associativity is satisfied. Next

we need to check the inverse property. What this means that for each M (v;) there exist
M1 (v;) such that M (v;) M~! (v;) = I. where the identity in this case is M (0) = I since

1 10
mo ==, )

'

Since M (v) = L (j} U) then M (-v) = L ( 1 —v) and

V1-02 1

~ —-02(1 0
T 1-2210 1

10
o 1)
= M(0)
Which is the identity. Hence we showed that for each M (v;) there exists an inverse M (-v;).

All properties of group have been satisfied. Hence the given Lorentz transformation forms
a group.

2.12.5 Problem 4

Using [Xi, Xj] = chk where ij are the structure constants and a summation over k is implied.

1. Show that c;-‘z- = —cfj
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2. Prove the Jacobi identity [[X;, X;|, X¢ |+ [[X;, X¢]. X:] + [[Xk, Xi1, X;] = 0
3. Show that the Jacobi identity implies ijc?,z + C;'kCZ? + Cfﬂ-CZ? =0

Conditions (1,3) are the only conditions on the structure constants. Any set of real numbers
CZ obeying these two conditions defines a Lie algebra.

solution

21251 Part (1)
The commutator of 2 generators (X;, X;) is linear combination of the generators. Hence
X, X;] = XiX; - XX, = Xy 1)
Therefore, we also have
[ Xi] = XX = XiX; = i )
Adding (1) and (2) gives
(XX = XiX;) + (X;X; = X;X;) = kX + chX

0= X; (ci; +c§-‘i)

0= ci.‘j + c}‘i
ci; = ¢}
212.5.2 Part (2)
Applying the commutator relation
X, Xi] = X;X; - X;X;
Let LHS of the Jacobi identity be A. Applying the above to each term in A gives
A= [(XX; - XiX), X + [(XiXe - X X)), X0 ] + [(6X0 - XX, X 1)

We want to show that A = 0. Now, applying commutator relation again each term of the
above gives for the first term

[(x:X; - X;X;), Xi | = (XX, - X,X3) Xge = Xp (XX, - X,X))
= XZX]Xk - X]Xle - XleX] + XkX]XZ (2)
And for the second term in (1)
[(XXk - X X)), Xi| = (X5 = XiX)) X; = X; (XX, - X X))
= XiXi X; - Xi X X; - XXX + XiXi X (3)
And for the third term in (1)
[(XeX; = XiXi), X;| = (X5 = XiXe) X; = X; (XX - X Xp)
= X, X;X; - Xi X X; - XX X; + XX X (4)
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Substituting (2,3,4) back into (1) gives
A = (XiX;Xp - XXXy — X XiX; + XX X))
+ (XXX - XXX - XX Xi + XiXi X))
+ (XXX, - XX X; - XX X; + XX X,)

We see that all terms cancel each other. Hence A = 0 which is what we wanted to show.

21253 Part (3)
The Jacobi identity is
(1% 5] e+ {3 %], X+ [ X3, )] = 0

Applying [Xi, Xj] = cg]-Xl on each term in the LHS above gives, where the summation index
| is used in each term, which is OK to do since the terms are separated from each others

0= [c X, Xi | + [cl-le, i+ [chixi X ]
[Xl/ Xk] t+c k [XIIX] + ckz [Xl/ ]]

Now, applying [Xi, Xj] = Cjj " X, again on each term above and now using 7 as the summation
index gives
0= clkX +c kClz X+ cklcl]
[

I .m
= ( ]clk + Cicli + CriClf ) X

l m I m )
= CjiCl + CiCli + Cricly

Which is what the problem asked to show.
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2.12.6 Key solution for HW 12

() 9= [54123] 9,2 [21534]

WM"' wf“ j)l/{, j ?) g = 32 or g)g - 7‘71?
Angwers ﬁf/ 4 ;zf]7
C[/leck.‘

9,9 < [5”41523][5”””% [“3“’]

[er4 QJ’][;III,?‘IJS[K/Z?/[{]
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@1 -(.7) A (zo)ﬁ (74)

L)ﬂ\/g,

g The  duct Hat z =21

>
>
})
!

>
>
[5Y
)

The 1hverye, are /Jf,z -/53, /}{ :/'
H ence Thiu v a Jroup.
The 0»‘7 Lroper sub groups ore

(Ta} (LAS (T Ay (T A A
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@ M(VJ)M(UI) l” v, )(l V-?) ( )( V7

/ LtV Vs i+ "2,

f(?-v'l)ﬁ‘ Vzl) Vv, + Vv, A2

VF’"
l‘*"n
Defme Vi
} V"'VL
l—v“VVL
2
=, ) (v, +2VV *Vz)
(V_)_V)L (‘[T;ZV)VL"' V) Vl) ( J v
[)«rV,V:_) {)"’ 2
2
vy, ]~V,7)(I“Vz)
! 4'V1.LVZ - Vs = ,,_(,-/}_’—
= — s ()-f V‘VL)

() + U, V;_)
(l"’ U) VL)z
- S
T v [)~V,1)()’sz)

clo Sure, Asre cfa‘}i vl ‘77 o lover ‘IAVDM. Ww'l'ro:,e

Thuy
W} 71'[/0/)"&4,”'/' on, T = /M[o) Vs The ld[fyﬂLV*/l

~ ~1
The invevwe for each 6)8;«&]" e m o v) = M(~V](
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@ [XA'J XJ]’-'

i

X,j XJ' -~ X] X;

b
@ [X, %] = =[x, %)= = <

& [[x ] x] (%50 xc ] [0 X”']'Xj]:
/
[ X - X - X) X - X;V]—f[x‘j)(k“xl\,)(j) X[]'\L[X‘»X;‘X;X"—)ij
> ‘) ") .

o XXXy T XXX T X Xo Xy Xn X5 X,

\ —X’X "'X;Xh‘X’
+XJthX;—xh.xjxn’ - X5 YTk J

- X» + X - X"‘X
v XXX X X Xj X5 Xn X J h

These 2l cancel /Oau}"W)/p T e O,

@ [[x,x] x] + (055 Jo [0 ] %) =6

2 A Loy
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O = C;J,R [Xéj Xh] + C)'lh [Xp/ X;]+ Chﬁ; [X[/ XJ’]

N L \
C'['h, ><m C/.; XM C’(f XM

) (C‘J' Con Ci’h Cpr 7 Cui Czj)Xm

f;hca hone OTL ’n\c, Xm av e Z Ers
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3.1 Exam 1

Local contents
[3.1.1 questions|

3.1.1 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics
Quiz 1: Wednesday 27 February 2018 from 1:25 to 2:15 pm.
1. (5 pts) Solve the differential equation

€T 1
y = Y

& U
2. (5 pts) Find the harmonic conjugate to the function

S
ZL'Zer2

z+1
/022—2de

where the contour C' is the unit circle.

3. (5 pts) Evaluate

4. (5 pts) Find the poles and their residues of the function

eZ
22 + 72

Figure 3.1: Questions, exam 1
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3.2 Exam 2

Local contents
[3.21 questions| . . . ... ... 283

3.21 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Quiz 2: Wednesday 10 April 2019 from 1:25 to 2:15 pm. Only pencil or pen
and paper are allowed.

1. (5 pts) Evaluate the integral

2T
Fflz) = / df 6(sin* 0 — z)
0
2. (5 pts) Evaluate the integral
fi) /'°° cosz dz

= | o @rap+t?
where a and b are real constants.
3. (5 pts) A function f(z) is defined on the interval —L < z < L such that
it equals 1/(2¢) when |z| < € and is zero otherwise, with € < L. (In the limit

¢ — 0 this represents a §-function, but do not take this limit.) What is its

Fourier tyauidform?
Se~es

4. (5 pts) Find the eigenvalues of the matrix

10
11
11

O =

What is the eigenvalue corresponding to the eigenvector (1,0,-1)7

Figure 3.2: Questions, exam 2
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3.3 Final exam

Local contents
[3.3.1 questions| . . . . . . ...

3.3.1 questions

UNIVERSITY OF MINNESOTA
School of Physics and Astronomy

Physics 5041 — Mathematical Methods for Physics

Final Exam: Thursday 9 May 2019 from 12:30 to 3:30 pm. Only pencil or
pen and paper are allowed.

1. (5 pts) Find the eigenvalues and normalized eigenvectors of the matrix

0 e
()

2. (8 pts) The second order differential equation z2u” + fl@)w + glz)u =0
with f and g real functions is satisfied by u = z™ exp(iz™). What are f(z)
and g(z)?

3. (5 pts) The metric for the surface of a globe of the earth can be read off
from the distance formula ds? = a2dA2 + a® cos A d¢p? where ) is the latitude
and ¢ is the longitude. The metric of a flat map of the world with Cartesian
coordinates z and y would be ds® = dz® + dy®. However, this does not prop-
erly represent the geometry of the globe. Therefore we make a cylindrical
projection defined by # = a¢, y = asin . Find the metric for the and y
coordinates. Where is the distortion of the globe the greatest and where is
it the least?

4. (5 pts) Evaluate the following integral by contour integration when &2 < 1

/2” de
o Ll+kcosf

5. (5 pts) Starting with the series representation

Im() = ; Rl T (113; 1) @)mm

prove the following identity

m d —m _
x az [35 Jm(x)J = —Jm1(z)
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6. (8 pts) Let cfj be the structure constants for a group G. Define a set of
matrices by (M;)x = -cfj = c?i, meaning the matrix M; with rows labeled
by j and columns represented by k. Show that these matrices satisfy the
same commutation relations as the generators of the group. This is called
the adjoint representation of the Lie algebra. It may be useful to recall a re-

lationship that you derived in homework 12, namely o+ G - chyclf = 0.
7. (4 pts) Consider a group consisting of the matrics

22 0 z 0
a=(59) ==(5 %)

where z = ¢27/3 along with the identity I. What are the characters of the
three matrices? How many classes are there?
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