HW 7
Physics 5041 Mathematical Methods for Physics
Spring 2019
University of Minnesota, Twin Cities

Nasser M. Abbasi

November 2, 2019 Compiled on November 2, 2019 at 10:28pm [public]


mailto:nma@12000.org

Contents

[l__Problem 1|

2 Problem 2|
2.1 Part (a) .
2.2 Part (b)| .

3__Problem 3
(3.1 Appendix|

4 Problem 4



1 Problem 1

1. (5 pts) Evaluate the integral

™ 2
/ da:/ dy 0(sin )6 (22 — y?)
0 1

Figure 1: Problem statement

Solution

T 2
I:fO (fl 5(sin(x))6(x2—y2)dy)dx

Since 6 (sin (x)) does not depend on y we can move it from the inner integral to the outside
integral

T 2
I= fo (S(Sin(x))( fl 6(x2—y2)dy)dx 1)

Now we need to evaluate.
2
I, = f 6(x2—y2)dy
1

This is in the form of IZ f (y) 0 (g (y)) dy where now f (y) =landg (y) = x2— yz. Therefore

the roots of ¢ (y) are +x. We see that x has to be in the range of 1--- 2, since that is where
y is defined over. Hence the root —x is outside this range and can not be used. So there is
only one root which is +x. Now, using the result obtained from last HW which says

2 B f(yo)
Jrlr)ols (v))du= (o)

Therefore integral I, becomes

Where vy, = x is the root and where g’ (y) = —2y and where f (y) = 1. Hence the above
becomes

I, = L(6(9(—1)—6(x—2))
2 |x|



Where we added (0 (x —1) — 0 (x — 2)) to insure that x is 1 < x < 2. Using this result in (1)
gives (we do not need to write |x| any more since x > 0)

I:j:Zl—x(G(x—l)—6(x—2))(5(sin(x))dx

2 1 .
- fl 20 (sin (1) dx

Let f (x) = zl_x’ g (x) = sin (x), then the above in the form

_ f (xo)
I—ff(x (x)t;lx Z|g(X|

Where x; are the zero of g (x) = sin (x) inside the range x =1 --- 2. But there are no zeros of
sin (x) in this range. Therefore this leads to

I=0

[ (fzé(sin(x))é(xz—yz)dy)dx=0
0 1

In other words



2 Problem 2

2. (5 pts) Consider the linear response formula

() = / Gt — ) F(t')dt
When the input is F(t) = e”*6(t) the output is z(t) = (1 — e *)e”*. What
is G(w)? What is the output if F(t) = Foo(t)?

Figure 2: Problem statement

Solution

2.1 Part (a)

Since
Fourier transform of output

(1)

G =
(@) Fourier transform of input
Assuming causal system, then the output x (f) is x (f) = (1 - e_“t) e~*6 (t). In other words,
we added unit step O (f) to indicate it also starts at t = 0, since the input starts at t = 0.
Therefore the above definition becomes

[7 x(t)yetdt

Gw) == —% ;

[ F(peietat

f_ * (1 - e‘“t) e MO (1) e i@t t
[T e Mo () eietdt

L"" (1 _ e—at) oMot gy
= = ‘ (2)
£ e—/\te—zwtdt




But

f * (1 _ e—at) e Meiwt Jy — f
0

(o) . (o) .
e—/lt e—zwt dt — f e—at e—At e—za)t dt
0 0

_ f * o tAiw) gy _ f * ot vio) gy
0 0

e—t(/\+i(u) A e—t(a+}t+iw) &
= +|—
[—(A+ia))0 a+/1+ia)L
. 700 1 R
— —HA+iw) + —tHa+A+iw)
(/\+ia))[€ ]0 a+/\+iw[e ]0
1 R
—t/l —zta) + —tHa+A) ,—itw
(/\+za))[ ]0 a+/\+ia)[e ¢ ]0
With the assumption that A > 0, > 0, then the above simplifies to
°° , -1 1
1- —at) ,—At —la)tdt: 0-11+ ———[0-1
j(;( ¢ )e ¢ (/\+ia))[ | a+ )\+a)[ |
3 1 1
(A +iw)  (a+A+iw)
_(a+A+iw) - (A +iw)
(A +iw) (@ + A+ iw)
a
= 3
A +iw)(a+ A +iw) )
And
f * oM pmiot gy — f > o tA+io) g
0 0
e—t(/\+i(u) &
~ |- (/\ +iw) |
[ —HA+iw) ]
(A + 1a)) 0
Since we assumed that A > 0, then the above simplifies to
00 ) -1
—At —za)tdt — 0-1
fo ©e Gxiay 071
— (4)
(A +iw)

Substituting (3,4) into (2) gives the transfer function

a
G(a)) _ (/\+ia))(¢i¢+A+ia))
(A+iw)

1So that input does not blow up with time, and its follows that output also decays with time, hence @ > 0



Therefore

a
a+A+iw

Gw) =

2.2 Part (b)
If the input is F (t) = Fy0 (¢) then the output is

x(t) = foo G (t—t') Fod (') dt
= FyG (b (4A)

Hence we just need to find G (t) which is the inverse Fourier transform of G (w) we found
above.

1 00 o .
) = — la)td
G® ZnJ:ma+/\+iwe @

a 00 eia)t
S
2n J_o (@ + A) + iw
To integrate the the above, we will use complex contour integration. Let w = z, hence the
above becomes

G(t): ifoo eizt

2nd_o (a+ A) +iz z

izt
Therefore f(z) = (a+e/1)+iz' The pole is at iz = —(a+ A) or z = i(a + A). Since a + A > 0,

then the pole is in upper half plane. Lets find out where we will put the half circle, if it will

go on the upper half or lower half. Since numerator is ezt = eZ(XHy)t = ¢Ze7Yt and therefore,
since t > 0, then we want to choose the upper half circle, since there y is positive, which
will cause the numerator to go to zero as R — oo. This implies there is one pole inside the
upper half plane, we all what we need to do is find the residue at zy =i (a + A).

f(z) = (aj;% The contribution from
Cr goes to zero as R

pole at i(a + \) goes to oo

Rz

Figure 3: Contour integration used for finding inverse Fourier transform



Hence

o 00 izt o
) e (2 D
(Zﬂ)f—oo(a+/\)+izz 21 ni Y} Resicue

But, since zy = i(a + A), then
Residue (zg) = lim (z - zp) f (2)
z—z(
eizt

= 1 -1 A) —m—
z—n'l(gh)(z ia+A) (@+A)+iz

' it ' z—i(a+A)
= ( lim e* ) lim ———
z—i(a+A7) z—i(a+A7) (Ct + /\) +1z
Applying I’Hopitals gives

. 1
Residue(zo)z( lim eth)( lim —,)

z—i(a+A) z—i(a+A) 1

=—i lim €%
z—i(a+A)

— _ie—(a+/1)t

Now that we found the residue, then from (5)

) izt
(5 ) e = () 2
— ae—(a+}t)t
We have found G (f)
G (t) = ae @+t t>0
From (4A), the response is
x (t) = FoG (1)
= aF,e~@Mtg (1)

()



3 Problem 3

3. (5 pts) By using the integral representation
1

T o

27
Jo(7) /0 cos(x cos 6) df

find the Laplace transform of .J,.

Figure 4: Problem statement

Solution

Using

1 270
Jo (x) = —f cos (x cos ) dO
2t J

Hence Laplace transform is

o(s) = fo " o () e

1 00 271
= — f (f cos (x cos 0) d@) e~ dx
27'( 0 0

Changing order of integration

5 1 2 e

Jo(s) = — f (f cos (x cos 0) e_sxdx) de

2m 0 0
LetI = fw cos (x cos 0) e™**dx. This is solved by applying integration by parts twice
Let u = cos (xcos 0),dv = e™*, hence du = —cos O sin (xcos 0) ,v = —?. Therefore
I =[uv]y —f vdu
0

1 o 1 «
= [cos (x cos 0) 7] " — S cos 0 f e sin (x cos 0) dx
0

1 cos 0

f e % sin (x cos 0) dx
0

=-- f e~ sin (x cos 0) dx
0

(1)



Integration by parts again, let sin (x cos 0) = u,du = cos 0 cos (xcos 0) ,dv = e, v = —?,
and the above becomes
1 e o 00
[==--— o’ [uv], —f vdu)
S S 0
1 6( 1 oo 6
i B [sin (x cos O) ey + &8 f cos (x cos 0) e‘sxdu)
5 5 S 0
1 cosO( 1 cos 0
= - - ——[0] + I
5 S S 5
3 1 cosO [cos 61
s 5 S
3 1  cos? 91
s s2
Solving for I gives
cos? 0 1
I+ ——1I=-
S 5
cos? 0 1
I(1 5 = -
5 5
s2 + cos? 0 B 1
s2 s
2 + 2 0
(s coS _q
S
S
I=- 2
$% + cosc 60
Therefore
L CoSs (x CcOoSs 8) e dx = m (2)

Substituting (2) in (1) gives

b= [ gydo
0= on 0 S%+cos?(6)

Since the above is an even function, we can rewrite as

e

- 2 rz S
Jo(8) = 7 j(; s% + cos? () 40

The above can be solved using contour integration or using standard method of integration
using substitution which I think is simpler here.

Multiplying numerator and denominator of Jo (s) above by sec? (0) gives

s 28 7 sec2(0)
Jos) = i L s2sec? (0) + 1d6
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Let u = tan (6). When 6 = 0,u = 0 and when 6 = g,u = oo. Since du = dOsec? (0). Hence
the above integral becomes, since sec? (0) =1 + tan? (0) =1 + u?

R 25 1
=— —d
Jo(s) e j(; s2sec? (0) +1 "
But sec? (0) =1 + tan? (0) = 1 + u? therefore the above becomes
R 2s 1
Jo(s) = — f ———du
° T Jy s? (1 + uz) +1

25°°

ys (1+s2 +52u2 !
1
52(1+52)
52
2s [
e
52

=,
25 J;‘x’

Tt

du

()

becomes

), hence the above

Sl

3.1 Appendix

This part contains attempt made using contour integration. For reference and not for grad-

ing.

Solve

R 1 2n s
]0(5)—Zf0 ————d0

s2 + cos? (0)
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z+z71
)= 2

- 1 d
b= d——5=

B 27 2 74771 2 iz
54 + 2

3 1§ 4s dz
=3
" 452+(z+1) =

Let z = ¢/, then dz = izd6, and cos (0 , hence the above integral becomes

B 14s § z P
- 2n 2.2 2 27
4sez4 + (z +1)
Did not complete.

Alternative solution

Jo(x) = %fon cos (x cos ) dO

d . . .
Let cos O = u, hence £ = —sin 0. But cos? O+sin® 6 = 1, therefore sin® 6 = 1—cos? 6 = 1-u2.

Hence sin0® = V1 —u2. When 0 = 0,u = 1 and when 0 = 7,u = -1, therefore the above

integral now can be written as

—1 _d
=1 ool

1 fl () du
= — COS \XUu
TTJd_q \/1 _ uz

Since the integrand is even, then the above becomes
du

2 1
JM@=;LcwmnﬁT§

And the above is what will be used as starting point. I could not solve this using complex
contour integration, which is probably would have been easier if I knew how to do it, but
instead solved it using substitution as follows.

Changing the argument from x to a gives

2 1 d
]MM=;LC%WM :

1—u?
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u is arbitrary inside the integral so we can rename it back to x and the above becomes

2 1 d
Jo@ == fo cos (ax) x/1f—xz

Which is the same as (by renaming the argument again, since it better to use t with Laplace
by convention, just for notation sake)

Jo (at) = %j: cos (atx)

dx

V1 - x2

Now, the Laplace transform of ], (at) is

o6 = [ oty
:fooo (% fol cos (artx) \/flic_xz)e‘s’fdt
2 (! dx L
:;\[(; (fo cos (atx) \/1——952)8 tdt

Changing order of integration gives

. 2 1 0o B 1
Jo(s) = ;f(; (j; cos (atx)e tdt) \/1__xzdx

But l;oo cos (atx) e™!dt is the Laplace transform of cos(atx) which is from tables m

Hence the above simplifies to

- 2 s 1
== d
Jo ®) T fo $% + a?x? *

1—x2
25 1 1
= — dx
T Jy (32 + azxz) V1 — 2
3 2s a%
T 2aVa? + s2
1

VaZ+s?

But we did the Laplace transform of ] (at), which is the same as ] (ax) and to get Laplace
transform of ], (x), we just need to set @ =1 in the above result, which gives

fo (s) =

1+ 52
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4 Problem 4

4. (5 pts) A reasonably accurate description of the atomic contribution to
the dielectric function is

i

w? — 24y;w

e(w) = 1+w]2gzw2
J

i~

There are f; electrons per molecule with binding frequency w; and damp-
ing constant 7;. The oscillator strengths f; obey the sum rule }°; f; = Z
which is the total number of electrons per molecule. Using the imaginary part
of e in the dispersion relation, show that the real part is correctly reproduced.

Figure 5: Problem statement

Solution

fi

— w? = 2iyjw

e(a)):1+a)§z 5
i @

It is enough to work with one term in the sum above and verify what is being asked on
that term. Then it will be valid for the sum. Hence we will use the following as the starting
relation

2
a) .
e(w)=1+— fsz' j=1,2,3,-
Wi — e = 21y
2
CU .
=1- 2 (1)

(a)2 — a)]2) - 2iyjw

It is assumed that  is much smaller than w. In the above w is the variable quantity and
wj, Wy, yj are given parameters with known values for the problem
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Oscillator
' . Plazma strength per
Dilectric frequency electron

func;c\ion \\ /

W2 f;
E(CU):].—I_ ) P

2 .
W —w=—217v;w
J 7

applijd field l \

electron damping
(EM) binding per electron
frequency

frequency

Figure 6: Physical meaning of terms involved

The real and imaginary parts are found by multiplying numerator and denominator by
complex conjugate of denominator

a2 (@ —wf) + 2070
(@2 - @) - 2iyj) (w2 - wf) + 2ipj0)
wpfi(@® - @) + 200w f;
(w2 ) - (2iy0)
wpfi(@® - f) + 2y wif;

(a)2 - a)jz)z + 4)/]-261)2

€(w)=1-

I i (@-wf)  2iyeclf
= 2 2
(w2 - a)Jz) +4ytw? (a)z - w}z) +4ytw?
2 2_ 2
|y i (@?*-af) | l. 2yjwwpf
2 2
(a)z - cu]z) + 4y]2w2 (a)z - a)Jz) +4y2w?
Hence we see that
w2 fi(w? - w?
Re(e(w)) =1- il . ) j=1,2,3,- (1)
2 2
(a)2 - W ) +4yiw?
2viww?f;
Im (¢ (w)) = — Y@@yt j=1,2,3,- )

(a)7- — a)jz)z + 4y2w?
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Now, the dispersion relations for the above are, as derived in class notes

Re (e (@) = 1 + % (P.V) f " de’ 3)
1 ® Re (e (@’
I (e @) = ~— (P.V.) f_ %dw’ )

The question is asking to use (2) in (3) in order to obtain and verify (1).

Substituting (2) into (3) gives

Im(e(w’))

203y’ f;

(a)’)2 - w]z)z + 4y? (a)’)2

dw’

1~ 1
Re(e(a))):l—;f_ooa),_a) (

2ywif; e 1 ’
1— fo]f ( / ) . a)z zdw/ (5)
e oo (W —w ((a)’) _ CUJZ) + 47/2 (@)
To find the poles in (5), it is easier to start from the original function
wpfj
2

w? = 2iyjw - W]

. b1 2y 1 \/ . \2 >
The roots of the denominator are 71, = o E vaz —4ac = - 5 (—21yj) + 4a)j =
iy + % —4)/}?' + 46()]72 =1y £ /a)]z - )/}7'. Hence after multiplying by the complex conjugate

as we did above, we obtain the new term which is w? + 2iyiw - a)jz. This one has roots

i g (21' -)2+4w2——i-+ w? — 2. Therefore, w that the poles for th
34 = 2 x5 )/] ]— ]/]_ i )/]. ereiore, € see a epoeso e
[0)

— 7 , 2 2

- , 2 2

w
= —jy. — 2 _ 42
Ta =71 =@ =Y

N

We now need to handle the term

in (5) in order to find all the poles. To do this, we

(w"-w)

use
1 1
— = +imd (w’ — w)
w-w-IiIA w-w
1 1

— = —ind(w' —w
W -w+iA W -w ( )



16

Where A is very small quantity. Adding the above two equations gives
1 1 2

— + — =
W -w-IiIAN v -w+iA W -w

1 1 1 1
W -w E(a)'—(a)+iA) +a)’—(a)—iA))
Where in the above final steps we let A" — 0 for n > 1 since A is very small. The above is
what we will use in (6). Hence (5) becomes

L vepfi 1 1 W
Re(e(@)=1-—_ f_oo(a)’—(w+iA)+a)’—(a)—iA))((w’—rl)(a)’—rz)(a)’—f’g)(a)'—7’4)

:1_7/0);%fjf°° a)’—(a)—iA)+a)’—(a)+iA)( @’
21 J_o (@' = (@ +iA)) (@' = (w —iA)) \(0" = 11) (0" = 12) (" = 13) (" = 1g)
_qYenfi r (20’ - 20) ( o
2n J_o (@' = (0 +iA)) (@ = (@ —iA)) \(@’ = 17) (0" = 12) (@' = 73) (" = 1q)
Va);%fj ® (cu’)2 -ww’
=1 - d 4
: T j:oo (" =15) (" =76) (" = 11) (" = 12) (@ = 73) (@ —7y) “

(5A)

There are 6 poles in total

— 3 2 2
4] —l')/]'+1,0)]- —)/]

= jy. — 2 _ 42
=0 m Y Y]

r3 = —lyj + 1/a)jz - y]z
ry = -y - w/a)]-z - )/]2

s = w + 1A

re = @ —IiA
Three of the above poles are in lower half plane, and three are in the upper half plane. Here
is a diagram which shows the location of the poles. Recalling that A is small quantity.

)da)’

)da)’
)da)'
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3(s)
(] A T
° °
rs = w + 1A
°
> R(s)
°
Te = W — 1A
° °
T4 r3

Figure 7: Location of the 6 poles

We will use the following contour

Need to find residues

Let R — Cr

<

y
Y
v
B

=

Figure 8: Countour used for the integral

The integrand which is a function of @’ is analytic except for the 3 poles in the upper half.
Let the integrand be g (w’), then using residue theorem gives

R
lim $g()dz= lim (P.V.) f g(@)dw’ + lim [ g(@)dz
R—o R— o0 R R

= 27 Z Residue
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Hence
R
lim (P.V.) f g(@")dw’ =27 3 Residue— lim [ g(@)dz
R—o0 R R—00 Cr

Since the denominator in (5A) has higher powers of @’ than in the numerator (6" order vs.
2" order), then this shows that limg_, L g (z)dz — 0, and the above reduces to
R

(P.V)) f " ¢ do = 2mi Y Residue ®8)

Therefore we just need to find the three residues at rq,7,,75 in order to find the integral
above.

(a)’)Z -ww’

Residue(n) =l @1 G @ v @ (@~ @ —m @ ) @ 9 @ 1)

= lim (w) -ww’
Y o (@ = (@ +iA)) (@7 = (w = i) (" = 12) (@ = 73) (@ —74)

(iy/ + 4 le - yj) -w (i}/f + 4 mjz - yJZ)
(i;/l + a)fz - };]Z —(w+ iA)) (i;/l + a)fz - ylz —(w— iA)) (iy/- + 4 [a)jz - y]2 - rz) (iyi Jw ]2 - y/z - r3) (W/ + [m - 74)
(% + Jo? ) 7”(W f?-1?)

+

(iy/ + 4 lez - y]2 —(w+ iA)) (iy/ + 4 leZ - y]2 —(w - iA)) (i)/j + \/u)j - 7// - (ly] \/m/ v ) (1)/] + \/m/z - '- - (—l)/]' \/w] - )) (1)] \/w] - )// ( iyj = a)/ - vjz))
2

_ (iyj + 4 lmlz - y/z) -w (i;/j + 4 a)/-z ylz)

(z‘;// + a)fz - y]z —(w+ iA)) (z‘y// + mjz - ylz —(w~ iA)) (iyj + \/mjz - y]2 —iyj+ \/m/Z - yjz) (iyi + \/”]z ;/2 +iyj— \/{) ;]2) (iyj + \/mjz - yjz +iyj+ \/a)jz - ylz)

Hence

(i;/j+1/a)j2—y]) —a)(z)/]+,/ 2)
(i;/]-+ w]»z—)/]z—(a)+iA)) (iyj+ cujz—y]2 zA))( Ja) —y]) 2iy; (217/]+2,/a) —;/])

9)

Residue (1) =

And

(w’)2 -ww’
(@’ = (w +iA)) (0" — (w —iA)) (@’ = 1r1) (@' —12) (W' —13) (W —14)

- lim ((u’)2 - ww’
w'—ry (@ = (@ +iA)) (@' = (0 = iA)) (@' = 11) (@ = 13) (@ = 14)

e L L T L R R LR R A
(m-m—(u) +iA)) (i)’j_ wf-y,z—(w—iA)) (iy; wF = yF —iyj - \/ar, —),2) (% \/wf—V] +iyj— Jw? —V])(W] R =7+ iy \Jo? -}f)

Residue(rp) = lim (0’ —1p)
(H/AVYZ

Hence
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(i)/j - . /a)/z - y]z —(w+ iA)) (i)/l- -\ /a)]z - yjz —(w - iA)) (—21 /a)]Z - yjz) (21')/]- -2, /a)]z - )/12) (Zi)/j)

(10)

Residue (ry) =

And finally

(a)’)2 -ww’
@ =1 @ =10 @ ~ ) @ = 12) @ = 15) @ = 1)

(a)’)2 -ww’

Residue (r5) = lim (w’ —75)
W' >3

= @ @ —m @ —r) @ — 1)@ — 1)

(w +iA) - @ (w +iA)
(@ +iA = (w; = iA)) (@ +iA = 17) (@ +iA = 1) (@ + A = 13) (@ + A 1,)

B w? — A% + 2iwA - w? - iAw

@in) (cu Lin- (iy]- n \/ﬂ)) (cu Lin- (i)/]- - \/ﬂ)) (a) LiA- (—iyj N W)) (a) FiA- (—i;/- -y
)

—

iwA — A?
(2iA)(a)+iA—iyj— ,/w]-z—yz)(a)+iA—i)/j+ ,/a)jz—;/jz)(w+iA+i)/]-— ‘/a)]-z—y]z)(cu+iA+i)/j+ Joz =72

(11)

We found all residues for I. Hence
f°° (a)’)2 -waw’
—oo (@ = 15) (W = T16) (W —11) (@ = 17) (W = 73) (W —74)
Where )} Residue is given by adding (9,10,11) giving

dow’ = 2mi 2 Residue

2 Residue =
(iyj +Jof =7 (0 + iA)) (iyj +Jof =77 (0 - iA)) (21 Jwf ~ 7/]2) (2y)) (21';/]- +2Jw?f - yjz)
2
(1= 7] o (1,2 )
+

(7= JJor =72 = @+ i) (i = P = 2 = (@ = ) (-2 = 2) 209, - 2 Jo? - 32) (2i7)

iwA — A2

(ZiA)(a)+iA—i)/j—,/a)j2—y]2)(a)+iA—iyj+,/cujz—yjz)(a)+iA+i7/j—1/a)]-2—)/]2)(a)+iA+iyj+,/w]2—y]2)

Therefore (5A) becomes

+

Re(e (@) =1

2
a) .
Y@pf; (27ti) Z Residue
Tt
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To make some progress, I had to simplify the )} Residue by assuming y is very small

compared to w; and hence terms such as a)j2 - )/].2 — w;. Using this gives

(i + w')z - iy + w)

Residue =
& s (i + wj = (@ +i0)) (iy) + @) - ( = D)) (2wy) (20;) (24y; + 20)
+ (i - a’) w (iy; - w)
(17 = @y = (@ + i) (i) = @) = (@ = i8)) (=20) (21 - 20) (2i;)

s iwA - A
(2iA)(w+iA iyj - )(a)+1A 1yj+a)]~)(cu+zA+1y] )(a)+1A+zy]+a))

Or
—7/]2 + w-2 +2iyjw; - wiyj - ww;
(cuz - 2iwy; - 2ww; = y] + 2iyjw; + ;] )(817/] . 8)/] )
—y] + a) = 2iyjw; — iwy; + Ww;
(wz —2iwy; + 20w - 7/ = 2iyjw; + w; ) (8)/] i+ 8iyjw; )
. iwA - N
(2iA)(a)+iA iyj— )(a)+1A 7/]+a)j)(a)+1A+1y] )(a)+zA+1y]+a))

Z Residue =

Expanding the denominator in 3rd term above, lots of terms cancel since they contain higher
powers of A. Removing all terms that contain A? or higher gives

—yf + a)-2 +2iyjw; — wiyj — ww;
(a)2 = 2iwy; - 20w, — y] + 2iyjw; + w3 )(81)/] = 8)/] )
—7/] +a) - 2iyjw; - 0y + Ww;
( - 2iwy; + 20w; - y] 2iyjw; + w; ) (8)/] i+ 8iyjw ; )
N iwA
2ihw* + 4idw?y? — 4ifw2w? + 2iAyt + 4ilyiw? + 2idw}

Z Residue =

+

Removing terms that contain only )/]2 since y; is small gives
2 . .
wj +2lyjwj — wiy; - Ww;

(a)2 - Ziwy] 2w; + 2iyjw; + ©; )(81)/] - 8)/] )

= 2iyjw; — iwy; + Wwj

( 21a)7/] + 2a)a) - 2iyjw; + w; ) (87/]  + 8iyjw; )
wA

+
20w + 4Aw2y? — AAw?w] + 20y} + 4AyFw? + 20w}

E Residue =

+
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Canceling all terms with A)/]z, A)/;L in them, since both are small gives

a) +2iyjw; — wiy; - Ww;
2 Residue = .
(a)z —210)7/] 2ww; + 2iyjwj + W] )(81)/] ? - 8)/] )
- 2iyjw; - iwy; + Ww;
+

( - 2iwy; + 2a)a) - 2iyjw; + w; ) (8)/] i+ 8iyjw ; )
N wA
20wt + 4A0?yF ~ AAw?w} + 200}

Canceling A in last term gives

a) +2iyjw; — wiy; - Ww;
2 Residue = .
(a)z —Zza))/] 2ww; + 2iyjwj + w; )(81)/] 7= 8)/] )
- 2iyjw; - iwy; + Ow;
+

( 210))/] + Zwa) 21)/] i+ w; ) (8)/] 4+ 81)/] ; )
@

4 292 _ 4,)2,)2 4
20% +dwy; — 4w w] + 2w

Expanding
—8w?ytw; + Biw?yw? + 161@7/] + B2wyw? —16iwyjw? — 16y w? - 24ytw? + Siyw}

2 Residue =

- 2iyjw; - za))/]- +ww;

8a) ;/] w; + 8iw? Vjw; —1610)7/] +32a)y a) +16iwyjw; —161)/3a)2 +247/]a) +817/] ;
)

4 292 _ 4a20? 4
20% + 40%y; — 4w W] + 2w);

Removing terms with )/]3 and higher, since y is small gives

a) + 2iyjw; a)zy]

Z Residue = ]
—8w? y] + 8iw? y] +32a);/ 161a);/] ; —24)/]a) +81)/] ;
- 217/] i~ 1a)y] + a)a)]
8a) y] w; + 8iw? y]a) +32a)7/ a) +16za)7/]a) +24)/ a) +817/] j
)
4 24,2 _ 2,2 4
20% + 4wy — 4w Wi + 20;
Or
This term needs to be simplified. Error somewhere
2iw?y? + ia)za)-z +2wyw? - 6iY?w? — iw?
Z Residue = — ( Y Vi%s Vi) J ) + w

4y; (a)z - a)Jz) (—cuz)/]2 w2w? + 4iwyjw? + 9yt a) + wj ) ) (wz _ a)jz)z +4)30?



Hence the result becomes
2
a) .
Re(e(w)) =1- y—ljfj (271) Z Residue
T
The above should come out to be as shown in (1) which is
(@-o?)

Re (€ (@) =1 - w2f; /

2
2 _ 2) 2.2
w* - w?) +4yiw
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I was not able to fully simplify the first term in )] Residue above, I seem to have made an
error somewhere and not able to find it now, but the second terms looks OK. All complex i

terms should cancel out since the result must be real.
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