HW 4 Physics 5041 Mathematical Methods for Physics Spring 2019 University of Minnesota, Twin Cities

Nasser M. Abbasi

November 2, 2019 Compiled on

Compiled on November 2, 2019 at 10:26pm

[public]

Contents

1	Problem 1	2
	1.1 Part (a)	2
	1.2 Part (b)	3
	1.3 Part (c)	4
2	Problem 2	6
3	Problem 3	7
4	Problem 4	9
5	Problem 5	13

Let C denote the square contour with corners at ± 2 , $\pm 2i$ and which is taken in counter clockwise direction. Use the residue theorem to evaluate the integral $\int_C f(x) dz$ for the following functions

(a)
$$\frac{e^{-z}}{z-i\frac{\pi}{2}}$$
, (b) $\frac{\cos z}{z(z^2+8)}$ (c) $\frac{z}{z+1}$

Solution

1.1 Part (a)

The function $f(z) = \frac{e^{-z}}{z - i\frac{\pi}{2}}$ has a simple pole at $z = i\frac{\pi}{2} \approx 1.57i$, hence it is inside the contour.

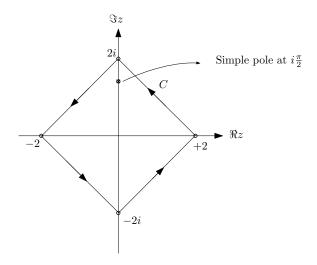


Figure 1: Location of pole relative to contour

Hence by residue theorem

$$\oint_C f(z) dz = 2\pi i \operatorname{Residue} (f(z))_{z=z_0}$$

So we just need to find the residue of f(z) at $z=z_0=i\frac{\pi}{2}$. Since this is a simple plot, then

the residue is given by

Residue
$$(f(z))_{z=z_0} = \lim_{z \to z_0} (z - z_0) f(z)$$

$$= \lim_{z \to i\frac{\pi}{2}} \left(z - i\frac{\pi}{2}\right) \frac{e^{-z}}{z - i\frac{\pi}{2}}$$

$$= \lim_{z \to i\frac{\pi}{2}} e^{-z}$$

$$= e^{-i\frac{\pi}{2}}$$

$$= \cos\left(\frac{\pi}{2}\right) - i\sin\left(\frac{\pi}{2}\right)$$

$$= -i$$

Therefore

$$\oint_C \frac{e^{-z}}{z - i\frac{\pi}{2}} dz = 2\pi i (-i)$$

$$= 2\pi$$

1.2 Part (b)

The function $f(z) = \frac{\cos z}{z(z^2+8)}$ has one simple pole at z=0 which is inside the contour, and a poles at $z=\pm i\sqrt{8}=\pm 2i\sqrt{2}\approx \pm 2.83i$ but these are outside the contour.

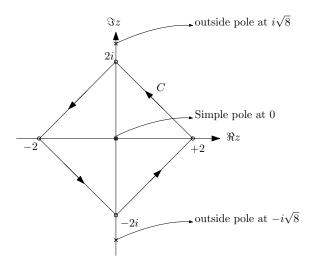


Figure 2: Location of pole relative to contour

Therefore by residue theorem, only the pole inside the contour which is at z = 0 will

contribute to the integral. So we just need to find residue at z = 0

Residue
$$(f(z))_{z=z_0} = \lim_{z \to z_0} (z - z_0) f(z)$$

$$= \lim_{z \to 0} (z) \frac{\cos z}{z (z^2 + 8)}$$

$$= \lim_{z \to 0} \frac{\cos z}{(z^2 + 8)}$$

$$= \frac{1}{8}$$

Therefore

$$\oint_C \frac{\cos z}{z(z^2 + 8)} dz = 2\pi i \left(\frac{1}{8}\right)$$
$$= i\frac{\pi}{4}$$

1.3 Part (c)

The function $f(z) = \frac{z}{2(z+1)}$ has one simple pole at z = -1 which is inside the contour.

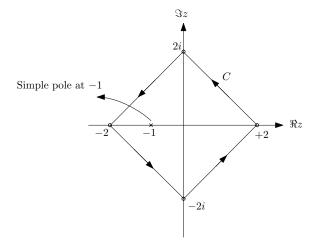


Figure 3: Location of pole relative to contour

So we just need to find residue at z = -1

Residue at
$$z = -1$$

$$\operatorname{Residue} \left(f(z) \right)_{z=z_0} = \lim_{z \to z_0} (z - z_0) f(z)$$

$$= \lim_{z \to -1} (z + 1) \frac{z}{2(z + 1)}$$

$$= \lim_{z \to -1} \frac{z}{2}$$

$$= \frac{-1}{2}$$

Therefore

$$\oint_C \frac{z}{2(z+1)} dz = 2\pi i \left(\frac{-1}{2}\right)$$
$$= -i\pi$$

Assume that f(z) is analytic on and interior to a closed contour C and that the point z_0 lies inside C. Show that

$$\oint_C \frac{f'(z)}{z - z_0} dz = \oint_C \frac{f(z)}{(z - z_0)^2} dz$$

Solution

We see that $g(z) = \frac{f'(z)}{z-z_0}$ has a simple pole at $z=z_0$. Therefore

$$\oint_C g(z) dz = 2\pi i (b_1) \tag{1}$$

Where b_1 is the Residue of g(z) at z_0 . By definition the residue of a simple pole is found as follows

$$b_{1} = \lim_{z \to z_{0}} (z - z_{0}) g(z)$$

$$= \lim_{z \to z_{0}} (z - z_{0}) \frac{f'(z)}{z - z_{0}}$$

$$= \lim_{z \to z_{0}} f'(z)$$

$$= f'(z_{0})$$

Hence (1) becomes

$$\oint_{C} g(z) dz = (2\pi i) f'(z_{0})$$

$$\oint_{C} \frac{f'(z)}{z - z_{0}} dz = (2\pi i) f'(z_{0})$$
(2)

But per lecture notes, page 46 on complex analysis, it shows that

$$f'(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz$$

Substituting the above back into RHS of (2) results in

$$\oint_C \frac{f'(z)}{z - z_0} dz = 2\pi i \left(\frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz \right)$$

Therefore

$$\oint_C \frac{f'(z)}{z - z_0} dz = \oint_C \frac{f(z)}{(z - z_0)^2} dz$$

QED.

Give the Laurent series expansion both in powers of z and in powers of (z-1) for the function $\frac{1}{z^2(1-z)}$

Solution

There is a pole of order 2 at z = 0 and a pole of order one at z = 1. Therefore, there is a Laurent series expansion about z = 0 which is valid in inside a disk or radius 1 centered at z = 0. Around z = 1 there is another Laurent series expansion of the function, which is valid inside a disk centered at z = 0 of radius 1.

Laurent series expansion around z = 0

$$\frac{1}{z^2 (1-z)} = \frac{1}{z^2} \frac{1}{(1-z)}$$

$$= \frac{1}{z^2} \left(1 + z + z^2 + z^3 + \cdots \right) \qquad |z| < 1$$

$$= \frac{1}{z^2} + \frac{1}{z} + 1 + z + z^2 + z^3 + \cdots$$

We see from the above that the residue at z=0 is 1 which is the coefficient of $\frac{1}{z}$ term.

Laurent series expansion around z = 1

Let u = z - 1, hence z = u + 1 and the function $\frac{1}{z^2(1-z)}$ in terms of u becomes

$$\frac{1}{(1+u)^2(-u)} = \frac{-1}{u} \frac{1}{(1+u)^2} \tag{1}$$

But $\frac{1}{(1+u)^2} = (1+u)^{-2}$. Applying Binomial expansion $(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \cdots$ which is valid for |x| < 1 then we see that for n = -2 we obtain

$$(1+u)^{-2} = 1 + (-2)u + \frac{(-2)(-2-1)}{2!}u^2 + \frac{(-2)(-2-1)(-2-2)}{3!}u^3 + \cdots$$

The above is valid for |u| < 1 or |z - 1| < 1 or 0 < z < 2. Simplifying the above gives

$$\frac{1}{(1-u)^2} = 1 - 2u + 3u^2 - 4u^3 + \cdots$$

Substituting the above back into (1) gives

$$\frac{-1}{u}\frac{1}{(1+u)^2} = \frac{-1}{u}\left(1 - 2u + 3u^2 - 4u^3 + \cdots\right)$$
$$= \frac{-1}{u} + 2 - 3u + 4u^2 - \cdots$$

But since u = z - 1 then the above becomes

$$\frac{1}{z^2(1-z)} = \frac{-1}{z-1} + 2 - 3(z-1) + 4(z-1)^2 - 5(z-1)^3 + \cdots$$

We see from the above that the residue of f(z) is -1 at z=1.

In summary

- 1. Laurent series around z=0 is $\frac{1}{z^2}+\frac{1}{z}+1+z+z^2+z^3+\cdots$ which is valid inside disk centered at z=0 of radius 1
- 2. Laurent series around z=1 is $\frac{-1}{z-1}+2-3(z-1)+4(z-1)^2-5(z-1)^3+\cdots$ which is valid inside disk centered at z=1 of radius 1

Note that there is another Laurent series expansions that can be found, which is for the region $1 < |z| < \infty$, which is outside a disk of radius 1 centered at z = 0. But the problem is asking for the above two expansions only.

Evaluate the integral $\int_0^\infty \frac{dx}{1+x^4} dx$

solution

Since the integrand is even, then

$$I = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{x^4 + 1} dx$$

Now we consider the following contour

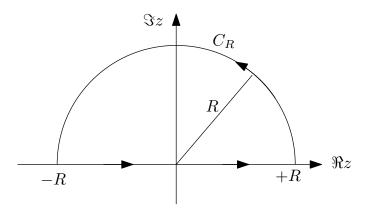


Figure 4: contour used for problem 4

Therefore

$$\oint_C f(z) \, dz = \left(\lim_{R \to \infty} \int_{-R}^0 f(x) \, dx + \lim_{\tilde{R} \to \infty} \int_0^{\tilde{R}} f(x) \, dx\right) + \lim_{R \to \infty} \int_{C_R} f(z) \, dz$$

Using Cauchy principal value the integral above can be written as

$$\oint_C f(z) dz = \lim_{R \to \infty} \int_{-R}^R f(x) dx + \lim_{R \to \infty} \int_{C_R} f(z) dz$$
$$= 2\pi i \sum_{R \to \infty} \text{Residue}$$

Where \sum Residue is sum of residues of $\frac{1}{z^4+1}$ for poles that are inside the contour C. Therefore the above becomes

$$\lim_{R \to \infty} \int_{-R}^{R} f(x) dx = 2\pi i \sum \text{Residue} - \lim_{R \to \infty} \int_{C_R} f(z) dz$$

$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} dx = 2\pi i \sum \text{Residue} - \lim_{R \to \infty} \int_{C_R} \frac{1}{z^4 + 1} dz$$
(1)

Now we will show that $\lim_{R\to\infty}\int_{C_R}\frac{1}{z^4+1}dz=0$. Since

$$\left| \int_{C_R} \frac{1}{z^4 + 1} dz \right| \le ML$$

$$= \left| f(z) \right|_{\text{max}} (\pi R)$$
(2)

But

$$f(z) = \frac{1}{\left(z^2 - i\right)\left(z^2 + i\right)}$$

Hence, and since $z = R e^{i\theta}$ then

$$\left| f(z) \right|_{\max} \le \frac{1}{\left| z^2 - i \right|_{\min} \left| z^2 + i \right|_{\min}}$$

Using the inverse triangle inequality then $|z^2 - i| \ge |z|^2 + 1$ and $|z^2 + i| \ge |z|^2 - 1$, and because |z| = R then the above becomes

$$|f(z)|_{\max} \le \frac{1}{\left(R^2 + 1\right)\left(R^2 - 1\right)}$$
$$= \frac{1}{R^4 - 1}$$

Therefore (2) becomes

$$\left| \int_{C_P} \frac{1}{z^4 + 1} dz \right| \le \frac{\pi R}{R^4 - 1}$$

Then it is clear that as $R \to \infty$ the above goes to zero since $\lim_{R\to\infty} \frac{\pi R}{R^4-1} = \lim_{R\to\infty} \frac{\frac{\pi}{R^3}}{1-\frac{1}{R^4}} = \frac{0}{1} = 0$. Equation (1) now simplifies to

$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} dx = 2\pi i \sum \text{Residue}$$
 (2A)

We just now need to find the residues of $\frac{1}{z^4+1}$ located in upper half plane. The zeros of the denominator $z^4+1=0$ are at $z=-1^{\frac{1}{4}}=\left(e^{i\pi}\right)^{\frac{1}{4}}$, then the first zero is at $e^{i\frac{\pi}{4}}$, and the second zero at $e^{i\left(\frac{\pi}{4}+\frac{\pi}{2}\right)}=e^{i\left(\frac{3}{4}\pi\right)}$ and the third zero at $e^{i\left(\frac{3}{4}\pi+\frac{\pi}{2}\right)}=e^{i\left(\frac{5}{4}\pi\right)}$ and the fourth zero at $e^{i\left(\frac{5}{4}\pi+\frac{\pi}{2}\right)}=e^{i\left(\frac{5}{4}\pi\right)}$. Hence poles are at

$$z_{1} = e^{i\frac{\pi}{4}}$$

$$z_{2} = e^{i\frac{3}{4}\pi}$$

$$z_{3} = e^{i\frac{5}{4}\pi}$$

$$z_{4} = e^{i\frac{7}{4}\pi}$$

Out of these only the first two are in upper half plane. Hence since these are simple poles, we can use the following to find the residues

Residue
$$(z_1) = \lim_{z \to z_1} (z - z_1) f(z)$$

= $\lim_{z \to z_1} (z - z_1) \frac{1}{z^4 - 1}$

Applying L'Hopitals rule, the above becomes

Residue
$$(z_1)$$
 = $\lim_{z \to z_1} \frac{\frac{d}{dz}(z - z_1)}{\frac{d}{dz}(z^4 - 1)}$
= $\lim_{z \to e^{i\frac{\pi}{4}}} \frac{1}{4z^3}$
= $\frac{1}{4(e^{i\frac{\pi}{4}})^3}$
= $\frac{1}{4e^{i\frac{3\pi}{4}}}$

Similarly for the other residue

Residue
$$(z_2) = \lim_{z \to z_2} (z - z_2) f(z)$$

= $\lim_{z \to z_2} (z - z_2) \frac{1}{z^4 - 1}$

Applying L'Hopitals

Residue
$$(z_2) = \lim_{z \to e^{i\frac{3}{4}\pi}} \frac{1}{4z^3}$$

$$= \frac{1}{4\left(e^{i\frac{3}{4}\pi}\right)^3}$$

$$= \frac{1}{4e^{i\frac{9\pi}{4}}}$$

$$= \frac{1}{4e^{i\frac{\pi}{4}}}$$

Now that we found all the residues, then (2A) becomes

$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} dx = 2\pi i \left(\frac{1}{4e^{i\frac{3\pi}{4}}} + \frac{1}{4e^{i\frac{\pi}{4}}} \right)$$
$$= 2\pi i \left(\frac{\sqrt{2}}{4i} \right)$$
$$= \frac{1}{2}\sqrt{2}\pi$$

But $\int_0^\infty \frac{1}{x^4+1} dx = \frac{1}{2} \int_{-\infty}^\infty \frac{1}{x^4+1} dx$, therefore

$$\int_0^\infty \frac{1}{x^4 + 1} dx = \frac{1}{2} \left(\frac{1}{2} \sqrt{2} \pi \right)$$
$$= \frac{1}{4} \sqrt{2} \pi$$
$$= \frac{2}{4\sqrt{2}} \pi$$
$$= \frac{1}{2\sqrt{2}} \pi$$

Evaluate the following integral $\int_0^{2\pi} \frac{\sin^2 \theta}{a + b \cos \theta} d\theta$ when a > |b|

solution

This is converted to complex integration by using $z=re^{i\theta}=e^{i\theta}$ since r=1. Therefore $dz=ie^{i\theta}d\theta$ or

$$dz = izd\theta$$

In addition,

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
$$= \frac{z + z^{-1}}{2}$$

And

$$\sin^2 \theta = \frac{1}{2} - \frac{1}{2} \cos 2\theta$$
$$= \frac{1}{2} - \frac{1}{2} \left(\frac{e^{i2\theta} + e^{-i2\theta}}{2} \right)$$
$$= \frac{1}{2} - \frac{1}{2} \left(\frac{z^2 + z^{-2}}{2} \right)$$
$$= \frac{1}{2} - \frac{1}{4} \left(z^2 + z^{-2} \right)$$

Using all of the above back in the original integral gives

$$I = \int_0^{2\pi} \frac{\sin^2 \theta}{a + b \cos \theta} d\theta$$
$$= \oint_C \frac{\frac{1}{2} - \frac{1}{4} \left(z^2 + z^{-2}\right)}{a + b \left(\frac{z + z^{-1}}{2}\right)} \frac{dz}{iz}$$

Where the contour *C* is around the unit circle in counter clockwise direction. Therefore

$$I = \frac{1}{i} \oint_{C} \frac{\frac{1}{2} - \frac{1}{4} \left(z^{2} + \frac{1}{z^{2}}\right)}{a + \frac{b}{2} \left(z + \frac{1}{z}\right)} \frac{dz}{z}$$

$$= \frac{1}{i} \oint_{C} \frac{\frac{1}{2} - \frac{1}{4} \left(\frac{z^{4} + 1}{z^{2}}\right)}{a + \frac{b}{2} \left(\frac{z^{2} + 1}{z}\right)} \frac{dz}{z}$$

$$= \frac{1}{i} \oint_{C} \frac{\frac{z^{2} - \frac{1}{4} (z^{4} + 1)}{az + \frac{b}{2} (z^{2} + 1)} \frac{dz}{z}}{z}$$

$$= \frac{1}{i} \oint_{C} \frac{\frac{z^{2}}{2} - \frac{1}{4} (z^{4} + 1)}{az + \frac{b}{2} (z^{2} + 1)} \frac{dz}{z^{2}}$$

$$= \frac{1}{i} \oint_{C} \frac{\frac{2z^{2}}{4} - \frac{1}{4} (z^{4} + 1)}{\frac{2az}{2} + \frac{b}{2} (z^{2} + 1)} \frac{dz}{z^{2}}$$

$$= \frac{1}{i} \oint_{C} \frac{2z^{2} - z^{4} - 1}{4az + 2bz^{2} + 2b} \frac{dz}{z^{2}}$$

$$= \frac{1}{i} \oint_{C} \frac{1}{z^{2}} \frac{2z^{2} - z^{4} - 1}{2bz^{2} + 4az + 2b} dz$$

$$= \frac{1}{i} \oint_{C} \frac{1}{z^{2}} \frac{\frac{1}{b}z^{2} - \frac{1}{2b}z^{4} - \frac{1}{2b}}{z^{2} + \frac{2a}{b}z + 1} dz$$

$$= \frac{1}{2bi} \oint_{C} \frac{1}{z^{2}} \frac{2z^{2} - z^{4} - 1}{(z^{2} + \frac{2a}{b}z + 1)} dz$$

Now we can use the residue theorem. There is a pole at z=0 of order 2 and two poles which are the roots of $z^2+\frac{2a}{b}z+1=0$. Hence

$$I=2\pi i\sum {\rm Residue}$$

First we find the roots of $z^2 + \frac{2a}{b}z + 1 = 0$ to see the location of the poles and if there are

inside the unit circle or not. These are

$$-\frac{b}{2a} \pm \frac{1}{2a}\sqrt{b^2 - 4ac} = -\frac{\frac{2a}{b}}{2} \pm \frac{1}{2}\sqrt{\left(\frac{2a}{b}\right)^2 - 4}$$
$$= -\frac{a}{b} \pm \frac{1}{2}\sqrt{4\frac{a^2}{b^2} - 4}$$
$$= -\frac{a}{b} \pm \sqrt{\frac{a^2}{b^2} - 1}$$

Since a > |b| then $\frac{a^2}{b^2} > 1$ and the value under the square root is real. Hence both roots are real. Roots are

$$z_1 = -\frac{a}{b} + \sqrt{\frac{a^2}{b^2} - 1}$$
$$z_2 = -\frac{a}{b} - \sqrt{\frac{a^2}{b^2} - 1}$$

Now we need to decide the location of these poles. Let $\frac{a}{b} = x$. Where x > 1 since a > |b|. Then the roots can be written as

$$z_1 = -x + \sqrt{x^2 - 1}$$
$$z_2 = -x - \sqrt{x^2 - 1}$$

Now $\sqrt{x^2 - 1}$ is always smaller than x but $\left(\sqrt{x^2 - 1} - x\right)$ can not be larger than 1 in magnitude.

Hence z_1 will always be inside the unit disk. On the other hand, $(\sqrt{x^2-1}+x)$ will always be larger than 1 in magnitude (the sign is not important, we just wanted to know which pole is smaller or larger than 1 only. Therefore we conclude that z_1 is inside the unit disk and z_2 is outside.

Therefore, we need to find residue at z = 0 and $z = z_1$ and not at $z = z_2$. The function f(z) is from above is

$$f(z) = \frac{1}{z^2} \frac{2z^2 - z^4 - 1}{\left(z^2 + \frac{2a}{b}z + 1\right)}$$
$$= \frac{1}{z^2} \frac{2z^2 - z^4 - 1}{\left(z - z_1\right)\left(z - z_2\right)}$$

Residue of f(z) at z = 0

Since this pole is of order n = 2, then

Residue =
$$\lim_{z \to 0} \frac{d^{n-1}}{dz^{n-1}} \left(\frac{(z-z_0)^n f(z)}{(n-1)!} \right)$$

= $\lim_{z \to 0} \frac{d}{dz} \left((z-z_0)^2 \frac{1}{z^2} \frac{2z^2 - z^4 - 1}{\left(z^2 + \frac{2a}{b}z + 1 \right)} \right)$
= $\lim_{z \to 0} \frac{d}{dz} \left(z^2 \frac{1}{z^2} \frac{2z^2 - z^4 - 1}{\left(z^2 + \frac{2a}{b}z + 1 \right)} \right)$
= $\lim_{z \to 0} \frac{d}{dz} \left(\frac{2z^2 - z^4 - 1}{z^2 + \frac{2a}{b}z + 1} \right)$
= $\lim_{z \to 0} \frac{\left(4z - 4z^3 \right) \left(z^2 + \frac{2a}{b}z + 1 \right) - \left(2z^2 - z^4 - 1 \right) \left(2z + \frac{2a}{b} \right)}{\left(z^2 + \frac{2a}{b}z + 1 \right)^2}$
= $-(-1) \left(\frac{2a}{b} \right)$
= $\frac{2a}{b}$
Residue at $z_1 = -\frac{a}{b} + \sqrt{\frac{a^2}{b^2} - 1}$

Since this pole is of order 1, then the reside is

Residue =
$$\lim_{z \to z_1} \left((z - z_1) f(z) \right)$$

= $\lim_{z \to z_1} \left((z - z_1) \frac{1}{z^2} \frac{2z^2 - z^4 - 1}{(z - z_1)(z - z_2)} \right)$
= $\lim_{z \to z_1} \left(\frac{1}{z^2} \frac{2z^2 - z^4 - 1}{z - z_2} \right)$
= $\frac{1}{z_1^2} \frac{2z_1^2 - z_1^4 - 1}{z_1 - z_2}$
= $\frac{-1}{z_1^2} \frac{z_1^4 - 2z_1^2 + 1}{z_1 - z_2}$
= $\frac{-1}{z_1^2} \frac{(z_1^2 - 1)^2}{z_1 - z_2}$

Let $\frac{a}{b} = x$, hence $\sqrt{\frac{a^2}{b^2} - 1} = \sqrt{x^2 - 1}$. Therefore we can write $z_1 = -x + \sqrt{x^2 - 1}$ and $z_2 = -x + \sqrt{x^2 - 1}$

 $-x - \sqrt{x^2 - 1}$ and now the above becomes

Residue =
$$\frac{-1}{\left(-x + \sqrt{x^2 - 1}\right)^2 - 1} \frac{\left(\left(-x + \sqrt{x^2 - 1}\right)^2 - 1\right)^2}{\left(-x + \sqrt{x^2 - 1}\right)^2 \left(-x + \sqrt{x^2 - 1}\right) - \left(-x - \sqrt{x^2 - 1}\right)}$$

$$= \frac{-1}{2} \frac{\left(\left(-x + \sqrt{x^2 - 1}\right)^2 - 1\right)^2}{\left(-x + \sqrt{x^2 - 1}\right)^2 \sqrt{x^2 - 1}}$$

But $\left(-x + \sqrt{x^2 - 1}\right)^2 = x^2 + \left(x^2 - 1\right) - 2x\sqrt{x^2 - 1} = 2x^2 - 2x\sqrt{x^2 - 1} - 1$ and the above becomes

Residue
$$= \frac{-1}{2} \frac{\left(2x^2 - 2x\sqrt{x^2 - 1} - 1 - 1\right)^2}{\left(2x^2 - 2x\sqrt{x^2 - 1} - 1\right)\sqrt{x^2 - 1}}$$
$$= \frac{-1}{2} \frac{\left(2x^2 - 2x\sqrt{x^2 - 1} - 1\right)\sqrt{x^2 - 1}}{\left(2x^2 - 2x\sqrt{x^2 - 1} - 1\right)\sqrt{x^2 - 1}}$$
$$= \frac{-1}{2} \frac{4\left(x^2 - x\sqrt{x^2 - 1} - 1\right)^2}{\left(2x^2 - 1 - 2x\sqrt{x^2 - 1}\right)\sqrt{x^2 - 1}}$$
$$= -2 \frac{\left(\left(x^2 - 1\right) - x\sqrt{x^2 - 1}\right)^2}{\left(2x^2 - 1 - 2x\sqrt{x^2 - 1}\right)\sqrt{x^2 - 1}}$$

Expanding gives

Residue =
$$-2\frac{(x^2 - 1)^2 + (x\sqrt{x^2 - 1})^2 - 2(x^2 - 1)x\sqrt{x^2 - 1}}{(2x^2 - 1 - 2x\sqrt{x^2 - 1})\sqrt{x^2 - 1}}$$

= $-2\frac{(x^2 - 1)^2 + x^2(x^2 - 1) - 2(x^2 - 1)x\sqrt{x^2 - 1}}{(2x^2 - 1 - 2x\sqrt{x^2 - 1})\sqrt{x^2 - 1}}$
= $-2\frac{(x^2 - 1)(x^2 - 1 + x^2 - 2x\sqrt{x^2 - 1})}{(2x^2 - 1 - 2x\sqrt{x^2 - 1})\sqrt{x^2 - 1}}$
= $-2\frac{(x^2 - 1)(2x^2 - 1 - 2x\sqrt{x^2 - 1})}{(2x^2 - 1 - 2x\sqrt{x^2 - 1})\sqrt{x^2 - 1}}$

Dividing numerator and denominator by $(x^2 - 1)$

Residue =
$$-2 \frac{\sqrt{x^2 - 1} \left(2x^2 - 1 - 2x\sqrt{x^2 - 1}\right)}{\left(2x^2 - 1 - 2x\sqrt{x^2 - 1}\right)}$$

= $-2\sqrt{x^2 - 1}$

Since $x = \frac{a}{b}$ then the above becomes

Residue =
$$-2\sqrt{\frac{a^2}{b^2}-1}$$

We found all residues. The sum is

$$\sum \text{Residue} = \frac{2a}{b} - 2\sqrt{\frac{a^2}{b^2} - 1}$$

From the above we see now that

$$I = \frac{1}{2bi} \oint_C \frac{1}{z^2} \frac{2z^2 - z^4 - 1}{\left(z^2 + \frac{2a}{b}z + 1\right)} dz$$

$$= \frac{1}{2bi} \left(2\pi i \sum_{b} \text{Residue}\right)$$

$$= \frac{1}{2bi} \left(2\pi i \left(\frac{2a}{b} - 2\sqrt{\frac{a^2}{b^2} - 1}\right)\right)$$

$$= \frac{\pi}{b} \left(\frac{2a}{b} - 2\sqrt{\frac{a^2}{b^2} - 1}\right)$$

$$= \frac{\pi}{b} \left(\frac{2a}{b} - \frac{2}{b}\sqrt{a^2 - b^2}\right)$$

$$= \frac{2\pi}{b^2} \left(a - \sqrt{a^2 - b^2}\right)$$

Hence the final result is

$$\int_0^{2\pi} \frac{\sin^2 \theta}{a + b \cos \theta} d\theta = \frac{2\pi}{b^2} \left(a - \sqrt{a^2 - b^2} \right)$$