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Chapter 1

Introduction

1.1 syllabus

1.2 Links

MATH 4567, Section 002, Spring 2019, MWF 3:35-4:25, Vincent Hall 2
Instructor: Jiaping Wang; Office: Vincent Hall 230; web page: www.math.umn.edu/~jiaping
Office hours: MWF 2:30-3:20 (subject to change)

Course title and a brief description: Fourier Analysis

Fourier series and Fourier transform. Convergence. Fourier series, transform in complex form.
Solution of wave, heat, Laplace equations by separation of variables. Sturm-Liouville systems.
Applications.

Prerequisites: 2243 or 2373 or 2573

Text and material: Fourier Series and Boundary Value Problems, 8th edition, by Brown
and Churchill, McGraw Hill Publisher. The course will cover Chapters 1-8, and selected material
from Chapter 11.

Course work: The class time will be devoted to lectures where you should gain understanding

of the basic concepts and methods, realize connections to other parts of mathematics you have
learned (linear algebra), and eventually build a global picture of the theory of (generalized)
Fourier series. You will broaden your knowledge and develop solving routines out of class: you
are expected to carefully study the text and solve a number of exercises. Assigned homework is
the minimum you can do for your practice.

Assignments: Homework assignments will be posted on my web page and collected in class on
‘Wednesday. One homework (the worst grade or a homework missed for any reason) will

be dropped at the end. No late homework will be accepted. You may discuss homework problems
with other students, however, you are supposed to work out and write down the solutions yourself.
Please write complete solutions clearly on one side of letter-size sheets. Questions or objections

to grading must be brought up within a week after the graded work is returned to you.

Exams and grading policy: There will be three one-hour exams covering appropriate parts of
the material. No books, notes or technology are allowed for the exams. Make-up exams are
discouraged, but can only be given for legitimate reasons such as illness or university
sponsored events (written documentation and, except for medical emergencies, prior approval
are required).

Grading scheme: homework 25%, 3 midterm exams 75% (25% each).
Exam dates: Monday, February 25; Monday, April 1; Monday, May 6.
Incomplete will only be assigned at extraordinary circumstances (such as hospitalization), and only

if a major part of the class work has been completed. Academic dishonesty in any portion of the
course shall be grounds for assigning a grade of F or N for the entire course.

1. [Instructor web page|



http://www-users.math.umn.edu/~wangx208/

1.2. Links CHAPTER 1. INTRODUCTION
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21 HWI1

Local contents
2.1.1 Section 5, Problem 3| . . .. ... ... ... . ... ... .. . 4

2.1.2 Section 5, Problem 5| . . . . ... ... ... .. . o 11
[2.1.3 Section 7, Problem 1| . . . .. ... ... .. .. ... .. .. ... 12
2.1.4 Chapter 1, Section 7, Problem 3[ . . . . ... ... ... ... .. ... 14
2.1.5 Section 7, Problem 4 . . . ... ... ... . ... 15
2.1.6  Chapter 1, Section 8, Problem 1) . . . .. .. ..... ... ... ....... 19
2.1.7 Chapter 1, Section 8, Problem 6] . . . . . .. ... ... ............ 20

2.1.1 Section 5, Problem 3

Problem Find (a) the Fourier cosine series and (b) the Fourier sine series on the interval
0 < x < 7 for f(x) = x?

Solution

Part a

2

The function x“ over 0 < x < 7 is

fIx_] 1=x"2;
Plot[f[x], {x, @, Pi}, PlotStyle - Red, GridLines - Automatic,
GridLinesStyle - LightGray, Ticks » {Range[@, Pi, 1/4Pi], Automatic}]

10+
8l

61

~
NS

Figure 2.1: Original function

The first step is to do an even extension of x? from 0 < x < 7t to =71 < x < 7 which means
its period becomes T = 27. The even extension of f (x) is given by

f¥) x>0

fE(x):{f(—x) x<0

flx_] 1= x"2;

Show[Plot [f[x], {x, @, Pi}, PlotStyle - Red],
Plot [f[x], {x, -Pi, @}, PlotStyle » {Red, Dashed}],
PlotRange -» {{-Pi, Pi}, Automatic}, Ticks » {Range[-Pi, Pi, 1/4Pi], Automatic},
GridLines - Automatic, GridLinesStyle - LightGray]
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Figure 2.2: Even extension of original function

The next step is to make the above function periodic with period T' = 27 by repeating it
each 27 as shown below
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Clear[f];

flx_/; -P1<x<Pi] :=x"2

flx_ /3 x=2Pi] := f[x-2Pi];

flx_ /; x<-Pi] :=f[x+2Pi];

Plot[f[x], {x, -4Pi, 4Pi}, Ticks -» {Range[-4Pi, 4Pi, Pi], Automatic},
GridLines - Automatic, GridLinesStyle - LightGray, PlotStyle - Red]

10+

-4 7T =37 =27 -7 T 27 3 47T

Figure 2.3: Even extension of original function

Now that we have a periodic function above with period T = 27 then we can find its
Fourier cosine series. Which is just the cosine series part of its Fourier series given by

ap ) 27
fx)~—+ Z a, cos (—nx)
2 = T
Since T = 2m, the above becomes
Fx) ~ ”2—0 + Y a, cos (nx) 1)
n=1

Where

Gy = éfng(x)dx
2 2

21
2 2
=Z£27nf(x)dx

:%f;f(x)dx

Because f (x) is an even function (we did an even extension to force this), then the above
can be written as

2 (7 2 (7 2 (3\" 2(m\ 2
= — d:—f 2d = —|— =2 | )=Z2x2 9
%0 nj(;f(x)x Tt Ox * 7'((3)0 n(3) 3" )

And for n > 0 then

T
1 2 271
a, = @ f_zf(x) oS (?nx) dx
> 2
But T = 27t and the above becomes

1
a, = —
Tt

f " (%) cos (nx) dx

But f (x) is even functiuon and cos is even, hence the product is even and the above
simplifies to

2 T
Iy = — fo x? cos (nx) dx

sinnx

Integration by parts. udv = uv— f vdu. Let u = x2,dv = cos nx, therefore du = 2x,v =
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The above becomes

2
a, = — ([uv] - fvdu)
I
_ E([xzsmnx] _f szmnxdx)
TC n 0 0 n

: 7T
2= nx] — 0 and the above simplifies to
0

2( 2 )
a, = — ——f X sin nxdx
TC nJo

-4 .
= — x sin nxdx
nrt 0

Since 7 is integer, the term [x

The integral £n x sin nxdx is evaluated by parts again. Let u = x,dv = sinnx - du=1,v =

cosnx
and the above becomes

a, = % ([uv] - fvdu)

-4 ( cosnxT* 1 (&
= — —[x ] +—f cos nxdx
nm n ly nJdy

0
—4 1— _
= — |-=mcos (nm) + = [sin nx]
nmn| n n? 0
= cos (n)
4
= (-1)" (3)

Substituting (2,3) into (1) gives
2 2

fx) ~ i + 2 iz (-1)" cos (nx)

+4 Z cos (nx)

The convergence is fast due to the term n_2' This plot show the approximation as the
number of terms increases. After only 4 terms we see the approximation is very close to
original function x?> shown in dashed lines in the plot below.
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7(2 (_1) n
fApprox[x , nTerms_] := ? + 4Sum[ 3 Cos[nx], {n, 1, nTerms}];
n
Gride
Partition[
Table[Plot [ {x~2, fApprox[x, n]}, {x, -Pi, Pi}, PlotStyle -» {Dashed, Red},
PlotLabel -» Row[ {"Using ", n, " terms"}1]1, {n, 1, 4}], 2]
Using 1 terms Using 2 terms
\ 10
Using 3 terms Using 4 terms
\ 10 ’ \ 10
8 8
6 6
4 4
2 2
-3 -2 -1 1 2 3 -3 -2 - 1 2 3
Figure 2.4: Fourier approximation as more terms are added
Part b

Because we want to find the Fourier sine series now, then the first step is to do an odd
extension of x? from 0 < x < 7 to =7t < x < 71 which means its period is T = 27t. Odd
extension of f (x) is given by

x>0
x<0

f(x)

fo(x): _f(_x)

fx_] 1= x"2;

Show [Plot [f[x], {x, ©, Pi}, PlotStyle - Red],
Plot[-f[-x], {x, -Pi, 0}, PlotStyle -» {Red, Dashed}],
PlotRange -» {{-Pi, Pi}, {-10, 10}}, Ticks » {Range[-Pi, Pi, 1/4Pi], Automatic},
GridLines -» Automatic, GridLinesStyle - LightGray]

10

Figure 2.5: Odd extension of x?

The next step is to make the function function periodic with period T' = 27 by repeating
it each 27 as follows
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Clear[f];

flx_/; -Pi<x<Pi] :=If[x<0, -x"2, x"2];

flx_/; x>Pi] := f[x-2Pi];

flx_/; x<-Pi] := f[x+2Pi];

Plot[f[x], {x, -4Pi, 4Pi}, Ticks » {Range[-4Pi, 4Pi, Pi], Automatic},
PlotStyle » Red, Exclusions » {x == -3Pi, x == -Pi, x == Pi, x == 3Pi}, Mesh - None,
GridLines - Automatic, GridLinesStyle - LightGray]

Figure 2.6: Making the odd extension periodic

Now that we have a periodic function with period T = 27 we can find its Fourier sine
series, which is just the sin part of its Fourier series, given by

— 27
~ N osinlZ==
f (%) ;::1 nsm( T nx)
But T = 27, and the above becomes
f () ~ 3] by sin (1) (1)
n=1

Where
T
1 2 (27
b, = Tf_zf(x) sm(Tnx) dx
2

2
But T = 27, and the above becomes

b, = %f_if(x) sin () dx

But now f (x) is odd function (we did an odd extension) and sin is odd. Hence product is
even. Therefore the above simplifies to

b, = % fo " F () sin () dx

2 T
== f x? sin (nx) dx
TJo

— COosnx

Integration by parts. udv = uv—f vdu. Let u = x?,dv = sin nx, therefore du = 2x,v =
The above becomes

2

— ([uv] - fvdu)

T

2 5 COS X T T cosnx
— |- [x ] + f 2x dx
TC n ) 0 n

2( 1 2 ("
- _(——[nzcosnn]+—f xcosnxdx)
Tt n nJy

27 4

= —— COSNTT + — X cos nxdx
n nn Jy

by

The integral £nxcos nxdx is evaluated by parts again. Let u = x,dv = cosnx — du =
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sin nx
1,0= - and the above becomes

2 4
b, = _r COSNTT + — ([uv] - fvdu)
n nm

/—_L
27 4 sinnx 1" sin nx
= —— COSNT + — [x ] —f dx
n nm n I n
27 4 ]
== COSNTT — p sin nxdx
21 , 4 [ coS nx]”
= —— wm——
- cos o " A
2 4
- cosSnT + pc [cos nx]z]T
n noT
2
- COSNTT + . [cosnmt —1]
n n
21 " "
=-— (1) +E<(_1) -1)
27 4
== ()" - = (1- (1))
_ n+1 4
——(1) - ——(1-¢1)")
Substituting (2) into (1) gives
= (271 4 .
fe~ X (7 ()" - ——(1- (—1)“)) sin (1)
n=1

= 212 Z ( " (ni 3 (1- (—1)”)) sin (nx)

(2)

In this case, we needed more terms to obtain good convergence. Because the periodic
extension is now discontinuous at x = n7t where 7 is odd. In part (a), the periodic extension
was continuous over the whole domain. The following plot shows we needed more terms
compared to part (a) to start seeing good convergence. This shows the result for one period
from —7t to 7. The blue color is for the original odd extended function and the red color

is its Fourier seriesapproximation.
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Using 1 terms

10}

-10}

Using 3 terms

10+t

-10+

Using 5 terms

10}

Using
10

Using
10

5

-5+r

-10

Using
10

2 terms

4 terms

Figure 2.7: Fourier approximation of odd extension of x> over one period

n- = FApprox[x_, nTerms_] :=

1
2 72 Sum[ (— (-1)"™1
ni

(nm)?

flx ] :=1If[x<0, -x"2, x"2];
Gride
Partition[
Table[Plot[{f[x], fApprox[x, n]}, {x, -Pi, Pi}, PlotStyle » {Blue, Red},
PlotLabel -» Row[ {"Using ", n, " terms"}1], {n, 1, 10}], 2]

(1- (—1)")) Sin[nx], {n, 1, nTerms}];

Figure 2.8: Code used to draw Fourier approximation for odd extension for one period

Due to discontinuous in the periodic extended function, there will be a Gibbs effect at the
points of discontinuities x = n7t where 7 is odd, where the approximation converges to the

10
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average of the function at those point. To see this, here is a plot showing the result for the
case of 16 terms over 3 periods instead of one period as the above plot showed.

Using 16 terms

10 i A~ Gibbs effect
5 i converges to
" average at x=1
| I 1 1
-5 |

-5

I Gibbs effect
-10 /

Figure 2.9: Fourier approximation of odd extension of x? over 3 periods to see Gibbs effect

1

fApprox[x_, nTerms_] := 2 n? Sum[(— (-1)™t - (2- (—1)")) sin[nx], {n, 1, nTer‘ms}];
nrw (nm)3

Clear[f];

flx_/; -Pi<x<Pi] :=If[x<0, -x"2, x"2];

flx_ /3 x>Pi] :=f[x-2Pi];
flx_ /3 x<-Pi] := f[x+2Pi];
Plot[{f[x], fApprox[x, 16]}, {x, -3Pi, 3Pi}, PlotStyle » {Blue, Red},
PlotLabel -» Row[ {"Using ", 16, " terms"}], Exclusions » {x == -3 Pi, x == -=Pi, X == Pi, x == 3Pi}]

Figure 2.10: Code used to draw the above plot

2.1.2 Section 5, Problem 5

Problem By referring to the sine series for x in example 1 and one found for x? in above
problem show that

8 i": sin(2n—-1)x

x(m—x)~— O<x<m
= -1y

Tt

Solution

From example 1, the Fourier sine series for x defined on 0 < x < 7, was found to be

00 (_1)n+1
x~22—sinx O<x<m
n
n=1

11
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By writing x (7t — x) = 7tx — x? then we see that

00 n+1 00
X —x2 ~m (2 Z (_121 sin x) - (2712 2 (L (-1 -

(1 - (—1)”)) sin (nx))

n=1 n=1 nm (”7-()3
o) _1 n+1 ) 1 . 2 , .
= E 27’c( 71 sinx — 2 272 (E (-1 - ) (1 -(-1) )) sin (1)
n=1 n=1
&, ey 1 2 |
- ;::1 [271 - 2772 (E (-1)"* - o (1 —(-1) ))] sin (1x)
&, 0™ 2m 4 NE
- 2::1 [m S - — (1) Ty == (1-(-1 )] sin (11x)
- f} % (1 - (-1)") sin ()
n=1

Now when 71 = 2,4,6, - then (1 - (-1)") = 0 and when n =1,3,5, - then (1 - (-1)") = 2.
Hence the above sum becomes

mx-x2~ )
n=13,5,

8§ «w 1
— Z — sin (nx)
T p=135,- "
Letn =2m—-1. Thenwhenn=1—->m=1,n=3 >m=2,n=5— m =3 and so on.
Hence the above sum can be written using m as summation index as follows

, 8 - 1 .

X — X5 ~ — E ———sin((2m - 1) x)
=1 (2m - 1)

Since summation index can be named anything, then renaming summation index from m
back to n gives the form required

8
nT sin (T’lX)
. noTt

~

8 — 1
X —x2~— Y ———sin(2n-1)x)
n;::len—n?’

2.1.3 Section 7, Problem 1

Problem Find the Fourier series on interval -7 < x < 7 that corresponds to

s
—— -n<x<0
f(X) = nz
> O<x<m
Solution
A plot of the function f (x) over -t < x < 7 is
ClearAll[f, x];
f[x_] :=Piecewise[{{-Pi/2, -Pi<x <@}, {Pi/2,0<x<Pi}}]

Plot [f[x], {x, -Pi, Pi}, PlotStyle -» Red, GridLines - Automatic,
GridLinesStyle - LightGray,
Ticks » {Range[-Pi, Pi, 1/2Pi], Range[-Pi/2,Pi/2,1/4Pi]}]

~
~

IS

Figure 2.11: Plot of f(x) for problem section 7.1

The periodic extension (with period T = 27) becomes (shown for -37 < x < 37)

12
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Clear[f];

flx_ /; -Pi<x<Pi] :=If[x<0, -Pi/2,Pi/2];

flx_/; x>Pi] :=f[x-2Pi];

flx_ /3 x<-Pi] :=f[x+2Pi];

Plot[f[x], {x, -3Pi, 3Pi}, Ticks » {Range[-4Pi, 4Pi, Pi], Automatic},
PlotStyle - Red,
Exclusions - {X == -Pi, x == -=2Pi, x == -=3Pi, x == @, x == Pi, x == 2Pi, x == 3Pi},
ExclusionsStyle -» Dashed, Mesh - None, GridLines - Automatic,
GridLinesStyle - LightGray]

1.5¢
1.0+

1
1
1
1
1
1
1
1
I 05+
1
1
1
'

e

@
B
|

S Y N S P
B

[Py I Sp——
N

=3

|

Figure 2.12: Plot of f(x) for problem section 7.1 after periodic extension

Since the function f (x) is now periodic then its Fourier series is given by
a4~ 2nm . (2nm
f(x) ~ > + ,;1 a,, cos (Tx) + b, sin (Tx)

Where T is the period of the function being approximated which is T = 27 in this case.
Hence the above simplifies to

ao > .
fx)~ >+ ; a, cos (nx) + by, sin (1nx)

Since the function f (x) is an odd function then only b, terms exist and the above reduces
to

f(x) ~ ] bysin (nx) (1)
n=1

Where

T
1 2 - [2nT
b, = mf_zf(x)sm(Tx)alx
> 2
1 TC
- - f F () sin (nx) dx
Tt =Tt
Since f (x) is odd and sin is odd, then the product is even, and the above simplifies to the
Fourier sine series

b, = %j:f(x) sin (nx) dx

= %f: (g) sin (nx) dx

f sin (nx) dx
0

[— CcoS nx ]”

n

0

1
= ——[cosnm —1]
n

1 n+
== [1+ ()"

Therefore (1) becomes

o

fo)~Y; (% (1+ (—1)”“)) sin (11x)

n=1

When n =2,4,6,--- then b, =0 and when n =1,3,5, - then b,, = % Therefore the above

13
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can be written as
(ee]

2
fx) ~ E — sin (nx)
n=135,- "
Letn =2m—-1. Thenwhenn=1->m=1,n=3->m=2,n=5—> m =3 and so on.
Hence the above sum can be written using 7 as summation index as follows

[ee]

fo~ X

= 2m-1

Since summation index can be named anything, then renaming summation index from m
to n gives

sin (2m —1) x)

[0e]

f~2

—2n-1

Since the periodic extension of the original function f (x) is discontinuous at points x = nr,
then the Fourier approximation will converge to the average of f (x) at these points and
Gibbs effect will result at these points as well. The following plot shows the result

sin ((2n —1) x)

Using 8 terms
2

_Y” Gibbs effect

Ax A bt ¥ 2rr\ 3n

Converges
to average at

A discontinuity
'WWW% %Mmﬁ - -

Figure 2.13: Fourier approximations using 8 terms

2
fApprox[x_, nTerms_] := Sum[ 2
n

1 Sin[(2n -1) x], {n, 1, nTer'ms}];

Clear[f];

flx_ /; -Pi<x<Pi] :=If[x<@, -Pi/2,Pi/2];

flx_ /; x>Pi] := f[x-2Pi];

flx_/; x<-Pi] :=f[x+2Pi];

Plot[{f[x], fApprox[x, 8]}, {x, -3Pi, 3Pi}, PlotStyle » {Blue, Red},
PlotLabel -» Row[ {"Using ", 8, " terms"}],
Exclusions -» {X == -Pi, X == -2Pi, x == -3Pi, x == @, X == Pi, x == 2Pi, x == 3Pi},
Ticks » {Range[-4Pi, 4Pi, Pi], Automatic}]

Figure 2.14: Code used to generate the above plot

2.1.4 Chapter 1, Section 7, Problem 3

. . . . 1
Problem Find the Fourier series on interval -7t < x < 7 that corresponds to f (x) = x + sz.

suggestions: Use the series for x in example 2, section 7 and the one for x? found above in
problem Section 5, Problem 3(a).

14
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Solution

Since x is odd, then we can from example 2 use the Fourier sine series for x defined on
—-M<X<T

x~2 Z - ” sin (nx) (-m<x<m) (1)

And since ¥? is even, then we can use the Fourier cosine series found in problem Section

5, Problem 3(a) solved above

2 o ¢ 1\l
x2~%+42%cos(nx) (-t < x <) 2)
n=1

. . 1 . .
Using (1,2), then we can write x + —x2 Fourier series as

X+ x ~( i smnx) i( 42(_) cos(nx))
72
"
72

cos (nx) + —————sinnx
n

& (cos (nx) 2sin (nx))

~ +§](1)”

n

2.1.5 Section 7, Problem 4

Problem Find the Fourier series on interval - < x < 7 that corresponds to f (x) = ¢**
where a # 0. suggestion: Use Euler’s formula ¢’ = cos6 + isin0 to write a, + ib, =

% f 5 f (x)e™dx for n = 1,2,3,---. Then after evaluating this single integral, equate real
Tt

and imaginary parts.

Solution
a9 27 27
e ~ > + ;121 a, cos (Tnx) + b, sm( T nx)
But T = 27t and the above becomes
a (o¢]
e ~ ?0 + Z a, cos (nx) + b, sin (nx)
n=1
Where
1 T
2
do = Tfo(x)dx
= — f e dx
l T lﬂ
_ e T
na )
But em_;ian = sinh (am) hence the above simplifies to
2
ag = — sinh (amn)
mia
And forn >0

T
1 2 2
a, = T j:;f(x) coS (Tnnx) dx
2 2
1 TT
== f e" cos (nx) dx (1)

Let I = f " 6™ cos (nx)dx. Using integration by parts, f udv = uv — f vdu. Let u =

15
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e .
cosnx,dv = e then v = 7,du = —nsin (nx). Hence

I:uv—fvdu

e1x n n
= [cos (nx) —] + — f e™ sin (nx) dx
a aJd_,

ean e—an n 7T
= lcos (nmt) — - cos (nm) ] + — f e™ sin (nx) dx
a a aJd_,

= (1)’

2 (=1)" [e¥" — 77
B a 2

elZTC _ e—ﬂT( n 7T
[— b f ¢ sin (11x) dx
a

Tt

n 7T
+ — f e sin (nx) dx
TC

a

2(-1)" n (r
= 1) sinh (am) + — f e™ sin (nx) dx
a ad_,

Applying integration by parts again on the integral above. Let u = sinnx,dv = ¢** then

e
v= 7,du = ncos (nx) and the above becomes

2(-1)" ax\" L
I= 1) sinh(m'()+% (Sinnxe—) —Ef e“xcos(nx)dx)

a aJ_
-1 ys

2(-1)" 1 :
— n n 7T
=— sinh (am) + - E(Sin (nm) e + sin (nm) e797) — - f e cos (nx) dx]

—Tt

2(-1)" n?
= D sinh (cm)—a—2 f €™ cos (nx) dx
TT

But f " 67 cos (nx) dx = I, the original integral we are solving for. Hence solving for I from
—Tt
the above gives gives

1y 2
I= sinh (am) — —I
a a
2 n
n p—
I+—=I= sinh (am)
a a
2\ 2(-1)"
I(l + n_z) = D sinh (am)
a a
2" sinh (am)
I= i
1+ o)
2a(-1)" sinh (am)
= > (2)
a‘+n
Using (2) in (1) gives
1 s
a, = — f e™ cos (nx) dx
Tt =Tt
a 2 (-1)" sinh (an)
= - 2 2 (3)
T a‘+n
Now we will do the same to find b,
T
1 2 2
by = = f > f () sin(Tnnx) dx
2 2
1 7T
= — f e™ sin (nx) dx (4)
Tt =Tt

Let I = fﬂ e™ sin (nx) dx. Using integration by parts, fudv = uv - fvdu. Let u =

16
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ax
sin (nx) ,dv = €™ then v = %,du = ncos (nx). Hence

I:uv—fvdu

ax 1

= lsin (nx)%] 2z f e™ cos (nx) dx

a

0

eaﬂ e—ﬂn n 7T
- [Sin (n70) S— — sin (n70) ]— " f e cos (1) dx
a a ad_.

n T
=—— f €™ cos (nx) dx
a

—Tt
Now we apply integration by parts again on the integral above. Let u = cosnx,dv = e™

ax
then v = %,du = —nsin (nx) and the above becomes

ax\ 7 T
I= —Z (cos (nx)e—) +Z f e’ sin(nx)dx}

a

1 7T
=—|- (cos (nm) "™ — cos (nm) ™) + g f e™ sin (nx) dx)

=Tt

) an _ ,—amn T
Y cos (nm) (i) + I f e™ sin (nx) dx)
a 2 adJd_,

1 _ n (v :
= —— |- cos(nm) (e —e ") + — f e™ sin (nx) dx
al\a ad_,

2 , n (" :
= —— [ = cos (nm) sinh (an) + — f e™ sin (nx) dx
a ad_,
2 2
- —a—’; (1) sinh (a77) — Z—Z

f e™ sin (nx) dx

-7t
But f " ¢ sin (nx) dx = I. Hence solving for I gives
—Tt

2 2
I= -2 (<1)" sinh (am) - 1
a a

2 2
I+ 0= -= (1) sinh (am)
a a

2

2

1(1 + "—2) = —Z2 (-1)" sinh (an)
a a

2 (-1)" sinh (a)

2
n
1+a—2

2n (-1)"
a2 + n?

sinh (am) (%)

Using (5) in (4) gives
1 TC
b, = — f e™ sin (nx) dx
T J g
_12n(-1)"

_—Sinh aTt
T a% + n? (ar)

17
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Now that we found ag, a,,, b,, then the Fourier series is

e ~ 0120 + ,121 a,, cos (nx) + b, sin (nx)
% sinh (am) & 42 (<1)" sinh (an) 12n(-1)" . L _
~ + 2 - pra— cos (nx) — L (am) sin (nx)
~ %ﬁf”) = sinh (an) E 2 ) - (acos (nx) — nsin (11x))
~ sinh (a) (% + l 21 (12(__,_—1)2 (a cos (nx) — nsin (nx)))
~ m (21a + E a(2 +) (a cos (nx) — nsin (nx)))

Which is what we are requlred to show.

The following plots shows the approximation as more terms are added. We also notice
the Gibbs effect at the points of discontinuities after the original function was periodic
extended. The value 2 =1 was used. Hence this is approximation of ¢* using -m <x <m
as original period.

Using 2 terms Using 4 terms
20 20

-4
Using 6 terms Using 8 terms

20 20¢

15[ 15

10r 10

5[ 5
! V¥ ApS AP ApL AP A ¥ AP
am -3 —2m - 21 3N 4n -4n -3 21 N A 2n 3§ an

Figure 2.15: Fourier approximations using with increasing terms

a=1;

fApprox[x_, nTerms_] :=

7251nhﬂ[aP1] (21 Sum[ = (aCos[nx] -nSin[nx]), {n, 1, nTerms}])
Clear[f];
flx_/; -Pi<x<Pi] :=Exp[ax];
flx_/; x>Pi] := f[x-2Pi];
flx_ /3 x<-Pi] 1= f[x+2Pi];
Gride@Partition[Table[
Plot[{f[x], fApprox[x, nTerms]}, {x, -4Pi, 4Pi}, PlotStyle » {Blue, Red},
PlotLabel -» Row[ {"Using ", nTerms, " terms"}],
Exclusions - {X == -Pi, x == =2Pi, x == -3Pi, X == 0, X = Pi, X == 2Pi, x == 3Pi},
Ticks » {Range[-4Pi, 4Pi, Pi], Automatic},
PlotRange » {Automatic, {-3, 20}}, ImageSize - 300], {nTerms, 2, 8, 2}], 2]

Figure 2.16: Code used to generate the above plot

18
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2.1.6 Chapter 1, Section 8, Problem 1

Problem (a) Use the Fourier sine series found in example 1, section 5 for f (x) = x for
0 < x < 7, to show that
2 00 (_1)1’l+1

23

T
n=1
(b) Obtain the correspondence in part (a) by using expression (11) in section 9 for the
coefficient in a Fourier sine series on 0 < x < ¢

sin nmx (-1<x<1) (1)

Part a
The Fourier sine series found in example 1, section 5 for f (x) = x for 0 <x < 7 is

o0 (_1)n+1
x~2)] ——sinnx (0<x<n) (2)
n=1

Which has period T, = 27 after odd extension. To convert the above to the range -1 <
x <1, then by looking at this diagram

SIS

Figure 2.17: Finding scale for correspondence

/
We see that by symmetry % = xT Hence x = mx’. Therefore we want x — mx” but x” is just
X in the new domain. Hence x — 7x in the new Fourier series. Therefore replacing x by
7ix in (2) gives

(o] (_1)7’l+1
x~2)] —— sinnm 0<x<1) (3)
n=1
. . e e ¥ 1,
Equation (3) is now scaled by multiplying it by — = — giving
2 o0 _1 n+1
x~—z( 11 sin nmx O<x<1) (4)
T n=1

Part b

Expression (11) in section 8 is

b, = %f;f(x)sm(@)dx

Let c =1 and since f (x) = x, then above becomes

1
b, = 2f x sin (n7tx) dx
0

19
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Let u = x,dv = sin (nmx) then du = 1,0 = — cos(nmx)

integral above becomes

1 1
b, =2 (— [x cos ()]} + — f
nm nm J,
1

sin (n7x) !
Tt nm ] 0

-1
=2|—[cos(nm)] + —
nrt n
0

—_—

_ __1 1\ 1 . 1
=2|— [( 1) ]+ o [sin (nmx)],

. Hence udv = uv - fvdu and the

nrc

1
cos (nmx) dx)

2
— _1 n+1
m( )
Hence

o0
X~ Z b, sin nmx
n=1

2 1
~= Z m (1) sin nrmx
T n=1

Which is the same as (1) in part (a)

2.1.7 Chapter 1, Section 8, Problem 6

Problem Use method in example 2 section 8 to show that

sinh ¢ & -1)" nTX nmx
e* ~ +ZSinhCE—( ) (ccos(—)—nnsin(—)) —c<x<c
c c c

A2y (nn)?

Solution

From problem 4 section 7, we know that

o sinh arn . 2sinh an i (-1)"

~

>—— (acos (nx) — nsin (nx)) —n<x<mn (1)
an n Hat+n

To convert the above to the range —c < x < ¢, then by looking at this diagram

Figure 2.18: Finding scale for correspondence

We see that by symmetry, % = x? where x’ is the x in the new range we want, which is

X7 . . s . . . . . XTC
—¢ <Xx <c. Hence x = — or since x’ is just x in the new domain, then this implies x — —

Then replacing x by xTn in (1) gives

awe sinhan_sinhan & (=1)" nmx  (nTx
ec ~ +2 Z > (acos(— | —nsin|— —x<x<c (2
an T a2 +n c c

n=1

We see that the trigonometric terms inside the sum is multiplied by a, hence we replace

20
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that by % in the above. This is the same as — =

o smhc smhc Z (- 1) (i cos (@) sin (@))
c - c c

. Hence letting a = % in (2) gives

Alo

sinhc smhc Z ( (rmx) (nnx))
~ ccos|— | —nmsin| —
c — 2 c c
—+7n
sinh ¢ — (—1) nmx nmx
~ +281nhc2 ) (ccos (—) — 17 sin (—))
c % + mn c c

Which is what we asked to show.
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2.2 HW 2
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2.2.1 Section 11, Problem 4

1L Uy — v
n—0C

(—m, ) as a suim

{Z:} In Chap. 1 (Sec. 6) we expressed a function f(x)in Cp
" fx) = glx) +h(x)
where g
@+ FEE) g VR = F0) = =98
g)= = ST

i i i ies
We then saw that the coefficients a, and b, in the Fourier ser

+ Z {a, cos nx + by sin mx)

n=1

are the same as the coefficients in the Fourier cosine and

respectively,on 0 < x < 7.
essel inequalities (11) and (14) in Sec. 10, write

for f(x)on—w <X <7
series for g(x) and h(x),

(a) By referring to the B

% +Za < f/ [g)P dx

n=1

(N=1L%&

and |
(N = 1|

N ) £ )
W= f [h(x)) dx
n=1 & 0

Then point out how it follows that

a +Z(a,,+b2) < —{/ [f(x)]zdx—i—[ [f(—s)]zds} (N &= |

n=1

{

(b) By makingthe substitution x = —s in thelast integral in part (a), obtain I

inequality
N
4 2Y < — x))dx (N =
8 SR 5 f [f

n=1
TmLlaes ACRY that

Figure 2.19: Problem statement

Part (a)
Writing
a% al 2 2 Tt 2
E+n§an < ;fo [s@)] dx )
N 5 pm
2 = 2
Ebn < nf(; [h (x)] dx ©

22
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Adding (1)+(2) gives
aZ N 2 e 2
5 +7§1(a% +12) < ;fo g + ()P dx

2 @+ FET [ -F0T
P

_ Ef” F2(x) + f2(=x) +2f (x) f (x) s 2 (x) + f2 (—x)—2f(x)f(—x)dx
T nd, 4 4

—ifan(x)Jrfz (=x) + F2 (%) + f2 () dx
= f2f2(x)+2f2(x

_ l(f £ + £2( x)dx)

:l( f(x dx+ [f( s)] ds) 3)

T

Part (b)

Let x = —s in the last integral. Therefore dx = —ds. When s = 0 then x = 0 and whens =1
then x = —m, then (3) becomes
2 N

%+n§(ag+bg) < %(fon [f(x)]zdx+J;:n [f(x)]z(—dx))
:%(fo [f(x)]zdx—j; [f(x)]zdx)

— 0
But £ o f and the above becomes
—TT

2 N 1 T 2 0 2
%OJFE(”’%“LZ’%)S%(L [f(x)] dx+j:n[f(X)] dX)

-~ [ reof e

Tt

23
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2.2.2 Section 11, Problem 6

6. [ Derive the expression
sin (% + Nu)
D) = S ammnaa (w50, =27, £dn, .. )
2sin :2'

for the Dirichlet kernel (Sec. 11)

N
‘I. 1
Dy(u). = 5 + E cos nu

n=1

by writing

i the trigonometric identity
2sinAcosB = sin(A+ B) + sin(A— B)

and then summing each side of the resulting equation fromn = 1 ton = N.

Suggestion: Note that

N i N-1 )
;Sln(i —nu) = *Zﬂﬁln(i‘ +I’£u),

Figure 2.20: Problem statement

We want to show the following (I’ve used x instead of u as it is more natural).

(N +2)4

1 N
§+n§zllcosnx: 2sin§ (1)
Or, similarly, we want to show the following
Sinf + iZsinfcosnx = sin ((N+ l)x) (2)
2~ 2 2

We will now work on the left side of (2) only and see if we can simplify it to obtain the
right side of (2). Writing the LHS of (2) as

xr W X r
sin—+225in—cosnx:sin—+ZZsinACOSB (3)
n=1 2 n=1

Where A = g, B = nx. But sin AcosB = % (sin (A + B) + sin (A — B)). Hence (3) becomes

xr W X xr W
sin—+ZZsinicosnx=sin§+Zsin(A+B)+sin(A—B)

n=1 n=1

i x+§_ (x+nx)+' (x nx)
= Sin — Sin | — Ssin|— —
2 = 2 2

2
ke Snf(oe oo f(o-2))

24
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Expanding few terms to see the pattern shows

P 8 T R T 1 O 0 )

onl(or 322

Jonl(o 2 - {(5-2))

R R (G S R R R
o) )]

ozl

. 1
We see that all terms cancel except for the term before the last term, which is sin ((N + 5) x).

=

+ ...

. (7 . .
(In the above limited expansion of terms, this will be the term sin (Ex) which remains.)

Hence as n — N, the above simplifies to

. X N . (X (X . 1
sm—+Es1n(—+nx)+sm(——nx):sm N+ -|x
2 — 2 2 2

Which is (2) which was obtained from (1). Hence (1) was verified to be valid.

2.2.3 Section 14, Problem 2

e
2./ For each of the following functions, point out why its Fourier series on the interval
—7 < x < 7 is convergent when —x < x <, and state the sum of the serieswhenx = 7

(a) the function
-1 /2 when —7 < x <0,
f(x)_{ /2 when O<ux<m,
whose series was found in Problem 1, Sec. 7;
(b) the function
fx) =e" (a #0),

whose series was found in Problem 4, Sec. 7.
Answers: (a) sum = 0; (b) sum = coshar.

Figure 2.21: Problem statement

Part (a)

The Fourier series for f (x) is convergent since f (x), after periodic extension, satisfies the
3 points of the Fourier theorem in the textbook at page 35

25
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Theorem. Suppose that

[ is piecewise continuous on the interval —7 < x < 7T
[ is periodic, with period 27, on the entire x axis;

773 x_t}—{co < X < 00) is a point at which the one-sided derivatives fi(x) and
T_(x) both exist.

Figure 2.22: Fourier theorem

Point (i) is satisfied since f (x) is piecewise continuous and also point (ii) when doing
periodic extension. Also point (iii) is satisfied, since the left sided and right sides limit
exist at each x.

Clear[f];
flx_/; -Pi<x<Pi] :=Piecewise[{{-Pi/2, -Pi<x<0}, {P1i/2,0<x<Pi}}]
flx_ /3; x>Pi] := f[x-2Pi];
flx_ /3 x<-Pi] :=f[x+2Pi];
Plot[f[x], {x, -4Pi, 4Pi}, PlotStyle - {Thick, Red}, Mesh - None,
GridLines - Automatic, GridLinesStyle - LightGray,
Ticks -» {Range[-4Pi, 4Pi, Pi], Automatic},
Exclusions » {X == -3Pi, x == -Pi, X == @, x == Pi, x == 3Pi},
Mesh - None, ExclusionsStyle - Dashed]

1 1 1.5 1 1
1 1 : 1 1
1 1 1 1
1 1 1 1
1 1 b 1 1
1 1 1.0 1 1
1 1 1 1
1 1 1 1
! ! 0.5F | 1
1 1 1 1
1 1 1 1
1 1 1 1
Il I } } | Il
-4 —'ﬁ‘rr -4 —'('r ):r 2 3:rr 47
1 1 1 1
I I -05+ ! |
1 1 1 1
1 1 1 1
1 1 1 1
I I -1.01 I I
1 1 1 1
1 1 1 1
1 1 1 1
L L =15 L L

Figure 2.23: f(x) after periodic extension

Therefore the Fourier series will converge to the average of the function f (x) at x = 7.
This average is

FEO)+f*) 5
2 2

n
2 _

Part (b)

The Fourier series for f (x) = ¢** is convergent since f (x), after periodic extension, satisfies
the 3 points of the Fourier theorem in the textbook at page 35. Point (i) is satisfied is
piecewise continuous and also point (ii) when doing periodic extension. Also point (iii)
is satisfied, since the left sided and right sides limit exist at each x. Here is a plot, using

1 . .
a=y for illustration
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Clear[f];

a=1/4;

f[x_/; -Pi<x<Pi] := Exp[ax];

flx_ /; x>Pi] :=f[x-2Pi];

flx_/; x<-Pi] :=f[x+2Pi];

Plot[f[x], {x, -4Pi, 4Pi}, PlotStyle » {Thick, Red}, Mesh - None,
GridLines -» Automatic, GridLinesStyle - LightGray,
Ticks -» {Range[-4Pi, 4Pi, Pi], Automatic},

Exclusions » {x == -3Pi, x == -Pi, x == @, x == Pi, x == 3Pi},
Mesh - None, ExclusionsStyle - Dashed,
AxesOrigin -» {0, 0}]

2.0

1.0

05}

-4 -3 =27 -7T k 7T 27 3 47T

. . — ax . . . . — l
Figure 2.24: f(x) = e"* after periodic extension (Using a = 1

Therefore the Fourier series will converge to the average of the function f (x) at x = 7.
This average is

fEO)+ (%) _ e

= cosh (am
2.2.4 Section 14, Problem 3
}.| By writing x = 0 énd x = 7/2 in the representation
S 2 4 < cos2nx ;
SIDXZE—EZMTT (OSASR’)V
established in Example 2, Sec. 14, obtain the following summations:
= 1 | o (DR L 7
lot 4y ] )\ 2] -1 2 4

el e

Figure 2.25: Problem statement

Substituting x = 0 in the given representation gives

2 4 & 1
0=2-2% —
e nnzz:lélnz—l
— 1
—2=-4)]
“an? -1
1 i 1
2~ A1
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And substituting x = g in the given representation gives

2 é i": cos (n)

1==- S
T 14712—1
2 4. (-1D)"
1-2=-Y -
T Z4712—1

2.2.5 Section 14, Problem 6

TTTtAp AT trasas asataasapsav Ly VUL AT

D (a) Use the correspondence

2 (o)
o (=1)"
~?+4 E_l 5 cosnx O<x<m),

found in Problem 3(a), Sec. 5, to show that

s — 1)+l 2 £ 2
Z(nl =711—2 and Zl:%

n=1 n=1

(b) Use the correspondence (Problem 6, Sec. 5)

4 £ 2
% = WE q(nm) —6
X ?—4-821(—1) = cos nx ‘ O<x<m
and the summations found in part (a) to show that
i = nit = Tt d 289 1 zt
=ty L w90

n=1 n=1

Figure 2.26: Problem statement

Part (a)

COS X (1)

1 > (-1)"
x2~§n2+42]1( 5
n=

Letting x = 0 in (1) gives (After doing periodic extension, then x = 0 is now in the
domain).

(1)

i (1)

Multiplying both sides by -1 gives the result needed
2 ( 1)I/l+1

-3
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2
Now we need to obtain the second result 22021 iz = %. Let x = 7 in (1) (After doing

periodic extension, then x = 7 is now in the domain) gives

—n2+4i(_

1)27’1

oo (_1)2n
But anl 7

= EZO 1 12 since the power 21 is always even. This gives the result needed
1 — 1
2= Z —
Tc =
6 2
Part (b)

X ~€+82( I 2 (m) 8 cosnx 2)

Letting x = 0 in (2) gives

7_(4 00 (nn)z (o] (_1)7’1
-— =38 -1)" -6
5 n;l D n# ;1 n*
us . (nm) o (=1)"
Z -8 1 n+1 6
5 ;1 D n# rgl n*
7_(4 0 (_1)n+1 [ (_1)11)
—=8|n? )] +6 ),
5 n=1 n? n=1 n*
_qyntl 2
But from part (a), we found that E;ozl ( 171)2 = 717—2 Using this in the above results in
4 7° & (-1
— 2
£oblE)3
nt 8 S (- 1)
—_ = _n
5
7Z4 4 ( 1)
5
7 ( 1)
——n* =48
15" ,12—:1 n
LA i b’
720 | n*
Multiplying both sides by —1 gives the result needed
7 00 _1 n+1
RIS
720 ~ n
2
Now we need to obtain the second result 2:’:1 % = Z—O. Let x = 7 in (2) gives

4 ) 2 _
_ s Z (-1)" (717:)1—46 (-1)"
n=1

4 ) 2
e oy (M) -6
=—+8 E -1 ———
5 nzl( ) n#
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But (—1)2’1 =1 for all n. The above simplifies to

m — (nn)2 -6
4
nt=—+8 Z 3
n=1
, T ( >, (nm) | ]
n-—=28 6 ), —
5 nz:]l n* 712::1 n*
4t ( <1 1
— =8 nZZ——éz—)
5 n=1 n? n=1 n*
2
But from part(a) we found that Z,T:l % = % hence the above simplifies to
47t 2 1
=8l =]-6) —
o[ [5) o 25
it 1t {1
- _¢ E —_
40 6 —= n*
1 — 1
—— 7t =) —
15 ,Z*l n
1 — 1
4 _
50" = X

Which is the result we are asked to show.

2.2.6 Section 14, Problem 8

L §er1thout actually finding the Fourier series for the even function f(x) = ¥x2 on
—m<x<m, point out how the theorem in Sec. 12 ensures the convergence of that
series to f(x) when —7 < x < 0 and when 0 < x < 7 but not when x = 0.

T =~

Figure 2.27: Problem statement

We first notice that the function f (x) is not differentiable at x = 0

fx_] 1= (x*2)~(1/3);
Plot[f[x], {x, -Pi, Pi}, PlotStyle -» Red, GridLines -» Automatic, GridLinesStyle - LightGray,
Ticks » {Range[-Pi, Pi, 1/2Pi], Automatic}]

Figure 2.28: plot of (x?)!/

This is because, when x; = 0 the left sided derivative is equal to the right sided derivative

lim £() = £ (x0) # Jim () = £ (x0)

X—Xg

x<xg X>X0
Since f’_ (0) = —co while f:r (0) = +o0. The function is therefore piecewise continuous on
each —7t < x < 7 but it is not differentiable at x = 0. But Fourier theorem, looking at point
(iii) in the book, only says that if f’ (xy) exist and if f’, (x() exist, then the Fourier series
converges to the average of f (x) at point x. In this example f’_ (0) = =0 and f " (0) = +oo,
which means these limits do not exist.
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Hence we see that point (i) and (ii) in the Fourier theorem in the book are satisfied, but
it is point (iii) which not satisfied at x = 0. Therefore Fourier series does not converge to

f (x) at x = 0 only while on other x in the domain it does.

2.2.7 Section 15, Problem 2

2, \Let f denote the function whose values are

= k0 when —2 <x < 1,
f(x)_{l when 1<ux <2,

and

2= 5= FI2) — %

Use formulas (4) and (5) in Sec. 15, together with Theorem 1 there, to show that

T if 1 - 1 L nmx n
= s ;;Z [sm7c057 + (cosmr —cosg) sin?}

for each x in the closed interval —2 ST )

Figure 2.29: Problem statement

A plot of the function f (x) and its periodic extension is given below

f[x_] :=Piecewise[{{0, -2 <x <1}, {1,1<x<2}}]
Plot[f[x], {x, -2, 2.01}, PlotStyle -» Red, GridLines -» Automatic, GridLinesStyle - LightGray,
Ticks -» {Range[-4, 4, 1], Automatic}, ExclusionsStyle - Dashed, Exclusions - {Xx == 1, X == 2, X == -2} ]

1.0

|

0.8

0.6

0.4}

0.2

R ettt

Figure 2.30: plot of f(x) over one period
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Clear[f];
flx /3 -2<x<2] :=Piecewise[{{0, -2 < x< 1}, {1,1<x<2}}]
flx_ /;x>2] :=Ff[x-4];
flx_ /;x<-2] :=f[x+4];
Plot[f[x], {x, -8, 8}, PlotStyle » {Thick, Red}, Mesh - None,
GridLines - Automatic, GridLinesStyle - LightGray,
Ticks - {Range[-8, 8, 1], Automatic},
Exclusions » {X = -7, X == -6, X == -3, X == -2, X =1, X =2, X == 5, X == 6},
Mesh - None, ExclusionsStyle - Dashed]

i i i i LES i i i
. N N .
] : I : I : ] :
: 1 : 1 0.8 : 1 : 1
P . . P
| | | |
Lo b b Lo
R R 06 1 1 R
P . . P
N . I N
] : I : I : ] :
R R 04r 1 R
Lo . I Lo
N . I N
! I : I : ] :
I
Lo Lo 0211 Lo
Lo P P Lo
N R I N
| | I |
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Figure 2.31: plot of f(x) extended to become periodic. Showing 3 periods

The Fourier transform of f (x) is

1) < 2 2
f(x) ~ ?0 + nz::l a, cos (Tnnx) + b, sin (Tnnx)
Where T is the period of the function (after periodic extension) which is 4. Hence the
above becomes

a o0
f(x) ~ 24 Z a, cos (Enx) + b, sin (znx)
2 A 2 2

Since f (x) meets the requirements of the Fourier theorem on page 35 of the text (at points

of discontinues, the function is > which is the average at those points), then ~ can be
replaced by = above

ap s Tt . T
() =—++ n Py + by, sin |~ (1)
fx > Z:la cos(znx) S (znx)
Where
1 2 1 (3 1 (2 1 ?
ao_Tjizf(x)dx:gf_éf(x)dxzif_zf(x)dx:E(j:zf(x)dx+j; f(x)dx)
2 2 2 2
1/( r? 1 -, 1
:E(fl dx):z(x)lzE
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And

a, = %féf(x) cos (%nx) dx = %jif(x) coS (gnx) dx
= % (j:lzf(x) cos (gnx) dx + flzf(x) cos (gnx) dx)
= lfzf(x) cos (znx) dx

:2f cos Snx) dx
4]

5 T
2

= L (sm (7tn) — sin (7—;”))

Tm

-1 . (nn)
= —sin|—
T 2

b, = %féf(x) sin(zTnnx) dx = %f_zzf(x) sin(gnx) dx
_ %( f_ 12 £ sin(gnx) dx + fl " F ) sin(gnx) dx)
_ %sz(x) sin(gnx) i
_ %fj sin(gnx) i
|

And

2 m
2

-1 T
= — |cos (1tn) — cos (—n)]

n 2

Tt

= ;—;11 cos (mtn) — cos (Tn)]

Using these results in (1) gives

fx) = Z + 2 (n—i sin (7—;”)) Ccos (an) + (;31 [COS (mtn) — cos (nzn)]) sin (gnx)
= 411 - %; (% sin (%n)) cos (gnx) + ;11 (cos (7tn) — cos (71211)) sin (gnx)

1

L L (2 o () e —con 2] i 2]

Which is the result we are asked to show. To verify this, the following shows the convergence
to f (x) when using more and more terms in the series.
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Tn mTnx

—%Sum[%(Sin[T]COs[ 2 X

fApprox[x_, nTerms_] := ] + (Cos[rrn] -COs[nz—n]) Sin[ nX])’ {n, 1, nTerms}];

1
a 2
Clear[f];
flx_ /3 -2<x<2] :=Piecewise[{{0, -2 <x <1}, {1, 1<x<2}}]
flx_/;x>2] :=f[x-4];
flx_ /3 x<=-2] :=f[x+4];
Grid[Partition[Table[Plot [{f[x], fApprox[x, n]}, {x, -Pi, Pi},
PlotStyle » {Blue, Red},
PlotLabel » Style[Row[{"Using ", n, " terms"}], Bold],
ImageSize - 250],
{n, 1, 10}]1, 2], Frame - All, FrameStyle - Gray]

Figure 2.32: Code used to draw the plot

Using 1 terms Using 2 terms
1.0 1.0F
0.8 0.8}
//\ 06 N 06}
0.4 0.4}
0.2 0.2}
-3 -2 vl 1 2 N[5 2 \j/\ ./ 2 \/
g -0.2+
Using 3 terms Using 4 terms
1.2 12}
A A A A
0.8 0.8}
0.6 06
04 0.4F
0.2 0.2}
= N = P~ o~
3 2~ My 2 M3 |3 2o Py 2 V3
Using 5 terms Using 6 terms
N\ 10 yaN AA 10l AA
0.8 0.8}
outf+ J= 0.6 0.6
0.4 0.4F
0.2 0.2}
FAVEV . N7AN 1\ VANV VWA VIAY Nz
3 2V XY M /i PAVAR I R VA= AV AV
Using 7 terms Using 8 terms
AA o AN AA o AA
0.8 0.8}
0.6 06
0.4 04F
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Ao PPN Ao Ao 2N Ao
3 2Y -V 2V 3 2Y -V 2V T3
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I\v/\ 10 I\v/\ A~A 10l PAaA
0.8 0.8}
0.6 06
0.4 0.4Ff
0.2 0.2}
JAN V- N AN A Ao ool Az
3 AV YT Y NV | L AT TV VY3

Figure 2.33: Fourier series approximation as more terms added

We notice that the Fourier series approximation converges to - at the points of discontinu-
ities. But these are the actual values of f (x) at those points.
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2.2.8 Section 15, Problem 8

N,

After writing the Fourier series representation (3), Sec. 15, as
N
ao : nmx . hmx
X) = — 4+ lim a, cos — + b, sin — |,
f@) 2_+Nmzl:(n — + bysin — )
h=
use the exponential forms’
¢if 4 g0 o0 _ ot
U PAREH
of the cosine and sine functions to put that representation in exponential form:

N
: , nTX
f(x)=lggrgoz AneXP(lT )

n=—N

cosf = sinf =

where

ay a, — ib, a, +ib,
==, A - =
e 7 )
Then use expressions (4) and (5), Sec. 15, for the coefficients a, and b, to obtain the
single formula

(n:=1,2,“.)

R l/ £ exp(_ i@) s e R ey
2\ c

Let

Figure 2.34: Problem statement

N
a nm . (nm
fx) = 24 lim Z a, COS (—x) + b, sin (—x)
2 AF%&)nzl Cc C
s s N7 nrt
ao N el c X + e—lTx b elT.X _ e—lT.X
= — + lim a,|—————| + e e—
2 N—oo El n 2 " 2i
.NTT s AT s
g N esz + e—sz " esz _ e—sz
= — + lim a,|——————|—1 e —
2 N—><>on§1 n 2 " 2
ag Yy (a, —ib, _i"my (a, +ib,
= — + lim ec’ |——|+e ¢ |—
2 N—co &= 2 2

o (q —ib <L o (a +ib
g S (a2

Then (1) can be written as

Since

(@) n>0
[qn = %? n= 0
(—””;lb") n<0
N nrt
_ . ZTX
F00 = Jim, 2, Ave
n=-N
1 C
a, = - f(x)cos(n—nx)dx n=0,1,2,--
cJ_. c
1 C
b= [ fesin(Zx)ar n=12,
cJ_; c

35
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Then a, + ib,, gives

1 (¢ 1 (¢
0, —ib, = - f £ (x) cos (”—”x) dx —i- f £ (x)sin (”—”x) dx

cJ_, c cJ_. c
1 C C

== ( f £ (x) cos (@x) dx + f £ (—i sin(ﬂx))dx)
c\J_. c —c c
1 C

=- f f(x) [cos (n_nx) —isin (Ex)]dx
cJ_, c c
1 ¢ M

=- x)e ¢ dx

[ rewea
c —C
But a, —ib,, = 2A,, from first part of this problem. Hence the above becomes

1 (¢ _m
An:—f f(x)e'<dx  n=04+1,+2,--
2cJ_,

36



2.3. HW 3 CHAPTER 2. HWS

23 HW33

Local contents

2.3.1 Section 20, Problem 1| . . . . . . . ... ... ... .. o 37
[2.3.2 Section 20, Problem 2| . . . . . .. ... ... . 39
[2.3.3 Section 20, Problem 5| . . . . .. . ... ... 39
[2.3.4 Section 27, Problem 1| . . . . . . . . . ... ... . . 41
[2.3.5 Section 27, Problem 2| . . . . . . . . ... 42
[2.3.6  Section 27, Problem 3| . . . . . . . ... ... ... o 42
[2.3.7 Section 27, Problem 7| . . . . . . . ... . ... . 44

2.3.1 Section 20, Problem 1

Fﬂ Show that the function

f(x):{o when —7m <x <0,

sin x when O<x<n

satisfies all the conditions in the theorem in Sec. 17. Then, with the aid of the Weierstrass
M-test in Sec. 17, verify that the Fourier series

{7 2 = cos2nx

— 4+ =sinx — — e - ¢

n+2 71214I’LZ-1 (=m<x<m)

=

for f, found in Problem 7, Sec. 7, converges uniformly on the interval —7 < x < 7, as
the theorem in Sec. 17 tells us. Also, state why this series is differentiable in the interval
—7 <x <7, except at the point x = 0, and describe graphically the function that is
represented by the differentiated series for all x.

Figure 2.35: Problem statement

The function f (x) is

f[x_] :=Piecewise[{{0, -Pi < x <0}, {Sin[x], @ < x < Pi}}]
Plot [f[x], {x, -Pi, Pi}, PlotStyle - Red, GridLines - Automatic, GridLinesStyle - LightGray,
Ticks » {Range[-Pi, Pi, 1/2Pi], Automatic}]

1.0

Figure 2.36: Plot of f(x)

The function f (x) is continuous on —7t < x < 7. Also f (-n) = f (1) = 0. We now need to
show that f’ (x) is piecewise continuous. But

f’(x):{ 0 n<x<0 1)
cos X O<x<m

Therefore f’ (x) exist and is piecewise continuous on -7 < x < 7. From the above, we see
that f (x) meets the 3 conditions in theorem of section 17, hence we know that the Fourier
series of f (x) is absolutely and uniformly convergent. (Here we need to use the M test to
confirm this).

The Fourier series of f (x) is

a1 . 2 < cos (2nx)
3t ey

37
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Now, to apply the M test, consider the two series

f}’l Mn
—_—~
i cos (2nx) i 1
A oan2 -1 A an? -1

To show Fourier series is uniformly convergent to f (x), using the M test, then we need to
show that | fnl < M, for each n. The series M, qualifies to use for the Weierstrass series,
since each term in it is positive constant and it is convergent series. To show that M),
1 1 o 1,
m < ; and En:lﬁ 1S
convergent since any 2:’:1 % for s > 1 is convergent (we can show this if needed using the

. . o 1 .
i1s convergent, we can compare it to Zn_l 2 Since each term

integral test). Hence we can go ahead and use M, series. Now we just need to show that
cos (2nx) 1

4n2 -1 |~ 4n?2 -1

For each n. But cos (2nx) <1 for each n. Hence the above is true for each n and it follows
that the above Fourier series is indeed uniformly convergent to f (x).

From (1), At x = 0 we have

f@-fO _ . sinG) _

f+ (O) - xlgg{f X x—0* X
And
£.0) = i LSO 0
x—0~ X x—0t X

Since f’, (0) # f” (0) then f (x) is not differentiable at x = 0. This is plot of f’ (x) and we
see graphically that due to jump discontinuity, that f’ (x) is not differentiable at x = 0

f[x_] := Piecewise[{{0@, -Pi < x <0}, {Cos[x], @ < x <Pi}}]
Plot [f[x], {x, -Pi, Pi}, PlotStyle -» Red, GridLines - Automatic, GridLinesStyle - LightGray,
Ticks » {Range[-Pi, Pi, 1/2Pi], Automatic}]

Figure 2.37: Plot of f’(x) shown for one period

Clear[f];
f[x_/; -Pi<x<Pi] :=Piecewise[{{@, -Pi < x <@}, {Cos[x], @< x<Pi}}]
flx_ /3 x>Pi] := f[x-2Pi];
flx_ /3 x<-Pi] :=f[x+2Pi];
Plot[f[x], {x, -4Pi, 4Pi}, PlotStyle » {Thick, Red}, Mesh - None,
GridLines - Automatic, GridLinesStyle - LightGray,
Ticks » {Range[-4Pi, 4Pi, Pi], Automatic},
Exclusions » {X == -3Pi, x == -2Pi, X == -Pi, X == @, x == Pi, x == 2Pi, x = 3Pi},
Mesh - None, ExclusionsStyle - Dashed]

o
a
B S I

El
IS
3

|

&

&
EEEE R E R

-1.0F

Figure 2.38: Plot of f’(x) for all x, shown for 3 periods
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2.3.2 Section 20, Problem 2

e

[2. \_'We know from Example 1, Sec. 3, that the series

—

(0.9]

4 Z cos(2n — 1)x

g
2k (2n —1)?

h=
is the Fourier cosine series for the function f(x) = x on the interval 0 < x < 7. Differ
entiate this series term by term to obtain a representation for the derivative f’(x) = |
on that interval. State why the procedure is reliable here.

Figure 2.39: Problem statement

Solution

After doing an even extension of f(x) =x on 0 < x < 7 to - < x < 71, we see that f (x)
satisfies the conditions of Theorem section 20 for differentiating the Fourier series term
by term. Since

1. f(x) is continuous on the interval - < x <7
2. f(=m)=f(n)
3. f’ (x) is piecewise continuous on - <X < T

The only point that f (x) is not differentiable is x = 0 which implies f’ (x) is piecewise
continuous. But that is OK. It is f (x) which must be continuous. Hence differentiating the
series term by term to obtain representation of f (x) on 0 < x < 7 is reliable.

2.3.3 Section 20, Problem 5

[ 5. Integrate from s = 0 to s = x (=7 < x < 1) the Fourier series

o '_l'n-H
ZZ( "1) — gin xS

=l

in Example 1, Sec. 19, and the one

.9)

sin(2n — 1)s
LZ 2n — 1

nel

appearing in Sec, 18, In each case, deseribe graphically the function that is represented
by the new series

Figure 2.40: Problem statement
Part 1

© (_q n+1
§=2 2 LS.in(ns)
n=1 n

The above is the Fourier sine series for f (x) = x, on 0 < x < 7. Integrating gives

X oo (_q1yh+l 00 x (_1\+]1
L(ZZ%sin(ns))ds:ngfo %Sin(ns)ds

n=1
We did integration term by term, since that is always allowed (not like with differentiation
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term by term, where we have to check). Hence the above becomes

ngox C (foxsin(ns)ds)

_y i (—1)"Jr1 ( cos ns)x
n=1 0

)7’1+1

+1 00 (_
sin (ns)ds = 2 Z
n=1

n
I n+2
Z (cos ns)g
But (—1)”Jr2 = (=1)" and the above becomes
00 X ( +1 00 (_1)71
ZZf sin(ns)ds:ZZ >— (cosnx —1)
n=1%0 n=1

1 1
But KC sds = Exz. So the above is the Fourier series of Exz. A plot of the above is

flx_ ] := %x"z;

Plot [f[x], {x, @, Pi}, PlotStyle - Red,
GridLines - Automatic,
GridLinesStyle - LightGray,

Ticks -» {Range[©, Pi, 1/2Pi], Automatic}]

Figure 2.41: The function represented by the above series f(x) =

Part 2
S_o i": sin (2n —1)s)
~= 2n-1
The above is the Fourier sine series for f (x) = ~, on 0 < x < 7. Integrating gives
X 00
2 Sln 2n—-1)s)|ds =2 f sm (2n-1)s)ds
J ( 21 S~ sin(@n-1) >) 2 (@n-1)3)

We did integration term by term, since that is always allowed (not like with differentiation
term by term, where we have to check). Hence the above becomes

22[

sin (21 - 1)) ds = 2 —fsm(Zn 1)s)ds

B —cos(2n—1)s
_2;::1271—1( (2n-1) )0

_» i _(cos((Zn -1)x)-1)
n=1

2n —1)?
Since KC gds = %x, then the above is the representation of this function. Here is a plot

to confirm this, showing the above series expansion as more terms are added, showing it
Tt
converges to —x
565103
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Using 1 terms Using 3 terms

0.5 1.0 15 2.0 25 3.0 0.5 1.0 15 20 25 3.0

Using 5 terms Using 7 terms

0.5 1.0 15 2.0 25 3.0 0.5 1.0 15 20 25 3.0

Figure 2.42: The function represented by the above series f(x) = gx against its Fourier
series

Cos[(2n-1) x] -1

fApprox[x_, nTerms_] :=2 Sum[- 2 2
(2n-

> {n, 1, nTer‘ms}];

Clear[f];
flx_/;0<x<Pi] :=x%Pi/2;
Grid[Partition[Table[Plot [ {f[x], fApprox[x, n]}, {x, @, Pi},
PlotStyle -» {Blue, Red},
PlotLabel - Style[Row[{"Using ", n, " terms"}], Bold],
ImageSize - 250],
{n, 1, 10, 2}], 2], Frame - All, FrameStyle - Gray]

Figure 2.43: Code used to plot the above

2.3.4 Section 27, Problem 1

[1] Letu(x) denote the steady-state temperatures in a slab bounded by the planes x = Oand
x = ¢ when those faces are kept at fixed temperatures u = 0 and u = uy, respectively.
Set up the boundary value problem for u(x) and solve it to show that

U
u(x):—ox and d)ozK—lfg,
c c

__ where & is the flux of heat to the left across each plane x = x; (0 < xy < ¢).

Figure 2.44: Problem statement

The heat PDE is u; = u,,. At steady state, 1; = 0 leading to u,, = 0. So at steady state, the
solution depends on x only. This has the solution

u(x)=Ax+B 1)
With boundary conditions
u(0)=0
u(c) = uy

When x = 0 then 0 = B. Hence the solution becomes u (x) = Ax. To find A, we apply the
second boundary conditions. At x = c this gives ug = cA or A = % Hence the solution
(1) now becomes

u
u(x) = Oy
c
Now the flux is defined as ®; = KZ—Z at each edge surface. But Z—Z = uTo from above.
Therefore
@ = K2
07 ¢
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2.3.5 Section 27, Problem 2

a - —_ v -

’_2 A slab occuples the region 0 < x < c. There is a constant flux of heat ®, mto the slab
through the face x = 0. The face x = ¢ is kept at temperature u = 0. Set up and solve
the boundary value problem for the steady-state temperatures u(x) in the slab.

Acs?er.' u(x) = ?0 (c — x).

e

Figure 2.45: Problem statement

note: When looking for solution, assume it is a function of x only.

The heat PDE is u; = u,,. At steady state, u; = 0 leading to u,, = 0. So at steady state, the
solution depends on x only. This has the solution

u(x)=Ax+B 1)

dx
xX=
minus sign, is that flux is always pointing to the outside of the surface. Hence on the left
surface, it will be in the negative x direction and on the right side, it will be on the positive
x direction.

. d
Since there is constant flux at x = 0, then this means K — = —®@,. The reason for the

Using this, the boundary conditions can be written as

- ke
dx| 0
x=0
u(c) =
Applying the left boundary condition gives
A =-K®,

Hence the solution becomes u (x) = —K®yx + B.
At x = ¢ the second B.C. leads to 0 = —K®yc + B or
B = K®\c
Hence the solution (1) becomes
u (x) = —K®yx + KOy
= K®q (c — x)

2.3.6 Section 27, Problem 3

of cooling, at t its faces x = 0 and x = ¢, the surface conductance H being the same o
each face. Show that if the medium x < 0 has temperature zero and the medium x > ¢
has the constant temperature 7, then the boundary value problem for steady-staté
temperatures u(x) in the slab is

w(x)=0 (O<x<c),'
Ku'(0) = Hu(0), Ku'(c) = H[T — u(c)],

where K is the thermal conductivity of the material in the slab. erte h =H/K and
derive the expression

u(x) = L 5 (x+1) 1

for those temperatures.

Figure 2.46: Problem statement
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We start with
D= H(Toutside - Ll) (1)

Where T is the temperature on the outside and u is the temperature on the surface and ®
is the flux at the surface and H is surface conductance. Let us look at the left surface, at
x = 0. The flux there is negative, since it points to the negative x direction. Therefore

o=k )
B dx|.__
x=0

From (1,2) we obtain

du
d =H (Toutside —u (O))
X\,._
x=0

But T ysige = 0 outside the left surface and the above becomes

-K

=H(0-u(0)

The minus signs cancel, giving

du H 0)

_ = —1U

dx|. K

x=0
u’ (0) = hu (0) 3)

Now, let us look at the right side. There the flux is positive. Hence at x = ¢ we have
du
dx

But T,ysige = T on the right side. Hence the above reduces to
du H
=l = =(T-
| =xT-uo
X=C
w (c) =h(T - u(c)) (4)

Now that we found the boundary conditions, we look at the solution. As before, at steady
state we have

K = H(Toutside —u (C))

X=c

u’(x)=0
u(x)=Ax+B (5)
Hence u’ (x) = A. Therefore
u’ (0) = A =hu(0) (6)
w()=A=h(T—-u(c) (7)
But we also know that, from (5) that
u@) =8B (8)
u(c) = Ac+B 9)
Substituting (8,9) into (6,7) in order to eliminate u (0),u (c) from (6,7) gives
A =hB (6A)
A=h(T -(Ac+B)) (7A)

Now from (6A,7A) we solve for A, B. Substituting (7A) into (6A) gives
hB = h(T — (hBc + B))
hB = hT — h®Bc — hB
2hB + h?Bc = hT
_hT
~ h(2+ he)
T
2+ he

B
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Hence
A =hB
hT

T 2+ he
Now that we found A, B then since u (x) = Ax + B, then

hT

2+hcx+2+hc
_th+T

2+ he

__ T
_2+hc( + hx)

Which is the result we are asked to show.

u(x) =

2.3.7 Section 27, Problem 7

6. A slender wire lies along the x axis, and surface heat transfer takes place along the
wire into the surrounding medium at a fixed temperature T. Modify the procedure in
Sec. 22 to show that if u = u(x, t) denotes temperatures in the wire, then

Ur = kuxx + b(T 57y u);
where b is a positive constant.
Suggestion: Let r denote the radius of the wire, and apply Newton’s law of

cooling to see that the quantity of heat entering the element in Fig. 22 through its
cylindrical surface per unit time is approximately H [T — u(x, )] 2ar Ax.

i 010 t
§ ) il i o
tx Lxml-Ax l ‘ %

TO
I'N'GURE 22

7. | Show that the special case

u = ki, — bu

of the differential equation derived in Problem 6 can be transformed into the one-
dimensional heat equation (Sec. 22)

v = kiU

with the substitution u(x, 1) = e " v(x, t).

Figure 2.47: Problem statement

uy = ki, —bu (1)
Let u (x,1) = e Pv (x, t) then
u, = —be by + e7bty,
u, = ey,

-b

— t
Uyy =€ " Uy

Substituting the above back into (1) gives

—be Vty + 70t

v; = ke Mo, — be v
Since e # 0, then the above simplifies to

—bv + v; = kv, — bv
U = kvyy

QED.
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2.4.1 Section 27, Problem 8

8. Suppose that temperatures v in a solid hemisphere r < 1,0 < 6 < w/2 are independent
of the spherical coordinate ¢, so that u = u(r, ), and that the base of the hemisphere
is insulated (Fig. 23). Use transformation (13), Sec. 25, which relates spherical and
cylindrical coordinates, to show that

u ou ou

£=_Pé—z+2(§;.

iy i
Iy Il
”""""llllun|m|mnmll""""

FIGURE 23

Thus show that u must satisfy the boundary condition

o(:3)

Figure 2.48: Problem statement

Solution

The cylindrical and spherical coordinates are defined as given in the textbook figures
shown below

? P(p, ¢, 2)

FIGURE 16

Figure 2.49: Cylinderical coordinates
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FIGURE 17

Figure 2.50: Spherical coordinates

The relation between these is given by (13) in the book

z=rcosO 1)
p=rsin0 (2)
¢=9¢ 3)

To obtain the required formula, we will use the chain rule. Since in spherical we have
u = u(r,0) and in cylindrical we have u = u (p, Z), then by chain rule

du 8u&p Ju dz
20 8p&9 9296

But from (2) % _ rcos O and from (1) — = —rsin 0, hence the above becomes
a0 (99

gg a (rcos@)+&—( rsin 0)
But 7 cos 0 = z and —-rsin 0 = p, hence the above simplifies to
du &u du
20~ “9p Pz )
Which is the result required to show. Now we need to show that 2 % 2 evaluated at boundary
r=1,0 == is zero. But 0 = > 1mp11es that z = 0, since z = r cos 6. Hence (4) now reduces
to
du du
96~ Pas (4)

. du . . . .
Since 0 = 2, then 2= is the directional derivative normal to the base surface. But we are
22 dz

told it is insulated. This implies that % = 0, since by definition this is what insulated

u
means. Therefore %6 = OQatr=1,0= > T which is what we are asked to show.
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2.4.2 Section 28, Problem 1

|| A stretched string, with its ends fixed at the points 0 and 2¢ on the x axis, han.gs at rest
under its own weight. The y axis is directed vertically upward. Point out how it follows
{rom the nonhomogeneous wave equation (6), Sec. 28, that the static displacements
y(x) of points on the string must satisfy the differential equation

S
ay'(x) =g i A

on the interval 0 < x < 2¢, in addition to the boundary conditions
y©0 =0,  yQ2c)=0.

Iy solving this boundary value problem, show that the string hangs in the parabolic

ne
; 2(12 ng
s oy e ety O=x'="7¢)
x=c) T <y+ 7 (

and that the depth of the vertex of the arc varies directly with ¢? and é and inversely
with H.

Figure 2.51: Problem statement

Eq (6) in section 28 is
Yu (x,t) = azyxx (x,t) - 8

At static displacement, by definition, there is no time dependency, hence y; = 0 and the
above becomes

0= azyxx (xt)-g
Therefore now this becomes an ODE instead of a PDE since it does not depend on time,
and we can write the above as

aty’ (x) =g 1)
The boundary conditions v (0,¢) = 0 and y (2x,t) = 0 now become y(0) = 0,y (2x) = 0.
Now we need to solve (1) with these boundary conditions. This is an boundary value ODE.

_8
y// (X) — a_z
The RHS is constant. The solution to the homogeneous ODE y” =0 is i, = Ax + B. Let
the particular solution be y, = Cs3x2, then Yp = 2C3x and y, = 2C3. Substituting this in
the above ODE gives

_ 8
g
Cy= =
37 p2

Hence y, (x) = %xz. Therefore the general solution is

Y=Yntlyp
_ 8 .2
=Ax+B+ @x (2)
Now we will use the boundary conditions to find A, B above. At x = 0, (2) becomes
0=B
Hence solution (2) reduces to
_ )
y(x) = Ax + Z_aZx (3)
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At x = 2c, the second boundary condition gives

0=2cA+ % (4c2)

_ g (s?)

2a%2 2c

Hence the solution (3) becomes

To get the result needed, we can manipulate this more as follows. From (4)

2a%y = gx? — 2gcx
=g (xz - Zcx)
= g (x —c)* — gc?
Hence
g (x — ¢)* = 202y + gc?
(x—c) = @ +c?

2a? gc?
b3

. H
Now since a? = 5 then the above becomes
g 2 gc?
= (x—-¢) =y+ =
2a2 ( Y=y 242

(4)

We see now that y is directly proportional to 6 and ¢? and inversely proportional to H.

2.4.3 Section 28, Problem 5

satisfy this boundary value problem:

Ao, ti=10RDAIGe, 1)

5.\ A strand of wire 1 ft long, stretched between the origin and the point 1 on the x axis,
weighs 0.0321b (8g = 0.032, g = 32 ft/s?) and H = 101b. At the instant ¢ = 0, the strand
lies along the x axis but has a velocity of 1 ft/s in the direction of the y axis, perhaps
because the supports were in motion and were brought to rest at that instant. Assuming
that no external forces act along the wire, state why the displacements y(x, ) should

== =),
yO,6) =y, ty=0,  yx0=0, " yE&x®H=1

Figure 2.52: Problem statement

The wave PDE in 1D is given by
Yir (%, 1) = 8%y (%, )
48
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Where

Where H is the tension in the strand and 6 is the mass per unit length of the strand. But
2e5M e are given that weight = 0.032 Ib, and that ¢ = 32

weight = (mass) g. hence 6 =
ft/s?. This implies that

5= 0032 1
~ 32 1000
Hence
10
612 = -1 = 104
1000
Therefore (1) becomes
Yir (x4, 1) = 10%y . (%, 1) (2)

Since at t = 0 we are told that strand lies along the x — axis, then y (x,0) = 0 and problem
says Y; (x,0) = 1. For boundary conditions, since strand fixed at x = 0 and x = 1, then this
implies y (0,f) = 0 and y (1, ¢) = 0. Therefore the PDE is

Yy (x, 1) = 10%y,, (x, 1) O<x<1,t>0

y(x,O) =0
yt(xlo) =1
y(0,t)=0
y(1,t)=0

2.4.4 Section 30, Problem 3

T T et oo

iy g ; :

13.j Let y(x, ) represent transverse displacements in a long stretched string one end of
which is attached to a ring that can slide along the y axis. The other end is so far out
on the positive x axis that it may be considered to be infinitely far from the origin. The

ring is initially at the origin and is then moved along the v axis (Fig. 27) so that y s f(1)
when x = Oand ¢ > 0, where [ is a preseribed continuous function and £(0) « 0, We
assume that the steing is initially at rest on the v asis; thus vy, 6 -+ Oas v = oo The
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boundary value problem for y(x, ) is

ol ) =t () (x> 0,t>0),
y(x,0) =0, y:(x,0) =0 (x = 0),
y©,1) = f(® (t = 0).
!
1 (:
[
R L :
(0] at X
VIGURE 27

(a) Apply the first two of these boundary conditions to the general soh‘ltion (Sec. 30)
y(x, ) = ¢(x +at) + ¥ (x —at)

of the one-dimensional wave equation to show that there is a constant C such that

0)I=1C and Px)=-C (b (0]

Then apply the third boundary condition y(0, t) = f(¢) to show that
v =f(E)-c¢ o = 0),

where C is the same constant.
(b) With the aid of the results in part (a), derive the solution

0 when x > at,
y(x, 1) = f(t il f) when x < at.
a

Note that the part of the string to the right of the point x = at on the x axis I8
unaffected by the movement of the ring prior to time ¢, as shown in Fig. 27.

Figure 2.53: Problem statement

Part a

Applying the first initial conditions v (x,0) = O to the solution

y(x,t) = (x+at)+ ¢ (x—at) 1)
Gives
0=+ @)
But y; = a¢’ — ay’. Hence the second initial conditions at t = 0 gives
0= a¢/ (x) - ay/ (x) 3)
Taking derivative of (2) and multiplying the resulting equation by a gives
0 =ag¢’ (x) + ay’ (x) (2A)
Adding (3,2A) gives
2a¢’ (x) =0
¢ (x) =0
Therefore
o) =C (4)
Where C is an arbitrary constant. Substituting the above result back in (2) gives
0=C+v¢(x)
P () =-C (5)
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From (4,5) we see that

¢ (x) =
P (x) = -
Now applying boundary condition vy (0,t) = f (t) to (1) gives

f(t) = ¢ (at) + ¢ (-at)

But a4 is the speed of the wave given by a = % ort= g Hence the above becomes
FE) =0+
v =f(3) -0

Since ¢ (x) = C from equation (4), then the final result is obtained

¢¢w)=f(§)—c x>0 6)

Part b

Since the part to the right of x = at is unaffected by the movement of the right, then
y(x,t)=0 x > at 1)

So now we need to find the solution for x < at and x > 0. From
y(x,t) = (x+at)+ ¢ (x—at)
And usi . —(x—at
nd using (6) in part (a), we see that 1 (x —at) = f(xTa)) — C. Therefore the above

becomes
y@ﬂ—¢@+M+f( mﬁ C

But also from part (a) ¢ (x + at) = C. Hence the above simplifies to

y@J):c+f(:gi£Q)—C
_f( x+at)
=f(t-3)  w<a (2)

Combining (1) and (2) shows that

0 x > at

y(x't):{f(t—g) x < at

2.4.5 Section 30, Problem 4

1. Use the solution obtained in Problem 3 to show that if the ring at the left-hand end of
{he string in that problem is moved according to the function

sin 7t when 0 <t <1,
@)= { when i sl

then

0 when x <a(t —1)orx = at,
Xl ; 5
y(%,8) Slﬂ[ﬁ([ — ~)] when a(t —1) < x < at.
a
Observe that the ring is lifted up 1 unit and then returned to the origin, where if
remains after time ¢ = 1. The expression for y(x, 1) here shows that when ¢ = 1, the
siring coineides with the x axis except on an interval of length @, where it forms one
arch of o sine curve (Fig, 28). Furthermore, as { increases, the arch moves to the right

with speed a
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Y| @>1)

Dl /_\

0 at-1) at X

FIGURE 28

Figure 2.54: Problem statement

This requires just substitution of the function f (f) given into the solution found above
which is

() = 0 x > at
yx.bn= f(t—g) x < at @D
But
sin 7t 0<t<1
f(f)—{ 0 o1 (2)

Substituting (2) into (1) gives, after replacing each t in (2) by ¢ - g the result needed

() = 0 x > at
yo= sin(r(t-2))  a(t-1)<x<at

2.4.6 Section 31, Problem 2

ﬁ? Consider the partial differential equation
Ayxx + By + Cyu =0 (A#0,C #0)

where A, B, and C are constants, and assume that it is hyperbolic, so that B> — 4 AC > {
(a) Use the transformation

(=37 Ak (0 v =x-+ Bt (ocy&.
to obtain the new differential equation
(A+ Bo + Co?)yuu + [2A+ B(a + B) +2CaBlyuw + (A+ BB + CB)yuu = 0
(b) Show that when & and g have the values

LB iR g R
e 2C I 2C !

respectively, the differential equation in part (a) reduces to y,, = 0.

(¢) Conclude from the result in part (b) that the general solution of the original dif
ferential equation is b

y = ¢(x + apt) + Y(x + fol),

where ¢ and 1 are arbitrary functions that are twice differentiable. Then show h 0y
the general solution (7), Sec. 30, of the wave equation

—a%yex + yu =0

follows as a special case.

Figure 2.55: Problem Statement
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Part a

We want to do the transformation from y (x, t) to y (1, v). Therefore
dy dydu N dy dv
dx Jdudx Jdvox

J d
But 8—1 =1and 2 = 1, hence the above becomes

ax
% _9y %
dx Jdu Jdv
And
Py d (dy
ax2 Ox (8x)
_9 (ﬂ . @)
dx\du Jdv
_ 99y, 99
dxdu dxdv
(82]/(%1 .\ o"_z}/@) . (8_@@ ) %y 8u)
Ju? dx  Juvdx dv2dx  Jduu dx
But % =1, % =1, hence the above becomes
%y J%y 2(92y . d%y
dx2  Ju? T duv  Iv?
Yox = Yuu T Yoo T zyuv
Similarly,

dy _dydu  dydv
ot Jdudt Jvot

J J
But 8—1: =a and 8—? = B, hence the above becomes

And

a2~ at\ ot

_9(,%
T ot o"u 50-)0

_ 9 (% dy
‘“at(au) ﬁ&t(&v)

SN CT L N Tt

?y 9 (8y)

929t T duv ot 902 9t duv ot

d d
But &—L; =« and a—zt] = B, hence the above becomes

92 92 92 92 92
a;z/ ( au}; i ﬁ&u]z/)) P (ﬁ&g T au};)
92 92 %y %y
_a28_j+a'88_1g7+'82802 ﬁ&uv
Yu = 0( Yuu + ﬁ Yoo Zaﬁyuv
And to obtain y,;, then starting from above result obtained
Y _ % %Y
o~ “ou ‘Bé’v
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Now taking partial derivative w.r.t. x gives

Jd (dy Jd ( dy

ax(at) 5( tF5 )
_d (dy d (dy
~Yox (ﬂ)—‘_ﬁ&x(&v)

_ §2y8u+82y(9v . 8_23/@4_0"2}/0%1
Buz dx  Juvdx dv?dx  Juv dx

But % =1, g =1, hence the above becomes
d (dy\ _ 82y %y . 82]/ Py
ox\ot) ¢ 8u2 duv P 802 Juv
Yxt = QY + (a + 5) You + BYwo (3)

Substituting (1,2,3) into Ay, + By + Cy = 0 results in

A (yuu + Yy + 2yuv) +B (ayuu + (a + ﬁ) You + ﬁyw) +C (azyuu + B2y + Zaﬁyuv) =0
Or

Yuu (A+Ba+ Ca?) + v, (2A + B (a + B) +2Cap) + yo (A + BB+ CB2) = 0

Part b

Looking at the term above for y,,, we see it is A + Ba + Ca? which has the root

b
:——+— bZ 4
104 Za a ac
- -2 s~ VB_1AC
2c+2c

Hence if we pick the root @ = ap = _f + EVBZ —4AC then the term y,, vanishes.
Similarly for the term multiplied by v, which is A + BB + CB2. The root is
B
P="3c*3c
And if we pick g =y = —% - %\/BZ —4AC then the term v, vanishes also in the PDE
obtained in part (a), and now the PDE becomes
Yuo (2A+ B (o + B) + 2Cap) =

Substituting the above selected roots «, fy into the above in place of ¢, § since these are
the values we picked, then the above becomes

B 1
Yo (ZA +B (—— + —VB?-4AC - — - —VBZ 4AC ) + ZCaﬁ)

2C  2C 2C 2C

B2 -4AC

2B?
Yoo [2A - bTel +2Cap| =0

And again replacing aff above with «y, By results in

2B? B 1 B 1
A—— +2C|-— + —VB2—4AC||-— - —=VB2-4AC|| =0
y“”( 2c " C( 2¢c " 2C C)( 2C2C )
2B? B? 1
2 _
yuU(ZA—E'FZC(E'FTCZ(B —4AC)) =0
2B2 B2 1
- —— +—+—=(B>-4AC)| =0
Yuo (2A 3¢ *ac tac B )
2A 2BZ+BZ+B2 2A1=0
Yuo 2C "2c " 2C B
BZ
zyuz}_o

Since B # 0, C # 0 then the above simplifies to

Y = 0
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Part c
Since
Yo = 0

Or

d (dy

70 (9_) =0
The implies that

9y

EV @ (u)

Integrating w.r.t. u gives

yw,0) = [ ®@du+ )
Where ¢ (v) is the constant of integration which is a function.
Let f@ (1) du = ¢ (u) then the above can be written as
y(u,0) =¢ W)+ (v)
Or in terms of x, ¢, since u = x + at and v = x + Bt the above solution becomes

y(x,t)=¢(x+at)+ 1p(x+ﬁt)
Where ¢, 1 are arbitrary functions twice differentiable. When a = +a, = —a, then the
above becomes

y(x,t) =¢(x+at)+ ¢ (x—at)
Which is the general solution (7) in section (30). QED

2.4.7 Section 31, Problem 3

e

j31 Show that under the transformation
u=x,  v—ax+pr 60
the given differential equation in Problem 2 becomes
Ay + 2Aa + BB)yu, + (Aa® + Bap + CB)y,, = 0.

Then show that this new equation reduces to
(@) yuu + y»» = 0 when the original equation is elliptic (B%* — 4AC < 0) and Y
—-B 1 2A )
* T VaACEEo) 25 (VIROOB
(b) yu. = 0 when the original equation is parabolic (B> — 4AC = 0) and
a=-B, B —i2 A

Figure 2.56: Problem Statement

The differential equation in problem 2 is
AYxx + By + Cyy =0
We want to do the transformation from y (x, t) to y (1, v) with
u=x
v =ax+pt
Now
oy _yau  yde
dx Jdudx Jdvdx
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J d
But a—z =1 and a—z = a, hence the above becomes

dy _dy 9y
ox  au %0
And
dy_dydu a0
dt  dudt Jdvdt
du

But — =0 and % _ f3, hence the above becomes
Jt Jt
dy _ dy
ot =3 dv
Therefore

dx2  dx \dx
i &y @)

Py_ 9 Q)

- dx (}’u dJv

(), .2 (2
~ Ix \du dx \dv

?ydu  d*y dv d*ydv 9%y du
(55 g el )

Yex = Yuu + szym) + zayuv
Similarly,

Py 9 (dy
2~ Ix\ ot

d [ dy
~ ox ('B&U)

d%y dv s %y du
Jdv? dt  dou Jt
%y
=F (ﬁﬁ)
Y = ,Bzyvv
And to obtain y,,, then starting from above result obtained
%
Jt ﬁ 80

Now taking partial derivative w.r.t. x gives

d (9]/ i ﬁ
ax \ ot 8x '380
_p 82]/&0 9%y du
902 8x dou dx

~g(a &Zy 82y
02 " Jou
Yt = aBYoo + BYou
Substituting (1,2,3) into Ay,, + By + Cy = 0 results in

A (Vi + @0 + 209,0) + B (aBYop + Pon) + C (B2Yu) = 0

Or
AYyui + Yo (2400 + BB) + o (Aa? + Bap + Cp2) = 0
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Which is what asked to show.

Part a

2A

_B
Vaac—g2’ p= VAAC-B?

-B 2A
AV + Vo [2A | ——=| + B| ——|| + Yoo (Ad® + BaB + CB?) =0
o+ e 24 ) 2 ) v (4 ¢ o)

AY + Yoo (Aaz + Bap + Cﬁz) =0

Setting o = in (4) above results in

And the above now becomes

Ay + Yoo A(—_B )2+B( 5 )( 24 )+C(—2A )2 =0
VAAC - B2 V4AC - B2/ \W4AC - B2 V4AC - B2
o ( AB2  2B’A N 4CA% 1\ _ 0
AAC-B2 4AC-B?2 4AC- B2
Ay +y (ABZ —2B2A + 4CA? 0o
uu 7+ Joo 4AC - B2
2

Ay + Ay =0

A (]/uu + yvv) =0
Therefore, since A # 0 the above becomes

Yuut Yoo = 0

Part b
Setting @ = —B, f = 2A in (4) above results in
AYyuy + Yuo (~2AB + 2AB) + y,,, (AB? - 2B2A + 4CA?)
AYy + Yo (4CA2 - B2A)
AYuus = Ay (B> - 4CA)
But B2 — 4CA = 0, therefore the above becomes
Yuu =0

0
0
0
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2.5.1 Section 34, Problem 3

\ X, Verify that each of the functions

Uy =y, u, = sinhny cosnx m =525 50
satisfies Laplace’s equation (Sec. 23)
Uee (X, Y) +Uyy(x, ) =0 O<x=<m0<y<?2)
and the boundary conditions
u09) = 1l y)i= 0509 8 Co, 0)i=10:
Then use the superposition principle in Sec. 33 to show formally, without considering

(questions of convergence, differentiability, or continuity, that the series

oo
u(x,y) = Aoy + Z A, sinh ny cos nx

n=1

satisfies the same differential equation and boundary conditions.

Figure 2.57: Problem statement

Solution

The boundary conditions are

Let

Ya

unspecified

u,(0,y) =0 Viu(z,y) =0 Uy (m,y) =

u(z,0)=0 7

Figure 2.58: Boundary conditions

u (x,y) =X(x)Y (y)

Substitution in the PDE u,, +y,, = 0 leads to

X"Y +Y"Y =0
X// Y//
X Y
58
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Where A is the separation constant. We obtain two ODE’s
X"+ AX =0 (1)
Y”"-AY =0 (2)

We use the X (x) ODE (1) to determine the eigenvalues, since that ODE has both boundary
conditions specified:

X" +AX=0
X’ (0) = 0
X' (n)=0

Case A <0

Solution is

X (x) = Acosh (ﬂx) + Bsinh (\/jx)
X’ (x) = AV—Asinh (ﬂx) + BV=A cosh (\/Jx)

At x = 0 the above gives
0 = BV-A cosh (0)
=BV-1
Hence B = 0 and the solution (3) reduces to

X (x) = Acosh (\/jx)
X (x) = AV-A sinh (ﬂx)

At x = 7t the above becomes
0 = AV—-Asinh (V—AT()
For non-trivial solution we want sinh (\/37’() = 0, but sinh is only zero when its argument
is zero, which is not possible here, since A # 0. Therefore A < 0 is not possible.
Case A =0

Solution becomes X = Ax + B. Hence X’ = A. At x = 0 this leads to A = 0. Therefore the
solution now becomes X = B. Hence X’ = 0. Therefore the second boundary conditions
at x = 7t is automatically satisfied. Hence the solution is X (x) = B, a constant. We pick
X (x) = 1. Therefore A = 0 is eigenvalue with associated eigenfunction X, (x) = 1.

Case A >0

The solution becomes
X (x) = Acos (\/Kx) + Bsin (\/Xx)
X (x) = ~AVAsin (\/Xx) +BVA cos (\/Xx)
At x = 0 the above becomes

0=BVA

Hence B = 0 and the solution reduces to

X (x) = Acos (\/Xx)
X (x) = ~AVAsin (\/Xx)

At x = 1t the above gives

~AVA sin (\/Zn)

0

0
sin (\/Xn)
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Therefore \/XT( =nnforn=1,2,3,---. Hence
A, =n? n=1,2,3,-
And the solution (corresponding eigenfunctions) is
X, (x) = cos (\//\_nx)
= cos (nx)
In summary, the solution to the X ODE resulted in
Xolx) =1 n=20

X, (x) = cos (nx) n=1,23, -

Now we solve for the Y ODE
Y"-AY =0
Y(0)=0
We are only given boundary conditions on bottom edge.
case A =0
Y=Ay+B

(3)

When y = 0 the above leads to 0 = B. Hence the corresponding eigenfunction is Y (y) =.

case A >0

The solution becomes

Y (y) = Acosh (\/Xy) + Bsinh (\/Xy)

At y = 0 the above gives
0 = Acosh (0)
=A
Hence the solution reduces to

Y (y) = Bsinh (ﬁy)

Therefore the eigenfunctions for n =1,2,3,--- are Y, (y) = sinh (ny) since A, = n? for

n=1,23,--.
In summary, the solution to the Y ODE resulted in
Yoly)=y n=0

Y, (x) = sinh (ny) n=1,23,-

From (3,4) we see that
u, (x,y) = X, (0 Y, (y)
For n = 0 the above becomes
ttg (x,y) = (1) (v)
=Y
And forn=1,2,3, -
Uy (x, y) = sinh (ny)
= cos (nx) sinh (ny)
Using superposition, then

u (x, y) =Xx)Y (y)
= Aouo + E Anun

n=1

= Agy + i A,, cos (nx) sinh (ny)

n=1

QED.
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2.5.2 Section 37, Problem 1

AT AT

[ (i; j In Problem 3, Sec. 34, the functions
ug =y, U, = sinhny cos nx (7= 11 2.
were shown to satisfy Laplace’s equation
Urx (X, ¥) + 1ty (x, y) =0 0<x<m0< .
and the homogeneous boundary conditions

uz (0, y) = u,(m, y) = 0, u(x,0) = 0.

After writing u = X(x) Y(y) and separating variables, use the solutions of the Sturme
Liouville problem (1) in Sec. 35 to show how the functions ugandu, (n = 1,2, .. .) can by
discovered. Then, by proceeding formally, derive the following solution of the bounds
ary value problem that results when the nonhomogeneous condition u(x, 2) = f(x)\N
included: ‘

ux,y) = Agy+ Z Ay sinhny cos nx,

n=1

where

1 i 2 7
= — d p=— ) =1,2, "
Ay an J(x).dx, A 7rs1nh2n_/0 f(x)cosnx dx (n= 1,0, S \

Figure 2.59: Problem statement

Solution

The boundary conditions now become as follows

YA
o | ule2) = f(x)
ue(0,5) =0 | Vulz,y) =0 |uz(m,y) =
>

u(r,0)=0 7

Figure 2.60: Boundary conditions

From the above problem we know the general solution is
u (x, y) = Ay + 2 A,, cos (nx) sinh (ny) (1)
n=1

Now we impose the remaining boundary condition u (x,2) = f (x). Therefore the above

becomes N
f(x) =2A0 + Y} A, cos (nx) sinh (2n)

n=1
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Multiplying both sides by cos (1mx) integrating w.r.t. x from x = 0 to x = 7 results in

f " £ () cos (mx) dx = f " 2 Ag cos (mx) dx + [ f i f] A, cos (nx) cos (mx) sinh (2n) dxl
0 0 0 n=1

f ' f (x) cos (mx) dx = f i 2 A cos (mx) dx +
0 0

case m =0

i A, sinh (2n) ( f i cos (nx) cos (mx) dx)l
n=1 0

f:f(x)dx: j:ZAodx

= 2A07’(
1 7T
Ag = ﬂfo F o) dx 2)

casem=1,2,---

f " F () cos (mx) dx = f] A, sinh (211) ( f " cos (1) cos (1) dx)
0 n=1 0

But ET cos (nx) cos (mx) dx = 0 for all m # n and g when m = n. Hence the above simplifies
to

f nf (%) cos (mx) dx = = A, sinh (2m)
0 2

2 TT
A= s fo F () cos (mx) dx

Since m is summation index, we can rename it to # and the above becomes

2 7T
= — d 3
O fo F () cos (nx) dx (3)
Using (2,3) in (1) gives the final solution

( f £ dx)y+2(nsmh o f £ () cos (nx) dx) cos (nx) sinh (1ny)

2.5.3 Section 37, Problem 3

_ R S S SIS S CHO D)

E! For each of the followmg partial differential equations in u — u(x, t), determine if it
possible to write u = X (x)T'(t) and separate variables to obtain ordinary dlfferenlt li
equations in. X and 7. If it can be done, find those ordinary differential equations, i
(@) ey — xtu, = 0; B) X+ Dy = u, = 0
(o} R Osit(d)y uld == wpitiip— 0,

Figure 2.61: Problem statement

Part (a)

Uy — Xtuy =0
Let u = X (x) T (t). Substituting this into the above PDE gives
X'"T-xtT”"X =0
Dividing by XT # 0 gives
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Diving by x gives

1 X// tT/l 3 0
xX T
1 X/l 3 tT// 3 A
xX T
Hence it possible to separate them. The generated ODE’s are
X"+ AxX =0
T
T + /\? =0

Part (b)

x+Huy,—u=0
Let u = X (x) T (t). Substituting this into the above PDE gives
x+H)X'T-T'X=0
Dividing by XT # 0 gives
X" X' T

S S
XX T

It is not possible to separate them.

Part (c)

XUy + Uy + Uy =0
Let u = X (x) T (t). Substituting this into the above PDE gives
xX"T - % X'T)+tT"X =0
xX"'T-X'TX+tT"X=0
Dividing by XT # 0 gives

124 144

L XT 4 t— =0
X T

It is not possible to separate them.

Part (d)

Upe = Uy — U =0
Let u = X (x) T (t). Substituting this into the above PDE gives
X'T-T"'X-T'X=0
Dividing by XT # 0 gives

XII TI/ Tl 3 0
X T T
X// T/I T/
—~=—=+==-A
X T T
It is possible to separate them. The ODE’s are
X"+AX=0

T"+T' +AT =0
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2.5.4 Section 37, Problem 5

8 Derive the eigenvaluey and eigenfunctions, stated in Sec, 35, of the Sturm-Liouville

prablem

X'@) ¥ AX) =0, | XOpasonit X0

Figure 2.62: Problem statement

Case A <0
Solution is
X (x) = Acosh (\/jx) + Bsinh (\/jx)
At x = 0 the above gives
0=A
Hence the solution becomes
X (x) = Bsinh (\/ﬁx)
At x = c the above becomes
0 = Bsinh (ﬂc)
For non-trivial solution we want sinh (\/36) = 0. But sinh is zero only when its argument
is zero. Which means vV-Ac = 0 which is not possible. Hence A < 0 is not possible.
Case A =0

Solution is

X(x)=Ax+B

At x = 0 the above gives

0=B8B
Hence the solution becomes

X(x)=B

At x = ¢ the above becomes

0=B8B
Which gives trivial solution. Hence A = 0 is not possible.

Case A >0
Solution is
X (x) = Acos (\/Xx) + Bsin (\/Xx)
At x = 0 the above gives
0=A
Hence the solution becomes
X (x) = Bsin (ﬁx)
At x = c the above becomes

0 = Bsin (\/XC)
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For non trivial solution we want sin (\/Kc) = 0 which implies

\/Kc:nn n=12,3,--

nm\2
A= ()

2
Therefore the eigenvalues are A, = (%) for n =1,2,3,--- and the eigenfunctions are

X, (x) = sin(%nx) forn=1,2,3, .

2.5.5 Section 39, Problem 2

center plane x = /2. _ '
2. Supposlz that f(x) = sinx in Example 1, Sec. 39. Find u(x, t) and verify the result fully.

i Suggestion: Use the integration formula obtained in Problem 9, Sec. 5.

=l w8
A - t)yi=¢ SIn X. 5
LS u(x’ ) = e S el e A h A2 SN ESEC: 39-

Figure 2.63: Problem statement

Solution

Example 1 is: Solve u; = ku,, with 1 (0,¢) = 0 and u (1, t) = 0. We now use initial conditions
u(x,0) = sin (x). The eigenvalues are A, = n® for n = 1,2,3,--- and eigenfunctions are
sin (nx). The general solution for this example is given in the book as

u(x, b=y, B,e ¥t sin (nx)
n=1
At t = 0 the above becomes

o0
sinx = z B,, sin (nx) 1)
n=1
By comparing sides, we see that only n =1 term exist. Hence B; =1 and all other terms
are zero. Hence the solution is, for n =1

u(x, t) = e * sin (x)
To verify this, we start with (1) and multiply both sides by sin (1mx) and integrate which

gives

f sin x sin (mx) dx = f E B,, sin (nx) sin (mx) dx
0

0 n=1
= > B, i in in d
ngl ( fo sin (nx) sin (mx) x)

But £n sin (nx) sin (mx) dx = 0 for m # n and g for n = m. Hence the above gives

T ’s
f sin x sin (mx) dx = B,, =
0 2

Similarly, £n sin x sin (mx) dx = 0 for m # 1 and g when m = 1, therefore the above becomes

Tt Tt
_:Bl_
2 2
Blzl

And all other B,, = 0. Which gives the same result obtain above, which is u (x, t) = e~k sin (x)
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2.5.6 Section 39, Problem 4

temperatures U and ug, [ESPottvery, arus rss= =
4. [ Suppose that the conditions on the faces of the slabin

" so that

Exa}xlple 2, Sec. 39, are reversed,

(0.5 —up " and  uGr.0 =0.

By replacing x with 7 — X in solution (15) in that example, show that the solution of

this new boundary value problem is

e
X —nckt o3
u(x,t) =ug [l— s %1 ;e sinnx | .

Figure 2.64: Problem statement

Solution

We need to solve

Uy = Kidyy t>0,0<x<m

With boundary conditions

u(0,t) =ug

u(m,t)=0
And initial conditions

u(x,0)=0
Solution (15) is

u(x,t) = olysa i St ekt i (nx)l (15)
Tt = n

Replacing x by 7w — x in (15) gives
(e8] _1 n
u(x,t) = % l(n —x)+2 ;1;1 %e‘”zkt sin (n (1t — x))l

u Uy & (-1)"
=2 (m—x)+ 28 Z ue‘”zkt sin (nm — nx) (2)
Tt Tt =1 n
Using sin (A — B) = sin A cos B + cos Asin B, then
sin (n7t — nx) = sin (n7) cos (nx) + cos (n7) sin (nx)

But sin (n7) = 0 since 7 is integer and cos (n7) = (=1)", then sin (n7 — nx) = (-1)" sin (nx).
Substituting this in (2) gives

XUy oy (1"
u(x,t)=uy— uO; + 2?0 2 ( n) ekt (=1)" sin (nx)
n=1

x 2.3 (-1

= uy '1 - —+ — E D ekt in (nx)]
noTmAe n
X 2 ad 1 2

—ual1==24+Z= — ,—nckt o;

0[ - 717;1 ne sm(nx)]

Which is the result required.
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2.6.1 Section 40, Problem 1

1 Ihe initial temperature of a slab 0 < x < 7 is zero throughout, and the face x = 0 is
kept at that temperature. Heat is supplied through the face x = = at a constant rate
(A > 0) per unit area, so that Ku,(r, f) = A(see Sec. 26). Write

ux, ) =Ux, ) + ®(x)
and use the solution of the problem in Example 2, Sec. 40, to derive the expression

_A 8 o~ (=1)" Qn=1%] . @n—1Dx
u(x, t) = X {x+ - 21: @1y exp [———4—1' sin 7

n=

for the temperatures in this slab.

Figure 2.65: Problem statement

Solution

The PDE to solve is

Upp = kil
With boundary conditions
u(,t)=0 (1)
Ku,(r,t) = A
And initial conditions
u(x,00=0
The solution to example 2 section 40 is
0 2
U(x,t) = Z]l By,_1 exp (@t} sin @) (2)

With

2 (7 2n-1
BZn—l = ;L f(X) sin (% dx

Now, in this problem, we start by writing
u(x,t)=U(x,t) +D(x) (3)
The function @ (x) needs to satisfy the nonhomogeneous B.C. (1). Let
D (x) =cix+cp
When x = 0 this gives 0 = ¢,. Hence @ (x) = c;x. Taking derivative gives @’ (x) = ¢;. But
from (1) K&’ (1) = A. Hence ¢; = %. Therefore

D (x) = %x
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Substituting the above back into (3) gives
A
) =U(x, )+ —
u(x,t) (x, 1) Kx

But U (x, t) is given by (2), hence the above becomes

—(2n—1)2kJ ' ((2n—1)x)
Tt sSsin|{ ——

At t = 0, the initial conditions is 0. Hence the above becomes

A — C[(@n-1)x
—Kx = nz::l By,,_1 sin (T)

A o0
u (x, t) = Ex + Z BZn—l exp( (4)
n=1

. . . . A .
Hence B,,,_; is the Fourier sine series of —2 X given by

2 M AY) . (@Qn-1)x
B2n—1 = ;j; (—EX) SID(T) dx

2A ™ ((Zn—l)x)
e xsin | ———— | dx
7TK 0

(2n-1)x
2

(Zn—l)x)

2
), hence du =1 and v = ~@D cos( >

Integration by parts. Let u = x,dv = sin(

and the above becomes

_ 24 2x Cn-1x\1" p~ 2 2n-1)x
By, = X “— 1) cos( > )L + j(; on-1) cos ( > )dx)

2A 2 [ ((Zn—l)x)r 4 l ((2n—1)x)]”
=-——|- Xcos| ————— + —— |sm|———
nK| 2n-1) 2 . (@n- 1)? 2 )

_2A 27 2n-1)m 4 (@n-1D)m
= —g (— (Zn _ 1) COS( 2 ) + (Zn ~ 1)2 Sln( 2 ))

Since 21 —1 is odd, then the cosine terms above vanish and the above simplifies to
A 8(_1)n+1

7K (20 -1y

A8 (_1)n+2

T K (20 -1y

A 8 (-1)"

T K (20 1)

Byp1 = -

Substituting the above in (4) gives

~ X A 8(-1)" —@n-1%k)  (@n-1)x
u(x,t)—Ex+n=1 &mexp( 1 t)sm( 5 )

A 8. (-1 —@n-1%k) . (@n-1)x
= E {x + E Z —(2n - 1)2 exp (—4 t] sin (—2 )}

n=1

Which is the result required.
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2.6.2 Section 40, Problem 3

- o a

3 Let v(x,7) denote temperatures in a slender wire lying along the x axis. Variations of
" the temperature over each cross section are to be neglected. At the lateral surface, the
linear law of surface heat transfer between the wire and its surroundings is assumed to
apply (see Problem 6, Sec. 27). Let the surroundings be at temperature zero; then

v (x, 1) = kv (x, 1) — bu(x, £),

where b is a positive constant. The ends x = 0 and x = ¢ of the wire are insulated
(Fig. 34), and the initial temperature distribution is f (x) Solve the boundary value
problem for v by separation of variables. Then show that

v(x,t) = u(x,f) e

where u is the temperature function found in Sec. 36.

R

Figure 2.66: Problem statement

Solution
The PDE is
vy = kv, — bo
With boundary conditions
v, (0,6)=0
v, (c,t) =0
And initial conditions
v(x,0) = f(x)
Let v (x,t) = X (x) T (t). Substituting into the PDE gives
T'X =kX"T - bXT
Dividing by XT # 0 gives

TI X//
- = k— -b
T
T/ X//
—+b= k—
T
T/ b Xl/
— =-A
kT k- X
Where A is the separation constant. We obtain the boundary value eigenvalue ODE as
X"+AX=0 (1)
X' (0) =
X' (c) =
And the time ODE as
T’ N b 1
KTk

T + %kT = —AkT

T’+%kT+AkT:O
T+ T(b+ Ak) =

Now we solve the space ODE (1) in order to determine the eigenvalues A.
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Case A <0

The solution to (1) becomes
X (x) = Acosh (V—Ax) + Bsinh (V—/\x)
X’ = AV-Asinh (V—/\x) + BV—-A cosh (V—/\x)

Satisfying X’ (0) = 0 gives
0=BvV-A

Hence B = 0 and the solution becomes X (x) = A cosh (\/—Ax). Therefore X’ = AV—-Asinh (\/—Ax).
Satisfying X’ (c) = 0 gives

0= AVA sinh (ﬂc)

But sinh is zero only when its argument is zero, which is not the case here since A # 0.
This implies A = 0, leading to trivial solution. Therefore A < 0 is not possible.

Case A =0

The solution to (1) becomes

X(x)=Ax+B
X' =A
Satisfying X’ (0) = 0 gives
0=A
And the solution becomes X (x) = B. Therefore X’ = 0. Satisfying X’ (c) = 0 gives
0=0

Which is valid for any B. Hence choosing B =1 shows that A = 0 is valid eigenvalue with
corresponding eigenfunction Xj (x) = 1.

Case A >0

The solution to (1) becomes

X (x) = Acos (\/Xx) + Bsin (\/Xx)
X’ = -AVAsin (\/Xx) + BV cos (\/Xx)

Satisfying X’ (0) = 0 gives

0=BVA

Hence B = 0 and the solution becomes X (x) = A cos (\/Xx) Therefore X’ = —A\/X sin (\/Xx)
Satisfying X’ (c) = 0 gives

0= —A\/X sin (\/Xc)
For nontrivial solution we want
sin (\/Kc) =0

\/Xc:nn n=12,3,-

2
nm
M= () @
And the corresponding eigenfunctions
X, (x) = cos (\//\—nx) (3)
Now that we found A,,, we can solve the time ODE T’ + T (b + Ak) = 0. The solution is
Tn (t) = o~ (b+A k)t (4)
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Hence the fundamental solution is

Oy (X, t) = X, (x) T, )

= cos (\//\_nx) e~ (At

And the general solution is the superposition of all these solutions

0 (x, t) = AOXOTO + i Aan (.X') Tn (t)

n=1
= Age " + Z A, cos (\//\_nx) e~ (b+Aqkt
n=1

Which can be written as
v(x,t) =u(x,t)el
Where u (x, t) is

u(x,t)= Ay + Z A, cos (\/)\_nx) e~ Akt
n=1

Which is the same as given in section 36, page 106. In the above
/\0 =0

n\2
An:(T) n=1,2,3,-

2.6.3 Section 41, Problem 3

¥
\'3.% A hollow sphere 1 <r < 2is initially at temperature zero. The interior surface is kept
— at that temperature, and the outer one is maintained at a constant temperature uo. Set
up the boundary value problem for the temperatures

u=u(,t) A<r<2,t=0)

and follow these steps to solve it:

(a) Write v(r,t) = ru(r, ) to obtain a new boundary value problem for v(r, £). ‘Then
put s = r — 1 to obtain the problem

v = KUsg O<s<1l,t>0),
v =0whens =0, v =2ugwhens =1,
v=0whent=0.

(b) Use the result in Problem 2, Sec. 40, to write a solution of the boundary value
problem reached in part (a). Then show how it follows from the substitutions

made in part (a) that

2

u(r, I) =2u0 [1— %+__ ("1)

n

2.7, 5
e TR sinpr(r-1)| .

NE

mr
n=1

Figure 2.67: Problem statement

Solution

The heat PDE in spherical coordinates, assuming no dependency on ¢ nor on 0 is given
by

uy = kV=2u 1)

1
= k; (ru),,
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Where 1 <7 <2 and t > 0. With the boundary conditions

u@,t)=0

u(2,0) = ug
And initial conditions

u(r,0)=0

Part (a)

Let v (r,t) = ru(r,t). Hence v; = ru; and %(ru) = %vrr. Substituting these in(1), the PDE

rr
simplifies to

o = kvrr (2)
And the boundary conditions u (1,¢) = 0 becomes v (1,f) = 0 and u(2,0) = 1y becomes

v(2,t) = 2uy. And initial conditions u(r,0) = 0 becomes v(r,0) = 0. Hence the new
boundary conditions

v(l,t)=0
v(2,t) =2u,
And new initial conditions
v(r,0)=0

Now let s = r — 1. Since % =1, then the PDE becomes v; = kv,,. When ¥ =1, then s =0
and the boundary conditions v (1,t) = 0 becomes v (0,t) = 0 and the boundary conditions
v(2,t) = 2ug becomes v (1,t) = 2uy. And initial conditions do not change. Hence the new
problem is to solve for v (s, t) in

vy = kvgs (3)
v(1,t)=0
v(1,t) =2uy
v(s,0)=0

With 0 <s<1andt?>0.

Part (b)

The PDE (3) in part(a) is now the same as result of problem 2 section 40. Hence we can
use that solution for (3) which gives

2 [} (_1)7’1 5
+ — —n-mnckt o
X - E e sin (nns)]

v (s, t) = 2u ”

n=1

Replacing s by r —1 in the above gives

o (r,t) = 2ug [(r 1)+ % f] %e—nznz'ﬁ sin (n7 (r 1))]

n=1

But v(r,t) = ru(r,t), hence u (r,t) = ; and therefore

(r-1)

u(r,t) = 2ug [

1\ 2 QD" _an
= 2uyg [(1 - ;) + — ;;::1 %e‘” R sin (n (r — 1))]

+ % Z%e—nzﬂzkt sin (n7 (r — 1))]

Which is the result required.
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2.6.4 Section 42, Problem 4

4. A bar, with its lateral surface insuiated, is initially at temperature zero, and its ends
x = 0 and x = c.are kept at that temperature. Because of internally generated heat,
the temperatures in the bar satisfy the differential equation

(X, 1) = Ko (x, 1) + g(x, 1) O<x<ct>0).

Use the method of variation of parameters to derive the temperature formula
2 < nmx
u(x,t) = p 21: L) sin —

where 1,(¢) denotes the iterated integrals

t 2. P C
In(t)=/ exp {_n 7Tk(z‘—r)} / q(x, r)sinn—?fdxdr n=1,2,..).
0 0

P
Suggestion: Write

= 2 [ . nmx
glx,t) = Zb,,(t) sin ? where b, (t) = - /0 q(x,t)sin — dx.

n=1

Figure 2.68: Problem statement

Solution

Using method of eigenfunction expansion (or method of variation of parameters as the
book calls it), we start by assuming the solution to the PDE u; = ku,, + g (x, t) is given by

w(x,t) =Y, a, ()P, (x) (1)
n=1

Where ®,, (x) are the eigenfunctions associated with the homogeneous PDE u; = ku,, with
the homogeneous boundary conditions # (0,¢) = 0 and u(c,t) = 0. But we solved this
homogeneous PDE before. It has eigenvalues and corresponding eigenfunctions

2
Anz(%ﬂ) n=1,2,3,--

®,, (x) = sin (\/A_nx)

Substituting (1) into the original PDE u; = ku,, + g (x, t) results in

) & 9?2 &
Egan () D, (x) = kﬁ;an (H) D, (x) +q (x, 1)

D ()P, (x) =k Y a, () Dy () +4q(x, 1)
n=1 n=1

But from the Sturm-Liouville ODE, we know that @, (x) + A, ®,, (x) = 0. Hence @} (x) =
-A,,®,, (x) and the above reduces to

2 (D, () = ~k D3 a, (1) A,D, () +q(x,t) (2)
n=1 n=1
Since the eigenfunctions @, (x) are complete, we can expand g (x, ) using them. Therefore

q (x/ t) = 2 bn (t) q)n (X)
n=1

Substituting the above back in (2) gives

3, (D, (1) =k 4 () A, () + 3 by (D, ()
n=1 n=1

n=1

Since @,, (x) are never zero, we can simplify the above to
ay (t) = —ka, (£) Ay, + by, (t)
ay () +ka, () Ay, = by (£)
The above is first order ODE in [, (¢). It is linear ODE. The integrating factor is y =
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el FAudt — gkt Multiplying the above ODE by this integrating factor gives

d
= (an (t) ek}tnt) =b, (¥ kAt

Integrating both sides

t
0, (£) Kt = f b, (1) ity
0

t
a, () = f b, () ekt
0
Now that we found a,, (), we substitute it back into (1) which gives
oo t
u(x,t) =Y, ( f b, (1) e"‘"n(f—f)df) @, (x) (3)
n=1 0

What is left is to find b, (t). Since gq(x,t) = E:;l b, (t) @, (x), then by orthogonality we
obtain

[fano,wdr= [ 3 b,00,00,@d
0 0 n=1
=Y 0,0 [ 0, (), ()
n=1 0

— b, (t) foccp,% (x) dx

=5, ()5

Hence
2 C
by ()= - f g (x, D), (x) dx
0

Substituting this back into (3) gives

(0]

u(x, t) = Z (fot e—k/ln(t—T)% (focq (x, 7) D, (x) dx) dr) D, (x)

n=1

_ % 2 ( fo ' k-0 ( fo "0 (6, 7) Dy, (1) dx) dT) D, (x) )

If we let

t C
L, (1) :f e~ KAn(t=1) (f g (x, 7) @, (x) dx) dt
0 0
Then (4) becomes

2 oo
u(x,t) = Zzln ) @, (x)
n=1
Since ®,, (x) = sin (?x) then the above is
2 & nmn
22l
u(x, f) an::ln()sm —x

Which is what required to show.

2.6.5 Section 42, Problem 5

5. By writing ¢ = 1, k= 1, and g(x, r} = xp(t) in the solution found in Problem 4, obtain
the solution already found in Problem 1.

Figure 2.69: Problem statement

Solution
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The solution in problem 4 above us

(x, 1) = — ZI (t) sm(n: ) (1)

d ¢ nm
— —kA,(t—-1) :
L, (¢) fo e (jo‘ q(x,7) sm( . x) dx) dt

2
And A, = (?) .Letc=1,k=1and q(x,t) = xp(t), then the above becomes

L, () = fot e (t=T) (j(;l xp (1) sin (n71x) dx) dt

Substituting this in (1), using ¢ =1, then (1) becomes

1
=2 ~n?7?(t-1) in dx|dt]sin
u(x,t) Z(f (j(; xp (1) sin (nmx) x) T)S (nmtx)
1
=2 —n*7i?(t-1) sin dx|dt|sin 2
,;1(1;) p(r)e (j; x sin (n7x) x) T) (nmx) (2)

1
But £ xsin (nmx)dx can now be integrated by parts. Let u = x,dv = sin(n7nx), hence

du=1,0=-

Where

cos(nmz) and therefore

1 1 1 ol
f xsin (nmx) dx = —— [x cos (nrcx)](l) + —f cos (nmx) dx
0 nrt nrt

0
1
1 Tsi
= ——cos (nm) + — sy (nnx)l
nm nm
1 " _
=——1(-1) + [sin (n77)]
nm n2m2
(_1)}’l+1
- nm

Substituting this back in (2) gives

00 n+1
u(x,t)=2 Z (ftp(”c (=) ((_1) Jdr) sin (n7x)

nrt

n+1
= E D sin (n7x) (ftp(”[) e_"znz(t_r)d’c)
0

Which is the solution for problem 1.

2.6.6 Section 42, Problem 8

DIV Ta

8./ Using a series of the form

o0
uGe, 1) = Ap(D) + Y A1) cos

n=1

and the expansion (see Example 1 in Sec. 8)

2 n
G (-1 nmx ;
x_§+712 E I’lz OS—C— (0<X<(,),

n=1

solve the following temperature problem for a slab 0 < x < ¢ with insulated faces:

W (X, 1) = kit (x, 1) + ax? 0 <x<cyt >O),
u (0, 1) =0, uc(c, t) =0, W EA =0
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where a is a constant. Thus, show that

(x,t) = ac? E—i—ﬁ 3 Lo 1—ex —nznzkt cos
WD =00y 37 g nt P c2 c [

n=1

Figure 2.70: Problem statement

Solution
The PDE to solve is
up = kity, + ax?

With boundary conditions

u,(0,t) =0

u,(c,t) =0
And initial conditions

u(x,0)=0

Using method of eigenfunction expansion, we start by assuming the solution to the PDE

u; = kit + ax? is given by
u(x,t) = Y a, ()P, (v) (1)
n=0

Where ©, (x) are the eigenfunctions associated with the homogeneous PDE u; = ku,, with
the homogeneous boundary conditions u, (0,¢) = 0 and u, (c,t) = 0. But we solved this
homogeneous PDE before. It has eigenvalues and corresponding eigenfunctions

Ag=0
D (x) =1
n?m?
=" =123

D, (x) = cos (?x)

Substituting (1) into the original PDE u; = ku,, + ax? results in
J 9%
E Zoan ) D, (x) = kﬁ Zoan (t) D, (x) + ax*
n= n=

i ay () Dy (x) = k i a, (1) ;7 (x) + ax?
n=0

n=0
But from the Sturm-Liouville ODE, we know that @, (x) + A, ®,, (x) = 0. Hence @}’ (x) =
-A,,®,, (x) and the above reduces to

E ai/’l (t) (Dn (X) = -k Z ay (t) /\nq)n (.X) + axZ (2)
n=0 n=0
Since the eigenfunctions @, (x) are complete, we can expand ax? using them. Therefore
ax? = )b, (x) @, (x)
n=0

Substituting the above back in (2) gives

i ay () ®, (x) = -k i ay (£) A, @y, (x) + i by (x) Dy (x)
n=0

n=0 n=0

Since @,, (x) are never zero, we can simplify the above to
ay (t) = —kay, (£) Ay + by, (x)
ay () + ka, () Ay = by (%)
The above is first order ODE in I, (). It is linear ODE. The integrating factor is y =
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el FAudt — gkt Multiplying the above ODE by this integrating factor gives
= (ﬂn () ek)t,,t) =b,(x) okAnt
Integrating both sides

t
o, () Kt = b (x) f Kty
0

a, (t) = b, (x) j: e Fnlt=T) g (3)

What is left is to find b, (x). Since ax? = ZZOZO b, (x) D, (x), and from example 1 section 8,
we found that

2
C
bo(x)—ag
422 (-1
b()—ac( S o123,

n2

Hence when n = 0, then (3) becomes (since Ay = 0)

ag () = a—f dr

3

When 7 > 0 then (3) becomes

4c” (-1
a,(t) = ( ncz (nz) ) fo e~ kAn(t=1) 41

1)" 4 2
_ acfek(c)(”)dr
0

2 2
nm\2 t . nm\2
_ 12) 4”2 e HT) ff ) gy
n Tt 0
nmy2 1t
_ 1)" 4ac® _j(mm\? HE)
)
2 2t (1)
( C ) O
nrt 2
_ 0" ga O ey,
T2 2 ame |6 -
k()

PR 2
_(-1)"4ac?1-e (T)t
= nz 7_[2 kn2;-[2

C

_ (1) dact (1 _ <—>)

n* krnt
Now that we found a,, (), we substitute it back into (1) which gives

wh =ao )+ Y gy (), ()

n=1
ac? & (-1)" 4act (VY nm
I/l(x,t) = ?t‘i‘ ;7@(1_6 ( c ) )COS(T.X)
2

4 (- 1) _(")?
S (2
_ t 402 & ( 1)" _k(ﬂTﬂ)zt nm
e Y ARE

Which is the result required to show.
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2.6.7 Section 43, Problem 1

Find u(x, y) when f(x) = uy, where uq is a constant,

expression
oo
wx,y)= Apy+ Z A, sinh ny cos nx,
n=1
where
Ay = ‘!5 / nf (x)dx and Ay = 2 / ”f(x) cosnx dx
7 Jy msinh nr f;
(n=

E.q[rThelfaces and edges x=0and x =x (0 < y <) of a square plate0<x<n,0<y<n
are msulated: The edges y=0and y=n 0 <x <) are kept at temperatures 0 and
f(x), respectively. Let u(x, y) denote steady temperatures in the plate and derive the

1.2 . 0

Figure 2.71: Problem statement

Solution

)
A
1t = s@)
uz(0,y) =0 Vu =0 ug(m,y) =0
>

u(z,0) =0 T

Figure 2.72: PDE and boundary conditions

Let u (x, y) =XxY (y) The PDE becomes

X"Y+Y'X=0

X/I 3 ‘YII 3 /\
X Y
Hence the eigenvalue problem is
X"+AX=0
X" (0)=0
X' (n)=0
And the ODE for Y (y) is
Y”"-AY =0

We start by solving (1) to find the eigenvalues and eigenfunctions.

Case A < 0 The solution is

X = Acosh (\/jx) + Bsinh (ﬂx)
X’ = AV-Asinh (ﬂx) + BV=A cosh (ﬂx)
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At x = 0 the above becomes
0=BV-A
Hence B = 0 and the solution becomes

X = Acosh (V—/\x)
X" = AV-Asinh (V—/\x)
At x = 1t the above gives

0 = AV=Asinh (ﬂn)

For nontrivial solution sinh (\/—/\n) = 0 but this is not possible since sinh is zero only
when its argument is zero and this is not the case here. Hence A < 0 is not eigenvalue.

Case A = 0 The solution is

X=Ax+B
X' =A
At x = 0 the above becomes
0=A
Hence the solution becomes
X =B
X' =0
At x = 1 the above gives
0=0

Therefore A = 0 is eigenvalue with Xj (x) = 1.

Case A > 0 The solution is

X = Acos (\/Xx) + Bsin (\/Xx)
X’ = —AVAsin (\/Xx) + BV cos (\/Xx)

At x = 0 the above becomes
0=BVA

Hence B = 0 and the solution becomes

X = Acos (\/Xx)

X’ = —AVA sin (\/Xx)
At x = 1 the above gives

0=-AVAsin (\/Xn)
For nontrivial solution

sin (\/Xn) =0
Vin=nn = n=1,2,3,-
A, = n?

And the corresponding eigenfunctions X, (x) = cos (nx). Therefore in summary we have

eigenvalue eigenfunction
AO =0 1
A, =n? n=1,23, cos(nx)
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Hence the Y (y) ode becomes

Y'-A,Y=0

Y” -n?Y =0
The solution to the above is, when n =0

Yo = Aoy + By
When y = 0 the above gives 0 = By. Hence Y = Apy.

When 1 > 0
Y, (y) = B, cosh (ny) + A, sinh (ny)
When y = 0 the above gives 0 = B,, Hence

Y, (y) = A, sinh (ny)

Hence the fundamental solution is

u (x, y) =X,Y,

And the general solution is the superposition of these solutions
u(x,y) = AXoYo + 2, A,Y, X,
Therefore "~
u (x, y) = Ay + i A, sinh (ny) cos (nx) (A)
What is left is to determine Ay and A,,. Antz]l/ = 7t the above gives
fx)=Agm+ i A, sinh (n7) cos (nx)
n=1

Multiplying both sides by cos (mx) and integrating gives
f F () cos (mx) dx = f Agrt cos (mx) dx + f 2 A, sinh (n77) cos (nx) cos (mx) dx (1)

fonf(x)dxsznAondx

fnf(x)dx — Ay
0
1 7T
A= | @ @

For m =0, (1) becomes

For m > 0, (1) becomes

f f (x) cos (mx) dx = f Z A,, sinh (n71) cos (nx) cos (mx) dx

f f (x) cos (mx) dx = A,, sinh (mmn) f cos? (nx) dx
0 0
= A,, sinh (mm) g
Hence
f F () cos (nx) dx 3)
When f (x) = uy a constant, then (2) becomes

1 7T
AO = — f Z/lodx
™ Jo

Up

~ msinh (nn

Tt

80



2.6. HW 6 CHAPTER 2. HWS

And (3) becomes

2 T
A =——
n = s () fo ug cos (nx) dx
2ug [sin (nx) ]n

~ Tsinh (nm) n
=0

Hence the solution (A) becomes

0

u (x,y) = MOZ

T

This shows the final solution changes linearly in y. When y = 0 then u (x,0) = 0 and when
y = 7, then u (x, ™) = uy.

2.6.8 Section 44, Problem 2

POPEpS -

! % Let the faces of a plate in the shape of awedge 0 < p < 4,0 < ¢ < a in the first quads

— rant (Fig. 41) be insulated. Find the steady temperatures u(p, ¢) in the plate when u = ()
onthetworays¢ =0, =a (0 < p <a) andu = f(¢)onthearcp=a (0 < ¢ < a).
Assume that f is piecewise smooth and that u is bounded.

00 nmfa

2 {*3
Answer: u(p, ¢) = 3 Z (g) sin naﬂ f(@))sin ﬂ ay.
o

n=1 0

FIGURE 41

Figure 2.73: Problem statement

Solution

The PDE V24 (p, qb) = 0 in polar coordinates is

1 1

Upp + Eup + ?”(Pcb =0

For 0 < p <aand 0 < ¢ < a. With boundary conditions
u(p,0) =0
u (p, a) =0

u(a,¢) = f(¢)

And since u is bounded, then we have an extra condition u (0, (f)) < o0,
Let u (p, q,‘)) =R (p) O ((ﬁ)) Substituting into the above PDE gives

1 1
R'® + —R'OD + —ZCI)”R =0
p P
RII 1RI 1 CD//
R pR p*®
(D/l ( ZRII Rl)
- _ =

=0

o \PRTPR
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Where A is the separation constant. The above gives the boundary values problem to solve
for A

Q"+ A0 =0 1)
D (0) =
D(a) =
And
R// + RI 3 A
PR PR
p?R”’ + pR’—=AR =0 (2)
We start with (1) to find A then use the result to solve (2). The ODE (1) we solved before,
it has the eigenvalues

n7\2
/\nZ(—) n=123,--
a

And corresponding eigenfunctions
. (nT
q)n ((P) = S (7¢) (3)

Now (2) can be solved. This is a Euler ODE. Using R (p) = p" and substituting into (2)
gives

p*m(m—=1) p"2 + pmp™1 - (f)

m(m—1) p" + mp™ — ( )

m(m-1)+m-— ( ):O
o = ()
“\a
Hence
nm
m +—
o

Therefore the solution to (2) is

Ry (p) = Aups +Byp e

—nT

We immediately reject the solution p @ since this blows up at origin where p — 0. Hence
the above becomes

Ry (p) = Awp® (4)
Now that we found @, (qb) and R, (p), then we use superposition to obtain the general

solution
1 (0)= SR ()24 0
— o N
= Z Aupe sm(;qb) (%)

n=1
Atp=a,u (a, qb) =f (qb), hence the above becomes

£(0) = gAnﬁ sin (%”qj)

By orthogonality we obtain

ij@)) sin( ) f EA anan sm( " qb) sin(n;n¢) dg

mm 104
= Ama7f sin? (@¢) dg
0 04
mr o
—Aaga—
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Solving for A,, from the above gives

2 om nm
(=3 [ (2}
) (¢)sin — ) dop
Substituting the above in (5) gives the final solution
N [2 T @ . (nm nmo (AT
u (P/ qﬁ) = Z (Eu a f f(g[)) sin (—¢) dgb) pa sin (—qb)
=1 0 a a

2R (7 [ 12
2.6.9 Section 49, Problem 2

2.\ Solve the boundary value problem

w(x, 1) = ki (x, £) (-7 <x<mt>0),
u(—m,t) = u(m,t), U (=70, 1) = Uy (T, 1), u(x,0) = f(x).

The solution u(x, t) represents, for example, temperatures in an insulated wire of l'ength
2.7 that is bent into a unit circle and has a given temperature distribution along it. For

convenience, the wire is thought of as being cut at one point and laid on the x axis
bc?tween Dot and x = m. The variable x then measures the distance along the
wire, starting at the point x = —x; and the points x = —7 and x = 7 denote the same
point on the circle. The first two boundary conditions in the problem state that the
temperatures and the flux must be the same for each of those values of x. This problem

was qf considerable interest to Fourier himself, and the wire has come to be known ag
Fourier’s ring.

o0
Answer: u(x, t) = Ay + Z e_”zk’(A,, cosnx + B, sinnx),

n=1

1 m
Ay = Zf/ f(x)dx

where

and

Ay L
n:;[ﬂf(x)cosnxdx, Bn_—.;/ f(x) sinnx dx (=12, S8

2 ST USSR e 4 P

Figure 2.74: Problem statement

Solution

up = kity,
With -7t < x < 7,t > 0 and periodic boundary conditions
u(-m,t) =u(m,t)
U, (-1, t) = u, (1, t)
And initial conditions
u(x,0) = f(x)
Normal process of separation of variables leads to eigenvalue problem
X"+AX=0
X (-m) = X(m)
X' (-n) = X" ()
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And the time ODE
T"+ kAT =0 (2)
We start by solving (1) to find the eigenvalues and eigenfunctions.

Case A <0

Solution is
X (x) = Acosh (ﬂx) + Bsinh (ﬂx)
X' (x) = AV=Asinh (\/Ix) + BV-A cosh (\/jx)

The boundary conditions X (—7t) = X (77) results in (using the fact that cosh is even and
sinh is odd)

A cosh (\/371) + Bsinh (\/371) = A cosh (\/377) — Bsinh (\/371)
Bsinh (ﬂn) = —Bsinh (\/371)
Bsinh (V=17 = 0 (3)

The boundary conditions X’ (—7t) = X’ () results in (using the fact that cosh is even and
sinh is odd)

AV-Asinh (ﬂn) + BV=A cosh (\/37‘() = —AV-Asinh (ﬂn) + BV=A cosh (ﬂn)
AV=Asinh (ﬂn) = ~AV-Asinh (ﬂn)
Asinh (ﬂn) =0 (4)
So we obtain (3,4) equations, here they are again
Bsinh (ﬂn) =0
Asinh (ﬂn) =0

There are two possibility, either sinh (\/371) = 0 or sinh (\/371) # 0. If sinh (\/371) #0
then this leads to trivial solution, as it implies that both A = 0 and B = 0. On the other
hand, if sinh (\/37’() = 0 then this implies that V=Am = 0 since sinh is only zero when its
argument is zero which is not the case here. This implies that A < 0 is not possible.

Case A =0

The solution now becomes X (x) = Ax + B. Satisfying the boundary conditions X (-7) =
X (m) gives

An+B=-An+B
2An =0
A=0
Hence the solution becomes
X(x)=B
X' =0

Satisfying the boundary conditions X’ (—7) = X’ (7) gives 0 = 0. Hence A = 0 is possible
eigenvalue, with corresponding eigenfunction as constant, say 1.

Case A >0

Solution is

X (x) = Acos (\/Kx) + Bsin (\/Zx)
X' (x) = ~AVA sin (\/Xx) + BV cos (\/Xx)

The boundary conditions X (-=7) = X (71) results in (using the fact that cos is even and sin
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is odd)
A cos (\/Xn) + Bsin (\/Xn) = Acos (\/Xn) — Bsin (\/Xn)

B sin (\/Xn) = —Bsin (\/Xn)
Bsin (\/Xn)

The boundary conditions X’ (—7t) = X’ (1) results in (using the fact that cosh is even and
sinh is odd)

~AVAsin (\/Xn) + BV cos (\/Xn) = AV sin (\/XT() + BV cos (\/XT()
~AVA sin (\/ZT() = AV sin (\/XT()
Asin (Vi) =0 (6)

0 (5)

So we obtain (5,6) equations, here they are again
Bsin (\/Xn) =0
Asin(Var) =0

There are two possibility, either sin (\/Kn) = 0 or sin (\/Xn) # 0. If sin (\/XTC) # 0 then
this leads to trivial solution, as it implies that both A =0 and B = 0. If sin (\/Xn) = 0 then

this implies that \/Kn =nm where n =1,2,3,---. Hence A > 0 is possible with eigenvalues
and corresponding eigenfunctions given by

A, = n? n=1,273,-
X, (x) = A, cos (nx) + B,, sin (nx)

Now that we solved the eigenvalue problem (1), we use the eigenvalues found to solve the
time ODE (2)

T+ kA, T =0
When A = 0, this becomes T’ = 0 or T, (f) is constant. When A > 0 the solution is
T, (t) = ¢7Ft
— e—knzt
Hence the fundamental solution is
uy (x, 1) = X (x) T, (£)
And by superposition, the general solution is
u(x, 1) = AgXo (¥) To (£) + D (A, cos (nx) + B, sin (12x)) e ¥

n=1

But X, (x) =1 and Tj (t) is constant. Hence the above simplifies to
u(x, ) = Ag + f] (A, cos (nx) + B, sin (nx)) e <"t
What is left is to find Ay, A,, B,,. A::tl: 0 the above gives
fx)=Ap+ i A, cos (nx) + B,, sin (nx) (7)

n=1

For n = 0, by orthogonality we obtain

f_nf(x)dx: f_ﬂ Agdx

[ Feax= 4000

1 TC
ho= [ fera
0= 5 . f(x)dx
For n > 0. We start by multiplying both sides of (7) by cos (mmx) and integrating both sides.
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This gives

f " (%) cos (mx) dx = f i (i A, cos (nx) cos (mx) + B, sin (x) cos (mx)) dx

n=1

i f cos (nx) cos (mx) dx + Z B, f i sin (nx) cos (mx) dx
n=1 - n=1 T

But f " sin (nx) cos (mx)dx = 0 for all n,m. And f " cos (nx) cos (mx) dx = f " cos? (mx) dx
—TC =Tt =Tt

and zero for all other n # m. Hence the above simplifies to

7T 7T

f F () cos (mx) dx = A, f cos? (mx) dx
=Tt =Tt
=A,n

Therefore

= %j:f(x) cos (nx) dx

To find B, we do the same, but now we multiply both sides of (7) by sin (mx) and this
leads to

Tl [ X
f F (%) sin (mx) dx = f (Z A, cos (nx) sin (mx) + B,, sin (nx) sin (mx)) dx
L -1 \n=1
0 s
= E A, f cos (nx) sin (mx) dx + Z B, f sin (nx) sin (mx) dx
n=1 - n=1 -
But f_ " cos (nx) sin (mx)dx = 0 for all n,m. And f_ sin (nx) sin (mx) dx = f_ " sin? (mx) dx

and zero for all other n # m. Hence the above simplifies to

[ F@sinm)dx =5, [ s dx
=B, T

Therefore
1 7T
== f f (x) sin (nx) dx
T =Tt

This completes the solution. The final solution is

u(x,t) = Ag + 2 (A, cos (nx) + B, sin (nx)) e %"

f f(x)dx + E ekt l(E j: ) f (x) cos (nx) dx) cos (nx) + (% j: z f (x) sin (nx) dx) sin (nx)]
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2.7.1 Section 45, Problem 4

J TT 4AviIIJLAY | L5 ULLLLUUA.

4.! A string, stretched between the points 0 and 7 on the x axis and initially at rest, &
released from the position y = f(x). Its motion is opposed by air resistance, which I§
proportional to the velocity at each point (Sec. 28). Let the unit of time be chosen s
that the equation of motion becomes

Y (X, 1) = Yor (%, 8) — 2 Byi(w, t) O<x<mt=)

where B is a positive constant. Assuming that 0 < 8 < 1, derive the expression

o0
yx, t) = e Z B, (cos oyl & sin u,,!> sin sy,
oy

el

where

2 T
an=\/n_2—ﬂ2, Bn=;/ f(x)sinnx dx (SIS A
0

for the transverse displacements.

Figure 2.75: Problem statement

Solution

Solve for y (x, t) in

Y =Yu—2Py;  (¢t>0,0<x<m) (1)
Boundary conditions
y(0,t)=0
y(m,t)=0

Initial conditions
y(x,0) = f(x)
Yy (x,0)=0
Let y = XT. Substituting in (1) gives
T"X =X"T-2T'X
Dividing by XT # 0
T X" T’

S Y

T-x 7
Tl/ T/ Xl/
2= =)
T T X

Where A is separation constant. Due to nature of boundary conditions being both homo-
geneous, then we know A > 0 is only possible case from earlier HW’s. The eigenvalue
problem is

X" +AX =0
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Which we know has eigenvalues A = n? for n = 1,2, --+ with corresponding eigenfunctions
X, = sin (nx) (1)

Now we solve the time ODE using these eigenvalues.

T + 28T +n?T =0

This is standard second order ODE with positive damping § and since n? is positive. The
characteristic equation is

2 +2fr+n?>=0

The roots are

b 1
=——+—Vb2 -4
¢ 2a 2a ac

2 1
:——ﬁi— 4ﬁ2—4n2
2 2
=B \p2 -2

= —B i n% - B2

T, (t) = A,e + B, et
—B+in2-B2 —B—ir/n2—-p2
— Ane( pt+inc—p )t +Bn€( B—in=—p )t

_ Pt ( A NP 4 B i nz—ﬁzt)

Hence the solution is

But the above can be rewritten using Euler relation as (the constants A,,, B,, will be different,
but kept them the same names for simplicity)

T, (t) = e P (An cos (1/n2 - ﬁzt) + B, sin (,/nz — ﬁzt))

Let a,, = \/n? — B2, then the above becomes
T, (t) = e P (A, cos (a,t) + B,, sin (a,,t)) (2)

Since the PDE is linear and homogenous, then by superposition we obtain the final solution
as

y(x/ t) = i XnTy
n=1

= Y, e (A, cos (a,t) + B, sin (a,t) sin (nx) (3)
n=1
Now initial conditions are applied to determine A,,B,,. Att =0

f(x) =Y Aysin (nx)
n=1
Hence A, are the Fourier sine coefficient of the representation of f (x) which implies

2 T
A, =— f f (x) sin (nx) dx (4)
TJo
Taking time derivative of (3) gives

v (8 = Y [-Be P (A, cos (@yt) + By sin (b)) + e (—av, A, sin (o) + By, cos (a,b)) | sin (n2)
n=1
At t = 0 the above becomes (since released from rest)

o0

0= Y (-BA, + a,B,)sin (nx)

n=1
Therefore

—BA, +a,B, =0
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Hence B,, = ﬁaﬂ. Therefore (3) becomes

PA

Oy

y(x,t) = i e Pt (An cos (a,t) + sin (a,, t)) sin (nx)

n=1
=Pt Z A, (COS (a,t) + 12 sin (ant)) sin (nx)
n=1 n

Where A, = 2 fz f (x) sin (nx) dx and a,, = \/n? — f?. Which is the result required to show
(Book used Bnin place A, but it is the same thing, just different name for a constant).

2.7.2 Section 46, Problem 2

B —

c

9 Let a, b, and w denote nonzero constants. The general solution of the ordinary differ
ential equation

Y'(t) + a*y(t) = bsin wt

is of the form y = y. + Yp, Where y. is the general solution of the complementary

equation y”(¢) + a*y(t) = 0 and y, is any particular solution of the original nonhoma:
geneous equation.’

(a) Suppose that w = a. After substituting
Yp = Acoswt + Bsinwt,

where Aand B are constants, into the given differential equation, determine values
of Aand B such that y, is a solution. Thus, derive the general solution

y(t) = Cycosat + C,sinat + sin wt

R
of that equation.
(b) Suppose that w = a and find constants A and B such that

Yp = At coswt + Bt sin wt

is a particular solution of the given differential equation. Thus obtain the generul
solution

\ b
y(t) = Cycosat + Cysinat — o tcosat.
a

Figure 2.76: Problem statement

Solution

Part a
suppose w # a. Let
Yp = Acoswt + Bsinwt 1)

Then

Yp = —Awsinwt + Bw cos wt

Yy = —Aw? cos wt — Bw? sin wt
Substituting the above back into the given ODE gives

yy (1) + azyp (t) = bsin wt

(—Aa)z cos wt — Bw? sin a)t) + a% (Acoswt + Bsinwt) = bsin wt

cos wt (—Aa)2 + aZA) + sin wt (—Ba)2 + azB) = bsin wt (2)
By comparing coefficients, we see that
~Aw? +a?A=0
A(?-w?)=0
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Since @ # a then this implies that A = 0. And from (2), we see that
—Bw?+a*B=b

T 22
Therefore (1) becomes

Yp = 57— sinwt
Now we need to find the complementary solution to
v+ Py =0
Since a% > 0, then the solution is the standard one given by
Y (t) = Cycosat + Cysinat
Adding (3,4) gives the general solution

b
y(t) = Cycosat + Cysinat + —— sinwt

a? — w?
Part (b)
Let
Yp = Atcoswt + Bt sinwt
Then

y;, = Acoswt — Atwsin wt + B sin wt + Btw cos wt

(3)

(4)

(1)

Yy = —Awsinwt - (Aa) sin wt + Atw? cos a)t) + Bw cos wt + (Ba) cos wt — Btw? sin a)t)

= (—Ata)2 + 2Ba)) cos wt + (—2Aa) - Bth) sin wt
Substituting the above back into the given ODE gives

yy (1) + a%y, (t) = bsin wt
((—Ata)2 + 2Ba)) coswt + (—2Aa) - Bta)z) sin a)t) + a% (At cos wt + Bt sin wt) = bsin wt
coswt (—Atw? + 2Bw + a2At) + sin wt (~2Aw - Btw? + a?Bt) = bsin wt

By comparing coefficients, we see that
—-Atw? + 2Bw + a?At = 0
At(-? +a?) + BQw) =0
And from (2), we see also that
~2Aw — Btw? + a®Bt = b
A(-2w) + Bt (-w? + a?) = b

But since w = a, then (3) becomes

BQw) =0
B=0
And (4) becomes
A(2w) =D
-b
A=—
2a

Substituting these values we found for A, B, in (1) gives

Yp = Z_at cos wt
But w = a, therefore

Yp = Zt cos at
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The complementary solution do not change from part (a). Hence the general solution is

b
y(t) = Cycosat + Cysinat — 2—tcos at
a

Which is the result required to show.

2.7.3 Section 46, Problem 3

|3,] Use the general solutions derived in Problem 2 to obtain the following solutions of the
initial value problem

y'(t) +a’y(t) = bsinot, y(0) =0, y'(0) = 0:

o . :
8 2(—smat—smwt> when o # a,

w?—a*\ a

y(t) =
b Gls iy : L
— | —sinat —tcosat when w = a.
2a \ a

Figure 2.77: Problem statement

Solution

The general solution from problem 2 is

. b .
Cicosat + Cysinat + ——sinwt w #a
ac—w

y(t) =
Cqcosat + Cysinat — Z—batcosat w=a

We need to find Cq, C, when initial conditions are y (0) = 0,1’ (0) = 0 for each of the above
cases.

case w # a
y(0) = 0 gives

0=C;
Hence solution now becomes

b
y(t) = Cysinat + 2 sin wt

Taking time derivative gives

Yy (t) = aCycosat + 2 cos wt
At t = 0 the above gives
3 wb
0= ﬂCZ + 22
Co = 1 wb
2T g2 -2
Using Cq, C, found above, the solution becomes
1 wb | :
y(t) = sz 2 sin at + az_—a)z sin wt
b (o :
= m (; sin af — sin a)t) (1)
case W =4
y(0) = 0 gives
O = C1

Hence solution now becomes
b
t) = Cysinat — —t at
y(t) 5 sin % cos
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Taking time derivative gives

b b
Yy (t) = aCycosat - (5 cosat — th sin at)

At t = 0 the above gives

b

0=aCy) - —

-2 2a
_1b
27 424

Using Cq, C, found above, the solution becomes

10b b
t) = ——sinat — —t at
y(t) a2asm o cos
b (1
=2— —sinat —tcosat
al\a
From (1,2) we see that
—— (Ssinat - sinwt) w#a
y(t) = 1.
> ;smat—tcosat) w=4a

Which is the result required to show.

2.7.4 Section 52, Problem 3

‘ 1.| Assume that a function f(x) has the Fourier integral representation (8), Sec. 50, which
can be written

f(x) = lim / [A(@) cos ax + B(w) sinax] da.
cC—>00 0

Use the exponential forms (compare with Problem 8, Sec. 15)

ei@ 4 e—iB ei@ S e—i9
; sinf = :
2 2i
of the cosine and sine functions to show formally that

C

f(x) = Iim/ C(a) € da,

cosf =

where

Ale) — i B(@) _ Al@) +iB@)
g oieyd il aCle) S trr

I'hen use expressions (9), Sec. 50, for A(e) and B(x) to obtain the single formula®

C(a) =

(e > 0).

Clo) = i/ filyer % (=00 < a < 00).
i 1

Figure 2.78: Problem statement

Solution
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(0e]

fx) = (A (a) cos (ax) + B (a) sin (ax)) da

A (a) ( wzx + e—zax) B (a) (ezax _Ze—zax )) i

°°( (A(a) zB(a)) (A(oz)+iB(a)))
el e ———— || da

2
f‘x’ eiaxA(“) iB (x) o+ f"" e—iaxA(a) +iB (a)da
0 2 0 2

_ f eiaxA(a)—lB (a) o+ f e_mA(a)+zB (a)da
0 2 0 2
00 4 0 .

:f eiaxA(a) 21B (a)da+f eiaxA(a)-iz-lB (a)da
0 )

I
hoﬁh

- f C (a) e dar

Where
A(a)-iB(a)
2

A(a)+iB(a)

C(a)= .

Expression (9) section (5) is

, C(-a)= a>0

A) = %j:oof(x)cos(ax)dx
B(a) = %f_oof(x)sin(ax)dx

Substituting the above in C (@) =

A(a)-iB(a) .
5 gives

Cla) = %(% f_oof(x) cos (ax)dx—i% j:oof(x) sin(ax)dx)
_ % (f:;f(x)cos(ax)dx—J:Zf(x)isin(ax)dx)
- % f Z F () (cos (ax) — isin (ax)) dx

But using Euler relation cos (ax) — isin (ax) = ¢ then the above reduces to

1 o
C(a):ﬂf_wf(x)emdx —co<a<oo

Which is what required to show.

2.7.5 Section 53, Problem 4

O TR ; -

s
r g JUse the theorem in Sec. 53 to show that if

iy when x <0 or x > g,
sin x when 0 < x < 7,
then

1 [o e}
g cosax+cosa(n—x)
7 J, T OO T g

i da (=00 < x = )
In particular, write x — 7 /2 to show that ‘

a cos(am/2) T
T—T do = —.
0 - 2

Figure 2.79: Problem statement

Solution
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Since f (x) is piecewise continuous and absolutely integrable (sine function), then
+ + - 1 00 00
fOO+fET) —f f F(5) cos (a (s — x)) ds | da
2 TTJp —o0
Substituting for f (s) inside the integral for the function given gives

0 0

Where we used [ only, since the function is zero everywhere else. Using 2sin Acos B =
sin (A + B) + sin (A — B) then the above can be written as

fO)+fOT) lfoo(%fnsin(s+as—ax)+sin(s—(as—ax))ds)d0c
0 0

2 n
L r(rr. .
:—f (f sm(s+as—ax)+sm(s—as+ax)ds)da 1)
27 0 0
But
T — + — T
f sin (s + as — ax) ds = [ cos(s + as ax)]
0 1+a
0
=172 (cos (1t + amt — ax) — cos (—ax))
= — (cos(m + a (7 — x)) — cos (ax))
1+a
But cos (1 + a (1t — x)) = — cos (a (1t — x)), and the above becomes
T 1
f $in (s + s — ax) ds = (cos (a (77 = x)) + cos (ax)) )
0 1+a
Similarly

—cos(s—as+ax) |

TC
f sin (s —as + ax)ds =
0 1-a 0

= (cos (1 — amt + ax) — cos (ax))
1-a

=7 (cos (1t — a (1 + x)) — cos (ax))
a

= 1 (= cos (—a (1 + x)) — cos (ax))
1-«a

=1 E " (cos (a (1T + x)) + cos (ax)) (3)
Substituting (2,3) back in (1) gives
ferfe) 1

) C 2n
:%f:’ cos(a(n—x))(%+$)+Cos(ax)(% 1i ))da
_Lfoo cos (a (7 — x))(l_zaz)+cos(ax)(1_2a2))da

cos (a (11 — x)) + cos (ax)
=_ f da
1-
= f (x) and the above becomes

(cos (a (1t — x)) + cos (ax)) + 1 i . (cos (a (1T + x)) + cos (ax))) da

1+a

a2
flt)Hf00)
2
1 cos (a (11 — x)) + cos (ax)
e da

1-a2

But f (x) is continuous then

When x = % the above gives

@) 1fooocos(a(n_5))+cos(ag)d

- 1-a2

2

Tt

o
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But f(g) = sin (g) =1, hence

Therefore
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2.8 HWS

Local contents

[2.8.1 Section 57, Problem 5| . . . . . . . . ... ... 96
[2.8.2 Section 58, Problem 5| . . . . . . . . ... ... ... 97
[2.8.3 Section 58, Problem 7| . . . . . . . . ... ... 99
[2.8.4 Section 59, Problem 2| . . . . . . . . ... ... 100
[2.8.5 Section 59, Problem 3| . . . . . . . .. .. .. ... .. 102

2.8.1 Section 57, Problem 5

l‘ | T 9 W . .
| 5| Find the bounded harmonic function u(x, y) in the semi-infinite strip 0 < x < 1l 37 =00

that satisfies the conditions

i, (x, 0) =105 u(©; y)=0, u (1, y) = f()-

2 [ sinh ax cos a %
Answer: u(x,y) = — / FRNOOR / f(s) cosas ds do.
T Jo 0

o cosh &

Figure 2.80: Problem statement

Solution
V2u(x,y) =0 (O<x<1,y>0)
uy (x,0) =0
u (O, y) =0
e (Ly) = f ()
As normal, we use separation of variables, ending in XYH + % = —-A. We will take the
eigenvalue problem along the Y direction. This leads to
Y'"+AY =0
Y’ (0)=0

Where A = a?, @ > 0. The steps that led to this were done before. Therefore the solution is
Y (y) = (1 COS (ay) + ¢y sin (ay)
Y’ (y) = —cjasin (ay) + coa cos (ay)
At y = 0 the above gives
0=oca
Which implies ¢, = 0. Hence the eigenfunctions are
Y, (y) = cos (ay)

With the eigenvalues being A = a? for all real positive values of . The corresponding X (x)
ode is

X" -AX=0
X(@0)=0
The solution to this is X (x) = ¢16* + coe™*, which at x = 0 gives
O=c1+0
Which makes the solution as X (x) = cie®™ — cie™ = ¢y (6™ —e ™) = 2c¢ysinh(ax) =

c3 sinh (ax). Therefore the general solution is given by the real form of the Fourier integral

u (x, y) = fo " A () sinh (ax) cos (ay) da (1)
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Taking derivative w.r.t. x gives
Uy (x, y) = fo " A (@) a cosh (ax) cos (ay) da
At x =1 the above becomes
= [ (A@acosh @) cos (ay) da
Therefore :

A(a)acosh(a) = % j;oof (y) cos (ay) da

2 0o
A (0() = m L f (y) Ccos (Oly) da

Substituting the above in (1) gives the solution

u (x, y) = j:o (WTShW) f £ (s) cos (as) ds) sinh (ax) cos (ay) do
~ E oo sinh (ax) cos ay
-2

Tt

(f f (s) cos (as) ds) da

a cosh ()

Which is the result required to show.

2.8.2 Section 58, Problem 5

S g -

5. (a) The facex =0 of asemi-infinite solid x > Ois insulated, and the initial temperature
distribution is f(x). Derive the temperature formula

(¢3)

e, Fx +208Fe) e do
e —x/@2Vkt)

_1_ / fl—x+ 20\/k_t) e do.
1 @ke)

(b) Show that if the function f in part (a) is defined by means of the equations

1 when 0 < x < c,
flx) =

when 6 =G,
then
u(x,t) = lerf(;j_{) + = L er f(;-;%)
Figure 2.81: Problem statement
Solution
Part (a)
uy (x, 1) = kuy, (x, 1) 0<x<oo,t>0)
u(x,0) = f ()
u,(0,)=0
Applying separation of variables leads to
T/ 3 X/l 3 A
kKT X
Hence
X"+AX=0
X' (0) =
X (@)l <M
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Since on semi-infinite domain, then only A > 0 are possible eigenvalues. Let A = a?,a > 0,
Where «a takes on all positive real values. Then the solution to the eigenvalue ODE is

X, (x) = cq cos (ax) + ¢y sin (ax)
X!, (x) = —cyasin (ax) + cpax cos (ax)
Atx=0
0=c
Hence c; = 0 and the eigenfunctions are
X, (x) = cos (ax)

The time ODE is therefore T’ + a2kT = 0 which has solution T = ¢~%®*t, Hence the solution
is given by the real Fourier integral

u(x, t) = f " A(a) et cos (ax) da 1)
0

At t = 0, using initial conditions, then the above becomes

Fo = f " A(a) cos axda
0
Aa) = % fo " £ (s) cos (as) ds ©)
Using (2) in (1) gives
u(x,t) = f ( f f (s) cos (as) ds) tcos (ax) da
Changing the order of integration

U (x, f) = % fo " fo N (e [2 cos (@) cos (as)] da) f (s) ds 3)

cos(A+B)+cos(A-B)
2

Using trig identity cos (A) cos (B) = , then

2 cos (ax) cos (as) = cos (ax + as) + cos (ax — as)
= cos (a (x + ) + cos (a (x —s))

Substituting the above in (3) gives

u(x,t) = l foo f‘x’ (e—kazf [cos (a (x + 5)) + cos (a (x — 5))] da) f(s)ds
= _f (f Feos (a(x + ) da + f"" eka?t oo (a (x - s))da)f(s) ds

0

©0 1 [n b?
—a%c - _ =
j{; e cos (ab) da > \/: exp ( 4c)

Where in our case ¢ = kt and b = (x + s) for the first integral, and b = (x — s) for the second
integral. Using the above formula in (4) results in

I el (x+s)2 1 |n (x—s)2
u(x,t)—gj; (E EeXp(_—ﬁlkt )+E\/%exp[— i Df(s)ds

For t > 0. Hence the above becomes

1 00 (x +5) 00 (x—s)z)
ex d exp|- d
2\/71ktf0 1) p( ) S+2\/nk fo f6) p( o )™

By writing s = —x + 25Vkt for the first integral above, then Z—Z = 2vkt. When s = 0 then

Using the formula

u(x,t) =

0 = —— and when s = co then ¢ = co. And by writing s = x +20Vkt for the second integral

2kt
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above, then Z—Z = 2\/E. When s = 0 then ¢ = ——— Hence the above integral becomes

2vkt
(< + (x + 20VKE))

u(x,t) = f ( X+ 20@) exp|— do
2\/7Zk 4kt
2
x—(x+ 20\/H
f (x + 20’@) exp —( ( )) do
2\/7zk 4kt
Simplifying gives

26\[7 20Vr7

u(x/t):%foox (x+2a\/_) R da+—f ( x+2a\/—) Takt
2Vt

= %f_lf(x+20\/ﬁ) ~*do + —f ( x+20\/ﬁ) e do+ (4)

2vkt

Which is the result required to show.
Part b

O<x<c

1
X) =
f @ { 0 x>0
Considering the first function in (4), where in the following f (x) = f (x + ZGVE) then (4)

becomes
L( (55 gy (o
ux,t:—f2 “’da+f2 e % do
( ) ’\/;E ( 0 0

i 2_\@ _g2 _ (c+x) 2 2\F _52 — (
Butﬁl; e %do erfz\/lE andﬁl; e % do = erf

) hence the above becomes

vkt )’
( t)—l fc+x +1 c—Xx
u (x, —2er 2@ erf 2\/_

2.8.3 Section 58, Problem 7

7. Verify that for any constant C, the function . i
3/2 X
X.t) = Cxt /“exp| ——
At ey P\ ™ 4kt
satisfies the heat equation v, = kv, when x = 0 and ¢ > 0. Also, verify that for those
values of x and 7,

Thus show that v(x, £) can be added to the solution (9) found in Sec. 58 to form other§
lutions of the problem there if the temperature function is not required to be bounde

Note that v is unbounded as x and  tend to zero (this can be seen by letting x vani§
while ¢t = x?).

Figure 2.82: Problem statement

Solution

-
We need to substitute the solution v (x,t) = Cxt 2 e 4t into the PDE v; = kv, and see if it
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satisfies it.

And

4kt

-3 5 -2 x3 3 2
—Cxt2e4t + C——=t2edkt
2 4kt?

— 5 o2 e
vt:TCthe‘ikt +Cxt264kt( )

e 2 -3 2
v,=Ct2eskt — —Ct2eskt
* 2kt

Hence v; = kv, becomes

—-X -3 —xz X -3 —x2 4x3 -3 —x2
Uy = —Ct2etkt —| —Ct2zekt — Ct2 et
W okt (kt (4kt)? )
2x 32 (x 32 43 82
= — (Ct2ett —| —Ct2e4kt — Ct2 g4kt
4kt (kt 4k2t2
—x o o 4 3 e
=—Ct2est — —Ct2edkt + Ct2edkt
2kt kt (4kt)*
3x 5 =2 ¥ 32
=———Ct2e4t +C I 2 e 4kt
2k 4k2t2
3 S22y 82 3x 5 =2 B2
7Cxt 2 o4kt + C4kt2t 2 pdkt = k(_EECt 2 o4kt + C4k2t2t 2 e4kt)
_ -5 -2 P -5 2 3 3 =
—Cxt2est +C tzeskt = ——xCt2e4t +C t2 ekt
2 4kt? 2 4kt?
0=0

Hence it is satisfied for any constant C.

.

Using v (x,t) = Cxt 2 e %t | we see that lim,_,o+ v (x,f) = 0. Also lim;_,g+ v (x,t) = 0.

Since the solution to the heat PDE is now not required to be bounded and since v (x, t) has
zero initial conditions, then because the PDE is linear and homogeneous, then solution as

v (x,t) can be added to the solution in (9) using superposition.

2.8.4 Section 59, Problem 2

-

2} Derive this solution of the wave equation y, = a%y,, (—oco < x <

B T R PRI RUTP S PR —

: 00, t > 0), whi
satisfies the conditions y(x, 0) = f(x) and y,(x, 0) = 0 when —oo < x < co:

1 [ee] o0
y(x, 1) = e / cos cxat/ f(s)cosa(s — x) ds do.
0 —00
Also, reduce the solution to the form obtained in Example 1, Sec. 30:

1
y(x,t) = 5 [f&x+at) + f(x —ar)].

solution

Figure 2.83: Problem description

Let y (x,t) = X (x) T (t), then the PDE becomes

We take the X (x) ode as the eigenvalue problem. Since the domain is infinite, then only pos-
itive eigenvalue are valid as was shown before. Let A = a?,a > 0. Hence the eigenfunctions

are

T"X = @X"'T
1 T// X//
— = — ==
a2 T X

X, (x) = A(a) cos (ax) + B () sin (ax)
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The time ODE becomes
1 TI/
a2 T
T” + a®a®T = 0

= —az

Which has the solution
T, (t) = C(a)cos (aat) + D («) sin (aat)

Hence the solution is given by the Fourier real integral
1) = N T,(t) X, (x)d 1
v 0= [ 10X wda M
= f (C (a) cos (aat) + D (a) sin (aat)) (A () cos (ax) + B (a) sin (ax)) da
0
_ f " C(a) A (@) cos (aat) cos (ax) da + f " C (@) B (@) cos (aat) sin (ax) dar
0 0

+ f OOD(cr)A(oz) sin (aat) cos (ax) da + f " D («) B (@) sin (aat) sin (ax) da~ (2)
0 0

Taking time derivative

00

Ve (4, b) = fo " _aaC (a) A (a) sin (aat) cos (ax) da + fo aC () B (a) sin (actt) sin (ax) dat

(©e]

+ f aaD (a) A (a) cos (aat) cos (ax) da + f aaD (a) B (a) cos (aat) sin (ax) da
0 0
At t = 0 the above becomes

0= j(; N aaD (a) A (a) cos (ax) da + fo N aaD (a) B () sin (ax) da

Which simplifies to

0= fo " D (@) A (a) cos (ax) da + fo D (2) B (a) sin (ax) da

_ f " D (@) (A (@) cos () + B (@) sin (ax)) da
0

Therefore, since A (), B (@) can not be both zero, else eigenfunction is zero, then it must
be that D (@) = 0. Hence the solution in (2) becomes

Yy t) = fo " C (@) A (@) cos (aat) cos (ax) dat + fo " C(@) B (@) cos (aab) sin (ax)dar (3)

Let C(a) A(a) = Cy(a) and let C (a) B(a) = C, (@) as two new constants, and the above
becomes

y(x,t) = f " Cq (a) cos (aat) cos (ax) da + f N C, (a) cos (aat) sin (ax) da
At t =0 the above ljecomes 0
f@= [ " C1 (@) cos (ax) da + | " C, (@) sin (ax) da
Hence O :

Cy (a) = % f " £ (s) cos (as) ds
1 (o)
Co(@) == f F(5)sin (as) ds

Therefore (3) becomes

(b = % fo " ( f_ Z F(5) cos (as) ds) cos (aat) cos (ax) dat

+ % fooo (f_:f(s) sin (as)ds) cos (aat) sin (ax) da
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Changing order of integrations in the above for both integrals results in

@ t) = % fo B ( f_ Z cos (aat) cos (as) cos (@) da) Fs)ds (4)
+ % fo"" ( f_ Z cos (aart) sin (as) sin (ax) da) f(s)ds
But
cos (as) cos (ax) = % (cos (as + ax) + cos (as — ax))
= % (cos (a (s + x)) + cos (a (s — x)))
and

sin (as) sin (ax) = % (cos (as — ax) — cos (as + ax))

= % (cos (a (s — x)) — cos (a (s + x)))

Substituting the above two relations back in (4) gives

Y@, b = % fO " ( f_ " cos (aat) (cos (@ (s + 1)) + cos (@ (5 — x))) da) F(s)ds

+ % fooo (f_o; cos (aat) (cos (a (s — x)) — cos (@ (s + x))) da)f(S) ds

Simplifying, terms cancel giving

Y, f) = zi f " ( f " cos (aat) [cos (o (5 — x)) + cos (@ (s — 1))] da) Fs)ds

Tt o0

o \J_
= %j:o (f:) cos (aat) cos (a (s —x))da)f(s)ds

Changing order of integration

Yy, b) = % fo " cos (aat) f Z F(5) cos (@ (s — x)) dsdar

Which is the result required to show.

2.8.5 Section 59, Problem 3

\3’\ Find the bounded harmonic function u(x, y) in the strip —00 < x < 00,0 < y «

such that u(x,0) = 0 and w(x,b) = f(x)(—0 < x < o0), where f is bounded &
represented by its Fourier integral. '

1 (% sinh i
Answer: u(x, y) = = / sinhzz / f(s)cos a(s — x)ds da.
0 -0

Figure 2.84: Problem description

solution
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Figure 2.85: Solution domain for PDE

Letu=X(x)Y (y), then u,, + y,, = 0 becomes
X'X+Y"X=0

X"y
e + S 0
Taking the eigenvalue ODE to be on the x axis, then
X" Y”
x -y~
Hence
X"+ AX =0
|X (x)| < 00
Hence A can only be positive real. Let A = a?,a > 0. Therefore the eigenfunctions are
X, (x) = A(a)cosax + B(a) sin ax (1)
For the ODE Y”” — Ya? = 0 the solution is
Y, (y) = C (a) cosh (ay) + D (a) sinh (ay) (2)

Hence the solution is
u (x,y) = fooo X, ()Y, (y) da

= foo (A (a) cos ax + B () sin ax) (C () cosh (ay) + D (a) sinh (ay)) da (3)

When y =0, the0 above becomes
0= fm (A () cos ax + B (@) sin ax) C (a) da
Which implies that C (@) = O(.) Therefore the solution (3) simplifies to
u(x,y) = fo " (A (a) cos (ax) + B () sin (ax)) D (a) sinh (ay) dar
= f " A (a) D (@) sinh (ay) cosax + B(a) D («) sinh (ay) sin (ax) da

Let A(a)D(a) = C(l) (a) and let B (a) D (a) = C, (a), hence the above solution becomes

u (x, y) = j; N Cq (a) sinh (ay) cosax + C, () sinh (ay) sin (ax) da (4)
When y = b the above becomes

fx) = f " Cq (a) sinh (ab) cos ax + C, (a) sinh (ab) sin (ax) da
Therefore O
Cy (@) sinh (ab) = % | Z £ (s) cos (as) ds

1 00
Ci (@) = s f f(©)cos(as)ds 5)
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And

C2 (0() S

Using (5,6) in (4) gives
u (x, y) = j:o (T(ST(CKZ?) f f(s) cos (as) ds) sinh (ay) cos (ax) + (RST(M?) f £ (s)sin (as) ds) sinh (a;

I
foo sinh (ay)

1

Tt

A
4

0o smh ay

smh ay
7t sinh (ab)

sinh (ozb)

sinh (ab)
00 smh ay
sinh (ab)

f f (s) cos (as) cos axds) + [

1 f " £ (s)sin (as) ds

Cy(a) = nsmh(ab)f f (s)sin (as) ds

inh (ab) =

(6)

smh ay
7t sinh (ab)

f F(5)sin (as) sin (ax) ds) dat
f " £ (s) cos (as) cos ax + f (s) sin (as) sin (ax) ds) da
f " £ (s) [cos (ars) cos ax + sin (as) sin (ax)] ds) do

foof(s)cosa(s—x)ds)da

Which is the result required to show.
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[2.9.6  Section 66, Problem 5/ . . . . ... ... ... . o o 112

2.9.1 Section 61, Problem 2

E) Suppose that two continuous functions f(x) and yr (x), with positive porms, are linear
independent on an interval a < x < b; that is, one is not a constant times the other.

determining the linear combination f + Ay of those functions that is orthogonal to
on the fundamental interval a < x < b, obtain an orthogonal pair ¥, Y, where

(fs ¥1)
= f(x) — (x).
Y2(x) = fx) TR ¥
Interpret this expression geometrically when f, ¥, and ¥, represent vectors in thr

dimensional space.

Figure 2.86: Problem statement

Solution
Let ¢, = f + Ay such that (i, ;) = 0. Hence
(f+AY, 1) =0
(fr1) + (AP, 1) =0
(fr1) + AW, 1) =0
(frvn)+ Al =0
_ )

2
]
Therefore, since 1, = f + A, then
<f/ l1b1>
¢2 = f - 2 11[)1
(E
. Wf) I V1
Geometrically, the term thl represents the projection of f on ;. The term Torl makes
1 1
1)

a unit vector in the direction of y; and the term is the magnitude of projection

(f Y1)

o
in the opposite direction of ¢;. Adding this to f gives ¢, which is now orthogonal to f.

This process is called Gram Schmidt.

]
||l,b1|| cos (0) where 0 is the inner angle between f,1;. The result of —

1 is a vector
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2.9.2 Section 61, Problem 3

B e T

Lﬂ In Problem 2, suppose that the fundamental intervalis —7 < x <7 and that
f(x) = cosnx + sinnx and Y1 (x) = cosnx,

where n is a fixed positive integer. Show that the function v, (x) there turns out to b&
Y, (x) = sinnx.

Suggestion: One can avoid evaluating any integrals by using the fact that the
in Example 3, Sec. 61, is orthogonal on the interval —m < x < 7.

Figure 2.87: Problem statement

Solution
Let
f = cosnx + sinnx
Yy = cosnx

Then by Gram Schmidt process from problem 2 we know that

(f, 1)
Yo=f-——7>
ol

Hence

TT
f (cos nx + sin nx) cos nxdx
Y, = (cos nx + sinnx) — — -
f cos? (nx) dx
—Tt

cos nx

T T
f COos 11X cos nxdx + f sin nx cos nxdx
—TC

— : —T
= (cos nx + sin nx) — - CoS nx

U TU TC
But f_ _cos nxcos nxdx = f_ i cos® nxdx = 7 and f sinnx cosnxdx = 0 since these are
=Tt
orthogonal. Hence the above simplifies to
Yy = (cos nx + sin nx) — cos nx
= sinnx

2.9.3 Section 63, Problem 3

ue

3. In the space of continuous functions on the interval @ < x < b, prove that if two
functions f and g have the same Fourier constants with respect to a closed (Sec. 62)
orthonormal set {¢, (x)}, then f and g must be identical. Thus show that f is uniquely

determined by its Fourier constants.
Suggestion: Note that (f — g, ¢») = 0 for all values of n when

(f, ¢n) = (8, ¢n)

o forall n. Then use the definition of a closed orthonormal set to show that || f—gl=0.
4 Finally, refer to the suggestion with Problem 4, Sec. 61.

a (5.5 A |

Figure 2.88: Problem statement

Solution

Th.e Fourier coefficients of f — ¢ are given by (f — g, ¢,,) by definition. But due to linearity
of inner product, this can be written as

<f - & qbn) = <f/ ¢n> - <g/ (Pn)
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But (f,¢,) are the Fourier coefficients of f and (g, ¢,) are the Fourier coefficients of g,
and we are told these are the same. Therefore

(f-g ¢n> =0
Which implies that || f - g” = 0. Using part(b) in problem 4, section 61, which says that
if ” f ” = 0 then f (x) = 0 except at possibly finite number of points in the interval, then
applying this to || f - g” = ( leads to

f-8=0
Which implies f = ¢ which is what required to show.

2.9.4 Section 63, Problem 4

@ Let {¢,, (x)} be an orth&lormal set in the space of continuous functions on the interval
b < x < b, and suppose that the generalized Fourier series for a function f(x) in that
space converges uniformly (Sec. 17) to a sum s(x) on that interval.

(a) Show that sgx) and f(x) have the same Fourier constants with respect to {¢,(x)},
(b) Use results in part (a) and Problem 3 to show that if {¢n(x)} is closed (Sec. 62)
then s(x) = f(x) on the interval a =X =D, 1

. Suggestion-: R(—*‘Tcall frf)m Sec. 17 that the sum of a uniformly convergent series of
continuous functions is continuous and that such aseries can be integrated term by term

Figure 2.89: Problem description

solution

Part (a)

Let the generalized Fourier series of f (x) be

f(X) = i <f(x)/¢n>¢n
n=1

Let the sum the above converges uniformly to be s (x). Therefore we have, per problem
statement the following equality

i (f®), Pn) Py =5(x)
n=1

Taking the inner product of both sides with respect to ¢,, gives

b (& b
‘]‘(§E<f(x)f¢n>¢n)¢mdx::‘[‘S(X)¢mdx
a \n=1

a

= <S (%), ¢m>

Since the sum converges uniformly, then we are allowed to integrate the left side term by

term while keeping the equality with the right side. Hence moving the integration inside
the sum gives

oo b
z <f (x), (pn) f (Pn(pmdx = <S (), ¢m>
n=1 a

b
But due to orthogonality of ¢, and ¢,, and since they are normalized, then f Opddx =
a
(¢, &y =1 if n = m and zero otherwise. Hence the above simplifies to

(f @), Pm) = (s (x), )
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And since the above is valid for any arbitrary m =1 --- oo, then it shows that f (x) and s (x)
have the same generalized Fourier coefficients.
Part (b)

From part (a), we found

frPu) = (s, Pn)

By linearity of inner product, the above is the same as

(frpn) = (s, Pn) =0
(f=5,¢,)=0
But from problem 3, we know that (f —s, ¢,) = 0 implies ||f - s|| = 0.

Next, using part(b) in problem 4, section 61, which says that if ||f|| = 0O then f(x) =0
except at possibly finite number of points in the interval, then applying this to our case
here that ||f - s” = ( leads to

Which is the result required to show.

2.9.5 Section 66, Problem 4

5 : ;
: @ (a) Use the same steps as in Example 3, Sec. 61, to verify that the set of functions

D s P Y b SN Bt ol i
0 i \/ﬂv 2n—1 T \/E 0 ¢ 2n ol ,\/E C i
: (l’l = l, 2,

is orthonormal on the interval —¢ < x < ¢. (This set becomes the one in that ¢
ample when ¢ = 7.) _
(b) By proceeding as in Example 3, Sec. 63, show that the generalized Fourier setl
corresponding to a function f(x) in C,(—c, ¢) with respect to the orthonormal &
in part (a) can be written as an ordinary Fourier series on —¢ < x < ¢ (Sec |
with the usual coefficients a, and b,,.
(c) Derive Bessel’s inequality

2 o 1ea
Loy (@) =g [ 1P (N=1,2,

n=1

for the coefficients a, and b, in part (b) from the general form (1), Sec. 65, ol {
inequality for Fourier constants. [Compare with inequality (6), Sec. 66.] i

Suggestion: Inpart (a), some integrals to be used can be evaluated by writh
b
X = —s
P

in integrals (1) and (4), Sec. 61.

Figure 2.90: Problem description

solution
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Part (a)
We need to find

<¢)0/ ¢2n>
<¢0/ ¢2n—1>
<¢2n' ¢2m>
(Pon-1, Pom-1)
<¢2m—1r ¢2n>
And also show that
(0.90) = ool =1
(Pan, P2n) = ||¢2n||2 =1
<¢2n—1/ ¢2n—1> = ||¢2n—1||2 =1
<¢)O/ §b2n>

(G0 0m) = [ = pcon T

c

_ 1 sm(%x) ‘
-

W\f [S‘” (m )]

[sin (n77) + sin (n77)]

- nnx/i

=0
Since 7 is integer.
(Do, Pan1)
(Do, Pon1) = f ——sm(n:x) dx
R il |
i cﬁ - L
- nit \T
b
= nn\/i [cos (n7t) — cos (nm)]
=0
(Paw f2m)

(Pon, Pom) = f—sm( x)%sin(@x)dx

c
1 ¢ nrm mmn
=- f sin (—x) sin (—x) dx
cJ_. c c

Let S = x, then dx = —ds When x = —c then s = —7t and when x = ¢ then s = 77 and the
above becomes

(Don, Do) = %fﬂ sin (ns) sin (ms) %ds

1 o
=— f sin (ns) sin (ms) ds
TTJ_n

Since the integrand is even, then

TU

(D G = = [ sin s) s ms) s

0
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From equation (1), page 192 we see that

<¢2n/ ¢2m> =0

Since n, m are different.

(P2n-1, Pom-1)

(P2n-1, Pom-1) = f—COS( X)%cos(gx)dx

1 ¢ nm mm
= - f cos (—x) cos (—x) dx
cJ_. c c

Let %S = x, then dx = %ds. When x = —c then s = -7t and when x = ¢ then s = 7 and the
above becomes

(Pon-1, Pom-1) = %fﬂ cos (ns) cos (ms) %ds

1
== f cos (ns) cos (ms) ds

Since the integrand is even, then

2 TC
(P2n-1, Poam-1) = - f cos (1s) cos (ms) ds
0
From equation (4), page 192 we see that

<¢2n—1r ¢2m—1> =0

Since n, m are different.

<¢2m—1/ ¢2n>

(Pam-1, Pon) = f — cos (mnx) % sin (nTnx) dx

1 f‘ mr nr
= cos (—x) sin (—x) dx
cJ_, c c

Let —s = x, then dx = —ds When x = —c then s = —7t and when x = ¢ then s = 77 and the
above becomes

1 7T
(a1, Bon) = = f cos (ms) sin (115) %ds

—Tt

1 7T
== f cos (ms) sin (ns) ds

Using cos (ms) sin (ns) = % (cos (s (m + n)) + cos (s (m —n))). Hence the above becomes

(Dom-1, Pon) = 21_71 (j:n cos(s(m+mn))ds + fﬂ cos (s (m — n))ds)

Since the integration is over one full period, then each is zero. Hence

(P2m-1,Pon) = 0

<¢O/ (PO)
(Po, o) = f ——dx
HM=§LM
=1
Hence ||¢0|| =1.
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<q52n1952n>
<¢2n/ ¢2n>

ﬁ
§|H
B
Iy
“|:1
sl
<l
2
]
—
~|3
sl
S

Q=

o
@,
5l\)
=
“|:1
\>_</
IS
=

a :)
N =
|
N =
—_—
|
=
~——
[
=

( (AT \TC ‘
pe
|

Sy

Hence ||qb2n|| =1.
(Pon-1, Pon-1)

1 c n \I
=—|2c—— [COS (Z—X)]
2c 2nm c /1,

1
(2c - [cos (2n7) — cos (2n7z)])
2c 2nm
1
= —2c
2c
=1
Hence ||qb2n_1|| =1
Part (b)
1
(xX) = —
$o >
1 nTx
¢on-1 (X) = —=cos (_)
C C

Gan (¥) = — sm(?)

On —c < x < ¢. The generalized Fourier series for f (x) in C, (-, ¢) is

D cnu (%) = copo (x) + D, (Czn—1¢2n—1 (x) + c2uP2n (X))
n=0 n=1
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That is

1 [ Con_1 nmx\ Cy, . (NTX

f(x)~ CO\/_Z_C + nz::l( Ve cos (T) + % sin (T)) 1)
Where
1

0= {90 = = IBCE

And
1
Con-1 = f, Pan1 (X)) = % f f (x) cos (@)dx n=12,--
1 C
C2n:<ff¢2n(x)>:$£ f(x)sin(g)dx n=1,2,--
If we write
ag —2\/2_C,an \/E ,b, \/E n=1,2,

Then (1) becomes

a4~ nrmx . (nTx
fo~ 24 2231 4, cos (T) + b, sin (T)
Where

1 C
a”:Ef f(x)cos(@)dx n=1,2,---

1 C
by== [ f(x)sm(@)dx n=1,2,--
cJ_, c

This is the ordinary Fourier series on —c < x <c.

Part (c)
From (1) section 65

Al 2

2 <|fl 1)

n=0
But from part (b) we found that

c Cop c
ap=2——,a,=22p =2 =12

RN

CO:Z_O@

Con-1 = an‘/z
Cop = bn\/E

Vac

Hence

Substituting the above into (1) gives

N N 2
G+ D31+ 25, < ||f]
n=1 n=1

N

2
Diy(@vi)s: [[fofa

n=1
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2.9.6 Section 66, Problem 5

Y7

5/ Let sy(x) (N =1,2,...) be asequence of functions defined on the interval 0 < x = |

by means of the equations

0 when x=1,=-,:.., —,

— N =

sy(x) =

2| »—\2] —

1 when x;él,i,--.,

Show that this sequence converges in the mean to the function f(x) = 1in C,(0, 1)
but that for each positive integer p,
' 1
lim SN (—) =0
N— oo p
Suggestion: Observe that
1

SN(—> =0 when N> p.
p

Figure 2.91: Problem description

solution

The function Sy (x) is almost 1 everywhere as can be seen from this diagram

Sn(z) =1
Sn () Sn(z) =0
A
L= i
[T
fy | [
I=é é ° ® » T
11 1 1 1
54 3 2
N=3 N=2 N=1
fl@)=1
A )
1
» T
1

Figure 2.92: Showing the function Sy(x) and f(x)

And the problem is asking us to show that Sy (x) — f(x) in the mean. This means we
need to show the following is true

Jim ISy () - f @) =0

Except at possibly finite number of points x. But this is the case here. Looking at Sy (x) we
L _ ; -1 11
see it is equal to f (x) =1 everywhere except at the points x =1, 53, and compared to

all the points between 0 and 1, then Sy (x) = f (x) =1 almost everywhere. Even though as
N — oo the number of points where Sy (x) # 1 increases, it is still finitely many compared
to the number of points where Sy (x) = f (x) =1.

. . . 1
To answer the second part: Since Sy (x) = 0 at any x value which can written as ; where
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p is an integer (this by definition given), then Sy (%) = 0. Then it clearly follows that

limN_m SN (%) = 0.
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Local contents
[2.10.1 Section 69, Problem 1| . . . . . . . .. .. .. ... . ... .. .. .. ... . 114

[2.10.2 Section 72, Problem 3| . . . . . ... ... .. ... ... ..., 116
[2.10.3 Section 72, Problem 6| . . . . . .. ... ... ... ... .. ... 118
[2.10.4 Section 72, Problem 9| . . . . . . . . ... ... 119
2.10.1 Section 69, Problem 1
I. \(@) After writing the differential equation in the regular Sturm-Liouville problem
[xX' ()] + %X(x) — 0‘ ’ ‘A <x<b),
X (1)i=10; X)) =0
in Cauchy-Euler form (see Problem 1, Sec. 44), use the substitution x = exps to
transform the problem into one consisting of the differential equation
2
1—){+AX=O 0 <s <Inb)
ds?
and the boundary conditions
X=0 when s=0 and X=0 when s=Inb.
Then, by simply referring to the solutions of the Sturm-Liouville problem (4) in
Sec. 35, show that the eigenvalues and eigenfunctions of the original problem here
are
pu— ai, X,(x) = sin(z, In x) =112 59,
where a,, = nx/Inb.
(b) By making the substitution
i ﬁlnx
" TInb NES
in the integral involved and then referring to Problem 9, Sec. 5, give a direct veri-
fication that the set of eigenfunctions X, (x) obtained in part (a) is orthogonal on
the interval 1 < x < b with weight function p(x) = 1/x, as ensured by Theorem 1
in Sec. 69.
Figure 2.93: Problem statement
Solution
Part (a)
’ 7 A
X (x)+xX" (x)+ =X (x)=0
X
x?X" (x) + xX’ (x) + AX (x) =0 1)
To transform the above to X" (s) + AX (s) = 0, let x = ¢°. Therefore T sor B s
Now ds dx
dX  dXds
dx  dsdx
— dX —s
=4 C (2)
And
’X _d (dX
dx?  dx \dx

d (dX
= — _e—S
dx ( ds )
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Hence, by product rule

A?X  d*Xds . dXd

2T al T aa)
CPX odxd __ ds
—?e e +E%(e )E
= e D e )

_ Ld?X L dX

=e E—e % (3)

Substituting (2,3) back into (1) gives
X dxX dxX
2,2 -2 - _
X (e sdsz —e Sds)+x(dse S)+AX—O
But x = ¢° and the above simplifies to

d*X dx dx
e (e‘zs— -~ e‘zs—) +é° (—e‘s) +AX=0

ds? ds ds
d>X dx dX o
ds2 ds ds B
d?X (s)
o T AX@E =0

When X (1) = 0, which means when x = 1, and since x = ¢°, then when s = 0. Hence
X (1) = 0 becomes X (0) = 0. And when x = b, then s = In (b). Hence the second condition
becomes X (In (b)) = 0. Therefore the new B.C. are
X0)=0
X(In(b) =0
By referring to problem (4) in section 35 we see that the eigenvalues are

n\2
c

Where here ¢ = In (b). Hence

2
nrt
= :1 2 ces
& (ln(b)) n=123

:0(%

nrt

Where a,, = o)

And the eigenfunctions are, per section 35

X, (s) = sin («,,5)
In terms of x, the eigenfunctions become

X,, (s) = sin(a,, Inx)

Part (b)

(X, (x), X, (x)) = f b sin (a,, In x) sin (@, In x) p (x) dx
1

But from (xX’ (x))’ + %X(x) = 0 and comparing this to (rX’)" + (/\p + q) X =0, we see that

r(x) =xandg=0and p = % Hence the above integral becomes

b1
(X, (x), X, (x)) = f1 ;sin (), In x) sin (av,,, In x) dx
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Lets = 2X7. Then & = 1™ or dx = ZIn(b)ds. When x = 1 then s = 0 and when x = b
Inb dx xInb T

then s = 7. Hence the above integral becomes

S=Tt | Inb Inb
X, (1), X,, (x)) = f ;sin(ans )sin(amsn )(%ln(b)ds)

s=0 Y

1 n Inb Inb
:—ln(b)f sin(ans - )sin(ams - )ds
e 0 e e

nrt mTt
But a,, = ) and a,, = )’ therefore the above becomes
1 m nrt slnb mm slnb
X , X =—1In(b f i i d
00,0, X, 09 = 1009 [ 0 15 s
1 TC
= ZIn(b) f sin (ns) sin (ms) ds (1)
T 0
Referring to Problem 9., section 5 which says that
m 0 #
f sin (nx) sin (mx) dx:{ n nEm
0 E n= 0
Applying this to (1) shows that
0 n#+m
(X, (), X (X)) = { S
2 n=20

Hence X, (x) and X,, (x) are orthogonal, since this is the definition of orthogonality.

2.10.2 Section 72, Problem 3

B0\ ez Ope ve XI@) a0 mion 1 X(e)l 0!

) 2n—1
Answer: A, = oz,%, Pu(x) = \/gcosanx (Pt sls 2 D) e = ( nzc )Tf.

Figure 2.94: Problem statement

Solution

Solve for eigenvalues and normalized eigenfunctions.

X"+ AX =0
X' (0)=0
X()=0

Writing the boundary conditions in SL standard form
EZ1X(0) + llzX, (O) =0
b1 X () +b,X" (c) =0

Shows that a; = 0,a, =1 and by = 1,b, = 0. Therefore a;a, = 0 and b;b, = 0. But we

know that if a;a, > 0 and b;b, > 0, then A > 0 is only possible eigenvalues. Let A, = a2.

a > (0. Hence the solution to the ODE is

X, (x) = Acos (a,x) + Bsin (a,,x)

X! (x) = —Aa,, sin (a,x) + Ba,, cos (a,,x)
First B.C X’ (0) = 0 gives

0 = Ba,,
Which implies B = 0. Hence the solution now becomes X,, (x) = A cos (a,,x). For the second
BC
0 = Acos(a,c)

0 = cos (a,,0)
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Which implies

T 371 571

anc_ 2/ 2/ 2/

T
=(2n—1)§ n=1,2,3,

Hence

n-1)7

= — n=1,23,
c

And the corresponding eigenfunctions are

X, (x) = cos (a,x)

((Zn -Dn )
= COS —X

c 2
To find the normalized X, (x) which we call it ¢,, (x), then by definition
X, (x)
(x) = -~
R A
But

1K, (I = fo P (0) X2 () dx

Comparing the ODE X” + AX = 0 to (rX’) + (Ap + q) X =0, we see that r(x) =1 and
g =0 and p = 1. Hence the above becomes
C

X @I = [ cos? (@) d
0

c

2
Therefore || X,, (x)|| = \/g which shows that

X (x)
¢n (X) == -
2
2
= \/icos (a,x)
c
where
n-1)mn
a, = = n=1,23,--
c 2

Which is what required to show.
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2.10.3 Section 72, Problem 6

e~

i ﬁIn Problem 1(a), Sec. 69, the eigenvalues and eigenfunctions of the Sturm-Liouville
problem

A
X'y + ;X: 0, X(1) =0, X(b) =0
were found to be
72“ X, (x) = sin(a, In x) (n=1,2500

=

where &, = nx/In b. Show that the normalized eigenfunctions are

[ DA
Dn(x) = msm(anlnx) (n=1,2, 588

Suggestion: The integral that arises can be evaluated by making the substitution

and then referring to the integration formula established in Problem 9, Sec. 5.

Figure 2.95: Problem statement

Solution
X, (x) = sin (a,, In x)
nm
= — =123,
= b "
The normalized eigenfunction is given by
X (x)
(x) = 22—
) = IR, @
But

b
|mmW=£pwﬁmw

Comparing the ODE (xX’)" + %X =0to (rX’) + (/\p + q) X =0, we see that 7 (x) = x and

g=0andp = i Hence the above becomes

b
X, @I = f — sin (@, In ) dx
1

Let s = E—zn. Then ;—i = %& or dx = %ln(b)ds. When x =1 then s = 0 and when x = b

then s = m. Hence the above integral becomes

X, QI = f JE (an“;lb) (% In (b) ds)

=0 X

1 n Inb
Z I (b) f 5in2 (ansi)ds
TC 0 Tt
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But a,, = Z_ therefore the above becomes

In(b)
1 & nm slnb
X, I = =1 f in? —

1 7T
= ZIn(b) f sin? (1s) ds
U 0

1 11
=~ (b)f =~ = cos (2ns) ds
TC 0 2 2

1 2ns\"
- l1n(b)[5——sm(ﬁ) ]
T 2 2 2n

0

1 nm 1 . -
= ;ln(b) (E - ESID(S)O)

1
=5 In (b)
Hence
b, (x) = sin (a,, In x)

)

N —
5
—
=y

2
= sin (a,, In x)

In (b)

Which is what required to show.

2.10.4 Section 72, Problem 9

e [ e - v g mm— e awo 1Y A

~ functions of the Sturm-Liouville problem
A
(x X" + ;X: 0, X'(1) =0, X)) =0.

Answer:

i 2n — 1)
Ae=02,  ¢u(x) =4/ — cos(a,Inx =1,2,...; Ry )
T (o )y (n=1,2,..); y AT

9., Use the solutions obtained in Problem 3 to find the eigenvalues and normalized eigen-

Figure 2.96: Problem description

solution

From problem section 69 problem 1, we know that (xX’ (x))/+%X (x) = 0 can be transformed
to X"’ (s) + AX (s) = 0 using x = ¢°. With boundary conditions in s found as follows. When

x =1 then s = 0 and when x = b then s = Inb. Hence we obtain the SL problem
X"(s)+AX(s)=0
X' (0)=0
X(nb)=0
But problem 3 is
X"+AX=0
X' (0)=0
X()=0

Pn (x) = \/g cos (a,x)
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where

n-1)m
a, = — n=1,2,3,:-
c 2
By comparing (2) and (1) we see it is the same problem, except ¢ — Inb. Hence the

solution to (2) is the same as the solution in (1) but with c replaced by Inb. Hence the

solution is
2
oM (s) = m cos (a,s)

O Y W
"I Tab 2

But s = In x, hence the above becomes

Oy () = 4/ % cos (a, In x)

n-1)mn
= - =1,2,3,-
n Inb 2 "
Which is what required to show.
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2.11.1 Section 73, Problem 8

8. }Find the Fourier constants ¢, for the function f(x) = x (1 <x < b) with respect to the
normalized eigenfunctions in Problem 6, Sec. 72, and reduce those constants to the
form

ni[l + (—1y™+1p]

. =+2Inb
X - (Inb)2 + (nm)?

(=128

Suggestion: The integration formula

ot (v 15 e*(sinax — a cos ax)
1+a? 4

derived in calculus, is useful here.

Figure 2.97: Problem statement

Solution

6 = {f (%), oy (1))
b
= f1 P ) f (¥) by (1) dx

But p(x) = i and ¢, (x) = ‘llnib sin (o, Inx) and f (x) = x therefore the above becomes

b1 2
C, = f —x4/ — sin (a, Inx) dx
1 X lnb
2 b
= m f; sin (Oln In X) dx

But o, = 12—72, therefore

[ ()
Cp = D 1s1n D nx|dx

Lets:nﬁ—z,hencej—i:ﬁ%.Whenle—>s:0andwhenx:b—>s:n.Theabove
becomes
2 & In (b
cn:w/—f sin (ns) n )xds
lnb 0 TC

Inb

But Inx = % Inb, hence x = ¢’ 7 , and the above becomes

Using

c, ¢’ sin (ns)ds 1)

\/T 7T Inb
_ 2171(b)f0

ax

. e .
f e sin (bx) ds = iR (a sin bx — b cos bx)
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. _ Inb _ . .
Where in our case 2 = — and b = n. Applying the above gives

s
Inb
mo b e Inb
f e n sin(ns)ds = | ———— | —sinnx —ncosnx
0 (lnb) K\ T
—| +n
T 0
1 b (Inb
=————|er |—sinnn-ncosnn|-(0-n)
—| +n
s
But sinn7t = 0 since 7 integer, giving
T b 1
f e’ m sin(ns)ds = ———— [-bncosnm + n]
0 Inb >
—) +n
TT
72

T [-bn (-1)" +n]

G (bn 1)+ n)

(In b)? + m2n2

Hence (1) becomes

V2In @) nm2 1+ (-1)"" b)

e (Inb)* + (rtn)*
_ mnn (1+(-1)""p)

(Inb)? + (mtn)?
Where n =1,2,3, -+, which is the result required to show.

n

2.11.2 Section 73, Problem 10

10.| Suppose that a function f, defined on the interval 0 < x < ¢, is piecewise smooth there.
(a) Use the normalized eigenfunctions (Problem 7, Sec. 72)

Pn(x) = \/gsinanx (@ =il 2

where
LA @n—-Dm
o { P 20 ’
to show formally that
f(x):Zaninoznx O <x <o}
n=1
where
N [ -
B,,:E/f(x)smoz,,xdx (=525 )"
0

(h) Note that according to Problem 6, Sec. 15, the series in part (a) is actually a Fourier
sine series for an extension of f on the interval 0 < x <2c¢. Then, with the aid of
Theorem 2 in Sec. 15, state why the representation in part (a) is valid for each
point x (0 < x < ¢) at which f is continuous.

Figure 2.98: Problem statement

Solution
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Part (a)

2
q>n<x>=\£sin<anx) n=1,2,3,
2n-1
2x

Since ¢,, (x) are complete, then we can represent f (x) using ¢, (x) as generalized Fourier
series using

a, =T

F0) = B 0<x<c
n=1
To find B,,, since ¢,, (x) are orthonormal eigenfunctions then
By = {f (), ¢ ()
= | P f @ ot

But problem (7) section 72 is X"’ + AX = 0 which implies that p (x) = 1. Hence the above
becomes

B, = fo F) %sin(anx)dx

= \/g f(: f (x) sin (a,,x) dx

Which is the result required to show.

Part (b)

Theorem 2 section 15 gives the conditions on f (x) for it to have a Fourier sine series which
converges to f (x) where f (x) is continuous and converges to mean value of f (x) where
f (x) have a jump discontinuity.

Since f (x) is piecewise continuous in this problem, then for those regions where f (x) is
continuous between 0 < x < ¢, the series found in part(a) converges to f (x) and is valid
Fourier sine series representation of f (x) there.

2.11.3 Section 74, Problem 1

™
gﬂ Show thqt when f(x) = 1(0 < x < 1) in the boundary value problem (1)-(2) in Sec. 74,
" the solution (6)—(7) there reduces to

= sin o
P ki s
o, (h + sin’a,) p(~ekr) cosax,

where tan o, = h/a, (o, > 0).

Figure 2.99: Problem statement

Solution

Solution (6) is given by

u(x, 1) = Y, Ay exp (—a2kt) cos (o) (6)
n=1
Where
2h 1
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But f (x) =1 which reduces the above to
2h

h+ sin? a,

2h

. 1
= ———— [sin (@,x)]
h + sin® a,, 0

2h
- sin(a,)

h+ sin’ a,

1
f cos (a,x) dx
0

Hence (6) becomes

sin (a,,)
u(x, t) =2h E Tt ”a exp (—a%kt) cos (a,x)
n

h
But from example 1, section 72 we are given that tan (a,,c) = —. But ¢ =1 in this problem,
hence
tan (a,) = —
an

Which is what required to show.

2.11.4 Section 74, Problem 4

SR 2z
4. (a) Give a physical interpretation of the boundary value problem

U (x4 t) = kg (x, 1) O<x <l
H(O, t) = 07 ux(]-, t) = _hu(li t): u(x, O) = f(x)v

where £ is a positive constant. Then derive the solution

u(x, t) = Z B, exp(— 2kz‘) sin a,x,

n=1
where tan o, = —a,/ h (@, > 0) and
B Al
8 h = cosza,, / fx)sinw,xdx (n=1

(b) Use an argument similar to the one at the end of Sec. 74 to show that the §
found in part (a) formally satisfies the boundary value problem (8)-(10)
section when the function f there is odd, or when

D =-f® (=]'s

Figure 2.100: Problem statement

Solution

Part (a)

1 (0,t) = 0 means that the left surface is kept at fixed temperature which is zero. And
u, (1,t)+hu(1,t) = 0 means that the surface heat transfer takes place at face x =1 into the
medium at temperature zero. To solve the PDE, we first check the boundary conditions
by writing them as

aju(0,t) + au, (0,t) =0

byu(@,t) + bou, (1,£) =0
Then a; = 0,a, = 0. Hence a;a, = 0. And b; = 1,b, = h. Then since it is assumed that
h > 0 per section 26, then byb, > 0. And since g (x) = 0 from the PDE itself, then we know
that eigenvalues are A > 0.
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Let u = X (x) T () then the PDE becomes

T'X=X"T
T X"
T=x ="
Hence the Sturm Liouville problem is
X"+AX=0
X(0)=0

X' 1)+hX1)=0
Where p (x) = 1.

Case A =0
Solution is
X(x)=Ax+B
Atx=0
0=B8B
Hence solution becomes
X (x) = Ax
At x =1 the second boundary conditions gives
A+hA=0
Al+h) =0

For non trivial solution 1 + # = 0 or & = —1. But we assumed that # > 0. Therefore A = (0
is not eigenvalue.

Case A >0

Let A = a2, a > 0. Hence solution is
X (x) = Acos (ax) + Bsin (ax)
At X(0)=0
0=A
The solution becomes
X (x) = Bsin (ax)
At x =1 the second boundary conditions gives
Ba cos () + hBsin () = 0
acos(a)+ hsin(a) =0

a

tan () = ——

@) =7
Therefore the eigenvalues are given by solution to

tan(an):—% n=1,23,-

And eigenfunctions are
X, (x) = sin (a,,x)
The normalized eigenfunctions are

X
on () = X
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But

MMM%LFwﬁmM
_ fo ' sin? (@) dx
_ %j:l—cos@anx)dx
2 20, |

= l (1 - 2;1 [sin (20znx)](1))

2
1 (1 _sin (2an))
2 2a,,
1 sin(a,)
T2 4a,

sin(a;,)

, therefore the above becomes
cos(ay,)

But sin (2a,,) = 2sina,, cos,, and a,, = —h

I, (x)||2 _ 1 N 2sin a.n COS &y,
2 h sin(a;,)
cos(ay,)

1 cos?a,
=—+

2 2h
_h+ cos? a,,
- 2

Hence
X, ()

h+cos? a,
2h

2h 0 (e, )
= \|————sin(a,x
h + cos? a, S A

Now we use generalized Fourier series to find the solution. Let
(1) = 3By () (%)
n=1
Substituting this back into the PDE gives
2B () () =k D3 B, (D7) (x)
n=1 n=1
But ¢/ (x) = -A,¢, (x) = —a%¢, (x). The above becomes
23 B () §u () = —k 3 By (1) aipy (x)
n=1 n=1
B (t) + ka?B,, () = 0

(pn (x) =

The solution is
B, (t) = B,, (0) et

Hence (1) becomes

u(x,t) = i B, (0) e_ka%tqbn (x)

n=1

At t = 0 the above becomes

f() =Y, B, (0)¢, (x)
n=1

127
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Therefore
Bn (0) = <f (x) ’ (Pn (x)>
1
=LP@ﬂW%®W
2h 1
-, /—h oo fo F () sin (a,x) dx
Therefore

B, (t) = B, (0) ekt

= ( o f 1 f (x) sin (a,,x) de ekaiit
0

h + cos? a,,

and solution (1) becomes

u(xt)_E m(f F(©)sin an)dx)ek“"

2h
2
~ I+ cos a5

2h

———Fssin (a,x
h + cos? a, (@)

( f f (%) sin (a,,x) dx) “kafit gin (a,,x)

Which is what required to show.

Part (b)

We need to show that the solution found in part (a) also satisfies the PDE when -1 < x <1
Uy = kit -1<x<1,t>0

With boundary conditions (9)

u, (-1,t) = hu(-1,t)

u, (1,t) = -hu(1,t)
And initial conditions (10)
u(x,0) = f(x)

When f (x) is odd.

The solution found in a already satisfies the above PDE with the second boundary con-
ditions in (9). Since sine is odd then the solution in part(a) is also odd. Then its partial
derivative is even in x, hence the first boundary conditions in (9) is also satisfied

u,(-1,t) =hu(-1,t) = —u, (1,t) = hu(,t)

Finally we know that u (x,0) = f (x) for 0 < x < 1. Furthermore when -1 < x < 0 the fact
that u and f (x) are odd enables us to write

u(=x,0)=-u(x,0)=f(-x)=—-f(x)
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2.11.5 Section 77, Problem 2

an

n=1
R ; ‘
S Rl Qofaslab0 < x = 1 into a medium a
at the surface x = U0 = iy
2.\\ i tra?Sferz;iEe:cigfging to the linear law of surface heat transfer, s0 that (
temperature 5 1 .
u.(0,t) = hu(0, t)
g.61,and the unit of time is chosen

indi in Fi
s are as indicated in Sec. 77, derive the temperature

2 dition: 3
igiothonbonndesg i L jon. By proceeding as I

so that k = 1in the heat equat

formula

® sina,(1— %) }o Yol
=hx+1__2h§ ___,L’z/——)—exp( otn),
U, ) h+1 * o (h + cos* an
where tana, = —a/ h (en > 0).

0° u(x,0) =0 uw=1

FIGURE 61

Suggestion: In sim

i plifying the ex i i -
S sal o el v ying pression for the Fourier constants that arise, it

- hsina, __ cosa,

a2 e
Figure 2.101: Problem statement

Solution

Solve

Up = Uyy O<x<1,t>0
With boundary conditions
u, (0,t) —hu(0,t) =0
u(l,t)=1
With / > 0. And initial conditions u (x,0) = f (x).

Because the second B.C. is not zero, we need to introduce a reference function r (x) which
satisfies the nonhomogeneous boundary conditions.

Let 7 (x) = Ax + B. When x = 0 then the first BC gives
A-hB=0
And the second BC gives
A+B=1
From the first equation A = hB. Substituting in the second equation give hB+ B =1 or
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B(1+h)=1o0orB=-—.Hence A= Therefore

r(x):Ax+B
h 1

1+h +h
hx +1

- 1+h @

To verify. r, = 1% When x = 0 then r(0) = llﬁ Hence r, (0) — hr (0) = v hm =0

as expected. And when x =1 then 7 (1) =1 as expected. Now that we found 7 (x) then we
write

u(x,t)y=v(xt)+r(x)
Where v (x, t) is the solution to the homogenous PDE
UV = Uyy 0<x<1,t>0
With boundary conditions
0, (0,t)-hv(0,t) =0
v(,t)=0

We can now solve for v (x,t) using separation of variables since boundary conditions are
homogenous. Separation of variables gives

X"+ AX =0
X" (0) -hX(0) =
X1 =

Using problem 5 section 72, the eigenfunctions and eigenvalues for the above are

2h _

Pn (x) = msm(an(l—x)) n=12--
-a
tan (a,,) = h”
With a,, > 0. Hence the solution v (x, t) using generalized Fourier series is
0 (5, t) = 3 By (t) b (x) (2)
n=1

Substituting into the PDE v, = v, gives

S B (1) pn (¥) = ) B, () 0 (%)
n=1 n=1
==Y, B, () %, (x)

n=1

Therefore the ODE is

B, (t) + 2B, (t) =0
The solution is

B, (t) = B, (0) ™"
Hence (2) becomes

v(x,t) = i B, (0) e_a%tqbn (x)

n=1
And since u (x,t) = v(x,t) + r (x) then

() = f] B, (0)e-Btey, (x) + 1
n=1

1+h

Now we find B,, (0) from initial conditions. At t = 0 the above becomes

O—ZB (0) by (x) + hx !

+h
hx+1 &
T = LB 06
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Hence
hx+1
fp 1+ h (x) dx
Lhx +1 2h
= — i 1-
o 1+h \/h+coszansm(an( X)) dx
1
_ 1+h‘/h+cos2a f(hx+1)s1n(0zn(1 X)) dx 3)
But

1 1

1
hx +1)sin(a, (1 —x))dx = in(a,1-x)dx+h in(a,(1-x))d
fo(x+)s(a(x))xfs(a(x))x+fxs(0z(x))x

0 0
1 . 1
_ [cos (a, 1 —x)) o [anx cos (a, (1 = x)) + sin (a,, (1 — x))

an a% 0
1 - cos(a h
_ Locoslan) — [ax cos (a, (1 - X)) + sin (a, (1 - )]
ai’l aTl
1 - cos(a h
= 1~ cos (@) + — [a, —sina,]
ai’l an
_a, —ay,cos(ay,) + ha, —hsina,
= 2
%ﬁ"; = —0;—” or hsin(w,) = —a, cos (a,) or —hsina, = «, cos(a,), hence the above
n

simplifies to

1 h
f (hx + 1) sin (a, (1 - %) dx = 2= 20
0 ay

_1+h

dy

B, (0) = 1 + h
1+ h h+ cos2 an
\/ h + cos? a,
Hence final solution becomes

EB (0) e ep,, ()

+
+ =
hx+1 & 1 o "
= + _— - _ Zt e 1_
1+h r; “n\/@e}{p( a”) I+ cos? a,, sin (ay, (1 - x))

_ hx +1 —Zhi sin (a,, (1 — x))
1+h =1 (h + cos? a,

Therefore (3) becomes

) exp (—a%t)

Which is what required to show.
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3.1 exam 1 notes

3.1.1 Chapter 1, sections 1-8 (Fourier series)

section 1

definition of left and right limits. definition of piecewise continuous function.

section 2

ope . . . a 271 a
definition of Fourier cosine series f (x) = EO + Z;ozl a, cos (nTx) = ?0 + 2:10:1 a,, cos (nx)

forO<x<m.
section 3

Examples of Fourier cosine series

section 4

ope . . . . 2n a .
definition of Fourier sine series f (x) = 2211 b, sin (n?x) = ?0 + 2;11 b, sin (nx) for 0 <
x < Tt

section 5

Examples of Fourier sine series

section 6
Fourier series For period T = 27
a4~ 21 [ 2n
f(x)zE+’§ﬂnCOS(”?X)+bn81H(”TX) —MT<X<T

a o0
~ 24 Z a, cos (nx) + b, sin (nx)
2 n=1

Where

N
=
Il

1 7T
—f F)cos(m)ydx  n=0,1,2
T —TU
1 7T
b, = ;f F@sindx  n=1,2,-
If f (x) is even then b, = 0 and if f (x) is odd, then a,, = 0.

section 7

Fourier series examples.

section 8 Adoption to different regions

Shows how F.S. on —L < x < L can be obtained from know F.S. on —7t < x < 7. Not clear
why example 2 on page 22 replaces a = —.
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3.1.2 Chapter 2, sections 9-20 (Convergence of Fourier series)
section 9 (one sided derivatives)

£l (xp) = lim f@)-f(x)

X=X X —Xg

L fW-f(x)
[~ (xo) = %1:%10 B

Smooth function is one who is continuous and its derivative is also continuous. For example
f (x) = x? is smooth, but f (x) = |x| is not smooth.

Piecewise smooth function is one which f (x) and f’ (x) are piecewise continuous.

section 10 (Properties of Fourier coefficients)

Bessel’s inequalities

T3a<l [l
2 =1 n_T[ 0
i, =0
[e) ) %fﬂ
nz:]lbn<n 0 [f 0] dx
A, bn =0

section 11 (Two Lemmas)

Lemma 1 If f (x) is PW.C. on 0 < x < 7t then

]\}i_r)nmﬁnf(x)sin((N+%)x)dx:0

Lemma 2 If ¢ (x) is PW.C. on 0 < x < 7 and that g/, (0) exist, then

nf(+2)s)

& T
li f X = x=—g(0*
Nl—r>n°° 0 gt 2sin§ 2g( )

sin((N+%)x)
Where ———— is called the Dirichlet kernel Dy (x).
Sin E

1 N
Dy (x) = > + Z cos (nx)
n=1

(v + 1)

X
2sin =
2

Dy (x) =

Tt

fOnDN(x)dx:E

Section 12 (Fourier theorem)

If f(x)is PW.C. on -t < x < 7t and f (x) is periodic on all of x with period 27 then at

each x where f’, (x) and f’ (x) both exist, then f (x) converges to the average of f (x) at x

flx)+f()
2

which is . Proof is long.
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Section 13 (Related Fourier theorem)

Nothing new here. Seems same as last one. If f (x) is PWC and f’ (x) is PWC, and f (x) is
periodic, then F.S. of f (x) converges to mean of f (x) at each point x.

Section 14 (Examples)

Examples on the Fourier theorem

Section 15 (Convergence on other intervals)

Nothing new here.

Section 16 (Lemma on absolute and uniform convergence)

If f(x) is continuous on -t < x < 7 (notice it has to be continuous, not PWC) and if
f(-m) = f(m) and f’ (x) is PWC on -7 < x < 7t then

o0
Z a2 + b2
n=1

converges. Proof is given. And

Q2w L TP
Ean+ﬁnﬁgf_n[f (x)] dx N=1,23-

Where
a [oe]
f(x) = 70 + 3 a, cos (nx) + B, sin (nx)
n=1
CYO = 0
a, = nb,
B, = nay,

Section 17 (Absolute and uniform convergence of Fourier series)

M test is used to check if series is U.C. (uniform convergent). If we can find E;ozl M,, which

is convergent and M), is positive constant, and where |fn (x)| <M, foreachnina<x<b,
then series 220:1 fn(x)is U.C.

Theorem If f (x) is continuous on - < x < 7w and f (-n) = f (1) and f’ (x) is PWC, then
f (x) both absolutely and uniformly convergent,

Section 18 (Gibbs phenomenon)

Not on exam.

Section 19 (Differentiation of Fourier series)

Same conditions as section 17 theorem. If f (x) is continuous on - < x < 7w and f (-7) =
f () and f’ (x) is PWC, then F.S. of f (x) can be differentiated term by term.

Section 20 (Integration of Fourier series)

As long as f (x) is PWC, we can integrate F.S. term by term.

3.1.3 Chapter 3 (partial differential equations of physics)

Section 21 (Linear boundary value problem)
Aty + Buyy, + Cuyy, + Duy + Euy + Fu =G
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And definitions.

Section 22 (1D heat PDE)

Flux is @ = —Kﬁ where K is thermal conductivity. Flux is amount of heat passing in
normal direction per unit area in one second. Derivation of heat PDE

Uy = kity,
K
where k is thermal diffusivity k = — where 0 is specific heat and 0 is density of material.

Section 23 (Related heat equations)

Nothing much here.

Section 24 (Laplace in cylindrical and spherical)

Just need to know the equations. Will be given in exam.

Section 25 (Derivations)

Not in exam

Section 26 (Boundary conditions)

Just need to know Neumann and Dirichlet.

Section 27 (Duhamel’s principle)

Do not think this will be on exam.

Section 28 (Vibrating string)

Derivation of v, = 4y, using physics. Will not be on exam.

Section 29 (Vibrations of bars and membranes)

Generalization of section 28.

Section 30 (General solution to wave equation)

To derive solution to y;; = azyxx, use U = x + at,v = x — at and the PDE becomes y,, =0
which has solution y = ® (1) + ¥ (v) or

y(x,t) =D (x +at) + W (x —at)

Where initial conditions are v (x,0) = f (x),y; (x,0) = g (x) then the solution becomes

x+at

1 1
y(x,t):5(f(xﬂnf)+f(x—mf))+5 g (s)ds

Section 31 (Types of equations and boundary conditions)
1. Hyperbolic B2 - 4AC > 0
2. Elliptic B2 —4AC <0
3. parabolic B2 -4AC =0
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3.1.4 Chapter 4 (The Fourier method)

Section 32 (linear operators)
L (Clul + Czuz) = c1Luq + cyLuy

Section 33 (Principle of superposition)

Suppose each function u; satisfies a linear homogeneous differential equation or boundary
value problem Lu = 0, then 2:0:1 u, also satisfies the same equation.

Section 34 (Examples of Principle of superposition)

Some examples. Go over.

Section 35 (Eigenvalues and eigenfunctions)

Show how to solve X”” + AX = 0 for different boundary conditions.

Section 36 (A temperature problem)

Applying Eigenvalues and eigenfunctions to heat PDE on rod.

Section 37 (Vibrating string)

Applying Eigenvalues and eigenfunctions to wave PDE On string 1, = a®u,, with fixed on
ends and have initial conditions.

Section 38 (Historical development)

Not on exam
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41 exam1

Local contents
411 questions| . . . . ... ... ... 138

411 questions

1. (30 points)

(1) Define the Fourier series over the interval —c < x < ¢ corresponding to

piecewise continuous function f(z).
(2) State the convergence theorem for such Fourier series.

(3) For what value a does the Fourier series over the interval —1 < B <l

corresponding to the function

fl@)=¢e"+ax N
| ~C

converge to f(r) at z = 1. T

0o

. (30 points)

Find eigenvalues and corresponding eigenfunctions.

X'"z)+AX(z)=0, 0<z<1

subject to the boundary conditions X’(0) = 0 and X (1) = 0.

R S ——.

(@8

e

L
‘{E X M{

. (40 points)

Solve the boundary value problem

Yar(2,1) = Yoa(,8) — y(2,1), 0 <z <, t>0;

y(0,¢) = y(m,t) = 0; y(x,0) =0, y(z,0) = 1.
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4.2 exam 2

Local contents
421 questions| . . . . ... .. 139

421 questions

. (40 points) | g
With the aid of the expansion

T— =2

n=1

solve the following problem.

us(z,1) = Uge(z, ) +t(m—1z), O< 2z <7, 1> 0;

Spur e
\\/ u(0,t) =0, u(m,t) =0; u(z,0)=0.

. (20 points) Verify that all of the conditions of the Fourier sine integral repre-
sentation are satisfied by the function f defined by

5 when 0 <z <1
flz) =< 2—z when 1 <z <2
0 when z < Qorz > 2

and show that for 0 < z < oo,

2 [®(2sina —sin2a) sinaz

f(m) - —/’F\/O ; do.

3. (40 points)
Find the bounded harmonic function u(z,y) in the semi-infinite strip 0 < z <
00, 0 <y < 1 that “satisfies the conditions u(z,0) = 0, u(0,y) = 0 and u(z,1) =
f(z), where f(z) is the function given in problem 2. /’\ "
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4.3 Final exam

Local contents
4.3.1 questions| . . . . . . ... e 140

4.3.1 questions

1. (30 points) Suppose both f(z) = sin(27z) and g(z) = cos(27z) + ¢ are eigen-
functions corresponding to distinctive eigenvalues to the following Sturm-Liouville
problem, where 7, r’ and ¢ are all assumed to be continuous on [0, 1]. Find con-

stant c.

(@)X ()] +[a@) + A (s +1)] X(z) =0, 0<z<1;

2. (30 points) Solve for the eigenvalues and normalized eigenfunctions.

e s, -

X"+2X =0, 0<z<I;
X(0)=X'(0) =0, X(1)+X'(1)=0.

3. (40 points) Solve the boundary value problem

(1+t)u(z, t) = upe(z,t) (O<z<1, t>0).
’L'S:C(O, t) = _”1: u(la t) == 0: U(.’L')O_) .._.‘__ZMQ:..,.,W“MWW‘
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