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Chapter 1

Introduction

1.1 syllabus

               MATH 4567, Section 002, Spring 2019, MWF 3:35-4:25, Vincent Hall 2 
 
Instructor: Jiaping Wang; Office:  Vincent Hall 230; web page:  www.math.umn.edu/~jiaping 
 
Office hours: MWF 2:30-3:20 (subject to change) 
 
Course title and a brief description: Fourier Analysis 
 
Fourier series and Fourier transform.  Convergence.  Fourier series, transform in complex form. 
Solution of wave, heat, Laplace equations by separation of variables.  Sturm-Liouville systems. 
Applications. 
 
Prerequisites: 2243 or 2373 or 2573 
 
Text  and  material: Fourier  Series  and  Boundary  Value  Problems,  8th  edition,  by  Brown 
and Churchill, McGraw Hill Publisher.  The course will cover Chapters 1-8, and selected material 
from Chapter 11. 
 
Course work: The class time will be devoted to lectures where you should gain understanding 
of the basic concepts and methods, realize connections to other parts of mathematics you have 
learned  (linear  algebra),  and  eventually  build  a  global  picture  of  the  theory  of  (generalized) 
Fourier series.  You will broaden your knowledge and develop solving routines out of class:  you 
are expected to carefully study the text and solve a number of exercises.  Assigned homework is 
the minimum you can do for your practice. 
 
Assignments: Homework  assignments  will  be  posted  on  my  web  page  and collected in class on 
Wednesday.  One homework (the worst grade or a homework missed for any reason) will 
be dropped at the end.  No late homework will be accepted.  You may discuss homework problems 
with other students, however, you are supposed to work out and write down the solutions yourself. 
Please write complete solutions clearly on one side of letter-size sheets.  Questions or objections 
to grading must be brought up within a week after the graded work is returned to you. 
 
Exams and grading policy: There will be three one-hour exams covering appropriate parts of 
the material. No books, notes or technology are allowed for the exams. Make-up exams are 
discouraged,  but can only be given for legitimate  reasons  such  as  illness  or  university   
sponsored  events  (written  documentation  and, except for medical emergencies, prior approval  
are required). 
 
Grading scheme: homework 25%, 3 midterm exams 75% (25% each). 
 
Exam dates:  Monday, February 25; Monday, April 1; Monday, May 6. 
 
Incomplete will only be assigned at extraordinary circumstances (such as hospitalization), and only  
if a major part of the class work has been completed. Academic dishonesty in any portion of the  
course shall be grounds for assigning a grade of F or N for the entire course. 

1.2 Links

1. Instructor web page
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Chapter 2

HWs

Local contents
2.1 HW 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 HW 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 HW 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 HW 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5 HW 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.6 HW 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
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2.1. HW 1 CHAPTER 2. HWS

2.1 HW 1

Local contents
2.1.1 Section 5, Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Section 5, Problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Section 7, Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Chapter 1, Section 7, Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.5 Section 7, Problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.6 Chapter 1, Section 8, Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.7 Chapter 1, Section 8, Problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Section 5, Problem 3

Problem Find (a) the Fourier cosine series and (b) the Fourier sine series on the interval
0 < 𝑥 < 𝜋 for 𝑓 (𝑥) = 𝑥2

Solution

Part a

The function 𝑥2 over 0 < 𝑥 < 𝜋 is

In[ ]:= f[x_] := x^2;

Plot[f[x], {x, 0, Pi}, PlotStyle → Red, GridLines → Automatic,

GridLinesStyle → LightGray, Ticks → {Range[0, Pi, 1/ 4 Pi], Automatic}]

Out[ ]=

π

4

π
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3 π

4
π

2

4

6

8

10

Figure 2.1: Original function

The first step is to do an even extension of 𝑥2 from 0 < 𝑥 < 𝜋 to −𝜋 < 𝑥 < 𝜋 which means
its period becomes 𝑇 = 2𝜋. The even extension of 𝑓 (𝑥) is given by

𝑓𝑒 (𝑥) =
⎧⎪⎨
⎪⎩
𝑓 (𝑥) 𝑥 > 0
𝑓 (−𝑥) 𝑥 < 0

In[ ]:= f[x_] := x^2;

Show[Plot[f[x], {x, 0, Pi}, PlotStyle → Red],

Plot[f[x], {x, -Pi, 0}, PlotStyle → {Red, Dashed}],

PlotRange → {{-Pi, Pi}, Automatic}, Ticks → {Range[-Pi, Pi, 1/ 4 Pi], Automatic},

GridLines → Automatic, GridLinesStyle → LightGray]

Out[ ]=
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Figure 2.2: Even extension of original function

The next step is to make the above function periodic with period 𝑇 = 2𝜋 by repeating it
each 2𝜋 as shown below
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2.1. HW 1 CHAPTER 2. HWS

In[ ]:= Clear[f];

f[x_ /; -Pi ≤ x < Pi] := x^2

f[x_ /; x ≥ Pi] := f[x - 2 Pi];

f[x_ /; x < -Pi] := f[x + 2 Pi];

Plot[f[x], {x, -4 Pi, 4 Pi}, Ticks → {Range[-4 Pi, 4 Pi, Pi], Automatic},

GridLines → Automatic, GridLinesStyle → LightGray, PlotStyle → Red]

Out[ ]=

-4 π -3 π -2 π -π π 2 π 3 π 4 π

2

4

6

8

10

Figure 2.3: Even extension of original function

Now that we have a periodic function above with period 𝑇 = 2𝜋 then we can find its
Fourier cosine series. Which is just the cosine series part of its Fourier series given by

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝜋
𝑇
𝑛𝑥�

Since 𝑇 = 2𝜋, the above becomes

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) (1)

Where

𝑎0 =
1

�𝑇
2
�
�

𝑇
2

−𝑇
2

𝑓 (𝑥) 𝑑𝑥

=
2
2𝜋 �

2𝜋
2

− 2𝜋
2

𝑓 (𝑥) 𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) 𝑑𝑥

Because 𝑓 (𝑥) is an even function (we did an even extension to force this), then the above
can be written as

𝑎0 =
2
𝜋 �

𝜋

0
𝑓 (𝑥) 𝑑𝑥 =

2
𝜋 �

𝜋

0
𝑥2𝑑𝑥 =

2
𝜋 �

𝑥3

3 �
𝜋

0
=
2
𝜋 �

𝜋3

3 �
=
2
3
𝜋2 (2)

And for 𝑛 > 0 then

𝑎𝑛 =
1

�𝑇
2
�
�

𝑇
2

−𝑇
2

𝑓 (𝑥) cos �
2𝜋
𝑇
𝑛𝑥� 𝑑𝑥

But 𝑇 = 2𝜋 and the above becomes

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥

But 𝑓 (𝑥) is even functiuon and cos is even, hence the product is even and the above
simplifies to

𝑎𝑛 =
2
𝜋 �

𝜋

0
𝑥2 cos (𝑛𝑥) 𝑑𝑥

Integration by parts. 𝑢𝑑𝑣 = 𝑢𝑣−∫𝑣𝑑𝑢. Let 𝑢 = 𝑥2, 𝑑𝑣 = cos 𝑛𝑥, therefore 𝑑𝑢 = 2𝑥, 𝑣 = sin 𝑛𝑥
𝑛 .
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2.1. HW 1 CHAPTER 2. HWS

The above becomes

𝑎𝑛 =
2
𝜋
�[𝑢𝑣] −�𝑣𝑑𝑢�

=
2
𝜋 ��

𝑥2
sin 𝑛𝑥
𝑛 �

𝜋

0
−�

𝜋

0
2𝑥

sin 𝑛𝑥
𝑛

𝑑𝑥�

Since 𝑛 is integer, the term �𝑥2 sin 𝑛𝑥
𝑛
�
𝜋

0
→ 0 and the above simplifies to

𝑎𝑛 =
2
𝜋 �

−
2
𝑛 �

𝜋

0
𝑥 sin 𝑛𝑥𝑑𝑥�

=
−4
𝑛𝜋 �

𝜋

0
𝑥 sin 𝑛𝑥𝑑𝑥

The integral ∫
𝜋

0
𝑥 sin 𝑛𝑥𝑑𝑥 is evaluated by parts again. Let 𝑢 = 𝑥, 𝑑𝑣 = sin 𝑛𝑥 → 𝑑𝑢 = 1, 𝑣 =

−cos 𝑛𝑥
𝑛 and the above becomes

𝑎𝑛 =
−4
𝑛𝜋

�[𝑢𝑣] −�𝑣𝑑𝑢�

=
−4
𝑛𝜋 �

− �𝑥
cos 𝑛𝑥
𝑛 �

𝜋

0
+
1
𝑛 �

𝜋

0
cos 𝑛𝑥𝑑𝑥�

=
−4
𝑛𝜋

⎛
⎜⎜⎜⎜⎜⎜⎝−
1
𝑛
𝜋 cos (𝑛𝜋) +

1
𝑛2

0

�����������[sin 𝑛𝑥]𝜋0

⎞
⎟⎟⎟⎟⎟⎟⎠

=
4
𝑛2

cos (𝑛𝜋)

=
4
𝑛2
(−1)𝑛 (3)

Substituting (2,3) into (1) gives

𝑓 (𝑥) ∼
2
3𝜋

2

2
+

∞
�
𝑛=1

4
𝑛2
(−1)𝑛 cos (𝑛𝑥)

=
𝜋2

3
+ 4

∞
�
𝑛=1

(−1)𝑛

𝑛2
cos (𝑛𝑥)

The convergence is fast due to the term
1
𝑛2 . This plot show the approximation as the

number of terms increases. After only 4 terms we see the approximation is very close to
original function 𝑥2 shown in dashed lines in the plot below.
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2.1. HW 1 CHAPTER 2. HWS

In[ ]:= fApprox[x_, nTerms_] :=
π2

3
+ 4 Sum

(-1)n

n2
Cos[n x], {n, 1, nTerms};

Grid@

Partition[

Table[Plot[{x^2, fApprox[x, n]}, {x, -Pi, Pi}, PlotStyle → {Dashed, Red},

PlotLabel → Row[{"Using ", n, " terms"}]], {n, 1, 4}], 2]

Out[ ]=

-3 -2 -1 1 2 3

2

4

6

8

10
Using 1 terms

-3 -2 -1 1 2 3

2

4

6

8

10
Using 2 terms

-3 -2 -1 1 2 3

2

4

6

8

10
Using 3 terms

-3 -2 -1 1 2 3

2

4

6

8

10
Using 4 terms

Figure 2.4: Fourier approximation as more terms are added

Part b

Because we want to find the Fourier sine series now, then the first step is to do an odd
extension of 𝑥2 from 0 < 𝑥 < 𝜋 to −𝜋 < 𝑥 < 𝜋 which means its period is 𝑇 = 2𝜋. Odd
extension of 𝑓 (𝑥) is given by

𝑓𝑜 (𝑥) =
⎧⎪⎨
⎪⎩

𝑓 (𝑥) 𝑥 > 0
−𝑓 (−𝑥) 𝑥 < 0

In[ ]:= f[x_] := x^2;

Show[Plot[f[x], {x, 0, Pi}, PlotStyle → Red],

Plot[-f[-x], {x, -Pi, 0}, PlotStyle → {Red, Dashed}],

PlotRange → {{-Pi, Pi}, {-10, 10}}, Ticks → {Range[-Pi, Pi, 1/ 4 Pi], Automatic},

GridLines → Automatic, GridLinesStyle → LightGray]

Out[ ]=

-π - 3 π

4
-π

2
-π

4

π

4

π

2

3 π

4
π

-10

-5

5

10

Figure 2.5: Odd extension of 𝑥2

The next step is to make the function function periodic with period 𝑇 = 2𝜋 by repeating
it each 2𝜋 as follows
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2.1. HW 1 CHAPTER 2. HWS

In[ ]:= Clear[f];

f[x_ /; -Pi < x < Pi] := If[x < 0, -x^2, x^2];

f[x_ /; x > Pi] := f[x - 2 Pi];

f[x_ /; x < -Pi] := f[x + 2 Pi];

Plot[f[x], {x, -4 Pi, 4 Pi}, Ticks → {Range[-4 Pi, 4 Pi, Pi], Automatic},

PlotStyle → Red, Exclusions → {x ⩵ -3 Pi, x ⩵ -Pi, x ⩵ Pi, x ⩵ 3 Pi}, Mesh → None,

GridLines → Automatic, GridLinesStyle → LightGray]

Out[ ]=

-4 π -3 π -2 π -π π 2 π 3 π 4 π

-10

-5

5

10

Figure 2.6: Making the odd extension periodic

Now that we have a periodic function with period 𝑇 = 2𝜋 we can find its Fourier sine
series, which is just the sin part of its Fourier series, given by

𝑓 (𝑥) ∼
∞
�
𝑛=1

𝑏𝑛 sin �
2𝜋
𝑇
𝑛𝑥�

But 𝑇 = 2𝜋, and the above becomes

𝑓 (𝑥) ∼
∞
�
𝑛=1

𝑏𝑛 sin (𝑛𝑥) (1)

Where

𝑏𝑛 =
1

�𝑇
2
�
�

𝑇
2

−𝑇
2

𝑓 (𝑥) sin �
2𝜋
𝑇
𝑛𝑥� 𝑑𝑥

But 𝑇 = 2𝜋, and the above becomes

𝑏𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥

But now 𝑓 (𝑥) is odd function (we did an odd extension) and sin is odd. Hence product is
even. Therefore the above simplifies to

𝑏𝑛 =
2
𝜋 �

𝜋

0
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥

=
2
𝜋 �

𝜋

0
𝑥2 sin (𝑛𝑥) 𝑑𝑥

Integration by parts. 𝑢𝑑𝑣 = 𝑢𝑣−∫𝑣𝑑𝑢. Let 𝑢 = 𝑥2, 𝑑𝑣 = sin 𝑛𝑥, therefore 𝑑𝑢 = 2𝑥, 𝑣 = − cos 𝑛𝑥
𝑛 .

The above becomes

𝑏𝑛 =
2
𝜋
�[𝑢𝑣] −�𝑣𝑑𝑢�

=
2
𝜋 �

− �𝑥2
cos 𝑛𝑥
𝑛 �

𝜋

0
+�

𝜋

0
2𝑥

cos 𝑛𝑥
𝑛

𝑑𝑥�

=
2
𝜋 �

−
1
𝑛
�𝜋2 cos 𝑛𝜋� +

2
𝑛 �

𝜋

0
𝑥 cos 𝑛𝑥𝑑𝑥�

= −
2𝜋
𝑛

cos 𝑛𝜋 +
4
𝑛𝜋 �

𝜋

0
𝑥 cos 𝑛𝑥𝑑𝑥

The integral ∫
𝜋

0
𝑥 cos 𝑛𝑥𝑑𝑥 is evaluated by parts again. Let 𝑢 = 𝑥, 𝑑𝑣 = cos 𝑛𝑥 → 𝑑𝑢 =

8



2.1. HW 1 CHAPTER 2. HWS

1, 𝑣 = sin 𝑛𝑥
𝑛 and the above becomes

𝑏𝑛 = −
2𝜋
𝑛

cos 𝑛𝜋 +
4
𝑛𝜋

�[𝑢𝑣] −�𝑣𝑑𝑢�

= −
2𝜋
𝑛

cos 𝑛𝜋 +
4
𝑛𝜋

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

�������������
�𝑥

sin 𝑛𝑥
𝑛 �

𝜋

0
−�

sin 𝑛𝑥
𝑛

𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −
2𝜋
𝑛

cos 𝑛𝜋 −
4
𝑛2𝜋 �

sin 𝑛𝑥𝑑𝑥

= −
2𝜋
𝑛

cos 𝑛𝜋 −
4
𝑛2𝜋 �

− cos 𝑛𝑥
𝑛 �

𝜋

0

= −
2𝜋
𝑛

cos 𝑛𝜋 +
4
𝑛3𝜋

[cos 𝑛𝑥]𝜋0

= −
2𝜋
𝑛

cos 𝑛𝜋 +
4
𝑛3𝜋

[cos 𝑛𝜋 − 1]

= −
2𝜋
𝑛
(−1)𝑛 +

4
𝑛3𝜋

�(−1)𝑛 − 1�

= −
2𝜋
𝑛
(−1)𝑛 −

4
𝑛3𝜋

�1 − (−1)𝑛�

=
2𝜋
𝑛
(−1)𝑛+1 −

4
𝑛3𝜋

�1 − (−1)𝑛� (2)

Substituting (2) into (1) gives

𝑓 (𝑥) ∼
∞
�
𝑛=1

�
2𝜋
𝑛
(−1)𝑛+1 −

4
𝑛3𝜋

�1 − (−1)𝑛�� sin (𝑛𝑥)

= 2𝜋2
∞
�
𝑛=1

�
1
𝑛𝜋

(−1)𝑛+1 −
2

(𝑛𝜋)3
�1 − (−1)𝑛�� sin (𝑛𝑥)

In this case, we needed more terms to obtain good convergence. Because the periodic
extension is now discontinuous at 𝑥 = 𝑛𝜋 where 𝑛 is odd. In part (a), the periodic extension
was continuous over the whole domain. The following plot shows we needed more terms
compared to part (a) to start seeing good convergence. This shows the result for one period
from −𝜋 to 𝜋. The blue color is for the original odd extended function and the red color
is its Fourier seriesapproximation.

9
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Out[ ]=
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Figure 2.7: Fourier approximation of odd extension of 𝑥2 over one period

In[ ]:= fApprox[x_, nTerms_] :=

2 π
2 Sum

1

n π
(-1)n+1

-
2

(n π)3
1 - (-1)n

 Sin[n x], {n, 1, nTerms};

f[x_] := If[x < 0, -x^2, x^2];

Grid@

Partition[

Table[Plot[{f[x], fApprox[x, n]}, {x, -Pi, Pi}, PlotStyle → {Blue, Red},

PlotLabel → Row[{"Using ", n, " terms"}]], {n, 1, 10}], 2]

Figure 2.8: Code used to draw Fourier approximation for odd extension for one period

Due to discontinuous in the periodic extended function, there will be a Gibbs e�ect at the
points of discontinuities 𝑥 = 𝑛𝜋 where 𝑛 is odd, where the approximation converges to the

10
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average of the function at those point. To see this, here is a plot showing the result for the
case of 16 terms over 3 periods instead of one period as the above plot showed.

Gibbs effect

converges to

average at x=1

Gibbs effect

-5 5

-10

-5

5

10

Using 16 terms

Figure 2.9: Fourier approximation of odd extension of 𝑥2 over 3 periods to see Gibbs e�ect

In[ ]:= fApprox[x_, nTerms_] := 2 π
2 Sum

1

n π
(-1)n+1

-
2

(n π)3
1 - (-1)n

 Sin[n x], {n, 1, nTerms};

Clear[f];

f[x_ /; -Pi < x < Pi] := If[x < 0, -x^2, x^2];

f[x_ /; x > Pi] := f[x - 2 Pi];

f[x_ /; x < -Pi] := f[x + 2 Pi];

Plot[{f[x], fApprox[x, 16]}, {x, -3 Pi, 3 Pi}, PlotStyle → {Blue, Red},

PlotLabel → Row[{"Using ", 16, " terms"}], Exclusions → {x ⩵ -3 Pi, x ⩵ -Pi, x ⩵ Pi, x ⩵ 3 Pi}]

Figure 2.10: Code used to draw the above plot

2.1.2 Section 5, Problem 5

Problem By referring to the sine series for 𝑥 in example 1 and one found for 𝑥2 in above
problem show that

𝑥 (𝜋 − 𝑥) ∼
8
𝜋

∞
�
𝑛=1

sin (2𝑛 − 1) 𝑥
(2𝑛 − 1)3

0 < 𝑥 < 𝜋

Solution

From example 1, the Fourier sine series for 𝑥 defined on 0 < 𝑥 < 𝜋, was found to be

𝑥 ∼ 2
∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin 𝑥 0 < 𝑥 < 𝜋

11
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By writing 𝑥 (𝜋 − 𝑥) = 𝜋𝑥 − 𝑥2 then we see that

𝜋𝑥 − 𝑥2 ∼ 𝜋
⎛
⎜⎜⎜⎝2

∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin 𝑥

⎞
⎟⎟⎟⎠ − �2𝜋2

∞
�
𝑛=1

�
1
𝑛𝜋

(−1)𝑛+1 −
2

(𝑛𝜋)3
�1 − (−1)𝑛�� sin (𝑛𝑥)�

=
∞
�
𝑛=1

2𝜋
(−1)𝑛+1

𝑛
sin 𝑥 −

∞
�
𝑛=1

2𝜋2 �
1
𝑛𝜋

(−1)𝑛+1 −
2

(𝑛𝜋)3
�1 − (−1)𝑛�� sin (𝑛𝑥)

=
∞
�
𝑛=1

⎡
⎢⎢⎢⎣2𝜋

(−1)𝑛+1

𝑛
− 2𝜋2 �

1
𝑛𝜋

(−1)𝑛+1 −
2

(𝑛𝜋)3
�1 − (−1)𝑛��

⎤
⎥⎥⎥⎦ sin (𝑛𝑥)

=
∞
�
𝑛=1

⎡
⎢⎢⎢⎣2𝜋

(−1)𝑛+1

𝑛
−
2𝜋
𝑛
(−1)𝑛+1 +

4
𝑛3𝜋

�1 − (−1)𝑛�
⎤
⎥⎥⎥⎦ sin (𝑛𝑥)

=
∞
�
𝑛=1

4
𝑛3𝜋

�1 − (−1)𝑛� sin (𝑛𝑥)

Now when 𝑛 = 2, 4, 6,⋯ then �1 − (−1)𝑛� = 0 and when 𝑛 = 1, 3, 5,⋯ then �1 − (−1)𝑛� = 2.
Hence the above sum becomes

𝜋𝑥 − 𝑥2 ∼
∞
�

𝑛=1,3,5,⋯

8
𝑛3𝜋

sin (𝑛𝑥)

∼
8
𝜋

∞
�

𝑛=1,3,5,⋯

1
𝑛3

sin (𝑛𝑥)

Let 𝑛 = 2𝑚 − 1. Then when 𝑛 = 1 → 𝑚 = 1, 𝑛 = 3 → 𝑚 = 2, 𝑛 = 5 → 𝑚 = 3 and so on.
Hence the above sum can be written using 𝑚 as summation index as follows

𝜋𝑥 − 𝑥2 ∼
8
𝜋

∞
�
𝑚=1

1
(2𝑚 − 1)3

sin ((2𝑚 − 1) 𝑥)

Since summation index can be named anything, then renaming summation index from 𝑚
back to 𝑛 gives the form required

𝜋𝑥 − 𝑥2 ∼
8
𝜋

∞
�
𝑛=1

1
(2𝑛 − 1)3

sin ((2𝑛 − 1) 𝑥)

2.1.3 Section 7, Problem 1

Problem Find the Fourier series on interval −𝜋 < 𝑥 < 𝜋 that corresponds to

𝑓 (𝑥) =
⎧⎪⎨
⎪⎩
−𝜋2 −𝜋 < 𝑥 < 0
𝜋
2 0 < 𝑥 < 𝜋

Solution

A plot of the function 𝑓 (𝑥) over −𝜋 < 𝑥 < 𝜋 is

ClearAll[f, x];

f[x_] := Piecewise[{{-Pi/ 2, -Pi < x < 0}, {Pi/ 2, 0 < x < Pi}}]

Plot[f[x], {x, -Pi, Pi}, PlotStyle → Red, GridLines → Automatic,

GridLinesStyle → LightGray,

Ticks → {Range[-Pi, Pi, 1/ 2 Pi], Range[-Pi/ 2, Pi/ 2, 1/ 4 Pi]}]

Out[ ]=

-π -π

2

π

2
π

-π

2

-π

4

π

4

π

2

Figure 2.11: Plot of 𝑓(𝑥) for problem section 7.1

The periodic extension (with period 𝑇 = 2𝜋) becomes (shown for −3𝜋 < 𝑥 < 3𝜋)

12
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Clear[f];

f[x_ /; -Pi < x < Pi] := If[x < 0, -Pi/ 2, Pi/ 2];

f[x_ /; x > Pi] := f[x - 2 Pi];

f[x_ /; x < -Pi] := f[x + 2 Pi];

Plot[f[x], {x, -3 Pi, 3 Pi}, Ticks → {Range[-4 Pi, 4 Pi, Pi], Automatic},

PlotStyle → Red,

Exclusions → {x ⩵ -Pi, x ⩵ -2 Pi, x ⩵ -3 Pi, x ⩵ 0, x ⩵ Pi, x ⩵ 2 Pi, x ⩵ 3 Pi},

ExclusionsStyle → Dashed, Mesh → None, GridLines → Automatic,

GridLinesStyle → LightGray]

Out[ ]=

-3 π -2 π -π π 2 π 3 π

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 2.12: Plot of 𝑓(𝑥) for problem section 7.1 after periodic extension

Since the function 𝑓 (𝑥) is now periodic then its Fourier series is given by

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝑛𝜋
𝑇
𝑥� + 𝑏𝑛 sin �

2𝑛𝜋
𝑇
𝑥�

Where 𝑇 is the period of the function being approximated which is 𝑇 = 2𝜋 in this case.
Hence the above simplifies to

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) + 𝑏𝑛 sin (𝑛𝑥)

Since the function 𝑓 (𝑥) is an odd function then only 𝑏𝑛 terms exist and the above reduces
to

𝑓 (𝑥) ∼
∞
�
𝑛=1

𝑏𝑛 sin (𝑛𝑥) (1)

Where

𝑏𝑛 =
1

�𝑇
2
�
�

𝑇
2

−𝑇
2

𝑓 (𝑥) sin �
2𝑛𝜋
𝑇
𝑥� 𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥

Since 𝑓 (𝑥) is odd and sin is odd, then the product is even, and the above simplifies to the
Fourier sine series

𝑏𝑛 =
2
𝜋 �

𝜋

0
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥

=
2
𝜋 �

𝜋

0
�
𝜋
2
� sin (𝑛𝑥) 𝑑𝑥

= �
𝜋

0
sin (𝑛𝑥) 𝑑𝑥

= �
− cos 𝑛𝑥

𝑛 �
𝜋

0

= −
1
𝑛
[cos 𝑛𝜋 − 1]

=
1
𝑛
�1 + (−1)𝑛+1�

Therefore (1) becomes

𝑓 (𝑥) ∼
∞
�
𝑛=1

�
1
𝑛
�1 + (−1)𝑛+1�� sin (𝑛𝑥)

When 𝑛 = 2, 4, 6,⋯ then 𝑏𝑛 = 0 and when 𝑛 = 1, 3, 5,⋯ then 𝑏𝑛 =
2
𝑛 . Therefore the above

13
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can be written as

𝑓 (𝑥) ∼
∞
�

𝑛=1,3,5,⋯

2
𝑛

sin (𝑛𝑥)

Let 𝑛 = 2𝑚 − 1. Then when 𝑛 = 1 → 𝑚 = 1, 𝑛 = 3 → 𝑚 = 2, 𝑛 = 5 → 𝑚 = 3 and so on.
Hence the above sum can be written using 𝑚 as summation index as follows

𝑓 (𝑥) ∼
∞
�
𝑚=1

2
2𝑚 − 1

sin ((2𝑚 − 1) 𝑥)

Since summation index can be named anything, then renaming summation index from 𝑚
to 𝑛 gives

𝑓 (𝑥) ∼
∞
�
𝑛=1

2
2𝑛 − 1

sin ((2𝑛 − 1) 𝑥)

Since the periodic extension of the original function 𝑓 (𝑥) is discontinuous at points 𝑥 = 𝑛𝜋,
then the Fourier approximation will converge to the average of 𝑓 (𝑥) at these points and
Gibbs e�ect will result at these points as well. The following plot shows the result

Gibbs effect

Converges

to average at

discontinuity

-3 π -2 π -π π 2 π 3 π

-2

-1

1

2
Using 8 terms

Figure 2.13: Fourier approximations using 8 terms

In[ ]:= fApprox[x_, nTerms_] := Sum
2

2 n - 1
Sin[(2 n - 1) x], {n, 1, nTerms};

Clear[f];

f[x_ /; -Pi < x < Pi] := If[x < 0, -Pi/ 2, Pi/ 2];

f[x_ /; x > Pi] := f[x - 2 Pi];

f[x_ /; x < -Pi] := f[x + 2 Pi];

Plot[{f[x], fApprox[x, 8]}, {x, -3 Pi, 3 Pi}, PlotStyle → {Blue, Red},

PlotLabel → Row[{"Using ", 8, " terms"}],

Exclusions → {x ⩵ -Pi, x ⩵ -2 Pi, x ⩵ -3 Pi, x ⩵ 0, x ⩵ Pi, x ⩵ 2 Pi, x ⩵ 3 Pi},

Ticks → {Range[-4 Pi, 4 Pi, Pi], Automatic}]

Figure 2.14: Code used to generate the above plot

2.1.4 Chapter 1, Section 7, Problem 3

Problem Find the Fourier series on interval −𝜋 < 𝑥 < 𝜋 that corresponds to 𝑓 (𝑥) = 𝑥+ 1
4𝑥
2.

suggestions: Use the series for 𝑥 in example 2, section 7 and the one for 𝑥2 found above in
problem Section 5, Problem 3(a).

14
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Solution

Since 𝑥 is odd, then we can from example 2 use the Fourier sine series for 𝑥 defined on
−𝜋 < 𝑥 < 𝜋

𝑥 ∼ 2
∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin (𝑛𝑥) (−𝜋 < 𝑥 < 𝜋) (1)

And since 𝑥2 is even, then we can use the Fourier cosine series found in problem Section
5, Problem 3(a) solved above

𝑥2 ∼
𝜋2

3
+ 4

∞
�
𝑛=1

(−1)𝑛

𝑛2
cos (𝑛𝑥) (−𝜋 < 𝑥 < 𝜋) (2)

Using (1,2), then we can write 𝑥 + 1
4𝑥
2 Fourier series as

𝑥 +
1
4
𝑥2 ∼

⎛
⎜⎜⎜⎝2

∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin 𝑛𝑥

⎞
⎟⎟⎟⎠ +

1
4 �
𝜋2

3
+ 4

∞
�
𝑛=1

(−1)𝑛

𝑛2
cos (𝑛𝑥)�

∼
𝜋2

12
+

∞
�
𝑛=1

(−1)𝑛

𝑛2
cos (𝑛𝑥) +

2 (−1)𝑛+1

𝑛
sin 𝑛𝑥

∼
𝜋2

12
+

∞
�
𝑛=1

(−1)𝑛 �
cos (𝑛𝑥)
𝑛2

−
2 sin (𝑛𝑥)

𝑛 �

2.1.5 Section 7, Problem 4

Problem Find the Fourier series on interval −𝜋 < 𝑥 < 𝜋 that corresponds to 𝑓 (𝑥) = 𝑒𝑎𝑥
where 𝑎 ≠ 0. suggestion: Use Euler’s formula 𝑒𝑖𝜃 = cos𝜃 + 𝑖 sin𝜃 to write 𝑎𝑛 + 𝑖𝑏𝑛 =
1
𝜋
∫𝜋
−𝜋
𝑓 (𝑥) 𝑒𝑖𝑛𝑥𝑑𝑥 for 𝑛 = 1, 2, 3,⋯. Then after evaluating this single integral, equate real

and imaginary parts.

Solution

𝑒𝑎𝑥 ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝜋
𝑇
𝑛𝑥� + 𝑏𝑛 sin �

2𝜋
𝑇
𝑛𝑥�

But 𝑇 = 2𝜋 and the above becomes

𝑒𝑎𝑥 ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) + 𝑏𝑛 sin (𝑛𝑥)

Where

𝑎0 =
1
𝑇
2

�
𝑇
2

−𝑇
2

𝑓 (𝑥) 𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
𝑒𝑎𝑥𝑑𝑥

=
1
𝜋 �

𝑒𝑎𝑥

𝑎 �
𝜋

−𝜋

=
1
𝜋𝑎

(𝑒𝑎𝜋 − 𝑒−𝑎𝜋)

But
𝑒𝑎𝜋−𝑒−𝑎𝜋

2 = sinh (𝑎𝜋) hence the above simplifies to

𝑎0 =
2
𝜋𝑎

sinh (𝑎𝜋)

And for 𝑛 > 0

𝑎𝑛 =
1
𝑇
2

�
𝑇
2

−𝑇
2

𝑓 (𝑥) cos �
2𝜋
𝑇
𝑛𝑥� 𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥 (1)

Let 𝐼 = ∫𝜋
−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥. Using integration by parts, ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢. Let 𝑢 =
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cos 𝑛𝑥, 𝑑𝑣 = 𝑒𝑎𝑥 then 𝑣 = 𝑒𝑎𝑥

𝑎 , 𝑑𝑢 = −𝑛 sin (𝑛𝑥). Hence

𝐼 = 𝑢𝑣 −�𝑣𝑑𝑢

= �cos (𝑛𝑥)
𝑒𝑎𝑥

𝑎 �
𝜋

−𝜋
+
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

= �cos (𝑛𝜋)
𝑒𝑎𝜋

𝑎
− cos (𝑛𝜋)

𝑒−𝑎𝜋

𝑎 � +
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

= (−1)𝑛 �
𝑒𝑎𝜋 − 𝑒−𝑎𝜋

𝑎 � +
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

=
2 (−1)𝑛

𝑎 �
𝑒𝑎𝜋 − 𝑒−𝑎𝜋

2 � +
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

=
2 (−1)𝑛

𝑎
sinh (𝑎𝜋) +

𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

Applying integration by parts again on the integral above. Let 𝑢 = sin 𝑛𝑥, 𝑑𝑣 = 𝑒𝑎𝑥 then
𝑣 = 𝑒𝑎𝑥

𝑎 , 𝑑𝑢 = 𝑛 cos (𝑛𝑥) and the above becomes

𝐼 =
2 (−1)𝑛

𝑎
sinh (𝑎𝜋) +

𝑛
𝑎

⎛
⎜⎜⎜⎜⎝�sin 𝑛𝑥

𝑒𝑎𝑥

𝑎 �
𝜋

−𝜋
−
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎠

=
2 (−1)𝑛

𝑎
sinh (𝑎𝜋) +

𝑛
𝑎

⎛
⎜⎜⎜⎜⎜⎝
1
𝑎

0

���������������������������������������(sin (𝑛𝜋) 𝑒𝑎𝜋 + sin (𝑛𝜋) 𝑒−𝑎𝜋) −
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎠

=
2 (−1)𝑛

𝑎
sinh (𝑎𝜋) −

𝑛2

𝑎2 �
𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

But ∫
𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥 = 𝐼, the original integral we are solving for. Hence solving for 𝐼 from

the above gives gives

𝐼 =
2 (−1)𝑛

𝑎
sinh (𝑎𝜋) −

𝑛2

𝑎2
𝐼

𝐼 +
𝑛2

𝑎2
𝐼 =

2 (−1)𝑛

𝑎
sinh (𝑎𝜋)

𝐼 �1 +
𝑛2

𝑎2 �
=
2 (−1)𝑛

𝑎
sinh (𝑎𝜋)

𝐼 =
2(−1)𝑛

𝑎 sinh (𝑎𝜋)

1 + 𝑛2

𝑎2

=
2𝑎 (−1)𝑛 sinh (𝑎𝜋)

𝑎2 + 𝑛2
(2)

Using (2) in (1) gives

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

=
𝑎
𝜋
2 (−1)𝑛 sinh (𝑎𝜋)

𝑎2 + 𝑛2
(3)

Now we will do the same to find 𝑏𝑛

𝑏𝑛 =
1
𝑇
2

�
𝑇
2

−𝑇
2

𝑓 (𝑥) sin �
2𝜋
𝑇
𝑛𝑥� 𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥 (4)

Let 𝐼 = ∫𝜋
−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥. Using integration by parts, ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢. Let 𝑢 =

16
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sin (𝑛𝑥) , 𝑑𝑣 = 𝑒𝑎𝑥 then 𝑣 = 𝑒𝑎𝑥

𝑎 , 𝑑𝑢 = 𝑛 cos (𝑛𝑥). Hence

𝐼 = 𝑢𝑣 −�𝑣𝑑𝑢

= �sin (𝑛𝑥)
𝑒𝑎𝑥

𝑎 �
𝜋

−𝜋
−
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

=

0

���������������������������������������
�sin (𝑛𝜋)

𝑒𝑎𝜋

𝑎
− sin (𝑛𝜋)

𝑒−𝑎𝜋

𝑎 � −
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

= −
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

Now we apply integration by parts again on the integral above. Let 𝑢 = cos 𝑛𝑥, 𝑑𝑣 = 𝑒𝑎𝑥

then 𝑣 = 𝑒𝑎𝑥

𝑎 , 𝑑𝑢 = −𝑛 sin (𝑛𝑥) and the above becomes

𝐼 = −
𝑛
𝑎

⎛
⎜⎜⎜⎜⎝�cos (𝑛𝑥)

𝑒𝑎𝑥

𝑎 �
𝜋

−𝜋
+
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎠

= −
𝑛
𝑎 �

1
𝑎
(cos (𝑛𝜋) 𝑒𝑎𝜋 − cos (𝑛𝜋) 𝑒−𝑎𝜋) +

𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥�

= −
𝑛
𝑎 �

1
𝑎

cos (𝑛𝜋) (𝑒𝑎𝜋 − 𝑒−𝑎𝜋) +
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥�

= −
𝑛
𝑎 �
2
𝑎

cos (𝑛𝜋) �
𝑒𝑎𝜋 − 𝑒−𝑎𝜋

2 � +
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥�

= −
𝑛
𝑎 �
2
𝑎

cos (𝑛𝜋) sinh (𝑎𝜋) +
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥�

= −
2𝑛
𝑎2
(−1)𝑛 sinh (𝑎𝜋) −

𝑛2

𝑎2 �
𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

But ∫
𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥 = 𝐼. Hence solving for 𝐼 gives

𝐼 = −
2𝑛
𝑎2
(−1)𝑛 sinh (𝑎𝜋) −

𝑛2

𝑎2
𝐼

𝐼 +
𝑛2

𝑎2
𝐼 = −

2𝑛
𝑎2
(−1)𝑛 sinh (𝑎𝜋)

𝐼 �1 +
𝑛2

𝑎2 �
= −

2𝑛
𝑎2
(−1)𝑛 sinh (𝑎𝜋)

𝐼 = −
2𝑛
𝑎2
(−1)𝑛 sinh (𝑎𝜋)

1 + 𝑛2

𝑎2

𝐼 = −
2𝑛 (−1)𝑛

𝑎2 + 𝑛2
sinh (𝑎𝜋) (5)

Using (5) in (4) gives

𝑏𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

= −
1
𝜋
2𝑛 (−1)𝑛

𝑎2 + 𝑛2
sinh (𝑎𝜋)

17
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Now that we found 𝑎0, 𝑎𝑛, 𝑏𝑛 then the Fourier series is

𝑒𝑎𝑥 ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) + 𝑏𝑛 sin (𝑛𝑥)

∼
2
𝜋𝑎 sinh (𝑎𝜋)

2
+

∞
�
𝑛=1

𝑎
𝜋
2 (−1)𝑛 sinh (𝑎𝜋)

𝑎2 + 𝑛2
cos (𝑛𝑥) −

1
𝜋
2𝑛 (−1)𝑛

𝑎2 + 𝑛2
sinh (𝑎𝜋) sin (𝑛𝑥)

∼
sinh (𝑎𝜋)
𝜋𝑎

+
1
𝜋

sinh (𝑎𝜋)
∞
�
𝑛=1

2 (−1)𝑛

𝑎2 + 𝑛2
(𝑎 cos (𝑛𝑥) − 𝑛 sin (𝑛𝑥))

∼ sinh (𝑎𝜋) �
1
𝜋𝑎

+
1
𝜋

∞
�
𝑛=1

2 (−1)𝑛

𝑎2 + 𝑛2
(𝑎 cos (𝑛𝑥) − 𝑛 sin (𝑛𝑥))�

∼
2 sinh (𝑎𝜋)

𝜋 �
1
2𝑎
+

∞
�
𝑛=1

(−1)𝑛

𝑎2 + 𝑛2
(𝑎 cos (𝑛𝑥) − 𝑛 sin (𝑛𝑥))�

Which is what we are required to show.

The following plots shows the approximation as more terms are added. We also notice
the Gibbs e�ect at the points of discontinuities after the original function was periodic
extended. The value 𝑎 = 1 was used. Hence this is approximation of 𝑒𝑥 using −𝜋 < 𝑥 < 𝜋
as original period.

Out[ ]=

-4 π -3 π -2 π -π π 2 π 3 π 4 π

5

10

15

20
Using 2 terms

-4 π -3 π -2 π -π π 2 π 3 π 4 π

5

10

15

20
Using 4 terms

-4 π -3 π -2 π -π π 2 π 3 π 4 π

5

10

15

20
Using 6 terms

-4 π -3 π -2 π -π π 2 π 3 π 4 π

5

10

15

20
Using 8 terms

Figure 2.15: Fourier approximations using with increasing terms

In[ ]:= a = 1;

fApprox[x_, nTerms_] :=
2 Sinh[a Pi]

π

1

2 a
+ Sum

(-1)n

a2 + n2
(a Cos[n x] - n Sin[n x]), {n, 1, nTerms} ;

Clear[f];

f[x_ /; -Pi < x < Pi] := Exp[a x];

f[x_ /; x > Pi] := f[x - 2 Pi];

f[x_ /; x < -Pi] := f[x + 2 Pi];

Grid@Partition[Table[

Plot[{f[x], fApprox[x, nTerms]}, {x, -4 Pi, 4 Pi}, PlotStyle → {Blue, Red},

PlotLabel → Row[{"Using ", nTerms, " terms"}],

Exclusions → {x ⩵ -Pi, x ⩵ -2 Pi, x ⩵ -3 Pi, x ⩵ 0, x ⩵ Pi, x ⩵ 2 Pi, x ⩵ 3 Pi},

Ticks → {Range[-4 Pi, 4 Pi, Pi], Automatic},

PlotRange → {Automatic, {-3, 20}}, ImageSize → 300], {nTerms, 2, 8, 2}], 2]

Figure 2.16: Code used to generate the above plot
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2.1.6 Chapter 1, Section 8, Problem 1

Problem (a) Use the Fourier sine series found in example 1, section 5 for 𝑓 (𝑥) = 𝑥 for
0 < 𝑥 < 𝜋, to show that

𝑥 ∼
2
𝜋

∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin 𝑛𝜋𝑥 (−1 < 𝑥 < 1) (1)

(b) Obtain the correspondence in part (a) by using expression (11) in section 9 for the
coe�cient in a Fourier sine series on 0 < 𝑥 < 𝑐

Part a

The Fourier sine series found in example 1, section 5 for 𝑓 (𝑥) = 𝑥 for 0 < 𝑥 < 𝜋 is

𝑥 ∼ 2
∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin 𝑛𝑥 (0 < 𝑥 < 𝜋) (2)

Which has period 𝑇2 = 2𝜋 after odd extension. To convert the above to the range −1 <
𝑥 < 1, then by looking at this diagram

−π +π

−1 1

x

x′

x
π = x′

1

Figure 2.17: Finding scale for correspondence

We see that by symmetry
𝑥
𝜋 =

𝑥′

1 . Hence 𝑥 = 𝜋𝑥′. Therefore we want 𝑥 → 𝜋𝑥′ but 𝑥′ is just
𝑥 in the new domain. Hence 𝑥 → 𝜋𝑥 in the new Fourier series. Therefore replacing 𝑥 by
𝜋𝑥 in (2) gives

𝑥 ∼ 2
∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin 𝑛𝜋𝑥 (0 < 𝑥 < 1) (3)

Equation (3) is now scaled by multiplying it by
𝑥′

𝑥 =
1
𝜋 giving

𝑥 ∼
2
𝜋

∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin 𝑛𝜋𝑥 (0 < 𝑥 < 1) (4)

Part b

Expression (11) in section 8 is

𝑏𝑛 =
2
𝑐 �

𝑐

0
𝑓 (𝑥) sin �

𝑛𝜋𝑥
𝑐
� 𝑑𝑥

Let 𝑐 = 1 and since 𝑓 (𝑥) = 𝑥, then above becomes

𝑏𝑛 = 2�
1

0
𝑥 sin (𝑛𝜋𝑥) 𝑑𝑥

19
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Let 𝑢 = 𝑥, 𝑑𝑣 = sin (𝑛𝜋𝑥) then 𝑑𝑢 = 1, 𝑣 = − cos(𝑛𝜋𝑥)
𝑛𝜋 . Hence 𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢 and the

integral above becomes

𝑏𝑛 = 2 �
−1
𝑛𝜋

[𝑥 cos (𝑛𝜋𝑥)]10 +
1
𝑛𝜋 �

1

0
cos (𝑛𝜋𝑥) 𝑑𝑥�

= 2
⎛
⎜⎜⎜⎜⎝
−1
𝑛𝜋

[cos (𝑛𝜋)] +
1
𝑛𝜋 �

sin (𝑛𝜋𝑥)
𝑛𝜋 �

1

0

⎞
⎟⎟⎟⎟⎠

= 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
−1
𝑛𝜋

�(−1)𝑛� +
1

(𝑛𝜋)2

0

���������������[sin (𝑛𝜋𝑥)]10

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
2
𝑛𝜋

(−1)𝑛+1

Hence

𝑥 ∼
∞
�
𝑛=1

𝑏𝑛 sin 𝑛𝜋𝑥

∼
2
𝜋

∞
�
𝑛=1

1
𝑛
(−1)𝑛+1 sin 𝑛𝜋𝑥

Which is the same as (1) in part (a)

2.1.7 Chapter 1, Section 8, Problem 6

Problem Use method in example 2 section 8 to show that

𝑒𝑥 ∼
sinh 𝑐
𝑐

+ 2 sinh 𝑐
∞
�
𝑛=1

(−1)𝑛

𝑐2 + (𝑛𝜋)2
�𝑐 cos �

𝑛𝜋𝑥
𝑐
� − 𝑛𝜋 sin �

𝑛𝜋𝑥
𝑐
�� − 𝑐 < 𝑥 < 𝑐

Solution

From problem 4 section 7, we know that

𝑒𝑎𝑥 ∼
sinh 𝑎𝜋
𝑎𝜋

+ 2
sinh 𝑎𝜋
𝜋

∞
�
𝑛=1

(−1)𝑛

𝑎2 + 𝑛2
(𝑎 cos (𝑛𝑥) − 𝑛 sin (𝑛𝑥)) − 𝜋 < 𝑥 < 𝜋 (1)

To convert the above to the range −𝑐 < 𝑥 < 𝑐, then by looking at this diagram

−π +π

−c c

x

x′

x
π = x′

c

Figure 2.18: Finding scale for correspondence

We see that by symmetry,
𝑥
𝜋 = 𝑥′

𝑐 where 𝑥′ is the 𝑥 in the new range we want, which is

−𝑐 < 𝑥 < 𝑐. Hence 𝑥 = 𝑥′𝜋
𝑐 or since 𝑥′ is just 𝑥 in the new domain, then this implies 𝑥 → 𝑥𝜋

𝑐 .

Then replacing 𝑥 by 𝑥𝜋
𝑐 in (1) gives

𝑒
𝑎𝜋𝑥
𝑐 ∼

sinh 𝑎𝜋
𝑎𝜋

+ 2
sinh 𝑎𝜋
𝜋

∞
�
𝑛=1

(−1)𝑛

𝑎2 + 𝑛2
�𝑎 cos �

𝑛𝜋𝑥
𝑐
� − 𝑛 sin �

𝑛𝜋𝑥
𝑐
�� − 𝑥 < 𝑥 < 𝑐 (2)

We see that the trigonometric terms inside the sum is multiplied by 𝑎, hence we replace

20



2.1. HW 1 CHAPTER 2. HWS

that by
𝑐
𝜋 in the above. This is the same as

𝑥′

𝑥 =
𝑐
𝜋 . Hence letting 𝑎 = 𝑐

𝜋 in (2) gives

𝑒𝑥 ∼
sinh 𝑐
𝑐

+ 2
sinh 𝑐
𝜋

∞
�
𝑛=1

(−1)𝑛

� 𝑐
𝜋
�
2
+ 𝑛2

�
𝑐
𝜋

cos �
𝑛𝜋𝑥
𝑐
� − 𝑛 sin �

𝑛𝜋𝑥
𝑐
��

∼
sinh 𝑐
𝑐

+ 2
sinh 𝑐
𝜋

∞
�
𝑛=1

(−1)𝑛

𝑐2

𝜋 + 𝜋𝑛
2
�𝑐 cos �

𝑛𝜋𝑥
𝑐
� − 𝑛𝜋 sin �

𝑛𝜋𝑥
𝑐
��

∼
sinh 𝑐
𝑐

+ 2 sinh 𝑐
∞
�
𝑛=1

(−1)𝑛

𝑐2 + 𝜋2𝑛2
�𝑐 cos �

𝑛𝜋𝑥
𝑐
� − 𝑛𝜋 sin �

𝑛𝜋𝑥
𝑐
��

Which is what we asked to show.
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2.2 HW 2
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2.2.1 Section 11, Problem 4

Figure 2.19: Problem statement

Part (a)

Writing

𝑎20
2
+

𝑁
�
𝑛=1

𝑎2𝑛 ≤
2
𝜋 �

𝜋

0
�𝑔 (𝑥)�

2
𝑑𝑥 (1)

𝑁
�
𝑛=1

𝑏2𝑛 ≤
2
𝜋 �

𝜋

0
[ℎ (𝑥)]2 𝑑𝑥 (2)
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Adding (1)+(2) gives

𝑎20
2
+

𝑁
�
𝑛=1

�𝑎2𝑛 + 𝑏2𝑛� ≤
2
𝜋 �

𝜋

0
�𝑔 (𝑥)�

2
+ [ℎ (𝑥)]2 𝑑𝑥

=
2
𝜋 �

𝜋

0
�
𝑓 (𝑥) + 𝑓 (−𝑥)

2 �
2

+ �
𝑓 (𝑥) − 𝑓 (−𝑥)

2 �
2

𝑑𝑥

=
2
𝜋 �

𝜋

0

𝑓2 (𝑥) + 𝑓2 (−𝑥) + 2𝑓 (𝑥) 𝑓 (−𝑥)
4

+
𝑓2 (𝑥) + 𝑓2 (−𝑥) − 2𝑓 (𝑥) 𝑓 (−𝑥)

4
𝑑𝑥

=
1
2𝜋 �

𝜋

0
𝑓2 (𝑥) + 𝑓2 (−𝑥) + 𝑓2 (𝑥) + 𝑓2 (−𝑥) 𝑑𝑥

=
1
2𝜋 �

𝜋

0
2𝑓2 (𝑥) + 2𝑓2 (−𝑥) 𝑑𝑥

=
1
𝜋 ��

𝜋

0
𝑓2 (𝑥) + 𝑓2 (−𝑥) 𝑑𝑥�

=
1
𝜋 ��

𝜋

0
�𝑓 (𝑥)�

2
𝑑𝑥 +�

𝜋

0
�𝑓 (−𝑠)�

2
𝑑𝑠� (3)

Part (b)

Let 𝑥 = −𝑠 in the last integral. Therefore 𝑑𝑥 = −𝑑𝑠. When 𝑠 = 0 then 𝑥 = 0 and when 𝑠 = 𝜋
then 𝑥 = −𝜋, then (3) becomes

𝑎20
2
+

𝑁
�
𝑛=1

�𝑎2𝑛 + 𝑏2𝑛� ≤
1
𝜋 ��

𝜋

0
�𝑓 (𝑥)�

2
𝑑𝑥 +�

−𝜋

0
�𝑓 (𝑥)�

2
(−𝑑𝑥)�

=
1
𝜋 ��

𝜋

0
�𝑓 (𝑥)�

2
𝑑𝑥 −�

−𝜋

0
�𝑓 (𝑥)�

2
𝑑𝑥�

But ∫
−𝜋

0
= −∫

0

−𝜋
and the above becomes

𝑎20
2
+

𝑁
�
𝑛=1

�𝑎2𝑛 + 𝑏2𝑛� ≤
1
𝜋 ��

𝜋

0
�𝑓 (𝑥)�

2
𝑑𝑥 +�

0

−𝜋
�𝑓 (𝑥)�

2
𝑑𝑥�

=
1
𝜋 �

𝜋

−𝜋
�𝑓 (𝑥)�

2
𝑑𝑥
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2.2.2 Section 11, Problem 6

Figure 2.20: Problem statement

We want to show the following (I’ve used 𝑥 instead of 𝑢 as it is more natural).

1
2
+

𝑁
�
𝑛=1

cos 𝑛𝑥 =
sin ��𝑁 + 1

2
� 𝑥�

2 sin 𝑥
2

(1)

Or, similarly, we want to show the following

sin
𝑥
2
+

𝑁
�
𝑛=1

2 sin
𝑥
2

cos 𝑛𝑥 = sin ��𝑁 +
1
2�
𝑥� (2)

We will now work on the left side of (2) only and see if we can simplify it to obtain the
right side of (2). Writing the LHS of (2) as

sin
𝑥
2
+

𝑁
�
𝑛=1

2 sin
𝑥
2

cos 𝑛𝑥 = sin
𝑥
2
+

𝑁
�
𝑛=1

2 sin𝐴 cos𝐵 (3)

Where 𝐴 = 𝑥
2 , 𝐵 = 𝑛𝑥. But sin𝐴 cos𝐵 = 1

2
(sin (𝐴 + 𝐵) + sin (𝐴 − 𝐵)). Hence (3) becomes

sin
𝑥
2
+

𝑁
�
𝑛=1

2 sin
𝑥
2

cos 𝑛𝑥 = sin
𝑥
2
+

𝑁
�
𝑛=1

sin (𝐴 + 𝐵) + sin (𝐴 − 𝐵)

= sin
𝑥
2
+

𝑁
�
𝑛=1

sin �
𝑥
2
+ 𝑛𝑥� + sin �

𝑥
2
− 𝑛𝑥�

= sin
𝑥
2
+

𝑁
�
𝑛=1

sin ��𝑛 +
1
2�
𝑥� + sin ��

1
2
− 𝑛� 𝑥�

= sin
𝑥
2
+

𝑁
�
𝑛=1

sin ��𝑛 +
1
2�
𝑥� − sin ��𝑛 −

1
2�
𝑥�
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Expanding few terms to see the pattern shows

sin
𝑥
2
+

𝑁
�
𝑛=1

sin ��𝑛 +
1
2�
𝑥� − sin ��𝑛 −

1
2�
𝑥� = sin

𝑥
2
+ �sin ��1 +

1
2�
𝑥� − sin ��1 −

1
2�
𝑥��

+ �sin ��2 +
1
2�
𝑥� − sin ��2 −

1
2�
𝑥��

+ �sin ��3 +
1
2�
𝑥� − sin ��3 −

1
2�
𝑥�� +⋯

Or
𝑁
�
𝑛=1

sin ��𝑛 +
1
2�
𝑥� − sin ��𝑛 −

1
2�
𝑥� = sin

𝑥
2
+ �sin �

3
2
𝑥� − sin �

1
2
𝑥��

+ �sin �
5
2
𝑥� − sin �

3
2
𝑥��

+ �sin �
7
2
𝑥� − sin �

5
2
𝑥�� +⋯

We see that all terms cancel except for the term before the last term, which is sin ��𝑁 + 1
2
� 𝑥�.

(In the above limited expansion of terms, this will be the term sin �72𝑥� which remains.)

Hence as 𝑛 → 𝑁, the above simplifies to

sin
𝑥
2
+

𝑁
�
𝑛=1

sin �
𝑥
2
+ 𝑛𝑥� + sin �

𝑥
2
− 𝑛𝑥� = sin ��𝑁 +

1
2�
𝑥�

Which is (2) which was obtained from (1). Hence (1) was verified to be valid.

2.2.3 Section 14, Problem 2

Figure 2.21: Problem statement

Part (a)

The Fourier series for 𝑓 (𝑥) is convergent since 𝑓 (𝑥), after periodic extension, satisfies the
3 points of the Fourier theorem in the textbook at page 35
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Figure 2.22: Fourier theorem

Point (i) is satisfied since 𝑓 (𝑥) is piecewise continuous and also point (ii) when doing
periodic extension. Also point (iii) is satisfied, since the left sided and right sides limit
exist at each 𝑥.

In[ ]:= Clear[f];

f[x_ /; -Pi < x < Pi] := Piecewise[{{-Pi/ 2, -Pi < x < 0}, {Pi/ 2, 0 < x < Pi}}]

f[x_ /; x > Pi] := f[x - 2 Pi];

f[x_ /; x < -Pi] := f[x + 2 Pi];

Plot[f[x], {x, -4 Pi, 4 Pi}, PlotStyle → {Thick, Red}, Mesh → None,

GridLines → Automatic, GridLinesStyle → LightGray,

Ticks → {Range[-4 Pi, 4 Pi, Pi], Automatic},

Exclusions → {x ⩵ -3 Pi, x ⩵ -Pi, x ⩵ 0, x ⩵ Pi, x ⩵ 3 Pi},

Mesh → None, ExclusionsStyle → Dashed]

Out[ ]=

-4 π -3 π -2 π -π π 2 π 3 π 4 π

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 2.23: 𝑓(𝑥) after periodic extension

Therefore the Fourier series will converge to the average of the function 𝑓 (𝑥) at 𝑥 = 𝜋.
This average is

𝑓 (𝜋−) + 𝑓 (𝜋+)
2

=
𝜋
2 −

𝜋
2

2
= 0

Part (b)

The Fourier series for 𝑓 (𝑥) = 𝑒𝑎𝑥 is convergent since 𝑓 (𝑥), after periodic extension, satisfies
the 3 points of the Fourier theorem in the textbook at page 35. Point (i) is satisfied is
piecewise continuous and also point (ii) when doing periodic extension. Also point (iii)
is satisfied, since the left sided and right sides limit exist at each 𝑥. Here is a plot, using

𝑎 = 1
4 for illustration
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In[ ]:= Clear[f];

a = 1/ 4;

f[x_ /; -Pi < x < Pi] := Exp[a x];

f[x_ /; x > Pi] := f[x - 2 Pi];

f[x_ /; x < -Pi] := f[x + 2 Pi];

Plot[f[x], {x, -4 Pi, 4 Pi}, PlotStyle → {Thick, Red}, Mesh → None,

GridLines → Automatic, GridLinesStyle → LightGray,

Ticks → {Range[-4 Pi, 4 Pi, Pi], Automatic},

Exclusions → {x ⩵ -3 Pi, x ⩵ -Pi, x ⩵ 0, x ⩵ Pi, x ⩵ 3 Pi},

Mesh → None, ExclusionsStyle → Dashed,

AxesOrigin → {0, 0}]

Out[ ]=

-4 π -3 π -2 π -π π 2 π 3 π 4 π

0.5

1.0

1.5

2.0

Figure 2.24: 𝑓(𝑥) = 𝑒𝑎𝑥 after periodic extension (Using 𝑎 = 1
4

Therefore the Fourier series will converge to the average of the function 𝑓 (𝑥) at 𝑥 = 𝜋.
This average is

𝑓 (𝜋−) + 𝑓 (𝜋+)
2

=
𝑒𝑎𝜋 + 𝑒−𝑎𝜋

2
= cosh (𝑎𝜋)

2.2.4 Section 14, Problem 3

Figure 2.25: Problem statement

Substituting 𝑥 = 0 in the given representation gives

0 =
2
𝜋
−
4
𝜋

∞
�
𝑛=1

1
4𝑛2 − 1

−2 = −4
∞
�
𝑛=1

1
4𝑛2 − 1

1
2
=

∞
�
𝑛=1

1
4𝑛2 − 1
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And substituting 𝑥 = 𝜋
2 in the given representation gives

1 =
2
𝜋
−
4
𝜋

∞
�
𝑛=1

cos (𝑛𝜋)
4𝑛2 − 1

1 −
2
𝜋
= −

4
𝜋

∞
�
𝑛=1

(−1)𝑛

4𝑛2 − 1

𝜋 − 2 = −4
∞
�
𝑛=1

(−1)𝑛

4𝑛2 − 1
1
2
−
𝜋
4
=

∞
�
𝑛=1

(−1)𝑛

4𝑛2 − 1

2.2.5 Section 14, Problem 6

Figure 2.26: Problem statement

Part (a)

𝑥2 ∼
1
3
𝜋2 + 4

∞
�
𝑛=1

(−1)𝑛

𝑛2
cos 𝑛𝑥 (1)

Letting 𝑥 = 0 in (1) gives (After doing periodic extension, then 𝑥 = 0 is now in the
domain).

0 =
1
3
𝜋2 + 4

∞
�
𝑛=1

(−1)𝑛

𝑛2

−
1
3
𝜋2 = 4

∞
�
𝑛=1

(−1)𝑛

𝑛2

−
𝜋2

12
=

∞
�
𝑛=1

(−1)𝑛

𝑛2

Multiplying both sides by −1 gives the result needed

𝜋2

12
=

∞
�
𝑛=1

(−1)𝑛+1

𝑛2
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Now we need to obtain the second result ∑∞
𝑛=1

1
𝑛2 =

𝜋2

6 . Let 𝑥 = 𝜋 in (1) (After doing
periodic extension, then 𝑥 = 𝜋 is now in the domain) gives

𝜋2 =
1
3
𝜋2 + 4

∞
�
𝑛=1

(−1)𝑛

𝑛2
(−1)𝑛

𝜋2 −
1
3
𝜋2 = 4

∞
�
𝑛=1

(−1)2𝑛

𝑛2

1
6
𝜋2 =

∞
�
𝑛=1

(−1)2𝑛

𝑛2

But ∑∞
𝑛=1

(−1)2𝑛

𝑛2 = ∑∞
𝑛=1

1
𝑛2 since the power 2𝑛 is always even. This gives the result needed

1
6
𝜋2 =

∞
�
𝑛=1

1
𝑛2

Part (b)

𝑥4 ∼
𝜋4

5
+ 8

∞
�
𝑛=1

(−1)𝑛
(𝑛𝜋)2 − 6

𝑛4
cos 𝑛𝑥 (2)

Letting 𝑥 = 0 in (2) gives

0 =
𝜋4

5
+ 8

∞
�
𝑛=1

(−1)𝑛
(𝑛𝜋)2 − 6

𝑛4

−
𝜋4

5
= 8

⎛
⎜⎜⎜⎝
∞
�
𝑛=1

(−1)𝑛
(𝑛𝜋)2

𝑛4
− 6

∞
�
𝑛=1

(−1)𝑛

𝑛4

⎞
⎟⎟⎟⎠

𝜋4

5
= 8

⎛
⎜⎜⎜⎝
∞
�
𝑛=1

(−1)𝑛+1
(𝑛𝜋)2

𝑛4
+ 6

∞
�
𝑛=1

(−1)𝑛

𝑛4

⎞
⎟⎟⎟⎠

𝜋4

5
= 8

⎛
⎜⎜⎜⎝𝜋2

∞
�
𝑛=1

(−1)𝑛+1

𝑛2
+ 6

∞
�
𝑛=1

(−1)𝑛

𝑛4

⎞
⎟⎟⎟⎠

But from part (a), we found that ∑∞
𝑛=1

(−1)𝑛+1

𝑛2 = 𝜋2

12 . Using this in the above results in

𝜋4

5
= 8 �𝜋2 �

𝜋2

12 �
+ 6

∞
�
𝑛=1

(−1)𝑛

𝑛4 �

𝜋4

5
=
8
12
𝜋4 + 48

∞
�
𝑛=1

(−1)𝑛

𝑛4

𝜋4

5
−
8𝜋4

12
= 48

∞
�
𝑛=1

(−1)𝑛

𝑛4

−
7
15
𝜋4 = 48

∞
�
𝑛=1

(−1)𝑛

𝑛4

−
7
720

𝜋4 =
∞
�
𝑛=1

(−1)𝑛

𝑛4

Multiplying both sides by −1 gives the result needed

7
720

𝜋4 =
∞
�
𝑛=1

(−1)𝑛+1

𝑛4

Now we need to obtain the second result ∑∞
𝑛=1

1
𝑛4
= 𝜋2

90 . Let 𝑥 = 𝜋 in (2) gives

𝜋4 =
𝜋4

5
+ 8

∞
�
𝑛=1

(−1)𝑛
(𝑛𝜋)2 − 6

𝑛4
(−1)𝑛

=
𝜋4

5
+ 8

∞
�
𝑛=1

(−1)2𝑛
(𝑛𝜋)2 − 6

𝑛4
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But (−1)2𝑛 = 1 for all 𝑛. The above simplifies to

𝜋4 =
𝜋4

5
+ 8

∞
�
𝑛=1

(𝑛𝜋)2 − 6
𝑛4

𝜋4 −
𝜋4

5
= 8

⎛
⎜⎜⎜⎝
∞
�
𝑛=1

(𝑛𝜋)2

𝑛4
− 6

∞
�
𝑛=1

1
𝑛4

⎞
⎟⎟⎟⎠

4𝜋4

5
= 8 �𝜋2

∞
�
𝑛=1

1
𝑛2
− 6

∞
�
𝑛=1

1
𝑛4 �

But from part(a) we found that ∑∞
𝑛=1

1
𝑛2 =

𝜋2

6 hence the above simplifies to

4𝜋4

5
= 8 �𝜋2 �

𝜋2

6 �
− 6

∞
�
𝑛=1

1
𝑛4 �

4𝜋4

40
=
𝜋4

6
− 6

∞
�
𝑛=1

1
𝑛4

−
1
15
𝜋4 = −6

∞
�
𝑛=1

1
𝑛4

1
90
𝜋4 =

∞
�
𝑛=1

1
𝑛4

Which is the result we are asked to show.

2.2.6 Section 14, Problem 8

Figure 2.27: Problem statement

We first notice that the function 𝑓 (𝑥) is not di�erentiable at 𝑥 = 0

In[ ]:= f[x_] := (x^2)^(1/ 3);

Plot[f[x], {x, -Pi, Pi}, PlotStyle → Red, GridLines → Automatic, GridLinesStyle → LightGray,

Ticks → {Range[-Pi, Pi, 1/ 2 Pi], Automatic}]

Out[ ]=

-π -π

2

π

2
π

0.5

1.0

1.5

2.0

Figure 2.28: plot of (𝑥2)1/3

This is because, when 𝑥0 = 0 the left sided derivative is equal to the right sided derivative

lim
𝑥→𝑥0
𝑥<𝑥0

𝑓 (𝑥) = 𝑓′
− (𝑥0) ≠ lim

𝑥→𝑥0
𝑥>𝑥0

𝑓 (𝑥) = 𝑓′
+ (𝑥0)

Since 𝑓′
− (0) = −∞ while 𝑓′

+ (0) = +∞. The function is therefore piecewise continuous on
each −𝜋 < 𝑥 < 𝜋 but it is not di�erentiable at 𝑥 = 0. But Fourier theorem, looking at point
(iii) in the book, only says that if 𝑓′− (𝑥0) exist and if 𝑓′+ (𝑥0) exist, then the Fourier series
converges to the average of 𝑓 (𝑥) at point 𝑥0. In this example 𝑓′

− (0) = −∞ and 𝑓′
+ (0) = +∞,

which means these limits do not exist.
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Hence we see that point (i) and (ii) in the Fourier theorem in the book are satisfied, but
it is point (iii) which not satisfied at 𝑥 = 0. Therefore Fourier series does not converge to
𝑓 (𝑥) at 𝑥 = 0 only while on other 𝑥 in the domain it does.

2.2.7 Section 15, Problem 2

Figure 2.29: Problem statement

A plot of the function 𝑓 (𝑥) and its periodic extension is given below

In[ ]:= f[x_] := Piecewise[{{0, -2 < x < 1}, {1, 1 < x < 2}}]

Plot[f[x], {x, -2, 2.01}, PlotStyle → Red, GridLines → Automatic, GridLinesStyle → LightGray,

Ticks → {Range[-4, 4, 1], Automatic}, ExclusionsStyle → Dashed, Exclusions → {x ⩵ 1, x ⩵ 2, x ⩵ -2}]

Out[ ]=

-2 -1 1 2

0.2

0.4

0.6

0.8

1.0

Figure 2.30: plot of 𝑓(𝑥) over one period
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Clear[f];

f[x_ /; -2 < x < 2] := Piecewise[{{0, -2 < x < 1}, {1, 1 < x < 2}}]

f[x_ /; x > 2] := f[x - 4];

f[x_ /; x < -2] := f[x + 4];

Plot[f[x], {x, -8, 8}, PlotStyle → {Thick, Red}, Mesh → None,

GridLines → Automatic, GridLinesStyle → LightGray,

Ticks → {Range[-8, 8, 1], Automatic},

Exclusions → {x ⩵ -7, x ⩵ -6, x ⩵ -3, x ⩵ -2, x ⩵ 1, x ⩵ 2, x ⩵ 5, x ⩵ 6},

Mesh → None, ExclusionsStyle → Dashed]

Out[ ]=

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

1.0

Figure 2.31: plot of 𝑓(𝑥) extended to become periodic. Showing 3 periods

The Fourier transform of 𝑓 (𝑥) is

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝜋
𝑇
𝑛𝑥� + 𝑏𝑛 sin �

2𝜋
𝑇
𝑛𝑥�

Where 𝑇 is the period of the function (after periodic extension) which is 4. Hence the
above becomes

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
𝜋
2
𝑛𝑥� + 𝑏𝑛 sin �

𝜋
2
𝑛𝑥�

Since 𝑓 (𝑥) meets the requirements of the Fourier theorem on page 35 of the text (at points

of discontinues, the function is
1
2 which is the average at those points), then ∼ can be

replaced by = above

𝑓 (𝑥) =
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
𝜋
2
𝑛𝑥� + 𝑏𝑛 sin �

𝜋
2
𝑛𝑥� (1)

Where

𝑎0 =
1
𝑇
2

�
𝑇
2

−𝑇
2

𝑓 (𝑥) 𝑑𝑥 =
1
4
2

�
4
2

− 4
2

𝑓 (𝑥) 𝑑𝑥 =
1
2 �

2

−2
𝑓 (𝑥) 𝑑𝑥 =

1
2 ��

1

−2
𝑓 (𝑥) 𝑑𝑥 +�

2

1
𝑓 (𝑥) 𝑑𝑥�

=
1
2 ��

2

1
𝑑𝑥� =

1
2
(𝑥)21 =

1
2
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And

𝑎𝑛 =
1
𝑇
2

�
𝑇
2

−𝑇
2

𝑓 (𝑥) cos �
2𝜋
𝑇
𝑛𝑥� 𝑑𝑥 =

1
2 �

2

−2
𝑓 (𝑥) cos �

𝜋
2
𝑛𝑥� 𝑑𝑥

=
1
2 ��

1

−2
𝑓 (𝑥) cos �

𝜋
2
𝑛𝑥� 𝑑𝑥 +�

2

1
𝑓 (𝑥) cos �

𝜋
2
𝑛𝑥� 𝑑𝑥�

=
1
2 �

2

1
𝑓 (𝑥) cos �

𝜋
2
𝑛𝑥� 𝑑𝑥

=
1
2 �

2

1
cos �

𝜋
2
𝑛𝑥� 𝑑𝑥

=
1
2

⎡
⎢⎢⎢⎢⎢⎣
sin �𝜋2𝑛𝑥�

𝜋𝑛
2

⎤
⎥⎥⎥⎥⎥⎦

2

1

=
1
𝜋𝑛

�sin (𝜋𝑛) − sin �
𝜋𝑛
2
��

=
−1
𝜋𝑛

sin �
𝜋𝑛
2
�

And

𝑏𝑛 =
1
𝑇
2

�
𝑇
2

−𝑇
2

𝑓 (𝑥) sin �
2𝜋
𝑇
𝑛𝑥� 𝑑𝑥 =

1
2 �

2

−2
𝑓 (𝑥) sin �

𝜋
2
𝑛𝑥� 𝑑𝑥

=
1
2 ��

1

−2
𝑓 (𝑥) sin �

𝜋
2
𝑛𝑥� 𝑑𝑥 +�

2

1
𝑓 (𝑥) sin �

𝜋
2
𝑛𝑥� 𝑑𝑥�

=
1
2 �

2

1
𝑓 (𝑥) sin �

𝜋
2
𝑛𝑥� 𝑑𝑥

=
1
2 �

2

1
sin �

𝜋
2
𝑛𝑥� 𝑑𝑥

=
−1
2

⎡
⎢⎢⎢⎢⎢⎣
cos �𝜋2𝑛𝑥�

𝜋𝑛
2

⎤
⎥⎥⎥⎥⎥⎦

2

1

=
−1
𝜋𝑛 �

cos (𝜋𝑛) − cos �
𝜋
2
𝑛��

=
−1
𝜋𝑛 �

cos (𝜋𝑛) − cos �
𝜋𝑛
2
��

Using these results in (1) gives

𝑓 (𝑥) =
1
4
+

∞
�
𝑛=1

�
−1
𝜋𝑛

sin �
𝜋𝑛
2
�� cos �

𝜋
2
𝑛𝑥� + �

−1
𝜋𝑛 �

cos (𝜋𝑛) − cos �
𝜋𝑛
2
��� sin �

𝜋
2
𝑛𝑥�

=
1
4
−
1
𝜋

∞
�
𝑛=1

�
1
𝑛

sin �
𝜋𝑛
2
�� cos �

𝜋
2
𝑛𝑥� +

1
𝑛
�cos (𝜋𝑛) − cos �

𝜋𝑛
2
�� sin �

𝜋
2
𝑛𝑥�

=
1
4
−
1
𝜋

∞
�
𝑛=1

1
𝑛 �

sin �
𝜋𝑛
2
� cos �

𝜋
2
𝑛𝑥� + �cos (𝜋𝑛) − cos �

𝜋𝑛
2
�� sin �

𝜋
2
𝑛𝑥��

Which is the result we are asked to show. To verify this, the following shows the convergence
to 𝑓 (𝑥) when using more and more terms in the series.
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fApprox[x_, nTerms_] :=
1

4
-
1

π
Sum

1

n
Sin

π n

2
 Cos

π n x

2
 + Cos[π n] - Cos

π n

2
 Sin

π n x

2
, {n, 1, nTerms};

Clear[f];

f[x_ /; -2 < x < 2] := Piecewise[{{0, -2 < x < 1}, {1, 1 < x < 2}}]

f[x_ /; x > 2] := f[x - 4];

f[x_ /; x < -2] := f[x + 4];

Grid[Partition[Table[Plot[{f[x], fApprox[x, n]}, {x, -Pi, Pi},

PlotStyle → {Blue, Red},

PlotLabel → Style[Row[{"Using ", n, " terms"}], Bold],

ImageSize → 250],

{n, 1, 10}], 2], Frame → All, FrameStyle → Gray]

Figure 2.32: Code used to draw the plot

Out[ ]=
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Figure 2.33: Fourier series approximation as more terms added

We notice that the Fourier series approximation converges to
1
2 at the points of discontinu-

ities. But these are the actual values of 𝑓 (𝑥) at those points.
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2.2.8 Section 15, Problem 8

Figure 2.34: Problem statement

𝑓 (𝑥) =
𝑎0
2
+ lim
𝑁→∞

𝑁
�
𝑛=1

𝑎𝑛 cos �
𝑛𝜋
𝑐
𝑥� + 𝑏𝑛 sin �

𝑛𝜋
𝑐
𝑥�

=
𝑎0
2
+ lim
𝑁→∞

𝑁
�
𝑛=1

𝑎𝑛

⎛
⎜⎜⎜⎜⎜⎝
𝑒𝑖

𝑛𝜋
𝑐 𝑥 + 𝑒−𝑖

𝑛𝜋
𝑐 𝑥

2

⎞
⎟⎟⎟⎟⎟⎠ + 𝑏𝑛

⎛
⎜⎜⎜⎜⎜⎝
𝑒𝑖

𝑛𝜋
𝑐 𝑥 − 𝑒−𝑖

𝑛𝜋
𝑐 𝑥

2𝑖

⎞
⎟⎟⎟⎟⎟⎠

=
𝑎0
2
+ lim
𝑁→∞

𝑁
�
𝑛=1

𝑎𝑛

⎛
⎜⎜⎜⎜⎜⎝
𝑒𝑖

𝑛𝜋
𝑐 𝑥 + 𝑒−𝑖

𝑛𝜋
𝑐 𝑥

2

⎞
⎟⎟⎟⎟⎟⎠ − 𝑖𝑏𝑛

⎛
⎜⎜⎜⎜⎜⎝
𝑒𝑖

𝑛𝜋
𝑐 𝑥 − 𝑒−𝑖

𝑛𝜋
𝑐 𝑥

2

⎞
⎟⎟⎟⎟⎟⎠

=
𝑎0
2
+ lim
𝑁→∞

𝑁
�
𝑛=1

𝑒𝑖
𝑛𝜋
𝑐 𝑥 �

𝑎𝑛 − 𝑖𝑏𝑛
2 � + 𝑒−𝑖

𝑛𝜋
𝑐 𝑥 �

𝑎𝑛 + 𝑖𝑏𝑛
2 �

=
𝑎0
2
+ lim
𝑁→∞

𝑁
�
𝑛=1

𝑒𝑖
𝑛𝜋
𝑐 𝑥 �

𝑎𝑛 − 𝑖𝑏𝑛
2 � +

−1
�
𝑛=−𝑁

𝑒𝑖
𝑛𝜋
𝑐 𝑥 �

𝑎𝑛 + 𝑖𝑏𝑛
2 � (1)

Let

𝐴𝑛 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�𝑎𝑛−𝑖𝑏𝑛
2
� 𝑛 > 0

𝑎0
2 𝑛 = 0

�𝑎𝑛+𝑖𝑏𝑛
2
� 𝑛 < 0

Then (1) can be written as

𝑓 (𝑥) = lim
𝑁→∞

𝑁
�
𝑛=−𝑁

𝐴𝑛𝑒
𝑖 𝑛𝜋𝑐 𝑥

Since

𝑎𝑛 =
1
𝑐 �

𝑐

−𝑐
𝑓 (𝑥) cos �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥 𝑛 = 0, 1, 2,⋯

𝑏𝑛 =
1
𝑐 �

𝑐

−𝑐
𝑓 (𝑥) sin �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥 𝑛 = 1, 2,⋯
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Then 𝑎𝑛 + 𝑖𝑏𝑛 gives

𝑎𝑛 − 𝑖𝑏𝑛 =
1
𝑐 �

𝑐

−𝑐
𝑓 (𝑥) cos �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥 − 𝑖

1
𝑐 �

𝑐

−𝑐
𝑓 (𝑥) sin �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥

=
1
𝑐 ��

𝑐

−𝑐
𝑓 (𝑥) cos �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥 +�

𝑐

−𝑐
𝑓 (𝑥) �−𝑖 sin �

𝑛𝜋
𝑐
𝑥�� 𝑑𝑥�

=
1
𝑐 �

𝑐

−𝑐
𝑓 (𝑥) �cos �

𝑛𝜋
𝑐
𝑥� − 𝑖 sin �

𝑛𝜋
𝑐
𝑥�� 𝑑𝑥

=
1
𝑐 �

𝑐

−𝑐
𝑓 (𝑥) 𝑒−𝑖

𝑛𝜋
𝑐 𝑥𝑑𝑥

But 𝑎𝑛 − 𝑖𝑏𝑛 = 2𝐴𝑛 from first part of this problem. Hence the above becomes

𝐴𝑛 =
1
2𝑐 �

𝑐

−𝑐
𝑓 (𝑥) 𝑒−𝑖

𝑛𝜋
𝑐 𝑥𝑑𝑥 𝑛 = 0, ±1, ±2,⋯

36



2.3. HW 3 CHAPTER 2. HWS

2.3 HW 3
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2.3.1 Section 20, Problem 1

Figure 2.35: Problem statement

The function 𝑓 (𝑥) is

In[ ]:= f[x_] := Piecewise[{{0, -Pi < x < 0}, {Sin[x], 0 < x < Pi}}]

Plot[f[x], {x, -Pi, Pi}, PlotStyle → Red, GridLines → Automatic, GridLinesStyle → LightGray,

Ticks → {Range[-Pi, Pi, 1/ 2 Pi], Automatic}]

Out[ ]=

-π -π

2

π

2
π

0.2

0.4

0.6

0.8

1.0

Figure 2.36: Plot of 𝑓(𝑥)

The function 𝑓 (𝑥) is continuous on −𝜋 ≤ 𝑥 ≤ 𝜋. Also 𝑓 (−𝜋) = 𝑓 (𝜋) = 0. We now need to
show that 𝑓′ (𝑥) is piecewise continuous. But

𝑓′ (𝑥) =
⎧⎪⎨
⎪⎩

0 −𝜋 ≤ 𝑥 ≤ 0
cos 𝑥 0 < 𝑥 ≤ 𝜋

(1)

Therefore 𝑓′ (𝑥) exist and is piecewise continuous on −𝜋 < 𝑥 < 𝜋. From the above, we see
that 𝑓 (𝑥) meets the 3 conditions in theorem of section 17, hence we know that the Fourier
series of 𝑓 (𝑥) is absolutely and uniformly convergent. (Here we need to use the M test to
confirm this).

The Fourier series of 𝑓 (𝑥) is
𝑎0
2
+
1
2

sin 𝑥 −
2
𝜋

∞
�
𝑛=1

cos (2𝑛𝑥)
4𝑛2 − 1
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Now, to apply the M test, consider the two series

∞
�
𝑛=1

𝑓𝑛
�����������cos (2𝑛𝑥)
4𝑛2 − 1

,
∞
�
𝑛=1

𝑀𝑛

���������1
4𝑛2 − 1

To show Fourier series is uniformly convergent to 𝑓 (𝑥), using the M test, then we need to
show that �𝑓𝑛� ≤ 𝑀𝑛 for each 𝑛. The series 𝑀𝑛 qualifies to use for the Weierstrass series,
since each term in it is positive constant and it is convergent series. To show that 𝑀𝑛
is convergent, we can compare it to ∑∞

𝑛=1
1
𝑛2 . Since each term

1
4𝑛2−1 <

1
𝑛2 and ∑∞

𝑛=1
1
𝑛2 is

convergent since any ∑∞
𝑛=1

1
𝑛𝑠 for 𝑠 > 1 is convergent (we can show this if needed using the

integral test). Hence we can go ahead and use 𝑀𝑛 series. Now we just need to show that

�
cos (2𝑛𝑥)
4𝑛2 − 1

� ≤
1

4𝑛2 − 1
For each 𝑛. But cos (2𝑛𝑥) ≤ 1 for each 𝑛. Hence the above is true for each 𝑛 and it follows
that the above Fourier series is indeed uniformly convergent to 𝑓 (𝑥).

From (1), At 𝑥 = 0 we have

𝑓′+ (0) = lim
𝑥→0+

𝑓 (𝑥) − 𝑓 (0)
𝑥

= lim
𝑥→0+

sin (𝑥)
𝑥

= 1

And

𝑓′− (0) = lim
𝑥→0−

𝑓 (𝑥) − 𝑓 (0)
𝑥

= lim
𝑥→0+

0
𝑥
= 0

Since 𝑓′+ (0) ≠ 𝑓′− (0) then 𝑓 (𝑥) is not di�erentiable at 𝑥 = 0. This is plot of 𝑓′ (𝑥) and we
see graphically that due to jump discontinuity, that 𝑓′ (𝑥) is not di�erentiable at 𝑥 = 0

In[ ]:= f[x_] := Piecewise[{{0, -Pi < x < 0}, {Cos[x], 0 < x < Pi}}]

Plot[f[x], {x, -Pi, Pi}, PlotStyle → Red, GridLines → Automatic, GridLinesStyle → LightGray,

Ticks → {Range[-Pi, Pi, 1/ 2 Pi], Automatic}]

Out[ ]=
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1.0

Figure 2.37: Plot of 𝑓′(𝑥) shown for one period

In[ ]:= Clear[f];

f[x_ /; -Pi < x < Pi] := Piecewise[{{0, -Pi < x < 0}, {Cos[x], 0 < x < Pi}}]

f[x_ /; x > Pi] := f[x - 2 Pi];

f[x_ /; x < -Pi] := f[x + 2 Pi];

Plot[f[x], {x, -4 Pi, 4 Pi}, PlotStyle → {Thick, Red}, Mesh → None,

GridLines → Automatic, GridLinesStyle → LightGray,

Ticks → {Range[-4 Pi, 4 Pi, Pi], Automatic},

Exclusions → {x ⩵ -3 Pi, x ⩵ -2 Pi, x ⩵ -Pi, x ⩵ 0, x ⩵ Pi, x ⩵ 2 Pi, x ⩵ 3 Pi},

Mesh → None, ExclusionsStyle → Dashed]

Out[ ]=

-4 π -3 π -2 π -π π 2 π 3 π 4 π

-1.0

-0.5

0.5

1.0

Figure 2.38: Plot of 𝑓′(𝑥) for all 𝑥, shown for 3 periods
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2.3.2 Section 20, Problem 2

Figure 2.39: Problem statement

Solution

After doing an even extension of 𝑓 (𝑥) = 𝑥 on 0 < 𝑥 < 𝜋 to −𝜋 ≤ 𝑥 ≤ 𝜋, we see that 𝑓 (𝑥)
satisfies the conditions of Theorem section 20 for di�erentiating the Fourier series term
by term. Since

1. 𝑓 (𝑥) is continuous on the interval −𝜋 ≤ 𝑥 ≤ 𝜋

2. 𝑓 (−𝜋) = 𝑓 (𝜋)

3. 𝑓′ (𝑥) is piecewise continuous on −𝜋 < 𝑥 < 𝜋

The only point that 𝑓 (𝑥) is not di�erentiable is 𝑥 = 0 which implies 𝑓′ (𝑥) is piecewise
continuous. But that is OK. It is 𝑓 (𝑥) which must be continuous. Hence di�erentiating the
series term by term to obtain representation of 𝑓 (𝑥) on 0 < 𝑥 < 𝜋 is reliable.

2.3.3 Section 20, Problem 5

Figure 2.40: Problem statement

Part 1

𝑆 = 2
∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin (𝑛𝑠)

The above is the Fourier sine series for 𝑓 (𝑥) = 𝑥, on 0 < 𝑥 < 𝜋. Integrating gives

�
𝑥

0

⎛
⎜⎜⎜⎝2

∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin (𝑛𝑠)

⎞
⎟⎟⎟⎠ 𝑑𝑠 = 2

∞
�
𝑛=1

�
𝑥

0

(−1)𝑛+1

𝑛
sin (𝑛𝑠) 𝑑𝑠

We did integration term by term, since that is always allowed (not like with di�erentiation
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term by term, where we have to check). Hence the above becomes

2
∞
�
𝑛=1

�
𝑥

0

(−1)𝑛+1

𝑛
sin (𝑛𝑠) 𝑑𝑠 = 2

∞
�
𝑛=1

(−1)𝑛+1

𝑛 ��
𝑥

0
sin (𝑛𝑠) 𝑑𝑠�

= 2
∞
�
𝑛=1

(−1)𝑛+1

𝑛
�−

cos 𝑛𝑠
𝑛

�
𝑥

0

= 2
∞
�
𝑛=1

(−1)𝑛+2

𝑛2
(cos 𝑛𝑠)𝑥0

But (−1)𝑛+2 = (−1)𝑛 and the above becomes

2
∞
�
𝑛=1

�
𝑥

0

(−1)𝑛+1

𝑛
sin (𝑛𝑠) 𝑑𝑠 = 2

∞
�
𝑛=1

(−1)𝑛

𝑛2
(cos 𝑛𝑥 − 1)

But ∫
𝑥

0
𝑠𝑑𝑠 = 1

2𝑥
2. So the above is the Fourier series of

1
2𝑥
2. A plot of the above is

f[x_] :=
1

2
x^2;

Plot[f[x], {x, 0, Pi}, PlotStyle → Red,

GridLines → Automatic,

GridLinesStyle → LightGray,

Ticks → {Range[0, Pi, 1/ 2 Pi], Automatic}]

Out[ ]=

π

2
π

1

2

3

4
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Figure 2.41: The function represented by the above series 𝑓(𝑥) = 1
2𝑥
2

Part 2

𝑆 = 2
∞
�
𝑛=1

sin ((2𝑛 − 1) 𝑠)
2𝑛 − 1

The above is the Fourier sine series for 𝑓 (𝑥) = 𝜋
2 , on 0 < 𝑥 < 𝜋. Integrating gives

�
𝑥

0
�2

∞
�
𝑛=1

1
2𝑛 − 1

sin ((2𝑛 − 1) 𝑠)� 𝑑𝑠 = 2
∞
�
𝑛=1

�
𝑥

0

1
2𝑛 − 1

sin ((2𝑛 − 1) 𝑠) 𝑑𝑠

We did integration term by term, since that is always allowed (not like with di�erentiation
term by term, where we have to check). Hence the above becomes

2
∞
�
𝑛=1

�
𝑥

0

1
2𝑛 − 1

sin ((2𝑛 − 1) 𝑠) 𝑑𝑠 = 2
∞
�
𝑛=1

1
2𝑛 − 1 �

𝑥

0
sin ((2𝑛 − 1) 𝑠) 𝑑𝑠

= 2
∞
�
𝑛=1

1
2𝑛 − 1 �

− cos (2𝑛 − 1) 𝑠
(2𝑛 − 1) �

𝑥

0

= 2
∞
�
𝑛=1

−
(cos ((2𝑛 − 1) 𝑥) − 1)

(2𝑛 − 1)2

Since ∫
𝑥

0
𝜋
2 𝑑𝑠 =

𝜋
2 𝑥, then the above is the representation of this function. Here is a plot

to confirm this, showing the above series expansion as more terms are added, showing it
converges to

𝜋
2 𝑥
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Out[ ]=
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Figure 2.42: The function represented by the above series 𝑓(𝑥) = 𝜋
2 𝑥 against its Fourier

series

fApprox[x_, nTerms_] := 2 Sum-
Cos[(2 n - 1) x] - 1

(2 n - 1)2
, {n, 1, nTerms};

Clear[f];

f[x_ /; 0 < x < Pi] := x* Pi/ 2;

Grid[Partition[Table[Plot[{f[x], fApprox[x, n]}, {x, 0, Pi},

PlotStyle → {Blue, Red},

PlotLabel → Style[Row[{"Using ", n, " terms"}], Bold],

ImageSize → 250],

{n, 1, 10, 2}], 2], Frame → All, FrameStyle → Gray]

Figure 2.43: Code used to plot the above

2.3.4 Section 27, Problem 1

Figure 2.44: Problem statement

The heat PDE is 𝑢𝑡 = 𝑢𝑥𝑥. At steady state, 𝑢𝑡 = 0 leading to 𝑢𝑥𝑥 = 0. So at steady state, the
solution depends on 𝑥 only. This has the solution

𝑢 (𝑥) = 𝐴𝑥 + 𝐵 (1)

With boundary conditions

𝑢 (0) = 0
𝑢 (𝑐) = 𝑢0

When 𝑥 = 0 then 0 = 𝐵. Hence the solution becomes 𝑢 (𝑥) = 𝐴𝑥. To find 𝐴, we apply the
second boundary conditions. At 𝑥 = 𝑐 this gives 𝑢0 = 𝑐𝐴 or 𝐴 = 𝑢0

𝑐 . Hence the solution
(1) now becomes

𝑢 (𝑥) =
𝑢0
𝑐
𝑥

Now the flux is defined as Φ0 = 𝐾𝑑𝑢𝑑𝑥 at each edge surface. But
𝑑𝑢
𝑑𝑥 = 𝑢0

𝑐 from above.
Therefore

Φ0 = 𝐾
𝑢0
𝑐

41



2.3. HW 3 CHAPTER 2. HWS

2.3.5 Section 27, Problem 2

Figure 2.45: Problem statement

note: When looking for solution, assume it is a function of 𝑥 only.

The heat PDE is 𝑢𝑡 = 𝑢𝑥𝑥. At steady state, 𝑢𝑡 = 0 leading to 𝑢𝑥𝑥 = 0. So at steady state, the
solution depends on 𝑥 only. This has the solution

𝑢 (𝑥) = 𝐴𝑥 + 𝐵 (1)

Since there is constant flux at 𝑥 = 0, then this means 𝐾 𝑑𝑢
𝑑𝑥 �𝑥=0

= −Φ0. The reason for the

minus sign, is that flux is always pointing to the outside of the surface. Hence on the left
surface, it will be in the negative 𝑥 direction and on the right side, it will be on the positive
𝑥 direction.

Using this, the boundary conditions can be written as

𝑑𝑢
𝑑𝑥
�
𝑥=0

= −𝐾Φ0

𝑢 (𝑐) = 0
Applying the left boundary condition gives

𝐴 = −𝐾Φ0
Hence the solution becomes 𝑢 (𝑥) = −𝐾Φ0𝑥 + 𝐵.

At 𝑥 = 𝑐 the second B.C. leads to 0 = −𝐾Φ0𝑐 + 𝐵 or

𝐵 = 𝐾Φ0𝑐
Hence the solution (1) becomes

𝑢 (𝑥) = −𝐾Φ0𝑥 + 𝐾Φ0𝑐
= 𝐾Φ0 (𝑐 − 𝑥)

2.3.6 Section 27, Problem 3

Figure 2.46: Problem statement
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We start with

Φ = 𝐻 (𝑇outside − 𝑢) (1)

Where 𝑇 is the temperature on the outside and 𝑢 is the temperature on the surface and Φ
is the flux at the surface and 𝐻 is surface conductance. Let us look at the left surface, at
𝑥 = 0. The flux there is negative, since it points to the negative 𝑥 direction. Therefore

Φ = −𝐾
𝑑𝑢
𝑑𝑥
�
𝑥=0

(2)

From (1,2) we obtain

−𝐾
𝑑𝑢
𝑑𝑥
�
𝑥=0

= 𝐻 (𝑇outside − 𝑢 (0))

But 𝑇outside = 0 outside the left surface and the above becomes

−𝐾
𝑑𝑢
𝑑𝑥
�
𝑥=0

= 𝐻 (0 − 𝑢 (0))

The minus signs cancel, giving

𝑑𝑢
𝑑𝑥
�
𝑥=0

=
𝐻
𝐾
𝑢 (0)

𝑢′ (0) = ℎ𝑢 (0) (3)

Now, let us look at the right side. There the flux is positive. Hence at 𝑥 = 𝑐 we have

𝐾
𝑑𝑢
𝑑𝑥
�
𝑥=𝑐

= 𝐻 (𝑇outside − 𝑢 (𝑐))

But 𝑇outside = 𝑇 on the right side. Hence the above reduces to

𝑑𝑢
𝑑𝑥
�
𝑥=𝑐

=
𝐻
𝐾
(𝑇 − 𝑢 (𝑐))

𝑢′ (𝑐) = ℎ (𝑇 − 𝑢 (𝑐)) (4)

Now that we found the boundary conditions, we look at the solution. As before, at steady
state we have

𝑢′′(𝑥) = 0
𝑢 (𝑥) = 𝐴𝑥 + 𝐵 (5)

Hence 𝑢′ (𝑥) = 𝐴. Therefore
𝑢′ (0) = 𝐴 = ℎ𝑢 (0) (6)

𝑢′ (𝑐) = 𝐴 = ℎ (𝑇 − 𝑢 (𝑐)) (7)

But we also know that, from (5) that

𝑢 (0) = 𝐵 (8)

𝑢(𝑐) = 𝐴𝑐 + 𝐵 (9)

Substituting (8,9) into (6,7) in order to eliminate 𝑢 (0) , 𝑢 (𝑐) from (6,7) gives

𝐴 = ℎ𝐵 (6A)

𝐴 = ℎ (𝑇 − (𝐴𝑐 + 𝐵)) (7A)

Now from (6A,7A) we solve for 𝐴,𝐵. Substituting (7A) into (6A) gives

ℎ𝐵 = ℎ (𝑇 − (ℎ𝐵𝑐 + 𝐵))
ℎ𝐵 = ℎ𝑇 − ℎ2𝐵𝑐 − ℎ𝐵

2ℎ𝐵 + ℎ2𝐵𝑐 = ℎ𝑇

𝐵 =
ℎ𝑇

ℎ (2 + ℎ𝑐)

=
𝑇

2 + ℎ𝑐
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Hence

𝐴 = ℎ𝐵

=
ℎ𝑇

2 + ℎ𝑐
Now that we found 𝐴,𝐵 then since 𝑢 (𝑥) = 𝐴𝑥 + 𝐵, then

𝑢 (𝑥) =
ℎ𝑇

2 + ℎ𝑐
𝑥 +

𝑇
2 + ℎ𝑐

=
ℎ𝑇𝑥 + 𝑇
2 + ℎ𝑐

=
𝑇

2 + ℎ𝑐
(1 + ℎ𝑥)

Which is the result we are asked to show.

2.3.7 Section 27, Problem 7

Figure 2.47: Problem statement

𝑢𝑡 = 𝑘𝑢𝑥𝑥 − 𝑏𝑢 (1)

Let 𝑢 (𝑥, 𝑡) = 𝑒−𝑏𝑡𝑣 (𝑥, 𝑡) then
𝑢𝑡 = −𝑏𝑒−𝑏𝑡𝑣 + 𝑒−𝑏𝑡𝑣𝑡
𝑢𝑥 = 𝑒−𝑏𝑡𝑣𝑥
𝑢𝑥𝑥 = 𝑒−𝑏𝑡𝑣𝑥𝑥

Substituting the above back into (1) gives

−𝑏𝑒−𝑏𝑡𝑣 + 𝑒−𝑏𝑡𝑣𝑡 = 𝑘𝑒−𝑏𝑡𝑣𝑥𝑥 − 𝑏𝑒−𝑏𝑡𝑣
Since 𝑒−𝑏𝑡 ≠ 0 , then the above simplifies to

−𝑏𝑣 + 𝑣𝑡 = 𝑘𝑣𝑥𝑥 − 𝑏𝑣
𝑣𝑡 = 𝑘𝑣𝑥𝑥

QED.
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2.4.1 Section 27, Problem 8

Figure 2.48: Problem statement

Solution

The cylindrical and spherical coordinates are defined as given in the textbook figures
shown below

Figure 2.49: Cylinderical coordinates
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Figure 2.50: Spherical coordinates

The relation between these is given by (13) in the book

𝑧 = 𝑟 cos𝜃 (1)

𝜌 = 𝑟 sin𝜃 (2)

𝜙 = 𝜙 (3)

To obtain the required formula, we will use the chain rule. Since in spherical we have
𝑢 ≡ 𝑢 (𝑟, 𝜃) and in cylindrical we have 𝑢 ≡ 𝑢 �𝜌, 𝑧�, then by chain rule

𝜕𝑢
𝜕𝜃

=
𝜕𝑢
𝜕𝜌

𝜕𝜌
𝜕𝜃

+
𝜕𝑢
𝜕𝑧

𝜕𝑧
𝜕𝜃

But from (2)
𝜕𝜌
𝜕𝜃 = 𝑟 cos𝜃 and from (1)

𝜕𝑧
𝜕𝜃 = −𝑟 sin𝜃, hence the above becomes

𝜕𝑢
𝜕𝜃

=
𝜕𝑢
𝜕𝜌

(𝑟 cos𝜃) +
𝜕𝑢
𝜕𝑧

(−𝑟 sin𝜃)

But 𝑟 cos𝜃 = 𝑧 and −𝑟 sin𝜃 = 𝜌, hence the above simplifies to

𝜕𝑢
𝜕𝜃

= 𝑧
𝜕𝑢
𝜕𝜌

− 𝜌
𝜕𝑢
𝜕𝑧

(4)

Which is the result required to show. Now we need to show that
𝜕𝑢
𝜕𝜃 evaluated at boundary

𝑟 = 1, 𝜃 = 𝜋
2 is zero. But 𝜃 = 𝜋

2 implies that 𝑧 = 0, since 𝑧 = 𝑟 cos𝜃. Hence (4) now reduces
to

𝜕𝑢
𝜕𝜃

= −𝜌
𝜕𝑢
𝜕𝑧

(4)

Since 𝜃 = 𝜋
2 , then

𝜕𝑢
𝜕𝑧 is the directional derivative normal to the base surface. But we are

told it is insulated. This implies that
𝜕𝑢
𝜕𝑧 = 0, since by definition this is what insulated

means. Therefore
𝜕𝑢
𝜕𝜃 = 0 at 𝑟 = 1, 𝜃 =

𝜋
2 , which is what we are asked to show.
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2.4.2 Section 28, Problem 1

Figure 2.51: Problem statement

Eq (6) in section 28 is

𝑦𝑡𝑡 (𝑥, 𝑡) = 𝑎2𝑦𝑥𝑥 (𝑥, 𝑡) − 𝑔
At static displacement, by definition, there is no time dependency, hence 𝑦𝑡𝑡 = 0 and the
above becomes

0 = 𝑎2𝑦𝑥𝑥 (𝑥, 𝑡) − 𝑔
Therefore now this becomes an ODE instead of a PDE since it does not depend on time,
and we can write the above as

𝑎2𝑦′′ (𝑥) = 𝑔 (1)

The boundary conditions 𝑦 (0, 𝑡) = 0 and 𝑦 (2𝑥, 𝑡) = 0 now become 𝑦 (0) = 0, 𝑦 (2𝑥) = 0.
Now we need to solve (1) with these boundary conditions. This is an boundary value ODE.

𝑦′′ (𝑥) =
𝑔
𝑎2

The RHS is constant. The solution to the homogeneous ODE 𝑦′′ = 0 is 𝑦ℎ = 𝐴𝑥 + 𝐵. Let
the particular solution be 𝑦𝑝 = 𝐶3𝑥2, then 𝑦′𝑝 = 2𝐶3𝑥 and 𝑦′′𝑝 = 2𝐶3. Substituting this in
the above ODE gives

2𝐶3 =
𝑔
𝑎2

𝐶3 =
𝑔
2𝑎2

Hence 𝑦𝑝 (𝑥) =
𝑔
2𝑎2𝑥

2. Therefore the general solution is

𝑦 = 𝑦ℎ + 𝑦𝑝

= 𝐴𝑥 + 𝐵 +
𝑔
2𝑎2

𝑥2 (2)

Now we will use the boundary conditions to find 𝐴,𝐵 above. At 𝑥 = 0, (2) becomes

0 = 𝐵
Hence solution (2) reduces to

𝑦 (𝑥) = 𝐴𝑥 +
𝑔
2𝑎2

𝑥2 (3)
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At 𝑥 = 2𝑐, the second boundary condition gives

0 = 2𝑐𝐴 +
𝑔
2𝑎2

�4𝑐2�

𝐴 =
−𝑔
2𝑎2

�4𝑐2�
2𝑐

=
−𝑔𝑐
𝑎2

Hence the solution (3) becomes

𝑦 =
−𝑔𝑐
𝑎2
𝑥 +

𝑔
2𝑎2

𝑥2

𝑦 =
𝑔𝑥2 − 2𝑔𝑐𝑥

2𝑎2
(4)

To get the result needed, we can manipulate this more as follows. From (4)

2𝑎2𝑦 = 𝑔𝑥2 − 2𝑔𝑐𝑥
= 𝑔 �𝑥2 − 2𝑐𝑥�

= 𝑔 (𝑥 − 𝑐)2 − 𝑔𝑐2

Hence

𝑔 (𝑥 − 𝑐)2 = 2𝑎2𝑦 + 𝑔𝑐2

(𝑥 − 𝑐)2 =
2𝑎2𝑦
𝑔

+ 𝑐2

=
2𝑎2

𝑔 �𝑦 +
𝑔𝑐2

2𝑎2 �

Now since 𝑎2 = 𝐻
𝛿 then the above becomes

𝑔
2𝑎2

(𝑥 − 𝑐)2 = 𝑦 +
𝑔𝑐2

2𝑎2

𝑦 =
1
2𝑎2

�𝑔 (𝑥 − 𝑐)2 − 𝑔𝑐2�

=
𝑔
2𝐻𝛿

�(𝑥 − 𝑐)2 − 𝑐2�

=
𝛿
𝐻
𝑔
2
�(𝑥 − 𝑐)2 − 𝑐2�

We see now that 𝑦 is directly proportional to 𝛿 and 𝑐2 and inversely proportional to 𝐻.

2.4.3 Section 28, Problem 5

Figure 2.52: Problem statement

solution

The wave PDE in 1D is given by

𝑦𝑡𝑡 (𝑥, 𝑡) = 𝑎2𝑦𝑥𝑥 (𝑥, 𝑡) (1)
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Where

𝑎2 =
𝐻
𝛿

Where 𝐻 is the tension in the strand and 𝛿 is the mass per unit length of the strand. But

𝑤𝑒𝑖𝑔ℎ𝑡 = (𝑚𝑎𝑠𝑠) 𝑔. hence 𝛿 = 𝑤𝑒𝑖𝑔ℎ𝑡
𝑔 . We are given that 𝑤𝑒𝑖𝑔ℎ𝑡 = 0.032 lb, and that 𝑔 = 32

ft/s2. This implies that

𝛿 =
0.032
32

=
1

1000
Hence

𝑎2 =
10
1

1000

= 104

Therefore (1) becomes

𝑦𝑡𝑡 (𝑥, 𝑡) = 104𝑦𝑥𝑥 (𝑥, 𝑡) (2)

Since at 𝑡 = 0 we are told that strand lies along the 𝑥 − 𝑎𝑥𝑖𝑠, then 𝑦 (𝑥, 0) = 0 and problem
says 𝑦𝑡 (𝑥, 0) = 1. For boundary conditions, since strand fixed at 𝑥 = 0 and 𝑥 = 1, then this
implies 𝑦 (0, 𝑡) = 0 and 𝑦 (1, 𝑡) = 0. Therefore the PDE is

𝑦𝑡𝑡 (𝑥, 𝑡) = 104𝑦𝑥𝑥 (𝑥, 𝑡) 0 < 𝑥 < 1, 𝑡 > 0
𝑦 (𝑥, 0) = 0
𝑦𝑡 (𝑥, 0) = 1
𝑦 (0, 𝑡) = 0
𝑦 (1, 𝑡) = 0

2.4.4 Section 30, Problem 3
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Figure 2.53: Problem statement

Part a

Applying the first initial conditions 𝑦 (𝑥, 0) = 0 to the solution

𝑦 (𝑥, 𝑡) = 𝜙 (𝑥 + 𝑎𝑡) + 𝜓 (𝑥 − 𝑎𝑡) (1)

Gives

0 = 𝜙 (𝑥) + 𝜓 (𝑥) (2)

But 𝑦𝑡 = 𝑎𝜙′ − 𝑎𝜓′. Hence the second initial conditions at 𝑡 = 0 gives
0 = 𝑎𝜙′ (𝑥) − 𝑎𝜓′ (𝑥) (3)

Taking derivative of (2) and multiplying the resulting equation by 𝑎 gives
0 = 𝑎𝜙′ (𝑥) + 𝑎𝜓′ (𝑥) (2A)

Adding (3,2A) gives

2𝑎𝜙′ (𝑥) = 0
𝜙′ (𝑥) = 0

Therefore

𝜙 (𝑥) = 𝐶 (4)

Where 𝐶 is an arbitrary constant. Substituting the above result back in (2) gives

0 = 𝐶 + 𝜓 (𝑥)
𝜓 (𝑥) = −𝐶 (5)
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From (4,5) we see that

𝜙 (𝑥) = 𝐶
𝜓 (𝑥) = −𝐶

Now applying boundary condition 𝑦 (0, 𝑡) = 𝑓 (𝑡) to (1) gives

𝑓 (𝑡) = 𝜙 (𝑎𝑡) + 𝜓 (−𝑎𝑡)

But 𝑎 is the speed of the wave given by 𝑎 = 𝑥
𝑡 or 𝑡 =

𝑥
𝑎 . Hence the above becomes

𝑓 �
𝑥
𝑎
� = 𝜙 (𝑥) + 𝜓 (−𝑥)

𝜓 (−𝑥) = 𝑓 �
𝑥
𝑎
� − 𝜙 (𝑥)

Since 𝜙 (𝑥) = 𝐶 from equation (4), then the final result is obtained

𝜓 (−𝑥) = 𝑓 �
𝑥
𝑎
� − 𝐶 𝑥 ≥ 0 (6)

Part b

Since the part to the right of 𝑥 = 𝑎𝑡 is una�ected by the movement of the right, then

𝑦 (𝑥, 𝑡) = 0 𝑥 ≥ 𝑎𝑡 (1)

So now we need to find the solution for 𝑥 < 𝑎𝑡 and 𝑥 ≥ 0. From
𝑦 (𝑥, 𝑡) = 𝜙 (𝑥 + 𝑎𝑡) + 𝜓 (𝑥 − 𝑎𝑡)

And using (6) in part (a), we see that 𝜓 (𝑥 − 𝑎𝑡) = 𝑓 �−(𝑥−𝑎𝑡)𝑎
� − 𝐶. Therefore the above

becomes

𝑦 (𝑥, 𝑡) = 𝜙 (𝑥 + 𝑎𝑡) + 𝑓 �
− (𝑥 − 𝑎𝑡)

𝑎 � − 𝐶

But also from part (a) 𝜙 (𝑥 + 𝑎𝑡) = 𝐶. Hence the above simplifies to

𝑦 (𝑥, 𝑡) = 𝑐 + 𝑓 �
− (𝑥 − 𝑎𝑡)

𝑎 � − 𝐶

= 𝑓 �
−𝑥 + 𝑎𝑡
𝑎

�

= 𝑓 �𝑡 −
𝑥
𝑎
� 𝑥 < 𝑎𝑡 (2)

Combining (1) and (2) shows that

𝑦 (𝑥, 𝑡) =
⎧⎪⎨
⎪⎩

0 𝑥 ≥ 𝑎𝑡
𝑓 �𝑡 − 𝑥

𝑎
� 𝑥 < 𝑎𝑡

2.4.5 Section 30, Problem 4
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Figure 2.54: Problem statement

This requires just substitution of the function 𝑓 (𝑡) given into the solution found above
which is

𝑦 (𝑥, 𝑡) =
⎧⎪⎨
⎪⎩

0 𝑥 ≥ 𝑎𝑡
𝑓 �𝑡 − 𝑥

𝑎
� 𝑥 < 𝑎𝑡

(1)

But

𝑓 (𝑡) =
⎧⎪⎨
⎪⎩

sin𝜋𝑡 0 ≤ 𝑡 ≤ 1
0 𝑡 > 1

(2)

Substituting (2) into (1) gives, after replacing each 𝑡 in (2) by 𝑡 − 𝑥
𝑎 the result needed

𝑦 (𝑥, 𝑡) =
⎧⎪⎨
⎪⎩

0 𝑥 ≥ 𝑎𝑡
sin �𝜋 �𝑡 − 𝑥

𝑎
�� 𝑎 (𝑡 − 1) < 𝑥 < 𝑎𝑡

2.4.6 Section 31, Problem 2

Figure 2.55: Problem Statement

52



2.4. HW 4 CHAPTER 2. HWS

Part a

We want to do the transformation from 𝑦 (𝑥, 𝑡) to 𝑦 (𝑢, 𝑣). Therefore
𝜕𝑦
𝜕𝑥

=
𝜕𝑦
𝜕𝑢

𝜕𝑢
𝜕𝑥

+
𝜕𝑦
𝜕𝑣
𝜕𝑣
𝜕𝑥

But
𝜕𝑢
𝜕𝑥 = 1 and

𝜕𝑣
𝜕𝑥 = 1, hence the above becomes

𝜕𝑦
𝜕𝑥

=
𝜕𝑦
𝜕𝑢

+
𝜕𝑦
𝜕𝑣

And
𝜕2𝑦
𝜕𝑥2

=
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑥�

=
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑢

+
𝜕𝑦
𝜕𝑣�

=
𝜕
𝜕𝑥

𝜕𝑦
𝜕𝑢

+
𝜕
𝜕𝑥
𝜕𝑦
𝜕𝑣

= �
𝜕2𝑦
𝜕𝑢2

𝜕𝑢
𝜕𝑥

+
𝜕2𝑦
𝜕𝑢𝑣

𝜕𝑣
𝜕𝑥�

+ �
𝜕2𝑦
𝜕𝑣2

𝜕𝑣
𝜕𝑥

+
𝜕2𝑦
𝜕𝑣𝑢

𝜕𝑢
𝜕𝑥�

But
𝜕𝑢
𝜕𝑥 = 1,

𝜕𝑣
𝜕𝑥 = 1, hence the above becomes

𝜕2𝑦
𝜕𝑥2

=
𝜕2𝑦
𝜕𝑢2

+ 2
𝜕2𝑦
𝜕𝑢𝑣

+
𝜕2𝑦
𝜕𝑣2

𝑦𝑥𝑥 = 𝑦𝑢𝑢 + 𝑦𝑣𝑣 + 2𝑦𝑢𝑣 (1)

Similarly,

𝜕𝑦
𝜕𝑡

=
𝜕𝑦
𝜕𝑢

𝜕𝑢
𝜕𝑡

+
𝜕𝑦
𝜕𝑣
𝜕𝑣
𝜕𝑡

But
𝜕𝑢
𝜕𝑡 = 𝛼 and

𝜕𝑣
𝜕𝑡 = 𝛽, hence the above becomes

𝜕𝑦
𝜕𝑡

= 𝛼
𝜕𝑦
𝜕𝑢

+ 𝛽
𝜕𝑦
𝜕𝑣

And

𝜕2𝑦
𝜕𝑡2

=
𝜕
𝜕𝑡 �

𝜕𝑦
𝜕𝑡 �

=
𝜕
𝜕𝑡 �

𝛼
𝜕𝑦
𝜕𝑢

+ 𝛽
𝜕𝑦
𝜕𝑣�

= 𝛼
𝜕
𝜕𝑡 �

𝜕𝑦
𝜕𝑢�

+ 𝛽
𝜕
𝜕𝑡 �

𝜕𝑦
𝜕𝑣�

= 𝛼 �
𝜕2𝑦
𝜕𝑢2

𝜕𝑢
𝜕𝑡

+
𝜕2𝑦
𝜕𝑢𝑣

𝜕𝑣
𝜕𝑡 �

+ 𝛽 �
𝜕2𝑦
𝜕𝑣2

𝜕𝑣
𝜕𝑡

+
𝜕2𝑦
𝜕𝑢𝑣

𝜕𝑢
𝜕𝑡 �

But
𝜕𝑢
𝜕𝑡 = 𝛼 and

𝜕𝑣
𝜕𝑡 = 𝛽, hence the above becomes

𝜕2𝑦
𝜕𝑡2

= 𝛼 �𝛼
𝜕2𝑦
𝜕𝑢2

+ 𝛽
𝜕2𝑦
𝜕𝑢𝑣�

+ 𝛽 �𝛽
𝜕2𝑦
𝜕𝑣2

+ 𝛼
𝜕2𝑦
𝜕𝑢𝑣�

= 𝛼2
𝜕2𝑦
𝜕𝑢2

+ 𝛼𝛽
𝜕2𝑦
𝜕𝑢𝑣

+ 𝛽2
𝜕2𝑦
𝜕𝑣2

+ 𝛼𝛽
𝜕2𝑦
𝜕𝑢𝑣

𝑦𝑡𝑡 = 𝛼2𝑦𝑢𝑢 + 𝛽2𝑦𝑣𝑣 + 2𝛼𝛽𝑦𝑢𝑣 (2)

And to obtain 𝑦𝑥𝑡, then starting from above result obtained

𝜕𝑦
𝜕𝑡

= 𝛼
𝜕𝑦
𝜕𝑢

+ 𝛽
𝜕𝑦
𝜕𝑣
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Now taking partial derivative w.r.t. 𝑥 gives
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑡 �

=
𝜕
𝜕𝑥 �

𝛼
𝜕𝑦
𝜕𝑢

+ 𝛽
𝜕𝑦
𝜕𝑣�

= 𝛼
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑢�

+ 𝛽
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑣�

= 𝛼 �
𝜕2𝑦
𝜕𝑢2

𝜕𝑢
𝜕𝑥

+
𝜕2𝑦
𝜕𝑢𝑣

𝜕𝑣
𝜕𝑥�

+ 𝛽 �
𝜕2𝑦
𝜕𝑣2

𝜕𝑣
𝜕𝑥

+
𝜕2𝑦
𝜕𝑢𝑣

𝜕𝑢
𝜕𝑥�

But
𝜕𝑢
𝜕𝑥 = 1,

𝜕𝑣
𝜕𝑥 = 1, hence the above becomes

𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑡 �

= 𝛼 �
𝜕2𝑦
𝜕𝑢2

+
𝜕2𝑦
𝜕𝑢𝑣�

+ 𝛽 �
𝜕2𝑦
𝜕𝑣2

+
𝜕2𝑦
𝜕𝑢𝑣�

𝑦𝑥𝑡 = 𝛼𝑦𝑢𝑢 + �𝛼 + 𝛽� 𝑦𝑣𝑢 + 𝛽𝑦𝑣𝑣 (3)

Substituting (1,2,3) into 𝐴𝑦𝑥𝑥 + 𝐵𝑦𝑥𝑡 + 𝐶𝑦𝑡𝑡 = 0 results in

𝐴�𝑦𝑢𝑢 + 𝑦𝑣𝑣 + 2𝑦𝑢𝑣� + 𝐵 �𝛼𝑦𝑢𝑢 + �𝛼 + 𝛽� 𝑦𝑣𝑢 + 𝛽𝑦𝑣𝑣� + 𝐶 �𝛼2𝑦𝑢𝑢 + 𝛽2𝑦𝑣𝑣 + 2𝛼𝛽𝑦𝑢𝑣� = 0
Or

𝑦𝑢𝑢 �𝐴 + 𝐵𝛼 + 𝐶𝛼2� + 𝑦𝑢𝑣 �2𝐴 + 𝐵 �𝛼 + 𝛽� + 2𝐶𝛼𝛽� + 𝑦𝑣𝑣 �𝐴 + 𝐵𝛽 + 𝐶𝛽2� = 0

Part b

Looking at the term above for 𝑦𝑢𝑢 we see it is 𝐴 + 𝐵𝛼 + 𝐶𝛼2 which has the root

𝛼 = −
𝑏
2𝑎
±
1
2𝑎
√𝑏2 − 4𝑎𝑐

= −
𝐵
2𝐶

±
1
2𝐶
√𝐵2 − 4𝐴𝐶

Hence if we pick the root 𝛼 = 𝛼0 = − 𝐵
2𝐶 +

1
2𝐶√𝐵

2 − 4𝐴𝐶 then the term 𝑦𝑢𝑢 vanishes.

Similarly for the term multiplied by 𝑦𝑣𝑣 which is 𝐴 + 𝐵𝛽 + 𝐶𝛽2. The root is

𝛽 = −
𝐵
2𝐶

±
1
2𝐶
√𝐵2 − 4𝐴𝐶

And if we pick 𝛽 = 𝛽0 = −
𝐵
2𝐶 −

1
2𝐶√𝐵

2 − 4𝐴𝐶 then the term 𝑦𝑣𝑣 vanishes also in the PDE
obtained in part (a), and now the PDE becomes

𝑦𝑢𝑣 �2𝐴 + 𝐵 �𝛼 + 𝛽� + 2𝐶𝛼𝛽� = 0
Substituting the above selected roots 𝛼0, 𝛽0 into the above in place of 𝛼, 𝛽 since these are
the values we picked, then the above becomes

𝑦𝑢𝑣 �2𝐴 + 𝐵 �−
𝐵
2𝐶

+
1
2𝐶
√𝐵2 − 4𝐴𝐶 −

𝐵
2𝐶

−
1
2𝐶
√𝐵2 − 4𝐴𝐶� + 2𝐶𝛼𝛽� = 0

𝑦𝑢𝑣 �2𝐴 −
2𝐵2

2𝐶
+ 2𝐶𝛼𝛽� = 0

And again replacing 𝛼𝛽 above with 𝛼0, 𝛽0 results in

𝑦𝑢𝑣 �2𝐴 −
2𝐵2

2𝐶
+ 2𝐶 �−

𝐵
2𝐶

+
1
2𝐶
√𝐵2 − 4𝐴𝐶� �−

𝐵
2𝐶

−
1
2𝐶
√𝐵2 − 4𝐴𝐶�� = 0

𝑦𝑢𝑣 �2𝐴 −
2𝐵2

2𝐶
+ 2𝐶 �

𝐵2

4𝐶2
+

1
4𝐶2

�𝐵2 − 4𝐴𝐶��� = 0

𝑦𝑢𝑣 �2𝐴 −
2𝐵2

2𝐶
+
𝐵2

2𝐶
+

1
2𝐶

�𝐵2 − 4𝐴𝐶�� = 0

𝑦𝑢𝑣 �2𝐴 −
2𝐵2

2𝐶
+
𝐵2

2𝐶
+
𝐵2

2𝐶
− 2𝐴� = 0

𝐵2

2𝐶
𝑦𝑢𝑣 = 0

Since 𝐵 ≠ 0, 𝐶 ≠ 0 then the above simplifies to

𝑦𝑢𝑣 = 0
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Part c

Since

𝑦𝑢𝑣 = 0
Or

𝜕
𝜕𝑣 �

𝜕𝑦
𝜕𝑢�

= 0

The implies that

𝜕𝑦
𝜕𝑢

= Φ (𝑢)

Integrating w.r.t. 𝑢 gives

𝑦 (𝑢, 𝑣) = �Φ (𝑢) 𝑑𝑢 + 𝜓 (𝑣)

Where 𝜓 (𝑣) is the constant of integration which is a function.

Let ∫Φ (𝑢) 𝑑𝑢 = 𝜙 (𝑢) then the above can be written as

𝑦 (𝑢, 𝑣) = 𝜙 (𝑢) + 𝜓 (𝑣)
Or in terms of 𝑥, 𝑡, since 𝑢 = 𝑥 + 𝛼𝑡 and 𝑣 = 𝑥 + 𝛽𝑡 the above solution becomes

𝑦 (𝑥, 𝑡) = 𝜙 (𝑥 + 𝛼𝑡) + 𝜓 �𝑥 + 𝛽𝑡�
Where 𝜙,𝜓 are arbitrary functions twice di�erentiable. When 𝛼 = +𝑎, 𝛽 = −𝑎, then the
above becomes

𝑦 (𝑥, 𝑡) = 𝜙 (𝑥 + 𝑎𝑡) + 𝜓 (𝑥 − 𝑎𝑡)
Which is the general solution (7) in section (30). QED

2.4.7 Section 31, Problem 3

Figure 2.56: Problem Statement

The di�erential equation in problem 2 is

𝐴𝑦𝑥𝑥 + 𝐵𝑦𝑥𝑡 + 𝐶𝑦𝑡𝑡 = 0
We want to do the transformation from 𝑦 (𝑥, 𝑡) to 𝑦 (𝑢, 𝑣) with

𝑢 = 𝑥
𝑣 = 𝛼𝑥 + 𝛽𝑡

Now
𝜕𝑦
𝜕𝑥

=
𝜕𝑦
𝜕𝑢

𝜕𝑢
𝜕𝑥

+
𝜕𝑦
𝜕𝑣
𝜕𝑣
𝜕𝑥
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But
𝜕𝑢
𝜕𝑥 = 1 and

𝜕𝑣
𝜕𝑥 = 𝛼, hence the above becomes

𝜕𝑦
𝜕𝑥

=
𝜕𝑦
𝜕𝑢

+ 𝛼
𝜕𝑦
𝜕𝑣

And
𝜕𝑦
𝜕𝑡

=
𝜕𝑦
𝜕𝑢

𝜕𝑢
𝜕𝑡

+
𝜕𝑦
𝜕𝑣
𝜕𝑣
𝜕𝑡

But
𝜕𝑢
𝜕𝑡 = 0 and

𝜕𝑣
𝜕𝑡 = 𝛽, hence the above becomes

𝜕𝑦
𝜕𝑡

= 𝛽
𝜕𝑦
𝜕𝑣

Therefore
𝜕2𝑦
𝜕𝑥2

=
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑥�

=
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑢

+ 𝛼
𝜕𝑦
𝜕𝑣�

=
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑢�

+ 𝛼
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑣�

= �
𝜕2𝑦
𝜕𝑢2

𝜕𝑢
𝜕𝑥

+
𝜕2𝑦
𝜕𝑢𝑣

𝜕𝑣
𝜕𝑥�

+ 𝛼 �
𝜕2𝑦
𝜕𝑣2

𝜕𝑣
𝜕𝑥

+
𝜕2𝑦
𝜕𝑣𝑢

𝜕𝑢
𝜕𝑥�

= �
𝜕2𝑦
𝜕𝑢2

+ 𝛼
𝜕2𝑦
𝜕𝑢𝑣�

+ 𝛼 �𝛼
𝜕2𝑦
𝜕𝑣2

+
𝜕2𝑦
𝜕𝑣𝑢�

=
𝜕2𝑦
𝜕𝑢2

+ 𝛼
𝜕2𝑦
𝜕𝑢𝑣

+ 𝛼2
𝜕2𝑦
𝜕𝑣2

+ 𝛼
𝜕2𝑦
𝜕𝑣𝑢

𝑦𝑥𝑥 = 𝑦𝑢𝑢 + 𝛼2𝑦𝑣𝑣 + 2𝛼𝑦𝑢𝑣 (1)

Similarly,

𝜕2𝑦
𝜕𝑡2

=
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑡 �

=
𝜕
𝜕𝑥 �

𝛽
𝜕𝑦
𝜕𝑣�

= 𝛽 �
𝜕2𝑦
𝜕𝑣2

𝜕𝑣
𝜕𝑡

+
𝜕2𝑦
𝜕𝑣𝑢

𝜕𝑢
𝜕𝑡 �

= 𝛽 �𝛽
𝜕2𝑦
𝜕𝑣2 �

𝑦𝑡𝑡 = 𝛽2𝑦𝑣𝑣 (2)

And to obtain 𝑦𝑥𝑡, then starting from above result obtained

𝜕𝑦
𝜕𝑡

= 𝛽
𝜕𝑦
𝜕𝑣

Now taking partial derivative w.r.t. 𝑥 gives
𝜕
𝜕𝑥 �

𝜕𝑦
𝜕𝑡 �

=
𝜕
𝜕𝑥 �

𝛽
𝜕𝑦
𝜕𝑣�

= 𝛽 �
𝜕2𝑦
𝜕𝑣2

𝜕𝑣
𝜕𝑥

+
𝜕2𝑦
𝜕𝑣𝑢

𝜕𝑢
𝜕𝑥�

= 𝛽 �𝛼
𝜕2𝑦
𝜕𝑣2

+
𝜕2𝑦
𝜕𝑣𝑢�

𝑦𝑥𝑡 = 𝛼𝛽𝑦𝑣𝑣 + 𝛽𝑦𝑣𝑢 (3)

Substituting (1,2,3) into 𝐴𝑦𝑥𝑥 + 𝐵𝑦𝑥𝑡 + 𝐶𝑦𝑡𝑡 = 0 results in

𝐴�𝑦𝑢𝑢 + 𝛼2𝑦𝑣𝑣 + 2𝛼𝑦𝑢𝑣� + 𝐵 �𝛼𝛽𝑦𝑣𝑣 + 𝛽𝑦𝑣𝑢� + 𝐶 �𝛽2𝑦𝑣𝑣� = 0
Or

𝐴𝑦𝑢𝑢 + 𝑦𝑢𝑣 �2𝐴𝛼 + 𝐵𝛽� + 𝑦𝑣𝑣 �𝐴𝛼2 + 𝐵𝛼𝛽 + 𝐶𝛽2� = 0 (4)
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Which is what asked to show.

Part a

Setting 𝛼 = −𝐵

√4𝐴𝐶−𝐵2
, 𝛽 = 2𝐴

√4𝐴𝐶−𝐵2
in (4) above results in

𝐴𝑦𝑢𝑢 + 𝑦𝑢𝑣 �2𝐴 �
−𝐵

√4𝐴𝐶 − 𝐵2
� + 𝐵 �

2𝐴

√4𝐴𝐶 − 𝐵2
�� + 𝑦𝑣𝑣 �𝐴𝛼2 + 𝐵𝛼𝛽 + 𝐶𝛽2� = 0

𝐴𝑦𝑢𝑢 + 𝑦𝑣𝑣 �𝐴𝛼2 + 𝐵𝛼𝛽 + 𝐶𝛽2� = 0
And the above now becomes

𝐴𝑦𝑢𝑢 + 𝑦𝑣𝑣

⎛
⎜⎜⎜⎜⎝𝐴 �

−𝐵

√4𝐴𝐶 − 𝐵2
�
2

+ 𝐵 �
−𝐵

√4𝐴𝐶 − 𝐵2
� �

2𝐴

√4𝐴𝐶 − 𝐵2
� + 𝐶 �

2𝐴

√4𝐴𝐶 − 𝐵2
�
2⎞⎟⎟⎟⎟⎠ = 0

𝐴𝑦𝑢𝑢 + 𝑦𝑣𝑣 �
𝐴𝐵2

4𝐴𝐶 − 𝐵2
−

2𝐵2𝐴
4𝐴𝐶 − 𝐵2

+
4𝐶𝐴2

4𝐴𝐶 − 𝐵2 �
= 0

𝐴𝑦𝑢𝑢 + 𝑦𝑣𝑣 �
𝐴𝐵2 − 2𝐵2𝐴 + 4𝐶𝐴2

4𝐴𝐶 − 𝐵2 � = 0

𝐴𝑦𝑢𝑢 + 𝐴𝑦𝑣𝑣 �
−𝐵2 + 4𝐶𝐴
4𝐴𝐶 − 𝐵2 �

= 0

𝐴𝑦𝑢𝑢 + 𝐴𝑦𝑣𝑣 = 0
𝐴 �𝑦𝑢𝑢 + 𝑦𝑣𝑣� = 0

Therefore, since 𝐴 ≠ 0 the above becomes

𝑦𝑢𝑢 + 𝑦𝑣𝑣 = 0

Part b

Setting 𝛼 = −𝐵, 𝛽 = 2𝐴 in (4) above results in

𝐴𝑦𝑢𝑢 + 𝑦𝑢𝑣 (−2𝐴𝐵 + 2𝐴𝐵) + 𝑦𝑣𝑣 �𝐴𝐵2 − 2𝐵2𝐴 + 4𝐶𝐴2� = 0

𝐴𝑦𝑢𝑢 + 𝑦𝑣𝑣 �4𝐶𝐴2 − 𝐵2𝐴� = 0

𝐴𝑦𝑢𝑢 − 𝐴𝑦𝑣𝑣 �𝐵2 − 4𝐶𝐴� = 0

But 𝐵2 − 4𝐶𝐴 = 0, therefore the above becomes

𝑦𝑢𝑢 = 0
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2.5.1 Section 34, Problem 3

Figure 2.57: Problem statement

Solution

The boundary conditions are

x

y

ux(0, y) = 0 ux(π, y) = 0

u(x, 0) = 0

52u(x, y) = 0

unspecified

π

2

Figure 2.58: Boundary conditions

Let

𝑢 �𝑥, 𝑦� = 𝑋 (𝑥) 𝑌 �𝑦�
Substitution in the PDE 𝑢𝑥𝑥 + 𝑦𝑦𝑦 = 0 leads to

𝑋′′𝑌 + 𝑌′′𝑌 = 0
𝑋′′

𝑋
= −

𝑌′′

𝑌
= −𝜆
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Where 𝜆 is the separation constant. We obtain two ODE’s

𝑋′′ + 𝜆𝑋 = 0 (1)

𝑌′′ − 𝜆𝑌 = 0 (2)

We use the 𝑋 (𝑥) ODE (1) to determine the eigenvalues, since that ODE has both boundary
conditions specified:

𝑋′′ + 𝜆𝑋 = 0
𝑋′ (0) = 0
𝑋′ (𝜋) = 0

Case 𝜆 < 0

Solution is

𝑋 (𝑥) = 𝐴 cosh �√−𝜆𝑥� + 𝐵 sinh �√−𝜆𝑥�

𝑋′ (𝑥) = 𝐴√−𝜆 sinh �√−𝜆𝑥� + 𝐵√−𝜆 cosh �√−𝜆𝑥�

At 𝑥 = 0 the above gives

0 = 𝐵√−𝜆 cosh (0)

= 𝐵√−𝜆
Hence 𝐵 = 0 and the solution (3) reduces to

𝑋 (𝑥) = 𝐴 cosh �√−𝜆𝑥�

𝑋′ (𝑥) = 𝐴√−𝜆 sinh �√−𝜆𝑥�

At 𝑥 = 𝜋 the above becomes

0 = 𝐴√−𝜆 sinh �√−𝜆𝜋�

For non-trivial solution we want sinh �√−𝜆𝜋� = 0, but sinh is only zero when its argument
is zero, which is not possible here, since 𝜆 ≠ 0. Therefore 𝜆 < 0 is not possible.

Case 𝜆 = 0

Solution becomes 𝑋 = 𝐴𝑥 + 𝐵. Hence 𝑋′ = 𝐴. At 𝑥 = 0 this leads to 𝐴 = 0. Therefore the
solution now becomes 𝑋 = 𝐵. Hence 𝑋′ = 0. Therefore the second boundary conditions
at 𝑥 = 𝜋 is automatically satisfied. Hence the solution is 𝑋 (𝑥) = 𝐵, a constant. We pick
𝑋 (𝑥) = 1. Therefore 𝜆 = 0 is eigenvalue with associated eigenfunction 𝑋0 (𝑥) = 1.

Case 𝜆 > 0

The solution becomes

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

𝑋′ (𝑥) = −𝐴√𝜆 sin �√𝜆𝑥� + 𝐵√𝜆 cos �√𝜆𝑥�

At 𝑥 = 0 the above becomes

0 = 𝐵√𝜆
Hence 𝐵 = 0 and the solution reduces to

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥�

𝑋′ (𝑥) = −𝐴√𝜆 sin �√𝜆𝑥�

At 𝑥 = 𝜋 the above gives

0 = −𝐴√𝜆 sin �√𝜆𝜋�

sin �√𝜆𝜋� = 0
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Therefore √𝜆𝜋 = 𝑛𝜋 for 𝑛 = 1, 2, 3,⋯. Hence

𝜆𝑛 = 𝑛2 𝑛 = 1, 2, 3,⋯
And the solution (corresponding eigenfunctions) is

𝑋𝑛 (𝑥) = cos ��𝜆𝑛𝑥�
= cos (𝑛𝑥)

In summary, the solution to the 𝑋 ODE resulted in

𝑋0 (𝑥) = 1 𝑛 = 0 (3)

𝑋𝑛 (𝑥) = cos (𝑛𝑥) 𝑛 = 1, 2, 3,⋯
Now we solve for the 𝑌 ODE

𝑌′′ − 𝜆𝑌 = 0
𝑌 (0) = 0

We are only given boundary conditions on bottom edge.

case 𝜆 = 0
𝑌 = 𝐴𝑦 + 𝐵

When 𝑦 = 0 the above leads to 0 = 𝐵. Hence the corresponding eigenfunction is 𝑌0 �𝑦� = 𝑦.

case 𝜆 > 0

The solution becomes

𝑌 �𝑦� = 𝐴 cosh �√𝜆𝑦� + 𝐵 sinh �√𝜆𝑦�

At 𝑦 = 0 the above gives
0 = 𝐴 cosh (0)
= 𝐴

Hence the solution reduces to

𝑌 �𝑦� = 𝐵 sinh �√𝜆𝑦�

Therefore the eigenfunctions for 𝑛 = 1, 2, 3,⋯ are 𝑌𝑛 �𝑦� = sinh �𝑛𝑦� since 𝜆𝑛 = 𝑛2 for
𝑛 = 1, 2, 3,⋯.

In summary, the solution to the 𝑌 ODE resulted in

𝑌0 �𝑦� = 𝑦 𝑛 = 0 (4)

𝑌𝑛 (𝑥) = sinh �𝑛𝑦� 𝑛 = 1, 2, 3,⋯
From (3,4) we see that

𝑢𝑛 �𝑥, 𝑦� = 𝑋𝑛 (𝑥) 𝑌𝑛 �𝑦�
For 𝑛 = 0 the above becomes

𝑢0 �𝑥, 𝑦� = (1) �𝑦�
= 𝑦

And for 𝑛 = 1, 2, 3,⋯
𝑢𝑛 �𝑥, 𝑦� = sinh �𝑛𝑦�

= cos (𝑛𝑥) sinh �𝑛𝑦�
Using superposition, then

𝑢 �𝑥, 𝑦� = 𝑋 (𝑥) 𝑌 �𝑦�

= 𝐴0𝑢0 +
∞
�
𝑛=1

𝐴𝑛𝑢𝑛

= 𝐴0𝑦 +
∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝑥) sinh �𝑛𝑦�

QED.
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2.5.2 Section 37, Problem 1

Figure 2.59: Problem statement

Solution

The boundary conditions now become as follows

x

y

ux(0, y) = 0 ux(π, y) = 0

u(x, 0) = 0

52u(x, y) = 0

π

2
u(x, 2) = f(x)

Figure 2.60: Boundary conditions

From the above problem we know the general solution is

𝑢 �𝑥, 𝑦� = 𝐴0𝑦 +
∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝑥) sinh �𝑛𝑦� (1)

Now we impose the remaining boundary condition 𝑢 (𝑥, 2) = 𝑓 (𝑥). Therefore the above
becomes

𝑓 (𝑥) = 2𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝑥) sinh (2𝑛)
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Multiplying both sides by cos (𝑚𝑥) integrating w.r.t. 𝑥 from 𝑥 = 0 to 𝑥 = 𝜋 results in

�
𝜋

0
𝑓 (𝑥) cos (𝑚𝑥) 𝑑𝑥 = �

𝜋

0
2𝐴0 cos (𝑚𝑥) 𝑑𝑥 + ��

𝜋

0

∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝑥) cos (𝑚𝑥) sinh (2𝑛) 𝑑𝑥�

�
𝜋

0
𝑓 (𝑥) cos (𝑚𝑥) 𝑑𝑥 = �

𝜋

0
2𝐴0 cos (𝑚𝑥) 𝑑𝑥 + �

∞
�
𝑛=1

𝐴𝑛 sinh (2𝑛) ��
𝜋

0
cos (𝑛𝑥) cos (𝑚𝑥) 𝑑𝑥��

case 𝑚 = 0

�
𝜋

0
𝑓 (𝑥) 𝑑𝑥 = �

𝜋

0
2𝐴0𝑑𝑥

= 2𝐴0𝜋

𝐴0 =
1
2𝜋 �

𝜋

0
𝑓 (𝑥) 𝑑𝑥 (2)

case 𝑚 = 1, 2,⋯

�
𝜋

0
𝑓 (𝑥) cos (𝑚𝑥) 𝑑𝑥 =

∞
�
𝑛=1

𝐴𝑛 sinh (2𝑛) ��
𝜋

0
cos (𝑛𝑥) cos (𝑚𝑥) 𝑑𝑥�

But ∫
𝜋

0
cos (𝑛𝑥) cos (𝑚𝑥) 𝑑𝑥 = 0 for all 𝑚 ≠ 𝑛 and 𝜋

2 when 𝑚 = 𝑛. Hence the above simplifies
to

�
𝜋

0
𝑓 (𝑥) cos (𝑚𝑥) 𝑑𝑥 =

𝜋
2
𝐴𝑚 sinh (2𝑚)

𝐴𝑚 =
2

𝜋 sinh (2𝑚) �
𝜋

0
𝑓 (𝑥) cos (𝑚𝑥) 𝑑𝑥

Since 𝑚 is summation index, we can rename it to 𝑛 and the above becomes

𝐴𝑛 =
2

𝜋 sinh (2𝑛) �
𝜋

0
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥 (3)

Using (2,3) in (1) gives the final solution

𝑢 �𝑥, 𝑦� = �
1
2𝜋 �

𝜋

0
𝑓 (𝑥) 𝑑𝑥� 𝑦 +

∞
�
𝑛=1

�
2

𝜋 sinh (2𝑛) �
𝜋

0
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥� cos (𝑛𝑥) sinh �𝑛𝑦�

2.5.3 Section 37, Problem 3

Figure 2.61: Problem statement

Part (a)

𝑢𝑥𝑥 − 𝑥𝑡𝑢𝑡𝑡 = 0
Let 𝑢 = 𝑋 (𝑥) 𝑇 (𝑡). Substituting this into the above PDE gives

𝑋′′𝑇 − 𝑥𝑡𝑇′′𝑋 = 0
Dividing by 𝑋𝑇 ≠ 0 gives

𝑋′′

𝑋
− 𝑥𝑡

𝑇′′

𝑇
= 0
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Diving by 𝑥 gives
1
𝑥
𝑋′′

𝑋
− 𝑡
𝑇′′

𝑇
= 0

1
𝑥
𝑋′′

𝑋
= 𝑡

𝑇′′

𝑇
= −𝜆

Hence it possible to separate them. The generated ODE’s are

𝑋′′ + 𝜆𝑥𝑋 = 0

𝑇′′ + 𝜆
𝑇
𝑡
= 0

Part (b)

(𝑥 + 𝑡) 𝑢𝑥𝑥 − 𝑢𝑡 = 0
Let 𝑢 = 𝑋 (𝑥) 𝑇 (𝑡). Substituting this into the above PDE gives

(𝑥 + 𝑡) 𝑋′′𝑇 − 𝑇′𝑋 = 0
Dividing by 𝑋𝑇 ≠ 0 gives

𝑥
𝑋′′

𝑋
+ 𝑡
𝑋′′

𝑋
−
𝑇′

𝑇
= 0

It is not possible to separate them.

Part (c)

𝑥𝑢𝑥𝑥 + 𝑢𝑥𝑡 + 𝑡𝑢𝑡𝑡 = 0
Let 𝑢 = 𝑋 (𝑥) 𝑇 (𝑡). Substituting this into the above PDE gives

𝑥𝑋′′𝑇 −
𝜕
𝜕𝑡
(𝑋′𝑇) + 𝑡𝑇′′𝑋 = 0

𝑥𝑋′′𝑇 − 𝑋′𝑇′𝑋 + 𝑡𝑇′′𝑋 = 0
Dividing by 𝑋𝑇 ≠ 0 gives

𝑥
𝑋′′

𝑋
− 𝑋′𝑇′ + 𝑡

𝑇′′

𝑇
= 0

It is not possible to separate them.

Part (d)

𝑢𝑥𝑥 − 𝑢𝑡𝑡 − 𝑢𝑡 = 0
Let 𝑢 = 𝑋 (𝑥) 𝑇 (𝑡). Substituting this into the above PDE gives

𝑋′′𝑇 − 𝑇′′𝑋 − 𝑇′𝑋 = 0
Dividing by 𝑋𝑇 ≠ 0 gives

𝑋′′

𝑋
−
𝑇′′

𝑇
−
𝑇′

𝑇
= 0

𝑋′′

𝑋
=
𝑇′′

𝑇
+
𝑇′

𝑇
= −𝜆

It is possible to separate them. The ODE’s are

𝑋′′ + 𝜆𝑋 = 0
𝑇′′ + 𝑇′ + 𝜆𝑇 = 0
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2.5.4 Section 37, Problem 5

Figure 2.62: Problem statement

Case 𝜆 < 0

Solution is

𝑋 (𝑥) = 𝐴 cosh �√−𝜆𝑥� + 𝐵 sinh �√−𝜆𝑥�

At 𝑥 = 0 the above gives
0 = 𝐴

Hence the solution becomes

𝑋 (𝑥) = 𝐵 sinh �√−𝜆𝑥�

At 𝑥 = 𝑐 the above becomes

0 = 𝐵 sinh �√−𝜆𝑐�

For non-trivial solution we want sinh �√−𝜆𝑐� = 0. But sinh is zero only when its argument

is zero. Which means √−𝜆𝑐 = 0 which is not possible. Hence 𝜆 < 0 is not possible.

Case 𝜆 = 0

Solution is

𝑋 (𝑥) = 𝐴𝑥 + 𝐵
At 𝑥 = 0 the above gives

0 = 𝐵
Hence the solution becomes

𝑋 (𝑥) = 𝐵
At 𝑥 = 𝑐 the above becomes

0 = 𝐵
Which gives trivial solution. Hence 𝜆 = 0 is not possible.

Case 𝜆 > 0

Solution is

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

At 𝑥 = 0 the above gives
0 = 𝐴

Hence the solution becomes

𝑋 (𝑥) = 𝐵 sin �√𝜆𝑥�

At 𝑥 = 𝑐 the above becomes

0 = 𝐵 sin �√𝜆𝑐�
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For non trivial solution we want sin �√𝜆𝑐� = 0 which implies

√𝜆𝑐 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯

𝜆𝑛 = �
𝑛𝜋
𝑐
�
2

Therefore the eigenvalues are 𝜆𝑛 = �𝑛𝜋
𝑐
�
2
for 𝑛 = 1, 2, 3,⋯ and the eigenfunctions are

𝑋𝑛 (𝑥) = sin �𝑛𝜋𝑐 𝑥� for 𝑛 = 1, 2, 3,⋯.

2.5.5 Section 39, Problem 2

Figure 2.63: Problem statement

Solution

Example 1 is: Solve 𝑢𝑡 = 𝑘𝑢𝑥𝑥 with 𝑢 (0, 𝑡) = 0 and 𝑢 (𝜋, 𝑡) = 0. We now use initial conditions
𝑢 (𝑥, 0) = sin (𝑥). The eigenvalues are 𝜆𝑛 = 𝑛2 for 𝑛 = 1, 2, 3,⋯ and eigenfunctions are
sin (𝑛𝑥). The general solution for this example is given in the book as

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐵𝑛𝑒−𝑘𝑛
2𝑡 sin (𝑛𝑥)

At 𝑡 = 0 the above becomes

sin 𝑥 =
∞
�
𝑛=1

𝐵𝑛 sin (𝑛𝑥) (1)

By comparing sides, we see that only 𝑛 = 1 term exist. Hence 𝐵1 = 1 and all other terms
are zero. Hence the solution is, for 𝑛 = 1

𝑢 (𝑥, 𝑡) = 𝑒−𝑘𝑡 sin (𝑥)
To verify this, we start with (1) and multiply both sides by sin (𝑚𝑥) and integrate which
gives

�
𝜋

0
sin 𝑥 sin (𝑚𝑥) 𝑑𝑥 = �

𝜋

0

∞
�
𝑛=1

𝐵𝑛 sin (𝑛𝑥) sin (𝑚𝑥) 𝑑𝑥

=
∞
�
𝑛=1

𝐵𝑛 ��
𝜋

0
sin (𝑛𝑥) sin (𝑚𝑥) 𝑑𝑥�

But ∫
𝜋

0
sin (𝑛𝑥) sin (𝑚𝑥) 𝑑𝑥 = 0 for 𝑚 ≠ 𝑛 and

𝜋
2 for 𝑛 = 𝑚. Hence the above gives

�
𝜋

0
sin 𝑥 sin (𝑚𝑥) 𝑑𝑥 = 𝐵𝑚

𝜋
2

Similarly, ∫
𝜋

0
sin 𝑥 sin (𝑚𝑥) 𝑑𝑥 = 0 for𝑚 ≠ 1 and 𝜋

2 when𝑚 = 1, therefore the above becomes

𝜋
2
= 𝐵1

𝜋
2

𝐵1 = 1

And all other 𝐵𝑛 = 0. Which gives the same result obtain above, which is 𝑢 (𝑥, 𝑡) = 𝑒−𝑘𝑡 sin (𝑥)
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2.5.6 Section 39, Problem 4

Figure 2.64: Problem statement

Solution

We need to solve

𝑢𝑡 = 𝑘𝑢𝑥𝑥 𝑡 > 0, 0 < 𝑥 < 𝜋
With boundary conditions

𝑢 (0, 𝑡) = 𝑢0
𝑢 (𝜋, 𝑡) = 0

And initial conditions

𝑢 (𝑥, 0) = 0
Solution (15) is

𝑢 (𝑥, 𝑡) =
𝑢0
𝜋 �𝑥 + 2

∞
�
𝑛=1

(−1)𝑛

𝑛
𝑒−𝑛2𝑘𝑡 sin (𝑛𝑥)� (15)

Replacing 𝑥 by 𝜋 − 𝑥 in (15) gives

𝑢 (𝑥, 𝑡) =
𝑢0
𝜋 �(𝜋 − 𝑥) + 2

∞
�
𝑛=1

(−1)𝑛

𝑛
𝑒−𝑛2𝑘𝑡 sin (𝑛 (𝜋 − 𝑥))�

=
𝑢0
𝜋
(𝜋 − 𝑥) + 2

𝑢0
𝜋

∞
�
𝑛=1

(−1)𝑛

𝑛
𝑒−𝑛2𝑘𝑡 sin (𝑛𝜋 − 𝑛𝑥) (2)

Using sin (𝐴 − 𝐵) = sin𝐴 cos𝐵 + cos𝐴 sin𝐵, then
sin (𝑛𝜋 − 𝑛𝑥) = sin (𝑛𝜋) cos (𝑛𝑥) + cos (𝑛𝜋) sin (𝑛𝑥)

But sin (𝑛𝜋) = 0 since 𝑛 is integer and cos (𝑛𝜋) = (−1)𝑛, then sin (𝑛𝜋 − 𝑛𝑥) = (−1)𝑛 sin (𝑛𝑥).
Substituting this in (2) gives

𝑢 (𝑥, 𝑡) = 𝑢0 − 𝑢0
𝑥
𝜋
+ 2

𝑢0
𝜋

∞
�
𝑛=1

(−1)𝑛

𝑛
𝑒−𝑛2𝑘𝑡 (−1)𝑛 sin (𝑛𝑥)

= 𝑢0

⎡
⎢⎢⎢⎣1 −

𝑥
𝜋
+
2
𝜋

∞
�
𝑛=1

(−1)2𝑛

𝑛
𝑒−𝑛2𝑘𝑡 sin (𝑛𝑥)

⎤
⎥⎥⎥⎦

= 𝑢0 �1 −
𝑥
𝜋
+
2
𝜋

∞
�
𝑛=1

1
𝑛
𝑒−𝑛2𝑘𝑡 sin (𝑛𝑥)�

Which is the result required.
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2.6.1 Section 40, Problem 1

Figure 2.65: Problem statement

Solution

The PDE to solve is

𝑢𝑡𝑡 = 𝑘𝑢𝑥𝑥
With boundary conditions

𝑢 (0, 𝑡) = 0 (1)

𝐾𝑢𝑥 (𝜋, 𝑡) = 𝐴
And initial conditions

𝑢 (𝑥, 0) = 0
The solution to example 2 section 40 is

𝑈 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐵2𝑛−1 exp
⎛
⎜⎜⎜⎝
− (2𝑛 − 1)2 𝑘

4
𝑡
⎞
⎟⎟⎟⎠ sin �

(2𝑛 − 1) 𝑥
2 � (2)

With

𝐵2𝑛−1 =
2
𝜋 �

𝜋

0
𝑓 (𝑥) sin �

(2𝑛 − 1) 𝑥
2 � 𝑑𝑥

Now, in this problem, we start by writing

𝑢 (𝑥, 𝑡) = 𝑈 (𝑥, 𝑡) + Φ (𝑥) (3)

The function Φ (𝑥) needs to satisfy the nonhomogeneous B.C. (1). Let

Φ (𝑥) = 𝑐1𝑥 + 𝑐2
When 𝑥 = 0 this gives 0 = 𝑐2. Hence Φ (𝑥) = 𝑐1𝑥. Taking derivative gives Φ ′ (𝑥) = 𝑐1. But
from (1) 𝐾Φ ′ (𝜋) = 𝐴. Hence 𝑐1 =

𝐴
𝐾 . Therefore

Φ (𝑥) =
𝐴
𝐾
𝑥
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Substituting the above back into (3) gives

𝑢 (𝑥, 𝑡) = 𝑈 (𝑥, 𝑡) +
𝐴
𝐾
𝑥

But 𝑈 (𝑥, 𝑡) is given by (2), hence the above becomes

𝑢 (𝑥, 𝑡) =
𝐴
𝐾
𝑥 +

∞
�
𝑛=1

𝐵2𝑛−1 exp
⎛
⎜⎜⎜⎝
− (2𝑛 − 1)2 𝑘

4
𝑡
⎞
⎟⎟⎟⎠ sin �

(2𝑛 − 1) 𝑥
2 � (4)

At 𝑡 = 0, the initial conditions is 0. Hence the above becomes

−
𝐴
𝐾
𝑥 =

∞
�
𝑛=1

𝐵2𝑛−1 sin �
(2𝑛 − 1) 𝑥

2 �

Hence 𝐵2𝑛−1 is the Fourier sine series of −
𝐴
𝐾𝑥 given by

𝐵2𝑛−1 =
2
𝜋 �

𝜋

0
�−
𝐴
𝐾
𝑥� sin �

(2𝑛 − 1) 𝑥
2 � 𝑑𝑥

= −
2𝐴
𝜋𝐾 �

𝜋

0
𝑥 sin �

(2𝑛 − 1) 𝑥
2 � 𝑑𝑥

Integration by parts. Let 𝑢 = 𝑥, 𝑑𝑣 = sin � (2𝑛−1)𝑥2
�, hence 𝑑𝑢 = 1 and 𝑣 = − 2

(2𝑛−1) cos � (2𝑛−1)𝑥2
�

and the above becomes

𝐵2𝑛−1 = −
2𝐴
𝜋𝐾

⎛
⎜⎜⎜⎜⎝�−

2𝑥
(2𝑛 − 1)

cos �
(2𝑛 − 1) 𝑥

2 ��
𝜋

0
+�

𝜋

0

2
(2𝑛 − 1)

cos �
(2𝑛 − 1) 𝑥

2 � 𝑑𝑥
⎞
⎟⎟⎟⎟⎠

= −
2𝐴
𝜋𝐾

⎛
⎜⎜⎜⎜⎝−

2
(2𝑛 − 1) �

𝑥 cos �
(2𝑛 − 1) 𝑥

2 ��
𝜋

0
+

4
(2𝑛 − 1)2

�sin �
(2𝑛 − 1) 𝑥

2 ��
𝜋

0

⎞
⎟⎟⎟⎟⎠

= −
2𝐴
𝜋𝐾 �

−
2𝜋

(2𝑛 − 1)
cos �

(2𝑛 − 1) 𝜋
2 � +

4
(2𝑛 − 1)2

sin �
(2𝑛 − 1) 𝜋

2 ��

Since 2𝑛 − 1 is odd, then the cosine terms above vanish and the above simplifies to

𝐵2𝑛−1 = −
𝐴
𝜋𝐾

8 (−1)𝑛+1

(2𝑛 − 1)2

=
𝐴
𝜋𝐾

8 (−1)𝑛+2

(2𝑛 − 1)2

=
𝐴
𝜋𝐾

8 (−1)𝑛

(2𝑛 − 1)2

Substituting the above in (4) gives

𝑢 (𝑥, 𝑡) =
𝐴
𝐾
𝑥 +

∞
�
𝑛=1

𝐴
𝜋𝐾

8 (−1)𝑛

(2𝑛 − 1)2
exp

⎛
⎜⎜⎜⎝
− (2𝑛 − 1)2 𝑘

4
𝑡
⎞
⎟⎟⎟⎠ sin �

(2𝑛 − 1) 𝑥
2 �

=
𝐴
𝐾

⎧⎪⎨
⎪⎩𝑥 +

8
𝜋

∞
�
𝑛=1

(−1)𝑛

(2𝑛 − 1)2
exp

⎛
⎜⎜⎜⎝
− (2𝑛 − 1)2 𝑘

4
𝑡
⎞
⎟⎟⎟⎠ sin �

(2𝑛 − 1) 𝑥
2 �

⎫⎪⎬
⎪⎭

Which is the result required.
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2.6.2 Section 40, Problem 3

Figure 2.66: Problem statement

Solution

The PDE is

𝑣𝑡 = 𝑘𝑣𝑥𝑥 − 𝑏𝑣
With boundary conditions

𝑣𝑥 (0, 𝑡) = 0
𝑣𝑥 (𝑐, 𝑡) = 0

And initial conditions

𝑣 (𝑥, 0) = 𝑓 (𝑥)
Let 𝑣 (𝑥, 𝑡) = 𝑋 (𝑥) 𝑇 (𝑡). Substituting into the PDE gives

𝑇′𝑋 = 𝑘𝑋′′𝑇 − 𝑏𝑋𝑇
Dividing by 𝑋𝑇 ≠ 0 gives

𝑇′

𝑇
= 𝑘

𝑋′′

𝑋
− 𝑏

𝑇′

𝑇
+ 𝑏 = 𝑘

𝑋′′

𝑋
𝑇′

𝑘𝑇
+
𝑏
𝑘
=
𝑋′′

𝑋
= −𝜆

Where 𝜆 is the separation constant. We obtain the boundary value eigenvalue ODE as

𝑋′′ + 𝜆𝑋 = 0 (1)

𝑋′ (0) = 0
𝑋′ (𝑐) = 0

And the time ODE as
𝑇′

𝑘𝑇
+
𝑏
𝑘
= −𝜆

𝑇′ +
𝑏
𝑘
𝑘𝑇 = −𝜆𝑘𝑇

𝑇′ +
𝑏
𝑘
𝑘𝑇 + 𝜆𝑘𝑇 = 0

𝑇′ + 𝑇 (𝑏 + 𝜆𝑘) = 0
Now we solve the space ODE (1) in order to determine the eigenvalues 𝜆.
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Case 𝜆 < 0

The solution to (1) becomes

𝑋 (𝑥) = 𝐴 cosh �√−𝜆𝑥� + 𝐵 sinh �√−𝜆𝑥�

𝑋′ = 𝐴√−𝜆 sinh �√−𝜆𝑥� + 𝐵√−𝜆 cosh �√−𝜆𝑥�

Satisfying 𝑋′ (0) = 0 gives

0 = 𝐵√−𝜆
Hence 𝐵 = 0 and the solution becomes𝑋 (𝑥) = 𝐴 cosh �√−𝜆𝑥�. Therefore𝑋′ = 𝐴√−𝜆 sinh �√−𝜆𝑥�.
Satisfying 𝑋′ (𝑐) = 0 gives

0 = 𝐴√𝜆 sinh �√−𝜆𝑐�

But sinh is zero only when its argument is zero, which is not the case here since 𝜆 ≠ 0.
This implies 𝐴 = 0, leading to trivial solution. Therefore 𝜆 < 0 is not possible.

Case 𝜆 = 0

The solution to (1) becomes

𝑋 (𝑥) = 𝐴𝑥 + 𝐵
𝑋′ = 𝐴

Satisfying 𝑋′ (0) = 0 gives
0 = 𝐴

And the solution becomes 𝑋 (𝑥) = 𝐵. Therefore 𝑋′ = 0. Satisfying 𝑋′ (𝑐) = 0 gives
0 = 0

Which is valid for any 𝐵. Hence choosing 𝐵 = 1 shows that 𝜆 = 0 is valid eigenvalue with
corresponding eigenfunction 𝑋0 (𝑥) = 1.

Case 𝜆 > 0

The solution to (1) becomes

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

𝑋′ = −𝐴√𝜆 sin �√𝜆𝑥� + 𝐵√𝜆 cos �√𝜆𝑥�

Satisfying 𝑋′ (0) = 0 gives

0 = 𝐵√𝜆
Hence 𝐵 = 0 and the solution becomes𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥�. Therefore𝑋′ = −𝐴√𝜆 sin �√𝜆𝑥�.
Satisfying 𝑋′ (𝑐) = 0 gives

0 = −𝐴√𝜆 sin �√𝜆𝑐�

For nontrivial solution we want

sin �√𝜆𝑐� = 0

√𝜆𝑐 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯

𝜆𝑛 = �
𝑛𝜋
𝑐
�
2

(2)

And the corresponding eigenfunctions

𝑋𝑛 (𝑥) = cos ��𝜆𝑛𝑥� (3)

Now that we found 𝜆𝑛, we can solve the time ODE 𝑇′ + 𝑇 (𝑏 + 𝜆𝑘) = 0. The solution is

𝑇𝑛 (𝑡) = 𝑒−(𝑏+𝜆𝑛𝑘)𝑡 (4)
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Hence the fundamental solution is

𝑣𝑛 (𝑥, 𝑡) = 𝑋𝑛 (𝑥) 𝑇𝑛 (𝑡)

= cos ��𝜆𝑛𝑥� 𝑒−(𝑏+𝜆𝑛𝑘)𝑡

And the general solution is the superposition of all these solutions

𝑣 (𝑥, 𝑡) = 𝐴0𝑋0𝑇0 +
∞
�
𝑛=1

𝐴𝑛𝑋𝑛 (𝑥) 𝑇𝑛 (𝑡)

= 𝐴0𝑒−𝑏𝑡 +
∞
�
𝑛=1

𝐴𝑛 cos ��𝜆𝑛𝑥� 𝑒−(𝑏+𝜆𝑛𝑘)𝑡

Which can be written as

𝑣 (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) 𝑒−𝑏𝑡

Where 𝑢 (𝑥, 𝑡) is

𝑢 (𝑥, 𝑡) = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos ��𝜆𝑛𝑥� 𝑒−𝜆𝑛𝑘𝑡

Which is the same as given in section 36, page 106. In the above

𝜆0 = 0

𝜆𝑛 = �
𝑛𝜋
𝑐
�
2

𝑛 = 1, 2, 3,⋯

2.6.3 Section 41, Problem 3

Figure 2.67: Problem statement

Solution

The heat PDE in spherical coordinates, assuming no dependency on 𝜙 nor on 𝜃 is given
by

𝑢𝑡 = 𝑘∇ 2𝑢 (1)

= 𝑘
1
𝑟
(𝑟𝑢)𝑟𝑟
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Where 1 < 𝑟 < 2 and 𝑡 > 0. With the boundary conditions

𝑢 (1, 𝑡) = 0
𝑢 (2, 0) = 𝑢0

And initial conditions

𝑢 (𝑟, 0) = 0

Part (a)

Let 𝑣 (𝑟, 𝑡) = 𝑟𝑢 (𝑟, 𝑡). Hence 𝑣𝑡 = 𝑟𝑢𝑡 and
1
𝑟
(𝑟𝑢)𝑟𝑟 =

1
𝑟𝑣𝑟𝑟. Substituting these in(1), the PDE

simplifies to

𝑣𝑡 = 𝑘𝑣𝑟𝑟 (2)

And the boundary conditions 𝑢 (1, 𝑡) = 0 becomes 𝑣 (1, 𝑡) = 0 and 𝑢 (2, 0) = 𝑢0 becomes
𝑣 (2, 𝑡) = 2𝑢0. And initial conditions 𝑢 (𝑟, 0) = 0 becomes 𝑣 (𝑟, 0) = 0. Hence the new
boundary conditions

𝑣 (1, 𝑡) = 0
𝑣 (2, 𝑡) = 2𝑢0

And new initial conditions

𝑣 (𝑟, 0) = 0

Now let 𝑠 = 𝑟 − 1. Since 𝜕𝑟
𝜕𝑠 = 1, then the PDE becomes 𝑣𝑡 = 𝑘𝑣𝑠𝑠. When 𝑟 = 1, then 𝑠 = 0

and the boundary conditions 𝑣 (1, 𝑡) = 0 becomes 𝑣 (0, 𝑡) = 0 and the boundary conditions
𝑣 (2, 𝑡) = 2𝑢0 becomes 𝑣 (1, 𝑡) = 2𝑢0. And initial conditions do not change. Hence the new
problem is to solve for 𝑣 (𝑠, 𝑡) in

𝑣𝑡 = 𝑘𝑣𝑠𝑠 (3)

𝑣 (1, 𝑡) = 0
𝑣 (1, 𝑡) = 2𝑢0
𝑣 (𝑠, 0) = 0

With 0 < 𝑠 < 1 and 𝑡 > 0.

Part (b)

The PDE (3) in part(a) is now the same as result of problem 2 section 40. Hence we can
use that solution for (3) which gives

𝑣 (𝑠, 𝑡) = 2𝑢0 �𝑥 +
2
𝜋

∞
�
𝑛=1

(−1)𝑛

𝑛
𝑒−𝑛2𝜋2𝑘𝑡 sin (𝑛𝜋𝑠)�

Replacing 𝑠 by 𝑟 − 1 in the above gives

𝑣 (𝑟, 𝑡) = 2𝑢0 �(𝑟 − 1) +
2
𝜋

∞
�
𝑛=1

(−1)𝑛

𝑛
𝑒−𝑛2𝜋2𝑘𝑡 sin (𝑛𝜋 (𝑟 − 1))�

But 𝑣 (𝑟, 𝑡) = 𝑟𝑢 (𝑟, 𝑡), hence 𝑢 (𝑟, 𝑡) = 𝑣
𝑟 and therefore

𝑢 (𝑟, 𝑡) = 2𝑢0 �
(𝑟 − 1)
𝑟

+
2
𝜋𝑟

∞
�
𝑛=1

(−1)𝑛

𝑛
𝑒−𝑛2𝜋2𝑘𝑡 sin (𝑛𝜋 (𝑟 − 1))�

= 2𝑢0 ��1 −
1
𝑟�
+
2
𝜋𝑟

∞
�
𝑛=1

(−1)𝑛

𝑛
𝑒−𝑛2𝜋2𝑘𝑡 sin (𝑛𝜋 (𝑟 − 1))�

Which is the result required.
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2.6.4 Section 42, Problem 4

Figure 2.68: Problem statement

Solution

Using method of eigenfunction expansion (or method of variation of parameters as the
book calls it), we start by assuming the solution to the PDE 𝑢𝑡 = 𝑘𝑢𝑥𝑥 + 𝑞 (𝑥, 𝑡) is given by

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑎𝑛 (𝑡) Φ𝑛 (𝑥) (1)

Where Φ𝑛 (𝑥) are the eigenfunctions associated with the homogeneous PDE 𝑢𝑡 = 𝑘𝑢𝑥𝑥 with
the homogeneous boundary conditions 𝑢 (0, 𝑡) = 0 and 𝑢 (𝑐, 𝑡) = 0. But we solved this
homogeneous PDE before. It has eigenvalues and corresponding eigenfunctions

𝜆𝑛 = �
𝑛𝜋
𝑐
�
2

𝑛 = 1, 2, 3,⋯

Φ𝑛 (𝑥) = sin ��𝜆𝑛𝑥�
Substituting (1) into the original PDE 𝑢𝑡 = 𝑘𝑢𝑥𝑥 + 𝑞 (𝑥, 𝑡) results in

𝜕
𝜕𝑡

∞
�
𝑛=1

𝑎𝑛 (𝑡) Φ𝑛 (𝑥) = 𝑘
𝜕2

𝜕𝑥2
∞
�
𝑛=1

𝑎𝑛 (𝑡) Φ𝑛 (𝑥) + 𝑞 (𝑥, 𝑡)

∞
�
𝑛=1

𝑎′𝑛 (𝑡) Φ𝑛 (𝑥) = 𝑘
∞
�
𝑛=1

𝑎𝑛 (𝑡) Φ ′′
𝑛 (𝑥) + 𝑞 (𝑥, 𝑡)

But from the Sturm-Liouville ODE, we know that Φ ′′
𝑛 (𝑥) + 𝜆𝑛Φ𝑛 (𝑥) = 0. Hence Φ ′′

𝑛 (𝑥) =
−𝜆𝑛Φ𝑛 (𝑥) and the above reduces to

∞
�
𝑛=1

𝑎′𝑛 (𝑡) Φ𝑛 (𝑥) = −𝑘
∞
�
𝑛=1

𝑎𝑛 (𝑡) 𝜆𝑛Φ𝑛 (𝑥) + 𝑞 (𝑥, 𝑡) (2)

Since the eigenfunctions Φ𝑛 (𝑥) are complete, we can expand 𝑞 (𝑥, 𝑡) using them. Therefore

𝑞 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑏𝑛 (𝑡) Φ𝑛 (𝑥)

Substituting the above back in (2) gives
∞
�
𝑛=1

𝑎′𝑛 (𝑡) Φ𝑛 (𝑥) = −𝑘
∞
�
𝑛=1

𝑎𝑛 (𝑡) 𝜆𝑛Φ𝑛 (𝑥) +
∞
�
𝑛=1

𝑏𝑛 (𝑡) Φ𝑛 (𝑥)

Since Φ𝑛 (𝑥) are never zero, we can simplify the above to

𝑎′𝑛 (𝑡) = −𝑘𝑎𝑛 (𝑡) 𝜆𝑛 + 𝑏𝑛 (𝑡)
𝑎′𝑛 (𝑡) + 𝑘𝑎𝑛 (𝑡) 𝜆𝑛 = 𝑏𝑛 (𝑡)

The above is first order ODE in 𝐼𝑛 (𝑡). It is linear ODE. The integrating factor is 𝜇 =
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𝑒∫𝑘𝜆𝑛𝑑𝑡 = 𝑒𝑘𝜆𝑛𝑡. Multiplying the above ODE by this integrating factor gives

𝑑
𝑑𝑡
�𝑎𝑛 (𝑡) 𝑒𝑘𝜆𝑛𝑡� = 𝑏𝑛 (𝑡) 𝑒𝑘𝜆𝑛𝑡

Integrating both sides

𝑎𝑛 (𝑡) 𝑒𝑘𝜆𝑛𝑡 = �
𝑡

0
𝑏𝑛 (𝜏) 𝑒𝑘𝜆𝑛𝜏𝑑𝜏

𝑎𝑛 (𝑡) = �
𝑡

0
𝑏𝑛 (𝜏) 𝑒−𝑘𝜆𝑛(𝑡−𝜏)𝑑𝜏

Now that we found 𝑎𝑛 (𝑡), we substitute it back into (1) which gives

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

��
𝑡

0
𝑏𝑛 (𝜏) 𝑒−𝑘𝜆𝑛(𝑡−𝜏)𝑑𝜏�Φ𝑛 (𝑥) (3)

What is left is to find 𝑏𝑛 (𝑡). Since 𝑞 (𝑥, 𝑡) = ∑∞
𝑛=1 𝑏𝑛 (𝑡) Φ𝑛 (𝑥), then by orthogonality we

obtain

�
𝑐

0
𝑞 (𝑥, 𝑡) Φ𝑚 (𝑥) 𝑑𝑥 = �

𝑐

0

∞
�
𝑛=1

𝑏𝑛 (𝑡) Φ𝑛 (𝑥)Φ𝑚 (𝑥) 𝑑𝑥

=
∞
�
𝑛=1

𝑏𝑛 (𝑡)�
𝑐

0
Φ𝑛 (𝑥)Φ𝑚 (𝑥) 𝑑𝑥

= 𝑏𝑚 (𝑡)�
𝑐

0
Φ2
𝑚 (𝑥) 𝑑𝑥

= 𝑏𝑚 (𝑡)
𝑐
2

Hence

𝑏𝑛 (𝑡) =
2
𝑐 �

𝑐

0
𝑞 (𝑥, 𝑡) Φ𝑚 (𝑥) 𝑑𝑥

Substituting this back into (3) gives

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

��
𝑡

0
𝑒−𝑘𝜆𝑛(𝑡−𝜏)

2
𝑐 ��

𝑐

0
𝑞 (𝑥, 𝜏)Φ𝑚 (𝑥) 𝑑𝑥� 𝑑𝜏�Φ𝑛 (𝑥)

=
2
𝑐

∞
�
𝑛=1

��
𝑡

0
𝑒−𝑘𝜆𝑛(𝑡−𝜏) ��

𝑐

0
𝑞 (𝑥, 𝜏)Φ𝑚 (𝑥) 𝑑𝑥� 𝑑𝜏�Φ𝑛 (𝑥) (4)

If we let

𝐼𝑛 (𝑡) = �
𝑡

0
𝑒−𝑘𝜆𝑛(𝑡−𝜏) ��

𝑐

0
𝑞 (𝑥, 𝜏)Φ𝑚 (𝑥) 𝑑𝑥� 𝑑𝜏

Then (4) becomes

𝑢 (𝑥, 𝑡) =
2
𝑐

∞
�
𝑛=1

𝐼𝑛 (𝑡) Φ𝑛 (𝑥)

Since Φ𝑛 (𝑥) = sin �𝑛𝜋𝑐 𝑥� then the above is

𝑢 (𝑥, 𝑡) =
2
𝑐

∞
�
𝑛=1

𝐼𝑛 (𝑡) sin �
𝑛𝜋
𝑐
𝑥�

Which is what required to show.

2.6.5 Section 42, Problem 5

Figure 2.69: Problem statement

Solution
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The solution in problem 4 above us

𝑢 (𝑥, 𝑡) =
2
𝑐

∞
�
𝑛=1

𝐼𝑛 (𝑡) sin �
𝑛𝜋
𝑐
𝑥� (1)

Where

𝐼𝑛 (𝑡) = �
𝑡

0
𝑒−𝑘𝜆𝑛(𝑡−𝜏) ��

𝑐

0
𝑞 (𝑥, 𝜏) sin �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥� 𝑑𝜏

And 𝜆𝑛 = �
𝑛𝜋
𝑐
�
2
. Let 𝑐 = 1, 𝑘 = 1 and 𝑞 (𝑥, 𝑡) = 𝑥𝑝 (𝑡), then the above becomes

𝐼𝑛 (𝑡) = �
𝑡

0
𝑒−𝑛2𝜋2(𝑡−𝜏) ��

1

0
𝑥𝑝 (𝜏) sin (𝑛𝜋𝑥) 𝑑𝑥� 𝑑𝜏

Substituting this in (1), using 𝑐 = 1, then (1) becomes

𝑢 (𝑥, 𝑡) = 2
∞
�
𝑛=1

��
𝑡

0
𝑒−𝑛2𝜋2(𝑡−𝜏) ��

1

0
𝑥𝑝 (𝜏) sin (𝑛𝜋𝑥) 𝑑𝑥� 𝑑𝜏� sin (𝑛𝜋𝑥)

= 2
∞
�
𝑛=1

��
𝑡

0
𝑝 (𝜏) 𝑒−𝑛2𝜋2(𝑡−𝜏) ��

1

0
𝑥 sin (𝑛𝜋𝑥) 𝑑𝑥� 𝑑𝜏� sin (𝑛𝜋𝑥) (2)

But ∫
1

0
𝑥 sin (𝑛𝜋𝑥) 𝑑𝑥 can now be integrated by parts. Let 𝑢 = 𝑥, 𝑑𝑣 = sin (𝑛𝜋𝑥), hence

𝑑𝑢 = 1, 𝑣 = − cos(𝑛𝜋𝑥)
𝑛𝜋 and therefore

�
1

0
𝑥 sin (𝑛𝜋𝑥) 𝑑𝑥 = −

1
𝑛𝜋

[𝑥 cos (𝑛𝜋𝑥)]10 +
1
𝑛𝜋 �

1

0
cos (𝑛𝜋𝑥) 𝑑𝑥

= −
1
𝑛𝜋

cos (𝑛𝜋) +
1
𝑛𝜋 �

sin (𝑛𝜋𝑥)
𝑛𝜋 �

1

0

= −
1
𝑛𝜋

(−1)𝑛 +
1

𝑛2𝜋2
[sin (𝑛𝜋)]

=
(−1)𝑛+1

𝑛𝜋
Substituting this back in (2) gives

𝑢 (𝑥, 𝑡) = 2
∞
�
𝑛=1

⎛
⎜⎜⎜⎝�

𝑡

0
𝑝 (𝜏) 𝑒−𝑛2𝜋2(𝑡−𝜏)

⎛
⎜⎜⎜⎝
(−1)𝑛+1

𝑛𝜋

⎞
⎟⎟⎟⎠ 𝑑𝜏

⎞
⎟⎟⎟⎠ sin (𝑛𝜋𝑥)

=
2
𝜋

∞
�
𝑛=1

(−1)𝑛+1

𝑛
sin (𝑛𝜋𝑥) ��

𝑡

0
𝑝 (𝜏) 𝑒−𝑛2𝜋2(𝑡−𝜏)𝑑𝜏�

Which is the solution for problem 1.

2.6.6 Section 42, Problem 8

75



2.6. HW 6 CHAPTER 2. HWS

Figure 2.70: Problem statement

Solution

The PDE to solve is

𝑢𝑡 = 𝑘𝑢𝑥𝑥 + 𝑎𝑥2

With boundary conditions

𝑢𝑥 (0, 𝑡) = 0
𝑢𝑥 (𝑐, 𝑡) = 0

And initial conditions

𝑢 (𝑥, 0) = 0
Using method of eigenfunction expansion, we start by assuming the solution to the PDE

𝑢𝑡 = 𝑘𝑢𝑥𝑥 + 𝑎𝑥2 is given by

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=0

𝑎𝑛 (𝑡) Φ𝑛 (𝑥) (1)

Where Φ𝑛 (𝑥) are the eigenfunctions associated with the homogeneous PDE 𝑢𝑡 = 𝑘𝑢𝑥𝑥 with
the homogeneous boundary conditions 𝑢𝑥 (0, 𝑡) = 0 and 𝑢𝑥 (𝑐, 𝑡) = 0. But we solved this
homogeneous PDE before. It has eigenvalues and corresponding eigenfunctions

𝜆0 = 0
Φ0 (𝑥) = 1

𝜆𝑛 =
𝑛2𝜋2

𝑐2
𝑛 = 1, 2, 3,⋯

Φ𝑛 (𝑥) = cos �
𝑛𝜋
𝑐
𝑥�

Substituting (1) into the original PDE 𝑢𝑡 = 𝑘𝑢𝑥𝑥 + 𝑎𝑥2 results in
𝜕
𝜕𝑡

∞
�
𝑛=0

𝑎𝑛 (𝑡) Φ𝑛 (𝑥) = 𝑘
𝜕2

𝜕𝑥2
∞
�
𝑛=0

𝑎𝑛 (𝑡) Φ𝑛 (𝑥) + 𝑎𝑥2

∞
�
𝑛=0

𝑎′𝑛 (𝑡) Φ𝑛 (𝑥) = 𝑘
∞
�
𝑛=0

𝑎𝑛 (𝑡) Φ ′′
𝑛 (𝑥) + 𝑎𝑥2

But from the Sturm-Liouville ODE, we know that Φ ′′
𝑛 (𝑥) + 𝜆𝑛Φ𝑛 (𝑥) = 0. Hence Φ ′′

𝑛 (𝑥) =
−𝜆𝑛Φ𝑛 (𝑥) and the above reduces to

∞
�
𝑛=0

𝑎′𝑛 (𝑡) Φ𝑛 (𝑥) = −𝑘
∞
�
𝑛=0

𝑎𝑛 (𝑡) 𝜆𝑛Φ𝑛 (𝑥) + 𝑎𝑥2 (2)

Since the eigenfunctions Φ𝑛 (𝑥) are complete, we can expand 𝑎𝑥2 using them. Therefore

𝑎𝑥2 =
∞
�
𝑛=0

𝑏𝑛 (𝑥)Φ𝑛 (𝑥)

Substituting the above back in (2) gives
∞
�
𝑛=0

𝑎′𝑛 (𝑡) Φ𝑛 (𝑥) = −𝑘
∞
�
𝑛=0

𝑎𝑛 (𝑡) 𝜆𝑛Φ𝑛 (𝑥) +
∞
�
𝑛=0

𝑏𝑛 (𝑥)Φ𝑛 (𝑥)

Since Φ𝑛 (𝑥) are never zero, we can simplify the above to

𝑎′𝑛 (𝑡) = −𝑘𝑎𝑛 (𝑡) 𝜆𝑛 + 𝑏𝑛 (𝑥)
𝑎′𝑛 (𝑡) + 𝑘𝑎𝑛 (𝑡) 𝜆𝑛 = 𝑏𝑛 (𝑥)

The above is first order ODE in 𝐼𝑛 (𝑡). It is linear ODE. The integrating factor is 𝜇 =
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𝑒∫𝑘𝜆𝑛𝑑𝑡 = 𝑒𝑘𝜆𝑛𝑡. Multiplying the above ODE by this integrating factor gives

𝑑
𝑑𝑡
�𝑎𝑛 (𝑡) 𝑒𝑘𝜆𝑛𝑡� = 𝑏𝑛 (𝑥) 𝑒𝑘𝜆𝑛𝑡

Integrating both sides

𝑎𝑛 (𝑡) 𝑒𝑘𝜆𝑛𝑡 = 𝑏𝑛 (𝑥)�
𝑡

0
𝑒𝑘𝜆𝑛𝜏𝑑𝜏

𝑎𝑛 (𝑡) = 𝑏𝑛 (𝑥)�
𝑡

0
𝑒−𝑘𝜆𝑛(𝑡−𝜏)𝑑𝜏 (3)

What is left is to find 𝑏𝑛 (𝑥). Since 𝑎𝑥2 = ∑
∞
𝑛=0 𝑏𝑛 (𝑥)Φ𝑛 (𝑥), and from example 1 section 8,

we found that

𝑏0 (𝑥) = 𝑎
𝑐2

3

𝑏𝑛 (𝑥) = 𝑎
4𝑐2

𝜋2
(−1)𝑛

𝑛2
𝑛 = 1, 2, 3,⋯

Hence when 𝑛 = 0, then (3) becomes (since 𝜆0 = 0)

𝑎0 (𝑡) = 𝑎
𝑐2

3 �
𝑡

0
𝑑𝜏

=
𝑎𝑐2

3
𝑡

When 𝑛 > 0 then (3) becomes

𝑎𝑛 (𝑡) = �𝑎
4𝑐2

𝜋2
(−1)𝑛

𝑛2 ��
𝑡

0
𝑒−𝑘𝜆𝑛(𝑡−𝜏)𝑑𝜏

=
(−1)𝑛

𝑛2
4𝑎𝑐2

𝜋2 �
𝑡

0
𝑒−𝑘�

𝑛𝜋
𝑐 �

2
(𝑡−𝜏)𝑑𝜏

=
(−1)𝑛

𝑛2
4𝑎𝑐2

𝜋2
𝑒−𝑘�

𝑛𝜋
𝑐 �

2
𝑡�

𝑡

0
𝑒𝑘�

𝑛𝜋
𝑐 �

2
𝜏𝑑𝜏

=
(−1)𝑛

𝑛2
4𝑎𝑐2

𝜋2
𝑒−𝑘�

𝑛𝜋
𝑐 �

2
𝑡

⎡
⎢⎢⎢⎢⎢⎢⎣
𝑒𝑘�

𝑛𝜋
𝑐 �

2
𝜏

𝑘 �𝑛𝜋𝑐 �
2

⎤
⎥⎥⎥⎥⎥⎥⎦

𝑡

0

=
(−1)𝑛

𝑛2
4𝑎𝑐2

𝜋2
𝑒−𝑘�

𝑛𝜋
𝑐 �

2
𝑡

𝑘 �𝑛𝜋𝑐 �
2 �𝑒

𝑘� 𝑛𝜋𝑐 �
2
𝑡 − 1�

=
(−1)𝑛

𝑛2
4𝑎𝑐2

𝜋2
1 − 𝑒−𝑘�

𝑛𝜋
𝑐 �

2
𝑡

𝑘𝑛
2𝜋2

𝑐2

=
(−1)𝑛

𝑛4
4𝑎𝑐4

𝑘𝜋4 �
1 − 𝑒−𝑘�

𝑛𝜋
𝑐 �

2
𝑡�

Now that we found 𝑎𝑛 (𝑡), we substitute it back into (1) which gives

𝑢 (𝑥, 𝑡) = 𝑎0 (𝑡) +
∞
�
𝑛=1

𝑎𝑛 (𝑡) Φ𝑛 (𝑥)

𝑢 (𝑥, 𝑡) =
𝑎𝑐2

3
𝑡 +

∞
�
𝑛=1

(−1)𝑛

𝑛4
4𝑎𝑐4

𝑘𝜋4 �
1 − 𝑒−𝑘�

𝑛𝜋
𝑐 �

2
𝑡� cos �

𝑛𝜋
𝑐
𝑥�

=
𝑎𝑐2

3
𝑡 +

4𝑎𝑐4

𝑘𝜋4
∞
�
𝑛=1

(−1)𝑛

𝑛4 �1 − 𝑒−𝑘
� 𝑛𝜋𝑐 �

2
𝑡� cos �

𝑛𝜋
𝑐
𝑥�

= 𝑎𝑐2 �
𝑡
3
+
4𝑐2

𝑘𝜋4
∞
�
𝑛=1

(−1)𝑛

𝑛4 �1 − 𝑒−𝑘
� 𝑛𝜋𝑐 �

2
𝑡� cos �

𝑛𝜋
𝑐
𝑥��

Which is the result required to show.

77



2.6. HW 6 CHAPTER 2. HWS

2.6.7 Section 43, Problem 1

Figure 2.71: Problem statement

Solution

x

y

∇2u = 0

π

π

ux(π, y) = 0ux(0, y) = 0

u(x, 0) = 0

u(x, π) = f(x)

Figure 2.72: PDE and boundary conditions

Let 𝑢 �𝑥, 𝑦� = 𝑋 (𝑥) 𝑌 �𝑦�. The PDE becomes

𝑋′′𝑌 + 𝑌′′𝑋 = 0
𝑋′′

𝑋
= −

𝑌′′

𝑌
= −𝜆

Hence the eigenvalue problem is

𝑋′′ + 𝜆𝑋 = 0 (1)

𝑋′ (0) = 0
𝑋′ (𝜋) = 0

And the ODE for 𝑌 �𝑦� is
𝑌′′ − 𝜆𝑌 = 0

We start by solving (1) to find the eigenvalues and eigenfunctions.

Case 𝜆 < 0 The solution is

𝑋 = 𝐴 cosh �√−𝜆𝑥� + 𝐵 sinh �√−𝜆𝑥�

𝑋′ = 𝐴√−𝜆 sinh �√−𝜆𝑥� + 𝐵√−𝜆 cosh �√−𝜆𝑥�
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At 𝑥 = 0 the above becomes

0 = 𝐵√−𝜆
Hence 𝐵 = 0 and the solution becomes

𝑋 = 𝐴 cosh �√−𝜆𝑥�

𝑋′ = 𝐴√−𝜆 sinh �√−𝜆𝑥�

At 𝑥 = 𝜋 the above gives

0 = 𝐴√−𝜆 sinh �√−𝜆𝜋�

For nontrivial solution sinh �√−𝜆𝜋� = 0 but this is not possible since sinh is zero only
when its argument is zero and this is not the case here. Hence 𝜆 < 0 is not eigenvalue.

Case 𝜆 = 0 The solution is

𝑋 = 𝐴𝑥 + 𝐵
𝑋′ = 𝐴

At 𝑥 = 0 the above becomes

0 = 𝐴
Hence the solution becomes

𝑋 = 𝐵
𝑋′ = 0

At 𝑥 = 𝜋 the above gives

0 = 0
Therefore 𝜆 = 0 is eigenvalue with 𝑋0 (𝑥) = 1.

Case 𝜆 > 0 The solution is

𝑋 = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

𝑋′ = −𝐴√𝜆 sin �√𝜆𝑥� + 𝐵√𝜆 cos �√𝜆𝑥�

At 𝑥 = 0 the above becomes

0 = 𝐵√𝜆
Hence 𝐵 = 0 and the solution becomes

𝑋 = 𝐴 cos �√𝜆𝑥�

𝑋′ = −𝐴√𝜆 sin �√𝜆𝑥�

At 𝑥 = 𝜋 the above gives

0 = −𝐴√𝜆 sin �√𝜆𝜋�

For nontrivial solution

sin �√𝜆𝜋� = 0

√𝜆𝜋 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯
𝜆𝑛 = 𝑛2

And the corresponding eigenfunctions 𝑋𝑛 (𝑥) = cos (𝑛𝑥). Therefore in summary we have

eigenvalue eigenfunction

𝜆0 = 0 1
𝜆𝑛 = 𝑛2 𝑛 = 1, 2, 3,⋯ cos (𝑛𝑥)
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Hence the 𝑌 �𝑦� ode becomes

𝑌′′ − 𝜆𝑛𝑌 = 0
𝑌′′ − 𝑛2𝑌 = 0

The solution to the above is, when 𝑛 = 0
𝑌0 = 𝐴0𝑦 + 𝐵0

When 𝑦 = 0 the above gives 0 = 𝐵0. Hence 𝑌0 = 𝐴0𝑦.

When 𝑛 > 0

𝑌𝑛 �𝑦� = 𝐵𝑛 cosh �𝑛𝑦� + 𝐴𝑛 sinh �𝑛𝑦�
When 𝑦 = 0 the above gives 0 = 𝐵𝑛, Hence

𝑌𝑛 �𝑦� = 𝐴𝑛 sinh �𝑛𝑦�
Hence the fundamental solution is

𝑢 �𝑥, 𝑦� = 𝑋𝑛𝑌𝑛
And the general solution is the superposition of these solutions

𝑢 �𝑥, 𝑦� = 𝐴0𝑋0𝑌0 +
∞
�
𝑛=1

𝐴𝑛𝑌𝑛𝑋𝑛

Therefore

𝑢 �𝑥, 𝑦� = 𝐴0𝑦 +
∞
�
𝑛=1

𝐴𝑛 sinh �𝑛𝑦� cos (𝑛𝑥) (A)

What is left is to determine 𝐴0 and 𝐴𝑛. At 𝑦 = 𝜋 the above gives

𝑓 (𝑥) = 𝐴0𝜋 +
∞
�
𝑛=1

𝐴𝑛 sinh (𝑛𝜋) cos (𝑛𝑥)

Multiplying both sides by cos (𝑚𝑥) and integrating gives

�
𝜋

0
𝑓 (𝑥) cos (𝑚𝑥) 𝑑𝑥 = �

𝜋

0
𝐴0𝜋 cos (𝑚𝑥) 𝑑𝑥 +�

𝜋

0

∞
�
𝑛=1

𝐴𝑛 sinh (𝑛𝜋) cos (𝑛𝑥) cos (𝑚𝑥) 𝑑𝑥 (1)

For 𝑚 = 0, (1) becomes

�
𝜋

0
𝑓 (𝑥) 𝑑𝑥 = �

𝜋

0
𝐴0𝜋𝑑𝑥

�
𝜋

0
𝑓 (𝑥) 𝑑𝑥 = 𝐴0𝜋2

𝐴0 =
1
𝜋2 �

𝜋

0
𝑓 (𝑥) 𝑑𝑥 (2)

For 𝑚 > 0, (1) becomes

�
𝜋

0
𝑓 (𝑥) cos (𝑚𝑥) 𝑑𝑥 = �

𝜋

0

∞
�
𝑛=1

𝐴𝑛 sinh (𝑛𝜋) cos (𝑛𝑥) cos (𝑚𝑥) 𝑑𝑥

�
𝜋

0
𝑓 (𝑥) cos (𝑚𝑥) 𝑑𝑥 = 𝐴𝑚 sinh (𝑚𝜋)�

𝜋

0
cos2 (𝑛𝑥) 𝑑𝑥

= 𝐴𝑚 sinh (𝑚𝜋)
𝜋
2

Hence

𝐴𝑛 =
2

𝜋 sinh (𝑛𝜋) �
𝜋

0
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥 (3)

When 𝑓 (𝑥) = 𝑢0 a constant, then (2) becomes

𝐴0 =
1
𝜋2 �

𝜋

0
𝑢0𝑑𝑥

=
𝑢0
𝜋
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And (3) becomes

𝐴𝑛 =
2

𝜋 sinh (𝑛𝜋) �
𝜋

0
𝑢0 cos (𝑛𝑥) 𝑑𝑥

=
2𝑢0

𝜋 sinh (𝑛𝜋) �
sin (𝑛𝑥)
𝑛 �

𝜋

0
= 0

Hence the solution (A) becomes

𝑢 �𝑥, 𝑦� = 𝑢0
𝑦
𝜋

This shows the final solution changes linearly in 𝑦. When 𝑦 = 0 then 𝑢 (𝑥, 0) = 0 and when
𝑦 = 𝜋, then 𝑢 (𝑥, 𝜋) = 𝑢0.

2.6.8 Section 44, Problem 2

Figure 2.73: Problem statement

Solution

The PDE ∇ 2𝑢 �𝜌, 𝜙� = 0 in polar coordinates is

𝑢𝜌𝜌 +
1
𝜌
𝑢𝜌 +

1
𝜌2
𝑢𝜙𝜙 = 0

For 0 < 𝜌 < 𝑎 and 0 < 𝜙 < 𝛼. With boundary conditions

𝑢 �𝜌, 0� = 0

𝑢 �𝜌, 𝛼� = 0

𝑢 �𝑎, 𝜙� = 𝑓 �𝜙�

And since 𝑢 is bounded, then we have an extra condition 𝑢 �0, 𝜙� < ∞.

Let 𝑢 �𝜌, 𝜙� = 𝑅 �𝜌�Φ �𝜙�. Substituting into the above PDE gives

𝑅′′Φ +
1
𝜌
𝑅′Φ +

1
𝜌2
Φ ′′𝑅 = 0

𝑅′′

𝑅
+
1
𝜌
𝑅′

𝑅
+
1
𝜌2
Φ ′′

Φ
= 0

Φ ′′

Φ
= − �𝜌2

𝑅′′

𝑅
+ 𝜌

𝑅′

𝑅 �
= −𝜆
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Where 𝜆 is the separation constant. The above gives the boundary values problem to solve
for 𝜆

Φ ′′ + 𝜆Φ = 0 (1)

Φ (0) = 0
Φ (𝛼) = 0

And

𝜌2
𝑅′′

𝑅
+ 𝜌

𝑅′

𝑅
= 𝜆

𝜌2𝑅′′ + 𝜌𝑅′ − 𝜆𝑅 = 0 (2)

We start with (1) to find 𝜆 then use the result to solve (2). The ODE (1) we solved before,
it has the eigenvalues

𝜆𝑛 = �
𝑛𝜋
𝛼
�
2

𝑛 = 1, 2, 3,⋯

And corresponding eigenfunctions

Φ𝑛 �𝜙� = sin �
𝑛𝜋
𝛼
𝜙� (3)

Now (2) can be solved. This is a Euler ODE. Using 𝑅 �𝜌� = 𝜌𝑚 and substituting into (2)
gives

𝜌2𝑚 (𝑚 − 1) 𝜌𝑚−2 + 𝜌𝑚𝜌𝑚−1 − �
𝑛𝜋
𝛼
�
2
𝜌𝑚 = 0

𝑚 (𝑚 − 1) 𝜌𝑚 + 𝑚𝜌𝑚 − �
𝑛𝜋
𝛼
�
2
𝜌𝑚 = 0

𝑚 (𝑚 − 1) + 𝑚 − �
𝑛𝜋
𝛼
�
2
= 0

𝑚2 = �
𝑛𝜋
𝛼
�
2

Hence

𝑚 = ±
𝑛𝜋
𝛼

Therefore the solution to (2) is

𝑅𝑛 �𝜌� = 𝐴𝑛𝜌
𝑛𝜋
𝛼 + 𝐵𝑛𝜌

−𝑛𝜋
𝛼

We immediately reject the solution 𝜌
−𝑛𝜋
𝛼 since this blows up at origin where 𝜌 → 0. Hence

the above becomes

𝑅𝑛 �𝜌� = 𝐴𝑛𝜌
𝑛𝜋
𝛼 (4)

Now that we found Φ𝑛 �𝜙� and 𝑅𝑛 �𝜌�, then we use superposition to obtain the general
solution

𝑢 �𝜌, 𝜙� =
∞
�
𝑛=1

𝑅𝑛 �𝜌�Φ𝑛 �𝜙�

=
∞
�
𝑛=1

𝐴𝑛𝜌
𝑛𝜋
𝛼 sin �

𝑛𝜋
𝛼
𝜙� (5)

At 𝜌 = 𝑎, 𝑢 �𝑎, 𝜙� = 𝑓 �𝜙�, hence the above becomes

𝑓 �𝜙� =
∞
�
𝑛=1

𝐴𝑛𝑎
𝑛𝜋
𝛼 sin �

𝑛𝜋
𝛼
𝜙�

By orthogonality we obtain

�
𝛼

0
𝑓 �𝜙� sin �

𝑚𝜋
𝛼
𝜙� 𝑑𝜙 = �

𝛼

0

∞
�
𝑛=1

𝐴𝑛𝑎
𝑛𝜋
𝛼 sin �

𝑛𝜋
𝛼
𝜙� sin �

𝑚𝜋
𝛼
𝜙� 𝑑𝜙

= 𝐴𝑚𝑎
𝑚𝜋
𝛼 �

𝛼

0
sin2 �

𝑚𝜋
𝛼
𝜙� 𝑑𝜙

= 𝐴𝑚𝑎
𝑚𝜋
𝛼
𝛼
2
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Solving for 𝐴𝑛 from the above gives

𝐴𝑛 =
2
𝛼
𝑎
−𝑛𝜋
𝛼 �

𝛼

0
𝑓 �𝜙� sin �

𝑛𝜋
𝛼
𝜙� 𝑑𝜙

Substituting the above in (5) gives the final solution

𝑢 �𝜌, 𝜙� =
∞
�
𝑛=1

�
2
𝛼
𝑎
−𝑛𝜋
𝛼 �

𝛼

0
𝑓 �𝜓� sin �

𝑛𝜋
𝛼
𝜓� 𝑑𝜓� 𝜌

𝑛𝜋
𝛼 sin �

𝑛𝜋
𝛼
𝜙�

=
2
𝛼

∞
�
𝑛=1

�
𝜌
𝑎
�
𝑛𝜋
𝛼

sin �
𝑛𝜋
𝛼
𝜙� ��

𝛼

0
𝑓 �𝜓� sin �

𝑛𝜋
𝛼
𝜓� 𝑑𝜓�

2.6.9 Section 49, Problem 2

Figure 2.74: Problem statement

Solution

𝑢𝑡 = 𝑘𝑢𝑥𝑥
With −𝜋 < 𝑥 < 𝜋, 𝑡 > 0 and periodic boundary conditions

𝑢 (−𝜋, 𝑡) = 𝑢 (𝜋, 𝑡)
𝑢𝑥 (−𝜋, 𝑡) = 𝑢𝑥 (𝜋, 𝑡)

And initial conditions

𝑢 (𝑥, 0) = 𝑓 (𝑥)
Normal process of separation of variables leads to eigenvalue problem

𝑋′′ + 𝜆𝑋 = 0 (1)

𝑋 (−𝜋) = 𝑋 (𝜋)
𝑋′ (−𝜋) = 𝑋′ (𝜋)
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And the time ODE

𝑇′ + 𝑘𝜆𝑇 = 0 (2)

We start by solving (1) to find the eigenvalues and eigenfunctions.

Case 𝜆 < 0

Solution is

𝑋 (𝑥) = 𝐴 cosh �√−𝜆𝑥� + 𝐵 sinh �√−𝜆𝑥�

𝑋′ (𝑥) = 𝐴√−𝜆 sinh �√−𝜆𝑥� + 𝐵√−𝜆 cosh �√−𝜆𝑥�

The boundary conditions 𝑋 (−𝜋) = 𝑋 (𝜋) results in (using the fact that cosh is even and
sinh is odd)

𝐴 cosh �√−𝜆𝜋� + 𝐵 sinh �√−𝜆𝜋� = 𝐴 cosh �√−𝜆𝜋� − 𝐵 sinh �√−𝜆𝜋�

𝐵 sinh �√−𝜆𝜋� = −𝐵 sinh �√−𝜆𝜋�

𝐵 sinh �√−𝜆𝜋� = 0 (3)

The boundary conditions 𝑋′ (−𝜋) = 𝑋′ (𝜋) results in (using the fact that cosh is even and
sinh is odd)

𝐴√−𝜆 sinh �√−𝜆𝜋� + 𝐵√−𝜆 cosh �√−𝜆𝜋� = −𝐴√−𝜆 sinh �√−𝜆𝜋� + 𝐵√−𝜆 cosh �√−𝜆𝜋�

𝐴√−𝜆 sinh �√−𝜆𝜋� = −𝐴√−𝜆 sinh �√−𝜆𝜋�

𝐴 sinh �√−𝜆𝜋� = 0 (4)

So we obtain (3,4) equations, here they are again

𝐵 sinh �√−𝜆𝜋� = 0

𝐴 sinh �√−𝜆𝜋� = 0

There are two possibility, either sinh �√−𝜆𝜋� = 0 or sinh �√−𝜆𝜋� ≠ 0. If sinh �√−𝜆𝜋� ≠ 0
then this leads to trivial solution, as it implies that both 𝐴 = 0 and 𝐵 = 0. On the other
hand, if sinh �√−𝜆𝜋� = 0 then this implies that √−𝜆𝜋 = 0 since sinh is only zero when its
argument is zero which is not the case here. This implies that 𝜆 < 0 is not possible.

Case 𝜆 = 0

The solution now becomes 𝑋 (𝑥) = 𝐴𝑥 + 𝐵. Satisfying the boundary conditions 𝑋 (−𝜋) =
𝑋 (𝜋) gives

𝐴𝜋 + 𝐵 = −𝐴𝜋 + 𝐵
2𝐴𝜋 = 0
𝐴 = 0

Hence the solution becomes

𝑋 (𝑥) = 𝐵
𝑋′ = 0

Satisfying the boundary conditions 𝑋′ (−𝜋) = 𝑋′ (𝜋) gives 0 = 0. Hence 𝜆 = 0 is possible
eigenvalue, with corresponding eigenfunction as constant, say 1.

Case 𝜆 > 0

Solution is

𝑋 (𝑥) = 𝐴 cos �√𝜆𝑥� + 𝐵 sin �√𝜆𝑥�

𝑋′ (𝑥) = −𝐴√𝜆 sin �√𝜆𝑥� + 𝐵√𝜆 cos �√𝜆𝑥�

The boundary conditions 𝑋 (−𝜋) = 𝑋 (𝜋) results in (using the fact that cos is even and sin

84



2.6. HW 6 CHAPTER 2. HWS

is odd)

𝐴 cos �√𝜆𝜋� + 𝐵 sin �√𝜆𝜋� = 𝐴 cos �√𝜆𝜋� − 𝐵 sin �√𝜆𝜋�

𝐵 sin �√𝜆𝜋� = −𝐵 sin �√𝜆𝜋�

𝐵 sin �√𝜆𝜋� = 0 (5)

The boundary conditions 𝑋′ (−𝜋) = 𝑋′ (𝜋) results in (using the fact that cosh is even and
sinh is odd)

−𝐴√𝜆 sin �√𝜆𝜋� + 𝐵√𝜆 cos �√𝜆𝜋� = 𝐴√𝜆 sin �√𝜆𝜋� + 𝐵√𝜆 cos �√𝜆𝜋�

−𝐴√𝜆 sin �√𝜆𝜋� = 𝐴√𝜆 sin �√𝜆𝜋�

𝐴 sin �√𝜆𝜋� = 0 (6)

So we obtain (5,6) equations, here they are again

𝐵 sin �√𝜆𝜋� = 0

𝐴 sin �√𝜆𝜋� = 0

There are two possibility, either sin �√𝜆𝜋� = 0 or sin �√𝜆𝜋� ≠ 0. If sin �√𝜆𝜋� ≠ 0 then

this leads to trivial solution, as it implies that both 𝐴 = 0 and 𝐵 = 0. If sin �√𝜆𝜋� = 0 then
this implies that √𝜆𝜋 = 𝑛𝜋 where 𝑛 = 1, 2, 3,⋯. Hence 𝜆 > 0 is possible with eigenvalues
and corresponding eigenfunctions given by

𝜆𝑛 = 𝑛2 𝑛 = 1, 2, 3,⋯
𝑋𝑛 (𝑥) = 𝐴𝑛 cos (𝑛𝑥) + 𝐵𝑛 sin (𝑛𝑥)

Now that we solved the eigenvalue problem (1), we use the eigenvalues found to solve the
time ODE (2)

𝑇′ + 𝑘𝜆𝑛𝑇 = 0
When 𝜆 = 0, this becomes 𝑇′ = 0 or 𝑇0 (𝑡) is constant. When 𝜆 > 0 the solution is

𝑇𝑛 (𝑡) = 𝑒−𝑘𝜆𝑛𝑡

= 𝑒−𝑘𝑛2𝑡

Hence the fundamental solution is

𝑢𝑛 (𝑥, 𝑡) = 𝑋𝑛 (𝑥) 𝑇𝑛 (𝑡)
And by superposition, the general solution is

𝑢 (𝑥, 𝑡) = 𝐴0𝑋0 (𝑥) 𝑇0 (𝑡) +
∞
�
𝑛=1

(𝐴𝑛 cos (𝑛𝑥) + 𝐵𝑛 sin (𝑛𝑥)) 𝑒−𝑘𝑛2𝑡

But 𝑋0 (𝑥) = 1 and 𝑇0 (𝑡) is constant. Hence the above simplifies to

𝑢 (𝑥, 𝑡) = 𝐴0 +
∞
�
𝑛=1

(𝐴𝑛 cos (𝑛𝑥) + 𝐵𝑛 sin (𝑛𝑥)) 𝑒−𝑘𝑛2𝑡

What is left is to find 𝐴0, 𝐴𝑛, 𝐵𝑛. At 𝑡 = 0 the above gives

𝑓 (𝑥) = 𝐴0 +
∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝑥) + 𝐵𝑛 sin (𝑛𝑥) (7)

For 𝑛 = 0, by orthogonality we obtain

�
𝜋

−𝜋
𝑓 (𝑥) 𝑑𝑥 = �

𝜋

−𝜋
𝐴0𝑑𝑥

�
𝜋

−𝜋
𝑓 (𝑥) 𝑑𝑥 = 𝐴0 (2𝜋)

𝐴0 =
1
2𝜋 �

𝜋

−𝜋
𝑓 (𝑥) 𝑑𝑥

For 𝑛 > 0. We start by multiplying both sides of (7) by cos (𝑚𝑥) and integrating both sides.
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This gives

�
𝜋

−𝜋
𝑓 (𝑥) cos (𝑚𝑥) 𝑑𝑥 = �

𝜋

−𝜋
�
∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝑥) cos (𝑚𝑥) + 𝐵𝑛 sin (𝑛𝑥) cos (𝑚𝑥)� 𝑑𝑥

=
∞
�
𝑛=1

𝐴𝑛�
𝜋

−𝜋
cos (𝑛𝑥) cos (𝑚𝑥) 𝑑𝑥 +

∞
�
𝑛=1

𝐵𝑛�
𝜋

−𝜋
sin (𝑛𝑥) cos (𝑚𝑥) 𝑑𝑥

But ∫
𝜋

−𝜋
sin (𝑛𝑥) cos (𝑚𝑥) 𝑑𝑥 = 0 for all 𝑛,𝑚. And ∫

𝜋

−𝜋
cos (𝑛𝑥) cos (𝑚𝑥) 𝑑𝑥 = ∫𝜋

−𝜋
cos2 (𝑚𝑥) 𝑑𝑥

and zero for all other 𝑛 ≠ 𝑚. Hence the above simplifies to

�
𝜋

−𝜋
𝑓 (𝑥) cos (𝑚𝑥) 𝑑𝑥 = 𝐴𝑚�

𝜋

−𝜋
cos2 (𝑚𝑥) 𝑑𝑥

= 𝐴𝑚𝜋
Therefore

𝐴𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥

To find 𝐵𝑛 we do the same, but now we multiply both sides of (7) by sin (𝑚𝑥) and this
leads to

�
𝜋

−𝜋
𝑓 (𝑥) sin (𝑚𝑥) 𝑑𝑥 = �

𝜋

−𝜋
�
∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝑥) sin (𝑚𝑥) + 𝐵𝑛 sin (𝑛𝑥) sin (𝑚𝑥)� 𝑑𝑥

=
∞
�
𝑛=1

𝐴𝑛�
𝜋

−𝜋
cos (𝑛𝑥) sin (𝑚𝑥) 𝑑𝑥 +

∞
�
𝑛=1

𝐵𝑛�
𝜋

−𝜋
sin (𝑛𝑥) sin (𝑚𝑥) 𝑑𝑥

But ∫
𝜋

−𝜋
cos (𝑛𝑥) sin (𝑚𝑥) 𝑑𝑥 = 0 for all 𝑛,𝑚. And ∫

𝜋

−𝜋
sin (𝑛𝑥) sin (𝑚𝑥) 𝑑𝑥 = ∫𝜋

−𝜋
sin2 (𝑚𝑥) 𝑑𝑥

and zero for all other 𝑛 ≠ 𝑚. Hence the above simplifies to

�
𝜋

−𝜋
𝑓 (𝑥) sin (𝑚𝑥) 𝑑𝑥 = 𝐵𝑚�

𝜋

−𝜋
sin2 (𝑚𝑥) 𝑑𝑥

= 𝐵𝑚𝜋
Therefore

𝐵𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥

This completes the solution. The final solution is

𝑢 (𝑥, 𝑡) = 𝐴0 +
∞
�
𝑛=1

(𝐴𝑛 cos (𝑛𝑥) + 𝐵𝑛 sin (𝑛𝑥)) 𝑒−𝑘𝑛2𝑡

=
1
2𝜋 �

𝜋

−𝜋
𝑓 (𝑥) 𝑑𝑥 +

∞
�
𝑛=1

𝑒−𝑘𝑛2𝑡 ��
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥� cos (𝑛𝑥) + �

1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥� sin (𝑛𝑥)�
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2.7.1 Section 45, Problem 4

Figure 2.75: Problem statement

Solution

Solve for 𝑦 (𝑥, 𝑡) in
𝑦𝑡𝑡 = 𝑦𝑥𝑥 − 2𝛽𝑦𝑡 (𝑡 > 0, 0 < 𝑥 < 𝜋) (1)

Boundary conditions

𝑦 (0, 𝑡) = 0
𝑦 (𝜋, 𝑡) = 0

Initial conditions

𝑦 (𝑥, 0) = 𝑓 (𝑥)
𝑦𝑡 (𝑥, 0) = 0

Let 𝑦 = 𝑋𝑇. Substituting in (1) gives

𝑇′′𝑋 = 𝑋′′𝑇 − 2𝛽𝑇′𝑋
Dividing by 𝑋𝑇 ≠ 0

𝑇′′

𝑇
=
𝑋′′

𝑋
− 2𝛽

𝑇′

𝑇
𝑇′′

𝑇
+ 2𝛽

𝑇′

𝑇
=
𝑋′′

𝑋
= −𝜆

Where 𝜆 is separation constant. Due to nature of boundary conditions being both homo-
geneous, then we know 𝜆 > 0 is only possible case from earlier HW’s. The eigenvalue
problem is

𝑋′′ + 𝜆𝑋 = 0
87



2.7. HW 7 CHAPTER 2. HWS

Which we know has eigenvalues 𝜆 = 𝑛2 for 𝑛 = 1, 2,⋯ with corresponding eigenfunctions

𝑋𝑛 = sin (𝑛𝑥) (1)

Now we solve the time ODE using these eigenvalues.

𝑇′′

𝑇
+ 2𝛽

𝑇′

𝑇
= −𝑛2

𝑇′′ + 2𝛽𝑇′ + 𝑛2𝑇 = 0
This is standard second order ODE with positive damping 𝛽 and since 𝑛2 is positive. The
characteristic equation is

𝑟2 + 2𝛽𝑟 + 𝑛2 = 0
The roots are

𝑟 = −
𝑏
2𝑎
±
1
2𝑎
√𝑏2 − 4𝑎𝑐

= −
2𝛽
2
±
1
2�

4𝛽2 − 4𝑛2

= −𝛽 ±�𝛽
2 − 𝑛2

= −𝛽 ± 𝑖�𝑛
2 − 𝛽2

Hence the solution is

𝑇𝑛 (𝑡) = 𝐴𝑛𝑒𝑟1𝑡 + 𝐵𝑛𝑒𝑟2𝑡

= 𝐴𝑛𝑒
�−𝛽+𝑖�𝑛2−𝛽2�𝑡 + 𝐵𝑛𝑒

�−𝛽−𝑖�𝑛2−𝛽2�𝑡

= 𝑒−𝛽𝑡 �𝐴𝑛𝑒𝑖�𝑛
2−𝛽2𝑡 + 𝐵𝑛𝑒−𝑖�𝑛

2−𝛽2𝑡�

But the above can be rewritten using Euler relation as (the constants 𝐴𝑛, 𝐵𝑛 will be di�erent,
but kept them the same names for simplicity)

𝑇𝑛 (𝑡) = 𝑒−𝛽𝑡 �𝐴𝑛 cos ��𝑛
2 − 𝛽2𝑡� + 𝐵𝑛 sin ��𝑛

2 − 𝛽2𝑡��

Let 𝛼𝑛 = �𝑛2 − 𝛽2, then the above becomes

𝑇𝑛 (𝑡) = 𝑒−𝛽𝑡 (𝐴𝑛 cos (𝛼𝑛𝑡) + 𝐵𝑛 sin (𝛼𝑛𝑡)) (2)

Since the PDE is linear and homogenous, then by superposition we obtain the final solution
as

𝑦 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑋𝑛𝑇𝑛

=
∞
�
𝑛=1

𝑒−𝛽𝑡 (𝐴𝑛 cos (𝛼𝑛𝑡) + 𝐵𝑛 sin (𝛼𝑛𝑡)) sin (𝑛𝑥) (3)

Now initial conditions are applied to determine 𝐴𝑛, 𝐵𝑛. At 𝑡 = 0

𝑓 (𝑥) =
∞
�
𝑛=1

𝐴𝑛 sin (𝑛𝑥)

Hence 𝐴𝑛 are the Fourier sine coe�cient of the representation of 𝑓 (𝑥) which implies

𝐴𝑛 =
2
𝜋 �

𝜋

0
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥 (4)

Taking time derivative of (3) gives

𝑦𝑡 (𝑥, 𝑡) =
∞
�
𝑛=1

�−𝛽𝑒−𝛽𝑡 (𝐴𝑛 cos (𝛼𝑛𝑡) + 𝐵𝑛 sin (𝛼𝑛𝑡)) + 𝑒−𝛽𝑡 (−𝛼𝑛𝐴𝑛 sin (𝛼𝑛𝑡) + 𝛼𝑛𝐵𝑛 cos (𝛼𝑛𝑡))� sin (𝑛𝑥)

At 𝑡 = 0 the above becomes (since released from rest)

0 =
∞
�
𝑛=1

�−𝛽𝐴𝑛 + 𝛼𝑛𝐵𝑛� sin (𝑛𝑥)

Therefore

−𝛽𝐴𝑛 + 𝛼𝑛𝐵𝑛 = 0
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Hence 𝐵𝑛 =
𝛽𝐴𝑛
𝛼𝑛

. Therefore (3) becomes

𝑦 (𝑥, 𝑡) =
∞
�
𝑛=1

𝑒−𝛽𝑡 �𝐴𝑛 cos (𝛼𝑛𝑡) +
𝛽𝐴𝑛
𝛼𝑛

sin (𝛼𝑛𝑡)� sin (𝑛𝑥)

= 𝑒−𝛽𝑡
∞
�
𝑛=1

𝐴𝑛 �cos (𝛼𝑛𝑡) +
𝛽
𝛼𝑛

sin (𝛼𝑛𝑡)� sin (𝑛𝑥)

Where 𝐴𝑛 =
2
𝜋
∫𝜋
0
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥 and 𝛼𝑛 = �𝑛2 − 𝛽2. Which is the result required to show

(Book used 𝐵 in place 𝐴, but it is the same thing, just di�erent name for a constant).

2.7.2 Section 46, Problem 2

Figure 2.76: Problem statement

Solution

Part a

suppose 𝜔 ≠ 𝑎. Let
𝑦𝑝 = 𝐴 cos𝜔𝑡 + 𝐵 sin𝜔𝑡 (1)

Then

𝑦′𝑝 = −𝐴𝜔 sin𝜔𝑡 + 𝐵𝜔 cos𝜔𝑡
𝑦′′𝑝 = −𝐴𝜔2 cos𝜔𝑡 − 𝐵𝜔2 sin𝜔𝑡

Substituting the above back into the given ODE gives

𝑦′′𝑝 (𝑡) + 𝑎2𝑦𝑝 (𝑡) = 𝑏 sin𝜔𝑡
�−𝐴𝜔2 cos𝜔𝑡 − 𝐵𝜔2 sin𝜔𝑡� + 𝑎2 (𝐴 cos𝜔𝑡 + 𝐵 sin𝜔𝑡) = 𝑏 sin𝜔𝑡

cos𝜔𝑡 �−𝐴𝜔2 + 𝑎2𝐴� + sin𝜔𝑡 �−𝐵𝜔2 + 𝑎2𝐵� = 𝑏 sin𝜔𝑡 (2)

By comparing coe�cients, we see that

−𝐴𝜔2 + 𝑎2𝐴 = 0
𝐴 �𝑎2 − 𝜔2� = 0
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Since 𝜔 ≠ 𝑎 then this implies that 𝐴 = 0. And from (2), we see that

−𝐵𝜔2 + 𝑎2𝐵 = 𝑏

𝐵 =
𝑏

𝑎2 − 𝜔2
Therefore (1) becomes

𝑦𝑝 =
𝑏

𝑎2 − 𝜔2
sin𝜔𝑡 (3)

Now we need to find the complementary solution to

𝑦′′𝑐 + 𝑎2𝑦 = 0
Since 𝑎2 > 0, then the solution is the standard one given by

𝑦𝑐 (𝑡) = 𝐶1 cos 𝑎𝑡 + 𝐶2 sin 𝑎𝑡 (4)

Adding (3,4) gives the general solution

𝑦 (𝑡) = 𝐶1 cos 𝑎𝑡 + 𝐶2 sin 𝑎𝑡 +
𝑏

𝑎2 − 𝜔2
sin𝜔𝑡

Part (b)

Let

𝑦𝑝 = 𝐴𝑡 cos𝜔𝑡 + 𝐵𝑡 sin𝜔𝑡 (1)

Then

𝑦′𝑝 = 𝐴 cos𝜔𝑡 − 𝐴𝑡𝜔 sin𝜔𝑡 + 𝐵 sin𝜔𝑡 + 𝐵𝑡𝜔 cos𝜔𝑡

𝑦′′𝑝 = −𝐴𝜔 sin𝜔𝑡 − �𝐴𝜔 sin𝜔𝑡 + 𝐴𝑡𝜔2 cos𝜔𝑡� + 𝐵𝜔 cos𝜔𝑡 + �𝐵𝜔 cos𝜔𝑡 − 𝐵𝑡𝜔2 sin𝜔𝑡�

= �−𝐴𝑡𝜔2 + 2𝐵𝜔� cos𝜔𝑡 + �−2𝐴𝜔 − 𝐵𝑡𝜔2� sin𝜔𝑡
Substituting the above back into the given ODE gives

𝑦′′𝑝 (𝑡) + 𝑎2𝑦𝑝 (𝑡) = 𝑏 sin𝜔𝑡
��−𝐴𝑡𝜔2 + 2𝐵𝜔� cos𝜔𝑡 + �−2𝐴𝜔 − 𝐵𝑡𝜔2� sin𝜔𝑡� + 𝑎2 (𝐴𝑡 cos𝜔𝑡 + 𝐵𝑡 sin𝜔𝑡) = 𝑏 sin𝜔𝑡

cos𝜔𝑡 �−𝐴𝑡𝜔2 + 2𝐵𝜔 + 𝑎2𝐴𝑡� + sin𝜔𝑡 �−2𝐴𝜔 − 𝐵𝑡𝜔2 + 𝑎2𝐵𝑡� = 𝑏 sin𝜔𝑡
(2)

By comparing coe�cients, we see that

−𝐴𝑡𝜔2 + 2𝐵𝜔 + 𝑎2𝐴𝑡 = 0
𝐴𝑡 �−𝜔2 + 𝑎2� + 𝐵 (2𝜔) = 0 (3)

And from (2), we see also that

−2𝐴𝜔 − 𝐵𝑡𝜔2 + 𝑎2𝐵𝑡 = 𝑏
𝐴 (−2𝜔) + 𝐵𝑡 �−𝜔2 + 𝑎2� = 𝑏 (4)

But since 𝜔 = 𝑎, then (3) becomes

𝐵 (2𝜔) = 0
𝐵 = 0

And (4) becomes

𝐴 (−2𝜔) = 𝑏

𝐴 =
−𝑏
2𝑎

Substituting these values we found for 𝐴,𝐵, in (1) gives

𝑦𝑝 =
−𝑏
2𝑎
𝑡 cos𝜔𝑡

But 𝜔 = 𝑎, therefore

𝑦𝑝 =
−𝑏
2𝑎
𝑡 cos 𝑎𝑡 (5)
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The complementary solution do not change from part (a). Hence the general solution is

𝑦 (𝑡) = 𝐶1 cos 𝑎𝑡 + 𝐶2 sin 𝑎𝑡 −
𝑏
2𝑎
𝑡 cos 𝑎𝑡

Which is the result required to show.

2.7.3 Section 46, Problem 3

Figure 2.77: Problem statement

Solution

The general solution from problem 2 is

𝑦 (𝑡) =

⎧⎪⎪⎨
⎪⎪⎩
𝐶1 cos 𝑎𝑡 + 𝐶2 sin 𝑎𝑡 + 𝑏

𝑎2−𝜔2 sin𝜔𝑡 𝜔 ≠ 𝑎
𝐶1 cos 𝑎𝑡 + 𝐶2 sin 𝑎𝑡 − 𝑏

2𝑎 𝑡 cos 𝑎𝑡 𝜔 = 𝑎

We need to find 𝐶1, 𝐶2 when initial conditions are 𝑦 (0) = 0, 𝑦′ (0) = 0 for each of the above
cases.

case 𝜔 ≠ 𝑎

𝑦 (0) = 0 gives
0 = 𝐶1

Hence solution now becomes

𝑦 (𝑡) = 𝐶2 sin 𝑎𝑡 +
𝑏

𝑎2 − 𝜔2
sin𝜔𝑡

Taking time derivative gives

𝑦′ (𝑡) = 𝑎𝐶2 cos 𝑎𝑡 +
𝜔𝑏

𝑎2 − 𝜔2
cos𝜔𝑡

At 𝑡 = 0 the above gives

0 = 𝑎𝐶2 +
𝜔𝑏

𝑎2 − 𝜔2

𝐶2 =
1
𝑎

𝜔𝑏
𝜔2 − 𝑎2

Using 𝐶1, 𝐶2 found above, the solution becomes

𝑦 (𝑡) =
1
𝑎

𝜔𝑏
𝜔2 − 𝑎2

sin 𝑎𝑡 +
𝑏

𝑎2 − 𝜔2
sin𝜔𝑡

=
𝑏

𝑎2 − 𝜔2
�
𝜔
𝑎

sin 𝑎𝑡 − sin𝜔𝑡� (1)

case 𝜔 = 𝑎

𝑦 (0) = 0 gives
0 = 𝐶1

Hence solution now becomes

𝑦 (𝑡) = 𝐶2 sin 𝑎𝑡 −
𝑏
2𝑎
𝑡 cos 𝑎𝑡
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Taking time derivative gives

𝑦′ (𝑡) = 𝑎𝐶2 cos 𝑎𝑡 − �
𝑏
2𝑎

cos 𝑎𝑡 −
𝑏
2𝑎
𝑡2 sin 𝑎𝑡�

At 𝑡 = 0 the above gives

0 = 𝑎𝐶2 −
𝑏
2𝑎

𝐶2 =
1
𝑎
𝑏
2𝑎

Using 𝐶1, 𝐶2 found above, the solution becomes

𝑦 (𝑡) =
1
𝑎
𝑏
2𝑎

sin 𝑎𝑡 −
𝑏
2𝑎
𝑡 cos 𝑎𝑡

=
𝑏
2𝑎 �

1
𝑎

sin 𝑎𝑡 − 𝑡 cos 𝑎𝑡� (2)

From (1,2) we see that

𝑦 (𝑡) =

⎧⎪⎪⎨
⎪⎪⎩

𝑏
𝑎2−𝜔2 �

𝜔
𝑎 sin 𝑎𝑡 − sin𝜔𝑡� 𝜔 ≠ 𝑎

𝑏
2𝑎
�1
𝑎 sin 𝑎𝑡 − 𝑡 cos 𝑎𝑡� 𝜔 = 𝑎

Which is the result required to show.

2.7.4 Section 52, Problem 3

Figure 2.78: Problem statement

Solution
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𝑓 (𝑥) = �
∞

0
(𝐴 (𝛼) cos (𝛼𝑥) + 𝐵 (𝛼) sin (𝛼𝑥)) 𝑑𝛼

= �
∞

0
�𝐴 (𝛼) �

𝑒𝑖𝛼𝑥 + 𝑒−𝑖𝛼𝑥

2 � − 𝑖𝐵 (𝛼) �
𝑒𝑖𝛼𝑥 − 𝑒−𝑖𝛼𝑥

2 �� 𝑑𝛼

= �
∞

0
�𝑒𝑖𝛼𝑥 �

𝐴 (𝛼) − 𝑖𝐵 (𝛼)
2 � + 𝑒−𝑖𝛼𝑥 �

𝐴 (𝛼) + 𝑖𝐵 (𝛼)
2 �� 𝑑𝛼

= �
∞

0
𝑒𝑖𝛼𝑥

𝐴 (𝛼) − 𝑖𝐵 (𝛼)
2

𝑑𝛼 +�
∞

0
𝑒−𝑖𝛼𝑥

𝐴 (𝛼) + 𝑖𝐵 (𝛼)
2

𝑑𝛼

= �
∞

0
𝑒𝑖𝛼𝑥

𝐴 (𝛼) − 𝑖𝐵 (𝛼)
2

𝑑𝛼 +�
∞

0
𝑒−𝑖𝛼𝑥

𝐴 (𝛼) + 𝑖𝐵 (𝛼)
2

𝑑𝛼

= �
∞

0
𝑒𝑖𝛼𝑥

𝐴 (𝛼) − 𝑖𝐵 (𝛼)
2

𝑑𝛼 +�
0

−∞
𝑒𝑖𝛼𝑥

𝐴 (𝛼) + 𝑖𝐵 (𝛼)
2

𝑑𝛼

= �
∞

−∞
𝐶 (𝛼) 𝑒𝑖𝛼𝑥𝑑𝛼

Where

𝐶 (𝛼) = 𝐴(𝛼)−𝑖𝐵(𝛼)
2 , 𝐶 (−𝛼) = 𝐴(𝛼)+𝑖𝐵(𝛼)

2
𝛼 > 0

Expression (9) section (5) is

𝐴 (𝛼) =
1
𝜋 �

∞

−∞
𝑓 (𝑥) cos (𝛼𝑥) 𝑑𝑥

𝐵 (𝛼) =
1
𝜋 �

∞

−∞
𝑓 (𝑥) sin (𝛼𝑥) 𝑑𝑥

Substituting the above in 𝐶 (𝛼) = 𝐴(𝛼)−𝑖𝐵(𝛼)
2 gives

𝐶 (𝛼) =
1
2 �

1
𝜋 �

∞

−∞
𝑓 (𝑥) cos (𝛼𝑥) 𝑑𝑥 − 𝑖

1
𝜋 �

∞

−∞
𝑓 (𝑥) sin (𝛼𝑥) 𝑑𝑥�

=
1
2𝜋 ��

∞

−∞
𝑓 (𝑥) cos (𝛼𝑥) 𝑑𝑥 −�

∞

−∞
𝑓 (𝑥) 𝑖 sin (𝛼𝑥) 𝑑𝑥�

=
1
2𝜋 �

∞

−∞
𝑓 (𝑥) (cos (𝛼𝑥) − 𝑖 sin (𝛼𝑥)) 𝑑𝑥

But using Euler relation cos (𝛼𝑥) − 𝑖 sin (𝛼𝑥) = 𝑒𝑖𝛼𝑥 then the above reduces to

𝐶 (𝛼) =
1
2𝜋 �

∞

−∞
𝑓 (𝑥) 𝑒𝑖𝛼𝑥𝑑𝑥 − ∞ < 𝛼 < ∞

Which is what required to show.

2.7.5 Section 53, Problem 4

Figure 2.79: Problem statement

Solution
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Since 𝑓 (𝑥) is piecewise continuous and absolutely integrable (sine function), then

𝑓 (𝑥+) + 𝑓 (𝑥−)
2

=
1
𝜋 �

∞

0
��

∞

−∞
𝑓 (𝑠) cos (𝛼 (𝑠 − 𝑥)) 𝑑𝑠� 𝑑𝛼

Substituting for 𝑓 (𝑠) inside the integral for the function given gives

𝑓 (𝑥+) + 𝑓 (𝑥−)
2

=
1
𝜋 �

∞

0
��

𝜋

0
sin (𝑠) cos (𝛼𝑠 − 𝛼𝑥) 𝑑𝑠� 𝑑𝛼

Where we used ∫
𝜋

0
only, since the function is zero everywhere else. Using 2 sin𝐴 cos𝐵 =

sin (𝐴 + 𝐵) + sin (𝐴 − 𝐵) then the above can be written as

𝑓 (𝑥+) + 𝑓 (𝑥−)
2

=
1
𝜋 �

∞

0
�
1
2 �

𝜋

0
sin (𝑠 + 𝛼𝑠 − 𝛼𝑥) + sin (𝑠 − (𝛼𝑠 − 𝛼𝑥)) 𝑑𝑠� 𝑑𝛼

=
1
2𝜋 �

∞

0
��

𝜋

0
sin (𝑠 + 𝛼𝑠 − 𝛼𝑥) + sin (𝑠 − 𝛼𝑠 + 𝛼𝑥) 𝑑𝑠� 𝑑𝛼 (1)

But

�
𝜋

0
sin (𝑠 + 𝛼𝑠 − 𝛼𝑥) 𝑑𝑠 = �

− cos (𝑠 + 𝛼𝑠 − 𝛼𝑥)
1 + 𝛼 �

𝜋

0

=
−1
1 + 𝛼

(cos (𝜋 + 𝛼𝜋 − 𝛼𝑥) − cos (−𝛼𝑥))

=
−1
1 + 𝛼

(cos (𝜋 + 𝛼 (𝜋 − 𝑥)) − cos (𝛼𝑥))

But cos (𝜋 + 𝛼 (𝜋 − 𝑥)) = − cos (𝛼 (𝜋 − 𝑥)), and the above becomes

�
𝜋

0
sin (𝑠 + 𝛼𝑠 − 𝛼𝑥) 𝑑𝑠 =

1
1 + 𝛼

(cos (𝛼 (𝜋 − 𝑥)) + cos (𝛼𝑥)) (2)

Similarly

�
𝜋

0
sin (𝑠 − 𝛼𝑠 + 𝛼𝑥) 𝑑𝑠 = �

− cos (𝑠 − 𝛼𝑠 + 𝛼𝑥)
1 − 𝛼 �

𝜋

0

=
−1
1 − 𝛼

(cos (𝜋 − 𝛼𝜋 + 𝛼𝑥) − cos (𝛼𝑥))

=
−1
1 − 𝛼

(cos (𝜋 − 𝛼 (𝜋 + 𝑥)) − cos (𝛼𝑥))

=
−1
1 − 𝛼

(− cos (−𝛼 (𝜋 + 𝑥)) − cos (𝛼𝑥))

=
1

1 − 𝛼
(cos (𝛼 (𝜋 + 𝑥)) + cos (𝛼𝑥)) (3)

Substituting (2,3) back in (1) gives

𝑓 (𝑥+) + 𝑓 (𝑥−)
2

=
1
2𝜋 �

∞

0
�

1
1 + 𝛼

(cos (𝛼 (𝜋 − 𝑥)) + cos (𝛼𝑥)) +
1

1 − 𝛼
(cos (𝛼 (𝜋 + 𝑥)) + cos (𝛼𝑥))� 𝑑𝛼

=
1
2𝜋 �

∞

0
�cos (𝛼 (𝜋 − 𝑥)) �

1
1 + 𝛼

+
1

1 − 𝛼�
+ cos (𝛼𝑥) �

1
1 + 𝛼

+
1

1 − 𝛼��
𝑑𝛼

=
1
2𝜋 �

∞

0
�cos (𝛼 (𝜋 − 𝑥)) �

2
1 − 𝛼2 �

+ cos (𝛼𝑥) �
2

1 − 𝛼2 ��
𝑑𝛼

=
1
𝜋 �

∞

0

cos (𝛼 (𝜋 − 𝑥)) + cos (𝛼𝑥)
1 − 𝛼2

𝑑𝛼

But 𝑓 (𝑥) is continuous then
𝑓�𝑥+�+𝑓(𝑥−)

2 = 𝑓 (𝑥) and the above becomes

𝑓 (𝑥) =
1
𝜋 �

∞

0

cos (𝛼 (𝜋 − 𝑥)) + cos (𝛼𝑥)
1 − 𝛼2

𝑑𝛼

When 𝑥 = 𝜋
2 the above gives

𝑓 �
𝜋
2
� =

1
𝜋 �

∞

0

cos �𝛼 �𝜋 − 𝜋
2
�� + cos �𝛼𝜋2 �

1 − 𝛼2
𝑑𝛼
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But 𝑓 �𝜋2 � = sin �𝜋2 � = 1, hence

1 =
1
𝜋 �

∞

0

cos �𝛼𝜋2 � + cos �𝛼𝜋2 �
1 − 𝛼2

𝑑𝛼

=
1
𝜋 �

∞

0

2 cos �𝛼𝜋2 �
1 − 𝛼2

𝑑𝛼

Therefore

𝜋
2
= �

∞

0

cos �𝛼𝜋2 �
1 − 𝛼2

𝑑𝛼
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2.8.1 Section 57, Problem 5

Figure 2.80: Problem statement

Solution

∇ 2𝑢 �𝑥, 𝑦� = 0 �0 < 𝑥 < 1, 𝑦 > 0�
𝑢𝑦 (𝑥, 0) = 0

𝑢 �0, 𝑦� = 0

𝑢𝑥 �1, 𝑦� = 𝑓 �𝑦�

As normal, we use separation of variables, ending in
𝑋′′

𝑋 + 𝑌′′

𝑌 = −𝜆. We will take the
eigenvalue problem along the 𝑌 direction. This leads to

𝑌′′ + 𝜆𝑌 = 0
𝑌′ (0) = 0

Where 𝜆 = 𝛼2, 𝛼 > 0. The steps that led to this were done before. Therefore the solution is

𝑌 �𝑦� = 𝑐1 cos �𝛼𝑦� + 𝑐2 sin �𝛼𝑦�

𝑌′ �𝑦� = −𝑐1𝛼 sin �𝛼𝑦� + 𝑐2𝛼 cos �𝛼𝑦�
At 𝑦 = 0 the above gives

0 = 𝑐2𝛼
Which implies 𝑐2 = 0. Hence the eigenfunctions are

𝑌𝛼 �𝑦� = cos �𝛼𝑦�

With the eigenvalues being 𝜆 = 𝛼2 for all real positive values of 𝛼. The corresponding 𝑋 (𝑥)
ode is

𝑋′′ − 𝜆𝑋 = 0
𝑋 (0) = 0

The solution to this is 𝑋 (𝑥) = 𝑐1𝑒𝛼𝑥 + 𝑐2𝑒−𝛼𝑥, which at 𝑥 = 0 gives
0 = 𝑐1 + 𝑐2

Which makes the solution as 𝑋 (𝑥) = 𝑐1𝑒𝛼𝑥 − 𝑐1𝑒−𝛼𝑥 = 𝑐1 (𝑒𝛼𝑥 − 𝑒−𝛼𝑥) = 2𝑐1 sinh (𝛼𝑥) =
𝑐3 sinh (𝛼𝑥). Therefore the general solution is given by the real form of the Fourier integral

𝑢 �𝑥, 𝑦� = �
∞

0
𝐴 (𝛼) sinh (𝛼𝑥) cos �𝛼𝑦� 𝑑𝛼 (1)
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Taking derivative w.r.t. 𝑥 gives

𝑢𝑥 �𝑥, 𝑦� = �
∞

0
𝐴 (𝛼) 𝛼 cosh (𝛼𝑥) cos �𝛼𝑦� 𝑑𝛼

At 𝑥 = 1 the above becomes

𝑓 �𝑦� = �
∞

0
(𝐴 (𝛼) 𝛼 cosh (𝛼)) cos �𝛼𝑦� 𝑑𝛼

Therefore

𝐴 (𝛼) 𝛼 cosh (𝛼) =
2
𝜋 �

∞

0
𝑓 �𝑦� cos �𝛼𝑦� 𝑑𝛼

𝐴 (𝛼) =
2

𝜋𝛼 cosh (𝛼) �
∞

0
𝑓 �𝑦� cos �𝛼𝑦� 𝑑𝛼

Substituting the above in (1) gives the solution

𝑢 �𝑥, 𝑦� = �
∞

0
�

2
𝜋𝛼 cosh (𝛼) �

∞

0
𝑓 (𝑠) cos (𝛼𝑠) 𝑑𝑠� sinh (𝛼𝑥) cos �𝛼𝑦� 𝑑𝛼

=
2
𝜋 �

∞

0

sinh (𝛼𝑥) cos �𝛼𝑦�
𝛼 cosh (𝛼) ��

∞

0
𝑓 (𝑠) cos (𝛼𝑠) 𝑑𝑠� 𝑑𝛼

Which is the result required to show.

2.8.2 Section 58, Problem 5

Figure 2.81: Problem statement

Solution

Part (a)

𝑢𝑡 (𝑥, 𝑡) = 𝑘𝑢𝑥𝑥 (𝑥, 𝑡) (0 < 𝑥 < ∞, 𝑡 > 0)
𝑢 (𝑥, 0) = 𝑓 (𝑥)
𝑢𝑥 (0, 𝑡) = 0

Applying separation of variables leads to

𝑇′

𝑘𝑇
=
𝑋′′

𝑋
= −𝜆

Hence

𝑋′′ + 𝜆𝑋 = 0
𝑋′ (0) = 0
|𝑋 (𝑥)| < 𝑀
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Since on semi-infinite domain, then only 𝜆 > 0 are possible eigenvalues. Let 𝜆 = 𝛼2, 𝛼 > 0,
Where 𝛼 takes on all positive real values. Then the solution to the eigenvalue ODE is

𝑋𝛼 (𝑥) = 𝑐1 cos (𝛼𝑥) + 𝑐2 sin (𝛼𝑥)
𝑋′𝛼 (𝑥) = −𝑐1𝛼 sin (𝛼𝑥) + 𝑐2𝛼 cos (𝛼𝑥)

At 𝑥 = 0
0 = 𝑐2𝛼

Hence 𝑐2 = 0 and the eigenfunctions are

𝑋𝛼 (𝑥) = cos (𝛼𝑥)

The time ODE is therefore 𝑇′+𝛼2𝑘𝑇 = 0 which has solution 𝑇 = 𝑒−𝑘𝛼2𝑡. Hence the solution
is given by the real Fourier integral

𝑢 (𝑥, 𝑡) = �
∞

0
𝐴 (𝛼) 𝑒−𝑘𝛼2𝑡 cos (𝛼𝑥) 𝑑𝛼 (1)

At 𝑡 = 0, using initial conditions, then the above becomes

𝑓 (𝑥) = �
∞

0
𝐴 (𝛼) cos𝛼𝑥𝑑𝛼

𝐴 (𝛼) =
2
𝜋 �

∞

0
𝑓 (𝑠) cos (𝛼𝑠) 𝑑𝑠 (2)

Using (2) in (1) gives

𝑢 (𝑥, 𝑡) = �
∞

0
�
2
𝜋 �

∞

0
𝑓 (𝑠) cos (𝛼𝑠) 𝑑𝑠� 𝑒−𝑘𝛼

2𝑡 cos (𝛼𝑥) 𝑑𝛼

Changing the order of integration

𝑢 (𝑥, 𝑡) =
1
𝜋 �

∞

0
�

∞

0
�𝑒−𝑘𝛼2𝑡 [2 cos (𝛼𝑥) cos (𝛼𝑠)] 𝑑𝛼� 𝑓 (𝑠) 𝑑𝑠 (3)

Using trig identity cos (𝐴) cos (𝐵) = cos(𝐴+𝐵)+cos(𝐴−𝐵)
2 , then

2 cos (𝛼𝑥) cos (𝛼𝑠) = cos (𝛼𝑥 + 𝛼𝑠) + cos (𝛼𝑥 − 𝛼𝑠)
= cos (𝛼 (𝑥 + 𝑠)) + cos (𝛼 (𝑥 − 𝑠))

Substituting the above in (3) gives

𝑢 (𝑥, 𝑡) =
1
𝜋 �

∞

0
�

∞

0
�𝑒−𝑘𝛼2𝑡 [cos (𝛼 (𝑥 + 𝑠)) + cos (𝛼 (𝑥 − 𝑠))] 𝑑𝛼� 𝑓 (𝑠) 𝑑𝑠

=
1
𝜋 �

∞

0
��

∞

0
𝑒−𝑘𝛼2𝑡 cos (𝛼 (𝑥 + 𝑠)) 𝑑𝛼 +�

∞

0
𝑒−𝑘𝛼2𝑡 cos (𝛼 (𝑥 − 𝑠)) 𝑑𝛼� 𝑓 (𝑠) 𝑑𝑠

Using the formula

�
∞

0
𝑒−𝛼2𝑐 cos (𝛼𝑏) 𝑑𝛼 =

1
2�

𝜋
𝑐

exp �−
𝑏2

4𝑐�

Where in our case 𝑐 = 𝑘𝑡 and 𝑏 = (𝑥 + 𝑠) for the first integral, and 𝑏 = (𝑥 − 𝑠) for the second
integral. Using the above formula in (4) results in

𝑢 (𝑥, 𝑡) =
1
𝜋 �

∞

0

⎛
⎜⎜⎜⎝
1
2�

𝜋
𝑘𝑡

exp
⎛
⎜⎜⎜⎝−
(𝑥 + 𝑠)2

4𝑘𝑡

⎞
⎟⎟⎟⎠ +

1
2�

𝜋
𝑘𝑡

exp
⎛
⎜⎜⎜⎝−
(𝑥 − 𝑠)2

4𝑘𝑡

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ 𝑓 (𝑠) 𝑑𝑠

For 𝑡 > 0. Hence the above becomes

𝑢 (𝑥, 𝑡) =
1

2√𝜋𝑘𝑡
�

∞

0
𝑓 (𝑠) exp

⎛
⎜⎜⎜⎝−
(𝑥 + 𝑠)2

4𝑘𝑡

⎞
⎟⎟⎟⎠ 𝑑𝑠 +

1
2√𝜋𝑘𝑡

�
∞

0
𝑓 (𝑠) exp

⎛
⎜⎜⎜⎝−
(𝑥 − 𝑠)2

4𝑘𝑡

⎞
⎟⎟⎟⎠ 𝑑𝑠

By writing 𝑠 = −𝑥 + 2𝜎√𝑘𝑡 for the first integral above, then
𝑑𝑠
𝑑𝜎 = 2√𝑘𝑡. When 𝑠 = 0 then

𝜎 = 𝑥
2√𝑘𝑡

and when 𝑠 = ∞ then 𝜎 = ∞. And by writing 𝑠 = 𝑥+2𝜎√𝑘𝑡 for the second integral
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above, then
𝑑𝑠
𝑑𝜎 = 2√𝑘𝑡. When 𝑠 = 0 then 𝜎 = − 𝑥

2√𝑘𝑡
Hence the above integral becomes

𝑢 (𝑥, 𝑡) =
2√𝑘𝑡
2√𝜋𝑘𝑡

�
∞

𝑥
2√𝑘𝑡

𝑓 �−𝑥 + 2𝜎√𝑘𝑡� exp

⎛
⎜⎜⎜⎜⎜⎜⎝−
�−𝑥 + �𝑥 + 2𝜎√𝑘𝑡��

2

4𝑘𝑡

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑑𝜎

+
2√𝑘𝑡
2√𝜋𝑘𝑡

�
∞

− 𝑥
2√𝑘𝑡

𝑓 �𝑥 + 2𝜎√𝑘𝑡� exp

⎛
⎜⎜⎜⎜⎜⎜⎝−
�𝑥 − �𝑥 + 2𝜎√𝑘𝑡��

2

4𝑘𝑡

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑑𝜎

Simplifying gives

𝑢 (𝑥, 𝑡) =
1

√𝜋
�

∞

− 𝑥
2√𝑘𝑡

𝑓 �𝑥 + 2𝜎√𝑘𝑡� 𝑒−
�−2𝜎√𝑘𝑡�

2

4𝑘𝑡 𝑑𝜎 +
1

√𝜋
�

∞

𝑥
2√𝑘𝑡

𝑓 �−𝑥 + 2𝜎√𝑘𝑡� 𝑒−
�2𝜎√𝑘𝑡�

2

4𝑘𝑡 𝑑𝜎

=
1

√𝜋
�

∞

− 𝑥
2√𝑘𝑡

𝑓 �𝑥 + 2𝜎√𝑘𝑡� 𝑒−𝜎2𝑑𝜎 +
1

√𝜋
�

∞

𝑥
2√𝑘𝑡

𝑓 �−𝑥 + 2𝜎√𝑘𝑡� 𝑒−𝜎2𝑑𝜎+ (4)

Which is the result required to show.

Part b

𝑓 (𝑥) =
⎧⎪⎨
⎪⎩
1 0 < 𝑥 < 𝑐
0 𝑥 > 0

Considering the first function in (4), where in the following 𝑓 (𝑥) ≡ 𝑓 �𝑥 + 2𝜎√𝑘𝑡� then (4)
becomes

𝑢 (𝑥, 𝑡) =
1

√𝜋

⎛
⎜⎜⎜⎜⎝�

𝑐+𝑥
2√𝑘𝑡

0
𝑒−𝜎2𝑑𝜎 +�

𝑐−𝑥
2√𝑘𝑡

0
𝑒−𝜎2𝑑𝜎

⎞
⎟⎟⎟⎟⎠

But
2

√𝜋
∫

𝑐+𝑥
2√𝑘𝑡

0
𝑒−𝜎2𝑑𝜎 = erf � 𝑐+𝑥

2√𝑘𝑡
� and 2

√𝜋
∫

𝑐−𝑥
2√𝑘𝑡

0
𝑒−𝜎2𝑑𝜎 = erf � 𝑐−𝑥

2√𝑘𝑡
�, hence the above becomes

𝑢 (𝑥, 𝑡) =
1
2

erf �
𝑐 + 𝑥
2√𝑘𝑡

� +
1
2

erf �
𝑐 − 𝑥
2√𝑘𝑡

�

2.8.3 Section 58, Problem 7

Figure 2.82: Problem statement

Solution

We need to substitute the solution 𝑣 (𝑥, 𝑡) = 𝐶𝑥𝑡
−3
2 𝑒

−𝑥2
4𝑘𝑡 into the PDE 𝑣𝑡 = 𝑘𝑣𝑥𝑥 and see if it
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satisfies it.

𝑣𝑡 =
−3
2
𝐶𝑥𝑡

−5
2 𝑒

−𝑥2
4𝑘𝑡 + 𝐶𝑥𝑡

−3
2 𝑒

−𝑥2
4𝑘𝑡 �

𝑥2

4𝑘𝑡2 �

=
−3
2
𝐶𝑥𝑡

−5
2 𝑒

−𝑥2
4𝑘𝑡 + 𝐶

𝑥3

4𝑘𝑡2
𝑡
−3
2 𝑒

−𝑥2
4𝑘𝑡

And

𝑣𝑥 = 𝐶𝑡
−3
2 𝑒

−𝑥2
4𝑘𝑡 −

𝑥2

2𝑘𝑡
𝐶𝑡

−3
2 𝑒

−𝑥2
4𝑘𝑡

𝑣𝑥𝑥 =
−𝑥
2𝑘𝑡

𝐶𝑡
−3
2 𝑒

−𝑥2
4𝑘𝑡 − �

𝑥
𝑘𝑡
𝐶𝑡

−3
2 𝑒

−𝑥2
4𝑘𝑡 −

4𝑥3

(4𝑘𝑡)2
𝐶𝑡

−3
2 𝑒

−𝑥2
4𝑘𝑡 �

=
−2𝑥
4𝑘𝑡

𝐶𝑡
−3
2 𝑒

−𝑥2
4𝑘𝑡 − �

𝑥
𝑘𝑡
𝐶𝑡

−3
2 𝑒

−𝑥2
4𝑘𝑡 −

𝑥3

4𝑘2𝑡2
𝐶𝑡

−3
2 𝑒

−𝑥2
4𝑘𝑡 �

=
−𝑥
2𝑘𝑡

𝐶𝑡
−3
2 𝑒

−𝑥2
4𝑘𝑡 −

𝑥
𝑘𝑡
𝐶𝑡

−3
2 𝑒

−𝑥2
4𝑘𝑡 +

4𝑥3

(4𝑘𝑡)2
𝐶𝑡

−3
2 𝑒

−𝑥2
4𝑘𝑡

= −
3
2
𝑥
𝑘
𝐶𝑡

−5
2 𝑒

−𝑥2
4𝑘𝑡 + 𝐶

𝑥3

4𝑘2𝑡2
𝑡
−3
2 𝑒

−𝑥2
4𝑘𝑡

Hence 𝑣𝑡 = 𝑘𝑣𝑥𝑥 becomes

−3
2
𝐶𝑥𝑡

−5
2 𝑒

−𝑥2
4𝑘𝑡 + 𝐶

𝑥3

4𝑘𝑡2
𝑡
−3
2 𝑒

−𝑥2
4𝑘𝑡 = 𝑘 �−

3
2
𝑥
𝑘
𝐶𝑡

−5
2 𝑒

−𝑥2
4𝑘𝑡 + 𝐶

𝑥3

4𝑘2𝑡2
𝑡
−3
2 𝑒

−𝑥2
4𝑘𝑡 �

−3
2
𝐶𝑥𝑡

−5
2 𝑒

−𝑥2
4𝑘𝑡 + 𝐶

𝑥3

4𝑘𝑡2
𝑡
−3
2 𝑒

−𝑥2
4𝑘𝑡 = −

3
2
𝑥𝐶𝑡

−5
2 𝑒

−𝑥2
4𝑘𝑡 + 𝐶

𝑥3

4𝑘𝑡2
𝑡
−3
2 𝑒

−𝑥2
4𝑘𝑡

0 = 0
Hence it is satisfied for any constant 𝐶.

Using 𝑣 (𝑥, 𝑡) = 𝐶𝑥𝑡
−3
2 𝑒

−𝑥2
4𝑘𝑡 , we see that lim𝑥→0+ 𝑣 (𝑥, 𝑡) = 0. Also lim𝑡→0+ 𝑣 (𝑥, 𝑡) = 0.

Since the solution to the heat PDE is now not required to be bounded and since 𝑣 (𝑥, 𝑡) has
zero initial conditions, then because the PDE is linear and homogeneous, then solution as
𝑣 (𝑥, 𝑡) can be added to the solution in (9) using superposition.

2.8.4 Section 59, Problem 2

Figure 2.83: Problem description

solution

Let 𝑦 (𝑥, 𝑡) = 𝑋 (𝑥) 𝑇 (𝑡), then the PDE becomes

𝑇′′𝑋 = 𝑎2𝑋′′𝑇
1
𝑎2
𝑇′′

𝑇
=
𝑋′′

𝑋
= −𝜆

We take the 𝑋 (𝑥) ode as the eigenvalue problem. Since the domain is infinite, then only pos-
itive eigenvalue are valid as was shown before. Let 𝜆 = 𝛼2, 𝛼 > 0. Hence the eigenfunctions
are

𝑋𝛼 (𝑥) = 𝐴 (𝛼) cos (𝛼𝑥) + 𝐵 (𝛼) sin (𝛼𝑥)
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The time ODE becomes
1
𝑎2
𝑇′′

𝑇
= −𝛼2

𝑇′′ + 𝑎2𝛼2𝑇 = 0
Which has the solution

𝑇𝛼 (𝑡) = 𝐶 (𝛼) cos (𝑎𝛼𝑡) + 𝐷 (𝛼) sin (𝑎𝛼𝑡)
Hence the solution is given by the Fourier real integral

𝑦 (𝑥, 𝑡) = �
∞

0
𝑇𝛼 (𝑡) 𝑋𝛼 (𝑥) 𝑑𝛼 (1)

= �
∞

0
(𝐶 (𝛼) cos (𝑎𝛼𝑡) + 𝐷 (𝛼) sin (𝑎𝛼𝑡)) (𝐴 (𝛼) cos (𝛼𝑥) + 𝐵 (𝛼) sin (𝛼𝑥)) 𝑑𝛼

= �
∞

0
𝐶 (𝛼)𝐴 (𝛼) cos (𝑎𝛼𝑡) cos (𝛼𝑥) 𝑑𝛼 +�

∞

0
𝐶 (𝛼) 𝐵 (𝛼) cos (𝑎𝛼𝑡) sin (𝛼𝑥) 𝑑𝛼

+�
∞

0
𝐷 (𝛼)𝐴 (𝛼) sin (𝑎𝛼𝑡) cos (𝛼𝑥) 𝑑𝛼 +�

∞

0
𝐷 (𝛼) 𝐵 (𝛼) sin (𝑎𝛼𝑡) sin (𝛼𝑥) 𝑑𝛼 (2)

Taking time derivative

𝑦𝑡 (𝑥, 𝑡) = �
∞

0
−𝑎𝛼𝐶 (𝛼)𝐴 (𝛼) sin (𝑎𝛼𝑡) cos (𝛼𝑥) 𝑑𝛼 +�

∞

0
𝑎𝛼𝐶 (𝛼) 𝐵 (𝛼) sin (𝑎𝛼𝑡) sin (𝛼𝑥) 𝑑𝛼

+�
∞

0
𝑎𝛼𝐷 (𝛼)𝐴 (𝛼) cos (𝑎𝛼𝑡) cos (𝛼𝑥) 𝑑𝛼 +�

∞

0
𝑎𝛼𝐷 (𝛼) 𝐵 (𝛼) cos (𝑎𝛼𝑡) sin (𝛼𝑥) 𝑑𝛼

At 𝑡 = 0 the above becomes

0 = �
∞

0
𝑎𝛼𝐷 (𝛼)𝐴 (𝛼) cos (𝛼𝑥) 𝑑𝛼 +�

∞

0
𝑎𝛼𝐷 (𝛼) 𝐵 (𝛼) sin (𝛼𝑥) 𝑑𝛼

Which simplifies to

0 = �
∞

0
𝐷 (𝛼)𝐴 (𝛼) cos (𝛼𝑥) 𝑑𝛼 +�

∞

0
𝐷 (𝛼) 𝐵 (𝛼) sin (𝛼𝑥) 𝑑𝛼

= �
∞

0
𝐷 (𝛼) (𝐴 (𝛼) cos (𝛼𝑥) + 𝐵 (𝛼) sin (𝛼𝑥)) 𝑑𝛼

Therefore, since 𝐴 (𝛼) , 𝐵 (𝛼) can not be both zero, else eigenfunction is zero, then it must
be that 𝐷 (𝛼) = 0. Hence the solution in (2) becomes

𝑦 (𝑥, 𝑡) = �
∞

0
𝐶 (𝛼)𝐴 (𝛼) cos (𝑎𝛼𝑡) cos (𝛼𝑥) 𝑑𝛼 +�

∞

0
𝐶 (𝛼) 𝐵 (𝛼) cos (𝑎𝛼𝑡) sin (𝛼𝑥) 𝑑𝛼 (3)

Let 𝐶 (𝛼)𝐴 (𝛼) = 𝐶1 (𝛼) and let 𝐶 (𝛼) 𝐵 (𝛼) = 𝐶2 (𝛼) as two new constants, and the above
becomes

𝑦 (𝑥, 𝑡) = �
∞

0
𝐶1 (𝛼) cos (𝑎𝛼𝑡) cos (𝛼𝑥) 𝑑𝛼 +�

∞

0
𝐶2 (𝛼) cos (𝑎𝛼𝑡) sin (𝛼𝑥) 𝑑𝛼

At 𝑡 = 0 the above becomes

𝑓 (𝑥) = �
∞

0
𝐶1 (𝛼) cos (𝛼𝑥) 𝑑𝛼 +�

∞

0
𝐶2 (𝛼) sin (𝛼𝑥) 𝑑𝛼

Hence

𝐶1 (𝛼) =
1
𝜋 �

∞

−∞
𝑓 (𝑠) cos (𝛼𝑠) 𝑑𝑠

𝐶2 (𝛼) =
1
𝜋 �

∞

−∞
𝑓 (𝑠) sin (𝛼𝑠) 𝑑𝑠

Therefore (3) becomes

𝑦 (𝑥, 𝑡) =
1
𝜋 �

∞

0
��

∞

−∞
𝑓 (𝑠) cos (𝛼𝑠) 𝑑𝑠� cos (𝑎𝛼𝑡) cos (𝛼𝑥) 𝑑𝛼

+
1
𝜋 �

∞

0
��

∞

−∞
𝑓 (𝑠) sin (𝛼𝑠) 𝑑𝑠� cos (𝑎𝛼𝑡) sin (𝛼𝑥) 𝑑𝛼
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Changing order of integrations in the above for both integrals results in

𝑦 (𝑥, 𝑡) =
1
𝜋 �

∞

0
��

∞

−∞
cos (𝑎𝛼𝑡) cos (𝛼𝑠) cos (𝛼𝑥) 𝑑𝛼� 𝑓 (𝑠) 𝑑𝑠 (4)

+
1
𝜋 �

∞

0
��

∞

−∞
cos (𝑎𝛼𝑡) sin (𝛼𝑠) sin (𝛼𝑥) 𝑑𝛼� 𝑓 (𝑠) 𝑑𝑠

But

cos (𝛼𝑠) cos (𝛼𝑥) =
1
2
(cos (𝛼𝑠 + 𝛼𝑥) + cos (𝛼𝑠 − 𝛼𝑥))

=
1
2
(cos (𝛼 (𝑠 + 𝑥)) + cos (𝛼 (𝑠 − 𝑥)))

and

sin (𝛼𝑠) sin (𝛼𝑥) =
1
2
(cos (𝛼𝑠 − 𝛼𝑥) − cos (𝛼𝑠 + 𝛼𝑥))

=
1
2
(cos (𝛼 (𝑠 − 𝑥)) − cos (𝛼 (𝑠 + 𝑥)))

Substituting the above two relations back in (4) gives

𝑦 (𝑥, 𝑡) =
1
2𝜋 �

∞

0
��

∞

−∞
cos (𝑎𝛼𝑡) (cos (𝛼 (𝑠 + 𝑥)) + cos (𝛼 (𝑠 − 𝑥))) 𝑑𝛼� 𝑓 (𝑠) 𝑑𝑠

+
1
2𝜋 �

∞

0
��

∞

−∞
cos (𝑎𝛼𝑡) (cos (𝛼 (𝑠 − 𝑥)) − cos (𝛼 (𝑠 + 𝑥))) 𝑑𝛼� 𝑓 (𝑠) 𝑑𝑠

Simplifying, terms cancel giving

𝑦 (𝑥, 𝑡) =
1
2𝜋 �

∞

0
��

∞

−∞
cos (𝑎𝛼𝑡) [cos (𝛼 (𝑠 − 𝑥)) + cos (𝛼 (𝑠 − 𝑥))] 𝑑𝛼� 𝑓 (𝑠) 𝑑𝑠

=
1
𝜋 �

∞

0
��

∞

−∞
cos (𝑎𝛼𝑡) cos (𝛼 (𝑠 − 𝑥)) 𝑑𝛼� 𝑓 (𝑠) 𝑑𝑠

Changing order of integration

𝑦 (𝑥, 𝑡) =
1
𝜋 �

∞

0
cos (𝑎𝛼𝑡)�

∞

−∞
𝑓 (𝑠) cos (𝛼 (𝑠 − 𝑥)) 𝑑𝑠𝑑𝛼

Which is the result required to show.

2.8.5 Section 59, Problem 3

Figure 2.84: Problem description

solution
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b

y

x

∞−∞ ∇2u(x, y) = 0

0

f(x)

Figure 2.85: Solution domain for PDE

Let 𝑢 = 𝑋 (𝑥) 𝑌 �𝑦�, then 𝑢𝑥𝑥 + 𝑦𝑥𝑥 = 0 becomes

𝑋′′𝑋 + 𝑌′′𝑋 = 0
𝑋′′

𝑋
+
𝑌′′

𝑌
= 0

Taking the eigenvalue ODE to be on the 𝑥 axis, then
𝑋′′

𝑋
= −

𝑌′′

𝑌
= −𝜆

Hence

𝑋′′ + 𝜆𝑋 = 0
|𝑋 (𝑥)| < ∞

Hence 𝜆 can only be positive real. Let 𝜆 = 𝛼2,𝛼 > 0. Therefore the eigenfunctions are
𝑋𝛼 (𝑥) = 𝐴 (𝛼) cos𝛼𝑥 + 𝐵 (𝛼) sin𝛼𝑥 (1)

For the ODE 𝑌′′ − 𝑌𝛼2 = 0 the solution is

𝑌𝛼 �𝑦� = 𝐶 (𝛼) cosh �𝛼𝑦� + 𝐷 (𝛼) sinh �𝛼𝑦� (2)

Hence the solution is

𝑢 �𝑥, 𝑦� = �
∞

0
𝑋𝛼 (𝑥) 𝑌𝛼 �𝑦� 𝑑𝛼

= �
∞

0
(𝐴 (𝛼) cos𝛼𝑥 + 𝐵 (𝛼) sin𝛼𝑥) �𝐶 (𝛼) cosh �𝛼𝑦� + 𝐷 (𝛼) sinh �𝛼𝑦�� 𝑑𝛼 (3)

When 𝑦 = 0, the above becomes

0 = �
∞

0
(𝐴 (𝛼) cos𝛼𝑥 + 𝐵 (𝛼) sin𝛼𝑥)𝐶 (𝛼) 𝑑𝛼

Which implies that 𝐶 (𝛼) = 0. Therefore the solution (3) simplifies to

𝑢 �𝑥, 𝑦� = �
∞

0
(𝐴 (𝛼) cos (𝛼𝑥) + 𝐵 (𝛼) sin (𝛼𝑥))𝐷 (𝛼) sinh �𝛼𝑦� 𝑑𝛼

= �
∞

0
𝐴 (𝛼)𝐷 (𝛼) sinh �𝛼𝑦� cos𝛼𝑥 + 𝐵 (𝛼)𝐷 (𝛼) sinh �𝛼𝑦� sin (𝛼𝑥) 𝑑𝛼

Let 𝐴 (𝛼)𝐷 (𝛼) = 𝐶1 (𝛼) and let 𝐵 (𝛼)𝐷 (𝛼) = 𝐶2 (𝛼), hence the above solution becomes

𝑢 �𝑥, 𝑦� = �
∞

0
𝐶1 (𝛼) sinh �𝛼𝑦� cos𝛼𝑥 + 𝐶2 (𝛼) sinh �𝛼𝑦� sin (𝛼𝑥) 𝑑𝛼 (4)

When 𝑦 = 𝑏 the above becomes

𝑓 (𝑥) = �
∞

0
𝐶1 (𝛼) sinh (𝛼𝑏) cos𝛼𝑥 + 𝐶2 (𝛼) sinh (𝛼𝑏) sin (𝛼𝑥) 𝑑𝛼

Therefore

𝐶1 (𝛼) sinh (𝛼𝑏) =
1
𝜋 �

∞

−∞
𝑓 (𝑠) cos (𝛼𝑠) 𝑑𝑠

𝐶1 (𝛼) =
1

𝜋 sinh (𝛼𝑏) �
∞

−∞
𝑓 (𝑠) cos (𝛼𝑠) 𝑑𝑠 (5)
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And

𝐶2 (𝛼) sinh (𝛼𝑏) =
1
𝜋 �

∞

−∞
𝑓 (𝑠) sin (𝛼𝑠) 𝑑𝑠

𝐶2 (𝛼) =
1

𝜋 sinh (𝛼𝑏) �
∞

−∞
𝑓 (𝑠) sin (𝛼𝑠) 𝑑𝑠 (6)

Using (5,6) in (4) gives

𝑢 �𝑥, 𝑦� = �
∞

0
�

1
𝜋 sinh (𝛼𝑏) �

∞

−∞
𝑓 (𝑠) cos (𝛼𝑠) 𝑑𝑠� sinh �𝛼𝑦� cos (𝛼𝑥) + �

1
𝜋 sinh (𝛼𝑏) �

∞

−∞
𝑓 (𝑠) sin (𝛼𝑠) 𝑑𝑠� sinh �𝛼𝑦� sin (𝛼𝑥) 𝑑𝛼

= �
∞

0

⎛
⎜⎜⎜⎜⎝

sinh �𝛼𝑦�
𝜋 sinh (𝛼𝑏) �

∞

−∞
𝑓 (𝑠) cos (𝛼𝑠) cos𝛼𝑥𝑑𝑠

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

sinh �𝛼𝑦�
𝜋 sinh (𝛼𝑏) �

∞

−∞
𝑓 (𝑠) sin (𝛼𝑠) sin (𝛼𝑥) 𝑑𝑠

⎞
⎟⎟⎟⎟⎠ 𝑑𝛼

=
1
𝜋 �

∞

0

sinh �𝛼𝑦�
sinh (𝛼𝑏) ��

∞

−∞
𝑓 (𝑠) cos (𝛼𝑠) cos𝛼𝑥 + 𝑓 (𝑠) sin (𝛼𝑠) sin (𝛼𝑥) 𝑑𝑠� 𝑑𝛼

=
1
𝜋 �

∞

0

sinh �𝛼𝑦�
sinh (𝛼𝑏) ��

∞

−∞
𝑓 (𝑠) [cos (𝛼𝑠) cos𝛼𝑥 + sin (𝛼𝑠) sin (𝛼𝑥)] 𝑑𝑠� 𝑑𝛼

=
1
𝜋 �

∞

0

sinh �𝛼𝑦�
sinh (𝛼𝑏) ��

∞

−∞
𝑓 (𝑠) cos𝛼 (𝑠 − 𝑥) 𝑑𝑠� 𝑑𝛼

Which is the result required to show.
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2.9.1 Section 61, Problem 2

Figure 2.86: Problem statement

Solution

Let 𝜓2 = 𝑓 + 𝐴𝜓1 such that �𝜓2, 𝜓1� = 0. Hence

�𝑓 + 𝐴𝜓1, 𝜓1� = 0
�𝑓, 𝜓1� + �𝐴𝜓1, 𝜓1� = 0
�𝑓, 𝜓1� + 𝐴 �𝜓1, 𝜓1� = 0

�𝑓, 𝜓1� + 𝐴 �𝜓1�
2 = 0

𝐴 = −
�𝑓, 𝜓1�

�𝜓1�
2

Therefore, since 𝜓2 = 𝑓 + 𝐴𝜓1 then

𝜓2 = 𝑓 −
�𝑓, 𝜓1�

�𝜓1�
2 𝜓1

Geometrically, the term
�𝜓1,𝑓�

�𝜓1�
2 𝜓1 represents the projection of 𝑓 on 𝜓1. The term

𝜓1
�𝜓1�

makes

a unit vector in the direction of 𝜓1 and the term
�𝑓,𝜓1�
�𝜓1�

is the magnitude of projection

�𝜓1� cos (𝜃) where 𝜃 is the inner angle between 𝑓, 𝜓1. The result of −
�𝑓,𝜓1�

�𝜓1�
2 𝜓1 is a vector

in the opposite direction of 𝜓1. Adding this to 𝑓 gives 𝜓2 which is now orthogonal to 𝑓.
This process is called Gram Schmidt.

105



2.9. HW 9 CHAPTER 2. HWS

2.9.2 Section 61, Problem 3

Figure 2.87: Problem statement

Solution

Let

𝑓 = cos 𝑛𝑥 + sin 𝑛𝑥
𝜓1 = cos 𝑛𝑥

Then by Gram Schmidt process from problem 2 we know that

𝜓2 = 𝑓 −
�𝑓, 𝜓1�

�𝜓1�
2 𝜓1

Hence

𝜓2 = (cos 𝑛𝑥 + sin 𝑛𝑥) −
∫𝜋
−𝜋
(cos 𝑛𝑥 + sin 𝑛𝑥) cos 𝑛𝑥𝑑𝑥

∫𝜋
−𝜋

cos2 (𝑛𝑥) 𝑑𝑥
cos 𝑛𝑥

= (cos 𝑛𝑥 + sin 𝑛𝑥) −
∫𝜋
−𝜋

cos 𝑛𝑥 cos 𝑛𝑥𝑑𝑥 + ∫
𝜋

−𝜋
sin 𝑛𝑥 cos 𝑛𝑥𝑑𝑥

𝜋
cos 𝑛𝑥

But ∫
𝜋

−𝜋
cos 𝑛𝑥 cos 𝑛𝑥𝑑𝑥 = ∫𝜋

−𝜋
cos2 𝑛𝑥𝑑𝑥 = 𝜋 and ∫𝜋

−𝜋
sin 𝑛𝑥 cos 𝑛𝑥𝑑𝑥 = 0 since these are

orthogonal. Hence the above simplifies to

𝜓2 = (cos 𝑛𝑥 + sin 𝑛𝑥) − cos 𝑛𝑥
= sin 𝑛𝑥

2.9.3 Section 63, Problem 3

Figure 2.88: Problem statement

Solution

The Fourier coe�cients of 𝑓 − 𝑔 are given by �𝑓 − 𝑔, 𝜙𝑛� by definition. But due to linearity
of inner product, this can be written as

�𝑓 − 𝑔, 𝜙𝑛� = �𝑓, 𝜙𝑛� − �𝑔, 𝜙𝑛�
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But �𝑓, 𝜙𝑛� are the Fourier coe�cients of 𝑓 and �𝑔, 𝜙𝑛� are the Fourier coe�cients of 𝑔,
and we are told these are the same. Therefore

�𝑓 − 𝑔, 𝜙𝑛� = 0
Which implies that �𝑓 − 𝑔� = 0. Using part(b) in problem 4, section 61, which says that
if �𝑓� = 0 then 𝑓 (𝑥) = 0 except at possibly finite number of points in the interval, then
applying this to �𝑓 − 𝑔� = 0 leads to

𝑓 − 𝑔 = 0
Which implies 𝑓 = 𝑔 which is what required to show.

2.9.4 Section 63, Problem 4

Figure 2.89: Problem description

solution

Part (a)

Let the generalized Fourier series of 𝑓 (𝑥) be

𝑓 (𝑥) =
∞
�
𝑛=1

�𝑓 (𝑥) , 𝜙𝑛� 𝜙𝑛

Let the sum the above converges uniformly to be 𝑠 (𝑥). Therefore we have, per problem
statement the following equality

∞
�
𝑛=1

�𝑓 (𝑥) , 𝜙𝑛� 𝜙𝑛 = 𝑠 (𝑥)

Taking the inner product of both sides with respect to 𝜙𝑚 gives

�
𝑏

𝑎
�
∞
�
𝑛=1

�𝑓 (𝑥) , 𝜙𝑛� 𝜙𝑛� 𝜙𝑚𝑑𝑥 = �
𝑏

𝑎
𝑠 (𝑥) 𝜙𝑚𝑑𝑥

= �𝑠 (𝑥) , 𝜙𝑚�
Since the sum converges uniformly, then we are allowed to integrate the left side term by
term while keeping the equality with the right side. Hence moving the integration inside
the sum gives

∞
�
𝑛=1

�𝑓 (𝑥) , 𝜙𝑛��
𝑏

𝑎
𝜙𝑛𝜙𝑚𝑑𝑥 = �𝑠 (𝑥) , 𝜙𝑚�

But due to orthogonality of 𝜙𝑛 and 𝜙𝑚 and since they are normalized, then ∫
𝑏

𝑎
𝜙𝑛𝜙𝑚𝑑𝑥 =

�𝜙𝑛, 𝜙𝑚� = 1 if 𝑛 = 𝑚 and zero otherwise. Hence the above simplifies to

�𝑓 (𝑥) , 𝜙𝑚� = �𝑠 (𝑥) , 𝜙𝑚�

107



2.9. HW 9 CHAPTER 2. HWS

And since the above is valid for any arbitrary 𝑚 = 1⋯∞, then it shows that 𝑓 (𝑥) and 𝑠 (𝑥)
have the same generalized Fourier coe�cients.

Part (b)

From part (a), we found

�𝑓, 𝜙𝑛� = �𝑠, 𝜙𝑛�
By linearity of inner product, the above is the same as

�𝑓, 𝜙𝑛� − �𝑠, 𝜙𝑛� = 0
�𝑓 − 𝑠, 𝜙𝑛� = 0

But from problem 3, we know that �𝑓 − 𝑠, 𝜙𝑛� = 0 implies �𝑓 − 𝑠� = 0.

Next, using part(b) in problem 4, section 61, which says that if �𝑓� = 0 then 𝑓 (𝑥) = 0
except at possibly finite number of points in the interval, then applying this to our case
here that �𝑓 − 𝑠� = 0 leads to

𝑓 − 𝑠 = 0
𝑓 = 𝑠

Which is the result required to show.

2.9.5 Section 66, Problem 4

Figure 2.90: Problem description

solution
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Part (a)

We need to find

�𝜙0, 𝜙2𝑛�
�𝜙0, 𝜙2𝑛−1�
�𝜙2𝑛, 𝜙2𝑚�
�𝜙2𝑛−1, 𝜙2𝑚−1�
�𝜙2𝑚−1, 𝜙2𝑛�

And also show that

�𝜙0, 𝜙0� = �𝜙0�
2 = 1

�𝜙2𝑛, 𝜙2𝑛� = �𝜙2𝑛�
2 = 1

�𝜙2𝑛−1, 𝜙2𝑛−1� = �𝜙2𝑛−1�
2 = 1

�𝜙0, 𝜙2𝑛�

�𝜙0, 𝜙2𝑛� = �
𝑐

−𝑐

1

√2𝑐
1

√𝑐
cos �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥

=
1
𝑐√2

⎡
⎢⎢⎢⎢⎢⎣
sin �𝑛𝜋𝑐 𝑥�

𝑛𝜋
𝑐

⎤
⎥⎥⎥⎥⎥⎦

𝑐

−𝑐

=
𝑐

𝑛𝜋𝑐√2
�sin �

𝑛𝜋
𝑐
𝑥��

𝑐

−𝑐

=
1

𝑛𝜋√2
[sin (𝑛𝜋) + sin (𝑛𝜋)]

= 0
Since 𝑛 is integer.

�𝜙0, 𝜙2𝑛−1�

�𝜙0, 𝜙2𝑛−1� = �
𝑐

−𝑐

1

√2𝑐
1

√𝑐
sin �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥

=
1
𝑐√2

⎡
⎢⎢⎢⎢⎢⎣
− cos �𝑛𝜋𝑐 𝑥�

𝑛𝜋
𝑐

⎤
⎥⎥⎥⎥⎥⎦

𝑐

−𝑐

=
−𝑐

𝑛𝜋𝑐√2
�cos �

𝑛𝜋
𝑐
𝑥��

𝑐

−𝑐

=
−1

𝑛𝜋√2
[cos (𝑛𝜋) − cos (𝑛𝜋)]

= 0
�𝜙2𝑛, 𝜙2𝑚�

�𝜙2𝑛, 𝜙2𝑚� = �
𝑐

−𝑐

1

√𝑐
sin �

𝑛𝜋
𝑐
𝑥�

1

√𝑐
sin �

𝑚𝜋
𝑐
𝑥� 𝑑𝑥

=
1
𝑐 �

𝑐

−𝑐
sin �

𝑛𝜋
𝑐
𝑥� sin �

𝑚𝜋
𝑐
𝑥� 𝑑𝑥

Let
𝑐
𝜋𝑠 = 𝑥, then 𝑑𝑥 =

𝑐
𝜋𝑑𝑠. When 𝑥 = −𝑐 then 𝑠 = −𝜋 and when 𝑥 = 𝑐 then 𝑠 = 𝜋 and the

above becomes

�𝜙2𝑛, 𝜙2𝑚� =
1
𝑐 �

𝜋

−𝜋
sin (𝑛𝑠) sin (𝑚𝑠)

𝑐
𝜋
𝑑𝑠

=
1
𝜋 �

𝜋

−𝜋
sin (𝑛𝑠) sin (𝑚𝑠) 𝑑𝑠

Since the integrand is even, then

�𝜙2𝑛, 𝜙2𝑚� =
2
𝜋 �

𝜋

0
sin (𝑛𝑠) sin (𝑚𝑠) 𝑑𝑠
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From equation (1), page 192 we see that

�𝜙2𝑛, 𝜙2𝑚� = 0
Since 𝑛,𝑚 are di�erent.

�𝜙2𝑛−1, 𝜙2𝑚−1�

�𝜙2𝑛−1, 𝜙2𝑚−1� = �
𝑐

−𝑐

1

√𝑐
cos �

𝑛𝜋
𝑐
𝑥�

1

√𝑐
cos �

𝑚𝜋
𝑐
𝑥� 𝑑𝑥

=
1
𝑐 �

𝑐

−𝑐
cos �

𝑛𝜋
𝑐
𝑥� cos �

𝑚𝜋
𝑐
𝑥� 𝑑𝑥

Let
𝑐
𝜋𝑠 = 𝑥, then 𝑑𝑥 =

𝑐
𝜋𝑑𝑠. When 𝑥 = −𝑐 then 𝑠 = −𝜋 and when 𝑥 = 𝑐 then 𝑠 = 𝜋 and the

above becomes

�𝜙2𝑛−1, 𝜙2𝑚−1� =
1
𝑐 �

𝜋

−𝜋
cos (𝑛𝑠) cos (𝑚𝑠)

𝑐
𝜋
𝑑𝑠

=
1
𝜋 �

𝜋

−𝜋
cos (𝑛𝑠) cos (𝑚𝑠) 𝑑𝑠

Since the integrand is even, then

�𝜙2𝑛−1, 𝜙2𝑚−1� =
2
𝜋 �

𝜋

0
cos (𝑛𝑠) cos (𝑚𝑠) 𝑑𝑠

From equation (4), page 192 we see that

�𝜙2𝑛−1, 𝜙2𝑚−1� = 0
Since 𝑛,𝑚 are di�erent.

�𝜙2𝑚−1, 𝜙2𝑛�

�𝜙2𝑚−1, 𝜙2𝑛� = �
𝑐

−𝑐

1

√𝑐
cos �

𝑚𝜋
𝑐
𝑥�

1

√𝑐
sin �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥

=
1
𝑐 �

𝑐

−𝑐
cos �

𝑚𝜋
𝑐
𝑥� sin �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥

Let
𝑐
𝜋𝑠 = 𝑥, then 𝑑𝑥 =

𝑐
𝜋𝑑𝑠. When 𝑥 = −𝑐 then 𝑠 = −𝜋 and when 𝑥 = 𝑐 then 𝑠 = 𝜋 and the

above becomes

�𝜙2𝑚−1, 𝜙2𝑛� =
1
𝑐 �

𝜋

−𝜋
cos (𝑚𝑠) sin (𝑛𝑠)

𝑐
𝜋
𝑑𝑠

=
1
𝜋 �

𝜋

−𝜋
cos (𝑚𝑠) sin (𝑛𝑠) 𝑑𝑠

Using cos (𝑚𝑠) sin (𝑛𝑠) = 1
2
(cos (𝑠 (𝑚 + 𝑛)) + cos (𝑠 (𝑚 − 𝑛))). Hence the above becomes

�𝜙2𝑚−1, 𝜙2𝑛� =
1
2𝜋 ��

𝜋

−𝜋
cos (𝑠 (𝑚 + 𝑛)) 𝑑𝑠 +�

𝜋

−𝜋
cos (𝑠 (𝑚 − 𝑛)) 𝑑𝑠�

Since the integration is over one full period, then each is zero. Hence

�𝜙2𝑚−1, 𝜙2𝑛� = 0
�𝜙0, 𝜙0�

�𝜙0, 𝜙0� = �
𝑐

−𝑐

1

√2𝑐
1

√2𝑐
𝑑𝑥

�𝜙0�
2 =

1
2𝑐 �

𝑐

−𝑐
𝑑𝑥

= 1

Hence �𝜙0� = 1 .
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�𝜙2𝑛, 𝜙2𝑛�

�𝜙2𝑛, 𝜙2𝑛� = �
𝑐

−𝑐

1

√𝑐
sin �

𝑛𝜋
𝑐
𝑥�

1

√𝑐
sin �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥

=
1
𝑐 �

𝑐

−𝑐
sin2 �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥

=
1
𝑐 �

𝑐

−𝑐

1
2
−
1
2

cos �2
𝑛𝜋
𝑐
𝑥� 𝑑𝑥

=
1
2𝑐 ��

𝑐

−𝑐
𝑑𝑥 −�

𝑐

−𝑐
cos �2

𝑛𝜋
𝑐
𝑥� 𝑑𝑥�

=
1
2𝑐

⎛
⎜⎜⎜⎜⎜⎜⎝2𝑐 −

⎡
⎢⎢⎢⎢⎢⎣
sin �2𝑛𝜋𝑐 𝑥�

2𝑛𝜋𝑐

⎤
⎥⎥⎥⎥⎥⎦

𝑐

−𝑐

⎞
⎟⎟⎟⎟⎟⎟⎠

=
1
2𝑐 �

2𝑐 −
𝑐
2𝑛𝜋 �

sin �2
𝑛𝜋
𝑐
𝑥��

𝑐

−𝑐
�

=
1
2𝑐
(2𝑐)

= 1

Hence �𝜙2𝑛� = 1 .
�𝜙2𝑛−1, 𝜙2𝑛−1�

�𝜙2𝑛−1, 𝜙2𝑛−1� = �
𝑐

−𝑐

1

√𝑐
cos �

𝑛𝜋
𝑐
𝑥�

1

√𝑐
cos �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥

�𝜙2𝑛−1�
2 =

1
𝑐 �

𝑐

−𝑐
cos2 �

𝑛𝜋
𝑐
𝑥� 𝑑𝑥

=
1
𝑐 �

𝑐

−𝑐

1
2
+
1
2

sin �2
𝑛𝜋
𝑐
𝑥� 𝑑𝑥

=
1
2𝑐 ��

𝑐

−𝑐
𝑑𝑥 +�

𝑐

−𝑐
sin �2

𝑛𝜋
𝑐
𝑥� 𝑑𝑥�

=
1
2𝑐

⎛
⎜⎜⎜⎜⎜⎜⎝2𝑐 −

⎡
⎢⎢⎢⎢⎢⎣
cos �2𝑛𝜋𝑐 𝑥�

2𝑛𝜋𝑐

⎤
⎥⎥⎥⎥⎥⎦

𝑐

−𝑐

⎞
⎟⎟⎟⎟⎟⎟⎠

=
1
2𝑐 �

2𝑐 −
𝑐
2𝑛𝜋 �

cos �2
𝑛𝜋
𝑐
𝑥��

𝑐

−𝑐
�

=
1
2𝑐
�2𝑐 −

𝑐
2𝑛𝜋

[cos (2𝑛𝜋) − cos (2𝑛𝜋)]�

=
1
2𝑐
2𝑐

= 1

Hence �𝜙2𝑛−1� = 1 .

Part (b)

𝜙0 (𝑥) =
1

√2𝑐

𝜙2𝑛−1 (𝑥) =
1

√𝑐
cos �

𝑛𝜋𝑥
𝑐
�

𝜙2𝑛 (𝑥) =
1

√𝑐
sin �

𝑛𝜋𝑥
𝑐
�

On −𝑐 < 𝑥 < 𝑐. The generalized Fourier series for 𝑓 (𝑥) in 𝐶𝑝 (−𝑐, 𝑐) is
∞
�
𝑛=0

𝑐𝑛𝜙𝑛 (𝑥) = 𝑐0𝜙0 (𝑥) +
∞
�
𝑛=1

�𝑐2𝑛−1𝜙2𝑛−1 (𝑥) + 𝑐2𝑛𝜙2𝑛 (𝑥)�

111



2.9. HW 9 CHAPTER 2. HWS

That is

𝑓 (𝑥) ∼ 𝑐0
1

√2𝑐
+

∞
�
𝑛=1

�
𝑐2𝑛−1
√𝑐

cos �
𝑛𝜋𝑥
𝑐
� +

𝑐2𝑛
√𝑐

sin �
𝑛𝜋𝑥
𝑐
�� (1)

Where

𝑐0 = �𝑓, 𝜙0 (𝑥)� =
1

√2𝑐
�

𝑐

−𝑐
𝑓 (𝑥) 𝑑𝑥

And

𝑐2𝑛−1 = �𝑓, 𝜙2𝑛−1 (𝑥)� =
1

√𝑐
�

𝑐

−𝑐
𝑓 (𝑥) cos �

𝑛𝜋𝑥
𝑐
� 𝑑𝑥 𝑛 = 1, 2,⋯

𝑐2𝑛 = �𝑓, 𝜙2𝑛 (𝑥)� =
1

√𝑐
�

𝑐

−𝑐
𝑓 (𝑥) sin �

𝑛𝜋𝑥
𝑐
� 𝑑𝑥 𝑛 = 1, 2,⋯

If we write

𝑎0 = 2
𝑐0
√2𝑐

, 𝑎𝑛 =
𝑐2𝑛−1
√𝑐

, 𝑏𝑛 =
𝑐2𝑛
√𝑐

𝑛 = 1, 2,⋯

Then (1) becomes

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
𝑛𝜋𝑥
𝑐
� + 𝑏𝑛 sin �

𝑛𝜋𝑥
𝑐
�

Where

𝑎𝑛 =
1
𝑐 �

𝑐

−𝑐
𝑓 (𝑥) cos �

𝑛𝜋𝑥
𝑐
� 𝑑𝑥 𝑛 = 1, 2,⋯

𝑏𝑛 =
1
𝑐 �

𝑐

−𝑐
𝑓 (𝑥) sin �

𝑛𝜋𝑥
𝑐
� 𝑑𝑥 𝑛 = 1, 2,⋯

This is the ordinary Fourier series on −𝑐 < 𝑥 < 𝑐.

Part (c)

From (1) section 65
𝑁
�
𝑛=0

𝑐2𝑛 ≤ �𝑓�
2

(1)

But from part (b) we found that

𝑎0 = 2
𝑐0
√2𝑐

, 𝑎𝑛 =
𝑐2𝑛−1
√𝑐

, 𝑏𝑛 =
𝑐2𝑛
√𝑐

𝑛 = 1, 2,⋯

Hence

𝑐0 =
𝑎0
2 √

2𝑐

𝑐2𝑛−1 = 𝑎𝑛√𝑐
𝑐2𝑛 = 𝑏𝑛√𝑐

Substituting the above into (1) gives

𝑐20 +
𝑁
�
𝑛=1

𝑐22𝑛−1 +
𝑁
�
𝑛=1

𝑐22𝑛 ≤ �𝑓�
2

�
𝑎0
2 √

2𝑐�
2
+

𝑁
�
𝑛=1

�𝑎𝑛√𝑐�
2
+

𝑁
�
𝑛=1

�𝑏𝑛√𝑐�
2
≤ ��𝑓 (𝑥)�

2
𝑑𝑥

�
𝑎20
4
2𝑐� +

𝑁
�
𝑛=1

𝑎2𝑛𝑐 +
𝑁
�
𝑛=1

𝑏2𝑛𝑐 ≤ ��𝑓 (𝑥)�
2
𝑑𝑥

𝑎20
2
+

𝑁
�
𝑛=1

�𝑎2𝑛 + 𝑏2𝑛� ≤
1
𝑐 �

�𝑓 (𝑥)�
2
𝑑𝑥
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2.9.6 Section 66, Problem 5

Figure 2.91: Problem description

solution

The function 𝑆𝑁 (𝑥) is almost 1 everywhere as can be seen from this diagram

1
x

1
2

1
4

1
3

1
5

N = 1
N = 2N = 3

SN (x)

1
x

f(x) = 1

1

1

SN (x) = 0

SN (x) = 1

Figure 2.92: Showing the function 𝑆𝑁(𝑥) and 𝑓(𝑥)

And the problem is asking us to show that 𝑆𝑁 (𝑥) → 𝑓 (𝑥) in the mean. This means we
need to show the following is true

lim
𝑁→∞

�𝑆𝑁 (𝑥) − 𝑓 (𝑥)� = 0

Except at possibly finite number of points 𝑥. But this is the case here. Looking at 𝑆𝑁 (𝑥) we
see it is equal to 𝑓 (𝑥) = 1 everywhere except at the points 𝑥 = 1, 12 ,

1
3 ,⋯ and compared to

all the points between 0 and 1, then 𝑆𝑁 (𝑥) = 𝑓 (𝑥) = 1 almost everywhere. Even though as
𝑁 → ∞ the number of points where 𝑆𝑁 (𝑥) ≠ 1 increases, it is still finitely many compared
to the number of points where 𝑆𝑁 (𝑥) = 𝑓 (𝑥) = 1.

To answer the second part: Since 𝑆𝑁 (𝑥) = 0 at any 𝑥 value which can written as
1
𝑝 where
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𝑝 is an integer (this by definition given), then 𝑆𝑁 �
1
𝑝
� = 0. Then it clearly follows that

lim𝑁→∞ 𝑆𝑁 �
1
𝑝
� = 0.
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2.10.1 Section 69, Problem 1

Figure 2.93: Problem statement

Solution

Part (a)

𝑋′ (𝑥) + 𝑥𝑋′′ (𝑥) +
𝜆
𝑥
𝑋 (𝑥) = 0

𝑥2𝑋′′ (𝑥) + 𝑥𝑋′ (𝑥) + 𝜆𝑋 (𝑥) = 0 (1)

To transform the above to 𝑋′′ (𝑠) + 𝜆𝑋 (𝑠) = 0 , let 𝑥 = 𝑒𝑠. Therefore 𝑑𝑥
𝑑𝑠 = 𝑒𝑠 or 𝑑𝑠

𝑑𝑥 = 𝑒−𝑠.
Now

𝑑𝑋
𝑑𝑥

=
𝑑𝑋
𝑑𝑠
𝑑𝑠
𝑑𝑥

=
𝑑𝑋
𝑑𝑠
𝑒−𝑠 (2)

And
𝑑2𝑋
𝑑𝑥2

=
𝑑
𝑑𝑥 �

𝑑𝑋
𝑑𝑥 �

=
𝑑
𝑑𝑥 �

𝑑𝑋
𝑑𝑠
𝑒−𝑠�
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Hence, by product rule

𝑑2𝑋
𝑑𝑥2

=
𝑑2𝑋
𝑑𝑠2

𝑑𝑠
𝑑𝑥
𝑒−𝑠 +

𝑑𝑋
𝑑𝑠

𝑑
𝑑𝑥
(𝑒−𝑠)

=
𝑑2𝑋
𝑑𝑠2

𝑒−𝑠𝑒−𝑠 +
𝑑𝑋
𝑑𝑠

𝑑
𝑑𝑠
(𝑒−𝑠)

𝑑𝑠
𝑑𝑥

=
𝑑2𝑋
𝑑𝑠2

𝑒−2𝑠 +
𝑑𝑋
𝑑𝑠
(−𝑒−𝑠) (𝑒−𝑠)

= 𝑒−2𝑠
𝑑2𝑋
𝑑𝑠2

− 𝑒−2𝑠
𝑑𝑋
𝑑𝑠

(3)

Substituting (2,3) back into (1) gives

𝑥2 �𝑒−2𝑠
𝑑2𝑋
𝑑𝑠2

− 𝑒−2𝑠
𝑑𝑋
𝑑𝑠 �

+ 𝑥 �
𝑑𝑋
𝑑𝑠
𝑒−𝑠� + 𝜆𝑋 = 0

But 𝑥 = 𝑒𝑠 and the above simplifies to

𝑒2𝑠 �𝑒−2𝑠
𝑑2𝑋
𝑑𝑠2

− 𝑒−2𝑠
𝑑𝑋
𝑑𝑠 �

+ 𝑒𝑠 �
𝑑𝑋
𝑑𝑠
𝑒−𝑠� + 𝜆𝑋 = 0

𝑑2𝑋
𝑑𝑠2

−
𝑑𝑋
𝑑𝑠

+
𝑑𝑋
𝑑𝑠

+ 𝜆𝑋 = 0

𝑑2𝑋 (𝑠)
𝑑𝑠2

+ 𝜆𝑋 (𝑠) = 0

When 𝑋 (1) = 0, which means when 𝑥 = 1, and since 𝑥 = 𝑒𝑠, then when 𝑠 = 0. Hence
𝑋 (1) = 0 becomes 𝑋 (0) = 0. And when 𝑥 = 𝑏, then 𝑠 = ln (𝑏). Hence the second condition
becomes 𝑋 (ln (𝑏)) = 0. Therefore the new B.C. are

𝑋 (0) = 0
𝑋 (ln (𝑏)) = 0

By referring to problem (4) in section 35 we see that the eigenvalues are

𝜆𝑛 = �
𝑛𝜋
𝑐
�
2

Where here 𝑐 = ln (𝑏). Hence

𝜆𝑛 = �
𝑛𝜋

ln (𝑏)�
2

𝑛 = 1, 2, 3,⋯

= 𝛼2𝑛
Where 𝛼𝑛 =

𝑛𝜋
ln(𝑏) . And the eigenfunctions are, per section 35

𝑋𝑛 (𝑠) = sin (𝛼𝑛𝑠)
In terms of 𝑥, the eigenfunctions become

𝑋𝑛 (𝑠) = sin (𝛼𝑛 ln 𝑥)

Part (b)

⟨𝑋𝑛 (𝑥) , 𝑋𝑚 (𝑥)⟩ = �
𝑏

1
sin (𝛼𝑛 ln 𝑥) sin (𝛼𝑚 ln 𝑥) 𝑝 (𝑥) 𝑑𝑥

But from (𝑥𝑋′ (𝑥))′ + 𝜆
𝑥𝑋 (𝑥) = 0 and comparing this to (𝑟𝑋′)′ + �𝜆𝑝 + 𝑞�𝑋 = 0, we see that

𝑟 (𝑥) = 𝑥 and 𝑞 = 0 and 𝑝 = 1
𝑥 . Hence the above integral becomes

⟨𝑋𝑛 (𝑥) , 𝑋𝑚 (𝑥)⟩ = �
𝑏

1

1
𝑥

sin (𝛼𝑛 ln 𝑥) sin (𝛼𝑚 ln 𝑥) 𝑑𝑥
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Let 𝑠 = ln 𝑥
ln 𝑏𝜋. Then

𝑑𝑠
𝑑𝑥 =

1
𝑥
𝜋

ln 𝑏 or 𝑑𝑥 =
𝑥
𝜋 ln (𝑏) 𝑑𝑠. When 𝑥 = 1 then 𝑠 = 0 and when 𝑥 = 𝑏

then 𝑠 = 𝜋. Hence the above integral becomes

⟨𝑋𝑛 (𝑥) , 𝑋𝑚 (𝑥)⟩ = �
𝑠=𝜋

𝑠=0

1
𝑥

sin �𝛼𝑛
𝑠 ln 𝑏
𝜋 � sin �𝛼𝑚

𝑠 ln 𝑏
𝜋 � �

𝑥
𝜋

ln (𝑏) 𝑑𝑠�

=
1
𝜋

ln (𝑏)�
𝜋

0
sin �𝛼𝑛

𝑠 ln 𝑏
𝜋 � sin �𝛼𝑚

𝑠 ln 𝑏
𝜋 � 𝑑𝑠

But 𝛼𝑛 =
𝑛𝜋

ln(𝑏) and 𝛼𝑚 =
𝑚𝜋
ln(𝑏) , therefore the above becomes

⟨𝑋𝑛 (𝑥) , 𝑋𝑚 (𝑥)⟩ =
1
𝜋

ln (𝑏)�
𝜋

0
sin �

𝑛𝜋
ln (𝑏)

𝑠 ln 𝑏
𝜋 � sin �

𝑚𝜋
ln (𝑏)

𝑠 ln 𝑏
𝜋 � 𝑑𝑠

=
1
𝜋

ln (𝑏)�
𝜋

0
sin (𝑛𝑠) sin (𝑚𝑠) 𝑑𝑠 (1)

Referring to Problem 9., section 5 which says that

�
𝜋

0
sin (𝑛𝑥) sin (𝑚𝑥) 𝑑𝑥 =

⎧⎪⎨
⎪⎩
0 𝑛 ≠ 𝑚
𝜋
2 𝑛 = 0

Applying this to (1) shows that

⟨𝑋𝑛 (𝑥) , 𝑋𝑚 (𝑥)⟩ =
⎧⎪⎨
⎪⎩
0 𝑛 ≠ 𝑚
𝜋
2 𝑛 = 0

Hence 𝑋𝑛 (𝑥) and 𝑋𝑚 (𝑥) are orthogonal, since this is the definition of orthogonality.

2.10.2 Section 72, Problem 3

Figure 2.94: Problem statement

Solution

Solve for eigenvalues and normalized eigenfunctions.

𝑋′′ + 𝜆𝑋 = 0
𝑋′ (0) = 0
𝑋 (𝑐) = 0

Writing the boundary conditions in SL standard form

𝑎1𝑋 (0) + 𝑎2𝑋′ (0) = 0
𝑏1𝑋 (𝑐) + 𝑏2𝑋′ (𝑐) = 0

Shows that 𝑎1 = 0, 𝑎2 = 1 and 𝑏1 = 1, 𝑏2 = 0 . Therefore 𝑎1𝑎2 = 0 and 𝑏1𝑏2 = 0. But we
know that if 𝑎1𝑎2 ≥ 0 and 𝑏1𝑏2 ≥ 0, then 𝜆 > 0 is only possible eigenvalues. Let 𝜆𝑛 = 𝛼2𝑛.
𝛼 > 0. Hence the solution to the ODE is

𝑋𝑛 (𝑥) = 𝐴 cos (𝛼𝑛𝑥) + 𝐵 sin (𝛼𝑛𝑥)
𝑋′𝑛 (𝑥) = −𝐴𝛼𝑛 sin (𝛼𝑛𝑥) + 𝐵𝛼𝑛 cos (𝛼𝑛𝑥)

First B.C 𝑋′ (0) = 0 gives
0 = 𝐵𝛼𝑛

Which implies 𝐵 = 0. Hence the solution now becomes 𝑋𝑛 (𝑥) = 𝐴 cos (𝛼𝑛𝑥). For the second
BC

0 = 𝐴 cos (𝛼𝑛𝑐)
0 = cos (𝛼𝑛𝑐)
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Which implies

𝛼𝑛𝑐 =
𝜋
2
, 3
𝜋
2
, 5
𝜋
2
,⋯

= (2𝑛 − 1)
𝜋
2

𝑛 = 1, 2, 3,⋯

Hence

𝛼𝑛 =
(2𝑛 − 1)

𝑐
𝜋
2

𝑛 = 1, 2, 3,⋯

And the corresponding eigenfunctions are

𝑋𝑛 (𝑥) = cos (𝛼𝑛𝑥)

= cos �
(2𝑛 − 1)

𝑐
𝜋
2
𝑥�

To find the normalized 𝑋𝑛 (𝑥) which we call it 𝜙𝑛 (𝑥), then by definition

𝜙𝑛 (𝑥) =
𝑋𝑛 (𝑥)
‖𝑋𝑛 (𝑥)‖

But

‖𝑋𝑛 (𝑥)‖
2 = �

𝑐

0
𝑝 (𝑥)𝑋2𝑛 (𝑥) 𝑑𝑥

Comparing the ODE 𝑋′′ + 𝜆𝑋 = 0 to (𝑟𝑋′)′ + �𝜆𝑝 + 𝑞�𝑋 = 0, we see that 𝑟 (𝑥) = 1 and
𝑞 = 0 and 𝑝 = 1. Hence the above becomes

‖𝑋𝑛 (𝑥)‖
2 = �

𝑐

0
cos2 (𝛼𝑛𝑥) 𝑑𝑥

=
𝑐
2

Therefore ‖𝑋𝑛 (𝑥)‖ = �
𝑐
2 which shows that

𝜙𝑛 (𝑥) =
𝑋𝑛 (𝑥)

�
𝑐
2

=
�
2
𝑐

cos (𝛼𝑛𝑥)

where

𝛼𝑛 =
(2𝑛 − 1)

𝑐
𝜋
2

𝑛 = 1, 2, 3,⋯

Which is what required to show.
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2.10.3 Section 72, Problem 6

Figure 2.95: Problem statement

Solution

𝑋𝑛 (𝑥) = sin (𝛼𝑛 ln 𝑥)

𝛼𝑛 =
𝑛𝜋
ln 𝑏

𝑛 = 1, 2, 3,⋯

The normalized eigenfunction is given by

𝜙𝑛 (𝑥) =
𝑋𝑛 (𝑥)
‖𝑋𝑛 (𝑥)‖

But

‖𝑋𝑛 (𝑥)‖
2 = �

𝑏

1
𝑝 (𝑥)𝑋2𝑛 (𝑥) 𝑑𝑥

Comparing the ODE (𝑥𝑋′)′ + 𝜆
𝑥𝑋 = 0 to (𝑟𝑋′)′ + �𝜆𝑝 + 𝑞�𝑋 = 0, we see that 𝑟 (𝑥) = 𝑥 and

𝑞 = 0 and 𝑝 = 1
𝑥 . Hence the above becomes

‖𝑋𝑛 (𝑥)‖
2 = �

𝑏

1

1
𝑥

sin2 (𝛼𝑛 ln 𝑥) 𝑑𝑥

Let 𝑠 = ln 𝑥
ln 𝑏𝜋. Then

𝑑𝑠
𝑑𝑥 =

1
𝑥
𝜋

ln 𝑏 or 𝑑𝑥 =
𝑥
𝜋 ln (𝑏) 𝑑𝑠. When 𝑥 = 1 then 𝑠 = 0 and when 𝑥 = 𝑏

then 𝑠 = 𝜋. Hence the above integral becomes

‖𝑋𝑛 (𝑥)‖
2 = �

𝑠=𝜋

𝑠=0

1
𝑥

sin2 �𝛼𝑛
𝑠 ln 𝑏
𝜋 � �

𝑥
𝜋

ln (𝑏) 𝑑𝑠�

=
1
𝜋

ln (𝑏)�
𝜋

0
sin2 �𝛼𝑛

𝑠 ln 𝑏
𝜋 � 𝑑𝑠
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But 𝛼𝑛 =
𝑛𝜋

ln(𝑏) therefore the above becomes

‖𝑋𝑛 (𝑥)‖
2 =

1
𝜋

ln (𝑏)�
𝜋

0
sin2 �

𝑛𝜋
ln (𝑏)

𝑠 ln 𝑏
𝜋 � 𝑑𝑠

=
1
𝜋

ln (𝑏)�
𝜋

0
sin2 (𝑛𝑠) 𝑑𝑠

=
1
𝜋

ln (𝑏)�
𝜋

0

1
2
−
1
2

cos (2𝑛𝑠) 𝑑𝑠

=
1
𝜋

ln (𝑏)
⎛
⎜⎜⎜⎜⎝
𝜋
2
−
1
2

sin �
2𝑛𝑠
2𝑛 �

𝜋

0

⎞
⎟⎟⎟⎟⎠

=
1
𝜋

ln (𝑏) �
𝜋
2
−
1
2

sin (𝑠)𝜋0 �

=
1
2

ln (𝑏)

Hence

𝜙𝑛 (𝑥) =
sin (𝛼𝑛 ln 𝑥)

�
1
2 ln (𝑏)

=
�

2
ln (𝑏)

sin (𝛼𝑛 ln 𝑥)

Which is what required to show.

2.10.4 Section 72, Problem 9

Figure 2.96: Problem description

solution

From problem section 69 problem 1, we know that (𝑥𝑋′ (𝑥))′+𝜆𝑥𝑋 (𝑥) = 0 can be transformed
to 𝑋′′ (𝑠) + 𝜆𝑋 (𝑠) = 0 using 𝑥 = 𝑒𝑠. With boundary conditions in 𝑠 found as follows. When
𝑥 = 1 then 𝑠 = 0 and when 𝑥 = 𝑏 then 𝑠 = ln 𝑏. Hence we obtain the SL problem

𝑋′′ (𝑠) + 𝜆𝑋 (𝑠) = 0 (1)

𝑋′ (0) = 0
𝑋 (ln 𝑏) = 0

But problem 3 is

𝑋′′ + 𝜆𝑋 = 0 (2)

𝑋′ (0) = 0
𝑋 (𝑐) = 0

And it had the solution

𝜙𝑛 (𝑥) = �
2
𝑐

cos (𝛼𝑛𝑥)
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where

𝛼𝑛 =
(2𝑛 − 1)

𝑐
𝜋
2

𝑛 = 1, 2, 3,⋯

By comparing (2) and (1) we see it is the same problem, except 𝑐 → ln 𝑏. Hence the
solution to (2) is the same as the solution in (1) but with 𝑐 replaced by ln 𝑏. Hence the
solution is

𝜙𝑛 (𝑠) = �
2

ln 𝑏
cos (𝛼𝑛𝑠)

𝛼𝑛 =
(2𝑛 − 1)

ln 𝑏
𝜋
2

𝑛 = 1, 2, 3,⋯

But 𝑠 = ln 𝑥, hence the above becomes

𝜙𝑛 (𝑥) = �
2

ln 𝑏
cos (𝛼𝑛 ln 𝑥)

𝛼𝑛 =
(2𝑛 − 1)

ln 𝑏
𝜋
2

𝑛 = 1, 2, 3,⋯

Which is what required to show.
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2.11.1 Section 73, Problem 8

Figure 2.97: Problem statement

Solution

𝑐𝑛 = �𝑓 (𝑥) , 𝜙𝑛 (𝑥)�

= �
𝑏

1
𝑝 (𝑥) 𝑓 (𝑥) 𝜙𝑛 (𝑥) 𝑑𝑥

But 𝑝 (𝑥) = 1
𝑥 and 𝜙𝑛 (𝑥) = �

2
ln 𝑏 sin (𝛼𝑛 ln 𝑥) and 𝑓 (𝑥) = 𝑥 therefore the above becomes

𝑐𝑛 = �
𝑏

1

1
𝑥
𝑥
�

2
ln 𝑏

sin (𝛼𝑛 ln 𝑥) 𝑑𝑥

=
�

2
ln 𝑏 �

𝑏

1
sin (𝛼𝑛 ln 𝑥) 𝑑𝑥

But 𝛼𝑛 =
𝑛𝜋
ln 𝑏 , therefore

𝑐𝑛 = �
2

ln 𝑏 �
𝑏

1
sin �

𝑛𝜋
ln 𝑏

ln 𝑥� 𝑑𝑥

Let 𝑠 = 𝜋 ln 𝑥
ln 𝑏 , hence

𝑑𝑠
𝑑𝑥 =

𝜋
ln 𝑏

1
𝑥 . When 𝑥 = 1 → 𝑠 = 0 and when 𝑥 = 𝑏 → 𝑠 = 𝜋. The above

becomes

𝑐𝑛 = �
2

ln 𝑏 �
𝜋

0
sin (𝑛𝑠)

ln (𝑏)
𝜋

𝑥𝑑𝑠

But ln 𝑥 = 𝑠
𝜋 ln 𝑏, hence 𝑥 = 𝑒𝑠

ln 𝑏
𝜋 , and the above becomes

𝑐𝑛 =
√2 ln (𝑏)

𝜋 �
𝜋

0
𝑒𝑠

ln 𝑏
𝜋 sin (𝑛𝑠) 𝑑𝑠 (1)

Using

�𝑒𝑎𝑥 sin (𝑏𝑥) 𝑑𝑠 =
𝑒𝑎𝑥

𝑎2 + 𝑏2
(𝑎 sin 𝑏𝑥 − 𝑏 cos 𝑏𝑥)
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Where in our case 𝑎 = ln 𝑏
𝜋 and 𝑏 = 𝑛. Applying the above gives

�
𝜋

0
𝑒𝑠

ln 𝑏
𝜋 sin (𝑛𝑠) 𝑑𝑠 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑒
ln 𝑏
𝜋 𝑥

� ln 𝑏
𝜋
�
2
+ 𝑛2

�
ln 𝑏
𝜋

sin 𝑛𝑥 − 𝑛 cos 𝑛𝑥�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜋

0

=
1

� ln 𝑏
𝜋
�
2
+ 𝑛2

�𝑒
ln 𝑏
𝜋 𝜋 �

ln 𝑏
𝜋

sin 𝑛𝜋 − 𝑛 cos 𝑛𝜋� − (0 − 𝑛)�

But sin 𝑛𝜋 = 0 since 𝑛 integer, giving

�
𝜋

0
𝑒𝑠

ln 𝑏
𝜋 sin (𝑛𝑠) 𝑑𝑠 =

1

� ln 𝑏
𝜋
�
2
+ 𝑛2

[−𝑏𝑛 cos 𝑛𝜋 + 𝑛]

=
𝜋2

(ln 𝑏)2 + 𝜋2𝑛2
�−𝑏𝑛 (−1)𝑛 + 𝑛�

=
𝜋2 �𝑏𝑛 (−1)𝑛+1 + 𝑛�

(ln 𝑏)2 + 𝜋2𝑛2
Hence (1) becomes

𝑐𝑛 =
√2 ln (𝑏)

𝜋
𝑛𝜋2 �1 + (−1)𝑛+1 𝑏�

(ln 𝑏)2 + (𝜋𝑛)2

= �2 ln (𝑏)
𝑛𝜋 �1 + (−1)𝑛+1 𝑏�

(ln 𝑏)2 + (𝜋𝑛)2

Where 𝑛 = 1, 2, 3,⋯, which is the result required to show.

2.11.2 Section 73, Problem 10

Figure 2.98: Problem statement

Solution
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Part (a)

𝜙𝑛 (𝑥) = �
2
𝑐

sin (𝛼𝑛𝑥) 𝑛 = 1, 2, 3,⋯

𝛼𝑛 = 𝜋
2𝑛 − 1
2𝑥

Since 𝜙𝑛 (𝑥) are complete, then we can represent 𝑓 (𝑥) using 𝜙𝑛 (𝑥) as generalized Fourier
series using

𝑓 (𝑥) =
∞
�
𝑛=1

𝐵𝑛𝜙𝑛 (𝑥) 0 < 𝑥 < 𝑐

To find 𝐵𝑛, since 𝜙𝑛 (𝑥) are orthonormal eigenfunctions then

𝐵𝑛 = �𝑓 (𝑥) , 𝜙𝑛 (𝑥)�

= �
𝑐

0
𝑝 (𝑥) 𝑓 (𝑥) 𝜙𝑛𝑑𝑥

But problem (7) section 72 is 𝑋′′ + 𝜆𝑋 = 0 which implies that 𝑝 (𝑥) = 1. Hence the above
becomes

𝐵𝑛 = �
𝑐

0
𝑓 (𝑥)

�
2
𝑐

sin (𝛼𝑛𝑥) 𝑑𝑥

=
�
2
𝑐 �

𝑐

0
𝑓 (𝑥) sin (𝛼𝑛𝑥) 𝑑𝑥

Which is the result required to show.

Part (b)

Theorem 2 section 15 gives the conditions on 𝑓 (𝑥) for it to have a Fourier sine series which
converges to 𝑓 (𝑥) where 𝑓 (𝑥) is continuous and converges to mean value of 𝑓 (𝑥) where
𝑓 (𝑥) have a jump discontinuity.

Since 𝑓 (𝑥) is piecewise continuous in this problem, then for those regions where 𝑓 (𝑥) is
continuous between 0 < 𝑥 < 𝑐, the series found in part(a) converges to 𝑓 (𝑥) and is valid
Fourier sine series representation of 𝑓 (𝑥) there.

2.11.3 Section 74, Problem 1

Figure 2.99: Problem statement

Solution

Solution (6) is given by

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐴𝑛 exp �−𝛼2𝑛𝑘𝑡� cos (𝛼𝑛𝑥) (6)

Where

𝐴𝑛 =
2ℎ

ℎ + sin2 𝛼𝑛
�

1

0
𝑓 (𝑥) cos (𝛼𝑛𝑥) 𝑑𝑥
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But 𝑓 (𝑥) = 1 which reduces the above to

𝐴𝑛 =
2ℎ

ℎ + sin2 𝛼𝑛
�

1

0
cos (𝛼𝑛𝑥) 𝑑𝑥

=
2ℎ

ℎ + sin2 𝛼𝑛
[sin (𝛼𝑛𝑥)]

1
0

=
2ℎ

ℎ + sin2 𝛼𝑛
sin (𝛼𝑛)

Hence (6) becomes

𝑢 (𝑥, 𝑡) = 2ℎ
∞
�
𝑛=1

sin (𝛼𝑛)
ℎ + sin2 𝛼𝑛

exp �−𝛼2𝑛𝑘𝑡� cos (𝛼𝑛𝑥)

But from example 1, section 72 we are given that tan (𝛼𝑛𝑐) =
ℎ
𝛼𝑛
. But 𝑐 = 1 in this problem,

hence

tan (𝛼𝑛) =
ℎ
𝛼𝑛

Which is what required to show.

2.11.4 Section 74, Problem 4

Figure 2.100: Problem statement

Solution

Part (a)

𝑢 (0, 𝑡) = 0 means that the left surface is kept at fixed temperature which is zero. And
𝑢𝑥 (1, 𝑡) + ℎ𝑢 (1, 𝑡) = 0 means that the surface heat transfer takes place at face 𝑥 = 1 into the
medium at temperature zero. To solve the PDE, we first check the boundary conditions
by writing them as

𝑎1𝑢 (0, 𝑡) + 𝑎2𝑢𝑥 (0, 𝑡) = 0
𝑏1𝑢 (1, 𝑡) + 𝑏2𝑢𝑥 (1, 𝑡) = 0

Then 𝑎1 = 0, 𝑎2 = 0. Hence 𝑎1𝑎2 = 0. And 𝑏1 = 1, 𝑏2 = ℎ. Then since it is assumed that
ℎ > 0 per section 26, then 𝑏1𝑏2 ≥ 0. And since 𝑞 (𝑥) = 0 from the PDE itself, then we know
that eigenvalues are 𝜆 ≥ 0.
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Let 𝑢 = 𝑋 (𝑥) 𝑇 (𝑡) then the PDE becomes

𝑇′𝑋 = 𝑋′′𝑇
𝑇′

𝑇
=
𝑋′′

𝑋
= −𝜆

Hence the Sturm Liouville problem is

𝑋′′ + 𝜆𝑋 = 0
𝑋 (0) = 0

𝑋′ (1) + ℎ𝑋 (1) = 0
Where 𝑝 (𝑥) = 1.

Case 𝜆 = 0

Solution is

𝑋 (𝑥) = 𝐴𝑥 + 𝐵
At 𝑥 = 0

0 = 𝐵
Hence solution becomes

𝑋 (𝑥) = 𝐴𝑥
At 𝑥 = 1 the second boundary conditions gives

𝐴 + ℎ𝐴 = 0
𝐴 (1 + ℎ) = 0

For non trivial solution 1 + ℎ = 0 or ℎ = −1. But we assumed that ℎ > 0. Therefore 𝜆 = 0
is not eigenvalue.

Case 𝜆 > 0

Let 𝜆 = 𝛼2, 𝛼 > 0. Hence solution is

𝑋 (𝑥) = 𝐴 cos (𝛼𝑥) + 𝐵 sin (𝛼𝑥)
At 𝑋 (0) = 0

0 = 𝐴
The solution becomes

𝑋 (𝑥) = 𝐵 sin (𝛼𝑥)
At 𝑥 = 1 the second boundary conditions gives

𝐵𝛼 cos (𝛼) + ℎ𝐵 sin (𝛼) = 0
𝛼 cos (𝛼) + ℎ sin (𝛼) = 0

tan (𝛼) = −
𝛼
ℎ

Therefore the eigenvalues are given by solution to

tan (𝛼𝑛) = −
𝛼𝑛
ℎ

𝑛 = 1, 2, 3,⋯

And eigenfunctions are

𝑋𝑛 (𝑥) = sin (𝛼𝑛𝑥)
The normalized eigenfunctions are

𝜙𝑛 (𝑥) =
𝑋𝑛 (𝑥)
‖𝑋𝑛 (𝑥)‖
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But

‖𝑋𝑛 (𝑥)‖
2 = �

1

0
𝑝 (𝑥)𝑋2𝑛 (𝑥) 𝑑𝑥

= �
1

0
sin2 (𝛼𝑛𝑥) 𝑑𝑥

=
1
2 �

1

0
1 − cos (2𝛼𝑛𝑥) 𝑑𝑥

=
1
2

⎛
⎜⎜⎜⎜⎝1 − �

sin (2𝛼𝑛𝑥)
2𝛼𝑛

�
1

0

⎞
⎟⎟⎟⎟⎠

=
1
2 �
1 −

1
2𝛼𝑛

[sin (2𝛼𝑛𝑥)]
1
0�

=
1
2 �
1 −

sin (2𝛼𝑛)
2𝛼𝑛

�

=
1
2
−

sin (2𝛼𝑛)
4𝛼𝑛

But sin (2𝛼𝑛) = 2 sin𝛼𝑛 cos𝛼𝑛 and 𝛼𝑛 = −ℎ
sin(𝛼𝑛)
cos(𝛼𝑛)

, therefore the above becomes

‖𝑋𝑛 (𝑥)‖
2 =

1
2
+
2 sin𝛼𝑛 cos𝛼𝑛
4ℎ sin(𝛼𝑛)

cos(𝛼𝑛)

=
1
2
+

cos2 𝛼𝑛
2ℎ

=
ℎ + cos2 𝛼𝑛

2ℎ
Hence

𝜙𝑛 (𝑥) =
𝑋𝑛 (𝑥)

�
ℎ+cos2 𝛼𝑛

2ℎ

=
�

2ℎ
ℎ + cos2 𝛼𝑛

sin (𝛼𝑛𝑥)

Now we use generalized Fourier series to find the solution. Let

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐵𝑛 (𝑡) 𝜙𝑛 (𝑥) (1)

Substituting this back into the PDE gives
∞
�
𝑛=1

𝐵′𝑛 (𝑡) 𝜙𝑛 (𝑥) = 𝑘
∞
�
𝑛=1

𝐵𝑛 (𝑡) 𝜙′′𝑛 (𝑥)

But 𝜙′′𝑛 (𝑥) = −𝜆𝑛𝜙𝑛 (𝑥) = −𝛼2𝑛𝜙𝑛 (𝑥). The above becomes
∞
�
𝑛=1

𝐵′𝑛 (𝑡) 𝜙𝑛 (𝑥) = −𝑘
∞
�
𝑛=1

𝐵𝑛 (𝑡) 𝛼2𝑛𝜙𝑛 (𝑥)

𝐵′𝑛 (𝑡) + 𝑘𝛼2𝑛𝐵𝑛 (𝑡) = 0
The solution is

𝐵𝑛 (𝑡) = 𝐵𝑛 (0) 𝑒−𝑘𝛼
2
𝑛𝑡

Hence (1) becomes

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐵𝑛 (0) 𝑒−𝑘𝛼
2
𝑛𝑡𝜙𝑛 (𝑥)

At 𝑡 = 0 the above becomes

𝑓 (𝑥) =
∞
�
𝑛=1

𝐵𝑛 (0) 𝜙𝑛 (𝑥)
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Therefore

𝐵𝑛 (0) = �𝑓 (𝑥) , 𝜙𝑛 (𝑥)�

= �
1

0
𝑝 (𝑥) 𝑓 (𝑥) 𝜙𝑛 (𝑥) 𝑑𝑥

=
�

2ℎ
ℎ + cos2 𝛼𝑛

�
1

0
𝑓 (𝑥) sin (𝛼𝑛𝑥) 𝑑𝑥

Therefore

𝐵𝑛 (𝑡) = 𝐵𝑛 (0) 𝑒−𝑘𝛼
2
𝑛𝑡

=

⎛
⎜⎜⎜⎜⎜⎝
�

2ℎ
ℎ + cos2 𝛼𝑛

�
1

0
𝑓 (𝑥) sin (𝛼𝑛𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎠ 𝑒

−𝑘𝛼2𝑛𝑡

and solution (1) becomes

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1�

2ℎ
ℎ + cos2 𝛼𝑛

��
1

0
𝑓 (𝑥) sin (𝛼𝑛𝑥) 𝑑𝑥� 𝑒−𝑘𝛼

2
𝑛𝑡

�

2ℎ
ℎ + cos2 𝛼𝑛

sin (𝛼𝑛𝑥)

=
2ℎ

ℎ + cos2 𝛼𝑛

∞
�
𝑛=1

��
1

0
𝑓 (𝑥) sin (𝛼𝑛𝑥) 𝑑𝑥� 𝑒−𝑘𝛼

2
𝑛𝑡 sin (𝛼𝑛𝑥)

Which is what required to show.

Part (b)

We need to show that the solution found in part (a) also satisfies the PDE when −1 < 𝑥 < 1
𝑢𝑡 = 𝑘𝑢𝑥𝑥 − 1 < 𝑥 < 1, 𝑡 > 0

With boundary conditions (9)

𝑢𝑥 (−1, 𝑡) = ℎ𝑢 (−1, 𝑡)
𝑢𝑥 (1, 𝑡) = −ℎ𝑢 (1, 𝑡)

And initial conditions (10)

𝑢 (𝑥, 0) = 𝑓 (𝑥)
When 𝑓 (𝑥) is odd.

The solution found in 𝑎 already satisfies the above PDE with the second boundary con-
ditions in (9). Since sine is odd then the solution in part(a) is also odd. Then its partial
derivative is even in 𝑥, hence the first boundary conditions in (9) is also satisfied

𝑢𝑥 (−1, 𝑡) = ℎ𝑢 (−1, 𝑡) = −𝑢𝑥 (1, 𝑡) = ℎ𝑢 (1, 𝑡)
Finally we know that 𝑢 (𝑥, 0) = 𝑓 (𝑥) for 0 < 𝑥 < 1. Furthermore when −1 < 𝑥 < 0 the fact
that 𝑢 and 𝑓 (𝑥) are odd enables us to write

𝑢 (−𝑥, 0) = −𝑢 (𝑥, 0) = 𝑓 (−𝑥) = −𝑓 (𝑥)
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2.11.5 Section 77, Problem 2

Figure 2.101: Problem statement

Solution

Solve

𝑢𝑡 = 𝑢𝑥𝑥 0 < 𝑥 < 1, 𝑡 > 0
With boundary conditions

𝑢𝑥 (0, 𝑡) − ℎ𝑢 (0, 𝑡) = 0
𝑢 (1, 𝑡) = 1

With ℎ > 0. And initial conditions 𝑢 (𝑥, 0) = 𝑓 (𝑥).

Because the second B.C. is not zero, we need to introduce a reference function 𝑟 (𝑥) which
satisfies the nonhomogeneous boundary conditions.

Let 𝑟 (𝑥) = 𝐴𝑥 + 𝐵. When 𝑥 = 0 then the first BC gives

𝐴 − ℎ𝐵 = 0
And the second BC gives

𝐴 + 𝐵 = 1
From the first equation 𝐴 = ℎ𝐵. Substituting in the second equation give ℎ𝐵 + 𝐵 = 1 or
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𝐵 (1 + ℎ) = 1 or 𝐵 = 1
1+ℎ . Hence 𝐴 = ℎ

1+ℎ . Therefore

𝑟 (𝑥) = 𝐴𝑥 + 𝐵

=
ℎ

1 + ℎ
𝑥 +

1
1 + ℎ

=
ℎ𝑥 + 1
1 + ℎ

(1)

To verify. 𝑟𝑥 =
ℎ
1+ℎ . When 𝑥 = 0 then 𝑟 (0) = 1

1+ℎ . Hence 𝑟𝑥 (0) − ℎ𝑟 (0) =
ℎ
1+ℎ − ℎ

1
1+ℎ = 0

as expected. And when 𝑥 = 1 then 𝑟 (1) = 1 as expected. Now that we found 𝑟 (𝑥) then we
write

𝑢 (𝑥, 𝑡) = 𝑣 (𝑥, 𝑡) + 𝑟 (𝑥)
Where 𝑣 (𝑥, 𝑡) is the solution to the homogenous PDE

𝑣𝑡 = 𝑣𝑥𝑥 0 < 𝑥 < 1, 𝑡 > 0
With boundary conditions

𝑣𝑥 (0, 𝑡) − ℎ𝑣 (0, 𝑡) = 0
𝑣 (1, 𝑡) = 0

We can now solve for 𝑣 (𝑥, 𝑡) using separation of variables since boundary conditions are
homogenous. Separation of variables gives

𝑋′′ + 𝜆𝑋 = 0
𝑋′ (0) − ℎ𝑋 (0) = 0

𝑋 (1) = 0
Using problem 5 section 72, the eigenfunctions and eigenvalues for the above are

𝜙𝑛 (𝑥) =
�

2ℎ
ℎ + cos2 𝛼𝑛

sin (𝛼𝑛 (1 − 𝑥)) 𝑛 = 1, 2,⋯

tan (𝛼𝑛) =
−𝛼𝑛
ℎ

With 𝛼𝑛 > 0. Hence the solution 𝑣 (𝑥, 𝑡) using generalized Fourier series is

𝑣 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐵𝑛 (𝑡) 𝜙𝑛 (𝑥) (2)

Substituting into the PDE 𝑣𝑡 = 𝑣𝑥𝑥 gives
∞
�
𝑛=1

𝐵′𝑛 (𝑡) 𝜙𝑛 (𝑥) =
∞
�
𝑛=1

𝐵𝑛 (𝑡) 𝜙′′𝑛 (𝑥)

= −
∞
�
𝑛=1

𝐵𝑛 (𝑡) 𝛼2𝑛𝜙𝑛 (𝑥)

Therefore the ODE is

𝐵′𝑛 (𝑡) + 𝛼2𝑛𝐵𝑛 (𝑡) = 0
The solution is

𝐵𝑛 (𝑡) = 𝐵𝑛 (0) 𝑒−𝛼
2
𝑛𝑡

Hence (2) becomes

𝑣 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐵𝑛 (0) 𝑒−𝛼
2
𝑛𝑡𝜙𝑛 (𝑥)

And since 𝑢 (𝑥, 𝑡) = 𝑣 (𝑥, 𝑡) + 𝑟 (𝑥) then

𝑢 (𝑥, 𝑡) =
∞
�
𝑛=1

𝐵𝑛 (0) 𝑒−𝛼
2
𝑛𝑡𝜙𝑛 (𝑥) +

ℎ𝑥 + 1
1 + ℎ

Now we find 𝐵𝑛 (0) from initial conditions. At 𝑡 = 0 the above becomes

0 =
∞
�
𝑛=1

𝐵𝑛 (0) 𝜙𝑛 (𝑥) +
ℎ𝑥 + 1
1 + ℎ

−
ℎ𝑥 + 1
1 + ℎ

=
∞
�
𝑛=1

𝐵𝑛 (0) 𝜙𝑛 (𝑥)
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Hence

𝐵𝑛 (0) = �−
ℎ𝑥 + 1
1 + ℎ

, 𝜙𝑛 (𝑥)�

= −�
1

0
𝑝 (𝑥)

ℎ𝑥 + 1
1 + ℎ

𝜙𝑛 (𝑥) 𝑑𝑥

= −�
1

0

ℎ𝑥 + 1
1 + ℎ �

2ℎ
ℎ + cos2 𝛼𝑛

sin (𝛼𝑛 (1 − 𝑥)) 𝑑𝑥

= −
1

1 + ℎ�

2ℎ
ℎ + cos2 𝛼𝑛

�
1

0
(ℎ𝑥 + 1) sin (𝛼𝑛 (1 − 𝑥)) 𝑑𝑥 (3)

But

�
1

0
(ℎ𝑥 + 1) sin (𝛼𝑛 (1 − 𝑥)) 𝑑𝑥 = �

1

0
sin (𝛼𝑛 (1 − 𝑥)) 𝑑𝑥 + ℎ�

1

0
𝑥 sin (𝛼𝑛 (1 − 𝑥)) 𝑑𝑥

= �
cos (𝛼𝑛 (1 − 𝑥))

𝛼𝑛
�
1

0
+ ℎ �

𝛼𝑛𝑥 cos (𝛼𝑛 (1 − 𝑥)) + sin (𝛼𝑛 (1 − 𝑥))
𝛼2𝑛

�
1

0

=
1 − cos (𝛼𝑛)

𝛼𝑛
+
ℎ
𝛼2𝑛
[𝛼𝑛𝑥 cos (𝛼𝑛 (1 − 𝑥)) + sin (𝛼𝑛 (1 − 𝑥))]

1
0

=
1 − cos (𝛼𝑛)

𝛼𝑛
+
ℎ
𝛼2𝑛
[𝛼𝑛 − sin𝛼𝑛]

=
𝛼𝑛 − 𝛼𝑛 cos (𝛼𝑛) + ℎ𝛼𝑛 − ℎ sin𝛼𝑛

𝛼2𝑛
But

sin(𝛼𝑛)
cos(𝛼𝑛)

= −𝛼𝑛ℎ or ℎ sin (𝛼𝑛) = −𝛼𝑛 cos (𝛼𝑛) or −ℎ sin𝛼𝑛 = 𝛼𝑛 cos (𝛼𝑛), hence the above

simplifies to

�
1

0
(ℎ𝑥 + 1) sin (𝛼𝑛 (1 − 𝑥)) 𝑑𝑥 =

𝛼𝑛 + ℎ𝛼𝑛
𝛼2𝑛

=
1 + ℎ
𝛼𝑛

Therefore (3) becomes

𝐵𝑛 (0) =
−1
1 + ℎ�

2ℎ
ℎ + cos2 𝛼𝑛

�
1 + ℎ
𝛼𝑛

�

= −
1
𝛼𝑛�

2ℎ
ℎ + cos2 𝛼𝑛

Hence final solution becomes

𝑢 (𝑥, 𝑡) =
ℎ𝑥 + 1
1 + ℎ

+
∞
�
𝑛=1

𝐵𝑛 (0) 𝑒−𝛼
2
𝑛𝑡𝜙𝑛 (𝑥)

=
ℎ𝑥 + 1
1 + ℎ

+
∞
�
𝑛=1

𝐵𝑛 (0) exp �−𝛼2𝑛𝑡�
�

2ℎ
ℎ + cos2 𝛼𝑛

sin (𝛼𝑛 (1 − 𝑥))

=
ℎ𝑥 + 1
1 + ℎ

+
∞
�
𝑛=1

−
1
𝛼𝑛�

2ℎ
ℎ + cos2 𝛼𝑛

exp �−𝛼2𝑛𝑡�
�

2ℎ
ℎ + cos2 𝛼𝑛

sin (𝛼𝑛 (1 − 𝑥))

=
ℎ𝑥 + 1
1 + ℎ

− 2ℎ
∞
�
𝑛=1

sin (𝛼𝑛 (1 − 𝑥))
𝛼𝑛 �ℎ + cos2 𝛼𝑛�

exp �−𝛼2𝑛𝑡�

Which is what required to show.
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3.1 exam 1 notes

3.1.1 Chapter 1, sections 1-8 (Fourier series)

section 1

definition of left and right limits. definition of piecewise continuous function.

section 2

definition of Fourier cosine series 𝑓 (𝑥) = 𝑎0
2 + ∑

∞
𝑛=1 𝑎𝑛 cos �𝑛2𝜋𝑇 𝑥� =

𝑎0
2 + ∑

∞
𝑛=1 𝑎𝑛 cos (𝑛𝑥)

for 0 < 𝑥 < 𝜋.

section 3

Examples of Fourier cosine series

section 4

definition of Fourier sine series 𝑓 (𝑥) = ∑∞
𝑛=1 𝑏𝑛 sin �𝑛2𝜋𝑇 𝑥� =

𝑎0
2 + ∑

∞
𝑛=1 𝑏𝑛 sin (𝑛𝑥) for 0 <

𝑥 < 𝜋.

section 5

Examples of Fourier sine series

section 6

Fourier series For period 𝑇 = 2𝜋

𝑓 (𝑥) ≈
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �𝑛
2𝜋
𝑇
𝑥� + 𝑏𝑛 sin �𝑛

2𝜋
𝑇
𝑥� − 𝜋 < 𝑥 < 𝜋

≈
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) + 𝑏𝑛 sin (𝑛𝑥)

Where

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥 𝑛 = 0, 1, 2,⋯

𝑏𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥 𝑛 = 1, 2,⋯

If 𝑓 (𝑥) is even then 𝑏𝑛 = 0 and if 𝑓 (𝑥) is odd, then 𝑎𝑛 = 0.

section 7

Fourier series examples.

section 8 Adoption to di�erent regions

Shows how F.S. on −𝐿 < 𝑥 < 𝐿 can be obtained from know F.S. on −𝜋 < 𝑥 < 𝜋. Not clear
why example 2 on page 22 replaces 𝑎 = 1

𝜋 .
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3.1.2 Chapter 2, sections 9-20 (Convergence of Fourier series)

section 9 (one sided derivatives)

𝑓′+ (𝑥0) = lim
𝑥→𝑥0
𝑥>𝑥0

𝑓 (𝑥) − 𝑓 �𝑥+0 �
𝑥 − 𝑥0

𝑓′− (𝑥0) = lim
𝑥→𝑥0
𝑥>𝑥0

𝑓 (𝑥) − 𝑓 �𝑥+0 �
𝑥 − 𝑥0

Smooth function is one who is continuous and its derivative is also continuous. For example
𝑓 (𝑥) = 𝑥2 is smooth, but 𝑓 (𝑥) = |𝑥| is not smooth.

Piecewise smooth function is one which 𝑓 (𝑥) and 𝑓′ (𝑥) are piecewise continuous.

section 10 (Properties of Fourier coe�cients)

Bessel’s inequalities

𝑎20
2
+

∞
�
𝑛=1

𝑎2𝑛 ≤
2
𝜋 �

𝜋

0
�𝑓 (𝑥)�

2
𝑑𝑥

lim
𝑛→∞

𝑎𝑛 = 0
∞
�
𝑛=1

𝑏2𝑛 ≤
2
𝜋 �

𝜋

0
�𝑓 (𝑥)�

2
𝑑𝑥

lim
𝑛→∞

𝑏𝑛 = 0

section 11 (Two Lemmas)

Lemma 1 If 𝑓 (𝑥) is P.W.C. on 0 < 𝑥 < 𝜋 then

lim
𝑁→∞

�
𝜋

0
𝑓 (𝑥) sin ��𝑁 +

1
2�
𝑥� 𝑑𝑥 = 0

Lemma 2 If 𝑔 (𝑥) is P.W.C. on 0 < 𝑥 < 𝜋 and that 𝑔′+ (0) exist, then

lim
𝑁→∞

�
𝜋

0
𝑔 (𝑥)

sin ��𝑁 + 1
2
� 𝑥�

2 sin 𝑥
2

𝑑𝑥 =
𝜋
2
𝑔 (0+)

Where
sin��𝑁+ 1

2 �𝑥�

2 sin 𝑥
2

is called the Dirichlet kernel 𝐷𝑁 (𝑥).

𝐷𝑁 (𝑥) =
1
2
+

𝑁
�
𝑛=1

cos (𝑛𝑥)

𝐷𝑁 (𝑥) =
sin ��𝑁 + 1

2
� 𝑥�

2 sin 𝑥
2

�
𝜋

0
𝐷𝑁 (𝑥) 𝑑𝑥 =

𝜋
2

Section 12 (Fourier theorem)

If 𝑓 (𝑥) is P.W.C. on −𝜋 < 𝑥 < 𝜋 and 𝑓 (𝑥) is periodic on all of 𝑥 with period 2𝜋 then at
each 𝑥 where 𝑓′+ (𝑥) and 𝑓′− (𝑥) both exist, then 𝑓 (𝑥) converges to the average of 𝑓 (𝑥) at 𝑥

which is
𝑓�𝑥+�+𝑓(𝑥−)

2 . Proof is long.
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Section 13 (Related Fourier theorem)

Nothing new here. Seems same as last one. If 𝑓 (𝑥) is PWC and 𝑓′ (𝑥) is PWC, and 𝑓 (𝑥) is
periodic, then F.S. of 𝑓 (𝑥) converges to mean of 𝑓 (𝑥) at each point 𝑥.

Section 14 (Examples)

Examples on the Fourier theorem

Section 15 (Convergence on other intervals)

Nothing new here.

Section 16 (Lemma on absolute and uniform convergence)

If 𝑓 (𝑥) is continuous on −𝜋 < 𝑥 < 𝜋 (notice it has to be continuous, not PWC) and if
𝑓 (−𝜋) = 𝑓 (𝜋) and 𝑓′ (𝑥) is PWC on −𝜋 < 𝑥 < 𝜋 then

∞
�
𝑛=1

𝑎2𝑛 + 𝑏2𝑛

converges. Proof is given. And

𝑁
�
𝑛=1

𝛼2𝑛 + 𝛽2𝑛 ≤
1
𝜋 �

𝜋

−𝜋
�𝑓′ (𝑥)�

2
𝑑𝑥 𝑁 = 1, 2, 3,⋯

Where

𝑓′ (𝑥) =
𝛼0
2
+

∞
�
𝑛=1

𝛼𝑛 cos (𝑛𝑥) + 𝛽𝑛 sin (𝑛𝑥)

𝛼0 = 0
𝛼𝑛 = 𝑛𝑏𝑛
𝛽𝑛 = 𝑛𝑎𝑛

Section 17 (Absolute and uniform convergence of Fourier series)

M test is used to check if series is U.C. (uniform convergent). If we can find∑∞
𝑛=1𝑀𝑛 which

is convergent and𝑀𝑛 is positive constant, and where �𝑓𝑛 (𝑥)� ≤ 𝑀𝑛 for each 𝑛 in 𝑎 < 𝑥 < 𝑏,
then series ∑∞

𝑛=1 𝑓𝑛 (𝑥) is U.C.

Theorem If 𝑓 (𝑥) is continuous on −𝜋 ≤ 𝑥 ≤ 𝜋 and 𝑓 (−𝜋) = 𝑓 (𝜋) and 𝑓′ (𝑥) is PWC, then
𝑓 (𝑥) both absolutely and uniformly convergent,

Section 18 (Gibbs phenomenon)

Not on exam.

Section 19 (Di�erentiation of Fourier series)

Same conditions as section 17 theorem. If 𝑓 (𝑥) is continuous on −𝜋 ≤ 𝑥 ≤ 𝜋 and 𝑓 (−𝜋) =
𝑓 (𝜋) and 𝑓′ (𝑥) is PWC, then F.S. of 𝑓 (𝑥) can be di�erentiated term by term.

Section 20 (Integration of Fourier series)

As long as 𝑓 (𝑥) is PWC, we can integrate F.S. term by term.

3.1.3 Chapter 3 (partial di�erential equations of physics)

Section 21 (Linear boundary value problem)

𝐴𝑢𝑥𝑥 + 𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 + 𝐷𝑢𝑥 + 𝐸𝑢𝑦 + 𝐹𝑢 = 𝐺
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And definitions.

Section 22 (1D heat PDE)

Flux is Φ = −𝐾𝑑𝑢𝑑𝑛 where 𝐾 is thermal conductivity. Flux is amount of heat passing in
normal direction per unit area in one second. Derivation of heat PDE

𝑢𝑡 = 𝑘𝑢𝑥𝑥

where 𝑘 is thermal di�usivity 𝑘 = 𝐾
𝜎𝛿 where 𝜎 is specific heat and 𝛿 is density of material.

Section 23 (Related heat equations)

Nothing much here.

Section 24 (Laplace in cylindrical and spherical)

Just need to know the equations. Will be given in exam.

Section 25 (Derivations)

Not in exam

Section 26 (Boundary conditions)

Just need to know Neumann and Dirichlet.

Section 27 (Duhamel’s principle)

Do not think this will be on exam.

Section 28 (Vibrating string)

Derivation of 𝑦𝑡𝑡 = 𝑎2𝑦𝑥𝑥 using physics. Will not be on exam.

Section 29 (Vibrations of bars and membranes)

Generalization of section 28.

Section 30 (General solution to wave equation)

To derive solution to 𝑦𝑡𝑡 = 𝑎2𝑦𝑥𝑥, use 𝑢 = 𝑥 + 𝑎𝑡, 𝑣 = 𝑥 − 𝑎𝑡 and the PDE becomes 𝑦𝑢𝑣 = 0
which has solution 𝑦 = Φ (𝑢) + Ψ (𝑣) or

𝑦 (𝑥, 𝑡) = Φ (𝑥 + 𝑎𝑡) + Ψ (𝑥 − 𝑎𝑡)

Where initial conditions are 𝑦 (𝑥, 0) = 𝑓 (𝑥) , 𝑦𝑡 (𝑥, 0) = 𝑔 (𝑥) then the solution becomes

𝑦 (𝑥, 𝑡) =
1
2
�𝑓 (𝑥 + 𝑎𝑡) + 𝑓 (𝑥 − 𝑎𝑡)� +

1
2𝑎 �

𝑥+𝑎𝑡

𝑥−𝑎𝑡
𝑔 (𝑠) 𝑑𝑠

Section 31 (Types of equations and boundary conditions)

1. Hyperbolic 𝐵2 − 4𝐴𝐶 > 0

2. Elliptic 𝐵2 − 4𝐴𝐶 < 0

3. parabolic 𝐵2 − 4𝐴𝐶 = 0
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3.1.4 Chapter 4 (The Fourier method)

Section 32 (linear operators)

𝐿 (𝑐1𝑢1 + 𝑐2𝑢2) = 𝑐1𝐿𝑢1 + 𝑐2𝐿𝑢2

Section 33 (Principle of superposition)

Suppose each function 𝑢𝑖 satisfies a linear homogeneous di�erential equation or boundary
value problem 𝐿𝑢 = 0, then ∑∞

𝑛=1 𝑢𝑛 also satisfies the same equation.

Section 34 (Examples of Principle of superposition)

Some examples. Go over.

Section 35 (Eigenvalues and eigenfunctions)

Show how to solve 𝑋′′ + 𝜆𝑋 = 0 for di�erent boundary conditions.

Section 36 (A temperature problem)

Applying Eigenvalues and eigenfunctions to heat PDE on rod.

Section 37 (Vibrating string)

Applying Eigenvalues and eigenfunctions to wave PDE On string 𝑢𝑡𝑡 = 𝑎2𝑢𝑥𝑥 with fixed on
ends and have initial conditions.

Section 38 (Historical development)

Not on exam
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