University Course

MATH 4567
Applied Fourier Analysis

University of Minnesota, Twin Cities
Spring 2019

My Class Notes
Nasser M. Abbasi

Spring 2019






Contents

2.6 _HW 6
2.0 HWJ

3 Study notes|

BI exam I notes . . . . . . o o v

iii

115
127
139
152
161



Contents CONTENTS

iv






1.1. syllabus CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 syllabus

MATH 4567, Section 002, Spring 2019, MWF 3:35-4:25, Vincent Hall 2
Instructor: Jiaping Wang; Office: Vincent Hall 230; web page: www.math.umn.edu/~jiaping
Office hours: MWF 2:30-3:20 (subject to change)

Course title and a brief description: Fourier Analysis

Fourier series and Fourier transform. Convergence. Fourier series, transform in complex form.
Solution of wave, heat, Laplace equations by separation of variables. Sturm-Liouville systems.
Applications.

Prerequisites: 2243 or 2373 or 2573

Text and material: Fourier Series and Boundary Value Problems, 8th edition, by Brown
and Churchill, McGraw Hill Publisher. The course will cover Chapters 1-8, and selected material
from Chapter 11.

Course work: The class time will be devoted to lectures where you should gain understanding

of the basic concepts and methods, realize connections to other parts of mathematics you have
learned (linear algebra), and eventually build a global picture of the theory of (generalized)
Fourier series. You will broaden your knowledge and develop solving routines out of class: you
are expected to carefully study the text and solve a number of exercises. Assigned homework is
the minimum you can do for your practice.

Assignments: Homework assignments will be posted on my web page and collected in class on
Wednesday. One homework (the worst grade or a homework missed for any reason) will

be dropped at the end. No late homework will be accepted. You may discuss homework problems
with other students, however, you are supposed to work out and write down the solutions yourself.
Please write complete solutions clearly on one side of letter-size sheets. Questions or objections

to grading must be brought up within a week after the graded work is returned to you.

Exams and grading policy: There will be three one-hour exams covering appropriate parts of
the material. No books, notes or technology are allowed for the exams. Make-up exams are
discouraged, but can only be given for legitimate reasons such as illness or university
sponsored events (written documentation and, except for medical emergencies, prior approval
are required).

Grading scheme: homework 25%, 3 midterm exams 75% (25% each).
Exam dates: Monday, February 25; Monday, April 1; Monday, May 6.
Incomplete will only be assigned at extraordinary circumstances (such as hospitalization), and only

if a major part of the class work has been completed. Academic dishonesty in any portion of the
course shall be grounds for assigning a grade of F or N for the entire course.

1.2 Links

1. [Instructor web page| 9


http://www-users.math.umn.edu/~wangx208/
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2.1.1 Section 5, Problem 3

Problem Find (a) the Fourier cosine series and (b) the Fourier sine series on the interval
0 < x < 7 for f(x) = x?

Solution

Part a

2

The function x“ over 0 < x < 7 is

flx_] :=x"2;
Plot[f[x], {x, @, Pi}, PlotStyle - Red, GridLines - Automatic,
GridLinesStyle - LightGray, Ticks -» {Range[®, Pi, 1/4Pi], Automatic}]

101
8L
61

4

[
sg

Figure 2.1: Original function

The first step is to do an even extension of x? from 0 < x < 7t to =7t < x < = which means
its period becomes T = 27. The even extension of f (x) is given by

f) x>0

fe(x)z{f(_x) x <0
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fx_] :=x"2;

Show[Plot [f[x], {x, @, Pi}, PlotStyle - Red],
Plot[f[x], {x, -Pi, @}, PlotStyle » {Red, Dashed}],
PlotRange -» {{-Pi, Pi}, Automatic}, Ticks » {Range[-Pi, Pi, 1/4Pi], Automatic},
GridLines - Automatic, GridLinesStyle - LightGray]

10

Figure 2.2: Even extension of original function

The next step is to make the above function periodic with period T' = 27 by repeating it
each 27t as shown below

Clear([f];

flx_/; -Pi<x<Pi] :=x"2

flx_/; x2Pi] := f[x-2Pi];

flx_/; x<-Pi] :=f[x+2Pi];

Plot[f[x], {x, -4Pi, 4Pi}, Ticks -» {Range[-4Pi, 4Pi, Pi], Automatic},
GridLines - Automatic, GridLinesStyle - LightGray, PlotStyle - Red]

101

-4 -3 -2 -7 b 27 3 47

Figure 2.3: Even extension of original function

Now that we have a periodic function above with period T = 27t then we can find its Fourier
cosine series. Which is just the cosine series part of its Fourier series given by

a — 2
fx) ~ EO—'_HZlanCOS Tnnx

Since T = 27, the above becomes
ap )
~ =+ 1
f(x) > n; a, cos (nx) 1)

5
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Where

aozé‘féf(x)dx
2 2

27
2 2

=5 | b f @
2

:%f;f(x)dx

Because f (x) is an even function (we did an even extension to force this), then the above
can be written as

2 2 2 (3\" 2(md\ 2
= — d:—f zd = — | — :——:—2 2
0 nf(;f(x)x Tt Ox * 71(3)0 71(3) 3" )

And for n > 0 then

2

T
1 2 2
a, = (_T) j:zzf(x) cos (Tnnx) dx
o 2
But T = 27t and the above becomes

a, = %f;f(x) cos (nx) dx

But f (x) is even functiuon and cos is even, hence the product is even and the above simplifies

to

2 7T
a, = — f x? cos (nx) dx
0

Tt

sinnx

Integration by parts. udv = uv — fvdu. Let u = x2,dv = cos nx, therefore du = 2x,v =
The above becomes
2
a, = — ([uv] - fvdu)
T

2 (1 ,sinnx T T sinnx
= — [x ] - f 2x dx
TC n 0 0 n

2 sin nx

Tt
]0 — 0 and the above simplifies to

2( 2 )
a, = — ——f X sin nxdx
Tt nJo

—4 pm
= — x sin nxdx
nrt 0

Since 7 is integer, the term [x

The integral £n x sinnxdx is evaluated by parts again. Let u = x,dv =sinnx - du =1,v =
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Ccosnx
and the above becomes

a, = % ([uv] - fvdu)

-4 cosnx]* 1 &
=—|-|x + — cos nxdx
nm n Iy nJdy
0
4 —
= —|——mcos(nn) + — [sinnx];
nw| n n

= — cos (nm)
n

4
= — (1) 3)
n
Substituting (2,3) into (1) gives
fx) ~ 37 + 2::1 ; (=1)" cos (nx)
n? < (-1
= —+4),
3 =~ n?
The convergence is fast due to the term % This plot show the approximation as the number

of terms increases. After only 4 terms we see the approximation is very close to original
function x? shown in dashed lines in the plot below.

cos (nx)



21. HW1 CHAPTER 2. HWS

7!'2 (_1)n
fApprox[x_, nTerms_] := — + 4Sum[
3 n?

Cos[nx], {n, 1, nTerms}];

Gride
Partition[
Table[Plot[{x”~2, fApprox[x, n]}, {x, -Pi, Pi}, PlotStyle -» {Dashed, Red},
PlotLabel -» Row[ {"Using ", n, " terms"}]1, {n, 1, 4}1, 2]

Using 1 terms Using 2 terms
\ 10 p

Using 3 terms Using 4 terms
\ 10 A 10 ,
/
8 8
’ 6 6
4 4
2 2
-3 -2 -1 1 2 3 -3 -2 -1 1 2 3

Figure 2.4: Fourier approximation as more terms are added

Part b

Because we want to find the Fourier sine series now, then the first step is to do an odd
extension of x> from 0 < x < 7 to -7t < x < 7 which means its period is T = 2n. Odd
extension of f (x) is given by

3 f(x) x>0
f°(x)_{ “f(=x)  x<0
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fx_] 1= x"2;

Show[Plot [f[x], {x, @, Pi}, PlotStyle - Red],
Plot[-f[-x], {x, -Pi, @}, PlotStyle » {Red, Dashed}],
PlotRange » {{-Pi, Pi}, {-10, 10}}, Ticks » {Range[-Pi, Pi, 1/4Pi], Automatic},
GridLines - Automatic, GridLinesStyle - LightGray]

10

N
b f
AY
‘4
=
\|
o
.
ol

Figure 2.5: Odd extension of x?

The next step is to make the function function periodic with period T = 27t by repeating it
each 27t as follows

Clear[f];

flx_/; -Pi<x<Pi] :=If[x<0, -x"2, x"2];

flx_/; x>Pi] := f[x-2Pi];

flx_/; x<-Pi] :=f[x+2Pi];

Plot[f[x], {x, -4Pi, 4Pi}, Ticks » {Range[-4Pi, 4Pi, Pi], Automatic},
PlotStyle -» Red, Exclusions -» {x == -3Pi, x == -Pi, x == Pi, x == 3Pi}, Mesh - None,
GridLines - Automatic, GridLinesStyle - LightGray]

10

Figure 2.6: Making the odd extension periodic

Now that we have a periodic function with period T' = 27t we can find its Fourier sine series,
which is just the sin part of its Fourier series, given by

o~ 27
X) ~ b, sin | —nx
But T = 27, and the above becomes

f (@) ~ 3] by sin (nx) 1)
n=1

9



21. HW1 CHAPTER 2. HWS

Where
T
1 (2 2
b, = Tf_zzf(x) sin(?nnx) dx
S 2

9

But T = 27, and the above becomes
1 7T
b, = — f F () sin () dx
Tt =Tt

But now f (x) is odd function (we did an odd extension) and sin is odd. Hence product is
even. Therefore the above simplifies to

b, = %fonf(x) sin (nx) dx

2 7T
== f x? sin (nx) dx
TJ0

— COSnx

Integration by parts. udv = uv - fvdu. Let u = x2,dv = sin nx, therefore du = 2x,v =
The above becomes
2
b, =— ([uv] - fvdu)
T

2 , COSNX & T CcosSnx
= — —[x ] +f 2x dx
e n I 0 n

2( 1 2 "
== (—— [n2 cos nn] + = f X COs nxdx)
0

Tt n n

27 4 7l
= —— COSNTL + — X cos nxdx
n nnt J,

The integral fz x cos nxdx is evaluated by parts again. Let u = x,dv = cosnx - du=1,v =

10
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sin nx
and the above becomes

2 4
b, = _r COSNTT + — ([uv] - fvdu)
n nm

/——L
27 4 sinnx 1" sin nx
= —— COSNT + — [x ] —f dx
n nm n n
27 4 ]
= —— COSNT — p sin nxdx
n n
21 4 [ Cosnx]”
= —— COSNT — p
n T n 0
2 4
- cosSnT + pc [cos nx]z]T
n n3m
271
= —— COSNT + pcy [cosnmt —1]
n n
21 " "
= ()
271 4
== ()" = —— (1= (1))
n

=—( 1)””—i(1 -1)")

Substituting (2) into (1) gives

o

27 e 4 .
fl)~ 2(7 ()" = == (1= () ))sm<nx>

n=1

= 212 Z ( " (ni 3 (1- (—1)”)) sin (nx)

(2)

In this case, we needed more terms to obtain good convergence. Because the periodic
extension is now discontinuous at x = n7 where 7 is odd. In part (a), the periodic extension
was continuous over the whole domain. The following plot shows we needed more terms
compared to part (a) to start seeing good convergence. This shows the result for one period
from —7t to 7. The blue color is for the original odd extended function and the red color is

its Fourier seriesapproximation.

11



21. HW1

CHAPTER 2. HWS

Using 1 terms
10+

-10+

Using 5 terms
10¢

Out[» |=

Using 2 terms

10+

5 ﬁ
1 2 3

Using 4 terms

10+
5<A
1 2 3

-5
-10+

Using 6 terms

-10+

Using 7 terms
10¢

1 2 3

Using 8 terms

Using 9 terms
10¢

10+
5,A
1 2 3

Using 10 terms

-10+

10}
5‘/X
1. 2 3

Figure 2.7: Fourier approximation of odd extension of x> over one period
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fApprox[x_, nTerms_] :=

2 i _ n+1_
27 Sum[(nn( 1) =

flx_ ] :=If[x<0, -x"2, x"2];
Gride
Partition]
Table[Plot [ {f[x], fApprox[x, n]}, {x, -Pi, Pi}, PlotStyle » {Blue, Red},
PlotLabel -» Row[ {"Using ", n, " terms"}1]1, {n, 1, 10}], 2]

(1- (-1)”)) sin[nx], {n, 1, nTerms}];

Figure 2.8: Code used to draw Fourier approximation for odd extension for one period

Due to discontinuous in the periodic extended function, there will be a Gibbs effect at the
points of discontinuities x = n7t where 7 is odd, where the approximation converges to the
average of the function at those point. To see this, here is a plot showing the result for the
case of 16 terms over 3 periods instead of one period as the above plot showed.

Using 16 terms
I i N

10 i Gibbs effect

converges to
average at x=1

/

Gibbs effect

ped

Figure 2.9: Fourier approximation of odd extension of x2 over 3 periods to see Gibbs effect
g 19Y p

13
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fApprox[x_, nTerms_] := 2 x? Sum[(i (-1)™* - (1- (—1)")) sin[nx], {n, 1, nTer'ms}];
nx

(nm)?
Clear[f];
flx_/; -Pi<x<Pi] :=If[x<0, -x"2, x"2];
flx_/; x>Pi] := f[x-2Pi];
flx_ /3 x<-Pi] :=f[x+2Pi];
Plot[{f[x], fApprox[x, 16]}, {x, -3Pi, 3Pi}, PlotStyle » {Blue, Red},
PlotLabel -» Row[ {"Using ", 16, " terms"}], Exclusions -» {x == -3Pi, x == -Pi, x == Pi, x == 3Pi}]

Figure 2.10: Code used to draw the above plot

2.1.2 Section 5, Problem 5

Problem By referring to the sine series for x in example 1 and one found for x? in above
problem show that

x(m—x) ~— O<x<m

8 i sin(2n—-1)x
T @n-1)°

Solution

From example 1, the Fourier sine series for x defined on 0 < x < 7, was found to be
1 n+1
x~2 Z -

By writing x (1t — x) = 7tx — x? then we see that

( 1)n+1 2 n+l 2 n .
X —x2 ~m 22 sinx |- (2n Z (—( 1) 3 (1 -(-1) )) sin (nx))
(nm)

=1 nrt

n+l1
- 1) sin x — 2271 ( )™ (n72-c)3 (1—(—1)n)) sin (1x)

n+1
27 2 (i (-1 - L?) (1 - (—1)”))] sin (1)

nrt (nn)

sin x O<x<m

27

=
I
N

B
I
—_

[ n+1 n+1 4 n .
[ ——( 1) 7Z( — (1) )} sin (nx)
4
mn

Mz i M8

(1 - (=1)") sin (nx)
n=1
Now when 1 = 2,4,6, - then (1 - (-1)") = 0 and when n = 1,3,5, - then (1 - (-1)") = 2

Hence the above sum becomes

— 8
X — X% ~ Z —— sin (nx)
1,35, - n=T

- 1
Z o sin (nx)

n=1,3,5,--

Qoo

14
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Letn =2m—-1. Thenwhenn=1—->m=1,n=3 > m=2,n=5— m = 3 and so on.
Hence the above sum can be written using 7 as summation index as follows

8 & 1
x—x2~—Y ——sin(@m-1)x)
nmzzl(zm—lf

Since summation index can be named anything, then renaming summation index from m
back to n gives the form required

X — x% %i Sln((ZVl 1) x)

2.1.3 Section 7, Problem 1

Problem Find the Fourier series on interval -7 < x < 7 that corresponds to

-t<x<0
O<x<m

_r
f(X) = { EZ
2
Solution

A plot of the function f (x) over -7t < x < 7 is

ClearAll[f, x];
f[x_ ] :=Piecewise[{{-Pi/2, -Pi<x< 0}, {Pi/2,0<x<Pi}}]
Plot[f[x], {x, -Pi, Pi}, PlotStyle - Red, GridLines - Automatic,
GridLinesStyle - LightGray,
Ticks -» {Range[-Pi, Pi, 1/2Pi], Range[-Pi/2,Pi/2,1/4Pi]}]

~
~

Figure 2.11: Plot of f(x) for problem section 7.1

The periodic extension (with period T = 27t) becomes (shown for —-37 < x < 3m)

15
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Clear[f];

f[x_/; -Pi<x<Pi] :=If[x<@, -Pi/2,Pi/2];

flx_/; x>Pi] := f[x-2Pi];

flx_/; x<-Pi] := f[x+2Pi];

Plot[f[x], {x, -3Pi, 3Pi}, Ticks » {Range[-4Pi, 4Pi, Pi], Automatic},
PlotStyle - Red,
Exclusions - {x == -Pi, x == -2Pi, x == -3Pi, x == @, x == Pi, x == 2Pi, x == 3Pi},
ExclusionsStyle - Dashed, Mesh - None, GridLines - Automatic,
GridLinesStyle - LightGray]

15
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Figure 2.12: Plot of f(x) for problem section 7.1 after periodic extension

Since the function f (x) is now periodic then its Fourier series is given by
a4y~ 2nm . (2nm
f(x) ~ > + nz::l a,, cos (Tx) + b, sin (Tx)

Where T is the period of the function being approximated which is T = 27 in this case.
Hence the above simplifies to

ao > .
fx)~ >+ §=]1 a, cos (nx) + by, sin (nx)

Since the function f (x) is an odd function then only b, terms exist and the above reduces
to

f () ~ 3] by sin (1) (1)
n=1

Where

oyl
=
|

_ (T)fng(x)sin(znTnx)dx
E 2

% f_ z F () sin (%) dx

Since f (x) is odd and sin is odd, then the product is even, and the above simplifies to the

16
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Fourier sine series

b, = %fonf(x) sin (nx) dx

= %Lﬂ (g) sin (nx) dx

= f sin (nx) dx
0

[— COoS nx ]”

n 0

1
= ——[cosnm —1]
n

— l [1 + (_1)n+1]

n
Therefore (1) becomes

o

1

f~ (E (1+ (—1)”“)) sin (1nx)
n=1

When n = 2,4,6,--- then b, = 0 and when n =1,3,5,--- then b,, = % Therefore the above

can be written as

- 2
f)~ ), =sin(mw)
_ n
n=13,5,
Letn =2m—-1. Thenwhenn=1—-m=1,n=3 - m=2,n=5— m = 3 and so on.
Hence the above sum can be written using 7 as summation index as follows

[0 0]

f@)~

m=1

sin (2m —1) x
——sin (2m=1)x)
Since summation index can be named anything, then renaming summation index from m
to n gives

2
-5

n=1 -

7 sin ((2n - 1) x)
Since the periodic extension of the original function f (x) is discontinuous at points x = nm,

then the Fourier approximation will converge to the average of f (x) at these points and
Gibbs effect will result at these points as well. The following plot shows the result

17



21. HW1 CHAPTER 2. HWS

Using 8 terms

2 _9” Gibbs effect

—én -4 —r #T 2”\ 3

Converges
to average at

ﬁ“”nq Pn“”ﬁ ﬁ’“'”a discontinuity

Figure 2.13: Fourier approximations using 8 terms

fApprox[x_, nTerms_] := Sum[ 3 Sin[(2n -1) x], {n, 1, nTerms}];

n-1

Clear[f];

flx_ /; -Pi<x<Pi] :=If[x<0, -Pi/2,Pi/2];

flx_ /; x>Pi] :=f[x-2Pi];

flx_ /; x<-Pi] := f[x+2Pi];

Plot[{f[x], fApprox[x, 8]}, {x, -3Pi, 3Pi}, PlotStyle » {Blue, Red},
PlotLabel -» Row[ {"Using ", 8, " terms"}],
Exclusions -» {Xx == -Pi, X == -2Pi, X == -3Pi, x == 0@, x == Pi, X == 2Pi, x == 3Pi},
Ticks » {Range[-4Pi, 4Pi, Pi], Automatic}]

Figure 2.14: Code used to generate the above plot

2.1.4 Chapter 1, Section 7, Problem 3

1
Problem Find the Fourier series on interval —m < x < 7 that corresponds to f (x) = x + sz.
suggestions: Use the series for x in example 2, section 7 and the one for ¥ found above in
problem Section 5, Problem 3(a).

Solution
18



21. HW1 CHAPTER 2. HWS

Since x is odd, then we can from example 2 use the Fourier sine series for x defined on
—MT<X<T

00 (_1)1’1+1 ‘
x~2 Z . sin (nx) (-m<x<m) (1)
n=1

And since x2 is even, then we can use the Fourier cosine series found in problem Section 5,

Problem 3(a) solved above
2 (o] n

x2~n—+42(_7cos(nx) (- < x <) (2)
n=1

. . 1 . .
Using (1,2), then we can write x + sz Fourier series as

1 & (-1 1 (& (1)
X+ =x% ~ 22( ) sin nx +—(n—+42%cos(nx))
4 = n 41\3 oon
2 (o]

I + 2 S0l cos (nx) +

12 A n?

& . [cos (nx)  2sin (nx)
g
1t

sin nx

2 (_1)Tl+1
n

n? n

2.1.5 Section 7, Problem 4

Problem Find the Fourier series on interval —m < x < 7t that corresponds to f (x) = e™ where
; . . ) 1 ;
a # 0. suggestion: Use Euler’s formula ¢/’ = cos 6 +isin 0 to write a,, +ib,, = - fﬂ f(x)e"™dx
=Tt
forn =1,2,3,---. Then after evaluating this single integral, equate real and imaginary parts.

Solution
a > 27 27
e ~ EO + ;::1 a, cos (Tnx) + b, sin (Tnx)
But T = 27t and the above becomes
a (oe]
e ~ EO + Z a,, cos (nx) + b,, sin (nx)
n=1
Where
1 2
ag = 7 f(x)dx
2 2
1 7T
= — e™dx
Tt -7t
1 [efx T
T [7
—TU
1
= — (pT — pmaTt
— ( )
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eﬂT[ e—llTl

But

= sinh (a7t) hence the above simplifies to

2
ag = — sinh (an)
na

And forn >0
T
1 2 2
a, = = szf(x) cos (Tnnx) dx
2 2

1 7T
=— f e"™ cos (nx) dx 1)
TTJ g

Let] = f " 6% cos (nx) dx. Using integration by parts, f udv = uv— f vdu. Let u = cosnx,dv =
—T

e™ .
e’ then v = 7,du = —nsin (nx). Hence

I=uv—fvdu

X T n e
= [cos (nx) —] + — f e sin (nx) dx
a aJd_,

ean e—an n 7T
= lcos (nt) — — cos (nm) ] + — f e™ sin (nx) dx
a a aJd_,

= (-1)" + Z f e sin (nx) dx

=Tt

n 7T
+ — f e™ sin (nx) dx
a =Tt

leun — e m

_ 2 (_1)" e _ T
o 2

2(-1)" T
= (a) sinh (Lm)+gf e™ sin (nx) dx

-7t

Applying integration by parts again on the integral above. Let u = sinnx,dv = e** then

e
v = 7,du = n cos (nx) and the above becomes

2(-1)" n e™\"  n m
I= (1) sinh (am) + — (sin nx—) - —f e™ cos (nx) dx)
a a aJ_,

-7

0
2 (-1)" n(1 n ]

7T
_ sinh (a70) + | = (sin (270) 77 + sin (n77) e-77) — = f &% cos (nx) dx
a ala ad_,

2(-1)" 2 rm
= 1) sinh (am) — n_2 f e™ cos (nx) dx
a a> J_,

But f " 6% cos (nx) dx = I, the original integral we are solving for. Hence solving for I from
—Tt

20
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the above gives gives

2(-1)" 2
1= 2 b - Z—ZI
a
n? -1)"
I+ ?1 = sinh (am)
2 2(-1)"
I(1+”—2) - (a) sinh (an7)
a
2(_:) sinh (ar)
I= =
1+ 11_2
_ 2a (=1)" sinh (am)
B a2 + n? @
Using (2) in (1) gives
1 TT
a, = — f e™ cos (nx) dx
Tt -7t
_ a2(-1)"sinh (an) 3
T n a2 + n? )

Now we will do the same to find b,,

T
1 3 2
by =7 f L f@) sin(Tnnx) dx
2 2

1 T
= — f €™ sin (nx) dx (4)
Tt =Tt
LetI = [ e™sin (nx) dx. Using integration by parts, | udv = uv— | vdu. Let u = sin (nx) ,dv =
. g integ Y P

ea.’x
e™ then v = 7,du = n cos (nx). Hence

I:uv—fvdu

ax ¢ T
= lsin (nx) e_] - g f e cos (nx) dx
—TT T

a

0

etlﬂ —AaTt n 7T
- [Sin (n70) S— — sin (n70) ]— " f e cos (1) dx
a a ad_,

n T
=—— f €™ cos (nx) dx
a

=Tt

Now we apply integration by parts again on the integral above. Let u = cos nx, dv = e then
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v= 7,du = —nsin (nx) and the above becomes

ax\ 7 i
=-= (cos(nx) e_) +Ef e™ sin (nx) dx
a al adg
n(1 nor
= —— |- (cos(nm)e™ —cos(nm)e + - € sin(nx)ax
~ (cos () ™ = cos (1) ) + = [ e sin >d)
=Tt
1 7T
:—Z ~ cos (nm) (e””—e‘””)+g f e™ sin (nx)dx)
-
2 an _ ,—am T
:_Z Ecos(nﬂ) (%)+g[ e”xsin(nx)dX)
=Tt
n(2 _ n (" :
= —— [ = cos (n7) sinh (an) + — f e sin (nx) dx
al\a ad_,
2 2 7T
= _a_Z (-1)" sinh(ﬁn)—%f e sin (nx) dx

-7
But f " 6% gin (nx) dx = I. Hence solving for I gives

—Tt

2 2
I= ——” (=1)" sinh (a7) - Z—ZI

I+

&

"2
21 ( 1)" sinh (am)
2

2) ——( 1)" sinh (am)
ﬁ(—l) sinh (amn)

1+”2

2n(-1)"
a% + n?

I=- sinh (am) (5)

Using (5) in (4) gives

7T
b, =— f e™ sin (nx) dx
T TC

12n(-1)"
= —;m sinh (EIT()
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Now that we found ag, a,,, b,, then the Fourier series is

a o
e~ 2 4 E a,, cos (nx) + b, sin (nx)

n=1
2 - .
o sinh (am) .\ a 2 (-1)" sinh (an) cos (1) 12n(-1)"

~ > P ; 2 nz ( - ;m sinh (aT[) sin (nX)
sinh (an)
~ sinh (arn) E (a cos (nx) — n sin (nx))
Ta

~ sinh (am) (n — Z a2 (a cos (nx) — nsin (nx)))

2 sinh (amn)
Tt

(—1) .
(2a + E 5 (4 cos (nx) — nsin (nx)))

a2 +n
Which is what we are requlred to show.

The following plots shows the approximation as more terms are added. We also notice the
Gibbs effect at the points of discontinuities after the original function was periodic extended.
The value a =1 was used. Hence this is approximation of e* using —7t < x < 7 as original
period.

Using 2 terms Using 4 terms
20 20

47 -3 -4 -3
Using 6 terms Using 8 terms

201 20

15+ 15+

101 10

5r 5
‘ vV v v Vv | Ade | Adve
-4 —BVr -2 - 2 339’ 4rr —4rr —3VT —271 - 71 2 3 47

Figure 2.15: Fourier approximations using with increasing terms
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a=1;
2Sinh[aPi] ( 1 Sum[(
2a

(aCos[nx] -nSin[nx]), {n, 1, nTerms)]]
e

fApprox[x_, nTerms_] :=

Clear[f];
fx_/; -Pi<x<Pi] :=Exp[ax];
flx_ /3 x>Pi] :=f[x-2Pi];
flx_ /3 x<-Pi] := f[x+2Pi];
GridePartition[Table [
Plot [ {f[x], fApprox[x, nTerms]}, {x, -4Pi, 4Pi}, PlotStyle » {Blue, Red},
PlotLabel -» Row[ {"Using ", nTerms, " terms"}],
Exclusions - {X == -Pi, X == -2Pi, X == -3Pi, x == 0, X == Pi, x == 2Pi, x == 3Pi},
Ticks » {Range[-4Pi, 4Pi, Pi], Automatic},
PlotRange -» {Automatic, {-3, 20}}, ImageSize -» 300], {nTerms, 2, 8, 2}], 2]

Figure 2.16: Code used to generate the above plot

2.1.6 Chapter 1, Section 8, Problem 1

Problem (a) Use the Fourier sine series found in example 1, section 5 for f(x) = x for
0 < x < 7, to show that

( 1 n+1 .
~= E sin nmx (-1<x<1) 1)

(b) Obtain the correspondence in part (a) by using expression (11) in section 9 for the
coefficient in a Fourier sine series on 0 < x < ¢

Part a

The Fourier sine series found in example 1, section 5 for f (x) = x for 0 <x < 7 is
x~22(_—sinnx 0O<x<m) (2)
- n

Which has period T, = 27t after odd extension. To convert the above to the range -1 < x <1,
then by looking at this diagram

Figure 2.17: Finding scale for correspondence

/

We see that by symmetry % = XT Hence x = nx’. Therefore we want x — 7tx’ but x’ is just
24



21. HW1 CHAPTER 2. HWS

x in the new domain. Hence x — 7x in the new Fourier series. Therefore replacing x by mx
in (2) gives
e (_1 n+1

X ~2
n=1

" sin nmx O0<x<1) (3)

Equation (3) is now scaled by multiplying it by x;/ =1 giving

TC
2 00 (_1)1’l+1

23

Tt n=1

sin nmx 0O<x<1) (4)

Part b

Expression (11) in section 8 is
2 ¢ X
b, = —f f(x)sin(ﬂ)dx
cJy c

Let c =1 and since f (x) = x, then above becomes

1
b, =2 f xsin (n7ex) dx
0

— cos(nmx)

Let u = x,dv = sin (nmx) thendu =1,v = . Hence udv = uv- f vdu and the integral

above becomes
-1 L1 1
b, =2|—[xcos (nmc)]O + —f cos (nmx) dx
nrt nrt 0

1 [sin (nmx) ]1]

-1
= 2| — [cos (nm)] + —
n n

nrt
0

0
—_—

_ __1 1\ 1 . 1
=2 — [( 1) ]+ - [sin (n7x)],

2
= (41 n+1
m( )
Hence

[ee]
X~ Z b, sin nmtx
n=1

2 91
~=) ~ (1) sin nrx
n n=1

Which is the same as (1) in part (a)
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2.1.7 Chapter 1, Section 8, Problem 6

Problem Use method in example 2 section 8 to show that

. sinhc ' < (D) nmx (nTx
er ~ + 2sinhc —— —|ccos|— | —nmsin| — —c<x<c
c c c

=2 4 (nm)

Solution

From problem 4 section 7, we know that

ax
e ~

. h . h (o] _1 n
Smh ar + zsm o 2 (2 ) 5 (a cos (nx) — n sin (nx)) -M<XxX<T 1)
an n eat+n

To convert the above to the range —c < x < ¢, then by looking at this diagram

Figure 2.18: Finding scale for correspondence

We see that by symmetry, % = x? where x’ is the x in the new range we want, which is

x'm . . . . e xn
—c <x <c. Hence x = — or since x” is just x in the new domain, then this implies x — —-
. X7, .
Then replacing x by — in (1) gives

anx  sinhanm _sinhan & (-1)" nmx ~(nmx
ec ~ +2 Z >— 5 |4cos|— | —nsin|— —x<x<c (2
an T a‘+n c c

n=1
We see that the trigonometric terms inside the sum is multiplied by a, hence we replace that

/

by Z in the above. This is the same as — = —. Hence letting a = Zin (2) gives
Tt X Tt Tt

. e [o'e) _ n
e ~ snzhc + ZSth Z 1) (£ COS (@) — nsin (@))
T
n

~ (5)2 b2 \T c c
s
sinhc _sinhc < (-1)" nmx _(nTx
~ +2 Z 5 ccos|—— | —nmsin|—
c n e 2 c c
n=1 - + 7tn

sinh ¢ . < (1) nmx . (nmx
~ +2 Slnh Cc m CCOS|— | —nmsm|——
c A2+ c

Which is what we asked to show.
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CHAPTER 2. HWS

2.2.1 Section 11, Problem 4

HILL Uy — v
n—+od

@ In Chap. 1 (Sec. 6) we expressed a function f(x)in Cp
fx) = gx) + h(x)

where
e fx) +2f (—x) o

We then saw that the coelfficients ap

o
a !
-22 + E (@, cosnx + b, sinnx)

n=1

for f(x)on
series for g(x) and h(x), resp

(a) By referring to the Bessel inequalities

ag Y2 [t 2
DY ass [ el
n=]

ectively,on 0 < x < 7.

and

N ) [
AT [ (o)) dx
T Jo

n=1

Then point out how it follows that

n=1

(—m, ) as a sum

and b, in the Fourier series

—g < x < m are the same as the coefficients in the Fo

(11) and (14) in Sec. 10, write

N Fid T
“—23-+Z(ai+bi)s-3;u] [f(x)]zdx+[] [f(—s)]zds} (N=

urier cosine and

(N=1

(N = 11_

¢ = —g in the lastintegral in part (a), obtain

(b) By makingthe substitution

inequality
I t
%+Z(“i+bi) < -71;.[ [f@)dx (Nw
n=1 i
! ot Tatlaes AfRY that
Figure 2.19: Problem statement
Part (a)
Writing
2 N
ag 2 (" 2
—+Ya2<= f
> 2]1 <2 [s@)] dx (1)
N ) T
th<= [ mrd
247 7IO[()]X (2)
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Adding (1)+(2) gives
aZ N 2 e 2
5 +7§1(a% +12) < ;fo g + 1 ()P dx

2 [f@+fET [f@O-FE0T
P

_ Ef” F2(x) + f2(=x) +2f (x) f (x) s 2 (x) + f2 (—x)—2f(x)f(—x)dx
T nd, 4 4

:ifan(x)Jrfz (=x) + F2 (1) + f2 (=x) dx
= foZ(x)+2f2(x

_ l(f () + £2( x)dx)

:l( f(x dx+ [f( s)] ds) 3)

T

Part (b)

Let x = —s in the last integral. Therefore dx = —ds. When s = 0 then x = 0 and whens =7
then x = —m, then (3) becomes

Bes@en)<x([ ol us [ o] co)
:%U:Umfw-ﬁﬂymfw)

— 0
But £ - —f and the above becomes

2

EO é(an+bz) i(foﬂ [f(x)]zdamfjI [f(X)]de)
HATE
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2.2.2 Section 11, Problem 6

0. | Derive (he expression
_ sin (% + Nu)
Dy(i) = = R (0, 227, 4o, . )
2sin 5

for the Dirichlet kernel (Sec. 11)

N
}. "
Dn(u) = 5 + E cOS nit

n=1

by writing

i the trigonometric identity
2sinAcosB = sin(A+ B) +sin(A— B)
and then summing each side of the resulting equation fromn = 1 ton = N.
Stuggestion: Note that
N N-1

Zsin(g —nu) = ﬁZsin(g-+nu).

n=1 n=

Figure 2.20: Problem statement

We want to show the following (I’ve used x instead of u as it is more natural).

: 1
1 XN sin ((N + E) x)
—+ ), cosnx = 1
2 ,;1 ZSing W
Or, similarly, we want to show the following

Xy, X , 1
s1n—+2251n—cosnx:sm N+ —-|x (2)

2 = 2 2

We will now work on the left side of (2) only and see if we can simplify it to obtain the right
side of (2). Writing the LHS of (2) as

x W X x Y
sin—+ZZsin—cosnxzsin—+ZZsinAcosB (3)
2 n=1 2 2 n=1
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Where A = g, B = nx. But sin AcosB = % (sin (A + B) + sin (A — B)). Hence (3) becomes

x Y X x Y
sinE +n§::12$in§cosnx:sin§ +n§:18in(A+B)+sin(A—B)

z( ) s (2 )
$+ﬁmwgﬂﬂqeﬂg
gz nlle-2)

Expanding few terms to see the pattern shows

kS 2ol 2)) = 2 s 1))

onlfor 3 {(2-2))

Jonl(o 2 -5 2))

R R (G S R R R
o) )]

o3l

. 1
We see that all terms cancel except for the term before the last term, which is sin ((N + 5) x).

i\

=

I\)IR NI &K

=

+ ...

. (7 . .
(In the above limited expansion of terms, this will be the term sin (Ex) which remains.)

Hence as n — N, the above simplifies to

sm + Zsm( +nx) + sin(g —nx) = sin ((N + %)x)

Which is (2) which was obtained from (1). Hence (1) was verified to be valid.
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2.2.3 Section 14, Problem 2

-
“or each of the following functions, point out why its Fourier series on the interval
—1 <X < mis convergent when —7 <x <, and state the sum of the serieswhenx = 7:

b
.

(a) the function
Yallam/2 when —7 <x <0,
f(x)_{ T2 when O<x<m,

whose series was found in Problem 1, Sec. 7;
(b) the function
flo) =e™ (a #0),

whose series was found in Problem 4, Sec. 7.
Answers: (a) sum = 0; (b) sum = coshar.

Figure 2.21: Problem statement

Part (a)

The Fourier series for f (x) is convergent since f (x), after periodic extension, satisfies the 3
points of the Fourier theorem in the textbook at page 35

Theorem. Suppose that

- [ is piecewise continuous on the interval —z < x < 5
[ is periodic, with period 2r, on the entire x axis;

@ Tl—oo<x< 00) 1S a point at which the one-sided derivatives fi(x) and
I_(x) both exist.

Figure 2.22: Fourier theorem

Point (i) is satisfied since f(x) is piecewise continuous and also point (ii) when doing
periodic extension. Also point (iii) is satisfied, since the left sided and right sides limit exist

at each x.
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Clear[f];
flx_/; -Pi<x<Pi] :=Piecewise[{{-Pi/2, -Pi<x< @}, {P1/2,0<x<Pi}}]
flx_/; x>Pi] := f[x-2Pi];
flx_ /; x<-Pi] := f[x+2Pi];
Plot[f[x], {x, -4Pi, 4Pi}, PlotStyle -» {Thick, Red}, Mesh - None,
GridLines - Automatic, GridLinesStyle - LightGray,
Ticks -» {Range[-4Pi, 4Pi, Pi], Automatic},
Exclusions -» {x == -3Pi, x == -Pi, x == @, x == Pi, x == 3Pi},
Mesh - None, ExclusionsStyle - Dashed]

I

|

1 1 1
1 1 +5 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1.0 1 1
1 1 1 1
1 1 1 1
! ! 0.5+ | !
1 1 1 1
1 1 1 1
1 1 1 1

-4 -3 -4 - us T s
4 ;I‘r 2 3: 4

1 1 1 1
I I =051 | |
1 1 1 1
1 1 1 1
1 1 1 1
| 1 -1.0+ | |
1 1 1 1
1 1 1 1
1 1 1 1

L =15 L 1

Figure 2.23: f(x) after periodic extension

Therefore the Fourier series will converge to the average of the function f (x) at x = 7. This
average is

fE+ ) 575 _,

2 2

Part (b)

The Fourier series for f (x) = ¢** is convergent since f (x), after periodic extension, satisfies
the 3 points of the Fourier theorem in the textbook at page 35. Point (i) is satisfied is
piecewise continuous and also point (ii) when doing periodic extension. Also point (iii) is
satisfied, since the left sided and right sides limit exist at each x. Here is a plot, using a = i
for illustration
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Clear([f];

a=1/4;

f[x_ /; -Pi<x<Pi] := Exp[ax];

flx_/; x>Pi] := f[x-2Pi];

flx /; x<-Pi] := f[x+ 2Pi];

Plot[f[x], {x, -4Pi, 4Pi}, PlotStyle » {Thick, Red}, Mesh - None,
GridLines - Automatic, GridLinesStyle - LightGray,
Ticks » {Range[-4Pi, 4Pi, Pi], Automatic},

Exclusions » {X == -3Pi, x == -Pi, x == @, X == Pi, x == 3Pi},
Mesh - None, ExclusionsStyle - Dashed,
AxesOrigin -» {0, 0}]

-4 7T =37 =27 -7 r T 27T 3 47T

. . _ax . . . . _ l
Figure 2.24: f(x) = ¢™ after periodic extension (Using a = ;

Therefore the Fourier series will converge to the average of the function f (x) at x = 7. This
average is

fr)+f(rn?) e +e™
2 2

= cosh (am)
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2.2.4 Section 14, Problem 3

%' By writing x = 0 and x = /2 in the representation

B 2 4 <~ cos2nx .
SIHXZE—— MTT (OF <%= )

n=1

established in Example 2, Sec. 14, obtain the following summations:
-~ 1 | co DR L
ot 4 ] 101\ 2] =1 2 4

el He=)

Figure 2.25: Problem statement

Substituting x = 0 in the given representation gives

2 4 & 1
0==-2=
T 717122114112—
had 1
2=-4
2_:4112—
n=1
1 ad 1
2 ;::14112—

And substituting x = g in the given representation gives

2 4 Z cos (nn)

4n2 —

) Cy
1‘;-‘;2m
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2.2.5 Section 14, Problem 6

o N TTOTSL AT rravas asosaaapsav Ay WMV XTT. S

6.|(a) Use the correspondence

2 £ n

2 T (=1)
3% ~?+4Z B COS nXx Oi<x=mh

n=1

found in Problem 3(a), Sec. 5, to show that

) (_1))1+1 o) &0 1 T
—'_nz = E and Z ﬁ = F
n=1 n=1

(b) Use the correspondence (Problem 6, Sec. 5)

(o)

at £ nw): —6
x4~?+82(—1)”%—cosnx 0O <x<um)

n=1

and the summations found in part (2) to show that

Z ()i e i o i
e e w90

n=1 n=1

Figure 2.26: Problem statement

Part (a)

1 & (1)
x% ~ 5712 + 4]1;1 ( nz) coS nx (1)

Letting x = 0 in (1) gives (After doing periodic extension, then x = 0 is now in the domain).

1 o) (_1)1’1
0=cm?+4),
3 n=1 nZ
& (1)
2 =4
37Z nz::l n2

7_[2 ') (_1)7’l+1
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2
Now we need to obtain the second result 22021% = %. Let x = m in (1) (After doing

periodic extension, then x = 7 is now in the domain) gives

—nz +4 2 -
2 2
ne— -7 =4

3 ;1 n?
12

6" ngl n?

2n
But 2:10:1 % = E:;l % since the power 21 is always even. This gives the result needed

1., &1
52 _ _
6" nz::l n2
Part (b)
o Z( I 2 (m) 8 cosnx 2)
5

Letting x = 0 in (2) gives
nt & (nm)* -6
0=—+8 -
5 2 ( ) n4

n=1
(D ) QD)
—3—8 n;l(—l) — —6; — )
m* _ . ne1 (170) & (1)
= =8 ;1(—1) — 621 — )
LN S <N o DR SN oDl
5 8 2;::1 n? * 6;::1 nt )

37



2.2. HW 2 CHAPTER 2. HWS

(_1);1+1 2

But from part (a), we found that Z:’:l = % Using this in the above results in
us 2 & (-1
_ 2
F—S(TC (5)4‘62 1 )
n=1
nt 8 & (1)
5 4
n* 8t (- 1)
— ——— =148
5 12 nz::l n*
7 [} (_1)71
——m* =48
15 ,;1 n
7 o0 (_1)7’1
R
720" ;::1 n
Multiplying both sides by —1 gives the result needed
7 [ _1 n+1
A o)
720 | n*
2
Now we need to obtain the second result Zn 1 14 = n—. Let x = 7t in (2) gives
4 nn)
=< +8 Z( -1)" ® (!
- ”_+82(_1)2n%
n=1 1’14
But (—1)2’1 =1 for all n. The above simplifies to
m — (1171)2 -6
f=—+8
n nz:]l o
, T ( &, (nm) | ]
n—-—=28 6 ), —
5 nz:]l n* 712::1 n*
47t ( | 1
— =8 nZZ——éz—)
5 n=1 n’ n=1 n*
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2
But from part(a) we found that 220:1 % = % hence the above simplifies to

47t 2 1
T =5(2(5) -2 )
5 6 —n
4t _n4 6 1
40 6 ot
1 o 1
——7‘(42—62—
15 &t
1 o 1
4_2_
90 n:1n4

Which is the result we are asked to show.

2.2.6 Section 14, Problem 8

et : 3 :

18 lethout actually finding the Fourier series for the even function f(x) = vx2 on
—7 <x <, point out how the theorem in Sec. 12 ensures the convergence of that
series to f(x) when —7 < x < 0.and when 0 < x < 7 but not when x = 0.

7 bl -

Figure 2.27: Problem statement

We first notice that the function f (x) is not differentiable at x = 0

flx_] 1= (x*2)~(1/3);
Plot [f[x], {x, -Pi, Pi}, PlotStyle - Red, GridLines - Automatic, GridLinesStyle - LightGray,
Ticks -» {Range[-Pi, Pi, 1/2Pi], Automatic}]

201

Figure 2.28: plot of (x*)!/3

This is because, when xy = 0 the left sided derivative is equal to the right sided derivative

lim £ () = £~ (x0) # Jim £ () = £ (o)

X=X
X<XQ xX>X0
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Since fl_ (0) = —oo while f:r (0) = +o0. The function is therefore piecewise continuous on
each —71 < x < 7t but it is not differentiable at x = 0. But Fourier theorem, looking at point
(iii) in the book, only says that if f’ (xy) exist and if f (xg) exist, then the Fourier series
converges to the average of f (x) at point xg. In this example fl_ (0) = —o00 and f; (0) = 400,
which means these limits do not exist.

Hence we see that point (i) and (ii) in the Fourier theorem in the book are satisfied, but it
is point (iii) which not satisfied at x = 0. Therefore Fourier series does not converge to f (x)

at x = 0 only while on other x in the domain it does.

2.2.7 Section 15, Problem 2

2 \Let f denote the function whose values are

= 1) when —2 <x <1,
f(x)_{l when 1 <ppic?.

and
1
e fd = f2) = 5
Use formulas (4) and (5) in Sec. 15, together with Theorem 1 there, to show that

1 lx=17. nr nix 1
f(x):z—;;;[sm7cos—2—+(cosmt—cos%)sinnzﬂJ

for each x in the closed interval —2 S

Figure 2.29: Problem statement

A plot of the function f (x) and its periodic extension is given below

f[x_] :=Piecewise[{{0, -2 < x <1}, {1,1<x<2}}]
Plot[f[x], {x, -2, 2.01}, PlotStyle -» Red, GridLines -» Automatic, GridLinesStyle - LightGray,
Ticks » {Range[-4, 4, 1], Automatic}, ExclusionsStyle -» Dashed, Exclusions -» {x =1, X == 2, X = -2} ]

1o —

0.8+

0.6

0.4

0.2

]

1
: I
1 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| |
| |
| |
| 1
| 1
| 1
| 1
1 |
| 1
I 1
1 1
| 1
1 1
1 2

Figure 2.30: plot of f(x) over one period
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Clear[f];
flx_ /5 -2<x<2] :=Piecewise[{{0, -2 < x <1}, {1, 1<x<2}}]
flx_ /;x>2] :=Ff[x-4];
fix_ /3 x<=-2] :=f[x+4];
Plot[f[x], {x, -8, 8}, PlotStyle » {Thick, Red}, Mesh - None,
GridLines -» Automatic, GridLinesStyle - LightGray,
Ticks » {Range[-8, 8, 1], Automatic},
Exclusions - {X == -7, X == =6, X == =3, X == =2, X =1, X == 2, X =5, X == 6},
Mesh - None, ExclusionsStyle - Dashed]

1 1 100 1

1 1 F 1 1
b b b b
1 : 1 : Eoo : 1 :
: 1 : 1 0.8 : I : I
1 ! 1 ! Fo [ 1 [
1 ! 1 ! 1 ! 1 !
1 : 1 : Eoo : 1 :
P N A P
1 ! 1 ! Fo [ ] [
1 ! 1 ! ! !
1 : 1 : Eo : I :
P b 04 1 o
1 ! 1 ! ro ! 1 !
1 ! 1 ! 1 [ 1 [
1 ! 1 ! Eo ! 1 !
Lo Lo o2 b Lo
1 ! 1 ! Co ! 1 !
1 [ 1 [ 1 [ 1 [
1 ! 1 ! 1 [ 1 [

! . . I ! . I ! . . I ! .

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8

Figure 2.31: plot of f(x) extended to become periodic. Showing 3 periods

The Fourier transform of f (x) is

) 2n o (2m
f(x) ~ > + ngl a, cos (?nx) + b, sin (?nx)
Where T is the period of the function (after periodic extension) which is 4. Hence the above
becomes

fx) ~ Lo, 2 a,, cos (Enx) + b, sin (znx)
2 A 2 2

Since f (x) meets the requirements of the Fourier theorem on page 35 of the text (at points of

1
discontinues, the function is > which is the average at those points), then ~ can be replaced
by = above

a had T (T
fx) = 70 + ,12::1 a, cos (Enx) + b, sin (Enx) (1)
Where
1 (3 1 [ 1 (2 1/ 2
%:71fowﬁh:Zkfrﬂmdx:EJEf&ﬁh:E(j;f@ﬁM+J1f@ﬁh)
2"z 272 - -
12N 1, 1
_5(1dﬁ_§@h_2
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And

a, = %f%f(x) cos (%nx) dx = %fz f (x) cos (gnx) dx
~J.I -2

2

= % (j:lzf(x) cos (gnx) dx + flzf(x) cos (gnx) dx)
= %fzf(x) cos (gnx) dx
1
= % j;z cos (gnx) dx
] l[sm(gnx)r
2 il
1

2

= % (sin (7tn) — sin (n?n))

-1 (nn)
= —sin|—
mn 2

And

b, = %féf(x) sin(zTnnx) dx = %f_zzf(x) sin(gnx) dx
5 2

= %(f_lzf(x) sin (gnx) dx + f;zf(x) sin (gnx) dx)
= %sz(x) sin (gnx) dx
= %jj sin(gnx) dx

Rk <§nx>]2

2 m

2

-1 T

= — |cos (1tn) — cos (—n)]
n 2
Tt

= ;—;11 cos (mtn) — cos (Tn)]
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Using these results in (1) gives

Fx) = 411 + f] (;—i sin (%”)) cos (gnx) + (;—i [Cos (121) — cos (%")]) sin (gnx)

n=1

= 411 - % i (% sin (%)) cos (gnx) + % (cos (7tn) — cos (%)) sin (gnx)

n=1

= 411 - % g}l % [sin (%) cos (gnx) + (cos (rtn) — cos (%)) sin (gnx)]

Which is the result we are asked to show. To verify this, the following shows the convergence
to f (x) when using more and more terms in the series.

Tnx

fApprox[x_, nTerms_] := Ti - 7% Sum[% (Sin[%n] Cos[ ] + (Cos[nn] -Cos["z—n]) Sin["Tnx ), {n, 1, nTer'ms}];

Clear[f];
flx_ /; -2<x<2] :=Piecewise[{{0, -2<x <1}, {1,1<x<2}}]
flx_ /3 x>2] :=Ff[x-4];
flx_ /3 x<-2] :=f[x+4];
Grid[Partition[Table[Plot[{f[x], fApprox[x, n]}, {x, -Pi, Pi},
PlotStyle -» {Blue, Red},
PlotLabel » Style[Row[{"Using ", n, " terms"}], Bold],
ImageSize - 250],
{n, 1, 10}], 2], Frame -» All, FrameStyle - Gray]

Figure 2.32: Code used to draw the plot
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Using 1 terms Using 2 terms
101 1.0
0.8} 0.8}
//\ ot VTN 06}
04r 0.4}
0.2} 02
! . ya\ .
3 -2 -\\_G{ 1 2 X |5 4 0 2\/ p 2 \JA
Using 3 terms Using 4 terms
124 1.2F
Al A Al A
0.8} 0.8}
06} 06
/ 041 04l
0.2} 0.2
-3 -2 V,-Tv,\\/ 1 P R R V’-TVI\V 1 2 3
Using 5 terms Using 6 terms
AN 10} A\ TR 10} AA
0.8F 08r
Out[+]= 0.6 0.6
/ 04r 04Ff
0.2} 0.2
AV NTAN AN VANV AN ANEVAY VAN,
3 2\ Y M \Ji PAVAE N =T\ VAL AV F AVAA
Using 7 terms Using 8 terms
AA o A AA o A
0.8} 0.8
06f 06f
0.4} 0.4
} \ 0.2F \ \ 02F
Ao PN Ao Ao A A
3 oY T TV 2V T 3 ¥ T T Vy 2V
Using 9 terms Using 10 terms
I\V/\ 106 I\v/\ A oA 10b A
0.8} 0.8
0.6 06
0.4} 0.4
\ 0.2} } \ 0.2
AW NN N TAW.N A A s aa AN AN _c
3 A Y X TV VYT | L AV ETTFEY, VY3

We notice that the Fourier series approximation converges to - at the points of discontinuities.

Figure 2.33: Fourier series approximation as more terms added
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But these are the actual values of f (x) at those points.

2.2.8 Section 15, Problem 8

n=i

K. After writing the Fourier series representation (3), Sec. 15, as

N

ap , nmx . hmx

fx) = 5 +A1]1_{130 E : (a,,cosT +bns1n—c—),
=

use the exponential forms'
¢i0 4 i ¢f _ it
_ sinf = ————
2 ) 2 ,
of the cosine and sine functions to put that representation in exponential form:

N
y ATX
fx) = lim Z AnGXp<l——~C >

n=—N

COsf =

where

AO:@ Anzf"__l_b", A_nza"-Hb”
2 2
Then use expressions (4) and (5), Sec. 15, for the coefficients a, and b, to obtain the

single formula

(n=1,2,...).

e fis nmx
A, = — 2y NI 2
26/_c f(x)eXp( ke )dx (n=0,=41,42,...).

Figure 2.34: Problem statement

N

ag ] nm . (nTm
f(x)=—=+ lim a, cos|—ux| + b, sin| —x
2  Noow ~= c c
n=1
N iy —iy iy —ix
ag . e +e e ec —e ' c
= —+ lim a, +b, -
2 N-ox ~ 2 2i
N iy —iy iy —iy
a _ e +e e et —e
= — + lim a, —ib,
N—oo ) 2 2
a . N " (ay —iby, _i"y (a, +ib,
= —+ lim ec +
2 N-oox o 2 2
N . _1 .
a nn(a, —ib o (a, +1ib
=—O+ lim et | —2 + Z et | —2 (1)
2 N—ooo =1 2 NN 2
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Let
(u”_zib”) n>0
Ay=1  3 n=0
a,+ib,,
( 5 ) n<0
Then (1) can be written as
N nm
f(x)= Jim D, At
n=-N

Since

1 C
anzzf f(X)cos(nTnx)dx n=0,12,---
—C

1 C
b, = —f f(x)sin(@x)dx n=1,2,
cJ_. c
Then a, + ib, gives

1 ¢ 1 ¢
a, —ib, = Ef f (x) cos (nTnx) dx - iz f f (x)sin (nTnx) dx
—c -
1 C C
== ( f £ (3) cos (”—”x) dx + f £ (—i sin (”—"x)) dx)
c\J_. c —c c
1 C
= —f f(x) [cos (n_nx) —isin(n—nx)]dx
cJ_, c c
1 C LN
= - x)e < dx
f ()
c —C
But a, —ib,, = 2A,, from first part of this problem. Hence the above becomes

1 e i
Anz—f Fe Tax n=0,41,%2, -
2cJ_,
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23

HW 3

Local contents

[2.3.1 Section 20, Problem 1| . . . . . . . ... ... ... .. 47
[2.3.2 Section 20, Problem 2| . . . . . .. ... . o 50
[2.3.3 Section 20, Problem 5| . . . . . .. ... . 51
[2.3.4 Section 27, Problem 1| . . . . . . . . . .. ... . 53
[2.3.5 Section 27, Problem 2| . . . . . . . . .. ..o 54
[2.3.6 Section 27, Problem 3| . . . . . . . . .. ... 55
[2.3.7 Section 27, Problem 7| . . . . . .. ... ... o 57
2.3.1 Section 20, Problem 1

Fﬂ Show that the function

.

o 2 0 when —7 <x <0,
e when | OfSei=tr

satisfies all the conditions in the theorem in Sec. 17. Then, with the aid of the Weierstrass
M-test in Sec. 17, verify that the Fourier series

1A | 2 o= cos2nx ,
;-i—ismx—]—{ m (=7 = <)
n=1
for f, found in Problem 7, Sec. 7, converges uniformly on the interval —z < x < 7, as
the theorem in Sec. 17 tells us. Also, state why this series is differentiable in the interval
—1m <Xx <, except at the point x = 0, and describe graphically the function that is
represented by the differentiated series for all x.

Figure 2.35: Problem statement

The function f (x) is
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f[x_] :=Piecewise[{{0@, -Pi < x < @}, {Sin[x], @ < x < Pi}}]
Plot[f[x], {x, -Pi, Pi}, PlotStyle - Red, GridLines - Automatic, GridLinesStyle - LightGray,
Ticks » {Range[-Pi, Pi, 1/2Pi], Automatic}]

1.0+

Figure 2.36: Plot of f(x)

The function f (x) is continuous on —nt < x < 7. Also f (—7) = f (1) = 0. We now need to
show that f’ (x) is piecewise continuous. But

f’(x)={

Therefore f’ (x) exist and is piecewise continuous on -7 < x < 7. From the above, we see
that f (x) meets the 3 conditions in theorem of section 17, hence we know that the Fourier
series of f (x) is absolutely and uniformly convergent. (Here we need to use the M test to
confirm this).

0 —-n<x<0

cos X O<x<m

(1)

The Fourier series of f (x) is

a1 2 i cos (2nx)

— + =sinx— —
2 2 w4 4n? -1

Now, to apply the M test, consider the two series

fn M,
—_—~
o0

E cos (2nx) i 1

2_1"7 2 _
= Ant -1 Hdnc -1
To show Fourier series is uniformly convergent to f (x), using the M test, then we need to
show that |fn| < M, for each n. The series M,, qualifies to use for the Weierstrass series,
since each term in it is positive constant and it is convergent series. To show that M,

4ni—_1 < % and Z:;lnl—z is
convergent since any Zzozl % for s > 1 is convergent (we can show this if needed using the
integral test). Hence we can go ahead and use M, series. Now we just need to show that
cos (2nx) 1

4n2 -1 7 4n?2 -1

For each n. But cos (2nx) <1 for each n. Hence the above is true for each #n and it follows
that the above Fourier series is indeed uniformly convergent to f (x).

. . o 1
is convergent, we can compare it to Zn_l ol Since each term
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From (1), At x = 0 we have

x—)OJr X

=1
And
4 = 1 - =
f (0) xg(r)lJr X 0

Since f%, (0) # f” (0) then f (x) is not differentiable at x = 0. This is plot of f’ (x) and we
see graphically that due to jump discontinuity, that f’ (x) is not differentiable at x = 0

o FOFO 0
0 X Bl

f[x_] :=Piecewise[{{0, -Pi < x <@}, {Cos[x], @< x<Pi}}]
Plot [f[x], {x, -Pi, Pi}, PlotStyle - Red, GridLines - Automatic, GridLinesStyle -» LightGray,
Ticks -» {Range[-Pi, Pi, 1/2Pi], Automatic}]

Figure 2.37: Plot of f’(x) shown for one period

Clear[f];
f[x_/; -Pi<x<Pi] :=Piecewise[{{0, -Pi< x <0}, {Cos[x], @< x<Pi}}]
flx_/; x>Pi] :=f[x-2Pi];
flx_ /; x<-Pi] :=f[x+2Pi];
Plot[f[x], {x, -4Pi, 4Pi}, PlotStyle » {Thick, Red}, Mesh - None,
GridLines - Automatic, GridLinesStyle - LightGray,
Ticks » {Range[-4Pi, 4Pi, Pi], Automatic},
Exclusions - {x == -3Pi, x == -2Pi, x == -Pi, X == @, x == Pi, x = 2Pi, x == 3Pi},
Mesh - None, ExclusionsStyle - Dashed]

1.0

0.5F

L
B B
CSP o &

Figure 2.38: Plot of f’(x) for all x, shown for 3 periods
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2.3.2 Section 20, Problem 2

/:Z—.TWG know frorﬁ Example 1, Sec. 3, that the series
T cos(2n — 1)x
Dk Z 2n — 1)2

is the Fourier cosine series for the function f(x) = x on the interval 0 < x < 7. Differ
entiate this series term by term to obtain a representation for the derivative f'(x) =
on that interval. State why the procedure is reliable here.

Figure 2.39: Problem statement

Solution

After doing an even extension of f(x) =x on 0 < x < m to - < x < 7, we see that f (x)
satisfies the conditions of Theorem section 20 for differentiating the Fourier series term by
term. Since

1. f(x) is continuous on the interval -m < x <7
2. f(-m)=f(n)
3. f’(x) is piecewise continuous on -7t < X < T

The only point that f (x) is not differentiable is x = 0 which implies f’ (x) is piecewise
continuous. But that is OK. It is f (x) which must be continuous. Hence differentiating the
series term by term to obtain representation of f (x) on 0 < x < 7 is reliable.
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2.3.3 Section 20, Problem 5

{ 5.1 Integrate froms = 0tos = x (—m < x < 7) the Fourier series

o o n+-1
2 Z S — sin us
n

7=

in Example 1, Sec. 19, and the one

0.}

\q ') 2 y
337 sinn = by
2n — 1

nel

appearing in See. 18, In each case, deseribe graphically the function that is represented
by the new series

Figure 2.40: Problem statement

Part 1

© (_q n+1
S=2 2 D sin (ns)
n=1 n

The above is the Fourier sine series for f (x) = x, on 0 < x < 7. Integrating gives

X oo (_q1yh+l 00 x (1)1
fo(zz( 13[ sin(ns)]ds:ZIZ:lfo ( 1}1 sin (ns) ds

n=1

We did integration term by term, since that is always allowed (not like with differentiation
term by term, where we have to check). Hence the above becomes

00 x (_1\1+1 oo ¢ q\n+l X
2;::1[0 ( 1:[ sin(ns)ds:ZIZ:l( 1}1 (J; sin(ns)ds)
o (—1)”Jr1 cosns\*
_2;::1 n (_ n )0

00 (_1)1’l+2
=2 x
;::1 2 (cos ns)0

But (—1)”Jr2 = (-1)" and the above becomes

00 x (_1\+1 o ( 1\
2;[0 ( 1}1 sin(ns)ds:ZE(nlz) (cosnx —1)

X 1 . . . 1 .
But £ sds = -x2. So the above is the Fourier series of Exz. A plot of the above is

2

51



2.3. HW 3 CHAPTER 2. HWS

flx_1:

Nll—‘

Plot[f[x], {x, O, Pi}, PlotStyle - Red,
GridLines - Automatic,
GridLinesStyle - LightGray,
Ticks » {Range[0, Pi, 1/2Pi], Automatic}]

Figure 2.41: The function represented by the above series f(x) = -

Part 2

sin (2n —1)s)
5= 22 2n -1

The above is the Fourier sine series for f (x) = -, on 0 < x < 7. Integrating gives
X
2
D

Sln 2n-1) ))d =2
2 (2n-1)s)|ds Zf

We did integration term by term, since that is always allowed (not like with differentiation
term by term, where we have to check). Hence the above becomes

22[ sin (21 - 1)s)ds—ZZ%fxsin((Zn—l)s)ds

0

— —cos(2n-1)s\"
2 2n — 1( 2n-1) )0
—2)-

[o0]

sm (2n—-1)s)ds

(cos((2n-1)x)—1)
= @n -1y

Since £ Tds = x then the above is the representation of this function. Here is a plot

to conﬁrm this, showmg the above series expansion as more terms are added, showing it
Tt
converges to >X
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Using 1 terms

Using 3 terms

1.0 15 2.0

0.5 1.0 15 2.0

Using 5 terms

Using 7 terms

CHAPTER 2. HWS

0.5 1.0 15 2.0 25 3.0 0.5 1.0 15 2.0 25 3.0

Figure 2.42: The function represented by the above series f(x) = gx against its Fourier
series

Cos[(2n-1) x] -1

fApprox[x_, nTerms_] := ZSum[— m 1)
n-

, (n, 1, nrerms}];

Clear[f];

flx_/30<x<Pi] :=x%Pi/2;

Grid [Partition[Table[Plot[{f[x], fApprox[x, n]}, {x, @, Pi},
PlotStyle » {Blue, Red},
PlotLabel -» Style[Row[ {"Using ", n, " terms"}], Bold],
ImageSize -» 250],
{n, 1, 10, 2}1, 2], Frame - All, FrameStyle - Gray]

Figure 2.43: Code used to plot the above

2.3.4 Section 27, Problem 1

j\'l] Letu(x) denote the steady-state temperatures in a slab bounded by the planes x = 0 and
x = ¢ when those faces are kept at fixed temperatures u = 0 and u = uy, respectively.
Set up the boundary value problem for u(x) and solve it to show that

w(6)—= @x and ) = K—Lfg,
c c

where @ is the flux of heat to the left across each plane x = xy (0 < xy < c).

ey

Figure 2.44: Problem statement
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The heat PDE is u; = u,,. At steady state, 1; = 0 leading to u,, = 0. So at steady state, the
solution depends on x only. This has the solution

u(x)=Ax+B 1)
With boundary conditions
u)=0
u(c) = ug

When x = 0 then 0 = B. Hence the solution becomes u (x) = Ax. To find A, we apply the
second boundary conditions. At x = ¢ this gives ug =cA or A = % Hence the solution (1)

now becomes

u
u(x) = Oy
c

Now the flux is defined as @, = KZ—Z at each edge surface. But Z—z = ? from above. Therefore

Ug
d, = K—
0 c

2.3.5 Section 27, Problem 2

’3: A slab occupies the region 0 < x < c. There is a constant flux of heat ®, into the slab-
through the face x = 0. The face x = c is kept at temperature « = 0. Set up and solve
the boundary value problem for the steady-state temperatures u(x) in the slab.

o zflrfsvyer: u(x) = ?0 (c - x).

Figure 2.45: Problem statement

note: When looking for solution, assume it is a function of x only.

The heat PDE is u; = u,,. At steady state, u; = 0 leading to u,, = 0. So at steady state, the
solution depends on x only. This has the solution

u(x)=Ax+B 1)
. . . d
Since there is constant flux at x = 0, then this means K ﬁ = —@,. The reason for the
xX=
minus sign, is that flux is always pointing to the outside of the surface. Hence on the left
surface, it will be in the negative x direction and on the right side, it will be on the positive
x direction.

Using this, the boundary conditions can be written as

du _ KD
dx B 0

x=0
u(c)=0
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Applying the left boundary condition gives

A = -K®,
Hence the solution becomes u (x) = —K®yx + B.
At x = ¢ the second B.C. leads to 0 = —=K®yc + B or

B = K®,c
Hence the solution (1) becomes

u (x) = —K®yx + Kdyc
= K®; (c — x)

2.3.6 Section 27, Problem 3

,r3r Letaslab0 < x < cbe Is\ubjected to surface heat transfer, according to Newton’s law

 of cooling, at its faces x = 0 and x = c, the surface conductance H being the same o

each face. Show that if the medium x < 0 has temperature zero and the medium x > ¢

has the constant temperature 7, then the boundary value problem for steady-stat@
temperatures u(x) in the slab is

w'(x) =0 (O<x<c).‘-
Ku'(0) = Hu(0), Ku'(c) = H[T — u(c)],

where K is the thermal conductivity of the material in the slab. Write & = H/K and
derive the expression i

(hx+1)

T
HOR) =i

for those temperatures.

Figure 2.46: Problem statement

We start with
D= H(Toutside - u) 1)
Where T is the temperature on the outside and u is the temperature on the surface and @

is the flux at the surface and H is surface conductance. Let us look at the left surface, at
x = 0. The flux there is negative, since it points to the negative x direction. Therefore

d
o=-KZ 2)

dx|.__

x=0
From (1,2) we obtain
du
-K d_ =H (Toutside —u (0))
X x=0

55



2.3. HW 3 CHAPTER 2. HWS

But T,yisige = 0 outside the left surface and the above becomes

du

-K = H(0-u(0))
dx|
x=0
The minus signs cancel, giving
du H
axl_, " k"
x=0

w (0) = hu (0)

Now, let us look at the right side. There the flux is positive. Hence at x = ¢ we have

du
K— = H (Touisiage — 4 ()
dx|,_,
But T ysige = T on the right side. Hence the above reduces to
du H
2 =Z=(T-
T & (T -u()

xX=c

w (c) = h(T - u(c))

(3)

(4)

Now that we found the boundary conditions, we look at the solution. As before, at steady

state we have
u”’(x)=0
u(x)=Ax+B
Hence 1’ (x) = A. Therefore
u (0)=A=hu(0)
u()=A=h(T-u(c)
But we also know that, from (5) that

u@)=B8B
u(c)=Ac+B
Substituting (8,9) into (6,7) in order to eliminate u (0),u (c) from (6,7) gives
A =hB

A =h(T - (Ac+ B))
Now from (6A,7A) we solve for A, B. Substituting (7A) into (6A) gives
hB = h(T — (hBc + B))
hB = hT — h?Bc — hB
2hB + h?Bc = hT
hT
T h(2+ho)
T
2+ hc

B
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Hence
A =hB
hT

T 2+ he
Now that we found A, B then since u (x) = Ax + B, then

hT

2+hcx+2+hc
_th+T

2+ he

T asn
_2+hc( + )

Which is the result we are asked to show.

u(x) =

2.3.7 Section 27, Problem 7

6. A slender wire lies along the x axis, and surface heat transfer takes place along the
wire into the surrounding medium at a fixed temperature T. Modify the procedure in
Sec. 22 to show that if u = u(x, t) denotes temperatures in the wire, then

U = kuy, + b(T —u),
where b is a positive constant.
Suggestion: Let r denote the radius of the wire, and apply Newton’s law of

cooling to see that the quantity of heat entering the element in Fig. 22 through its
cylindrical surface per unit time is approximately H [T — u(x, )] 2rr Ax.

s (el t
R S vt o
t x ¢ x+ Ax l ‘ %

TO
I'GURE 22

7. Show that the special case

u, = ki, — bu

of the differential equation derived in Problem 6 can be transformed into the one-
dimensional heat equation (Sec. 22)

Vi =1k

with the substitution u(x, t) = e ?'v(x, 1).

Figure 2.47: Problem statement
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Let u (x,t) = e "v (x,t) then

uy = —be™"'v + e v,
u, = ey,
bt
uxx =e vxx

Substituting the above back into (1) gives
—be Py + ey, = ke, — be v
Since et # 0, then the above simplifies to
—bv + vy = kv, — bo
vy = kv,
QED.
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Local contents

[2.4.1 Section 27, Problem 8| . . . . . .. ... ... . .
[2.4.2 Section 28, Problem 1| . . . . . . . . . . . ... ... ..o
[2.4.3 Section 28, Problem 5 | . . . . .. ... .
[2.4.4 Section 30, Problem 3| . . . . . . . . ... ...
[2.4.5 Section 30, Problem 4| . . . . . . .. ... ...
[2.4.6  Section 31, Problem 2| . . . . . .. ... ... ..
[2.4.7 Section 31, Problem 3| . . . . . . . ... ... ..o

2.4.1 Section 27, Problem 8

8. Suppose that temperatures u in a solid hemisphere » < 1,0 < § < /2 are independent
of the spherical coordinate ¢, so that u = u(r, 9), and that the base of the hemisphere
is insulated (Fig. 23). Use transformation (13), Sec. 25, which relates spherical and

cylindrical coordinates, to show that
qu ou ou

'y
|‘l| I|'
| Il
IlI“"""llllmnm|m||n||lll"""|

FIGURE 23

Thus show that u must satisfy the boundary condition
T
Ug (r', 5) =1

Figure 2.48: Problem statement

Solution

The cylindrical and spherical coordinates are defined as given in the textbook figures shown

below
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? P(p, b, 2)

FIGURE 16

Figure 2.49: Cylinderical coordinates

FIGURE 17

Figure 2.50: Spherical coordinates

The relation between these is given by (13) in the book

z=rcosB (1)
p=rsin0 (2)
=09 (3)

To obtain the required formula, we will use the chain rule. Since in spherical we have
u = u(r,0) and in cylindrical we have u = u (p, z), then by chain rule

du_dudp Judz
90 Jdpdo Iz d0
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d
But from (2) £ = rcos 0 and from (1) j—; = —rsin 0, hence the above becomes

j—g = j—; (rcos 0) + % (-rsin O)
But 7 cos 0 = z and —rsin 0 = p, hence the above simplifies to
Ju Jdu  Jdu
20" z$ —P5 (4)

<1 . dJ
Which is the result required to show. Now we need to show that % evaluated at boundary
Tt

r=1,0= g is zero. But 0 = ~ implies that z = 0, since z = rcos 0. Hence (4) now reduces

2
to
du du @)
20~ Pz
. du . . o .
Since 0 = g, then a—z is the directional derivative normal to the base surface. But we are

told it is insulated. This implies that a—z = 0, since by definition this is what insulated means.

J
Therefore % =0atr=1,0= g, which is what we are asked to show.

2.4.2 Section 28, Problem 1

|| A stretched string, withiits ends fixed at the points 0 and 2c¢ on the x axis, hangs at rest
under its own weight. The y axis is directed vertically upward. Point out how it follows
{yom the nonhomogeneous wave equation (6), Sec. 28, that the static displacements
y(x) of points on the string must satisfy the differential equation

il
?y'(x) =g S

on the interval 0 < x < 2¢, in addition to the boundary conditions
y(©) =0, yQ2c) = 0.

By solving this boundary value problem, show that the string hangs in the parabolic

e
‘ 2a? gc?
Ak 0<x<2)
el (y+ 2a2) (

and that the depth of the vertex of the arc varies directly with ¢? and & and inversely
with H.

Figure 2.51: Problem statement

Eq (6) in section 28 is

Yu (x/ t) = azyxx (X, t) -8
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At static displacement, by definition, there is no time dependency, hence y;; = 0 and the
above becomes

0= azyxx (x,t) - g
Therefore now this becomes an ODE instead of a PDE since it does not depend on time,
and we can write the above as

a?y’ (x) =g 1)

The boundary conditions y(0,t) = 0 and y (2x, ) = 0 now become y (0) = 0,y (2x) = 0. Now
we need to solve (1) with these boundary conditions. This is an boundary value ODE.

v =4
The RHS is constant. The solution to the homogeneous ODE y” = 0 is y;, = Ax + B. Let
the particular solution be y, = C3x2, then Yp = 2C3x and y,) = 2C;. Substituting this in the
above ODE gives
_ 8
2C3 = o
8
C3 =
37 22

Hence y, (x) = %xz. Therefore the general solution is

Y=YntYp
_ 8 .2
= Ax+ B+ 2—1123( (2)
Now we will use the boundary conditions to find A, B above. At x = 0, (2) becomes
0=B
Hence solution (2) reduces to
_ )
y(x) = Ax + 22" (3)
At x = 2c, the second boundary condition gives
_ 8 (4.2
0=2cA+ 5 (4c)
_o (4c?
A= _g( )
202 2c
_ &€
=5
Hence the solution (3) becomes
_ &€ )
V=2t gt
2
gx“© —2gcx
9o~ =6 4
Y 242 )
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To get the result needed, we can manipulate this more as follows. From (4)
2a%y = gx? — 2gcx
=g (x2 - 2cx)
=g (x—c)* - gc?
Hence
g (x —0)* = 2a%y + gc?
(x—c) = @ +c

2a? gc?
S

8

2

2:

. H
Now since a 5 then the above becomes

We see now that y is directly proportional to 6 and ¢? and inversely proportional to H.

2.4.3 Section 28, Problem 5

5.\ A strand of wire 1 ft long, stretched between the origin and the point 1 on the x axis,
weighs 0.0321b (8g = 0.032, g = 32 ft/s>) and H = 101b. At the instant t = 0, the strand
lies along the x axis but has a velocity of 1 ft/s in the direction of the y axis, perhaps
because the supports were in motion and were brought to rest at that instant. Assuming
that no external forces act along the wire, state why the displacements y(x, t) should

satisfy this boundary value problem:
Yo (6, 1) = 10%yex (x, 1) O<x<1,t>0),
J’(Os[)ZY(Lt)ZQ v)’(x,o)—:os M(xxo):l-

Figure 2.52: Problem statement

solution
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The wave PDE in 1D is given by

Yu (x,t) = azyxx (x, 1) (1)
Where
H
2 _
R

Where H is the tension in the strand and 6 is the mass per unit length of the strand. But
2k We are given that weight = 0.032 Ib, and that g = 32

weight = (mass) g. hence 6 =
ft/s?. This implies that

5= 0032 1
~ 32 1000
Hence
10
Dlz = I = 104
1000
Therefore (1) becomes
Yu (%, 1) = 10%y (%, 1) (2)

Since at t = 0 we are told that strand lies along the x — axis, then y (x,0) = 0 and problem
says 1; (x,0) = 1. For boundary conditions, since strand fixed at x = 0 and x = 1, then this
implies y (0,f) = 0 and y (1, ¢) = 0. Therefore the PDE is

Yy (x, 1) = 10%y,, (x, 1) O<x<1,t>0

y(x,0)=0
yt(xlo) =1
]/(O,i') =0
y(1,t)=0

2.4.4 Section 30, Problem 3

g T e S Bl O et e e i e bt

\3\]‘ Let y(x, r) represent transverse displacements in a long stretched string one end of
which is attached to a ring that can slide along the y axis. The other end is so far oul
on the positive x axis that it may be considered to be infinitely far from the origin. ‘The
ring is initially at the origin and is then moved along the y axis (Fig. 27) so that y « /(1)
when x = Oand ¢ = 0, where [ is a prescribed continuous function and £(0) « 0, We
assume that the string is initially at rest on the v axis: this vix, 4) - Oas t -+ o0 The
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boundary value problem for y(x, ?) is

Vw0 = Ve (00 (x> 0,1>0),
y(x,0) =0, y(x,0) =0 (x = 0),
¥0,1) = f(® @ = 0).
] (|
fn
R :
(0] at X
VIGURE 27

(a) Apply the first two of these boundary conditions to the general soh‘ltion (Sec. 30)
y(x, t) = ¢(x +at) + ¥ (x —at)
of the one-dimensional wave equation to show that there is a constant C such that
o) =€ and a5 C (x = 0),
Then apply the third boundary condition y(0, £) = f(¢) to show that
I (=0

where C is the same constant.
(h) With the aid of the results in part (a), derive the solution

0 when x > at,
Y= f(t i 2) when x < at.

Note that the part of the string to the right of the point x = at on the x axis I8
unaffected by the movement of the ring prior to time £, as shown in Fig. 27.

Figure 2.53: Problem statement

Part a

Applying the first initial conditions y (x,0) = 0 to the solution

y(x,t)=¢(x+at)+ 1 (x—at) 1)
Gives
0=¢x) +1(x) (2)
But y; = a¢’ — ay’. Hence the second initial conditions at t = 0 gives
0= ag’ (¥) — ay’ (x) 3)
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Taking derivative of (2) and multiplying the resulting equation by a gives
0 =ag’ (x)+ay’ (x)
Adding (3,2A) gives
2a¢’ (x) =0
¢’ (x)=0
Therefore
() =C
Where C is an arbitrary constant. Substituting the above result back in (2) gives
0=C+v¢(x)
P ) =-C
From (4,5) we see that
Px)=C
Ppx)=-C
Now applying boundary condition vy (0,t) = f (¢) to (1) gives
£ = at) + (-at)

But a is the speed of the wave given by a = % ort= g Hence the above becomes
X
FE) =0+
X
v =f(3)-0m

Since ¢ (x) = C from equation (4), then the final result is obtained

¢em=fey4: x>0

Part b

Since the part to the right of x = at is unaffected by the movement of the right, then

y(x,t)=0 x > at
So now we need to find the solution for x < at and x > 0. From

y(x,t) = (x+at)+ ¢ (x—at)

—(x—at)
a

And using (6) in part (a), we see that i (x —at) = f(

becomes

Y (x, 1) :¢(x+at)+f(@)—c
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But also from part (a) ¢ (x + at) = C. Hence the above simplifies to

y(x,t):c+f(¥)—c
L (—x+at
- (=)

a
X
_f(t_E) x < at (2)
Combining (1) and (2) shows that

B 0 x> at
y(x't)_{f(t—g) x < at

2.4.5 Section 30, Problem 4

1. Use the solution obtained in Problem 3 to show that if the ring at the left-hand end of
the string in that problem is moved according to the function

fE)= {sin it when 0 <t <1,

0 when ol
then
0 when x <a(t —1)orx = at,
YR {sin[n([ — %)] when a(t —1) < x < at.

Observe that the ring is lifted up 1 unit and then returned to the origin, where it
remains after time ¢ = 1. The expression for y(x, f) here shows that when ¢ = 1, the
string coincides with the x axis except on an interval of length a, where it forms one
areh of a sine curve (Fig, 28). Furthermore, as f increases, the arch moves to the right
with speed a.

y)@>1)

b -0

a(t—1) at x

FIGURE 28

Figure 2.54: Problem statement
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This requires just substitution of the function f (f) given into the solution found above which
is

() = 0 x > at
Y= f(t—g) x < at @
But
sin 7tt 0<t<l1
f(t)—{ 0 ‘51 (2)

Substituting (2) into (1) gives, after replacing each f in (2) by ¢ - g the result needed

() = 0 x> at
Yy = sin(n(t—g)) a(t-1)<x<at

2.4.6 Section 31, Problem 2

ﬁj’ Consider the partial differential equation

i ,

Ayxx+Byxt+Cytt —0 (A?é O,C# )

where A, B, and C are constants, and assume thatitis hyperbolic, sothat B2 —4AC >
(2) Use the transformation

U=x+at, v=2Xx+ Bt (oz;él
to obtain the new differential equation
(A+ Ba + Ca®)yu + [2A+ B(@ + B) +2CaBlyu + (A+ BB + CB) yuu =0
(b) Show that when « and g have the values

Bl IREIATG _B. T A
ke 2G S 26 )

respectively, the differential equation in part (a) reduces to y,, = 0.

(c) Conclude from the result in part (b) that the general solution of the original di
ferential equation is 5

y = ¢(x + aof) + P(x + fot),

where ¢ and 1 are arbitrary functions that are twice differentiable. Then show h
the general solution (7), Sec. 30, of the wave equation '

—ayu + Y =0

follows as a special case.

Figure 2.55: Problem Statement
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Part a

We want to do the transformation from y (x, t) to y (1, v). Therefore
dy dydu N dy dv
dx Jdudx Jdvox

J d
But 8—1 =1and 2 = 1, hence the above becomes

ax
%Y _ 9%, %
dx Jdu Jdv
And
%y 9 (dy
_9 (ﬂ . @)
dx\du Jdvu
_ 99y, 99
dxdu dxdv
(Zamn v (P e
Ju? dx  Juvdx dv2dx  Jduu dx
But % =1, % =1, hence the above becomes
%y J%y 2(92y . d%y
dx2  Ju? T duv IV
Yox = Yuu T Yoo T zyuv
Similarly,

dy _dydu  dydo
ot Jdudt Jvot

But u_ a and % _ B, hence the above becomes
Jat at
dy dy 9y
— =—a== +
ot a&u ‘8(90

And
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%y 9 (o"y)

I~ Jt\ot

I
-a(m*ﬁ%)
_d(dy d (dy
—“z(iu)*ﬁm(a—v)

_ 82y8u L 9%y Jv . 9%y Jv L9 9%y du
Now2 ot " quo ot 902 9t Juv It

J J
But a—btl =a and a—zt] = B, hence the above becomes

%y Py %y Ay %y
T ( 9 +5aw) 5(5m *“%)
%y %y d%y d%y
— 2 2
~ w2 +a‘8&uv th Jdv? —HXﬁo"uv
Yir = azyuu + ,Bzyvv + 2a,8yuv (2)
And to obtain y,,, then starting from above result obtained
dy  dy dy
ot~ "ot Pa

Now taking partial derivative w.r.t. x gives

d (dy d o"y
ax \ ot 8x 8u ’B&v

_d (dy dy
‘“ax(&u) ﬁax(&v)

(P, Py (o0 Py
o"u28x uv dx 00?2 dx  Jduv dx

But g—z =1, 3—;; =1, hence the above becomes
d (dy %y 9%y %y  J%y
8x((9t) “(W*% th ﬁﬂa—uv)
Yt = QY yy + (a + /3)) You + ,Byvv (3)

Substituting (1,2,3) into Ay,, + By + Cy = 0 results in

A (yuu + Yoo + Zyw) +B (ayuu + (a + ﬁ) You + ﬁyw) +C (azyuu + B2y + Zaﬁyuv) =0
Or
Vi (A + Ba + Caz) + Yo (2A +B (a + ﬁ) + 2Caﬁ) + Yoo (A + BB+ C,Bz) =0
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Part b

Looking at the term above for y,,, we see it is A + Ba + Ca? which has the root

2a  2a
B 1

—_ 2 4~ \mp_
2CiZC B? -4AC

Hence if we pick the root a = ap = —% + %V B? — 4AC then the term y,,, vanishes. Similarly
for the term multiplied by y,, which is A + BB + CB2. The root is

B 1
=-—+—VB2-4AC
p 2C 2C
nd if we pic =f)=—7=-== - then the term y,, vanishes also in the
And if we pick P _ L1 \/B2Z4AC then th y hes al he PDE

2C 2C
obtained in part (a), and now the PDE becomes

Yuo (2A+ B (o + B) + 2Cap) = 0

Substituting the above selected roots «y, fy into the above in place of «, § since these are
the values we picked, then the above becomes

B 1 B 1
Vi (ZA +B (—— + —VB2-4AC- — - —VB2 —4AC) + ZCaﬁ) =0

2C 2C 2C 2C

2B?
Yuo ZA_E +2C0(ﬁ =0

And again replacing af above with «y, By results in

2B2 B 1 B 1
2A-— +2C|-— + —VB2-4AC||[-— - —VB2-4AC]|| =0
ym’( 2c " ( 2 " 2C )( 2C~2C )
2A 28° +2C B L0 (32 4Ac) -0
Yuo 2C ac2 " a2 -
2A 2BZ+B2 + 1 (B2 4Ac) =0
Yuo 2C "2c " 2C -
2A 2BZ+B2 +B2 2A1=0
Yuo 2C "2c Tac -
BZ
—y. =0
acYmw
Since B # 0, C # 0 then the above simplifies to
Yo = 0
Part c
Since
Yo = 0
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Or
d (dy
70 (a—) =0
The implies that
%y
% =0 (I/l)

Integrating w.r.t. u gives

y(u,v) = fCD(u)du+1,b(v)
Where 1 (v) is the constant of integration which is a function.
Let fCD (u)du = ¢ (u) then the above can be written as
y () =¢ W+ (0)
Or in terms of x, t, since u = x + at and v = x + ft the above solution becomes

y(x,t) = (x +at) +¢(x+,8t)
Where ¢, are arbitrary functions twice differentiable. When a = +a,f = —a, then the
above becomes

y(x,t) = (x+at)+ ¢ (x—at)
Which is the general solution (7) in section (30). QED

2.4.7 Section 31, Problem 3

ji‘a1 Show that under ;:he transformation
10— v=oax+ Bt B #0)
the given differential equation in Problem 2 becomes
Ayy, + 2Aa + BB)yu, + (Ad* + Bap + CB*)y,, = 0.
Then show that this new equation reduces to
(@) Yuu + ¥ou = 0 when the original equation is elliptic (B*> — 4AC < 0) and ¥
-B 2A
VAACE B o) S (AT B
(b) yuu = O when the original equation is parabolic (B> — 4AC = 0) and
o = —B, B =2A.

=

Figure 2.56: Problem Statement

72



24. HW 4

CHAPTER 2. HWS

The differential equation in problem 2 is
AYyx + By + Cyy =0
We want to do the transformation from y (x, t) to y (4, v) with
u==Xx
v=ax+pt
Now
dy dydu
dx  dudx

dy dv
Jdv dx

J d
But a—z =1and £ = a, hence the above becomes

ox
o,

Iy
dx  du Y0

dJv
And

dy _dydu  dydo
ot Judt Jdvot

0
and a—?; = 3, hence the above becomes

dy
E_ﬁ

u
But E = O

dy

0
Therefore

%y

0x2

J
" ox
9
" ox

Iy
dx
dy  dy
% + 0(%)
)

B dy d (dy
-2 (E)ra ()

?ydu  d*y dv 9%y dv
e R

Yex = Yuu + szym) + zayuv

73
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Similarly,
Py 9 (dy
a2~ ox\ ot

_ 9 (g%
'%@%)

(82]/ Jv s 9%y du )
dv? dt  dvu Jt
92
-5 (ﬁg—zﬁ)
Yir = BYoo (2)

And to obtain y,,, then starting from above result obtained

8y ﬁo"y

dt dv

Now taking partial derivative w.r.t. x gives

d (dy Jd [ dy
o (5) = ox (ﬁa—)
2%y dv c}’zy Ju
=ﬁ(o"—vz8x Jou é’x)
Py Py
=Fla ( a2 " &vu)
Yst = APYuo + BYou (3)
Substituting (1,2,3) into Ay,, + By + Cy;; = 0 results in
A (Vi + Yo+ 20Y,0) + B (@B + BYou) + C (B2Y) = 0
Or
AYyu + Yo (2400 + B) + Yo (Aa? + Bap + Cp2) = 0 (4)
Which is what asked to show.

Part a
Setting o = m B = \/L% n (4) above results in

-B 2A
AV + Vo [2A | ——=| + B| —|| + Yo (Ad®> + BaB + CB?) =0
e 24 )+ (i) v 0+ b+ )

AYy + Yo (Aaz + Baf + Cﬁz) =0
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And the above now becomes

s g+ ) ()< ) )0
e 4AC - B2 VaAC - B2/ \W1AC - B2 4AC - B2
Ay +y ( AB? ~ 2B%2A s 4CA2? 0
u I\ QAC - B2 4AC-B?  4AC- B2
Ay +y (AB2—2B2A+4CA2 0
uu 00 4AC—BZ
Ay + Ay (—B2+4CA o
uu 0 4AC_B2

AYyy + Ay =0
A (Y + Yoo) = 0
Therefore, since A # 0 the above becomes

Yuu + Yo =0

Part b
Setting & = —B, f = 2A in (4) above results in
AYyu + Yuo (<2AB + 2AB) + Y, (AB? — 2B2A + 4CA?)
AYyy + Yo (ACA? - B2A)
AYuu = Ao (B — 4CA)
But B? — 4CA = 0, therefore the above becomes
Yuu =0

0
0
0
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25 HWS5

Local contents

2.5.1 Section 34, Problem 3| . . . . .. . ... ... ...
2.5.2 Section 37, Problem 1| . . . . . . . ... ... ... ..
[2.5.3 Section 37, Problem 3| . . . . . . . ... ... .
[2.5.4  Section 37, Problem 5| . . . . . . . ... ... . .
[2.5.5 Section 39, Problem 2| . . . . . . . . .. ...
[2.5.6  Section 39, Problem 4| . . . . . .. ... ... . ... o

2.5.1 Section 34, Problem 3

I\, Verify that each of the functions
uy =Yy, u, = sinh ny cos nx =255
satisfies Laplace’s equation (Sec. 23)
W3 191) Sty V) =40 O<x<m0<y<?2)
and the boundary conditions
(0, y) = ux(m, y) =0, ux,0)=0.
Then use the superposition principle in Sec. 33 to show formally, without considering

questions of convergence, differentiability, or continuity, that the series

u(x,y) = Ay + Z A, sinh ny cosnx

n=1

sitisties the same differential equation and boundary conditions.

Figure 2.57: Problem statement

Solution

The boundary conditions are
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unspecified

uz(0,y) =0 Viu(z,y) =0 |ug(m,y) =0

u(z,0)=0 7
Figure 2.58: Boundary conditions

Let
u (x,y) =XxY (y)
Substitution in the PDE u,, +y,, = 0 leads to
X"Y+Y"Y=0
X/l 3 Y/l 3

=-—=-A
X Y
Where A is the separation constant. We obtain two ODE’s
X"+AX =0 (1)
Y -AY =0 (2)

We use the X (x) ODE (1) to determine the eigenvalues, since that ODE has both boundary
conditions specified:

X"+ AX =0
X' (0)=0
X' (n)=0

Case A <0

Solution is

X (x) = Acosh (\/jx) + Bsinh (\/Ix)
X' (x) = AV=Asinh (ﬂx) + BV-A cosh (\/jx)

At x = 0 the above gives

0 = BV=A cosh (0)
= BV-1
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Hence B = 0 and the solution (3) reduces to

X (x) = Acosh (\/jx)
X (x) = AV=Asinh (ﬂx)

At x = 7t the above becomes

0 = AV-Asinh (ﬂn)

For non-trivial solution we want sinh (\/—/\7'() = 0, but sinh is only zero when its argument
is zero, which is not possible here, since A # 0. Therefore A < 0 is not possible.
Case A =0

Solution becomes X = Ax + B. Hence X’ = A. At x = 0 this leads to A = 0. Therefore the
solution now becomes X = B. Hence X’ = (. Therefore the second boundary conditions
at x = 7 is automatically satisfied. Hence the solution is X (x) = B, a constant. We pick
X (x) = 1. Therefore A = 0 is eigenvalue with associated eigenfunction X, (x) = 1.

Case A >0

The solution becomes
X (x) = Acos (\/Kx) + Bsin (\/Xx)
X (x) = ~AVAsin (\/Xx) + BVA cos (\/Xx)
At x = 0 the above becomes

0=BVA

Hence B = 0 and the solution reduces to
X (x) = Acos (\/Xx)
X' (x) = ~AVA sin (\/Xx)
At x = 1t the above gives
0=-AVAsin (\/Xn)
sin (\/Xn) =0
Therefore \/Xn =nmnforn=1,2,3,---. Hence

A,=n> n=1,23,-

And the solution (corresponding eigenfunctions) is

X, (x) = cos (\//\—nx)

= cos (nx)
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In summary, the solution to the X ODE resulted in
Xo(x) =1 n=20 (3)
X, (x) = cos (nx) n=1,23,--

Now we solve for the Y ODE

Y’ -AY =0
Y(@0)=0
We are only given boundary conditions on bottom edge.
case A =0
Y=Ay+B

When y = 0 the above leads to 0 = B. Hence the corresponding eigenfunction is Y (y) =.
case A >0
The solution becomes

Y (y) = Acosh (\/Xy) + Bsinh (\/Xy)
At y = 0 the above gives

0 = Acosh (0)
=A
Hence the solution reduces to
Y (y) = Bsinh (ﬁy)

Therefore the eigenfunctions for n = 1,2,3,--- are Y, (y) = sinh (ny) since A, = n? for
n=1,23,--.
In summary, the solution to the Y ODE resulted in

Yo(y)=y n=0 (4)

Y, () =sinh(ny)  n=1,23,
From (3,4) we see that

u, (x,y) = X, (0 Y, ()

For n = 0 the above becomes
ttg (x,y) = (1) (v)
=Y
And forn=1,2,3, -
Uy (x, y) = sinh (ny)
= cos (nx) sinh (ny)
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Using superposition, then

u (x,y) = X (x) Y(y)

= Agug + E Aty

n=1

= Agy + i A, cos (nx) sinh (ny)

n=1

QED.

2.5.2 Section 37, Problem 1

e - mam gsv NS

[ i;l? } In Problem 3, Sec. 34, the functions

Up =y,

were shown to satisfy Laplace’s equation

u: (0, y) = u, (, y)

After writing u =
Liouville problem
discovered. Then, by proceeding formally,
ary value problem that results when the n

U, = sinh ny cos nx

uxx(xa ,Y) + uyy(xv y) = 0

and the homogeneous boundary conditions

X(x)Y(y) and separating variables, use the solutions of the Sturm
(1) in Sec. 35 to show how the functions up and u,

included:
ux,y)= Aoy + Z A, sinhny cosnx,
n=1
where
VR i Ce i AT (n=1,2,..)
e AT X n= ———— X = 1,2
0 Tt ; L x)cosnxdx (n :

(0<x<7r,0<y<2

=0 u(x,0) =0.

(n="1 7 can b
derive the following solution of the bounds
onhomogeneous condition u(x, 2) =Hf

Figure 2.59: Problem statement

Solution

The boundary conditions now become as follows
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Ya
) u(z,2) = f(v)
uz(0,y) =0 Viu(z,y) = ug(m,y) =0

u(z,0)=0 7

Figure 2.60: Boundary conditions

From the above problem we know the general solution is
u (x, y) = Agy + Z A,, cos (nx) sinh (ny) (1)
n=1

Now we impose the remaining boundary condition u (x,2) = f (x). Therefore the above
becomes

f(x)=2A0+ i A,, cos (nx) sinh (2n)
n=1

Multiplying both sides by cos (mx) integrating w.r.t. x from x = 0 to x = 7 results in

f i f (x) cos (mx) dx = f i 2A cos (mx)dx + f i i A,, cos (nx) cos (mx) sinh (2n) dxl
0 0

0 n=1

f " £ () cos (mx) dx = f " 2 Ag cos (mx) dx +
0 0

i A,, sinh (2n) ( f i cos (nx) cos (mx) dx)l
n=1 0

7T 7T
f F(o)dx = f 2 Agdx
0 0
:2A07T

1 TT
A= fo £ dx )

case m =0

casem=1,2,---

f " £ (x) cos (mx) dx = i A, sinh (21) ( f " cos (1) cos (1) dx)
0 n=1 0

But £n cos (nx) cos (mx) dx = 0 for all m # n and g when m = n. Hence the above simplifies
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to

f " (x) cos (mx) dx = gAm sinh (2m)
0

2 7T
A= s fo F () cos (mx) dx

Since m is summation index, we can rename it to 7 and the above becomes

2 7T
A= s fo F (%) cos (1) dx (3)

Using (2,3) in (1) gives the final solution
1 7 o 2 T '
u (x, y) = (Z fo f(x) dx) y+ ,12::1 (WTQ”) fo f (x) cos (nx) dx) cos (nx) sinh (ny)

2.5.3 Section 37, Problem 3

. TTTY O AtAv pavuavLL, Aad WO WU L] DEC, JO.)

El For gach of the following partial differential e
poss1t?le tq write u = X(?() T'(t) and separate variables to obtain ordinary differential
€quations in X and 7. If it can be done, find those ordinary differential equations. -
(@) wxr — Uty = 0 B) (x+ Oy =1, = 0;
(Gl ol ty =0; (D) Uny — 1y —u, = 0.

quations in u = u(x, r), determine ifitis

Figure 2.61: Problem statement

Part (a)

Uy — Xtuy =0
Let u = X (x) T (t). Substituting this into the above PDE gives
X'T-xtT"X =0
Dividing by XT # 0 gives

X" T
X XtT =0
Diving by x gives
I GO
v X _1t; _ OT”
X A
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Hence it possible to separate them. The generated ODE’s are
X"+ AxX =0

T
T”+/\?:O

Part (b)

x+tuy—u; =0
Let u = X (x) T (t). Substituting this into the above PDE gives
(x+H)X'T-T'X=0
Dividing by XT # 0 gives
X" X" T

S S
XX T

It is not possible to separate them.

Part (c)
XUy + Uy + tuy =0
Let u = X (x) T (t). Substituting this into the above PDE gives
%
xX"T — 5 X'T)+tT"X =0
xX'T-X'TX+tT"X=0
Dividing by XT # 0 gives

124 144

L XT 4+ t— =0
X T

It is not possible to separate them.

Part (d)

Upe = Uy — Uy =0
Let u = X (x) T (t). Substituting this into the above PDE gives
X'T-T"X-T'X=0
Dividing by XT # 0 gives

X// TII T/

— =0

X T
XN_TI/+TI A
X T T
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It is possible to separate them. The ODE’s are
X"+AX=0
T"+T'+AT =0

2.5.4 Section 37, Problem 5

8 Derive the eigenvalues and eigenfunctions, stated in See. 35, of the Sturm-Liouville

prablem

X"(x) FAX(x) =0,  X(Oy=0, 1 X(g)'= 0,

Figure 2.62: Problem statement

Case A <0
Solution is
X (x) = Acosh (ﬂx) + Bsinh (\/jx)
At x = 0 the above gives
0=A
Hence the solution becomes
X (x) = Bsinh (\/ﬁx)
At x = c the above becomes
0 = Bsinh (\/30)
For non-trivial solution we want sinh (\/30) = (. But sinh is zero only when its argument
is zero. Which means vV—Ac = 0 which is not possible. Hence A < 0 is not possible.
Case A =0

Solution is

X(x)=Ax+B
At x = 0 the above gives
0=B8B
Hence the solution becomes
X(x)=B
At x = ¢ the above becomes
0=B8B
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Which gives trivial solution. Hence A = 0 is not possible.
Case A >0
Solution is
X (x) = Acos (\/Xx) + Bsin (\/Xx)
At x = 0 the above gives
0=A
Hence the solution becomes
X (x) = Bsin (\/Xx)

At x = ¢ the above becomes

0 = Bsin (\/XC)

For non trivial solution we want sin (\/XC) = 0 which implies

Vi =
= ()

Therefore the eigenvalues are A, = (nTn) for n = 1,2,3,--- and the eigenfunctions are

X(m_an( x) forn=1,2,3, -

n=123

2.5.5 Section 39, Problem 2

_ center plane x = 7/2.

2. Suppose that f(x) = sinx in Examp
- £ Suggestion: Use the integration formula obtaine

Answer: u(x,t) =e =ESTED:

le 1, Sec. 39. Find u(x, ) and verify the result fully.
d in Problem 9, Sec. 5.

e el A h A28 Sec: 39

Figure 2.63: Problem statement

Solution

Example 1 is: Solve u; = ki, with 1 (0,¢) = 0 and u (7, t) = 0. We now use initial conditions
u(x,0) = sin(x). The eigenvalues are A, = n? for n = 1,2,3,--- and eigenfunctions are
sin (nx). The general solution for this example is given in the book as

u(x, ) =Y, B,e ¥t sin (nx)
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At t = 0 the above becomes

oo
sinx = z B,, sin (nx) 1)
n=1
By comparing sides, we see that only n =1 term exist. Hence B; =1 and all other terms are
zero. Hence the solution is, for n =1

u (x, 1) = e sin (x)

To verify this, we start with (1) and multiply both sides by sin (mx) and integrate which
gives

f sin x sin (mx) dx = f Z B,, sin (nx) sin (mx) dx
0

0 n=1
00 yd
= E B, ( f sin (nx) sin (mx) dx)
n=1 0
But fz sin (nx) sin (mx) dx = 0 for m # n and g for n = m. Hence the above gives
7T
f sin x sin (mx) dx = BmE

0 2

Similarly, ﬁn sin x sin (mx) dx = 0 for m # 1 and g when m =1, therefore the above becomes

Tt Tt
_=B1_
2 2
Blzl

And all other B,, = 0. Which gives the same result obtain above, which is u (x, t) = e~k sin (x)

2.5.6 Section 39, Problem 4

ternpcratures U and Uy, TESPTLLLVELY, Gait s s mmo

4. [ Suppose that the conditions on the faces of t
—

so that ‘

u,1) =up and u(re, 1) =0.

By replacing x with 7 — X in solution (15) in that example, show that the solution of

this new boundary value problem is

2, E
X = aantkt o :
u(x,t) = up [1—;—;Zne sin nx

n=1

Figure 2.64: Problem statement

Solution
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We need to solve
Uy = kit t>00<x<m

With boundary conditions

u(0,t) = ug
u(m,t)=0
And initial conditions
u(x,0) =
Solution (15) is
u(x,t)=—|x+2 E C ) s sm(nx)l 15)

Replacing x by 7 — x in (15) gives

u(x,t) = % l(n -x)+2 i ﬁe‘”zkt sin (n (1t — x))l

Mo
-9 2
- Z Fsin (nm — nx) (2)
Using sin (A — B) = sin A cos B + cos Asin B, then
sin (n7 — nx) = sin (n7) cos (nx) + cos (n) sin (nx)

But sin (n7t) = 0 since 7 is integer and cos (nmr) = (=1)", then sin (nm — nx) = (-1)" sin (nx).
Substituting this in (2) gives

X U) ~—
u(x,t) = g — tg— + 2—> Z ekt (~1)" sin (nx)
ye A= N

X 2 1)
— 1-Z24+Z2 -2kt .
Ug [ s 7;21' ” sin (nx)]
b |
— 1-Z24+Z ~n 2kt
U [ pul 7;:1' ne sin (nx)]

Which is the result required.
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2.6

HW 6

Local contents

Section 40, Problem 1| . . . . . . . . . . . .. ... ... ...

Section 40, Problem 3| . . . . . . . . .. ... ... ..

Section 41, Problem 3| . . . . . . . . .. ... ... ...

Section 42, Problem 4| . . . . . . . ... ... ... o oL

Section 42, Problem 5 . . . . . . ... ... oo

Section 42, Problem 8| . . . . . . . . ... ... ...

Section 43, Problem 1| . . . . . . . . ... .. ... ... ... ... ..

Section 44, Problem 2| . . . . . . . . .. ... ...

2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.6.7
2.6.8
2.6.9

Section 49, Problem 2| . . . . . . . ... ... . o oL

2.6.1 Section 40, Problem 1

1 Ihe initial temperature of a slab0 < x < 7 is zero throughout, and the face x = 0 is
keptat that temperature. Heat is supplied through the face x = n at a constant rate
V(A > 0) per unit area, so that Ku,(r, r) = A(see Sec. 26). Write

ulx, ) =Ux, ) + (x)

and use the solution of the problem in Example 2, Sec. 40, to derive the expression

A * — n _ 2 _
u(x, t) = = {x+§— (-1 55 [_ 2n-1) k"jl sin 2n 1)x}

K (2n —1)? 4 2
n=1 .

lor the temperatures in this slab.

Figure 2.65: Problem statement

Solution

The PDE to solve is

Upp = kil
With boundary conditions
u(0,t)=0
Ku,(r,t) = A
And initial conditions
u(x,00=0
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The solution to example 2 section 40 is

& -@2n -1k 2n -1
U(x,t) = Ean_l exp (%t) sin Q) (2)
With
2n-1)x
Ban——f f(x) sm( > dx

Now, in this problem, we start by writing
u(x,t) = Ulx, t) + O (x) 3)
The function @ (x) needs to satisfy the nonhomogeneous B.C. (1). Let
D (x) =cix+cy
When x = 0 this gives 0 = ¢,. Hence @ (x) = cyx. Taking derivative gives @’ (x) = c;. But
from (1) K&’ (r) = A. Hence ¢; = % Therefore
A
D(x)=—=x
®=2
Substituting the above back into (3) gives
u(x,t)y=U(x,t) +—

But U (x, t) is given by (2), hence the above becomes

A —en-1%k)  [(@n-1)x
u(x,t) = fx + ,;1 By,_1 exp (Tt) sin (T (4)
At t = 0, the initial conditions is 0. Hence the above becomes
A 2n-1)x
—Kx = Z By, 1 sin (%)
Hence B,,,_; is the Fourier sine series of —%x given by
2 f A . (@Qn-1x
N
2A (@n-1)«x P
= xsin | ————|dx
"k J, 7 2
Integration by parts. Let u = x,dv = sin ((2;:1) ) hence du =1and v = —(22—1) cos (@)
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and the above becomes

24 2x Cn-1x\I" T2 2n-1)x
an_l = —& ([— (2n — 1) COS( 5 )lo + j(; (21’1 — 1) COos ( > )dX)

2A 2 [ ((2n—1)x)l” 4 [ ((2n—1)x)]“
=—|- xXcos| ————— t—— |sm|———
nK| (2n-1) 2 . (@n- 1)? 2 )

_2A 27 n-1mn 4 (@n-1)m
_?(_(Zn_l)cos( . )+(2n_1)zsm( . ))

Since 2n —1 is odd, then the cosine terms above vanish and the above simplifies to
A 8 (_1)n+l

7K (25 - 1)

A (<1)"*2

T K (2n -1y

A 8(-1)"

T K (20 1)

Byy1 = —

Substituting the above in (4) gives

[<3) n 2
u(x,t) = —x+ A 8D exp (Mt) sin (M)
K n=1 nK (211 - 1)2 4 2

A 8. (-1 —@n-1%k) . (@n-1)x
=% {x + - E W exp (Tt] sin (T)}

n=1

Which is the result required.
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2.6.2 Section 40, Problem 3

3. Let v(x, t) denote temperatures in a slender wire lying along the x axis. Variations of
" the temperature over each cross section are to be neglected. At the lateral surface, the
linear law of surface heat transfer between the wire and its surroundings is assumed to
apply (see Problem 6, Sec. 27). Let the surroundings be at temperature zero; then
vt(xa t) = kvxx(-x9 t) - bv(x’ t)s

where b is a positive constant. The ends x = 0 and x = c¢ of the wire are insulated
(Fig. 34), and the initial temperature distribution is f(x). Solve the boundary value
problem for v by separation of variables. Then show that

v(x, 1) = u(x, t)e ™

where u is the temperature function found in Sec. 36.

R

Figure 2.66: Problem statement

Solution
The PDE is
vy = kv, — bo

With boundary conditions

v, (0, 1)

0
v, (c,t) =0

And initial conditions
v(x,0) = f(x)
Let v (x,t) = X (x) T (t). Substituting into the PDE gives
T'X =kX"T - bXT
Dividing by XT # 0 gives

T/ X//
ook p
T~ "X

T/ X//

L ip=

T th=k%

T b X"

—_ —=—==-A

TR TX
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Where A is the separation constant. We obtain the boundary value eigenvalue ODE as
X"+AX=0 (1)
X' (0)=0
X' (=0
And the time ODE as
T b
KTk

T + ZkT = -AkT

b
T’+EkT+AkT=O
T"+TMB+Ak)=0
Now we solve the space ODE (1) in order to determine the eigenvalues A.

Case A <0

-A

The solution to (1) becomes
X (x) = Acosh (V—/\x) + Bsinh (\/—/\x)
X’ = AV-Asinh (\/—/\x) + BV—-A cosh (V—/\x)

Satisfying X’ (0) = O gives
0=BV-A

Hence B = 0 and the solution becomes X (x) = A cosh (\/—)Lx). Therefore X’ = AV—Asinh (\/—Ax).
Satisfying X’ (c) = 0 gives

0 = AVAsinh (\/jc)

But sinh is zero only when its argument is zero, which is not the case here since A # 0. This
implies A = 0, leading to trivial solution. Therefore A < 0 is not possible.

Case A =0

The solution to (1) becomes

X(x)=Ax+B
X' =A
Satisfying X’ (0) = O gives
0=A
And the solution becomes X (x) = B. Therefore X’ = 0. Satisfying X’ (c) = 0 gives
0=0

Which is valid for any B. Hence choosing B = 1 shows that A = 0 is valid eigenvalue with
corresponding eigenfunction Xj (x) = 1.
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Case A >0

The solution to (1) becomes

X (x) = Acos (\/Xx) + Bsin (\/Xx)
X’ = —AVA sin (\/Xx) + BV cos (\/zx)

Satisfying X’ (0) = 0 gives

0=BVA

Hence B = 0 and the solution becomes X (x) = A cos (\/Xx) Therefore X’ = —A\/X sin (\/Xx)
Satisfying X’ (c) = 0 gives

0= —AVA sin (x/Xc)
For nontrivial solution we want
sin (\/Xc) =0

\/Xc:nn n=1,2,3--

2
nm
M= () @
c
And the corresponding eigenfunctions
X, (x) = cos (\//\nx) (3)
Now that we found A,,, we can solve the time ODE T’ + T (b + Ak) = 0. The solution is
T, (t) = e~ (b+A k)t (4)

Hence the fundamental solution is
Uy (x/ t) = Xn (X) Tn (t)

= cos (\//\_nx) e~ (At

And the general solution is the superposition of all these solutions

0 (x, t) = AOXOTO + i Aan (.X') Tn (t)

n=1
= Age " + Z A, cos (\//\_nx) e~ (b+Aqkt
n=1

Which can be written as
v(x,t) =u(x,t)el

Where u (x, t) is
u(x,t) = Ay + Z A, cos (\/)\_nx) e Ankt
n=1
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Which is the same as given in section 36, page 106. In the above
/\0 =0
nm

2
/\nz(_) n=1,2,3,
c

2.6.3 Section 41, Problem 3

\VSE A hollow sphere 1 < r < 2is initially at temperature zero. The interior surface is kept
~ at that temperature, and the outer one is maintained at a constant temperature ug. Set
up the boundary value problem for the temperatures

u=u(r,t) QL<r<2,t>0

and follow these steps to solve it:

(a) Write v(r,t) = ru(r,t) 10 obtain a new boundary value problem for v(r, ). Then
puts = r — 1 to obtain the problem

vy = Ksgs O<s<1,t>0),
v=0whens =0, v =2uywhens =1,

v=0whent =0

(b) Use the result in Problem 2, Sec. 40, to write a solution of the boundary value
problem reached in part (a). Then show how it follows from the substitutions
made in part (a) that

[>.o}

' ~1" :
u(r,t) = 2up {1 = % + ;2; Z —(—n—)—e‘”Z”Z"’ sinnz(r-1)1{ .

n=

Figure 2.67: Problem statement

Solution
The heat PDE in spherical coordinates, assuming no dependency on ¢ nor on 0 is given by
l/lt = kvzu (1)
1
= k; (ru),,
Where 1 < 7 <2 and t > 0. With the boundary conditions

u@l,t)=0
u(2,0) = ug
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And initial conditions
u(r,0)=0

Part (a)

Let v(r,t) = ru(r,t). Hence v; = ru; and %(ru)w = %vrr. Substituting these in(1), the PDE
simplifies to

vy = kv, (2)
And the boundary conditions u#(1,t) = 0 becomes v(1,t) = 0 and u(2,0) = 1y becomes

v(2,t) = 2uy. And initial conditions u (r,0) = 0 becomes v (r,0) = 0. Hence the new
boundary conditions

v(l,t) =
v(2,t) =2uy
And new initial conditions
v(r,0) =0

Now let s = r — 1. Since % =1, then the PDE becomes v; = kv,,. When ¥ =1, then s = 0
and the boundary conditions v (1,t) = 0 becomes v (0, t) = 0 and the boundary conditions
v(2,t) = 2uy becomes v (1,t) = 2uy. And initial conditions do not change. Hence the new
problem is to solve for v (s, t) in

v = kvgs (3)
v(1,t)=0
v(1,t) = 2u,
v(s,0)=0

With 0 <s <1andt>0.

Part (b)

The PDE (3) in part(a) is now the same as result of problem 2 section 40. Hence we can
use that solution for (3) which gives

v (s, t) = 2u

- (-1
X+ — Z - ) ek i (nns)]
Replacing s by r —1 in the above gives

o (r, b) = 2ug [(r 1)+ %2 %ﬂzﬂzkt sin (n7 (r - 1))]
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But v (r,t) = ru(r,t), hence u (r,t) = ; and therefore

(r-1)

u(r, ) = 2uyg [ + % 2 %e—nzﬂzkf sin (n7 (r — 1))]

= 2uyg [(1 - %) + % i ﬂe‘”znzkt sin (n7t (r — 1))]

n
n=1
Which is the result required.

2.6.4 Section 42, Problem 4

4. A bar, with its lateral surface insuiated, is initially at temperature zero, and its ends
x = 0 and x = ¢are kept at that temperature. Because of internally generated heat,
the temperatures in the bar satisfy the differential equation

w(x,t) = ki, (x, 1) +g(x, 1) O<x<ct>0).

Use the method of variation of parameters to derive the temperature formula
p R nmx
ulx, t)y = ~ Z L,(¢) sin —
n=1

where I,(1) denotes the iterated integrals

! 22k ‘ ,
L(t) = / exp [_n :2 t— r)} / q(x, v)sin —-—an dx dr n=1,2,...).
0 0

Suggestion: Write

= 2 [ . nmx
gx, 1) = Zb,,(t) sin ? where b, (1) = - /O g(x,t)sin — dx.
n=1

Figure 2.68: Problem statement

Solution

Using method of eigenfunction expansion (or method of variation of parameters as the book
calls it), we start by assuming the solution to the PDE u; = ku,, + g (x, t) is given by

w(x, ) =Y, a, ), (1)
n=1

Where @, (x) are the eigenfunctions associated with the homogeneous PDE u; = ku,, with
the homogeneous boundary conditions #(0,f) = 0 and u(c,t) = 0. But we solved this
homogeneous PDE before. It has eigenvalues and corresponding eigenfunctions

2
)\n:(%ﬂ) n=1,2,3,

®,, (x) = sin (\/A_nx)
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Substituting (1) into the original PDE u; = kuxx + g (x,t) results in
E 21 ay (t) q)n (X) = kﬁ 21 ay (t) q)n (X) + Q(x/ t)
n= n=

D a, (D, (x) = k Y a, (£) D (x) +q(x, t)
n=1 n=1

But from the Sturm-Liouville ODE, we know that ®,’ (x) + A, ®, (x) = 0. Hence @,/ (x) =
-1,®D,, (x) and the above reduces to

Yy ()@, () = =k Y, a, (£) A, D, (x) +q (x, ) (2)
n=1 n=1

Since the eigenfunctions @, (x) are complete, we can expand g (x,t) using them. Therefore
q(x,t) = Y by (H Dy (x)
Substituting the above back in (2) gives "~
Ea D, (x) = —kZa (HA,D, (x) + Zb ) D, (x)

Since @,, (x) are never zero, we can 51mp11fy the above to
ay (t) = —ka, () A, + by, ()
ay () + ka, (£ Ay, = by, (t)

The above is first order ODE in I, (t). It is linear ODE. The integrating factor is y = o FAndt —
eftnt, Multiplying the above ODE by this integrating factor gives

d
= (@ () M) = b, (B et

Integrating both sides

t
a, (£) Kt = f b, (1) Mty
0

t
= [ b @ e
0

Now that we found a,, (), we substitute it back into (1) which gives

1 (x, b) = f] ( j; b e_kA"(t_T)dT) O, (x) 3)
n=1
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What is left is to find b,, (t). Since g (x, t) = 220:1 b, (t) @, (x), then by orthogonality we obtain

[(a@n@,@dx= [ 35,00, 0®, @
0

0 n=1

=350 [ @09, @
n=1 0
=5, [ ®3wd
0 | @f(ax

= b, ()5

Hence
2 C
b ()=~ [ 000Dy (@) dx
0

Substituting this back into (3) gives

(©e]

u(x, ) =Y, (]; e‘“n(t‘”é (j:q (x,7) D, (x) dx) dT) @, (x)

n=1

_ % 2 ( fo ' k- ( fo "0 (6,7 Dy, (1) dx) dT) @, (x) 4)

If we let

t C
L, (1) :f e~ kAn(t=1) (f g (x,7) D, (x) dx) drt
0 0
Then (4) becomes

uieh =2 L0,
n=1

Since ®,, (x) = sin (%x) then the above is

1 (x t) = % 21" (f)sin (?x)

Which is what required to show.

2.6.5 Section 42, Problem 5

f—

5. Bywriting ¢ = 1, k= 1, and g(x, ¢} = xp(¢) in the solution found in Problem 4, obtain
the solution already found in Problem 1.

Figure 2.69: Problem statement

Solution
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The solution in problem 4 above us

(x,t) = — ZI (t) sm(n: ) (1)

d ¢ nm
— —kA,(t—-1) :
L, (¢) fo e (jo‘ q(x,7) sm( . x) dx) ke

2
And A, = (?) .Letc=1,k =1 and q(x,t) = xp(t), then the above becomes

Lt = fot (=) (j(;l xp (1) sin (n7x) dx) dt

Substituting this in (1), using ¢ =1, then (1) becomes

1
=2 (1) in dx|dt|sin
u(x,t) Z (f (j(; xp (1) sin (nmx) x) T)S (nmtx)
=2 —n?7?(t-1) sin dx|dt]sin 2
,;1(1;) p(r)e (j; x sin (n7x) x) T) (nmx) (2)

1
But £ xsin (n7tx) dx can now be integrated by parts. Let u = x,dv = sin(n7nx), hence

du=1,0v=-

Where

cos(nmz) and therefore

1 1 1 ol
f x sin (nmx) dx = —— [x cos (nrcx)](l) + —f cos (nmx) dx
0 nrt nrt

0
1
1 Tsi
= ——cos (nm) + — sy (nnx)l
nm nm
1 " _
=——1(-1) + [sin (n77)]
nm n2m2
(_1)}’l+1
- nm

Substituting this back in (2) gives

00 n+1
u(x,t)=2 Z (ftp(”c (=) ((_1) )dr) sin (nmx)

nrt

n+1
= E D sin (n7x) (ftp(’[) e‘”znz(t_f)df)
0

Which is the solution for problem 1.
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2.6.6 Section 42, Problem 8

WD T

8. Using a series of the form

u(e. 1) = AgO) + Y Ay(t) cos ?

n=1

and the expansion (see Example 1 in Sec. 8)

2 2,492 n
7. ¢ 4c (-1 nmx ;
K= 3 +_7r2 g P cos—c O='x<¢c),

n=1

solve the following temperature problem for a slab 0 < x < ¢ with insulated faces:

U (X, 1) = kuty, (x, 1) + ax? O<x<e,t - 0),
2 (0310 vr(en)i— 0} ) =0

where a is a constant. Thus, show that

ot 4¢r N (-1 {—ex _nzzrzkt cos
MmO =aC 3t g 2 T |1\ T ¢ [

n=1

Figure 2.70: Problem statement

Solution
The PDE to solve is
Uy = Ky, + ax?

With boundary conditions

u, (0,t)=0

u,(c,t) =0
And initial conditions

u(x,0)=0

Using method of eigenfunction expansion, we start by assuming the solution to the PDE

u; = kity, + ax? is given by
u(x,t) = 3 a, (5 P, (x) 1)
n=0

Where @, (x) are the eigenfunctions associated with the homogeneous PDE u; = ku,, with
the homogeneous boundary conditions u, (0,#) = 0 and u, (c,t) = 0. But we solved this
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homogeneous PDE before. It has eigenvalues and corresponding eigenfunctions

A():O
Dp (x) =1
n?m?
An:—z T’l:1,2,3,"'
C

nrt
D, (x) = cos (—x)
c
Substituting (1) into the original PDE u; = ku,, + ax? results in

& 00 (92 00
=2 20 ()@, () = k5= D, a, (1) @, (x) + ax?
Jt nzz() Ix? nz:%

S, (0D, (1) =k Y a, (VD) () + ax?
n=0

n=0
But from the Sturm-Liouville ODE, we know that @,/ (x) + 1,®,, (x) = 0. Hence @,/ (x) =
-A,,@,, (x) and the above reduces to

2@ (D@, () = —k D] a, (1) 4,9, (x) + a2 (2)
n=0 n=0
Since the eigenfunctions @, (x) are complete, we can expand ax? using them. Therefore
ax? = 2 b, (x) D, (x)
n=0
Substituting the above back in (2) gives
E a, () @, (x) = -k Z a, (t) A, Py, (x) + E b, (x) @, (x)
n=0 n=0 n=0

Since @,, (x) are never zero, we can simplify the above to
ay (t) = —ka, (£) Ay, + by, (x)
ay () + ka, (£) A, = by, (x)

The above is first order ODE in I, (t). It is linear ODE. The integrating factor is u = ef RAndt —
ekt Multiplying the above ODE by this integrating factor gives

d
= (an (t) ek}lnt) =b,(x) ofAnt

Integrating both sides

t
a, ()t = b (x) f Kty
0

t
a,(t) = b, (x) fo KMt g 3)

What is left is to find b, (x). Since ax? = 2:’:0 b, (x) D, (x), and from example 1 section 8,
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we found that

2
c
b =a—
0 (%) a=
4c% (-1
b()—ac( 125,
n
Hence when n = 0, then (3) becomes (since Ay = 0)
2 rt
H=a— | d
ag (t) a3j; T
_ac?
3

When 7 > 0 then (3) becomes

4c” (-1
a, (t) = ( ncz (nz) ) fo e~ kAn(t=1) g1

-1)" 4 2
_ =D acfek(c)(tT)dT
0

2 2
nm\2 t nm\2
( 12) 4612 e (T) tf ek(T) quj
n TC 0
n\2_ 1
_ 1)" 4ac® _; Kz HE)
2 2t k(@)z
c/ o
nm 2
(-1)" 4ac? ) k(Y
T2 2 ame |6 -1
k()
nm\2
_ (-1)"4ac*1 - )
=2 2 22
n TC k”C;T
— n 4 nr 2
_ (n14) ‘11(1::4 (1 _ o HE) t)

Now that we found a,, (), we substitute it back into (1) which gives

wh = a0+ Y gy (), ()

n=1
ac? & (-1)" 4act (VY nm
u(x,t) = ?H};Tm(l—e (%) )Cos(Tx)
2

4 (- 1) ()2
= e o B (1= oos ()
t 402 & ( 1) _k(”_ﬂ)zt nm
el 5 et )
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Which is the result required to show.

2.6.7 Section 43, Problem 1

lfThe faces and edges x=0and x = (0 < y <7) of a square plate 0<x <7, 0<y<n
" are insulated. The edges y=0and y=7 0 <x <) are kept at temperatures 0 and

f(x), respectively. Let u(x, y) denote steady temperatures in the plate and derive the
expression

ux,y) = Agy + Z A, sinh ny cos nx,
n=1
where
2

"7 nsinhnr

Ag:—é/f(x)dx and /f(x)cosnx dx
7 Jo 0

(n=12,..).

Find u(x, y) when f(x) = u,, where u, is a constant.

Figure 2.71: Problem statement

Solution

»
|

u(z, m) = f(z)

Uz (0,y) =0 Viu=0 ug(m,y) =0

/
S

u(x,0) =0 &

Figure 2.72: PDE and boundary conditions
Let u (x, y) =XMx)Y (y) The PDE becomes

X'"Y+Y"X=0
’” Y
oY
X Y
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Hence the eigenvalue problem is

X"+ AX =0 1)
X' (0)=0
X' (n)=0
And the ODE for Y (y) is
Y’ -AY =0

We start by solving (1) to find the eigenvalues and eigenfunctions.

Case A < 0 The solution is

X = Acosh (\/jx) + Bsinh (ﬂx)
X’ = AV-Asinh (ﬂx) + BV-A cosh (\/jx)

At x = 0 the above becomes
0=BvV-A
Hence B = 0 and the solution becomes

X = Acosh (V—/\x)
X" = AV-Asinh (V—Ax)
At x = 1t the above gives

0 = AV—Asinh (ﬂn)

For nontrivial solution sinh (\/—An) = 0 but this is not possible since sinh is zero only when
its argument is zero and this is not the case here. Hence A < 0 is not eigenvalue.

Case A = 0 The solution is

X=Ax+B
X' =A
At x = 0 the above becomes
0=A
Hence the solution becomes
X =B
X' =0
At x = 1 the above gives
0=0

Therefore A = 0 is eigenvalue with X (x) = 1.
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Case A > 0 The solution is
X = Acos (\/Xx) + Bsin (\/Kx)
X' = —A\/X sin (\/Xx) + B\/X COS (\/Xx)

At x = 0 the above becomes
0=BVA

Hence B = 0 and the solution becomes

X = Acos (\/Xx)

X’ = ~AVAsin (\/Xx)
At x = 1 the above gives

0=-AVAsin (\/Xn)
For nontrivial solution

sin (\/XT() =0
\/Xn:nn n=1,2,3,--
A, =n?

And the corresponding eigenfunctions X, (x) = cos (nx). Therefore in summary we have

eigenvalue eigenfunction
AO =0 1
A, =n? n=1,23,- cos(nx)

Hence the Y (y) ode becomes

Y'"-A,Y=0

Y -n?Y =0
The solution to the above is, when n =0

Yo = Aoy + By

When y = 0 the above gives 0 = By. Hence Y = Apy.
When n >0

Y, (y) = B,, cosh (ny) + A, sinh (ny)
When y = 0 the above gives 0 = B,,, Hence

Y, (y) = A, sinh (ny)

Hence the fundamental solution is
u (x, y) =X,Y,
105



2.6. HW 6 CHAPTER 2. HWS

And the general solution is the superposition of these solutions

u(x,y) = AXoYo + D, A,Y, X,
Therefore "~
u (x, y) = Agy + i A, sinh (ny) cos (nx) (A)
What is left is to determine Ay and A,,. A: _ylz 7t the above gives

fx)=Agm + i A, sinh (n7) cos (nx)
n=1

Multiplying both sides by cos (mx) and integrating gives

f " £ (x) cos (mx) dx = f " Ay cos (mx) dx + f i i A, sinh (n77) cos (nx) cos (mx) dx (1)
0 0 0

n=1

J;nf(x)dx:fonAondx

fnf(x)dx = Ay
0

1 7T
%=;Lfmw (2)

For m =0, (1) becomes

For m > 0, (1) becomes

f " F () cos (mx) dx = f i f] A, sinh (n77) cos (nx) cos (mx) dx
0 0 n=1

f i f (x) cos (mx) dx = A,, sinh (mmn) f i cos? (nx) dx
0 0
= A,, sinh (mmn) g

Hence

" msinh (nm

2 ) fo i f (x) cos (nx) dx (3)

When f (x) = uy a constant, then (2) becomes

1 7T
AO = - f uodx
™ Jo

Up
TC
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And (3) becomes

2 T
tm =2 [
"= e () J, ug cos (nx) dx

o 2u sin (nx) ]n
~ msinh (nm) n

=0

Hence the solution (A) becomes

0

u(x,y) = uy?

T

This shows the final solution changes linearly in y. When y = 0 then u (x, 0) = 0 and when
y = 7, then u (x, ™) = uy.

2.6.8 Section 44, Problem 2

POTODS

‘E % Let the faces of a plate in the shape of a wedge 0 < p < 4,0 < ¢ < « in the first quads
~ rant(Fig.41) be insulated. Find the steady temperatures «(p, ¢) in the plate when u = ()
onthetworays¢ =0,¢ =a (0 < p <a) andu = f(p)onthearcp =a (0 < ¢ < a),
Assume that f is piecewise smooth and that  is bounded.

2 0 nm/o o
IR RT (f) sin ™ [ fp)sin " 4.

n=1

FIGURE 41

Figure 2.73: Problem statement

Solution

The PDE V2u (p, ¢)) = 0 in polar coordinates is

1 1

upp + Eup + ?M(p(p =0
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For 0 < p <aand 0 < ¢ < a. With boundary conditions
u (p, O) =0
u (p,a) =0
u(0)=1(9)

And since u is bounded, then we have an extra condition u (0, (p) < 00,

Let u (p, (p) =R (p) O ((j)) Substituting into the above PDE gives

1 1
R"CD+—R’CD+—2CD"R=O
P P

R// 1R/ 1 @//

R pR p*®
q)// 3 ZR// + R/ 3 A
o \PRTPR)T

Where A is the separation constant. The above gives the boundary values problem to solve

for A

=0

Q7"+ AD =0 (1)
®0)=0
D(a)=0
And
2R/l + Rl 3 A
PRTPR™
p’R” + pR' AR = 0 (@)
We start with (1) to find A then use the result to solve (2). The ODE (1) we solved before,
it has the eigenvalues
nm

2
/\n:(—) n=1,2,3-
04

And corresponding eigenfunctions
. (nm
@, (¢p) = sin (7¢) (3)
Now (2) can be solved. This is a Euler ODE. Using R (p) = p™ and substituting into (2)
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gives
2
p*m(m—=1) p"2 + pmp™1 - (%I) p" =0
2
m(m-1) p™ +mpm—(%1) p" =0
2
m(m 1)+m_(n_n) =0
2
(5
a
Hence
nr
m=+—
a

Therefore the solution to (2) is

R, (p) = np a + Bnpiz7T

—nT

We immediately reject the solution p « since this blows up at origin where p — 0. Hence

the above becomes

nrm

R, (P) = Anp?

(4)

Now that we found @, (qi)) and R, (p), then we use superposition to obtain the general

solution

4(00)= 53R ) ()

— o N
= nz::l Aup @ sin (;qb)
Atp=a,u (a, qb) =f (qb), hence the above becomes

£(0) = gAnﬁ sin (%ncp)

By orthogonality we obtain
f f sm( )dqb f ZA aasm( ¢)sin(%¢)d¢
= Ama% foa sin (7(?) do

Solving for A,, from the above gives
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Substituting the above in (5) gives the final solution

u(p,¢)

,g (%a% foaf (111)) sin (%Zgb) dlp) p% sin (%—[q{))

SR [ (o))

2.6.9 Section 49, Problem 2

2.\ Solve the boundary value problem
v u,(x, 1) = kuy (x, t) (-7 <x<mt>0),

u(—m, t) = u(m, t), U (=7, 1) = Uy(m, 1), u(x,0) = f(x).

: ) : th
The solution u(x, t) represents, for example, temperatures i an .1nsx-11at<?d w1rle I(1)f liet:ngor
2.7 that is bent into a unit circle and has a given temperature distribution along it.

convenience, the wire is thought of as being cut at one point and laid on the x axig
between x = —7 and x = 7. The variable x then measures the distance along the
wire, starting at the point x = —7; and the points x = —x and x = 7 denote the same
point on the circle. The first two boundary conditions in the problem state that the
temperatures and the flux must be the same for each of those values of x. This problem

was of considerable interest to Fourier himself, and the wire has come to be known as
Fourier’s ring.

00
Answer: u(x, t) = Ay + Z e‘”zk’(A,, cosnx + B, sinnx),

n=1

1 m
Ag = E_[ﬂ f(x)dx

where

|
1

and
An=%/ f(x) cos nx dx, Bn=%/ f@x) sinnx dx (n=1,2,..0

O bt p el QO ~ -

Figure 2.74: Problem statement

Solution

Uy = kidyy

110



2.6. HW 6 CHAPTER 2. HWS

With - < x < 7, ¢t > 0 and periodic boundary conditions
u(-m,t)=u(mn,t)
Uy (=1, t) = uy (11, t)
And initial conditions
u(x,0) = f(x)
Normal process of separation of variables leads to eigenvalue problem
X"+AX=0 (1)
X (-m) = X(n)
X' (-n) = X" ()
And the time ODE
T’ +kAT =0 (2)
We start by solving (1) to find the eigenvalues and eigenfunctions.

Case A <0

Solution is

X (x) = Acosh (\/jx) + Bsinh (\/jx)
X (x) = AV-Asinh (ﬂx) + BV=A cosh (\/jx)

The boundary conditions X (—=7r) = X (1) results in (using the fact that cosh is even and sinh
is odd)

A cosh (\/37'() + Bsinh (\/37'() = A cosh (\/371) — Bsinh (\/371)
Bsinh (\/371) = —Bsinh (\/37'()
Bsinh (V=17 =0 3)

The boundary conditions X’ (—7) = X’ (1) results in (using the fact that cosh is even and
sinh is odd)

AV=Asinh (\/371) + BV=A cosh (ﬂn) = —AV-Asinh (\/371) + BV=A cosh (\/371)
AV=-Asinh (\/371) = —~AV-Asinh (\/371)
Asinh (V=2r) = 0 (4)
So we obtain (3,4) equations, here they are again
Bsinh (ﬂn) =0
Asinh (\/371)

0
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There are two possibility, either sinh (\/37'() = 0 or sinh (\/37’() # 0. If sinh (\/371) #0
then this leads to trivial solution, as it implies that both A = 0 and B = 0. On the other
hand, if sinh (\/37’() = 0 then this implies that \/377 = ( since sinh is only zero when its
argument is zero which is not the case here. This implies that A < 0 is not possible.

Case A =0

The solution now becomes X (x) = Ax+B. Satisfying the boundary conditions X (-m) = X (1)
gives
An+B=-An+B
2An =0
A=0
Hence the solution becomes
X(x)=B
X'=0
Satisfying the boundary conditions X’ (—71) = X’ (1) gives 0 = 0. Hence A = 0 is possible

eigenvalue, with corresponding eigenfunction as constant, say 1.
Case A >0

Solution is

X (x) = Acos (\/Kx) + Bsin (\/Xx)
X (x) = ~AVAsin (\/Xx) +BVA cos (\/Xx)

The boundary conditions X (—7) = X () results in (using the fact that cos is even and sin
is odd)

A cos (\/Xn) + Bsin (\/zn) = Acos (\/XT() — Bsin (\/XT()
B sin (\/Kn) = —Bsin (\/XT()
Bsin (Vir) =0 (5)

The boundary conditions X’ (—7) = X’ (1) results in (using the fact that cosh is even and
sinh is odd)

~AVsin (\/Zn) + BV cos (\/Xn) = AVAsin (\/Xn) + BV cos (\/Xn)
~AVAsin (\/XT[) = AV sin (\/XT()
Asin (\/KT() =0 (6)
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So we obtain (5,6) equations, here they are again
Bsin (\/Xn) =0
Asin (\/XT() =0

There are two possibility, either sin (\/Kn) =0 or sin (\/XTC) # 0. If sin (\/KT() # 0 then this
leads to trivial solution, as it implies that both A = 0 and B = 0. If sin (\/Xﬂ) = 0 then this

implies that \/XTC =nn wheren =1,2,3,---. Hence A > 0 is possible with eigenvalues and
corresponding eigenfunctions given by

A, =n? n=1,2,3, -
X, (x) = A,, cos (nx) + B,, sin (nx)

Now that we solved the eigenvalue problem (1), we use the eigenvalues found to solve the
time ODE (2)

T+ kA, T =0
When A = 0, this becomes T’ = 0 or Ty (¢) is constant. When A > 0 the solution is
T, (t) = e kAt
— e—knzt
Hence the fundamental solution is
Uy (x,t) = Xy (x) T, (t)
And by superposition, the general solution is
u(x, 1) = AgXo (¥) To (£) + 3 (A, cos (nx) + B, sin (nx)) et

n=1

But X (x) =1 and Ty (t) is constant. Hence the above simplifies to
u(x,t) = Ay + i (A,, cos (nx) + B,, sin (nx)) ekt
What is left is to find Ay, A,, B, Atntzlz 0 the above gives
fx)=Ag+ i A, cos (nx) + B, sin (nx) (7)

n=1

For n = 0, by orthogonality we obtain

j:nf(x)dx: f_ﬂ Agdx

[ Feax =450

1 TT
A:—f X) dx
=) f(x)
For n > 0. We start by multiplying both sides of (7) by cos (mx) and integrating both sides.
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This gives

f f (x) cos (mx) dx = (2 A,, cos (nx) cos (mx) + B, sin (nx) cos (mx)) dx

i f cos (nx) cos (mx) dx + Z B, f i sin (nx) cos (mx) dx
n=1 - n=1 T

But f " sin (nx) cos (mx)dx = 0 for all n,m. And f " cos (nx) cos (mx)dx = f " cos? (mx) dx
—Tt —Tt —Tt
and zero for all other n # m. Hence the above simplifies to

f F () cos (mx) dx = A, f cos? (mx) dx
—Tt =Tt
=A,n
Therefore
1 7T
== f f (x) cos (nx) dx
T =Tt

To find B,, we do the same, but now we multiply both sides of (7) by sin (mx) and this leads
to

f i f (x) sin (mx) dx = f i (i A, cos (nx) sin (mx) + B,, sin (nx) sin (mx)) dx
- -7 \n=1

= E A, f cos (nx) sin (mx) dx + Z B, f i sin (nx) sin (mx) dx

n=1 -
But f " cos (nx) sin (mx) dx = 0 for all n,m. And f " sin (nx) sin (mx) dx = f " sin? (mx) dx and
=Tt =T —T
zero for all other n # m. Hence the above simplifies to

f " F(¥)sin (mx)dx = B,, f " sin? (mx) dx
=B,

Therefore
1 7T
= f f (x) sin (nx) dx

This completes the solution. The final solution is

u(x,t)= Ay + E (A, cos (nx) + B, sin (nx)) e <t

= % f;f(x) dx + g}le‘knzt [(% j:if(x) cos (nx) dx) cos (1x) + (% j:f(x) sin (1x) dx) sin (”x)]
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[2.7.1 Section 45, Problem 4| . . . . . . . . ... .. 115
[2.7.2 Section 46, Problem 2| . . . . . . . ... ... oo 118
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[2.7.5 Section 53, Problem 4| . . . . . . . . .. ... 124

2.7.1 Section 45, Problem 4

J T S AMAIAVLAY | Es DML iU

4.| A string, stretched between the points 0 and & on the x axis and initially at rest, i
released from the position y = f(x). Its motion is opposed by air resistance, which (4
proportional to the velocity at each point (Sec. 28). Let the unit of time be chosen §
that the equation of motion becomes

Ve (X, 8) = yux(x,8) — 2 By, (x, 1) O <x<mt=0)

where B is a positive constant. Assuming that 0 < 8 < 1, derive the expression

- f
y(x,t) =e P Z B, (cos Ayt + — sin u,,r) Sin ny,

Xy
|

where

- 2 %
a, = +/n*— p?, B,,=;/ f(x)sinnx dx (=0 2
' 0

for the transverse displacements.

Figure 2.75: Problem statement

Solution

Solve for y (x, t) in

Yy =Y — 28y (t>0,0<x<7) (1)
Boundary conditions
y(0,t)=0
y(m,t)=0
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Initial conditions
y(x,0) = f(x)
Yy (x,0)=0
Let y = XT. Substituting in (1) gives
T"X =X"T -2T'X
Dividing by XT # 0

TII_X// 2'1"/

T X T
T/I+2T/_X//_/\
T ’BT_ X

Where A is separation constant. Due to nature of boundary conditions being both homoge-
neous, then we know A > 0 is only possible case from earlier HW’s. The eigenvalue problem
is
X"+AX =0
Which we know has eigenvalues A = n? for n = 1,2, --- with corresponding eigenfunctions
X, = sin (nx) (1)

Now we solve the time ODE using these eigenvalues.

T + 28T +n?T =0
This is standard second order ODE with positive damping f and since 1? is positive. The
characteristic equation is
2 +28r+n?=0

The roots are

b 1
=——+ —Vb2 -4
! 2a 2a ac

2 1
:——‘Bi— 4[32—4112
2 2
=—f x|

Hence the solution is
T, (t) = A, + B,e™!
_ i 2_pR2 _fA_; 2_p2
— Ane( pinnc—p )t + Bne( p—in-—p )t

— Pt (Anei n?—p2t o Bne—i nz—ﬁzt)
But the above can be rewritten using Euler relation as (the constants A,,, B,, will be different,
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but kept them the same names for simplicity)

T, (t) = e P (An cos (,/nz - ﬁzt) + B, sin (w/nz — ﬁzt))

Let a,, = 4/n% — B2, then the above becomes
T, (t) = e Pt (A, cos (a,t) + B, sin (a,t)) (2)

Since the PDE is linear and homogenous, then by superposition we obtain the final solution
as

y (x, t) = io] X, T,
n=1

= i e Pt (A, cos (a,t) + B, sin (a,,t)) sin (nx) (3)
n=1

Now initial conditions are applied to determine A,,B,. Att =0
f(x) =] Aysin (nx)
n=1
Hence A, are the Fourier sine coefficient of the representation of f (x) which implies

A, = % fo " £ () sin (n0) dx 4)

Taking time derivative of (3) gives

[o0]

Yy, (x, t) = 2 [—,Be‘ﬁt (A, cos (a,t) + B, sin (a,t)) + e Pt (~a, A, sin (a,t) + a,,B,, cos (ant))] sin (nx)
Att=0 tﬁzlabove becomes (since released from rest)
0= i (-BA, + a,B,,) sin ()
Therefore "
-BA, +a,B, =0
Hence B,, = A”. Therefore (3) becomes

n

R BA, .
y(x, t)-Z]le pt (An cos (a,t) + ” sm(ant)) sin (1x)

R B . :
=e Pt nz:; A, (cos (a,t) + ~ sin (ant)) sin (nx)

Where A, = % fz f (x)sin (nx) dx and @, = /n? — f2. Which is the result required to show
(Book used B in place A, but it is the same thing, just different name for a constant).
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2.7.2 Section 46, Problem 2

g —3 o —

(4

2.) Leta, b, and w denote nonzero constants. The general solution of the ordinary differ

ential equation

Y'(t) + a’y(t) = bsin wt

is of the form y = y, + Yp,» Where y. is the general solution of the complementary

equation y”(t) + a’y(t) = 0 and y, is any particular solution of the original nonhome: |

geneous equation.’

(a)

(b)

Suppose that @ # a. After substituting
Yp = Acoswt + Bsinwt,

where Aand B are constants, into the given differential equation, determine values
of Aand B such that y, is a solution. Thus, derive the general solution

y() = Cicosat + G, sinat + sin wi

R

of that equation.
Suppose that w = a and find constants Aand B such that

Yp = At coswt + Bt sin wt

s a particular solution of the given differential equation. Thus obtain the general
solution

b
y(@) = Cycosat + C, sinat — 2—tcosm.
a

Solution

Part a

Figure 2.76: Problem statement

suppose w # a. Let

Then

Yp = A cos wt + Bsin wt

y;? = —Awsin wt + Bw cos wt

y;,’ = —Aw? cos wt — Bw? sin wt
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Substituting the above back into the given ODE gives
yy (1) + a%y, (t) = bsin wt

(—Acuz cos wt — Bw? sin a)t) + a% (A cos wt + Bsin wt) = bsin wt

cos wt (—Aa)2 + azA) + sin wt (—Ba)2 + azB) = bsin wt (2)
By comparing coefficients, we see that
—Aw? +a*A=0
A (az - a)z) =0

Since w # a then this implies that A = 0. And from (2), we see that
-Bw?+a’B=b

Therefore (1) becomes
Yp = 53— sinwt (3)
Now we need to find the complementary solution to
yd +aty =0
Since a? > 0, then the solution is the standard one given by
Y. (t) = Cycosat + Cysinat (4)
Adding (3,4) gives the general solution

b
y(t) = Cycosat + Cysinat + —— sinwt

22— o2
Part (b)
Let
Yy = At cos wt + Bt sin wt (1)
Then

Yy = Acoswt — Atwsinwt + Bsin wt + Btw cos wt
Yy = —Awsinwt - (Aa) sin wt + Atw? cos a)t) + Bw cos wt + (Ba) cos wt — Btw? sin a)t)
= (—Ata)2 + 2Ba)) cos wt + (—2Aa) - Bta)z) sin wt
Substituting the above back into the given ODE gives
yy () + a?y, (t) = bsin wt
((—Ata)2 + 2Ba)) coswt + (—2Aa) - Bta)z) sin a)t) + a? (At cos wt + Bt sin wt) = bsin wt
cos wt (—Ata)2 +2Bw + azAt) + sin wt (—ZAa) - Btw? + ath) = bsinwt (2)
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By comparing coefficients, we see that
—Atw? + 2Bw + a*At =0
At (-w? +a2) + B(2w) =0 (3)
And from (2), we see also that
—2Aw - Btw? + a?Bt = b
A(-2w) + Bt (~w? +a2) = b (4)

But since w = a, then (3) becomes

BQw)=0
And (4) becomes
A(-2w) =10
_ b
" 2a
Substituting these values we found for A, B, in (1) gives
Yp = it cos wt
But w = a, therefore
Yp = ;—at cos at (5)

The complementary solution do not change from part (a). Hence the general solution is

b
y(t) = Cycosat + Cysinat — 2—tcos at
a

Which is the result required to show.

2.7.3 Section 46, Problem 3

|3.] Use the general solutions derived in Problem 2 to obtain the following solutions of the
initial value problem

Y@+ a’y(t) = bsinwt, y(0) =0, y'(0) = 0:

@ ;
b 3 (— sinat — smwt) when o # 4,

wr—a*\a
y(@®) =

i
— | =sinat —tcosat i when w = a.
2a \ a

Figure 2.77: Problem statement
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Solution
The general solution from problem 2 is
0 = Cqcosat + Cysinat + #sinwt wFa
y Clcosat+Czsinat—%tcosat w=a

We need to find Cy, C, when initial conditions are y(0) = 0,y" (0) = O for each of the above
cases.

case w # a
y(0) = 0 gives

0=0C
Hence solution now becomes

b
y(t) = Cz sin af + az_—a)z sin wt

Taking time derivative gives

y' (t) = aCycosat + — 5 cos wt
a‘ - w
At t = 0 the above gives
wb
0= ﬂC2+ —az_wz
Co = 1 wb
2T qw? - a2
Using Cq, C, found above, the solution becomes
1 wb )
y(t) = ;m sin at + 5[2——(4)2 sin wt
b W .
= m (; sin at — sin a)t) (1)
case W =4
y(0) = 0 gives
0= C1

Hence solution now becomes
b
t) = Cysinat — —tcosat
y (t) 2 2

Taking time derivative gives

'(t) = aC t b t btz' t
y =aCycosa 2acosa 7 sina
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At t = 0 the above gives

0 C b
=a —_—
2 2a
c _1b
2_a2a

Using Cq, C, found above, the solution becomes

(t) in at b t cos at
= ——SIndar— —1cosa
Y a2a 2a

i (ot -teosa
= — | —-sinat —tcosat
2a\a

From (1,2) we see that

b . .
ﬁ(g smat—sma)t) w#Fa
@ a

(R
Y E(lsinat—tcosat) W =a

a\a

Which is the result required to show.

2.7.4 Section 52, Problem 3

\ \H Assume that a function f(x) has the Fourier integralr representation (8), Sec. 50, which

can be written
f(x) = lim [ [A(x)cosax + B(a)sinax]da.
c—> 00 0
Use the exponential forms (compare with Problem 8§, Sec. 15)
g0 o i0 - 29 =9
cosf = ey g sm@-T

of the cosine and sine functions to show formally that

C

I'hen use expressions (9), Sec. 50, for A() and B(a) to obtain the single formula®

f(x) = lim / C(a) ¢ da,
where
LAy i B
Sl e D o) S TR L G

Clw) = i/ fioyen =i (—00 < & < 0).
s 1| B0

Figure 2.78: Problem statement

Solution
122
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(0e]

(A (a) cos (ax) + B (a) sin (ax)) da

wzx —iax iax _ ,—iax
Al ( e )iB(a)(%))da

°°( (A(a) zB(az)) (A(oz)+iB(a)))
el e ———— || da

2

f‘x’ eiaxA(“) iB(x) o+ f"" e_mxA(oz)+iB (a)da
0 2 0 2

_ f o A@—iB(a) f piarA@ +iB(@)

0 2 0 2

(o) 1 0 .

f el-axA(a)le(a) o+ f eiaxA(a)-lz-zB(a)da
0 )

f (%)

I
hﬁh

- f C (a) e dar

Where
A(a)-iB(a)
2

A(a)+iB(a)
2

C(a) = a>0

Expression (9) section (5) is

’ C(_OC) =

A) = %j:oof(x)cos(ax)dx
B(a) = %f_oof(x)sin(ax)dx

Substituting the above in C (a) = A(a);iB(a)

Cla) = %(% f_oof(x) cos (ax)dx—i% j:oof(x) sin(ax)dx)

gives

_ % (foo f(x)cos(ax)dx—foo f(x)isin(ax)dX)
_ % f " £ () (cos (ax) — i sim (@) dx

But using Euler relation cos (ax) — isin (ax) = ™ then the above reduces to

1 o
C(a):ﬂf_wf(x)emdx —co<a<oo

Which is what required to show.
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2.7.5 Section 53, Problem 4

f ) Lo u 5 C T

il &
t {41 Use the theorem in Sec. 53 to show that if

o Py 0 whenx<00rx>7r,
sin x when 0 <x < 7,
then

f(x>:i/°°w
T s T 7

In particular, write x — 7/2 to show that

/m cos(am/2) T
TR Ty L0 s
0 listes 2

doy (=00 < x < o)

Figure 2.79: Problem statement

Solution

Since f (x) is piecewise continuous and absolutely integrable (sine function), then

w - %j:o(j:oof(s)cos(a(s—x))ds)d“

Substituting for f (s) inside the integral for the function given gives

0 0

Where we used £n only, since the function is zero everywhere else. Using 2sin AcosB =
sin (A + B) + sin (A — B) then the above can be written as
M = lfoo (lfnsin(s + as —ax) +sin (s — (as—ax))ds)da
2 TTJp 2 0
1
T 2n

foo(fnsin(s+as—ax)+Sin(s—as+ax)ds)da 1)
0 0

But

s
—cos (s + as — ax)
1+a ]

T
f sin (s + as — ax) ds =[
0 0

1+a

(cos (1t + amt — ax) — cos (—ax))

T2 (cos (11 + a (11 — x)) — cos (ax))
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But cos (7 + a (1 — x)) = —cos (a (1t — x)), and the above becomes

fn sin (s + as — ax) ds = L (cos (a (1t — x)) + cos (ax)) (2)
0 1+a

Similarly

s
—cos (s — as + ax)

7T
f sin (s —as + ax)ds =
0 1-«a 0

(cos (T — amt + ax) — cos (ax))
1-«a

=1 (cos (1t — a (10 + x)) — cos (ax))
1

= 7= (~cos (=a (7 +x)) - cos (ax))

=7 1 (cos (a (11 + x)) + cos (ax)) (3)
-

Substituting (2,3) back in (1) gives
fE) )1 (-
2 27
1 0 1 1 1 1
= E\f(‘) cos (a (T(—X)) (m + g) + cos (ax) (m + T)) da

_Lfoo cos (a (1 - x))(l Za )+cos(ax)(1 _2a2))da

f cos (a (11 — x)) + cos (ax)
B 1-
= f (x) and the above becomes

(cos (a (1t — x)) + cos (ax)) + 1

1+a i - (cos (a (1t + x)) + cos (ax))) da

da

a2
F)+fe)
2
1 cos (a (1t — x)) + cos (ax)
ﬂ@—;ﬁ da

1-a2

But f (x) is continuous then

When x = g the above gives

s 1-a2

f(z) 1 fo‘” cos (@ (7 - 3)) + cos a3) "

do

1= foo COS (a%) + COS (ag)
0

1-a?
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Therefore
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2.8.1 Section 57, Problem 5

v vy

4.\ Find the bounded harmonic function u(x, y) in the semi-infinite strip0 < x <1,y >0
that satisfies the conditions ‘

ity (x, 0) = 0; ' w0y y)=0," w1, y) = F()-

2 [° sinh wx cos oy /°°
ey pl Jo Pt ey s)cosas ds da.
Answer: u(x, y) 3 /0 T \ f(

Figure 2.80: Problem statement

Solution
Vzu(x,y):o (O<x<1,y>0)
uy (x,0)=0
u (O, y) =0
: (1y) = £ (v)
As normal, we use separation of variables, ending in XY” + % = —-A. We will take the
eigenvalue problem along the Y direction. This leads to
Y'"+AY =0
Y (0)=0

Where A = a?,a > 0. The steps that led to this were done before. Therefore the solution is

Aty =

Y (y) = (1 COS (ay) + ¢y sin (ay)

Y’ (y) = —cjasin (acy) + coa cos (ay)
0 the above gives

0=ca
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Which implies ¢, = 0. Hence the eigenfunctions are

Y, (y) = COS (ay)

With the eigenvalues being A = a? for all real positive values of a. The corresponding X (x)
ode is

X"-AX=0
X(0)=0
The solution to this is X (x) = c1e™ + coe™®, which at x = 0 gives
O=c1+0

Which makes the solution as X (x) = c;e™ — cje™™ = ¢; (6" —e ) = 2¢;sinh (ax) =
cz sinh (ax). Therefore the general solution is given by the real form of the Fourier inte-
gral

u (x, y) = j(; " A (a) sinh (ax) cos (ay) da 1)
Taking derivative w.r.t. X gives
Uy (x, y) = j; ” A (a) a cosh (ax) cos (ay) da
At x =1 the above becomes
f(y) = fO " (A (a) a cosh (a)) cos (ay) da
Therefore

(o]

A (a) acosh (o) = % f f (y) coS (ozy) do

0
2 00
A (a) = m j; f (y) cos (Oly) da

Substituting the above in (1) gives the solution
(o) 2 (o)
u (x, y) = fo (m fo f (s) cos (as) ds) sinh (ax) cos (ay) da

2 o sinh (ax) cos (ozy)
7 j; a cosh (a)

( f " £ (5) cos (as) ds) dat
0

Tt

Which is the result required to show.
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2.8.2 Section 58, Problem 5

e

5./ (a) The face x = 0of a semi-infinite solid x > Ois insulated, and the initial temperature
distribution is f(x). Derive the temperature formula
(e2]

u(x,t) = flx+ 20v/kt) e do

_*/__7; —x/(vkt)
+ —1—/ f(—x + 20vkt) e do.
ﬁ x/(2/kt)

(b) Show that if the function f in part (a) is defined by means of the equations

1 when 0 < x < c,
fx) =

0 when =G
then
1 c+x 1 C e X
e (e ] Ry
u(x,t) Zerf(2m> + 2er (2«/E>
Figure 2.81: Problem statement
Solution
Part (a)
up (x, t) = kuy, (x, ) 0<x<oo,t>0)
u(x,0) = f ()
u,(0,t)=0
Applying separation of variables leads to
T/ 3 Xl/ 3 A
kKT~ X
Hence
X"+AX=0
X' (0)=0
X (x)| <M
Since on semi-infinite domain, then only A > 0 are possible eigenvalues. Let A = a?,a > 0,

Where « takes on all positive real values. Then the solution to the eigenvalue ODE is
X, (x) = ¢1 cos (ax) + ¢, sin (ax)
X}, (x) = —cyasin (ax) + cpax cos (ax)
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Atx=0
0=oca
Hence ¢, = 0 and the eigenfunctions are
X, (x) = cos (ax)

The time ODE is therefore T’ + @?kT = 0 which has solution T = e‘kazt. Hence the solution
is given by the real Fourier integral

u(x,t) = f A (@) e cos (ax) da (1)
0
At t = 0, using initial conditions, then the above becomes

fx) = fo " A () cos axda

2 (o'}
A== fo F(5) cos (as) ds )
Using (2) in (1) gives

1 (x, f) = fo " (% fo " £ (s) cos (as) ds) k0%t cos (ax) der

Changing the order of integration

u(x,t) = %j:o j:o (e‘kazt [2 cos (ax) cos (as)] da)f(s) ds (3)

cos(A+B)+cos(A-B)
2

2 cos (ax) cos (as) = cos (ax + as) + cos (ax — as)

Using trig identity cos (A) cos (B) = , then

= cos(a(x +5)) + cos(a(x—s))

Substituting the above in (3) gives

U (x, f) = % fo " fo N (e [cos (a (x + )) + cos (a (x - 9))] da) f (s) s

-1 fo ) ( fo " e o (a (x + 5)) dat + f " ot cos (o (x - s))da) F(s)ds

Tt 0

©0 1 |n v?
—azc - — — S
fo e cos(ab)da = 2\/Zexp( 4c)

Where in our case ¢ = kt and b = (x + s) for the first integral, and b = (x — s) for the second
integral. Using the above formula in (4) results in

I el (x+s)2 1 |n (x—s)2
u(x,t)—Ej(; (E Eexp(— Akt )+§ Eexp(— Akt ))f(S)dS

Using the formula
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For t > 0. Hence the above becomes

1 o0 (x+s)2 1 00 (x—s)2
szo f(s)exp(— - )ds+2mfo f(s)exp(— = )ds

By writing s = —x + 25Vkt for the first integral above, then Z—Z = 2vkt. When s = 0 then

0= 2%/]5 and when s = co then 0 = co. And by writing s = x + 25Vkt for the second integral

above, then Z—Z = 2vkt. When s = 0 then ¢ = ——— Hence the above integral becomes

2vkt
—x + 20Vkt ) ex _(—x+(x+20\/ﬁ)) do
f f (2

4kt

u(x,t) =

u(x,t) =

2V ikt

f (x + 20@) exp| - (x _ (x i 20\/5))2 do

4kt

2\/nk

Simplifying gives

u(x,t) = %f_: (x+2a\/_)
\/_ f (x + 20\/5) 4o + — f ( -X + 20@) e do+ (4)

2vkt 2vkt
Which is the result required to show.

ZU\F 20\/>

Tkt do+ —f ( X+ 20\/—) oAkt

Part b

f(x):{é O<x<c

x>0

Considering the first function in (4), where in the following f (x) = f (x + 20@) then (4)

becomes
L (55 gy (55
ux,t:—f2 “’da+f2 e % do
But % £Fk7 e do = erf( o

= 2\@) £2\Feada—erf( \/E)

t—l fc+x 1 c—X
nhot)=ger (2\@) 2" (2\/_)

c+x

hence the above becomes

131



28. HW 8 CHAPTER 2. HWS

2.8.3 Section 58, Problem 7

7, Ve rify that for any constant C, the function .

)
v(x, 1) = Cxt > exp (_:t—k_t>

satisfies the heat equation v, = kv, when x > 0 and ¢ > 0. Also, verify that for those

values of x and 7,

Th}ls show that v(x, £) can be added to the solution (9) found in Sec. 58 to form other§
lut10n§ of thf.: problem there if the temperature function is not required to be bounde
Note that v is unbounded as x and ¢ tend to zero (this can be seen by letting x vani
while ¢ = x?).

Figure 2.82: Problem statement

Solution

-3 -2
We need to substitute the solution v (x,t) = Cxt 2 ¢4t into the PDE v; = kv,, and see if it

satisfies it.

-3 5 32 ¥
v = 7Cxt2 ekt + Cxt 2 e 4t (—

4kt?
— -5 -2 P
= —Cxt2e4t +C t2 ekt
2 4kt?

And

-3 2 2 -3 -2
v, =Ct2etkt — —Ct2ekt
* 2kt

-3 -2 X -3 -2 x3 -3 -2
=—Ct2est — (k—CtTeW - CtTem)
t

Vo =
2kt (4kt)?
2x B (x 32 43 82
= — (Ct2e4kt —| —Ct2pe4kt — Ct2 g4kt
4kt (kt 422 )
— -3 2 - 3 -3 2
=—Ct2ett — —Ct2edkt + Ct2et
2kt kt (4kt)*
3x 5 =2 x* 32
=———Ct2est +C } 2 p 4kt
2k 422
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Hence v; = kv,, becomes

- -5 —x2 x> 3 2 3x 5 2 x> 3 2
—Cxt2ett + C—=t2eskt =k|—==Ct2e%t +C t2 ekt
2 4kt? ( 2k )

4k2t2
- -5 —x2 x> 3 2 3 -5 —x2 X3 3 =2
—Cxt2ett + C—=t2e4t = ——xCt2eskt + C——=t2 4kt
2 2 2 4kt?
0=0

Hence it is satisfied for any constant C.

-3 2
Using v (x,t) = Cxt 2 e %t , we see that lim,_,o+ v (x,t) = 0. Also lim,_,g+ v (x,f) = 0.

Since the solution to the heat PDE is now not required to be bounded and since v (x, t) has
zero initial conditions, then because the PDE is linear and homogeneous, then solution as
v (x,t) can be added to the solution in (9) using superposition.

2.8.4 Section 59, Problem 2

T T T

P

LZ,\ Derive this solution of the wave equation y,, = a?y,, (00 < x < 00, > 0), whi
satisfies the conditions y(x, 0) = f(x) and y,(x, 0) = 0 when —oo0 < x < oo:

1 o 00
y(x,t) = = / cosaat/ f(s) cosa(s — x) ds da.
0 —00
Also, reduce the solution to the form obtained in Example 1, Sec. 30:

1
; vixut) — 7 [f(x+at)+ f(x —ap)].

Figure 2.83: Problem description

solution

Let y (x,t) = X (x) T (t), then the PDE becomes
T"X = a®X"T
1 T// X/l
2T x "
We take the X (x) ode as the eigenvalue problem. Since the domain is infinite, then only pos-
itive eigenvalue are valid as was shown before. Let A = a?, @ > 0. Hence the eigenfunctions
are

X, (x) = A(a) cos (ax) + B (a) sin (ax)
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The time ODE becomes
1 TI/
a2 T
T” + a®a®T =0

= —az

Which has the solution
T, (t) = C(a)cos (aat) + D («) sin (aat)

Hence the solution is given by the Fourier real integral
1) = N T,(t) X, (x)d 1
v 0= [ 10X 0da M
= f (C (@) cos (aat) + D (@) sin (aat)) (A () cos (ax) + B (@) sin (ax)) da
0
_ f " C(a) A (@) cos (aat) cos (ax) da + f " C (@) B (@) cos (aat) sin (ax) dar
0 0

+ f " D () A () sin (aat) cos (ax) da + f " D («) B («) sin (aat) sin (ax) da~ (2)
0 0

Taking time derivative

00

Ve (4, b) = fo " _aaC (@) A (a) sin (aat) cos (ax) da + fo aaC () B (a) sin (actt) sin (ax) dat

(©e]

+ f " aaD (a) A (a) cos (aat) cos (ax) da + f aaD (a) B () cos (aat) sin (ax) da
0 0
At t = 0 the above becomes
0= f aaD (a) A (a) cos (ax) da + f aaD (a) B () sin (ax) da
0

0
Which simplifies to

(0]

0= fo " D (@) A (a) cos (ax) da + fo D (2) B (a) sin (ax) da

_ f " D (@) (A (@) cos () + B (@) sin (ax)) da
0

Therefore, since A (@), B (@) can not be both zero, else eigenfunction is zero, then it must
be that D (@) = 0. Hence the solution in (2) becomes

Y t) = fo " C (@) A (@) cos (aat) cos (ax) dat + fo " C(@) B (@) cos (aab) sin (ax) dar (3)

Let C(a) A(a) = C; (@) and let C(a) B(a) = C, («) as two new constants, and the above
becomes

y(x,t) = f Cq (a) cos (aat) cos (ax) da + f C, (@) cos (aat) sin (ax) da
0 0
At t = 0 the above becomes

)= fo " €4 (@) cos (ax) dar + fo ", (@) sin (ax) da
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Hence

Cy (a) = % f : F(5) cos (as) ds
1 (o)
Co(@) = f F(5)sin (as) ds

Therefore (3) becomes

Y@, b = % fo ” ( f_ O; F(5) cos (as) ds) cos (aat) cos (ax) dat

N % fo " ( f : £ (s)sin (as) ds) cos (aat) sin (ax) da

Changing order of integrations in the above for both integrals results in

1 (e} (o]
Y b = — f ( f cos (aat) cos (as) cos (ax) da) Fs)ds 4)
- f ( f cos (aart) sin (as) sin (x) da) Fs)ds
But
cos (as) cos (ax) = % (cos (as + ax) + cos (as — ax))
= % (cos (a (s + x)) + cos (a (s — x)))
and

sin (as) sin (ax) = % (cos (as — ax) — cos (as + ax))

= % (cos (a (s — x)) — cos (a (s + x)))

Substituting the above two relations back in (4) gives

Y@, b = % fo B ( f_ " cos (aat) (cos (e (s + X)) + cos (@ (s — ) da) Fs)ds

4 % j:o (f_(: cos (aat) (cos (a (s — x)) — cos (a (s + x))) da)f(S) ds

Simplifying, terms cancel giving

Y, f) = 21 f ) ( f " cos (aat) [eos (@ (s — %)) + cos (a (s - 1))] da) Fs)ds

(o]

= —f (f cos (aat) cos (a (s — x)) da)f(S) ds

Changing order of integration

Y@, b = % f " cos (aat) f " £ (s) cos (@ (s - v)) dsda
0 —00
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Which is the result required to show.

2.8.5 Section 59, Problem 3

\i\ Find the bounded harmonic function u(x, y) in the strip —00 < x < 00,0 < y «

such that u(x,0) = 0 and u(x,b) = f(x) (~o0 < ¥ < o), where f is bounded a
represented by its Fourier integral.

1 (% sinh T
Answer: u(x, y) = . / s;nh Zz / f(s)cos a(s — x) ds da.
0 —00

Figure 2.84: Problem description

solution

Y
A
b f(z)
—00 - VZU(xay) =0 —» 00

Figure 2.85: Solution domain for PDE

Letu=X(x)Y (y), then u,, + y,, = 0 becomes

X'X+Y"X=0

XII+YN_0
X Y

Taking the eigenvalue ODE to be on the x axis, then

X/I_ YN_A
X Y

Hence
X”"+2AX=0
X (x)| < o0
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Hence A can only be positive real. Let A = a?,a > 0. Therefore the eigenfunctions are

X, (x) = A(a)cosax + B(a) sin ax (1)
For the ODE Y” — Ya? = 0 the solution is
Y, (y) = C (a) cosh (ay) + D («) sinh (ay) (2)

Hence the solution is
u (x,y) = fooo Xo ()Y, (y) da

= f " (A (a) cos ax + B (a) sin ax) (C () cosh (ay) + D («) sinh (ay)) da  (3)

When y = 0, the a(l):)ove becomes
0= fm (A () cos ax + B (@) sin ax) C (a) da
Which implies that C (o) = O.OTherefore the solution (3) simplifies to
u(x,y) = fo " (A (a) cos (ax) + B () sin (ax)) D (a) sinh (ay ) dar
= f " A (a) D (@) sinh (ay) cosax + B(a) D («) sinh (ay) sin (ax) da
Let A(a) D (a) = Clo(oz) and let B (a) D (@) = C, (), hence the above solution becomes
u (x, y) = j; N Cq (a) sinh (ay) cosax + C, () sinh (ay) sin (ax) da (4)

When y = b the above becomes

fx) = f " Cq (a) sinh (ab) cos ax + C, (a) sinh (ab) sin (ax) da
Therefore :

Cy (@) sinh (ab) = % f Z £ () cos (as) ds

1 00
C1 (CY) = m j; f (S) CcOos (CKS) ds (5)
And
C, (@) sinh (ab) = f " F(s)sin (as) ds

C,(a) = nsmh D f F(5)sin (as) ds 6)
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Using (5,6) in (4) gives

u (x, y) = j:o (7_( Sl (ab) f f (s) cos (as) ds) sinh (ay) cos (ax) + (7‘( Sl (ab) f £ (s)sin (as) ds) sinh (a;

< sm mh
= j; (; sjh?zb) f f (s) cos (as) cos OfXdSJ + [nssmh?zb) f £ (s) sin (as) sin (ax) ds) doa

1 foo sinh (ay)
0

sinh (ab)

f " £ (s) cos (as) cos ax + f (s) sin () sin (ax) ds) dat

= _ f ” 851121}11 (ZZ) j: Z £ () [cos (as) cos ax + sin (as) sin (ax)] ds) da

00 smh ay 00
_ _f b j:oof(s)cosa(s—x)ds)da

Which is the result required to show.
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2.9.1 Section 61, Problem 2

E) Suppose that two continuous functions f(x) and ¥ (x), with positive norms, are lineat

independent on an interval @ < x < b; that is, one is not a constant times the other.
determining the linear combination f + Ay of those functions that is orthogonal to
on the fundamental interval a < x < b, obtain an orthogonal pair ¥, ¥ where
(v
v 112
Interpret this expression geometrically when f, ¥, and yr, represent vectors in thr
dimensional space.

Yo (x) = f(x) — V1 (x).

Figure 2.86: Problem statement

Solution

Let ¢, = f + Ay such that (i, 1) = 0. Hence

<f + A¢1/¢1> =0
(f, 1) + (AP, 1) =0
(fr)+ A, ) =0

() + Aln| =0
_ i)

2
I

Therefore, since ¢, = f + At then

<f/ I;D1>

Vo= f - > V1

[l

Geometrically, the term <”1’blﬁr 2> Y1 represents the projection of f on ;. The term IIi_lll makes
1 1
S

a unit vector in the direction of 1; and the term

ol is the magnitude of projection
1
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||l/)1|| cos (0) where 0 is the inner angle between f,1;. The result of —Mg&l is a vector in
¥

1
the opposite direction of 1;. Adding this to f gives {, which is now orthogonal to f. This
process is called Gram Schmidt.

2.9.2 Section 61, Problem 3

B

LE] In Problem 2, su;:;pose that the fundamental interval is —7 < x < 7 and that
f(x) = cosnx + sinnx and Y1 (x) = cosnx,
where 7 is a fixed positive integer. Show that the function ¥ (x) there turns out to b
Y, (x) = sinnx.

Suggestion: One can avoid evaluating any integrals by using the fact that the
in Example 3, Sec. 61, is orthogonal on the interval —m < X <.

Figure 2.87: Problem statement

Solution

Let
f = cosnx + sinnx
1 = cosnx

Then by Gram Schmidt process from problem 2 we know that

<f/11b1>
Yy =f - Y
el

Hence

n .
f (cos nx + sin nx) cos nxdx

Y, = (cos nx + sinnx) — — - COS NX
f cos? (nx) dx
=T
T o
f COS X cos nxdx + f sin nx cos nxdx
= (cosnx + sinnx) — == T cOS Nx
e

s e T .
But f cOos X cos nxdx = f cos? nxdx = 7 and f sin nx cos nxdx = 0 since these are or-
—Tt —TU —TU

thogonal. Hence the above simplifies to
Yy = (cos nx + sin nx) — cos nx

= sinnx
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2.9.3 Section 63, Problem 3

—_—

3, In the space of continuous functions on the interval @ < x < b, prove that if two
functions f and g have the same Fourier constants with respect to a closed (Sec. 62)
orthonormal set {¢, (x)}, then f and g must be identical. Thus show that f is uniquely

determined by its Fourier constants.
Suggestion: Note that (f — g, ¢,) = 0 for all values of n when

(f, ) = (g Pn)
. for all n. Then use the definition of a closed orthonormal set to show that || f —g|l = 0.

Finally, refer to the suggestion with Problem 4, Sec. 61.

el LERRY PR, |

Figure 2.88: Problem statement

Solution

The Fourier coefficients of f — g are given by (f — g, ¢,,) by definition. But due to linearity
of inner product, this can be written as

<f - & (Pn> = <f, (Pn) - <g/ (Pn)

But (f, ¢,,) are the Fourier coefficients of f and (g, ¢,,) are the Fourier coefficients of g, and
we are told these are the same. Therefore

<f - & ¢n> =0
Which implies that ||f —g” = (. Using part(b) in problem 4, section 61, which says that
if || f || = 0 then f (x) = 0 except at possibly finite number of points in the interval, then
applying this to || f - g” = 0 leads to

f-8=0
Which implies f = ¢ which is what required to show.

2.9.4 Section 63, Problem 4

@ Let {¢,(x)} be an orthonormal set in the space of continuous functions on the interval
a < x < b, and suppose that the generalized Fourier series for a function f(x) in that
space converges uniformly (Sec. 17) to a sum s(x) on that interval.
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(a) Show that s(x) and f(x) have the same Fourier constants with respect to {¢, (x)}.
(b) Use results in part (a) and Problem 3 to show that if {#n(0)} is closed (Sec. 62) ’
then s(x) = f(x) on the interval a =X =h, !

: Suggestion': Re:call from Sec. 17 that the sum of a uniformly convergent series of
continuous functionsis continuous and that such a series can be integrated term by term

Figure 2.89: Problem description

solution

Part (a)

Let the generalized Fourier series of f (x) be

F0 = Y@, 0 bn
n=1

Let the sum the above converges uniformly to be s(x). Therefore we have, per problem
statement the following equality

Y F ), 00) 0 = 500
n=1

Taking the inner product of both sides with respect to ¢,, gives

b (& b
[ (B 0000 ouic= [ s puin
a \n=1

= <S (x), ¢m>

Since the sum converges uniformly, then we are allowed to integrate the left side term by

term while keeping the equality with the right side. Hence moving the integration inside the
sum gives

0 b
Y 00) [ duomdx = (56, 0)
n=1 a

b

But due to orthogonality of ¢, and ¢,, and since they are normalized, then f QP dx =
a

(¢, &y =1 if n = m and zero otherwise. Hence the above simplifies to

f @), P) = (s (x), Ppu)

And since the above is valid for any arbitrary m =1 --- oo, then it shows that f (x) and s (x)
have the same generalized Fourier coefficients.
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Part (b)
From part (a), we found

(fr@u) =<5, 0u)
By linearity of inner product, the above is the same as
(frOn) = (s, Pn) = 0
(f=s,¢,)=0
But from problem 3, we know that (f —s, ¢,) = 0 implies ||f - s|| = 0.
Next, using part(b) in problem 4, section 61, which says that if ” f ” = 0 then f (x) = 0 except

at possibly finite number of points in the interval, then applying this to our case here that
”f - s” = ( leads to

f-s5s=0

Which is the result required to show.
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2.9.5 Section 66, Problem 4

\ : !
: m (a) Use the same steps as in Example 3, Sec. 61, to verify that the set of functions

i nix ]

( ——1— —Lcos@ Dam(x) = — sin —
o) X)—\/Z—c’ ¢2n—l(x)—\/—5 EEE 2n BV ’
: =121

is orthonormal on the interval —c¢ < x < c. (This set becomes the one in that
ample when ¢ = 7.)

(b) By proceeding as in Example 3, Sec. 63, show that the generalized Fourier se
corresponding to a function f(x) in C,(—c, ¢) with respect to the orthonormal
in part (a) can be written as an ordinary Fourier series on —¢ < x < ¢ (Sec. |

- with the usual coefficients @, and b,,. :

(c) Derive Bessel’s inequality : \

a2 N 1 ¢
7°+Z(a3+bﬁ)sz/_é[f(x)]2dx (N=1,2,

n=1

for the coefficients a, and b, in part (b) from the general form (1), Sec. 65, of
inequality for Fourier constants. [Compare with inequality (6), Sec. 66.]
Suggestion: Inpart (a),some integrals to be used can be evaluated by wil

[

JT
X = —5
¢

in integrals (1) and (4), Sec. 61.

Figure 2.90: Problem description

solution

Part (a)
We need to find

(Do, P2n)

(o, P2n-1)
<¢2n1 ({b2m>
(P2n-1, Pom-1)
(P2m-1, Pon)
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And also show that
Jpoll” =1

b2l = 1

[ p2nal” =1

(b0, o) =

(P2ns Pan) =

(P2n-1, P2n-1) =
(Do, Pan)

(Po, P2n) = f ——COS(nnx)dx

[<—>\

W\f [Sm (m )]
) mﬁ

c

1

=C\/§

c

—C

[sin (n7t) + sin (n7)]

=0
Since 7 is integer.
(Po, P2u-1)
(o, P2n-1) = f_cc \/%% sin (?x) dx
1 |—cos (Ex) ‘
=,
= el ()
= n; > [cos (n7t) — cos (nm)]
(P2ns Pam) )
(Pans Pom) = f —=sin ( x) % sin (?x) dx
= % f_cc sin (?x) sin (@x) dx

Let %S = x, then dx = %ds. When x = —c then s = -7t and when x =

145
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above becomes

1 TT
(Dop, Do) = . f ) sin (ns) sin (ms) %ds

1 prn
=— f sin (ns) sin (ms) ds

Since the integrand is even, then

s

2
(Don, Qo) = ;f sin (ns) sin (ms) ds

0
From equation (1), page 192 we see that

<¢2n/ ¢2m> =0

Since n, m are different.

(P2n-1, Pom-1)

(P2n-1, Pom-1) = f—COS( X)%cos(gx)dx

1 ¢ nm mr
= - f cos (—x) cos (—x) dx
cJ_. c c

Let %S = x, then dx = %ds. When x = —c then s = —7t and when x = ¢ then s = 7 and the
above becomes

(Pon-1, Pom-1) = %fﬂ cos (ns) cos (ms) %ds

-7t

1 TC
- f cos (ns) cos (ms) ds

Since the integrand is even, then

7T

2
(Pon-1, Pam-1) = - f cos (ns) cos (ms) ds

0
From equation (4), page 192 we see that

<¢2n—1/ ¢2m—1> =0

Since n, m are different.

(P2m-1, P2n)

(Dom-1, Pon) = f — cos (mnx) % sin (nTnx) dx

1 f‘ mr nr
= cos (—x) sin (—x) dx
cJ_, c c

Let %s = x, then dx = %ds. When x = —c then s = —7t and when x = ¢ then s = 7t and the

146



29. HW 9

CHAPTER 2. HWS

above becomes

1 7T
(Pam1, Pon) = p fﬂ cos (ms) sin (ns) %ds

1 7T
= f cos (ms) sin (ns) ds

Using cos (ms) sin (ns) = % (cos (s (m + n)) + cos (s (m — n))). Hence the above becomes

(Dom-1, Pon) = 21_71 (j:n cos (s (m + n))ds + fﬂ cos (s (m — n))ds)

Since the integration is over one full period, then each is zero. Hence

<(PO/ ¢O>

Hence ||qb0|| =1.
<(P2n/ (P2n>

Hence ||qb2n|| =1.

<¢)2m—11 ¢2n> =0

1 1
(b0, o) = f R

2 1fc
= — d

ool = 52
=1

nrt
c

(Pons Pan) = ji % sin (—x) % sin (nTnx) dx

I
Al ol

Rl=
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<q52n—1/qb2n—1>

c
1 cos (2Ex) ‘
= —|2c—- | —= 2
2c o
—C
R
2c 2nm [“\ 7 —

(ZC __° [cos (2nTt) — cos (Znn)])
2nm

2c

1
=—2c
2c

=1
Hence ||q52n_1|| =1.

Part (b)
Po (x) =

Pon-1 (x) =

-l

( ) (THTX)

X) = —sin|—

QZ)ZTZ \/— c

On —c < x < ¢. The generalized Fourier series for f (x) in C, (-, ¢) is

D cnn (x) = copo () + Y (Can-1P20-1 (x) + Conpon (1))
n=0 n=1

That is

ro-a B (E) ()

Where
1
0= {f00) = = [ rwa
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And
nmnx
C2n1_<f ¢2n 1(x \/_ff X)COS( )dx n:]/ZI...
=(f, P (¥)) = — f f x)sm(nnx)dx n=1,2--
\/—
If we write
o Con-1 Con
ag = 2—=,a, = Jb,=—= n=12,
0 \/% n \/E n \/E

Then (1) becomes

fx)~— 0, Z a, cos (mc'(x) +b, Sm(nnx)

c

1 C
:—ff(x)cos(@)dx n=1,2,
cJ_, c

1 C
=—ff(x)sm(@)dx n=1,2,
cJ_, c

This is the ordinary Fourier series on —c < x <c.

Where

Part (c)

From (1) section 65

But from part (b) we found that
C Copy C
ag ) 0 2n-1 b 2n

Hence
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Substituting the above into (1) gives

G+ R+ X<l
(2v2) + 33 (008 + 6 < [T ] s
( 2c) Zac+zb20<f[f(x)]2dx
§+§(ag+bg)szf[f<x>]2dx

%|§N~

2.9.6 Section 66, Problem 5

M A

5/ Let sny(x) (N =1,2,...) be a sequence of functions defined on the interval 0 < x = |
by means of the equations

—_

0 when ¥ =1, =,:..,
sn(x) =

N =D

1 when x # 1,

Show that this sequence converges in the mean to the function f(x) = 1in C,(0, )
but that for each positive integer p,

N—oo P

Suggestion: Observe that

Figure 2.91: Problem description

solution

The function Sy (x) is almost 1 everywhere as can be seen from this diagram
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SN(m):l
Sn (@) . Sn(x) =0
A
oo ¢
[
[ | [
ty '
IS 1 1 =
54 3 2
N=3 N=2 N=1
Af(w)zl j
1
- T
1

Figure 2.92: Showing the function Sy(x) and f(x)

And the problem is asking us to show that Sy (x) — f (x) in the mean. This means we need
to show the following is true

lim [|$y () - f @] =0

Except at possibly finite number of points x. But this is the case here. Looking at Sy (x) we
s _ - 111
see it is equal to f (x) = 1 everywhere except at the points x =1, 53, and compared to

all the points between 0 and 1, then Sy (x) = f (x) =1 almost everywhere. Even though as
N — oo the number of points where Sy (x) # 1 increases, it is still finitely many compared

to the number of points where Sy (x) = f (x) =1.

. . . 1
To answer the second part: Since Sy (x) = 0 at any x value which can written as ; where

p is an integer (this by definition given), then Sy (%) = 0. Then it clearly follows that

th—)oo SN (%) =0.
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Local contents
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[2.10.3 Section72,Problem6|..............................:.157
(2.10.4 Section72,Problem9I...............................:159

2.10.1 Section 69, Problem 1

1. \(@) After writing the differential equation in the regular Sturm-Liouville problem
[xX' )] + %X(x) B 1 <x<bh),
X)) =0, Xb)=0

in Cauchy-Euler form (see Problem 1, Sec. 44), use the substitution x = exps to

transform the problem into one consisting of the differential equation
d2
—)5+AX=0 (0 <s <Inb)
ds?

and the boundary conditions
X=0 when s5=0 and X=0 when s=Inb.

Then, by simply referring to the solutions of the Sturm-Liouville problem (4) in
Sec. 35, show that the eigenvalues and eigenfunctions of the original problem here

are
P aﬁ, X, (x) = sin(a, Inx) (=12 )
where a,, = nr/Inb.
(b) By making the substitution
a ﬁlnx
" Inb N

ot
in the integral involved and then referring to Problem 9, Sec. 5, give a direct veri-
fication that the set of eigenfunctions X, (x) obtained in part (a) is orthogonal on
the interval 1 < x < b with weight function p(x) = 1/x, as ensured by Theorem 1
in Sec. 69.

Figure 2.93: Problem statement

Solution
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Part (a)

X' (x) +xX"” (x) + %X(x) =

X2 X" (x) +xX (x) + AX (x) =0 1)

To transform the above to X"’ (s) + AX (s) = 0, let x = €°. Therefore X _ e or & = 5. Now

ds dx
dX dXds
dx  ds dx
dX s 2)
ds (
And

dx ~ dx\dx
d dX_s
=—|—e
dx \ ds

©X _ Xds | dXd -
= —e
dx2 ~ ds? dx ds dx

#X  d (dX)

Hence, by product rule

_d?X dX d
__ p,S —S o =S\ ___
TR d 7 € )
a2x
=—2¢ e + ( e®) (e™)
2
_ X d_X 3)
ds? ds

Substituting (2,3) back into (1) gives

?xX  ,dX ax
2| ,-2s _ —S X =
X (e e e ds)+x(—dse )+A 0

But x = ¢° and the above simplifies to

a?xX dX dX
ezs(e‘zs——e )+e( 5)+)\X:0

ds? ds ds
de dX ax P AX =0
ds2 ds ds
2X (s)
72 +AX(s) =

When X (1) = 0, which means when x = 1, and since x = ¢°, then when s = 0. Hence
X (1) = 0 becomes X (0) = 0. And when x = b, then s = In (b). Hence the second condition
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becomes X (In (b)) = 0. Therefore the new B.C. are
X(0)=0
X(In(b)) =0
By referring to problem (4) in section 35 we see that the eigenvalues are

n\2
A= ()

Where here ¢ = In (b). Hence

2
nrt
A, = (m(b)) n=1,2,3,

e

nm

Where a,, = o)

And the eigenfunctions are, per section 35
X, (s) = sin («,,5)
In terms of x, the eigenfunctions become

X, (s) = sin (a,, In x)

Part (b)

b
(X, (x),X,, (x)) = f sin (a, In %) sin (@, In %) p () dx
1

But from (xX’ (x))" + %X(x) = 0 and comparing this to (rX’)" + (/\p + q) X =0, we see that

r(x)=xandg=0andp = % Hence the above integral becomes

b1
(X, (x), X, (x)) = fl — sin (a1 3)sin (et 10 ) dx

Tt

Lets = 27 Then & = 1% or dx = Z1In(b)ds. When x = 1 then s = 0 and when x = b
Inb dx xInb T

then s = 7. Hence the above integral becomes

X, (x), X, (x)) = f o % sin (ans 1;1b) sin (am%) (% In (b) ds)

s=0

1 T Inb Inb
=—ln(b)f sin(ans - )sin(ams - )ds

Tt 0 Tt Tt

and a,, = 2 therefore the above becomes

But a,, = U

In(b) In(b)’
1 7 ([ nmt slnb L[ mm slnb
(X (), X (0)) = - In (b)j; Sm(ln O n )bm(ln 0 n )ds
LN (b) f " sin (ns) sin (ms) ds 1)
Tt 0
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Referring to Problem 9., section 5 which says that

m 0 #
f sin (nx) sin (mx) dx = { n e
0 > =0
Applying this to (1) shows that
0 n#m
(X (), X (1)) = { T _
2 n=>0

Hence X, (x) and X,, (x) are orthogonal, since this is the definition of orthogonality.

2.10.2 Section 72, Problem 3

X +A2X=0, X'(0) =0, X(c) = 0.
P e g

D
Answer: A, =a?,  ¢u(x) = \/gcosanx n=1,2,..); ap 5

Figure 2.94: Problem statement

Solution

Solve for eigenvalues and normalized eigenfunctions.

X"+ AX =0
X' (0)=0
X(@)=0

Writing the boundary conditions in SL standard form
a1X(0) + (ZzX/ (0) =0
b1 X () +b,X" (c) =0

Shows that a; = 0,4, =1 and by =1,b, = 0. Therefore aja, = 0 and b;b, = 0. But we know
that if aqa, > 0 and b;b, > 0, then A > 0 is only possible eigenvalues. Let A, = a2. a > 0.
Hence the solution to the ODE is

X, (x) = Acos (a,x) + Bsin (a,,x)
X, (x) = —Aa,, sin (o, x) + Ba,, cos (a,,x)
First B.C X’ (0) = 0 gives
0 = Ba,,

Which implies B = 0. Hence the solution now becomes X, (x) = A cos (a,x). For the second
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BC
0= Acos(a,c)
0 = cos (a,c)
Which implies
c=2,3250
an - 2/ 2/ 2’
T
:(271_1)5 7’1:1,2,3,"'
Hence
@n-1n
a, = - n=123,--
c 2

And the corresponding eigenfunctions are

X, (x) = cos (a,x)

((Zn -1)n )
= COS —X

c 2
To find the normalized X, (x) which we call it ¢, (x), then by definition
X, (x)
(x) = ==
P %,

But
X, @I = [ p)X2(0)d
X, (I = | ) XE @

Comparing the ODE X" + AX = 0 to (rX")" + (/\p + q) X =0,weseethatr(x) =1andg=0
and p = 1. Hence the above becomes

C
1%, (P = [ cos? (@) dx
0

c

2
Therefore || X,, (x)|| = \/g which shows that

X, (x)

¢n (x) = -

2

2

= \/gcos (a,,x)
where
n-1)mn
a, = 5 n=1,23,-

Which is what required to show.

156



2.10. HW 10 CHAPTER 2. HWS

2.10.3 Section 72, Problem 6

L 6. f In Problem 1(a), Sec. 69, the eigenvalues and eigenfunctions of the Sturm-Liouville
~ problem

X'y + 3X= 0, X(1) =0, X(b)=0

were found to be

2

n?

= o X, (x) = sin(a, In x) (n=1,2300

where o, = nz/ In b. Show that the normalized eigenfunctions are

Pn(x) = 1/ i sin(a, In x) (ni=1,2, 0
Inb

Suggestion: The integral that arises can be evaluated by making the substitution

and then referring to the integration formula established in Problem 9, Sec. 5.

Figure 2.95: Problem statement

Solution
X, (x) = sin (a,, In x)
nrTt
=— n=1,2,3,:-
“n Inb
The normalized eigenfunction is given by
X (x)
X)= ———
) =
But

b
|mmW=meﬁmw

Comparing the ODE (xX’)" + %X =0to (rX") + ()\p + q) X =0, we see that 7(x) = x and

g=0andp = i Hence the above becomes
2 b1 .2
X, ()I2 = f — sin (@, In ) dx
1
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1 =n

Let s = in—zn. Then Z—i = - or dx = ln(b)ds. When x =1 then s = 0 and when x = b

n
then s = 7. Hence the above integral becomes

1%, P = [ s (a,f - b) (2 10 0)as)

s=0

1 n Inb
:—m(b)f sinz(ans 1 )ds
0 TC

Tt

But a, = (b) therefore the above becomes

O

_ 1 2
=) fo sin? (ns) ds

1 11
=~ (b)f =~ = cos (2ns) ds
TC 0 2 2

1 1  (2ns
= ;ln(b)[——zsm(zn )O]

1 n 1 . -
= ;h’l(b) (E - ESIH(S)O)

:%m@

I1X, I = %m(b)f sin ( m Slnb)ds

Hence

sin (a,, In x)

In (b)
Which is what required to show.
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2.10.4 Section 72, Problem 9

Rl S Gl SRR R AR APy

9.| Use the solutions obtained in Problem 3 to find the eigenvalues and normalized eigen-
~ functions of the Sturm-Liouville problem

3,
GXY +-X=0,  X'L=0, X@)=0.

Answer:

= B ’ 2n—1)
hn =0, Pn(X) =4/ cos(a, In x oty _ @n i
Inb ¢ Nl et b 2Inbp

Figure 2.96: Problem description

solution

From problem section 69 problem 1, we know that (xX’ (x))" + %X (x) = 0 can be transformed
to X" (s) + AX (s) = 0 using x = ¢°. With boundary conditions in s found as follows. When
x =1 then s = 0 and when x = b then s = Inb. Hence we obtain the SL problem

X"(s)+AX(s)=0 (1)
X"(0)=0
X(nb)=0
But problem 3 is
X"+ AX=0 (2)
X"(0)=0
X(@)=0

Pu (x) = \/g cos (a,x)

@n-1n
—

By comparing (2) and (1) we see it is the same problem, except ¢ — Inb. Hence the solution
to (2) is the same as the solution in (1) but with ¢ replaced by Inb. Hence the solution is

And it had the solution

where

a, = n=1,273,-

2
B (5) = |y o5 (@)
_@n-Dm 3
==y =123
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But s = In x, hence the above becomes

Oy (x) =4/ ﬁ cos (a,, In x)

n-1)mn
= —_— :1’2’3,...
= e 20 "

Which is what required to show.
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211 HW 11

Local contents

[2.11.1 Section 73, Problem 8| . . . . . . . ... .. ... .. . 161
[2.11.2 Section 73, Problem 10[ . . . . . . . . . ... .. .. ... .. 163
[2.11.3 Section 74, Problem 1| . . . . . . . . . . .. .. ..o 164
[2.11.4 Section 74, Problem 4| . . . . . . . .. ... ... .. 166
[2.11.5 Section 77, Problem 2| . . . . . . . . . .. .. 170

2.11.1 Section 73, Problem 8

8; ;EFind the Fourier constants ¢, for the function f(x) = x (1 <x < b) with respect to the
normalized eigenfunctions in Problem 6, Sec. 72, and reduce those constants to the
form

nr[l + (=1)"1b]

(Inb)? + (nm)?

Suggestion: The integration formula

i e*(sinax — a cos ax)
e*sinaxdx = 5 2
1+a

¢, =~2Inb (= 2y,

derived in calculus, is useful here.

Figure 2.97: Problem statement

Solution

e = {f (), 0 ()
b
= f1 P () f (), () dx

But p(x) = - and O, (x) = ‘/ % sin (a, Inx) and f (x) = x therefore the above becomes

Cy —f w/—sm(oznlnx)dx
1 ln
:wlmﬁ sin (o, Inx) dx
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But a,, = %, therefore

2 b nm
C, = m‘f; SlIl(mth)dx

ds w1

Lets—T(1 , ,henceﬂ— T When x =1 — s = 0 and when x = b — s = 7t. The above
becomes
2 (T In (b)
Cp, = \/%fo sin (ns)
Inb

But Inx = % Inb, hence x = ¢ 7 , and the above becomes

A /2 IH f lnb

e’ 7 sin (ns)ds (1)

Using
ax

. € .
f e sin (bx) ds = P (asinbx — b cos bx)

. _ Inb _ . .
Where in our case 2 = — and b = n. Applying the above gives

Tt

Inb
no b e Inb
f e n sin(ns)ds = | ———— | ——sinnx —ncosnx
0 (M) 2\ T
T 0
1 b (Inb
=— en | —sinnm—ncosnm|—(0—-n)
—) +n
us
But sinn7mt = 0 since 7 integer, giving
7T Inb 1
f e’ m sin(ns)ds = ———— [-bncosnm + n]
0 Inb 2
TT
72

= [-bn (-1)" +n]

72 (bn 1)+ n)

(In b)? + m2n2

Hence (1) becomes

_ V2In (B) nm? (1 + (-1)"*! b)

n (Inb)? + (n)?

_ mnn (1+(-1)""p)

(Inb)? + (rn)?
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Where n =1,2,3, -+, which is the result required to show.

2.11.2 Section 73, Problem 10

10.| Suppose that a function f, defined on the interval 0 < x < ¢, is piecewise smooth there.

(@) Use the normalized eigenfunctions (Problem 7, Sec. 72)

Pn(x) = \Esinanx n=12..,

where
L A 2n—1rm
N e 26 )
to show formally that
f(x):Zaninanx 0O<x<o),
n=1
where
Dl i
B,,:E/f(x)smoznxdx (=L RN )
0

(h) Note that according to Problem 6, Sec. 15, the series in part (a) is actually a Fourier
sine series for an extension of f on the interval O < x < 2¢. Then, with the aid of
Theorem 2 in Sec. 15, state why the representation in part (a) is valid for each
point x (0 < x < ¢) at which f is continuous.

Figure 2.98: Problem statement

Solution

Part (a)

2.
\/;sm (a,x) n=1,23,-

2n-1
2x

Since ¢,, (x) are complete, then we can represent f (x) using ¢, (x) as generalized Fourier
series using

P (x)

a,=Tm

f(x):iBngbn(x) O<x<c
n=1
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To find B,,, since ¢,, (x) are orthonormal eigenfunctions then
By = {f (), ¢, (1))
C
= [ P () guix
0

But problem (7) section 72 is X" + AX = 0 which implies that p (x) = 1. Hence the above
becomes

B, = fo F) %sin(anx)dx

_ \/g j; £ (x) sin (a, %) dx

Which is the result required to show.

Part (b)

Theorem 2 section 15 gives the conditions on f (x) for it to have a Fourier sine series which
converges to f (x) where f (x) is continuous and converges to mean value of f (x) where f (x)
have a jump discontinuity.

Since f (x) is piecewise continuous in this problem, then for those regions where f (x) is
continuous between 0 < x < ¢, the series found in part(a) converges to f (x) and is valid
Fourier sine series representation of f (x) there.

2.11.3 Section 74, Problem 1

by
'{f} Show tha.t when f(x) =1 (0 < x < 1) in the boundary value problem (1)~(2) in Sec. 74,
" the solution (6)(7) there reduces to

co

u(x,t) = 2h Z i sime, T exp(—cxflkt) COS &ty X,

{3 @, (h + sin’ )

where tan «, = h/a, (, > 0).

Figure 2.99: Problem statement

Solution

Solution (6) is given by

u(x, t) = i A, exp (—a%,kt) cos (a,x) (6)

n=1
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Where

A, = Lflf(x)cos(a x) dx

h + sin” a,,
But f (x) =1 which reduces the above to

2h

1
A= ———— f cos (a,,x) dx
h+sin“a, Jo

2h , 1
Tt

2h 0 ()
= — s\«
h + sin? a,, !

Hence (6) becomes

u(x,t) = 2h 2 M exp (~a2kt) cos (a,)

+blH o,

h
But from example 1, section 72 we are given that tan (a,c) = —. But ¢ =1 in this problem,
n

hence
tan (a,) = —
a?’l

Which is what required to show.
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2.11.4 Section 74, Problem 4

e &
4. (a) Give a physical interpretation of the boundary value problem

U (x, 1) = kg, (x, t) 0<y <
M(O, t) = 07 ux(]-’ t) T _hu(17 t)r u(xa O) = f(X),

where h is a positive constant. Then derive the solution

u(x,t) = Z B, exp(—;xikt) sin a,,x,

h=1
where tano, = —a,,/h (o, > 0) and
; 2h v g
B m/ﬂf(x) sin o, x dx (n=— 1

(b) Use an argument similar to the one at the end of Sec. 74 to show that the §
found in part (a) formally satisfies the boundary value problem (8)-(10)
section when the function f there is odd, or when

If(—x)=—f(x) (=1

Figure 2.100: Problem statement

Solution

Part (a)

1 (0,t) = 0 means that the left surface is kept at fixed temperature which is zero. And
u, (1,t) + hu (1,t) = 0 means that the surface heat transfer takes place at face x =1 into the
medium at temperature zero. To solve the PDE, we first check the boundary conditions by
writing them as

aju(0,t) + au, (0,t) =0

biu(1,t) + byu, (1,t) =0
Then a; = 0,a, = 0. Hence aya, = 0. And b; =1,b, = h. Then since it is assumed that i > 0

per section 26, then bib, > 0. And since g (x) = 0 from the PDE itself, then we know that
eigenvalues are A > 0.

Let u = X (x) T (f) then the PDE becomes

T'X = X"T
T/ 3 XI/ 3 /\
T X
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Hence the Sturm Liouville problem is
X"+ AX =0
X0)=0
X'1)+hX@1)=0
Where p (x) = 1.

Case A =0
Solution is
X(x)=Ax+B
Atx =0
0=B8B

Hence solution becomes

X(x) = Ax
At x =1 the second boundary conditions gives

A+hA=0

Al+h)=0

For non trivial solution 1 + /% = 0 or & = —1. But we assumed that & > 0. Therefore A = 0 is
not eigenvalue.

Case A >0

Let A = a?,a > 0. Hence solution is

X (x) = Acos (ax) + Bsin (ax)
At X(0)=0

0=A
The solution becomes
X (x) = Bsin (ax)

At x =1 the second boundary conditions gives

Ba cos (o) + hBsin (a) =0

acos(a)+hsin(a) =0

tan (a) = —%

Therefore the eigenvalues are given by solution to

tan (a,) = —% n=1,2,3,-

And eigenfunctions are

X, (x) = sin (a,,x)
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The normalized eigenfunctions are
X (%)
(x) =
P X, i

But

1
1X, (I = fo p (x) X2 (x) dx
= fl sin? (a,x) dx
0
= %fll — cos (2a,,x) dx
0
_1{, _[sin@a !
2 [ 2a,, L
1 1
= - (1 ~ 5 [sin (20znx)](1))
(1 _sin (Zan))

2a,,

N

sin (2a,,)

NI N =

4a,,

_n sin(a,)

, therefore the above becomes
cos(ay,)

But sin (2a,,) = 2sina,, cos,, and a,, =

1 2sina, cosa
2 n n
1X5 (OII” = 5 W
cos(ay,)
1 0082 ay,
2 2h
h + cos? ay,

2h

Hence
X, ()

h+cos? ay,
2h

~ o
=\ i+ coa, @)

(pn (x) =

Now we use generalized Fourier series to find the solution. Let
(x,£) = 3 By (£) by (x) 1)
n=1
Substituting this back into the PDE gives

MBi (), (x) =k D B, (H) Py (x)
n=1 n=1
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But ¢/ (x) = -1,¢,, (x) = —a%¢,, (x). The above becomes

Z B}, (#) ¢n(x) = -k 2 B, () a%(pn (x)
n=1 n=1
B, (t) + ka?B,, (t) =0

The solution is
B, (t) = B, (0) e !

Hence (1) becomes

u(x,) = ¥, B, (0) e e, (x)
n=1
At t = 0 the above becomes

X) = 2 Bn (O) ¢n (JC)
n=1

Therefore
Bn (O) = <f (x) 7 qbn (x)>
1
=meﬂwmmw
2h 1
- / o fO F () sin (a,x) dx
Therefore

B, (t) = B, (0) et

:(,/m f f(x)sm(anx)dx)e ket

and solution (1) becomes

— 2h
- ~kadt [P
u(x,t) = E: P COSZ ( f f (x)sin (a,,x )dx) e htcoRa, sin (a,,x)
2 f (x) sin (o, x) dx | €4 sin (a, )
i — an f(x)sin (a,x)dx|e sin (a,,x

Which is what required to show.

Part (b)

We need to show that the solution found in part (a) also satisfies the PDE when -1 < x <1

Uy = kit -1<x<1,t>0
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With boundary conditions (9)
u, (1,8) = hu(-1,t)
u, (1,t) = —hu(1,t)
And initial conditions (10)

u(x,0) = f(x)
When f (x) is odd.

The solution found in 4 already satisfies the above PDE with the second boundary conditions
in (9). Since sine is odd then the solution in part(a) is also odd. Then its partial derivative
is even in x, hence the first boundary conditions in (9) is also satisfied

u, (-1,t) =hu(-1,t) = —u, (1,t) = hu(1,t)

Finally we know that u (x,0) = f (x) for 0 < x < 1. Furthermore when -1 < x < 0 the fact

that u and f (x) are odd enables us to write

u(=x,0)=-u(x,0)=f(-x)=-f(x)

2.11.5 Section 77, Problem 2

n=1

where o, = (21 — D /2.
2\ Heat transfer takes place. at
‘ temperature zero, according

the surface x = 0ofasl
to the linear law of surfac

u,(0,t) = hu(0, 1)

The other boundary condition§ are as indicat
so that k = 1in the heat equation. By procee
formula etlyod i :
hx +1 z sinap(l — edinby 0

—2h Al RIS

wx,t) = 7o - (7 + cos? o)

= “"(X”/h (an > 0)

where tan o, =

170

ab0<x <1 into a medium at
o heat transfer, so that (Sec. 26)

(h > 0).

edin Fig. 61, and the unit of time is chosen
ding as in Sec. 77, derive the temperature
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0° uE,0)=0 |u=1

FIGURE 61

Suggestion: In sim

; plifying the expressio i ise, |
S e g P n for the Fourier constants that arise, it

_hsina,  cosa,

O ¥ T ]
Figure 2.101: Problem statement

Solution

Solve

Up = Uy, 0<x<1,t>0
With boundary conditions
u, (0,t)—hu(0,t) =0
ul,t)y=1
With / > 0. And initial conditions u (x,0) = f (x).

Because the second B.C. is not zero, we need to introduce a reference function r (x) which
satisfies the nonhomogeneous boundary conditions.

Let 7 (x) = Ax + B. When x = 0 then the first BC gives
A-hB=0
And the second BC gives
A+B=1
From the first equation A = hB. Substituting in the second equation give hB + B =1 or
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1 h
B(l+h)=1orB= e Hence A = e Therefore

r(x)=Ax+B
h 1
=TT
:hx+1 1)
1+h
To verify. r, = 1% When x = 0 then 7 (0) = 11? Hence 7, (0) — hr (0) = % —hﬁ =0 as

expected. And when x =1 then r(1) =1 as expected. Now that we found 7 (x) then we write
u(x,t)y=v(xt)+r(x)
Where v (x, t) is the solution to the homogenous PDE
U = Uyy 0<x<1,t>0
With boundary conditions
v, (0,t)-hv(0,t) =0
v(,t)=0

We can now solve for v (x,t) using separation of variables since boundary conditions are
homogenous. Separation of variables gives

X"+AX=0
X' (0)-hX(0)=0
X1)=0
Using problem 5 section 72, the eigenfunctions and eigenvalues for the above are
2h .
(z)n(X): msm(an(l—x)) 7’[21,2,"'
-a
tan (a,,) = hn
With a,, > 0. Hence the solution v (x, t) using generalized Fourier series is
v(x,t) = Y B, (1) ¢, (x) (2)
n=1

Substituting into the PDE v; = v,, gives

DB (1) ¢y (x) = D B, (D P (x)
n=1 n=1

==Y, B, () a%¢, (x)

n=1

Therefore the ODE is
By, (t) + 7B, (t) = 0
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The solution is
B, (t) = B, (0) e
Hence (2) becomes

v(x,t) = i B, (0) e_a%tqbn (x)

n=1
And since u (x,t) = v(x,t) + r (x) then

() = f} B, (0) e~ Btgy, (x) + 1
n=1

1+h
Now we find B,, (0) from initial conditions. At t = 0 the above becomes
hx 1
0= ZB (0) ¢y () +

+h
h 1 >
s ZB 0) 6, (1)

+
Hence
hx +1
Bn<0>=< ¢n<>>
hx +1
fp qbn(x)dx
Lhx+1 2h
= — . 1_ d
o 1+h \/@Sm(“n( X)) dx
1 2h 1
:_1+h\/Jf (hx+1)Sin(an(1_X))dx (3)
nvo
But

1

1 1
hx +1)sin(a,, (1 — x))dx = in(a,(1-x))dx+h in(a,(1-x))d
fo(x+)s (a, (1 - x)) dx fs(oz( x))x+f0xs (@, (1 1)) dx

0
[eos(a, -x)] [ cos (@, (1= 2)) + sin (@, (1 - ) !
- [ a” ]0 * | a% 0
_ locos(@) [anx cos (a, (1 - 2)) + sin (a, (1 - )]
al’l a?’l
1 —cos(a,,)

=—"+ —2 [a,, —sina,]
a?’l a?’l
a, —a, cos(a,) + ha, —hsina,

a

sin(ay,) a . .
% = —7" or hsin(a,) = —a, cos(a,) or —hsina, = a, cos(w,), hence the above
cos(ay,

173



211. HW 11 CHAPTER 2. HWS

simplifies to
1 , a, + ha,
f (hx + 1) sin (a, (1 - %)) dx = 2200
0 ay

_1+h

dy

B, (0) = 1 + h
1+ h h+ cos2 an
\/ h + cos? a,
Hence final solution becomes

e+l &
u(x,b) = % + 3 B, (0) e, (x)
n=1

Therefore (3) becomes

hx +1 1 o o
1+h ~= ay h + cos? a,, p( ay, ) I+ coa, sin (a,, (1 — x))
hx +1 > sin(a, (1 - x))

= -2h exp _ a2t
1+h nglan<h+coszan) ( n)

Which is what required to show.
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3.1 exam 1 notes

3.1.1 Chapter 1, sections 1-8 (Fourier series)

section 1

definition of left and right limits. definition of piecewise continuous function.

section 2

ops . . . a 2n a
definition of Fourier cosine series f (x) = ?O + 2:;1 a, cos (n?x) = EO + Z;ozl a,, cos (nx) for

O<x<m.

section 3

Examples of Fourier cosine series

section 4

b,, sin (nz—nx) = %0 + 220:1 b, sin (nx) for 0 < x <

definition of Fourier sine series f (x) = Z;o: =

TC.

1
section 5
Examples of Fourier sine series

section 6

Fourier series For period T = 27

- 2 2
f(x)z%+Zancos(n?nx)+bnsin(n%x) —M<X<T
n=1

a o0
~ 24 Z a, cos (nx) + b, sin (nx)
2 n=1

Where

1 T

ﬂnz—f f (x) cos (nx) dx n=0,1,2,-
T =Tt
1 T

bn:%f f (x) sin (nx) dx n=12--

If f (x) is even then b, = 0 and if f (x) is odd, then a, = 0.
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section 7

Fourier series examples.

section 8 Adoption to different regions

Shows how F.S. on —L < x < L can be obtained from know F.S. on -7t < x < 7t. Not clear
why example 2 on page 22 replaces a = —.

3.1.2 Chapter 2, sections 9-20 (Convergence of Fourier series)
section 9 (one sided derivatives)

oo = gy L0 5)

X=Xp X —Xg

o f-f(x)
fL(x) = %i%lox_—%

Smooth functlon is one who is continuous and its derivative is also continuous. For example
f(x) = x? is smooth, but f (x) = |x| is not smooth.

Piecewise smooth function is one which f (x) and f’ (x) are piecewise continuous.

section 10 (Properties of Fourier coefficients)

Bessel’s inequalities

5, = 0
Nt <2 [ [l ax
g, b =0

section 11 (Two Lemmas)

Lemma 1 If f (x) is PW.C. on 0 < x < 7t then

Nninmfonf(x)sm((z\u %)x)dx ~0

Lemma 2 If ¢ (x) is PW.C. on 0 < x < 7 and that g/, (0) exist, then
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x=—=g(0"
ZSing Zg( )

lim
N—-ooco

fong(x) sin ((N + %) x)d -

sin((N+%)x)
Where — T is called the Dirichlet kernel Dy (x).
s 5
2

1 N
Dy (x) = >+ ) cos (nx)
n=1

sin ((N + %) x)
ZSing

Dy (x) =

Tt

fonDN(x)dx: >

Section 12 (Fourier theorem)

If f(x)is PW.C. on -t < x < 7t and f (x) is periodic on all of x with period 27 then at each
x where f’, (x) and f’ (x) both exist, then f (x) converges to the average of f (x) at x which
s flt)+f@)

5 . Proof is long.

Section 13 (Related Fourier theorem)

Nothing new here. Seems same as last one. If f (x) is PWC and f’ (x) is PWC, and f (x) is
periodic, then F.S. of f (x) converges to mean of f (x) at each point x.

Section 14 (Examples)

Examples on the Fourier theorem

Section 15 (Convergence on other intervals)

Nothing new here.

Section 16 (Lemma on absolute and uniform convergence)

If f(x) is continuous on —7 < x < 7 (notice it has to be continuous, not PWC) and if
f(=m) = f(m) and f’ (x) is PWC on - < x < 7t then

o0
2 a2 + b2
n=1
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converges. Proof is given. And

N 1 - )
Z“ﬁﬁ“ﬁzﬁgf [f@]d N=1,23-
n=1 -

Where
F () = ? + 3 a, cos (nx) + B, sin (nx)
n=1
&g = 0
a, = nb,
B, = nay,

Section 17 (Absolute and uniform convergence of Fourier series)

M test is used to check if series is U.C. (uniform convergent). If we can find 2:;1 M,, which

is convergent and M,, is positive constant, and where |fn (x)| <M, foreachnina<x<b,
then series Z:o:l fn(x)is U.C.

Theorem If f (x) is continuous on -7 < x < 7w and f (—7) = f(7) and f’ (x) is PWC, then
f (x) both absolutely and uniformly convergent,

Section 18 (Gibbs phenomenon)

Not on exam.

Section 19 (Differentiation of Fourier series)

Same conditions as section 17 theorem. If f (x) is continuous on - < x < 7 and f (-7) =
f () and f’ (x) is PWC, then F.S. of f (x) can be differentiated term by term.

Section 20 (Integration of Fourier series)

As long as f (x) is PWC, we can integrate F.S. term by term.

3.1.3 Chapter 3 (partial differential equations of physics)

Section 21 (Linear boundary value problem)
Aty + Buy, + Cuyy, + Duy + Euy + Fu =G

And definitions.
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Section 22 (1D heat PDE)
Flux is ® = —KZ—Z where K is thermal conductivity. Flux is amount of heat passing in normal
direction per unit area in one second. Derivation of heat PDE

Uy = Kityy

where k is thermal diffusivity k = % where o is specific heat and 06 is density of material.

Section 23 (Related heat equations)

Nothing much here.

Section 24 (Laplace in cylindrical and spherical)

Just need to know the equations. Will be given in exam.

Section 25 (Derivations)

Not in exam

Section 26 (Boundary conditions)

Just need to know Neumann and Dirichlet.

Section 27 (Duhamel’s principle)

Do not think this will be on exam.

Section 28 (Vibrating string)

Derivation of v, = 4y, using physics. Will not be on exam.

Section 29 (Vibrations of bars and membranes)

Generalization of section 28.

Section 30 (General solution to wave equation)

To derive solution to yy; = a%yy,, use u = x + at,v = x — at and the PDE becomes v,, = 0
which has solution y = ® (u) + ¥ (v) or

y(x,t) =D (x +at) + W (x —at)
Where initial conditions are v (x,0) = f (x),y; (x,0) = g (x) then the solution becomes

180



3.1. exam 1 notes CHAPTER 3. STUDY NOTES

x+at

1 1
y(x,t):E(f(x+at)+f(x—at))+— g (s)ds

2a x—at

Section 31 (Types of equations and boundary conditions)
1. Hyperbolic B2 - 4AC > 0
2. Elliptic B?> —4AC <0
3. parabolic B2 - 4AC =0

3.1.4 Chapter 4 (The Fourier method)

Section 32 (linear operators)
L (C1u1 + Czlxlz) = C1Lu1 + Cle/lz

Section 33 (Principle of superposition)

Suppose each function u; satisfies a linear homogeneous differential equation or boundary
value problem Lu = 0, then Z:;l u, also satisfies the same equation.

Section 34 (Examples of Principle of superposition)

Some examples. Go over.

Section 35 (Eigenvalues and eigenfunctions)

Show how to solve X" + AX = 0O for different boundary conditions.

Section 36 (A temperature problem)

Applying Eigenvalues and eigenfunctions to heat PDE on rod.

Section 37 (Vibrating string)

Applying Eigenvalues and eigenfunctions to wave PDE On string uy, = a1, with fixed on
ends and have initial conditions.

Section 38 (Historical development)

Not on exam
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Exams

Local contents
4.1 exam 1l . . . . e e e s
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41 exam1

Local contents
411 questions| . . . .. ... ...

411 questions

1. (30 points)
(1) Define the Fourier series over the interval —¢ < z < c corresponding to

piecewise continuous function f(z).
(2) State the convergence theorem for such Fourier series.

(3) For what value a does the Fourier series over the interval —1 < B <l

corresponding to the function

flz)=e"+az N
~C

converge to f(z) at z = 1. T

2. (30 points)

Find eigenvalues and corresponding eigenfunctions.

X'z)+ A X(z)=0, 0<z<1

subject to the boundary conditions X’(0) = 0 and X (1) = 0.

R USRS ——
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7\
3. (40 points) E‘

g
Solve the boundary value problem ‘*ﬁ 3('{/{

ytt(x:t) - y:m:(xn i’) “’y(l', i)) O<z< T, t > 0;

y(0,t) = y(m, 1) = 0; y(x,0) =0, y(z,0) = 1.
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4.2 exam 2

Local contents
421 questions| . . . . .. ... 186

421 questions

. (40 points) | ;
With the aid of the expansion

T— =2

solve the following problem.

us(z,1) = Uge(z, ) +t(m—1z), O< 2z <7, 1> 0;

B
\\/ u(0,t) =0, u(m,t) =0; u(z,0)=0.

. (20 points) Verify that all of the conditions of the Fourier sine integral repre-
sentation are satisfied by the function f defined by

T when 0 <2 <1
flz) =< 2—z when 1 <z <2
0 when z < Qor z > 2

and show that for 0 < z < oo,

2 [ (2sina—sin2a) snax
f(:t):—/ ( 5 ) da.
s 0 (8%
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3. (40 points)
Find the bounded harmonic function w(z,y) in the semi-infinite strip 0 < z <
00, 0 <y < 1 that “satisfies the conditions u(z,0) = 0, u(0,7) = 0 and u(z,1) =
1l Wherae f(z) is the function given in problem 2. /5\ "
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4.3 Final exam

Local contents
4.3.1 questions| . . . . . . .. e 188

4.3.1 questions

. (30 points) Suppose both f(z) = sin(27rz) and g(z) = cos(2rz) + ¢ are eigen-
functions corresponding to distinctive eigenvalues to the following Sturm-Liouville
problem, where 7, r’ and ¢ are all assumed to be continuous on [0, 1]. Find con-

stant c.

(@)X ()] +[a@) + A (s +1)] X(z) =0, 0<z<1;

2. (30 points) Solve for the eigenvalues and normalized eigenfunctions.

——— e -

X"+2X =0, 0<z<I;
X(0)—X'(0)=0, X(1)+X'(1)=0.

3. (40 points) Solve the boundary value problem

(1+t)u(z, t) = upe(z,t) (O<z<1, t>0).
’L'S:C(O, t) = _”1: u(la t) == 0: U(.’L')O_) ...Z:HMQ,r..,.‘uwu.=w~»-=w«“.
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