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1 Section 57, Problem 5

“ | i g Wi . .
| &, Find the bounded harmonic function u(x, y) in the semi-infinite strip0 < x <1,y > 0

that satisfies the conditions

14, (%, 0) =105 u(0; )= 0, w1 y) ="F ()

2 [ sinhax cosa %
Answer: u(x, y) = = / el S / f(s) cosas ds da.
0 0

o cosh a

Figure 1: Problem statement

Solution
Vzu(x,y):o (O<x<1,y>0)
uy (x,0)=0
u(0,y)=0
e (Ly) = £ (v)
As normal, we use separation of variables, ending in XYN + YTU = —-A. We will take the
eigenvalue problem along the Y direction. This leads to
Y'"+AY =0
Y (0)=0

Where A = a?, @ > 0. The steps that led to this were done before. Therefore the solution is
Y (y) = (1 COS (ay) + ¢ sin (ay)
Y’ (y) = —ciasin (ay) + Ccpax cos (ay)
At y = 0 the above gives
0=oca
Which implies ¢, = 0. Hence the eigenfunctions are
Y, (y) = cos (ay)

With the eigenvalues being A = a? for all real positive values of . The corresponding X (x)
ode is

X" -AX=0
X(0)=0
The solution to this is X (x) = c1e™ + coe™®, which at x = 0 gives
O=c1+0
Which makes the solution as X (x) = cie®™ — cie™ = ¢y (6™ —e ™) = 2c¢ysinh(ax) =

c3 sinh (ax). Therefore the general solution is given by the real form of the Fourier integral
u (x, y) = fo " A () sinh (ax) cos (ozy) da (1)
Taking derivative w.r.t. x gives
Uy (x, y) = ](; " A (a) a cosh (ax) cos (ay) da

At x =1 the above becomes

f (y) = j(; " (A (a) a cosh (a)) cos (ay) da



Therefore

A(a)acosh (a) = % j:of (y) cos (ay) da

2 00
A (0() = m L f (y) CcosSs (ay) da

Substituting the above in (1) gives the solution

o0 2 o0
) = E— S ds | sin d
u (x y) j; ( j; £ (s) cos (as) s) sinh (ax) cos (ay) a

7t cosh (a)
2 o sinh (ax) cos (ay) 00
== fo e ( fO £ (5) cos (as) ds) da

Which is the result required to show.



2 Section 58, Problem 5

e e e o

5. (a) Thefacex = 0of asemi-infinite solidx > Ois insulated, and the initial temperature
distribution is f(x). Derive the temperature formula

(o9}

u(x,t) = flx+ 20 Vkt) e do

e —x/@2Vkt)
i iy / f(=x + 20 /kt) e do.
~/7_T x/ @kt

(b) Show that if the function f in part () is defined by means of the equations

1 1 when 0 < x < c,
L= 0  when x>,

then

1 c+x 1 c—Xx
u(x,t)=§erf m +§erf 2—\/—? 4

Figure 2: Problem statement

Solution

2.1 Part (a)

up (x,t) = kuy, (x, t) (0<x<o0,t>0)
u(x,0) = f(x)
u,(0,t) =0
Applying separation of variables leads to
T X"
KT~ X
Hence
X"+AX=0
X' 0)=0
X (x)| <M

Since on semi-infinite domain, then only A > 0 are possible eigenvalues. Let A = a?,a>0,
Where «a takes on all positive real values. Then the solution to the eigenvalue ODE is

X, () = ¢q cos (ax) + ¢, sin (ax)

X/, (x) = —cyasin (ax) + cpax cos (ax)
Atx=0

0=oca
Hence ¢, = 0 and the eigenfunctions are
X, (x) = cos (ax)

The time ODE is therefore T’ + a?kT = 0 which has solution T = ¢™***, Hence the solution
is given by the real Fourier integral

u(x,t) = f " A (@) e cos (ax) da (1)

0

At t = 0, using initial conditions, then the above becomes

f(x)= f " A (a) cos axda
0
A) = % fo " £ (s) cos (as) ds 2)



Using (2) in (1) gives
1 (x, £) = f ( f f(s)cos(as)ds)e ! cos (ax) da

Changing the order of integration

u(x,t) = %j:o fooo (e‘ko‘zt [2 cos (ax) cos (as)] da)f(s) ds (3)

cos(A+B)+cos(A-B)
2

2 cos (ax) cos (as) = cos (ax + as) + cos (ax — as)

Using trig identity cos (A) cos (B) = , then

= cos(a(x +5)) + cos(a(x—s))

Substituting the above in (3) gives

Lo t) = = f " f " (e-kazf [cos (@ (x + ) + cos (e (x — 5))] dav) f (5) s

- - f ( f ! cos (a (x +5)) dar + f " k%t o (a (x—s))da) Fs)ds

0

00 1 b2
fo e~ cos (ab)da = E\/gexp (_E)

Where in our case ¢ = kt and b = (x + s) for the first integral, and b = (x —s) for the second
integral. Using the above formula in (4) results in

I el (x+s)2 1 |n (x—s)2
u(x,t)—;fo (E EeXp(_—Ath )‘FE\/%GXP[— Akt ))f(S)dS

For t > 0. Hence the above becomes
1 foo (x +s)° (x — s)*
(s) exp (— ds + - ds
2kt Yo f 4kt 2+ ikt 4kt

By writing s = —x + 25Vkt for the first integral above, then :—Z = 2vkt. When s = 0 then

Using the formula

u(x,t) =

o= ZL\/IE and when s = oo then 0 = co. And by writing s = x +20 vkt for the second integral

above, then 3—2 = 2\/5. When s = 0 then 0 = ——— Hence the above integral becomes

2vkt
(~x+ (x +20VK))’

u(x,t) = \/n_kf ( x+20\/ﬁ)exp - i do
2
x—|x+ 20\/E
f (x + 20@) exp —( ( )) do
2\/ ikt 4kt
Simplifying gives

20’( ZG\F

u(x,t):%j:: (x+20\/—) BT da+—f (x+2a\/—) Tk

\/_f (x+20\/—) Udo+—f (x+20\/_) - do+ (4)

2vkt 2vkt
Which is the result required to show.

2.2 Partb

f(x)={(1) O<x<c

x>0



Considering the first function in (4), where in the following f (x) = f (x + 20@) then (4)

becomes
u(x,t) = S fﬁé e’ do + fm e do
Vi Jo 0

c+x
X

2 = 2 c+x 2 = 2 c—
= (2vkt p0 - . [2vkt p0° 5 = o
But W= ‘ e % do erf(z«/ﬁ) and W= l e % do erf(zwg), hence the above becomes

1 + 1 -
u(x,t) = Eerf(c x) +§erf(c x)

2kt 2kt




3 Section 58, Problem 7

7. Verify that for any constant C, the function . b
3/2 x?
X, t) = Cxt7?exp| ———
Bitadd P\ 4kt
satisfies the heat equation v, = kv, when x = 0 and ¢ > 0. Also, verify that for those
values of x and 1,

Th}ls show that v(x, t) can be added to the solution (9) found in Sec. 58 to form other §
lut10n§ of tht:‘: problem there if the temperature function is not required to be bounde
Note that v is unbounded as x and ¢ tend to zero (this can be seen by letting x vani
while ¢ = x?).

Figure 3: Problem statement

Solution
2 2
We need to substitute the solution v (x,t) = Cxt 2 e 4t into the PDE v, = kv,, and see if it
satisfies it.
-3 -5 —x2 e 2
vy = —Cxt2e%t +Cxt2eskt |—
T2 4kt?

— 5 -2 x3 3 32
—Cxt2e4t + C—=1t2 g4kt
2 4kt?

And

-3 2 xz -3 -2
v, =Ct2eskt — —Ct2e4kt
* 2kt

— = o 3 —
= Lorzewm - (kfc:t?erkt = Ct7e4_kt)
t

v
2kt (4kt)?
2x 322 [(x 32 3 32
= —C(Ct2e4t —|—Ct2e4t — Ct2 g4kt
akt o © (kt T R )
—x B2y 3 4y 32
= —Ct2ett — —(Ct2e4t + Ct2 p4kt
2kt kt (4kt)*
3x 5 —x2 3 3 A2

12 gkt

=———Ct2ett +C
2k ¢ 19212

Hence v; = kv,, becomes

-3 5= x3 32 3x 5 2 x> 32
—Cxt2e4kt + C——t2¢4t =k|——==Ct2e4t +C 12 g4kt
2 4kt? 4k212
- -5 —x2 x> 3 2 -5 —x2 X3 3 =2
—Cxt2ett + C—=t2eskt = —=xCt2e4t + C—=t2 et
2 4kt? 2 4kt2

0=0

Hence it is satisfied for any constant C.

3 =2
Using v (x,t) = Cxt 2 et , we see that lim,_ o+ v (x,t) = 0. Also lim;_,g+ v (x,t) = 0.
Since the solution to the heat PDE is now not required to be bounded and since v (x, t) has
zero initial conditions, then because the PDE is linear and homogeneous, then solution as
v (x,t) can be added to the solution in (9) using superposition.



4 Section 59, Problem 2

T T |

B} Derive this solution of the wave equation y,, = a2y,, (—o0 < x < oo, ¢ > 0), whi
satisfies the conditions y(x, 0) = f(x) and y;(x, 0) = 0 when —o0 < x < 00:

1 [ee] o
Y, L= e / cos aat/ f(s) cosa(s — x) ds do.
0 —00
Also, reduce the solution to the form obtained in Example 1, Sec. 30:

1
! Y&, 0 =5 [f(x +an) + flx —an).

Figure 4: Problem description

solution

Let y (x,t) = X (x) T (t), then the PDE becomes
T'X =a*X"T
1 T// 3 X// 3
2T X
We take the X (x) ode as the eigenvalue problem. Since the domain is infinite, then only pos-

itive eigenvalue are valid as was shown before. Let A = @, @ > 0. Hence the eigenfunctions
are

-A

X, (x) = A(a) cos (ax) + B () sin (ax)
The time ODE becomes
1 T//
2T
T” +a?aT =0

= —az

Which has the solution
T, (t) = C(a)cos (aat) + D () sin (aat)

Hence the solution is given by the Fourier real integral
1) = N T,t)X,x)d 1
yen= [ 70X ()da 1)
= f (C (@) cos (aat) + D («) sin (aaet)) (A (@) cos (ax) + B (a) sin (ax)) da
0
_ f " C(a) A (@) cos (aat) cos (ax) da + f " € (a) B (@) cos (aat) sin (ax) dar
0 0

+ f " D (a) A (@) sin (aat) cos (ax) da + f " D (a) B(@)sin (aat) sin (ax)da (2)
0 0

Taking time derivative

00

v (x,t) = f ” —aaC (a) A (a) sin (aat) cos (ax) da + f aaC (a) B () sin (aat) sin (ax) da
0 0

(o]

+ f " 2D (@) A (@) cos (aat) cos (ax) det + f aaD (a) B () cos (aart) sin (ax) dex
0 0

At t = 0 the above becomes

(o]

0= f " 2D (@) A (@) cos (ax) dat + f aaD (a) B (e sin (ax) da
0 0

Which simplifies to

(o]

0= fo "D (a) A (@) cos (ax) da + fo D (a) B (a) sin (ax) da

= foo D () (A () cos (ax) + B () sin (ax)) dov
0

Therefore, since A (), B (a) can not be both zero, else eigenfunction is zero, then it must



be that D (@) = 0. Hence the solution in (2) becomes
Y@, b = f C (@) A (@) cos (aat) cos (ax) da + f C (a) B(a) cos (aab) sin (ax)da (3)
0 0

Let C(a) A(a) = Cq(a) and let C (a) B(a) = C, (@) as two new constants, and the above
becomes

(b = f " €4 (@) cos (aat) cos (ax) da + f " €, (@) cos (aat) sin (ax) da
At t = 0 the above li)ecomes O
)= f " €y (@) cos (ax) dar + f ", (@) sin (ax) da
Hence ’ ’

Cy (a) = % f : F(5) cos (as) ds
1 (o)
Co(@) = f F(5)sin (as) ds

Therefore (3) becomes

Y@, b) = % fo ” ( f_ Z F(5) cos (as) ds) cos (aat) cos (ax) dat

N % fo N ( f O; £ (s)sin (as) ds) cos (aat) sin (ax) da

Changing order of integrations in the above for both integrals results in

1 o0 (o)
Y=~ f ( f cos (aat) cos (as) cos (ax) da) F(s)ds 4)
- f ( f cos (aart) sin (as) sin (x) da) Fs)ds
But
cos (as) cos (ax) = % (cos (as + ax) + cos (as — ax))
= % (cos (a (s + x)) + cos (a (s — x)))
and

sin (as) sin (ax) = % (cos (as — ax) — cos (as + ax))

= % (cos (a (s — x)) — cos (a (s + x)))

Substituting the above two relations back in (4) gives

Y@, b = % fo " ( f_ " cos (aat) (cos (@ (5 + 1)) + cos (@ (s — 1)) da) F(s)ds

+%f0m (j:oocos(aat)(cm(a(s—x))—COb(“(S”)) )f(s)ds

Simplifying, terms cancel giving

y(x,t) = 21 foo (foo cos (aat) [cos (a (s — x)) + cos (a (s — x))] da)f(s) ds

(o]

= —f (f cos (aat) cos (a (s — x)) da)f(s) ds

Changing order of integration

y(x,t) = %foo cos (aat) foo f(s)cos (a (s —x))dsda
0 —00

Which is the result required to show.
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5 Section 59, Problem 3

\3’\ Find the bounded harmonic function u(x, y) in the Strip —00 < x < 00,0 < y «

such that u(x,0) = 0 and u(x,b) = f(x) (—00 < x < 00), where f is bounded and
represented by its Fourier integral.

1 [ sinh 32
Answer: u(x, y) = ——/ gty / f(s)cos a(s — x)ds dao.
0 —o0

b1 sinh ab

Figure 5: Problem description

solution

Figure 6: Solution domain for PDE

Letu=X(x)Y (y), then u,, + y,, = 0 becomes
X'X+Y"X=0

SR
X Y
Taking the eigenvalue ODE to be on the x axis, then
X" Y”
x= vy~
Hence
X"+ AX=0
X (x)] < o0
Hence A can only be positive real. Let A = a?,a > 0. Therefore the eigenfunctions are
X, (x) = A(a) cosax + B () sin ax 1)
For the ODE Y” — Ya? = 0 the solution is
Y, (y) = C (a) cosh (ay) + D (a) sinh (ay) (2)

Hence the solution is
u (x,y) = fow X, (0)Y, (y) da
= foo (A (a) cos ax + B () sin ax) (C () cosh (ay) + D (a) sinh (ay)) do (3)
When y =0, the? above becomes

0= fm (A () cos ax + B (@) sin ax) C (a) da
0



11

Which implies that C («) = 0. Therefore the solution (3) simplifies to
u (x, y) = f (A (a) cos (ax) + B (a) sin (ax)) D («) sinh (ay) da
0

= f ” A (a) D () sinh (ay) cosax + B(a) D () sinh (ay) sin (ax) da
Let A(a) D (a) = C(l) (o) and let B(a) D (a) = C, (@), hence the above solution becomes
u (x, y) = j(; N Cq (@) sinh (ay) cos ax + C, (a) sinh (ay) sin (ax) da (4)
When y = b the above becomes
f(x) = fo N Cq (@) sinh (ab) cos ax + C, (a) sinh (ab) sin (ax) da

Therefore

C; (a) sinh (ab) = % f " £ (s) cos (as) ds

C1 ((X) T(S]n—h(ab) f f (S) COs (CES) ds (5)
And

C, (@) sinh (ab) = % f_ " £ (s)sin (as) ds

1 0 .
Cz (a) = m IOO f (S) sm (0(5) ds (6)
Using (5,6) in (4) gives

u (x, y) = f(; (m f f (s) cos (as) ds) sinh (ay) cos (ax) + (T( Sl (ab) f f (s)sin (as) ds) sinh

00 mh mh
_ fo (;TX@ f f(s)cos(as)cosaxds)+[;T?Zm f f(s)sm(as)sm(ax)ds)da

1  sinh (ay)
=),

nJ, sinh (ab)

f " f (s) cos (as) cos ax + f (s) sin (as) sin (ax) ds) da

00 smh ay 0 . |
n f s (ab) f_ mf (s) [cos (as) cos ax + sin (as) sin (ax)] ds) da

o0 1nh 00
= _f Ssmh(ZZ) j:oof(s)cosa(s—x)ds) da

Which is the result required to show.
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