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1 Section 57, Problem 5

LA vu

| §,| Find the bounded harmonic function u(x, y) in the semi-infinite strip0 < x <1,y >0
that satisfies the conditions ‘

uy(x,0) =0, u(0; y)=0, u (1, y) = f(y).

2 [% sinh cx cos ay /oc
T ol 3" Fanut skt (s) cos as ds dor.
Answer: u(x, y) = /0 TR i Hi

Figure 1: Problem statement

Solution
Vzu(x,y):o (O<x<1,y>0)
uy (x,0) =0
u (O, y) =0
e (Ly) = £ (v)
As normal, we use separation of variables, ending in Xyﬁ + YTN = —-A. We will take the
eigenvalue problem along the Y direction. This leads to
Y'+AY =0
Y’ (0)=0

Where A = a?,a > 0. The steps that led to this were done before. Therefore the solution is
Y (y) = (1 COS (ay) + ¢y sin (ay)
Y’ (y) = —cjasin (ay) + coa cos (ay)
At y = 0 the above gives
0=oca
Which implies ¢, = 0. Hence the eigenfunctions are
Y, (y) = cos (ay)

With the eigenvalues being A = a? for all real positive values of a. The corresponding X (x)
ode is

X" -AX=0
X(0)=0
The solution to this is X (x) = ¢16* + coe™*, which at x = 0 gives

0:C1+C2



Which makes the solution as X (x) = c;e™ — cje™ = ¢; (6" —e ™) = 2¢;sinh (ax) =
c3 sinh (ax). Therefore the general solution is given by the real form of the Fourier inte-
gral

u (x, y) = j; " A (a) sinh (ax) cos (ay) da 1)
Taking derivative w.r.t. X gives
Uy (x, y) = j; " A (@) a cosh (ax) cos (ay) da
At x =1 the above becomes
- f " (A@acosh (@) cos (ay) da
Therefore :

A (a) acosh (o) = % fooof (y) CoS (ay) do

2 00
A (a) = m J; f (y) cos (Oly) da
Substituting the above in (1) gives the solution
u (X, y) = j(; (m f f (S) COS (aS) dS) sinh (CVX) COSs (ay) da

2 o sinh (ax) cos ay
n f a cosh (a)

( f F(5) cos (as) ds) dat

Which is the result required to show.



2 Section 58, Problem 5

e mmmeep e g

5./ (a) The face x = 0of asemi-infinite solid x > Ois insulated, and the initial temperature
distribution is f(x). Derive the temperature formula
(e 2]

u(x,t) = flx+ 20/kt) e do

:/__7; —x/(vkt)
it _1_/ f(—x + 20kt) e do.
ﬁ x/(@2/kt)

(b) Show that if the function f in part (a) is defined by means of the equations

1 when 0 < x < c,
fx) =

0 when =G
then
1 c+x 1 807
P T g T S VTl
u(x,t) 2<erf(2\/]_ﬂt_> + 2er (2«/E>
Figure 2: Problem statement
Solution
2.1 Part (a)
up (x, t) = kuy, (x,t) 0<x<oo,t>0)
u(x,0) = f(x)
u,(0,t)=0
Applying separation of variables leads to
T/ 3 Xl/ 3 A
kKT~ X
Hence
X"+AX=0
X" (0)=0
(X (@) <M

Since on semi-infinite domain, then only A > 0 are possible eigenvalues. Let A = a?,a > 0,
Where « takes on all positive real values. Then the solution to the eigenvalue ODE is

X, () = ¢q cos (ax) + ¢y sin (ax)
X}, (x) = —cyasin (ax) + cpax cos (ax)



Atx=0
0= Chx
Hence ¢, = 0 and the eigenfunctions are

X, (x) = cos (ax)

The time ODE is therefore T’ + @?kT = 0 which has solution T = e‘kazt. Hence the solution

is given by the real Fourier integral
u(x,t) = f A (@) e cos (ax) da
0
At t = 0, using initial conditions, then the above becomes

f(x)= fo " A () cos axda

2 (o'}
A== fo F(5) cos (as) ds
Using (2) in (1) gives

(o0) 2 00
u(x,t) = f (; f f (s) cos (as) ds) ekt cos (ax) da
0 0
Changing the order of integration

u(x,t) = %j:o j:o (e‘kazt [2 cos (ax) cos (as)] da)f(s) ds

cos(A+B)+cos(A-B)
2

cos (ax + as) + cos (ax — as)

Using trig identity cos (A) cos (B) = , then

2 cos (ax) cos (as)
= cos(a(x +5)) + cos(a(x—s))

Substituting the above in (3) gives

U (x, f) = % fo " fo N (e [cos (a (x + )) + cos (a (x - 9))] da) f (s) s

Tt 0

©0 1 |n v?
—azc - — — S
fo e cos(ab)da = 2\/Zexp( 4c)

Using the formula

-1 fo ) ( fo " e cos (a (x + 5)) dat + f " ot cos (o (x - s))da) Fs)ds

(1)

(2)

3)

Where in our case ¢ = kt and b = (x + s) for the first integral, and b = (x — s) for the second

integral. Using the above formula in (4) results in

I el (x+s)2 1 |n (x—s)2
u(x,t)—Ej(; (E Eexp(— Akt )+§ Eexp(— Akt ))f(S)dS



For t > 0. Hence the above becomes

1 o0 (x+s)2 1 00 (x—s)2
szo f(s)exp(— - )ds+2mfo f(s)exp(— = )ds

By writing s = —x + 25Vkt for the first integral above, then Z—Z = 2vkt. When s = 0 then
0 = —— and when s = co then ¢ = co0. And by writing s = x + 25Vkt for the second integral

2kt

u(x,t) =

above, then Z—Z = 2vkt. When s = 0 then ¢ = _ZL\/H Hence the above integral becomes
2
—x + (x + 20Vkt
u(x,t)— f ( x+20\/ﬁ)exp —( ( )) do
2/ tkt Akt

4kt

2R (Hzam)exp[_<x<x+20@>>2]d0

Simplifying gives

u(x,t) = %f_: (x+2a\/_)
\/_ f (x + 20\/5) 4o + — f ( -X + 20@) e do+ (4)

2vkt 2vkt

Which is the result required to show.

ZU\F 20\/>

Tkt do+ —f ( X+ 20\/—) oAkt

2.2 Partb

f(x):{é O<x<c

x>0

Considering the first function in (4), where in the following f (x) = f (x + 20@) then (4)

becomes
e o
u(x,t)=— fz‘/ﬂ e do + f%/ﬁ e’ do
V| Jo 0

i Fﬁ _02 = (H_x)
Butﬁ£ e %do eer\@an

i % _02 = (ﬂ)
d ﬁ£ e 9%do =erf i) hence the above becomes
1
u(x,t)zzerf( ¢

c+x)+1 f( —x)
—er
ovkt) 2 \2vkt



3 Section 58, Problem 7

7. Ve rify that for any constant C, the function .

42
v(x, 1) = Cxt™>? exp (_:t—k_t>

satisfies the heat equation v, = kv,, when x = 0 and ¢ > 0. Also, verify that for those

vilues of x and 7,

Th}ls show that v(x, £) can be added to the solution (9) found in Sec. 58 to form other§
lut10n§ of th? problem there if the temperature function is not required to be bounde
Note that v is unbounded as x and ¢ tend to zero (this can be seen by letting x vani
while ¢ = x?).

Figure 3: Problem statement

Solution

I —
We need to substitute the solution v (x,t) = Cxt2 ¢4 into the PDE v, = kv,, and see if it
satisfies it.
— -5 -2 3 2 2
v, = —Cxt2ett + Cxt2eskt | —
2 4kt?

— -5 -2 x3 B
—Cxt2ett + C——=12 g4kt
2 4kt?

And
e xz -3 -2
v, =Ctzeskt — —Ct2ekt
* 2kt
S O P
U = —Ct2etkt —| —Ct2e4t — Ct2 ekt
T Dkt (kt (4kt)? )
2x 322 [(x 32 43 32
= —C(Ct2ett —|—Ct2e4t — ——Ct 2 p4kt
4kt kt 4k242 )
— I L I 3 -
= —Ct2ett — —Ct2zedkt + Ct2 et
2kt kt (4kt)*
3x 5 =2 ¥ B2
t 2 e 4kt

= 2 cmem 4 C
2k ¢ 19212



Hence v; = kv,, becomes

-3 5= x3 32 3x 5 2 x> 32
—Cxt2e4kt + C——t2¢4kt =k|——=Ct2e4t +C 12 g4kt
2 4kt? ( 2k 4k2t2 )
-3 -5 =2 x> 3 2 -5 =2 3 3 2
—Cxt2e%t + C——t2et%t = ——xCt2etkt + C—t2 et
2 2 2 4kt2

0=0

Hence it is satisfied for any constant C.

3 2
Using v (x,t) = Cxt 2 et | we see that lim,_ o+ v (x,t) = 0. Also lim;_,o+ v (x,t) = 0.
Since the solution to the heat PDE is now not required to be bounded and since v (x, t) has
zero initial conditions, then because the PDE is linear and homogeneous, then solution as
v (x,t) can be added to the solution in (9) using superposition.



4 Section 59, Problem 2

T T T

P

2} Derive this solution of the wave equation y,, = a?y,, (—o0 < x < 00, > 0), whi
satisfies the conditions y(x, 0) = f(x) and y,(x, 0) = 0 when —oo < x < oo:

1 o 00
y(x,t) = 2 / cosaat/ f(s) cosa(s — x) ds da.
0 —00
Also, reduce the solution to the form obtained in Example 1, Sec. 30:

1
! Y&, 0) =5 [fx+an) + f(x —an)].

Figure 4: Problem description

solution

Let y (x,t) = X (x) T (t), then the PDE becomes
T"X = a®X"T
1 T// 3 Xll 3
217 - x-

We take the X (x) ode as the eigenvalue problem. Since the domain is infinite, then only pos-
itive eigenvalue are valid as was shown before. Let A = a?, @ > 0. Hence the eigenfunctions

are
X, (x) = A(a) cos (ax) + B (a) sin (ax)

The time ODE becomes
1 TI/
a? T
T” + a?a?T =0

= —0(2

Which has the solution
T, (t) = C(a)cos (aat) + D () sin (aat)

Hence the solution is given by the Fourier real integral
1) = " T,t) X, (x)d
yeh= [ 70X ()da
= f (C (a) cos (aat) + D (a) sin (aat)) (A () cos (ax) + B (a) sin (ax)) da
0
- f " C (@) A (@) cos (aat) cos (ax) dat + f " C (@) B (@) cos (aat) sin (ax) dar
0 0

+ f N D () A () sin (aat) cos (ax) da + f " D («) B (@) sin (aat) sin (ax) da
0 0

(1)

(2)
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Taking time derivative

00

v (x,t) = fo " —aaC () A (a) sin (aat) cos (ax) da + j(; aaC (o) B () sin (aat) sin (ax) da

(o]

+ f aaD (a) A (a) cos (aat) cos (ax) da + f aaD () B (@) cos (aat) sin (ax) da
0 0
At t = 0 the above becomes

(o]

0= fooo aaD (a) A (a) cos (ax) da +f0 aaD () B () sin (ax) da

Which simplifies to

0= j; OOD(oz)A(oz) cos (ax)da + fo D (a) B («) sin (ax) do

_ f " D (@) (A (@) cos (ax) + B (a) sin (ax)) dar
0

Therefore, since A (@), B (@) can not be both zero, else eigenfunction is zero, then it must
be that D (@) = 0. Hence the solution in (2) becomes

Y@, b = fo " C (@) A (@) cos (aat) cos (ax) dat + fo " C(@) B (@) cos (aab) sin (ax) da (3)

Let C(a) A(a) = C; () and let C(a) B(a) = C, («) as two new constants, and the above
becomes

Y, f) = f " €4 (@) cos (aat) cos (ax) da + f " €, (@) cos (aat) sin (ax) da
At t = 0 the above bzcomes O
Flo) = f "€y (@) cos (ax) dar + f " €, (@) sin (ax) dar
Hence 0 :

Cy(a) = %j:oo f(s) cos (as) ds
Cy(a) = %f_oo f(s)sin (as)ds

Therefore (3) becomes

(@b = % fo " ( f_ " F(s)cos (as) ds) cos (aat) cos (ax) dat

1 (o] (oe]
+ — f ( f f(s)sin (as)ds) cos (aat) sin (ax) da
0 -0
Changing order of integrations in the above for both integrals results in
1 (o] (o)
Y b = f ( f cos (aat) cos (as) cos (@) da) F(s)ds (4)
0 —00

+ % fo ” ( f_ cos (aat) sin (as) sin (ax) da) f(s)ds
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But

cos (as) cos (ax) = % (cos (as + ax) + cos (as — ax))

= % (cos (a (s + x)) + cos (a (s — x)))
and

sin (as) sin (ax) = % (cos (as — ax) — cos (as + ax))

= % (cos (a (s — x)) — cos (a (s + x)))

Substituting the above two relations back in (4) gives

Y@, b = % fo " ( f_ " cos (aat) (cos (@ (5 + 1)) + cos (@ (s — 1)) da) F(s)ds

1 fooo (foo cos (aat) (cos (a (s — x)) — cos (a (s + x))) da)f(s) Js

+ —_—
21 —oo

Simplifying, terms cancel giving

1 (o0 (o¢)
) = — cos cos - cos — d d
v =5 | ( [ costaat) leos (@ (s = 1) + cos (s = )] a)f(s) 5

21 o

= %j:o (j:‘: cos (aat) cos (o (s_x))da)f(s)ds

Changing order of integration

Y@, b = % fo " cos (aat) f " £ (s) cos (@ (s - ¥)) dsda

Which is the result required to show.



5 Section 59, Problem 3

=

represented by its Fourier integral.

1 [* sinh e
Answer: u(x, y) = = / s;nh Zz / f(s)cos a(s — x) ds do.
0 —00

\i\ Find the bounded harmonic function u(x, y) in the strip —00 < x < 00,0 < y &
such that u(x,0) = 0 and u(x,b) = f(x)(~0 < x < o), where f is bounded a

Figure 5: Problem description

solution

Y
A
b f(z)
—00 - Vzu(x,y) =0 —» OO

Figure 6: Solution domain for PDE

Letu=X(x)Y (y), then u,, + y,, = 0 becomes

X"X+Y"X =0

XII+YN_0
X Y

Taking the eigenvalue ODE to be on the x axis, then

X/l YII
= —— = —A
X Y

Hence
X"+2AX=0
X (x)| < o0

Hence A can only be positive real. Let A = a®,a > 0. Therefore the eigenfunctions are

X, (x) = A(a) cosax + B () sin ax
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For the ODE Y” — Ya? = 0 the solution is
Y, (y) = C(a) cosh (ay) + D («) sinh (ay) (2)

Hence the solution is
u (x,y) = fooo X, ()Y, (y) da
= f " (A (a) cos ax + B (a) sin ax) (C () cosh (ay) + D («) sinh (ay)) da  (3)
When y = 0, the a(I)oove becomes
0= fm (A () cos ax + B (@) sin ax) C (a) da
Which implies that C (@) = O.OTherefore the solution (3) simplifies to
u(x,y) = fo " (A (a) cos (ax) + B () sin (ax)) D (a) sinh (ay ) dat

= [ A D (@) sinh (ay) cosax + B (@) D (@) sini (ay) sin (ax) da
Let A (@)D (a) = clo(a) and let B(a) D (a) = Cy (@), hence the above solution becomes
u (x, y) = fo N Cq (a) sinh (ay) cosax + C, () sinh (ay) sin (ax) da (4)
When y = b the above becomes
fx) = f " Cq (a) sinh (ab) cos ax + C, (a) sinh (ab) sin (ax) da
Therefore :
C, (@) sinh (ab) = % f " £ (s) cos (as) ds

Cy (a) = f F(5) cos (as) ds 5)

7t sinh (ab)
And

C, (@) sinh (ab) = ~ f " F(s)sin (as) ds

C, (a) = nsmh D f F(5)sin (as) ds 6)
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Using (5,6) in (4) gives
u (x, y) = j:o (7_( prm (ab) f f (s) cos (as) ds) sinh (ay) cos (ax) + (7‘( Sl (ab) f £ (s)sin (as) ds) sinh (.

_ foo ( Slnh Ofy f £ (s) cos (as) cos adeJ + [ Smh ay f £ (s) sin (as) sin (ax) ds) da
0

7t sinh (ab) 7t sinh (ab)

- % fo - —Ziz ((Z“Z)) f_ Z f (s) cos (as) cos ax + f (s) sin (as) sin (ax) ds) da

= % fo " 88111:}11 EZZZ j: Zf (s) [cos (as) cos ax + sin (as) sin (ax)] ds) do

1 ° sinh (ay) 00
_ Efo b j:oof(s)cosa(s—x)ds)da

Which is the result required to show.
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