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1 Section 11, Problem 4

L Ly — v
R0

@ In Chap. 1 (Sec. 6) we expressed a function f(x)in Cp
Fx) = gx) +h(x)

{—m, ) as asum

where
S fx) +2f (—x) e MR @) «2f (—x).

We then saw that the coefficients a, and b, in the Fourier series

[+o]
ap i
> -+ E {a, cos nx + by SN 1x)
n=1
are the same as the coefficients in the Fourier cosi

respectively, on D<x<m.
(11) and (14) in Sec. 10, write

for f(x)on—mw <X <7 ne and
series for g(x) and A(x),
(a) By referring to the Bessel inequalities

flﬁ+§:a2< z H[ X)) d
2 N-—ﬂ, 8 g X

n=1

(N=1,

and
(N = 11_

N . [
Yl [ heord
T Jo

n=1

Then point out how it follows that

2 N T e
B, (@) < -j;{ [0 [FeoP dx + [ [Fs)P ds} W=

n=1
(b) By makingthe substitution x = —s in the last inte
inequality

gral in part (a), obtain

at 2 1 [
5"+;(ai+bﬁ)s;f_”[f(x)]zdx N

¢ Tealalaes ACRY that

Figure 1: Problem statement

1.1 Part (a)

Writing
2 N
(10 2 7T
20,V 2 < _f 2
2 A=, [s@)] dx
N
2 4
th<= [ h@rdx
n=1 TTJo

1)

(2)



Adding (1)+(2) gives
a% N 2 (" 2 2
?+7§1(a%+b%)§gfo [s@)] + [h ) dx
2 @+ FET [ -F0T
A e R e

_ Ef” F2(x) + f2(=x) +2f (x) f (x) s 2 (x) + f2 (—x)—2f(x)f(—x)dx
T nd, 4 4

:Lfnfz(x)Jrfz (=2) + f2() + f2 (~x) dx
= foZ(x)+2f2(x
:l(f £ + £2( x)dx)
( [f )] dx+ [f( )] ds) 3)

1.2 Part (b)

Let x = —s in the last integral. Therefore dx = —ds. When s = 0 then x = 0 and whens =1
then x = —7, then (3) becomes

”0+§](a +b2)<—(f [f @] dx+j;_n[f(x)]2(—dx))
:%(fo [ ] dx—J;_n[f(x)]zdx)

— 0
But £ - —f and the above becomes

2

L;)+Z(an+b2) i((j(;n[f(x)]de+jj‘[[f(x)]de)
:;f;[f(x)]zdx



2 Section 11, Problem 6

6. [ Derive (he expression
sin (% + Nu)
D) = S ammnae (w0, =27, £dr, .. )
2sin :2'

for the Dirichlet kernel (Sec. 11)

N

‘1 1

Dy(u). = 5 E cosnu
n=1

by writing

i the trigonometric identity
2sinAcosB = sin(A+ B) + sin(A— B)

and then summing each side of the resulting equation fromn = 1 ton = N.

Suggestion: Note that

N 0 N—1 )
;Sln(z "nu) = —-Zsm(i +I’£u),

Figure 2: Problem statement

We want to show the following (I’ve used x instead of u as it is more natural).

1 XN sin ((N + - ) )
=+ ), cosnx = 1
Or, similarly, we want to show the following
X, X . 1
Sln—+2251n—cosnx=81n N+ —-|x (2)
2~ 2 2

We will now work on the left side of (2) only and see if we can simplify it to obtain the
right side of (2). Writing the LHS of (2) as

X
SlH—+ZZSlD—COSﬂX—Sln—+EZSIHACOSB (3)
2 n=1 2 2 n=1
Where A = f, B =nx. But sin AcosB = = (sin (A + B) +sin (A — B)). Hence (3) becomes

sm§+2251ngcosnx—s1n§+Zsm(A+B)+sm(A B)

n=1
nx — —nx
Sin 2

[l

.

=)

N =

+
:
M= 17
N

&L,

=)

:smg+%Sm((ﬁg)x)wm((%—n)x)
g Bl



Expanding few terms to see the pattern shows

ke S o) (o- 2] = oo (1 +2)o) (-2}
olfzez)s)-el-))
olez)e)- (-3

S o5 ) )

o)
o=

. 1
We see that all terms cancel except for the term before the last term, which is sin ((N + 5) x).

=

+ ...

. (7 . .
(In the above limited expansion of terms, this will be the term sin (Ex) which remains.)

Hence as n — N, the above simplifies to

xR x (X . 1
sm—+Es1n(—+nx)+sm(——nx):sm N+ -|x
2~ 2 2 2

Which is (2) which was obtained from (1). Hence (1) was verified to be valid.



3 Section 14, Problem 2

et °7

2./ For each of the following functions, point out why its Fourier series on the interval
—7 < X < isconvergent when —x < x < 7, and state the sum of the series when x = x:

() the function

Yollieli 2 when —7 <x <0,
f(x)—{ /2 when O<x<u,

whose series was found in Problem 1, Sec. 7;
(b) the function

f(x) =™ (a #0),

whose series was found in Problem 4, Sec. 7.
Answers: (a) sum = 0; (b) sum = cosharn.

Figure 3: Problem statement

3.1 Part (a)

The Fourier series for f (x) is convergent since f (x), after periodic extension, satisfies the
3 points of the Fourier theorem in the textbook at page 35

Theorem. Suppose that

- [ is piecewise continuous on the interval —n < x < 7T
[ is periodic, with period 2r, on the entire x axis;

W x_l?—co < X < 00) is a point at which the one-sided derivatives fi(x) and
I_(x) both exist.

Figure 4: Fourier theorem

Point (i) is satisfied since f (x) is piecewise continuous and also point (ii) when doing
periodic extension. Also point (iii) is satisfied, since the left sided and right sides limit
exist at each x.



Clear[f];
f[x_ /; -Pi<x<Pi] :=Piecewise[{{-Pi/2, -Pi<x< 0}, {P1/2,0< x<Pi}}]
flx_/; x>Pi] :=f[x-2Pi];
flx_ /; x<-Pi] :=f[x+2Pi];
Plot[f[x], {x, -4Pi, 4Pi}, PlotStyle -» {Thick, Red}, Mesh - None,
GridLines - Automatic, GridLinesStyle - LightGray,
Ticks -» {Range[-4Pi, 4Pi, Pi], Automatic},
Exclusions » {X == =3Pi, x == -Pi, x == @, x == Pi, x == 3Pi},
Mesh - None, ExclusionsStyle - Dashed]
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Figure 5: f(x) after periodic extension

Therefore the Fourier series will converge to the average of the function f (x) at x = 7.
This average is

frO+ ) 375
2 2

3.2 Part (b)

The Fourier series for f (x) = ¢ is convergent since f (x), after periodic extension, satisfies
the 3 points of the Fourier theorem in the textbook at page 35. Point (i) is satisfied is
piecewise continuous and also point (ii) when doing periodic extension. Also point (iii)
is satisfied, since the left sided and right sides limit exist at each x. Here is a plot, using

1 . .
a=; for illustration



Clear[f];

a=1/4;

f[x_/; -Pi<x<Pi] := Exp[ax];

flx_ /; x>Pi] :=f[x-2Pi];

flx_/; x<-Pi] :=f[x+2Pi];

Plot[f[x], {x, -4Pi, 4Pi}, PlotStyle » {Thick, Red}, Mesh - None,
GridLines -» Automatic, GridLinesStyle - LightGray,
Ticks -» {Range[-4Pi, 4Pi, Pi], Automatic},

Exclusions - {x == -3Pi, x == -Pi, x == @, X == Pi, x == 3Pi},
Mesh - None, ExclusionsStyle - Dashed,
AxesOrigin -» {0, 0}]

2.0

1.0

05}

-4 -3 =27 -7T k 7T 27 3 47T

. . — ax . . . . — 1
Figure 6: f(x) = ¢* after periodic extension (Using a = 1

Therefore the Fourier series will converge to the average of the function f (x) at x = 7.
This average is

fEO)+ (%) _ e

> > = cosh (amn)



Section 14, Problem 3

%, By writing x = 0 and x = /2 in the representation

& Ly 2 4 S cos2nx
S ot fuL —
TR AT 14112—1

g =

established in Example 2, Sec. 14, obtain the following summations:

- 1 | — (=1 L
ASE T | 2 dn? - | D
e el

Figure 7: Problem statement

Substituting x = 0 in the given representation gives

2 4 1
0==-Z=
T nnglélnz—
> 1
-2=-4
;14”2_
1 i 1
2 n:14n2—

- _ . . . .
And substituting x = - in the given representatlon gives

cos(nTL)
1= __E 4n? -
2 (1)
R Ee
n-2= 424112

1 =« (-1)"
5‘1—231—4”2_1
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5 Section 14, Problem 6

e e i R At

6. (a) Use the correspondence

D) o 0]
o (_l)n
~?+4 El 5 cosnx 0 <x < m),

found in Problem 3(a), Sec. 5, to show that

o8 — 1)+l 2 = 7
Z(nl :7;—2 and Zl:%

n=1 n=1

(b) Use the correspondence (Problem 6, Sec. 5)

4 £ 2
4= T L (nm)s —6
X ~?+SE (G = cosnx | O<x<mn)
and the summations found in part (a) to show that

i—(_l)m o Al W ool
n* 720 o

n=1 n=1

Figure 8: Problem statement

5.1 Part (a)

COS NX (1)

1 & (-1)"
2 2
xc~-=-1“+4
3 7;.

Letting x = 0 in (1) gives (After doing periodic extension, then x = 0 is now in the
domain).

1, (- 1)
—5712 =4 Z: 1’12
nz o (- 1)

n=1 n?
2
Now we need to obtain the second result Z 1 12 = %. Let x = 7 in (1) (After doing
periodic extension, then x = 7 is now in the domaln) gives
+4 Z
1 0 (_1)27’1
2 2
nc—-n-=4
3 1;_1 n?
1 (o) (_1)271
2= E
T~ =
6 ~ n?
_1\2n
But 2::’:1 % = E;o 1 12 since the power 21 is always even. This gives the result needed

1 z_ool
6" —an

n=1



5.2 Part (b)
mt & L (nm)* -6
x4~€+8nz::1( 1) o cos nx
Letting x = 0 in (2) gives
m & (nm)" -6
0=—+8 1)"
z ;::1( ) 1
mh & (nn)? & (—1)”)
-— =38 (-1)" -6
5 nz:]l n* ;::1 n*
4 00 00 n
m 1 (nm) (-1)
— =8 ), ()" 6,
5 n=1 n* n=1 n*
nt ST (—1)”)
— =8| n? +6
5 nz::l n? nz::l n*
0o (_1)n+1 2
But from part (a), we found that anl —
us s & (-1
— =8|m®[=]|+6
5 (7I (12) ;1 1 )
4 ) n
TC_ 2. 4 4 (_1)
5 12 8”2::1 nt
nt  8nt > (1)
— - — =148
5 1 ;::1 n*
(e _1)1’1
——m* =48 (
15 ,E n
Ty 1"
720 ~ ot
Multiplying both sides by —1 gives the result needed
7 [ _1 n+1
AR le)
720 ~ ot
. oo 1 72
Now we need to obtain the second result anl it
it & (nm)* - 6
b=_—_+8 1) ——(-1)"
e 8 N ) (D)

4 ) 2
T oy (M) =6
=5 + 8;;:1 (-1) g

But (—1)2n =1 for all n. The above simplifies to

4 00 2_6
o N (nm)

4= _ 438
T=5 “ ond
4 (Se] 2 [oe]
, T ( (nm) 1]
L e
5 n=1 714 n:ln4
4t ( &1 & 1)
— =8| Y, -6, —
5 nglnz ngln‘l

TC . o . M
— =5 Using this in the above results in

Let x = 7t in (2) gives

11



2
But from part(a) we found that 220:1 % = % hence the above simplifies to

47t 2 21

ant o (o(m) _L

5 6 4 nt
4

n=

4t T 5’: 1
40 6 ot
1 o 1
—— =6 E -
15 &t
1 e |
4 Z —
90 ot

Which is the result we are asked to show.

12



13

6 Section 14, Problem 8

r””‘“‘ : -
|8 lethout actually finding the Fourier series for the even function f(x) = </x2 on

—7 <X <m, point out how the theorem in Sec. 12 ensures the convergence of that
series to f (x) when —7x < x < (0 and when 0 < x < 7 but not when x = 0.

PR =~

Figure 9: Problem statement

We first notice that the function f (x) is not differentiable at x = 0

flx_] := (x*2)"(1/3);
Plot [f[x], {x, -Pi, Pi}, PlotStyle -» Red, GridLines - Automatic, GridLinesStyle - LightGray,
Ticks » {Range[-Pi, Pi, 1/2Pi], Automatic}]

Figure 10: plot of (362)1/3

This is because, when x; = 0 the left sided derivative is equal to the right sided derivative

lim £ () = £~ (x0) # Jim £ () = £ (o)

X—X(

x<xg x>X
Since f/_ (0) = —co while f:r (0) = +o0. The function is therefore piecewise continuous on
each -7 < x < 7 but it is not differentiable at x = 0. But Fourier theorem, looking at point
(iii) in the book, only says that if f” (xg) exist and if f/ (x() exist, then the Fourier series
converges to the average of f (x) at point x,. In this example f_ (0) = —co and f,, (0) = +c0
which means these limits do not exist.

Hence we see that point (i) and (ii) in the Fourier theorem in the book are satisfied, but
it is point (iii) which not satisfied at x = 0. Therefore Fourier series does not converge to

f (x) at x = 0 only while on other x in the domain it does.



7 Section 15, Problem 2

14

24 Let f denote the function whose values are

=0 when —2 <x < 1,
U {1 when O 1 <ipiac 2.

=

and

)= fH=fE) = %

Use formulas (4) and (5) in Sec. 15, together with Theorem 1 there, to show that
Lslee ot vemn nmx
F)y= == Z - [smT cos s + (cosmr — cos ’%n) sin n—;wa

n=1

for each x in the closed interval —2 = s

Figure 11: Problem statement

A plot of the function f (x) and its periodic extension is given below

f[x_] :=Piecewise[{{0, -2 <x <1}, {1,1<x<2}}]
Plot[f[x], {x, -2, 2.01}, PlotStyle - Red, GridLines -» Automatic, GridLinesStyle - LightGray,
Ticks -» {Range[-4, 4, 1], Automatic}, ExclusionsStyle - Dashed, Exclusions - {X == 1, X == 2, X == -2} ]

1.0

|

08}
0.6
04f

0.2+

[ s

Figure 12: plot of f(x) over one period

Clear[f];
flx_ /; -2<x<2] :=Piecewise[{{0, -2 <x <1}, {1, 1< x<2}}]
flx_ /3 x>2] :=f[x-4];
flx_ /;x<-2] :=Ff[x+4];
Plot[f[x], {x, -8, 8}, PlotStyle » {Thick, Red}, Mesh - None,
GridLines - Automatic, GridLinesStyle - LightGray,
Ticks -» {Range[-8, 8, 1], Automatic},
Exclusions » {X == -7, X == -6, X == -3, X == -2, X =1, X = 2, X == 5, X == 6},
Mesh - None, ExclusionsStyle - Dashed]

o o LR i o
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b R 06 1 1 b
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| 1 | 1 | ! | !
| 1 | 1 | ! 1 !
). ' L L l ' L l l L L l ' L Il
-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8

Figure 13: plot of f(x) extended to become periodic. Showing 3 periods
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The Fourier transform of f (x) is

- 2 2
f(x) ~ % + ngl a,, cos (?nnx) + b, sin (?nnx)
Where T is the period of the function (after periodic extension) which is 4. Hence the
above becomes

fx) ~ Lo, Z a, cos (znx) + b, sin (znx)
2~ 2 2

Since f (x) meets the requirements of the Fourier theorem on page 35 of the text (at points
of discontinues, the function is % which is the average at those points), then ~ can be
replaced by = above
4y~ Tt T
fx) = > + nz::l a, cos (Enx) + b, sin (Enx) (1)

Where

S
|
—
=

IS R

f(x)dx:%f_zf(x)dx:%f_zzf(x)dx:%(f;f(x)dx+f12f(x)dx)

2 1 5, 1
dX)=§(X)1=E

NI = o -

S

And
1 (3 o 1 2 7
2
a, = = f (x) cos (—nx) dx = —f (x) cos (—nx) dx
n g _% f T 2 _2f 2

_ %( f_ 12 F@) cos(gnx) dx + fl £ () cos (gnx) dx)
_ %j;zf(x) cos(gnx) dx
_ % fl i cos (Smx) v

2 m

2 1

1 /. ~ (Tin
= — (sm (7tn) — sin (—))
mn 2
-1 (nn)
= —sin|—
mn 2
And

b, = %jif(x) sin (Z%nx) dx = %f_zzf(x) sin (gnx) dx
2 2

_ %( f_ 12 F ) sin(gnx) dx + fl " F ) sin(gnx) dx)
_ %jff(x) sin S nx) dx

_ %f: sin ) dx

21 [cos (Znx) |
Sl

2 T

2
-1 T
= — |cos (1tn) — cos (—n)]
n 2
Tt

= ;—111 cos (mtn) — cos (Tn)]
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Using these results in (1) gives

Fx) = 411 + f] (_—1 Sin(%n)) cos (gnx) + (_—1 [Cos (121) — cos (%")]) sin (gnx)

—\nn mn

= 411 - % i (% sin (%)) cos (gnx) + % (cos (mtn) — cos (%)) sin (gnx)

= 411 - % g % [sin (%) cos (gnx) + (cos (rtn) — cos (%)) sin (gnx)]

Which is the result we are asked to show. To verify this, the following shows the convergence
to f (x) when using more and more terms in the series.

Tnx

fApprox[x , nTerms ] := E - E Sum[l (Sin[Ln] Cos[ ] + (Cos[nn] —Cos[ﬂ]) Sin["—nx ), {n, 1, nTerms}];
- - 4 x n 2 2 2
Clear[f];
flx_ /3 -2<x<2] :=Piecewise[{{0, -2 <x< 1}, {1,1<x<2}}]
flx_ /3 x>2] :=f[x-4];
flx_ /3 x<-2] :=f[x+4];
Grid[Partition[Table[Plot[{f[x], fApprox[x, n]}, {x, -Pi, Pi},
PlotStyle » {Blue, Red},
PlotLabel - Style[Row[ {"Using ", n, " terms"}], Bold],
ImageSize » 250],

{n, 1, 10}]1, 2], Frame - All, FrameStyle - Gray]

Figure 14: Code used to draw the plot
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Using 1 terms Using 2 terms
10} 10k
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Figure 15: Fourier series approximation as more terms added

1
We notice that the Fourier series approximation converges to - at the points of discontinu-
ities. But these are the actual values of f (x) at those points.



Section 15, Problem 8
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8.  After writing the Fourier series representation (3), Sec. 15, as
N
ap ; nmx . nmx
X) = — + lim a,c08 — + b, sin — |,
@) z,+N4w2(” — +b c)
n=

use the exponential forms’

ei9 a4 e~i9 eia o e—i9
cosh = ——, A
2 21

of the cosine and sine functions to put that representation in exponential form:

N
: ,nmx
f(x):p}l_{réo E Anexp(zT),

n=—N

sinf =

where

ag a, — ib, a, +ib,
Ay = — An M ) A—n =
! 2 2
Then use expressions (4) and (5), Sec. 15, for the coefficients a, and b, to obtain the
single formula

(n=1,2,...).

A, = %/;C fx) exp(—i?) dx (= Ofekd b0 iy

Figure 16: Problem statement

N
ag nm . (nm
x) = — + lim a cos(—x)+b sm(—x)
f &) 2 N—>oon§::1 " c " c
N7 s N7t N7t
N i—x —i—x i—Xx ——X
ag ec +e ¢ ec —e ¢
= —+ lim a,|——|+b,| ———
2 N—><>o§1 " 2 " 2i
s s s s
N i—x —i—Xx i—x —i—Xx
ag ec +e ¢ L le et -
= — + lim a,| —|-ib, | ———
2 N—>ooZ " 2 " 2
n=1
N . .
a o (a. —1ib _m fa. +1ib
=—0+1im ezcx n n +€zcx n n
2  Nooo ~= 2 2
n=1
N . -1 .
a i (a, —ib " (a, +ib
:—0+lim ezcx(n n)+zezcx(n2 n)
2  N-ooo &= 2 N
Let
a,—ib,
( 5 ) n>0
ap _
An = ? n=20
a,+ib,
( > ) n<0
Then (1) can be written as
N T
x) = lim A
ro= g 3 4
n=-N
Since
1 nm
a, = - f(x)cos(—x)dx n=0,1,2,--
c
—C
C
b,=-| f(x)sin (—x) dx n=1,2,

(1)



Then a, + ib,, gives

1 ¢ 1 ¢
0, —ib, = - f £ (x) cos (”—”x) dx —i- f £ (x)sin (”—”x) dx

cJ_, c cJ_, c
1 C C

- - ( f £ (x) cos (@x) dx + f £ (—i sin(ﬂx))dx)
c\J_. c —c c
1 C

=- f f(x) [cos (n_nx) —isin (Ex)]dx
cJ_, c c
1 ¢ LU

= - x)e ¢ dx

[ rwea
c —C
But a, —ib,, = 2A,, from first part of this problem. Hence the above becomes

1 (¢ _m
An:—f f(x)e ' <fdx  n=0+1,+2,--
2cJ_,

19
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