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1.1. Links CHAPTER 1. INTRODUCTION

1.1 Links

1. Instructor web page http://www.math.umn.edu/~webst390/

2. Canvas web page https://canvas.umn.edu/courses/195168

1.2 Schedule
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1.3 Text book
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1.4. syllabus CHAPTER 1. INTRODUCTION

1.4 syllabus

Math 2243 - Section 002 Course Information

Instructor: Lilly Webster
webst390@umn.edu

http://www.math.umn.edu/~webst390/

Canvas Page: https://canvas.umn.edu/courses/195168

Course Meetings: TTh 6:00 PM - 8:05 PM Central Time
See Canvas for Zoom link

Office Hours: TTh 5:00 PM - 6:00 PM Central Time
Also by appointment
See Canvas for Zoom link

Textbook: Differential Equations and Linear Algebra (4th edition) by Edwards and Penny

General Notes
I would prefer that you address me as Lilly with she/her/hers pronouns. If you prefer, you
may call me Ms. Webster. You should not call me Professor Webster or Dr. Webster, as I
am neither.
I strongly encourage you to come to office hours if you have questions. I also strongly
encourage you to ask questions during class. In my experience, students who ask questions
are much more successful in my courses. I am more than happy to talk at you for several
hours a week, but our time will be much more useful if you can tell me what material is
confusing to you. Keep in mind that, as with many math classes, the material in this course
will build on itself throughout the semester. So, the earlier we address any issues the more
likely you are to have success in this course.
The best way to get in touch with me is by email. I will respond to emails sent before 8pm
on a weekday within a few hours. If you send an email after that time, I may not be able to
respond until the next morning.
I understand that the circumstances of this semester are extremely unusual and that things
are liable to change with little notice. I will do my best to be flexible with you as much as
possible, and I hope that you will extend me the same courtesy. If your situation changes in
a way that will affect your participation in the course, please let me know as soon as possible.

Virtual Learning Plan
This course will be conducted using a variety of online platforms. Canvas will be used
for course communication, quizzes, recording grades, and posting all course content and
assignments. I recommend checking your notification settings in Canvas so that you can
be promptly informed about important course information. Gradescope will be used for

1
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1.4. syllabus CHAPTER 1. INTRODUCTION

submitting and returning homework and exams. Zoom will be used for course meetings.
The Gradescope and Zoom links within Canvas will take you directly to the relevant pages
for our course, so I recommend using Canvas to access those platforms.
This course will include video and audio recordings. These will be used for educational
purposes and will only be made available to students currently enrolled in this course. If
you wish to share course recordings or other course content to anyone outside the course,
you must get my permission first. I will inform you in advance of any class sessions that
are being recorded. If your image or voice are on any class recording, I will obtain your
permission before sharing that recording outside the course.

To give us the most flexibility possible, this course will be conducted as a “flipped” class-
room. For each Zoom class session, there will be a series of videos that you are to watch
before we meet. These videos will go over the new material from the textbook for each
class. During class sessions, I will go over additional examples and answer any questions
that you may have. To allow you sufficient time to watch the lecture videos, our virtual
course meetings will last approximately 50 minutes (6:00 PM - 6:50 PM).

Office Hours and Additional Help
My office hours are 5:00 PM - 6:00 PM on Tuesdays and Thursdays. You can find the Zoom
links for office hours on the Canvas page. If you want to meet with me outside of my usual
office hours, send me an email with when you are available and I will do my best to find a
time when we can meet. The other evening lecturer Eric Stucky has agreed that you may
also go to his office hours for help. His office hours are 5:00 PM - 6:00 PM on Mondays and
Wednesdays; see the Canvas page for Zoom links.
Between class sessions, I strongly encourage you to use the Discussions feature on Canvas.
There are places there to ask questions about the course, about the material we are learning,
and to find other students for a study group.
You may want to consider the free by-appointment tutoring available through the SMART
Learning Commons. See https://www.lib.umn.edu/smart for more details.

Grading
Your final grade in this course will be calculated as quizzes 5%, homework 20%, two midterms
25% each, and the final exam 25%. The course grade lines will be adjusted based on the
distribution of scores across all sections of the course, but grade lines for the total score will
not be stricter than the following:

A: 90 -100% B: 80 - 89% C: 65 - 79% D/F: 0-64%

I will also give grade lines for each midterm exam so you can get a sense of where you stand
in the course.
If you have concerns about the grading of an assignment, it must be brought to my attention
within 1 week of the assignment being returned. Send me an email or stop by my office
hours and I’ll be happy to look at it.

2
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1.4. syllabus CHAPTER 1. INTRODUCTION

Quizzes
There will be a very short quiz at the start of each class session. The quiz will be available
on Canvas from 5:30 PM - 6:15 PM on each class day and will have a 10-minute time limit.
Quizzes will consist of two or three multiple choice questions on the material of the previous
class and will not require significant computations. You may use your notes, the textbook,
and any resources on Canvas for the quizzes.

Homework
There will be one homework assignment per week, due at the start of class on Thursdays.
The assignment will be posted on Canvas at least one week prior to the due date. Home-
work solutions will be made available on Canvas after the assignment has been turned in.
Homework should be submitted through the Gradescope portal. If you have not submitted
assignments through Gradescope before, I recommend trying the practice assignment that
is posted on Canvas.
You are allowed (and in fact encouraged) to work with other students on homework assign-
ments. If you do that, please indicate on each problem who you worked with. If you use
sources other than your notes, the textbook, and any resources on Canvas for your home-
work, you must indicate the source on each problem. You are not permitted to view, request,
or look for solutions to any of the homework problems from solutions manuals, homework
help websites, online forums, other students, or any other sources.
The problems that I assign for homework may not be sufficient for you to get comfortable
with the material. The nearby problems in the textbook are a good opportunity to get more
practice since the answers are in the back of the book. If you find you need more practice
than the book provides, please let me know.

Exams
There will be two fifty-minute in-class midterm exams on October 15th and November 19th.
This course has a common final exam, which will be given on December 17th from 12:00
PM - 3:00 PM. The material covered on each exam will be confirmed two weeks prior to the
exam and review materials will be distributed one week prior to the exam. Exams will be
distributed and submitted just like homework assignments, but will only be made available
during the exam window. You will be required to sign an honor statement when you submit
your exam and to be present on Zoom while working on the exam. You may not ask for or
receive help from notes, textbooks, online resources, or other people on exams.
If you have an excused absence that will prevent you from taking an exam, let me know as
soon as possible so we can find an acceptable solution.

Other Policies
You may use a calculator at all times; there are no restrictions on the type of calculators that
are permitted. All work must still be written out completely, so that it can be understood
by a person without a calculator. In general, assessments will be written so that they may
be completed without the use of a calculator; exceptions to this will come with advance

3
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warning. Unless stated otherwise, you should leave answers in an exact form like cos(2), e2,
or 3

7
rather than giving decimal approximations. Whenever possible, you should simplify

expressions such as ln e = 1, sin(π
4
) =

√
2
2

, and 20
5

= 4.

Academic dishonesty of any kind will not be tolerated and is grounds for receiving an F
or N for the entire course. Academic dishonesty includes (but is not limited to) plagarism,
consulting unapproved resources on exams, obtaining exams without instructor permission,
posting exam problems to online forums, and sharing the exam to other students.

You may drop this course without my approval and without a W on your transcript until
September 21st. Between September 21st and November 16th, you may drop the course
without my approval but you will get a W on your transcript. For more information, see
https://onestop.umn.edu/dates-and-deadlines/canceladd-deadlines

The University of Minnesota is committed to providing equal access to learning opportunities
for all students. The Disability Resource Center (DRC) is the campus office that collabo-
rates with students who have disabilities to provide or arrange reasonable accomodations.
Information is available on their website https://disability.umn.edu/ or by calling 612-
626-1333 or by sending an email to ds@umn.edu.

Inclusion Statement
The University of Minnesota provides equal access to and opportunity in its programs and
facilities, without regard to race, color, creed, religion, national origin, gender, age, marital
status, disability, public assistance status, veteran status, sexual orientation, gender identity,
or gender expression. All students are valued in my classroom.
If you have a disability of any kind that requires accommodation for this course, please let
me know so we can develop a plan to best meet your needs. If religious observances will
conflict with class meetings or assignment due dates, please also let me know.

4
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2.1. HW 1 CHAPTER 2. HWS

2.1.1 Problems listing

Homework 1 - Due September 17

Homework instructions: Complete the assigned problems on your own paper. Once you
are finished, scan or photograph your work and upload it to Gradescope. When prompted,
tell Gradescope where to find each problem.
You are allowed (and in fact encouraged) to work with other students on homework assign-
ments. If you do that, please indicate on each problem who you worked with. If you use
sources other than your notes, the textbook, and any resources on Canvas for your home-
work, you must indicate the source on each problem. You are not permitted to view, request,
or look for solutions to any of the homework problems from solutions manuals, homework
help websites, online forums, other students, or any other sources.

Textbook Problems:

• §3.1: 11, 15, 17

• §3.2: 7, 9, 15

• §3.3: 8, 11

Additional Problems:

1. Draw pictures to illustrate the three possibilities for the solution set of a linear system of
two equations in two variables.

2. Give an example of a 3× 3 matrix in echelon form with exactly 2 nonzero entries.

3. Give an example of a 3×3 matrix in reduced echelon form with exactly 4 nonzero entries.

1
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2.1.2 Problem 11 section 3.1

Problem

use the method of elimination to determine whether the given linear system is consistent
or inconsistent. For each consistent system, find the solution if it is unique; otherwise,
describe the infinite solution set in terms of an arbitrary parameter 𝑡

2𝑥 + 7𝑦 + 3𝑧 = 11
𝑥 + 3𝑦 + 2𝑧 = 2
3𝑥 + 7𝑦 + 9𝑧 = −12

Solution

The augmented matrix is ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 7 3 11
1 3 2 2
3 7 9 −12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Swapping 𝑅2, 𝑅1 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 2 2
2 7 3 11
3 7 9 −12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2 → (−2)𝑅1 + 𝑅2 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 2 2
0 1 −1 7
3 7 9 −12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 → (−3)𝑅1 + 𝑅3 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 2 2
0 1 −1 7
0 −2 3 −18

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 → 2𝑅2 + 𝑅3 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 2 2
0 1 −1 7
0 0 1 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The leading variables are 𝑥, 𝑦, 𝑧. No free variables. Hence the system is consistent.

The equations after elimination are

𝑥 + 3𝑦 + 2𝑧 = 2
𝑦 − 𝑧 = 7

𝑧 = −4

Backsubstitution gives
𝑧 = −4

And

𝑦 − (−4) = 7
𝑦 = 7 − 4
= 3

And

𝑥 + 3(3) + 2(−4) = 2
𝑥 = 2 − 9 + 8
= 1

The solution is ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥
𝑦
𝑧

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3
−4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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2.1.3 Problem 15 section 3.1

Problem

use the method of elimination to determine whether the given linear system is consistent
or inconsistent. For each consistent system, find the solution if it is unique; otherwise,
describe the infinite solution set in terms of an arbitrary parameter 𝑡

𝑥 + 3𝑦 + 2𝑧 = 5
𝑥 − 𝑦 + 3𝑧 = 3
3𝑥 + 𝑦 + 8𝑧 = 10

Solution

The augmented matrix is ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 2 5
1 −1 3 3
3 1 8 10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2 → −𝑅1 + 𝑅2 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 2 5
0 −4 1 −2
3 1 8 10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 → (−3)𝑅1 + 𝑅3 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 2 5
0 −4 1 −2
0 −8 2 −5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 → (−2)𝑅2 + 𝑅3 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 2 5
0 −4 1 −2
0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The equations after elimination are

𝑥 + 3𝑦 + 2𝑧 = 5
−4𝑦 + 𝑧 = −2

0 = −1

Therefore the system is inconsistent due to the last row result above which is not valid. No
solution exist.

2.1.4 Problem 17 section 3.1

Problem

use the method of elimination to determine whether the given linear system is consistent
or inconsistent. For each consistent system, find the solution if it is unique; otherwise,
describe the infinite solution set in terms of an arbitrary parameter 𝑡

2𝑥 − 𝑦 + 4𝑧 = 7
3𝑥 + 2𝑦 − 2𝑧 = 3
5𝑥 + 𝑦 + 2𝑧 = 15

Solution

The augmented matrix is ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 4 7
3 2 −2 3
5 1 2 15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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2.1. HW 1 CHAPTER 2. HWS

Scaling first row by 3 and second row by 2 gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 −3 12 21
6 4 −4 6
5 1 2 15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2 → −𝑅1 + 𝑅2 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 −3 12 21
0 7 −16 −15
5 1 2 15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Scaling first row by 5 and last row by 6 gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

30 −15 60 105
0 7 −16 −15
30 6 12 90

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 → −𝑅1 + 𝑅3 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

30 −15 60 105
0 7 −16 −15
0 21 −48 −15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 → −(3)𝑅2 + 𝑅3 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

30 −15 60 105
0 7 −16 −15
0 0 0 30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The equations after elimination are

30𝑥 − 15𝑦 + 60𝑧 = 105
7𝑦 − 16𝑧 = −15

0 = 30

Therefore the system is inconsistent due to the last row result above which is not valid. No
solution exist.

2.1.5 Problem 7 section 3.2

Problem

The linear systems in Problems 1–10 are in echelon form. Solve each by back substitution

𝑥1 + 2𝑥2 + 4𝑥3 − 5𝑥4 = 17
𝑥2 − 2𝑥3 + 7𝑥4 = 7

Solution

The augmented matrix is ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 4 −5 17
0 1 −2 7 7
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We see that the leading variables are 𝑥1, 𝑥2 and the free variables are 𝑥3, 𝑥4. Let 𝑥3 = 𝑠, 𝑥4 = 𝑡.
From second row

𝑥2 − 2𝑥3 + 7𝑥4 = 7
𝑥2 − 2𝑠 + 7𝑡 = 7

𝑥2 = 7 + 2𝑠 − 7𝑡

14
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And from first row

𝑥1 + 2𝑥2 + 4𝑥3 − 5𝑥4 = 17
𝑥1 + 2(7 + 2𝑠 − 7𝑡) + 4𝑠 − 5𝑡 = 17

𝑥1 = 19𝑡 − 8𝑠 + 3

Hence the solution is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

19𝑡 − 8𝑠 + 3
7 + 2𝑠 − 7𝑡

𝑠
𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
7
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−8
2
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑠 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

19
−7
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑡

There are infinite number of solutions.

2.1.6 Problem 9 section 3.2

Problem

The linear systems in Problems 1–10 are in echelon form. Solve each by back substitution

2𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 6
3𝑥2 − 𝑥3 − 2𝑥4 = 2

3𝑥3 + 4𝑥4 = 9
𝑥4 = 6

Solution

The augmented matrix is ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 1 6
0 3 −1 −2 2
0 0 3 4 9
0 0 0 1 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The leading variables are 𝑥1, 𝑥2, 𝑥3, 𝑥4. There are no free variables. Backsubstitution gives

𝑥4 = 6

And

3𝑥3 + 4𝑥4 = 9
3𝑥3 = 9 − 4(6)
3𝑥3 = −15
𝑥3 = −5

And

3𝑥2 − 𝑥3 − 2𝑥4 = 2
3𝑥2 + 5 − 12 = 2

𝑥2 = 3

And

2𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 6
2𝑥1 + 3 − 5 + 6 = 6

𝑥1 = 1

15
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Hence the solution is ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3
−5
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2.1.7 Problem 15 section 3.2

Problem

In Problems 11–22, use elementary row operations to transform each augmented coefficient
matrix to echelon form. Then solve the system by back substitution.

3𝑥1 + 𝑥2 − 3𝑥3 = −4
𝑥1 + 𝑥2 + 𝑥3 = 1

5𝑥1 + 6𝑥2 + 8𝑥3 = 8

Solution

The augmented matrix is ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 1 −3 −4
1 1 1 1
5 6 8 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Exchanging row 1 with row 2 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
3 1 −3 −4
5 6 8 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2 → (−3)𝑅1 + 𝑅2 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
0 −2 −6 −7
5 6 8 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 → (−5)𝑅1 + 𝑅3 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
0 −2 −6 −7
0 1 3 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Exchanging row 2 with row 3 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
0 1 3 3
0 −2 −6 −7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 → (2)𝑅2 + 𝑅3 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
0 1 3 3
0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence the equations are

𝑥1 + 𝑥2 + 𝑥1 = 1
𝑥2 + 3𝑥3 = 3

0 = −1

Therefore the system is inconsistent due to the last row result above which is not valid. No
solution exist.

16
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2.1.8 Problem 8 section 3.3

Problem

Find the reduced echelon form ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −5
3 −9 3
1 −2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Solution

First we convert the matrix to echelon form by elimination.

𝑅2 → (−3)𝑅1 + 𝑅2 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −5
0 3 18
1 −2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 → (−1)𝑅1 + 𝑅3 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −5
0 3 18
0 2 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Scale second row by 3 and scale third row by 2 gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −5
0 6 36
0 6 24

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 → (−1)𝑅2 + 𝑅3 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −5
0 6 36
0 0 −12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The above is now in echelon form. We now convert it to reduced echelon form. Scaling
the second row by 1

6 gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −5
0 1 6
0 0 −12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Scaling the third row by −1
12 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −5
0 1 6
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Starting from right to left, we now zero out all entries above the diagonal elements.

𝑅2 → (−6)𝑅3 + 𝑅2 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −5
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅1 → (5)𝑅3 + 𝑅1 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅1 → (4)𝑅2 + 𝑅1 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The above is the reduced echelon form. It is the identity matrix.

17
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2.1.9 Problem 11 section 3.3

Problem

Find the reduced echelon form ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 9 1
2 6 7
1 3 −6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Solution

First we convert the matrix to echelon form by elimination. Exchanging row 3 and first
row gives ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 −6
2 6 7
3 9 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2 → (−2)𝑅1 + 𝑅2 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 −6
0 0 19
3 9 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2 → (−3)𝑅1 + 𝑅3 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 −6
0 0 19
0 0 19

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 → (−1)𝑅2 + 𝑅3 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 −6
0 0 19
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The above is now in echelon form. We now convert it to reduced echelon form. Scaling
the second row by 1

19 gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 −6
0 0 1
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Starting from right to left, we now zero out all entries above the leading elements starting
from second row.

𝑅1 → (6)𝑅2 + 𝑅1 gives ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 0
0 0 1
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The above is the reduced echelon form.

2.1.10 Problem 1 extra

Problem

Draw pictures to illustrate the three possibilities for the solution set of a linear system of
two equations in two variables.

Solution

For homogeneous system

𝑎11𝑥 + 𝑎12𝑦 = 0
𝑎21𝑥 + 𝑎22𝑦 = 0

There can be either one solution, which is the trivial solution 𝑥 = 0, 𝑦 = 0 where the two
lines meet at the origin, or infinite number of solutions, which is when the two lines are

18
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on top of each others. The reason for this is that there is no intercept in the equation of
the lines above. Only the slope of each line can change. Hence all lines must pass though
the origin. This diagram illustrates this.

y

x

y

x

Both lines on top of each others
Infinite number of solutions

The two lines meet at zero

One unique solution, the trivial solution,.

Figure 2.1: Possibilites for homogeneous system

For nonhomogeneous system

𝑎11𝑥 + 𝑎12𝑦 = 𝑐1
𝑎21𝑥 + 𝑎22𝑦 = 𝑐2

Now there can be three possibilities. Either one solution where the two lines meet or infinite
number of solutions, which is when the two lines are on top of each others or no solutions,
which is when the two lines are parallel but not on top of each others.

This diagram illustrates this.

y

x

y

x

Both lines on top of each others
Infinite number of solutions

The two lines meet at solution
One unique solution

y

x

Lines are parallel but not on top of each others
No solution. inconsistent.

consistent.

consistent.

Figure 2.2: Possibilites for homogeneous system

2.1.11 Problem 2 extra

Problem

Give an example of a 3 × 3 matrix in echelon form with exactly 2 nonzero entries.

Solution
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

★ 0 0
0 ★ 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Where ★ is a nonzero entry.

2.1.12 Problem 3 extra

Problem

Give an example of a 3 × 3 matrix in reduced echelon form with exactly 4 nonzero entries.

19
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Solution
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ★
0 1 ★
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Where★ is a nonzero entry. In reduced echelon form only the leading entries (which must
be 1) has to be zero.

20
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2.1.13 key solution for HW 1

Homework 1 – Solutions

These solutions demonstrate one way to approach each of the homework problems. In many
cases, there are other correct solutions. If you would like to discuss alternative solutions or
the grading of your assignment, please see me during office hours or send me an email.

Textbook Problems:

3.1.11 Our original system is

2x + 7y + 3z = 11

x + 3y + 2z = 2

3x + 7y + 9z = −12

We add (−2) times the second equation to the first and (−3) times the second equation
to the third.

y − z = 7

x + 3y + 2z = 2

−2y + 3z = −18

Now, add 2 times the first equation to the third.

y − z = 7

x + 3y + 2z = 2

z = −4

At this point, back substitution gives us the unique solution x = 1, y = 3, z = −4. The
system is consistent.

3.1.15 Our original system is

x + 3y + 2z = 5

x− y + 3z = 3

3x + y + 8z = 10

Add (−1) times the first equation to the second and (−3) times the first equation to
the third.

x + 3y + 2z = 5

−4y + z = −2

−8y + 2z = −5

1
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Add (−2) times the second equation to the third.

x + 3y + 2z = 5

−4y + z = −2

0 = −1

Our third equation is contradictory, so the system has no solutions and is inconsistent.

3.1.17 Our original system is

2x− y + 4z = 7

3x + 2y − 2z = 3

5x + y + 2z = 15

Add (−1) times the first equation to the second.

2x− y + 4z = 7

x + 3y − 6z = −4

5x + y + 2z = 15

Add (−2) times the second equation to the first and (−5) times the second equation
to the third.

−7y + 16z = 15

x + 3y − 6z = −4

−14y + 32z = 35

Add (−2) times the first equation to the third.

−7y + 16z = 15

x + 3y − 6z = −4

0 = 5

Our third equation is contradictory, so the system has no solutions and is inconsistent.

3.2.7 Our system is

x1 + 2x2 + 4x3 − 5x4 = 17

x2 − 2x3 + 7x4 = 7

Our free variables are x3 and x4, so we set them equal to parameters: x3 = s, x4 = t.
Solving for the other two variables gives x2 = 7 + 2s− 7t and x1 = 3− 8s + 19t.

2
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3.2.9 Our system is

2x1 + x2 + x3 + x4 = 6

3x2 − x3 − 2x4 = 2

3x3 + 4x4 = 9

x4 = 6

Working from the bottom up, we solve for each variable to get x4 = 6, x3 = −5, x2 = 3,
and x1 = 1.

3.2.15 We do row operations to the augmented coefficient matrix. For brevity, we may do
more than one row operation in a step.3 1 −3 −4

1 1 1 1
5 6 8 8

 (−3)R2+R1−−−−−−→
(−5)R2+R3

0 −2 −6 −7
1 1 1 1
0 1 3 3


(2)R3+R1−−−−−→

0 0 0 −1
1 1 1 1
0 1 3 3


SWAP (R1,R2)−−−−−−−−→

1 1 1 1
0 0 0 −1
0 1 3 3


SWAP (R2,R3)−−−−−−−−→

1 1 1 1
0 1 3 3
0 0 0 −1


We continued with our reduction to reach echelon form, but notice that after the second
step our first row corresponds to the equation 0 = 11, a contradiction. So the system
has no solutions.

3
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3.3.8 1 −4 −5
3 −9 3
1 −2 3

 (−1)R1+R3−−−−−−→
(−3)R1+R2

1 −4 −5
0 3 18
0 2 8


( 1
2
)R3−−−→

( 1
3
)R2

1 −4 −5
0 1 6
0 1 4


(−1)R2+R3−−−−−−→

1 −4 −5
0 1 6
0 0 −2


(− 1

2
)R3−−−−→

1 −4 −5
0 1 6
0 0 1


(−6)R3+R2−−−−−−→
(5)R3+R1

1 −4 0
0 1 0
0 0 1


(4)R2+R1−−−−−→

1 0 0
0 1 0
0 0 1


3.3.11 3 9 1

2 6 7
1 3 −6

 (−3)R3+R1−−−−−−→
(−2)R3+R2

0 0 19
0 0 19
1 3 −6


(−1)R2+R1−−−−−−→

0 0 0
0 0 19
1 3 −6


SWAP (R1,R3)−−−−−−−−→

( 1
19

)R2

1 3 −6
0 0 1
0 0 0


(6)R2+R1−−−−−→

1 3 0
0 0 1
0 0 0


Additional Problems:

1. Check the class notes for sketches of each case.

Unique solution – two intersecting lines

No solutions – two parallel lines

Infinitely many solutions – two identical lines

4
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2. There are many possibilities. One option:

2 0 0
0 0 1
0 0 0


3. There are multiple possibilities here, but all correct answers will have their nonzero entries

in the same places. One option:

1 0 2
0 1 3
0 0 0



5
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2.2.1 Problems listing

Homework 2 - Due September 24

Homework instructions: Complete the assigned problems on your own paper. Once you
are finished, scan or photograph your work and upload it to Gradescope. When prompted,
tell Gradescope where to find each problem.
You are allowed (and in fact encouraged) to work with other students on homework assign-
ments. If you do that, please indicate on each problem who you worked with. If you use
sources other than your notes, the textbook, and any resources on Canvas for your home-
work, you must indicate the source on each problem. You are not permitted to view, request,
or look for solutions to any of the homework problems from solutions manuals, homework
help websites, online forums, other students, or any other sources.

Textbook Problems:

• §3.4: 3, 5, 8, 11

• §3.5: 3, 10, 16

• §3.6: 4, 9, 21

Additional Problems:

1. Give an example of matrices A and B where AB = BA.

2. Give an example of matrices C and D where CD 6= DC.

3. Let A,B, and C be invertible n × n matrices. Is the product ABC invertible? If it is
invertible, what is (ABC)−1?

4. Let T =

t1 0 0
0 t2 0
0 0 t3

 be a diagonal matrix. What is detT?

Optional: Consider an n×n diagonal matrix T . That is, T has entries t1, t2, . . . , tn on the
main diagonal and 0’s everywhere else. What is detT? The required part of this problem
asks you to answer this question for the case where n = 3.

1
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2.2.2 Problem 3 section 3.4

Problem

In Problems 1-4, two matrices 𝐴 and 𝐵 and two numbers 𝑐 and 𝑑 are given. Compute the
matrix 𝑐𝐴 + 𝑑𝐵

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 0
0 7
3 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐵 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 5
3 2
7 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑐 = −2, 𝑑 = 4

Solution

𝑐𝐴 + 𝑑𝐵 = −2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 0
0 7
3 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 5
3 2
7 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−10 0
0 −14
−6 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−16 20
12 8
28 16

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−26 20
12 −6
22 18

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.2.3 Problem 5 section 3.4

Problem

In Problems 5-12, two matrices 𝐴 and 𝐵 are given. Calculate whichever of the matrices 𝐴𝐵
and 𝐵𝐴 is defined.

𝐴 =
⎡
⎢⎢⎢⎢⎣
2 −1
3 2

⎤
⎥⎥⎥⎥⎦, 𝐵 =

⎡
⎢⎢⎢⎢⎣
−4 2
1 3

⎤
⎥⎥⎥⎥⎦

Solution

𝐴 dimension is 2 × 2 and 𝐵 dimension is 2 × 2. So inner dimensions agree. Both 𝐴𝐵 and
𝐵𝐴 are defined. Using definition of matrix multiplication we obtain

𝐴𝐵 =
⎡
⎢⎢⎢⎢⎣
2 −1
3 2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
−4 2
1 3

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
−9 1
−10 12

⎤
⎥⎥⎥⎥⎦

And

𝐵𝐴 =
⎡
⎢⎢⎢⎢⎣
−4 2
1 3

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
2 −1
3 2

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
−2 8
11 5

⎤
⎥⎥⎥⎥⎦

2.2.4 Problem 8 section 3.4

Problem

𝐴 =
⎡
⎢⎢⎢⎢⎣
1 0 3
2 −5 4

⎤
⎥⎥⎥⎥⎦, 𝐵 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0
−1 4
6 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

𝐴 dimension is 2 × 3 and 𝐵 dimension is 3 × 2. Hence 𝐴𝐵 is (2 × 3)(3 × 2) = 2 × 2 matrix.
Therefore inner dimensions agree. And 𝐵𝐴 is define since (3 × 2)(2 × 3) = 3 × 3. Therefore
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inner dimensions agree.

𝐴𝐵 =
⎡
⎢⎢⎢⎢⎣
1 0 3
2 −5 4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0
−1 4
6 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
21 15
35 0

⎤
⎥⎥⎥⎥⎦

And

𝐵𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0
−1 4
6 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 0 3
2 −5 4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 9
7 −20 13
16 −25 38

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.2.5 Problem 11 section 3.4

Problem

𝐴 = �3 −5�, 𝐵 =
⎡
⎢⎢⎢⎢⎣
2 7 5 6
−1 4 2 3

⎤
⎥⎥⎥⎥⎦

Solution

𝐴 dimension is 1 × 2 and 𝐵 dimension is 2 × 4. Hence 𝐴𝐵 is (1 × 2)(2 × 4) = 1 × 4 matrix.
Therefore inner dimensions agree. And 𝐵𝐴 is not defined since (2 × 4)(1 × 2). Therefore
inner dimensions do not agree. So only 𝐴𝐵 is defined here.

𝐴𝐵 = �3 −5�
⎡
⎢⎢⎢⎢⎣
2 7 5 6
−1 4 2 3

⎤
⎥⎥⎥⎥⎦

= �11 1 5 3�

2.2.6 Problem 3 section 3.5

Problem

In Problems 1-8, first apply the formulas in (9) to find 𝐴−1. Then use 𝐴−1 (as in Example
5) to solve the system 𝐴𝑥 = 𝑏.

𝐴 =
⎡
⎢⎢⎢⎢⎣
6 7
5 6

⎤
⎥⎥⎥⎥⎦, 𝑏 =

⎡
⎢⎢⎢⎢⎣
2
−3

⎤
⎥⎥⎥⎥⎦

Solution

Formula (9) is

𝐴 =
⎡
⎢⎢⎢⎢⎣
𝑎 𝑏
𝑐 𝑑

⎤
⎥⎥⎥⎥⎦

𝐴−1 =
1

𝑎𝑑 − 𝑏𝑐

⎡
⎢⎢⎢⎢⎣
𝑑 −𝑏
−𝑐 𝑎

⎤
⎥⎥⎥⎥⎦

Therefore

⎡
⎢⎢⎢⎢⎣
6 7
5 6

⎤
⎥⎥⎥⎥⎦

−1

=
1

36 − 35

⎡
⎢⎢⎢⎢⎣
6 −7
−5 6

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
6 −7
−5 6

⎤
⎥⎥⎥⎥⎦
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Hence

𝑥 = 𝐴−1𝑏

=
⎡
⎢⎢⎢⎢⎣
6 −7
−5 6

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
2
−3

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
33
−28

⎤
⎥⎥⎥⎥⎦

2.2.7 Problem 10 section 3.5

Problem

In Problems 9-22, use the method of Example 7 to find the inverse 𝐴−1 of each given matrix
𝐴.

𝐴 =
⎡
⎢⎢⎢⎢⎣
5 7
4 6

⎤
⎥⎥⎥⎥⎦

Solution

The augmented matrix is ⎡
⎢⎢⎢⎢⎣
5 7 1 0
4 6 0 1

⎤
⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 − 𝑅2 gives ⎡
⎢⎢⎢⎢⎣
1 1 1 −1
4 6 0 1

⎤
⎥⎥⎥⎥⎦

𝑅2 → −4𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎣
1 1 1 −1
0 2 −4 5

⎤
⎥⎥⎥⎥⎦

𝑅2 →
1
2𝑅2 gives ⎡

⎢⎢⎢⎢⎣
1 1 1 −1
0 1 −2 5

2

⎤
⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 − 𝑅2 gives ⎡
⎢⎢⎢⎢⎣
1 0 3 −7

2
0 1 −2 5

2

⎤
⎥⎥⎥⎥⎦

Since the left side of the augments matrix is now the identity matrix, then we read 𝐴−1

from the right side. Hence

𝐴−1 =
⎡
⎢⎢⎢⎢⎣
3 −7

2
−2 5

2

⎤
⎥⎥⎥⎥⎦

=
1
2

⎡
⎢⎢⎢⎢⎣
6 −7
−4 5

⎤
⎥⎥⎥⎥⎦

2.2.8 Problem 16 section 3.5

Problem

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −3
−1 1 2
2 −3 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

The augmented matrix is

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −3 1 0 0
−1 1 2 0 1 0
2 −3 −3 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅2 → 𝑅1 + 𝑅2 gives

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −3 1 0 0
0 −2 −1 1 1 0
2 −3 −3 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → −(2)𝑅1 + 𝑅3 gives

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −3 1 0 0
0 −2 −1 1 1 0
0 3 3 −2 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 3𝑅2 and 𝑅3 → 2𝑅3 gives

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −3 1 0 0
0 −6 −3 3 3 0
0 6 6 −4 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅2 + 𝑅3 gives

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −3 1 0 0
0 −6 −3 3 3 0
0 0 3 −1 3 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 + 𝑅3 gives

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −3 1 0 0
0 −6 0 2 6 2
0 0 3 −1 3 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 + 𝑅3 gives

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 0 0 3 2
0 −6 0 2 6 2
0 0 3 −1 3 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 −
1
2𝑅2 gives

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 1
0 −6 0 2 6 2
0 0 3 −1 3 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 →
−1
6 𝑅2 gives

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 1
0 1 0 −1

3 −1 −1
3

0 0 3 −1 3 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 →
1
3𝑅3 gives

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 1
0 1 0 −1

3 −1 −1
3

0 0 1 −1
3 1 2

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since the left side of the augments matrix is now the identity matrix, then we read 𝐴−1

from the right side. Hence

𝐴−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 1
−1
3 −1 −1

3
−1
3 1 2

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1
3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 0 3
−1 −3 −1
−1 3 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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2.2.9 Problem 4 section 3.6

Problem

Use cofactor expansions to evaluate the determinants in Problems 1-6. Expand along the
row or column that minimizes the

amount of computation that is required.

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 11 8 7
3 −2 6 23
0 0 0 −3
0 4 0 17

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

Row 4 has most zeros. Hence expansion is on row 4.

|𝐴| = (−)(−3)
�

�

5 11 8
3 −2 6
0 4 0

�

�

= 3
�

�

5 11 8
3 −2 6
0 4 0

�

�

For
�

�

5 11 8
3 −2 6
0 4 0

�

�
we expand on 3rd row. The above becomes

|𝐴| = 3
⎛
⎜⎜⎜⎜⎝(−)4�

5 8
3 6

�

⎞
⎟⎟⎟⎟⎠

= −12�
5 8
3 6

�

= −12(30 − 24)

Therefore
|𝐴| = −72

2.2.10 Problem 9 section 3.6

Problem

In Problems 7-12, evaluate each given determinant after first simplifying the computation
(as in Example 6) by adding an appropriate multiple of some row or column to another.

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −2 5
0 5 17
6 −4 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

Adding multiple of some row to another row does not change the determinant of a matrix.
Same for adding multiple of some column to another column. We can take advantage of
this to add more zeros to the matrix before applying the cofactor method to reduce the
computation needed.

Let 𝑅3 → −2𝑅1 + 𝑅3 gives

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −2 5
0 5 17
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Expansion on third row now gives

|𝐴| = (+)2�
3 −2
0 5

�

= 2(15)

Therefore
|𝐴| = 30

2.2.11 Problem 21 section 3.6

Problem

Use Cramer’s rule to solve the systems in Problems 21-32.

3𝑥 + 4𝑦 = 2
5𝑥 + 7𝑦 = 1

Solution

The system in matrix form is ⎡
⎢⎢⎢⎢⎣
3 4
5 7

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥
𝑦

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
2
1

⎤
⎥⎥⎥⎥⎦

Hence using Cramer’s rule

𝑥 =
�
2 4
1 7

�

�
3 4
5 7

�

=
14 − 4
21 − 20

= 10

And

𝑦 =
�
3 2
5 1

�

�
3 4
5 7

�

=
3 − 10
21 − 20

= −7

Hence the solution is ⎡
⎢⎢⎢⎢⎣
𝑥
𝑦

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
10
−7

⎤
⎥⎥⎥⎥⎦

2.2.12 Additional problem 1

Problem

Give an example of matrices 𝐴 and 𝐵 where 𝐴𝐵 = 𝐵𝐴

Solution

Let 𝐴 =
⎡
⎢⎢⎢⎢⎣
𝑎 𝑏
𝑐 𝑑

⎤
⎥⎥⎥⎥⎦, 𝐵 =

⎡
⎢⎢⎢⎢⎣
𝑒 𝑓
𝑔 ℎ

⎤
⎥⎥⎥⎥⎦. Then

𝐴𝐵 =
⎡
⎢⎢⎢⎢⎣
𝑎 𝑏
𝑐 𝑑

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑒 𝑓
𝑔 ℎ

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ
𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ

⎤
⎥⎥⎥⎥⎦ (1)

And

𝐵𝐴 =
⎡
⎢⎢⎢⎢⎣
𝑒 𝑓
𝑔 ℎ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑎 𝑏
𝑐 𝑑

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
𝑎𝑒 + 𝑐𝑓 𝑏𝑒 + 𝑑𝑓
𝑎𝑔 + 𝑐ℎ 𝑏𝑔 + 𝑑ℎ

⎤
⎥⎥⎥⎥⎦ (2)
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For (1,2) to be equal implies that

𝑎𝑒 + 𝑏𝑔 = 𝑎𝑒 + 𝑐𝑓
𝑎𝑓 + 𝑏ℎ = 𝑏𝑒 + 𝑑𝑓
𝑐𝑒 + 𝑑𝑔 = 𝑎𝑔 + 𝑐ℎ
𝑐𝑓 + 𝑑ℎ = 𝑏𝑔 + 𝑑ℎ

Simplifying gives

𝑏𝑔 = 𝑐𝑓
𝑎𝑓 + 𝑏ℎ = 𝑏𝑒 + 𝑑𝑓
𝑐𝑒 + 𝑑𝑔 = 𝑎𝑔 + 𝑐ℎ

𝑐𝑓 = 𝑏𝑔

First equation is the same as the fourth. Hence the above becomes

𝑏𝑔 = 𝑐𝑓
𝑎𝑓 + 𝑏ℎ = 𝑏𝑒 + 𝑑𝑓
𝑐𝑒 + 𝑑𝑔 = 𝑎𝑔 + 𝑐ℎ

Let 𝑎 = 1, 𝑏 = 2, 𝑐 = 3, 𝑑 = 4, 𝑒 = 5, 𝑓 = 6. The above becomes

2𝑔 = 18
6 + 2ℎ = 10 + 24
15 + 4𝑔 = 𝑔 + 3ℎ

or

𝑔 = 9
ℎ = 14

Hence and example is

𝐴 =
⎡
⎢⎢⎢⎢⎣
𝑎 𝑏
𝑐 𝑑

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1 2
3 4

⎤
⎥⎥⎥⎥⎦

𝐵 =
⎡
⎢⎢⎢⎢⎣
𝑒 𝑓
𝑔 ℎ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
5 6
9 14

⎤
⎥⎥⎥⎥⎦

To verify

𝐴𝐵 =
⎡
⎢⎢⎢⎢⎣
1 2
3 4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
5 6
9 14

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
23 34
51 74

⎤
⎥⎥⎥⎥⎦

𝐵𝐴 =
⎡
⎢⎢⎢⎢⎣
5 6
9 14

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 2
3 4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
23 34
51 74

⎤
⎥⎥⎥⎥⎦

2.2.13 Additional problem 2

Problem

Give an example of matrices 𝐶 and 𝐷 where 𝐶𝐷 ≠ 𝐷𝐶.

Solution

From the last problem, we found a solution that makes 𝐶𝐷 = 𝐷𝐶 to be

𝑔 = 9
ℎ = 14
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So any other value will make 𝐶𝐷 ≠ 𝐷𝐶. Hence an example is

𝐶 =
⎡
⎢⎢⎢⎢⎣
𝑎 𝑏
𝑐 𝑑

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1 2
3 4

⎤
⎥⎥⎥⎥⎦

𝐷 =
⎡
⎢⎢⎢⎢⎣
𝑒 𝑓 + 1
𝑔 ℎ

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
5 6 + 1
9 14

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
5 7
9 14

⎤
⎥⎥⎥⎥⎦

To verify

𝐶𝐷 =
⎡
⎢⎢⎢⎢⎣
1 2
3 4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
5 7
9 14

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
23 35
51 77

⎤
⎥⎥⎥⎥⎦

But

𝐷𝐶 =
⎡
⎢⎢⎢⎢⎣
5 7
9 14

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 2
3 4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
26 38
51 74

⎤
⎥⎥⎥⎥⎦

Hence 𝐶𝐷 ≠ 𝐷𝐶

2.2.14 Additional problem 3

Problem

Let 𝐴;𝐵, and 𝐶 be invertible 𝑛×𝑛 matrices. Is the product 𝐴𝐵𝐶 invertible? If it is invertible,
what is (𝐴𝐵𝐶)−1?

Solution

Let 𝐴𝐵𝐶 = 𝐷. Premultiplying both sides by 𝐴−1 gives

𝐴−1𝐴𝐵𝐶 = 𝐴−1𝐷
𝐵𝐶 = 𝐴−1𝐷

Premultiplying both sides by 𝐵−1 gives

𝐵−1𝐵𝐶 = 𝐵−1𝐴−1𝐷
𝐵 = 𝐵−1𝐴−1𝐷

Premultiplying both sides by 𝐶−1 gives

𝐼 = �𝐶−1𝐵−1𝐴−1�𝐷 (1)

Starting with 𝐴𝐵𝐶 = 𝐷 again, but now post multiplying both sides by 𝐶−1 gives

𝐴𝐵𝐶𝐶−1 = 𝐷𝐶−1

𝐴𝐵 = 𝐷𝐶−1

Post multiplying both sides by 𝐵−1 gives

𝐴𝐵𝐵−1 = 𝐷𝐶−1𝐵−1

𝐴 = 𝐷𝐶−1𝐵−1

Post multiplying both sides by 𝐴−1 gives

𝐼 = 𝐷�𝐶−1𝐵−1𝐴−1� (2)

Comparing (1,2) we see that

�𝐶−1𝐵−1𝐴−1�𝐷 = 𝐷�𝐶−1𝐵−1𝐴−1� = 𝐼 (3)

This means 𝐶−1𝐵−1𝐴−1 is the inverse of 𝐷 by definition (page 177 of book) which says if
𝐴𝐵 = 𝐵𝐴 = 𝐼 then 𝐵 is the inverse of 𝐴.

But 𝐷 is the product of 𝐴𝐵𝐶. Hence the product is invertible. And from (3), its inverse is
given by

(𝐴𝐵𝐶)−1 = 𝐶−1𝐵−1𝐴−1
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2.2.15 Additional problem 4

Problem

Let 𝑇 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡1 0 0
0 𝑡2 0
0 0 𝑡3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
be diagonal matrix. What is det(𝑇)?

Solution

The determinant of a diagonal matrix is the product of the elements on the diagonal.
Hence

det(𝑇) = 𝑡1𝑡2𝑡3
This comes from expansion over any row or column. For example, expansion along row 1
gives

det(𝑇) = 𝑡1�
𝑡2 0
0 𝑡3

�

= 𝑡1𝑡2 det(�𝑡3�

= 𝑡1𝑡2𝑡3

Note that the sign of the elements are all positive for 3 × 3 since 𝑛 is odd here.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ − +
− + −
+ − +

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.2.16 Additional problem. Optional

Problem

Optional: Consider an 𝑛 × 𝑛 diagonal matrix 𝑇. What is 𝑑𝑒𝑡(𝑇)? The required part of this
problem asks you to answer this question for the case where 𝑛 = 3.

Solution

𝑇 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡1 0 0 ⋯ ⋯ 0
0 𝑡2 0 ⋯ ⋯ 0
0 0 𝑡3 ⋯ ⋯ 0
0 ⋯ ⋯ ⋱ ⋯ 0
0 ⋯ ⋯ ⋯ ⋱ 0
0 ⋯ ⋯ ⋯ ⋯ 𝑡𝑛

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

det(𝑇) is the product of all elements on the diagonal. This comes from expansion over any
row. For example, expansion on row 1 gives

det(𝑇) = 𝑡1

�
�
�
�

𝑡2 0 ⋯ ⋯ 0
0 𝑡3 ⋯ ⋯ 0
⋯ ⋯ ⋱ ⋯ 0
⋯ ⋯ ⋯ ⋱ 0
⋯ ⋯ ⋯ ⋯ 𝑡𝑛

�
�
�
�

= 𝑡1𝑡2

�
�
�

𝑡3 ⋯ ⋯ 0
⋯ 𝑡4 ⋯ 0
⋯ ⋯ ⋱ 0
⋯ ⋯ ⋯ 𝑡𝑛

�
�
�

= 𝑡1𝑡2𝑡3
�

�

𝑡4 ⋯ 0
⋯ ⋱ 0
⋯ ⋯ 𝑡𝑛

�

�
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And so on until the last entry

det(𝑇) = 𝑡1𝑡2𝑡3⋯𝑡𝑛

=
𝑛
�
𝑖=1
𝑡𝑛

Note on the sign. In expansion, we have to take account of sign changes. If 𝑛 is odd, then
the sign of the elements are all positive on the diagonal as in case 𝑛 = 3 above. So we do
not need to worry about this case.

For even 𝑛, the sign on diagoanl also remains positive, since the formula is (−1)𝑖+𝑗 where
𝑖, 𝑗 are the index of the diagonal elements, and this always adds to even number since 𝑖 = 𝑗
on the diagonal. For an example for 𝑛 = 4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ − + −
− + − +
+ − + −
− + − +

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We see that product on the diagonal always has positive signs.
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2.2.17 key solution for HW 2

Homework 2 – Solutions

These solutions demonstrate one way to approach each of the homework problems. In many
cases, there are other correct solutions. If you would like to discuss alternative solutions or
the grading of your assignment, please see me during office hours or send me an email.

Textbook Problems:

3.4.3

(−2)

5 0
0 7
3 −1

+ (4)

−4 5
3 2
7 4

 =

−26 20
12 −6
22 18


3.4.5

AB =

[
2 −1
3 2

] [
−4 2
1 3

]
=

[
−9 1
−10 12

]
BA =

[
−4 2
1 3

] [
2 −1
3 2

]
=

[
−2 8
11 5

]
3.4.8

AB =

[
1 0 3
2 −5 4

] 3 0
−1 4
6 5


=

[
21 15
35 0

]

BA =

 3 0
−1 4
6 5

[1 0 3
2 −5 4

]

=

 3 0 9
7 −20 13
16 −25 38


3.4.11

AB =
[
3 −5

] [ 2 7 5 6
−1 4 2 3

]
=
[
11 1 5 3

]
The product BA is not defined because B is 2 × 4 and A is 1 × 2, so the dimensions
do not match.

1
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3.5.3 For A =

[
6 7
5 6

]
, our formula for 2× 2 matrices tells us that A−1 = 1

36−35

[
6 −7
−5 6

]
=[

6 −7
−5 6

]
. So if A~x = ~b, we have that

~x = A−1~b

=

[
6 −7
−5 6

] [
2
−3

]
=

[
33
−28

]
3.5.10 We adjoin an identity matrix and row reduce:[

5 7 1 0
4 6 0 1

]
−R2+R1−−−−−→

[
1 1 1 −1
4 6 0 1

]
−4R1+R2−−−−−→

[
1 1 1 −1
0 2 −4 5

]
1
2
R2−−→
[
1 1 1 −1
0 1 −2 5

2

]
−R2+R1−−−−−→

[
1 0 3 −7

2

0 1 −2 5
2

]

So the inverse matrix is

[
3 −7

2

−2 5
2

]
.

3.5.16 We adjoin an identity matrix and row reduce: 1 −3 −3 1 0 0
−1 1 2 0 1 0
2 −3 −3 0 0 1

 R1+R2−−−−−→
−2R1+R3

1 −3 −3 1 0 0
0 −2 −1 1 1 0
0 3 3 −2 0 1


R3+R2−−−−→

1 −3 −3 1 0 0
0 1 2 −1 1 1
0 3 3 −2 0 1


−3R2+R3−−−−−→
3R2+R1

1 0 3 −2 3 3
0 1 2 −1 1 1
0 0 −3 1 −3 −2


− 1

3
R3−−−→

1 0 3 −2 3 3
0 1 2 −1 1 1
0 0 1 −1

3
1 2

3


−2R3+R2−−−−−→
−3R3+R1

1 0 0 −1 0 1
0 1 0 −1

3
−1 −1

3

0 0 1 −1
3

1 2
3


2
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So the inverse is

−1 0 1
−1

3
−1 −1

3

−1
3

1 2
3


3.6.4 First, we expand along the third row:

det


5 11 8 7
3 −2 6 23
0 0 0 −3
0 4 0 17

 = (−1)(−3) det

5 11 8
3 −2 6
0 4 0


Next, we expand along the third row:

(3) det

5 11 8
3 −2 6
0 4 0

 = (3)(−1)(4) det

[
5 8
3 6

]

Finally, we evaluate using our formula for 2× 2 determinants:

(−12)(5∗6− 8∗3) = (−12)(6) = −72

3.6.9 Before proceeding with our calculation, we do the row operation (−2)R1 + R3 which
does not change the determinant:

det

3 −2 5
0 5 17
6 −4 12

 = det

3 −2 5
0 5 17
0 0 2


We expand this along the new and improved first column:

det

3 −2 5
0 5 17
0 0 2

 = (+1)(3) det

[
5 17
0 2

]
= (3)(5∗2− 17∗0)

= 30

3.6.21 Our system is

3x + 4y = 2

5x + 7y = 1

The coefficient matrix has determinant det

[
3 4
5 7

]
= 3∗7−4∗5 = 1, so since this nonzero

we can proceed with Cramer’s Rule. Cramer’s Rule tells us that the unique solution

3
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to this system is

x =

det

[
2 4
1 7

]
det

[
3 4
5 7

]
=

2∗7− 4∗1

3∗7− 4∗5

= 10

y =

det

[
3 2
5 1

]
det

[
3 4
5 7

]
=

3∗1− 2∗5

3∗7− 4∗5

= −7

Additional Problems:

1. Some possible easy choices here include taking A = B, taking B = A−1, taking one of the
matrices to be the identity, or choosing 1× 1 matrices.

2. One choice that works here is C =

[
1 2
3 4

]
, D =

[
0 1
1 0

]
. We compute

CD =

[
2 1
4 3

]
DC =

[
3 4
1 2

]
If you pick random entries for your matrices, odds are that they will work for this problem.
Another easy choice would be picking C to be n ×m and D to be m × n where m 6= n.
Then CD and DC are different sizes, so are certainly not equal!

3. The product ABC is invertible, and the inverse is (ABC)−1 = C−1B−1A−1. To see why
this is the inverse, we compute:

(ABC)(C−1B−1A−1) = AB(CC−1)B−1A−1

= ABIB−1A−1

= A(BB−1)A−1

= AIA−1

= AA−1

= I

You can calulate similarly that (C−1B−1A−1)(ABC) = I.

4
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4. The determinant of T =

t1 0 0
0 t2 0
0 0 t3

 is t1t2t3. The cofactor expansion is straightforward

here, no matter which row or column you choose to use.

For an n×n diagonal matrix T , the determinant is the product t1t2 · · · tn. In mathematics,

we usually write a product like this as
n∏

i=1

ti. This kind of notation is called “product

notation” and works very similarly to summation notation that you may be already
familiar with.

5
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2.3.1 Problems listing

Homework 3 - Due October 1

Homework instructions: Complete the assigned problems on your own paper. Once you
are finished, scan or photograph your work and upload it to Gradescope. When prompted,
tell Gradescope where to find each problem.
You are allowed (and in fact encouraged) to work with other students on homework assign-
ments. If you do that, please indicate on each problem who you worked with. If you use
sources other than your notes, the textbook, and any resources on Canvas for your home-
work, you must indicate the source on each problem. You are not permitted to view, request,
or look for solutions to any of the homework problems from solutions manuals, homework
help websites, online forums, other students, or any other sources.

Textbook Problems:

• §3.7: 3

• §4.1: 1, 19, 23, 27

• §4.2: 2, 4, 17, 21

Additional Problems:

1. My fictional company Linear Algebra Inc had a stock price of $10 on day 1, $15 on day 2,
and $10 on day 3. Interpolate this data with a quadratic polynomial f(t) = a + bt + ct2,
where t is the day and f(t) is the price on day t.

Is it a good idea to use f(t) to predict the stock price of Linear Algebra Inc on day 4?

2. Geometrically, what do subspaces of R2 look like?

3. Let A be an n × n matrix and consider the linear system A~x = ~b. If I know that the
solution set to this linear system is a subspace of Rn, what can you say about ~b?

1
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2.3.2 Problem 3 section 3.7

In each of Problems 1–10, 𝑛 + 1 data points are given. Find the 𝑛𝑡ℎ degree polynomial
𝑦 = 𝑓(𝑥) that fits these points.

�𝑥, 𝑦� = {(0, 3), (1, 1), (2, −5)}

Solution

Since 𝑛 + 1 = 3, then 𝑛 = 2. Therefore we need degree 2 polynomial

𝑓(𝑥) = 𝐴 + 𝐵𝑥 + 𝐶𝑥2

From the data given, we obtain the following three equations

3 = 𝐴
1 = 𝐴 + 𝐵 + 𝐶
−5 = 𝐴 + 2𝐵 + 4𝐶

This gives the system ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 1 1
1 2 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴
𝐵
𝐶

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
1
−5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 3
1 1 1 1
1 2 4 −5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → −𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 3
0 1 1 −2
1 2 4 −5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −𝑅1 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 3
0 1 1 −2
0 2 4 −8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −2𝑅2 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 3
0 1 1 −2
0 0 2 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence we obtain the system in Echelon form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 1
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴
𝐵
𝐶

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
−2
−4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Back substitution: Last row gives 2𝐶 = −4 or 𝐶 = −2. Second row gives 𝐵 −𝐶 = −2 or 𝐵 = 0.

First row gives 𝐴 = 3. Therefore the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴
𝐵
𝐶

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
0
−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The polynomial is

𝑓(𝑥) = 𝐴 + 𝐵𝑥 + 𝐶𝑥2

= 3 − 2𝑥2
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Here is plot of the solution fitted on the points

0.5 1.0 1.5 2.0
x

-6

-4

-2

2

4

f (x)

Figure 2.3: Fitted polynomial plot

p1 = ListPlot[{{0, 3}, {1, 1}, {2, -5}}, PlotStyle → {PointSize[.03], Red}];

p2 = Plot[3 + 0 x - 2 x^2, {x, -.2, 2.2}, AxesLabel → {x, f[x]},

BaseStyle → 14, GridLines → Automatic, GridLinesStyle → LightGray];

p = Show[p2, p1, PlotRange → {Automatic, {-6, 4}}];

Figure 2.4: Code used for the above plot

2.3.3 Problem 1 section 4.1

In Problems 1–4, find �𝑎 − 𝑏⃗�, 2𝑎 + 𝑏⃗,3𝑎 − 4𝑏⃗

𝑎 = (2, 5, −4), 𝑏⃗ = (1, −2, −3)

Solution

�𝑎 − 𝑏⃗� = |(2, 5, −4) − (1, −2, −3)|

= |(2 − 1, 5 + 2, −4 + 3)|
= |(1, 7, −1)|

= √1 + 49 + 1

= √51

And

2𝑎 + 𝑏⃗ = 2(2, 5, −4) + (1, −2, −3)
= (4, 10, −8) + (1, −2, −3)
= (4 + 1, 10 − 2, −8 − 3)
= (5, 8, −11)

And

3𝑎 − 4𝑏⃗ = 3(2, 5, −4) − 4(1, −2, −3)
= (6, 15, −12) − (4, −8, −12)
= (6 − 4, 15 + 8, −12 + 12)
= (2, 23, 0)

46



2.3. HW 3 CHAPTER 2. HWS

2.3.4 Problem 19 section 4.1

In Problems 19–24, use the method of Example 3 to determine whether the given vectors
𝑢⃗, 𝑣⃗, and 𝑤⃗ are linearly independent or dependent. If they are linearly dependent, find
scalars 𝑎, 𝑏, and 𝑐 not all zero such that 𝑎𝑢⃗ + 𝑏𝑣⃗ + 𝑐𝑤⃗ = 0⃗

𝑢⃗ = (2, 0, 1)
𝑣⃗ = (−3, 1, −1)
𝑤⃗ = (0, −2, −1)

Solution

We set up 𝐴𝑥 = 0 and solve for 𝑥 where 𝑥 here is (𝑎, 𝑏, 𝑐) vector. If 𝑥 is the trivial solution,
then the vectors are linearly independent. If we find non-trivial solution, then the vectors
are linearly dependent.

𝑎𝑢⃗ + 𝑏𝑣⃗ + 𝑐𝑤⃗ = 0⃗

𝑎

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑏

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑐

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−2
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −3 0
0 1 −2
1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Augmented matrix ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −3 0
0 1 −2
1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −1
2𝑅1 + 𝑅3 gives ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −3 0
0 1 −2
0 1

2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 →
−1
2 𝑅2 + 𝑅3 gives ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −3 0
0 1 −2
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence the system becomes ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −3 0
0 1 −2
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑎, 𝑏 are leading variables and 𝑐 is free variable. Let 𝑐 = 𝑡 which can be any value. Then
𝑏 = 2𝑡 and 2𝑎 − 3𝑏 = 0 or 𝑎 = 3𝑡. Hence solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

There are infinite solutions. We need only one non-zero solution to show that the vectors
are linearly dependent. Let 𝑡 = 1 ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence vectors are linearly dependent

3𝑢⃗ + 2𝑣⃗ + 𝑤⃗ = 0⃗
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2.3.5 Problem 23 section 4.1

In Problems 19–24, use the method of Example 3 to determine whether the given vectors
𝑢⃗, 𝑣⃗, and 𝑤⃗ are linearly independent or dependent. If they are linearly dependent, find
scalars 𝑎, 𝑏, and 𝑐 not all zero such that 𝑎𝑢⃗ + 𝑏𝑣⃗ + 𝑐𝑤⃗ = 0⃗

𝑢⃗ = (2, 0, 3)
𝑣⃗ = (5, 4, −2)
𝑤⃗ = (2, −1, 1)

Solution

We set up 𝐴𝑥 = 0 and solve for 𝑥 where 𝑥 here is (𝑎, 𝑏, 𝑐) vector. If 𝑥 is the trivial solution,
then the vectors are linearly independent. If we find non-trivial solution, then the vectors
are linearly dependent.

𝑎𝑢⃗ + 𝑏𝑣⃗ + 𝑐𝑤⃗ = 0⃗

𝑎

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
0
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑏

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
4
−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑐

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
−1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 5 2
0 4 −1
3 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Augmented matrix ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 5 2
0 4 −1
3 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −3𝑅1 + 2𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 5 2
0 4 −1
0 −19 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −19𝑅2 + 4𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 5 2
0 4 −1
0 0 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence the system in Echelon form becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 5 2
0 4 −1
0 0 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Last row gives 𝑐 = 0. Second row gives 4𝑏 = 0 or 𝑏 = 0. First row gives 2𝑎 = 0 or 𝑎 = 0.

Therefore the vectors are linearly independent because only the trivial solution exist.

2.3.6 Problem 27 section 4.1

In Problems 25–28, express the vector 𝑡⃗ as a linear combination of the vectors 𝑢⃗, 𝑣⃗, and 𝑤⃗.

𝑡⃗ = (0, 0, 19), 𝑢⃗ = (1, 4, 3), 𝑣⃗ = (−1, −2, 2), 𝑤⃗ = (4, 4, 1)

Solution
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In system form we are looking for

𝑎𝑢⃗ + 𝑏𝑣⃗ + 𝑐𝑤⃗ = 𝑡⃗

𝑎

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑏

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑐

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
4
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
19

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 4
4 −2 4
3 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
19

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Augmented matrix ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 4 0
4 −2 4 0
3 2 1 19

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → −4𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 4 0
0 2 −12 0
3 2 1 19

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −3𝑅1 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 4 0
0 2 −12 0
0 5 −11 19

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −5
2𝑅2 + 𝑅3 gives ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 4 0
0 2 −12 0
0 0 19 19

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above is Echelon form. Hence the system is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 4
0 2 −12
0 0 19

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
19

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Last row gives 19𝑐 = 19 or 𝑐 = 1. Second row gives 2𝑏 − 12𝑐 = 0 or 𝑏 = 6. First row gives
𝑎 − 𝑏 + 4𝑐 = 0 or 𝑎 = 𝑏 − 4𝑐 or 𝑎 = 6 − 4 = 2. Hence

𝑎𝑢⃗ + 𝑏𝑣⃗ + 𝑐𝑤⃗ = 𝑡⃗
2𝑢⃗ + 6𝑣⃗ + 𝑤⃗ = 𝑡⃗

2.3.7 Problem 2 section 4.2

Apply Theorem 1 to determine whether or not 𝑊 is a subspace of ℝ𝑛.

𝑊 is the set of all vectors in ℝ3 such that 𝑥1 = 5𝑥2

Solution

Theorem 1 at page 225 gives conditions for subspace:

The non empty subset 𝑊 of the vector space 𝑉 is a subspace of 𝑉 if and only if it satisfies
the following two conditions:

1. If 𝑢⃗ and 𝑣⃗ are vectors in 𝑊 , then 𝑢⃗ + 𝑣⃗ is also in 𝑊.

2. If 𝑢⃗ is in 𝑊 and 𝑐 is a scalar, then the vector 𝑐𝑢⃗ is also in 𝑊.
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Let 𝑢⃗ = (𝑥1, 𝑥2, 𝑥3) and 𝑣⃗ = �𝑦1, 𝑦2, 𝑦3� where 𝑥1 = 5𝑥2 and 𝑦1 = 5𝑦2. then (1) becomes

𝑢⃗ + 𝑣⃗ = (𝑥1, 𝑥2, 𝑥3) + �𝑦1, 𝑦2, 𝑦3�

= �𝑥1 + 𝑦1, 𝑥2 + 𝑦2, 𝑥3 + 𝑦3�

Then

𝑥1 + 𝑦1 = 5𝑥2 + 5𝑦2
= 5�𝑥2 + 𝑦2�

Hence closed under addition. Condition (2) says

𝑐𝑢⃗ = 𝑐(𝑥1, 𝑥2, 𝑥3)
= (𝑐𝑥1, 𝑐𝑥2, 𝑐𝑥3)

Hence 𝑐𝑥1 = 𝑐(5𝑥2) = 5(𝑐𝑥2). Therefore closed under scalar multiplication as well. Therefore
this is a subspace.

2.3.8 Problem 4 section 4.2

Apply Theorem 1 to determine whether or not 𝑊 is a subspace of ℝ𝑛.

𝑊 is the set of all vectors in ℝ3 such that 𝑥1 + 𝑥2 + 𝑥3 = 1

Solution

Theorem 1 at page 225 gives conditions for subspace:

The non empty subset 𝑊 of the vector space 𝑉 is a subspace of 𝑉 if and only if it satisfies
the following two conditions:

1. If 𝑢⃗ and 𝑣⃗ are vectors in 𝑊 , then 𝑢⃗ + 𝑣⃗ is also in 𝑊.

2. If 𝑢⃗ is in 𝑊 and 𝑐 is a scalar, then the vector 𝑐𝑢⃗ is also in 𝑊.

Let 𝑢⃗ = (𝑥1, 𝑥2, 𝑥3) and 𝑣⃗ = �𝑦1, 𝑦2, 𝑦3� where 𝑥1 + 𝑥2 + 𝑥3 = 1 and 𝑦1 + 𝑦2 + 𝑦3 = 1. then (1)
becomes

𝑢⃗ + 𝑣⃗ = (𝑥1, 𝑥2, 𝑥3) + �𝑦1, 𝑦2, 𝑦3�

= �𝑥1 + 𝑦1, 𝑥2 + 𝑦2, 𝑥3 + 𝑦3�

Then

𝑥1 + 𝑦1 + 𝑥2 + 𝑦2 + 𝑥3 + 𝑦3 = (𝑥1 + 𝑥2 + 𝑥3) + �𝑦1 + 𝑦2 + 𝑦3�

= 1 + 1
= 2

Therefore this is not closed under addition since 𝑢⃗+𝑣⃗ does not satisfy (1). Hence not a subspace.

2.3.9 Problem 17 section 4.2

In Problems 15–18, apply the method of Example 5 to find two solution vectors 𝑢⃗ and 𝑣⃗
such that the solution space is the set

of all linear combinations of the form 𝑠𝑢⃗ + 𝑡𝑣⃗

𝑥1 + 3𝑥2 + 8𝑥3 − 𝑥4 = 0
𝑥1 − 3𝑥2 − 10𝑥3 + 5𝑥4 = 0
𝑥1 + 4𝑥2 + 11𝑥3 − 2𝑥4 = 0

(notice: typo in book. Last term in second equation is 5𝑥5 in book, but it should be 5𝑥4).

Solution
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System is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 8 −1
1 −3 −10 5
1 4 11 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Augmented matrix ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 8 −1
1 −3 −10 5
1 4 11 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → −𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 8 −1
0 −6 −18 6
1 4 11 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −𝑅1 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 8 −1
0 −6 −18 6
0 1 3 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 →
1
6𝑅2 + 𝑅3 gives ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 8 −1
0 −6 −18 6
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Leading variables are 𝑥1, 𝑥2. Free variables are 𝑥3, 𝑥4. Let 𝑥4 = 𝑡, 𝑥3 = 𝑠. The system becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 8 −1
0 −6 −18 6
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑠
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

From second row, −6𝑥2 − 18𝑠 + 6𝑡 = 0 or 𝑥2 = −
18𝑠−6𝑡

6 = −3𝑠 + 𝑡.

From first row, 𝑥1 + 3𝑥2 + 8𝑠 − 𝑡 = 0. Hence 𝑥1 = −3𝑥2 − 8𝑠 + 𝑡 or 𝑥1 = −3(−3𝑠 + 𝑡) − 8𝑠 + 𝑡 or
𝑥1 = 𝑠 − 2𝑡. Therefore the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠 − 2𝑡
−3𝑠 + 𝑡
𝑠
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−3
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
1
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑠𝑢⃗ + 𝑡𝑣⃗

Therefore he solution space is the set of all linear combinations of the form 𝑠𝑢⃗ + 𝑡𝑣⃗

2.3.10 Problem 21 section 4.2

In Problems 19–22, reduce the given system to echelon form to find a single solution vector
𝑢⃗ such that the solution space is

the set of all scalar multiples of 𝑢⃗.

𝑥1 + 7𝑥2 + 2𝑥3 − 3𝑥4 = 0
2𝑥1 + 7𝑥2 + 𝑥3 − 4𝑥4 = 0
3𝑥1 + 5𝑥2 − 𝑥3 − 5𝑥4 = 0
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Solution

System is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 7 2 −3
2 7 1 −4
3 5 −1 −5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Augmented matrix ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 7 2 −3
2 7 1 −4
3 5 −1 −5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → −2𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 7 2 −3
0 −7 −3 2
3 5 −1 −5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −3𝑅1 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 7 2 −3
0 −7 −3 2
0 −16 −7 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 →
−16
7 𝑅2 + 𝑅3 gives ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 7 2 −3
0 −7 −3 2
0 0 −1

7 −4
7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence the system in Echelon form is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 7 2 −3
0 −7 −3 2
0 0 −1

7 −4
7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Leading variables are 𝑥1, 𝑥2, 𝑥3. Free variable is 𝑥4 = 𝑡. Last row gives −1
7𝑥3 −

4
7 𝑡 = 0. Hence

𝑥3 = −4𝑡. Second row gives −7𝑥2 − 3𝑥3 + 2𝑥4 = 0 or −7𝑥2 = 3𝑥3 − 2𝑥4 or −7𝑥2 = 3(−4𝑡) − 2(𝑡).
Hence −7𝑥2 = −14𝑡 or 𝑥2 = 2𝑡.

First row gives 𝑥1+7𝑥2+2𝑥3−3𝑥4 = 0 or 𝑥1 = −7(2𝑡)−2(−4𝑡)+3(𝑡). Hence 𝑥1 = −3𝑡. Therefore
the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3𝑡
2𝑡
−4𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
2
−4
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑡𝑢⃗

The solution space is the set of all scalar multiples of 𝑢⃗.

2.3.11 Additional problem 1

My fictional company Linear Algebra Inc had a stock price of $10 on day 1, $15 on day 2,
and $10 on day 3. Interpolate this data with a quadratic polynomial 𝑓(𝑡) = 𝑎+𝑏𝑡+𝑐𝑡2,where
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𝑡 is the day and 𝑓(𝑡) is the price on day 𝑡. Is it a good idea to use 𝑓(𝑡) to predict the stock
price of Linear Algebra Inc on day 4?

Solution

Data is (1, 10), (2, 15), (3, 10). Therefore we obtain 3 equations using 𝑓(𝑡) = 𝑎 + 𝑏𝑡 + 𝑐𝑡2 as

10 = 𝑎 + 𝑏 + 𝑐
15 = 𝑎 + 2𝑏 + 4𝑐
10 = 𝑎 + 3𝑏 + 9𝑐

Which gives the system ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 2 4
1 3 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

10
15
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 10
1 2 4 15
1 3 9 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → −𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 10
0 1 3 5
1 3 9 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −𝑅1 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 10
0 1 3 5
0 2 8 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −2𝑅2 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 10
0 1 3 5
0 0 2 −10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence the system in Echelon form is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
0 1 3
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

10
5
−10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Leading variables are 𝑎, 𝑏, 𝑐. There are no free variables. From last row 2𝑐 = −10 hence
𝑐 = −5. From second row 𝑏 + 3𝑐 = 5 or 𝑏 = 5 − 3𝑐 or 𝑏 = 5 − 3(−5) or 𝑏 = 20. From first row
𝑎 + 𝑏 + 𝑐 = 10. Hence 𝑎 = 10 − 𝑏 − 𝑐 or 𝑎 = 10 − 20 + 5 or 𝑎 = −5. The solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5
20
−5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore, the interpolation polynomial is

𝑓(𝑡) = 𝑎 + 𝑏𝑡 + 𝑐𝑡2

Or
𝑓(𝑡) = −5 + 20𝑡 − 5𝑡2

It is not good idea to use 𝑓(𝑡) to predict the price outside the range of interpolation, which
is 𝑡 = 1⋯3. Doing so is extrapolation and can produce wrong prediction. For example,
using 𝑡 = 4 gives 𝑓(4) = −5 dollars as stock price, which is not possible. The lowest value a
stock can have is zero dollars, which is when the company go bankrupt.
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Here is plot of the solution fitted on the points

1 2 3 4
t

-5

5

10

15

f (t)

Figure 2.5: Fitted polynomial plot

p1 = ListPlot[{{1, 10}, {2, 15}, {3, 10}}, PlotStyle → {PointSize[.03], Red}];

p2 = Plot[-5 + 20 t - 5 t^2, {t, 0.8, 4}, AxesLabel → {t, f[t]},

BaseStyle → 14, GridLines → Automatic, GridLinesStyle → LightGray];

p = Show[p2, p1, AxesOrigin → {0, 0}, PlotRange → All];

Figure 2.6: Code used for the above plot

2.3.12 Additional problem 2

Geometrically, what do subspaces of ℝ2 look like?

Solution

A Subspace of ℝ2 is all straight lines that pass through the origin. So each straight lines that
pass through the origin is a subspace. This shows there are infinite number of subspaces.

Another subspace of ℝ2 is just the origin 0⃗. And ℝ2 itself is subspace of itself.

2.3.13 Additional problem 3

Let 𝐴 be an 𝑛×𝑛 matrix and consider the linear system 𝐴𝑥⃗ = 𝑏⃗. If I know that the solution
set to this linear system is a subspace of ℝ𝑛, what can you say about 𝑏⃗?

Solution

The vector 𝑏⃗ is the zero vector. This is by theorem 2, page 226 in the textbook.
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2.3.14 key solution for HW 3

Homework 3 – Solutions

These solutions demonstrate one way to approach each of the homework problems. In many
cases, there are other correct solutions. If you would like to discuss alternative solutions or
the grading of your assignment, please see me during office hours or send me an email.

Textbook Problems:

3.7.3 We need to interpolate (0, 3), (1, 1), (2,−5). Since we have 3 points, we use a degree 2
polynomial f(x) = a0 + a1x + a2x

2. This gives the linear system

a0 = 3

a0 + a1 + a2 = 1

a0 + 2a1 + 4a2 = −5

The first equation says a0 = 3, so substituting we get the 2× 2 system

a1 + a2 = −2

2a1 + 4a2 = −8

We solve by row reduction:[
1 1 −2
2 4 −8

]
−2R1+R2−−−−−→

[
1 1 −2
0 2 −4

]
So a2 = −2 and thus a1 = 0. So our polynomial is f(x) = 3− 2x2.

4.1.1 We are given ~a = (2, 5,−4) and ~b = (1,−2,−3). We calculate∣∣∣~a−~b
∣∣∣ = |(1, 7,−1)|

=
√

1 + 49 + 1

=
√

51

2~a +~b = (4, 10,−8) + (1,−2,−3)

= (5, 8,−11)

3~a− 4~b = (6, 15− 12)− (4,−8,−12)

= (2, 23, 0)

4.1.19 We are given ~u = (2, 0, 1), ~v = (−3, 1,−1), ~w = (0,−2,−1). We are asked to use row

1
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reduction in this case. 2 −3 0
0 1 −2
1 −1 −1

 −2R3+R1−−−−−→

0 −1 2
0 1 −2
1 −1 −1


R2+R1−−−−→

0 0 0
0 1 −2
1 −1 −1


R2+R1−−−−→

1 −1 −1
0 1 −2
0 0 0


We have a free variable, so these vectors are linearly dependent. To find a particular
linear combination, we choose a value for c, say c = 2. Then we solve to get b = 4, a = 6.
So we have 6~u + 4~v + 2~w = ~0.

4.1.23 We are given ~u = (2, 0, 3), ~v = (5, 4,−2), ~w = (2,−1, 1). We do the row reduction:2 5 2
0 4 −1
3 −2 1

 3R1−−→
2R3

6 15 6
0 4 −1
6 −4 2


−R1+R3−−−−−→

6 15 6
0 4 −1
0 −19 −4


4R2+R3−−−−→

6 15 6
0 4 −1
0 −3 0


R3+R2−−−−→

6 15 6
0 1 −1
0 −3 0


3R2+R3−−−−→

6 15 6
0 1 −1
0 0 −3



We have an echelon form matrix with a leading entry in every row, so the homogeneous
system has only the trivial solution. Hence the vectors are linearly independent.

2

56



2.3. HW 3 CHAPTER 2. HWS

4.1.27 We want to write ~t = a~u + b~v + c~w, so we set up and reduce an augmented matrix:1 −1 4 0
4 −2 4 0
3 2 1 19

 −4R1+R2−−−−−→
−3R1+R3

1 −1 4 0
0 2 −12 0
0 5 −11 19


−2R2+R3−−−−−→

1 −1 4 0
0 2 −12 0
0 1 13 19


−2R3+R2−−−−−→

1 −1 4 0
0 0 −38 −38
0 1 13 19


(R2,R3)−−−−→
−1
38

R3

1 −1 4 0
0 1 13 19
0 0 1 1


Now back substitution gives us c = 1, b = 6, and a = 2. So ~t = 2~u + 6~v + ~w.

4.2.2 W is a subspace. To see why, suppose that both ~x and ~y are in W . Then for any
scalar c, c~x = (cx1, cx2, cx3). Since we know x1 = 5x2, we have cx1 = 5(cx2). So c~x is
in W . Also, ~x + ~y = (x1 + y1, x2 + y2, x3 + y3). We know x1 = 5x2 and y1 = 5y2, so
x1+y1 = 5(x2+y2). Hence ~x+~y is in W . This shows closure under scalar multiplication
and under addition.

4.2.4 W is not a subspace. It fails everything pretty badly, but an easy way to see it is not
a subspace is that it does not contain ~0 since 0 + 0 + 0 6= 1.

4.2.17 There is a typo in this problem in the book. The second equation is meant to have x4

in place of x5 and I have solved that version. If you solved it correctly as written, you
received full points as well.

We do row reduction to our system:1 3 8 −1
1 −3 −10 5
1 4 11 −2

 −R1+R2−−−−−→
−R1+R3

1 3 8 −1
0 −6 −18 6
0 1 3 −1


1
6
R2−−−−→

R2+R3

1 3 8 −1
0 −1 −3 1
0 0 0 0


3R2+R1−−−−→
−R2

1 0 −1 2
0 1 3 −1
0 0 0 0


We have two free variables. We set x3 = s and x4 = t and then use back substitution

3
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to find x2 = −3s + t and x1 = s− 2t. So our solution vectors look like

~x =


s− 2t
−3s + t

s
t

 = s


1
−3
1
0

+ t


−2
1
0
1


4.2.21 We do row reduction to our system:1 7 2 −3

2 7 1 −4
3 5 −1 −5

 −2R1+R2−−−−−→
−3R1+R3

1 7 2 −3
0 −7 −3 2
0 −16 −7 4


R2+R1−−−−−→

−2R2+R3

1 0 −1 −1
0 −7 −3 2
0 −2 −1 0


−4R3+R2−−−−−→

1 0 −1 −1
0 1 1 2
0 −2 −1 0


2R2+R3−−−−→

1 0 −1 −1
0 1 1 2
0 0 1 4


R3+R1−−−−−→
−R3+R2

1 0 0 3
0 1 0 −2
0 0 1 4


We have one free variable, so we set x4 = t. Back substitution gives us x3 = −4t, x2 =
2t, x1 = −3t. So a typical solution looks like

~x =


−3t
2t
−4t
t

 = t


−3
2
−4
1


Additional Problems:

1. We need to interpolate the points (1, 10), (2, 15), (3, 10) with a quadratic f(t) = a+bt+ct2.
This sets up the linear system

a + b + c = 10

a + 2b + 4c = 15

a + 3b + 9c = 10

The polynomial we get after solving is f(t) = −5 + 20t− 5t2.

4
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It is a very bad idea to use this polynomial to predict the price on day 4. For one thing,
f(4) = −5 and a price of -$5 is absurd. It also doesn’t make very much sense that stock
prices would behave like a parabola, where the value either always increases after a certain
time or always decreases after a certain time. I’m not an enconomist, but I imagine that
most stock prices would go up for a while, then down for a while, then up for a while, then
down for a while, and so on. Using this polynomial to determine your investing strategy
would be a great way to lose all your money.

2. Proper subspaces of R2 look like lines through (0, 0). There is also the subspace that is
all of R2 and the subspace that is just ~0.

3. The solution set to A~x = ~b is a subspace of Rn if and only if ~b = ~0. On the one hand,
we know that the solution set for a homogeneous linear system is always a subspace. On
the other hand, if the solutions to A~x = ~b forms a subspace, then for any solution ~x0 we
know by closure under scalar multiplication that 2~x0 is also a solution. So ~b = A(2 ~x0) =

2A~x0 = 2~b, which only works when ~b = ~0.

5
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2.4.1 Problems listing

Homework 4 - Due October 8

Homework instructions: Complete the assigned problems on your own paper. Once you
are finished, scan or photograph your work and upload it to Gradescope. When prompted,
tell Gradescope where to find each problem.
You are allowed (and in fact encouraged) to work with other students on homework assign-
ments. If you do that, please indicate on each problem who you worked with. If you use
sources other than your notes, the textbook, and any resources on Canvas for your home-
work, you must indicate the source on each problem. You are not permitted to view, request,
or look for solutions to any of the homework problems from solutions manuals, homework
help websites, online forums, other students, or any other sources.

Textbook Problems:

• §4.3: 9, 17, 18

• §4.4: 6, 16, 20

• §4.5: 5, 7, 15

Additional Problems:

1. Let ~v1 and ~v2 be any linearly independent vectors. Show that ~u1 = 2~v1 and ~u2 = ~v1 + ~v2
are also linearly independent.

2. In section 4.2, we looked at the set W consisting of all vectors in R3 where x1 = 5x2 and
determined it was a subspace of R3. Find a basis for W . What is the dimension of W?

3. Let S = {~v1, ~v2, ~v3} be a set of linearly independent vectors and suppose that ~v is not an
element of spanS. Show that S ′ = {~v,~v1, ~v2, ~v3} is linearly independent.

1
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2.4.2 Problem 9 section 4.3

In Problems 9–16, express the indicated vector 𝑤⃗ as a linear combination of the given
vectors 𝑣⃗1; 𝑣⃗2⋯𝑣⃗𝑘 if this is possible. If not, show that it is impossible

𝑤⃗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
3
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
2
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

Let 𝑤⃗ = 𝑐1𝑣⃗1 + 𝑐2𝑣⃗2. In matrix form this becomes

𝑐1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
3
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑐2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
2
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 3
3 2
4 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑐1
𝑐2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 3 1
3 2 0
4 5 −7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 3𝑅1 and 𝑅2 → 5𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

15 9 3
15 10 0
4 5 −7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → −𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

15 9 3
0 1 −3
4 5 −7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 4𝑅1 and 𝑅3 → 15𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

60 36 12
0 1 −3
60 75 −105

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −𝑅1 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

60 36 12
0 1 −3
0 39 −117

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −39𝑅2 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

60 36 12
0 1 −3
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence the system becomes ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

60 36
0 1
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑐1
𝑐2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

12
−3
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

From second row 𝑐2 = −3 and from first row 60𝑐1 + 36(𝑐2) = 12 or 𝑐1 =
12−36(−3)

60 = 2. Hence

𝑤⃗ = 2𝑣⃗1 − 3𝑣⃗2

𝑤⃗ is linear combination.
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2.4.3 Problem 17 section 4.3

In Problems 17–22, three vectors 𝑣⃗1, 𝑣⃗2, and 𝑣⃗3 are given. If they are linearly independent,
show this; otherwise find a nontrivial linear combination of them that is equal to the zero
vector.

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
−3
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑣⃗3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
5
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

The vectors are Linearly independent if

𝑐1𝑣⃗1 + 𝑐2𝑣⃗2 + 𝑐3𝑣⃗3 = 0⃗

only when 𝑐1 = 𝑐2 = 𝑐3 = 0. If we can find at least one 𝑐𝑖 where the above is true, then the
vectors are Linearly dependent.

Writing the above as 𝐴𝑐⃗ = 0⃗ gives
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3
0 −3 5
1 4 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

The augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 0
0 −3 5 0
1 4 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −𝑅1 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 0
0 −3 5 0
0 2 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3, 𝑅2 → 2𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 0
0 −6 10 0
0 6 −3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅2 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 0
0 −6 10 0
0 0 7 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence the original system (1) in Echelon form becomes
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3
0 −6 10
0 0 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Leading variables are 𝑐1, 𝑐2, 𝑐3. Since there are no free variables, then only the trivial
solution exist. We see this by backsubstitution. Last row gives 𝑐3 = 0. Second row gives
𝑐2 = 0 and first row gives 𝑐1 = 0.

Since all 𝑐𝑖 = 0, then the vectors are Linearly independent.

2.4.4 Problem 18 section 4.3

In Problems 17–22, three vectors 𝑣⃗1, 𝑣⃗2, and 𝑣⃗3 are given. If they are linearly independent,
show this; otherwise find a nontrivial linear combination of them that is equal to the zero
vector.

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
0
−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
−5
−6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑣⃗3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
1
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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solution

The vectors are Linearly independent if

𝑐1𝑣⃗1 + 𝑐2𝑣⃗2 + 𝑐3𝑣⃗3 = 0⃗

only when 𝑐1 = 𝑐2 = 𝑐3 = 0. If we can find at least one 𝑐𝑖 where the above is true, then the
vectors are Linearly dependent.

Writing the above as 𝐴𝑐⃗ = 0⃗ gives
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 4 −2
0 −5 1
−3 −6 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

The augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 4 −2 0
0 −5 1 0
−3 −6 3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 3𝑅1, 𝑅3 → 2𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 12 −6 0
0 −5 1 0
−6 −12 6 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅1 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 12 −6 0
0 −5 1 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence the system (1) becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 12 −6
0 −5 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The leading variables are 𝑐1, 𝑐2 and free variable is 𝑐3. Since there is a free variable, then
the vectors are Linearly dependent. To see this, let 𝑐3 = 𝑡. From second row −5𝑐2 + 𝑡 = 0 or

𝑐2 =
1
5 𝑡. From first row 6𝑐1 + 12𝑐2 − 6𝑡 = 0. Or 𝑐1 =

6𝑡−12� 15 𝑡�

6 = 3
5 𝑡. Hence

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
5 𝑡
1
5 𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
5
1
5
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
1
5
𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
1
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Taking ̃𝑡 = 5 the above becomes ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
1
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore we found one solution where

𝑐1𝑣⃗1 + 𝑐2𝑣⃗2 + 𝑐3𝑣⃗3 = 0⃗

3𝑣⃗1 + 𝑣⃗2 + 5𝑣⃗3 = 0⃗

not all 𝑐𝑖 zero. Hence linearly dependent vectors.
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2.4.5 Problem 6 section 4.4

In Problems 1–8, determine whether or not the given vectors in ℝ𝑛 form a basis for ℝ𝑛

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑣⃗3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

If the vectors are Linearly independent, then they form basis. To check, we solve 𝐴𝑐⃗ = 0⃗
and see if the solution is the trivial solution or not. If the solution is the trivial solution,
then the vectors are linearly independent and hence form basis.

𝑐1𝑣⃗1 + 𝑐2𝑣⃗2 + 𝑐3𝑣⃗3 = 0⃗

Writing the above as 𝐴𝑐⃗ = 0⃗ gives
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
0 1 2
1 2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

The augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
0 1 2 0
1 2 3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since the pivot (1, 1) is pivot, we replace 𝑅1 with 𝑅3 first.
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 0
0 1 2 0
0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

This is in Echelon form. No free variables. Therefore, the solution is the trivial solution.
Eq (1) becomes ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3
0 1 2
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Which shows that 𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0. Hence the vectors form a basis for ℝ3

2.4.6 Problem 16 section 4.4

In Problems 15–26, find a basis for the solution space of the given homogeneous linear
system

𝑥1 + 3𝑥2 + 4𝑥3 = 0
3𝑥1 + 8𝑥2 + 7𝑥3 = 0

solution

𝐴𝑥⃗ = 0⃗ gives
⎡
⎢⎢⎢⎢⎣
1 3 4
3 8 7

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

The augmented matrix is ⎡
⎢⎢⎢⎢⎣
1 3 4 0
3 8 7 0

⎤
⎥⎥⎥⎥⎦

𝑅2 → −3𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎣
1 3 4 0
0 −1 −5 0

⎤
⎥⎥⎥⎥⎦
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Hence the leading variables are 𝑥1, 𝑥2 and the free variable is 𝑥3 = 𝑡. The system becomes

⎡
⎢⎢⎢⎢⎣
1 3 4
0 −1 −5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

Last row gives −𝑥2 − 5𝑥3 = 0 or −𝑥2 = 5𝑡. Hence 𝑥2 = −5𝑡. From first row, 𝑥1 + 3𝑥2 + 4𝑥3 = 0,
or 𝑥1 = −3𝑥2 − 4𝑥3 or 𝑥1 = −3(−5𝑡) − 4𝑡 = 11𝑡. Therefore the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

11𝑡
−5𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

11
−5
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let 𝑡 = 1. The basis is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

11
−5
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

A one dimensional subspace.

2.4.7 Problem 20 section 4.4

In Problems 15–26, find a basis for the solution space of the given homogeneous linear
system

𝑥1 − 3𝑥2 − 10𝑥3 + 5𝑥4 = 0
𝑥1 + 4𝑥2 + 11𝑥3 − 2𝑥4 = 0
𝑥1 + 3𝑥2 + 8𝑥3 − 𝑥4 = 0

solution

𝐴𝑥⃗ = 0⃗ gives
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −10 5
1 4 11 −2
1 3 8 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −10 5 0
1 4 11 −2 0
1 3 8 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → −𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −10 5 0
0 7 21 −7 0
1 3 8 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −𝑅1 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −10 5 0
0 7 21 −7 0
0 6 18 −6 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 7𝑅3 and 𝑅2 → 6𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −10 5 0
0 42 126 −42 0
0 42 126 −42 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −𝑅2 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −10 5 0
0 42 126 −42 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Leading variables are 𝑥1, 𝑥2 Free variables are 𝑥3 = 𝑡, 𝑥4 = 𝑠. The system becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −10 5
0 42 126 −42
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

second row gives 42𝑥2 + 126𝑥3 − 42𝑥4 = 0 or 42𝑥2 = −126𝑡 + 42𝑠 or 𝑥2 = −
126
42 𝑡 +

42
42𝑠 = −3𝑡 + 𝑠.

First row gives 𝑥1−3𝑥2−10𝑥3+5𝑥4 = 0 or 𝑥1 = 3𝑥2+10𝑥3−5𝑥4 or 𝑥1 = 3(−3𝑡 + 𝑠)+10𝑡−5𝑠 = 𝑡−2𝑠.
Hence the solution is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡 − 2𝑠
−3𝑡 + 𝑠
𝑡
𝑠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−3
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 𝑠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
1
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let 𝑡 = 1, 𝑠 = 1. The basis are ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−3
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
1
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A two dimensional subspace.

2.4.8 Problem 5 section 4.5

In Problems 1–12, find both a basis for the row space and a basis for the column space of
the given matrix 𝐴. ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
3 1 −3 4
2 5 11 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

We start by converting the matrix to reduced Echelon form.

𝑅2 → −3𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
0 −2 −6 3
2 5 11 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −2𝑅1 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
0 −2 −6 3
0 3 9 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 3𝑅2 and 𝑅3 → 2𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
0 −6 −18 9
0 6 18 20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅2 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
0 −6 −18 9
0 0 0 29

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now to start the reduce Echelon form phase. The pivots all needs to be 1.

𝑅2 →
−1
6 𝑅2 and 𝑅3 →

1
29𝑅3 gives ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
0 1 3 3

2
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Now we need to zero all elements above each pivot.

𝑅2 → 𝑅2 −
3
2𝑅2 gives ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
0 1 3 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 − 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0
0 1 3 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 − 𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −2 0
0 1 3 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above is now in reduced Echelon form. Now we can answer the question. The basis
for the row space are all the rows which are not zero. Hence row space basis are (I prefer
to show all basis as column vectors, instead of row vectors. This just makes it easier to
read them). ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
3
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The dimension is 3. The column space correspond to pivot columns in original A. These
are column 1, 2, 4. Hence basis for column space are

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4
12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The dimension is 3. We notice that the dimension of the row space and the column space
is equal as expected. (This is called the rank of 𝐴. Hence rank(𝐴) = 3.)

The Null space of 𝐴 has dimension 1, since there is only one free variable (𝑥3). We see that
the number of columns of 𝐴 (which is 4) is therefore the sum of column space dimension
(or the rank) and the null space dimension as expected.

2.4.9 Problem 7 section 4.5

In Problems 1–12, find both a basis for the row space and a basis for the column space of
the given matrix 𝐴. ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 7
1 4 5 16
1 3 3 13
2 5 4 23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

We start by converting the matrix to reduced Echelon form.

𝑅2 → −𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 7
0 3 6 9
1 3 3 13
2 5 4 23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅3 → −𝑅1 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 7
0 3 6 9
0 2 4 6
2 5 4 23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → −2𝑅1 + 𝑅4 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 7
0 3 6 9
0 2 4 6
0 3 6 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 2𝑅2 and 𝑅3 → 3𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 7
0 6 12 18
0 6 12 18
0 3 6 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −𝑅2 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 7
0 6 12 18
0 0 0 0
0 3 6 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → −1
2𝑅2 + 𝑅4 gives ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 7
0 6 12 18
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pivot (leading) columns are 1, 2 and free variables go with 3, 4 columns. The Null space of
𝐴 is therefore have dimension 2. We now convert it to reduced Echelon form.

𝑅2 →
1
6𝑅2 gives ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 7
0 1 2 3
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 − 𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −3 4
0 1 2 3
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above is reduced Echelon form. The basis for the row space are all the rows which
are not zero. Hence row space basis are (dimension 2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−3
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

The column space correspond to pivot columns in original A. These are columns 1, 2.
Hence basis for column space are (dimension 2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4
3
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
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We notice that the dimension of the row space and the column space is equal as expected.

The Null space of 𝐴 has dimension 2, since there is two free variables. We see that the
number of columns of 𝐴 (which is 4) is therefore the sum of column space dimension and
the null space dimension as expected.

2.4.10 Problem 15 section 4.5

In Problems 13–16, a set 𝑆 of vectors in ℝ4 is given. Find a subset of 𝑆 that forms a basis
for the subspace of ℝ4 spanned by 𝑆

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
2
2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
1
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
3
2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

We set up a matrix made of the above vectors, then find the dimensions of the column
space. ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 2 4 1
2 1 3 2
2 2 2 3
2 1 3 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 2𝑅1 and 𝑅2 → 3𝑅2 and 𝑅3 → 2𝑅3 and 𝑅4 → 3𝑅4. This gives
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 4 8 2
6 3 9 6
6 6 6 9
6 3 9 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → −𝑅1 + 𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 4 8 2
0 −1 1 4
6 6 6 9
6 3 9 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −𝑅1 + 𝑅3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 4 8 2
0 −1 1 4
0 2 −2 7
6 3 9 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → −𝑅1 + 𝑅4 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 4 8 2
0 −1 1 4
0 2 −2 7
0 −1 1 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 2𝑅2 + 𝑅3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 4 8 2
0 −1 1 4
0 0 0 15
0 −1 1 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → −𝑅2 + 𝑅4 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 4 8 2
0 −1 1 4
0 0 0 15
0 0 0 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅4 → 15𝑅4 and 𝑅3 → 6𝑅3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 4 8 2
0 −1 1 4
0 0 0 90
0 0 0 90

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅3 + 𝑅4 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 4 8 2
0 −1 1 4
0 0 0 90
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence, the pivot columns are 1, 2, 4. Therefore the column space basis are 𝑣⃗1, 𝑣⃗2, 𝑣⃗4 given
by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
2
2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
1
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

The above is the subset required.

2.4.11 Additional problem 1

Let 𝑣⃗1 and 𝑣⃗2 be any linearly independent vectors. Show that 𝑢⃗1 = 2𝑣⃗1 and 𝑢⃗2 = 𝑣⃗1 + 𝑣⃗2 are
also linearly independent.

solution

We want to solve for 𝑐1, 𝑐2 from

𝑐1𝑢⃗1 + 𝑐2𝑢⃗2 = 0⃗ (1)

And see if the solution is only the trivial solution or not. The above becomes

𝑐1�2𝑣⃗1� + 𝑐2�𝑣⃗1 + 𝑣⃗2� = 0⃗

2𝑐1𝑣⃗1 + 𝑐2𝑣⃗1 + 𝑐2𝑣⃗2 = 0⃗

(2𝑐1 + 𝑐2)𝑣⃗1 + 𝑐2𝑣⃗2 = 0⃗

Let 2𝑐1 + 𝑐2 = 𝑐3 a new constant. The above becomes

𝑐3𝑣⃗1 + 𝑐2𝑣⃗2 = 0⃗

But we are told that 𝑣⃗1 and 𝑣⃗2 be any linearly independent. Therefore only choice for
the above is that 𝑐2 = 0, 𝑐3 = 0. But 𝑐3 = 2𝑐1 + 𝑐2 which means that 𝑐1 = 0. Therefore we
just showed that 𝑐1 = 𝑐2 = 0 is only solution to (1). This implies that 𝑢⃗1, 𝑢⃗2 are linearly
independent vectors.

2.4.12 Additional problem 2

In section 4.2, we looked at the set 𝑊 consisting of all vectors in ℝ3 where 𝑥1 = 5𝑥2 and
determined it was a subspace of ℝ3. Find a basis for 𝑊. What is the dimension of 𝑊?

solution
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Let 𝑣⃗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. Let 𝑥2 = 𝑡, 𝑥3 = 𝑠. Therefore

𝑣⃗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5𝑡
𝑡
𝑠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence basis for 𝑊 are ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

And the dimension of 𝑊 is 2.

2.4.13 Additional problem 3

Let 𝑆 = �𝑣⃗1, 𝑣⃗2, 𝑣⃗3� be a set of linearly independent vectors and suppose that 𝑣⃗ is not an
element of span 𝑆. Show that 𝑆′ = �𝑣⃗, 𝑣⃗1, 𝑣⃗2, 𝑣⃗3� is linearly independent.

solution

Proof by contradiction. Assuming the vectors 𝑣⃗, 𝑣⃗1, 𝑣⃗2, 𝑣⃗3 are linearly dependent. Therefore
we can find constants 𝑐1, 𝑐2, 𝑐3, 𝑐4 not all zero, such that

𝑐1𝑣⃗1 + 𝑐2𝑣⃗2 + 𝑐3𝑣⃗3 + 𝑐4𝑣⃗ = 0⃗

Or
−
𝑐1
𝑐4
𝑣⃗1 −

𝑐1
𝑐4
𝑣⃗2 −

𝑐1
𝑐4
𝑣⃗3 = 𝑣⃗

Renaming the constants gives

𝐶1𝑣⃗1 + 𝐶2𝑣⃗2 + 𝐶3𝑣⃗3 = 𝑣⃗ (1)

The above says, we can represent 𝑣⃗ as linear combination of 𝑣⃗1, 𝑣⃗2, 𝑣⃗3. But 𝑣⃗ is not in the
span of 𝑆, which means we can not reach 𝑣⃗ using any linear combination of the vectors
�𝑣⃗1, 𝑣⃗2, 𝑣⃗3�. Hence (1) is not possible.

Therefore our assumption that the vectors are linearly dependent is invalid. Hence they
must be linearly independent.
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2.4.14 key solution for HW 4

Homework 4 – Solutions

These solutions demonstrate one way to approach each of the homework problems. In many
cases, there are other correct solutions. If you would like to discuss alternative solutions or
the grading of your assignment, please see me during office hours or send me an email.

Textbook Problems:

4.3.9 We need to write (1, 0,−7) as a linear combination of (5, 3, 4) and (3, 2, 5). We set up
the augmented matrix and row reduce:5 3 1

3 2 0
4 5 −7

 −R3+R1−−−−−→

1 −2 8
3 2 0
4 5 −7


−3R1+R2−−−−−→
−4R1+R3

1 −2 8
0 8 −24
0 13 −39


1
8
R2−−−→

1
13

R3

1 −2 8
0 1 −3
0 1 −3


−R2+R3−−−−−→
2R2+R1

1 0 2
0 1 −3
0 0 0


This system has the unique solution c2 = −3 and c1 = 2, so

(1, 0,−7) = 2(5, 3, 4)− 3(3, 2, 5)

4.3.17 We determine linear independence by row reduction:1 2 3
0 −3 5
1 4 2

 −R1+R3−−−−−→

1 2 3
0 −3 5
0 2 −1


2R3+R2−−−−→

1 2 3
0 1 3
0 2 −1


−2R2+R3−−−−−→

1 2 3
0 1 3
0 0 −7


Since we have leading entries in all three columns, the homogeneous system has a
unique solution and thus the vectors are linearly independent.

1
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4.3.18 We determine linear independence by row reduction: 2 4 −2
0 −5 1
−3 −6 3

 3
2
R1+R3−−−−−→

2 4 −2
0 −5 1
0 0 0


We have c3 as a free variable. With foresight to prevent fractions, we set c3 = 5. Back
substitution gives c2 = 1 and c1 = 3. These vectors are linearly dependent, and we
have a nontrivial linear combination equalling zero:

3(2, 0,−3) + (4,−5,−6) + 5(−2, 1, 3) = (0, 0, 0)

4.4.6 We have 3 vectors in R3, so it suffices to compute a determinant:

det

0 0 1
0 1 2
1 2 3

 = det

[
0 1
1 2

]
= −1

This determinant is nonzero, so the vectors form a basis.

4.4.16 We do row reduction to our system:[
1 3 4
3 8 7

]
−3R1+R2−−−−−→

[
1 3 4
0 −1 −5

]
3R2+R1−−−−→
−R2

[
1 0 −11
0 1 5

]
We have a free variable x3 = t and we solve to get x2 = −5t, x1 = 11t. So a
typical solution looks like ~x = t(11,−5, 1) and thus a basis for the solution space is
{(11,−5, 1)}.

4.4.20 We do row reduction to our system:1 −3 −10 5
1 4 11 −2
1 3 8 −1

 −R1+R2−−−−−→
−R1+R3

1 −3 −10 5
0 7 21 −7
0 6 18 −6


1
7
R2−−→

1
6
R3

1 −3 −10 5
0 1 3 −1
0 1 3 −1


−R2+R3−−−−−→
3R2+R1

1 0 −1 2
0 1 3 −1
0 0 0 0


We have free variables x3 = s, x4 = t and we solve to get x2 = −3s+ t, x1 = s− 2t. A
typical solution looks like ~x = s(1,−3, 1, 0) + t(−2, 1, 0, 1) so our basis for the solution
space is {(1,−3, 1, 0), (−2, 1, 0, 1)}.

2
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4.5.5 We reduce the given matrix into echelon form (steps omitted):1 1 1 1
3 1 −3 4
2 5 11 12

→
1 1 1 1

0 1 3 11
0 0 0 1


A basis for the row space is the nonzero rows of the echelon matrix:
{(1, 1, 1, 1), (0, 1, 3, 11), (0, 0, 0, 1)}.
The pivot columns of the echelon matrix are 1, 2, and 4. So a basis for the column
space is the corresponding columns of our original matrix: {(1, 3, 2), (1, 1, 5), (1, 4, 12)}.

4.5.7 We reduce the given matrix into echelon form (steps omitted):
1 1 −1 7
1 4 5 16
1 3 3 13
2 5 4 23

→


1 1 −1 7
0 1 2 3
0 0 0 0
0 0 0 0


A basis for the row space is the nonzero rows of the echelon matrix: {(1, 1,−1, 7), (0, 1, 2, 3)}.
The pivot columns of the echelon matrix are 1 and 2. So a basis for the column space
is the corresponding columns of our original matrix: {(1, 1, 1, 2), (1, 4, 3, 5)}.

4.5.15 To find a subset of S that is a basis for spanS, we put the vectors in the columns
of a matrix and find a basis for the column space. First, we do row reduction (steps
omitted): 

3 2 4 1
2 1 3 2
2 2 2 3
2 1 3 4

→


1 1 1 −1
0 −1 1 4
0 0 0 1
0 0 0 0


The first, second, and fourth columns are pivot columns, so vectors ~v1, ~v2, and ~v4 make
up a basis for spanS.

Additional Problems:

1. Suppose that ~v1 and ~v2 are linearly independent. To show ~u1 and ~u2 are independent, we
set up a homogeneous system:

c1~u1 + c2~u2 = ~0

c1(2~v1) + c2(~v1 + ~v2) = ~0

(2c1 + c2)~v1 + c2~v2 = ~0

This is a linear combination of the ~vi equal to the zero vector, so since ~v1 and ~v2 are
linearly independent we have that 2c1 + c2 = 0 and c2 = 0. From the first equation, we
can conclude c1 = 0 as well so the ~ui must be linearly independent as well.

3
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2. W is the set of solutions to the homogeneous linear equation x1 − 5x2 = 0. So x3 and x2

are free variables and we set x2 = s, x3 = t. Solving, we get x1 = 5s. So, we have

~x =

5s
s
t

 = s

5
1
0

+ t

0
0
1


The basis vectors for W are thus (5, 1, 0) and (0, 0, 1).

3. To show S ′ is linearly independent, we set up the homogeneous linear system

c~v + c1~v1 + c2~v2 + c3~v3 = ~0

If c 6= 0, then we can write

~v = −c1
c
~v1 −

c2
c
~v2 −

c3
c
~v3

which would mean that ~v is in the span of S (something we assumed was false). So we
must have c = 0. Then our system is

c1~v1 + c2~v2 + c3~v3 = ~0

Since we know S is linearly independent, we can conclude that c1 = c2 = c3 = 0. So all
constants must be 0 and thus S ′ is linearly independent.

4
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2.5.1 Problems listing

Homework 5 - Due October 15

Homework instructions: Complete the assigned problems on your own paper. Once you
are finished, scan or photograph your work and upload it to Gradescope. When prompted,
tell Gradescope where to find each problem.
You are allowed (and in fact encouraged) to work with other students on homework assign-
ments. If you do that, please indicate on each problem who you worked with. If you use
sources other than your notes, the textbook, and any resources on Canvas for your home-
work, you must indicate the source on each problem. You are not permitted to view, request,
or look for solutions to any of the homework problems from solutions manuals, homework
help websites, online forums, other students, or any other sources.

Textbook Problems:

• §4.7: 7, 10

• §1.1: 5, 17

• §5.1: 3, 5, 7, 33, 35, 39

Additional Problems:

1. Let P2 be the subspace of polynomials of degree at most 2. So elements of P2 look like
a0 + a1x + a2x

2. Show that {3 + x, 1 + x + x2, x− 2x2} is a basis for P2.

2. Find the general solution to the differential equation y′′−25y = 0. What is the particular
solution if I give you initial conditions y(0) = a and y′(0) = b?

1
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2.5.2 Problem 7 section 4.7

In Problems 5–8, determine whether or not each indicated set of functions is a subspace
of the space 𝐹 of all real-valued functions on ℝ.

The set of all 𝑓 such that 𝑓(0) = 0 and 𝑓(1) = 1

Solution

Let 𝑓, 𝑔 be two functions such that 𝑓(0) = 0, 𝑔(0) = 0 and 𝑓(1) = 1, 𝑔(1) = 1 in 𝐹. Let us check
if it is closed under addition

𝑓(0) + 𝑔(0) = 0 + 0 = 0

OK.
𝑓(1) + 𝑔(1) = 1 + 1 = 2 ≠ 1

Hence not closed under addition. Therefore not a subspace.

2.5.3 Problem 10 section 4.7

In Problems 9–12, a condition on the coefficients of a polynomial 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 is
given. Determine whether or not the set of all such polynomials satisfying this condition
is a subspace of the space 𝑃 of all polynomials

𝑎0 = 𝑎1 = 0

Solution

Let

𝑝1(𝑥) = 𝑎2𝑥2 + 𝑎3𝑥3

𝑝2(𝑥) = 𝑏2𝑥2 + 𝑏3𝑥3

Checking if closed under scalar multiplication. Let 𝑐 be some scalar. Hence

𝑐𝑝1(𝑥) = 𝑐�𝑎2𝑥2 + 𝑎3𝑥3�

= (𝑐𝑎2)𝑥2 + (𝑐𝑎3)𝑥3

= 𝐴2𝑥2 + 𝐴3𝑥3

Therefore closed. Now checking if closed under addition.

𝑝1(𝑥) + 𝑝2(𝑥) = 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑏2𝑥2 + 𝑏3𝑥3

= (𝑎2 + 𝑏2)𝑥2 + (𝑎3 + 𝑏3)𝑥3

= 𝐴2𝑥2 + 𝐴3𝑥3

Therefore Closed under addition. Also the zero polynomial in included when 𝑎2 = 𝑎3 = 0.

Therefore this is a subspace.

2.5.4 Problem 5 section 1.1

In Problems 1 through 12, verify by substitution that each given function is a solution
of the given differential equation. Throughout these problems, primes denote derivatives
with respect to 𝑥.

𝑦′ = 𝑦 + 2𝑒−𝑥 (A)

𝑦 = 𝑒𝑥 − 𝑒−𝑥

Solution

Using the solution given, we see that

𝑦′ = 𝑒𝑥 − (−𝑒−𝑥)
= 𝑒𝑥 + 𝑒−𝑥 (1)
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Substituting (1) into EQ. (A) gives

𝑒𝑥 + 𝑒−𝑥 = (𝑒𝑥 − 𝑒−𝑥) + 2𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥 = 𝑒𝑥 + 𝑒−𝑥

0 = 0

Hence the solution given satisfies the ODE.

2.5.5 Problem 17 section 1.1

In Problems 17 through 26, first verify that 𝑦(𝑥) satisfies the given differential equation.
Then determine a value of the constant 𝐶 so that 𝑦(𝑥) satisfies the given initial condition.
Use a computer or graphing calculator (if desired) to sketch several typical solutions of the
given differential equation, and highlight the one that satisfies the given initial condition.

𝑦′ + 𝑦 = 0 (A)

𝑦(𝑥) = 𝐶𝑒−𝑥

𝑦(0) = 2

Solution

Using the solution given, we see that

𝑦′ = −𝐶𝑒−𝑥 (1)

Substituting (1) into EQ. (A) gives

−𝐶𝑒−𝑥 + 𝐶𝑒−𝑥 = 0
0 = 0

Hence the solution gives satisfies the ODE.

When 𝑥 = 0 the solution becomes

2 = 𝐶𝑒−(0)

= 𝐶

Hence 𝐶 = 2 and the particular solution becomes

𝑦(𝑥) = 2𝑒−𝑥

The following are some solutions plots for different 𝐶
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Figure 2.7: Plot of serveral solution with different 𝑐. Red solution is one given in problem.

restart;
f:=(x,c)->c*exp(-x)
p1:=plot(f(x,2),x=-5..5,gridlines=true,view=[-6..6, -6..6],color=red):
p2:=plot(f(x,4),x=-5..5,gridlines=true,view=[-6..6, -6..6],color=blue):
p3:=plot(f(x,-2),x=-5..5,gridlines=true,view=[-6..6, -6..6],color=green):
p4:=plot(f(x,-4),x=-5..5,gridlines=true,view=[-6..6, -6..6],color=black):
T:=plots:-textplot([[.5,2,"(0,2)"]], font=[times,16],tickmarks=NULL):
plots:-display([p1,p2,p3,p4,T]);

2.5.6 Problem 3 section 5.1

A homogeneous second-order linear differential equation, two functions 𝑦1 and 𝑦2, and a
pair of initial conditions are given. First verify that 𝑦1 and 𝑦2 are solutions of the differential
equation. Then find a particular solution of the form 𝑦 = 𝑐1𝑦1 + 𝑐2𝑦2 that satisfies the given
initial conditions. Primes denote derivatives with respect to 𝑥.

𝑦′′ + 4𝑦 = 0 (1)

𝑦1 = cos 2𝑥
𝑦2 = sin 2𝑥

𝑦(0) = 3
𝑦′(0) = 8

Solution

Checking if 𝑦1(𝑥) is a solution. Since

𝑦′1 = −2 sin 2𝑥 (2)

𝑦′′1 = −4 cos 2𝑥 (3)

Substituting the above equations back into (1) gives

(−4 cos 2𝑥) + 4 cos 2𝑥 = 0
0 = 0
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Hence 𝑦1 is a solution. We do the same for 𝑦2

𝑦′2 = 2 cos 2𝑥 (4)

𝑦′′2 = −4 sin 2𝑥 (5)

Substituting (4,5) back into (1) gives

(−4 sin 2𝑥) + 4(sin 2𝑥) = 0
0 = 0

Hence 𝑦2 is a solution. Let general solution be

𝑦(𝑥) = 𝑐1𝑦1(𝑥) + 𝑐2𝑦2(𝑥)
= 𝑐1 cos 2𝑥 + 𝑐2 sin 2𝑥 (6)

Applying the first initial conditions 𝑦(0) = 3 in (6) gives

3 = 𝑐1

Hence (6) now becomes

𝑦(𝑥) = 3 cos 2𝑥 + 𝑐2 sin 2𝑥 (7)

Taking derivative of the above gives

𝑦′(𝑥) = −6 sin 2𝑥 + 2𝑐2 cos 2𝑥

Applying the second initial conditions 𝑦′(0) = 8 in the above gives

8 = 2𝑐2
𝑐2 = 4

Therefore the general solution (6) becomes

𝑦(𝑥) = 3 cos 2𝑥 + 4 sin 2𝑥 (8)

2.5.7 Problem 5 section 5.1

A homogeneous second-order linear differential equation, two functions 𝑦1 and 𝑦2, and a
pair of initial conditions are given. First verify that 𝑦1 and 𝑦2 are solutions of the differential
equation. Then find a particular solution of the form 𝑦 = 𝑐1𝑦1 + 𝑐2𝑦2 that satisfies the given
initial conditions. Primes denote derivatives with respect to 𝑥.

𝑦′′ − 3𝑦′ + 2𝑦 = 0 (1)

𝑦1 = 𝑒𝑥

𝑦2 = 𝑒2𝑥

𝑦(0) = 1
𝑦′(0) = 0

Solution

Checking if 𝑦1(𝑥) is a solution. Since

𝑦′1 = 𝑒𝑥 (2)

𝑦′′1 = 𝑒𝑥 (3)

Substituting the above equations back into (1) gives

𝑒𝑥 − 3𝑒𝑥 + 2𝑒𝑥 = 0
0 = 0
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Hence 𝑦1 is a solution. We do the same for 𝑦2

𝑦′2 = 2𝑒2𝑥 (4)

𝑦′′2 = 4𝑒2𝑥 (5)

Substituting (4,5) back into (1) gives

�4𝑒2𝑥� − 3�2𝑒2𝑥� + 2�𝑒2𝑥� = 0
4𝑒2𝑥 − 6𝑒2𝑥 + 2𝑒2𝑥 = 0

0 = 0

Hence 𝑦2 is a solution. Let general solution be

𝑦(𝑥) = 𝑐1𝑦1 + 𝑐2𝑦2
= 𝑐1𝑒𝑥 + 𝑐2𝑒2𝑥 (6)

Applying the first initial conditions 𝑦(0) = 1 in (6) gives

1 = 𝑐1 + 𝑐2 (7)

Taking derivative of Eq. (6) gives

𝑦′(𝑥) = 𝑐1𝑒𝑥 + 2𝑐2𝑒2𝑥

Applying the second initial conditions 𝑦′(0) = 0 in the above gives

0 = 𝑐1 + 2𝑐2 (8)

We have two equations (7,8) to solve for the 2 unknowns 𝑐1, 𝑐2. (7)-(8) gives

𝑐2 = −1

Hence from (7) 𝑐1 = 1 − 𝑐2 = 1 + 1 = 2. Therefore the solution (6) now becomes

𝑦(𝑥) = 2𝑒𝑥 − 𝑒2𝑥

2.5.8 Problem 7 section 5.1

A homogeneous second-order linear differential equation, two functions 𝑦1 and 𝑦2, and a
pair of initial conditions are given. First verify that 𝑦1 and 𝑦2 are solutions of the differential
equation. Then find a particular solution of the form 𝑦 = 𝑐1𝑦1 + 𝑐2𝑦2 that satisfies the given
initial conditions. Primes denote derivatives with respect to 𝑥.

𝑦′′ + 𝑦′ = 0 (1)

𝑦1 = 1
𝑦2 = 𝑒−𝑥

𝑦(0) = −2
𝑦′(0) = 8

Solution

Checking if 𝑦1(𝑥) is a solution. Since

𝑦′1 = 0 (2)

𝑦′′1 = 0 (3)

Substituting the above equations back into (1) gives

0 + 0 = 0
0 = 0
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Hence 𝑦1 is a solution. We do the same for 𝑦2

𝑦′2 = −𝑒−𝑥 (4)

𝑦′′2 = 𝑒−𝑥 (5)

Substituting (4,5) back into (1) gives

(𝑒−𝑥) − 𝑒−𝑥 = 0
0 = 0

Hence 𝑦2 is a solution. Let general solution be

𝑦(𝑥) = 𝑐1𝑦1 + 𝑐2𝑦2
= 𝑐1 + 𝑐2𝑒−𝑥 (6)

Applying the first initial conditions 𝑦(0) = −2 in (6) gives

−2 = 𝑐1 + 𝑐2 (7)

Taking derivative of Eq. (6) gives
𝑦′(𝑥) = −𝑐2𝑒−𝑥

Applying the second initial conditions 𝑦′(0) = 8 in the above gives

8 = −𝑐2
𝑐2 = −8 (8)

Hence from (7)

−2 = 𝑐1 + 𝑐2
= 𝑐1 − 8

𝑐1 = 6

Therefore the solution (6) now becomes

𝑦(𝑥) = 𝑐1 + 𝑐2𝑒−𝑥

= 6 − 8𝑒−𝑥

2.5.9 Problem 33 section 5.1

Apply Theorems 5 and 6 to find general solutions of the differential equations given in
Problems 33 through 42. Primes denote derivatives with respect to 𝑥.

𝑦′′ − 3𝑦′ + 2𝑦 = 0

Solution

The characteristic equation is

𝑟2 − 3𝑟 + 2 = 0
(𝑟 − 1)(𝑟 − 2) = 0

Hence the roots are 𝑟1 = 1, 𝑟2 = 2. Therefore the general solution is

𝑦(𝑥) = 𝐴𝑒𝑟1𝑥 + 𝐵𝑒𝑟2𝑥

= 𝐴𝑒𝑥 + 𝐵𝑒2𝑥

Where 𝐴,𝐵 are the constants of integrations which are found from initial conditions.
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2.5.10 Problem 35 section 5.1

Apply Theorems 5 and 6 to find general solutions of the differential equations given in
Problems 33 through 42. Primes denote derivatives with respect to 𝑥.

𝑦′′ + 5𝑦′ = 0

Solution

The characteristic equation is

𝑟2 + 5𝑟 = 0
(𝑟 + 5)𝑟 = 0

Hence the roots are 𝑟1 = 0, 𝑟2 = −5. Therefore the general solution is

𝑦(𝑥) = 𝐴𝑒𝑟1𝑥 + 𝐵𝑒𝑟2𝑥

= 𝐴 + 𝐵𝑒−5𝑥

Where 𝐴,𝐵 are the constants of integrations which are found from initial conditions.

2.5.11 Problem 39 section 5.1

Apply Theorems 5 and 6 to find general solutions of the differential equations given in
Problems 33 through 42. Primes denote derivatives with respect to 𝑥.

4𝑦′′ + 4𝑦′ + 𝑦 = 0

Solution

The characteristic equation is

4𝑟2 + 4𝑟 + 1 = 0

𝑟2 + 𝑟 +
1
4
= 0

�𝑟 +
1
2�

2

= 0

Hence the root is 𝑟 = −1
2 . A double root. Therefore the general solution is

𝑦(𝑥) = 𝐴𝑒𝑟𝑥 + 𝐵𝑥𝑒𝑟𝑥

= 𝐴𝑒−
1
2𝑥 + 𝐵𝑥𝑒−

1
2𝑥

Where 𝐴,𝐵 are the constants of integrations which are found from initial conditions.

2.5.12 Additional problem 1

Let 𝑃2 be subspace of polynomials of degree at most 2. So elements of 𝑃2 look like 𝑎0 +
𝑎1𝑥 + 𝑎2𝑥2. Show that �3 + 𝑥, 1 + 𝑥 + 𝑥2, 𝑥 − 2𝑥2� is basis for 𝑃2

Solution

Assuming these are basis, then we can write

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 = 𝑐1(3 + 𝑥) + 𝑐2�1 + 𝑥 + 𝑥2� + 𝑐3�𝑥 − 2𝑥2�

For constants 𝑐1, 𝑐2, 𝑐3. If we can find unique solution for the 𝑐𝑖 then these are basis. The
above becomes

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 = 3𝑐1 + 𝑐2 + 𝑥𝑐1 + 𝑥𝑐2 + 𝑥𝑐3 + 𝑥2𝑐2 − 2𝑥2𝑐3
= (3𝑐1 + 𝑐2) + 𝑥(𝑐1 + 𝑐2 + 𝑐3) + 𝑥2(𝑐2 − 2𝑐3)
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Comparing coefficients gives the equations

𝑎0 = 3𝑐1 + 𝑐2
𝑎1 = 𝑐1 + 𝑐2 + 𝑐3
𝑎2 = 𝑐2 − 2𝑐3

In Matrix form the above becomes
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 1 0
1 1 1
0 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎0
𝑎1
𝑎2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 1 0 𝑎0
1 1 1 𝑎1
0 1 −2 𝑎2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Replacing row 2 with row 1 gives

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 𝑎1
3 1 0 𝑎0
0 1 −2 𝑎2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → −3𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 𝑎1
0 −2 −3 𝑎0 − 3𝑎1
0 1 −2 𝑎2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅2 + 2𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 𝑎1
0 −2 −3 𝑎0 − 3𝑎1
0 0 −7 𝑎0 − 3𝑎1 + 2𝑎2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The matrix is now in Echelon form. We see that there are no free variables. Only leading
variables 𝑐1, 𝑐2, 𝑐3. This implies we have unique solution. Which means we can solve for
𝑐1, 𝑐2, 𝑐3 in terms of 𝑎1, 𝑎2, 𝑎3. We are not asked to complete the solution, only to say if these
are basis. So we can stop here.

This shows that �3 + 𝑥, 1 + 𝑥 + 𝑥2, 𝑥 − 2𝑥2� are basis for 𝑃2.

2.5.13 Additional problem 2

Find the general solution for 𝑦′′−25𝑦 = 0. What is the particular solution for 𝑦(0) = 𝑎, 𝑦′(0) =
𝑏?

Solution

The characteristic equation is

𝑟2 − 25 = 0
𝑟 = ±5

Two distinct real roots 𝑟1 = 5, 𝑟2 = −5. Therefore the general solution is

𝑦(𝑥) = 𝑐1𝑒𝑟1𝑥 + 𝑐2𝑒𝑟2𝑥

= 𝑐1𝑒5𝑥 + 𝑐2𝑒−5𝑥 (1)

Now we apply the initial conditions. The first one 𝑦(0) = 𝑎 applied to the above gives

𝑎 = 𝑐1 + 𝑐2 (2)

Taking derivative of (1) gives
𝑦′ = 5𝑐1𝑒5𝑥 − 5𝑐2𝑒−5𝑥
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Applying second initial conditions 𝑦′(0) = 𝑏 to the above gives

𝑏 = 5𝑐1 − 5𝑐2 (3)

Multiplying (2) by 5 and adding the result to Eq (3) gives

5𝑎 + 𝑏 = (5𝑐1 + 5𝑐2) + (5𝑐1 − 5𝑐2)
5𝑎 + 𝑏 = 10𝑐1

Hence

𝑐1 =
5𝑎 + 𝑏
10

From (2) we now solve for 𝑐2

𝑎 =
5𝑎 + 𝑏
10

+ 𝑐2

𝑐2 = 𝑎 −
5𝑎 + 𝑏
10

=
𝑎
2
−
𝑏
10

Now that we found both constants, the particular solution becomes

𝑦(𝑥) = 𝑐1𝑒5𝑥 + 𝑐2𝑒−5𝑥

= �
𝑎
2
+
𝑏
10�

𝑒5𝑥 + �
𝑎
2
−
𝑏
10�

𝑒−5𝑥
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2.5.14 key solution for HW 5

Homework 5 – Solutions

These solutions demonstrate one way to approach each of the homework problems. In many
cases, there are other correct solutions. If you would like to discuss alternative solutions or
the grading of your assignment, please see me during office hours or send me an email.

Textbook Problems:

4.7.7 This is not a subspace. It fails everything fairly badly, but I’ll go through why it fails
to be closed under addition. Suppose that f and g are functions where f(0) = g(0) = 0
and f(1) = g(1) = 1. Then (f + g)(1) = f(1) + g(1) = 1 + 1 = 2 so f + g is not in the
set.

4.7.10 This is a subspace. Polynomials a0 + a1x + a2x
2 + a3x

3 where a0 = a1 = 0 are of the
form bx2 + cx3. If we add two such polynomials, we have

(b1x
2 + c1x

3) + (b2x
2 + c2x

3) = (b1 + b2)x
2 + (c1 + c2)x

3

The result here is another polynomial of this form. Similarly, when we scale we get

k(bx2 + cx3) = (kb)x2 + (kc)x3

Again, the result is in the set. So we have a subspace.

1.1.5 We have the differential equation y′ = y + 2e−x. We need to check that y = ex − e−x

is a solution. We compute:

d

dx
(ex − e−x) = ex − (−e−x)

= ex + e−x

= ex − e−x + 2e−x

= y + 2e−x

So this is indeed a solution.

1.1.17 We have the differential equation y′ + y = 0. First, we check that y(x) = Ce−x is a
solution:

d

dx
(Ce−x) + (Ce−x) = −Ce−x + Ce−x

= 0

We need to find the value of C so that y(0) = 2. We have y(0) = Ce0 = C, so C = 2
is the necessary value.

1
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5.1.3 We omit the verification that y1 and y2 are solutions. Our general solution is y(x) =
c1 cos 2x+ c2 sin 2x. This has derivative y′(x) = −2c1 sin 2x+ 2c2 cos 2x. So, our initial
conditions tell us that

y(0) = c1 cos 0 + c2 sin 0

3 = c1

y′(0) = −2c1 sin 0 + 2c2 cos 0

8 = 2c2

So, our particular solution is y(x) = 3 cos 2x + 4 sin 2x.

5.1.5 We omit the verification that y1 and y2 are solutions. Our general solution is y(x) =
c1e

x + c2e
2x. This has derivative y′(x) = c1e

x + 2c2e
2x. So, our initial conditions tell

us that

y(0) = c1e
0 + c2e

0

1 = c1 + c2

y′(0) = c1e
0 + 2c2e

0

0 = c1 + 2c2

Subtracting our equations gives c2 = −1, and we substitute to get that c1 = 2. So, our
particular solution is y(x) = 2ex − e2x.

5.1.7 We omit the verification that y1 and y2 are solutions. Our general solution is y(x) =
c1 + c2e

−x. This has derivative y′(x) = −c2e−x. So, our initial conditions tell us that

y(0) = c1 + c2e
0

−2 = c1 + c2

y′(0) = −c2e0

8 = −c2

So, c2 = −8 and thus c1 = 6. So our particular solution is y(x) = 6− 8e−x.

5.1.33 We have characteristic equation r2− 3r + 2 = (r− 1)(r− 2) so we have roots r = 1, 2.
This gives us general solution y(x) = c1e

x + c2e
2x.

5.1.35 We have characteristic equation r2 + 5r = r(r + 5) so we have roots r = 0,−5. This
gives us general solution y(x) = c1e

0x + c2e
−5x = c1 + c2e

−5x.

5.1.39 We have characteristic equation 4r2 + 4r + 1 = (2r + 1)(2r + 1) so we have repeated
root r = −1

2
. This gives us general solution y(x) = c1e

−x
2 + c2xe

−x
2 .

Additional Problems:

2

89



2.5. HW 5 CHAPTER 2. HWS

1. We wish to show that {3 + x, 1 + x + x2, x− 2x2} is a basis for P2. So, we need to show
that the equation

c1(3 + x) + c2(1 + x + x2) + c3(x− 2x2) = a0 + a1x + a2x
2

has a unique solution for each value of a0, a1, a2. Rearranging terms, we have

(3c1 + c2) + (c1 + c2 + c3)x + (c2 − 2c3)x
2 = a0 + a1x + a2x

2

Equating the coefficients of each power of x, we get the linear system3 1 0
1 1 1
0 1 −2

c1c2
c3

 =

a0a1
a2


If we can show this matrix is invertible, we will be done. This matrix looks annoying to
row reduce, so I’ll compute the determinant by expanding along the first row:

det

3 1 0
1 1 1
0 1 −2

 = (+3) det

[
1 1
1 −2

]
+ (−1) det

[
1 1
0 −2

]
= 3(−2− 1)− (−2− 0)

= −7

Since this determinant is nonzero, the matrix is invertible and the system we are consid-
ering always has a unique solution.

2. We have the initial value problem y′′ − 25y = 0, y(0) = a, y′(0) = b.

The characteristic equaiton is r2 − 25 which has roots r = ±5. So our general solution
is y(x) = c1e

5x + c2e
−5x. We compute y′(x) = 5c1e

5x − 5c2e
−5x, so our initial conditions

give us the system

c1 + c2 = a

5c1 − 5c2 = b

We can write this system in matrix form as[
1 1
5 −5

] [
c1
c2

]
=

[
a
b

]

We have the matrix inverse

[
1 1
5 −5

]−1
= 1
−5−5

[
−5 −1
−5 1

]
so[

c1
c2

]
=

[
1
2

1
10

1
2
− 1

10

] [
a
b

]
=

[
a
2

+ b
10

a
2
− b

10

]
This solves for the constants c1 and c2 in terms of the given initial values a and b.

3
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2.6.1 Problems listing

Homework 6 - Due October 22

Homework instructions: Complete the assigned problems on your own paper. Once you
are finished, scan or photograph your work and upload it to Gradescope. When prompted,
tell Gradescope where to find each problem.
You are allowed (and in fact encouraged) to work with other students on homework assign-
ments. If you do that, please indicate on each problem who you worked with. If you use
sources other than your notes, the textbook, and any resources on Canvas for your home-
work, you must indicate the source on each problem. You are not permitted to view, request,
or look for solutions to any of the homework problems from solutions manuals, homework
help websites, online forums, other students, or any other sources.

Textbook Problems:

• §5.2: 9, 16, 24

• §5.3: 8, 11, 14, 18

Additional Problems:

1. This problem will walk you through finding the general solution of the differential equation

y(7) − 2y(6) + 9y(5) − 16y(4) + 24y(3) − 32y′′ + 16y′ = 0

(a) Write the characteristic equation for this differential equation. Factor out the com-
mon factor of r.

(b) Check that 1 is a root of the remaining polynomial. This means that (r − 1) is a
factor, so use polynomial long division to factor it out. Repeat until 1 is no longer
a factor of the remaining polynomial.

(c) The remaining polynomial should be of the form ar4+br2+c. Make the substitution
x = r2 and factor the quadratic ax2 + bx + c.

(d) Substitute back x = r2 and find the roots of whatever remains.

(e) List all the roots of the characteristic polynomial and their multiplicities. Use this
list to write down the general solution. Since this differential equation is of order 7,
your general solution should have 7 terms.

1
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2.6.2 Problem 9 section 5.2

In Problems 7 through 12, use the Wronskian to prove that the given functions are linearly
independent on the indicated interval.

𝑓(𝑥) = 𝑒𝑥, 𝑔(𝑥) = cos 𝑥, ℎ(𝑥) = sin 𝑥

On the real line.

Solution

𝑊(𝑥) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑓(𝑥) 𝑔(𝑥) ℎ(𝑥)
𝑓′(𝑥) 𝑔′(𝑥) ℎ′(𝑥)
𝑓′′(𝑥) 𝑔′′(𝑥) ℎ′′(𝑥)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence

𝑊(𝑥) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑒𝑥 cos 𝑥 sin 𝑥
𝑒𝑥 − sin 𝑥 cos 𝑥
𝑒𝑥 − cos 𝑥 − sin 𝑥

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The determinant is, expanding along first row is

|𝑊(𝑥)| = 𝑒𝑥�
− sin 𝑥 cos 𝑥
− cos 𝑥 − sin 𝑥

� − cos 𝑥�
𝑒𝑥 cos 𝑥
𝑒𝑥 − sin 𝑥

� + sin 𝑥�
𝑒𝑥 − sin 𝑥
𝑒𝑥 − cos 𝑥

�

= 𝑒𝑥�sin2 𝑥 + cos2 𝑥� − cos 𝑥(−𝑒𝑥 sin 𝑥 − 𝑒𝑥 cos 𝑥) + sin 𝑥(−𝑒𝑥 cos 𝑥 + 𝑒𝑥 sin 𝑥)

But sin2 𝑥 + cos2 𝑥 = 1 and the above simplifies to

|𝑊(𝑥)| = 𝑒𝑥 − �−𝑒𝑥 sin 𝑥 cos 𝑥 − 𝑒𝑥 cos2 𝑥� + �−𝑒𝑥 cos 𝑥 sin 𝑥 + 𝑒𝑥 sin2 𝑥�

= 𝑒𝑥 + 𝑒𝑥 sin 𝑥 cos 𝑥 + 𝑒𝑥 cos2 𝑥 − 𝑒𝑥 cos 𝑥 sin 𝑥 + 𝑒𝑥 sin2 𝑥
= 𝑒𝑥 + 𝑒𝑥 cos2 𝑥 + 𝑒𝑥 sin2 𝑥

= 𝑒𝑥 + 𝑒𝑥�sin2 𝑥 + cos2 𝑥�

= 2𝑒𝑥

And since 𝑒𝑥 is never zero on the real line, then |𝑊(𝑥)| ≠ 0 Hence functions are linearly
independent.

2.6.3 Problem 16 section 5.2

In Problems 13 through 20, a third-order homogeneous linear equation and three linearly
independent solutions are given. Find a particular solution satisfying the given initial
conditions.

𝑦′′′ − 5𝑦′′ + 8𝑦′ − 4𝑦 = 0
𝑦1 = 𝑒𝑥

𝑦2 = 𝑒2𝑥

𝑦3 = 𝑥𝑒2𝑥

I.C. are

𝑦(0) = 1, 𝑦′(0) = 4, 𝑦′′(0) = 0

Solution

The general solution is

𝑦(𝑥) = 𝑐1𝑦2 + 𝑐2𝑦2 + 𝑐3𝑦3
= 𝑐1𝑒𝑥 + 𝑐2𝑒2𝑥 + 𝑐3𝑥𝑒2𝑥 (1)

At 𝑦(0) = 0 the above becomes

1 = 𝑐1 + 𝑐2 (2)
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Taking derivative of (1) gives

𝑦′(𝑥) = 𝑐1𝑒𝑥 + 2𝑐2𝑒2𝑥 + 𝑐3�𝑒2𝑥 + 2𝑥𝑒2𝑥�

At 𝑦′(0) = 4 the above becomes

4 = 𝑐1 + 2𝑐2 + 𝑐3 (3)

Taking derivative of 𝑦′′(𝑥) gives

𝑦′′(𝑥) = 𝑐1𝑒𝑥 + 4𝑐2𝑒2𝑥 + 𝑐3�2𝑒2𝑥 + 2�𝑒2𝑥 + 2𝑥𝑒2𝑥��

= 𝑐1𝑒𝑥 + 4𝑐2𝑒2𝑥 + 𝑐3�2𝑒2𝑥 + 2𝑒2𝑥 + 4𝑥𝑒2𝑥�

At 𝑦′′(0) = 0 the above becomes

0 = 𝑐1 + 4𝑐2 + 4𝑐3 (4)

Equations (2,3,4) are now solved for 𝑐1, 𝑐2, 𝑐3
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
1 2 1
1 4 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Augmented matrix ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1
1 2 1 4
1 4 4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1
0 1 1 3
1 4 4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1
0 1 1 3
0 3 4 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 3𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1
0 1 1 3
0 0 1 −10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above is Echelon form. Hence the system becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
0 1 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
−10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

From last row, 𝑐3 = −10. From second row 𝑐2 + 𝑐3 = 3 or 𝑐2 = 13. From first row 𝑐1 + 𝑐2 = 1.
Hence 𝑐1 = −12. Therefore ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−12
13
−10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Substituting these values back in general solution (1) gives the solution that satisfies these
initial conditions as

𝑦(𝑥) = 𝑐1𝑒𝑥 + 𝑐2𝑒2𝑥 + 𝑐3𝑥𝑒2𝑥

= −12𝑒𝑥 + 13𝑒2𝑥 − 10𝑥𝑒2𝑥
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2.6.4 Problem 19 section 5.2

In Problems 13 through 20, a third-order homogeneous linear equation and three linearly
independent solutions are given. Find a particular solution satisfying the given initial
conditions.

𝑥3𝑦′′′ − 3𝑥2𝑦′′ + 6𝑥𝑦′ − 6𝑦 = 0
𝑦1 = 𝑥
𝑦2 = 𝑥2

𝑦3 = 𝑥3

I.C. are

𝑦(1) = 6, 𝑦′(1) = 14, 𝑦′′(1) = 22

Solution

The general solution is

𝑦(𝑥) = 𝑐1𝑦2 + 𝑐2𝑦2 + 𝑐3𝑦3
= 𝑐1𝑥 + 𝑐2𝑥2 + 𝑐3𝑥3 (1)

At 𝑦(1) = 0 the above becomes

6 = 𝑐1 + 𝑐2 + 𝑐3 (2)

Taking derivative of (1) gives

𝑦′(𝑥) = 𝑐1 + 2𝑐2𝑥 + 3𝑐3𝑥2

At 𝑦′(1) = 14 the above becomes

14 = 𝑐1 + 2𝑐2 + 3𝑐3 (3)

Taking derivative of 𝑦′(𝑥) gives
𝑦′′(𝑥) = 2𝑐2 + 6𝑐3𝑥

At 𝑦′′(1) = 22 the above becomes

22 = 2𝑐2 + 6𝑐3 (4)

Equations (2,3,4) are now solved for 𝑐1, 𝑐2, 𝑐3
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 2 3
0 2 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
14
22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Augmented matrix ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 6
1 2 3 14
0 2 6 22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 6
0 1 2 8
0 2 6 22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 2𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 6
0 1 2 8
0 0 2 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above is Echelon form. Hence the system becomes
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
0 1 2
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
8
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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From last row, 2𝑐3 = 6 or 𝑐3 = 3. From second row 𝑐2 +2𝑐3 = 8 or 𝑐2 = 8− 2(3) = 2. From first
row 𝑐1 + 𝑐2 + 𝑐3 = 6. Hence 𝑐1 = 6 − 2 − 3 = 1. Therefore

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Substituting these values back in general solution (1) gives the solution that satisfies these
initial conditions as

𝑦(𝑥) = 𝑐1𝑥 + 𝑐2𝑥2 + 𝑐3𝑥3

= 𝑥 + 2𝑥2 + 3𝑥3

2.6.5 Problem 24 section 5.2

In Problems 21 through 24, a nonhomogeneous differential equation, a complementary
solution 𝑦𝑐, and a particular solution

𝑦𝑝 are given. Find a solution satisfying the given initial conditions.

𝑦′′ − 2𝑦′ + 2𝑦 = 2𝑥
𝑦𝑐 = 𝑐1𝑒𝑥 cos 𝑥 + 𝑐2𝑒𝑥 sin 𝑥
𝑦𝑝 = 𝑥 + 1

I.C. are

𝑦(0) = 4, 𝑦′(0) = 8

Solution

The general solution is

𝑦(𝑥) = 𝑦𝑐 + 𝑦𝑝
= 𝑐1𝑒𝑥 cos 𝑥 + 𝑐2𝑒𝑥 sin 𝑥 + 𝑥 + 1 (1)

At 𝑦(0) = 4 the above becomes (using 𝑒0 = 1, cos 0 = 1, sin 0 = 0)

4 = 𝑐1 + 1 (2)

Taking derivative of (1) gives

𝑦′(𝑥) = 𝑐1(𝑒𝑥 cos 𝑥 − 𝑒𝑥 sin 𝑥) + 𝑐2𝑒𝑥 cos 𝑥 + 1

At 𝑦′(0) = 8 the above becomes

8 = 𝑐1(1 − 0) + 𝑐2 + 1
8 = 𝑐1 + 𝑐2 + 1 (3)

We have two equations (2,3) to solve for 𝑐1, 𝑐2. From (3) we see that 𝑐1 = 3. Hence from (3)
8 = 3 + 𝑐2 + 1 or 𝑐2 = 4. Therefore the solution in (1) becomes

𝑦(𝑥) = 𝑐1𝑒𝑥 cos 𝑥 + 𝑐2𝑒𝑥 sin 𝑥 + 𝑥 + 1
= 3𝑒𝑥 cos 𝑥 + 4𝑒𝑥 sin 𝑥 + 𝑥 + 1
= 𝑒𝑥(3 cos 𝑥 + 4 sin 𝑥) + 𝑥 + 1

2.6.6 Problem 8 section 5.3

Find the general solutions of the differential equations in Problems 1 through 20.

𝑦′′ − 6𝑦′ + 13𝑦 = 0

Solution This is second order with constant coefficients homogeneous ODE. In standard
form the ODE is

𝐴𝑦′′(𝑥) + 𝐵𝑦′(𝑥) + 𝐶𝑦(𝑥) = 0
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Where here we see that 𝐴 = 1, 𝐵 = −6, 𝐶 = 13.

Let the solution be 𝑦(𝑥) = 𝑒𝜆𝑥. Substituting this into the ODE gives

𝜆2𝑒𝜆𝑥 − 6𝜆𝑒𝜆𝑥 + 13𝑒𝜆𝑥 = 0 (1)

Since 𝑒𝜆𝑥 ≠ 0, then dividing Eq. (1) throughout by𝑒𝜆𝑥 results in

𝜆2 − 6𝜆 + 13 = 0 (2)

Eq. (2) is the characteristic equation of the ODE. We need to determine its roots to find
the general solution. Using the quadratic formula

𝜆1,2 =
−𝐵
2𝐴

±
1
2𝐴

√𝐵2 − 4𝐴𝐶

Substituting 𝐴 = 1, 𝐵 = −6, 𝐶 = 13 into the above gives

𝜆1,2 =
6

(2)(1)
±

1
(2)(1)�

−62 − (4)(1)(13)

= 3 ± 2𝑖

Hence

𝜆1 = 3 + 2𝑖
𝜆2 = 3 − 2𝑖

Since roots are complex conjugate of each others, then let the roots be

𝜆1,2 = 𝛼 ± 𝑖𝛽

Where 𝛼 = 3 and 𝛽 = 2. Therefore the final solution, when using Euler relation, can be
written as

𝑦(𝑥) = 𝑒𝛼𝑥�𝑐1 cos(𝛽𝑥) + 𝑐2 sin(𝛽𝑥)�

Which becomes
𝑦(𝑥) = 𝑒3𝑥(𝑐1 cos(2𝑥) + 𝑐2 sin(2𝑥))

2.6.7 Problem 11 section 5.3

Find the general solutions of the differential equations in Problems 1 through 20.

𝑦(4)(𝑥) − 8𝑦(3) + 16𝑦′′ = 0

Solution

We start by writing the characteristic equation of the ODE

𝜆4 − 8𝜆3 + 16𝜆2 = 0

We now solve for the roots of the above equation. Writing the above as

𝜆2�𝜆2 − 8𝜆 + 16� = 0

We see that 𝜆2 = 0 gives 𝜆 = 0 with multiplicity 2 . The equation 𝜆2 − 8𝜆 + 16 = 0 can be
factored to (𝜆 − 4)(𝜆 − 4) = 0. Therefor 𝜆 = 4 with multiplicity 2.

Hence the roots are

𝜆1 = 0
𝜆2 = 0
𝜆3 = 4
𝜆4 = 4

This table summarizes the result
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root multiplicity type of root

0 2 real root

4 2 real root

For a real root 𝜆 with multiplicity one, we obtain a basis solution of the form 𝑒𝜆𝑥 and real
root 𝜆 with multiplicity two we obtain basis solutions �𝑒𝜆𝑥, 𝑥𝑒𝜆𝑥�. Therefore the solution is

𝑦(𝑥) = 𝑐2𝑒𝜆1𝑥 + 𝑐2𝑥𝑒𝜆1𝑥 + 𝑐2𝑒𝜆3𝑥 + 𝑐2𝑥𝑒𝜆3𝑥

= 𝑐2 + 𝑐2𝑥 + 𝑐2𝑒4𝑥 + 𝑐2𝑥𝑒4𝑥

2.6.8 Problem 14 section 5.3

Find the general solutions of the differential equations in Problems 1 through 20.

𝑦(4)(𝑥) + 3𝑦′′ − 4𝑦 = 0

Solution

We start by writing the characteristic equation

𝜆4 + 3𝜆2 − 4 = 0

Let
𝑧 = 𝜆2

The characteristic becomes
𝑧2 + 3𝑧 − 4 = 0

Factoring the above gives
(𝑧 + 4)(𝑧 − 1) = 0

Hence 𝑧 = −4, 𝑧 = 1. When 𝑧 = −4, then 𝜆 = ±√−4 = ±2𝑖. And when 𝑧 = 1, then 𝜆 = ±√1 =
±1. Therefore the roots are

𝜆1 = 1
𝜆2 = −1
𝜆3 = 2𝑖
𝜆4 = −2𝑖

This table summarizes the result

root multiplicity type of root

−1 1 real root

1 1 real root

±2𝑖 1 complex conjugate root

For a real root 𝜆 with multiplicity one, we obtain a basis of the form 𝑐1𝑒𝜆𝑥 and for a complex
conjugate root of the form 𝑎±𝑖𝑏we obtain basis solution of the form 𝑒𝑎𝑥(𝑐1 cos(𝑏𝑥) + 𝑐2 sin(𝑏𝑥)).
Therefore the final solution, using 𝑎 = 0, 𝑏 = 2 is

𝑦(𝑥) = 𝑐1𝑒−𝑥 + 𝑐2𝑒𝑥 + 𝑐3 cos(2𝑥) + 𝑐4 sin(2𝑥)

2.6.9 Problem 18 section 5.3

Find the general solutions of the differential equations in Problems 1 through 20.

𝑦(4)(𝑥) = 16𝑦

Solution

We start by writing the characteristic equation

𝜆4 = 16
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Let
𝑧 = 𝜆2

The characteristic becomes
𝑧2 = 16

Hence 𝑧 = ±4. When 𝑧 = 4 then 𝜆 = ±√4 = ±2. And when 𝑧 = −4 then 𝜆 = ±√−4 = ±2𝑖.
Hence the roots are

𝜆1 = 2
𝜆2 = −2
𝜆3 = 2𝑖
𝜆4 = −2𝑖

This table summarizes the result

root multiplicity type of root

−2 1 real root

2 1 real root

±2𝑖 1 complex conjugate root

As in the earlier problem, we now can write the general solution as

𝑦(𝑥) = 𝑒−2𝑥𝑐1 + 𝑐2𝑒2𝑥 + 𝑐3 cos(2𝑥) + 𝑐4 sin(2𝑥)

2.6.10 Additional problem 1

Find the general solutions of the differential equations in Problems 1 through 20.

𝑦(7)(𝑥) − 2𝑦(6) + 9𝑦(5) − 16𝑦(4) + 24𝑦(3) − 32𝑦′′ + 16𝑦′ = 0

Solution

2.6.10.1 Part a

The characteristic equation is

𝑟7 − 2𝑟6 + 9𝑟5 − 16𝑟4 + 24𝑟3 − 32𝑟2 + 16𝑟 = 0

𝑟�𝑟6 − 2𝑟5 + 9𝑟4 − 16𝑟3 + 24𝑟2 − 32𝑟 + 16� = 0

Hence one root is 𝑟 = 0. And now we need to solve

𝑟6 − 2𝑟5 + 9𝑟4 − 16𝑟3 + 24𝑟2 − 32𝑟 + 16 = 0

2.6.10.2 Part b

Substituting 𝑟 = 1 in the above gives

1 − 2 + 9 − 16 + 24 − 32 + 16 = 0
0 = 0

Therefore (𝑟 − 1) is a factor. Doing long division (do not know how type polynomial division
in Latex, please see scanned hand solution in appendix of this problem).

𝑟6 − 2𝑟5 + 9𝑟4 − 16𝑟3 + 24𝑟2 − 32𝑟 + 16
(𝑟 − 1)

= 𝑟5 − 𝑟4 + 8𝑟3 − 8𝑟2 + 16𝑟 − 16

Hence

𝑟6 − 2𝑟5 + 9𝑟4 − 16𝑟3 + 24𝑟2 − 32𝑟 + 16 = (𝑟 − 1)�𝑟5 − 𝑟4 + 8𝑟3 − 8𝑟2 + 16𝑟 − 16�

Substituting 𝑟 = 1 in �𝑟5 − 𝑟4 + 8𝑟3 − 8𝑟2 + 16𝑟 − 18� gives

𝑟5 − 𝑟4 + 8𝑟3 − 8𝑟2 + 16𝑟 − 18 → 1 − 1 + 8 − 8 + 16 − 16 = 0
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Hence (𝑟 − 1) is a factor of �𝑟5 − 𝑟4 + 8𝑟3 − 8𝑟2 + 16𝑟 − 16�. Therefore we now need to do long
division

𝑟5 − 𝑟4 + 8𝑟3 − 8𝑟2 + 16𝑟 − 16
(𝑟 − 1)

= 𝑟4 + 8𝑟2 + 16

Hence now we have

𝑟6 − 2𝑟5 + 9𝑟4 − 16𝑟3 + 24𝑟2 − 32𝑟 + 16 = (𝑟 − 1)(𝑟 − 1)�𝑟4 + 8𝑟2 + 16�

2.6.10.3 Part c

Looking at 𝑟4 + 8𝑟2 + 16 = 0, let 𝑧 = 𝑟2. Therefore 𝑟4 + 8𝑟2 + 16 becomes 𝑧2 + 8𝑧 + 16 = 0 , This
can be factored to (𝑧 + 4)(𝑧 + 4) = 0. Hence roots are 𝑧 = −4 which is double root.

2.6.10.4 Part d

Therefore when 𝑧 = −4 then 𝑟 = ±√−4 = ±2𝑖 with multiplicity 2 since 𝑧 = −4 is double root.
Therefore the final factorization is

𝑟6 − 2𝑟5 + 9𝑟4 − 16𝑟3 + 24𝑟2 − 32𝑟 + 16 = (𝑟 − 1)(𝑟 − 1)(𝑟 − 2𝑖)(𝑟 + 2𝑖)(𝑟 − 2𝑖)(𝑟 + 2𝑖)

2.6.10.5 Part e

This table summarizes the result

root multiplicity type of root

0 1 real root

1 2 real root

±2𝑖 2 complex conjugate

Now we are above to write down the general solution.

𝑦(𝑥) = 𝑐1𝑒0𝑥 + (𝑐2𝑒𝑥 + 𝑐3𝑥𝑒𝑥) + �𝑐4𝑒2𝑖𝑥 + 𝑐5𝑥𝑒2𝑖𝑥� + �𝑐6𝑒−2𝑖𝑥 + 𝑐7𝑥𝑒−2𝑖𝑥�

= 𝑐1 + (𝑐2𝑒𝑥 + 𝑐3𝑥𝑒𝑥) + �𝑐4𝑒2𝑖𝑥 + 𝑐5𝑥𝑒2𝑖𝑥� + �𝑐6𝑒−2𝑖𝑥 + 𝑐7𝑥𝑒−2𝑖𝑥�

= 𝑐1 + (𝑐2𝑒𝑥 + 𝑐3𝑥𝑒𝑥) + �𝑐4𝑒2𝑖𝑥 + 𝑐6𝑒−2𝑖𝑥� + 𝑥�𝑐5𝑒2𝑖𝑥 + 𝑐7𝑒−2𝑖𝑥�

We see the above has 7 terms. But using Euler relation, we can write �𝑒2𝑖𝑥 + 𝑒−2𝑖𝑥� using trig
functions. The above becomes

𝑦(𝑥) = 𝑐1 + (𝑐2𝑒𝑥 + 𝑐3𝑥𝑒𝑥) + (𝑐4 cos 2𝑥 + 𝑐5 sin 2𝑥) + 𝑥(𝑐6 cos 2𝑥 + 𝑐7 sin 2𝑥)

(constants of integrations kept the same as originally for simplicity, since it does not matter
as these are found from initial conditions if given).
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2.6.10.6 Appendix

Figure 2.8: First long division

Figure 2.9: Second long division
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2.6.11 key solution for HW 6

Homework 6 – Solutions

These solutions demonstrate one way to approach each of the homework problems. In many
cases, there are other correct solutions. If you would like to discuss alternative solutions or
the grading of your assignment, please see me during office hours or send me an email.

Textbook Problems:

5.2.9 We compute

W (x) = det

ex cosx sinx
ex − sinx cosx
ex − cosx − sinx


= ex det

[
− sinx cosx
− cosx − sinx

]
− cosx det

[
ex cosx
ex − sinx

]
+ sinx det

[
ex − sinx
ex − cosx

]
= ex(sin2 x + cos2 x)− cosx(−ex sinx− ex cosx) + sin x(−ex cosx + ex sinx)

= ex + ex(cosx sinx + cos2 x− sinx cosx + sin2 x)

= 2ex

Now W (x) = 2ex is not identically 0, so the functions are linearly independent.

5.2.16 Our general solution is y = c1e
x + c2e

2x + c3xe
2x. The given initial conditions give us

the following equations:

y = c1e
x + c2e

2x + c3xe
2x

y(0) = c1 + c2 = 1

y′ = c1e
x + 2c2e

2x + c3e
2x + 2c3xe

2x

y′(0) = c1 + 2c2 + c3 = 4

y′′ = c1e
x + 4c2e

2x + 4c3e
2x + 4c3xe

2x

y′′(0) = c1 + 4c2 + 4c3 = 0

We have a system of three equations in three variables which we solve by row reducing
the augmented matrix. 1 1 0 1

1 2 1 4
1 4 4 0

 −R1+R2−−−−−→
−R1+R3

1 1 0 1
0 1 1 3
0 3 4 −1


−3R2+R3−−−−−→

1 1 0 1
0 1 1 3
0 0 1 −10


Now we back substitute to get c3 = −10, c2 = 13, c1 − 12. So, the particular solution
here is y = −12ex + 13e2x − 10xe2x.

1
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5.2.24 The general form of a solution is y = c1e
x cosx+c2e

x sinx+x+1. The initial conditions
give us the following:

y = c1e
x cosx + c2e

x sinx + x + 1

y(0) = c1 + 1 = 4

y′ = c1e
x cosx− c1e

x sinx + c2e
x sinx + c2e

x cosx + 1

y′(0) = c1 + c2 + 1 = 8

We can solve immediately to get c1 = 3, c2 = 4. So the solution is y = 3ex cosx +
4ex sinx + x + 1.

5.3.8 We have y′′ − 6y′ + 13y = 0 with characteristic equation r2 − 6r + 13. This doesn’t
factor obviously, so we use the quadratic equation:

r =
6±
√

36− 52

2
= 3± 2i

In this case, we have complex conjugate roots a ± bi where a = 3 and b = 2. So our
general solution is y = c1e

3x cos(2x) + c2e
3x sin(2x).

5.3.11 We have y(4) − 8y(3) + 16y′′ = 0 with characteristic equation r4 − 8r3 + 16r2 = r2(r2 −
8r + 16). We can factor the remaining quadratic easily as (r − 4)2. So we have roots
r = 0, 4 each of multiplicity 2.

Our general solution is y = c1 + c2x + c3e
4x + c4xe

4x.

5.3.14 We have characteristic equation r4 +3r2−4. Mentally making the substitution x = r2,
we can see that there is a factorization (r2 + 4)(r2 − 1) = (r2 + 4)(r + 1)(r − 1). The
roots are thus ±2i,±1.

Our general solution is y = c1e
x + c2e

−x + c3 cos(2x) + c4 sin(2x).

5.3.18 We rewrite the differential equation as y(4) − 16y = 0 so the characteristic equation is
r4 − 16. This is a difference of squares, so factors as (r2 − 4)(r2 + 4). We can factor
further using difference of squares to get (r−2)(r+2)(r2+4). So the roots are ±2,±2i.

The general solution is y = c1e
2x + c2e

−2x + c3 cos(2x) + c3 sin(2x).

Additional Problems:

1. We have the differential equation

y(7) − 2y(6) + 9y(5) − 16y(4) + 24y(3) − 32y′′ + 16y′ = 0

(a) The characteristic equation is r7− 2r6 + 9r5− 16r4 + 24r3− 32r2 + 16r which factors
as r(r6 − 2r5 + 9r4 − 16r3 + 24r2 − 32r + 16)

2
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(b) 1 is a root as 1 − 2 + 9 − 16 + 24 − 32 + 16 = 0. Polynomial long division (steps
omitted) gives us the factorization r(r − 1)(r5 − r4 + 8r3 − 8r2 + 16r − 16).

1 is still a root of the degree 5 factor as 1 − 1 + 8 − 8 + 16 − 16 = 0, so we
do polynomial long division (steps omitted again) again to get the factorization
r(r − 1)2(r4 + 8r2 + 16).

1 is no longer a root, since 1 + 8 + 16 = 25.

(c) We have x2 + 8x + 16 = (x + 4)(x + 4).

(d) Our characteristic polynomial factors as r(r − 1)2(r2 + 4)2. The roots of the r2 + 4
factor are ±2i.

(e) Our roots are 0 (mult. 1), 1 (mult. 2), and ±2i (each of mult. 2). This gives us the
following general solution

y(x) = c1 + c2e
x + c3xe

x + c4 cos(2x) + c5 sin(2x) + c6x cos(2x) + c7x sin(2x)

As expected, we have seven terms in the general solution.

3
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2.7.1 Problems listing

Homework 7 - Due October 29

Homework instructions: Complete the assigned problems on your own paper. Once you
are finished, scan or photograph your work and upload it to Gradescope. When prompted,
tell Gradescope where to find each problem.
You are allowed (and in fact encouraged) to work with other students on homework assign-
ments. If you do that, please indicate on each problem who you worked with. If you use
sources other than your notes, the textbook, and any resources on Canvas for your home-
work, you must indicate the source on each problem. You are not permitted to view, request,
or look for solutions to any of the homework problems from solutions manuals, homework
help websites, online forums, other students, or any other sources.

Textbook Problems:

• §5.5: 3, 9, 11, 23, 32

• §6.1: 7, 17, 21, 25, 29

Additional Problems:

1. On the last homework, you found the general solution for the differential equation

y(7) − 2y(6) + 9y(5) − 16y(4) + 24y(3) − 32y′′ + 16y′ = 0

Using your solution to that problem, find the appropriate form for of a particular solution
yp to the differential equation below. Do not find the values of the coefficients!

y(7) − 2y(6) + 9y(5) − 16y(4) + 24y(3) − 32y′′ + 16y′ = e2x + x sinx + x2

2. Let A =

t1 0 0
0 t2 0
0 0 t3

 where t1, t2, t3 are distinct real numbers. Find the eigenvalues of A

and the corresponding eigenvectors.

3. This problem is optional. Extend the result in problem 2 to the case of n × n matrices.
That is, let A be a matrix with entries t1, t2, . . . , tn on the main diagonal and 0s everywhere
else, where the ti are distinct real numbers. Find the eigenvalues and corresponding
eigenvectors.

1
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2.7.2 Problem 3 section 5.5

In Problems 1 through 20, find a particular solution 𝑦𝑝 of the given equation.

𝑦′′ − 𝑦′ − 6𝑦 = 2 sin 3𝑥 (A)

Solution

The first step is to find the homogeneous solution 𝑦ℎ in order to determine the basis
solutions to check for any duplication with basis solutions for the particular solution.

𝑦′′ − 𝑦′ − 6𝑦 = 0

The characteristic equation is

𝑟2 − 𝑟 − 6 = 0
(𝑟 − 3)(𝑟 + 2) = 0

Hence the roots are 𝑟1 = 3, 𝑟2 = −2. Therefore the basis solutions are

�𝑒3𝑥, 𝑒−2𝑥� (1)

Which implies
𝑦ℎ = 𝑐1𝑒3𝑥 + 𝑐2𝑒−2𝑥

Now that we found the basis solution, we turn our attention to finding 𝑦𝑝. The RHS is
sin 3𝑥. Looking at this function and all possible derivatives gives

{sin 3𝑥, cos 3𝑥} (2)

Notice that we ignore any leading coefficients when doing this. Now we compare the above
to the basis of the homogeneous solution found in (1) to check if there are duplication in
basis or not. There is no duplication. Therefore we assume that particular solution 𝑦𝑝 is a
linear combination of the functions in (2). This implies that

𝑦𝑝 = 𝐴 sin 3𝑥 + 𝐵 cos 3𝑥
𝑦′𝑝 = 3𝐴 cos 3𝑥 − 3𝐵 sin 3𝑥
𝑦′′𝑝 = −9𝐴 sin 3𝑥 − 9𝐵 cos 3𝑥

Substituting the above back in original ODE (A) gives

𝑦′′𝑝 − 𝑦′𝑝 − 6𝑦𝑝 = 2 sin 3𝑥
(−9𝐴 sin 3𝑥 − 9𝐵 cos 3𝑥) − (3𝐴 cos 3𝑥 − 3𝐵 sin 3𝑥) − 6(𝐴 sin 3𝑥 + 𝐵 cos 3𝑥) = 2 sin 3𝑥

sin(3𝑥)(−9𝐴 + 3𝐵 − 6𝐴) + cos(3𝑥)(−9𝐵 − 3𝐴 − 6𝐵) = 2 sin 3𝑥
sin(3𝑥)(−15𝐴 + 3𝐵) + cos(3𝑥)(−15𝐵 − 3𝐴) = 2 sin 3𝑥

Comparing coefficients gives

−15𝐴 + 3𝐵 = 2 (3)

−15𝐵 − 3𝐴 = 0 (4)

Multiplying first equation by 5 and adding result to second equation gives

(−75𝐴 + 15𝐵) + (−15𝐵 − 3𝐴) = 10
−78𝐴 = 10

𝐴 = −
10
78

= −
5
39
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From (3)

−15�−
5
39�

+ 3𝐵 = 2

25
13
+ 3𝐵 = 2

𝐵 =
2 − 25

13
3

=
1
39

Hence the particular solution is

𝑦𝑝 = 𝐴 sin 3𝑥 + 𝐵 cos 3𝑥

= −
5
39

sin 3𝑥 +
1
39

cos 3𝑥

=
1
39
(cos 3𝑥 − 5 sin 3𝑥)

Therefore the general solution is

𝑦 = 𝑦ℎ + 𝑦𝑝

= 𝑐1𝑒3𝑥 + 𝑐2𝑒−2𝑥 +
1
39
(cos 3𝑥 − 5 sin 3𝑥)

2.7.3 Problem 9 section 5.5

In Problems 1 through 20, find a particular solution 𝑦𝑝 of the given equation.

𝑦′′ + 2𝑦′ − 3𝑦 = 1 + 𝑥𝑒𝑥 (A)

Solution

The first step is to find the homogeneous solution 𝑦ℎ in order to determine the basis
solutions to check for any duplication with basis solutions for the particular solution.

𝑦′′ + 2𝑦′ − 3𝑦 = 0

The characteristic equation is

𝑟2 + 2𝑟 − 3 = 0
(𝑟 + 3)(𝑟 − 1) = 0

Hence the roots are 𝑟1 = −3, 𝑟2 = 1. Therefore the basis solutions are

�𝑒−3𝑥, 𝑒𝑥� (1)

Which implies
𝑦ℎ = 𝑐1𝑒−3𝑥 + 𝑐2𝑒𝑥

Now that we found the basis solution, we turn our attention to finding 𝑦𝑝. The RHS is
1 + 𝑥𝑒𝑥. Hence it basis functions are

{1, 𝑥𝑒𝑥}

taking derivatives of each basis gives

{1, (𝑥𝑒𝑥, 𝑒𝑥)} (2)

Where we used () to group all basis generated from same one.

Now we compare the above to the basis of the homogeneous solution found in (1) to check
if there are duplication in basis or not. We see duplication since 𝑒𝑥 is basis in both (1) and
(2). Therefore we multiply the group which generated 𝑒𝑥 by 𝑥. The the above now becomes

�1, �𝑥2𝑒𝑥, 𝑥𝑒𝑥�� (2A)

107



2.7. HW 7 CHAPTER 2. HWS

We compare again (1) against (2A) and now we see no duplication. Therefore we assume
that particular solution 𝑦𝑝 is a linear combination of the functions in (2A). This implies
that

𝑦𝑝 = 𝐴 + 𝐵𝑥2𝑒𝑥 + 𝐶𝑥𝑒𝑥

𝑦′𝑝 = 2𝐵𝑥𝑒𝑥 + 𝐵𝑥2𝑒𝑥 + 𝐶𝑒𝑥 + 𝐶𝑥𝑒𝑥

𝑦′′𝑝 = 2𝐵𝑒𝑥 + 2𝐵𝑥𝑒𝑥 + 2𝐵𝑥𝑒𝑥 + 𝐵𝑥2𝑒𝑥 + 𝐶𝑒𝑥 + 𝐶𝑒𝑥 + 𝐶𝑥𝑒𝑥

= 𝑥𝑒𝑥(2𝐵 + 2𝐵 + 𝐶) + 𝑥2𝑒𝑥(𝐵) + 𝑒𝑥(2𝐵 + 2𝐶)

Substituting the above back in original ODE (A) gives

𝑦′′𝑝 + 2𝑦′𝑝 − 3𝑦𝑝 = 1 + 𝑥𝑒𝑥

𝑥𝑒𝑥(2𝐵 + 2𝐵 + 𝐶) + 𝑥2𝑒𝑥(𝐵) + 𝑒𝑥(2𝐵 + 2𝐶) + 2�2𝐵𝑥𝑒𝑥 + 𝐵𝑥2𝑒𝑥 + 𝐶𝑒𝑥 + 𝐶𝑥𝑒𝑥� − 3�𝐴 + 𝐵𝑥2𝑒𝑥 + 𝐶𝑥𝑒𝑥� = 1 + 𝑥𝑒𝑥

𝑥𝑒𝑥(2𝐵 + 2𝐵 + 𝐶 + 4𝐵 + 2𝐶 − 3𝐶) + 𝑒𝑥(2𝐵 + 2𝐶 + 2𝐶) + 𝑥2𝑒𝑥(𝐵 + 2𝐵 − 3𝐵) − 3𝐴 = 1 + 𝑥𝑒𝑥

𝑥𝑒𝑥(8𝐵) + 𝑒𝑥(2𝐵 + 4𝐶) − 3𝐴 = 1 + 𝑥𝑒𝑥

Comparing coefficients

−3𝐴 = 1
2𝐵 + 4𝐶 = 0

8𝐵 = 1

Hence 𝐵 = 1
8 and from second equation 4𝐶 = −2

8 , or 𝐶 = − 1
16 and 𝐴 = −1

3 . Therefore the
particular solution is

𝑦𝑝 = 𝐴 + 𝐵𝑥2𝑒𝑥 + 𝐶𝑥𝑒𝑥

=
−1
3
+
1
8
𝑥2𝑒𝑥 −

1
16
𝑥𝑒𝑥

= −
1
3
+
1
16
�2𝑥2 − 𝑥�𝑒𝑥

Therefore the general solution is

𝑦 = 𝑦ℎ + 𝑦𝑝

= 𝑐1𝑒−3𝑥 + 𝑐2𝑒𝑥 −
1
3
+
1
16
�2𝑥2 − 𝑥�𝑒𝑥

2.7.4 Problem 11 section 5.5

In Problems 1 through 20, find a particular solution 𝑦𝑝 of the given equation.

𝑦(3) + 4𝑦′ = 3𝑥 − 1 (A)

Solution

The first step is to find the homogeneous solution 𝑦ℎ in order to determine the basis
solutions to check for any duplication with basis solutions for the particular solution.

𝑦(3) + 4𝑦′ = 0

The characteristic equation is

𝑟3 + 4𝑟 = 0

𝑟�𝑟2 + 4� = 0

Hence the roots are 𝑟1 = 0, 𝑟2 = ±2𝑖. Therefore the basis solutions are

{1, cos(2𝑥), sin(2𝑥)} (1)

Which implies
𝑦ℎ = 𝑐1 + 𝑐2 cos(2𝑥) + 𝑐3 sin(2𝑥)
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Now that we found the basis solution, we turn our attention to finding 𝑦𝑝. The RHS is
3𝑥 − 1. Hence it basis functions are

{1, 𝑥} (2)

Taking derivatives does not add any new basis. Now we compare the above to the basis
of the homogeneous solution found in (1) to check if there are duplication in basis or not.
We see duplication the constant is in both (1) and (2). Therefore we multiply the group by
𝑥. We took the whole basis as one group, since the constant 1 above is generated by taking
derivative of 𝑥, so it is really in the same group. The above now becomes, after multiplying
everything by 𝑥

�𝑥, 𝑥2� (2A)

We compare again (1) against (2A) and now we see no duplication. Therefore we assume
that particular solution 𝑦𝑝 is a linear combination of the functions in (2A). This implies
that

𝑦𝑝 = 𝐴𝑥 + 𝐵𝑥2

𝑦′𝑝 = 𝐴 + 2𝐵𝑥
𝑦′′𝑝 = 2𝐵

𝑦(3)𝑝 = 0

Substituting the above back in original ODE (A) gives

𝑦(3)𝑝 + 𝑦′𝑝 = 3𝑥 − 1
0 + 4(𝐴 + 2𝐵𝑥) = 3𝑥 − 1

4𝐴 + 8𝐵𝑥 = 3𝑥 − 1

Comparing coefficients

4𝐴 = −1
8𝐵 = 3

Hence 𝐴 = −1
4 , 𝐵 =

3
8 . Therefore the particular solution is

𝑦𝑝 = 𝐴𝑥 + 𝐵𝑥2

= −
1
4
𝑥 +

3
8
𝑥2

=
1
8
�3𝑥2 − 2𝑥�

Therefore the general solution is

𝑦 = 𝑦ℎ + 𝑦𝑝

= 𝑐1 + 𝑐2 cos(2𝑥) + 𝑐3 sin(2𝑥) −
1
4
𝑥 +

3
8
𝑥2

2.7.5 Problem 23 section 5.5

In Problems 21 through 30, set up the appropriate form of a particular solution 𝑦𝑝, but do
not determine the values of the coefficients.

𝑦′′ + 4𝑦 = 3𝑥 cos(2𝑥) (A)

Solution

The first step is to find the homogeneous solution 𝑦ℎ in order to determine the basis
solutions to check for any duplication with basis solutions for the particular solution.

𝑦′′ + 4𝑦 = 0
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The characteristic equation is
𝑟2 + 4 = 0

Hence the roots are 𝑟 = ±2𝑖. Therefore the basis solutions are

{cos(2𝑥), sin(2𝑥)} (1)

Which implies
𝑦ℎ = 𝑐1 cos(2𝑥) + 𝑐2 sin(2𝑥)

Now that we found the basis solution, we turn our attention to finding 𝑦𝑝. The RHS is
3𝑥 cos(2𝑥). Hence it basis functions are

{𝑥 cos(2𝑥)} (2)

Taking all possible derivatives of the above gives

{𝑥 cos(2𝑥), cos(2𝑥), 𝑥 sin(2𝑥), sin(2𝑥)} (2A)

Where in the above all signs and coefficients were ignored.

Now we compare the above to the basis of the homogeneous solution found in (1) to
check if there are duplication in basis or not. We see duplication as cos(2𝑥), sin(2𝑥) are in
both. Therefore we multiply the group by 𝑥. We took the whole basis as one group since
everything above was generated from (2). The above now becomes, after multiplying each
term by 𝑥

�𝑥2 cos(2𝑥), 𝑥 cos(2𝑥), 𝑥2 sin(2𝑥), 𝑥 sin(2𝑥)� (2B)

Now we compare (2B) again with (1) and see no duplication. Hence

𝑦𝑝 = 𝐴𝑥2 cos(2𝑥) + 𝐵𝑥 cos(2𝑥) + 𝐶𝑥2 sin(2𝑥) + 𝐷𝑥 sin(2𝑥)

2.7.6 Problem 32 section 5.5

Solve the initial value problems in Problems 31 through 40.

𝑦′′ + 3𝑦′ + 2𝑦 = 𝑒𝑥 (A)

𝑦(0) = 0
𝑦′(0) = 3

Solution

The first step is to find the homogeneous solution 𝑦ℎ in order to determine the basis
solutions to check for any duplication with basis solutions for the particular solution.

𝑦′′ + 3𝑦′ + 2 = 0

The characteristic equation is

𝑟2 + 3𝑟 + 2 = 0
(𝑟 + 2)(𝑟 + 1) = 0

Hence the roots are 𝑟1 = −2, 𝑟2 = −1. Therefore the basis solutions are

�𝑒−2𝑥, 𝑒−𝑥� (1)

Which implies
𝑦ℎ = 𝑐1𝑒−2𝑥 + 𝑐2𝑒−𝑥

Now that we found the basis solution, we turn our attention to finding 𝑦𝑝. The RHS is 𝑒𝑥.
Hence it basis functions are

{𝑒𝑥} (2)
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Taking all derivatives does not any terms. We also see no duplication between (2) and (1).
Hence let

𝑦𝑝 = 𝐴𝑒𝑥

𝑦′𝑝 = 𝐴𝑒𝑥

𝑦′′𝑝 = 𝐴𝑒𝑥

Substituting these into (A) gives

𝑦′′𝑝 + 3𝑦′𝑝 + 2𝑦𝑝 = 𝑒𝑥

𝐴𝑒𝑥 + 3𝐴𝑒𝑥 + 2𝐴𝑒𝑥 = 𝑒𝑥

𝑒𝑥(𝐴 + 3𝐴 + 2𝐴) = 𝑒𝑥

Hence

6𝐴 = 1

𝐴 =
1
6

Therefore
𝑦𝑝 =

1
6
𝑒𝑥

Therefore the complete solution is

𝑦 = 𝑦ℎ + 𝑦𝑝

= 𝑐1𝑒−2𝑥 + 𝑐2𝑒−𝑥 +
1
6
𝑒𝑥 (3)

We are now ready to apply the initial conditions. 𝑦(0) = 0, 𝑦′(0) = 3. Applying first IC to
(3) gives

0 = 𝑐1 + 𝑐2 +
1
6

(4)

Taking derivative of (3) gives

𝑦′ = −2𝑐1𝑒−2𝑥 − 𝑐2𝑒−𝑥 +
1
6
𝑒𝑥

Applying second IC to the above gives

3 = −2𝑐1 − 𝑐2 +
1
6

(5)

We now need to solve (4,5) for 𝑐1, 𝑐2. Adding (4,5) gives

3 = �𝑐1 + 𝑐2 +
1
6�
+ �−2𝑐1 − 𝑐2 +

1
6�

3 =
1
3
− 𝑐1

𝑐1 =
1
3
− 3

= −
8
3

From (4)

0 = 𝑐1 + 𝑐2 +
1
6

0 = −
8
3
+ 𝑐2 +

1
6

𝑐2 =
5
2

Therefore the complete solution (3) becomes

𝑦(𝑥) = 𝑐1𝑒−2𝑥 + 𝑐2𝑒−𝑥 +
1
6
𝑒𝑥

= −
8
3
𝑒−2𝑥 +

5
2
𝑒−𝑥 +

1
6
𝑒𝑥

=
1
6
�−16𝑒−2𝑥 + 15𝑒−𝑥 + 𝑒𝑥�
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2.7.7 Problem 7 section 6.1

In Problems 1 through 26, find the (real) eigenvalues and associated eigenvectors of the
given matrix 𝐴. Find a basis for each eigenspace of dimension 2 or larger.

𝐴 =
⎡
⎢⎢⎢⎢⎣
10 −8
6 −4

⎤
⎥⎥⎥⎥⎦

Solution

We first need to find the eigenvalues. These are found by solving |𝐴 − 𝜆𝐼| = 0. Hence

�
10 − 𝜆 −8
6 −4 − 𝜆

� = 0

(10 − 𝜆)(−4 − 𝜆) + 48 = 0
𝜆2 − 6𝜆 + 8 = 0

(𝜆 − 4)(𝜆 − 2) = 0

Hence 𝜆1 = 4, 𝜆2 = 2. For each eigenvalue we find its associated eigenvectors.

𝜆1 = 4

We nee to solve 𝐴𝑣⃗ = 𝜆𝑣⃗. This becomes (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗. Therefore
⎡
⎢⎢⎢⎢⎣
10 − 4 −8
6 −4 − 4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
6 −8
6 −8

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦ (1)

Augmented matrix ⎡
⎢⎢⎢⎢⎣
6 −8 0
6 −8 0

⎤
⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 𝑅1 ⎡
⎢⎢⎢⎢⎣
6 −8 0
0 0 0

⎤
⎥⎥⎥⎥⎦

Therefore (1) becomes
⎡
⎢⎢⎢⎢⎣
6 −8
0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦ (1A)

𝑣2 is free variable. Let 𝑣2 = 1. Then from first row 6𝑣1 − 8 = 0 or 𝑣1 =
8
6 . Hence

𝑣⃗1 =
⎡
⎢⎢⎢⎢⎣
8
6
1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
8
6

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
4
3

⎤
⎥⎥⎥⎥⎦

𝜆1 = 2

We nee to solve 𝐴𝑣⃗ = 𝜆𝑣⃗. This becomes (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗. Therefore
⎡
⎢⎢⎢⎢⎣
10 − 2 −8
6 −4 − 2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
8 −8
6 −6

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦ (1)

Augmented matrix ⎡
⎢⎢⎢⎢⎣
8 −8 0
6 −6 0

⎤
⎥⎥⎥⎥⎦

112



2.7. HW 7 CHAPTER 2. HWS

𝑅2 → 𝑅2 −
6
8𝑅1 ⎡

⎢⎢⎢⎢⎣
8 −8 0
0 0 0

⎤
⎥⎥⎥⎥⎦

Therefore (1) becomes
⎡
⎢⎢⎢⎢⎣
8 −8
0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦ (1A)

𝑣2 is free variable. Let 𝑣2 = 1. Then from first row 8𝑣1 − 8 = 0 or 𝑣1 = 1. Hence

𝑣⃗2 =
⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦

This table gives summary of the result

eigenvalue 𝜆 associated eigenvector 𝑣⃗

4
⎡
⎢⎢⎢⎢⎣
4
3

⎤
⎥⎥⎥⎥⎦

2
⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦

2.7.8 Problem 17 section 6.1

In Problems 1 through 26, find the (real) eigenvalues and associated eigenvectors of the
given matrix 𝐴. Find a basis for each eigenspace of dimension 2 or larger.

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 5 −2
0 2 0
0 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

We first need to find the eigenvalues. These are found by solving |𝐴 − 𝜆𝐼| = 0. Hence

�

�

3 − 𝜆 5 −2
0 2 − 𝜆 0
0 2 1 − 𝜆

�

�
= 0

Expanding along the first columns.

(3 − 𝜆)�
2 − 𝜆 0
2 1 − 𝜆

� = 0

(3 − 𝜆)(2 − 𝜆)(1 − 𝜆) = 0

Hence roots (eigenvalues) are 𝜆1 = 3, 𝜆2 = 2, 𝜆3 = 1. For each eigenvalue we find its
associated eigenvectors.

𝜆1 = 3

We nee to solve 𝐴𝑣⃗ = 𝜆𝑣⃗. This becomes (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗. Therefore
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 − 3 5 −2
0 2 − 3 0
0 2 1 − 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 5 −2
0 −1 0
0 2 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)
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𝑅3 → 𝑅2 + 2𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 5 −2
0 −1 0
0 0 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Free variable is 𝑣1. Let 𝑣1 = 1. Last row gives 𝑣3 = 0. Second row gives 𝑣2 = 0. Hence the
eigenvector is

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜆1 = 2

We nee to solve 𝐴𝑣⃗ = 𝜆𝑣⃗. This becomes (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗. Therefore
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 − 2 5 −2
0 2 − 2 0
0 2 1 − 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 −2
0 0 0
0 2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

Swap 𝑅2, 𝑅3 (for clarify only) ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 −2
0 2 −1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Free variable is 𝑣3. Let 𝑣3 = 1. From second row 2𝑣2 − 𝑣3 = 0. Hence 𝑣2 =
1
2 . First row gives

𝑣1 + 5𝑣2 − 2𝑣3 = 0. Hence 𝑣1 = −5�
1
2
� + 2 = −1

2 . Hence the eigenvector is

𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
1
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜆1 = 1

We nee to solve 𝐴𝑣⃗ = 𝜆𝑣⃗. This becomes (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗. Therefore
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 − 1 5 −2
0 2 − 1 0
0 2 1 − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 5 −2
0 1 0
0 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

𝑅3 → 𝑅3 − 2𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 5 −2
0 1 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Free variable is 𝑣3. Let 𝑣3 = 1. From second row 𝑣2 = 0. First row gives 2𝑣1 = 2𝑣3. Hence
𝑣1 = 1. Hence the eigenvector is

𝑣⃗3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

This table gives summary of the result
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eigenvalue 𝜆 associated eigenvector 𝑣⃗

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.7.9 Problem 21 section 6.1

In Problems 1 through 26, find the (real) eigenvalues and associated eigenvectors of the
given matrix 𝐴. Find a basis for each eigenspace of dimension 2 or larger.

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −3 1
2 −1 1
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

We first need to find the eigenvalues. These are found by solving |𝐴 − 𝜆𝐼| = 0. Hence

�

�

4 − 𝜆 −3 1
2 −1 − 𝜆 1
0 0 2 − 𝜆

�

�
= 0

Expanding along the last row

(−1)3+3(2 − 𝜆)�
4 − 𝜆 −3
2 −1 − 𝜆

� = 0

(2 − 𝜆)((4 − 𝜆)(−1 − 𝜆) + 6) = 0

(2 − 𝜆)�𝜆2 − 3𝜆 + 2� = 0
(2 − 𝜆)(𝜆 − 2)(𝜆 − 1) = 0

Hence the eigenvalues are 𝜆1 = 2 of algebraic multiplicity 2 and 𝜆2 = 1. For each eigenvalue
we find its associated eigenvectors.

𝜆1 = 2

We nee to solve 𝐴𝑣⃗ = 𝜆𝑣⃗. This becomes (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗. Therefore
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 − 2 −3 1
2 −1 − 2 1
0 0 2 − 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −3 1
2 −3 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

𝑅2 → 𝑅2 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −3 1
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Free variables are 𝑣3.𝑣2. This means this is a complete eigenvalue. Since it has algebraic
multiplicity of 2 and have a geometric multiplicity of 2 as well. This means we can find two
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linearly independent eigenvectors from it. Let 𝑣2 = 𝑠, 𝑣3 = 𝑡. First row gives 2𝑣1 − 3𝑠 + 𝑡 = 0
or 𝑣1 =

3
2𝑠 −

1
2 𝑡. Hence the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
2𝑠 −

1
2 𝑡

𝑠
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
2
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the basis (eigenvectors) are
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
2
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Now that we found the eigenvectors associated with 𝜆1 = 2, we will do the same for second
eigenvalue.

𝜆2 = 1

We nee to solve 𝐴𝑣⃗ = 𝜆𝑣⃗. This becomes (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗. Therefore
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 − 1 −3 1
2 −1 − 1 1
0 0 2 − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −3 1
2 −2 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

𝑅2 → 𝑅2 −
2
3𝑅1 ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −3 1
0 0 −2

3
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅3 +
3
2𝑅2 ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −3 1
0 0 −2

3
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Free variable is 𝑣2, leading variables are 𝑣1, 𝑣3. Let 𝑣2 = 1. From second row, 𝑣3 = 0.First
row gives 3𝑣1 = 3. Hence 𝑣1 = 1. Hence the eigenvector is

𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

This table gives summary of the result

eigenvalue 𝜆 associated eigenvector 𝑣⃗

2 (multiplicity 2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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2.7.10 Problem 25 section 6.1

In Problems 1 through 26, find the (real) eigenvalues and associated eigenvectors of the
given matrix 𝐴. Find a basis for each eigenspace of dimension 2 or larger.

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

We first need to find the eigenvalues. These are found by solving |𝐴 − 𝜆𝐼| = 0. Hence

�
�
�

1 − 𝜆 0 1 0
0 1 − 𝜆 1 0
0 0 2 − 𝜆 0
0 0 0 2 − 𝜆

�
�
�
= 0

Since this is an upper triangle matrix, then the determinant is the product of the diagonal.
Hence the above reduces to

(1 − 𝜆)2(2 − 𝜆)2 = 0
Therefore the eigenvalues are 𝜆1 = 1 of algebraic multiplicity 2 and 𝜆2 = 2 also of algebraic
multiplicity 2. For each eigenvalue we find its associated eigenvectors.

𝜆1 = 1

We nee to solve 𝐴𝑣⃗ = 𝜆𝑣⃗. This becomes (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗. Therefore
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 1 0 1 0
0 1 − 1 1 0
0 0 2 − 1 0
0 0 0 2 − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Swapping 𝑅3, 𝑅2 (for clarify) ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 1 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Swapping 𝑅4, 𝑅2 (for clarify) ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Hence leading variables are 𝑣3, 𝑣4 free variables are 𝑣1, 𝑣2. Let 𝑣1 = 𝑠, 𝑣2 = 𝑡. Second row
gives 𝑣4 = 0. First row gives 𝑣3 = 0. Therefore the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠
𝑡
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the two eigenvectors associated with this eigenvalues are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

𝜆2 = 2

We nee to solve 𝐴𝑣⃗ = 𝜆𝑣⃗. This becomes (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗. Therefore
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 2 0 1 0
0 1 − 2 1 0
0 0 2 − 2 0
0 0 0 2 − 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 1 0
0 −1 1 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence leading variables are 𝑣1, 𝑣2 free variables are 𝑣3, 𝑣4 Let 𝑣3 = 𝑠, 𝑣4 = 𝑡. Second row
gives −𝑣2 + 𝑣3 = 0 or 𝑣2 = 𝑠. First row gives −𝑣1 + 𝑠 = 0 or 𝑣1 = 𝑠. Hence the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠
𝑠
𝑠
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the two eigenvectors associated with this eigenvalues are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

This table gives summary of the result

eigenvalue 𝜆 associated eigenvector 𝑣⃗

1 (multiplicity 2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

2 (multiplicity 2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
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2.7.11 Problem 29 section 6.1

Find the complex conjugate eigenvalues and corresponding eigenvectors of the matrices
given in Problems 27 through 32

𝐴 =
⎡
⎢⎢⎢⎢⎣
0 −3
12 0

⎤
⎥⎥⎥⎥⎦

Solution

We first need to find the eigenvalues. These are found by solving |𝐴 − 𝜆𝐼| = 0. Hence

�
−𝜆 −3
12 −𝜆

� = 0

𝜆2 + 36 = 0

Hence 𝜆 = ±6𝑖. For each eigenvalue we find its associated eigenvectors.

𝜆1 = 6𝑖

We nee to solve 𝐴𝑣⃗ = 𝜆𝑣⃗. This becomes (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗. Therefore
⎡
⎢⎢⎢⎢⎣
−6𝑖 −3
12 −6𝑖

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 +
12
6𝑖𝑅1

⎡
⎢⎢⎢⎢⎣
−6𝑖 −3
0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

Leading variable is 𝑣1, free variable is 𝑣2. Let 𝑣2 = 1. From first row −6𝑖𝑣1 − 3𝑣2 = 0 or
𝑣1 = −

3
6𝑖 = −

1
2𝑖 =

1
2 𝑖. Hence the eigenvector is

𝑣⃗1 =
⎡
⎢⎢⎢⎢⎣
1
2 𝑖
1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
𝑖
2

⎤
⎥⎥⎥⎥⎦

𝜆1 = −6𝑖

We nee to solve 𝐴𝑣⃗ = 𝜆𝑣⃗. This becomes (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗. Therefore
⎡
⎢⎢⎢⎢⎣
+6𝑖 −3
12 +6𝑖

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 −
12
6𝑖𝑅1

⎡
⎢⎢⎢⎢⎣
6𝑖 −3
0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

Leading variable is 𝑣1, free variable is 𝑣2. Let 𝑣2 = 1. From first row 6𝑖𝑣1−3𝑣2 = 0 or 𝑣1 =
3
6𝑖 =

1
2𝑖 = −

1
2 𝑖. Hence the eigenvector is

𝑣⃗1 =
⎡
⎢⎢⎢⎢⎣
−1
2 𝑖
1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
−𝑖
2

⎤
⎥⎥⎥⎥⎦

This table gives summary of the result

eigenvalue 𝜆 associated eigenvector 𝑣⃗

6𝑖
⎡
⎢⎢⎢⎢⎣
𝑖
2

⎤
⎥⎥⎥⎥⎦

−6𝑖
⎡
⎢⎢⎢⎢⎣
−𝑖
2

⎤
⎥⎥⎥⎥⎦
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2.7.12 Additional problem 1

Find particular solution to

𝑦(7)(𝑥) − 2𝑦(6) + 9𝑦(5) − 16𝑦(4) + 24𝑦(3) − 32𝑦′′ + 16𝑦′ = 𝑒2𝑥 + 𝑥 sin 𝑥 + 𝑥2 (1)

Solution

From HW6, we found 𝑦ℎ as

𝑦(𝑥) = 𝑐1 + (𝑐2𝑒𝑥 + 𝑐3𝑥𝑒𝑥) + (𝑐4 cos 2𝑥 + 𝑐5 sin 2𝑥) + 𝑥(𝑐6 cos 2𝑥 + 𝑐7 sin 2𝑥)

Therefore, we see the basis functions for 𝑦ℎ are

{1, 𝑒𝑥, 𝑥𝑒𝑥, cos 2𝑥, sin 2𝑥, 𝑥 cos 2𝑥, 𝑥 sin 2𝑥} (2)

Looking at RHS of (1), we see the basis functions for 𝑦𝑝 are

�𝑒2𝑥, 𝑥2, 𝑥 sin 𝑥�

Taking derivative 𝑒2𝑥 does not generate new basis. Taking derivative of 𝑥2 generates 𝑥, 1.
And taking derivative of 𝑥 sin 𝑥 generates sin 𝑥, 𝑥 cos 𝑥, cos 𝑥. Hence the above becomes

�𝑒2𝑥, �𝑥2, 𝑥, 1�, (𝑥 sin 𝑥, sin 𝑥, 𝑥 cos 𝑥, cos 𝑥)� (3)

There are 3 groups. Comparing (2,3) we see there is one duplication, which is the constant
term. Hence we need to multiply that one group by 𝑥. The above becomes

�𝑒2𝑥, 𝑥�𝑥2, 𝑥, 1�, (𝑥 sin 𝑥, sin 𝑥, 𝑥 cos 𝑥)� = �𝑒2𝑥, �𝑥3, 𝑥2, 𝑥�, (𝑥 sin 𝑥, sin 𝑥, 𝑥 cos 𝑥, cos 𝑥)� (3A)

Now we again compare (3A) and (2). Now there is no duplication. Therefore the particular
solution is

𝑦𝑝 = 𝐴1𝑒2𝑥 + 𝐴2�𝑥3� + 𝐴3�𝑥2� + 𝐴4(𝑥) + 𝐴5(𝑥 sin 𝑥) + 𝐴6(sin 𝑥) + 𝐴7(𝑥 cos 𝑥) + 𝐴8 cos 𝑥

2.7.13 Additional problem 2

Let 𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡1 0 0
0 𝑡2 0
0 0 𝑡3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
where 𝑡1, 𝑡2, 𝑡3 are distinct real numbers. Find the eigenvalues of 𝐴 and

the corresponding eigenvectors.

Solution

We first need to find the eigenvalues. These are found by solving |𝐴 − 𝜆𝐼| = 0. Hence

�

�

𝑡1 − 𝜆 0 0
0 𝑡2 − 𝜆 0
0 0 𝑡3 − 𝜆

�

�
= 0

Since this is a diagonal matrix, then the determinant is the product of the diagonal. Hence
the above reduces to

(𝑡1 − 𝜆)(𝑡2 − 𝜆)(𝑡3 − 𝜆) = 0

Hence the eigenvalues are 𝜆1 = 𝑡1, 𝜆2 = 𝑡2, 𝜆3 = 𝑡3. For each eigenvalue we find its associated
eigenvectors.

𝜆1 = 𝑡1

We nee to solve 𝐴𝑣⃗ = 𝜆𝑣⃗. This becomes (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗. Therefore
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡1 − 𝑡1 0 0
0 𝑡2 − 𝑡1 0
0 0 𝑡3 − 𝑡1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 𝑡2 − 𝑡1 0
0 0 𝑡3 − 𝑡1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Leading variables are 𝑣2, 𝑣3 and free variables is 𝑣1. Let 𝑣1 = 𝑠. Second and third rows give
𝑣2 = 0, 𝑣3 = 0, this is because 𝑡1, 𝑡2, 𝑡3 are distinct real numbers therefore 𝑡2−𝑡1 ≠ 0, 𝑡3−𝑡1 ≠ 0.
Therefore the solution is

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

For 𝑠 = 1 this gives the eigenvector

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜆2 = 𝑡2

We nee to solve 𝐴𝑣⃗ = 𝜆𝑣⃗. This becomes (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗. Therefore
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡1 − 𝑡2 0 0
0 𝑡2 − 𝑡2 0
0 0 𝑡3 − 𝑡2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡1 − 𝑡2 0 0
0 0 0
0 0 𝑡3 − 𝑡2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Leading variables are 𝑣1, 𝑣3 and free variable is 𝑣2. Let 𝑣2 = 𝑠. First and third rows give
𝑣1 = 0, 𝑣3 = 0, this is because 𝑡1, 𝑡2, 𝑡3 are distinct real numbers therefore 𝑡1−𝑡2 ≠ 0, 𝑡3−𝑡2 ≠ 0.
Therefore the solution is

𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
𝑠
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

For 𝑠 = 1 this gives the eigenvector

𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜆3 = 𝑡3

We nee to solve 𝐴𝑣⃗ = 𝜆𝑣⃗. This becomes (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗. Therefore
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡1 − 𝑡3 0 0
0 𝑡2 − 𝑡3 0
0 0 𝑡3 − 𝑡3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡1 − 𝑡3 0 0
0 𝑡2 − 𝑡3 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Leading variables are 𝑣1, 𝑣2 and free variable is 𝑣3. Let 𝑣3 = 𝑠. First and third rows give
𝑣1 = 0, 𝑣2 = 0, this is because 𝑡1, 𝑡2, 𝑡3 are distinct real numbers therefore 𝑡1−𝑡3 ≠ 0, 𝑡2−𝑡3 ≠ 0.
Therefore the solution is

𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
𝑠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

For 𝑠 = 1 this gives the eigenvector

𝑣⃗3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

This table gives summary of the result
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eigenvalue 𝜆 associated eigenvector 𝑣⃗

𝑡1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑡2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑡2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.7.14 Additional optional problem 3

Extend the result in problem 2 to the case of 𝑛×𝑛 matrices. That is, let 𝐴 be a matrix with
entries 𝑡1, 𝑡2,⋯ , 𝑡𝑛 on the main diagonal and 0s everywhere else, where the 𝑡𝑖 are distinct
real numbers. Find the eigenvalues and corresponding eigenvectors.

Solution

This follows immediately from the last problem. Therefore each eigenvalue will be 𝜆1 =
𝑡1, 𝜆2 = 𝑡2,⋯ , 𝜆𝑛 = 𝑡𝑛. And corresponding eigenvectors are (each eigenvector is 𝑛 × 1.

𝑣1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
⋮
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
⋮
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,⋯ , 𝑣𝑛 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
⋮
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

These eigenvectors are the standard basis for ℝ𝑛.
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2.7.15 key solution for HW 7

Homework 7 – Solutions

These solutions demonstrate one way to approach each of the homework problems. In many
cases, there are other correct solutions. If you would like to discuss alternative solutions or
the grading of your assignment, please see me during office hours or send me an email.

Textbook Problems:

5.5.3 We have characteristic equation r2 − r − 6 = (r − 3)(r + 2). So the complementary
solution is yc = c1e

3x + c2e
−2x.

We have term sin 3x with derivative cos 3x and no repetition. So we set yp = A sin 3x+
B cos 3x. We compute

y′′p − y′ − 6y = (−9A sin 3x− 9B cos 3x)− (3A cos 3x− 3B sin 3x)− 6(A sin 3x+B cos 3x)

= (−3A− 15B) cos 3x+ (−15A+ 3B) sin 3x

We now have the equations −3A − 15B = 0 and −15A + 3B = 2 which solve to
A = −5/39, B = 1/39. So the particular solution is yp = −5

39
sin 3x+ 1

39
cos 3x.

5.5.9 We have characteristic equation r2 + 2r − 3 = (r − 1)(r + 3). So the complementary
solution is yc = c1e

x + c2e
−3x.

We have term 1 with no derivatives and term xex with derivative ex. We have repetition
so we bump to x2ex, xex So we set yp = A+Bxex + Cx2ex. We compute

y′′p + 2y′p − 3yp = ((2B + 2C)ex + (B + 4C)xex + Cx2ex)

+ 2(Bex + (B + 2C)xex + Cx2ex)

− 3(A+Bxex + Cx2ex)

= −3A+ (4B + 2C)ex + (8C)xex + (0)x2ex

We now have the equations −3A = 1, 4B + 2C = 0, and 8C = 1 which solve to
A = −1/3, B = −1/16, C = 1/8. So our particular solution is yp = −1

3
− 1

16
xex + 1

8
x2ex.

5.5.11 We have characteristic equation r3 + 4r = r(r2 + 4) with roots 0,±2i. So our comple-
mentary solution is yc = c1 + c2 cos 2x+ c3 sin 2x.

We have terms x, 1 with duplication, so we bump to x2, x. So we set yp = Ax + Bx2.
We compute

y(3)p + 4y′p = (0) + 4(A+ 2Bx)

= 4A+ 8Bx

We have equations 4A = −1 and 8B = 3 which solve to A = −1/4, B = 3/8. So the
particular solution is yp = −1

4
x+ 3

8
x2.

1
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5.5.23 We have characteristic equation r2 + 4 with roots ±2i, so the complementary solution
is yc = c1 cos 2x+ c2 sin 2x.

We have term x cos 2x with derivatives x sin 2x, sin 2x, cos 2x. We have duplication, so
we bump up to x2 sin 2x, x2 cos 2x, x sin 2x, x cos 2x. This gives us a particular solution
of the form

yp = Ax cos 2x+Bx sin 2x+ Cx2 cos 2x+Dx2 sin 2x

5.5.32 We have characteristic equation r2 +3r+2 = (r+2)(r+1), so we have complementary
solution yc = c1e

−2x + c2e
−x.

We have term ex and no repetition, so we set yp = Aex. We compute

y′′p + 3y′p + 2yp = Aex + 3Aex + 2Aex

= 6Aex

So we have the equation 6A = 1 and thus our particular solution is yp = 1
6
ex.

The form of a general solution is now y = yc + yp = c1e
−2x + c2e

−x + 1
6
ex. The initial

conditions give us the following:

y(0) = c1e
0 + c2e

0 +
1

6
e0

0 = c1 + c2 +
1

6

y′(x) = −2c1e
−2x − c2e−x +

1

6
ex

y′(0) = −2c1e
0 − c2e0 +

1

6
e0

3 = −2c1 − c2 +
1

6

So we have equations c1 + c2 = −1
6

and −2c1− c2 = 17
6

. This system solves to c1 = −8
3

and c2 = 5
2
. So, our solution in this case is y(x) = −8

3
e−2x + 5

2
e−x + 1

6
ex.

6.1.7 First, we compute the characteristic polynomial:

det(A− λI) = det

[
10− λ −8

6 −4− λ

]
= (10− λ)(−4− λ) + 48

= λ2 − 6λ+ 8

= (λ− 4)(λ− 2)

The eigenvalues are λ1 = 4, λ2 = 2.

For λ1 = 4, we have the matrix

[
6 −8
6 −8

]
which reduces to

[
3 −4
0 0

]
. This is a dimension

1 eigenspace with eigenvector ~v1 = (4, 3).

2
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For λ2 = 2, we have the matrix

[
8 −8
6 −6

]
which reduces to

[
1 −1
0 0

]
. This is a dimension

1 eigenspace with eigenvector ~v2 = (1, 1).

6.1.17 First, we compute the characteristic polynomial:

det(A− λI) = det

3− λ 5 −2
0 2− λ 0
0 2 1− λ


= (3− λ) det

[
2− λ 0

2 1− λ

]
= (3− λ)(2− λ)(1− λ)

The eigenvalues are λ1 = 3, λ2 = 2, λ3 = 1.

For λ1 = 3, we have the matrix

0 5 −2
0 −1 0
0 2 −2

 which reduces to

0 1 0
0 0 1
0 0 0

. This is a

dimension 1 eigenspace with eigenvector ~v1 = (1, 0, 0).

For λ2 = 2, we have the matrix

1 5 −2
0 0 0
0 2 −1

 which reduces to

1 1 0
0 2 −1
0 0 0

. This is a

dimension 1 eigenspace with eigenvector ~v2 = (−1, 1, 2).

For λ3 = 1, we have the matrix

2 5 −2
0 1 0
0 2 0

 which reduces to

1 0 −1
0 1 0
0 0 0

. This is a

dimension 1 eigenspace with eigenvector ~v3 = (1, 0, 1).

6.1.21 First, we compute the characteristic polynomial:

det(A− λI) = det

4− λ −3 1
2 −1− λ 1
0 0 2− λ


= (2− λ) det

[
4− λ −3

2 −1− λ

]
= (2− λ) [(4− λ)(−1− λ) + 6]

= (2− λ)
[
λ2 − 3λ+ 2

]
= (2− λ)(λ− 2)(λ− 1)

The eigenvalues are λ1 = 1, λ2 = 2 with λ2 occuring with multiplicity 2.

For λ1 = 1, we have the matrix

3 −3 1
2 −2 1
0 0 1

 which reduces to

1 −1 0
0 0 1
0 0 0

. This is a

1-dimensional eigenspace with eigenvector ~v1 = (1, 1, 0).

3
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For λ2 = 2, we have the matrix

2 −3 1
2 −3 1
0 0 0

 which reduces to

2 −3 1
0 0 0
0 0 0

. This is a

2-dimensional eigenspace with basis vectors ~v2 = (1, 0,−2) and ~v3 = (3, 2, 0).

6.1.25 We compute the characteristic polynomial:

det(A− λI) = det


1− λ 0 1 0

0 1− λ 1 0
0 0 2− λ 0
0 0 0 2− λ


= (1− λ)2(2− λ)2

Here we are using that the determinant of an upper triangular matrix is the product
of the diagonal entries, but you can also see this by successively expanding along the
first column. The eigenvalues are λ1 = 1 and λ2 = 2, each of multiplicity 2.

For λ1 = 1, we have the matrix


0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1

 which reduces to


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 We have

a dimension 2 eigenspace with basis vectors (1, 0, 0, 0) and (0, 1, 0, 0).

For λ2 = 2, we have the matrix


−1 0 1 0
0 −1 1 0
0 0 0 0
0 0 0 0

 which is already sufficiently reduced.

This gives a dimension 2 eigenspace with basis vectors (0, 0, 0, 1) and (1, 1, 1, 0).

6.1.29 We compute the characteristic polynomial:

det(A− λI) = det

[
−λ −3
12 −λ

]
= λ2 + 36

The eigenvalues are ±6i.

For λ1 = 6i, we have matrix

[
−6i −3
12 −6i

]
. We row reduce this matrix:[

−6i −3
12 −6i

]
−2iR1+R2−−−−−−→

[
−6i −3

0 0

]
− 1

3
R1−−−→
[
2i 1
0 0

]
We have a dimension 1 eigenspace containing the eigenvector ~v1 = (−1, 2i).

For the conjugate eigenvalue λ2 = −6i, we have the conjugate eigenvector ~v2 =
(−1,−2i).

4
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Additional Problems:

1. On homework 6, we found the general solution to the homogeneous equation, so we have
the complementary solution in this case:

yc(x) = c1 + c2e
x + c3xe

x + c4 cos(2x) + c5 sin(2x) + c6x cos(2x) + c7x sin(2x)

The term e2x is not duplicated. The term x sinx has derivatives x cosx, sinx, cosx and
there is no duplication. The term x2 has derivatives x, 1 and there is duplication. It is
enough to bump up by a factor of x, so we get new terms x3, x2, x. So, the form of our
particular solution is

yp = Ae2x +Bx sinx+ Cx cosx+D sinx+ E cosx+ Fx3 +Gx2 +Hx

2. We compute the characteristic polynomial:

det(A− λI) = det

t1 − λ 0 0
0 t2 − λ 0
0 0 t3 − λ


= (t1 − λ)(t2 − λ)(t3 − λ)

The computation of determinants like this was done in Additional Problem 4 of Homework
2. This has three distinct roots, t1, t2, t3.

For λ = t1, A − λI is

0 0 0
0 t2 − t1 0
0 0 t3 − t1

. Notice that since t1, t2, t3 are all distinct,

t2 − t1 6= 0 and t3 − t1 6= 0 so we only have a free variable in the first column. A solution
to this system is ~v1 = (1, 0, 0), so this is an eigenvector corresponding to t1.

For λ = t2, A− λI is

t1 − t2 0 0
0 0 0
0 0 t3 − t2

. A solution to this system is ~v2 = (0, 1, 0), so

this is an eigenvector corresponding to t2.

For λ = t3, A− λI is

t1 − t3 0 0
0 t2 − t3 0
0 0 0

. A solution to this system is ~v3 = (0, 0, 1), so

this is an eigenvector corresponding to t3.

3. Perhaps not surprisingly, the characteristic polynomial is

(t1 − λ)(t2 − λ) · · · (tn − λ) =
n∏

i=1

(ti − λ)

So each ti is an eigenvalue.

If we set λ = ti, A− λI has a 0 in the i-th diagonal element. A solution vector is ~ei, the
standard basis vector with 1 in the i-th position and 0 elsewhere.

5
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2.8 HW 8
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2.8.1 Problems listing

Homework 8 - Due November 5

Homework instructions: Complete the assigned problems on your own paper. Once you
are finished, scan or photograph your work and upload it to Gradescope. When prompted,
tell Gradescope where to find each problem.
You are allowed (and in fact encouraged) to work with other students on homework assign-
ments. If you do that, please indicate on each problem who you worked with. If you use
sources other than your notes, the textbook, and any resources on Canvas for your home-
work, you must indicate the source on each problem. You are not permitted to view, request,
or look for solutions to any of the homework problems from solutions manuals, homework
help websites, online forums, other students, or any other sources.

Textbook Problems:

• §6.2: 7, 15, 19

• §6.3: 7, 13, 25

Additional Problems:

1. For n × n matrices A and B, we say that A is similar to B if there is an invertible
matrix P so that A = PBP−1. So, in order to show that A is similar to B, you need to
(1) say what the matrix P is in that case (2) check that your choice of P is invertible and
(3) explain why the equation A = PBP−1 is true.

(a) Let A be any n× n matrix. Show that A is similar to itself.

(b) Let A,B be n× n matrices. Suppose that A is similar to B. Show that B is similar
to A.

(c) Let A,B,C be n× n matrices. Suppose that A is similar to B and that B is similar
to C. Show that A is similar to C.

Cultural Aside: A matrix is diagonalizable if it is similar to a diagonal matrix. For
a matrix that isn’t diagonalizable, it may still be useful to find a nice matrix that it is
similar to (even if we can’t get to something quite as nice as a diagonal matrix). If you are
interested in these not-quite-diagonal nice matrices, you should look up “Jordan normal
form.”

Further Cultural Aside: These three properties are called (a) reflexivity, (b) symmetry,
and (c) transitivity. A relation like “is similar to” that satisfies all three properties is
called an equivalence relation. Equivalence relations behave a lot like “is equal to” and
are nearly as useful in mathematics. In fact, we have already seen another example of an
equivalence relation in this class: “is row equivalent to”.

2. The Fibonacci sequence begins as

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 . . .

1
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It can be defined recursively by f0 = 0 and f1 = 1 and fn+1 = fn+fn−1. That is, we begin
the sequence with 1, 1 and then each successive term is the sum of the two previous terms.
(This sequence is usually interpreted as the number of pairs of rabbits in a population.)

Notice that we can write[
fn+1

fn

]
=

[
fn + fn−1

fn

]
=

[
1 1
1 0

] [
fn
fn−1

]

Giving some labels to things, let ~xn =

[
fn+1

fn

]
and let A =

[
1 1
1 0

]
. Then we have

~xn = A~xn−1. So, ~xn = An~x0 where ~x0 =

[
f1
f0

]
=

[
1
0

]
.

(a) Find the eigenvalues and corresponding eigenvectors of A. (I recommend using the
quadratic formula to find the roots of the characteristic polynomial.)

(b) Find a diagonalization A = PDP−1 of A. Use this write down a formula for An.

(c) Use the fact that ~xn = An~x0 to write down a formula for fn.

Hint: It may be useful to denote the number 1+
√
5

2
≈ 1.61803 by ϕ. This number is called

the golden ratio and satisfies

1−
√

5

2
= − 1

ϕ
= 1− ϕ ≈ −0.61803

2
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2.8.2 Problem 7, section 6.2

In Problems 1 through 28, determine whether or not the given matrix 𝐴 is diagonalizable.
If it is, find a diagonalizing matrix 𝑃 and a diagonal matrix 𝐷 such that 𝑃−1𝐴𝑃 = 𝐷

⎡
⎢⎢⎢⎢⎣
6 −10
2 −3

⎤
⎥⎥⎥⎥⎦

solution The first step is to determine the characteristic polynomial of the matrix in order
to find the eigenvalues of the matrix 𝐴. This is given by

det(𝐴 − 𝜆𝐼) = 0

det

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
6 −10
2 −3

⎤
⎥⎥⎥⎥⎦ − 𝜆

⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ = 0

det

⎡
⎢⎢⎢⎢⎣
6 − 𝜆 −10
2 −3 − 𝜆

⎤
⎥⎥⎥⎥⎦ = 0

(6 − 𝜆)(−3 − 𝜆) + 20 = 0
𝜆2 − 3𝜆 + 2 = 0

(𝜆 − 2)(𝜆 − 1) = 0

The eigenvalues are the roots of the above characteristic polynomial. From the above, these
are

𝜆1 = 2
𝜆2 = 1

This table summarizes the result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

For each eigenvalue 𝜆 found above, we now find the corresponding eigenvector.

𝜆 = 1

We need now to determine the eigenvector 𝑣⃗ where

𝐴𝑣⃗ = 𝜆𝑣⃗

𝐴𝑣⃗ − 𝜆𝑣⃗ = 0⃗

(𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗
⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
6 −10
2 −3

⎤
⎥⎥⎥⎥⎦ − (1)

⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
6 −10
2 −3

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
5 −10
2 −4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented
matrix is ⎡

⎢⎢⎢⎢⎣
5 −10 0
2 −4 0

⎤
⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 −
2𝑅1
5

⟹
⎡
⎢⎢⎢⎢⎣
5 −10 0
0 0 0

⎤
⎥⎥⎥⎥⎦

Therefore the system in Echelon form is
⎡
⎢⎢⎢⎢⎣
5 −10
0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦
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The free variables are {𝑣2} and the leading variables are {𝑣1}. Let 𝑣2 = 𝑡. Now we start back
substitution. Solving the above equation for the leading variables in terms of free variables.
First row gives 5𝑣1 = 10𝑡 or 𝑣1 = 2𝑡. Hence the eigenvector for this eigenvalue is

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
2𝑡
𝑡

⎤
⎥⎥⎥⎥⎦

Since there is one free Variable, we have found one eigenvector associated with this eigen-
value. The above can be written as

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ = 𝑡

⎡
⎢⎢⎢⎢⎣
2
1

⎤
⎥⎥⎥⎥⎦

Or, by letting 𝑡 = 1 then the eigenvector is
⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
2
1

⎤
⎥⎥⎥⎥⎦

𝜆 = 2

We need now to determine the eigenvector 𝑣⃗ where

𝐴𝑣⃗ = 𝜆𝑣⃗

𝐴𝑣⃗ − 𝜆𝑣⃗ = 0⃗

(𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗
⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
6 −10
2 −3

⎤
⎥⎥⎥⎥⎦ − (2)

⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
6 −10
2 −3

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣
2 0
0 2

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
4 −10
2 −5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented
matrix is ⎡

⎢⎢⎢⎢⎣
4 −10 0
2 −5 0

⎤
⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 −
𝑅1
2
⟹

⎡
⎢⎢⎢⎢⎣
4 −10 0
0 0 0

⎤
⎥⎥⎥⎥⎦

Therefore the system in Echelon form is
⎡
⎢⎢⎢⎢⎣
4 −10
0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

The free variables are {𝑣2} and the leading variables are {𝑣1}. Let 𝑣2 = 𝑡. Now we start back
substitution. Solving the above equation for the leading variables in terms of free variables.
First row gives 4𝑣1 = 10𝑣2 or 𝑣1 =

5𝑡
2 . Hence the solution is

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

5𝑡
2
𝑡

⎤
⎥⎥⎥⎥⎦

Since there is one free Variable, we have found one eigenvector associated with this eigen-
value. The above can be written as

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ = 𝑡

⎡
⎢⎢⎢⎢⎣

5
2
1

⎤
⎥⎥⎥⎥⎦

Or, by letting 𝑡 = 1 then the eigenvector is
⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

5
2
1

⎤
⎥⎥⎥⎥⎦
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Which can be normalized to ⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
5
2

⎤
⎥⎥⎥⎥⎦

The following table summarizes the result found above.

𝜆 algebraic geometric defective associated

multiplicity multiplicity eigenvalue? eigenvectors

1 1 1 No

⎡
⎢⎢⎢⎢⎣
2
1

⎤
⎥⎥⎥⎥⎦

2 1 1 No

⎡
⎢⎢⎢⎢⎣
5
2

⎤
⎥⎥⎥⎥⎦

Since the matrix is not defective, then it is diagonalizable. Let 𝑃 the matrix whose columns
are the eigenvectors found, and let 𝐷 be diagonal matrix with the eigenvalues at its diagonal.
Then we can write

𝐴 = 𝑃𝐷𝑃−1

Where

𝐷 =
⎡
⎢⎢⎢⎢⎣
𝜆1 0
0 𝜆2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1 0
0 2

⎤
⎥⎥⎥⎥⎦

𝑃 =
⎡
⎢⎢⎢⎢⎣
2 5
1 2

⎤
⎥⎥⎥⎥⎦

Therefore

𝐴 = 𝑃𝐷𝑃−1
⎡
⎢⎢⎢⎢⎣
6 −10
2 −3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
2 5
1 2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 0
0 2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
2 5
1 2

⎤
⎥⎥⎥⎥⎦

−1

2.8.3 Problem 15 section 6.2

In Problems 1 through 28, determine whether or not the given matrix 𝐴 is diagonalizable.
If it is, find a diagonalizing matrix 𝑃 and a diagonal matrix 𝐷 such that 𝑃−1𝐴𝑃 = 𝐷

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −3 1
2 −2 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

The first step is to determine the characteristic polynomial of the matrix in order to find
the eigenvalues of the matrix 𝐴. This is given by

det(𝐴 − 𝜆𝐼) = 0

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −3 1
2 −2 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 𝜆

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 − 𝜆 −3 1
2 −2 − 𝜆 1
0 0 1 − 𝜆

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

Expanding along last row gives

(−1)3+3(1 − 𝜆)�
3 − 𝜆 −3
2 −2 − 𝜆

� = 0

(1 − 𝜆)((3 − 𝜆)(−2 − 𝜆) + 6) = 0

(1 − 𝜆)�𝜆2 − 𝜆� = 0
(1 − 𝜆)𝜆(𝜆 − 1) = 0
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The eigenvalues are the roots of the above characteristic polynomial. These are seen to be

𝜆1 = 0
𝜆2 = 1
𝜆3 = 1

This table summarizes the result

eigenvalue algebraic multiplicity type of eigenvalue

0 1 real eigenvalue

1 2 real eigenvalue

For each eigenvalue 𝜆 found above, we now find the corresponding eigenvector.

𝜆 = 0

We need now to determine the eigenvector 𝑣⃗ where

𝐴𝑣⃗ = 𝜆𝑣⃗

𝐴𝑣⃗ − 𝜆𝑣⃗ = 0⃗

(𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −3 1
2 −2 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (0)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −3 1
2 −2 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −3 1
2 −2 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented
matrix is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −3 1 0
2 −2 1 0
0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 −
2𝑅1
3

⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −3 1 0
0 0 1

3 0
0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 − 3𝑅2 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −3 1 0
0 0 1

3 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the system in Echelon form is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −3 1
0 0 1

3
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variables are {𝑣2} and the leading variables are {𝑣1, 𝑣3}. Let 𝑣2 = 𝑡. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables. Second row gives 𝑣3 = 0. First row gives 3𝑣1−3𝑣2 = 0 or 𝑣1 = 𝑡. Hence the solution
is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡
𝑡
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Since there is one free Variable, we have found one eigenvector associated with this eigen-
value. The above can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Or, by letting 𝑡 = 1 then the eigenvector is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜆 = 1

We need now to determine the eigenvector 𝑣⃗ where

𝐴𝑣⃗ = 𝜆𝑣⃗

𝐴𝑣⃗ − 𝜆𝑣⃗ = 0⃗

(𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −3 1
2 −2 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −3 1
2 −2 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −3 1
2 −3 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented
matrix is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −3 1 0
2 −3 1 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 − 𝑅1 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −3 1 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the system in Echelon form is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −3 1
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variables are {𝑣2, 𝑣3} and the leading variables are {𝑣1}. Let 𝑣2 = 𝑡. Let 𝑣3 = 𝑠. Now
we start back substitution. Solving the above equation for the leading variables in terms
of free variables. First row gives 2𝑣1 − 3𝑣2 + 𝑣3 = 0 or 𝑣1 =

3𝑡
2 −

𝑠
2 . Hence the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3𝑡
2 −

𝑠
2

𝑡
𝑠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3𝑡
2
𝑡
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 𝑠
2
0
𝑠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
2
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

By letting 𝑡 = 1 and 𝑠 = 1 then the above becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
2
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence the two eigenvectors associated with this eigenvalue are

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
2
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Which can be normalized to ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The following table summarizes the result found above.

𝜆 algebraic geometric defective associated

multiplicity multiplicity eigenvalue? eigenvectors

0 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 2 2 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1
2 0
0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since the matrix is not defective, then it is diagonalizable. Let 𝑃 the matrix whose columns
are the eigenvalues found, and let 𝐷 be diagonal matrix with the eigenvalues at its diagonal.
Then we can write

𝐴 = 𝑃𝐷𝑃−1

Where

𝐷 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑃 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 −1
1 2 0
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −3 1
2 −2 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 −1
1 2 0
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 −1
1 2 0
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1
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2.8.4 Problem 19 section 6.2

In Problems 1 through 28, determine whether or not the given matrix 𝐴 is diagonalizable.
If it is, find a diagonalizing matrix 𝑃 and a diagonal matrix 𝐷 such that 𝑃−1𝐴𝑃 = 𝐷

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1
−2 4 −1
−4 4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

The first step is to determine the characteristic polynomial of the matrix in order to find
the eigenvalues of the matrix 𝐴. This is given by

det(𝐴 − 𝜆𝐼) = 0

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1
−2 4 −1
−4 4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 𝜆

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 𝜆 1 −1
−2 4 − 𝜆 −1
−4 4 1 − 𝜆

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

−𝜆3 + 6𝜆2 − 11𝜆 + 6 = 0

Expanding along first row gives

(1 − 𝜆)�
4 − 𝜆 −1
4 1 − 𝜆

� − �
−2 −1
−4 1 − 𝜆

� − �
−2 4 − 𝜆
−4 4

� = 0

(1 − 𝜆)((4 − 𝜆)(1 − 𝜆) + 4) − (−2(1 − 𝜆) − 4) − (−8 + 4(4 − 𝜆)) = 0
−𝜆3 + 6𝜆2 − 13𝜆 + 8 − (2𝜆 − 6) − (8 − 4𝜆) = 0

−𝜆3 + 6𝜆2 − 11𝜆 + 6 = 0
𝜆3 − 6𝜆2 + 11𝜆 − 6 = 0

Trying 𝜆 = 1

13 − 6 + 11 − 6 = 0
0 = 0

Hence (𝜆 − 1) is a factor. Doing long division 𝜆3−6𝜆2+11𝜆−6
(𝜆−1) = 𝜆2−5𝜆+6. This can be factored

as (𝜆 − 2)(𝜆 − 3). Therefore

𝜆3 − 6𝜆2 + 11𝜆 − 6 = (𝜆 − 1)(𝜆 − 2)(𝜆 − 3)

Hence the eigenvalues are

𝜆1 = 1
𝜆2 = 2
𝜆3 = 3

This table summarizes the result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

2 1 real eigenvalue

3 1 real eigenvalue

For each eigenvalue 𝜆 found above, we now find the corresponding eigenvector.

𝜆 = 1
136



2.8. HW 8 CHAPTER 2. HWS

We need now to determine the eigenvector 𝑣⃗ where

𝐴𝑣⃗ = 𝜆𝑣⃗

𝐴𝑣⃗ − 𝜆𝑣⃗ = 0⃗

(𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1
−2 4 −1
−4 4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1
−2 4 −1
−4 4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 −1
−2 3 −1
−4 4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented
matrix is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 −1 0
−2 3 −1 0
−4 4 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

current pivot 𝐴(1, 1) is zero. Hence we need to replace current pivot row with one non-zero.
Replacing row 1 with row 2 gives

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 3 −1 0
0 1 −1 0
−4 4 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 − 2𝑅1 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 3 −1 0
0 1 −1 0
0 −2 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 + 2𝑅2 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 3 −1 0
0 1 −1 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the system in Echelon form is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 3 −1
0 1 −1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variables are {𝑣3} and the leading variables are {𝑣1, 𝑣2}. Let 𝑣3 = 𝑡. Now we start back
substitution. Solving the above equation for the leading variables in terms of free variables.
Second row gives 𝑣2 = 𝑣3 = 𝑡. First row gives −2𝑣1 + 3𝑣2 − 𝑣3 = 0 or −2𝑣1 = −3𝑡 + 𝑡 = −2𝑡.
Hence 𝑣1 = 𝑡. Therefore the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡
𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since there is one free Variable, we have found one eigenvector associated with this eigen-
value. The above can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Or, by letting 𝑡 = 1 then the eigenvector is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜆 = 2

We need now to determine the eigenvector 𝑣⃗ where

𝐴𝑣⃗ = 𝜆𝑣⃗

𝐴𝑣⃗ − 𝜆𝑣⃗ = 0⃗

(𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1
−2 4 −1
−4 4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1
−2 4 −1
−4 4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0
0 2 0
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −1
−2 2 −1
−4 4 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented
matrix is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −1 0
−2 2 −1 0
−4 4 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 − 2𝑅1 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −1 0
0 0 1 0
−4 4 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 − 4𝑅1 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −1 0
0 0 1 0
0 0 3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 − 3𝑅2 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −1 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the system in Echelon form is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −1
0 0 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variables are {𝑣2} and the leading variables are {𝑣1, 𝑣3}. Let 𝑣2 = 𝑡. Third row gives
𝑣3 = 0. First row gives −𝑣1 + 𝑣2 = 0 or 𝑣1 = 𝑡. Hence the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡
𝑡
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since there is one free Variable, we have found one eigenvector associated with this eigen-
value. The above can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Or, by letting 𝑡 = 1 then the eigenvector is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜆 = 3

We need now to determine the eigenvector 𝑣⃗ where

𝐴𝑣⃗ = 𝜆𝑣⃗

𝐴𝑣⃗ − 𝜆𝑣⃗ = 0⃗

(𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1
−2 4 −1
−4 4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (3)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1
−2 4 −1
−4 4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 0
0 3 0
0 0 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 −1
−2 1 −1
−4 4 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented
matrix is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 −1 0
−2 1 −1 0
−4 4 −2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 − 𝑅1 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 −1 0
0 0 0 0
−4 4 −2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 − 2𝑅1 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 −1 0
0 0 0 0
0 2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

current pivot 𝐴(2, 2) is zero. Hence we need to replace current pivot row with one non-zero.
Replacing row 2 with row 3 gives

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 −1 0
0 2 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the system in Echelon form is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 −1
0 2 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variables are {𝑣3} and the leading variables are {𝑣1, 𝑣2}. Let 𝑣3 = 𝑡. Now we start
back substitution. Solving the above equation for the leading variables in terms of free
variables. Second row gives 𝑣2 = 0. First row gives −2𝑣1 = 𝑣3 = 𝑡. Hence 𝑣1 = −

𝑡
2 . Therefore

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 𝑡
2
0
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Since there is one free Variable, we have found one eigenvector associated with this eigen-
value. The above can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Or, by letting 𝑡 = 1 then the eigenvector is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Which can be normalized to ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The following table summarizes the result found above.

𝜆 algebraic geometric defective associated

multiplicity multiplicity eigenvalue? eigenvectors

1 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

2 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

3 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since the matrix is not defective, then it is diagonalizable. Let 𝑃 the matrix whose columns
are the eigenvectors found, and let 𝐷 be diagonal matrix with the eigenvalues at its diagonal.
Then we can write

𝐴 = 𝑃𝐷𝑃−1

Where

𝐷 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 2 0
0 0 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑃 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1
1 1 0
1 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1
−2 4 −1
−4 4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1
1 1 0
1 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 2 0
0 0 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1
1 1 0
1 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

2.8.5 Problem 7 section 6.3

In Problems 1 through 10, a matrix 𝐴 is given. Use the method of Example 1 to compute
𝐴5. ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 2 0
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Solution

If 𝐴 is diagonalizable, then by first writing 𝐴 = 𝑃𝐷𝑃−1 then 𝐴5 = 𝑃𝐷5𝑃−1. And since 𝐷 is
diagonal matrix, it is easy to raise it to power. So the first step is to diagonalize 𝐴 as we
did in the above problems.

The first step is to determine the characteristic polynomial of the matrix in order to find
the eigenvalues of the matrix 𝐴. This is given by

det(𝐴 − 𝜆𝐼) = 0

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 2 0
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 𝜆

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 𝜆 3 0
0 2 − 𝜆 0
0 0 2 − 𝜆

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

Expansion along the first column gives

(1 − 𝜆)�
2 − 𝜆 0
0 2 − 𝜆

� = 0

(1 − 𝜆)(2 − 𝜆)(2 − 𝜆) = 0

Therefore the eigenvalues are

𝜆1 = 1
𝜆2 = 2
𝜆3 = 2

This table summarizes the result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue

2 2 real eigenvalue

For each eigenvalue 𝜆 found above, we now find the corresponding eigenvector.

𝜆 = 1

We need now to determine the eigenvector 𝑣⃗ where

𝐴𝑣⃗ = 𝜆𝑣⃗

𝐴𝑣⃗ − 𝜆𝑣⃗ = 0⃗

(𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 2 0
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 2 0
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 3 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented
matrix is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 3 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅2 = 𝑅2 −
𝑅1
3
⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 3 0 0
0 0 0 0
0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

current pivot 𝐴(2, 3) is zero. Hence we need to replace current pivot row with one non-zero.
Replacing row 2 with row 3 gives ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 3 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the system in Echelon form is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 3 0
0 0 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variables are {𝑣1} and the leading variables are {𝑣2, 𝑣3}. Let 𝑣1 = 𝑡. Now we start
back substitution. Second row gives 𝑣3 = 0. First row also gives 𝑣2 = 0. Hence the solution
is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since there is one free Variable, we have found one eigenvector associated with this eigen-
value. The above can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Or, by letting 𝑡 = 1 then the eigenvector is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜆 = 2

We need now to determine the eigenvector 𝑣⃗ where

𝐴𝑣⃗ = 𝜆𝑣⃗

𝐴𝑣⃗ − 𝜆𝑣⃗ = 0⃗

(𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 2 0
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 2 0
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0
0 2 0
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 3 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented
matrix is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 3 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Therefore the system in Echelon form is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 3 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variables are {𝑣2, 𝑣3} and the leading variables are {𝑣1}. Let 𝑣2 = 𝑡. Let 𝑣3 = 𝑠. Now
we start back substitution. First row gives −𝑣1 = −3𝑣2 = −3𝑡. Hence the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3𝑡
𝑡
𝑠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3𝑡
𝑡
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
𝑠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

By letting 𝑡 = 1 and 𝑠 = 1 then the above becomes
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence the two eigenvectors associated with this eigenvalue are
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The following table summarizes the result found above.

𝜆 algebraic geometric defective associated

multiplicity multiplicity eigenvalue? eigenvectors

1 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

2 2 2 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since the matrix is not defective, then it is diagonalizable. Let 𝑃 the matrix whose columns
are the eigenvectors found, and let 𝐷 be diagonal matrix with the eigenvalues at its diagonal.
Then we can write

𝐴 = 𝑃𝐷𝑃−1

Where

𝐷 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 2 0
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑃 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Therefore ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 2 0
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 2 0
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

Now that we have diagonalized 𝐴, we can finally answer the question.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 2 0
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 2 0
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

5⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 25 0
0 0 25

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 32 0
0 0 32

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

But ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 32 0
0 0 32

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 96 0
0 32 0
0 0 32

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 2 0
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 96 0
0 32 0
0 0 32

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

(1)

We know need to find

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

. The augmented matrix is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 − 3𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 −3 0
0 1 0 0 1 0
0 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since left half is now 𝐼 then the right half is the inverse. Therefore

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence (1) becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0
0 2 0
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

5

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 96 0
0 32 0
0 0 32

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 93 0
0 32 0
0 0 32

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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2.8.6 Problem 13 section 6.3

Find 𝐴10. ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
2 −2 1
4 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

If 𝐴 is diagonalizable, then by first writing 𝐴 = 𝑃𝐷𝑃−1 then 𝐴10 = 𝑃𝐷10𝑃−1. And since 𝐷 is
diagonal matrix, it is easy to raise it to power. So the first step is to diagonalize 𝐴 as we
did in the above problems.

Find the eigenvalues and associated eigenvectors of the matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
2 −2 1
4 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The first step is to determine the characteristic polynomial of the matrix in order to find
the eigenvalues of the matrix 𝐴. This is given by

det(𝐴 − 𝜆𝐼) = 0

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
2 −2 1
4 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 𝜆

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 𝜆 −1 1
2 −2 − 𝜆 1
4 −4 1 − 𝜆

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0

(1 − 𝜆)�
−2 − 𝜆 1
−4 1 − 𝜆

� + �
2 1
4 1 − 𝜆

� + �
2 −2 − 𝜆
4 −4

� = 0

(1 − 𝜆)((−2 − 𝜆)(1 − 𝜆) + 4) + 2(1 − 𝜆) − 4 + (−8) − 4(−2 − 𝜆) = 0
−𝜆3 − 𝜆 + 2 − 2𝜆 − 2 + 4𝜆 =

𝜆 − 𝜆3 = 0

𝜆�1 − 𝜆2� = 0

Therefore the eigenvalues are

𝜆1 = 0
𝜆2 = 1
𝜆3 = −1

This table summarizes the result

eigenvalue algebraic multiplicity type of eigenvalue

−1 1 real eigenvalue

0 1 real eigenvalue

1 1 real eigenvalue

For each eigenvalue 𝜆 found above, we now find the corresponding eigenvector.

𝜆 = −1
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We need now to determine the eigenvector 𝑣⃗ where

𝐴𝑣⃗ = 𝜆𝑣⃗

𝐴𝑣⃗ − 𝜆𝑣⃗ = 0⃗

(𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
2 −2 1
4 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (−1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
2 −2 1
4 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0
0 −1 0
0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 1
2 −1 1
4 −4 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented
matrix is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 1 0
2 −1 1 0
4 −4 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 − 𝑅1 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 1 0
0 0 0 0
4 −4 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 − 2𝑅1 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 1 0
0 0 0 0
0 −2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

current pivot 𝐴(2, 2) is zero. Hence we need to replace current pivot row with one non-zero.
Replacing row 2 with row 3 gives

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 1 0
0 −2 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the system in Echelon form is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 1
0 −2 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variables are {𝑣3} and the leading variables are {𝑣1, 𝑣2}. Let 𝑣3 = 𝑡. Now we start
back substitution. Second row gives 𝑣2 = 0. First row gives 2𝑣1 + 𝑡 = 0 or 𝑣1 = −

𝑡
2 . Hence

the solution is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 𝑡
2
0
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since there is one free Variable, we have found one eigenvector associated with this eigen-
value. The above can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Or, by letting 𝑡 = 1 then the eigenvector is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Which can be normalized to ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜆 = 0

We need now to determine the eigenvector 𝑣⃗ where

𝐴𝑣⃗ = 𝜆𝑣⃗

𝐴𝑣⃗ − 𝜆𝑣⃗ = 0⃗

(𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
2 −2 1
4 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (0)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
2 −2 1
4 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
2 −2 1
4 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented
matrix is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 0
2 −2 1 0
4 −4 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 − 2𝑅1 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 0
0 0 −1 0
4 −4 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 − 4𝑅1 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 0
0 0 −1 0
0 0 −3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 − 3𝑅2 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 0
0 0 −1 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the system in Echelon form is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
0 0 −1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variables are {𝑣2} and the leading variables are {𝑣1, 𝑣3}. Let 𝑣2 = 𝑡. Now we start
back substitution. Second row gives 𝑣3 = 0. First row give 𝑣1 − 𝑡 = 0 or 𝑣1 = 𝑡. Hence the
solution is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡
𝑡
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Since there is one free Variable, we have found one eigenvector associated with this eigen-
value. The above can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Or, by letting 𝑡 = 1 then the eigenvector is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜆 = 1

We need now to determine the eigenvector 𝑣⃗ where

𝐴𝑣⃗ = 𝜆𝑣⃗

𝐴𝑣⃗ − 𝜆𝑣⃗ = 0⃗

(𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
2 −2 1
4 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
2 −2 1
4 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 1
2 −3 1
4 −4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented
matrix is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 1 0
2 −3 1 0
4 −4 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

current pivot 𝐴(1, 1) is zero. Hence we need to replace current pivot row with one non-zero.
Replacing row 1 with row 2 gives

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −3 1 0
0 −1 1 0
4 −4 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 − 2𝑅1 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −3 1 0
0 −1 1 0
0 2 −2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 + 2𝑅2 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −3 1 0
0 −1 1 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the system in Echelon form is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −3 1
0 −1 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The free variables are {𝑣3} and the leading variables are {𝑣1, 𝑣2}. Let 𝑣3 = 𝑡. Now we start
back substitution. From second row −𝑣2 + 𝑡 = 0 or 𝑣2 = 𝑡. First row gives 2𝑣1 − 3𝑣2 + 𝑡 = 0 or
2𝑣1 = 3𝑣2 − 𝑡 or 𝑣1 =

3𝑡−𝑡
2 = 𝑡. Hence the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡
𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since there is one free Variable, we have found one eigenvector associated with this eigen-
value. The above can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Or, by letting 𝑡 = 1 then the eigenvector is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The following table summarizes the result found above.

𝜆 algebraic geometric defective associated

multiplicity multiplicity eigenvalue? eigenvectors

−1 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since the matrix is not defective, then it is diagonalizable. Let 𝑃 the matrix whose columns
are the eigenvectors found, and let 𝐷 be diagonal matrix with the eigenvalues at its diagonal.
Then we can write

𝐴 = 𝑃𝐷𝑃−1

Where

𝐷 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 −1 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑃 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
1 0 1
1 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
2 −2 1
4 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
1 0 1
1 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 −1 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
1 0 1
1 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1
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Now that we have diagonalized 𝐴, we can finally answer the question.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
2 −2 1
4 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

10

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
1 0 1
1 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 −1 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

10⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
1 0 1
1 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
1 0 1
1 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
1 0 1
1 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

But

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
1 0 1
1 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0
1 0 0
1 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. The above becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
2 −2 1
4 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

10

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0
1 0 0
1 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
1 0 1
1 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

(1)

We now just need to find 𝑃−1. Augmented matrix is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 1 0 0
1 0 1 0 1 0
1 2 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 1 0 0
0 1 0 −1 1 0
1 2 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 1 0 0
0 1 0 −1 1 0
0 3 −1 −1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 3𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 1 0 0
0 1 0 −1 1 0
0 0 −1 2 −3 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now we start the reduced Echelon phase.

𝑅3 → −𝑅3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 1 0 0
0 1 0 −1 1 0
0 0 1 −2 3 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 − 𝑅3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 3 −3 1
0 1 0 −1 1 0
0 0 1 −2 3 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 + 𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 2 −2 1
0 1 0 −1 1 0
0 0 1 −2 3 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since left half is now 𝐼 then the inverse is the right half of the above augmented matrix.
Hence

𝑃−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −2 1
−1 1 0
−2 3 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Substituting the above in (1) gives

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1
2 −2 1
4 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

10

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0
1 0 0
1 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −2 1
−1 1 0
−2 3 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −3 1
2 −2 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.8.7 Problem 25 section 6.3

In Problems 25 through 30, a city-suburban population transition matrix 𝐴 (as in Example
2) is given. Find the resulting long-term distribution of a constant total population between

the city and its suburbs.

𝐴 =
⎡
⎢⎢⎢⎢⎣
0.9 0.1
0.1 0.9

⎤
⎥⎥⎥⎥⎦

Solution

The first step is diagonalize 𝐴 = 𝑃𝐷𝑃−1 and then evaluate 𝐴𝑘 in the limit as 𝑘 → ∞. Writing
𝐴 as

𝐴 =
⎡
⎢⎢⎢⎢⎣

9
10

1
10

1
10

9
10

⎤
⎥⎥⎥⎥⎦

The first step is to determine the characteristic polynomial of the matrix in order to find
the eigenvalues of the matrix 𝐴. This is given by

det(𝐴 − 𝜆𝐼) = 0

det

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

9
10

1
10

1
10

9
10

⎤
⎥⎥⎥⎥⎦ − 𝜆

⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ = 0

det

⎡
⎢⎢⎢⎢⎣

9
10 − 𝜆

1
10

1
10

9
10 − 𝜆

⎤
⎥⎥⎥⎥⎦ = 0

�
9
10
− 𝜆��

9
10
− 𝜆� −

1
100

= 0

1
100

(10𝜆 − 9)2 −
1
100

= 0

1
100

�(10𝜆 − 9)2 − 1� = 0

(10𝜆 − 9)2 − 1 = 0
100𝜆2 − 180𝜆 + 80 = 0

𝜆2 −
18
10
𝜆 +

8
10
= 0

(𝜆 − 1)�𝜆 −
8
10�

= 0

Hence the eigenvalues are

𝜆1 = 1

𝜆2 =
4
5

This table summarizes the result

eigenvalue algebraic multiplicity type of eigenvalue

1 1 real eigenvalue
4
5 1 real eigenvalue
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For each eigenvalue 𝜆 found above, we now find the corresponding eigenvector.

𝜆 = 1

We need now to determine the eigenvector 𝑣⃗ where

𝐴𝑣⃗ = 𝜆𝑣⃗

𝐴𝑣⃗ − 𝜆𝑣⃗ = 0⃗

(𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗
⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

9
10

1
10

1
10

9
10

⎤
⎥⎥⎥⎥⎦ − (1)

⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

9
10

1
10

1
10

9
10

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
− 1
10

1
10

1
10 − 1

10

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented
matrix is ⎡

⎢⎢⎢⎢⎣
− 1
10

1
10 0

1
10 − 1

10 0

⎤
⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 + 𝑅1 ⟹
⎡
⎢⎢⎢⎢⎣
− 1
10

1
10 0

0 0 0

⎤
⎥⎥⎥⎥⎦

Therefore the system in Echelon form is
⎡
⎢⎢⎢⎢⎣
− 1
10

1
10

0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

The free variables are {𝑣2} and the leading variables are {𝑣1}. Let 𝑣2 = 𝑡. Now we start back
substitution. First row gives 𝑣1 = 𝑡. Hence the solution is

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
𝑡
𝑡

⎤
⎥⎥⎥⎥⎦

Since there is one free Variable, we have found one eigenvector associated with this eigen-
value. The above can be written as

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ = 𝑡

⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦

Or, by letting 𝑡 = 1 then the eigenvector is
⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦

𝜆 = 4
5

We need now to determine the eigenvector 𝑣⃗ where

𝐴𝑣⃗ = 𝜆𝑣⃗

𝐴𝑣⃗ − 𝜆𝑣⃗ = 0⃗

(𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗
⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

9
10

1
10

1
10

9
10

⎤
⎥⎥⎥⎥⎦ − �

4
5�

⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

9
10

1
10

1
10

9
10

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣

4
5 0
0 4

5

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1
10

1
10

1
10

1
10

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦
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We will now do Gaussian elimination in order to solve for the eigenvector. The augmented
matrix is ⎡

⎢⎢⎢⎢⎣

1
10

1
10 0

1
10

1
10 0

⎤
⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 − 𝑅1 ⟹
⎡
⎢⎢⎢⎢⎣
1
10

1
10 0

0 0 0

⎤
⎥⎥⎥⎥⎦

Therefore the system in Echelon form is
⎡
⎢⎢⎢⎢⎣

1
10

1
10

0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

The free variables are {𝑣2} and the leading variables are {𝑣1}. Let 𝑣2 = 𝑡. Now we start back
substitution. First row gives 𝑣1 = −𝑡. Hence the solution is

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
−𝑡
𝑡

⎤
⎥⎥⎥⎥⎦

Since there is one free Variable, we have found one eigenvector associated with this eigen-
value. The above can be written as

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ = 𝑡

⎡
⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎦

Or, by letting 𝑡 = 1 then the eigenvector is
⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎦

The following table summarizes the result found above.

𝜆 algebraic geometric defective associated

multiplicity multiplicity eigenvalue? eigenvectors

1 1 1 No

⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦

4
5 1 1 No

⎡
⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎦

Since the matrix is not defective, then it is diagonalizable. Let 𝑃 the matrix whose columns
are the eigenvectors found, and let 𝐷 be diagonal matrix with the eigenvalues at its diagonal.
Then we can write

𝐴 = 𝑃𝐷𝑃−1

Where

𝐷 =
⎡
⎢⎢⎢⎢⎣
1 0
0 4

5

⎤
⎥⎥⎥⎥⎦

𝑃 =
⎡
⎢⎢⎢⎢⎣
1 −1
1 1

⎤
⎥⎥⎥⎥⎦

Therefore ⎡
⎢⎢⎢⎢⎣

9
10

1
10

1
10

9
10

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1 −1
1 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 0
0 4

5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 −1
1 1

⎤
⎥⎥⎥⎥⎦

−1

And
⎡
⎢⎢⎢⎢⎣

9
10

1
10

1
10

9
10

⎤
⎥⎥⎥⎥⎦

𝑘

=
⎡
⎢⎢⎢⎢⎣
1 −1
1 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 0
0 4

5

⎤
⎥⎥⎥⎥⎦

𝑘⎡
⎢⎢⎢⎢⎣
1 −1
1 1

⎤
⎥⎥⎥⎥⎦

−1

=
⎡
⎢⎢⎢⎢⎣
1 −1
1 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0

0 �4
5
�
𝑘

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 −1
1 1

⎤
⎥⎥⎥⎥⎦

−1

153



2.8. HW 8 CHAPTER 2. HWS

As 𝑘 → ∞ the term �4
5
�
𝑘
→ 0. Hence in the limit the above becomes

lim
𝑘→∞

⎡
⎢⎢⎢⎢⎣

9
10

1
10

1
10

9
10

⎤
⎥⎥⎥⎥⎦

𝑘

=
⎡
⎢⎢⎢⎢⎣
1 −1
1 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 0
0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 −1
1 1

⎤
⎥⎥⎥⎥⎦

−1

=
⎡
⎢⎢⎢⎢⎣
1 0
1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 −1
1 1

⎤
⎥⎥⎥⎥⎦

−1

But

⎡
⎢⎢⎢⎢⎣
1 −1
1 1

⎤
⎥⎥⎥⎥⎦

−1

= 1

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 −1
1 1

⎤
⎥⎥⎥⎥⎦

𝑇

= 1
2

⎡
⎢⎢⎢⎢⎣
1 1
−1 1

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1
2

1
2

−1
2

1
2

⎤
⎥⎥⎥⎥⎦. The above becomes

lim
𝑘→∞

⎡
⎢⎢⎢⎢⎣

9
10

1
10

1
10

9
10

⎤
⎥⎥⎥⎥⎦

𝑘

=
⎡
⎢⎢⎢⎢⎣
1 0
1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1
2

1
2

−1
2

1
2

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣

1
2

1
2

1
2

1
2

⎤
⎥⎥⎥⎥⎦

Therefore

𝑥⃗𝑘 = 𝐴𝑘𝑥⃗0
lim
𝑘→∞

𝑥⃗𝑘 = lim
𝑘→∞

𝐴𝑘𝑥⃗0

=
⎡
⎢⎢⎢⎢⎣

1
2

1
2

1
2

1
2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝐶0

𝑆0

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣

1
2𝐶0 +

1
2𝑆0

1
2𝐶0 +

1
2𝑆0

⎤
⎥⎥⎥⎥⎦

= (𝐶0 + 𝑆0)
⎡
⎢⎢⎢⎢⎣

1
2
1
2

⎤
⎥⎥⎥⎥⎦

This means in long term each city will have half of the initial total population.

2.8.8 Additional problem 1

Solution

2.8.8.1 Part (a)

To show 𝐴 is similar to itself, we need to show there exist 𝑃, such that 𝐴 = 𝑃𝐴𝑃−1, where 𝑃 is
matrix whose columns are linearly independent and hence invertible. Let 𝑃 = 𝐼 (the identity
matrix of same size as 𝐴). Hence 𝐴 = 𝐼𝐴𝐼−1. Since (a) 𝐼 has linearly independent columns
(basis vectors) and (b) 𝐼 is clearly invertible and (c) 𝐴 = 𝐼𝐴𝐼−1 is true: Post multiplying
both sides by 𝐼 gives 𝐴𝐼−1 = 𝐼𝐴. But 𝐴𝐼−1 = 𝐴𝐼 and 𝐼𝐴 = 𝐴𝐼 which means 𝐴𝐼 = 𝐴𝐼 or 𝐴 = 𝐴
which is true.

2.8.8.2 Part (b)

We are given that

𝐴 = 𝑃𝐵𝑃−1 (1)

We need to show that 𝐵 = 𝑃𝐴𝑃−1. Starting with (1) given relation, and post multiplying
both sides by 𝑃 gives

𝐴𝑃 = 𝑃𝐵𝑃−1𝑃
𝐴𝑃 = 𝑃𝐵
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Since 𝑃−1𝑃 = 𝐼. pre multiplying both sides by 𝑃−1 gives

𝑃−1𝐴𝑃 = 𝐵
𝑃−1𝐴𝑃 = 𝐵

Let 𝑃−1 = 𝑄. Then the above can also be written as

𝐵 = 𝑄𝐴𝑄−1

Hence 𝐵 is similar to 𝐴.

2.8.8.3 Part (c)

We are given that

𝐴 = 𝑃𝐵𝑃−1 (1)

And that

𝐵 = 𝑄𝐶𝑄−1 (2)

We need to show that 𝐴 = 𝑉𝐶𝑉−1 for some invertible matrix 𝑉. Substituting (2) into (1)
gives

𝐴 = 𝑃�𝑄𝐶𝑄−1�𝑃−1

= (𝑃𝑄)𝐶�𝑄−1𝑃−1�

But 𝑄−1𝑃−1 = (𝑃𝑄)−1. The above becomes

𝐴 = (𝑃𝑄)𝐶(𝑄𝑃)−1

Let 𝑃𝑄 = 𝑉. The above becomes
𝐴 = 𝑉𝐶𝑉−1

Hence 𝐴 is similar to 𝐶.

2.8.9 Additional problem 2

Solution

𝑥⃗𝑛 = 𝐴𝑛𝑥⃗0

=
⎡
⎢⎢⎢⎢⎣
1 1
1 0

⎤
⎥⎥⎥⎥⎦

𝑛⎡
⎢⎢⎢⎢⎣
1
0

⎤
⎥⎥⎥⎥⎦

2.8.9.1 Part (a)

To find eigenvalues and eigenvectors of 𝐴.
⎡
⎢⎢⎢⎢⎣
1 1
1 0

⎤
⎥⎥⎥⎥⎦

The first step is to determine the characteristic polynomial of the matrix in order to find
the eigenvalues of the matrix 𝐴. This is given by

det(𝐴 − 𝜆𝐼) = 0

det

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
1 1
1 0

⎤
⎥⎥⎥⎥⎦ − 𝜆

⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ = 0

det

⎡
⎢⎢⎢⎢⎣
1 − 𝜆 1
1 −𝜆

⎤
⎥⎥⎥⎥⎦ = 0

𝜆2 − 𝜆 − 1 = 0

155



2.8. HW 8 CHAPTER 2. HWS

The eigenvalues are the roots of the above characteristic polynomial. Using the quadratic

formula 𝜆 = −𝑏
2𝑎 ±

1
2𝑎√𝑏

2 − 4𝑎𝑐 = 1
2 ±

1
2�(−1)

2 − 4(−1) = 1
2 ±

1
2√1 + 4 =

1
2 ±

1
2√5 . Hence

𝜆1 =
1
2
+ √5

2

𝜆2 =
1
2
− √

5
2

This table summarizes the result

eigenvalue algebraic multiplicity type of eigenvalue
1
2 +

√5
2 1 real eigenvalue

1
2 −

√5
2 1 real eigenvalue

For each eigenvalue 𝜆 found above, we now find the corresponding eigenvector.

𝜆 = 1
2 +

√5
2

We need now to determine the eigenvector 𝑣⃗ where

𝐴𝑣⃗ = 𝜆𝑣⃗

𝐴𝑣⃗ − 𝜆𝑣⃗ = 0⃗

(𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗
⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
1 1
1 0

⎤
⎥⎥⎥⎥⎦ −

⎛
⎜⎜⎜⎝
1
2
+ √5

2

⎞
⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
1 1
1 0

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2 +

√5
2 0

0 1
2 +

√5
2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2 −

√5
2 1

1 −1
2 −

√5
2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented
matrix is ⎡

⎢⎢⎢⎢⎢⎢⎣

1
2 −

√5
2 1 0

1 −1
2 −

√5
2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 −
𝑅1

1
2 −

√5
2

⟹

⎡
⎢⎢⎢⎢⎢⎣

1
2 −

√5
2 1 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Therefore the system in Echelon form is
⎡
⎢⎢⎢⎢⎢⎣

1
2 −

√5
2 1

0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

The free variables are {𝑣2} and the leading variables are {𝑣1}. Let 𝑣2 = 𝑡. Now we start

back substitution. First row gives �12 −
√5
2
�𝑣1 = −𝑡. Hence 1−√5

2 𝑣1 = −𝑡. or 𝑣1 =
−2

1−√5
𝑡 or

𝑣1 =
2

√5−1
𝑡. Or 𝑣1 =

2�√5+1�

�√5−1��√5+1�
𝑡 =

2�√5+1�

4 𝑡 = √5+1
2 𝑡. Hence the solution is

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

√5+1
2 𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎦

Since there is one free Variable, we have found one eigenvector associated with this eigen-
value. The above can be written as

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ = 𝑡

⎡
⎢⎢⎢⎢⎢⎣

√5+1
2
1

⎤
⎥⎥⎥⎥⎥⎦

156



2.8. HW 8 CHAPTER 2. HWS

Or, by letting 𝑡 = 1 then the eigenvector is
⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

√5+1
2
1

⎤
⎥⎥⎥⎥⎥⎦

Which can be normalized to ⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
√5 + 1
1

⎤
⎥⎥⎥⎥⎦

𝜆 = 1
2 −

√5
2

We need now to determine the eigenvector 𝑣⃗ where

𝐴𝑣⃗ = 𝜆𝑣⃗

𝐴𝑣⃗ − 𝜆𝑣⃗ = 0⃗

(𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗
⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
1 1
1 0

⎤
⎥⎥⎥⎥⎦ −

⎛
⎜⎜⎜⎝
1
2
− √

5
2

⎞
⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
1 1
1 0

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2 −

√5
2 0

0 1
2 −

√5
2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2 +

√5
2 1

1 √5
2 − 1

2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented
matrix is ⎡

⎢⎢⎢⎢⎢⎢⎣

1
2 +

√5
2 1 0

1 √5
2 − 1

2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 −
𝑅1

1
2 +

√5
2

⟹

⎡
⎢⎢⎢⎢⎢⎣

1
2 +

√5
2 1 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Therefore the system in Echelon form is
⎡
⎢⎢⎢⎢⎢⎣

1
2 +

√5
2 1

0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

The free variables are {𝑣2} and the leading variables are {𝑣1}. Let 𝑣2 = 𝑡. Now we start back

substitution. First row gives �1+√5
2
�𝑣1 = −𝑡 or 𝑣1 =

−2
1+√5

𝑡 =
−2�1−√5 �

�1+√5 ��1−√5 �
𝑡 which simplifies to

𝑣1 =
−2�1−√5 �𝑡

−4 =
�1−√5 �𝑡

2 Hence the solution is
⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

�1−√5 �𝑡
2
𝑡

⎤
⎥⎥⎥⎥⎥⎦

Since there is one free Variable, we have found one eigenvector associated with this eigen-
value. The above can be written as

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ = 𝑡

⎡
⎢⎢⎢⎢⎢⎣

�1−√5 �

2
1

⎤
⎥⎥⎥⎥⎥⎦

Or, by letting 𝑡 = 1 then the eigenvector is
⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

�1−√5 �

2
1

⎤
⎥⎥⎥⎥⎥⎦

Which can be normalized to ⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1 − √5
2

⎤
⎥⎥⎥⎥⎦

The following table summarizes the result found above.
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𝜆 algebraic geometric defective associated

multiplicity multiplicity eigenvalue? eigenvectors

1+√5
2 1 1 No

⎡
⎢⎢⎢⎢⎣
1 + √5
2

⎤
⎥⎥⎥⎥⎦

1−√5
2 1 1 No

⎡
⎢⎢⎢⎢⎣
1 − √5
2

⎤
⎥⎥⎥⎥⎦

2.8.9.2 Part(b)

Since the matrix is not defective, then it is diagonalizable. Let 𝑃 the matrix whose columns
are the eigenvectors found, and let 𝐷 be diagonal matrix with the eigenvalues at its diagonal.
Then we can write

𝐴 = 𝑃𝐷𝑃−1

Where

𝐷 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1+√5
2 0

0 1−√5
2

⎤
⎥⎥⎥⎥⎥⎥⎦

𝑃 =
⎡
⎢⎢⎢⎢⎣
1 + √5 1 − √5
2 2

⎤
⎥⎥⎥⎥⎦

Therefore
⎡
⎢⎢⎢⎢⎣
1 1
1 0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1 + √5 1 − √5
2 2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1+√5
2 0

0 1−√5
2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 + √5 1 − √5
2 2

⎤
⎥⎥⎥⎥⎦

−1

And now we can write
⎡
⎢⎢⎢⎢⎣
1 1
1 0

⎤
⎥⎥⎥⎥⎦

𝑛

=
⎡
⎢⎢⎢⎢⎣
1 + √5 1 − √5
2 2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1+√5
2 0

0 1−√5
2

⎤
⎥⎥⎥⎥⎥⎥⎦

𝑛⎡
⎢⎢⎢⎢⎣
1 + √5 1 − √5
2 2

⎤
⎥⎥⎥⎥⎦

−1

=
⎡
⎢⎢⎢⎢⎣
1 + √5 1 − √5
2 2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1+√5
2
�
𝑛

0

0 �1−√5
2
�
𝑛

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 + √5 1 − √5
2 2

⎤
⎥⎥⎥⎥⎦

−1

Using hint, let 1+√5
2 = 𝜑 ≈ 1.61803 and 1−√5

2 = 1 − 𝜑 ≈ −0.61803. The above becomes

⎡
⎢⎢⎢⎢⎣
1 1
1 0

⎤
⎥⎥⎥⎥⎦

𝑛

=
⎡
⎢⎢⎢⎢⎣
2𝜑 2�1 − 𝜑�
2 2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝜑𝑛 0
0 �1 − 𝜑�

𝑛

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
2𝜑 2�1 − 𝜑�
2 2

⎤
⎥⎥⎥⎥⎦

−1

2.8.9.3 Part (c)

Since

𝑥⃗𝑛 = 𝐴𝑛𝑥⃗0

=
⎡
⎢⎢⎢⎢⎣
1 1
1 0

⎤
⎥⎥⎥⎥⎦

𝑛⎡
⎢⎢⎢⎢⎣
1
0

⎤
⎥⎥⎥⎥⎦

Then using result from part b, we can now write

𝑥⃗𝑛 = 𝐴𝑛𝑥⃗0

=

𝐴𝑛

���������������������������������������������������������������������������⎡
⎢⎢⎢⎢⎣
2𝜑 2�1 − 𝜑�
2 2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝜑𝑛 0
0 �1 − 𝜑�

𝑛

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
2𝜑 2�1 − 𝜑�
2 2

⎤
⎥⎥⎥⎥⎦

−1⎡
⎢⎢⎢⎢⎣
1
0

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
2𝜑𝜑𝑛 2�1 − 𝜑��1 − 𝜑�

𝑛

2𝜑𝑛 2�1 − 𝜑�
𝑛

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
2𝜑 2�1 − 𝜑�
2 2

⎤
⎥⎥⎥⎥⎦

−1⎡
⎢⎢⎢⎢⎣
1
0

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
2𝜑𝑛+1 2�1 − 𝜑�

𝑛+1

2𝜑𝑛 2�1 − 𝜑�
𝑛

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
2𝜑 2�1 − 𝜑�
2 2

⎤
⎥⎥⎥⎥⎦

−1⎡
⎢⎢⎢⎢⎣
1
0

⎤
⎥⎥⎥⎥⎦ (1)
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But

⎡
⎢⎢⎢⎢⎣
2𝜑 2�1 − 𝜑�
2 2

⎤
⎥⎥⎥⎥⎦

−1

=
1

det

⎡
⎢⎢⎢⎢⎣
2𝜑 2�1 − 𝜑�
2 2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
2 −2�1 − 𝜑�
−2 2𝜑

⎤
⎥⎥⎥⎥⎦

=
1

4𝜑 − 4�1 − 𝜑�

⎡
⎢⎢⎢⎢⎣
2 −2�1 − 𝜑�
−2 2𝜑

⎤
⎥⎥⎥⎥⎦

=
1

8𝜑 − 4

⎡
⎢⎢⎢⎢⎣
2 −2�1 − 𝜑�
−2 2𝜑

⎤
⎥⎥⎥⎥⎦

=
1

4𝜑 − 2

⎡
⎢⎢⎢⎢⎣
1 𝜑 − 1
−1 𝜑

⎤
⎥⎥⎥⎥⎦

Hence (1) becomes

𝑥⃗𝑛 =
1

4𝜑 − 2

⎡
⎢⎢⎢⎢⎢⎣
2𝜑𝑛+1 2�1 − 𝜑�

𝑛+1

2𝜑𝑛 2�1 − 𝜑�
𝑛

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 𝜑 − 1
−1 𝜑

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1
0

⎤
⎥⎥⎥⎥⎦

=
1

4𝜑 − 2

⎡
⎢⎢⎢⎢⎢⎣
2𝜑𝑛+1 − 2�1 − 𝜑�

𝑛+1
2𝜑�1 − 𝜑�

𝑛+1
− 2𝜑𝑛+1 + 2𝜑𝑛+2

2𝜑𝑛 − 2�1 − 𝜑�
𝑛

2𝜑�1 − 𝜑�
𝑛
− 2𝜑𝑛 + 2𝜑𝜑𝑛

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1
0

⎤
⎥⎥⎥⎥⎦

=
1

4𝜑 − 2

⎡
⎢⎢⎢⎢⎢⎣
2𝜑𝑛+1 − 2�1 − 𝜑�

𝑛+1

2𝜑𝑛 − 2�1 − 𝜑�
𝑛

⎤
⎥⎥⎥⎥⎥⎦

=
1

2𝜑 − 1

⎡
⎢⎢⎢⎢⎢⎣
𝜑𝑛+1 − �1 − 𝜑�

𝑛+1

𝜑𝑛 − �1 − 𝜑�
𝑛

⎤
⎥⎥⎥⎥⎥⎦

But 𝑥⃗𝑛 =
⎡
⎢⎢⎢⎢⎣
𝑓𝑛+1
𝑓𝑛

⎤
⎥⎥⎥⎥⎦, hence

𝑓𝑛 =
𝜑𝑛 − �1 − 𝜑�

𝑛

2𝜑 − 1

≈
1.61803𝑛 − (−0.61803)𝑛

2(1.61803) − 1

≈
1.61803𝑛 − (−0.61803)𝑛

2.236 1

Check: we see from problem statement that 𝑓0 = 0, 𝑓1 = 1,⋯𝑓12 = 144. Let us check the
formula above for 𝑓12

𝑓12 =
𝜑12 − �1 − 𝜑�

12

2𝜑 − 1

=
�1+√5

2
�
12
− �1 − 1+√5

2
�
12

2�1+√5
2
� − 1

=
144√5

√5
= 144

Verified OK.
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2.8.10 key solution for HW8

Homework 8 – Solutions

These solutions demonstrate one way to approach each of the homework problems. In many
cases, there are other correct solutions. If you would like to discuss alternative solutions or
the grading of your assignment, please see me during office hours or send me an email.

Textbook Problems:

6.2.7 We have A =

[
6 −10
2 −3

]
. First, we compute eigenvalues.

det(A− λI) = det

[
6− λ −10

2 −3− λ

]
= (6− λ)(−3− λ) + 20

= λ2 − 3λ+ 2

= (λ− 1)(λ− 2)

For λ1 = 1, we have

A− I =

[
5 −10
2 −4

]
→
[
1 −2
0 0

]
So we have eigenvector ~v1 = (2, 1).

For λ2 = 2, we have

A− 2I =

[
4 −10
2 −5

]
→
[
2 −5
0 0

]
So we have eigenvector ~v2 = (5, 2).

We have 2 distinct eigenvalues, so A is diagonalizable. The diagonalization is

A =

[
2 5
1 2

] [
1 0
0 2

] [
2 5
1 2

]−1
6.2.15 First, we compute eigenvalues.

det(A− λI) = det

3− λ −3 1
2 −2− λ 1
0 0 1− λ


= (1− λ) det

[
3− λ −3

2 −2− λ

]
= (1− λ) [(3− λ)(−2− λ) + 6]

= (1− λ)(λ2 − λ) = −λ(λ− 1)2

1
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For λ1 = 0, we have

A− 0I =

3 −3 1
2 −2 1
0 0 1

→
1 −1 0

0 0 1
0 0 0


So we have eigenvector ~v1 = (1, 1, 0).

For λ2 = 1, we have

A− I =

2 −3 1
2 −3 1
0 0 0

→
2 −3 1

0 0 0
0 0 0


So we have basis for the eigenspace {(3, 2, 0), (1, 0,−2)}.
We have one dimension 1 eigenspace and one dimension 2 eigenspace, so A is diago-
nalizable. The diagonalization is

A =

1 3 1
1 2 0
0 0 −2

0 0 0
0 1 0
0 0 1

1 3 1
1 2 0
0 0 −2

−1

6.2.19 First, we compute eigenvalues.

det(A− λI) = det

1− λ 1 −1
−2 4− λ −1
−4 4 1− λ


= (1− λ) det

[
4− λ −1

4 1− λ

]
− det

[
−2 −1
−4 1− λ

]
− det

[
−2 4− λ
−4 4

]
= (1− λ) [(4− λ)(1− λ) + 4]− (−2 + 2λ− 4)− (−8 + 16− 4λ)

= (1− λ)(λ2 − 5λ+ 8) + 2λ− 2

= (1− λ)(λ2 − 5λ+ 8− 2)

= (1− λ)(λ2 − 5λ+ 6)

= (1− λ)(λ− 2)(λ− 3)

For λ1 = 1, we have

A− I =

 0 1 −1
−2 3 −1
−4 4 0

→
−2 3 −1

0 1 −1
0 0 0


So we have eigenvector ~v1 = (1, 1, 1).

2
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For λ2 = 2, we have

A− 2I =

−1 1 −1
−2 2 −1
−4 4 −1

→
−1 1 −1

0 0 1
0 0 0


So we have eigenvector ~v2 = (1, 1, 0)

For λ3 = 3, we have

A− 3I =

−2 1 −1
−2 1 −1
−4 4 −2

→
−2 1 −1

0 1 0
0 0 0


So we have eigenvector ~v3 = (1, 0,−2).

We have 3 distinct eigenvalues, so A is diagonalizable. The diagonalization is

A =

1 1 1
1 1 0
1 0 −2

1 0 0
0 2 0
0 0 3

1 1 1
1 1 0
1 0 −2

−1

6.3.7 We need to diagonalize first. So, we compute eigenvalues:

det(A− λI) = det

1− λ 3 0
0 2− λ 0
0 0 2− λ


= (1− λ)(2− λ)(2− λ)

For λ1 = 1, we have

A− I =

0 3 0
0 1 0
0 0 1

→
0 1 0

0 0 1
0 0 0


So we have eigenvector ~v1 = (1, 0, 0).

For λ2 = 2, we have

A− 2I =

−1 3 0
0 0 0
0 0 0


A basis for the eigenspace is {(3, 1, 0), (0, 0, 1)}.
So we can diagonalize A as

A = PDP−1 =

1 3 0
0 1 0
0 0 1

1 0 0
0 2 0
0 0 2

1 3 0
0 1 0
0 0 1

−1

3
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We compute the inverse of P :1 3 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 −3R2+R1−−−−−→

1 0 0 1 −3 0
0 1 0 0 1 0
0 0 1 0 0 1


Now A5 = PD5P−1, so

A5 =

1 3 0
0 1 0
0 0 1

1 0 0
0 2 0
0 0 2

5 1 3 0
0 1 0
0 0 1

−1

=

1 3 0
0 1 0
0 0 1

1 0 0
0 32 0
0 0 32

1 −3 0
0 1 0
0 0 1


=

1 96 0
0 32 0
0 0 32

1 −3 0
0 1 0
0 0 1


=

1 93 0
0 32 0
0 0 32


6.3.13 To diagonalize, first we compute eigenvalues.

det(A− λI) = det

1− λ −1 1
2 −2− λ 1
4 −4 1− λ


= (1− λ) det

[
−2− λ 1
−4 1− λ

]
+ det

[
2 1
4 1− λ

]
+ det

[
2 −2− λ
4 −4

]
= (1− λ) [(−2− λ)(1− λ) + 4] + 2− 2λ− 4 +−8 + 8 + 4λ

= (1− λ)(λ2 + λ+ 2) + 2λ− 2

= (1− λ)(λ2 + λ+ 2− 2)

= λ(1− λ)(λ+ 1)

For λ1 = 0, we have

A− 0I =

1 −1 1
2 −2 1
4 −4 1

→
1 −1 1

0 0 1
0 0 0


So we have eigenvector ~v1 = (1, 1, 0).

For λ2 = −1, we have

A+ I =

2 −1 1
2 −1 1
4 −4 2

→
2 −1 1

0 1 0
0 0 0


4
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So we have eigenvector ~v2 = (1, 0,−2).

For λ3 = 1, we have

A− I =

0 −1 1
2 −3 1
4 −4 0

→
2 −3 1

0 −1 1
0 0 0


So we have eigenvector ~v3 = (1, 1, 1).

So we can diagonalize A as

A = PDP−1 =

1 1 1
1 0 1
0 −2 1

0 0 0
0 −1 0
0 0 1

1 1 1
1 0 1
0 −2 1

−1

We compute the inverse of P :1 1 1 1 0 0
1 0 1 0 1 0
0 −2 1 0 0 1

 −R1+R2−−−−−→

1 1 1 1 0 0
0 −1 0 −1 1 0
0 −2 1 0 0 1


−2R2+R3−−−−−→
R2+R1

1 0 1 0 1 0
0 −1 0 −1 1 0
0 0 1 2 −2 1


−R3+R1−−−−−→
(−1)R2

1 0 0 −2 3 −1
0 1 0 1 −1 0
0 0 1 2 −2 1


Now A10 = PD10P−1, so

A10 =

1 1 1
1 0 1
0 −2 1

0 0 0
0 −1 0
0 0 1

10 1 1 1
1 0 1
0 −2 1

−1

=

1 1 1
1 0 1
0 −2 1

0 0 0
0 1 0
0 0 1

−2 3 −1
1 −1 0
2 −2 1


=

0 1 1
0 0 1
0 −2 1

−2 3 −1
1 −1 0
2 −2 1


=

3 −3 1
2 −2 1
0 0 1



5
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6.3.25 We need to diagonalize A =

[
.9 .1
.1 .9

]
. First, we find eigenvalues:

det(A− λI) = det

[
.9− λ .1
.1 .9− λ

]
= (.9− λ)(.9− λ)− .01

= λ2 − 1.8λ+ .8

= (λ− 1)(λ− .8)

For λ1 = 1, we have

A− I =

[
−.1 .1
.1 −.1

]
→
[
−1 1
0 0

]
So we have eigenvector ~v1 = (1, 1).

For λ2 = .8, we have

A− .8I =

[
.1 .1
.1 .1

]
→
[
1 1
0 0

]
So we have eigenvector ~v2 = (−1, 1).

Our diagonalization is thus

A = PDP−1

=

[
1 −1
1 1

] [
1 0
0 4/5

] [
1 −1
1 1

]−1
Using our 2× 2 inverse formula, we get P−1 = 1

1+1

[
1 1
−1 1

]
, so we have

Ak = PDkP−1

=

[
1 −1
1 1

] [
1 0
0 (4/5)k

](
1

2

)[
1 1
−1 1

]
=

1

2

[
1 −(4/5)k

1 (4/5)k

] [
1 1
−1 1

]
=

1

2

[
1 + (4/5)k 1− (4/5)k

1− (4/5)k 1 + (4/5)k

]
Now, we can use this to tell us what the population in the city and the suburbs is at
any given time from a starting population of C0 in the city and S0 in the suburbs.[

Ck

Sk

]
= Ak

[
C0

S0

]
=

1

2

[
1 + (4/5)k 1− (4/5)k

1− (4/5)k 1 + (4/5)k

] [
C0

S0

]
=

1

2

[
C0 + C0(4/5)k + S0 − S0(4/5)k

C0 − C0(4/5)k + S0 + S0(4/5)k

]

6
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As we let k →∞, we have (4/5)k → 0. So in the long run,[
Ck

Sk

]
≈ 1

2

[
C0 + S0

C0 + S0

]
=

[
1/2
1/2

]
(C0 + S0)

So in the long run, 50% of the total population will live in the city and 50% will live
in the suburbs.

Additional Problems:

1. (a) Let A be an n × n matrix. For our matrix P , we take the n × n identity matrix I.
Note that I is invertible and I−1 = I. We have IAI−1 = IAI = A, so A is similar
to A.

(b) Suppose that A is similar to B. So there is an invertible matrix P with A = PBP−1.

Multiplying this equation on the left by P−1 and on the right by P , we have
P−1AP = B. Since P is invertible, P−1 is invertible as well with inverse P . So,
B = (P−1)A(P−1)−1. Thus B is similar to A.

(c) Suppose that A is similar to B and B is similar to C. So there are invertible matrices
P and Q with A = PBP−1 and B = QCQ−1.

Substituting this expression for B into the first equation, we get A = PQCQ−1P−1.
Since both P and Q are invertible, PQ is invertible with inverse Q−1P−1. So, we
have A = (PQ)C(PQ)−1 and thus A is similar to C.

2. (a) We compute the characteristic polynomial

det(A− λI) = det

[
1− λ 1

1 −λ

]
= (1− λ)(−λ)− 1

= −λ+ λ2 − 1

= λ2 − λ− 1

Applying the quadratic formula, we have

λ =
1±
√

1 + 4

2
=

1±
√

5

2

To avoid getting lost in square roots, we will write ϕ = 1+
√
5

2
. Notice then that

1−ϕ = − 1
ϕ

= 1−
√
5

2
which will make a lot of our calculations easier. For λ1 = ϕ, we

have the matrix

A− ϕI =

[
1− ϕ 1

1 −ϕ

]
→
[
1− ϕ 1

0 0

]
So we have the eigenvector ~v1 = (1, ϕ− 1). For λ2 = 1− ϕ, we have the matrix

A− (1− ϕ)I =

[
ϕ 1
1 ϕ− 1

]
→
[
ϕ 1
0 0

]
So we have the eigenvector ~v2 = (1,−ϕ).

7
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(b) Using what we found in (a), we can write the diagonalization of A:

A = PDP−1

=

[
1 1

ϕ− 1 −ϕ

] [
ϕ 0
0 1− ϕ

] [
1 1

ϕ− 1 −ϕ

]−1
Using our 2× 2 matrix inverse formula, we can write[

1 1
ϕ− 1 −ϕ

]−1
=

1

−ϕ− (−1 + ϕ)

[
−ϕ −1

1− ϕ 1

]
=

1

1− 2ϕ

[
−ϕ −1

1− ϕ 1

]
At this point, it is worthwhile to remember that we have set ϕ = 1+

√
5

2
. Using this,

we can simplify 1
1−2ϕ = − 1√

5
. So the inverse matrix is more simply[

1 1
ϕ− 1 −ϕ

]−1
=

1√
5

[
ϕ 1

ϕ− 1 −1

]
Since An = PDnP−1, we compute

An =

[
1 1

ϕ− 1 −ϕ

] [
ϕ 0
0 1− ϕ

]n [
1 1

ϕ− 1 −ϕ

]−1
=

1√
5

[
1 1

ϕ− 1 −ϕ

] [
ϕn 0
0 (1− ϕ)n

] [
ϕ 1

ϕ− 1 −1

]
=

1√
5

[
ϕn (1− ϕ)n

ϕn(ϕ− 1) (−ϕ)(1− ϕ)n

] [
ϕ 1

ϕ− 1 −1

]
=

1√
5

[
ϕn+1 + (1− ϕ)n(ϕ− 1) ϕn − (1− ϕ)n

ϕn+1(ϕ− 1)− ϕ(1− ϕ)n(ϕ− 1) ϕn(ϕ− 1) + ϕ(1− ϕ)n

]
=

1√
5

[
ϕn+1 − (1− ϕ)n+1 ϕn − (1− ϕ)n

(ϕ− 1)(ϕn+1 − ϕ(1− ϕ)n) ϕn(ϕ− 1) + ϕ(1− ϕ)n

]
At this point, it is useful to remember that 1 − ϕ = − 1

ϕ
and ϕ − 1 = 1

ϕ
, so we can

simplify a bit further to get

An =
1√
5

[
ϕn+1 − (1− ϕ)n+1 ϕn − (1− ϕ)n

ϕn − (1− ϕ)n ϕn−1 − (1− ϕ)n−1

]

8
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(c) We know that ~xn = An~x0 = An

[
1
0

]
, so

~xn = An

[
1
0

]
=

1√
5

[
ϕn+1 − (1− ϕ)n+1 ϕn − (1− ϕ)n

ϕn − (1− ϕ)n ϕn−1 − (1− ϕ)n−1

] [
1
0

]
=

1√
5

[
ϕn+1 − (1− ϕ)n+1

ϕn − (1− ϕ)n

]

Now, we know that ~xn =

[
fn+1

fn

]
, so this computation tells us that

fn =
1√
5

(ϕn − (1− ϕ)n)

=
1√
5

[(
1 +
√

5

2

)n

−

(
1−
√

5

2

)n]

Aside: This is a remarkable formula. For one thing, it should be surprising that this
expression ever yields an integer, let alone that it is an integer for every nonnegative
integer n. The golden ratio ϕ is an irrational number, meaning that it cannot be
expressed as a fraction of two integers. It is quite unusual for expressions involving
irrational numbers to produce rational numbers. It is even more unusual for them
to produce integers.

We should also be surprised that we can compute the 100th Fibonacci number with-
out computing the 99 before it. Ostensibly, I only know that f100 = f99 + f98 and
I have to use the rule fn+1 = fn + fn−1 many many times before I can apply the
initial values f0 = 0 and f1 = 1. But with this formula, I can use any calculator to
immediately compute f100 = 354, 224, 848, 179, 261, 915, 075.

9
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2.9.1 Problems listing

Homework 9 - Due November 12

Homework instructions: Complete the assigned problems on your own paper. Once you
are finished, scan or photograph your work and upload it to Gradescope. When prompted,
tell Gradescope where to find each problem.
You are allowed (and in fact encouraged) to work with other students on homework assign-
ments. If you do that, please indicate on each problem who you worked with. If you use
sources other than your notes, the textbook, and any resources on Canvas for your home-
work, you must indicate the source on each problem. You are not permitted to view, request,
or look for solutions to any of the homework problems from solutions manuals, homework
help websites, online forums, other students, or any other sources.

Textbook Problems:

• §7.1: 8

• §7.2: 1, 5, 9, 15, 19, 24, 28

Additional Problems:

1. There is a system of three brine tanks. Tanks 1 and 3 begin with 200 L of fresh water
each and tank 2 begins with 100 L of water and 10 kg of salt.

Water containing 2 kg of salt per liter is pumped into tank 1 at a rate of 15 L/min. The
well-mixed solution is pumped from tank 1 to tank 2 at a rate of 20 L/min, from tank 2
to tank 3 at a rate of 20 L/min, and from tank 3 to tank 1 at a rate of 5 L/min. The
well-mixed solution is pumped out of tank 3 at a rate of 15 L/min.

(a) Draw and label a picture that illustrates this situation

(b) Let x1(t), x2(t), and x3(t) denote the amount of salt (in kilograms) in tanks 1, 2, and
3 respectively after t minutes. Write down differential equations for x′

1, x
′
2, and x′

3.

(c) Write the system of differential equations in (b) as a matrix equation

~x′ = P (t)~x + ~f(t)

What are the initial conditions ~x(0)?

1
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2.9.2 Problem 8, section 7.1

Transform the given differential equations into an equivalent system of first-order differen-
tial equations.

𝑥′′ + 3𝑥′ + 4𝑥 − 2𝑦 = 0
𝑦′′ + 2𝑦′ − 3𝑥 + 𝑦 = cos 𝑡

Solution

There are two second order ODE’s, hence we needs 4 states variables 𝑥1, 𝑥2, 𝑥3, 𝑥4 where (it
is better and more standard to use 𝑥𝑖 notation for all state variables. The book uses 𝑥𝑖, 𝑦𝑖
which is not optimal. 𝑥𝑖 will be used here for all state variables)

𝑥1 = 𝑥 (1)

𝑥2 = 𝑥′

𝑥3 = 𝑦
𝑥4 = 𝑦′

Taking derivatives w.r.t time 𝑡 gives

𝑥′1 = 𝑥′

= 𝑥2
𝑥′2 = 𝑥′′

= −�3𝑥′ + 4𝑥 − 2𝑦�

= −4𝑥1 − 3𝑥2 + 2𝑥3
𝑥′3 = 𝑦′

= 𝑥4
𝑥′4 = 𝑦′′

= −�2𝑦′ − 3𝑥 + 𝑦� + cos 𝑡
= 3𝑥1 − 𝑥3 − 2𝑥4 + cos 𝑡

Or in Matrix form (if needed)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥′1
𝑥′2
𝑥′3
𝑥′4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
−4 −3 2 0
0 0 0 1
3 0 −1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

cos 𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑥⃗′ = 𝐴𝑥⃗ + 𝑓(𝑡)

2.9.3 Problem 1 section 7.2

Verify the product law for differentiation (𝐴𝐵)′ = 𝐴′𝐵 + 𝐴𝐵′

𝐴(𝑡) =
⎡
⎢⎢⎢⎢⎣
𝑡 2𝑡 − 1
𝑡3 1

𝑡

⎤
⎥⎥⎥⎥⎦, 𝐵(𝑡) =

⎡
⎢⎢⎢⎢⎣
1 − 𝑡 1 + 𝑡
3𝑡2 4𝑡3

⎤
⎥⎥⎥⎥⎦

Solution

𝐴𝐵 =
⎡
⎢⎢⎢⎢⎣
𝑡 2𝑡 − 1
𝑡3 𝑡−1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 − 𝑡 1 + 𝑡
3𝑡2 4𝑡3

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
𝑡�6𝑡2 − 4𝑡 + 1� 𝑡�8𝑡3 − 4𝑡2 + 𝑡 + 1�
𝑡�−𝑡3 + 𝑡2 + 3� 𝑡2�𝑡2 + 𝑡 + 4�

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
6𝑡3 − 4𝑡2 + 𝑡 8𝑡4 − 4𝑡3 + 𝑡2 + 𝑡
−𝑡4 + 𝑡3 + 3𝑡 𝑡4 + 𝑡3 + 4𝑡2

⎤
⎥⎥⎥⎥⎦
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Taking derivative of each entry w.r.t 𝑡 gives

(𝐴𝐵)′ =
⎡
⎢⎢⎢⎢⎣
18𝑡2 − 8𝑡 + 1 32𝑡3 − 12𝑡2 + 2𝑡 + 1
−4𝑡3 + 3𝑡2 + 3 4𝑡3 + 3𝑡2 + 8𝑡

⎤
⎥⎥⎥⎥⎦ (1)

Now

𝐴′(𝑡) =
𝑑
𝑑𝑡

⎡
⎢⎢⎢⎢⎣
𝑡 2𝑡 − 1
𝑡3 1

𝑡

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
1 2
3𝑡2 −𝑡−2

⎤
⎥⎥⎥⎥⎦

Hence

𝐴′(𝑡)𝐵(𝑡) =
⎡
⎢⎢⎢⎢⎣
1 2
3𝑡2 −𝑡−2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 − 𝑡 1 + 𝑡
3𝑡2 4𝑡3

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
6𝑡2 − 𝑡 + 1 8𝑡3 + 𝑡 + 1

−3𝑡3 + 3𝑡2 − 3 𝑡�3𝑡2 + 3𝑡 − 4�

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
6𝑡2 − 𝑡 + 1 8𝑡3 + 𝑡 + 1

−3𝑡3 + 3𝑡2 − 3 3𝑡3 + 3𝑡2 − 4𝑡

⎤
⎥⎥⎥⎥⎦ (2)

And

𝐵′(𝑡) =
𝑑
𝑑𝑡

⎡
⎢⎢⎢⎢⎣
1 − 𝑡 1 + 𝑡
3𝑡2 4𝑡3

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
−1 1
6𝑡 12𝑡2

⎤
⎥⎥⎥⎥⎦

Hence

𝐴(𝑡)𝐵′(𝑡) =
⎡
⎢⎢⎢⎢⎣
𝑡 2𝑡 − 1
𝑡3 1

𝑡

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
−1 1
6𝑡 12𝑡2

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
𝑡(12𝑡 − 7) 𝑡�24𝑡2 − 12𝑡 + 1�
6 − 𝑡3 𝑡3 + 12𝑡

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
12𝑡2 − 7𝑡 24𝑡3 − 12𝑡2 + 𝑡
6 − 𝑡3 𝑡3 + 12𝑡

⎤
⎥⎥⎥⎥⎦ (3)

Therefore, from (2,3)

𝐴′𝐵 + 𝐴𝐵′ =
⎡
⎢⎢⎢⎢⎣
6𝑡2 − 𝑡 + 1 8𝑡3 + 𝑡 + 1

−3𝑡3 + 3𝑡2 − 3 3𝑡3 + 3𝑡2 − 4𝑡

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣
12𝑡2 − 7𝑡 24𝑡3 − 12𝑡2 + 𝑡
6 − 𝑡3 𝑡3 + 12𝑡

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
�6𝑡2 − 𝑡 + 1� + �12𝑡2 − 7𝑡� �8𝑡3 + 𝑡 + 1� + �24𝑡3 − 12𝑡2 + 𝑡�
�−3𝑡3 + 3𝑡2 − 3� + �6 − 𝑡3� �3𝑡3 + 3𝑡2 − 4𝑡� + �𝑡3 + 12𝑡�

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
18𝑡2 − 8𝑡 + 1 32𝑡3 − 12𝑡2 + 2𝑡 + 1
−4𝑡3 + 3𝑡2 + 3 4𝑡3 + 3𝑡2 + 8𝑡

⎤
⎥⎥⎥⎥⎦ (4)

Comparing (1) and (4) shows they are the same. Therefore (𝐴𝐵)′ = 𝐴′𝐵 + 𝐴𝐵′ has been
verified.

2.9.4 Problem 5 section 7.2

Write the given system in the form 𝑥⃗′ = 𝑃(𝑡)𝑥⃗ + 𝑓(𝑡)

𝑥′ = 2𝑥 + 4𝑦 + 3𝑒𝑡

𝑦′ = 5𝑥 − 𝑦 − 𝑡2
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Solution

There are two first order ODE’s, hence we needs 2 states variables 𝑥1, 𝑥2. Let

𝑥1 = 𝑥 (1)

𝑥2 = 𝑦

Taking derivatives w.r.t time 𝑡 gives

𝑥′1 = 𝑥′

= 2𝑥 + 4𝑦 + 3𝑒𝑡

= 2𝑥1 + 4𝑥2 + 3𝑒𝑡

𝑥′2 = 𝑦′

= 5𝑥 − 𝑦 − 𝑡2

= 5𝑥1 − 𝑥2 − 𝑡2

Or in Matrix form

⎡
⎢⎢⎢⎢⎣
𝑥′1
𝑥′2

⎤
⎥⎥⎥⎥⎦ =

𝑃(𝑡)

���������⎡
⎢⎢⎢⎢⎣
2 4
5 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎦ +

𝑓(𝑡)
�⎡⎢⎢⎢⎢⎣
3𝑒𝑡

−𝑡2

⎤
⎥⎥⎥⎥⎦

𝑥⃗′ = 𝑃𝑥⃗ + 𝑓(𝑡)

Or using book notation ⎡
⎢⎢⎢⎢⎣
𝑥′

𝑦′

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
2 4
5 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥
𝑦

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣
3𝑒𝑡

−𝑡2

⎤
⎥⎥⎥⎥⎦

2.9.5 Problem 9 section 7.2

Write the given system in the form 𝑥⃗′ = 𝑃(𝑡)𝑥⃗ + 𝑓(𝑡)

𝑥′ = 3𝑥 − 4𝑦 + 𝑧 + 𝑡
𝑦′ = 𝑥 − 3𝑧 + 𝑡2

𝑧′ = 6𝑦 − 7𝑧 + 𝑡3

Solution

There are three first order ODE’s, hence we needs 3 states variables 𝑥1, 𝑥2, 𝑥3. Let

𝑥1 = 𝑥 (1)

𝑥2 = 𝑦
𝑥3 = 𝑧

Taking derivatives w.r.t time 𝑡 gives

𝑥′1 = 𝑥′

= 3𝑥 − 4𝑦 + 𝑧 + 𝑡
= 3𝑥1 − 4𝑥2 + 𝑥3 + 𝑡

𝑥′2 = 𝑦′

= 𝑥 − 3𝑧 + 𝑡2

= 𝑥1 − 3𝑥3 + 𝑡2

𝑥′3 = 6𝑦 − 7𝑧 + 𝑡3

= 6𝑥2 − 7𝑥3 + 𝑡3

Or in Matrix form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥′1
𝑥′2
𝑥′3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

𝑃(𝑡)

���������������⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −4 1
1 0 −3
0 6 −7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

𝑓(𝑡)
⏞⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡
𝑡2

𝑡3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑥⃗′ = 𝑃𝑥⃗ + 𝑓(𝑡)
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Or using book notation ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥′

𝑦′

𝑧′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −4 1
1 0 −3
0 6 −7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥
𝑦
𝑧

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡
𝑡2

𝑡3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.9.6 Problem 15 section 7.2

First verify that the given vectors are solutions of the given system. Then use the Wronskian
to show that they are linearly independent. Finally, write the general solution of the system

𝑥⃗′ =
⎡
⎢⎢⎢⎢⎣
3 −1
5 −3

⎤
⎥⎥⎥⎥⎦𝑥⃗

𝑥⃗1 = 𝑒2𝑡
⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦

𝑥⃗2 = 𝑒−2𝑡
⎡
⎢⎢⎢⎢⎣
1
5

⎤
⎥⎥⎥⎥⎦

Solution

The system is

𝑥⃗′(𝑡) = 𝐴𝑥⃗ (1)

To verify each vector solution, we will check if the LHS is the same as the RHS. The LHS
of (1) is

𝑑
𝑑𝑡
𝑥⃗1(𝑡) =

𝑑
𝑑𝑡
𝑒2𝑡
⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦

= 2𝑒2𝑡
⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦

= 2𝑥⃗1(𝑡) (2)

The RHS of (1) is

𝐴𝑥⃗1=⃗
⎡
⎢⎢⎢⎢⎣
3 −1
5 −3

⎤
⎥⎥⎥⎥⎦𝑥⃗1

=
⎡
⎢⎢⎢⎢⎣
3 −1
5 −3

⎤
⎥⎥⎥⎥⎦𝑒

2𝑡

⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦

= 𝑒2𝑡
⎡
⎢⎢⎢⎢⎣
3 −1
5 −3

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦

= 𝑒2𝑡
⎡
⎢⎢⎢⎢⎣
2
2

⎤
⎥⎥⎥⎥⎦

= 2𝑒2𝑡
⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦

= 2𝑥⃗1(𝑡) (3)

Comparing (1,2) shows they are the same. Now we do the same for the second vector
solution. The LHS of (1) is

𝑑
𝑑𝑡
𝑥⃗2(𝑡) =

𝑑
𝑑𝑡
𝑒−2𝑡

⎡
⎢⎢⎢⎢⎣
1
5

⎤
⎥⎥⎥⎥⎦

= −2𝑒−2𝑡
⎡
⎢⎢⎢⎢⎣
1
5

⎤
⎥⎥⎥⎥⎦

= −2𝑥⃗2(𝑡) (4)
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The RHS of (1) is

𝐴𝑥⃗2=⃗
⎡
⎢⎢⎢⎢⎣
3 −1
5 −3

⎤
⎥⎥⎥⎥⎦𝑥⃗2

=
⎡
⎢⎢⎢⎢⎣
3 −1
5 −3

⎤
⎥⎥⎥⎥⎦𝑒

−2𝑡

⎡
⎢⎢⎢⎢⎣
1
5

⎤
⎥⎥⎥⎥⎦

= 𝑒−2𝑡
⎡
⎢⎢⎢⎢⎣
3 −1
5 −3

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1
5

⎤
⎥⎥⎥⎥⎦

= 𝑒−2𝑡
⎡
⎢⎢⎢⎢⎣
−2
−10

⎤
⎥⎥⎥⎥⎦

= −2𝑒−2𝑡
⎡
⎢⎢⎢⎢⎣
1
5

⎤
⎥⎥⎥⎥⎦

= −2𝑥⃗2(𝑡) (5)

Comparing (4,5) shows they are the same. Both solution vectors verified. The Wronskian
is the determinant of the matrix whose columns are the vectors 𝑥⃗1(𝑡), 𝑥⃗2(𝑡). Hence

�
𝑒2𝑡 𝑒−2𝑡

𝑒2𝑡 5𝑒−2𝑡
� = 5�𝑒2𝑡𝑒−2𝑡� − 𝑒2𝑡𝑒−2𝑡

= 5 − 1
= 4

Since the determinant is not zero (anywhere), then 𝑥⃗1(𝑡), 𝑥⃗2(𝑡) are linearly independent.

The general solution is linear combination of the basis vector solutions. Therefore

𝑥⃗(𝑡) = 𝑐1𝑥⃗1(𝑡) + 𝑐2𝑥⃗2(𝑡)

= 𝑐1𝑒2𝑡
⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦ + 𝑐2𝑒

−2𝑡

⎡
⎢⎢⎢⎢⎣
1
5

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
𝑐1𝑒2𝑡 + 𝑐2𝑒−2𝑡

𝑐1𝑒2𝑡 + 5𝑐2𝑒−2𝑡

⎤
⎥⎥⎥⎥⎦

2.9.7 Problem 19 section 7.2

First verify that the given vectors are solutions of the given system. Then use the Wronskian
to show that they are linearly independent. Finally, write the general solution of the system

𝑥⃗′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1
1 0 1
1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑥⃗

𝑥⃗1 = 𝑒2𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑥⃗2 = 𝑒−𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑥⃗2 = 𝑒−𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

The system is

𝑥⃗′(𝑡) = 𝐴𝑥⃗ (1)
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To verify each vector solution, we will check if the LHS is the same as the RHS. The LHS
of (1) is

𝑑
𝑑𝑡
𝑥⃗1(𝑡) =

𝑑
𝑑𝑡
𝑒2𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 2𝑒2𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 2𝑥⃗1(𝑡) (2)

The RHS of (1) is

𝐴𝑥⃗1=⃗

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1
1 0 1
1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑥⃗1

= 𝑒2𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1
1 0 1
1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑒2𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 2𝑒2𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 2𝑥⃗1(𝑡) (3)

Comparing (1,2) shows they are the same. Now we do the same for 𝑥⃗2(𝑡). The LHS of (1)
is

𝑑
𝑑𝑡
𝑥⃗2(𝑡) =

𝑑
𝑑𝑡
𝑒−𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −𝑒−𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −𝑥⃗2(𝑡) (4)

The RHS of (1) is

𝐴𝑥⃗2=⃗

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1
1 0 1
1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑥⃗2

= 𝑒−𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1
1 0 1
1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑒−𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −𝑒−𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −𝑥⃗2(𝑡) (5)
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Comparing (4,5) shows they are the same. Now we do the same for 𝑥⃗3(𝑡). The LHS of (1)
is

𝑑
𝑑𝑡
𝑥⃗3(𝑡) =

𝑑
𝑑𝑡
𝑒−𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −𝑒−𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −𝑥⃗3(𝑡) (6)

The RHS of (1) is

𝐴𝑥⃗3=⃗

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1
1 0 1
1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑥⃗3

= 𝑒−𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1
1 0 1
1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑒−𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −𝑒−𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −𝑥⃗3(𝑡) (7)

Comparing (6,7) shows they are the same. All three vectors solutions verified. The Wron-
skian is the determinant of the matrix whose columns are the vectors 𝑥⃗1(𝑡), 𝑥⃗2(𝑡), 𝑥⃗3(𝑡). Hence

�

�

𝑒2𝑡 𝑒−𝑡 0
𝑒2𝑡 0 𝑒−𝑡

𝑒2𝑡 −𝑒−𝑡 −𝑒−𝑡

�

�
= 𝑒2𝑡�

0 𝑒−𝑡

−𝑒−𝑡 −𝑒−𝑡
� − 𝑒−𝑡�

𝑒2𝑡 𝑒−𝑡

𝑒2𝑡 −𝑒−𝑡
�

= 𝑒2𝑡�𝑒−2𝑡� − 𝑒−𝑡�𝑒𝑡 − 𝑒𝑡�

= 1 − 𝑒−𝑡(0)
= 1

Since the determinant is not zero (anywhere), then 𝑥⃗1(𝑡), 𝑥⃗2(𝑡), 𝑥⃗3(𝑡) are linearly independent.
The general solution is linear combination of the basis vector solutions. Therefore

𝑥⃗(𝑡) = 𝑐1𝑥⃗1(𝑡) + 𝑐2𝑥⃗2(𝑡) + 𝑐3𝑥⃗3(𝑡)

= 𝑐1𝑒2𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑐2𝑒−𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑐3𝑒−𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1𝑒2𝑡 + 𝑐2𝑒−𝑡

𝑐1𝑒2𝑡 + 𝑐3𝑒−𝑡

𝑐1𝑒2𝑡 + 𝑐2𝑒−𝑡 + 𝑐3𝑒−𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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2.9.8 Problem 24 section 7.2

Find the particular solution of the indicated linear system that satisfies the given initial
conditions. The system of problem 15.

𝑥⃗′ =
⎡
⎢⎢⎢⎢⎣
3 −1
5 −3

⎤
⎥⎥⎥⎥⎦𝑥⃗

𝑥⃗1 = 𝑒2𝑡
⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦

𝑥⃗2 = 𝑒−2𝑡
⎡
⎢⎢⎢⎢⎣
1
5

⎤
⎥⎥⎥⎥⎦

𝑥1(0) = 0, 𝑥2(0) = 5
Solution

The general solution is

𝑥⃗(𝑡) = 𝑐1𝑥⃗1(𝑡) + 𝑐2𝑥⃗2(𝑡)⎡
⎢⎢⎢⎢⎣
𝑥1(𝑡)
𝑥2(𝑡)

⎤
⎥⎥⎥⎥⎦ = 𝑐1𝑒

2𝑡

⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦ + 𝑐2𝑒

−2𝑡

⎡
⎢⎢⎢⎢⎣
1
5

⎤
⎥⎥⎥⎥⎦ (1)

At 𝑡 = 0, the above becomes
⎡
⎢⎢⎢⎢⎣
0
5

⎤
⎥⎥⎥⎥⎦ = 𝑐1

⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦ + 𝑐2

⎡
⎢⎢⎢⎢⎣
1
5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
0
5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
𝑐1 + 𝑐2
𝑐1 + 5𝑐2

⎤
⎥⎥⎥⎥⎦

Two equations with two unknown. From first equation 𝑐1 = −𝑐2. Substituting in the second
equation gives 5 = −𝑐2 + 5𝑐2 or 4𝑐2 = 5. Hence 𝑐2 =

5
4 . Therefore 𝑐1 = −5

4 .Therefore the
solution that satisfies the initial conditions is, from (1)

⎡
⎢⎢⎢⎢⎣
𝑥1(𝑡)
𝑥2(𝑡)

⎤
⎥⎥⎥⎥⎦ = −

5
4
𝑒2𝑡
⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦ +

5
4
𝑒−2𝑡

⎡
⎢⎢⎢⎢⎣
1
5

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
−5
4𝑒

2𝑡 + 5
4𝑒

−2𝑡

−5
4𝑒

2𝑡 + 25
4 𝑒

−2𝑡

⎤
⎥⎥⎥⎥⎦

Or
𝑥⃗(𝑡) =

5
4
�−𝑥⃗1(𝑡) + 𝑥⃗2(𝑡)�

2.9.9 Problem 28 section 7.2

Find the particular solution of the indicated linear system that satisfies the given initial
conditions. The system of problem 19.

𝑥⃗′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1
1 0 1
1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑥⃗

𝑥⃗1 = 𝑒2𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑥⃗2 = 𝑒−𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑥⃗2 = 𝑒−𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑥1(0) = 10, 𝑥2(0) = 12, 𝑥3(0) = −1

Solution

The general solution is

𝑥⃗(𝑡) = 𝑐1𝑥⃗1(𝑡) + 𝑐2𝑥⃗2(𝑡) + 𝑐3𝑥⃗3(𝑡)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1(𝑡)
𝑥2(𝑡)
𝑥3(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑐1𝑒2𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑐2𝑒−𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑐3𝑒−𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

At 𝑡 = 0, the above becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

10
12
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑐1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑐2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑐3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

10
12
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1 + 𝑐2
𝑐1 + 𝑐3

𝑐1 − 𝑐2 − 𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
1 0 1
1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

10
12
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

The augmented system is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 10
1 0 1 12
1 −1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 10
0 −1 1 2
1 −1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 10
0 −1 1 2
0 −2 −1 −11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 2𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 10
0 −1 1 2
0 0 −3 −15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the system (2) now is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
0 −1 1
0 0 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

10
2
−15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Last row gives 𝑐3 = 5. Second row gives −𝑐2 + 𝑐3 = 2. Hence −𝑐2 = 2 − 5 = −3 or 𝑐2 = 3. First
row gives 𝑐1 + 𝑐2 = 10. Hence 𝑐1 = 10 − 3 = 7. Therefore

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

7
3
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Substituting these in (1) gives

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1(𝑡)
𝑥2(𝑡)
𝑥3(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 7𝑒2𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 3𝑒−𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 5𝑒−𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

or
𝑥⃗(𝑡) = 7𝑥⃗1(𝑡) + 3𝑥⃗2(𝑡) + 5𝑥⃗3(𝑡)

2.9.10 Additional problem 1

There is a system of three brine tanks. Tanks 1 and 3 begin with 200 L of fresh water each
and tank 2 begins with 100 L of water and 10 kg of salt.

Water containing 2 kg of salt per liter is pumped into tank 1 at a rate of 15 L/min. The
well-mixed solution is pumped from tank 1 to tank 2 at a rate of 20 L/min, from tank 2 to
tank 3 at a rate of 20 L/min, and from tank 3 to tank 1 at a rate of 5 L/min. The well-mixed
solution is pumped out of tank 3 at a rate of 15 L/min.

(a) Draw and label a picture that illustrates this situation. (b) Let 𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡) denote the
amount of salt (in kilograms) in tanks 1, 2, and 3 respectively after 𝑡 minutes. Write down
differential equations for 𝑥′1(𝑡), 𝑥′2(𝑡), 𝑥′3(𝑡) .(c) Write the system of differential equations in
(b) as a matrix equation 𝑥⃗′ = 𝑃𝑥⃗ + 𝑓(𝑡). What are the initial conditions 𝑥⃗(0) ?

Solution

2.9.10.1 Part (a)

15 Liter/Min

salt: 2 kg/Liter

200 L of fresh water

20 Liter/Min

Salt: x1(t)
V1(t)

100 L of fresh water
10 Kg salt

V1(t), x1(t) V2(t), x2(t)

20 Liter/Min

Salt: x2(t)
V2(t)

200 L of fresh water

V3(t), x3(t)

5 Liter/Min

Salt: x3(t)
V3(t)

15 Liter/Min

xi(t) is mass of salt in tank i
Salt: x3(t)

V3(t)

Figure 2.10: Diagram description of the problem

2.9.10.2 Part (b)

𝑥′1(𝑡) = rate of flow in − rate of flow out

= �15�
L
min�

2�
kg
L �� + �5�

L
min�

𝑥3(𝑡)
𝑉3(𝑡)

�
kg
L �� − �20�

L
min�

𝑥1(𝑡)
𝑉1(𝑡)

�
kg
L �� (1)

And

𝑥′2(𝑡) = rate of flow in − rate of flow out

= �20�
L
min�

𝑥1(𝑡)
𝑉1(𝑡)

�
kg
L �� − �20�

L
min�

𝑥2(𝑡)
𝑉2(𝑡)

�
kg
L �� (2)

And

𝑥′3(𝑡) = rate of flow in − rate of flow out

= �20�
L
min�

𝑥2(𝑡)
𝑉2(𝑡)

�
kg
L �� − �15�

L
min�

𝑥3(𝑡)
𝑉3(𝑡)

�
kg
L �� − �5�

L
min�

𝑥3(𝑡)
𝑉3(𝑡)

�
kg
L �� (3)
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The volume of water at time 𝑡 is found as follows. 𝑉(𝑡) = 𝑉(0)+(rate in-rate out)𝑡. Therefore

𝑉1(𝑡) = 𝑉1(0)(L) + (15 + 5 − 20)�
L
min�

𝑡

= 200 + 0𝑡 (4)

= 200

And

𝑉2(𝑡) = 𝑉2(0)(L) + (20 − 20)�
L
min�

𝑡

= 100 + 0𝑡 (5)

= 100

And

𝑉3(𝑡) = 𝑉3(0)(L) + (20 − 5 − 15)�
L
min�

𝑡

= 200 + 0𝑡 (6)

= 200

We see from the above, that the volume of water in each tank is constant over time. Now,
substituting (4,5,6) into (1,2,3) gives the equations needed.

𝑥′1(𝑡) = 30 +
5
200

𝑥3 −
20
200

𝑥1

= 30 +
1
40
𝑥3 −

1
10
𝑥1 (7)

And

𝑥′2(𝑡) =
20
200

𝑥1 −
20
100

𝑥2

=
1
10
𝑥1 −

2
10
𝑥2 (8)

And

𝑥′3(𝑡) =
20
100

𝑥2 −
15
200

𝑥3 −
5
200

𝑥3

=
2
10
𝑥2 −

1
10
𝑥3 (9)

In summary, the differential equations are

𝑥′1(𝑡) = 30 +
1
40
𝑥3(𝑡) −

1
10
𝑥1(𝑡)

𝑥′2(𝑡) =
1
10
𝑥1(𝑡) −

2
10
𝑥2(𝑡)

𝑥′3(𝑡) =
2
10
𝑥2(𝑡) −

1
10
𝑥3(𝑡)

2.9.10.3 Part (c)

In Matrix form, the solution found in part b is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥′1(𝑡)
𝑥′2(𝑡)
𝑥′3(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
10 0 1

40
1
10 − 2

10 0
0 2

10 − 1
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1(𝑡)
𝑥2(𝑡)
𝑥3(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

30
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1
10

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 1
4

1 −2 0
0 2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1(𝑡)
𝑥2(𝑡)
𝑥3(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

30
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑥⃗′ = 𝑃𝑥⃗ + 𝑓(𝑡)

The initial conditions are ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1(0)
𝑥2(0)
𝑥3(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
10
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(kg)
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2.9.11 key solution for HW9

Homework 9 – Solutions

These solutions demonstrate one way to approach each of the homework problems. In many
cases, there are other correct solutions. If you would like to discuss alternative solutions or
the grading of your assignment, please see me during office hours or send me an email.

Textbook Problems:

7.1.8 Our original differential equations are

x′′ + 3x′ + 4x− 2y = 0

y′′ + 2y′ − 3x + y = cos t

We define new functions x1 = x, x2 = x′, x3 = y, x4 = y′. Since x′′ and y′′ are the
highest derivatives we have, we can stop defining new functions at the first derivatives.
We make the appropriate substitutions, and add additional equations to explicate the
relationships between our newly defined variables.

x′2 + 3x2 + 4x1 − 2x3 = 0

x′4 + 2x4 − 3x1 + x3 = cos t

x′3 = x4

x′1 = x2

Note that the first derivative of each of our functions appears exactly once, which
indicates we have enough equations.

7.2.1 We have A(t) =

[
t 2t− 1
t3 1

t

]
and B(t) =

[
1− t 1 + t
3t2 4t3

]
. We compute

d

dt
(AB) =

d

dt

[
t(1− t) + (2t− 1)3t2 t(1 + t) + (2t− 1)4t3

t3(1− t) + 3t t3(1 + t) + 4t2

]
=

d

dt

[
t− 4t2 + 6t3 t + t2 + 8t4 − 4t3

t3 − t4 + 3t t3 + t4 + 4t2

]
=

[
1− 8t + 18t2 1 + 2t + 32t3 − 12t2

3t2 − 4t3 + 3 3t2 + 4t3 + 8t

]
On the other hand, we have

A′B + AB′ =

[
1 2

3t2 −t−2
] [

1− t 1 + t
3t2 4t3

]
+

[
t 2t− 1
t3 1

t

] [
−1 1
6t 12t2

]
=

[
1− t + 6t2 1 + t + 8t3

3t2 − 3t3 − 3 3t2 + 3t3 − 4t

]
+

[
−7t + 12t2 t + 24t3 − 12t2

−t3 + 6 t3 + 12t

]
=

[
1− 8t + 18t2 1 + 2t− 12t2 + 32t3

3 + 3t2 − 4t3 8t + 3t2 + 4t3

]
A few of the entries need rearranging, but the resulting matrices are indeed equal.

1
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7.2.5 We can rewrite the system as[
x
y

]′
=

[
2 4
5 −1

] [
x
y

]
+

[
3et

−t2
]

7.2.9 We can rewrite the system asxy
z

′ =
3 −4 1

1 0 −3
0 6 −7

xy
z

+

 t
t2

t3


7.2.15 ~x1 is a solution, since

2e2t
[
1
1

]
= e2t

[
3 −1
5 −3

] [
1
1

]
= e2t

[
2
2

]
~x2 is a solution, since

−2e−2t
[
1
5

]
= e−2t

[
3 −1
5 −3

] [
1
5

]
= e−2t

[
−2
−10

]
These solutions are linearly independent, since the Wronskian is

e2te−2t det

[
1 1
1 5

]
= 4

The general solution is

~x(t) = c1e
2t

[
1
1

]
+ c2e

−2t
[
1
5

]
7.2.19 ~x1 is a solution, since

2e2t

1
1
1

 = e2t

0 1 1
1 0 1
1 1 0

1
1
1

 = e2t

2
2
2


~x2 is a solution, since

−e−t
 1

0
−1

 = e2t

0 1 1
1 0 1
1 1 0

 1
0
−1

 = e−t

−1
0
1


~x3 is a solution, since

−e−t
 0

1
−1

 = e2t

0 1 1
1 0 1
1 1 0

 0
1
−1

 = e−t

 0
−1
1


2

182



2.9. HW 9 CHAPTER 2. HWS

These solutions are linearly independent, since the Wronskian is

e2te−te−t det

1 1 0
1 0 1
1 −1 −1

 = det

[
0 1
−1 −1

]
− det

[
1 1
1 −1

]
= 1− (−2)

= 3

The general solution is

~x(t) = c1e
2t

1
1
1

+ c2e
−t

 1
0
−1

+ c3e
−t

 0
1
−1


7.2.24 Using the general solution we wrote down in problem 15,

~x(0) = c1

[
1
1

]
+ c2

[
1
5

]
=

[
c1 + c2
c1 + 5c2

]

Given that ~x(0) =

[
0
5

]
, we have the linear system

[
1 1
1 5

] [
c1
c2

]
=

[
0
5

]
We row reduce [

1 1 0
1 5 5

]
−R1+R2−−−−−→

[
1 1 0
0 4 5

]
Now we can solve to get c2 = 5/4 and c1 = −5/4. The particular solution is thus
~x = −5

4
~x1 + 5

4
~x2

7.2.28

Using the general solution we wrote down in problem 19,

~x(0) = c1

1
1
1

+ c2

 1
0
−1

+ c3

 0
1
−1


Given the initial conditions, we have the linear system1 1 0

1 0 1
1 −1 −1

c1c2
c3

 =

10
12
−1


3
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We row reduce 1 1 0 10
1 0 1 12
1 −1 −1 −1

 −R1+R2−−−−−→
−R1+R3

1 1 0 10
0 −1 1 2
0 −2 −1 −11


−2R2+R3−−−−−→

1 1 0 10
0 −1 1 2
0 0 −3 −15


We now solve to get c3 = 5, c2 = 3, and c1 = 7. The particular solution is thus ~x =
7~x1 + 3~x2 + 5~x3

Additional Problems:

1. The picture below illustrates this system:

Note that each tank has 20 L of water flowing in and 20 L of water flowing out, so all
volumes are constant. We calculate the change in salt as (rate in) ∗ (concentration in) −
(rate out) ∗ (concentration out). This gives us the system of differential equations

x′1 = 30 + 5
x3

200
− 20

x1

200
= −x1

10
+

x3

40
+ 30

x′2 = 20
x1

200
− 20

x2

100
=

x1

10
− x2

5

x′3 = 20
x2

100
− 5

x3

200
− 15

x3

200
=

x2

5
− x3

10

The matrix version of this system is

~x′ =

−1/10 0 1/40
1/10 −1/5 0

0 1/5 −1/10

 ~x +

30
0
0


4
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Our initial condition is

~x(0) =

 0
10
0



5
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2.10 HW 10

Local contents
2.10.1 Problems listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
2.10.2 Problem 4, section 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
2.10.3 Problem 6, section 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
2.10.4 Problem 8, section 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
2.10.5 Problem 18, section 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
2.10.6 Problem 38, section 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
2.10.7 Additional problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
2.10.8 Additional problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
2.10.9 key solution for HW10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

2.10.1 Problems listing

Homework 10 - Due November 19

Homework instructions: Complete the assigned problems on your own paper. Once you
are finished, scan or photograph your work and upload it to Gradescope. When prompted,
tell Gradescope where to find each problem.
You are allowed (and in fact encouraged) to work with other students on homework assign-
ments. If you do that, please indicate on each problem who you worked with. If you use
sources other than your notes, the textbook, and any resources on Canvas for your home-
work, you must indicate the source on each problem. You are not permitted to view, request,
or look for solutions to any of the homework problems from solutions manuals, homework
help websites, online forums, other students, or any other sources.

Textbook Problems:

• §7.3: 4, 6, 8, 18, 38 (do not sketch direction fields or solution curves, do find particular
solutions when asked for)

Additional Problems:

1. Consider the differential equation

x(3) + x′′ − 2x′ = 0

(a) Transform this into an equivalent system of first-order differential equations.

(b) Write the system from (a) as x′ = Ax (the matrix A should be 3× 3).

(c) Use the eigenvalue method to solve the system in (b)

(d) Using your solution to (c), what is the general solution x(t) to the given differential
equation?

2. Consider the following system of brine tanks:

There are three tanks. Tank 1 contains 20 L of water, tank 2 contains 30 L of
water, and tank 3 contains 60L of water. Fresh water is pumped into tank 1 at
a rate of 120 L/min. The well-mixed solution is pumped from tank 1 to tank
2, from tank 2 to tank 3, and out of tank 3 all at a rate of 120 L/min.

(a) Draw and label a diagram describing the system

(b) Let x(t) =

x1(t)
x2(t)
x3(t)

 be the vector function of the amount of salt in each tank at time

t. Write a differential equation x′ = Ax describing the system.

(c) Find the general solution to the differential equation you wrote in (b) using the
eigenvalue method

(d) Initially, there is 100 kg of salt in tank 1 and 20 kg of salt in tank 2. Find the
particular solution corresponding to these initial conditions.

1
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2.10.2 Problem 4, section 7.3

In Problems 1 through 16, apply the eigenvalue method of this section to find a general
solution of the given system. If initial values are given, find also the corresponding particular
solution.

𝑥′1(𝑡) = 4𝑥1(𝑡) + 𝑥2(𝑡)
𝑥′2(𝑡) = 6𝑥1(𝑡) − 𝑥2(𝑡)

Solution

This is a system of linear ODE’s which can be written as

𝑥⃗′(𝑡) = 𝐴 𝑥⃗(𝑡)

Or ⎡
⎢⎢⎢⎢⎣
𝑥′1(𝑡)
𝑥′2(𝑡)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
4 1
6 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥1(𝑡)
𝑥2(𝑡)

⎤
⎥⎥⎥⎥⎦

The first step is find the homogeneous solution. We start by finding the eigenvalues of 𝐴.
This is done by solving the following equation for the eigenvalues 𝜆

det(𝐴 − 𝜆𝐼) = 0

Expanding gives

det

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
4 1
6 −1

⎤
⎥⎥⎥⎥⎦ − 𝜆

⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ = 0

Therefore

det

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
4 − 𝜆 1
6 −1 − 𝜆

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ = 0

Which gives the characteristic equation

𝜆2 − 3𝜆 − 10 = 0
(𝜆 − 5)(𝜆 + 2) = 0

The roots are therefore

𝜆1 = 5
𝜆2 = −2

Next, the eigenvectors for each eigenvalue are found.

eigenvalue −2

We need to solve 𝐴𝑣⃗ = 𝜆𝑣⃗ or (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗ which becomes
⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
4 1
6 −1

⎤
⎥⎥⎥⎥⎦ − (−2)

⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
6 1
6 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

Using first row, and letting 𝑣2 = 1 gives 6𝑣1 = −1 or 𝑣1 =
−1
6 . Hence the eigenvector is

𝑣⃗1 =
⎡
⎢⎢⎢⎢⎣

−1
6
1

⎤
⎥⎥⎥⎥⎦

normalizing the eigenvector gives

𝑣⃗1 =
⎡
⎢⎢⎢⎢⎣
−1
6

⎤
⎥⎥⎥⎥⎦

eigenvalue 5
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We need to solve 𝐴𝑣⃗ = 𝜆𝑣⃗ or (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗ which becomes
⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
4 1
6 −1

⎤
⎥⎥⎥⎥⎦ − (5)

⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
−1 1
6 −6

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

Using first row, and letting 𝑣2 = 1 gives −𝑣1 = −1 or 𝑣 = 1. Hence the eigenvector is

𝑣⃗2 =
⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦

The following table gives a summary of this result. It shows for each eigenvalue the algebraic
multiplicity 𝑚, and its geometric multiplicity 𝑘 and the eigenvectors associated with the
eigenvalue.

If 𝑚 > 𝑘 then the eigenvalue is defective which means the number of normal linearly
independent eigenvectors associated with this eigenvalue (called the geometric multiplicity
𝑘) does not equal the algebraic multiplicity 𝑚, and we need to determine an additional
𝑚 − 𝑘 generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic 𝑚 geometric 𝑘 defective? eigenvectors

5 1 1 No

⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦

−2 1 1 No

⎡
⎢⎢⎢⎢⎣
−1
6

⎤
⎥⎥⎥⎥⎦

Now that the we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is if
the eigenvalue is defective.

Since eigenvalue 5 is real and distinct then the corresponding eigenvector solution is

𝑥⃗1(𝑡) = 𝑒5𝑡 𝑣⃗1

= 𝑒5𝑡
⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦

Since eigenvalue −2 is real and distinct then the corresponding eigenvector solution is

𝑥⃗2(𝑡) = 𝑒−2𝑡 𝑣⃗2

= 𝑒−2𝑡
⎡
⎢⎢⎢⎢⎣
−1
6

⎤
⎥⎥⎥⎥⎦

Therefore the final solution is

𝑥⃗ℎ(𝑡) = 𝑐1𝑥⃗1(𝑡) + 𝑐2𝑥⃗2(𝑡)

Which is written as ⎡
⎢⎢⎢⎢⎣
𝑥1(𝑡)
𝑥2(𝑡)

⎤
⎥⎥⎥⎥⎦ = 𝑐1𝑒

5𝑡

⎡
⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎦ + 𝑐2𝑒

−2𝑡

⎡
⎢⎢⎢⎢⎣
−1
6

⎤
⎥⎥⎥⎥⎦

Which becomes ⎡
⎢⎢⎢⎢⎣
𝑥1(𝑡)
𝑥2(𝑡)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
𝑐1𝑒5𝑡 − 𝑐2𝑒−2𝑡

𝑐1𝑒5𝑡 + 6𝑐2𝑒−2𝑡

⎤
⎥⎥⎥⎥⎦
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2.10.3 Problem 6, section 7.3

In Problems 1 through 16, apply the eigenvalue method of this section to find a general
solution of the given system. If initial values are given, find also the corresponding particular
solution.

𝑥′1(𝑡) = 9𝑥1(𝑡) + 5𝑥2(𝑡)
𝑥′2(𝑡) = −6𝑥1(𝑡) − 2𝑥2(𝑡)

With initial conditions
𝑥1(0) = 1, 𝑥2(0) = 0

Solution

This is a system of linear ODE’s which can be written as

𝑥⃗′(𝑡) = 𝐴 𝑥⃗(𝑡)

Or ⎡
⎢⎢⎢⎢⎣
𝑥′1(𝑡)
𝑥′2(𝑡)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
9 5
−6 −2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥1(𝑡)
𝑥2(𝑡)

⎤
⎥⎥⎥⎥⎦

The first step is find the homogeneous solution. We start by finding the eigenvalues of 𝐴.
This is done by solving the following equation for the eigenvalues 𝜆

det(𝐴 − 𝜆𝐼) = 0

Expanding gives

det

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
9 5
−6 −2

⎤
⎥⎥⎥⎥⎦ − 𝜆

⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ = 0

Therefore

det

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
9 − 𝜆 5
−6 −2 − 𝜆

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ = 0

Which gives the characteristic equation

𝜆2 − 7𝜆 + 12 = 0
(𝜆 − 3)(𝜆 − 4) = 0

The roots of the above are therefore

𝜆1 = 3
𝜆2 = 4

Next, the eigenvectors for each eigenvalue are found.

eigenvalue 3

We need to solve 𝐴𝑣⃗ = 𝜆𝑣⃗ or (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗ which becomes
⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
9 5
−6 −2

⎤
⎥⎥⎥⎥⎦ − (3)

⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
6 5
−6 −5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

Using first row, and letting 𝑣2 = 1 gives 6𝑣1 = −5 or 𝑣1 =
−5
6 . Hence the eigenvector is

𝑣⃗1 =
⎡
⎢⎢⎢⎢⎣

−5
6
1

⎤
⎥⎥⎥⎥⎦

Normalizing gives

𝑣⃗1 =
⎡
⎢⎢⎢⎢⎣
−5
6

⎤
⎥⎥⎥⎥⎦
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eigenvalue 4

We need to solve 𝐴𝑣⃗ = 𝜆𝑣⃗ or (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗ which becomes
⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
9 5
−6 −2

⎤
⎥⎥⎥⎥⎦ − (4)

⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
5 5
−6 −6

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

Using first row, and letting 𝑣2 = 1 gives 5𝑣1 = −5 or 𝑣1 = −1. Hence the eigenvector is

𝑣⃗2 =
⎡
⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎦

The following table gives a summary of this result. It shows for each eigenvalue the algebraic
multiplicity 𝑚, and its geometric multiplicity 𝑘 and the eigenvectors associated with the
eigenvalue.

If 𝑚 > 𝑘 then the eigenvalue is defective which means the number of normal linearly
independent eigenvectors associated with this eigenvalue (called the geometric multiplicity
𝑘) does not equal the algebraic multiplicity 𝑚, and we need to determine an additional
𝑚 − 𝑘 generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic 𝑚 geometric 𝑘 defective? eigenvectors

4 1 1 No

⎡
⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎦

3 1 1 No

⎡
⎢⎢⎢⎢⎣
−5
6

⎤
⎥⎥⎥⎥⎦

Now that the we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is if
the eigenvalue is defective.

Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is

𝑥⃗1(𝑡) = 𝑣⃗1𝑒4𝑡

= 𝑒4𝑡
⎡
⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎦

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

𝑥⃗2(𝑡) = 𝑣⃗2𝑒3𝑡

= 𝑒3𝑡
⎡
⎢⎢⎢⎢⎣
−5
6

⎤
⎥⎥⎥⎥⎦

Therefore the final solution is

𝑥⃗ℎ(𝑡) = 𝑐1𝑥⃗1(𝑡) + 𝑐2𝑥⃗2(𝑡)

Which is written as ⎡
⎢⎢⎢⎢⎣
𝑥1(𝑡)
𝑥2(𝑡)

⎤
⎥⎥⎥⎥⎦ = 𝑐1𝑒

4𝑡

⎡
⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎦ + 𝑐2𝑒

3𝑡

⎡
⎢⎢⎢⎢⎣
−5
6

⎤
⎥⎥⎥⎥⎦

Which becomes
⎡
⎢⎢⎢⎢⎣
𝑥1(𝑡)
𝑥2(𝑡)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
−𝑐1𝑒4𝑡 − 5𝑐2𝑒3𝑡

𝑐1𝑒4𝑡 + 6𝑐2𝑒3𝑡

⎤
⎥⎥⎥⎥⎦ (1)
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Since initial conditions are given, the solution above needs to be updated by solving for
the constants of integrations using the given initial conditions

⎡
⎢⎢⎢⎢⎣
𝑥1(0) = 1
𝑥2(0) = 0

⎤
⎥⎥⎥⎥⎦

Substituting initial conditions into the above solution at 𝑡 = 0 gives
⎡
⎢⎢⎢⎢⎣
1
0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
−𝑐1 − 5𝑐2
𝑐1 + 6𝑐2

⎤
⎥⎥⎥⎥⎦

Adding first equation to second gives 1 = 𝑐2. From second equation this gives 0 = 𝑐1 + 6 or
𝑐1 = −6

𝑐1 = −6
𝑐2 = 1

Substituting these constants back in Eq. (1) gives
⎡
⎢⎢⎢⎢⎣
𝑥1(𝑡)
𝑥2(𝑡)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
6𝑒4𝑡 − 5𝑒3𝑡

−6𝑒4𝑡 + 6𝑒3𝑡

⎤
⎥⎥⎥⎥⎦

2.10.4 Problem 8, section 7.3

In Problems 1 through 16, apply the eigenvalue method of this section to find a general
solution of the given system. If initial values are given, find also the corresponding particular
solution.

𝑥′1(𝑡) = 𝑥1(𝑡) − 5𝑥2(𝑡)
𝑥′2(𝑡) = 𝑥1(𝑡) − 𝑥2(𝑡)

Solution

This is a system of linear ODE’s which can be written as

𝑥⃗′(𝑡) = 𝐴 𝑥⃗(𝑡)

Or ⎡
⎢⎢⎢⎢⎣
𝑥′1(𝑡)
𝑥′2(𝑡)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1 −5
1 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥1(𝑡)
𝑥2(𝑡)

⎤
⎥⎥⎥⎥⎦

The first step is find the homogeneous solution. We start by finding the eigenvalues of 𝐴.
This is done by solving the following equation for the eigenvalues 𝜆

det(𝐴 − 𝜆𝐼) = 0

Expanding gives

det

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
1 −5
1 −1

⎤
⎥⎥⎥⎥⎦ − 𝜆

⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ = 0

Therefore

det

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
1 − 𝜆 −5
1 −1 − 𝜆

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ = 0

Which gives the characteristic equation

𝜆2 + 4 = 0
𝜆2 = −4

Therefore the roots are

𝜆1 = 2𝑖
𝜆2 = −2𝑖
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Next, the eigenvectors for each eigenvalue are found.

eigenvalue 2𝑖

We need to solve 𝐴𝑣⃗ = 𝜆𝑣⃗ or (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗ which becomes
⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣
1 −5
1 −1

⎤
⎥⎥⎥⎥⎦ − (2𝑖)

⎡
⎢⎢⎢⎢⎣
1 0
0 1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 − 2𝑖 −5
1 −1 − 2𝑖

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

From first row, letting 𝑣2 = 1 then (1 − 2𝑖)𝑣1 = 5 or 𝑣1 =
5

1−2𝑖 =
(1+2𝑖)5

(1−2𝑖)(1+2𝑖) =
(1+2𝑖)5
1−4𝑖2 = (1+2𝑖)5

5 =
1 + 2𝑖. Hence

𝑣⃗1 =
⎡
⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1 + 2𝑖
1

⎤
⎥⎥⎥⎥⎦

eigenvalue −2𝑖

The second eigenvector is complex conjugate of the first. Therefore

𝑣⃗2 =
⎡
⎢⎢⎢⎢⎣
1 − 2𝑖
1

⎤
⎥⎥⎥⎥⎦

The following table gives a summary of this result. It shows for each eigenvalue the algebraic
multiplicity 𝑚, and its geometric multiplicity 𝑘 and the eigenvectors associated with the
eigenvalue.

If 𝑚 > 𝑘 then the eigenvalue is defective which means the number of normal linearly
independent eigenvectors associated with this eigenvalue (called the geometric multiplicity
𝑘) does not equal the algebraic multiplicity 𝑚, and we need to determine an additional
𝑚 − 𝑘 generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic 𝑚 geometric 𝑘 defective? eigenvectors

2𝑖 1 1 No

⎡
⎢⎢⎢⎢⎣
1 + 2𝑖
1

⎤
⎥⎥⎥⎥⎦

−2𝑖 1 1 No

⎡
⎢⎢⎢⎢⎣
1 − 2𝑖
1

⎤
⎥⎥⎥⎥⎦

Now that the we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. The only problem we need to take care of is if
the eigenvalue is defective.

Since eigenvalue 2𝑖 is complex, then the corresponding eigenvector solution is

𝑥⃗1(𝑡) = 𝑣⃗1𝑒2𝑖𝑡

= 𝑒2𝑖𝑡
⎡
⎢⎢⎢⎢⎣
1 + 2𝑖
1

⎤
⎥⎥⎥⎥⎦

Since eigenvalue −2𝑖 is complex, then the corresponding eigenvector solution is

𝑥⃗2(𝑡) = 𝑣⃗2𝑒−2𝑖𝑡

= 𝑒−2𝑖𝑡
⎡
⎢⎢⎢⎢⎣
1 − 2𝑖
1

⎤
⎥⎥⎥⎥⎦

The complex eigenvectors found above, which are complex conjugate of each others, are
now converted to real basis as follows (Using Euler relation that 𝑒𝑖𝜃 = cos𝜃 + 𝑖 sin𝜃).

First we break 𝑥⃗1(𝑡) into real part and imaginary part (we could also have done this using
𝑥⃗2(𝑡) , either one will work.
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𝑥⃗1(𝑡) = 𝑒2𝑖𝑡
⎡
⎢⎢⎢⎢⎣
1 + 2𝑖
1

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
𝑒2𝑖𝑡(1 + 2𝑖)

𝑒2𝑖𝑡

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
(cos 2𝑡 + 𝑖 sin 2𝑡)(1 + 2𝑖)

cos 2𝑡 + 𝑖 sin 2𝑡

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
(cos 2𝑡 + 𝑖 sin 2𝑡) + 2𝑖(cos 2𝑡 + 𝑖 sin 2𝑡)

cos 2𝑡 + 𝑖 sin 2𝑡

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
cos 2𝑡 + 𝑖 sin 2𝑡 + 2𝑖 cos 2𝑡 − 2 sin 2𝑡

cos 2𝑡 + 𝑖 sin 2𝑡

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
(cos 2𝑡 − 2 sin 2𝑡) + 𝑖(2 cos 2𝑡 + sin 2𝑡)

cos 2𝑡 + 𝑖(sin 2𝑡)

⎤
⎥⎥⎥⎥⎦ (1)

Therefore, using

𝑥⃗1(𝑡) = Re�𝑥⃗1(𝑡)�

𝑥⃗2(𝑡) = Im�𝑥⃗1(𝑡)�

From (1) this gives

𝑥⃗1(𝑡) =
⎡
⎢⎢⎢⎢⎣
cos 2𝑡 − 2 sin 2𝑡

cos 2𝑡

⎤
⎥⎥⎥⎥⎦

𝑥⃗2(𝑡) =
⎡
⎢⎢⎢⎢⎣
2 cos 2𝑡 + sin 2𝑡

sin 2𝑡

⎤
⎥⎥⎥⎥⎦

The final solution becomes
𝑥⃗(𝑡) = 𝑐1𝑥⃗1(𝑡) + 𝑐2𝑥⃗2(𝑡)

Or ⎡
⎢⎢⎢⎢⎣
𝑥1(𝑡)
𝑥2(𝑡)

⎤
⎥⎥⎥⎥⎦ = 𝑐1

⎡
⎢⎢⎢⎢⎣
cos(2𝑡) − 2 sin(2𝑡)

cos(2𝑡)

⎤
⎥⎥⎥⎥⎦ + 𝑐2

⎡
⎢⎢⎢⎢⎣
2 cos(2𝑡) + sin(2𝑡)

sin(2𝑡)

⎤
⎥⎥⎥⎥⎦

Hence

𝑥1(𝑡) = 𝑐1 cos(2𝑡) − 2𝑐1 sin(2𝑡) + 2𝑐2 cos(2𝑡) + 𝑐2 sin(2𝑡)
𝑥2(𝑡) = 𝑐1 cos(2𝑡) + 𝑐2 sin(2𝑡)

Or

𝑥1(𝑡) = (𝑐1 + 2𝑐2) cos(2𝑡) + (𝑐2 − 2𝑐1) sin(2𝑡)
𝑥2(𝑡) = 𝑐1 cos(2𝑡) + 𝑐2 sin(2𝑡)

2.10.5 Problem 18, section 7.3

In Problems 17 through 25, the eigenvalues of the coefficient matrix can be found by
inspection and factoring. Apply the eigenvalue method to find a general solution of each
system

𝑥′1(𝑡) = 𝑥1 + 2𝑥2 + 2𝑥3
𝑥′2(𝑡) = 2𝑥1 + 7𝑥2 + 𝑥3
𝑥′3(𝑡) = 2𝑥1 + 𝑥2 + 7𝑥3

Solution
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This is a system of linear ODE’s which can be written as

𝑥⃗′(𝑡) = 𝐴 𝑥⃗(𝑡)

Or in matrix form ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥′1(𝑡)
𝑥′2(𝑡)
𝑥′3(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 2
2 7 1
2 1 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1(𝑡)
𝑥2(𝑡)
𝑥3(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We start by finding the eigenvalues of 𝐴. This is done by solving the following equation
for the eigenvalues 𝜆

det(𝐴 − 𝜆𝐼) = 0

Expanding gives

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 2
2 7 1
2 1 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 𝜆

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

Or

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 𝜆 2 2
2 7 − 𝜆 1
2 1 7 − 𝜆

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

Expanding along first row gives

(1 − 𝜆)�
7 − 𝜆 1
1 7 − 𝜆

� − 2�
2 1
2 7 − 𝜆

� + 2�
2 7 − 𝜆
2 1

� = 0

(1 − 𝜆)�(7 − 𝜆)2 − 1� − 2(2(7 − 𝜆) − 2) + 2(2 − 2(7 − 𝜆)) = 0

(1 − 𝜆)(7 − 𝜆)2 − (1 − 𝜆) − 4(7 − 𝜆) + 4 + 4 − 4(7 − 𝜆) = 0

(1 − 𝜆)(7 − 𝜆)2 − 1 + 𝜆 − 28 + 4𝜆 + 8 − 28 + 4𝜆 = 0

(1 − 𝜆)(7 − 𝜆)2 + 9𝜆 − 49 = 0

(1 − 𝜆)�𝜆2 − 14𝜆 + 49� + 9𝜆 − 49 = 0
−𝜆3 + 15𝜆2 − 63𝜆 + 49 + 9𝜆 − 49 = 0

−𝜆3 + 15𝜆2 − 63𝜆 + 9𝜆 = 0
−𝜆3 + 15𝜆2 − 54𝜆 = 0
𝜆3 − 15𝜆2 + 54𝜆 = 0

𝜆�𝜆2 − 15𝜆 + 54� = 0
𝜆(𝜆 − 6)(𝜆 − 9) = 0

Therefore the roots are

𝜆1 = 9
𝜆2 = 6
𝜆3 = 0

Next, the eigenvectors for each eigenvalue are found.

eigenvalue 0

We need to solve 𝐴𝑣⃗ = 𝜆𝑣⃗ or (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗ which becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 2
2 7 1
2 1 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (0)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 2
2 7 1
2 1 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

194



2.10. HW 10 CHAPTER 2. HWS

We now apply forward elimination to solve for the eigenvector 𝑣⃗. The augmented matrix is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 2 0
2 7 1 0
2 1 7 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 − 2𝑅1 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 2 0
0 3 −3 0
2 1 7 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 − 2𝑅1 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 2 0
0 3 −3 0
0 −3 3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 + 𝑅2 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 2 0
0 3 −3 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The system in Echelon form is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 2
0 3 −3
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variable is 𝑣3 and the leading variables are {𝑣1, 𝑣2}. Let 𝑣3 = 𝑡. Now we start back
substitution. Solving the above equations for the leading variables in terms of free variables
gives 𝑣1 = −4𝑡, 𝑣2 = 𝑡. Hence the solution is

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4𝑡
𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Letting 𝑡 = 1 the eigenvector is

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

eigenvalue 6

We need to solve 𝐴𝑣⃗ = 𝜆𝑣⃗ or (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗ which becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 2
2 7 1
2 1 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (6)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5 2 2
2 1 1
2 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We now apply forward elimination to solve for the eigenvector 𝑣⃗. The augmented matrix is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5 2 2 0
2 1 1 0
2 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 +
2𝑅1
5

⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5 2 2 0
0 9

5
9
5 0

2 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅3 = 𝑅3 +
2𝑅1
5

⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5 2 2 0
0 9

5
9
5 0

0 9
5

9
5 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 − 𝑅2 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5 2 2 0
0 9

5
9
5 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The system in Echelon form is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5 2 2
0 9

5
9
5

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variable is 𝑣3 and the leading variables are {𝑣1, 𝑣2}. Let 𝑣3 = 𝑡. Now we start back
substitution. Solving the above equations for the leading variables in terms of the free
variable gives equations 𝑣1 = 0, 𝑣2 = −𝑡. Hence the eigenvector is

𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Letting 𝑡 = 1 the eigenvector is

𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

eigenvalue 9

We need to solve 𝐴𝑣⃗ = 𝜆𝑣⃗ or (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗ which becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 2
2 7 1
2 1 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (9)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−8 2 2
2 −2 1
2 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We now apply forward elimination to solve for the eigenvector 𝑣⃗. The augmented matrix is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−8 2 2 0
2 −2 1 0
2 1 −2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 +
𝑅1
4
⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−8 2 2 0
0 −3

2
3
2 0

2 1 −2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 +
𝑅1
4
⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−8 2 2 0
0 −3

2
3
2 0

0 3
2 −3

2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 + 𝑅2 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−8 2 2 0
0 −3

2
3
2 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

196



2.10. HW 10 CHAPTER 2. HWS

Therefore the system in Echelon form is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−8 2 2
0 −3

2
3
2

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variable is 𝑣3 and the leading variables are {𝑣1, 𝑣2}. Let 𝑣3 = 𝑡. Now we start back
substitution. Solving the above equations for the leading variables in terms of the free
variable gives equations 𝑣1 =

𝑡
2 , 𝑣2 = 𝑡. Hence the eigenvector is

𝑣⃗3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡
2
𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Letting 𝑡 = 1 the normalized eigenvector is

𝑣⃗3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The following table gives a summary of this result. It shows for each eigenvalue the algebraic
multiplicity 𝑚, and its geometric multiplicity 𝑘 and the eigenvectors associated with the
eigenvalue.

If 𝑚 > 𝑘 then the eigenvalue is defective which means the number of normal linearly
independent eigenvectors associated with this eigenvalue (called the geometric multiplicity
𝑘) does not equal the algebraic multiplicity 𝑚, and we need to determine an additional
𝑚 − 𝑘 generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic 𝑚 geometric 𝑘 defective? eigenvectors

0 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

6 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

9 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now that the we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis. Since eigenvalue 0 is real and distinct then the
corresponding eigenvector solution is

𝑥⃗1(𝑡) = 𝑣⃗1𝑒0

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since eigenvalue 6 is real and distinct then the corresponding eigenvector solution is

𝑥⃗2(𝑡) = 𝑣⃗2𝑒6𝑡

= 𝑒6𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Since eigenvalue 9 is real and distinct then the corresponding eigenvector solution is

𝑥⃗3(𝑡) = 𝑣⃗3𝑒9𝑡

= 𝑒9𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the final solution is

𝑥⃗ℎ(𝑡) = 𝑐1𝑥⃗1(𝑡) + 𝑐2𝑥⃗2(𝑡) + 𝑐3𝑥⃗3(𝑡)

Which is written as
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1(𝑡)
𝑥2(𝑡)
𝑥3(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑐1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑐2𝑒6𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑐3𝑒9𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Or

𝑥1(𝑡) = −4𝑐1 + 𝑐3𝑒9𝑡

𝑥2(𝑡) = 𝑐1 − 𝑐2𝑒6𝑡 + 2𝑐3𝑒9𝑡

𝑥3(𝑡) = 𝑐1 + 𝑐2𝑒6𝑡 + 2𝑐3𝑒9𝑡

2.10.6 Problem 38, section 7.3

For each matrix 𝐴 given in Problems 38 through 40, the zeros in the matrix make its
characteristic polynomial easy to calculate. Find the general solution of 𝑥⃗′(𝑡) = 𝐴 𝑥⃗(𝑡)

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
2 2 0 0
0 3 3 0
0 0 4 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

This is a system of linear ODE’s which can be written as

𝑥⃗′(𝑡) = 𝐴 𝑥⃗(𝑡)

Or ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥′1(𝑡)
𝑥′2(𝑡)
𝑥′3(𝑡)
𝑥′4(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
2 2 0 0
0 3 3 0
0 0 4 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1(𝑡)
𝑥2(𝑡)
𝑥3(𝑡)
𝑥4(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We start by finding the eigenvalues of 𝐴. This is done by solving the following equation
for the eigenvalues 𝜆

det(𝐴 − 𝜆𝐼) = 0

Expanding gives

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
2 2 0 0
0 3 3 0
0 0 4 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 𝜆

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

Therefore

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 𝜆 0 0 0
2 2 − 𝜆 0 0
0 3 3 − 𝜆 0
0 0 4 4 − 𝜆

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0
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Since this is a lower triangular matrix, then the determinant is the product of the entries
on the diagonal Hence the characteristic equation is

(1 − 𝜆)(2 − 𝜆)(3 − 𝜆)(4 − 𝜆) = 0

Therefore the roots are

𝜆1 = 1
𝜆2 = 2
𝜆3 = 3
𝜆4 = 4

Next, the eigenvectors for each eigenvalue are found.

eigenvalue 1

We need to solve 𝐴𝑣⃗ = 𝜆𝑣⃗ or (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗ which becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
2 2 0 0
0 3 3 0
0 0 4 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− (1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
2 1 0 0
0 3 2 0
0 0 4 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We now apply forward elimination to solve for the eigenvector 𝑣⃗. The augmented matrix is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
2 1 0 0 0
0 3 2 0 0
0 0 4 3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

current pivot 𝐴(1, 1) is zero. Hence we need to replace current pivot row with non-zero row.
Replacing row 1 with row 2 gives

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 0
0 0 0 0 0
0 3 2 0 0
0 0 4 3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

current pivot 𝐴(2, 2) is zero. Hence we need to replace current pivot row with non-zero row.
Replacing row 2 with row 3 gives

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 0
0 3 2 0 0
0 0 0 0 0
0 0 4 3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

current pivot 𝐴(3, 3) is zero. Hence we need to replace current pivot row with non-zero row.
Replacing row 3 with row 4 gives

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 0
0 3 2 0 0
0 0 4 3 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Therefore the system is now in Echelon form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0
0 3 2 0
0 0 4 3
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variable is 𝑣4 and the leading variables are {𝑣1, 𝑣2, 𝑣3}. Let 𝑣4 = 𝑡. Now we start
back substitution. Solving the above equations for the leading variables in terms of the
free variable gives equations 𝑣1 = −

𝑡
4 , 𝑣2 =

𝑡
2 , 𝑣3 = −

3𝑡
4 . Hence the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 𝑡
4𝑡
2
−3𝑡

4
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
4
1
2
−3
4
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

By letting 𝑡 = 1 the eigenvector is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
4
1
2
−3
4
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Normalizing gives

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
−3
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eigenvalue 2

We need to solve 𝐴𝑣⃗ = 𝜆𝑣⃗ or (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗ which becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
2 2 0 0
0 3 3 0
0 0 4 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− (2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0
2 0 0 0
0 3 1 0
0 0 4 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We now apply forward elimination to solve for the eigenvector 𝑣⃗. The augmented matrix is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0
2 0 0 0 0
0 3 1 0 0
0 0 4 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 + 2𝑅1 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0
0 0 0 0 0
0 3 1 0 0
0 0 4 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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current pivot 𝐴(2, 2) is zero. Hence we need to replace current pivot row with a non-zero
row. Replacing row 2 with row 3 gives

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0
0 3 1 0 0
0 0 0 0 0
0 0 4 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

current pivot 𝐴(3, 3) is still zero. Hence we need to replace current pivot row with non-zero
row. Replacing row 3 with row 4 gives

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0
0 3 1 0 0
0 0 4 2 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The system is now in Echelon form. Hence

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0
0 3 1 0
0 0 4 2
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variable is 𝑣4 and the leading variables are {𝑣1, 𝑣2, 𝑣3}. Let 𝑣4 = 𝑡. Now we start
back substitution. Solving the above equations for the leading variables in terms of free
variable gives equations 𝑣1 = 0, 𝑣2 =

𝑡
6 , 𝑣3 = −

𝑡
2 . Hence the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
𝑡
6
− 𝑡
2
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
6
−1
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Letting 𝑡 = 1 the eigenvector is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
6
−1
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Normalizing gives

𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
−3
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eigenvalue 3

We need to solve 𝐴𝑣⃗ = 𝜆𝑣⃗ or (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗ which becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
2 2 0 0
0 3 3 0
0 0 4 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− (3)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0 0
2 −1 0 0
0 3 0 0
0 0 4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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We now apply forward elimination to solve for the eigenvector 𝑣⃗. The augmented matrix is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0 0 0
2 −1 0 0 0
0 3 0 0 0
0 0 4 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 + 𝑅1 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0 0 0
0 −1 0 0 0
0 3 0 0 0
0 0 4 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 + 3𝑅2 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 4 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

current pivot 𝐴(3, 3) is zero. Hence we need to replace current pivot row with non-zero row.
Replacing row 3 with row 4 gives

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0 0 0
0 −1 0 0 0
0 0 4 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The system is now in Echelon form. Hence

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0 0
0 −1 0 0
0 0 4 1
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variable is 𝑣4 and the leading variables are {𝑣1, 𝑣2, 𝑣3}. Let 𝑣4 = 𝑡. Now we start
back substitution. Solving the above equations for the leading variables in terms of free
variable gives equations 𝑣1 = 0, 𝑣2 = 0, 𝑣3 = −

𝑡
4 . Hence the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
− 𝑡
4
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
−1
4
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

By letting 𝑡 = 1 the eigenvector is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
−1
4
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Normalizing gives

𝑣⃗3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
−1
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eigenvalue 4
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We need to solve 𝐴𝑣⃗ = 𝜆𝑣⃗ or (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗ which becomes
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
2 2 0 0
0 3 3 0
0 0 4 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− (4)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 0 0 0
2 −2 0 0
0 3 −1 0
0 0 4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We now apply forward elimination to solve for the eigenvector 𝑣⃗. The augmented matrix is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 0 0 0 0
2 −2 0 0 0
0 3 −1 0 0
0 0 4 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 +
2𝑅1
3

⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 0 0 0 0
0 −2 0 0 0
0 3 −1 0 0
0 0 4 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 +
3𝑅2
2

⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 0 0 0 0
0 −2 0 0 0
0 0 −1 0 0
0 0 4 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 = 𝑅4 + 4𝑅3 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 0 0 0 0
0 −2 0 0 0
0 0 −1 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the system in Echelon form is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 0 0 0
0 −2 0 0
0 0 −1 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variable is 𝑣4 and the leading variables are {𝑣1, 𝑣2, 𝑣3}. Let 𝑣4 = 𝑡. Now we start
back substitution. Solving the above equations for the leading variables in terms of the
free variable gives equations 𝑣1 = 0, 𝑣2 = 0, 𝑣3 = 0. Hence the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3
𝑣4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Letting 𝑡 = 1 the eigenvector is

𝑣⃗4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The following table gives a summary of this result. It shows for each eigenvalue the algebraic
multiplicity 𝑚, and its geometric multiplicity 𝑘 and the eigenvectors associated with the
eigenvalue.
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If 𝑚 > 𝑘 then the eigenvalue is defective which means the number of normal linearly
independent eigenvectors associated with this eigenvalue (called the geometric multiplicity
𝑘) does not equal the algebraic multiplicity 𝑚, and we need to determine an additional
𝑚 − 𝑘 generalized eigenvectors for this eigenvalue.

multiplicity

eigenvalue algebraic 𝑚 geometric 𝑘 defective? eigenvectors

1 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
−3
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
−3
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
−1
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now that the we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis.

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

𝑥⃗1(𝑡) = 𝑣⃗1𝑒𝑡 = 𝑒𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
−3
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

𝑥⃗2(𝑡) = 𝑣⃗2𝑒2𝑡 = 𝑒2𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
−3
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

𝑥⃗3(𝑡) = 𝑣⃗3𝑒3𝑡 = 𝑒3𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
−1
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is

𝑥⃗4(𝑡) = 𝑣⃗4𝑒4𝑡 = 𝑒4𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the final solution is

𝑥⃗ℎ(𝑡) = 𝑐1𝑥⃗1(𝑡) + 𝑐2𝑥⃗2(𝑡) + 𝑐3𝑥⃗3(𝑡) + 𝑐4𝑥⃗4(𝑡)
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Which is written as
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1(𝑡)
𝑥2(𝑡)
𝑥3(𝑡)
𝑥4(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑐1𝑒𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
−3
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 𝑐2𝑒2𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
−3
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 𝑐3𝑒3𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
−1
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 𝑐4𝑒4𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Or

𝑥1(𝑡) = −𝑐1𝑒𝑡

𝑥2(𝑡) = 2𝑐1𝑒𝑡 + 𝑐2𝑒2𝑡

𝑥3(𝑡) = −3𝑐1𝑒𝑡 − 3𝑐2𝑒2𝑡 − 𝑐3𝑒3𝑡

𝑥4(𝑡) = 4𝑐1𝑒𝑡 + 6𝑐2𝑒2𝑡 + 4𝑐3𝑒3𝑡 + 𝑐4𝑒4𝑡

2.10.7 Additional problem 1

Consider the differential equation 𝑥′′′(𝑡) + 𝑥′′(𝑡) − 2𝑥′(𝑡) = 0. (a) Transform this into an
equivalent system of first-order differential equations. (b) Write the system from (a) as
𝑥⃗′(𝑡) = 𝐴 𝑥⃗(𝑡) (the matrix 𝐴 should be 3 × 3). (c) Use the eigenvalue method to solve
the system. (d) Using your solution to (c), what is the general solution 𝑥(𝑡) to the given
differential equation?

Solution

2.10.7.1 Part (a)

Since this is a third order ODE, we need three state variables. Let

𝑥1 = 𝑥
𝑥2 = 𝑥′

𝑥3 = 𝑥′′

Taking derivatives of the above gives

𝑥′1 = 𝑥′

= 𝑥2
𝑥′2 = 𝑥′′

= 𝑥3
𝑥′3 = 𝑥′′′

= −𝑥′′ + 2𝑥′

= −𝑥3 + 2𝑥2

Therefore the equations are

𝑥′1 = 𝑥2
𝑥′2 = 𝑥3
𝑥′3 = 2𝑥2 − 𝑥3

2.10.7.2 Part (b)

The equations in part (a) in matrix form are

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥′1
𝑥′2
𝑥′3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
0 2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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2.10.7.3 Part (c)

We start by finding the eigenvalues of 𝐴. This is done by solving the following equation
for the eigenvalues 𝜆

det(𝐴 − 𝜆𝐼) = 0

Expanding gives

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
0 2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 𝜆

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

Therefore

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝜆 1 0
0 −𝜆 1
0 2 −1 − 𝜆

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

Expansion along first column gives

−𝜆�
−𝜆 1
2 −1 − 𝜆

� = 0

−𝜆((−𝜆)(−1 − 𝜆) − 2) = 0

−𝜆�𝜆2 + 𝜆 − 2� = 0
−𝜆(𝜆 + 2)(𝜆 − 1) = 0

Hence the roots are 𝜆1 = 0, 𝜆2 = −2, 𝜆3 = 1. For each eigenvalue we find the corresponding
eigenvector.

𝜆 = 0

We need now to determine the eigenvector 𝑣⃗ where

𝐴𝑣⃗ = 𝜆𝑣⃗

𝐴𝑣⃗ − 𝜆𝑣⃗ = 0⃗

(𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
0 2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (0)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
0 2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
0 2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented
matrix is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 2 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 − 2𝑅1 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 + 𝑅2 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

206



2.10. HW 10 CHAPTER 2. HWS

Therefore the system in Echelon form is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variable is 𝑣1 and the leading variables are {𝑣2, 𝑣3}. Let 𝑣1 = 𝑡. Now we start back
substitution. Solving the above equations for the leading variables in terms of free variable
gives equations 𝑣2 = 0, 𝑣3 = 0. Hence the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Letting 𝑡 = 1 the eigenvector is

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜆 = −2

We need now to determine the eigenvector 𝑣⃗ where

𝐴𝑣⃗ = 𝜆𝑣⃗

𝐴𝑣⃗ − 𝜆𝑣⃗ = 0⃗

(𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
0 2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (−2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
0 2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0
0 −2 0
0 0 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0
0 2 1
0 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented
matrix is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0
0 2 1 0
0 2 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 − 𝑅2 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0
0 2 1 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the system in Echelon form is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0
0 2 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variable is 𝑣3 and the leading variables are {𝑣1, 𝑣2}. Let 𝑣3 = 𝑡. Now we start back
substitution. Solving the above equations for the leading variables in terms of free variable
gives equations 𝑣1 =

𝑡
4 , 𝑣2 = −

𝑡
2 . Hence the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡
4
− 𝑡
2
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4
−1
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Letting 𝑡 = 1 the eigenvector is

𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4
−1
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Which can be normalized to ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−2
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝜆 = 1

We need now to determine the eigenvector 𝑣⃗ where

𝐴𝑣⃗ = 𝜆𝑣⃗

𝐴𝑣⃗ − 𝜆𝑣⃗ = 0⃗

(𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
0 2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
0 2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0
0 −1 1
0 2 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented
matrix is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0
0 −1 1 0
0 2 −2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 + 2𝑅2 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0
0 −1 1 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the system in Echelon form is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0
0 −1 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variable is 𝑣3 and the leading variables are {𝑣1, 𝑣2}. Let 𝑣3 = 𝑡. Now we start back
substitution. Solving the above equations for the leading variables in terms of the free
variable gives equations 𝑣1 = 𝑡, 𝑣2 = 𝑡. Hence the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡
𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Letting 𝑡 = 1 the eigenvector is

𝑣⃗3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The following table summarizes the result found above.
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𝜆 algebraic geometric defective associated

multiplicity multiplicity eigenvalue? eigenvectors

0 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−2 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−2
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now that we found the eigenvectors, then the solution is

𝑥⃗(𝑡) = 𝑐1𝑥⃗1(𝑡) + 𝑐2𝑥⃗2(𝑡) + 𝑐3𝑥⃗3(𝑡)
= 𝑐1𝑒𝜆1𝑡𝑣⃗1(𝑡) + 𝑐2𝑒𝜆2𝑡𝑣⃗2(𝑡) + 𝑐3𝑒𝜆3𝑡𝑣⃗3(𝑡)

= 𝑐1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑐2𝑒−2𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−2
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑐3𝑒𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

Or

𝑥1(𝑡) = 𝑐1 + 𝑐2𝑒−2𝑡 + 𝑐3𝑒𝑡

𝑥2(𝑡) = −2𝑐2𝑒−2𝑡 + 𝑐3𝑒𝑡

𝑥3(𝑡) = 4𝑐2𝑒−2𝑡 + 𝑐3𝑒𝑡

2.10.7.4 Part (d)

From the solution we found in part(c), which is the general solution in vector form, this
part is asking what is the solution to 𝑥′′′(𝑡) + 𝑥′′(𝑡) − 2𝑥′(𝑡) = 0. Since the solution to this ode
is 𝑥(𝑡), and this is the same as 𝑥1(𝑡), then the solution to the ODE is

𝑥(𝑡) = 𝑐1 + 𝑐2𝑒−2𝑡 + 𝑐3𝑒𝑡

Which is the first row in the vector solution found in part(c).

2.10.8 Additional problem 2

Consider the following system of brine tanks: There are three tanks. Tank 1 contains 20𝐿
of water, tank 2 contains 30𝐿 of water, and tank 3 contains 60𝐿 of water. Fresh water is
pumped into tank 1 at a rate of 120 L/min. The well-mixed solution is pumped from tank
1 to tank 2, from tank 2 to tank 3, and out of tank 3 all at a rate of 120 L/min.

(a) Draw and label a diagram describing the system (b) Let 𝑥⃗(𝑡) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1(𝑡)
−𝑥2(𝑡)
𝑥3(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
be the vector

function of the amount of salt in each tank at time 𝑡. Write a differential equation 𝑥⃗′(𝑡) =
𝐴𝑥⃗(𝑡) describing the system.(c) Find the general solution to the differential equation you
wrote in (b) using the eigenvalue method. (d) Initially, there is 100 kg of salt in tank 1
and 20 kg of salt in tank 2. Find the particular solution corresponding to these initial
conditions.

Solution
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2.10.8.1 Part (a)

120 Liter/Min

salt: 0 kg/Liter

20 L of fresh water

120 Liter/Min

Salt: x1(t)
V1(t)

30 L of fresh water
20 Kg salt

V1(t), x1(t) V2(t), x2(t)

120 Liter/Min

Salt: x2(t)
V2(t)

60 L of fresh water

V3(t), x3(t)
120 Liter/Min

xi(t) is mass of salt in tank i
Salt: x3(t)

V3(t)

100 Kg salt 0 Kg salt

Initial mass of salt is shown

Figure 2.11: Diagram description of the problem

2.10.8.2 Part (b)

We notice that, since the rate of flow in and out from each tank is the same, then volume
of water mix is constant and remain the same all the time in each tank. Hence

𝑥′1(𝑡) = rate of flow in − rate of flow out

= �120�
L
min�

0�
kg
L �� − �120�

L
min�

𝑥1(𝑡)
𝑉1(𝑡)

�
kg
L ��

= −120
𝑥1(𝑡)
20(𝑡)

(1)

And

𝑥′2(𝑡) = rate of flow in − rate of flow out

= �120�
L
min�

𝑥1(𝑡)
𝑉1(𝑡)

�
kg
L �� − �120�

L
min�

𝑥2(𝑡)
𝑉2(𝑡)

�
kg
L ��

= 120
𝑥1(𝑡)
20

− 120
𝑥2(𝑡)
30

(2)

And

𝑥′3(𝑡) = rate of flow in − rate of flow out

= �120�
L
min�

𝑥2(𝑡)
𝑉2(𝑡)

�
kg
L �� − �120�

L
min�

𝑥3(𝑡)
𝑉3(𝑡)

�
kg
L ��

= 120
𝑥2(𝑡)
30

− 120
𝑥3(𝑡)
60

(3)

Therefore the differential equations are

𝑥′1(𝑡) = −6𝑥1(𝑡)
𝑥′2(𝑡) = 6𝑥1(𝑡) − 4𝑥2(𝑡)
𝑥′3(𝑡) = 4𝑥2(𝑡) − 2𝑥3(𝑡)

In Matrix form
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥′1(𝑡)
𝑥′2(𝑡)
𝑥′3(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−6 0 0
6 −4 0
0 4 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1(𝑡)
𝑥2(𝑡)
𝑥3(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑥⃗′ = 𝐴𝑥⃗

2.10.8.3 Part (c)

We start by finding the eigenvalues of 𝐴. This is done by solving the following equation
for the eigenvalues 𝜆

det(𝐴 − 𝜆𝐼) = 0

Expanding gives

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−6 0 0
6 −4 0
0 4 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 𝜆

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0
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Therefore

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−6 − 𝜆 0 0
6 −4 − 𝜆 0
0 4 −2 − 𝜆

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

Since this is lower triangle matrix, then the determinant is the product of the elements
along the diagonal. Hence

(−6 − 𝜆)(−4 − 𝜆)(−2 − 𝜆) = 0

Hence the roots are

𝜆1 = −2
𝜆2 = −6
𝜆3 = −4

Next, the eigenvectors for each eigenvalue are found.

eigenvalue −6

We need to solve 𝐴𝑣⃗ = 𝜆𝑣⃗ or (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗ which becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−6 0 0
6 −4 0
0 4 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (−6)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
6 2 0
0 4 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We now apply forward elimination to solve for the eigenvector 𝑣⃗. The augmented matrix is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
6 2 0 0
0 4 4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

current pivot 𝐴(1, 1) is zero. Hence we need to replace current pivot row with non-zero row.
Replacing row 1 with row 2 gives ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 2 0 0
0 0 0 0
0 4 4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

current pivot 𝐴(2, 2) is zero. Hence we need to replace current pivot row with non-zero row.
Replacing row 2 with row 3 gives ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 2 0 0
0 4 4 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the system is now in Echelon form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 2 0
0 4 4
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variable is 𝑣3 and the leading variables are {𝑣1, 𝑣2}. Let 𝑣3 = 𝑡. Now we start back
substitution. Solving the above equations for the leading variables in terms of the free
variables gives equations 𝑣1 =

𝑡
3 , 𝑣2 = −𝑡. Hence the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡
3
−𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
−1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Letting 𝑡 = 1 the eigenvector is

𝑣⃗1(𝑡) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
−1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−3
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

eigenvalue −4

We need to solve 𝐴𝑣⃗ = 𝜆𝑣⃗ or (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗ which becomes
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−6 0 0
6 −4 0
0 4 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (−4)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0
6 0 0
0 4 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We now apply forward elimination to solve for the eigenvector 𝑣⃗. The augmented matrix is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0 0
6 0 0 0
0 4 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 + 3𝑅1 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0 0
0 0 0 0
0 4 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

current pivot 𝐴(2, 2) is zero. Hence we need to replace current pivot row with one non-zero.
Replacing row 2 with row 3 gives

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0 0
0 4 2 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the system in Echelon form is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0
0 4 2
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variable is 𝑣3 and the leading variables are {𝑣1, 𝑣2}. Let 𝑣3 = 𝑡. Now we start
back substitution. Solving the above equation for the leading variables in terms of the free
variable gives equations 𝑣1 = 0, 𝑣2 = −

𝑡
2 . Hence the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
− 𝑡
2
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Letting 𝑡 = 1 the eigenvector is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑣⃗2(𝑡) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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eigenvalue −2

We need to solve 𝐴𝑣⃗ = 𝜆𝑣⃗ or (𝐴 − 𝜆𝐼)𝑣⃗ = 0⃗ which becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−6 0 0
6 −4 0
0 4 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (−2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 0 0
6 −2 0
0 4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We now apply forward elimination to solve for the eigenvector 𝑣⃗. The augmented matrix is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 0 0 0
6 −2 0 0
0 4 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 +
3𝑅1
2

⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 0 0 0
0 −2 0 0
0 4 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 + 2𝑅2 ⟹

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 0 0 0
0 −2 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the system in Echelon form is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 0 0
0 −2 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The free variable is 𝑣3 and the leading variables are {𝑣1, 𝑣2}. Let 𝑣3 = 𝑡. Now we start
back substitution. Solving the above equation for the leading variables in terms of the free
variable gives equations 𝑣1 = 0, 𝑣2 = 0. Hence the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣1
𝑣2
𝑣3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Letting 𝑡 = 1 the eigenvector is

𝑣⃗3(𝑡) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The following table gives a summary of this result. It shows for each eigenvalue the algebraic
multiplicity 𝑚, and its geometric multiplicity 𝑘 and the eigenvectors associated with the
eigenvalue.

If 𝑚 > 𝑘 then the eigenvalue is defective which means the number of normal linearly
independent eigenvectors associated with this eigenvalue (called the geometric multiplicity
𝑘) does not equal the algebraic multiplicity 𝑚, and we need to determine an additional
𝑚 − 𝑘 generalized eigenvectors for this eigenvalue.
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multiplicity

eigenvalue algebraic 𝑚 geometric 𝑘 defective? eigenvectors

−2 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−4 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−6 1 1 No

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−3
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now that the we found the eigenvalues and associated eigenvectors, we will go over each
eigenvalue and generate the solution basis.

Since eigenvalue −2 is real and distinct then the corresponding eigenvector solution is

𝑥⃗1(𝑡) = 𝑣⃗1𝑒−2𝑡

= 𝑒−2𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since eigenvalue −4 is real and distinct then the corresponding eigenvector solution is

𝑥⃗2(𝑡) = 𝑣⃗2𝑒−4𝑡

= 𝑒−4𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since eigenvalue −6 is real and distinct then the corresponding eigenvector solution is

𝑥⃗3(𝑡) = 𝑣⃗3𝑒−6𝑡

= 𝑒−6𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−3
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore the final solution is

𝑥⃗(𝑡) = 𝑐1𝑥⃗1(𝑡) + 𝑐2𝑥⃗2(𝑡) + 𝑐3𝑥⃗3(𝑡)

Which is written as
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1(𝑡)
𝑥2(𝑡)
𝑥3(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑐1𝑒−2𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑐2𝑒−4𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑐3𝑒−6𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−3
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.10.8.4 Part (d)

Initial conditions are ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1(0)
𝑥2(0)
𝑥3(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

100
20
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence the solution found in part(c) at 𝑡 = 0 becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

100
20
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑐1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑐2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑐3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−3
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Or in matrix form ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
0 −1 −3
1 2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

100
20
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

From first row, 𝑐3 = 100. From second row −𝑐2 −3𝑐3 = 20 or 𝑐2 = −20−3𝑐3 = −20−300 = −320
and from last row 𝑐1 + 2𝑐2 + 3𝑐3 = 0 or 𝑐1 = −2𝑐2 − 3𝑐3 = −2(−320) − 3(100) = 340. Hence

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

340
−320
100

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

And the solution found at end of part (c) becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1(𝑡)
𝑥2(𝑡)
𝑥3(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 340𝑒−2𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 320𝑒−4𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 100𝑒−6𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−3
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Or

𝑥1(𝑡) = 100𝑒−6𝑡

𝑥2(𝑡) = 320𝑒−4𝑡 − 300𝑒−6𝑡

𝑥3(𝑡) = 340𝑒−2𝑡 − 640𝑒−4𝑡 + 300𝑒−6𝑡

We see that as 𝑡 → ∞ then there will be no salt left in any tank, since each 𝑥𝑖(𝑡) → 0, and
therefore only fresh water will remain in each tank, as expected.
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2.10.9 key solution for HW10

Homework 10 – Solutions

These solutions demonstrate one way to approach each of the homework problems. In many
cases, there are other correct solutions. If you would like to discuss alternative solutions or
the grading of your assignment, please see me during office hours or send me an email.

Textbook Problems:

7.3.4 We have ~x′ =

[
4 1
6 −1

]
~x. We need eigenvalues and eigenvectors.

det

[
4− λ 1

6 −1− λ

]
= (4− λ)(−1− λ)− 6

= λ2 − 3λ− 10

= (λ− 5)(λ+ 2)

For λ1 = −2, we have [
6 1
6 1

]
→
[
6 1
0 0

]
An eigenvector is ~v1 = (−1, 6).

For λ2 = 5, we have [
−1 1
6 −6

]
→
[
−1 1
0 0

]
An eigenvector is ~v2 = (1, 1).

Our general solution is

~x(t) = c1e
−2t
[
−1
6

]
+ c2e

5t

[
1
1

]

7.3.6 We have ~x′ =

[
9 5
−6 −2

]
~x and ~x(0) =

[
1
0

]
. We need eigenvalues and eigenvectors.

det

[
9− λ 5
−6 −2− λ

]
= (9− λ)(−2− λ) + 30

= λ2 − 7λ+ 12

= (λ− 3)(λ− 4)

For λ1 = 3, we have [
6 5
−6 −5

]
→
[
6 5
0 0

]
An eigenvector is ~v1 = (−5, 6).

1
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For λ2 = 4, we have [
5 5
−6 −6

]
→
[
1 1
0 0

]
An eigenvector is ~v2 = (−1, 1).

Our general solution is

~x(t) = c1e
3t

[
−5
6

]
+ c2e

4t

[
−1
1

]
To apply our initial conditions, we set t = 0:

~x(0) = c1

[
−5
6

]
+ c2

[
−1
1

]
=

[
1
0

]
We solve the system by reducing the augmented matrix:[

−5 −1 1
6 1 0

]
R1+R2−−−−→

[
−5 −1 1
1 0 1

]
5R2+R1−−−−→

[
0 −1 6
1 0 1

]
So c1 = 1 and c2 = −6. Our particular solution is

~x(t) = e3t
[
−5
6

]
+ e4t

[
6
−6

]

7.3.8 We have ~x′ =

[
1 −5
1 −1

]
~x. We need eigenvalues and eigenvectors.

det

[
1− λ −5

1 −1− λ

]
= (1− λ)(−1− λ) + 5

= λ2 + 4

Our eigenvalues are ±2i. For λ1 = 2i, we have[
1− 2i −5

1 −1− 2i

]
1

1−2i
R1+R2

−−−−−−−→
[
1− 2i −5

0 0

]
An eigenvector is ~v1 = (5, 1− 2i). The corresponding complex-valued solution is

~v1e
λ1t =

[
5

1− 2i

]
e2it

=

[
5

1− 2i

]
(cos 2t+ i sin 2t)

=

[
5 cos 2t+ 5i sin 2t

cos 2t+ i sin 2t− 2i cos 2t+ 2 sin 2t

]
=

[
5 cos 2t

cos 2t+ 2 sin 2t

]
+

[
5 sin 2t

sin 2t− 2 cos 2t

]
i

2
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Having separated this into real and imaginary components, we now have two linearly
independent real-valued solutions. So our general solution is

~x(t) = c1

[
5 cos 2t

cos 2t+ 2 sin 2t

]
+ c2

[
5 sin 2t

sin 2t− 2 cos 2t

]

7.3.18 We have ~x′ =

1 2 2
2 7 1
2 1 7

 ~x. We need eigenvalues and eigenvectors.

det

1− λ 2 2
2 7− λ 1
2 1 7− λ

 = (1− λ) det

[
7− λ 1

1 7− λ

]
− 2 det

[
2 2
1 7− λ

]
+ 2 det

[
2 2

7− λ 1

]
= (1− λ)

[
(7− λ)2 − 1

]
− 2(14− 2λ− 2) + 2(2− 14 + 2λ)

= (1− λ)(λ2 − 14λ+ 48) + 8λ− 48

= (1− λ)(λ− 6)(λ− 8) + 8(λ− 6)

= (λ− 6) [(1− λ)(λ− 8) + 8]

= (λ− 6)(−λ2 + 9λ)

= −λ(λ− 6)(λ− 9)

For λ1 = 0, we have1 2 2
2 7 1
2 1 7

 −2R1+R2−−−−−→
−2R1+R3

 1 2 2
0 3 −3
−3 3

 −R2+R3−−−−−→

1 2 2
0 1 −1
0 0 0


An eigenvector is ~v1 = (−4, 1, 1).

For λ2 = 6, we have−5 2 2
2 1 1
2 1 1

 3R2+R1−−−−−→
−R2+R3

1 5 5
2 1 1
0 0 0

 −2R1+R2−−−−−→

1 5 5
0 −9 −9
0 0 0


An eigenvector is ~v2 = (0, 1,−1).

For λ3 = 9, we have−8 2 2
2 −2 1
2 1 −2

 −R2+R3−−−−−→
4R2+R1

0 −6 6
2 −2 1
0 3 −3

 2R3+R1−−−−→

0 0 0
2 −2 1
0 3 −3


An eigenvector is ~v3 = (1, 2, 2).

Our general solution is

~x(t) = c1

−4
1
1

+ c2e
6t

 0
1
−1

+ c3e
9t

1
2
2


3
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7.3.38 We have the matrix


1 0 0 0
2 2 0 0
0 3 3 0
0 0 4 4

. We need eigenvalues and eigenvectors.

det


1− λ 0 0 0

2 2− λ 0 0
0 3 3− λ 0
0 0 4 4− λ

 = (1− λ)(2− λ)(3− λ)(4− λ)

Here we used that the determinant of a lower triangular matrix is the product of the
diagonal entries. Alternatively, you can expand along the first row several times.

For λ1 = 1, we have 
0 0 0 0
2 1 0 0
0 3 2 0
0 0 4 3


If we set x4 = 4, we get x3 = −3, x2 = 2, and x1 = −1. So an eigenvector is
~v1 = (−1, 2,−3, 4).

For λ2 = 2, we have 
−1 0 0 0
2 0 0 0
0 3 1 0
0 0 4 2

→


1 0 0 0
0 3 1 0
0 0 4 2
0 0 0 0


An eigenvector is ~v2 = (0, 1,−3, 6).

For λ3 = 3, we have 
−2 0 0 0
2 −1 0 0
0 3 0 0
0 0 4 1

→


1 0 0 0
0 1 0 0
0 0 4 1
0 0 0 0


An eigenvector is ~v3 = (0, 0, 1,−4).

For λ4 = 4, we have 
−3 0 0 0
2 −2 0 0
0 3 −1 0
0 0 4 0

→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


An eigenvector is ~v4 = (0, 0, 0, 1).

Our general solution is

~x(t) = c1e
t


−1
2
−3
4

+ c2e
2t


0
1
−3
6

+ c3e
3t


0
0
1
−4

+ c4e
4t


0
0
0
1


4
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Additional Problems:

1. (a) Let x1 = x, x2 = x′, x3 = x′′. We get the system

x′3 + x3 − 2x2 = 0

x′2 = x3

x′1 = x2

(b) We have to rearrange some terms to write things in matrix form, but we getx′1x′2
x′3

 =

0 1 0
0 0 1
0 2 −1

x1x2
x3


(c) We need eigenvalues and eigenvectors.

det

−λ 1 0
0 −λ 1
0 2 −1− λ

 = −λ det

[
−λ 1
2 −1− λ

]
= −λ(λ+ λ2 − 2)

= −λ(λ+ 2)(λ− 1)

For λ1 = 0, we have 0 1 0
0 0 1
0 2 −1

→
0 1 0

0 0 1
0 0 0


An eigenvector is ~v1 = (1, 0, 0).

For λ2 = 1, we have −1 1 0
0 −1 1
0 2 −2

→
−1 1 0

0 −1 1
0 0 0


An eigenvector is ~v2 = (1, 1, 1).

For λ3 = −2, we have 2 1 0
0 2 1
0 2 1

→
2 1 0

0 2 1
0 0 0


An eigenvector is ~v3 = (1,−2, 4)

Our general solution to this system is thus

~x(t) = c1

1
0
0

+ c2e
t

1
1
1

+ c3e
−2t

 1
−2
4


5
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(d) The first component of ~x is x1 = x. So looking at that first component of our general
solution we can say that the general solution of our original equation is

x(t) = c1 + c2e
t + c3e

−2t

2. (a) Our system looks like:

(b) Note that each tank has constant volume. Our differential equations for the amount
of salt in each tank are:

x′1 = −120 ∗ x1
20

x′2 = 120 ∗ x1
20
− 120 ∗ x2

30

x′3 = 120 ∗ x2
30
− 120 ∗ x3

60

Writing this as a matrix equation, we have

~x′ =

−6 0 0
6 −4 0
0 4 −2

 ~x
(c) To solve, we need eigenvalues and eigenvectors:

det

−6− λ 0 0
6 −4− λ 0
0 4 −2− λ

 = (−6− λ)(−4− λ)(−2− λ)

For λ1 = −6, we have 0 0 0
6 2 0
0 4 4

→
3 1 0

0 1 1
0 0 0


We have eigenvector ~v1 = (1,−3, 3).

For λ2 = −4, we have −2 0 0
6 0 0
0 4 2

→
1 0 0

0 2 1
0 0 0


6
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We have eigenvector ~v1 = (0, 1,−2).

For λ3 = −2, we have −4 0 0
6 −2 0
0 4 0

→
1 0 0

0 1 0
0 0 0


We have eigenvector ~v1 = (0, 0, 1).

So our general solution is

~x(t) = c1e
−6t

 1
−3
3

+ c2e
−4t

 0
1
−2

+ c3e
−2t

0
0
1



(d) We have the initial condition ~x(0) =

100
20
0

. Plugging this in to our general solution,

we have 100
20
0

 = c1

 1
−3
3

+ c2

 0
1
−2

+ c3

0
0
1

 =

 c1
−3c1 + c2

3c1 − 2c2 + c3


We can immediately back substitute to get c1 = 100, c2 = 320, and c3 = 340. The
particular solution is

~x(t) = e−6t

 100
−300
300

+ e−4t

 0
320
−640

+ e−2t

 0
0

340



7
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2.11.1 Problems listing

Homework 11 - Due December 3

Homework instructions: Complete the assigned problems on your own paper. Once you
are finished, scan or photograph your work and upload it to Gradescope. When prompted,
tell Gradescope where to find each problem.
You are allowed (and in fact encouraged) to work with other students on homework assign-
ments. If you do that, please indicate on each problem who you worked with. If you use
sources other than your notes, the textbook, and any resources on Canvas for your home-
work, you must indicate the source on each problem. You are not permitted to view, request,
or look for solutions to any of the homework problems from solutions manuals, homework
help websites, online forums, other students, or any other sources.

Textbook Problems:

• §1.2: 6, 8, 24, 26

For problems in this section, use 9.8 m/s2 or 32 ft/s2 as the acceleration due to gravity

• §1.3: 5, 9

For the problems in section 1.3, ignore the instructions in the textbook and do the
following:

– Make a copy of the slope field given in the textbook. You may sketch it by hand,
make a photocopy of the textbook page, generate your own using a computer, or
do anything else to make a copy that you can write on.

– On your slope field, sketch at least 3 different solution curves. Label each solution
curve by the initial point (x, y) that you chose

Additional Problems:
For these problems, please use a calculator to compute approximate times, distances, and
speeds. Round all numbers to two decimal places. Be careful with your units!

1. A racecar accelerates from stationary at a rate of 14 m/s2. How long does it take the car
to reach its top speed of 300 km/h? How far does the car travel in that time?

2. The car is approaching a tight turn at 300 km/h. In order to safely make the corner, it
must be traveling at 80 km/h when it enters the corner. The brakes on the car cause a
deceleration of 39 m/s2. How far away from the corner must the driver begin braking to
make the corner?

3. At the exit of the corner, two cars are traveling at 100 km/h, with car A 10 m behind
car B. Out of the corner, car A accelerates at 14 m/s2 and car B accelerates at 13 m/s2.
How much time does it take for car A to be right next to car B? How fast are the cars
going when this happens? How far from the corner exit have they traveled?

1
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2.11.2 Problem 6, section 1.2

Solve

𝑑𝑦
𝑑𝑥

= 𝑥√𝑥2 + 9

𝑦(−4) = 0

Solution

This is separable ODE. Integrating both sides gives

𝑦(𝑥) = �𝑥√𝑥2 + 9 𝑑𝑥 + 𝑐 (1)

Where 𝑐 is constant of integration. To integrate ∫𝑥√𝑥2 + 9 𝑑𝑥, let 𝑢 = 𝑥2 + 9. Hence 𝑑𝑢
𝑑𝑥 = 2𝑥

or 𝑑𝑥 = 𝑑𝑢
2𝑥 . Therefore the integral becomes

�𝑥√𝑥2 + 9 𝑑𝑥 = �𝑥√𝑢
𝑑𝑢
2𝑥

=
1
2 �

𝑢
1
2𝑑𝑢

=
1
2
𝑢

3
2

3
2

=
1
2
2
3
𝑢

3
2

=
1
3
𝑢

3
2

But 𝑢 = 𝑥2 + 9, hence the above becomes

�𝑥√𝑥2 + 9 𝑑𝑥 =
1
3
�𝑥2 + 9�

3
2

Substituting the above in (1) gives

𝑦(𝑥) =
1
3
�𝑥2 + 9�

3
2 + 𝑐 (2)

The constant 𝑐 is from initial conditions. Since 𝑦(−4) = 0 then Eq (2) becomes

0 =
1
3
(16 + 9)

3
2 + 𝑐

=
1
3
(25)

3
2 + 𝑐

=
1
3
�52�

3
2 + 𝑐

=
1
3
(5)3 + 𝑐

=
125
3
+ 𝑐

Hence 𝑐 = −125
3 . Therefore the solution (2) becomes

𝑦(𝑥) =
1
3
�𝑥2 + 9�

3
2 −

125
3

=
1
3�
�𝑥2 + 9�

3
2 − 125�

2.11.3 Problem 8, section 1.2

Solve

𝑑𝑦
𝑑𝑥

= cos 2𝑥

𝑦(0) = 1
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Solution

This is separable ODE. Integrating both sides gives

𝑦(𝑥) = � cos 2𝑥𝑑𝑥 + 𝑐

=
1
2
sin(2𝑥) + 𝑐 (1)

The constant 𝑐 is from initial conditions. Since 𝑦(0) = 1 then (1) becomes

1 =
sin(0)
2

+ 𝑐

= 𝑐

Hence the solution (1) becomes

𝑦(𝑥) =
1
2
sin(2𝑥) + 1

2.11.4 Problem 24, section 1.2

A ball is dropped from the top of a building 400 ft high. How long does it take to reach
the ground? With what speed does the ball strike the ground?

Solution

Let the ground by level 0 (i.e. 𝑦 = 0) and let up be positive and down negative. Therefore
𝑦(0) = 400 ft and assuming initial velocity is zero then 𝑦′(0) = 𝑣(0) = 0.. Therefore

𝑣(𝑡) = �𝑎(𝑡)𝑑𝑡

Where 𝑎(𝑡) is the acceleration, which in this case is 𝑔 = −32 ft/sec2. The above becomes

𝑣(𝑡) = −32𝑡 + 𝑣(0) (1)

= −32𝑡

And

𝑦(𝑡) = �𝑣(𝑡)𝑑𝑡

= �−32𝑡 𝑑𝑡

= −
32
2
𝑡2 + 𝑦(0)

But 𝑦(0) = 400 ft. The above becomes

𝑦(𝑡) = −16𝑡2 + 400

To find the time it takes to hit the ground, the above is solved for 𝑦(𝑡) = 0. This gives

0 = −16𝑡2 + 400

𝑡2 =
400
16

= 25

Therefore the time is 𝑡 = 5 seconds. Now we know how long it takes to reach the ground,
we can find the velocity when ball strike the ground from (1). Substituting 𝑡 = 5 in (1) gives

𝑣(5) = −32(5)
= −160 ft/sec

So it strikes the ground with speed 160 ft/sec in the downwards (negative) direction.
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2.11.5 Problem 26, section 1.2

A projectile is fired straight upward with an initial velocity of 100 m/s from the top of a
building 20m high and falls to the ground at the base of the building. Find (a) its maximum
height above the ground (b) when it passes the top of the building (c) its total time in the
air.

Solution

2.11.5.1 Part a

Let the ground be level 0 . (i.e. 𝑦 = 0) and let up be positive and down negative. Therefore
𝑦(0) = 20 m. Initial velocity is 100 m/s, hence 𝑦′(0) = 𝑣(0) = 100. The acceleration due to
gravity is 𝑔 = −9.8 m/s2.

𝑣(𝑡) = �𝑎(𝑡)𝑑𝑡

= −𝑔𝑡 + 𝑣(0)
= −𝑔𝑡 + 100

When the ball reaches maximum high above the building, it must have zero velocity. From
the above this means

0 = −9.8𝑡 + 100

𝑡 =
100
𝑔

sec

The above is how long it takes for the ball to reach maximum high. Now

𝑦(𝑡) = �𝑣(𝑡)𝑑𝑡

= ��−𝑔𝑡 + 100�𝑑𝑡 + 𝑦(0)

𝑦(𝑡) = −
1
2
𝑔𝑡2 + 100𝑡 + 𝑦(0)

But 𝑦(0) = 20. Therefore

𝑦(𝑡) = −
1
2
𝑔𝑡2 + 100𝑡 + 20

Substituting 𝑡 = 100
𝑔 in the above, gives the distance traveled above the ground until the

ball reached maximum high. Therefore

𝑦�
100
𝑔 � = −

1
2
𝑔�
100
𝑔 �

2

+ 100�
100
𝑔 � + 20

= −
1
2
1002

𝑔
+
1002

𝑔
+ 20

=
1
2
1002

𝑔
+ 20

Using 𝑔 = 9.8 the above gives

𝑦�
100
𝑔 � =

1
2
1002

9.8
+ 20

𝑦max = 530.2 meter

2.11.5.2 Part b

The ball will take the same amount of time to fall down back to top of building, as the
time it took to reach the maximum high above the building, since the distance is the same,
and the acceleration is the same (gravity acceleration). This time is 𝑡0 =

100
𝑔 sec found in

part (a). Therefore, twice this time gives

𝑡travel =
200
𝑔

=
200
9.8

= 20.408 sec
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2.11.5.3 Part c

Now we find the time it take to reach the ground. We now take initial velocity as 𝑣(0) = 0,
which is when the ball was at its maximum high above the building. And initial position
is from part (a) was found 𝑦max = 530.2 meter. Hence 𝑦(0) = 530.2 m. Now we will find the
time to reach the ground, starting from the maximum high.

𝑣(𝑡) = �𝑔𝑑𝑡

= 𝑔𝑡 + 𝑣(0)
= 𝑔𝑡

And

𝑦(𝑡) = �𝑣(𝑡)𝑑𝑡

= �𝑔𝑡 𝑑𝑡 + 𝑦(0)

=
1
2
𝑔𝑡2 + 530.2

When it hits the ground 𝑦(𝑡) = 0,. Hence we now have an equation to solve for time

0 =
1
2
𝑔𝑡2 + 530.2

But 𝑔 = −9.8. The above becomes

0 =
1
2
(−9.8)𝑡2 + 530.2

𝑡2 =
2(530.2)
9.8

Hence 𝑡 = �
2(530.2)

9.8 = 10.402 sec. This is the time it takes to fall to the ground, starting
from maximum high. Adding to this time, the time it took to reach maximum high from
top of building, which is 100

𝑔 sec as found from part (a), gives total time in air

𝑡total = 10.402 +
100
9.8

= 20.606 sec

2.11.6 Problem 5, section 1.3

Solution

Figure 2.12: Shoiwng 3 solution curves with different initial conditions
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2.11.7 Problem 9, section 1.3

Solution

Figure 2.13: Shoiwng 3 solution curves with different initial conditions

2.11.8 Additional problem 1

A racecar accelerates from stationary at a rate of 14 m/s2. How long does it take the car
to reach its top speed of 300 km/h? How far does the car travel in that time?

Solution

Let 𝑥(0) = 0, 𝑣(0) = 0 and 𝑎 = 14 m/s2.

𝑣(𝑡) = �𝑎(𝑡)𝑑𝑡

= �14𝑑𝑡

= 14𝑡 + 𝑣(0)
= 14𝑡

Since we want to find time to reach 𝑣max = 300 km/h which in SI units is (300)(1000)
(60)(60) = 250

3
m/sec. Substituting this in the above gives

250
3

= 14𝑡max

𝑡max =
250
3(14)

=
125
21

= 5.95 seconds

To find the distance traveled in this time, since

𝑥(𝑡) = �𝑣(𝑡)𝑑𝑡

= �14𝑡𝑑𝑡

=
14
2
𝑡2 + 𝑥(0)

= 7𝑡2
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When 𝑡 = 𝑡max the above gives

𝑥(𝑡max) = 7�
125
21 �

2

= 248.02 meters

2.11.9 Additional problem 2

The car is approaching a tight turn at 300 km/h. In order to safely make the corner, it
must be traveling at 80 km/h when it enters the corner. The brakes on the car cause a
deceleration of 39 m/s2. How far away from the corner must the driver begin braking to
make the corner?

Solution

In SI units 300 km/h is (300)(1000)
(60)(60) = 250

3 m/s. And 80 km/h is 80(1000)
(60)(60) =

200
9 m/s. Therefore we

have initial velocity 𝑣(0) = 250
3 m/s and final velocity 𝑣𝑓(𝑡) =

200
9 m/s and have acceleration

of −39 m/s2.

We first find the time it takes to go from 𝑣(0) to 𝑣𝑓(𝑡). Since

𝑣(𝑡) = �𝑎(𝑡)𝑑𝑡

= �−39𝑑𝑡

= −39𝑡 + 𝑣(0)

Therefore we have the equation

𝑣𝑓(𝑡) = −39𝑡 + 𝑣(0)
200
9

= −39𝑡 +
250
3

39𝑡 =
250
3
−
200
9

𝑡𝑓 =
550
351

= 1.567 sec

This is the time needed to decelerate from 300 km/h to 80 km/h. Now we find the distance
traveled during this time. Since

𝑥(𝑡) = �𝑣(𝑡)𝑑𝑡

= �−39𝑡 + 𝑣(0)𝑑𝑡

= �−39𝑡 +
250
3
𝑑𝑡

= −
39
2
𝑡2 +

250
3
𝑡 + 𝑥(0)

Let 𝑥(0) = 0, by taking initial position as zero. Replacing 𝑡 in the above with 𝑡𝑓 found earlier
gives

𝑥(𝑡) = −
39
2
�1.5672� +

250
3
(1.567)

= 82.7 meter

Therefore the car needs to be 82.7 meter away from corner to begin the braking.

2.11.10 Additional problem 3

At the exit of the corner, two cars are traveling at 100 km/h, with car 𝐴 being 10 m behind
car 𝐵. Out of the corner, car 𝐴 accelerates at 14 m/s2 and car 𝐵 accelerates at 13 m/s2. How
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much time does it take for car 𝐴 to be right next to car 𝐵? How fast are the cars going
when this happens? How far from the corner exit have they traveled?

Solution

Using SI units, 100 km/h is (100)(1000)
(60)(60) = 250

9 m/s. Let at 𝑡 = 0, 𝑥𝐴(0) = 0 and therefore 𝑥𝐵(0) = 10,

since car 𝐵 is ahead by 10 meters initially. Let 𝑣𝐴(0) =
250
9 m/s and also 𝑣𝐵(0) =

250
9 m/s. We

now need to determine the time, say 𝑡𝑓, where 𝑥𝐴�𝑡𝑓� = 𝑥𝐵�𝑡𝑓�. But for car 𝐴 we have

𝑣𝐴(𝑡) = �𝑎𝐴(𝑡)𝑑𝑡

= �14𝑑𝑡

= 14𝑡 + 𝑣𝐴(0)

= 14𝑡 +
250
9

And

𝑥𝐴(𝑡) = �𝑣𝐴(𝑡)𝑑𝑡

= ��14𝑡 +
250
9 �𝑑𝑡

=
14
2
𝑡2 +

250
9
𝑡 + 𝑥𝐴(0)

= 7𝑡2 +
250
9
𝑡 (1)

Since 𝑥𝐴(0) = 0. Now we do the same for car 𝐵

𝑣𝐵(𝑡) = �𝑎𝐵(𝑡)𝑑𝑡

= �13𝑑𝑡

= 13𝑡 + 𝑣𝐴(0)

= 13𝑡 +
250
9

And

𝑥𝐵(𝑡) = �𝑣𝐵(𝑡)𝑑𝑡

= ��13𝑡 +
250
9 �𝑑𝑡

=
13
2
𝑡2 +

250
9
𝑡 + 𝑥𝐵(0)

=
13
2
𝑡2 +

250
9
𝑡 + 10 (2)

Since 𝑥𝐵(0) = 10 m. Now we solve for 𝑡 by equating (1) and (2)

7𝑡2 +
250
9
𝑡 =

13
2
𝑡2 +

250
9
𝑡 + 10

7𝑡2+ =
13
2
𝑡2 + 10

7𝑡2 −
13
2
𝑡2 = 10

1
2
𝑡2 = 10

𝑡2 = 20

𝑡 = √20
𝑡𝑓 = 4.47 sec
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So it takes 4.47 sec for car 𝐴 to be be next to car 𝐵. To find the speed at this time, we
substitute this value of time back in the velocity equation above. For car 𝐴

𝑣𝐴(𝑡) = 14𝑡 +
250
9

𝑣𝐴�𝑡𝑓� = 14(4.47) +
250
9

= 90.36 m/s (3)

And for car 𝐵

𝑣𝐵(𝑡) = 13𝑡 +
250
9

𝑣𝐵�𝑡𝑓� = 13(4.47) +
250
9

= 85.89 m/s

To find the distance traveled during this time, we substitute this time in the position
equation. For car 𝐴, from Eq (1)

𝑥𝐴(𝑡) = 7𝑡2 +
250
9
𝑡

𝑥𝐴�𝑡𝑓� = 7(4.47)
2 +

250
9
(4.47)

= 264.03 meter

The distance traveled by car 𝐵 is 10 meters less than this value, since it was ahead by 10
meters at the start at time 𝑡 = 0.
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2.11.11 key solution for HW11

Homework 11 – Solutions

These solutions demonstrate one way to approach each of the homework problems. In many
cases, there are other correct solutions. If you would like to discuss alternative solutions or
the grading of your assignment, please see me during office hours or send me an email.

Textbook Problems:

1.2.6 We are given y′ = x
√
x2 + 9; y(−4) = 0. We integrate to solve the differential equation,

using a u-substitution of u = x2 + 9 so that du = 2x dx.

y =

∫
x
√
x2 + 9 dx

=
1

2

∫ √
u du

=
1

2
· 2

3
· u

3
2 + C

=
1

3
(x2 + 9)

3
2 + C

To solve for C, we plug in our initial condition:

y(−4) = 0 =
1

3

(
(−4)2 + 9

) 3
2 + C

=
1

3
(25)

3
2 + C

=
125

3
+ C

So C = −125
3

and our particular solution is y(x) = 1
3
(x2 + 9)

3
2 − 125

3
.

1.2.8 We are given y′ = cos(2x); y(0) = 1. We integrate to solve the differential equation
using u = 2x so that du = 2 dx.

y =

∫
cos(2x) dx

=
1

2

∫
cosu du

=
1

2
sinu + C

=
1

2
sin(2x) + C

To solve for C, we plug in our intial condition:

y(0) = 1 =
1

2
sin(0) + C

= C

So C = 1 and our particular solution is y(x) = 1
2

sin(2x) + 1.

1
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1.2.24 The building is 400 ft high, so y0 = 400. We drop the ball, so v0 = 0. The acceleration
is a(t) = −32 ft/s2 due to gravity. Here, we are using the convention that movement
downward is a negative velocity. This is consistent with the ball falling down from
y(0) = 400 to y(t) = 0.

Since we have constant acceleration, we can use the formulas given in the textbook.
So the velocity and position functions are

v(t) = −32t

y(t) = −16t2 + 400

We want to know when y(t) = 0. So, we solve

−16t2 + 400 = 0

16t2 = 400

t2 = 25

There are two solutions here, t = ±5. Since we are modeling a process that is going
forward in time, we choose the solution t = 5. At t = 5, we have v(t) = −160.

So the ball hits the ground after 5 seconds, at which point it is traveling 160 ft/s
downwards.

1.2.26 We start on top of a building 20 m high, so y0 = 20. We fire the projectile upwards at
100 m/s, so v0 = 100. The acceleration is constant a(t) = −9.8 m/s2. We are using
the same convention about positive and negative velocities as in the previous problem.
Our velocity and position functions are

v(t) = −9.8t + 100

y(t) = −4.9t2 + 100t + 20

(a) To find the maximum height above the ground, we maximize the function y(t) =
−4.9t2 + 100t + 20. This is a downward-facing parabola, with maximum value
when y′(t) = v(t) = 0. So we solve −9.8t + 100 = 0 to get t = 10.2. At this time,
y(10.2) = 530.2 m.

(b) The projectile passes the top of the building again when y(t) = 20. So we solve

−4.9t2 + 100t + 20 = 20

t(−4.9t + 100) = 0

The solutions here are t = 0, 20.4. The t = 0 is the moment we shoot the projectile
up, and we already knew it was at the top of the building at that point. So the
time we are looking for is t = 20.4 s.

2
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(c) The total time in the air is the time from t = 0 until y(t) = 0. So we solve

−4.9t2 + 100t + 20 = 0

This quadratic has roots t = 20.6,−0.2. As usual, we choose the positive time
t = 20.6 s. So the projectile is in the air for 20.6 seconds.

1.3.5 In order to give you the most accurate picture, I’ve given computer-generated solution
curves. Your sketches don’t need to be perfect, but they should look somewhat similar
to the real thing.

The three solution curves I’ve given started from the initial points (2, 1), (1,−1), and
(−1, 1).

3
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1.3.9 In order to give you the most accurate picture, I’ve given computer-generated solution
curves. Your sketches don’t need to be perfect, but they should look somewhat similar
to the real thing.

4
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The three solution curves I’ve given started from the initial points (2, 1), (−1, 1), and
(−1,−1).

5
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Additional Problems:

1. First, we convert our top speed to m/s:

300 km

1 h
· 1000 m

1 h
· 1 h

60 min
· 1 min

60 s
= 83.33 m/s

Now all of our units are consistent. Our acceleration is constant a(t) = 14 m/s2, our initial
velocity is v0 = 0 m/s and our initial position is x0 = 0 m. So, our velocity and position
functions are v(t) = 14t and x(t) = 7t2. We want the time when v(t) = 83.33, so we solve
14t = 83.33 to get t = 5.95 s. At that time, the position is x(5.95) = 7 ·5.952 = 247.82 m.

So we reach top speed after 5.95 s, at which point we have traveled 247.82 m.

Cultural Aside: These acceleration and velocity numbers are as close as I could find to
the real figures for modern Formula One cars. However, the fastest F1 cars take over
8 seconds to reach 300 kph. There are two primary factors that explain the difference
between our calculation and the real-world data. First of all, F1 cars do not have enough
traction to convert all of their power to forward motion at low speeds. You will often see
cars spinning their wheels at the start of a race for just this reason. The second factor is
that once the car gets above about 100 kph, there is a significant amount of drag due to
air resistance. The aerodynamics of F1 cars slightly reduce top speed, but make the cars
faster over the course of a lap by providing incredible grip through the corners.

2. We already calculated that 300 km/h is 83.33 m/s. We similarly calculate that

80 km

1 h
· 1000 m

1 h
· 1 h

60 min
· 1 min

60 s
= 22.22 m/s

6
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Our units are now consistent. We are applying brakes which decreases velocity, so the
acceleration is a negative constant a(t) = −39 m/s2. The initial speed is v0 = 83.33 m/s.
At time t = 0 when we start braking, we set our position as x0 = 0 m. So our velocity
and position functions are v(t) = −39t + 83.33 and x(t) = −39

2
t2 + 83.33t. We want to

know the time when v(t) = 22.22, so we solve −39t + 83.33 = 22.22 to get t = 1.57 s. At
that time, the position is x(1.57) = −39

2
(1.57)2 + 83.33 · 1.57 = 82.76 m.

So 82.76 m after we start braking, the car will reach the target speed of 80 km/h. The
driver must brake 82.76 m before the corner entry.

3. To take care of units, we calculate

100 km

1 h
· 1000 m

1 h
· 1 h

60 min
· 1 min

60 s
= 27.78 m/s

We have two different cars’ positions to model in this case. We have accelerations aA(t) =
14 and aB(t) = 13. Both cars have the same initial velocity vA(0) = vB(0) = 27.78.
At time t = 0, we will set car B’s position as xB(0) = 0 and car A 10 m behind at
xA(0) = −10. We are looking for the time t where xA(t) = xB(t). Our velocity and
position functions are

vA(t) = 14t + 27.78 vB(t) = 13t + 27.78

xA(t) = 7t2 + 27.78t− 10 xB(t) = 6.5t2 + 27.78t

We want xA(t) = xB(t), so we solve

7t2 + 27.78t− 10 = 6.5t2 + 27.78t

0.5t2 = 10

There are two solutions here, one with t positive and one with t negative. It is reasonable
to assume that time only moves forwards, so we choose the solution with t > 0, namely
t = 4.47 s. At this time, we have

vA(4.47) = 14 · 4.47 + 27.78

= 90.36

vB(4.47) = 13 · 4.47 + 27.78

= 85.89

xA(4.47) = xB(4.47) = 7 · 4.472 + 27.78 · 4.47− 10

= 254.05

So after 4.47 s and 254.05 m from the corner exit, the two cars will be side-by-side. At
that moment, car A is traveling 90.36 m/s (about 325 km/h) and car B is traveling 85.89
m/s (about 309 km/h).

If there is a long enough straight following the corner, we would expect car A to use its
superior acceleration to move ahead of car B. However, if car B has a higher top speed or
can brake much later into the next corner, it may be able to stay ahead.

7
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2.12.1 Problems listing

Homework 12 - Due December 15

Homework instructions: Complete the assigned problems on your own paper. Once you
are finished, scan or photograph your work and upload it to Gradescope. When prompted,
tell Gradescope where to find each problem.
You are allowed (and in fact encouraged) to work with other students on homework assign-
ments. If you do that, please indicate on each problem who you worked with. If you use
sources other than your notes, the textbook, and any resources on Canvas for your home-
work, you must indicate the source on each problem. You are not permitted to view, request,
or look for solutions to any of the homework problems from solutions manuals, homework
help websites, online forums, other students, or any other sources.

Textbook Problems:

• §1.4: 4, 17, 19, 33, 43

• §1.5: 3, 17, 37

• §2.1: 15, 16, 17

Additional Problems:

1. This problem will discuss two different ways to solve the differential equation y′ + y = ex.

(a) Using the methods of chapter 5, solve the homogeneous linear differential equation
with constant coefficients

y′ + y = 0

(b) Use the method of undetermined coefficients to find a particular solution to

y′ + y = ex

(c) Using (a) and (b), write the general solution of

y′ + y = ex

(d) We can also view this differential equation as a first-order linear differential equation
of the type discussed in section 1.5. For the differential equation

y′ + y = ex

what are the functions P (x) and Q(x)?

(e) Use the method of integrating factors to solve

y′ + y = ex

1
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(f) Compare your answers in (c) and (e). Do they describe the same solutions to the
differential equation?

2. This problem will explore the spread of Green’s disease (a highly contagious illness that
causes green skin and no other symptoms) in a city of 100,000 residents. There is currently
no cure, and it appears that those who catch the disease remain infectious forever.

(a) We will assume that the number P (t) of positive cases satisfies a logistic equation of
the form

dP

dt
= kP (M − P )

This essentially says that the number of new infections each day depends on the
number of currently infected individuals and on the number of remaining susceptible
individuals.

On day t = 0, there are 5,000 positive cases identified in the city. Leaving k as an
unknown constant, what is the initial value problem (differential equation and initial
condition) satisfied by P (t)?

(b) Solve the initial value problem you wrote in (a). Show all steps – do not use the
formula for solutions of logistic equations given in the textbook.

(c) On day t = 0, there are 500 new cases being identified each day. Determine the
value of k.

(d) After how many days will half the population of this city have contracted Green’s
disease?

(e) There’s a saying in this area of mathematics that “all models are wrong, but some
are useful.” In the last year or so, we’ve seen that even the most sophisticated models
of disease spread will never be perfectly accurate. Still, they remain useful tools for
policy makers and public health officials.

In a few sentences, reflect on the model for disease spread you explored in this
problem. What useful information does it tell us, and in what ways is the model
likely to be wrong?

2
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2.12.2 Problem 4, section 1.4

Find general solutions (implicit if necessary, explicit if convenient) of the differential
equations in Problems 1 through 18. Primes denote derivatives with respect to 𝑥.

(1 + 𝑥)
𝑑𝑦
𝑑𝑥

= 4𝑦

Solution

This is separable as it can be written as

𝑑𝑦
𝑑𝑥

= 𝐹(𝑥)𝐺�𝑦�

Where in this case 𝐺�𝑦� = 𝑦 and 𝐹(𝑥) = 4
1+𝑥 . Assuming 𝑥 ≠ 1. Therefore we can now separate

and write

𝑑𝑦
𝑑𝑥

1
𝐺�𝑦�

= 𝐹(𝑥)

𝑑𝑦
𝐺�𝑦�

= 𝐹(𝑥)𝑑𝑥

Integrating both sides gives

�
𝑑𝑦
𝐺�𝑦�

= �𝐹(𝑥)𝑑𝑥

Replacing 𝐺�𝑦� = 𝑦 and 𝐹(𝑥) = 4
1+𝑥 , the above becomes

�
𝑑𝑦
𝑦
= �

4
1 + 𝑥

𝑑𝑥

ln�𝑦� = ln�(1 + 𝑥)4� + 𝑐

Taking the exponential of both sides

�𝑦� = 𝑒ln�(1+𝑥)
4�+𝑐

= 𝑒𝑐𝑒ln�(1+𝑥)
4�

Let 𝑒𝑐 = 𝑐1 and since (1 + 𝑥)4 can not be negative, therefore the above simplifies to

�𝑦� = 𝑐1𝑒ln(1+𝑥)
4

= 𝑐1(1 + 𝑥)
4

Let the sign ± be absorbed into the constant of integration. The above simplifies to

𝑦(𝑥) = 𝑐1(1 + 𝑥)
4 𝑥 ≠ 1

2.12.3 Problem 17, section 1.4

Find general solutions (implicit if necessary, explicit if convenient) of the differential
equations in Problems 1 through 18. Primes denote derivatives with respect to 𝑥.

𝑑𝑦
𝑑𝑥

= 1 + 𝑥 + 𝑦 + 𝑥𝑦

Solution

Writing the above as
𝑑𝑦
𝑑𝑥

= (1 + 𝑥)�1 + 𝑦�

This is separable. It can be written as

𝑑𝑦
𝑑𝑥

= 𝐹(𝑥)𝐺�𝑦�
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Where in this case 𝐺�𝑦� = �1 + 𝑦� and 𝐹(𝑥) = (1 + 𝑥). Therefore we can now separate and
write

𝑑𝑦
𝑑𝑥

1
𝐺�𝑦�

= 𝐹(𝑥)

𝑑𝑦
𝐺�𝑦�

= 𝐹(𝑥)𝑑𝑥

Integrating both sides gives

�
𝑑𝑦
𝐺�𝑦�

= �𝐹(𝑥)𝑑𝑥

Replacing 𝐺�𝑦� = �1 + 𝑦� and 𝐹(𝑥) = (1 + 𝑥), the above becomes

�
𝑑𝑦

�1 + 𝑦�
= �(1 + 𝑥)𝑑𝑥

ln�1 + 𝑦� = 𝑥 +
𝑥2

2
+ 𝑐

Taking the exponential of both sides

�1 + 𝑦� = 𝑒𝑥+
𝑥2
2 +𝑐

= 𝑒𝑐𝑒𝑥+
𝑥2
2

Let 𝑒𝑐 = 𝑐1 the above becomes

�1 + 𝑦� = 𝑐1𝑒
𝑥+ 𝑥2

2

Let the sign ± be absorbed into the constant of integration. The above simplifies to

1 + 𝑦 = 𝑐1𝑒
𝑥+ 𝑥2

2

𝑦 = 𝑐1𝑒
𝑥+ 𝑥2

2 − 1

2.12.4 Problem 19, section 1.4

Find explicit particular solutions of the initial value problems in Problems 19 through 28.

𝑑𝑦
𝑑𝑥

= 𝑦𝑒𝑥

𝑦(0) = 2𝑒

Solution

This is separable because it can be written as

𝑑𝑦
𝑑𝑥

= 𝐹(𝑥)𝐺�𝑦�

Where in this case 𝐺�𝑦� = 𝑦 and 𝐹(𝑥) = 𝑒𝑥. Therefore we can now separate and write

𝑑𝑦
𝑑𝑥

1
𝐺�𝑦�

= 𝐹(𝑥)

𝑑𝑦
𝐺�𝑦�

= 𝐹(𝑥)𝑑𝑥

Integrating both sides gives

�
𝑑𝑦
𝐺�𝑦�

= �𝐹(𝑥)𝑑𝑥

Replacing 𝐺�𝑦� = 𝑦 and 𝐹(𝑥) = 𝑒𝑥, the above becomes

�
𝑑𝑦
𝑦
= �𝑒𝑥𝑑𝑥

ln�𝑦� = 𝑒𝑥 + 𝑐
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Taking the exponential of both sides

�𝑦� = 𝑒𝑒𝑥+𝑐

= 𝑒𝑐𝑒𝑒𝑥

Let 𝑒𝑐 = 𝑐1, therefore the above simplifies to

�𝑦� = 𝑐1𝑒𝑒
𝑥

Let the sign ± be absorbed into the constant of integration. The above simplifies to

𝑦(𝑥) = 𝑐1𝑒𝑒
𝑥

(1)

Now we apply initial conditions to find 𝑐1. Since 𝑦(0) = 2𝑒 then the above solution becomes

2𝑒 = 𝑐1𝑒
𝑐1 = 2

Hence the general solution (1) now becomes

𝑦(𝑥) = 2𝑒𝑒𝑥

2.12.5 Problem 33, section 1.4

A certain city had a population of 25,000 in 1960 and a population of 30,000 in 1970.
Assume that its population will continue to grow exponentially at a constant rate. What
population can its city planners expect in the year 2000?

Solution

The differential equation model is
𝑑𝑃
𝑑𝑡

= 𝑘𝑃

Where 𝑃(𝑡) is the population at time 𝑡. The initial conditions are 𝑃(0) = 25000 where 𝑡 = 0
is taken as the year 1960. We are also given that 𝑃(10) = 30000. We are asked to determine
𝑃(40) which is the year 2000. First we solve the ode. This is both linear and separable.
Using the separable method, it can be written as

𝑑𝑃
𝑑𝑡

= 𝐹(𝑡)𝐺(𝑃)

Where in this case 𝐺(𝑃) = 𝑃 and 𝐹(𝑡) = 𝑘. Therefore we can now separate and write

𝑑𝑃
𝑑𝑡

1
𝐺(𝑃)

= 𝐹(𝑡)

𝑑𝑃
𝐺(𝑃)

= 𝐹(𝑡)𝑑𝑡

Integrating both sides gives

�
𝑑𝑃
𝐺(𝑃)

= �𝐹(𝑡)𝑑𝑡

Replacing 𝐺(𝑃) = 𝑃 and 𝐹(𝑡) = 𝑘, the above becomes

�
𝑑𝑃
𝑃
= �𝑘𝑑𝑡

ln𝑃 = 𝑘𝑡 + 𝑐

No need for absolute sign here, since 𝑃 can not be negative. Taking exponential of both
sides gives

𝑃(𝑡) = 𝑐𝑒𝑘𝑡 (1)

Applying initial conditions 𝑃(0) = 25000 the above gives

25000 = 𝑐
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Hence (1) now becomes

𝑃(𝑡) = 25000𝑒𝑘𝑡 (2)

Applying second condition 𝑃(10) = 30000 to the above gives

30000 = 25000𝑒10𝑘

30000
25000

= 𝑒10𝑘

6
5
= 𝑒10𝑘

Taking natural log of both sides

ln�
6
5�
= 10𝑘

𝑘 =
1
10

ln�
6
5�

Hence (2) becomes

𝑃(𝑡) = 25000𝑒
� 1
10 ln�

6
5 ��𝑡

At 𝑡 = 40

𝑃(40) = 25000𝑒
� 1
10 ln�

6
5 ��40

Using calculator it gives
𝑃(40) = 51840

Hence the population in year 2000 is 51840.

2.12.6 Problem 43, section 1.4

Cooling. A pitcher of buttermilk initially at 25 C is to be cooled by setting it on the front
porch, where the temperature is 0 C. Suppose that the temperature of the buttermilk has
dropped to 15 C after 20 min. When will it be at 5 C?

Solution

Cooling of object is governed by the Newton’s law cooling

𝑑𝑇
𝑑𝑡

= 𝑘(𝑇𝑜𝑢𝑡 − 𝑇)

Where 𝑇𝑜𝑢𝑡 is the ambient temperature, which is 0 C in this problem and 𝑘 is positive
constant. Hence the above becomes

𝑑𝑇
𝑑𝑡

= −𝑘𝑇

This is separable (and also linear in 𝑇). Solving it as separable, it can be written as

𝑑𝑇
𝑑𝑡

= 𝐹(𝑡)𝐺(𝑇)

Where in this case 𝐺(𝑇) = 𝑇 and 𝐹(𝑡) = −𝑘. Therefore we can now separate and write

𝑑𝑇
𝑑𝑡

1
𝐺(𝑇)

= 𝐹(𝑡)

𝑑𝑇
𝐺(𝑇)

= 𝐹(𝑡)𝑑𝑡

Integrating both sides gives

�
𝑑𝑇
𝐺(𝑇)

= �𝐹(𝑡)𝑑𝑡

245



2.12. HW 12 CHAPTER 2. HWS

Replacing 𝐺(𝑇) = 𝑇 and 𝐹(𝑡) = −𝑘, the above becomes

�
𝑑𝑦
𝑇
= −𝑘�𝑑𝑡

ln|𝑇| = −𝑘𝑡 + 𝑐

Taking the exponential of both sides

|𝑇| = 𝑒−𝑘𝑡+𝑐

= 𝑒𝑐𝑒−𝑘𝑡

Let 𝑒𝑐 = 𝑐1, therefore the above simplifies to

|𝑇| = 𝑐1𝑒−𝑘𝑡

Let the sign ± be absorbed into the constant of integration. The above simplifies to

𝑇(𝑡) = 𝑐1𝑒−𝑘𝑡 (1)

Now initial conditions are used to determine 𝑐1. At 𝑡 = 0, we are given 𝑇(0) = 25. The above
becomes

25 = 𝑐1
Therefore (1) becomes

𝑇(𝑡) = 25𝑒−𝑘𝑡 (2)

Now the second condition 𝑇(20) = 15 is used to determine 𝑘. The above becomes

15 = 25𝑒−20𝑘

15
25

= 𝑒−20𝑘

3
5
= 𝑒−20𝑘

Taking natural log of both sides gives (using property ln 𝑒𝑓(𝑥) = 𝑓(𝑥))

ln�
3
5�
= −20𝑘

𝑘 =
−1
20

ln�
3
5�

=
1
20

ln
5
3

Substituting the above value of 𝑘 back into (2) gives

𝑇(𝑡) = 25𝑒
�−120 ln

5
3 �𝑡

= 25𝑒
� 1
20 ln

3
5 �𝑡

To answer the final part, let 𝑇(𝑡) = 5 and we need to solve for 𝑡 from the above.

5 = 25𝑒
� 1
20 ln

3
5 �𝑡

1
5
= 𝑒

� 1
20 ln

3
5 �𝑡

Taking natural log of both sides gives

ln�
1
5�
= �

1
20

ln
3
5�
𝑡

𝑡 =
ln�15�

ln�35�
1
20

Using the calculator gives
𝑡 = 63.013 min
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2.12.7 Problem 3, section 1.5

Find general solutions of the differential equations in Problems 1 through 25. If an initial
condition is given, find the corresponding particular solution. Throughout, primes denote
derivatives with respect to 𝑥.

𝑦′ + 3𝑦 = 2𝑥𝑒−3𝑥 (1)

Solution

This is of the form 𝑦′ + 𝑝(𝑥)𝑦 = 𝑞(𝑥). Hence it is linear in 𝑦. Where

𝑝(𝑥) = 3
𝑞(𝑥) = 2𝑥𝑒−3𝑥

The integrating factor is

𝜌 = 𝑒∫𝑝𝑑𝑥

= 𝑒∫3𝑑𝑥

= 𝑒3𝑥

Multiplying both sides of (1) by the integration factor gives

𝑑
𝑑𝑥
�𝑦𝜌� = 𝜌�2𝑥𝑒−3𝑥�

𝑑
𝑑𝑥
�𝑒3𝑥𝑦� = 𝑒3𝑥�2𝑥𝑒−3𝑥�

𝑑
𝑑𝑥
�𝑒3𝑥𝑦� = 2𝑥

Integrating gives

�𝑑�𝑒3𝑥𝑦� = �2𝑥𝑑𝑥

𝑒3𝑥𝑦 = 𝑥2 + 𝑐

𝑦(𝑥) = 𝑒−3𝑥�𝑥2 + 𝑐�

The above is the general solution.

2.12.8 Problem 17, section 1.5

Find general solutions of the differential equations in Problems 1 through 25. If an initial
condition is given, find the corresponding particular solution. Throughout, primes denote
derivatives with respect to 𝑥.

(1 + 𝑥)𝑦′ + 𝑦 = cos 𝑥 (1)

𝑦(0) = 1

Solution

Dividing both sides of (1) by (1 + 𝑥) where 𝑥 ≠ −1 gives

𝑦′ +
1

1 + 𝑥
𝑦 =

cos 𝑥
1 + 𝑥

(2)

This is now in the form 𝑦′ + 𝑝(𝑥)𝑦 = 𝑞(𝑥). Hence it is linear in 𝑦. Where

𝑝(𝑥) =
1

1 + 𝑥
𝑞(𝑥) =

cos 𝑥
1 + 𝑥
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The integrating factor is

𝜌 = 𝑒∫𝑝𝑑𝑥

= 𝑒∫
1

1+𝑥𝑑𝑥

= 𝑒ln(1+𝑥)

= 1 + 𝑥

Multiplying both sides of (2) by the above integration factor gives

𝑑
𝑑𝑥
�𝑦𝜌� = 𝜌�

cos 𝑥
1 + 𝑥

�

𝑑
𝑑𝑥
�(1 + 𝑥)𝑦� = (1 + 𝑥)�

cos 𝑥
1 + 𝑥

�

𝑑
𝑑𝑥
�(1 + 𝑥)𝑦� = cos 𝑥

Integrating gives

�𝑑�(1 + 𝑥)𝑦� = � cos 𝑥𝑑𝑥

(1 + 𝑥)𝑦 = sin 𝑥 + 𝑐

𝑦(𝑥) =
1

1 + 𝑥
(sin 𝑥 + 𝑐) 𝑥 ≠ −1 (3)

The above is the general solution. Now we use initial conditions to determine 𝑐. Since we
are given that 𝑦(0) = 1 then (3) becomes

1 = (sin 0 + 𝑐)
𝑐 = 1

Therefore (3) becomes

𝑦(𝑥) =
1

1 + 𝑥
(1 + sin 𝑥) 𝑥 ≠ −1

2.12.9 Problem 37, section 1.5

A 400-gal tank initially contains 100 gal of brine containing 50 lb of salt. Brine containing
1 lb of salt per gallon enters the tank at the rate of 5 gal/s, and the well-mixed brine in the
tank flows out at the rate of 3 gal/s. How much salt will the tank contain when it is full of
brine?

Solution

Let 𝑥(𝑡) be mass of salt in lb at time 𝑡 in the tank. The differential equation that describes
how the mass of salt changes in time is therefore

𝑑𝑥
𝑑𝑡
= (5)(1) − (3)

𝑥
𝑉(𝑡)

(1)

But

𝑉(𝑡) = 100 + (5𝑡 − 3𝑡)
= 100 + 2𝑡

Therefore (1) becomes

𝑑𝑥
𝑑𝑡
= 5 − 3

𝑥
100 + 2𝑡

𝑑𝑥
𝑑𝑡
+

3
100 + 2𝑡

𝑥 = 5 (2)

This is now in the form 𝑥′ + 𝑝(𝑡)𝑥 = 𝑞(𝑡). Hence it is linear in 𝑥. Where

𝑝(𝑡) =
3

100 + 2𝑡
𝑞(𝑡) = 5
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The integrating factor is

𝜌 = 𝑒∫𝑝𝑑𝑡

= 𝑒3∫
1

100+2𝑡𝑑𝑡

Let 100 + 2𝑡 = 𝑢. Hence 𝑑𝑢
𝑑𝑡 = 2. The integral becomes ∫ 1

100+2𝑡𝑑𝑡 becomes ∫ 1
𝑢
𝑑𝑢
2 = 1

2 ln(𝑢) =
1
2 ln(100 + 2𝑡). The above becomes

𝜌 = 𝑒
3
2 ln(100+2𝑡)

= (100 + 2𝑡)
3
2

Multiplying both sides of (2) by the above integration factor gives

𝑑
𝑑𝑡
�𝑥𝜌� = 5𝜌

𝑑
𝑑𝑡
�(100 + 2𝑡)

3
2𝑥� = 5(100 + 2𝑡)

3
2

Integrating gives

(100 + 2𝑡)
3
2𝑥 = 5�(100 + 2𝑡)

3
2𝑑𝑡

Let 100 + 2𝑡 = 𝑢 hence 𝑑𝑢
𝑑𝑡 = 2 and the integral on the right becomes ∫ 𝑢

3
2

2 𝑑𝑢 =
1
2
𝑢
5
2
5
2

= 1
5𝑢

5
2 .

Hence the above now becomes

(100 + 2𝑡)
3
2𝑥 = 5�

1
5
𝑢

5
2 � + 𝑐

= 𝑢
5
2 + 𝑐

= (100 + 2𝑡)
5
2 + 𝑐

Solving for 𝑥(𝑡) gives

𝑥 = (100 + 2𝑡)
5
2−

3
2 + 𝑐(100 + 2𝑡)

−3
2

= (100 + 2𝑡) + 𝑐(100 + 2𝑡)
−3
2 (3)

Now we find 𝑐 from initial conditions. At 𝑡 = 0 we are told that 𝑥 = 50. Hence

50 = (100) + 𝑐(100)
−3
2

−50 =
𝑐

100
3
2

𝑐 = (−50)�100
3
2 �

= −50000

Therefore (3) becomes

𝑥(𝑡) = (100 + 2𝑡) −
50000

(100 + 2𝑡)
3
2

(4)

The above gives the mass of salt as function of time. We now to find the time when the
tank is full. From the volume function we know that 𝑉(𝑡) = 100 + 2𝑡. Since the tank size is
400 gal, then we solve for 𝑡 from

400 = 100 + 2𝑡

𝑡 =
300
2

= 150 sec
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So the tank fills up after 150 seconds. Substituting this value of time in (4) gives

𝑥(𝑡) = (100 + 2(150)) −
50000

(100 + 2(150))
3
2

= (100 + 300) −
50000

(100 + 300)
3
2

= 400 −
50000

400
3
2

=
1575
4

= 393.75 lb

2.12.10 Problem 15, section 2.1

Consider a population 𝑃(𝑡) satisfying the logistic equation 𝑑𝑃
𝑑𝑡 = 𝑎𝑃 − 𝑏𝑃2, where 𝐵 = 𝑎𝑃

is the time rate at which births occur and 𝐷 = 𝑏𝑃2 is the rate at which deaths occur. If
the initial population 𝑃(0) = 𝑃0, and 𝐵0 births per month and 𝐷0 deaths per month are
occurring at time 𝑡 = 0, show that the limiting population is 𝑀 = 𝐵0𝑃0

𝐷0

Solution

We are given the logistic equation in he form

𝑑𝑃
𝑑𝑡

= 𝑎𝑃 − 𝑏𝑃2

= 𝑎�𝑃 −
𝑏
𝑎
𝑃2�

= 𝑎𝑃�1 −
𝑏
𝑎
𝑃� (1)

Comparing (1) to the other standard form given in textbook which is

𝑑𝑃
𝑑𝑡

= 𝑘𝑃(𝑀 − 𝑃) (2)

Where in this form 𝑀 is the limiting population. Factoring 𝑀 out from (2) gives

𝑑𝑃
𝑑𝑡

= (𝑘𝑀)𝑃�1 −
𝑃
𝑀� (3)

Comparing (1) and (3) shows that, by inspection that

𝑎 = 𝑘𝑀

𝑀 =
𝑎
𝑏

(4)

But we are told that 𝑎 = 𝐵
𝑃 . At time 𝑡 = 0 this gives

𝑎 =
𝐵0
𝑃0

(5)

And we are told that 𝑏 = 𝐷
𝑃2 which at 𝑡 = 0 gives

𝑏 =
𝐷0

𝑃20
(6)

Substituting (5,6) back in (4) gives

𝑀 =
𝐵0
𝑃0
𝐷0
𝑃20

=
𝐵0𝑃20
𝑃0𝐷0

Or
𝑀 =

𝐵0𝑃0
𝐷0

Which is what we are asked to show.
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2.12.11 Problem 16, section 2.1

Consider a rabbit population 𝑃(𝑡) satisfying the logistic equation as in Problem 15. If the
initial population is 120 rabbits and there are 8 births per month and 6 deaths per month
occurring at time 𝑡 = 0, how many months does it take for 𝑃(𝑡) to reach 95% of the limiting
population 𝑀 ?

Solution

We have 𝑃(0) = 120 and 𝐵 = 𝑎𝑃 = 8 per month and 𝐷 = 𝑏𝑃2 = 6 per month. Hence

𝑎 =
𝐵
𝑃
=

8
𝑃(0)

=
8
120

=
1
15

The limiting population is

𝑀 =
𝐵0𝑃0
𝐷0

=
(8)(120)

6
= 160

Therefore, we need to find the time the population reaches 95% of the above value, or
95
100
(160) = 152 rabbits. The solution to the logistic equation is given in equation (7) page

77 as
𝑃(𝑡) =

𝑀𝑃0
𝑃0 + (𝑀 − 𝑃0)𝑒−𝑘𝑀𝑡

This was derived from the form 𝑑𝑃
𝑑𝑡 = 𝑘𝑝(𝑀 − 𝑃). But as we found in the last problem, 𝑘 = 𝑎

𝑀
and 𝑎 = 1

15 in this problem. Hence 𝑘 = 1
15𝑀 . The above solution now becomes

𝑃(𝑡) =
𝑀𝑃0

𝑃0 + (𝑀 − 𝑃0)𝑒
− 1
15 𝑡

But 𝑀 = 160 and 𝑃0 = 120. The above becomes

𝑃(𝑡) =
(160)(120)

120 + (160 − 120)𝑒−
1
15 𝑡

=
19200

120 + 40𝑒−
1
15 𝑡

We want to find 𝑡 when 𝑃(𝑡) = 152. Hence

152 =
19200

120 + 40𝑒−
1
15 𝑡

We need to solve the above for 𝑡.

152�120 + 40𝑒−
1
15 𝑡� = 19200

6080𝑒
−1
15 𝑡 + 18240 = 19200

𝑒
−1
15 𝑡 =

19200 − 18240
6080

=
3
19

Taking natural log gives

−1
15
𝑡 = ln�

3
19�

𝑡 = −15 ln�
3
19�

Using the calculator the above gives

𝑡 = 27.687 months
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2.12.12 Problem 17, section 2.1

Consider a rabbit population 𝑃(𝑡)satisfying the logistic equation as in Problem 15. If the
initial population is 240 rabbits and there are 9 births per month and 12 deaths per month
occurring at time 𝑡 = 0. How many months does it take for 𝑃(𝑡) to reach 105% of the limiting
population 𝑀 ?

Solution

This is similar to the above problem. We have 𝑃(0) = 240 and 𝐵 = 𝑎𝑃 = 9 per month and
𝐷 = 𝑏𝑃2 = 12 per month. Hence

𝑎 =
𝐵
𝑃
=

9
𝑃(0)

=
9
240

=
3
80

The limiting population is

𝑀 =
𝐵0𝑃0
𝐷0

=
(9)(240)
12

= 180

Therefore, we need to find the time the population reaches 105% of the above value, or
105
100
(180) = 189 rabbits. The solution to the logistic equation is given in equation (7) page

77 as
𝑃(𝑡) =

𝑀𝑃0
𝑃0 + (𝑀 − 𝑃0)𝑒−𝑘𝑀𝑡

This was derived from the form 𝑑𝑃
𝑑𝑡 = 𝑘𝑝(𝑀 − 𝑃). But as we found in the last problem, 𝑘 = 𝑎

𝑀
and 𝑎 = 3

80 in this problem. Hence 𝑘 = 3
80𝑀 . The above solution now becomes

𝑃(𝑡) =
𝑀𝑃0

𝑃0 + (𝑀 − 𝑃0)𝑒
− 3
80 𝑡

But 𝑀 = 180 and 𝑃0 = 240. The above becomes

𝑃(𝑡) =
(180)(240)

240 + (180 − 240)𝑒−
3
80 𝑡

=
43200

240 − 60𝑒−
3
80 𝑡

We want to find 𝑡 when 𝑃(𝑡) = 189. Hence

189 =
43 200

240 − 60𝑒−
9
140 𝑡

We need to solve the above for 𝑡.

189�240 − 60𝑒−
3
80 𝑡� = 43200

45360 − 11 340𝑒−
3
80 𝑡 = 43200

𝑒−
3
80 𝑡 = −

43200 − 45360
11 340

=
4
21

Taking natural log gives

−
3
80
𝑡 = ln�

4
21�

𝑡 = −
80
3
ln�

4
21�

Using the calculator the above gives

𝑡 = 44.219 months
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2.12.13 Additional problem 1

Solution

2.12.13.1 Part a

𝑦′ + 𝑦 = 0

The characteristic equation is
𝑟 + 1 = 0

The root is 𝑟 = −1. Therefore the general solution is given by

𝑦ℎ(𝑥) = 𝐶𝑒𝑟𝑥

= 𝐶𝑒−𝑥

Where 𝐶 is arbitrary constant.

2.12.13.2 Part b

𝑦′ + 𝑦 = 𝑒𝑥 (1)

From part (a) we found that 𝑒−𝑥 is basis solution for the homogeneous ODE. The RHS in
this ode is 𝑒𝑥. No duplication. Therefore we let

𝑦𝑝 = 𝐴𝑒𝑥

Substituting this in (1) gives

𝐴𝑒𝑥 + 𝐴𝑒𝑥 = 𝑒𝑥

2𝐴 = 1

𝐴 =
1
2

Therefore
𝑦𝑝 =

1
2
𝑒𝑥

2.12.13.3 Part c

The general solution is the sum of the homogeneous solution (part a) and the particular
solution (part b). Therefore

𝑦 = 𝑦ℎ + 𝑦𝑝

= 𝐶𝑒−𝑥 +
1
2
𝑒𝑥

2.12.13.4 Part d

The ODE

𝑦′ + 𝑦 = 𝑒𝑥 (1)

Has the form
𝑦′ + 𝑃(𝑥)𝑦 = 𝑄(𝑥)

Which implies that

𝑃(𝑥) = 1
𝑄(𝑥) = 𝑒𝑥
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2.12.13.5 Part e

The integrating factor is therefore 𝜌 = 𝑒∫𝑃(𝑥)𝑑𝑥 = 𝑒∫𝑑𝑥 = 𝑒𝑥. Multiplying both sides of (1) by
𝜌 results in

𝑑
𝑑𝑥
�𝜌𝑦� = 𝜌𝑒𝑥

𝑑�𝜌𝑦� = �𝜌𝑒𝑥�𝑑𝑥

𝑑�𝑒𝑥𝑦� = 𝑒2𝑥𝑑𝑥

Integrating gives

𝑒𝑥𝑦 = �𝑒2𝑥𝑑𝑥

𝑒𝑥𝑦 =
1
2
𝑒2𝑥 + 𝐶

Therefore
𝑦 =

1
2
𝑒𝑥 + 𝐶𝑒−𝑥

2.12.13.6 Part f

Comparing the solution obtained in part (c) and (e) shows they are the same solution.

2.12.14 Additional problem 2

Solution

2.12.14.1 Part (a)

𝑑𝑃
𝑑𝑡

= 𝑘𝑃(𝑀 − 𝑃) (1)

The solution 𝑃(𝑡), where 𝑃(𝑡) is number of positive cases at time 𝑡 should satisfy the above
ODE, with 𝑃(0) = 5000.

2.12.14.2 Part (b)

The ODE in part(a) is separable. It has the form

𝑑𝑃
𝑑𝑡

= 𝐹(𝑡)𝐺(𝑃)

Where

𝐹(𝑡) = 1
𝐺(𝑃) = 𝑘𝑃(𝑀 − 𝑃)

Therefore the ODE (1) can be written as

𝑑𝑃
𝐺(𝑃)

= 𝐹(𝑡)𝑑𝑡

𝑑𝑃
𝑘𝑃(𝑀 − 𝑃)

= 𝑑𝑡

�
𝑑𝑃

𝑘𝑃(𝑀 − 𝑃)
= �𝑑𝑡 (2)

To integrate the left side will use partial fractions. Let

1
𝑘𝑃(𝑀 − 𝑃)

=
𝐴
𝑘𝑃

+
𝐵

𝑀 − 𝑃
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Therefore

𝐴 =
1

𝑀 − 𝑃
�
𝑃=0

=
1
𝑀

And

𝐵 =
1
𝑘𝑃
�
𝑃=𝑀

=
1
𝑘𝑀

Hence (2) becomes

�
1
𝑀

1
𝑘𝑃

+
1
𝑘𝑀

1
𝑀 − 𝑃

𝑑𝑃 = 𝑡 + 𝐶

1
𝑘𝑀

ln|𝑃| −
1
𝑘𝑀

ln|𝑀 − 𝑃| = 𝑡 + 𝐶

1
𝑘𝑀

ln�
𝑃

𝑀 − 𝑃
� = 𝑡 + 𝐶

ln�
𝑃

𝑀 − 𝑃
� = 𝑘𝑀𝑡 + 𝐶2

Where 𝐶2 = 𝐶𝑘𝑀 a new constant. The above now can be written as

𝑃
𝑀 − 𝑃

= 𝐶3𝑒𝑘𝑀𝑡

Where the ± sign it taken care of by the constant 𝐶3. Hence

𝑃 = 𝐶3𝑒𝑘𝑀𝑡(𝑀 − 𝑃)
𝑃 = 𝐶3𝑀𝑒𝑘𝑀𝑡 − 𝐶3𝑃𝑒𝑘𝑀𝑡

𝑃 + 𝐶3𝑃𝑒𝑘𝑀𝑡 = 𝐶3𝑀𝑒𝑘𝑀𝑡

𝑃�1 + 𝐶3𝑒𝑘𝑀𝑡� = 𝐶3𝑀𝑒𝑘𝑀𝑡

𝑃(𝑡) =
𝐶3𝑀𝑒𝑘𝑀𝑡

1 + 𝐶3𝑒𝑘𝑀𝑡

=
𝐶3𝑀

𝑒−𝑘𝑀𝑡 + 𝐶3
(3)

When 𝑡 = 0, 𝑃 = 𝑃0. Hence the above becomes

𝑃0 =
𝐶3𝑀
1 + 𝐶3

𝑃0 + 𝑃0𝐶3 = 𝐶3𝑀
𝐶3(𝑃0 −𝑀) = −𝑃0

𝐶3 =
𝑃0

𝑀− 𝑃0

Substituting this back in (3) gives

𝑃(𝑡) =
𝑃0

𝑀−𝑃0
𝑀

𝑒−𝑘𝑀𝑡 + 𝑃0
𝑀−𝑃0

=
𝑃0𝑀

𝑒−𝑘𝑀𝑡(𝑀 − 𝑃0) + 𝑃0
Or

𝑃(𝑡) =
𝑀𝑃0

𝑃0 + (𝑀 − 𝑃0)𝑒−𝑘𝑀𝑡

Which is the solution given in the textbook. Now, using 𝑃0 = 5000 given in this problem
gives

𝑃(𝑡) =
5000𝑀

5000 + (𝑀 − 5000)𝑒−𝑘𝑀𝑡
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But 𝑀 = 100000 which is the limiting capacity (total population). The above simplifies to

𝑃(𝑡) =
(5000)(100000)

5000 + (100000 − 5000)𝑒−100000𝑘𝑡

=
(5000)(100000)

5000 + (95 000)𝑒−100000𝑘𝑡

=
100000

1 + �95 0005000
�𝑒−100000𝑘𝑡

=
100000

1 + 19𝑒−100000𝑘𝑡
(4)

The above is the solution we will use for the rest of the problem.

2.12.14.3 Part (c)

We are told there are 500 new cases on first day. This means 𝑃(1) = 5000+500 = 5500. Using
the solution found above we now solve for 𝑘. Let 𝑡 = 1, we obtain

5500 =
100000

1 + 19𝑒−100000𝑘
𝑒−100000𝑘 = 100000

=
100000 − 5500
(19)(5500)

=
189
209

Hence

−𝑘100000 = ln�
189
209�

𝑘 = −
1

100000
ln�

189
209�

= 1 × 10−6

2.12.14.4 Part (d)

We now need to find the time 𝑡 where 𝑃(𝑡) = 50000. Therefore, using (4)

𝑃(𝑡) =
100000

1 + 19𝑒−100000𝑘𝑡

And replacing 𝑘 by value found in part(c) and 𝑃(𝑡) by 50000 gives

50000 =
100000

1 + 19𝑒−100000�1×10
−6�𝑡

50000 =
100000

1 + 19𝑒−
1
10 𝑡

50000�1 + 19𝑒−
1
10 𝑡� = 100000

1 + 19𝑒−
1
10 𝑡 =

100000
50000

1 + 19𝑒−
1
10 𝑡 = 2

𝑒−
1
10 𝑡 =

1
19

Therefore

−
1
10
𝑡 = ln�

1
19�

𝑡 = −10 ln�
1
19�

= 29.444

Therefore it will take about 29 days for the half the population to be infected.

256



2.12. HW 12 CHAPTER 2. HWS

2.12.14.5 Part (e)

The model

𝑑𝑃
𝑑𝑡

= 𝑘𝑃(𝑀 − 𝑃)

Says that the rate of infection depends on𝑀−𝑃 where 𝑃 is current size of infected population
and 𝑀 is limiting size of the population that could become infected, which is assumed
to be the total population, and this is assumed to remain constant all the time. Hence
as more population is infected, the value 𝑀 − 𝑃 becomes smaller and smaller, since 𝑃(𝑡)
is increasing, but 𝑀 is fixed. This means the rate at which people get infected becomes
smaller as more people are infected. This is a good model, assuming people who get
infected remain infected all the time, which is the case here, and assuming 𝑀 remain
constant. This model does not account for death or birth of the overall population and
any migration from outside. A more accurate model would account for this.

This model gives useful information for predicting how many of the population will become
infected in the future given initial conditions.
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2.12.15 key solution for HW12

Homework 12 – Solutions

These solutions demonstrate one way to approach each of the homework problems. In many
cases, there are other correct solutions. If you would like to discuss alternative solutions or
the grading of your assignment, please see me during office hours or send me an email.

Textbook Problems:

1.4.4 We separate variables and then integrate.

(1 + x)
dy

dx
= 4y

1

y
dy =

4

1 + x
dx∫

1

y
dy =

∫
4

1 + x
dx

ln y = 4 ln(1 + x) + C

Now we exponentiate both sides to solve for y.

y = e4 ln(1+x)+C

y = C1(1 + x)4

1.4.17 We can factor to write the differential equation as y′ = (1+x)(1+y). Now we separate
variables and integrate.

dy

dx
= (1 + x)(1 + y)

1

1 + y
dy = (1 + x) dx∫

1

1 + y
dy =

∫
(1 + x) dx

ln(1 + y) = x +
x2

2
+ C

We exponentiate to solve for y.

1 + y = ex+
1
2
x2+C

y = C1e
x+ 1

2
x2 − 1

In this case, solving for y gives us a bit of a mess, so it would be acceptable to leave it
in the implicit form found above.

1
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1.4.19 We separate variables and integrate.

dy

dx
= yex

1

y
dy = ex dx∫

1

y
dy =

∫
ex dx

ln y = ex + C

We have the initial condition y(0) = 2e, so we find the constant C.

ln(2e) = e0 + C

ln 2 + ln e = 1 + C

ln 2 = C

Now we exponentiate to solve for y.

y = ee
x+ln 2

y = 2ee
x

1.4.33 Our population is modeled by dP
dt

= kP , so that P (t) = Cekt. Let t be the years since
1960 and P (t) the population in thousands. Then our initial conditions are P (0) = 25
and P (10) = 30. This lets us solve for the constants C and k:

25 = Ce0k

25 = C

30 = 25e10k

6

5
= e10k

10k = ln(6/5)

k =
ln(6/5)

10
≈ 0.0182

So P (t) = 25e0.0182t and in 2000 we predict P (40) = 25ek·40 = 25(6/5)4 ≈ 51.8 thousand
residents.

1.4.43 The temperature is modeled by dT
dt

= k(0 − T ) = −kT so that T (t) = Ce−kt. Our
initial conditions are T (0) = 25 and T (20) = 15. We can solve for the constants now.

25 = Ce0 = C

2

259



2.12. HW 12 CHAPTER 2. HWS

15 = 25e−20k

3

5
= e−20k

−20k = ln(3/5)

k = − ln(3/5)

20
≈ 0.0255

We want to know when T (t) = 5.

5 = 25e−kt

1

5
= e−kt

−kt = ln(1/5)

t = − ln(1/5)

k
= 20

ln(1/5)

ln(3/5)
≈ 63.01

So it will take about 63 minutes for the buttermilk to cool to 5◦.

1.5.3 We have y′+3y = 2xe−3x, so that P (x) = 3. Our integrating factor is exp(
∫

3 dx) = e3x.
After multiplying by e3x, we have

d

dx

[
ye3x

]
= 2x

ye3x = x2 + C

y = x2e−3x + Ce−3x

1.5.17 We have (1 + x)y′ + y = cosx, which after dividing by 1 + x is

y′ +
1

1 + x
y =

cosx

1 + x

So P (x) = 1
1+x

and our integrating factor is exp(
∫

1
1+x

dx) = exp(ln(1 + x)) = 1 + x.
After multiplication by 1 + x, we have

d

dx
[y(1 + x)] = cos x

y(1 + x) = sinx + C

y =
sinx + C

1 + x

We are given the initial condition that y(0) = 1, so we have

1 =
sin 0 + C

1
1 = C

So our solution is y = sinx+1
1+x

3
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1.5.37 After t seconds, the volume of liquid in the tank is V (t) = 100 + 5t − 3t = 100 + 2t.
The differential equation that describes the amount x(t) of salt in the tank at time t is

x′ = 5 · 1 − 3 · x

100 + 2t

We rewrite this slightly to allow us to find the integrating factor.

x′ +
3

100 + 2t
x = 5

So P (t) = 3
100+2t

and our integrating factor is exp(
∫

3
100+2t

dt) = exp(3
2

ln(100 + 2t)) =

(100 + 2t)3/2. After multiplying by the integrating factor, we have

d

dt

[
x(100 + 2t)3/2

]
= 5(100 + 2t)3/2

x(100 + 2t)3/2 = (100 + 2t)5/2 + C

x = (100 + 2t) +
C

(100 + 2t)3/2

Initially, we have x(0) = 50 pounds of salt. So we can solve for C.

50 = 100 +
C

1003/2

−50 · 1000 = C

So, we have

x(t) = 100 + 2t− 50, 000

(100 + 2t)3/2

We want the amount of salt when the tank is full. This happens when V (t) = 400, so
when t = 150. At that time, we have

x(150) = 400 − 50, 000

4003/2
= 393.75 pounds of salt

2.1.15 We are given that dP
dt

= aP − bP 2 = bP (a
b
− P ). We are given that the birth rate is

aP , which at t = 0 is B0 and the death rate is bP 2, which at t = 0 is D0. Since the
initial population is P (0) = P0, this tells us that aP0 = B0 and bP 2

0 = D0. So we have

a

b
=

B0/P0

D0/P 2
0

=
B0P0

D0

So we have written our differential equation in the form dP
dt

= kP (M − P ) where
k = b = D0

P 2
0

and M = a
b

= B0P0

D0
. Thus our limiting population is indeed B0P0

D0
.

4
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2.1.16 In this case we have P0 = 120, B0 = 8, and D0 = 6. So our differential equation can
be written as

dP

dt
=

6

1202
P

(
8 · 120

6
− P

)
=

1

2400
P (160 − P )

Knowing k, M , and P0, we can use the formula for the general solution of a logistic
equation to get

P (t) =
160 · 120

120 + (160 − 120)e−
1

2400
·160t

=
480

3 + e−t/15

We wish to know when P (t) = 0.95 ·M = 152. We solve:

152 =
480

3 + e−t/15

456 + 152e−t/15 = 480

152e−t/15 = 24

−t

15
= ln(3/19)

t = −15 ln(3/19) ≈ 27.7

So it will take nearly 28 months for the population to reach 95% of the limiting popu-
lation.

2.1.17 In this case, we have P0 = 240, B0 = 9, and D0 = 12. So our differential equation can
be written as

dP

dt
=

12

2402
P

(
9 · 240

12
− P

)
=

1

4800
P (180 − P )

Knowing k, M , and P0, we can use the formula for the general solution of a logistic
equation to get

P (t) =
180 · 240

240 + (180 − 240)e−
1

4800
·180t

=
720

4 − e−3t/80

We wish to know when P (t) = 1.05 ·M = 189. We solve:

189 =
720

4 − e−3t/80

756 − 189e−3t/80 = 720

189e−3t/80 = 36

−3t

80
= ln(4/21)

t =
−80 ln(4/21)

3
≈ 44.2

5
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So it will take just more than 44 months for the population to fall to 105% of the
limiting population.

Additional Problems:

1. (a) y′+y = 0 has characteristic equation r+1 = 0 with root r = −1. So we have general
solution y = c1e

−x.

(b) Our particular solution has form yp = Aex since there is no repetition. We substitute
into the equation to find the value of A:

y′p + yp = Aex + Aex = ex

So A = 1
2

and we have particular solution yp = 1
2
ex.

(c) The general solution is y = yp + yc = 1
2
ex + c1e

−x.

(d) For y′ + y = ex we have P (x) = 1 and Q(x) = ex.

(e) Our integrating factor is

e
∫
P (x) dx = e

∫
1 dx

= ex

So we have

y′ex + yex = e2x

d

dx
[y · ex] = e2x

y · ex =

∫
e2x dx

y · ex =
1

2
e2x + C

y =
1

2
ex + Ce−x

(f) The solutions we wrote in (e) and (c) are identical, except for the name of the
constants.

2. (a) The initial value problem is

dP

dt
= kP (100 − P ) P (0) = 5

where P (t) is the number of people with Green’s disease (in thousands) on day t.

6
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(b) This differential equation is separable:

1

P (100 − P )
dP = k dt

After calculating a partial fraction decomposition, we can integrate both sides:

1

100

∫ (
1

P
+

1

100 − P

)
dP =

∫
k dt

1

100
(lnP − ln(100 − P )) = kt + C

ln

(
P

100 − P

)
= 100kt + C0

P

100 − P
= C1e

100kt

At this point, it seems prudent to solve for the constant C1. With P (0) = 5, we
compute

5

100 − 5
= C1e

0

C1 =
5

95

We will leave the symbol C1 in our calculation for the time being as we solve for P :

P

100 − P
= C1e

100kt

P = 100C1e
100kt − PC1e

100kt

P (1 + C1e
100kt) = 100C1e

100kt

P =
100C1e

100kt

1 + C1e100kt

P =
100 · 5

95
e100kt

1 + 5
95
e100kt

Multiplying the fraction by 95e−100kt in both numerator and denominator, we get a
cleaner expression

P (t) =
500

95e−100kt + 5

(c) We are given that P ′(0) = 0.5 and that P (0) = 5. We can put these values into the
differential equation to get

0.5 = k(5)(100 − 5)

k =
0.5

5 · 95
≈ 0.00105

7
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(d) We need to know when P (t) = 50. So, we solve for t in

500

95e−100kt + 5
= 50

500 = 50 · 95e−100kt + 5 · 50

500 − 5 · 50

50 · 95
= e−100kt

1

19
= e−100kt

−100kt = ln( 1
19

) ≈ −2.944

t ≈ −2.944

−100 · 0.00105
= 28.04

So it will take about 28 days for half the population to be infected.

(e) One way to view this kind of model is that it tells us what will happen if the
system is left to run without intervention. This model will only be accurate if
human behavior, the biology of the disease, and our treatment capability all stay
the same. Factors like mask wearing, social distancing, curfews, hand washing,
business closures, and holiday celebrations can all impact the level of transmission
between individuals. There may be changes to the transmissibility of the disease
itself, caused by mutations or by the weather. Medical intervention may allow us to
make infected individuals no longer contagious or make some people immune through
vaccines. There may also be further complicating factors such as travel to and from
other cities.

Another relevant saying here is “garbage in, garbage out.” This means that our
model is only as good as the data we feed into it. If the count of total infections or
daily infections is wrong due to inaccurate tests, insufficient testing, or incomplete
reporting, our model has no hope of predicting the true numbers.

With all of that said, what utility can we still get from this model? Well, it does
tell us about one possible scenario for how disease transmission could evolve. If
we adjust our assumptions slightly, we can get other possible scenarios. In reality,
most modeling of this kind gives a range of possible outcomes, rather than a single
prediction. This model is one such possible outcome and is probably most useful
when viewed in the context of other possible outcomes.

The predictions of this model also give us a benchmark to compare future data to. If
we introduce public health interventions like mask mandates, stay-at-home orders, or
messaging about hand washing, we can assess their effectiveness by comparing future
data to our predictions. If there are fewer infections than our model predicted, that
indicates that the public health interventions may be helping. If infection rates
rise above our predictions, we will need to explore possible causes such as disease
mutations, weather changes, or ”superspreader” events. Having this model helps

8
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us understand whether the new data we get each day is as expected, a cause for
concern, or a cause for celebration.

9
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2.13 HW 13

Local contents
2.13.1 Problems listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
2.13.2 key solution for HW13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

2.13.1 Problems listing

Homework 13

As we are rapidly approaching the final exam, this homework will not be collected or graded.
These problems are simply to aid you in studying for the exam. As such, I will not be pro-
viding a specific list of textbook problems beyond that on the review sheet. If you can
comfortably do two or three of each of the problem types from the textbook, you are prob-
ably safe to skip the rest. I will only type up solutions for the additional problems, but I
encourage you to check your answers for the textbook problems with the back of the book.

Textbook Problems:

• §2.2: 1-12, 20-22

• §2.3: 1-3, 9-12

• §2.4: 1-10

Additional Problems:

1. Write a differential equation of the form dx
dt

= f(x) that has a stable equilibrium at x = 5
and an unstable equilibrium at x = 1.

2. Write a differential equation of the form dx
dt

= f(x) that has stable equilibria at x = 5
and x = 7 and an unstable equilibrium at x = 1.

3. Formula One cars have a feature called the drag reduction system (DRS) which opens
a flap on the rear wing to decrease drag at particular points in the race and facilitate
overtaking. For the purposes of this problem, we will assume that the cars have constant
acceleration and drag proportional to velocity, so that

dv

dt
= a− ρv

where ρ is a positive constant called the drag coefficient. The top speed of a car is defined
to be lim

t→∞
v(t), otherwise known as the terminal velocity.

(a) The differential equation dv
dt

= a − ρv is separable. Solve it (leaving a and ρ as
constants), and find the particular solution when v(0) = v0. Find the top speed
lim
t→∞

v(t).

(b) Under normal conditions, the top speed of a car is 85 m/s. With the DRS active, the
top speed increases to 90 m/s. If the car’s engine provides a constant acceleration
of 14 m/s2, what is the drag coefficient with and without DRS?

(c) Two cars exit a corner at 25 m/s, with car A 10 meters behind car B. At the same
time, they both begin accelerating at 14 m/s2. However, car A has DRS enabled
while car B does not. Using the drag coefficients calculated in the previous problem,

1
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determine how much time it will take for car A to be right next to car B. (The
position equations will involve both exponential and polynomial terms. I recommend
using a computer algebra system to solve for the time where xA(t) = xB(t))

There are 500 meters from the corner exit to where the drivers must begin braking
for the next corner. Which car will be ahead when they brake for the next corner?

(d) Formula One cars are exceptionally “draggy,” and at high speed can get more de-
celeration from just their aerodynamics than a road car gets from slamming on the
brakes. With no throttle or brakes, we only have drag acting on the car, so that

dv

dt
= −ρv

Say that a driver’s brakes have failed during a race. If they can slow the car to 10
m/s by the time they reach the pit lane, their mechanics will be able to safely bring
the car to a stop. If the driver is currently traveling at 80 m/s, how far before the
pit lane must they begin coasting? Use the non-DRS drag coefficient you calculated
in part (b).

2
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2.13.2 key solution for HW13

Homework 13 – Solutions

These solutions demonstrate one way to approach each of the homework problems. In many
cases, there are other correct solutions. If you would like to discuss alternative solutions or
the grading of your assignment, please see me during office hours or send me an email.

Additional Problems:

1. We need our function f(x) to have zeros at x = 1, 5 and we need the phase diagram to be

|
1

|
5

We take as a first guess f(x) = (x−1)(x−5). We find then that f(0) = (−1)(−5) = 5 > 0,
which would be the wrong sign. So we take as a next guess f1(x) = −(x − 1)(x − 5).
Then we have f1(0) = −5, f1(3) = 4, and f1(6) = −5 which is exactly what is needed.
So our differential equation is

dx

dt
= −(x− 1)(x− 5)

2. We need our function to have zeros at x = 1, 5, 7 and we need the phase diagram to be

|
1

|
5

|
7

The problem here is that we have two conflicting signs needed in the interval between 5
and 7. To rectify this, we will introduce another critical point at 6 where the sign of f(x)
will change. This means we are now looking to get the phase diagram

|
1

|
5

|
7

|
6

We take as a guess f(x) = (x−1)(x−5)(x−6)(x−7). We see that f(0) = (−1)(−5)(−6)(−7) >
0, so the sign is wrong again. Our next guess is f1(x) = −(x − 1)(x − 5)(x − 6)(x − 7).
You can check that now all of the signs are correct, so our differential equation is

dx

dt
= −(x− 1)(x− 5)(x− 6)(x− 7)

If we add the additional requirement that f(x) is continuous on all of R, you can show
that the only way to have both x = 5 and x = 7 as stable equilibria is if there is another
equilibrium solution between 5 and 7. If we don’t require that f(x) is continuous, we can
use a function like

f(x) = −(x− 1)(x− 5)(x− 7)

x− 6
which has only the three required equilibria and no others. This discontinuity at x = 6
makes this differential equation quite unpleasant to work with, however.

1
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3. (a) We are solving dv
dt

= a − ρv where a and ρ are some unknown constants. This is a
separable equation, and we can write it as

1

a− ρv
dv = dt

Integrating both sides and solving for v, we get

−1

ρ
ln(a− ρv) = t+ C0

ln(a− ρv) = −ρt+ C1

a− ρv = C2e
−ρt

−ρv = C2e
−ρt − a

v = C3e
−ρt +

a

ρ

With the initial condition v(0) = v0, we have

v0 = C3 +
a

ρ

So our particular solution is

v(t) =

(
v0 −

a

ρ

)
e−ρt +

a

ρ

Since ρ is a positive constant, the top speed is

lim
t→∞

v(t) =
a

ρ

(b) If the top speed is 85 m/s and our acceleration is 14 m/s2, then we can solve for ρ.

85 =
14

ρ

ρ =
14

85
≈ 0.165

In the case where DRS is active, we have a top speed of 90 m/s, so

90 =
14

ρDRS

ρDRS =
14

90
≈ 0.156

2
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(c) Car A begins 10 meters behind car B so xA(0) = −10 and xB(0) = 0. Both cars
have initial velocity 25 m/s, so using our solution to (a) we can write down the two
velocity functions in terms of the drag coefficients.

vA(t) =

(
25− 14

ρDRS

)
e−ρDRSt +

14

ρDRS

vB(t) =

(
25− 14

ρ

)
e−ρt +

14

ρ

Integrating with respect to t, we get the position functions

xA(t) =

(
− 25

ρDRS
+

14

ρ2DRS

)
e−ρDRSt +

14

ρDRS
t+ CA

xB(t) =

(
−25

ρ
+

14

ρ2

)
e−ρt +

14

ρ
t+ CB

Our initial conditions now let us solve for the constants.

−10 =

(
− 25

ρDRS
+

14

ρ2DRS

)
+ CA

CA =
25

ρDRS
− 14

ρ2DRS
− 10

0 =

(
−25

ρ
+

14

ρ2

)
+ CB

CB =
25

ρ
− 14

ρ2

We now want to know when xA(t) = xB(t). So we set these equal to each other,
substitute the values we found for ρ and ρDRS, and solve for t.

417.857e
−14t
90 + 90t− 427.857 = 364.286e

−14t
85 + 85t− 364.286

417.857e
−14t
90 − 364.286e

−14t
85 + 5t = 63.571

t ≈ 8.306

So it will take about 8.3 seconds for the two cars to be side by side. At time t = 8.306,
we have xA(t) = xB(t) = 434.472 meters. So by the time the cars have driven 500
meters, car A should be ahead.

(d) Setting a = 0 m/s2 and v0 = 80 m/s in our solution found in (a), we have

v(t) = 80e−ρt

3
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Given that ρ = 14
85

, we want to find when v(t) = 10.

10 = 80e
−14t
85

−14t

85
= ln

(
10

80

)
t = −85

14
ln

(
10

80

)
≈ 12.625

The position function is obtained by integrating, so that

x(t) = −80

ρ
e−ρt + C

Taking the place where we begin coasting as position 0, we have x(0) = 0 and C = 80
ρ

.
Now we evaluate the position function at the calculated time to get

x

(
−85

14
ln

(
10

80

))
= − 80

14/85
e

14
85
· 85
14

ln( 10
80) +

80

14/85

= −80 · 85

14
· 10

80
+

80 · 85

14
= 425

So the driver will need to coast for 425 meters to reach the safe speed of 10 m/s.

An interesting thing to consider about this exponential decay model is that the car
is not predicted to come to a complete stop after any finite amount of time, i.e.
v(t) is strictly positive for all t ≥ 0. This doesn’t match our real-world experience,
indicating that forces like friction between the asphalt and the tires are playing a
role that this model isn’t accounting for.

One consequence of this model that does match our real-world experience can be
seen if you run the numbers again for a target velocity of 5 m/s. In this case, it
takes 16.8 seconds to slow down and we travel 455 meters. It takes more than 30%
longer to decrease our speed by 75 m/s than it does to decrease our speed by 70 m/s.
Despite the significant increase in time, we only increase distance traveled by 7%.
This is significantly different from the behavior of the constant deceleration model
we explored in Additional Problem 2 of Homework 11. But if you have played golf
or billiards, you will have experienced how long it can take for the ball to slowly roll
those last few inches before coming to a stop.

4
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Chapter 3

study notes

3.1 How to solve some problems

1. Problem gives set 𝑆 of vectors �𝑣⃗1, 𝑣⃗2, 𝑣⃗3,⋯� and asks to find basis that span 𝑆 con-
sisting of elements from 𝑆. To answer this, write the vectors as columns of matrix 𝐴.
Then convert the matrix to Echelon form (Row reduction). The pivot columns in 𝐴
are the basis.

2. Problem gives set 𝑆 of vectors �𝑣⃗1, 𝑣⃗2, 𝑣⃗3,⋯� and just asks to find basis that span 𝑆. It
does not say consisting of elements from 𝑆. This was not clear and I asked about it.
The answer I got is to use same method as above, and that will work also.

3. Problem gives set 𝑆 of vectors �𝑣⃗1, 𝑣⃗2, 𝑣⃗3� say in ℝ3 and asks to find basis for ℝ3

that contains 𝑆. Here, we also set up the matrix 𝐴 where the first 3 columns are
these vectors, but also add 3 more columns, which are (1, 0, 0), (0, 1, 0), (0, 0, 1) and now
convert 𝐴 to Echelon form and the pivot columns of 𝐴 are the basis. The difference
between this and above, is that we append the elementary basis for ℝ3 to the matrix
𝐴 before starting.

4. Problem gives 𝐴 matrix and asks to find is NULL space. This is asking for basis

of solution space for 𝐴𝑥⃗ = 0⃗. To solve, convert 𝐴 to Echelon form. (no need to do
reduced Echelon form). Then the number of the free variables is the dimension of
the NULL space. So if we have 2 free variables, the NULL space is 2 dimensions.
Call the free variables 𝑠, 𝑡 and so on. Then solve for the leading variables in terms of
the free variables. Then at end let 𝑡 = 1, 𝑟 = 1 and this gives the basis for the NULL
space.

5. Problem gives set of vectors 𝑆 = �𝑣⃗1, 𝑣⃗2, 𝑣⃗3,⋯� and asks if they are linearly independent
or not. If the dimension of each vector is the same as the number of the vectors,
then make a square matrix 𝐴 of the vectors as its columns and find the determinant.
If |𝐴| = 0 then the vectors are linearly independent, else they are not.

Another way to do this is to write 𝑐1𝑣⃗1 + 𝑐1𝑣⃗2 + 𝑐1𝑣⃗3 = 0⃗ and solve for 𝑐𝑖 and see
if the only solution is 𝑐𝑖 = 0. If so, then linearly independent, else not.

6. Problems gives 𝐴 matrix and asks for its column space and its row space. To solve,
reduce the matrix to Echelon form. The row space are those rows which are not
all zeros. The column space are the pivot columns in the original 𝐴 (not the pivot
columns in the final Echelon form matrix).

7. Problem gives set of vectors 𝑆 = �𝑣⃗1, 𝑣⃗2, 𝑣⃗3,⋯� and one vector 𝑤⃗ and asks if 𝑤⃗ is
linear combinations of the vectors in 𝑆. To solve, write 𝑐1𝑣⃗1 + 𝑐2𝑣⃗2 + 𝑐3𝑣⃗3 = 𝑤⃗ and set
up 𝐴𝑥⃗ = 𝑏⃗. Then set up the augments matrix [𝐴|𝑏]. Reduce to Echelon form. Now
see if it is consistent or not. If not consistent, then there is no solution and they it
means 𝑤⃗ can not be written as linear combination. If consistent, then this means we
can write 𝑤⃗ as linear combination (there can be infinite ways to do this).
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8. Problem gives set of vectors 𝑆 = �𝑣⃗1, 𝑣⃗2, 𝑣⃗3,⋯� and asks if 𝑆 spans all of ℝ𝑛? Let 𝑛 = 3
for example. If we can find 3 of vectors from 𝑆 that are linearly independent, then
the answer is yes. Otherwise no.

9. Problem gives set of vectors 𝑆 = �𝑣⃗1, 𝑣⃗2, 𝑣⃗3,⋯� and asks if these vectors are basis
for ℝ𝑛? This is similar to the above. The difference is that the set 𝑆 must contain
only 3 vectors and no more, which are linearly independent. These they are basis.
This means any vector 𝑤⃗ can be expressed as linear combination of the basis in one
unique way.

10. Problem gives square matrix 𝐴 and asks to find its inverse 𝐴. To solve, set up the
augmented matrix by appending to the right side the identity matrix 𝐼. Then convert
the whole augmented matrix to Echelon form, and now convert this to reduced
Echelon form. When done, the right side (which was 𝐼 initially) is 𝐴−1

11. Problem gives square matrix 𝐴 and asks to find its determinant. To solve, look first
if possible to do any row operations to increase the number of zeros in the matrix.
Then expand along one row or one column that has most zeros in it. Remember the
sign is found using (−1)𝑚+𝑛 where 𝑚 is row number and 𝑛 is column number.

12. Problem gives 𝐴𝑥⃗ = 𝑏⃗ and ask what kind of solutions are possible? There are only
three possible solutions: No solution, one unique solution, or an infinite number of
solutions. So was can not have for example 2 or 3 solutions. This is not possible.

13. Problem gives matrix 𝐴,𝐵 and asks to find matrix 𝑋 such that 𝐴𝑋 = 𝐵. To solve,
premultiply both sides by 𝐴−1 to get 𝑋 = 𝐴−1𝐵. So we need to find 𝐴−1 then do matrix
multiplication to find 𝑋.

3.2 Some definitions

span of set of vectors given set 𝑆 = �𝑣⃗1, 𝑣⃗2, 𝑣⃗3,⋯�, then the span of 𝑆 is the set 𝑊 of all
possible linear combinations of elements of 𝑆.
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4.1.1.1 Problem section 3.2 number 23

In Problems 23–27, determine for what values of 𝑘 each system has (a) a unique solution;
(b) no solution; (c) infinitely many solutions.

3𝑥 + 2𝑦 = 1
6𝑥 + 4𝑦 = 𝑘

Solution

⎡
⎢⎢⎢⎢⎣
3 2
6 4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥
𝑦

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1
𝑘

⎤
⎥⎥⎥⎥⎦

Augmented matrix is ⎡
⎢⎢⎢⎢⎣
3 2 1
6 4 𝑘

⎤
⎥⎥⎥⎥⎦

𝑅2 → −2𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎣
3 2 1
0 0 𝑘 − 2

⎤
⎥⎥⎥⎥⎦

The above is in Echelon form. 𝑥 is the leading variable and 𝑦 is the free variable. Let 𝑦 = 𝑡.
The system in Echelon form becomes

⎡
⎢⎢⎢⎢⎣
3 2
0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥
𝑡

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1

𝑘 − 2

⎤
⎥⎥⎥⎥⎦

Last row says that 0 = 𝑘 − 2. This means only 𝑘 = 2 is possible. First row gives 3𝑥 + 2𝑡 = 1.

When 𝑘 = 2, we have infinite number of solutions given by

⎡
⎢⎢⎢⎢⎣
𝑥
𝑦

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1−2𝑡
3
𝑡

⎤
⎥⎥⎥⎥⎦. For any 𝑡.

When 𝑘 ≠ 2 there is no solution. There is no unique solution for any 𝑘 since 𝑦 is free
variable. Hence answer is

(a) None (b) 𝑘 ≠ 2 (c) 𝑘 = 2.

4.1.1.2 Problem section 3.2 number 24

In Problems 23–27, determine for what values of 𝑘 each system has (a) a unique solution;
(b) no solution; (c) infinitely many solutions.

3𝑥 + 2𝑦 = 0
6𝑥 + 𝑘𝑦 = 0

Solution ⎡
⎢⎢⎢⎢⎣
3 2
6 𝑘

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥
𝑦

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

Augmented matrix is ⎡
⎢⎢⎢⎢⎣
3 2 0
6 𝑘 0

⎤
⎥⎥⎥⎥⎦

𝑅2 → −2𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎣
3 2 0
0 𝑘 − 4 0

⎤
⎥⎥⎥⎥⎦

We see that when 𝑘 = 4, then 𝑦 is free variable giving ∞ number of solutions. When 𝑘 ≠ 4
then unique solution exist, which is the trivial solution. Hence answer is

(a) 𝑘 ≠ 4 (b) None (c) 𝑘 = 4.

Notice, the answer in back of the book seems wrong. It says (a) is when 𝑘 ≠ 2. It should
be 𝑘 ≠ 4.
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4.1.1.3 Problem section 3.2 number 25

In Problems 23–27, determine for what values of 𝑘 each system has (a) a unique solution;
(b) no solution; (c) infinitely many solutions.

3𝑥 + 2𝑦 = 11
6𝑥 + 𝑘𝑦 = 21

Solution ⎡
⎢⎢⎢⎢⎣
3 2
6 𝑘

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥
𝑦

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
11
21

⎤
⎥⎥⎥⎥⎦

Augmented matrix is ⎡
⎢⎢⎢⎢⎣
3 2 11
6 𝑘 21

⎤
⎥⎥⎥⎥⎦

𝑅2 → −2𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎣
3 2 11
0 𝑘 − 4 −1

⎤
⎥⎥⎥⎥⎦

We see that when 𝑘 = 4, then inconsistent, since it leads to 0 = −1, hence no solution in
this case. When 𝑘 ≠ 4 then unique solution exist. These are the only two possible cases.
Hence answer is

(a) 𝑘 ≠ 4 (b) 𝑘 = 4 (c) None

4.1.1.4 Problem section 3.2 number 26

In Problems 23–27, determine for what values of 𝑘 each system has (a) a unique solution;
(b) no solution; (c) infinitely many solutions.

3𝑥 + 2𝑦 = 1
7𝑥 + 5𝑦 = 𝑘

Solution ⎡
⎢⎢⎢⎢⎣
3 2
7 5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥
𝑦

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1
𝑘

⎤
⎥⎥⎥⎥⎦

Augmented matrix is ⎡
⎢⎢⎢⎢⎣
3 2 1
7 5 𝑘

⎤
⎥⎥⎥⎥⎦

𝑅1 → 7𝑅1, 𝑅2 → 3𝑅2 gives ⎡
⎢⎢⎢⎢⎣
21 14 7
21 15 3𝑘

⎤
⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 𝑅1 gives ⎡
⎢⎢⎢⎢⎣
21 14 7
0 1 3𝑘 − 7

⎤
⎥⎥⎥⎥⎦

The Echelon form shows that there are no free variables. Hence unique solution exist for
all 𝑘 values. Hence the answer is

(a) any 𝑘 (b) None (c) None

4.1.1.5 Problem section 3.2 number 27

In Problems 23–27, determine for what values of 𝑘 each system has (a) a unique solution;
(b) no solution; (c) infinitely many solutions.

𝑥 + 2𝑦 + 𝑧 = 3
2𝑥 − 𝑦 − 3𝑧 = 5
4𝑥 + 3𝑦 − 𝑧 = 𝑘
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Solution
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1
2 −1 −3
4 3 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥
𝑦
𝑧

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
5
𝑘

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1 3
2 −1 −3 5
4 3 −1 𝑘

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → −2𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1 3
0 −5 −5 −1
4 3 −1 𝑘

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −4𝑅1 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1 3
0 −5 −5 −1
0 −5 −5 𝑘 − 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −𝑅2 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1 3
0 −5 −5 −1
0 0 0 𝑘 − 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The Echelon form shows that only when 𝑘 = 11 we get consistent system. And in this case,
𝑧 is the free variable, leading to ∞ solutions. If 𝑘 ≠ 11 then system is inconsistent and no
solution exist.

(a) None (b) 𝑘 ≠ 11 (c) 𝑘 = 11

4.1.1.6 Problem section 3.2 number 28

Under what condition on the constants 𝑎, 𝑏, and 𝑐 does the system have a unique solution?
No solution? Infinitely many solutions?

2𝑥 − 𝑦 + 3𝑧 = 𝑎
𝑥 + 2𝑦 + 𝑧 = 𝑏

7𝑥 + 4𝑦 + 9𝑧 = 𝑐

Solution
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 3
1 2 1
7 4 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥
𝑦
𝑧

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 3 𝑎
1 2 1 𝑏
7 4 9 𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → −𝑅1 + 2𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 3 𝑎
0 5 −1 2𝑏 − 𝑎
7 4 9 𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 2𝑅3, 𝑅1 → 7𝑅1 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

14 −7 21 7𝑎
0 5 −1 2𝑏 − 𝑎
14 8 18 2𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅3 → −𝑅1 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

14 −7 21 7𝑎
0 5 −1 2𝑏 − 𝑎
0 15 −3 2𝑐 − 7𝑎

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −3𝑅2 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

14 −7 21 7𝑎
0 5 −1 2𝑏 − 𝑎
0 0 0 (2𝑐 − 7𝑎) − 3(2𝑏 − 𝑎)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Or ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

14 −7 21 7𝑎
0 5 −1 2𝑏 − 𝑎
0 0 0 2𝑐 − 6𝑏 − 4𝑎

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The Echelon form shows that only when 2𝑐 − 6𝑏 − 4𝑎 = 0 or

𝑐 = 3𝑏 + 2𝑎

We get consistent system. And in this case, 𝑧 is the free variable, leading to ∞ solutions. If
𝑐 ≠ 3𝑏 + 2𝑎 then system is inconsistent and no solution exist.

4.1.1.7 Problem section 3.3 number 37

Show that the homogeneous system in problem 35 has non-trivial solution iff 𝑎𝑑 − 𝑏𝑐 = 0

𝑎𝑥 + 𝑏𝑦 = 0
𝑐𝑥 + 𝑑𝑦 = 0

Solution ⎡
⎢⎢⎢⎢⎣
𝑎 𝑏
𝑐 𝑑

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
𝑥
𝑦

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

Augmented matrix is ⎡
⎢⎢⎢⎢⎣
𝑎 𝑏 0
𝑐 𝑑 0

⎤
⎥⎥⎥⎥⎦

𝑅2 → − 𝑐
𝑎𝑅1 + 𝑅2 gives ⎡

⎢⎢⎢⎢⎣
𝑎 𝑏 0
0 𝑑 − 𝑐

𝑎𝑏 0

⎤
⎥⎥⎥⎥⎦

Or ⎡
⎢⎢⎢⎢⎣
𝑎 𝑏 0
0 𝑎𝑑−𝑐𝑏

𝑐 0

⎤
⎥⎥⎥⎥⎦

There are two cases. First case is when 𝑎𝑑−𝑐𝑏
𝑐 = 0 or 𝑎𝑑 − 𝑐𝑏 = 0 then we get infinite number

of solutions since 𝑦 is the free variable. The second case is when 𝑎𝑑 − 𝑐𝑏 ≠ 0 and in this
case, we get unique solution which is the trivial solution 𝑥 = 0, 𝑦 = 0.

Hence only when 𝑎𝑑 − 𝑐𝑏 = 0 do we get non-trivial solution which is what we are asked to
show.

4.1.1.8 Problem section 3.3 number 38

Use the result of problem 37 to find all values of 𝑐 for which

(𝑐 + 2)𝑥 + 3𝑦 = 0 (1)

2𝑥 + (𝑐 − 3)𝑦 = 0

Has non-trivial solution.

Solution
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From problem 37 we found that non-trivial solution exist when

𝑎𝑑 − 𝑐𝑏 = 0 (2)

Where

𝑎𝑥 + 𝑏𝑦 = 0 (3)

𝑐𝑥 + 𝑑𝑦 = 0

Comparing (1) to (3) shows that

𝑎 ≡ (𝑐 + 2)
𝑏 ≡ 3
𝑐 ≡ 2
𝑑 ≡ (𝑐 − 3)

Hence (2) now becomes

(𝑐 + 2)(𝑐 − 3) − (2)(3) = 0
𝑐2 − 𝑐 − 12 = 0

(𝑐 + 3)(𝑐 − 4) = 0

Hence only possible values are 𝑐 = −3, 𝑐 = 4. These values give non-trivial solution.

4.1.1.9 Problem section 3.5 number 9

Use the method of example 7 to find 𝐴−1 for given 𝐴

𝐴 =
⎡
⎢⎢⎢⎢⎣
5 6
4 5

⎤
⎥⎥⎥⎥⎦

Solution

Augmented matrix is ⎡
⎢⎢⎢⎢⎣
5 6 1 0
4 5 0 1

⎤
⎥⎥⎥⎥⎦

𝑅1 → 4𝑅1, 𝑅2 → 5𝑅2 gives ⎡
⎢⎢⎢⎢⎣
20 24 4 0
20 25 0 5

⎤
⎥⎥⎥⎥⎦

𝑅2 → −𝑅1 + 𝑅2 ⎡
⎢⎢⎢⎢⎣
20 24 4 0
0 1 −4 5

⎤
⎥⎥⎥⎥⎦

𝑅1 →
𝑅1
20 gives

⎡
⎢⎢⎢⎢⎣
1 6

5
1
5 0

0 1 −4 5

⎤
⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 −
6
5𝑅2 ⎡

⎢⎢⎢⎢⎣
1 0 5 −6
0 1 −4 5

⎤
⎥⎥⎥⎥⎦

Since the left half is the identity matrix, then the inverse is the right side. Hence

𝐴−1 =
⎡
⎢⎢⎢⎢⎣
5 −6
−4 5

⎤
⎥⎥⎥⎥⎦
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4.1.1.10 Problem section 3.5 number 10

Use the method of example 7 to find 𝐴−1 for given 𝐴

𝐴 =
⎡
⎢⎢⎢⎢⎣
5 7
4 6

⎤
⎥⎥⎥⎥⎦

Solution

Augmented matrix is ⎡
⎢⎢⎢⎢⎣
5 7 1 0
4 6 0 1

⎤
⎥⎥⎥⎥⎦

𝑅1 → 4𝑅1, 𝑅2 → 5𝑅2 gives ⎡
⎢⎢⎢⎢⎣
20 28 4 0
20 30 0 5

⎤
⎥⎥⎥⎥⎦

𝑅2 → −𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎣
20 28 4 0
0 2 −4 5

⎤
⎥⎥⎥⎥⎦

𝑅1 →
𝑅1
20 gives

⎡
⎢⎢⎢⎢⎣
1 7

5
1
5 0

0 2 −4 5

⎤
⎥⎥⎥⎥⎦

𝑅2 →
𝑅2
2 gives

⎡
⎢⎢⎢⎢⎣
1 7

5
1
5 0

0 1 −2 5
2

⎤
⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 −
7
5𝑅2 gives ⎡

⎢⎢⎢⎢⎣
1 0 3 −7

2
0 1 −2 5

2

⎤
⎥⎥⎥⎥⎦

Since the left half is the identity matrix, then the inverse is the right side. Hence

𝐴−1 =
⎡
⎢⎢⎢⎢⎣
3 −7

2
−2 5

2

⎤
⎥⎥⎥⎥⎦

4.1.1.11 Problem section 3.5 number 11

Use the method of example 7 to find 𝐴−1 for given 𝐴

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 1
2 5 0
2 7 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

Augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 1 1 0 0
2 5 0 0 1 0
2 7 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 2𝑅1 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 1 1 0 0
0 −5 −2 −2 1 0
2 7 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 2𝑅1 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 1 1 0 0
0 −5 −2 −2 1 0
0 −3 −1 −2 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅2 → 3𝑅2, 𝑅3 → 5𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 1 1 0 0
0 −15 −6 −6 3 0
0 −15 −5 −10 0 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 1 1 0 0
0 −15 −6 −6 3 0
0 0 1 −4 −3 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → −𝑅2
15 gives

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 1 1 0 0
0 1 6

15
6
15 − 3

15 0
0 0 1 −4 −3 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 −
6
15𝑅3 gives ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 1 1 0 0
0 1 0 2 1 −2
0 0 1 −4 −3 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 − 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 0 5 3 −5
0 1 0 2 1 −2
0 0 1 −4 −3 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 − 5𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −5 −2 5
0 1 0 2 1 −2
0 0 1 −4 −3 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since the left half is the identity matrix, then the inverse is the right side. Hence

𝐴−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5 −2 5
2 1 −2
−4 −3 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

4.1.1.12 Problem section 3.5 number 12

Use the method of example 7 to find 𝐴−1 for given 𝐴

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 2
2 8 3
3 10 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

Augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 2 1 0 0
2 8 3 0 1 0
3 10 6 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 2𝑅1 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 2 1 0 0
0 2 −1 −2 1 0
3 10 6 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 3𝑅1 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 2 1 0 0
0 2 −1 −2 1 0
0 1 0 −3 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅3 → 2𝑅3 − 𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 2 1 0 0
0 2 −1 −2 1 0
0 0 1 −4 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 →
1
2𝑅2 gives ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 2 1 0 0
0 1 −1

2 −1 1
2 0

0 0 1 −4 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 →
1
2𝑅3 + 𝑅2 gives ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 2 1 0 0
0 1 0 −3 0 1
0 0 1 −4 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 − 2𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0 9 2 −4
0 1 0 −3 0 1
0 0 1 −4 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 − 3𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 18 2 −7
0 1 0 −3 0 1
0 0 1 −4 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since the left half is the identity matrix, then the inverse is the right side. Hence

𝐴−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

18 2 −7
−3 0 1
−4 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

4.1.1.13 Problem section 3.5 number 13

Use the method of example 7 to find 𝐴−1 for given 𝐴

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 7 3
1 3 2
3 7 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

Augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 7 3 1 0 0
1 3 2 0 1 0
3 7 9 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Swap 𝑅1, 𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 2 0 1 0
2 7 3 1 0 0
3 7 9 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 2𝑅1 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 2 0 1 0
0 1 −1 1 −2 0
3 7 9 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 3𝑅1 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 2 0 1 0
0 1 −1 1 −2 0
0 −2 3 0 −3 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅3 → 𝑅3 + 2𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 2 0 1 0
0 1 −1 1 −2 0
0 0 1 2 −7 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 2 0 1 0
0 1 0 3 −9 1
0 0 1 2 −7 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 − 2𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 0 −4 15 −2
0 1 0 3 −9 1
0 0 1 2 −7 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 − 3𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −13 42 −5
0 1 0 3 −9 1
0 0 1 2 −7 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since the left half is the identity matrix, then the inverse is the right side. Hence

𝐴−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−13 42 −5
3 −9 1
2 −7 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

4.1.1.14 Problem section 3.5 number 23

Find matrix 𝑋 such that 𝐴𝑋 = 𝐵

𝐴 =
⎡
⎢⎢⎢⎢⎣
4 3
5 4

⎤
⎥⎥⎥⎥⎦, 𝐵 =

⎡
⎢⎢⎢⎢⎣
1 3 −5
−1 −2 5

⎤
⎥⎥⎥⎥⎦

Solution

Pre-multiplying both sides of 𝐴𝑋 = 𝐵 by 𝐴−1 gives

𝑋 = 𝐴−1𝐵 (1)

But

𝐴−1 =
1

16 − 15

⎡
⎢⎢⎢⎢⎣
4 −3
−5 4

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
4 −3
−5 4

⎤
⎥⎥⎥⎥⎦

Hence (1) becomes

𝑋 =
⎡
⎢⎢⎢⎢⎣
4 −3
−5 4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 3 −5
−1 −2 5

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
7 18 −35
−9 −23 45

⎤
⎥⎥⎥⎥⎦

4.1.1.15 Problem section 3.5 number 24

Find matrix 𝑋 such that 𝐴𝑋 = 𝐵

𝐴 =
⎡
⎢⎢⎢⎢⎣
7 6
8 7

⎤
⎥⎥⎥⎥⎦, 𝐵 =

⎡
⎢⎢⎢⎢⎣
2 0 4
0 5 −3

⎤
⎥⎥⎥⎥⎦

Solution
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Pre-multiplying both sides of 𝐴𝑋 = 𝐵 by 𝐴−1 and using 𝐴−1𝐴 = 𝐼 results in

𝑋 = 𝐴−1𝐵 (1)

But

𝐴−1 =
1

49 − 48

⎡
⎢⎢⎢⎢⎣
7 −6
−8 7

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
7 −6
−8 7

⎤
⎥⎥⎥⎥⎦

Hence (1) becomes

𝑋 =
⎡
⎢⎢⎢⎢⎣
7 −6
−8 7

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
2 0 4
0 5 −3

⎤
⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
14 −30 46
−16 35 −53

⎤
⎥⎥⎥⎥⎦

4.1.1.16 Problem section 3.5 number 25

Find matrix 𝑋 such that 𝐴𝑋 = 𝐵

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 1
2 8 3
2 7 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐵 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 3
0 2 2
−1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

Pre-multiplying both sides of 𝐴𝑋 = 𝐵 by 𝐴−1 and using 𝐴−1𝐴 = 𝐼 results in

𝑋 = 𝐴−1𝐵 (1)

But

𝐴−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 1
2 8 3
2 7 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

Augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 1 1 0 0
2 8 3 0 1 0
2 7 4 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 = 𝑅2 − 2𝑅1 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 1 1 0 0
0 0 1 −2 1 0
2 7 4 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 = 𝑅3 − 2𝑅1 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 1 1 0 0
0 0 1 −2 1 0
0 −1 2 −2 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Swap 𝑅2, 𝑅3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 1 1 0 0
0 −1 2 −2 0 1
0 0 1 −2 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → −𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 1 1 0 0
0 1 −2 2 0 −1
0 0 1 −2 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅2 → 𝑅2 + 2𝑅3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 1 1 0 0
0 1 0 −2 2 −1
0 0 1 −2 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 − 𝑅3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 0 3 −1 0
0 1 0 −2 2 −1
0 0 1 −2 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 − 4𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 11 −9 4
0 1 0 −2 2 −1
0 0 1 −2 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since the left half is the identity matrix, then the inverse is the right side. Hence

𝐴−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−13 42 −5
3 −9 1
2 −7 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore (1) becomes

𝑋 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 −9 4
−2 2 −1
−2 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 3
0 2 2
−1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 −14 15
−1 3 −2
−2 2 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

4.1.1.17 Problem section 3.5 number 26

Find matrix 𝑋 such that 𝐴𝑋 = 𝐵

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 1
2 1 −2
1 7 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐵 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 1
0 3 2
1 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

Pre-multiplying both sides of 𝐴𝑋 = 𝐵 by 𝐴−1 and using 𝐴−1𝐴 = 𝐼 results in

𝑋 = 𝐴−1𝐵 (1)

But

𝐴−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 1
2 1 −2
1 7 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

Augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 1 1 0 0
2 1 −2 0 1 0
1 7 2 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 2𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 1 1 0 0
0 −9 −4 −2 1 0
1 7 2 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅3 → 𝑅3 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 1 1 0 0
0 −9 −4 −2 1 0
0 2 1 −1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 2𝑅2, 𝑅3 → 9𝑅3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 1 1 0 0
0 −18 −8 −4 2 0
0 18 9 −9 0 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 + 𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 1 1 0 0
0 −18 −8 −4 2 0
0 0 1 −13 2 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 + 8𝑅3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 1 1 0 0
0 −18 0 −108 18 72
0 0 1 −13 2 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 − 𝑅3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 0 14 −2 −9
0 −18 0 −108 18 72
0 0 1 −13 2 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 →
−1
18𝑅2 ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 0 14 −2 −9
0 1 0 6 −1 −4
0 0 1 −13 2 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 − 5𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −16 3 11
0 1 0 6 −1 −4
0 0 1 −13 2 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since the left half is the identity matrix, then the inverse is the right side. Hence

𝐴−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−16 −3 11
6 −1 −4
−13 2 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore (1) becomes

𝑋 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−16 −3 11
6 −1 −4
−13 2 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 1
0 3 2
1 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−21 −9 0
8 −3 −4
−17 6 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

4.1.1.18 Problem section 3.6 number 7

In Problems 7–12, evaluate each given determinant after first simplifying the computation
(as in Example 6) by adding an appropriate multiple of some row or column to another.

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
2 2 2
3 3 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Solution

We see before starting that the determinant must be zero, since its rows are linearly
dependent. We now show this is the case.

𝑅2 → 𝑅2 − 2𝑅1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
0 0 0
3 3 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now we do expansion along 𝑅2. This gives

det(𝐴) = 0�
1 1
3 3

� + 0�
1 1
3 3

� + 0�
1 1
3 3

�

= 0

4.1.1.19 Problem section 3.6 number 8

In Problems 7–12, evaluate each given determinant after first simplifying the computation
(as in Example 6) by adding an appropriate multiple of some row or column to another.

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 3 4
−2 −3 1
3 2 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

𝑅1 → 𝑅1 + 𝑅2

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 5
−2 −3 1
3 2 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Expansion along first row gives

det(𝐴) = 5�
−2 −3
3 2

�

= 5(−4 + 9)
= 25

4.1.1.20 Problem section 3.6 number 9

In Problems 7–12, evaluate each given determinant after first simplifying the computation
(as in Example 6) by adding an appropriate multiple of some row or column to another.

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −2 5
0 5 17
6 −4 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

𝑅3 → 𝑅3 − 2𝑅1

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −2 5
0 5 17
0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Expansion along third row gives

det(𝐴) = 2�
3 −2
0 5

�

= 2(15)
= 30

4.1.1.21 Problem section 3.6 number 10

In Problems 7–12, evaluate each given determinant after first simplifying the computation
(as in Example 6) by adding an appropriate multiple of some row or column to another.

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 6 5
1 −2 −4
2 −5 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

𝑅1 → 𝑅1 + 3𝑅2

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −7
1 −2 −4
2 −5 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Expansion along first row gives

det(𝐴) = −7�
1 −2
2 −5

�

= −7(−5 + 4)
= 7

4.1.1.22 Problem section 3.6 number 11

In Problems 7–12, evaluate each given determinant after first simplifying the computation
(as in Example 6) by adding an appropriate multiple of some row or column to another.

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4
0 5 6 7
0 0 8 9
2 4 6 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

𝑅3 → 𝑅3 − 2𝑅1

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4
0 5 6 7
0 0 8 9
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Expansion along last row

det(𝐴) = (−1)𝑖+𝑗(1)
�

�

1 2 3
0 5 6
0 0 8

�

�
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Where 𝑖 = 4, 𝑗 = 4 (since it is entry (4, 4)). Hence (−1)𝑖+𝑗 = (−1)8 = 1. So the sign is +. The
above becomes

det(𝐴) = (1)
�

�

1 2 3
0 5 6
0 0 8

�

�

For the second determination, expansion along its third row gives

det(𝐴) = 1
⎛
⎜⎜⎜⎜⎝(−1)

3+38�
1 2
0 5

�

⎞
⎟⎟⎟⎟⎠

= 1
⎛
⎜⎜⎜⎜⎝8�
1 2
0 5

�

⎞
⎟⎟⎟⎟⎠

= 8(5)
= 40

4.1.1.23 Problem section 3.6 number 12

In Problems 7–12, evaluate each given determinant after first simplifying the computation
(as in Example 6) by adding an appropriate multiple of some row or column to another.

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 −3
0 1 11 12
0 0 5 13
−4 0 0 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

𝑅4 → 𝑅4 + 2𝑅1

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 −3
0 1 11 12
0 0 5 13
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Expansion along last row

det(𝐴) = (−1)4+4(1)
�

�

2 0 0
0 1 11
0 0 5

�

�

=
�

�

2 0 0
0 1 11
0 0 5

�

�

Expansion along last row

det(𝐴) = (−1)3+3(5)�
2 0
0 1

�

= 5(2)
= 10
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4.1.1.24 Problem section 4.3 number 17

In Problems 17–22, three vectors 𝑣⃗1,𝑣⃗2, and 𝑣⃗3 are given. If they are linearly independent,
show this; otherwise find a

nontrivial linear combination of them that is equal to the zero vector.

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
−3
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑣⃗3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
5
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution

The vectors are Linearly independent if

𝑐1𝑣⃗1 + 𝑐2𝑣⃗2 + 𝑐3𝑣⃗3 = 0⃗

only when 𝑐1 = 𝑐2 = 𝑐3 = 0. If we can find at least one 𝑐𝑖 ≠ 0 where the above is true, then
the vectors are Linearly dependent.

Writing the above as 𝐴𝑐⃗ = 0⃗ gives
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3
0 −3 5
1 4 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

The augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 0
0 −3 5 0
1 4 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −𝑅1 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 0
0 −3 5 0
0 2 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3, 𝑅2 → 2𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 0
0 −6 10 0
0 6 −3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅2 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 0
0 −6 10 0
0 0 7 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence the original system (1) in Echelon form becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3
0 −6 10
0 0 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Leading variables are 𝑐1, 𝑐2, 𝑐3. Since there are no free variables, then only the trivial
solution exist. We see this by backsubstitution. Last row gives 𝑐3 = 0. Second row gives
𝑐2 = 0 and first row gives 𝑐1 = 0.

Since all 𝑐𝑖 = 0, then the vectors are Linearly independent.

294



4.1. Exam 1, Thursday Oct 15, 2020 CHAPTER 4. EXAMS

4.1.1.25 Problem section 4.3 number 18

In Problems 17–22, three vectors 𝑣⃗1, 𝑣⃗2, and 𝑣⃗3 are given. If they are linearly independent,
show this; otherwise find a nontrivial linear combination of them that is equal to the zero
vector.

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
0
−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
−5
−6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑣⃗3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
1
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

The vectors are Linearly independent if

𝑐1𝑣⃗1 + 𝑐2𝑣⃗2 + 𝑐3𝑣⃗3 = 0⃗

only when 𝑐1 = 𝑐2 = 𝑐3 = 0. If we can find at least one 𝑐𝑖 ≠ 0 where the above is true, then
the vectors are Linearly dependent.

Writing the above as 𝐴𝑐⃗ = 0⃗ gives
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 4 −2
0 −5 1
−3 −6 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

The augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 4 −2 0
0 −5 1 0
−3 −6 3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 3𝑅1, 𝑅3 → 2𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 12 −6 0
0 −5 1 0
−6 −12 6 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅1 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 12 −6 0
0 −5 1 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence the system (1) becomes
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 12 −6
0 −5 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The leading variables are 𝑐1, 𝑐2 and free variable is 𝑐3. Since there is a free variable, then
the vectors are Linearly dependent. To see this, let 𝑐3 = 𝑡. From second row −5𝑐2 + 𝑡 = 0 or

𝑐2 =
1
5 𝑡. From first row 6𝑐1 + 12𝑐2 − 6𝑡 = 0. Or 𝑐1 =

6𝑡−12� 15 𝑡�

6 = 3
5 𝑡. Hence

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
5 𝑡
1
5 𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
5
1
5
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
1
5
𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
1
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Taking ̃𝑡 = 5 the above becomes ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
1
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore we found one solution where

𝑐1𝑣⃗1 + 𝑐2𝑣⃗2 + 𝑐3𝑣⃗3 = 0⃗

3𝑣⃗1 + 𝑣⃗2 + 5𝑣⃗3 = 0⃗

not all 𝑐𝑖 zero. Hence linearly dependent vectors.
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4.1.1.26 Problem section 4.3 number 19

In Problems 17–22, three vectors 𝑣⃗1, 𝑣⃗2, and 𝑣⃗3 are given. If they are linearly independent,
show this; otherwise find a nontrivial linear combination of them that is equal to the zero
vector.

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
0
3
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
4
−2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
−1
1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

The vectors are Linearly independent if

𝑐1𝑣⃗1 + 𝑐2𝑣⃗2 + 𝑐3𝑣⃗3 = 0⃗

only when 𝑐1 = 𝑐2 = 𝑐3 = 0. If we can find at least one 𝑐𝑖 ≠ 0 where the above is true, then
the vectors are Linearly dependent.

Writing the above as 𝐴𝑐⃗ = 0⃗ gives
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 5 2
0 4 −1
3 −2 1
0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

The augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 5 2 0
0 4 −1 0
3 −2 1 0
0 1 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 2𝑅3, 𝑅1 → 3𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 15 6 0
0 4 −1 0
6 −4 2 0
0 1 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 15 6 0
0 4 −1 0
0 −19 −4 0
0 1 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 19𝑅2, 𝑅3 → 4𝑅3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 15 6 0
0 76 −19 0
0 −76 −16 0
0 1 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 + 𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 15 6 0
0 76 −19 0
0 0 −35 0
0 1 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 76𝑅4 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 15 6 0
0 76 −19 0
0 0 −35 0
0 76 −76 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅4 → 𝑅4 − 𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 15 6 0
0 76 −19 0
0 0 −35 0
0 0 −57 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 −
57
35𝑅3 ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 15 6 0
0 76 −19 0
0 0 −35 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above is Echelon form. Hence
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 15 6
0 76 −19
0 0 −35
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Lead variables are 𝑐1, 𝑐2, 𝑐3. There are no free variables. Therefore unique solution exist
and is 𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0. Hence the vectors are linearly independent.

4.1.1.27 Problem section 4.3 number 20

In Problems 17–22, three vectors 𝑣⃗1, 𝑣⃗2, and 𝑣⃗3 are given. If they are linearly independent,
show this; otherwise find a nontrivial linear combination of them that is equal to the zero
vector.

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
−1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
1
4
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

The vectors are Linearly independent if

𝑐1𝑣⃗1 + 𝑐2𝑣⃗2 + 𝑐3𝑣⃗3 = 0⃗

only when 𝑐1 = 𝑐2 = 𝑐3 = 0. If we can find at least one 𝑐𝑖 ≠ 0 where the above is true, then
the vectors are Linearly dependent.

Writing the above as 𝐴𝑐⃗ = 0⃗ gives
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3
1 1 1
−1 1 4
1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

The augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 0
1 1 1 0
−1 1 4 0
1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 0
0 −1 −2 0
−1 1 4 0
1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅3 → 𝑅3 + 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 0
0 −1 −2 0
0 3 7 0
1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 0
0 −1 −2 0
0 3 7 0
0 −1 −2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 + 3𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 0
0 −1 −2 0
0 0 1 0
0 −1 −2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 − 𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 0
0 −1 −2 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above is Echelon form. Hence
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3
0 −1 −2
0 0 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Lead variables are 𝑐1, 𝑐2, 𝑐3. There are no free variables. Therefore a unique solution exists
and is the trivial solution 𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0. Hence the vectors are linearly independent.

4.1.1.28 Problem section 4.3 number 21

In Problems 17–22, three vectors 𝑣⃗1, 𝑣⃗2, and 𝑣⃗3 are given. If they are linearly independent,
show this; otherwise find a nontrivial linear combination of them that is equal to the zero
vector.

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
0
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

The vectors are Linearly independent if

𝑐1𝑣⃗1 + 𝑐2𝑣⃗2 + 𝑐3𝑣⃗3 = 0⃗

only when 𝑐1 = 𝑐2 = 𝑐3 = 0. If we can find at least one 𝑐𝑖 ≠ 0 where the above is true, then
the vectors are Linearly dependent.

Writing the above as 𝐴𝑐⃗ = 0⃗ gives
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 1 1
0 −1 2
1 0 1
2 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)
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The augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 1 1 0
0 −1 2 0
1 0 1 0
2 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 3𝑅3 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 1 1 0
0 −1 2 0
0 −1 2 0
2 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 2𝑅1, 𝑅4 → 3𝑅4 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 2 2 0
0 −1 2 0
0 −1 2 0
6 3 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 2 2 0
0 −1 2 0
0 −1 2 0
0 1 −2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 2 2 0
0 −1 2 0
0 0 0 0
0 1 −2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 + 𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 2 2 0
0 −1 2 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above is Echelon form. Hence
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 2 2
0 −1 2
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Lead variables are 𝑐1, 𝑐2. And free variable is 𝑐3. Since there is a free variable, then non-
trivial solution exist. Hence the vectors are linearly dependent. Let 𝑐3 = 𝑡. From second
row

−𝑐2 + 2𝑐3 = 0
𝑐2 = 2𝑐3 = 2𝑡

From first row

6𝑐1 + 2𝑐2 + 2𝑐3 = 0

𝑐1 =
−2𝑐2 − 2𝑐3

6

=
−2(2𝑡) − 2𝑡

6
= −𝑡
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Hence solution is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑡
2𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let 𝑡 = 1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore

𝑐1𝑣⃗1 + 𝑐2𝑣⃗2 + 𝑐3𝑣⃗3 = 0⃗

−𝑣⃗1 + 2𝑣⃗2 + 𝑣⃗3 = 0⃗

4.1.1.29 Problem section 4.3 number 22

In Problems 17–22, three vectors 𝑣⃗1, 𝑣⃗2, and 𝑣⃗3 are given. If they are linearly independent,
show this; otherwise find a nontrivial linear combination of them that is equal to the zero
vector.

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
9
0
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
0
9
−7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
7
5
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

The vectors are Linearly independent if

𝑐1𝑣⃗1 + 𝑐2𝑣⃗2 + 𝑐3𝑣⃗3 = 0⃗

only when 𝑐1 = 𝑐2 = 𝑐3 = 0. If we can find at least one 𝑐𝑖 ≠ 0 where the above is true, then
the vectors are Linearly dependent.

Writing the above as 𝐴𝑐⃗ = 0⃗ gives
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 3 4
9 0 7
0 9 5
5 −7 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

The augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 3 4 0
9 0 7 0
0 9 5 0
5 −7 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 3𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 3 4 0
0 −9 −5 0
0 9 5 0
5 −7 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 5𝑅1, 𝑅4 → 3𝑅4 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

15 15 20 0
0 −9 −5 0
0 9 5 0
15 −21 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅4 → 𝑅4 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

15 15 20 0
0 −9 −5 0
0 9 5 0
0 −36 −20 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 + 𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

15 15 20 0
0 −9 −5 0
0 0 0 0
0 −36 −20 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 − 4𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

15 15 20 0
0 −9 −5 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above is Echelon form. Hence
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

15 15 20
0 −9 −5
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Lead variables are 𝑐1, 𝑐2. And free variable is 𝑐3. Since there is a free variable, then non-
trivial solution exist. Hence the vectors are linearly dependent. Let 𝑐3 = 𝑡. From second
row

−9𝑐2 − 5𝑐3 = 0

𝑐2 = −
5
9
𝑐3

= −
5
9
𝑡

From first row

15𝑐1 + 15𝑐2 + 20𝑐3 = 0

𝑐1 =
−15𝑐2 − 20𝑐3

15

=
−15�−5

9 𝑡� − 20𝑡

15

= −
7
9
𝑡

Hence solution is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−7
9 𝑡

−5
9 𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−7
9

−5
9
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1
9
𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−7
−5
9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Let 𝑡 = −9 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐1
𝑐2
𝑐3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

7
5
−9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore

𝑐1𝑣⃗1 + 𝑐2𝑣⃗2 + 𝑐3𝑣⃗3 = 0⃗

7𝑣⃗1 + 5𝑣⃗2 − 9𝑣⃗3 = 0⃗

4.1.1.30 Problem section 4.4 number 15

In Problems 15–26, find a basis for the solution space of the given homogeneous linear
system.

𝑥1 − 2𝑥2 + 3𝑥3 = 0
2𝑥1 − 3𝑥2 − 𝑥3 = 0

Solution

𝐴𝑥⃗ = 0⃗ gives
⎡
⎢⎢⎢⎢⎣
1 −2 3
2 −3 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

The augmented matrix is ⎡
⎢⎢⎢⎢⎣
1 −2 3 0
2 −3 −1 0

⎤
⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 2𝑅1

⎡
⎢⎢⎢⎢⎣
1 −2 3 0
0 1 −7 0

⎤
⎥⎥⎥⎥⎦

Hence the leading variables are 𝑥1, 𝑥2 and the free variable is 𝑥3 = 𝑡. The system becomes

⎡
⎢⎢⎢⎢⎣
1 −2 3
0 1 −7

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

From second row

𝑥2 − 7𝑥3 = 0
𝑥2 = 7𝑥3
= 7𝑡

From first row

𝑥1 − 2𝑥2 + 3𝑥3 = 0
𝑥1 = 2𝑥2 − 3𝑥3
= 2(7𝑡) − 3𝑡
= 11𝑡

Therefore the solution is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

11𝑡
7𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

11
7
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Let 𝑡 = 1, the basis is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

11
7
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

A one dimensional subspace.

4.1.1.31 Problem section 4.4 number 16

In Problems 15–26, find a basis for the solution space of the given homogeneous linear
system

𝑥1 + 3𝑥2 + 4𝑥3 = 0
3𝑥1 + 8𝑥2 + 7𝑥3 = 0

solution

𝐴𝑥⃗ = 0⃗ gives
⎡
⎢⎢⎢⎢⎣
1 3 4
3 8 7

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

The augmented matrix is ⎡
⎢⎢⎢⎢⎣
1 3 4 0
3 8 7 0

⎤
⎥⎥⎥⎥⎦

𝑅2 → −3𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎣
1 3 4 0
0 −1 −5 0

⎤
⎥⎥⎥⎥⎦

Hence the leading variables are 𝑥1, 𝑥2 and the free variable is 𝑥3 = 𝑡. The system becomes

⎡
⎢⎢⎢⎢⎣
1 3 4
0 −1 −5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

Last row gives −𝑥2 − 5𝑥3 = 0 or −𝑥2 = 5𝑡. Hence 𝑥2 = −5𝑡. From first row, 𝑥1 + 3𝑥2 + 4𝑥3 = 0,
or 𝑥1 = −3𝑥2 − 4𝑥3 or 𝑥1 = −3(−5𝑡) − 4𝑡 = 11𝑡. Therefore the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

11𝑡
−5𝑡
𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

11
−5
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let 𝑡 = 1. The basis is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

11
−5
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

A one dimensional subspace.

4.1.1.32 Problem section 4.4 number 17

In Problems 15–26, find a basis for the solution space of the given homogeneous linear
system

𝑥1 − 3𝑥2 + 2𝑥3 − 4𝑥4 = 0
2𝑥1 − 5𝑥2 + 7𝑥3 − 3𝑥4 = 0

solution
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𝐴𝑥⃗ = 0⃗ gives

⎡
⎢⎢⎢⎢⎣
1 −3 2 −4
2 −5 7 −3

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

The augmented matrix is ⎡
⎢⎢⎢⎢⎣
1 −3 2 −4 0
2 −5 7 −3 0

⎤
⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 2𝑅1 ⎡
⎢⎢⎢⎢⎣
1 −3 2 −4 0
0 1 3 5 0

⎤
⎥⎥⎥⎥⎦

Leading variables are 𝑥1, 𝑥2 Free variables are 𝑥3 = 𝑡, 𝑥4 = 𝑠. The system becomes

⎡
⎢⎢⎢⎢⎣
1 −3 2 −4
0 1 3 5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

Second row gives

𝑥2 + 3𝑥3 + 5𝑥4 = 0
𝑥2 = −3𝑥3 − 5𝑥4
= −3𝑡 − 5𝑠

First row gives

𝑥1 − 3𝑥2 + 2𝑥3 − 4𝑥4 = 0
𝑥1 = 3𝑥2 − 2𝑥3 + 4𝑥4
= 3(−3𝑡 − 5𝑠) − 2𝑡 + 4𝑠
= −11𝑠 − 11𝑡

Hence the solution is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−11𝑠 − 11𝑡
−3𝑡 − 5𝑠

𝑡
𝑠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−11
−3
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 𝑠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−11
−5
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let 𝑡 = 1, 𝑠 = 1, the basis vectors are
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−11
−3
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−11
−5
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

A two dimensional subspace.

4.1.1.33 Problem section 4.4 number 18

In Problems 15–26, find a basis for the solution space of the given homogeneous linear
system

𝑥1 + 3𝑥2 + 4𝑥3 + 5𝑥4 = 0
2𝑥1 + 6𝑥2 + 9𝑥3 + 5𝑥4 = 0

304



4.1. Exam 1, Thursday Oct 15, 2020 CHAPTER 4. EXAMS

solution

𝐴𝑥⃗ = 0⃗ gives

⎡
⎢⎢⎢⎢⎣
1 3 4 5
2 6 9 5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

The augmented matrix is ⎡
⎢⎢⎢⎢⎣
1 3 4 5 0
2 6 9 5 0

⎤
⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 2𝑅1 ⎡
⎢⎢⎢⎢⎣
1 3 4 5 0
0 0 1 −5 0

⎤
⎥⎥⎥⎥⎦

Leading variables are 𝑥1, 𝑥3 Free variables are 𝑥2 = 𝑡, 𝑥4 = 𝑠. The system becomes

⎡
⎢⎢⎢⎢⎣
1 3 4 5
0 0 1 −5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎦

Second row gives

𝑥3 − 5𝑥4 = 0
𝑥3 = 5𝑥4
= 5𝑠

First row gives

𝑥1 + 3𝑥2 + 4𝑥3 + 5𝑥4 = 0
𝑥1 = −3𝑥2 − 4𝑥3 − 5𝑥4
= −3𝑡 − 4(5𝑠) − 5𝑠
= −25𝑠 − 3𝑡

Hence the solution is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−25𝑠 − 3𝑡
𝑡
5𝑠
𝑠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 𝑠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−25
0
5
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let 𝑡 = 1, 𝑠 = 1, the basis vectors are
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−25
0
5
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

4.1.1.34 Problem section 4.4 number 19

In Problems 15–26, find a basis for the solution space of the given homogeneous linear
system

𝑥1 − 3𝑥2 − 9𝑥3 − 5𝑥4 = 0
2𝑥1 + 𝑥2 − 4𝑥3 + 11𝑥4 = 0
𝑥1 + 3𝑥2 + 3𝑥3 + 13𝑥4 = 0
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solution

𝐴𝑥⃗ = 0⃗ gives
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −9 −5
2 1 −4 11
1 3 3 13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −9 −5 0
2 1 −4 11 0
1 3 3 13 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 2𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −9 −5 0
0 7 14 21 0
1 3 3 13 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −9 −5 0
0 7 14 21 0
0 6 12 18 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 −
6
7𝑅2 ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −9 −5 0
0 7 14 21 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Leading variables are 𝑥1, 𝑥2 Free variable is 𝑥3 = 𝑡, 𝑥4 = 𝑠. The system becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −9 −5
0 7 14 21
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

second row gives 7𝑥2 + 14𝑥3 + 21𝑥4 = 0 or 𝑥2 =
−14𝑥3−21𝑥4

7 = −14𝑡−21𝑠
7 = −3𝑠 − 2𝑡. First row gives

𝑥1 − 3𝑥2 − 9𝑥3 − 5𝑥4 = 0 or 𝑥1 = 3𝑥2 + 9𝑥3 + 5𝑥4 or 𝑥1 = 3(−3𝑠 − 2𝑡) + 9𝑡 + 5𝑠 = 3𝑡 − 4𝑠. Hence
the solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3𝑡 − 4𝑠
−3𝑠 − 2𝑡

𝑡
𝑠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
−2
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 𝑠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4
−3
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let 𝑡 = 1, 𝑠 = 1, hence the basis are
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
−2
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4
−3
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

A two dimensional subspace.

306



4.1. Exam 1, Thursday Oct 15, 2020 CHAPTER 4. EXAMS

4.1.1.35 Problem section 4.4 number 20

In Problems 15–26, find a basis for the solution space of the given homogeneous linear
system

𝑥1 − 3𝑥2 − 10𝑥3 + 5𝑥4 = 0
𝑥1 + 4𝑥2 + 11𝑥3 − 2𝑥4 = 0
𝑥1 + 3𝑥2 + 8𝑥3 − 𝑥4 = 0

solution

𝐴𝑥⃗ = 0⃗ gives
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −10 5
1 4 11 −2
1 3 8 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −10 5 0
1 4 11 −2 0
1 3 8 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → −𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −10 5 0
0 7 21 −7 0
1 3 8 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −𝑅1 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −10 5 0
0 7 21 −7 0
0 6 18 −6 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 7𝑅3 and 𝑅2 → 6𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −10 5 0
0 42 126 −42 0
0 42 126 −42 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −𝑅2 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −10 5 0
0 42 126 −42 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Leading variables are 𝑥1, 𝑥2 Free variables are 𝑥3 = 𝑡, 𝑥4 = 𝑠. The system becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −10 5
0 42 126 −42
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

second row gives 42𝑥2 + 126𝑥3 − 42𝑥4 = 0 or 42𝑥2 = −126𝑡 + 42𝑠 or 𝑥2 = −
126
42 𝑡 +

42
42𝑠 = −3𝑡 + 𝑠.

First row gives 𝑥1−3𝑥2−10𝑥3+5𝑥4 = 0 or 𝑥1 = 3𝑥2+10𝑥3−5𝑥4 or 𝑥1 = 3(−3𝑡 + 𝑠)+10𝑡−5𝑠 = 𝑡−2𝑠.
Hence the solution is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡 − 2𝑠
−3𝑡 + 𝑠
𝑡
𝑠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−3
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 𝑠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
1
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Let 𝑡 = 1, 𝑠 = 1. The basis are ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−3
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
1
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A two dimensional subspace.

4.1.1.36 Problem section 4.4 number 21

In Problems 15–26, find a basis for the solution space of the given homogeneous linear
system

𝑥1 − 4𝑥2 − 3𝑥3 − 7𝑥4 = 0
2𝑥1 − 𝑥2 + 𝑥3 + 7𝑥4 = 0

𝑥1 + 2𝑥2 + 3𝑥3 + 11𝑥4 = 0

solution

𝐴𝑥⃗ = 0⃗ gives
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −4 −3 −7
2 −1 1 7
1 2 3 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −4 −3 −7 0
2 −1 1 7 0
1 2 3 11 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 2𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −4 −3 −7 0
0 7 7 21 0
1 2 3 11 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −4 −3 −7 0
0 7 7 21 0
0 6 6 18 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 −
6
7𝑅2 ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −4 −3 −7 0
0 7 7 21 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Leading variables are 𝑥1, 𝑥2 Free variables are 𝑥3 = 𝑡, 𝑥4 = 𝑠. The system becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −4 −3 −7
0 7 7 21
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Second row gives 7𝑥2 + 7𝑥3 + 21𝑥4 = 0 or 𝑥2 =
−7𝑥3−21𝑥4

7 = −7𝑡−21𝑠
7 = −3𝑠 − 𝑡. First row gives
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𝑥1 −4𝑥2 −3𝑥3 −7𝑥4 = 0 or 𝑥1 = 4𝑥2+3𝑥3+7𝑥4 = 4(−3𝑠 − 𝑡)+ 3𝑡+7𝑠 = −5𝑠− 𝑡. Hence solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5𝑠 − 𝑡
−3𝑠 − 𝑡
𝑡
𝑠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 𝑠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5
−3
0
𝑠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let 𝑡 = 1, 𝑠 = 2, the Basis are ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5
−3
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

A two dimensional subspace.

4.1.1.37 Problem section 4.4 number 22

In Problems 15–26, find a basis for the solution space of the given homogeneous linear
system

𝑥1 − 2𝑥2 − 3𝑥3 − 16𝑥4 = 0
2𝑥1 − 4𝑥2 + 𝑥3 + 17𝑥4 = 0
𝑥1 − 2𝑥2 + 3𝑥3 + 26𝑥4 = 0

solution

𝐴𝑥⃗ = 0⃗ gives
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 −3 −16
2 −4 1 17
1 −2 3 26

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 −3 −16 0
2 −4 1 17 0
1 −2 3 26 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 2𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 −3 −16 0
0 0 7 49 0
1 −2 3 26 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 −3 −16 0
0 0 7 49 0
0 0 6 42 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 −
6
7𝑅2 ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 −3 −16 0
0 0 7 49 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

309



4.1. Exam 1, Thursday Oct 15, 2020 CHAPTER 4. EXAMS

Hence leading variables are 𝑥1, 𝑥3 and free variables are 𝑥2 = 𝑡, 𝑥4 = 𝑠.The system becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 −3 −16
0 0 7 49
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Second row gives 7𝑥3 + 49𝑥4 = 0 or 𝑥3 = −7𝑠. First row gives 𝑥1 − 2𝑥2 − 3𝑥3 − 16𝑥4 = 0 or
𝑥1 = 2𝑥2 + 3𝑥3 + 16𝑥4 or 𝑥1 = 2𝑡 + 3(−7𝑠) + 16𝑠 = 2𝑡 − 5𝑠. Hence solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2𝑡 − 5𝑠
𝑡
−7𝑠
𝑠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 𝑠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5
0
−7
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let 𝑡 = 1, 𝑠 = 1, therefore the basis are
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5
0
−7
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

A two dimensional subspace.

4.1.1.38 Problem section 4.4 number 23

In Problems 15–26, find a basis for the solution space of the given homogeneous linear
system

𝑥1 + 5𝑥2 + 13𝑥3 + 14𝑥4 = 0
2𝑥1 + 5𝑥2 + 11𝑥3 + 12𝑥4 = 0
2𝑥1 + 7𝑥2 + 17𝑥3 + 19𝑥4 = 0

solution

𝐴𝑥⃗ = 0⃗ gives
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 13 14
2 5 11 12
2 7 17 19

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 13 14 0
2 5 11 12 0
2 7 17 19 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 2𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 13 14 0
0 −5 −15 −16 0
2 7 17 19 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 2𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 13 14 0
0 −5 −15 −16 0
0 −3 −9 −9 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅3 → 𝑅3 −
3
5𝑅2 ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 13 14 0
0 −5 −15 −16 0
0 0 0 3

5 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence leading variables are 𝑥1, 𝑥2, 𝑥4 and free variables are 𝑥3 = 𝑡.The system becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 13 14
0 −5 −15 −16
0 0 0 3

5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Last equation gives 𝑥4 = 0. Second equation gives −5𝑥2 − 15𝑥3 = 0, or 𝑥2 = −3𝑥3 = −3𝑡. First
equation gives 𝑥1 = −5𝑥2 − 13𝑥3 or 𝑥1 = −5(−3𝑡) − 13𝑡 = 2𝑡. Hence solution is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2𝑡
−3𝑡
𝑡
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
−3
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let 𝑡 = 1,therefore the basis is ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
−3
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

A one dimensional subspace.

4.1.1.39 Problem section 4.4 number 24

In Problems 15–26, find a basis for the solution space of the given homogeneous linear
system

𝑥1 + 3𝑥2 − 4𝑥3 − 8𝑥4 + 6𝑥5 = 0
𝑥1 + 2𝑥3 + 𝑥4 + 3𝑥5 = 0

2𝑥1 + 7𝑥2 − 10𝑥3 − 19𝑥4 + 13𝑥5 = 0

solution

𝐴𝑥⃗ = 0⃗ gives

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 −4 −8 6
1 0 2 1 3
2 7 −10 −19 13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The augmented matrix is ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 −4 −8 6 0
1 0 2 1 3 0
2 7 −10 −19 13 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 −4 −8 6 0
0 −3 6 9 −3 0
2 7 −10 −19 13 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅3 → 𝑅3 − 2𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 −4 −8 6 0
0 −3 6 9 −3 0
0 1 −2 −3 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 3𝑅3 + 𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 −4 −8 6 0
0 −3 6 9 −3 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence leading variables are 𝑥1, 𝑥3 and free variables are 𝑥3 = 𝑡, 𝑥4 = 𝑠, 𝑥5 = 𝑟. The system
becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 −4 −8 6
0 −3 6 9 −3
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑡
𝑠
𝑟

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Second equation gives

−3𝑥2 + 6𝑡 + 9𝑠 − 3𝑟 = 0

𝑥2 =
−6𝑡 − 9𝑠 + 3𝑟

−3
= 3𝑠 − 𝑟 + 2𝑡

First equation gives

𝑥1 + 3𝑥2 − 4𝑡 − 8𝑠 + 6𝑟 = 0
𝑥1 = −3𝑥2 + 4𝑡 + 8𝑠 − 6𝑟
= −3(3𝑠 − 𝑟 + 2𝑡) + 4𝑡 + 8𝑠 − 6𝑟
= −3𝑟 − 𝑠 − 2𝑡

Hence solution is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3𝑟 − 𝑠 − 2𝑡
3𝑠 − 𝑟 + 2𝑡

𝑡
𝑠
𝑟

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
2
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 𝑠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
3
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 𝑟

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
−1
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let 𝑡 = 1, 𝑠 = 1, 𝑟 = 1, then the basis are
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
2
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
3
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
−1
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

A three dimensional subspace.
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4.1.1.40 Problem section 4.5 number 1

In Problems 1–12, find both a basis for the row space and a basis for the column space of
the given matrix 𝐴.

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3
1 5 −9
2 5 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

We start by converting the matrix to reduced Echelon form.

𝑅2 → 𝑅2 − 𝑅1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3
0 3 −12
2 5 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 2𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3
0 3 −12
0 1 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 3𝑅3 − 𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3
0 3 −12
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now to start the reduce Echelon form phase. Notice that this is not needed. But if done,
the row space basis found will be same each time. If we stop here, the row space basis can
look different depending on the reduction was done. But both will work.

The pivots all needs to be 1.

𝑅2 →
1
3𝑅2 ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3
0 1 −4
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 𝑅1 − 2𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 11
0 1 −4
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above is in reduced Echelon form. The pivot columns are 1, 2. The non-zero rows are
rows 1, 2,. Hence row space basis are first and second rows (I prefer to show all basis as
column vectors, instead of row vectors. This just makes it easier to read them).

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
−4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The dimension is 2. The column space correspond to pivot columns in original A. These
are columns 1, 2. Hence basis for column space are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
5
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The dimension is 2. We notice that the dimension of the row space and the column space
is equal as expected. (This is called the rank of 𝐴. Hence rank(𝐴) = 2.)

The Null space of 𝐴 has dimension 1, since there is only one free variable (𝑥3). We see that
the number of columns of 𝐴 (which is 2) is therefore the sum of column space dimension
(or the rank) and the null space dimension as expected.
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4.1.1.41 Problem section 4.5 number 2

In Problems 1–12, find both a basis for the row space and a basis for the column space of
the given matrix 𝐴.

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 2 4
2 1 1
4 1 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

We start by converting the matrix to Echelon form.

𝑅1 → 2𝑅1, 𝑅2 → 5𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 4 8
10 5 5
4 1 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 4 8
0 1 −3
4 1 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 4𝑅1, 𝑅3 → 10𝑅3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

40 16 32
0 1 −3
40 10 50

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

40 16 32
0 1 −3
0 −6 18

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 + 6𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

40 16 32
0 1 −3
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above is in Echelon form. The pivot columns are 1, 2. The non-zero rows are rows 1, 2,.
Hence row space basis are first and second rows

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

40
16
32

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The dimension is 2. The column space correspond to pivot columns in original A. These
are columns 1, 2. Hence basis for column space are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
2
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

4.1.1.42 Problem section 4.5 number 3

In Problems 1–12, find both a basis for the row space and a basis for the column space of
the given matrix 𝐴.

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −4 −3 −7
2 −1 1 7
1 2 3 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

We start by converting the matrix to Echelon form.
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𝑅2 → 𝑅2 − 2𝑅1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −4 −3 −7
0 7 7 21
1 2 3 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 𝑅1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −4 −3 −7
0 7 7 21
0 6 6 18

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 −
6
7𝑅2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −4 −3 −7
0 7 7 21
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The pivot columns are 1, 2. The non-zero rows are rows 1, 2,. Hence row space basis are
first and second rows ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−4
−3
−7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
7
7
21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

The dimension is 2. The column space correspond to pivot columns in original A. These
are columns 1, 2. Hence basis for column space are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4
−1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

4.1.1.43 Problem section 4.5 number 4

In Problems 1–12, find both a basis for the row space and a basis for the column space of
the given matrix 𝐴.

𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −9 −5
2 1 4 11
1 3 3 13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

We start by converting the matrix to Echelon form.

𝑅2 → 𝑅2 − 2𝑅1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −9 −5
0 7 22 21
1 3 3 13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 𝑅1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −9 −5
0 7 22 21
0 6 12 18

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅3 → 𝑅3 −
6
7𝑅2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 −9 −5
0 7 22 21
0 0 −48

7 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The pivot columns are 1, 2, 3. The non-zero rows are rows 1, 2, 3. Hence row space basis are
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−3
−9
−5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
7
22
21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
−48

7
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

The dimension is 3. The column space correspond to pivot columns in original A. These
are columns 1, 2, 3. Hence basis for column space are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
1
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−9
4
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

4.1.1.44 Problem section 4.5 number 5

In Problems 1–12, find both a basis for the row space and a basis for the column space of
the given matrix 𝐴. ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
3 1 −3 4
2 5 11 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

We start by converting the matrix to Echelon form.

𝑅2 → −3𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
0 −2 −6 3
2 5 11 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −2𝑅1 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
0 −2 −6 3
0 3 9 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 3𝑅2 and 𝑅3 → 2𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
0 −6 −18 9
0 6 18 20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅2 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
0 −6 −18 9
0 0 0 29

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above is now in Echelon form. Now we can answer the question. The basis for the
row space are all the rows which are not zero. Hence row space basis are (I prefer to show
all basis as column vectors, instead of row vectors. This just makes it easier to read them).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−6
−18
9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
29

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The dimension is 3. The column space correspond to pivot columns in original A. These
are column 1, 2, 4. Hence basis for column space are

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4
12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The dimension is 3. We notice that the dimension of the row space and the column space
is equal as expected. (This is called the rank of 𝐴. Hence rank(𝐴) = 3.)

The Null space of 𝐴 has dimension 1, since there is only one free variable (𝑥3). We see that
the number of columns of 𝐴 (which is 4) is therefore the sum of column space dimension
(or the rank) and the null space dimension as expected.

4.1.1.45 Problem section 4.5 number 6

In Problems 1–12, find both a basis for the row space and a basis for the column space of
the given matrix 𝐴. ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 9 2
2 2 6 −3
2 7 16 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

We start by converting the matrix to Echelon form.

𝑅2 → 𝑅2 − 2𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 9 2
0 −6 −12 −7
2 7 16 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 2𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 9 2
0 −6 −12 −7
0 −1 −2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 −
1
6𝑅2 ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 9 2
0 −6 −12 −7
0 0 0 1

6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above is in Echelon form. The pivot columns are 1, 2, 4. The non-zero rows are rows
1, 2, 3. Hence row space basis are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4
9
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−6
−12
−7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

The dimension is 3. The column space correspond to pivot columns in original A. These
are columns 1, 2, 4. Hence basis for column space are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
2
7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
−3
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
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4.1.1.46 Problem section 4.5 number 7

In Problems 1–12, find both a basis for the row space and a basis for the column space of
the given matrix 𝐴. ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 7
1 4 5 16
1 3 3 13
2 5 4 23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

We start by converting the matrix to reduced Echelon form.

𝑅2 → −𝑅1 + 𝑅2 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 7
0 3 6 9
1 3 3 13
2 5 4 23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −𝑅1 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 7
0 3 6 9
0 2 4 6
2 5 4 23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → −2𝑅1 + 𝑅4 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 7
0 3 6 9
0 2 4 6
0 3 6 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 2𝑅2 and 𝑅3 → 3𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 7
0 6 12 18
0 6 12 18
0 3 6 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → −𝑅2 + 𝑅3 gives ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 7
0 6 12 18
0 0 0 0
0 3 6 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → −1
2𝑅2 + 𝑅4 gives ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 7
0 6 12 18
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pivot (leading) columns are 1, 2 and free variables go with 3, 4 columns. The Null space
of 𝐴 is therefore have dimension 2. The above is reduced Echelon form. The basis for the
row space are all the rows which are not zero. Hence row space basis are (dimension 2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
−1
7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
6
12
18

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
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The column space correspond to pivot columns in original A. These are columns 1, 2.
Hence basis for column space are (dimension 2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4
3
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

We notice that the dimension of the row space and the column space is equal as expected.

The Null space of 𝐴 has dimension 2, since there is two free variables. We see that the
number of columns of 𝐴 (which is 4) is therefore the sum of column space dimension and
the null space dimension as expected.

4.1.1.47 Problem section 4.5 number 8

In Problems 1–12, find both a basis for the row space and a basis for the column space of
the given matrix 𝐴. ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 −3 −5
1 4 9 2
1 3 7 1
2 2 6 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

We start by converting the matrix to Echelon form.

𝑅2 → 𝑅2 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 −3 −5
0 6 12 7
1 3 7 1
2 2 6 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 −3 −5
0 6 12 7
0 5 10 6
2 2 6 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 − 2𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 −3 −5
0 6 12 7
0 5 10 6
0 6 12 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 5𝑅2, 𝑅3 → 6𝑅3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 −3 −5
0 30 60 35
0 30 60 36
0 6 12 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 −3 −5
0 30 60 35
0 0 0 1
0 6 12 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅4 → 𝑅4 −
6
30𝑅2 ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 −3 −5
0 30 60 35
0 0 0 1
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above is in Echelon form. The pivot columns are 1, 2, 4. The non-zero rows are rows
1, 2, 3. Hence row space basis are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−2
−3
−5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
30
60
35

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

The dimension is 3. The column space correspond to pivot columns in original A. These
are columns 1, 2, 4. Hence basis for column space are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
4
3
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5
2
1
−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

4.1.1.48 Problem section 4.5 number 9

In Problems 1–12, find both a basis for the row space and a basis for the column space of
the given matrix 𝐴. ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 3 9
2 7 4 8
2 7 5 12
2 8 3 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

We start by converting the matrix to Echelon form.

𝑅2 → 𝑅2 − 2𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 3 9
0 1 −2 −10
2 7 5 12
2 8 3 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 2𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 3 9
0 1 −2 −10
0 1 −1 −6
2 8 3 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 − 2𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 3 9
0 1 −2 −10
0 1 −1 −6
0 2 −3 −6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 3 9
0 1 −2 −10
0 0 1 4
0 2 −3 −6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅4 → 𝑅4 − 2𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 3 9
0 1 −2 −10
0 0 1 4
0 0 1 14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 − 𝑅3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 3 9
0 1 −2 −10
0 0 1 4
0 0 0 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above is in Echelon form. The pivot columns are 1, 2, 3, 4. The non-zero rows are rows
1, 2, 3, 4. Hence row space basis are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
3
9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
−20
−10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

The dimension is 4. The column space correspond to pivot columns in original 𝐴. These
are columns 1, 2, 3, 4. Hence basis for column space are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
7
7
8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
4
5
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9
8
12
12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

4.1.1.49 Problem section 4.5 number 10

In Problems 1–12, find both a basis for the row space and a basis for the column space of
the given matrix 𝐴. ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 1 3
1 3 4 3 6
2 2 4 3 5
2 1 3 2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

We start by converting the matrix to Echelon form.

𝑅2 → 𝑅2 − 𝑅1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 1 3
0 1 1 2 3
2 2 4 3 5
2 1 3 2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 2𝑅1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 1 3
0 1 1 2 3
0 −2 −2 1 −1
2 1 3 2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 − 2𝑅1
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 1 3
0 1 1 2 3
0 −2 −2 1 −1
0 −3 −3 0 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 + 2𝑅2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 1 3
0 1 1 2 3
0 0 0 5 5
0 −3 −3 0 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 + 3𝑅2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 1 3
0 1 1 2 3
0 0 0 5 5
0 0 0 6 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 − 2𝑅3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 1 3
0 1 1 2 3
0 0 0 5 5
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above is in Echelon form. The pivot columns are 1, 2, 4. The non-zero rows are rows
1, 2, 3. Hence row space basis are ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3
1
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
5
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The dimension is 3. The column space correspond to pivot columns in original 𝐴. These
are columns 1, 2, 4. Hence basis for column space are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
3
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
3
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

4.1.1.50 Problem section 4.5 number 11

In Problems 1–12, find both a basis for the row space and a basis for the column space of
the given matrix 𝐴. ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 3 3 1
2 3 7 8 2
2 3 7 8 3
3 1 7 5 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

We start by converting the matrix to Echelon form.
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𝑅2 → 𝑅2 − 2𝑅1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 3 3 1
0 1 1 2 0
2 3 7 8 3
3 1 7 5 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 2𝑅1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 3 3 1
0 1 1 2 0
0 1 1 2 1
3 1 7 5 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 − 3𝑅1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 3 3 1
0 1 1 2 0
0 1 1 2 1
0 −2 −2 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 𝑅2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 3 3 1
0 1 1 2 0
0 0 0 0 1
0 −2 −2 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 + 2𝑅2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 3 3 1
0 1 1 2 0
0 0 0 0 1
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 − 𝑅3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 3 3 1
0 1 1 2 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above is in Echelon form. The pivot columns are 1, 2, 5. The non-zero rows are rows
1, 2, 3. Hence row space basis are ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
3
3
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The dimension is 3. The column space correspond to pivot columns in original 𝐴. These
are columns 1, 2, 5. Hence basis for column space are
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
3
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

4.1.1.51 Problem section 4.5 number 12

In Problems 1–12, find both a basis for the row space and a basis for the column space of
the given matrix 𝐴. ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 3 3 0
−1 0 −2 −1 1
2 3 7 8 1
−2 4 0 6 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

We start by converting the matrix to Echelon form.

𝑅2 → 𝑅2 + 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 3 3 0
0 1 1 2 1
2 3 7 8 1
−2 4 0 6 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 2𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 3 3 0
0 1 1 2 1
0 1 1 2 1
−2 4 0 6 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 + 2𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 3 3 0
0 1 1 2 1
0 1 1 2 1
0 6 6 12 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 3 3 0
0 1 1 2 1
0 0 0 0 0
0 6 6 12 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 − 6𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 3 3 0
0 1 1 2 1
0 0 0 0 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Swap 𝑅4, 𝑅3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 3 3 0
0 1 1 2 1
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The above is in Echelon form. The pivot columns are 1, 2, 5. The non-zero rows are rows
1, 2, 3. Hence row space basis are ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
3
3
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The dimension is 3. The column space correspond to pivot columns in original 𝐴. These
are columns 1, 2, 5. Hence basis for column space are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
2
−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
3
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

4.1.1.52 Problem section 4.5 number 13

In Problems 13–16, a set 𝑆 of vectors in ℝ4 is given. Find a subset of 𝑆 that forms a basis
for the subspace of ℝ4 spanned by 𝑆

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
−2
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
−1
3
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
1
4
8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

We set up a matrix made of the above vectors, then find the column space.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 5
3 −1 1
−2 3 4
4 2 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 3𝑅1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 5
0 −7 −14
−2 3 4
4 2 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 + 2𝑅1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 5
0 −7 −14
0 7 14
4 2 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 − 4𝑅1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 5
0 −7 −14
0 7 14
0 −6 −12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅3 → 𝑅3 + 𝑅2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 5
0 −7 −14
0 0 0
0 −6 −12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 −
6
7𝑅2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 5
0 −7 −14
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pivot vectors are 1, 2. Hence the column space basis are 𝑣⃗1, 𝑣⃗2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
−2
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
−1
3
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

These are the basis that span the set 𝑆.

4.1.1.53 Problem section 4.5 number 14

In Problems 13–16, a set 𝑆 of vectors in ℝ4 is given. Find a subset of 𝑆 that forms a basis
for the subspace of ℝ4 spanned by 𝑆

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
3
4
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
1
8
7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

We set up a matrix made of the above vectors, then find the column space.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1 4
−1 3 1 1
2 4 2 8
3 1 1 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 + 𝑅1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1 4
0 5 2 5
2 4 2 8
3 1 1 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 − 2𝑅1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1 4
0 5 2 5
0 0 0 0
3 1 1 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅4 → 𝑅4 − 3𝑅1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1 4
0 5 2 5
0 0 0 0
0 −5 −2 −5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 + 𝑅2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1 4
0 5 2 5
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Pivot vectors are 1, 2. Hence the column space basis are 𝑣⃗1, 𝑣⃗2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
3
4
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

These are the basis that span the set 𝑆.

4.1.1.54 Problem section 4.5 number 15

In Problems 13–16, a set 𝑆 of vectors in ℝ4 is given. Find a subset of 𝑆 that forms a basis
for the subspace of ℝ4 spanned by 𝑆

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
2
2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
1
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
3
2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution

We set up a matrix made of the above vectors, then find the dimensions of the column
space. ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 2 4 1
2 1 3 2
2 2 2 3
2 1 3 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 2𝑅1 and 𝑅2 → 3𝑅2 and 𝑅3 → 2𝑅3 and 𝑅4 → 3𝑅4. This gives

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 4 8 2
6 3 9 6
6 6 6 9
6 3 9 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → −𝑅1 + 𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 4 8 2
0 −1 1 4
6 6 6 9
6 3 9 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅3 → −𝑅1 + 𝑅3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 4 8 2
0 −1 1 4
0 2 −2 7
6 3 9 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → −𝑅1 + 𝑅4 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 4 8 2
0 −1 1 4
0 2 −2 7
0 −1 1 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 2𝑅2 + 𝑅3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 4 8 2
0 −1 1 4
0 0 0 15
0 −1 1 10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → −𝑅2 + 𝑅4 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 4 8 2
0 −1 1 4
0 0 0 15
0 0 0 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 15𝑅4 and 𝑅3 → 6𝑅3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 4 8 2
0 −1 1 4
0 0 0 90
0 0 0 90

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅3 + 𝑅4 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 4 8 2
0 −1 1 4
0 0 0 90
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence, the pivot columns are 1, 2, 4. Therefore the column space basis are 𝑣⃗1, 𝑣⃗2, 𝑣⃗4 given
by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
2
2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
1
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

The above are the basis that span 𝑆.

4.1.1.55 Problem section 4.5 number 16

In Problems 13–16, a set 𝑆 of vectors in ℝ4 is given. Find a subset of 𝑆 that forms a basis
for the subspace of ℝ4 spanned by 𝑆

𝑣⃗1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
4
2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
1
2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7
7
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
2
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑣⃗5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
4
6
7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

solution
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We set up a matrix made of the above vectors, then find the column space.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 3 7 1 5
4 1 7 −1 4
2 2 2 2 6
2 3 1 4 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅1 → 4𝑅1, 𝑅2 → 5𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 12 28 4 20
20 5 35 −5 20
2 2 2 2 6
2 3 1 4 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅2 → 𝑅2 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 12 28 4 20
0 −7 7 −9 0
2 2 2 2 6
2 3 1 4 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 10𝑅3 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 12 28 4 20
0 −7 7 −9 0
0 8 −8 16 40
2 3 1 4 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 10𝑅4 − 𝑅1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 12 28 4 20
0 −7 7 −9 0
0 8 −8 16 40
0 18 −18 36 50

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 7𝑅3, 𝑅2 → 8𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 12 28 4 20
0 −56 56 −72 0
0 56 −56 112 280
0 18 −18 36 50

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅3 → 𝑅3 + 𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 12 28 4 20
0 −56 56 −72 0
0 0 0 40 280
0 18 −18 36 50

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 56(𝑅4), 𝑅2 → 18(𝑅2)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 12 28 4 20
0 −1008 1008 −1296 0
0 0 0 40 280
0 1008 −1008 2016 2800

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑅4 → 𝑅4 + 𝑅2 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 12 28 4 20
0 −1008 1008 −1296 0
0 0 0 40 280
0 0 0 720 2800

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝑅4 → 𝑅4 − 18𝑅3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 12 28 4 20
0 −1008 1008 −1296 0
0 0 0 40 280
0 0 0 0 −2240

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence, the pivot columns are 1, 2, 4, 5. Therefore the column space basis are 𝑣⃗1, 𝑣⃗2, 𝑣⃗4, 𝑣⃗5
given by ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
4
2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
1
2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
2
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
4
6
7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

The above are the basis that span 𝑆.

4.1.1.56 Problem section 4.7 number 5

In Problems 5–8, determine whether or not each indicated set of functions is a subspace
of the space 𝐹 of all real-valued

functions on ℝ.

The set of all 𝑓 such that 𝑓(0) = 0

Solution

The only condition given is that 𝑓(0) = 0. This means the zero function is included.
𝑐𝑓(0) = 𝑐(0) = 0 and 𝑓(0) + 𝑔(0) = 0 + 0 = 0. Hence closed under addition and under scalar
multiplication. Hence subspace.

4.1.1.57 Problem section 4.7 number 6

In Problems 5–8, determine whether or not each indicated set of functions is a subspace
of the space 𝐹 of all real-valued

functions on ℝ.

The set of all 𝑓 such that 𝑓(𝑥) ≠ 0 for all 𝑥.

Solution

Since the zero function is not included, then this can not be a subspace.

4.1.1.58 Problem section 4.7 number 7

In Problems 5–8, determine whether or not each indicated set of functions is a subspace
of the space 𝐹 of all real-valued

functions on ℝ.

The set of all 𝑓 such that 𝑓(0) = 0 and 𝑓(1) = 1

Solution

5𝑓(1) = 5 × 1 = 5

Hence not closed under scalar multiplication. Therefore not a subspace.

4.1.1.59 Problem section 4.7 number 8

In Problems 5–8, determine whether or not each indicated set of functions is a subspace
of the space 𝐹 of all real-valued

functions on ℝ.

The set of all 𝑓 such that 𝑓(−𝑥) = −𝑓(𝑥) for all 𝑥
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Solution

This is the definition of an odd function such as sin 𝑥. The odd function is zero at 𝑥 = 0,
since the zero is included. Also adding two odd functions gives an odd function, and
scaling an odd function does not change its oddness. Hence closed. Therefore a subspace.

4.1.1.60 Problem section 4.7 number 9

In Problems 9–12, a condition on the coefficients of a polynomial 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 is
given. Determine whether or not the set of all such polynomials satisfying this condition
is a subspace of the space 𝑃 of all polynomials.

𝑎3 ≠ 0

Solution

Not a subspace, since we can not obtain the zero polynomial if 𝑎3 ≠ 0 all the time. Hence
not a subspace

4.1.1.61 Problem section 4.7 number 9

In Problems 9–12, a condition on the coefficients of a polynomial 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 is
given. Determine whether or not the set of all such polynomials satisfying this condition
is a subspace of the space 𝑃 of all polynomials.

𝑎3 ≠ 0

Solution

Let 𝑝1 = 3𝑥3 and let 𝑝2 = −3𝑥3, hence 𝑝1 + 𝑝2 = 3𝑥3 − 3𝑥3 = 0 which does not satisfy the
condition that 𝑎3 ≠ 0. Hence not closed under addition. not a subspace

4.1.1.62 Problem section 4.7 number 10

In Problems 9–12, a condition on the coefficients of a polynomial 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 is
given. Determine whether or not the set of all such polynomials satisfying this condition
is a subspace of the space 𝑃 of all polynomials.

𝑎0 = 𝑎1 = 0

Solution

These all polynomials that look like 3𝑥2 + 5𝑥3, −𝑥2 + 𝑥3 and so on. Let 𝑝1 = 𝑎2𝑥2 + 𝑎3𝑥3 and
let 𝑝2 = 𝑏2𝑥2 + 𝑏3𝑥3.

𝑝1 + 𝑝2 = 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑏2𝑥2 + 𝑏3𝑥3

= 𝑥2(𝑎2 + 𝑎3) + 𝑥3(𝑎3 + 𝑏3)

Which satisfies the condition that 𝑎0 = 𝑎1 = 0. Also under scalar multiplication

𝐶𝑝1 = 𝐶�𝑎2𝑥2 + 𝑎3𝑥3�

= 𝐶𝑎2𝑥2 + 𝐶𝑎3𝑥3

Which satisfies the condition that 𝑎0 = 𝑎1 = 0. Hence a subspace

4.1.1.63 Problem section 4.7 number 11

In Problems 9–12, a condition on the coefficients of a polynomial 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 is
given. Determine whether or not the set of all such polynomials satisfying this condition
is a subspace of the space 𝑃 of all polynomials.

𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 = 0

Solution
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Let 𝑝1 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 such that 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 = 0 and let 𝑝2 = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + 𝑏3𝑥3
such that 𝑏0 + 𝑏1 + 𝑏2 + 𝑏3 = 0 then

𝑝1 + 𝑝2 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + 𝑏3𝑥3

= (𝑎0 + 𝑏0)𝑥 + (𝑎1 + 𝑏1)𝑥 + (𝑎2 + 𝑏2)𝑥2 + (𝑎3 + 𝑏3)𝑥3

Now,

(𝑎0 + 𝑏0) + (𝑎1 + 𝑏1) + (𝑎2 + 𝑏2) + (𝑎3 + 𝑏3) = (𝑎0 + 𝑎1 + 𝑎2 + 𝑎3) + (𝑏0 + 𝑏1 + 𝑏2 + 𝑏3)
= 0 + 0
= 0

Hence closed under addition. Also

𝑐𝑝1(𝑥) = 𝑐�𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3�

= 𝑐𝑎0 + 𝑐𝑎1𝑥 + 𝑐𝑎2𝑥2 + 𝑐𝑎3𝑥3

Now

𝑐𝑎0 + 𝑐𝑎1 + 𝑐𝑎2 + 𝑐𝑎3 = 𝑐(𝑎0 + 𝑎1 + 𝑎2 + 𝑎3)
= 𝑐(0)
= 0

Hence closed under scalar multiplication. And since the zero polynomial is also included
(when 𝑎𝑖 = 0), then this is a subspace

4.1.1.64 Problem section 4.7 number 12

In Problems 9–12, a condition on the coefficients of a polynomial 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 is
given. Determine whether or not the set of all such polynomials satisfying this condition
is a subspace of the space 𝑃 of all polynomials.

𝑎0, 𝑎1, 𝑎2, 𝑎3 are all integers.

Solution

Not closed under scalar multiplication. For example

1
2
�𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3� =

1
2
𝑎0 +

1
2
𝑎1𝑥 +

1
2
𝑎2𝑥2 +

1
2
𝑎3𝑥3

But 1
2𝑎0 is not integer when 𝑎0 is integer. Therefore not a subspace
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4.1.2 Questions

Math 2243 - Section 002 - Midterm 1 - Cover Page

Instructions:

You are required to be present on Zoom with your camera on from 6pm until your exam is
submitted. While taking the exam, you must remain in the frame of the camera at all times.
You may not ask for or receive help from notes, textbooks, online resources, or other people
during the exam. You may use a calculator, but as always in this class you are expected to
show all work.

There is an honor statement at the bottom of this page. You are required to copy the state-
ment in your own handwriting, sign it, and submit it with your exam. Unless we have made
prior arrangements, failure to comply with these requirements may result in a grade of 0 on
the exam.

If you have questions during the exam or encounter technical difficulties, you can ask me
using the Zoom chat or by email. The exam is written to take approximately 60 minutes.
This file has been made available at 6pm and you will have until 7:15pm to submit your
solutions on Gradescope. It is your responsibility to ensure that you have sufficient time to
scan and upload your work before the deadline. It is your responsibility to ensure that your
scan is legible and includes all of your work.

Honor Statement:

Please copy the following in your own handwriting and sign it. Your exam will not be ac-
cepted without a signed honor statement.

I certify that I have not accepted, sought, or received help from any source on this exam.
I have not used any notes, textbooks, or online resources and I have not spoken to any
person. I understand that signing this statement untruthfully will constitute a violation of
the University of Minnesota’s Academic Honesty policies.

1

333



4.1. Exam 1, Thursday Oct 15, 2020 CHAPTER 4. EXAMS

Math 2243 - Section 002 - Midterm 1

Problem 1 (10 points): Suppose that A is a matrix such that

A =

1 1 −1
0 1 −2
1 a b

 A−1 =

 c −1 −1
−2 1 d
−1 0 1


Find a, b, c and d.

Problem 2 (5 points): Find a matrix X such that AX = B, given that

A =

[
1 1
3 2

]
B =

[
−4 0 5 1 2
7 1 3 1 −3

]
Problem 3 (10 points): Let k be any real number and let A be the matrix

A =

k + 2 6 1
1 3 −2
2 6 k


(a) Compute detA (your answer should be in terms of the constant k).

(b) For what values of k is it true that the linear system A~x = ~0 has exactly one solution?

Problem 4 (8 points): Let ~v1 = (1,−3, 3), ~v2 = (−1,−4, 2), ~v3 = (7,−7, 11), ~v4 = (2, 1, 1)
and let S = {~v1, ~v2, ~v3, ~v4}. Consider the subspace W = SpanS of R3.

Find a subset of S which is a basis for W . Your answer should explain why you know the
vectors you have chosen are a basis for W .

Problem 5 (7 points): Let P2 denote the vector space of all polynomials of degree at most
2. For which values of the real constant k do the polynomials

1 + x, x + x2, kx + 3x2

form a basis for P2?

Problem 6 (10 points): For the following matrix A, the dimension of the solution space
of A~x = ~0 depends on the constant k.

A =

1 1 0 3k + 2
0 1 0 2
0 1 k 2


(a) What are the possible dimensions of the solution space A~x = ~0? What values of k do

they correspond to?

(b) Find a basis for the solution space of of A~x = ~0 for each of the possibilities found in
part (a).

2
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4.3 Final exam, Thursday Dec 17, 2020

Local contents
4.3.1 Review matrial for final exam . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

336



4.3. Final exam, Thursday Dec 17, 2020 CHAPTER 4. EXAMS

4.3.1 Review matrial for final exam

Practice Final

1.1: #1 Write a differential equation that is a mathematical model of the following situation.

The time rate of change of the velocity v of a spaceship

is proportional to the square of v.

Differential Equation:

v � � kv2 or dv

dt
� kv2 or Dt�v� � kv2

1.2: #2 Find the position function x�t� of a moving particle

with the given acceleration a�t� � 1

�t�2�3
, initial position x0 � x�0� � 3

and initial velocity v0 � v�0� � 0.

v�t� � ��t � 2��3dt � � 1
2
�t � 2��2 � C,

(v�0� � 0)...

0 � � 1
2
�0 � 2��2 � C � � 1

8
� C, C � 1

8
.

Hence x�t� � � � 1
2
�t � 2��2 � 1

8
dt � 1

2
�t � 2��1 � 1

8
t � C

(x�0� � 3)�

3 � 1
2
�0 � 2��1 � 1

8
� 0 � C � 1

4
� C, C � 11

4
.

x�t� � 1
2
�t � 2��1 � 1

8
t � 11

4
.

1.3: #3 Find explicit particular solutions to the initial value problem: x
dy

dx
� y � 2x2y, y�1� � 1.

x
dy

dx
� 2x2y � y � y�2x2 � 1� 1

y dy � 2x2�1
x � 2x � 1

x

� dy
y � �� 1

x � 2x�dx; ln|y| � ln|x| � x2 � ln C; y � Cxex2

y�1� � 1 implies 1 � Ce1 and C � e�1 so y�x� � xe x2�1 .

y�x� � xe x2�1 � x
e ex2

1.4: #4 An accident at a nuclear power plant has left the surrounding area polluted with radioactive

material that decays naturally. The initial amount of radioactive material present is 15 su (safe units), and 5

months later it is still 10 su. What amount of radioactive material will remain after one year? Note that any

radioactive material has a decay rate proportional to the amount of radioactive material P(t) present at that

time,
dP�t�

dt
� �kP�t�, k � 0.

� 1
P

dP � �k �dt, when P � 0. (but if P � 0, we see that this is a singular solution to the DEQ)

� ln P � �kt � C � P � eCe�kt.

12/6/2020 Jodin Morey 1
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Substituting in the first initial condition:

15 � eCe0 � P � 15e�kt,

Substituting in the 2nd initial condition:

10 � 15e�5k � ln 2
3
� �5k

� k � � 1
5

ln 2
3

.

� P�12� � 15e�12 � 1
5

ln 2
3 � 15e

12
5

ln 2
3 � 5. 668 6 su.

1.4: #5 Find the general solution of the differential equation: �1 � x�2 dy

dx
� �1 � y�2.

1

�1�y�2
dy � 1

�1�x�2
dx, when y � �1. (although note that when y � �1,

dy

dx
� 0, �1 � y�2 � 0, and our differential

equation is satisfied for all x).

Continuing on with the case y � �1, we have: � 1

�1�y�2
dy � � 1

�1�x�2
dx

� �1 � y��1 � ��1 � x��1 � c � 1 � x � �1 � y� � �1 � x��1 � y�c

1 � x � 1 � y � �c � cx � cy � cxy� � x � c � cx � �c � cx � 1�y

� �c � cx � 1�y � c � cx � x � y � � c�cx�x
c�cx�1

. �

1.5: #6 Solve linear first order differential equation: y � � y � sin x.

� � e
� 1dx

� ex

� �yex� � � ex sin x

� exy � � ex sin xdx

Now we have to use integration by parts, twice!

� ex sin xdx � �ex cosx � � ex cosxdx � �ex cosx � ex sin x � � ex sin xdx

� 2 � ex sin xdx � ex �sin x � cosx� � c

� y � e�xex �sin x � cosx� � 1
2

sin x � 1
2

cosx � c
ex .

12/6/2020 Jodin Morey 2
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1.5: #7 Solve the initial value problem: xy � � 2y � 2x2 ln x; y�1� � 3.

y � � 2
x y � 2x, when x � 0. However, note that we already preclude x � 0, as this is not defined for ln x.

Integrating factor: � � e
�� 2

x dx
� e�2 ln|x| � x�2.

x�2�y � � 2
x y� � 2x � x�2

�y � x�2� � � 2
x

yx�2 � 2 � 1
x dx � c � 2 ln|x| � c

y � 2x2 ln|x| � cx2

3 � 2 � 1 ln�1� � c � 1 � c � 3, so

y � 2x2 ln|x| � 3x2.

2.1: #8 During the period from 1790 to 1930, the U.S. population P�t� (t in years) grew from 4 million to

124 million. Throughout this period, P�t� remained close to the solution of the initial value problem:

dP

dt
� 0. 03P � 0. 00015P2, P�0� � 4.

a) What 1930 population does this logistic equation predict?

dP

dt
� P 3

100
� 15

100000
P � 15

100,000
P 3

100

100,000

15
� P � 3

20,000
P�200 � P�.

� 1

P�200�P�
dP � 3

20,000
�dt � 1

P�200�P�
� A

P
� B

200�P
� 1 � A�200 � P� � BP

� 1 � �B � A�P � 200A � A � 1/200 and B � 1/200

� � 1
P
� 1

200�P
dP � 3

100
t � C � ln P � ln�200 � P� � 3

100
t � C

ln P
200�P

� 3
100

t � C � P
200�P

� De
3

100
t � 1

49
� D

P
200�P

� 1
49

e
3

100
�140 � 1. 361 � P � 1. 361 200 � P � 2. 361P � 272. 2 � P � 115. 3 million.

b) What limiting population does it predict?

Limiting population of 200 million since in the logistic form of the equation

(P � � kP�M � P� � 3
20,000

P�200 � P�), M � 200 is in the spot for the limiting population.

2.2: #9 The equation y � � �y2�y2 � 4� has �

A) A stable critical point at 0. B) A stable critical point at 2.

C) If y�0� � �1, then y�t� � 0 as t � �. D) If y�5� � �1, then y�t� � 0 as t � �.

E) If y�0� � �1, then y�t� � 0 as t � ��. F) If y�0� � 6, then y�t� � 2 as t � ��.

Answers: B,C,D

12/6/2020 Jodin Morey 3
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2.3: #10 A skydiver drops from an airplane at an altitude of 5000 m and dives freely, with negligible air

resistance, for 30 seconds. He then opens his parachute and falls such that the acceleration due to air

resistance is proportional to his velocity, aR � �2v.

You may take the acceleration of gravity to be 9. 8m/s2.

(a) Find the altitude at which the skydiver opened the parachute.

Prior to opening the parachute, since a resistance is negligible, we have a � dv

dt
� 9. 8. Integrating to find velocity,

we have: � dv

dt
dt � ��9. 8dt � v � �9. 8t � v0 � v � �9. 8t (because we set t � 0 to be the time when they

jump out of the plane, and observe that at that time v � 0, so v0 � 0). Integrating again to get the position function:

� dx

dt
dt � ��9. 8t dt � x � �4. 9t2 � c. Observing that x�0� � 5000, we have:

5000 � �4. 9 � 02 � c � c � 5000. So x � �4. 9t2 � 5000.

Evaluating this at 30 sec, we have: x�30� � �4. 9�30�2 � 5000 � 590 m.

(b) Find the velocity of the skydiver 1 minute after he jumped.

Let v represent a new velocity function with initial condition v �0� � v�30�. In other words, it represents the velocity

function after the skydiver deployed the parachute. Observe that the new acceleration function is: dv

dt
� �9. 8 � 2v .

In other words, we are now taking into account the fact that air resistance is slowing the fall (also note that since

velocity is in the opposite direction from our position function, that �2v is a positive number!). Using separation of

variables (although it is also possible to use an integrating factor), we have:

� � 1
9.8�2v

dv � �dt � � 1
2

ln|9. 8 � 2v | � t � c

� ln|9. 8 � 2v | � �2t � c � |9. 8 � 2v | � e�2t�c

Observe from above we have: v � �9. 8t, so v �0� � v�30� � �9. 8 � 30 � � 294. So plugging in this initial

condition, we have:

|9. 8 � 2 � ��294�| � e�2�0�c � e�c � 578. 2. Plugging this in:

� |9. 8 � 2v | � 578. 2e�2t � v � �289. 1e�2t � 4. 9 (0ur choice of sign is once again due to the fact that

since v �0� � � 294. )

Therefore, the velocity at 60 seconds is: v �30� � �289. 1e�2�30 � 4. 9 � � 4. 9 m/s.

(c) Find his terminal velocity, that is, find lim t�� v�t�.

v ��� � �289. 1e�2�� � 4. 9 � �4. 9 m/s.

12/6/2020 Jodin Morey 4
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2.3: #11 You just bought a new car, and its acceleration is proportional to the difference between 250 km

per hour and its velocity. If your new car can accelerate from rest to 100 km/hr in 10 seconds, how long will

it take for the car to accelerate from rest to 200 km/hr?

a�t� � dv

dt
� k�250 � v�, v�10� � 100, v�0� � 0, v�?� � 200.

dv
250�v

� kdt � � dv
250�v

� � kdt � � ln|250 � v| � kt � c.

250 � v � e�kt�c � v � 250 � Ce�kt.

0 � 250 � Ce0, so C � 250.

100 � 250 � 250e�10k � e�10k � 150
250

� 3
5

�10k � ln� 3
5
� � k � � 1

10
ln� 3

5
� � 0. 0511.

200 � 250 � 250e�kt � e�0.0511t � 50
250

� 1
5

�0. 0511t � ln� 1
5
� � � ln�5� � t �

ln�5�
0.0511

� 31. 5 sec. �

2.4: #12 Use the Euler method (NOT the improved Euler method) with step size h � 0. 2 to approximate

y�0. 4� where y�x� is the solution of the differential equation y � � �2xy with initial value y�0� � 2.

y�0. 2� � 2 � 0. 2�0� � 2

y�0. 4� � 2 � 0. 2��2 � 0. 2 � 2� � 1. 84. �

3.1: #13 a) Write down the augmented matrix of the system:

x � 3y � 2z � 2
2x � 7y � 7z � �1
2x � 5y � 2z � 7

1 3 2 | 2

2 7 7 | �1

2 5 2 | 7

12/6/2020 Jodin Morey 5
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b) Row reduce the matrix to echelon form (just echelon, not reduced echelon).

� r2 � 2r1 and r3 � 2r1 �

1 3 2 | 2

0 1 3 | �5

0 �1 �2 | 3

� r3 � r2 �

1 3 2 | 2

0 1 3 | �5

0 0 1 | �2

.

c) How many solutions does the system have? Justify your answer.

The system has only one solution.

This is because each column representing a variable has a leading "1", this means we do not have an arbitrary

parameter, and therefore there are not an infinite number of solutions. Also, the reduction did not give us a

contradictory 0x � 0y � 0z � c � 0 row (which would indicate an inconsistent matrix with no solution), but instead

the reduction left us in the desirable position of being able to solve for z by just reading it off the matrix, and then

using back substitution to determine the exact values of x and y.

The question didn’t ask for the actual answer, but that would be:

z � �2,

y � �3z � 5 � 1,

x � �3y � 2z � 2 � 3,

So, x � �3, 1,�2�. �

3.2: #14 Use the method of Gaussian elimination to solve the system of equations:

x1 � x2 � x4 � 1,

2x1 � x2 � 3x3 � 7x4 � �1,

3x1 � 2x2 � x3 � 2.

1 �1 0 �1 | 1

2 1 3 7 | �1

3 �2 1 0 | 2

�

1 �1 0 �1 | 1

0 3 3 9 | �3

0 1 1 3 | �1

�

1 �1 0 �1 | 1

0 1 1 3 | �1

0 0 0 0 | 0

�

1 0 1 2 | 0

0 1 1 3 | �1

0 0 0 0 | 0

x4 � t4, x3 � t3, x2 � �t3 � 3t4 � 1, x1 � �t3 � 2t4

�x1, x2, x3, x4� � �t3 � 2t4, � t3 � 3t4 � 1, t3, t4

� �0,�1, 0, 0� � t3��1,�1, 1, 0� � t4��2,�3, 0, 1�, for any t3, t4 � R.

12/6/2020 Jodin Morey 6

342



4.3. Final exam, Thursday Dec 17, 2020 CHAPTER 4. EXAMS

3.2: #15 Consider the matrices: A �

�2 1

1 �2

0 �1

, B �
1 3

2 0
, C �

0

3
.

Calculate, if possible, �A � 2B�C, �AB � 3A�C, and AB � BA. If one (or more) of these expressions is not

defined, state so and give the reason.

Case: �A � 2B�C, The matrices A and 2B are not compatible for subtraction, as they have different dimensions.

Case: �AB � 3A�C, �AB � 3A�C � ABC � 3AC � A
1 3

2 0

0

3
� 3

�2 1

1 �2

0 �1

0

3

�

�2 1

1 �2

0 �1

9

0
� 3

3

�6

�3

�

�18

9

0

�

�9

18

9

�

27

27

9

.

Case: AB � BA, The matrix B cannot be multiplied by A, because the number of columns of B do not equal the

number of rows for A. �

3.3 #16 Find the reduced echelon form of the following matrix:

5 2 18

0 1 4

4 1 12

� 1
4

r3 and 1
5

r1 �

1 2
5

18
5

0 1 4

1 1
4

3

� r3 � r1 �

1 2
5

18
5

0 1 4

0 1
4
� 2

5
3 � 18

5

�

1 2
5

18
5

0 1 4

0 � 3
20

� 3
5

� � 20
3

r3 �

1 2
5

18
5

0 1 4

0 1 4

.

Reduced Echelon Form:
1 0 2

0 1 4
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3.5: #17 Find the inverse of the matrix A �

1 �1 2

2 �3 3

1 �1 1

. (show all your work!).

We would like to calculate A�1 � 1

|A |
�A ij �

T
. So first to calculate the determinant:

|A| �

1 �1 2

2 �3 3

1 �1 1

c3�c2�

1 �1 1

2 �3 0

1 �1 0

� 1 �
2 �3

1 �1
� 1.

Therefore, A�1 � 1
1
�A ij �

T
�

�0 �1 �1

�1 �1 �0

�3 �1 �1

T

�

0 �1 3

1 �1 1

1 0 �1

.

Alternatively, one could calculate this with:

1 �1 2 | 1 0 0

2 �3 3 | 0 1 0

1 �1 1 | 0 0 1

r3�r1

�

1 �1 2 | 1 0 0

2 �3 3 | 0 1 0

0 0 �1 | �1 0 1

r2�2r1

�

1 �1 2 | 1 0 0

0 �1 �1 | �2 1 0

0 0 �1 | �1 0 1

�r2 and r1�r2

�

1 0 3 | 3 �1 0

0 1 1 | 2 �1 0

0 0 �1 | �1 0 1

r2�r3 and r1�3r3

�

1 0 0 | 0 �1 3

0 1 0 | 1 �1 1

0 0 �1 | �1 0 1

�r3

�

1 0 0 | 0 �1 3

0 1 0 | 1 �1 1

0 0 1 | 1 0 �1

� A�1 �

0 �1 3

1 �1 1

1 0 �1

.

b) Then use this inverse to solve the system Ax � b , where b �

15

�9

�3

. You will not receive credit if you

solve the system by any other method.

x � A�1 b �

0 �1 3

1 �1 1

1 0 �1

15

�9

�3

�

0

21

18

. �
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3.6: #18 Use cofactors (not the identity matrix) to evaluate the inverse of�

A �

3 5 2

�2 3 �4

�5 0 �5

.

Using the last row to calculate my determinant�

det A � �5 � �5 � ��4� � 2 � 3� � 0 � 5�3 � 3 � �5���2�� � �5 � ��26� � 5 � 19

� 130 � 95 � 35. So, 1
det A

� 1
35

.

�cmn � �

�15 10 15

25 �5 �25

�26 8 19

, �cmn �T �

�15 25 �26

10 �5 8

15 �25 19

A�1 � 1
35

�15 25 �26

10 �5 8

15 �25 19

or A�1 �

� 3
7

5
7

� 26
35

2
7

� 1
7

8
35

3
7

� 5
7

19
35

3.6: #19 Use Cramer’s Rule to solve the following system. First, construct a matrix A to be the matrix

associated with the system:

5x � 8y � 3, 8x � 13y � 5.

A �
5 8

8 13
, det A � 1, 1

det A
� 1.

det A � 1.

x � 1
det A

det
3 8

5 13
� �1.

y � 1
det A

det
5 3

8 5
� 1.
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3.7: #20 With the data points given, find the nth degree polynomial y � f�x� that fits these points:

��1, 1�, �1, 5�, and �2, 16�.

ax2 � bx � c � y

a��1�2 � b��1� � c � 1, a�1�2 � b�1� � c � 5, a�2�2 � b�2� � c � 16

1 �1 1 | 1

1 1 1 | 5

4 2 1 | 16

�

1 �1 1 | 1

0 2 0 | 4

0 6 �3 | 12

�

1 �1 1 | 1

0 1 0 | 2

0 0 �3 | 0

�

1 0 1 | 3

0 1 0 | 2

0 0 1 | 0

� c � 0, b � 2, and d � 3.

Therefore, y � 3x2 � 2x

-2 -1 0 1 2 3

10

20

x

y

4.1: #21 Consider the matrix

1 �1 0 2

1 1 2 0

0 2 3 �1

. Find a basis for each of the subspaces:

a) Null�A� � �x � �4 : Ax � 0�.

b) The row space Row�A�.

c) The column space Col�A�.

1 �1 0 2

1 1 2 0

0 2 3 �1

�

1 �1 0 2

0 2 2 �2

0 2 3 �1

�

1 �1 0 2

0 1 1 �1

0 0 1 1

�

1 0 0 0

0 1 0 �2

0 0 1 1

,

x4 � s, x3 � �s, x2 � 2s, x1 � 0.

Null�A� � span��0, 2,�1, 1��.

Row�A� � span �1, 0, 0, 0�, �0, 1, 0,�2�, �0, 0, 1, 1� .

Col�A� � span �1, 1, 0�, ��1, 1, 2�, �0, 2, 3� .
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4.2: #22 Let V be a vector space. Let W be a subset of V. There are three conditions you can check which

are sufficient to show that W is a subspace of V. One of them is that W must not be empty. What are the other

two conditions?

Condition 1: W � �, (or some other condition which implies the existence of at least one vector)

Condition 2: For all w1, w2 in W, w1 � w2 is also in W.

Condition 3: For all w1 in W, and c � �; cw1 is also in W.

4.4: #23 Find a basis for the solution space of the given homogeneous linear system:

x1 � 4x2 � 3x3 � 7x4 � 0

2x1 � x2 � x3 � 7x4 � 0

x1 � 2x2 � 3x3 � 11x4 � 0

1 �4 �3 �7

2 �1 1 7

1 2 3 11

, Gaussian elimination:

1 0 1 5

0 1 1 3

0 0 0 0

� x4 � s, x3 � t, x2 � �t � 3s, x1 � �t � 5s

�x1, x2, x3, x4� � ��t � 5s,�t � 3s, t, s� � s��5,�3, 0, 1� � t��1,�1, 1, 0�.

Therefore, the basis for the solution space is ���5,�3, 0, 1�, ��1,�1, 1, 0��

4.4: #24 a) Determine (with justification) if the vectors

v 1 � �1, 1, 1, 1�, v 2 � �1, 2, 3, 0�, v 3 � �3, 6, 0, 0�, and v 4 � ��1, 0, 0, 0� form a basis of �4 or not.

1 1 3 �1

1 2 6 0

1 3 0 0

1 0 0 0

� 1 �

1 2 6

1 3 0

1 0 0

� 1 �
2 6

3 0
� 0 � 12 � 0. Therefore the column vectors we used were

linearly independent. And since we used four vectors in �4, which is a vector space of four dimensions, we have a

basis for �4.

b) Determine (with justification!) If the subset W � ��x1, x2, x3, x4, x5� � �5 : x1x2 � x3 � x4 � x5� is a subspace

of �5 or not.

Since 0 is an element of any subspace, this would require that:

0 � 1
x2
�x3 � x4 � x5�, 1

x1
�x3 � x4 � x5�, x1x2 � x4 � x5, x1x2 � x3 � x5, x1x2 � x3 � x4 .

From the first two components, we see we need x3 � x4 � x5 � 0, and neither x1 or x2 are equal to zero. Plugging

this into the third component, we have x1x2 � x3 � 0. Similarly in the fourth component, we have x1x2 � x4 � 0.

Combining these, we see that x3 � x4. However, the fourth component and gives us that x1x2 � 0, implying that

either x1 or x2, or both must be equal to zero. But this contradicts an earlier conclusion. Therefore, this must not be

a subspace.
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5.1 #25 Solve the following equation: y ��� � 2y �� � y � � 2y � 0, y�0� � 0, y ��0� � 0, y ���0� � 1.

r3 � 2r2 � r � 2 � 0, note that r � �2 solves this. So, �r � 2� is a factor. Dividing:

r3 � 2r2 � r � 2 � �r � 2�r2 � �r � 2� � �r � 2��r2 � 1�, so our roots are r � ��2,�i�, and our general equation is

yg � c1e�2x � c2 cosx � c3 sin x.

0 � c1 � c2 or c1 � �c2 and y � �c2e�2x � c2 cosx � c3 sin x.

y � � 2c2e�2x � c2 sin x � c3 cosx.

0 � 2c2 � c3 or c2 � � 1
2

c3 and y � � �c3e�2x � 1
2

c3 sin x � c3 cosx.

y �� � 2c3e�2x � 1
2

c3 cosx � c3 sin x.

1 � 2c3 �
1
2

c3 or c3 � 2
5

, c2 � � 1
5

and c1 � 1
5

.

So, y � 1
5

e�2x � 1
5

cosx � 2
5

sin x.

5.2: #26 Show that the functions y1�x� � ex, y2�x� � e2x, y3�x� � e3x are linearly independent on ���,��.

ex e2x e3x

ex 2e2x 3e3x

ex 4e2x 9e3x

� exe2xe3x

1 1 1

1 2 3

1 4 9

� e6x

1 1 1

0 1 2

0 3 8

� e6x

1 1 1

0 1 2

0 0 2

� 2e6x � 0 for any x � ���,�� .

5.5: #27 Find all solutions to: y � cosx � y2 sin x � sin x. Write the solution(s) in explicit form.

y � � sin x
cos x �1 � y2� � � 1

1�y2
dy � � sin x

cos x dx, when y � 1.

However, observe that when y � 1, we have 0 � cosx � sin x � sin x, which is true, so y � 1 is a solution.

Continuing on with the case y � 1�

� 1

�1�y��1�y�
� A

1�y
� B

1�y
� A�1 � y� � B�1 � y� � 1

� y�A � B� � �A � B� � 1 � A � B, and A � 1
2

.

� 1
2
� 1

1�y
� 1

1�y
dy � � sin x

cos x dx � � ln|1 � y| � ln|1 � y| � �2 ln|cosx|

� ln
1�y

1�y
� �2 ln| cosx| �

1�y

1�y
� 1

cos2x
� cos2x�1 � y� � 1 � y

� y cos2x � y � 1 � cos2x � y � � cos2x�1

cos2x�1
or y � 1.

5.5: #28 The roots of equation r2 � 10r � 74 � 0 are r � 5 � 7i.

Write down the general form of a particular solution with undetermined coefficients for the differential

equation y �� � 10y � � 74y � xe5x sin 7x � cos5x. Do not attempt to evaluate the coefficients.

From the homogeneousversion of our equation,we get the characteristic equation: r2 � 10r � 74 � 0, which we are

told has the solutions r � 5 � 7i. Being complex conjugates, we get both linearly independent solutions from either

one, so choosing 5 � 7i, and putting it into the form ert, we get�

12/6/2020 Jodin Morey 12

348



4.3. Final exam, Thursday Dec 17, 2020 CHAPTER 4. EXAMS

e�5�7i�x � e5x�cos7x � i sin 7x�

Taking the real and imaginary parts to be linearly independent solutions, we get the complementary solution:

yc � c1e5x cos7x � c2e5x sin 7x.

My pretrial solution is:

y0 � �A � Bx�e5x sin 7x � �C � Dx�e5x cos7x � E cos5x � F sin 5x

Clearing up any linear dependence between y0 and yc (by multiplying terms by x as needed), I get:

y trial � �Ax � Bx2�e5x sin 7x � �Cx � Dx2�e5x cos7x � E cos5x � F sin 5x

General form of a Particular Solution:

yg � yc � y trial

� �c1e5x cos7x � c2e5x sin 7x� � �Ax � Bx2�e5x sin 7x � �Cx � Dx2�e5x cos7x � E cos5x � F sin 5x

6.1: #29 Find an eigenvector associated to the eigenvalue �1 � 2 � 2i of the matrix A �
1 �5

1 3
.

A � �1I �
1 � �1 �5

1 3 � �1

�
1 � �2 � 2i� �5

1 3 � �2 � 2i�

�
�1 � 2i �5

1 1 � 2i

r1	r2

�
1 1 � 2i

�1 � 2i �5

r2��1�2i�r1

�

Observe that: �1 � 2i��1 � 2i� � 5.

So we have:
1 1 � 2i

0 0
, and y � s, x � ��1 � 2i�y � �s � 2is. So, v 1 �

�1 � 2i

1
, when s � 1.

6.2: #30 The eigenvalues of the matrix A �

6 �5 2

4 �3 2

2 �2 3

are �1 � 1, �2 � 2, and �3 � 3. Find a matrix

P and a diagonal matrix D such that A � PDP�1.

D �

�1 0 0

0 �2 0

0 0 �3

�

1 0 0

0 2 0

0 0 3

.
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�1 :

6 � 1 �5 2

4 �3 � 1 2

2 �2 3 � 1

�

5 �5 2

4 �4 2

2 �2 2

�

1 �1 0

4 �4 2

2 �2 2

�

1 �1 0

0 0 2

0 0 2

�
1 �1 0

0 0 1
, y � t, z � 0, and x � y � t. So, v 1 � t

1

1

0

�

1

1

0

where t � 1.

�2 :

6 � 2 �5 2

4 �3 � 2 2

2 �2 3 � 2

�

4 �5 2

4 �5 2

2 �2 1

�

0 0 0

4 �5 2

2 �2 1

�
0 �1 0

2 �2 1

�
2 �2 1

0 �1 0
�

1 �1 1
2

0 1 0
, z � t, y � 0, and x � y � 1

2
z � � 1

2
t. So,

v 2 � t

� 1
2

0

1

�

�1

0

2

where t � 2.

�3 :

6 � 3 �5 2

4 �3 � 3 2

2 �2 3 � 3

�

3 �5 2

4 �6 2

2 �2 0

�

3 �5 2

1 �1 0

2 �2 0

�

0 �2 2

1 �1 0

0 0 0

�
1 �1 0

0 1 �1
, z � t, y � z � t, and x � y � t. So, v 3 �

1

1

1

.

Therefore, P � v 1 v 2 v 3 �

1 �1 1

1 0 1

0 2 1

.

6.3: #31 Use the diagonalization method to compute A5 where A �
6 �10

2 �3
.

Seeking eigenvalues, we calculate: |A � �I| �
6 � � �10

2 �3 � �

� �6 � ����3 � �� � 20 � �2 � 3� � 2 � �� � 1��� � 2� � 0.

Therefore, � � �1, 2�.

12/6/2020 Jodin Morey 14

350



4.3. Final exam, Thursday Dec 17, 2020 CHAPTER 4. EXAMS

So we are guaranteed that A is diagonalizable and D �
1 0

0 2
.

Seeking the eigenvectors, we calculate:

� � 1 : �A � I� �
5 �10

2 �4
�

1 �2

1 �2
�

1 �2

0 0
� y � b, x � 2b.

v 1 � 2 1
T
.

� � 2 : �A � 2I� �
4 �10

2 �5
�

2 �5

2 �5
� 2 �5 � y � b, x � 5

2
b.

v 2 � 5 2
T
.

Therefore, P � v 1 v 2 �
2 5

1 2
and P�1 � 1

|A |
�A ij �

T
� 1

�1

2 �5

�1 2
�

�2 5

1 �2
.

A5 � �PDP�1��PDP�1�. . . �PDP�1� � PD�P�1P�D�P�1. . . P�DP�1 � PDIDI� IDP�1 � PD5P�1

�
2 5

1 2

15 0

0 25

�2 5

1 �2
�

2 5

1 2

1 0

0 32

�2 5

1 �2

�
156 �310

62 �123
.

7.1: #32 Transform x �� � 3x � � 7x � t2 into a system of first-order differential equations.

x1 � x, x2 � x � � x1
� . Below, we ideally want a system of first order equations (only in the new variables x i), so

that we are in a position to place them in a matrix equation x
�
� Ax � y �t�, for easy solving using our new

techniques.

System of first order differential equations:

x1
� � x2

x2
� � t2 � 3x2 � 7x1

7.2: #33 Write the given system in the vector/matrix form x
�
� Ax � f �t�. Then, find eigenvalues for A.

x � � x � 2y � 3e t, y � � x � 3y � t2

x
�
�

x �

y �
�

1 2

1 �3

x

y
�

3e t

�t2
.

Eigenvalues for A :
1 � � 2

1 �3 � �
� �2 � 2� � 5. �1,2 �

�2� 4�20

2
� �1 � 6 .
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Observe that you could now solve for the eigenvectors v 1 and v 2 of A, then come up with the complementary

solution (x c � c1 v 1e�1t � c2 v 2e�2t) to the associated homogeneous differential equation x
�
� Ax .

7.3 #34 Apply the eigenvalue method to find a general solution to this system.

x1
� � 2x1 � 5x2, x2

� � 4x1 � 2x2

Hint: The characteristic equation is �2 � 16 � 0, and the eigenvalues are � � �4i.

With �4i : �A � �I� �
2 � 4i �5

4 �2 � 4i
. Find v � 1 � 2i 2

T
from usual method, OR..

Alternative Method: Possible e-vector from first row (switch entries w/ sign change): 5 2 � 4i
T
.

Test on 2nd row�

4 �2 � 4i 5 2 � 4i
T
� 4�5� � ��2 � 4i��2 � 4i� � 20 � 4 � 8i � 8i � 16 � 0. 	

Or with �4i : �A � �I� �
2 � 4i �5

4 �2 � 4i
. Find v � 1 � 2i 2

T
from usual method, OR..

Alternative Method: Possible e-vector from first row (switch entries w/ sign change):

5 2 � 4i
T
.

Using v � 5 2 � 4i
T
: v e4it �

5

2 � 4i
�cos4t � i sin 4t� �

5�cos4t � i sin 4t�

�2 � 4i��cos4t � i sin 4t�

�
5 cos4t � 5i sin 4t

2�cos4t � i sin 4t� � 4i�cos4t � i sin 4t�
�

5 cos4t � 5i sin 4t

2 cos4t � 2i sin 4t � 4i cos4t � 4 sin 4t

�
5 cos4t

2 cos4t � 4 sin 4t
� i

5 sin 4t

2 sin 4t � 4 cos4t
.

The general solution (from 5 2 � 4i
T
)�

x � c1

5 cos4t

2 cos4t � 4 sin 4t
� c2

5 sin 4t

2 sin 4t � 4 cos4t
, or some constant multiple.

From 1 � 2i 2
T

...

OR x � c1

cos4t � 2 sin 4t

2 cos4t
� c2

2 sin 4t � 2 cos4t

2 sin 4t
, or some constant multiple.
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MIDTERM EXAM I, MATH 2243 (030), FALL 2020

This exam contains 6 problems. To receive full credit on a problem,

you must show and explain your work.

1. Determine for what values of k the following system

3x+ 2y = 1

6x+ ky = 3

has

(a) (6 points) a unique solution

(b) (6 points) no solution

(c) (6 points) infinitely many solutions

2. Consider the system
4x1 + 3x2 + 2x3 = 6

3x1 + 5x2 + 2x3 = 10

5x1 + 6x2 + 3x3 = 9

(a) (6 points) Write down the augmented coe�cient matrix M of the system

(b) (6 points) Use the method of Gauss-Jordan elimination to transform the
augmented coe�cient matrix M to the reduced echelon form.

(c) (6 points) Use (b) to solve the system.

3. Consider the system
2x1 + 3x2 + 4x3 = 2

4x1 + 9x2 + 16x3 = 1

x1 + x2 + x3 = 3

(a) (6 points) Write down the coe�cient matrix A of the system and the
corresponding matrix equation Ax = b.

(b) (10 points) Compute the determinant det(A) and the cofactor matrix [Aij]
of A, and use the formula of the inverse for matrices to find A

�1.

(c) (6 points) Use the formula x = A
�1
b to solve the system.

1
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2 MIDTERM EXAM I, MATH 2243 (030), FALL 2020

4. (12 points) Consider the following four vectors in R
3:

v1 = (2, 1, 3),v2 = (1, 3, 4),v3 = (2, 5, 4),v4 = (1, 1, 1)

If they are linearly independent, show this; otherwise find real numbers c1, c2, c3, c4
not all zero such that c1v1 + c2v2 + c3v3 + c4v4 = 0.

5. (12 points) Find a basis of the solution space of the homogenous linear
system

3x1 + x2 + 4x3 + 18x4 = 0

x1 � 4x2 � 3x3 � 7x4 = 0

2x1 � x2 + x3 + 7x4 = 0

6. Consider the following matrix

A =

2

66664

1 �1 2 �2
1 0 3 4
3 �2 7 0
3 �1 8 6
0 1 1 7

3

77775

(a) (6 points) Find a basis of the row space of A and use it to find the rank
of A.

(b) (6 points) Find a basis of the column space of A

(c) (6 points) Find a subset of the vectors v1 = (1, 1, 3, 3, 0),v2 = (�1, 0,�2,�1, 1),v3 =
(2, 3, 7, 8, 1),v4 = (�2, 4, 0, 6, 7) that forms a basis for the subspace W of R5

spanned by these four vectors.
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Midterm 2, Lecture 20

1. Solve the initial value problem: xy � � 2y � 4x2, y�1� � 2.

This is a linear first order nonhomogeneous differential equation.

Putting it in standard form: y � � 2
x y � 4x � � � e

2 � 1
x dx

� e2 ln|x| � x2.

Therefore, y � x�2 � x2�4x�dx � 4x�2 � x3dx � 4x�2 1
4

x4 � c .

Applying initial condition: 2 � 4 1
4
� c , � c � 1

4
.

Therefore, y � 4x�2 1
4

x4 � 1
4

� x2 � x�2.

2. Find the initial value problem: y �� � y � � y � 0, y�0� � 1, y ��0� � 3.

Characteristic equation: r2 � r � 1 � r �
�1� 1�4

2
� � 1

2
� i

3

2

Euler Formula: erx � e
� 1

2
�i

3

2
x
� e� 1

2
xe i

3

2
x � e� 1

2
x cos

3

2
x � i sin

3

2
x .

Therefore: yg � e� 1
2

x c1 cos
3

2
x � c2 sin

3

2
x .

The first initial condition gives: 1 � c1.

Taking the derivative for the next initial condition:

yg
� � � 1

2
e� 1

2
x c1 cos

3

2
x � c2 sin

3

2
x �

3

2
e� 1

2
x �c1 sin

3

2
x � c2 cos

3

2
x .

Applying the initial condition: 3 � � 1
2

c1 �
3

2
c2 � � 1

2
�1� � 3

2
c2 � c2 � 3 � 1

2
2

3
� 7

3
.

Therefore: yp � e� 1
2

x cos
3

2
x � 7

3
sin

3

2
x .

3. Find a particular solution to the nonhomogeneous equation: y �� � 4y � � 4y � e�2x.

Characteristic equation: r2 � 4r � 4 � �r � 2�2 � r � ��2,�2�.

Complementary solution: yc � c1e�2x � c2xe�2x.

Pre-trial solution: y i � Ce�2x.

Clearing the dependencies, we get the trial solution: y trial � Cx2e�2x.

Taking derivatives: y trial
� � 2C�1 � x�xe�2x, y trial

�� � 2C�2x2 � 4x � 1�e�2x.

Substituting this into our differential equation: y trial
�� � 4y trial

� � 4y trial

� 2C�2x2 � 4x � 1�e�2x � 8C�1 � x�xe�2x � 4Cx2e�2x � 2Ce�2x.

Setting this equal to f�x�: 2Ce�2x � e�2x.

Comparing sides of the equation gives us: 2C � 1 or C � 1
2

.

Therefore: yp � 1
2

x2e�2x.
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4. Consider the differential equation: xy � � 6y.

1) Find the singular solutions and the general solutions.

It is separable, so: � 1
y dy � � 6

x dx, when y � 0.

ln|y| � 6 ln|x| � c � |y| � e ln x6�c � y � Cx6, where C � 0.

But what about when y � 0? Note that xy � � 6y is satisfied for the function y�x� � 0. So, to include this singular

solution, we say y � Cx6, where C � R.

2) Sketch the direction field of the differential equation.

3) Show that there are infinitely many solutions of the differential equation with initial value y�0� � 0.

Note that with this initial value we have 0 � C06 satisfied for any value of C. This gives us an infinite family of

solutions going thru this initial value.

4) Explain why part 3 does not contradict the uniqueness theorem for differential equations.

Note that the uniqueness theorem requires that the coefficient functions be continuous around the initial value.

However, in this case, in standard form our differential equation is y � � 6
x y � 0, and the coefficient function � 6

x is

not continuous around �x, y� � �0, 0�. Therefore, the uniqueness theorem does not apply, so there is no contradiction.
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5. Consider the functions f1 � ex and f2 � xex on the real line.

a) Compute the Wronskian of f1 and f2.

W�f1, f2� �
ex xex

ex �1 � x�ex
� ex

1 xex

1 ex�1 � x�
� e2x

1 x

1 1 � x
� e2x�1 � x � x� � e2x � 0

b) Are the functions f1, f2 linearly independent? If your answer is yes, please explain why. If your answer is

no, please find constants c1, c2, not all zero, such that c1f1 � c2f2 � 0.

Using part a, since there is no interval on the real line in which the Wronskian e2x is equivalent to the zero function,

the functions f1, f2 are linearly independent

Alternatively, observe that f1, f2 are linearly independent if they are not scalar multiples of each other.

Using proof by contradiction, assume they are scalar multiples of each other, we get f1 � cf2

� ex � cx ex � 1
c � x. However, x is not a constant. So our assumption must be wrong, and it must be that

the two functions are not scalar multiples of each other, and therefore linearly independent.
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Midterm 2 Practice Sheet Solutions

1. Find the general solution of xy � � 3y � sin x

x2
.

Putting it in standard format: y � � 3
x y � sin x

x3
. Note this is first-order linear.

� � e
� 3

x dx
� e3 ln|x| � e ln|x|3 � x3. Therefore, y � 1

x3
� x3 sin x

x3
dx � � 1

x3
cosx � c

x3
.

2. Find the general solution of y � � 3x2�ex

2y�5
.

Note this is separable. �2y � 5�dy � �3x2 � ex�dx � ��2y � 5�dy � ��3x2 � ex�dx

� y2 � 5y � x3 � ex � c.

You could solve explicitly for y, using the quadratic equation: y �
5� 25�4 �x3�ex�c

2
.

3. Use Euler’s method w/step h � 0. 1 to find a numeric solution of initial value problem at x � 0. 1, 0.2.

y � � x2 � y2, y�0� � 1.

y1 � y0 � hf�x0, y0� � 1 � �0. 1��02 � 12� � 1. 1 at x1 � 0. 1.

y2 � y1 � hf�x1, y1� � 1. 1 � �0. 1��0. 12 � 1. 12� � 1. 222 at x2 � 0. 2.

4. Find the general solution of y �� � 2y � � y � 0.

r2 � 2r � 1 � �r � 1�2 � r � �1, 1�. Therefore, yg � c1ex � c2xex.

5. Solve the initial value problem: y �� � y � � y � 0, y�0� � 1, y ��0� � 0.

r2 � r � 1 � 0 � r �
�1� 1�4

2
� r � � 1

2
� i

3

2
.

e
� 1

2
�i

3

2
x
� e� 1

2
xe i

3

2
x � e� 1

2
x cos

3

2
x � i sin

3

2
x

yg � e� 1
2

x c1 cos
3

2
x � c2 sin

3

2
x .

Initial condition: 1 � e0�c1� � c1 � 1.

Initial condition: yg
� � � 1

2
e� 1

2
x c1 cos

3

2
x � c2 sin

3

2
x �

3

2
e� 1

2
x �c1 sin

3

2
x � c2 cos

3

2
x

0 � � 1
2

e0�c1� �
3

2
e0�c2� � � c1

2
�

3

2
c2 � � 1

2
�

3

2
c2 � c2 � 1

3
.

Therefore, yp � e� 1
2

x cos
3

2
x � 1

3
sin

3

2
x .
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6. Find the general solution to the inhomogeneous equation: y �� � 2y � � y � 2e t � cos t � t.

r2 � 2r � 1 � �r � 1�2 � r � ��1,�1� � yc � c1e�t � c2te�t.

y0 � Ae t � �B cos t � C sin t� � �D � Et�

Observe that the pretrialsolution is linearly independent from the complementary solution, therefore

y0 � y trial � Ae t � �B cos t � C sin t� � �D � Et�.

Taking derivatives: y trial
� � Ae t � ��B sin t � C cos t� � E,

y trial
�� � Ae t � �B cos t � C sin t�.

Therefore: y trial
�� � 2y trial

� � y trial

� Ae t � �B cos t � C sin t� � 2�Ae t � ��B sin t � C cos t� � E� � Ae t � �B cos t � C sin t� � �D � Et�

� �A � 2A � A�e t � ��B � 2C � B �cos t � �C � C � 2B � sin t� � Et � 2E � D

� 4Ae t � 2�C cos t � B sin t� � Et � 2E � D.

Comparing this to the right hand side of our given equation: 2e t � cos t � t, we have

4A � 2, 2C � 1, � 2B � 0, E � 1, 2E � D � 0.

From this, we see that A � 1
2

, B � 0, C � 1
2

, E � 1, and D � �2.

Therefore, yp � 1
2

e t � 1
2

sin t � 2 � t.

Finally, the general solution is yg � yc � yp � c1e�t � c2te�t � 1
2

e t � 1
2

sin t � 2 � t.

7. Given an example of a 2nd order nonlinear differential equation.

In general, linear 2nd order is of the form: a�x��y ��� i
� b�x��y �� j

� c�x�yk � d�x�, where i � j � k � 1 and a�x� � 0.

So, if i, j, or k is not equal to one, we have nonlinear. An example is when a�x� � 1, i � 2, and

b�x� � c�x� � d�x� � 0.

In other words: �y ���2
� 0. Another way to have nonlinear is if a�x, y, y ��, for example if a�x, y, y �� � xy. If we use

this in the previous example, but let i � 1, we have xyy �� � 0 as a nonlinear equation.

8. Sketch the slope fields of the differential equation: y � � 3y.
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9. Find the general solution of y�4� � 2y�2� � y � 0.

r4 � 2r2 � 1 � �r2 � 1�2
� r � ��i,�i�

e i � cosx � i sin x

yg � c1 cosx � c2 sin x � c3x cosx � c4x sin x.

10. Consider the logistic equation: y � � y�3 � y�.

a) Find the critical points and the corresponding equilibrium solutions.

f�x� � y�3 � y� � 0 when y � �0, 3�.

b) Determine whether each critical point is stable or unstable.

Checking x-values on either side of the critical points, we find f��1� � �1�4� � �4 � 0,

f�1� � 2 � 0, f�4� � 4��1� � �4 � 0. This gives us the phase diagram: � 0 	 3 �

Therefore, x � 0 is an unstable critical point, and x � 3 is a stable critical point.

c) Find the general solution.

� 1

y�3�y�
dy � �dx ���

Partial fractions: 1

y�3�y�
� A

y � B
3�y

when 1 � A�3 � y� � By � �B � A�y � 3A, and comparing powers of y, we have:

3A � 1 and B � A � 0. Therefore, A � 1
3

and B � 1
3

.

� 1

y�3�y�
dy � 1

3
� 1

y � 1
3�y

dy � 1
3
�ln|y| � ln|3 � y|� � C0 � 1

3
ln

y

3�y
� C0.

Therefore from ���, we have: 1
3

ln
y

3�y
� x � C1 or

y

3�y
� e3x�3C1 � C2e3x where C2 � 0.

Removing the absolute value:
y

3�y
� Ce3x, where C � 0.

Solving explicitly: y � Ce3x�3 � y� � 3Ce3x � yCe3x � y�1 � Ce3x� � 3Ce3x � y � 3Ce3x

1�Ce3x
.

11. Computer the Wronskian of the functions: y1 � e3x, y2 � sin x, y3 � cosx, and use it to show that y1, y2,

and y3 are linearly independent.

W�y1, y2, y3� �

e3x sin x cosx

3e3x cosx � sin x

9e3x � sin x � cosx

� e3x

1 sin x cosx

3 cosx � sin x

9 � sin x � cosx

R3�R1
� e3x

1 sin x cosx

3 cosx � sin x

10 0 0

� 10e3x
sin x cosx

cosx � sin x
� 10e3x�� sin2x � cos2x� � �10e3x � 0, therefore y1, y2, and y3 are linearly

independent.
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Midterm 1 Practice Problems

1. Determine for what values of k the following system has (a) a unique solution, (b) no solution, (c� infinitely

many solutions.

3x � 2y � 1

7x � 5y � k.

3 2 | 1

7 5 | k
�

3 2 | 1

1 1 | k � 2
�

1 1 | k � 2

3 2 | 1

�
1 1 | k � 2

0 �1 | 7 � 3k
�

1 1 | k � 2

0 1 | 3k � 7

y � 3k � 7 and x � �y � k � 2 � ��3k � 7� � k � 2 � 5 � 2k.

v � �5 � 2k, 3k � 7� � k��2, 3� � �5,�7�.

a) Unique solution for every value of k.

b) There are no values of k that will give no solution.

c) There are no values of k that will give infinitely many solution.

2. Consider the system:

4x1�5x2�3x3� 6

3x1�6x2�5x3� 12

2x1�3x2�2x3� 18

a) Write down the augmented coefficient matrix M of the system.

4 5 3 | 6

3 6 5 | 12

2 3 2 | 18

b) Use the method of Gaussian elimination to transform the augmented coefficient matrix M to and echelon

form matrix.

�

4 5 3 | 6

1 3 3 | �6

2 3 2 | 18

�

1 3 3 | �6

4 5 3 | 6

2 3 2 | 18

10/6/2020 Jodin Morey 1

364



4.3. Final exam, Thursday Dec 17, 2020 CHAPTER 4. EXAMS

�

1 3 3 | �6

0 �7 �9 | 30

0 �3 �4 | 30

�

1 3 3 | �6

0 �1 �1 | �30

0 �3 �4 | 30

�

1 3 3 | �6

0 �1 �1 | �30

0 0 �1 | 120

�

1 3 3 | �6

0 1 1 | 30

0 0 1 | �120

c) Use the method Gauss Jordan elimination to transform the augmented coefficient matrix M to the reduced

echelon matrix.

�

1 0 0 | �96

0 1 0 | 150

0 0 1 | �120

d) Use either b or c to solve the system.

x3 � �120, x2 � 150, x1 � �96.

3. List all possible reduced row echelon forms of a 3 x 3 matrix.

0 0 0

0 0 0

0 0 0

,

0 0 1

0 0 0

0 0 0

,

0 1 �

0 0 0

0 0 0

,

0 1 0

0 0 1

0 0 0

,

1 � �

0 0 0

0 0 0

,

1 � 0

0 0 1

0 0 0

,

1 0 0

0 1 �

0 0 0

,

1 0 0

0 1 0

0 0 1

4. Consider the system:

x1 � 2x2 � 4x3 � 1

x1 � 3x2 � 9x3 � 2

x1 � 4x2 � 16x3 � 3

a) Write down the coefficient matrix A of the system and the corresponding matrix equation Ax � b.

1 2 4

1 3 9

1 4 16

x1

x2

x3

�

1

2

3

.
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b) Use the algorithm explained in the class (see p181 of the textbook) to find the inverse of A.

1 2 4 | 1 0 0

1 3 9 | 0 1 0

1 4 16 | 0 0 1

�

1 2 4 | 1 0 0

0 1 5 | �1 1 0

0 2 12 | �1 0 1

�

1 2 4 | 1 0 0

0 1 5 | �1 1 0

0 0 2 | 1 �2 1

�

1 0 �6 | 3 �2 0

0 1 5 | �1 1 0

0 0 2 | 1 �2 1

�

1 0 0 | 6 �8 3

0 1 5 | �1 1 0

0 0 2 | 1 �2 1

�

1 0 0 | 6 �8 3

0 1 5 | �1 1 0

0 0 1 | 1
2

�1 1
2

�

1 0 0 | 6 �8 3

0 1 0 | � 7
2

6 � 5
2

0 0 1 | 1
2

�1 1
2

, A�1 �

6 �8 3

� 7
2

6 � 5
2

1
2

�1 1
2

.

c) Compute the determinant det�A� and the cofactor matrix �A ij � of A, and use the formula of the inverse for

matrices to find A�1.

det�A� �

1 2 4

1 3 9

1 4 16

�

1 2 4

0 1 5

0 2 12

�

1 2 4

0 1 5

0 0 2

� 2.

�A ij � �

12 �7 1

�16 12 �2

6 �5 1

, �A ij �
T
�

12 �16 6

�7 12 �5

1 �2 1

A�1 � 1
2

12 �16 6

�7 12 �5

1 �2 1

.

d) Use the formula x � A�1b to solve the system.

x � A�1b � 1
2

12 �16 6

�7 12 �5

1 �2 1

1

2

3

�

�1

1

0

e) Use Cramer’s rule to solve the system.

x1 �
|B1 |

|A |
� 1

2

1 2 4

2 3 9

3 4 16

� 1
2

1 2 4

0 �1 1

0 �2 4

� 1
2

1 2 4

0 �1 1

0 0 2

� �1,
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x2 �
|B2 |

|A |
� 1

2

1 1 4

1 2 9

1 3 16

� 1
2

1 1 4

0 1 5

0 2 12

� 1
2

1 1 4

0 1 5

0 0 2

� 1,

x3 �
|B3 |

|A |
� 1

2

1 2 1

1 3 2

1 4 3

� 1
2

1 2 1

0 1 1

0 2 2

� 1
2

1 2 1

0 1 1

0 0 0

� 0,

x � �x1, x2, x3� � ��1, 1, 0�.

5. Consider the following 3 vectors in R4:

v1��1, 1, 2, 1�, v2��1, 0, 3, 4�, v3��2, 2, 4, 8�.

If they are linearly independent, show this. Otherwise, find real numbers c1, c2, c3 not all zero such that

c1v1 � c2v2 � c3v3 � 0.

Observe that:

c1v1 � c2v2 � c3v3 � v1 v2 v3

c1

c2

c3

�

1 1 2

1 0 2

2 3 4

1 4 8

c1

c2

c3

� 0.

Gaussian Elimination:

1 1 2

1 0 2

2 3 4

1 4 8

�

1 1 2

0 �1 0

0 1 0

0 3 6

�

1 1 2

0 1 0

0 3 6

�

1 1 2

0 1 0

0 0 1

�

1 0 0

0 1 0

0 0 1

.

They are linearly independent.

6. Consider the following 4 vectors in R3:

v1��1, 1, 2�, v2��1, 3, 4�, v3��2, 2, 4�, v4��0, 0, 1�.

If they are linearly independent, show this. Otherwise, find real numbers c1, c2, c3, c4, not all zero such that

c1v1 � c2v2 � c3v3 � c4v4 � 0.

c1v1 � c2v2 � c3v3 � c4v4 � v1 v2 v3 v4

c1

c2

c3

c4

�

1 1 2 0

1 3 2 0

2 4 4 1

c1

c2

c3

c4

� 0.
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Gaussian Elimination:

1 1 2 0

1 3 2 0

2 4 4 1

�

1 1 2 0

0 2 0 0

0 2 0 1

�

1 0 2 0

0 1 0 0

0 0 0 1

.

So: c3 � t, c1 � �2t, c2 � 0, c4 � 0.

And: c � �c1, c2, c3, c4� � ��2t, 0, t, 0� � t��2, 0, 1, 0�.

And observe that c1v1 � c2v2 � c3v3 � c4v4 � �2v1 � 0v2 � v3 � 0v4 � 0.

7. Find a basis for the following vector spaces:

a) The set of all vectors of the form �a, b, c, d� for which a � 2d � c � 3d � 0.

So vectors have the form: ��2d, b,�3d, d� � b�0, 1, 0, 0� � d��2, 0,�3, 1�.

From this, we discover the vectors ��0, 1, 0, 0�, ��2, 0,�3, 1�� span the set of given vectors.

Now let’s verify that they are linearly independent. Looking at the 3 x 3 submatrices, we calculate the sub

determinants:

0 1 2

1 0 2

0 3 4

� �1�4 � 6� � 2 � 0.

1 0 2

0 3 4

1 4 8

� 1�24 � 16� � 1�0 � 6� � 2 � 0.

So we see that these vectors are linearly independent. Therefore, we have a basis ��0, 1, 0, 0�, ��2, 0,�3, 1�� for our

subspace of vectors.

b) The solution space of the homogeneous linear system:

x1 � 3x2 � 10x3 � 5x4 � 0

x1 � 4x2 � 11x3 � 2x4 � 0

x1 � 3x2 � 8x3 � x4 � 0.

Putting things into a matrix, and performing Gaussian reduction:

1 �3 �10 5

1 �4 11 �2

1 �3 8 �1

�

1 �3 �10 5

0 �1 21 �7

0 0 18 �6

�

1 �3 �10 5

0 1 �21 7

0 0 3 �1

�

1 0 �73 26

0 1 �21 7

0 0 1 � 1
3

�

1 0 0 5
3

0 1 0 0

0 0 1 � 1
3

Applying an arbitrary parameter t to our free column x4, gives us x3 � 1
3

t, x2 � 0, and x1 � � 5
3

t.
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Therefore, x � x1, x2, x3, x4 � � 5
3

t, 0, 1
3

t, t � t � 5
3

, 0, 1
3

, 1 .

And finally, we see a basis for our solution subspace by setting t to any value. To make our basis look simple, I will

choose to set t � 3, so our basis becomes: ���5, 0, 1, 3��.

8. Consider the following matrix:

A �

1 �1 2 2

�3 4 1 2

0 1 7 4

�5 7 4 �2

a) Find a basis of the row space of A.

Doing our Gaussian reduction this:

1 �1 2 2

�3 4 1 2

0 1 7 4

�5 7 4 �2

�

1 �1 2 2

0 1 7 8

0 1 7 4

0 2 14 8

�

1 �1 2 2

0 1 7 8

0 0 0 �4

0 0 0 �8

�

1 �1 2 0

0 1 7 0

0 0 0 1

0 0 0 0

�

1 0 9 0

0 1 7 0

0 0 0 1

0 0 0 0

� E.

For the row space, we take at the nonzero rows of our reduced system:

Basis � 1 0 9 0 , 0 1 7 0 , 0 0 0 1

b) Find a basis of the column space of A.

For the column space, we look back at the original matrix A, and the basis consists of the columns in A

corresponding to the pivot columns in E. Note that the columns in E that had the "leading ones" (the pivot columns)

were columns 1, 2, 4. So taking those columns from A, gives us:

Basis �

1

�3

0

�5

,

�1

4

1

7

,

2

2

4

�2

.
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9. Find a subset of the vectors v1 � �1,�3, 0, 5�, v2 � ��1, 4, 1, 7�, v3 � �2, 1, 7, 4�, v4 � �2, 2, 4,�2� that forms a

basis for the subspace W of R4 spanned by these 4 vectors.

Placing the vectors into columns of a matrix, we see:

1 �1 2 2

�3 4 1 2

0 1 7 4

�5 7 4 �2

�

1 �1 2 2

0 1 7 8

0 1 7 4

0 2 14 8

�

1 7 8

1 7 4

2 14 8

�

1 7 8

0 0 �4

0 0 0

� 0.

Therefore, the four vectors are not linearly independent. From the previous problem, we see that the 1st, 2nd, and

4th columns are linearly independent. But only being 3 vectors, we conclude that v1, v2, v4 form a basis for a

three-dimensional subspace W of R4.

10. Consider the following matrices:

A �

�1 2 3

0 1 2

0 0 4

, B �

1

3

5

, C � 1 2 3 .

Calculate the following number of matrices: a) det�A�1�, b) AT, c) BC, d) CB, e) AB.

a) Recall that: det�A�1� � 1

det�A�
. So let’s calculate: det�A� �

�1 2 3

0 1 2

0 0 4

� �1 � 1 � 4 � �4.

Therefore, det�A�1� � � 1
4

.

b) AT �

�1 0 0

2 1 0

3 2 4

c) BC �

1

3

5

1 2 3 �

1 2 3

3 6 9

5 10 15

d) CB � 1 2 3

1

3

5

� 22

e) AB �

�1 2 3

0 1 2

0 0 4

1

3

5

�

20

13

20
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