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1 Linear and Nonlinear Waves (Chapter 2)

stationary waves such as 𝑢𝑡 + 3𝑢 = 0

Transport and Traveling Waves such as 𝑢𝑡+𝑐𝑢𝑥 = 𝑢. Uniform transport. Speed 𝑐 is constant.

Characteristics are 𝑑𝑥
𝑑𝑡 = 𝑐. When speed is not constant, we get Nonuniform Transport.

Characteristics is 𝑑𝑥
𝑑𝑡 = 𝑐 (𝑥). Nonlinear Transport: 𝑢𝑡 + 𝑢 𝑢𝑥 = 0 where wave speed depends

not on position 𝑥 but on 𝑢 itself.

d’Almbert

𝑢 (𝑥, 𝑡) =
1
2
�𝑓 (𝑥 − 𝑐𝑡) + 𝑓 (𝑥 + 𝑐𝑡)� +

1
2𝑐 �

𝑥+𝑐𝑡

𝑥−𝑐𝑡
𝑔 (𝑠) 𝑑𝑠

With extranl force 𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥+𝐹 (𝑥, 𝑡) we add the term 1
2𝑐
∫𝑡

0
�∫𝑥+𝑐(𝑡−𝑠)

𝑥−𝑐(𝑡−𝑠)
𝐹 �𝑠, 𝑦� 𝑑𝑦� 𝑑𝑠. The limits

are the same as above, but replace 𝑡 by 𝑡 − 𝑠. remeber 𝑑𝑠 goes with 𝑡 and 𝑑𝑦 goes with 𝑥.

2 Fourier series (Chapter 3)

Just need to know the F.S. definition. Either complex one or standard.

3 Seperation of variables (Chapter 4)

Theorem 4.2. If 𝑢(𝑡, 𝑥) is a solution to the heat equation with piecewise continuous initial
data 𝑓(𝑥) = 𝑢(𝑡0, 𝑥), or, more generally, initial data satisfying (4.27), then, for any 𝑡 > 𝑡0, the
solution 𝑢(𝑡, 𝑥) is an infinitely di�erentiable function of 𝑥. (page 128) .

"In other words, the heat equation instantaneously smoothes out any discontinuities and
corners in the initial temperature profile by fast damping of the high-frequency modes"

Heat PDE in 1D.

Inhomogeneous Boundary Conditions convert to homogeneous by using reference func-
tion.

Wave PDE in 1D. Fixed ends. d’Alembert Formula for Bounded Intervals: For Dirichlet
do odd extension of initial position. For Neumann (free) boundary conditions, do even
extension.

Laplace PDE on disk and on recrangle. in polar Laplace becomes 𝑢𝑟𝑟 +
1
𝑟𝑢𝑟 +

1
𝑟2𝑢𝜃𝜃 = 0.

When doing seperations, rememebr to use the angular ODE for finding the eigenvalues
first. The radial ODE becomes Euler ODE. Solve using assuming 𝑅 (𝑟) = 𝑟𝑘. For disk, the
solution is 𝑢 (𝑟, 𝜃) = 𝐴0

2 +∑∞
𝑛=1 𝑟

𝑛 (𝐴𝑛 cos (𝑛𝜃 + 𝐵𝑛 sin 𝑛𝜃))

Laplace PDE maximum principle. Lots of theorem here.

Characteristics and the Cauchy Problem see HW 7, Problem 4.4.16. This is for second

order pde. Write pde as𝐴𝑢𝑥𝑥+𝐵𝑢𝑥𝑦+𝐶𝑢𝑦𝑦 = 𝐺 and then Characteristics is𝐴�𝑑𝑦𝑑𝑥�
2
−𝐵𝑑𝑦

𝑑𝑥+𝐶 = 0.

This gives ode 𝑑𝑦
𝑑𝑥 which is the Characteristics.

Laplacian in 3D with no angle dependencty is 𝑢𝑟𝑟 +
2
𝑟𝑢𝑟 = 0

4 Generalized functions and Green function (Chapter
6)

𝛿 (𝑥 − 𝜉): "In general, a unit impulse at position 𝑎 < 𝜉 < 𝑏 will be described by something
called the delta function".

Two ways to define 𝛿 (𝑥 − 𝜉). one based on limit of function as 𝑛 → ∞ and one based on
how it acts inside integral. For limit, use this one
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𝑔𝑛 (𝑥) =
𝑛

𝜋 �1 + 𝑛2𝑥2�

Then lim𝑛→∞ 𝑔𝑛 (𝑥) = 𝛿0 (𝑥). And the above also meets the integral relation ∫
∞

−∞
𝑔𝑛 (𝑥) 𝑑𝑥 =

1
𝜋 [arctan (𝑛𝑥)]∞−∞ = 1.

For calculus, remember this: When taking derivative of a function with jump discontitty,
we get an impulse at location of the jump with magnitude of the jump. Direction is negative
if the jump is down and positive if the jump is up, this is when moving from left to right.
For example derivative of unit step is 𝛿 (𝑥). And the integral of 𝛿 (𝑥) is unit step (or 1).
Hence if 𝑓 (𝑥) = 𝑔 (𝑥) + 𝜎 (𝑥) where 𝜎 (𝑥) is unit step and 𝑔 (𝑥) is continuous everywhere, then
𝑓′ (𝑥) = 𝑔′ (𝑥) + 𝛿 (𝑥)

Fourier series of 𝛿 (𝑥) = 1
2𝜋 +

1
𝜋
(cos 𝑥 + cos 2𝑥 + cos 3𝑥 +⋯)

Green function for 1D boundary value problems.

Remember when satisfying the jump discontinuity, it is 𝐴 + 1
𝑝 = 𝐵 where 𝑝 is one which

matches when the ODE is written as 𝑝𝑦′′ + 𝑞 (𝑥) 𝑦′ + 𝑟𝑦 = 𝑓 (𝑥) in the original ODE. And 𝐴
is the top term and 𝐵 is the bottom term, as is

�
𝑑
𝑑𝑥
𝐺 (𝑥; 𝜉)�

𝑥=𝜉
=

⎧⎪⎪⎨
⎪⎪⎩
𝐴 𝑥 < 𝜉
𝐵 𝑥 > 𝜉

So the second equation is

𝐴 +
1
𝑝
= 𝐵

That is really the only tricky part in finding Green function. Getting the sign right here. So
if the ODE is −𝑐𝑦′′ = 𝑓 (𝑥) then here 𝑝 = −𝑐 (notice, sign is negative, i.e. 𝑝 = −𝑐 including
the sign) and the jump is 1

𝑝 =
1
−𝑐 = −

1
𝑐 and hence the equation becomes

𝐴 +
1
𝑝
= 𝐵

𝐴 −
1
𝑐
= 𝐵

And if the ODE is given as 𝑐𝑦′′ = 𝑓 (𝑥) then 𝑝 = 𝑐 and the equation becomes

𝐴 +
1
𝑝
= 𝐵

𝐴 +
1
𝑐
= 𝐵

"Thus, the Neumann boundary value problem admits a solution if and only if there is no
net force on the bar." (page 239). This means −𝑢′′ = 𝑓 (𝑥) with 𝑢′ (0) = 0 = 𝑢′ (1) has Green
function and solution if ∫

1

0
𝑓 (𝑥) 𝑑𝑥 = 0. If this holds, the −𝑢′′ = 𝑓 (𝑥) has solution (but the

solution is not unique) and any constant value is a solution.

Green function for Laplace −Δ𝑢 = 𝑓 �𝑥, 𝑦�

Some relations: ∇ ⋅ ∇𝑢 = Δ𝑢 = 𝑢𝑥𝑥 + 𝑢𝑦𝑦. i.e. divergence of the gradient of 𝑢 is Laplacian of
𝑢. Green function in full space for Laplacian in 2D is

𝐺�𝑥, 𝑦; 𝜉, 𝜂� =
−1
2𝜋

ln 𝑟

where 𝑟 is distance from �𝑥, 𝑦� to where the pulse is �𝜉, 𝜂�, i.e. �(𝑥 − 𝜉)
2 + �𝑦 − 𝜂�

2
. In 3D, it

is 1
4𝜋𝑟 .

Method of images To find 𝐺�𝑥, 𝑦; 𝜉, 𝜂� in say upper half, put a negative pulse at �𝜉, −𝜂� and
then use 𝐺𝑢𝑝𝑝𝑒𝑟 �𝑥, 𝑦; 𝜉, 𝜂� = 𝐺𝑓𝑢𝑙𝑙 �𝑥, 𝑦; 𝜉, 𝜂� − 𝐺𝑓𝑢𝑙𝑙 �𝑥, 𝑦; 𝜉, −𝜂�
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For disk

𝐺 (𝒙; 𝝃) =
1
2𝜋

ln

⎛
⎜⎜⎜⎜⎜⎝
�‖𝝃‖2 𝒙 − 𝝃�
‖𝝃‖ ‖𝒙 − 𝝃‖

⎞
⎟⎟⎟⎟⎟⎠

In polar it becomes

𝐺�𝑟, 𝜃; 𝜌, 𝜙� =
1
4𝜋

ln �
1 + 𝑟2𝜌2 − 𝛽
𝑟2 + 𝜌2 − 𝛽 �

Where 𝛽 = 2𝑟𝜌 cos �𝜃 − 𝜙� where (𝑟, 𝜃) is variable point and pulse fixed at �𝜌, 𝜙�, all using
polar coordinates.

5 Fourier transform (chapter 7)

̂𝑓 (𝑘) =
1

√2𝜋
�

∞

−∞
𝑓 (𝑥) 𝑒−𝑖𝑘𝑥𝑑𝑥

𝑓 (𝑥) =
1

√2𝜋
�

∞

−∞
̂𝑓 (𝑘) 𝑒𝑖𝑘𝑥𝑑𝑘

Table of Fourier transforms on page 272 will be given in exam also. Remember the
shift property

̂𝑓 (𝑘 − 𝑎) ⇔ 𝑒𝑖𝑎𝑥𝑓 (𝑥)
𝑓 (𝑥 − 𝑎) ⇔ 𝑒−𝑖𝑎𝑥 ̂𝑓 (𝑘)

Gaussian integrals, for any 𝑏 is

�
∞

−∞
𝑒−𝑥2𝑑𝑥 = √𝜋

�
∞

−∞
𝑒−(𝑥+𝑏)

2
𝑑𝑥 = √𝜋

�
∞

−∞
𝑒−(𝑥−𝑏)

2
𝑑𝑥 = √𝜋

�
∞

−∞
𝑒−𝑎(𝑥+𝑏)

2
𝑑𝑥 =

�
𝜋
𝑎

𝑎 > 0

�
∞

−∞
𝑒−𝑎(𝑥−𝑏)

2
𝑑𝑥 =

�
𝜋
𝑎

𝑎 > 0

Derivative and integrals

𝑓 (𝑥) ⇔ ̂𝑓 (𝑘)
𝑓′ (𝑥) ⇔ (𝑖𝑘) ̂𝑓 (𝑘)

𝑓′′ (𝑥) ⇔ (𝑖𝑘)2 ̂𝑓 (𝑘) = −𝑘2 ̂𝑓 (𝑘)

Remember this also 𝑥𝑓 (𝑥) ⇔ 𝑖𝑑
̂𝑓(𝑘)
𝑑𝑘 . On smoothness of 𝑓 (𝑥) and relation to decay of ̂𝑓 (𝑘).

see book page 276 "the smoothness of the function 𝑓(𝑥) is manifested in the rate of decay
of its Fourier transform 𝑓(𝑘)." and "Thus, the smoother 𝑓(𝑥), the more rapid the decay of
its Fourier transform" and "This result can be viewed as the Fourier transform version of
the Riemann–Lebesgue Lemma 3.46.)"

Integration

�
𝑥

−∞
𝑓 (𝑥) 𝑑𝑥 ⇔

1
𝑖𝑘

̂𝑓 (𝑘) + 𝜋 ̂𝑓 (0) 𝛿 (𝑘)

Easy to remember when comparing it to 𝑓′ (𝑥) ⇔ (𝑖𝑘) ̂𝑓 (𝑘). Just change (𝑖𝑘) from numerator
to denominator and add 𝜋 ̂𝑓 (0) 𝛿 (𝑘).

In context of generalized functions, we write

�
∞

−∞
𝑓 (𝑥) 𝑑𝑥 = √2𝜋 ̂𝑓 (0)

So if we know the F.T. of 𝑓 (𝑥) we do the above integration by using the above relation
directly by evaluating ̂𝑓 (𝑘) at 𝑘 = 0. This can be handy. For example let us apply this to
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the Gaussian,. ∫
∞

−∞
𝑒−𝑥2𝑑𝑥 = √2𝜋 ̂𝑓 (0) where ̂𝑓 (𝑘) = ℱ �𝑒−𝑥2� = 1

√2
𝑒−

𝑘2
4 . Hence ̂𝑓 (0) = 1

√2
and

therefore ∫
∞

−∞
𝑒−𝑥2𝑑𝑥 = √2𝜋

1

√2
= √𝜋

Green function

Using F.T, to find Green function. Used only for infinite space. Put a 𝛿𝑦 (𝑥) in RHS, solve
for 𝐺̂ �𝑦, 𝑡� then find the inverse Fourier transform to get 𝐺 (𝑥, 𝑡). For example for heat pde.

Weyl’s law for eigenvalues convergence for large 𝑛. For 2D

lim
𝑛→∞

𝜆𝑛
𝑛
=
4𝜋
𝐴

Where here 𝜆𝑛 =
𝑙2𝜋2

𝑎2 + 𝑘2𝜋2

𝑏2 , 𝑙 = 1, 2, 3,⋯ , 𝑘 = 1, 2, 3,⋯. So 𝜆𝑛 are sorted in order. This is for
reactangle with width 𝑎 and high 𝑏.
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