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Partial Differential Equations

@ Springer
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1.3. syllabus CHAPTER 1. INTRODUCTION

1.3

syllabus

Math 5587, Elementary Partial Differential Equations, Fall 2019

Course Description: Math 5587-8 is a year course that introduces the basics of partial differential equations, guided by applications in physics,
engineering, biology, and finance. Both analytical and numerical solution techmques will be discussed.

Time and location: TuTh 4:45PM - 6:00PM, (@ Amundson Hall 156

Office hours: Tu 01:40 PM. - 02:30 PM., Th 2:30 PM.- 3:20 PM. and by appointment. (@ Vincent Hall 510. Please try to let me know in advance
Prerequisites: Strong background in linear algebra, multi-variable calculus, and ordinary differential equations. Some mathematical
sophistication. Other topics will be introduced as needed. Basic familiarity with a programming language (Matlab preferrred) 1s required for
numerical work.

Text: The course will be based on the book by Peter Olver. Iintend to cover chapters 1-4, 6, and parts of Chapter 7 in the fall semester.
Homework: Homework will be assigned periodically throughout the semester and collected for grading. The assigned problems should be

regarded as the minimum required for mastery of the material. No late homework will be accepted, but I will drop two lowest scores 1n the end of
the semester.

Homework 1 Solutions for Homework 1
Homework 2 Solutions for Homework 2
Homework 3 Solutions for Homework 3
Homework 4 Solutions for Homework 4
Homework 5 Solutions for Homework 5
Homework & Solutions for Homework 6
Homework 7 Solutions for Homework 7
Homework 8 Solutions for Homework 8
Homework 9 Solutions for Homework 9
Homework 10 Solutions for Homework 10
Homework 11 Solutions for Homework 11
Homework 12 Solutions for Homework 12

Exams: There will be three exams within the semester. Make-up exams will only be given in exceptional circumstances, and then only when
notice is given to me prior to the exam and a sustable wrntten excuse forthcoming.

o First Midterm: Thursday, October 8
o Second Midterm: Thursday, November 7
o Third Exam: Tuesday. December 10

Final: The third exam will serve as a Final.
Grading:
o Homework 30%

o First and Second Midterm: 20% each
o Third Midterm: 30% total
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1.4 Review of lectures

Table 1.1: Class lectures review

date

book section

note

Sept 3, 2019

Chapter 1

Order of ODE, On Laplacian, why it shows
up so frequently everywhere, review

Sept 5, 2019

Chapter 2

Transport PDE u; + cu, = 0, characteristic
lines. Transport with decay u; + cu, +au =0

Sept 10, 2019

Chapter 2

Continue with Transport PDE u; + cu, =0,
examples u; + (X2 - Du, = 0,u(0,x) = ™

Sept 12, 2019

Chapter 2.4

Wave equation uy = c?u,,, derivation of
d’Alembert solution on infinite line. Exam-
ple. Domain of influence. Also with exter-
nal force. Resonance

Sept 17, 2019

Chapter 3

Starting Fourier series. Heat PDE u; = ku,,.
Separation of variables. Periodic bound-
ary conditions (ring). Obtain Fourier series
solution. How to find coefficients, conver-
gence, etc...

Sept 19, 2019

Chapter 3

More Fourier series. f(x) € L,, definition of
norm of f(x), basis functions. How to find
Fourier coefficients. Example using f(x) =
x. Definitions, jump discontinuity. Fourier
series convergence theorem.

Sept 24, 2019

Chapter 3

even and odd functions. Complex Fourier
series. Example.

Sept 26, 2019

Chapter 3

Integration of Fourier series. Find F.S. of
f(x) using integration of known F.S. for
g(x). Convergence of functions Uniform and
piecewise. M test.

Oct 1, 2019

Chapter 3

More on convergence. Convergence in
norm. Definitions and examples. More
theories on Fourier series convergence.
Bessel inequality. Proof (long). Riemann-
Lebesgue Lemma

10

Oct 3, 2019

Chapter 3

Decay and smoothness of Fourier series.
Proof of the Fourier series convergence the-
orem. Dirichlet kernel.

11

Oct 8, 2019

N/A

First exam

12

Oct 10, 2019

Chapter 4

Heat ODE u; = ku,,, going over instanta-
neous smoothness. Transport PDE we can
go back and forward in time, but not with
heat PDE. Heat PDE with non zero bound-
ary conditions

13

Oct 15, 2019

Chapter 4

Root cellar problem. Solving heat PDE in
complex domain example. Starting on wave
equation. Fourier series solution

14

Oct 17, 2019

Chapter 4

Solving wave PDE on finite domain using
d’Alembert. 2 cases. B.C. B.C. is Neumann
and B.C. is Dirichlet (Even and Odd ex-
tension of initial position). Solving Laplace
PDE u,, +u,, =0 on rectangle.

Continued on next page
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Tablel.1 — continued from previous page

date

book section

note

15

Oct 22, 2019

Chapter 4.3

Laplace in disk. Polar coordinates. Separa-
tion of variables. Converting back the so-
lution from polar to Cartesian coordinates.
Closed form integral formula.

16

Oct 24, 2019

Chapter 4.4

Closed form integral solution for Laplace
PDE inside disk. thm 4.6 and thm 4.9 (max
or min of solution at boundary), thm 4.11.
Classification of PDE’s. General formula to
find characteristic curves.

17

Oct 29, 2019

Chapter 6

Delta function. Definitions. Two cases, us-
ing limits and using integral. Integration of
delta function, differentiation. Introduction
to Green function

18

Oct 31, 2019

Chapter 6.2

Green function. Examples for -u”(x) =
f(x) with Dirichlet and Neumann B.C. Full
derivation

19

Nov 5, 2019

Chapter 6.2

More Green function. Neumann B.C.
Higher dimensions Green function.
Laplace on square. Exam review

20

Nov 7, 2019

Second exam

21

Tuesday Nov 12, 2019

Chapter 6

Green function in higher dimensions. On
whole plane. Green formula. Review of
multivariable calculus. Derivation of Green
function in 2D and 3D on whole space.
Exam 2 returned.

22

Thursday Nov 14,
2019

Chapter 6

Green function. Method of images. half
space and disk. Eigenfunctions

23

Tuesday Nov 19, 2019

Chapter 6

Eigenfunctions and eigenvalues for Lapla-
cian in 2 and 3D. Behaviour of eigenvalues,
Weyl law for eigenvalues. Solving PDE on
2D.

24

Thursday Nov 21,
2019

Chapter 6

Laplacian is energy minimizer. Equivelance
between E(u) = [1/2|a(u) - fudx and solu-
tion to —A(u) = f with Dirichlet B.C. Proof-
ing that if u solves Laplace PDE then it
minimizes the energy. And proofing that if
u minimizes energy then it solves Laplace
PDE

25

Tuesday Nov 26, 2019

Chapter 6

Fourier transform. Derivations and two ex-
amples using a box function and Gaussian

e
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HWs

Local contents

DI HW L. . oo oo e e 6
D0 HW T . o oo 19
........................................... 37
QA HW A . . . 63
05 HW Bl . o o oo e 86
D6 HW 0. . o o oo 101
........................................... 128
D8 HW B . . o oottt e 143
D0 HW O . . o ottt 163
OT0 HW IO . . o o o o e e e e e e e 189
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21 HWI1

Local contents

211 Problem 1.8al . ... ... ... ... 6
21.2 Problem 1.70 . . . . . . . . . 6
21.3 Problem 1.13] . . . . . . . .. e 8
2.1.4 Problem 1.20f . . ... .. . . . .. 9
2.1 Problem 1.27bl. . . . . . . . . . 9
2.1 Problem 2.1.6] . . . . . . . . . .. 10
2.1 Problem 2.2.20 . . . . . . . 10
218 Problem 2.2.3 . . . . . . ... 13
2.1.9 Problem 2.2.5| . . . . . ... 14
2.1.10 Problem 2.2.9 . . . . . . ... 15
[2.1.11 Key solutionfor HW 1|. . . . . ... ... ... ... . . ... .. . ... 17
21.1 Problem 1.8a
Find all quadratic polynomial solutions of the 3D Laplace equation il + Pu + P _ 0
q poly p q Ox2 3y2 022

Solution
A quadratic polynomial in variables x,y, z is

U= ay + ayX + azy + agz + asx> + agy? + azz% + agxy + agxz + aygyz (1)

Hence u, = a,+2asx+agy+agz which implies that u,, = 2as. Similarly u, = a3+2asy+agx+ay0z,
therefore u,, = 2a¢. And finally u, = a4 + 2a;z + agx + a1gy and u,, = 2a;. Substituting these
results in the Laplace equation gives above result in

2as5 + 2a¢ +2a; =0
as +ag+a; =0
Therefore a5 = — (ag + a;). Using this relation back in (1) gives
U= ay + apx + azy + agz — (ag + a;) X% + agy? + a;z% + agxy + agxz + aygyz
= aq + ayX + azy + agz + ag (—x2 + y2) +ay (—xz + 22) + agxy + agxz + aqgyz
Which can be written as

u (x, y,z) = A + Apx + Asy + Ayz + As (y2 - xz) + Ag (22 - xz) + Ayxy + Agxz + Agyz

2.1.2 Problem 1.7

Find all real solutions to 2D Laplace equation u,, + u,, = 0 of the form u = log (p (x, y))

where p (x, y) is a quadratic polynomial.
Solution
A quadratic polynomial p (x, y) in variables x, y is

p (x, y) = aq + ayX + azy + agx? + asy* + agxy

Therefore
u (x, y) =log (u1 + apx + agy + agx? + asy? + a6xy)
Hence
apy + 2a4x + agy
Uy = —r——=
p(xy)
and
(u +2a4x +a y)z
"y, = 24y R 4 26 (1)
Pley)  pvy)
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Similarly

as + 2asy + agx
U= ——F——
p(x)

And

o 245 ~ (a3 + 2asy + u6x)2 ©
vy . (x, y) ) (x, y)z

Substituting (1,2) into u,, +u,, = 0 gives

2 2
2a, (az + 2a4x + a6y) N 245 (a3 + 2asy + aﬁx)

Pley)  pluy) Pley) )

(az + 2a4x + u6y)2 (a3 + 2asy + a6x)2
20[4 - + 2115 - =0
p(xy) p(vy)
(az + 2a4x + aéy)z + (a3 + 2asy + a6x)2

p(xy)

2&4 + 205 -

Or

(2a4 + 2as5)p (x, y) = (az + 2a4x + aéy)z + (a3 + 2asy + a6x)2

But p (x, _1/) = a4y + ayX + agy + agx?> + asy® + agxy. Hence the above becomes

2 2
(2a4 + 2as) (al + ayX + azy + azx® + asy? + a6xy) = (az +2a4x + a6y) + (a3 + 2asy + a6x)

Expanding and comparing coefficients gives

25202 + 2x% 405+ 2aa,XY + 2a6a5XY + 2a,a,X + 20,05 + 224,05 + 22 a% + 2a3a,y + 2a3as5y +2a1a, +2a1a5 =

dx?az + x%aZ + dagagxy + dasagxy + 4xayay + 2azagx + 4y2a3 + y2a2 + 2a,a4y + dazasy + a3 + a3
Simplifying
2a,a5x% + 2a,a5x + 20,45y + 2a3a4Y + 2a,a, + 2a1a5 =
2x%a2 + a2x? + 2a4a6xy + 2a5agXy + 2a,a,X + 2a3a6X + 2a2y* + aZy? + 2a,ay + 2a3asy + a3 + a3

Comparing coefficients of terms that contain no x,y and coefficients of x,y, xy, X2, y2 gives
the following equations in order

2aqa4 + 2aqa5 = a% + a%
20,05 = 2a,a4 + 24304
2aza, = 2a,a4 + 2a3as
0 = 4aya,

2a4a5 = 2a3 + a

2a4a5 = 2a§ + a%
Equation 0 = 4a4a4 above implies that a; = 0 or a5 = 0 or both are zero. But if both are zero,
there is no solution. On the other hand, if a4, = 0, then this also leads to no solution as all

equations reduce to 0 = 0. Therefore only choice left is a5 = 0. Now the above equations
become

2a1a4 + 2a1a5 = a3 + a3
2&2&5 = 2&2&4

2ﬂ3ﬂ4 = 2ﬂ3ﬂ5

0=0
2a,a5 = 243
2a405 = 2a§
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Or
2aqa4 + 2aqa5 = a% + a%
a5 = a4
a4 = 85
0=0
a5 = a4
ag = as
Hence
ay = as (3)
a6 =0 (4)

_ 2., 2
2aya4 + 2a1a5 = a5 + a3
Since a4 = a5 then
_ 2., 2
2aya5 + 2ayas = a5 + a3
a3 + a3
a5 = ——
2111
Using (3,4,5) in p (x, 1) = a; + a,X + asy + a,x% + asy? + axy gives
g y Xy 14 y 1 2 3Y 4 5Y XY 8
p(x,y)=a1+a2x+a3y+a5xz+a5y2

= aq + ayx + azy + as (x2+y2)
as+as,,
=a1+a2x+a3y+—(x +y)
2€l1

Only three arbitrary constants are needed. Let a; = a,a, = b, a3 = ¢ the above becomes

(xz + yz)

2+C2

p(x,y):a+bx+cy+

And the solution becomes

u (x,y) = log (a +bx +cy+ b22-|;1c2 (x2 " yz))

2.1.3 Problem 1.13

Find all solutions u = f (r) of the 3D Laplace equation u,, + u
on radial coordinates r = \/x% + y? + z2

Solution

yy T Uz = 0 that depends only

The Laplacian in 3D in spherical coordinates is

2 1 (cosO
V2u (r, 6,¢) =ty r_z(

1
——u
Psing "¢

+ +
sin g ? ”69)
The above shows that the terms that depend only on r makes the laplacian
2
V2u(r) = u,, + iy

Hence the PDE V2u(r) = 0 becomes an ODE now since there is only one dependent
variable giving

2
u” (r) + ;u’ =0
Let v = ¢/ (r) and the above becomes

v (r) + gv(r) =0
r

2
This is linear first order ODE. The integrating factor is I = el 7 = @2nr = 12 Therefore
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the above becomes < (01’2) =0orovr*=Cyoro(r)= % Therefore

dr
u = G
2
G
du = r—2d
Integrating gives the solution
C
u= it + CZ
r

The above is the required solution. Hence

f)=-2+C,

Where Cq, C, are arbitrary constants.

2.1.4 Problem 1.20

The displacement u (¢, x) of a forced violin string is modeled by the PDE u;; = 4u,, + F (¢, x).
When the string is subjected to the external force F(t,x) = cosx, the solution is u (f,x) =

cos (x —2t) + icos x, while when F (¢, x) = sinx, the solution is u (t,x) = sin (x — 2t) + isin X.
Find a solution when the forcing function is (a) cosx - 5sinx, (b) sin (x - 3)

Solution

2.1.4.1 Part (a)

Since the PDE is linear, superposition can be used. When the input is F (f, x) = cosx—5sinx
then the solution is

1 1
u(t,x) = (Cos(x—Zt) + Zcosx) —5(sin(x—2t) + Zsinx

1 . 5 .
=cos(x —2t) + L—Lcosx—Ssm(x—Zt)—Zsmx

2.1.4.2 Part (b)

Since the PDE is linear, superposition can be used. When the input is F (f, x) = sin (x - 3)
then the solution same as when the input is sin x but shifted by 3. Hence

u(t,x) =sin((x —3)-2t) + }Lsin(x—3)

2.1.5 Problem 1.27b

Solve the following inhomogeneous linear ODE 5u” — 4u’ + 4u = ¢* cosx
Solution

First the homogeneous solution u;, is found, then a particular solution u, is found. The

general solution will be the sum of both u = u;, + u,. Since this is a constant coefficient

. L 2 4. 2 4,
ODE, the characteristic equation is 512 — 4A + 4 = 0. The roots are A; = 5t el A=z —<i,

5 5
which implies the solution is

2, 4 . (4
uy, (x) = e5" ¢ cos gx + ¢y sin gx

Using the method of undetermined coefficients, and since the forcing function is e* cosx,
then let

u, = Ae* (Bcosx + Csinx) (1)
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Hence

uy, = Ae* (Bcosx + Csinx) + Ae* (-Bsinx + C cosx) (2)
u, = Ae* (Bcosx + Csinx) + Ae* (-Bsinx + Ccosx) + Ae* (-Bsinx + C cosx) + Ae* (-Bcosx — Csinx)
= Ae* (Bcosx + Csinx — Bsinx + Ccosx — Bsinx + Ccosx — Bcosx — Csin x)
= Ae* (-Bsinx + Ccosx — Bsinx + C cosx)
= Ae* (-2Bsinx + 2C cos x) (3)
Substituting (1,2,3) back into the original ODE gives

5Ae* (-2Bsinx + 2C cosx) — 4 (Ae* (Bcosx + Csinx) + Ae* (-Bsinx + C cosx)) + 4Ae* (Bcosx + Csinx) = e* cosx
Ae* (-10Bsin x + 10C cos x) — Ae* (4B cos x + 4C sinx) — Ae* (—4Bsin x + 4C cos x) + Ae* (4B cos x + 4C sinx) = ¢* cos x
Ae* (-10Bsinx + 10C cos x —4B cosx —4Csinx + 4Bsin x —4C cos x + 4B cos x + 4C sin x) = e* cos x

Hence
Ae* (6C cosx — 6Bsinx) = e* cosx

Comparing coefficients shows that

0 W >
o

A= O© =

Hence from (1)

Therefore the general solution is

u(x) = uy (x) + u, (x)
%x 4 N . (4 N xsinx

= —_ nit—
e5” | cq cos 5x Cp Si 5x e G

2.1.6 Problem 2.1.6

%u
Solve the PDE vay = 0 for u (x, y)

Solution

Integrating once w.r.t x gives

0
5, =F0)

Where F (y) acts as the constant of integration, but since this is a PDE, it becomes an
arbitrary function of y only. Integrating the above again w.r.t. y gives

u :fF(y)dy+G(x)

Where G (x) is an arbitrary function of x only. If we let f F (y) dy=H (y) where H (y) is the
antiderivative for the indefinite integral which depends on y only. Then the above can be
written as

u(x,y) = H(y) + G (x)

Ju

rrie H’ (y) and hence

Pu  d
oxdy  dx (H (y))

=0

To verify, from the above

2.1.7 Problem 2.2.2
Solve the following initial value problems and graph the solutions at t =1,2,3

a u,—-3u,=0,u0,x) = e
10



21. HW1 CHAPTER 2. HWS

b u+2u,=0,u(-1,x) = #
C U+ u,+ %u =0,u (0,x) = arctan (x)

1
1+x2

d u—-4u, +u=0,u(,x)=

Solution

2171 Parta

Let & be the characteristic variable defined such that £ = x — ¢f. Where characteristic lines
are given by x = x( + ct. But ¢ = -3 in this problem. Hence characteristic lines are

X =x9— 3t
Where x; means the same as x(0), i.e. x (t) at time ¢ = 0. Since ¢ = -3 then
E=x+3t
Let
u(t,x)=v(t )
u; — 3u, = 0 is now transformed to v (t, &) as follows

u_dodt 30t
ot dtdt & It

dv _dv
And
Ju _ Jvu dt N Jdv d&
dx  dtdx IEdx
=0+ @
=0+ 5z
v
== 2
o @
Substituting (1,2) in u; — 3u, = 0 gives the transformed PDE as
20, 000
at  d& T dE
ot
Integrating w.r.t £ gives the solution in v (t, £) space as
v(t, &) = F(&)
Where F (&) is an arbitrary continuous function of £. Transforming back to u (t, x) gives
u(t,x) =F(x+3t) (3)
At t = 0 the above becomes
e = F (xo)

This means that (3) becomes (since x = xy + ct or x = xo — 3t or x5 = x + 3t)

u(t,x) = o (t31)?

21.7.2 Partb

ut+2ux:0

u(=1,x) = 1+ x2

Let & be the characteristic variable defined such that £ = x — ¢t. Where characteristic lines
are given by x = xy + ct. But ¢ = 2 in this problem. Hence characteristic lines are

X =xg+ 2t
And
E=x-2t

11
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Let u(t,x) = v(t,&). Then u; +2u, = 0 is transformed to v (¢, £) as was done in part (a) (will

not be repeated) which results in
Jv 0
at

Integrating w.r.t £ gives the solution

v(t, &) =F(&)

Where F (£) is an arbitrary continuous function of £. Transforming back to u (t, x) results in

u(t,x)=F(x -2t (3)
At t = -1 the above becomes
0 Fxy+2)
_ = X,
1+x3 0
Let xg + 2 = z. Then x5 = z— 2. And the above becomes
-2
22 g
14+(z-2)
This means that (3) becomes
-2t)-2
u(t,x) = (x ) >
1+ ((x—2t)-2)
B x—-2t-2
1+ (x—2t-2)°
21.7.3 Partc
1
ut+ux+§u:0 (1)

u (0, x) = arctan (x)
Let & be the characteristic variable defined such that £ = x — ¢t. Where characteristic lines
are given by x = x + ct. But ¢ =1 in this problem. Hence characteristic lines are given by
solution to
dx
=
x(t)=xg+t

1

And
E=x—ct
=x—t
Then u; + u, are transformed to v (f,&) as was done in part (a) (will not be repeated) which

results in

dv
Jdt
Substituting the above into (1) gives (where now v is used in place of u).

U+ u, =

This is now first order ODE since it only depends on t. Therefore v’ + %v = 0. This is linear

1 1
in v. Hence the solution is % (vef Edt) =0 or vez' = F(&) where F is arbitrary function of &.

Hence
-1
(&) =e?'F (&)
Converting back to u (¢, x) gives
—t
u(t,x)y=e2F(x—t) (2)
At t = 0 the above becomes

arctan (xg) = F (xq)

12
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From the above then (2) can be written as
—t
u(t,x) =e2 arctan (x — t)

21.7.4 Partd

uy—4u, +u =0
1
1+ x2
Let & be the characteristic variable defined such that & = x — c¢t. Where characteristic lines
are given by x = xy + ct. But ¢ = —4 in this problem. Hence characteristic lines are

u(0,x) =

X =xy—4t
And
E=x+4t

Then u; —4u, are transformed to v (¢, £) as was done in part (a) (will not be repeated) which
results in

dv
Uy —4u, = 3
Substituting the above into (1) gives (where now v is used in place of u).
dv
a3 +0v=0

This is now first order ODE since it only depends on t. Therefore v’ + v = 0. This is linear
in v. Hence the solution is %(vefdt) = 0 or ve' = F(&) where F is arbitrary function of &.

Hence
v(t, &) =e'F (&)

Converting to u (¢, x) gives

u(t,x) = e'F(x + 4t) (2)

At u(0,x) = ﬁ the above becomes
1
=F
1+ x% (o)
From the above then (2) can be written as
-t
e
u(t,x) = ——
1+ (x+ 41&)2

2.1.8 Problem 2.2.3

Graph some of the characteristic lines for the following equation and write down the
formula for the general solution

(b) uy +5u, =0, (d) u; —4u, +u=0
Solution
2181 Partb
Uy +5u, =0

Let & be the characteristic variable defined such that £ = x — ¢t. Where characteristic lines
are given by x = xg + cf. But ¢ = 5 in this problem. Hence characteristic lines are

x(t) = xo + 5t (1)

And
E=x-5t

Then u; — 5u, = 0 is transformed to v (t,&) as was done in earlier (will not be repeated)

13
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which results in

dv

at

Therefore % = 0 which has the general solution v (t, £) = F (§) where F is arbitrary function
of &. Transforming back to u (t, x) gives

U, —bu, =

u(t,x) = F(x—>5t)

On the characteristic lines given by (1) the solution u (¢, x) is constant. The slope of the
characteristic lines is 5 and intercept is xy. The following is a plot of few lines using different
values of x.

Figure 2.1: Showing some characteristic lines for part b

2182 Partd

uy—4u, +u=0

Let & be the characteristic variable defined such that £ = x — ¢t. Where characteristic lines
are given by x = x( + ct. But ¢ = —4 in this problem. Hence characteristic lines are

x(t) = xo — 4t (1)

And
E=x+4t

Then u; — 4u, is transformed to v (f,&) as was done in earlier (will not be repeated) which
results in

dv
Uy —4u, = 3

Therefore the original PDE becomes % + v = 0, where u is replaced by v. This is linear

first order ODE which has the solution v (t,&) = e”'F (&) where F is arbitrary function of &.
Transforming back to u (f, x) gives the general solution as

u(t,x) = e'F (x + 4t)

The following is a plot of few characteristic lines x = x; — 4t using different values of x,.

14
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Figure 2.2: Showing some characteristic lines for part d

2.1.9 Problem 2.2.5
Solve u; + 2u, = sinx, u (0,x) = sinx
Solution

Let & be the characteristic variable defined such that & = x — ¢t. Where characteristic lines
are given by x = xy + ct. But ¢ = 2 in this problem. Hence characteristic lines are

X =Xxg+2t 1)

And
E=x—-2t

Then u; + 2u, is transformed to v (¢, £) as was done in earlier (will not be repeated) which
results in

+2u, = i
Her St =y
Substituting this into the original PDE gives
dv(t,
v;t 9 _ sin(E +20

Integrating w.r.t ¢ gives

(&) = fsm(g +28)dt + F (&)
_cos (&+21)

=-——FH  *tF(@)

Transforming back to u (t, x) gives
cos (x — 2t + 2t)
2

= _71 cos (x) + F (x = 2t) 1)

u(t,x) = + F(x —2t)

When ¢ =0, u (0,x) = sinx, therefore the above becomes
) 1
sinxg = F (xg) — 5 C0SXp

) 1
F (xp) = sinxy + 5 €osxg
Therefore the solution (1) becomes

1 1
u(t,x) = (sin(x—Zt) + Ecos(x—2t) - Ecosx

. 1 1
=sin(x —2t) + Ecos(x—2t)— Ecosx

15
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2.1.10 Problem 2.2.9

(a) Prove that if the initial data is bounded, |f (x)| < M for all x € R, then the solution to the
damped transport equation (2.14) u; + cu, + au = 0 with a > 0 satisfies u (t,x) = 0 as t — oo.
(b) Find a solution to (2.14) that is defined for all (f, x) but does not satisfy u (t,x) — 0 as

t — oo,

Solution

2.1.10.1 Part(a)

u; + cu, + au = 0 is solved to show what is required. Let & be the characteristic variable
defined such that £ = x — c¢t. Where characteristic lines are given by x = xy + cf. Hence
characteristic lines are

X =xg+ct (1)
And
E=x—ct

Then u; + cu, is transformed to v (t, &) as was done in earlier (will not be repeated) which
results in

v
Up + Cllx = =
Substituting this into the original PDE gives
Jdv
— +av=0

Jt
Where u is replaced by v. This can be viewed as first order linear ODE since it depends
on t only. Its solution is v (t,&) = e™™F (&) where F is arbitrary function of &. Transforming
back to u (t,x) gives

u(t,x) =e™F(x—ct) (1)
At t = 0 initial data is f (x). Hence the above becomes at t = 0
fx)=F()
Hence (1) now becomes
u(t,x)=e"f(x—ct) (2)

But since |f (x)| is bounded, and since a > 0 then ¢™ — 0 as t —> co. Which implies the
solution itself u (¢, x) goes to zero as well. This is the reason why initial data needed to be
bounded for this to happen.

2.1.10.2 Part(b)

Keeping a > 0. If initial data have the form f (x) e~ where |b| > a, then at = 0 the solution
found in (1) becomes

f (o) e = F(xp)
Then the solution (2) now becomes, after replacing x, by x —ct
u(t,x) = e e 6=t £ (x — ct)

— e—at+bcte—bxf (x _ Ct)

— e(bc—u)te—bxf (x _ Ct)
The problem is asking to show that this does not go to zero for all x € R as t — co. Since
|bl > a then bc — a is positive quantity (c is assumed positive)
Therefore =" will blow up as t — co. And therefore the whole solution will not go to

zero. For any x, no matter how large x is, a large enough ¢ can be found to make the
product e~ blow up.

1f ¢ was negative then initial data could be choosen to be f (x)e** where |b| > a which will lead to same
result.

16
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2.1.11 Key solution for HW 1

Homework 1 Solutions

1.8 (a)

cp+eqr+egy+egz+ C4(E2 — yz) + c5(m2 = z2) + gy +cpmz + cgyz,
where c;, ..., cg are arbitrary constants.

1.7
u= log[c(w —a)? +e(y— b)z], for a, b, c arbitrary constants.

1.13

u=a+—-=a+ + , where a,b are arbitrary constants.
Ve2 +y2 + 22

1.20

. . 1.
Solution: (a) cos(z—2t)+3 cosz—5 sin(z—2t)—5sinz; (b) —sin3 cos(z—2t)—7 sin3 cosz+
cos3 sin(z — 2t) + 3 cos3 sing = sin(z — 2t - 3) + % sin(z — 3).

1.27

(b) u(z) = te®sinz+ ¢ e 2z/5

2$/5cos%m+cge sin%:]:‘

2.2.2

(a) u(t,z) =e

f )
ol o
0.4 0.9
e o
3 0.

R T

— (@+31)?

B e
T —-2t—2
(b) u(t,z) = Tr@-2i-22
od N 33:!
2 o

3
Ty T T T v
o o4
Zoud Zold)

(¢) u(t,z) = e~/?tan™ (2 1)

17
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2.2.3
(b) Characteristic lines: z = 5t + ¢; general solution: u(t,z) = f(z — 5t);

i /
L

(d) Characteristic lines: z = —4t 4 ¢; general solution: u(t,x) = e~ f(x + 4t);
z

W,
Qi

2.2.5

Solution: u(i,z) = — % cos & + % cos(z — 2t} + sin{z — 21).

2.2.9
(a) |ut,x)|=|f(z—ct)|e”? < Me % - 0 as t — oo since a > 0.

(b) For example, if ¢ > a, then the solution u(t,z) = e(®~¥*=% _4 0 as t — oo.

18
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221 Problem 2.2.17

(a) Solve the initial value problem u; — xu, = 0,u(0,x) = 1:7 (b) Graph the solution at
times t =0,1,2,3. (c) What is lim,_,,, u (¢, x)?
Solution
2211 Parta
The characteristic curves equations is given by
dx
— = —X
dt
Integrating this results in In|x| = =t + C or x = &¢™!. Hence the characteristic variable is
E(x, t) = xet

u on the characteristic curves is an arbitrary function of the characteristic variable. Hence
u(t,&) =F()
u(t,x)=F (xet) (1)
Where F is arbitrary function determined from initial conditions. Using initial conditions

at t = 0, the above becomes

1
- __-F
14+ x2 ()

Using the above in (1) gives the final solution as

u(t,x) = (2)

1+ (xef)2

221.2 Partb

The following are some plots and the code used.

p = Grid[Partition[Table [Quiet@Plot [u[x, time], {x, -5, 5},
PlotRange -» {All, {0, 1.1}},
AxesLabel -» {Style["x", 12], Style["u", 14]},
BaseStyle - 12,
ImageSize - 400, PlotStyle - Red, GridLines - Automatic,
GridLinesStyle - LightGray,
PlotLabel - Row[ {"time = ", padIt2[time, {1, 1}], " seconds"}1],
{time, {0, 1, 2, 3}}
1, 2], Spacings - {1, 1}, Frame - All]

Figure 2.3: Source code

19
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time = 0 seconds time = 1 seconds

time = 2 seconds time = 3 seconds

u u

1.0f 1.0f

0.8 0.8

0.4 0.6

0 0.4

0 0

-4 -2 0 2 4 * -4 -2 0 2 4 *

Figure 2.4: Solution at different times

221.3 Partc

From the solution in (2), when x = 0, then lim; ,, u(t,0) = 1. But when x # 0, then
lim,_,, u (t,x) = 0. Therefore

1 x=0
lim u (¢, x) =
t—c0 x#0
Hence the solution is discontinuous at x = 0 in the limit as t — oo.

2.2.2 Problem 2.2.18

Suppose the initial data u (0, x) = f (x) of the nonuniform transport equation (2.28), which
is u; + (x2 - 1) u, = 0 is continuous and satisfies f (x) — 0 as |[x| — co. What is the limiting
solution profile u (t,x) as (a) t = oo (b) t = —oc0 ?

Solution
The characteristic curves equations is given by % = (xz - 1). Integrating this results in
1 -1
=1 =t+C
2 T 1| 3
m [*=L | 2 +C
n =
+1 2
x-1
_ o2t
e
x+1 ¢
_x=1
T ox+1
u on the characteristic curves is an arbitrary function of the characteristic variable. Hence
u="F()
x-1
=F ( e‘Zt) (1)
x+1

Where F is arbitrary function which is determined from initial conditions. From initial
conditions the above becomes
x-1
rw=¢(*]

X+
20
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Let % =z Hence (x-1) =z(x+1)orx-1-z-zx=0orx(1-z)-1-z=0o0rx = E

Therefore
1+z
f (:) =F(2)

Therefore (1) can now be written as

1+ (j: e‘zt)
u(t,x):fzeg;ﬂ (2)

2.2.2.1 Part (a)

As t — oo then solution (2) becomes
1+0
li t,x)=fl—
e
=f@

2.2.2.2 Part (b)

And as t - —oo then

tgr_rclmu(t,x) :f(%)
=f(=D

2.2.3 Problem 2.2.26

. . du Jdu . . .
Consider the transport equation — +c (¢, x) = = 0 with time varying wave speed. Define the

corresponding characteristic ODE to be % = c(t, x), the graphs of whose solutions x (t) are
the characteristic curves. (a) Prove that any solution u (t, x) to the PDE is constant on each
characteristic curve. (b) Suppose that the general solution to the characteristic equation
is written in the form & (¢, x) = k, where k is an arbitrary constant. Prove that & (f, x) defines
a characteristic variable, meaning that u (t,x) = f (£ (t,x)) is a solution to the time-varying
transport equation for any continuously differentiable scalar function f € C'.

Solution

2.2.3.1 Part (a)

Let x (t) be the solution to characteristic ODE % =c(t,x). Then

ou , duds
Jt  dx dt
Ju Jdu

= ﬁ + $C(t,X)

ou  d . . .
But a_bt[ + B—ZC (t,x) = 0, since this is the given PDE above. The above now reduces to

d
= (1) =

d
T (u(t,x()) =0

Which implies that u (f, x (t)) is constant on the characteristic curves.
2.2.3.2 Part (b)

T
dam)ﬁgwﬂﬁ

df (9 aggf)

d
Ef (&(t,x) =

T acto\ar T oxdr
df  (9E ¢ )

= a5 \ar T axc X

21
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And
d d d
FF(E) = geu,x))
L ( gea
dé(t,x)\ dt dx  Jdxdx
df  (9&
T At ) a_x)
Hence

J J _df (9g  d df (€
SIECD) e e = =5 Ec(m) Felt0) (g)

_ o df & 9& 2
Tz () §+$c(t,x)+c(t,x)£)

af (d¢& _9d¢&
= — +2—c(t,
a0 (o T 2o x))
But & (t,x) is constant k. Hence d(i{ 5 = 0. Therefore RHS above is zero, and the above

reduces to

O%f (&(t,x) +c(tx) %f (&(tx)=0

This shows that f (& (t,x)) satisfies the given transport PDE. Hence it is a solution. Or
u(t,x) = f (&(t x)).

2.2.4 Problem 2.2.29

Consider the first-order PDE u; + (1 — 2t) u, = 0. Use exercise 2.2.26 to: (a) Find and sketch
the characteristic curves. (b) Write down the general solution. (c) Solve the initial value

problem with u (0, x) = ﬁ (d) Describe the behavior of your solution u (f, x) from part (c)

as t — oo. What about t —» —oo?

Solution

2.2.4.1 Part (a)

The characteristic curves are given by % = (1 - 2t). Therefore
x()=t-t2+&
E=x-(t-£2)

The following is plot of characteristic curves for different & values.

Table[Plot[t-t”~2+k, {t, @, 4}, PlotRange » {All, {-10, 7}},
AxeslLabel » {"t", "x(t)"}, BaseStyle -» 14],
{k, @, 5, 1}];
Show [%]

x(t)
i

—_—_\ t
t 1

N

_5!

—10!

Figure 2.5: Plot of some characteristic curves
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2.2.4.2 Part (b)

solution u on the characteristic curves is an arbitrary function of the characteristic variable.

Hence
u(t,x) =F(<)

S

=F(x-t+£)
Where F is arbitrarily function.
2.2.4.3 Part (c)
At t = 0 the above solution becomes
L P
—_ = X
1+ x2

Therefore using (2) in (1), then (1) becomes
1

u(t,x) =
T+ (x—t+ t2)2
2.2.4.4 Part (d)

The solution in (3) shows that
1
limu(t,x)=— =0
t—oo (o]
Also

1
lim u(t,x)=—=0
t——00 o0

Hence the solution vanishes for large .

2.2.5 Problem 2.4.2

(1)

(2)

(3)

(a) Solve the wave equation uy; = u,, when the initial displacement is the box function

1 I1<x<?2

u(0,x) = , while the initial velocity is zero. (b) Sketch the resulting

0 otherwise
solution at several times.

Solution

2.2.5.1 Part (a)

d’Alembert solution of the wave equation is given by

x+ct

1 1
u(t,x):E(f(x—ct)+f(x+ct))+zf )

Where c is the wave speed which is ¢ =1 in this problem and f(x) = u(0,x) and g (x) =

u; (0,x) = 0. The above simplifies to

u(t,x) = %(f(x—t)+f(x+t))

0 otherwise 0

_1 1 1+t<x<2+t+ 1
21l o otherwise 0

1 Il<x-t<2 N 1 I<x+t<?2
otherwise

1-t<x<2-t

otherwise

|

Complete split of the box function into two separate halves happens at t = 0.5 because

when f = 0.5 in the above gives
1111 15<x<25 1
u(t,x) == +
2110 otherwise 0

23
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This shows that just after ¢ = 0.5, there is no longer a common region between 1.5 < x < 2.5
and 0.5 <x <1.5.

Hence for t > 0.5 the solution u will be % whenl+t<x<2+torwhenl-t<x<2-tand
will be zero otherwise.

But when t < 0.5, there will still be a common region before the full split. Some region is till
common, and some region is not. For example, picking t = 0.25, then there is a common
region between 1.25 < x < 2.25 and 0.75 < x < 1.75. In this case the common region is

1.25 < x < 1.75. Over this region, u = 1. But over the non common region u = % when

075<x<125and u = % for 0.1.75 < x < 2.25 and u = 0 otherwise. In terms of ¢t the above
can be written as

When ¢t > % then the solution is

, % 1-t<x<2-t
MZE > 1+t<x<2+t
0 otherwise
Whent<%
1 l+t<x<2-t
1 % T-t<x<l4+t
u=—
2 5 2—t<x<2+t
0 otherwise

It it easier to do all of this using the computer by plotting the solution for different times.

2.2.5.2 Part (b)

The following are plots of the motion of the wave for several times.
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time 0 time 0.1 time 0.2
1.0 1.0F 1.0
0.8 0.8 0.8}
0.6 0.6f 0.6
041 0.4+ 04t
0.2 0.2t 02+t
-1 0 1 2 3 4 -1 0 1 2 3 4 -1 0 1 2 3 4
time 0.3 time 0.4 time 0.5
1.0 1.0+ 1.0
08f osf o8l
0.6 06 0.6
04} 0.4} 04t
0.2f 02f 0.2f
-1 0 1 2 3 4 -1 0 1 2 3 4 -1 0 1 2 3 4
time 0.6 time 0.7 time 0.8
1.0 1.0 1.0
0.8 08t 08t
0.6 06 0.6
0.4 041 0.4}
021 02+ 02r
-1 0 1 2 3 4 -1 0 1 2 3 4 -1 0 1 2 3 4
time 0.9 time 1 time 1.1
1.0 1.0F 1.0
0.8 0.8 0.8}
0.6 0.6 0.6}
0:4 1 0.4 04+
0.2 0.2 0.3+
-1 0 1 2 3 4 -1 0 1 2 3 4 -1 0 1 2 3 4

Figure 2.6: Plots for several times

ufx_,t ] := % (Piecewise[{{1, 1< x-t < 2}, {0, True}}] +Piecewise[{{1, 1< x+ t <2}, {0, True}}]);

plots = Table[Grid [ { {Row[ {"time ", t}1},
{Plot[u[x, t], {x, -1, 4}, Exclusions - None, ImageSize - 300,
PlotPoints - 40,
PerformanceGoal - "Quality", PlotStyle - Red,
GridLines - Automatic, GridLinesStyle - LightGray,
PlotRange » {All, {0, 1.1}}]}
1, {t, {0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1, 1.1}}];
Grid[Partition[plots, 3], Frame - All]

Figure 2.7: Code used

2.2.6 Problem 2.4.3

Answer 2.4.2 when the initial velocity is the box function while the initial displacement is
zero.

Solution

2.2.6.1 Part (a)

d’Alembert solution of the wave equation is

1 1 +ct
u(t,x):E(f(x—ct)+f(x+ct))+£ftg(s)ds

25
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Where c is the wave speed which is ¢ =1 in this problem and f (x) =0 and g (x) = u; (0, x) =
f (x) which is the box function given in the last problem. The above becomes

1 X+t
u(t,x):zf_t F(s)ds

1 ps=xtt | 1 1<s<?2

= s
2Jsv+ | 0  otherwise

2.2.6.2 Part (b)

The following are plots of the motion of the wave for several times of the above solution

1
ufx ,t ] := 2 Integrate[Piecewise[{{1, 1< s < 2}, {Q, True}}], {s, x-t, x+t}];

plots = Table[Grid [ {{Row[{"time ", t}]},
{Plot[u[x, t], {x, -1, 4}, Exclusions - None, ImageSize - 300,
PlotPoints - 40,
PerformanceGoal -» "Quality", PlotStyle - Red,
GridLines - Automatic, GridLinesStyle - LightGray,
PlotRange -» {All, {0, 1.1}}]}
}1, {t, {0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1, 1.1}}71;
Grid[Partition[plots, 3], Frame - All]

Figure 2.8: Code used

time © time 0.1 time 0.2
1.0 1.0 1.0
0.8f 0.8f 0.8f
0.6 06f 0.6
0.4 0.4 0.4
0.2 0.2 0.2f
-1 0 1 2 3 4 -1 0 1 2 3 4 -1 0 1 2 3 4
time 0.3 time 0.4 time 0.5
1.0 1.0 1.0
081 0.81 081
0.6 0.6 0.6
0.4 0.4 0.4}
-1 0 1 2 3 4 -1 0 1 z 3 4 -1 0 1 2 3 4
time 0.6 time 0.7 time 0.8
1.0 1.0F 1.0
0.8 0.8+ 0.8}
0.6 0.6 0.6
0.4 041 0.4
0.2 02f 02l
-1 0 1 2 3 4 -1 0 1 2 3 4 -1 0 1 2 3 4
time 0.9 time 1 time 1.1
1.0 1.0t 1.0
0.8 0.8 0.8}
0.6 0.6 0.6
04} 04} 04f
0.2 0.2 0.2f
-1 0 1 2 3 4 -1 0 1 2 3 4 -1 0 1 2 3 4

Figure 2.9: Plots for several times
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2.2.7 Problem 2.4.4

Write the following solutions to the wave equation uy; = u,, in d’Alembert form (2.82)

w + 2lc f e g (s)ds. Hint: What is the appropriate initial data?

(b) cos2xsin2t. (d) +* + x?

which is u (¢, x) =

Solution

2.2.7.1 Part(b)

Since c =1, the solution becomes

—t t 1 +t
costsinZt:f(x )+t )+§fl g(s)ds
x—t

2
Let f (x) = u(0,x) = 0. The above solution simplifies to

2 cos2xsin 2t = fx g(s)ds

"
cos2xsin 2t = 1 g(s)ds (1)

x—t

We now need to determine g (s) to satisfy the above. By fundamental theorem of calculus

1 X+t 1
1) sOs=3lyern-ge-n] @
Let g (x) = 2cos2x. Now we need to verify that this will satisfy equation (1). Expanding
RHS of (2) gives
gx+t)-g (x-1t)=2(-sin(2(x +1)) +sin (2 (x - 1))
= 2 (sin (2x — 2t) — sin (2x + 2t))

But sin (A — B) = sin A cos B — cos Asin B and sin (A + B) = sin A cos B + cos A sin B. Substitut-
ing these in the above, where A = 2x, B = 2t, the above becomes

g (x+1) =g (x—t) = 2(sin 2x cos 2t — cos 2x sin 2t — (sin 2x cos 2t + cos 2x sin 2t))
= 2(sin 2x cos 2t — cos 2x sin 2f — sin 2x cos 2t — cos 2x sin 2t)
=4 cos2xsin 2t (3)

Substituting (3) into (1) gives
1
cos2xsin 2t = 1 (4 cos 2x sin 2t)

= cos 2x sin 2t
Verified.

Hence if initial condition is f (x) = 0 and if g (x) = 2 cos 2x, then the solution using d’Alem-
bert form will be the one given u (t,x) = 2 cos 2x sin 2t which is what we are asked to show.
Therefore

cos2xsin 2t = (f(x—t)+f(x+t) f g (s)ds

u(0,x) =
u; (0,x) = 2 cos 2x

2.2.7.2 Part(d)

Since ¢ =1, the solution becomes

t2+x2——(f(x—t)+f(x+t) f 2(s)ds
Let g(x) = u;(0,x) = 0. The above reduces to

t2+x2:%(f(x—t)+f(x+t))
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Assuming f (x) = x?, now we will see if this assumption generates the solution needed. The
RHS above now becomes

(f(x—t)+f(x+t)) x =t + (x + 7)

(
((x + 12— th) + (x2 + 12+ 2xt))
=5

NIHI\)IHNIH

x2+t2+x2+t2)

2

Il
~~
N

+x
Verified.

Hence by setting g(x) = 0 and f (x) = x? the given solution is obtained. Therefore

2+ x2 = (f(x—t)+f(x+t) fx g (s)ds

u(0,x) = x?
u; (0,x) =0

2.2.8 Problem 2.4.10

Suppose u (t, x) solves the initial value problem u;; = 4u,,+sin (wt) cos (x),u (0,x) = 0,1, (0, x) =
0. Is h(t) = u(t,0) a periodic function?

Solution

The solution is given by eq (2.96) in the textbook (since f(x) =0 and g(x) =0 and ¢ = 4
or ¢ = 2) as the following

1 pt px+(t-s)
u(t,x) = A_Lf f F(s,y) dyds
0

x—(t-s)

But here F (s,y) = sin (ws) cos (y) Therefore, using the book example 2.19, where we just
need to change sinx to cosx in the solution shown, then the above integral gives

1 t ~x+(t-s)
u(t,x) = Zf f sin (ws) cos (y) dyds
0

x—(t-s)
{ —Sm(“’”‘(‘z’ MEosy  O<aw#1

1w
sin t—tcost

oS X w=1
2

At x =0, then

sin(wt)-w sin t

O<w#1
h (t) =u (t/ 0) = { sinlt:[tuczost
5 w=1

Therefore h (t) is periodic only if w = S #1 is a rational number.

2.2.9 Problem 2.4.11

(a) Write down an explicit formula for the solution to initial value problem u;; = 4u,,, 1 (0,x) =
sinx, u; (0,x) = cosx for —co < x < 0o,t > 0. (b) True of False: The solution is a periodic
function of t. (c) Now solve the forced initial value problem u; = 4u,, + cos2t,u(0,x) =
sinx, u; (0,x) = cosx for —co < x < co,t > 0. (d) True of False: The forced equation exhibits

resonance. Explain. (e) Does the answer to part (d) change if the forcing function is sin 2¢
?

Solution

2.29.1 Part (a)

Using d’Alembert formula where u(0,x) = f (x) = sinx and u; (0,x) = g (x) = cosx, then the
solution is
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+ct

u(t.x):%(f(x—ct)+f(x+ct))+% g(s)ds

x—ct
But ¢ =2, f (x) = sinx, g (x) = cos x, then the above becomes

1 1 xX+2t
u(t,x) = > (sin (x — 2t) + sin (x + 2t)) + 1 f cos (s)ds
x=2t

x+2t

= % (sin (x — 2t) + sin (x + 2t)) + 411 [sin(s)], 5,

1 1
:E(sin(x—Zt)+sin(x+2t))+Z(sin(x+2t)—sin(x—2t))
—1'( 2t)+1'(+2t)+1'(+2t) 1'( 2t)
= 5sin(x 5 sin (x 2 Sin(x 2 Sinx

1 3
= A—Lsin(x—Zt)+Zsin(x+2t)

2.2.9.2 Part (b)
True.

If we can find a common multiple between x — 2t and x + 2¢ then the solution is periodic.
i.e. if F; (z) has period p; and F, (z) has period p,, then if we can find positive integers a;, a,
such that a;p; = ap,p, = r, then r is the period of F; (x) + F; (x).

In this problem, F; = sin (x — 2f), F, = sin (x + 2f). But both of these have period 27. Hence
p1 = 27, p, = 21. Therefore choosing a; = 1,4, =1, then r = 2. The period of sum.

2.2.9.3 Part (c)

When the PDE becomes uy; = 4u,, + cos2t, then we need to add forcing solution part of
the solution. Hence the solution now becomes, using 2.97 in the book as (using c = 2)

1 1 px+2t 1 t +2(t-s)
u(t,x) = = (sin (x — 2t) + sin (x + 2t)) + - f cos (s)ds + — f fx F (s,y) dyds
2 4 x-2t 4 0 v x-2(t-s)
Where F (s, y) = cos (2t). Hence the above becomes (using result from part (a) for the non
forcing part) as

1 3 1 t ~x+2(t-s)
u(t,x) = —sin(x —2f) + —sin(x + 2t) + — f f cos (2s) dyds
4 4 0 Y x-2(t-s)

1 3 1 t xX+2(t—s)
= Zsin(x—26) + > sin (x + 26) + — f cos (25) dyds
4 4 4 0 x—2(t-s)

= Llisin(x—Zt)+Zsin(x+2t)+}Ifotcos(2s)((x+2(t—s))—(x—2(t—s)))ds

1 3 1t
:Zsin(x—Zt)+L—lsin(x+2t)+Zf cos (2s) (x + 2t — 25 — (x — 2t + 2s)) ds
0

1 3 1t
:Zsin(x—Zt)+Zsin(x+2t)+Zf cos (2s) (x + 2t —2s — x + 2t — 2s) ds
0

1 3 1t
= —sin(x —2f) + —sin(x + 2t) + — f cos (2s) (4t — 4s) ds
1 4 1J,

2
sin” t .
> Hence the above solution becomes

But 31 Lt cos (2s) (4t — 4s)ds =

sin’ t

1 3
u(t,x) = 1 sin (x — 2t) + 1 sin (x + 2t) +
Which can also be written as
1 3
u(t,x) = Zsin(x—Zt) + Zsin(x+2t) + =

; (% - %COS (2t))

1 3 1 1
= Zsin(x—Zt)+Zsin(x+2t)+;—é—}cos(2t)
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2.29.4 Part (d)

False. No resonance. Solution is periodic. There is no term in the solution which is being
multiplied by ¢. Hence solution do not grow with time which indicates no resonance.

2.2.9.5 Part (e)

If the PDE now becomes u; = 4u,, + sin2t,u (0,x) = sinx, u,; (0, x) = cos x, then the solution
becomes

1 3 1 t ~x+2(t-s)
u(t,x) = —sin(x — 2f) + —sin (x + 2f) + - f f sin (2s) dyds
4 4 4 x-2(t-s)
1 3 1 t X+2(t-s)
= —gin(x - 2t) + —sin (x + 2f) + = f sin (2s) dyds
4 4 4 0 x—2(t-s)

1 3 1 t
:Zsin(x—Zt)+Zsin(x+2t)+Zf sin(2s) (x +2(t—s))—(x—=2(t—s)))ds
0
1 . 3 . 1 .
:ZSln(x_Zt)+ZSID(x+2t)+Zf sin (2s) (x + 2t — 2s — (x — 2t + 2s)) ds
0
1 . 3 . 1t
:181n(x—2t)+131n(x+2t)+1f sin (2s) (x + 2t — 2s — x + 2t — 2s) ds
0
1 . 3 . 1t
= —sin(x - 2t) + —sin(x + 2f) + = f sin (2s) (4t — 4s) ds
4 4 1J,
But i f sin (2s) (4t — 4s)ds = 31 (2t —sin (2t)). Hence the solution now becomes

u(t,x) = 1 sin (x — 2f) + Z sin (x + 2t) + — (2t — sin (21))

1,. . .
We see now that resonance now occurs due to above term Et in the solution. This means
as t increases, the solution will keep increasing with no limit.

2.210 Problem 2.4.13

Let u (t,x) be a classical solution to the wave equation uy = c?u,,. The total energy

o= 35 (5 )

Represents the sum of kinetic and potential energies of the displacement u (t, x) at time t.

. . _ . 1
Suppose that Au — 0 sufficiently rapldly as x — +oo; more precisely, one can find & > - and

C (t) > 0 such that |u; (t, x)|, |u, (¢, x)| < for each fixed t and all sufficiently large |x| > 0.

For such solutions establish the law of conservatlon of energy by showing that E (t) is finite
and constant. Hint: You do not need the formula for the solution.

Solution

To show E (t) is constant, it is sufficient to show that iE (t) = 0. From above

T ()_dtf ut+cuxdx
Moving % inside the integral (assuming solution is piecewise smooth), the above becomes
d ©1(d d
—E(t) = f + 2)d
art 2 (dtut ‘ dtu") *
But ;ut = 2u,uy and ux 2u.u,. The above becomes

d © 1
EE t) = f 5 (Zututt + 2c2uxuxt) dx

o0
= f Uplly + CPu i dx
o0
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But uy = c?u,, from the PDE itself. The above now simplifies to

d 00
EE (t) = f CPUpl e + CPU1lydxX

(o]
=c? f Upllyy + Uy dX
o0

d
But uu,, + u iy = = (usu,). The above becomes

d © d
- =2 -
th tH=c f_ o (upuy) dx

= [ )

But the problem says that as x — +oo then u, — 0. It also say that || is bounded. This shows
that the RHS above is zero. Therefore %E(t) = 0 or E(t) is constant. The fact constant
is bounded is seen by noting that the problems says that [u,| and |u,] are bounded. This
completes the proof.

2.2.11 Problem 2.4.15

The telegraph equation uy + au, = c®u,, with a > 0, models the vibration of a string under
frictional damping. (a) Show that, under the decay assumption of exercise 2.4.13, the wave

energy (2.98)

© 1 ({u)* ,[du 2
E(t) = ‘[WE((E) +C (a) dx
of a classical solution is a nonincreasing function of ¢. (b) Prove uniqueness of such solutions

to the initial value problem for the telegraph equation.

Solution

2.211.1 Part (a)
d d ™1
_ 2., 2,2
%E(t)— Ej:mi(ut +c ux)dx
Moving % inside the integral (assuming solution is smooth), the above becomes

d ©1(d d
EE(t) = IwE(EM%+C2EM%)dx

d d
But Euf = 2uuy and Eu% = 2u,u,;. The above becomes

d el
EE t) = f_m 5 (Zututt + ZCzuxuxt) dx

(o]
:f Upthy + Cultlgdx
o0

But uy, = c?u,, — au; from the PDE itself, hence the above simplifies to
d 00
EE (t) = j:oo U (c2uxx -~ uut) + Puidx

(o]
= f CCUlyilyy — AU? + U udx
o0

(o) (o)
=c? f Upllyy + Uy lyydX — a f u?dx
o0

— —00
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00 d
But f_ | Wty + U Uydx = = (usu,), then the above becomes

d 00 d 00
— — 2 _ _ 2
th(t) c f_oo o (usu,) dx af urdx

—00

:czf d(utux)dx—af u?dx

(o]
= [uu,]™ - af u?dx
o0

As in the previous problem [u;u,]” = 0 since u, — 0 for x — +co. Then the above now

reduces to

(o]
—0o0

d 00
EEG) =-q fooufdx

But f ~ u?dx is either zero or positive because the integrand is always positive.
—00

Hence %E (t) is negative quantity because a > 0. This shows that rate of change of energy
is either zero or negative and can not be positive. This means E (t) is non increasing which
is what we are asked to show.

2.211.2 Part (b)

Let u; (t,x) and u, (t,x) be two different solutions to same u;; + au; = c?u,, with same initial
data. Let w (¢, x) = uq (t,x) — uy (¢, x). Therefore

Wy + awy = W,y
Applying the energy formula to w (t, x) shows that
<1
E(t) = f > (@) + ¢ @wy?) dx
dE. d >~ 1
== f > (@) + ¢ (@) dx

Following same steps in problem 2.4.13, the above becomes zero. Which means that Z—f =0
or E (t) is constant. But E (—o0) = E (c0) = 0 which means that E (t) = 0. In other words

f ” % ((wp)? + 2 (w,)?) dx = 0

But since the integrand is positive, then this means w; = 0 and w, = 0. But this implies that
w (t, x) is itself a constant.

We now need to show that this constant is zero. i.e. to show that w (f,x) = 0 to finish the
proof.

Since w (0, x) = 0, because this is the initial data, which is the difference between the initial
data of the two solutions u;, 1, which is the same, hence the difference of the initial data
is zero.

But if w (0,x) = 0 and w (t, x) is constant, it must be that w (t,x) = 0 for all time and space.
But since w (t,x) = uq (t,x) = uy (¢, x) then
251 (t/ x) = Uy (t/ x)

Which mean that the solution to the telegraph PDE is unique.
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2.2.12 Key solution for HW 2

Homework 2 Solutions

2217

1 e—2t

2:.2.17. (a) u(t,z) = (l.et)Q +1 = 2 4 e—2t°
(b)

; =0,
(c) The limit is discontinuous: lim w(¢,z) = { ‘ .
t— 00 0, otherwise.
2.218
0’ T < 71’ f(fl)’ T < 1=
(a) lim wu(t,z) = { f(-1), z=-1, (b) lim wu(tz)= { 7, = 1y
t— o0 t— —co
f@a, =z>-1 0, r 1.
2.2.26
(a) Suppose z = z(t) solves (;—': = ¢(t,z). Then, by the chain rule,
d Ou Ou dr  Ou Ou
Eu(z,z(t)) =5 (t.z(t) + 5 (t.z(t)) bk (t.z(®)) +e(t,z(2)) = (t.z(t) =0,

since we are assuming that u(t, z) is a solution to the transport equation for all (¢, z).
We conclude that u(t, z(t)) is constant.

(b) Since £(t, x) = k implicitly defines a solution () to the characteristic equation,

0= %f(t,m(t)) = % (t,2(t) + % (t,2(0)) “Cll_f = % (t,z) + c(t, ) g_i Gl

and hence u = £(t,z) is a solution to the transport equation. Moreover, if

u(t,z) = f(ﬁ(t, :1:)), by the chain rule,
o4 L PR 9% %€ _
o () +olt,2) e (62) = £ (6(62) 5o (o) +elt,2) T (62 ) =0

according to the previous computation.
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2.2.29

dz
2.29. (a) Solving the characteristic equation i 1 — 2t produces the characteristic curves
r=1—12 + k, where k is an arbitrary constant.

T

o\
AN

(b) The general solution is u(t, ) = v(z — t + t2), where v(£) is an arbitrary C! function of the
characteristic variable § =z — ¢ + P

(C) 'Ul(t, .'D) = m .

(d) The solution is a hump of fixed shape that, as ¢ increases, first moves to the right, slowing
down and stopping at t = %, and then moving back to the left, at an ever accelerating
speed. As t — —o0, the hump moves back to the left, accelerating.

2.4.2

(a) The initial displacement splits into two half sized replicas, moving off to the right and
to the left with unit speed.

1, l+t<zr<2-t
Fort<%,wehave u(t,g) =49 %, l—t<z<l+t or 2—t<z <2+t
0, otherwise,
1
5, l—t<zx<2—-1t or 1+t<e<2+t
Fortz%,wehave u(t,z) =4 2’ e ik
0, otherwise,

(b) Plotted at times ¢t = 0,.25,.5,.75,1.,1.25:
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243

(a) The solution initially forms a trapezoidal displacement, with linearly growing height and
sides of slope +.5 expanding in both directions from 1 and 2 at unit speed. At time
t = .5, the height reaches .5, and it momentarily forms a triangle. After this the diag-
onal sides propagate to the right and to the left with unit speed, as the .5 displacement
between then grows in extent.

[ 3 E—14+0), 1-ELz€d+t,
22—t
Fort<%,weha.veu(t,m)= t1 I+t<a < ,
F@+t-g), 2-t<z<2+t,

L 0, otherwise,
[ 3(@—1+1), 1-t<z<2-1%

1 —

For t > 3 , we have u(t,z) = { 2 2-t<z<1+t,
l2+t-2), 1+t<a<2+t,

0, otherwise,

(b) Plotted at times ¢ = 0,..25.5,.75,1.,1.5:

0.4

=1 ) 1 [] 1 s [ =1 l 1 2 3 . O ° -1

=0,2|
0.4

0.8/

AN A L

R
s = 85 & &

2.4.4b,d

1 pz+t _sin2(x41) —sin2(x 1)
(b) 2fm—t 2c08(22)dz = = :

2410

Solution: The solution to the initial value problem is
wein2t — 2sinwt

uft, ¢) = 2w? - 4)
%(SinZt — 2tcos2t) cosz, w =2,

COS T, -t £2,

Thus,
wsin 2t — 2sinwt

g(t) = u(t,0) = 2w?~-4)
% (sin2t — 2t cos 2t), w = %2,
is periodic when w # 42 is a rational number, quasi-periodic when w is irrational, and non-
periodic and resonant when w = +2.

w # £2,
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241

Solution: (a) u(t,z) = %sin(m —2t) + %sin(m +2t);  (b) True;

(c) ult,z) = }sin(z - 2t) + 3 sin(x + 2t) + 3 — Jcos2t. .

(d) The solution remains bounded and periodic, and hence is not resonant, ‘

(¢) Now the solution is u(t,z) = 1sin(z — 2t) + %sin(m + 2t) + }It - %{s'}th. lIr.n this case, the
solution is no longer periodic or bounded, and hence a form of resonance is exhibited.

2.4.13

First of all, the decay assumption implies that E(t) < oo for all t. To show E(t) is con-
stant, we prove that its derivative is 0. Using the smoothness of the solution to justify
bringing the derivative under the integral sign, we compute

dbi  d o 1 9 1 293 oo 2
i _[_oo FUp +5¢u)dr = f_oo (upryy + cuguy,) da

£ o
2 2
=c fo (Upthyy + ugtiy,) de = c /_Oo o (u,uy) dz =0,

since u;, v, — 0 as ¢ — oo. Q.E.D.

2.415

(a) As in Exercise 2.4.13, we compute
dE _ oo 2 . oo ) 9
dt - /.—OO (ututt +c uz‘umt) dx = f—oo [C (utumsf; + uzumt) Aty ] dx

:szm i(u'u. )dm—a/m uzd:n:—ﬁfoo u?dz <0
—codz VT —oo © —oc ¢ il
since a > 0. Thus, E(t) is a nonincreasing function of ¢.

(b) First, let u(t, z) be the solution to the initial-boundary value problem with zero initial
conditions, and hence zero initial energy: E(0) = 0. Since 0 < E(t) < E(0) is
decreasing, and nonnegative, we conclude that F(t) = 0. But since the energy inte-
grand is nonnegative, this can only happen if u, = wu, = 0 for all (¢,z), and hence
u(t, ) must be a constant function. Moreover, its initial value is u(0,z) = 0, and hence
u(t,z) = 0. With this in hand, in order to prove uniqueness, suppose u (¢, z) and
uy(t, ) are two solutions to the initial-boundary value problem. Then, by linearity,
their difference u(t,z) = u,(t,x) — u4(t,x) solves the homogeneous initial-boundary
value problem analyzed in part (a), and so must be identically zero: u(t,z) = 0. This
implies u, (¢, ) = u, (¢, x) for all (¢,x), and hence there is at most one solution.
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2.3.1 Problem 3.1.2

Find all separable eigensolutions to the heat equation u; = u,, on 0 < x < 7 subject to (a)
homogeneous boundary conditions u (t,0) = 0, u (t, ©) = 0. (b) mixed boundary conditions
u(t,0)=0,u,(t,mn=0
solution
Using separation of variables, let u (t,x) = T (t) X (x). Substituting this into u; = u,, gives
T’X = TX"”. Dividing by XT # 0 results in

T/ 3 XII 3 A
T X

Where A is the seperation constant. The above gives the following ODE’s to solve
X" (x)+AX(x)=0
T () + AT(t) =0

The boundary and initial conditions are transfered from the PDE to the ODE as shown
below.

2.3.1.1 Part (a)
Using u (t,0) = 0, u (t, ) = 0. Starting with the spatial ODE, and transferring the boundary
conditions to the ODE results in
X" (x)+AX(x)=0
X(0)=0
X(m) =0
This is an eigenvalue boundary value ODE. The solution to the spatial ODE is

X(x) = cleﬁx + cze‘ﬁx (1)
case A <0
Since A < 0, then —A is positive. Let y = —A, where u is positive. The above solution
becomes

X (x) = c1eVF + e V"

Which can be written as

X (x) = ¢q cosh (\/ﬁx) + ¢y sinh (\/ﬁx)
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At x = 0 this gives
0= C1
The solution now reduces to X (x) = ¢, sinh (\/ﬁx) At x = 7 this gives

0 = ¢y sinh (\/ﬁn)

But sinh is only zero when its argument is zero. Since u # 0, then the only choice is that
c; = 0 also. But this gives trivial solution therefore A <0 is not an eigenvalue.

case A =0

In this case the solution is X (x) = c; + cox. At x = 0 this gives 0 = ¢;. The solution becomes
X (x) = cox. At x = m, this gives 0 = c,7. Therefore ¢, = 0 also. This also gives the trivial
solution. Hence A = 0 is not an eigenvalue.

case A >0

The solution in this case is

X (x) = VM 4 eV Ax
= 0,6 VAx 4 eV

Which can be rewritten as (the constants ¢y, ¢, below will be different than the above ¢y, ¢y,
but kept the same name for simplicity).

X (x) = ¢ cos (\/Xx) + ¢y sin (\/Xx)
At x = 0 this gives
0=¢
The solution now reduces to
X (x) = ¢y 8in (\/Xx)
At x = i this gives

0 = ¢y sin (\/Xn)

non-trivial solution requires that sin (\/Xn) = 0 which implies that \/Kn =nmn,n=1,2,3,-.
Hence eigenvalues are

A, =n? n=1,23,--

And corresponding eigenfunctions are

X, (x) = sin (nx) n=1,23, -

Now that the eigenvalues and eigenfunction are found, the time ODE can be solved. The
time ODE now becomes

T’ (t) + 2T () = 0

This is linear first order ode. The solution is T, (t) = Cne‘”zt. Therefore the fundamental
solution is

u, (t,x) = C, T, (£) X, (x)
= C,e”"* sin (nx)

Since this is a linear PDE, a linear combination of all fundamental solutions is a solution.
Hence the general solution is

u(t,x) = E C,e" sin (nx)
n=1

The constant C,, can be found if initial conditions are given.
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2.3.1.2 Part (b)

Using u (t,0) = 0, u, (t, 7) = 0. Starting with the spatial ODE, and transferring the boundary
condition to X, it becomes

X"(x)+AX((x)=0
X0)=0
X' (m)=0

This is an eigenvalue boundary value problem. The solution to the spatial ODE is

X(x) = cle‘/qx + cze‘ﬁx 1)

case A <0

Since A < 0, then —A is positive. Let u = —A, where u is positive. The solution becomes

X (%) = c1eVF + e VET

The above can be written as

X (x) = ¢q cosh (\/ﬁx) + ¢y sinh (\/ﬁx)
At x = 0 this gives
0= Cq
Hence the solution now becomes

X (x) = ¢ sinh (\/ﬁx)

Taking derivative gives

X’ (x) = cp+/pt cosh (\/ﬁx)

And at x = r the above gives

0 = cp+/p cosh (\/ﬁn)

But u # 0 and cosh is never zero for any argument. Hence the only choice is that ¢, = 0.
This gives the trivial solution. Hence A < 0 is not an eigenvalue.

case A =0

In this case the solution is X (x) = ¢; + cpx. At x = 0 this results in 0 = ¢;. The solution
becomes X (x) = c,x. Hence X’ (x) = ¢;. At x = 7, this implies 0 = c,7t. Therefore ¢, = 0 also.
This gives the trivial solution. Hence A = 0 is not an eigenvalue.

case A >0

The solution in this case is

X(x) = cleﬂx + cze‘ﬂx

= cleiﬁ" + cze‘iﬁ"

Which can be rewritten as (the constants ¢, c, below will be different than the above ¢y, ¢y,
but kept the same name for simplicity).

X (x) = ¢y cos (\/Xx) + ¢y sin (\/Xx)

At x = 0 this gives

O:C1
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The solution now reduces to
X (x) = ¢y 8in (\/Xx)
Therefore
X' (x) = \/Xcz cos (\/Xx)
Atx=m

0= \/Xcz cos (\/Kn)

Non-trivial solution requires that cos (\/Xn) = 0, which implies \/Zn = %n,n =1,3,5,---. or
\/X = g,n =1,3,5,--. Therefore the eigenvalues are

2
Aﬂ:(g) n=1,35-

Or

-1\
/\n:( 5 ) n=1,23--

25 . . .
, =, } The corresponding eigenfunctions are

> |\

7

N

Few eigenvalues are A = {

Xn(x):sin(b;—_lx) n=1,273--

Now that the eigenvalues and eigenfunction are found, the time ODE is solved. The time
ODE now becomes

2
T’ (t) + (#) T() =0

2
2n-1
This is linear first order ode. The solution is T, (t) = Cne_( 2 ) ! Therefore the fundamental
solution is

uy (£,x) = C, T, (£) X, (%)
2n-1 2
- 2n -1
:Cne( 2 )tsin( nz x)

A linear combination of all fundamental solution is a solution (due to linearity). Hence
the general solution is

00 2n-1 2 _
u(t,x) = E Cne_(T) tsin(znz 1x)
n=1

2.3.2 Problem 3.1.5

(a) Find the real eigensolutions to the damped heat equation u; = u,, — u. (b) Which
solutions satisfy the periodic boundary conditions u (t, —7t) = u (t, 7t), u, (t, —70) = u, (t, 70) ?

solution

2.3.21 Part (a)
Using separation of variables, Let u(t,x) = T () X (x). Substituting this into u; + u = u,,
gives T’X + TX = TX”. Dividing by XT # 0 gives

T/ X’I

—+1=
T X

Where A is the separation constant. This gives the following ODE’s to solve
X" (x)+AX(x)=0
T"H+A+1)T()=0

=-A

Eigenfunctions are solutions to the spatial ODE.

X(x) = cleﬂx + cze“/jx 1)
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To determine the actual eigenfunctions and eigenvalues, boundary conditions are used.
This is part b below.

2.3.2.2 Part (b)
Using u (t,—m) = u(t, ), u,(t,—m) = u,(t, 7). Starting with the spatial ODE above, and
transferring the boundary condition to X gives
X"(x)+AX((x) =0
X (-m) = X(n)
X! (-7 = X' (r)
This is an eigenvalue boundary value problem. The solution is
X(x) = cle‘/qx + cze‘ﬁx (1)
case A <0

Since A < 0, then —A is positive. Let u = —A, where u is now positive. The solution (1)
becomes
X (%) = c1eVF + e VET

The above can be written as

X (x) = ¢q cosh (\/ﬁx) + cp sinh (\/ﬁx) (2)
Applying first B.C. X (-7n1) = X () using (2) gives

cq cosh (\/ﬁn) + ¢y sinh (—\/ﬁn) = ¢; cosh (\/ﬁn) + ¢y sinh (\/ﬁn)
¢y sinh (—\/ﬁn) = ¢, sinh (\/ﬁn)

But sinh is only zero when its argument is zero which is not the case here. Therefore the
above implies that c; = 0 as only possibility to satisfy the above equation. The solution (2)
now reduces to

X (x) = ¢q cosh (\/ﬁx) (3)
Taking derivative
X’ (x) = c14/usinh (\/ﬁx) (4)
Applying the second BC X’ (-mt) = X’ () gives
c14/p sinh (—\/ﬁn) = c14/p sinh (\/ﬁx)

But sinh is only zero when its argument is zero which is not the case here. Therefore
the above implies that c; = 0. This means a trivial solution. Therefore A < 0 is not an
eigenvalue.

case A =0
In this case the solution is X (x) = c; + cox. Applying first BC X (-n) = X () gives
€1 —CTl=0C1 + T
—CyTl = Tt
This gives ¢, = 0. The solution now becomes
X(x)=1¢

Therefore X’ (x) = 0. Applying the second boundary conditions X’ (-n) = X’ (7) is now
satisfied for any cy, since it gives (0 = 0). Therefore A = 0 is an eigenvalue with eigenfunction
Xy (0) =1 (selecting c; =1 since any arbitrary constant will work).

case A >0

The solution in this case is

X (x) = cpeVM 4 eV
= cleiﬁ" + cze‘iﬁ"

Which can be rewritten as (the constants ¢, c, below will be different than the above ¢y, ¢y,

41



2.3. HW 3 CHAPTER 2. HWS

but kept the same name for simplicity).

X (x) = ¢ cos (\/Xx) + ¢y sin (\/Xx) (5)
Applying first B.C. X (-7nt) = X (n) using the above gives

c1 COS (\/Xn) + ¢y sin (—\/Xn) = 1 COS (\/Xn) + ¢y sin (\/Xn)
Ccp sin (—\/XT[) = ¢y sin (\/XT[)
There are two choices here. Either ¢, = 0 or VaAn = nm,n =1,2,3,---. Using the second
choice for now, which implies that
A, =n? n=123,--

And now we will now look to see what happens using the second BC with the above choice.
The solution (5) now becomes

X (x) = ¢q cos (nx) + ¢, sin (nx) n=1,23,--
Therefore
X’ (x) = —cynsin (nx) + con cos (nx)
Applying the second BC X’ (-n) = X’ () using the above gives
cimnsin (nm) + cyn cos (nnt) = —cynsin (nm) + cyn cos (nmn)
cinsin (nm) = —cyn sin (nm)
0=0
Since #n is integer.

Therefore this means that using the choice A, = n? satisfied both boundary conditions with
¢y # 0,c1 # 0. This means the solution (5) is
X, (x) = A, cos (nx) + B,, sin (nx) n=1,2,3,-

The above says that there are two eigenfunctions in this case. They are

X, (x) = { cos (nx)

sin (nx)
Recalling that there is also a zero eigenvalue with constant as its eigenfunction, then the
complete set of eigenfunctions is
1
X, (x) =1 cos (nx)
sin (nx)

Now that the eigenvalues are found, the solution to the time ODE can be found. The time
ODE from above was found to be

T"tH+A+1)T@H) =0

For the zero eigenvalue case, the above reduces to T’ (t) + T (t) = 0 which has the solution
To (t) = Ce™:. For non zero eigenvalues A, = n?, the ODE becomes T’ (¢) + (nz + 1) T(t) =0,

whose solution is T (t) = Cne_(nzﬂ)t.

Putting all the above together, gives the fundamental solution as

Coe_t
u, (t,x) =4 C,cos (nx) g{r+1)t n=1,2,3,--
B,, sin (nx) (1)t n=1,23, -
The complete solution is the sum of the above solutions
u(t,x) = Coe™t + E e_(”2+1)t (C,, cos (nx) + B,, sin (nx))
n=1

The constants Cy, C,, B, can be found from initial conditions.
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2.3.3 Problem 3.2.1

(d) Find the Fourier series of the following functions f (x) = x? (using ~-m <x <7 )
solution

The Fourier series is given by

a — 21 27
x% ~ EO + ,;1 a, cos (?nx) +a,sin (?nx)

Where T is the period of f (x). Taking this period to be 27, the above simplifies to

a o0
2~ 2y E a, cos (nx) + b, sin (nx)
2 n=1

2

The function x“ is even, hence all b,, are zero. The above becomes

x% ~ L;—O + Z a,, cos (nx) (1)
n=1
But
1 7T
ag = — f x%dx
Tt =Tt
2 s
== f x2dx
T Jo
2 [x3 ]n
|3 N
_ 2.
3n
2
=2
3
And
1 TC
a, = —f x? cos (nx) dx
T -7t
2 TC
== f 22 cos (nx) dx (1A)
TTJg

Let I = l;n x? cos (nx) dx. Using integration by parts fudv = uv — fvdu. Let u = x%,dv =

sin(nx)

cos (nx). Then du = 2x,v = . Hence
- [xz sin (nx) ]n 5 f” xsin (nx) i
n 0 0 n
0
—
1 n 2 (7
=— [xz sin (nx)] - = f x sin (nx) dx
n 0 ndJdo
2 7T
= ——f x sin (nx) dx
nJo
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Integration by parts again. u = x,dv = sin (nx), then du =1,v = —%(nx). The above becomes

2 cos (nx) " T cos (nx)
I__E([_xT] —fo —deJ

0

__2 (_l [x cos (nx)] ] + % fﬂ cos (nx) dx)
0

n n

% ([x cos (nx)]; — j(; i cos (nx) dx)

= 32 ([T( cos (nm)] - [sin (nx)] ]
n n

0
2
= n—Z cos (nm)
271 "
) (-1
The above is I. Substituting this result back in (1A) gives
2
a, = —
U
22
= =2
n
4
= = 1)

Therefore (1) becomes

o) n
x% ~ %nz + 4; (_nlz) cos (nx)
To verify this result, the Fourier series was compared to x? for an increasing number of
terms to see if it converged to x?. Here is the result. This shows the convergence is fast,
after 6 terms only the approximation (in red color) is almost the same as the original

function x2.

Fourier series approx using 1 terms Fourier series approx using 2 terms
10
10

(T S
1 > P S Bl et R
-3 -2 -1 1 2 3

Fourier series approx using 3 terms Fourier series approx using 4 terms
10 10

P E S oo .. e
-3 -2 -1 1 2 3 -3 -2 -1 1 2 3

Fourier series approx using 5 terms Fourier series approx using 6 terms
10 10

Figure 2.10: Fourier series of x?
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fs[x_, max_] := Cos[nx], {n, 1, max}]

1, (-1)"
[
makePlot[n ] := Plot[{x*2, fs[x, n]}, {x, -Pi, Pi},
PlotStyle » { Gray, Red}, AxesLabel -» {"x", None},

PlotLabel -» Row[ { "Fourier series approx using
ImageSize -» 300

, n, " terms"}],

15
Grid[Partition[Table [makePlot[n], {n, {1, 2, 3, 4, 5, 6}}], 2],
Frame -» All]

Figure 2.11: Code used for the above plot

the following plot shows how the Fourier series approximation to x> when it is periodically
extended to outside [-7, ]. This uses the range [-37,37] by adding one period to left and
one period to the right.

(-1°"

n2

fs[x_, max_] :=

Wik

7r2+4Sum[ Cos[nx], {n, 1, max}]

fx[x_] := Piecewise[{
{(x+2Pi)"2, x < -Pi},
{x"2, -Pi< x < Pi},
{(x-2Pi)"*2, x>Pi}}];
makePlot[n_] :=Plot[{fx[x], fs[x, n]}, {x, -3Pi, 3Pi},
PlotStyle » { Gray, Red}, AxesLabel -» {"x", None},

PlotLabel - Row[ {"Fourier series approx using ", n, " terms"}],
ImageSize - 300
15
Grid[Partition[Table [makePlot[n], {n, {1, 2, 3, 4, 5, 6}}1, 2],
Frame - All]
Figure 2.12: Code used for the above plot
2.3.4 Problem 3.2.2
T
: : . . . X x| < =
(d) Find the Fourier series of the following function f (x) = 2

0 otherwise
solution

This is plot showing f (x)

0.5F

-1.0p

-1.5¢

Figure 2.13: Plot of f(x)

The Fourier series is given by
4 21 . (27
f(x) ~ > + ;;1 a, cos (Tnx) + a,, sin (Tnx)

Where T is the period of the function to be approximated. Taking this period to be 27, the
above simplifies to

ap ) .
f(x)~ > + ;:]1 a,, cos (nx) + b, sin (nx)
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The function f (x) is odd then all 4, will zero. The above simplifies to
f(x) ~ Y] b, sin (nx)
n=1
Where
1 TC
- - f £ (x) sin (nx) dx
Tt -7

1 T
= —fz x sin (nx) dx
ndg

But x is odd and sin (x) is odd, hence the product is even. The above simplifies to

2 -_—
b, = —fz x sin (nx) dx
TTJo

us

— cos(nx)

Using integration by parts fudv = uv — fvdu. Let x = u,du = 1,dv = sin (nx),v = ——,
the above gives

2(-1 T 17
b, == (— [x cos (nx)]§ + — fz cos (nx) dx)
n\n nJo

T

2 2
= — d
( [x cos (nx)]o fo cos (1nx) x)

( cos l [sin (nx)]og )
n

ol +;[sm<n§>1)

2
nn
2
n_

Therefore the Fourier series becomes
- 2 nmy 1 nmn
fx) ~ ,;1 p—) (sin (7) - Enn cos (7)) sin (nx)
To verify this result, the Fourier series was compared to f (x) for increasing number of

terms to see if it converges to x2. Here is the result. This shows the convergence is fast, but
not as fast as last problem due to jump discontinuity in f (x). 10 terms are used below.
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Fourier series approx using 1 terms Fourier series approx using 2 terms
15F 15F
1.0F 1.0F
051 051
X X
o _ I T - I I g
2 2 2 2
0.5¢ 5
-1.0 -1.0
-15 -1.5
Fourier series approx using 3 terms Fourier series approx using 4 terms
15F 15F
1.0F 1.0F
0.5F 0.5f
PN | = Pran e
o I I - T _I TN~
2 2 2 2
5 0.5
-1.0 -1.0
-15 -1.5
Fourier series approx using 5 terms Fourier series approx using 6 terms
1.5¢ 156¢
1.0 1.0
0.5} 0.5f
PN | e M
=N T TR A
0.5 0.5
-1.0 -1.0
-1.5 -1.5
Fourier series approx using 7 terms Fourier series approx using 8 terms
15¢F 15F
1.0 1.0F
05¢F 05F
X s X
o T NS - o T \Ns o
2 2
Fourier series approx using 9 terms Fourier series approx using 10 terms
15F 15F
1.0F 1.0F
05F 05F
o) o " e\ A M
- g N\ . . L 4 -
2 2 2 2
0.5 0.5
-1.0 -1.0
-15 -1.5

Figure 2.14: Fourier series approximation of f(x)

2 n 1 n
fs[x_, max_] := Sum[z— (Sin[Tn - EnnCos[Tn]) Sin[nx], {n, 1, max}];
n® x

f[x ] :=Piecewise[{{x, Abs[x] < Pi/2}, {0, True}}];
makePlot[n ] :=Plot[{f[x], fs[x, n]}, {x, -Pi, Pi},
PlotStyle » {Blue, Red}, AxesLabel -» {"x", None},
PlotLabel -» Row[ {"Fourier series approx using ", n, " terms"}],
ImageSize - 300,
Ticks -» {Range[-Pi, Pi, Pi/ 2], Automatic}
15
Grid [Partition[Table [makePlot[n], {n, {1, 2, 3,4, 5,6, 7, 8,9, 10}}1, 2],
Frame -» All]

Figure 2.15: Code used for the above plot

the following plot shows how the Fourier series approximate f (x) when it is periodically
extended to outside [-7, r]. This uses the range [-37, 3] by adding one more period to
left and to the right.
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Fourier series approx using 1 terms

151

1.0F

0.5

Ny

X -
2

151

Fourier series approx using 2 terms

Fourier series approx using 3 terms

Figure 2.16: Fourier

series of periodic extension f(x)
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2 n 1 n
fs[x , max_] := Sum[z— (Sin[77T - EnnCos[Tﬂ]) Sin[nx], {n, 1, max}];
n®

f[x_ ] :=Piecewise[{
{0, x< -5/2Pi},
{x+2Pi, -5/2Pi<x<-3/2Pi},
{0, -3/2Pi<x<-Pi/2},
{x, -P1/2<x<Pi/2},
{0,Pi/2<x<3/2Pi},
{x-2Pi, 2/3Pi<x<5/2Pi},
{0, 5/2Pi<x<3Pi}}];
makePlot[n_ ] := Plot[{f[x], fs[x, n]}, {x, -3Pi, 3Pi},
PlotStyle » { Blue, Red}, AxesLabel » {"x", None},
PlotLabel » Row[ {"Fourier series approx using ", n, " terms"}],
ImageSize - 300,
Ticks -» {Range[-Pi, Pi, Pi/ 2], Automatic}
15
Grid [Partition[Table [makePlot[n], {n, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}}], 2],
Frame - Al1]

Figure 2.17: Code used for the above plot

2.3.5 Problem 3.2.3

Find the Fourier series of sinx and cos? x without directly calculating the Fourier coefhi-
cients.

solution

Using the known trig identity

1 1
.2 _ - _ =
sin“x = 573 cos (2x) (1)

And comparing the the above to the Fourier series expansion

sin®x = % + (a7 cos (x) + ap cos (2x) + az cos (3x) + --+) + (by sin (x) + by sin (2x) + bz sin (3x) + --+)

(A)
Shows that ”2—0 = % and a, = %1 and all other terms are zero. Because the Fourier series is

unique for a function, then (1) is the Fourier series for sin® x.

Similarly, Using the known trig identity
1 1
cos?x = 5+ 5008 (2x) (2)
And comparing the the above to the Fourier series expansion (A), shows that %O = % and
2

1 . . . .
a =3 and all other terms are zero. Therefore (2) is the Fourier series expansion for cos® x.

2.3.6 Problem 3.2.6

Graph the 27t periodic extension of each of the following functions (h) f (x) = 31—6 Which
extension are continuous? Differentiable?

solution

2.3.6.1 Part (h)

The original function f(x) = % is always taken from -n < x < 7 (before extending it
periodically). At x = 0 the function is not defined.

49



2.3. HW 3

CHAPTER 2. HWS

1/x

-4

N Y-

Figure 2.18: Plot of f(x) = %

Periodically extending it, it becomes (showing
following

one extra period to the left and right) then

1/x extended

4

N

S
A

Figure 2.19: Plot of periodic extension of f(x) = %

f[x_ ] :=Piecewise[{
{1/ (x+2Pi), x < -Pi}
{1/x, -Pi< x< Pi},
{1/ (x-2Pi), Pi< x}
315
Plot [f[x], {X, -3Pi, 3Pi}, Ticks -»
AxesLabel » {"x", "1/x extended"
GridLines » {Range[-3Pi, 3Pi, P

k]

{Range[-3Pi, 3Pi, Pi], Automatic},
"},
i], Automatic},

GridLinesStyle - LightGray, PlotStyle -» Red, AspectRatio - Automatic]

Figure 2.20: Code for the above plot

Looking at the above plot shows the extension is not continuous and also not Differentiable

due to jump discontinuities.

2.3.7 Problem 3.2.9

Suppose that f (x) is periodic with period T (using T instead of [ as in book as it is more
clear). Prove that for any a (a) [* f(x)dx = f F(®)dx. (b) LT Flx+aydy = L‘T F ) dx

solution

2.3.7.1 Part (a)

fﬂa+T f(x)dx

LT F)dx

f:+Tf(x)dx—fon(x)dx: (f;f(x)dx+f:+Tf(x)dx)— (foaf(x)dx+f;f(x)dx)

Simplifying the RHS above gives

jjJrTf(x)dx—j(;Tf(x)dx:fTHTf(x)dx—j:f(x)dx
50
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But

a+T a
f f(x)dx:f Flx+ T)dx )
T 0

To show how Eq(2) was derived: Let u = x — T. Then du = dx. When x = T then u = 0.
When x = a+ T then u = a. Hence J;HTf(x) dx = Kf(u + T)du. But u is arbitrary integral

variable. Renaming it back to x gives that g_ﬁT fx)dx = K fx+T)dx.
Now, substituting (2) back into RHS of (1) gives

faa”f(x)dx—f:f(x)dx:j:f(x+T)dx—j:f(x)dx

1
:f Fa+T) - f(x)dx
0
But since f (x) is periodic, then f (x + T) = f (x). Therefore the RHS above is zero.

faHTf(x)dx—fOTf(x)dx: 0
faHf(x)dx:fOTf(x)dx

Which is what the problem is asking to show.

2.3.7.2 Part (b)

Starting by rewriting LT f (x + a)dx as the following. Let u = x + a. Hence du = dx. When

T
x =0,u = a and when x = T,u = a + T. The integral becomes fa+ f (1) du. But now u is
a
arbitrary integration variable. Renaming is back to x then we obtain that

T a+T
f f(x+a)dx:f F () dx (1)
0 a

Now, to show that main result, considering

j;Tf(x+a)dx—j;Tf(x)dx:j:JrTf(x)dx—j;Tf(x)dx

Where in the above, (1) was used to obtain RHS. The above can now be written as

a+T

fa fx)dx

fOTf(x+u)dx—j;Tf(x)dx: (f;f(x)dx+f:+uf(x)dx)—fOTf(x)dx

But T (x)dx = ! (x) dx since f (x) is periodic with period T. The above now becomes
P P

fOTf(X+a)dx—j;Tf(x)dx:(LTf(x)dx+j:f(x)dx)—jjf(x)dx

:fOTf(x)dx—fOTf(x)dx
-0

Therefore £T fx+a)dx = £T f (x)dx which is what the problem is asking to show.

2.3.8 Problem 3.2.25

i 0 <

(a) Sketch the 2m periodic half-wave f(x) = S SXsT . (b) Find its Fourier
0 -n<x<0

series. (c) Graph the first five Fourier sums and compare the function. (d) Discuss conver-

gence of the Fourier series.

solution
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2.3.8.1 Part (a)

0.8

0.4]-

I I I b3 *
2 2

Figure 2.21: Plot of f(x)

f[x_] := Piecewise[{{Sin[x], @< x < Pi}, {@, -Pi< x<0@}}];
Plot[f[x], {x, -Pi, Pi}, Ticks -» {Range[-Pi, Pi, Pi/ 2], Automatic},
AxesLabel -» {"x", "f(x)"},
GridLines -» {Range[-Pi, Pi, Pi/ 2], Automatic},
GridLinesStyle - LightGray, PlotStyle - Red]

Figure 2.22: Code for the above plot

2.3.82 Part (b)

The Fourier series is given by

ap  ~ 27 (27
fx)~—+ E a, cos (—nx) + a, sin (—nx)
2 TR T

Where T is the period of the function to be approximated. Taking this period to be 27, the
above simplifies to

f(x)~ 112—0 + nz::l a, cos (nx) + b, sin (nx)

Hence

1 7T
ag = ;f_ F () dx

1 TC

:—f sin (x) dx
TJo
1

= ~[-cos )]

= — [cos ()

=— [cos () —1]
Tt

=

AN g

And
1 T
a, = — j:nf(x) cos (nx) dx

1 TT
=— f sin (x) cos (nx) dx
TTJo
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Forn=1
1 TC
a, = — f sin (x) cos (x) dx
TJo
=0
And for n > 1
1 TT
a, = — f sin (x) cos (nx) dx
TJg

Using sin Acos B = % (sin (A — B) + sin (A + b)), then sin (x) cos (nx) = % (sin (x — nx) + sin (x + nx)).
The above becomes

T
an:—f sin (x — nx) + sin (x + nx) dx
TJg

:—(f Sin(x—nx)dx+f sin(x+nx)dx)
27 0 0

[cos (x + nx)]g)

1 1 o 1
:g(—l_n[cos(x—nx)]o—l_i_n

-1( 1 1
=5 (1 — [cos (m —nm)—1] + o [cos(n—rm)—l])
But cos (1 — nnt) = —cos (nm). The above becomes

a, = 1 (L[ cos (nm) — 1]+$[ cos(nn)—l])

cos (nn) +1 cos (nm) +1
1+n

T 2m (
((1 + 1) (Cos (nm) +1) + (1 — n) (cos (nm) + 1))

1
T on 1-n)1+n)

(1 +n)(cos (nm) +1) + (1 - n) (cos (nm) +1)
=g
- m (1 + 1) (cos (nm) +1) + (1 — n) (cos (nm) + 1))

= ; (2 cos(mn) + 2)

2m (1 - n2)
1
= g oY (1 - nz) (cos(mn) +1)

1+ (-1D)"

n(l —nz)

For odd n = 3,5, --- then a,, = 0. For even n the above can be written as

2
4, = ———— n=246

n(l —n2)

1
27

Now b,, is found

= %IZf(x) sin (nx) dx
= % fo i sin (x) sin (nx) dx
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Consider case n =1 first. The

bl_

Forn>1

Therefore the Fourier series is

above gives

1 T
— f sin® (x) dx
TJo
1 ™1 1

— — — —cos (2x) dx

TJo 2 2
1 71 1 -
[ Zdax-= f cos (2x) dx
Tt 0 2 2 0
1(1 1 [sin (2x)]”
— _7’(—_ ———
|2 2 2 X
1
2
1 TC
b, = — f sin x sin (nx) dx
TJg
_ 1sin(nmn)
o on?2-1
=0

f(x) ~ 012_0 + i a, cos (nx) + b, sin (nx)

n=1
1 1 2
= —+ —sin(x) + — cos (1nx)
w2 n:2§6,--~ 1-n?
1 1 2 &
=—+—gin(x)+— Y, ——— cos(2nx)
n 2 T ;12::1 1-(2n)

2.3.8.3 Part (c)

Fourier series approx using 0 terms

Fourier series approx using 1 terms

1.0F 1.0F
08f 08l
06F o6l
0.4+
0.4F
\ /é 02}
. . . M
i - x oA ‘
T T
o _n n
-0.2 2 2
Fourier series approx using 2 terms Fourier series approx using 3 terms
1.0F 1.0F
08F 0.8F
0.6} 06}
0.4+ 0.4+
02F 02f
AN . M BN y/ .
o I I o o _ i
2 2 2 2
Fourier series approx using 4 terms Fourier series approx using 5 terms
1.0F 10f
08F 08l
0.6+ 0.6}
041 041
0.2f 02l
1N . N
X .
-7 I I T - _r i
2 2 2 2

Figure 2.23: Plot of Fourier series approximation and f(x)
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1 1 2
fs[x ,max ] := — + —Sin[x] + —Sum[ Cos[2nx], {n, 1, max}];
Tt 2 7 2

1-(2n)
f[x ] :=Piecewise[{{Sin[x], @< x < Pi}, {@, -Pi< x<0@}}];
makePlot[n_ ] :=Plot[{f[x], fs[x, n]1}, {x, -Pi, Pi},
PlotStyle -» { Blue, Red}, AxesLabel -» {"x", None},
PlotLabel -» Row[ {"Fourier series approx using ", n, " terms"}],
ImageSize - 300,
Ticks -» {Range[-Pi, Pi, Pi/ 2], Automatic}
15
Grid[Partition[Table [makePlot[n], {n, O, 5}1, 2],
Frame - All]

Figure 2.24: Code for the above plot

2.3.8.4 Part (d)

The function f (x) is piecewise C! continuous over -7 < x < 7. Therefore the 27 periodic
extension is also piecewise C! continuous over all x. There are no jump discontinues (only
corner points). The Fourier series converges to f (x) at each x € R. (If there was a jump
discontinuity at some x, then the Fourier series will converge to the average of f(x) at that
x, but this is not the case here).

2.3.9 Problem 3.2.27

(a) Find the Fourier series of f(x) = ¢*. (b) For which values of x does the Fourier series
converges? Is the convergence uniform? (c) Graph the function it converges to.

solution

2.3.9.1 Part (a)

For generality, the Fourier series for ¢** is found, then at the end a is set to be one. It is
assumed the period is 27.

oa 2 _(2n
~ — 4+ - +b -
e > nzgl a, cos nx n S nx

But T = 277 and the above becomes

a — .
e S U E a, cos (nx) + b, sin (nx)

2 n=1
Where
1 Z
2
=75 | . f (x)dx
2 T2
1 TU
=— e™dx
Tt =Tt
1 [ e n
i
-7
1
— (ATt _ pmam
— (e e™"m)
But 2= — sinh (amt) hence the above simplifies to

2
a = — sinh (amn)
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And forn >0
T
1 rz 2
a, = T j:zzf(x) cos (Tnnx) dx
2 2

1 TC
— f e cos (nx) dx
T =Tt

(1)

Let]= f " 6™ cos (nx) dx. Using integration by parts, f udv = uv - f vdu. Let u = cosnx,dv =

e .
e’ then v = 7,du = —nsin (nx). Hence

I=uv- f vdu
ax 1 n
= [cos (nx) —] + - f e™ sin (nx) dx
a| aldg
ean —AaT n TT
= [cos (nmt) — — cos (nm) + — f e™ sin (nx) dx
a ad_,
an _ ,—an T
= (-1)" [L] 1 f e sin (nx) dx
a aJd_,
2(-1 n an __ ,—amn T
= ) [e ¢ ]+Ef e™ sin (nx) dx
a 2 ad_,

2(-1)" Tt
) sinh(an)+ﬁf e™ sin (nx) dx
a ad_,

Applying integration by parts again on the integral above. Let u = sinnx,dv = ¢* then

e
v= 7,du = ncos (nx) and the above becomes

2(-1)" | n(( e\ o em
I= sinh (am) + — | [sinnx—| - — f e cos (nx) dx
a a al aJdg
2(-1)" 1 - ”
= sinh (amn) + I [— (sin (n7r) €4 + sin (nm) e~%7) — I f e™ cos (nx) dx)
ala aJ_,
2(-1)" 2

sinh (am) - %

TU
f e™ cos (nx) dx
Tt

But f " e cos (nx)dx = I, the original integral we are solving for. Hence solving for I from
=Tt

the above gives gives
n 2

sinh (am) - %I

sinh (am)

_ 2a(-1)"sinh (am)
B a2 + n?

(2)
Using (2) in (1) gives
1 7T
a, = — f e"™ cos (nx) dx
T —Tt

_ a2 (-1)" sinh (an)
B a? + n?

(3)

e
Now we will do the same to find b,

1

T

2
1 TT
— f e™ sin (nx) dx
T =Tt

T

fET f (x)sin (%nx) dx

2

b, =

(4)
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Let] = f " e sin (nx) dx. Using integration by parts, f udv = uv— f vdu. Let u = sin (nx) ,dv =

eﬂx
e™ then v = 7,du = ncos (nx). Hence

I:uv—fvdu

ox I n e
= [Sin (nx) —] - = f e cos (nx) dx
a| aJd_g

0

eﬂ'r[ e—ﬂlT[ n 7T
= |sin (nmt) — — sin (nm) ] - — f e™ cos (nx) dx
a a aJd_,

n s
=—— f e cos (nx) dx
a

=Tt
Now we apply integration by parts again on the integral above. Let u = cosnx,dv = e**
then v = %,du = —nsin (nx) and the above becomes
n e \™ n (" .
[=—— (cos (nx) —) + — f €™ sin (nx) dx]
a a aJ_,

-7

(cos (nm) ™™ — cos (nm) e™™) + g f €™ sin (nx) dx)
Tt

cos (nm) (e — e ") + Z f e sin (nx) dx)

=Tt

cos (nmn) (%) + Z f e™ sin (nx) dx)

=Tt

| I
| |
e —— ————

QIS QNI NI =

—

QI RN QP Q-

7T
cos (nm) sinh (am) + Z f e™ sin (nx) dx)

2 2
=~ (-1)" sinh (am) - = f ¢ sin (nx) dx
a a e

But f " ¢% sin (nx) dx = I. Hence solving for I gives
~T

2 2
I= -2 (-1)"sinh (am) - =1
a a

2 9
I+ 1= -2 (<1)" sinh (a)
a a

1(1 + "—) - —Z—Z (=1)" sinh (an)
a a

i—;’ (~1)" sinh (ar)
I=-—

n2
1+ ol
()
I= —m sinh (IZT[) (5)
Using (5) in (4) gives

1 TC
b, = — f €™ sin (nx) dx
T /S

o 12n(-1)"
o a?+n?

sinh (am)
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Now that we found ay, a,, b,, then the Fourier series is

a o0
o EO + E a, cos (nx) + b,, sin (nx)

2 .
—sinh(an) & 4 2(-1)"sinh (am) 12n ( 1"
~ e — I A= i
> + 2 . os (nx) 22 sinh (amn) sin (nx)
sinh (amn) "
~ T — s inh (am) Z 2 " (a cos (nx) — nsin (nx))

2( 1)

~ sinh (amn) ( - E
RETTCTING 2 S )

Tt a2 +n
When a =1 the above becomes
2sinh(n) (1 & (-1)"
. (2 .S

T 1+ n?

(a cos (nx) — nsin (nx)))

(cos (nx) — nsin (nx)))
n=1

2.3.9.2 Part (b)

The 27 periodic extended function shows it piecewise C! over all points except at the
points x = ---, =51, -3m, 1,37, 57, ---. These are points at the ends of the original domain.
At these points, there is a jump discontinuity. Therefore the Fourier series at these points
will converge to the average of the 27t periodic extended ¢*. Due to the jump discontinuity
Gibbs phenomena shows up at these points. This also means that the convergence is
not uniform.

2.3.9.3 Part (c)

The following is a plot showing the convergence using different number of terms in the
above sum. This shows the Fourier series converges to ¢* at all points inside the interval,
except at the end points x = —71, = where it converges to the average of f (x).

Fourier series approx using 0 terms Fourier series approx using 3 terms
25¢ 25

20f 20k

Fourier series approx using 6 terms Fourier series approx using 9 terms
251 251

20F 20L

10 10f
\ : \ j
PN <= | yaX P |
-JT \/ Vs * fl'(v s *
Fourier series approx using 12 terms Fourier series approx using 15 terms
25¢ 25

20f 20k

Figure 2.25: Plot of Fourier series approximation and f(x)
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padIt2[v_, f List] := AccountingForm[v, f, NumberSigns » {"", ""},
NumberPadding -» {" ", " "}, SignPadding - True];
2Sinh[Pi 1 -1)"
2SI (1 gy (-1
Pi 2 1+ n?

fs[x_, max_] := (Cos[nx] -nSin[nx]), {n, 1, max}]);

fx_] := Exp[x];
fp[x_] := Piecewise[{{f[x+2Pi], x < -Pi}, {f[x], -Pi<x < Pi}, {f[x-2Pi], x> Pi}}];
makePlot[n_ ] :=Plot[{f[x], fs[x, n]}, {x, -Pi, Pi},
PlotStyle -» { Blue, Red}, AxesLabel » {"x", None},
PlotLabel -» Row[ {"Fourier series approx using ", n, " terms"}],
ImageSize - 300,
Ticks » {Range[-Pi, Pi, Pi], Automatic},
PlotRange » {{-1.1Pi, 1.1Pi}, {-4, 25}},
GridLines -» {Range[-Pi, Pi, Pi], Automatic}, GridLinesStyle - LightGray
15
Grid [Partition[Table [makePlot[n], {n, {O, 3, 6, 9, 12, 15}}1, 2],
Frame -» All]

Figure 2.26: Code for the above plot

2.3.10 Problem 3.2.30

Suppose a;, by are the Fourier coefficients of the function f (x). (a) To which function does
the Fourier series

%0 4+ 3 g cos (2kx) + by sin (2kx)

2
k=1
Converge? (b) Test your answer with the Fourier series (3.37) for f (x) = x.
. sin2x sin3x sin4x
x~2(smx— > + 3 "2 ) (3.37)

solution

2.3.10.1 Part (a)
Let

g(x) ~ % + k;l 4y cos (2kx) + by sin (2kx)

f(x) ~ % + Z ay. cos (kx) + by sin (kx)
k=1

Then g(x) has as its period half the period of f (x). This is because when 2kx = 2?nkx then

T = 7 and when kx = 2?ﬁkx then T = 27.

Therefore, if f (x) has fundamental period as -7 < x < 7, then g(x) has a fundamental

period as -2 <x < Z. And since f(x),g (x) have the same Fourier series coefficients, then
2 2 h -
g (x) converges to 2f (x) but only over —— <x < -.

2.3.10.2 Part (b)

Let f (x) = x whose we are given that its Fourier series is

sin2x sin3x sindx
2 3 4

f(x)~2(sinx— + -
. ) 2 . 1 .
=2sinx —sin2x + 5811133(— Esm4x+

2(_1)k+1

The above says that 4, = 0 and by = - Hence
%) 2(_1)k+1 .
x) ~ ), ———sin (kx
@)~ =ik
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Therefore g (x) will converge to

g(x) ~ L;—O + kgl ay cos (2kx) + by sin (2kx)

00 2 _1 k+1
2 ) sin (2kx)
k=1 k

=2 (+1)sin (2x) + _72 sin (4x) +

2(+1)
3

-2
sin (6x) + T sin (8x) + ---
. . 2 1 .
= 2sin (2x) — sin (4x) + 3 sin (6x) — 5 sin (8x) + ---

Over —= < x < % To verify the above, we will now find gy, by directly for x but using T =«
and not T = 27 to see if the above Fourier series is obtained.

2 z

2
aoz—f xdx

nJ_r

2

=0
And

2 T
a; = —fz x cos (2kx) dx
TTJ_T
2
Since x is odd function and cos is even, the product is odd. Hence a; = 0.

7 T

by = —fz xsin (2kx) dx
TJ_I
2

4 T
=z fz xsin (2kx) dx
TJdo

_4 (—kn cos (km) + sin (kn))

T 452

= % (—kt cos (km))

:%cos(kn)
N
==

_ (_1)k+1
k

Therefore
g(x) ~ % + Z ay. cos (2kx) + by sin (2kx)
k=1

k

= sin (2kx)
k=1

60



2.3. HW 3 CHAPTER 2. HWS

2.3.11 Key solution for HW 3

Homework 3 Solutions
3.1.2

(a) exp(—n2t)sinnz forn=1,2,....

(b) exp[f (n+ %)215} sin(n+ %) zforn=0,1,2,....

3.15
5. (a)
A Eigenfunctions Eigensolutions
2 2
A=—w?-1<-1 cosSwzT, Sinwz e” WDt oz e~ W DGy
A=-—1 1, = et e iz
A= w2 —1>-1 ewa:, e~ wT e(wz—l)t+w:c’ e(wz—l)t—wm

2 2
(b) et e (n +1)tcosn$, e~ (M1 sinnz, forn=1,2,3,....

3.2.1d
2 o0
k
* (d) T+ 3 (-)FEEE
k=1
3.2.2d
2 = (—1)Ysin(2j+ 1)z
d) = :
() ™ jZ::U (2.7+1)2
3.2.3

Solution: sin®z ~ % - %cos 2z and cos® x ~ % + %cos?r.
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3.2.6h

(h)

\ \ 1 not continuous.

3.2.9
(a) a+£f £ a a+t
[ t@de= [ f@)do— [ f@)de+ [ f(z)da. (+)
But, applying the change of variables y = ¢ — /£,
[ t@yda= [+ 0dy = [ fw)dy,
£ 0 0

which follows from the periodicity of f. Thus, the second and third integrals in (%)
cancel, which establishes the result. Q.E.D.
(b) Using the change of variables y = = + a and part (a),

foef(ﬂa)dw = f:Hf(y) dy = foef(m)dm.

3.2.25
o 1 1., =, cos2jx
b ~ 4= _z )
(a) =3 -2 -1 1 2z 3 ( ) f(m) ™ Jr 2 s i jzz:l 4]2 - 1
(c) — V\

1 2 3 1 2 3 -3
1 1]
C-SA 0.5/—\
-1 1 2 3 - - 1 2 3
0.5
-1

The maximal errors on [—, 7] are, respectively .3183,.1061, .06366, .04547, .03537, .02894.
(d) The Fourier series converges (uniformly) to sinz when 2kw < z < (2k + 1) 7 and to 0
when (2k — 1)w <z < 2kw for k=0,+1,£2,....
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3.2.27
= sinhw  2sinh7 & k coskx —ksinkzx
~ —1 D ——
(@) e T + T kgl (=1) 1+ k2
(b) The Fourier series converges for all real x to the 27—periodic extension of €, with val-

ues coshm = %(e7T +e ™) at the discontinuities at £ = =, +3m,.... The convergence
is not uniform because the limiting sum is not continuous.

(c) T

3.2.30

(a) If f(z) is the 27—periodic extension of f(z), then the Fourier series converges to f(2:),
which is the m—periodic extension of f(2z).

(b) The Fourier series 2 (sin 2z — % sindz + % sin6x — --- ) converges to the m—periodic
extension of the function ?(:D) = 2z for —%ﬂ' <z < %'n, or, equivalently, the 27—
20z+m), —T<T<-—3m,
0, r== %ﬂ',

periodic extension of f(z) = 1 1
2z, —ZT <z < 3T,

2z —7), sm<z <.
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24 HW 4

Local contents

2.4.1 Problem 3.2.341 . . . . . ... 63
2.4.2 Problem 3.2.37 . . . . . .. 63
2.4.3 Problem 3.2.40al. . . . . . . .. ... e 65
2.44 Problem 3.2.54] . . . . ... . 66
2.4 Problem 3.2.600 . . . . . . . . . . 68
2.4 Problem 5 68
[2.4.7 Problem 3.4.3 (b,d)|. . . . . ... ... .. 71
2.4.8 Problem 3.4.4] . . . . . ... e 75
2.49 Problem 3.4.5 . . . . ... 77
[2.4.10 Problem 3.5.5 (a,f,i)] . . . . ... ... ... 82
[2.4.11 Problem 3.5.7 (b,d,f)[. . . . . . ... ... .. 82
2.4.12 Key solutionfor HW 4. . . . . ... ... ... .. ... .. ... . ... 84

2.4.1 Problem 3.2.34
If f (x)is odd, is f’ (x) (i) even? (ii) odd? (iii) neither? (iv) could be either?
solution
Answer is (i), even.
Proof: Since f (x) is odd, then by definition
f) =-f(=x)
For all x in the domain of f (x). Taking derivatives w.r.t. gives

[f 0] =[-f o]
Applying the chain rule to RHS gives —f’ (-x) (1) = f’ (—x) and the LHS gives f’ (x). Hence

the above becomes

f ) = f" (=)
But by definition g (—x) = g(x) implies an even function. Hence the says that f’(x) is an
even function.

2.4.2 Problem 3.2.37

True or False. (a) If f(x) is odd, its 27t periodic extension is odd. (b) if the 27 periodic
extension of f(x) is odd, then f (x) is odd.

solution

2421 Parta
True.

To show this, will use an illustration. In this illustration, and to reduce confusion, let f (x)
represents the original odd function defined over -7 < x < 7 and let g(x) represents the
27t periodic extension of f (x). For illustration, used the odd function f (x) = x.

Figure 2.27: Showing f(x) and its 27t extension
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To show that g (x) is odd, we pick any point x and now we need to show that g (-x) = —¢ (x)
or g (x) = —g(—x).
On the right side of the x axis, g(x) = f (x — n(2m)) where n is positive integer due to the

27t extension. In the above illustration n = 1 but it can be any positive n. Let the point
x —n(2n) = z. Hence now we have the following diagram

f(z) = g(x)
/() o)
- 2T
%- i » T axis
37 /27 -7 0 A7 o T g

z=x —n(2m)

Figure 2.28: showing g(x) = f(x — 2nm)

Where f (z) = g (x). But we are given that f (x) is odd. Hence f (z) = —f (-=z). On the negative
side of the x axis, we do the same we did on the positive side. Since the left side of f (x)
was also 27 extended, then g(—x) = f (—x + n(2n)) = f (-2)

f(z) = g(x)

x axis

z =z —n(2n)

Figure 2.29: showing g(-x) = f(-z)

In conclusion, from the above we see that

g(=x) = f(-2)

But f(-z) = —f (z) since f is odd. Hence the above becomes
§(-x)=-f(2)

But f(z) = g(x) as shown in the first illustration, hence the above becomes
§(=x) =-g)

Which shows that g (x) is odd.

Since g (x) is the 27 periodic extension of f (x). This is what we asked to show.

2422 Partb

(b) True. Proof by contradiction. Since g (x) is odd, then we know that

g(-x) = -g(x)
We also know that by the 27t extension of f (x) that
fz)=g(x)

Where we are using the same diagrams from part (a). Where z = x — 2nm. Now, let us
assume that f (x) is even. Then this means that

f@)=f(-2)
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But the 27t extension on the left side of the x axis, then we conclude that

g(=x) = f(-2)

Which means that
g(=x) = f(2)
=g ()

But this means g (x) is even, which is a contradiction, since g (x) is odd. Hence f (x) can
now now be even.

Only other choice is that f(x) is neither odd or even, or an odd function. Let us now

. . b O<x<m )
assume is neither. For example, take f (x) = . Then following the above
0 -m<x<0
argument, we see that
g =f(

But now f (-z) = 0, then by 27 extension of the left, then g (-x) = f (-z) = 0. But this means
that ¢ (—x) # —g(x) which is not possible since g (x) is odd. The only other choice left is
that f (x) is odd. Which is what we are asked to show.

2.4.3 Problem 3.2.40a

1
: : : : : x| < -m
Find the Fourier series and discuss convergence for (a) the box function b (x) = 1 2
5T < x| < 7
solution
0.8;
0.6}
0,4}
0.2;
Figure 2.30: plot of b(x)
ap d .
b(x) ~ > + E a, cos nx + b, sin nx
n=1
But 2 is the average of the function over its 2 domain. Hence L= _ T 1, and
2 2 21 2n 2
1 TT
a, = — f f (x) cos (nx) dx
s =Tt

1
1 5T
= —fz cos (nx) dx
T _%n

= i [sin (nx)]
ey

2 . (nn)
= —sin[—
n 2
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And since the function is even, then all b, = 0. Hence

1 & 2
b(x) ~ =+ E —sin(ﬂ)cosnx
2 MHmn 2

To verify the above solution, it is plotted against b (x) for increasing number of terms.

Terms =0

Terms =4
12¢

Aoa,

i
2

I

Figure 2.31: plot of Fourier series approximation to b(x)

p = Table[
Plot[{f[x], fs[x, max]}, {x, -Pi, Pi}, PlotStyle -» {Blue, Red},
Ticks -» {Range[-Pi, Pi, Pi/ 2], Automatic},
GridLines » {Range[-Pi, Pi, Pi/ 4], Automatic},
GridLinesStyle - LightGray,
PlotRange » {Automatic, {-.2, 1.2}},
PlotLabel » Row[{"Terms = ", max}]
]
3
{max, @, 16, 2}
15
p = Grid [Partition[p, 3], Frame -» All]

Figure 2.32: Code used for the above plot

Since there are jump discontinuities in the function b (x), this will cause Gibbs effect at
those points. This also implies that the convergence is not uniform. Fourier series will

converge to each x where the function is continuous, but it will converge to the average of
b (x) at those points where there is a jump discontinuity.

In this case at _% and g in the fundamental domain given as shown in the plots above. At

. . . 1
those points, Fourier series converges to 5

2.4.4 Problem 3.2.54

X

1 2 1 1 1 cosh x e +e”
Prove that hn=-+=|—+— + — + ---], wher hx = = —
ove that coth o omw\1+12 1422 1432 > ere cothx sinhx  e¥—e

solution

The complex Fourier series of ¢* is

e’ = lim c, e (1)
N—)oon
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Where

Cn

1 Tt .
= — f eXe M dx
2t J_;
1 T .
A f ex(l—zn)dx
2 J_;

1 [ex1-in) i
T2 [ 1—in ]
-7t

1 1 o
_ X ,—inx
= serm ™,
1 1 . .
_ T ,—INTL _ =TT HINTT
=51 [e e e e ]
But "™ = cos (nm) and also e™™ = cos (nm) since n is integer. The above simplifies to
_ 1 cos(nm) [ — ]
Cn =51 ef—e
But e™ — ¢™™ = 2sinh (7). Therefore
1
Cp = s (n7) [2 sinh (77)]
2 1-
1 cos (nm) sinh (77)
7 1-in
_ 1 cos(nm)sinh (n) (1 + in)
n 1-in 1+in
1 . (1 +in)
=— h
- cos (nm) sinh () 1o
-1)" (1 +in)
= h
i
Substituting this back into (1) gives
N n
) (- 1) (1 +zn) i
Slnh (7'() . 1+ m)
1 1 mx
Neo _Z 1" T2’
Atx=m
— (e” + €™ ™) = cosh ()
1 (sinh (7) a (1 +in) g sinh (n) " (1 + in) pinm| _
E( Tt N—)oo_z:(l) 1+n 2 N—»oo_zl(l) 1+n 2 COSh(T()
1 sinh () (1 + zn) i . a (1 +in) e
E TU (N—w:x)n:2 ( 1) n+Z\lll—r>Ic}on_Z ( 1) 1+7’12 i _COSh(T()
But ¢ = cosnmt = (-1)" and e = cos t = (-1)". The above becomes
1 sinh (7'() o (1 + zn) o (1 + zn) 3
5 (N% _2 ()" T + i nz (-1) = cosh ()
1 sinh 1 1
1 sinh (m) ( lim 2 1+ zr;) + lim Z ( + 17;)) ~ cosh ()
2 Tt N—oo HeoN 1+n N—-oo HeoN 1+n
sinh () lim E d+ ZZ) = cosh (71)
T N—oo N 1+n
sinh (7)) { .. N 1 N n 3
Tt (1\111—%0”:2_1\,1 + n? +Zf\lfl—>oon:E_N1 +n2) cosh ()
But limy_,, Zn__N m = 0 by symmetry. The above simplifies to
sinh () N B
T I\lfl—rgo n;N 1+n2 cosh ()
1 i": 1 cosh(n)
n, A 1+n2  sinh(m)
= coth (77)
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Therefore
coth () = l i !
A1+ n?
d 1 > 1 )

1
:;(14_ 2 1+712+21+n2

n=-00 n=1
1 - 1
= 1+2
( nz=]1 1+ nz)

n

1 2& 1
= — 4+ —
4 71;::11+n2
1

_ro2(v v 1
T om\1+12 1422 1+32
Which is what the problem asked to show.

2.4.5 Problem 3.2.60
Can you recognize whether a function is real by looking at its complex Fourier coefficients?
solution

Yes. If complex Fourier coefficients come in conjugate pairs such that c_, = ¢, and ¢ is

real. (co should always be real, since this represents the average energy at the zero (D.C.)
frequency, hence must be real quantity).

f(x): E Cneinx

n=—oo

-1 00
=co+ E c,e™ + Z ce™
n=1

n=-co
[e¢] [o¢]

=co+ Z C_p,e™ + Z c,e™
n=1 n=1

(o]
=co+ Z (c_ne‘””‘ + cnem")
n=1

Now, If c_, = ¢,, then the above becomes

(o]

f(x)=co+ Y, T ™ + ™
n=1

But (ﬁe‘i"x + cnei”x) is real. (This could also be written as c,e~"* + c,,¢™ which now looks
like standard z + z in complex numbers). Hence f (x) is real.

To show this, here is an example. Let ¢, = a + ib, then c_, = a — ib. Therefore
Toe ™ 4 c,e™ = (a + ib)e™™ + (a + ib) e
= (a —ib) e ™ + (a + ib) ™
= (ae‘i”x - ibe‘i”x) + (aei”x + ibei”")
=4 (einx + e—inx) + bi (einx _ e—inx)
= a(cosnx + isin nx + cos nx — i sin nx) + bi (cos nx + i sin nx — cos nx + i sin nx)

= a (2 cos nx) + bi (2i sin nx)

= 2acosnx — 2bsinnx

Which is real value. Therefore if each c, is a complex conjugate of c_, (with ¢, real)
then f (x) will be a real function.

2.4.6 Problem 3.3.2

Find the Fourier series for the function f (x) = x. If you differentiate your series, do you
recover the Fourier series for f’ (x) = 3x?? If not, explain why not.

solution

The function f (x) over —-m < x < 7t is

69



24. HW 4 CHAPTER 2. HWS

f(x)
30}

20

101

S
NN
“ft

Figure 2.33: Plot of x*

We see right away that differentiating term by term the Fourier series for the above function
could not be justified. Even though the function x* has no jump discontinuity inside -7 <
x < 7, which is good, it still fails the other test which requires that f (-n) = f (n) for the
term by term differentiation to be justified. This is because the 27t extension will now have
jump discontinuities in it. The conditions under which the Fourier series for a function
can be term by term differentiated are

1. f(x) is piecewise continuous between -7 < x < 7 with no jump discontinuities.

2. f(-m) = f ()

The function given fails condition (2) above. This explains why differentiating the Fourier
series of x> will not give the Fourier series of 3x2. Now we will show this as required by the
problem.

To find the Fourier series of x°, since it is an odd function, then we only need to find b,

1 7T
b, = — f x3 sin (nx) dx
Tt T

Since x° is odd, and sin is odd, then the product is even, and the above simplifies to
2 TT
b, == f x3 sin (nx) dx
TJo

Integration by parts., Let u = x3,sin(nx) = do. Then du = 3x%,v = —% cos (nx). Then
fudv = uv - fvdu gives

2( 1 n 1 (7
b, = —|- [x3 cos (HX)]O + ;j(; 3x% cos (nx) dx)

2( 1 3 ("

== —E[n3 cos (nn)]+ Ef x% cos (nx)dx)

0

2( 1 3 (™

=~ [n3 (_1)”]+ Ej(‘, x? cos (nx) dx)

2(-1)" 72

6 7T
= 4+ — f x% cos (nx) dx
n nn Jg

Integration by parts again. Let u = x?,cos (nx) = dv. Then du = 2x,0 = %sin (nx). Then
using f udv = uv - f vdu the above becomes

2 2 (% [x2sin (nx)];T - % fon x sin () dx)

n nrt

= —M + 5 (—% j:xsin(nx)dx)

by =

n nm
2(-1)"m® 12 pm
=- () = - f x sin (nx) dx
n neT Jo

. . e _ P | .
Integration by parts again. Let u = x,sin (nx) = dv. Then du =1,v = — cos (nx). Then using
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fudv = U — fvdu the above becomes

—_1)* +2 _ i
2( 111) & _,,112271 (71 [xcos(nx)]g+%fo cos(nx))

2(-1)"m2 12 ( -1 1 [sin nx ]”]
=- - [7t cos (nm)] +
n n n 0

b, = -

n n’mn
2(<1)' 2 12 (-1 .
T  nm (7 [n D ])
2(-1)" 2 12

=- +— m(-1)"
n3m

n
—2(-1)" n2r2 + 12 (-1)"
1’13
~2(-1)" (-6 + n?n?)

Hence

sin (nx) 1)

Now we apply Term by term differentiation to the RHS above and obtain

00 ' 1V (— 2.2
Z_2( )" ( 6+ nm )sin(nx)) _ 26D (-6 +n*n?)

cos (nx)

n=1 nz

_ g ROV 26D
n=1 n

= (12 51_21) -2(-1)" 712) cos (1x) (2)
n=1

And differentiation of LHS of (1) gives
(x3)/ = 3x?

Let us now find the Fourier series for 3x* and see if it matches (2). Since x

only have a, terms
1 TC
ag = — f 3x2dx
Tt -7
3
-7

e - (—n)3]

2 is even, it will

=
@
[E—
A

RAl—Aal~ 3w
|
A

3
S|
+
=

%

N M/ — ——
(O8]

|
N
=)

And
3 (™,
a, = —f x= cos (nx) dx
T =Tt

12(-1)"
=5

Therefore the Fourier series for 3x2 is

”+Z

Comparing (2,3) shows they are not the same. (2) has an extra term -2 (-1)" 72 inside the
sum and it also do not have the added 7 term outside the sum. The explanation of why
that is, is given earlier in the solution.

1(—

cos (nx) 3)
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2.4.7 Problem 3.4.3 (b,d)

Find the Fourier series for the following functions on the indicated intervals, and graph
the functions that it converges to. (b) x> —4 over -2 < x < 2. (d) sinx over -1 < x < 1.

solution

2471 Part (b)

Figure 2.34: Plot of x2—4

The function x? — 4 is even. Hence all b, terms are zero. The period now is T = 4.

aO:%fi(xz—él)dx
2

:j(; (x2—4)dx

And

1 2 2
@y = o jiz (x2 —4) cos (?nnx) dx

But T = 4, hence the above becomes

1 2 T
ay =5 f—z (x2 —4) cos (Enx) dx
2
= j;) (x2 - 4) cos (gnx) dx
2 2
= f x2 cos (znx) dx—f 4 cos (Enx) (1A)
0 2 0 2

Looking at the term £2 x? cos(gnx) dx, applying integration by parts. Let u = x?,dv =

cos (gnx). Then du =2x,v = % sin (gnx). Then using fudv =uv - fvdu gives

2 2 2 2 2
fxzcos(znx)dx: xz—sin(znx) - | 2x— sin(znx)dx
0 2 wm 2 0 0 m 2
0
2 4 2 (7
= —|4sin(nn) -0 ——f xsm(—nx)dx
nm nn Jg 2

4 2 (7
= ——f xsin (—nx) dx
m 0 2
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Applying integration by parts again. Let u = x,dv = sin (%nx). Thendu=1,v= ;—i cos (gnx)
then the above becomes

2, T 4 [-2 T 2 2 2 T
f X cos(—nx)dx:—— —[xcos (—nx)] —f —cos(—nx)dx
0 2 nn | In 2 g Jo Tn 2

= 4 [— [2 cos (rn) — 0] + % fz Ccos (gnx) dx]

0

T

= —— (-1) (1B)

1C)
Using (1B,1C) results back in (1A) gives a, as

16
212

(-1)"

a, =
Therefore the Fourier series is

8 & 16
x2—4~——+2—( -1)" cos(nnx)
3 nlnn 2

~ == 712 Z ( 1) COS(nTIX)

The following shows how the above Fourler series converges for increasing number of
terms. The convergence is uniform convergence.

Terms = 2

Figure 2.35: Plot of Fourier series for x> - 4
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ClearAll[f, x, n, max];
flx ] :=x"2-4

(-n-
2

16
fs[x_,max_] :=-8/3+ — Sum[
n? n

Cos[g nx], {n, 1, max}]

p = Table[
Plot[{f[x], fs[x, max]}, {x, -2, 2},
PlotStyle -» {Blue, Red},
GridLines -» {Range[-2, 2, 1/4], Automatic},
GridLinesStyle - LightGray,
PlotRange -» {Automatic, {-4.4, .2}},
PlotLabel - Row[ {"Terms = ", max}]

]

3

{max, @, 6, 1}
15
p = Grid [Partition[p, 3], Frame - All]

Figure 2.36: Code used for the above Plot

2472 Partd

The function sin x is odd. Hence all 4, terms are zero. The period now is T = 2.

T
1 2 2
b, = = fZT sin (x) sin (Tnnx) dx

2 2
1
= f sin (x) sin (7tnx) dx
-1

But the integrand is even, then the above becomes
1
b, =2 f sin (x) sin (7tnx) dx
0

. : . 1
Integration by parts. Let u = sinx, dv = sin (nnx), then du = cosx,v = ——Cos (rtnx) and the
above becomes

1 1
b, =2 (—— [sin x cos (nnx)](l) + — f €os x cos (Tnx) dx)
n m Jo
1 . 1 !
=2|——[sin (1) cos (nn)] + —f cos x cos (rnx) dx
mn Tm Jy
2 1
= (— sin (1) (<1)" + f cos x cos (1tnx) dx)
T 0
2 n+1 1
=— (Sin OEH)T + f cos x cos (Ttnx) dx)
T 0
. . _ _ — g 1l
Integration by parts again. Let u = cosx,dv = cos (nnx), then du = —sinx, v = — sin (rtnx)

and the above becomes
1

1

2 1 — 1
b, = —|sin(1) (—1)”+1 +|— [cosxsin (mnx)| + — f sin x sin (7tnx)
n Tin n J,

0

2 1 1
== [sin (1) (<)) + — f sin x sin (nnx))
™ Tm Jy

2 2
= Zsin (1) (1) 4 —— f sin x sin (7nx)
™ T“1n 0
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1
But 2 £ sin x sin (rtnx) = b,. Hence the above simplifies to

bn 2 . n+1
bn - W = % Sin (1) (—1)
1 _ 2 . n+1
b‘rl (1 W) = — Sin (1)( 1)
Z sin (1) (<1)"*
bn — T T
L
2. 02\ 2 . gyl
_ (m2n2) = sin (1) (1)
mn? -1
_ 2nmsin(1) (—1)”Jrl
B m2n2 -1
Hence the Fourier series is
sinx ~ Z b,, sin (tnx)
n=1
® 2nmsin (1) (<1)"!

- E 22
= nens =1
The following shows how the above Fourier series converges for increasing number of
terms. The convergence is not uniform since the function is odd. Hence there will be a

jump discontinuity when periodic extended leading to Gibbs effect at the edges.

sin (rtnx)

Terms =0 Terms =2 Terms =4
1.0 1.0 1.0
05} 05} 05}
-1.0 -0.5 0.5 1.0 0.5 1.0 | -10 -0.5 0.5 1.0
-0.5 -0.5
-1.0L -1.0L
Terms =6 Terms = 10
1.0 1.0
0.5+ 05+ 05}
-10 -0.5 0.5 1.0 | -10 -0.5 0.5 1.0 | -10 -0.5 0.5 1.0
-0.5 -0.5 -0.5
1.0t 10t -10b
Terms = 12 Terms = 14 Terms = 16
1.0 10 1.0
0.5f 05+ 05}
o -05 05 10 [ -0 -05 05 10| -1{o -0.5 05 1.0
-0.5 -0.5 -0.5
-1.0L -1.0+ -1.0*-

Figure 2.37: Plot of Fourier series for sin(x)
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ClearAll[f, x, n, max];
f[x ] :=Sin[x]

2 (-1)"nxSin[1]
2

fs[x_, max_] :=Sum[— Sin[nrnx], {n, 1, max}]

n?nx?-1
p = Table|[
Plot [{f[x], fs[x, max]}, {x, -1, 1},
PlotStyle » {Blue, Red},
GridLines -» {Range[-1, 1, 1/4], Automatic},
GridLinesStyle - LightGray,
PlotRange » {Automatic, {-1, 1}},

PlotLabel - Row[ {"Terms = ", max}], AspectRatio -> Automatic

]

I

{max, @, 18, 2}
15
p = Grid [Partition[p, 3], Frame - All]

Figure 2.38: Code used for the above Plot

2.4.8 Problem 3.4.4

For (b) x> —4 over -2 < x < 2. (d) sinx over -1 < x <1 write out the differentiated Fourier
series and determine whether it converges to the derivative of the original function.

solution
2481 Partb
From Problem 3.4.3
-1
x? —4~—§ Z( i COS(ZHX) (1)

Since the function x?>—4 is uniform convergent, then we expect that the differentiated Fourier
series will converge to the derivative of the original function. The following calculations
confirms this.

Taking derivative of the RHS of (1) gives

8 16 & (-1)" 7\ 16 (m\(D)" . (&
(‘572} 2 COS(E”X)) =2 X-(37) 5o (5m)
8 00 _1 n+1
= — Z D sin (Enx) (2)
meoon 2

And taking derivative of the LHS of (1) gives
(x-4) =2« (3)

We now need to show if the Fourier series of 2x gives the RHS of (2). Let us now find the
Fourier series for x, over -2 < x <2 (period T = 4). Since x is odd, then all a,, = 0.

b, 2f xsm(—nx)dx
2f xsm( nx)dx

. TC .
But xsin (Enx) is even. The above becomes

2
bn:f xsin(znx)dx
0 2

. . (T -2 e
Integration by parts. Let u = x,dv = sin (Enx), then du =1,v = —cos (Enx) and the above
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becomes

-2 T 2 2 2 T
b, = — [x cos (—nx)] + — f cos (—nx) dx
nm 2 gy nmJdy 2

2

-2 2
= [2 cos (nm)] + Ef

0

2
= i (—2 cos (nm) + f cos (Enx) dx)
nm 0 2

0
—

2 2 1. (T 2
= —|-2cos(nn) + — [sm (—nx)]
nm nm 2 o

COS (Enx) dx
2

2
= — (-2 cos (nn))
nm
-4
== ('
nm
Hence the Fourier series for x over -2 < x <2 is

4 (o) (_1)7l+1 ' T
X ~ % Z 1 Sin (Enx)

n=1
Therefore the Fourier series for 2x is
8 00 _1 n+1
2x ~ — Z ) sin (znx) (4)
e on 2

Comparing (4) and (2) shows they are the same. Hence term by term differentiation is
valid in this case.

2482 Partd

From Problem 3.4.3, the Fourier series for sinx over -1 < x <1 is

sinx ~ i 2nn( 1) ————sin (1) sin (7tnx) (1)

Since the Fourier series for sinx over -1 < x <1 is not uniform convergent, then we expect
that the differentiated Fourier series will not converge to the derivative of the original
function. The following calculations confirms this.

Taking derivative of the RHS of (1) gives

(i _M Sjn(l)sin(nnx) i 2n ( ) sm(l)cos(nnx)

n=1 n?n2 -1
n2 2( 1)n+1
- ngl — sin (1) cos (tnx) )
And Taking derivative of the LHS of (1) gives
(sinx)” = cosx o

So now we need to show that the Fourier series for cosx, over -1 < x <1 (period T = 2)
agrees with (2).

Since cos x is even, then all b, = 0.

T
1 —_
ag = szT cos (x) dx
2 T2
1
:f cos (x) dx
-1

1
=2f cos xdx
0

= 2[sin (x)](l)
=2sin(1)
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And
T
1 2 271
ay, == fT COS X CO8 | — 11X dx
2 2
1
= f cos x cos (mnx) dx
-1
1
= 2f cos x cos (rnx) dx
0
Integration by parts. Let u = cosx,dv = cos (nmx), then du = —sinx, v = % sin (nmtx) and the

above becomes

1 1 !
a, =2 (— [cos x sin (nnx)]é + — f sin x sin (n7x) dx)
T Tm Jy

1

— 2 : 1
= ([cosxsm (nmc)]0 + f

sin x sin (n7x) dx)
0

1

= % ([cos (1) sin (nm)] + f

sin x sin (n7mx) dx)
0

2 1
=— sin x sin (n7mx) dx
Tm Jo

Integration by parts again. Let u = sinx, dv = sin (nmx), then du = cosx,v = ;—rlz cos (nmx)
and the above becomes

2 (-1 1 !
a, = — (— [sin x cos (nnx)](l) + — f cos x cos (nmx) dx)
nin \tn n Jy

= % (— [sin (1) cos (nm)] + j(;l oS x cos (n7x) dx)

2 2 1
=—— (sin(1) (-1)" +—f d
7 (sm( )(-1) ) 22 ), cos x cos (nmx) dx

1
But 2 l; cos x cos (nmx) dx = a,,. Hence the above becomes

ay _ 2 . n
= = (sin (1) (-1)")
1\ 2sin(1) (=)™
an 1= en2) 2n2

. (nznz —1) _ 2sin(1) (-1)"™!
"\ mn2 ) n2n?
_ 2sin(1) (-1)"™
= T
Hence the Fourier series for cos(x) over -1 <x <1 is

a o
COSX ~ EO + Z a,, cos (mnx)

n=1
, & 2sin (1) (-1)"*!
~sin(1) + nz::l — a1 cos (rtnx) (4)

Comparing (4) and (2) shows they are not the same. Hence taking derivatives term by
term of the Fourier series was not justified as expected.

249 Problem 3.4.5

For (b) x> —4 over -2 < x < 2. (d) sinx over -1 < x < 1 find the Fourier series for the
integral of the function.

solution
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2491 Partb
From Problem 3.4.3

SRR

Integrating the RHS of (1) gives
X
nz) f coS (gns) ds
0

[z E el )) IR

37 m2&nn n?
8 3R . (m
=3t E N (Zm) (2)
Integrating the LHS of (1) gives
x $3 x
f (52—4)ds = (— —45)
0 2 0
3
= -4 (3)

3
Now we find Fourier series for x? —4x and compare it with the (2) to see they match in
order to see if term by term integration was justified or not above.

Let f (x) = = —4x for -2 < x < 2. This is an odd function. Hence only b, exist.
1 2 3
b, = 5 s (% - 4x) sin (gnx) dx
1 2 2
= —f x3 sin(znx) dx—Zf xsin (Enx) dx (4)
1J, 2 5 2

. . 1 2 3 .: Tt . . .
Looking at the first integral above, 1 f_ , X sin (Enx) dx. Since the integrand is even, then
1 2 3 b d 1 2 3 b d . .3 s ¢
I f_zx sm(Enx) dx = E£ x sm(Enx) dx. Integration by parts. u = x°,dv = sm(znx) then
2
du = 3x%,v = ——= cos (Enx). Therefore
nm 2

s [ i (Gne)ae= 3 (- [ con (G [ % [ 3o (G
- in|— =—|-— — — —
2Oxs Snx)dx =5 nnxcosznxo nnoxcosznxx
1 2, T
=— —[8005(nn)]+3f X COos (—nx)dx
nrt 0 2
1 2
= —(8(—1)n+1+3f x2 cos (Enx)dx)
TC 0 2

. . 2 n _ — 2 (7
Integration by parts again. u = x*,dv = cos( nx) then du = 2x,v = — sm( an) and the

2
above becomes
1 2 1 2 2 2 2
—f x3sin (Enx) dx = 8(-1)""' +3 [x2 bm(nnx)] - —f 2xsin(znx) dx
2 0 2 7’l 0 nm Joy 2

_ Ln 8(-1)"! + — | [4sin (mn)]; —2f xsm(

= LT( (8 (-1 - J; xsm( nx) dx)

Integration by parts again. u = x,dv = sm( ) thendu =1,v = —2 cos(

Tt

> nx) dx

2nx) and the above
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becomes

1 2 1 2 2 2 _D
- f x3 sin (znx) dx = — [8(-1)"" - — xcos )] - f — oS (znx) dx
2Jy 2 nm nm g Jo nm 2

_ 1 n+l 2 2 Tt
= —|8(-1) ( [2 cos (tn)] + _nj(; cos (Enx) dx))

= nl_n 8(-1)"*! - ( 2(-1)" + cos(an) dx))
0
1 n+ (Tt 2
= —18(-D) oo |2D" +— sm(Enx)]O
— L 8(_1)n+1 (
nm
-1 8(-1)" 1)"
=\ (-1 +W(_))
-8 ., 48
= — ()" + == () (®)

The above takes care of the first term in (4). The second integral Zf_ixsin (gnx) dx in (4)
is now found. Since integrand is even then

2 T 2 T
2f xsin(—nx) dx = 4f X sin (—nx) dx
Y 2 0 2

. . (T -2 b
Integration by parts. Let u = x,dv = sin (Enx), then du =1,0 = — cos (Enx), therefore

2 -2 2 2 2
4f x sin (Enx) dx =4— [xcos(znx)] + —f CoS (Enx) dx
0 2 nrt 2 0 nrt 0 2

0
—_—

-2 4 1. (m \P
=4 —[2cos (mn)] + — [sm (—nx)]
nm n?m? 2/

=4 _—2 [2 (—1)”])

= — ()" (6)
Substituting (5,6) back into (4) gives

b, = Alzfz x3sin(znx)dx—2f2 X sin (gnx)dx
1 +
(S r s o ) - o2
=(—<1> —(1)) # 20 Cay
:n3—7_(3)(—1)n+E(—1)n

3
. . X .
Hence the Fourier series for >~ 4x is

3 o)
X T
>~ 4x ~ ,;1 b, sin (Enx)

~ Z (% D" + % (—1)") sin (gnx)
x (48 + 8 (n
N Z[ n37(13 )](—1) sin(gnx)
 (8(6+n?n?) o m
Z]l[ — ](—1) sin (Enx) 7)
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Comparing (7,2) shows they are not the same. Hence integration term by term was not
justified. This is because the function x> — 4 is not odd, hence its mean is not zero.
2.49.2 Partd

From Problem 3.4.3, the Fourier series for sinx over -1 < x <1 is
— 2n7‘c( 1)

sinx ~ Z
Integrating the LHS of (1) gives
X
f sin (s)ds = —[cos ()]
0

—[cos (x) —1]
=1-cosx (2)

————sin (1) sin (7tnx) 1)

Integrating the RHS of (1) gives
2 -1 2 -1

f m (1) — sin (1) sin (1) ds = ZM (1)[COS (””S)]

0 0

22 272
nln nzln hm

= i 22(_212 sin (1) [cos (nns)]g
= Z 2 (”17)128111 @) (cos (nmx) — 1)

2( 1) sm(l) o 2(— 1) .
= 2 os (nmx) — sin (1) E 27 (3)
Let —sin (1) En 1 22( ;)1 = m, which is a constant. The above becomes
2 -1 & 2(-1)"sin(1
f E :zng A sin (1) sin (rtns) ds = E % cos (nmx) + m (4)

n=1
But m is the average of the integral of (2) which is, where T the period is 2, gives

T

1 2
:Tf_z(l—cosx)dx

2

= %f_ll (1 —cosx)dx
= % (x —sin x)f1
= % (1 -sin(1) - (-1 —sin(-1)))
= % (1 -sin(1) - (-1 + sin (1)))
= % (2-2sin(1))
=1-sin(1)
Substituting this value for m back into (4) gives
f E 2:2712 Dk sin (1) sin (rtns)ds = (1 —sin (1)) + 2 w os (nmx) (5)

Now the Fourler series for (2) which is 1 — cos(x) is found to compare it to (5) above to
see they match in order to see if term by term integration was justified or not above. Since
1 - cos(x) is even, then only 4, are not zero.

T

1 —_
uO:Tfil—cos(x)dx

5 T2

1

=f 1 - cos (x)dx
-1

=2-2sin(1)
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And
= f 1 (1 — cos (x)) cos (nmtx) dx
-1

1 1
= f cos (nmx) dx — f cos (x) cos (nmx) dx
-1

1 o
=2 f cos (nmx)dx — 2 f cos (x) cos (nmx) dx (6)
0 0
The first integral in (6)

. 1
sin (nmx) ]
nmo )

2f1 cos (nmx) dx = [
0

1
= —sin (nn)
nmn

=0 (7)
The second integral in (6) is 2 f cos (x) cos (nmx) dx. Integration by parts. u = cosx,dv =
cos (nmx),du = —sinx,v = M. Therefore
1 . 1 1 .
Zf cos (x) cos (nmx)dx = 2 [cos xw] +f sin xwdx]
0 nrt 0 0 nrt

0

1 1
= 2| — [cosxsin (nnx)](l) + — f sin x sin (n7mx) dx
nrt nrt Jo

2 1
= — f sin x sin (n7mx) dx
nm Jy

Integration by parts. u = sinx, dv = sin (nmx) ,du = cosx,v = %ﬁ:m) The above becomes

1 2 (-1 1 !
2 f cos (x) cos (nmx)dx = — (— [sin x cos (nnx)](lj + — f €0s x cos (nmx) dx)
0 nn \nn nn J,

2 (-1 1 1
=— (— [sin (1) cos (nm)] + — f cos x cos (nmx) dx)
nn \nm nnt Jy

nzzz [sm 1) (1) ] 22 5 j:)l cos x cos (nmx) dx

Moving the integral in the RHS to the left side gives

2 f cos (x) cos (nmx) dx — 22 5 f 1 cos x cos (nmx) = o [sm(l)( 1)" ]
0

2 1 -2
(2 - W)fo cos (x) cos (n7x) dx = m [sin @) (—1)n]
—— [sin (@) (-1)"]

1-)
_ ~(sin (1) (-1)") .

f 1 cos (x) cos (nmx) dx =
0

n?m? -1
Substituting (7,8) back into (6) gives
_ 2sin(1) (-1)"
" om2n2 -1
Hence the Fourier series for 1 —cos(x) over -1 < x <1 is
1—cos(x) ~ % + ,;1 a,, cos (nmx)
(2-2sin(1)) & 2(-1)"sin(1)
~ # + nz]l W COS (TlT(.X)
2(-1 1
~ (1 -sin(1)) + Z M cos (n7mx) 9)

-1
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Comparing (9) and (5), shows they are the same. This shows that integration term by term
was justified. This is because sinx is continuous and odd, hence its mean is zero. Then by
Theorem 3.20 it can be integrated term by term.

2.410 Problem 3.5.5 (a,f,i)

Which of the following sequence of functions converge pointwise to the zero function for
all x € ® ? Which converges uniformly ?

@ -2 O-n@] g M=
a) —— x—n| % x> 1

solution

24101 Parta

2
Let f,(x) = —z—z. At x = 0 then f,(0) = 0. And for x # 0 then, if we fix x at say x* and
increase n, then lim,_,, f,, (x*) = 0. Hence it converges pointwise for the zero function for

all x because for any x, we fix it and do the same as above, which goes to zero for that x.

For uniform convergence, it means that for any x we can find large enough 7 such that all
fn (x) are inside a tube, of some diameter < ¢ around the zero function. But since x is not
bounded, then f, (x) can be as large as we want. So not possible to find # larger enough
to bound all f, (x) for all x x € R to be < ¢ from the zero function.

Hence not uniform convergent. The difference between this and the pointwise case earlier,

is that here n we find, should work for all x at the same time.

2410.2 Partf

Let f,(x) = |x—n|. At any x, lim,_,, |x —n| is positive. By fixing x = x*, then f, (x*) this
will keep increasing as n increases. Hence not pointwise convergent to the zero function.

Therefore also not uniform convergent since uniform convergence implies pointwise con-
vergence.

24103 Parti

At x = 0,f,(x) = 0. And for |x| < 1,hmn_,oog — 0 since |x] < 1. Hence for |x| < 1 it

I . . : 1
converges pointwise to zero. For |x| > 1, by fixing x = x*, then lim,_,,, — — 0 also. Hence
converges pointwise to zero for all x € R.

For uniform convergence, max |fn (x)| — L which is at x = 1. And max |fn (x)| — 0asn— oo.
Hence we could always find n which will make all f,, (x) within ¢ from each others at any x
by increasing n. Hence uniform convergent

2.411 Problem 3.5.7 (b,d,f)

Does the convergence of v, (x) converges pointwise to the zero function for all x € R ? Does
it converge uniformly?

1
1 n<x<n+l1 - n<x<2n
b) v, (x) = d) o (x)=< n
(b) 0, () {0 otherwise (d) 0. () { 0 otherwise
0 o, () n2x? -1 —%<x<%
v, (x) =
! 0 otherwise
solution
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24111 Partb

This is a pulse width 1 that keeps moving to the right as n increases. All other values are
zero. Hence as n — oo, the pulse will move to co and all values will be zero. Therefore
converges pointwise. Since Max of v, (x) is 1, then it is not not uniform convergent since

for ¢ <1, we can not bound v, (x) for all values for all x to be inside the tube around zero
function with width ¢ < 1.

24112 Partd

n < x < 2n is a pulse that moves to the right, but its width also increases as it moves. It
height also decreases as it moves, keeping the area of the pulse 1 all the time. Fixing x at
x* the pulse will eventually become zero height at that x. Therefore converges pointwise to

the zero function.

For uniform convergence, max v, (x)| = % and max v, (x)] = 0 as n — co. Hence we could
always find n which will make all f, (x) within ¢ from each others at any x by increasing n.
Hence uniform convergent

24113 Partf

As n increases, the range where x is not zero becomes smaller around x = 0. The value of
v, (x) can be written as
v, (x) = n2e2mx -1
As x — 0 from either side, which what happens when n — oo, then v, (x) = -1. Hence it
does not go to zero at x = 0. Therefore not pointwise convergent. It follows that not uniform convergent

since uniform convergent implies pointwise convergent.
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2.412 Key solution for HW 4

Homework 4 Solutions
3.2.34

f!(z) is even.

3.2.37

(a) True. * (b) False. Only the restriction of f(z) to [—m, ] is odd. Its values outside
that range are irrelevant as far as its periodic extension is concerned.

3.2.40a

1.2 & (—1)cos(2j+ Dz
(a)2+7r].§] 2j+1 ’

riodically extended box function, namely to 1 when (2k — %) T<x< (Qk + %) m; to %
when ¢ = (k+%)ﬂ; and to 0 when (2k+%)7r <z < (2k+%)7r for k=0,+1,+2,....

the Fourier series converges non-uniformly to the pe-

3.2.54

We substitute z = 7 into the Fourier series (3.68) for *:

. k : ™ - o]

1,7, —m sinhr & (=1)°(1+ik) jkr €' —e 2

1 = =& -° (1 .
5" +e™") 5 k:E_oc T2 e o + 57

which gives the result.

3.2.60

=

. (o) .
> cke””: ~ flz)=f(z) ~ > QE_”” is real if and only if ¢c_, =

= K 6k
Differentiation does not produce the series for 3z? because the periodic extension of z°
is not continuous, and so Theorem 3.22 doesn’t apply.

o0 2
o~ 3 (-1)" ( 12 2x )sinkm.
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3.4.3 b,d

(=1)F krx

16 &
k{:l 7 o8 ——;

(b) -5 + -

wl| oo
N

rksinkmx

oo
(d) 2msin 1 kgl (*1) m;

3.4.4 (for 3.4.3 b,d)

4. The differentiated Fourier series only converges when the periodic extension of the function
is continuous:

8 2 (-1 | knz e .

= > ) sin T: converges to the 4-periodic extension of 2;

T
k=1

(b)
o) & k‘Q

“(d) 27%sinl —1)"———=—=coskmz:

2.2

o) 1—-k“m

does not converge to the 20—periodic extension of cosz.

3.4.5 (for 3.4.3 b,d)
3 k 212
x 8 32 & (-1) knx 32 & (k43 kmx
(b) T 4T~ —gT W3k§1 3 sn—— ~ ) ( 73 )sm 5
(d) cosz ~ sinl + 2sinl kzzzl —1)k ICO_SZ;T:;

3.5.5a,f,i

(a) Pointwise, but not uniformly: % (f) neither; % (i) both.

3.5.7b,d,f

(b) pointwise; “* (d) pointwise and uniformly; % (f) neither pointwise nor uniformly.
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2.5.1 Problem 3.5.11(e,f)

Which of the following series satisfy the M—test and hence converge uniformly on the
interval I = [0,1]?
kx

© X, 5 O3,

Solution

2511 Parte

Using theorem 3.27, we need to find |u (x)| < my for all x € I such that E;:’:l my < oo to show
kx
that series 2121 u (x) converges uniformly. In this case u; (x) = ek—z At x =0,u,(0) = klZ and
k
atx=1,u,(1) = ;ik_z Hence if we pick my = ;—2 then this will satisfy the condition |uy (x)| < my.
But

00 ooek
;mk:f‘ 2

ik
o+l
2 k+17.2 2
. . m k+1 ek k
does not converge. This can be shown by ratio test. =1 = &0 = 5 =e—— and as
i & e (k+1) (k+1)

K2
fx
k — oo this goes to e. Which is larger than 1. Therefore Y| 1—2 is not uniform convergent.

2.51.2 Parte
—kx
In this case u; (x) = Ek—z At x = 0,u,(0) = klZ and at x = 1,u,. (1) = ﬁ Hence if we pick
my = ﬁ then this will satisfy the condition [uy (x)| < m.
S5
Mk = 24 k2
k=1 k=1¢
1
k1 2 k1.2 2 .
Using the ratio test 2 = 007 ¢ 1 .4 a5k — oo this goes to -.
g K (k+1) e (k+1) e

Ki2
—kx
Which is smaller than 1. Hence by the ratio test 3, m; converges. Therefore ¥~ ek—z is

uniform convergent.

2.5.2 Problem 3.5.21(a,c,e)

First, without explicitly evaluating them, how fast do you expect the Fourier coefficients

of the following functions to go to zero as k — co ? Then prove your claim by evaluating

the coefficients. (a) x — 7, (c) x2, (e) sin®x.

Solution
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2521 Parta

f(x) = x—m. This is an odd function. Hence f (—m) # f (7). Because of this, there will be a
jump discontinuity in the 27 periodic extension. This also implies that the Fourier series
is not uniform convergent.

Due to the jump discontinuity the convergence will be slow relative to a Fourier series
. . 1.
which converges uniformly, and therefore we expect the b, terms to be of the form - instead

of % with 7 > 1, as would be the case with the faster uniform convergence.
Now we will find the Fourier series to confirm this.

1 TT
b, = — f (x — ) sin nxdx
Tt =Tt

1 ™ 1 ™
=— f x sin nxdx — — f 7T sin nxdx
nJd_, nJ_,

But f " nsinnxdx = 0 since this is an integration over one period. Therefore the above
=Tt

becomes

1 T
b, = —f x sin nxdx
e

=Tt

1 1 1 -
=— (—— [xcosnx]"_ + —f cos nxdx)
n T n

T -7

us . . . . . .
But f cos nxdx = 0 since this is an integration over one period. The above becomes
-7

-1
b, = — [xcosnx]"_
nm

-1
= — [ cosnmt + 1 cosnm|
nm

_1 "
=— 27 (<1)"]
—2(-1)"

n

Hence the Fourier series is
o] _2 (_1)1’1

>

n=1

sin nx

-2(-1)"

. We see now that
o0 o0 1
2@2425
n=1 n=1

o 1 T TR, .
But Y " - does not converge, which implies it is not uniform convergent as expected.
n=1 n

The coefficient is b, =

. . . 1
Piecewise convergence is of order O (;) (slow).

2.5.2.2 Partc

f(x) = x%. This is an even function and f(-m) = f(n). Hence there will be no jump
discontinuity in the 27 periodic extension. Therefore this is uniform convergent. Hence

. 1 1 .. &)
we expect the coefficient to have = where r > 1. For example —. This is because ¥, _, \az
should now converge. This is considered fast convergence. Now we will find the Fourier
series to confirm this. Since f (x) is an even function then only g, exist.

1 (7 1237 1 2
ao:—f Py == |2 :—(n3+n3):—n2
wJ_g |3 - 3n 3

And

1 T
a, = — f x2 cos nxdx
T
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Integration by parts. Let u = x?,cos (nx) = dv. Then du = 2x,v = %sin (nx). Then using

fudv = o - fvdu the above becomes
1/(1 n 2

b, = = [=[+2si _z f
"= (n [x sin (nx)]0 ”

0
= 1 (—%f x sin (nx) dx)
Tt nJy

2 7T
=—-— f x sin (nx) dx
nrTt Jo

U

x sin (nx) dx)

Integration by parts again. Let u = x,sin (nx) = dv. Thendu =1,v = _71 cos (nx). Then using
fudv = uv — fvdu the above becomes
2 (-1 1 7
b, = —— (— [x cos (nx)]] + —f oS (nx))
n nJy

nrt

-- i (_—1 [t cos (nm)] + 1 [sinnx] J
n n| n

nrt 0
2 (-1 :
o (7 [ ])
2 n
= [7(-1)"]

2 "
) (-1)

Hence

1 - 2
2~ om? 4 Y — (-1)" cos (nx) (1)
3 on
We see that the coefficient is a, = %(—1)“, therefore
o o 1
PRLEED) )
n=1 n=1
But now ¥° % now converges since the power on # is larger than 1, which implies uniform

. . . 1
convergent. Piecewise convergence is of order O (;) (fast).

2523 Parte

fx) = sin®x. This is an even function and f(=m) = f(m). This is the same as part c.
There will be no jump discontinuity in the 27 periodic extension. Therefore this is uniform

. 1 1 . .
convergent. Hence we expect the coefficient to have = where r > 1. For example ) this is
because Y yaZ should converge. This is fast convergence. Now we will find the Fourier
series to confirm this.

. 11 .. . . . .
But sin®x = 5~ 5 C0s 2x, hence this is the Fourier series for sin? x. If we need to show this

explicitly, then since even function only 7, exist.

1,
aO:—f sin” xdx
TTJ n
1 (1 1
:—f — — —cos2x|dx
nJ_\2 2
0
1 s T
= — f dx—f cos 2xdx
2n|J 4 -n

_2nn

=1
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And

7T
)
a, = —f sin® x cos nxdx

— f (— — —Cos Zx) cos nxdx
7T
= — ( f cos nxdx — f COS 2x CcOS nxdx)
2n\J_,

-7t

But f " cosnxdx = 0 since integration over one period, and f " cos 2x cos nxdx = 0 for all
—T -7
values other than n = 2 by orthogonality. Hence the above simplifies to

1 7T
ay = 5 (— f cos? 2xdx)

=Tt

=™

Hence
.2 20
sin“x = — + a, Cos nx
n=1

RN
—2 2COS.’X

We see that 3 | Va2 = % < 0. Uniform convergence. Only 2 terms are needed. Very fast
convergence.

2.5.3 Problem 3.5.22(a.f)

Using the criteria of Theorem 3.31, determine how many continuous derivatives the func-

tions represented by the following Fourier series have (a) ZZ‘;_OO e (f) Z;:’:l ( - cos k2) olkx

Theorem 3.31. Let 0 < n € Z. If the Fourier coefficients of f(x) satisfy

[ee)
D, k™ legl < o0

k=—00
Then the Fourier series f (x) = ¥,° ¢ ¢ converges uniformly to an n—times continuously
differentiable function f (x) € C", which is the 27 periodic extension of f(x).

Solution
2531 Parta
00 eikx
TR

Therefore ¢, = = k4, hence the series to consider is

(o] 0 kl’l

n
X W'l = 3 |

—Z

As k — oo the term kln — 0. Then we just need to consider k*. We want 4 -n > 1 for
uniform convergence. Hence

—+k4”

4-n>1
n<4

Therefore n = 3. The Fourier series converges uniformly to an 3—times continuously differ-
entiable function
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2532 Partf

[S¢]

f(x) ~ E (1 — Ccos %) etkx

k=1

1 . s
Therefore ¢, =1 — cos 2 hence the series to consider is

1
1—cosﬁ

<2 3

k=—00

[s¢] [ee]

D KM ed = Y k™

k=—c0 k=—c0

2 k™| ( —cosl)

There is no n > 0 which will make Zk:_w |k""| < co. The Fourier series does not converges uniformly

1
But |COS k—2| <1, hence

to any continuously differentiable function.

2.5.4 Problem 3.5.26(c,e)

Which of the following sequences converge in norm to the zero function for x € R? (c)

1 n<x<n+— 1 n<x<2n
v, (x) = , () v, (x) =
0 otherwise 0 otherwise

solution

2541 Partc

Using definition 3.35: A sequence v, (x) is said to converge in the norm to f if ||v, - f| = 0
as n — oo. Therefore, we need to show, since f =0 here, that

lim ||v,|| = 0
n—oo

The norm is L? which is defined as ||v,|| = \/2i fn [v,, (x)l2 dx, hence
T =TT

1 T
loull = |5- [
A\

1 |1 n<x<n+-
= —f nodx
\271 | 0 otherwise

2
dx

1
{1 n<x<n+;

0 otherwise

. T n<x<n+ 1 .
Let us look at the integral f 0 therwi " dx. The maximum value of top branch
T otherwise

integral is fﬂ dx which will occur when x =n>0and x =n + l < 7t. As this is when the

whole pulse is between [-7, 7]. When x = n + > 7t the area w1ll be smaller as part of the
above will be outside [-7, 7]. So we could now consider the integral (its maximum) to be

Therefore

nc+1
O<n,—<m

1 2
lim |[v,|| < " p
=00 2t | o otherwise
0

[1 n?+1
2nn ’ n

0 otherwise
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Hence this sequence converges to 0 function in the norm

2542 Parte

Using definition 3.35: A sequence v, (x) is said to converge in the norm to f if ||vn —f || -0
as n — oo. Therefore, we need to show, since f =0 here, that

lim ||v,|| = 0
n—oo

The norm is L? which is defined as ||v,|| = \/% fn [v,, (x)l2 dx, hence
—n

1 > 2
1 |l = n<x<2n
ol = |5= [ [ ¥ dx
\ 2nd_ 0 otherwise
1 7 ! n<x<2n
= |— f n dx
\ 2nJd ;| 0 otherwise
1 n<x<2n
Let us look at the integral f R dx. The maximum value of this integral
| 0 otherwise

is % fn dx which will occur when x =7 > 0 and x = 2n < 7 As this is when the whole pulse
—Tt
is between [-7t, 71]. So we could now consider the integral (its maximum) to be

| 1 21
f —dx < — dx

2N nJd,

Therefore
1 { 1 O<n2n<mn

2t | 0 otherwise
1 b1d
_ ﬂg O<n< E
0 otherwise

Therefore as n — oo then ||v,|| — 0 as the top branch will not be consider as it is limited to
O<n2n<mor0<n< g only. Hence this sequence converges to 0 function in the norm

2.5.5 Problem 3.5.43

1
m m

For eachn =1,2, -+, define the function f, (x) = , where n = %m (m+1)+

0 otherwise
k and 0 < k < m. (a) Show first that m, k are uniquely determined by n. (b) Then prove
that, on the interval [0,1] the sequence f, (x) converges in norm to 0 but does not converge
pointwise anywhere.

solution

2551 Parta

Proof by contradiction. Assuming there exist my,m, > 0 where m; # m, such that

1
nzzml(m1+1)+k

1
nzimz(m2+1)+k
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Therefore

1 1
Eml(ml +1)+k=§m2(m2+1)+k

1 1
3™ (my +1) = M2 (my +1)
mq (ml + 1) =my (1’}12 + 1)

The above is true if m; = m, or if m, = —my —1. But m has to be positive. Hence we take
the case m; = m,. Therefore assumption is not valid. Hence m is unique.

Same proof for k. Assuming there exist ki, k, > 0 where k; # k, such that
1
n= 5m(m+1)+k1
1
n= Em(m+1)+k2
Then
1 1
Em(m+1)+k1 = Em(m+1)+k2
Hence k; = k,. Therefore assumption is not valid. Hence k is unique.
2552 Partb

k k+1

1
n X) = m m
fa®) { 0 otherwise

On the interval [0,1], the norm is L? which is defined as ||fn|| = \/% Ll v, (x)l2 dx, hence

2
1 ESXSE
m m
0

otherwise

2

dx

1
= |2
= 2,
k+1

111 X <x<—
= Zf m m dx
N Yo 0 otherwise

Let us look at few values of n and see what happens.

Forn =1,n = %m(m+1)+k. Hence if m =1 then n

%(2)+0 =1, Hence m =1,k = 0.
Therefore % <x< ]%1 becomes 0 < x < 1.

Forn =2,n = %m(m+1)+k. Hence if m =1 then n = %(2)+1 =1, Hence m = 1,k = 1.

Therefore % <x< ]%1 becomes 1 < x < 2.
Forn:3,n:%m(m+1)+k. Hence ifmzlthenn:%(2)+2:1, But k <m. Try m =2

then n = %(2) (3) +0=1. Hence m = 2,k = 0. Therefore % <x< ]%l becomes 0 < x < %

It looks like the width is becoming smaller as n increases. To verify this, I wrote a small
program which determines the width (we only need the width which remains inside [0,1].
Here is the code
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#problem 3.5.43

f:= proc(num_terms)
local data,m,k,n;
data:=Array(l..num_terms);
for n from 1 to num_terms do
for m from 1 to num_terms do
if (m/2)*(m+1) = n then
k:=0;
data(n) :=[m,k];
break;
else
for k from 1 to m do
if (m/2)*(m+1)+k=n then
data(n) :=[m,k];

break;
fi;
od;
fi;
od;
od;
return data;
end proc:
data:=£f(50):
#process the k,m found to see how the width changes as n increases.
out_file_name := cat(currentdir(),"/output.txt"):

file_id := fopen(out_file_name,WRITE):
for n from 1 to numelems(data) do
item:=data(n);
if item[2]/item[1]<1 then
the_width:=(item[2]+1)/item[1] - item[2]/item[1];
the_values:=cat("k=",convert(item[2],string),
" m=",convert(item[1],string));
the_string:=cat(convert(item[2]/item[1],string),
"<= x <=",convert((item[2]+1)/item[1],string)
) g
the_width:=cat ("Width=",convert (the_width,string));
print(the_string);
fprintf(file_id, "n=%-5d%-10s%-15s%-20s\n",
n,the_values,the_string,the_width);
fi;
od:
fclose(file_id);

And the output obtained
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n=1 k=0 m=1 0<= x <=1 Width=1

n=3 k=0 m=2 0<= x <=1/2 Width=1/2
n=4 k=1 m=2 1/2<= x <=1 Width=1/2
n=6 k=0 m=3 0<= x <=1/3 Width=1/3
n=7 k=1 m=3 1/3<= x <=2/3 Width=1/3
n=8 k=2 m=3 2/3<= x <=1 Width=1/3
n=10 k=0 m=4 0<= x <=1/4 Width=1/4
n=11 k=1 m=4 1/4<= x <=1/2 Width=1/4
n=12 k=2 m=4 1/2<= x <=3/4 Width=1/4
n=13 k=3 m=4 3/4<= x <=1 Width=1/4
n=15 k=0 m=5  0<= x <=1/5 Width=1/5
n=16 k=1 m=56 1/5<= x <=2/5 Width=1/5
n=17 k=2 m=5  2/5<= x <=3/5 Width=1/5
n=18 k=3 m=56 3/5<= x <=4/5 Width=1/5
n=19 k=4 m=5  4/5<= x <=1 Width=1/5
n=21 k=0 m=6 0<= x <=1/6 Width=1/6
n=22 k=1 m=6 1/6<= x <=1/3 Width=1/6
n=23 k=2 m=6 1/3<= x <=1/2 Width=1/6
n=24 k=3 m=6 1/2<= x <=2/3 Width=1/6
n=25 k=4 m=6 2/3<= x <=5/6 Width=1/6
n=26 k=5 m=6 5/6<= x <=1 Width=1/6
n=28 k=0 m=7 O0<= x <=1/7 Width=1/7
n=29 k=1 m=7 1/7<= x <=2/7 Width=1/7
n=30 k=2 m=7 2/7<= x <=3/7 Width=1/7
n=31 k=3 m=7 3/7<= x <=4/7 Width=1/7
n=32 k=4 m=7 4/7<= x <=5/7 Width=1/7
n=33 k=5 m=7 5/7<= x <=6/7 Width=1/7
n=34 k=6 m=7 6/7<= x <=1 Width=1/7
n=36 k=0 m=8 0<= x <=1/8 Width=1/8
n=37 k=1 m=8 1/8<= x <=1/4 Width=1/8
n=38 k=2 m=8 1/4<= x <=3/8 Width=1/8
n=39 k=3 m=8 3/8<= x <=1/2 Width=1/8
n=40 k=4 m=8 1/2<= x <=5/8 Width=1/8
n=41 k=5 m=8 5/8<= x <=3/4 Width=1/8
n=42 k=6 m=8 3/4<= x <=7/8 Width=1/8
n=43 k=7 m=8 7/8<= x <=1 Width=1/8
n=45 k=0 m=9 0<= x <=1/9 Width=1/9
n=46 k=1 m=9 1/9<= x <=2/9 Width=1/9
n=47 k=2 m=9 2/9<= x <=1/3 Width=1/9
n=48 k=3 m=9 1/3<= x <=4/9 Width=1/9
n=49 k=4 m=9 4/9<= x <=5/9 Width=1/9
n=50 k=5 m=9 5/9<= x <=2/3 Width=1/9

We see from the above that as n increases the range — L3 <x< % either goes outside the
[0,1] domain as in the case of n = 2,5,9 or stays 1nsxde [0,1] but it becomes smaller with

n-lOglvmgOstthllen—lltwaSOSXSL

Since we are integrating 1 over this range, and the width of integration is getting smaller
and smaller, then for very large n the integral goes to zero as the width goes to zero.

In other words, we can bound the integral from above as

k+1 1
S <xy< = ] / -

2 f mo dy < lim /2 dx
otherw1se n—00 0

—hm\/——

n—oo

=0

Hence the sequence f,, (x) converges in norm to 0. For piecewise convergence. The definition
is that for any ¢ > 0, there exist N (¢, x) such that |fn (x)| < ¢ for all n > N for x € [0,1]. This
means if we fix x then lim,_,, | fn (x)| = (0. But this does not happen here. Since the pulse
shifts left and right all the time as the width gets smaller as 7 increases. For example, if we
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look at x = % and then increase n, we see that f, (%) do not go to zero there as the function

moves around due to changing of the domain. Hence it is not piecewise convergent.

2.5.6 Problem 4.1.7

The convection-diffusion equation u; + cu, = yu,, is a simple model for the diffusion of a
pollutant in a fluid flow moving with constant speed c. Show that v (¢, x) = u (¢, x + ct) solves
the heat equation. What is the physical interpretation of this change of variables?

solution
Jv _ du N Jdu dx
ot Jt  Jxdt
But % = ¢, the speed of fluid. Hence the above becomes
Jdv  du N du
R c—
at  Jdt  Idx
But 2 + ¢2% = yu,,, hence the above b
ut — +¢=- = Yy, hence the above becomes
Jdv
E = Vlxx
du _dvdt dvdx _ Jv Pu _ JPvdt  JdPvdx 9% .
But = = ——+—-— = -and -5 = -~ -+ —5— = ——. Hence the above gives
v
E = VUxx

Which is the heat equation. The change of variable puts the observer as moving with the
same speed as fluid instead of stationary observer. It is a coordinates transformation.

2.5.7 Problem 4.1.10(a,c)

For each of the following initial temperature distributions, (i ) write out the Fourier series
solution to the heated ring (4.30-32), and (ii ) find the resulting equilibrium temperature
(a) f(x) =cosx, (c) f(x) =[x
The heated ring problem (4.30-32) is: Solve for u (x,t) in

du  J%u

Ezﬁ —T(<X<7T,t>0
X

With periodic BC u (-n,t) = u(n, t),u, (-m,t) = u,(r,t) for t > 0. With initial conditions
u(x,0) = f(x)

solution

2571 Parta

Starting with the series solution as given in (4.34)

a o
u(x,t) = EO + E et (a, cosnx + b,, sin nx) (1)
n=1

At t = 0 the above becomes (using u (x,0) = cosx)

ag s .
COSX = — + E a, cosnx + bn S111 X
n=1

Hence a,, b, are the Fourier series coefficients of cosx. Therefore a; =1 and all other 4,, b,
are zero in order to match the left side with the right side.

The solution in (1) now becomes
u(x,t)=etcosx

The above is the Fourier series solution. To answer (ii), we let t — oo in the above. This
shows that equilibrium temperature will be zero.
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2572 Partb
Starting with the series solution as given in (4.34)
u(x,t) = % + nz::l et (a, cosnx + b,, sin nx) (1)

At t = 0 the above becomes (using u (x,0) = |x|)

o0
ap .
x| = = + Ean cosnx + b, sin nx
2 -
n=1
Hence a,,b, are the Fourier series coeflicients of |x|. But |x| is even. Hence b, = 0. So we
only need to find a4y, a,

1 7T
a = ;f_ F(x)dx

Because f (x) is even the above simplifies to

And
1 7T
a, = p f f (x) cos nxdx

But f (x) is even and cosnx is even, hence product is even. The above simplifies to

2 T
a, = — f f (x) cos nxdx
0

4
2 TT

:—f x cos nxdx
TJdo

Integration by parts gives

i)
S
I
SN
—
=
&,
~|E
=
S
| S
=} A
|
(] p)
Nl
wn
z
=
2
Y
=

21 [Cosnx]”
Cn\nl on
2
= — (cosnm -1)
T
2 n
= (D" 1)
Therefore (1) becomes

u(x,t) = g + i et (% ((—1)” - 1) cos nx) (1A)
n=1

The above is the Fourier series solution. To answer (ii), we let f — oo in the above. This
shows that equilibrium temperature will become

TC
ueq (x/ t) = E

2.5.8 Problem 4.1.16(a,b)

The cable equation v; = yv,, — av with y,v > 0, also known as the lossy heat equation,was
derived by the nineteenth-century Scottish physicist William Thomson to model propaga-
tion of signals in a transatlantic cable. Later, in honor of his work on thermodynamics,
including determining the value of absolute zero temperature, he was named Lord Kelvin
by Queen Victoria. The cable equation was later used to model the electrical activity of neu-
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rons. (a) Show that the general solution to the cable equation is given by v (x, t) = e *'u (x, t)
where u (x, t) solves the heat equation u; = yu,,.

(b) Find a Fourier series solution to the Dirichlet initial-boundary value problem v, =
yUy—av, with initial conditions v (x,0) = f (x) and boundary conditions v (0,t) = 0,v(1,¢) =0
for 0 <x <1,t > 0. Does your solution approach an equilibrium value? If so, how fast?

solution

2581 Parta

Given
v(x, t) = e *u(x,t) (1)
Hence
dJv Ju
_ — _ppat —at ~
T ae " +e T (2)
And
Jdv . du
—=¢ R
ox ox

(3)

&xz_e Ix2

Substituting (1,2,3) into v; = yv,, — av gives

d 9?
—ae "y + e‘“tg—z = ye‘“t&—;zl — ae ™y
Canceling e # 0 from all the terms gives
N du  J%u
—aU+ — = y—5 —au
ot~ ox
du  du
otV ox
Which is what problem asked to show.
2582 Partb
Now we need to solve
Uy = YUy — Q0 (1)

With initial and boundary conditions given. Using separation of variable, let v = T (t) X (x)
where T (f) is function that depends on time only and X (x) is a function that depends on x
only. Using this substitution in (1) gives

T'X =yX"T - aXT
Dividing by XT # 0 gives

177 a X"
—_ — = — ==
yT v X
Where A is the separation constant. The above gives two ODE’s to solve
X"+AX=0
X(0)=0
X1) =0 (2)
And
1T
—_—— 4 g - _/\
yT vy
T" +aT =-AyT
T"+aT +AyT =0
T +(a+Ay)T=0 (3)

ODE (2) is the boundary value ODE which will generate the eigenvalues and eigenfunc-
tions.
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case A <0

Let —A = p2. The solution to (2) becomes
X =c; cosh (yx) + ¢ sinh (yx)
Atx=0
0=¢
Hence the solution becomes X = ¢, sinh (yx). At x =1 this gives 0 = ¢, sinh (y) But

sinh (y) = 0 only when y = 0 which is not the case here. Hence c, = 0 leading to trivial
solution. Therefore A <0 is not eigenvalue.

case A =0

The solution is X (x) = c;x + ¢. At x = 0 this becomes 0 = ¢,. Hence solution is X = c;x. At
x =1 this gives 0 = ¢;. Therefore trivial solution. Hence A = 0 is not eigenvalue.

case A >0

Solution is
X (x) = ¢ cos (\/Zx) + ¢y sin (\/Xx)

At x = 0 this results in 0 = ¢;. The above now becomes
X (x) = ¢y 8in (\/Xx)
Atx=1

0 = ¢y sin (\/X)

For non-trivial solution we want sin (\/X) =0 or \/X =nn,n=1,2,---. Hence
A, = n?m? n=1,2,--
And the corresponding eigenfunctions
X, (x) = sin (nmx) (4)
Now we can solve (3)
T’+(a+/\y)T:0
T, + (a+ n?n?y) T, = 0
The solution is
T, (t) = bye (447 (5)

Where b, is arbitrary constant of integration that depends on b. From (4,5) we obtain the
fundamental solution

(a+n2n2y)

v, (x,t)=b,e fsin (nmx)

The general solution is linear combination of the above
00,8 = 3 bye T in () 6)

n=1

At t =0 the above becomes

fx)= i b, sin (n7x)

n=1

We see that b, are the Fourier coefficients of f(x), after odd extending it from [-1,1].

Therefore, the period of f (x) becomes 2.

hlzk[ijlx)ﬁn(nnx)dx

Since f (x) is odd (we did odd extension) and since sin is odd, then the product is even,
and the above becomes

b, = 2f1f(x) sin (nmx) dx
0
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Using the above in (6) gives
o 1
v(x,t) = Ez(f f (x) sin (n7x) dx eyt i (nmx)
n=1 0

To find equilibrium, we let t+ — oo then @) 0 because @,y > 0 and the above

becomes

Vgq (x,1) =0

2.5.9 Key solution for HW 5

3.5.11e,f

(e) doesn’t pass test; * (f) uniformly convergent.

3.5.21 a,c,e
(a) The periodic extension is not continuous, and so the best one could hope for is
ag, by, — 0 like 1/k. Indeed, ay = —2m, a;, =0, b, = (71)k+12/k, for k > 0.
c e periodic extension is C", and so we expect a,,, b, — 0 like . Indeed,
The periodi ion is C°, and > b — 0 like 1/k?. Indeed
ag = 7%, a), = (~1)*4/k%, b, =0, for k> 0.

e) The periodic extension is C*, and so we expect a,,b, — 0 faster than any (negative
k' Yk
power of k. Indeed, ag =1, a3 = f%, and all other a;, = b, = 0.

3.5.22 af

3.5.26 c,e

% (c) converges in norm; % (e) does not converge in norm.

3.5.43
41.7

12 & 1 taa 2_2 ; . 1,
(a) u(t,z) =71 2 Z; [CTESYE exp( (45+2)°w t) cos(4j +2)mz; (b) 33

2
(c) At an exponential rate of e 47 ;

(d) Ast — oo, the solution becomes a vanishingly small cosine wave centered around
U= % , namely

u(t,z) = — — cos 2mx:

1 2 _ant
i =
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41.10a,c

4.1.10. (a) u(t,x) = e~ tcosz; equilibrium temperature: u(t,z) — 0.

oo —(2k+1)%t
* (c) u(t,z)=5m— % > c (2k3i)sl()22k+ l)a:; equilibrium temperature: u(t,z) — 5.
k=0
41.16a,b
(a) If u(t, z) = e*t v(t, ), then
ou ot 0%v 6%y

_ at at Ov _ vv_ ve
5 = @€ v(t,z) + e 1 (t, ) =ve 52 = 32

o0 2, 2 1
(b) w(t,z) = e *F 3 b,e” (ayn=m7)t sinnmz, whereb, = 2/0 f(z) sinnmzdz
n=1
are the Fourier sine coefficients of the initial data. All solutions tend to the equilibrium

value u(t,z) — 0 as £ — co at an exponential rate. For most initial data, i.e., those with
b, #0, the decay rate is e~ 9t where a = a-+y 71'2; other solutions decay at a faster rate.
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2.6.1 Problem 4.1.4

Find a series solution to the initial-boundary value problem for the heat equation u; = u,,
for 0 < x <1 when one the end of the bar is held at 0 degree and the other is insulated.
Discuss the asymptotic behavior of the solution as t — oo

Solution

The problem did not say which end is insulated. So assuming the left end is at 0 degree
and the right end is the one that is insulated.

Using L for the length to make the solution more general and at the end L is replaced by 1.
Assuming the initial conditions is u (x,0) = f (x). Therefore the problem to solve is to solve
for u (x,t) in

Up = Uy, O<x<L,t>0
With boundary conditions
u(0,H)=0
u, (L, t)=0

And initial conditions

u(x,0) = f(x)
Let u(x,t) = T(t) X (x), then the PDE becomes

T'X=X"T
Dividing by XT
T X"
T X

Since each side depends on different independent variable and both are equal, they must
be both equal to same constant, say —A. Where A is real.

T/ 3 X/I 3

T-x )
The two ODE’s are
T"+AT =0 (1)
And the eigenvalue ODE
X"+AX =0 (2)
X(0)=0
X' (L)=0

Now we solve (2) to find the eigenvalues and eigenfunctions.
Case A <0
Let —A = ?. Hence the ODE is X”” — w?X = 0 and the solution becomes
X (x) = C; cosh (wx) + C, sinh (wx)
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At x = 0 the above gives
0=C;

Hence the solution now becomes

X (x) = Cy sinh (wx)
Taking derivative gives

X’ (x) = wCy sinh (wx)

Atx =1L

0 = wC, cosh (wL)

But cosh (wL) is never zero. Therefore C, = 0 which leads to trivial solution. Therefore
A <0 is not eigenvalue.

Case A =0
The space equation becomes X”” = 0 with the solution
X=Ax+B

At x = 0 the above gives 0 = B. Therefore the solution is X = Ax. Taking derivative
gives X’ = A. At x = L this gives 0 = A. Which leads to trivial solutions. Therefore
A =0 is not an eigenvalue.

Case A >0
Starting with the space ODE, the solution is
X (x) = Acos (\/Xx) + Bsin (\/Xx)
Left B.C. gives
0=A

The solution becomes

X (x) = Bsin (\/Xx)
Taking derivative gives

X' (x) = VAB cos (\/Xx)

Applying right B.C. gives

0 = VABcos (\/XL)

For non trivial solution we want cos (\/XL) =0or

nrt
- =1,3,5, -
Va or "

Hence the eigenvalues are

2
nrtt
/\n:(z) n=1,35,-

Therefore the eigenfunctions are

. (nm
X, (x) = sin (Ex) n=1,3,5,--

Now that we found the eigenvalues, we can solve the time ODE (1).

T,+A,T=0
T, = B,e~ Mt
= Bng_(%)zt
Hence the fundamental solution is
u, (x,t) = X,T,
u(x,t) = i B, sin (Z—Zx) e_(%)zt (3)

n:1’3,5,. ..
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From initial conditions
ad nm
= Y, Bysin{z-
f(x) i ”Sm(ZL x)
n=1,35,

Multiplying both sides by sin (%x) and integrating

ff(x)sm(z—:x)dx—jj( anin(%x )SID(ZL ))dx

Interchanging order of summation and integration and applying orthogonality between
cos functions results in

f f(x)sm(z—fx)dx—j(;LB smz(ZT )dx

=By

B, = %jjf(x)sin (Z—Zx)dx

Therefore the solution is (3) becomes

2 n nm ("_ﬂ)zt
u(x,t) = I 2 (f f (x)sin (Zx) dx) sin (Zx) e \2L
For L =1 the above becomes

=135,
u(x,t)=2 23:5 (f f (x)sin (—x) dx) sin (n?nx)e (5

n=1

[(o¢]

n=1,3,5,---

Therefore

The above can be rewritten as

(2n+1

e h=23 ( fo ' F@sin (@x) dx) sin (@x) AETE)
n=0

Ast — oo and since (@) is positive and assuming the integral is finite which is valid for

_(@n-1m\?
well behaved f (x) the solution then lim,;_, e ( 2 ) — 0 and the solution above becomes

limu(x,t) =0

t—o0
This makes sense, since the right side of the bar is insulated, meaning no heat will escape
from that side, and the left side is at kept a zero temperature. Therefore after long time
the initial temperature distribution given by f (x) will reach equilibrium which is zero
temperature due to the left side kept at zero and since there are no external heat sources
or heat sinks.

2.6.2 Problem 4.1.7

A metal bar of length L =1 and thermal diffusivity y =1 is fully insulated, including its
ends. Suppose the initial temperature distribution is

X 0
u(x,O):f(x)={ L
2

(a) Use Fourier series to write down the temperature distribution at time ¢ > 0. (b) What is
the equilibrium temperature distribution in the bar, i.e., for f > 0 ? (c) How fast does the
solution go to equilibrium? (d) Just before the temperature distribution reaches equilibrium,
what does it look like? Sketch a picture and discuss

Solution
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2.6.2.1 Part (a)

Using L for the length to make the solution more general and at the end L is replaced 1.

du %u
o
u, (0,6)=0
u,(L,t)=0
u(x,0) = f(x)
Let u(x,t) = T (t) X (x), then the PDE becomes
Lpx=xrr
4
Dividing by XT # 0
177 X7
YT~ X

Since each side depends on different independent variable and both are equal, they must
be both equal to same constant, say —A. Where A is assumed real.

1T _X_
yT X
The two ODE’s generated are
T' +yAT =0 1)
And the eigenvalue ODE
X" +AX =0 ()
X' (0)=0
X' (L)y=0

Starting with the eigenvalue ODE equation (2). The following cases are considered.
case A <0

In this case, —A is positive. Let —A = w2. Hence the ODE is X"’ — »?X = 0 and the solution
becomes

X (x) = C; cosh (wx) + Cy sinh (wx)
Therefore
X’ = Cq sinh (wx) + C; cosh (wx)
Applying the left B.C. gives
0=C,

Therefore the solution becomes X (x) = C; cosh (wx) and X’ (x) = C; sinh (wx). Applying
the right B.C. gives

0 = C; sinh (wL)

For non-trivial solution we want sinh (wL) = 0. But this is not possible since sinh is zero
when its argument is zero, which is not the case here. Hence only trivial solution results
from this case. A <0 is not an eigenvalue.

case A =0
The solution is
X(x)=cix+c
X' (x) =
Applying left boundary conditions gives
0=¢

Hence the solution becomes X (x) = c,. Therefore Z—f = 0. Applying the right B.C. provides
no information. Any ¢, will work. Therefore this case leads to the solution X (x) = c;.
Associated with this one eigenvalue, the time equation becomes T} (t) = 0 hence T (t) is a

105



2.6. HW 6 CHAPTER 2. HWS

constant. Hence the solution u (x, t) associated with this A =0 is
ug (x,t) = XoTy
= AO

Ag . . . o . . . .
where constant ¢, Ty was renamed to 70 to indicate it is associated with A = 0. A = 0 is an eigenvalue

with eigenfunction constant %.
case A >0

The solution is

X (x) = ¢y cos (\/Xx) + ¢y sin (\/Xx)
X' (x) = —clﬁsin (\/Xx) + CZ«/X coS (\/Xx)

Applying the left B.C. gives
0= Cz\/z

Therefore c, =0 as A > 0. The solution becomes
X (x) = ¢y cos (\/Xx)
And X’ (x) = —¢; VA sin (ﬁx) Applying the right B.C. gives
0= —clﬁsin (\/XL)
c1 = 0 gives a trivial solution. Selecting sin (\/XL) = 0 gives

VAL=nn n=1,23, -
Or

Therefore the eigenfunctions are
nm
X, (x) = cos (Tx) n=1,2,3,--
The time solution is found by solving
T (1) + AT, =0
This has the solution
T, (t) = Aye 7t
nr 2
= Ang‘y(f) t n=1,2,3,
The solution to the PDE is
u, (x,t) =T, (t) X, (x) n=0,1,23,--
But for linear system sum of eigenfunctions is also a solution. Hence
u(x,t) =uy(x, t) + Z u, (x,t)
n=1
2

From the solution found above, setting t = 0 gives

A (e}
fx) = 70 +n§::1An cos (%x)

Hence Ay, A, are the Fourier cos coefficients for the function f (x). Doing an even extension

Ay = ()
:—0+2Anc0s(%x)ey(L)t 1)
n=1

of f (x) from [-L, L], then % is the average of the function f (x) over [-L, L]. But this average

1.1

is seen as T = }L. The term % X % is the area of f (x) from [0, L].
Ay 1
2 4
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For A,
1t nm
A, = Zf_Lf(x) cos (Tx)dx
Replacing L =1 and using the definition of f (x) given above gives
1 nm
A, = f f (x) cos (—x) dx
5 L

But f (x) is even (after even extending) and cos is even, hence the above becomes

A, =2 f ' F () cos (nmx) dx
0

= Z(fE x cos (nmx) dx + fll (1 - x) cos (nmx) dx]
0 P

] 1 1
=2 (IZ x cos (nmx) dx + fl cos (nmx) dx — ﬁ x cos (nmx) dx]
0 =

2 2

But
b 1 b 1 b
fxcos(nnx)dx: — [x sin (n7tx)] ——f sin (nmx) dx
a nr . onnJ,

1 . 1
= [xsin (nnx)]Z + py) [cos (nnx)]Z

Whena=0,b = % the above gives

1
5 1 1 1
fz x cos (nmx) dx = — [xsin (nmx)]§ + —— [cos (nmx)]§
0 nrt n<m

1 (1 . (nn) N 1 ( (nn) 1)
= —|=zsm|— —_ — ] -
nm ZS 2 n2m2 o8 2

1 . (nmn 1 nm
= ——sin (—) + - (COS (—) - 1)
2nm 2 n22 2

1 . (nn) N 1 (nn) 1
=—sm|—|+—=55cos|— |- ==
2nm 2 22 2 n2m2

And when a = %,b =1 (3) gives

2

1. () 1 . (nn)
= —|sin(nm) — =sin [ —
nrt & 2 2

1 1 1
f x cos (nmx) dx = — [xsin (nnx)]ll + —— [cos (nnx)]ll
1 nrt 7 N°T 2

2

+

nanz [COS (nm) — cos (%)]

B 1 . (n¢w 1 1 nm
=5 sin (?) + ) cos (nm) — p) CoS (7)

Substituting (4,5) into (2) gives

A, 1 . (nn 1 nm 1
— = —sin (—) + coS (—)

2 2nm 2 n2? 2 ) n2n2
1
+ fl cos (nmx) dx
2
1 . (nn)+ 1 (n70) 1 (nn)
—|—=——sin|— |+ —= cos (nm) - ——= cos|—
2nm 2 n2m? n2m? 2
Or
A, 1 . (nn)+ 1 (nn) 1
— = —gin|— )+ —=—=cos|— |- —=
2 2um 2 n2? 2 n2m?
0
1—/——— 1 . (nm
+ — sin (nm) — — sin (—)
nm nm 2
N 1 . (nn) 1 (n70) + 1 (nn)
—sin|— | - ——=cos(nn) + —= cos|—
2nm 2 n2m? n2m? 2
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Or
A, 1 . (nn) N 2 (nn) 1 1 . (m’c) 1 (n70)
— =|—sin|— |+ —=—=cos|— |- ——= |- —sin|— | - ——= cos(nm
2 nm 2 n2m? 2 n?n2)] nn 2 n2m?
nrt n
~ 2 cos (7) -1-(-1)
B n?m?

Therefore the solution (1) becomes, replacing L =1

A (o]
u(x,t) = ?0 + E A, cos (nmx) eVt

n=1
nrm n
1 © 2cos(—=)-1-(-1)
==-+2 ( 2 )2 5 cos (nmx) eVt (6)
4 = nem

2.6.2.2 Partb

From the solution (6) in part (a), since y > 0 then lim,_,, e’ = () and the solution
becomes

1
i ) =—
(D) = g
This is the average of the initial temperature distribution. This makes sense, since there

are no sources or sinks, and both ends are insulated. So all of the initial heat will remain
in the bar but will average evenly over the bar length at the average which is i.

2.6.2.3 Partc

due to the exponential decay term e’ and also having % term, the decay of the sum is

very fast. High frequency terms decay very fast since e << 1 for large n. Using y =1
only few terms are needed to show this. The solution goes to the average (the constant
term in the Fourier series) at exponential rate.

This will be shown explicitly in the next part by plotting the solution using y = 1 for
illustration.

2624 Partd

The following shows how fast the initial temperature reach equilibrium i degree over the
whole bar. Using only 4 terms in the Fourier series, and using y =1, it took only 0.1 seconds.
Looking at the middle of the bar, where the initial temperature was highest at 0.5, we first
see that initial temperature which was not smooth, become instantaneously smooth. Then
it took 0.5 seconds for the temperature in the middle of the bar to go down to 0.3 degrees.
And the next 0.5 second to go down to 0.25. This shows that the initial decay was rapid,
then it slows down relatively until it reaches 0.25 degree which is the average then stops
there.
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Figure 2.39: Plot showing solution in time

ufx_, t_, max_] :=
1

l+25um[ (ZCos[n—"] -1- (—1)") Cos[nnx] Exp[- n* 7 t], {n, 1, max}];
4 2

n? n?
p = Grid[Partition[Table[Quiet@Plot[u[x, t, 4], {X, O, 1}, PlotRange -» {Automatic, {0, ©.5}},
GridLines - Automatic, GridLinesStyle - LightGray, PlotStyle - Red,
PlotLabel -» Row[{"time =", t}11, {t, @, .11, ©.01}], 3], Frame » All];

Figure 2.40: Code used for the above plot

2.6.3 Problem 4.1.10c

For each of the following initial temperature distributions, (i ) write out the Fourier series
solution to the heated ring (4.30-32), and (ii ) find the resulting equilibrium temperature
ast — oo (c) u(x,0)=|x|

Solution

2631 Partl

The heated ring is given by 4.30-4.32 as solving for u (x, ) in
Up = Uy -n<x<mt>0
With periodic BC
u(-m,t) =u(mn,t)
Uy (-1, t) = u, (11, t)
And initial conditions u (x,0) = f (x) = |x|. As given in the text, the Fourier series solution

is (4.35)

a — .
u(x,t) = EO + Z (a, cosnx + b,, sin nx) et
n=1
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Since f (x) is even, then all b, = 0.

And

1 T
aozgf F () dx
2 7T
:—f xdx
TJo

21

=23l
=7

a, = %j:f(x) cos (nx) dx

2 T
— f x cos (nx) dx
TJo

2
i

2
T

0
—_—~

. TC .
X sInnx 7T S1n nx
- dx
nrt 0 nrt

0

1
— [cos nx]g)
nm

2
5 (cosnmt—1)
e

2 n
=— (1"-1)

Hence the solution becomes

2632 PartlIl

T2
M(X,t)zz-i'?z:l "
n=

()" -1

cos (nx) et

From the solution above, we see that

. e
fmut =3

Which is the average of the original temperature distribution.

2.6.4 Problem 4.1.16

The cable equation v; = yv,, — av with y,a > 0, also known as the lossy heat equation,was
derived by the nineteenth-century Scottish physicist William Thomson to model propaga-
tion of signals in a transatlantic cable. Later, in honor of his work on thermodynamics,
including determining the value of absolute zero temperature, he was named Lord Kelvin
by Queen Victoria. The cable equation was later used to model the electrical activity of neu-
rons. (a) Show that the general solution to the cable equation is given by v (x, ) = e™u (x, t)
where u (x, t) solves the heat equation u; = yu,,.

(b) Find a Fourier series solution to the Dirichlet initial-boundary value problem v, =
YU, —av, with initial conditions v (x,0) = f (x) and boundary conditions v (0,t) =0,v(1,t) =0
for 0 <x <1,t> 0. Does your solution approach an equilibrium value? If so, how fast? (c)
Answer part (b) for the Neumann problem

With initial conditions

And B.C.

Solution

Ut = YUxx — QU

0<x<Lt>0

v(x,0) = f(x)

v,(0,0)=0
v, (1,t)=0
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2.6.41 Partc

Part (a,b) were solved in HW5 so we only need to solve part c here.

Using separation of variable, let v = T (t) X (x) where T (¢) is function that depends on time

only and X (x) is a function that depends on x only. Using this substitution in (1) gives
T'X = yX"T — aXT

Dividing by XT # 0 gives

Where A is the separation constant. The above gives two ODE’s to solve
X"+AX=0
X" (0)=0
X'(1)=0 (2)
And
1T «a
_— 4 — =
yT 'y
T +aT =-AMyT
T"+aT +AyT =0
T +(a+Ay)T=0 (3)

-A

ODE (2) is the boundary value ODE which will generate the eigenvalues and eigenfunc-
tions.

case A <0
Let —A = w?. The solution to (2) becomes
X = ¢q cosh (wx) + ¢, sinh (wx)
X’ = wcq sinh (wx) + wcy cosh (wx)
Atx=0
0=wcy
Therefore ¢, = 0. The solution becomes
X = ¢; cosh (wx)
X’ = wcy sinh (wx)

At x =1 this gives 0 = wc; sinh (w). But sinh (w) = 0 only when w = 0 which is not the case
here. Hence c; = 0 leading to trivial solution. Therefore A < 0 is not eigenvalue.

case A =0

The solution is X (x) = c;x + ¢, and X’ = ¢;. At x = 0 this gives 0 = ¢;. Hence solution is
X =cp and X’ = 0. At x =1 this gives 0 = 0. Therefore any c, will work. Taking ¢, =1 the
eigenfunction is X (x) =1 and A = 0 is eigenvalue.

case A >0

Solution is

X (x) = ¢q cos (\/Xx) + ¢y sin (\/Xx)
X' (x) = \/Xcl sin (\/Xx) + cz\/z cos (\/Xx)

At x = 0 this results in 0 = ¢c,/A. Hence ¢, = 0. The solution now becomes The above now
becomes

X (x) = ¢ cos (\/Xx)
X’ (x) = —c; sin (\/Zx)
Atx=1

0 = —¢ysin (\/X)
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For non-trivial solution we want sin (\/X) =0 or \/X =nn,n=1,2,---. Hence
A, = n®n? n=1,2,--
And the corresponding eigenfunctions
X, (x) = cos (nmx) (4)
Now we can solve the time ODE (3). For the zero eigenvalue, (3) becomes
T"+aT =0
With solution
To () = 200

And for the non zero eigenvalues A, = n?7?> the ODE (3) becomes
T’ + (a + nznzy) T=0

With solution
T, (t) = Ane—(a+n2n2y)t

The general solution is linear combination of the above

A — _
v(x,t) = 706““ + E A,e (anmy)t oo (nmx) (6)
n=1
At t = 0 the above becomes
A o
fx) = 70 + Z{ A, cos (nmx)

We see that A, are the cosine Fourier coefficients of f (x), after even extending f (x) to

[-1,1], the period of f(x) becomes 2 giving
1
Ay = f F(0)dx
-1

1
=2 d
fo F () dx
And
1
A, = d
j: 1 f (x) cos (nx) dx

= Zj;lf(x) cos (nx) dx

Using the above in solution (6) gives

v(x, t) = ( f 1 f (%) dx) e 42 i ( f ' f (x) cos (nx) dx) ety o (nmx)
0 n=1 0

a+n2n2y)t

To find equilibrium, we let ¢ — co then e — 0 and also e™* because a,y > 0 and

the above becomes

Vgq (x,1) =0
_ 2.2
The decay is fast due to e (47 5.1 for large n. Hence it is exponential decay. Solution
each equilibrium value of 0 where it remains there.

2.6.5 Problem 4.2.3d

Write down the solutions to the following initial-boundary value problems for the wave
equation in the form of a Fourier series

Uy = 4uy, 1)
With boundary conditions

u(0,t)=0

ul,t)=0
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And initial conditions
u(x,0)=x
u; (x,0) = —x
Solution

To make the solution more general and useful, the length is taken as L and initial conditions
u(x,0) = f (x) and u, (x,0) = ¢ (x) and ¢? = 4, and then at the end these are replaced by the
actual values given in this problem which are L =1, f (x) = x,g(x) = —x, =4,

Hence the PDE to solve is uy; = c?u,, with BC u(0,t) = 0,u(L,0) = 0 and u(x,0) =
f(x),u;(x,0) = g (x).

Using separation of variables, let u = X (x) T (). The PDE becomes

T//X .
2 = X"'T
1 T’/ 3 X/I 3 /\
AT X
Where A is separation constant. Hence the eigenvalue ODE is
X"+AX =0 (2)
X(0)=0
X(L)=0
And the time ODE is
T +c2AT =0 (3)

Starting by the eigenvalue ODE to determine the eigenvalues and eigenfunctions.
Case A <0
Let —-A = w?. Hence the ODE is X”” - ©?X = 0 and the solution becomes
X (x) = C; cosh (wx) + Cy sinh (wx)
At x = 0 the above gives
0=C
Hence the solution now becomes
X (x) = Cy sinh (wx)
At x = L the above gives
0 = Cysinh (wL)

But sinh is zero only when its argument is zero which is not the case here. Therefore C, =0
which leads to trivial solution. Therefore A < 0 is not eigenvalue.

Case A =0

The space equation becomes X" (x) = 0 with the solution
X=Ax+B

At x = 0 the above gives 0 = B. Therefore the solution is X = Ax. At x = L this gives 0 = AL.
Hence A = 0, which leads to trivial solutions. Therefore A = 0 is not an eigenvalue.

case A >0
The solution to the above ODE now is
X (x) = Acos (\/Zx) + Bsin (\/Xx)
Since X (0) = 0 then A =0 and the solution becomes
X (x) = Bsin (\/Kx)

Since X (L) = 0 then for non trivial solution we want sin (\/XL) =0 or VAL = n7 or

nm\2
L
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Hence the eigenfunctions are
. (N7
X, (x):sm(Tx) n=12,3,--

The time ODE (3) now becomes
T + 2 (E)ZT =0
L

Which has the solution
nmn . ( nm
T (t) = B,, cos (cft) + A, sin (cft)
Therefore the complete solution becomes
— nmn nm nm
t) = B —t|+ A, si —t||sin{— 4
u(x,t) ;::1( ncos(cL )+ nsm(cL ))sm(Lx) (4)

Now we can replace the given values in the above solution which gives
u(x,t) = Z (B, cos (2nmt) + A, sin (2nmt)) sin (n7mx) (4A)
n=1

At t = 0 the above becomes

fx) = i B,, sin (nmx) dx

n=1
Hence B, are the Fourier sine coefficients of f (x) = x. After odd extending f (x) to [-1,1]
we obtain

1
B, = f f (x) sin (n7tx) dx
-1
1
=2 f f (x) sin (n7mtx) dx
0
1
:2f x sin (nmx) dx
0
-1 .1
=2|—[xcos nmc]O + —f cos nrxdx
nr nrm Jo

-1 1
=2 (— (cosnm) + —— [sin nnx]é)
nm n?m

2 (-1)"
T onm
To find A,, taking time derivative of (4A) gives

u (x,t) = 2 (=B, 2nmtsin (2nmtt) + 2nmA,, cos (2nmt)) sin (n7mx)
n=1

At t = 0 the above becomes, using the initial conditions where g (x) = —x

g(x) = i (2nmtA,) sin (nmx)

n=1
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The above is the Fourier sine series for g (x). By odd extending —x to [-1,1] then

1
2nmA, = f g (x) sin (n7x) dx
-1

= 2f1g(x) sin (nmx) dx
0

1
=-2 f x sin (nmx) dx
0

1 1 !
=-2 (—— [x cos (nnx)]é + —f cos (nmx) dx)
nrt nrt Jo

0
—_—

1
= -2|——cos(nm) + —— [sin (nmc)](lJ
nmn n?mn

= i [cos (nm)]
nm

_2(=D”
- nrt

Therefore

G

An = n2m2
Now that we found A,, B,,, then the solution (4A) is

u(x,t) = i (_27(1;11) cos (2nmit) + (,1_2177)2 sin (2nnt)) sin (nmx)
n=1

o] _1 n
= E 512 )2 (sin (2n7tt) — 2nm cos (2ntt)) sin (nmx)
n=1 t

2.6.6 Problem 4.2.4b

Find all separable solutions to the wave equation u; = u,, on the interval 0 < x < 7 subject
to (b) Neumann boundary conditions u, (0,¢) = 0, u, (77, ) = 0.

Solution

Using separation of variables, let u = X (x) T (f). The PDE becomes

T”X = X'T
m_x__,
T X
Where A is separation constant. Hence the eigenvalue ODE is
X" +AX =0 (2)
X" 0)=0
X' (m)y=0
And the time ODE is
T+ AT =0 (3)

Starting by the eigenvalue ODE to determine the eigenvalues and eigenfunctions.
Case A <0

Let —A = w?. Hence the ODE is X" — w?X = 0 and the solution becomes
X (x) = C; cosh (wx) + C, sinh (wx)
X’ (0) = Cyw sinh (wx) + Cow cosh (wx)
At x = 0 the above gives
0=C,
Hence the solution now becomes
X (x) = Cq cosh (wx)
X’ (x) = Cqwssinh (wx)
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At x = 7 the above gives
0 = Cywsinh (wmn)

But sinh is zero only when its argument is zero which is not the case here. Therefore C; = 0
which leads to trivial solution. Therefore A <0 is not eigenvalue.

Case A =0

The space equation becomes X" (x) = 0 with the solution
X=Ax+B
X(x)=A
At x = 0 the above gives 0 = A. Therefore the solution is X = B. Therefore X’ =0. Atx ==

this gives 0 = 0. Therefore any value of B will work. Using the constant as 1, then the A =0
is an eigenvalue with corresponding eigenfunction X, = 1.

case A >0

The solution to the above ODE now is

X (x) = Acos («/Zx) + Bsin (\/Kx)
X’ (x) = —AVA sin («/Xx) + BV cos (x/ix)
Since X’ (0) = 0 then B = 0 and the solution becomes
X (x) = Acos («/Xx)
X’ (x) = ~AVA sin («/Xx)

Since X’ () = 0 then for non trivial solution we want sin (ﬁn) =0 or \/XT( = nm or
A, =n? n=1,23,--
Hence the eigenfunctions are
X, (x) = cos (nx) n=1,2,3,--
The time ODE (3) is now solved. For A = 0 it becomes T” = 0. Hence the solution is
Ty (t) = %t + % and for A, = n? it becomes
T/ +n?T, =0
Which has the solution
T, (t) = A, cos (nt) + B,, sin (nt)
Therefore the complete solution becomes

By, Ao
1273

ule,t) =X, T, + EXnTn

n=1

By Ay &
= 7% + 70 + Z{ (A, cos (nt) + B, sin (nt)) cos (nx) (4)

To find Ay, By, A, B, we need initial conditions which are not given. I was not sure if we
are supposed to assume such initial conditions or not in order to continue. If so, then
assuming u (x,0) = f (x) and u; (x,0) = g (x), then at t = 0 the above becomes

_A Ly
f(x) = > +Z:1Ancos(nx)

Hence A, are the Fourier cosine coefficients of f (x). After even extending f (x) to [-7, 7]
we obtain

1 7T
Ay = ;f_ F () dx

2 TC
= gj(; f (x)dx
And
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1 T
A, = - j:nf(x) cos (nx) dx

2 T
=— f f (x) cos (nx) dx
TJo
To find B,,, taking time derivative of (4) gives
B o0
u (x,t) = ?0 + E (-nA,, sin (nt) + nB,, cos (nt)) cos (nx)
n=1

At t = 0 the above gives

By «
g(x) = > + E nB,, cos (nx)

n=1

Hence was done above for Ay, A,, we obtain

2 TT
B, fo ¢ () dx

Tt

And
2 TC
nB, = —f g (x) cos (nx) dx
TJo

2 T
B, = EJ; g (x) cos (nx) dx

Now that we found A, B,,, then the solution (4) is

u(x,t):t(%j(;ng(x)dx)+(%f:f(x)dx)
3|
n=11L

1 7 1 7
u(x,t)=t %fo g(x)dx)+(gj(; f(x)dx)

(o]

+ % D % (n cos (nf) fo " £ (x) cos (nx) dx + sin (nt) fo " ¢ () cos (n) dx) cos (1)

n=1

2.6.7 Problem 4.2.6

( % j: f (x) cos (nx) dx) cos (nt) + ( % foﬂg(x) cos (nx) dx) sin (nt)]cos (nx)

(a) Formulate the periodic initial-boundary value problem for the wave equation on the
interval - < x < 7, modeling the vibrations of a circular ring. (b) Write out a formula for
the solution to your problem in the form of a Fourier series. (c) Is the solution a periodic
function of t? If so, what is the period? (d) Suppose the initial displacement coincides with
that in Figure 4.6, while the initial velocity is zero. Describe what happens to the solution

as time evolves.

Solution

2671 Parta
Solving for u (x, t) in
Uy = CPllyy
With periodic boundary conditions
u(-m,t)=u(m,t)
Uy (-1, 1) = uy (11, )

And initial conditions

u(x,0) = f(x)

u; (x,0) = g (x)
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2.6.72 Partb
Using separation of variables, let u = X (x) T (t). Substituting in (1) gives

1
ST"X =X"T
c

1 X,
2T X
Where A is the separation variable. This gives two ODE’s to solve. The time ODE
T + 2AT =0 (2)
And the eigenvalue ODE
X"+AX =0 (3)

case A <0

Since A <0, then —A is positive. Let u = —A, where u is now positive. The solution to (3)
becomes

X (x) = cieVF* + pe VH
The above can be written as
X (x) = ¢q cosh (\/ﬁx) + ¢y sinh (\/ﬁx) (4)
Applying first B.C. X (-n) = X (n) using (4) gives
cq cosh (\/ﬁn) + ¢y sinh (—\/ﬁn) = ¢q cosh (\/ﬁn) + cp sinh (\/ﬁn)
c; sinh (—\/ﬁn) = ¢, sinh (\/ﬁn)

But sinh is only zero when its argument is zero which is not the case here. Therefore the
above implies that ¢, = 0. The solution (4) now reduces to

X (x) = ¢y cosh (\/ﬁx)

Taking derivative gives

X’ (x) = cyy/usinh (\/ﬁx)
Applying the second BC X’ (-n) = X’ () the above gives

c14/u sinh (—\/ﬁn) = c14/p sinh (\/ﬁx)

But sinh is only zero when its argument is zero which is not the case here. Therefore
the above implies that c; = 0. This means a trivial solution. Therefore A < 0 is not an
eigenvalue.

case A =0
In this case the solution is X (x) = ¢; + cox. Applying first BC X (-n) = X () gives
C1 — 0Tt =C1 + (0Tt
—CyTU = CpTt

This gives ¢, = 0. The solution now becomes X (x) = ¢; and X’ (x) = 0. Applying the
second boundary conditions X’ (-7) = X’ () is not satisfies (0 = 0). Therefore A = 0 is an
eigenvalue with eigenfunction X (0) =1 (selected c; =1 since an arbitrary constant).

case A >0
The solution in this case is
X (x) = ¢ cos (\/Zx) + ¢, sin (\/Xx) (5)
Applying first B.C. X (-7n1) = X (n) using the above gives
c1 COS (\/Xn) + ¢y sin (—\/Xn) = 1 COS (\/Xn) + cy sin (\/Xn)

Cy sin (—\/Xn) = Cy sin (\/Xn)

There are two choices here. If sin (—\/Xn) # sin (\/Zn), then this implies that ¢, = 0. If
sin (—\/Zn) = sin (\/Xn) then c, # 0. Assuming for now that sin (—\/Xn) = sin (\/XT[) This
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happens when \/Xn =nn,n=1,2,3,---, or
A, =n? n=1,23,--

Using this choice, we will now look to see what happens using the second BC. The solution
(5) now becomes

X (x) = ¢q cos (nx) + ¢, sin (nx) n=1,2,3,:
Therefore
X’ (x) = —cynsin (nx) + con cos (nx)
Applying the second BC X’ (-n) = X’ () using the above gives
cinsin (nm) + cyn cos (nmt) = —cyn sin (nm) + cyn cos (nmn)
cynsin (nn) = —cyn sin (nmn)
0=0
Since 7 is integer.

Therefore this means that using A, = n? has satisfied both boundary conditions with
c; #0,¢1 # 0. This means the solution (5) becomes

X, (x) = A,, cos (nx) + B,, sin (nx) n=1,23,--
The above says that there are two eigenfunctions in this case. They are
cos (nx)
Xy (x) = .
sin (nx)
Since there is also zero eigenvalue, then the complete set of eigenfunctions become
1
X, (x) =19 cos(nx)
sin (nx)

Now that the eigenvalues are found, we go back and solve the time ODE. Recalling that
the time ODE (2) from above was found to be

T” + AT =0

When A = 0 this becomes T” = 0 with solution T, (t) = At + B. When A, = n?> the ODE
becomes T” + ¢?n?T = 0 with solution

T, (t) = C, cos(cnt) + E,, sin (cnt)
Adding all the above solutions using u, (x,t) = X, (x) T, (t) gives the final solution as
u(x,t) = Xo () To () + Y, X, () T,y ()
n=1

=At+B+ i (cos (nx) + sin (nx)) (C,, cos (cnt) + E,, sin (cnt))
n=1

Or
u(x,t)= At+ B
+ Z (C,, cos (cnt) + E,, sin (cnt)) cos (nx)
n=1
+ Z (C,, cos (cnt) + E,, sin (cnt)) sin (nx)
n=1

2.6.7.3 Partc

The solution is periodic in time. To find the period, solving ct = z?nt for T gives

27
T=—
c

2.6.74 Partd

The solution will behave similar to the one on page 148 initially, where initial conditions
splits in half, one half moving left and one moving right until each half reach the boundary
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conditions. But now, each half wave reflects off the boundary staying upside and starts
moving back toward the middle again, until the two halves reunite again to reproduce the
same initial conditions shape. This process then repeats again and again.

So the difference between periodic boundary conditions, and having ends fixed as the case
in Figure 4.6, is that when ends are fixed, the two half waves reflect upside down at the
boundaries, while here they do not not. The solution above was animated and plotted
showing this. Initial conditions used is small triangle similar to one used in Figure 4.6 with
zero initial conditions and using c =1 for speed. The following is the result

time: 0 time: 0.48 time: 1
0. 0.4 04f
° JAVAN JANIAN
S I I P
-0.2 -0.2 -0.2}
-0.4 -0.4 -04}
time: 2.48 time: 3 time: 3.15
0.4 0.4 04+
/\ 0.2 /\ \ 0.2 / 02}
o Y I P
-0.2 -0.2 -0.2}
-0.4 -0.4 -04}
time: 3.3 time: 3.55 time: 4
0.4 0.4 04+
\ 0.2 / j\ 0.2 /\ /\ 0.2} /\
e I i | -r I n | -n -z i T
2 g2 2 2 02 2 2 g2l 2
-0.4 -0.4 -0.4}
time: 5.35 time: 5.94 time: 6.36
0.4 0.4 0.
Nz /\ /Y\ /\ /i
o o it | -r I n | -n I r T
2 02 z 2 02 2 2 02} 2
-0.4 -0.4 -0.4}

Figure 2.41: Plot showing solution in time, Periodic B.C.

In the above at t = 3.15 sec. is when each half wave reaches the boundary at x = -7z and
x = 7t. At t > 3.3 the waves half reflects and are starting to moving back towards the center.
At t = 6.36 the initial conditions shape is reconstructed again. For higher times, the above
motion repeats.

2.6.8 Problem 4.2.14c

Sketch the solution of the wave equation u; = u,, and describe its behavior when the initial
1 1<x<2

displacement is the box function u (x,0) = )
0 otherwise

while the initial velocity is

0 in each of the following scenarios (c) on the halfline 0 < x < co, with homogeneous
Neumann boundary condition at the end.

Solution
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u(z,0)

1.2+

ol Initial conditions f(x)
oF : ‘
I |
L | |
0.8 | l
L | |

L I
i ‘ l
0.6 ! !
I I I
I I
L ou I |
04l 22— | :
POz I I
[ I I
r I I
0.2 1 1
r I I

I
. I

| 1 1 1 1 1 | IS T S T | | | I
0.0 0.5 1.0 15 2.0 2.5 3.0

Figure 2.42: Initial conditions

Let f (x) = u(x,0) and let g (x) = u; (x,0) = 0. Since the boundary condition is homogeneous
Neumann, then f (x) is even extended to make it periodic with period 4. This is done so
we can use d’Alembert solution which is valid for unbounded domain. Let f (x) be the new
periodic initial conditions as shown the in the following diagram.

06|
04l

02l

3

Figure 2.43: Initial conditions

With the new periodic initial conditions, we now can apply d’Alembert solution

7 (x, ) :%(f(x—ct)+f(x+ct))

Since ¢ =1 then above becomes

1, .
i) =5 (Fa-n+f+b)
We will use the solution from above only for x > 0 since that is the physical domain.

The solution will starts by splitting each packet into 2 halves. One that move to the right
and one that move to the left. When the half that moves to the left reach x = 0, at that
same time the half wave that was moving to the right from x < 0 arrives. And they pass
through each others. This appears as the wave half deflecting off x = 0 turning around,
remaining upright, and starts to move to the right behind the half that was moving to the
right from the start. So we end up with 2 half waves moving to the right after that. This is
sketch of what happens in time.
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time: 0 time: 0.27 time: 0.7
10F 10¢ 1.0
08} 0.8} 0.8}
06} 0.6} 06}
04f 04Ff 04}
02f 0.2} 0.2}
0 2 4 6 8 10 0o 2 4 6 8 10 0o 2 4 6 8 10
time: 1.07 time: 1.82 time: 2.25
1.0¢ 1.0t 1.0¢
08} 0.8} 08}
06} 0.6} 06}
041 0.4 04}
02f 0.2 0.2}
0o 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
time: 2.94 time: 3.8 time: 5.41
1.0t 10¢ 10¢
08} 0.8} 08}
06} 0.6} 06}
04f 04Ff 04}
0.2f 0.2} 0.2}
0 2 4 6 8 10 0o 2 4 6 8 10 0 2 4 6 8 10
time: 8 time: 9 time: 11
1.0¢ 1.0¢ 1.0¢
08} 0.8} 0.8}
06} 0.6} 06}
04f 04 04}
02f 0.2} 02}
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

Figure 2.44: sketch of solution over time

pde =D[u[x, t], {t, 2}] ==D[u[x, t], {x, 2}1;
f[x_] := Piecewise[{{1, 1 < x < 2}, {0, True}}];
fbar[x_] := If[-3<x< -1, fbar[x+4], f[x]];
ulx_, t_] :=1/2 (fbar[x-t] +fbar[x+t]);
Table[Plot[u[x, tO], {x, @, 10}, PlotRange » {Automatic, {0, 1.02}},
GridLines -» Automatic, GridLinesStyle - LightGray,
PlotStyle - Red, PlotLabel -» Row[ {"time: ", t0}],
PlotPoints - 40, Exclusions - None],
{te, {0, 0.27, 0.7, 1.07, 1.82, 2.25, 2.94, 3.8, 5.41, 8, 9, 11}}];
p = Grid[Partition[%, 3], Frame -» All];

Figure 2.45: Code used for the above

2.6.9 Problem 4.2.22

Under what conditions is the solution to the Neumann boundary value problem for the
wave equation on a bounded interval [0,1] periodic in time? What is the period?

Solution

By even-extending the initial displacement and initial velocity to [-1,1] and then repeating
this again for the whole line —co < x < o0, and then using the d‘Alembert solution, then the
resulting solution u (x, t) will always be periodic since initial conditions are periodic. The
period of the solution will 2L in x, where L =1 here. Hence period is 2 in x.
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2.6.10 Problem 4.2.25

Write down a formula for the solution u(x, t) to the initial-boundary value problem u;; = 4u,,
with boundary conditions

u, (0,t) =0
u,(rm,t)=0
And initial conditions
u(x,0) =sinx
up (x,0)=0
ForO<x<m,t>0

Solution

Since boundary conditions are Neumann, then to use d‘Alembert solution, we start by
even extending both initial position u (x,0) = sin (x) and initial velocity (which is zero here)
to be even over [-7, r]. Next we duplicate this over the whole line —co < x < co. Now we are
able to use d‘Alembert solution to solve the wave equation. The solution will be periodic
with period 27 in x. Let f (x) = sinx and let f (x) be its even periodic extension such that

f=0) = f ()
f:(x+27t):f(x)

fx=2m) = f(x)

Hence the solution is

(f(x—ct)+f(x+ct))

N =

7(x,t)=
But ¢ = 2 therefore the above becomes
1
(x,t)= 5 (sin (x — 2t) + sin (x + ct))

The actual solution we want is over [0, 7] from the above since that is the physical domain
of the original problem.
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2.6.11 Key solution for HW 6

41.4

The solution is
u(t,z) = io: d, exp [7 (n+ %)zwzt] sin(nJr %) T
where "
d, = 2/01 f@)sin(n + ) 7wz de

are the “mixed” Fourier coefficients of the initial temperature u(0,z) = f(z). All solu-

tions decay exponentially fast to zero: u(t,z) — 0 as t — oo. For most initial condi-

2
tions, i.e., those for which d; # 0, the decay rate is e ™ t/4 oy ¢=24674%  The solution
profile eventually looks like a rapidly decaying version of the first eigenmode sin %71'93.

41.7

1 2 & 1 . 2 2 ; 1
a) u(t,z) = — — ———s exp(—(47+2)"n“t) cos(4j + 2)wx; b) +;
@ uta) =7 ~ 73 3 gype o0 (@027 costai + 9 ()
(¢) At an exponential rate of 6_4”21:;
(d) Ast — oo, the solution becomes a vanishingly small cosine wave centered around

U= %, namely

u(t,z) ~ i — % e~ 4™t cos 2z
T
4.1.10c
4 & —(2k+1)%¢ 9k 41
(¢) u(t,z) =gm— - > = (Zki-oj()Q + )sc; equilibrium temperature: u(t,z) — 3.
k=0
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4.1.16

(a) If u(t,z) = e** v(t,z), then
@ _ at at @ a0t 8_2'0_ 32_'”'
il v(t,z) +e at(t,m)—’ye 722~ 92

_ —at o —(atyn?r?)t . _ 1 .
(b) wu(t,xz) = e S b€ sinnwz, whereb, = 2/0 f(z) sinnwzdz
n=1

are the Fourier sine coefficients of the initial data. All solutions tend to the equilibrium
value u(t,z) — 0 as t — oo at an exponential rate. For most initial data, i.e., those with
by # 0, the decay rate is e~ %t where a = a+~ 7r2; other solutions decay at a faster rate.

4.2.3d

(d) u(t,z) =

Ao

oo . .
3 (_1)n+1 (costn,ﬂ-t-{- sm2n7rt) sinnTz
n=1 2nm n

4.2.4b

(b) 1, t, cosntcosnz, sinntcosnz, forn=0,1,2,....
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4.26
(a)

8%u 5 8%u ou du —T<z<m,
—=c =, ult,—7)=ult,n), — (@, —7)=——(mn),
o2 Ox? oz oz —o0 <t < oo,
subject to the initial conditions
du
u(0,z) = f(z), E(O’w):g(m)’ —T<T <.

(b) The series solution is

oo
u(t,z) = %ay+ scgt+ Y. (ancosnct cosnz + b, cosnct sinnz
n=1

c, . d. . .
+ —ZL-sinnct cosnx + —sinnct smna:),
nc nc

where a,,, b, are the Fourier coefficients of f(z), while ¢,,,d,, are the Fourier coefficients

of g(z).

1 s
(¢) The solution is periodie, with period 27’” , if and only if ¢y = 5o / g(z)dz =0, i.e.,
w7
the average initial velocity is zero. Otherwise, it includes an unstable, linearly growing

mode. Note: special solutions may have a shorter period. For example, if all odd coeffi-
cients vanish, Ugjpq = b2j+1 =Cyjyq1 = d2j+1 = 0, and ¢y = 0, then the solution has
period 7 /c.

(d) The initial displacement breaks up into two half size replicas traveling with speed ¢ in
opposite directions. When the right moving wave arrives at the end point — 7, it reap-
pears unchanged and still moving to the right at the other end w. Similarly, when the
left moving wave arrives at the left end, it reappears on the right end still moving left.
The waves recombine into the original displacement after a time of 27 /¢, and then the
process repeats periodically.
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4.2.14c

(€) The initial displacement splits into two half sized replicas, initially moving off to the
right and to the left with unit speed. When the left moving box collides with the origin,
it reverses its direction, eventually following its right moving counterpart with the same
unit speed at a fixed distance of 3 units. During the collision, the box temporarily
increases its height before disengaging in its original upright form, but now moving to

the right.

Plotted at times t =0, .25, .5,.75,1.,1.25,1.75, 2., 2.5, 3.5:

1 —_

4.2.22

£
The solution is periodic if and only if the initial velocity has mean zero: /0 g(z)dz = 0.

For generic solutions, the period is 2£/¢, although some special solutions oscillate more

rapidly.
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4.2.25

(a) The even, 27 periodic extension of the initial data is f(z) = |sinz|. Thus, by
d’Alembert’s formula, u(t,z) = § |sin(z — 2t) | + & |sin(z + 2¢) |.
(b) u (%, %) = % |sin % | + % |sin(%7r) | =1. (¢) h(t) = |cos2t| is periodic of period %71’.

(d) Yes. On the interval 0 < z < , discontinuities initially appear at z = 0 and z = m,
and then propagate into the interval at speed 2, reflecting whenever they reach one of
the ends, as sketched in the following figure:

T
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2.71 Problem 4.3.24

Use the method in Exercise 4.3.23 to solve an Euler equation whose characteristic equation
has a double root r{ =1, =7

Solution

2.7.1.1 Part (a)

Euler ODE is
ax?u’ (x) + bxu’ (x) +cu(x) =0
By assuming u = x” then v’ = rx™~!,u”" = r (r — 1) 2. Substituting back into the above ODE
gives
ax*r(r=D)x 2 +bxrx 1 +cx" =0
ar(r—-1)+br+c=0

2

arc—ar+br+c=0

ar* +r(b-a)+c=0

b-a 1
na=-——% Z\/(b —a)* - dac 1)

b— . .
Double root means that r =1 =1, = —2—;. Hence the first solution of the ODE is

Solving for r gives the roots

Uy = x'

And now we need to find the second solution. Using reduction of order method, we assume
the second solution is

Uy (x) = v (x) uy (%) (2)
And we need to determine the function v (x). Therefore
uy = v'uy + oug
uy =v"uy +v'uy +v'uj + ouy
=0"uy + 20'u] + ouf
Substituting the above into the ODE gives
ax? (v”u1 +20'uj + vui’) + bx (v’ul + Uui) +couy =0
v (axzul) + 0 (2ax2u’1 + bxul) +0 (axzui’ + bxuj + cul) =0

But ax?uy + bxu/ + cuy = 0 since u; is a solution. The above now simplifies to

2

v’ (ax ul) +v (Zaxzui + bxul) =0
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But u; = x7, hence u} = rx’"! and the above becomes
o (axzx’) +0 (Zarxzxr‘l + bxx’) 0
av”’x" 2 + v’ (Zurx”l + bx”l) =0
av”’x"*2 + v Qar +b) ¥+ =0
(av"’x + v ar + b)) X1 =0

av’x+ v (2ar+b) =0

Butr=r = —% from (1) since double root. The above simplifies to

[ (-2) )
av’x+ v (2a|l-——|+0] =0
2a

av’x+ v (-b+a)+b)=0
av’x+av’ =0

'x+0v =0

Therefore
d
o (xv')=0
xv' =Cq
,_ G
v = —
X

v=Cilnx+C,
Now that we found v (x), then using (2) we find the second solution to the ODE as
Uy = VUl
=(C;Inx +Cy)x?
Therefore the complete solution is

u=Cox"+(Cilnx + Cy)x"

By combining constants, the above simplifies to

u(x) = Ax" + Bx"Inx

2.7.2 Problem 4.3.25

Solve the following boundary value problems (c) V2u = 0,x> + y? < 4,u = x* x> + y*> = 4 (d)
V2u =0, +1? <1,j—: =x, x> +y?=1

Solution

2721 Partc

In polar coordinates, where x = rcos 0,y = rsin 6, we need to solve for u (r, 0) inside disk
of radius ry = 4. The Laplace PDE in polar coordinates is

1
urr+;ur+r—2u99:0 O<r<ryg,-m<0O0<m

1 (ro,0) = f(6) = (rgcos 6)*
u(=m) = u ()
U (=m) = ug (1)
The solution to Laplace PDE of radius ry can be found using separation of variables and

derived in the textbook (full derivation is also given in this HW in problem 4.3.33 below).
The Fourier series solution is

u(r,0) = % + Z a, (%) cos (n6) + b, (%) sin (n0)

130



27. HW 7 CHAPTER 2. HWS

Since ry = 4 the above becomes

u(r,0) = 612—0 + i a, (i)n cos (n6) + b, (i)n sin (n0) (1A)
n=1

Where a, = ~ [* £(6) cosnd6,b, = = [ f(6) sin nodo.
T Yv—11 T v—77

1 m 4
ag = —f 256 cos™ 6d6
TJ n
_ 256 (7

- cos* 6do
n J_,
256 (36 1 1 "
= |== + - sin(26) + — sin (46)
n \8 4 32 .
256 (3 3m
===
T 8 8
256 (37
T n \4
=192

And
1 7T
a, = %f 256 cos* (0) cos (n6) do

256 T
=" | cos*(9)cos(nd)do
7

-
To evaluate the above integral, we will start by using the identity

3 1 1
cos* (0) = g Tgeos (40) + 5 cos (20)

Therefore the integral now becomes

256 (3 1 1
a, = — (— + = cos (40) + = cos (29)) cos (n0)do
n J_, 8 2

256

- [g fz cos (n6)do + é fn cos (40) cos (n0) dO + % fﬂ cos (20) cos(n0)do| (1)

- -7 -7

But fﬂ cos (n0)dO = 0 and fn cos (40) cos (n0) dO is not zero, only for n = 4 by orthogonality
=Tt —Tt
of cosine functions. Hence

7T 7T
f cos (40) cos (n0) do = f cos? (46)do
-7 -7

=7
And similarly, f_ " cos (20) cos (n9) dO is not zero, only for n = 2 by orthogonality of cosine
functions. Hence

fﬂ cos (26) cos (10) d6 = fn cos? (260) dO

-
=T

Using these results in (1) gives, for n =2

2 1 ™
a = 26 |§f cos? (20) d@]

s =Tt

_ 256 (1

-<3)

=128

And forn =14
ay = 26 P fn cos? (40) d@]

n |8J_,

_ 256 (7

- (5)

=32
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And all other a,, are zero. Now that we found all a,,, and since b,, = 0 for all n (because
f(0) is even function) then the solution (1A) becomes
192 2 4
u(r,0) = — +a, (i) cos (20) + ay (i) cos (46)

2 A
=96 +128 (E) cos (20) + 32% cos (40)

Therefore

u(r,0) = 96 + 8r% cos (20) + %1’4 cos (40)

Here is plot of the above solution.

1
sol = 96 + 8r?Cos[26] + 3 r*Cos[46];

ParametricPlot3D[{r Cos[©], rSin[&], sol}, {r, O, 4}, {6, 0, 2Pi},
AxesLabel » {x, y, "u(x,y"}, ImageSize -» 400, BoxRatios » {1, 1, 1}, BaseStyle - 14]

4
y 271
0 ‘
_4‘4 A
200\
u(x,y
100!

Figure 2.46: Solution plot to the above problem with code used

It is also possible to use, as shown in textbook, the closed form sum as given in theorem
4.6 as
1-72

1 7T
ulr,0) = Zj:nf((p) 1472 —2rcos(6—q§)d¢

Notice that theorem 4.6 is for a unit disk. Since the disk here has radius 4 then r is changed
to i in 4.126 as given in book. Here f (0) = (4 cos 9)4. Hence the above becomes

1 1-(5)
r0)= — [ 256cos? 4 ‘
S B P TR Py

2
:12_8 nCOS4(¢) i 1-% d¢
7 J 1+:_6—%COS(6_¢)
A .
=)t 0) 16+r2—8rCoS(9_¢)d¢

But evaluating the above integral was hard to do by hand. It should of course give the
same solution as found above using Fourier series.
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27.2.2 Partd

In polar coordinates, where x = rcos 0,y = rsin 6, we need to solve for u (r, 0) inside disk
of radius ry = 1. The Laplace PDE in polar coordinates is

1
Uy + —Uy + —Ugg =0 O<r<l,-m<O<m
r r

u,(1,0) = f(0) = cos O
u(-m) =u(mn)
ug (=m) = ug (1)
Using separation of variables, let u (r, 0) = R(r) © (0) the solution is given by
ag ad .
u(r,0) = > + ;::1 a,r" cos (n@) + b, r" sin (n6) (1)

At r = ry =1 we have that
becomes

a"gr’e) = cos 0 (since x = rcos 0 but r = 1 at boundary). The above

cos 0 = 2 na,r" ! cos (n0) + nb,r"! sin (n0)
n=1
Therefore n =1 is only term that survives in the sum. Hence 2; =1 and all others are zero.
The solution (1) becomes

u(r,0) = ‘12_0 + rcos (0)

The solution is not unique as there is a, arbitrary constant.

2.7.3 Problem 4.3.33

Write out the series solution to the boundary value problem u(1,0) = 0,u(2,0) = h(0) for
the Laplace equation on an annulus 1 <r <2.

Solution

Using a for the inner radius and b for the outer radius to keep the solution more general.
At the end these are replaced witha =1,b = 2.

Figure 2.47: PDE to solve using polar coordinates

The Laplace PDE in polar coordinates is

20 on on
r82+r&r+892 0 (A)
With
u(a,0)=0
u(b,0) =h(0) (B)

Let the solution be
u(r,0) =R (r)©(0)
Substituting this assumed solution back into the (A) gives
”R"©® +rR'® + RO"” =0
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Dividing the above by RO gives

rZR—H+rR—/+®H—O

R R ©
rZR—H+rR—,——®”
R R O

Since each side depends on different independent variable and they are equal, they must
be equal to the same constant. say A.

This results in the following two ODE’s. The boundaries conditions in (B) are also trans-
ferred to each ODE. Hence

®"+A0 =0 1)
O (-n) = O (n)
O’ (-n) =0’ (n)
And
?R” + 1R’ — AR =0 (2)
R(a)=0

Starting with ODE (1) with periodic boundary conditions.
Case A <0 The solution is
© (6) = Acosh (VIA[0) + Bsinh (ViA[6)
First B.C. gives
O(-n) =0 (n)
A cosh (—\/WT() + Bsinh (—\/WT() = Acosh (\/Wn) + Bsinh (\/WR)
A cosh (\/Wn) — Bsinh (\/Wn) = Acosh (\/Wn) + Bsinh (\/Wn)
2Bsinh (ViAln) = 0
But sinh = 0 only at zero and A # 0, hence B = 0 and the solution becomes
®(0) = Acosh (\/WQ)
®' (0) = AVA cosh (ViAl0)
Applying the second B.C. gives
O’ (-n) =0’ (n)
AVIA| cosh (—\/Wn) = Av|A| cosh (\/WN)
A\/m cosh (\/WR) = A\/W cosh (\/Wn)
2A4|A| cosh (\/Wn) =0

But cosh is never zero, hence A = 0. Therefore trivial solution and A < 0 is not an eigenvalue.

Case A =0 The solution is ® = A0 + B. Applying the first B.C. gives

©(-n) =0 (n)
-An+B=m1A+B
2nA =0
A=0

And the solution becomes ® = By. A constant. Hence A = 0 is an eigenvalue.

Case A >0

The solution becomes

® = Acos (x/ﬁ@) + Bsin(\/Xe)
Q= —A\/X sin (\/X@) + B\/X Cos (\/X@)
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Applying first B.C. gives
O((-n) =0 (n)
Acos (—\/Xn) + Bsin (—\/XT() = Acos (\/Xn) + Bsin (\/XT()
A cos (\/Xn) — Bsin ( /171) = Acos (\/Kn) + Bsin (\/Xn)
2B sin( An) =0 (3)
Applying second B.C. gives
Q' (-n) =0’ (n)
—AVAsin (—\/Xn) + BV cos (—\/Xn) = —AVsin (\/Xn) + BV cos (\/XT()
AV sin (\/XT() + BV cos (\/XT() ~AVAsin (\/Xn) + BV cos (\/XT()
AV sin (\/Xn) = —AVAsin (\/Xn)

2Asin (\/Xn) =0 (4)

Equations (3,4) can be both zero only if A = B = 0 which gives trivial solution, or when
sin (\/Xn) = 0. Therefore taking sin (\/Zn) = 0 gives a non-trivial solution. Hence
\/Xn:nn n=1,2,3,--
A, = n? n=123,--
Hence the eigenfunctions are
{1, cos (n0), sin (n0)} n=1,23,-- (5)

Now the R equation is solved

The case for A =0 gives from (2)
PR” +rR' =0
R” + %R’ =0 r#0
As was done in last problem, the solution to this is
Ro(r)=Alnr+C
Applying the B.C. R (a) = 0 gives
0=Alna+C
C=-Alna
Hence the solution becomes
Ro(r)=Alnr—-Alna
=Aln !
a
Case A > 0 The ODE (2) becomes
PR’ +rR' —n?*R =0 n=1,2,3,-
Let R = 7*, the above becomes
2p (p - 1) P2 +rpP~l =2 =0

p(p—l)r”+prp—n2ﬁ’:0

Hence the solution is

1
Rn(r):Cr”+D—n n=12,3,--
7

135



27. HW 7 CHAPTER 2. HWS

Applying the boundary condition R (a) = 0 gives

1
0=Ca"+D—
ai’l
1
—Ca" =D—
ﬂ)’l
D = -Ca?*"

The solution becomes

1
Rn(r):Cr”—CaZ”r—n n=1,23,--

Hence the complete solution for R (r) is

R()=Alnl+ 3¢, (-2 6
(1’)— nE+n§:j{ n(r _1’_”) ()
Using (5),(6) gives

u, (r,0) =R

u(r,0) = (Aln +2Cn (r —iﬂ)) (AO+§A cos (n6) + B, sm(n@))

Combining constants to 51mp11fy things gives

2n
u(r,0) = Aln + E (r - a—)(A cos (n6) + B,, sin (n6))
a

n=1

But 2 =1, then above simplifies to

u(r,0) =Alnr+ E (r - —) (A,, cos (n6) + B,, sin (n6)) (7)
n=1

At r=0bwe use u(b,0)=h(0) to find Ay, A,, B,.
u(b,0)=h(0)

h(6) = Aglnb + E (b” + —)(A cos (n6) + B,, sin (n0))
n=1
Hence

2 7T
Aglnb = —f 1(6)do

A, (b”+—)— fh(@)cos(n@)d@

el

1
u(r,@):(%fnh(ﬂ)de)ln—r+2( )(( f h(@)cos(n@)d@)cos(n6)+( f h(@)cos(n@)d@)sm(n@))

n=1 bn+—

f 11(6) sin (n6) d6

The solution (7) becomes

But b = 2 and the above becomes

u(r,0) = ( f h(e)da) Inr RE(;;_ (( f h(e)cos(ne)de)cos(n9)+( f h(@)cos(n@)d@)sm(n@))
n=1 -
_ f n(0)do| 1§]Zn(rz—_ f 1 (6) cos (n0) d6 | cos (n0) + f 1 (6) cos (n0) d6 | sin (n6)
- In2 " o2y °

2.7.4 Problem 4.3.38

Suppose fn |h(0)]dO < co. Prove that (4.115) converges uniformly to the solution to the
~T
boundary value problem (4.101) on any smaller disk D, ={r<r, <1} & D;
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Solution

4.115 is solution for u (7, 0) inside unit disk 0 <r<1and u =h(0) at r = 1.

u(r,0) = % + i " (a, cos (n0) + b,, sin (n0)) (4.115)
n=1

This problem is asking to show that the Fourier series solution 4.115 converges uniformly
to solution of Laplace PDE VZu = 0 inside disk with radius less than unity with above
boundary conditions.

Let f, = 7" (a, cos (n0) + b, sin (n0)), then to show uniform convergence, we need to show
that for any ¢ > 0, there exist integer N (¢) such that for all 7 > N the following is true

lu, —u,l <e¢
Where
u, = (;) (a, cos (n6) + b,, sin (n0))

Hence we need to show, we can find N such that for all n > N

" (a, cos (n6) + b, sin (n0)) — (;) (a,, cos (nO) + b, sin (nO))| < ¢

*

But

" (a, cos (n6) + b, sin (nO)) — (;) (a,, cos (nB) + b, sin (n6)) ) ) (a,, cos (n6) + b, sin (nO))

*

[
P
S =

|a,, cos (n0) + b, sin (n6)|

1)
But |a, cos (n0) + b, sin (n0)| can be made as small as we want by increasing n. This is
because

|la,, cos (n0) + b, sin (n)| < |a,, cos (nO)| + |b,, sin (nH)|
And since f_n |h (0)|d6 < oo it implies the Fourier series coefficients a,,b, — 0 as n — oo per
Lemma 3.40 on page 112. Hence (1) can be made as small as we want for large n and it

)

Therefore there exist such an N (¢). Hence u converges uniformly to ..

will remain smaller as n increases because <1.

2.7.5 Problem 4.3.42

Complete the proof of Theorem 4.9 by showing that u (x, y) = M for all (x, y) € Q. Hint:
Join (xo,yo) to (x, y) by curve C C Q of finite length, and use the preceding part of the proof
to inductively deduce the existence of a finite sequence of points (xl-, yi) €eC,i=0,---,n
with (xn,yn) = (x, _1/) and such that u (xi,yi) =M

Solution

Theorem 4.9 : Let u be a nonconstant harmonic function defined on a bounded do-
main Q and continuous on JQ. Then u achieves its maximum and minimum values
only at boundary points of the domain. In other words, if m = min{u (x, y) | (x, y) € 00},

M = max{u (x,1)| (x, y) € JQ} are respectively, its maximum and minimum values on the
boundary, then m < u (x, _1/) < M at all interior points (x, _1/) € Q.

The book gives the proof showing that maximum M" occurs on the boundary JQ. We are
asked here to show that once we determined that given a circle inside ) and assuming the
maximum is at it center meaning all points inside this disk are u = M" then this implies

that all points inside () must also be u = M" leading to contradiction of the nonconstant
requirement. Hence the starting point is this diagram
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Figure 2.48: All points inside C have same value M"

Now, we pick a new point from inside the disk C near the edge and apply the first part of
the proof to show that all points inside the new disk C, also have u = M" there. So we have
this new diagram.

Figure 2.49: All points inside C, have same value M*

We continue this way connecting points and adding the domain where all points have
u = M" values.

All points here

All points here
have u = M*

Figure 2.50: All points inside C; have same value M"

Since Q) is connected then we can cover the whole region () this way all the way to the
boundary JQ. This complete the proof given in the book.

2.7.6 Problem 4.3.46

Write down an integral formula for the solution to the Dirichlet boundary value problem
on a disk of radius R > 0, namely, V2u =0, x> + y?> < R%,u = h,x* + y*> = R?

Solution
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The closed form sum as given in theorem 4.6 in the book as the Poisson kernel integral
formula
1-72

1 TC
n 0= ﬂf—nh(qb)1+r2—2rcos(9—¢)d¢

Theorem 4.6 is for a unit disk. Since the disk here has radius R then r is changed to I—: in
the above giving
2
1- ()

e
u(r,@)—2TCj:nh(cp)l+(£)2_2(%)COS(9_¢)

do

Which can be simplified to

1 Tt R%Z -2
u(r,0) = Ef_nh((?) R2+r2—2chos(9—qb)d¢

2.7.7 Problem 4.4.4

Consider the following partial differential equations. At what points of the plane is the
equation elliptic? hyperbolic? parabolic? degenerate?

J
() X2ty + XUy + 11y, = 0 () 1y = 5 ((x + )

Solution

2771 Parta

The general form of two variables (x, y) PDE is

L[u] = Auyy + Buy, + Cuyy + Duy + Euy + Fu =G (1)
The type of PDE depends on value of the discriminant
A =B?-4AC
Comparing the PDE x%u,, + xu, + uy, to (1) shows that A = x?>,B=0,C = 1. Hence
A = —4x?

This is always negative (x = 0 is not possible, since this would made the PDE not a PDE
any more). Therefore using definition 4.12 this means the PDE is elliptic.

27.7.2 Partb
J
wy = - (x4 D)
Jd Jd
= (a(x+t))ux+(x+t)£ux
= Uy + (X + 1) Uyy
Hence

Uy + (x+ )y —u, =0 (2)

The general form of two variables (¢, x) PDE is

L[u] = Auy + Buyy + Cuige + Duy + Euy + Fu = G (3)
Comparing (2) to (3) shows that C = (x+t),A =0,B =0. Hence
A =B?-4AC
=0

Hence PDE is parabolic.

2.7.8 Problem 4.4.11

Prove that the complex change of variables x = x,t = iy, maps the Laplace equation
Uyy + Uy, = 0 to the wave equation uy = u,,. Explain why the type of a partial differential
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equation is not necessarily preserved under a complex change of variables.

Solution

Given u,, + uy, =0, let x = x,t = iy. Hence we are to go from u (x, y) to v (t,x). Therefore
0
Ju (x,y) Judt  Judx
ox  Jtdx | oxdx

_du
T ox
And
%u _d (du
_ Q%u dt s d%u dx
dxdtdx  dx%dx
%u
=52 1)
And
0
du_ dudt  Juds
dy dtdy dxdy
du
And
u 9 (du
a2y (Ty)
_.d (du
5l
A
| Qfudt  9%u dx
=i Iy + 0%y
_(.9%u
- (i5%)
2%u
=57 (2)
Substituting (1,2) into uy, + u,, = 0 gives
Pu  Ju 0
axz  ot?
Upp = Uyy

Which is the wave equation.

When change of variables contains only real quantities, then no sign change will occur.
Only stretching (scaling) can occur, so the type of the PDE do not change. But with
complex variables, a sign change can occur as in this example due to multiplying i with i.
And this is what causes the PDE type to change.

2.7.9 Problem 4.4.16

True or false: The characteristic curves of the Helmholtz equation u,, + u,, —u = 0 are
circles.

Solution
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Comparing the above to L[u] = Auy, + Bu,, + Cuy, + Du, + Eu, + Fu = G shows that

A=1
B=0
Cc=1

Hence the characteristic curves are given by (4.151) as (where we choose y = y(x) and
hence s = x here)

A(x,y) (Z—Z)Z —B(x,y) Z—Z +C(x,y) =0

2
dy
(E) +1=0
dy 2__1
dx|
d—y:ii
dx

There are no real characteristic curves. Therefore the answer is false.
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2.710 Key solution for HW 7

4.3.24(a)

(a) v(y) = u(e¥) solves a constant coefficient second-order ordinary differential equation
with a double root r, and hence v(y) = ¢, €"¥ 4 e;ye"Y. Therefore,

wz) =ci|z|" +eylz|" log|z|.

4.3.25(c)(d)

(¢) u(z,y) = 17 cos40 4+ 2 cos 20 + 6 = %m“ — 3%y %y4+2m2 —2y° +6

(d) u(z,y) =rcosf =z.

4.3.33

n _

ag logr & " —pr7" .
u(r,8) = ?0 Tog 2 +HZ::1 o omn (a,, cosnf +b, sinnh),

where a,,, b, are the usual Fourier coefficients of h(6).

4.3.38
1 T
First, if C = p f | h(8) | d6, then the Fourier coefficients are bounded by
—7

lanl <2 /7 [h(6)cosnd|do
m s <X/ ey ae=c

bal< = [" |h@)sinnélde | T
nl S =) sinn

Thus, the summands in (4.115) are bounded by

|a, r™ cosnb+b,r"sinnd| < 'r'n(|an | +|bn|) <207y,

00
According to the Weierstrass M test, since the geometric series Y, 2Cr] < oo

converges, the series (4.115) converges uniformly. n=1 Q.E.D.

4.3.42

Given such a curve, let § > 0 be the minimum distance between C' and the boundary
09, which is positive since C' is assumed to lie in the interior of  and both curves are
compact (closed and bounded). Let (z;,¥,) € C, i = 0,...,n, be a finite sequence of
points on the curve with (z,,,y,) = (z,y) and such that the distance from (z,,y;) to
(®;41,Ys1) 18 < %6, which implies that the disk centered at (z;,y;) whose boundary
circle passes through (z,1,%;11) is contained in 2. Using the preceding argument, a
straightforward induction then shows that

M* = u(zg,yp) = ul(zy,y1) = u(zy,y9) = -+ =u(z,,y,) = ul(z,y),
as desired. Q.E.D.
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4.3.46

The rescaled function %(z,y) = u(Rz, Ry) satisfies the boundary value problem (4.101) on

the unit disk, and hence by (4.126)
o 1 g 1-r%/R?
u(r,6) = a(r/R.0) = 5 [0 T s R e =)

4.4 .4(a)(c)
(a) Elliptic when z # 0; parabolic when z = 0.
(c) Parabolic when z + t # 0; degenerate when ¢t = —z.

4.4.11

By the chain rule,
u_ ou Ou_ pPu_ O gt g g
oy  ot’ oyr T otz o2’ 0r? ' Oy?  Ox?

8%u

a2

Thus, this complex change of variables maps the elliptic Laplace equation to the hyper-

bolic wave equation, and the type is not preserved.

4.4.16

False. The equation is elliptic and so has no real characteristics.
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2 Problem 6.2.121 . . . . . . ... 157
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2.8.1 Problem 6.1.4c

Find and sketch a graph of the derivative (in the context of generalized functions) of the
following functions

sin (7x) x>1
(c)h(x) =9 1-x2 -1<x<1
er x < -1
Solution
Lol1-x"2
0.5F
y Sin[Pi x
-3 -E -1 3
-0.5
-1.0f
Figure 2.51: Sketch of the function h(x)
There is only one jump discontinuity at x = -1. The amount of jump [|at x = -1 is %
Hence
71 oS (71x) x>1
B(x)=—e10(x+1)+ —2x -1<x<1
er x< -1
4+ Pi Cos[Pi x]
2_
—2X
Exp([x] ’ ‘ ‘ ‘
-3 -2 1 1 2 3
2k
-4+

Figure 2.52: Sketch of the function h’(x)

2When determining the sign of the jump, we go from left to right always. Dropping down means negative
sign and moving higher means positive sign.
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2.8.2 Problem 6.1.5b

Find the first and second derivatives of the functions

x| 2<x<2

0 otherwise

(b) k(x) = {

Solution

First, the function k (x) is shown below

20+

0.5

Figure 2.53: Sketch of the function k(x)

We see there is a jump discontinuity at x = -2 of value 2 and at x = 2 of value —2. Now,
when -2 < x < 0, then k (x) = —x and when 0 < x < 2, then k (x) = x. Hence

0 x <=2

-1 -2<x<0
K (x) =26 (x +2) -2 (x=2) + *

1 O<x<?2

0 x> 2

The derivative is not defined at x = 0. A plot of the above gives

Figure 2.54: Sketch of the function k’(x)

We see that there is now a jump discontinuity at x = -2 of value -1 and jump discontinuity
at x = 0 of value 2 and jump discontinuity at x = 2 of value —1. Hence

K'(x) =20 (x+2)—20 (x-2)-0(x+2)+20(x) -0 (x—2)
Where ¢’ (x +2) and ¢’ (x — 2) are called "doublets” at x = -2 and at x = 2 respectively.

2.8.3 Problem 6.1.9

o o <o
For each positive integer n, let g, (x) = { 2 n
0 otherwise
Show that lim,_,,, g, (x) = 6 (x). (c) Evaluate f, (x) = f_ i n (y) dy and sketch a graph. Does
the sequence f, (x) converge to the step function o (x) as n — co? (d) Find the derivative
hy, (x) = g, (x). (e) Does the sequence 5, (x) converge to ¢’ (x) as n — oo?
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Solution

2831 Parta

Lets try few values of n.

o : | <1
n= X) =

&1 0 otherwise

1

1 lx| < =

n=2gq,(x)= 2
82(%) { 0 otherwise

3 | < 1

n=3g(x)=q 2 3
82(%) { 0 otherwise

And so on. We see that as n increases, the function value increases and the domain it is
not zero on becomes smaller. As n — oo this becomes a 6 (x) function. Here is a plot of
few values of increasing n.

— n=1
1 o n=2

n=3
— n=4
— n=5
— n=6
[~ n=7
n=8

Figure 2.55: g,,(x) for increasing n

2832 Partb
| ) lim,,_, o %n lim,,_, |x] < %
im g, (x) =
& 0 otherwise
e lx| = 0
] o otherwise
=0 (x)
2833 Partc
We want to integrate this function
n
2
1
| |
| R |
T o 11 =7
mn n

Figure 2.56: Integrating g, (x)
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Therefore
0 x<_71
1 n 1
X (;+X)E —<x<0
fu@ = [ galy)ay=1 0 {2
. (——x)— 0<x<l
n 2
1 x> -

This is a sketch of the above We see that as n — oo then f, (x) becomes

0 x<0
. _ ) _
i fa@=y3 x=0
1 x>0
Which is the step function o (x)
2834 Partd
From the plot of g, (x) above, we see there is a jump discontinuity at x = —% of value g

. . .. 1 n . .
a}Illd a jump discontinuity at x = - of value - And since g, (x) is constant everywhere else,
then

hn(x)zg;(x):gé(x+%)—gé(x—%)

2.8.3.5 Parte

Yes, lim, ., 1, (x) = ¢’ (x). By definition, and as shown in figure 6.6 in textbook, ¢’ (x) is
"doublets". Which is an impulse in positive direction just to the left of x and another impulse
in negative direction just to the right of x and this is what happens when lim,_,., /1, (x) as
seen from the result in part d.

2.8.4 Problem 6.1.30

(a) Find the complex Fourier series for the derivative of the delta function ¢’ (x) by direct
evaluation of the coefficient formulas (b) Verify that your series can be obtained by term-
by-term differentiation of the series for 6 (x). (c) Write a formula for the n'* partial sum
of your series. (d) Use a computer graphics package to investigate the convergence of the
series.

Solution

28.4.1 Parta

By first doing 27t periodic extension (similar to Dirac comb) we can calculate the coeflicients.
First we find the Fourier series for o (x)

k=00
o (x) ~ Z cpet
k:—OO
Wh 1 m —ikx 1
ere ¢, = Ef_né(x)e dx = Pt Hence

1 'S .
5 ~ ikx
()~ o= e

k=—00
1 . . . .
~2—(---+e‘2’x+e‘”‘+1+e1x+e2”‘+---) 1)
TC
Now
k=c0 ‘
& ()~ Y, die™ (2)

k=—0c0
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Where
1 |
d = — f 5 (x) ek dx
2n J_;
1,
= 5|

kx)’]

x=0
1 ‘
_ 1 ,—1k.
=5 [—zke ! x]x:O
1
= — [—ik]
21
ok
= —-1—
27

Hence from (2) we obtain the Fourier series for ¢’ (x) as

. k=00
’ - ke'kx
o (x) 7 E e

k:—OO

—i —2ix —ix ix 2ix
~2—(~-—26 —e ™+ e +2e +)
TC

1 o |
~ o (o 2 i il i ) (3)

28.4.2 Partb

To do term by term differentiation of 6 (x), we first have to note the use of the following
relation and the sign change needed to add

lim g, (x) = 0 (x)
n—o0
- lim g, (x) = ¢’ (x)
n—o0
The above means we need to add a minus sign to the RHS when taking derivative of 6 (x).
Therefore, term by term differentiation of the Fourier series for 6 (x) given in (1) now gives

1 d . . . .
o (x) ~ (<) T ( +e 2 4o 1 4 e + 2 + )

e
1 , . ‘ ‘

~ () 5z (e = 2002 i 4 i 4 20 )
Tt

1 . . . .
~ o (e 20 eI — e - 262 4 ) (4)

21
Comparing (4) and (3) shows they are the same.

2.8.4.3 Partc

It is easier to use normal Fourier series for this.

1 TC
a = gf 0’ (x) cos (kx) dx
Tt

= % [(COS kx)']

x=0

1
= [k sin kx]x=0

=0
And
1 TT
by = —f 0" (x) sin (kx) dx
Tt =Tt
1 . ,
= [(sm kx) ]x:O
1
== [k cos kx]x:O
_k
R
Hence

O (x) ~ % i k sin (kx) 1)
k=1
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Therefore the n'* partial sum is
1 n
& (x) ~ = D ksin (kx)
T k=1

Since [sin (kx)| <1, used partial sum formula for the above given by

L _ nsin((n +1)x) — (n +1) sin (nx)
k; ksin (kx) = Zcos (9 2 (2)
Hence
5 1 nsin((n+1)x) — (n+1)sin (nx)
"(x)NE 2cos(x) -2

It is possible to obtain the above formula by writing sin (kx) = Im (eikx) and then using
Im Y, ke® =TIm Y  kz* where z = ¢™. Since |z| <1 then using the partial sum formula

Enlkk z(1-2" nz"t!
k=

a7 a-27 1-z
_z(1-2") -1 (1 -2)
) (1-2)°
7 — Zn+1 _ nz”“ + nzn+2
) (1 -2y
2= +n)2" 4 nz"*?
) (1-2)°

Then replacing z back by ¢” in the above, and using ¢™ = cos x +isin x and simplifying and
taking the imaginary part to obtain (2).

28.4.4 Partd

Using computer graphics, the following is plot of (2) for increasing values of n. This shows
that as n increases 0;, (x) approaches "doublets”, which is a pulse to the left of x = 0 and
one to the right of x = 0.

n=2 n=5 n=10
4 15
10f
05} of
AN /\ a
-1.0 -0.5 0.5 1.0 [ -1.0 -0.5 0.5 1.0 | -ng/ -0. W 1.0
-0.5 . -1

-4 5

Figure 2.57: Convergence of Fourier series of ¢’(x) as n increases

149



28. HW 8 CHAPTER 2. HWS

1 nSin|(n+1) x| - (n+1) Sin[nx
fixun g se 2 0SI[(n+2) X] - (n+3) sintnx)
b 2Cos[x] -2
data = Table[Plot[f[Xx, n], {x, -1, 1}, PlotRange -» All, PlotStyle - Red,
PlotLabel -» Row[{"n=", n}]1, {n, {2, 5, 10, 20, 30, 50, 70, 90, 110}}];

p = Grid[Partition[data, 3], Frame - All];

Figure 2.58: Code used for the above plot

2.8.5 Problem 6.1.36

True or false: If you integrate the Fourier series for the delta function 6 (x) term by term,
you obtain the Fourier series for the step function o (x).

Solution

The Fourier series for delta function 0 (x) is (assuming 27 periodic extension)

1 1 &
o(x) ~ —+—Zcosnx
2n mAe

Integrating RHS term by term gives
0

T
T 1 1S ™ 1 <& |si
—dx+—2f cosnxdx:1+—2 [smnx]
21 S RO = no|
=1 1)

The step function o (x) is defined as
o (x) = 0 x<0
1 x>0

Its Fourier series was already found on page 83 (assuming 2m periodic extension) in
Example 3.9 as

1 2 1
~ -4+ — 1 21 -1
CT(X) 5 nzgll (271 1) S1n (( n )X)
= 1 + 2 (s + L 3x + L 5x + (2)
fr— — S x _S x _S x e
5 mn 3 11 5 11

Comparing (1) and (2), the answer is false.

2.8.6 Problem 6.2.4

The boundary value problem —% (c (%) Z—Z) = f(x),u(0) = u (1) = 0, models the displacement

u(x) of a nonuniform elastic bar with stiffness c(x) = ﬁ for 0 < x < 1. (a) Find the
displacement when the bar is subjected to a constant external force, f = 1. (b) Find
the Green’s function for the boundary value problem (c) Use the resulting superposition
formula to check your solution to part (a). (d) Which point 0 < £ < 1 on the bar is
the "weakest", i.e., the bar experiences the largest displacement under a unit impulse

concentrated at that point?

Solution

2.8.6.1 Parta

The ode to solve is

d 1 du 3
dx\1+x2dx]
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Integrating once gives

1 du
Tveax . TC
du
= (1 +x2) (—x + Cq)
=C—x+Cx*-x°
Integrating once more gives
x? x>t
u(x)_clx_E"_Cl?_Z-i_CZ
4 30,2
:—%+C1%—E+C1X+C2
Applying left B.C. u (0) = 0 gives
0= C2
Hence solution (1) becomes
4 3,2
u(x) = _xz +C1%— %+C1x
Applying left B.C. u (1) = 0 gives
0= ! +C L +C
T4 32!
9
Hence the solution (2) becomes
43 29
u@x)=-—+—x3-—+ —x

1 (—4x4 +3x3 - 8x% + 9x)

-x* 3 5 X2 9
Uufx ] t= — + — X~ = — + — X3

4 16 2 16
Plot [u[x], {x, @, 1}, PlotStyle - Red,

1)

(2)

GridLines - Automatic, GridLinesStyle - LightGray]

0.15¢
0.10¢
0.05¢
0.2 0.4 0.6
Figure 2.59: Plot of the above solution
2.8.6.2 Partb
dG(x,
When x # y, then Green function satisfies % (c () Gc(li )
dG (x, y)
¢®) dc 1
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But ¢ (x) = ﬁ, therefore

Integrating gives

x3
G(x,y) = A1X+A1§ + A2

Therefore Green function is

3
Ax+ A= +A, x<

G(x,y) _ 1 1xSé 2 y
B1X+B1€+B2 X>y

1)

Notice we used different constants of integrations for each side of the delta location y.
Now we use boundary conditions on the left and right end to find these unknowns. Since
Green function satisfies same boundary conditions as the solution, then at x = 0 we need

G(0,y)=0
= A,
Andatx =1
G(Ly)=0
1
= B1 + Blg + B2
Which means —gBl = B,. Using these results in (1) gives
x3
Aq (x + ?) x<y
B4
le+Blg—§B1 x>y
3
A (x + %) X<y

- 3
Bl(x+%—§) x>y

G (x,y) =

(1A)

We now need to determine A;, B. From continuity condition of G (x, y) at x = y we obtain
the first equation

3 3
¥y\_ y_4
A%y+3)—34y+3 :J (2)
And

dG(x,y) ~ A1(1+x2) x<y
dx B, (1+x2) x>y

Evaluated at x =y

dG(x,y) ~ A1(1+y2) x<y
dx B, (1 +y2) x>y

dG(x,y)
dx

There is a jump discontinuity in

—% (c () @) = f(x) shows that p = % = (1 +x2) or (1 +y2) at x = y. Therefore this

of value % where — (py”) = 0. Comparing this with

condition gives the second equation we need
A (1+92) =B (1+12) = (3)
=(1+9?) (2.1)

We now have the two equations we want (2,3) to solve for A;, B;. Solving for Aj, By gives

m=§@—w—f)

1
Bi =7 (-3y-?)
Substituting the above into (1A) gives the Green function

< I
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i(4—3y—y3)(x+2—3) x<y
(-9 (x+5-3) x>y
(4—3y—y3)(x+%3) x<y
(4—3x—x3)(y+y3—3) x>y

we now see the symmetry above as expected.

Bl = =

2.8.6.3 Part (c)

Now we check the solution of part (a) for f(x) =1 using the superposition formula and
noting that f (y) =1 we obtain

y<x y>x

Hence

[l
[l L N B
—
S
|
W
=
|
=
[68)
SN—
—_——
[ 5 NS
+
—_
N lea
N — \_/><
+
==
——
=
+
W[ R,
N —
—_———
I
|
W
N <
N
|
NN
N —
= _

= 11—6x (—4x3 +3x% - 8x + 9)

Which agree with solution obtain in part (a)

2.8.6.4 Part (d)

From the solution above u (x) = % (—4x4 +3x3 —8x% + 9x). Hence

du 1
_ 3 2

E = E(—16x + 9x —16x+9)

Solving for Z—z =0 gives

11—6 (1623 +9x% = 16x +9) = 0
—11—6 (16x-9)(1+x2) =0

(l + x2) = 0 does not give real solutions. Hence —% (16x—9)=0o0r16x—9 =0 or

_2
16
At this x is the largest displacement which is found by evaluating the solution at this x

)l )l )

262144
=0.167

X
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2.8.7 Problem 6.2.7

1 1
-n x—E&l < -

For n a positive integer, set f, (x) = { 2 | | _ " (a) Find the solution u, (x) to the
0 otherwise

boundary value problem -u" = f, (x),u(0) = 0,u(1) =0, assuming 0 < £ - - < & + - <1
(b) Prove that lim, ., u, (x) = G(x;&) converges to the Green’s function (6. 51) glven by
solution to —cu”" = f (x) with same BC as

(1—ax—pu—5):{<1—af xs<&

c (1—x)z x>¢

G(x; &) =

But here ¢ =1, so the above becomes
1-&)x  x<&
1-x& x=¢&

Where p is the ramp function. Why should this be the case? (c) Reconfirm the result in
part (b) by graphing us (x),u;5 (x), ups (x), along with G (x; &) when & = 0.3.

G(x;é) = (1—5)x—p(x—§)={

Solution

28.71 Parta

de(x,y)
dx?

G (x,y) =Aix+ A

When x # &, then Green function satisfies = 0. This means that

Hence Green function is

G( ) A1X+A2 .X'SE
x,y) =
Y B1X+B2 x>&

At x =0, G(O,y) =0=A,and at x =1, G(l,y) =0 = B; + B,. Hence B, = —B;. The above

becomes
Alx x < 5
G (x, y) =
le — B1 X > CS

_{ Alx XSE

By(x-1) x>& (A)

Where A;,B; are constants to be found. These are found from the continuity condition

and the jump discontinuity condition on g both at x = £. The continuity condition at
x = & gives the first equation as

AE=B(E-1) (1)
And Z—f at x = £ gives

1im —
x—& dx

dG_ Al x<¢é
B Bl ng

Hence the jump discontinuity condition gives the second equation we want which is

Al - Bl = 1 (2)
Where 1 is used in RHS above since ¢ = 1. From (1,2) we solve for A;, B;. Which gives
B1 = —E
A =1-¢
Substituting the above back into Eq (A) gives the Green function
1-&)x x<é
o= 3
1-x& x2&
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The solution is now found using superposition formula

E<x E>x

1
n@= [ Gwaf @i [ ceafiOd

¥ 1
:f (1—x)5fn(§)dg+f Q=& xf,(&)dE
0 X

= (1

1 1

-n lx—¢&| < =

But x)=2 2 n
fn ) { 0 otherwise

X 1
-0 [ ef@deex [Ca-of©d )

. We are told that 0 < & - % <&+ % < 1. Hence (4) becomes

@ =00 [ e [T a-otas

x—=
n

S

xX—=

X

1
x x+;
e [T a-aae

X
)+
1
x—=
n

(-l

x
2 2

1 1

L 2| - (Ly@nx—2n+1)
=lzx+—x—-— - =x*|-[—x@2nx-2n
Tt T ) T\t

(1-x) (52
= nl|l—
2 2
(1-x) [x?
= n|—
2 2
1
1
_ 2
=" (4nx -
1
=x-x>-—
4n
2872 Partb
2.8.7.3 Partc

This is plot of Green function

4nx + 1)

lim u, (x) = lim x — x> - —
n—00 n—o0 4n

=x(1-x)

o) @=9x  x<€ 3
G(x’g)_{é(l—x) £ for £=0.3

G(x

0.20

0.151

0.10

0.05-

,0.3

®
x

0.2 0.4 0.6 0.8 1.0

Figure 2.60: Green function
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green[x_, z_] :=Piecewise[{{(1-2) x, x <z}, {(1-x) z, x> z}}]
p = Plot[green([x, 0.3], {x, 90, 1}, PlotStyle - Red,
GridLines -» Automatic, GridLinesStyle - LightGray,
AxesLabel -» {"x", "G(x,0.3"}, BaseStyle -» 12,
Epilog » {Red, {PointSize[.025], Point[{©.3, 0}]11}}];

Figure 2.61: Code for the above plot

2

These are plots of u, (x) = x —x* - 41—n for different n values.

0.25

0.20

0.15

0.10

0.05

25

" " " " " " " " " " " " " 1
0.2 0.4 06 0.8 &o 15
-0.05 5

Figure 2.62: Plot of u,(x) for different n values

ufx_, n_] :=x-x"2-1/(4n)

p = Plot[Evaluate[Table[Callout[u[Xx, n], n], {n, {5, 15, 25}}1], {Xx, 9, 1},
AxesOrigin -» {0, @}, GridLines - Automatic,
GridLinesStyle - LightGray];

Figure 2.63: Code for the above plot

Please note that the plots above do not seem to converge well with what is expected which
is the Green function plot earlier. I am not able to find out so far where the problem is.

2.8.8 Problem 6.2.11

Let w > 0. (a) Find the Green’s function for the mixed boundary value problem

-u" +w?u=f(x)), u@0)=0,u"1)=0

1 0
(b) Use your Green’s function to find the solution when f (x) = { . 1 =S i
- -<x<
2

Solution
2.8.8.1 Parta
. . dZG(x,y) 2 .
When x # &, then Green function satisfies ——a tw G(x,y) = 0. This means that

dZG(x,y)
dx?

- w?G (x, y) = 0 which has solution
G (x, y) = A; cosh (wx) + A, sinh (wx)
Hence Green function is

A h A, sinh 0
c (x,_l/) _ { 1 cosh (wx) + A, sinh (wx) <x<y (1A)

B; cosh (wx) + B, sinh (wx) y<x<l1
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Atx=0,G (0, y) =0 = A;. And to find conditions at x =1, then G’ (x, y) = wBj sinh (wx) +
@B, cosh (wx). Hence at x =1 this gives
G (Ly)=0
= wBy sinhw + wB, coshw

Therefore B; sinh w + B, coshw = 0. Or B, = —B; tanh w. Hence (1A) becomes

G( ) A, sinh (wx) O<x<y
x,y) =
4 B, cosh (wx) — By tanh wsinh (wx) y<x<1
3 A, sinh (wx) O<x<y
- B; (cosh (wx) —tanh wsinh (wx)) y<x<1

But cosh (wx) — tanh w sinh (wx) = % The above becomes

Apsinh(wx) 0O<x<y
G (x/ ]/) = { cosh(w-wx) y<x<l (1)

1™ coshw

We now need to determine A, B. From continuity condition of G (x, y) at x = y we obtain
the first equation

cosh (w - a)y)

Ay sinh (a)y) =B (2)

coshw

And

dG (x, y) Asw cosh (wx) x<y
B, (M) x>y

cosh w
Evaluated at x =y
aG (x, y) Asw cosh (a)y) x<y
i = B, (—w smh(w—a)y)) x>y

coshw
dG(x,y)
dx

There is a jump discontinuity in
the second equation we need

of value 1 at x = y. Therefore this condition gives

w sinh (a) - a)y)

A,w cosh (a)y) + By =1 (3)

coshw
Solving (2,3) for A,, By gives

_ cosh (a) (1 - y))

A, =
2 w cosh (w)

sinh (a)y)
1=
Substituting the above into (1) gives the Green function

Msinh(wx) O<x<y

G (x, y) = w cosh(w) (4)
cosh(w(1-x)) .
Tshwxsmh(a}y) y<x<l
288.2 Partb
Using the superposition formula
y<x y>x

w@= [ 6(u) r)av+ [ G () f (o)
1 cosh (a) (1 - y))

¥ cosh (w (1 -x)) . .
= - o =~ =7 h f h
fo weosh @) (a)y)f(y) ay+ . wcosh(w) sinh (wx) f (y) dy
1 O<x<1
But f (x) = 1 2 hence the above reduces to
-1 -<x<1
5 <
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case x < =
- 2
cosh (w (1 - x)) > cosh (a) (1 - y)) 1 COSh (1 - y)) ‘
u(x) = f W sinh (a)y) dy + J; & cosh (@) sinh (wx) dy — f & cosh @) sinh (wx) dy
1 (e% Ty e‘“)) X+ (e o7 o2 ) e~
T w2 w? (e® + e~¥)
1
case x > =
2
B 7 cosh (w@-x)) . cosh (a) (l - y)) 1 COSh (1 - y)) ‘
u(x) = j(; m sinh (a)y) dy — ﬁ cosh (@) sinh (wx) dy — f o cosh (@) sinh (wx) dy

—w 3, 3 @
1 (62 —e%+e 2 )e“’x+(32 —ew+e2)e‘“”‘

w? w? (e? + ™)

2.8.9 Problem 6.2.12

Suppose @ > 0. Does the Neumann boundary value problem —u” + w?u = f(x),u’ (0) =
u’ (1) = 0 admit a Green’s function? If not, explain why not. If so, find it, and then write
down an integral formula for the solution of the boundary value problem.

Solution

To find out if it admits a Green function, we will see if we can solve for the constants that
show up in the formulation of Green function. If not able to find a solution, then no Green
function.

d2G(x,
When x # &, then Green function satisfies —% + w?G (x, y) = 0. This means that

G (x, y) = A; cosh (wx) + A, sinh (wx)
Hence Green function is

(1A)

G( ) Ajcosh(wx) + Apsinh (wx) 0O<x<y
X =
Y B; cosh (wx) + B, sinh (wx) y<x<l1

On the left end, %G (x, y) = wA;j sinh (wx) + w A, cosh (wx). Hence At x =0, G’ (O, y) =
wA;. Therefore A, = 0. On the right side %G (x,y) = wBy sinh (wx) + wB, cosh (wx). At
x =1, then G’ (x,y) = wB; sinh (w) + wB, cosh (w) = 0. Therefore B; sinhw + B, coshw = 0.
Or B, = -B; tanh w. Hence (1A) becomes

G( ) Aj cosh (wx) O<x<y
x,y) =
/ B, cosh (wx) — By tanh wsinh (wx) y<x<1

3 Aj cosh (wx) O<x<y
- B; (cosh (wx) —tanh wsinh (wx)) y<x<1

But cosh (wx) — tanh w sinh (wx) = W The above becomes

cosh(w(1-x)) y<x< 1

coshw

Ajcosh(wx) O<x<y
(9)=1 g,

Now we will try to see if we can determine A;, B;. Continuity condition at x = y gives the
first equation

A; cosh (a)y) = 00]:}11 - cosh (a) (1 - y)) (1)
And
aG (x,y) _ { Ala) sinh (wx) O<x<y
dx cosh wsinh(w(1-%x)) y<x<l1
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. : . . dG(vy) o
Hence at x =y to satisfy the jump discontinuity in —— the second equation is

Aw sinh (a)y) + w sinh (a) (1 - y)) =1 (2)

coshw
Solving (1,2) for A, B gives

- cosh (a) (1 - y))

w sinh (w)
cosh (a)y)
1= a)STh(a)) cosh ((U)

Hence Green function exist. Substituting the above in Green function above gives

cosh(a)(l—y))

_ inh
G (x, y) = C(f;’ﬁéiiu‘fﬁ»

w sinh(w)

cosh (wx) O<x<y

cosh (a)y) y<x<l1

Here is a plot of the above when the pulse at y = 0.25 with w =1

115

1.00f
0.95]

0.90f

Figure 2.64: Plot of the Green function found

p=With[{y =0.25, w=1},

Cosh[w (1-y)]

Plot| Cosh[wx] HeavisideTheta[-x +y] +

wSinh[w]
Cosh[w (1-x)]
W Sinh[w]
PlotStyle - Red, GridLines - Automatic, GridLinesStyle - LightGray]

Cosh[wy] HeavisideTheta[x -y], {x, 0, 1},

B

Figure 2.65: Code used for the above plot

The integral formula is

u(x):foCOSh(w(l_x))f(y)dy+f1 cosh(a)(l—y))

o wsinh (w) . wsinh(w)

_ cosh(@(1-x) " cosh (wy)  (v)dy + cosh (@ (1 -y)) £ (y) dy

cosh (wx) f (y) dy

cosh (wx) !

w sinh (w) w sinh (w) J,
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2.8.10 Key solution for HW 8

6.1.4c

mcos L, T>1, \j /\ /
* (c) h’(m)—e_lé(erl)Jr{ —2z, -l<z<1, —_— N O O
e®, < —1. ] l / \/

6.1.5b

-1, -2<z<0,
(b) K'(zx)=28(x+2)—-28z—-2)+4 1, 0<z<2
0, otherwise,
=20z+2)—26(x—2)—o(z+2)+20(z) —o(x —2),
E'(z) =26"(z+2)—26"(x —2) — 6(x +2) +26(z) — 6(z — 2).

(a)

|
|

R S R S—

1

n

Rl e

(b) First, lim g, (x) =0 for any = # 0 since g,,(z) = 0 whenever n > 1/| z|. Moreover,
n— oo
/ > g,,(z) dr = 1, and hence the sequence satisfies (6.11-12), proving
—00

nli_)moo g, (z) = d(z).

1
0, T < f%,
T
(© fo@ = [ _gnWdy=4 ino+%, |a|<i,
1, > n.
1 1
n n
0 z<0,
Since + — 0 as n — 00, the limiting function is lim f,(z)=o(z)=4 + z=0,
n n— 00
1 z>0.

(d) h,(z)= %n5(m+%) - %nc;(zf %)
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6.1.30
() /@) ~ 5= 30 kel
2m L = . ‘
(b) This is evident since the derivative of e!¥® is ikel*?.

(c¢) Differentiate formula (6.39) to obtain

. 1 1 1.1 1 1
i Zn: keikmi(”+§)COS("+§)ESIH§:E 2sm(n+2):vcoszm

27 = 27sin? 3z

(d) The graphs of the partial sums s,,(z) and s, (x) are:

They indicate weak convergence of the Fourier series, with increasingly rapid oscillations
between an envelope, namely (n + %) / (271' sin % :13), that has ever-increasing height.

6.1.36
False. Integrating both sides of
1 1
d(z) — 5=~ (COS.’L‘+ cos2xz +cos3x + --- )’

and using (3.72) to find the constant term, yields
1 1 . sin2z  sin3z
J(w)—%wi—%;(smm#- 5 -+ 3 +--->,

which agrees with the appropriate combination of (3.49) and (3.73).

T
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6.2.4

(8) u(e) = Bo—ba® + &ad - Lot

) G~ | (1 ~E-18)(z+52"), 2<s
’ (1-32-12")(e+3€%), a>¢

=y (1-e- 1) (6438 ae [ (1-F6-3€) (24 127

_ 9 1.2 3 .3 1,4

(d) Under an impulse force at z = £, the maximal displacement is at the forcing point,

namely g(z) = G(z,z) = = — %az2 + %:1;3 — %334 — %:{:6. The maximum value of
g(z*) = % occurs at the solution z* = (1 + V23 — (1+v2)71/3 ~ 596072 to the
equation g’(m)f:m](f_%ﬂ"‘iJFEQ — 247 — %:L‘E’ =0. Nemeg_ L
6.2.7
equation ¢’ (z :m](f—%EqifL ¢ —2z° — 52° =0. O<z<f—L
2.7.
6 (a) Uy, (z) = —%nszr(%nfl)ng;lfnngr%er%{fﬁ, |w75|5%,
¢(1-2), E+p<z<L

n
while lim wu,(£) = lim (5 —&? ﬁ) =¢—¢ = G(&,£). (Or one can appeal to
n— 00 n— o0
continuity to infer this.) This limit reflects the fact that the external forces converge tc
the delta function: lim f, (z) = d(z —&).
n— 00

(b) Since u,,(z) = G(z;€) for all |z — €| > L, we have lim wu,(z) = G(x;¢) for all z # &
7 —> 00

0.2

(C) 0.15

0.1

0.05
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6.2.11
sinhwz coshw (1 — £) r<¢
w cosh w ’ = 1
. €)= b) If £ < 3, th
(a) G(2:6) coshw (1 — z) sinhwé r>¢ (b) T z < 5, then
w cosh w ’ =
2z coshw(1l —x) sinhwé 1/2 sinhwz coshw (1 — £)
u(w) = fO wcoshw @ + /:.s w cosh w %
_ (! sinhwz coshw (1 —§) de
1/2 wcoshw
1 (ew/2 _ 6—w/2_+_6—w) e 4 (ew B 8w/2_|_6—w/2) e~ wWET
T ow? wl(e¥ +e—w) ’

while if z > %, then

u(z) = L1/2 coshw(1 — z) sinhwé e — fj coshw (1 — z) sinhwé de

wcoshw /2 wcoshw

B fl sinhwz coshw (1 — £) de

z w cosh w
1 (e—w/z e W _+_e—3w/2) eve o1 (eSw/2 v +ew/2) e~ WT
TW? + w2(e® +e~w) '

6.2.12

.';-:'11”+w2u = f(z),
‘hy not. If so, find it, and then
¥ value problem.
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291 Problem1

Find the eigenvalues and the eigenfunctions for the Dirichlet and Neumann problems for
the Laplacian on a rectangle (0,a) x (0, b)

Solution

2.9.1.1 Dirichlet case

V2u = -Au
u(x,0)=0
u(x,b)=0
u(0,y) =0
u(a,y) =0

2u 2%u

Let u (x, y) = X (x) Y (x). Substituting this into the PDE —— + i —-Au gives
X"Y +Y"X = -AXY

Dividing by XY # 0 gives

XI/ + Y‘/l B A

X Y
X/I B YII /\
X Y

Since the LHS depends on x only and the RHS depends on y only and they are equal, they

must be both constant. Say —u. The above becomes

X// B ‘Y// A 3
x Ty 77

Two ODE’s are therefore obtained from the above. They are
X" +uX=0 (1)
X(0)=0
X(@) =0
And

% +A=u
37+@—y):0
Let (/\ - y) =y constant. Hence the above gives the second ODE in y as
Y’ +yY =0 (2)
Y(0)=0
Y(b)=0

Now the eigenvalues i,y and eigenfunctions for each ODE is found and from that result
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the eigenvalue A is found using
A=y+u (3)
Starting with ODE (1) X” + uX =0

Case u<0
The solution to (1) is

X = Acosh( |[J|x) + Bsinh( |y|x)

At x = 0, the above gives 0 = A. Hence X = Bsinh( |y|x). At x = q this gives 0 =

Bsinh( |y|a). But sinh( |y|a) =0 only at 0 and /|u|a # 0, therefore B = 0 and this leads

to trivial solution. Hence u < 0 is not an eigenvalue.

Case u=0

X=Ax+B

Hence at x = 0 this gives 0 = B and the solution becomes X = B. At x = 4, B = 0. Hence the
trivial solution. y = 0 is not an eigenvalue.

Case u>0

Solution is

X = Acos (\/ﬁx) + Bsin (\/ﬁx)

At x = 0 this gives 0 = A and the solution becomes X = Bsin (\/ﬁx) Atx=a

0 = Bsin (\/ﬁa)

For non-trivial solution we want sin (\/ﬁa) =0or \/ﬁa = kmnt where k =1,2,3, -+, therefore

kTt 2
Uk = — k=1,2,3,--- (4)

The corresponding Eigenfunctions are

k
XM@:sm(ék) k=1,2,3, (5)

Solving ODE (2) Y +yY =0

The same steps are repeated as above. The only difference is that now we obtain eigenvalues

2
=) m=125e (6)
And the corresponding eigenfunctions
. (mT

Ym(y):sm(T ) m=1,2,3,- (7)

From (4,6) we see that the eigenvalues for V2u = —Au are, using (3)
Ak,m = Ukt Vm
kn\>  (mmy2
= (= +(—) k=1,2,3-,m=1,23,-
a b

And the eigenfunctions are from (5,7) are

o (km . (mTn
(Dk,m(x,y):sm 7x sm(Ty) k=1,2,3,---,m=1,2,3,--
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2.9.1.2 Neumann case

Vu =-Au
%u (x,00=0
%u(x,b) =0
&ixu (O,y) =0

d
au (a,y) =0

2 2
Let u(x,v) = X (x) Y (x). Substituting this into the PDE U T \u gives
y g x2 3y2 g
X"'"Y +Y"X = -AXY

Dividing by XY # 0 gives

X/I + Y// B A

X Y
XI/ B Y// /1
X Y

Since the LHS depends on x only and the RHS depends on y only and they are equal, they

must be both constant. Say —u. The above becomes
XI/ 3 Y// A 3
x Ty 77

Two ODE’s are therefore obtained from the above. They are
X"+ uX =0 1)
X' 0)=0
X' (a)=0
And

4 A=
y TATH

7+(/\—/J):O

Let (/\ - p) =y constant. Hence the above gives the second ODE in y as
Y'+yY=0 (2)
Y’ (0)=0
Y (b)=0

Now we find the eigenvalues p,y and eigenfunctions for each ODE and from this result

find
A=y+u (3)
Starting with ODE (1) X" + uX =0

Case u <0
The solution to (1) is

X(x) = Acosh( |y|x) + Bsinh( |y|x)

X' (x) = AyJu]sinh (\/mx) + B[] cosh (\/mx)

At x = 0, the above gives 0 = B. Hence X (x) = Acosh( |/,t|x) and X’ (x) = A\/m sinh (\/Mx)

At x = a this gives 0 = A,/|y|sinh( |p|a). But sinh( |y|a) = 0 only at 0 and 4/|ula # 0,
therefore A = 0 and this leads to trivial solution. Hence u < 0 is not an eigenvalue.
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Case u=0
X=Ax+B
X =A

At x = 0 this gives 0 = A and the solution becomes X = B, therefore X’ =0. At x =4, 0=0.
Hence any constant B will work. Let this constant be Cy. Therefore u = 0 is an eigenvalue
with corresponding eigenfunction X (x) = Cy, a constant.

Case u>0

Solution is
X (x) = Acos (\/ﬁx) + Bsin (\/ﬁx)
X’ (x) = =Ay/usin (\/ﬁx) + B4/ cos (\/ﬁx)
At x = 0 this gives 0 = B and the solution becomes X (x) = Acos (\/ﬁx) Hence X’ (x) =
—A4/psin (\/ﬁx) At x = a this gives
0 = -Ay/sin (ypa)

For non-trivial solution we want sin (\/ﬁu) =0or \/ﬁa = kmt where k=1,2,3, -+, therefore

kmt 2
Uy = — k=1,2,3,-- (4)

The corresponding Eigenfunctions are

X (x) = cos (l%nx) k=1,2,3,-- (5)

Solving ODE (2) Y +yY =0

The same steps are repeated as above. The only difference is that now we obtain eigenvalues
y = 0 also and corresponding eigenfunction constant, say Dy and also obtain

2
Vm:(%) m:1/213/ (6)
and corresponding eigenfunctions
mmn
Y, (y) = cos (Ty) m=1,2,3,-- (7)
From (4,6) we see that the eigenvalues for V2u = —Au are
0 k=0m=0
Aem =
' Uk +vm k=1,2,3,--,m=1,2,3,--

0 k=0,m=0

) (%”)2 F (M) k=123, ,m=1,2,3,--

And the eigenfunctions are from (5,7) are
( ) 1 k=0,m=0
CDYI X, Yy)= kmt mr
cos(;x) cos (Ty) k=1,2,3,---,m=1,2,3,--
Where in the above the constant eigenfunction that corresponds to the zero eigenvalue is
taken as 1.

2.9.2 Problem 2

Prove that the wave equation uy (x, ) = ?V2u, t > 0, x € Q € R with the Dirichlet boundary
conditions u (x,t) = 0 for x € dQ,t > 0 has solution

u(x,t) = io] (A cos (VA,ct) + By sin (VA,ct)) v, (x) 1)
n=1

Where A, v, are respectively, eigenvalues and eigenfunctions of the Dirichlet problem
for the Laplacian in Q. Write in an analogous form the solution to the heat equation
u(x,t) = cV2u, t > 0, x € Q € R? with Dirichlet boundary conditions u (x,t) = 0 for
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x€dQ,t>0.
For the wave PDE

We will show the solution given solves the PDE by substituting it into the PDE and see if
it gives an identity.

u (x,t) = ? E(A cos (\/_ct)+B sm(\/—ct))vn (x)

Assuming continuouselgenfunctlons, term by term differential is allowed, and the above
becomes

ug (x, t) = i % (An cos (\//\nct) + B, sin (\/Anct)) v, (x)
n=1
= i (—An\//\nc sin (\//\nct) + B,V A, ccos (\/Anct)) v, (%)
n=1

Taking one more time derivatives gives

uy (x,t) = i (—An}tnc2 cos (\//\_nct) - B,A,c?sin (\/A_nct)) v, (%) (2)

n=1
Similarly for the spatial coordinate

Uy, (x,t) = % i (An cos (\//\—nct) + B, sin (\//l_nct)) v, (x)
n=1
= i (An coS (\/A_nct) + B,, sin (\/A_nct)) v;, (%)
n=1

Taking one more space derivatives gives

V2u = i (An cos (\//\—nct) + B, sin (\/)\_nct)) vl (%)

But since v, (x) is an elgenfunctlon then —v;, (x) = A,,v, and the above simplifies to
Vu = - Z (An cos (\/A_nct) + B, sin (\/)\_nct)) A0, (%) (3)
n=1

Substituting (2,3) into uy (x, ) = ¢>V2u gives

2(—AnAnc2cos (\//\_nct) B,A,c?sin (\/_ct vn (x)=c ( 1 A cos \/—ct)+B sm(\/_ct))A v, (x))
czi(—An oS (\/A_nct) B, sin (\/_ct))/l v, (x) = —c? (An oS (\/—ct)+B sin (\/_ct))/\ v, (x)

E (A cos (\/_ct) + B, sin (\/_ct)) A0, (%) = —c? Z (A cos (\/_ct) + B, sin (\/_ct)) A0y, (%)

The LHS is the same as the RHS. Hence the solution given satisfies the wave PDE.

8'i'M8ﬁ

For the heat PDE

For the heat PDE, we want to show that the following solution
u(x, ) = Y, Ae o, (x) (4)
n=1
Satisfies u; (x,t) = cV2u.
(9 (o]
Up (x/ t) = E nzzll Ane_AnCtvn (X)
Assuming term by term differential is allowed the above becomes

uy (x,t) = E —A 1€, (%)

= Z —A, A ce Mty (x) (%)

n=1
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Similarly for the spatial coordinate

a (]
Uy (x/ t) = 8_36 E Ane_A"Ctvn (X)
n=1

(o)
— —Ayctot
= ZAne nctor (x)
n=1
Taking one more space derivatives gives

o0
V2 =Y, Ae oy (x)
n=1

But since v, (x) is an eigenfunction, then —v}, (x) = A,v,. The above becomes

V==Y Ae A, (x) (6)
n=1
Substituting (5,6) into u; (x,t) = cV2u gives

(o]

Y —Aduce o, (x) = o= Y Ae A0, (x))
n=1 n=1

—c E A A e Mty (x) = —¢ E Ae M) v (x)
n=1 n=1

The LHS is the same as the RHS. Hence the solution (4) satisfies the heat PDE.

2.9.3 Problem 6.3.9

1 3x-2y>1
Y Compute its partial derivatives % and Z the sense
0 3x-2y<l1 ox %

of generalized functions.

Suppose f (x, y) =

Solution

The following is a plot of the above function in 3D

1.0 /;
ﬂ\l.\)n.sx
0.0 k™

Figure 2.66: Plot of f(x,y)

fIx_, y_] :=Piecewise[{{1,3x-2y > 1}, {0, 3x-2y > 1}}]
p = ParametricPlot3D[{x, y, f[x, Y1}, {X, -3, 3}, {y, -3, 3},
AxesLabel -» {"x", "y", "f(x,y)"}, ImageSize - 400,
BaseStyle - 12, Exclusions - True,
ExclusionsStyle - LightGray, PlotTheme -> "Classic", PlotPoints - 50];

Figure 2.67: Code used for the above plot

Similar to what we did in 1D, when taking a derivative and there is a jump discontinuity,
an impulse 6 (x) is generated at the location where the jump discontinuity is located. The
location of the jump here is on the line 3x — 2y —1 = 0. This is a step function but in 3D.
Hence by chain rule
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& 4 a
fg;y):$(3x—2y—1)6(3x—2y—1)
=35 (3x -2y -1)
2 1
:5(’“‘5 ‘5)
And
If \xy) 9
(gy ):a—y(3x—2y—1)6(3x—2y—1)

= -26(3x -2y -1)
(3 1
—6(—§x+y+§)

2.9.4 Problem 6.3.10

Find a series solution to the rectangular boundary value problem 4.91-92 which is

VZu=0 on a rectangle R:{0<x<a,0<y<b]

u(x,0) = f(x)

u(x,b)=0
u(0,y) =0
u(a,y) =0

when the boundary data f(x) = 6(x - &) is a delta function at a point 0 < £ < a. Is your
solution infinitely differentiable inside the rectangle?

Solution
Y
b u=20
2 J—
u=0|Vu(z,y) = u=0
o
oz —¢&)
Figure 2.68: The problem to solve. Laplace PDE in rectangle
2 2
Let u (x, y) = X (x) Y (x). Substituting this into the PDE Z—xlzl + §7u = 0 and simplifying gives
X/I 3 ‘Y//
X Y

Each side depends on different independent variable and they are equal, therefore they
must be equal to same constant.

Xl/ Y//

— =-—=%A

X Y
Since the boundary conditions along the x direction are the homogeneous ones, —A is

selected in the above.
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X// 3 YI/ 3

x= "y~
Two ODE’s are obtained
X"+AX =0 (1)
With the boundary conditions
X(0)=0
X(@) =0
And
Y'-AY =0 (2)
With the boundary conditions
Y(0) = f(x)
Y(®) =0

In all these cases A will turn out to be positive. This is shown below.
Case 1 <0

The solution to (1) is

X = Acosh (\/Wx) + Bsinh (\/Wx)

At x = 0, the above gives 0 = A. Hence X = Bsinh (\/Wx) At x = g this gives X =

Bsinh (\/Wa). But sinh (\/Wa) =0 only at 0 and v/|A]a # 0, therefore B = 0 and this leads to
trivial solution. Hence A < 0 is not an eigenvalue.

Case A =0

X=Ax+B

Hence at x = 0 this gives 0 = B and the solution becomes X = B. At x = 4, B = 0. Hence the
trivial solution. A = 0 is not an eigenvalue.

Case A >0
Solution is
X = Acos (\/Zx) + Bsin (\/Xx)
At x = 0 this gives 0 = A and the solution becomes X = Bsin (\/Xx) Atx=a
0 = Bsin (\/Xa)

For non-trivial solution sin (\/Xa) =0 or VAa = nm where n = 1,2,3,---, therefore

2
An:(ﬂ) n=1,2,3,-
a

Eigenfunctions are

Xn (x) = Bn Sin(n%x) n=1,2,3,-- (3)
For the Y ODE, the solution is
Y, = C, cosh (Ey) + D,, sinh (Ey) (4)
a a
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Applying B.C. at y = b gives
0 =C, cosh (n%b) + D,, sinh (n%b)
c sinh (n: b)
" "cosh (n; b)
= -D,, tanh (n_nb)
a
Hence (4) becomes

Y, = -D, tanh (n%b) cosh (n%y) + D, sinh (—ny)

a

:Dn(smh(%ny) taﬂh(_b)COSh( ))

Now the complete solution is produced

u, (x, y) =Y, X,

., (nT nm nm . (nm
=D, (smh (7]/) —tanh (719) cosh (7]/)) B, sin (7x)
Let D,B,, = B, since a constant. (no need to make up a new symbol).
., (N7 nm nm . (NnT
U, (x, y) =B, (smh (7y) —tanh (719) cosh (7}/)) sin (7x)
Sum of eigenfunctions is the solution, hence
i ) nT nT nm . (nT
u (x, y) = Z}l B, (smh (73/) —tanh (7b) cosh (7y)) sin (7x) (5)
The nonhomogeneous boundary condition is now resolved. Aty =0
uy,0)=f(x)=0(x-<&)

Therefore (5) becomes

o(x—-¢&) = i -B, tanh (ﬂb) sin (Ex)

el a a

Multiplying both sides by sin (%x) and integrating gives
a a sl
f 0 (x—¢&)sin (@x) dx = - f sin (@x) 2 B,, tanh (n_nb) sin (n_nx) dx
0 a 0 a =1 a a
oo a
=- E B, tanh (n_nb) f sin (n_nx) sin (@x) dx
—~ a 0 a a
= -B,, tanh (@b) (E)
a 2

~ _gﬁé(}f— &) sin (%x)dx

a tanh (n—nb)

Hence

But £ O(x—¢)sin (—x) dx = sm( E) by the property delta function. Therefore

o 22
" ﬂtanh(%nb)

This completes the solution. (4) becomes

(x y) 2 i :1%(71)) (sinh (?y) —tanh (%b) cosh (%y)) sin (%x)

n 1

) nre . nm Slnh ( y)
=—— 2 sin (—5) sin (—x) —f — —co sh( y)
Looking at the solution above, it is composed of functlons that are all differentiable. Hence
the solution is infinitely differentiable inside the rectangle.

Here is a plot of the above solution using a = 7r,b = %, E=1.
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Figure 2.69: Plot of u(x,y)

30 Sinh [ oz y

-23  nr . hw n
ulx_,y , €] := —ZSm[—é‘] Sin[—x] | ————-Cosh[—y]|;
a 14 a a Tanh["a%' b] a
a=Pi;b=1/2;€=1;
p= Plot3D[u[x, y, §1, {x, 9, a}, {y, 0, b}, PlotRange » {Automatic, Automatic, {-3, 7}},
PlotPoints - 40, AxesLabel -» {"x", "y", "u(x,y)"},

ColorFunction - Function[{x, y, z}, Hue[.45 (1 - Z) ] ] ]}

Figure 2.70: Code used for the above plot

29.5 Problem 6.3.18

(a) Use the Method of Images to construct the Green’s function for a half-plane {y > 0}
that is subject to homogeneous Dirichlet boundary conditions. Hint : The image point is
obtained by reflection. (b) Use your Green’s function to solve the boundary value problem
With y > 0,u(x,0)=0

A 1
A\l = ——
1+y

Solution

2.9.5.1 Part (a)

The first step is to find Green function in the half-plane G (x, v; xo,yo). To do this we will
use Green function in the whole plane, called F(x, v xo,yo). There (x, y) is an arbitrary
point in upper half plane and (xo,yo) is fixed point where the impulse is located. We set

an impulse at the point (xo,yo) and a negative impulse at (xo, —yo). This way the end effect
is that at the boundary which is x = 0 the half plane Green function is zero which satisfies
the boundary conditions of the given PDE. The following diagram helps illustrate this
setup
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(z,y)

° positive impulse here

x(20,90)  T(x,y; 0, 50) = —5= In /(2 — 20)% + (y — v0)?

x (zg, —yo) L@, y;20, —y0) = —Lny/(z —20)2+ (y + yo)?

negative impulse here

G(l?, Y; Zo, yO) == F(I‘a Y; Zo, yO) - F(I‘a Y; Zo, _yO)

~ 7

Green function for Green function for
upper half-plane whole plane

Figure 2.71: Using method of images

Hence

G (430, 0) = ~5= In (\/ (=0 + (- yo)z] +5-n (\/ (=0 + (y+ yo)z]
= —4%1 In ((x - x0)2 + (y - yo)z) + i In ((x - xo)2 + (y + yo)z)

1,00 X0+ (v+10)°

A e xp + (y- o)

2952 Partb

Now that the Green function is known, the solution is

u(x,y) = fw nyG(xry;xmyo)f(xo/yo) dxodyg
M (-x0 +(y+w0) | 1 e
‘f_mfoﬁn (1+yo) o

(x - x0)2 + (y - yo)2

1 v( 1 X (X—xo)2+(}/+l/o)2
:4_7'(f0 (1+y0)[fmln[ dxo | dye 1)

(x - x0)2 + (y - yo)2

But

foo 111((x_x0)2 + (y+yo)j]dx0 _ Zygn—xln((y+y0)2) +xln[(y+y0)2] +x1n((y_yo)2)

(x = x0)” + (v — o) (v-10)
=2yom —2x1n (y+y0) +2x1In (%) +2x1In (y—yo)
~Yo
:2y0n+2xln(y_y0)+2xlny+y0
Y+¥o Y—Yo
:2y0n+2x(lny_y0 +lny+y0)
Y+Yo Y¥=Yo
=2yom+2xIln (_]/—yo Y+ % yo)
Y+YoY-Yo

= 2YoT
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Hence (1) becomes

1 Yy
)= [ 2
1

=5 (o —In (vo + 1))Z

1
=5 (y-In(y+1))
Checking: When y = 0 then u (x, y) = —% In (1) = 0. Ok. Solution does not depend on x but

only on y.

2.9.6 Problem 6.3.21

Provide the details for the following alternative method for solving the homogeneous
Dirichlet boundary value problem for the Poisson equation on the unit square:

Uy + Uy = = (x,y) O<xy<l
u(x,0)=0
u(x,1)=0
u(0,y) =0
u(l,y) =0

(a) Write both u(x,y) and f(x,y) as Fourier sine series in y whose coeflicients depend on x.
(b) Substitute these series into the differential equation, and equate Fourier coefficients to
obtain an infinite system of ordinary boundary value problems for the x-dependent Fourier
coefficients of u. (c) Use the Green’s functions for each boundary value problem to write
out the solution and hence a series for the solution to the original boundary value problem.
(d) Implement this method for the following forcing functions (i) f (x, y) = sin Fny), (ii)

f (x, y) = sin (71x) sin (ZRy), (iii) f (x, y) =1.

Solution

29.6.1 Parta
Let

u (x, y) = i Ay (x) sin (\/A_n]/)
n=1
f (x, y) = 21 B, (x) sin (\/A—ny)

The eigenvalues are known to be A, = n?m? forn = 1,2, --- for these boundary conditions
on x =0 to x =1. Hence the above becomes

u (x, y) = Z A, (x)sin (nny) (1)
n=1
f (x, y) = E B, (x)sin (nny) (2)
n=1
29.6.2 Partb
From (1)
U, = i Al (x) sin (nny)
n=1
Upy = i Ajl (x)sin (nny)
n=1
u, = f: nmA, (x) cos (nny)
n=1
Uy = = i n?m? A, (x) sin (nny)
n=1
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Substituting the above back into the original u,, +u,, = -f (x, y) gives

[o¢]

E A (x) sin (nrcy) - i n?m? A, (x) sin (nrcy) = — i B, (x)sin (nny)
n=1

n=1 n=1
i (A,’{ (x) - n’m?A, (x)) sin (nny) = - i B, (x) sin (nny)
n=1 n=1

Equating coefficients in the above gives
A (0) = n?m? A, (x) = =B, ()

For all n =1,2,---. This is an infinite system of ordinary boundary value problems in A (x)
where B, (x) acts as the external input.

2.9.6.3 Partc

We now want to find Green function for A/ (x) - n?>n?A, (x) = 0 with A, (0) = 0, A, (1) = 0.
The solution is
A, (x) = A cosh (nmx) + Bsinh (nmx)
Hence the Green function is
Aj cosh (nmx) + By sinh (nmx)  x < xg
A, cosh (nmx) + By sinh (nmx) x> xg

G(x;x9) = {

At x = 0, the top branch gives 0 = A; and at x =1 the lower branch gives A, cosh (nm) +
B, sinh (nm) = 0 or A, = —B, tanh (nm). Using these in the above gives

G (x:xg) = B; sinh (n7x) X < X
e —B, tanh (n7) cosh (nmx) + By sinh (nmx) x> xg
B B sinh (nmx) X < X (1A)
B B, (sinh (nmtx) — tanh (nm) cosh (nmx)) x> xp

There are two unknowns By, B, to solve for. Hence we need two equations. The first equation
is found by equating the above Green function at x = xj. This gives

By sinh (nmtxg) = B, (sinh (n7txy) — tanh (n7m) cosh (nmxg)) (1)
Taking derivatives of G (x;x() gives
nmB; cosh (nmx) X < X
—G(xxg) = .
dx B, (nm cosh (nmtx) — nmt tanh (nm) sinh (nmx)) X > X

The second equation is found by the condition of the jump discontinutiy on the above
derivative at x = xo. Hence

nnBy cosh (nmxg) — By (n7t cosh (nmxy) — nm tanh (n7) sinh (nmxg)) =1 (2)
Solving (1,2) for By, B, gives

_ cosh (nmxg) — coth (nm) sinh (nmxp)
L=

sinh (n7 (xg — 1))

nm "~ nmsinh (nm)
coth (nm) sinh (nmxy)  sinh (nmxg)
B2 = =
nm nm tanh (nmn)
Substituting these back in (1A) gives the final Green function
1 . :
. hw sinh (n7 (xg — 1)) sinh (n7x) X < X ‘<x
S1mn(nmx .
G(x;xg) = mh(n(;) (sinh (nmx) — tanh (nm) cosh (nmx)) x> x
X > Xy
1 . .
_ { e .31}311 (n)n (xo. —h(l)) 31)nh (nmx) X < X
. sinh(nmxg sinh(nmxg
sinh (n7x) tanbh(i) cosh (nmx) x> xg

1 . .
_ ) msmbom sinh (n7t (xg — 1)) sinh (n7x) X < Xp
sinh (nm (x — 1)) sinh (nmxg) x> xg

nr sinh(nm)
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Now that the Green function is found, the solution to A/ (x) — n*r?A,, (x) = B,, (x) is given
by

A, (x) = j: m sinh (n7t (x — 1)) sinh (n7txg) B, (xg) dxg

sinh (n7 (xg — 1)) sinh (n7tx) B,, (xg) dx

1 1
* j; nmsinh (nm)

sinh (n7 (x — 1)) f " sinh (n7x0) B,, (xo) dxg 3)
0

A () = nmsinh (nm)

1
m sinh (nnx)j; sinh (n7t (xg — 1)) B, (xg) dxg
Now that A, (x) is found, the solution to the PDE is found from

u (x, y) = i A, (x)sin (nny)
n=1

Where A, (x) is given by (3). B, (x) is the Fourier series coefficient of f (x, y) which needs
to be found depending on f (x, y). This is done below.

2964 Partd
(i) f (x, y) = sin (ny)

We first need to find the Fourier coefficients B, (x). Since f(x,y) = Z:;l B,, (x) sin (nny),
then multiplying both sides by sin (mny) and integrating gives

fl sin (ny) sin (mny) dy = i B, (x) fl sin (mny) sin (nny) dy
0 n=1 0

= 2B ()

Therefore
B,(x)=2 fl sin (ny) sin (nny) dy
For n =1 the above becomes 0
By (x) = 2]: sin? (ny) dy =1

And for all other terms B,, = 0 due to orthogonality of sin functions. Therefore now that
B, (x) is found, then from (3) A, (x) can be found. Only n =1 term is needed.

Ay (%) = sinh (7 (x - 1)) f " sinh (rrxg) dxg + sinh (%) f ' sinh (7 (vg - 1)) dxg
0 X

1 1
7t sinh (1) 7t sinh (1)

sinh (7tx)

sinh (7 (x = 1)) [COSh;”’CO) ] +

7t sinh (77) 7t sinh (1)

cosh (1t (xg — 1)) !
S

= m sinh (7t (x — 1)) (cosh (1tx) — 1) +

Hence the solution to the PDE is
u (x, y) = Z A, (x)sin (nny)
n=1

= A; (x)sin (ny)

m sinh (1tx) (1 — cosh (7t (x — 1)))

= (m sinh (7t (x — 1)) (cosh (rx) —= 1) +

m sinh (7tx) (1 — cosh (7 (x - 1)))) sin (ny)

1 ) ' ' '
= o anhn (sinh (7w (x — 1)) — sinh (7tx) + sinh 7) sin (ny)
The following is a plot of the above solution
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Figure 2.72: Plot of above solution

u[x_,y_1 := _r (sinh[x (x-1)] - Sinh[7xx] + Sinh[x]) Sin[xy]
72 Sinh[]

p = Plot3D[u[x, y], {x, 0, 1}, {y, 0, 1},
AXeSLabel - {"X", "y"_v "u(X,y}"},
BaseStyle - 12];

Figure 2.73: Code for the above plot

(i) f (x, y) = sin (7tx) sin (27'cy)

We first need to find the Fourier coefficients B, (x). Since f (x, y) = Z:’:l B,, (x) sin (nny),
then multiplying both sides by sin (mny) and integrating gives

f 1 sin (7rx) sin (271y) sin (mny) dy = i B, (x) f 1 sin (mny) sin (nny) dy
0 n=1 0

sin (7tx) fo 1 sin (2ny) sin (mny) dy = %Bm (%)
Therefore
B,, (x) = 2sin (7tx) f 1 sin (2ny) sin (nny) dy
For n = 2 the above gives 0
B, (x) = 2sin (1x) J; 1 sin? (2ny) dy

= sin (71x)

And for all other terms B, = 0 due to orthogonality. Hence from (3) when n =2

sinh (27 (x — 1)) f sinh (27xg) sin (11xg) dx
0

A () = 27 sinh (27)

N m sinh (27x) f ' sinh (27 (vp — 1)) sin (rxp) dx,
But
f sinh (27xg) sin (11xg) dxg = 51—7_[ (2 cosh (27tx) sin (7x) — cos (7tx) sinh (27x))
And
j: sinh (27 (xg — 1)) sin (7txg) dxg = 5_—711 (2 cosh (27t (x — 1)) sin (7x) + cos (7tx) sinh (27 (1 — x)))
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Hence

Ay (x) = sinh (27t (x — 1)) (% (2 cosh (27tx) sin (7tx) — cos (7tx) sinh (2nx)))

1
27t sinh (27)

+ m sinh (27tx) (5_—:[ (2 cosh (27t (x — 1)) sin (7tx) + cos (rtx) sinh 27 (1 - x))))

A (x) = —# sin (7tx)
Hence the PDE solution is
u (x, y) = 21‘1” () sin (nny)
= nA; (x) sin (Zny)
= 5_—7112 sin (7tx) sin (2ny)

The following is a plot of the above solution

Figure 2.74: Plot of above solution

-Sin[Pi x] Sin[2Piy]

5 2
P = Plot3D[u[x, Y], {x, 9, 1}: {Y.’ 9, 1}:

AxesLabel -» {"x", "y", "u(x,y}"},
BaseStyle - 12];

ufx_, y_] :=

Figure 2.75: Code for the above plot

(i) f(x,y) =1

We first need to find the Fourier coefficients B, (x). Since f (x, y) = 2:’:1 B,, (x) sin (nny),
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then multiplying both sides by sin (mny) and integrating gives
1 o 1
- f sin (mny) dy = Z B, (x) f sin (mny) sin (nny) dy
0 =1 0
1 ) ! 1
—j; sin (nny) dy = B, (x) 5

B, (x) = 271 (cos (nny))1

= i (cos (nm) —1)
nr

2 n
= (CV"-1)
Hence from (3)
2 n . .
Ai’l (X) = E ((—1) - 1) m sinh (7’[7'( (x - 1)) j: sinh (nnxo) de

2 ; : '
+ — ((_1) - 1) sinh (nnx)L sinh (n7 (xy — 1)) dxg

nm sinh (nm)

Or
2 " ) cosh (n7mxg) *
Ay (x) = nn ((_1) - ) Wh(”ﬂ) sinh (n7 (x - 1)) [TL
2 n , cosh (nm (xy — 1)) !
T ((_1) - ) nmsinh (nm) sinh (nnx)[ nm L
Or
A, (x) = % ((—1)’1 - 1) et o) sinh (n7 (x - 1)) (cosh (nmx) - 1)
2 n 1 :
+— (1" -1) e e sinh (n7x) (1 = cosh (n7 (x - 1)))
Or

A, (x) = M (sinh (n7t (x — 1)) (cosh (nmtx) — 1) + sinh (n7tx) (1 — cosh (nm (x —1))))
n37° sinh (nm)

2((-1)"-1)

= B0 sinh (7)) (sinh (rnx) — sinh (rtn) — sinh (mnx — nin))

Hence the solution is

u (x, y) = i A, (x)sin (mzy)

1 —
== Z 11(3( sn)lh (n72) sinh (7tnx) — sinh (7tn) — sinh (w1 (x — 1))] sin (nny)

The following is a plot of the above solution
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Figure 2.76: Plot of above solution

ufx_, y_] :=

2 (-1)"-12
— Sum[ ————— (Sinh[nxx] - Sinh[nx] - Sinh[nx (x-1)]) Sin[nxy], {n, 1, 30}];
3 n3Sinh[n x]
p= Plot3D[u[x, yl, {x, 0, 1}, {y, 0, 1},
AxesLabel -» {"x", "y", "u(x,y}"},
BaseStyle - 12];

Figure 2.77: Code for the above plot

2.9.7 Problem 6.3.23
Write out the details of how to derive (6.134) from (6.133).
1 1 |-
G &) =——log|lx-¢|| + — log ———

1, €l x - &|

= 6.133

21 % &l - &l (6.133)
1412022 o-

G(r,@;p,cp):ﬁlog +rp? = 2rpcos (0 0) (6.134)

2+ p? = 2rp cos (6 - cp)
Solution
Since x = (rcos6,rsin ) and & = (p cos ¢, psin qb), then

&% = p? cos? ¢ + p? sin® ¢

= p?
Hence
117 x = p2 (r cos O, rsin 6)
= (rp2 cos 0, rp? sin 9)
And therefore

&P x - & = (rp2 cos 0, rp? sin 6) - (p cos ¢, psin qb)
= (rp2 cos 0 — p cos P, rp? sin 6 — p sin <p)
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Hence

||||§||2x - 5” = \/(rp2 cos 0 — p cos cp)z + (rp2 sin 0 — psin cp)z

= \/(72p4 cos? 6 + p? cos? ¢ — 2rp3 cos O cos (p) + (rzp4 sin 6 + p2 sin® ¢ — 2rp3 sin Bsin <p)

= \/r2p4 (cos2 6 + sin’ 0) + p? (Cos2 ¢ + sin’ <p) - 2rp3 (cos 0 cos ¢ + sin O'sin qb)

= \/rzp‘l + p? - 2rp3 (cos 0 cos ¢ + sin O'sin qb)

But cos 0 cos ¢ + sin Osin ¢ = cos (6 - gi)) The above becomes

117 x - &]| = /r2p* + p2 ~ 2rp% cos (0 - ¢)
= pJr?p* +1-2rpcos (6 - ‘P) 1)

The above is the numerator of 6.133. Now we find the denominator |[|&]|||x — &]|.

&l = yJp? cos?  + p2 sin®
=p

And
llx = &|| = ”(rcos 0,rsin 0) — (p cos¢,psin¢)”

= \/(rcose—pcos;(j))z + (YSiHQ—PSin¢)2

= \/(72 cos? 0 + p? cos? ¢ — 2rp cos O cos qb) + (,,2 sin 6 + p2 sin® ¢ — 2rp sin Osin gb)

= \/,,2 (cos2 0 + sin? 0) + p? ((:os2 ¢ + sin? cp) -2rp (COS 0 cos ¢ + sin O'sin (p)

= \/rz + p? - 2rp cos (6—¢>)

Hence

€]l 1lx = &ll = p+[r? + p? = 2rpcos (6 - ¢) (2)
From (1,2)

Llo M—ilo p 72P2+1—27pcos(0_¢)
2 A T o e (0-9)
1 1+r2p2—2rpcos(6—qb)

~4m r2+p2—2rpcos(8—¢)

Which is what required to show.

2.9.8 Problem 6.3.27

Consider the wave equation uy; = c?u,, on the line —c0 < x < co. Use the d’Alembert formula
(2.82) to solve the initial value problem u (x,0) = 6 (x — a), u; (x,0) = 0. Can you realize your
solution as the limit of classical solutions?

1 1 x+ct
u( B =5 (= + e+ eh) + o ft 2 (s)ds (2.82)
Solution

In (2.82), the function f is the initial conditions and the function g is the initial velocity.
Hence the above becomes

u(x,t) = %(6((x—a)—ct)+6((x—u)+ct))

Butd((x—a)—-ct)=6(x—a-ct) =6(x—(a+ct))and6((x —a) +ct) =6 (x—a+ct) = 6(x — (a—ct)).
Hence the above becomes

1 1
u(x,t) = 56 (x—(a+ct)+ 56 (x—(a—ct)) (1)
The above is two half strength delta pulses, one traveling to the left and one traveling to

182



29. HW 9 CHAPTER 2. HWS

the right from the starting position. Using the limiting definition of delta function, the
solution is the limit of sequence of classical solutions lim,_,, u, (x,t) — u(x,t) which has
initial position that converges to the delta function and initial velocity which converges to
zero as given in this problem. Hence

r}l_f)ﬂ u, (x,0)=06(x-a)

d
lim —u, (x,0) =0

n—eo Jt
Using one such definition of limiting function given in 6.10, page 218
n
() = T (1 + n2x2)
Then
n
u, (x—a)= n(1+n2(x_u)2)

Hence

n
Tt (1 +n2(x—(a+ ct))z)

u, (x—(a+ct)) =

n
T (1 +n2(x—(a- ct))z)

Uy (x = (a—ct)) =

Using the classical solution u (x,t) = % (u, (x — (a + ct)) + u, (x — (a — ct))) becomes

Wt = o . 1 -
e 2n(1+n2(x—(a+ct))2) 2n(1+n2(x—(a—ct))2)

Which converges to (1) u(x,t) = %6(3( —(a+ct)+ %(S (x—(a—ct)) as n — oo,

2.9.9 Problem 6.3.31

(a) Write down a Fourier series for the solution to the initial-boundary value problem

Up = Uyy
u(-1,H)=0
u(,t)=0
u(x,0) =0(x)
du (x,0) ~0o

at
(b) Write down an analytic formula for the solution, i.e., sum your series. (c) In what sense
does the series solution in part (a) converge to the true solution? Do the partial sums
provide a good approximation to the actual solution?

Solution

2.99.1 Part (a)

Since the boundary conditions are at x = -1 and at x =1, it is a little easier to solve this
by first shifting the boundaries to x = 0 and x = 2. This is done by transformation. Let
z=x+1

When x = -1 then z = 0 and when x =1 then z = 2. The PDE in terms of z remains the
same but the B.C. are shifted. Hence we want to solve for v (z,x) in

Oy = Uy
v(0,)=0
v(2,t)=0

No need to worry about initial conditions now, since we will transform back to x before
applying initial conditions and therefore will use the original initial conditions. This PDE
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is now solved by separation. Let v = Z (z) T (). Substituting into the PDE gives

T7Z=27"T
A
Tz "
This gives the boundary value ODE
7'+ AZ=0
Z0)=0
Z(2)=0
And the time ODE
T+ AT =0

(1)

(2)

Solving (1). From the boundary conditions we know only A > 0 is an eigenvalue. Hence

for A > 0 the solution is

Z (z) = Acos (\/Xz) + Bsin (\/Zz)

At z = 0 this gives A = 0. Hence the solution now becomes Z (z) = Bsin (\/Xz) At z =2 the
above gives 0 = Bsin (2\5) For non-trivial solution we want sin (Zﬁ) = 0 which implies

Z\ﬁ:nn or

nm\2
An:(T) n=1,23,

And the corresponding eigenfunctions
. (nm
Z,(2) = s1n(7z) n=1,2,3,--
The time ODE (2) now becomes
2
nm
T (—) T=0
* 2
Which has solution
nT . (nm
T, (t) = A, cos (?t) + B, sin (71})

Hence the complete solution is
- nm nm nm
v(z,t) = A (—t) + B, si (—t)) i (—z)
(z, 1) 7;1( n o8|~ nSin|—-t))sin{ =
We are now ready to switch back from z to x. Since z = x + 1 then the above becomes

(o)

u(x,t) = E (An cos (%t) + B,, sin (?t)) sin (% (x+ 1))
n=1

(3)

Now we apply initial conditions to find A,,B,. At t = 0,u(x,0) = 6(x). Hence the above

gives
- . (nT
o(x) = ;An sm(? (x + 1))
Multiplying both sides by sin (% (x + 1)) and Integrating gives

f_llé(x)sin(%(x+l))dx:glAnf_llsin(ng(x+1))sin(%(x+1))dx

By orthogonality of sin functions only term survives and the above simplifies to
1

f_llé(x)sm(%(xﬂ))dx:Amf_llsinz(%(xﬂ))dx

= A,

But f_i 0 (x) sin (% (x+ 1)) dx = sin (%) since that is where x = 0. The above reduces to

An:sin(%) n=12,3,---
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The solution (1) becomes

— nm nm nm nm
1) = in|(— —t|+ B, sin | —t]]sin|— 1 4
u(x,t) Z}l(sm(z)cos(z )+ sm(2 ))sm(2 (x+ )) (4)
Taking time derivatives

(o]

d nmwo. (nm\ . (N7 nm nm . (nm
8tu (x,8) = E (—7 sin (7) sin (71?) + ?Bn cos (71‘)) sin (7 (x+ 1))

n=1
At t = 0 the above becomes

0= E B sm(zn(x+1))

Therefore B,, = 0. Hence the solutlon (4) becomes

u(x,t) = isin (n%)cos (%t) sin (n?n (x+1)) (5)

Notice that sm( > ) is zero when 7 is even.
2992 Partb
n nm nm
sin (— (x+ 1)) = sin (—x + —)
2 2 2
Using sin (A + B) = cos Asin B + sin A cos B, the above becomes, where A = ?x and B = %

sin (% (x+ 1)) = Cos (n;x) sin (nzn) + sin (n?nx) oS (%)

Hence (5) becomes

u(x,t) = i sin (n?n) cos (%Tt) (cos (n?nx) sin (1%'() + sin (n;x) cos (”771))
n=1
= i cos (%t) (cos (%x) sin® (%) + sin (%x) sin (?) cos (%)) (6)

n=1
But sm( > ) cos ( > ) 0, since using sin A cos B = % (sin (A + B) + sin (A - B)) gives

sin (%) cos (%) = % (sin (n7) + sin (0))
=0

Therefore (6) simplifies to
nmn nm 5 (NTT
u(x,t) —nzlcos( > t)cos( > x)sm ( > )

But sin? (%n) = 0 when 7 is even and 1 when 7 is odd. Hence the above becomes

[o¢]

u(x,t) = E cos(%t)cos(%x)

n=135,
& ((2n+1)n) ((2n+1)n )
E t|cos| ————x
~ 2
Using cos AcosB = %(cos (A + B) + cos(A - B)), then using A = @t,B = (2n-|2-1)71x the

above becomes

u(x,t):il cos (2n+1)71t+(2n+1)7'cx + o (2n+1)7zt_(2n+1)71x
n02 2 2 2 2

:_i": ((2n+1)n(t+x))+%icos((2n+1)n(_ )) 7

n=0
But with help of the computer, found that the sums give

icos(@(t+x))=0

n=0

ico ((2n+1)7‘c(t_ ))
n=0
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Hence (7) becomes

u(lx,t)=0

2.9.9.3 Partc

The solution given by the part b converges to the true solution in the mean sense. Since
with wave PDE, there will two pulses, each of half strength moving back and forth on the
string each wave with very small width but large amplitude. Solution in part b is giving
an averaging value for the solution as zero.

2.9.10 Key solution for HW 9

Problem 1
a)

An = Pa? fa? +m?7? [B? with eigenfunctions sin(lrx/a) sin(mzy/b), I, m = 0

b)

Ap = Pat/a?+m?2a2 /2 Lm =0

Problem 2
We would |

186



29. HW 9 CHAPTER 2. HWS

6.3.9

We rewrite f(z,y) = 0(3z —2y—1) in terms of the step function. Thus, by the chain rule,
8 a

a—£=36(3$—2y—1)=6(m— 2y 1), @f =-2@Bz-2y-1)=—-d(y—3y+3).
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6.3.10
s 2sin ”;”"' sin ":5 sinh ””“;_ v)
u(m, y) = Z_: ] nmh
n=1 a sinh —

Referring back to (4.98), since |b,| =

% sin HT:E ' < % , the uniform bound (4.99)

holds, and thus the ensuing argument establishes infinite differentiability.

6.3.18

o — £)2 N2
. (a) Using the image point (¢£,—n), we find G(z,y;&,n) = ﬁ log Ex — 32 i EZ T 32 .

Loy 1 (@-82+ (y—n)
) we) = 5= [ L T o i

6.3.21
Solution:
(@) Wes

I
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6.3.23
Set
x = (rcosf,rsinf), & = (pcosp, psin p).
Applying the Law of Cosines to the triangle with vertices 0, x, £ in Figure 6.13 shows
2 2 2 2 2
[x—=&I" = llx["+ [ £1" —2[x| [[£]l cos(f — @) ="+ p" — 2rpcos(6 — ¢).
Applying the Law of Cosines to the triangle with vertices 0, x, 1 in Figure 6.13 shows
2 2 2 2, 1 r
[x=n|"=lx["+nl"—2]x|[n]cos(d —¢) =r"+ 2% cos(f — ),

and so

2 £2
I ”£—||||E||2 EI° g1 x—m |2 = 14722 — 2rpeos(f — ).

Thus,

L QR x—€F 1 (1422 2rpcosd—g)
G(x; €)= —log > — =1 =_—"19 ‘
(58 = B g Tx— €2~ 2r 8\ PP —2rpcos(0— )

6.3.27

Solution:

u(t,z) = %J('x —ct—a)+ %J(r bct—a)
consisting of two half-strength delta spikes traveling away from the starting position concen-
trated on the two characteristic lines. This solution is the limit of a sequence of classical solu-
tions u(™) (¢, z) — u(t,x) asn — oo which have initial conditions that converge to the delta
function: u(n)(o,r} — d(z — a), u.ﬁ”){o,x) = (. For example, using (6.10), the initial conditions

) Ser e o R
w0 )= m(1+ n?(z — a)?)

(%)

lead to the classical solutions
u™ (8, ) = s g r
© 2w(1+n2(x—ct—a)?) 27(1 + n2(x + ct — a)?)
that converge to the delta function solution (¥} as n — co.

6.3.31
(a) u(t,z) = > cos (k—i—%)'}rt cos (k+%)7ra:;
k=0
(b) For any integer &, and —1 < z < 1,
16(z—t+4k)+ 1 6(z +t—4k), Ak -1 <t <4k +1,
ut,z) =\ — (e —t+4k+2)— 5oz +t—4k—2), 4dk+l<t<4k+3,
0, t=2k4 1.

(c) Because the Fourier series only converges weakly, it cannot be used to approximate the
solution; see Figure 6.7 for the one-dimensional version.
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2.10.1 Problem 1

Show that (assuming sufficient smoothness of the domain and the data) u is a solution to
the Dirichlet boundary value problem

-Au=f
In Q with B.C. u = g on JQ iff u is a minimizer of the energy functional, that is
E (1) = min [E (v):v e C? (Q)] such that u = ¢ on 9Q

Here
E (u) = fQ (% IV —fu) A

(note, I will be using dA in the above integral assuming we are in R?. But the above can
also be dV for R? just as well and nothing will change in the derivation below. This is
easier that writing dx and saying that x is a vector).

Solution
Since the proof is an iff, then we need to show both direction.

Forward direction Given that u solves

~Au=f 1)

with u|,, = ¢. Then we need to show that E (v) > E (u) for all v € C? (Q) that also satisfy
same B.C.

Multiplying both sides of (1) by # — v and integrating over the domain gives
—f (Au) (1 - v) dA = f (U —0) fdA )
Q Q

For the left integral [) (Au) (u —v)dA, we will do integration by parts. Let Au = dV,u-v = U,

then L udv = faQ uv - LVdU. Therefore dU = V(u~-v) and V = Vu. After applying
integration by parts the (2) now becomes

du
—(Lo(u—v)%dL—LVu-V(u—v)dA):fQ(u—v)fdA

u

But f (u—0) % 4L = 0 because u = v on the boundary JQ as both are ¢. The above now
9Q) d y 4

n
simplifies to

wi-V(u—v) dA:fQ(uf—vf) aA
fow.(w-vw dA:fQ(uf—vf) dA
LWuF—W-WdA:fQ(uf—vf) dA
Lqulz—qudA:L(Vu-Vv)—vfdA

Now we use Schwarz triangle inequality and write Vu - Vo < % (IV ul2 + |Vv|2). This comes
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(a2 + bz). Using this in the RHS of the above gives

1
from using ab < -
gav =3

1
[ wut da- [ fuaa< [ (vuP+¥oP)- foda
Q Q a2

1 1
f IV uf? dA—f fudAsf —|Vu|2dA+(—f|w|2—fvdA)
0 0 0?2 2Jq

1 1
~IVuPdA- | fudA<= | Vo - fodA
2 2
Q Q Q
1 1
f —|Vu|2—fu dA < —f IVvlz—fv dA
Q2 2Jg

But by definition [) % IV ul? —fudA = E(u) and % L) IV o]? — fvdA = E (v), therefore the above
becomes

E(u) < E(v)
Which is what we wanted to show. Now we will do the other direction.

Reverse direction Given that # minimizes energy among all test functions, i.e. given that
E (1) = min E (w), then need to show that —Au = f.

Consider w = u + ¢v where v is any test function v € C? (Q) and v = g at dQ. Hence
min (E (w)) = min (E (4 + €v))
Therefore min (E (1 + €v)) is achieved when ¢ = 0, since this then gives E (1) which by
assumption is the minimum. Therefore
d
—Eu+ev)=0
de

At ¢ = 0. But the above can be written as the following, using the definition of energy

d

%(L%|V(u+ev)|z—f(u+ev) dA):O

%(L%(V(u+ev)-V(u+£v))—f(u+ev) dA):O (3)
Expanding V (u + €v) - V (1 + €v) gives
Vu+ev)-Vu+ev)=Vu+eVo)-(Vu+ Vo)
= |Vu|2+2€Vu-Vv+£2 |Vv|2 (4)

Substituting (4) into (3) gives
d
— (f v(qul2 +2eVu-Vo+ &2 |VU|2) - fu—efov dA) =0
dg Q

Now we move the derivative inside the take derivative w.r.t. ¢ giving

1
(f = (2Vu - Vo +2e[VoP) - fo dA) =0
Q2
Evaluate at ¢ = 0 the above becomes
f (Vu-Vv)dA—f FodA=0
Q Q

Integration by parts for the first integral. Let Vu = U,dV = Vv, then Lz udv = f&Q uv -
é VdU. Hence the above becomes

d
(f s dL—f vAudA)—f fodA=0
o0 In Q Q
But v = 0 at boundary JQ. The above simplifies to
—f vAudA—f fodA=0
Q Q
f ZJ(—AM —f)dA:O
Q

Since the above is true for all v test function then this implies that ~Au -~ f =0 or

-Au =f
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Which is what we wanted to show.

2.10.2 Problem 7.1.1f

e*sinx x>0

Find the Fourier transform of (f) f(x) =
0 x<0

——

Solution

sin xe~¥(1+K) gy (1)

j(;
00 .
f sin xe *kx=x gy
0
fo

o~x(1+iK)
—(1+ik) ’

Integration by parts. f udv = uv - f vdu. Let dv = e¥1+0) p = u = sinx,du = cosx.

Hence
1= f sin xe *¥(1+ik) gy
0

' o x(1+ik) 1% 00 e~ x(1+ik) p
= [SIHXW]O —\[(; COSXW X
-1 1100 1
— : —x(1+ik) +
1+ ik [Sm e ]0 1+ ik

But ¢™¥1+%) = ¢=%¢=ik* and this goes to zero as x — oo and since sinx = 0 at x = 0 then the
first term above is zero. The above reduces to

00 .
f cos xe ¥1+k) gy
0

=1 _i T foo cos xe 1K) gy
Jo
. —x(1+ik)
Integration by parts. fudv = Uv — fvdu. Let do = ¢4 ¢ = e—(1+ik) ,u = cosx,du = —sinx.

The above becomes

1 o x(L+ik) 1% 00 e~ X(1+ik)
[= — S f —sinx) ~——d
1+ik Cosx—(1+ik)]0 , sinn) Zg e dx

1 o~ x(1+ik) *° 1 00 .
— _ : —x(1+zk)d
1+ik(cosx—(1+ik)]0 1+ikf0 e

But l;oo sin xe *1*%)dx = . The above becomes

1 px(1+ik) T° 1
I= M( OSrTa +ik)]0 "1 +ikl]
1 ox(1+ik) 1% 1 \?
:1+ik[cosx—(1+ik) ! _(1+ik) I
I+ (1 _i . )21 = _1‘ 5 [cos xe‘x(l”k)]Oo
ik (1 +ik) 0
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=(0-1=-1. Hence the above reduces to

Il+(1 )2— !
1+ik) ) (1 +ik)?

1

x(1+ik) ]°°

Now [COS xe~
0

(1+ik)?
I =
1 \2
it
3 1
1+(1+ z'k)2
3 1
2 - k2 +2ik
Therefore
00 ] 1
: —x(1+ik _
j(; Sin xe xX(1+i )dx = m

Using (1) the Fourier transform becomes

This can be written as real and imaginary parts
1 (2-Kk2) - 2ik
fo = (e +21k) (-P) -2

1 (2-F . 2%
2 (k4 4 'KBra
2.10.3 Problem 7.1.3 (a,b)

Find the inverse Fourier transform of the function ﬁ when (a) c = aisreal (b) c =1ibis
pure imaginary.

Solution
2.10.31 Parta

Using shifting property where y{ f (x)] = f (k) and let f (k) = % then by shifting property
Fle™f (x)] = f (k- a), (Theorem 7.4) therefore

Fle™f @)] = f(k+a)
1
:k+a (1)

We now just need to find f (x). From table of Fourier transforms on page 272, we see that

Flsgn (x)] = \/7 Hence
9{i\/§sgn (x)] = %

Therefore f (x) = i\/g sgn (x). Substituting this back into (1) gives

5 \F @|=—
ie > e ()| =

F 1 L :ie‘i“"ﬁ sgn (x)
k+a 2
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2.10.3.2 Partb

Using shifting property, given that .7 ( f (x)) = f (k), let f (k) = % then by shifting property
(Theorem 7.4) f][ei(ib)x f (x)] = f (k - ib), then

Fle f @0)] = f (k + ib)
1
= 1
k+ib @
We now just need to find f (x). From table of Fourier transforms on page 272, we see that

Flsgn (x)] = %\/g% Hence
ﬁ’[i\/g sgn (x)] = %

Therefore f (x) = i\/g sgn (x). Substituting this back into (1) gives

7[iebx\/§ e (x)] Tk i ib
= jeP \/; sgn (x)

Or

2.10.4 Problem 7.1.13
Prove the Shift Theorem 7.4 which is

Theorem 7.4: if f (x) has Fourier transform f (k), then the Fourier transform of the shifted
function f (x — &) is e f (k). Similarly the transform of the product function ¢®*f (x) for
real a is the shifted transform f (k —a) (note: using « in place of the strange second k that
the book uses)

2.10.4.1 Parta

Showing if f (x) has Fourier transform f (k), then Fourier transform of the shifted function
fx=¢&)is e iké f (k). From definition, the Fourier transform of f (x — &) is given by

Ffa-9]= f f(x - &) e
Let x — & = u. Then Z—Z =1. The above becomes (limits do not change)
ol L [T py ek
Afa-9)= V_f f (@) e

f f (u) e zku zkédu
f(k)

| 00 .
= ¢ thé f f (u) e~kudy
V2 Jow

T Von

Therefore

Flf = 8)]=e™F (k)
Which is what asked to show.
210.4.2 Partb

Showing that the Fourier transform of e f (x) is f (k — ). From definition, the Fourier
transform of ¢*f (x) is

?[ezaxf (x) zaxf () o~ tkx gy

=l
_ \/? f F () e x-a) gy
TC Y —c0
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But \/% f_ ~ f(x)e™* gy is f (k- a) by replacing k with k — & in the definition of Fourier

transform. Hence

Flewf @] =fk-a)
Which is what asked to show.

2.10.5 Problem 7.1.20 (a)

The two-dimensional Fourier transform of a function f (x, y) defined for (x, y) € R? is
Ff(ey)]=F D
= on | [ rley)eteasay

(a) compute the Fourier transform of the following functions (i) e"x'_lyl, (iii) The delta
function 6 (x — &) (y - r])

(b) Show that if f(x,y) = g(x)k(y) then f (k1) = 3 (k) i (1)

Solution

210.51 Parta

(i) The Fourier transform of eIl s

Fle D) = ;—n [ [ ettty
= 2L f " f ” e‘|x|e_|y|e‘ikxe‘ilydxdy
TTJ 0oV -0

1 ) —| ) 00 )
N y| —ily f —|x| ,—ikx
o f_ooe e ( _ooe e dx)dy (1)

But f * eMek*dx is the Fourier transform of fx) = e ™ with v2n factor. In other words

f e Memkxgy = \/Z_RQ (k)

—00

Where § (k) is used to indicate the Fourier transform of ¢™*. Hence (1) becomes

\/_

Fh = Y20 [ e e
Fob=5"fi [ oMetuay

But f_ ~ e_|y|e‘”ydy = V27h (I) Where /i (]) is used to indicate the Fourier transform of el
The above becomes

fle D)= g”g () V2reh (1

=3k R () 2)
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So now we need to determine § (k) and /z (/) and multiply the result.

Similarly

00 .
e—lxle—zkxdx

1
-5

1 0 o .
= ( f efe R dx 4+ f e‘xe‘lkxdx)
0
0 00
f e—zkx+xdx + f e—ikx—xdx)
—00 0

—zkx+x —zkx X
= zk]

1 1 ‘ o
—zkx x _ —ikx ,—x
1- e Gl )

r(

1

|

e

\2nr

1 1 1
- 7= (w0 -0-mg0-)
1

- (e

1

-

__ L

m(

1

-k 1+ zk)

1+ zk) + (1 - ik)
—ik) (1 + ik) )

7

h(l) = =l |y|e‘llydy

_\/E 1
N nm1+12

Hence from (2) the Fourier transform of e Pl i

fkD) =g h0)

it
1+k2 1412

Tt (1 +k2) (1 + lz)

(ii) The Fourier transform of 6 (x — &) 6 (y - 17). First we find the Fourier transform of 6 (x — &)

and then the Fourier transform of 6 (y - r])

And

A _L * _ —ikx
g(k)—\/z_ﬂf_mé(x £) ey
1

= —¢

V2n

—ik&

A 1 00 ,
)= o= [ oly=n)eay
= Le_ilq

V2n

Hence the Fourier transform of the product 6 (x - &) 6 (y - 17) is (Using the product rule,
which will be proofed in part b also).

fl,D=8g@®h0

_ 1 k& p=iln

27

The above could be rewritten in terms of trig functions using Euler relation if needed.
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2.10.5.2 Partb

By definition, the Fourier transform of f (x y) is

Fk 1)_2 f f £ () e W) axgy

But f (x, y) = g(x)h( ) Hence the above becomes

fk1) = 2 f f g @ (y) e M)y
=5 f f g(x)h Zk"e"'lydxdy
217{ j: h —lly ( f g (x) e‘lkxdx) dy

But f_oo g (x) e ™ dx = \/2_71§ (k). The above reduces to
N 1 o0 ,
_ 5 —il
F = 5N2mg () [ h(y)etay
But f_ “h (y) e‘”ydy = \27th (). Hence the above becomes

Fk,1) = %Vz_ng (k) V2rh (1)

=3 (k) h (1)
Which is what asked to show.

2.10.6 Problem 7.2.2 (a)

Find the Fourier transform of (a) the error function erf (x) = % K e dz

Solution

210.6.1 Parta

Using

1+ erf(x) = % f " P 1)

Taking Fourier transform of both sides, and using the known relation from tables which
says

X 1 R R
Lﬂf f(u)du] = —f 0+ 7f ©5 (0
And using that Fourier transform of 1 is \/Eé (k) then (1) becomes

V26 (k) + Flerf (x)] = ( f)+nf <0)6<k>)

i \ik

Where f (k) is the Fourier transform of e™ (Gau551an) we derived in class as e & %e 4,
1 -kz]

— —e ¢ (S(k)]

( oy V2o L
,k2

et + s (k))
( V2 V2
1

ik

The above becomes

—k2
44T

V216 (k) + Flerf (x)] =

>\~|'—‘ >\~|H

_ k2

e T+ V275 (k)

<l 2l 2l
ol
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Therefore the above simplifies to

Flert(x)] =

2.10.7 Problem 7.2.3 (d)

Find the inverse Fourier transform of the following functions (d) kk—_zl
Solution
Using property that

FIf 0] = ikf (k)

Flf )] =-F (k) (1)

Where in the above .¥ | f (x)] = f (k). Comparing the above with kk—_zi, we see that
N 1
k)= —
F=—

Hence we need to find inverse Fourier transform of k%l first in order to find f (x), and then
take second derivative of the result. Writing

1
k=i (k)
1
3 1
i(-ik-1)
-1
ik +1)
_ 1
“la+in
From table (page 272 in textbook) we see that
7 (ik1+ |~ Vane o ()

Using a =1 in the table entry. Where o (x) is the step function. Hence

1
7 G | = Ve )

Therefore
£ () = iV2me ™o (x)
Now we take derivative of the above (using product rule)
f(x)= —iV2re ™o (x) +iV2me™0 (x)

Where 6 (x) is added since derivative of o (x) has jump discontinuity at x = 0. Taking one
more derivative gives

f(x) = iV2me o (x) - iV2me o (x) - iV2me ™ (x) + iV2me s’ (x)
= iV2me o (x) - 2iV2me*5 (x) + iV2me s’ (%)
Therefore

F1 [kk—_zl] = iV2me ™ (x) - 2iV2me ™6 (x) + iV2me ™8 (x)

2.10.8 Problem 7.2.12

(a) Explain why the Fourier transform of a 27 periodic function f (x) is a linear combina-
tions of delta functions f (k) = Z:’:_m ;0 (k —n) where c, are the complex Fourier series
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coefficients (3.65) of f(x) on [-7, 7]

¢, = < f, einX> - % f z £ () ey (3.65)

(b) Find the Fourier transform of the following periodic functions (i) sin2x (ii) cos®x (iii)
The 27 periodic extension of f (x) = x (iv) The sawtooth function & (x) = xmod1. i.e. the
fractional part of x

Solution

2108.1 Parta

Since f (x) is periodic, then its can be expressed as
0 . [2n
= 3 o7
But the period T = 27t and the above simplifies to

f)= ) ce™ 1)

n=—00

Taking the Fourier transform of the above gives

Fik) = \/% [ reta ©

Substituting (1) into (2) gives
” 1 oo [ 20 ) .
== f (2 cnem") ek
TU ¥ —00 \n=-00
1 Sl .
= — c, e xk=n) | gy
w2 ee)

n=—00

Changing the order of summation and integration

F ) = \/% f_“ ( f_ ~ cne—ix(k—n)dx)
= B[ o) @

TT n=—co

But from tables we know that .#(1) = V276 (k). Which means that

1 f‘x’ ok
— e " *dx = V216 (k)
V27T -0
Therefore, replacing k by k —n in the above gives

1 f‘x’ ‘
— e~ k=1 gdx = 215 (k — n)
V 271 Y —o

f " eikm gy = 27)6 (k - 1) 4)

Substituting (4) into (3) gives

Fo =23 censk-n

V2m w5
=V2r Y ¢, (k-n)

n=—oo

Note: The books seems to have a typo. It gives the above without the factor V27 at the
front.

210.8.2 Partb

(i) sin2x. Since this is periodic, then ¢, = % fn sin (2x) e”*dx. For n = 2 this gives c, = —é
—_— =Tt

and for n = -2 it gives c_; = é and it is zero for all other n values due to orthogonality of
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sin functions. Using the above result obtained in part (a)

F k) =V2n i ¢,6 (k — n)

n=—00

= V276 (k + 2) + V27,6 (k - 2)
- x/z_néé(mz)—x/z_n%é(k—z)

:i\/gé(k+2)—i\/zé(k—2)

(11) cos® x. Since this is periodic, then ¢, = — f cos® (x) e ™ dx. But cos® (x) = —COS (Bx) +

Zcos (x). Hence only n = +1,n = +3 will have coefficients and the rest are zero.

€1 =

3
f = cos (x) edx =

271 8

1=

3
f = cos (x) e ™dx = =
27'( 8

3= 5o j: 1 cos (3x) e 3¥dx =

| = |

3 = L fn 1cos (3x) e73%dx =
2nJ_ 4

Therefore, using result from part (a)

FR=VER Y e k-n)
1 3 3 1
= 2n(§6(k+3)+gé(k+1)+§6(k—1)+§6(k—3))

= i@(é(kﬂ%)+36(k+1)+36(k—1)+6(k—3))

(iii) The 27 periodic extension of f (x) = x

n 2 f xe lnxdx
== (rm cos (nm) — sin (nm))
21
n (n (- 1))
= —71 (-1)"

Therefore, using result from part (a)

Fk)=vV2n f] ¢, 6 (k — 1)

Since this is periodic, then

—x/_z—m ~1)"5 (k - n)
27 ( ) n#0

(iv) The sawtooth function

Plot [FractionalPart([x], {x, -Pi, Pi}, Ticks » {{-Pi, -Pi/2, @, Pi/2, Pi}, Automatic}]
/ / /
/ / /
_ / /
7 / /
/ / .

Figure 2.78: Plot of f(x) (Fractional part of x)
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2.10.9 Problem 7.3.4

Find a solution to the differential equation —

Solution

dx?

Taking Fourier transform of both sides gives

— (ik)? & (k) + 421 (k) = 16 (0)]

Solving for # (k)

d2
= t4u=

K20 (k) + 40 (k) = ——

V2n

1

i (k) (k2 = —

it (k) (K2 + 4) o
oo 11
0= e

2

Finding inverse Fourier transform. From tables we see that .7/ (e‘“|x|) = \/j —

a=2

Therefore

2 2

1 B 1
Vol = o

[ 1

|1 1
T 22| =
V27 |2° K +4
L /zg/ le—leI :L;
27T 2 »2 ] \21T kZ +4
T AL owfo 11
2727 | \onke+4
ALom|o 1L _1
4: ] \/2nk2+4
1
— Zp20«
u(x) 48
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2.10.10 Key solution for HW 10

Problem 1
Proof. 1. Choose w € A. Then (46) implies

0= [ Cau= -y
An integration by parts yields

0=/UDu-D(u—w)—f(u—1u)da:,

and there is no boundary term since 14 —  — g—g=0on dU. Hence

]'Dﬂiz"“fdit:fDu'Dw-—wfd:c
U i ;

1 1
- S'f —|Du)?d. f Z|Dwl? -
UZI |*dz + U2|D'w| wf dr,
where we employed the estimates
Ay W .
|Du- Du| < |DullDw| < 51DuP + 5[ Duf?,

following from the Ca chy-Selwarz and Cauch

ialities (§B.2). Rear-
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" mum principle in §2.2.3 to sh
loyed the maximuil princip 0 show
igiiave alreadyegeh oL ple alternative proof. Assume U is open,

uniqueness, but now set forth a sim
bounded, and dU is GL.

'THEOREM 16 (Uniqueneés). There exists at
C2(U) of (46).

Proof. Assume @ is another solution
U, and so an integration by parts shows

U U .

gp:ﬂonBU,WEdeducem=u_ﬁEOin
O

most one solution v e

and set w :=u — @ Then Aw =0 in

aracterized as the minimizer of an
ine the energy functional

boundary-value problem

g I %

ivalent to the statement
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71.1f
(£) 1 . —k*—2ik+2
V2 (—k2+2ik+2) V27 (k% +4)

7.1.3a,b

(a) By the Shift Theorem 7.4, f(z) = i\/g e 1ignz.

(b) Using the Table, if b > 0, then f(z) = iv27 €% (¢(z) — 1), while if b < 0, then
f(z) = iv27 €*® o(z). For b= 0, use part (a).

7.1.13

Use the change of variables & = x — £ in the integral:

f[f(xﬁ)]z\/% f_if(mf)e_ikxda::\/% [ f@e kO g

—ik¢

e oo » i kE e _ikE
:ﬁ f_oof(l')e ! mda::e ! Ef(k).
To prove the second statement,

FIe™ f@) = o= [T f@)e” 0% ds = Fo— ).

7.1.20 a): (i), (iii), and b)

) e~ 1(Ek+nl)
@ O e @) o
1222
(@) — £\ [2 e 1 T otk
234
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2
* (d) — L [Vame o(z)] = vVar [— e olz) + 8(z) — 6 (z) ]

dx?

7.2.12

(a) Indeed, applying the inverse Fourier transform:
oo

f(x) N[_O:of(k)eikrﬂdk: io: c, f_ozod(k—n)eikmdk: 3 cne””

n=—o0o n=-—oo
recovers the complex Fourier series for f(z), proving the result.
o0 _ n
(b) (i) bise+2)— Lid@—2), (i) i > D 6(k—n).
n

n=—o0o
n#0

734

. The Fourier transformed equation is (k% + 4) @(k) = 1/v/27, and hence a solution is

u(z) = zlfe_Qlwl.
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3.1 Exam 1, Oct 8, 2019

Local contents
B.11 Questions| . . . . ... ... 206

3.1.1 Questions

MATH 5587 (FALL2019): MIDTERM 1

PROFESSOR: SVITLANA MAYBORODA

Problem 1 (20 points)
- (a) Write down an explicit formula for the solution to the initial value problem:

c?,zu - 4(’3%” =0, uw(0,x)=sinx, du0,x)=cosx, xeR r2>0.

(b) True or false: the solution is a periodic function of 7. What is the period?

(¢) Now solve the forced initial value problem

(9,2u - 4(3_2‘,u =cost, w(0,x)=sinx, (0, x)=cosx, xek, >0

. (d) True or false: the forced equation exhibits resonance. Explain.

Date: Qctober 8, 2019,
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2 PROFESSOR: SVITLANA MAYBORODA

Problem 2 (30 points)
(a) Find the (complex or real) Fourier series for the function f(x) = x

(b) Does the series converge to the same function, that is, f(x) = x, on R?
Whether the answer is yes or no, draw the function to which it converges below.

(c) Does the series converge (to the function you identified in (b)):

cl) pointwise? on which interval? Explain. Independently of your answer, write
“a definition of pointwise convergence,

¢2) uniformly? on which interval? Explain. Independently of your answer, write
a definition of uniform convergence.

¢3) in norm? which norm? on which interval? Explain. Independently of your
answer, write a definition of convergence in norm.
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(d) Use the results above to find the (complex or real) Fourier series of f(x) = x

Problem 3 (15 points)
(a) Write down an explicit formula for the solution to the initial value problem.
Show your work.

O +

) dute =0, u0,x)= G2

(b) graph either some of the characteristic curves or the solution to the initial
value problem for several values of . You do not have to do both, just indicate
which one you are graphing.

210




3.2. Exam 2, Nov 7, 2019 CHAPTER 3. EXAMS

3.2 Exam 2, Nov 7, 2019

Local contents
.21 Questions| . . . ... ...

3.21 CQuestions

MATH 5587 (FALL2019): MIDTERM 2

PROFESSOR: SVITLANA MAYBORODA

Problem 1 (40 points)
A metal bar, of length / = 1 and thermal diffusivity y = 1, is taken out of a 100°
oven and fully insulated except for a left end which is fixed to a large ice cube,

and hence, kept at the constant temperature 0° and the right end which is kept at
temperature 50°.

(a) (5 pts) Write down an initial boundary value problem that describes the the
temperature of the bar u(z, x).

Equation: - — - — —— — — —— forxe (0,1),r>0
Boundary data: — — -~ — = — — =~ _ __ __ _ __
Initid] data; = = m—im — — e e

(b) Use separation of variables to write a series formula for solution u(t, x).
bl) (5 pts) Write u(z, x) = v()w(x) and find the equations that v and w satisfies

b2) (10 pts) Solve the equations for vy and w and use boundary data to identify
possible solutions v, w

Date: November 7, 2019,
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b3) (5 pts) Write the global solution u(t, x) as a series and use initial data to write
integral formulas for coefficients of the series.

b4) (5 pts) Evaluate explicitly coefficients of the series and write the final for-
mula for solution u(z, x)

¢) (5 pts) What is the equilibrium temperature (that is, the limit as f — o0) and
how fast does the solution go to equilibrium?

d) (Spts) Is the solution smooth? For which #? Why?
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Problem 2 (10 points) The solution to the Laplace’s equation on a unit disc subject
to Dirichlet boundary conditions u(1, §) = h(0) is given by

| 7 1 -2
H(r7 8) = 5‘;[— IN h(¢) 1 i ’42 - 2]‘ COSs (9 - ¢) d¢

Show that if u achieves its maximum at the center of the disc then u is constant on
the entire disc.

Problem 3 (15 points) The solution to the Laplace’s equation Au = 0 on a square
0 <x<a,0<y<b, with boundary data

u(x,0) = f(x), u(x,b) = 0, u(0,y) = 0, wa,y) =0

is given by
&0 nmrx

Gy = STpAS " sinh 2022
ux,y) = D L —— A
- N S nnh
sinty 525

n=l M C
. 2 A o 2 X
where b, = = fo J(x)sin 2= dx,

Show that whenever foa |/ (x)|dx is finite, the coefficients of the series in the
formula for u,

‘‘‘‘‘ —

: by
| sinhZO N ‘.
\by ———4 &’“”ﬁ

‘inh 2l
\\smh = /

g0 to zero exponentially fast as n — oo~

Now assume thata = b = 1 and f(x) = x when x < 1/2 and f(x) = 1 — x when
x > 1/2. What can you say about the smoothness of /7 What can you say about
the smoothness of the solution and why?
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3.3 Final exam, Dec 10, 2019

Local contents ,
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3.3.1 Questions

MATH 5587 (FALL 2019): FINAL

PROFESSOR: SVITLANA MAYBORODA

Problem 1 (35 points)

Write down the solution to the following initial-boundary value problem in the
form of the Fourier series.

U\;?((‘f?\-ﬁ i\ Uy = ey u(,0) =u(t,m) =0, w0,x) =0, u(0,x)=1

L.1) (3 pts) Write u(t, x) = v(£)w(x) and find the equations that v and w satisfies

1.2) (5 pts) Solve the equations for v and w and use boundary data u(z, 0), u(t, n),
as well as u(0, x) to identify possible solutions v, W

1.3) (5 pts) Write the global solution u(z, x) as a series and use 1,(0, x) to write
integral formulas for coefficients of the series.

Date: December 10, 2019.
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1.4) (5 pts) Evaluate explicitly coeflicients of the series and write the final for-
mula for solution u(t, x)

1.5) (15 pts) Now solve the same equation on an infinite interval (be careful o

evaluate and write the solution legibly using cases depending on the values of x
and 1):

Uy =ity u(0,0) = 0forall x, 1,00, x) = 1 for x < 0 . w(0,x)=0forx >0

Problem 2 (10 points) Find the Fourier transform of the Gaussian hi(x) = ¢ (

you
have to show your work, do not use a table value).
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Problem 3 (20 points) (a) (10 pts) Find the Green function and write the solution

. . . . 3 2
using the Green function representation for the equation *i—\f; +4u = h(x).

(b) (10 pts) Now find the Green function and write the solution using the Green
function representation for a similar equation on a finite interval:

=u"(x) = f(x) on(0,1), u(0)=0, u(1) = 2u/'(1).
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Concise Table of Fourier Transforms

7 Fourier Transforms

f(z)  flk)
1 V27 §(k)
1
o) NeT:
= = . f21
signx e \/; o

o(x+a) —o(z —a)
e *To(z)

e’ (1 - o(x))

/2 sinak
Tk

1

V27 (a+ ik)

1
V27 (a— ik)

—alz| \/2_.—(1
¢ T k2 4 a2
ag? ﬁ—kz/(é!a)
p—as
2a
. [m e 1k
tan 133 *IM; %
flex + d) e I i?(i)
[e] c
flz) -J;A(ilv)
e F(=k)
f'(z) ik J(k)
z f(z) i f'(k)
f+g(z) ’ var f(k)g(k)

Note: The parameters a, ¢, d are real, with o > 0 and ¢ # 0.
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4.1 Few pages from Strauss W. PDE book to study

304 CHAPTER 11 GENERAL EIGENVALUE PROBLEMS

By Section 11.3, the eigenfunctions for all three pr!ablems (in D,in Dy, and
in D,) are complete. Among the eigenfunctions of - Ainthe r;ctangle D are the
products v,Wy,. Suppose now that there were an eigenfunction u(;;, ) in the
rectangle, other than these products. Then, for some A, —Auy=AuyinDand u
would satisfy the boundary conditions. If A were different from every one of the
sums @, + B, then we would know (from Section 10.1) that yis orthogonal to

all the products v,W,,. Hence

0= (1, 0,Wp) = f[ fu(x, Po(x) dx]wm(y) dy. 13)
So, by the completeness of the wy,;,
j u(x, Yo (x)dx=0  forally. (14)

By the completeness of the v,,, (14) would imply that u(x, y) = 0 for allx, y.So
u(x, ) wasn’t an eigenfunction after all )

One possibility remains, namely, that A=a,+ B, for certain n and m.
This could be true for one pair 1, 7 or several such pairs. If 4 were such a sum,
we would consider the difference

w(x, ) = (6 ) = X, CamPalX)Wm(3), (15)

where the sum is over all the n, m pairs for which A= 0, + B, and where
Cppn = (s u,,w,,,)/llv,,w,,,u2 . The function w defined by (15) is constructed so as
1o be orthogonal to @l the products v,W,,, for both &, + Bm=4and o, +

B 7 A. It follows by the same reasoning as above that y(x, y) =0. Hence -
u(%, ) =2 ComOnX)Wm(P) summed over &, + /_3,,, = A Thatis, uwas nota .
new eigenfunction at all, but was just alinear combination of those old products .

,,W,,, which have the same eigenvalue A. This completes the proof of Theorem
o

EXERCISES

1. Verify that all the functions (7) are solutions of (1) if @ is an eigenvalue Ay
and if [ vy dx = 0. Why does the series in (7) converge?

2. Usethecompleteness to show that the solutions of the wave equation in any
domain with a standard set of BC_satisfy the usual expansion
u(x, £) = Z2_,[A,, cos(Va ct) + By, sin(Vi,, cf)]v,(x). In particular, show
that the series converges in the L2 sense.

3. Provide the details of the proof that y(x, y), defined by (15), is identically
zero.

11.6 ASYMPTOTICS OF THE EIGENVALUES

The main purpose of this section is to show that A, — -+, In fact, we’!l §how
exactly how fast the eigenvalues go to infinity. For the case of the Dirichlet
boundary condition, the precise result is as follows.
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The_orem 1. Fora twa-dimepsional problem — Ay = Auin any plane domain
D with u =0 on bdy D, the eigenvalues satisfy the limit relation

im #n_ 47
Jim ==, m

where 4 is the area of D.
For a three-dimensional problem in any solid domain, the relation is

. AP em?
o @

where ¥ is the volume of D.

Example 1. The Interval

Let’s compare Theorem 1 with the one-dimensional =
n2m2/I2, In that case, case whete 1, =

MP
Jim =~=7, 3)

where /is the length of the interval! The same result (3) was also deri

L . ! erived
for the one-dimensional Neumann condition in Section 4.2 and the
Robin conditions in Section 4.3. o
Example 2. The Rectangle

Hen? t.he dpmain is D= {0 <x< a,0<y< b}inthe plane. We showed
explicitly in Section 10.1 that

_ a2 | m2p?

I= @

with the eigenfunction §in( Inx/a) - sin(mny/b). Since the eigenvalues are
natu_rally gumbered using a pair of integer indices, it is difficult to see the
felauoushlp between (4) and (1). For this purpose it is convenient to
introduce the enumeration function

N(2) = the number of eigenvalues that do not exceed ). .(5)

If the eigenvalues are written in increasing order as in (11.1.2), then
N(l,,)_= n. Now we can express N(A) another way using (4). Namely,
N(A)_ is the number of integer lattice points (/, 7) which are contaiuec{
within the quarter-ellipse

2 w2

i
atE=h  U>0m>0 ©)

306 CHAPTER 11 GENERAL EIGENVALUE PROBLEMS

Sy 5

Figure 1

in the (/, m) plane (see Figure 1). Each such lattice point is the upper right
corner of a square lying within the quarter ellipse. Therefore, N(4) is at
most the area of this quarter ellipse:

NGiy= %. 7

For large A, N(A) and this area may differ by approximately the length
of the perimeter, which is of the order V4. Precisely,

Aab Aab

T Cli=sNiy= T (8)

for some constant C. Substituting A = 4,,and N(A) = n, (8) takes the form
Agab = Aqab

o CVi,=n= s ©

where the constant C does not depend on . Therefore, upon dividing by
n, we deduce that
Ay AW

lim =22 (10)

which is Theorem 1 for a rectangle. o

For the Neumann condition, the only difference is that / and m are allowed
to be zero, but the result is exactly the same:

lim—2=—. 11
n—a n ab an

To prove Theorem 1, we will need the maximin principle. It is like the
minimum principle of Section 11.1 but with more general constraints. The idea
is that any orthogonality constraints ozher than those in Section 11.1 will lead to
smaller minimum values of the Rayleigh quotient. .
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Theorem 2. Maximin Principle Fix a positive i i
e v positive integer n = 2. Fix n — 1 arbi-
trary trial functions y(x), . . . , y,_;(%). Let " i

U 4

o = min 12

among all trial functions w that are orthogonal to yy, . . . , Yn—1- Then

over all choices of the n — 1 trial functions Vire ooy Ypey-

Proof. Fix an arbitrary choice of y
r 1arb; 1+ v v Vp—t-Letw(x) =22 c.p(x
be a linear combination of the first n eigenfunct"ions which is ch(fseilltoj (be)

orthogonal to y;, . . . , y,_,. That s, the constant
: , s Yn—1- 3 SCy, - .
1o satisfy the linear syslem" !

. , €, are chosen
n n
0= 21 V) yk)= > W yde  (fork=1,...,n—1)
= Jj=1

Being a system of only n - 1 equations in n unknowns, it has a solution
€15 - - - s Cp, DOt all of which constants are zero. Then, by definition (12) of

VW2 _ 2y cical—Avy, vp)

™ w2 2 ke cicrlv;, vg)
R T Ry . (14)
L c? B c? n

where we’ve again taken|jp il = 1. This inequality (14) is true for every choice of
Vis « + + s Yuy- Hence, max A, < A,. This proves half of (13).

To demonstrate th§ equality in (13), we need only exhibit a special choice of
Vs + -« 5 Pp—y for which A,,, = A,,. Our special choice is the first 71 — | eigen-

functions: y; = v, V1= o ¢
; . s +» Yn—1= Up—y. By the minimum prin
eigenvalue in Section 11. l,nwe kno’\:v that principle for the nth

Am.=2A4,  for this choice. (15)
The maximin principle (13) follows directly from (14) and (15). o

The same maximin principle is also valid for the
(he sa 0 2 e Neumann boundai
condz_tzpn if we use the “free” trial functions that don’t satisfy any boundarr;)
condition. Le} s denote the Neumann eigenvalues by .. Now we shall simulta-
neously consider the Neumann and Dirichlet cases, !

Theorem 3. ;=4 forallj=1,2, . . ..

Proof. Let’s begin with the first eigenvalues. By Theorems 11.1.1 and
11.3.1, both 4; and A, are expressed as the same minimum of the Rayleigh
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Figure 2

quotient except that the test functions for 4 satisfy one extra constraint
(namely, that w= 0 on bdy D). Having one less constraint, A, has a greater
chance of being small. Thus 4; < 4,.

Now let # = 2. For the same reason of having one extra constraint, we have

(16)

We take the maximum of both sides of (16) over all choices of trial functions
Vi» - - + » Yu—1- By the maximin principle of this section (Theorem 2 and its
Neumann analog), we have

Arow = Apue

A,,=maxj.,,,,£maxl,,,=ln. o

Example 3.

For the interval (0, /) in one dimension, the eigenvalues are A, = n?z?/2
and A, = (n — 1)?7%//2 (using our present notation with 7 running from 1
to ). It is obvious that A, < 4. o

The general principle which is illustrated by Theorem 3 is that

any additional constraint will increase the value of the maximin.

amn

In particular, we can use this principle as follows to prove the monotonicity of
the eigenvalues with respect to the domain.

Theorem 4. If the domain is enlarged, each eigenvalue is decreased.

That is, if one domain D is conttained in another domain I, then 4, = 4},
and 4, = A, where we use primes on eigenvalues to refer to the larger domain
D’ (see Figure 2).
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An = A, as we wanted to prove. But we should beware that we are avoiding the
difficulty that by extending the function to be zero, it is most likely no longer a
C2 function and therefore not a trial function. The good thing about the ex-
tended function w’(x)is that it still is continuous. For a rigorous justification of
this point, see [CH] or [Ga].

The same kind of reasoning is valid in the Neumann case. Indeed, the
maximin principle for the Neumann boundary condition states that

3 . IVw)2
where 4,,, = min
- llw)i2

and the competing trial functions w(x) do not satisfy any boundary condition at
all. Asabove, these test functions on D may be extended to the larger domain D’
by setting them equal to zero outside D. In this case, the new trial functions
w'(x) may be discontinuous at the part of the boundary of D which isinternal to
D’ (see Figure 1.) But in any case there are again more trial functions for D’ than
for D. That is, the maximin for D has more constraints, so that 4, = 1/. Again
see [CH] for a complete proof. o

Ay = MAX Apy

(19)

SUBDOMAINS

Our next step in establishing Theorem 1 is to divide the general domain D into a

finite number of subdomains Dy, . . .. , D, by introducing inside D a system
ofsmooth surfaces Sy, S5, . . .(see Figure 3). Let D have Dirichlet eigenvalues
Ay =A,=<---and Neumann eigenvalues A; = A, =- - -. Each of the subdo-
mains Dy, . . . , Dy, hasits own collection of eigenvalues. We combine all of
the Dirichlet eigenvalues of all of the subdomains Dy, . . ., D, intoasingle
increasing sequence it; <, = - - . We combine a/l of their Neumann eigen-
values into another single increasing sequence [i; < i, S+« -

By the maximin principle, each of these numbers can be obtained as the
maximum over trial functions y,, . . . , ¥,—; of the minimum over trial
functions w orthogonal to y,, . . . , y,—;. As discussed above, although each
i, is a Dirichlet eigenvalue of a single one of the subdomains, the trial functions
can be defined in all of D simply by making them vanish in the other subdo-
mains. Thus each of the competing trial functions for 41, has the extra restric-
tion, compared with the trial functions for A, for D, of vanishing on the internal
‘boundaries. It follows from the general principle (17) that

Proof. In the Dirichlet case, consider the maximin expression (13) for D. If Ay=p, foreachn=1,2,.... (20
w(x) is any trial function in D, we define w(x) in all of D’ by setting it equal to
zero outside D; that is,
o) e { W) forxinD
W) {O for x in D’ but x not in D. )
Thus every trial function in D corresponds to a trial function in D’ (but not h
conversely). So, compared to the trial functions for D, the trial functions for D
have the extra constraint of vanishing in the rest of D’. By the general principle
(17), the maximin for D is larger than the maximin for D’. It follows that Figure 3
310  CHAPTER 11 GENERAL EIGENVALUE PROBLEMS 116 ASYMPTOTICS OF THE EIGENVALUES  aip
On the other hand, the trial functions defining 1, for the Neumann prob- Similarly,
lem in D are arbitrary C2 functions. As above, we can characterize [i,, as . .
i Ha T
. . " . Ivwli2 o 77
Jy=mmaxX iy [l = min ””W"E s (21) nss n A(D) (25)

where the competing trial functions are arbitrary on each subdomain and or-
thogonal to yy, . . . , ¥,—; . But these trial functions are allowed to be discon-
tinuous on the internal boundaries, so they comprise a significantly more exten-
sive class than the trial functions for 4,,, which required to be continuous in D.
Therefore, by (17) we have ji,, < 4, for each n. Combining this with Theorem 3
and (20), we have proved the following inequalities. .

Theorem 5.

Example 4.

Let D be the union of a finite number of rectangles D =D, U D, U
- + - in the plane as in Figure 4. Each particular u, corresponds to one of
these rectangles, say D, (where pdependson #). Let A(D), ) denote the area
of D,. Let M(1) be the enumeration function for the sequence y;,

Hg, . . . defined above:
. . that do not exceed A. (22)

Then, adding up the integer lattice points which are located within D, we
get

M(A) = the number of u,, u,, .

Lf@:EA(Dp):M
S 4n 4z’

as for the case of a single rectangle. Since M(u,,) = n, the reciprocal of (23)
takes the form .

fim =

23)

4
=10y (24)

lim

ne>®

s [F

D, Dy

Dy Dy

Figure 4

By Theorem 5 it follows that all the Limits are e i
By T v qual: im A, /n=
lim 4,,/n = 47n/4 (D). This proves Theorem 1 for unions of rectan n/es.

o

Now an arbitrary plane domain D can be a i i
A i I pproximated by unions of
regtangles just asin the constrpcuon ofadoubleintegral (and as in Section § 4).
WI‘Eh the help of Theorem 5, it is possible to prove Theorem 1. The details are
omitted but the proof may be found in [CH].

THREE DIMENSIONS

The three-dimensional case works the

A same way. We limi y
to the basic example. 4 't ourselves, however,

Example 5. The Rectangular Box

Let D_=(0 <x.<a, 0 <.y<b, 0<z<c). As in Example 2, the enu-
meration function N(4) is approximately the volume of the ellipsoid

2 om k23
PR O

in the first octant. Thus for large A

83 =« T T

) ., abc
=324
672

(26)

and the same for the Neumann case. Substituti = =
e Same f uting'A = 4, and N(4) = n,

B2 6n2 132
Ln_ lim Zn_
m = 27)
For the union of a finite number of bo; )
duce et i xes of volume V(D), we de-
i A2 622 _ T
n—eH V(D) n—w n

Then a general dornain is approximated by unions of boxes. o

Forthe very general case of a symmetric differential operator as (11.4.1),the
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statement of the theorem is modified (in three dimensions, say) to read
G lim ——A"g/z

n—sw N now N
_ 6m2 (28)
Tf I plm(x)/p(x)PP? dx’

EXERCISES
1. Prove that (9) implies (10).
2. (a) Fora circular drumbead (D = disk), verify Theorem 1 directly from
Section 10.2 and the properties of Bessel functions.

(b) Do the same in the Neumann case.

3. (a) Foraspherical ball, verify Theorem 1 dJrectly from Section 10.3 and

the propemes of Bessel functions.

(b) Do the same in the Neumann case.

4. Explain how it is possible that 4, is both a maximin and a minimax.

5. For —A in the ellipsoid D = {x2 + y2/4 < 1} with Dirichlet BCs use the
monotonicity of the eigenvalues with respect to the domain to find esti-
mates for the first two eigenvalues. Inscribe or circumscribe rectangles or
circles, for which we already know the exact values.

(a) Find upper bounds.

(b) Find lower bounds.

6. Inthe proof of Theorem 1 for an arbitrary domain D, one must approxi-
mate D by unions of rectangles. This is a delicate limiting procedure.
Outline the main steps required to carry out the proof.

7. Use the surface area of an ellipsoid to write the inequalities that make (26)
a more precise statement.

8. For a symmetric differential operator in three dimensions as in (11.4.1),
explain why Theorem 1 should be modified to be (28).

9. Consider the Dirichlet BCs in a domain D. Show that the first eigenfunc-
tion v,(x) vanishes at no point of D by the following method.

(a) . Suppose on the contrary that v;(x) = Oat some pointin D. Show that
both D+=(x€ D:vy(x)>0} and D™= {xE D:vy(x) <0} are
nonempty. (Hint: Use the maximum principle in Exercise 7.4.26.)

(b) Letvt(x)=v(x) for x&€ D+ and vH(x)=0forxeD~. Letv™ =
vy — v*. Notice that |v;| = v+ — v™. Noting that v; = 0 on bdy D,
we may deduce that Vot = Vo, in D, and Vot = 0 outside D. Simi-
larly for Vo—. Show that the Rayleigh quotient @ for the function ||
is equal to A, . Therefore, both v, and |v;|are eigenfunctions with the
eigenvalue 4;.

(¢) Use the maximum priciple on|v;|to show that »; > O in all of D or
v, <0in all of D.

(d) Deduce that A, is a simple eigenvalue (Hint: If u(x) were another

11.6 ASYMPTOTICS OF THE EIGENVALUES 313

eigenfunction with eigenvalue 4,, let w be the component of # or-
thogonal to v, . Applying part (c) to w, we know that w > 0 or w < 0
or w=0in D. Conclude that w=01in D.)

Show that the nodes of the nth eigenfunction v,(x) divide the domain D

into at most n pieces, assuming (for simplicity) that the eigenvalues are

distinct, by the following method. Assume Dirichlet BCs.

(a) S!.lppose on the contrary that {x € D:v,(x) + 0) has at least n + |
disconnected components D; UD,U. . . U Dpyy. Let wy(x)=
vy(x) for x € Dy, and wi(x) =0 elsewhere You may assumc that
Vw;(x) = Vo,(x) for x E );, and Vw;(x) = 0 elsewhere. Show that
the Rayleigh quotient for w equals A

(b) Show that the Rayleigh quotzent for any linear combination w =
cywy+ v ey Wy also equals A,,.

() Lety,,...,y,beany tral fuuctlons Choose the n + 1 coeffi-
cients ¢j 50 that w is orthogonal to each of yy, . . . . Use the
maximin principle to deducethatd, , » < |[Vw}jZ/ Ilwn2 = A .Hence
deduce that A, = A,, which contradicts our assumpnon
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4.21 Linear and Nonlinear Waves (Chapter 2)

stationary waves such as u; +3u =0

Transport and Traveling Waves such as u;+cu, = u. Uniform transport. Speed c is constant.

Characteristics are Z—f = c. When speed is not constant, we get Nonuniform Transport.

Characteristics is % = c(x). Nonlinear Transport: u; + u u, = 0 where wave speed depends
not on position x but on u itself.

d’Almbert
1 1 X+t
u(x,t) = > (f(x—ct) +f(x+ct)) + z_Cfx—ct g(s)ds
. 1 ot px+c(t-s) ..
With extranl force u, = c?u,,+F (x,t) we add the term % £ ( £ ic(ct_s)s F (s, y) dy) ds. The limits

are the same as above, but replace t by t —s. remeber ds goes with t and dy goes with x.

4.2.2 Fourier series (Chapter 3)

Just need to know the F.S. definition. Either complex one or standard.

4.2.3 Seperation of variables (Chapter 4)

Theorem 4.2. If u(t,x) is a solution to the heat equation with piecewise continuous initial
data f(x) = u(t0, x), or, more generally, initial data satisfying (4.27), then, for any ¢ > f,, the
solution u(t, x) is an infinitely differentiable function of x. (page 128) .

"In other words, the heat equation instantaneously smoothes out any discontinuities and
corners in the initial temperature profile by fast damping of the high-frequency modes”

Heat PDE in 1D.

Inhomogeneous Boundary Conditions convert to homogeneous by using reference func-

tion.

Wave PDE in 1D. Fixed ends. d’Alembert Formula for Bounded Intervals: For Dirichlet
do odd extension of initial position. For Neumann (free) boundary conditions, do even
extension.

. . 1 1
Laplace PDE on disk and on recrangle. in polar Laplace becomes u,, + ~u, + Zugo = 0.

When doing seperations, rememebr to use the angular ODE for finding the eigenvalues
first. The radial ODE becomes Euler ODE. Solve using assuming R (r) = r*. For disk, the

solution is u (r, 0) = % + 2;:0:1 " (A, cos (n6 + B, sin n6))

Laplace PDE maximum principle. Lots of theorem here.

Characteristics and the Cauchy Problem see HW 7, Problem 4.4.16. This is for second

2
order pde. Write pde as Au,,+Bu,,+Cu,, = G and then Characteristics is A (;l—z) —BZ—Z+C =0.

. . d . . . L.
This gives ode % which is the Characteristics.

P . . 2
Laplacian in 3D with no angle dependencty is u,, + ~u, =0

4.2.4 Generalized functions and Green function (Chapter 6)

0(x = £): "In general, a unit impulse at position a < £ < b will be described by something
called the delta function".

Two ways to define 6 (x — &). one based on limit of function as 7 — co and one based on
how it acts inside integral. For limit, use this one
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n

gn (%) = m

Then lim,_,, g, (x) = 0g (x). And the above also meets the integral relation f_ ~ g (x)dx =

% [arctan (nx)]™_ =1.

For calculus, remember this: When taking derivative of a function with jump discontitty;,
we get an impulse at location of the jump with magnitude of the jump. Direction is negative
if the jump is down and positive if the jump is up, this is when moving from left to right.
For example derivative of unit step is 6 (x). And the integral of 6 (x) is unit step (or 1).
Hence if f (x) = g(x) + 0 (x) where ¢ (x) is unit step and g (x) is continuous everywhere, then

frx)=¢ () +6(x)
Fourier series of 6 (x) = i + % (cosx + cos2x + cos3x + --+)

Green function for 1D boundary value problems.

Remember when satisfying the jump discontinuity, it is A + % = B where p is one which

matches when the ODE is written as py” + g (x)y’ + ry = f (x) in the original ODE. And A
is the top term and B is the bottom term, as is

d ) 3 A x<{&
[EG(XIE):L:(S_{ B x>&

1
A+-=B
p

That is really the only tricky part in finding Green function. Getting the sign right here. So
if the ODE is —cy” = f (x) then here p = —c (notice, sign is negative, i.e. p = —c including

So the second equation is

the sign) and the jump is 1= L =_1and hence the equation becomes
p - c

1

A+-=B
p
1

- - =B
c

And if the ODE is given as cy” = f (x) then p = ¢ and the equation becomes

1
A+-=B
P
1
A+-=8B
c

"Thus, the Neumann boundary value problem admits a solution if and only if there is no
net force on the bar." (page 239). This means —u” = f (x) with u’ (0) = 0 = u’ (1) has Green
function and solution if f f (x)dx = 0. If this holds, the —u”" = f (x) has solution (but the

solution is not unique) and any constant value is a solution.

Green function for Laplace —Au = f (x, y)

Some relations: V - Vu = Au = u,, + u,,. i.e. divergence of the gradient of u is Laplacian of
u. Green function in full space for Laplacian in 2D is

G(x,y;é,n) = %lnr

I . . 2 2 .
where r is distance from (x, y) to where the pulse is (5, r]), ie. \/(x -&)° + (y - r)) .In 3D, it
.1
1S e
Method of images To find G (x, v &, 17) in say upper half, put a negative pulse at (5, —17) and
then use Gupper (X, V&, 77) = Gj"ull (xry; g, 77) - Gfull (x/ vé —TI)
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For disk

1811 lx = &l

Mafx—qq

1
G &) == ln(
2m
In polar it becomes

G(r,0:p,) = 1n(m)

T in r?+p2-B

Where g = 2rp cos (9 - <p) where (7, 0) is variable point and pulse fixed at (p, qb), all using
polar coordinates.

4.2.5 Fourier transform (chapter 7)

y 1 * —ikx

ﬂb=¢ﬂj;fwekw
1 . ikx

Fx) = Ef_mf(k)ek dk

Table of Fourier transforms on page 272 will be given in exam also. Remember the
shift property

fk-a) & e™f (x)

f(x—a) e ™f (k)

Gaussian integrals, for any b is

f e dx = \r

foo o) gy = \r

—00

f " e‘(x‘b)zdx =/

—00

f ” e‘”(x+b)2dx = \/E a>0
o a
f ” e‘“("‘b)zdx = \/E a>0
oo a
Derivative and integrals
fx e fk
f () & (@) f (k)
F7 (%) & (@) f (k) = =k f (k)

Remember this also xf (x) & i%. On smoothness of f(x) and relation to decay of f (k).

see book page 276 "the smoothness of the function f(x) is manifested in the rate of decay
of its Fourier transform f(k)." and "Thus, the smoother f(x), the more rapid the decay of
its Fourier transform" and "This result can be viewed as the Fourier transform version of
the Riemann-Lebesgue Lemma 3.46.)"

Integration

[ fware 2f@+rf 00

Easy to remember when comparing it to f’ (x) & (ik) f (k). Just change (ik) from numerator
to denominator and add 7 f 0) 6 (k).

In context of generalized functions, we write
f F(x)dx = V21 f (0)

So if we know the F.T. of f(x) we do the above integration by using the above relation
directly by evaluating f (k) at k = 0. This can be handy. For example let us apply this to
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k2

) o _ 2 A A 2 1 K A 1
the Gaussian,. f_we Cdx = \/2_7zf (0) where f (k) = 9‘(6 x ) = $e 4. Hence f(0) = 5 and

© 22 1 _
therefore f_ooe dx—\/z_n\/E =+/n

Green function

Using F.T, to find Green function. Used only for infinite space. Put a 6, (x) in RHS, solve
for G (y, t) then find the inverse Fourier transform to get G (x, t). For example for heat pde.

Weyl’s law for eigenvalues convergence for large n. For 2D

. A, 4n
lim — = —
n—oo 1
Rr2  |2n? . ..
Where here A, = — + b_Z’Z =1,2,3,---,k=1,2,3,---. So A, are sorted in order. This is for

reactangle with width 2 and high b.
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