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1 Problem 3.1.2

Find all separable eigensolutions to the heat equation 𝑢𝑡 = 𝑢𝑥𝑥 on 0 ≤ 𝑥 ≤ 𝜋 subject to (a)
homogeneous boundary conditions 𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝜋) = 0. (b) mixed boundary conditions
𝑢 (𝑡, 0) = 0, 𝑢𝑥 (𝑡, 𝜋) = 0

solution

Using separation of variables, let 𝑢 (𝑡, 𝑥) = 𝑇 (𝑡) 𝑋 (𝑥). Substituting this into 𝑢𝑡 = 𝑢𝑥𝑥 gives
𝑇′𝑋 = 𝑇𝑋′′. Dividing by 𝑋𝑇 ≠ 0 results in

𝑇′

𝑇
=
𝑋′′

𝑋
= −𝜆

Where 𝜆 is the seperation constant. The above gives the following ODE’s to solve

𝑋′′ (𝑥) + 𝜆𝑋 (𝑥) = 0
𝑇′ (𝑡) + 𝜆𝑇 (𝑡) = 0

The boundary and initial conditions are transfered from the PDE to the ODE as shown
below.

1.1 Part (a)

Using 𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝜋) = 0. Starting with the spatial ODE, and transferring the boundary
conditions to the ODE results in

𝑋′′ (𝑥) + 𝜆𝑋 (𝑥) = 0
𝑋 (0) = 0
𝑋 (𝜋) = 0

This is an eigenvalue boundary value ODE. The solution to the spatial ODE is

𝑋 (𝑥) = 𝑐1𝑒√−𝜆𝑥 + 𝑐2𝑒−√−𝜆𝑥 (1)

case 𝜆 < 0

Since 𝜆 < 0, then −𝜆 is positive. Let 𝜇 = −𝜆, where 𝜇 is positive. The above solution becomes

𝑋 (𝑥) = 𝑐1𝑒√𝜇𝑥 + 𝑐2𝑒−√𝜇𝑥

Which can be written as

𝑋 (𝑥) = 𝑐1 cosh �√𝜇𝑥� + 𝑐2 sinh �√𝜇𝑥�
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At 𝑥 = 0 this gives

0 = 𝑐1
The solution now reduces to 𝑋 (𝑥) = 𝑐2 sinh �√𝜇𝑥�. At 𝑥 = 𝜋 this gives

0 = 𝑐2 sinh �√𝜇𝜋�
But sinh is only zero when its argument is zero. Since 𝜇 ≠ 0, then the only choice is that
𝑐2 = 0 also. But this gives trivial solution therefore 𝜆 < 0 is not an eigenvalue.

case 𝜆 = 0

In this case the solution is 𝑋 (𝑥) = 𝑐1 + 𝑐2𝑥. At 𝑥 = 0 this gives 0 = 𝑐1. The solution becomes
𝑋 (𝑥) = 𝑐2𝑥. At 𝑥 = 𝜋, this gives 0 = 𝑐2𝜋. Therefore 𝑐2 = 0 also. This also gives the trivial
solution. Hence 𝜆 = 0 is not an eigenvalue.

case 𝜆 > 0

The solution in this case is

𝑋 (𝑥) = 𝑐1𝑒√−𝜆𝑥 + 𝑐2𝑒−√−𝜆𝑥

= 𝑐1𝑒𝑖√𝜆𝑥 + 𝑐2𝑒−𝑖√𝜆𝑥

Which can be rewritten as (the constants 𝑐1, 𝑐2 below will be di�erent than the above 𝑐1, 𝑐2,
but kept the same name for simplicity).

𝑋 (𝑥) = 𝑐1 cos �√𝜆𝑥� + 𝑐2 sin �√𝜆𝑥�

At 𝑥 = 0 this gives

0 = 𝑐1
The solution now reduces to

𝑋 (𝑥) = 𝑐2 sin �√𝜆𝑥�

At 𝑥 = 𝜋 this gives

0 = 𝑐2 sin �√𝜆𝜋�

non-trivial solution requires that sin �√𝜆𝜋� = 0 which implies that √𝜆𝜋 = 𝑛𝜋, 𝑛 = 1, 2, 3,⋯.
Hence eigenvalues are

𝜆𝑛 = 𝑛2 𝑛 = 1, 2, 3,⋯

And corresponding eigenfunctions are

𝑋𝑛 (𝑥) = sin (𝑛𝑥) 𝑛 = 1, 2, 3,⋯

Now that the eigenvalues and eigenfunction are found, the time ODE can be solved. The
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time ODE now becomes

𝑇′ (𝑡) + 𝑛2𝑇 (𝑡) = 0

This is linear first order ode. The solution is 𝑇𝑛 (𝑡) = 𝐶𝑛𝑒−𝑛
2𝑡. Therefore the fundamental

solution is

𝑢𝑛 (𝑡, 𝑥) = 𝐶𝑛𝑇𝑛 (𝑡) 𝑋𝑛 (𝑥)

= 𝐶𝑛𝑒−𝑛
2𝑡 sin (𝑛𝑥)

Since this is a linear PDE, a linear combination of all fundamental solutions is a solution.
Hence the general solution is

𝑢 (𝑡, 𝑥) =
∞
�
𝑛=1

𝐶𝑛𝑒−𝑛
2𝑡 sin (𝑛𝑥)

The constant 𝐶𝑛 can be found if initial conditions are given.

1.2 Part (b)

Using 𝑢 (𝑡, 0) = 0, 𝑢𝑥 (𝑡, 𝜋) = 0. Starting with the spatial ODE, and transferring the boundary
condition to 𝑋, it becomes

𝑋′′ (𝑥) + 𝜆𝑋 (𝑥) = 0
𝑋 (0) = 0
𝑋′ (𝜋) = 0

This is an eigenvalue boundary value problem. The solution to the spatial ODE is

𝑋 (𝑥) = 𝑐1𝑒√−𝜆𝑥 + 𝑐2𝑒−√−𝜆𝑥 (1)

case 𝜆 < 0

Since 𝜆 < 0, then −𝜆 is positive. Let 𝜇 = −𝜆, where 𝜇 is positive. The solution becomes

𝑋 (𝑥) = 𝑐1𝑒√𝜇𝑥 + 𝑐2𝑒−√𝜇𝑥

The above can be written as

𝑋 (𝑥) = 𝑐1 cosh �√𝜇𝑥� + 𝑐2 sinh �√𝜇𝑥�

At 𝑥 = 0 this gives

0 = 𝑐1
Hence the solution now becomes

𝑋 (𝑥) = 𝑐2 sinh �√𝜇𝑥�
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Taking derivative gives

𝑋′ (𝑥) = 𝑐2√𝜇 cosh �√𝜇𝑥�
And at 𝑥 = 𝜋 the above gives

0 = 𝑐2√𝜇 cosh �√𝜇𝜋�
But 𝜇 ≠ 0 and cosh is never zero for any argument. Hence the only choice is that 𝑐2 = 0.
This gives the trivial solution. Hence 𝜆 < 0 is not an eigenvalue.

case 𝜆 = 0

In this case the solution is 𝑋 (𝑥) = 𝑐1 + 𝑐2𝑥. At 𝑥 = 0 this results in 0 = 𝑐1. The solution
becomes 𝑋 (𝑥) = 𝑐2𝑥. Hence 𝑋′ (𝑥) = 𝑐2. At 𝑥 = 𝜋, this implies 0 = 𝑐2𝜋. Therefore 𝑐2 = 0 also.
This gives the trivial solution. Hence 𝜆 = 0 is not an eigenvalue.

case 𝜆 > 0

The solution in this case is

𝑋 (𝑥) = 𝑐1𝑒√−𝜆𝑥 + 𝑐2𝑒−√−𝜆𝑥

= 𝑐1𝑒𝑖√𝜆𝑥 + 𝑐2𝑒−𝑖√𝜆𝑥

Which can be rewritten as (the constants 𝑐1, 𝑐2 below will be di�erent than the above 𝑐1, 𝑐2,
but kept the same name for simplicity).

𝑋 (𝑥) = 𝑐1 cos �√𝜆𝑥� + 𝑐2 sin �√𝜆𝑥�

At 𝑥 = 0 this gives

0 = 𝑐1
The solution now reduces to

𝑋 (𝑥) = 𝑐2 sin �√𝜆𝑥�

Therefore

𝑋′ (𝑥) = √𝜆𝑐2 cos �√𝜆𝑥�

At 𝑥 = 𝜋

0 = √𝜆𝑐2 cos �√𝜆𝜋�

Non-trivial solution requires that cos �√𝜆𝜋� = 0, which implies √𝜆𝜋 = 𝑛𝜋
2 , 𝑛 = 1, 3, 5,⋯. or

√𝜆 =
𝑛
2 , 𝑛 = 1, 3, 5,⋯. Therefore the eigenvalues are

𝜆𝑛 = �
𝑛
2
�
2

𝑛 = 1, 3, 5,⋯
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Or

𝜆𝑛 = �
2𝑛 − 1
2 �

2

𝑛 = 1, 2, 3,⋯

Few eigenvalues are 𝜆 = �14 ,
9
4 ,

25
4 ,⋯�. The corresponding eigenfunctions are

𝑋𝑛 (𝑥) = sin �2𝑛−12 𝑥� 𝑛 = 1, 2, 3,⋯

Now that the eigenvalues and eigenfunction are found, the time ODE is solved. The time
ODE now becomes

𝑇′ (𝑡) + �
2𝑛 − 1
2 �

2

𝑇 (𝑡) = 0

This is linear first order ode. The solution is 𝑇𝑛 (𝑡) = 𝐶𝑛𝑒
−� 2𝑛−12 �

2
𝑡
. Therefore the fundamental

solution is

𝑢𝑛 (𝑡, 𝑥) = 𝐶𝑛𝑇𝑛 (𝑡) 𝑋𝑛 (𝑥)

= 𝐶𝑛𝑒
−� 2𝑛−12 �

2
𝑡 sin �

2𝑛 − 1
2

𝑥�

A linear combination of all fundamental solution is a solution (due to linearity). Hence the
general solution is

𝑢 (𝑡, 𝑥) =
∞
�
𝑛=1

𝐶𝑛𝑒
−� 2𝑛−12 �

2
𝑡 sin �

2𝑛 − 1
2

𝑥�
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2 Problem 3.1.5

(a) Find the real eigensolutions to the damped heat equation 𝑢𝑡 = 𝑢𝑥𝑥−𝑢. (b) Which solutions
satisfy the periodic boundary conditions 𝑢 (𝑡, −𝜋) = 𝑢 (𝑡, 𝜋) , 𝑢𝑥 (𝑡, −𝜋) = 𝑢𝑥 (𝑡, 𝜋) ?

solution

2.1 Part (a)

Using separation of variables, Let 𝑢 (𝑡, 𝑥) = 𝑇 (𝑡) 𝑋 (𝑥). Substituting this into 𝑢𝑡 + 𝑢 = 𝑢𝑥𝑥 gives
𝑇′𝑋 + 𝑇𝑋 = 𝑇𝑋′′. Dividing by 𝑋𝑇 ≠ 0 gives

𝑇′

𝑇
+ 1 =

𝑋′′

𝑋
= −𝜆

Where 𝜆 is the separation constant. This gives the following ODE’s to solve

𝑋′′ (𝑥) + 𝜆𝑋 (𝑥) = 0
𝑇′ (𝑡) + (𝜆 + 1) 𝑇 (𝑡) = 0

Eigenfunctions are solutions to the spatial ODE.

𝑋 (𝑥) = 𝑐1𝑒√−𝜆𝑥 + 𝑐2𝑒−√−𝜆𝑥 (1)

To determine the actual eigenfunctions and eigenvalues, boundary conditions are used. This
is part b below.

2.2 Part (b)

Using 𝑢 (𝑡, −𝜋) = 𝑢 (𝑡, 𝜋) , 𝑢𝑥 (𝑡, −𝜋) = 𝑢𝑥 (𝑡, 𝜋). Starting with the spatial ODE above, and trans-
ferring the boundary condition to 𝑋 gives

𝑋′′ (𝑥) + 𝜆𝑋 (𝑥) = 0
𝑋 (−𝜋) = 𝑋 (𝜋)
𝑋′ (−𝜋) = 𝑋′ (𝜋)

This is an eigenvalue boundary value problem. The solution is

𝑋 (𝑥) = 𝑐1𝑒√−𝜆𝑥 + 𝑐2𝑒−√−𝜆𝑥 (1)

case 𝜆 < 0

Since 𝜆 < 0, then −𝜆 is positive. Let 𝜇 = −𝜆, where 𝜇 is now positive. The solution (1)
becomes

𝑋 (𝑥) = 𝑐1𝑒√𝜇𝑥 + 𝑐2𝑒−√𝜇𝑥

The above can be written as

𝑋 (𝑥) = 𝑐1 cosh �√𝜇𝑥� + 𝑐2 sinh �√𝜇𝑥� (2)
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Applying first B.C. 𝑋 (−𝜋) = 𝑋 (𝜋) using (2) gives

𝑐1 cosh �√𝜇𝜋� + 𝑐2 sinh �−√𝜇𝜋� = 𝑐1 cosh �√𝜇𝜋� + 𝑐2 sinh �√𝜇𝜋�

𝑐2 sinh �−√𝜇𝜋� = 𝑐2 sinh �√𝜇𝜋�
But sinh is only zero when its argument is zero which is not the case here. Therefore the
above implies that 𝑐2 = 0 as only possibility to satisfy the above equation. The solution (2)
now reduces to

𝑋 (𝑥) = 𝑐1 cosh �√𝜇𝑥� (3)

Taking derivative

𝑋′ (𝑥) = 𝑐1√𝜇 sinh �√𝜇𝑥� (4)

Applying the second BC 𝑋′ (−𝜋) = 𝑋′ (𝜋) gives

𝑐1√𝜇 sinh �−√𝜇𝜋� = 𝑐1√𝜇 sinh �√𝜇𝑥�
But sinh is only zero when its argument is zero which is not the case here. Therefore the
above implies that 𝑐1 = 0. This means a trivial solution. Therefore 𝜆 < 0 is not an eigenvalue.

case 𝜆 = 0

In this case the solution is 𝑋 (𝑥) = 𝑐1 + 𝑐2𝑥. Applying first BC 𝑋 (−𝜋) = 𝑋 (𝜋) gives

𝑐1 − 𝑐2𝜋 = 𝑐1 + 𝑐2𝜋
−𝑐2𝜋 = 𝑐2𝜋

This gives 𝑐2 = 0. The solution now becomes

𝑋 (𝑥) = 𝑐1
Therefore 𝑋′ (𝑥) = 0. Applying the second boundary conditions 𝑋′ (−𝜋) = 𝑋′ (𝜋) is now
satisfied for any 𝑐1, since it gives (0 = 0). Therefore 𝜆 = 0 is an eigenvalue with eigenfunction
𝑋0 (0) = 1 (selecting 𝑐1 = 1 since any arbitrary constant will work).

case 𝜆 > 0

The solution in this case is

𝑋 (𝑥) = 𝑐1𝑒√−𝜆𝑥 + 𝑐2𝑒−√−𝜆𝑥

= 𝑐1𝑒𝑖√𝜆𝑥 + 𝑐2𝑒−𝑖√𝜆𝑥

Which can be rewritten as (the constants 𝑐1, 𝑐2 below will be di�erent than the above 𝑐1, 𝑐2,
but kept the same name for simplicity).

𝑋 (𝑥) = 𝑐1 cos �√𝜆𝑥� + 𝑐2 sin �√𝜆𝑥� (5)

Applying first B.C. 𝑋 (−𝜋) = 𝑋 (𝜋) using the above gives

𝑐1 cos �√𝜆𝜋� + 𝑐2 sin �−√𝜆𝜋� = 𝑐1 cos �√𝜆𝜋� + 𝑐2 sin �√𝜆𝜋�

𝑐2 sin �−√𝜆𝜋� = 𝑐2 sin �√𝜆𝜋�

There are two choices here. Either 𝑐2 = 0 or √𝜆𝜋 = 𝑛𝜋, 𝑛 = 1, 2, 3,⋯. Using the second choice
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for now, which implies that

𝜆𝑛 = 𝑛2 𝑛 = 1, 2, 3,⋯

And now we will now look to see what happens using the second BC with the above choice.
The solution (5) now becomes

𝑋 (𝑥) = 𝑐1 cos (𝑛𝑥) + 𝑐2 sin (𝑛𝑥) 𝑛 = 1, 2, 3,⋯

Therefore

𝑋′ (𝑥) = −𝑐1𝑛 sin (𝑛𝑥) + 𝑐2𝑛 cos (𝑛𝑥)
Applying the second BC 𝑋′ (−𝜋) = 𝑋′ (𝜋) using the above gives

𝑐1𝑛 sin (𝑛𝜋) + 𝑐2𝑛 cos (𝑛𝜋) = −𝑐1𝑛 sin (𝑛𝜋) + 𝑐2𝑛 cos (𝑛𝜋)
𝑐1𝑛 sin (𝑛𝜋) = −𝑐1𝑛 sin (𝑛𝜋)

0 = 0

Since 𝑛 is integer.

Therefore this means that using the choice 𝜆𝑛 = 𝑛2 satisfied both boundary conditions with
𝑐2 ≠ 0, 𝑐1 ≠ 0. This means the solution (5) is

𝑋𝑛 (𝑥) = 𝐴𝑛 cos (𝑛𝑥) + 𝐵𝑛 sin (𝑛𝑥) 𝑛 = 1, 2, 3,⋯

The above says that there are two eigenfunctions in this case. They are

𝑋𝑛 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩

cos (𝑛𝑥)
sin (𝑛𝑥)

Recalling that there is also a zero eigenvalue with constant as its eigenfunction, then the
complete set of eigenfunctions is

𝑋𝑛 (𝑥) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
cos (𝑛𝑥)
sin (𝑛𝑥)

Now that the eigenvalues are found, the solution to the time ODE can be found. The time
ODE from above was found to be

𝑇′ (𝑡) + (𝜆 + 1) 𝑇 (𝑡) = 0

For the zero eigenvalue case, the above reduces to 𝑇′ (𝑡) + 𝑇 (𝑡) = 0 which has the solution
𝑇0 (𝑡) = 𝐶0𝑒−𝑡. For non zero eigenvalues 𝜆𝑛 = 𝑛2, the ODE becomes 𝑇′ (𝑡) + �𝑛2 + 1� 𝑇 (𝑡) = 0,

whose solution is 𝑇0 (𝑡) = 𝐶𝑛𝑒
−�𝑛2+1�𝑡.

Putting all the above together, gives the fundamental solution as

𝑢𝑛 (𝑡, 𝑥) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝐶0𝑒−𝑡

𝐶𝑛 cos (𝑛𝑥) 𝑒−�𝑛
2+1�𝑡 𝑛 = 1, 2, 3,⋯

𝐵𝑛 sin (𝑛𝑥) 𝑒−�𝑛
2+1�𝑡 𝑛 = 1, 2, 3,⋯
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The complete solution is the sum of the above solutions

𝑢 (𝑡, 𝑥) = 𝐶0𝑒−𝑡 +
∞
�
𝑛=1

𝑒−�𝑛
2+1�𝑡 (𝐶𝑛 cos (𝑛𝑥) + 𝐵𝑛 sin (𝑛𝑥))

The constants 𝐶0, 𝐶𝑛, 𝐵𝑛 can be found from initial conditions.
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3 Problem 3.2.1

(d) Find the Fourier series of the following functions 𝑓 (𝑥) = 𝑥2 (using −𝜋 ≤ 𝑥 ≤ 𝜋 )

solution

The Fourier series is given by

𝑥2 ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝜋
𝑇
𝑛𝑥� + 𝑎𝑛 sin �

2𝜋
𝑇
𝑛𝑥�

Where 𝑇 is the period of 𝑓 (𝑥). Taking this period to be 2𝜋, the above simplifies to

𝑥2 ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) + 𝑏𝑛 sin (𝑛𝑥)

The function 𝑥2 is even, hence all 𝑏𝑛 are zero. The above becomes

𝑥2 ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) (1)

But

𝑎0 =
1
𝜋 �

𝜋

−𝜋
𝑥2𝑑𝑥

=
2
𝜋 �

𝜋

0
𝑥2𝑑𝑥

=
2
𝜋 �

𝑥3

3 �
𝜋

0

=
2
3𝜋
𝜋3

=
2
3
𝜋2

And

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑥2 cos (𝑛𝑥) 𝑑𝑥

=
2
𝜋 �

𝜋

0
𝑥2 cos (𝑛𝑥) 𝑑𝑥 (1A)

Let 𝐼 = ∫
𝜋

0
𝑥2 cos (𝑛𝑥) 𝑑𝑥. Using integration by parts ∫𝑢𝑑𝑣 = 𝑢𝑣−∫𝑣𝑑𝑢. Let 𝑢 = 𝑥2, 𝑑𝑣 = cos (𝑛𝑥).
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Then 𝑑𝑢 = 2𝑥, 𝑣 = sin(𝑛𝑥)
𝑛 . Hence

𝐼 = �𝑥2
sin (𝑛𝑥)
𝑛 �

𝜋

0
− 2�

𝜋

0
𝑥

sin (𝑛𝑥)
𝑛

𝑑𝑥

=

0

�������������������1
𝑛
�𝑥2 sin (𝑛𝑥)�

𝜋

0
−
2
𝑛 �

𝜋

0
𝑥 sin (𝑛𝑥) 𝑑𝑥

= −
2
𝑛 �

𝜋

0
𝑥 sin (𝑛𝑥) 𝑑𝑥

Integration by parts again. 𝑢 = 𝑥, 𝑑𝑣 = sin (𝑛𝑥), then 𝑑𝑢 = 1, 𝑣 = − cos(𝑛𝑥)
𝑛 . The above becomes

𝐼 = −
2
𝑛

⎛
⎜⎜⎜⎜⎝�−𝑥

cos (𝑛𝑥)
𝑛 �

𝜋

0
−�

𝜋

0
−

cos (𝑛𝑥)
𝑛

𝑑𝑥
⎞
⎟⎟⎟⎟⎠

= −
2
𝑛 �
−
1
𝑛
[𝑥 cos (𝑛𝑥)]𝜋0 +

1
𝑛 �

𝜋

0
cos (𝑛𝑥) 𝑑𝑥�

=
2
𝑛2 �

[𝑥 cos (𝑛𝑥)]𝜋0 −�
𝜋

0
cos (𝑛𝑥) 𝑑𝑥�

=
2
𝑛2

⎛
⎜⎜⎜⎜⎝[𝜋 cos (𝑛𝜋)] − �

sin (𝑛𝑥)
𝑛 �

𝜋

0

⎞
⎟⎟⎟⎟⎠

=
2𝜋
𝑛2

cos (𝑛𝜋)

=
2𝜋
𝑛2
(−1)𝑛

The above is 𝐼. Substituting this result back in (1A) gives

𝑎𝑛 =
2
𝜋
𝐼

=
2
𝜋
2𝜋
𝑛2
(−1)𝑛

=
4
𝑛2
(−1)𝑛

Therefore (1) becomes

𝑥2 ∼
1
3
𝜋2 + 4

∞
�
𝑛=1

(−1)𝑛

𝑛2
cos (𝑛𝑥)

To verify this result, the Fourier series was compared to 𝑥2 for an increasing number of
terms to see if it converged to 𝑥2. Here is the result. This shows the convergence is fast, after
6 terms only the approximation (in red color) is almost the same as the original function
𝑥2.
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Figure 1: Fourier series of 𝑥2

fs[x_, max_] :=
1

3
π
2
+ 4 Sum

(-1)n

n2
Cos[n x], {n, 1, max}

makePlot[n_] := Plot[{x^2, fs[x, n]}, {x, -Pi, Pi},

PlotStyle → { Gray, Red}, AxesLabel → {"x", None},

PlotLabel → Row[{"Fourier series approx using ", n, " terms"}],

ImageSize → 300

];

Grid[Partition[Table[makePlot[n], {n, {1, 2, 3, 4, 5, 6}}], 2],

Frame → All]

Figure 2: Code used for the above plot

the following plot shows how the Fourier series approximation to 𝑥2 when it is periodically
extended to outside [−𝜋, 𝜋]. This uses the range [−3𝜋, 3𝜋] by adding one period to left and
one period to the right.
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In[ ]:= fs[x_, max_] :=
1

3
π
2
+ 4 Sum

(-1)n

n2
Cos[n x], {n, 1, max}

fx[x_] := Piecewise[{

{(x + 2 Pi)^2, x < -Pi},

{x^2, -Pi < x < Pi},

{(x - 2 Pi)^2, x > Pi}}];

makePlot[n_] := Plot[{fx[x], fs[x, n]}, {x, -3 Pi, 3 Pi},

PlotStyle → { Gray, Red}, AxesLabel → {"x", None},

PlotLabel → Row[{"Fourier series approx using ", n, " terms"}],

ImageSize → 300

];

Grid[Partition[Table[makePlot[n], {n, {1, 2, 3, 4, 5, 6}}], 2],

Frame → All]

Figure 3: Code used for the above plot



15

4 Problem 3.2.2

(d) Find the Fourier series of the following function 𝑓 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
𝑥 |𝑥| < 𝜋

2
0 otherwise

solution

This is plot showing 𝑓 (𝑥)

Out[ ]=

-π - π

2

π

2
π

x

-1.5

-1.0

-0.5

0.5

1.0

1.5

f(x)

Figure 4: Plot of 𝑓(𝑥)

The Fourier series is given by

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝜋
𝑇
𝑛𝑥� + 𝑎𝑛 sin �

2𝜋
𝑇
𝑛𝑥�

Where 𝑇 is the period of the function to be approximated. Taking this period to be 2𝜋, the
above simplifies to

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) + 𝑏𝑛 sin (𝑛𝑥)

The function 𝑓 (𝑥) is odd then all 𝑎𝑛 will zero. The above simplifies to

𝑓 (𝑥) ∼
∞
�
𝑛=1

𝑏𝑛 sin (𝑛𝑥)

Where

𝑏𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥

=
1
𝜋 �

𝜋
2

−𝜋
2

𝑥 sin (𝑛𝑥) 𝑑𝑥

But 𝑥 is odd and sin (𝑥) is odd, hence the product is even. The above simplifies to

𝑏𝑛 =
2
𝜋 �

𝜋
2

0
𝑥 sin (𝑛𝑥) 𝑑𝑥

Using integration by parts ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢. Let 𝑥 = 𝑢, 𝑑𝑢 = 1, 𝑑𝑣 = sin (𝑛𝑥) , 𝑣 = − cos(𝑛𝑥)
𝑛 , the
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above gives

𝑏𝑛 =
2
𝜋

⎛
⎜⎜⎜⎝
−1
𝑛
[𝑥 cos (𝑛𝑥)]

𝜋
2
0 +

1
𝑛 �

𝜋
2

0
cos (𝑛𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎠

=
2
𝜋𝑛

⎛
⎜⎜⎜⎝− [𝑥 cos (𝑛𝑥)]

𝜋
2
0 +�

𝜋
2

0
cos (𝑛𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎠

=
2
𝜋𝑛 �

− �
𝜋
2

cos �𝑛𝜋
2
�� +

1
𝑛
[sin (𝑛𝑥)]

𝜋
2
0 �

=
2
𝜋𝑛 �

− �
𝜋
2

cos �𝑛𝜋
2
�� +

1
𝑛 �

sin �𝑛𝜋
2
���

=
2
𝜋𝑛2

�sin �𝑛𝜋
2
� −

𝑛𝜋
2

cos �𝑛𝜋
2
��

Therefore the Fourier series becomes

𝑓 (𝑥) ∼
∞
�
𝑛=1

2
𝜋𝑛2 �

sin �𝑛𝜋
2
� −

1
2
𝑛𝜋 cos �𝑛𝜋

2
�� sin (𝑛𝑥)

To verify this result, the Fourier series was compared to 𝑓 (𝑥) for increasing number of terms
to see if it converges to 𝑥2. Here is the result. This shows the convergence is fast, but not as
fast as last problem due to jump discontinuity in 𝑓 (𝑥). 10 terms are used below.
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Figure 5: Fourier series approximation of 𝑓(𝑥)
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In[ ]:= fs[x_, max_] := Sum
2

n2 π
Sin

n π

2
 -

1

2
n π Cos

n π

2
 Sin[n x], {n, 1, max};

f[x_] := Piecewise[{{x, Abs[x] < Pi/ 2}, {0, True}}];

makePlot[n_] := Plot[{f[x], fs[x, n]}, {x, -Pi, Pi},

PlotStyle → {Blue, Red}, AxesLabel → {"x", None},

PlotLabel → Row[{"Fourier series approx using ", n, " terms"}],

ImageSize → 300,

Ticks → {Range[-Pi, Pi, Pi/ 2], Automatic}

];

Grid[Partition[Table[makePlot[n], {n, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}}], 2],

Frame → All]

Figure 6: Code used for the above plot

the following plot shows how the Fourier series approximate 𝑓 (𝑥) when it is periodically
extended to outside [−𝜋, 𝜋]. This uses the range [−3𝜋, 3𝜋] by adding one more period to left
and to the right.
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Figure 7: Fourier series of periodic extension 𝑓(𝑥)
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In[ ]:= fs[x_, max_] := Sum
2

n2 π
Sin

n π

2
 -

1

2
n π Cos

n π

2
 Sin[n x], {n, 1, max};

f[x_] := Piecewise[{

{0, x < -5/ 2 Pi},

{x + 2 Pi, -5/ 2 Pi < x < -3/ 2 Pi},

{0, -3/ 2 Pi < x < -Pi/ 2},

{x, -Pi/ 2 < x < Pi/ 2},

{0, Pi/ 2 < x < 3/ 2 Pi},

{x - 2 Pi, 2/ 3 Pi < x < 5/ 2 Pi},

{0, 5/ 2 Pi < x < 3 Pi}}];

makePlot[n_] := Plot[{f[x], fs[x, n]}, {x, -3 Pi, 3 Pi},

PlotStyle → { Blue, Red}, AxesLabel → {"x", None},

PlotLabel → Row[{"Fourier series approx using ", n, " terms"}],

ImageSize → 300,

Ticks → {Range[-Pi, Pi, Pi/ 2], Automatic}

];

Grid[Partition[Table[makePlot[n], {n, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}}], 2],

Frame → All]

Figure 8: Code used for the above plot
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5 Problem 3.2.3

Find the Fourier series of sin2 𝑥 and cos2 𝑥 without directly calculating the Fourier coe�cients.

solution

Using the known trig identity

sin2 𝑥 =
1
2
−
1
2

cos (2𝑥) (1)

And comparing the the above to the Fourier series expansion

sin2 𝑥 =
𝑎0
2
+ (𝑎1 cos (𝑥) + 𝑎2 cos (2𝑥) + 𝑎3 cos (3𝑥) +⋯) + (𝑏1 sin (𝑥) + 𝑏2 sin (2𝑥) + 𝑏3 sin (3𝑥) +⋯)

(A)

Shows that 𝑎0
2 = 1

2 and 𝑎2 =
−1
2 and all other terms are zero. Because the Fourier series is

unique for a function, then (1) is the Fourier series for sin2 𝑥.

Similarly, Using the known trig identity

cos2 𝑥 = 1
2
+
1
2

cos (2𝑥) (2)

And comparing the the above to the Fourier series expansion (A), shows that 𝑎0
2 = 1

2 and

𝑎2 =
1
2 and all other terms are zero. Therefore (2) is the Fourier series expansion for cos2 𝑥.
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6 Problem 3.2.6

Graph the 2𝜋 periodic extension of each of the following functions (h) 𝑓 (𝑥) = 1
𝑥 . Which

extension are continuous? Di�erentiable?

solution

6.1 Part (h)

The original function 𝑓 (𝑥) = 1
𝑥 is always taken from −𝜋 ≤ 𝑥 ≤ 𝜋 (before extending it

periodically). At 𝑥 = 0 the function is not defined.

Out[ ]=

-π -π

2

π

2
π

x

-4

-2

2

4
1/x

Figure 9: Plot of 𝑓(𝑥) = 1
𝑥

Periodically extending it, it becomes (showing one extra period to the left and right) then
following

Out[ ]=
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2

4
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Figure 10: Plot of periodic extension of 𝑓(𝑥) = 1
𝑥
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In[ ]:= f[x_] := Piecewise[{

{1/(x + 2 Pi), x < -Pi},

{1/ x, -Pi < x < Pi},

{1/(x - 2 Pi), Pi < x}

}];

Plot[f[x], {x, -3 Pi, 3 Pi}, Ticks → {Range[-3 Pi, 3 Pi, Pi], Automatic},

AxesLabel → {"x", "1/x extended"},

GridLines → {Range[-3 Pi, 3 Pi, Pi], Automatic},

GridLinesStyle → LightGray, PlotStyle → Red, AspectRatio → Automatic]

Figure 11: Code for the above plot

Looking at the above plot shows the extension is not continuous and also not Di�erentiable
due to jump discontinuities.
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7 Problem 3.2.9

Suppose that 𝑓 (𝑥) is periodic with period 𝑇 (using 𝑇 instead of 𝑙 as in book as it is more

clear). Prove that for any 𝑎 (a) ∫
𝑎+𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 = ∫

𝑇

0
𝑓 (𝑥) 𝑑𝑥. (b) ∫

𝑇

0
𝑓 (𝑥 + 𝑎) 𝑑𝑥 = ∫

𝑇

0
𝑓 (𝑥) 𝑑𝑥

solution

7.1 Part (a)

�
𝑎+𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥 =

∫𝑎+𝑇
𝑎

𝑓(𝑥)𝑑𝑥

�����������������������������������������
��

𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 +�

𝑎+𝑇

𝑇
𝑓 (𝑥) 𝑑𝑥� −

∫𝑇
0

𝑓(𝑥)𝑑𝑥

�������������������������������������
��

𝑎

0
𝑓 (𝑥) 𝑑𝑥 +�

𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥�

Simplifying the RHS above gives

�
𝑎+𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥 = �

𝑎+𝑇

𝑇
𝑓 (𝑥) 𝑑𝑥 −�

𝑎

0
𝑓 (𝑥) 𝑑𝑥 (1)

But

�
𝑎+𝑇

𝑇
𝑓 (𝑥) 𝑑𝑥 = �

𝑎

0
𝑓 (𝑥 + 𝑇) 𝑑𝑥 (2)

To show how Eq(2) was derived: Let 𝑢 = 𝑥 − 𝑇. Then 𝑑𝑢 = 𝑑𝑥. When 𝑥 = 𝑇 then 𝑢 = 0. When

𝑥 = 𝑎 + 𝑇 then 𝑢 = 𝑎. Hence ∫
𝑎+𝑇

𝑇
𝑓 (𝑥) 𝑑𝑥 = ∫

𝑎

0
𝑓 (𝑢 + 𝑇) 𝑑𝑢. But 𝑢 is arbitrary integral variable.

Renaming it back to 𝑥 gives that ∫
𝑎+𝑇

𝑇
𝑓 (𝑥) 𝑑𝑥 = ∫

𝑎

0
𝑓 (𝑥 + 𝑇) 𝑑𝑥.

Now, substituting (2) back into RHS of (1) gives

�
𝑎+𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥 = �

𝑎

0
𝑓 (𝑥 + 𝑇) 𝑑𝑥 −�

𝑎

0
𝑓 (𝑥) 𝑑𝑥

= �
𝑎

0
𝑓 (𝑥 + 𝑇) − 𝑓 (𝑥) 𝑑𝑥

But since 𝑓 (𝑥) is periodic, then 𝑓 (𝑥 + 𝑇) = 𝑓 (𝑥). Therefore the RHS above is zero.

�
𝑎+𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥 = 0

�
𝑎+𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 = �

𝑇

0
𝑓 (𝑥) 𝑑𝑥

Which is what the problem is asking to show.

7.2 Part (b)

Starting by rewriting ∫
𝑇

0
𝑓 (𝑥 + 𝑎) 𝑑𝑥 as the following. Let 𝑢 = 𝑥 + 𝑎. Hence 𝑑𝑢 = 𝑑𝑥. When

𝑥 = 0, 𝑢 = 𝑎 and when 𝑥 = 𝑇, 𝑢 = 𝑎 + 𝑇. The integral becomes ∫
𝑎+𝑇

𝑎
𝑓 (𝑢) 𝑑𝑢. But now 𝑢 is
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arbitrary integration variable. Renaming is back to 𝑥 then we obtain that

�
𝑇

0
𝑓 (𝑥 + 𝑎) 𝑑𝑥 = �

𝑎+𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 (1)

Now, to show that main result, considering

�
𝑇

0
𝑓 (𝑥 + 𝑎) 𝑑𝑥 −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥 = �

𝑎+𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥

Where in the above, (1) was used to obtain RHS. The above can now be written as

�
𝑇

0
𝑓 (𝑥 + 𝑎) 𝑑𝑥 −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥 =

∫𝑎+𝑇
𝑎

𝑓(𝑥)𝑑𝑥

�����������������������������������������
��

𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 +�

𝑇+𝑎

𝑇
𝑓 (𝑥) 𝑑𝑥� −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥

But ∫
𝑇+𝑎

𝑇
𝑓 (𝑥) 𝑑𝑥 = ∫

𝑎

0
𝑓 (𝑥) 𝑑𝑥 since 𝑓 (𝑥) is periodic with period 𝑇. The above now becomes

�
𝑇

0
𝑓 (𝑥 + 𝑎) 𝑑𝑥 −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥 = ��

𝑇

𝑎
𝑓 (𝑥) 𝑑𝑥 +�

𝑎

0
𝑓 (𝑥) 𝑑𝑥� −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥

= �
𝑇

0
𝑓 (𝑥) 𝑑𝑥 −�

𝑇

0
𝑓 (𝑥) 𝑑𝑥

= 0

Therefore ∫
𝑇

0
𝑓 (𝑥 + 𝑎) 𝑑𝑥 = ∫

𝑇

0
𝑓 (𝑥) 𝑑𝑥 which is what the problem is asking to show.
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8 Problem 3.2.25

(a) Sketch the 2𝜋 periodic half-wave 𝑓 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩

sin 𝑥 0 < 𝑥 ≤ 𝜋
0 −𝜋 ≤ 𝑥 < 0

. (b) Find its Fourier series.

(c) Graph the first five Fourier sums and compare the function. (d) Discuss convergence of
the Fourier series.

solution

8.1 Part (a)

Out[ ]=

-π -π

2

π

2
π

x

0.2

0.4

0.6

0.8

1.0

f(x)

Figure 12: Plot of 𝑓(𝑥)

In[ ]:= f[x_] := Piecewise[{{Sin[x], 0 < x ≤ Pi}, {0, -Pi ≤ x < 0}}];

Plot[f[x], {x, -Pi, Pi}, Ticks → {Range[-Pi, Pi, Pi/ 2], Automatic},

AxesLabel → {"x", "f(x)"},

GridLines → {Range[-Pi, Pi, Pi/ 2], Automatic},

GridLinesStyle → LightGray, PlotStyle → Red]

Figure 13: Code for the above plot

8.2 Part (b)

The Fourier series is given by

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝜋
𝑇
𝑛𝑥� + 𝑎𝑛 sin �

2𝜋
𝑇
𝑛𝑥�
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Where 𝑇 is the period of the function to be approximated. Taking this period to be 2𝜋, the
above simplifies to

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) + 𝑏𝑛 sin (𝑛𝑥)

Hence

𝑎0 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) 𝑑𝑥

=
1
𝜋 �

𝜋

0
sin (𝑥) 𝑑𝑥

=
1
𝜋
[− cos (𝑥)]𝜋0

=
−1
𝜋
[cos (𝑥)]𝜋0

=
−1
𝜋
[cos (𝜋) − 1]

=
−1
𝜋
[−1 − 1]

=
2
𝜋

And

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) cos (𝑛𝑥) 𝑑𝑥

=
1
𝜋 �

𝜋

0
sin (𝑥) cos (𝑛𝑥) 𝑑𝑥

For 𝑛 = 1

𝑎𝑛 =
1
𝜋 �

𝜋

0
sin (𝑥) cos (𝑥) 𝑑𝑥

= 0

And for 𝑛 > 1

𝑎𝑛 =
1
𝜋 �

𝜋

0
sin (𝑥) cos (𝑛𝑥) 𝑑𝑥

Using sin𝐴 cos𝐵 = 1
2
(sin (𝐴 − 𝐵) + sin (𝐴 + 𝑏)), then sin (𝑥) cos (𝑛𝑥) = 1

2
(sin (𝑥 − 𝑛𝑥) + sin (𝑥 + 𝑛𝑥)).

The above becomes

𝑎𝑛 =
1
2𝜋 �

𝜋

0
sin (𝑥 − 𝑛𝑥) + sin (𝑥 + 𝑛𝑥) 𝑑𝑥

=
1
2𝜋 ��

𝜋

0
sin (𝑥 − 𝑛𝑥) 𝑑𝑥 +�

𝜋

0
sin (𝑥 + 𝑛𝑥) 𝑑𝑥�

=
1
2𝜋 �

−
1

1 − 𝑛
[cos (𝑥 − 𝑛𝑥)]𝜋0 −

1
1 + 𝑛

[cos (𝑥 + 𝑛𝑥)]𝜋0 �

=
−1
2𝜋 �

1
1 − 𝑛

[cos (𝜋 − 𝑛𝜋) − 1] + 1
1 + 𝑛

[cos (𝜋 − 𝑛𝜋) − 1]�
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But cos (𝜋 − 𝑛𝜋) = − cos (𝑛𝜋). The above becomes

𝑎𝑛 =
−1
2𝜋 �

1
1 − 𝑛

[− cos (𝑛𝜋) − 1] + 1
1 + 𝑛

[− cos (𝑛𝜋) − 1]�

=
1
2𝜋 �

cos (𝑛𝜋) + 1
1 − 𝑛

+
cos (𝑛𝜋) + 1

1 + 𝑛 �

=
1
2𝜋 �

(1 + 𝑛) (cos (𝑛𝜋) + 1) + (1 − 𝑛) (cos (𝑛𝜋) + 1)
(1 − 𝑛) (1 + 𝑛) �

=
1
2𝜋

⎛
⎜⎜⎜⎜⎝
(1 + 𝑛) (cos (𝑛𝜋) + 1) + (1 − 𝑛) (cos (𝑛𝜋) + 1)

�1 − 𝑛2�

⎞
⎟⎟⎟⎟⎠

=
1

2𝜋 �1 − 𝑛2�
((1 + 𝑛) (cos (𝑛𝜋) + 1) + (1 − 𝑛) (cos (𝑛𝜋) + 1))

=
1

2𝜋 �1 − 𝑛2�
(2 cos (𝜋𝑛) + 2)

=
1

𝜋 �1 − 𝑛2�
(cos (𝜋𝑛) + 1)

=
1 + (−1)𝑛

𝜋 �1 − 𝑛2�

For odd 𝑛 = 3, 5,⋯ then 𝑎𝑛 = 0. For even 𝑛 the above can be written as

𝑎𝑛 =
2

𝜋 �1 − 𝑛2�
𝑛 = 2, 4, 6,⋯

Now 𝑏𝑛 is found

𝑏𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑓 (𝑥) sin (𝑛𝑥) 𝑑𝑥

=
1
𝜋 �

𝜋

0
sin (𝑥) sin (𝑛𝑥) 𝑑𝑥

Consider case 𝑛 = 1 first. The above gives

𝑏1 =
1
𝜋 �

𝜋

0
sin2 (𝑥) 𝑑𝑥

=
1
𝜋 �

𝜋

0

1
2
−
1
2

cos (2𝑥) 𝑑𝑥

=
1
𝜋 ��

𝜋

0

1
2
𝑑𝑥 −

1
2 �

𝜋

0
cos (2𝑥) 𝑑𝑥�

=
1
𝜋

⎛
⎜⎜⎜⎜⎝
1
2
𝜋 −

1
2 �

sin (2𝑥)
2 �

𝜋

0

⎞
⎟⎟⎟⎟⎠

=
1
2
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For 𝑛 > 1

𝑏𝑛 =
1
𝜋 �

𝜋

0
sin 𝑥 sin (𝑛𝑥) 𝑑𝑥

=
1
𝜋

sin (𝑛𝜋)
𝑛2 − 1

= 0

Therefore the Fourier series is

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) + 𝑏𝑛 sin (𝑛𝑥)

=
1
𝜋
+
1
2

sin (𝑥) + 2
𝜋

∞
�

𝑛=2,4,6,⋯

1
1 − 𝑛2

cos (𝑛𝑥)

=
1
𝜋
+
1
2

sin (𝑥) + 2
𝜋

∞
�
𝑛=1

1
1 − (2𝑛)2

cos (2𝑛𝑥)

8.3 Part (c)

Out[ ]=

-π -π

2

π

2
π

x

-0.2

0.2

0.4

0.6

0.8

1.0

Fourier series approx using 0 terms

-π -π
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π

2
π

x
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0.6

0.8

1.0

Fourier series approx using 1 terms

-π -π

2

π

2
π

x

0.2

0.4

0.6

0.8

1.0

Fourier series approx using 2 terms
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π

x

0.2

0.4

0.6

0.8

1.0

Fourier series approx using 3 terms

-π -π

2

π
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π

x
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0.8

1.0

Fourier series approx using 4 terms
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0.8

1.0

Fourier series approx using 5 terms

Figure 14: Plot of Fourier series approximation and 𝑓(𝑥)
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In[ ]:= fs[x_, max_] :=
1

π
+
1

2
Sin[x] +

2

π
Sum

1

1 - (2 n)2
Cos[2 n x], {n, 1, max};

f[x_] := Piecewise[{{Sin[x], 0 < x ≤ Pi}, {0, -Pi ≤ x < 0}}];

makePlot[n_] := Plot[{f[x], fs[x, n]}, {x, -Pi, Pi},

PlotStyle → { Blue, Red}, AxesLabel → {"x", None},

PlotLabel → Row[{"Fourier series approx using ", n, " terms"}],

ImageSize → 300,

Ticks → {Range[-Pi, Pi, Pi/ 2], Automatic}

];

Grid[Partition[Table[makePlot[n], {n, 0, 5}], 2],

Frame → All]

Figure 15: Code for the above plot

8.4 Part (d)

The function 𝑓 (𝑥) is piecewise 𝐶1 continuous over −𝜋 ≤ 𝑥 ≤ 𝜋. Therefore the 2𝜋 periodic
extension is also piecewise 𝐶1 continuous over all 𝑥. There are no jump discontinues (only
corner points). The Fourier series converges to 𝑓 (𝑥) at each 𝑥 ∈ ℜ. (If there was a jump
discontinuity at some 𝑥, then the Fourier series will converge to the average of 𝑓 (𝑥) at that
𝑥, but this is not the case here).
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9 Problem 3.2.27

(a) Find the Fourier series of 𝑓 (𝑥) = 𝑒𝑥. (b) For which values of 𝑥 does the Fourier series
converges? Is the convergence uniform? (c) Graph the function it converges to.

solution

9.1 Part (a)

For generality, the Fourier series for 𝑒𝑎𝑥 is found, then at the end 𝑎 is set to be one. It is
assumed the period is 2𝜋.

𝑒𝑎𝑥 ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝜋
𝑇
𝑛𝑥� + 𝑏𝑛 sin �

2𝜋
𝑇
𝑛𝑥�

But 𝑇 = 2𝜋 and the above becomes

𝑒𝑎𝑥 ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) + 𝑏𝑛 sin (𝑛𝑥)

Where

𝑎0 =
1
𝑇
2

�
𝑇
2

−𝑇
2

𝑓 (𝑥) 𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
𝑒𝑎𝑥𝑑𝑥

=
1
𝜋 �

𝑒𝑎𝑥

𝑎 �
𝜋

−𝜋

=
1
𝜋𝑎

(𝑒𝑎𝜋 − 𝑒−𝑎𝜋)

But 𝑒𝑎𝜋−𝑒−𝑎𝜋

2 = sinh (𝑎𝜋) hence the above simplifies to

𝑎0 =
2
𝜋𝑎

sinh (𝑎𝜋)

And for 𝑛 > 0

𝑎𝑛 =
1
𝑇
2

�
𝑇
2

−𝑇
2

𝑓 (𝑥) cos �
2𝜋
𝑇
𝑛𝑥� 𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥 (1)
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Let 𝐼 = ∫
𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥. Using integration by parts, ∫𝑢𝑑𝑣 = 𝑢𝑣−∫𝑣𝑑𝑢. Let 𝑢 = cos 𝑛𝑥, 𝑑𝑣 = 𝑒𝑎𝑥

then 𝑣 = 𝑒𝑎𝑥

𝑎 , 𝑑𝑢 = −𝑛 sin (𝑛𝑥). Hence

𝐼 = 𝑢𝑣 −�𝑣𝑑𝑢

= �cos (𝑛𝑥) 𝑒
𝑎𝑥

𝑎 �
𝜋

−𝜋
+
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

= �cos (𝑛𝜋) 𝑒
𝑎𝜋

𝑎
− cos (𝑛𝜋) 𝑒

−𝑎𝜋

𝑎 � +
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

= (−1)𝑛 �
𝑒𝑎𝜋 − 𝑒−𝑎𝜋

𝑎 � +
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

=
2 (−1)𝑛

𝑎 �
𝑒𝑎𝜋 − 𝑒−𝑎𝜋

2 � +
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

=
2 (−1)𝑛

𝑎
sinh (𝑎𝜋) + 𝑛

𝑎 �
𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

Applying integration by parts again on the integral above. Let 𝑢 = sin 𝑛𝑥, 𝑑𝑣 = 𝑒𝑎𝑥 then
𝑣 = 𝑒𝑎𝑥

𝑎 , 𝑑𝑢 = 𝑛 cos (𝑛𝑥) and the above becomes

𝐼 =
2 (−1)𝑛

𝑎
sinh (𝑎𝜋) + 𝑛

𝑎

⎛
⎜⎜⎜⎜⎝�sin 𝑛𝑥

𝑒𝑎𝑥

𝑎 �
𝜋

−𝜋
−
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎠

=
2 (−1)𝑛

𝑎
sinh (𝑎𝜋) + 𝑛

𝑎

⎛
⎜⎜⎜⎜⎜⎝
1
𝑎

0

���������������������������������������(sin (𝑛𝜋) 𝑒𝑎𝜋 + sin (𝑛𝜋) 𝑒−𝑎𝜋) − 𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎠

=
2 (−1)𝑛

𝑎
sinh (𝑎𝜋) − 𝑛

2

𝑎2 �
𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

But ∫
𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥 = 𝐼, the original integral we are solving for. Hence solving for 𝐼 from

the above gives gives

𝐼 =
2 (−1)𝑛

𝑎
sinh (𝑎𝜋) − 𝑛

2

𝑎2
𝐼

𝐼 +
𝑛2

𝑎2
𝐼 =

2 (−1)𝑛

𝑎
sinh (𝑎𝜋)

𝐼 �1 +
𝑛2

𝑎2 �
=
2 (−1)𝑛

𝑎
sinh (𝑎𝜋)

𝐼 =
2(−1)𝑛

𝑎 sinh (𝑎𝜋)

1 + 𝑛2

𝑎2

=
2𝑎 (−1)𝑛 sinh (𝑎𝜋)

𝑎2 + 𝑛2
(2)
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Using (2) in (1) gives

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

=
𝑎
𝜋
2 (−1)𝑛 sinh (𝑎𝜋)

𝑎2 + 𝑛2
(3)

Now we will do the same to find 𝑏𝑛

𝑏𝑛 =
1
𝑇
2

�
𝑇
2

−𝑇
2

𝑓 (𝑥) sin �
2𝜋
𝑇
𝑛𝑥� 𝑑𝑥

=
1
𝜋 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥 (4)

Let 𝐼 = ∫
𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥. Using integration by parts, ∫𝑢𝑑𝑣 = 𝑢𝑣 −∫𝑣𝑑𝑢. Let 𝑢 = sin (𝑛𝑥) , 𝑑𝑣 =

𝑒𝑎𝑥 then 𝑣 = 𝑒𝑎𝑥

𝑎 , 𝑑𝑢 = 𝑛 cos (𝑛𝑥). Hence

𝐼 = 𝑢𝑣 −�𝑣𝑑𝑢

= �sin (𝑛𝑥)
𝑒𝑎𝑥

𝑎 �
𝜋

−𝜋
−
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

=

0

�����������������������������������������
�sin (𝑛𝜋)

𝑒𝑎𝜋

𝑎
− sin (𝑛𝜋) 𝑒

−𝑎𝜋

𝑎 � −
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

= −
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 cos (𝑛𝑥) 𝑑𝑥

Now we apply integration by parts again on the integral above. Let 𝑢 = cos 𝑛𝑥, 𝑑𝑣 = 𝑒𝑎𝑥 then
𝑣 = 𝑒𝑎𝑥

𝑎 , 𝑑𝑢 = −𝑛 sin (𝑛𝑥) and the above becomes

𝐼 = −
𝑛
𝑎

⎛
⎜⎜⎜⎜⎝�cos (𝑛𝑥) 𝑒

𝑎𝑥

𝑎 �
𝜋

−𝜋
+
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎠

= −
𝑛
𝑎 �

1
𝑎
(cos (𝑛𝜋) 𝑒𝑎𝜋 − cos (𝑛𝜋) 𝑒−𝑎𝜋) + 𝑛

𝑎 �
𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥�

= −
𝑛
𝑎 �

1
𝑎

cos (𝑛𝜋) (𝑒𝑎𝜋 − 𝑒−𝑎𝜋) + 𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥�

= −
𝑛
𝑎 �

2
𝑎

cos (𝑛𝜋) �
𝑒𝑎𝜋 − 𝑒−𝑎𝜋

2 � +
𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥�

= −
𝑛
𝑎 �

2
𝑎

cos (𝑛𝜋) sinh (𝑎𝜋) + 𝑛
𝑎 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥�

= −
2𝑛
𝑎2
(−1)𝑛 sinh (𝑎𝜋) − 𝑛

2

𝑎2 �
𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥
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But ∫
𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥 = 𝐼. Hence solving for 𝐼 gives

𝐼 = −
2𝑛
𝑎2
(−1)𝑛 sinh (𝑎𝜋) − 𝑛

2

𝑎2
𝐼

𝐼 +
𝑛2

𝑎2
𝐼 = −

2𝑛
𝑎2
(−1)𝑛 sinh (𝑎𝜋)

𝐼 �1 +
𝑛2

𝑎2 �
= −

2𝑛
𝑎2
(−1)𝑛 sinh (𝑎𝜋)

𝐼 = −
2𝑛
𝑎2
(−1)𝑛 sinh (𝑎𝜋)

1 + 𝑛2

𝑎2

𝐼 = −
2𝑛 (−1)𝑛

𝑎2 + 𝑛2
sinh (𝑎𝜋) (5)

Using (5) in (4) gives

𝑏𝑛 =
1
𝜋 �

𝜋

−𝜋
𝑒𝑎𝑥 sin (𝑛𝑥) 𝑑𝑥

= −
1
𝜋
2𝑛 (−1)𝑛

𝑎2 + 𝑛2
sinh (𝑎𝜋)

Now that we found 𝑎0, 𝑎𝑛, 𝑏𝑛 then the Fourier series is

𝑒𝑎𝑥 ∼
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝑥) + 𝑏𝑛 sin (𝑛𝑥)

∼
2
𝜋𝑎 sinh (𝑎𝜋)

2
+

∞
�
𝑛=1

𝑎
𝜋
2 (−1)𝑛 sinh (𝑎𝜋)

𝑎2 + 𝑛2
cos (𝑛𝑥) − 1

𝜋
2𝑛 (−1)𝑛

𝑎2 + 𝑛2
sinh (𝑎𝜋) sin (𝑛𝑥)

∼
sinh (𝑎𝜋)

𝜋𝑎
+
1
𝜋

sinh (𝑎𝜋)
∞
�
𝑛=1

2 (−1)𝑛

𝑎2 + 𝑛2
(𝑎 cos (𝑛𝑥) − 𝑛 sin (𝑛𝑥))

∼ sinh (𝑎𝜋) �
1
𝜋𝑎

+
1
𝜋

∞
�
𝑛=1

2 (−1)𝑛

𝑎2 + 𝑛2
(𝑎 cos (𝑛𝑥) − 𝑛 sin (𝑛𝑥))�

∼
2 sinh (𝑎𝜋)

𝜋 �
1
2𝑎
+

∞
�
𝑛=1

(−1)𝑛

𝑎2 + 𝑛2
(𝑎 cos (𝑛𝑥) − 𝑛 sin (𝑛𝑥))�

When 𝑎 = 1 the above becomes

𝑒𝑥 ∼
2 sinh (𝜋)

𝜋 �
1
2
+

∞
�
𝑛=1

(−1)𝑛

1 + 𝑛2
(cos (𝑛𝑥) − 𝑛 sin (𝑛𝑥))�

9.2 Part (b)

The 2𝜋 periodic extended function shows it piecewise 𝐶1 over all points except at the
points 𝑥 = ⋯ ,−5𝜋, −3𝜋, 𝜋, 3𝜋, 5𝜋,⋯. These are points at the ends of the original domain. At
these points, there is a jump discontinuity. Therefore the Fourier series at these points will
converge to the average of the 2𝜋 periodic extended 𝑒𝑥. Due to the jump discontinuity Gibbs
phenomena shows up at these points. This also means that the convergence is not uniform.
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9.3 Part (c)

The following is a plot showing the convergence using di�erent number of terms in the
above sum. This shows the Fourier series converges to 𝑒𝑥 at all points inside the interval,
except at the end points 𝑥 = −𝜋, 𝜋 where it converges to the average of 𝑓 (𝑥).

Out[ ]=

-π π
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25
Fourier series approx using 0 terms

-π π
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10

15

20

25
Fourier series approx using 3 terms

-π π
x

5

10

15

20

25
Fourier series approx using 6 terms

-π π
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25
Fourier series approx using 9 terms

-π π
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25
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-π π
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10

15

20

25
Fourier series approx using 15 terms

Figure 16: Plot of Fourier series approximation and 𝑓(𝑥)
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In[ ]:= padIt2[v_, f_List] := AccountingForm[v, f, NumberSigns → {"", ""},

NumberPadding → {" ", " "}, SignPadding → True];

fs[x_, max_] :=
2 Sinh[Pi]

Pi

1

2
+ Sum

(-1)n

1 + n2
(Cos[n x] - n Sin[n x]), {n, 1, max} ;

f[x_] := Exp[x];

fp[x_] := Piecewise[{{f[x + 2 Pi], x ≤ -Pi}, {f[x], -Pi < x < Pi}, {f[x - 2 Pi], x > Pi}}];

makePlot[n_] := Plot[{f[x], fs[x, n]}, {x, -Pi, Pi},

PlotStyle → { Blue, Red}, AxesLabel → {"x", None},

PlotLabel → Row[{"Fourier series approx using ", n, " terms"}],

ImageSize → 300,

Ticks → {Range[-Pi, Pi, Pi], Automatic},

PlotRange → {{-1.1 Pi, 1.1 Pi}, {-4, 25}},

GridLines → {Range[-Pi, Pi, Pi], Automatic}, GridLinesStyle → LightGray

];

Grid[Partition[Table[makePlot[n], {n, {0, 3, 6, 9, 12, 15}}], 2],

Frame → All]

Figure 17: Code for the above plot



37

10 Problem 3.2.30

Suppose 𝑎𝑘, 𝑏𝑘 are the Fourier coe�cients of the function 𝑓 (𝑥). (a) To which function does
the Fourier series

𝑎0
2
+

∞
�
𝑘=1

𝑎𝑘 cos (2𝑘𝑥) + 𝑏𝑘 sin (2𝑘𝑥)

Converge? (b) Test your answer with the Fourier series (3.37) for 𝑓 (𝑥) = 𝑥.

𝑥 ∼ 2 �sin 𝑥 −
sin 2𝑥
2

+
sin 3𝑥
3

−
sin 4𝑥
4

+⋯� (3.37)

solution

10.1 Part (a)

Let

𝑔 (𝑥) ∼
𝑎0
2
+

∞
�
𝑘=1

𝑎𝑘 cos (2𝑘𝑥) + 𝑏𝑘 sin (2𝑘𝑥)

𝑓 (𝑥) ∼
𝑎0
2
+

∞
�
𝑘=1

𝑎𝑘 cos (𝑘𝑥) + 𝑏𝑘 sin (𝑘𝑥)

Then 𝑔 (𝑥) has as its period half the period of 𝑓 (𝑥). This is because when 2𝑘𝑥 = 2𝜋
𝑇 𝑘𝑥 then

𝑇 = 𝜋 and when 𝑘𝑥 = 2𝜋
𝑇 𝑘𝑥 then 𝑇 = 2𝜋.

Therefore, if 𝑓 (𝑥) has fundamental period as −𝜋 < 𝑥 < 𝜋, then 𝑔 (𝑥) has a fundamental
period as −𝜋

2 < 𝑥 <
𝜋
2 . And since 𝑓 (𝑥) , 𝑔 (𝑥) have the same Fourier series coe�cients, then

𝑔 (𝑥) converges to 2𝑓 (𝑥) but only over −𝜋
2 < 𝑥 <

𝜋
2 .

10.2 Part (b)

Let 𝑓 (𝑥) = 𝑥 whose we are given that its Fourier series is

𝑓 (𝑥) ∼ 2 �sin 𝑥 −
sin 2𝑥
2

+
sin 3𝑥
3

−
sin 4𝑥
4

+⋯�

= 2 sin 𝑥 − sin 2𝑥 + 2
3

sin 3𝑥 − 1
2

sin 4𝑥 +⋯

The above says that 𝑎𝑘 = 0 and 𝑏𝑘 =
2(−1)𝑘+1

𝑘 . Hence

𝑓 (𝑥) ∼
∞
�
𝑘=1

2 (−1)𝑘+1

𝑘
sin (𝑘𝑥)
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Therefore 𝑔 (𝑥) will converge to

𝑔 (𝑥) ∼
𝑎0
2
+

∞
�
𝑘=1

𝑎𝑘 cos (2𝑘𝑥) + 𝑏𝑘 sin (2𝑘𝑥)

=
∞
�
𝑘=1

2 (−1)𝑘+1

𝑘
sin (2𝑘𝑥)

= 2 (+1) sin (2𝑥) + −2
2

sin (4𝑥) + 2
(+1)
3

sin (6𝑥) + −2
4

sin (8𝑥) +⋯

= 2 sin (2𝑥) − sin (4𝑥) + 2
3

sin (6𝑥) − 1
2

sin (8𝑥) +⋯

Over −𝜋
2 < 𝑥 <

𝜋
2 . To verify the above, we will now find 𝑎𝑘, 𝑏𝑘 directly for 𝑥 but using 𝑇 = 𝜋

and not 𝑇 = 2𝜋 to see if the above Fourier series is obtained.

𝑎0 =
2
𝜋 �

𝜋
2

−𝜋
2

𝑥𝑑𝑥

= 0

And

𝑎𝑘 =
2
𝜋 �

𝜋
2

−𝜋
2

𝑥 cos (2𝑘𝑥) 𝑑𝑥

Since 𝑥 is odd function and cos is even, the product is odd. Hence 𝑎𝑘 = 0.

𝑏𝑘 =
2
𝜋 �

𝜋
2

−𝜋
2

𝑥 sin (2𝑘𝑥) 𝑑𝑥

=
4
𝜋 �

𝜋
2

0
𝑥 sin (2𝑘𝑥) 𝑑𝑥

=
4
𝜋 �

−𝑘𝜋 cos (𝑘𝜋) + sin (𝑘𝜋)
4𝑘2 �

=
1
𝜋𝑘2

(−𝑘𝜋 cos (𝑘𝜋))

=
−1
𝑘

cos (𝑘𝜋)

=
−1
𝑘
(−1)𝑘

=
(−1)𝑘+1

𝑘
Therefore

𝑔 (𝑥) ∼
𝑎0
2
+

∞
�
𝑘=1

𝑎𝑘 cos (2𝑘𝑥) + 𝑏𝑘 sin (2𝑘𝑥)

=
∞
�
𝑘=1

(−1)𝑘

𝑘
sin (2𝑘𝑥)
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