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1 Population models (Section 1.5 in book)

� The most basic model is call Malthusian model given by 𝑑𝑝
𝑑𝑡 = 𝑎𝑝 (𝑡) which says that rate of

change of population is proportional to current population size. 𝑎 is constant. The solution
is 𝑝 (𝑡) = 𝑝0𝑒𝑎(𝑡−𝑡0). Where 𝑝 (𝑡) is population at time 𝑡 and 𝑝0 is initial population at time 𝑡0.
This model is OK when population is small. A better model is called logistic model given
by

𝑑𝑝
𝑑𝑡
= 𝑎𝑝 (𝑡) − 𝑏𝑝2 (𝑡)

𝑝 (𝑡0) = 𝑝0
Where 𝑏 is the competition factor. Also constant and positive. It is much smaller than 𝑎.
The solution to the above is

𝑝 (𝑡) =
𝑎𝑝0

𝑏𝑝0 + �𝑎 − 𝑏𝑝0� 𝑒−𝑎(𝑡−𝑡0)
(1)

In this model, we are normally given 𝑝0 and given (𝑡 − 𝑡0) and given what is called the limiting
value 𝑎

𝑏 which is lim𝑡→∞ 𝑝 (𝑡). Then asked to find population 𝑝 (𝑡) after sometime. This will
be (𝑡 − 𝑡0). We need to find 𝑎. Once we find 𝑎, then we find 𝑏 from the limiting value. The
trick is to find 𝑎. To do this, we first use (1) from the information given. The problem will
always say that the population doubles every so many years, or the population increases at
rate of some percentage per year and so on. Use this to find 𝑎 from (1). Now we know 𝑏.
Then use (1) again now to find the population at some future time as the problem says. See
HW1, last problem for an example.

� If a problem says substance decays exponentially, this means 𝑀(𝑡) = 𝑀0𝑒−𝐶𝑡. where 𝐶 > 0.
Need to find 𝐶 from other problem information. Typically problem gives half life to do this.
For example, see problem section 1.8, problem 3. It says:

substance 𝑥 decays exponentially, and only half of the given quantity remains after 2 years.
How long it takes for 5 lb decay to 1 lb? Solution is

𝑀 = 𝑀0𝑒−𝐶𝑡

After 2 years, 𝑀 = 𝑀0
2 , hence 𝑀0

2 = 𝑀0𝑒−2𝐶. Hence 1
2 = 𝑒−2𝐶 or ln �12� = −2𝐶, hence 𝐶 =
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−1
2 ln �12� =

1
2 ln (2). Now we know 𝐶, we can finish the solution.

𝑀 = 𝑀0𝑒
− 1
2 ln(2)𝑡

1 = 5𝑒−
1
2 ln(2)𝑡

1
5
= 𝑒−

1
2 ln(2)𝑡

ln �
1
5�
= −

1
2

ln �
1
5�
𝑡

𝑡 = −2
ln �15�

ln (2)

= 2
ln 5
ln 2

= 4.643 years

If it says it grows exponentially, then 𝑀 = 𝑀0𝑒𝐶𝑡 instead.

2 Mixing problems (Section 1.8(b) in book)

The main idea is to set an ODE using 𝑑𝑆(𝑡)
𝑑𝑡 = 𝑅𝑖𝑛 − 𝑅𝑜𝑢𝑡 where 𝑅𝑖𝑛 is rate of mass of salt

coming into the tank and 𝑅𝑜𝑢𝑡 is rate of mass of salt leaving tank. This gives an ODE to
solve for 𝑆 (𝑡) using initial conditions which is given. At end, divide by volume of tank to get
concentration at time 𝑡. See book example at page 54.

3 Example 1, page 369

Book solution for example 1 is wrong. So I typed corrected solution.

Solve 𝒙̇ =
⎛
⎜⎜⎜⎜⎝
1 4
1 1

⎞
⎟⎟⎟⎟⎠ 𝒙 +

⎛
⎜⎜⎜⎜⎝
𝑒𝑡

𝑒𝑡

⎞
⎟⎟⎟⎟⎠ with 𝒙 (0) =

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠

Solution

(𝑠𝐼 − 𝐴)𝑿 (𝑠) = 𝑭 (𝑠) + 𝒙 (0)
⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝
𝑠 0
0 𝑠

⎞
⎟⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎜⎝
1 4
1 1

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝
𝑥1 (𝑠)
𝑥2 (𝑠)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1
𝑠−1
1
𝑠−1

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑠 − 1 −4
−1 𝑠 − 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥1 (𝑠)
𝑥2 (𝑠)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1
𝑠−1 + 2
1
𝑠−1 + 1

⎞
⎟⎟⎟⎟⎠

Multiplying the second row by (𝑠 − 1) and adding the result to the first row to obtain Gaussian
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elimination. First multiplying second row by (𝑠 − 1) gives
⎛
⎜⎜⎜⎜⎝
𝑠 − 1 −4

− (𝑠 − 1) (𝑠 − 1)2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥1 (𝑠)
𝑥2 (𝑠)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1
𝑠−1 + 2

1 + (𝑠 − 1)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑠 − 1 −4

− (𝑠 − 1) (𝑠 − 1)2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥1 (𝑠)
𝑥2 (𝑠)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1
𝑠−1 + 2
𝑠

⎞
⎟⎟⎟⎟⎠

Now replacing row 2 by row 2 plus row 1 gives
⎛
⎜⎜⎜⎜⎝
𝑠 − 1 −4
0 (𝑠 − 1)2 − 4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥1 (𝑠)
𝑥2 (𝑠)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1
𝑠−1 + 2

𝑠 + � 1
𝑠−1 + 2�

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑠 − 1 −4
0 𝑠2 − 2𝑠 − 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥1 (𝑠)
𝑥2 (𝑠)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1
𝑠−1 + 2

1
𝑠−1

�𝑠2 + 𝑠 − 1�

⎞
⎟⎟⎟⎟⎠ (1)

Hence

𝑥2 (𝑠) =
1

𝑠 − 1 �
𝑠2 + 𝑠 − 1
𝑠2 − 2𝑠 − 3�

=
𝑠2 + 𝑠 − 1

(𝑠 − 1) (𝑠 − 3) (𝑠 + 1)
(2)

Partial fractions:
𝑠2 + 𝑠 − 1

(𝑠 − 1) (𝑠 − 3) (𝑠 + 1)
=

𝐴
(𝑠 − 1)

+
𝐵

(𝑠 − 3)
+

𝐶
(𝑠 + 1)

𝐴 = �
𝑠2 + 𝑠 − 1

(𝑠 − 3) (𝑠 + 1)�
𝑠=1

=
1 + 1 − 1

(1 − 3) (1 + 1)
= −

1
4

And

𝐵 = �
𝑠2 + 𝑠 − 1

(𝑠 − 1) (𝑠 + 1)�
𝑠=3

=
9 + 3 − 1

(3 − 1) (3 + 1)
=
11
8

And

𝐶 = �
𝑠2 + 𝑠 − 1

(𝑠 − 1) (𝑠 − 3)�
𝑠=−1

=
1 − 1 − 1

(−1 − 1) (−1 − 3)
= −

1
8

Hence

𝑥2 (𝑠) = −
1
4

1
(𝑠 − 1)

+
11
8

1
(𝑠 − 3)

−
1
8

1
(𝑠 + 1)

(3)

Therefore

𝑥2 (𝑡) = −
1
4
𝑒𝑡 +

11
8
𝑒3𝑡 −

1
8
𝑒−𝑡

Now we go back to (1) and use the first row to find 𝑥1 (𝑠) since we know 𝑥2 (𝑠) which is given
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in (2). This results in

(𝑠 − 1) 𝑥1 (𝑠) − 4𝑥2 (𝑠) =
1

𝑠 − 1
+ 2

(𝑠 − 1) 𝑥1 (𝑠) =
1

𝑠 − 1
+ 2 + 4𝑥2

𝑥1 (𝑠) =
1

(𝑠 − 1)2
+

2
𝑠 − 1

+
4

(𝑠 − 1)
𝑥2

=
1

(𝑠 − 1)2
+

2
𝑠 − 1

+
4

(𝑠 − 1) �
𝑠2 + 𝑠 − 1

(𝑠 − 1) (𝑠 − 3) (𝑠 + 1)�

=
1

(𝑠 − 1)2
+

2
𝑠 − 1

+
4

(𝑠 − 1) �
−
1
4

1
(𝑠 − 1)

+
11
8

1
(𝑠 − 3)

−
1
8

1
(𝑠 + 1)�

=
1

(𝑠 − 1)2
+

2
𝑠 − 1

−
1

(𝑠 − 1)2
+
44
8

1
(𝑠 − 1) (𝑠 − 3)

−
4
8

1
(𝑠 − 1) (𝑠 + 1)

=
2

𝑠 − 1
+
44
8

1
(𝑠 − 1) (𝑠 − 3)

−
4
8

1
(𝑠 − 1) (𝑠 + 1)

=
2

𝑠 − 1
+
11
2

1
(𝑠 − 1) (𝑠 − 3)

−
1
2

1
(𝑠 − 1) (𝑠 + 1)

=
2

𝑠 − 1
+
11
2 �

1
2

1
𝑠 − 3

−
1
2

1
𝑠 − 1�

−
1
2 �

1
2

1
𝑠 − 1

−
1
2

1
𝑠 + 1�

=
2

𝑠 − 1
+
11
4

1
𝑠 − 3

−
11
4

1
𝑠 − 1

−
1
4

1
𝑠 − 1

+
1
4

1
𝑠 + 1

=
−1
𝑠 − 1

+
11
4

1
𝑠 − 3

+
1
4

1
𝑠 + 1

Therefore

𝑥1 (𝑡) = −𝑒𝑡 +
11
4
𝑒3𝑡 +

1
4
𝑒−𝑡

We see that book solution is wrong. It gives 𝑥1 (𝑡) = 2𝑒3𝑡 +
1
2𝑒

𝑡 − 1
2𝑒

−𝑡.

Solving the same problem, but using the variation of parameters method:

Since 𝐴 =
⎛
⎜⎜⎜⎜⎝
1 4
1 1

⎞
⎟⎟⎟⎟⎠ then

det (𝐴 − 𝜆𝐼) = 0

det
⎛
⎜⎜⎜⎜⎝
1 − 𝜆 4
1 1 − 𝜆

⎞
⎟⎟⎟⎟⎠ = 0

(1 − 𝜆)2 − 4 = 0

Hence roots are 𝜆 = −1, 𝜆 = 3
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𝜆 = −1
⎛
⎜⎜⎜⎜⎝
1 − 𝜆 4
1 1 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 4
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first row, 2𝑣1 + 4𝑣2 = 0 or 𝑣1 = −2𝑣2. Hence 𝒗1 =
⎛
⎜⎜⎜⎜⎝
−2
1

⎞
⎟⎟⎟⎟⎠ and 𝒙

1 (𝑡) = 𝑒−𝑡
⎛
⎜⎜⎜⎜⎝
−2
1

⎞
⎟⎟⎟⎟⎠

𝜆 = 3
⎛
⎜⎜⎜⎜⎝
1 − 𝜆 4
1 1 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−2 4
1 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first row, −2𝑣1 + 4𝑣2 = 0 or 𝑣1 = 2𝑣2. Hence 𝒗1 =
⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ and 𝒙

2 (𝑡) = 𝑒3𝑡
⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠. Therefore

𝑋 (𝑡) =
⎛
⎜⎜⎜⎜⎝
−2𝑒−𝑡 2𝑒3𝑡

𝑒−𝑡 𝑒3𝑡

⎞
⎟⎟⎟⎟⎠

𝑋 (0) =
⎛
⎜⎜⎜⎜⎝
−2 2
1 1

⎞
⎟⎟⎟⎟⎠

Therefore 𝑋−1 (0) = 𝑎𝑑𝑗(𝑋(0))
det(𝑋(0)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
−2 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

𝑇

−4 = −1
4

⎛
⎜⎜⎜⎜⎝
1 −2
−1 −2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−1
4

1
2

1
4

1
2

⎞
⎟⎟⎟⎟⎠. Hence

𝑒𝐴𝑡 = 𝑋 (𝑡) 𝑋−1 (0)

=
⎛
⎜⎜⎜⎜⎝
−2𝑒−𝑡 2𝑒3𝑡

𝑒−𝑡 𝑒3𝑡

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−1
4

1
2

1
4

1
2

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

1
2𝑒

−𝑡 + 1
2𝑒

3𝑡 −𝑒−𝑡 + 𝑒3𝑡

−1
4𝑒

−𝑡 + 1
4𝑒

3𝑡 1
2𝑒

−𝑡 + 1
2𝑒

3𝑡

⎞
⎟⎟⎟⎟⎠

Using (since 𝑡0 = 0)

𝒙 (𝑡) = 𝑒𝐴𝑡𝒙 (0) + 𝑒𝐴𝑡�
𝑡

0
𝑒−𝐴𝑠𝑓 (𝑠) 𝑑𝑠
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But

𝑒−𝐴𝑠𝑓 (𝑠) =
⎛
⎜⎜⎜⎜⎝

1
2𝑒

𝑠 + 1
2𝑒

−3𝑠 −𝑒𝑠 + 𝑒−3𝑠

−1
4𝑒

𝑠 + 1
4𝑒

−3𝑠 1
2𝑒

𝑠 + 1
2𝑒

−3𝑠

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑒𝑠

𝑒𝑠

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

1
2𝑒

2𝑠 + 1
2𝑒

−2𝑠 − 𝑒2𝑠 + 𝑒−2𝑠

−1
4𝑒

2𝑠 + 1
4𝑒

−2𝑠 + 1
2𝑒

2𝑠 + 1
2𝑒

−2𝑠

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
−1
2𝑒

2𝑠 + 3
2𝑒

−2𝑠

1
4𝑒

2𝑠 + 3
4𝑒

−2𝑠

⎞
⎟⎟⎟⎟⎠

Integrating

�
𝑡

0
𝑒−𝐴𝑠𝑓 (𝑠) 𝑑𝑠 =

⎛
⎜⎜⎜⎜⎜⎝
∫𝑡

0
−1
2𝑒

2𝑠 + 3
2𝑒

−2𝑠𝑑𝑠

∫𝑡

0
1
4𝑒

2𝑠 + 3
4𝑒

−2𝑠𝑑𝑠

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝
−1
4
�𝑒2𝑠�

𝑡

0
− 3

4
�𝑒−2𝑠�

𝑡

0
1
8
�𝑒2𝑠�

𝑡

0
− 3

8
�𝑒−2𝑠�

𝑡

0

⎞
⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
−1
4
�𝑒2𝑡 − 1� − 3

4
�𝑒−2𝑡 − 1�

1
8
�𝑒2𝑡 − 1� − 3

8
�𝑒−2𝑡 − 1�

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
−1
4𝑒

2𝑡 + 1
4 −

3
4𝑒

−2𝑡 + 3
4

1
8𝑒

2𝑡 − 1
8 −

3
8𝑒

−2𝑡 + 3
8

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
−1
4𝑒

2𝑡 − 3
4𝑒

−2𝑡 + 1
1
8𝑒

2𝑡 − 3
8𝑒

−2𝑡 + 1
4

⎞
⎟⎟⎟⎟⎠

Hence

𝑒𝐴𝑡�
𝑡

0
𝑒−𝐴𝑠𝑓 (𝑠) 𝑑𝑠 =

⎛
⎜⎜⎜⎜⎝

1
2𝑒

−𝑡 + 1
2𝑒

3𝑡 −𝑒−𝑡 + 𝑒3𝑡

−1
8𝑒

−𝑡 + 1
4𝑒

3𝑡 1
2𝑒

−𝑡 + 1
2𝑒

3𝑡

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−1
4𝑒

2𝑡 − 3
4𝑒

−2𝑡 + 1
1
8𝑒

2𝑡 − 3
8𝑒

−2𝑡 + 1
4

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

1
4𝑒

−𝑡 − 𝑒𝑡 + 3
4𝑒

3𝑡

−1
8𝑒

−𝑡 − 1
4𝑒

2𝑡 + 3
8𝑒

4𝑡

⎞
⎟⎟⎟⎟⎠

And

𝑒𝐴𝑡𝒙 (0) =
⎛
⎜⎜⎜⎜⎝

1
2𝑒

−𝑡 + 1
2𝑒

3𝑡 −𝑒−𝑡 + 𝑒3𝑡

−1
8𝑒

−𝑡 + 1
4𝑒

3𝑡 1
2𝑒

−𝑡 + 1
2𝑒

3𝑡

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
2𝑒3𝑡

𝑒3𝑡

⎞
⎟⎟⎟⎟⎠
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Hence

𝒙 (𝑡) =
⎛
⎜⎜⎜⎜⎝
2𝑒3𝑡

𝑒3𝑡

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

1
4𝑒

−𝑡 − 𝑒𝑡 + 3
4𝑒

3𝑡

−1
8𝑒

−𝑡 − 1
4𝑒

2𝑡 + 3
8𝑒

4𝑡

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

1
4𝑒

−𝑡 − 𝑒𝑡 + 11
4 𝑒

3𝑡

−1
8𝑒

−𝑡 − 1
4𝑒

2𝑡 + 11
8 𝑒

4𝑡

⎞
⎟⎟⎟⎟⎠

Therefore

𝑥1 (𝑡) =
1
4
𝑒−𝑡 − 𝑒𝑡 +

11
4
𝑒3𝑡

𝑥2 (𝑡) = −
1
8
𝑒−𝑡 −

1
4
𝑒2𝑡 +

11
8
𝑒4𝑡

Which agrees with result using Laplace transform method.

4 Orthogonal projections

Given 𝐹 �𝑥, 𝑦, 𝑐� we need to find the orthogonal projections. The first step is to find the slope
of the orthogonal projection, which is given by (it is orthogonal to the given curve slope)

𝑑𝑦
𝑑𝑥

=
𝐹𝑦
𝐹𝑥

(1)

Next step, check if 𝑐 still shows up in the above (i.e. did not cancel out), then solve for 𝑐
from 𝐹 �𝑥, 𝑦, 𝑐� = 0 and replace it in (1). Now (1) will not have 𝑐 in it any more. Next, solve
(1) for 𝑦. This gives the curve for the orthogonal projection. This solution will have new 𝑐
in it (since we need to integrate to find 𝑦). See HW 2 for example problem.

5 Existence-uniqueness for 1D ODE

Given by theorem 2 for existence and uniqueness: given 𝑑𝑦
𝑑𝑥 = 𝑓 �𝑥, 𝑦�, with initial value

𝑦 (𝑥0) = 𝑦0. Let 𝑓 and 𝜕𝑓
𝜕𝑥be continuous in the rectangle 𝑅 ∶ 𝑡 ≤ 𝑡 ≤ 𝑡0 + 𝑎, �𝑦 − 𝑦0� ≤ 𝑏. Compute

𝑀 = max�𝑥,𝑦� �𝑓 �𝑥, 𝑦�� and set 𝛼 = min �𝑎, 𝑏
𝑀
� then ODE has at least one solution in interval

𝑡 ≤ 𝑡 ≤ 𝑡0 + 𝛼 and this solution is unique. (I do not know why book split this into theorem 2
and 2’).

Notice in the above, if 𝑓 or 𝜕𝑓
𝜕𝑥 not continuous in the range (the range must include the

initial point) then not unique solution exist. For example 𝑦′ = sin (2𝑡) 𝑦
1
3 with 𝑦 (0) = 0. Here

𝑓′ is not continuous at 𝑦 = 0.

How to use the above The first step is to find 𝑀. This is done by finding maximum in 𝑅.
This is normally done by inspection from looking at 𝑓 �𝑥, 𝑦�. Next, let 𝑔 �𝑦� = 𝑏

𝑀 . Find where

this one is maximum. set its value in 𝛼 = min �𝑎, 𝑏
𝑀
� and this finds 𝛼. Done. Example. Show
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𝑦 (𝑡) solution to 𝑑𝑦
𝑑𝑡 = 𝑡

2 + 𝑒−𝑦2, 𝑦 (0) = 0 exists in 0 ≤ 𝑡 ≤ 1
2 and �𝑦 (𝑡)� ≤ 1. Here it is clear 𝑀 = 5

4

and hence 𝛼 = min �12 ,
𝑏
𝑀
� but 𝑏 = 1, hence 𝛼 = min �

1
2 ,

1
5
4
� = 𝛼 = min �12 ,

4
5
� = 1

2 . Therefore

solution exist for 0 ≤ 𝑡 ≤ 0 + 𝛼 or 0 ≤ 𝑡 ≤ 1
2 .

5.1 practice problems

5.1.1 Problem 5, section 1.10

Show that the solution 𝑦 (𝑡) exists on 𝑦 (0) = 0; 0 ≤ 𝑡 ≤ 1
3

𝑦′ = 1 + 𝑦 + 𝑦2 cos 𝑡
solution

Here 𝑎 = 1
3 .

𝑀 = max �𝑓 �𝑡, 𝑦��
= 1 + 𝑏 + 𝑏2

Hence

𝛼 = min �
1
3
,
𝑏
𝑀�

= min �
1
3
,

𝑏
1 + 𝑏 + 𝑏2 �

Let 𝑔 (𝑏) = 𝑏
1+𝑏+𝑏2 then

𝑑𝑔
𝑑𝑝 =

�1+𝑏+𝑏2�−𝑏(1+2𝑏)

�1+𝑏+𝑏2�
2 . Setting this to zero and solving for 𝑏

�1 + 𝑏 + 𝑏2� − 𝑏 (1 + 2𝑏) = 0
1 + 𝑏 + 𝑏2 − 𝑏 − 2𝑏2 = 0

1 − 𝑏2 = 0

Hence 𝑏 = 1. At 𝑏 = 1, then 𝑔 (𝑏) = 1
1+1+1 =

1
3 . Therefore

𝛼 = min �
1
3
,
1
3�

=
1
3

Therefore 𝑦 (𝑡) solution exist for 0 ≤ 𝑡 ≤ 0 + 𝛼 or 0 ≤ 𝑡 ≤ 1
3 .

5.1.2 Problem 16, section 1.10

Consider 𝑦′ = 𝑡2 + 𝑦2, 𝑦 (0) = 0 and let 𝑅 be rectangle 0 ≤ 𝑡 ≤ 𝑎, −𝑏 ≤ 𝑦 ≤ 𝑏. (a) Show the

solution exist for 0 ≤ 𝑡 ≤ min �𝑎, 𝑏
𝑎2+𝑏2

� (b) Show the maximum value of 𝑏
𝑎2+𝑏2 , for 𝑎 fixed is
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1
2𝑎 . (c) Show that 𝛼 = min �𝑎, 12𝑎� is largest when 𝑎 =

1

√2

𝑦′ = 1 + 𝑦 + 𝑦2 cos 𝑡
solution

(a)

𝑀 = max �𝑓 �𝑡, 𝑦��
= 𝑎2 + 𝑏2

Hence

𝛼 = min �𝑎,
𝑏
𝑀�

= min �
1
3
,

𝑏
𝑎2 + 𝑏2 �

Hence solution exist for 0 ≤ 𝑡 ≤ min �𝑎, 𝑏
𝑎2+𝑏2

�.

(b) Let 𝑔 (𝑏) = 𝑏
𝑎2+𝑏2 then

𝑑𝑔
𝑑𝑝 =

�𝑎2+𝑏2�−𝑏(2𝑏)

�1+𝑏+𝑏2�
2 . Setting this to zero and solving for 𝑏

�𝑎2 + 𝑏2� − 𝑏 (2𝑏) = 0
𝑎2 + 𝑏2 − 2𝑏2 = 0

𝑎2 = 𝑏2

Hence 𝑏 = ±𝑎. At 𝑏 = 𝑎, then 𝑔 (𝑏) = 𝑎
𝑎2+𝑎2 =

𝑎
2𝑎2 =

1
2𝑎 .

(c)

𝛼 = min �𝑎, 𝑔max (𝑏)�

= min �𝑎,
1
2𝑎�

Solving 𝑎 = 1
2𝑎 or 𝑎

2 = 1
2 . Hence 𝑎 = 1

√2
gives largest value.

5.1.3 Problem 17, section 1.10

Prove that 𝑦 (𝑡) = −1 is only solution for 𝑦′ = 𝑡 �1 + 𝑦� , 𝑦 (0) = −1

solution

Since 𝑓 = 𝑡 �1 + 𝑦� is continuous for all 𝑡, 𝑦 and 𝑓𝑦 = 𝑡 is continuous for all 𝑦, then if we find
a solution, it will be unique solution by theorem 2’. But 𝑦 (𝑡) = −1 is a solution since we can
show easily it satisfies the ODE. Hence it is the only solution over all 𝑡 by theorem 2’
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5.1.4 Problem 19, section 1.10

Find solution of 𝑦′ = 𝑡�1 − 𝑦2, 𝑦 (0) = 1 other than 𝑦 (𝑡) = 1. Does this violate theorem 2’?

solution

𝑑𝑦
𝑑𝑡
= 𝑡�1 − 𝑦

2

�
𝑑𝑦

�1 − 𝑦2
= �𝑡𝑑𝑡

arcsin �𝑦� = 𝑡2

2
+ 𝐶

At 𝑡 = 0

arcsin (1) = 𝐶

Hence solution is arcsin �𝑦� = 𝑡2

2 + arcsin (1) or

𝑦 (𝑡) = sin �
𝑡2

2
+ arcsin (1)�

= sin �
𝑡2

2
+
𝜋
2 �

= sin �
1
2
�𝑡2 + 𝜋��

This does not violate theorem 2’ because 𝑓 �𝑡, 𝑦� = 𝑡�1 − 𝑦2, hence 𝑓𝑦 =
−𝑡𝑦

�1−𝑦2
which is not

continuous at 𝑦 = ±1. But 𝑦 = −1 is the initial conditions. Hence theorem 2’ do not apply.
Theorem 2’ applies in the region where both 𝑓, 𝑓𝑦 are continuous.
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6 Stability of system

Algorithm 1 Determining stability of system 𝒙̇ = 𝐴𝒙 + 𝒈(𝒙)
1: if system is linear, i.e. 𝒙̇ = 𝐴𝒙 then
2: determine eigenvalues 𝜆𝑖 of 𝐴 by solving |𝐴 − 𝜆𝐼| = 0
3: if all eigenvalues have real part smaller than zero then
4: return stable
5: else
6: if at least one eigenvalue have positive real part then
7: return not stable
8: else ▷ we get here if at least one 𝜆 has zero real part
9: for all 𝜆𝑖 with zero real part do
10: 𝑀 = multiplicity of 𝜆𝑖
11: 𝑁 = number of linearly independent eigenvectors that 𝜆𝑖 can generate
12: if 𝑁 < 𝑀 then
13: return not stable
14: end if
15: end for
16: return stable
17: end if
18: end if
19: else ▷ system not linear
20: will only consider case when origin is equilibrium point
21: determine the Jacobian matrix 𝐽
22: evaluate 𝐽 at origin 𝒙 = 0
23: determine eigenvalues 𝜆𝑖 of 𝐽 by solving |𝐽 − 𝜆𝐼| = 0
24: if all eigenvalues have real part smaller than zero then
25: return stable
26: else
27: if at least one eigenvalue have positive real part then
28: return not stable
29: else ▷ we get here if at least one 𝜆 has zero real part
30: return unable to decide
31: end if
32: end if
33: end if
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7 Laplace

If 𝑌 (𝑠) has form 𝑠
𝑠2+𝑎𝑠+𝑏 where roots of quadratic are complex, then complete the square.

Write 𝑠2 + 𝑎𝑠 + 𝑏 = (𝑠 + 𝐴)2 + 𝐵 and find 𝐴,𝐵. Then
𝑠

𝑠2 + 𝑎𝑠 + 𝑏
=

𝑠
(𝑠 + 𝐴)2 + 𝐵

=
𝑠 + 𝐴 − 𝐴
(𝑠 + 𝐴)2 + 𝐵

=
𝑠 + 𝐴

(𝑠 + 𝐴)2 + 𝐵
− 𝐴

1
(𝑠 + 𝐴)2 + 𝐵

=
̃𝑠

̃𝑠2 + 𝐵
− 𝐴

1
̃𝑠2 + 𝐵

=
̃𝑠

̃𝑠2 + 𝐵
−
𝐴

√𝐵
√𝐵
̃𝑠2 + 𝐵

And now use tables. Due to shifting, multiply result by 𝑒−𝐵𝑡. So inverse Laplace of the above

is 𝑒−𝐵𝑡 �cos√𝐵𝑡 − 𝐴

√𝐵
sin√𝐵𝑡�
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