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Chapter 1

Introduction

1.1 Links

1. class web page (needs login) https://canvas.umn.edu/courses/135946|

1.2 Text book

COpyTHIEH MatEnH

e ————— | a—
Martin Braun

Differential
Equations and
Their Applications

Fourth Edition

‘,&;“ Springer


https://canvas.umn.edu/courses/135946

1.3. syllabus CHAPTER 1. INTRODUCTION

1.3 syllabus

Course Syllabus Jump to Today

MATH 4512 - DIFFERENTIAL EQUATIONS WITH APPLICATIONS (Fall 2019)
3 credits

Schedule: MWF 10:10-11:00am, Vincent Hall &

Prerequisites: 2243 or 2373 or 2573

Instructor: Dr. Helena Zarin

office: 331 Vincent Hall

email: hzarin@umn.edu

office hours: MW 11:00am-12:00pm, Tu 1:00-2:00pm

Objective:

I this course we study selected topics from the theory of differential equations with
emphasis on applications to real-world problems.

Textbook:

Martin Braun, Differential Equations and their Applications, Springer (4th edition), 1993,

Grading:

s A40% Homework

{dueon Sep 13, 5ep 23, Oct 11, Oct 21, Nov 8, Nov 15, Dec 2, Dec 9);
s 30% Midterm {on Sep 27, Oct 25, Nov 20, during class hours):
« 30% Final (on Dec 18, 8:00-10:00am. Vincent Hall 4).

Homework and exams:

We will have eight homewaork problems and each will be assigned at least one wesk before 3
due date. You are responsible for writing up neatly and legibly solutions to the problems
from the homework assignment. After the homework grading. the solutions will be made
available on Canvas. The homework will count as 40% of your final grade.

We will have three midterm exams within class hours and one final exam. The exams are
closed book and yvou are not allowed to use any laptops, tablets, cell phones or calculators.
The midterm exams will count as 30% of vour final grade. The final exam will count as 30% of
the final grade.
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2.1. HW table lookup

CHAPTER 2. HWS

2.1 HW table lookup

Table 2.1: HW table

grade

HW subject

1 93/100

Section 1.2,1.4,1.5. Solve separable ODE. Solve ODE by u = % substi-
tution. population model problem. Asking what the population will be
after some time

2 98/100

section 1.8,1.10,1.13. Tank mixing. Finding Orthogonal projection. Find
where solution exist. Show that some given solution for initial value
ODE is unique. Euler numerical solution problem.

3 100/100

section 2.1,2.2,2.4,2.5. Show that 2 functions are linearly independent.
Finding Wronskian. Solving second order ODE with constant coeffi-
cients. Using Variation of parameters to find particular solution. Using
Guessing (undetermined coefficients) method to find particular solution
(RHS is 1 + 2 + e72),

4 100/100

section 2.6,2.9,2.10. Vibration problem. Using Laplace method to solve
second order initial value problem. Finding inverse Laplace of expres-
sion.

5 100/100

section 3.1-3.5. Converting pair of first order ODE’s to system. Deter-
mine if set of vectors form vector space. (check if closed under addition
or scalar multiplication). Find basis in 3D given 2 basis (i.e. need to find
third base vector). Given 3 solutions, determine if they are linearly inde-
pendent. (solve c;x' = 0 for ¢; and show all ¢ are zero. Find determinant
of 4 by 4 matrix. Finding inverse of Matrix.

6 100/100

section 3.8-3.9,3.10. Solving system x’ = Ax using the eigenvalue/eigen-
vector method, eigenvalues all different and real. Same as above, but
2 of eigenvalues are complex. When one eigenvalue is complex, just
find the eigenvector for it, and find the real and imaginary parts of
x(t) = eMo(t) which will give the two solutions associated with both com-
plex eigenvalues. i.e. only need to find one eigenvector with there are
two complex eigenvalues (since they are conjugates). Same as above,
but one eigenvalue of multiplicity 3.

7 94/100

section 4.1,4.2,4.3. Find all equilibrium points. Determine the stability
of all solutions to system (find the eigenvalues). Given non-linear system,
determine if origin is equilibrium point and check if stable or not (Use
the Jacobian). If non-linear system, and real part is zero, then unable to
decide.

8 99/100

dy _ 8y
dx  fery)”

section 4.4,4.7. Finding orbit equation for 2 by 2 system using

Drawing phase diagrams.
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22 HW1

Local contents

[2.2.1 Problem 8, section 1.2] . . . . . . . . . ... ... 5
[2.2.2 Problem 17, section 1.2] . . . . . . . . . . . . .. ... 6
[2.2.3  Problem 10, section 1.4| . . . . . . . . .. . . ... ... 8
[2.2.4 Problem 18, section 1.4| . . . . . . . . . . . . ... e 9
[2.2.5 Problem 4, section 1.5 . . . . . . . ... ... 10
[2.2.6  Problem 6(a), section 1.5 . . . . . . ... ... ... ... . ... .. 10
2277 Keysolutionfor HW I|. . . . ... ... ... ... ... ... .. .. . ... 13

2.2.1 Problem 8, section 1.2
Solve% +V1+£2y=0,y(0) =5

Solution
This is separable first order ODE. Therefore
fdy—y:—f\/1+t2dt (1)
The LHS becomes
dy
—=1In (2)
5 =l

For the RHS of (1), the integral f V1 + t2dt can be evaluated as follows. Let t = sinh (0).
Hence & = cosh (0). Therefore

do
f VIt 2dt = f /1 +sinh? (6) cosh (6) d6
:fcosh2 (6)do

- f %(1+cosh(26))d9

1
=3 (fd@ + fcosh (26)516)
_ 1 (9 N sinh (26))
2 2
1 sinh (20)
20—
Since sinh (20) = 2sinh 6 cosh 0, the above becomes

1 inh 6 cosh 6
fVl-i—tzdt:E@-i'w

Since cosh? (6) - sinh? (6) =1 then cosh? 0 =1 + sinh? (6) and the above becomes

1 . . .2
f VIt = (e + sinh 641 + sinh (9))

5



22. HW 1 CHAPTER 2. HWS

But ¢ = sinh (6) and 6 = arcsinh (t). Therefore the above becomes

f V1 + 2dt = %(arcsinh ) + t\/1+—t2) 3)
Using (2,3) in (1) gives

In |y| = —% (arcsinh 1)+ t\/l-i-—tz) +C (4)

Where C is arbitrary constant of integration. Writing arcsinh (f) using known identity as

In |t + V1 + t2|. And since V1 + 2 is always larger than ¢, then the absolute sign is not needed.
Eq. (4) becomes

Iny| = —% (ln(t+ Vi +t2) +1V1 +t2) +C
|]/| _ e—%(ln(ﬂm)ﬁm)ec

y= C e—%(ln(ﬂm)ﬂm)
= ~1

1 N
=C1e_zln(t+ 1+t )etm

Therefore the general solution is

et\/1+t2
yt)=Ci———

(1+vi+ )

Now initial conditions are used to determine C;. From y(0) = /5 then the above gives
‘/5 = C1
Therefore the particular solution is

y(t) = \/gﬂ

(t+\/1+—t2)

NI

2.2.2 Problem 17, section 1.2
Find a continuous solution of the IVP y + ' = ¢ (t),y(0) = 0 where

0 = 2 0<t<1
g = 0 t>1

Solution

This is linear first order ODE. The integrating factor is y = ef dt — ot Hence the ODE
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22. HW 1

becomes

(vu) = wg ®

(yet) =elg(t)

SRR

Integrating gives
yel = fetg(t) dt+C

Breaking the problem into two phases, and solving the above for 0 <t <1 gives

yel = fZetdt+ C
=2 +C
y(t)=2+Ce™

Applying initial conditions gives 0 =2 + C, or C = -2 and the above becomes
y({)=2-2¢" 0<t<1

The above solution is valid for 0 <t < 1.

To solve for t > 1, initial conditions are first found for ¢ = 1. At t =1 the above gives

2
]/(1)22—E

1)

(2)

Hence for t > 1, initial conditions are y (1) =2 - % Now the second phase is solved. From (1)

yel = fetg(t)dt+C

But now g(f) = 0. The above simplifies to

yel =C

y=_Ce!
Butatt=1y=2- % Therefore

2

2-==_Ce!
e
C=2-2
=2(k-1)
Substituting the above C into (3) gives
y=2(-1)e" t>1

Using (2,4) the final solution is therefore

2-2¢t 0<t<l1
y(t) = o
2(e-1)e t>1

(3)
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y(t)

Figure 2.1: Plot of the solution y(t)

2.2.3 Problem 10, section 1.4

~tsiny T
=3

dy
Solve cosy—- = —, >

Solution

This is separable first order ODE

f cosy
dy
siny 1+ i,‘2

Bu tf;ojzd _f siny dy In |Sin( )l and fﬁdt —ln |1 +t2| =

positive. Hence the above becomes
1
; —_ 2
ln|s1n(y)| = 21n(1 +t ) +C
Where C is the integration constant. Hence

|sin (y)| =e¢2
—% ln(1+t2)

ln(1+t2) +C

=e C

e

Therefore

Cle—% 1n(1+t2)
1

Vit

From initial conditions y (1) = g the above becomes
Tt 1
AT
Sm(z) N
C1 = \/E

sin (y) =

%ln (1 + tz) since 1 + #2 is

(1)
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Hence (1) becomes

y(t) = arcsin[ V2 J
V1 + t2

2.2.4 Problem 18, section 1.4

Solve & = ¥
dt t-y
Solution
Let u = % or y = ut. Hence % =u+ t‘;—t’. Therefore the ODE becomes
du t+ut
u+t— =
dt  t—ut
du t(1+u)
+i— =
dt  t(1-u)
du  (1+u)
_ = — U
dt — (1-u)
ot
ou-1
C1+u?
C1-u
This is now separable ODE. Therefore
1-udu 1
T+u2dt ¢
1-u 1
f1+u2du_f¥dt

But
1-u

1 u
1+u2du:f1+u2du_f1+u2du
1

?

= arctan (u) — 5 In |1 +u

but 1 + u? is positive. Hence

- 1
fl " Zdu = arctan (u) — 5 In (1 + uz)

And f%dt = In|t|. Hence (1) becomes

1
arctan (u) — 5 In (1 + uz) =Inljt|+C

(1)
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But %, and the above becomes

1 2
arctan (z) -=In (1 + (‘z) ) =In|t|+C
t 2 t

The above solution is implicit in y (t).

2.2.5 Problem 4, section 1.5

Suppose that a population doubles its original size in 100 years, and triples it in 200 years.
Show that this population cannot satisfy the Malthusian law of population growth.

Solution

In Malthusian law of population growth, the rate at which population changes is fixed in
the model. It is given by a below

dp
r_ ¢
= ®
Where a4 is constant. But the problem says the population is doubled in first 100 years. So
if py was initial population, then after 100 years the population now has become 2p,. There

one will expect that after another 100 years the population will double again to become 4p;.

But the problem says that the population triples in 200 years, becoming 3p, and not 4p.
This shows that the rate of growth is not constant. Hence this do not satisfy Malthusian law
of population growth.

2.2.6 Problem 6(a), section 1.5

A population grows according to the logistic law, with a limiting population of 5 x 10®
individuals. When the population is low it doubles every 40 minutes. What will the population
be after two hours if initially it was (a) 10% ?

Solution

In the logistic law, the population model is given by

dp
= v — bp?
FTER

Where p (t) is population at time ¢ and a is the growth rate (constant) and b is the competition

rate (also constant). In this model

) a
Hmp®) =7

Therefore
g:5x1w )

The problem says that a =100% (per 40 minute) or a =1 (per 40 minute). Therefore a = 4%

per minute. And p, = 108. Using the solution of this model, given in the textbook at page

10
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30 as
aPo
(t) = 3)
s bpo + (a — bpo) e~alt=t) (
1
And using t;, = 0, then the population size at t is now be calculated. From (1), b = 5;;’08 =

% x 10710 =5x 1071, Eq. (3) now becomes
w (10°)

(5x10-11) (108) + (l - (5x101) (108)) ot

p(t) =
40

- 1 1 1) -4
(5xm)+(——5x—)e 40

For t =120 (minutes) the above becomes
1
(5 X m) + (

1
(5Xm)+

=41696 x 108

—
—_
[en)
o
~—

120) =
p (120) —

B~ S

1 _1
_ — e w
5x 1000) €

>J>|)_\

—_—
—_
)
[e)

SN—"

— >
»-Pl,_;

1
_5x — )3
o OX 1000)6

Hence

p (120) = 41696 x 108

The inflection point is
1

a_ 40
20 (2)(5x10°1)
=2.5x108

The following plot was generated to compare the population p (t) between case (a) and case
(b). It shows that when starting with initial population of py = 10® which is case (a) and
when starting with py = 10° which is case (b), both populations will eventually reach the
limiting population of 5x 10%. The S curve shows up only when starting with population
below the limiting population.

11
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Po = 108

50 100 150 200

Figure 2.2: Population p(t) change depends on p,

12

- t (months)
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2.2.7 Key solution for HW 1

MATH 4512 - DIFFERENTIAL EQUATIONS WITH APPLICATIONS

HW1 - SOLUTIONS

1. (Section 1.2 - Exercise 8)

Find the solution of the given initial-value problem

d
DAVIHPy=0,  y(0)=V5.

The differential equation in this problem is of first-order and linear with a(t) =

V1+12 and b(t) = 0. The integrating factor is
t 1
w(t) = exp </ a(t)dt> = exp (5\/1 +12+ §arsinh t) .

Then

— 5 ([ woneias v uoywior) = =0

t 1
= Vb5exp (—2\/1 + 12— iarsinh t) ,

y(t)

since p(0) = 1.

(Notice that this problem can also be considered as separable DE.)

[y
P
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2. (Section 1.2 - Exercise 17)

Find a continuous solution of the initial-value problem

dy
— =g(t 0)=0
o Ty g(t),  y(0)=0,
where
2, 0<t<1,
g(t) =
0, t>1.

The differential equation is linear with a(¢) = 1. The integrating factor is
plt) = el =

and the solution is

0= ([ wtortorts + w0u0) = [ atsyas

If t € [0, 1], then

Ift > 1, then

1 t 1
y(t) =e" (/ 2-eds + / 0- csd3> =2 e’
0 1

=2 (e —1).
=2e-1)

Finally we get

21 —et), 0<t<1,
y(t) =
2e7te—1), t>1.

The function y is continuous since

. T —t _ — -1 _ — _ e ! =
tgrlr}ky(t)—tgrlr#% (e—1)=2e""(e—1)=2(1—e") =y(1).

14
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3. (Section 1.4 - Exercise 10)
Solve initial-value problem
dy —tsiny

COS:[/E— 1—|—t2 N

y(1) = g

and determine the interval of existence of its solution.

First we will find a general solution to the separable DE:

cosy dy t
siny dt 142

t
tydy = — dt
forse— [

1
In|siny| = —§ln|1 + 13+

siny| = ¢ 1+¢2 71/2, co =€
| y\ ( 1
. c
siny =
Y V142

y(t) = arcsin <\/1C-Tt2> .

The initial condition
T

c
1) =arcsin | —= | = =
s (ﬂ) 2
implies ¢/v/2 = 1, i.e. ¢ =+/2. The final solution is

< 11 2
y(t) = arcsin e

[ 2
— e [-1,1].
1+t2€[ /1]

Notice that for t > 1 or t < —1 we have that

2
0<——<1,
14+ —

and it is well defined if

because
2 t?—1
l—-—==>
14+t 241~
Since we are looking for a continuous solution that contains ty = 1, we conclude that

the interval of existence for the solution is [1, 00).

15
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4. (Section 1.4 - Exercise 18)

Find the general solution for
dy t+y

dt  t—y

Following the hint, we will use the substitution
dy dv
t) =to(t), — =o(t)+t—.
yt) =), L= o)+
Then the differential equation transforms into

dv_t—l—tv_ 14+wv

t— = =
7 T
tdv_l—i—v 1407
dt  1—w v 1—w
l—vdv 1
1+o2dt  t
From
l—v 1 v 1 ,
/mdv:/mdv—/1+U2dv:arctanv—§ln(1+v)
it follows

1-— 1
/Jdv — /fdt
1402 t
1
arctan v — 5111(1 +vY) =Inlt| +c
y 1 v’
arctanz - 5111 (1 + ﬂ) =In|t| +ec

In the last step we again applied substitution in order to get the implicit form of the

general solution.

16
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5. (Section 1.5 - Exercise 4)
Suppose that a population doubles its original size in 100 years, and triples it in 200
years. Show that this population cannot satisfy the Malthusian law of population

growth.

The Malthusian law of population growth

d
diz =ap(t),  plto) = po, a = const,

describes an exponential growth of a population. The solution to this problem is

p(t) = po e,

Suppose a population doubles its original size in 100 years. Then p(tq + 100) = 2py.
Similarly, if this population triples its size in 200 years, then we should also have

p(to + 200) = 3py. From these two conditions we get

In2

20 = p(to + 100) = pyee(o+100—t0) — pogl00a 1% — 0.00693147 . ..
In3

3po = plto + 200) = py ee(to+20t0) — 2000 2% — 0.00549306 . . .,

which shows that the Malthusain law cannot be satisfied.

17
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6. (Section 1.5 - Exercise 6(a))
A population grows according to the logistic law, with a limiting population of 5 x 108
individuals. When the population is low it doubles every 40 minutes. What will the

population be after two hours if initially it is (a) 1087

The population law

has the solution

_ apo

= bpo n (a — bpo)e_a(t—to) .

Here, the limiting population is a/b = 5 x 10®. Also, the population doubles every 40

p(t)

minutes, i.e. p(ty + 40) = 2py.

(a) Let pg = 10%. Then from p(ty + 40) = 2p, and 1080 = a/5, we have that

9. 108 — 10%a B 10%a
1080+ (@ — 108b)e~10a & 4 (a — §)e 400

10%a 5-108

% + %6—40(1 1 4+ 4e—40a”

Finally, we can find the coefficients a and b:

5
1 4740(1:7
+ 4de 5
6740a:§
8

1 8

= — In — = 0.0245207 . ..
T3

b= %10*8 —4.90415. .. x 107,

After two hours, the population will be

108a
to + 120) = =4.12903 ... x 102
Pl +120) = 3555 5 (o — 107 byo-120m

18
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23 HW 2

Local contents

2.3.1 Section 1.8, problem 8. . . . ... ... .. .. o o o 19
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2.3.3 section 1.10, problem 4] . . . ... ... ... L L L 23
[2.3.4  Section 1.10, problem 17| . . . . ... ... ... .. oo o o 24
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2.3.1 Section 1.8, problem 8

A tank contains 300 gallons of water and 100 gallons of pollutant. Fresh water is pumped
into the tank at rate 2 gal/min, and the well stirred mixture leaves at the same rate. How long

does it take for the concentration of pollutants in the tank to decrease to % of its original
value?

Solution

Let V () be the volume in gallons of the pollutant at time f. Hence
av (t)
dt
Where R;, is the rate in gallons per min that the pollutant is entering the tank and R, is
the rate in gallons per min that the pollutant is leaving the tank. In this problem
R;, =0 (1A)

Since no pollutant enters the tank. And R,,; = 2 gal/min. But each gallon that leaves contains

= Rin = Rout (1)

the ratio % of pollutant at any moment of time. This is because the volume of the tank is
fixed at 400 gallons since same volume enters as it leaves. Hence

|40, :
Rout = ZM gal/min (1B)
Using (1A,1B) in (1) gives
av() 2
a = a00” @
avi 1 B

1 t
This is a linear ODE. The integration factor is I = ¢/ 2% = ¢ . Therefore the above can
be written as

d
E(V(t)l) =0

d/
J— 200 | =
it (Ve ) 0

19
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Integrating gives the general solution as

Vem = C 1)
Using initial conditions, at t = 0, V = 100 gallons. Substituting these in the above to solve
for C gives
100 =C
Hence the solution (1) becomes
V() = 1007 (2)

To find the time t when V(t) = 10 gallons (this is L of the original volume of pollutant,

10
which is 100 gallons), then the above becomes
-1
10 = 100¢0
Solving for t, gives
-1

— = e200'0

10
! (l) _ L
"10) T 200
1
to = —200111(1—0)

Hence

ty = 460.517 minutes

This is the time it takes for the pollutant volume to decrease to % of its original value in
the tank.

2.3.2 Section 1.8, problem 14

Find the orthogonal trajectory of the curve y = csinx
Solution

Let
F(x,y,c):csinx—y 1)

Then F, = ccosx and F, = 1. Hence the slope of the orhogonal projection is given by

dy_Fy
dx  F,
B -1
_CCOSX

¥

sinx’

From (1), we need to solve for ¢ from F(x,y, c) = 0 which gives csinx -y =0 or c =

20
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Substituting this back into the above result gives

dy -1
ax (Y eosx
X (Sinx)cosx
B —sinx
B ycosx
= ——tanx

The above gives the ODE to sovle for the orthogonal trajectory curves. This is separable.

Integrating gives
fydy: —ftanxdx

But ftan xdx = —In|cos (x)|. Hence the above becomes

2
5= In (cos (x)]) + C4

y?> =21In(Jcosx|) + C
Where C = 2C;. Solving for y gives two solutions
y(x) = i\/Z In (Jcosx|) + C

For illustration, the above was plotted for C =1, 2,3,4,5 in the following (shown in red color)
against the function sin (x) (in blue color). It shows the projection curves all cross sin (x) at
90° everywhere as expected.

21
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_3L

Figure 2.3: Orthogonal projections for different C values

ShoweTable [Plot [ {Sin[x], Sqrt[2 Log[Abs[Cos[x]]] +c], -Sqrt[2Log[Abs[Cos[x]]] +c]},
{x, -Pi/2, Pi/2},
PlotRange -» {All, {-3, 3}},
ImageSize - 300, AspectRatio -» Automatic,
PlotStyle » {Blue, Red, Red}, AxesLabel » {"x", None}, BaseStyle -» 14], {c, 1, 5}]

Figure 2.4: code used for the above

The following plot is over a larger x range, from 27 to 27

22
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Out[+ J=

Figure 2.5: Orthogonal projections for different C values

2.3.3 section 1.10, problem 4

Show that the solution y () of the given initial value problem exists on the specified interval.

N =

y=y+cos(P)  y0)=0; 0<t<
Solution
Writing the ODE as
v =f(ty)
=y + cos (tz)

Let R be rectangle 0 <t < %,yo -b<y<yy+b. But y; =0 as given. Therefore

1
R=10,= -b,b
[QZ]X[ ;D]
Now

M=@gh@ﬂ
= (?;?;1{{ |y2 + cos (t2)|
=0 +1

= min ai
a= M

Hence

23
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Buta = %,M = b? + 1, therefore the above becomes
a = min (1, L)
2% +1
The largest value « can obtain is when g (b) = % is maximum.
(b2 +1) - b(2b)

(b2 + 1)2
_PP+1-21°
(re1)

11—
(@)

g (b)=

Hence ¢’ (b) = 0 gives 1 —b* = 0 or b = 1. Taking b =1 gives g,,.x (b) = LI % Therefore

12+1
(11
a=min|—-, -
2°2

1

This shows that the solution y (f) exists on
fh<t<th+a

Butty=0,a= %, therefore

0<t<

NI =

Hence a unique solution exist inside rectangle
R=10 1
=103

2.3.4 Section 1.10, problem 17
Prove that y (f) = -1 is the only solution of the initial value problem

y’:t(1+y) y(0)=-1

x [-1,1]

Solution

The solution is found first to show it is y () = -1, then using the uniqueness theory, one can
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show it is unique. The above ODE is separable. Hence
d
[ = [
1+y
2

ln(|1+y|):%+c

f2
|1 + y| —e2 €
2
1+y=Cqe? (1)
Applying initial conditions gives
1-1= Cl
C] =0
Hence the solution (1) becomes
1+y=0
y() =-1

To show the above is the only solution we need to show the uniqueness theorem applies to
this ODE over all of R. Let

v =f(ty)
:t(1+y)

The above shows that f (t, y) is continuous in f over —co < f < oo and continuous in y over
—-00 <y < 00. Now

o,
8y_

Hence a—jy( is also continuous in y over —co < y < co. Therefore a solution exist and is unique

in any region that includes the initial conditions. Hence the solution y () = -1 found above
is the only solution.

2.3.5 Section 1.13, problem 2

Using Euler’s method with step size /1 = 0.1, determine an approximate value of the solution
at t =1 for

Yy =2ty y(0)=2

Which has analytical solution y (t) = 2¢"", Compute approximate value at ¢ = 1 using just
h = 0.1, and compare with y(1).

Solution
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Euler method is given by

Vi=Yo+hf (tofyo)
Vo=y1+hf (t1/y1)

Yerr = Vi + 1 (e i)
Where vy, = 2 in this problem, and t; = ty+h, t, = t;+h and so on. Where 1 = 0.1. The following
table shows the numerical value of y(f) found at each t starting from 0,0.1,0.2,---,1.0 and
comparing it to the exact y (t) and the error at each step using a small Mathematica program

which implements the above method.

t appoximate y(t) [exact y(t) [error

0. |2 2. Q.

0.1]|2. 2.0201 0.0201003
0.2(2.04 2.08162 0.0416215
0.3(2.1216 2.18835 0.0667486
0.4 (2.2489 2.34702 0.0981257
0.5(2.42881 2.56805 0.139243
0.6 (2.67169 2.86666 0.19497
0.712.99229 3.26463 0.272341
0.8 (3.41121 3.79296 0.38175
0.9 [3.95701 4.49582 0.53881
1. [4.66927 5.43656 0.767297

Figure 2.6: Table to compare Euler method with exact
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flt ,y 1 :=2%xt*y;
exacty[t ] :=2%xExp[t~2];
h=1/10; t6=0; yo=2; N0=1/h;
y = Table[0@, {NO +1}];
T = NeTable[tO+ ixh, {i, O, NO}];
y[[1]] =ye;
data = Table[If[i =1,
{T[[1]], yo, exacty[T[[1]]], exacty[T[[1]]] - y@},
{Tr[i1],
yI[i]] =y[[i-21]] +h»F[T[[i-1]], y[[i-1]]], exacty[T[[i]]],
exacty [T[[1]]]1 -y[[i]1}],
{i, 1, n+1}];
Grid[Prepend[data, {"t", "appoximate y(t)", "exact y(t)", "error"}],
Frame -» All, Alignment - Left]

Figure 2.7: Code for Euler method to generate the above table

Euler

0.2 0.4 0.6 0.8 1.0

Figure 2.8: Plot of exact vs. Euler

pl = ListLinePlot [
Callout[Transposee {data[ [All, 1]], data[[All, 2]]}, "Euler", {O.8, 2}],
Mesh -» All, PlotStyle -» Dashed, MeshStyle - Red] ;
p2 = Plot[Callout[2 +x Exp[t~2], "Exact", {0.8, 5}], {t, 0, 1}];
Show [ {p1, p2}, GridLines -» Automatic, GridLinesStyle -> LightGray,
PlotRange » All, AxesLabel » {"t", "y (t)"}, BaseStyle -» 14]

Figure 2.9: Code to make plot
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2.3.6 Key solution for HW 2

HW2 - SOLUTIONS

of pollutants in the tank to decrease to 1/10 of its original value?

MATH 4512 — DIFFERENTIAL EQUATIONS WITH APPLICATIONS

1. (Section 1.8 - Exercise 8) A tank contains 300 gallons of water and 100 gallons of
pollutants. Fresh water is pumped into the tank at the rate of 2 gal/min, and the well-

stirred mixture leaves at the same rate. How long does it take for the concentration

s S(t) B
== oo S =100,

tank at time ¢ is s 1
5 = — 1 ot/200
‘=T ~1°

1
c(t) = 0 (0).
Then we get
L a0 1
1° 40
—t/200 _ L
¢ 10
t_ 1
200 10

t=200In10 = 460.517. .. min ~ 7h 40min.

Initially there are V = 300 gal of water and Sy = 100 gal of pollutants. Inflow and
outflow rates are r; = r, = 2 gal/min, while the inflow concentration of pollutants
is 0, since only pure water is pumped into the tank. If S(¢) denotes the amount of

pollutants in the tank at time ¢, then IVP for this mixture problem is

Its solution is S(t) = 100e~/2%  Thus the concentration ¢(t) of pollutants in the

In order to find how long does it take for the concentration of pollutants in the tank

to decrease to 1/10 of its original value, we need to solve for ¢ the problem
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2. (Section 1.8 - Exercise 14)

Find the orthogonal trajectories of the given family of curves

y =csinz.

Here we can take F(z,y,c¢) =y — ¢ sinz. Then from
Y

sinz’

F, = —ccosx, F,=1, c=

the orthogonal trajectories of the given family are the solution curves of the equation
dy F,  tanz

de  F, y

This is a separable differential equation and we solve it as follows:

/ydyz —/tanxdx

<

= =lIn|cosz|+ec.

Curves y = ¢ sinz (dashed) and % =1In|cosz| + ¢ (solid).

29
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3. (Section 1.10 - Exercise 4)
Show that the solution y of the initial-value problem
d

exists on the interval 0 <t < %

Let f(t,y) = y* + cost®. The functions f and f, = 2y are continuous on a rectangle
R = [to,to +a] x [yo — b,yo +b] = [0,a] x [, D],

for arbitrary constants a > 0 and b > 0. Then there exists a unique solution of the
IVP on the interval [0, o, with

— min{a, 1, M= 2 1 cost?.
a = min{a M} (£2§LEXR|y cost”|
Since
M = max |y* + cost?| = b* + 1,
(ty)er
then
infa, 17} = minfa, 1)
a = min{a, —} = min{a, =——}.
"M " +1
Let b
b) = ——.
9(0) b2 +1

For b > 0, the function g is positive and
1 — b? 1-0)(1+5b
Sy Lot =904
B +1) B +1)

The point b = 1 is the local maximum of g on (0, c0) since

be (0,1) = ¢'(b) > 0= g is increasing,
be(l,00) = g'(b) < 0= g is decreasing.

Therefore

Consequently, the largest possible value for « is 1/2 (obtained for b = 1 and any
a > 1/2), that concludes the proof.
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4. (Section 1.10 - Exercise 17)
Prove that y(t) = —1 is the only solution of the initial-value problem
dy

i t(1+y), y(0) = —1.

First notice that the constant function y(¢) = —1 is the solution of the given IVP (its
derivative is zero, 1 +y = 0 and y(0) = —1). In order to prove that this is the only
solution, we need to analyze the function f(¢,y) = ¢(1 + y) and its partial derivative
fy =t. On a rectangle

R=10,a] x [-1—b,—1+1b],

both f and f, are continuous functions, for arbitrary positive constants a,b. Let

M = ty)| = #(1 = ab,
(g;ggRIf(,y)\ ég;lgRI( +y)l=a

and ) )
= 1 —_— = 1 —t = 1
a = min{a, M} min{a, a}
(Remark: Conclusion o = 1 can be deduced from assuming first that min{a, 1/a} = a.
Then a < 1/a and

1
<0 — a<1l — min{g,-}=a<1.
a

Similarly, assuming min{a, 1/a} = 1/a we obtain 1/a < a and

1
a——2>0
a
 — 1 1 1 1
wzo — a>1 — min{ae,-}=-<1))
a a a
From the existence-uniqueness theorem, we conclude that the solution y(t) = —1 of

the IVP is unique in the interval to <t <ty + «, i.e. when 0 <t < 1.
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5. (Section 1.13 - Exercise 2 with A = 0.1)
Using Euler’s method with step size h = 0.1, determine an approximate value of the

solution at ¢t = 1 for the initial-vale problem

dy
- a— 7 0) =2
i v, y(0) =2,

and compare the results with the exact solution y(t) = 2%

Let tg = 0, yo = 2 and f(¢,y) = 2ty. Using equidistant points
tor=tn+h, k=0,1,...,9, h=0.1,
Euler’s method
Yet1 = Yr + B f (ke yn), k=0,1,....9, Yo = y(to),

will generate the following data

te | Yk

0 |2
0.12

0.2 ]2.04
0.3]2.1216
0.4 | 2.2489
0.5 | 2.42881
0.6 | 2.67169
0.7 | 2.99229
0.8]3.41121
0.9 1 3.95701
4.66927

© 00 N O U W NN = O

—_
o
—_

From this table we read y;0 = 4.66927 is the approximation to y(1) = 2e = 5.43656.
Absolute error is
ly(1) — y10| = 0.767297.
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2.41 Section 2.1, problem 11

Let y; (t) = t?> and y, (t) = t|t|

Show that y,,y, are linearly dependent (L.D.) on the interval 0 <t <1
Show that y,,y, are linearly independent (L.I.) on the interval -1 <t <1

Show that W[yl,yz](t) is identically zero.

- L o

Show that y;,y, can never be two solutions of (3) whichisy” +p(t)y’ +q({#)y =0, on
the interval -1 < t <1 if both p,q are continuous in this interval.

Solution

2411 Parta

On the interval 0 < t < 1, then |t| = t since t is positive. Hence v, () = #2, which is the
same as v (t) = t?. Therefore they are linearly dependent (same solution). In other words,

y1 () = c1y, (t) where ¢; = 1.

241.2 Partb

When t < 0 now y, (t) = —t2. Hence we have y; =y, for 0 <t <1 and y; = -y, for -1 <t < 0.
Therefore it is not possible to find the same constant c such that y; = cy, which will work
for all ¢ regions. This implies that y, (f) and y, () are linearly independent on -1 <t <1.

241.3 Partc

Y1 Y2

Wiy, y2 |(f) =
[yl yz]() 1 Y2

= Y1Y2 — Yol

If W(t) = 0 is in some region or at some point, then it must be zero anywhere. Therefore let
us pick the interval 0 <t <1 to calculate W (t). This way we avoid having to deal with the |¢|
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when taking derivatives since on this interval, y; = t* and also y, = t2. Now W (t) becomes
W(t) = t2 (2t) — 2 (2t)
=0
Therefore W (t) = 0 everywhere.

2414 Partd

Since p, g are continuous on -1 < t <1, then by uniqueness theorem, we know there are two
fundamental solutions 1, ,, which must be linearly independent that their linear combina-

tion give the general solution y (t) = c1y; (f) + oy, (1).

But from part(b) above we found that the given functions y,,y, are not linearly independent
on -1 <t <1, hence these can never be the fundamental solutions to y” + p(t)y’ +q(t)y = 0.

2.4.2 Section 2.2.1, problem 6 (page 144, complex roots)
Solve y" + 2y’ + 5y = 0 with y (0) =0,y (0) =2
Solution

Let y = eM. Substituting in the above ODE gives
A%eM 4+ 27eM +5eM = 0
M(A2+21+5)=0
Since e # 0, the above simplifies to A% + 24 + 5 = 0. The roots are A = ;—: + %m =
_?2 + %\/m orA=-1% %\/T6 Hence
A=-1+2i
Therefore the general solution is linear combination of
y(t) = creMt + cpet?t
= cqeC120t 4 ¢ p(-1-20t
— ot (Cl o2t 4 Cze—Zit)
2it

But c;6%* + c,e7?* can be rewritten, using Euler relation, as C; cos2t + C, sin2t. The above

solution becomes

y(t) = e (Cq cos2t + Cysin 2t) (1)
C;,C, are now found from initial conditions. At t =0
0=C;
The solution (1) simplifies to
y(t) = Coetsin 2t 2)

Taking time derivative gives

v =C, (—e‘t sin 2t + 2¢~* cos 2t)
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At t =0 the above becomes

Substituting the above in (2) gives the final general solution

y(t) =etsin2t

2.4.3 section 2.2.2, problem 6 (page 149, equal roots)
Solve the following initial-value problems y” +2y" +y =0 with y(2) =1,y (2) = -1
Solution
Let y = ¢!. Substituting in the above ODE gives

A2eM 4 20eM + M =0

M(A2+20+1) =0

Since ¢! # 0, the above simplifies to A2 +21 +1 =0 or (A + 1)2 = 0. Hence there is a double
root A = 1. One fundamental solution is
yp=e

To find the second solution, reduction of order is used. Let the second solution be

Yo (8) =y (u(t)

=e¢tu (1)

Hence
yh=—etu+etu (2)
vy =etu—etu —etu’ +etu” (3)

Substituting (1,2,3) into the ODE gives (since y, is assumed to be a solution)
(e‘tu —etu —etu + e‘tu”) +2 (—e‘tu + e‘tu’) + (e‘tu) =0
w—v-v+u")+2(-u+u)+u=0
u’ =2u" +u-2u+2u" +u=0
u' =0
Hence the solution is u = C;t + C,. Therefore from (1) the second solution is
y2 () = y1 () u(t)
=eH(Cyt+ Cy)
Therefore the general solution is

y(£) = Cay1 + Cyy2
= C3€_t + C4€_t (Clt + Cz)
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Combining constants gives
y() = Caet+ et (Cit + Cy)
=(C3+Cy)et + Cqtet
Let A =(C3 +C,), B = Cq, then the final solution is
y(t) = Ae! + Bte™ (4)

Now A, B are found from initial conditions y(2) =1,y (2) = —1. First initial condition gives
from (4)

1= Ae2 +2Be? (5)
Taking derivative of (4) gives
Yy (t)=-Aet+B (e‘t - te‘t)
Applying second initial condition on the above gives
~-1=-Ae?+B (e‘z —~ 26‘2)
= —Ae? - Be™? (6)
Now we need to solve (5,6) for (A, B). Adding (5,6) gives
0 =Be?
Hence B = 0. Therefore from (5) we can now solve for A
1= Ae?
A=¢?
Hence (4) now becomes
y(t) =ee!

_ o2t

2.4.4 Section 2.4, problem 6 (page 156, Variation of parameters)

5
Solve the following initial-value problems y” + 4y’ + 4y = t2¢7% with y (0) = 0,1’ (0) = 0
Solution

The first step is to solve the homogenous ODE y”” + 4y’ +4y = 0. The characteristic equation
is
A2+41+4=0
A+2)(A+2)=0
Hence a double root at A = —2. The first solution is y; = e=%. Therefore the second solution

is y, = te™? (obtained using reduction of order as was done in the above problem with equal
roots). Therefore the homogenous y, (t) is

yp, () = Cre™?t + Cpte™

To find the particular solution y, (), Variation of parameters will be used. Assuming the
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particular solution is

Yp (8) = ug () y1 (£) + uz () y2 (£)

Where
uﬂD:—f%%%yht (1)
And
() = @%%th (@)

5
Where in the above f () = t2e and y; = €7, y, = te™*. We now need to find W (¢)

Y1 Y2

Vi Vs

= Y12 ~ Y2¥i
=72 (e‘zt - 2te‘2t) + 2te e 2

= e 4 — Dpe~4 4 Do

W () =

Therefore (1) becomes

And (2) becomes

—~
|\1| INJEN

NI

~~

NN o

Since y, (t) = uy () y1 (t) + uz (t) y2 (£), then using the above results we obtain the particular
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solution

9
29 29
=e 2=tz + =2
¢ ( 9 "7
_ ie—ZttE
63

Since y () = yj, () +y, (t) then the final solution is

4 9
H=(C -2t Cot —2t . —Ztti
y (1) ( 167 + Cyte ) + 03¢

=72 (Cl + Cot + :—St;) (3)
Now initial conditions are applied to find Cy, C,. From y (0) = 0, then (3) becomes
0=C
Hence the solution (3) simplifies to
y(t)=e? (Czt + it;) (4)
63

Taking derivatives

4 9 4\(7\ 72
1 (F) = _np-2t 3 -2t )4z
Yy (t) =-2e (C2t+ 63t2)+e (C2+(63)(2)t2)
4 9 27
= —26’_2t (Czt + @tZ) + €_Zt (C2 + §t2)
Applying the second BC v’ (0) = 0 to the above gives

0:C2

The solution (4) now reduces to

4 9
1) = —t2¢™
y () 63 ¢

Which is just the particular solution. This makes sense, since both initial conditions are
zero, then the homogenous solution will be zero.

2.4.5 Section 2.5, problem 14 (page 164, Guessing method)

Find the particular solution for y” + 2y’ =1+ t*> + 72
Solution

The first step is to solve the homogeneous solution y;, () of the ODE y" +2y’ =0. Letu =y'.
Then the ODE becomes

u+2u=0
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The integrating factor is I = e/ % = 2t The above becomes

d
2t) _
7 (ue ) =0
ue* = ¢,
u=Cpe?

But v’ = u. Integrating gives
Yn (t) = fCle_tht + Cz

-1
= ?Cle_Zt +C,

= C3€_2t + C2
Hence the fundamental solutions are
yp=e?
y2=1
We now go back to the original ODE and find the particular solution y,. Since the RHS is
(t)+e7% where p (t) = 1+#%, we can use linearity and find particular solution vy, (t) associated
p p y p Y;m

with p (t) only and then find y,, () associated with ¢! only and then add them together to
obtain y, (f). In other words

Yp (t) = Yy (t) + Ypy (t)
To find v, (t) associated with 1 + t> we guess v, (t) = Cy + C1t + C,t2. But because the ODE
yPl g ym

is missing the y term in it, then we have to multiply this guess by an extra t. Therefore it
becomes

Ypy () = £(Co + Cit + Cot?)

To find y,, (t) associated with e~ we guess Yp, = Ae™?, But because ¢7% is also a fundamental solution

of the homogenous solution found above, we have to again adjust this and multiply the guess
by t. Hence it becomes

Yp, (t) = Ate™
Therefore the full guess for particular solution becomes
Yp (8) = yp, (1) + Y, ()
= t(Co + Cyt + Cot?) + At

=tCo + C1? + Cot? + Ate™ 1A)

Now
Yy () = Co +2C1t +3Cyt2 + Ae 2 — 2Ate™ "

And
Yy () = 2C; + 6Cyt — 2Ae™ —2A¢7% + 4Ate™ o
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Substituting (1,2) into LHS of v’ + 2y’ =1 + 2 + ¢7? gives
(2C1 + 6Cot —2Ae72 —2Ae72 + 4Ate) +2(Co + 2Cyt + 3Cot? + Ac™? - 2Ate) =1+ 2 + ¢
2Cy +2C; + 4tCq + 6tCy —2Ae™% + 6t2°Cy =1 + 12 + 72
e (=2A) + t (4C; + 6Cy) + 12 (6Cy) + (2Co +2C1) =1 + t? + 72

Comparing coefficients gives

-2A=1
4C1+6C, =0
6C2 =1
2C0 + 2C1 =1
Solving gives A = —%,CO = ?I’Cl = —i,Cz = %. Substituting the above in (1A) gives the

particular solution as

Therefore the general solution is

y@®) =y () +y, )

3 1, 1, 1
=Cae 2+ Cy+ |t — =12+ 13— —te ™
3¢ TR (4 i e "2°
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2.4.6 Key solution for HW 3

MATH 4512 — DIFFERENTIAL EQUATIONS WITH APPLICATIONS
HW3 - SOLUTIONS

1. (Section 2.1 - Exercise 11) Let y; = ¢ and yo(t) = ¢ [¢|.
(a) Show that y; and y, are linearly dependent on the interval 0 < ¢ < 1.
(b) Show that y; and y, are linearly independent on the interval —1 < ¢ < 1.
(c) Show that Wy, yo](t) is identically zero.
(d) Show that y; and y» can never be two solutions of
d*y d
A p(t) S +at)y =0
on the interval —1 < ¢ < 1, if both p and ¢ are continuous in this interval.

(a) When 0 < ¢ < 1 we have that [t| = ¢ and y»(t) = 2 = cy;(t), with ¢ = 1. Thus,
functions g; and y» are linearly dependent.

(b) If we assume that y; and ys are linearly dependent on the interval —1 < ¢ < 1,
then there exists a constant c such that

y2(t) = ¢ 1 (1), -1<¢t<1
From (a) we obtained ¢ = 1 when 0 < ¢ < 1. But ¢ = —1 if —=1 <t < 0, because we
then have yo(t) = —t2 = —y (t).
Since the value for ¢ should be unique on the whole interval [—1,1], we conclude

that y; and y, are not linearly dependent, i.e. linearly independent on the interval
—1<t<1.

(c) First let —1 < ¢ < 0. Then the Wronskian for the functions y;(t) = ¢* and
ya(t) = =12 is
Wiy, pa](t) =17+ (=2t) — 2t (—*) = 0.
For 0 <t <1andy(t) =1* = yy(t), we easily get
Wiy, 1) (t) = t* -2t — 2t - 12 = 0.

(d) Functions y; and y, have zero Wronskian on (—1,1) and therefore are linearly
dependent, reducing to only one solution (up to a constant) of the given problem.

(see also Theorem 4 and its Corollary in M. Braun’s book)

41



24. HW 3 CHAPTER 2. HWS

2. (Subsection 2.2.1 - Exercise 6) Solve the initial-value problem

d’y | dy
Y 27 == = ! = 2
2 T2 oy =0, y0)=0, (0

The characteristic equation

r’+2r+5=0
has two complex roots r; = —1 + 2 and 7, = —1 — 2i. The general solution has the
form
y(t) = cre™" cos(2t) + coe ™" sin(2t),
with

Y (t) = (—c1 + 2c2)e " cos(2t) + (—2¢; — cp)e ' sin(2t).
The initial conditions y(0) = 0, '(0) = 2 give us two equations for finding constants
c; and cy:

0=y(0)=¢

2= yl(O) = —C1 + 202.
The constants are ¢; = 0 and ¢, = 1 and the final solution is
y(t) = e "sin(2t).
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3. (Section 2.2.2 - Exercise 6) Solve the initial-value problem

The characteristic equation
r4+2r+1=0
has one root » = —1. The general solution has the form
y(t) = (c1 + cat)e™
with
Y (t) = —cre™ " + (1 —t)e ™.
=1

The initial conditions y(2) = 1, /(2) = —1 give us two equations for finding constants

¢ and ¢y:
1=y(2) =cre? + 2ce?

—1= y/(Q) = —618_2 — 026_2.

The constants are ¢; = e? and ¢, = 0 and the final solution is
y(t) =",
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4. (Section 2.4 - Exercise 6) Solve the initial-value problem

Y Ay Ay =122 y(0)=0,  3(0)=0.

First we solve the homogeneous problem. The characteristic equation
P 4dr+4=0

has one root r = —2. The functions

nt) =, pt)=te™,
form the fundamental set of solutions. The Wronskian is

Wy, v2](t) = y1()ya(t) — vy ()ya(t) = e~

Now we find the particular solution ¢ in the form

Y(t) = ur()yr(t) + uz(t)ya(t).
If g(t) = t%/%e2, then

wip) = — [ 9Ow®) o [apg 2
(1) / ) /t =2

i) = [ 9O @) s, 2
0= [ g = [ =5

The particular solution is
2 2 4
£ = 29202 o 2T/ 2t F 9/2 ot
Wlt) = —gt e+ gt e = gt e

The general solution of the starting problem has the form

y(t) = (e + eat)e™ + (1)

with 4 /9

Y (t) = —2c1e72 4 cp(1 — 2t)e™ + = <2t7/2 — 2t9/2> e,
The initial conditions y(0) = y'(0) = 0 give us two equations for finding constants ¢;
and cy:

0=y(0)=¢

0=1y'(0) = —2¢; + ca.
The constants are ¢; = ¢o = 0 and the final solution is

y(t) =¢(t) = %t9/2072t.
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5. (Section 2.5 - Exercise 14) Find a particular solution of

y// T 2y/ -1 +t2 _,'_e—?t.

We will find the function ¥ by splitting our problem into two parts:
First we will find a particular solution ¢, of the problem

Y 2y =1+t

Then we will find a particular solution 5 of the problem
2

y' 4+ 2y =e
Finally, ¢ = 11 + ¥9. In both of those cases, we will use the guessing technique.
(1) We propose
1 (t) = t(At* + Bt + C),
with unknown constants A, B, C'. Using
Y (t) = 3At* + 2Bt + C
1(t) =6At + 2B
the differential equation 9] + 2/} = 1 + t* becomes
6At> + (6A+4B)t +2B + 20 = 1+ .
This further implies A =1/6, B=—1/4, C = 3/4, and
2 3t

d’l(t) E_ZJFZL

(2) Now we propose
Vy(t) = Dte .
with an unknown constant D. Using
Yh(t) = De " — 2Dte™ ™
5(t) = —4De ? + 4Dte™
the differential equation 14 + 21/, = e~ becomes
—4De % 4 4Dte™ + 2(De™? — 2Dte ) = e
—2De ™ =%,
This further implies D = —1/2, and

Dalt) = —é e,

The particular solution for the starting problems is
B 3ty

w(t):¢1(t)+¢2(t):€ L
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2.51 Section 2.6, problem 4

A small object of mass 1 kg is attached to a spring with spring constant k = 2 N/m. This
spring-mass system is immersed in a viscous medium with damping constant ¢ = 3 N s/m.

At time t = 0, the mass is lowered 1 m below its equilibrium position, and released. Show
that the mass will creep back to its equilibrium position as ¢t approaches infinity.

Solution
The ODE is

my” (t)+cy’ +ky =0
Where m =1,c =3,k = 2. The above becomes

vy () +3y +2y=0

And initial conditions, using equilibrium position as ¥ = 0 and hence below the equilibrium
position y is taken as negative. Therefore

1
y(O):—E
y(©0)=0

The characteristic equation is

Hence
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Therefore the solution to the ODE is
y(t) = cret +cpe

At t = 0 the above becomes

—% =c1+0
Taking derivative of (1) gives

Y () = —cre™t = 2cpe7

At t = 0 the above becomes

0=-c1 —2c

From (3) ¢y = —2c,. Substituting into (2) gives

1
5= =2¢y) +¢p
=—Cy
Hence
1
) = >
Therefore from (3)
1
0=-c;-2 (E)
0=—-— -1
cp=-1

Hence the solution (1) becomes

1
y(t)=—t+ Ee‘Zt

We see now that as t — co the terms e™!,¢7? both go to zero. Therefore

tlim y =0

Hence the mass will go back to equilibrium position y = 0 after long time.

The following is a plot of the solution above
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Figure 2.10: Plot showing solution in time

1
y[t_] := -Exp[-t] + = Exp[-2t];
2

p = Plot[y[t], {t, 9, 5}, GridLines -» Automatic, GridLinesStyle - LightGray,
PlotStyle » Red, AxesLabel » {"t", "y(t)"}, BaseStyle » 12];

Figure 2.11: Code used for the above plot

2.5.2 Section 2.9, problem 18

Find the Laplace transform of the solution of the following initial value problem.
Yy’ +y=tsint

y(©0)=0

y' ) =0
Solution
First we find the solution to the ODE then find its Laplace transform. The solution is given
by

y(®) =yn () +y, )

Where yj, (f) is the homogeneous solution to y”” +y = 0 and y, (¢) is the particular solution to
Yy’ +y=tsint.
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The characteristic equation is r? +1 = 0. Hence * = -1 or
r==+i
Therefore
Yi (B) = cre™ + cpe™ @)

To find the particular solution, we find the particular solution for y”” +y = %" instead, and
then take the imaginary part. For this ODE, the RHS is %¢", therefore we start by guessing
the particular solution to be

yy = (AR + Bt +C)e!

But from (1) we see that ¢ is a fundamental solution to the homogeneous ode. Hence we
adjust the above by multiplying by an extra t giving

yp = (AP + B2 + Ct) o'
We now substitute the above back into y”” + y = t?¢* in order to find A, B, C.
yp = (3AR + 2Bt + C) et +i (AP + B2 + Ct) et
And
yy = (6At +2B) e’ +(3A1 + 2Bt + C) ¢ +i (3A2 + 2Bt + C) et + 2 (AP + B2 + Ct) et
= (6At +2B)e't +i(3A2 + 2Bt + C) e+ (3A1 + 2Bt + C) ¢ — (AP + B2 + Ct) et
Substituting the above in y; +y, = ?¢" gives
(6At +2B) e +i(3Af2 + 2Bt + C) ¢ +i(3A1 + 2Bt + C) e’
— (AP + B2 + Ct) et + (AP + B2 + Ct) et = 2"
Canceling ¢
(6At +2B) +i (?;At‘2 + 2Bt + C) +i (?;At‘2 + 2Bt + C) - (At3 + Bt? + Ct) + (At3 + Bt? + Ct)
(6At +2B) +i(3A12 + 2Bt + C) +i (3At2 + 2Bt + C)
(6At +2B) +2i (3A12 + 2Bt + C) = 12
(2B + 2iC) + t (6A + 4iB) + t? (6iA) = t?

t2
t2

Comparing coefficients gives

2B+2iC=0
6A+4iB=0
6Ai =1
Hence A = é = —é. From the second equation

i
6[--|+4iB=0
(5]
—-i+4iB=0
i1
B:—‘:—
4 4
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From the first equation

1+2'c: 0
J— l —
2
2C = !
“21‘
1
C=-
4

Substituting the above back into y, = (At3 + Bt + Ct) e'* gives
= _1 3 1 2 1 it
yp—( 6t +4t +4t e

. 1 :
— (_ét3 + th + it) (cost +isint)

i 1 1 i 1 1
= ——3cost+ —t2cost + —tcost— =3 (isint) + —+2 (isint) + —f (isin ¢
6 4 4 6 ( ) 4 ( ) 4 ( )

53 t+1ﬂ t+it t+1ﬁ't+1ﬁ' tlt't
= ——1" COS —1~ COS —1 COS —1" Sl —=1=SInrt— —rsSin
6 4 4 6 4 4

1# t+1ﬁ inf 1t‘t +i 1# t+1t t+1ﬂ int
—1~ COS —{"SInt— —tSsin 1|——=1" COS —1 COS —1~ S1n
4 6 4 6 4 4

The particular solution of the original ODE y” + y = t?sint is the imaginary part of the

above which is
19 t+1t t+1# inf
= ——1" COS —1 COS —1~Ssin
="% 4 4

The homogeneous solution from (1) is y;, (t) = cie” + c,e™" which can be written using Euler
relation as yj, () = C; cost + C, sint, therefore the general solution is

y® =y, &) +y,®

:Clcost+Czsint—%t3cost+itcost+itzsmt (2)
What is left is to find C;, C, from initial conditions. At ¢t = 0 the above becomes
0=C;
Hence (2) becomes
y(t) =Cysint - %tg’ cost + }Itcost+ }Ltz sint (3)

Taking derivative gives
() =C t %2 t+1ﬁ't+1 tlt't+2t't+1t2 t
= COST — —1~ COS =17 S1n — COST — —ISIn —1Sin —1I~ COS
Y 2 6 6 4 4 4 4

At t =0 the above becomes

O—C+1

=Cp+
C—l
27y
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Hence (3) becomes the final solution

1 1 1 1
y() = ~1 sint—6t3cost+1tcost+ A—LtZSint (3A)

The following is a plot of the above solution. The solution blows up in time due to resonance.

y(t)

1500

1000}

500F ///“\\
D N

5 10 N\_/ 15 2

-500{

-1000 F
-1500 F
Figure 2.12: Plot showing solution in time
1 1 1 1
y[t ] :=-—Sin[t] - —t3Cos[t] + —tCos[t] + — t>Sin[t];
4 6 4 4

p = Plot[y[t], {t, ©, 25}, GridLines - Automatic, GridLinesStyle - LightGray,
PlotStyle - Red, AxesLabel -» {"t", "y(t)"}, BaseStyle -» 12];

Figure 2.13: Code used for the above plot

The problem now asks to find the Laplace transform of the above. To obtain the Laplace
Transform of the above, the following relations will be used (In the following, the notation
© means the Laplace transform from left to right and the inverse Laplace transform from
right to left).

a

a2 + s2
s

2+52

t"f () < (- 1)-——F(Q
51

sin (at) ©

cos (at) ©



2.5. HW 4 CHAPTER 2. HWS
Hence
. 1
sin () © T332 (4)
s
cos (t) © 1132 (%)
And
d
tsin(t) © (-1) d—sg(sin 1)
But
d . d 1
g i) = o (1 + sz)
=25
(1 + 52)2
Therefore
Fsin () & (<1) —= >
(1 + 52)
2s
< 2 (6)
(1 + 52)
And
d2
Z(Psin(t) = (- 1) 52 (sin (1)
But

2

d 5 (sin (1) = d[ 28 ]

(1 + 52)

-2(1+ 2) +25(2) (1 +52) (29)

(1 + 52)2
—2(1+ 52)2 +852 (1 +52)
(1 + 52)4
—2(1+52) + 852
(1+2)
2465
B (1 + 52)3
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Therefore
_ 2
Z(Psin () = (-1)° 2+ 653
(1 + 52)
-2 + 652
= 3 (7)
(l + 52)
And
L(tcos(t) = (-1) ;—Sff(cos 1)
But
s
£ =425
(1 +s ) s (2s)
(1 + 52)2
1-¢2
(1+52)
Therefore
1-¢2
L(tcos(t)) = (-1) 5
(1 + sz)
2_1
= 5 (8)
(1 + 52)
And

) 42
L(# cos (1) = (-1)* 52 (cos (1)
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But

P i 1-¢
ﬁf/(cos(t))——[l > ]

25 (1+52) — (1-2) @) (1+32) (29)
(1 + 52)4
=25 (1+5%) - (1-52)(2) (29)
(1 + 52)
-2s (1 +s ) ( )
(1+2)
—25 — 253 —4s + 453
(1 + 52)3
—65 + 25>
(1+2)

Therefore

g( oS (t)) ( )2 {65 +2s ]

(1 + 52)3
—65 + 25°

= 9)
(1 + 52)3

And finally
3(133 cos (t)) = (-1)° %E(COS ()
But
a3 d | —6s + 23
EQ?(COS (t)) = % [m]
(6+62)(1+ ) - (=65 +25%) 3 (1 +2)” (29)
(1+2)°
—6 + 65%) (1 +52) — (=65 + 25%) 3 (25)
_(o+6?) (1+5) )
(1 + 52)4
_ —6s* + 3652 - 6
(1 + 52)4
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Therefore

PR

(1 + 52)4
:6s4—36s2+6 (10)
(1 + 52)4
Using (4,5,6,7,8,9,10) in (3A) gives
g(y (t)) = —4113(8111 1) — ég(ﬁ oS t) + jzg(t cost) + 4115/(152 sin t)
_ 11 16s*-3652+6 L1 -1 1-2+65
st 6 (1pg) Aaee) Aaes)
:_1(“52)3_1654_3652%+1(sz_1)(1+32)2 1(-2+69)(1+5)
Ya+2) 0 (1+2) 4 (1+2)  f (149)
] 1) - 165t 3652+ 6) + 2 (2-1) (1452) 4 (<24 65%) (1+52)
(1 + 52)4
_ -2 (1 +5?) - = (65t - 3652 +6) + 1 (s -1) (1+ 2) + (2+62) (1+8)
(1 + 52)4
_ -2 (1 +s2)3 — = (6s* - 365 +6) + 1 (2 —1) (1 + 52)2 +1(2+657) (1+)
(1 + 52)4
Which can be simplified to
652 —2
Zy@) =
WO =y

2.5.3 section 2.10, problem 14

Find the inverse Laplace transform of each of the following functions

1
s(s+ AJ:)2
Solution
Let
1
F(s) =
s(s+ 4)2
Using partial fractions
1 A B C

s(s+4)° =57 (s+4) ’ (s + 4)?
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Hence
1 A(+4°+Bs(s+4)+Cs
s(s+4)2_ s(s+4)2
A(s? +16 + 85) + Bs? + 4Bs + Cs
s(s+ 4)2
_ s?2(A+B)+s(8A+4B+C) +16A
- s(s+ 4-_)2

Comparing coefficients gives

16A =1
8A+4B+C=0
A+B=0
From first equation A = %. From the third equation B = —11—6. From the second equation
1 1 1
8 (E) +4 (_E) +C =0, hence C = - Therefore
1 11 1 1 1 1
LT T I M
s(s+4)° 16s 16(s+4) 4(s+4)
Now we use the relation
1
7 (;) = Hy (1) @

For 1 we will use the relation that
(s+4)
Z(e"f(t) =F(s-a)

Where here & ( f (t)) = F(s). Therefore if we take F(s) = % then we see that .~ (e““ f (t)) = 51—4.
Therefore
1
1 (—) =74 (3)

s+4

we will use the relation that

F
ot (s+4)?

Z(tf () = ()" E0 (s)
If we put n =1 and f () = e* then

Z(te ) = (-1) % (i)

-1
=D ((s + 4)2)

!
(s +4)
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Therefore we see that

Sf‘l( L 2) =te ¥
(s+4)
Substituting (2,3,4) back into (1) gives

)=o) ekl )
< (S(S+4)2 163 5 163 (s+4)) 4 (S+4)2

1 1 1
= _H t——_4t——t_4t
16 10 ) = gge ™ ~ 3t
Or, taking t > 0, then Hj (f) can be replaced by 1 and above can be simplifies to

a1 11,1,
s(s+ 4)2 16 16 4

2.5.4 Section 2.10, problem 20

Solve the following initial-value problems by the method of Laplace transforms
Yy’ +y=tsint
y(0) =1
y'(0) =2
Solution
Taking the Laplace transform of the ODE gives
3(}/’ + y) = ZL(tsint)
L2y + Ly =L(tsint)
But from the above problem Section 2.9, problem 18 we have already found that
2s

(1 + 52)

L(tsint) = 5

And using
Ly’ =82Y (s) - sy (0) -y (0)
where Y (s) = i”(y (t)), then (1) becomes

s2Y (5) —sy (0) =y’ (0) + Y (s) = = 2
(1 + 52)
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Substituting the initial conditions into the above gives

2
SY(s)-s—-2+Y(s) = i 5
(1 + 52)
2s
Y(S)(sz+1)—s—2: 5
(1 + sz)
Y(s)(52+1): 5 +5+2
(1 + 52)
s s 1
Y(s)=2 5+ +2 (1A)
(1 n 52) (52 + 1) (52 + 1)
Now we ready to apply inverse Laplace transform using the relations
= 2A
Lcost 21 (2A)
Zsint = 2B
S I (2B)
The only term left is ——. But this is the same as 5 and we already found that
(1+52) (1+2) (1+s)
2 5 © tsint from above solving section 2.9, problem 18, and —L_ & sint. Therefore we

(1+52) (1+s)

can use convolution as follows

[( 5 )Z]((l-l*s)) @fotf(f)gﬁ—r)df

1+¢2
Where we assume that ( 252)2 © f(t) = tsint and (1175) © g(t) = sint. Hence the above
1+s
becomes
25 b .
3 (:)f tsin(t)sin (t—1)dt (2)
(1 + 52) 0

Let A=1,B =t-1 and using sin (A)sin (B) = % (cos (A — B) — cos (A + B)), then
sin(7)sin(t-1) = % (cos(t—(t—1)) —cos(t + (t—1)))
= % (cos (2T — t) — cos (1))
Substituting the above in (2) gives

o fo " (% (cos (27 — 1) — cos (t))) it

s
(1 + 52)3

1 t 1 t
@—f TCOS(ZT—t)dT——f Tcos () dt
2Jy 2.Jy
1 t 1 t
@—f TCOS(ZT—t)dT——COS(t)f dt 3)
2Jy 2 0
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sin(2t-t)

Using integration by parts on the first integral. Let u = 7,dv = cos 2t - t) ,du =1,v = B

hence

T

t 1 Fsin (27—
f TCOS(-?T—t)dT:—[Tsin(ZT—t)]t_f Md
0 2 o~ J, 5

= %[tsin(t)] - %j;)tSiH(ZT—t)dT

1 1
= Etsin @®) + 1 [cos (2T — t)](t)

= %tsin () + 31 [cos (t) — cos (—1)]

- %tsin (t) + 31 [cos (t) — cos (£)]

1
= Etsin (t)

Substituting the above in (3) gives

1(1 1
° ;= (—tsin (t)) — —t2cos (b)
(1 + 52) 2 4

2
= 1t in (t) - 1t2 (t) (20)
2 S1n 2 COS

We have found the inverse Laplace transform for all the terms. Substituting (2A,2B,2C) into
(1A) gives

2 ] o
Py = 12 L1 S o

(1+Sz)3 (s2+1) (s2+1)
1 . 1, .
y() = Ztsm(t)—it cos ()| + cost +2sint
1, 1 . .
:_Z_Lt cost+1t81nt+cost+281nt

The following is a plot of the above solution. The solution blows up in time due to resonance.

59



2.5. HW 4 CHAPTER 2. HWS

100}
50 /\
.|..A...|....|.. t
— -
5 10\/15 2 25
-50F
-100F
-150F
Figure 2.14: Plot showing solution in time
1, 1. :
y[t ] :=-—1t2Cos[t] + —tSin[t] + Cos[t] +2Sin[t]
4 4

p = Plot[y[t], {t, 9, 25}, GridLines -» Automatic, GridLinesStyle - LightGray,
PlotStyle -» Red, AxesLabel » {"t", "y (t)"}, BaseStyle -» 12];

Figure 2.15: Code used for the above plot
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2.5.5 Key solution for HW 4

MATH 4512 — DIFFERENTIAL EQUATIONS WITH APPLICATIONS
HW4 - SOLUTIONS

1. (Section 2.6 - Exercise 4) A small object of mass 1kg is attached to a spring with
spring constant 2N/m. This spring-mass system is immersed in a viscous medium
with damping constant 3N-s/m. At time ¢ = 0, the mass is lowered 1/2m below
its equilibrium position, and released. Show that the mass will creep back to its
equilibrium position as ¢ approaches infinity.

In this spring-mass system we have that m = 1, ¢ = 3, k = 2, and zero external force
F(t). The corresponding initial-value problem is
y'+3y +2y=0, y(0)=05  y'(0)=0.
The characteristic equation
P’ +3r+2=0
has two real roots r; = —1 and ry = —2. The general solution is

y(t) = cre™ + cpe*

with its first derivative
Y (t) = —cre ™t — 20072,
Initial conditions imply

0.5=y(0) =1 + c2, 0=19(0) = —c; — 2¢s.

Thus ¢; =1, ¢ = —0.5 and
y(t) = et — 0.5
Finally,
lim y(t) = 0.
t—ro0
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2. (Section 2.9 - Exercise 18) Find the Laplace transform of the solution of the
following initial value problem

y" +y = t?sint, y(0) = ¢'(0) = 0.

The Laplace transform Y(s) of the solution y(¢) can be obtained from the formula
1
Y(s) = 5——=F(s),
(S) 82 + 1 (S)/
where F(s) = L{t*sint}. Next we find F(s):

F(s) = —L{—t -tsint} = —diﬁ{t sint}
s
d ) d (d ) d? .
= gﬁ{—tblnt} = (dsﬁ{smt}> = @L‘{smt}
21 232 1)

Tds?s2+1 (s241)3

Finally, the Laplace transform of the solution of the initial value problem is

_2(3s*—1)
Y(s) = W.
2
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3. (Section 2.10 - Exercise 14) Find the inverse Laplace transform of the following

function
_ 1
s(s+4)%
Let 1 ] 1
F§)= ———mx =~ .
() s(s+4)2 s (s+4)?
Notice that 1
- — 1
S =1}
and 1 d 1 d
__ 4 L __ @ —AY _ prpeity
(s+4)2 dss+4 dsﬁ{e b= £t
Now

F(s)=L{1} - L{te ™} = L{1 xte "}
Thus, the inverse Laplace transform of F(s) is
t 1 [t
. + 1 /o e du

1 1
—— —4t _ ~ -4t .
o 4°°¢ 6° 16

t
1
Lxte ™ = / we M dy = —~ue
0 4
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4. (Section 2.10 - Exercise 20) Solve the following initial-value problem by the method
of Laplace transforms:

y" +y=tsint, y(0) =1, y'(0) = 2.

Let Y(s) = L{y(t)} and F(s) = L{tsint}. Then
s n 2 n 1
$2+1 241 241

Y(s) = —— (s + 2+ F(s)) =

F
s2+1 (5)

= L{cost} + 2L{sint} + L{sint} - L{tsint}

= L{cost + 2sint +sint *x tsint}.
The solution of the starting initial-value problem is y(¢) = cost+2sint+sint*tsint.

It remains to calculate the convolution between sint and ¢ sint. We proceed as follows:

t t
sint *tsint = / sin(t — w)usinu du = / (sintcosu — costsinu)usinudu
0 0

¢ ¢
= sint/ wsinu cosu du — cost/ wsin® u du
0 0

1 ! 1 !

= fsint/ wsin 2u du — fcost/ u(1l — cos 2u) du.
2 o 2 o

The first integral is

t

1 t
+7/0052udu
o 2

1 1
= fit cos 2t + 1 sin 2t,

t 1
/ wsin 2u du = ——wu cos 2u
0 2

while the second integral is

! 21
/ u(l — cos2u) du = — — —usin 2u
o 2 2

t

1 t
—|-f/ sin 2u du
o 2J
2

0 Linor— Leosar v L
—2 2,SlIl 4COS 2 4
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Then

1 1 1
sint xtsint = §sint (—2t6082t+ 4Sin2t>

! t r 1t in 2¢ L 2t—|—1
— =cost [ = — =tsin2t — = cos =
2 2 2 1977 Ty
t? t . :
=-7 cost + 1 (sin 2t cost — cos 2t sint)

1 1
+ 3 (cos 2t cost + sin 2t sint) — 3 cost

2 2

t 1 1 t
= —ZcostJr ZsintJr gcost— gcost = —ZcostJr Zsint.

Finally

(t) = cost + 2sint D eost+ Laint = (1= 2 ) cost+ (24 L) sint
Yy = COS Sin 1 COS 4§1H = 1 COS 1 sSimme.

ot

65




2.6. HW 5

CHAPTER 2. HWS

26 HW S5

Local contents

2.6.1 Section 3.1, problem 4| . . .. ... ... .. ... . o oo 66
2.6.2 Section 3.2, problem 4{. . . . ... ... L L 67
2.6.3 Section 3.3, problem 16| . . . . . . . .. ... e 67
2.0.4 ection 3.4, problem 6|. . . . . . ... ..o 69
2.0. ection 3.5, problem 6|. . . . . . ... . 70
2.6.6  Section 3.6, problem I0] . . . .. ...... ... ... 72
2.6.7 Keysolutionfor HW . . . . .. ... ... ... . . ... 73

2.6.1 Section 3.1, problem 4

Convert the pair of second-order equations
y' ) +3z () +2y(t) =0
z/ () +3y (H)+2z(t) =0

into a system of 4 first-order equations for the variables x; =y, x, =y, x3 =z,x4 =z

Solution

Taking derivative gives

’

X1=Y, X =Y, x3=2,x4=2

SR I SN ) R S S S 7
X1=Y, X% =Y ,X3=2,X4 =2

X1 =Xp,%9 = — (32’ + 2y),5C3 =Xy4,%4 = — (3y/ + ZZ)

Hence

Or In Matrix form

kel
X
X3

X4

5C1 =Xy
5('2 = —3X4 - 2x1
X3 =Xy

.554 = —3x2 - ZX3

01 0 0)(xq

2 0 0 -3||x

0 0 0 1][x
0 -3 2 0)\x
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2.6.2 Section 3.2, problem 4

X1
Determine whether the given set of elements x = | x, | where x; + x, + x3 =1 form a vector
X3
space under the properties of vector addition and scalar multiplication defined in Section
3.1.

Solution

We need to check that using vector addition + and scalar multiplication c the following is
true. For any x,y in V then (x + y) is still in V. And for x in V then cx is still in V.

Checking for addition This fails. Here is an example. Let x = . Both x,y are in

Y=

Wik O WIN

W =W =W =

V, but vector addition gives

W[ W[ W]~
+

W= O WIN
Il

WQINR| = =

. . . . 1,2
We see that the resulting vector is not in V, because sum of its elements 1 + ;t3;=2#1L
Hence not in V.

So it does not form a vector space.

2.6.3 Section 3.3, problem 16

1 1
Find basis for R® which includes the vectors |1 ] and |3
0 4

Solution

X1

We need to find 3rd vector |x, | such that it is linearly independent to above two vectors. If
X3

we take the cross product of the above two vectors, then we get a vector that is perpendicular
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to the plane that the two given vectors span. This will give us the third vector we need
1) (1 i j k
1|x|3|=1 1 0
0) \4) 1 3 4
=i(4)-j@)+k(B-1)

=4i—-4j+2k
4
Hence the third vector is | -4 |.
2
1 1 4 0
To verify this result, we now check that ¢y [1[+¢c, |3 [+c3|—4|=|0]|impliesc; =0,c, =0,c5 =0
0 4 2 0

as only solution. Writing the above as
11 4)(¢) (0
1 3 -4 G| = 0
0 4 2)\c 0

Hence augmented matrix is

1 4 0
3 -4 0

0 2 0
Replacing row 2 by row 2 minus row 1

11 4 0

02 -80

0 4 2
Replacing row 3 by row 3 minus twice row 2

11 4 0

02 -80

0 0 16

This implies that Gaussian elimination gives

114.C1 0
02 =8|le,|=|0
00 16){c;) o

Back substituting gives c; = 0. From second row we obtain 2c, — 8c; = 0, hence ¢, = 0 and
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from first row c; + ¢, + 4c3 = 0 hence ¢; = 0. This shows that

1) (1) (4
11,1314
0) \4) \2

Are linearly independent. Hence they span R3 and form a basis.

2.6.4 Section 3.4, problem 6

Determine whether the given solutions are a basis for the set of all solutions

4 -2 2
x=|-1 3 1|x
1 -1 5
eZt 0 e6t
xt) = |,x2() =], x* ) =] 0
0 e4t e6t

Solution

We pick t = 0 to check linear independence (we can choose any ¢ value, but ¢ = 0 is the
simplest). At t = 0 the given solutions become

1 0 1
xt=(1],22=|1|[,x*=|0
0 1 1
1 0 0
we now check that ¢; [1|+cy|1|+¢c3|0|=|0]|implies c; =0,c; = 0,c3 = 0 as only solution.
0 1 1 0
Writing the above as
10 o 0
1 Offc|=10
01 c3 0
Hence augmented matrix is
1010
1100
0110
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Replacing row 2 by row 2 minus row 1 gives

10 1 O
01 -10
01 1 0

Replacing row 3 by row 3 minus row 2 gives

10 1 O
01 -10
00 2 0

This implies that Gaussian elimination gives
10 1)(q 0
01 -1||le,| =0
00 2)\c 0

Back substituting gives 2c; = 0 or ¢3 = 0. From second row c; —c3 = 0. Hence c; = 0 and from
first row c¢; + ¢3 = 0, hence ¢; = 0. This shows that

eZt 0 e6t
xb) =2 |,x2() =], x* ) =] 0
0 641? e6t

Are linearly independent. Hence they form basis for the set of all solutions for the system

given above.

2.6.5 Section 3.5, problem 6

Compute the determinant of

2 -1 6 3
1 0 1 -1
1 3 0 2
1 -1 1 0
Solution
2 -1 6
0 1 -1 1 1 -1 1 0 -1 1 0 1
1 0 1 -
1 3 0 =23 0 2|+ 0 2]+6J1 3 2|-3|1 3 0 1)
-1 1 O 11 0 1 -1 0 1 -1 1
1 -1 1
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But
0 1 1
3 2 3 0
3 0 2|=0- -
-1 0 -1 1
-1 1 0
=-2-3
= -5 (2)
And
1 _
. o2l o] o
1ol |t of |1 o1
1
=-2+2-1
-1 (3)
And
1 0 -
2 2 1 3
1 3 = +0-
-1 0 1 -1
1 -1
=2-(-1-3)
= (4)
And
1 O
30 1 3
3 0= +0+
-1 1 1 -1
1 -1 1
=3+(-1-3)
-1 (5)

Substituting (2,3,4,5) into (1) gives

2 -1 6 3

1 0 1 -1 =2(-5)+(-1)+6(6) - 3(-1)
1 0

1 -1 1 0

=28
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2.6.6 Section 3.6, problem 10

Find the inverse if it exist of
cosf 0 —-sinf
A=] 0 1 0

sin@ 0 cos@

Solution
ATl = ﬁadi A" (1)
But
|A|=C0891 -0-sinf@]| . 1‘
cos 0 sin@ 0
= cos? 0 + sin? 6
=1 (2)
And
cos 6 0 —sin @
adj(A)=| 0  cos?0+sin’6 0
sin O 0 cos 0
cos@ 0 -sin@
= 0 1 0
sin@ 0 cos@
Hence
cos@ 0 sin6
adj(A"=] 0 1 0 3)

-sin® 0 cos0O
Substituting (2,3) into (1) gives
cos@ 0 sin@
Al = 0 1 0

—sin® 0 cosO
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2.6.7 Key solution for HW 5

MATH 4512 — DIFFERENTIAL EQUATIONS WITH APPLICATIONS
HW5 - SOLUTIONS

1. (Section 3.1 - Exercise 4) Convert the pair of second-order equations
d*y dz d*z dy
ST poy =0, 432 42:=0
ar a7 a Tt T

into a system of 4 first-order equations for the variables

1 =Y, T =1, T3 = %2, and Ty =z

Using new variables, differential equations can be expressed as

dr da
B2 4+ 22, =0, 30, 420, = 0.

dt dt
The system of differential equations with unknown functions x1, zs, x3, 24 is
oy _
a
dx
7752 = —211 - 31’4
dos _
a !
dz
dil;l = 73(1/‘2 - 213
The matrix form of this system is
0 1 0 O x1(t)
d -2 0 0 -3 xo(t
do_ w0, a=|
0 -3 -2 0 x4(t)
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2. (Section 3.2 - Exercise 4) Determine whether the set of all elements x = [z}, zo, 73] "
where x1 + x5 + x3 = 1 forms a vector space under the properties of vector addition

and scalar multiplication.

Let V denote the given set of vectors, i.e.
V= {.’,U = [xl>x27'r3]—r € RB LT +$2 +x3 = 1}

Consider vectors x,y € V where

0
T = and y=11
0
Since
1
r+y=|1|¢V,
0

we conclude that V' is not a vector space.
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3. (Section 3.3 - Exercise 16) Find a basis for R* which includes the vectors

1
and 3

We only need to find a vector z € R3 that is independent to given vectors. The choice

for x is not unique, and each student can get a different answer. For example, let

1
r= 10
0
A zero linear combination
1
| 1|+ 3|+ 0] =101,
0 4
implies
c1+cy+c3 0
c1 + 3¢y =10
4co 0

Then ¢; = 0, ¢; = 0 and ¢3 = 0. Thus, these three vectors are linearly independent

and form a basis for R3.
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4. (Section 3.4 - Exercise 6) For the differential equation

4 -2 2
z=1-1 3 1|z
1 -1 5

eZt 0 eﬁt
ol (t) = 2t 22 (t) = | e Pt)=10 |,
0 e4t e()t

are a basis for the set of all solutions.

In order to show linear independence of the solutions z!(t), z%(t), z3(t), it is sufficient

to prove that the vectors

are linearly independent. Their zero linear combination

1 0 1 0
a|ll|+e|1]|+e)| 0] =
0 1 1
implies
1+ c3 0
co+c | =10
cy +c3 0
Substituting ¢; = —cg and ¢ = —c3 into ¢ + ¢ = 0, we obtain —2¢3 = 0. Thus

c1 = ¢y = c3 = 0 and vectors x'(0), 2%(0), 23(0) are linearly independent.
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5. (Section 3.5 - Exercise 6) Compute the determinant of the matrix

2 -1 6 3
1 1 -1
1 0 2
1 -1 1 0

One of the ways to find the determinant of the given matrix is:

2 16 3 2 16 3
1 01 =1| pumy |1 01 —1
1 30 2 1 30 2
1 11 0 0 -1 0
2 6 3 2 —1 6
Alrowem 2|11 1 [+ 1 0 1
10 2 130

— —(4—6-3-12)+(—1418—6) =17+ 11 = 28.

ot
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6. (Section 3.6 - Exercise 10) Find the inverse, it is exists, of the given matrix

cos) 0 —sind
0 1 0

sinfd 0 cos@

Let
cosf 0 —sinf
A= 0 1 0
sinf 0 cos#
Then

cosf 0 —sinf
detA=] 0 1 0 =cos?f +sin?f =10,
sinf 0 cosf

and A~! exists. The cofactor matrix C for A is

1 0 0 0 0 1
+ — -
0 cosf sinf cos @ sinf 0
C_ 0 —sinf cosf) —sinf cos 0
B 0 cosé sinf cos6 sind 0
n 0 —sinf cosf) —sinf cost@ 0
1 0 0 0 0 1

[ cos® 0 —sind
0 1 0 = A.

| singd 0 cos@

Thus adjAd = CT = AT and

cosf@ 0 sinf

1
A7l = diA=AT =
detA ad 0 1 0

—sinf 0 cosf
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Local contents

2.7.1 Section 3.8, problem 12

Solve
3 1 -2 1
x=(-1 2 1 |x x(0)=|4
4 1 -3 -7
Solution

The first step is to find the eigenvalues. For this we need to solve
det(A-AI) =0

-1 2-A 1 |=0

4 1 -3-A

2-A 1 -1 1 -1 2-A
1 -3-A 4 -3-A 4 1

BG-MN(2-M)(3-1)-1)-(B+A)-4)-2(-1-42-A1))=0

A3—2A2-1+2=0

(G- A) - - =0

2.71 Section 3.8, problem 12| . . . .. ... ... .. .. L Lo oL oL
2.7.2  Section 3.9, problem 2 (complex roots)| . . . .. ... ... ... .. ...,
2.7.3  Section 3.10, problem 6 (Equal roots)| . . . . .. ... ... ... ......
[2.7.4  Keysolutionfor HW 6. . . . . ... ... ... ... .. .. ... ...

Guessing a root at A =1 is verified to be correct since 1 -2-1+2 = 0. Now that we know one

(13-2A2-7+2)

root, we can do long division =

factors to
AB-202-1+2=(A-1)(A2-A-2)
=(A-1)(A-2)(A+1)

Hence the eigenvalues are A, =1,1, =2,A3 = -1.
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For A =1

(A-AMDo =0
3-14 1 -2 (v 0
-1 2-A7 1 | =10
4 1 -3-A)\v; 0
3-1 1 -2 (v 0
-1 2-1 1 | =10
4 1 -3-1)\vs 0
2 1 =2\(vn 0
-1 1 1]|v|=]0
4 1 —4)\v;s 0

Let v; = 1. First equation gives 2 + v, —2v; = 0 and the second equation gives -1 +v, +v; = 0.
Subtracting gives 3 — 3v; = 0, giving v;3 = 1. Therefore v, = 0. Hence

1

v =10

1

For A, =2

(A=A 0% =0
3-14 1 -2 (2 0
-1 2-A7 1 v | =10
4 1 -3-A)\v; 0
3-2 1 -2 (v 0
-1 2-2 1 =10
4 1 -3-2)\vs 0
1 1 -2)(»n 0
-1 0 1 |{v]=]0
4 1 -5)\v; 0

Let v; = 1. Hence first equation gives 1 + v, — 2v; = 0 and second equation gives -1 + v3 = 0.
Therefore v; =1 and v, = 2v3 -1 =1. Hence
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For A3 = -1

(A-A3D)v° =0
3-A4 1 -2 01 0
-1 2-A 1 v, =10
4 1 -3-A)\vs 0
3+1 1 -2 \(v; 0
-1 2+1 1 =10
4 1 -3+1)\vs3 0
4 1 -2)(v 0
-1 3 1 {[vl=]0
4 1 -2)\v; 0

Let v; = 1. Hence first equation gives 4 + v, — 2v; = 0 and second equation gives -1 +

3v, + v3 = 0. Multiplying 4 + v, — 2v; = 0 by -3 and adding it to -1 + 3v, + v3 = 0 gives

(=12 = 3v, + 6v5 + (-1 + 30, + v3)) = 0 or =13+ 7v3 = 0 Hence v; = g Therefore v, = 2v3 -4 =
13

2
2 (7) -4 = —5- Hence

1

s | 2

v’ =|—--

¥

7

Therefore

1
xl (t) = eMip! =€t |0
1

1
¥ (t) = eM2to? = @2 |1
1

A3 (t) = M3ty = ot -2

Hence the general solution is

x (1) = eyl () + cx? (1) + c3x°3 (t)

1 1 1

= et | 0]+ cpe? 1]+ c3et| -2
1

1 1 -
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cret + cye® + czet
2
x(f) = cpe?t — ~Cae t
t 2t L 18 ¢
ci1e” + cre” + 7C3€

Initial conditions are now used to find cy, ¢y, c3. At t = 0 the above reduces to

1
x(0)=1]4
-7
C1+C+C3 1
Cy — §c3 =4
13
C1 + Cy + 7C3 -7
1 1 1 Cl 1
01 —3§ ol=]4
1
1 1 7 C3 -7
1 1 1
Gaussian elimination on [0 1 —§ 4 |. Replacing row 3 by row 3 - row 1 gives
1
1 - -7
1 1 1 1 1 1 1
2 2
13—; 4 —10 1 —6; 4
0 - -1)\-7-1 00 ; -8
Hence (1) becomes
1 1 1 C1 1
01 —2|le|=]4
00 )\ (-8

- .6 28
Back substitution gives Zc3 = -8, or ¢; = —=. From second row

C2—§C3:4~.
2
C2:4+§C3
2( 28)
= + —-|——
7\ 3
4
-3
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From first row

C1+02+C3:1

C1:1—C2—C3

Using the above values of ¢y, ¢y, c3, Eq (A) becomes

Therefore

x(t) =

cret + cpe?t + cye”t
2
cpe?t — ~c3e”!
t 2t 13 ¢
c1€" + ™ + 7C3€

9et 4 2p2t _ Bt

45 2 28\
e - -=e
3 7( 33

4 13 (28
9¢' + 2e* + — (——) et

3
4 28 _
9¢! + 53” - e t
4 8 _
—e? + Zet
4 52
t 2t ¢
4+ -2t -2
9e 3¢ 3¢
28

x1 (H) = 9ef + geZt - Ee‘t

4 8
Xy (1) = =e? + ¢!

3 3
52

4
x5 (t) = 9et + —e?t — —¢t

3 3

2.7.2 Section 3.9, problem 2 (complex roots)

Find general solution of

Solution

1 50
x=|1 -3 0]|x
0 0 1
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The first step is to find the eigenvalues. For this we need to solve

det (A—AD) =0
1-A -5 0
3-1 0 |=0
0 0 1-2
-3-1 0 1 0
1-1) + =0
0 1-A “fo 1-2

1-A)((-3-A)1-A)+51-A)=0
Factoring (1 - A) gives
1-A)((-3-A)1-A)+5)=0
(1-21)(A2+210-3+5)=0
1-21)(A2+210+2)=0
Hence one root is A; = 1. Now we find roots of (/\2 +2A+2). A= -

1+ 2VA-4(2) = -1+ ;V-4. Hence

A=-1+i
Therefore the roots are
A =1
Ay =—=1+1
Ayg=-1-i
For A =1
(A-ADo' =0
1-A -5 0 2 0
1 -3-\ 0 v =10
0 0 1-A1)\vs 0
1-1 -5 0 (v 0
1 -3-1 0 [[o=]0
0 0 1-1)\v; 0
0 -5 0)(v; 0
1 -4 0f]lvy|=10
0 0 0)\vs 0

Hence v3 is arbitrary, say v3 = 1. And v, = 0 from first equation. And from second equation
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v, = 0. Therefore

0
vl =10
1
Hence
xt (t) = ehito!
0
=e0
1
For Ay = -1 +i
(A=A, D)% =0
1-1, -5 0 (o) (0
1 =3-4, 0 |lo|=]0
0 0 1-M,J)les) o
1-(-1+9) 5 0 o) (0
1 -3-(-1+1) 0 v, | =10
0 0 1-(1+9)los) |0
2-i =5 0 \(vy) (0
1 —2-i 0 |lo]=]0
o o 2-ilos) lo

From last equation v; = 0. from second equation v; = (2 + i) v,. Hence

+1)v, 2+1
v? = %) =0v,| 1
0 0
Choosing v, =1 the above becomes
2+1
=1
0
Hence
2+1
xﬁz () = eMatg? = 14t q
0

Since this is complex root, we will now find the real and imaginary parts of the above, and
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use these to generate x? (f),x° (t) from the above.

2+1 2+1i
e(—1+i)t 1 — e—teit 1
0 0

2+1

=ef(cost +isint)| 1

0
241
(e‘tcost+ie‘tsint) 1
0

(e‘t cost + iefsin t) (2 +1)
= (e‘t cost +ie~f sin t)

0
2¢~tcost +ietcost + 2ie T sint — et sint
= etcost+ietsint

0

(Ze‘t cost—etsin t) +1i (e‘t cost +2etsin t)
= e~tcost +ietsint
0

The real of the above is
2¢cost—e!sint
X2 (1) = etcost
0
And imaginary part is
etcost +2e ! sint
X3 (1) = etsint
0
We have now obtain the three eigenvectors we want. Hence the general solution is

x (t) = eyl (1) + cx? (F) + 323 (t)

0 2cost—sint cost+2sint
=cet|0]+ cpe cost + cze”t sint
1 0 0
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2.7.3 Section 3.10, problem 6 (Equal roots)

Solve
-4 -4 0 2
x=[10 9 1]|x, x(0)=]1
-4 -3 1 -1
Solution

The first step is to find the eigenvalues. For this we need to solve

det(A-AI) =0
-4-1 -4 0
10 9-4 1 |=0
-4 -3 1-A
(—4—/\)9_/\ 1 4 10 1 ~0
-3 1-A -4 1-A
(-4-1)(O-N)A-1)+3)+4(10)(1-1)+4) =0
A-2°=0
Hence root is A = 2 of multiplicity 3.
To eigenvectors we start as before, using A = 2.
(A-ADol =0
-4-A -4 0 )(n 0
10 9-4 1 [lo]=]0
4 3 1-AJlwy) |0
—4-2 -4 0 \(v) (O
10 9-2 1 ||lw|=|o0
4 -3 1-2)ly) lo
-6 -4 0)(v 0
10 7 1||vw|=|o
-4 -3 -1)\v; 0

Now we check if the eigenvalue is complete or defective. Using the first 2 rows we obtain

—601 - 402 =0
1001 + 72)2 + 03 = 0

Solving gives v; = 2v3,v, = —3v;. Hence

4] 27)3 2
Oy | = —303 =03|-3
(%] (%] 1
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Choosing v; =1 gives

Lets see now if we can obtain another linearly independent eigenvector. Using the first row
and the third row

—-6v; —4v, =0
—4v1 -30, -3 =0
Solving gives v; = 2v;3,v, = =3v;. Which is the same as the one found above. Finally using
the second and third row
1001 + 70, +v3 =0
—4v1 =30, -3 =0
Solving gives v; = 2v;,v, = —3v; which is the same as above. So the eigenvalue 2 is defective.
2
xt(t) = e*|-3
1

Since the eigenvalue is defective, to find the second and third eigenvectors we do the following.
To find v?. We need to solve

(A-AD*v? =0 1)
-6 4 0
But A-AI=110 7 1 |from earlier. Hence
4 -3 -1

-6 -4 0)(-6 -4 0
(A-A*=[10 7 1|10 7 1
4 -3 -1)l-4 -3 -1

-4 -4 -4
=6 6 6
-2 -2 =2

Therefore (1) becomes
-4 -4 —-4)\(v, 0
6 6 6 |lvl=]0
-2 2 =2Jlw;) o

Using the first equation —4v, — 4v, — 4v3 = 0 or equivalently v; + v, + v3 = 0. Therefore
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v = —v, —v3. Hence

U1
7)2 =102
U3
—Uy — U3
U3
-1 -1
=01 |+v3]0
0 1
Taking v, =1,v3 = 0 gives
-1
=1
0

-6 -4 0)\(-1 2

Let us check the above choice is valid: (A-A)v>=[10 7 1 || 1 |=|-3| which is not
-4 -3 -1J\0 1

zero. Good, so we can use it. Therefore

2 (1) = M (v + H(A - ADv?)

-1 -6 -4 0)(-1
=21 |+tl10 7 1 1
0 -4 -3 -1J\0
-1 2
=21 |+¢t]|-3
0 1
-1+ 2¢
=t 1-3¢
t

Now we find the third eigenvector v>. We need to solve

(A= A% 0% =0 1)
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-4 -4 -4
But (A - AI)2 =16 6 6 |from earlier. Hence
-2 -2 2

-4 -4 -4\(-6 -4 0
A-AD°=]|6 6 6|l10 7 1
2 2 2)\-4 -3 41

000
=10 0 0
000
1
Therefore v5 is arbitrary as long as (A—Al)>vs # 0. Let us pick v; = [0|. Checking this
0

-4 -4 -4)\(1 -4
choiceisvalid:[ 6 6 6 ||0|=]| 6 |. Not zero. Good, so we can use it. Therefore
-2 -2 =2J\0 -2

2
x3(t) = eM (713 +t(A-ADv° + 5 (A - AI)? 03)

1 —6—401t2—4—4—41
=e2|lol+t[10 7 1 o+56 6 6|0
0 -4 -3 -1)\0 -2 -2 =22Jlo
1 -6 2 -4
=e2(lo|+t]|10 +3 6
0 -4 -2
1 -6t — 22
=e%| 10t + 32
—4f — {2

Therefore the general solution is

x(t) = cixl (1) + cox® (1) + 323 (1)

2 -1+2t 1—6t -2t
=c16? | =3 |+ cpe?| 1-3t |+ c3e?| 10t + 312
1 t —4t — 12

)
i (_3C L+ 0o (1=3) +cs (10t + 3t2))
e2t (C1 +tcy + 3 (-4.1' - tz))
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Now we find ¢; from initial conditions. At t =0

2 2 -1 1
1|=c|-3|+c| 1 |+c3]0
-1 1 1 0
2c1 —Cy+c3
=| -3c;+0
€1

2 -1 1)(¢) (2
3 1 0|le
1 0 0 C3 -1

(2)

From last row, ¢; = —1. From second row -3¢; + ¢, =1, hence ¢, =1 -3 = -2. From first row
2c1 — ¢y + ¢c3 =2, hence c; =2 -2+ 2 = 2. Therefore the general solution becomes

x(t) = et () + o () + c3x° (F)

2 —1+2t 1—6f—22
=2 -3|-2e2| 1 -3¢ | +2¢%| 10t + 32
1 t —4f — 12

—2-2(-1+2) +2(1- 6t -212)

=e|  3-2(1-3t)+2(10t +3¢2)
—1-2t+2(-4t - 12)

—4t% — 16t + 2

=e?| 612 + 26t +1

212 —10t -1

xp () = e (~412 - 16t +2)
Xy (t) = e (612 + 26t +1)
x3(t) = e (-22 - 10t - 1)

This is a plot of the solutions. The solutions all blow up in time due to positive exponential
terms.
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150 F X2(t)
100
50

1 — 1 1 1 tlme
0.2 0.4 6 0.8 1.0

-50F

-100} x3(t)

x1(t)

Figure 2.16: Plot of the solutions above
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2.7.4 Key solution for HW 6

MATH 4512 — DIFFERENTIAL EQUATIONS WITH APPLICATIONS
HW6 - SOLUTIONS

1. (Section 3.8 - Exercise 12) Solve the given initial-value problem

31 =2 1
)= -1 2 1| z(t), z(0) = 4
4 1 -3 -7

The characteristic polynomial of the system matrix

31 =2
A= -1 2 1
4 1 -3
is
3—A 1 -2
det(A — M) = det -1 2—-2A 1

4 1 =3-A

=(B-N)2-A)(-3-XN)+4+2+82-X)—(3-A) —(3+A)
—(2-A)A2=9)+16 -8\ = (2—A)(A\2—9+8)
—2-NA-1DA+1).

The eigenvalues of the matrix A are A\; = 2, A\ = 1 and A3 = —1. Let v’ denote an
eigenvector that corresponds to A;, i = 1,2, 3.

The general solution z(t) will be of the form
o(t) = 1@t (t) + ez (t) + c32°(2),
where ¢y, ¢o, c3 are arbitrary constants, and z(t) = eMvt, i = 1,2, 3.

First we will find a vector v! and z!(t). From (A — A I)v = (A —2I)v = 0, we obtain

1 1 -2 (%1 0
-1 0 1 v | =10
4 1 =5 V3 0

The second equation is —v; + v3 = 0, i.e. vy = v3. Using this property, the first
equation vy + v — 2v3 = 0 reduces to v — v; = 0. Thus vy = v;. The vector v has

the form
V1 1
v = (%1 =V 1
(%1 1

For the eigenvector v! we can choose [1,1,1]T. Then

1
() =Myl = | 1
1
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Now we proceed with finding a vector v? and x2(t). From (A —Xol)v = (A—1)v =0,

we obtain
2 1 =2 v 0
-1 1 1 vg | =10
4 1 —4 V3 0

Multiplying the first equation 2v; + v — 2v3 = 0 by —1 and adding to the second
equation —v; + v9 + v3 = 0 leads to —3v; + 3v3 = 0. Then v; = v3. This relation
implies v = 0. Now the vector v has the form

U1 1
v=1] 0 | =v, |0
U1 1

For the eigenvector v? we can choose [1,0,1]". Then

1
22 (t) =Mt =¢' | 0
1

At the end we will find a vector v* and z3(t). From (A — \3)v = (A+ I)v =0, we

obtain
4 1 -2 U1 0
-1 3 1 vo | =10
4 1 =2 Vs 0

Multiplying the second equation —v; + 3vy + v3 = 0 by 2 and adding to the first
equation 4v; + vg — 2v3 = 0 leads to 2v; + Tvy = 0. Then vy = —Tvy/2. Using this

relation in the second equation, we find v3 = v; — 3vy = —13wv9/2. The vector v has
the form
1, _1
272 2
v = (%) = Vg 1
_EUQ _g

].
:
|

_T
2
v=—2 1| =
_13
2
Then

7
() =M =et | =2
13

1 1 7
z(t)=ce® | 1| +ee’ | 0| et | =2
1 1 13

2
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Initial condition implies

1 1 1 7 c1 + Co + 7(33
41 =20)=c | 1 |+c| 0|+ | -2 ]| = c1 — 2c¢3
-7 1 1 13 c1+ ¢+ 1363

Subtracting first and third equation gives 6c; = —8, and consequently ¢3 = —4/3.
From the second equation it follows ¢; = 2c34+4 = 4/3. Finally, co = 1—¢; —7c3 = 9.
The solution of the initial-value problem is

1 1 7

4 4
w(t)=-e* | 1 | +9" | 0| —-e'| =2
3 1 1] 3 13
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2. (Section 3.9 - Exercise 2) Find the general solution of the given system of differential

equations
1 -5 0
zt)y=11 =3 0 | z(t)
0 0 1

The characteristic polynomial of the system matrix

1 -5 0
A=1]1 =30
0 01
is
1—A -5 0
det(A — AI) = det 1 -3-2A\ 0
0 01—

=(1=X*(=3=N)+51—=X)=(1=XA(=3+2\+ )\ +5)
=1 =N\ +2)1+2).
The eigenvalues of the matrix A are \y =1, Ay = —1+4+7¢and \3 = -1 —1.

In order to find z*(t), we proceed as in the previous exercise. We start from solving
(A=—MDv=(A-1Tv =0, ie.

0 -5 0 U1 0
1 -4 0 vy | =10
0 00 U3 0

From the first equation we obtain vy = 0, while from the second v; —4vs = 0 it follows
v; = 0. Thus the vector v has the form

0 0
v = 0 = U3 0
Vs 1

For the eigenvector v! we can choose [0,0,1]T. Then

0
o) =Ml =e' | 0
1

Other eigenvalues of the matrix A are complex. In order to obtain two remaining
linearly independent real solutions x?(t) and z3(¢), it is sufficient to consider Ay =
—1+44. We first find a complex vector v that solves (A — AoI)v = 0, i.e.

2—1 -5 0 vy 0
1 —2—1 0 vy | =10
0 0 2—1 U3 0

4
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From the last equation we obtain v3 = 0, while from the second it follows v; = (2+17)vs.
A complex eigenvector v that corresponds to Ay = i has the form

(2 + i)’Uz 241
v = (%) = Uy 1
i 0 0
A complex-valued solution is
[ 24 2+
B(t) = e 71+ 1 | =e’(cost+isint) 1
i 0 0
[ (2cost —sint) +i(2sint + cost)
=e! cost +isint
i 0
[ 2cost —sint 2sint 4 cost
=e! cost | +ie”" sint
i 0 0
Now,
2cost —sint 2sint + cost
2ty =e" cost |, 2*(t)=e" sint |,
0 0

and the general solution has the form

2(t) = ot (t) + cor®(t) + cs2®(t)

0 2cost —sint 2sint + cost
=cet | 0| 4+ cet cost | +czet sint
1 0 0
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3. (Section 3.10 - Exercise 6) Solve the initial-value problem

-4 -4 0 2
)= 10 9 1 | z(¢), z(0) = 1
-4 -3 1 -1

The characteristic polynomial of the system matrix

-4 -4 0
A= 10 9 1
-4 -3 1

is
—4 — )\ —4 0
det(A — M) = det 10 9— A\ 1
—4 -3 1—A

= —(4+NO=N(1 =) +16—-3(4+A)+40(1 —\) = (2— N>
The eigenvalue of the matrix A is A = 2.

In order to find z'(t), we start from solving (A — A\ )v = (A — 2I)v =0, i.e.

-6 —4 0 U1 0
10 7 1 V2 = 0
-4 -3 -1 U3 0

From the first equation —6v; — 4vy = 0 we obtain v, = —3v; /2, which together with
the last equation —4v; — 3vg — v3 = 0 implies vy = —4v; + 9v1/2 = v1 /2. The vector
v has the form

U1 1
v = —31}1/2 = —3/2
/2 1/2
For the eigenvector we can choose 2[1,—3/2,1/2]" = [2,—3,1]". Then
2
o) =e* | -3
1

Now we will find 2%(¢). First we need to find a vector v such that
(A=20)*v=0 and (A—2I)v#0.

This implies that v needs to satisfy
2

-6 —4 0 U1 -4 —4 -4 U1 0

0 7 1 vy | = 6 6 6 v | =10

-4 -3 -1 U3 -2 -2 =2 Vs 0
6
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which is equivalent to v; 4+ vy + v3 = 0. The condition (A — 2I)v # 0 is

—6 —4 0 (% —67]1 — 41)2 0
10 7 1 vg | = | 100+ Tve4+wv3 | # | 0
-4 -3 -1 (R} —4”()1 - 3U2 — Vs 0
We can choose v = [1,0,—1]". Then
1 —6 —6t+1
2 (t) = *(v + t(A — 21 )v) = &* 0| +t]| 9]]=¢ 9t
-1 -3 —3t—1

It remains to determine z*(¢). First we need to find a vector v such that
(A=20*v=0 and  (A—2I)% #0.

Calculation shows the matrix (A — 27)3 is a zero matrix. Then any vector v with the
property vy + vy + v3 # 0 can be used to generate z°(t). Let v = [1,0,0]T. Then
(A—2@w=[-6,10,-4]", (A —2I)*v = [-4,6,—-2]" and

3 (t) = e* (v +t(A—20)v+ g(A - 2[)21))

1 —6 | -2 —2t2 —6t+1
=% 0| +¢t]| 10 | +¢ 3 =% 3t2 + 10¢
0 —4 | -1 —t2 — 4¢

The general solution is

2 [ —6t+1 —2t* — 6t + 1
o(t) = ce® | =3 | 4 cpe* ot + cze® 3t2 4+ 10t
1 | -3t -1 —t* — 4t
From the initial condition z(0) = [2,1, —1]" we get
2 2 1 1
1 =C -3 + Co 0 + c3 0
-1 1 -1 0
Then equating second components from both sides we obtain —3¢; =1, ¢; = —1/3.

The last equation —1 = ¢; — ¢y results in ¢3 = ¢;4+1 = 2/3. Finally, ¢ = 2—2¢;—cy =
2. The final solution is

1 2 9 —6t+1 —2t2 — 6t +1
a(t) = —ze? | =3 | + ¥ 9t +2e% | 3t2 410t
3 1 3 —3t—1 2 4t
—4t2 — 16t 4+ 2
=e? | 6t2+26t+1
—2t2 10t — 1
7
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2.8.1 Section 4.1, problem 6 (page 377)

find all equilibrium values of the given system of differential equations.

dx—cos

ar %Y

d

d—]l{ =sinx-1

solution

t
The system can be written as x(f) = f(x(t)), where x () = x(®) and f = ‘COS]/ . Equilib-
y(t) sinx -1

. . : cosy 0 I .
rium points are solution to | 1 =| | This gives two equations to solve
sinx —
cosy =0
sinx-1=0
The first equation has solution y = g +2nm for all integer n values. And the second equation

is sinx = 1 which has solution x = g + 2nm for all integer n values. Since we want both
components of f to be zero for equilibrium, then the common values that makes both zero
at the same values is given by

{x,y] = g +2nm

For all integer n. Here is partial list of values [x,y} = { ,—Zn,—gn, g, gn, gn, } At any

0
one of such values f = [ 'cosy ) = ( )
sinx -1 0
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2.8.2 Section 4.1, problem 8

find all equilibrium values of the given system of differential equations.

dx )
@Y
dy )
T
d
d_j =e*—x
solution
We need to find values of x, y,z which solves
x-y?>=0
x>-y=0
ec—x=0

From the first equation x = 2. From the third equation ¢ = x or z = Inx. A solution that
satisfies all these is

x=1
y=1
z=0

At the above values the system is in equilibrium. No other real solutions exist.

2.8.3 Section 4.2, problem 9

Determine the stability or instability of all solutions of the following systems of differential
equations

|

N
o O o PN
S N O O

solution

The stability is determined from the eigenvalues. Therefore we need to find the eigenvalues
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of A first.

A=Al =0

-A 2 0 0

-2 -A 0 0
0 0 -4 2|

0 0 -2 -A

-A 0 0 -2 0 0
-Al0 -A 2|-2]0 -A 2]|=0

0 -2 -A 0o -2 -A

—A(-A (A2 +4))-2(-2(A2+4)) =0
A2(A2+4)+4(A2+4)=0
(A2+4)(A2+4)=0

Hence roots are

Ao =2i multiplicity 2

Azq = =2i multiplicity 2
The real part is zero for all the above 4 eigenvalues. Since the real part is zero, then to check
if it is stable, we need to check if the eigenvalue 2i and —2i are defective or not. A defective
eigenvalue is one which generates n linearly independent vectors where 7 is less than the
multiplicity of the eigenvalue. So basically we need to find the eigenvectors associated with

A = 2i and see if we obtain 2 linearly independent eigenvectors or not. If we obtain only one
eigenvector, then the system is not stable. Same for A = -2i.

Case A =2i

-A 2 0 0)(n
-2 -A 0 0]y
0 0 -A 2||ov;

0 0 -2 -A)\y
-2i 2 0 0)(»n
-2 =2i 0 0 [|ov
0 0 -2i 2 ||o;
0 0 -2 -=2i)\v, 0

o O ©O O O o O

The first two rows give same information, which is —2v; - 2iv, = 0. Or v; = —iv,. Row 3 and
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4 also give same information, which is —2v; — 2iv, = 0 or v3 = —iv,. Hence the eigenvector is

01 —iUZ —1 0
Ua| | 02 | 1 0
= . [Fo LY
U3 —10y 0 —i
Uy U4 0 1

Hence we found two linearly independent eigenvector associated with A = 2i which is the
same number as the multiplicity which is 2. Hence this eigenvalue is not defective. Therefore
stable eigenvalue. Now we check for the other eigenvalue A = -2i using same method.

Case A = -2i

-A 2 0 0)(n
-2 -A 0 0 [|o
0 0 -A 2||ovs
0 0 -2 -A)\y
2i 2 0 0)(on
-2 2i 0 0||v,

0 0 2 2||vs

0 0 -2 2i)\v, 0

O O O O o o O

The first two rows give same information, which is —2v; + 2iv, = 0. Or v; = iv,. Row 3 and 4
also give same information, which is —2v; + 2iv, = 0 or v; = iv,. Hence the eigenvector is

01 i?]z 1 0
(%) (%) 1 0

=l. [T 02| | T04).
U3 10y 0 [
(D Uy 0 1

Hence we found two linearly independent eigenvector associated with A = —2i which is the
same number as the multiplicity which is 2. Hence this eigenvalue is not defective. Therefore
stable eigenvalue.

In summary, the eigenvalues are {27, 2i, -2i,-2i} and the associated eigenvectors are

A=2i A==2i
~i) (0Y (i) (0
of|1]]o
1-i[ |o|'|

1) (o) 1

Therefore the system is stable.
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2.8.4 Section 4.2, problem 10

Determine the stability or instability of all solutions of the following systems of differential
equations

021 0
|20 0 1
X = X
00 0 2

0 -2 0

solution

The stability is determined from the eigenvalues. Therefore we need to find the eigenvalues
of A first.

A=Al =0
A2 1 0
2 -1 0 1
0o 0 -a 2|7
0 0 -2 -A
A0 1] |2 0 1| |2 -4 1
Alo -4 2|-2|0 -a 2[+|o o 2|=0
0 2 <A |o =2 <Al o 0o -a

-A 2
+
-2 -A

0 —A] ( A 2] o -A
-2|-2 +

0 -2 2 Al o -2

~A(-A (A2 +4)+0)-2(-2(A2+4)+0) =0

AZ(A2+4)+4(A2+4):0

(A2+4)(A2+4):0

A (_A

]-2(0):0

Hence the eigenvalues are the same as last problem.
Ao =2i multiplicity 2
Agq=—2i multiplicity 2
The real part is zero for all the above 4 eigenvalues. Since the real part is zero, then to check

if it is stable, we need to check if the eigenvalue 2i and —2i are defective or not.

A defective eigenvalue is one which generates n linearly independent vectors where 7 is
less than the multiplicity of the eigenvalue. So basically we need to find the eigenvectors
associated with A = 27 and see if we obtain 2 linearly independent eigenvectors or not. If we
obtain only one eigenvector, then the system is not stable. Same for A = -2i.
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Case A =2i
-A 2 1 0\(»n 0
-2 -A 0 1[|o| |[O
0 0 -1 2|lus| [0
0 0 -2 -A)ly 0
-2i 2 1 0)(n 0
-2 -2 0 1 ||| |[O
0 0 -2i 2]|lvs| |0
0 0 -2 -2i)\u, 0
Hence
—2iv; + 201 +v3 =0
—201 —2ivy, + vy =0
—2iv3 + 20, =0
—2v3 —2ivy =0
Third and fourth equations gives same information which is —2v; = 2ivy or v; = —iv,.

Substituting this into first two equations gives
—2ivy +2v; —ivy =0
—2v1 —2ivy, + vy =0
Multiplying second equation by —i and adding the two equations gives —2iv, = 0. Hence
vy = 0, which implies v3 = 0. Therefore the above reduces to
—2iv; + 201 =0
—201 = 2iv, =0
These two equations give the same information which is —2v; = 2iv, or v; = —iv,. Therefore
the eigenvector is

(4] —ivz —i

Uy (%] 1
= =70y

(%] 0 0

Uy 0 0

So only one eigenvector was found. But the multiplicity of the eigenvalue is two. Hence

this eigenvalue is defective. Therefore the system is unstable. No need to check the second
eigenvalue because if one eigenvalue with zero real part is defective then that is enough to
make the system unstable.
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2.8.5 Section 4.3, problem 8

Verify that the origin is an equilibrium point of each of the following systems of equations
and determine, if possible, whether it is stable or unstable.

X=y+cosy-1
¥ =-sinx+x°
solution
At x =0,y = 0 the above becomes
=0
=0
Hence origin (0,0) is equilibrium point. To check if it is stable equilibrium or not, we find
the Jacobian matrix, evaluate it at the origin and check the eigenvalues that results. The

Jacobian is
] _ 33.5 ay _ 0 1- smy
%% —cosx + 2x2 0

dx dy

o0t
©O7 o

p(A) =1 - All = det [j

At x =0,y = 0 the above becomes

Hence

1
]:A2+1:0

Therefore A = +i. The real part is zero. Since this is a nonlinear system, then we are

not able to determine the stability of equilibrium at the origin.

2.8.6 Section 4.3, problem 10

Verify that the origin is an equilibrium point of each of the following systems of equations
and determine, if possible, whether it is stable or unstable.

x:ln(l +x+y2)

y=-y+x
Solution
At x = 0,y = 0 the above becomes
=0
=0

Hence origin (0,0) is equilibrium point. To check if it is stable equilibrium or not, we find
the Jacobian matrix, evaluate it at the origin and check the eigenvalues that results. The
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Jacobian is

A A T
dx d 2 2
]—[% 3% 1;;/ Lf?
At x =0,y = 0 the above becomes
|10
Jo,0 = 0 -1
Hence
pA)=1]-All
:detf"_A 1 ]
0 -1-A
=1-A)(-1-2)
=-1-A+A+A?

=A2-1

|

Hence eigenvalues are A = +1. Since one of the eigenvalues is positive, the origin is

not a stable equilibrium point.
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2.8.7 Key solution for HW 7

MATH 4512 — DIFFERENTIAL EQUATIONS WITH APPLICATIONS
HWT7 - SOLUTIONS

1. (Section 4.1 - Exercise 6) Find all equilibrium values of the given system of differ-
ential equations

dv .

7 = cosy

d/
d—‘z:sinx—l.

Equilibrium values are solutions to the system of nonlinear equations
cosy =0
sinz —1=0.
Solutions of the first equation cosy = 0 are the points
yz=g+l7r, leZ,
while solutions of the second equation sinz — 1 = 0 are

:ck.:ngka keZ.

Equilibrium points of this system are
(x> y1), kleZ.
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2. (Section 4.1 - Exercise 8) Find all equilibrium values of the given system of differ-

ential equations

dz 9
aw Y
.
a ¢

Equilibrium values are solutions to the system of nonlinear equations

r—y* =0
2 —y=0
e —x=0.

From x = y? we obtain y* — y = 0. Real solutions of this equation are

y1207

y2:1.

Then z; = y? = 0 and 2o = y3 = 1. Notice that there is no value 2; such that
e” = x; = 0, while z, = 0, where e*> = x5 = 1. Therefore, the only equilibrium point

is
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3. (Section 4.2 - Exercise 9) Determine the stability or instability of all solutions of
the following system of differential equations

02 00
. |20 00| |
Tl oo 02"
00 —-20
The characteristic polynomial of the system matrix
02 00
-2 0 00
A= 00 0 2
00 —-20
is
-A 2 0 0
-2 =X 0 0
det(A — X)) = 0 0 -\ 2
0 0 —2 =\
-A 0 0 -2 0 0
=DM 0 = 2 [ F2(=DM 0 =X 2
0 -2 =X 0 —2 =X

= A=A —4)) —2(=202 = 8) = N2(A2 +4) +4(\ +4) = (\? +4)2
For finding this determinant we used first-row element expansion.

The eigenvalues of the matrix A are A\ = 2i, Ay = —2i, both with multiplicity 2. It
remains to check the number of linearly independent eigenvectors for each A\; and .

First consider the system (A — A\ I)v =0, ie.

—2i 2 0 0][wn 0
—2 =2 0 0| |wl|_|o
0 0 -2 2| |w| |0
0 0 —2 —2 || v 0

From the first equation we obtain —2ivy + 2v9 = 0, and vy = tvy, while from the third
—2iv3 + 2v4 = 0 it follows vy = iv3. Thus every eigenvector v has the form

U1 1 0

o Z"Ul _ 1 0
v = V3 = 0 + vs 1
Z"U3 0 )
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Notice that

1 0
) 0
0 and 1
0 )

are linearly independent eigenvectors for \; = 2i that generate all other eigenvec-
tors. Since the multiplicity of A; is the same as the number of linearly independent
eigenvectors, we proceed with analysis of the second eigenvalue.

Consider the system (A — Ao2l)v =0, i.e.

222 0 0 (1
-2 2 0 0 Vg
0 0 2 2 V3

0 0 -2 2 Uy

From the second equation —2v; + 2iv, = 0 we obtain v; = v, while from the last
equation —2vs + 2ivy = 0 it follows vs = ivy. Thus every eigenvector v has the form

|
cooco

iv2 ) 0
v | 1 0
VS | T 0| TV
Vg 0 1
Similarly to previous case, vectors
1 0
1 0
0 and ;
0 1
are linearly independent eigenvectors for Ay = —2i that generate all other eigenvec-

tors.

Since the multiplicity of each A\; and A, is the same as the number of corresponding
linearly independent eigenvectors, we conclude that every solution of the starting
system of DEs is stable.
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4. (Section 4.2 - Exercise 10) Determine the stability or instability of all solutions of
the following system of differential equations

02 10
. |20 01
Y1 o0 02"
00 -20
The characteristic polynomial of the system matrix
02 10
-2 0 01
A=1 00 02
00 —-20
is
-2 2 1 0
-2 = 0 1
det(A — \I) = 0 0 -\ 2
0 0 —2 =\
= 0 1 2 1 0
= (=D 0 =X 2 [+ (=2)(=DF 0 a2
0 —2 =X 0 —2 =X

= A=A =4\ + 20202 +8) = A2(A2 +4) +4(N2 +4) = (A2 +4)2
For finding this determinant we used first-column element expansion.

Eigenvectors for Ay = 2i solve (A — A\ I)v =0, i.e.

—2i 2 1 0 V1 0
-2 =2 0 1 vo | |0
0 0 —2i 2 v3 |~ |0
0 0 -2 —2i Uy 0
The third equation —2iv3 + 2v4 = 0 implies vy = iv3. The second equation can be

written as
0 = —2v; — 2ivg + vy = —2v; — 20V + vz = —i(—2iv] + 209 — v3).

Combining the last relation with the first equation —2iv; + 2vy + v3 = 0, we obtain
v3 = 0. Consequently v4 = 0 and vy = iv;. Every eigenvector v corresponding to
A1 = 2i can be represented as

(%1 1
_ Z"l)l . )
o | to
0 0

Since the number of linearly independent eigenvectors is smaller than the multiplicity
2 of A1, we conclude that every solution of the starting system of DEs is unstable.

5
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5. (Section 4.3 - Exercise 8) Verify that the origin is an equilibrium point of the
following system of equations

T=y+cosy—1
y = —sinz + z°

and determine (if possible) whether it is stable or unstable.

Vector [0,0]" is obviously an equilibrium point of this system.

First approach.
From the expansions

JRCR.
smx:x—g—i—a—u-
2 4
Yy
coayf1—§+ﬂ—
we can write down @ =y 4+ cosy — 1, and § = 2® — sinz, as
2 4
Y )
t=y =Gt =yt a)
3 5
T A D
y=x"—x+ T x + go(x)

Then

MR EHEFE

The characteristic polynomial of the previous matrix is

_ -2 1] s
p(/\)—det{_l _/\}—/\ + 1.
Since its roots A\ = 7, Ay = —1, both have zero real part, we cannot determine whether

the vector [0,0]" is stable or not.
(At this point of the course, we can only apply the theory from Sections 4.1-4.3).

Second approach.
Let fi(z,y) = y+cosy — 1 and fo(x,y) = —sinz + 2°. The Jacobian matrix for
nonlinear vector-valued function

_ fl(xv y)
fy) = [ fa(z,9)
evaluated at the equilibrium point [0,0]" is
of1 N
- 830(0’0) Ay (0.0) B { 0 1 —siny B 01
| 0fq O fs | —cosx + 32? 0 powo L1 O]
%(0, 0) @(07 0) Y

We obtained the same matrix and we can proceed as in the first approach.
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6. (Section 4.3 - Exercise 10) Verify that the origin is an equilibrium point of the
following system of equations

i =In(l+x+y?)
y=-y+a’

and determine (if possible) whether it is stable or unstable.

Again the vector [0,0]" is obviously an equilibrium point of this system.

First approach.
Here we will use expansion

(z+y°)°  (@+y°)°

In(l+z+y%) =2+y> - 5 + 3
Then
x| (1 0 x| g(x,y)
gyl |0 —1 y 23 ’
where ( 0 23
r+y Tty
gy =y’ -5
The characteristic polynomial of the previous matrix is

p()\):det{l_é _1_2} — (1= N1+ ).

Since one eigenvalue of A has positive real part, the equilibrium value [0,0]" for this
system is unstable.

Second approach.
Let fi(x,y) = In(14+2+y?) and fo(x,y) = —y+2*. The Jacobian matrix for nonlinear
vector-valued function _
x?
flay) = | 10Y) }

L fQ(‘Tvy)

evaluated at the equilibrium point [0,0]" is

oo ool [ 2
A= 3; 8;/ =| l+z+y> 1+a+y?
2 2 2
EZ TR B T e

Lo,

We obtained the same matrix and we can proceed as in the first approach.
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2.9.1 Section 4.4, problem 1

In each of Problems I-3, verify that x(t), y(t) is a solution of the given system of equations,
and find its orbit.

x=1
7=2(-x)sin ((1 - x)z)
x(H) =1+t
y(t) = cos (tz)
solution
Since x (t) =1 + t then & = 1. Verified OK. And since y (t) = cos (tz) then i = —2tsin (tz). But
t=x-1, hence y = -2(x - 1)sin ((1 - x)z) or
7=2(1-x)sin ((1 - x)z)

Verified OK. Both solutions verified. Now we need to find system orbit. The Orbit is given
by the equation

dy g(vy)
dx f (x, y)
When we write the given system in the following form
©=f(xy)
y=8(xy)
We see now that f (x, y) =landg (x, y) =2(1—-x)sin ((1 - x)z). Therefore
dy 2(1-x)sin ((1 - x)z)

dx 1
=2(1-x)sin ((1 - x)z)
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This is first order ODE. Since separable, we can solve it by integration
y(x) = f2(1 —x)sin ((1 - x)z) dx

Letu=(1- x)z, then Z—Z =2(1-x)(-1) = -2/u. Substituting in the above gives
du
Xx)= | 2Vusin(u
v = [ 2visinG) -
= —fsin (1) du

=—(-cos(u)+C
=cos(u)+C
= CcoS ((1 - x)z) +C
Therefore the equation of the orbit is
Y (x) = cos ((1 - x)z) +C

For different values of C, different orbit results.

2.9.2 Section 4.4, problem 2

In each of Problems I-3, verify that x(t), y(t) is a solution of the given system of equations,
and find its orbit.

x(t)=In(+1)
y() =¢

Solution

dy_d,
dt dt
y=é

But x-1=1In(1+¢-1. Hence In(1 +f) = x. Therefore 1 +t = ¢* or t = ¢ — 1. Therefore
i = e = e, Verified OK.
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Now we need to find system orbit. The Orbit is given by the equation

dy _8(x)
dx — f (x, y)

When we write the given system in the following form
x=f (x, y)
7=g(xy)

We see now that f (x, y) =¢* and g(x, y) = ¢ 1. Therefore
dx e™*

Integrating

et
f dy = f = dx

Let ¢* = u,du = ¢*dx. Hence the RHS fej:l dx = ?i—:’ = [e*ldu = ¢"! = ¢*"1. The above

becomes '

y=e1+C

The orbits are given by the above equation for different C

2.9.3 Section 4.4, problem 3

In each of Problems I-3, verify that x(t), y(t) is a solution of the given system of equations,
and find its orbit.

=1+x?
y= (1 + xz) sec? x
x(t) = tant
y(t) = tan (tant)
solution
Orbits given by

dy (1 + xZ) sec? x

dx 1+ x?
= sec? x
Hence
f dy = f sec? xdx
2 1 d sinx cos? x+sin? x 1 2
But sec®x = ——. And — = > = ——. Hence fsec xdx = tanx. Therefore the
. COs= X dx cosx COS“ X COS“ X
above gives
y=tanx+C
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The orbits are given by the above equation for different C. (do not know why book gives

only y = tanx)

2.9.4 Section 4.4, problem 8

Find the orbits of each of the following systems
=y +x%y
i = 3x + xy?
Solution

The Orbit is given by the equation

dy _ 8(xy)
dx f (x, y)

When we write the given system in the following form
X=f (x, y)
y=g(xy)
We see now that f (x, y) =y+x*yand g (x, y) = 3x + xy?. Therefore

dy _ 3x+x

dx  y+x2y
x(3+y2)
B y(l +x2)
X (3+y2)
(1+x2) y

y _f x
f3+y2dy_ 1+x2dx

Hence it is separable.

%1n(3+y2) = éln(l +x2) +C,
1n(3+y2) = 1n(1 +x2) +C
Therefore
3 +]/2 _ eln(1+x2)+C1
— €C1€ln(1+x2)
=C (1 + x2)
Hence

P =C(1+22)-3

y(x) = £/C(1+22) -3
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The above gives the equations for the orbit. For each C value, there is a different orbit curve.
Now we need to find equilibrium points, since these are orbits also. We need to solve

0=y+x%y
0 = 3x + xy?

O:y(l+x2)
O:x@+f)

First equation gives y = 0 as only real solution. When y = 0 then second equation gives x = 0.
Hence (0,0) is also an orbit. So the orbits are

P=C(l+x%)-3 C#3
(vy) = (0,0

And when C = 3 we obtain orbits 1> = 3 (1 + xz) — 3 = 3x%, with additional orbits (notice
that we have to exclude x = 0 from each one below, since x = 0 is allready included in

(x.y) = ©,0)

y:\/gx x>0
yz\/gx x<0
y:—\/gx x>0
y:—\/gx x<0

Hence there are 6 possible orbits in total.

2.9.5 Section 4.7, problem 3

Draw the phase portraits of each of the following systems of differential equations

(4 4
X = X
-2 5

solution
det(A-A) =0
4-1 -1
2 5-A|
4-1)BG-1)-2=0
A2-91 +18 =0
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Hence
A1:6
Ay =
Case Ay =6
4-A -1 0 _ 0
-2 5-A{w,) |O
4—-6 -1 0 _ 0
-2 5-6]lv,] |0
-2 -1\(v;) (0
-2 -1)lv,] |0

v
From first row —2v; —v, = 0. Hence v, = —2v;. Therefore the first eigenvector is v! = [ ! ) =

-20;
! = ! by setti =1
v setting v
1, 0 y g0

Case 1, =3
4-1 -1 |[(»n 0
(—2 5-){e) |0
(4—3 -1 (1) (0
-2 5-3J{0;) |0
[1 ~1\(o1) (0
-2 2 () |0

. . U1
From first row v; — v, = 0. Hence v, = v;. Therefore the second eigenvector is v? = ( ] =

U1
0 ! = b ett'ng v =1
y setu
! 1 1 !

Since eigenvalues are both real and both are positive, then (0,0) is unstable node. Here is
a the Phase portrait. The lines marked red and blue are the two eigenvectors found above.
The arrows are all leaving (0,0) which means this is unstable equilibrium point.
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A O O S R IR | L L
-2 -1 0 1 2

Figure 2.17: Phase portrait

p = StreamPlot[{4x -y, -2Xx+ 5y}, {x, -2, 2}, {y, -2, 2},
StreamPoints - {
{
{{1, 1}, {Thick, Red}},
{{1, -2}, {Thick, Blue}},
{{-1, -1}, {Thick, Red}},
{{-1, 2}, {Thick, Blue}},
Automatic}
}, Epilog -» {Red, PointSize[0.03], Point[{0, ©0}]},
Axes - True];

Figure 2.18: Code used

2.9.6 Section 4.7, problem 6

Draw the phase portraits of each of the following systems of differential equations
) 3 -1
X = X
5 -3

121
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det(A-A) =0
3-A -1 ]
5 -3-1]
B-A)(3-A)+5=0
A2-4=0
Hence
/\1 = 2
Ay ==2
We see that one eigenvalue is stable and one is not stable.
Case Ay =2
3-A -1 o] [0
5 -3-Alw) |0
3-2 -1 0 _ 0
5 -3-2]lv,] |0
1 -1 01 _ 0
5 —5]lo,] |0

v 1
From first row v; —v, = 0. Hence v, = v;. Therefore the first eigenvector is v! = [ 1] =0 [ ) =

1
(1] by setting v; =1

Case A =-2
3-4 -1 \[o;) (0
( 5 -3-A)lo,) |0
3+2 -1 (o) (0O
( 5 -3+2)(v,) (0
[5 ~1\(o1) (0
5 -1)\v, 0

v
From first row 5v; — v, = 0. Hence v, = 5v;. Therefore the first eigenvector is v! = ( ! ] =

1 = 1 b tti =1
v = y setting v; =1.
15 5 !

01

501

Since one eigenvalue is stable and one is not, then (0,0) is unstable saddle point. Here is a
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the Phase portrait. The lines marked red and blue are the two eigenvectors found above.

4

Figure 2.19: Phase portrait

p = StreamPlot[{3x -y, 5x-3y}, {x, -2, 2}, {y, -5, 5},
StreamPoints - {
{
{{1, 1}, {Thick, Red}},
{{1, 5}, {Thick, Blue}},
{{-1, -1}, {Thick, Red}},
{{-1, -5}, {Thick, Blue}},
Automatic}
}, Epilog -» {Red, PointSize[0.03], Point[{0, ©0}]},
Axes - True];

Figure 2.20: Code used

2.9.7 Section 4.7, problem 9

Draw the phase portraits of each of the following systems of differential equations

(2 1
X = X
-5 -2
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solution
det (A-AI) =0
2-A -1
5 —2-A|"
2-AN)(-2-A)+5=0
A2+1=0
Hence
A =i
Ay =—i

The real part is zero. Hence (0,0) equilibrium point is called CENTER. it is stable, but not
asymptotically stable.

Case Ay =1
2-A 1 o] (0
-5 2-A)lo,) |0
2-i 1 o] [0
-5 -2-illv,) |0
From second row -5v; — (2 + i) v, = 0. Hence v, = —Lvl. Therefore the first eigenvector is

(2+1)

v 1 -2+
Ul:[ 5 )=01( 5J=[ ( l))bysettingvlzl
Tt e 5

Case A = —i
2-A 1 o] [0
-5 —2-A)lw,) |0
2+1 1 (4 _ 0
-5 —2+i]lo,] |0
From second row -5v; + (-2 + i) v, = 0. Hence v, = —Lvl. Therefore the first eigenvector

(—=2+1)
1S v = 5 =0 5 =
e " (~2+i) 5

(0,0) equilibrium point is called CENTER with curves making closed circles around (0, 0)
as shown below

by setting v; =1
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Figure 2.21: Phase portrait

p = StreamPlot[{2x+Yy, -5x-2YVy}, {x, -4, 4}, {y, -4, 4}
,» Epilog -» {Red, PointSize[0©.03], Point[{0@, ©0}1},
Axes - True];

Figure 2.22: Code used
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2.9.8 Key solution for HW 8

HWS - Solutions

Saturday, December 7, 2019 7:30 PM

| (S'ech'on 44- Exeneise 2)
Vcr\'fxz thot  x(t) = WW(1+1)
n) = et
15 a Soluhon of the rystom. z-¢ " )= & !
omd  find b erbits.

Tor x=Cu(+t) we obtain € zl+i | tre'-| and

e‘— [

whale  for r:]-_et we odlerive 'Z):%’a—=et=e

Nohee H4hat Ais snﬂ-m has no egu&bén'um soludrous.

Yor —FuMlAna oebik | we st with

et ()

K

%
g - jex(ee—i)dx - Jeuolu- eu+(‘.=ee_l+c

The orbits  of tHie ar{,vm fnas+m are  Cuwves
e
'3 = e +C, e- owﬁ«d)fvovna real tonstant .
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2. (See/h’m 4k - Exercwse %)
find evbits of the ‘k\as—fm -

/afoczaa

Ix + ouf.

"

So&/(ng e uakions h}-(-oc"/a = 4(+x*) =0

3x+ oua"= x(3+mt)=0
we fnd  Hae 91\03 &g uilibrium ot of dhe J'\d:k,m Ls [:]
(woh’u ot 1t 70 | for ol x| and s+»a”°>o,.fwau7)

For fmo(,_ng orbits | connder the diftwrembal equahion

dp _ % Baxgt 20
X 2% ,13_‘ x’t/? "a(H'X") .

It is seporoble ond we cam solve it n the fv((owmg way:

" X
J5+A31o03=J It x= 4%
(% 0 (9
'ij’r - If 3
An[d+m*| = Lnli+e]| + ¢,

1349 = Qx| e
3t M= c(1+x?)

na"= e(l+x*) -3
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Vefits of the quven svdom  ore
) Quibibrium gt (00)
3y the ourves "313 c(tx?)=3, c+3
3) the hal{- Lines /a-{?x , %X 70

g= ﬁz’ x<o
/3= —ﬁx) xz0 amd
fgr—ﬁz, x<0.

<r0mM‘L= Af in Hue  solukon  Gwrves 132=C(H'x")—3 we .fwma,u;a,
Aoke €=3 . we obtaiu /3‘- 3(l4x*)-3 = 3x* | awd

,.‘,):ts-x - here we need 4o exclude  (0,0) ,-"ﬁus
whifs ace 4 half - Lnes )

3. (Sechon 4.7 - Exerwse 3)
Deow  the lolnme L»or'hrm:t of the hasl-m,

For dem y A= e fnd
0c  ys Gy l-l 5} we f

det (A-AT)= . s " (4-2)(5-2) =2 = 20- 4A- SA+A* -2

+ (8- +
= N-W+1% =0 , A =q-i|7,z=°\£5

Eiam./au&nm of A are =3 -G
Equulihrium  solukon  (0,0) £S5 nodal Ssource.
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4. (Swh'ou A7 - Txerwse 6 )
Deow  the the l.,orbm,it of +the yaskm,

3 -
x5 3| %
3 -l

Tor dhe 9354’0» maknx A=[5_3} we  fund

3-A -1
ch(A-AI)’

|= (3-7\)(—5—)\)4-5 = -9-3A4 374 A%45
= )\2-4:0

E\'aw(z&u,s of A are M2 A=2 omd oguifa:%ﬂ‘w
point  [8] As  saddle peint.

Ne-2oo (A-aDIv=o0

5 1) [w] [o ;
s | |w| |o D OV WM=o =5

2 dngtdw For A2 is w': [ ;}

N=2t  (A-2T)vr=0

BRSNS
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5. (Sechow 47 - Exeruse 9)
Deow  the phase  portraxt of the rysfom.

R

For e systom  anakax A’[_y;_ "LJ we fuond

2-\ |
dd.(#pk[): 5 —2-a |= (2-—)\)(-2-)~)+5 =-4-224204 2245

=N4l=0 NEA MEA s -4

1 | '

E(awaﬁues of A e XN=a ) M=ot Thoj ort WM.D{M,
Wit zer real part | and  conieguently  Quilibriom  peint
Lo] 4s  cewter.
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Let's a'usjf .Fils'f k;xdo few rmu's omo  dekerpusine
°°~"0

Direckion 0f orcfows )\,OCMS + docdwwise erientuon
of orbnts.
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3.1 practice exams

3.1.1 second midterm 2018

MATH 4512 — Midterm exam #2 October 26, 2018
(SOLUTIONS)

Problem 1. (25 points)
Find the solution of the initial-value problem

d%y

gz T =cos(2),  y(0)=0, ¥ (0)=0.
Solution:
Consider the homogeneous problem
d*y
— 44y =0.
az Y
The characteristic equation 72 +4 = 0 (a = 1,b = 0, ¢ = 4) has complex roots r; = 2i and ro = —2i.

Since —b/2a = 0, the fundamental set of solutions consists of the functions
y1(t) = cos(2t) and ya(t) = sin(2t).
Their Wronskian is
Wiy, 12](6) = 91 (1)5(t) — o/ (Do) = 2c0s3(20) + 25in2(20) = 2.
1st approach: A particular solution can be obtained from
P(t) = ua()yr(t) + uz(t)ya(t),

where

cos(2t os(2t
up(t) = 7/&§)Sin(2t)dt, us(t) = /mqggcns(%)dt.
The function u; is
1 . 1 . 1
ui(t) = 3 sin(2t) cos(2t)dt = ~1 sin(4t)dt = Ecos(4t).

The function us is

ug(t) = % /cosz(Zt)dz‘, = i /(1 + cos(4t))dt = i (t + %sin(élt)) .
Thus

1 1/ 1. . 1 t
»(t) = % cos(4t) cos(2t) + 1 <t +3 5111(425)) sin(2t) = 16 cos(2t) + I sin(2t).

The solution of the initial-value problem has the form

y(t) = cry1(t) + caya(t) + P (t) = 1 cos(2t) + cosin(2t) + 1 (t).
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From the condition y(0) = 0, we get

1
0 =y(0) = c1y1(0) + c2y2(0) + ¥ (0) = ¢1 + T and ¢ = T

Since
y'(t) = —2¢ sin(2t) + 2¢o cos(2t) + Y’ (t)

1 1 1
W (t) = ~3 sin(2t) + 1 sin(2t) + % cos(2t) = 3 sin(2t) + % cos(2t),

the second initial condition 3/(0) = 0 further implies
0=¢(0)=2c+9¢/(0) =2¢c; and ¢ =0.

The solution of the starting problem is now

y(t) = —1—16y1(t) +Y(t) = —1—16 cos(2t) + 1—16 cos(2t) + i sin(2t) = isin(Zt).

2nd approach (guessing): Consider the complex-valued problem % + 4y = ¢® and guess its

particular solution ¢(t) = Ate?*. From
¢ (t) = Aet 4+ 2i Ate?| ¢ (t) = 4iAe? — 4 Ate?"

we get _ _ _ _ _
et = ¢ (t) + 49(t) = 4iAe®™ — 4Ate™" — 4Ate*! = 4iAe™.

Thus A = 1/(4i) = —i/4 and

. . . .
o(t) = —itew = —%t(cos(%) +isin(2¢)) = St sin(2t) - itcos(?t).

The particular solution of the starting problem is () = Re(¢(t)) = £ sin(2t). In the first approach
we derived the general form of the solution

y(t) = c1 cos(2t) + cosin(2t) + ¥ ().
Applying the initial condition, we obtain 0 = y(0) = ¢;. From
1 t
y'(t) = —2cq sin(2t) + 2co cos(2t) + 1 sin(2t) + 3 cos(2t),

we now get 0 = 3/(0) = 2ca, i.e. ¢z = 0. The general solution of the IVP is y(t) = ¢(t) = £ sin(2t).
3rd approach (Laplace transforms): Let Y (s) = £{y(¢)}. Then

1 1 S s
Vis) = —— 24)) — — )
(5) 52 + 4L{COS( 2k s2+4s2+4  (s2+4)2
‘We can write now
Y(s) = 3o o = SL{sin(2t)}L{cos(2t)} = £ L{sin(2t)  cos(20)}
=————— = —[L{sin = —L{sin *
s 32 A 2 s cos 5L cos ,
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which will give us y(t) = 3 sin(2t) * cos(2t). One can calculate this convolution and get y(t) =
L sin(2t). Instead, notice the following

d 1 _ 2s
ds \s2+4)  (s24+4)%

Therefore

1d [ 1 1d [ 2 1d . . 1
Y(é) = —§£ (m) = —1£ <32 +4) = —Z%,C{SIH(Qt)} = —4[,{—t blH(2t)},

and consequently y(t) = 4 sin(2t).
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Problem 2. (25 points)
Find a function ¢(t), ¢ > 0, such that

2
s
)= ———= K .
;C{g( )} (82-‘1-9)27 s>0
Solution:
First we have that
52 s s d 3 s d .
(2492 " (2192 6ds (.92 n 9> = 5 a5 LG}

= 2 {-tsin(3)} = sﬁ{%tsin(?)t)}.
If we introduce H(s) = L{h(t)} with h(t) = tsin(3t), then

g2

o =S HE) = LU O} +h(0) = L{H )}

This gives us
1 t
gty =h'(t) = G sin(3t) + 3 cos(3t).

We could have also start from

82 S S

(2492 249 s2+9

— L{cos(3t)} L{cos(3t)} = L{cos(3t) * cos(31)}.
The convolution g(t) — cos(3¢) * cos(3t) is
cos(3t) * cos(3t) = /O " cos(3t — 3u) cos(3u)du — /0 ' (cos(3t) cos(3u) + sin(3¢) sin(3u)) cos(3u)du
— cos(31) /0 cos2(3u)du + sin(31) /0 sin(3u) cos(3u)du
_ %cos(St) /0 (1 + cos(6u))du + %sin(ﬁ}t) /0 " in(6u)du
- %cos(3t) (t 4 ém(m)) + %Sin(i’)t)é(— cos(6t) + 1)
= £ cos(31) + % sin(6t) cos(3t) — % sin(3t) cos(6t) + % sin(30)

t 1 1 t 1
=3 cos(3t) + T sin(3t) + E sin(3t) = 3 cos(3t) + 5 sin(3t).
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Problem 3. (50 points)
Consider the following initial-value problem

d*y _dy ¢ /
-2 Z =t = = 0. P
2 2g ty=te y(0) =y'(0) =0 (P)

(i) Find fundamental set of solutions for the homogeneous differential equation

d*y dy
A L —
a2 Car TV

(ii) Find a particular solution of the initial-value problem (P).

(iii) Using the results from (i) and (ii), find the solution of (P) that satisfies the given initial
conditions.

(iv) Solve the problem (P) using Laplace transforms.

Solution:

(i) The characteristic equation 72 — 2r + 1 = 0 has one real root r = 1. The fundamental set of
solutions is

yi(t) = e, ya(t) =te',
with the Wronskian

W1, y2)(t) = y1(t)ya(t) — yi(t)ya(t) = e'(e" + te!) —te* = ™.

(ii) The particular solution can be obtained from

P(t) = wi(B)y1(t) + u2(t)y2(t),

where
tet 9 t3
tet t 2
Thus 5 5 5
t t t
w(t)f—get—kie :Eet

We can also guess particular solution as (t) = t2(A;t+Ag)e! and obtain the same function (A4g = 0,
A1 =1/6).
(iii) The solution of the problem (P) has the form

t3
y(t) = cry1(t) + caya(t) + 9 (t) = cre’ + cat e’ + get.
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From the condition y(0) = 0, we immediately get ¢; = 0. Since

32 +13
e7

Y (t) = cret 4+ ca(1 4+ t)e! +
the second initial condition y'(0) = 0 further implies ¢z = 0. The solution of (P) is now

t,
y(0) =) = o'
(iv) Let Y(s) = L{y(t)}. Applying y(0) = y'(0) = 0, we have that

1

. 1 d
Y(s)= o511 1L{te } = Go12 <—$F(s)>

where F(s) = L{e'} = (s —1)7!, s > 1. From

we conclude

1
Y 5 =
(s) G-t
On lectures we showed |
n!
E{t”eat} = m, n e N
With a = 1, n = 3, this implies
1 1 1
Y — I t3 ty 7t3 t
(s) Go1) 3!11{ e'} £{6 e},
and finally
1.
y(t) = Etdct
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3.2 Exam 1, Sept 27, 2019
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3.2.1 Key solution

MATH 4512 — Midterm exam 1— Solutions

Problem 1. (25 points)
Solve the following initial-value problem

dy 2ty +2t
. 12+1

,y(=1)=3.

September 27, 2019

This differential equation is both separable and linear since

dy 2t(y+1) dy 2t
D _YT d =
a - sl ™ w et
We will solve it as a linear differential equation with
2t 2t
) =— ,b) = .
W=-pr7 =g

The integrating factor is

wu(t) = exp <7 / 2t dt ) =exp (—In [t2 + 1) =exp (- In(t% + 1) =

241

The general solution is

v =@ +0 ([ e o) =@ ([ @t o)

= +1) </§+C) s=t2+1, ds=2tdt

1 1
= +1) (= =+ —5——
( +)( S+C) ( +)<t2+1+0)
The initial condition implies
3=y(-1)=-1+C((-1)*+1)=2C -1,

The solution is
yt) = -1+2t2+1) =22+ 1.

=-1+CE#+1).

2t
2+1

1
241

C=2.
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Problem 2. (25 points)
A tank initially contains 60 gal of pure water. Brine containing 1 1b of salt per gallon enters the
tank at 2 gal/min, and the well-stirred solution leaves the tank at the same rate.

(a) If S(t) is the amount of salt in the tank at time ¢, write the differential equation for the time
rate of change of S(t) and solve it.

(b) Find the concentration c¢(t) of the salt in the tank at time ¢.

(c) What would be the limiting concentration of salt as t — co?

The inflow rate is r; = 2 gal/min, the outflow rate is r, = 2 gal/min, the inflow salt concentration
is ¢; = 11b/gal, Vp = 60 gal is the initial volume and S(0) = 0 is the initial condition (only pure
water is initially in the tank).

(a) The time rate of change of S(t) is given by

s _ L 5,8
at 60 T 7 300
This differential equation is linear
as S _
dt 30

and the integrating factor is

u(t) = exp (/ %) = et/30,

S(t) = e~t/30 (/2et/30dt n C) _ o t/30 (60 /30 4 C) _ 60 4+ Cet/30.

The solution is

From the initial condition it follows
0=5(0)=60+C, C = —60.

Finally
S(t) = 60 — 60/,
(b) Concentration c(t) of the salt in the tank at time ¢ is

5(t)

=1— 7t/30.
60 ¢

c(t) =
(c) The limiting concentration is

lim ¢(t) = lim (1 — e /30) =1,

t—o0 t—o00
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Problem 3. (30 points)

A population of butterflies grows according to the logistic law

d
d—’; = 0.002p(100 — p) = 0.2p — 0.002p>,  t > 0.

(a) Find the population p(t) as the function of time ¢, if the initial population is 60.

(b) Find tlim p(t) and determine limiting population in this model.
—00

(a) We start from
@*0002 (100 — p)
a P p).
Using partial fractions

IR S S
p(100 —p) 100 \p  100—p/’

we derive
/dip = /0 002 dt
p(100 — p) '
1 1 1
— - dp=0.002 [ dt
100 (p+1007p) P /
Al 1
- dp=02 [ dt
/ <p T 100- p) p=oz [
In|p| —In|100 — p| = 0.2t + C4
p
1 =02t+C
n ‘ 100 = p’ +C1
p 0.2t
=Ce’"".
00—p ¢
From the given initial condition p(0) = 60, we can find the constant C:
p(0) 0.2:0 60 3
—_— = = — =0, C=-.
100 —p(0) ¢ 100 — 60 2
The next step is to find the function p(t):
3
p _ g0

100—p 2

3 3
p= 5eO.Qt(lOO _ p) =150 eO,Qt _ 5eO.Qtp

3
P (1 4 5eozt) — 15002

150 €92t 150

t) = . = =
p( ) 1+ %eO.Qt e—0.2t _|_%
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The solution can be obtained directly from the formula

p(t) = oPo :
bpo + (a — bpg)e~e(t=to)

Here a = 0.2, b = 0.002, to = 0, and py = 60. Then

12 12
p(t)

150

(b) The limiting population in this model is
150 150

lim p(t) = lim ——— = =2 =100 = %

t—o0 t—oo 1.5 + 670'2t 1.5 -
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Problem 4. (20 points)
Find the orthogonal trajectories of the given family of curves

y = ce”.

Here we can take F(x,y,c) =y — ce®. Then from
Y
F, = —ce”, F, =1, C:eTC"

the orthogonal trajectories of the given family are the solution curves of the equation

dy F, 1

de F, Y

This is a separable differential equation and we solve it as follows:

Jvdy=- [as

2
y —_ —
5 = x 4+ c.
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3.3 Exam 2, Oct 25, 2019
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3.3.1 Key solution

MATH 4512 — Midterm exam 2 — Solutions October 25, 2019

Problem 1. (25 points)
Find the inverse Laplace transform of the function

45% +2
s34+ 52 —2s

The denominator of the given function is s2 + 5% — 25 = 5(s2 + 5 — 2) = s(s — 1)(s + 2).
Using partial fractions, we can further write

45° +2 45° +2 A B C
S 25 s D(s+2) s s-1 s+2
= ﬁ (A(s = 1)(s +2) + Bs(s +2) + Cs(s — 1))
_ ﬁ (A? + As— 24+ Bs* 4 2Bs + Cs* — C's)
:m(52(A+B+C)+5(A+QB,C)72A)).

Equating the coefficients, we first obtain —2A4 = 2, A = —1. Then from
A+B+C =4, A+2B-C=0,

we find B =2 and C = 3.
Therefore,

4 +2 1,2 3
$B+s2-25 s s—1 s+2

= —L{1} +2£{e'} + 3L{e7H}

= L{-1+42¢' + 372}

We conclude that the inverse Laplace transform of the given function is —1 + 2et + 3e~%.
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Problem 2. (25 points)
Solve the following initial-value problem

y' =3y —dy=¢¥,  y0)=0, Y (0)=—:.

For finding the particular solution, use the method of variation of parameters.

First we solve the homogeneous problem. The characteristic equation
r2—3r—4=0

has two real roots r; = 4 and ro = —1. The functions

form a fundamental set of solutions.
The particular solution 1 (t) we seek in the form

Y(t) = ur )y (t) + u2(t)y2(t).
The Wronskian for yi,ys is
W(t) = Wys, y2](t) = y1(£)yh(t) — yi ()y2(t) = —ePe™ — dete™ = —5e™.

Functions w1, us we find as

62t e4t 1 1
ug(t) = / ﬂdt = fg/e?’tdt = fﬁe&,

The particular solution is

1 1 1
’l/)(t) _ _17067% e41& _ Be&t eft _ _66%.

The general solution is
1
y(0) = exs (6) + eaval) + 9(0) = exe + epet — e

From y(0) = 0, we get the first condition ¢; + ¢; — 1/6 = 0 for the constants c¢1,ce. The first
derivative of y(t) is
1
Y (t) = derett — cpet — gezt.
Now, from y'(0) = —1/2 we get 4c; — ca — 1/3 = —1/2. The constants are ¢; = 0, c2 = 1/6, and
the final solution is 1 1
= tet _ L2t
y(t) = ge™ — ge
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Problem 3. (20 points)

Which of the following functions

(a e /3 A3t3 + A())t2

)
(b)
)
)

=

(C e t/3

(
(
(
(

e t/3(Astd 4+ Aot? + Art + Ag)t
- A3t3 —+ A2t2 + Alt + Ao)t2

(d e t/3 A3t3 + A2t2 + At + Ao)

should be chosen as a guessing for the particular solution of 9y” + 6y’ +y = e /3(t> — 1)?

The characteristic equation

Ir?+6r+1=0

has one double root r = —1/3 that coincides with the exponent o = —1/3 in the right-hand side

g(t) = e®*(t3 — 1). Thus the correct guessing for the particular solution is the answer (c), i.e.

Y(t) = e /32 (A3t + Aot + Aqt + Ay).
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Problem 4. (30 points)

A spring-mass-dashpot system with m = 1, k = 2 and ¢ = 2 (in their respective units) hangs in
equilibrium. At time ¢ = 0, an external force F'(t) =t — m N starts acting on the hanging object.
Find the position y(t) of the object at anytime ¢ > 0. Over time, what do you expect to occur
within this system?

The initial-value problem describing this system is
vty +2y=t—m  y(0)=y(0)=0.

The characteristic equation 72 + 27 +2 = 0 has complex roots r; = —1 +14, 7 = —1 — 3. Therefore,
the functions
y1(t) = e ' cost, ya(t) = e 'sint,

form a fundamental set of solutions.
The particular solution can be found using the guessing method. Then

W(t) = At + B,
with ¢/(t) = A and ¢"(t) = 0. The differential equation with the function 1 reduces to
" 4+ 2 + 2 =2A + 24t + 2B = 2At + 2(A+ B) =t — 7.

Equating coefficients we obtain A = 1/2, B = —7/2 — 1/2. Hence, the particular solution is

The general solution

1
y(t) = cre " cost + coe ' sint + - — 573
has its first derivative
1
y'(t) = —c1eft cost — cleft sint — CQeft sint + czeft cost + —.

2
Initial conditions y(0) = 0 and y'(0) = 0 further imply

T 1 1
O—C1*§7§, 0—*01+C2+§.
Then
Tl LT
61_2 2a 2_27

and the function y(t) that describes the position of the object at anytime ¢ > 0 is

Over time we expect the spring to break since
lim y(t) = oo
tl y(t)

(the positive direction of the position y(t) is downwards).
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3.41 Key solution

MATH 4512 — Midterm exam #3 November 20, 2019
(SOLUTIONS)

Problem 1. (35 points)
Solve the initial-value problem

Solution:

1st approach (The eigenvalue-eigenvector method):
The characteristic polynomial of the system matrix

a=[2 0]

2—-A 1

det(Afz\I):det{ o

}:A@+Ay+h:v+ax+1:(A+n?

The matrix A has one eigenvalue A = —1 with multiplicity 2.
In order to find z'(t), first we need to find a vector v = [v1,v9]T such that (A — A)v = 0, i.e.

-1 1 vi | |0
-1 1) |w] 0]
Both equations of this system imply v1 = v2. We can choose v = [1,1]T and obtain
1
1) — ot
z (t)=e { 1 } .

For finding 22(t), we search for a vector v = [v1, va] T such that (A — AI)?v = 0 and (A — M\)v # 0.

Since
S Eh ERR !

for any vector v € R? we have that (A — A\I)%v = 0. We can choose v = [1,0] " since
-1 1 1 -1 0
i = R N R IS
2Xt) =t (v+t(A - A)v) =e ({ (1) } +t{ :i }) =e! { 1:; } .

mn:qgﬂi}+@aﬂ1:”.

Then

The general solution is
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From the initial condition z(0) = [2,1]" we obtain

HECH R HRE!

Then ¢; = ¢o = 1 and the final solution is
1 1—-t 2—t
- —t —t ot
z(t)=e {1}—&—9 { t]—e {1 t}

2nd approach (Laplace transforms):
We will determine X (s) = L(z(t)) from the condition (sI — A)X(s) = z(0), i.e.

s+2 -1 Xis) | |2
1 s Xo(s) | | 1]°
From the first equation we have (s + 2)X1(s) — Xa(s) = 2 and Xa(s) = (s + 2)X1(s) — 2. The
second equation is now

1= X1(s) 4+ sXa(s) = X1(s) + s(s + 2)X1(s) — 25 = X1(s)(s® + 25 + 1) — 2s.

Then

25 +1 2 1
X = = — .
1(s) (s+1)2 s+1 (s+1)2
Using
L
ek G
1 _d 1 _d o —t
(s+1)2  ds (s—i—l)i dsL{C b= Ldte

we further derive

Xi(s) =2L{e "} — L{te "} = L£{2e7" —te "}.

Therefore
z1(t) = (2 —t)e "
Now
25+ 1 s 1 1
Xals) = (s 2)X0(8) =2 = (A DEy ~ 2= (090 = 531 (s 12

=L{e7} = L{te™"} = L{(1 —t)e™"},

and z2(t) = (1 — t)e~t. The final solution is
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Problem 2. (35 points)
Transforming the second-order differential equation

y"(t) — 4y (t) + 5y(t) = 0

into a system of first-order differential equations, find its solution that satisfies

Solution:

Introducing
z1(t) =y(t) and  2(t) =y'(1),
the differential equation becomes

xh(t) = —5x1(t) + dao(t).

Therefore we obtain the following initial-value problem

o=l alme ] (2015

The system matrix
01
e

-2 1
-5 4-A

has the characteristic polynomial

det(A—/\I):det[ }:—)\(4—)\)4—5:)\2—4)\—#5,

with the roots A\; = 2 +14 and Ay = 2 — i as eigenvalues of A. For determining z!(¢) and 22(¢), it is
sufficient to consider just \; = 2 + 1.
A complex eigenvector v = [vy, 2] that corresponds to \; satisfies (A — A\ J)v =0, i.e.

Sl ]=Le ]

From the first equation we obtain vy = (2 + ¢)vy. Thus, the vector v has the form

v { (2+z’)2 } :”1{2+”

and we can choose v; = 1. Then a complex-valued solution of the system is

1

2414

_ (2+19)
‘b(t)’eH{ 2 +i

} =% (cost +isint) [ L }

o cost +isint
N 2cost —sint +i(2sint + cost) |’
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Taking 2'(t) = Re(¢(t)) and 22(t) = Im(¢(t)), we obtain a general solution of the form

oy cost o sint
o(t) = cre { 2cost —sint ] tee { 2sint 4 cost ] ’

The initial condition x(r) = [0, 1] implies

[_(1) ] — a(r) = e { - } + cpe?™ [ B ]

Hence ¢; = 0 and ¢o = e 2". The solution of the initial value problem is

. _ 2(t77r) sint
o(t) =e { 2sint + cost |’

while the solution of the second-order differential equation with y(r) =0, ¢/(7) = —1, is

y(t) = z1(t) = 2" sin .
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Problem 3. (30 points)
For the matrix

determine e4t.

Solution:

We will determine et from the relation
A = X ()X (0)71,

where X(t) is a fundamental matrix solution of the system #(t) = Az(t). The characteristic
polynomial of the system matrix A is

det(A—/\I):det{li)l\ 272]:(1—,\)(2—».

The matrix A has eigenvalues A} = 1 and Ay = 2.
In order to find z'(t), first we need to find a vector v = [v1,v2] " such that (A — A\ I)v =0, i.e.

00 vp | |0
-1 1 vy | | 0|
The second equation implies v; = vy. We can choose v = [1, 1]T and obtain
1
Tpy — ot
z (t)=e { 1 } .

For finding 2%(t), we search for a vector v = [v1,v2] " such that (4 — XoT)v = 0, i.e.

-1 0 (% o 0
-1 0 V9 a 0 ’
From both equations we get v; = 0. Choosing v2 = 1, we obtain

22 (t) = e { 0 } .
1
The inverse matrix of

is

Therefore
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3.4. Exam 3, Nov 20, 2019

3.4.2 practice problems for third exam

Exercise © / Sechon 3.\

-1 =1 -2 i v
=1 1 1lx+|0]e . xl)=| 0
2 | 3 0 0
Solution:
S (=X 0 [-A
deA(A-xT)= | | I sl L x|
2 | 3-A 2 | 3-A

= (1-0)%(8-2) + (1-x) = 2(1-3)* »Q,-fx)”' = (1-2)% (3-a-2) = (1-a)’ = 0

System matrix  has oune ulaws/od,uc A=l of mu&tér&;d#& 3.

0 %indina ' (%) :

-2 -l -2 7 0
e
(Pr—)\l')v: I o [ A S e Y vV, + v, =0
} -2 V=0
2 | 2 V3 0 v+ v, +2vy; =0

choose

2) {iwukina xt k)

-2 -l =2 ] [-2 -1 -2 -1 o =t |[w 0

7 —
(A-AIT) wv= |1 o | i o 1|lv=]90 0o o||wn|=|e
L 2 Z 1 2 ) l vy 0
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» o
V- MM"""“"’& cloose V= {l J
o
-2 -1 -2 0 - 0
AB-AT)v= | ( o | (=] o|#]o0
2 | 2 0 l 0
0 -1 -t
€ &
007'(!&)=e)\ ('\r+ t(ﬁ—/\t)v)= el | +4]| o = e |
0 s £
3) —f'\.kuna ’X-gf:t)‘-
-1 o | -2 -l -2
(A-rT)’ vz (A-AT)*(A-AD)v= |0 0 o | | o | (v
o | 2 1 2
.
0 0 0 7]
=10 o0 9 |-V=]0 = o s arbl'*l'mrc;, yector
0 0 0 g suck Hat (A—AI)zv:,ﬁo
L.
.
[ ] -l o | l -
~\t
choose ~v=1| 0 i (A«/\L)v= 0o o0 ol |9 = o
¥ [ o | 0 [
-2 -l -2 l -2
we need olse  G-AT)v= I o | g |= l
g ¥ 32 v Z_

chLf) z e,Mr ('\r—f ‘t(k -AD) v+ g G“)‘I)L"r>
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] =2
x”ct):et o]+t I+
0 2
Ay Fund. makix  soluhon
-1
5) manx ekt = X@® X(O)
( 0o |
X@=10 | o
-1 0 0
[ o 1|1 o [
R+Rs
o { 010 | —_—
-l 0 00 0 | 0
[
I =k
At -
e X® X = e 0
-| %
’._tz
E'Z‘L"i"
-—et &
%+2t

~ & 9 3
~| ‘—i—?.'e+|
£ R 2
7| %1 |=°¢ +
' E ot
" ;
[ -t -E -4
Xty=¢®| o | -
It Y4
- 3
T Xe)”
o | | © I o 0|0 o ~|
—31'2[
I o | o | ——2> 10 I @|l@ I .0
o | (o | o 0 | I o |
&2 I 1
-3 -l 0 0 -]
t 0o 1 9
4 :
-—z—+2:t I 9 |
~t -¥-u
| 14
t Yoot
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L%
6) Sinee to=0 und m"=[0]) the wlukow of e (VP s
(<]

.&
).
At - As :
x)= € Je $(s5) s . with f()= 1| o & .
“ 0
[ ] F [ <2 T
2 _s?
_‘SE"\'ZS"" S ‘57:21.2; l 7_4-25'(‘]
~As -s s B
e J5)= e -5 | -5 e |0 =] -s
2 (A
%_—25 -S %—ZSH | ’0 %—ZS |
i o ~ 2
+ ~E ttet ”%-rtﬂ
- As
= —i‘_z = '!: - B
Se $15)ds 3 -
’ 12 _ 4 % ¢
| ¢ i 6
[ T or_+?
t Yokl -t By a2l
+ —As +
x@E)= € e fu)ds = te £ | t -%
o 42 42
b 6 —
[ 2
—"E_t»fl1
= tef L
8
2
See
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Exerelse 9O /Soc/h‘aw 3.2 Fond He solution of e
Lk al - vralue Problw
/3"' + '5‘ = sect- tant
o) = Af'e) = " (0)= 0

Solution :  First we transform  the olfferenhal eguation
intoa systom Let
x,6) = g&) Xyl | age) =yl
Thon %lll +y = o'+ x, = sect-taut, and

x, () = 2, (), 2,(0)= 0

%, (&) = X3(E), %, (0) =0

X, (£) = = Xy(t) + seet: tant | 2, (0) = 0 .
The muobix form  of Hhos systus ds

O | o o 0
x=|00 | |2c+]| 0 ; xle)=| g
0 -l o sect.-taunt 0
~A | o
deb(A-AT)=| 0 -a 1 | = -A-x=-a(\t1)=0
0 —| =-A

E(amva&us of e yas-{m matrix are N=0, MEL M E-i,

o | o v; o v, =@
A0 (A’)\I)V: Avzlo o 1 | =] * vy =0
0 -l o v’ _ 2
3 ’V“ arfl'nh'-w'g/
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A=t -t | o v o —p *CU'l-rle:O
(A—/\zl—)v= o -t | b Bl I v = o,
o -l - vy 0 -Llv; + vz =0
V=L,
—-CU',_ —L —L
vel v | = | | , chewme vel
AV, ¢ ¢
-

At

; 2 at
ww.rux—VAZAACO' sobuhon s CP(‘C)‘ e‘v =e

-4 sint — Leost
=(cos£+459¢w’c) L] =] cost + Lseut
4 ~stnt + Lcost
scnt —cost
X )z Re (@)= | cost , X))z |m(d)= | sint
- Scnt cost

«Fquo.mMa)(. A (X 0 luhgu AS

[ stut - cest
X®:= | o cos t stnt

0 -scnt tost
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| o -1
X0©)= | o I 0
0 0 |
| o -~I | o o0 f 0 o o |
E;‘f2|
o | o O I o o | 0 0 | o
o o | ;O o | o 0 | o o |
——
-
X(o)
[ sint —cost [ o | | sint  [—eost
-
e"t,:)((f) Xw@) = 0 ¢est st (-] o [ 9= 0 cast sint
0 -scut cest o 9 | o ~sint cos b
M < +
(t-ts) A+ —As A
x(t)= € x’+ e fe fis)ds = ektje, S—{:(s)c»'s
L o
| —=sSns |-ceoss o - toss
—As .
e F$i)= |0 s -sus || © = | —¢ins |- secs-+tans
0 $ihs cos S Secs-tauns oS S
7 4 t
J(I—wss) secs.-tausds = JSccs‘-'hxus-a‘; - f’f‘aus ds
0 p )
t
=§ecs+€w|wssl>lo = sect —| +€n|cest|
t

: i
—J sths-secs-Fans os =-J (I—-sec"s)ds = 4+- }aus lot = t— 4ant
0

L]
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t
t
J wss-Secs-Fausds = j tauses = —-‘emlooSSH: =-€ufws-e]
o

]

t rsec‘ls—-l-l--&«le,c:s‘(:[
= J Patad TR P
: - L |cest |
+ [ sint |—cest seet — |+ b [eost |
eMJ e*:'(s fsyals = | 0 cost sint || t-tast
N 0 -snt st —Lu|cost |
= + £ -sxnt + w»f(l-&-—&ulwsﬂ)
=2 | Yeost —h‘wf(H—Cu[cosH)
~totut + sint.taut - cost- fu[eost|

%x Solutbonw of Ahe S’l’ar‘h'n?r vP AS

i) = x 6) = = | + tsnt + eost (14 dnfcostl),
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% THE SOLUTION IN THE 9
Boolkk SEEMS To BE INceRLECT X

Exereise 7/5:044’9% 2.13 US«‘V\? La,f,laa, dransforms  solve

, 4 5 4ef ost I
x = x + X (9) =
2 =2 0 ) |

The  systau  for fineling Xe) = Z{xw} s

[ Z{4ctewst |
(sT-A)XG) = Fes) ¢ [,] , where  F0) [ ) J :
[S“’ ” ]{x""]=r‘“”(J Fe): A{heteat] = 4
2 s+2| | X9 l (s-1)"+1
(s-4) X (5) - 5X,(5) = Fo+l >
2X, )+ (s+2 Xz(s) = | - X/(s)= —;—_ (l—- (31—2))(2(5))

i;—“—(n—csn)xzcs))wxz(s): Fo+ | (mulk. by 2)
~(5-4)(s+2) Xo() = 10 X,05) = 2@?,3)1«1) —(5-4)

X, () <—S"'—Zs+4s+8- lo) = 2(FE) +1) —(s-4)

X, (s) (—s"—r 25-12) = Q.é:;(S)H)—-(s-—l,)
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10
S- S-6 Fits
xz(5)=‘———i- -2 nersl, . _2_21()
st-25+2 $2-05+4 2 s 2542 $% 2542

Nohee Hhat s22+2  has complex Toots |E(. There fore
we will  mse 51—23+2=(S—-1)2'-+l.

$-6
20542

The st term e X 05)  As
transformed as

H? Can be

. = 5
s-6 _ _ s=l__ = Z{ e ost] -5 2 e sunt |,

s 95+ 2. G-)*+1  (s1)*+]

Continue with  the JSecowd Ferwe  in XL(S)I

Fs - S~1
L < N Y M. o SRR . = B
T PPrN -5+ (s-1)*+ | (G-1)"+1)

\

S -_1d [ __1d . __ 1
':‘:(‘OM (57—‘“)2 2 'd—-s-( )— -i'a—s-z{ﬂh‘tj = iZ{—-‘L’Sﬂt‘t}

s+

)

Z{%Wu‘t} ,

S|

h deri - —
we  further ve ((s-:)"-{-l)z

"

’8Z{et- —E— Srih‘(‘:}
Z{—A fcfh‘u{'} :

W

Thew chs) = z{etwst —Sefsiut —4tet h.‘u't} e Q{ocz(t) } .

| s+2)(s-6 -————Fm
X. (s)= _;q)._ (l-‘(S-rZ) Xz(S)) - _;-' (l—_ (_J;":z_;_z.l *aLeeg) s’—.;_s—fz )
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s2 2542 —(s~4s-12)

X (sy= +2@n9_ﬂ£i_)
|()_ z( SZ_ZS_’_Z ((5")2‘|'|)L
B S+7 (S-1)(s+2)
T (s (G-*+1)*
The forst deramm o X() we wrte as
S+ 7 S—1 8 + +
- + = - t
(s-1)"+ | G-D*+1 G-+ e c,.,st} N 82{6 - }
The secoud termw we Aansform  Antr
(s-1)(s+2) A(s—;)(s—us) ) (s-1)* S—|
(-0*+1)* (G-n*+1)* G-+ 1)* G-n*+1)*
| | s-1
= e A o T 2. 2
-1y 41 G- +1) G-17+1)
= 4 Z{efwint } - 4 ;Z{—;—_ et(;{ut-—‘t‘.wst)}
'{'lz rz{ Ct‘%’tﬁfn‘t}
[ :
Here we hare s ed S = ’Z{?\u‘t* P\%t} = 2{-‘2—(ant~twsf)}
1
. Loabfeos g
and  Huus (0" Z‘[ 7€ (nt - teo t)}.

Fdna% .

XYz Y{etewost + Befsint + Al sut - 2¢° (sint - teost)
+ 6e’tsint §
= X {10 sint +efeost + GHef st + 2tetenst | = L{x 0]
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3.5.1 Key solution

MATH 4512, FINAL EXAM
December 18, 2019
SOLUTIONS

1. (16 points)
(a) (8 points) Find L{¢ sint}.
(b) (8 points) Using the result from (a), find a function f(¢) such that

LU0 =

(a) From L{sint} = Z5, we obtain

. . d . d 1 2s
L{tsint} = —L{—tsint} = fﬁﬁ{smt} =7 <52 n 1) = EEEE

(b) Notice that
2s —4 o 2(s—2)

@ —ts+57  (s-2p+ip L2
where
2s .
F(s) = (GRS = L{tsint}.
Then
LY = —2 =4 pe—2) = £{e*tsint}
' (s2 —4s+5)? '

and f(t) = te* sint.
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2. (18 points)

(a) (3 points) Write an initial-value problem describing vibrations of a small object of mass
1 kg attached to a spring with spring constant 9 N/m, and immersed in a viscous medium
with damping constant 6 Ns/m. At time ¢ = 0, the mass, which is hanging in rest, is acted
upon by an external force F(t) = cost N.

(b) (8 points) Find a particular solution () of the differential equation from (a).

(c) (7 points) Solve the initial-value problem from (a).

(a) Here m =1, k =9, ¢ = 6, and F'(t) = cost. The IVP describing position y of this object
in dependence of time ¢, with initial conditions y(0) = 4'(0) = 0, is

y'(t) + 6y (1) + 9y(t) = cost,  y(0) =y'(0) =0.

(b) The characteristic equation for y”(t) + 6y/(t) + 9y(t) = 0is r> + 6r +9 = (r +3)? =0
has a double root r = —3.
We will use guessing for the particular solution ¢(t) of the complex-valued problem
y'(t) + 6y'(t) + 9y(t) = €.
Let ¢(t) = Ae'’. Then ¢/(t) = Aie'l, ¢"(t) = —Ae', and
el =" (t) +6¢'(t) +9p(t) = (—A+ 647+ 9A)e' = (8 +6i)Ae'’.
We obtain '
1 8—6i 4 3.

A= - == -
8+6i 100 50 50

4 . 4
o(t) = <50 - Ei)z) el = (50 - ;;)z> (cost 4 isint)

4 3 . 4. 3
= —cost+ —sint+¢| —sint — —cost | .

and

50 50 50 50
The particular solution ¢(¢) of the differential equation y”(t) + 6y/(t) + 9y(t) = cost is

4 3 .
Y(t) = Reo(t) = %cost + %0 sint.

(¢) The general solution is

4 3
y(t) = (c1 + cat)e™ + 0 cost + 0 sint.

From y(0) = 0 we obtain
4 4 2
-~ 50 25
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Since A 3

y(t) =coe™ —3(c; +eat)e ™ — = sint + 55 008t
the initial condition y'(0) = 0 implies

3 3 15 3
0=14(0) =cy — 3¢, + — =30 - = — = —

V) =e=satg, a=3a-g="5="1

The solution of the IVP is
2 3 . 4 3
t)=(—==— —t)e®+ —cost+ —sint.
y(t) < 5 10 >e +5OCOS +5051n
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3. (32 points) Consider the linear system of differential equations

-1 0 0
i=Ar, A=| 2 1 -2
3 2 1
(a) (5 points) Determine stability of all solutions to & = Ax.
(b) (10 points) Find the general solution to & = Azx.
(¢) (10 points) Find e™.
(d) (7 points) Solve the initial-value problem
4
T = Az, z(0)=| =5
0
(a) The characteristic polynomial of the matrix A is
—1-2A 0 0
det(A — \I) = 2 1-X =2 _(—1—)\)‘1; 1_i‘
3 2 1-X

= —(1+AN)1 =22+ A +4) = —(1 + N (A =2\ +5).

Eigenvalues of the matrix A are Ay = —1, A\ = 1+ 2i, and A3 = 1 — 2¢. Since both Ay and
A3 have positive real part, all solutions of the system & = Az are unstable.

(b) Eigenvector for \; = —1 satisfies (A — A\;I)v = 0. Then

0 0 0 1 0

2 2 =2 v | =10

3 2 2 U3 0
Adding second equation 2v; 4+ 2v, — 2v3 = 0 and third equation 3v; + 2vs + 2v3 = 0, we
obtain 4

5v1 + 4vg = 0, v = = Vy.
From second equation it follows
V3 =0V1 + U = —5U2+Uz = 5“2-

Every eigenvector corresponding to A; has the form
—4/5

v = 1 | v

1/5 |

and we can choose
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For eigenvalue Ay = 1 + 24, we solve (A — X I)v =0, i.e.

—2—2i 0 0 vy 0
2 =2 =2 vy | =10
3 2 =2 U3 0
The first equation immediately gives v; = 0, while from the second it follows v3 = —ivs.
Then
0
v = 1 | v,
—i
and we can choose
0
v = 1
—i
The complex-valued solution e*2‘v can be written as
0 0
ety = (14201 1 | = e'(cos2t + isin 2t) 1
—i —i
0 0
=e' | cos2t | +ie sin 2t
sin 2t —cos 2t
The general solution to & = Ax is
—4 0 0
zt)=ciet| 5| +coe’ | cos2t | +cze sin 2t
1 sin 2¢ —cos 2t
(¢) The fundamental matrix solutions X (¢) for this system is
—4e™t 0 0
X(t) = Se~t elcos2t  e'sin2t
et elsin2t —e'cos2t
Then
-4 0 0
X(0) = 51 0
10 —1
From
-4 0 0100713 100/-1/4 0 0
51 0[0 10| —=| 510 01 0
10 -1{oo1] 7 [-101 00 -1
100[-1/4 0 0
% 010 541 0
1o oo 1] -14 0 -1
5
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we obtain
~1/4 0 0
X0t = 5/4 1 0
~1/4 0 -1
Finally,
et 0 0
e = X)X (0) = | =27t + 2elcos2t — Le'sin2t elcos2t —elsin2t

5
4
%e’t + get sin 2t + iet cos2t e'sin2t efcos2t

(d) The initial-value problem

4
& = Ax, z(0)=| =5
0
can be solved using the formula z(t) = e*z(0), or from the initial condition
4 4 0 0 ey
=5 | =2(0)=¢ 5| 4+ec| 1| +cs 0| =1 5¢+c
0 1 0 -1 €1 —C3
Then ¢; = —1, ¢ = =5 — 5c; = 0, and ¢3 = ¢; = —1. The solution to the IVP is
—4 0 4e~t
rt)=—e"| 5| —¢ sin2t | = | —be~t — efsin 2t
1 —cos 2t —e~! 4 e’ cos 2t
6
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4. (22 points) Consider the autonomous nonlinear system of differential equations
T =4y
y =22 + 27°.

(a) (7 points) Find orbits of the system.

(b) (7 points) Determine stability of equilibrium solutions of the system.

(c) (8 points) Write the nonlinear system as

Z=Az+g(2), Z{Z},

and draw the phase portrait of Z = Az.

(a) The differential equation

dy g 2x+ay’  x2+y°)
de & 4y N 4y

is separable, and we can solve it in the following way:

Y 1
dy = — d
[attv=s fe

1 x?
§ln(2+92) =g Ta

2

In(2+5?) = % + ¢

Y = ce” It 2,

The only equilibrium solution is (0,0). Thus, the orbits of the given system are

e equilibrium point (0, 0),

o curves y2 = ce” /=2, ¢ £ 2,

e four curves

(1) y =V2e”4 =2 2 >0,

(2) y=V2e”/" -2, 2 <0,
(3) y=—V2e?/1 =2 2 >0,
(4) y = —v3PT =3, 4 < 0.

(b) The nonlinear system in the matrix form is

MR FR P

The characteristic polynomial of the system matrix

+=[20]
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is

!
2 =X

The eigenvalues of A are \; = —+/8 and Ay = /8. Since one eigenvalue has positive real

part, the equilibrium solution (0, 0) is unstable.

dct(A—)\I)—‘ ‘—)\2—8.

(¢) In (b) we already derived the matrix form
. T 0 4
z=Az+g(z), Z{y}’ A{Z O}

Eigenvalues of A are \; = —v/8 and Ay = v/8, and the equilibrium solution (0,0) is saddle.
In order to draw the phase portrait for 2 = Az, we will determine eigenvectors corresponding

to Ah)\z,
From /8
o 8 4 U1 - 0
a-nne= Y5 gl n]=[0]
we obtain A
\/§01—|—4v2:0, ’Ulz—ﬁl}gz— 2 vy,

and we can choose

From
o= 5 _A][2]-14);

4
—V8wv +4wvy =0, UI:—UQ:\/?DQ,

we obtain

and we can choose
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/ i 4
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The phase portrait of 2 = Az:
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5. (12 points) Determine whether the following statements are true or false. Explain your
answer.
(a) (4 points) Initial-value problem
dy
o
has a unique solution y(t) = —1. True/False

e (y+1)¥%  y(0)=—1,

(b) (4 points) Families of curves
y =ctanz, y? +sin’z = ¢,
are orthogonal. True/False

(¢) (4 points) Vector-valued functions

3e sint —e
z(t)=| —e |, y(t) = cost |, 2(t)=| 1—e2 ||
et —cost |
are linearly independent. True/False
(a) False.
Notice that a constant function y(¢) = —1 is one solution to the IVP.

Let f(t,y) = e' (y +1)*? and yy = —1. Though function f is continuous for all + € R and
all y € R, its partial derivative
aof 2
f et*(y+1)71/3

ay 3
is not continuous in any neighborhood of 3y. Thus this IVP has more than one solution.

(b) True.

Starting from

C 1
F(x7y7c):Ctanx_y7 Fy:—ly Fz: = Yy = — Y )
cos?x tanxcos?xr  sinzcosz

we can derive

dy F, —sinrcosz

dv — F, y
/yd,y:f/sin.rcosxdm

2 L2

y-_ sinz

s 2 @

Y +sin’z =c.

10
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(c) False.

Choose t = 0 and consider a zero linear combination ¢;2(0) + c2y(0) 4 ¢32(0) = 0:
0 3 0 -1 3C1 — C3
0 =C -1 + Co 1 +c3 0 = —C1 + C2
0 1 -1 0 C1 — Cy

We can choose, for example, the following nonzero constants
01:1, 62:17 C3:3,

and obtain ¢;x(0) + c2y(0) + ¢32(0) = 0. This implies that the vector-valued functions
x(t),y(t), z(t) are linearly dependent.

11
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3.5.2 practice final exam for 2018

MATH 4512, FINAL EXAM
December 20, 2018
SOLUTIONS

1. (25 points)

Use Laplace transform to find a solution of the following initial-value problem

%—6%4—%:&“7 y(0) =1, %(O):—l.
Let .
Y(s) = L{y(t)}, F(s) = £{e*} = Py
Then
V() = g (5= 6) = 14 F ()
1

7(373)2 ((5—3) 4-5—?3)

! 4 1

T s—3 (s—3)2  (s—3)3
Since

L{te¥} = _%g{e&} __ 4 ( 1 ) _ 1

ds \s—3 (s —3)2
. d . d 1 2
23ty _ _ @ 3ty _ @
Lret) = dsﬁ{te } ds ((s - 3)2) (s —3)3’
we further have
o Lt 4 Lo gy sty L g 3
Y(s) = P Rl + EEEE = L{e} — 4L{te }+2£{t e}

. . 1, .
= L{e¥ — 4te® + 51526'“}
and consequently

: st Lo 1, .
y(t) = e — 4te’ + itze‘“ =(1-4t+ §t2)e*5‘.
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2. (25 points)

Transform the differential equation

d*u  du
UL =0
a ar
into a system of differential equations
t t
w0 ] _ [0 0
y(t) y(t)
(a) Determine stability of all solutions of (1).
(b) Find a general solution of (1).
(c) Find equilibrium points of (1) and examine their stability.
(d) Draw the phase portrait of (1).
Introducing x(t) = u(t), y(t) = u(t), we have that
#(t) = y(1)
() = 2(t) - (1)
Therefore
0 1
A= [ 0! } |
(a) The characteristic polynomial of the matrix A is

p()\):det[_; _1_H CALEA) 2= N A-2=(A£2)(A 1),

The eigenvalues of A are A\ = —2 and A\, = 1. Since one eigenvalue has positive real part,
all solutions of (1) are unstable.

(b) First we will determine eigenvectors corresponding to A\ = —2 and Ay = 1.
From

(A_,\lj)v_(A+2l)v—[§ H”_ {8}’

we can choose v! = [1,—2]T, while from

(A—)\Ql)v—(A—I)v—{_; _Hv_ {8}

we can choose v2 = [1,1]T. The general solution of (1) has the form

_ 1 1
v ]

2
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(c) The system (1) has only one equilibrium point [0,0]". This constant solution is saddle

since
9=

(d) The phase portrait of (1):

A <0< A=1.

B S
e
\ *\\>/'/(47(/ g
\7 //4/}/
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3. (25 points)

Consider the system of nonlinear differential equations
&=y + 3ya?
y = 4x.

(a) Find orbits of the system.

(b) Find orthogonal trajectories of the family of curves obtained in (a).

(a) Consider the differential equation

@7‘1) 4x 4x

d:p_i:y+3y332 (1 +322)

Since it is separable, we can solve it in the following way:

@7 4x

ydxilJrSa:Q

dy* Az
de 2 14322

2

Y dx 4 [ds 2 9
— = dr=- | —==1Inl1+ 3

2 /1+3x2x 6/ 5 —aniirdrlra

The only equilibrium value is [0,0]". Thus, the orbits of the given system are
e the equilibrium point [0,0] T,
e the curve y* = $In(1 + 32?),

e the curves y* = §In(1 + 32%) + ¢, ¢ # 0.
(b) Let F(z,y,¢) = 3 In(1 + 32?) — y* + c. From

8x
Fz:77 F:_27
1+ 322 v 4

we obtain that the orthogonal trajectories y need to satisfy

dy F,  y(l+32?)

de F, 4x
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This is a separable problem and we solve it as follows:
ldy 1+ 3z?

;dx N 4x

2 gy = 12
In|y| _—/1—ij2dﬂ;——i Ci—x—z/:cdx
nfyl =~ hnje] - 2 4

|yl = cla| ™ exp(—32%/8).

Orthogonal trajectories are the curves that satisfy

|yl = clz| 7/ exp(—32%/8).

Orbits y* = $In(1 4 32%) + ¢ (dashed) and
orthogonal trajectories |y| = c|x|7/* exp(—322/8) (solid).
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4. (25 points)
The charge Q(¢) on the capacitor within closed electric circuit satisfies the differential equa-
tion
L—+R—+ = = E(t),
with an inductance L, a resistance R, a capacitance C, and a voltage source E(t) at time t.
If L=1H, R=2Q, C =0.2F, and E(t) = 17cos(2t)V, find charge Q(t) that satisfies
dq)

Q0)=0C, E(O) =9A.
Useful identities and properties:
at
. _ . at _: _ € 3 _
sin(260) = 2sinf cos¥, /e sin(bt)dt = e (asin(bt) — beos(bt)) + c,
. eat )
cos(20) =2cos?6 — 1, /e Pcos(bt)dt = m(a cos(bt) + bsin(bt)) + ¢

With the given data, we are solving the following initial-value problem

?Q  _dQ dQ
— 4+ 2— =1 2t = — )
I + o +5Q = 17 cos(2t), Q(0) =0, dt( )=9
The characteristic equation
2 4+2r +5=0
has complex roots ry = —1 + 2¢, ro = —1 — 2¢. The functions

y1(t) = e Fcos(2t), yo(t) = e 'sin(2t),
form the fundamental set of solutions. The Wronskian is

Wiyt 2l (8) =y (t)y5(t) = vi(t)ya(t) = 207

Now we search a particular solution v in the form

U(t) = wi Oy (t) + ua(t)ya(t).
With E(t) = 17 cos(2t), we obtain

= —— estt cos(2t)dt = —— esm4t
/ =7 [ ¢ s T/

= (sm(4t) 4 cos(4t))

(t) 17
dt = —/e cos?(2t)d /et 1 + cos(4t))dt
/Wyl,yz( P (41)

1
Ze +7¢ "(cos(4t) + 4sin(4t)).

6
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The particular solution is

Y(t) = ur(t)yr(t) + ua(t)ya2(t)

_ —i(sin(élt) ~ dcos(4t)) cos(2t) + %7 sin(2f) + i(cos(4t) + dsin(4t) sin(21)
= cos(2t) + 4sin(2t).
Here we have used double-angle formulae.
The particular solution can be found using guessing
¥ (t) = acos(2t) + bsin(2t), a,b are constants.
Then from
' (t) = —2asin(2t) 4 2bcos(2t)
V" (t) = —4acos(2t) — 4bsin(2t)
we get
17cos(2t) = ¥"(t) + 2¢'(t) + 5¢(t) = (—4a + b) sin(2t) + (a + 4b) cos(2t).
Finally, a = 1, b = 4, and ¢(t) = cos(2t) + 4 sin(2t).

The general solution of the starting problem has the form
Q(t) = cryi(t) + coya(t) +(t) = cre " cos(2t) + coe ' sin(2t) + ¥ (t).
The initial condition Q(0) = 0, and y;(0) = 1, y2(0) = 0, (0) = 1, imply
0=0Q(0)=c¢ +1, c =—1.
Now, from
Yy (t) = —e"(cos(2t) + 2sin(2t))
yh(t) = e (2 cos(2t) — sin(2t))
Y’ (t) = 8 cos(2t) — 2sin(2t),
the second condition @’(0) = 9 further implies
9 = c1y1(0) + c2y5(0) + ¥'(0) = —¢1 + 2¢5 + 8, ey = 0.
The final solution (the charge on the capacitor at time t) is
Qt) = —yi(t) + (1)
= —e ' cos(2t) + cos(2t) + 4 sin(2t)
= (1 —e ") cos(2t) + 4sin(2t).
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This initial-value problem

’Q  dQ dQ
e ) E = 17 cos(2t =0, —%(0)=
I + 7 +5Q 7 cos(2t), Q(0) =0, o (0) =9,
can also be solved using Laplace transforms. Let
17s
Y(s) = L{Q(t F(s)=L{17cos(2t)} = —.
() = LR F(s) = £{1Teos(20)} = 5
Then
1 1 17s
Y = — F =
(s) 82+28+5(9+ (5)) 52+25+5<9+32+4>
9s* + 175 + 36 s+1 s+ 8

T (2425+5)(s2+4) 2+425+5 s>+ 4

where in the last step we use partial fractions. Then

s+ 1 _ s+ 1 _ 4
R ol pos | L{e " cos(2t)}
SES S 4l fleos(26)) + AL{sin(20)},

22+4 s2+4 s2+4
and consequently

Y (s) = —L{e " cos(2t)} + L{cos(2t)} + 4L{sin(2t)}
Q(t) = —e " cos(2t) + cos(2t) + 4sin(2t)

= (1 —e ") cos(2t) + 4sin(2t).
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Chapter 4

study notes

4.1 Population models (Section 1.5 in book)

B The most basic model is call Malthusian model given by Z—’; = ap (t) which says that rate of
change of population is proportional to current population size. a is constant. The solution
is p (t) = poe"*="). Where p (t) is population at time t and p; is initial population at time t.
This model is OK when population is small. A better model is called logistic model given
by

dp ~
— = w® - ®

p (to) = po
Where b is the competition factor. Also constant and positive. It is much smaller than a.
The solution to the above is

aPo
t) = 1
P bpo + (a — bpo) e~alt=to) @

In this model, we are normally given py and given (f — t;) and given what is called the limiting
value g which is lim; ,, p (t). Then asked to find population p (t) after sometime. This will
be (f —ty). We need to find a. Once we find 4, then we find b from the limiting value. The
trick is to find a. To do this, we first use (1) from the information given. The problem will
always say that the population doubles every so many years, or the population increases at
rate of some percentage per year and so on. Use this to find a4 from (1). Now we know b.
Then use (1) again now to find the population at some future time as the problem says. See
HW1, last problem for an example.

B If a problem says substance decays exponentially, this means M () = Mge™“*. where C > 0.
Need to find C from other problem information. Typically problem gives half life to do this.
For example, see problem section 1.8, problem 3. It says:

substance x decays exponentially, and only half of the given quantity remains after 2 years.
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How long it takes for 51b decay to 1 Ib? Solution is
M = Mye™“t

After 2 years, M = ]\%, hence A% = Mpe?C. Hence % = ¢ or ln(%) = -2C, hence C =

—% In (%) = %ln (2). Now we know C, we can finish the solution.

1

M = Moe~2 M@
1

1 _ smer

5

" In2
= 4.643 years

If it says it grows exponentially, then M = Mye®" instead.
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4.2 Mixing problems (Section 1.8(b) in book)

o . . . ds .
The main idea is to set an ODE using % = R;, — R,,; where R;, is rate of mass of salt

coming into the tank and R, is rate of mass of salt leaving tank. This gives an ODE to
solve for S (t) using initial conditions which is given. At end, divide by volume of tank to get
concentration at time t. See book example at page 54.
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4.3 Example 1, page 369

Book solution for example 1 is wrong. So I typed corrected solution.

t
Solve x = 14 x + ¢ with x (0) = 2
11 et 1

Solution

(sI —A)X(s) =F(s)+x(0)
o 36 -0
0 s 1 1)[\xy(s) = 1
[5—1 —4 )(xl (s)] B [ﬁ +2)
-1 s—1Jxy(s) - $+1
Multiplying the second row by (s — 1) and adding the result to the first row to obtain Gaussian
elimination. First multiplying second row by (s — 1) gives

s—1 -4 x1(s)| _ $+2
—s-1) -DJlx6)] |1+6-1)

s—1 -4 x1(s)| _ s_il+2
-(s-1) (s—l)2 Xy () B 5

Now replacing row 2 by row 2 plus row 1 gives

s—1 —4 xq(8)| $+2
0 (-12-4)lx,(5)) s+(s_il+z)

s—1 4 nE) [ =+2 "
0 s2-25-3)|lx,(5)) s_il sz+s—1)
Hence
1 (s?>+s-1
xZ(S):s—l(sz—Zs—?))
_ s2+s5-1 ©

(s=1)(s=-3)(s+1)
Partial fractions:

s2+s-1 A B C
G-DG-36+D) G-1 (-3 6+l
A—( s2+s-1 ) _1+1-1 1
(s=3)(s+1) 1 1-3)1+1) 4

And

“(B-1)G+1) 8

o sHs-1 9+3-1 11
\e-D6+D)
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And
_( s%+s5-1 ) o 1-1-1 1
(s-1)(s-3) 1 (-1-1)(-1-3) 8
Hence
1 1 1 1 1 1
__ - _— 3
2O = 5o T3 6.3 86+D) ®)
Therefore
1 11 1
X, (t) = —Zet + §e3t - ge‘t

Now we go back to (1) and use the first row to find x; (s) since we know x; (s) which is given
in (2). This results in

1
(S—l)xl (S)—4XZ(S): ST1+2

1
(S—l)xl(s)za+2+4xz
1 N 2 N 4
(s-17° s-1 (s—l)x2
1 . 2 s 4 ( s2+s5-1 )
s-1% s-1 (-D\6-1)(-3)(s+1)

1 N 2 N 4 1 1 +11 1 1 1
s-17> s-1 (s-1)\ 4(s-1) 8(s-3) 8(s+1)
1 N 2 1 +44 1 4 1
(5_1)2 s—1 (5_1)2 8(s-1)(s—3) 8(s—-1)(s+1)

2 +44 1 4 1
s—=1 8(s-1)(s-3) 8(s-1)(s+1)
2 +11 1 1 1
s—=1 2(-1)(-3) 2(s-1)(s+1)
2 +11 11 11 1(1 1 11
T s-1 21\25-3 2s5-1) 2\2s5-1 2s+1
2 1 1 11 1 1 1 1 1

+ — -— - = + -
s—-1 4s-3 4s-1 4s-1 4s+1
-1 11 1 1 1

s—1+Zs—3+é_Ls+1

x1(s) =

Therefore
11 1
x; (f) = €' + Ze3t + Ze‘t
—t

We see that book solution is wrong. It gives x; () = 2¢> + %et - %e :

Solving the same problem, but using the variation of parameters method:
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Since A =

4
) then
1

det (A—Al) =0
1-1 4
=0
1 1—/1)
1-1)%-4=0

det [

Hence roots are A =-1,A =3

A=-1

2 4 01 0
1 2){wy) |0
-2
From first row, 2v; + 4v, = 0 or v; = —2v,. Hence v' = [ ,
A=3
1-4 4 ||on] [0
1 1-AJ{w) |0
-2 4 |[v) (O
1 -2)lo,) |0
1 2
From first row, —2v; + 4v, = 0 or v; = 2v,. Hence v* = ;
—2¢7t 263
X(t) = ot e3t]
-2 2
X(0) =
o[
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[ 1 _1]

. -2 -2 1 =2 _1 1

_ dj(X(0)) 1

Therefore X~1(0) = gei(x(o)) = - =-3 [_1 _2) = ( 14 % . Hence
4 2

e =X (1) X1(0)

-t 3y (1 1
—t t
e e Z E

1 1
2ot 4 2,3t _ot 3t
(26 +2€ e +e J

1+, 13 1 4 15
——et4 et et 4 Ze
4 4 2 2

Using (since t; = 0)

t
x(t) = eMx (0) + et f A £ (s) ds
0

But
1 1 _ _
—As Ees *3e ¥ e+ (e
A Yooy Lomas Los L 1,85 s
4 4 2 2
1 1 _ _
2825 + Ee 2s eZs +e 2s
= 1 25 1 —25 1 25 —2s
160 T e T e e
1 2 3 25
_ 5e +326 )
25 O =25
yCaR4
Integrating
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Hence
t Loty 13t ot o3t \(=le2t Z 302t 4
eAt e—Asf (S) ds=1 2 2 4 4
I PR - TR S 2 | IR TP T
0 —ge + ZB Ee + Ee -e< — =-¢ +

8 8 4
1 3
1€ t—et+ze3t
=l 1., 1 3
Tt 1o 3

8 4 8

1 v, Y3+ 3t
eAtx(O) _ 216 t+ 213 o et +le ; 2
—g¢ t e e tge 1

And

8 4 2

Hence

3t Lot _ ot 3,3t
x(t) = a3 | F 14—t 12t434t
e —ge —Ze +§€
B ie—t_et+14_133t
N L
8 4 8

Therefore

11
xp (t) = Ze‘t —et+ 7

1 1 11
Xo (t) = —ge_t - ZEZt + ge

Which agrees with result using Laplace transform method.

3t

4t
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4.4 Orthogonal projections

Given F (x, v, c) we need to find the orthogonal projections. The first step is to find the slope
of the orthogonal projection, which is given by (it is orthogonal to the given curve slope)

dy _Fy

ix " E, 1)
Next step, check if c still shows up in the above (i.e. did not cancel out), then solve for ¢
from F (x, Y, c) =0 and replace it in (1). Now (1) will not have c in it any more. Next, solve
(1) for y. This gives the curve for the orthogonal projection. This solution will have new ¢
in it (since we need to integrate to find y). See HW 2 for example problem.
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4.5 Existence-uniqueness for 1D ODE

Given by theorem 2 for existence and uniqueness: given ﬁ =f (x, y), with initial value

Y (xp) = yp. Let f and Z—ibe continuous in the rectangle R: t <t <ty+a,|y - y0| < b. Compute

M= max(, ) |f (x, y)| and set @ = min (a, %) then ODE has at least one solution in interval
t <t <ty+ a and this solution is unique. (I do not know why book split this into theorem 2
and 2°).

c . . J . . .
Notice in the above, if f or a_j: not continuous in the range (the range must include the

1
initial point) then not unique solution exist. For example i’ = sin (2f) y3 with y(0) = 0. Here
f’ is not continuous at y = 0.

How to use the above The first step is to find M. This is done by finding maximum in R.

This is normally done by inspection from looking at f (x, y). Next, let g (y) = % Find where

this one is maximum. set its value in @ = min (a, 1\%) and this finds . Done. Example. Show

y (t) solution to % =t + e‘yz,y(O) =0existsin0<t< % and |y (t)| <1. Here it is clear M = Z

10

Z’M) but b =1, hence a = min(1 l) =a= min(1 4) = % Therefore

and hence a = mm( 23 >
4

N

solution exist for 0 <t<0+aor0<t<

4.5.1 practice problems

4.51.1 Problem 5, section 1.10

Show that the solution y (t) exists on y(0) =0;0 <t < %

Yy =1+y+y?cost

solution
Here a = %
M = max (f (t,y))
=1+4+0b+1?
Hence

b
i X Py
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Let g(b) = ﬁ en jl—i = ﬁer(:?—ﬁ. Setting this to zero and solving for b
(1+b+b?)-b(1+20)=0
1+b+b2-b-2”=0
1-p?=0
Hence b =1. At b =1, then g(b) = 1+1+1 = % Therefore
(11
a = min (5, 5)
1
=3
Therefore y (t) solution exist for0<t<0+aor0<t< %

4.5.1.2 Problem 16, section 1.10

Consider ' = t2 + 4%,y (0) = 0 and let R be rectangle 0 < t < a,-b <y < b. (a) Show the
b

T for a fixed is

solution exist for 0 <t < min (a, #) (b) Show the maximum value of

%. (c) Show that &« = min (a, %a) is largest when a = L

V2
Yy =1+y+y?cost

solution
(a)
M = max (f (t,y))
_ a2 + b2
Hence
b
o =min|a, —
M
B 1 b
=min |3

. . . b
Hence solution exist for 0 < f < min (a, m)

24+b2)-b(2b
zb > then a8 _ (a+—)(§) Setting this to zero and solving for b
as+b dp (1+b+b2)
(a2 +b?)-b(20) =0
a2+ -2P=0
a? = b?

Hence b= +a. At b =g, then g(b) = - = = = —

a%+q2 242 2a°
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(c)

@ = min (a, Smax (b))

. 1
=min|a, —
2a

1 1.
2= 5- Hence a = 7 gives largest value.

. 1
Solving a = - or a

4.51.3 Problem 17, section 1.10
Prove that y (t) = -1 is only solution for y’ = t(l + y) ,y(0)=-1
solution

Since f = t(l + y) is continuous for all ¢,y and f, =t is continuous for all y, then if we find
a solution, it will be unique solution by theorem 2’. But y () = -1 is a solution since we can
show easily it satisfies the ODE. Hence it is the only solution over all ¢ by theorem 2’

4.51.4 Problem 19, section 1.10

Find solution of i’ = t4/1 -2, (0) = 1 other than y (t) = 1. Does this violate theorem 2’?

solution
dy [
— =1 - 2
dt Y
d
f y__ f bt
V1 -2
12
arcsin (y) =5 +C
Att=0

arcsin(l) = C

2
Hence solution is arcsin (y) = % + arcsin (1) or
2

y(t) = sin(t2

(P n

=sin|—+ —
2 2
1

— o 2

—sm(i(t +n))

This does not violate theorem 2’ because f(t, y) = ty/1 - y?, hence f, = % which is not
-y

continuous at y = +1. But y = -1 is the initial conditions. Hence theorem 2’ do not apply.
Theorem 2’ applies in the region where both f, f, are continuous.
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4.6 Stability of system

Algorithm 1 Determining stability of system & = Ax + g(x)

1: if system is linear, i.e. ¥ = Ax then

2: determine eigenvalues A; of A by solving |[A - AIl =0
3: if all eigenvalues have real part smaller than zero then
4: return stable
5: else
6: if at least one eigenvalue have positive real part then
7: return not stable
8: else > we get here if at least one A has zero real part
9: for all A; with zero real part do
10: M = multiplicity of A;
11: N = number of linearly independent eigenvectors that A; can generate
12: if N <M then
13: return not stable
14: end if
15: end for
16: return stable
17: end if
18: end if
19: else > system not linear
20: will only consider case when origin is equilibrium point
21: determine the Jacobian matrix |
22: evaluate | at origin x = 0
23: determine eigenvalues A; of | by solving |[] — AI| = 0
24: if all eigenvalues have real part smaller than zero then
25: return stable
26: else
27: if at least one eigenvalue have positive real part then
28: return not stable
29: else > we get here if at least one A has zero real part
30: return unable to decide
31: end if
32: end if
33: end if
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4.7 Laplace

If Y (s) has form 52;

where roots of quadratic are complex, then complete the square.
+as+b

Write s2 + as+b = (s + A)*> + B and find A, B. Then
s B s
+as+b  (s+ AP +B
_ s+A-A
@+Af+B
s+ A 1
= 2 -4 2
(s+A"+B (s+A"+B
5 1

2+B "#+B
5 A VB
$2+B +B%+B
And now use tables. Due to shifting, multiply result by 75!, So inverse Laplace of the above

. _Bt _ i .
is e (cos \/Et \/Esm \/Et)
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