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1 Probleml

1. Consider the following PDE.

ug =0.01lug, +1 —exp(—t), 0<ax<l1
w(0,t) =0 w(l,£)=0
u(z,0) =0

a) Write a program to solve the problem using Crank-Nicolson up to time ¢ = 1, and
g g
perform a refinement study that demonstrates that the method is second-order accurate
in space and time.

(b) Solve the problem using a forward Euler method up to time ¢ = 1. Demonstrate in a
refinement study that the method is first-order in time and second-order in space.

Figure 1: Problem description

The goal of a refinement study is to perform a numerical experiment to determine the
order of accuracy of a given finite difference scheme. The appendix of this problem contain
a review of the idea behind refinement study.

The problem asked us to determine the order of accuracy in time and in space. A program
implementing the above scheme was run a number of times, each time with a different
initial value for the space and time step. To verify order of accuracy for the C-N scheme,
the space and the time step were divided by 2 simultaneously before the start of each
run. To verify order of accuracy for the forward Euler scheme, the space step was divided
by 2 but the time was divided by 4. For both schemes , the program generated ratios of
successive errors between the numerical solutions at the end of each run (1 second long
run).

Convergence of this ratio to the value 4 implied the results we are asked to demonstrate.

In the following, the C-N and the forward Euler finite difference schemes are derived, then
the numerical results presented, followed by a conclusion.

1.1 Part (a)

The method of lines (MOL) was used to implement the C-N scheme to solve for the
numerical solution u. The equations are solved using Matlab’s u = A\b where A is a
sparse matrix (the system update matrix) constructed based on the C-N discretization. An
efficient algorithm to solve for u in this scheme is Thomas algorithm version of Gaussian
elimination. It is understood that this will automatically be done by Matlab ”\” operator
when it recognizes that the A matrix is a tridiagonal giving an O(n) order for the solver
where 7 is the number of unknowns.

Let the PDE be
d uy — Duy, + au = g(x, t) 1)

g(x, t) is an internal source with initial conditions as u(x, t) = u0(x). The Dirichlet boundary
conditions are
u(0,t) = a(t)

u(L,t) = B(t)

and Neumann boundary conditions are

uy(0, ) = a(t)

uy(L, t) = B(t)
The terms d,a above are constants, and D is the diffusion constant. For the C-N scheme
(1) was discretized at point x; with space step as i and with time step as k resulting in

n+l _ 't

d =Sy



Where f" is the RHS of the PDE at time t, = nk, so the above becomes

n+l _ mn
d u = 1[(Duxx —au + gj)ﬂ + (Duxx —au+ gj)n+1]

k 2
n n n
_ Lt ),
) L2 auj =+ gj
un+1 _ 2u1¢+1 + un+]
j-1 j Ll | gt
[D 2 au""" + g

D D
= @(u;?_l - 2ul + u}ﬂrl) + ﬁ(u;lfll —2uf*t + u}“fll)—

S+ + g+ ™)

collecting all terms at time n +1 to the left gives

kD ak\ kD kD D ak kD kD k
n+1 n+1 +1 _ n +1
g (1 et ﬂ)‘zdhz U gt = (1 T @ ﬁ)*”?—lww?ﬂwﬁ(& +5)
Let
(14 kD N ak
TG T
kD
27 a2
_( kD ak
BT T 4
k
Fy= —
DY
Then the above becomes
rlu}’+1 - rzu]’.frll - rzu]’.fll = raul]l + Uy + ol + r4(g]“ + g"”) (2)

The above algebraic equation (2) is the C-N finite difference scheme for (1) and is valid
for x; at the internal points. Considering the case of both ends having Dirichlet boundary
conditions, and using the following grid numberingﬂ

|
1 1

O—O0—O0—0O0——0—0—-0
1 2 3 4 wwwN-1 N
|

1

L
]

Internal nodes

Figure 2: Problem grid format

Then (2) above is valid at the internal nodes numbered j = 2---N —1. Hence uf will be
the left boundary point and uy; will be the right boundary point. When the boundary

I This is slightly different from the standard numbering format we used before.



conditions are Dirichlet, let u] = a(t,) and uy; = B(t,). Converting (2) to matrix form results
in

A x b

1 0 o0 0 o][uyt] o o o 0o ojfur ] [ o

0 rn -rn O 0 Offust? 0 r3 r, 0O 0 0| uj 1@ + 143>
0 -1, 1 -1, 0 0 Ofus? 0 rp r3 1, 0 0 Of uj 7433

0 0 -rp, rn -rn 0 Off * [=]0 0 rp, r3 o, O Of uf [+ 7484
00 0 0 Coolfur | : ]| :

0 0 -, 1 O|[ufy] [0 0 O O rp, ry3 Ofluf_y| |rof+7ra8naa
0 0 0 0 1fjuf™| [0 0 0 0 0 0 Offufy| | pB™*

Where in (3) a(t,,1) + a(t,) = & and B(t,.1) + f(t,) =fand g" + ¢"*1 =3 .

Equation (3) is in the form Au"*! =b. And u"*! is solved for using A\b. Notice that (3) is
in the same form shown in class notes, which is

Dk Dk 1
(1 - 7L)u"+1 = (I + 7L)u" +kf"2 (4)

-1
Where the update matrix B = (I - %kL) (I + %kL). L is the standard Laplace operator for

1D problem given by

(21 0 0 0 o]
1 -2 1 0 0
1

0o 1 -2 0
0O 0 0 1 -2 1
0 0 0 0 1 -2

Notice that (3) compared to (4), has additional terms included in the RHS in order to
support the general form the parabolic PDE. Equation (4) represents the diffusion pde
uy — Duy, = 0.

uj when n = 0 is obtained from initial conditions. The first step solves for ujl which is then

used in the second second step to solve for u]2 and so on, until the maximum time to solve
for is reached. Since Dirichlet boundary conditions are used, #} (the solution at the left
edge) and u};, the solution at the right edge are always known. The above system is solved
only for the internal nodes. Next section shows the numerical results.

Result for part(a) The above scheme was implemented with a GUI added to make it
easier to use these algorithms. The following plot shows the numerical solution at ¢ = 1.



Solving the 1-0 inhormogeneous parabolic
POE  d*u'it) - D*u'(x) + ™ = Q) + gl 1)

select algorithm

" (explicit) forward time, centered space

& (implicit) Crank-Nicolson scheme

v perform refinement study

parameters

delt, time step (sec) | 0.0625
h, space step (m) [ 0.0625
length () | 1

D [diffusion constant) 0.01

hiee long to run (sec) I 1

baoundary conditions
— left end

& diichlet 0.0 | 0

v T

0.16
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golution ulz, ) at t=056250 sec
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Figure 3: shows the numerical solution at t =1

The following is the ratio error table. This table shows that the ratio converged to 4.

delt
.2500000
.1250000
.0625000
.0312500
.0156250
.0078125
0.0039063

0 ~NO O W N H
O O O O O o

The following is the loglog plot of the above result. The x-axis represents / and the y-axis
the difference in errors (absolute). The slope of the line is seen to be 2 implying a second

order accuracy.

O O O O O o

h

.2500000
.1250000
.0625000
.0312500
.0156250
.0078125
0.

0039063

DR D W N e

ratio

.0000e+000
.9347e+000
.6798e+000
.2132e+000
.1209e+000
.0354e+000
.0092e+000




refinement study result,
log(h®+delt?) vs successive errors difference

ratio

result of refinement study
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Figure 4: log log plot

Conclusion Since the ratio is 4 and since the time step and the space step were halved in

each run, this implies C-N is second order in time and space.
Starting with the same PDE as in part (a)

1.2 Part(b)

(1)

d uy — Duy, + au = g(x, t)
For the forward Euler scheme (1) was discretized at point x; with space step as h and with

All terms and boundary conditions and the solution domain are as shown in part (a).
time step as k as follows

Hence

the above becomes

_ kD _ k
- ﬁnr?) - 57

ak
a

kD
(122

Let 1

it =

(2)

n
]

+ 134;

n n n

]

The above algebraic equation (2) is the forward Euler finite difference scheme for (1) and

is valid for x; at the internal points.
Therefore, the stencil for the forward Euler scheme for the 1D parabolic PDE is



dui—Duy +au =0

Un+1 J
- ;f\&
// \\
ko /| N kD
K dnz,/ | N dh?
/ \
// le \\
_ _ ak
// (1 Zglh—z q ) \\
/ \
X -4 é O
J-1 j J+1

The stencil for forward Euler finite difference scheme to solve
the 1-D parabolic PDE with dirichlet boundary conditions

Figure 5: stencile for forward Euler

Considering the case of both ends having Dirichlet boundary conditions, and using the
same numbering as in part (a) then (2) is valid at the internal nodes j=2---N —1.

u} will be the left boundary point and uy; will be the right boundary point. Let u = a(t,)
and uy; = B(t,). Converting (2) to matrix form results in

[w*1] fo 0 0 0 0 0 0 o] u al

utl 0r rn 00 0 0 Off uj roa™ + 1395
ultl 0 rpb rp r, 00 0 Of uj 395

uf'1 10 0 rp, 11, 0 0 O|f uf N 1384

: 0 0 0 O 0 0 0ff : :

uffB| 10 0 0 0 rp ooy Of|uf, "38N-2

uttl 00 0 0 0 1 o Of|ulq| BT+
] 000 00 0 0 O0fuy| | p

And now u"*! is found by direct matrix/vector multiplication as shown above. No matrix

inversion is required in this case since this is an explicit method.

Looking at the stencil above, an idea is now suggested to determine stability directly from
the stencil diagram. By imposing that the weight on each edge in the directed graph not
exceed unity, and that the total algebraic sum of the weight of the edge also not exceed
unity. This includes any combination of edges involved. If this is always the case, then u]’-l“
will always have an amplitude < 1}’ since the weights are never more than 1 no matter what
combinations are used. This idea is applied to this problem with u; + Du,, = 0, hence a = 0
and d = 1. This gives that following conditions on the edges shown in the stencil diagram

above

kD

1 z=1 Condition on j -1 or j +1 separately

(2) 2’;—? <1 Condition on j -1 and j + 1 added together

G - 2%| <1 Condition on the j edge

4) ];—12) +1- 2% <1 Condition on the j edge with either j -1 orj+1
(5) 2];1—? +1- Zkh—zD <1 Condition that all edges sum to less than 1




Condition (1) is weaker than (2), hence not considered. Condition (3) results in :—12) <1
which is the same as (1). Condition (4) gives |1 - leg <1or leg < 2 which is also weaker
than (2). Condition (5) gives 1 <1 hence no information is obtained from it. Therefore,

condition (2) remains, and that condition says that Ig < 1, which is the strongest condition.
Hence, this is the absolute condition for stability for forward Euler. This agrees with the
method to determine this using Von Neumann analysis.

Result for part(b) The forward Euler results are below. The space step was divided by
2 and the time step was divided by 4.

# delt h ratio

2 0.0625000 0.2500000 1.0000e+000
3 0.0156250 0.1250000 3.0842e+000
4 0.0039063 0.0625000 3.7567e+000
5 0.0009766 0.0312500 4.1506e+000
6 0.0002441 0.0156250 4.0794e+000
7 0.0000610 0.0078125 4.0447e+000
8 0.0000153 0.0039063 3.9909e+000

The following is the corresponding loglog plot

refinement study result,

- It)«g{hz-}delt2 vs successive ermors difference
10 ! ] result of refinement study

il Ko o sclpont [ il W ) DZZDIDIIDDDJi::::I /M Rk

S o B e e bl et e e St

__________________________________________________

S L ST ST e = delt h ratio
v FaTO |

A
-+
L
LD
-n
s
-+
]

--------------------------------------------------
' Ve '

e
] '

miim i e i il
]

0.0625000  0.2500000  1.0000=+D00
0 0.1250000 2.0842e+000
3000 3.758Te+000

4. 1508e+000
0.0156250 4.0754=4000
0D 0.00TB125 4.0447e+000
0.000D153  0.0035083  3.5505e+D00

ra
G = O 0N & 03 P
]
]
=

A}

[ dizplay solution in 30 log(h)

Figure 6: corresponding loglog plot

Conclusion Since the ratio is 4 and since the time step was divided by 4 and the space
step by 2, this implies forward Euler is first order in time and second order in space.

The appendix of this problem show the steady state analytical solution to the above PDE
derived using Laplace transform method.



1.3 Problem 1 appendix

Review of refinement study process The idea behind refinement study is reviewed
briefly. Assume the goal is to find the order of accuracy of a finite difference scheme with
respect to the space step. The finite difference formula is first derived, and the exact solution
is substituted into this formula. Terms that contain u(x + /), are replaced by Taylor series
approximation. The result is simplified, and the error term is found. An small example is
given to illustrate the idea.

To find the order of accuracy in space using forward Euler finite difference approximation

to a derivative
u(x + h) — u(x)

h
Each term for u in the RHS above is replaced by its exact value, using Taylor series
expansion where needed, resulting in

u(x) =

[u(x) + hu'(x) + h;u”(x) + };—Tu”’(x) + ] —u(x)

h

w'(x) =
error

=u'(x) + gu”(x) + ;l—ju”’(x) + .- 1)

The error term is hence. It is the amount that the RHS differs from the LHS. The leading

error term in (1) (the dominant term) is gu”(x), but since x is a known value (the above is
being evaluated at each grid point, hence x is known), then u”(x) is some constant, and
the leading error term in (1) is of the form Ch, where C is some constant. This is the same
as saying that the error is of order h.

The above method can be used to find the order of the error in approximation when the
exact solution is know. In problem (1), the exact solution is not given and was difficult
to obtain. Hence, instead of finding the order of accuracy using the above method, it was
found using a numerical experiment (refinement study).

In the refinement study the error itself is determined, and from the error profile (as / is
changed), the order is determined. But this error is the error between successive numerical
solutions.

Once the numerical error is found (after running the refinement study), then one method
to find p (order of the error ) is to take the logarithm resulting in

error = Ch?
log(error) = plog(h) +log C
= plog(h) + constant

and this represents an equation of the line Y = pX + k, where p is the line slope which is
the same as the order of accuracy. Hence, by generating different / values, and for each h
determine the corresponding error, then p is found by measuring at the slope of line from
the plot generated. If the slope is p =1, then it is first order accuracy, and if the slope is
p = 2, it is second order.

The above is a graphical method. Another method is as follows: Starting with some / value,
the error e,_; is found, then £ is divided by half and the error, now called e, is found again.
The ratio 2= is found. If p happened to be 2, then the ratio will come out to be 4. This is

n

because 2-L = oy 1)

en hy_1\P
2

will be 2.

= 27 and so if p = 2, then the ratio will be 4. If p = 1, then the ratio

In the above description, errors are found using differences between successive solutions
as follows

€p-1 = |Un+1 - Unl
e, = |un - un—ll

The norm used to measure U, the approximate solution, is the Euclidean norm modified
for the space grid

uil = Vauil,
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Steady state analytical solution to the PDE The following shows the steps used to
determine the steady state solution for

Uy = Ay, + f(t) (1)

where a = 11% and f(t) =1 - e with initial conditions u(0,#) = 0 and boundary conditions
u(0,f) =0 and u(1,f) = 0.

The above is an inhomogeneous PDE (the source term 1 —¢7*). The boundary conditions
are homogeneous, and with zero initial conditions.

Since this is an inhomogeneous PDE, separation of variables can not be used. But the
steady state solution (the particular solution) can be found using an integral transform
approach. Integral transformation is first applied to the PDE, resulting in an ODE which
is then solved in the new transformed space, and the solution in time domain is found by
inverse transforming back.

Since the spatial domain in this problem is a bounded interval (from 0 to 1), Fourier
transformation will not be used because the spatial domain is bounded and does not match
the Fourier transformation domain (from —co to +o0), however, Laplace transformation
(for t > 0) can be used as it matches the time domain of the problem.

Therefore, taking the Laplace transform of (1) w.r.t time gives

d2U(x, 1 1
—u(x,0) + sU(x,s) = aﬂ i

dx? s 1+s
But u(x,0) = 0, hence the resulting ODE is
d?U(x, s) 1 1
e AN - __
T2 sUx,9) 1+s s

With the boundary conditions U(0,s) = 0 and U(1,s) = 0 obtained from the spatial domain.
The above ODE is a second order, linear ODE, a inhomogeneous ODE that can be solved

for U(x,s), which results in the following (for the case a = %00)

—_e10x+5 (610x Vs-1 _ 1)(610x\/§ _ 610\/5)
s2(1 + s)(l + 610‘/5)

The steady state solution can now be found using the limit theorem for Laplace transform,
giving

U(x,s) =

u(x, 00) = li% sU(x, s) (1)
= 50x(1 - x) 1)

Here is a plot of the particular solution

x=0:0.01:1; plot(x,50*x.*(1-x))

steady state solution of pde

15

L Infinity)

Figure 7: steady state plot. PDE solution
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Derivation of forward Euler for periodic boundary conditions From part(b) above,

kD kD ak kD k
1_
I/l;?+ = Wu}q_l + Mjn(]. -2— - —) + @M}ﬂ_l + Eg?

Periodic boundary conditions implies #(0,¢) = u(1, ), Hence u;_; when j is the first note on

the left is the same as node N —1. And uj,; when j is the last node on the right is the same
as node j = 2. As shown in the diagram below

Periodic boundary conditions
r--- T =~ |
e Yoo N+1
¢/ 0—0—0—0—0—0—0 @
O “".“ 1 2 3 4 EE N N-l N 3 |
""""" e :
J '
I
|
unknowns - -
Figure 8: Grid format
Then L L L L
D D a D
1_
MEH— = @Mﬁ]_l + M?(l - ZW - E) + @Mg
And
kD kD ak\ kD
1_
M?\;— = Wu?\]_l + M?\](l - ZW - E) + @M%
Letry = (1 - 2% - a?:), ry = ;%,73 = S, Hence the system can be written as
] 1o, 000 0, O ] [ O
uftl rp rp 1, 0 0 0 up 1385
ultl 0 rp, 1 rn O 0f uj 1394
wittl =10 rp 11 T Of uf [+]| ¢4
0 0 0 :
uffy| {00 0 0 ror rf|uf| |7agied
»u}ﬁfrl 00, 0 0 0 rp rflug ]| | O

Derivation of forward Euler for Neumann boundary conditions both ends Using
this numbering
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RN —

;ﬁ

= O
N O
w O

Internal nodes

Figure 9: Grid format

Assume that u; = a at node 1 and u; =  at node N (these are the Neumann boundary

conditions).

Add a ghost node 0 to the left of node 1, and approximating a(t) gives
Up — Uy
a=——-—
2h
hence
uy = 2ha + uy 1)
But the PDE for node 1 is
kD kD ak\ kD
n+l _ n n n
M1+ dhz + U (1 - 2m - E) + @MZ (2)

Substitute (1) into (2) gives

kD
1 _
n (2ha+u2)+u1(l ZW - g + FT

T e
kD ak kD kD
= Ml 1- Zﬁ - E 2@ + Zhaﬁ

Similarly for the right end. Add a ghost node N+1 to the right of node N, and approximating

B(t) gives
_ UN-1 ~UN41
AT

hence

3)

But the PDE for node N is

kD )

ulhtt = kDu +uy|l -2— - — |+ —u
N dhz N-1 N dhz d dhz N+1

Substitute (3) into (4) gives

ultt = kD —uf_ +ulll-2——5 - —
dn2 N-1 T ON dn2 d) dn?

kD kD ak kD

th uN 1+ uN 1- Zd 2T 2h,/3dh2

k D ak) kD(Zh,B+uN 1)
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Nodes j =2:-- N —1 remain the same as before. In other words

kD ) kKD .k
I/l]- —Wuj_ﬁuj 1—2W—E +@Mj+1+ag]-

kD ak kD
Letrlz(l—Zﬁ—g ,szﬁ,,

unknowns and added)

r3 = S, Hence the system becomes (now nodes 1 and N are

[ n+1]

u r 2r, 0 0 0 O uf 2ha ry
uftl rp r1 1y 0 0 Of up 1385
i+l 0 12 r 1 0 O uj 7385
uftti=10 0 rp, . rp, 0 O ul [+]| rgt
n+1 n n
uya| |00 0 0 rp o rf|una| | 738N-1
uiHt 0 0 0 2r, r| uy 2hB" 1y

Derivation of forward Euler for Neumann on left and Dirichlet on right Using this
numbering

| L=1 |
| |

O—O—~0O—-=0
4 wuuN-1 N
I |

1

= O
N O
w O

Internal nodes

Figure 10: Grid format

Assume that uy =  at node N and u; = « at node 1 (these are the Dirichlet and Neumann
boundary conditions).

The unknowns in this case are nodes 1--- N -1, since uy is known from Dirichlet boundary
conditions. Add a ghost node 0 to the left of node 1, and approximating « gives

_ Upg—Up
2k

hence

uy = 2ha + uy (3)
But the PDE for node 1 is

kD
utl = —ult + u’f(l -2

kD ak\ kD
- ) n (4)

a”d) " a"

Substitute (3) into (4) gives
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kD kD ak kD
u’f“ = @(Zha + Mz) + M’il(l — Zﬁ — E) + %Mg
—u”l—Z—kD—a—k + Zk—D u”+2hak—D
- dn2 d dn? |2 dh?

Nodes j =2:-- N —1 remain the same as before. In other words

kD kD ak\ kD k
n+tl _ =2~ . n nl1 _ _ __gn —oh
ui™ = dhzu]-_1+u]- (1 2d 7 d)+dh2uj+1+dgj
Letry = (1 - 2;% - %k), ry = %,7’3 = S, Hence the system becomes
o |2, 0 0 0 0 o] 2 ha'r
51 51 n
un+1 &) 1 &) 0 0 0 0 A ¥3go
2 2
e 0 rnp rr n, 0 0 O g 1385
2= off 7|+ 1384
n.+1 0 0 0 Yo 11 717 0 n.
UN1 UN-1 n n
nal 0 0 0 0 Ty 1 0 " 3&n-1 T Tzﬁ
UN Un +1
- 0 0 O 0 0 0 - B"

Derivation of forward Euler for Neumann on right and Dirichlet on left Using this
numbering

| =1 |
| |

O
N O

O—0—0—0—0
3 4 wanN-1 N
|

1

—_—N

Internal nodes

Figure 11: Grid format

Assume that 1) = o at node 1 and #; =  at node N (these are the Dirichlet and Neumann
boundary conditions).

The unknowns in this case are nodes 2--- N, since u; is known from Dirichlet boundary

conditions. Add a ghost node N +1 to the right of node N, and approximating () gives
_ UN-1 T UN41

T

hence

UnNy1 = Zhﬁ + Un_1 (3)

But the PDE for node N is

20 ) et @

kD ak\ kD
dn?

kD
n+l _ n n
Un un-1 +ug|l-
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Substitute (3) into (4) gives

n+l _

kD kD ak\ kD
Uy thuN 1 +uN(1 2d 7 E) dhz(Zhﬁ+uN 1)

kD kD ak kD
thuN 1+ u(l- Zd i Zhﬁdhz

Nodes j =2:-- N —1 remain the same as before. In other words

w1 kD of1-250 kD ak\ kD k
4=t 2 T ) Yt g
Letry = (1 2@ - a;), ry = %,,1@ = S, Hence the system becomes
- _ - an+1
n+1 n
! 00000 0 Ofw b o
rpa" + 1
uftl 0 rp rn, O 0 Of up 2 n3g2
’
ultl 0 r, 11 1y 0 0]f uf 3831
n+l | — n r3g3
U =10 0 rp rp rp 0 Off uy |+ ;
) . ) 384
. 0 . .
uftilo 1o 0 0 rp 1 rffug, n
T3gN-1
uttlo (o 0 0 0 2rp rf| ut
| N o 2 1‘ | N | i zhﬁn 1/‘2 ]

Derivation of C-N for periodic boundary conditions From part(a) above,

un+1(1+kD aAt) KD 1 kD n(l_kD ak) . kD kD k(

n+1
j a2 " 2d ) g gt U\ T g T g [T g T g T g\ +8")

Periodic boundary conditions implies u(0, ) = u(1, t), Hence there is an extra one unknown
(in addition to the internal nodes). Either u(0,t) or u(1,t) can be selected since they have
the same value. When selecting the right end node, then 1y, becomes an unknown to be
added to the internal nodes. Using the following diagram

Periodic boundary conditions
g |
LT T s Voo N+1
¢/ 0—0—0—0—0—0—-=0 @
0 %\ 1 2 3 4 awaw N-1 N
! A
......... T--""..---"--"---.""-"""_____.-"_."“""""""-____. :
| |
! |
unknowns e - -
Figure 12: Grid format
Then for node 2
kD aAt kD kD kD ak kD kD k
n+1 1+ — 4+ — n+1 n+1 =utl1- —= - = n n n+1
( T 2d ) 212" T 212" ”2( e Zd) g * (% i)

M( kD aAt) KD s KD i n(l_kD ak) kD kD k(g2+gg+1)

14 — + —— ——
T2 T 24 ) T AN T gz 72 " 2d) TN e T ogE g



And for node N

n+]1+k_D+aAt kD s kD KD w1 _ 1_k_D ak L kD kD
N a2t 2d )" 2 N T g e = ML G T g ) T g M g
kD aAt kD kD kD  ak kD kD
n+11+_+ n+1 n+1_ nl] — — —
"N ( a2 " 2d ) " 2N T agate T ML g T g | T Mg g
Let
(14 kD N ak
T A T 24
kD
r —_—
27 2dn2
1 kD  ak
r=1--—-—
3 dn?  2d
k
Ty = —
7 2d
gn +gn+1 Eg
Converting to matrix form gives
A x b
—rl -1, 0 0 —rzq—ugﬂ_ —r3 rp, 0 rz- 'ug" —r4g2-
~r, 1 1, 0 0 |[ult ry T3 Ty uy 7433
0 =Ty T 0 0 : =10 Ty T3 Tp MZ + 7’4?4
0 0 0 eyl o0 0 ' :
- 0 0 -r n _uﬁf“l_ 7, 0 0 7y ra||uy| [ra8N]
u711+1 — unN+1

Derivation of C-N for Neumann boundary conditions both ends
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n+1

k

d(gN 8N
k n+1
Zd(gN 8N )

(3)

Using this num-

bering
| L=1 |
| |
oO—O0O—N0O—O0—0O—_0—-0
1 2 3 4 suwN-1 N
| |
| Internal nodes ]

Figure 13: Grid format

Assuming that 1; = @ at node 1 and u;

= p at node N (these are the Neumann boundary

conditions). Add a ghost node 0 to the left of node 1, and approximating a gives

Ug — Uy
2h

a =

hence

uy = 2ha + uy

(1)

)
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But the PDE for node 1 is

n+1 n+1 n+l _ n n n
U™ = rul ™t = roup T = raulf + roug + roul (2)

substitute (1) into (2)

ra = o (2ha L+ B *Y) = Ul = raulf + (200 + uf) + 1ol

T = 2 ultt = Ut + 2r0ul) + 2roha + 2rpha

Similarly for the right end. Add a ghost node N+1 to the right of node N, and approximating
B(t) gives

B = UN-1 ~ UN+1
2h
hence
Uns1 = 2hB +unq (3)
But the PDE for node N is
] u]’{f“l - rzu?f_ll - rzu}z\ﬁll = F3UN + FaUN_q + Tl g (4)

substitute (3) into (4)

it — roultt — 1, (Zhﬁ”“ + u}‘\,tll) = r3UN + rUN_q + 1o (Zhﬁ + u}l\,_l)

n+1

WL 2poullt = raul + 2rpully_y + 2rohB + 21y

Nodes j =2--- N —1 remain the same as before. In other words

waf; KD ak\ KD .. KD .. _ ([ kD ak\ . kD kD+k(n+ )
U’ — +—|- - Wttt =u'l- — - = |+ul  —+ul  —+—(¢" + ¢
j a2 " 2d ) 2anz" i Tog et U T g2 T oa) T aame i ognz T2 \8i T8
Let
(14 kD +ak
=T e T
kD
27 2
_ kD ak
BE T T 24
k
Ty = —
DY |
gives
n+1 n+1 n+1

ru

— n n n n n+1

]

Then the above becomes
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A x b
[ =2r, 0 0 0 O0][ut] [rs 2, 0 0 0 o u' | [2rha" +2rhat]
=Ty 1 =Ty 0 0 MEH—l Ty T3 To 0 0 0 Mg 1’4(gg + gg+1)
0 -r, rn -rn 0 O|fug™| |0 r, r3 , 0 O uj N r4(g§ + g§+1)
0 0 0 -rn, rn -nlui} 0 0 0 r, r3 mfluf, 14 (g?\f_l + g’ﬁf’_ll)
0 0 =2r, r||uft] [0 0 0 0 2rp r3)| ufy | |2r2hp+2rhp"* |

Derivation of C-N for Neumann on left and Dirichlet on right Using this numbering

| L=1 |
| 1
O—O—N0O—O0—0O—_0—->0
1 2 3 4 2saxN-1 N
| |
| Internal nodes ]

Figure 14: Grid format

Assume that u; = @ at node 1 and uy = f8 at node N (these are the Neumann and Dirichlet
boundary conditions). Add a ghost node 0 to the left of node 1, and approximating a gives

_ Upg—Up
Y

hence

Uy = 2ha + Uy

But the PDE for node 1 is

n+l n+l n+l _ n n n

substitute (1) into (2)

rultt - r2(2ha”+1 + uﬁ”) —rou™ = raull + rZ(Zha” + ug’) + rpul

T = 2 ultt = Ul + 2r0ul) + 2roha + 2rpha

Nodes j =2:-- N —1 remain the same as before. In other words

kD  ak kD kD k

n

j 1+—

un+l( k[Z_F%) kD n+l_ kD n+1
dh®  2d

22 2 T (1 TaR ﬁ)*”?—lw il g 58 8

(1)

(2)

n+1)
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Let
1+ kD N ak
r = — + —
! dn? " 2d
kD
r [
27 2dn2
1 kD  ak
rm=(1--—-=—
3 dn? ~ 2d
k
Yy = —
7 2d
gives
rlLt]’-1+1 - rzu]’frll - rzu]’.fll = 13Ul + roufly + ol + 7’4(g]fZ + g"”)
Then the system becomes
A x b
rn =2r, 0 0 0 0 O|uf"| |rs 2r,b, 0 0 0 0 O| uf 2ryha + 2rpha™ 1
1, rn -1, 0 0 0 Offust! rp r3 1, 0 0 0 0| uj r4(g§+g§+1)
0 -r, r -n 0|f uatt 0 rp r3 n 0 O0ff uj r4(g§+ g’§+1)
) . oll : |= ol :
0 -rn rn -rp Oflufh 0 0 rp 13 12 Offuy_s ”4(81’11—2"‘8”1\7—12)
0 0 0 -rn, r Ofuy} 0 0 0 2rp, r3 Olluf_; r4(g}1\,_1+g}1\,t11)+r2[3”
0 0 0 0 0 1fug'] |0 O 0 0 0 up | gt

Derivation of C-N for Neumann on right and Dirichlet on left

Using this numbering

| L=1 |
| 1
oO—O—N0O—O0—0—_0—-0
1 2 3 4 2sauN-1 N
| |
| Internal nodes ]

Figure 15: Grid format

Assume that 1; = @ at node 1 and #; =  at node N (these are the Dirichlet and Neumann
boundary conditions). Add a ghost node N +1 to the right of node N, and approximating

B gives

hence

But the PDE for node N is

p= 2h

_ UN-1 T UN41

Un+1 = 2hB +unq

(1)
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71“1'1\71 - Tz”z’zfr—ﬁ - Vzu?\]i = 13Uy + 1ol _g + ol (2)

substitute (1) into (2)
rult = ruitl - rz(Zhﬁ”+1 + u"Ntll) = raully + rpul_; + rZ(Zhﬁ” + u}{,_l)
it = 2 Uity = raull + 2rpull_y + 21kt + 2rp

Nodes j =2:-- N —1 remain the same as before. In other words

kD kD ak kD . kD Kk

kD ak\ kD
+1 +1 +1 _ o= e +1
uf (1+W+ﬂ)_Zdhzu?‘l_Zdhzu?+l =Y (1 a2 2d)+ufn‘12dh2+uf+12dh2+2d(g? +5™)
Let
1+ kD N ak
r P —_—
! dn? " 2d
kD
2 2
2dh
1 kD  ak
r -_——
3 dn? ~ 2d
k
7 2d
gives
rlLt]’-1+1 - rzu]’frll - rzu]’.ﬂfll = 13Ul + roufly + ol + 7’4(g;Z + g"”)
Then the system becomes
A x b
1 0 0 0 0 0 Ofuff |00 O 0 0] uf a1
0rn -, 0 0 0 0w [0nrnn 0 O uf | |ra(sh+gs)+mra”
0 -rp r -1 0 0 ||ustt 0 rp 13 1y 0 Off uf r4(g§+g’§+1)
0 0 -1, rn -1, 0 O fuff{=]0 0 r, 3 1, 0O O + r4(g2+g’j+1)
: 0 : : 0 :
S ) “?\itl1 0 0 rp 13 Taf|upo; 74(81'11—2 +g?\ft12)
0 0 0 0 0 -2n rlJ_uIV{,”_ 0 0 0 0 0 2rp r3f|luyq | 2rhB" + 2r,h |
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2 Problem 2

Ut = Uge, 0< <1
u(0,t) =1, u(1,t)=0

1 ifx<0.5

,0) =
w0 =00 205

(a) Use Crank-Nicolson with grid spacing h = 0.02 and time step 0.1 to solve the problem
up to time ¢ = 1. Comment on your results. What is wrong with this solution?

(b) Give a mathematical argument to explain the unphysical behavior you observed in the
numerical solution.

(¢) Experiment with smaller time steps. How small does the time step need to be to get
reasonable results?

(d) What happens to the numerical solution as At — 0 with the ratio At/h fixed? Explain.
Would this same behavior occur using backward Euler in place of Crank-Nicolson? Ex-
plain.

Figure 16: Problem statement

2.1 Part(a)

The C-N scheme was programmed in Matlab and then run on the above problem. The
following shows the result

select pde solution wx, ] at t=1.00000 sec
diffusion: dut-Du xx+au = Qi) +olxt) : curTent. t'ufle Et'ePI =10 :

" (explicit) forward time, centered space

12
& (implicit) Crank-Nicolson scheme

convection-diffusion: 1]-- 43
dut -Du_xx+au_x=00{+a(xt)

" (explicit) forward-time, centered space
08

parameters
delt, time step {sec) | 0.1
h, space step (m) 0.02 =
length im) | 1
04
D (diffusion constant) | 1
a
0z

I 0
d | 1
how long to run (sec) I 1 -

boundary conditions x
left end [ display solution in 30
& diichlet U@ | 1

& diichlet U0 0
A an L] 't)l 0 [~ perform refinement study

simulation speed

internal source
— point source (if any)————
1 2 I 1
ar) 0
Sl fast o,
Initial congitions at t=0 located at x :I 0.500

run'rtrectangularpuksec:enteratx:l 05 Widlh=| 0.5 — general zource

¥ step function amplitude= 1 hift rit=
| shift atmou | 0.5 aixh)
ufx 0 | 0 [ unit impulse at x=| 0.5

’—rigm end absolute stability condition: delt/d *(af4 + D/hn2) MNFA

Figure 17: C-N scheme solution result

In the above plot, the red line represents initial conditions (the step function shifted to the
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right by 0.5) and the blue line represents the final numerical solution at time f =1 second.
The following plot is a closer look at the grid near x = % showing the initial conditions

Solution at time t=0

U(+1) U(+1)

Figure 18: the grid near x = % showing the initial conditions

It is clear the numerical solution is not accurate as it does not match what is expected to
occur physically which is for initial data to diffuse. The initial data contained high spatial
frequency that should have been smoothed out rapidly. The final numerical solution is not
smooth and contain high spatial frequency components which should have been attenuated
by the time the run is completed.

The exact solution in the Fourier space is #(&, t) = (&, O)e‘D‘fzt, where 71(, 0) is the spectrum
or Fourier coefficients of the initial condition u(x,0). This shows that modes with large
spatial frequency (large wave number &) will attenuate the fastest due to the negative
exponential decay effect. But this was not observed in the above numerical solution.

C-N is a stable scheme (A-stable), but can be inaccurate if the time step used is large relative
to the space step or if initial conditions contain large spatial frequency components. In
C-N, the time step needs to be about the same order of value as the space step for the
scheme to give accurate numerical results. (This is because in C-N, the order of accuracy
of space and time are the same, as was found in problem 1).

Therefore, it appears that C-N scheme does not handle discontinuities in initial conditions
well as this result shows.

In the next part, the amplification factor for C-N is determined, and a mathematical
explanation for the above result is given.

2.2 Part(b)
The C-N scheme for u; = Du,, is given by

—ru]’?fll + u]’.”l(l +2r) - ru]’?:f = ruiy +ui (1 =2r) + ruy (1)

AtD . . P 3
Where r = ;? Von Neumann analysis is used to determine the magnification facto
Assume v} = ¢4 and u}-“l = g(é)eigxi then (1) become

—r(g eigxfe‘iéh) +g N1 +2r) - r(g ¢ ei‘fh) = r(eigxfe‘iéh) + € %i(1 = 27) + re'Nieih
g(=2rcos(&h) +1 + 2r) = 2rcos(Eh) +1 - 2r

)= 1+ 2rcos(&h) —2r
8(&) = 1-2rcos(&h) + 2r

2The magnification factor is the term g(&) in the expression relating #"*! to #1" in the expression #"*! = ¢(&)
ﬁn

%1t is possible to derive the amplification factor using direct application of fourier transform, but the
procedure is longer. The final result will be the same. The appendix of this problem contain this derivation.
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Hence, the magnification factor is

© - + 2% (cos(eh) - 1)
T T D coste) - 1)

Let & be written as &, in the above in order to examine g in terms of specific wave number
&p (which has units of radians per unit length). The above becomes

1+ %(cos(éph) - 1)
) o))

(2)

But {, =prandp=1---N, with h = ﬁwhere the line was discretized using the standard
grid convention

| L=1 |
|
o—O0——0O0—_O0—0O0—0—-—=0
0 1 2 3 awas N N+1

—_—

—

Internal nodes

Figure 19: Grid format

Therefore cos(éph) = cos(pnh) = cos(N 1) The largest frequency occurs when p = N,
because then / is smallest, and the smallest frequency occurs when p = 1. Hence, there
are a total of N Fourier modes when representing initial data as Fourier series. Now the
magnification factor in (2) becomes

(5 ) _ 1+ %(cos(pnh —1) 3)
S 1- lzﬁt(cos(pnh —1)

But since |cos(pnh)| <1, then g(ép) is less than 1 in magnitude for any p, implying that C-N
is stable. To determine the magnitude of g(ép) when the mode has the largest frequency,

let prth = —7'( 7 in (3), resulting in
1-2°7
SEN) = —px (4)
1+ 2h_2

When the time step At > h, then — A > 1, and in the limit |g(&x)| — 1. This shows that large

frequency modes will decay very slowly because g(ép) is now close to 1. No attenuation
will occur between each application of the update matrix or between each time step.

The above explains the result seen in part (a). Large frequency components did not decay
fast as was expected, because the time step used was much larger than the space step. The

problem asked us to use At = 0.1 and & = 0.01, which gives % = 00012 = 1000 and hence
1-2000

8(EN) = |T3000] — 0-9999, and since this is almost one, then large frequency modes did not
attenuate with each time step. The amplification factor needs to be small for attenuation
to occur fast.
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The following is a plot of g(cfp) showing how the amplification factor changes as function
of p for the case of At =0.1 and = 0.01, and D = 1. It shows what was found above, that
at large frequency where p is close to N will have a correspondingly large

-} <Student Version> Figure 1 _ o] x|

FHle Edit View Insert Tools Desktop Window Help k'
NEds 3RO EL-(a0EnD
Magnification factor as function of wave number

C-M scheme for h=0.020000, t=0.1, N=49

09r

08¢t

0.7+

06r

05¢

0.4} . large spatial freq.
small spatial freq.

0 10 20 30 40 50
p, wave number

Figure 20: corrected plot of amplification factor

To determine what value of % is required to make the large frequency mode decay right

away, let % = % in (4), this gives g(&y) = 0, which implies that large frequency mode will

1222

be knocked out right away. Here is a plot of g(&y) = 1_ 2

DAt
5 DAf n2

as a function of showing

"2

that when % = 0 then the magnification factor is minimum. This is only for mode p = N.

-z BM
B s
E":..-_ ="
o 1. Dat
E::
[ T T T T T
141 .
1.2F b
1.0F -
S - %
= 08F N\ ]
= L 3 ,
06f \ ]
X .,
04} . ]
L S
0.2t ‘“xa ]
ool ] | ] .HH.“"H.. ] L i
0.0 0.2 0.4 0.6 0.3 1.0
DAt

Figure 21: for mode p = N

Conclusion If initial data contained large difference in value over very short distances (in
other words, large spatial frequencies) such as given in this problem, producing disconti-
nuity in data and its space derivative, and when the time step is large compared to the
space step, then the numerical solution produced by C-N will not be accurate since large
frequency modes will not attenuate.
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To compensate for large frequency present in initial data, the ratioD—ftneeds to be made
close to 0.5 as possible. It might be better not to use C-N at all in such case and look for a
scheme which does not have this problem.

notice that condition that % = % found above, is the same value for the upper limit for

the absolute stability condition for the forward Euler discretization scheme for the 1D
diffusion problem.
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2.3 Part(c)

The time step was reduced and the program was run for 1 second. When the time step
was reduced all the way to At = 0.01 then the final solution appeared smooth every where
and in particular at x = 0.5. The following diagram illustrates this.

colution u(, ) ot 1100000 ace solution u(z, #) at t=1.00000 sec aolution u(z, ) at =1.01250 sec e
curren! =20 nt time step = 40 tep =81 o)

[ oo —— o —— o

................................................
\ AN N
N | | \

0.05 sec 0.025 sec 0.0125 sec 0.01 sec 0.001 sec

Figure 22: Final solution at x = 0.5

When using time step of 0.01 sec, 100 steps are used. From the last part it was found

DAt 0.01
that g(&n) = 12—,;’;, hence |g| = 2+00212 = 0.96078, and therefore |g|100 — 0.9607810 ~ 0
e 0022

showing that by the 100" iteration, the large mode frequency have completely smoothed
out as verified by the above plots.

In the plot below, the magnification factor |g(§)| is shown for ¢ = 0.01 and & = 0.02 showing
that at p = 50, g(&) = 0.96078. Compare this value with the one used in part(b) which was
0.999.

Magnification factor as function of wave number
C-M scheme for h=0.020000, t=0.01, M=4%

I:I"I 1 1 1
a 10 20 30 40 a0

B, wave number

Figure 23: Comparing with the one used in part(b) which was 0.999.

To obtain smooth solution immediately after one time step, the required time step to
accomplish this, can be determined from the condition for optimal amplification factor
found in the last part which is given by % = % From this relation, and when h = 0.02
and D =1, the time step will be At = 0.0002. This value of time step produces a smooth
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solution immediately (one step). This was confirmed, and here is the numerical solution,
after only one time step, using At = 0.0002,h = 0.02 and D =1

golution wlwx, {] at £=0.00020 sec
current time step =1

———— cument

o) initial ||

\ Smooth

solution
appears
immediately

Figure 24: numerical solution, after only one time step, using At = 0.0002,# = 0.02 and
D=1

It is also possible to determine which At achieves a given specific attenuation of the high
mode. Suppose it is required to attenuate the high mode to 0.001 of its initial amplitude at
the end of 1 second run. Therefore, this means that

1
lg(&n)| ¥ = 0.001
1

DAt | At
sl -
— 2| 000
1+ 2?

Taking logs, and using & = 0.02 and D =1 results in

1 1 — 5000A¢
At °\1 + 5000A¢
log(1 — 5000At) — log(1 + 5000Af) = —3At

The above is not a linear equation, but can be numerically solved for the root At. For
the above example, At came out to be 0.00761 seconds. This means that when using At
= 0.00761 sec, h = 0.02, and D = 1, then the largest frequency harmonic will have its
amplitude attenuated to 0.01% of its original value after 1 second run.

2.4 Part(d)

Making the time step smaller and smaller, while keeping the ratio % fixed, produces the

following result (all runs are for one second). In this example, the ratio was kept at 5.

01 001 0.001 0.0001
The following sequence of ratios are used { — to generate the followin
g 5¢q d 0.02” 0.002” 0.0002” 0.00002 ) g

solution after one second run
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solution u(z, #) at t=110000 ssc solution u(z, #) at t=1.00000 sec solution u(z, ) at 1=1.00000 sec solution u(z, ¢) at t=1 00000 sec

current time step = 11 current time step = 100 current time atep = 1000 current Lime step = 10000

0 ] 08 08 08

08 [\ o8 08 LX)
Y ’ 4 4 4
02 \‘ 0z 0z 02

? 0 02 04 “’"‘5‘5 0% 12 ° L 02 04 ﬂ 08 12 o 0 02 04 ﬂ 08 |_z. ¢ 0 02 04 ﬂ 08
Det=0.1, B Det=0.01, Det=0.001, ) Det=0.0001,
h=0.02 h=0.002 h=0.0002 h=0.00002

Figure 25: solution after one second run

Now, recall from part (b) that the magnification factor for the largest Fourier mode was
given by

1-2°7
$EN) = — i
1+257

At ,
When It is held constant, say C, then the above becomes

1-Ch!

S

In the limit, as & — 0 then g(£y) — 1, which implies, as was found in part(b), that large
Fourier modes (high p values) will not be attenuated. This is confirmed by the plots above.

Using backward Euler in place of C-N When using backward Euler. The finite differ-
ence scheme for u; = Du,, becomes

n+l _ n

u u:
] v ] =f(1/ln+1) 1)
n+l _ n+1 n+l
_ Duj_l 2ui™ +
= 12

Applying Von Neumann analysis, let u}' = ¢, and utt = g(£)e™Y, then (1) becomes

g eelth — &% = %A‘tg(eié"fe—iéh — 26 + ¢ielth)

g(ei‘fh - %(2 cos(&h) — 2)) =1
1
elch — %(2 cos(&h) - 2))

g(&) =
(

Therefore

g(gr’) - (eiéph _ %(2 cos(éph) - 2))

But &, =pmand p =1---N, and to evaluate what happens to g(ép) at the largest spatial
frequencies, let £, = N7 and the above becomes

8y = DAt : N
(elNﬂh —~ 7(2 cos(—n) —~ 2))

N+1
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N ; ; ..
But T 1 and eN™ ~ ¢ = cos(mt) + isin 7T = —1, then the above becomes

g(EN) !
N =
(—1 - %(2 COS Tl — 2))
Therefore
1
g(CEN) = DA?
4h—2 -

When At > h then [g(&y)| — ﬁ — 0 which implies that large frequency modes will be
knocked out fast. This is opposite to the situation observed using C-N. Hence backward

Euler does not have the same problem with large spatial frequencies in initial data. But
notice that when % = %, now g(&y) = ﬁ = 1, which means that large frequency mode
will not decay or decay very slowly, This is also opposite of what was found for C-N.

2.5 Appendix for problem 2

Derivation of part (b) by direct application of DFT (the harder way) The C-N
scheme for u; = Du,, given by

L 20) = = (L= 20) + 2)

Assuming the problem is on the whole real line, then

T

u' (&) NdE (1A)

=l

and

T(

ult 1 _ ~An+1 iEx

=) f () de (1B)
Where #1"(&) is the discrete Fourier transform (DFT) of u]’.l. In what follows, #I" is written
instead of #1"(£) to make it easier to read the equations. The C-N finite difference scheme
for u; = Du,, is given by

—ru]’ﬂfll + u}-”l(l +2r) - ru]’ﬂfll = ruily + uf (1= 2r) + rufy (2)

Where r = %. Substitute (1A) and (1B) into (2), but leaving u;-“l as is gives

h %
1 f i&(x—h 1 h

I L PG ) dé|+u™t 1 +2r) -7 fﬁ”“ i+ )d5 =
Vo J J Var J,
_ﬁ _ﬁ

L fogit % ——

A —— [arne“tih)ge +(1—2r) ﬁ”e15x1d5 f el 0 g
V2n [

7

or

—-r

V2n

1% (eiéh + e‘iéh)dé + u}”l(l +2r) =

A1

h

1

(r 1" e eI i1 ¢ =2y 7 ey 17 €5 ) AE
27z

%wlu
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Simplify

=3

1+ piS% ( ich 4 o léh)dg + qu"el"xf ( ih 4 o ’5}’) +1- 21’]615

Vam -

us

r

V2n

—=in

u]*”l(l +2r) =

=la =la

I
11+ 2r cos(Eh)e'“YdE + %[ﬁ”(%(cos(éh) —1) + 1)e*Vid&

I g,

"~ \an

h -5
- f (872r(cos(&h) — 1) +1) + 2r cos(Ehyir™ )eSids

Hence

DFT(u"*'(1 + 2r)) = (#"(2r(cos(&h) — 1) + 1) + 2r cos(E)i"*1)

DPT( n+1)

(1+2r )(A"(Zr(cos(gh) -1 +1)+2r COS(gh)ﬁnﬂ)

This implies that

an+l = 1 (A”(Zr(cos(éh) 1)+1)+2r cos(cfh)”“l)

1+2r)
Solving for 71" gives
2 h ~An+l
il — rcz)lsfzzl =T+ 29 i1"(2r(cos(Eh) = 1) + 1)

a1 +2r) = 2rcos(Eh)\  @"(2r(cos(Eh) —1) +1)

" 1+27) - 1+27)
Hence

ue1 _ @r(cos(Eh)-1)+1)

(1 +2r) — 2r cos(&h) "
_1+2rcos(¢h)-2r
~ 1-2rcos(éh) + Zru

1+2r cos(&Eh)-2r and since 7 = AtD
1-2r cos(Eh)+2r’ oo’

Therefore 2" = g(&)ir", where g(&) = then

1+ 2% h) -1
o(6) = + E?At(cos(pn ) )
1 F(COS(pnh) - 1)

where &, = pr, is the wave number.

Another derivation for the magnification factor The magnification factor g(¢) found
above is the same as the eigenvalue of the update matrix of the C-N scheme. From

DAt DAt
I-—Llu I+ —L|u
2 2
or 1
DAt \ DAt
w*l=1-—L| I+ —L|u"
2 2

Where L is the 1D Laplacian grid operator which has eigenvalues A, (cos(pnh) 1),
hence, let 1, be the eigenvalue of B above, then

1+ %/\
= o,
1 th%(cos(pnh) -1
1- %%(cos(pnh) - 1)
1 %(cos(pnh) - 1)
C1- %(cos(pnh) - 1)



Which is what was found in part(b)
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3 Problem 3
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3. Derive a stability restriction on the time step for solving the diffusion equation using the
second-order accurate explicit Runge-Kutta method

Yy =y"+ Atf(y")

=yt S + 1),

for time stepping. Does this scheme offer any practical advantage over Forward Euler for the
diffusion equation?

Figure 26: Problem statement

The finite difference scheme for the diffusion problem is shown the appendix of this

problem.

To obtain the absolute stability restriction, let

A
Y-yt = zt(f(yn) +f(v))
A
Y=yt 4 ?t(/\y” +Ay’)

=y'+ %(Ay” + /\(y” + At}ty"))

= ”+AtA”+AtA(”+At/\ )
=yt Ay Al y

At (ALY

At
="+ — A"+ — A"
y+2 3/"‘2 v+ 5

A2
= (1 + AtA + @ 2t) )y”

Assuming AtA =z
1
yi+l= (1 +z+ Ezz)y”

Hence R(z) =1+z + %zz and for absolute stability it is required that |R(z)| <1 which leads

to
12
—1s1+z+§z <1

2<Z+ 22<0
2
Aplot OfZ+ =-Z ShOWS that _2 <z< O

Inf8}= Plot[z+1/722z*2, {2, -3, 1}]

\ 1o} '

s — -0.5

Figure 27: absolute stability region
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The above gives the interval of absolute stability for the eigenvalues. To obtain the region
of absolute stability, assume A can be complex in general (complex eigenvalue), which
results in a disk of radius 1 centered at -1. This is the same region of stability as Forward
Euler.

Absolute stability region
for eigenvalues for the R-K
scheme in problem 3

Figure 28: region of absolute stability

Notice that since R(0) =1 and dl;f)

=1, then this method is also consistent and first order accurate in time.

To answer the question about any advantage of this method over forward Euler. Recalling
that In forward Euler

un+1 = Bu"

Where B is the update matrix given by B = I + DAtL,, where L, is the 1-D Laplacian

operator for u,, with Dirichlet boundary conditions, with eigenvalue A = hz—z(cos(pnh) - 1)
where p =1--- N using the standard grid convention used before.

Let u be the eigenvalue of the above update matrix B, hence

2122& (cos(pnh) - 1)

pu=1+

For stability, [#| <1 hence

<1

1+ 2 t(cos(pnh) - 1)
| DAt

1-4—5—

| <1

Simplifying, this gives
0< DAt < 1
T on T2

To compare the above with the R-K scheme in this problem, since

u —u"
At

=Lu"

= %(Lu” + Lu*) 1)
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Expanding gives
+1 At
u™t =y + E(Lu” + L(u" + AftLu™))
At
=u"+ E(Lu” + Lu" + Athu”)

- (1 + g(2L + Ath))u”
2

= Bu"
The eigenvalue of L is - 1) 1) but si A-1=-2sin* 2, h h)-1=
e elge}lllva ue of L is h—z(cos(pn )— ) ut since cos h— = —2sin” 7, hence cos(pn )— =
~2sin’ % and the eigenvalue is written as —:—2 sin’ ’% .

. h . 4
let sin® p% = w, therefore the eigenvalue of L becomes A = —h—(:.

Using this notation, the above update matrix B for this scheme will have the following
eigenvalue

1 A pte i)
H=27 517702 12
4DAtw 8D?%w?
_ 2
=1- " + At A

.1s . . 4 s . . 2pnh _
For stability, |u| < 1. Maximum p will occur at @ =1 implying that sin — =lorp=N,
resulting in

+ A2t

2 | =t

‘1 ADAt 8D>2

Therefore

< 7 + s
4DAt 9 8D?
-2< - 72 +Ath4 <0
4DAt 8D?2
2
< 2 - At i <2

0

1
2

DAt [DAt\?
0<9z =27z ) =

This shows that with the given RK scheme, stability implies the condition 0 < % —Azth—4 <
DAt

%. This is compared to 0 < —5 < % for forward Euler.

What does this mean in terms of the time step? Will this allow the use of a larger time step
than with FE while keep absolute stability?

Assume D =1, This is a table showing the maximum value of At allowed for different
values

scheme h=1|h=01]| h=0.01
FE 0 < % < % 05 | 005 | 0.005
At 2A%t 1
RKO<p-25<2| 05 | 005 | 0005

Hence, the largest time step does not change with this scheme when compared to forward

Euler. It seems based on the above, that the explicit Runge-Kutta scheme for solving the
diffusion PDE does not offer any advantage in handling the stiffness of the PDE since the
time step remained constrained by #? as with FE. It seems that explicit schemes are not
suitable for stiff problems



3.1 Appendix for problem 3

3.2 Derivation of the update matrix for 2 step R-K for diffusion
problem with Dirichlet B.C.

Given
Yy = D]/xx
Then
y;_yz Dyz _Zyz +yz+1
At h?
£(v")
vi =y Ath—z(yl ~ 2y + yia)

Hence

n+l _ g n
2 = () (0)

D
= [ﬁ(y?—l - 2y +y?+1)] +

D
12 (Vi - 207 + y?+1)]

D
= (-2 + gl )+

D D
ﬁ[y?_l + At (v - 2yt + y?)]—

—+

D
[}/z F ALY~ 20 + i)

D D . "
h_2 ]/1+1 + Athz (yz 2yi+1 + yi+2)

Expand and simplify

VD (11— oar2 a2
A Y 12 12

D D D D

+ h_Zyl -2+ Atﬁ -2 - 4Ath—2 + Ath—z

D , D D
+ﬁyi+11 ZAth +1-2At—

hZ
hz i+2 hz

D D D\ D\ ., (..D

Hence

v =yl 2h4 [yz (212 — 4AD) + y?(=4h2 = 2AtD) + yf,; (202 — 4ALD) + ! ,(AtD) ]
DR (N N (Y
=Y 2h4 yl AtD Yi AtD Yir1 AtD Yiv2

(D2t [, DNt( 212
T Vo A L Vo R

L (DNt K2 . D2t
Yir| =53 E—Z Vi
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DA%t W
Let =N and let =5 =2 thenl

" T
Yl = ]/17'1—1(31(72 _ 2)) + Y1 —r1(2ry + 1) + Yl 1 (r1(rp = 2)) + }/ﬁz;l

112 71
= y?—l(_ - 71) +y (1= 2ryry —11) + Yl (172 — 217) + y?+25

2
Using this 1-D grid

| L=1 |
| ]
o—O0—0O0——_O0—(O0—0——=0
0 1 2 3 asnx N N+1
| |
| Internal nodes |
Figure 29: Grid format
The matrix form of the scheme becomes
—1,[111+1_ —(1 - 21’]7’2 - 7’1) (7’11’2 - 21’1) %1 0
uzt! (B2-r1)  A-2nr-r)  (nrp-2n) 3
u§+1 _ 0 (% - rl) (1=2rry —11) (rqry — 217)
upt 0 0 0 (B2-n
i 0 0 (
r1r-
(%52 - )t
0
0
.
y?\lﬂ%
| (r172 = 2r1)un 4 |

NS O O

) (1 - 27’17’2 - 1"1)

rra )
= -r
2 1

36

(r1ry — 2r7)

(1 =2rry —11) |

There is a problem above at node N as two additional nodes are needed to its right, but
only one node exist. Need to look more into this later, as this part is not required for this

HW.

. . 2oL .
Notice that units of D are meter? per second, hence D s dimensionless, so we are ok.
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4 Problem 4

4. Consider the forward time, centered space discretization

nt+l _ .n n o __,n n _ __9,m n
; uf N aujJr:l Ui _ buj*l 2ui +ul
At 2h h? ’

u

to the convection-diffusion equation,
U + auy = bug,, b>0.

(a) Let v = aAt/h and pu = bAt/h?. Use von Neumann analysis to show that the scheme is
stable if ¢ < 1/2.

(b) Let a = 80, b = 1, h = 0.05. Generate a numerical solution on the spatial domain
[0,1] with periodic boundary conditions using At = 0.25h2/b with initial condition
u(x,0) = exp(—20(z — 0.5)?). What happens? Does your stability analysis predict this?

(¢) Since the solution to the PDE does not grow in time, it seems reasonable to require that
the numerical solution not grow in time. Show that the numerical solution does not
grow (in 2-norm) if and only if 2 < 2u < 1. This is called strict or practical stability,
and as the name suggests it is the restriction one would use in practice.

(d) Generate a numerical solution up to time t = 1072,

Figure 30: Problem statement

4.1 Part (a)
The PDE is u; + au, = bu,,, with b > 0, the forward time, centered space discretization is

it gyl — uly = 2ul +u?
] ] ] -1 _ ] ] ]
+a =b (1)
At 2h h?

Applying Von Neumann analysis, let u}' = ¢“% and u]'“l = ¢(£)e™Y, then (1) becomes

geiéxj — N oINjplEh _ ol p=ich , oINjpmilh _ Dpie%j | o1e%jilh
At 20 - 2

oo — ¢ 4 ”Z_Aht (e — ) = % (%18 — 269 4 % ich)

g-1+ 1E/(ei‘fh — e7iéh) = (e - 2 + oh)
) =1 - L(e )+ e -2 050

Hencé’l
(&) =1+ 2u(cos(Eh) —1) —ivsin(Eh)

But cos A —1 = -2 sin? g, hence cos(éh) -1 = -2 sin® %h and the above becomes

&) =1-4u sinz(%h) — ivsin(&h)

Therefore

2
+ 12 sinz(ih) (2)

o < - (2)
Using the trig identity

sinz(éh) =4 sinZ(%)(l - sinz(%h))

Notice that the first oder derivatives (or odd order in general) produces eigenvalues that are complex,
and the even order ones produce real eigenvalues.
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then (2) becomes

2
+ 4v sm(2 1 - sin >

h
@) = [1 ~4p sinz(%)
Let sinz(%) = w in the above

|g(§)|2 = (1 - 4ya))2 + H20(l - w)

The maximum of |g(5p)| occurs when i = m, making w = 1, hence from above, the

maximum of |g(cf)|2 is reduced to 1 — 4y, and then for stability

1-4p| <1
therefore
-1<1-4u<1
-2<-4u<0
0<4u<2
Hence ,
O<u<-=
<u< >

The above result can also be derived using the stencil diagram method. The stencil diagram
for the above scheme (for internal nodes only) is

Ut + auy = Duyy
o |
Y jf“&
// \\
<+ H 2 N\ v
/ - =
k 2 // | \\\‘u 2
/
// ll— 2[.l \\
/ | \\
/ \
I b o
J-1 J J+1
< |
T oh ]
The stencil for problem 4 finite difference scheme with
periodic boundary conditions

Figure 31: Grid used

As was done in problem 1, By imposing that the weight on each edge in the above directed
graph not exceed unity, and that the total algebraic sum of the weight of the edge also not
exceed unity. This includes any combination of edges involved. For if this was the case,
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then u;?“ will always have an amplitude < u{'. Applying this to the above diagram gives

1) g +u<l Condition on j -1 edge

(2) |y - §| <1 Condition on j +1 edge

B 2u<1 Condition on j -1 added to j +1 edge

4) |1-2u<1 Condition on the j edge

®) |1 +o - y| <1 Condition on the j edge added to j -1

(6) |1 -z - yl <1 Condition on the j edge added to j +1

(7) 1<1 Condition that all edges sum to less than 1

Condition (7) gives no information. Condition (4) gives u <1 and hence weaker than (3),
condition () is the same as (2) and gives u — g <1, condition (6) gives g + 1 <2 which is
weaker than condition (1). Hence the following are remaining conditions (3),(1),(2).

(1) g +u <1 Condition on j—-1 edge
(2) |y - §| <1 Condition on j+1 edge
3) 2u<1 Condition on j -1 added to j +1 edge

From the above, only condition (3) can provide useful information, which is that y < %,
which is what was found using Von Neumann analysis.

4.2 Part (b)

The scheme was implemented. The source code is in the appendix of this problem. The

grid used is the standard grid

| L=1 |
|
O—O0——O0O—0O0—0—_0—-00
0 1 2 3 aus N N+1

Internal nodes

Figure 32: Grid used

In the following, I will be use the following PDE cu; + au, = bu,, (wherec was added a
parameter for the advection term).

Periodic boundary conditions implies u(0, ) = u(1, t), Hence there is an extra one unknown
(in addition to the internal nodes). Either u(0,t) or u(1,t) can be selected since they have
the same value. When selecting the right end node, then uy,; becomes an unknown to be
added to the internal nodes. Using the following diagram



Periodic boundary conditions
r—-— - 0 = i
O+0—0—0—0—0—C"<-@®
Oj:“ 1 2 3 | B I | N N+1 |
* |
....... |
unknowns : """""""""""""""""""""""""""""""""""""" |
[
I
|
| ____________________ e
Figure 33: Grid used
The forward time, centered space discretization is
n+l _ ,n n o _ . n no_ n n
Cuj Uj s aujﬂ Uiy _ bu]-_1 2uj + U
At 2h h?
Therefore, for nodes 2 --- N, the finite difference scheme is
Cu;-“l -] . au]”“ -y b Wiy = 2uf +uiy
At 2h h2
ult - u't 2u + u'
n+l n AR -1 j+1
=l — aAt + DAt
Y uoa 2ch ch2
1 aAt bAt
it = - 2ch( j+1 7 ) 2 ( -2 + )
i aAt bAt aAt N %
1T\ e T U\ ~2an T ae
Letv = ac—it, y= %, the above becomes

v
u;,“l = u?_l( + y) + Uu; (1 2#) + u]+1(y 2)

Node j =1 gives
1V v
ultt = u()‘(z + y) + u’f(l — Zy) + u’ﬁ(u - E)
n v n n v
= ”N+1(§ + /J) + “1(1 ‘2#) + “2(# - E)
And for node j =N +1

v
Ui = UN( + #) + ”Km(l - 2#) + u}‘\,+2(y - E)

n v n n v
= ”N(E + P‘) + ”N+1(1 - 2#) i (# - E)

The full system can now be written in matrix form

] [0-20) (w-3) 0 00 (Fru)lf e |
| f(wez) (0-20) (w-3) 0 0 0 || s
it 0 () (-2 (w-3) 0 0|
iyt | o 0 0 (u+3) (1-20) (u-3) |
] [(e-3) 0 0 0 (u+g) (-2u)flua]

The above can also be written as
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update matrix

[+ ] (0 1 0 0

0

0 1]\ w2
us+l -1 0 1 0 0 O 1 -2 1 0 0 O] uj
ustl aAt|0 -1 0 1 0 0| bAtfO 1 -2 1 0 O]

=|r1- = + =
: 2chf: : -1 1 0f k[ i o0 :
ulit 0 0 0 -1 0 1 0 0 1 -2 1| uy
it | 1 0 0 0 -1 0 0 0 0 1 =2)[upy]

1] (2 1 0 0 0

u; are taken from initial conditions. The above is in the form

]

un+1 = Bu"

and is implemented directly as above in the code. Using the numerical values given in the

problem
0.2512 (0.05)°
At = =— =025 = 0.0006 25
and
_aAt _ 80(0.000625)
VST T T 005
and
_ DAt 0.000625 _
H= e (0.05)°

since u < 7 the solution is expected to be stable since this is the condition derived in part

(a).

The following is the result of running the program. The numerical solution grew with time.
Here are few snap shots taken at increasing time steps showing the problem. After only
about 10 time steps, the numerical solution can be seen to grow more than the initial

conditions



solution u(g, #) sk 1=0.00000 sec

eolution u(x, £) at £=0.00063 eec

aolution u(z, ¢) at t=000125 sec
current tims atep = 2
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solution u(z,#) ab 1=0.00800 sec
current time step = 8

) current time atep = 0 current bime atep = 1 |
18 current
12 | o ooy 12 12 | ° '|
1 A 1
I i
08 08 08 °e
08 0 @ 0\ 08 2 / o \ ) o
i) |
@5 04 o @ 04 ° o °
f/ \ ° ° : / ’ \ ’ ’
02 02 -2
7 . AN . %
y OO o 4 9,
N o 0 o 02  os o o3 1 2
02 o4 o0& o8 12 0z o4 oo  os 12 Lz . oo 0o 12 x
t=0.00125 t=0.005
t=0 t=0.00063
- = Jution u(x, ) at 1=0.00938 solution u(z,t) at 1=001063 sec R — .
s iy T Lo
18 . . ——— cument
e | —— b |
14 15
18 /\
2 \ / L /[ \\ s
! \ ) / ! / \ %5 ! 5 P S SRR SRS PN WEPNOR SO SO
0s 08 Q/ \
o Vo o] PURVERE W AN FA NS o\ o i |
/ o / o o B © © o E\
o4 £ e o \ o ° ° N XC W
L7 O SURR AR . WO SO SN SO
. é\ ° o N X o PG \ /
0
o o° i 2, - V/ / \ 23 f
(] 02 04 . 08 08 1 12 o 02 04 . e 08 1 12 ° 02 04 T3 0.8 T 12 0 02 o4 08 08 1 12
t=0.00688 t=0.00938 t=0.01375
t=0.01063 ’
::1;::-:::;;(:‘ :)t :; l==:§°3433 g solution u(z, ) at 1=0.02988 scc colution u(z, £) at 1=0.03375 sec solution u(z,#) ot =0 03875 sec
. . current time step =47 I current Lime slep = 54 current time step = 62
s R [ = [
. F2 et \ A /\ 8 ’\ % [
; / \ / \ B / 25 1o T \ l \
doteT | foud, | / \ |
(TS [T ABTATNIN RN AN
L. | oot ot = VIR
/ IR A i SRR
2 \ \ * [ v
“
i/ | | MVIRTENN |
] V u J
- | © 02 o4 08 os 2 N © o0z o4« 08 08 1 2
) 02 o4 08 08 1 12 o 0z 04 08 08 1 12 i *

t=0.02438

t=0.02938

t=0.03375

t=0.03875

Figure 34: few snap shots taken at increasing time steps showing the problem

The stability analysis that was done did not predict this based on the value of y which was

1
<.
2
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4.3 Part(c)

The eigenvalues u, of the update matrix derived in part (b) are

u, =1- i%At sin(nph) + %(cos(nph) - 1)

At bAt
But v = aT, H=7s then the above becomes

u, =1-1v sin(nph) + Zy(cos(nph) - 1)
Let sinz(%h) = w, then the above can be written as

|up|2 = (1 - 4ya))2 + 4201 - w)

As was done in part (a).

From part (a), it was found that when w = 1, this resulted in the condition of stability being
O<u< %, and when w = 0, the maximum eigenvalue is 1. To find the condition of |up| <1

2
for the full range of w, first expand |up| into a quadratic in @ and minimize

|up|2 =1+16p%w? - 8uw + HPw — HPw?

=1 —4w(2u - v?) + 4w?(4p? - 12)

. . 2 mph . . .
Since w = smz(%), then w values are from 0---1. Since the maximum eigenvalue occurs

when w = 0, then @ = 0 is the maximum point of the quadratic 1—4w(2y - v2)+4a)2(4y2 - vz),
hence the slope of this quadratic at @ = 0 must be negative. But the slope is

d, 2_4 2 2(4,2 _ 12
£|up| = %(1 —4a)(2y -V ) + 4w (4,u -V ))
= —4(2u - v?) + 8w (442 - v?)
For the above to be negative (so that the eigenvalue remain below 1) implies that 2y — 12

must be positive, i.e.
2u-1220

or
V2 <2u

And since from part(a) it was found that y < %, or 2y <1 then the above become

v2<2u<l

4.4 Part(d)

The solution for At = 0.000625, h = 0.05, a = 80, b = 1, with u(x,0) = exp(-20(x - 0.5)2) at
t = 0.01 seconds is
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select poe golution u(z, #) at t=0.01000 zec
diffusion: du t-Du xx +au = Q1 +glx ) ; Curfent t-ufle EtEP‘I =16 :
" (explicit) forward time, centered space '8 """" ------- ----- B —
" (implicit) Crank-Nicolson scheme 1= .— ______ -. _______ T _______ .— ______ _ior'”t"'_

convection-diffusion:
dut -Du xx+au x=001 +aglxt)

#* (explicit) forward-time, centered space

: ] T booooeo o

parameters ' ' ! : ' :
delt, time step (sec) | 0.25%0.05+2 . : Boneeen s S I
h, space step (m) 0.05 - : |G- 1 — S—

length (m) | 1 Wit e bR ey
O (diffusion constant) | 1 - R o O, S e T 4
: & : : @ :

how long to run (sec) 0.01

12
boundary conditions x

Figure 35: Part c final solution

The value of the numerical solution at that time is

|
o

L1727
.1817
.6603
.1158
.4092
.4609
.2868
.9910
.6912
.4441
.2527
.1168
.0451
.0337
.05632
.0563
-0.0013
-0.1275
-0.2680
-0.3162
-0.1727

el eolNeolNeolNeolNeolNoNoNeoN ol el el

4.5 Appendix for problem 4

derivation of the convection-diffusion using general terms The PDE is cu;+au, = bu,,,
with b > 0, the forward time, centered space discretization is

n+1 n n n n n n
Uit = uj Uiy —ujly Uiy = 2uj + U
c +a =b 1)

At 2h h?




Therefore, for nodes 2 --- N, the finite difference scheme is

u;-”l —ul o wl -ty ) Wiy = 2uf +uiy
A T T 2
u o —ult ut 2u + u't
u}”l — aAt ]+12 h] L part h2 s
c c
1 alt bAt

wi™t =y - Zh(]“ _)+ h2( - 2u +u]+1)

pl _ aAt  bAt aAt  bAt
A 1(2ch o U ~oan * o

Let v = ac—it, y= %, the above becomes

u]"” ;11( +y)+u (1 2y)+u]+1(y 2)
Node j =1 gives
v v
uitl = ug(z + p) + u’f(l -~ Zy) + ug(y — E)
v v
= ”?\m(i + u) + (1 -2u) + u?(# - 5)
And for node j =N +1
v v
it = (5 + ) + e (1 - 20) + - 2)

n v n n v
= “N(E + Il) + “N+1(1 - 2#) LS (# - E)
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5 Screen shot of the GUI matlab application used for
HW1

-} =Student Version> : 1-D parabolic PDE solver, By Nasser M. Abbas] - Iﬂl x|
B S e -
—— solution 1_4[:3, £) et t=0.88000 sac
diffuzion: d u_t-Dou_xx +au = O +gixd] _“"'T“E tie svep =19

T T
1+ [mxplicet) forward tima, centered space : :
I [implcet} Crank-Micolson scheme

coraction-defusion
dut -Dw xx +au x= Q)+ glx.b)
1 (ewplicit) forward-time, centered space

paramalers

del, fime step (sec) | 0.05

b, space step (m) | 01
length(m) [ 2'p

O [diffusion constang) I 011

A gpecirm of linear cparator
k= 1/10, max & = —0. 028257

min = 48, 071763
b Rl Faaec e e S , condition nunber = 1557 247806
baundsry condtions = : : ! : E
et ercd f- erﬂl‘I-'l‘lBD - 0.5 .....a:.....:.....:-.....a:-.....l:
@ duichlet W) | ] OSR T L J CWE
 Meumann Wi0.) I 1] T ______;______:_ _____ E___: _____ :
~rightend absalute stability condition” del’d *(ard + DMy 0ssoo0 [ P f 1 d
& dincat U000 'm w = = wm ¢
" Meumann  U(1 J]i 0 I perform refinement study o ﬂ[ﬁiﬁ’"ﬂhh
i *
shdation speed ol s L
- point soures (B an .
_IJ‘ j u aQ g am 1
T o B Li4] | san(t)esp(-10°t) % ace
g 2o
Intial condiions o t=0 located at « =! 0500 (] B2 04 oA 0# 1
™ unit rectangulss pubs conber six=] 0.5 \NWT'i 0.5 —generslsouce o4 ;ni:m“ws bl
™ stap Ranction = 1q =it =
i mastz] 05 g:xn[ sin(<)"expl4) Lz
ufe 0 | cos{27%) I untimpuissatz=| 0.5 e
select an rberesting preconfigaresd est case ithen hi FUR biter) T /
|case 1: both ends Dinchlet, exphcit showing instability j _Mn 2 4 L] H

Figure 36: Matlab program I developed for this HW



6 Matlab Source code developed for this HW

47

6.1 nma math228b build HW1l.m

function nma math228b_build_ HW1()
list = dir('*.m");

if isempty(list)
fprintf('no matlab files found\n');
return

end

for i=1:length(list)
name=list (i) .name;
fprintf ('processing %s\n',name)
p0 = fdep(list(i) .name,'-q');
[pathstr, name_of_matlab_function, ext] = fileparts(name);

%make a zip file of the m file and any of its dependency
pl=dir([name_of_matlab_function '.fig']l);
if length(pl)==
files_to_zip =[p1(1) .name;p0.fun];
else
files_to_zip =p0.fun;
end

zip([name_of_matlab_function '.zip'],files_to_zip)
end

end

6.2 nma math228b HW1.m

function nma_math_228b_HW1

£=0:0.1:100;
x=0.01:0.01:1;
sol=zeros(length(x),1);

for i=1:length(t)
for j=1:length(x)
s0l(j)= uh(x(j),t(1)) + uwp&x(G)) ;
end
plot(x,sol);
title(sprintf('t=Yf',t(1)));
drawnow() ;
pause(.01);

end
end

function v=up(x)

v= 50% x * (1-x) ;
end

function v=uh(x,t)
a=0.01;
sum=0; N=50;
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for n=1:N
sum=sum+( 400* an(n)*exp( -a * (nxpi)~2 *t ) * sin(n*pixx) );
end
v=sum;
end

function v=an(n)
v=( (-1)"n-1)/(n"3*pi~3);
end

6.3 nma_math228b_plot.m

function nma_math228b_plot ()
close all;

t=0.01;
D=1;

N=49;

h=1/(N+1);

p=1:N;

z=p*pix(1/(N+1));

g= (Dxt/h~2)*(cos(z)-1);
g=abs((1+g) ./ (1-g));

plot(p,g)
title(sprintf('Magnification factor as function of wave number\nC-N scheme for h
xlabel('p, wave number');
ylabel('g(wave number)');
o

close all;

h=0.02;

t=0.001;

D=1;

r=t*D/(2*xh~2) ;

-pi/h:0.01:pi/h;

abs ((1+2*r*cos(zxh) -2*r) ./ (1-2*r*cos (zxh) +2*r) ) ;

z
g

plot(zxh,g)

title(sprintf('Magnification factor, C-N scheme for h=0.02, t=0.001'))
xlabel ('zeta(radians)');

ylabel('g(zeta)');

x1im([-pi,pil)

ylim([0,1.2]);

set(gca, 'XTick',-pi:pi/2:pi)

set(gca, 'XTickLabel',{'-pi/h','-pi/2h','0"', " 'pi/2h', 'pi/h'})

close all;

h=0.02;

t=0.001;

D=1;

r=t*D/(2*¥h~2) ;

z=-pi/h:0.01:pi/h;

g= abs(1-(4*Dxt/h~2)*sin(z*h/2).72);

plot(z*h,g)
title(sprintf('Magnification factor, FE scheme for h=0.02, t=0.001\ndelt*D/h~2=)

=%f, t=0.01,

3.3f',t*D/h"



xlabel ('zeta(radians)');

ylabel('g(zeta)');

xlim([-pi,pil)

ylim([0,1.2]);

set(gca, 'XTick',-pi:pi/2:pi)

%set(gca, 'XTickLabel' ,{'-pi/h','-pi/2h','0"','pi/2h','pi/h'})

end
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