University Course

Math 228A

Numerical Solution of Differential Equations

University of California, Davis Fall 2010

My Class Notes

Nasser M. Abbasi

Fall 2010

Contents

1	Intro	oduction	1
2	нw	S	5
	2.1	Summary of HW's	6
	2.2	HW 1	7
	2.3	HW 2	26
	2.4	HW 3	67
	2.5	HW 4	133
	2.6	HW 5	168
3	Stud	ly notes	217
	3.1	note on finding expressions for centered difference of higher order	217
	3.2	Generating Error Table, Handout of oct 8,2010 for the $u_{xx} = -\sin(3\pi x)$	219
	3.3	generate table 1 in textbook on approximation of derivatives	223
	3.4	looking at eigenvalues of weighted jacobian iteration matrix	224

Chapter 1

Introduction

I took this course in Fall 2010 to learn about numerical solutions of PDE's.

course description from catalog

228A-228B-228C. Numerical Solution of Differential Equations (4-4-4) Lecture 3 hours; term paper or discussion 1 hour. Prerequisite: course 128C. Numerical solutions of initial-value, eigenvalue and boundary-value problems for ordinary differential equations. Numerical solution of parabolic and hyperbolic partial differential equations. Offered in alternate years

official class syllabus

See Professor Guy web page HTML In case the syllabus goes away, here is an archive image

Math 228A Numerical Methods for PDEs Fall Quarter 2010

Instructor: Office: Email: Phone: Office Hours:	Professor Bob Guy MSB 2136 guy@math.ucdavis.edu 754-9201 Tuesday 3-4 Thursday 3-4
Textbook:	 R. J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM, 2007. W. Briggs, V.E. Henson, and S. McCormick. A Multigrid Tutorial, Second Edition. SIAM, 2000. Both books are published by SIAM. SIAM members receive a 30% discount on orders. Free membership in SIAM is available by joining the UCD SIAM student chapter. <u>http://siam.math.ucdavis.edu</u>
Webpage:	http://www.math.ucdavis.edu/~guy/teaching/228a/ Homework and announcements will be posted here.
Class:	Tuesday and Thursday 1:40-3:00 in Physics 140
TA: Office: Email: Office Hours:	Hsiao-Chieh (Arcade) Tseng MSB 2123 hctseng@math.ucdavis.edu Monday 1:30-2:30 Friday 1:30-2:30

Homework

You are encouraged to talk with your classmates about homework problems. However, you must do your own write-up and write your own codes. All aspects of your write up must be clearly presented. Your writing should be clear and grammatically correct. Your codes must be thoroughly commented. All tables and figures must be appropriately labeled. You will be graded on the quality of your presentation.

What we will cover

This coarse is part of the sequence 228A-C on numerical methods for partial differential equations. The first quarter (228A) will focus on elliptic problems. The topics we will cover this quarter are listed below.

- Introduction to Poisson equation
- · Finite differences
- Convergence and accuracy
- · Iterative methods
- Multigrid
- Krylov subspace methods, CG & GMRES
- FFT

Grading

Your grade will be based on your homework assignments. We will likely have 4 or 5 homework assignments during this quarter.

Programing

This class will require writing computer programs. You may use any language. If you do not have a strong preference of language, it is recommended that you use MATLAB, because it is easy to use and very powerful. All codes will be turned in and must be thoroughly commented. You can create a computer account in the math department at http://www.math.ucdavis.edu/comp/class-accts.

Text book

Chapter 2

HWs

Local contents

2.1	Summary of HW's 6
2.2	HW 1
2.3	HW 2
2.4	HW 3
2.5	HW 4
2.6	HW 5

2.1 Summary of HW's

HW	description	grade
1	Poisson pde, eigenvalue problem, refinment study 1D	5/5
2	Refinment studies, 1D, LTE, convergence	5/5
3	2D, Jacobi, SOR, Gauss-Seidel, direct solver, sparse matrices	5/5
4	Multigrid V cycle algorithm, using to solve Poisson 2D	5/5
5	Conjugate Gradient	5/5

2.2 **HW1**

Problem description 2.2.1

Math 228A Homework 1 Due Tuesday, 10/12/10

- 1. Let L be the linear operator $Lu = u_{xx}$, $u_x(0) = u_x(1) = 0$.
 - (a) Find the eigenfunctions and corresponding eigenvalues of L.
 - (b) Show that the eigenfunctions are orthogonal in the $L^2[0,1]$ inner product:

$$\langle u, v \rangle = \int_0^1 uv \, dx.$$

(c) It can be shown that the eigenfunctions, $\phi_j(x)$, form a complete set in $L^2[0,1]$. This means that for any $f \in L^2[0,1], f(x) = \sum_j \alpha_j \phi_j(x)$. Express the solution to

$$u_{xx} = f, \quad u_x(0) = u_x(1) = 0,$$
 (1)

as a series solution of the eigenfunctions.

- (d) Note that equation (1) does not have a solution for all f. Express the condition for existence of a solution in terms of the eigenfunctions of L.
- 2. Define the functional $F: X \to \Re$ by

$$F(u) = \int_0^1 \frac{1}{2} (u_x)^2 + f u \, dx,$$

where X is the space of real valued functions on [0,1] that have at least one continuous derivative and are zero at x = 0 and x = 1. The Frechet derivative of F at a point u is defined to be the linear operator F'(u) for which

$$F(u+v) = F(u) + F'(u)v + R(v),$$

where

$$\lim_{||v|| \to 0} \frac{||R(v)||}{||v||} = 0.$$

One way to compute the derivative is

$$F'(u)v = \lim_{\epsilon \to 0} \frac{F(u+\epsilon v) - F(u)}{\epsilon}$$

Note that this looks just like a directional derivative.

- (a) Compute the Frechet derivative of F.
- (b) $u \in X$ is a critical point of F if F'(u)v = 0 for all $v \in X$. Show that if u is a solution to the Poisson equation f = u(0) = u(1) =0,

$$u_{xx} = f, \quad u(0) = u(1) =$$

then it is a critical point of F.

Finite element methods are based on these "weak formulations" of the problem. The Ritz method is based on minimizing F and the Galerkin method is based on finding the critical points of F'(u).

1

Figure 2.1: problem description

2.2.2 Problem 1

L is a second order differential operator defined by $Lu \equiv u_{xx}$ with boundary conditions on *u* given as $u_{x}(0) = u_{x}(1) = 0$

2.2.2.1 part a

Let $\phi(x)$ be an eigenfunction of the operator *L* associated with an eigenvalue λ . To obtain the eigenfunctions and eigenvalues, we solve an eigenvalue problem $L\phi = \lambda\phi$ where λ is scalar. Hence the problem is to solve the differential equation

$$\phi_{xx} - \lambda \phi = 0 \tag{1}$$

with B.C. given as $\phi'(0) = \phi'(1) = 0$. The characteristic equation is

$$r^2 - \lambda = 0$$

The roots are $r = \pm \sqrt{\lambda}$, therefore the solution to the eigenvalue problem (1) is

$$\phi(x) = c_1 e^{\sqrt{\lambda}x} + c_2 e^{-\sqrt{\lambda}x} \tag{2}$$

Where c_1, c_2 are constants.

$$\phi'(x) = c_1 \sqrt{\lambda} e^{\sqrt{\lambda}x} - \sqrt{\lambda} c_2 e^{-\sqrt{\lambda}x}$$
(3)

First we determine the allowed values of the eigenvalues λ which satisfies the boundary conditions.

- 1. Assume $\lambda = 0$ The solution (2) becomes $\phi(x) = c_1 + c_2$. Hence the solution is a constant. In other words, when the eigenvalue is zero, the eigenfunction is a constant. Let us now see if this eigenfunction satisfies the B.C. Since $\phi(x)$ is constant, then $\phi'(x) = 0$, and this does satisfy the B.C. at both x = 0 and x = 1. Hence $\lambda = 0$ is an eigenvalue with a corresponding eigenfunction being a constant. We can take the constant as 1.
- 2. Assume $\lambda > 0$ From the first BC we have, from (3), that $\phi'(0) = 0 = c_1 \sqrt{\lambda} \sqrt{\lambda}c_2$ or

and from the second BC we have that $\phi'(1) = 0 = c_1 \sqrt{\lambda} e^{\sqrt{\lambda}} - \sqrt{\lambda} c_2 e^{-\sqrt{\lambda}}$ or $c_2 e^{\sqrt{\lambda}} - c_2 e^{-\sqrt{\lambda}} = 0$

tions, we find that
$$e^{\sqrt{\lambda}} = e^{-\sqrt{\lambda}}$$
 which is not t

From the above 2 equations, we find that $e^{\sqrt{\lambda}} = e^{-\sqrt{\lambda}}$ which is not possible for positive λ . Hence λ can not be positive.

 $c_1 = c_2$

3. Assume $\lambda < 0$. Let $\lambda = -\beta^2$ form some positive β . Then the solution (2) becomes

$$\phi\left(x\right) = c_1 e^{i\beta x} + c_2 e^{-i\beta x}$$

which can be transformed using the Euler relation to obtain

$$\phi(x) = c_1 \cos \beta x + c_2 \sin \beta x$$

$$\phi'(x) = -c_1 \beta \sin \beta x + c_2 \beta \cos \beta x$$
(4)

Now consider the BC's. Since $\phi'(0) = 0$ we obtain $c_2 = 0$ and from $\phi'(1) = 0$ we obtain $0 = c_1\beta\sin\beta$ and hence for non trivial solution, i.e. for $c_1 \neq 0$, we must have that

$$\sin\beta = 0$$

or

$$\beta = \pm n\pi$$

but since β is positive, we consider only $\beta_n = n\pi$, where *n* is positive integer $n = 1, 2, 3, \cdots$

Conclusion: The eigenvalues are

$$\lambda_n = -(\beta_n)^2 = -(n\pi)^2 = \{0, -\pi^2, -(2\pi)^2, -(3\pi)^2, \cdots\}$$

And the corresponding eigenfunctions $\operatorname{are}\phi_n(x) = \cos \beta_n x = \cos n\pi x = \{1, \cos \pi x, \cos 2\pi x, \cos 3\pi x, \cdots\}$ where $n = 0, 1, 2, \cdots$

2.2.2.2 part (b)

Given inner product defined as $\langle u, v \rangle = \int_{0}^{1} uv dx$, then

$$\begin{aligned} \langle \phi_n, \phi_m \rangle &= \int_0^1 \left(\cos \beta_n x \right) \left(\cos \beta_m x \right) dx \\ &= \int_0^1 \left(\cos n\pi x \right) \left(\cos n\pi x \right) dx \\ &= \begin{cases} 0 & n \neq m \\ \frac{1}{2} & n = m \end{cases} \end{aligned}$$

Also, the first eigenfunction, $\phi_0(x) = 1$ is orthogonal to all other eigenfunctions, since $\int_0^1 (\cos n\pi x) dx = \frac{1}{n\pi} [\sin n\pi x]_0^1 = 0 \text{ for any integer } n > 0.$

Hence all the eigenfunctions are orthogonal to each others in $L^2[0,1]$ space.

2.2.2.3 Part (c)

Given

 $u_{xx} = f$

 $u_x(0) = u_x(1) = 0$. This is Lu = f. We have found the eigenfunctions $\phi(x)$ of L above. These are basis of the function space of L where f resides in. We can express f as a linear combination of the eigenfunctions of the operator L, hence we write

$$f(x) = \sum_{n=0}^{\infty} a_n \phi_n(x)$$

where $\phi_n(x)$ is the *n*th eigenfunction of *L* and a_n is the corresponding coordinate (scalar). Therefore the differential equation above can be written as

$$Lu = f(x) = \sum_{n=0}^{\infty} a_n \phi_n(x) \tag{1}$$

But since

 $L\phi_n = \lambda_n \phi_n$

Then

$$L^{-1} = \frac{1}{\lambda_n}$$

Therefore, using (1), the solution is

$$u(x) = \sum_{n} \left(\frac{a_n}{\lambda_n}\right) \phi_n(x)$$
(2)

Now to find a_n , using $f(x) = \sum_n a_n \phi_n(x)$, we multiply each side by an eigenfunction, say $\phi_m(x)$ and integrate

$$\int_{0}^{1} \phi_{m}(x) f(x) dx = \int_{0}^{1} \phi_{m}(x) \sum_{n} a_{n} \phi_{n}(x) (x) dx$$
$$= \int_{0}^{1} \sum_{n} a_{n} \phi_{m}(x) \phi_{n}(x) dx$$
$$= \sum_{n} a_{n} \int_{0}^{1} \phi_{m}(x) \phi_{n}(x) dx$$

The RHS is 1/2 when n = m and zero otherwise, hence the above becomes

$$\int_{0}^{1} \phi_n(x) f(x) dx = \frac{a_n}{2}$$

Or

 $a_n = 2 \int_0^1 \cos(n\pi x) f(x) \, dx$ (3)

Where a_n as given by (3).

If we know f(x) we can determine a_n and hence the solution is now found.

2.2.2.4 part (d)

The solution found above

$$u(x) = \sum_{n} \left(\frac{a_{n}}{\lambda_{n}}\right) \phi_{n}(x)$$

Is not possible for all f. Only an f which has $a_0 = 0$ is possible. This is because $\lambda_0 = 0$, then a_0 has to be zero to obtain a solution (since L^{-1} does not exist if an eigenvalue is zero).

 $a_0 = 0$ implies, by looking at (3) above, that when n = 0 we have

$$0 = \int_{0}^{1} f(x) \, dx$$

So only the functions f(x) which satisfy the above can be a solution to Lu = f with the B.C. given.

To review: We found that $\lambda = 0$ to be a valid eigenvalue due to the B.C. being Von Neumann boundary conditions. This in resulted in a_0 having to be zero. This implied that $\int_{-1}^{1} f(x) dx = 0$.

Having a zero eigenvalue effectively removes one of the space dimensions that f(x) can resides in.

In addition to this restriction, the function f(x) is *assumed* to meet the Dirichlet conditions for Fourier series expansion, and these are

- 1. f(x) must have a finite number of extrema in any given interval
- 2. f(x) must have a finite number of discontinuities in any given interval
- 3. f(x) must be absolutely integrable over a period.
- 4. f(x) must be bounded

2.2.3 **Problem 2**

2.2.3.1 Part (a)

Applying the definition given

$$F'(u)v = \lim_{\varepsilon \to 0} \frac{F(u + \varepsilon v) - F(u)}{\varepsilon}$$
(1)

And using $F(u) = \int_{0}^{1} \frac{1}{2} (u_x)^2 + f u \, dx$, then (1) becomes

$$F'(u)v = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left(\int_0^1 \frac{1}{2} \left[\left(u + \varepsilon v \right)_x \right]^2 + f(u + \varepsilon v) dx - \int_0^1 \frac{1}{2} \left(u_x \right)^2 + f u dx \right)$$

Simplify the above, we obtain

$$F'(u)v = \lim_{\varepsilon \to 0} \left(\int_0^1 \frac{\varepsilon}{2} v_x^2 dx + \int_0^1 u_x v_x dx + \int_0^1 f v dx \right)$$

Hence, as $\varepsilon \to 0$ only the first integral above vanishes (since v_x is bounded), and we have

$$F'(u)v = \int_{0}^{1} u_{x}v_{x} + fvdx$$
(1A)

2.2.3.2 Part (b)

The solution to $u_{xx} = f(x)$ with u(0) = u(1) = 0 was found in class to be

$$u(x) = \sum_{n} \left(\frac{a_n}{\lambda_n}\right) \phi_n(x) \tag{2}$$

where

$$\phi_n(x) = \sin(n\pi x)$$

are the eigenfunctions associated with the eigenvalues $\lambda_n = -n^2 \pi^2$.

Now we can use this solution in the definition of F'(u)v found in (1A) from part (a). Substitute u(x) from (2) into (1A), and also substitute $f = \sum_{n} a_n \phi_n(x)$ into (1A), we obtain

$$F'(u)v = \int_{0}^{1} \left(\sum_{n} \left(\frac{a_n}{\lambda_n}\right)\phi_n(x)\right)'v' + \left(\sum_{n} a_n \phi_n(x)\right)v \, dx \tag{4}$$

We need to show that the above becomes zero for any $v(x) \in X$.

$$F'(u) v = \int_{0}^{1} \sum_{n} v'\left(\frac{a_{n}}{\lambda_{n}}\right) \phi_{n}'(x) + \sum_{n} v a_{n} \phi_{n}(x) dx$$
$$= \int_{0}^{1} \sum_{n} \left(v'\left(\frac{a_{n}}{\lambda_{n}}\right) \phi_{n}'(x) + v a_{n} \phi_{n}(x)\right) dx$$
$$= \sum_{n} a_{n} \left(\int_{0}^{1} \frac{1}{\lambda_{n}} v' \phi_{n}'(x) + v \phi_{n}(x) dx\right)$$
(5)

Now we pay attention to the integral term above. If we can show this is zero, then we are done.

$$I = \frac{1}{\lambda_n} \int_0^1 v' \phi'_n(x) + \int_0^1 v \phi_n(x) \, dx$$

= $I_1 + I_2$ (6)

Integrate by parts I_1

$$I_{1} = \frac{1}{\lambda_{n}} \int_{0}^{1} \frac{udv}{\phi_{n}'(x) v'dx}$$

$$= \frac{1}{\lambda_{n}} \left(\left[\phi_{n}'(x) v \right]_{0}^{1} - \int_{0}^{1} v(x) \phi_{n}''(x) dx \right)$$

$$= \frac{1}{\lambda_{n}} \left(\underbrace{\left[v(1) \phi_{n}'(1) - v(0) \phi_{n}'(0)\right]}_{\left[v(1) \phi_{n}'(x) dx \right]} - \int_{0}^{1} v(x) \phi_{n}''(x) dx \right)$$

$$= -\frac{1}{\lambda_{n}} \int_{0}^{1} v(x) \phi_{n}''(x) dx$$

But since $\phi_n(x) = \sin n\pi x$, then $\phi'_n(x) = n\pi \cos n\pi x$ and $\phi''_n(x) = -n^2 \pi^2 \sin n\pi x = -n^2 \pi^2 \phi_n(x)$ then

$$I_{1} = \frac{n^{2}\pi^{2}}{\lambda_{n}}\int_{0}^{1} v(x)\phi_{n}(x) dx$$

But also $\lambda_n = -n^2 \pi^2$ hence the above becomes

$$I_1 = -\int_0^1 v(x)\,\phi_n(x)\,dx$$

Therefore (6) can be written as

$$I = I_1 + I_2$$

= $-\int_0^1 v(x) \phi_n(x) dx + \int_0^1 v(x) \phi_n(x) dx$
= 0

Therefore, from (5), we see that

$$F'(u)v=0$$

Hence we showed that if u is solution to $u_{xx} = f$ with u(0) = u(1) = 0, then F'(u)v = 0.

2.2.4 Problem (3)

2.2.4.1 Part (a)

Notations used: let \tilde{f} to mean the approximate discrete solution at a grid point. Let f to mean the exact solution.

Using the method of undetermined coefficients, let the second derivative approximation be

$$\tilde{f}^{\prime\prime}(x) = af\left(x - \frac{h}{2}\right) + bf(x) + cf(x+h)$$
(1)

Where a, b, c are constants to be found. Now using Taylor expansion, since

$$f(x + \Delta) = f(x) + \Delta f'(x) + \frac{\Delta^2}{2!}f''(x) + \frac{\Delta^3}{3!}f'''(x) + O(h^4)$$

Hence apply the above to each of the terms in the RHS of (1) and simplify

$$\begin{aligned} f\left(x-\frac{h}{2}\right) &= f\left(x\right) - \frac{h}{2}f'\left(x\right) + \frac{\left(-\frac{h}{2}\right)^2}{2!}f''\left(x\right) + \frac{\left(-\frac{h}{2}\right)^3}{3!}f''\left(x\right) + \frac{\left(-\frac{h}{2}\right)^4}{4!}f^{(4)}\left(x\right) + O\left(h^5\right) \\ f\left(x\right) &= f\left(x\right) \\ f\left(x+h\right) &= f\left(x\right) + hf'\left(x\right) + \frac{h^2}{2!}f''\left(x\right) + \frac{h^3}{3!}f''\left(x\right) + \frac{h^4}{4!}f^{(4)}\left(x\right) + O\left(h^5\right) \end{aligned}$$

Substitute the above 3 terms in (1)

$$\begin{split} \tilde{f}''(x) &= a \left(f(x) - \frac{h}{2} f'(x) + \frac{h^2}{8} f''(x) - \frac{h^3}{8 \times 6} f'''(x) + \frac{h^4}{16 \times 24} f^{(4)}(x) + O\left(h^5\right) \right) \\ &+ b f(x) \\ &+ c \left(f(x) + h f'(x) + \frac{h^2}{2!} f''(x) + \frac{h^3}{6} f'''(x) + \frac{h^4}{24} f^{(4)}(x) + O\left(h^5\right) \right) \end{split}$$

Collect terms

$$\tilde{f}''(x) = (a+b+c)f(x) + f'(x)h\left(-\frac{a}{2}+c\right) + f''(x)h^2\left(\frac{a}{8}+\frac{c}{2}\right) + f'''(x)h^3\left(\frac{-a}{8\times6}+\frac{c}{6}\right)$$
(2)
+ $f^{(4)}h^4\left(\frac{a}{16\times24}+\frac{c}{24}\right) + O\left(h^5\right)$

Hence for $\tilde{f}''(x)$ to best approximate f''(x), we need

$$(a+b+c) = 0$$
$$-\frac{a}{2} + c = 0$$
$$h^2\left(\frac{a}{8} + \frac{c}{2}\right) = 1$$

Solving the above 3 equations we find

$$a = \frac{8}{3h^2}$$
$$b = -\frac{4}{h^2}$$
$$c = \frac{4}{3h^2}$$

Hence (1) becomes

$$\tilde{f}''(x) = af\left(x - \frac{h}{2}\right) + bf(x) + cf(x+h) = \frac{8}{3h^2}f\left(x - \frac{h}{2}\right) - \frac{4}{h^2}f(x) + \frac{4}{3h^2}f(x+h)$$

To examine the local truncation error, from (2), and using the solution we just found for a, b, c we find

$$\begin{split} \tilde{f}^{\prime\prime}(x) &= f^{\prime\prime}(x) + f^{\prime\prime\prime}(x) h^3 \left(\frac{-\left(\frac{8}{3h^2}\right)}{8 \times 6} + \frac{\left(\frac{4}{3h^2}\right)}{6} \right) + f^{(4)} h^4 \left(\frac{\left(\frac{8}{3h^2}\right)}{16 \times 24} + \frac{\left(\frac{4}{3h^2}\right)}{24} \right) + O\left(h^5\right) \\ &= f^{\prime\prime}(x) + f^{\prime\prime\prime}(x) h^3 \left(\frac{1}{6h^2}\right) + f^{(4)} h^4 \left(\frac{1}{16h^2}\right) + O\left(h^5\right) \\ &= f^{\prime\prime}(x) + f^{\prime\prime\prime}(x) \left(\frac{h}{6}\right) + f^{(4)} h^2 \left(\frac{1}{16}\right) + O\left(h^5\right) \end{split}$$

We can truncate at either f'''(x) or $f^{(4)}$. In the first case, we obtain

$$\tilde{f}^{\prime\prime}(x) = f^{\prime\prime}(x) + O(h)$$

Where $O(h) = \frac{f'''(x)}{6}h$, hence p = 1 in this case, and with the truncation error $\tau = \frac{f'''(x_j)}{6}h$ at each grid point.

In the second case, we obtain

$$\tilde{f}''(x) = f''(x) + \frac{f'''(x)}{6}h + O(h^2)$$

Where $O(h^2) = \frac{f^{(4)}}{16}h^2$ and p = 2 in this case, and with the truncation error $\tau = \frac{f^{(4)}(x_j)}{16}h^2$ at each grid point. We see that τ is smaller if we use p = 2 than p = 1.

The accuracy then depends on where we decide to truncate. For example, at p = 1, the error is dominated by O(h), and at p = 2, it is $O(h^2)$.

2.2.4.2 part (b) Refinement study

Given $f(x) = \cos(2\pi x)$, first, let us find the accuracy of this scheme. The finite difference approximation formula found is

$$\tilde{f}''(x) = \frac{8}{3h^2} f\left(x - \frac{h}{2}\right) - \frac{4}{h^2} f(x) + \frac{4}{3h^2} f(x+h)$$
(1)

And the exact value is

$$\frac{d^2}{dx^2}\cos\left(2\pi x\right) = -4\pi^2\cos 2\pi x \tag{2}$$

To find the local error τ

$$\tau = \tilde{f}^{\prime\prime}(x) - f^{\prime\prime}(x)$$

Substitute $f(x) = \cos(2\pi x)$ in the RHS of (1) to find the approximation of the second derivative and subtract the exact result value of the second derivative from it.

Plug $f(x) = \cos(2\pi x)$ in RHS of (1) we obtain

$$\tilde{f}''(x) = \frac{8}{3h^2} \cos\left(2\pi \left(x - \frac{h}{2}\right)\right) - \frac{4}{h^2} \cos\left(2\pi x\right) + \frac{4}{3h^2} \cos\left(2\pi (x+h)\right)$$
$$= \frac{8}{3h^2} \cos\left(2\pi x - \pi h\right) - \frac{4}{h^2} \cos\left(2\pi x\right) + \frac{4}{3h^2} \cos\left(2\pi x + 2\pi h\right)$$

Hence the local error τ is

$$\tau = f''(x) - f''(x)$$

= $\left[\frac{8}{3h^2}\cos(2\pi x - \pi h) - \frac{4}{h^2}\cos(2\pi x) + \frac{4}{3h^2}\cos(2\pi x + 2\pi h)\right] + 4\pi^2\cos 2\pi x$

We notice that τ depends on *h* and *x*. At *x* = 1,

$$\tau = \left[\frac{8}{3h^2}\cos\left(2\pi - \pi h\right) - \frac{4}{h^2} + \frac{4}{3h^2}\cos\left(2\pi + 2\pi h\right)\right] + 4\pi^2$$
$$= \frac{4}{3h^2}\left(\cos\left(2\pi h\right) + 2\cos\left(\pi h\right) + 3h^2\pi^2 - 3\right)$$

In the following we plot local error τ as a function of *h* in linear scale and log scale. Here is the result.

Figure 2.2: matlab HW1 partb

We notice that the log plot shows the slope p = 2 and not p = 1. This is because the O(h) part turned out to be zero at x = 1 this is because $O(h) = \frac{f''(x)}{6}h = \frac{(8\pi^3 \sin 2\pi x)}{6}h$ and this term is zero at x = 1, so the dominant error term became $O(h^2)$ which is $\frac{f^{(4)}(x_j)}{16}h^2 = \frac{16\pi^4 \cos 2\pi x}{16}h^2$ or π^4h^2 or $O(h^2)$.

This is why we obtained p = 2 and not p = 1 at x = 1.

The following table show the ratio of the local error between each 2 successive halving of the spacing *h*. Each time *h* is halved, and the ratio of the error (absolute local error) is shown. We see for x = 1 that the ratio approaches 4. This indicates that p = 2.

```
EDU>> nma_HW1_partb()
1
2
   h
                       error
                                           ratio
3
    5.0000E-001
                      1.8145E+001
                                        0.0000E+000
    2.5000E-001
4
                      5.6483E+000
                                        3.2125E+000
5
    1.2500E-001
                      1.4936E+000
                                        3.7816E+000
6
    6.2500E-002
                      3.7872E-001
                                        3.9439E+000
7
    3.1250E-002
                      9.5014E-002
                                        3.9859E+000
8
    1.5625E-002
                      2.3775E-002
                                        3.9965E+000
9
    7.8125E-003
                      5.9449E-003
                                        3.9991E+000
10
    3.9063E-003
                      1.4863E-003
                                        3.9998E+000
```

2.2.4.3 Part(c)

The refinement study in part (b) showed that the local error became smaller as h become smaller, and the error was $O(h^2)$ since p = 2 in the log plot.

But this is not a good test as it was done only for one point x = 1. We need to examine the approximation scheme at other points as well. The reason is the local error at an x location is

$$\tau = \left[\frac{8}{3h^2}\cos\left(2\pi x - \pi h\right) - \frac{4}{h^2}\cos\left(2\pi x\right) + \frac{4}{3h^2}\cos\left(2\pi x + 2\pi h\right)\right] + 4\pi^2\cos 2\pi x$$

which can be seen to be a function of x and h. In (b) we found that at x = 1, $\tau = O(h^2)$ and this was because the dominant error term O(h) happened to vanish at x = 1.

But if we examine τ at different point, say x = 0.2, then we will see that τ is O(h) and p = 1.

Here is a plot of τ at x = 0.2 and at x = 1. Both showing what happens as h becomes smaller. We see that the at x = 1 the approximation was more accurate (p = 2) but at x = 0.2 the approximation was less accurate (p = 1). What we conclude from this, is that a single test is not sufficient for determine the accuracy for all points. More tests are needed at other points to have more confidence. To verify that at x = 0.2 we indeed have p = 1, we generate the error table as shown above, but for x = 0.2 this time.

Figure 2.3: matlab HW1 partc

- 1								
1	EDU>> nma_HW1_partc()							
2	h	error	ratio					
3	5.0000E-001	1.5752E+001	0.0000E+000					
4	2.5000E-001	1.0149E+001	1.5520E+000					
5	1.2500E-001	5.1898E+000	1.9557E+000					
6	6.2500E-002	2.5508E+000	2.0345E+000					
7	3.1250E-002	1.2551E+000	2.0324E+000					
8	1.5625E-002	6.2133E-001	2.0200E+000					
9	7.8125E-003	3.0897E-001	2.0110E+000					
10	3.9063E-003	1.5404E-001	2.0057E+000					

We see that the ratio becomes 2 this time, not 4 as we half the spacing each time. This mean p = 1. This means the accuracy of the formula used can depend on the location.

2.2.4.4 Part (d)

The points that we need to interpolate are $\left[\left[x - \frac{h}{2}, u\left(x - \frac{h}{2}\right)\right], [x, u(x)], [x + h, u(x + h)]\right]$ where $u = \cos(2\pi x)$

Since we require a quadratic polynomial, then we write

$$p(x) = a + bx + cx^2$$

Where p(x) is the interpolant. Evaluate the above at each of the 3 points. Choose x = 1, hence the points are

$$\begin{pmatrix} 1 - \frac{h}{2}, u\left(1 - \frac{h}{2}\right) \\ 1, u(x) \\ 1 + h, u(1 + h) \end{pmatrix}$$

Evaluate p(x) at each of these points

$$p\left(1 - \frac{h}{2}\right) = \cos\left(2\pi\left(1 - \frac{h}{2}\right)\right) = a + b\left(1 - \frac{h}{2}\right) + c\left(1 - \frac{h}{2}\right)^2$$
$$p(1) = \cos(2\pi) = a + b + c$$
$$p(1 + h) = \cos(2\pi(1 + h)) = a + b(1 + h) + c(1 + h)^2$$

or

$$\begin{pmatrix} \left(1-\frac{h}{2}\right)^2 & \left(1-\frac{h}{2}\right) & 1\\ 1 & 1 & 1\\ \left(1+h\right)^2 & \left(1+h\right) & 1 \end{pmatrix} \begin{pmatrix} c\\b\\a \end{pmatrix} = \begin{pmatrix} \cos\left(2\pi\left(1-\frac{h}{2}\right)\right)\\ \cos\left(2\pi 1\right)\\ \cos\left(2\pi\left(1+h\right)\right) \end{pmatrix}$$
$$Av = b$$

Solving the above Vandermonde system, we obtain

$$a = \frac{1}{3h^2} \left(4 \left(1 + h \right) \cos \left(h\pi \right) + \left(h - 2 \right) \left(3 + 3h - \cos \left(2\pi h \right) \right) \right)$$

$$b = \frac{-1}{3h^2} 4 \left(\left(h - 4 \right) \cos \left(\pi h \right) - h - 8 \right) \sin^2 \left(\frac{\pi h}{2} \right)$$

$$c = \frac{2}{3h^2} \left(2 \cos \left(\pi h \right) - 3 + \cos \left(2\pi h \right) \right)$$

Hence

$$p(x) = \left[\frac{1}{3h^2} \left(4\left(1+h\right)\cos\left(h\pi\right) + \left(h-2\right)\left(3+3h-\cos\left(2\pi h\right)\right)\right)\right]$$
(1)
$$-\left[\frac{1}{3h^2} 4\left(\left(h-4\right)\cos\left(\pi h\right) - h-8\right)\sin^2\left(\frac{\pi h}{2}\right)\right] x$$
$$+\left[\frac{2}{3h^2} \left(2\cos\left(\pi h\right) - 3 + \cos\left(2\pi h\right)\right)\right] x^2$$

Recall, that we found, for $u = \cos(2\pi x)$, the finite difference formula was

$$\tilde{u}''(x) = \left[\frac{8}{3h^2}\cos(2\pi x - \pi h) - \frac{4}{h^2}\cos(2\pi x) + \frac{4}{3h^2}\cos(2\pi x + 2\pi h)\right]$$
(2)

Take the second derivative of p(x) shown in (1) above

$$p''(x) = \frac{4}{3h^2} \left(2\cos\left(\pi h\right) + \cos\left(2\pi h\right) - 3 \right) \tag{3}$$

But we notice that $\tilde{u}^{\prime\prime}(x)$ evaluated at x = 1 is

$$\tilde{u}''(1) = \frac{4}{3h^2} \left(2\cos(\pi h) + \cos(2\pi h) - 3 \right)$$

which is the same as p''(x).

Therefore, p''(x) is the same as as the finite difference approximation evaluated at the central point of the 3 points, used to generate p.

In other words, given 3 points

$$\begin{pmatrix} x_0 - \frac{h}{2}, u(x_0) \\ x_0, u(x_0) \\ x_0 + h, u(x_0 + h) \end{pmatrix}$$

Where u(x) is some function (here it was $\cos(2\pi x)$), and we generate a quadratic interpolant polynomial p(x) using the above 3 points, then p''(x) will given the same value as the finite difference formula evaluated at x_0 .

$$p''(x)\Big|_{x=x_0} = \tilde{u}(x)\Big|_{x=x_0}$$

For this to be valid, p(x) must have been generated with the center point being x_0 . If we pick another center point x_1 , and therefore have the 3 points $x_1 - h/2$, x_1 , $x_1 + h$, and then generate a polynomial q(x) as above, then we will find

$$q^{\prime\prime}(x)\big|_{x=x_1} = \left. \widetilde{u}\left(x\right)\right|_{x=x_1}$$

This is illustrated by the following diagram

Figure 2.4: prob3 c

2.2.5 Appendix (Source code)

2.2.5.1 Matlab

```
1 %-- by Nasser M. Abbasi, Math 228A, UC Davis, Fall 2010
2 %-- implement part b, problem 3
3 function nma_HW1_partb()
4 %-- Generate h values to use, and define tao(h) function
5 N = 8:
6
   pointAt=1;
   data = arrayfun(@(i) [1/(2<sup>i</sup>), local_error(1/(2<sup>i</sup>), pointAt)], 1:N, ...
7
                     'UniformOutput',false);
8
   data = reshape(cell2mat(data),2,N)';
9
10
   %-- plot the tao(h) in linear and log scale
11
   set(0,'defaultaxesfontsize',8);
12
   set(0, 'defaulttextfontsize',8);
13
14
   subplot(2,1,1);
15
16 plot(data(:,1),data(:,2),'-o'); grid on;
   title('tao at x=(1), linear scale');
17
   xlabel('spacing h'); ylabel('ABS(error)');
18
19
   subplot(2,1,2);
20
21 loglog(data(:,1), data(:,1), '-o'); grid on;
22 title('tao at x=(1), log scale');
23 xlabel('log(h)'); ylabel('log(ABS(error))');
   export_fig matlab_HW1_partb.png
24
25
26 %-- now generate the error table, find ratio first
   error_ratio = zeros(N,1);
27
   for i=2:N
28
       error_ratio(i) = data((i-1),2)/data(i,2);
29
30
   end
31
   %-- print table
32
   fprintf('h\t\t\t error\t\t\t\t ratio\n');
33
34
   for i=1:N
      fprintf('%6.4E\t\t%6.4E\t\t%6.4E\n',data(i,1),data(i,2),error_ratio(i));
35
36
   end
37
38
   end
39
   function tao=local error(h,x)
40
   tao=8/(3*h<sup>2</sup>)*cos(2*pi*(x-h/2))-4/h<sup>2</sup>*cos(2*pi*x)+4/(3*h<sup>2</sup>)*...
41
       cos(2*pi*(x+h))+(2*pi)^2*cos(2*pi*x);
42
   end
43
```

1 %-- by Nasser M. Abbasi, Math 228A, UC Davis, Fall 2010

```
2 %-- implement part c, problem 3
  function nma_HW1_partc()
3
4
5 | %-- Generate h values to use, and define tao(h) function
6 %-- plot the tao(h) in linear and log scale
7 set(0,'defaultaxesfontsize',8);
   set(0,'defaulttextfontsize',8);
8
9
10 %build data, x-axis is spacing h, y-axis is error
11 N = 8;
12 pointAt=1.0;
13 data = arrayfun( @(i) [1/(2<sup>i</sup>), local_error(1/(2<sup>i</sup>), pointAt)], 1:N, ...
                     'UniformOutput',false);
14
15 data = reshape(cell2mat(data),2,N)';
16
17 loglog(data(:,1),data(:,1),'-o'); grid off;
   title('tao at x=1 and x=0.2, log scale');
18
19 xlabel('log(h)'); ylabel('log(ABS(error))');
20 hold on;
21
   pointAt=0.2;
22
23 data = arrayfun( @(i) [1/(2<sup>i</sup>), local_error(1/(2<sup>i</sup>),pointAt)],1:N,...
                     'UniformOutput',false);
24
   data = reshape(cell2mat(data),2,N)';
25
26 loglog(data(:,1),data(:,2),'-s');
   legend('p=2,x=1','p=1,x=0.2');
27
28
29
   export_fig matlab_HW1_partc.png
30
31 %-- now generate the error table, find ratio first
   error_ratio = zeros(N,1);
32
33 for i=2:N
       error_ratio(i) = data((i-1),2)/data(i,2);
34
  end
35
36
37 %-- print table
38 fprintf('h\t\t\t error\t\t\t\t ratio\n');
   for i=1:N
39
      fprintf('%6.4E\t\t%6.4E\t\t%6.4E\n',data(i,1),data(i,2),error_ratio(i));
40
41
   end
42
   end
43
44
45 function tao=local_error(h,x)
   tao=8/(3*h<sup>2</sup>)*cos(2*pi*(x-h/2))-4/h<sup>2</sup>*cos(2*pi*x)+4/(3*h<sup>2</sup>)*...
46
       cos(2*pi*(x+h))+(2*pi)^2*cos(2*pi*x);
47
48
   end
```

2.2.5.2 Mathematica

HW 1, problem 3, computational part. math 228A UC davis fall 2010 Nasser M. Abbasi

This is the code used to generate the plots and tables used in HW1

define local error function

```
localError[h_, x_] :=

Module[{}, \frac{8}{3 h^2} \cos[2 \pi x - \pi h] - \frac{4}{h^2} \cos[2 \pi x] + \frac{4}{3 h^2} \cos[2 \pi x + 2 \pi h] + (2 \pi)^2 \cos[2 \pi x];
```

define a function to make the plots

```
makePlot[x_, s_, title_, xlabel_, ylabel_, f_] := Module[{data, n = 8},
data = Table[{ 1 / (2^i), Abs@localError[1 / (2^i), x] }, {i, 1, n}];
f[data, Joined → True, AxesOrigin → {0, 0},
GridLines → Automatic, AspectRatio → 1, Frame → True, PlotRange → All,
FrameLabel → {{ylabel, None}, {xlabel, title}}, PlotStyle → s, ImageSize → Full]
```

make plot for problem 3, part b

```
title = Style["local error at x=1, log scale", 16];
xlabel = Style["h", 16]; ylabel = Style["local error", 16];
p1 = makePlot[1, {Thick, Dashed}, title, xlabel, ylabel, ListLogLogPlot];
title = Style["local error at x=1, linear scale", 16];
p2 = makePlot[1, {Thick, Dashed}, title, xlabel, ylabel, ListPlot];
Framed[Grid[{{p1, p2}}], ImageSize → {600, 300}]
```


2 | HW1.nb

Γ.

Generate error table, problem 3, part b

n = 14; x = 1; $data = Table[{ 1/(2^i), Abs@localError[1/(2^i), x] }, {i, 1, n}];$ $data = Table[{ data[i, 1], data[i, 2], If[i == 1, 0, \frac{data[i - 1, 2]}{data[i, 2]} }, {i, 1, n}];$ $t = TableForm[N[data, $MachinePrecision], TableHeadings \rightarrow$

{None, {"h", "local error τ ", "ratio"}}, TableSpacing \rightarrow {1, 6}, TableAlignments \rightarrow Left];

Labeled [Framed@ScientificForm [t, {8, 6}, NumberFormat \rightarrow (Row [{#1, "e", #3}] &),

NumberPadding \rightarrow {"", "0"}], Style["local error as function of h at x=1", 14], Top]

local	error	as	function	of	h	at	x = 1
		10	cal error	τ			ratio

h	local error $ au$	ratio
5.000000e-1	1.814508e1	0.00000e
2.500000e-1	5.648307e	3.212482e
1.250000e-1	1.493636e	3.781581e
6.250000e-2	3.787161e-1	3.943947e
3.125000e-2	9.501408e-2	3.985895e
1.562500e-2	2.377451e-2	3.996468e
7.812500e-3	5.944941e-3	3.999117e
3.906250e-3	1.486317e-3	3.999779e
1.953125e-3	3.715845e-4	3.999945e
9.765625e-4	9.289644e-5	3.999986e
4.882812e-4	2.322413e-5	3.999997e
2.441406e-4	5.806034e-6	3.999999e
1.220703e-4	1.451509e-6	4.000000e
6.103516e-5	3.628771e-7	4.00000e

Generate table for problem 3, part (c)

n = 14; x = 0.2; $data = Table[{ 1/(2^i), Abs@localError[1/(2^i), x] }, {i, 1, n}];$ $data = Table[{ data[i, 1], data[i, 2], If[i == 1, 0, \frac{data[i - 1, 2]}{data[i, 2]} }, {i, 1, n}];$ $t = TableForm[N[data, $MachinePrecision], TableHeadings \rightarrow$

{None, {"h", "local error τ ", "ratio"}}, TableSpacing \rightarrow {1, 6}, TableAlignments \rightarrow Left]; Labeled[Framed@ScientificForm[t, {8, 6}, NumberFormat \rightarrow (Row[{#1, "e", #3}] &),

NumberPadding \rightarrow {"", "0"}], Style["local error as function of h at x=0.2", 14], Top]

10001 011		
h	local error τ	ratio
5.000000e-1	1.575174e1	0.00000e
2.500000e-1	1.014949e1	1.551974e
1.250000e-1	5.189762e	1.955675e
6.250000e-2	2.550829e	2.034539e
3.125000e-2	1.255100e	2.032371e
1.562500e-2	6.213251e-1	2.020037e
7.812500e-3	3.089650e-1	2.010989e
3.906250e-3	1.540406e-1	2.005737e
1.953125e-3	7.690765e-2	2.002930e
9.765625e-4	3.842539e-2	2.001480e
4.882812e-4	1.920555e-2	2.000744e
2.441406e-4	9.600990e-3	2.000372e
1.220703e-4	4.800048e-3	2.000186e
6.103516e-5	2.399851e-3	2.000144e

local error as function of h at x=0.2

Generate plot for part (C)

```
title = Style["local error at different x locations, log scale", 16];
xlabel = Style["h", 16]; ylabel = Style["local error", 16];
p1 = makePlot[1, {Thick, Dashed}, title, xlabel, ylabel, ListLogLogPlot];
p2 = makePlot[0.2, {Thick, Black}, title, xlabel, ylabel, ListLogLogPlot];
Show[{p1, p2}, ImageSize → 500]
```


local error at different x locations, log scale

2.3 HW 2

2.3.1 **Problem description**

Math 228A Homework 2 Due Friday, 10/22/08, 4:00

1. Use the standard 3-point discretization of the Laplacian on a regular mesh to find a numerical solution to the PDEs below. Perform a refinement study using the exact solution to compute the error that shows the rate of convergence for both the 1-norm and the max norm.

(a)
$$u_{xx} = \exp(x), \quad u(0) = 0, \quad u(1) = 1$$

(b)
$$u_{xx} = 2\cos^2(\pi x), \quad u_x(0) = 0, \quad u_x(1) = 1$$

2. Propose a discretization scheme for

 $u_{xx} = f$, $u_x(0) - \alpha u(0) = g$, u(1) = b.

What is the form of the matrix and right hand side in your discrete equations? What order of accuracy do you expect?

- 3. As a general rule, we usually think that an $O(h^p)$ local truncation error (LTE) leads to an $O(h^p)$ error. However, in some cases the LTE can be lower order at some points without lowering the order of the error. Consider the standard second-order discretization of the Poisson equation on [0, 1] with homogeneous boundary conditions. The standard discretization of this problem gives an $O(h^2)$ LTE provided the the solution is at least C^4 . The LTE may be lower order because the solution is not C^4 or because we use a lower order discretization at some points.
 - (a) Suppose that the LTE is $O(h^p)$ at the first grid point $(x_1 = h)$. What effect does this have on the error? What is the smallest value of p that gives a second order accurate error? Hint: Use equation (2.46) from LeVeque to aid in your argument.
 - (b) Suppose that the LTE is $O(h^p)$ at an interior point (i.e. a point that does not limit to the boundary as $h \to 0$). What effect does this have on the error? What is the smallest value of p that gives a second order accurate error?
 - (c) Verify the results of your analysis from parts (a) and (b) using numerical tests.

Figure 2.5: problem description

2.3.2 **Problem 1**

Use standard 3-point discretization of the Laplacian on a regular mesh to find numerical solution to the PDE below and perform refinement study to compute the error that shows the rate of convergence for both the 1-norm and the max-norm.

2.3.2.1 part (a)

The differential equation with its boundary conditions is $u_{xx} = e^x$ with u(0) = 0, u(1) = 1.

Finding the analytical solution

Let *D* be a differential operator $D \equiv \frac{d}{dx}$. Since $(D-1)e^x = 0$, then applying (D-1) to both sides of the differential equation results in

$$\left[(D-1) D^2 \right] (u) = 0$$

Thus the characteristic equation is $(r-1)r^2 = 0$ with roots $r_1 = 1$, $r_2 = 0$ and $r_3 = 0$. Therefore the complete solution is

$$u(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x} + x c_3 e^{r_3 x}$$

It helps to designate in the above which part is the particular solution and which is the homogeneous

$$u(x) = \overbrace{c_1 e^x}^{u_p} + \overbrace{c_2 + c_3 x}^{y_h}$$

1

 c_1 is found by substituting the particular solution in the original differential equation giving $c_1 = 1$. The solution becomes¹

$$u\left(x\right) = e^x + c_2 + xc_3$$

The remaining constants c_2 and c_3 are found by satisfying the boundary conditions on the above solution. Applying u(0) = 0 gives $c_2 = -1$ and applying u(1) = 1 gives $c_3 = 2 - e$. The solution becomes

$$u(x) = 2x - \exp(1)x + \exp(x) - 1$$

Scheme to use for the numerical solution

The numbering used is the one described in the class. The first grid point has an index j = 0, and the last grid point has an index j = N + 1. *U* is the unknown to solve for. It is the numerical solution of the differential equation at the grid points. Lower case *u* is the exact analytical solution found earlier.

Because this problem has Dirichlet boundary conditions, *U* is known at j = 0 and at j = N+1, therefore only internal grid points are used to solve for *U*. These internal points are numbered $1 \cdots N$. The spacing between each grid point is $h = \frac{len}{N+1}$ where the length of the domain *len* is always taken to have value 1.

The physical x-coordinate of each grid point is given by $x_j = jh$. For example, when j = 0, the first point will have a physical x-coordinate of 0, and when j = N + 1, the last grid point will have a physical x-coordinate of 1.

The diagram below helps illustrate these relations and the notations used.

¹another way to solve this is to integrate the original differential equation twice to obtain this general solution.

Figure 2.6: problem 1 part a scheme

The standard 3-point central difference formula $\frac{U_{j-1}-2U_j+U_{j+1}}{h^2}$ was used to approximate u_{xx} on each internal grid point. This approximation has local truncation error (LTE) of $O(h^2)$. Therefore, at each internal grid point *j* the equation $u_{xx} = f(x)$ is approximated by $\frac{U_{j-1}-2U_j+U_{j+1}}{h^2} = f_{x=jh}$.

Figure 2.7: problem 1 part a scheme 2

For the special case of j = 1 (the first internal grid point on left side), the above formula was modified by replacing U_o by its given value (U_0 is on the boundary and its value is known). Therefore, for j = 1 the discrete equation becomes

$$\frac{\alpha - 2U_0 + U_1}{h^2} = F_1$$

$$\frac{-2U_0 + U_1}{h^2} = F_1 - \frac{\alpha}{h^2}$$
(2)

The same was done for j = N (the last internal grid point on right side). The standard 3 points formula was modified by replacing U_{N+1} by its given value. Therefore, for j = N the discrete equation becomes

$$\frac{U_{N-1} - 2U_N + \beta}{h^2} = F_N$$

$$\frac{U_{N-1} - 2U_N}{h^2} = F_N - \frac{\beta}{h^2}$$
(3)

The above equations are collected and put in the form Au = f resulting in

$$\frac{1}{h^{2}} \begin{pmatrix}
-2 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & 0 & 0 \\
0 & 0 & 0 & \cdot & \cdot & \cdot & 0 \\
0 & 0 & 0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & -2
\end{pmatrix} \begin{pmatrix}
U_{1} \\
U_{2} \\
U_{3} \\
\cdot \\
\cdot \\
\cdot \\
U_{N} \\
\end{pmatrix} = \begin{pmatrix}
f_{h} - \frac{\alpha}{h^{2}} \\
f_{2h} \\
f_{3h} \\
\cdot \\
\cdot \\
f_{(N-1)h} \\
F_{Nh} - \frac{\beta}{h^{2}}
\end{pmatrix}$$

The above system is solved for the unknown vector U. These are the values of the numerical solution at the internal grid points. The A matrix above is symmetric and tridiagonal and of size $N \times N$ where N is the number of internal grid points.

Error norm calculation

The total error at a grid point j is given by

$$\boldsymbol{e}_{j}=\boldsymbol{U}_{j}-\boldsymbol{u}\left(\boldsymbol{x}_{j}\right)$$

Where U_j is the numerical solution at the j^{th} grid point and $u(x_j)$ is the exact solution sampled at the same grid point location. e is a vector of length N and represents the difference between U and u at each point.

To measure the size of the error vector e, a grid norm is used in place of the standard vector norm. The following are the definitions of the norms used.

1. max-norm
$$\left\| e^h \right\|_{\max} = \max_i \left| e_i \right|$$

2. 1-norm
$$\|e^{h}\|_{1} = h \sum_{j=1}^{N} |e_{j}|$$

3. 2-norm $\|e^{h}\|_{2} = \sqrt{h \sum_{j=1}^{N} |e_{j}|^{2}}$

Description of method used in Refinement study

The goal of the refinement study is to check that the scheme selected is stable. Since the scheme selected is consistent (it has an LTE of order $O(h^2)$ therefore $||\tau|| \to 0$ as $h \to 0$), this implies that the scheme will be stable if it can be shown that the numerical solution converges to the exact solution².

For a stable scheme the following relation must hold

$$||e|| \le ||A^{-1}|| \, ||\tau||$$

therefore stability can be established by verifying that error norm ||e|| is also of order $O(h^2)$. This implies that $||A^{-1}||$ is O(1). In addition, showing that ||e|| is of order $O(h^2)$ implies that $||e|| \to 0$ as $h \to 0$, which means convergence.

These are the steps carried out in the refinement study

- 1. The system AU = f is formulated based on the scheme described above. These equations contain h (the grid space) in them as a free parameter. Initially h is given an initial starting value.
- 2. $A\mathbf{U} = f$ is solved for \mathbf{U} .
- 3. The total error vector e = U u is calculated and the error grid norm ||e|| found using the the above definitions of norms.
- 4. The spacing h is divided by 2 and the above steps are repeated. The number of iterations was selected so that numerical convergence can be clearly observed. It is found that 5 or 6 iterations was sufficient to show convergence in this problem.

²Lax-Richtmyer theorem

5. The error table and the log plots are generated. Convergence is verified by showing from the error table results that the total error norm ||e|| has an order of accuracy of $O(h^2)$. This implies the numerical scheme selected is stable.

Results of the refinement study

This is a plot of log(h) against the log of the various error norms. The source code is in the appendix.

Figure 2.8: matlab HW2 part a logplot

The error table is the following

1	EDU>>	EDU>> nma_HW2_part_a						
2	Ν	h	emax	ratio	e1	ratio	e2	ratio
3	16	6.6667e-002	1.0444e-004	0.0000e+000	5.9816e-005	0.0000e+000	7.0865e-005	0.0000e+000
4	32	3.2258e-002	2.0983e-005	4.9772e+000	1.3040e-005	4.5870e+000	1.4799e-005	4.7886e+000
5	64	1.5873e-002	4.7448e-006	4.4223e+000	3.0536e-006	4.2706e+000	3.4030e-006	4.3488e+000
6	128	7.8740e-003	1.1299e-006	4.1992e+000	7.3937e-007	4.1300e+000	8.1708e-007	4.1648e+000
7	256	3.9216e-003	2.7583e-007	4.0964e+000	1.8194e-007	4.0637e+000	2.0025e-007	4.0802e+000
8	512	1.9569e-003	6.8147e-008	4.0476e+000	4.5130e-008	4.0316e+000	4.9573e-008	4.0396e+000
9	1024	9.7752e-004	1.6937e-008	4.0236e+000	1.1238e-008	4.0157e+000	1.2333e-008	4.0196e+000
10	2048	4.8852e-004	4.2220e-009	4.0115e+000	2.8042e-009	4.0076e+000	3.0758e-009	4.0096e+000

Conclusion

The study was carried out using 3 different norms (max norm,1-norm and 2-norm). It is found that for each norm the total error ratio converged to 4, implying p = 2, hence the total

error norm was $O(h^2)$ the same as LTE. This shows that the numerical scheme is stable and the numerical solution converges to the exact solution.

2.3.2.2 Part (b)

Solve $u_{xx} = 2\cos^2(\pi x)$ with $u_x(0) = 0, u_x(1) = 1$

2.3.2.3 Finding analytical solution

The existence of a solution is first verified. This is done in this case since for Neumann boundary conditions a solution might not even exist if the problem is not well posed. Integrating both sides of the PDE gives

$$\int_{0}^{1} u_{xx}(x) dx = \int_{0}^{1} 2\cos^{2}(\pi x) dx$$
$$= u_{x}(1) - u_{x}(0)$$
$$= 1$$

Substituting the values of u_x on the boundaries, the above becomes zero, hence the problem is well posed. Now the analytical solution is found.

Integrating the differential equation once

$$u_x = x + \frac{\sin(2\pi x)}{2\pi} + c_1$$
 (1)

And Integrating again

$$u(x) = \frac{x^2}{2} - \frac{\cos(2\pi x)}{4\pi^2} + c_1 x + c_2$$
(2)

Substituting the boundary condition $u_x(0) = 0$ in the above³ gives $c_1 = 0$, therefore the solution is

$$u(x) = \frac{x^2}{2} - \frac{\cos(2\pi x)}{4\pi^2} + c_2 \tag{3}$$

This solution is not unique. The constant c_2 is arbitrary and an infinite number of solutions exist. A solution exist which is up to an arbitrary additive constant. To select a constant for the purpose of the numerical analysis in the refinement study, the constant is selected to give the solution zero mean. Hence

$$\int_{0}^{1} u(x) dx = 0$$
$$\int_{0}^{1} \left(\frac{x^{2}}{2} - \frac{\cos(2\pi x)}{4\pi^{2}} + c_{2}\right) dx = 0$$
$$\frac{1}{6} + c_{2} = 0$$

Therefore $c_2 = -\frac{1}{6}$. Therefore, the exact solution used in the refinement study to compare

³The other condition $u_x(1) = 1$ could also have been used, but the result would remain the same
the numerical solution against is

$$u(x) = \frac{x^2}{2} - \frac{\cos(2\pi x)}{4\pi^2} - \frac{1}{6}$$

Scheme to use for the numerical solution

Two schemes formulated, both having a local truncation error $\|\tau\|$ of order $O(h^2)$. Hence both schemes are consistent.

2.3.2.3.1 First scheme The standard 3 point centered difference formula $\frac{U_{j-1}-2U_j+U_{j+1}}{h^2}$ is used for approximating u_{xx} on internal grid points. However in this problem U_o and U_{N+1} are not known at the left most and the right most grid points (grid points of index 0 and N+1), therefore the grid points used includes these 2 points in addition to the standard internal grid points $(1 \cdots N)$ resulting in the A matrix having size N + 2. (A will have 2 additional rows as compared to part (a)).

Now, two imaginary points are introduced into the domain, one to the left of j = 0, and one to the right of j = N + 1

Figure 2.9: problem 1 part b scheme

For j = 0 the standard 3 points formulate is used to approximate u_{xx}

$$\frac{U_{-1} - 2U_0 + U_1}{h^2} = f_0 \tag{1}$$

And $u_x(0) = \alpha$ the 2 points central difference scheme is used

$$\frac{U_1 - U_{-1}}{2h} = \alpha \tag{2}$$

Now U_{-1} is eliminated using (1) and (2). From equation (2)

$$U_{-1} = U_1 - 2h\alpha$$

substituting the above into (1)

$$\frac{(U_1 - 2h\alpha) - 2U_0 + U_1}{h^2} = f_0$$

$$\frac{-2U_0 + 2U_1}{h^2} = f_0 + \frac{2\alpha}{h}$$
(3)

The above equation (3) is the discrete equation for node j = 0 (the first row in the *A* matrix). Similarly for the right-most node j = N + 1, u_{xx} is approximated using

$$\frac{U_N - 2U_{N+1} + U_{N+2}}{h^2} = f_{N+1} \tag{4}$$

And $u_x(1) = \beta$ at node j = N + 1 is approximated using 2 points central difference

$$\frac{U_{N+2} - U_N}{2h} = \beta \tag{5}$$

 U_{N+2} is eliminated using (4) and (5). From equation (5)

$$U_{N+2} = U_N + 2h\beta$$

substituting the above into (4)

$$\frac{U_N - 2U_{N+1} + (U_N + 2h\beta)}{h^2} = f_{N+1}$$
$$\frac{2U_N - 2U_{N+1}}{h^2} = f_{N+1} - \frac{2\beta}{h}$$
(6)

The above equation (6) is the discrete equation for node j = N + 1 (the last row in the *A* matrix). Au = f is now setup resulting in

$$\frac{1}{h^2} \begin{pmatrix} -2 & 2 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdot & \cdot & \cdot & 0 \\ 0 & 0 & 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 & -2 \end{pmatrix} \begin{pmatrix} U_0 \\ U_1 \\ U_2 \\ \cdot \\ \cdot \\ N_{N-1} \\ U_N \\ U_{N+1} \end{pmatrix} = \begin{pmatrix} f_0 + \frac{2\alpha}{h} \\ f_1 \\ f_2 \\ \cdot \\ \cdot \\ f_N \\ f_{N+1} - \frac{2\beta}{h} \end{pmatrix}$$

The A matrix is tridiagonal, not symmetrical and singular since $null(A) = 1^T$. In some books, this matrix is called the Laplacian matrix.

2.3.2.3.2 Second scheme In this scheme, the first order derivative for the Neumann boundary condition at the left point and at the right point is approximated using

$$\alpha = \frac{1}{h} \left(\frac{3}{2} U_0 - 2U_1 + \frac{1}{2} U_2 \right)$$

$$\beta = \frac{1}{h} \left(\frac{3}{2} U_{N+1} - 2U_N + \frac{1}{2} U_{N-1} \right)$$

respectively.

The derivation of the above formulas is shown in example 1.2 in the textbook. The above approximation has an LTE of $O(h^2)$. For the other internal grid points, the standard 3 points centred difference $\frac{U_{j-1}-2U_j+U_{j+1}}{h^2}$ is used to approximate u_{xx} . Using the above approximations, the system AU = f becomes

The A matrix is tridiagonal, not symmetrical and is also singular since $null(A) = 1^T$.

2.3.2.3.3 Augmenting the systems before solving The *A* matrix for both schemes above is singular. Both have $u = (1, 1, 1, \dots, 1, 1)^T$ as the null vector. Using Matlab to verify, the null command can be used as follows

```
EDU>> A=nma_FDM_matrix_laplace_1D_Neumann_scheme_1(6)
1
2
    A =
 3
    -2
            2
                                         0
                   0
                          0
                                  0
          -2
 4
    1
                  1
                         0
                                0
                                       0
 5
    0
           1
                 -2
                         1
                                0
                                       0
6
           0
                  1
                        -2
                                1
    0
                                       0
7
    0
           0
                  0
                         1
                               -2
                                       1
8
    0
           0
                  0
                         0
                                2
                                      -2
9
    DU>>
           null(A,'r')'
10
    ans =
11
    1
           1
                  1
                         1
                                1
                                       1
```

For the second scheme

```
1
    EDU>> A=nma_FDM_matrix_laplace_1D_Neumann_scheme_2(6)
2
    A =
3
    1.5000
                                          0
                                                     0
                                                                0
              -2.0000
                          0.5000
   1.0000
 4
              -2.0000
                          1.0000
                                          0
                                                     0
                                                                0
5
    0
               1.0000
                         -2.0000
                                     1.0000
                                                     0
                                                                0
6
   0
               0
                          1.0000
                                    -2.0000
                                                  1.0000
                                                                0
7
    0
               0
                          0
                                    1.0000
                                                 -2.0000
                                                             1.0000
8
                                                 -2.0000
    0
               0
                          0
                                    0.5000
                                                             1.5000
9
           null(A,'r')'
   EDU>>
10
   ans =
```

11 1 1 1 1 1

Since the matrix A is singular, before solving by Gaussian elimination it is augmented as follows

$$A \to \begin{pmatrix} A & v \\ u & 0 \end{pmatrix}$$

where v is the null of A^* (the adjoint of A, or for a real matrix, the same as A^T) and u is the null of A.

v is found for the above 2 schemes. For the first scheme:

```
1 EDU>> A=nma_FDM_matrix_laplace_1D_Neumann_scheme_1(6);
2 EDU>> null(A','r')'
3 ans =
4 1 2 2 2 2 1
```

And for the second scheme

```
1 EDU>> A=nma_FDM_matrix_laplace_1D_Neumann_scheme_2(6);
2 EDU>> null(A','r')'
3 ans =
4 1.0000 -1.5000 -1.0000 -1.5000 1.0000
```

Now that v and u are found, the augmented A can be formulated.

The force vector is also augmented as follows

$$f \to \begin{pmatrix} f \\ 0 \end{pmatrix} \tag{7}$$

The augmented system is now solved for U using Gaussian elimination. In Matlab

$$U = A \setminus f$$

The resulting solution U will have an extra element at the end, which is not used in the solution. This element, called λ was verified to be equal $\frac{v \cdot f}{n r}$.

Notice that last element of f was set to 0 in (7), this is because it corresponds to having selected an exact solution with a zero mean. When the last element of f is set to 0, this corresponds to having $\sum_{i=0}^{N+1} U_i = 0$, which implies the mean of the numerical solution is zero. This follows because null(A) was found to be 1^T , meaning that, from looking at $\begin{pmatrix} A & v \\ 1^T & 0 \end{pmatrix} \begin{pmatrix} U \\ \lambda \end{pmatrix} =$ $\begin{pmatrix} f \\ 0 \end{pmatrix}$, the $dot(1^T, U) = 0$, which is the same as saying that $\sum_{i=0}^{N+1} U_i = 0$ or the mean of the numerical solution is zero.

To summarize: A constant in the analytical solution was earlier selected which resulted in the mean of the exact solution to be zero. This constant was found to be $\frac{-1}{6}$. The last entry in the augment *f* vector is set to be zero to cause the numerical solution to have zero mean as well.

Now that the numerical solution is found, the error vector e = U-u is found and its norms are calculated to complete the refinement study. Below is the result for both schemes described above.

Refinement study results

Figure 2.10: nma HW2 prob1 part b solution

•

Figure 2.11: nma HW2 part b scheme one plot2

2.3.2.3.4 Scheme one	The error table is the following:
----------------------	-----------------------------------

1	EDU>>	EDU>> nma_HW2_part_b_scheme_one									
2	Ν	h	emax	ratio	e1	ratio					
3	3	0.500000	4.9560e-002	0.0000e+000	4.9560e-002	0.0000e+000					
4	5	0.2500000	7.1036e-003	6.9766e+000	4.7358e-003	1.0465e+001					
5	9	0.1250000	1.4925e-003	4.7596e+000	9.9728e-004	4.7487e+000					
6	17	0.0625000	3.4734e-004	4.2969e+000	2.2786e-004	4.3768e+000					
7	33	0.0312500	8.4008e-005	4.1346e+000	5.4367e-005	4.1912e+000					
8	65	0.0156250	2.0668e-005	4.0646e+000	1.3271e-005	4.0967e+000					

Figure 2.12: HW2 prob1 part b scheme 2

2.3.2.3.5 Scheme 2 And the error table is

EDU>>	nma_HW2_pr	cob1_part_b(2	2)		
Ν	h	emax	ratio	e1	ratio
3	0.500000	5.9960e-003	0.0000e+000	5.9960e-003	0.0000e+000
5	0.2500000	6.0976e-003	9.8333e-001	6.0976e-003	9.8333e-001
9	0.1250000	8.1787e-004	7.4554e+000	4.3938e-004	1.3878e+001
17	0.0625000	1.6346e-004	5.0034e+000	8.9562e-005	4.9058e+000
33	0.0312500	6.0030e-005	2.7230e+000	3.6203e-005	2.4739e+000
65	0.0156250	1.7602e-005	3.4103e+000	1.0956e-005	3.3043e+000
129	0.0078125	4.7387e-006	3.7146e+000	2.9860e-006	3.6693e+000
257	0.0039063	1.2278e-006	3.8594e+000	7.7785e-007	3.8388e+000
513	0.0019531	3.1240e-007	3.9302e+000	1.9841e-007	3.9204e+000
1025	0.0009766	7.8786e-008	3.9652e+000	5.0098e-008	3.9605e+000
	EDU>> N 3 5 9 17 33 65 129 257 513 1025	EDU>> nma_HW2_pr N h 3 0.5000000 5 0.2500000 9 0.1250000 17 0.0625000 33 0.0312500 65 0.0156250 129 0.0078125 257 0.0039063 513 0.0019531 1025 0.0009766	EDU>>nma_HW2_prob1_part_b(2)Nh30.500000059960e-00350.250000060.976e-00390.1250000170.06250001.6346e-004330.0312500650.01562501290.00781254.7387e-0062570.00390635130.00195313.1240e-00710250.00097667.8786e-008	EDU>> nma_HW2_prob1_part_b(2) N h emax ratio 3 0.5000000 5.9960e-003 0.0000e+000 5 0.2500000 6.0976e-003 9.8333e-001 9 0.1250000 8.1787e-004 7.4554e+000 17 0.0625000 1.6346e-004 5.0034e+000 33 0.0312500 6.0030e-005 2.7230e+000 65 0.0156250 1.7602e-005 3.4103e+000 129 0.0078125 4.7387e-006 3.7146e+000 257 0.0039063 1.2278e-006 3.8594e+000 513 0.0019531 3.1240e-007 3.9302e+000 1025 0.0009766 7.8786e-008 3.9652e+000	EDU>>nma_HW2_prob1_part_b(2)Nhemaxratioe130.50000005.9960e-0030.0000e+0005.9960e-00350.25000006.0976e-0039.8333e-0016.0976e-00390.12500008.1787e-0047.4554e+0004.3938e-004170.06250001.6346e-0045.0034e+0008.9562e-005330.03125006.0030e-0052.7230e+0003.6203e-005650.01562501.7602e-0053.4103e+0001.0956e-0061290.00781254.7387e-0063.7146e+0002.9860e-0062570.00390631.2278e-0063.8594e+0007.7785e-0075130.00195313.1240e-0073.9302e+0001.9841e-00710250.00097667.8786e-0083.9652e+0005.0098e-008

Conclusion

Two different schemes were used for solving part(b). Both schemes had an LTE of $O(h^2)$, therefore they both were consistent numerical schemes. The result shows that ||e|| had $O(h^2)$ implying $||A^{-1}||$ had order O(1) and that both scheme were stable.

It is observed that the second scheme required more iterations to coverage to the exact solution compared to the first scheme. Attempt was made to find if any error was made in the derivation of the scheme or in the code, but none found. Therefore, this showed that when comparing 2 schemes with the same theoretical order of accuracy, this does not necessarily

imply they will have the same exact performance on the same numerical example. Therefore, before selecting a scheme, it would be useful to always run a number of numerical tests to compare schemes against each others on different numerical test problems.

2.3.3 **Problem 2**

Propose a discretization scheme for $u_{xx} = f$ with $u_x(0) - \alpha u(0) = g$ and u(1) = b

Answer:

This problem has Robin boundary conditions on the left side and Dirichlet boundary conditions on the right side. The condition for existence of a solution implies

$$u_{x}(1) - u_{x}(0) = \int_{0}^{1} f(x) \, dx$$

Substituting the boundary conditions into the above results in

$$-\alpha u(0) - g = \int_0^1 f(x) \, dx$$

Hence any f(x) which satisfies the above will make the problem a well posed one. In the following, 3 different schemes are presented using different methods of approximating the Robin boundary conditions. The last scheme resulted in an *A* matrix with the most desirable properties being tridiagonal and symmetric.

2.3.3.1 First scheme

 $u_x(0)$ is approximated by 2 points centered difference by introducing an imaginary point U_{-1} resulting in

$$u_x(0) = \frac{U_{-1} - U_1}{2h}$$

Substituting the above in the Robin boundary condition gives

$$\frac{U_{-1} - U_1}{2h} - \alpha U_0 = g$$
 (1)

 $u_{xx}(0)$ is approximated using the standard 3 point formula

$$\frac{U_{-1} - 2U_0 + U_1}{h^2} = f_0 \tag{2}$$

 U_{-1} is now eliminated From (1) and (2). From equation (1)

$$U_{-1} = 2h\left(g + \alpha U_0\right) + U_1$$

Substituting into (2)

$$\frac{\left[2h\left(g + \alpha U_{0}\right) + U_{1}\right] + 2U_{0} + U_{1}}{h^{2}} = f_{0}$$

And simplifying

$$\frac{2U_0(1+\alpha h)+2U_1}{h^2} = f_0 - \frac{2g}{h}$$

This will be the equation to use at node j = 0 which is the first row in the A matrix.

For node j = N, $u_{xx}(N)$ is approximated using the standard 3 point formula

$$\frac{U_{N-1} - 2U_N + U_{N+1}}{h^2} = f_N$$

Since $U_{N+1} = b$, the above becomes

$$\frac{U_{N-1} + 2U_N}{h^2} = f_N - \frac{b}{h^2}$$

Which is the equation for node j = N. For all the remaining internal grid point, the standard 3 point formula is used to approximate u_{xx} . Therefore, the system which now contains N + 1 equations is completed

2.3.3.2 Second scheme

Approximating $u_x(0)$ by 3 points forward difference

$$u_{x}(0) = \frac{1}{h} \left(\frac{3}{2} U_{0} - 2U_{1} + \frac{1}{2} U_{2} \right)$$

Substituting the above in the Robin boundary condition gives

$$\frac{1}{h} \left(\frac{3}{2} U_0 - 2U_1 + \frac{1}{2} U_2 \right) - \alpha U_0 = g$$
$$U_0 \left(\frac{3}{2} - \alpha h \right) - 2U_1 + \frac{1}{2} U_2 = hg$$

Dividing both sides by h^2 to allow writing the matrix A with a common $\frac{1}{h^2}$ factored out

$$\frac{U_0\left(\frac{3}{2} - \alpha h\right) - 2U_1 + \frac{1}{2}U_2}{h^2} = \frac{g}{h}$$

For the right side, the same scheme is used as in the first scheme above

$$\frac{U_{N-1} + 2U_N}{h^2} = f_N - \frac{b}{h^2}$$

And the system becomes

	$\left(\left(\frac{3}{2}-\alpha h\right)\right)$	-2	$\frac{1}{2}$	0	0	0	0	0	$\left(\begin{array}{c} U_0 \end{array} \right)$		$\left(\begin{array}{c} \frac{g}{h} \end{array}\right)$
	1	-2	1	0	0	0	0	0	U_1		f_1
	0	1	-2	1	0	0	0	0	U ₂		f_2
1	0	0	0	•	0	0	0	0	•	=	•
h ²	0	0	0	0	•	0	0	0	•		•
	0	0	0	0	0	•	0	0	•		•
	0	0	0	0	0	1	-2	1	U_{N-1}		f_{N-1}
	0	0	0	0	0	0	1	-2,	(U_N)		$\int f_N - \frac{b}{h^2}$

2.3.3.3 Third scheme

Approximating $u_x(0)$ by 2 points forward difference which has an LTE of O(h)

$$u_x(0) = \frac{1}{h} (U_1 - U_0)$$

Substituting the above in the Robin boundary condition gives

$$\frac{1}{h}(U_1 - U_0) - \alpha U_0 = g$$
$$U_1 - U_0 - \alpha h U_0 = hg$$
$$U_0 (-1 - \alpha h) + U_1 = hg$$

Dividing both sides by h^2 to allow writing the matrix A with a common $\frac{1}{h^2}$ factored out

$$\frac{[U_0(-1-\alpha h)+U_1]}{h^2} = \frac{g}{h}$$

For the right side, the same scheme was used as in the first scheme above, resulting in

$$\frac{1}{h^2} \begin{pmatrix} (-1-\alpha h) & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdot & \cdot & \cdot & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} U_0 \\ U_1 \\ U_2 \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ U_{N-1} \\ U_N \end{pmatrix} = \begin{pmatrix} \frac{g}{h} \\ f_1 \\ f_2 \\ \cdot \\ \cdot \\ \cdot \\ f_{N-1} \\ f_N - \frac{b}{h^2} \end{pmatrix}$$

This scheme has an LTE of O(h) since an O(h) approximation was used for $u_x(0)$

2.3.3.4 Order of accuracy

Each of the above 3 schemes is a consistent scheme because for the first 2 schemes the LTE is $O(h^2)$ and for the third scheme the LTE is O(h). A consistent scheme is one in which $||\tau|| \to 0$ as $h \to 0$. It expected that the final error norm ||e|| will behave as $O(h^2)$ when using

the first 2 scheme and as O(h) when using the third scheme. This is provided A is stable. Meaning that $||A^{-1}||$ is of order O(1).

Considering the third scheme only since it is symmetric, and using the grid 2-norm, then given that

$$\begin{split} \left\| \boldsymbol{e} \right\|_2 &= \left\| \boldsymbol{A}^{-1} \boldsymbol{\tau} \right\|_2 \\ &\leq \left\| \boldsymbol{A}^{-1} \right\|_2 \left\| \boldsymbol{\tau} \right\|_2 \end{split}$$

And since for a symmetric matrix $\|A^{-1}\|_2 = \rho(A^{-1}) = \frac{1}{|\lambda_{\min}|}$ where $|\lambda_{\min}|$ is the smallest eigenvalue of A in absolute value, then showing that $|\lambda_{\min}| \ge 1$ would imply that $\|e\|_2 \le \|\tau\|_2$.

There two analytical methods for finding the λ_{\min} of A. By solving the eigenvalue problem $L\phi = \lambda\phi$ for the given boundary conditions or by using matrix algebra to solve for the eigenvalue of A directly. Attempt are made at both of these methods, but more time is needed to complete an analytical proof.

Therefore, to answer the question for this problem, a numerical method was used instead, where a refinement study was done using the third scheme found above in an attempt to show numerically that ||e|| is of the same order as $||\tau||$ as expected. A well formed problem is constructed and used for the purpose of the numerical analysis part. The results and the conclusion follows.

2.3.3.5 Refinement study for the third scheme

The following numerical problem was select. $u_{xx} = f$ with $u_x(0) - \alpha u(0) = g$ and u(1) = b with the following parameter values

$$\alpha = 1$$

$$g = 1$$

$$b = 1$$

$$f = \cos(x)$$

This problem is well posed, and has the following analytical solution

$$u(x) = \frac{1}{2}(1 + b - g - x + b x + g x + \cos(1) + x \cos(1) - 2\cos(x))$$

And it satisfies the necessary condition $-\alpha u(0) - g = \int_{0}^{1} f(x) dx$

The following are the results of the refinement study. The source code is in the appendix.

Figure 2.13: HW2 prob2

1	\begi	n{X301}					
2	EDU>>	close all;	nma_HW2('hw2	_prob2')			
3	Ν	h	emax	ratio	e1	ratio	
4	3	0.5000000	1.2015e-001	0.0000e+000	8.8980e-002	0.0000e+000	
5	5	0.2500000	6.1299e-002	1.9601e+000	3.7962e-002	2.3439e+000	
6	9	0.1250000	3.0950e-002	1.9806e+000	1.7318e-002	2.1921e+000	
7	17	0.0625000	1.5550e-002	1.9904e+000	8.2379e-003	2.1023e+000	
8	33	0.0312500	7.7938e-003	1.9952e+000	4.0129e-003	2.0529e+000	
9	65	0.0156250	3.9016e-003	1.9976e+000	1.9798e-003	2.0269e+000	
10	129	0.0078125	1.9520e-003	1.9988e+000	9.8324e-004	2.0136e+000	

2.3.3.6 Conclusion

A scheme was implemented for Robin boundary conditions. LTE used was O(h) since this specific scheme generated an A matrix with desirable form (symmetrical and tridiagonal). The expectation of total error using this scheme was to be O(h). This expectation was confirmed by doing a refinement study on the selected test problem. This result showed that the scheme is stable and therefore we conclude that ||A|| is of order O(1) based on this test case.

2.3.4 Problem 3

2.3.4.1 Part (a)

From definition

$$\left\|\boldsymbol{e}\right\|_{\infty} = -\left\|\boldsymbol{B}\boldsymbol{\tau}\right\|_{\infty} \tag{1}$$

Where $B = A^{-1}$ was generated by the use of Green function as described on page 27 of the text book. Writing the product of the matrix *B* with the vector τ as

$$B\boldsymbol{\tau} = b_1\boldsymbol{\tau}_1 + b_1\boldsymbol{\tau}_1 + \dots + b_N \boldsymbol{\tau}_N$$

where b_j is the j^{th} column of matrix B, equation (1) becomes (all norms are to be taken as the max-norm, hence for clarify, the ∞ is dropped in what follows)

$$\begin{aligned} \|e\| &= -\|b_1\tau_1 + b_1\tau_1 + \dots + b_N\tau_N\| \\ &\leq -(\|b_1\tau_1\| + \|b_2\tau_2\| + \dots + \|b_N\tau_N\|) \\ &\leq -(\|b_1\||\tau_1| + \|b_2\||\tau_2| + \dots + \|b_N\||\tau_N|) \end{aligned}$$
(3)

 $\|\boldsymbol{b}_j\|$ is the maximum element in the j^{th} column of the matrix *B*. These elements are located along the diagonal of *B*. Hence $\|\boldsymbol{b}_j\| = |B_{jj}|$ and (3) becomes

$$\|e\| \le -(|B_{11}| \ |\tau_1| + |B_{22}| \ |\tau_2| + \dots + |B_{NN}| \ |\tau_N|)$$
(4)

From equation 2.46 in the textbook,

$$B_{ij} = \begin{cases} h(x_j - 1)x_i & i = 1, 2, \cdots j \\ h(x_i - 1)x_j & i = j, j + 1, \cdots, N \end{cases}$$
(5)

To answer the question, assume that $|\tau_1| = O(h^p)$, and assume for the moment, for generality, that the LTE at all the other points was different, hence for other points let $|\tau_j| = O(h^q)$. Equation (4) becomes

$$\|\boldsymbol{e}\| \le -O(h^p) |B_{11}| - O(h^q) \sum_{k=2}^N |B_{kk}|$$
(6)

From (5), it is found that at point j = 1, $|B_{11}| = h(h-1)h = h^3 - h^2 = O(h^2)$, while at the internal points, that is, at points near the middle, B_{jj} is approximated by O(h), hence (6) becomes

$$\|e\| \le -O(h^p) O(h^2) - O(h^q) \sum_{k=2}^N O(h)$$

But $\sum_{k=2}^{N} O(h) \sim (N-1) \times O(h) = O(1)$ since $N = \frac{1}{h}$, hence the above becomes

$$\|e\| \le -O(h^p) O(h^2) - O(h^q) = -O(h^{p+2}) - O(h^q)$$
(7)

Therefore, if q = p, i.e. if the LTE was the same at each grid point, including the first, the

above simplifies to

$$||e|| \le -O(h^{p+2}) - O(h^p)$$

~ $O(h^p)$

Hence, having the LTE at the edge grid point be $O(h^p)$ resulted in $||e||_{\infty}$ having an order of accuracy $O(h^p)$ which is the expected. The smallest value of p that can be used for the edge point while still giving overall $||e|| = O(h^2)$ can be found from (7)

$$||e|| = O(h^2) = -O(h^{p+2}) - O(h^q)$$

Setting p = 0 and q = 2 results in

$$\|e\| = -O(h^2) - O(h^2)$$

~ $O(h^2)$

Hence p = 0 or O(1), is possible for the LTE at the edge while arriving at an overall $||e|| \sim O(h^2)$.

2.3.4.2 Part (b)

From equation 2.46 in the textbook,

$$B_{ij} = \begin{cases} h(x_j - 1)x_i & i = 1, 2, \cdots j \\ h(x_i - 1)x_j & i = j, j + 1, \cdots, N \end{cases}$$
(5)

To answer the question, assume $|\tau_{j=N/2}| = O(h^p)$, where *j* is the middle point, i.e. at $x_j = \frac{1}{2}$ and assume for other points $|\tau_j| = O(h^q)$, hence starting from

 $||\boldsymbol{e}|| \leq - \left(|B_{11}| \ |\tau_1| + |B_{22}| \ |\tau_2| + \dots + |B_{NN}| \ |\tau_N|\right)$

which was derived in part(a), then the above equation becomes

$$\|e\| \le -O(h^q) \sum_{\substack{k=1\\k \ne N/2}}^{N} |B_{kk}| - O(h^p) |B_{N/2,N/2}|$$
(8)

At the middle point from (5), $|B_{N/2,N/2}|$ can be found to be $h\left(\frac{1}{2}-1\right)\frac{1}{2} = \frac{-1}{4}h \sim O(h)$, while for the points away from the middle, $|B_{jj}|$ is approximated by $O(h^2)$, hence (8) becomes

$$\|e\| \le -O(h^q) \left[(N-1) \times O(h^2) \right] - O(h^p) O(h)$$

But $(N-1) \times O(h^2)$ is O(h) since $N = \frac{1}{h}$, hence the above becomes

$$\|e\| \le -O(h^q) O(h) - O(h^{p+1}) = -O(h^{q+1}) - O(h^{p+1})$$
(9)

Therefore, if q = p, i.e. if the LTE was the same at each grid point, including the middle, then (9) becomes

$$\begin{aligned} \|\boldsymbol{e}\| &= -O\left(h^{p+1}\right) - O\left(h^{p+1}\right) \\ &= O\left(h^{p+1}\right) \end{aligned}$$

Hence, having the LTE at the middle grid point be $O(h^p)$ resulted in $||e||_{\infty}$ having an order of accuracy $O(h^{p+1})$ which is higher than the expected $O(h^p)$. The smallest value of p that can be used while still giving $||e|| = O(h^2)$ can be found from (9)

$$\|e\| = O(h^2) = -O(h^{q+1}) - O(h^{p+1})$$

Setting p = 1 and q = 1 results in $||e|| \sim O(h^2)$.

Hence p = 1 or O(h) is possible for the LTE at the middle point while still resulting in an overall $||e|| = O(h^2)$

2.3.4.3 Part (c)

To perform the numerical tests to verify the above conclusion, a numerical problem is used with a scheme which had an LTE of $O(h^2)$. The LTE at the edge point only was then modified to test part(a) and the LTE at the middle point only was modified to test part(b).

Refinement study was done to verify that the order of accuracy remained $O(h^2)$ after each modification.

For the numerical test, problem 1, part (a) was used for this test. That problem had an LTE of $O(h^2)$ at each grid point, and the standard 3-point central difference was used for approximating u_{xx} .

To modify the LTE at a specific grid point, given that the LTE is defined as

$$\tau_{j} = \frac{u(j-1) - 2u(j) + u(j+1)}{h^{2}} - f_{j}$$

Where *u* above is the exact solution sampled at the given grid points, then to force the LTE to be O(h) in the middle, the above equation was modified for $x_j = \frac{1}{2}$ (middle row of the system) to become

$$\tau_j = \frac{u(j-1) - 2u(j) + u(j+1)}{h^2} - f_j + h$$

And to force the LTE to be O(1) at the first grid point, the LTE is modified for that point only (i.e. $x_i = h$, the first row of the system) to become

$$\tau_j = \frac{u(j-1) - 2u(j) + u(j+1)}{h^2} - f_j + 1$$

The refinement study which was done for problem 1, part a, is now repeated with the above modifications. The following are the results generated.

Part (A) refinement

1	EDU>> close all; nma_HW2('hw2_prob1_parta')										
2	Ν	h	emax	ratio	e1	ratio					
3	3	0.5000000	4.3295e-003	0.0000e+000	2.1647e-003	0.0000e+000					
4	5	0.2500000	1.0925e-003	3.9628e+000	6.8494e-004	3.1605e+000					
5	9	0.1250000	2.7377e-004	3.9906e+000	1.8036e-004	3.7977e+000					
6	17	0.0625000	6.8827e-005	3.9776e+000	4.5662e-005	3.9499e+000					
7	33	0.0312500	1.7234e-005	3.9937e+000	1.1451e-005	3.9875e+000					
8	65	0.0156250	4.3098e-006	3.9987e+000	2.8650e-006	3.9969e+000					
9	129	0.0078125	1.0776e-006	3.9995e+000	7.1640e-007	3.9992e+000					

Before making the LTE modification for the first point, the error table generated was

One can see that $||e|| = O(h^2)$ as the ratio is 4. Now the f vector was modified as described above, and here is the small code segment how this was done. Complete code listing is at the end.

1

f

2

2	f(1)	=	f(1) -	alpha/h^2	+1	;
3	f(end)	=	f(end)	-beta/h 2 ;		

And now the program was run again

= force(xcoordinates)';

1	EDU>>	close all;	nma_HW2('hw2	_prob3_1')		
2	Ν	h	emax	ratio	e1	ratio
3	3	0.5000000	1.2067e-001	0.0000e+000	6.0335e-002	0.0000e+000
4	5	0.2500000	4.6119e-002	2.6165e+000	2.2753e-002	2.6518e+000
5	9	0.1250000	1.3566e-002	3.3997e+000	6.6556e-003	3.4186e+000
6	17	0.0625000	3.6481e-003	3.7185e+000	1.7854e-003	3.7278e+000
7	33	0.0312500	9.4426e-004	3.8635e+000	4.6157e-004	3.8681e+000
8	65	0.0156250	2.4010e-004	3.9328e+000	1.1730e-004	3.9350e+000
9	129	0.0078125	6.0530e-005	3.9666e+000	2.9563e-005	3.9678e+000

Examining the second table above shows that $||e||_{\infty} = O(h^2)$, since the ratio of the error norm still converged to 4, implying p = 2 for ||e||. To compare the loglog plots, here are plots before and after the modification is made to the LTE.

Figure 2.14: prob3 part a log

Part(b) refinement study

Before making the LTE modification for the middle point, the error table generated was

1	EDU>> close all; nma_HW2('hw2_prob1_parta')									
2	N	h	emax	ratio	e1	ratio				
3	3	0.5000000	4.3295e-003	0.0000e+000	2.1647e-003	0.0000e+000				
4	5	0.2500000	1.0925e-003	3.9628e+000	6.8494e-004	3.1605e+000				
5	9	0.1250000	2.7377e-004	3.9906e+000	1.8036e-004	3.7977e+000				
6	17	0.0625000	6.8827e-005	3.9776e+000	4.5662e-005	3.9499e+000				
7	33	0.0312500	1.7234e-005	3.9937e+000	1.1451e-005	3.9875e+000				
8	65	0.0156250	4.3098e-006	3.9987e+000	2.8650e-006	3.9969e+000				
9	129	0.0078125	1.0776e-006	3.9995e+000	7.1640e-007	3.9992e+000				

One can see that $||e|| = O(h^2)$ because the ratio is 4. Now the f vector was modified as described above, to force the middle point to have an LTE of O(h), here is the small code segment showing the modification.

```
1 f = force(xcoordinates)';
2 f(1) = f(1)-alpha/h^2;
3 middle_position = round(length(f)/2);
4 f(middle_position) = f(middle_position) + h;
5 f(end) = f(end)-beta/h^2;
```

And now the program was run again

1	EDU>>	• close all	L; nma_HW2('ł	nw2_prob3_2'))		
2	Ν	h	emax	ratio	e1	ratio	
3	3	0.5000000	5.8171e-002	0.0000e+000	2.9085e-002	0.0000e+000	
4	5	0.2500000	1.4532e-002	4.0028e+000	7.1276e-003	4.0807e+000	
5	9	0.1250000	3.6325e-003	4.0007e+000	1.7728e-003	4.0206e+000	
6	17	0.0625000	9.0808e-004	4.0002e+000	4.4262e-004	4.0052e+000	
7	33	0.0312500	2.2702e-004	4.0000e+000	1.1062e-004	4.0013e+000	
8	65	0.0156250	5.6754e-005	4.0000e+000	2.7653e-005	4.0003e+000	
9	129	0.0078125	1.4189e-005	4.0000e+000	6.9130e-006	4.0001e+000	

Examining the second table above, shows that $||e||_{\infty} = O(h^2)$, since the ratio of the error norm still converged to 4, implying p = 2 for ||e||. To compare the loglog plots, here are plots before and after the modification is made to the LTE.

Figure 2.15: prob3 part blog

This concludes the refinement study verifying results from part(a) and part(c)

2.3.5 Source code written for this HW

```
%-
1
  % HW 2 Math 228A, UC Davis, Fall 2010
2
  % by Nasser M. Abbasi
3
  %
4
  % This .m files contains the main functions needed to solve HW2
5
  %
6
  % To Run:
7
  %
                    From Matlab, type nma_HW2( problem_name )
8
```

```
%
9
   \% where problem_name is a string indicating which problem to run the
10
  % refinment study for. The strings are
11
12 %
13 %
           hw2_prob1_parta
14 %
           hw2_prob1_partb_scheme_1
15 %
           hw2_prob1_partb_scheme_2
16 %
           hw2_prob2
17 %
           hw2_prob3_1
           hw2_prob3_2
18 %
19 %
20 % EXAMPLE
21 %
22 %
             nma_HW2( 'hw2_prob1_parta' )
23 %
24 % make sure this m file is in your Matlab path.
25 %
26 function nma_HW2()
27 close all;
28 problems={'hw2_prob1_parta';
29
       'hw2_prob1_partb_scheme_1';
      'hw2_prob1_partb_scheme_2';
30
      'hw2_prob2';
31
      'hw2_prob3_1';
32
      'hw2 prob3 2'};
33
   for i=1:2 %length(problems)
34
      nma HW2 sub( problems(i) )
35
36
   end
37
   fpritnf('completed...\n');
38
   end
39
40
   %_-----
41
   function nma_HW2_sub( ID )
42
43
   if nargin ~= 1
44
       error('one argument is required');
45
   end
46
47
        = 7;
                                           %number of iterations,
   Ν
48
   points = arrayfun( @(i) (2<sup>i</sup>)+1,1:N); % find number of grid points
49
   h = arrayfun( @(i) 1/(2<sup>i</sup>),1:N); % and corresponding spacings
50
51 data = zeros(N,6);
                                           %allocate space for error table
52
53 %
54 % Main loop. For each number of points, find error norms and ratios
55 %
```

```
for i = 1:N
56
57
        if strcmp(ID, 'hw2_prob1_partb_scheme_1')
58
            [e,U,u,x] = error_vector_prob1_partb_scheme1(points(i),h(i));
59
        elseif strcmp(ID, 'hw2_prob1_partb_scheme_2')
60
            [e,U,u,x] = error_vector_HW2_prob1_partb_scheme2(points(i),h(i));
61
        elseif strcmp(ID, 'hw2_prob1_parta')
62
            [e,U,u,x] = error_vector_HW2_prob1_parta(points(i),h(i));
63
        elseif strcmp(ID, 'hw2_prob2')
64
            [e,U,u,x] = error_vector_HW2_prob2(points(i),h(i));
65
        elseif strcmp(ID, 'hw2_prob3_1')
66
            [e,U,u,x] = error_vector_HW2_prob3_1(points(i),h(i));
67
        elseif strcmp(ID, 'hw2_prob3_2')
68
            [e,U,u,x] = error_vector_HW2_prob3_2(points(i),h(i));
69
70
        else
            error('invalid problem name');
71
72
        end
73
        % the columns of data are arranged in this order
74
75
        %
                npoints h
                             e-max ratio
                                             e-1
                                                    ratio
        %
                (1)
                      (2)
                             (3) (4)
                                             (5)
                                                   (6)
76
77
        data(i,1) = points(i);
                                                  % number total points
78
        data(i,2) = h(i);
79
        data(i,3) = norm(e,inf);
                                                   % e-max
80
        data(i,5) = h(i)*norm(e,1);
                                                   % e−1
81
82
        if i>1
83
            data(i,4) = data(i-1,3)/data(i,3); %e-max ratio
84
            data(i,6) = data(i-1,5)/data(i,5);
                                                 %e-1 ratio
85
        end
86
87
        %plot exact vs. approximate solution to verification
88
        plot(x,U(:),'-o',x,u(:),'r');
89
        title(sprintf('exact vs. numerical(circled), number points=%d', ...
90
            points(i)));
91
        axis([0 1 -.3 .4]);
92
        xlabel('x'); ylabel('U(x),u(x)');
93
        drawnow;
94
        pause(1); % to enable animation to be seen
95
96
    end
97
   analysis_of_result(data,ID); %generate error table/plots
98
    end
99
100
   %----
101
102 % This function process the error table, formating it.
```

```
% It accept the e-norm found at each spacing, the vector with the
103
104
    % corresponding h spacing value, calculates the error ratio
   % and print the result to the screen
105
106
   %
   function analysis_of_result(data,ID)
107
    titles ={'N', 'h', 'emax', 'ratio', 'e1', 'ratio'};
108
           ={'d','.7f','.4e','.4e','.4e','.4e'};
    fms
109
110
   wid
              = 12;
111
112
    fileID
              = 1:
   nma_format_matrix(titles,data,wid,fms,fileID,false);
113
114
115
   figure;
    set(0, 'defaultaxesfontsize',8);
116
117
    set(0,'defaulttextfontsize',8);
118
    loglog(data(:,2),data(:,5),'-d'); hold on;
119
    loglog(data(:,2),data(:,3),'-.s');
120
121
122
   xlabel('log(h)'); ylabel('log(error norm)');
    legend('one-norm', 'max-norm', 'Location', 'NorthWest');
123
    axis equal;
124
    grid off;
125
126
    \% plot the correct title based on which problem is being solved
127
    if strcmp(ID, 'hw2_prob1_partb_scheme_1')
128
        text(10^-1,10^-4,'p=2, second order accuracy')
129
130
        title('h vs. error norms, log scale, HW2 1.b scheme1');
        export_fig nma_HW2_prob1_part_b_scheme_1.png
131
    elseif strcmp(ID, 'hw2_prob1_partb_scheme_2')
132
        text(10^-1,10^-4,'p=2, second order accuracy')
133
        title('h vs. error norms, log scale, HW2 1.b scheme2');
134
        export_fig nma_HW2_prob1_part_b_scheme_2.png
135
    elseif strcmp(ID, 'hw2_prob1_parta')
136
        text(10^-1,10^-4,'p=2, second order accuracy')
137
        title('h vs. error norms, log scale, HW2 1.a');
138
        export_fig nma_HW2_prob1_part_a.png
139
    elseif strcmp(ID, 'hw2_prob2')
140
        text(10^-1,10^-3,'p=1, first order accuracy')
141
        title('h vs. error norms, log scale, HW2 prob2');
142
143
        export_fig nma_HW2_prob2.png
    elseif strcmp(ID, 'hw2_prob3_1')
144
        title('h vs. error norms, log scale, HW2 prob3 (parta)');
145
        export_fig nma_HW2_prob3_1.png
146
    elseif strcmp(ID, 'hw2_prob3_2')
147
        title('h vs. error norms, log scale, HW2 prob3 (partb)');
148
        export_fig nma_HW2_prob3_2.png
149
```

```
end
150
151
152
   end
153
   %------
154
   % Augment the A matrix
155
156
   %
   function [A,f] = augment_system(A,f)
157
   f = f(:);
158
   v = null(A');
159
                   % Null vector of adjoint of A
   u = null(A);
                  % Null vector of A
160
161
162
   %lambda = dot(v,f)/dot(v,v); % used during testing to verify it is correct
163
   % Build the A matrix the f matrix to force zero mean for the solution
164
   A = [A]
165
            v;
       u'
          0];
166
167
   f = [f;
168
169
    0];
170
   end
171
   %-----
172
   % this function builds A matrix, f vector, solves for U, the
173
   % approximate solution, and determines the error vector e=U-u where
174
175
   % u is the exact solution at the grid points
176
   %
177
   % For HW2, prob 1 part b, second scheme
178
   %
179
   function [e,U,u,xcoordinates] = ...
       error_vector_HW2_prob1_partb_scheme2(total_number_of_points,h)
180
181
       function f = force(x)
182
           f = 2*(cos(pi*x)).^{2};
183
       end
184
185
       function u = exactU(x)
186
           \% NOTE: This solution has a -1/6 as its additive constant.
187
           u = (x.^2)/2 - \cos(2*pi*x)/(4*pi^2) - 1/6;
188
       end
189
190
   % Boundary conditions, left and right
191
   alpha = 0;
192
   beta = 1;
193
194 len = 1;
195
196 xcoordinates = 0:h:len;
                                               %xcoordinates at points
```

```
197
    % build the A matrix
198
    A = nma FDM matrix laplace 1D Neumann scheme 2(total number of points);
199
    A = A/h^2;
200
201
   % build the f vector, make sure to adjust the first and last entries
202
   f
           = force(xcoordinates)';
203
         = alpha/h;
   f(1)
204
   f(end) = beta/h;
205
206
    [A,f] = augment_system(A,f);
207
   U = A \setminus f(:);
                                      % solve for U, the approximate solution
208
   %lambda = U(end);
                                      % save lambda for reporting
209
210 U = U(1:end-1);
                                      % throw away the last entry, lambda
211
212 u = exactU( xcoordinates );
                                % find exact solution at the grid points
213
   % U found above has a zero mean. This was by construction. Therefore, we
214
   \% have to shift it by the current mean of the sampled version of the exact
215
216 % solution which also has a zero mean, but only in the limit. Meaning as
   % the number of grid points becomes very large.
217
218 % Therfore, at each iteration the mean of u will not yet be zero due to
219 % having small number of samples (grid points). The current mean of u must
   \% be used to adjust U to make the comparison between U and u applicable.
220
221 % When the number of grid points become very large, this adjustment become
222 % less important, since mean(u) will start to approach zero, and adding
223 % a zero to U will not affect the result.
224
225 U = U + mean(u);
226
   % Now that we have found U, the numerical solution, we find the error
227
   % vector.
228
229
   u = u(:); U=U(:);
230
    e = U - u;
231
   end % end function(error_vector_HW2_prob1_partb_scheme2)
232
233
                            _____
    %-----
234
   % this function builds A matrix, f vector, solves for U, the approximate
235
   % solution, and determines the error vector e=U-u where u is the exact
236
237
   % solution at the grid points
   %
238
   % For HW2, prob 1 part b, first scheme
239
   function [e,U,u,xcoordinates]=error_vector_prob1_partb_scheme1...
240
        (total_number_of_points,h)
241
242
       function f = force(x)
243
```

```
f = cos(pi*x).^2;
244
245
            f = 2*f;
        end
246
247
       function u = exactU(x)
248
            u = (x.^2)/2 - \cos(2*pi*x)/(4*pi^2) - 1/6;
249
250
        end
251
    % Boundary conditions, left and right
252
253
    alpha = 0;
254
   beta = 1;
   len = 1;
255
256
   xcoordinates = 0:h:len; %xcoordinates at points
257
258
   A = nma_FDM_matrix_laplace_1D_Neumann_scheme_1(total_number_of_points);
259
   A = A/h^2;
260
261
   % build the f vector, make sure to adjust the first and last entries
262
263
   f
           = force(xcoordinates);
   f(1)
          = f(1)
                  + 2*alpha/h;
264
   f(end) = f(end) - 2*beta/h;
265
266
   USE_PINV = false; % for testing to verify the augmented method against
267
268
269
    if USE PINV
       U = pinv(A)*f(:);
270
271
        lambda = 0;
272
   else
273
        [A,f] = augment_system(A,f);
       U
               = A \leq (:);
                              % solve for U, the approximate solution
274
        lambda = U(end);
                                  % save lambda for reporting
275
                                  % Not needed for finding error norm
276
       IJ
              = U(1:end-1);
277
   end
278
   u = exactU( xcoordinates ); % find exact solution at the grid points
279
   U = U + mean(u);
                                   % see note above
280
281
   % Now that we have found U, the numerical solution, we find the error
282
   % vector.
283
284
   u = u(:); U=U(:);
285
   e = U - u;
286
    end % end function(error_vector_prob1_partb_scheme1)
287
288
   %-----
289
290 % this function builds A matrix, f vector, solves for U, the approximate
```

```
% solution, and determines the error vector e=U-u where u is the exact
291
292
   % solution at the grid points
   % HW2, prob 1, part a
293
   %
294
   function [e,U,u,xcoordinates]=error_vector_HW2_prob1_parta...
295
        (total_number_of_points,h)
296
297
       function f = force(x)
298
            f = exp(x);
299
        end
300
301
        function u = exactU(x)
302
303
            u = -1 + exp(x) + 2.*x - exp(1).*x;
        end
304
305
   % Boundary conditions, left and right
306
   alpha = 0;
307
   beta = 1;
308
   len = 1;
309
310
   number_internal_points = total_number_of_points-2;
311
   xcoordinates
                          = h:h:len-h; %xcoordinates at internal points
312
313
   A = nma_FDM_matrix_laplace_1D_dirichlet(number_internal_points );
314
   A = A/h^2;
315
316
   % build the f vector, make sure to adjust the first and last entries
317
318
   f
          = force(xcoordinates)';
         = f(1)-alpha/h<sup>2</sup>;
319 f(1)
   f(end) = f(end)-beta/h^2;
320
321
                                      % solve for U, the approximate solution
   U = A f;
322
   u = exactU( xcoordinates )';
                                      % find exact solution at the grid points
323
   e = U - u;
                                      % find the total error vector e
324
325
326
   end
327
   %-----
                                  _____
328
   % this function builds A matrix, f vector, solves for U, the approximate
329
   % solution, and determines the error vector e=U-u where u is the exact
330
331
   % solution at the grid points
   % HW2 prob2
332
333
   %
   function [e,U,u,xcoordinates] = error_vector_HW2_prob2...
334
        (total_number_of_points,h)
335
336
       function f = force(x)
337
```

```
f = cos(x);
338
339
        end
340
       function u = exactU(x,b,g)
341
           u = (1/2)*(1+b-g-x+b*x+g*x+\cos(1)+\cos(1)*x-2*\cos(x));
342
       end
343
344
   % Boundary conditions, left and right
345
   alpha = 1;
346
347
   b
        = 1;
        = 1;
348
   g
   len = 1;
349
   xcoordinates = 0:h:len-h;
                                                    %xcoordinates at points
350
351
352 % build the A matrix
353 A = nma_FDM_matrix_laplace_1D_robin(total_number_of_points-1,h,alpha);
   A = A/h^2;
354
355
   % build the f vector, make sure to adjust the first and last entries
356
357 f
          = force(xcoordinates)';
   f(1) = g/h;
358
   f(end) = f(end) - b/h^2;
359
360
   U = A \setminus f(:);
                                    % solve for U, the approximate solution
361
   u = exactU( xcoordinates,b,g ); % find exact solution at the grid points
362
   u = u(:); U=U(:);
363
   e = U - u;
364
   end
365
366
   %------
367
   % this function builds A matrix, f vector, solves for U, the approximate
368
   \% solution, and determines the error vector e=U-u where u is the exact
369
   % solution at the grid points
370
   % HW2, prob 1, part a
371
   %
372
   function [e,U,u,xcoordinates]=error_vector_HW2_prob3_1...
373
        (total_number_of_points,h)
374
375
       function f = force(x)
376
           f = exp(x);
377
378
       end
379
       function u = exactU(x)
380
           u = -1 + exp(x) + 2.*x - exp(1).*x;
381
382
       end
383
384 % Boundary conditions, left and right
```

```
alpha = 0;
385
   beta = 1;
386
   len = 1;
387
388
   number_internal_points = total_number_of_points-2;
389
   xcoordinates
                          = h:h:len-h;
                                            %xcoordinates at internal points
390
391
   A = nma_FDM_matrix_laplace_1D_dirichlet(number_internal_points );
392
   A = A/h^2;
393
394
   % build the f vector, make sure to adjust the first and last entries
395
          = force(xcoordinates)';
396
   f
   f(1) = f(1) - alpha/h<sup>2</sup> +1 ; % make LTE O(1) instead of O(h<sup>2</sup>)
397
   f(end) = f(end)-beta/h^2;
398
399
   U = A \setminus f;
                                     % solve for U, the approximate solution
400
                                    % find exact solution at the grid points
   u = exactU( xcoordinates )';
401
                                     % find the total error vector e
402
   e = U - u;
403
   end
404
405
   %_____
406
   % this function builds A matrix, f vector, solves for U, the approximate
407
   \% solution, and determines the error vector e=U-u where u is the exact
408
   % solution at the grid points
409
   % HW2, prob 1, part a
410
411
   %
412
   function [e,U,u,xcoordinates]=error_vector_HW2_prob3_2...
       (total_number_of_points,h)
413
414
       function f = force(x)
415
            f = exp(x);
416
       end
417
418
       function u = exactU(x)
419
           u = -1 + exp(x) + 2.*x - exp(1).*x;
420
       end
421
422
   % Boundary conditions, left and right
423
   alpha = 0;
424
425
   beta = 1;
   len = 1;
426
427
   number_internal_points = total_number_of_points-2;
428
   xcoordinates
                          = h:h:len-h; %xcoordinates at internal points
429
430
431 | A = nma_FDM_matrix_laplace_1D_dirichlet(number_internal_points );
```

```
A = A/h^2;
432
433
    \% build the f vector, make sure to adjust the first and last entries
434
                        = force(xcoordinates)';
    f
435
    f(1)
                        = f(1)-alpha/h<sup>2</sup>;
436
                        = round(length(f)/2);
    middle_position
437
    f(middle_position) = f(middle_position) + h; %Change LTE from O(h^2)to O(h)
438
    f(end)
                        = f(end)-beta/h^2;
439
440
441
    U = A \setminus f;
                                        % solve for U, the approximate solution
    u = exactU( xcoordinates )';
                                        % find exact solution at the grid points
442
    e = U - u;
                                        % find the total error vector e
443
444
445 end
 1 function A = nma_FDM_matrix_laplace_1D_dirichlet(N )
 2
    %%
    % nma_FDM_matrix_laplace_1D_dirichlet(N)
 3
   %
 4
    % returns the A matrix, which is the system finite difference matrix for
 5
   % numerical solution of 1-D laplace equation Uxx = f, with dirichlet
 6
    % boundary conditions on both sides of the element. Based on 3 point
 7
    % scheme
 8
                U'' = U(j-1)-2*U(j)+U(j+1)
    % notice that spacing h between the nodes is not used. The caller must
 9
    % divide by h<sup>2</sup> this A matrix abone return.
10
   %
11
   % INPUT: N, the number of nodes
12
13
   % OUTPUT: A, the matrix , see below
    %
14
   % EXAMPLE:
15
   % A = nma_FDM_matrix_laplace_1D_dirichlet(6)
16
   %
17
   %
          -2
                 1
                        0
                               0
                                     0
                                            0
18
   %
           1
                -2
                        1
                               0
                                     0
                                            0
19
   %
           0
                       -2
                               1
                                     0
                 1
                                            0
20
    %
           0
                  0
                             -2
21
                        1
                                     1
                                            0
   %
           0
                  0
                                    -2
                        0
                              1
                                           1
22
   %
           0
                  0
                        0
                               0
                                     1
                                           -2
23
   %
24
   \% A = A/h<sup>2</sup>; % h is space between points
25
   \% U = A\f; \% solve for U, where Uxx=f, need to set f as function before.
26
   %
27
28
29
   A = zeros(N);
30
   for i=1:N
31
        for j=1:N
32
            if(i==j)
33
```

```
A(i,j) = -2;
34
35
           else
               if( i==j+1 || i==j-1 )
36
                   A(i,j) = 1;
37
38
               end
           end
39
       end
40
   end
41
42
43
   end
1
   function A = nma_FDM_matrix_laplace_1D_Neumann_scheme_1(N )
   %_____
2
3
   % nma_FDM_matrix_laplace_1D_Neumann_scheme_1(N )
   %
4
5 % returns the A matrix, which is the system finite difference matrix for
   \% numerical solution of 1-D laplace equation Uxx = f, with nuemman
6
   % boundary conditions on both sides of the element. Based on 3 point
7
   % scheme U'' = U(j-1)-2*U(j)+U(j+1) for middle points and based on
8
   % scheme ((-2*U(0)+2*U(1))/(h^2))=f(0)+((2*a)/h) for the left most point,
9
   % where a = U'(0), and h is the spacing. and for for the right most point
10
   % ((2*U(N)-2*U(N+1))/(h^2)) = f(N+1)-((2*b)/h) where b=U'(1)
11
12 %
   % notice that spacing h between the nodes is not used. The caller must
13
   % divide by h<sup>2</sup> this A matrix abone return.
14
   %
15
   % INPUT: N, the number of nodes
16
   % OUTPUT: A, the matrix , see below
17
   %
18
   % EXAMPLE:
19
   % A = nma_FDM_matrix_laplace_1D_Neumann_scheme_1(5)
20
   %
         -2
               2
                     0
                           0
                                  0
21
               -2
   %
         1
                     1
                            0
                                  0
22
23 %
         0
               1
                     -2
                           1
                                  0
24 %
          0
               0
                     1
                           -2
                                  1
   %
                           2
          0
                0
                      0
                                 -2
25
   %
26
   %
27
28 \% A = A/h<sup>2</sup>; % h is space between points
   U = A f; % solve for U, where Uxx=f, need to set f as function before.
29
   %
30
   % copyright: Nasser M. Abbasi
31
   % 10/18/2010
32
33
   A = zeros(N);
34
35 for i=1:N
36
      for j=1:N
      if(i==j)
37
```

```
A(i,j) = -2;
38
           else
39
               if( i==j+1 || i==j-1 )
40
                   A(i,j) = 1;
41
42
               end
           end
43
       end
44
   end
45
46
47
   %fix A above for Von Neumann B.C. only 1st and last rows need fixed
   A(1,2)
               = 2;
48
   A(end, end-1) = 2;
49
   end
50
   function A = nma_FDM_matrix_laplace_1D_Neumann_scheme_2(N)
1
   %_-----
                                            _____
2
   % A = nma_FDM_matrix_laplace_1D_Neumann_scheme_2(N)
3
   %
4
   % returns the A matrix, which is the system finite difference matrix for
5
   % numerical solution of 1-D laplace equation Uxx = f, with nuemman
6
7
   \% boundary conditions on both sides of the element. Based on 3 point
   % scheme
             U'' = U(j-1)-2*U(j)+U(j+1) for middle points and the left
8
9
   % and right most points, the following scheme is used
       In this scheme, the Neumann boundary condition is approximated using
   %
10
   %
11
12 %
           a = (1/h)((3/2)U(0)-2*U(1)+(1/2)U(2))
           b = (1/h) ((3/2)U(N+1)-2*U(N)+(1/2)U(N+1))
  %
13
   %
14
   % where a=U'(0) and b=U'(1)
15
  %
16
   % notice that spacing h between the nodes is not used. The caller must
17
   % divide by h<sup>2</sup> this A matrix abone return.
18
  %
19
   % INPUT: N, the number of nodes
20
   % OUTPUT: A, the matrix , see below
21
   %
22
   % EXAMPLE:
23
   % A = nma_FDM_matrix_laplace_1D_Neumann_scheme_2(5)
24
   %
25
  %
        1.5000
                -2.0000
                          0.5000
                                            0
                                                      0
26
27 %
        1.0000
                -2.0000 1.0000
                                            0
                                                      0
                1.0000 -2.0000 1.0000
  %
             0
                                                      0
28
  %
              0
                       0 1.0000 -2.0000
29
                                                 1.0000
  %
              0
                        0
                           0.5000 -2.0000
                                                 1.5000
30
  %
31
32 %
33 \% A = A/h<sup>2</sup>; % h is space between points
34 % U = A\f; % solve for U, where Uxx=f, need to set f as function before.
```

```
%
35
36
   % copyright: Nasser M. Abbasi
   % 10/18/2010
37
38
   A = zeros(N);
39
   for i=1:N
40
       for j=1:N
41
           % as before, part(a), Dirichlet B.C.
42
           if(i==j)
43
               A(i,j) = -2;
44
           else
45
               if( i==j+1 || i==j-1 )
46
                   A(i,j) = 1;
47
               end
48
49
           end
       end
50
51
   end
52
   %fix A above for Von Neumann B.C. only 1st and last rows need fixed
53
   A(1,1) = 3/2;
54
   A(1,2) = -2;
55
   A(1,3) = 1/2;
56
57
   A(end, end) = (3/2);
58
   A(end, end-1) = -2;
59
   A(end, end-2) = (1/2);
60
61
62
   end
   function A = nma_FDM_matrix_laplace_1D_robin(N,h,alpha)
1
   %_-----
2
                                                _____
   % A = nma_FDM_matrix_laplace_1D_robin(N,h)
3
   %
4
   % returns the A matrix, which is the system finite difference matrix for
5
   \% numerical solution of 1-D laplace equation Uxx = f, with nuemman
6
   % boundary conditions on both sides of the element. Based on 3 point
7
8
   %
   % INPUT: N, the number of nodes
9
   %
             h, spacing between nodes
10
11 %
12 % OUTPUT: A, the matrix , see below
13 %
   %
14
15 \% A = A/h<sup>2</sup>; % h is space between points
16 \% U = A\f; % solve for U, where Uxx=f, need to set f as function before.
17 %
18 % copyright: Nasser M. Abbasi
19 % 10/18/2010
```

```
20
21
   A = zeros(N);
   for i=1:N
22
       for j=1:N
23
           % as before, part(a), Dirichlet B.C.
24
           if(i==j)
25
               A(i,j) = -2;
26
           else
27
                if( i==j+1 || i==j-1 )
28
29
                    A(i,j) = 1;
30
                end
           end
31
32
       end
   end
33
34
   %fix A above
35
   A(1,1) = -1-alpha*h;
36
37
   end
38
   function [hd,bdy] = nma_format_matrix(headings,data,wid,fms,fid,flag)
1
   %
       nma_format_matrix()
2
3
   %
   %
       prints matrix of numerical data with headings in formatted way
4
   %
5
   %
       INPUT:
6
7
   %
       headings: a cell array of strings for the headings of each column
   %
       data: a matrix, contains the numerical data
8
   %
       wid: how wide a field to use (see below for example)
9
  %
       fms: the formating cell string array to use for the numerical data
10
   %
            each string corresponds to formatting a field in the numberical
11
   %
            data
12
  %
       fid: the file id to print to. Use 1 for stdout
13
  %
       flag: if 0, then will not print anything, just format and return
14
  %
             result
15
   %
16
   %
17
       Examples calling
   %
18
   %
       titles={'number of projects', 'sales', 'profit'};
19
   %
       data=[2 rand(1) rand(1);
20
  %
             3 rand(1) rand(1)];
21
   %
22
   %
       Suppose we want to format each numerical number above as %16.5E, then
23
24 %
       in this case 10 will be the field width, and '.5E' is what to use for
  %
       the fms argument
25
26
  %
27
  %
       wid
              = 16;
28 %
            = {'d','.4E','.5E'};
       fms
```

```
%
       fileID = 1;
29
30
   %
       nma_format_matrix(titles,data,wid,fms,fileID,false);
   %
31
   %
       version 1.0 10/15/2010
32
   %
       All blame to Nasser M. Abbasi
33
   %
       Thanks for help from matlab newsgroup: Ross W, Bruno Luong
34
   %
35
36
   %
37
   % do some basic checking on input
38
   %
39
   if nargin ~= 6
40
       error 'number of arguments must be 6'
41
   end
42
43
   if ~iscell(headings)
44
       error 'headings must be cell array'
45
46
   end
47
48
   if ~iscell(fms)
       error 'fms must be cell array'
49
   end
50
51
   if isempty(headings)
52
       error 'headings can not be empty';
53
   end
54
55
56
   if isempty(data)
       error 'data can not be empty';
57
   end
58
59
   if isempty(fms)
60
       error 'fms can not be empty';
61
   end
62
63
   [nRowH,nColH] = size(headings);
64
   if(nRowH>1)
65
       error 'headings can not have more than one row';
66
   end
67
68
69
   [nRowFms,nColFms] = size(fms);
   if(nRowFms>1)
70
       error 'fms can not have more than one row';
71
72
   end
73
   if(nColH ~= nColFms)
74
   error 'headings must have same number of columns as fms';
75
```

```
end
76
77
   [~,nCol] = size(data);
78
   if(nColH ~= nCol)
79
       error 'data must have same number of columns as headings';
80
   end
81
82
   %
   % end basic checking on input, now do the formating and printing
83
   %
84
85
   fmt = arrayfun(@(x) ['%',num2str(wid),'s'],1:nCol,'UniformOutput',false);
86
   if flag
87
      fprintf(fid,[fmt{:} '\n'],headings{:});
88
   end
89
90
   hd=sprintf([fmt{:} '\n'],headings{:});
91
92
   fmt = arrayfun(@(x) ['%',num2str(wid),fms{x}],1:nCol,'UniformOutput',false);
93
   if flag
94
      fprintf(fid,[fmt{:} '\n'],data');
95
96
   end
   bdy=sprintf([fmt{:} '\n'],data');
97
98
   end
99
```

2.4 HW 3

2.4.1 residual error animation

Animation of the residual error R as it changes during iterative solution. Tolerance used for these is h^2 , stopping criteria used is relative error < tolerance Only SOR was done.

2.4.1.1 SOR with $h = 2^{-7}$

These animations are large in size. (Click on any to see in actual size, will open in new window)

2.4.1.2 SOR with $h = 2^{-5}$

These animations are smaller in size. (Click on any to see in actual size, will open in new window)

2.4.2 Animation for density plot animations of solvers for problem 1

Animation plots below show solver as it updates each grid point by point in its main loop

The above shows each of the solvers (Jacobi, Gauss-Seidel, SOR) in the process of updating the grid during one iteration of the main loop.

Notice the how GS and SOR solvers update the solution immediately (left to right, down to top numbering is used), while Jacobi solver updates the solution only at the end each iterative step.

This one below was done for $h = 2^{-3}$. Clicking on it shows animation.

2.4.3 Animations of iterative solution

Animations of iterative solution (Click on image to see animation), Stopping criteria used is relative residual method, tolerance is h^2

2.4.4 Problem 1

Problem statement

1. Use Jacobi, Gauss-Seidel, and SOR (with optimal ω) to solve

$$\Delta u = -\exp\left(-(x - 0.25)^2 - (y - 0.6)^2\right)$$

on the unit square $(0,1) \times (0,1)$ with homogeneous Dirichlet boundary conditions. Find the solution for mesh spacings of $h = 2^{-5}$, 2^{-6} , and 2^{-7} . What tolerance did you use? What stopping criteria did you use? What value of ω did you use? Report the number of iterations it took to reach convergence for each method for each mesh.

Figure 2.16: Problem 1

Answer

Using the method of splitting, the iteration matrix *T* is found, for each method, for solving Au = f.

Let A = M - N, then Au = f becomes

$$(M - N)u = f$$

$$Mu = Nu + f$$

$$u^{[k+1]} = M^{-1}Nu^{[k]} + M^{-1}f$$
(1)

2.4.4.1 Finding iterative matrix for the different solvers

The Jacobi method

For the Jacobi method M = D and N = L + U, where D is the diagonal of A, L is the negative of the strictly lower triangle matrix of A and U is negative of the strictly upper triangle matrix of A. Hence(1) becomes

$$u^{[k+1]} = D^{-1}(L+U)u^{[k]} + D^{-1}f$$
$$u^{[k+1]} = Tu^{[k]} + C$$

Where *T* is called the Jacobi iteration matrix. Since A = D - L - U, hence L + U = D - A, therefore the iteration matrix *T* can be written as

$$T = D^{-1}(D - A)$$
$$= I - D^{-1}A$$

or

$$T = (I - D^{-1}A)$$
$$C = D^{-1}f$$

The Gauss-Seidel method

For Gauss-Seidel, M = D - L and N = U, hence (1) becomes $u^{[k+1]} = (D - L)^{-1} U u^{[k]} + (D - L)^{-1} f$
or

where

$$T = (D - L)^{-1} U$$

 $C = (D - L)^{-1} f$

 $u^{[k+1]} = Tu^{[k]} + C$

The SOR method

For SOR, $M = \frac{1}{\omega} (D - \omega L)$ and $N = \frac{1}{\omega} ((1 - \omega) D + \omega U)$. Hence (1) becomes $u^{[k+1]} = \left[\frac{1}{\omega} (D - \omega L)\right]^{-1} \left[\frac{1}{\omega} ((1 - \omega) D + \omega U)\right] u^{[k]} + \left[\frac{1}{\omega} (D - \omega L)\right]^{-1} f$ $= (D - \omega L)^{-1} ((1 - \omega) D + \omega U) u^{[k]} + \omega (D - \omega L)^{-1} f$ $= Tu^{[k]} + C$

where

$$T = (D - \omega L)^{-1} ((1 - \omega) D + \omega U)$$
$$C = \omega (D - \omega L)^{-1}$$

Summary of iterative matrices used

This table summarizes the expression for the iterative matrix *T* and for the matrix *C* in the equation $u^{[k+1]} = Tu^{[k]} + C$ for the different methods used.

method	Т	С
Jacobi	$(I - D^{-1}A)$	$D^{-1}f$
GS	$\left(D-L\right)^{-1}U$	$\left(D-L\right)^{-1}f$
SOR	$(D - \omega L)^{-1} \left((1 - \omega) D + \omega U \right)$	$\omega \left(D - \omega L \right)^{-1}$

The discretized algebraic equation resulting from approximating $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$ with Dirichlet boundary conditions is based on the use of the standard 5 point Laplacian

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{h^2} \left(U_{i-1,j} + U_{i+1,j} + U_{i,j-1} + U_{i,j+1} - 4U_{i,j} \right)$$

which has local truncation error $O(h^2)$.

The notation used above is based on the following grid formating

Figure 2.17: Grid notation

The derivation of the above formula is as follows: Consider a grid where the mesh spacing in the x-direction is h_x and in the y-direction is h_y . Then $\frac{\partial^2 u}{\partial x^2}$ is approximated, at position (i,j) by $\frac{U_{i-1,j}-2U_{i,j}+U_{i+1,j}}{h_x^2}$ and $\frac{\partial^2 u}{\partial y^2}$ is approximated, at position (i,j), by $\frac{U_{i,j-1}-2U_{i,j}+U_{i,j+1}}{h_y^2}$ therefore $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \approx \frac{U_{i-1,j}-2U_{i,j}+U_{i+1,j}}{h_x^2} + \frac{U_{i,j-1}-2U_{i,j}+U_{i,j+1}}{h_y^2}$, and since $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f_{i,j}$ at that position, this results in

$$\frac{U_{i-1,j} - 2U_{i,j} + U_{i+1,j}}{h_x^2} + \frac{U_{i,j-1} - 2U_{i,j} + U_{i,j+1}}{h_y^2} = f_{i,j}$$

Solving for $U_{i,j}$ from the above gives

$$\begin{aligned} U_{i,j} &= \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{i-1,j}h_y^2 + U_{i+1,j}h_y^2 + U_{i,j-1}h_x^2 + U_{i,j+1}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{i,j} \\ &= \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(\left(U_{i-1,j} + U_{i+1,j}\right)h_y^2 + \left(U_{i,j-1} + U_{i,j+1}\right)h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{i,j} \end{aligned}$$

The following table shows the formula for updating $U_{i,j}$ using each of the 3 methods for the 2D case, under the assumption of uniform mesh spacing, i.e. when $h_x = h_y$ which simplifies the above formula as given below

method	Formula for updating $U_{i,j}$, uniform mesh
Jacobi	$U_{i,j}^{[k+1]} = \frac{1}{4} \left(U_{i-1,j}^{[k]} + U_{i+1,j}^{[k]} + U_{i,j-1}^{[k]} + U_{i,j+1}^{[k]} - h^2 f_{i,j} \right)$
GS	$U_{i,j}^{[k+1]} = \frac{1}{4} \left(U_{i-1,j}^{[k+1]} + U_{i+1,j}^{[k]} + U_{i,j-1}^{[k+1]} + U_{i,j+1}^{[k]} - h^2 f_{i,j} \right)$
SOR	$U_{i,j}^{[k+1]} = \frac{\omega}{4} \left(U_{i-1,j}^{[k+1]} + U_{i+1,j}^{[k]} + U_{i,j-1}^{[k+1]} + U_{i,j+1}^{[k]} - h^2 f_{i,j} \right) + (1-\omega) U_{i,j}^{[k]}$

note that for SOR, the general formula, using nonuniform mesh can be derived as follows

$$\begin{aligned} U_{(gs)i,j}^{[k+1]} &= \frac{1}{4} \left(U_{i-1,j}^{[k+1]} + U_{i+1,j}^{[k]} + U_{i,j-1}^{[k+1]} + U_{i,j+1}^{[k]} - h^2 f_{i,j} \right) \\ U_{(sor)i,j}^{[k+1]} &= U_{i,j}^{[k]} + \omega \left(U_{(gs)i,j}^{[k+1]} - U_{i,j}^{[k]} \right) \end{aligned}$$

The second formula above can be simplified by substituing the first equation into it to yield

$$\begin{aligned} U_{(sor)i,j}^{[k+1]} &= U_{i,j}^{[k]} + \omega \left(\frac{1}{4} \left(U_{i-1,j}^{[k+1]} + U_{i+1,j}^{[k]} + U_{i,j-1}^{[k+1]} + U_{i,j+1}^{[k]} - h^2 f_{i,j} \right) - U_{i,j}^{[k]} \right) \\ &= \frac{\omega}{4} \left(U_{i-1,j}^{[k+1]} + U_{i+1,j}^{[k]} + U_{i,j-1}^{[k+1]} + U_{i,j+1}^{[k]} - h^2 f_{i,j} \right) + (1 - \omega) U_{i,j}^{[k]} \end{aligned}$$

Which is what shown in the table above. Using the same procedure, but for the general case, results in

$$\begin{aligned} U_{(gs)i,j}^{[k+1]} &= \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{i-1,j}^{[k+1]} h_y^2 + U_{i+1,j}^{[k]} h_y^2 + U_{i,j-1}^{[k+1]} h_x^2 + U_{i,j+1}^{[k]} h_x^2 \right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{i,j} \\ U_{(sor)i,j}^{[k+1]} &= U_{i,j}^{[k]} + \omega \left(U_{(gs)i,j}^{[k+1]} - U_{i,j}^{[k]} \right) \end{aligned}$$

Hence, again, the second equation above becomes

$$\begin{split} U_{(sor)i,j}^{[k+1]} &= U_{i,j}^{[k]} + \omega \left(\frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{i-1,j}^{[k+1]} h_y^2 + U_{i+1,j}^{[k]} h_y^2 + U_{i,j-1}^{[k+1]} h_x^2 + U_{i,j+1}^{[k]} h_x^2 \right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{i,j} - U_{i,j}^{[k]} \right) \\ &= \omega \left[\frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{i-1,j}^{[k+1]} h_y^2 + U_{i+1,j}^{[k]} h_y^2 + U_{i,j-1}^{[k+1]} h_x^2 + U_{i,j+1}^{[k]} h_x^2 \right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{i,j} \right] + (1 - \omega) U_{i,j}^{[k]} \end{split}$$

Hence, for non-uniforma mesh the above update table becomes

method	Formula for updating $U_{i,j}$, non-uniform mesh
Jacobi	$U_{i,j}^{[k+1]} = \frac{1}{2(h_x^2 + h_y^2)} \left(\left(U_{i-1,j} + U_{i+1,j} \right) h_y^2 + \left(U_{i,j-1} + U_{i,j+1} \right) h_x^2 \right) - \frac{h_x^2 h_y^2}{2(h_x^2 + h_y^2)} f_{i,j}$
GS	$U_{i,j}^{[k+1]} = \frac{1}{2(h_x^2 + h_y^2)} \left(U_{i-1,j}^{[k+1]} h_y^2 + U_{i+1,j}^{[k]} h_y^2 + U_{i,j-1}^{[k+1]} h_x^2 + U_{i,j+1}^{[k]} h_x^2 \right) - \frac{h_x^2 h_y^2}{2(h_x^2 + h_y^2)} f_{i,j}$
SOR	$U_{i,j}^{[k+1]} = \omega \left[\frac{1}{2(h_x^2 + h_y^2)} \left(U_{i-1,j}^{[k+1]} h_y^2 + U_{i+1,j}^{[k]} h_y^2 + U_{i,j-1}^{[k+1]} h_x^2 + U_{i,j+1}^{[k]} h_x^2 \right) - \frac{h_x^2 h_y^2}{2(h_x^2 + h_y^2)} f_{i,j} \right] + (1 - \omega) U_{i,j}^{[k]}$

The residual formula is $R^{[k]} = f - Au^{[k]}$, which can be written using the above notations as

$$R_{i,j} = f_{i,j} - \left(\frac{U_{i-1,j} - 2U_{i,j} + U_{i+1,j}}{h_x^2} + \frac{U_{i,j-1} - 2U_{i,j} + U_{i,j+1}}{h_y^2}\right)$$

and for a uniform mesh the above becomes

$$R_{i,j} = f_{i,j} - \frac{1}{h^2} \left(U_{i-1,j} + U_{i+1,j} + U_{i,j-1} + U_{i,j+1} - 4U_{i,j} \right)$$

2.4.4.2 Tolerance used

The tolerance ϵ used is based on the global error in the numerical solution. For this problem $||e|| = Ch^2$ where *C* is a constant *C*. Two different values for the constant were tried in the implementation: 0.1 and 1.

2.4.4.3 stopping criteria

The stopping criteria used was based on the use of the relative residual. Given

$$R^{[k]} = f - Au^{[k]}$$

The iterative process was stopped when the following condition was satisfied

$$\frac{\left\|R\left[^{k}\right]\right\|}{\left\|f\right\|} < \epsilon$$

Other possible stopping criterion are (but were not used) are

- 1. Absolute error: convergence achieved when $\|u^{[k+1]} u^{[k]}\| < \epsilon$
- 2. Relative error: convergence achieved when $\frac{\|u^{[k+1]}-u^{[k]}\|}{\|u^{[k]}\|} < \epsilon$

The above two criterion are not used as they do not perform as well for Jacobi and Gauss-Seidel.

2.4.4.4 ω used for SOR

The ω_{opt} used is based on the relation to the spectral radius of the *Jacobi* iteration matrix. This relation was derived in class

$$\omega_{opt} = \frac{2}{1 + \sqrt{1 - \rho_{Jacobian}^2}}$$

where for the 2D Poisson problem $\rho_{Jacobian}$ is given as $\cos(\pi h)$ where h is the grid spacing. Using this in the above and approximating for small h results in

$$\omega_{opt} \approx 2(1 - \pi h)$$

For the given h values in the problem, the following values were used for ω_{ovt}

$h_x = h_y = h$	ω_{opt}
2 ⁻³	1.2146
2 ⁻⁴	1.6073
2 ⁻⁵	1.8037
2 ⁻⁶	1.9018
2 ⁻⁷	1.9509

Notice that the above approximation formula is valid for small h and will not result in good convergence for SOR if used for large h.

Update 12/29/2010: After more analysis, the following formula is found to produce better results

$$t = cos(\pi h_x) + cos(\pi h_y)$$
$$poly(x) = x^2 t^2 - 16x + 16$$

Solve the above polynomial for x and then take the smaller root. This will be ω_{opt} , Using this results in

$h_x = h_y = h$	ω_{opt}
2 ⁻³	1.4464
2 ⁻⁴	1.6763
2 ⁻⁵	1.821
2 ⁻⁶	1.9064
2 ⁻⁷	1.9509

2.4.4.5 Algorithm details

In this section, some of the details of the implementation are described for reference. The Matrix A is not used directly in the iterative method, but its structure is briefly described.

In the discussion below, updating the grid is described for the Jacobi method, showing how the new values of the dependent variable u are calculated.

Numbering system and grid updating

The numbering system used for the grid is the one described in class. The indices for the unknown $u_{i,j}$ are numbered row wise, left to right, bottom to top. This follows the standard Cartesian coordinates system. The reason for this, is to allow the use of the standard formula for the 5 point Laplacian. The following diagram illustrate the 5 point Laplacian borrowed from the text book, figure 5, page 61 "Finite Difference Methods for Ordinary and Partial Differential Equations" by Randall J. LeVeque

Figure 2.18: 5-point stencile for Laplacian at x(i,j)

Lower case n is used to indicate the number of unknowns along one dimension, and upper case N is used to indicate the total number of unknowns.

Figure 2.19: stencil move

In the diagram above, n = 3 is the number of unknowns on each one row or one column,

and since there are 3 internal rows, there will be 9 unknowns, all are located on internal grid points. There are a total of 25 grid points, 16 of which are on the boundaries and 9 internal.

To update the grid, the 5 point Laplacian is centered at each internal grid point and then moved left to right, bottom to top, each time an updated value of the unknown is generated and stored in an auxiliary grid.

In the Jacobian method, the new value at the location $x_{i,j}$ is not used in the calculation to update its neighbors when the stencil is moved, but

Only when the whole grid has been swept by the Laplacian will the grid be updated by copying the content of the auxiliary grid into it.

In the Gauss-Seidel and SOR, this not the case. Once a grid point have been updated, its new value is used immediately in the update of its neighbor as the Laplacian sweeps the grid. No auxiliary grid is required. In other words, the updates happens 'in place'.

Continuing this example, the following diagram shows how each grid point is updated (In a parallel computation, these operations can all be done at once for the Jacobi solver, but not for the Gauss-Seidel or the SOR solver, unless different numbering scheme is used such as black-red numbering).

Figure 2.20: stencil move 2

Now that the grid has been updated once, the process is repeated again. This process is continued until convergence is achieved.

2.4.4.6 Structure of *Au* = *f*

The structure of Au = f system matrix is now described. As an example, for number of unknowns = 9 the following characteristics of the matrix A can be seen

Figure 2.21: A structure

<u>Structure of the A matrix</u> for elliptic 2D PDE with Dirchillet boundary conditions for nonuniform mesh

This section was added at a later time here for completion, and is not required for the HW. Below the A matrix form is derived for the case for non-uniform mesh (this means h_x is not neccessarily the same as h_y) and also, the number of grid points in the x-direction is not the same as the number of grid points in the y-direction.

To ease the derivation, we will use a 5×5 grid as an example, hence this will generate 9 equations as there are 9 unknowns. From this derivation we will be able to see the form of the *A* matrix.

In addition, in this derivation, we will use i to represent row number, and j to represent column number, as this more closely matches the convention.

Figure 2.22: new grid

The unknowns are shown above in the circles. From earlier, we found that the discretization for the elliptic PDE at a node is

$$U_{i,j} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{i,j-1}h_y^2 + U_{i,j+1}h_y^2 + U_{i-1,j}h_x^2 + U_{i+1,j}h_x^2\right) - \frac{h_x^2h_y^2}{2\left(h_x^2 + h_y^2\right)}f_{i,j}$$

We will now write the 9 equations for each node, starting with (2, 2) to node (4, 4)

$$\begin{split} U_{2,2} &= \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{2,1}h_y^2 + U_{2,3}h_y^2 + U_{1,2}h_x^2 + U_{3,2}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{2,2} \\ U_{2,3} &= \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{2,2}h_y^2 + U_{2,4}h_y^2 + U_{1,3}h_x^2 + U_{3,3}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{2,3} \\ U_{2,4} &= \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{2,3}h_y^2 + U_{2,5}h_y^2 + U_{1,4}h_x^2 + U_{3,4}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{2,4} \\ U_{3,2} &= \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{3,1}h_y^2 + U_{3,3}h_y^2 + U_{2,2}h_x^2 + U_{4,2}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{3,2} \\ U_{3,3} &= \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{3,2}h_y^2 + U_{3,4}h_y^2 + U_{2,3}h_x^2 + U_{4,3}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{3,3} \\ U_{3,4} &= \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{3,3}h_y^2 + U_{3,5}h_y^2 + U_{2,4}h_x^2 + U_{4,4}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{3,4} \\ U_{4,2} &= \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{4,1}h_y^2 + U_{4,3}h_y^2 + U_{3,2}h_x^2 + U_{5,2}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{4,2} \\ U_{4,3} &= \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{4,2}h_y^2 + U_{4,4}h_y^2 + U_{3,3}h_x^2 + U_{5,3}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{4,3} \\ U_{4,4} &= \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{4,3}h_y^2 + U_{4,5}h_y^2 + U_{3,4}h_x^2 + U_{5,4}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{4,4} \end{split}$$

Now, moving the knowns to the right, results in

$$2 \left(h_x^2 + h_y^2\right) U_{2,2} - U_{2,3}h_y^2 - U_{3,2}h_x^2 = -h_x^2 h_y^2 f_{2,2} + U_{2,1}h_y^2 + U_{1,2}h_x^2$$

$$2 \left(h_x^2 + h_y^2\right) U_{2,3} - U_{2,2}h_y^2 - U_{2,4}h_y^2 - U_{3,3}h_x^2 = -h_x^2 h_y^2 f_{2,3} + U_{1,3}h_x^2$$

$$2 \left(h_x^2 + h_y^2\right) U_{2,4} - U_{2,3}h_y^2 - U_{3,4}h_x^2 = -h_x^2 h_y^2 f_{2,4} + U_{2,5}h_y^2 + U_{1,4}h_x^2$$

$$2 \left(h_x^2 + h_y^2\right) U_{3,2} - U_{3,3}h_y^2 - U_{2,2}h_x^2 - U_{4,2}h_x^2 = -h_x^2 h_y^2 f_{3,2} + U_{3,1}h_y^2$$

$$2 \left(h_x^2 + h_y^2\right) U_{3,3} - U_{3,2}h_y^2 - U_{3,4}h_y^2 - U_{2,3}h_x^2 - U_{4,3}h_x^2 = -h_x^2 h_y^2 f_{3,3}$$

$$2 \left(h_x^2 + h_y^2\right) U_{3,4} - U_{3,3}h_y^2 - U_{2,4}h_x^2 - U_{4,4}h_x^2 = -h_x^2 h_y^2 f_{3,4} + U_{3,5}h_y^2$$

$$2 \left(h_x^2 + h_y^2\right) U_{4,2} - U_{4,3}h_y^2 - U_{3,2}h_x^2 = -h_x^2 h_y^2 f_{4,2} + U_{4,1}h_y^2 + U_{5,2}h_x^2$$

$$2 \left(h_x^2 + h_y^2\right) U_{4,3} - U_{4,2}h_y^2 - U_{3,3}h_x^2 = -h_x^2 h_y^2 f_{4,3} + U_{5,3}h_x^2$$

$$2 \left(h_x^2 + h_y^2\right) U_{4,3} - U_{4,2}h_y^2 - U_{3,4}h_x^2 - U_{3,3}h_x^2 = -h_x^2 h_y^2 f_{4,3} + U_{5,3}h_x^2$$

Now, we can write Ax = b as, letting $\beta = 2(h_x^2 + h_y^2)$

$$\begin{pmatrix} \beta & -h_y^2 & 0 & -h_x^2 & 0 & 0 & 0 & 0 & 0 \\ -h_y^2 & \beta & -h_y^2 & 0 & -h_x^2 & 0 & 0 & 0 & 0 \\ 0 & -h_y^2 & \beta & 0 & 0 & -h_x^2 & 0 & 0 & 0 \\ -h_x^2 & 0 & 0 & \beta & -h_y^2 & 0 & -h_x^2 & 0 & 0 \\ 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 & 0 & -h_x^2 & 0 \\ 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & 0 & 0 & -h_x^2 \\ 0 & 0 & 0 & -h_x^2 & 0 & 0 & \beta & -h_y^2 & 0 \\ 0 & 0 & 0 & -h_x^2 & 0 & 0 & \beta & -h_y^2 & 0 \\ 0 & 0 & 0 & -h_x^2 & 0 & 0 & \beta & -h_y^2 & 0 \\ 0 & 0 & 0 & 0 & -h_x^2 & 0 & 0 & \beta & -h_y^2 & 0 \\ 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 & 0 \\ 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 & 0 \\ 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 \\ 0 & 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 \\ 0 & 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 \\ 0 & 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 \\ 0 & 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 \\ 0 & 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 \\ 0 & 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 \\ 0 & 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 \\ 0 & 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 \\ 0 & 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 \\ 0 & 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 \\ 0 & 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 \\ 0 & 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 \\ 0 & 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 \\ 0 & 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 \\ 0 & 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 \\ 0 & 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 \\ 0 & 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 \\ 0 & 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 \\ 0 & 0 & 0 & 0 & 0 & -h_x^2 & 0 & -h_y^2 & \beta & -h_y^2 & -h_x^2 h_y^2 f_{4,4} + U_{4,5} h_y^2 + U_{5,4} h_x^2 \\ 0 & -h_x^2 h_y^2 f_{4,4} + U_{4,5} h_y^2 + U_{5,4} h_x^2 \\ 0 & -h_x^2 h_y^2 f_{4,4} + U_{4,5} h_y^2 + U_{5,4} h_x^2 \\ 0 & -h_x^2 h_y^2 f_{4,4} + U_{4,5} h_y^2 + U_{5,4} h_x^2 \\ 0 & -h_x^2 h_y^2 f_{4,4} + U_{4,5} h_y^2 + U_{5,4} h_x^2 \\ 0 & -h_x^2 h_y^2 f_{4,4} + U_{4,5} h_y^2 + U_{5,4} h_x^$$

Now we will do another case $n_x \neq n_y$

Figure 2.23: new grid 2

The unknowns are shown above in the circles. From earlier, we found that the discretization for the elliptic PDE at a node is

$$U_{i,j} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{i,j-1}h_y^2 + U_{i,j+1}h_y^2 + U_{i-1,j}h_x^2 + U_{i+1,j}h_x^2\right) - \frac{h_x^2h_y^2}{2\left(h_x^2 + h_y^2\right)}f_{i,j}$$

We will now write the 12 equations for each node, starting with (2, 2) to node (4, 5)

$$\begin{split} & U_{2,2} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{2,1}h_y^2 + U_{2,3}h_y^2 + U_{1,2}h_x^2 + U_{3,2}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{2,2} \\ & U_{2,3} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{2,2}h_y^2 + U_{2,4}h_y^2 + U_{1,3}h_x^2 + U_{3,3}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{2,3} \\ & U_{2,4} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{2,3}h_y^2 + U_{2,5}h_y^2 + U_{1,4}h_x^2 + U_{3,4}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{2,4} \\ & U_{2,5} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{2,4}h_y^2 + U_{2,6}h_y^2 + U_{1,5}h_x^2 + U_{3,5}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{2,5} \\ & U_{3,2} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{3,1}h_y^2 + U_{3,3}h_y^2 + U_{2,2}h_x^2 + U_{4,2}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{3,2} \\ & U_{3,3} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{3,2}h_y^2 + U_{3,5}h_y^2 + U_{2,3}h_x^2 + U_{4,3}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{3,4} \\ & U_{3,5} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{3,3}h_y^2 + U_{3,5}h_y^2 + U_{2,5}h_x^2 + U_{4,5}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{3,4} \\ & U_{4,2} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{4,1}h_y^2 + U_{4,3}h_y^2 + U_{2,5}h_x^2 + U_{4,5}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{4,2} \\ & U_{4,3} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{4,2}h_y^2 + U_{4,3}h_y^2 + U_{3,5}h_x^2 + U_{5,5}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{4,3} \\ & U_{4,4} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{4,2}h_y^2 + U_{4,5}h_y^2 + U_{3,5}h_x^2 + U_{5,5}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{4,4} \\ & U_{4,5} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{4,4}h_y^2 + U_{4,5}h_y^2 + U_{3,5}h_x^2 + U_{5,5}h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{4,5} \\ \end{array}$$

Now, moving the knowns to the right, results in

$$2 \left(h_x^2 + h_y^2\right) U_{2,2} - U_{2,3}h_y^2 - U_{3,2}h_x^2 = -h_x^2 h_y^2 f_{2,2} + U_{2,1}h_y^2 + U_{1,2}h_x^2$$

$$2 \left(h_x^2 + h_y^2\right) U_{2,3} - U_{2,2}h_y^2 - U_{2,4}h_y^2 - U_{3,3}h_x^2 = -h_x^2 h_y^2 f_{2,3} + U_{1,3}h_x^2$$

$$2 \left(h_x^2 + h_y^2\right) U_{2,4} - U_{2,3}h_y^2 - U_{2,5}h_y^2 - U_{3,4}h_x^2 = -h_x^2 h_y^2 f_{2,4} + U_{1,4}h_x^2$$

$$2 \left(h_x^2 + h_y^2\right) U_{2,5} - U_{2,4}h_y^2 + U_{3,5}h_x^2 = -h_x^2 h_y^2 f_{2,5} + U_{2,6}h_y^2 + U_{1,5}h_x^2$$

$$2 \left(h_x^2 + h_y^2\right) U_{3,2} - U_{3,3}h_y^2 - U_{2,2}h_x^2 - U_{4,2}h_x^2 = -h_x^2 h_y^2 f_{3,2} + U_{3,1}h_y^2$$

$$2 \left(h_x^2 + h_y^2\right) U_{3,3} - U_{3,2}h_y^2 - U_{3,4}h_y^2 - U_{2,3}h_x^2 - U_{4,3}h_x^2 = -h_x^2 h_y^2 f_{3,4}$$

$$2 \left(h_x^2 + h_y^2\right) U_{3,5} - U_{3,4}h_y^2 + U_{2,5}h_x^2 + U_{4,5}h_x^2 = -h_x^2 h_y^2 f_{3,4}$$

$$2 \left(h_x^2 + h_y^2\right) U_{3,5} - U_{3,4}h_y^2 + U_{2,5}h_x^2 + U_{4,5}h_x^2 = -h_x^2 h_y^2 f_{3,4} + U_{3,6}h_y^2$$

$$2 \left(h_x^2 + h_y^2\right) U_{4,2} - U_{4,3}h_y^2 - U_{3,2}h_x^2 = -h_x^2 h_y^2 f_{4,2} + U_{4,1}h_y^2 + U_{5,2}h_x^2$$

$$2 \left(h_x^2 + h_y^2\right) U_{4,3} - U_{4,2}h_y^2 - U_{4,4}h_y^2 - U_{3,3}h_x^2 = -h_x^2 h_y^2 f_{4,5} + U_{4,5}h_x^2$$

$$2 \left(h_x^2 + h_y^2\right) U_{4,4} - U_{4,5}h_y^2 - U_{4,4}h_y^2 - U_{3,5}h_x^2 = -h_x^2 h_y^2 f_{4,5} + U_{4,6}h_y^2 + U_{5,5}h_x^2$$

Now, we can write Ax = b as, letting $\beta = 2(h_x^2 + h_y^2)$

$ \left(\begin{array}{c} \beta\\ -h\\ 0\\ 0\\ -h\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 0 \\ -h_{y}^{2} \\ \beta \\ -h_{y}^{2} \\ 0 \\ 0 \\ -h_{x}^{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$ \begin{array}{c} 0 \\ -h_{y}^{2} \\ \beta \\ 0 \\ 0 \\ -h_{x}^{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$ \begin{array}{c} -h_{x}^{2} \\ 0 \\ 0 \\ 0 \\ -h_{y}^{2} \\ 0 \\ 0 \\ -h_{x}^{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$ \begin{array}{c} 0 \\ -h_x^2 \\ 0 \\ 0 \\ -h_y^2 \\ \beta \\ -h_y^2 \\ 0 \\ 0 \\ -h_y^2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$ \begin{array}{c} 0 \\ 0 \\ -h_{x}^{2} \\ 0 \\ 0 \\ -h_{y}^{2} \\ \beta \\ -h_{y}^{2} \\ 0 \\ 0 \\ -h_{x}^{2} \\ 0 \\ 0 \\ -h_{x}^{2} \\ 0 \\ 0 \\ 0 \\ -h_{x}^{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$ \begin{array}{c} 0\\ 0\\ -h_x^2\\ 0\\ 0\\ -h_y^2\\ \beta\\ 0\\ 0\\ 0\\ h^2 \end{array} $	0 0 0 $-h_x^2$ 0 0 β $-h_y^2$ 0 0	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ -h_{x}^{2} \\ 0 \\ 0 \\ -h_{y}^{2} \\ \beta \\ -h_{y}^{2} \\ 0 \\ 0 \end{array} $	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ -h_x^2\\ 0\\ 0\\ -h_y^2\\ \beta\\ h^2 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -h_x^2 \\ 0 \\ -h_y^2 \\ e \\ \end{array} $	$ \begin{pmatrix} U_{22} \\ U_{23} \\ U_{24} \\ U_{25} \\ U_{32} \\ U_{33} \\ U_{34} \\ U_{35} \\ U_{42} \\ U_{43} \\ U_{44} \\ U_{44} \\ \end{pmatrix} =$	$ \begin{pmatrix} -h_x^2 h_y^2 f_{2,2} + U_{2,1} h_y^2 + U_{1,2} h_x^2 \\ -h_x^2 h_y^2 f_{2,3} + U_{1,3} h_x^2 \\ -h_x^2 h_y^2 f_{2,4} + U_{2,5} h_y^2 + U_{1,4} h_x^2 \\ -h_x^2 h_y^2 f_{2,5} + U_{2,6} h_y^2 + U_{1,5} h_x^2 \\ -h_x^2 h_y^2 f_{3,2} + U_{3,1} h_y^2 \\ -h_x^2 h_y^2 f_{3,4} + U_{3,5} h_y^2 \\ -h_x^2 h_y^2 f_{3,4} + U_{3,5} h_y^2 \\ -h_x^2 h_y^2 f_{3,4} + U_{3,6} h_y^2 \\ -h_x^2 h_y^2 f_{4,3} + U_{5,4} h_x^2 \\ -h_x^2 h_y^2 f_{4,4} + U_{4,5} h_y^2 + U_{5,4} h_x^2 \end{pmatrix} $
0	0 0	0 0	0 0	0 0	0 0	$-h_x^2$ 0	$0 -h_x^2$	0 0	$-h_{y}^{2}$ 0	$\beta -h_y^2$	$-h_y^2$ β	$\begin{pmatrix} U_{43} \\ U_{44} \\ U_{45} \end{pmatrix}$	$ \begin{bmatrix} n_x n_y f_{4,3} + U_{4,5} n_x^2 \\ -h_x^2 h_y^2 f_{4,4} + U_{4,5} h_y^2 + U_{5,4} h_x^2 \\ -h_x^2 h_y^2 f_{4,5} + U_{4,6} h_y^2 + U_{5,5} h_x^2 \end{bmatrix} $

To create the above matrix, as sparse matrix, call the following Matlab code

```
1
   A=lap2d(4,3,hx,hy);
 2
   %Where in the above, 4 is nx, which is the number of nodes in the x-
       direction.
 3
   %These are internal nodes. ny is number of nodes in the y-direction.
 4
   %hx is the spacing between nodes in the x-direction.
 5
   %hy is spacing between nodes in the y-direction
 6
 7
   function L2 = lap2d(nx,ny,hx,hy)
8
   Lx=lap1dy(nx,hx,hy); %makes the MAIN block, only one block
9
   Ly=lap1dx(ny,hx,hy); %makes the off block, only one block
10
11 Ix=speye(nx);
```

```
12
    Iy=speye(ny);
13
14
   Lm=kron(Iy,Lx); %does the central diagonal
15
   Lo=kron(Ly,Ix); % does the off diagonal
16
   L2=Lm+Lo;
17
    %-----
18
19
   function L=lap1dy(n,hx,hy)
20
   e=ones(n,1);
21
   T1=2*(hx^2+hy^2);
   B=[-e*hy<sup>2</sup> (1/2)*T1*e -e*hy<sup>2</sup>];
22
23
   L=spdiags(B,[-1 0 1],n,n);
24
    %-----
25
26
   %
27
   %
28
   function L=lap1dx(n,hx,hy)
29
   e=ones(n,1);
30
   T1=2*(hx^2+hy^2);
31 B=[-e*hx<sup>2</sup> (1/2)*T1*e -e*hx<sup>2</sup>];
   L=spdiags(B,[-1 0 1],n,n);
32
```

A matrix format for sparse storage for elliptic 2D with non-homegenous Nuemman boundary conditions

This section was added at later time, and not required for this HW.

To be able to forumlate the A matrix as sparse matrix, we need to find what the form will be in the case when one or more of the boundary conditions has Nuemman coditions on it. We will start as above, and start with assuming Nuemman conditions now exist on the left edge and find out what the form of the A matrix will turn out to be.

Figure 2.24: new grid 2 nuemman on left

The unknowns are shown above in the circles. From earlier, we found that the discretization for the elliptic PDE at an internal node is (note that in the above, i is the row number, and j is column number)

$$U_{i,j} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{i,j-1}h_y^2 + U_{i,j+1}h_y^2 + U_{i-1,j}h_x^2 + U_{i+1,j}h_x^2\right) - \frac{h_x^2h_y^2}{2\left(h_x^2 + h_y^2\right)}f_{i,j}$$

And for Nuemman, non-homegenouse boundary conditions, the left edge unknowns are given by

$$U_{i,1} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(2U_{i,2} h_y^2 + \left(U_{i-1,1} + U_{i+1,1}\right)h_x^2 - h_y^2 h_x g_{i,1}\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{i,1}$$

We will now write the 15 equations for each node, starting with (2,1) to node (4,5)

$$\begin{split} &U_{2,1} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(2U_{2,2} h_y^2 + \left(U_{1,1} + U_{3,1}\right)h_x^2 - h_y^2h_xg_{2,1}\right) - \frac{h_x^2h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{2,1} \\ &U_{2,2} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{2,1}h_y^2 + U_{2,3}h_y^2 + U_{1,2}h_x^2 + U_{3,2}h_x^2\right) - \frac{h_x^2h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{2,2} \\ &U_{2,3} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{2,2}h_y^2 + U_{2,4}h_y^2 + U_{1,3}h_x^2 + U_{3,3}h_x^2\right) - \frac{h_x^2h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{2,3} \\ &U_{2,4} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{2,3}h_y^2 + U_{2,5}h_y^2 + U_{1,4}h_x^2 + U_{3,4}h_x^2\right) - \frac{h_x^2h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{2,4} \\ &U_{2,5} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{2,4}h_y^2 + U_{2,6}h_y^2 + U_{1,5}h_x^2 + U_{3,5}h_x^2\right) - \frac{h_x^2h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{2,5} \\ &U_{3,1} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(2U_{3,2}h_y^2 + \left(U_{2,1} + U_{4,1}\right)h_x^2 - h_y^2h_xg_{3,1}\right) - \frac{h_x^2h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{3,1} \\ &U_{3,2} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{3,1}h_y^2 + U_{3,3}h_y^2 + U_{2,2}h_x^2 + U_{4,2}h_x^2\right) - \frac{h_x^2h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{3,2} \\ &U_{3,3} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{3,2}h_y^2 + U_{3,5}h_y^2 + U_{2,3}h_x^2 + U_{4,3}h_x^2\right) - \frac{h_x^2h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{3,3} \\ &U_{3,4} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{3,3}h_y^2 + U_{3,5}h_y^2 + U_{2,5}h_x^2 + U_{4,3}h_x^2\right) - \frac{h_x^2h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{3,4} \\ &U_{4,1} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(2U_{4,2}h_y^2 + \left(U_{3,1} + U_{5,1}\right)h_x^2 - h_y^2h_xg_{4,1}\right) - \frac{h_x^2h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{4,4} \\ &U_{4,3} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{4,1}h_y^2 + U_{4,3}h_y^2 + U_{3,2}h_x^2 + U_{5,2}h_x^2\right) - \frac{h_x^2h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{4,2} \\ &U_{4,3} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{4,2}h_y^2 + U_{4,3}h_y^2 + U_{3,2}h_x^2 + U_{5,4}h_x^2\right) - \frac{h_x^2h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{4,4} \\ &U_{4,4} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{4,3}h_y^2 + U_{4,3}h_y^2 + U_{3,3}h_x^2 + U_{5,4}h_x^2\right) - \frac{h_x^2h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{4,4} \\ &U_{4,5} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{4,4}h_y^2 + U_{4,5}h_y^2 + U_{3,5}h_x^2 + U_{5,5}h_x^2\right) - \frac{h_x^2h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{4,5} \\ \end{array}$$

Now, moving the knowns to the right, results in

$$2 (h_x^2 + h_y^2) U_{2,1} - 2U_{2,2} h_y^2 - U_{3,1}h_x^2 = U_{1,1}h_x^2 - h_y^2h_xg_{2,1} - h_x^2h_y^2f_{2,1}
2 (h_x^2 + h_y^2) U_{2,2} - U_{2,3}h_y^2 - U_{3,2}h_x^2 = -h_x^2h_y^2f_{2,2} + U_{2,1}h_y^2 + U_{1,2}h_x^2
2 (h_x^2 + h_y^2) U_{2,3} - U_{2,2}h_y^2 - U_{2,4}h_y^2 - U_{3,3}h_x^2 = -h_x^2h_y^2f_{2,3} + U_{1,3}h_x^2
2 (h_x^2 + h_y^2) U_{2,4} - U_{2,3}h_y^2 - U_{2,5}h_y^2 - U_{3,4}h_x^2 = -h_x^2h_y^2f_{2,4} + U_{1,4}h_x^2
2 (h_x^2 + h_y^2) U_{2,5} - U_{2,4}h_y^2 + U_{3,5}h_x^2 = -h_x^2h_y^2f_{2,5} + U_{2,6}h_y^2 + U_{1,5}h_x^2
2 (h_x^2 + h_y^2) U_{3,1} - 2U_{3,2} h_y^2 - U_{4,1}h_x^2 - U_{2,1}h_x^2 = -h_x^2h_y^2f_{3,2} + U_{3,1}h_y^2
2 (h_x^2 + h_y^2) U_{3,2} - U_{3,3}h_y^2 - U_{2,2}h_x^2 - U_{4,2}h_x^2 = -h_x^2h_y^2f_{3,4} + U_{3,1}h_y^2
2 (h_x^2 + h_y^2) U_{3,3} - U_{3,2}h_y^2 - U_{2,4}h_x^2 - U_{4,4}h_x^2 = -h_x^2h_y^2f_{3,4}
2 (h_x^2 + h_y^2) U_{3,5} - U_{3,4}h_y^2 + U_{2,5}h_x^2 + U_{4,5}h_x^2 = -h_x^2h_y^2f_{3,4} + U_{3,6}h_y^2
2 (h_x^2 + h_y^2) U_{3,5} - U_{3,4}h_y^2 + U_{2,5}h_x^2 + U_{4,5}h_x^2 = -h_x^2h_y^2f_{3,4} + U_{3,6}h_y^2
2 (h_x^2 + h_y^2) U_{4,1} - 2U_{4,2} h_y^2 - U_{3,1}h_x^2 = U_{5,1}h_x^2 - h_y^2h_xg_{4,1} - h_x^2h_y^2f_{4,1}
2 (h_x^2 + h_y^2) U_{4,3} - U_{4,2}h_y^2 - U_{3,3}h_x^2 = -h_x^2h_y^2f_{4,3} + U_{3,6}h_y^2
2 (h_x^2 + h_y^2) U_{4,3} - U_{4,2}h_y^2 - U_{3,3}h_x^2 = -h_x^2h_y^2f_{4,4} + U_{5,4}h_x^2
2 (h_x^2 + h_y^2) U_{4,4} - U_{4,5}h_y^2 - U_{3,3}h_x^2 = -h_x^2h_y^2f_{4,5} + U_{4,6}h_y^2 + U_{5,2}h_x^2
2 (h_x^2 + h_y^2) U_{4,4} - U_{4,5}h_y^2 - U_{3,3}h_x^2 = -h_x^2h_y^2f_{4,5} + U_{4,6}h_x^2 + U_{5,5}h_x^2$$

Now, we can write Ax = b as, letting $\beta = 2(h_x^2 + h_y^2)$

(B	$-2h_{y}^{2}$	0	0	0	$-h_r^2$	0	0	0	0	0	0	0	0	0)	(U_{21})	$(U_{1,1}h_r^2 - h_u^2h_rg_{2,1} - h_r^2h_u^2f_{2,1})$
0	β	$-h_{11}^2$	0	0	0	$-h_{\rm Y}^2$	0	0	0	0	0	0	0	0	U22	$-h_{r}^{2}h_{\mu}^{2}f_{22} + U_{21}h_{\mu}^{2} + U_{12}h_{r}^{2}$
0	$-h_{1}^{2}$	β	$-h_u^2$	0	0	0	$-h_r^2$	0	0	0	0	0	0	0	U23	$-h_{r}^{2}h_{u}^{2}f_{2,3} + U_{1,3}h_{r}^{2}$
0	0	$-h_{u}^{2}$	β	$-h_u^2$	0	0	0	$-h_r^2$	0	0	0	0	0	0	U24	$-h_{2}^{2}h_{4}^{2}f_{2}A + U_{2}5h_{4}^{2} + U_{1}Ah_{2}^{2}$
0	0	o	$-h_{u}^{2}$	ß	0	0	0	0	$-h_{x}^{2}$	0	0	0	0	0	U25	$-h_{2}^{2}h_{2}^{2}f_{2}5 + U_{2}ch_{2}^{2} + U_{1}5h_{2}^{2}$
$-h_r^2$	0	0	0	0	β	$-2h_{11}^2$	0	0	0	$-h_r^2$	0	0	0	0	U ₃₁	$-h_{2}^{2}h_{2}g_{31} - h_{2}^{2}h_{2}^{2}f_{31}$
0	$-h_r^2$	0	0	0	0	β	$-h_u^2$	0	0	0	$-h_r^2$	0	0	0	U32	$-h^{2}h^{2}h^{2}f_{3,2} + U_{3,1}h^{2}h^{2}$
0	0	$-h_{x}^{2}$	0	0	0	$-h_{u}^{2}$	ß	$-h_{u}^{2}$	0	0	0	$-h_r^2$	0	0	U33	$= -h_x^2 h_y^2 f_{3,3}$
0	0	0	$-h_{x}^{2}$	0	0	0	$-h_{ii}^2$	ß	$-h_{11}^2$	0	0	0	$-h_r^2$	0	U24	$-h^{2}h^{2}f_{3,4} + U_{3,5}h^{2}h^{2}$
0	0	0	0	$-h_{x}^{2}$	0	0	0	$-h_{u}^{2}$	ß	0	0	0	0	$-h^2$	1125	$-h^{2}h^{2}f_{2,4} + U_{2,4}h^{2}$
0	0	0	0	0	$-h^2_{r}$	0	0	0	0	в	$-2h_{u}^{2}$	0	0	0	U ₄₁	$U_{5,1}h_{2}^{2} - h_{2}h_{2}g_{4,1} - h_{2}h_{2}g_{4,1}$
0	0	0	0	0	0	$-h^2_{\Sigma}$	0	0	0	0	ß	$-h_{ii}^2$	0	0	1142	$-h^{2}h^{2}f_{4,2} + U_{4,1}h^{2}_{2} + U_{5,2}h^{2}_{2}$
0	0	0	0	0	0	0	$-h^2$	0	0	0	$-h^2$	ß	$-h^2$	0	1142	$-h^2h^2f_{4,2} + U_{5,2}h^2$
0	0	0	0	0	0	0	0	$-h^2$	0	0	0	$-h^2$	ß	$-h^2$	1144	$-h^{2}h^{2}f_{AA} + H_{AB}h^{2} + H_{BA}h^{2}$
lo	0	0	0	0	0	0	0	0	$-h_r^2$	0	0	0	$-h_{11}^2$	β)	$\binom{1}{U_{45}}$	$\begin{pmatrix} -h_{x}^{2}h_{y}^{2}f_{4,5}^{2} + U_{4,5}h_{y}^{2} + U_{5,5}h_{x}^{2} \end{pmatrix}$

The above is the matrix for the case of non-homogeneous Neumann boundary conditions on the left edge.

We will now do the same edge, but with homogeneous boundary conditions to see the difference. Recall, that when the edge is insulated, then

$$U_{i,1} = \frac{h_x h_y}{\left(h_x^2 + h_y^2\right)} \left(\frac{h_x}{2h_y} \left(U_{i-1,1} + U_{i+1,1}\right) - \frac{h_y}{h_x} U_{i,2}\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{i,1}$$

Using the above, we write the 15 equations starting with (2,1) to node (4,5)

$$\begin{split} &U_{2,1} = \frac{h_x h_y}{\left(h_x^2 + h_y^2\right)} \left(\frac{h_x}{2h_y} \left(U_{1,1} + U_{3,1}\right) - \frac{h_y}{h_x} U_{2,2}\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{2,1} \\ &U_{2,2} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{2,1} h_y^2 + U_{2,3} h_y^2 + U_{1,2} h_x^2 + U_{3,2} h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{2,2} \\ &U_{2,3} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{2,2} h_y^2 + U_{2,4} h_y^2 + U_{1,3} h_x^2 + U_{3,3} h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{2,3} \\ &U_{2,4} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{2,3} h_y^2 + U_{2,5} h_y^2 + U_{1,4} h_x^2 + U_{3,4} h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{2,4} \\ &U_{2,5} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{2,4} h_y^2 + U_{2,6} h_y^2 + U_{1,5} h_x^2 + U_{3,5} h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{2,5} \\ &U_{3,1} = \frac{h_x h_y}{\left(h_x^2 + h_y^2\right)} \left(U_{2,1} + U_{4,1}\right) - \frac{h_y}{h_x} U_{3,2}\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{3,1} \\ &U_{3,2} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{3,1} h_y^2 + U_{3,3} h_y^2 + U_{2,2} h_x^2 + U_{4,2} h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{3,2} \\ &U_{3,3} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{3,2} h_y^2 + U_{3,5} h_y^2 + U_{2,3} h_x^2 + U_{4,3} h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{3,4} \\ &U_{3,5} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{3,4} h_y^2 + U_{3,5} h_y^2 + U_{2,5} h_x^2 + U_{4,5} h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{3,4} \\ &U_{4,1} = \frac{h_x h_y}{\left(h_x^2 + h_y^2\right)} \left(U_{3,4} h_y^2 + U_{3,5} h_y^2 + U_{2,5} h_x^2 + U_{4,5} h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{3,4} \\ &U_{4,1} = \frac{h_x h_y}{\left(h_x^2 + h_y^2\right)} \left(U_{4,1} h_y^2 + U_{4,5} h_y^2 + U_{3,5} h_x^2 + U_{5,2} h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{4,4} \\ &U_{4,3} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{4,2} h_y^2 + U_{4,5} h_y^2 + U_{3,5} h_x^2 + U_{5,5} h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{4,4} \\ &U_{4,5} = \frac{1}{2\left(h_x^2 + h_y^2\right)} \left(U_{4,4} h_y^2 + U_{4,5} h_y^2 + U_{3,5} h_x^2 + U_{5,5} h_x^2\right) - \frac{h_x^2 h_y^2}{2\left(h_x^2 + h_y^2\right)} f_{4,5} \\ \end{array}$$

Now, moving the knowns to the right, results in

$$\begin{aligned} \frac{\left(h_{x}^{2}+h_{y}^{2}\right)}{h_{x}h_{y}}U_{2,1}-\frac{h_{x}}{2h_{y}}U_{3,1}+\frac{h_{y}}{h_{x}}U_{2,2}=\frac{h_{x}}{2h_{y}}U_{1,1}-h_{x}h_{y}f_{2,1}\\ &2\left(h_{x}^{2}+h_{y}^{2}\right)U_{2,2}-U_{2,3}h_{y}^{2}-U_{3,2}h_{x}^{2}=-h_{x}^{2}h_{y}^{2}f_{2,2}+U_{2,1}h_{y}^{2}+U_{1,2}h_{x}^{2}\\ &2\left(h_{x}^{2}+h_{y}^{2}\right)U_{2,3}-U_{2,2}h_{y}^{2}-U_{2,4}h_{y}^{2}-U_{3,3}h_{x}^{2}=-h_{x}^{2}h_{y}^{2}f_{2,3}+U_{1,3}h_{x}^{2}\\ &2\left(h_{x}^{2}+h_{y}^{2}\right)U_{2,4}-U_{2,3}h_{y}^{2}-U_{2,5}h_{y}^{2}-U_{3,4}h_{x}^{2}=-h_{x}^{2}h_{y}^{2}f_{2,4}+U_{1,4}h_{x}^{2}\\ &2\left(h_{x}^{2}+h_{y}^{2}\right)U_{2,4}-U_{2,3}h_{y}^{2}-U_{2,5}h_{y}^{2}-U_{3,4}h_{x}^{2}=-h_{x}^{2}h_{y}^{2}f_{2,5}+U_{2,6}h_{y}^{2}+U_{1,5}h_{x}^{2}\\ &\frac{\left(h_{x}^{2}+h_{y}^{2}\right)}{h_{x}h_{y}}U_{3,1}-\frac{h_{x}}{2h_{y}}U_{2,1}-\frac{h_{x}}{2h_{y}}U_{4,1}+\frac{h_{y}}{h_{x}}U_{3,2}=-h_{x}h_{y}f_{3,1}\\ &2\left(h_{x}^{2}+h_{y}^{2}\right)U_{3,2}-U_{3,3}h_{y}^{2}-U_{2,2}h_{x}^{2}-U_{4,2}h_{x}^{2}=-h_{x}^{2}h_{y}^{2}f_{3,2}+U_{3,1}h_{y}^{2}\\ &2\left(h_{x}^{2}+h_{y}^{2}\right)U_{3,3}-U_{3,2}h_{y}^{2}-U_{3,3}h_{y}^{2}-U_{2,3}h_{x}^{2}-U_{4,2}h_{x}^{2}=-h_{x}^{2}h_{y}^{2}f_{3,4}\\ &2\left(h_{x}^{2}+h_{y}^{2}\right)U_{3,4}-U_{3,3}h_{y}^{2}-U_{3,4}h_{x}^{2}-U_{4,4}h_{x}^{2}=-h_{x}^{2}h_{y}^{2}f_{3,4}\\ &2\left(h_{x}^{2}+h_{y}^{2}\right)U_{3,5}-U_{3,4}h_{y}^{2}+U_{2,5}h_{x}^{2}+U_{4,5}h_{x}^{2}=-h_{x}^{2}h_{y}^{2}f_{3,4}\\ &2\left(h_{x}^{2}+h_{y}^{2}\right)U_{3,5}-U_{3,4}h_{y}^{2}+U_{2,5}h_{x}^{2}+U_{4,5}h_{x}^{2}=-h_{x}^{2}h_{y}^{2}f_{3,4}+U_{3,6}h_{y}^{2}\\ &\frac{\left(h_{x}^{2}+h_{y}^{2}\right)}U_{3,5}-U_{3,4}h_{y}^{2}+U_{2,5}h_{x}^{2}+U_{4,5}h_{x}^{2}=-h_{x}^{2}h_{y}^{2}f_{4,4}+U_{3,6}h_{y}^{2}\\ &\frac{\left(h_{x}^{2}+h_{y}^{2}\right)}U_{4,1}-\frac{h_{x}}{2h_{y}}U_{3,1}+\frac{h_{y}}{h_{x}}U_{4,2}=\frac{h_{x}}{2h_{y}}U_{5,1}-h_{x}h_{y}f_{4,1}\\ &2\left(h_{x}^{2}+h_{y}^{2}\right)U_{4,3}-U_{4,3}h_{y}^{2}-U_{3,3}h_{x}^{2}=-h_{x}^{2}h_{y}^{2}f_{4,3}+U_{5,3}h_{x}^{2}\\ &2\left(h_{x}^{2}+h_{y}^{2}\right)U_{4,3}-U_{4,2}h_{y}^{2}-U_{4,3}h_{y}^{2}-U_{3,3}h_{x}^{2}=-h_{x}^{2}h_{y}^{2}f_{4,3}+U_{5,3}h_{x}^{2}\\ &2\left(h_{x}^{2}+h_{y}^{2}\right)U_{4,4}-U_{4,5}h_{y}^{2}-U_{4,3}h_{y}^{2}-U_{3,5}h_{x}^{2}=-h_{x}^{2}h_{y}^{2}f_{4,5}+U_{4,6}h_{y}^{2}$$

Now, we can write Ax = b as, letting $\beta = 2(h_x^2 + h_y^2)$ and $\gamma = \frac{(h_x^2 + h_y^2)}{h_x h_y}$

Storage requirements for the different solvers

The total number of grid points along the x or the y direction is given by $\frac{length}{h}$ + 1, where length is always 1, and hence *n*, the number of unknowns in one dimension is 2 less than the above number (since U is known at the boundaries).

It is important to note that the matrix A is not used explicitly to solve for the unknowns

in the iterative schemes. Storage is needed only for the internal grid points, which is the number of the unknowns n^2 . An auxiliary grid is used to hold the updated values in the Jacobian method. In addition, an auxiliary grid is required for $f_{i,j}$, the force function. Hence, in total $3n^2$ storage is needed.

Comparing this to the storage needed in the case of direct solver, where the storage for A alone is n^4 . This shows the main advantage of the iterative methods compared to the direct method when A is a dense matrix. (Use of sparse matrix become necessary if direct solver is to be used for large n problems).

The following table summarizes the above discussion for the h values given in this problem. In this calculations, double precision (8 bytes) per grid point is assumed. For single precision half of this storage would be needed.

h	п	number of	storage	size of A	storage
		unknowns n ²		n^4	for dense A
2 ⁻⁵	30	900	30 (k Bytes)	810,000	6.4 MBytes
2 ⁻⁶	62	3844	0.1 (MB)	14,776,336	118 MBytes
2 ⁻⁷	126	15876	0.5 (MB)	252,047,376	2 GB

Loop algorithm for each method

This is a short description of the algorithm used by each method. In the following $u_{i,j}^{new}$ represents the new value (residing on the auxiliary grid) of the unknown, and $u_{i,j}^{current}$ is the current value. Initially $u^{current}$ is set to zero at each internal grid point. (any other initial value could also have been used).

Jacobi method algorithm

k := 0 (*counter*) $\epsilon := Ch^2$ (*tolerance*) $u^{current} := u^{new} := 0$ (*initialize storage*) f := f(x, y) (*initialize f on grid points*) *CONVERGED* := *false* WHILE NOT CONVERGED LOOP i LOOP j $\begin{aligned} u_{i,j}^{new} &:= \frac{1}{4} \left(u_{i-1,j}^{current} + u_{i+1,j}^{current} + u_{i,j-1}^{current} + u_{i,j+1}^{current} - h^2 f_{i,j} \right) \\ R_{i,j} &= f_{i,j} - \frac{1}{h^2} \left(u_{i-1,j}^{current} + u_{i+1,j}^{current} + u_{i,j-1}^{current} + u_{i,j+1}^{current} - 4u_{i,j}^{current} \right) \quad (*residual*) \end{aligned}$ END LOOP j END LOOP *i* $u^{current} := u^{new}$ (*update*) k := k + 1IF $\left(\frac{\|R\|}{\|f\|} < \epsilon\right)$ THEN (*Norms are grid norms. see code*) *CONVERGED* := *true* END IF END WHILE

Gauss-Seidel method

k := 0 (*counter*) $\epsilon := Ch^2$ (*tolerance*) $u^{current} := u^{new} := 0$ (*initialize storage*) f := f(x, y) (*initialize f on grid points*) *CONVERGED* := *false* WHILE NOT CONVERGED LOOP i LOOP j $u_{ij}^{new} := \frac{1}{4} \left(u_{i-1,j}^{new} + u_{i+1,j}^{current} + u_{i,j-1}^{new} + u_{i,j+1}^{current} - h^2 f_{i,j} \right)$ $R_{i,j} = f_{i,j} - \frac{1}{h^2} \left(u_{i-1,j}^{current} + u_{i+1,j}^{current} + u_{i,j-1}^{current} + u_{i,j+1}^{current} - 4u_{i,j}^{current} \right)$ (**residual**) END LOOP j END LOOP i $u^{current} := u^{new}$ (*update*) k := k + 1IF $\left(\frac{\|R\|}{\|f\|} < \epsilon\right)$ THEN (*Norms are grid norms. see code*) *CONVERGED* := *true* END IF END WHILE

SOR method

k := 0 (*counter*) $\epsilon := Ch^2$ (*tolerance*) $u^{current} := u^{new} := 0$ (*initialize storage*) f := f(x, y) (*initialize f on grid points*) *CONVERGED* := *false* WHILE NOT CONVERGED LOOP i LOOP j
$$\begin{split} u_{ij}^{new} &:= \frac{\omega}{4} \left(u_{i-1,j}^{new} + u_{i+1,j}^{current} + u_{i,j-1}^{new} + u_{i,j+1}^{current} - h^2 f_{i,j} \right) + (1 - \omega) \, u_{i,j}^{current} \\ R_{i,j} &= f_{i,j} - \frac{1}{h^2} \left(u_{i-1,j}^{current} + u_{i+1,j}^{current} + u_{i,j-1}^{current} + u_{i,j+1}^{current} - 4 u_{i,j}^{current} \right) \quad (*residual*) \end{split}$$
END LOOP j END LOOP i $u^{current} := u^{new}$ (*update*) k := k + 1*IF* $\left(\frac{\|R\|}{\|f\|} < \epsilon\right)$ *THEN* (*Norms are grid norms. see code*) *CONVERGED* := *true* END IF END WHILE

Notice that when $\omega = 1$, SOR becomes the same as *Gauss – Seidel*. When $\omega > 1$ the method is called overrelaxed and when $\omega < 1$ it is called underrelaxed.

2.4.4.7 Result of computation

The above 3 algorithms where implemented and ran for the 3 values of h given. The following tables summarizes the results obtained. The source code is in the appendix. This is a diagram illustrating the final converged solution from one of the runs.

Figure 2.25: final converged solution

Number of steps to reach convergence

These table show the number of iterations to converge. The first was based on using $\varepsilon = 0.1h^2$ for tolerance and the second used $\varepsilon = h^2$

Number of	iteration to	reach	convergence	using	tolerance	$\varepsilon =$	$0.1h^2$
			0				

method	$h = 2^{-3}$	$h = 2^{-4}$	$h = 2^{-5}$	$h = 2^{-6}$	$h = 2^{-7}$
	<i>n</i> = 7	<i>n</i> = 15	<i>n</i> = 31	<i>n</i> = 63	<i>n</i> = 127
Jacobi	82	400	1886	8689	note ⁴
Gauss-Seidel	43	202	944	3446	19674
SOR	13	26	53	106	215

Number of iteration	ı to reach	convergence u	using tol	erance $\varepsilon = h^2$
			- o -	

method	$h = 2^{-3}$	$h = 2^{-4}$	$h = 2^{-5}$	$h = 2^{-6}$	$h = 2^{-7}$
	<i>n</i> = 7	<i>n</i> = 15	<i>n</i> = 31	<i>n</i> = 63	<i>n</i> = 127
Jacobi	52	281	1409	6779	31702
Gauss – Seidel	28	142	706	3391	15852
SOR	10	20	40	80	159

Convergence plots for each method

These error plots where generated only for tolerance $\varepsilon = 1 \times h^2$. They show how the log of the norm of the relative residual changes as the number of iterations changed until convergence

is achieved.

In these plots, the *yaxis* is $\log\left(\frac{\|R^{[k]}\|}{\|f\|}\right)$ or $\log\left(\frac{\|f-Au^{[k]}\|}{\|f\|}\right)$, and the *xaxis* is the *k* value (the iteration number).

Figure 2.26: error plot Jacobi

Figure 2.27: error plot GS

Figure 2.28: error plot SOR

Plots for comparing convergence of the 3 methods for $\epsilon = 1 \times h^2$ for different h values

Figure 2.29: prob1 compare 3h 25

Figure 2.30: prob1 compare 3h 26

Figure 2.31: prob1 compare 3h 27

2.4.4.8 Conclusions and summary

- 1. SOR is the fastest iterative solver of the three solvers.
- 2. SOR method required calculation of an optimal ω to use. For this problem, this calculation was not difficult. In other problems it can be difficult to determine before hand the optimal ω . Some SOR methods use an adaptive ω where ω is readjusted as the solution progresses.

- 3. The use of relative residual to determine the condition of convergence required applying the matrix *A* without actually storing *A*.
- 4. Jacobi method required an additional auxiliary grid storage, hence its memory requirement was twice as much as Gauss-Seidel or SOR.
- 5. Jacobi method was the simplest to implement, but it was the slowest to converge.
- 6. Jacobi method is more suitable for use in parallel processing, where each grid point can be updated independent of the grid point next to it. This is not possible with Gauss-Seidel nor SOR due to the dependency of updates on its immediate grid points. However, if a red-black numbering is used, then it would be possible to implement these methods in parallel in 2 stages.
- 7. All methods are guaranteed to converge eventually, as the spectral radius of the iterative matrix for each method is less than one.

2.4.5 **Problem 2**

2. When solving parabolic equations numerically, one frequently needs to solve an equation of the form

$$u - \delta \Delta u = f,$$

where $\delta > 0$. The analysis and numerical methods we have discussed for the Poisson equation can be applied to the above equation. Suppose we are solving the above equation on the unit square with Dirichlet boundary conditions. Use the standard five point stencil for the discrete Laplacian.

- (a) Analytically compute the eigenvalues of the Jacobi iteration matrix, and show that the Jacobi iteration converges.
- (b) If $h = 10^{-2}$ and $\delta = 10^{-3}$, how many iterations of SOR would it take to reduce the error by a factor of 10^{-6} ? How many iterations would it take for the Poisson equation? Use that the spectral radius of SOR is

$$\rho_{\rm sor} = \omega_{\rm opt} - 1,$$

where

$$\omega_{\rm opt} = \frac{2}{1 + \sqrt{1 - \rho_J^2}},$$

and where ρ_J is the spectral radius of Jacobi.

Figure 2.32: Problem 2

2.4.5.1 Part(a)

Given

$$u - \delta \Delta u = f$$
97

And using standard 5 point Laplacian for the approximation of Δ , the above can be written as

$$u - \delta A u = f \tag{1}$$

Where A is the Jacobian matrix for 2D

$$\frac{1}{h^2} \begin{pmatrix}
-4 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & -4 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & -4 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & \ddots & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & \ddots & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & -4 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & -4
\end{pmatrix}$$

Hence (1) becomes

$$(I - \delta A) u = f \tag{2}$$

Let

$$B = (I - \delta A) \tag{3}$$

Then (2) becomes

$$Bu = f \tag{3A}$$

To obtain the iterative matrix for the above system, the method of matrix splitting is used. Let B = M - N. Equation (3A) becomes

$$(M - N) u = f$$
$$Mu = Nu + f$$

M is selected so that it is invertible and such that M^{-1} is easy to compute, the iterative equation results

 $u^{[k+1]} = (M^{-1}N) u^{[k]} + M^{-1}f$

Where iterative matrix T_i is

 $T_j = \left(M^{-1}N\right) \tag{3B}$

For convergence it is required that the spectral radius of T_j be less than one. $\rho(T_j)$ is the largest eigenvalue of T_j in absolute terms. The largest eigenvalue of T_j is now found as follows.

For the Jacobi method let M = D, and N = L + U, where D is the diagonal of B, L is the negative of the strictly lower triangle matrix of B and U is negative of the strictly upper triangle matrix of B. (3B) becomes

$$T_j = D^{-1} \left(L + U \right)$$

But B = D - L - U, hence L + U = D - B and the above becomes

$$T_{j} = D^{-1} (D - B)$$

= I - D^{-1}B (4)

Now the spectral radius of T_j is determined. First D^{-1} is found. But first B needs to be determined. From (3)

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \ddots & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} - \frac{\delta}{h^2} \begin{pmatrix} -4 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & -4 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -4 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & \ddots & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & \ddots & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & 0 & -\frac{\delta}{h^2} & 0 & 0 & 0 \\ 0 & -\frac{\delta}{h^2} & 1 + \frac{4\delta}{h^2} & -\frac{\delta}{h^2} & 0 & 0 & -\frac{\delta}{h^2} & 0 & 0 \\ 0 & -\frac{\delta}{h^2} & 1 + \frac{4\delta}{h^2} & 0 & 0 & -\frac{\delta}{h^2} & 0 & 0 \\ 0 & 0 & -\frac{\delta}{h^2} & 0 & 0 & \ddots & 0 & 0 \\ 0 & 0 & -\frac{\delta}{h^2} & 0 & 0 & \ddots & 0 & 0 \\ 0 & 0 & -\frac{\delta}{h^2} & 0 & -\frac{\delta}{h^2} & 1 + \frac{4\delta}{h^2} & -\frac{\delta}{h^2} \\ 0 & -\frac{\delta}{h^2} & 0 & -\frac{\delta}{h^2} & 1 + \frac{4\delta}{h^2} & -\frac{\delta}{h^2} \\ 0 & 0 & 0 & -\frac{\delta}{h^2} & 0 & -\frac{\delta}{h^2} & 1 + \frac{4\delta}{h^2} & -\frac{\delta}{h^2} \\ 0 & 0 & 0 & -\frac{\delta}{h^2} & 0 & -\frac{\delta}{h^2} & 1 + \frac{4\delta}{h^2} \end{pmatrix}$$

Therefore, D the diagonal matrix of B is easily found

$$D = \begin{pmatrix} 1 + \frac{4\delta}{h^2} & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 + \frac{4\delta}{h^2} & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 + \frac{4\delta}{h^2} & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \ddots & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 + \frac{4\delta}{h^2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 + \frac{4\delta}{h^2} \end{pmatrix}$$

Now that D is known, the eigenvalue μ_{kl} of the iteration matrix T_j shown in (4) can be written down as

$$T_{j} = I - D^{-1}B$$

$$\Rightarrow$$

$$\mu_{kl} = 1 - \left(1 + \frac{4\delta}{h^{2}}\right)^{-1} \lambda_{kl}$$
(5)

where λ_{kl} is the eigenvalues of *B*. But from (3), $B = (I - \delta A)$, hence (5) becomes

$$\mu_{kl} = 1 - \left(1 + \frac{4\delta}{h^2}\right)^{-1} (1 - \delta \nu_{kl})$$
(6)

Where v_{kl} is the eigenvalue of A, the standard Jacobi A matrix for 2D, with eigenvalues given in textbook (page 63, equation 3.15)

$$\nu_{kl} = \frac{2}{h^2} \left(\cos{(k\pi h)} + \cos{(l\pi h)} - 2 \right)$$

Using this in (6) results in

$$\begin{split} \mu_{kl} &= 1 - \left(1 + \frac{4\delta}{h^2}\right)^{-1} \left(1 - \frac{2\delta}{h^2}\cos\left(k\pi h\right) - \frac{2\delta}{h^2}\cos\left(l\pi h\right) + \frac{4\delta}{h^2}\right) \\ &= 1 - \left(\frac{h^2}{h^2 + 4\delta}\right) \left(1 - \frac{2\delta}{h^2}\cos\left(k\pi h\right) - \frac{2\delta}{h^2}\cos\left(l\pi h\right) + \frac{4\delta}{h^2}\right) \\ &= 1 - \left(\frac{h^2}{h^2 + 4\delta}\right) - \left(\frac{4\delta}{h^2 + 4\delta}\right) + \frac{2\delta}{h^2} \left(\frac{h^2}{h^2 + 4\delta}\right) \left\{\cos\left(k\pi h\right) + \cos\left(l\pi h\right)\right\} \\ &= \left(\frac{1}{h^2 + 4\delta} - \frac{1}{h^2 + 4\delta}\right) + \left(\frac{2\delta}{h^2 + 4\delta}\right) \left\{\cos\left(k\pi h\right) + \cos\left(l\pi h\right)\right\} \\ &= \left(\frac{2\delta}{h^2 + 4\delta}\right) \left\{\cos\left(k\pi h\right) + \cos\left(l\pi h\right)\right\} \end{split}$$

The largest value of the above occurs when $\cos(k\pi h) + \cos(l\pi h)$ is maximum, which is 2. Therefore

$$\rho\left(T_{j}\right) = \left(\frac{4\delta}{h^{2} + 4\delta}\right)$$

Which is less than one for any $\delta > 0$.

Hence it is now shown that Jacobi iteration converges for this system.

2.4.5.2 Part (b)

Reducing the error by factor 10^{-6} implies

$$\left|e^{k}\right\| < 10^{-6} \left\|e^{0}\right\| \tag{1}$$

but by definition

 $\rho_{sor}^k < 10^{-6}$

 $\left\|e^k\right\|=\rho_{sor}^k\left\|e^0\right\|$

Where the solution for k at equality is found (rounded to the largest integer if needed). Hence the above becomes, after taking logarithms of both sides

$$k \log \rho_{sor} = -6$$

$$k = \frac{-6}{\log \rho_{sor}}$$
(2)

But

Where

$$\omega_{opt} = \frac{2}{1 + \sqrt{1 - \rho_j^2}}$$

 $\rho_{sor} = \omega_{opt} - 1$

And $\rho_j = \left(\frac{4\delta}{h^2 + 4\delta}\right)$ from part(a), hence the above becomes

$$\omega_{opt} = \frac{2}{1 + \sqrt{1 - \left(\frac{4\delta}{h^2 + 4\delta}\right)^2}}$$

Hence

$$\rho_{sor} = \frac{2}{1 + \sqrt{1 - \left(\frac{4\delta}{h^2 + 4\delta}\right)^2}} - 1$$

Substituting the numerical values $h = 10^{-2}, \delta = 10^{-3}$ in the above results in

$$\rho_{sor} = \frac{2}{1 + \sqrt{1 - \left(\frac{4(10^{-3})}{(10^{-2})^2 + 4(10^{-3})}\right)^2}} - 1$$
$$= 0.64$$

Therefore, from (2)

$$k = \frac{-6}{\log(0.64)}$$

= 30.95

rounding up gives

k = 31

2.4.6 **Problem 3**

- 3. In this problem we compare the speed of SOR to a direct solve using Gaussian elimination. At the end of this assignment is MATLAB code to form the matrix for the 2D discrete Laplacian. The code for the 3D matrix is similar. Note that with 1 GB of memory, you can handle grids up to about 1000×1000 in 2D and $40 \times 40 \times 40$ in 3D with a direct solve. The range of grids you will explore depends on the amount of memory you have.
 - (a) Solve the PDE from problem 1 using a direct solve. Put timing commands in your code and report the time to solve for a range of mesh spacings. Use SOR to solve on the same meshes and report the time and number of iterations. Comment on your results.
 - (b) Repeat the previous part in three spatial dimensions for a range of mesh spacings. Change the right side of the equation to be a three dimensional Gaussian. Comment on your results.

Figure 2.33: Problem 3

2.4.6.1 Part(a)

To solve the problem using direct solver, the matrix A is constructed (sparse matrix), and the vector f is evaluated using the given function f(x, y), this results in an Au = f system, which is then solved using a direct solver.

Recall from problem (1) that the *A* matrix has the following form (as an example, for 3×3 internal grid, or for h = 0.2)

(-4)	1	0	1	0	0	0	0	0)	$(U_{1,1})$		$(f_{1,1})$
1	-4	1	0	1	0	0	0	0	U _{2,1}		$f_{2,1}$
0	1	-4	0	0	1	0	0	0	<i>U</i> _{3,1}		$f_{3,1}$
1	0	0	-4	1	0	1	0	0	U _{1,2}		f _{1,2}
0	1	0	1	-4	1	0	1	0	U _{2,2}	$= h^{2}$	f _{2,2}
0	0	1	0	1	-4	0	0	1	U _{3,2}		f _{3,2}
0	0	0	1	0	0	-4	1	0	<i>U</i> _{1,3}		$f_{1,3}$
0	0	0	0	1	0	1	-4	1	U _{2,3}		$f_{2,3}$
0	0	0	0	0	1	0	1	-4)	$(U_{3,3})$		$(f_{3,3})$

The matrix A is set up, as sparse for the following set of values

h	internal grid size $(n = \frac{1}{h} - 1)$
2-5	31 × 31
2 ⁻⁶	63 × 63
2 ⁻⁷	127×127
2 ⁻⁸	255 × 255
2 ⁻⁹	511 × 511
2 ⁻¹⁰	1023×1023

A function is written to evaluate f(x, y) at each of the internal grid points and reshaped to be column vector in the order shown above. Then the direct solver is called.

Next, the SOR solver is used for each of the above spacings. First ω was calculated for each h using $\omega_{opt} \approx 2(1 - \pi h)$ resulting in

h	ω_{opt}
2 ⁻⁵	1.8037
2 ⁻⁶	1.901 8
2-7	1.9509
2 ⁻⁸	1.9755
2 ⁻⁹	1.9877
2-10	1.9939

Then the SOR solver which was written in problem (1) was called for each of the above cases. The next section shows the results obtained. The source code is in the appendix.

2.4.6.2 Result of computation

The following is an image of f(x,y) on the grid

Figure 2.34: image of f(x, y)

And the solution obtained by direct solver on 2D is the following (implemented in Matlab and in Mathematica)

Figure 2.35: Solution by direct solver, Matlab

Figure 2.36: Solution by direct solver using Mathematica

The CPU results below are in seconds. The function cputime() was used to obtain cpu time used in Matlab. For SOR, the cpu time was that of the whole iterative loop until convergence was achieved. In Mathematica, the command Timing[] which measures the CPU time was used. These are the results obtained using Matlab 2010a and using Mathematica 7.0^5

In this table, the grid size *n* represents the number of internal grid points in one dimension. For example, for n = 31, the grid size will be 31×31 . The number of non zero elements shown in the table relates to storage used by the sparse matrix and was obtained in Matab by calling nnz(A).

h	п	N	number	Direct	Direct	SOR	k
		number	non zero	Solver CPU	Solver CPU	Solver	SOR number
		of unknowns	elements	MATLAB	Mathematica	CPU	of iterations
2 ⁻⁵	31	961	4,681	0.015	0.016	0	68
2-6	63	3,969	19,593	0.125	0.016	0.094	143
2-7	127	16,129	80,137	0.250	0.063	0.6	306
2 ⁻⁸	255	65,025	324,105	1.544	0.344	5.2	661
2-9	511	261,121	1,303,561	5.538	1.90	48.9	1427
2 ⁻¹⁰	1023	1,046,529	5,228,553	27.113	14.57	532	3088

These 2 plots illustrate the CPU difference, done on a normal scale and on log scale. (using

⁵Matlab 2010a, on windows 7, 64 bit OS, intel i7 930, with 8 GB installed physical RAM.

Matlab results only).

Figure 2.37: prob3 part a compare CPU normal scale

Figure 2.38: plot prob3 part a compare CPU

Comments on results obtained

CPU performance for SOR is given by

work = *number iterations* × *work per iteration*

The number of iterations depends on the constant used for tolerance. Let k be the number

of iterations, and let the tolerance be Ch^2 where *h* is the spacings. Hence

$$k = \frac{\log\left(Ch^2\right)}{\log\rho_{sor}} = \frac{\log C + 2\log h}{\log\left(1 - 2\pi h\right)} \approx \frac{\log C + 2\log h}{-2\pi h} \approx O\left(h^{-1}\log h\right)$$

But $h = O\left(\frac{1}{n}\right)$ where *n* is the number of grid points in one dimension. Therefore

$$k = O(n \log n)$$

And since there are n^2 unknowns, the work per iteration is $O(n^2)$, hence for SOR performance, work becomes

$$CPU_{sor} = O\left(n^3 \log n\right)$$

Expressing this in terms of the unknowns $N = n^2$ gives

$$CPU_{sor} = O\left(N^{\frac{3}{2}}\log N\right)$$

For direct solver, the work is proprietional to (Nb) where b is the banwidth (when using nested dissection method)⁶. The bandwidth is n, hence for direct solver on 2D using sparse matrices, the performance is n^3

$$CPU_{direct} = O\left(N^{\frac{3}{2}}\right)$$

In summary

method	CPU (in terms of number of unknowns N)	CPU in terms of n
SOR 2D	$O\left(N^{\frac{3}{2}}\log N\right)$	$O\left(n^3\log n\right)$
direct solver 2D	$O\left(N^{\frac{3}{2}}\right)$	$O(n^3)$

For small number of unknowns, SOR was very competitive with direct solver but when the number of unknowns became larger than about $N \approx 100$, the direct solver is faster as the effect of the $\log n$ factor starts to take effect on the performance of *SOR*. The results shown in the plots above confirmed this performance analysis.

2.4.6.3 Part(b)

The goal is to solve

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = -\exp(-(x-0.25)^2 - (y-0.6)^2 - z^2)$$

On the unit cube. Referring to the following diagram made to help in setting up the 3D scheme to approximate the above PDE

⁶See textbook, page 68.

Figure 2.39: 3D axis

The discrete approximation to the PDE can be written as

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{1}{h^2} \left(U_{i-1,j,k} + U_{i+1,j,k} + U_{i,j-1}, k + U_{i,j+1,k} + U_{i,k,k-1} + U_{i,j,k+1} - 6U_{i,j,k} \right)$$

Hence the SOR scheme becomes

$$U_{i,j,k}^{[k+1]} = \frac{\omega}{6} \left(U_{i-1,j,k}^{[k+1]} + U_{i+1,j,k}^{[k]} + U_{i,j-1,k}^{[k+1]} + U_{i,j+1,k}^{[k]} + U_{i,j,k-1}^{[k+1]} + U_{i,j,k+1}^{[k]} - h^2 f_{i,j} \right) + (1-\omega) U_{i,j,k}^{[k]}$$

For the direct solver, the A matrix needs to be formulated. From

$$\frac{1}{h^2} \left(U_{i-1,j,k} + U_{i+1,j,k} + U_{i,j-1}, k + U_{i,j+1,k} + U_{i,k,k-1} + U_{i,j,k+1} - 6U_{i,j,k} \right) = f_{i,j,k}$$

And solving for $U_{i,j,k}$ results in

$$U_{i,j,k} = \frac{1}{6} \left(U_{i-1,j,k} + U_{i+1,j,k} + U_{i,j-1}, k + U_{i,j+1,k} + U_{i,k,k-1} + U_{i,j,k+1} - h^2 f_{i,j,k} \right)$$

To help make the A matrix, using an example with n = 2, the following diagram is made with the standard numbering on each node

Figure 2.40: 3d grid example

By traversing the grid, left to right, then inwards into the paper, then upwards, the following A matrix results

	6 1 1 0		$\left(\begin{array}{c} U_{1,1,1} \end{array} \right)$		$(f_{1,1,1})$
1	<u>-6</u> 0 \)	0 1 0 0	$U_{2,1,1}$		$f_{2,1,1}$
<1	0 -6 1	0 0 1 0	$U_{1,2,1}$		$f_{1,2,1}$
C	(1,1) $1 -6$	0 0 0 1	$U_{2,2,1}$	$= h^{3}$	$f_{2,2,1}$
$\langle 1$	0 0 0		$U_{1,1,2}$		$f_{1,1,2}$
C	0 1 0 0	1 - 6 0	$U_{2,1,2}$		$f_{2,1,2}$
C	0 0 1 0		$U_{1,2,2}$		$f_{1,2,2}$
		$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$	$\left(\begin{array}{c} U_{2,2,2} \end{array} \right)$		$(f_{2,2,2})$

Figure 2.41: repating A sructure n2

One can see the recursive pattern involved in these A matrices. Each A matrix contains

inside it a block on its diagonal which repeats n times. Each block in turn, contain inside it, on its diagonal, smaller block, which also repeats n times.

It is easier to see the pattern of building A by using numbers for the grid points, and label them in the same order as they would be visited, this allowed one to see the connection between each grid point to the other much easier. For example, for n = 2,

Figure 2.42: 3d grid n2 numbers

One can see now more easily the connections. grid point 1 has connection to only 2,3,5 points. This means when looking at the *A* matrix, there will be a 1 in the first row, at columns 2,3,5. Similarly, point 2 has connections only to 1,4,6, which means in the second row, there will be a 1 at columns 1,4,6. Extending the number of points to n = 3 to better see the pattern of *A* results in

Figure 2.43: 3d grid n3 numbers

From the above, one can see clearly that, for example, point 1 is connected only to 2,4,10 and 2 is connected to 1,3,5,11 and so on. The above shows that each point will have a connection to a point which is numbered n^2 higher than the grid point itself. n^2 is the size of the grid in each surface. Hence, the general A matrix, for the above example, can now be written as

									^																				
_	51	0	(î	0	0	0	0	0	1	\searrow	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 >		١	$\int f_{111}$
1	-(5 1	ò	$\backslash 1$	$\setminus 0$	0	0	0	0	1	\searrow	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U ₂₁₁		f_{211}
0	1	-(50	0	1	0	0	0	0	0	1	<u>\</u> 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U ₃₁₁		f_{311}
₹î	$\setminus 0$	0	-(51	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U 121		f_{121}
0	$\backslash 1$	$\setminus 0$	1	-6	1	0	1	0	0	0	0	0	1	<u>\</u> 0	0	0	0	0	0	0	0	0	0	0	0	0	U 221		f_{221}
0	0	$\setminus 1$	10	1	-6	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	U 321		f_{321}
0	0	0	1	0	0	-6	1	$\overset{\checkmark}{0}$	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	U 131		f_{131}
0	0	0	0	$\backslash 1$	$\setminus 0$	1	-6	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	U 231		f_{231}
0	0	0	0	0	1	> 0	1	-6	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	U 331		f_{331}
$\overline{\langle}$	$\sqrt{0}$	0	0	0	0	0	0	0	-6	1	0 <	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	U 112		f_{112}
0	1	\searrow	0	0	0	0	0	0	1	-6	1	0	1	<u>\</u>	0	0	0	0	1	0	0	0	0	0	0	0	U 212		f_{212}
0	0	1	0	0	0	0	0	0	0	1	-6	0	0	1	\searrow	0	0	0	0	1	0	0	0	0	0	0	U 312		f_{312}
0	0	0	1	0	0	0	0	0	Į.	2	0	-6	1	0	1	<u>\</u> 0	0	0	0	0	1	0	0	0	0	0	U 122		f_{122}
0	0	0	0	1	<u>\</u>	0	0	0	0	1	2	1	-6	1	0	1	0	0	0	0	0	1	0	0	0	0	U 222	$= h^{3}$	f_{222}
0	0	0	0	0	$\backslash 1$	\searrow	0	0	0	0	1	Q	1	-6	0	0	1	> 0	0	0	0	0	1	0	0	0	U 322		f_{322}
0	0	0	0	0	0	1	2	0	0	0	0	1	2	0	-6	1	ŏ	0	0	0	0	0	0	1	0	0	U ₁₃₂		f_{132}
0	0	0	0	0	0	0	1	\searrow	0	0	0	0	1	2	1	-6	1	0	0	0	0	0	0	0	1	0	U 232		f_{232}
0	0	0	0	0	0	0	0	1	8	0	0	0	0	$\sqrt{1}$	>0	1	-6	0	0	0	0	0	0	0	0	Ì	U 332		f_{332}
0	0	0	0	0	0	0	0	0	1	\searrow	0	0	0	0	0	0	0	-6	1	0 <	1	~	0	0	0	0	U 113		f_{113}
0	0	0	0	0	0	0	0	0	0	1	\searrow	0	0	0	0	0	0	1	-6	1	0	1	0	0	0	0	U 213		f_{213}
0	0	0	0	0	0	0	0	0	0	0	1	\searrow	0	0	0	0	0	0	1	-6	0	0	1	0	0	0	U 313		f_{313}
0	0	0	0	0	0	0	0	0	0	0	0	1	\searrow^0	0	0	0	0	1	2	0	-6	1	0	1	\searrow	0	U 123		f_{123}
0	0	0	0	0	0	0	0	0	0	0	0	0	1	$^{\circ}$	0	0	0	0	1	~	1	-6	1	0	1	0	U 223		f_{223}
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	$^{\circ}$	0	0	0	0	1	Q	1	-6	0	0	1	U 323		f_{323}
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\backslash^1	\searrow^0	0	0	0	0	1	$^{\circ}$	0	-6	1	Õ	U 133		f_{133}
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	$^{\circ}$	0	0	0	0	1	0	1	-6	1	U 233		f_{233}
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0		0	1	-6	/ U ₃₃₃	/	f333
																							\sim						

Figure 2.44: A sructure 3D

One can see the recursive structure again. There are n = 3 main repeating blocks on the diagonal, and each one of them in turn has n = 3 repeating blocks on its own diagonal. Here n = 3, the number of grid points along one dimension.

Now that the *A* structure is understood, the Matlab code for filling the sparse matrix is modified for the 3D case as follows

```
1
    function L3 = lap3d(n)
 2
 3
    L2=lap2d(n,n);
 4
    e=ones(n^3,1);
 5
    L=spdiags([e e],[-n<sup>2</sup> n<sup>2</sup>],n<sup>3</sup>,n<sup>3</sup>);
 6
    Iz=speye(n);
 7
 8
    L3=kron(Iz,L2)+L;
 9
     end
10
11
    %-----
12
    function L2 = lap2d(nx,ny)
13
```

```
14
   Lx=lap1d(nx);
   Ly=lap1d(ny);
15
16
17
   Ix=speye(nx);
18
   Iy=speye(ny);
19
20
   L2=kron(Iy,Lx)+kron(Ly,Ix);
21
   end
22
23
   function L=lap1d(n)
24
   e=ones(n,1);
25
   L=spdiags([e -3*e e],[-1 0 1],n,n);
26
   end
```

To test, for example, for n = 2

1	EDU>>	full (1	ap3d(2)))					
2	ans =								
3	-6	1	1	0	1	0	0	0	
4	1	-6	0	1	0	1	0	0	
5	1	0	-6	1	0	0	1	0	
6	0	1	1	-6	0	0	0	1	
7	1	0	0	0	-6	1	1	0	
8	0	1	0	0	1	-6	0	1	
9	0	0	1	0	1	0	-6	1	
10	0	0	0	1	0	1	1	-6	

Using the above function, the solution was found using direct solver.

Result of computation

The results for the 3D solver are as follows. In this table, n represents the number of grid points in one dimension. Hence n = 10 represents a 3D space of [10, 10, 10] points. The number of non zero elements in the table relates to the sparse matrix used for the direct solver and was obtained using Matab call nnz(A).

h	n	N total number	make sparse	A∖f	Total Direct	Total SOR	SOR number	
		unknowns (n ³)	CPU time	CPU time	Solver CPU	Solver CPU	iterations	
0.090909	10	1,000	0.047	0	0.047	0	23	
0.047619	20	8,000	0.062	0.44	0.502	0.078	44	
0.032258	30	27,000	0.016	3.90	3.90	0.405	65	
0.027778	35	42,875	0.359	8.70	8.80	0.75	77	
0.024390	40	64,000	0.328	21.20	21.50	1.29	88	
0.021739	45	91,125	0.296	39.80	40.00	2.11	100	
0.019608	50	125,000	0.624	84.20	84.80	3.24	112	
0.017857	55	166,375	0.421	157.30	157.70	4.9	125	
0.016393	60	216,000	0.889	244.10	244.20	7.17	138	

For the direct solver, Matlab ran out of memory at n = 65 as shown below

```
1
 2
   EDU>> nma_HW3_problem_3_partB_direct_solver
 3
   . . . . .
 4
 5
   ******
 6
   grid is 3D [60,60,60]
 7
   h=0.016393
 8
   cpu time for making sparse matrix=1.060807 seconds
 9
   dimensions of A (sparse matrix) is [216000,216000]
10
   nnz(A) = 1490400
11 cpu time for direct solver=240.693943 seconds
12
   **********
13
   grid is 3D [65,65,65]
14 h=0.015152
15 cpu time for making sparse matrix=0.826805 seconds
16 dimensions of A (sparse matrix) is [274625,274625]
17
   nnz(A) = 1897025
18 ??? Error using ==> mldivide
   Out of memory. Type HELP MEMORY for your options.
19
20
21
   Error in ==> nma_HW3_problem_3_partB_direct_solver at 54
22
       u = A \setminus f;
```

This plot illustrates the CPU difference table on a log scale

Figure 2.45: prob3 part B compare CPU log scale

Comments on results obtained

CPU performance for SOR is given by

work = number iterations × work per iteration

The number of iterations depends on the constant used for tolerance. Let k be the number of iterations, and let the tolerance be Ch^2 where h is the spacings. Hence

$$k = \frac{\log\left(Ch^2\right)}{\log\rho_{sor}} = \frac{\log C + 2\log h}{\log\left(1 - 2\pi h\right)} \approx \frac{\log C + 2\log h}{-2\pi h} \approx O\left(h^{-1}\log h\right)$$

But $h = O\left(\frac{1}{n}\right)$ where *n* is the number of grid points in one dimension. Hence

$$k = O\left(n\log n\right)$$

And since there are n^3 unknowns (compared to n^2 in 2D), then work per iteration is $O(n^3)$, hence for SOR performance becomes

$$CPU_{sor} = O\left(n^4 \log n\right)$$

Expressing this in terms of $N = n^3$ as the number of unknowns, gives

$$CPU_{sor} = O\left(N^{\frac{4}{3}}\log N\right)$$

For direct solver, the work is proprietional to (Nb) where b is the banwidth (when using nested dissection method)⁷. The bandwidth is n^2 in this case and not n as was with 2D.

⁷See textbook, page 68.

Hence the total cost is

$$CPU_{direct} = O(N \times n)$$
$$= O(n^5)$$
$$= O(N^{\frac{5}{3}})$$

Hence

method	CPU (in terms of N)	CPU in terms of n
SOR 3D	$O\left(N^{\frac{4}{3}}\log N\right)$	$O\left(n^4 \log n\right)$
direct solver 3D	$O\left(N^{\frac{5}{3}}\right)$	$O(n^5)$

The above shows that SOR is faster than direct solver performance. The results shown in the plots above confirmed this analytical performance prediction showing SOR to be faster. To verify the above, a plot was made using the above complexity cost measure to determine if the resulting shape matches the one obtained from the actual runs above. The following plot shows the complexity cost made on sequence of values that represent n

Figure 2.46: verify cost of 3D

The following matlab code was in part used to generate the above

n=[10 20 30 35 40 45 50 55 60 65]; plot(n,log10(n.^5),'ro',n,log10(n.^4.*log10(n)),'*');

It can be seen that the cost curves matches those produced with the actual runs, but for a scaling factor as can be expected.

Therefore one can conclude that in 3D SOR is faster than direct solver. This result was surprising as the expectation was that the direct solver will be faster than SOR in 3D as it was in 2D. Attempts were made to find any errors in the code that can explain this, and none were found.

2.4.7 **Problem 4**

- 3. In this problem we compare the speed of SOR to a direct solve using Gaussian elimination. At the end of this assignment is MATLAB code to form the matrix for the 2D discrete Laplacian. The code for the 3D matrix is similar. Note that with 1 GB of memory, you can handle grids up to about 1000×1000 in 2D and $40 \times 40 \times 40$ in 3D with a direct solve. The range of grids you will explore depends on the amount of memory you have.
 - (a) Solve the PDE from problem 1 using a direct solve. Put timing commands in your code and report the time to solve for a range of mesh spacings. Use SOR to solve on the same meshes and report the time and number of iterations. Comment on your results.
 - (b) Repeat the previous part in three spatial dimensions for a range of mesh spacings. Change the right side of the equation to be a three dimensional Gaussian. Comment on your results.

Figure 2.47: Problem 3

Periodic boundary conditions mean that the solution must be such that u'(0) = u'(1) and u(0) = u(1). As an example, the following is a solution to u''(x) = f(x) with Periodic boundary conditions just for illustration

Figure 2.48: example periodic BC

2.4.7.1 part(a)

Using the standard numbering system

Figure 2.49: problem 4 part a scheme

In the above diagram, u_0 represents u at x = 0 and u_{N+1} represents u at x = 1. The 3 point discrete Laplacian for 1-D at x_0 is given by

$$u_0'' = \frac{u_{-1} - 2u_0 + u_1}{h^2} \tag{1}$$

where x_{-1} is an imaginary grid point to the left of x_0 in the diagram above.

Expanding u_{-1} about u_0 by Taylor results in $u_{-1} = u_0 - hu'_0$, hence

$$u_0' = \frac{u_0 - u_{-1}}{h} \tag{2}$$

Similarly, by Taylor expansion of u_N about u_{N+1} results in

$$u_N = u_{N+1} - hu'_{N+1}$$

Hence

$$u_{N+1}' = \frac{u_{N+1} - u_N}{h} \tag{3}$$

But $u'_0 = u'_{N+1}$ from boundary conditions, hence (2)=(3) which results in

$$\frac{u_0 - u_{-1}}{h} = \frac{u_{N+1} - u_N}{h}$$

Solving now for u_{-1} from the above gives

$$u_{-1} = u_0 + u_N - u_{N+1}$$

But $u_{N+1} = u_0$, also from the boundary conditions, hence the above results in

$$u_{-1} = u_N$$

Use the above value of u_{-1} in (1) gives

$$u_0'' = \frac{u_N - 2u_0 + u_1}{h^2}$$

Similarly the derivation for $u_{N+1}^{\prime\prime}$ results in

$$u_{N+1}'' = \frac{u_N - 2u_{N+1} + u_1}{h^2}$$

For every other internal grid point $i = 1 \cdots N$ the standard 3 point central difference is used

$$u_i'' = \frac{1}{h^2} \left(u_{i-1} - 2u_i + u_{i+1} \right)$$

Therefore, the following set of equations are obtained

$$\frac{1}{h^2} (u_N - 2u_0 + u_1) = f_0 \qquad i = 0$$

$$\frac{1}{h^2} (u_{i-1} - 2u_i + u_{i+1}) = f_i \qquad i = 1 \cdots N$$

$$\frac{1}{h^2} (u_N - 2u_{N+1} + u_1) = f_{N+1} \qquad i = N+1$$

And the system can now be put in the form Au = f resulting in

$$\frac{1}{h^{2}} \begin{pmatrix}
-2 & 1 & 0 & 0 & \cdots & 1 & 0 \\
1 & -2 & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & -2 & 1 & 0 & \vdots \\
0 & 0 & 0 & \cdots & \ddots & \cdots & 0 \\
0 & 0 & 0 & \cdots & 1 & -2 & 1 \\
0 & 1 & 0 & \cdots & 0 & 1 & -2
\end{pmatrix} \begin{pmatrix}
u_{0} \\
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{N} \\
u_{N+1}
\end{pmatrix} = \begin{pmatrix}
f_{0} \\
f_{1} \\
f_{2} \\
f_{3} \\
\vdots \\
f_{N} \\
f_{N+1}
\end{pmatrix}$$
(4)

The above A matrix is singular since Ab = 0 for b the vector 1^T . Hence the null space of A contains a vector other than the 0 vector meaning that A is singular.

To determine the dimension of the null space, the rank of *A* is determined. Removing the last column and the last row of *A* results in an n-1 by n-1 matrix

$$A_{n-1} = \begin{pmatrix} -2 & 1 & 0 & 0 & \cdots & 1 \\ 1 & -2 & 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & 1 & 0 & \cdots \\ 0 & 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & \cdots & 1 & -2 \end{pmatrix}$$

The square matrix inside of A_{n-1} that extends from the first row to the one row before the last row is of size n-2

$$A_{n-2} = \begin{pmatrix} -2 & 1 & 0 & 0 & \cdots \\ 1 & -2 & 1 & 0 & \cdots \\ 0 & 1 & \ddots & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix}$$

And this matrix is a full rank as it is the A matrix used for 1-D with Dirichlet boundary conditions and this matrix is known to be invertible (same one used in HW2).

Therefore, the rank of A can not be less than n - 2 where n is the size of A.

In other words, the size of the null space of *A* can at most be 2. To determine if the size of the null space of *A* can be just one, the matrix A_{n-1} shown above has to be invertible as well.

One way to show that A_{n-1} is invertible, is to show that the last column of A_{n-1} is linearly independent to any of the remaining columns of A_{n-1} .

The last column of
$$A_{n-1}$$
 is $c_{n-1} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 1 \\ -2 \end{pmatrix}$ and this column is linearly independent with the first column of A_{n-1} which is $c_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$ since $a \times c_{n-1} + b \times c_1 = 0$ only when a, b are both zero. The

same can be shown with all the other columns of A_{n-1} , they are all linearly independent to the last columns of c_{n-1} . Since all the other n-2 columns of A_{n-1} are linearly independent with each others (they make up the Dirichlet matrix known to be invertible) then A_{n-1} is invertible. This shows that the rank of A is n-1, hence the null space of A has dimension 1 only. In other words, only the and only the vector 1^T in the null of A. (Since A is symmetric, the null space of the adjoint of A is the same).

2.4.7.2 part (b)

In terms of looking at the conditions of solvability, the continuous case is considered and then the conditions are translated to the discrete case.

The pde u''(x) = f(x) with periodic boundary conditions has an eigenvalue which is zero (the boundary conditions u'(1) = u'(0) results in this), hence

$$0 = \int_0^1 f(x) \, dx$$

Is the solvability condition which results from the u'(1) = u'(0) boundary conditions. (same argument that was carried out in part (d), problem 1, HW1 which had Neumann boundary conditions is used). Now, what solvability conditions does u(0) = u(1) add to this if any?

Since

$$u^{\prime\prime}\left(x\right)=f\left(x\right)$$

Then integrating once gives

$$u'(1) - u'(0) = \int_0^1 f(x) \, dx + C_1$$

But since u'(1) = u'(0), then the above implies that

 $0 = C_1$

And integrating twice the PDE results in

$$u(1) - u(0) = C_2$$

But u(1) - u(0) = 0, hence $C_2 = 0$. So the only solvability condition is based on the fact that an eigenvalue is zero, which implies

$$\int_0^1 f(x) \, dx = 0$$

This is the same as was the case with Neumann boundary conditions. In the discrete case, this implies that solvability condition becomes the discrete integration (Riemman sum)

$$h\sum_{j=0}^{j=N+1} f\left(jh\right) = 0$$

For 2D, by extension of the above, there will be 2 eigenvalues of zero values, hence the discrete solvability condition becomes

$$h^{2} * \sum_{i=0}^{i=N+1} \left(\sum_{j=0}^{j=N+1} f(ih, jh) \right) = 0$$

2.4.7.3 Part(c)

Since this is an *iff* problem, then the following needs to be shown

1. If v is in the null space of A then v is an eigenvector of T with eigenvalue 1

2. If v is an eigenvector of T with eigenvalue 1 then v is in the null space of A

Solving part(1)

Since v is in null space of A, then by definition

$$Av = 0$$

But A = M - N, hence the above becomes

$$(M - N) v = 0$$
$$Mv - Nv = 0$$

Since M is invertible by definition, then M^{-1} exists. Premultiply both sides by M^{-1}

$$M^{-1}Mv - M^{-1}Nv = M^{-1}0$$

But $M^{-1}0 = 0$ then the above becomes

$$Iv - M^{-1}Nv = 0$$
$$M^{-1}Nv = v$$
$$Tv = v$$

Therefore v is an eigenvector of T with an eigenvalue of 1.

Solving part(2)

Since v is an eigenvector of T with eigenvalue 1 then

 $T\boldsymbol{v} = \lambda \boldsymbol{v}$

With $\lambda = 1$, and since $T = M^{-1}N$, then the above becomes

 $M^{-1}Nv = v$

Multiply both sides by M

```
Nv = Mv
```

Therefore

$$M\boldsymbol{v} - N\boldsymbol{v} = 0$$
$$(M - N)\,\boldsymbol{v} = 0$$

Hence

Av = 0

Therefore v is in the null space of A.

2.4.8 References

1. Applied Mathematica by David Logan, chapter 8

2.4.9 Source code

```
function nma_build_HW3()
1
2
   list = dir('*.m');
3
4
   if isempty(list)
5
       fprintf('no matlab files found\n');
6
7
       return
8
   end
9
   for i=1:length(list)
10
       name=list(i).name;
11
       fprintf('processing %s\n',name)
12
       p0 = fdep(list(i).name,'-q');
13
       [pathstr, name_of_matlab_function, ext] = fileparts(name);
14
15
```

```
%make a zip file of the m file and any of its dependency
16
       p1=dir([name_of_matlab_function '.fig']);
17
       if length(p1)==1
18
            files_to_zip =[p1(1).name;p0.fun];
19
       else
20
            files_to_zip =p0.fun;
21
22
       end
23
       zip([name_of_matlab_function '.zip'],files_to_zip)
24
25
26
   end
27
28
   end
```

```
function nma_cpu_plot_2D()
1
2
   %
3 % to plot O(n^4) vs. O(n^3 \log(n))
4 % used to verify the cost complexity for problem 3, part (b), HW3
5 % Math 228A
6 % Nasser M. Abbasi
   %
7
8
9 close all;
10 n=10:1:40;
11 plot(n,n.^2, 'r',n,n.^3.*log(n));
12 legend('direct solver','sor')
13
14 figure
15 close all;
16 n=10:1:4000;
17 plot(n,n.^(5/2), 'r',n,n.^(3/2).*log(n));
18 legend('direct solver','sor')
19
20 figure
21 close all;
n = [10 \ 20 \ 30 \ 35 \ 40 \ 45 \ 50 \ 55 \ 60 \ 65];
23 plot(n,log10(n.^5),'ro',n,log10(n.^4.*log10(n)),'*');
24 legend('direct solver','sor')
25 hold on
26 n=[10 20 30 35 40 45 50 55 60 65];
27 plot(n,log10(n.^5),'r-',n,log10(n.^4.*log10(n)),'-');
28 title('Verifying theortical complexity cost of direct 3D sparse solver');
29 xlabel('n, number of unknowns in one dimension');
30 ylabel('log10(cost)');
31
32
   end
```

```
function nma_HW3_prob3_parta_SOR()
1
  % file name: nma_HW3_prob3_parta_SOR.m
2
  %
3
  % This solves the SOR for 2D for HW3, problem 3, parta
4
  % Math 228A, Fall 2010, UC Davis
5
  % Nasser M. Abbasi
6
   %
7
8
   DOPLOTS = true; %set to false if do not want to see plots
9
10
   % setup the spacings needed for the problem
11
   %spacings = [2<sup>-5</sup> 2<sup>-6</sup> 2<sup>-7</sup> 2<sup>-8</sup> 2<sup>-9</sup> 2<sup>-10</sup>];
12
   spacings = [2^{-5} 2^{-6} 2^{-7}];
13
          = arrayfun(@(i) 2*(1-pi*spacings(i)),1:length(spacings));
14
   omega
15
   for m = 1:length(spacings)
16
17
       h = spacings(m);
18
19
       % evaluate f(x,y) on grid
20
       [X,Y] = meshgrid(0:h:1, 0:h:1);
21
              = -\exp(-(X-0.25).^{2}-(Y-0.6).^{2});
22
       f
       nPoints = size(f,1);
23
       fv
              = reshape(f,nPoints<sup>2</sup>,1); % use grid vector norm
24
       normf = sqrt(h) * norm(fv,2);
25
26
       w = omega(m);
27
28
29
       fprintf('gridsize=[%d,%d]\n',nPoints-2,nPoints-2);
30
31
       % initialize space (grid) for residual calculation and for solution
32
       resid = zeros(nPoints,nPoints);
33
              = zeros(nPoints,nPoints);
       u
34
       unew = u;
35
36
       done
                  = false; %flag set to true in loop below when it converges
37
       tolerance = h<sup>2</sup>;
                            % set tolerance
38
                            % initialize iteration counter
       k
                  = 1;
39
40
                  = cputime;
       t
41
42
       while not(done)
43
           for i = 2 : nPoints-1
44
45
                for j = 2 : nPoints-1
46
                    resid(i,j)= f(i,j) - 1/h^2 * (u(i-1,j) + u(i+1,j) + ...
47
```

```
u(i,j-1) + u(i,j+1) - 4*u(i,j) );
48
49
                     unew(i,j) = w/4* ( unew(i-1,j) + u(i+1,j) + unew(i,j-1)+...
50
                         u(i,j+1) - h^2*f(i,j)) + (1-w)*u(i,j);
51
                end
52
            end
53
54
            u
                    = unew;
55
            residv = reshape(resid,nPoints^2,1); % use grid vector norm
56
            normResidue = sqrt(h) * norm(residv,2);
57
58
            if ( normResidue / normf) <tolerance</pre>
59
60
                done = true;
            else
61
62
                k = k+1;
            end
63
64
            if DOPLOTS
65
                subplot(1,2,1);
66
67
                mesh(X ,Y ,resid );
68
                subplot(1,2,2);
69
                mesh(X ,Y ,u );
70
71
72
                drawnow;
            end
73
74
75
        end
76
77
        fprintf('cpu time for SOR=%f seconds\n',cputime-t);
78
        fprintf('number of iterations = %d\n',k);
79
80
81
   end
82
83
   end
```

```
function nma_HW3_prob3_partb_3d_SOR()
1
2
  % file name: nma_HW3_prob3_partb_3d_SOR.m
3
  %
4
  % This does the SOR solver for 3D for HW3, problem 3, partB
5
6 % Math 228A, Fall 2010, UC Davis
  % SOR 3D solver
7
  %
8
  % Nasser M. Abbasi
9
  %
10
```

```
11
   DOPLOTS = true; %set to false if do not want to see plots
12
13
   % setup the spacings needed for the problem
14
   %gridsize = [10 20 30 35 40 45 50 55 60 65];
15
   gridsize = [10 20 ];
16
   spacings = arrayfun(@(i) 1/(gridsize(i)+1),1:length(gridsize));
17
          = arrayfun(@(i) 2*(1-pi*spacings(i)) ,1:length(spacings));
   omega
18
19
   fprintf('---- Starting 3D SOR solver -----\n');
20
21
   for m = 1:length(spacings)
22
23
       h = spacings(m);
24
25
       nInternalGridPoints = gridsize(m);
       nPoints = nInternalGridPoints+2;
26
27
       28
       fprintf('grid is 3D [%d,%d,%d]\n',nInternalGridPoints, ...
29
30
           nInternalGridPoints,nInternalGridPoints);
31
       fprintf('h=%f\n',h);
32
33
       [X,Y,Z] = meshgrid(0:h:1, 0:h:1,0:h:1);
34
35
       % initialize space (grid) for residual calculation and for solution
36
               = 0.*X+0.*Y+0.*Z;
37
       u
38
       unew
               = u:
       resid
             = u;
39
40
       % evaluate f(x,y,z) on grid
41
               = -\exp(-(X-0.25).^{2}-(Y-0.6).^{2}-Z.^{2});
       f
42
               = sqrt(h)* norm( reshape(f(2:end-1,2:end-1,2:end-1),...
       normf
43
           nInternalGridPoints^3,1),2);
44
45
                 = omega(m); %optimal w for SOR
46
       W
47
       done
                 = false; %flag set to true in loop below when it converges
       tolerance = 0.1*h^2; % set tolerance
48
                       % initialize iteration counter
       k
                 = 1;
49
50
51
       t
                 = cputime;
52
       while not(done)
53
           for i = 2 : nPoints-1
54
               for j = 2 : nPoints-1
55
                   for z = 2 : nPoints-1
56
                       resid(i,j,z) = f(i,j,z) - 1/h^2 * (u(i-1,j,z) + ...
57
```

```
u(i+1,j,z) + u(i,j-1,z) + u(i,j+1,z) - \dots
58
59
                             6*u(i,j,z) + u(i,j,z-1) + u(i,j,z+1));
60
                         unew(i,j,z) = w/6* ( unew(i-1,j,z) + u(i+1,j,z) + ...
61
                             unew(i,j-1,z) + u(i,j+1,z) + unew(i,j,z-1) + ...
62
                             u(i,j,z+1)- h^2*f(i,j,z)) + (1-w)*u(i,j,z);
63
                     end
64
                end
65
66
            end
67
            u = unew;
68
            if DOPLOTS
69
                subplot(1,2,1);
70
                mesh(X(:,:,nPoints-1),Y(:,:,nPoints-1),resid(:,:,nPoints-1));
71
72
                subplot(1,2,2);
73
                mesh(X(:,:,nPoints-1),Y(:,:,nPoints-1),u(:,:,nPoints-1));
74
75
                drawnow;
76
77
            end
78
            % can't do norm on 3D, change to vector
79
            residv = reshape(resid(2:end-1,2:end-1,2:end-1),...
80
                nInternalGridPoints^3,1);
81
            normResidue = sqrt(h) * norm(residv,2);
82
83
            if (normResidue/normf) < tolerance</pre>
84
85
                done = true:
            else
86
                k = k+1;
87
            end
88
89
        end
90
91
       fprintf('cpu time for 3D SOR solver =%f seconds\n',cputime-t);
92
        fprintf('number of iterations = %d\n',k);
93
   end
94
95
96
   end
```

```
1 function nma_HW3_problem_3_part_A_graph_plot()
2 % This used to generate plot to compare CPU time of SOR
3 % and direct solver for 2D problem
4 % file name nma_HW3_problem_3_part_A_graph_plot.m
5
6 close all;
7 x=[31 63 127 255 511 1023];
```

```
directCPU=[0.015 .125 .250 1.544 5.538 27.113];
8
9
   sorCPU=[0 0.094 0.6 5.2 48 532];
10
11 %plot(x,log10(directCPU),':.',x,log10(sorCPU));
12 plot(x,directCPU,'-',x,sorCPU);
13
14 title('compring CPU time against grid size, 2D pde solver');
15 xlabel('grid size n');
16 %ylabel('log10 of CPU time in seconds');
   ylabel('CPU time in seconds');
17
18 hold on;
19 legend('direct solver', 'SOR', 'Location', 'NorthWest');
20
21 grid on
22 %plot(x,log10(directCPU),'o',x,log10(sorCPU),'o');
23 plot(x,directCPU,'o',x,sorCPU,'o');
24 ylim([-10 550]);
25
  end
26
```

```
1 function nma_HW3_problem_3_part_B_graph_plot()
2 % This used to generate plot to compare CPU time of SOR
3 % and direct solver for 3D problem
  % file name nma_HW3_problem_3_part_B_graph_plot.m
4
5 % Nasser M. Abbasi
  % 11/8/2010
6
7
8 x=[10 20 30 35 40 45 50 55 60];
9 directCPU=[0.047 0.5 3.9 8.8 21.50 40 84 157.7 244.4];
10 sorCPU=[0.01 0.078 0.405 0.75 1.29 2.11 3.24 4.9 7.17];
11
12 plot(x,log10(directCPU),':.',x,log10(sorCPU));
  %plot(x,directCPU,'-',x,sorCPU);
13
14
15 title('compring CPU time against grid size, 3D pde solver');
16 xlabel('grid size n');
17 ylabel('log10 of CPU time in seconds');
  %ylabel('CPU time in seconds');
18
19 hold on;
  legend('direct solver','SOR','Location','NorthWest');
20
21
22
   grid on
23 plot(x,log10(directCPU),'o',x,log10(sorCPU),'o');
24 %plot(x,directCPU,'o',x,sorCPU,'o');
25
26
  end
```

```
function nma_HW3_problem_3_partA()
1
2
   %
3
   % name: nma_HW3_problem_3_partA.m
   % purpose: direct solver for HW3, problem 3, part A. 2D
4
   % UC Davis math 228A
5
   %
6
   % description of algorithm:
7
   %
        This script when called, will find the solution to the problem
8
   %
        Au=f as described in the HW, by using sparse matrix and direct
9
   %
        solver. The script will solve the problem for the following h
10
   %
        spacings: 2<sup>-5</sup> 2<sup>-6</sup> 2<sup>-7</sup> 2<sup>-8</sup> 2<sup>-9</sup> 2<sup>-10</sup>
11
   %
12
13 %
        It will find the cpu time used and print to the screen the result
   %
14
         for each grid space.
15 %
16 % external functions called:
17 %
         This scripts makes calls to nma_lap2d() to geberate
18 %
         the sparse matrices.
19 %
   % date written: 11/5/2010
20
21 % by: Nasser M. Abbasi
22 %
23
   close all; clear all;
24
25
   DOPLOTS = true; %set to false if do not want to see plots
26
   %spacings = [2<sup>-5</sup> 2<sup>-6</sup> 2<sup>-7</sup> 2<sup>-8</sup> 2<sup>-9</sup> 2<sup>-10</sup>];
27
   spacings = [2^{-5} 2^{-6} 2^{-7}];
28
29
   gridSize = arrayfun(@(i) 1/spacings(i)-1,1:length(spacings));
30
31
   for i = 1:length(spacings)
32
33
       h = spacings(i);
34
       n = gridSize(i);
35
36
       fprintf('n=%d\n',n);
37
38
       % evaluate f(x,y) on grid and convert to vector
39
        [X,Y] = meshgrid(h:h:1-h, h:h:1-h);
40
        f
              = -\exp(-(X-0.25).^{2}-(Y-0.6).^{2});
41
        f
              = reshape(f,n^2,1);
42
43
        t = cputime;
44
45
        A = nma_lap2d(n,n)./h^2; %make the A matrix
46
        fprintf('cpu time for making sparse matrix=%f seconds\n',cputime-t);
        fprintf('nonzero elements=%d\n',nnz(A));
47
```

```
48
49
       t = cputime;
50
       u = A f;
51
       fprintf('cpu time for direct solver=%f seconds\n',cputime-t);
52
53
        % plot solution if needed
54
       if DOPLOTS
55
            u=reshape(u,n,n);
56
            mesh(u);
57
            title(sprintf('2D solution n=%d',n));
58
            drawnow;
59
        end
60
61
62
   end
63
64
   end
```

```
function mma_HW3_problem_3_partB_direct_solver()
1
2
   %
   %
      script file, name: mma_HW3_problem_3_partB_direct_solver.m
3
   %
4
   %
      purpose: direct solver for HW3, problem 3, part B (3D).
5
   %
      UC Davis math 228A
6
   %
7
   % description of algorithm:
8
   %
        This script when called, will find the solution to the problem
9
   %
10
        Au=f as described in the HW, by using sparse matrix and direct
   %
        solver. The script will solve the problem for the following h
11
   %
        spacings: 2<sup>-3</sup>, 2<sup>-4</sup>, 2<sup>-5</sup> or grid size n=7,15,31
12
   %
13
   %
        It will find the cpu time used and print to the screen the result
14
   %
15
        for each grid space.
   %
16
   % external functions called:
17
  %
        This makes calls to nma_lap3d() to generate
18
   %
        the sparse matrices.
19
   %
20
  % date written: 11/5/2010
21
  % by: Nasser M. Abbasi
22
23
  %
   close all; clear all;
24
25 |%gridsize = [10 20 30 35 40 45 50 55 60 65];
   gridsize = [10 20 30];
26
   spacings = arrayfun(@(i) 1/(gridsize(i)+1),1:length(gridsize));
27
28
29 [fprintf('---- Starting 3D direct solver -----\n');
```

```
30
31
   DOPLOTS=true; %set to false if do not see plot of solution
32
   for i = 1:length(spacings)
33
34
       h = spacings(i);
35
       n = gridsize(i);
36
37
       38
       fprintf('grid is 3D [%d,%d,%d]\n',n,n,n);
39
       fprintf('h=%f\n',h);
40
41
42
       % evaluate f(x,y,z) on grid and convert to vector
       [X,Y,Z] = meshgrid(h:h:1-h, h:h:1-h,h:h:1-h);
43
             = -\exp(-(X-0.25).^{2}-(Y-0.6).^{2}-Z.^{2});
44
       f
       f
             = reshape(f,n^3,1);
45
46
       t = cputime;
47
       A = nma_lap3d(n)./h^2; % make the A matrix, sparse
48
49
       fprintf('cpu time for making sparse matrix=%f seconds\n',cputime-t);
       [nRow,nCol]=size(A);
50
       fprintf('dimensions of A (sparse matrix) is [%d,%d]\n',nRow,nCol);
51
       fprintf('nnz(A) = %d\n',nnz(A));
52
53
       t = cputime;
54
       u = A \setminus f;
55
       fprintf('cpu time for direct solver=%f seconds\n',cputime-t);
56
57
       % plot solution if needed
58
       if DOPLOTS
59
           u=reshape(u,n,n,n);
60
           mesh(u(:,:,n-1));
61
           title(sprintf('3D solution, top surface only, n=%d',n));
62
           hold on;
63
       end
64
65
   end
66
67
68
   end
```

```
1 function nma_nnz_estimate()
2 % to estimate nnz() as function of n for 2D sparse matrix
3 % Nasser M. Abbasi
4 % HW3 math 228A
5
6 clear all;
7 close all;
```

```
8 n=[3 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 200 300 400 500 600];
9 y=arrayfun(@(i) nnz(lap2d(n(i),n(i))),1:numel(n));
10 plot(n,y,'r');
11 hold on;
12 plot(n,n.^2.25);
13 title('estimating nnz order for 2D sparse matrix');
14 xlabel('n, number of grid points in one dimension');
15 ylabel('nnz, number of non-zero elements');
16 legend('Matlab nnz()','n^2.2')
17
18 end
```

```
1 function nnz_estimate_3D()
2 % file name nnz_estimate_3D.m
3 % to estimate nnz() as function of n for 3D sparse matrix
  % Nasser M. Abbasi
4
  % HW3, Math 228A
5
6
7 clear all;
8 close all;
9 n=[3 10 20 30 40 50 60 70 80 100 150 200];
10 y=arrayfun(@(i) nnz(lap3d(n(i))),1:numel(n));
11 plot(n,y,'r');
12 hold on;
13 plot(n,n.^3.35);
14 title('estimating nnz order for 3D sparse matrix');
15 xlabel('n, number of grid points in one dimension');
16 ylabel('nnz, number of non-zero elements');
17 legend('Matlab nnz()', 'n^3.35')
18
   end
19
```

2.5 HW 4

2.5.1 Problem 1

1. Write a multigrid V-cycle code to solve the Poisson equation in two dimensions on the unit square with Dirichlet boundary conditions. Use full weighting for restriction, bilinear interpolation for prolongation, and red-black Gauss-Seidel for smoothing.

Note: If you cannot get a V-cycle code working, write a simpler code such as a 2-grid code. You can also experiment in one dimension (do not use GSRB in 1D). You may turn in one of these simplified codes for reduced credit. You should state what your code does, and use your code for the second problem of this assignment.

Figure 2.50: Problem 1

The multigrid V cycle algorithm was implemented in Matlab 2010a. The documented source code is included in the appendix of this problem.

For relaxation, Gauss-Seidel with red-black (GSRB) ordering was used as the default. A relax() function was written to implement this method, in addition, this function can also implement relaxation using these solvers: Jacobi, Gauss-Seidel Lex, and SOR. Selecting the relaxation method is done via an argument option. These different methods are implemented in the relax() function for future numerical experimentation. GSRB is the one used for all the solutions below as required by the problem statement and is the default method. GSRB is known to have good smoothing rates and is suitable for parallelism as well.

For mapping from the fine mesh to coarse mesh, the full weighting method is used.

For mapping from coarse mesh to fine mesh, bilinear interpolation is used.

Additional auxiliary functions are written for performing the following: finding the norm (mesh norm), finding the residue and validating dimensions of the input.

The following diagram illustrates the call flow chart for a program making a call to the V cycle algorithm, such as the program written to solve problem 2 and 3. It shows the Matlab functions used, and the interface between them. This flow diagram also shows a full multigrid solver (FMG) function, which was implemented on top of the V cycle algorithm, but was not used to generate the results in problem 2 as the problem asked to use V cycle algorithm only. FMG cycle algorithm was implemented for future reference and to study its effect on reducing number of iterations. A note on this is can be found the end of this assignment.

Figure 2.51: algorithm flow chart

2.5.1.1 Restriction and prolongation operators

The restriction operator $I_{l_{h}}^{2h}$ (fine to coarse mesh) mapping uses full weighting, while the prolongation operator I_{2h}^{h} (coarse to fine mesh) uses bilinear interpolation.

For illustration, the following diagram shows applying these operators for the 1D case for a mesh of 9 points. The edge points are boundary points and in this problem (Dirichlet homogeneous boundary conditions), these will always be zero.

Figure 2.52: operator diagrams

2.5.1.2 V cycle algorithm

The multigrid V cycle algorithm is recursive in nature. The following is description of the algorithm

```
VCYCLE algorithm
1
   _____
2
  input: u, f, mu1, mu2
3
   output: u (more accurate u)
4
5
  Let n be the number of grid points of u in one dimension
6
7
   IF n = 3 THEN
8
9
      find u by direct solution of 3x3 grid
  ELSE
10
11
      apply mu1 smoothing on u
      residue = find residue (f-Au)
12
      residue = apply fine-to-coarse mapping on residue
13
      correction = CALL VCYCLE(ZERO, residue, mu1, mu2)
14
      correction = apply coarse-to-fine mapping on correction
15
      u = u + correction
16
      apply mu2 smoothing on u
17
  END IF
18
19
  RETURN u
20
```

Problem 2 below also has a diagram which helps understand this algorithm more. The Matlab function shown below implements the above algorithm.

2.5.1.3 Multigrid V cycle function (V_cycle.m)

This function implements one multigrid V cycle. It is recursive function

2.5.1.4 Solver using V cycle (solver_Vcycle.m)

This function is an interface to V cycle algorithm to use for solving the 2D Poisson problem. It uses V_cycle.m in a loop until convergence is reached.

2.5.1.5 Relaxation or smoother function (relax.m)

This function implements Gauss-Seidel red-black solver. It is a little longer than needed as it also implements other solvers as was mentioned in the introduction. These are added for future numerical experimentation. The

algorithm is straight forward. If the sum of the row and column index adds to an even value, then the grid point is considered a red grid point, else it is black. The red grid points are smoothed first, then the black grid points are smoothed.

2.5.1.6 Find residual function (find_residue.m)

This function is called from a number of locations to obtain the residue mesh. The residue is defined as

$$r_{i,j} = f_{i,j} - \frac{1}{h^2} \left(u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4 u_{i,j} \right)$$

2.5.1.7 Find norm function (find_norm.m)

This function is called from number of locations to obtain the norm of the mesh or any 2D matrix.

2.5.1.8 Validate boundary conditions (check_all_zero_boundaries.m)

An auxiliary function used by a number of functions to validate that input has consistent boundaries for this problem.

2.5.1.9 Coarse to fine prolongation operator 2D (c2f.m)

This function is the prolongation bilinear interpolation which implements coarse to fine grid mapping on 2D grid.

2.5.1.10 Fine to coarse full weight restriction operator 2D (f2c.m)

This function is the full weight restriction operator which implements the fine grid to coarse grid mapping on 2D grid.

2.5.1.11 Validate u and f have consistent dimensions(validate_dimensions.m)

An auxiliary function used by number of other function to validate that input dimensions are consistent.

2.5.1.12 Validate grid for consistent dimensions (validate_dimensions_1.m)

An auxiliary function used by number of other function to validate that a grid dimensions are consistent.

2.5.1.13 FMG solver (initial_solution_guess_using_FMG.m)

Implements a full multigrid cycle using V cycle algorithm as building block. Used to compare effect on solution only.

2.5.1.14 Restriction operator for 1D (f2c_1D.m)

This function is the full weight restriction operator which implements the fine grid to coarse grid mapping on 1D grid

2.5.1.15 Prolongation operator for 1D (c2f_1D.m)

This function is the prolongation bilinear interpolation which implements coarse to fine grid mapping on 1D grid

2.5.2 **Problem 2**

2. Numerically estimate the average convergence factor,

$$\left(\frac{\|e^{(k)}\|_{\infty}}{\|e^{(0)}\|_{\infty}}\right)^{1/k},$$

for different numbers of presmoothing steps, ν_1 , and postsmoothing steps, ν_2 , for $\nu = \nu_1 + \nu_2 \leq 4$. Be sure to use a small value of k because convergence may be reached very quickly. What test problem did you use? Report the results in a table, and discuss which choices of ν_1 and ν_2 give the most efficient solver.

Figure 2.53: Problem 2

The test problem used is

 $\nabla u = 0$

with zero boundary conditions on the unit square. This has a known solution which is zero.

Initial guess is a random solution generated using matlab rand(). Hence $||e^{(0)}||$ has the same norm as the initial guess.

The V Cycle function written for problem 1 was used to generate the average convergence factor. For each combination of ν_1 , ν_2 , a table was generated which contained the following columns:

- 1. Cycle number.
- 2. The norm of the residue $||r^{(k)}|| = ||f Au^{(k)}||$ after each cycle.
- 3. Ratio of the current residue norm to the previous residue norm $\frac{\|r^{(k+1)}\|}{\|r^{(k)}\|}$.
- 4. Error norm $||e^{(k)}|| = ||u u^{(k)}|| = ||u^{(k)}||$ (since exact solution is zero).
- 5. The ratio of the current error norm to the previous error norm $\frac{\|e^{(k+1)}\|}{\|e^{(k)}\|}$.

6. The average convergence factor up to each cycle $\left(\frac{\|e^{(k)}\|_{\infty}}{\|e^{(0)}\|_{\infty}}\right)^{\left(\frac{1}{k}\right)}$.

The problem asked to generate result for $\nu \leq 4$. This solution extended this to $\nu \leq 8$ to use the results for future study if needed. The summary table below shows the final result

for k = 15. Each individual table generated for each combination of v_1, v_2 is listed in the appendix of this problem. The function HW4_problem2() was used to generate these tables and to calculate the work done for each solver combination of v_1, v_2 .

2.5.2.1 Average convergence factor and work unit estimates

To determine the most efficient solver, the amount of work by each solver that achieves the same convergence is determined. The solver with the least amount of work is deemed the most efficient. The total amount of work for convergence is defined as

WORK=number of Iterations for convergence \times work per iteration (1)

An iteration is one full V cycle. Each V cycle contains a number of levels. The same number of levels exist on the left side of the V cycle as on the right side of the V cycle. On the left side of the V cycle, work at each level consist of the following items

- 1. Work to perform v_1 number of pre-smooth operations.
- 2. Work needed to map to the next lower level of the grid.
- 3. Work needed to compute the residue.

The following diagram helps to illustrates this.

Figure 2.54: problem 2 v cycle shape

On the right side of the V cycle, work at each level consist of the following items

- 1. Work to perform v_2 number of post-smooth operations.
- 2. Work needed to map to the next lower level of the grid.

At each level, the work is proportional to the size of the grid at that level. For smoothing, it is estimated that 7 flops are needed to obtain an average of each grid point. (5 additions, one multiplication, one division) based on the use of the following formula

$$u_{i,j} = \frac{1}{4} \left(u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - h^2 f \right)$$

Therefore work needed for smoothing is $7 \times (v_1 + v_2) \times N$ where N is the total number of grid points at that level. (Boundary grid points are not involved in this work, but for simplicity
of analysis, the total number of grid points N is used).

Work needed for finding the residual is also about 7N. Work needed for mapping to the next grid level is about 6N.

On the right branch of the cycle no residual calculation is required. To simplify the analysis, it is assumed that the same work is performed at each level on both sides of the V cycle.

Therefore, Letting N be the number of grid points at the most fine level (the number of unknowns), the total work per cycle is found to be

work per V cycle =
$$(7(v_1 + v_2) + 13)N + (7(v_1 + v_2) + 13)\frac{N}{4} + (7(v_1 + v_2) + 13)\frac{N}{16} + \cdots$$

= $(7(v_1 + v_2) + 13)N\left[1 + \frac{1}{4} + \frac{1}{4^2} + \cdots + \frac{1}{4^{L-1}}\right]$

Where *L* is the number of levels. In the limit as *L* becomes very large, this becomes a geometric series whose sum is $\frac{(7(v_1+v_2)+13)N}{1-r}$ where $r = \frac{1}{4}$

Therefore, total amount of work from (1) becomes

$$W = M \times \frac{4}{3} \left(7 \left(v_1 + v_2 \right) + 13 \right) N$$

Where *M* is number of iterations. Using the same tolerance ε for all solvers, $M = \frac{\log(\varepsilon)}{\log(\rho)}$. Using the average convergence rate found as an estimate for the spectral radius ρ , *W* can now be found as a function of *N*

$$W = \left(\frac{\log\left(\varepsilon\right)}{\log\left(\rho\right)}\right) \left(\frac{4}{3}\left(7\left(v_1 + v_2\right) + 13\right)N\right)$$

For the purpose of comparing the different solvers, the value of ε used is not important as long as it is the same value in all cases. Hence, for numerical computation, let $\varepsilon = 10^{-6}$ and the above becomes

$$W = \left(\frac{-6}{\log(\rho)}\right) \left(\frac{4}{3} \left(7 \left(v_1 + v_2\right) + 13\right) N\right)$$

The program written for this problem uses the above equation to calculate the work done for each solver. The result is shown below. This table shows the work done by each solver for convergence based on the same tolerance. As mentioned above, changing the tolerance value will not change the result, as the effect will be to scale all result by the same amount.

2.5.2.2 Result

$v = (v_1, v_2)$	$v_1 + v_2$	$CF = \left(\frac{\left\ e^{(k)}\right\ _{\infty}}{\left\ e^{(0)}\right\ _{\infty}}\right)^{\left(\frac{1}{k}\right)}$	work $\frac{-6}{\log(\rho)} \times \frac{4}{3} (7(v_1 + v_2) + 13)N$
(0,1)	1	0.374588	213 N
(0,2)	2	0.202747	177 N
(0,3)	3	0.132526	174.9 N
(0,4)	4	0.098857	182.7 <i>N</i>
(1,0)	1	0.323688	182.4 N
(1,1)	2	0.116811	129.4 N
(1,2)	3	0.079578	138.4 N
(1,3)	4	0.060307	150.5 N
(1,4)	5	0.049019	164.1 N
(2,0)	2	0.171973	158.5 N
(2,1)	3	0.079845	138.6 N
(2, 2)	4	0.060424	150.6 N
(2,3)	5	0.049068	164.2 N
(2,4)	6	0.041573	178.4 N
(3,0)	3	0.117023	163.6 N
(3,1)	4	0.060444	150.6 N
(3,2)	5	0.049072	164.2 N
(3,3)	6	0.041575	178.4 N
(3,4)	7	0.036128	192.6 N
(4,0)	4	0.088624	174.6 N
(4,1)	5	0.049075	164.2 N
(4,2)	6	0.041575	178.4 N
(4,3)	7	0.036128	192.6 N
(4,4)	8	0.031908	206.7 N

2.5.2.3 Conclusion

From the above result, The least work was for the (1,1) solver, followed by (1,2) which had about the same as the (2,1) solver. This result shows that using v = 2 or v = 3 is the most efficient solver in terms of least work required.

Notice that in full multigrid, the combination which makes up the value v is important (While for the case of the 2 level multigrid, this is not the case). For example, as shown in the above table, work for solver v = (1, 2) was 138 N while work for solver v = (3, 0) was 163 N even though they both add to same total number of smooth operations v = 3.

2.5.2.4 Appendix. Tables for each combination of $v = (v_1, v_2)$

The following tables are the result of running problem 2 program on the test problem. The fields for each table are described above. The last row in each table contain the result for k = 15. The value of the average convergence factor used is that for k = 15 under the column heading convergence factor. This below is link to the text file containing the tables as they are printed by the matlab function.

	_					
1	cycl	e residue	ratio	error	ratio	convergence
	1	factor				
2	1	4.197646e+004	0.000000	3.791167e+000	0.000000	0.836431
3	2	4.197672e+004	1.000006	3.618870e+000	0.954553	0.893542
4	3	4.197682e+004	1.000002	3.571746e+000	0.986978	0.923661
5	4	4.197685e+004	1.000001	3.557261e+000	0.995944	0.941224
6	5	4.197686e+004	1.000000	3.552573e+000	0.998682	0.952445
7	6	4.197687e+004	1.000000	3.551027e+000	0.999565	0.960141
8	7	4.197687e+004	1.000000	3.550514e+000	0.999856	0.965717
9	8	4.197687e+004	1.000000	3.550344e+000	0.999952	0.969931
10	9	4.197687e+004	1.000000	3.550287e+000	0.999984	0.973225
11	10	4.197687e+004	1.000000	3.550268e+000	0.999995	0.975870
12	11	4.197687e+004	1.000000	3.550262e+000	0.999998	0.978039
13	12	4.197687e+004	1.000000	3.550260e+000	0.999999	0.979850
14	13	4.197687e+004	1.000000	3.550259e+000	1.000000	0.981386
15	14	4.197687e+004	1.000000	3.550259e+000	1.000000	0.982704
16	15	4.197687e+004	1.000000	3.550259e+000	1.000000	0.983848
	l					

Result for $v_1 = 0, v_2 = 0$

Result for $v_1 = 0, v_2 = 1$

1	cycl	e residue	ratio	error	ratio	convergence
	factor					
2	1	6.512884e+003	0.000000	1.841085e+000	0.00000	0.406191
3	2	1.096932e+003	0.168425	7.221287e-001	0.392230	0.399150
4	3	2.518487e+002	0.229594	2.950874e-001	0.408636	0.402287
5	4	6.501181e+001	0.258138	1.172566e-001	0.397362	0.401050
6	5	1.807445e+001	0.278018	4.592625e-002	0.391673	0.399157
7	6	5.295406e+000	0.292977	1.774863e-002	0.386459	0.397012
8	7	1.610302e+000	0.304094	6.756385e-003	0.380671	0.394635
9	8	5.023475e-001	0.311959	2.532700e-003	0.374860	0.392107
10	9	1.594271e-001	0.317364	9.349623e-004	0.369156	0.389488
11	10	5.118833e-002	0.321077	3.401773e-004	0.363841	0.386844
12	11	1.656749e-002	0.323658	1.221213e-004	0.358993	0.384226
13	12	5.392540e-003	0.325489	4.331077e-005	0.354654	0.381670
14	13	1.762359e-003	0.326814	1.519371e-005	0.350807	0.379202
15	14	5.776815e-004	0.327789	5.278592e-006	0.347420	0.376839
16	15	1.897765e-004	0.328514	1.818208e-006	0.344449	0.374588

Result for $v_1 = 0, v_2 = 2$

1	cvcl	e residue	ratio	error	ratio	convergence	
	f	actor				<u>o</u>	
2	1	2.332824e+003	0.00000	1.130306e+000	0.00000	0.249375	
3	2	1.658927e+002	0.071112	2.573654e-001	0.227695	0.238289	
4	3	1.740638e+001	0.104926	5.746902e-002	0.223297	0.233183	
5	4	2.213859e+000	0.127187	1.255196e-002	0.218413	0.229399	
6	5	3.107344e-001	0.140359	2.675256e-003	0.213135	0.226050	
7	6	4.627116e-002	0.148909	5.553596e-004	0.207591	0.222863	
8	7	7.199976e-003	0.155604	1.123881e-004	0.202370	0.219813	
9	8	1.162230e-003	0.161421	2.224051e-005	0.197890	0.216945	
10	9	1.934709e-004	0.166465	4.319318e-006	0.194210	0.214293	
11	10	3.300557e-005	0.170597	8.260186e-007	0.191238	0.211868	
12	11	5.734479e-006	0.173743	1.559942e-007	0.188851	0.209664	
13	12	1.009112e-006	0.175973	2.916007e-008	0.186930	0.207668	
14	13	1.790692e-007	0.177452	5.405721e-009	0.185381	0.205863	
15	14	3.194089e-008	0.178372	9.953326e-010	0.184126	0.204228	
16	15	5.714226e-009	0.178900	1.822506e-010	0.183105	0.202747	

Result for $v_1 = 0, v_2 = 3$

1	cycl	e residue	ratio	error	ratio	convergence
	factor					
2	1	1.279733e+003	0.00000	8.246208e-001	0.000000	0.181933
3	2	6.128118e+001	0.047886	1.239874e-001	0.150357	0.165393
4	3	4.197852e+000	0.068502	1.807404e-002	0.145773	0.158576
5	4	3.457379e-001	0.082361	2.513173e-003	0.139049	0.153451
6	5	3.161771e-002	0.091450	3.385354e-004	0.134704	0.149504
7	6	3.097433e-003	0.097965	4.446410e-005	0.131343	0.146311
8	7	3.196538e-004	0.103200	5.723743e-006	0.128727	0.143659
9	8	3.438009e-005	0.107554	7.254505e-007	0.126744	0.141427
10	9	3.818351e-006	0.111063	9.087146e-008	0.125262	0.139533
11	10	4.343261e-007	0.113747	1.128253e-008	0.124159	0.137913
12	11	5.025553e-008	0.115709	1.391556e-009	0.123337	0.136520
13	12	5.884932e-009	0.117100	1.707747e-010	0.122722	0.135313
14	13	6.948378e-010	0.118071	2.087896e-011	0.122260	0.134261
15	14	8.250871e-011	0.118745	2.545414e-012	0.121913	0.133339
16	15	9.836463e-012	0.119217	3.096536e-013	0.121652	0.132526

Result for $v_1 = 0, v_2 = 4$

•

1	cycle	residue	ratio	error	ratio	convergence

		factor				
2	1	8.351773e+002	0.00000	6.609090e-001	0.000000	0.145814
3	2	3.043485e+001	0.036441	7.256809e-002	0.109800	0.126532
4	3	1.541666e+000	0.050655	7.850138e-003	0.108176	0.120091
5	4	9.413409e-002	0.061060	8.032536e-004	0.102324	0.115379
6	5	6.459266e-003	0.068618	7.934903e-005	0.098785	0.111851
7	6	4.798607e-004	0.074290	7.650179e-006	0.096412	0.109116
8	7	3.773372e-005	0.078635	7.251982e-007	0.094795	0.106945
9	8	3.090474e-006	0.081902	6.795204e-008	0.093701	0.105192
10	9	2.605052e-007	0.084293	6.317243e-009	0.092966	0.103758
11	10	2.240698e-008	0.086014	5.841772e-010	0.092473	0.102570
12	11	1.954999e-009	0.087250	5.382824e-011	0.092144	0.101575
13	12	1.723247e-010	0.088146	4.948089e-012	0.091924	0.100734
14	13	1.530346e-011	0.088806	4.541247e-013	0.091778	0.100015
15	14	1.366630e-012	0.089302	4.163526e-014	0.091682	0.099395
16	15	1.225631e-013	0.089683	3.814695e-015	0.091622	0.098857
	<u> </u>					

Result for $v_1 = 1, v_2 = 0$

•

.

	_						_
1	cycl	e residue	ratio	error	ratio	convergence	
	:	factor					
2	1	6.179909e+003	0.000000	1.360828e+000	0.00000	0.300234	
3	2	1.275576e+003	0.206407	4.199343e-001	0.308587	0.304382	
4	3	3.536744e+002	0.277266	1.341956e-001	0.319563	0.309361	
5	4	1.100024e+002	0.311027	4.345678e-002	0.323832	0.312917	
6	5	3.621869e+001	0.329254	1.417374e-002	0.326157	0.315521	
7	6	1.220133e+001	0.336879	4.640907e-003	0.327430	0.317475	
8	7	4.148812e+000	0.340030	1.522676e-003	0.328099	0.318972	
9	8	1.413642e+000	0.340734	5.000095e-004	0.328375	0.320132	
10	9	4.811293e-001	0.340347	1.642075e-004	0.328409	0.321041	
11	10	1.633133e-001	0.339437	5.390811e-005	0.328293	0.321759	
12	11	5.524973e-002	0.338305	1.768674e-005	0.328091	0.322330	
13	12	1.862458e-002	0.337098	5.798496e-006	0.327844	0.322786	
14	13	6.255900e-003	0.335895	1.899475e-006	0.327581	0.323152	
15	14	2.094091e-003	0.334739	6.217315e-007	0.327318	0.323448	
16	15	6.986989e-004	0.333653	2.033475e-007	0.327067	0.323688	
	(

Result for $v_1 = 1, v_2 = 1$

1	cycle	residue	ratio	error	ratio	convergence
	factor					
2	1	1.030835e+003	0.00000	4.727264e-001	0.000000	0.103251
3	2	5.883607e+001	0.057076	5.305423e-002	0.112230	0.107647
4	3	3.801623e+000	0.064614	6.112766e-003	0.115217	0.110114
5	4	2.784357e-001	0.073241	7.123738e-004	0.116539	0.111686

6	5	2.222565e-002	0.079823	8.361417e-005	0.117374	0.112801	
7	6	1.895919e-003	0.085303	9.862335e-006	0.117951	0.113643	
8	7	1.697849e-004	0.089553	1.167283e-006	0.118358	0.114305	
9	8	1.581453e-005	0.093144	1.384918e-007	0.118645	0.114839	
10	9	1.525515e-006	0.096463	1.645918e-008	0.118846	0.115277	
11	10	1.520761e-007	0.099688	1.958413e-009	0.118986	0.115643	
12	11	1.563620e-008	0.102818	2.332146e-010	0.119083	0.115952	
13	12	1.653635e-009	0.105757	2.778772e-011	0.119151	0.116215	
14	13	1.792425e-010	0.108393	3.312230e-012	0.119198	0.116442	
15	14	1.983378e-011	0.110653	3.949174e-013	0.119230	0.116639	
16	15	2.231664e-012	0.112518	4.709496e-014	0.119253	0.116811	

Result for $v_1 = 1, v_2 = 2$

•

1	cycle	residue	ratio	error	ratio	convergence
	factor					
2	1	3.491916e+002	0.00000	3.054693e-001	0.000000	0.066754
3	2	1.021899e+001	0.029265	2.334872e-002	0.076436	0.071431
4	3	4.299404e-001	0.042073	1.841565e-003	0.078872	0.073830
5	4	2.178631e-002	0.050673	1.473129e-004	0.079993	0.075325
6	5	1.245425e-003	0.057165	1.187207e-005	0.080591	0.076350
7	6	7.801009e-005	0.062637	9.606537e-007	0.080917	0.077093
8	7	5.235377e-006	0.067112	7.790676e-008	0.081098	0.077652
9	8	3.692823e-007	0.070536	6.325950e-009	0.081199	0.078087
10	9	2.697616e-008	0.073050	5.140286e-010	0.081257	0.078433
11	10	2.019954e-009	0.074879	4.178622e-011	0.081292	0.078714
12	11	1.539723e-010	0.076226	3.397763e-012	0.081313	0.078947
13	12	1.189244e-011	0.077238	2.763303e-013	0.081327	0.079143
14	13	9.277782e-013	0.078014	2.247589e-014	0.081337	0.079309
15	14	7.294259e-014	0.078621	1.828290e-015	0.081345	0.079453
16	15	5.769829e-015	0.079101	1.487324e-016	0.081351	0.079578

Result for $v_1 = 1, v_2 = 3$

1	cvcle	residue	ratio	error	ratio	convergence
	facto	r				0
2	1	1.748348e+002	0.000000	2.273544e-001	0.00000	0.049683
3	2	4.020464e+000	0.022996	1.322844e-002	0.058184	0.053766
4	3	1.341199e-001	0.033359	7.939589e-004	0.060019	0.055774
5	4	5.362431e-003	0.039982	4.829726e-005	0.060831	0.056998
6	5	2.429919e-004	0.045314	2.956914e-006	0.061223	0.057819
7	6	1.205611e-005	0.049615	1.816104e-007	0.061419	0.058404
8	7	6.374272e-007	0.052872	1.117251e-008	0.061519	0.058839
9	8	3.520088e-008	0.055223	6.879119e-010	0.061572	0.059174
10	9	2.002565e-009	0.056890	4.237580e-011	0.061601	0.059439

•

11	10	1.162928e-010	0.058072	2.611069e-012	0.061617	0.059653	
12	11	6.852108e-012	0.058921	1.609119e-013	0.061627	0.059830	
13	12	4.079843e-013	0.059541	9.917484e-015	0.061633	0.059978	
14	13	2.447990e-014	0.060002	6.112860e-016	0.061637	0.060104	
15	14	1.477344e-015	0.060349	3.767977e-017	0.061640	0.060213	
16	15	8.954816e-017	0.060614	2.322670e-018	0.061642	0.060307	

$\frac{\text{Result for } v_1 = 1, v_2 = 4}{1 + 1}$

1	cycle	residue	ratio	error	ratio	convergence
	fact	or				
2	1	1.042637e+002	0.000000	1.827858e-001	0.00000	0.039944
3	2	2.005234e+000	0.019232	8.672196e-003	0.047445	0.043533
4	3	5.546631e-002	0.027661	4.241753e-004	0.048912	0.045257
5	4	1.849251e-003	0.033340	2.101081e-005	0.049533	0.046290
6	5	6.998200e-005	0.037843	1.046739e-006	0.049819	0.046975
7	6	2.890955e-006	0.041310	5.229125e-008	0.049956	0.047459
8	7	1.267590e-007	0.043847	2.615867e-009	0.050025	0.047818
9	8	5.783896e-009	0.045629	1.309520e-010	0.050061	0.048092
10	9	2.709911e-010	0.046853	6.558096e-012	0.050080	0.048309
11	10	1.292323e-011	0.047689	3.285046e-013	0.050091	0.048485
12	11	6.237388e-013	0.048265	1.645757e-014	0.050098	0.048629
13	12	3.035654e-014	0.048669	8.245760e-016	0.050103	0.048750
14	13	1.486172e-015	0.048957	4.131659e-017	0.050106	0.048853
15	14	7.307172e-017	0.049168	2.070333e-018	0.050109	0.048942
16	15	3.604223e-018	0.049324	1.037465e-019	0.050111	0.049019

Result for $v_1 = 2, v_2 = 0$

1	cycle	residue	ratio	error	ratio	convergence
	fact	tor				
2	1	2.655117e+003	0.00000	7.196022e-001	0.00000	0.158763
3	2	2.807305e+002	0.105732	1.214403e-001	0.168760	0.163685
4	3	4.389822e+001	0.156371	2.105498e-002	0.173377	0.166854
5	4	7.595636e+000	0.173028	3.666160e-003	0.174123	0.168643
6	5	1.345020e+000	0.177078	6.386485e-004	0.174201	0.169740
7	6	2.391057e-001	0.177771	1.111764e-004	0.174081	0.170456
8	7	4.245722e-002	0.177567	1.933186e-005	0.173885	0.170941
9	8	7.518789e-003	0.177091	3.357127e-006	0.173658	0.171279
10	9	1.327337e-003	0.176536	5.821965e-007	0.173421	0.171515
11	10	2.335780e-004	0.175975	1.008285e-007	0.173186	0.171682
12	11	4.097873e-005	0.175439	1.743931e-008	0.172960	0.171798
13	12	7.168928e-006	0.174943	3.012563e-009	0.172746	0.171876
14	13	1.250905e-006	0.174490	5.198010e-010	0.172544	0.171928
15	14	2.177582e-007	0.174081	8.959148e-011	0.172357	0.171958

16 15 3.782731e-008 0.173712 1	542621e-011 0.172184 0.171973
--------------------------------	-------------------------------

Result for $v_1 = 2, v_2 = 1$

1	cycle	e residue	ratio	error	ratio	convergence	
factor							
2	1	3.587387e+002	0.00000	3.008484e-001	0.000000	0.065744	
3	2	1.067855e+001	0.029767	2.317076e-002	0.077018	0.071158	
4	3	4.487287e-001	0.042021	1.842948e-003	0.079538	0.073848	
5	4	2.256832e-002	0.050294	1.485356e-004	0.080597	0.075480	
6	5	1.286179e-003	0.056990	1.204521e-005	0.081093	0.076571	
7	6	8.087232e-005	0.062878	9.796869e-007	0.081334	0.077345	
8	7	5.482293e-006	0.067789	7.979984e-008	0.081454	0.077919	
9	8	3.922682e-007	0.071552	6.504963e-009	0.081516	0.078360	
10	9	2.913427e-008	0.074271	5.304691e-010	0.081548	0.078708	
11	10	2.219978e-009	0.076198	4.326818e-011	0.081566	0.078989	
12	11	1.722107e-010	0.077573	3.529630e-012	0.081576	0.079221	
13	12	1.353118e-011	0.078573	2.879518e-013	0.081581	0.079415	
14	13	1.073247e-012	0.079317	2.349245e-014	0.081585	0.079580	
15	14	8.572977e-014	0.079879	1.916672e-015	0.081587	0.079721	
16	15	6.884988e-015	0.080310	1.563774e-016	0.081588	0.079845	

Result for $v_1 = 2, v_2 = 2$

.

1	cycl	e residue	ratio	error	ratio	convergence
2	1	1.448199e+002	0.000000	2.243955e-001	0.00000	0.049037
3	2	3.594191e+000	0.024818	1.315787e-002	0.058637	0.053622
4	3	1.246015e-001	0.034667	7.947099e-004	0.060398	0.055792
5	4	5.109282e-003	0.041005	4.857254e-005	0.061120	0.057079
6	5	2.356797e-004	0.046128	2.984395e-006	0.061442	0.057926
7	6	1.184050e-005	0.050240	1.838170e-007	0.061593	0.058521
8	7	6.316880e-007	0.053350	1.133526e-008	0.061666	0.058961
9	8	3.512166e-008	0.055600	6.994189e-010	0.061703	0.059297
10	9	2.008926e-009	0.057199	4.316969e-011	0.061722	0.059561
11	10	1.171965e-010	0.058338	2.664984e-012	0.061733	0.059775
12	11	6.933122e-012	0.059158	1.645328e-013	0.061739	0.059951
13	12	4.143073e-013	0.059758	1.015864e-014	0.061742	0.060098
l4	13	2.494234e-014	0.060203	6.272422e-016	0.061745	0.060223
15	14	1.509931e-015	0.060537	3.872984e-017	0.061746	0.060331
16	15	9.179027e-017	0.060791	2.391465e-018	0.061747	0.060424

Result for $v_1 = 2, v_2 = 3$

	-					
1	cycle	residue	ratio	error	ratio	convergence
	fact	or				
2	1 8	3.776592e+001	0.000000	1.811025e-001	0.000000	0.039576
3	2 1	1.834493e+000	0.020902	8.646274e-003	0.047742	0.043468
4	35	5.258689e-002	0.028666	4.246673e-004	0.049116	0.045274
5	4 1	1.790526e-003	0.034049	2.109371e-005	0.049671	0.046336
6	56	6.865074e-005	0.038341	1.052908e-006	0.049916	0.047030
7	6 2	2.859888e-006	0.041659	5.267602e-008	0.050029	0.047517
8	7 1	1.260987e-007	0.044092	2.638218e-009	0.050084	0.047876
9	85	5.776016e-009	0.045806	1.322046e-010	0.050111	0.048150
10	9 2	2.713848e-010	0.046985	6.626843e-012	0.050126	0.048365
11	10 1	1.297016e-011	0.047793	3.322268e-013	0.050133	0.048539
12	11 6	5.271114e-013	0.048350	1.665719e-014	0.050138	0.048683
13	12 3	3.056636e-014	0.048742	8.352047e-016	0.050141	0.048802
14	13 1	1.498397e-015	0.049021	4.187935e-017	0.050143	0.048904
15	14 7	7.375846e-017	0.049225	2.099994e-018	0.050144	0.048992
16	15 3	3.641929e-018	0.049376	1.053040e-019	0.050145	0.049068

 $\frac{\text{Result for } v_1 = 2, v_2 = 4}{2}$

•

1	cycle	residue	ratio	error	ratio	convergence
	fac	tor				
2	1	5.968518e+001	0.00000	1.526966e-001	0.00000	0.033368
3	2	1.071291e+000	0.017949	6.187596e-003	0.040522	0.036772
4	3	2.628731e-002	0.024538	2.577593e-004	0.041657	0.038333
5	4	7.693324e-004	0.029266	1.085425e-005	0.042110	0.039244
6	5	2.541368e-005	0.033033	4.592064e-007	0.042307	0.039838
7	6	9.120864e-007	0.035890	1.946889e-008	0.042397	0.040254
8	7	3.457788e-008	0.037911	8.262608e-010	0.042440	0.040559
9	8	1.357937e-009	0.039272	3.508443e-011	0.042462	0.040792
10	9	5.454790e-011	0.040170	1.490141e-012	0.042473	0.040976
11	10	2.223580e-012	0.040764	6.330013e-014	0.042479	0.041124
12	11	9.153192e-014	0.041164	2.689178e-015	0.042483	0.041245
13	12	3.793199e-015	0.041441	1.142507e-016	0.042485	0.041347
14	13	1.579443e-016	0.041639	4.854164e-018	0.042487	0.041434
15	14	6.599536e-018	0.041784	2.062445e-019	0.042488	0.041508
16	15	2.764795e-019	0.041894	8.763145e-021	0.042489	0.041573
(

Result for $v_1 = 3, v_2 = 0$

1	cycle	e residue	ratio	error	ratio	convergence
	fa	ctor				
2	1	1.731895e+003	0.00000	4.772061e-001	0.00000	0.105284
3	2	1.332957e+002	0.076965	5.436461e-002	0.113923	0.109518

4	3	1.472030e+001	0.110433	6.363908e-003	0.117060	0.111977
5	4	1.734653e+000	0.117841	7.494297e-004	0.117762	0.113396
6	5	2.065908e-001	0.119096	8.847251e-005	0.118053	0.114312
7	6	2.463413e-002	0.119241	1.045852e-005	0.118212	0.114953
8	7	2.936045e-003	0.119186	1.237354e-006	0.118311	0.115427
9	8	3.497108e-004	0.119109	1.464715e-007	0.118375	0.115791
10	9	4.163098e-005	0.119044	1.734462e-008	0.118416	0.116080
11	10	4.953753e-006	0.118992	2.054331e-009	0.118442	0.116314
12	11	5.892482e-007	0.118950	2.433477e-010	0.118456	0.116507
13	12	7.006984e-008	0.118914	2.882724e-011	0.118461	0.116669
14	13	8.330007e-009	0.118881	3.414861e-012	0.118460	0.116806
15	14	9.900258e-010	0.118851	4.044995e-013	0.118453	0.116923
16	15	1.176348e-010	0.118820	4.790965e-014	0.118442	0.117023
	-					

Result for $v_1 = 3, v_2 = 1$

•

1	cycle	residue	ratio	error	ratio	convergence
	fa	ctor				
2	1	1.806744e+002	0.000000	2.248328e-001	0.00000	0.049132
3	2	4.176399e+000	0.023116	1.317724e-002	0.058609	0.053662
4	3	1.375470e-001	0.032934	7.958156e-004	0.060393	0.055818
5	4	5.462156e-003	0.039711	4.864574e-005	0.061127	0.057100
6	5	2.477092e-004	0.045350	2.989565e-006	0.061456	0.057946
7	6	1.236926e-005	0.049935	1.841867e-007	0.061610	0.058541
8	7	6.603866e-007	0.053389	1.136149e-008	0.061685	0.058980
9	8	3.687804e-008	0.055843	7.012560e-010	0.061722	0.059316
10	9	2.122171e-009	0.057546	4.329681e-011	0.061742	0.059581
11	10	1.246363e-010	0.058731	2.673686e-012	0.061752	0.059795
12	11	7.424379e-012	0.059568	1.651230e-013	0.061759	0.059970
13	12	4.467406e-013	0.060172	1.019837e-014	0.061762	0.060118
14	13	2.707929e-014	0.060615	6.298990e-016	0.061765	0.060243
15	14	1.650363e-015	0.060946	3.890651e-017	0.061766	0.060350
16	15	1.009940e-016	0.061195	2.403156e-018	0.061767	0.060444

Result for $v_1 = 3, v_2 = 2$

1	cycle	residue	ratio	error	ratio	convergence
	fa	ctor				
2	1	8.757448e+001	0.000000	1.810759e-001	0.00000	0.039570
3	2	1.833553e+000	0.020937	8.646696e-003	0.047752	0.043469
4	3	5.258255e-002	0.028678	4.247632e-004	0.049124	0.045278
5	4	1.791120e-003	0.034063	2.110165e-005	0.049679	0.046340
6	5	6.870264e-005	0.038357	1.053438e-006	0.049922	0.047035
7	6	2.863317e-006	0.041677	5.270844e-008	0.050035	0.047522
8	7	1.263069e-007	0.044112	2.640110e-009	0.050089	0.047881

9	8	5.788133e-009	0.045826	1.323120e-010	0.050116	0.048155
10	9	2.720719e-010	0.047005	6.632824e-012	0.050130	0.048370
11	10	1.300844e-011	0.047812	3.325556e-013	0.050138	0.048544
12	11	6.292148e-013	0.048370	1.667508e-014	0.050142	0.048687
13	12	3.068072e-014	0.048760	8.361702e-016	0.050145	0.048807
14	13	1.504560e-015	0.049039	4.193112e-017	0.050147	0.048909
15	14	7.408807e-017	0.049242	2.102755e-018	0.050148	0.048996
16	15	3.659443e-018	0.049393	1.054505e-019	0.050149	0.049072

Result for $v_1 = 3, v_2 = 3$

1	[cyc]	Le residue	ratio	error	ratio	convergence
		factor				
2	1	5.945561e+001	0.00000	1.526825e-001	0.000000	0.033365
3	2	1.070297e+000	0.018002	6.187752e-003	0.040527	0.036772
4	3	2.627477e-002	0.024549	2.577899e-004	0.041661	0.038335
5	4	7.691734e-004	0.029274	1.085633e-005	0.042113	0.039246
6	5	2.541274e-005	0.033039	4.593210e-007	0.042309	0.039840
7	6	9.121526e-007	0.035894	1.947469e-008	0.042399	0.040256
8	7	3.458310e-008	0.037914	8.265419e-010	0.042442	0.040561
9	8	1.358230e-009	0.039274	3.509771e-011	0.042463	0.040794
10	9	5.456298e-011	0.040172	1.490758e-012	0.042475	0.040978
11	10	2.224324e-012	0.040766	6.332842e-014	0.042481	0.041125
12	11	9.156769e-014	0.041167	2.690464e-015	0.042484	0.041247
13	12	3.794885e-015	0.041443	1.143087e-016	0.042487	0.041349
14	13	1.580225e-016	0.041641	4.856765e-018	0.042488	0.041436
15	14	6.603117e-018	0.041786	2.063606e-019	0.042489	0.041510
16	15	2.766417e-019	0.041896	8.768302e-021	0.042490	0.041575

Result for $v_1 = 3, v_2 = 4$

1	cycle	e residue	ratio	error	ratio	convergence
	f	actor				
2	1	4.335915e+001	0.00000	1.321583e-001	0.000000	0.028880
3	2	6.849016e-001	0.015796	4.660361e-003	0.035263	0.031913
4	3	1.472864e-002	0.021505	1.688654e-004	0.036234	0.033293
5	4	3.797836e-004	0.025785	6.183105e-006	0.036616	0.034094
6	5	1.109514e-005	0.029214	2.274057e-007	0.036779	0.034615
7	6	3.520256e-007	0.031728	8.380416e-009	0.036852	0.034978
8	7	1.176545e-008	0.033422	3.091300e-010	0.036887	0.035245
9	8	4.060755e-010	0.034514	1.140828e-011	0.036904	0.035448
10	9	1.429858e-011	0.035212	4.211199e-013	0.036914	0.035608
11	10	5.099387e-013	0.035664	1.554713e-014	0.036919	0.035737
12	11	1.833989e-014	0.035965	5.740235e-016	0.036922	0.035843
13	12	6.634068e-016	0.036173	2.119492e-017	0.036923	0.035932

•

14	13	2.409612e-017	0.036322	7.826178e-019	0.036925	0.036007
15	14	8.778704e-019	0.036432	2.889877e-020	0.036926	0.036072
16	15	3.205646e-020	0.036516	1.067132e-021	0.036927	0.036128

Result for $v_1 = 4, v_2 = 0$

1	[cyc]	le residue	ratio	error	ratio	convergence
		factor				
2	1	1.305638e+003	0.000000	3.571047e-001	0.000000	0.078787
3	2	7.990465e+001	0.061200	3.078639e-002	0.086211	0.082415
4	3	6.837976e+000	0.085577	2.728251e-003	0.088619	0.084433
5	4	6.150176e-001	0.089941	2.433551e-004	0.089198	0.085600
6	5	5.555443e-002	0.090330	2.176670e-005	0.089444	0.086355
7	6	5.009766e-003	0.090178	1.949873e-006	0.089581	0.086885
8	7	4.509998e-004	0.090024	1.748412e-007	0.089668	0.087277
9	8	4.055972e-005	0.089933	1.568822e-008	0.089728	0.087580
10	9	3.645908e-006	0.089890	1.408358e-009	0.089772	0.087821
11	10	3.276772e-007	0.089875	1.264748e-010	0.089803	0.088017
12	11	2.945016e-008	0.089876	1.136069e-011	0.089826	0.088180
13	12	2.647044e-009	0.089882	1.020666e-012	0.089842	0.088317
14	13	2.379448e-010	0.089891	9.171024e-014	0.089853	0.088434
15	14	2.139097e-011	0.089899	8.241165e-015	0.089861	0.088536
16	15	1.923168e-012	0.089906	7.405975e-016	0.089866	0.088624

Result for $v_1 = 4, v_2 = 1$

1	cycle	e residue	ratio	error	ratio	convergence
	f	actor				
2	1	1.093773e+002	0.000000	1.812869e-001	0.000000	0.039616
3	2	2.098783e+000	0.019188	8.652527e-003	0.047728	0.043484
4	3	5.704834e-002	0.027182	4.249640e-004	0.049114	0.045285
5	4	1.882553e-003	0.032999	2.111018e-005	0.049675	0.046345
6	5	7.106054e-005	0.037747	1.053863e-006	0.049922	0.047039
7	6	2.943509e-006	0.041423	5.273130e-008	0.050036	0.047526
8	7	1.297051e-007	0.044065	2.641368e-009	0.050091	0.047884
9	8	5.950199e-009	0.045875	1.323812e-010	0.050118	0.048158
10	9	2.802074e-010	0.047092	6.636618e-012	0.050133	0.048373
11	10	1.342545e-011	0.047913	3.327617e-013	0.050140	0.048547
12	11	6.507751e-013	0.048473	1.668619e-014	0.050145	0.048690
13	12	3.179931e-014	0.048864	8.367653e-016	0.050147	0.048810
14	13	1.562661e-015	0.049141	4.196279e-017	0.050149	0.048912
15	14	7.710595e-017	0.049343	2.104432e-018	0.050150	0.048999
16	15	3.816096e-018	0.049492	1.055388e-019	0.050151	0.049075
	l					

•

•

Result for $v_1 = 4, v_2 = 2$

1	cycl	e residue	ratio	error	ratio	convergence
	:	factor				
2	1	5.956504e+001	0.000000	1.526861e-001	0.000000	0.033366
3	2	1.070895e+000	0.017979	6.187900e-003	0.040527	0.036773
4	3	2.628769e-002	0.024547	2.577967e-004	0.041661	0.038335
5	4	7.695512e-004	0.029274	1.085667e-005	0.042113	0.039246
6	5	2.542668e-005	0.033041	4.593380e-007	0.042309	0.039841
7	6	9.127487e-007	0.035897	1.947552e-008	0.042399	0.040256
8	7	3.460995e-008	0.037918	8.265816e-010	0.042442	0.040561
9	8	1.359449e-009	0.039279	3.509957e-011	0.042464	0.040794
10	9	5.461792e-011	0.040177	1.490844e-012	0.042475	0.040978
11	10	2.226781e-012	0.040770	6.333235e-014	0.042481	0.041126
12	11	9.167659e-014	0.041170	2.690642e-015	0.042484	0.041247
13	12	3.799678e-015	0.041447	1.143166e-016	0.042487	0.041349
14	13	1.582320e-016	0.041644	4.857121e-018	0.042488	0.041436
15	14	6.612229e-018	0.041788	2.063764e-019	0.042489	0.041510
16	15	2.770358e-019	0.041897	8.769001e-021	0.042490	0.041575

 $\underbrace{\text{Result for } v_1 = 4, v_2 = 3}_{\text{Result for } v_1 = 4, v_2 = 3}$

1	cycl	e residue	ratio	error	ratio	convergence
	:	factor				
2	1	4.335295e+001	0.00000	1.321581e-001	0.00000	0.028880
3	2	6.848903e-001	0.015798	4.660374e-003	0.035264	0.031913
4	3	1.472868e-002	0.021505	1.688664e-004	0.036235	0.033293
5	4	3.797890e-004	0.025786	6.183161e-006	0.036616	0.034094
6	5	1.109540e-005	0.029215	2.274083e-007	0.036779	0.034615
7	6	3.520365e-007	0.031728	8.380531e-009	0.036852	0.034978
8	7	1.176590e-008	0.033422	3.091348e-010	0.036887	0.035245
9	8	4.060938e-010	0.034514	1.140848e-011	0.036905	0.035448
10	9	1.429932e-011	0.035212	4.211278e-013	0.036914	0.035608
11	10	5.099674e-013	0.035664	1.554744e-014	0.036919	0.035737
12	11	1.834100e-014	0.035965	5.740358e-016	0.036922	0.035843
13	12	6.634495e-016	0.036173	2.119540e-017	0.036923	0.035932
14	13	2.409774e-017	0.036322	7.826365e-019	0.036925	0.036007
15	14	8.779315e-019	0.036432	2.889949e-020	0.036926	0.036072
16	15	3.205874e-020	0.036516	1.067159e-021	0.036927	0.036128
	(

Result for $v_1 = 4$, $v_2 = 4$

1cycleresidueratio error ratioconvergence	
---	--

		factor				
2	1	3.318582e+001	0.000000	1.163430e-001	0.000000	0.025424
3	2	4.677808e-001	0.014096	3.627130e-003	0.031176	0.028154
4	3	8.965233e-003	0.019165	1.161573e-004	0.032025	0.029389
5	4	2.073972e-004	0.023134	3.758056e-006	0.032353	0.030104
6	5	5.448802e-006	0.026272	1.221050e-007	0.032492	0.030567
7	6	1.551551e-007	0.028475	3.974903e-009	0.032553	0.030889
8	7	4.638434e-009	0.029895	1.295102e-010	0.032582	0.031125
9	8	1.427642e-010	0.030779	4.221525e-012	0.032596	0.031306
10	9	4.472442e-012	0.031327	1.376361e-013	0.032603	0.031447
11	10	1.416727e-013	0.031677	4.487966e-015	0.032607	0.031561
12	11	4.520389e-015	0.031907	1.463521e-016	0.032610	0.031655
13	12	1.449490e-016	0.032066	4.772759e-018	0.032611	0.031734
14	13	4.664276e-018	0.032179	1.556520e-019	0.032613	0.031801
15	14	1.504811e-019	0.032262	5.076339e-021	0.032613	0.031858
16	15	4.864498e-021	0.032326	1.655598e-022	0.032614	0.031908

2.5.3 **Problem 3**

3. Use your V-cycle code to solve

$$\Delta u = -\exp\left(-(x - 0.25)^2 - (y - 0.6)^2\right)$$

on the unit square $(0, 1) \times (0, 1)$ with homogeneous Dirichlet boundary conditions using a grid spacing of 2^{-7} . How many steps of pre and postsmoothing did you use? What tolerance did you use? How many cycles did it take to converge? Compare the amount of work needed to reach convergence with your solvers from Homework 3 taking into account how much work is involved in a V-cycle.

Figure 2.55: problem 3

This problem was solved using multigrid V cycle method. The following is the solution found

Figure 2.56: problem 3 solutions found earlier

Tolerance used is $h^2 = 0.000061$, the number of grid points along one dimension is n = 129, the spacing is 2^{-7} .

V cycle method converged in 5 iterations. The number of pre-smooth is 1 and the number of post smooth is 1. These are selected since in problem 2 it was found they lead to the most efficient solver.

Hence, the amount of work done

$$W = \left(\frac{\log\left(\varepsilon\right)}{\log\left(\rho\right)}\right) \left(\frac{3}{4}\left(7\left(v_1 + v_2\right) + 13\right)N\right)$$

From the table in problem 2, $\rho = 0.116811$ for the solver (1, 1), and given that $N = (n-2)^2 = 127^2 = 16129$, hence the above becomes

$$W = \left(\frac{\log_{10} (0.000061)}{\log_{10} (0.116811)}\right) \left(\frac{3}{4} (7(1+1)+13) 16129\right)$$

= 1.4762 × 10⁶ operations

The above is compared with the solvers used in HW3, for same tolerance as above and

method	Number of iterations
Jacobi	31702
Gauss-Seidel	15852
SOR	306

same h, from HW3, the results were the following

To compare work between all methods, it is required to find the work per iteration for the Jacobi, GS and SOR.

Work per iteration in these methods required only one smooth operation, and one calculation for the residue. No mapping between different grid sizes was needed. Hence, assuming about 13 flops to calculate the averaging and residue per one grid point, work per iteration for the above solver becomes

Work Per iteration = (6N + 7N) = 13N

where N is the total number of grid points which is 16129 in this example.

Therefore, total work can be found for all the methods, including the multigrid solver. The following table summarizes the result

method	Number of iterations	W (flops)
Jacobi	31702	$31702 \times 13 \times 16129 = 6.6472 \times 10^9$
Gauss-Seidel	15852	$15852 \times 13 \times 16129 = 3.3238 \times 10^9$
SOR	306	$306 \times 13 \times 16129 = 6.4161 \times 10^7$
Multigrid V Cycle	5	1.4762×10^{6}

Using the multigrid as a base measure, and normalizing other solvers relative to it, the above becomes

method	work
Jacobi	$\frac{6.6472 \times 10^9}{1.4762 \times 10^6} = 4502.9$
Gauss-Seidel	$\frac{3.3238 \times 10^9}{1.4762 \times 10^6} = 2251.6$
SOR	$\frac{6.4161 \times 10^7}{1.4762 \times 10^6} = 43.464$
Multigrid V Cycle	1

The above shows clearly that Multigrid is the most efficient solver. SOR required about 44 times as much work, GS over 2251 more work, and Jacobi about 4500 more work.

2.5.4 Note on using Full Multigrid cycle (FMG) to improve convergence

It was found that using FMG to determine a better initial guess solution before initiating the V cycle algorithm resulted in about 40% reduction in the number of iterations needed to convergence by the V cycle algorithm.

The following is a plot of one of the tests performed showing the difference in number of iterations needed to converge. All other parameters are kept the same. This shows that with FMG cycle, convergence reached in 4 iterations, while without FMG, it was reached in 7 cycles. The cost of the FMG cycle itself was not taken into account. It is estimated that the FMG correction cycle adds about $\frac{1}{2}$ the cost of one V cycle to the total cost.

Figure 2.57: compare with FMG

The following is a small function written to compare convergence when using FMG and without using FMG which generated the above result. (see code on web page)

2.5.5 References

[1] Thor Gjesdal, Analysis of a new Red-Black ordering for Gauss-Seidel smoothing in cell-centered multigrid. ref no. CMR-93-A200007, November 1993.

- [2] William L. Briggs, A multigrid tutorial, W-7405-Eng-48.
- [3] Robert Guy, Lecture notes, Math 228a, Fall 2010. Mathematics dept. UC Davis.
- [4] Jim Demmel, Lecture notes, CS267, 1996. UC Berkeley.

[5] P. Wesseling, A survey of Fourier smoothing analysis results. ISNM 98, Multigrid methods II page 105-106.

2.5.6 Source code listing

```
function nma_build_HW4()
1
2
   list = dir('*.m');
3
4
   if isempty(list)
5
       fprintf('no matlab files found\n');
6
7
       return
8
   end
9
10
   for i=1:length(list)
       name=list(i).name;
11
       fprintf('processing %s\n',name)
12
       p0 = fdep(list(i).name, '-q');
13
       [pathstr, name_of_matlab_function, ext] = fileparts(name);
14
15
       %make a zip file of the m file and any of its dependency
16
       p1=dir([name_of_matlab_function '.fig']);
17
18
       if length(p1)==1
            files_to_zip =[p1(1).name;p0.fun];
19
20
       else
            files_to_zip =p0.fun;
21
22
       end
23
       zip([name_of_matlab_function '.zip'],files_to_zip)
24
25
26
   end
27
   end
28
```

_____ %---1 % This function is the prologation operator for 1D 2 % it takes 1D coarse grid of spacing 2h and generate 1D fine 3 % grid of spacing h by linear interpolation 4 % 5 % INPUT: 6 % c the coarse 1D grid, spacing 2h 7 % OUTPUT: 8 % f the fine 1D grid, spacing h 9 % 10 % EXAMPLE: 11 12 % nma_c2f_1D([0 1 0]) 13 % 0 0.5000 1.0000 0.5000

```
14 %
15 % Nasser M. Abbasi
16 % Math 228a, UC Davis fall 2010
17 function f = nma_c2f_1D(c)
18 if ndims(c) > 2
      error('nma_c2f_1D:: input number of dimensions too large');
19
20
   end
21
   [n,nCol] = size(c(:));
22
   if nCol>1
23
      error('nma_c2f_1D::input must be a vector');
24
   end
25
26
   valid_grid_points = log2(n-1);
27
28 if round(valid_grid_points) ~= valid_grid_points
      error('nma_c2f_1D:: invalid number of grid points value');
29
   end
30
31
   if n < 3
32
      error('length of coarse grid must be at least 3');
33
   end
34
35
36 fine_n = 2*(n-2) + 3;
37 f = zeros(fine_n ,1);
_{38} f(1:2:end) = c;
39 indx = 2:2:fine n;
40 f(indx) = (f(indx-1) + f(indx+1))/2;
             = f(:)';
41 f
42 end
```

```
%-----
                     _____
1
  % function for debugging
2
  %
3
4 function nma_DEBUG(msg)
5 debug = false;
6 if debug
7
    fprintf(msg);
8
     fprintf('\n');
9
10 end
11
  end
```

1 %----2 % This function is the restriction full weight operator
3 % for mapping 1D fine grid to 1D coarse grid
4 %

```
% INPUT:
5
6
   % f the fine 1D grid, spacing h
   % OUTPUT:
7
  %
     c the corase 1D grid, spacing 2h
8
   %
9
  % EXAMPLE
10
   %nma_c2f_1D( [0 1 0] )
11
12 % 0 0.5000
                           1.0000
                                       0.5000
                                                      0
   %nma_f2c_1D(ans)
13
   %
                0.7500
             0
                                  0
14
  %
15
   % Nasser M. Abbasi
16
   % Math 228a, UC Davis fall 2010
17
18
  function c = nma_f2c_1D( f )
19
   if ndims(f) > 2
20
      error('nma_f2c_1D:: input number of dimensions too large');
21
22
   end
23
  [n,nCol] = size(f(:));
24
   if nCol>1
25
      error('nma_f2c_1D::input must be a vector');
26
27
   end
28
   valid_grid_points = log2(n-1);
29
   if round(valid_grid_points) ~= valid_grid_points
30
      error('nma_f2c_1D:: invalid number of grid points value');
31
32
   end
33
   if n < 5
34
      error('length of fine grid cant be smaller than 5');
35
36
   end
37
   if 2*floor(n/2) == n
38
      error('length of fine grid must be odd number');
39
40
   end
41
             = zeros((n+1)/2, 1);
   С
42
   indx
             = 3:2:n-2;
43
   c(2:end-1) = (1/4)*f(indx-1) + (1/2)*f(indx) + (1/4)*f(indx+1);
44
45
   С
              = c(:)';
  end
46
```

```
1 function nma_HW4_residue_animation
2
3 myforce = @(X,Y) -exp( -(X-0.25).^2 - (Y-0.6).^2 ); % RHS of PDE
4 N = 6; % number of levels
```

```
5 n = 2<sup>N</sup>+1; % total number of grid points, always odd number
6 h = 1/(n-1); % mesh spacing
   [X,Y] = meshgrid(0:h:1,0:h:1); % for plotting solution
7
8
   % use a problem whose solution is known Lu=0, since B.C. are zero
9
         = myforce(X,Y); % RHS of the problem
   f
10
         = 0.*X; % initial guess of solution, use random
   u
11
12
   %-- select number of cycle to run. choose number not too large
13
   number_of_cycles =10;
14
15
   METHOD = 1; % GSRB
16
17 mu1=2; mu2=1;
18 k=0;
19
20
   for i = 1:number_of_cycles
21
22
      k = k+1;
23
24
      u = nma_V_cycle(u,f,mu1,mu2,METHOD); %--- CALL V CYCLE
25
      the_residue = nma_find_residue(u,f);
26
27
      mesh(X,Y, u); drawnow; title(sprintf('k=%d\n',k));
28
      pause(.01);
29
   end
30
   end
31
```

```
1 %-----
  %This function perform full mutligrid cycle
2
3 %to determine a good initial guess to use
4 % for initial solution to the V cycle interative
   %solver
5
   %
6
7
   % INPUT
  % f: 2D grid, the force on the orginal fine grid
8
9
   % OUTPUT:
   % u: estimated solution on the fine grid obtained
10
11 %
        by running FMG cycle once
   %
12
13 |% Example use: see nma_test_FMG.m
   %
14
15 % by Nasser M. Abbasi
16 % Math 228a, UC Davis, Fall 2010
17
  function u = nma_initial_solution_guess_using_FMG( f )
18
19
```

```
nma_validate_dimensions_1(f); %asserts dimensions make sense
20
21
      [n,~] = size(f);
      if n<3
22
          error('initial_solution_guess_using_FMG:: size of f too small');
23
24
      end
25
      mu1 = 1;
26
      mu2 = 1;
27
      smoother = 1; %GSRB
28
29
      k = 3;
30
      while k <= n
31
         fk = f;
32
          [current_size,~] = size(fk);
33
         while current_size ~= k
34
                fk = nma_f2c(fk);
35
                [current_size,~] = size(fk);
36
37
          end
38
         if k == 3
39
             u = zeros(3,3);
40
             u(2,2) = -0.25*(0.5)^2*fk(2,2);
41
         else
42
            u = nma_c2f(u);
43
           u = nma_V_cycle(u,fk,mu1,mu2,smoother);
44
          end
45
         k = 2 k - 1;
46
47
      end
48
49
   end
```

```
%_-----
1
  % This function solves problem 2 in HW4
2
  %
3
  %LOGIC
4
  %
5
  % LOOP over all combinations of mu1 and mu2
6
         run V cycle 15 times on the problem
  %
7
  %
         record the result in table, which contains
8
  %
         average convergence factor
9
  % END LOOP
10
  %
11
12 % By Nasser M. Abbasi
13 % Math 228A, UC Davis
  function nma_math_228_fall_2010_HW4_problem2
14
15
16 N = 6; % number of levels
```

```
n = 2<sup>N</sup>+1; % total number of grid points, always odd number
17
18
   h = 1/(n-1); % mesh spacing
19
   [X,Y] = meshgrid(0:h:1,0:h:1);
20
   % use a problem whose solution is known Lu=0, since B.C. are zero
21
22
   %force = @(X,Y) -2* ( (1-6*X.^2).*Y.^2.*(1-Y.^2)+(1-6*Y.^2).*X.^2.*(1-X.^2)); % RHS of PDE
23
24 %force = @(X,Y) -exp( -(X-0.25).^2 - (Y-0.6).^2 ); % RHS of PDE
   %exact = @(X,Y) (X.^{4-X.^{2}}).*(Y.^{4-Y.^{2}});
25
   \%f = force(X,Y);
26
27
   table = zeros(20,6);
28
   f
         = zeros(n,n);
                        % RHS of the problem
29
   exact = zeros(n,n);
                        % exact solution
30
31
   initial_guess = rand(n,n); % initial guess of solution, use random
32
   initial_guess(:,1)=0; initial_guess(:,end)=0; %initialize B.C. to zero
33
   initial_guess(1,:)=0; initial_guess(end,:)=0;
34
35
   %-- select mu1 and mu2, these are the number of pre-smooth and
36
   \%-- number of post smooth to be used inside the V cycle function
37
38 mu1_values = 0:2;
   mu2_values = 0:2;
39
40
   %-- select number of cycle to run. choose number not too large
41
   number_cycles = 10;
42
43
44
   \%-- select where to send the result, either to stdout or to a file
   %fileID = fopen('table_result_work','w');
45
   fileID = 1;
46
   METHOD = 1; % GSRB
47
48
   for i = 1:length(mu1_values)
49
50
       mu1 = mu1_values(i);
51
       for j = 1:length(mu2_values)
52
                  = mu2_values(j);
           mu2
53
54
           table = run_V_cycle(initial_guess, ...
55
                exact,...
56
57
                f,...
               mu1,...
58
59
               mu2,...
               number_cycles,...
60
               h,...
61
62
               METHOD);
63
```

```
print_table(table,mu1,mu2,fileID);
64
65
        end
    end
66
   %fclose(fileID);
67
68
   end
69
   %-----
70
   % This function runs the V cycle for k times, recording
71
   \% the average convergence rate at each step k. In the end
72
   % it returns table containing the results found
73
   %
74
   %
75
   function table = run_V_cycle(u,exact,f,mu1,mu2,number_of_cycles,h,METHOD)
76
77
   %-- initialization of data and storage
78
   table = zeros(number_of_cycles,7); %initialize table for result collection
79
80
81 last_error_norm
                       = 0;
   last_residue_norm = 0;
82
   initial_error_norm = nma_find_norm(u-exact);
83
   k=0;
84
   [X,Y] = meshgrid(0:h:1,0:h:1); % for plotting solution
85
86
    for i = 1:number_of_cycles
87
88
        k = k+1;
89
90
91
        u = nma_V_cycle(u,f,mu1,mu2,METHOD); %--- CALL V CYCLE
92
93
        e = exact-u;
        norm_error = nma_find_norm(e);
94
        the_residue = nma_find_residue(u,f);
95
        norm_residue = nma_find_norm(the_residue);
96
97
        % fill in table for analysis
98
        table(k,1) = k;
99
        table(k,2) = norm_residue;
100
        table(k,4) = norm_error;
101
        table(k,6) = (norm_error/initial_error_norm)^(1/k);
102
103
104
        if k > 1
            table(k,3) = norm_residue/last_residue_norm;
105
            table(k,5) = norm_error/last_error_norm;
106
            table(k,7) = -6/log10(table(k,6))*(3/4)*(7*(mu1+mu2)+13);
107
        end
108
109
110
        last_error_norm = norm_error;
```

```
last_residue_norm = norm_residue;
111
112
       mesh(X,Y, u); drawnow; title(sprintf('k=%d\n',k));
113
    end
114
115
    end
   %-----
                -----
116
   % This function is called by HW4 problem 2 solver
117
   % to format the results and print it. THe results
118
   % are included in the final report.
119
   %
120
   % this also makes plots of the data
121
122
   %
   function print_table(table,mu1,mu2,fileID)
123
124
125
   fprintf(fileID, 'mu1=%d, mu2=%d\n',mu1,mu2);
126
   % figure;
127
   % subplot(5,1,1);
128
   % plot(table(:,3),'-o');
129
130 % title('residual ratio');
   %
131
132 % subplot(5,1,2);
133 % plot(table(:,5),'-o');
134 % title('error ratio');
135 %
136 % subplot(5,1,3);
   % plot(table(:,2),'-o');
137
   % title('residual norm');
138
139 %
140 % subplot(5,1,4);
141 % plot(table(:,4),'-o');
142 % title('error norm');
   %
143
   % subplot(5,1,5);
144
   % plot(table(:,6),'-o');
145
   % title('RAO(M)');
146
147
   titles={'V-cycle', '|residue|', 'ratio', '|error|', 'ratio', 'C.F', 'work'};
148
    wid
           = 16;
149
           = {'d','.6e','.6f','.6e','.6f','.6f','.1f'};
150
    fms
151
   nma_format_matrix(titles,table,wid,fms,fileID,true);
152
153
    end
154
```

1 %------2 % This function solves problem 3 in HW4

165

```
% It uses the code generated in problem 1, which implements
3
  % V cycle.
4
  % By Nasser M. Abbasi
5
  % Math 228A, UC Davis
6
7
   function nma_math_228_fall_2010_HW4_problem3
8
9
   %----- INITIALIZATION SECTION -----
10
   myforce = @(X,Y) -exp( -(X-0.25).^2 - (Y-0.6).^2 ); % RHS of PDE
11
   h
           = 2^{-7}:
                           % mesh spacing
12
           = 1/h+1;
                           % total number of grid points, always odd number
13 n
           = 1*h^2;
                           % tolerance used
   tol
14
15 [X,Y]
           = meshgrid(0:h:1,0:h:1); % coordinates
           = myforce(X,Y); % evaluate the force on the grid
16 f
17 u
           = zeros(n,n); % initial guess of solution
                          % mu1 number of pre-smooth
           = 1;
18 mu1
                           % mu2 number of post-smooth
           = 1;
19
   mu2
                          % relaxation method for multigrid: Gause-Seidel B/R
20
   METHOD = 1;
21
   [k, u] = nma_solver_Vcycle(u,f,mu1,mu2,METHOD,tol,false);
22
23
   [X,Y] = meshgrid(0:h:1,0:h:1); % coordinates
24
   mesh(X,Y, u); drawnow; title(sprintf ...
25
      ('HW4, problem 3 solution\nk=%d, h=%f, tol=%f, N=%d\n',k,h,tol,n));
26
27
   end
28
```

```
%_-----
1
   %This function compares the performance of multigrid
2
  % with and without a FMG initial cycle by solving HW3 poisson
3
   % problem and comparing the number of iterations needed
4
  % to converge when using V cycle.
5
  %
6
7
  % by Nasser M. Abbasi
  % Math 228a, UC Davis, Fall 2010
8
  function nma_math_228_fall_2010_HW4_test_FMG()
9
  %----- INITIALIZATION SECTION ------
10
   myforce = @(X,Y) -exp(-(X-0.25).^2 - (Y-0.6).^2); % RHS of PDE
11
12 h
          = 2^{-7};
                          % mesh spacing
          = 1/h+1;
                          % total number of grid points, always odd number
  n
13
14 tol
                        % tolerance used
         = 0.01*h^2;
          = meshgrid(0:h:1,0:h:1); % coordinates
  [X,Y]
15
16 f
          = myforce(X,Y); % evaluate the force on the grid
          = 1;
                          % mu1 number of pre-smooth
17 mu1
                          % mu2 number of post-smooth
  mu2
          = 1;
18
                          % relaxation method for multigrid: Gause-Seidel B/R
19
  METHOD = 1;
20
```

```
21
   %----- LOGIC SECTION -----
22
23
   % Solve by doing initial FMG correction
24
       = nma_initial_solution_guess_using_FMG(f);
25
   u
   [k,u] = nma_solver_Vcycle(u,f,mu1,mu2,METHOD,tol,false);
26
   subplot(2,1,1);
27
   mesh(X,Y, u);
28
   title(sprintf('solution with FMG, k=%d, tol=%s, n=%d, h=%0.9f\n',k, ...
29
                 '0.01*h<sup>2</sup>',n,h));
30
31
   % Solve without doing an initial FMG correction
32
33 u = zeros(n);
34 [k,u] = nma_solver_Vcycle(u,f,mu1,mu2,METHOD,tol,false);
35 subplot(2,1,2);
   mesh(X,Y, u);
36
   title(sprintf('solution NO FMG, k=%d, tol=%s, n=%d, h=%0.9f\n',...
37
                  k,'0.01*h<sup>2</sup>',n,h));
38
39
40
   \operatorname{end}
```

2.6 HW 5

2.6.1 Introduction

Math 228A Homework 5 Due Friday, 12/10/10, 4:00 P.M.

Homework must be turned in to Arcade before the deadline. You may email him a pdf file or put a hard copy in his mailbox.

Exam week office hours: Bob, Monday 12-1 Arcade, Tuesday & Wednesday 1:30-2:20

1. Write a program to solve the discrete Poisson equation on the unit square using preconditioned conjugate gradient. Set up a test problem and compare the number of iterations and efficiency of using (i) no preconditioning and (ii) SSOR preconditioning. Run your tests for different grid sizes. How does the number of iterations scale with the number of unknowns as the grid is refined?

Note that there are two typos in the PCG algorithm in our textbook. See your class notes, another textbook, or the author's webpage for the correct algorithm.

SSOR preconditioning Symmetric SOR (SSOR) consists of one forward sweep of SOR followed by one backward sweep of SOR. For the discrete Poisson equation, one step of SSOR is

$$\begin{split} u_{i,j}^{k+1/2} &= \frac{\omega}{4} (u_{i-1,j}^{k+1/2} + u_{i,j-1}^{k+1/2} + u_{i+1,j}^k + u_{i,j+1}^k - h^2 f_{i,j}) + (1-\omega) u_{i,j}^k \\ u_{i,j}^{k+1} &= \frac{\omega}{4} (u_{i-1,j}^{k+1/2} + u_{i,j-1}^{k+1/2} + u_{i+1,j}^{k+1} + u_{i,j+1}^{k+1} - h^2 f_{i,j}) + (1-\omega) u_{i,j}^{k+1/2}. \end{split}$$

It can be shown that one step of SSOR in matrix form is equivalent to

$$\frac{1}{\omega(2-\omega)}(D-\omega L)D^{-1}(D-\omega U)(\boldsymbol{u}^{k+1}-\boldsymbol{u}^k)=\boldsymbol{f},$$

where A = D - L - U.

For the constant coefficient problem, this suggests the preconditioner.

$$M = (D - \omega L)(D - \omega U).$$

Note: If you are interested, experiment with incomplete Cholesky factorization preconditioning and multigrid preconditioning. Incomplete Cholesky preconditioning requires that you form the matrix. Vary the amount of fill (in MATLAB use cholinc and vary the drop tolerance). Obviously, a factorization with more elements results in fewer iterations of CG, but it is more expensive to compute and to apply the preconditioner. To use MG as a preconditioner, the product $M^{-1}r$ is computed by applying one V-cycle with zero initial guess with right hand side r. If the smoother is symmetric and the number of pre and post smoothing steps are the same, this preconditioner is symmetric positive definite and may be used with CG.

Figure 2.58: problem description

The test problem used is

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

on the unit square [(0,1), (0,1)] with zero boundary conditions.

The above problem is solved using the numerical method of conjugate gradient iterative solver. The mesh spacings used is

$$h = \left\{\frac{1}{16}, \frac{1}{32}, \frac{1}{64}, \frac{1}{128}\right\}$$

and the tolerance used to check for convergence is

$$\varepsilon = 10^{-6}$$

The solver terminates when the mesh norm of the residual becomes smaller than the above quantity using the following check

$$\sqrt{h}\left\|r^{(k)}\right\|_2 < \varepsilon$$

Where in the above, $r^{(k)}$ is the residual at the k^{th} iteration and h is the current value of the mesh spacing.

The reason for using *zero* as the driving force on the RHS of the pde, is to allow the calculation and tracking of the error at each iteration as the exact solution u_{exact} for this problem is now known, which is zero. Now the error at each iteration k to be found using

$$e^{(k)} = \|u_{exact} - u^{(k)}\| \\= \|u^{(k)}\|$$

Where in the above $u^{(k)}$ represents the approximate solution at the k^{th} iteration.

A Matlab function CG.m was written to implement conjugate gradient solver. One of the parameters this function accepts is the name of the preconditioner to use. The following preconditioners are supported

NONE, SSOR, MultiGrid, IncompleteCholesky

When NONE is specified, then no preconditioning is done.

For each preconditioner, the solver was run to find the solution to the above test problem. The initial guess for the solution $u^{(0)}$ used was generated using Matlab rand() function.

For each preconditioner the following plots were generated

- 1. Plot of error $||e^{(k)}||$ per iteration k which showed how the rate of error reduction per iteration. The plot was generated in log and linear scale.
- 2. Plot of the residual $||r^{(k)}||$ per iteration which showed the rate of residual norm reduction per iteration, and also plotted in log and linear scale. The initial residual is defined as $r^{(0)} = f Au^{(0)}$ and each subsequent iteration, the residual is defined as $r^{(k-1)} \alpha Ap^{(k-1)}$. The algorithm below illustrates this in more details.
- 3. The spectrum of the eigenvalues of A and the spectrum of the eigenvalues of $M^{-1}A$ are plotted using matlab's scatter() command to better see the effect on the condition number value when multiplying A by M^{-1} , where M is the preconditioner matrix.

4. Plot of the final solution found on a 3D mesh plot. The final solution was verified to be close to zero, which is the same as the exact solution.

In addition to the above plots, for each mesh spacing h, the actual result table is printed which tabulates the above values at each iteration. This table was used to generate the above plots. The printed tables also show the ratio of the value of norm of the residual at the current iteration to its value at the previous iteration, similarly for the error norm.

Due to the large size of these tables, the tables for all the spacings and for each solver are available in the appendix.

Conjugate gradient algorithm description

The idea of conjugate gradient is to use preconditioning matrix to speed up the convergence of the conjugate gradient method. The original problem

Ax = f

is transformed to a new problem

$$M^{-1}Ax = M^{-1}f$$

such that $M^{-1}A$ has a smaller condition number than A. For most iterative solvers, the rate of convergence increases as the condition number of the system matrix A decreases.

The conjugate gradient method works only on symmetric positive definite *A* matrix, and its speed of convergence is affected by the distribution of the eigenvalues of the *A* matrix. The estimate of convergence is more accurate if the distribution of eigenvalues is uniform. For the discrete 2D Poisson problem, this is the case, as verified by plots of the spectrum generated below for each case.

The preconditioning is used to modify the spectrum of A so that the eigenvalues of the new system matrix $M^{-1}A$ become more clustered together causing the condition number to become smaller and thus increasing the convergence rate.

The following table was generated to show the effect of preconditioning on lowering the condition number. It shows the condition number for CG (in other words, for the A matrix only), and then the condition number for $M^{-1}A$ for different solvers as mesh spacing is changed. It also shows below the condition number value, in a box, the maximum eigenvalue and the minimum eigenvalue. Notice that in the following table, if one tries to apply the $\frac{|\max \lambda|}{|\min \lambda|}$ to determine the condition number, then the result will not match the condition number as shown. The above formula do not apply in this case, as these are sparse matrices and the condition number was found by estimating its value using the Matlab function condest() and not by applying the above formula.

solver	$h = \frac{1}{16}, N = 225$	$h = \frac{1}{32}, N = 961$	$h = \frac{1}{64}, N = 3969$	$h = \frac{1}{128}, N = 16129$
NONE	150, (7.923, 0.0768)	603, (7.9807, 0.01926)	2413, (7.9995, 0.0048)	9655, (7.9987, 0.001205)
SSOR	33, (0.25, 0.018203)	128, (0.25, 0.004748)	511, (0.25, 0.0012)	
IncCholesky $\varepsilon = 10^{-2}$	32, (2.365, 0.2279)	108, (2.44, 0.0585)	422, (2.537, 0.0146)	
IncCholesky $\varepsilon = 10^{-3}$	48, (2.337, 0.508)	153, (2.526, 0.1603)	373, (2.592, 0.041756)	

This diagram below reflects the above table result to clearly show the reduction of the condition number as a result of preconditioning.

Figure 2.59: compare condition numbers

CG Algorithm pseudocode

The following is the algorithm used for the implementation of conjugate gradient with precondition-

ing.

Input: A, f, tol, preconditionSolverName, dropTol *Output* : \tilde{u} approximate solution to Ax = 0 $u_0 = \text{rand}()$ (*initial guess of solution *) $r_0 = f - Au_0$ (*initial residual*) $z_0 \leftarrow CALL$ preconditionSolver(r_0, A , preconditionSolverName, dropTol) $p_0 = z_0$ FOR $k = 1, 2, 3, \cdots$ $e_{k-1} = \sqrt{h} \|u_{k-1}\|_{2}$ (* the error since u_{exact} is known to be zero*) $\omega_{k-1} = Ap_{k-1}$ $\alpha_{k-1} = \frac{z_{k-1}^T r_{k-1}}{p_{k-1}^T \omega_{k-1}}$ $u_k = u_{k-1} + \alpha_{k-1} p_{k-1}$ $r_k = r_{k-1} - \alpha_{k-1}\omega_{k-1}$ IF $\left(\sqrt{h} \|r_k\|_2\right) < tol THEN$ RETURN u_k END IF $z_k \leftarrow CALL$ preconditionSolver(r_k , A, preconditionSolverName, dropTol) $\beta_{k-1} = \frac{z_k^T r_k}{z_{k-1}^T r_{k-1}}$ $p_k = z_k + \beta_{k-1} p_{k-1}$ END FOR

The algorithm for the function *preconditionSolver()* is as follows

Input : r, A, preconditionSolverName, dropTol *Output* : z approximate solution to Mz = rCASE preconditionSolverName IS WHEN NONE $z \leftarrow r$ *// no preconditioning* WHEN MultiGrid $\mu_1 = \mu_2 = 1$ (* presmoother and postsmoother*) $z \leftarrow CALL VCYCLE(zeroInitialGuess, r)$ //VCYCLE is one implemented in HW4 but changed to do *//one forward Gauss – Seidel/red – black followed by* //one reverse Gauss – Seidel/red – black WHEN SSOR $z \leftarrow CALL SOR$ forward followed by SOR in reverse WHEN IncompleteCholesky R = cholinc(A, dropTol) $z \leftarrow R \setminus (R^T \setminus r)$ END CASE RETURN z

2.6.2 Solvers efficiency and iterations count

In addition to finding the number of iterations needed for convergence by each solver, the problem also asked to compare the efficiency of each solver. This is done by finding the work needed by each solver to converge.

Work needed is defined as

Work = *NumberOfIterations* × *WorkPerIteration*

Before determining the work for each solver, the following table lists the *cputime* used by each solver for the different spacings. The cpu time is measured using Matlab cputime function, and measures only the call to CG() and does not include any other calls such as plotting.

preconditioning	$h = \frac{1}{16}$ $N = 225$	$h = \frac{1}{32}$ $N = 961$	$h = \frac{1}{64}$ $N = 3969$	$h = \frac{1}{128}$ $N = 16129$
NONE	0.19	0.37	13.48	556.6
Multigrid	0.34	0.6	13.48	566
SSOR	0.23	0.5	13.3	564.6
Incomplete Cholesky $\varepsilon = 10^{-2}$	0.16	0.34	13.8	559
Incomplete Cholesky $\varepsilon = 10^{-3}$	0.19	0.5	13.3	559

Surprisingly, no appreciable difference can be seen between the different solvers in terms of cpu time. It was expected that NONE would have the largest CPU time as it has the lowest efficiency. This result can be attributed to using small number of N values, which was not large enough in the limit to reflect the difference. One needs to use much larger values of N to see the effect of preconditioning on CPU time difference. Due to memory limitation, this was not possible to implement at this time. Now the work per iteration is analyzed.

2.6.2.1 Work per iteration

All solvers perform similar work per iterations except for the step needed to apply the preconditioning to determine z_k . The only difference between not using preconditioning and using one, is in the step to solve for z in Mz = r. Using work per iteration as O(N) for the base CG with no preconditioning, then the following can be defined for work per iteration for each solver:

- 1. No preconditioner is applied: no extra work is needed, as z is the same as r hence O(N)
- 2. multigrid : work needed to determine z adds an extra cost of one V cycle. Work for one V cycle was found from HW4 to be $\frac{4}{3}C \times N$ where N is number of unknowns and C is a constant estimated to be $(7(v_1 + v_2) + 13)$ where v_1, v_2 are the numbers of pre smooth and post smooth operations. These are both *one* in this case. The smoothing is done twice (forward and reverse), hence the above becomes $(2 \times 7(v_1 + v_2) + 13)$, resulting in work per iteration of $\frac{4}{3}(2 \times 7(v_1 + v_2) + 13)N$ or about 55N. Adding the O(N) from the above, this is still results in O(N).
- 3. SSOR: The cost is twice one SOR step. One step of SOR work is 7*N*, where *N* is number of unknowns, since it takes about 7 flop operations to smooth one grid point, and there are *N* of these. Hence for SSOR work is twice that or 14*N*. As above, this is still an order of *N*.

2.6.2.2 Number of iterations

From lectures notes, it was found that the error rate in conjugate gradient (with no preconditioning) behaves as

$$\left\|e_{k}\right\|_{A} \leq 2\frac{\sqrt{\mathbb{k}\left(A\right)}-1}{\sqrt{\mathbb{k}\left(A\right)}+1} \left\|e_{0}\right\|_{A}$$

Where $\mathbb{k}(A)$ is the condition number of A, it was shown that $\mathbb{k}(A) = O(h^{-1})$ where h is the mesh spacing. Hence, for fixed tolerance, which is the case here, the number of iterations is $O(h^{-1}) = O(N^{1/2})$ where N is number of unknowns.

The results of the numerical experiment done agrees with the above, as shown below, for the case of NONE (which is the case of conjugate gradient with no preconditioning).

The following table was generated from result of running the program. In this table, N is the number of unknowns, $\Bbbk (M^{-1}A)$ is the condition number of $M^{-1}A$, and $\Bbbk (A)$ is the condition number of A. Since sparse matrices are used, the Matlab function condest() was used to find the condition numbers. In this table I.C. means Incomplete Cholesky

preconditioner	$h = \frac{1}{16}$ $N = 225$	$\mathbb{k}\left(M^{-1}A\right)$	$\mathbb{k}(A)$	$h = \frac{1}{32}$ $N = 961$	$\Bbbk \left(M^{-1}A \right)$	$\mathbb{k}(A)$
NONE	42	N/A	150	82	N/A	603
Multigrid	4		150	4		603
SSOR	18	33	150	30	128	603
IC $\varepsilon = 10^{-2}$	7	32	150	13	108	603
IC $\varepsilon = 10^{-3}$	4	48	150	6	153	603

preconditioner	$h = \frac{1}{64}$ $N = 3969$	$\mathbb{k}\left(M^{-1}A\right)$	$\mathbb{k}(A)$	$h = \frac{1}{128}$ $N = 16129$	$\Bbbk \left(M^{-1}A \right)$	k(A)
NONE	157	N/A	2413	291	N/A	9655
Multigrid	4		2413	4		9655
SSOR	56	511	2413	103	Memory problem	9655
IC $\varepsilon = 10^{-2}$	22	422	2413	39	Memory problem	9655
IC $\varepsilon = 10^{-3}$	8	373	2413	14	Memory problem	9655

The following is a plot that represents the above results.

Figure 2.60: iterations plot

From the above one can see that multigrid has O(1) for the number of iterations. The number of iterations was 4 for all the cases from $h = \frac{1}{16}$ to $h = \frac{1}{128}$. For SSOR, the number of iterations grew sublinear in terms of N, from the above one can estimate this to be $O(N^{1/4})$, while for no preconditioning, the number of iterations grew as approximately as $O(N^{\frac{1}{2}})$ as predicted by earlier analytical result.

2.6.3 Discussion of results and conclusions

The use of preconditioning on A caused a reduction of the number of iterations to convergence to the same fixed tolerance when compared to convergence with no preconditioning. This was due to reduction of the condition number of the system matrix as can be seen in the above table. By reducing the largest eigenvalue, the rate of convergence increased. However, preconditioning also adds an extra cost per iteration. The extra work however, was also of order N and hence the final efficiency was governed by the number of iterations for large N. Therefore, this is the result of work efficiency for the main solvers, using the formula of

Work = NumberOfIterations × WorkPerIteration

1. NONE:
$$O(N^{1/2}) \times O(N) = O(N^{3/2})$$

- 2. SSOR: $O(N^{1/4}) \times O(N) = O(N^{5/4})$
- 3. Multigrid: $O(1) \times O(N) = O(N)$

Incomplete Cholesky was not added as it was hard to estimate from the curve above the number of iterations and since depend on the drop tolerance values.

The above analysis showed that **Multigrid is most efficient**, followed by Incomplete Cholesky (but these depend on the tolerance drop term), followed by SSOR, and finally by CG with no preconditioning

In conclusion, using Multigrid for preconditioner for conjugate gradient seems to be the most effective solver.
2.6.4 Appendix

2.6.4.1 Result for CG with no preconditioner

Plots h=1/16

Eigenvalues of A

Final solution

Residual per iteration

Figure 2.61: solver none plots 16

Eigenvalues of A

Final solution

Residual per iteration

Figure 2.62: solver none plots 32

Eigenvalues of A

Final solution

Residual per iteration

ERROR per iteration

Figure 2.63: solver none plots 64

Eigenvalues of A

Final solution

Residual per iteration

Figure 2.64: solver none plots 128

2.6.4.2 Result for CG with Multigrid preconditioner

Plots for h=1/16

Final solution

Residual per iteration

Figure 2.65: solver MG plots 16

Final solution

Residual per iteration

ERROR per iteration

Final solution

Residual per iteration

Final solution

Residual per iteration

ERROR per iteration

2.6.4.3 Result for CG with SSOR preconditioner

Plots for h=1/16

Final solution

Residual per iteration

Figure 2.69: solver SSOR plots 16

_ 🗆 🗙

40

30

20

Eigenvalues of A and M⁻¹*A

Final solution

Residual per iteration

Figure 2.70: solver SSOR plots 32

Eigenvalues of A and M⁻¹*A

Final solution

Residual per iteration

Figure 2.71: solver SSOR plots 64

2.6.4.4 Plots for h=1/128

Eigenvalues of A

Figure 2.72: solver SSOR plots 128

2.6.4.5 Result for CG with incomplete cholesky preconditioner $\varepsilon = 10^{-2}$

Figure 2.73: solver incomplete cholesky plots 16

Eigenvalues of A and M⁻¹*A

Final solution

Residual per iteration

Figure 2.74: solver incomplete cholesky plots 32

20

20

Plots for h=1/64

Final solution

Eigenvalues of A and M⁻¹*A

Residual per iteration

Figure 2.75: solver incomplete cholesky plots 64

_ 🗆 🗙

Plots for h=1/128

Student Version> Figure 16

Residual per iteration

Figure 2.76: solver incomplete cholesky plots 128

2.6.5 Result for CG with incomplete cholesky preconditioner $\varepsilon = 10^{-3}$

Figure 2.77: solver CG with incomplete cholesky preconditioner 16

underlinePlots for h=1/32

Residual per iteration

Figure 2.78: solver CG with incomplete cholesky preconditioner 32

Plots for $h = \frac{1}{64}$

Figure 2.79: solver CG with incomplete cholesky preconditioner 64

Figure 2.80: solver CG with incomplete cholesky preconditioner 128

2.6.5.1 References

1. R. J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM, 2007.

2.6.5.2 Computation Tables

table for CG with no preconditioner

table for CG with no preconditioner $h = \frac{1}{16}$

	Tolerance=10 ⁻⁶ metho	d=NONE, Iteratio	ns = 42, condition	number A=150.416	67	
1	k	e	ratio	r	ratio	
2	1	2.1830924	0.000000	4.7210582	0.000000	
3	2	1.8864972	0.8641399	1.4184825	0.3004586	
4	3	1.7843339	0.9458449	0.6424897	0.4529416	
5	4	1.6861080	0.9449509	0.4396146	0.6842360	
6	5	1.5849468	0.9400032	0.3336348	0.7589256	
7	6	1.4553992	0.9182637	0.3163522	0.9481991	
8	7	1.2957415	0.8902998	0.2736152	0.8649068	
9	8	1.1409611	0.8805468	0.2420287	0.8845587	
10	9	0.9977301	0.8744646	0.2038050	0.8420696	
11	10	0.8499980	0.8519318	0.2051285	1.0064937	
12	11	0.6651595	0.7825425	0.1974297	0.9624684	
13	12	0.4864479	0.7313251	0.1747116	0.8849309	
14	13	0.2960128	0.6085191	0.1779989	1.0188155	
15	14	0.1451740	0.4904313	0.1199788	0.6740421	
16	15	0.0935858	0.6446460	0.0678391	0.5654261	
17	16	0.0756963	0.8088434	0.0408147	0.6016397	
18	17	0.0635298	0.8392727	0.0298095	0.7303614	
19	18	0.0529339	0.8332136	0.0218161	0.7318495	
20	19	0.0429735	0.8118324	0.0195722	0.8971481	
21	20	0.0322133	0.7496102	0.0163238	0.8340275	
22	21	0.0237202	0.7363457	0.0127609	0.7817369	
23	22	0.0157525	0.6640959	0.0107769	0.8445245	
24	23	0.0090001	0.5713465	0.0081136	0.7528675	
25	24	0.0049041	0.5448943	0.0056646	0.6981578	
26	25	0.0029273	0.5968981	0.0032193	0.5683292	
27	26	0.0021383	0.7304863	0.0017564	0.5455764	
28	27	0.0016007	0.7485962	0.0012297	0.7001280	
29	28	0.0011635	0.7268656	0.0008660	0.7042553	
30	29	0.0008013	0.6886615	0.0006405	0.7396406	
31	30	0.0005365	0.6695259	0.0005187	0.8097440	
32	31	0.0003581	0.6674555	0.0002751	0.5304362	
33	32	0.0002692	0.7517878	0.0001920	0.6979471	
34	33	0.0001902	0.7066626	0.0001491	0.7762729	
35	34	0.0001158	0.6085937	0.0001143	0.7665146	
36	35	0.0000648	0.5601207	0.0000746	0.6531095	
37	36	0.0000377	0.5807215	0.0000446	0.5983047	
38	37	0.0000238	0.6316540	0.0000268	0.5993857	
39	38	0.0000137	0.5773472	0.0000177	0.6619224	
40	39	0.0000077	0.5599609	0.0000104	0.5863875	
41	40	0.000043	0.5545265	0.000060	0.5767504	

42	41	0.000023	0.5432272	0.000034	0.5745691	
43	42	0.000005	0.2307583	0.000009	0.2689011	

Table CG with no preconditioner for $h = \frac{1}{3}$	1 32
---	---------

101010100-10 memou-100110, netations -02 , condition number $n=00$	Tolerance=10 ⁻⁶	⁵ method=NONE.	Iterations =82.	condition	number	A=603
--	----------------------------	---------------------------	-----------------	-----------	--------	-------

1	k	e	ratio	r	ratio	
2		1	3.1348156	0.000000	7.2393385	0.000000
3		2	2.7330660	0.8718427	2.0520496	0.2834582
4		3	2.6175107	0.9577196	0.9150415	0.4459159
5		4	2.5284570	0.9659777	0.6101126	0.6667595
6		5	2.4421554	0.9658679	0.4386752	0.7190070
7		6	2.3586462	0.9658051	0.3380251	0.7705588
8		7	2.2766645	0.9652421	0.2853482	0.8441627
9		8	2.1887867	0.9614006	0.2476061	0.8677331
10		9	2.1039473	0.9612391	0.2079568	0.8398696
11	1	10	2.0254995	0.9627140	0.1877177	0.9026765
12	1	11	1.9387591	0.9571758	0.1699200	0.9051889
13	1	12	1.8539303	0.9562459	0.1545855	0.9097544
14	1	13	1.7682926	0.9538075	0.1400435	0.9059291
15	1	14	1.6834581	0.9520246	0.1278646	0.9130349
16	1	15	1.6022568	0.9517652	0.1160407	0.9075285
17	1	16	1.5217100	0.9497291	0.1094328	0.9430547
18	1	17	1.4395506	0.9460085	0.1027356	0.9388016
19	1	18	1.3562155	0.9421104	0.0942611	0.9175109
20	1	19	1.2759187	0.9407934	0.0898504	0.9532076
21		20	1.1866336	0.9300229	0.0872327	0.9708661
22	2	21	1.0934573	0.9214784	0.0826619	0.9476025
23	2	22	1.0024063	0.9167311	0.0788741	0.9541777
24	2	23	0.8992085	0.8970499	0.0830311	1.0527040
25		24	0.7631293	0.8486678	0.0970541	1.1688879
26		25	0.5530580	0.7247239	0.1109983	1.1436745
27		26	0.3359324	0.6074089	0.0961082	0.8658534
28		27	0.2191717	0.6524281	0.0639449	0.6653430
29	2	28	0.1626895	0.7422922	0.0484804	0.7581592
30	2	29	0.1228014	0.7548210	0.0407252	0.8400342
31	3	30	0.0917790	0.7473771	0.0335094	0.8228158
32	3	31	0.0700724	0.7634914	0.0273614	0.8165289
33	3	32	0.0540805	0.7717795	0.0214580	0.7842445
34	3	33	0.0432646	0.8000041	0.0163945	0.7640291
35	3	34	0.0364310	0.8420503	0.0126036	0.7687676
36	3	35	0.0309924	0.8507149	0.0103112	0.8181153
37	3	36	0.0268480	0.8662776	0.0080396	0.7796959
38	3	37	0.0236146	0.8795683	0.0066579	0.8281358
39	3	38	0.0209965	0.8891317	0.0052897	0.7945024
40	3	39	0.0191928	0.9140930	0.0040810	0.7714996
41	4	10	0.0177298	0.9237770	0.0033815	0.8285992
42	4	11	0.0164277	0.9265582	0.0027478	0.8126066
43	4	42	0.0154290	0.9392033	0.0020770	0.7558581
44	4	43	0.0144978	0.9396484	0.0018150	0.8738906
45	4	14	0.0134250	0.9260010	0.0016909	0.9316005
46	4	45	0.0121487	0.9049280	0.0017116	1.0122194
47	4	16	0.0103132	0.8489185	0.0019431	1.1352723

48	47	0.0076740	0.7440911	0.0020798	1.0703591	
49	48	0.0052118	0.6791481	0.0017795	0.8556085	
50	49	0.0036674	0.7036863	0.0012802	0.7194204	
51	50	0.0028794	0.7851283	0.0009362	0.7313235	
52	51	0.0023421	0.8133830	0.0007764	0.8292528	
53	52	0.0019119	0.8163410	0.0006295	0.8108465	
54	53	0.0016151	0.8447753	0.0004538	0.7207790	
55	54	0.0014025	0.8683421	0.0003797	0.8368191	
56	55	0.0011871	0.8464182	0.0003408	0.8975492	
57	56	0.0009760	0.8221407	0.0002934	0.8609202	
58	57	0.0007699	0.7888788	0.0002736	0.9323579	
59	58	0.0005719	0.7428557	0.0002359	0.8624696	
60	59	0.0004284	0.7489784	0.0001812	0.7678420	
61	60	0.0003281	0.7659409	0.0001493	0.8242995	
62	61	0.0002531	0.7714986	0.0001175	0.7865263	
63	62	0.0002060	0.8136716	0.0000861	0.7334368	
64	63	0.0001797	0.8726498	0.0000546	0.6339584	
65	64	0.0001644	0.9147896	0.0000414	0.7578420	
66	65	0.0001500	0.9121801	0.0000324	0.7822544	
67	66	0.0001359	0.9062892	0.0000282	0.8704977	
68	67	0.0001196	0.8799064	0.0000263	0.9342924	
69	68	0.0001024	0.8564000	0.0000246	0.9353246	
70	69	0.0000828	0.8079831	0.0000233	0.9453090	
71	70	0.0000620	0.7488319	0.0000226	0.9703960	
72	71	0.0000452	0.7287425	0.0000167	0.7383479	
73	72	0.0000366	0.8101289	0.0000122	0.7285159	
74	73	0.0000299	0.8162470	0.0000101	0.8335502	
75	74	0.0000239	0.8015867	0.000085	0.8430243	
76	75	0.0000186	0.7787371	0.000074	0.8676639	
77	76	0.0000140	0.7525703	0.000060	0.8134688	
78	77	0.0000104	0.7435247	0.000050	0.8225143	
79	78	0.0000076	0.7246112	0.000039	0.7889123	
80	79	0.0000055	0.7232358	0.000030	0.7583253	
81	80	0.0000040	0.7287703	0.000023	0.7618901	
82	81	0.0000029	0.7237151	0.0000017	0.7706604	
83	82	0.0000015	0.5224390	0.000010	0.5519726	

Table for CG with no preconditioner $h = \frac{1}{64}$

	<u>lolerance=10 ° metho</u>	od=NONE, Iteratio	ns = 157, condition	<u>n number A=2413</u>		
1	k	e	ratio	r	ratio	
2	1	4.5618175	0.000000	10.2041977	0.000000	
3	2	4.0484423	0.8874626	2.9223637	0.2863884	
4	3	3.9296490	0.9706570	1.1769802	0.4027494	
5	4	3.8598809	0.9822457	0.7112536	0.6043038	
6	5	3.7995456	0.9843686	0.4805222	0.6755989	
7	6	3.7431529	0.9851580	0.3718902	0.7739293	
8	7	3.6863983	0.9848378	0.2978303	0.8008555	
9	8	3.6292174	0.9844887	0.2541673	0.8533964	
10	9	3.5685722	0.9832897	0.2226181	0.8758725	
11	10	3.5069581	0.9827342	0.2001179	0.8989292	
12	11	3.4429589	0.9817508	0.1826321	0.9126225	
13	12	3.3782370	0.9812017	0.1713830	0.9384053	

Т . 10-6 A 0410 1:4:

199

14	13	3.3146909	0.9811896	0.1522840	0.8885599	
15	14	3.2564054	0.9824160	0.1328174	0.8721691	
16	15	3.2008849	0.9829504	0.1224334	0.9218176	
17	16	3.1455152	0.9827018	0.1137015	0.9286800	
18	17	3.0882964	0.9818094	0.1060581	0.9327769	
19	18	3.0308365	0.9813943	0.0996429	0.9395123	
20	19	2.9722551	0.9806716	0.0956821	0.9602499	
21	20	2.9114870	0.9795549	0.0903023	0.9437739	
22	21	2.8528462	0.9798588	0.0851183	0.9425936	
23	22	2.7941605	0.9794291	0.0812703	0.9547925	
24	23	2.7330511	0.9781296	0.0777886	0.9571584	
25	24	2.6717953	0.9775870	0.0762112	0.9797225	
26	25	2.6080786	0.9761521	0.0724646	0.9508390	
27	26	2.5466310	0.9764395	0.0682339	0.9416164	
28	27	2.4869367	0.9765595	0.0647979	0.9496439	
29	28	2.4272004	0.9759800	0.0620220	0.9571603	
30	29	2.3688169	0.9759461	0.0598978	0.9657516	
31	30	2.3065758	0.9737248	0.0596884	0.9965033	
32	31	2.2416075	0.9718334	0.0576136	0.9652406	
33	32	2.1770400	0.9711959	0.0558695	0.9697274	
34	33	2.1148235	0.9714215	0.0530152	0.9489108	
35	34	2.0513467	0.9699848	0.0526473	0.9930604	
36	35	1.9830861	0.9667240	0.0520339	0.9883494	
37	36	1.9164540	0.9663998	0.0501573	0.9639341	
38	37	1.8482870	0.9644306	0.0495531	0.9879541	
39	38	1.7802122	0.9631687	0.0470089	0.9486572	
40	39	1.7180330	0.9650720	0.0434971	0.9252956	
41	40	1.6579511	0.9650286	0.0428035	0.9840528	
42	41	1.5950758	0.9620765	0.0419171	0.9792931	
43	42	1.5314235	0.9600945	0.0407596	0.9723845	
44	43	1.4665547	0.9576415	0.0403056	0.9888615	
45	44	1.3990502	0.9539707	0.0399968	0.9923390	
46	45	1.3251017	0.9471438	0.0414126	1.0353981	
47	46	1.2399275	0.9357225	0.0446116	1.0772483	
48	47	1.1274063	0.9092518	0.0518707	1.1627170	
49	48	0.9608210	0.8522402	0.0624979	1.2048781	
50	49	0.7395289	0.7696844	0.0669797	1.0717122	
51	50	0.5283032	0.7143780	0.0585964	0.8748381	
52	51	0.3950155	0.7477062	0.0442497	0.7551608	
53	52	0.3199062	0.8098571	0.0353741	0.7994194	
54	53	0.2652143	0.8290380	0.0311022	0.8792360	
55	54	0.2243041	0.8457467	0.0261245	0.8399568	
56	55	0.1942000	0.865/888	0.0227046	0.8690920	
57	56	0.1684643	0.8674782	0.0210588	0.9275151	
58	57	0.1453235	0.8626370	0.0187644	0.8910446	
59	58	0.1265923	0.8/110/1	0.0167577	0.8930590	
60	59	0.109//34	0.86/1408	0.0154345	0.9210396	
01	60	0.094/833	0.0034453	0.0138393	0.0900502	
02 62	61	0.0712607	0.000/000	0.0123950	0.0900052	
64	62	0.0615020	0.8601522	0.0111000	0.9000955	
65	64	0.0010209	0.8635/01	0.0099900	0.0904990	
66	65	0 0460486	0 8667428	0 0078037	0.8701995	
67	66	0.0401432	0.8717562	0.0068652	0.8797327	
57	00	0.0101102	0.0111002	0.000002	0.0101021	

68	67	0.0349347	0.8702530	0.0061224	0.8918082	
69	68	0.0305072	0.8732635	0.0053390	0.8720462	
70	69	0.0267317	0.8762420	0.0047623	0.8919769	
71	70	0.0234572	0.8775033	0.0041094	0.8628988	
72	71	0.0207112	0.8829387	0.0036173	0.8802590	
73	72	0.0181979	0.8786512	0.0032920	0.9100613	
74	73	0.0159488	0.8764068	0.0028970	0.8800222	
75	74	0.0140658	0.8819366	0.0025342	0.8747771	
76	75	0.0125049	0.8890299	0.0021879	0.8633171	
77	76	0.0111985	0.8955273	0.0019189	0.8770658	
78	77	0.0101148	0.9032251	0.0016804	0.8757329	
79	78	0.0091865	0.9082280	0.0015038	0.8948967	
80	79	0.0084158	0.9160976	0.0013190	0.8770684	
81	80	0.0078196	0.9291617	0.0011071	0.8393543	
82	81	0.0073758	0.9432389	0.0009256	0.8360613	
83	82	0.0070385	0.9542812	0.0007869	0.8502076	
84	83	0.0067629	0.9608446	0.0006653	0.8453718	
85	84	0.0065430	0.9674723	0.0005542	0.8330332	
86	85	0.0063606	0.9721362	0.0004631	0.8356598	
87	86	0.0062041	0.9753943	0.0003904	0.8429988	
88	87	0.0060628	0.9772213	0.0003301	0.8455336	
89	88	0.0059316	0.9783588	0.0002793	0.8462168	
90	89	0.0058038	0.9784528	0.0002434	0.8714097	
91	90	0.0056707	0.9770673	0.0002200	0.9036392	
92	91	0.0055215	0.9736957	0.0002182	0.9922456	
93	92	0.0053270	0.9647725	0.0002329	1.0671837	
94	93	0.0050613	0.9501202	0.0002563	1,1003357	
95	94	0.0047075	0.9300953	0.0002754	1.0744267	
96	95	0.0043063	0.9147708	0.0002692	0.9778062	
97	96	0.0039172	0.9096464	0.0002592	0.9626214	
98	97	0.0035245	0.8997507	0.0002627	1.0135967	
99	98	0.0030928	0.8774993	0.0002717	1.0343359	
100	99	0.0026357	0.8522177	0.0002652	0.9760185	
101	100	0.0022317	0.8467214	0.0002384	0.8988006	
102	101	0.0019165	0.8587692	0.0002124	0.8912480	
103	102	0.0016658	0.8691736	0.0001896	0.8925872	
104	103	0.0014748	0.8853198	0.0001562	0.8237657	
105	104	0.0013425	0.9102889	0.0001341	0.8584851	
106	105	0.0012338	0.9190797	0.0001229	0.9163269	
107	106	0.0011364	0.9210448	0.0001110	0.9029318	
108	107	0.0010529	0.9264833	0.0000981	0.8837443	
109	108	0.0009822	0.9329029	0.0000884	0.9015361	
110	109	0.0009173	0.9338643	0.0000805	0.9108633	
111	110	0.0008605	0.9381542	0.0000706	0.8763963	
112	111	0.0008106	0.9420035	0.0000648	0.9185117	
113	112	0.0007612	0.9390822	0.0000609	0.9395127	
114	113	0.0007143	0.9383693	0.0000557	0.9139756	
115	114	0.0006696	0.9374446	0.0000519	0.9329107	
116	115	0.0006260	0.9348144	0.0000481	0.9264502	
117	116	0.0005854	0.9351858	0.0000443	0.9199678	
118	117	0.0005460	0.9326180	0.0000424	0.9576760	
119	118	0.0005044	0.9239461	0.0000413	0.9738142	
120	119	0.0004627	0.9172921	0.0000391	0.9473491	
121	120	0.0004208	0.9094667	0.0000381	0.9752708	

122	121	0.0003784	0.8992550	0.0000372	0.9763676	
123	122	0.0003372	0.8911407	0.0000350	0.9403920	
124	123	0.0002996	0.8885168	0.0000322	0.9205549	
125	124	0.0002665	0.8895264	0.0000296	0.9186267	
126	125	0.0002382	0.8936247	0.0000267	0.9014817	
127	126	0.0002145	0.9005476	0.0000235	0.8810575	
128	127	0.0001949	0.9087432	0.0000205	0.8702270	
129	128	0.0001793	0.9195943	0.0000191	0.9333716	
130	129	0.0001645	0.9175205	0.0000165	0.8627026	
131	130	0.0001529	0.9299627	0.0000145	0.8810031	
132	131	0.0001428	0.9334836	0.0000126	0.8674787	
133	132	0.0001338	0.9370194	0.0000113	0.8986161	
134	133	0.0001252	0.9354832	0.0000105	0.9248925	
135	134	0.0001161	0.9280017	0.0000101	0.9641272	
136	135	0.0001061	0.9132398	0.0000104	1.0276371	
137	136	0.0000941	0.8872630	0.0000108	1.0403204	
138	137	0.0000809	0.8591660	0.0000106	0.9825534	
139	138	0.0000692	0.8553820	0.000095	0.9003622	
140	139	0.0000600	0.8674816	0.000080	0.8360480	
141	140	0.0000535	0.8925543	0.000066	0.8225625	
142	141	0.0000486	0.9079807	0.000057	0.8611308	
143	142	0.0000443	0.9113730	0.000052	0.9135594	
144	143	0.0000402	0.9066825	0.000048	0.9354110	
145	144	0.0000361	0.8975802	0.000045	0.9304066	
146	145	0.0000323	0.8956690	0.000041	0.9034467	
147	146	0.0000288	0.8917449	0.000038	0.9321324	
148	147	0.0000255	0.8865527	0.000034	0.9105714	
149	148	0.0000226	0.8841495	0.000031	0.9002286	
150	149	0.0000200	0.8862625	0.000028	0.8885652	
151	150	0.0000177	0.8849574	0.000025	0.8993699	
152	151	0.0000155	0.8766179	0.000024	0.9491487	
153	152	0.0000133	0.8572703	0.000022	0.9393268	
154	153	0.0000113	0.8482148	0.000020	0.9135275	
155	154	0.000095	0.8451107	0.000018	0.8915801	
156	155	0.000081	0.8501849	0.000015	0.8470707	
157	156	0.000070	0.8664622	0.000013	0.8602920	
158	157	0.000054	0.7724505	0.000010	0.7331119	
1						

Table for CG with no preconditioner $h = \frac{1}{128}$

Tolerance= 10^{-6} method=NONE, Iterations	= 291,	condition	number	A=9655
--	--------	-----------	--------	--------

1	k	e	ratio	r	ratio	
2	1	6.5216900	0.000000	14.4577169	0.0000000	
3	2	5.8211800	0.8925877	4.0764931	0.2819597	
4	3	5.6842162	0.9764715	1.5799015	0.3875639	
5	4	5.6198883	0.9886831	0.8968116	0.5676377	
6	5	5.5711714	0.9913313	0.5778805	0.6443723	
7	6	5.5285647	0.9923523	0.4303215	0.7446548	
8	7	5.4869080	0.9924652	0.3341897	0.7766047	
9	8	5.4468461	0.9926986	0.2785535	0.8335192	
10	9	5.4044559	0.9922175	0.2424388	0.8703491	
11	10	5.3616029	0.9920708	0.2146822	0.8855108	
12	11	5.3191442	0.9920810	0.1862262	0.8674507	

13	12	5.2782868	0.9923188	0.1677396	0.9007302	
14	13	5.2363954	0.9920634	0.1524839	0.9090513	
15	14	5.1941353	0.9919295	0.1420818	0.9317825	
16	15	5.1513426	0.9917614	0.1293917	0.9106846	
17	16	5.1099665	0.9919679	0.1195224	0.9237248	
18	17	5.0683715	0.9918600	0.1119117	0.9363248	
19	18	5.0255870	0.9915585	0.1066056	0.9525867	
20	19	4.9819254	0.9913121	0.0994276	0.9326674	
21	20	4.9398031	0.9915450	0.0934835	0.9402165	
22	21	4.8972751	0.9913908	0.0895284	0.9576918	
23	22	4.8541439	0.9911928	0.0849488	0.9488477	
24	23	4.8107070	0.9910516	0.0811183	0.9549077	
25	24	4.7673483	0.9909871	0.0782140	0.9641979	
26	25	4.7234798	0.9907981	0.0742769	0.9496615	
27	26	4.6807711	0.9909582	0.0714271	0.9616324	
28	27	4.6372353	0.9906990	0.0684405	0.9581873	
29	28	4.5948580	0.9908615	0.0651097	0.9513333	
30	29	4.5530996	0.9909119	0.0621499	0.9545408	
31	30	4.5112658	0.9908120	0.0601683	0.9681159	
32	31	4.4687574	0.9905773	0.0584916	0.9721339	
33	32	4.4262843	0.9904955	0.0566503	0.9685198	
34	33	4.3834625	0.9903256	0.0547127	0.9657966	
35	34	4.3405454	0.9902093	0.0529867	0.9684541	
36	35	4.2983731	0.9902841	0.0507715	0.9581929	
37	36	4.2562271	0.9901949	0.0496163	0.9772479	
38	37	4.2138748	0.9900493	0.0481310	0.9700646	
39	38	4.1708118	0.9897807	0.0472816	0.9823505	
40	39	4.1266023	0.9894003	0.0466718	0.9871047	
41	40	4.0823351	0.9892727	0.0454224	0.9732297	
42	41	4.0380267	0.9891463	0.0441588	0.9721808	
43	42	3,9946964	0.9892694	0.0426145	0.9650276	
44	43	3.9522103	0.9893644	0.0409349	0.9605877	
45	44	3.9106277	0.9894786	0.0398300	0.9730069	
46	45	3.8684976	0.9892268	0.0392197	0.9846780	
47	46	3.8257317	0.9889451	0.0385564	0.9830880	
48	47	3.7830507	0.9888437	0.0372870	0.9670762	
49	48	3.7403946	0.9887244	0.0366904	0.9839996	
50	49	3.6974958	0.9885310	0.0359622	0.9801539	
51	50	3.6549289	0.9884876	0.0352283	0.9795926	
52	51	3.6113640	0.9880805	0.0345719	0.9813650	
53	52	3.5675354	0.9878637	0.0340535	0.9850064	
54	53	3.5231205	0.9875503	0.0336276	0.9874943	
55	54	3,4787130	0.9873954	0.0329058	0.9785343	
56	55	3,4345867	0.9873153	0.0323069	0.9817996	
57	56	3 3901581	0 9870643	0.0316810	0 9806276	
58	57	3 3461400	0 9870159	0 0306893	0 9686978	
59	58	3,3036285	0.9872954	0.0298158	0.9715352	
60	50	3,2612089	0.9871597	0.0294984	0.9893541	
61	60	3,2175113	0.9866008	0.0293399	0.9946276	
62	61	3, 1732557	0.9862454	0.0288105	0.9819557	
63	62	3,1292108	0.9861200	0.0282986	0.9822332	
64	63	3.0851351	0.9859147	0.0277461	0.9804746	
65	64	3.0412129	0.9857633	0.0274147	0.9880581	
66	65	2,9964828	0,9852920	0.0267788	0.9768022	
~~ I	50	2.0001020	0.0000000	0.0201100		

67	66	2.9522621	0.9852425	0.0265317	0.9907736	
68	67	2.9083386	0.9851221	0.0258464	0.9741706	
69	68	2.8648102	0.9850332	0.0254640	0.9852068	
70	69	2.8199937	0.9843562	0.0255037	1.0015562	
71	70	2.7742200	0.9837682	0.0252014	0.9881474	
72	71	2.7287776	0.9836197	0.0245978	0.9760481	
73	72	2.6844169	0.9837434	0.0237590	0.9659003	
74	73	2.6412743	0.9839285	0.0235033	0.9892381	
75	74	2.5968246	0.9831711	0.0234332	0.9970183	
76	75	2.5517313	0.9826352	0.0230106	0.9819663	
77	76	2.5070630	0.9824949	0.0225744	0.9810401	
78	77	2.4633246	0.9825539	0.0220316	0.9759583	
79	78	2.4188791	0.9819571	0.0219368	0.9956962	
80	79	2.3736882	0.9813174	0.0216703	0.9878504	
81	80	2.3279918	0.9807488	0.0217378	1.0031152	
82	81	2.2808231	0.9797385	0.0215495	0.9913383	
83	82	2.2336755	0.9793287	0.0212204	0.9847292	
84	83	2.1862533	0.9787694	0.0208521	0.9826415	
85	84	2.1387752	0.9782833	0.0206835	0.9919146	
86	85	2.0909984	0.9776616	0.0203045	0.9816770	
87	86	2.0438264	0.9774405	0.0199742	0.9837320	
88	87	1.9962370	0.9767155	0.0198473	0.9936479	
89	88	1.9483597	0.9760162	0.0195917	0.9871222	
90	89	1.8995855	0.9749666	0.0195412	0.9974214	
91	90	1.8476324	0.9726503	0.0202739	1.0374967	
92	91	1.7887809	0.9681476	0.0215423	1.0625600	
93	92	1.7179957	0.9604282	0.0239573	1.1121081	
94	93	1.6232429	0.9448469	0.0281514	1.1750654	
95	94	1.4854374	0.9151048	0.0338549	1.2025994	
96	95	1.2901182	0.8685107	0.0389859	1.1515605	
97	96	1.0644065	0.8250457	0.0390577	1.0018411	
98	97	0.8691133	0.8165238	0.0342085	0.8758440	
99	98	0.7330221	0.8434137	0.0280872	0.8210594	
100	99	0.6386873	0.8713069	0.0245142	0.8727891	
101	100	0.5637403	0.8826547	0.0221816	0.9048483	
102	101	0.5029967	0.8922489	0.0199448	0.8991569	
103	102	0.4540556	0.9027011	0.0177812	0.8915224	
104	103	0.4150739	0.9141476	0.0160900	0.9048868	
105	104	0.3813251	0.9186921	0.0152002	0.9446998	
106	105	0.3512848	0.9212212	0.0140495	0.9243007	
107	106	0.3250302	0.9252614	0.0132617	0.9439243	
108	107	0.3006703	0.9250533	0.0127023	0.9578196	
109	108	0.2782780	0.9255254	0.0118652	0.9340934	
110	109	0.2583980	0.9285605	0.0111782	0.9421066	
111	110	0.2399280	0.9285211	0.0107487	0.9615730	
112	111	0.2224847	0.9272978	0.0101863	0.9476738	
113	112	0.2067140	0.9291155	0.0095446	0.9370026	
114	113	0.1922750	0.9301500	0.0090068	0.9436612	
115	114	0.1789377	0.9306343	0.0085970	0.9544985	
116	115	0.1659538	0.9274389	0.0084277	0.9803081	
117	116	0.1532174	0.9232532	0.0081486	0.9668770	
118	117	0.1413960	0.9228457	0.0076599	0.9400255	
119	118	0.1307287	0.9245573	0.0071955	0.9393847	
120	119	0.1209090	0.9248852	0.0067734	0.9413369	

121	120	0.1120288	0.9265547	0.0063259	0.9339284	
122	121	0.1039599	0.9279741	0.0059769	0.9448358	
123	122	0.0964983	0.9282266	0.0056345	0.9427016	
124	123	0.0896672	0.9292102	0.0053026	0.9411039	
125	124	0.0833125	0.9291304	0.0049828	0.9396944	
126	125	0.0776324	0.9318209	0.0046406	0.9313226	
127	126	0.0724280	0.9329618	0.0043473	0.9367799	
128	127	0.0676853	0.9345182	0.0040083	0.9220193	
129	128	0.0635380	0.9387263	0.0036864	0.9197089	
130	129	0.0597311	0.9400845	0.0034773	0.9432675	
131	130	0.0560418	0.9382361	0.0033230	0.9556383	
132	131	0.0525073	0.9369301	0.0031496	0.9478249	
133	132	0.0491855	0.9367361	0.0029710	0.9432938	
134	133	0.0460666	0.9365890	0.0027967	0.9413153	
135	134	0.0431344	0.9363485	0.0026568	0.9499861	
136	135	0.0403771	0.9360763	0.0024800	0.9334519	
137	136	0.0378184	0.9366311	0.0023383	0.9428438	
138	137	0.0354510	0.9374012	0.0021922	0.9375558	
139	138	0.0332424	0.9376994	0.0020377	0.9294867	
140	139	0.0312191	0.9391363	0.0019028	0.9338130	
141	140	0.0293648	0.9406007	0.0017822	0.9366054	
142	141	0.0275654	0.9387233	0.0017140	0.9617729	
143	142	0.0258209	0.9367154	0.0016189	0.9444659	
144	143	0.0200200	0.9380629	0.0015084	0 9317937	
145	144	0.0227180	0 9379219	0 0014412	0 9554332	
145	145	0.0227100	0.0371386	0.0013528	0.0004002	
140	146	0.0212035	0.9381832	0.0012813	0.9300013	
147	140	0.0100700	0.9375794	0.0012066	0.9417288	
140	1/18	0.0107271	0.9396166	0.0012000	0.9259961	
150	140	0.0165930	0.0000100	0.0010360	0.9271850	
151	140	0.0156685	0.04/0818	0.0000607	0.0350017	
151	150	0.0130003	0.9442010	0.0009097	0.9339917	
152	151	0.0140093	0.9431070	0.0009143	0.02368/1	
155	152	0.0140307	0.9479040	0.0000440	0.9230041	
154	153	0.01030401	0.9500001	0.0007828	0.9209097	
155	104	0.012/0//	0.9520257	0.0007435	0.9490209	
150	155	0.0121130	0.9552515	0.0007005	0.9420013	
157	150	0.0110097	0.9551005	0.00000000	0.9397314	
158	157	0.0110020	0.9579130	0.0006133	0.9317300	
159	158	0.0106451	0.9605075	0.0005721	0.9327397	
160	159	0.0102507	0.9629485	0.0005351	0.9353541	
161	160	0.0099019	0.9659712	0.0005003	0.9348993	
162	101	0.0095977	0.9692748	0.0004553	0.9101756	
163	162	0.0093373	0.9728771	0.0004165	0.9146442	
164	163	0.0091078	0.9754214	0.0003875	0.9305895	
165	164	0.0089051	0.9777442	0.0003573	0.9218909	
166	105	0.0087271	0.9800029	0.0003282	0.9185575	
167	166	0.0085684	0.9818138	0.0003015	0.9188234	
168	167	0.0084309	0.9839583	0.0002/19	0.9016052	
169	168	0.0083109	0.9857609	0.0002449	0.9008619	
170	169	0.0082058	0.98/3564	0.0002206	0.9008608	
171	170	0.0081135	0.9887523	0.0001955	0.8858579	
172	1/1	0.0080298	0.9896858	0.0001764	0.9025415	
173	172	0.0079505	0.9901290	0.0001610	0.9127841	
174	173	0.0078748	0.9904714	0.0001459	0.9060863	

175	174	0.0078020	0.9907636	0.0001330	0.9115998	
176	175	0.0077322	0.9910514	0.0001201	0.9027629	
177	176	0.0076646	0.9912555	0.0001102	0.9181004	
178	177	0.0075980	0.9913082	0.0000994	0.9021361	
179	178	0.0075343	0.9916206	0.0000903	0.9080043	
180	179	0.0074697	0.9914240	0.0000843	0.9338806	
181	180	0.0073991	0.9905492	0.0000836	0.9916163	
182	181	0.0073144	0.9885474	0.0000873	1.0443408	
183	182	0.0072065	0.9852455	0.0000944	1.0807980	
184	183	0.0070661	0.9805186	0.0001041	1.1030488	
185	184	0.0068861	0.9745304	0.0001130	1.0857231	
186	185	0.0066684	0.9683929	0.0001181	1.0445829	
187	186	0.0064350	0.9649952	0.0001170	0.9906712	
188	187	0.0062072	0.9645942	0.0001121	0.9587357	
189	188	0.0059900	0.9650072	0.0001088	0.9702163	
190	189	0.0057630	0.9621089	0.0001137	1.0446340	
191	190	0.0054891	0.9524693	0.0001251	1.1007868	
192	191	0.0051459	0.9374773	0.0001347	1.0766640	
193	192	0.0047715	0.9272480	0.0001344	0.9978854	
194	193	0.0044069	0.9235887	0.0001313	0.9767634	
195	194	0.0040493	0.9188441	0.0001316	1.0022126	
196	195	0.0036749	0.9075451	0.0001353	1.0284495	
197	196	0.0032688	0.8895021	0.0001380	1.0193791	
198	197	0.0028661	0.8768005	0.0001344	0.9740698	
199	198	0.0024955	0.8707062	0.0001284	0.9558213	
200	199	0.0021550	0.8635418	0.0001229	0.9570292	
201	200	0.0018567	0.8615758	0.0001137	0.9250923	
202	201	0.0016166	0.8706679	0.0001009	0.8877237	
203	202	0.0014368	0.8887817	0.0000897	0.8888228	
204	203	0.0012963	0.9022463	0.0000810	0.9033006	
205	204	0.0011838	0.9131675	0.0000720	0.8884030	
206	205	0.0010994	0.9286959	0.0000635	0.8813002	
207	206	0.0010326	0.9392711	0.0000578	0.9112359	
208	207	0.0009772	0.9463790	0.0000524	0.9068811	
209	208	0.0009315	0.9532468	0.0000471	0.8981476	
210	209	0.0008948	0.9606123	0.0000418	0.8876419	
211	210	0.0008645	0.9660678	0.0000379	0.9073230	
212	211	0.0008375	0.968/4/9	0.0000348	0.9164967	
213	212	0.0008140	0.9720156	0.0000308	0.8855352	
214	213	0.0007936	0.9749646	0.0000281	0.9143270	
215	214	0.0007742	0.9755578	0.0000264	0.9377285	
216	215	0.0007555	0.9758417	0.0000243	0.9211895	
217	210	0.0007362	0.9770402	0.0000225	0.9230094	
210	217	0.0007210	0.9700031	0.0000210	0.9599045	
213	210	0.0006856	0.97/9951	0.0000203	0.9592020	
220	210	0.0006669	0.9727617	0.0000196	0.9934542	
221	220	0.0006474	0.9706996	0.0000188	0.9599738	
223	222	0.0006279	0.9699750	0.0000182	0.9670444	
224	223	0.0006080	0.9682281	0.0000178	0.9778561	
225	224	0.0005876	0.9665155	0.0000170	0.9586794	
226	225	0.0005677	0.9661052	0.0000167	0.9784560	
227	226	0.0005461	0.9619817	0.0000169	1.0115654	
228	227	0.0005230	0.9576032	0.0000169	1.0017682	

229	228	0.0004988	0.9538113	0.0000169	0.9996731	
230	229	0.0004738	0.9498157	0.0000167	0.9877224	
231	230	0.0004487	0.9470574	0.0000163	0.9743509	
232	231	0.0004240	0.9450280	0.0000160	0.9872214	
233	232	0.0003992	0.9414172	0.0000157	0.9805466	
234	233	0.0003747	0.9386238	0.0000154	0.9774359	
235	234	0.0003508	0.9362417	0.0000150	0.9738462	
236	235	0.0003281	0.9354138	0.0000143	0.9557997	
237	236	0.0003072	0.9361931	0.0000135	0.9455793	
238	237	0.0002887	0.9398553	0.0000125	0.9270502	
239	238	0.0002722	0.9427474	0.0000119	0.9470597	
240	239	0.0002566	0.9425761	0.0000115	0.9644387	
241	240	0.0002423	0.9445275	0.0000106	0.9283254	
242	241	0.0002296	0.9476198	0.000099	0.9320668	
243	242	0.0002183	0.9506384	0.000093	0.9384921	
244	243	0.0002078	0.9516694	0.000088	0.9457131	
245	244	0.0001979	0.9526251	0.000083	0.9406033	
246	245	0.0001890	0.9550989	0.000078	0.9394368	
247	246	0.0001807	0.9558598	0.000074	0.9484184	
248	247	0.0001727	0.9559939	0.000072	0.9728821	
249	248	0.0001647	0.9537430	0.0000070	0.9768819	
250	249	0.0001571	0.9536549	0.000067	0.9498763	
251	250	0.0001499	0.9544458	0.000064	0.9553444	
252	251	0.0001433	0.9558753	0.000060	0.9370424	
253	252	0.0001374	0.9585791	0.000056	0.9316401	
254	253	0.0001320	0.9606996	0.0000052	0.9306494	
255	254	0.0001272	0.9637858	0.000048	0.9190719	
256	255	0.0001228	0.9655622	0.000044	0.9347832	
257	256	0.0001188	0.9668738	0.000044	0.9940088	
258	257	0.0001143	0.9625490	0.0000043	0.9723134	
259	258	0.0001102	0.9637233	0.0000041	0.9537761	
260	259	0.0001063	0.9649779	0.000038	0.9226164	
261	260	0.0001030	0.9687202	0.000035	0.9165359	
262	261	0.0001000	0.9705944	0.000032	0.9210341	
263	262	0.0000972	0.9725780	0.000030	0.9262509	
264	263	0.0000947	0.9740029	0.000027	0.9186089	
265	264	0.0000923	0.9752465	0.000025	0.9217604	
266	265	0.0000902	0.9762555	0.000023	0.9262124	
267	266	0.0000880	0.9765195	0.0000022	0.9434152	
268	267	0.0000859	0.9755254	0.0000021	0.9638640	
269	268	0.0000836	0.9736855	0.0000021	0.9837715	
270	269	0.0000812	0.9707770	0.0000021	0.9930902	
271	270	0.0000785	0.9675646	0.0000021	1.0173215	
272	271	0.0000755	0.9611090	0.0000022	1.0450837	
273	272	0.0000719	0.9527471	0.000023	1.0645178	
274	273	0.0000678	0.9424429	0.0000024	1.0398748	
275	274	0.0000632	0.9323311	0.0000025	1.0201026	
276	275	0.0000585	0.9260217	0.0000024	0.9839147	
277	276	0.0000541	0.9241385	0.0000023	0.9540136	
278	277	0.0000500	0.9240218	0.0000022	0.9530567	
279	278	0.0000462	0.9245567	0.0000021	0.9527424	
280	279	0.0000426	0.9230466	0.0000020	0.9612610	
281	280	0.0000394	0.9231135	0.0000019	0.9543941	
282	281	0.0000364	0.9245357	0.0000018	0.9222267	

283	282	0.0000339	0.9301992	0.000016	0.9061832	
284	283	0.0000317	0.9376877	0.0000015	0.9005013	
285	284	0.0000299	0.9433252	0.000013	0.9244644	
286	285	0.0000283	0.9433824	0.000013	0.9573062	
287	286	0.0000266	0.9404446	0.000013	0.9814851	
288	287	0.0000249	0.9364105	0.000012	0.9666827	
289	288	0.0000232	0.9340297	0.000012	0.9701371	
290	289	0.0000216	0.9308285	0.000012	0.9738573	
291	290	0.0000200	0.9257747	0.000011	0.9852032	
292	291	0.0000171	0.8523176	0.000010	0.8703063	
1						

table	s for CG with	Multigrid preconditio	oner		
h =	1/16	eps =0.000001 me	thod=MG		
k=4,	cond A=150.	416930			
	k	e	ratio	r	ratio
	1	2.1998630	0.000000	5.3253083	0.000000
	2	0.0956633	0.0434860	0.0363016	0.0068168
	3	0.0014271	0.0149181	0.0006556	0.0180607
	4	0.000002	0.0001388	0.000002	0.0003796
h =	1/32	eps =0.000	001 method=MG		
k=4,	cond A=603	.051928			
	k	e	ratio	r	ratio
	1	3.1204692	0.000000	7.1238671	0.000000
	2	0.1461191	0.0468260	0.0360066	0.0050544
	3	0.0031325	0.0214382	0.0006083	0.0168931
	4	0.000004	0.0001403	0.000003	0.0005447
h =	1/64	,n=65 eps =0.000	001 method=MG		
k=4,	cond A=2413	.598654			
	k	e	ratio	r	ratio
	1	4.5764854	0.000000	10.4620417	0.000000
	2	0.2180254	0.0476404	0.0388724	0.0037156
	3	0.0058026	0.0266142	0.0006767	0.0174076
	4	0.0000012	0.0002040	0.000004	0.0005660
h =	1/128	,n=129 eps =0.000	001 method=MG		
k=4,	cond A=9655	.787254			
	k	e	ratio	r	ratio
	1	6.4563811	0.000000	14.6329466	0.000000
	2	0.3174234	0.0491643	0.0482766	0.0032992
	3	0.0094526	0.0297790	0.0008327	0.0172495
	4	0.000034	0.0003597	0.000004	0.0005216

Tables for	CG with	SSOR	preconditioner
------------	---------	------	----------------

	Tables for CG with SSC	OR preconditione	er h=1/16			
1	k	e	ratio	r	ratio	
2	1	2.2693639	0.000000	4.9322226	0.000000	

3	2	1.6468398	0.7256835	0.4605221	0.0933701	
4	3	1.3513665	0.8205816	0.2730178	0.5928442	
5	4	0.9606275	0.7108564	0.1964313	0.7194818	
6	5	0.5252730	0.5468019	0.1561994	0.7951855	
7	6	0.1534885	0.2922070	0.1084332	0.6941974	
8	7	0.0416077	0.2710804	0.0275143	0.2537445	
9	8	0.0262239	0.6302655	0.0103129	0.3748198	
10	9	0.0123709	0.4717420	0.0068234	0.6616409	
11	10	0.0033437	0.2702897	0.0029164	0.4274017	
12	11	0.0011039	0.3301359	0.0008844	0.3032476	
13	12	0.0005418	0.4908182	0.0003122	0.3530697	
14	13	0.0001777	0.3279708	0.0001683	0.5389642	
15	14	0.0000471	0.2650202	0.0000421	0.2501429	
16	15	0.0000242	0.5133066	0.0000142	0.3362731	
17	16	0.0000147	0.6099509	0.000054	0.3833065	
18	17	0.000053	0.3600554	0.000040	0.7457782	
19	18	0.000004	0.0818492	0.000004	0.0934337	
	Tables for CG with	SSOR precondition	oner h=1/32			
1	k	lel	ratio	r	ratio	
2	1	3.1617307	0.0000000	7.0150453	0.0000000	
3	2	2.5617890	0.8102490	0.5539254	0.0789625	
4	- 3	2.3542794	0.9189982	0.2962589	0.5348354	
5	4	2,1065890	0.8947914	0.1986559	0.6705483	
6	5	1.8518713	0.8790853	0.1422168	0.7158951	
7	6	1.6156673	0.8724512	0.1133796	0.7972310	
8	7	1.3789468	0.8534844	0.0910121	0.8027200	
9	. 8	1,1345409	0.8227590	0.0843711	0.9270315	
10	9	0.8224095	0.7248831	0.0847173	1.0041038	
11	10	0.4180835	0.5083641	0.0825150	0.9740034	
19	11	0 1235549	0 2955268	0 0482795	0 5850996	
12	12	0.0551450	0.4463198	0.0203644	0 4218024	
14	13	0 0278858	0.5056810	0.0122853	0.6032745	
15	10	0.0128799	0.4618815	0.0057640	0.4691758	
16	15	0.0081751	0.6347162	0.0026993	0.4683099	
17	16	0.0058303	0.7131826	0.0013998	0.5185673	
18	17	0.0047541	0.8154064	0.0006696	0.4783424	
19	18	0.0038683	0.8136734	0.0005167	0.7716602	
20	19	0.0021487	0.5554644	0.0005517	1.0677534	
20	20	0.0011032	0.5134135	0.0002821	0.5114078	
21 99	20	0 0007772	0 7045585	0 0001444	0.5119507	
22	21	0.0005067	0.6519440	0.0001267	0.8768386	
23	22	0.0002475	0.4884356	0.0000763	0.6020652	
27 95	20	0 0001620	0 6545650	0 0000700	0 5221399	
26	24	0 0001020	0 6648438	0 00000000	0 6246745	
20	20	0 0000674	0 6260178	0 0000172	0 6916799	
28	20	0 0000335	0 4974052	0 0000172	0 7029690	
29	21	0 0000133	0 3976940	0 0000067	0 5550799	
30	20	0.0000054	0 4034871	0 0000007	0 4265622	
31	29	0 0000016	0.2001/15	0 0000029	0 0473603	
91		0.000010	0.2330440	0.000007	0.2473023	

]	<u>Fables for CG with SSOR</u>	preconditioner	h=1/64			
1	k	e	ratio	r	ratio	

2	1	4.5490436	0.000000	10.0541553	0.000000	
3	2	3.8362026	0.8432987	0.7280693	0.0724148	
4	3	3.7003001	0.9645737	0.3053137	0.4193471	
5	4	3.5423025	0.9573014	0.1926717	0.6310615	
6	5	3.3783165	0.9537064	0.1437188	0.7459256	
7	6	3.1995620	0.9470877	0.1180847	0.8216375	
8	7	3.0218250	0.9444496	0.1001557	0.8481680	
9	8	2.8564678	0.9452790	0.0828611	0.8273226	
10	9	2.6921619	0.9424794	0.0706543	0.8526838	
11	10	2.5198220	0.9359846	0.0632266	0.8948726	
12	11	2.3462801	0.9311293	0.0583966	0.9236077	
13	12	2.1638926	0.9222652	0.0533587	0.9137299	
14	13	1.9814273	0.9156773	0.0489931	0.9181837	
15	14	1.8029129	0.9099062	0.0433065	0.8839308	
16	15	1,6149689	0.8957553	0.0422280	0.9750970	
17	16	1,4112614	0.8738629	0.0412639	0.9771686	
18	17	1,1749024	0.8325193	0.0429641	1.0412016	
19	18	0.8528075	0.7258539	0.0493421	1,1484509	
20	19	0.4518308	0.5298157	0.0484776	0.9824796	
20	20	0 2132808	0 4720368	0 0278557	0 5746100	
21	20	0 1501244	0 7038816	0 0146585	0 5262282	
22	21	0 1111903	0 7406542	0.0140617	0.9592857	
23	22	0.0662040	0.5954116	0.0111642	0.7939485	
24	20	0.0437040	0.6601420	0.0069109	0.6190224	
25	24	0.0303526	0.6945044	0.0050944	0.7371500	
20	25	0.0303320	0.0343044	0.0030344	0.7371300	
27	20	0.0221190	0.7207551	0.0033023	0.0402204	
20	21	0.0100200	0.7471307	0.0024090	0.1559105	
29	20	0.0129979	0.7803014	0.0010300	0.0002190	
30 91	29	0.0110440	0.0497327	0.0011217	0.0702204	
20	30	0.0090942	0.0900290	0.0007244	0.0407902	
32 33	31	0.0091291	0.9220731	0.0004742	0.0040000	
33	J∠ 22	0.0004940	0.9304940	0.0003511	0.7405437	
34 97	30 24	0.0070079	0.9050559	0.0003237	0.9219407	
33 20	34 2E	0.0005529	0.0525020	0.0003465	1 102/502	
30 97	30	0.0047319	0.7201074	0.0003913	0 9740021	
37	30	0.0020370	0.5971556	0.0003422	0.0742031	
38	37	0.0016887	0.0050051	0.0002004	0.0000700	
39	30	0.0015408	0.8157954	0.0001243	0.0204007	
40	39	0.0012973	0.8419573	0.0001008	0.8108109	
41	40	0.0010583	0.8157939	0.0000853	0.8463996	
42	41	0.0007990	0.7549702	0.0000787	0.9219365	
43	42	0.0005529	0.6919610	0.0000666	0.8468646	
44	43	0.0003932	0.7111390	0.0000455	0.6826150	
45	44	0.0003029	0.7704465	0.0000339	0.7445688	
46	45	0.0002333	0.7702420	0.0000257	0.7580561	
47	46	0.0001916	0.8211070	0.0000175	0.6821221	
48	47	0.0001600	0.8349544	0.0000136	0.7744449	
49	48	0.0001358	0.8490333	0.0000095	0.7032869	
50	49	0.0001119	0.8239944	0.0000090	0.9472819	
51	50	0.0000825	0.7372094	0.000083	0.9171382	
52	51	0.0000541	0.6554525	0.0000073	0.8784722	
53	52	0.0000349	0.6460945	0.0000048	0.6616077	
54	53	0.0000248	0.7089250	0.0000034	0./101/18	
55	54	0.0000182	0.7361531	0.000023	0.6772298	

56	55	0.0000124	0.6811877	0.0000021	0.9093606	
57	56	0.000048	0.3868446	0.000009	0.4194420	
	Tables for CG with S	SOR precondition	er h=1/128			
1	k	e	ratio	r	ratio	
2	1	6.4457756	0.000000	14.4540779	0.000000	
3	2	5.5139993	0.8554439	0.9798537	0.0677908	
4	3	5.4088913	0.9809380	0.3403982	0.3473970	
5	4	5.3026393	0.9803560	0.2034492	0.5976800	
6	5	5.1853961	0.9778897	0.1483529	0.7291887	
7	6	5.0654954	0.9768772	0.1202717	0.8107138	
8	7	4.9451401	0.9762402	0.1012563	0.8418966	
9	8	4.8245020	0.9756047	0.0858063	0.8474169	
10	9	4.7066959	0.9755817	0.0722637	0.8421718	
11	10	4.5874237	0.9746590	0.0649999	0.8994827	
12	11	4.4629279	0.9728615	0.0605125	0.9309626	
13	12	4.3391818	0.9722724	0.0545367	0.9012460	
14	13	4.2186913	0.9722320	0.0488740	0.8961687	
15	14	4.1021192	0.9723677	0.0440151	0.9005828	
16	15	3.9854067	0.9715483	0.0412976	0.9382589	
17	16	3.8680259	0.9705473	0.0382945	0.9272820	
18	17	3.7513422	0.9698338	0.0359069	0.9376523	
19	18	3.6295795	0.9675415	0.0344123	0.9583746	
20	19	3.5086283	0.9666763	0.0316764	0.9204971	
21	20	3.3903746	0.9662963	0.0299359	0.9450520	
22	21	3.2691604	0.9642475	0.0290988	0.9720394	
23	22	3.1436705	0.9616140	0.0277443	0.9534507	
24	23	3.0186217	0.9602220	0.0262770	0.9471139	
25	24	2.8957417	0.9592927	0.0248096	0.9441578	
26	25	2.7732455	0.9576978	0.0238982	0.9632612	
27	26	2.6506297	0.9557862	0.0223533	0.9353568	
28	27	2.5323184	0.9553648	0.0216356	0.9678923	
29	28	2.4045866	0.9495594	0.0212703	0.9831139	
30	29	2.2772037	0.9470250	0.0200174	0.9410971	
31	30	2.1483420	0.9434123	0.0196727	0.9827790	
32	31	2.0149086	0.9378901	0.0192478	0.9784036	
33	32	1.8686594	0.9274165	0.0199859	1.0383474	
34	33	1.6895903	0.9041724	0.0217554	1.0885392	
35	34	1.4442876	0.8548153	0.0258210	1.1868754	
36	35	1.0931431	0.7568736	0.0302817	1.1727536	
37	36	0.6837108	0.6254540	0.0283683	0.9368158	
38	37	0.4418863	0.6463058	0.0184521	0.6504463	
39	38	0.3518847	0.7963243	0.0114809	0.6221984	
40	39	0.3006824	0.8544912	0.0105466	0.9186222	
41	40	0.2372194	0.7889368	0.0114586	1.0864744	
42	41	0.1840178	0.7757283	0.0085694	0.7478555	
43	42	0.1528291	0.8305127	0.0068315	0.7971989	
44	43	0.1237482	0.8097158	0.0067367	0.9861302	
45	44	0.0985025	0.7959918	0.0053549	0.7948776	
46	45	0.0801615	0.8138015	0.0046556	0.8694177	
47	46	0.0645647	0.8054324	0.0038580	0.8286741	
48	47	0.0538188	0.8335634	0.0030348	0.7866214	
49	48	0.0443159	0.8234283	0.0027050	0.8913447	

50	49	0.0369617	0.8340510	0.0021314	0.7879483		
51	50	0.0306704	0.8297872	0.0018818	0.8828969		
52	51	0.0251646	0.8204853	0.0015780	0.8385403		
53	52	0.0206586	0.8209407	0.0013350	0.8459954		
54	53	0.0170433	0.8249991	0.0010816	0.8101736		
55	54	0.0140243	0.8228592	0.0009494	0.8778358		
56	55	0.0116435	0.8302376	0.0007679	0.8087564		
57	56	0.0099038	0.8505901	0.0006226	0.8107796		
58	57	0.0087211	0.8805767	0.0004813	0.7731395		
59	58	0.0078802	0.9035759	0.0003957	0.8221169		
60	59	0.0072607	0.9213899	0.0003211	0.8113631		
61	60	0.0068350	0.9413714	0.0002460	0.7660613		
62	61	0.0065434	0.9573309	0.0001854	0.7536923		
63	62	0.0063343	0.9680457	0.0001386	0.7475188		
64	63	0.0061677	0.9736986	0.0001019	0.7352154		
65	64	0.0060189	0.9758793	0.0000781	0.7662600		
66	65	0.0058564	0.9730031	0.0000697	0.8929152		
67	66	0.0056418	0.9633473	0.0000711	1.0197906		
68	67	0.0053083	0.9408880	0.0000812	1.1420576		
69	68	0.0047907	0.9024899	0.0000954	1.1756096		
70	69	0.0040810	0.8518580	0.0001007	1.0553830		
71	70	0.0033234	0.8143729	0.0000974	0.9667177		
72	71	0.0026225	0.7891023	0.0000930	0.9553683		
73	72	0.0019626	0.7483464	0.0000878	0.9441616		
74	73	0.0014856	0.7569965	0.0000692	0.7874535		
75	74	0.0012467	0.8391488	0.0000479	0.6925092		
76	75	0.0011161	0.8952418	0.0000366	0.7631700		
77	76	0.0010177	0.9118797	0.0000315	0.8615686		
78	77	0.0009285	0.9123426	0.0000269	0.8534135		
79	78	0.0008523	0.9179524	0.0000225	0.8376764		
80	79	0.0007739	0.9080042	0.0000224	0.9961889		
81	80	0.0006799	0.8785639	0.0000216	0.9629637		
82	81	0.0005881	0.8648625	0.0000201	0.9290428		
83	82	0.0004882	0.8301801	0.0000208	1.0351272		
84	83	0.0003913	0.8015060	0.0000176	0.8481698		
85	84	0.0003242	0.8285988	0.0000142	0.8060784		
86	85	0.0002702	0.8334427	0.0000129	0.9107954		
87	86	0.0002246	0.8311510	0.0000109	0.8432222		
88	87	0.0001916	0.8532194	0.000089	0.8125177		
89	88	0.0001647	0.8592511	0.0000077	0.8643326		
90	89	0.0001439	0.8739769	0.000063	0.8266711		
91	90	0.0001263	0.8773506	0.0000057	0.8934908		
92	91	0.0001118	0.8853776	0.0000047	0.8270530		
93	92	0.0001006	0.8995960	0.0000040	0.8506773		
94	93	0.0000920	0.9145468	0.000031	0.7799253		
95	94	0.0000856	0.9305279	0.000025	0.8191927		
96	95	0.0000800	0.9350646	0.0000021	0.8149292		
97	96	0.0000752	0.9394217	0.0000017	0.8363557		
98	97	0.0000698	0.9282142	0.0000017	0.9814936		
99	98	0.0000632	0.9062999	0.0000017	1.0138043		
100	99	0.0000547	0.8654208	0.0000018	1.0641346		
101	100	0.0000461	0.8418280	0.0000016	0.8914509		
102	101	0.0000391	0.8481096	0.0000014	0.8598060		
103	102	0.0000338	0.8637455	0.0000011	0.8164981		
104		103	0.0000254	0.7524275	0.000009	0.8216432	
-----	----------	---------------	---------------------	----------------------------------	---------------------------------	-----------	---
							/
	0.6.5.9	TIL 00	•.1 • 1				
	2.6.5.3	Table CG	with incomple	te cholesky			
	Table CG	with incomr	olete cholesky pred	conditioner $\epsilon = 10^{-1}$	$-2, h = \frac{1}{-2}$		
1		k	lel	ratio	r	ratio	
2		1	2.2117568	0.0000000	4.9847338	0.000000	
3		2	0.9605500	0.4342928	0.1236319	0.0248021	
4		3	0.1101739	0.1146987	0.0740761	0.5991666	
5		4	0.0098178	0.0891114	0.0064913	0.0876300	
6		5	0.0006397	0.0651529	0.0007141	0.1100128	
7		6	0.0000566	0.0885013	0.0000495	0.0693702	
8		7	0.0000012	0.0210676	0.0000009	0.0178494	
	Table CG	with incomr	olete cholesky pred	conditioner $\epsilon = 10^{-1}$	$-2, h = \frac{1}{-2}$		
1		k	le	ratio	r	ratio	
2		1	3.1411335	0.000000	6.9640117	0.000000	
3		2	2.0214097	0.6435287	0.1420103	0.0203920	
4		3	1.3623817	0.6739760	0.1149900	0.8097304	
5		4	0.6575397	0.4826399	0.0682371	0.5934171	
6		5	0.1011955	0.1539003	0.0247907	0.3633033	
7		6	0.0225210	0.2225494	0.0069472	0.2802356	
8		7	0.0067767	0.3009055	0.0015084	0.2171254	
9		8	0.0019548	0.2884659	0.0004569	0.3028904	
10		9	0.0008448	0.4321526	0.0001217	0.2664539	
11		10	0.0002326	0.2753055	0.0000595	0.4889375	
12		11	0.0000681	0.2927750	0.0000127	0.2125976	
13		12	0.0000188	0.2754409	0.0000052	0.4094558	
14		13	0.0000022	0.1195568	0.000003	0.0640489	
	Table CG	with incomp	olete cholesky pred	conditioner $\epsilon = 10^{-1}$	$\frac{-2}{h}, h = \frac{1}{c}$		
1		k	e	ratio	r	ratio	
2		1	4.6047158	0.0000000	10.3310633	0.000000	
3		2	3.4648962	0.7524669	0.1937203	0.0187512	
4		3	3.0608082	0.8833766	0.1211410	0.6253400	
5		4	2.5757427	0.8415237	0.0563599	0.4652418	
6		5	2.0650650	0.8017358	0.0413553	0.7337726	
7		6	1.5529332	0.7520021	0.0446463	1.0795781	
8		7	0.9346100	0.6018353	0.0369208	0.8269618	
9		8	0.2831630	0.3029745	0.0265590	0.7193503	
10		9	0.0732691	0.2587522	0.0112939	0.4252372	
11		10	0.0321756	0.4391431	0.0039872	0.3530414	
12		11	0.0178107	0.5535469	0.0013842	0.3471708	
13		12	0.0110120	0.6182812	0.0008543	0.6171309	
14		13	0.0073396	0.6665038	0.0004321	0.5057645	
15		14	0.0039218	0.5343410	0.0002636	0.6101306	
16		15	0.0023472	0.5984915	0.0001345	0.5102407	
17		16	0.0013514	0.5757587	0.0001004	0.7467383	
18		17	0.0007088	0.5244614	0.0000461	0.4586731	
19		18	0.0002407	0.3396233	0.0000342	0.7426365	
20		19	0.0001089	0.4524637	0.0000103	0.3000293	

21	20	0.0000698	0.6407427	0.000045	0.4406339					
22	21	0.0000343	0.4918772	0.000034	0.7510210					
23	22	0.000068	0.1977073	0.000005	0.1584427					
	Table CG with incomplete cholesky preconditioner $\epsilon = 10^{-2}$, $h = \frac{1}{100}$									
1	k	e	ratio	r	ratio					
2	1	6.4885732	0.000000	14.5067213	0.000000					
3	2	5.2612798	0.8108531	0.2641937	0.0182118					
4	3	5.0111119	0.9524511	0.1164715	0.4408564					
5	4	4.6620201	0.9303364	0.0500341	0.4295820					
6	5	4.3222195	0.9271130	0.0496910	0.9931436					
7	6	3.9989939	0.9252177	0.0423171	0.8516054					
8	7	3.6528553	0.9134436	0.0289715	0.6846290					
9	8	3.2996211	0.9032991	0.0270517	0.9337335					
10	9	2.9620134	0.8976829	0.0260842	0.9642352					
11	10	2.6075430	0.8803279	0.0207816	0.7967142					
12	11	2.2325951	0.8562064	0.0176972	0.8515802					
13	12	1.8177887	0.8142044	0.0202955	1.1468181					
14	13	1.2782021	0.7031632	0.0227175	1.1193341					
15	14	0.5725682	0.4479481	0.0191123	0.8413068					
16	15	0.2181351	0.3809767	0.0101596	0.5315716					
17	16	0.1256071	0.5758222	0.0059499	0.5856484					
18	17	0.0759987	0.6050512	0.0036252	0.6092867					
19	18	0.0443639	0.5837452	0.0024628	0.6793574					
20	19	0.0240991	0.5432141	0.0014339	0.5822123					
21	20	0.0156123	0.6478383	0.0008604	0.6000823					
22	21	0.0094219	0.6034940	0.0005069	0.5891044					
23	22	0.0066705	0.7079759	0.0002955	0.5830443					
24	23	0.0054586	0.8183167	0.0001677	0.5673221					
25	24	0.0047031	0.8615927	0.0000873	0.5205250					
26	25	0.0040218	0.8551456	0.0000745	0.8537794					
27	26	0.0030834	0.7666791	0.0000688	0.9227595					
28	27	0.0021837	0.7082150	0.0000606	0.8814875					
29	28	0.0014407	0.6597450	0.0000421	0.6948456					
30	29	0.0011682	0.8108344	0.0000212	0.5036729					
31	30	0.0009944	0.8512118	0.0000176	0.8296109					
32	31	0.0007347	0.7388340	0.0000182	1.0336879					
33	32	0.0005166	0.7031852	0.0000114	0.6264216					
34	33	0.0003559	0.6888947	0.0000107	0.9380414					
35	34	0.0002062	0.5794708	0.000081	0.7584751					
36	35	0.0001239	0.6006305	0.0000052	0.6377109					
37	36	0.0000837	0.6759086	0.000032	0.6095393					
38	37	0.0000659	0.7871051	0.0000017	0.5390215					
39	38	0.0000539	0.8184570	0.0000013	0.7405635					
40	39	0.0000202	0.3752176	0.000009	0.7459009					

Tables for CG with incomplete cholesky preconditioner $\epsilon = 10^{-3}$

1	h =	1/16	,n=17	eps=0.000001	method=CHL			
2			k	e	ratio	r	ratio	
3			1	2.2113015	0.0000000	4.8698707	0.0000000	
4			2	0.1268927	0.0573837	0.0196604	0.0040372	
5			3	0.0011025	0.0086886	0.0005919	0.0301065	

6		4	0.000002	0.0001684	0.000001	0.0001565	
7 8	h =	1/32	.n=33 eps=0.000001	method=CHL			
9		_,k	lel	ratio	r	ratio	
10		1	3.2189095	0.000000	7.0357482	0.000000	
11		2	0.8589679	0.2668506	0.0306470	0.0043559	
12		3	0.0363666	0.0423375	0.0064895	0.2117505	
13		4	0.0025347	0.0696990	0.0003268	0.0503545	
14		5	0.0001276	0.0503368	0.0000319	0.0976751	
15		6	0.000006	0.0047450	0.000001	0.0037884	
16	h =	1/64	,n=65 eps=0.000001	method=CHL			
17		k	e	ratio	r	ratio	
18		1	4.5281055	0.000000	10.2891303	0.000000	
19		2	2.3962171	0.5291876	0.0305161	0.0029659	
20		3	1.0190972	0.4252942	0.0239474	0.7847488	
21		4	0.1236226	0.1213060	0.0102118	0.4264245	
22		5	0.0186393	0.1507755	0.0012096	0.1184530	
23		6	0.0016236	0.0871065	0.0002558	0.2114490	
24		7	0.0002756	0.1697321	0.0000182	0.0713307	
25		8	0.0000163	0.0592016	0.000009	0.0502623	
26	h =	1/128	,n=129 eps=0.000001	method=CHL			
27		k	e	ratio	r	ratio	
28		1	6.4658650	0.000000	14.3821767	0.000000	
29		2	4.5500543	0.7037039	0.0349350	0.0024290	
30		3	3.5640524	0.7832989	0.0316566	0.9061590	
31		4	2.5832848	0.7248167	0.0229909	0.7262586	
32		5	1.4701895	0.5691163	0.0119903	0.5215250	
33		6	0.3578766	0.2434221	0.0077001	0.6421915	
34		7	0.0850789	0.2377325	0.0036799	0.4779069	
35		8	0.0274688	0.3228626	0.0009809	0.2665421	
36		9	0.0121215	0.4412808	0.0002445	0.2492235	
37		10	0.0034751	0.2866930	0.0001041	0.4258668	
38		11	0.0019516	0.5615987	0.0000341	0.3280329	
39		12	0.0010720	0.5492590	0.0000211	0.6186532	
40		13	0.0003595	0.3353743	0.000058	0.2766025	
41		14	0.0000439	0.1220343	0.0000010	0.1636738	

216

Chapter 3

Study notes

3.1 note on finding expressions for centered difference of higher order

3.1.1 Introduction

To find centered difference approximation for f'(x), we can processed as follows.

Figure 3.1: centered difference

3.1.2 approximation for $f'(x_o)$

Since

$$f(x_{o} + h) = f(x_{o}) + hf'(x_{o}) + O(h)$$

Then

$$f'(x_o) \approx \frac{1}{h} \left[f(x_o + h) - f(x_o) \right]$$
(1)

But we also know that

 $f(x_{o} - h) = f(x_{o}) - hf'(x_{o}) + O(h)$

The trick is to find $f(x_0)$ from the above and plug it in (1). From the above we find

$$f\left(x_{o}\right)\approx f\left(x_{o}-h\right)+hf'\left(x_{o}\right)$$

substituting the above in (1) gives

$$\begin{aligned} f'(x_o) &\approx \frac{1}{h} \left[f(x_o + h) - \left(f(x_o - h) + hf'(x_o) \right) \right] \\ &\approx \frac{f(x_o + h) - f(x_o - h)}{h} - f'(x_o) \end{aligned}$$

Hence

$$f'(x_o) \approx \frac{f(x_o+h) - f(x_o-h)}{2h}$$

3.1.3 approximation for $f''(x_o)$

We can do the same trick to find centered difference approximation for $f''(x_0)$. Since

$$f(x_o + h) = f(x_o) + hf'(x_o) + \frac{h^2}{2}f''(x_o) + O(h^2)$$

Then

$$f''(x_o) \approx \frac{2}{h^2} \left(f(x_o + h) - f(x_o) - hf'(x_o) \right)$$
(2)

But we also know that

$$\begin{split} f\left(x_{o}-h\right) &= f\left(x_{o}\right) - hf'\left(x_{o}\right) + \frac{h^{2}}{2}f''\left(x_{o}\right) + O\left(h^{2}\right) \\ hf'\left(x_{o}\right) &\approx -f\left(x_{o}-h\right) + f\left(x_{o}\right) + \frac{h^{2}}{2}f''\left(x_{o}\right) \\ f'\left(x_{o}\right) &\approx \frac{f\left(x_{o}\right) - f\left(x_{o}-h\right)}{h} + \frac{h}{2}f''\left(x_{o}\right) \end{split}$$

Sustituting the above into (2), we find

$$f''(x_{o}) \approx \frac{2}{h^{2}} \left[f(x_{o} + h) - f(x_{o}) - h \left(\frac{f(x_{o}) - f(x_{o} - h)}{h} + \frac{h}{2} f''(x_{o}) \right) \right]$$

$$\approx \frac{2}{h^{2}} \left[f(x_{o} + h) - f(x_{o}) - \left(f(x_{o}) - f(x_{o} - h) + \frac{h^{2}}{2} f''(x_{o}) \right) \right]$$

$$\approx \frac{2}{h^{2}} \left[f(x_{o} + h) - 2f(x_{o}) + f(x_{o} - h) - \frac{h^{2}}{2} f''(x_{o}) \right]$$

$$\approx \frac{2}{h^{2}} \left(f(x_{o} + h) - 2f(x_{o}) + f(x_{o} - h) \right) - f''(x_{o})$$

$$2f''(x_{o}) \approx \frac{2}{h^{2}} \left(f(x_{o} + h) - 2f(x_{o}) + f(x_{o} - h) \right)$$

Solving for $f''(x_0)$ from the above gives

$$f''(x_o) \approx \frac{f(x_o + h) - 2f(x_o) + f(x_o - h)}{h^2}$$

This method can be used to find approximations for higher derivatives.

3.2 Generating Error Table, Handout of oct 8,2010 for the $u_{xx} = -\sin(3\pi x)$

Generating finite difference error table, Handout of oct 8,2010 Math 228A, UC Davis

Problem: Generate error table for finite difference approximation to solution of

Nasser M. Abbasi, 10/11/2010

```
u_{xx} = \sin(3 \pi x), u(0)=1,u(1)=0
 In[6]:= len = 1; (*length of element *)
      h = len / 16; (*Initial spacing *)
      \alpha = 1; (* left Boundary conditions *)
       \beta = 0; (* right Boundary conditions *)
       (*generate spacings by halving it each time *)
       nIter = 7;
       hValues = Table[h / 2^i, {i, 0, nIter}];
       (*---{nPoints,h,errorNorm2,errorNorm1,errorNormInfinity,errorNormFrobenius}--*)
       tbl = Table [ process [N[hValues [i]], len, x], {i, nIter + 1}];
       (*we are done, format the table *)
       tbl = Table [{
             tbl[[i, 1]],
             se[tbl[[i, 2]]],
             se[tbl[[i, 3]]], If[i == 1, 0, se[ tbl[[i - 1, 3]]
tbl[[i, 3]]],
             se[tbl[[i, 4]]], If[i == 1, 0, se[\frac{tbl[[i-1, 4]]}{tbl[[i, 4]]}]],
             se[tbl[[i, 5]]], If[i == 1, 0, se[\frac{tbl[[i - 1, 5]]}{tbl[[i, 5]]}]],
            se[tbl[[i, 6]]], If[i == 1, 0, se[\frac{tbl[[i-1, 6]]}{tbl[[i, 6]]}]]
           }, {i, 1, Length[tbl]};
       heading =
          \{ \texttt{"pts", "h", "} \| e \|_2 \texttt{", "ratio", "} \| e \|_1 \texttt{", "ratio", "} \| e \|_{\infty} \texttt{", "ratio", "} \| e \|_{\text{frobenius}} \texttt{", "ratio"} \};
       Framed[TableForm[tbl, TableHeadings → {None, heading},
          TableSpacing \rightarrow {1, 3}], ImageSize \rightarrow 870]
```

2 | handout1_table.nb

	pts	h	e ₂	ratio	e 1	ratio	∥e∥ _∞
	15.	6.2500e-2	2.3423e-4	0	2.1020e-4	0	3.3125e-4
	31.	3.1250e-2	5.7795e-5	4.0527e	5.1992e-5	4.0429e	8.1734e-!
	63.	1.5625e-2	1.4402e-5	4.0131e	1.2964e-5	4.0106e	2.0367e-!
Out[15]=	127.	7.8125e-3	3.5975e-6	4.0033e	3.2387e-6	4.0027e	5.0876e-6
	255.	3.9063e-3	8.9919e-7	4.0008e	8.0955e-7	4.0007e	1.2717e-6
	511.	1.9531e-3	2.2479e-7	4.0002e	2.0238e-7	4.0002e	3.1790e-'
	1023.	9.7656e-4	5.6196e-8	4.0000e	5.0594e-8	4.0000e	7.9473e-{
	2047.	4.8828e-4	1.4049e-8	4.0000e	1.2648e-8	4.0000e	1.9868e-{

Function process

```
In[1]:=
     process[h_, len_, x_] :=
       Module {de, sol, solExact, pExact, u, f, A, approxSolution, data, pApprox, i,
          nPoints, error, errorNorm2, errorNorm1, errorNormInfinity, errorNormFrobenius},
                   len
         de = u''[x] == -Sin[3Pix];
         sol = First@DSolve[{de, u[0] == 1, u[1] == 0}, u[x], x];
         solExact = Simplify[(u[x] /. sol)];
         pExact = Plot[solExact, {x, 0, 1},
           Frame \rightarrow True,
           PlotRange \rightarrow All,
           FrameLabel \rightarrow {{Style["u(x)", 14], None},
              {Style["x", 14], Column[{Style["solution to uxx=-sin(3πx), u(0)=1,u(1)=0", 14],
                 Style[Row[{"u(x) = ", solExact}], 14]}, Alignment → Center]}}
          1;
         A = makeA [nPoints];
         f = makeF[nPoints, \alpha, \beta, rhs, len];
         approxSolution = LinearSolve \left[\frac{1}{h^2}A, f\right];
         data = Table [\{(i - 1) * h,
            If[i == 1, α, If[i == nPoints + 2, β, approxSolution [[i - 1]]]]}, {i, 1, nPoints + 2}];
         pApprox = ListPlot[data, Joined \rightarrow True, AxesOrigin \rightarrow {0, 0},
           Frame 	o True, PlotStyle 	o Red, PlotRange 	o All];
         If[h = 0.0625]
          {Print[MatrixForm[A]];
           Print[pExact];
          }];
         error = Table [approxSolution [[i]] - solExact /. x → (i * h), {i, 1, nPoints}];
         errorNorm2 = Norm[error, 2] * \sqrt{h};
         errorNorm1 = Norm[error, 1] * h;
         errorNormInfinity = Norm[error, Infinity];
         errorNormFrobenius = Norm[error, "Frobenius"] * \sqrt{h};
         {nPoints, h, errorNorm2, errorNorm1, errorNormInfinity, errorNormFrobenius}
       ];
```

Function to format decimal numbers like the handout

```
In[2]:= se[n_] := Module[{},
Style[ScientificForm[N[n, $MachinePrecision], {6, 4},
NumberFormat → (Row[{#1, "e", #3}] &), NumberPadding → {"", "0"}], 14]];
```

Function to construct A matrix

```
In[3]:=
makeA[nPoints_] := Module[{A},
fill[i_, j_] := If[i == j, -2, If[i == j+1|| i == j-1, 1, 0]];
A = Table[fill[i, j], {i, nPoints}, {j, nPoints}]
];
```

Function to construct the f matrix

```
ln[4]:= makeF[nPoints_, \alpha_, \beta_, f_, len_] := Module[\{h, rhs, i\}, h = \frac{len}{nPoints + 1};
rhs = Table[If[i = 1, f[i \star h] - \frac{\alpha}{h^2}, If[i = nPoints, f[i \star h] - \frac{\beta}{h^2}, f[i \star h]]], \{i, nPoints\}]
];
```

Function to evaluate the rhs at a grid point

```
ln[5]:= rhs[x_] := Module[{}, -Sin[3 \pi x]];
```

3.3 generate table 1 in textbook on approximation of derivatives

HTML

3.4 looking at eigenvalues of weighted jacobian iteration matrix

HTML