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1 Problem 1

Problem statement

1. Use Jacobi, Gauss-Seidel, and SOR (with optimal w) to solve
Au=—exp (—(z — 0.25)% — (y — 0.6)2)

on the unit square (0,1) x (0,1) with homogeneous Dirichlet boundary conditions. Find the
solution for mesh spacings of h = 27° 276 and 277. What tolerance did you use? What
stopping criteria did you use? What value of w did you use? Report the number of iterations
it took to reach convergence for each method for each mesh.

Figure 1: Problem 1

Answer

Using the method of splitting, the iteration matrix T is found, for each method, for solving
Au = f.

Let A=M - N, then Au = f becomes

(M~N)u = f
Mu =Nu+ f
ultrll = MAINUE + ML f 1)

1.1 Finding iterative matrix for the different solvers

The Jacobi method

For the Jacobi method M = D and N = L+ U, where D is the diagonal of A, L is the negative
of the strictly lower triangle matrix of A and U is negative of the strictly upper triangle
matrix of A. Hence(1) becomes

ultll = DL + Uyult + D1 f
ul+l = Tylkl 4 C

Where T is called the Jacobi iteration matrix. Since A= D —-L—-U, hence L+ U =D - A,
therefore the iteration matrix T can be written as

T=D(D - A)
=I-D'A
or
T=(I-D"A)
C=D1f

The Gauss-Seidel method

For Gauss-Seidel, M = D — L and N = U, hence (1) becomes
ukH = -0 'uu +(D-1)" f

or
ulk+1l = Tyl 4 C
where
T=(D-L)'U
C=D-L"f

The SOR method




For SOR, M = i(D —wL)and N = i((l —w)D + wU). Hence (1) becomes

1 11 1 B
ulf+1l = [— (D - a)L)] [— (1-w)D + a)ll)] ulfl + | = (D - a)L)] f
w w w

=(D-wLl)  (1-w)D+wl)u® +w(D-wl)" f
=Tulk + C

where
T=(D-wL) " (1-w)D +wl)
C=w(D- cuL)_1

Summary of iterative matrices used

This table summarizes the expression for the iterative matrix T and for the matrix C in
the equation u!**11 = Tyl¥l + C for the different methods used.

method T C
Jacobi (I-DA) Dlf
GS (D-L)'u (D-L)'f
SOR | D-wLy ' (1-w)D+wl) | @(D-wL)™

2 2
The discretized algebraic equation resulting from approximating Z—xlzl + ‘;—Z =f (x, y) with
Dirichlet boundary conditions is based on the use of the standard 5 point Laplacian

Pu  JPu 1
=t EIr il (Uirj + Ui+ Ugjg + Uy - 4ui,j)

which has local truncation error O (hz).

The notation used above is based on the following grid formating

J=1 J=2 J=3 ... J=end
i=1
i=2
: h
LIS
i=3
h
i=end

Figure 2: Grid notation

The derivation of the above formula is as follows: Consider a grid where the mesh spacing

2
in the x-direction is /i, and in the y-direction is /,. Then 2L i approximated, at position

Ix?
oy Uil % . LN L U2l
(i, ]) by % and 2 is approximated, at position (z, ]), by ”h—ﬁ”l”

Au % Ujq,j=2Uj i+ Uy ; U =2U;+Uj iy . u  %u .- .
=+ i 2 7 , and since =+ el fij at that position, this
results in

therefore

Uiy =2U;j + Uiy j - Ujjg = 2Uj 5+ Ujjig
2 + 2 = Jij
2 2 :



Solving for U;; from the above gives

1 hzh2

U = 2 (12 + 1) (Ui 15+ U i + Ul + Upjah) = 2(h2+h )fl]
. h2h2
- s (U U o (W ) - 2,

The following table shows the formula for updating U;; using each of the 3 methods for the
2D case, under the assumption of uniform mesh spacing, i.e. when h, = h, which simplifies
the above formula as given below

method Formula for updating U;;, uniform mesh
: [k 17 _ [k] (k] [k] [k]
+ + +
GS U (U +Uz+1]+uz] 1 z]+1_h2fl])
k+1 k+1 k k+1 k k
SOR | Uy = (u} ;]1 + u}ﬂlj + U+ UL, - ) + (- o) U

note that for SOR, the general formula, using nonuniform mesh can be derived as follows

k1l (u[k+1] +u o 4 u[k+1] + Uy hzfi,j)

(g9)ij — i1 i+1, ij+1
[k+1] [k] [k+1] [k]
Utsonij = Ui + (U(gS)ZJ Ui )

The second formula above can be simplified by substituing the first equation into it to yield

1
k1] _ 44K [k+1] K] [k+1] | g1k [K]
U, .. = lli,j + a)( (ll + U + U; hzfl]) lli’j )

(sor)i,j 4 i-1,f i+1,j ij-1 1]+1
k+1 k k+1 k k
= (u} pheuld v ult e uld - 2f) + - wyuld

Which is what shown in the table above. Using the same procedure, but for the general
case, results in

23

1
Ll (Ul o u® g2+l + ul g2) - — g
2(3 + 13)

(g9)i)j 2 (h% + h;) i-1,j i+1,;""y ij-1 ij+
[k+1] _ 4 IK] [k+1] k]
Uty = Ui + @ (Uigsyiy = Uij)
Hence, again, the second equation above becomes

S Tl

h 2
[k+1] [k] [k+1] [k] Yy K]
(sor)ij = UjSy kg + Upy ki + UG he + U ]+1h2) e TR0 L ]

1
a)m( i-1,j z+1]y ij-1

1 h2h?
B utkpe gk e gtk llp2 (Kl g2y _ "™
- [2 (12 + 12) (UL = Ui + UL I + U 2 2(h2 + hz)fl/]

Hence, for non-uniforma mesh the above update table becomes

’ method ‘ Formula for updating U; ;, non-uniform mesh ‘
Jacobi Ul[,];«“] = 2(14%14-}112) ((ui—l,]‘ + Ui+1,j) h2 + (Ui,j—l + Ui,j+1) hz) %f ij
cs Ty O UL L)
SOR | uf=w (h2+h2) (i + uld w2+ uls ez + Ul 2) - (h§+h§) fij|+ @ -w)yul

The residual formula is RI¥l = f — AulFl] which can be written using the above notations as
R - Ui = 2U;j+ Uiy Ujjq = 2Uj5+ Uy
=i 7 TR
and for a uniform mesh the above becomes

=fij~- iz ( i-1,j + Uirrj + Ujjg + Ujjag = 4Ui,j)




1.2 Tolerance used

The tolerance € used is based on the global error in the numerical solution. For this
problem |le]| = Ch? where C is a constant C. Two different values for the constant were tried
in the implementation: 0.1 and 1.

1.3 stopping criteria

The stopping criteria used was based on the use of the relative residual. Given
RI = f - Ayl
The iterative process was stopped when the following condition was satisfied
k
IR
171

Other possible stopping criterion are (but were not used) are

<€

1. Absolute error: convergence achieved when |[ul**11 - 4[{|| < ¢

)

WA <€

2. Relative error: convergence achieved when

The above two criterion are not used as they do not perform as well for Jacobi and Gauss-
Seidel.

1.4 w used for SOR

The w,,; used is based on the relation to the spectral radius of the Jacobi iteration matrix.

This relation was derived in class
2

Wopt = >
1+ \[1 - p]acobian

where for the 2D Poisson problem pj,pian is given as cos (rth) where h is the grid spacing.
Using this in the above and approximating for small / results in

Wopt ~ 2(1 = 7th)

For the given h values in the problem, the following values were used for

he=hy=h | Wy

273 1.2146
274 1.6073
275 1.8037
276 1.901 8
277 1.9509

Notice that the above approximation formula is valid for small # and will not result in
good convergence for SOR if used for large 5.

Update 12/29/2010: After more analysis, the following formula is found to produce better
results

t = cos(rt hy) + cos(rthy)
poly(x) = x*2 —16x + 16

Solve the above polynomial for x and then take the smaller root. This will be w,,;, Using
this results in



he=hy=h | @
23 1.4464
24 1.6763
25 1.821

26 1.9064
27 1.9509

1.5 Algorithm details

In this section, some of the details of the implementation are described for reference. The
Matrix A is not used directly in the iterative method, but its structure is briefly described.

In the discussion below, updating the grid is described for the Jacobi method, showing
how the new values of the dependent variable u are calculated.

Numbering system and grid updating

The numbering system used for the grid is the one described in class. The indices for the
unknown u;; are numbered row wise, left to right, bottom to top. This follows the standard
Cartesian coordinates system. The reason for this, is to allow the use of the standard
formula for the 5 point Laplacian. The following diagram illustrate the 5 point Laplacian
borrowed from the text book, figure 5, page 61 "Finite Difference Methods for Ordinary and
Partial Differential Equations" by Randall J. LeVeque

Vi+2
1
Vi+1 L
1 -4 1
Vj » & 4
1
1 j—1 L 3
1'}'_:
(a) Xi—2 Xi—1 X Xig1 Xig2

Figure 3: 5-point stencile for Laplacian at x(i,j)

Lower case 7 is used to indicate the number of unknowns along one dimension, and upper
case N is used to indicate the total number of unknowns.



Internal grid points where the
unknown U is to be solved for

-
/7

Uoa  Uis Uza! Uss Uga

e e et N
'y U] U] !
Voot 1y —29 %3 1| |Uss
| |
| |
Uo2 Uzo| Uz2| Usp Uso
| |
) I |
J UO,l l\ Ulﬂ* Uzy] U3,;|. /I U4,l
AN /

Figure 4: stencil move

In the diagram above, n = 3 is the number of unknowns on each one row or one column,
and since there are 3 internal rows, there will be 9 unknowns, all are located on internal
grid points. There are a total of 25 grid points, 16 of which are on the boundaries and 9
internal.

To update the grid, the 5 point Laplacian is centered at each internal grid point and then
moved left to right, bottom to top, each time an updated value of the unknown is generated
and stored in an auxiliary grid.

In the Jacobian method, the new value at the location x;; is not used in the calculation to
update its neighbors when the stencil is moved, but

Only when the whole grid has been swept by the Laplacian will the grid be updated by
copying the content of the auxiliary grid into it.

In the Gauss-Seidel and SOR, this not the case. Once a grid point have been updated, its
new value is used immediately in the update of its neighbor as the Laplacian sweeps the
grid. No auxiliary grid is required. In other words, the updates happens ’in place’.

Continuing this example, the following diagram shows how each grid point is updated (In
a parallel computation, these operations can all be done at once for the Jacobi solver, but
not for the Gauss-Seidel or the SOR solver, unless different numbering scheme is used
such as black-red numbering).



Uos  Uia Uzs Uss Usy Uosa  Uia Uzs Uss Usy
Uos Yig Uzsl Us, Uss Uod Yz Uag Us Uas
Uog Yz U2zl Usa Uaz |:> Uog Y12 Ué.z '.U3‘2 Uas
by B . - HE U4,1 UOJ L"’—lt.”'uz U3‘ " U4,1

Uso Uoo Uip L.:'Jz,g." Uso  Uso

Uy = %(UOJ +Uyg +Usg + Upy — h?fry) Upy = %(Ul,l + Uy + Upg + Uyp —h?fp;)

Uoa  Uia Ups Uss Ugg Uoa  Uia Ups Uss Uggs
Uos Yig Uzsl Us, Uss Uo, U:‘:l.a '.':.Uz‘s Usg Uas
Uoa Uig Us, L{a;’—; Uss > Ui;: : 0 Us2
Uod| Uy V3 03 e u” Uo, U, Uaa

Uoo Uio Uz U3p Uso Uoo Uio Uzo Uso Usp

Uy = %(UZJ +Ugq + Usg + Usp — h?f3;) Uiz = %(UO’Z + Uzz +Uso + Usg —h*f1z)

Uos Uis Ups Uss Uss Uosa  Ups Upy _l_JSf Usa
Uo, Uyl U.z; .:,':'Ua‘s Uss Uod Vg . .:‘. . :':' Uz
oo i3t T4y | :> RS 2 i
Vot "l:lz.' :E:'US‘ Uaa Un Uiy Ve U‘é' :' Uz

U U U U U
Uso Uso Uso Use Uso 0,0 10 2,0 3,0 4,0

1 _ 1 2
Uzz = 7 (Usp +Usp + Upy + Uz — h?f22) Usp = 4(Uzp + Ugp + Usy + Ugs — h*f35)
Uoa E.U 4.," Uza Uss Usg Uos  Ups iU d. Usa  Usa
p(;‘.a.'-tjl'g Uz'a Ysg Uss U, E‘LJL;“—UM Us, ; Uis
Uog| Ytp| iUz22| Usa Uss Upg Y1z U3 iU Uiz
Uoal Yriy Uzal Us Usa |:> Uoal Yryg Uz Us Uis
Uoo U0 Uzo Uso  Usp Uoo Uio Uzo Uso Usp
_ 1 2
U1‘3 = %(UOS + U2,3 + Ul,Z + U1’4 - h2f1'3) U2,3 = I(Ulﬁ + U3,3 + U2,2 + U2,4 -h f2,3)

| And the last equation (no space to draw) results in: | Uss = %(Uz,?, + Uy + Usp + Ugy — h2f3,3)

Figure 5: stencil move 2

Now that the grid has been updated once, the process is repeated again. This process is
continued until convergence is achieved.

1.6 Structure of Au = f

The structure of Au = f system matrix is now described. As an example, for number of
unknowns = 9 the following characteristics of the matrix A can be seen



Diagonal of 1's which
starts to the right of the

/ first block

(a1 0fi%o 0 0 0 0 \/ U
1 -4 1/0~10 0 0 0 Uz:
0 1 -4 0 0-1-0 0 0 Uss
/\:1\\0 0 -4 1 0\1:\0 0 U
0120 |1 -4 10170 Uy,
0 0~IM0o 1 40 01> || Us
0 0 0120 0 4 1 0 Uss
0 0 0 0”10 [1 -4 1 Uz

\ 0 0 0/0 0n130 1 -4 J\ Uss

Diagonal of 1's which

starts below the first block Square block of nxn size

which repeats n times
down the diagonal of A

Figure 6: A structure

Structure of the A matrix for elliptic 2D PDE with Dirchillet boundary conditions for non-
uniform mesh

This section was added at a later time here for completion, and is not required for the HW.
Below the A matrix form is derived for the case for non-uniform mesh (this means £, is
not neccessarly the same as /) and also, the number of grid points in the x-direction is
not the same as the number of grid points in the y-direction.

To ease the derivation, we will use a 5 x5 grid as an example, hence this will generate 9
equations as there are 9 unknowns. From this derivation we will be able to see the form of
the A matrix.

In addition, in this derivation, we will use i to represent row number, and j to represent
column number, as this more closely matches the convention.

1,2 1,2) 1,3) 1,9 (1,5)
(2,2) 2,3) (2,4)
@1 O O D) 25)
3,2 (3.3 3.4
e —CR O B las
(4,2) 4,3 4,4)
an— 25— —es
(5,1) (5,2) (5,3) (5,4) (5,5)

Figure 7: new grid

The unknowns are shown above in the circles. From earlier, we found that the discretization



for the elliptic PDE at a node is

ll,',j =

1
213 +13

) (uz’,j—lh§ + U 1 + Uiy jh5 + ui+1,jh32c)

2h2

22+ 5)

We will now write the 9 equations for each node, starting with (2,2) to node (4,4)

Uy, = m (Up k2 + Uy h2 + Uy ph2 + U h2) — % far
Uys = m (Upoh2 + Uy ah? + Uy sh2 + U h2) — > (h;hz 7 fas
Upy = m (Upgh2 + Upsh2 + Uy 4h2 + Us 4h2) - (h;hz 7 fou
Us, = w (Us k2 + Uz h2 + Upph? + Uy h2) — (h;hz 7 fa2
Uss = m (Usph2 + Us 4h2 + Up 3h2 + Uy 5h2) - 2(;—}5@) 33
Usy = m (Usah2 + U h2 + Up 4h2 + Uy 4h2) — ﬁ 34
Uy, = W (Ug1h2 + Uy gh2 + Us ph? + Us h2) — ﬁ 4o
Uys = m (U oh2 + Uy b2 + Us 3h2 + Us 5h2) — % 13
Uyy = m (Uysh2 + Uy sh? + Us 4h2 + Us 4h2) — (hzzhz 7 faa

Now, moving the knowns to the right, results in
2 (H3 + 12) Upp — Uy ah? — Uz b2 = —h2H2 fo 5 + Up 11 + Uy ph2

2 (H3 + 12) Ups — Upph? — Up gl — U h2 =
2 (12 + 12) Uy — Upgh2 — Uy g% = —h2H3f 5 4 + Upsh? + Uy 4h2

2(h2 + 12) Uz — Uy gh2 — Upoh = Uy ph? = —h2H2f55 + Us 1 h2

2 (3 + 12) Us 3 — U b2 — U gl — Up gh — Uy h3 =

2 (H2 + 12) Uz g — Uy gh2 — Uy g% = Uy gh2 = =h2H2f5 4 + Uy sh
2 (M2 + 12) Uy - Uy gh? — Uz h =

Now, we can write Ax = b as, letting g =2 (h?c + hﬁ)

B —hy
_hyzl ﬁ
0 -2
K 0
0 -K2
0 0
0 0
0 0
0 0

2 (I’l% + h%) U4,3 - U4/2]’l§ -

Uy 4l -

Ussh? =

2 (]’132( + hy?) U4,4 - U4,3I’l§ - U3l4h§

0 -k 0 0
-hg 0 -h% 0

B0 0 -K

0 B -k 0
2

0 -h B -

-z 0 -k B
0 -k 0 0
0 0 -k 0
0 0 0 -k

0
0
0

Now we will do another case n, # n,

0 0
0 0
0 0
0 0
-h2 0
0 -2
20
g
_h§ [g

~3HG fo5 + Uy 3h5

RALLTIEE

h2h2f4 2+ U4 1]’1 + U5 2]’12
h2h2f4 3+ U5 3]’1
h2h2f4 4t U4 5]’1 + U5 4]’12

—h2h2f22 + U2 1’12 + Ul 2h2
—hEh5fo 5 + Uy 5h3
—h2h§f24 + Uz 5h2 + U1 4h326
—h2h2f3 7+ U3 1h

= —h,%hﬁf 33

—HEHG f3,4 + Uz shy
~HEh5 f4p + Ug b + Us ph%
—h2h5 f4 5 + Us3hs
—hihﬁf 44 T U4,5h§ + Us 4%




(1.1) 1.2) (1.3) (1.4) (1,5) (1
(2.2) (2,3){ § (2,4) @5l
@1 O—0 a O
(3.1) (3,2)O (3,3%3 (3,4) (3.5 :
@ (4,2)C ) (4,3)C \ (4,4) 45
(5,1) (5,2) (5.3) (5.4) (5,5)

Figure 8: new grid 2
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(2.6)

(3.6)

(4.6)

(5.6)
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The unknowns are shown above in the circles. From earlier, we found that the discretization

for the elliptic PDE at a node is

1

We will now write the 12 equations for each node, starting with (2,2) to node (4,5)

(uz’,j—lh§ + U jahf + Ui 3 + Ui+1,jh32<)

2h2

2(1 + 1

Uy, = m (Up k2 + Uy h2 + Uy ph2 + U h2) — % .
Ups = m (Upoh2 + Uy ah? + Uy sh2 + U h2) — > (h;hz 7 fas
Upy = m (Upgh2 + Upsh2 + Uy 4h2 + Us 4h2) - (h;hz 7 fou
Uys = m (Upah2 + Uy h? + Uy sh? + U sh2) — (h;hz 7 fas

Upp= (
27 2(h3 +13)

Upp= —— (
P2 (12 + 1)

U3,1h§ + U3,3]’l§ + Uz/z]’l)z( + U4/2h325) -

u:),,zhﬁ + U3,4h§ + U2,3h,2€ + U4,3h,25) —

2h2

X
2(13 +13) 2

2h2

X
2(12 +12) "

B 1 2 2 2 My
Uss = So—rn a7 (Us sl + Ush? + Up 4h2 + Uy 4h2) 20y
2h2
Uss = - (h21+ 2) (Us altf + Us glt + Upglts + Ussh?) - W v
X
1 g 2h2
U4’2 = m (U4/1h§ + U4/3h§ + u:g/zh,zc + U5,2h325) (hz )f42
h2h2
U4,3 = m (U4,2h§ + U4,4]/l§ + U3/3]’l}2( + U5,3]’l,2() (hZ )f43
1 2 2
U4’4 = w (U4,3h§ + U4,5h§ + U3,4h325 + U5,4h325) (h2 )f44
2h2
- - 2 2 2 2
Uys = o) (Uyalt? + Uy gh? + Uy sh2 + Us sh2) - 202+ )f45

)fl]



N =

© X IO v W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Now, moving the knowns to the right, results in
2 (12 + 12) Uy — Upgh2 — Uz % = —h2H3f 5 5 + Up B2 + Uy oh2
2 (H2 + 12) Uy - Upph2 — Uy gl — Us3h2 = =h2H2f, 5 + Uy 3h2
2 (H2 + 12) Uy — Upgh2 — Upsh? — Us 4h2 = =h2H2f, 4 + Uy 4h2
2 (l’li + h?) UZ,5 - U2l4h§ + U3,5h§ = —h§h§f2,5 + u2,6h§ + U1,5h§
2 (h§ + h;) Usp — Us sy — Upph% — Ugoh% = —h3hG f5, + Us by
2 (3 + 12) Us 3 — Uy ph2 — U gh2 — Up gh2 — Uy h2 = ~h2h2f 5 5
2 (hazc +h2) Uz g — Us3h2 — Ussh? — Up 4h2 — Uy 4h2 = ~h2H2f 5,
2 (h;zc + hi) U3,5 - U3,4I’l§ + U2,5h§ + U4,5I’l§ = —h§h§f3,4 + U3,6h§
2 (h;zc + h}/g) U4,2 - U4,3I’l§ - U3,2h§ = —h§h§f4,2 + U4,1h§ + U5,2h§
2 (hyzc + hﬁ) Uyz — Uyphfy — Uy ghf — Uz shy = —h3hG f4 5 + Us sh3
2 (hyzc + hf) Uy — Uyshi — Uy ghl — Uz 4h3 = =h3hGf4 4 + Us 403
2 (hyzc + I’l;) U4,5 - U4,4]’l§ - U3,5I/l§ = —h§h§f4,5 + U4,6h]2/ + U5,5h§
Now, we can write Ax =D as, letting f =2 (h% + hﬁ)
g - 0 0 - 0 0 0 0
- g -H 0O 0O -H 0 0 0
0 - B -KH 0 0 - 0 0
0 0o -r B 0 0 0o - o0

-2 0 0 0 B -H 0 0o -n¥ 0
0 -n 0 0o -K B K 0 0 - 0

0

0 U  (-HHEfan + Ukl + Uy oh2
0 Ups —h2h2f 5 + Uy 3h2

0 Upg | |~133f24 + UpshG + Uy 413
0 Ups | | -13hEfa5 + Upehd + Uy sh?
0 Usp —h2h2f3o + Us1h?

Usz ~I3h 33

0 0 -K 0 0 - g -K 0 0 -n¥ 0 =
’ 2 ! 2 ! * 2 || Uss ~12H2f34 + Ussh?
o 0 o -® 0 0 -®¥ g 0 0 0 - o y
) ) Uss —hihyf34 + Us 6hyy
o 0 0 0 -¥ 0 0 0 B - 0 0 va X "
0 0 0 0 0 20 0 2 2 Ug | | -hehyfaz + Ugahy + Usphy
Ty “hy k0 212 2
o 0o o o0 0 0 - 0o 0 - 2 || Yo “Hihyfas + Usghy
I “hy B hy 27,2 2 2
o 0 0 0 0 0 0 -2 0 0 - Uaa | | hliyfas+ Ugshy + Usahy
T “hy B 25,2 2 2
Uys) \-hzhyfys + Uyehy + Usshy

To create the above matrix, as sparse matrix, call the following Matlab code

12

A=1ap2d(4,3,hx,hy);

/AWhere in the above, 4 is nz, which is the number of nodes in the z-
direction.

/#These are internal nodes. ny is number of nodes in the y-direction.

4hz is the spacing between nodes in the z—direction.

4hy is spacing between nodes in the y-direction

function L2 = lap2d(nx,ny,hx,hy)
Lx=lapldy(nx,hx,hy); Jmakes the MAIN block, only one block
Ly=lapldx(ny,hx,hy); /Jmakes the off block, only one block

Ix=speye (nx) ;
Iy=speye(ny);

Lm=kron(Iy,Lx); /does the central diagonal
Lo=kron(Ly,Ix); /does the off diagonal
L2=Lm+Lo;

function L=lapldy(n,hx,hy)
e=ones(n,1);

T1=2% (hx~2+hy~2) ;

B=[-exhy~2 (1/2)*Tl*e -exhy~2];
L=spdiags(B,[-1 0 1],n,n);
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function L=lapldx(n,hx,hy)
e=ones(n,1);

T1=2% (hx~2+hy~2) ;

B=[-e*xhx"2 (1/2)*T1*e -exhx"2];
L=spdiags(B,[-1 0 1],n,n);

A matrix format for sparse storage for elliptic 2D with non-homegenous Nuemman bound-

ary conditions
This section was added at later time, and not required for this HW.

To be able to forumlate the A matrix as sparse matrix, we need to find what the form will
be in the case when one or more of the boundary conditions has Nuemman coditions on
it. We will start as above, and start with assuming Nuemman conditions now exist on the
left edge and find out what the form of the A matrix will turn out to be.

1) (L2) (L3) (1.4) (L.5) (1.6)

22 (2.3) (2,4) @5

enO—(O——O—— —— e

enO—E2 o capy @2 (36)
4.2 43 4.4 4,5
(4,1) )_()C ¢ )\—()\ ¢ )1 (46)

(5.6)

(5,1) (5,2) (5,3) (5.4) (5,5)

Figure 9: new grid 2 nuemman on left

The unknowns are shown above in the circles. From earlier, we found that the discretization
for the elliptic PDE at an internal node is (note that in the above, i is the row number, and
j is column number)

722+ ) 2(2+m2)""
And for Nuemman, non-homegenouse boundary conditions, the left edge unknowns are
given by

(UsjoaP + U k2 + Uy jh2 + Uy 12) —

122

(2U;p 12 + (Ui + Uppa ) K2 - H2higi ) — W i1
x Ty
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We will now write the 15 equations for each node, starting with (2,1) to node (4,5)
1 hih3

o = 2 ) (2Laa 1 (U + Usa) = ihgas) = o520 o
1 h2h2
Uy, = 2(2+12) (Unah + Upahfy + Ui ol + Us oh) 202+ )f 22
. 2h2
e = 7y (e + U U)o
h2h2
Uy = W (Uz,shf + Uy shiy + Uy 4% + Us 4h 32‘) (hz )f 24
y
3 ; 5 2 2 2\ _ ﬂ
Uas = 2(12 +13) (Ul + U + U sl + Us 513 2(13 +13) "
1 W2h?
Uz, = M(Z%z I+ (U + Us ) 1 = hags ) - (11%—+yh§)f31
1 h2h2
e = 7y (o + Ul ol U)o
. 21,2
U3/3 = m (U3,2h§ + U3,4I’l§ + U2,3h§ + U4,3I’l,26) - z(hzx—yh2) 33
1 h2h2
Usy = ) (Us 312 + Us 3 + Uy 4h2 + Uy 4h2) - 202+ )f34
hzhz
Uss = w (U3,4h§ + Usghty + Up st + u4r5h’2‘) (hz )f 34
¥y
h2h?
U = gy (B 5+ (s + )~ i) - s
h2h2
Ui, = z(h;h) (Usal + Usglf + Usalf + Usalf) = 555" a2
X y * 4
. 21,2
Ui = gy (Usd + Usd o Ussl + ss) - 2
21,2
Uyy = w (Ua a2 + Uy sh3 + U b2 + Us 4h2) - ﬁ i
X y * 4
21,2
e 1 hihy

) (U4,4I’l§ + U4,6I’l§ + U3,5I’l§ + U5,5I’ljzc) -

2(12 + 12 2(12 +13) "
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Now, moving the knowns to the right, results in
2 (h§ + h;) Upy —2Upp hf — U 1h% = Uy 1h% — hihogo 1 — Hah5f 54
2 (12 + 12) Uy — Upgh2 — Uz % = ~h2H3f 5 5 + Up B2 + Uy oh2
2 (h% + hﬁ) Up 3 — Upohy — Up 4l — Us 3h% = —h3hS fo 5 + Uy 3h%
2 (h§ + hi) Up s — Upshy — Up sl — Us 4h% = —h3HG fo 4 + Uy 4h%
2 (12 + 12) Ups — Upuh2 + Us sh2 = —I2h2f5 5 + Up gh2 + Uy sh
2 (h3 + 12) Us g — 2Usp W2 — Uy 112 — Up 112 = —h2higs 1 — W22 f5 4
2 (hyzc + hﬁ) Usp — Us sy — Upph% — Uyoh3 = —h3hGf5, + Us by
2 (hazc +h2) Uz 5 — Usph? — Us 4h? — Up3h? — Uy sh% = —h2H2f 5
2 (hazc + hf) Usy = Usghy = Usshy — Uy 4hz — Uy 4hs = ~hZh5f3,
212 + B2) Uss — Uz gh2 + Upsh + Uy sh? = —h2h2 5 4 + Uy h?
2 (hyzc + hﬁ) Uy = 2Uyp h = Uzl = Us 1 h% = Bjhigan — Hehgfay
2(h2 + 12) Uy — Uy gh2 — Uz b2 = —2h2f 4 + Uy1 3 + Us ph2
2 (thf + hﬁ) Uy — Ugohd — Uy ghl — Us 3h% = —h3h5 f4 5 + Us 3h%
2 (h72( + hﬁ) Uy — Uyshd — Uy ghl — Us 4h% = —h3h5 f4 4 + Us 4h%
2 (h2 + 12) Uy — Uy gl — Ussh? = —2H2f 45 + Uy g’ + Us sh2

Now, we can write Ax = b as, letting g =2 (hfc + h;)

B -23 0 0 0 —h2 0 0 0 0 0 0 0 0 0 \(Ua1) (U11h3—I3hegoq —h2h3f21

0 B -1 0 0 0 —h2 0 0 0 0 0 0 0 0 [|Una| |-13H2foz + UphG + Uy oh?

0 -h3 B -hZ 0 0 0 -1 0 0 0 0 0 0 0 ||Ux —13H3 a3+ Uy 3h%

0 0 -1 B -h2 0 0 0 —h2 0 0 0 0 0 0 [|Uns| |-13H2fou+ Upshd + Uy gl

0 0 0 -2 B 0 0 0 0 —h2 0 0 0 0 0 ||Uss| |-I3h2fas+ Upgh? + Uy sh?
-h2 0 0 0 0 B -212 0 0 0 -1 0 0 0 0 ||us —I2hygs1 — Wl f31

0 -2 0 0 0 0 B -h2 0 0 0 -2 0 0 0 ||Us —12h2 f3 + Uz 1h?

0 0 —h2 0 0 0 -hZ B i 0 0 0 —h2 0 0 ||Uuss|= ~h2hZf33

0 0 0 —h2 0 0 0 -hZ B -hZ 0 0 0 —h2 0 || Usqg —12h3 f3,4 + Uz 5h3

0 0 0 0 -1 0 0 0 -1 B 0 0 0 0 -12|| Uss —13H3 f3,4+ Uz 6h

0 0 0 0 0 -1 0 0 0 0 B -2} 0 0 0 [|Ugt| |Usih3—W2hegas —h2hEfan

0 0 0 0 0 0 -1 0 0 0 0 B - 0 0 [|Usa| |-13H2faz+ Ushl + Usoh?

0 0 0 0 0 0 0 12 0 0 0 -h2 B -2 0 ||ugs ~12h2 f 43+ Us 3h?

0 0 0 0 0 0 0 0 —h2 0 0 0 -hZ B 12 ||Usa| |-HBHEfa 4+ Ugsh? + Us 4h?

0 0 0 0 0 0 0 0 0 —h2 0 0 0 -hZ B Nuys) \-ii3hfys+ Uggh? + Us sh?

The above is the matrix for the case of non-homogeneous Neumann boundary conditions
on the left edge.

We will now do the same edge, but with homogeneous boundary conditions to see the
difference. Recall, that when the edge is insulated, then
h.hy ( h hy, ) hihg

2]~

2—,;; (Uit + Ui ) - h_xu wf i1



Using the above, we write the 15 equations starting with (2,1) to node (4,5)

by [ hy _ Mhy
1 h2h2
Uy = ) (Ut} + Upah + Uy ol + U3f2h’2‘) 202+ )f 22
. 2h2
e = i (Lo + Ul U)o
2h2
- 2 2 2 2
s = 2 (h§ + hf,) (u2,3hy + Upshy + Uy ahc + U3,4hx) (hz )f2 g
— ; 2 2 2 2) hihﬁ
Hos = 2(h3 +13) (U + Unglt + Un sl + Us sh3) (n2 + 12)
by (h y fichy
u3,l = (hZ—hZ)(Zh (UZ1+U41) hxu3,2)_m.f3l
1 h2h?
U3,2 = m (u;;,/ll/l; + U3,3]/l§ + Uz,zl’l)zc + U4,2h325) - ﬁ
1 h2h2
U3,3 = w (u?,,zhﬁ + U3,4h§ + u2,3h325 + u4,3h32€) - (hzx yhz)
__ 1 2 2 2 2 del
U3,4 = > (h% N hﬁ) (U3’3hy + U3’5]’ly + U2/4hx + u4/4hx) (hz )f34
, 2h2
s = g (o + Ul o U)o
21,2
u41:&(h (U31+U51)_@u412)_ hh f41
z (hz hZ) 2h hy (hz )
2]’12
Uz = g (L + Ul sl U)o
3 ; 2 2 2 2\ _ i
Has = 2(h3 + 12) (U2 + Ui b + Us 3 + Us 3h3) 2(13 +13) v
Uypg = L (U43h2 + Uy shy + U 4h% + U54h>2€) - ﬂ 44
Ao(em) Y YT T 2(m )
21,2
e 1 hxhy

) (U4,4h§ + U4,6h§ + U3,5h32[ + U5,5h326) -

2(12 + 12 2(12 +12) "

16
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Now, moving the knowns to the right, results in

2, 72

%uz,l - h—xyua,1 + Z—iuz,z = zh_;;ulrl —hehyfaq
2 (12 + 12) Uy — Upgh2 — Uz % = —h2H2f 5 5 + Up B2 + Uy oh2

2 (h% + hﬁ) Up 3 — Upohty — Up 4l — Us 3h% = —h3hS fo 5 + Uy sh%

2 (12 + 12) Uy — Upgh2 — Upsh? — Us 4h2 = =h2H2f, 4 + Uy 4h2
2 (12 + 12) Ups — Upuh2 + Us sh2 = —I2h2f5 5 + Up gh2 + Uy sh2

2,72

%u&l - Zh—};uz,l - zh—;yLLM + Z—iuaz = —hchyf31
2 (h§ + hi) Usp — Us sl — Upph% — Ugoh% = —h3hG f5, + Us b3

2 (H3 + 12) Us 3 — U ph2 — U yh2 — Up gh2 — Uy sh2 = ~h2H2f 55

2 (3 + 12) Us 4 — U gh2 — U sh2 — Uy gh2 — Uy yh2 = —12H2 5 4
2(H2 + 12) Uz s — Uz gh2 + Upsh2 + Uy sh? = —h2H2 f5 4 + Us gh?

(E+m)  ne o hy hy

il U1 — —yu3,1 + . Uy = Z_hyum —hehyfaq

2 (12 + 12) Uyp — Uggh2 — Uz % = —h2H2f 4 5 + Uy 12 + Us b2
2 (h§ + hi) Uyz — Uyphf — Uy ghf — Uz sh3 = —h3hif4 5 + Us sh3
2 (hazc + hﬁ) Uy — Uyshi — Uyghl — Uz 4h3 = —h3hGf4 4 + Us 403

2 (12 + 12) Uy — Uy gl — Ussh? = —2h2f 45 + Uy g’ + Us sh2

h2+h3)
. _ o o(12 . 2 _ (B+hf
Now, we can write Ax = b as, letting =2 (hx +hy)and y = ———
Xy
hy Iy
s _Ox Iy
y B 0 0 o0 Zm 0 0 0 0 0 o 00 0) 2 U1y o
2 2 ;
0 o0 o L LA I 0 00 0 0 il | 2 ¢ Uy Uy g2
L R o # 0 o0 0 00 0 0 ||y, TR+ Uy shl
0 0 o p 0 o o # 0 0 T | N I Tt A S
0 o 0 hy o p o 000 k0 0 00 0 ips| | fas + Upgh + Uy sh?
Iy 'y fix : .
5 o 0 o0 y w00 0 —p0 00 oy Jhufa
o ¥ o o o0 0o g - 0o 0o 0o ¥ o 0o olfU= Tidiyfaz + Usly
0 o B 0 0 o K g A2 0 0 o - o o|Us= Iy fss
0 o 0 -® o0 0 o -2 p -2 0 0 0 - o ||Uss *hg"if 34+ Us,s"g
0 0 0 A 0 0 o - B 0 0 0 0 -n3||Uss *h"x”yf 34+ Usghy
Iy hy Uy 2 Usa = Iy fa1
0 0o 0 0 0 -2 o 0 0 0 y 2 o 0o o0 2y, 51 Tyl
2y fa U2l | 2125y + Uy qh2 + Us g2
0 0 0 0 0 0 -2 0 0 0 0 g -0 0 |[ug ¥ y}gfz 41 g /252 X
0 o 0 o0 o0 0 o - 0 0 o - p - ollu Iichyfas + Us sl
v v v ) 2h2fa g+ Ugsh? + Us ah?
0 0 0 0 0 0 0 o - 0 0 o -n g -Hflug Sy YT A
0 0 0 0 0 0 0 0 o -2 0 0 o W =ity fas + U ghy + Us sl

Storage requirements for the different solvers

The total number of grid points along the x or the y direction is given by Longth 4 1, where
length is always 1, and hence 7, the number of unknowns in one dimension is 2 less than
the above number (since U is known at the boundaries).

It is important to note that the matrix A is not used explicitly to solve for the unknowns
in the iterative schemes. Storage is needed only for the internal grid points, which is the
number of the unknowns 7. An auxiliary grid is used to hold the updated values in the
Jacobian method. In addition, an auxiliary grid is required for f;;, the force function.
Hence, in total 3n? storage is needed.

Comparing this to the storage needed in the case of direct solver, where the storage for
A alone is n*. This shows the main advantage of the iterative methods compared to the
direct method when A is a dense matrix. (Use of sparse matrix become necessary if direct
solver is to be used for large n problems).

The following table summarizes the above discussion for the / values given in this prob-
lem. In this calculations, double precision (8 bytes) per grid point is assumed. For single
precision half of this storage would be needed.
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h | n | number of storage size of A storage

unknowns 72 n for dense A
27130 |900 30 (k Bytes) | 810,000 6.4 MBytes
276 | 62 | 3844 0.1 (MB) 14,776,336 | 118 MBytes
277 | 126 | 15876 0.5 (MB) 252,047,376 | 2 GB

Loop algorithm for each method

new

This is a short description of the algorithm used by each method. In the following u;7
represents the new value (residing on the auxiliary grid) of the unknown, and uf;’m”t is the
current value. Initially u®""" is set to zero at each internal grid point. (any other initial
value could also have been used).

Jacobi method algorithm

k := 0 (xcounters)

€ := Ch? (stolerancex)

yeurrent := e .= () (+initialize storages)
f = f(x,y) (xinitialize f on grid pointsx)
CONVERGED := false

WHILE NOT CONVERGED

LOOP i
LOOP j
ugjew = i (uﬁlffm + uzqitgf]gnt + ug;;ziient + ug;tiqent _ hzfi,j)
1 .
Rij = fij = 5 (uggrent + utyrent 4 ucmment  yygurrent — 4y eurment) - (uresiduale)
END LOOP j
END LOOP i
ucurr@nt = ylew (*update*)
ki=k+1
IF (ﬁ <e€ ) THEN (+Norms are grid norms. see codex)
CONVERGED := true
END IF
END WHILE

Gauss-Seidel method
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k := 0 (+counter=)

€ := Ch? (stolerancex)

yeurrent .= e .= () (+initialize storages)
f = f(x,y) (vinitialize f on grid pointsx)
CONVERGED := false

WHILE NOT CONVERGED

LOOP i
LOOP j
iy (5 L S 1)
=fij—m ( f“{rf”t + uf}r‘gr;”t + uf;‘rrf”t + uf?ff”t 4uf§-’"“”t) (xresidual*)
END LOOP j
END LOOP i
ucurrent = ylew (*updute*)
ki=k+1
IF (ﬁ <e€ ) THEN (*Norms are grid norms. see codex)
CONVERGED := true
END IF
END WHILE
SOR method

k := 0 (xcounters)

€ := Ch? (+tolerance)

ycwrrent :— ynew .= () (sinitialize storages)
f = f(x,y) (xinitialize f on grid pointsx)
CONVERGED := false

WHILE NOT CONVERGED

LOOP i

LOOP j

new — %’ ( :1_3% + ulcitqr;znt + un]ewl + u;:;lirlent hzfzj) + (1 a)) ucurrent
fz] _ iz ( ;:u{r]ent lcz?’]ent + ulc?mient + ufﬁrlent 4ul¢14rrent) (*residual*)

END LOOP j
END LOOP i
ycurrent . 4 new (*update*)
k:=k+1
IF (% <e€ ) THEN (*Norms are grid norms. see codex)

CONVERGED := true
END IF
END WHILE

Notice that when w =1, SOR becomes the same as Gauss — Seidel. When w > 1 the method
is called overrelaxed and when w <1 it is called underrelaxed.

1.7 Result of computation

The above 3 algorithms where implemented and ran for the 3 values of i given. The
following tables summarizes the results obtained. The source code is in the appendix. This
is a diagram illustrating the final converged solution from one of the runs.
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Corrvergence using SOR. iterattre method
iteration 0h=0.03125

Figure 10: final convergedsolution

Number of steps to reach convergence

These table show the number of iterations to converge. The first was based on using
¢ = 0.1h? for tolerance and the second used ¢ = h?

Number of iteration to reach convergence using tolerance ¢ = 0.14?

method h=23|h=2"%|h=2°|h=2°|h=27
n=7 n=15 |n=31 | n=63 | n=127
Jacobi 82 400 1886 8689 note!
Gauss-Seidel | 43 202 944 3446 19674
SOR 13 26 53 106 215

Number of iteration to reach convergence using tolerance ¢ = h?

method h=23|h=2%|h=2"° | h=2"%|h=27
n=7 n=15 |n=31 | n=63 | n=127
Jacobi 52 281 1409 6779 31702
Gauss — Seidel | 28 142 706 3391 15852
SOR 10 20 40 80 159

Convergence plots for each method

These error plots where generated only for tolerance ¢ = 1 x h2. They show how the log
of the norm of the relative residual changes as the number of iterations changed until
convergence is achieved.

R

In these plots, the yaxis is log (W) or 1og(

I ut]
I

), and the xaxis is the k value (the

iteration number).



Showing convergence for different h. Jacobi method
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Figure 11: error plot Jacobi
Showing convergence for different h, Gauss—Seidel method
J10°
41071
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Figure 12: error plot GS
Showing convergence for different h, SOE. method
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Figure 13: error plot SOR

Plots for comparing convergence of the 3 methods for € =1 x 12 for different h values
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number of iterationsShowing convergence for h = 27 tolerance C=1
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Figure 14: probl compare 3h 25

number of iterationsShowing convergence for h = 275, tolerance C=1
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Figure 15: probl compare 3h 26

Showing convergence for h = 27, tolerance C=1

10° | ke 100
A
| N, “‘\‘\\
\ \“\‘\
| ~.
10tk = H10-!
G \“\\

| N ‘.\"\.
i =
2 N\ B Jacobi
= i . i
2 wit b T, 102
E \ s
2 \ {5
= | SOR % ™S

/ w=19500 T
10-3 | | \ ™~ 4103

N el Gauss-Seidel ™ -

\\-\.‘
0| \ ~_ di
| N T
A 0 S O | e - S S 1 I
o 3000 10000 13000 20000 23000 30000
Iteration number

Figure 16: probl compare 3h 27

1.8 Conclusions and summary
1. SOR is the fastest iterative solver of the three solvers.

2. SOR method required calculation of an optimal @ to use. For this problem, this
calculation was not difficult. In other problems it can be difficult to determine before
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hand the optimal w. Some SOR methods use an adaptive @ where w is readjusted
as the solution progresses.

3. The use of relative residual to determine the condition of convergence required
applying the matrix A without actually storing A.

4. Jacobi method required an additional auxiliary grid storage, hence its memory
requirement was twice as much as Gauss-Seidel or SOR.

5. Jacobi method was the simplest to implement, but it was the slowest to converge.

6. Jacobi method is more suitable for use in parallel processing, where each grid point
can be updated independent of the grid point next to it. This is not possible with
Gauss-Seidel nor SOR due to the dependency of updates on its immediate grid points.
However, if a red-black numbering is used, then it would be possible to implement
these methods in parallel in 2 stages.

7. All methods are guaranteed to converge eventually, as the spectral radius of the
iterative matrix for each method is less than one.

2 Problem 2

2. When solving parabolic equations numerically, one frequently needs to solve an equation of

the form
u— 0Au = f,

where 6 > 0. The analysis and numerical methods we have discussed for the Poisson equation
can be applied to the above equation. Suppose we are solving the above equation on the
unit square with Dirichlet boundary conditions. Use the standard five point stencil for the
discrete Laplacian.

(a) Analytically compute the eigenvalues of the Jacobi iteration matrix, and show that the
Jacobi iteration converges.

(b) If h = 1072 and § = 1073, how many iterations of SOR would it take to reduce the error
by a factor of 1076? How many iterations would it take for the Poisson equation? Use
that the spectral radius of SOR is

Psor = Wopt, — 1,

where
2

Wopt = ——— F/——,
1—1—./1—,0?]

and where p; is the spectral radius of Jacobi.

Figure 17: Problem 2

2.1 Part(a)

Given
u—-0Au=f

And using standard 5 point Laplacian for the approximation of A, the above can be written
as

u—-0Au=f 1)



24

Where A is the Jacobian matrix for 2D

-4 1 0 1 0 0 O
1 -4 1 01 0 O
0 1 -4 0 0 1 0
2 1 0 0 0 0 1
o 1 0 0 - 0 O
0O o 1 0 1 -4 1
0O 0 0 1 0 1 -4
Hence (1) becomes
(I-6A)u=f (@)
Let
B =(I-06A) 3)
Then (2) becomes
Bu=f (3A)

To obtain the iterative matrix for the above system, the method of matrix splitting is used.
Let B=M - N. Equation (3A) becomes

(M-N)u = f
Mu=Nu+f

M is selected so that it is invertible and such that M™! is easy to compute, the iterative
equation results

ulr ) = (M7IN) uldl 4+ M1 f
Where iterative matrix T]- is
T; = (M7IN) (3B)

For convergence it is required that the spectral radius of T; be less than one. p (T]-) is the
largest eigenvalue of Tj in absolute terms. The largest eigenvalue of Tj is now found as
follows.

For the Jacobi method let M = D, and N = L + U, where D is the diagonal of B, L is the
negative of the strictly lower triangle matrix of B and U is negative of the strictly upper
triangle matrix of B. (3B) becomes

T,=D(L+U)
But B=D-L-U, hence L + U =D - B and the above becomes
T; =D (D~ B)
= I1-D'B (4)

Now the spectral radius of Tj is determined. First D! is found. But first B needs to be
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determined. From (3)

1000 0 00 4 1 0 10 0 0
0100000 1 41 01 0 0
011 000 |0 1 400 1 0

B=[0 00 - 000[-5[1 0 0 0 0 1
000 0 00 01 0 0 0 0
000 0 10 0 0 1 1 -4 1
000 0 01 00 0 10 1 -4
1+ -2 0 -2 0 0 0
o dl+m - 0 - 00

0 S o l+m 00 -5 0
= -5 0 0 0 0 -a
0 -2 0 0 0 0
0 0 -5 0 -5 1+ —o
0 0 0 -5 0 - 1+
Therefore, D the diagonal matrix of B is easily found
145 0 0 - 0 0 0
0 1+ 0 0 0 0
0 0 1+ 0 0 0
D=| o 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1+ 0
0 0 0 00 0 1+

Now that D is known, the eigenvalue py; of the iteration matrix T; shown in (4) can be
written down as

Tj=1- DB
=
-1
45
p =1- (1 + ﬁ) Ak (5)

where Ay is the eigenvalues of B. But from (3), B = (I - 0A), hence (5) becomes

45\
pr =1- (1 + ﬁ) (1 -ovi) (6)

Where vy, is the eigenvalue of A, the standard Jacobi A matrix for 2D, with eigenvalues
given in textbook (page 63, equation 3.15)

2
Vi = 2 (cos (kmth) + cos (Irth) — 2)

Using this in (6) results in

-1
46 20 5 45
pig =1- (1 + hz) (1 72 o8 (kmth) — — cos (Imth) + hZ)
h? 26 26 45
=1- (m) (1 ~ cos (kmth) — 7 cos (Imth) + ﬁ)
h? 46 26 ( W2
h2 + 45) (hz n 45) T2 (hz 45) {cos (krth) + cos (ITth)}
h2 +46-h? - 26
= ERT: (h2 n 46) {cos (kmth) + cos (Irth)}

( 20 {cos (kmth) + cos (Irth)}
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The largest value of the above occurs when cos (k7th) + cos (Ith) is maximum, which is 2.

Therefore
45
p(jy)::(h24-45)

Which is less than one for any 6 > 0.

Hence it is now shown that Jacobi iteration converges for this system.

2.2 Part (b)

Reducing the error by factor 107 implies

e[| < 107 ] (1)
but by definition
el = por [1€]
Hence (1) becomes
p's‘or <107°

Where the solution for k at equality is found (rounded to the largest integer if needed).
Hence the above becomes, after taking logarithms of both sides

klog psor = =6
-6
k= (2)
10g psor
But
Psor = @Wopt — 1
Where
2
Wopt = —— 77—
1+‘h—ﬁ
And p; = (}1247(16) from part(a), hence the above becomes
2
Wopt = - >
1+41- (h2+46)
Hence
2
Psor = " > -1
T+41- (h2+45)

Substituting the numerical values & =1072,6 = 1072 in the above results in
2

Psor = 5 1
( 4(1073) )
1+ 1-|——5——
(10-2)"+4(10-3)
=0.64
Therefore, from (2)
-6
k= ——
log(0.64)
= 30.95

rounding up gives

k=231
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3 Problem 3

3. In this problem we compare the speed of SOR to a direct solve using Gaussian elimination. At
the end of this assignment is MATLAB code to form the matrix for the 2D discrete Laplacian.
The code for the 3D matrix is similar. Note that with 1 GB of memory, you can handle grids
up to about 1000 x 1000 in 2D and 40 x 40 x 40 in 3D with a direct solve. The range of grids
you will explore depends on the amount of memory you have.

(a) Solve the PDE from problem 1 using a direct solve. Put timing commands in your code
and report the time to solve for a range of mesh spacings. Use SOR to solve on the same
meshes and report the time and number of iterations. Comment on your results.

(b) Repeat the previous part in three spatial dimensions for a range of mesh spacings.
Change the right side of the equation to be a three dimensional Gaussian. Comment on
your results.

Figure 18: Problem 3

3.1 Part(a)

To solve the problem using direct solver, the matrix A is constructed (sparse matrix), and
the vector f is evaluated using the given function f (x, y), this results in an Au = f system,
which is then solved using a direct solver.

Recall from problem (1) that the A matrix has the following form (as an example, for 3 x 3
internal grid, or for = 0.2)

-4 1 0 1 0 0 0 0 0)fUp, fi1
1 -4 1 0 1 0 0 0 0]{Uy fa21
0 1 -4 0 1 0 0 0||U;; f31
1 0 0 -4 1 0 1 0 O0]fUp f12
0 1 0 1 -4 1 0 1 0|[|Up|=F|fa
0 01 0 1 -4 0 0 1]fUs f32
0 0 0 1 0 0 -4 1 0]fUsy f13
0 0 0 0 1 0 1 -4 1]|[Uy fas3
0 0 0 0 0 1 0 1 -4){Uss f33
The matrix A is set up, as sparse for the following set of values

h internal grid size (n = % -1)

27 | 31x31

276 | 63%x63

277 | 127 x127

278 | 255 x 255

279 | 511 x 511

27101 1023 x 1023

A function is written to evaluate f (x, y) at each of the internal grid points and reshaped
to be column vector in the order shown above. Then the direct solver is called.

Next, the SOR solver is used for each of the above spacings. First @ was calculated for
each h using w,,; = 2 (1 — 7th) resulting in
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h Wopt

275 | 1.8037
276 11.9018
277 11.9509
278 119755
279 119877
2710119939

Then the SOR solver which was written in problem (1) was called for each of the above
cases. The next section shows the results obtained. The source code is in the appendix.

3.2 Result of computation

The following is an image of f(x,y) on the grid

e
g 111

Figure 19: image of f(x,y)

And the solution obtained by direct solver on 2D is the following (implemented in Matlab
and in Mathematica)

20 salution n=127

Figure 20: Solution by direct solver, Matlab
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Figure 21: Solution by direct solver using Mathematica
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The CPU results below are in seconds. The function cputime() was used to obtain cpu time
used in Matlab. For SOR, the cpu time was that of the whole iterative loop until convergence
was achieved. In Mathematica, the command Timing[] which measures the CPU time was
used. These are the results obtained using Matlab 2010a and using Mathematica 7.qz|

In this table, the grid size n represents the number of internal grid points in one dimension.
For example, for n = 31, the grid size will be 31 x 31. The number of non zero elements
shown in the table relates to storage used by the sparse matrix and was obtained in Matab

by calling nnz(A).

h n N number Direct Direct SOR k
number non zero Solver CPU || Solver CPU Solver || SOR number
of unknowns | elements MATLAB Mathematica | CPU of iterations

27° |31 961 4,681 0.015 0.016 0 68

276 | 63 3,969 19,593 0.125 0.016 0.094 143

27 1127 | 16,129 80,137 0.250 0.063 0.6 306

278 | 255 | 65,025 324,105 1.544 0.344 5.2 661

279 | 511 | 261,121 1,303,561 || 5.538 1.90 48.9 1427

2710 11023 | 1,046,529 5,228,553 || 27.113 14.57 532 3088

These 2 plots illustrate the CPU difference, done on a normal scale and on log scale. (using
Matlab results only).

2Matlab 2010a, on windows 7, 64 bit OS, intel i7 930, with 8 GB installed physical RAM.
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compring CPU time against grid size, 20 pde solver
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Figure 22: prob3 part a compare CPU normal scale

compring CPU time against grid size, 2D pde solver

direct solver :
SOR .......................... ...... ............ o

=
T

o
o

(=

log10 of CPU time in seconds

I
o
w

25
T

'
'y
[l

L Il | 1 1
0 200 400 600 800 1000 1200
qrid size n

&1

Figure 23: plot prob3 part a compare CPU

Comments on results obtained

CPU performance for SOR is given by
work = number iterations X work per iteration

The number of iterations depends on the constant used for tolerance. Let k be the number
of iterations, and let the tolerance be Ch? where / is the spacings. Hence

f = log(Chz) _logC+2logh logC+2logh

= = ] ] hllogh
log psor log (1 — 27th) —27th © ( ©8 )

Buth=0 (%) where 7 is the number of grid points in one dimension. Therefore

k=0 (nlogn)

And since there are n2 unknowns, the work per iteration is O (nz), hence for SOR perfor-
mance, work becomes

CPU,,, = O (n3 log n)
Expressing this in terms of the unknowns N = n? gives
3
CPU,, = O (Nz logN)

For direct solver, the work is proprprtional to (Nb) where b is the banwidth (when using
nested dissection method)ﬂ The bandwidth is 7, hence for direct solver on 2D using sparse

3See textbook, page 68.
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matrices, the performance is 1

3
Cpudirect =0 (NE)

In summary

method CPU (in terms of number of unknowns N) | CPU in terms of n
3

SOR 2D O (NE log N) O (n3 log n)
3

direct solver 2D | O (N 5) O (n3)

For small number of unknowns, SOR was very competitive with direct solver but when
the number of unknowns became larger than about N = 100, the direct solver is faster as
the effect of the logn factor starts to take effect on the performance of SOR. The results
shown in the plots above confirmed this performance analysis.

3.3 Part(b)

The goal is to solve
u  Pu  Ju
02 R T o2
On the unit cube. Referring to the following diagram made to help in setting up the 3D
scheme to approximate the above PDE

= —exp(—(x - 0.25)? — (y — 0.6)* — z?)

@ij+1)

(i+1,))

i (1,j,K) (i-1,))
(i.j-1)
@ 2D grid points

(i']-'j'k) : .
® ) ® (i+1,j,k)

(i,j+1.k)

@i,k

Figure 24: 3D axis

The discrete approximation to the PDE can be written as
u Pu J*u 1
et otz

Hence the SOR scheme becomes

[k+1] _ @ [k+1] [k] [k+1] [£] [k+1] [k] 2 [x]
=% (ui—l,j,k + Ui jge+ Upjog e+ Uy + Uy + Ui —h°f i,j) +1-w)U

(ui—l,j,k + Ui+ Ui, b+ Ui e + U1 + Ui — 6uz’,j,k)

ijk ijk+1 ijk
For the direct solver, the A matrix needs to be formulated. From
1
12
And solving for U;; results in

(ui—l,j,k + Ui+ Uijor b+ Ui e + Uigeror + Ui — 6uz‘,j,k) = fijk

1
_ 2
Uijk = G (ui—l,j,k + Uik + Uijor, b+ Uijop + Ui + Uijge — h°f z',j,k)
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To help make the A matrix, using an example with n = 2, the following diagram is made
with the standard numbering on each node

U(0,3,3) 1J(3,3,3)

U(0,0,3
UlR2) U222

U2 V@12
/ /

U(1,2/1) 2,2,1)

S

/
U1 2,10

(3,3,1)

U(0,0,0) u@3,1,1)

Figure 25: 3d grid example

By traversing the grid, left to right, then inwards into the paper, then upwards, the following
A matrix results

Ul,l,l \ fl,l,l \

U211 fa11
Uiza f121

UZ,Z,l f2,2,1

=hd
Ul‘l,Z fl,l,Z

Uzi 212

U1,2,2 1;1,2,2

U222 ) 222 .

Figure 26: repating A sructure n2

One can see the recursive pattern involved in these A matrices. Each A matrix contains
inside it a block on its diagonal which repeats n times. Each block in turn, contain inside
it, on its diagonal, smaller block, which also repeats n times.

It is easier to see the pattern of building A by using numbers for the grid points, and label
them in the same order as they would be visited, this allowed one to see the connection
between each grid point to the other much easier. For example, for n = 2,
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& ¢8|
/
S5/ '6
/ /
: 4
__7££_ L
___.,__./‘___
T

Figure 27: 3d grid n2 numbers

One can see now more easily the connections. grid point 1 has connection to only 2,3,5
points. This means when looking at the A matrix, there will be a 1 in the first row, at
columns 2,3,5. Similarly, point 2 has connections only to 1,4, 6, which means in the second

row, there will be a 1 at columns 1,4, 6. Extending the number of points to n = 3 to better
see the pattern of A results in

16/ J17 18

13 14 /15

10 11 12

J7 8 {9

Figure 28: 3d grid n3 numbers

From the above, one can see clearly that, for example, point 1 is connected only to 2,4,10
and 2 is connected to 1,3,5,11 and so on. The above shows that each point will have a
connection to a point which is numbered 7r? higher than the grid point itself. n? is the size

of the grid in each surface. Hence, the general A matrix, for the above example, can now
be written as
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Figure 29: A sructure 3D

One can see the recursive structure again. There are n = 3 main repeating blocks on the
diagonal, and each one of them in turn has n = 3 repeating blocks on its own diagonal.
Here n = 3, the number of grid points along one dimension.

Now that the A structure is understood, the Matlab code for filling the sparse matrix is
modified for the 3D case as follows

function L3 = lap3d(n)

L2=lap2d(n,n);

e=ones(n~3,1);

L=spdiags([e e],[-n"2 n~2],n"3,n73);
Iz=speye(n) ;

L3=kron(Iz,L2)+L;
end

function L2 = lap2d(nx,ny)

Lx=lapld(nx);
Ly=lapid(ny) ;

Ix=speye(nx);
Iy=speye(ny);

L2=kron(Iy,Lx)+kron(Ly,Ix);
end

function L=lapld(n)

e=ones(n,1);

L=spdiags([e -3*e e],[-1 0 1],n,n);
end
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To test, for example, for n =2
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EDU>> full(lap3d(2))

ans =
-6 1 1 0 1 0 0
1 -6 0 1 0 1 0
1 0 -6 1 0 0 1
0 1 1 -6 0 0 0
1 0 0 0 -6 1 1
0 1 0 0 1 -6 0
0 0 1 0 1 0 -6
0 0 0 1 0 1 1

_ P, O, O O O

Using the above function, the solution was found using direct solver.

Result of computation

The results for the 3D solver are as follows. In this table, n represents the number of grid
points in one dimension. Hence n = 10 represents a 3D space of [10,10,10] points. The
number of non zero elements in the table relates to the sparse matrix used for the direct

solver and was obtained using Matab call nnz(A).

h n | N total number | make sparse | A\f Total Direct | Total SOR || SOR number
unknowns (n®) | CPU time CPU time || Solver CPU | Solver CPU || iterations

0.090909 | 10 | 1,000 0.047 0 0.047 0 23
0.047619 | 20 | 8,000 0.062 0.44 0.502 0.078 44
0.032258 | 30 | 27,000 0.016 3.90 3.90 0.405 65
0.027778 | 35 | 42,875 0.359 8.70 8.80 0.75 77
0.024390 | 40 | 64,000 0.328 21.20 21.50 1.29 88
0.021739 | 45 | 91,125 0.296 39.80 40.00 211 100
0.019608 | 50 | 125,000 0.624 84.20 84.80 3.24 112
0.017857 | 55 | 166,375 0.421 157.30 157.70 4.9 125
0.016393 | 60 | 216,000 0.889 24410 244.20 717 138

For the direct solver, Matlab ran out of memory at n = 65 as shown below

EDU>> nma_HW3_problem_3_partB_direct_solver

steskokok ok sk sk sk sk sk ok ok sk ok ok sk sk sk sk sk ok skok ko ok sk sk sk ok
grid is 3D [60,60,60]

h=0.016393

cpu time for making sparse matrix=1.060807 seconds
dimensions of A (sparse matrix) is [216000,216000]
nnz(A)= 1490400

cpu time for direct solver=240.693943 seconds

stk ok ok ok ok ok sk sk sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok

grid is 3D [65,65,65]

h=0.015152

cpu time for making sparse matrix=0.826805 seconds
dimensions of A (sparse matrix) is [274625,274625]
nnz(A)= 1897025

??? Error using ==> mldivide

Out of memory. Type HELP MEMORY for your options.

Error in ==> nma_HW3_problem_3_partB_direct_solver
u = A\f;

at 54
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This plot illustrates the CPU difference table on a log scale

compring CRU time against grid size, 3D pde sokver
25 T T T

~ewe direct solver L
2H——50rR ... s R B _

log10 of CPU time in seconds
[

10 20 30 40 50 60
grid size n

Figure 30: prob3 part B compare CPU log scale

Comments on results obtained

CPU performance for SOR is given by
work = number iterations x work per iteration
The number of iterations depends on the constant used for tolerance. Let k be the number
of iterations, and let the tolerance be Ch? where / is the spacings. Hence
. log(Chz) _ log C +2logh N logC +2logh
log psor log (1 — 27th) —27th

~ O (h‘l log h)

Buth=0 (%) where 7 is the number of grid points in one dimension. Hence
k=0 (nlogn)

And since there are n® unknowns (compared to #? in 2D), then work per iteration is O (n3),
hence for SOR performance becomes

CPU,,, = O (n"‘ log n)

Expressing this in terms of N = 1 as the number of unknowns, gives
4
cru,,, =0 (N§ logN)

For direct solver, the work is proprprtional to (Nb) where b is the banwidth (when using
nested dissection method)[} The bandwidth is #2 in this case and not n as was with 2D.
Hence the total cost is

CPUjjrect = O(N X 1)

=0 (n5)
-0 (NE)
Hence
method CPU (in terms of N) | CPU in terms of n
SOR 3D O (Ng log N) O (114 log n)
direct solver 3D | O (N g) O (n5)

*See textbook, page 68.
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The above shows that SOR is faster than direct solver performance. The results shown
in the plots above confirmed this analytical performance prediction showing SOR to be
faster. To verify the above, a plot was made using the above complexity cost measure to
determine if the resulting shape matches the one obtained from the actual runs above. The
following plot shows the complexity cost made on sequence of values that represent n

Werifying theortical complexity cost of direct 30 sparse solver
10 T T T T T

< direct sokver
*  cor

log10{cost)

4 1 1 1 1 1
10 20 30 40 50 60 70

n, number of unknowns in one dimension

Figure 31: verify cost of 3D

The following matlab code was in part used to generate the above

n=[10 20 30 35 40 45 50 55 60 65];
plot(n,logl0(n."5),'ro',n,logl0(n. 4.*loglO(n)),'*x');

It can be seen that the cost curves matches those produced with the actual runs, but for a
scaling factor as can be expected.

Therefore one can conclude that in 3D SOR is faster than direct solver. This result was
surprising as the expectation was that the direct solver will be faster than SOR in 3D as it
was in 2D. Attempts were made to find any errors in the code that can explain this, and
none were found.

4 Problem 4

3. In this problem we compare the speed of SOR to a direct solve using Gaussian elimination. At
the end of this assignment is MATLAB code to form the matrix for the 2D discrete Laplacian.
The code for the 3D matrix is similar. Note that with 1 GB of memory, you can handle grids
up to about 1000 x 1000 in 2D and 40 x 40 x 40 in 3D with a direct solve. The range of grids
you will explore depends on the amount of memory you have.

(a) Solve the PDE from problem 1 using a direct solve. Put timing commands in your code
and report the time to solve for a range of mesh spacings. Use SOR to solve on the same
meshes and report the time and number of iterations. Comment on your results.

(b) Repeat the previous part in three spatial dimensions for a range of mesh spacings.
Change the right side of the equation to be a three dimensional Gaussian. Comment on
your results.

Figure 32: Problem 3

Periodic boundary conditions mean that the solution must be such that u’ (0) = #’ (1) and
u(0) = u(l). As an example, the following is a solution to u” (x) = f(x) with Periodic
boundary conditions just for illustration
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Figure 33: example periodic BC
4.1 part(a)

Using the standard numbering system

Internal grid points

@)

e =N J=N+

Domain over which the problem is defined

Figure 34: problem 4 part a scheme

In the above diagram, 1, represents u at x = 0 and uy,; represents u at x =1. The 3 point
discrete Laplacian for 1-D at x, is given by

gy U —2ug + uy
WET M
where x_; is an imaginary grid point to the left of x; in the diagram above.
Expanding u_; about 1 by Taylor results in u_; = 1y — huy, hence
Ug—U_q
’ — 2
up = (@)
Similarly, by Taylor expansion of uy about uy results in
Un = Unyp — hljgyq
Hence
/ UN+1 — UN
UNy1 = +T (3)
But u{ = uj,; from boundary conditions, hence (2)=(3) which results in
Up—U _ UN+1 T UN
h h

Solving now for u_; from the above gives
U = Uy +UN~UN+1
But uy,1 = ug, also from the boundary conditions, hence the above results in

U_1 =uUyn
Use the above value of u_; in (1) gives

"o MN—2M0+M1
ST
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Similarly the derivation for uj;,; results in

., UNT 2Nyt
UN1 = 72

For every other internal grid point i =1 --- N the standard 3 point central difference is used

uj = 2 (Uj—q — 2u; + Ujyq)

Therefore, the following set of equations are obtained

1 ,
h—z(MN—2M0+M1):f0 1=0

i .

7 (Ui = 2u; + ujs) = f; i=1---N
i .

(N =2un +ug) = fya i=N+1

And the system can now be put in the form Au = f resulting in

2 1 0 0 - 1 0)( u o
1 -2 1 0 0 0l i f1
01 21 0 0|l u £
500 1 21 0 ilu|=|fs (4)
0 0 0 0 :
0 0 0 1 =2 1 || uy I
0 1 o0 0 1 2 lunat) U

The above A matrix is singular since Ab = 0 for b the vector 17. Hence the null space of
A contains a vector other than the 0 vector meaning that A is singular.

To determine the dimension of the null space, the rank of A is determined. Removing the
last column and the last row of A results in an n —1 by 7 —1 matrix

-2 1 0 0 - 1

1 21 0 - O
A= o 1 - 1 O

0O 0 1 -2 1 O

0O 0 0 1 -2 1

o o o0 - 1 =2

The square matrix inside of A,_; that extends from the first row to the one row before the
last row is of size n —2

2 1 0 0
1 =21 0
Aa=|0 1 =~ 1 0

0O 0 1 -2 1
o 0 0 1 -2

And this matrix is a full rank as it is the A matrix used for 1-D with Dirichlet boundary
conditions and this matrix is known to be invertible (same one used in HW2).

Therefore, the rank of A can not be less than n — 2 where 7 is the size of A.

In other words, the size of the null space of A can at most be 2. To determine if the size
of the null space of A can be just one, the matrix A,_;shown above has to be invertible as
well.

One way to show that A, ; is invertible, is to show that the last column of A,_; is linearly
independent to any of the remaining columns of A, _;.

The last column of A,_; is ¢,_; and this column is linearly independent with the first
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column of A,_; which is ¢; = since axc,_1+bxc; = 0 only when 4, b are both zero. The
0
0
same can be shown with all the other columns of A,_;, they are all linearly independent to
the last columns of ¢,,_;. Since all the other #n —2 columns of A,_; are linearly independent
with each others (they make up the Dirichlet matrix known to be invertible) then A,_; is
invertible. This shows that the rank of A is n—-1, hence the null space of A has dimension 1

only. In other words, only the and only the vector 17 in the null of A. (Since A is symmetric,
the null space of the adjoint of A is the same).

4.2 part (b)

In terms of looking at the conditions of solvability, the continuous case is considered and
then the conditions are translated to the discrete case.

The pde u” (x) = f (x) with periodic boundary conditions has an eigenvalue which is zero
(the boundary conditions #’ (1) = u’ (0) results in this), hence

O:J:f(x)dx

Is the solvability condition which results from the u’ (1) = #’ (0) boundary conditions. (same
argument that was carried out in part (d), problem 1, HW1 which had Neumann boundary
conditions is used). Now, what solvability conditions does u(0) = u (1) add to this if any?

Since
u’ (x) = f (%)
Then integrating once gives
1
W (1) - (0) = f Fdx+C
0
But since u’ (1) = u’ (0), then the above implies that
0= C1
And integrating twice the PDE results in
ul)-u0)=0C,

But u (1) —u (0) = 0, hence C, = 0. So the only solvability condition is based on the fact
that an eigenvalue is zero, which implies

flf(x)dx:O
0

This is the same as was the case with Neumann boundary conditions. In the discrete case,
this implies that solvability condition becomes the discrete integration (Riemman sum)
j=N+1

h ;‘ f(n) =0

For 2D, by extension of the above, there will be 2 eigenvalues of zero values, hence the
discrete solvability condition becomes

i=N+1 (j=N+1

e ) [E f(ih,jh)]:o
i=0 \ j=0

4.3 Part(c)

Since this is an if f problem, then the following needs to be shown
1. If v is in the null space of A then v is an eigenvector of T with eigenvalue 1

2. If v is an eigenvector of T with eigenvalue 1 then v is in the null space of A
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Solving part(1)

Since v is in null space of A, then by definition

Av =0
But A = M — N, hence the above becomes
M-N)v=0
Mv—-Nv=0

Since M is invertible by definition, then M exists. Premultiply both sides by M
M Mo - MNv=M10
But M~10 = 0 then the above becomes

Iv-M1Nov=0
M INv=v
To="7v

Therefore v is an eigenvector of T with an eigenvalue of 1.
Solving part(2)

Since v is an eigenvector of T with eigenvalue 1 then

To = Av
With A =1, and since T = M"IN, then the above becomes
M Nv=v
Multiply both sides by M
Nv = Mo
Therefore
Mv-Nv=0
M-N)v=0
Hence
Av =0

Therefore v is in the null space of A.

5 References
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1. Applied Mathematica by David Logan, chapter 8

6 Source code

function nma_build_HW3()
list = dir('*.m');

if isempty(list)
fprintf('no matlab files found\n');
return

end

for i=1:length(list)
name=1ist (i) .name;
fprintf ('processing %s\n',name)
p0 = fdep(list(i).name,'-q');
[pathstr, name_of_matlab_function, ext] = fileparts(name);

%make a zip file of the m file and any of its dependency
pl=dir([name_of_matlab_function '.fig'l);
if length(pl)==

files_to_zip =[p1(1) .name;p0.fun];
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else
files_to_zip =p0.fun;
end
zip([name_of _matlab_function '.zip'],files_to_zip)

end

end
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function nma_cpu_plot_2D()

o

% to plot 0(n~4) vs. 0(n~3 log(n))

% used to verify the cost complexity for problem 3, part (b), HW3
% Math 228A

% Nasser M. Abbasi

o

close all;

n=10:1:40;

plot(n,n.”2,'r',n,n. 3.xlog(n));
legend('direct solver', 'sor')

figure

close all;

n=10:1:4000;
plot(n,n.”(5/2),'r',n,n.~(3/2) .*¥log(n));
legend('direct solver', 'sor')

figure

close all;

n=[10 20 30 35 40 45 50 55 60 65];
plot(n,loglO(n.”5), 'ro',n,logl0(n. 4.*xlogl0(n)), " '*');
legend('direct solver','sor')

hold on

n=[10 20 30 35 40 45 50 55 60 65];
plot(n,logl0(n.”5), 'r-',n,logl0(n. 4.%¥logl0(n)),"'-");
title('Verifying theortical complexity cost of direct 3D sparse solver');
xlabel('n, number of unknowns in one dimension');
ylabel('loglO(cost)');

end

function mnma_HW3_prob3_parta_SOR()

% file name: nma_HW3_prob3_parta_SOR.m

b

% This solves the SOR for 2D for HW3, problem 3, parta
% Math 228A, Fall 2010, UC Davis

% Nasser M. Abbasi

/A

DOPLOTS = true; %set to false if do not want to see plots

% setup the spacings needed for the problem

Yspacings = [2°-5 2°-6 2°-7 2°-8 2°-9 2°-10];

spacings = [27-5 27-6 27-7 ];

omega = arrayfun(@(i) 2*(l-pi*spacings(i)),1:length(spacings));

for m = 1:length(spacings)

h

spacings(m) ;
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% evaluate f(x,y) on grid
[X,Y] = meshgrid(0:h:1, 0:h:1);

f = -exp(-(X-0.25).72-(Y-0.6).72);
nPoints = size(f,1);
fv = reshape(f,nPoints™2,1); % use grid vector norm

normf = sqrt(h) * norm(fv,2);
w = omega(m);

fprintf (sxskkksokkskkokkkkkkokkk\n ') ;
fprintf('gridsize=[%d,%d]\n',nPoints-2,nPoints-2);

% initialize space (grid) for residual calculation and for solution
resid = zeros(nPoints,nPoints);

u = zeros(nPoints,nPoints);

unew = u;

done = false; %flag set to true in loop below when it converges
tolerance = h™2; % set tolerance

k =1, % initialize iteration counter

t = cputime;

while not(done)
for i = 2 : nPoints-1
for j = 2 : nPoints-1

resid(i,j)= £(i,j) - 1/h"2 * (u@i-1,j) + u(i+1,j) +
u(i,j-1) + u(i,j+1) - 4*u(i,j) );

unew(i,j) = w/4* ( unew(i-1,j) + u(i+1,j) + unew(di,j-1)+...
u(i,j+1) - h™2%£(i,§)) + (1-w)*ui,j);
end
end

u = unew;
residv = reshape(resid,nPoints~2,1); % use grid vector norm
normResidue = sqrt(h) * norm(residv,2);

if ( normResidue / normf) <tolerance
done = true;

else
k = k+1;

end

if DOPLOTS
subplot(1,2,1);
mesh(X ,Y ,resid );

subplot(1,2,2);
mesh(X ,Y ,u );

drawnow;
end

end

fprintf('cpu time for SOR=%f seconds\n',cputime-t);
fprintf ('number of iterations = %d\n',k);
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Lend
function nma_HW3_prob3_partb_3d_SOR()
% file name: nma_HW3_prob3_partb_3d_SOR.m
o
% This does the SOR solver for 3D for HW3, problem 3, partB
% Math 228A, Fall 2010, UC Davis
% SOR 3D solver
o
% Nasser M. Abbasi
b
DOPLOTS = true; %set to false if do not want to see plots
% setup the spacings needed for the problem
%hgridsize = [10 20 30 35 40 45 50 55 60 65];
gridsize = [10 20 ];
spacings = arrayfun(@(i) 1/(gridsize(i)+1),1:length(gridsize));
omega = arrayfun(@(i) 2*(1-pix*spacings(i)) ,1:length(spacings));
fprintf('-—--- Starting 3D SOR solver ——---—---- \n');
for m = 1:length(spacings)
h = spacings(m);
nInternalGridPoints = gridsize(m);
nPoints = nInternalGridPoints+2;
Fprintf (M ssskokoksokskskokkkokkskokkok ok kskokokkkkkokkk\n ')
fprintf('grid is 3D [%d,%d,%d]\n',nInternalGridPointsN
nInternalGridPoints,nInternalGridPoints) ;
fprintf ('h=%f\n',h);
[X,Y,Z] = meshgrid(0:h:1, 0:h:1,0:h:1);
% initialize space (grid) for residual calculation and for solution
u = 0.%X+0.%Y+0.*Z;
unew = u;
resid = u;
% evaluate f(x,y,z) on grid
f = —exp(-(X-0.25).72-(Y-0.6) .72 - Z.72);
normf = sqrt(h)* norm( reshape(f(2:end-1,2:end-1,2:end-1),...
nInternalGridPoints~3,1),2);
W = omega(m); %optimal w for SOR
done = false; %flag set to true in loop below when it converges
tolerance = 0.1%h"2; % set tolerance
k =1; % initialize iteration counter
t = cputime;
while not(done)
for i = 2 : nPoints-1
for j = 2 : nPoints-1
for z = 2 : nPoints-1
resid(i,j,z)= £(i,j,z) - 1/h"2 * ( u(i-1,j,z) + ...
u(i+l,j,z) + u(i,j-1,z) + u(i,j+l,z) - ...
6*u(i,j,z) + u(i,j,z-1) + u(di,j,z+1));
unew(i,j,z) = w/6x ( unew(i-1,j,z) + u(i+l,j,z) + ...
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unew(i,j-1,z) + u(i,j+1,z) + unew(i,j,z-1) + ...
u(i,j,z+1)— hA2*f(i,j,Z)) + (1—W)*u(i’j,z);

end
end
end
u = unew;
if DOPLOTS
subplot(1,2,1);
mesh(X(:,:,nPoints-1),Y(:,:,nPoints-1) ,resid(:,:,nPoints-1));
subplot(1,2,2);
mesh(X(:, :,nPoints-1),Y(:,:,nPoints-1),u(:,:,nPoints-1));
drawnow;
end

% can't do norm on 3D, change to vector

residv = reshape(resid(2:end-1,2:end-1,2:end-1),...
nInternalGridPoints~3,1);

normResidue = sqrt(h) * norm(residv,2);

if (normResidue/normf) < tolerance
done = true;

else
k = k+1;

end

end
fprintf('cpu time for 3D SOR solver =)f seconds\n',cputime-t);
fprintf ('number of iterations = %d\n',k);

end

end

function nma_HW3_problem_3_part_A_graph_plot ()

% This wused to generate plot to compare CPU time of SOR
% and direct solver for 2D problem

% file name nma_HW3_problem_3_part_A_graph_plot.m

close all;

x=[31 63 127 255 511 1023];

directCPU=[0.015 .125 .250 1.544 5.538 27.113];
sorCPU=[0 0.094 0.6 5.2 48 532];

%plot(x,loglO(directCPU), "':."',x,10g10(sorCPU));
plot(x,directCPU, '-',x,s0orCPU);

title('compring CPU time against grid size, 2D pde solver');
xlabel('grid size n');

%ylabel('logl0 of CPU time in seconds');

ylabel ('CPU time in seconds');

hold on;

legend('direct solver','SOR', 'Location', 'NorthWest');

grid on

%plot(x,logl0(directCPU), 'o',x,1logl0(sorCPU), " '0");
plot(x,directCPU, 'o',x,s0rCPU, '0');

ylim([-10 550]1);

end
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function nma_HW3_problem_3_part_B_graph_plot()

% This wused to generate plot to compare CPU time of SOR
% and direct solver for 3D problem

% file name nma_HW3_problem_3_part_B_graph_plot.m

% Nasser M. Abbasi

% 11/8/2010

x=[10 20 30 35 40 45 50 55 60];
directCPU=[0.047 0.5 3.9 8.8 21.50 40 84 157.7 244.4];
sorCPU=[0.01 0.078 0.405 0.75 1.29 2.11 3.24 4.9 7.17];

plot(x,log10(directCPU),"':."',x,10og10(s0rCPU));
%plot(x,directCPU,'-',x,s0rCPU);

title('compring CPU time against grid size, 3D pde solver');
xlabel('grid size n');

ylabel('logl0 of CPU time in seconds');

%ylabel('CPU time in seconds');

hold on;

legend('direct solver','SOR', 'Location', 'NorthWest');

grid on
plot(x,log10(directCPU), 'o',x,1logl0(sorCPU), '0');
%plot(x,directCPU, 'o',x,s0rCPU, '0');

end

function nma_HW3_problem_3_partA()

o

% name: nma_HW3_problem_3_partA.m

% purpose: direct solver for HW3, problem 3, part A. 2D

% UC Davis math 228A

o

% description of algorithm:

yA This script when called, will find the solution to the problem
yA Au=f as described in the HW, by using sparse matrix and direct
b solver. The script will solve the problem for the following h
yA spacings: 27-5 27-6 27-7 27-8 27-9 27-10

b

% It will find the cpu time used and print to the screen the result
b for each grid space.

o

% external functions called:

% This scripts makes calls to nma_lap2d() to geberate

% the sparse matrices.

2

% date written: 11/5/2010

% by: Nasser M. Abbasi

o

close all; clear all;

DOPLOTS = true; ’%set to false if do not want to see plots
%hspacings = [27-5 27-6 27-7 27-8 27-9 27-10];

spacings = [27-5 27-6 27-7 ];

gridSize = arrayfun(@(i) 1/spacings(i)-1,1:length(spacings));

for i = 1:length(spacings)
h = spacings(i);
n = gridSize(i);
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fprintf('n=Y%d\n',n);

% evaluate f(x,y) on grid and convert to vector
[X,Y] = meshgrid(h:h:1-h, h:h:1-h);

f = —exp(-(X-0.25).72-(Y-0.6).72);

f = reshape(f,n~2,1);

t = cputime;

A = nma_lap2d(n,n)./h”2; Ymake the A matrix

fprintf('cpu time for making sparse matrix=%f seconds\n',cputime-t);
fprintf ('nonzero elements=%d\n',nnz(A));

t cputime;
u = A\f;
fprintf('cpu time for direct solver=Yf seconds\n',cputime-t);

% plot solution if needed

if DOPLOTS
u=reshape(u,n,n);
mesh (u) ;
title(sprintf('2D solution n=%d',n));
drawnow;
end

end

end
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function mma_HW3_problem_3_partB_direct_solver()

o

% script file, name: mma_HW3_problem_3_partB_direct_solver.m

o

% purpose: direct solver for HW3, problem 3, part B (3D).

% UC Davis math 228A

2

% description of algorithm:

% This script when called, will find the solution to the problem
A Au=f as described in the HW, by using sparse matrix and direct
% solver. The script will solve the problem for the following h
b spacings: 2°-3, 2°-4, 27-5 or grid size n=7,15,31

o

yA It will find the cpu time used and print to the screen the result
yA for each grid space.

o

% external functions called:

yA This makes calls to nma_lap3d() to generate

b the sparse matrices.

o

% date written: 11/5/2010

% by: Nasser M. Abbasi

h

close all; clear all;

hgridsize = [10 20 30 35 40 45 50 55 60 65];

gridsize = [10 20 30];

spacings = arrayfun(@(i) 1/(gridsize(i)+1),1:length(gridsize));

fprintf('----- Starting 3D direct solver —--------- \n');
DOPLOTS=true; Y%set to false if do not see plot of solution

for i = 1:length(spacings)
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=3
]

spacings(i);
gridsize(i);

=]
]

Fprintf (' ssksskskoksokskokkskokkokkokkkskokkxokkkkokkkk\n ') ;
fprintf('grid is 3D [%d,%d,%d]\n',n,n,n);
fprintf ('h=%f\n',h);

% evaluate f(x,y,z) on grid and convert to vector
[X,Y,Z] = meshgrid(h:h:1-h, h:h:1-h,h:h:1-h);
f = —exp(-(X-0.25).72-(Y-0.6) .72 - Z.72);

f = reshape(f,n~3,1);
t = cputime;
A = nma_lap3d(n)./h~2; ’ make the A matrix, sparse

fprintf('cpu time for making sparse matrix=%f seconds\n',cputime-t);
[nRow,nCol]l=size(A);

fprintf('dimensions of A (sparse matrix) is [%d,%d]\n',nRow,nCol);
fprintf('nnz(A)= %d\n',nnz(A));

t cputime;
u = A\f;
fprintf('cpu time for direct solver=Yf seconds\n',cputime-t);

% plot solution if needed
if DOPLOTS
u=reshape(u,n,n,n);
mesh(u(:,:,n-1));
title(sprintf('3D solution, top surface only, n=%d',n));
hold on;
end

end

end

function nma_nnz_estimate()

% to estimate nnz() as function of n for 2D sparse matrix
% Nasser M. Abbasi

% HW3 math 228A

clear all;
close all;
n=[3 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 200 300 400 500 600];
y=arrayfun(@(i) nnz(lap2d(n(i),n(i))),1:numel(n));
plot(n,y,'r');

hold on;

plot(n,n.~2.25);

title('estimating nnz order for 2D sparse matrix');
xlabel('n, number of grid points in one dimension');
ylabel('nnz, number of non-zero elements');
legend('Matlab nnz()','n~2.2")

end

function nnz estimate 3D()

% file name nnz_estimate_3D.m

% to estimate nnz() as function of n for 3D sparse matrix
% Nasser M. Abbasi

% HW3, Math 228A

clear all;
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close all;

n=[3 10 20 30 40 50 60 70 80 100 150 200];
y=arrayfun(@(i) nnz(lap3d(n(i))),1:numel(n));
plot(n,y,'r');

hold on;

plot(n,n.~3.35);

title('estimating nnz order for 3D sparse matrix');
xlabel('n, number of grid points in one dimension');
ylabel('nnz, number of non-zero elements');
legend('Matlab nnz()','n"3.35"')

end
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