
HW1, Math 228A

Date due and handed in 10/12/2010

UC Davis, California Fall 2010

Nasser M. Abbasi

Fall 2010 Compiled on June 18, 2019 at 7:26pm [public]

Contents
1 Problem description 2

2 Problem 1 2
2.1 part a . 3
2.2 part (b) . 4
2.3 Part (c) . 4
2.4 part (d) . 6

3 Problem 2 6
3.1 Part (a) . 6
3.2 Part (b) . 7

4 Problem (3) 8
4.1 Part (a) . 8
4.2 part (b) Refinement study . 10
4.3 Part(c) . 12
4.4 Part (d) . 13

5 Appendix (Source code) 16
5.1 Matlab . 16
5.2 Mathematica . 18

1

mailto:nma@12000.org

2

1 Problem description

Math 228A
Homework 1
Due Tuesday, 10/12/10

1. Let L be the linear operator Lu = uxx, ux(0) = ux(1) = 0.

(a) Find the eigenfunctions and corresponding eigenvalues of L.

(b) Show that the eigenfunctions are orthogonal in the L2[0, 1] inner product:

〈u, v〉 =

∫
1

0

uv dx.

(c) It can be shown that the eigenfunctions, φj(x), form a complete set in L2[0, 1]. This
means that for any f ∈ L2[0, 1], f(x) =

∑
j αjφj(x). Express the solution to

uxx = f, ux(0) = ux(1) = 0, (1)

as a series solution of the eigenfunctions.

(d) Note that equation (1) does not have a solution for all f . Express the condition for
existence of a solution in terms of the eigenfunctions of L.

2. Define the functional F : X → ℜ by

F (u) =

∫
1

0

1

2
(ux)2 + fu dx,

where X is the space of real valued functions on [0, 1] that have at least one continuous
derivative and are zero at x = 0 and x = 1. The Frechet derivative of F at a point u is
defined to be the linear operator F ′(u) for which

F (u + v) = F (u) + F ′(u)v + R(v),

where

lim
||v||→0

||R(v)||

||v||
= 0.

One way to compute the derivative is

F ′(u)v = lim
ǫ→0

F (u + ǫv) − F (u)

ǫ
.

Note that this looks just like a directional derivative.

(a) Compute the Frechet derivative of F .

(b) u ∈ X is a critical point of F if F ′(u)v = 0 for all v ∈ X. Show that if u is a solution to
the Poisson equation

uxx = f, u(0) = u(1) = 0,

then it is a critical point of F .

Finite element methods are based on these “weak formulations” of the problem. The Ritz
method is based on minimizing F and the Galerkin method is based on finding the critical
points of F ′(u).

1

Figure 1: problem description

2 Problem 1
L is a second order differential operator defined by Lu ≡ uxx with boundary conditions
on u given as ux (0) = ux (1) = 0

3

2.1 part a
Let φ (x) be an eigenfunction of the operator L associated with an eigenvalue λ. To obtain
the eigenfunctions and eigenvalues, we solve an eigenvalue problem Lφ = λφ where λ is
scalar. Hence the problem is to solve the differential equation

φxx − λφ = 0 (1)

with B.C. given as φ′ (0) = φ′ (1) = 0. The characteristic equation is

r2 − λ = 0

The roots are r = ±
√

λ, therefore the solution to the eigenvalue problem (1) is

φ (x) = c1e
√

λx + c2e
−

√
λx (2)

Where c1,c2 are constants.

φ′ (x) = c1
√

λe
√

λx −
√

λc2e
−

√
λx (3)

First we determine the allowed values of the eigenvalues λ which satisfies the boundary
conditions.

1. Assume λ = 0 The solution (2) becomes φ (x) = c1 + c2. Hence the solution is
a constant. In other words, when the eigenvalue is zero, the eigenfunction is a
constant. Let us now see if this eigenfunction satisfies the B.C. Since φ (x) is con-
stant, then φ′ (x) = 0, and this does satisfy the B.C. at both x = 0 and x = 1.
Hence λ = 0 is an eigenvalue with a corresponding eigenfunction being a constant.
We can take the constant as 1.

2. Assume λ > 0 From the first BC we have, from (3), that φ′ (0) = 0 = c1
√

λ −
√

λc2
or

c1 = c2

and from the second BC we have that φ′ (1) = 0 = c1
√

λe
√

λ −
√

λc2e
−

√
λ or

c1e
√

λ − c2e
−

√
λ = 0

From the above 2 equations, we find that e
√

λ = e−
√

λ which is not possible for
positive λ. Hence λ can not be positive.

3. Assume λ < 0. Let λ = −β2 form some positive β. Then the solution (2) becomes

φ (x) = c1e
iβx + c2e

−iβx

which can be transformed using the Euler relation to obtain

φ (x) = c1 cos βx + c2 sin βx

φ′ (x) = −c1β sin βx + c2β cos βx (4)

4

Now consider the BC’s. Since φ′ (0) = 0 we obtain c2 = 0 and from φ′ (1) = 0 we
obtain 0 = c1β sin β and hence for non trivial solution, i.e. for c1 6= 0, we must have
that

sin β = 0

or
β = ±nπ

but since β is positive, we consider only βn = nπ, where n is positive integer
n = 1, 2, 3, · · ·

Conclusion: The eigenvalues are

λn = − (βn)2 = − (nπ)2 =
{
0, −π2, − (2π)2 , − (3π)2 , · · ·

}
And the corresponding eigenfunctions areφn (x) = cos βnx = cos nπx = {1, cos πx, cos 2πx, cos 3πx, · · · }

where n = 0, 1, 2, · · ·

2.2 part (b)

Given inner product defined as 〈u, v〉 =
1∫

0

uvdx, then

〈φn, φm〉 =
1∫

0

(cos βnx) (cos βmx) dx

=
1∫

0

(cos nπx) (cos mπx) dx

=

 0 n 6= m
1
2 n = m

Also, the first eigenfucntion, φ0 (x) = 1 is orthogonal to all other eigenfunctions, since
1∫

0

(cos nπx) dx = 1
nπ

[sin nπx]10 = 0 for any integer n > 0.

Hence all the eigenfunctions are orthogonal to each others in L2 [0, 1] space.

2.3 Part (c)
Given

uxx = f

ux (0) = ux (1) = 0. This is Lu = f . We have found the eigenfunctions φ (x) of L above.
These are basis of the function space of L where f resides in. We can express f as a linear

5

combination of the eigenfunctions of the operator L, hence we write

f (x) =
∞∑

n=0
anφn (x)

where φn (x) is the nth eigenfunction of L and an is the corresponding coordinate (scalar).

Therefore the differential equation above can be written as

Lu = f (x) =
∑
n=0

anφn (x) (1)

But since
Lφn = λnφn

Then
L−1 = 1

λn

Therefore, using (1), the solution is

u (x) =
∑

n

(
an

λn

)
φn (x) (2)

Now to find an, using f (x) =
∑

n

anφn (x) , we multiply each side by an eigenfunction, say

φm (x) and integrate

1∫
0

φm (x) f (x) dx =
1∫

0

φm (x)
∑

n

anφn (x) (x) dx

=
1∫

0

∑
n

anφm (x) φn (x) dx

=
∑

n

an

1∫
0

φm (x) φn (x) dx

The RHS is 1/2 when n = m and zero otherwise, hence the above becomes

1∫
0

φn (x) f (x) dx = an

2

Or

an = 2
1∫

0

cos (nπx) f (x) dx (3)

Where an as given by (3).

If we know f (x) we can determine an and hence the solution is now found.

6

2.4 part (d)
The solution found above

u (x) =
∑

n

(
an

λn

)
φn (x)

Is not possible for all f . Only an f which has a0 = 0 is possible. This is because λ0 = 0,
then a0 has to be zero to obtain a solution (since L−1 does not exist if an eigenvalue is
zero).

a0 = 0 implies, by looking at (3) above, that when n = 0 we have

0 =
1∫

0

f (x) dx

So only the functions f (x) which satisfy the above can be a solution to Lu = f with the
B.C. given.

To review: We found that λ = 0 to be a valid eigenvalue due to the B.C. being Von
Neumann boundary conditions. This in resulted in a0 having to be zero. This implied that

1∫
0

f (x) dx = 0.

Having a zero eigenvalue effectively removes one of the space dimensions that f (x) can
resides in.

In addition to this restriction, the function f(x) is assumed to meet the Dirichlet conditions
for Fourier series expansion, and these are

1. f(x) must have a finite number of extrema in any given interval

2. f(x) must have a finite number of discontinuities in any given interval

3. f(x) must be absolutely integrable over a period.

4. f(x) must be bounded

3 Problem 2

3.1 Part (a)
Applying the definition given

F ′ (u) v = lim
ε→0

F (u + εv) − F (u)
ε

(1)

And using F (u) =
1∫

0

1
2 (ux)2 + f u dx, then (1) becomes

F ′ (u) v = lim
ε→0

1
ε

 1∫
0

1
2 [(u + εv)x]2 + f (u + εv) dx −

1∫
0

1
2 (ux)2 + f u dx



7

Simplify the above, we obtain

F ′ (u) v = lim
ε→0

 1∫
0

ε

2v2
xdx +

1∫
0

uxvxdx +
1∫

0

fvdx


Hence, as ε → 0 only the first integral above vanishes (since vx is bounded), and we have

F ′ (u) v =
1∫

0

uxvx + fvdx (1A)

3.2 Part (b)
The solution to uxx = f (x) with u (0) = u (1) = 0 was found in class to be

u (x) =
∑

n

(
an

λn

)
φn (x) (2)

where
φn (x) = sin (nπx)

are the eigenfunctions associated with the eigenvalues λn = −n2π2.

Now we can use this solution in the definition of F ′ (u) v found in (1A) from part (a).
Substitute u (x) from (2) into (1A), and also substitute f =

∑
n

anφn (x) into (1A), we

obtain

F ′ (u) v =
1∫

0

(∑
n

(
an

λn

)
φn (x)

)′

v′ +
(∑

n

anφn (x)
)

v dx (4)

We need to show that the above becomes zero for any v (x) ∈ X.

F ′ (u) v =
1∫

0

∑
n

v′
(

an

λn

)
φ′

n (x) +
∑

n

vanφn (x) dx

=
1∫

0

∑
n

(
v′
(

an

λn

)
φ′

n (x) + vanφn (x)
)

dx

=
∑

n

an

 1∫
0

1
λn

v′φ′
n (x) + vφn (x) dx

 (5)

Now we pay attention to the integral term above. If we can show this is zero, then we are
done.

I = 1
λn

1∫
0

v′φ′
n (x) +

1∫
0

vφn (x) dx

= I1 + I2 (6)

8

Integrate by parts I1

I1 = 1
λn

1∫
0

udv︷ ︸︸ ︷
φ′

n (x) v′dx

= 1
λn

[φ′
n (x) v]10 −

1∫
0

v (x) φ′′
n (x) dx



= 1
λn


zero due to boundaries on v(x)∈X︷ ︸︸ ︷
[v (1) φ′

n (1) − v (0) φ′
n (0)] −

1∫
0

v (x) φ′′
n (x) dx


= − 1

λn

1∫
0

v (x) φ′′
n (x) dx

But since φn (x) = sin nπx, then φ′
n (x) = nπ cos nπx and φ′′

n (x) = −n2π2 sin nπx = −n2π2

φn (x) then

I1 = n2π2

λn

1∫
0

v (x) φn (x) dx

But also λn = −n2π2 hence the above becomes

I1 = −
1∫

0

v (x) φn (x) dx

Therefore (6) can be written as

I = I1 + I2

= −
1∫

0

v (x) φn (x) dx +
1∫

0

v (x) φn (x) dx

= 0

Therefore, from (5), we see that
F ′ (u) v = 0

Hence we showed that if u is solution to uxx = f with u (0) = u (1) = 0, then F ′ (u) v = 0.

4 Problem (3)

4.1 Part (a)

Notations used: let f̃ to mean the approximate discrete solution at a grid point. Let f to
mean the exact solution.

9

Using the method of undetermined coefficients, let the second derivative approximation
be

f̃ ′′ (x) = af

(
x − h

2

)
+ bf (x) + cf (x + h) (1)

Where a, b, c are constants to be found. Now using Taylor expansion, since

f (x + ∆) = f (x) + ∆f ′ (x) + ∆2

2! f ′′ (x) + ∆3

3! f ′′′ (x) + O
(
h4
)

Hence apply the above to each of the terms in the RHS of (1) and simplify

f

(
x − h

2

)
= f (x) − h

2f ′ (x) +

(
−h

2

)2

2! f ′′ (x) +

(
−h

2

)3

3! f ′′ (x) +

(
−h

2

)4

4! f (4) (x) + O
(
h5
)

f (x) = f (x)

f (x + h) = f (x) + hf ′ (x) + h2

2! f ′′ (x) + h3

3! f ′′ (x) + h4

4! f (4) (x) + O
(
h5
)

Substitute the above 3 terms in (1)

f̃ ′′ (x) = a

(
f (x) − h

2f ′ (x) + h2

8 f ′′ (x) − h3

8 × 6f ′′′ (x) + h4

16 × 24f (4) (x) + O
(
h5
))

+ bf (x)

+ c

(
f (x) + hf ′ (x) + h2

2! f ′′ (x) + h3

6 f ′′′ (x) + h4

24f (4) (x) + O
(
h5
))

Collect terms

f̃ ′′ (x) = (a + b + c) f (x) + f ′ (x) h
(

−a

2 + c
)

+ f ′′ (x) h2
(

a

8 + c

2

)
+ f ′′′ (x) h3

(−a

8 × 6 + c

6

)
(2)

+ f (4)h4
(

a

16 × 24 + c

24

)
+ O

(
h5
)

Hence for f̃ ′′ (x) to best approximate f ′′ (x), we need

(a + b + c) = 0

−a

2 + c = 0

h2
(

a

8 + c

2

)
= 1

Solving the above 3 equations we find

a = 8
3h2

b = − 4
h2

c = 4
3h2

10

Hence (1) becomes

f̃ ′′ (x) = af

(
x − h

2

)
+ bf (x) + cf (x + h)

= 8
3h2 f

(
x − h

2

)
− 4

h2 f (x) + 4
3h2 f (x + h)

To examine the local truncation error, from (2), and using the solution we just found for
a, b, c we find

f̃ ′′ (x) = f ′′ (x) + f ′′′ (x) h3

−
(

8
3h2

)
8 × 6 +

(
4

3h2

)
6

+ f (4)h4


(

8
3h2

)
16 × 24 +

(
4

3h2

)
24

+ O
(
h5
)

= f ′′ (x) + f ′′′ (x) h3
(1

6h2

)
+ f (4)h4

(1
16h2

)
+ O

(
h5
)

= f ′′ (x) + f ′′′ (x)
(

h

6

)
+ f (4)h2

(1
16

)
+ O

(
h5
)

We can truncate at either f ′′′ (x) or f (4). In the first case, we obtain

f̃ ′′ (x) = f ′′ (x) + O (h)

Where O (h) = f ′′′(x)
6 h, hence p = 1 in this case, and with the truncation error τ = f ′′′(xj)

6 h
at each grid point.

In the second case, we obtain

f̃ ′′ (x) = f ′′ (x) + f ′′′ (x)
6 h + O

(
h2
)

Where O (h2) = f (4)

16 h2 and p = 2 in this case, and with the truncation error τ = f (4)(xj)
16 h2

at each grid point. We see that τ is smaller if we use p = 2 than p = 1.

The accuracy then depends on where we decide to truncate. For example, at p = 1, the
error is dominated by O (h), and at p = 2, it is O (h2).

4.2 part (b) Refinement study
Given f (x) = cos (2πx), first, let us find the accuracy of this scheme. The finite difference
approximation formula found is

f̃ ′′ (x) = 8
3h2 f

(
x − h

2

)
− 4

h2 f (x) + 4
3h2 f (x + h) (1)

And the exact value is
d2

dx2 cos (2πx) = −4π2 cos 2πx (2)

To find the local error τ
τ = f̃ ′′ (x) − f ′′ (x)

11

Substitute f (x) = cos (2πx) in the RHS of (1) to find the approximation of the second
derivative and subtract the exact result value of the second derivative from it.

Plug f (x) = cos (2πx) in RHS of (1) we obtain

f̃ ′′ (x) = 8
3h2 cos

(
2π

(
x − h

2

))
− 4

h2 cos (2πx) + 4
3h2 cos (2π (x + h))

= 8
3h2 cos (2πx − πh) − 4

h2 cos (2πx) + 4
3h2 cos (2πx + 2πh)

Hence the local error τ is

τ = f̃ ′′ (x) − f ′′ (x)

=
[8
3h2 cos (2πx − πh) − 4

h2 cos (2πx) + 4
3h2 cos (2πx + 2πh)

]
+ 4π2 cos 2πx

We notice that τ depends on h and x. At x = 1,

τ =
[8
3h2 cos (2π − πh) − 4

h2 + 4
3h2 cos (2π + 2πh)

]
+ 4π2

= 4
3h2

(
cos (2πh) + 2 cos (πh) + 3h2π2 − 3

)
In the following we plot local error τ as a function of h in linear scale and log scale. Here
is the result.

Figure 2: matlab HW1 partb

12

We notice that the log plot shows the slope p = 2 and not p = 1. This is because the
O (h) part turned out to be zero at x = 1 this is because O (h) = f ′′′(x)

6 h = (8π3 sin 2πx)
6 h

and this term is zero at x = 1, so the dominant error term became O (h2) which is
f (4)(xj)

16 h2 = 16π4 cos 2πx
16 h2 or π4h2 or O (h2).

This is why we obtained p = 2 and not p = 1 at x = 1.

The following table show the ratio of the local error between each 2 successive halving of
the spacing h. Each time h is halved, and the ratio of the error (absolute local error) is
shown. We see for x = 1 that the ratio approaches 4. This indicates that p = 2.� �

1 EDU>> nma_HW1_partb()
2 h error ratio
3 5.0000E-001 1.8145E+001 0.0000E+000
4 2.5000E-001 5.6483E+000 3.2125E+000
5 1.2500E-001 1.4936E+000 3.7816E+000
6 6.2500E-002 3.7872E-001 3.9439E+000
7 3.1250E-002 9.5014E-002 3.9859E+000
8 1.5625E-002 2.3775E-002 3.9965E+000
9 7.8125E-003 5.9449E-003 3.9991E+000

10 3.9063E-003 1.4863E-003 3.9998E+000� �

4.3 Part(c)
The refinement study in part (b) showed that the local error became smaller as h become
smaller, and the error was O (h2) since p = 2 in the log plot.

But this is not a good test as it was done only for one point x = 1. We need to examine
the approximation scheme at other points as well. The reason is the local error at an x
location is

τ =
[8
3h2 cos (2πx − πh) − 4

h2 cos (2πx) + 4
3h2 cos (2πx + 2πh)

]
+ 4π2 cos 2πx

which can be seen to be a function of x and h. In (b) we found that at x = 1, τ = O (h2)
and this was because the dominant error term O(h) happened to vanish at x = 1.

But if we examine τ at different point, say x = 0.2, then we will see that τ is O (h) and
p = 1.

Here is a plot of τ at x = 0.2 and at x = 1. Both showing what happens as h becomes
smaller. We see that the at x = 1 the approximation was more accurate (p = 2) but at
x = 0.2 the approximation was less accurate (p = 1). What we conclude from this, is
that a single test is not sufficient for determine the accuracy for all points. More tests are
needed at other points to have more confidence. To verify that at x = 0.2 we indeed have
p = 1, we generate the error table as shown above, but for x = 0.2 this time.

13

Figure 3: matlab HW1 partc

� �
1 EDU>> nma_HW1_partc()
2 h error ratio
3 5.0000E-001 1.5752E+001 0.0000E+000
4 2.5000E-001 1.0149E+001 1.5520E+000
5 1.2500E-001 5.1898E+000 1.9557E+000
6 6.2500E-002 2.5508E+000 2.0345E+000
7 3.1250E-002 1.2551E+000 2.0324E+000
8 1.5625E-002 6.2133E-001 2.0200E+000
9 7.8125E-003 3.0897E-001 2.0110E+000

10 3.9063E-003 1.5404E-001 2.0057E+000� �
We see that the ratio becomes 2 this time, not 4 as we half the spacing each time. This
mean p = 1. This means the accuracy of the formula used can depend on the location.

4.4 Part (d)

The points that we need to interpolate are
[[

x − h
2 , u

(
x − h

2

)]
, [x, u (x)] , [x + h, u (x + h)]

]
where u = cos (2πx)

14

Since we require a quadratic polynomial, then we write

p (x) = a + bx + cx2

Where p (x) is the interpolant. Evaluate the above at each of the 3 points. Choose x = 1,
hence the points are 

1 − h
2 , u

(
1 − h

2

)
1, u (x)

1 + h, u (1 + h)


Evaluate p (x) at each of these points

p

(
1 − h

2

)
= cos

(
2π

(
1 − h

2

))
= a + b

(
1 − h

2

)
+ c

(
1 − h

2

)2

p (1) = cos (2π) = a + b + c

p (1 + h) = cos (2π (1 + h)) = a + b (1 + h) + c (1 + h)2

or 
(
1 − h

2

)2 (
1 − h

2

)
1

1 1 1
(1 + h)2 (1 + h) 1




c

b

a

 =


cos

(
2π
(
1 − h

2

))
cos (2π1)

cos (2π (1 + h))


Av = b

Solving the above Vandermonde system, we obtain

a = 1
3h2 (4 (1 + h) cos (hπ) + (h − 2) (3 + 3h − cos (2πh)))

b = −1
3h2 4 ((h − 4) cos (πh) − h − 8) sin2

(
πh

2

)

c = 2
3h2 (2 cos (πh) − 3 + cos (2πh))

Hence

p (x) =
[1
3h2 (4 (1 + h) cos (hπ) + (h − 2) (3 + 3h − cos (2πh)))

]
(1)

−
[

1
3h2 4 ((h − 4) cos (πh) − h − 8) sin2

(
πh

2

)]
x

+
[2
3h2 (2 cos (πh) − 3 + cos (2πh))

]
x2

Recall, that we found, for u = cos (2πx), the finite difference formula was

ũ′′ (x) =
[8
3h2 cos (2πx − πh) − 4

h2 cos (2πx) + 4
3h2 cos (2πx + 2πh)

]
(2)

15

Take the second derivative of p (x) shown in (1) above

p′′ (x) = 4
3h2 (2 cos (πh) + cos (2πh) − 3) (3)

But we notice that ũ′′ (x) evaluated at x = 1 is

ũ′′ (1) = 4
3h2 (2 cos (πh) + cos (2πh) − 3)

which is the same as p′′ (x) .

Therefore, p′′ (x) is the same as as the finite difference approximation evaluated at the
central point of the 3 points, used to generate p.

In other words, given 3 points 
x0 − h

2 , u (x0)
x0, u (x0)

x0 + h, u (x0 + h)


Where u (x) is some function (here it was cos (2πx)), and we generate a quadratic inter-
polant polynomial p (x) using the above 3 points, then p′′ (x) will given the same value as
the finite difference formula evaluated at x0.

p′′ (x)|x=x0
= ũ (x)|x=x0

For this to be valid, p (x) must have been generated with the center point being x0. If
we pick another center point x1, and therefore have the 3 points x1 − h/2, x1, x1 + h, and
then generate a polynomial q (x) as above, then we will find

q′′ (x)|x=x1
= ũ (x)|x=x1

This is illustrated by the following diagram

X0-h/2 X0 X0+h

P(x)=a+bx+cx
2

px |
xx0

 ũx |xx0

X1

q(x)=a+bx+cx
2

X1-h/2 X1+h

qx |
xx1

 ũx |xx1

Figure 4: prob3 c

16

5 Appendix (Source code)

5.1 Matlab� �
1 %-- by Nasser M. Abbasi, Math 228A, UC Davis, Fall 2010
2 %-- implement part b, problem 3
3 function nma_HW1_partb()
4 %-- Generate h values to use, and define tao(h) function
5 N = 8;
6 pointAt=1;
7 data = arrayfun(@(i) [1/(2^i) , local_error(1/(2^i),pointAt)] ,1:N,�...
8 'UniformOutput',false);
9 data = reshape(cell2mat(data),2,N)';

10
11 %-- plot the tao(h) in linear and log scale
12 set(0,'defaultaxesfontsize',8) ;
13 set(0,'defaulttextfontsize',8);
14
15 subplot(2,1,1);
16 plot(data(:,1),data(:,2),'-o'); grid on;
17 title('tao at x=(1), linear scale');
18 xlabel('spacing h'); ylabel('ABS(error)');
19
20 subplot(2,1,2);
21 loglog(data(:,1),data(:,1),'-o'); grid on;
22 title('tao at x=(1), log scale');
23 xlabel('log(h)'); ylabel('log(ABS(error))');
24 export_fig matlab_HW1_partb.png
25
26 %-- now generate the error table, find ratio first
27 error_ratio = zeros(N,1);
28 for i=2:N
29 error_ratio(i) = data((i-1),2)/data(i,2);
30 end
31
32 %-- print table
33 fprintf('h\t\t\t\t error\t\t\t\t ratio\n');
34 for i=1:N
35 fprintf('%6.4E\t\t%6.4E\t\t%6.4E\n',data(i,1),data(i,2),error_ratio(i));
36 end
37
38 end
39
40 function tao=local_error(h,x)
41 tao=8/(3*h^2)*cos(2*pi*(x-h/2))-4/h^2*cos(2*pi*x)+4/(3*h^2)*...
42 cos(2*pi*(x+h))+(2*pi)^2*cos(2*pi*x);
43 end� �� �

17

1 %-- by Nasser M. Abbasi, Math 228A, UC Davis, Fall 2010
2 %-- implement part c, problem 3
3 function nma_HW1_partc()
4
5 %-- Generate h values to use, and define tao(h) function
6 %-- plot the tao(h) in linear and log scale
7 set(0,'defaultaxesfontsize',8) ;
8 set(0,'defaulttextfontsize',8);
9

10 %build data, x-axis is spacing h, y-axis is error
11 N = 8;
12 pointAt=1.0;
13 data = arrayfun(@(i) [1/(2^i) , local_error(1/(2^i),pointAt)] ,1:N,�...
14 'UniformOutput',false);
15 data = reshape(cell2mat(data),2,N)';
16
17 loglog(data(:,1),data(:,1),'-o'); grid off;
18 title('tao at x=1 and x=0.2, log scale');
19 xlabel('log(h)'); ylabel('log(ABS(error))');
20 hold on;
21
22 pointAt=0.2;
23 data = arrayfun(@(i) [1/(2^i) , local_error(1/(2^i),pointAt)] ,1:N,...
24 'UniformOutput',false);
25 data = reshape(cell2mat(data),2,N)';
26 loglog(data(:,1),data(:,2),'-s');
27 legend('p=2,x=1','p=1,x=0.2');
28
29 export_fig matlab_HW1_partc.png
30
31 %-- now generate the error table, find ratio first
32 error_ratio = zeros(N,1);
33 for i=2:N
34 error_ratio(i) = data((i-1),2)/data(i,2);
35 end
36
37 %-- print table
38 fprintf('h\t\t\t\t error\t\t\t\t ratio\n');
39 for i=1:N
40 fprintf('%6.4E\t\t%6.4E\t\t%6.4E\n',data(i,1),data(i,2),error_ratio(i));
41 end
42
43 end
44
45 function tao=local_error(h,x)
46 tao=8/(3*h^2)*cos(2*pi*(x-h/2))-4/h^2*cos(2*pi*x)+4/(3*h^2)*...
47 cos(2*pi*(x+h))+(2*pi)^2*cos(2*pi*x);

18

48 end� �
5.2 Mathematica

HW 1, problem 3, computational part. math 228A UC davis fall 2010
Nasser M. Abbasi

This is the code used to generate the plots and tables used in HW1

define local error function

localError[h_, x_] :=

Module{},
8

3 h2
Cos[2 π x - π h] -

4

h2
Cos[2 π x] +

4

3 h2
Cos[2 π x + 2 π h] + 2 π

2 Cos[2 π x];

define a function to make the plots

makePlot[x_, s_, title_, xlabel_, ylabel_, f_] := Module{data, n = 8},

data = Table 1  2^i, Abs@localError1  2^i, x , {i, 1, n};

f[data, Joined → True, AxesOrigin → {0, 0},

GridLines → Automatic, AspectRatio → 1, Frame → True, PlotRange → All,

FrameLabel → {{ylabel, None}, {xlabel, title}}, PlotStyle → s, ImageSize → Full]



make plot for problem 3, part b

title = Style["local error at x=1, log scale", 16];

xlabel = Style["h", 16]; ylabel = Style["local error", 16];

p1 = makePlot[1, {Thick, Dashed}, title, xlabel, ylabel, ListLogLogPlot];

title = Style["local error at x=1, linear scale", 16];

p2 = makePlot[1, {Thick, Dashed}, title, xlabel, ylabel, ListPlot];

Framed[Grid[{{p1, p2}}], ImageSize → {600, 300}]

p=2

0.10 0.500.20 0.300.15

1.0

10.0

5.0

2.0

3.0

1.5

15.0

7.0

h

lo
ca

le
rr

or

local error at x=1, log scale

0.0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

h

lo
ca

le
rr

or

local error at x=1, linear scale

Printed by Wolfram Mathematica Student Edition

19

Generate error table, problem 3, part b

n = 14;

x = 1;

data = Table 1  2^i, Abs@localError1  2^i, x , {i, 1, n};

data = Table data〚i, 1〛, data〚i, 2〛, Ifi ⩵ 1, 0,
data〚i - 1, 2〛

data〚i, 2〛
 , {i, 1, n};

t = TableForm[N[data, $MachinePrecision], TableHeadings →

{None, {"h", "local error τ", "ratio"}}, TableSpacing → {1, 6}, TableAlignments → Left];

LabeledFramed@ScientificFormt, {8, 6}, NumberFormat → Row[{#1, "e", #3}] &,

NumberPadding → {"", "0"}, Style["local error as function of h at x=1", 14], Top

local error as function of h at x=1

h local error τ ratio
5.000000e-1 1.814508e1 0.000000e
2.500000e-1 5.648307e 3.212482e
1.250000e-1 1.493636e 3.781581e
6.250000e-2 3.787161e-1 3.943947e
3.125000e-2 9.501408e-2 3.985895e
1.562500e-2 2.377451e-2 3.996468e
7.812500e-3 5.944941e-3 3.999117e
3.906250e-3 1.486317e-3 3.999779e
1.953125e-3 3.715845e-4 3.999945e
9.765625e-4 9.289644e-5 3.999986e
4.882812e-4 2.322413e-5 3.999997e
2.441406e-4 5.806034e-6 3.999999e
1.220703e-4 1.451509e-6 4.000000e
6.103516e-5 3.628771e-7 4.000000e

Generate table for problem 3, part (c)

n = 14;

x = 0.2;

data = Table 1  2^i, Abs@localError1  2^i, x , {i, 1, n};

data = Table data〚i, 1〛, data〚i, 2〛, Ifi ⩵ 1, 0,
data〚i - 1, 2〛

data〚i, 2〛
 , {i, 1, n};

t = TableForm[N[data, $MachinePrecision], TableHeadings →

{None, {"h", "local error τ", "ratio"}}, TableSpacing → {1, 6}, TableAlignments → Left];

LabeledFramed@ScientificFormt, {8, 6}, NumberFormat → Row[{#1, "e", #3}] &,

NumberPadding → {"", "0"}, Style["local error as function of h at x=0.2", 14], Top

local error as function of h at x=0.2

h local error τ ratio
5.000000e-1 1.575174e1 0.000000e
2.500000e-1 1.014949e1 1.551974e
1.250000e-1 5.189762e 1.955675e
6.250000e-2 2.550829e 2.034539e
3.125000e-2 1.255100e 2.032371e
1.562500e-2 6.213251e-1 2.020037e
7.812500e-3 3.089650e-1 2.010989e
3.906250e-3 1.540406e-1 2.005737e
1.953125e-3 7.690765e-2 2.002930e
9.765625e-4 3.842539e-2 2.001480e
4.882812e-4 1.920555e-2 2.000744e
2.441406e-4 9.600990e-3 2.000372e
1.220703e-4 4.800048e-3 2.000186e
6.103516e-5 2.399851e-3 2.000144e

2 HW1.nb

Printed by Wolfram Mathematica Student Edition

20

Generate plot for part (C)

title = Style["local error at different x locations, log scale", 16];

xlabel = Style["h", 16]; ylabel = Style["local error", 16];

p1 = makePlot[1, {Thick, Dashed}, title, xlabel, ylabel, ListLogLogPlot];

p2 = makePlot[0.2, {Thick, Black}, title, xlabel, ylabel, ListLogLogPlot];

Show[{p1, p2}, ImageSize → 500]

x=1

p=2x=0.2

P=1

0.01 0.02 0.05 0.10 0.20 0.50

0.01

0.1

1

10

h

lo
ca

le
rr

or

local error at different x locations, log scale

HW1.nb 3

Printed by Wolfram Mathematica Student Edition

	Problem description
	Problem 1
	part a
	part (b)
	Part (c)
	part (d)

	Problem 2
	Part (a)
	Part (b)

	Problem (3)
	Part (a)
	part (b) Refinement study
	Part(c)
	Part (d)

	Appendix (Source code)
	Matlab
	Mathematica

