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1 chapter 13, problem 6.3 Mary Boas, second edition
Problem

(my note: I’ll use 𝑓 for frequency instead of book 𝜈 (mu)) since 𝜈 looks very close to 𝑣
the speed of the wave, to avoid confusion).

Separate the wave equation in 2D rectangular coordinates. Consider the membrane
shown, rigidly attached to its supports along the sides. Show that its characteristic

frequencies are 𝑓𝑛𝑚 = �
𝑣
2
�
�
�𝑛
𝑎
�
2
+ �𝑚𝑏 �

2
where n,m are positive integers and sketch the

normal modes of vibration corresponding to the first few frequencies. Next suppose the
membrane is square, show that in this case there may be two or more normal modes of
vibration corresponding to a single frequency. Sketch several normal modes giving rise
to the same frequency.

Solution

x

Y

a

 b

Wave equation in rectangular coordinates is 𝜕2𝑧
𝜕𝑥2 +

𝜕2𝑧
𝜕𝑦2 =

1
𝑣
𝜕2𝑧
𝜕𝑡2

Let solution

𝑧�𝑥, 𝑦, 𝑡� = 𝑋(𝑥)𝑌(𝑦)𝑇(𝑡)

Then we get after substitution

𝑌𝑇𝑋′′ + 𝑋𝑇𝑌′′ =
1
𝑣
𝑋𝑌𝑇′′

Divide by 𝑌𝑇𝑋we get

𝑋′′

𝑋
+
𝑌′′

𝑌
=
1
𝑣
𝑇′′

𝑇

Each term above is a constant since no one term depend on more than one variable in
the others.

So, 𝑋
′′

𝑋 =constant, 𝑌
′′

𝑌 =constant, 1𝑣
𝑇′′

𝑇 =constant

Let 𝑋′′

𝑋 = −𝑘2𝑥

Let 𝑌′′

𝑌 = −𝑘2𝑦

So 1
𝑣
𝑇′′

𝑇 = −𝑘2𝑥 − 𝑘2𝑦 = −𝑘2𝑡
So the 3 ODE equations are
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𝑋′′

𝑋
= −𝑘2𝑥 (1)

𝑌′′

𝑌
= −𝑘2𝑦 (2)

1
𝑣2
𝑇′′

𝑇
= −𝑘2𝑥 − 𝑘2𝑦 = −�𝑘2𝑥 + 𝑘2𝑦 � = −𝑣2�𝑘2𝑥 + 𝑘2𝑦 � (3)

equation (1) is an ODE whose solution is cos, sin

𝑋(𝑥) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cos 𝑘𝑥𝑥

sin 𝑘𝑥𝑥

Similarly

𝑌(𝑦) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cos 𝑘𝑦𝑦

sin 𝑘𝑦𝑦

similarly

𝑇(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos�𝑡�𝑣
2�𝑘2𝑥 + 𝑘2𝑦 � �

sin�𝑡�𝑣
2�𝑘2𝑥 + 𝑘2𝑦 � �

Hence the general solution is

𝑧�𝑥, 𝑦, 𝑡� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cos 𝑘𝑥𝑥

sin 𝑘𝑥𝑥

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cos 𝑘𝑦𝑦

sin 𝑘𝑦𝑦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos�𝑡�𝑣
2�𝑘2𝑥 + 𝑘2𝑦 � �

sin�𝑡�𝑣
2�𝑘2𝑥 + 𝑘2𝑦 � �

So we have a total of 6 possible general solutions

Now apply boundary conditions to remove solutions that can not be fitted.

Since membrane is fixed at 𝑦 = 0, then we want 𝑧 = 0 when 𝑦 = 0 hence we reject the
cos 𝑘𝑦𝑦 since that is not zero at 𝑦 = 0

And since we want want 𝑧 = 0 when 𝑥 = 0 hence we reject the cos 𝑘𝑥𝑥 since that is not
zero at 𝑥 = 0

So now our solution looks like

𝑧�𝑥, 𝑦, 𝑡� = sin(𝑘𝑥𝑥) sin�𝑘𝑦𝑦�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos�𝑡�𝑣
2�𝑘2𝑥 + 𝑘2𝑦 � �

sin�𝑡�𝑣
2�𝑘2𝑥 + 𝑘2𝑦 � �

Now need to find 𝑘𝑥 and 𝑘𝑦
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Since membrane if also fixed at 𝑦 = 𝑏 then we want 𝑧 = 0 when 𝑦 = 𝑏. hence was want
sin�𝑘𝑦𝑏� = 0 then happens when 𝑘𝑦𝑏 = 𝑚𝜋 for an integer 𝑚

So

𝑘𝑦 =
𝑚𝜋
𝑏

The same for 𝑘𝑥 we want 𝑧 = 0 when 𝑥 = 𝑎. hence was want sin(𝑘𝑥𝑎) = 0 then happens
when 𝑘𝑥𝑎 = 𝑛𝜋 for some integer 𝑛, so

𝑘𝑥 =
𝑛𝜋
𝑎

Hence the general solution now looks like

𝑧�𝑥, 𝑦, 𝑡� = sin�𝑛𝜋𝑎 𝑥� sin�𝑚𝜋𝑏 𝑦�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos
⎛
⎜⎜⎜⎜⎝𝑣𝑡�

�𝑛𝜋
𝑎
�
2
+ �𝑚𝜋𝑏 �

2
⎞
⎟⎟⎟⎟⎠

sin
⎛
⎜⎜⎜⎜⎝𝑣𝑡�

�𝑛𝜋
𝑎
�
2
+ �𝑚𝜋𝑏 �

2
⎞
⎟⎟⎟⎟⎠

𝑧�𝑥, 𝑦, 𝑡� = sin�
𝑛𝜋
𝑎
𝑥� sin�

𝑚𝜋
𝑏
𝑦�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos
⎛
⎜⎜⎜⎜⎝𝜋𝑣𝑡�

�𝑛
𝑎
�
2
+ �𝑚𝑏 �

2
⎞
⎟⎟⎟⎟⎠

sin
⎛
⎜⎜⎜⎜⎝𝜋𝑣𝑡�

�𝑛
𝑎
�
2
+ �𝑚𝑏 �

2
⎞
⎟⎟⎟⎟⎠

(4)

Now, from the general form of a wave equation, which can be written as 𝑧 = 𝐴 cos(𝜔𝑡)
or 𝐴 sin(𝜔𝑡)where 𝜔 is the angular velocity in radiance per second.

Hence by comparing to above, we see that

𝜋𝑣𝑡
�
�
𝑛
𝑎
�
2
+ �

𝑚
𝑏
�
2
= 𝜔𝑡

𝜋𝑣
�
�
𝑛
𝑎
�
2
+ �

𝑚
𝑏
�
2
= 𝜔

but 𝜔 = 2𝜋𝑓 where 𝑓 is the frequency in hertz or cycles per seconds.

hence

𝑓 =
𝑣
2�

�
𝑛
𝑎
�
2
+ �

𝑚
𝑏
�
2

Which is what we are required to show.

To plot the normal modes of vibrations, need to find where the solutions are zero as
I modify 𝑛,𝑚. from (4), looking at the space components of the solution since that is
what is of interest here,

𝑧�𝑥, 𝑦� = sin�𝑛𝜋𝑎 𝑥� sin�𝑚𝜋𝑏 𝑦�

For 𝑛 = 1,𝑚 = 1
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𝑧�𝑥, 𝑦, 𝑡� = sin�𝜋𝑎 𝑥� sin�𝜋𝑏 𝑦�

This is zero when 𝑥 = 𝑎 or 𝑦 = 𝑏 hence the whole membrane will vibrate internally
expect at boundaries.

𝑛 = 2,𝑚 = 1

𝑧�𝑥, 𝑦, 𝑡� = sin�2𝜋𝑎 𝑥� sin�𝜋𝑏 𝑦�

This is zero when 𝑥 = 𝑎 and 𝑥 = 𝑎
2or 𝑦 = 𝑏 Hence we have a normal mode at line

𝑥 = 𝑎/2 (see diagram below).

𝑛 = 3,𝑚 = 1

𝑧�𝑥, 𝑦, 𝑡� = sin�3𝜋𝑎 𝑥� sin�𝜋𝑏 𝑦�

This is zero when 𝑥 = 𝑎 and 𝑥 = 𝑎
3 , 𝑥 =

2𝑎
3 or 𝑦 = 𝑏 Hence we have a normal mode at line

𝑥 = 𝑎/3 and 𝑥 = 2𝑎
3 line (see diagram below).

𝑛 = 1,𝑚 = 2

𝑧�𝑥, 𝑦, 𝑡� = sin�𝜋𝑎 𝑥� sin�2𝜋𝑏 𝑦�

This is zero when 𝑥 = 𝑎 and or 𝑦 = 𝑏
2 Hence we have a normal mode at line 𝑦 = 𝑏

2 line
(see diagram below).

𝑛 = 1,𝑚 = 3

𝑧�𝑥, 𝑦, 𝑡� = sin�𝜋𝑎 𝑥� sin�3𝜋𝑏 𝑦�

This is zero when 𝑥 = 𝑎 or 𝑦 = 𝑏 and 𝑦 = 𝑏
3 , 𝑦 =

2𝑏
3 Hence we have a normal mode at

line 𝑦 = 𝑏/3 and 𝑦 = 2𝑏
3 line (see diagram below).

Y N=1,M=1 Y N=1,M=2

Y N=2,M=1 Y N=2,M=2

Y N=3,M=1 Y N=3,M=2
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When the membrane is square, we have 𝑎 = 𝑏 hence the solution becomes

𝑧�𝑥, 𝑦, 𝑡� = sin�
𝑛𝜋
𝑎
𝑥� sin�

𝑚𝜋
𝑎
𝑦�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos
⎛
⎜⎜⎜⎜⎝𝜋𝑣𝑡�

�𝑛
𝑎
�
2
+ �𝑚𝑎 �

2
⎞
⎟⎟⎟⎟⎠

sin
⎛
⎜⎜⎜⎜⎝𝜋𝑣𝑡�

�𝑛
𝑎
�
2
+ �𝑚𝑎 �

2
⎞
⎟⎟⎟⎟⎠

So, the frequency of the wave in the membrane takes values of

𝑓 =
𝑣
2�

�
𝑛
𝑎
�
2
+ �

𝑚
𝑎
�
2

𝑓 =
𝑣
2𝑎
√𝑛2 + 𝑚2

This shows that for example, for 𝑛 = 7 and 𝑚 = 1 we will get the same frequencies as
for 𝑛 = 1 and 𝑚 = 7. hence we will get two or more modes of vibrations for the same
frequency.
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2 chapter 13, problem 7.2 Mary Boas, second edition
Find steady state temp. distribution inside a sphere of 𝑟 = 1 when the surface temp. is
𝑢 = cos𝜃 − (cos𝜃)3

Solution

Need to use Laplace equation here. The basic solution to this problem is derived and
given in text book at page 568

𝑢�𝑟, 𝜃, 𝜙� = 𝑟𝑙𝑃𝑚𝑙 (cos𝜃)

⎧⎪⎪⎨
⎪⎪⎩
sin𝑚𝜙

cos𝑚𝜙
(1)

Where 𝑙 is a constant (one that occurs in associated Legendre equation, equation 10.1 in
text, page 504):

�1 − 𝑥2�𝑦′′ − 2𝑥𝑦′ + �𝑙(𝑙 + 1) −
𝑚2

1 − 𝑥2 �
𝑦 = 0

and 𝑃𝑚𝑙 (𝑥) is the associated Legendre functions (solution of the associated Legendre
equation). and 𝑟, 𝜃, 𝜙 are the spherical coordinates.

Since the temp. at the surface is a function of 𝜃 then I can not remove the dependency
of the solution on 𝜃 as we have done in other problems. However, the solution is inde-
pendent of 𝜙 so 𝑚must be zero, and we can drop that 𝜙 dependency, hence the basic
solution becomes

𝑢(𝑟, 𝜃) = 𝑟𝑙𝑃𝑙(cos𝜃) (2)

Since a general solution is a sum of these solutions, we get

𝑢(𝑟, 𝜃) =
∞
�
𝑙=0
𝑐𝑙 𝑟𝑙 𝑃𝑙(cos𝜃) (3)

When 𝑟 = 1

𝑢(1, 𝜃) = cos𝜃 − (cos𝜃)3 =
∞
�
𝑙=0
𝑐𝑙 𝑟𝑙 𝑃𝑙(cos𝜃) (4)

Writing cos𝜃 = 𝑥, I see that cos𝜃 − (cos𝜃)3 = 𝑥 − 𝑥3 But 𝑃3(𝑥) =
−3
2 𝑥 +

5
2𝑥

3 and 𝑃1(𝑥) = 𝑥

Hence I need a combination of 𝑃3(𝑥) and 𝑃1(𝑥)which will add to 𝑥 − 𝑥3 so I can put that
on the LHS of (4) to solve for the 𝑐𝑙

Try 4
10𝑃1(𝑥) −

2
5𝑃3(𝑥) =

4
10 (𝑥) −

2
5
�−3
2 𝑥 +

5
2𝑥

3� = 4
10𝑥 +

6
10𝑥 − 𝑥

3 = 𝑥 − 𝑥3

Which is what we want.

Hence (4) can be written as

𝑢(1, 𝜃) =
2
5
𝑃1(cos𝜃) −

2
5
𝑃3(cos𝜃) =

∞
�
𝑙=0
𝑐𝑙 𝑟𝑙 𝑃𝑙(cos𝜃) (5)

Expanding the sum and compare 𝑐𝑙 I only need to go up to 𝑙 = 3
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2
5
𝑃1(cos𝜃)−

2
5
𝑃3(cos𝜃) = 𝑐0 𝑟0 𝑃0(cos𝜃)+ 𝑐1 𝑟1 𝑃1(cos𝜃)+ 𝑐2 𝑟2 𝑃2(cos𝜃)+ 𝑐3 𝑟3 𝑃3(cos𝜃)

Hence

𝑐1 =
2
5

𝑐3 = −
2
5

All other 𝑐𝑙 are zero

So final solution from (3) is

𝑢(𝑟, 𝜃) =
∞
�
𝑙=0
𝑐𝑙 𝑟𝑙 𝑃𝑙(cos𝜃)

=
2
5
𝑟 𝑃1(cos𝜃) −

2
5
𝑟3 𝑃3(cos𝜃)
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3 chapter 13, problem 7.15 Mary Boas, second edition

Figure 1: the Problem statement

Solution

Since we want the time-dependent solution, we use the heat diffusion equation

∇ 2𝑢 =
1
𝛼2
𝜕𝑢
𝜕𝑡

The heat equation in spherical coordinates is given by equation 7.5 on page 567, plus
an additional term called 𝜆 as was derived in class lecture, where 𝜆 = 𝑘2𝛼2, and 𝑇(𝑡) =
𝑒−𝑘2𝛼2𝑡 . Hence the equation is

1
𝑅(𝑟)

𝑑
𝑑𝑟�

𝑟2
𝑑𝑅
𝑑𝑟 �

+
1
Θ

1
sin𝜃

𝑑
𝑑𝜃�

sin𝜃
𝑑Θ
𝑑𝜃 �

−
𝑚2

sin2 𝜃
+ �𝑘2𝛼2�𝑟2 = 0

Where 𝑚 is a constant to make Φ�𝜙� periodic as per page 567 in text. Using separation
of variables we obtained as per lecture notes, the general solution is

𝑢�𝑟, 𝜃, 𝜙, 𝑡� = 𝑒−�𝑘
2𝛼2�𝑡

⎧⎪⎪⎨
⎪⎪⎩
cos𝑚𝜙

sin𝑚𝜙
𝑃𝑚𝑙 (cos𝜃)

𝑅(𝑟) 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

�������������1

√𝑟
𝐽𝑙+ 1

2
(𝑘𝑟) (1)

But from book, equation 17.4, on page 518, we have 𝑗𝑙(𝑟) = �
1
𝑟 𝐽 12+𝑙

(𝑟)Where 𝑗𝑙(𝑟) is the

spherical Bessel function, then 𝑗𝑙(𝑘𝑟) = �
1
𝑟 𝐽 12+𝑙

(𝑘𝑟), so (1) is written in terms of spherical
Bessel functions as

𝑢�𝑟, 𝜃, 𝜙, 𝑡� = 𝑒−�𝑘
2𝛼2�𝑡

⎧⎪⎪⎨
⎪⎪⎩
cos𝑚𝜙

sin𝑚𝜙
𝑃𝑚𝑙 (cos𝜃) 𝑗𝑙(𝑘𝑟) (2)

Equation (2) is the general solution of heat equation for spherical coordinates.

Since of symmetry w.r.t. 𝜃 and 𝜙 in the solution (since sphere surface temp does not
depend on 𝜃 nor 𝜙), we can drop the terms that depends on 𝜃 by setting 𝑚 = 0, and set
𝑙 = 0 since we do not want singularity at origin which we assumed in the center of the
sphere, therefore (2) becomes

𝑢(𝑟, 𝑡) = 𝑒−�𝑘
2𝛼2�𝑡 𝑗0(𝑘𝑟) (3)
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Now, 𝑢 = 0 for time 𝑡 > 0 when 𝑟 = 𝐿, where 𝐿=radius of the sphere, hence for this
to occur, 𝑗0(𝑘𝐿)must be zero, so we want 𝑘𝐿 to be the zeros of the spherical coordinate
function. Since 𝑗0(𝑥) =

sin 𝑥
𝑥 (from equation 17.4 page 518), then we see that 𝑗0(𝑘𝐿) = 0

implies sin(𝑘𝐿) = 0 or 𝑘𝐿 = 𝑛𝜋 or 𝑘 = 𝑛𝜋
𝐿 for integer 𝑛.

Hence now (3) becomes

𝑢(𝑟, 𝑡) = 𝑒
−�� 𝑛𝜋𝐿 �

2
𝛼2�𝑡

𝑗0�
𝑛𝜋
𝐿
𝑟�

= 𝑒−�
𝑛𝜋
𝐿 𝛼�

2
𝑡 𝑗0�

𝑛𝜋𝑟
𝐿
� (4)

This is the basic candidate solution, which is in terms of 𝑗0 as is required to show. The
general solution is a sum of these solutions

𝑢(𝑟, 𝑡) = �𝑐𝑛 𝑒
−�� 𝑛𝜋𝐿 �

2
𝛼2�𝑡

𝑗0�
𝑛𝜋
𝐿
𝑟�

Write 𝑗 in terms of sin since easier to deal with. (equation 17.4 in book)

𝑢(𝑟, 𝑡) = �𝑐𝑛 𝑒
−�� 𝑛𝜋𝐿 �

2
𝛼2�𝑡 sin

𝑛𝜋𝑟
𝐿

𝑛𝜋𝑟
𝐿

𝑢(𝑟, 𝑡) = �𝑐𝑛
𝐿
𝑛𝜋𝑟

𝑒−�
𝑛𝜋
𝐿 𝛼�

2
𝑡 sin

𝑛𝜋𝑟
𝐿

𝑢(𝑟, 𝑡) = �𝑧𝑛
1
𝑟
𝑒−�

𝑛𝜋
𝐿 𝛼�

2
𝑡 sin

𝑛𝜋𝑟
𝐿

(5)

where 𝑧𝑛 is a new constant. Now, set 𝑢 = −100 at time 𝑡 = 0 as in the hint, and since final
solution is a sum of the above solution (4), then we get

−100 = �𝑧𝑛
1
𝑟

sin
𝑛𝜋𝑟
𝐿

−100 𝑟 = �𝑧𝑛 sin
𝑛𝜋𝑟
𝐿

Nowwe need to find 𝑧𝑛. Taking inner product w.r.t. sin 𝑚𝜋𝑟
𝐿 , all terms on the RHS vanish

expect for when 𝑛 = 𝑚

−100 �
𝑟=𝐿

𝑟=0
𝑟 sin

𝑛𝜋𝑟
𝐿
𝑑𝑟 = �

𝐿

0
�

∞
�
𝑚=0

𝑧𝑚 sin�
𝑚𝜋𝑟
𝐿
�� sin

𝑛𝜋𝑟
𝐿
𝑑𝑟

−100 �
𝐿2(−𝑛𝜋 cos(𝑚𝜋) + sin(𝑛𝜋))

𝑛2𝜋2 � = �
𝐿

0
𝑐𝑛 sin2�

𝑛𝜋𝑟
𝐿
� 𝑑𝑟

100 �
𝐿2 𝑛𝜋 cos(𝑛𝜋)

𝑛2𝜋2 � = 𝑧𝑛 �
𝐿

0
sin2�

𝑛𝜋𝑟
𝐿
� 𝑑𝑟

100 �
𝐿2 cos(𝑛𝜋)

𝑛𝜋 � = 𝑧𝑛
𝐿
2

200 �
𝐿 cos(𝑛𝜋)
𝑛𝜋 � = 𝑧𝑛

200
𝐿
𝑛𝜋

cos(𝑛𝜋) = 𝑧𝑛

200
𝐿
𝑛𝜋

(−1)𝑛 = 𝑧𝑛
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Substituting into (5) gives

𝑢(𝑟, 𝑡) = ��200
𝐿
𝑛𝜋

(−1)𝑛�
1
𝑟
𝑒−�

𝑛𝜋
𝐿 𝛼�

2
𝑡 sin

𝑛𝜋𝑟
𝐿

𝑢(𝑟, 𝑡) =
200𝐿
𝜋𝑟

� 1
𝑛
(−1)𝑛 𝑒−�

𝑛𝜋
𝐿 𝛼�

2
𝑡 sin

𝑛𝜋𝑟
𝐿

Now adding the 100which was subtracted at the start, hence the final solution is

𝑢(𝑟, 𝑡) = 100 +
200𝐿
𝜋𝑟

� 1
𝑛
(−1)𝑛 𝑒−�

𝑛𝜋
𝐿 𝛼�

2
𝑡 sin

𝑛𝜋𝑟
𝐿

To verify, setting 𝑟 = 𝐿 gives

𝑢(𝐿, 𝑡) = 100 +
200𝐿
𝜋𝑟

� 1
𝑛
(−1)𝑛 𝑒−�

𝑛𝜋
𝐿 𝛼�

2
𝑡 sin

𝑛𝜋𝐿
𝐿

= 100 + 0
= 100

Which is the correct boundary condition for 𝑡 > 0.

Another way to solve the above is to not convert 𝑗0 to sin function, and use the orthogo-
nality based on the spherical Bessel functions to find the coefficients. The same answer
will be obtained.
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4 chapter 13, problem 7.16 Mary Boas, second edition
Separate the wave equation in spherical coordinates and show that the 𝜃, 𝜙 solutions are
the spherical harmonics 𝑃𝑚𝑙 (cos𝜃)𝑒±𝑖𝑚𝜙 and the 𝑟 solutions are spherical Bessel functions
𝑗𝑙(𝑘𝑟) and 𝑦𝑙(𝑘𝑟)

Solution

Since we want the wave equation

∇ 2𝑢 =
1
𝑣2
𝜕2𝑢
𝜕𝑡2

Using the spherical Laplacian operator, the wave equation is written as

1
𝑟2
𝜕
𝜕𝑟�

𝑟2
𝜕𝑢
𝜕𝑟 �

+
1
𝑟2

1
sin𝜃

𝜕
𝜕𝜃�

sin𝜃
𝜕𝑢
𝜕𝜃�

+
1

𝑟2 sin2 𝜃
𝜕2𝑢
𝜕𝜙2 =

1
𝑣2
𝜕2𝑢
𝜕𝑡2

Let

𝑢�𝑟, 𝜃, 𝜙, 𝑡� = 𝑅(𝑟)Θ(𝜃)Φ�𝜙�𝑇(𝑡)

Substituting into the wave equation and multiplying by 1
𝑅(𝑟)Θ(𝜃)Φ�𝜙�𝑇(𝑡)

1
𝑅
1
𝑟2
𝑑
𝑑𝑟�

𝑟2
𝑑𝑅
𝑑𝑟 �

+
1
Θ
1
𝑟2

1
sin𝜃

𝑑
𝑑𝜃�

sin𝜃
𝑑Θ
𝑑𝜃 �

+
1

𝑟2 sin2 𝜃
1
Φ
𝑑2Φ
𝑑𝜙2 =

1
𝑣2
1
𝑇
𝑑2𝑇
𝑑𝑡2

(1)

Applying variable separation. Multiplying (1) by 𝑟2 sin2 𝜃 gives

sin𝜃
𝑅

𝑑
𝑑𝑟�

𝑟2
𝑑𝑅
𝑑𝑟 �

+
1
Θ

sin𝜃
𝑑
𝑑𝜃�

sin𝜃
𝑑Θ
𝑑𝜃 �

+
�������1
Φ
𝑑2Φ
𝑑𝜙2 =

𝑟2 sin2 𝜃
𝑣2

1
𝑇
𝑑2𝑇
𝑑𝑡2

The last term on the LHS is a constant. Therefore 1
Φ

𝑑2Φ
𝑑𝜙2 is a constant, say −𝑚2, hence

Φ =

⎧⎪⎪⎨
⎪⎪⎩
sin𝑚𝜙

cos𝑚𝜙
(2)

And (1) becomes

1
𝑅
1
𝑟2
𝑑
𝑑𝑟�

𝑟2
𝑑𝑅
𝑑𝑟 �

+
1
Θ
1
𝑟2

1
sin𝜃

𝑑
𝑑𝜃�

sin𝜃
𝑑Θ
𝑑𝜃 �

+
−𝑚2

𝑟2 sin2 𝜃
=
���������1
𝑣2
1
𝑇
𝑑2𝑇
𝑑𝑡2

(1A)

Now separating the Time solution. The RHS does not depend on 𝑟, 𝜃, 𝜙, and is equal to
something that does. Hence it is a constant. Say −𝑘2, therefore

1
𝑣2
1
𝑇
𝑑2𝑇
𝑑𝑡2

= −𝑘2

The above do not need to be solved as not required by problem, however its solution is
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𝑑2𝑇
𝑑𝑡2

= − 𝑣2𝑘2𝑇

𝑑2𝑇
𝑑𝑡2

+ 𝑣2𝑘2 𝑇 = 0

𝑇(𝑡) = 𝐴𝑒𝑖𝑘𝑣𝑡 + 𝐵𝑒−𝑖𝑘𝑣𝑡

Now (1A) becomes

1
𝑅
1
𝑟2
𝑑
𝑑𝑟�

𝑟2
𝑑𝑅
𝑑𝑟 �

+
1
Θ
1
𝑟2

1
sin𝜃

𝑑
𝑑𝜃�

sin𝜃
𝑑Θ
𝑑𝜃 �

+
−𝑚2

𝑟2 sin2 𝜃
= −𝑘2

1
𝑅
1
𝑟2
𝑑
𝑑𝑟�

𝑟2
𝑑𝑅
𝑑𝑟 �

+
1
Θ
1
𝑟2

1
sin𝜃

𝑑
𝑑𝜃�

sin𝜃
𝑑Θ
𝑑𝜃 �

+
−𝑚2

𝑟2 sin2 𝜃
+ 𝑘2 = 0 (1B)

Separating the 𝜃 solution. multiplying (1B) by 𝑟2 gives

1
𝑅
𝑑
𝑑𝑟�

𝑟2
𝑑𝑅
𝑑𝑟 �

+
�������������������������������������������1
Θ

1
sin𝜃

𝑑
𝑑𝜃�

sin𝜃
𝑑Θ
𝑑𝜃 �

+
−𝑚2

sin2 𝜃
+𝑟2𝑘2 = 0 (1C)

The bracketed term is a constant, hence

1
Θ

1
sin𝜃

𝑑
𝑑𝜃�

sin𝜃
𝑑Θ
𝑑𝜃 �

−
𝑚2

sin2 𝜃
= −𝜁

1
Θ

1
sin𝜃

𝑑
𝑑𝜃�

sin𝜃
𝑑Θ
𝑑𝜃 �

−
𝑚2

sin2 𝜃
+ 𝜁 = 0

1
sin𝜃

𝑑
𝑑𝜃�

sin𝜃
𝑑Θ
𝑑𝜃 �

−
𝑚2

sin2 𝜃
Θ + 𝜁Θ = 0

As per page 568 in text book, the above is the equation for the associated Legendre
functions if 𝜁 = 𝑙(𝑙 + 1) The solution is given by

Θ = 𝑃𝑚𝑙 (cos𝜃) (4)

Hence the 𝜃, 𝜙 solutions are given by equations (3) and (4)

= 𝑃𝑚𝑙 (cos𝜃)

⎧⎪⎪⎨
⎪⎪⎩
sin𝑚𝜙

cos𝑚𝜙

= 𝑃𝑚𝑙 (cos𝜃)𝑒±𝑖𝑚𝜙

Which is what we are required to show.

(1C) now becomes

1
𝑅
𝑑
𝑑𝑟�

𝑟2
𝑑𝑅
𝑑𝑟 �

− 𝜁 + 𝑟2𝑘2 = 0

For the radial solution, from equation above for radial equation:
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𝑑
𝑑𝑟�

𝑟2
𝑑𝑅
𝑑𝑟 �

+ 𝑅 𝑟2𝑘2 − 𝑅𝜁 = 0

𝑟2
𝑑2𝑅
𝑑𝑟2

+ 2𝑟
𝑑𝑅
𝑑𝑟

+ 𝑅 𝑟2𝑘2 − 𝑅𝜁 = 0

Dividing by 𝑟2

𝑑2𝑅
𝑑𝑟2

+
2
𝑟
𝑑𝑅
𝑑𝑟

+ 𝑅 𝑘2 − 𝑅
𝜁
𝑟2
= 0

𝑑2𝑅
𝑑𝑟2

+
2
𝑟
𝑑𝑅
𝑑𝑟

+ � 𝑘2 −
𝜁
𝑟2 �
𝑅 = 0 (5)

The above equation is of the form 16.1 on page 516:

𝑦′′ +
1 − 2𝑎
𝑥

𝑦′ + ��𝑏𝑐𝑥𝑐−1�
2
+
𝑎2 − 𝑝2𝑐2

𝑥2 �𝑦 = 0 (16.1)

Whose solution is given by 16.2: 𝑦 = 𝑥𝑎𝑍𝑝(𝑏𝑥𝑐).Hence by comparison between 16.1 and
(5) (and writing the independent variable 𝑥 as 𝑟

1 − 2𝑎
𝑟

=
2
𝑟

�𝑏𝑐𝑟𝑐−1�
2
= 𝑘2

𝑎2 − 𝑝2𝑐2

𝑟2
= −

𝜁
𝑟2

Therefore, 𝑐 = 1, and 𝑏 = 𝑘, 1 − 2𝑎 = 2 →𝑎 = 1
2 . And 𝑎2 − 𝑝2𝑐2 = −𝜁 ⇒ 1

4 − 𝑝
2 =

−𝜁 ⇒𝑝 = �
1
4 + 𝜁

So solution to radial component is

𝑅 = 𝑟
1
2𝑍

�
1
4+𝜁

(𝑘𝑟)

Where 𝑍 stands for 𝐽 or 𝑁. Let �
1
4 + 𝜁 = 𝑛 some constant (since 𝜁 is a constant). The

solution is

𝑅 = √𝑟 𝐽𝑛(𝑘𝑟)

Or

𝑅 = √𝑟𝑌𝑛(𝑘𝑟)

From equation (17.4) we see that the 𝐽 and 𝑌 Bessel function are related to the spherical
Bessel function 𝑗 and 𝑦, this means the radial solution 𝑅(𝑟) can be expressed in terms of
the spherical Bessel functions.
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5 chapter 13, problem 7.17 Mary Boas, second edition

Separate the Schrodinger equation ∇ 2𝜓 + (𝜖 − 𝑏𝑉)𝜓 = 0 in spherical coordinates

Solution

𝑉 is function of 𝑟 only, so we have

∇ 2𝜓�𝑟, 𝜃, 𝜙� + (𝜖 − 𝑏𝑉(𝑟))𝜓�𝑟, 𝜃, 𝜙� = 0

Using the spherical Laplacian operator , the above equation is written as
1
𝑟2
𝜕
𝜕𝑟�

𝑟2
𝜕𝑢
𝜕𝑟 �

+
1
𝑟2

1
sin𝜃

𝜕
𝜕𝜃�

sin𝜃
𝜕𝑢
𝜕𝜃�

+
1

𝑟2 sin2 𝜃
𝜕2𝑢
𝜕𝜙2 + (𝜖 − 𝑏𝑉(𝑟))𝜓�𝑟, 𝜃, 𝜙� = 0

Let

𝜓�𝑟, 𝜃, 𝜙� = 𝑅(𝑟)Θ(𝜃)Φ�𝜙�

Substitutingg into the above equation and multiplying by 𝑟2

𝑅(𝑟)Θ(𝜃)Φ�𝜙�
gives

���������������������������������������1
𝑅
𝑑
𝑑𝑟�

𝑟2
𝑑𝑅
𝑑𝑟 �

+ (𝜖 − 𝑏 𝑉(𝑟)) 𝑟2 +
1
Θ

1
sin𝜃

𝑑
𝑑𝜃�

sin𝜃
𝑑Θ
𝑑𝜃 �

+
1
Φ

1
sin2 𝜃

𝑑2Φ
𝑑𝜙2 = 0 (1)

The bracketed part above depends only on 𝑟 and is equal to a function that does not
depend on 𝑟, hence it must be constant. Calling it 𝑘, (1) becomes

𝑘 +
1
Θ

1
sin𝜃

𝑑
𝑑𝜃�

sin𝜃
𝑑Θ
𝑑𝜃 �

+
1
Φ

1
sin2 𝜃

𝑑2Φ
𝑑𝜙2 = 0 (2)

Multiplying by sin2 𝜃 gives

𝑘 sin2 𝜃 +
1
Θ

sin𝜃
𝑑
𝑑𝜃�

sin𝜃
𝑑Θ
𝑑𝜃 �

+
�������1
Φ
𝑑2Φ
𝑑𝜙2 = 0

The bracketed part can be separated out 1
Φ
𝑑2Φ
𝑑𝜙2 = −𝑚

2. Hence the solutions are

Φ =

⎧⎪⎪⎨
⎪⎪⎩
sin𝑚𝜙

cos𝑚𝜙

So now equation (2) becomes

𝑘 +
1
Θ

1
sin𝜃

𝑑
𝑑𝜃�

sin𝜃
𝑑Θ
𝑑𝜃 �

−
𝑚2

sin2 𝜃
= 0

1
sin𝜃

𝑑
𝑑𝜃�

sin𝜃
𝑑Θ
𝑑𝜃 �

−
𝑚2

sin2 𝜃
Θ + 𝑘Θ = 0

As per page 568 in text book, this has a solution ofΘ = 𝑃𝑚𝑙 (cos𝜃). Hence the 𝜃, 𝜙 solution
is

𝑃𝑚𝑙 (cos𝜃)Φ =

⎧⎪⎪⎨
⎪⎪⎩
sin𝑚𝜙

cos𝑚𝜙

We notice that the angular solution are identical to the Laplace equation and expressed
in terms of spherical harmonics.
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6 chapter 13, problem 8.1, Mary Boas, second edition.

Show that gravitational potential 𝑉�𝑥, 𝑦, 𝑧� = −𝐺𝑚
𝑟 satisfies Laplace equation

Solution

𝑉�𝑥, 𝑦, 𝑧� = −
𝐺𝑚
𝑟
= −

𝐺𝑚

�𝑥2 + 𝑦2 + 𝑧2
= −𝐺𝑚�𝑥2 + 𝑦2 + 𝑧2�

− 1
2

Hence

𝜕𝑉
𝜕𝑥

= −𝐺𝑚�−
1
2�
�𝑥2 + 𝑦2 + 𝑧2�

− 3
2 (2𝑥)

= 𝐺𝑚 �𝑥2 + 𝑦2 + 𝑧2�
− 3
2 (𝑥)

𝜕2𝑉
𝜕𝑥2

= 𝐺𝑚 ��𝑥2 + 𝑦2 + 𝑧2�
− 3
2 × 1 + 𝑥�−

3
2
�𝑥2 + 𝑦2 + 𝑧2�

− 5
2 (2𝑥)��

= 𝐺𝑚 ��𝑥2 + 𝑦2 + 𝑧2�
− 3
2 − 3𝑥2�𝑥2 + 𝑦2 + 𝑧2�

− 5
2 � (1)

Similarly, we find

𝜕2𝑉
𝜕𝑦2

= 𝐺𝑚 ��𝑥2 + 𝑦2 + 𝑧2�
− 3
2 − 3𝑦2�𝑥2 + 𝑦2 + 𝑧2�

− 5
2 � (2)

And

𝜕2𝑉
𝜕𝑧2

= 𝐺𝑚 ��𝑥2 + 𝑦2 + 𝑧2�
− 3
2 − 3𝑧2�𝑥2 + 𝑦2 + 𝑧2�

− 5
2 � (3)

Add (1),(2),(3) we get

𝜕2𝑉
𝜕𝑥2

+
𝜕2𝑉
𝜕𝑦2

+
𝜕2𝑉
𝜕𝑧2

= 3𝐺𝑚 �𝑥2 + 𝑦2 + 𝑧2�
− 3
2 − 3𝐺𝑚 �𝑥2 + 𝑦2 + 𝑧2�

− 5
2 �𝑥2 + 𝑦2 + 𝑧2�

∇ 2𝑉�𝑥, 𝑦, 𝑧� = 3𝐺𝑚 �𝑥2 + 𝑦2 + 𝑧2�
− 3
2 − 3𝐺𝑚 �𝑥2 + 𝑦2 + 𝑧2�

− 3
2

∇ 2𝑉�𝑥, 𝑦, 𝑧� = 0

Hence 𝑉�𝑥, 𝑦, 𝑧� satisfies Laplace equation.
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7 chapter 13, problem 8.2 Mary Boas, second edition
Using formulas in chapter 12 section 5, sum the series in 8.20 to get 8.21

Solution

Series in 8.20 is

𝑞�
𝑙

𝑅2𝑙+1 𝑃𝑙(cos𝜃)
𝑟𝑙+1 𝑎𝑙+1

(8.20)

We want to show that the above can simplify to 8.21, which is

𝑅
𝑎 𝑞

�
𝑟2 + �𝑅

2

𝑎
�
2
− 2𝑟�𝑅

2

𝑎
� cos𝜃

(8.21)

Let 𝑅2

𝑎𝑟 = ℎ then
𝑅2

𝑎 = 𝑟ℎ , and 𝑅
𝑎 =

𝑟ℎ
𝑅 and cos𝜃 = 𝑥

8.21 becomes

𝑅
𝑎 𝑞

�
𝑟2 + �𝑅

2

𝑎
�
2
− 2𝑟�𝑅

2

𝑎
� cos𝜃

=
𝑟ℎ
𝑅 𝑞

�𝑟
2 + (𝑟ℎ)2 − 2𝑟(𝑟ℎ)𝑥

=
𝑟ℎ
𝑅 𝑞

√𝑟2 + 𝑟2ℎ2 − 2𝑟2ℎ𝑥

=
𝑟ℎ
𝑅 𝑞

𝑟√1 + ℎ2 − 2ℎ𝑥

From 5.1 on page 490, we see that Φ(𝑥, ℎ) = �1 − 2𝑥ℎ + ℎ2�
− 1
2

So the above equation becomes

𝑅
𝑎 𝑞

�
𝑟2 + �𝑅

2

𝑎
�
2
− 2𝑟�𝑅

2

𝑎
� cos𝜃

=
𝑟ℎ
𝑅 𝑞
𝑟
Φ(𝑥, ℎ)

Using 5.2, we expand the Φ(𝑥, ℎ) as�
𝑙
ℎ𝑙𝑃𝑙(𝑥)

Hence

𝑅
𝑎 𝑞

�
𝑟2 + �𝑅

2

𝑎
�
2
− 2𝑟�𝑅

2

𝑎
� cos𝜃

=
𝑟ℎ
𝑅 𝑞
𝑟
Φ(𝑥, ℎ)

=
ℎ𝑞
𝑅
�
𝑙
ℎ𝑙𝑃𝑙(𝑥)

Substitute back cos𝜃 = 𝑥, and 𝑅2

𝑎𝑟 = ℎ in above we get
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𝑅
𝑎 𝑞

�
𝑟2 + �𝑅

2

𝑎
�
2
− 2𝑟�𝑅

2

𝑎
� cos𝜃

=
�𝑅

2

𝑎𝑟
�𝑞

𝑅

𝑙
�
𝑙
�
𝑅2

𝑎𝑟 �
𝑙

𝑃𝑙(𝑥)

=
𝑅𝑞
𝑎𝑟

𝑙
�
𝑙

𝑅2𝑙

𝑎𝑙𝑟𝑙
𝑃𝑙(𝑥)

= 𝑞
𝑙
�
𝑙

𝑅2𝑙+1

𝑎𝑙+1𝑟𝑙+1
𝑃𝑙(𝑥)

Which is 8.20. Hence this shows that 8.20 can be simplified to 8.21
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8 chapter 13, problem 8.3, Mary Boas, second edition.
Do the problem in example 1 for the case of a charge 𝑞 inside a grounded sphere to
obtain the potential 𝑉 inside the sphere.

Solution

Starting the example from equation 8.15, which is the basic solution of Laplace in spher-
ical coordinates

⎧⎪⎪⎨
⎪⎪⎩
𝑟𝑙

𝑟−𝑙−1
𝑃𝑚𝑙 (cos𝜃)

⎧⎪⎪⎨
⎪⎪⎩
sin𝑚𝜙

cos𝑚𝜙

Since we want a solution inside the sphere, we select the 𝑟𝑙 solution for 𝑟 since we do
not want the solution to go to∞ as 𝑟 → 0

Also, since the solution is independent of the 𝜙, we do not want solution with 𝜙, hence
set 𝑚 = 0 , hence the basic solution is

𝑉 = 𝑟𝑙 𝑃𝑙(cos𝜃)

Since the general solution is a sum of these solutions, we get

𝑉 =�
𝑙
𝑐𝑙 𝑟𝑙 𝑃𝑙(cos𝜃)

Now add a solution to Laplace solution so that the potential is zero at the surface, this
is 𝑉𝑞 as shown in the example on page 575:

𝑉𝑞 =
𝑞

√𝑟2 − 2𝑎𝑟 cos𝜃 + 𝑎2

hence the general solution now becomes

𝑉 = 𝑉𝑞 +�
𝑙
𝑐𝑙 𝑟𝑙 𝑃𝑙(cos𝜃)

=
𝑞

√𝑟2 − 2𝑎𝑟 cos𝜃 + 𝑎2
+�

𝑙
𝑐𝑙 𝑟𝑙 𝑃𝑙(cos𝜃) (1)

Now, boundary condition is 𝑉 = 0 at 𝑟 = 𝑅 so from (1)

0 = 𝑉𝑞 +�
𝑙
𝑐𝑙 𝑅𝑙 𝑃𝑙(cos𝜃)

=
𝑞

√𝑅2 − 2𝑎𝑅 cos𝜃 + 𝑎2
+�

𝑙
𝑐𝑙 𝑅𝑙 𝑃𝑙(cos𝜃) (2)

As per example, 𝑞

√𝑅2−2𝑎𝑅 cos𝜃+𝑎2
= 𝑞�

𝑙

𝑅𝑙𝑃𝑙(cos𝜃)
𝑎𝑙+1

Hence (2) becomes

0 = 𝑞�
𝑙

𝑅𝑙𝑃𝑙(cos𝜃)
𝑎𝑙+1

+�
𝑙
𝑐𝑙 𝑅𝑙 𝑃𝑙(cos𝜃)

−𝑞�
𝑙

𝑅𝑙𝑃𝑙(cos𝜃)
𝑎𝑙+1

=�
𝑙
𝑐𝑙 𝑅𝑙 𝑃𝑙(cos𝜃)
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Compare coefficients, we see that

𝑐𝑙𝑅𝑙 = −𝑞
𝑅𝑙

𝑎𝑙+1
→ 𝑐𝑙 = −𝑞

1
𝑎𝑙+1

Hence (1) becomes

𝑉 =
𝑞

√𝑟2 − 2𝑎𝑟 cos𝜃 + 𝑎2
− 𝑞�

𝑙

𝑟𝑙

𝑎𝑙+1
𝑃𝑙(cos𝜃)

Now we sum the series solution. Need to convert the series into form shown in 5.2:
Φ(𝑥, ℎ) = �

𝑙
ℎ𝑙 𝑃𝑙(𝑥) then we can replace the sum with (1 − 2𝑥ℎ + ℎ2)−

1
2

So we need to have 1
𝑎
� 𝑟
𝑎
�
𝑙
= ℎ𝑙 hence

(1 − 2𝑥ℎ + ℎ2)−
1
2 = (1 − 2𝑥�

𝑟
𝑎2
� + �

𝑟2

𝑎3 �
)−

1
2

Then the series solution sums to be

𝑉 =
𝑞

√𝑟2 − 2𝑎𝑟 cos𝜃 + 𝑎2
−

𝑞

�
(1 − 2 cos𝜃� 𝑟

𝑎2
� + � 𝑟

2

𝑎3
�

The second term above is the potential of a charge −𝑞 at a point �0, 0, 1𝑎�, thus we could
replace the grounded sphere by this charge and get the same potential for 𝑟 > 𝑅 this is
called the method of images, per book, page 576 discussion.
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