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1 chapter 13, problem 6.3 Mary Boas, second edition

Problem

(my note: I'll use f for frequency instead of book v (mu)) since v looks very close to v
the speed of the wave, to avoid confusion).

Separate the wave equation in 2D rectangular coordinates. Consider the membrane
shown, rigidly attached to its supports along the sides. Show that its characteristic

. 4 n 2 m 2 age .
frequencies are f,,,, = (5) (;) + (3) where n,m are positive integers and sketch the

normal modes of vibration corresponding to the first few frequencies. Next suppose the
membrane is square, show that in this case there may be two or more normal modes of
vibration corresponding to a single frequency. Sketch several normal modes giving rise
to the same frequency.

Solution

NS S

N
AN
N
N
N
AN
\j
x

Wave equation in rectangular coordinates is &—ZZ + a_zz = 19_22
! & ax2 " 2 v ot

Let solution

z(x, Y, t) = X(x)Y(y)T(t)

Then we get after substitution

1
YTX” + XTY” = EXYT”
Divide by YTX we get

X/l Y// 1 T//

_— — = ——

X Y ofT
Each term above is a constant since no one term depend on more than one variable in
the others.

124 44 4

X 1T
So, < =constant, 7:constant, e =constant

XI/

Letyz—ki

Y//_ 2
LetT——ky

1T _ 12 12 _ 32
SO;T__kx_ky__kt

So the 3 ODE equations are



X//

x =7 =

‘Y//

+ = k2 (2)
?T:_kx_ky:_(kfrky):_v (k2 +K5) (3)

equation (1) is an ODE whose solution is cos, sin

cos k,x
X(x) =
sin k,x
Similarly
coskyy
Y(y) =
sink,y
similarly

cos(t, /vz(k,% +kj ) )
sin(if1 /vz(k§ +kZ ) )

T(t) =

Hence the general solution is

cos k,x cosk,y cos(tw [v2 (k% +kZ ) )
sin kX sinkyy sin(t‘1 /Z)Z(k% +kj ) )

So we have a total of 6 possible general solutions

z(x, Yy, t) =

Now apply boundary conditions to remove solutions that can not be fitted.

Since membrane is fixed at y = 0, then we want z = 0 when y = 0 hence we reject the
cos k,y since that is not zeroaty = 0

And since we want want z = 0 when x = 0 hence we reject the cos k,x since that is not
zeroatx =0

So now our solution looks like

cos(tw/vz(kﬁ +kZ ) )
sin(if1 /vz(k§ + Kk ) )

z(x, Y, t) = sin(k,x) sin(kyy)

Now need to find k, and k,



Since membrane if also fixed at y = b then we want z = 0 when y = b. hence was want
sin(kyb) = 0 then happens when k,b = mm for an integer m

So

The same for k, we want z = 0 when x = a. hence was want sin(k,a) = 0 then happens
when k,a = nm for some integer 7, so

Hence the general solution now looks like

ol (2"

z(x,y, t) = sin(%nx) sin(%y)

nrt mrt

z(x,y,t) = sin(7x) sin(T ) (4)
sir{mt (P + (2) )

Now, from the general form of a wave equation, which can be written as z = A cos(wt)
or Asin(wt) where w is the angular velocity in radiance per second.

Hence by comparing to above, we see that

but w = 21 f where f is the frequency in hertz or cycles per seconds.

-5 6

Which is what we are required to show.

hence

To plot the normal modes of vibrations, need to find where the solutions are zero as
I modify n, m. from (4), looking at the space components of the solution since that is
what is of interest here,

z(x, y) = sin(%x) sin(%y)

Forn=1,m=1



Tt

z(x,y, t) = sin(%x) sin(by)
This is zero when x = a or y = b hence the whole membrane will vibrate internally
expect at boundaries.

n=2m=1
z(x, Yy, t) = sin(zfx) sin(%y)
This is zero when x = g and x = gor y = b Hence we have a normal mode at line
x = a/2 (see diagram below).
n=3m=1
n

z(x, Yy, t) = sin(%nx) sin(by)

. . a
This is zero when x =g and x = -

X = 23—aor y = b Hence we have a normal mode at line
x=a/3 and x = 23—a line (see diagram below).

n=1m=2

z(x,y, t) = sin(%x) sin(%ny)

This is zero when x = aand or y = g Hence we have a normal mode at line y = g line
(see diagram below).

n=1m=3

z(x, Yy, t) = sin(gx) sin(%ny)

This is zerowhenx =a ory =bandy = g,y = 23—b Hence we have a normal mode at

liney =b/3 andy = %b line (see diagram below).
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s S s YOI DI
./ S S i 4 S S i
vi N=2,M=1 vt N=2,M=2
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When the membrane is square, we have a = b hence the solution becomes

col rany 2+ 2"

. (N7 . (mT
z(x,y, t) = sm(7x) sm(7y)

sin(nvt (%)2

+
—~
N
~—

N
N—

So, the frequency of the wave in the membrane takes values of

This shows that for example, for n = 7 and m = 1 we will get the same frequencies as
for n =1 and m = 7. hence we will get two or more modes of vibrations for the same
frequency.



2 chapter 13, problem 7.2 Mary Boas, second edition

Find steady state temp. distribution inside a sphere of r = 1 when the surface temp. is
u = cos 6 — (cos 6)3

Solution

Need to use Laplace equation here. The basic solution to this problem is derived and
given in text book at page 568

sinma¢

u(r, o, qb) = rlP}”(cos 6){ (1)

CoSs mao

Where [ is a constant (one that occurs in associated Legendre equation, equation 10.1 in
text, page 504):

m? _
1—x2 y =0

and Pj"(x) is the associated Legendre functions (solution of the associated Legendre
equation). and 7, 0, ¢ are the spherical coordinates.

(1-x2)y” = 2xy’ + |10 +1) -

Since the temp. at the surface is a function of 0 then I can not remove the dependency
of the solution on 0 as we have done in other problems. However, the solution is inde-
pendent of ¢» so m must be zero, and we can drop that ¢ dependency, hence the basic
solution becomes

u(r, 0) = r'Py(cos 0) (2)

Since a general solution is a sum of these solutions, we get

u(r,0) = icl ' P)(cos 0) (3)
1=0

Whenr =1

u(1,60) = cos 0 — (cos 6)3 = ch ! P)(cos ) (4)
1=0

Writing cos 0 = x, I see that cos 6 — (cos 0)° = x — x> But P5(x) = _73x + §x3 and P;(x) = x

Hence I need a combination of P3(x) and P;(x) which will add to x — x> so I can put that
on the LHS of (4) to solve for the ¢;

4 _2 _ A 2B, 58 A 6 3. .3
Try 10P1(x) 5P3(3C) = 10(x) 5( SX+ X ) =Xt X =x—x
Which is what we want.

Hence (4) can be written as

2 2 -
u(,0) = gPl(cos 0) - ng(cos 0) = ch 1! Py(cos 6) (5)
1=0

Expanding the sum and compare c; I only need to goup to/ =3



2 2
gPl (cos 0) — 5P3(cos 0) = cy 1° Py(cos 0) + ¢1 rt P1(cos 0) + c, 1? Py(cos 0) + c5 13 P5(cos 6)

Hence

Q1N

1=
3 =—=

All other ¢; are zero

So final solution from (3) is

u(r, 0) = Ye; ' Py(cos 0)
1=0

2 2
=zt Pi(cos 6) — = 13 P5(cos 0)



3 chapter 13, problem 7.15 Mary Boas, second edition

r ' *1n (/.Y) should be included. Keplace ¢;7 m (/.11) by (a;7 + b7 ° *}.

15. A sphere initially at 0° has its surface kept at 100° from ¢ = 0 on (for example, a frozen
potato in boiling water!). Find the time-dependent temperature distribution. Hint : Subtract
100° from all temperatures and solve the problem; then add the 100° to the answer. Can
you justify this procedure? Show that the Legendre function required for this problem is P,
and the r solution is (1/\/;)J1/2 or jo [see (17.4) in Chapter 12]. Since spherical Bessel
functions can be expressed in terms of elementary functions, the series in this problem can
be thought of as either a Bessel series or a Fourier series. Show that the results are
identical.

L %4 fal B o o - ] LI | 1 . 1 R 1 n i

Figure 1: the Problem statement

Solution

Since we want the time-dependent solution, we use the heat diffusion equation

1 du

2
U=——
a? ot

The heat equation in spherical coordinates is given by equation 7.5 on page 567, plus
an additional term called A as was derived in class lecture, where A = k*a?, and T(t) =

_12 2 . .
e ¥"t  Hence the equation is

1 d{,dR\ 1 1 d e\  m?
) s~ (sine— ] - R\ =0
R(r) dr(r dr)+®sin8d6(sm d@) sin” 0 +( ! )r

Where m is a constant to make @(qb) periodic as per page 567 in text. Using separation
of variables we obtained as per lecture notes, the general solution is

R(r) solution

cosm

u(r,0,¢,t) = o (2?)t P7"(cos 6) %]Hé(kr) (1)

sin me¢ Vr

But from book, equation 17.4, on page 518, we have j;(r) = \/g J1 +l(r) Where ji(r) is the
2

spherical Bessel function, then j;(kr) = \/g J1 +l(kr), so (1) is written in terms of spherical
2

Bessel functions as

(k2a?): cos ma@

u(r,0,¢,t) =e P"(cos 6) jj(kr) (2)

sin ma¢

Equation (2) is the general solution of heat equation for spherical coordinates.

Since of symmetry w.r.t. 6 and ¢ in the solution (since sphere surface temp does not
depend on 0 nor ¢), we can drop the terms that depends on 0 by setting m = 0, and set
I = 0 since we do not want singularity at origin which we assumed in the center of the
sphere, therefore (2) becomes

u(r,t) = e ) jodkr) (3)
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Now, u = 0 for time t > 0 when r = L, where L=radius of the sphere, hence for this
to occur, jo(kL) must be zero so we want kL to be the zeros of the spherical coordinate

function. Since jo(x) = 2= (from equat1on 17.4 page 518), then we see that jy(kL) = 0
implies sin(kL) = 0 or kL =nmork=— " for integer 1.

Hence now (3) becomes

= (F (1) 4)

This is the basic candidate solution, which is in terms of j; as is required to show. The
general solution is a sum of these solutions

e, = Yy T ()

Write j in terms of sin since easier to deal with. (equation 17.4 in book)

. nmr
22\ sin —

u(r t) = ZC” ( ) T},L

L
L _(ﬂa)zt nr
,t = _ L in —
u(r, t) chnnre sin T
1 _("_ﬂa)zt nmr
1) = -e\L in — 5
u(r, t) Zznre sin — (5)

where z,, is a new constant. Now, set u = —100 at time ¢ = 0 as in the hint, and since final
solution is a sum of the above solution (4), then we get

Now we need to find z,. Taking inner product w.r.t. sin -, all terms on the RHS vanish

expect for when n =m

L 4

r=L L[
-100 rsin ?dr = fo (Z Z sin(?)) sin %dr

r=0 0
100 [ L?(-nm cos(r;mz) + sin(nmn)) | fL ¢, sin (rmr) ir
nem
L2 L
100 nm cos(nm) | _ 2 f sin (nnr)
7’127'(2 0
100 [LZ cos(nm) | . L
nmw | 2
200 l L cos(nm) | _.
nmo |

L
200— cos(nn) = z,
nmn

L
200— (-1)" =z,
nrt
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Substituting into (5) gives

L 1 _(mm,)? nmr
(1) = Y;|200— (-1)" |- ATt 5 T
u(r, t) [ = ( )]re sin T
200L « 1 ELS
= 200 Ly et g
T n

L

Now adding the 100 which was subtracted at the start, hence the final solution is

200L « 1 g 2
u(r,t) =100 + —— Y, — (—1)”e(L V't sin
Tr n L

To verify, setting r = L gives

200L 1 (o L
(L, ) =100 + —=FV 2 ()t o (Tt gin T
r n L

=100+0
=100

Which is the correct boundary condition for ¢ > 0.

Another way to solve the above is to not convert j, to sin function, and use the orthogo-
nality based on the spherical Bessel functions to find the coefficients. The same answer
will be obtained.
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4 chapter 13, problem 7.16 Mary Boas, second edition

Separate the wave equation in spherical coordinates and show that the 0, ¢ solutions are
the spherical harmonics P;"(cos 0)e*™® and the r solutions are spherical Bessel functions
jitkr) and y;(kr)

Solution

Since we want the wave equation

1 9%u
?2 o

Vu =

Using the spherical Laplacian operator, the wave equation is written as

1 0 &u 1 1 0
r28r ar rzsm989

( &u) 1 %u 1 3d%u
sin 0 +

P2t 0992 02 I
Let
u(r, 0,,t) = R(NOO)D()T(t)

Substituting into the wave equation and multiplying by W

R r2dr

11d( dR) 11 1 d( d@) 1 140 11d4°T

0— |+ el A d 1
ir) T @rsnods ™" Psin0Odp? 2T di D)

Applying variable separation. Multiplying (1) by 7% sin? 6 gives

—_—
sinfd(,dR) 1 . df. dO) 140 _ sin®01d°T
R ar\ ar) e\ ae) Toir T T 2 Tae

1 d*®
The last term on the LHS is a constant. Therefore — o 107 is a constant, say —m?, hence

cos maq

o :{ sin ma¢ )

And (1) becomes

—_—~
11d{,dR 11 1 d(.  dO —m? 1142T
+ = (1A)

R72dr\ dr) " ©r”snodo Psin?0 02T d2

Now separating the Time solution. The RHS does not depend on r, 9, ¢, and is equal to
something that does. Hence it is a constant. Say —k?, therefore

L18T _

02 T dt?

The above do not need to be solved as not required by problem, however its solution is
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a7
i v*k*T
2

T
— + k2 T=0

dt?
T(t) — Aeikvt + Be—z’kvt

Now (1A) becomes

11d(dR)111d( d@) —m? )
——=— +———— =k

O r2sin0do

11d(,dR) 11 1 df.  dO) —m? TR0 (1)
dr ®r2 sin 6 dO sin r2 sin” O B

== 0—
R r2dr\ dr sin

R 72 dr do

Separating the 6 solution. multiplying (1B) by 72 gives

1d(,dR\ 1 1 d(_ d©\ -m?
- - e 212 _
R dr( dr) @sin@d@( Qde) snzg TTE=0 (19

The bracketed term is a constant, hence

11 d(_ do\ m .
0sin0d0\°" 730 sin2e

1 1 d( 4O m? 40
- 2 sino™=2) - _
Osin0do\> " do] sin?o

1 d de m2

sm@d@( ngd@) sin ©+c0=0

As per page 568 in text book, the above is the equation for the associated Legendre
functions if C = I(I + 1) The solution is given by

© = Pj*(cos 0)

Hence the 0, ¢ solutions are given by equations (3) and (4)

= P;"(cos 8){ st

cos mao

= P;"(cos 9)eximd

Which is what we are required to show.

(1C) now becomes

1 d(,dR
— 212 _
Rdr( dr) C+rk=0

For the radial solution, from equation above for radial equation:
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d( ,dR 212 _
dr(r dr)+Rrk RC=0
d’R dR
2 212 _
7 e +2r_dr +Rrkc—RC=0
Dividing by r2
d*R 2 dR C
—— +Z _4+RK*-R==0
dr? * r dr M 72
d’R 2 dR C
a2 7 dr+(k2_r_2)R:0 ®)

The above equation is of the form 16.1 on page 516:

(bcxc‘l)z +

a
y// + y/ + —]]/ =0 (161)

X

Whose solution is given by 16.2: y = x"Z,(bx‘). Hence by comparison between 16.1 and
(5) (and writing the independent variable x as r

1-20 2
ror
(bcrc‘l) = k?
a2 — P2 C
r2 2
T 1
Therefore,c = 1,and b = k,1 -2a = 2 —>a_2.Andaz—pzc2 = - = Z—pz =

_C:P=\/i+C

So solution to radial component is

1
R=r2Z g—(kr)
Vit

1
Where Z stands for | or N. Let ; T € = nsome constant (since C is a constant). The
solution is

R = Nr ], (kr)

R=rY,(kr)

From equation (17.4) we see that the ] and Y Bessel function are related to the spherical
Bessel function j and y, this means the radial solution R(r) can be expressed in terms of
the spherical Bessel functions.
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5 chapter 13, problem 7.17 Mary Boas, second edition

Separate the Schrodinger equation V2¢ + (¢ — bV)i = 0 in spherical coordinates
Solution

V is function of r only, so we have

V2y(r,0,¢) + (e = bVR)p(r, 0,¢) =
Using the spherical Laplacian operator , the above equation is written as
10 8u 1 1 0 Ju s 1 %
2ar\" ar) " 72sine a0 0] r2sin® 6 d¢?

(sm 0— +(Ee-bV)Y(r,0,¢) =0

Let

Y(r,0,¢) = RNOO)(¢)

2

Substitutingg into the above equation and multiplying by RGO gives
1d(,dR 1 1 4 i@\ 1 1 40
bV() r?+—=——— — |+ == = 1
Rdr( ar )+(€ a5 @de(smede) ostoder -0 W

The bracketed part above depends only on r and is equal to a function that does not
depend on r, hence it must be constant. Calling it k, (1) becomes

1 1 d e\ 1 1 40
@smede(sm%) sl " )
Multiplying by sin’ 6 gives
—_—
k sin® 6 +ésm@dd6(sm6(2—cg) é% =0

2o
dep?

sin maq
D =
cos maq

1
The bracketed part can be separated out & -— = —m?. Hence the solutions are

So now equation (2) becomes

L11 o de\ w
Osin0do\>" 40| sin2o
1 d de m?
—\- O =
sm@d@( med@) sin 6® T =0

As per page 568 in text book, this has a solution of ® = Pj*(cos 0). Hence the 0, ¢ solution
is
sinmaq

Pi*(cos 0)D = {
cos mao

We notice that the angular solution are identical to the Laplace equation and expressed
in terms of spherical harmonics.



6 chapter 13, problem 8.1, Mary Boas, second edition.

16

Show that gravitational potential V(x, Y, z) = —GTm satisties Laplace equation

Solution
Gm Gm -
V(x,y,z) =-—= —\/m = —Gm(x2 + 12 +zz) 2
Hence

%V

a2 G

(2 +y2+ zz)_g X1+ x(—g(x2 +y* + ZZ)_S(ZX))]

=Gm

(xz +y? + zz)_g - 3x2(x2 +y? + 22)_21

Similarly, we find

92V -2 S

8_]/2 :Gm[(x2+y2+zz) 2 _3y (x2+y2+zz) zl
And

% -2 3

oz = Gm (2 +y?+22) 2 —322(x2 +12 +2) 2]

Add (1),(2),(3) we get

5

cV OV PV =3Gm (xz +y? + zz)_; -3Gm (x2 +y? + zz)_z(x2 +y? + zz)

oz Iy? T2

3
2

VZV(x, Y, z) = 3Gm (x2 +1y2 + 22) -3Gm (xz +y2 + zz)
VZV(x,y,z) =0

3
2

Hence V(x, Y, z) satisfies Laplace equation.

(2)

(3)
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7 chapter 13, problem 8.2 Mary Boas, second edition

Using formulas in chapter 12 section 5, sum the series in 8.20 to get 8.21
Solution

Series in 8.20 is

R?*1 P(cos 6)

l 1 g+l (8'20)
We want to show that the above can simplify to 8.21, which is
5‘7
1 (8.21)

R2 R2 R h
Let — =hthen — =7h,and = = = and cos @ = x
ar a a R

8.21 becomes

R rh
1 _ &1
\/,,2 + (R_Z)Z — zr(R_z) cos 0 \/r2 + (rh)* = 2r(rh)x
a a
rh
_ r1
V2 + r2h2 - 2r2hx
rh
®1

rV1 + h? - 2hx

1

From 5.1 on page 490, we see that ®(x, h) = (1 —2xh + hz)_E

So the above equation becomes

2 = L, h)

2 r
\/rz + (R—Z) - Zr(R—Z) cos O
a a

Using 5.2, we expand the ®(x, h) as EhlPl(x)
l

Hence

Ra p
oz = Lo,y
\/r2 + (R;) - Zr(%z) cos 0
h
= _Rq El hlPZ(X)

2
Substitute back cos 6 = x, and % = h in above we get
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Which is 8.20. Hence this shows that 8.20 can be simplified to 8.21
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8 chapter 13, problem 8.3, Mary Boas, second edition.

Do the problem in example 1 for the case of a charge g inside a grounded sphere to
obtain the potential V inside the sphere.

Solution

Starting the example from equation 8.15, which is the basic solution of Laplace in spher-
ical coordinates

7 sin mao
Pi*(cos 0)
-1

cos mao

Since we want a solution inside the sphere, we select the ' solution for r since we do
not want the solution to goto coasr — 0

Also, since the solution is independent of the ¢, we do not want solution with ¢, hence
set m = 0, hence the basic solution is

V =1 P(cos 0)

Since the general solution is a sum of these solutions, we get
V= ch 1! Py(cos 0)
l

Now add a solution to Laplace solution so that the potential is zero at the surface, this
is V,; as shown in the example on page 575:

_ q
7 V12 — 2arcos 6 + a2

hence the general solution now becomes

V=V, + Y1 Picos 6)
1

_ 9 I
- V12 — 2ar cos 6 + a2 * zl:Cl " Pilcos 6) M

Now, boundary conditionis V = 0 atr = R so from (1)

0=V, + Y R Py(cos 6)
I

= 1 + ch R! Py(cos ) (2)
)

VR2 - 24aR cos O + a2

RlPl(cos 0)

q —
VR2-24aR cos 6+a? 1 zl: a1

Hence (2) becomes

As per example,

R'P(cos 6)
0= qzl:;lT + zl:cl R! Py(cos 6)

R'Py(cos 6)
_qualT = ch R! Py(cos 0)
I I
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Compare coefficients, we see that

R! 1

aR! = ~g—r7 = 1 =

al+1 al+1

Hence (1) becomes

!

r
1 - qz s P(cos 0)

V=
Vr2 — 2ar cos 6 + a2 ]

Now we sum the series solution. Need to convert the series into f(%rm shown in 5.2:

D(x, h) = Zhl Py(x) then we can replace the sum with (1 — 2xh + h?) 2
l

1 I
So we need to have ;(2) = I hence

1 2\ 1

Then the series solution sums to be

V= q _ q
2— 2 r T
\/r 2arcos @ +a \/(l —ZCOSQ(H—Z) 4 (a_z)

The second term above is the potential of a charge —g at a point (O, 0, %), thus we could

replace the grounded sphere by this charge and get the same potential for r > R this is
called the method of images, per book, page 576 discussion.
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