
University Course

MATH 127
Mathematical and Computational
Methods in Molecular Biology

UC BERKELEY
Fall 2002

My Class Notes
Nasser M. Abbasi

Fall 2002

Contents

1 Introduction 1
1.1 A bit about UC Berkeley . 1
1.2 Course description . 2

2 Study notes 3
2.1 collected notes . 4
2.2 FFT project . 66
2.3 Small note on terfoil_combinations . 71

3 HWs 77
3.1 HW 1 . 78
3.2 HW 2 . 105
3.3 HW 3 . 138
3.4 HW 4 . 177
3.5 HW 5 . 203

iii

Contents CONTENTS

iv

Chapter 1

Introduction

Local contents
1.1 A bit about UC Berkeley . 1
1.2 Course description . 2
I took Mathematics 127, Mathematical and Computational Methods in Molecular Biology
at UC Berkeley in fall 2002 while I was still working at AppliedBiosystems. Used to have
to drive from San mateo to Hayward, then take Bart to get to Berkeley. I took 1.5 hrs just
to get to Berkeley one way.� �
Instructor: Name: Lior Pachter
Position: Assistant Professor
E-mail: lpachter@math.berkeley.eduTo reduce spam, this address is javascript encoded.
Phone: +1 (510) 642-2028
Office: 1081 Evans Hall
Research: Applications of statistics and combinatorics to problems in biology� �
Homepage: http://www.math.berkeley.edu/~lpachter

1

http://www.math.berkeley.edu/~lpachter

1.1. A bit about UC Berkeley CHAPTER 1. INTRODUCTION

1.1 A bit about UC Berkeley
This below is a picture of Evans hall. It is a big tall building full of very smart people. The
math department is on the 9th floor. The course was in room 3, which is on the ground
floor on Evans hall

1.2 Course description
description Introduction to mathematical and computational problems arising in the con-
text of molecular biology. Theory and applications of combinatorics, probability, statistics,
geometry, and topology to problems ranging from sequence determination to structure
analysis. Units 3 (Semester system) University UC Berkeley, CA..

2

Chapter 2

Study notes

Local contents
2.1 collected notes . 4
2.2 FFT project . 66
2.3 Small note on terfoil_combinations . 71

3

2.1. collected notes CHAPTER 2. STUDY NOTES

2.1 collected notes

up

Study notes for Math 127.

Mostly collected from the net by Nasser M. Abbasi

These are misc. class notes wrote during taking math 127 at UC Berkeley.

Convolution diagram I did (need to check this)

4

2.1. collected notes CHAPTER 2. STUDY NOTES

From http://mathworld.wolfram.com/LinkingNumber.html

Formally, a link is one or more disjointly embedded circles in three-space. More

informally, a link is an assembly of knots with mutual entanglements.

5

2.1. collected notes CHAPTER 2. STUDY NOTES

A link invariant defined for a two-component oriented link as the sum of

crossings and -1 crossing over all crossings between the two links divided by 2.

For components and ,

where is the set of crossings of with , and is the sign of the crossing. The

linking number of a splittable two-component link is always 0.

Calugareanu Theorem, Gauss Integral, Jones Polynomial, Link, Twist, Writhe

The twist of a ribbon measures how much it twists around its axis and is defined

as the integral of the incremental twist around the ribbon. A formula for the twist

is given by

(1)

where K is parameterized by for along the length of the knot by

parameter s, and the frame associated with K is

(2)

where is a small parameter and is a unit vector field normal to the curve at s

(Kaul 1999).

6

2.1. collected notes CHAPTER 2. STUDY NOTES

Letting Lk be the linking number of the two components of a ribbon, Tw be the

twist, and Wr be the writhe, then the calugareanu theorem states that

(3)

(Adams 1994, p. 187).

Calugareanu Theorem

Letting Lk be the linking number of the two components of a ribbon, Tw

be the twist, and Wr be the writhe, then

(Adams 1994, p. 187).

Gauss Integral, Linking Number, Twist, Writhe

Gauss Integral

Consider two closed oriented space curves and ,

where and are distinct circles, and are differentiable functions,

and and are disjoint loci. Let be the linking number of

the two curves, then the Gauss integral is

7

2.1. collected notes CHAPTER 2. STUDY NOTES

From the net

Here are some references having to do with DNA and Differential Geometry that mey be of

interest here.

DNA and Differential Geometry, William Pohl in Mathematical Intelligencer (ca. 1991)

Pohl, W. F. "Some Integral Formulas for Space Curves and their Generalization",

 Amer. J. of Math., 90, 1321-1345 (1968)

Pohl, W. F. "The Self Linking Number of a Closed Space Curve",

 J. of Math. and Mech. 17, 975-986 (1968)

White, J. H. "Self Linking and the Gauss Integral in Higher Dimensions",

 Amer. J. of Math. 91, 693-728 (1969)

Fuller, F. B. "The Writhing Number of a Space Curve",

 Proc. Natl. Acad. Sci USA, 68, 815-819 (1971)

Fuller, F. B. "Decomposition of the Linking Number of a Closed Ribbon:

 A Problem from Molecular biology", Proc. Natl. Acad. Sci USA,

 75, 3557 (1978)

Some of these are pretty heavy reading, but some are fairly accessible.

-- Jeff Horn

Calculation of link number
The number of times the two strands of DNA double helix are interwound,

i.e., the link number Lk, is a topologic invariant quantity for closed DNA

When is a DNA strand considered supercoiled?

from http://www.scripps.edu/case/nab5/NAB-sh-7.5.html

hints for HW1 problem 4:

8

2.1. collected notes CHAPTER 2. STUDY NOTES

Nucleosome Model

While the DNA duplex is locally rather stiff, many DNA molecules are sufficiently long

that they can be bent into a wide variety of both open and closed curves. Some examples

would be simple closed circles, supercoiled closed circles that have relaxed into circles

with twists, and the nucleosome core fragment, where the duplex itself is wound into a

short helix.

The overall strategy for wrapping DNA around a curve is to create the curve, find the

points on the curve that contain the base pair origins, place the base pairs at these points,

oriented so that their helical axes are tangent to the curve, and finally rotate the base pairs

so that they have the correct helical twist. In the example below, the simplifying

assumption is made that the rise is constant at 3.38 Å.

The nucleosome core fragment is composed of duplex DNA wound in a left handed helix

around a cental protein core. A typical core fragment has about 145 base pairs of duplex

DNA forming about 1.75 superhelical turns. Measurements of the overall dimensions of

the core fragment indicate that there is very little space between adjacent wraps of the

duplex. A side view of a schematic of core particle is shown below.

Computing the points at which to place the base pairs on a helix requires us to spiral an

inelastic wire (representing the helical axis of the bent duplex) around a cylinder

(representing the protein core). The system is described by four numbers of which only

three are independent. They are the number of base pairs n, the number of turns its makes

9

2.1. collected notes CHAPTER 2. STUDY NOTES

around the protein core t, the "winding" angle (which controls how quickly the the helix

advances along the axis of the core) and the helix radius r. Both the the number of base

pairs and the number of turns around the core can be measured. The leaves two choices

for the third parameter. Since the relationship of the winding angle to the overall particle

geometry seems more clear than that of the radius, this code lets the user specify the

number of turns, the number of base pairs and the winding angle, then computes the

helical radius and the displacement along the helix axis for each base pair:

where d and are the displacement along and rotation about the protein core axis for each

base pair.

These relationships are easily derived. Let the nucleosome core particle be oriented so

that its helical axis is along the global Y-axis and the lower cap of the protein core is in

the XZ plane. Consider the circle that is the projection of the helical axis of the DNA

duplex onto the XZ plane. As the duplex spirals along the core particle it will go around

the circle times, for a total rotation of . The duplex contains steps, resulting

of rotation between successive base pairs.

10

2.1. collected notes CHAPTER 2. STUDY NOTES

Finding the radius of the superhelix is a little tricky. In general a single turn of the helix

will not contain an integral number of base pairs. For example, using typical numbers of

1.75 turns and 145 base pairs requires base pairs to make one turn. An approximate

solution can be found by considering the ideal superhelix that the DNA duplex is

wrapped around. Let be the arc length of this helix. Then is the arc length of its

11

2.1. collected notes CHAPTER 2. STUDY NOTES

projection into the XZ plane. Since this projection is an overwound circle, is also equal

to , where is the number of turns and is the unknown radius. Now is not known

but is approximately . Substituting and solving for gives Eq. (_&rad).

The resulting nab code is shown in Program 2. This code requires three arguments--the

number of turns, the number of base pairs and the winding angle. In lines 15-17, the

helical rise (dy), twist (phi) and radius (rad) are computed according to the formulas

developed above.

Two constant transformation matrices, matdx and matrx are created in lines 19-20.

matdx is used to move the newly created base pair along the X-axis to the circle that is

the helix's projection onto the XZ plane. matrx is used to rotate the new base pair about

the X-axis so it will be tangent to the local helix of spirally wound duplex. The model of

the nucleosome will be built in the molecule m which is created and given two strands

"A" and "B" in line 23. The variable ttw will hold the total local helical twist for each base

pair.

The molecule is created in the loop in lines 25-43. The user specified function getbase()

takes the number of the current base pair (b) and returns two strings that specify the

actual nucleotides to use at this position. These two strings are converted into a single

base pair using the nab builtin wc_helix(). The new base pair is in the XY plane with its

origin at the global origin and its helical axis along Z oriented so that the 5'-3' direction is

positive.

Each base pair must be rotated about its Z-axis so that when it is added to the global helix

it has the correct amount of helical twist with respect to the previous base. This rotation is

performed in lines 29-30. Once the base pair has the correct helical twist it must rotated

about the X-axis so that its local origin will be tangent to the global helical axes (line 31).

The properly-oriented base is next moved into place on the global helix in two stages in

lines 32-34. It is first moved along the X-axis (line 32) so it intersects the circle in the XZ

plane that is projection of the duplex's helical axis. Then it is simultaneously rotated

about and displaced along the global Y-axis to move it to final place in the nucleosome.

Since both these movements are with respect to the same axis, they can be combined into

a single transformation.

The newly positioned base pair in m1 is added to the growing molecule in m using two

calls to the nab buitin mergestr(). Note that since the two strands of a DNA duplex are

antiparallel, the base of the "sense" strand of molecule m1 is added the last base of

the "A" strand of molecule m and the base of the "anti" strand of molecule m1 is

the first base of the "B" strand of molecule m. For all base pairs except the first one, the

new base pair must be bonded to its predecessor. Finally, the total twist (ttw) is updated

and adjusted to remain in the interval [0,360) in line 42. After all base pairs have been

12

2.1. collected notes CHAPTER 2. STUDY NOTES

created, the loop exits, and the molecule is written out. The coordinates are saved in PDB

format using the nab builtin putpdb().

[Contents] [Previous] [Next]

Updated on November 10, 2000. Comments to case@scripps.edu

from www.ma.umist.ac.uk\kd\geomview\geometry.html

curvature---which is the rate of change of angular direction per unit arc length s.

The Fundamental Theorem of Space Curves states that space curves are classified, up to a

rotation and translation, by their curvature and torsion. Torsion measures the departure of

a curve from a plane.

So, given a starting point and two functions of arc length representing curvature

and torsion, the curve can be determined. We know that constant curvature in the

plane gives a circle; if we have constant torsion as well then we obtain a circular

helix---shown here as a tube:

13

2.1. collected notes CHAPTER 2. STUDY NOTES

White's Theorem states that the topological link number Lk for a pair of closed curves is

the sum of their twist number Tw and their writhe number Wr:

Lk = Tw + Wr

From http://www.rwgrayprojects.com/Lynn/HelixKnot/helixknot01.html

parmeters of the helix: (length, radius and number of cycles around the cylinder

from http://members.tripod.com/vismath8/malkovsky/Section5.htm
This below shows the equation for the helix in paramoteric form. Same as HW 1,

problem 4. replace r by a, and b by h.

Example 7. The vectors of the trihedra of a helix with a parametric

representation

x(s) = (r cos(s), r sin(s), h s) with s  R where r > 0, h  R and =

1 / (r2+h2)1/2 arc constants.

14

2.1. collected notes CHAPTER 2. STUDY NOTES

Figure 19. The vectors of trihedra of a helix

From http://www.cco.caltech.edu/~brokawc/Suppl3D/TTW.htm

The change in this local coordinate system as it moves along the curve can be described

by the Frenet-Serret equations:

 dt /ds =  n,

 dn/ds =  t +  b, (4)

 db/ds =  n.

The new scalar variable,  , is the torsion of the curve. Equation (4) tells us that the two

scalar functions (s) and (s) are sufficient to describe the change in the local coordinate

system as it moves along the curve, and therefore are sufficient to describe the shape of

the curve.

Below from http://www.math.umd.edu/users/jmr/241/curves2.htm

We are now interested in the derivative of the unit normal with respect to arclength. By

differentiating the equation with respect to s, we obtain ,

from which it follows that . Since N is a unit vector, we know that is

perpendicular to N. The torsion is defined to be . Note that since the direction

of B is determined independently of , the torsion, unlike the curvature, is signed.

Notice also that for a plane curve, the binormal is identically perpendicular to the plane in

which the curve lies and the torsion is 0.Thus we have the Frenet-Serret formulae:

T N  0

dT

ds
N T

dN

ds
    0

dN

ds
T  

dN

ds



dN

ds
B

dN

ds

dT

ds
N

dN

ds
T B   

dB

ds
N 

15

2.1. collected notes CHAPTER 2. STUDY NOTES

from http://planetmath.org/encyclopedia/Torsion.html

torsion (Definition)

The torsion of a space curve is a complement to the curvature of a curve;

curvature measures in the osculating plane what torsion measurs in the normal

plane. Thus

where is the radius of torsion (analogous to radius of curvature). Because torsion is

measured orthogonally to curvature, curves in a plane can have a non-zero curvature, but

they will always have zero torsion. An example of a curve with both non-zero torsion

and curvature is a helix.

A more analysis friendly way to find torsion is by the equation

where and are the unit normal and binormal vectors, respectively. Since

, the above can also be written in terms of the radius of curvature.

From http://math.stanford.edu/courses/math51h/51htext2.pdf

16

2.1. collected notes CHAPTER 2. STUDY NOTES

The Reidemeister manipulations suffice to completely untie any knot

that is equivalent to the unknot,

From: Mark-Jason Dominus (mjd@op.net)

Subject: Re: Knot Question

Newsgroups: sci.math

Date: 1996/03/19 View: Complete Thread (7 articles) | Original Format

In article <4iif1b$71p@news1.radix.net>, Jim Ward <jfw@radix.net> wrote:

>the normalized bracket polynomial is invariant under the

>Reidermeister moves. Does this imply that if A and the unknot have

>the same polynomial, then A is the unknot?

17

2.1. collected notes CHAPTER 2. STUDY NOTES

Alas, no.

Here's what you can do instead:

Project the knot and list the over and undercrossings as before.

Name each crossing with a different letter, and write X+ for an

overcrossing at X and X- for an undercrossing at X.

You now have a character string that looks like (for example)

 A+B-C+A-B+C- (trefoil knot)

 (empty) (unknot)

 A+A- (unknot with a twist in it)

 A+B+B-A- (unknot with two twists in it)

 D+B-A-C+B+D-C-A+ (tangled version of trefoil)

These `descriptors' are circular, meaning that they have no particular

beginning or end. The following descriptors are all identical:

B-C+D-B+A-D+C-A+

C+D-B+A-D+C-A+B-

D-B+A-D+C-A+B-C+

B+A-D+C-A+B-C+D- knot)

A-D+C-A+B-C+D-B+ eight

D+C-A+B-C+D-B+A- figure-

C-A+B-C+D-B+A-D+ a

A+B-C+D-B+A-D+C- (it's

Also, we shouldn't care whether we read a descriptor forwards or

backwards. (Unless for some reason we need to worry about knot

chirality, which we don't for this problem, since the unknot is not

chiral.)

Now:

 1. Reidemeister move I is applicable iff the descriptor

 contains a sequence of the form `P+P-'. To perform RMI on

 the knot, just delete the P+P- from the descriptor.

 2. Reidemeister move II is applicable iff the descriptor

 contains sequences of the form `P+Q+' and `P-Q-'. (`P+Q+'

 and `Q-P-' will also work.) To perform RMII on the knot,

 just delete the two sequences from the descriptor. Note

 that if you have P+Q- and P-Q+, you *can't* apply RMII.

18

2.1. collected notes CHAPTER 2. STUDY NOTES

 3. Reidemeister move III is applicable iff the descriptor

 contains sequences of the form `P+Q+', `P-R-', and `Q-R+'.

 (One or more of these may be reversed, as in paragraph 2.)

 To perform RMIII on the knot, reverse them, replacing the

 three sequences with `Q+P+', `R-P-', and `R+Q-',

 respectively.

The Reidemeister manipulations suffice to completely untie any knot

that is equivalent to the unknot, and therefore, if D is the

descriptor of such a knot, there is some sequence of operations 1, 2,

and 3 which will reduce D to the empty string.

Here, then, is an algorithm for determining whether or not a given

descriptor D represents the unknot:

 You need a stack, S, and a list L. L will record the knots

 that you have analyzed already, so that you don't analyze

 anything twice. Both start out empty.

 Push D onto the stack. Append D to list L.

 TOP:

 If the stack is empty, halt and report failure. Otherwise...

 Pop the top of the stack into X.

 If X is the empty string, then D was equivalent to the unknot.

 Halt and report success. Otherwise...

 If X appears in list L, we have already analyzed it, so goto

 TOP without doing anything further. Otherwise...

 Append X to list L, so that we don't analyze it again.

 If X has the form described in (1) or (2) above, then

 Apply the appropriate Reidemeister transformation.

 The result is configuration Y.

 Push Y onto the stack.

 Goto TOP.

 Otherwise...

 If X has the form described in (3) above, then,

 for each such P,Q,R,

 apply the indicated transformation to X, yielding Y_{P,Q,R}.

19

2.1. collected notes CHAPTER 2. STUDY NOTES

 Push Y_{P,Q,R} onto the stack

 Goto TOP.

 Otherwise...

 Goto TOP.

This is a very simple algorithm: It's just a depth-first search of the

space of knots which are simpler than the original and reachable from

it by a sequence of Reidemeister moves. If you want a BFS instead of

a DFS, just replace stasck S with a queue. The worst-case running

time is exponential in the number of crossings, but I don't believe

anyone knows anything better.

This algorithm works fine for knots with more than one component. You

just need to maintain one descriptor for each component.

From http://www.freelearning.com/knots/intro.htm#num1

One invariant is the minimal crossing number. The minimal crossing number of
a knot is the least number of crossings that appear in any projection of the knot.
For example, the unknot has a minimal crossing number of 0. The trefoil knot has
a minimal crossing number of 3.

From http://members.tripod.com/vismath5/bor/bor6.htm

For example, by duplicating one ring in Borromean rings, we obtain 4-Borromean

link, and continuing in the same manner, n-Borromean links (n=5,6,7…). Different

links of that infinite series follow from other choices of rings that will be duplicated.

We can define an evolutionary distance between two sequences as the number of point

mutations that are necessary to evolve one sequence to other. (More specifically, the

distance is the minimal number of mutations.)

From http://www.wi.mit.edu/nap/2002/nap_press_02_arachne.html on archne

Various assembly programs have been previously reported, including SEQAID, CAP,

PHRAP, TIGR and the Celera assembler, among others, but this is the first of its kind

that is publicly available whole genome sequence assembler.

20

2.1. collected notes CHAPTER 2. STUDY NOTES

On nucleosomes

From http://www.rcsb.org/pdb/molecules/pdb7_1.html

Each nucleosome is composed of eight "histone" proteins bundled tightly together at the

center (shown here in blue), encircled by two loops of DNA (shown here in orange). The

histone proteins, however, are not completely globular like most other proteins. They

have long tails, which comprise nearly a quarter of their length.

From http://www.web-books.com/MoBio/Free/Ch3D1.htm

A chromosome contains five types of histones: H1 (or H5), H2A, H2B, H3 and H4. H1

and its homologous protein H5 are involved in higher-order structures. The other four

types of histones associate with DNA to form nucleosomes. H1 (or H5) has about 220

residues. Other types of histones are smaller, each consisting of 100-150 residues.

See http://www.accessexcellence.org/AB/GG/nucleosome.html for diagram of

necleosomes

In fact chromosomal DNA is packaged into a compact structure with the help of

specialized proteins called histones. The complex DNA plus histones in

eucaryotic cells is called chromatin.

The fundamental packing unit is known as a nucleosome. Each nucleosome is

about 11nm in diameter. The DNA double helix wraps around a central core of

eight histone protein molecules (an octamer) to form a single nucleosome. A

second histone (H1 in the illustration) fastens the DNA to the nucleosome core.

The total mass of this complex is about 100,000 daltons.

Nucleosomes are usually packed together, with the aid of a histone (H1,) to form

a 30nm large fiber. As a 30nm fiber, the typical human chromosome would be

about 0.1cm in length and would span the nucleus 100 times. This suggests

higher orders of packaging, to give a chromosome the compact structure seen in

a typical karyotype (metaphase) cell.

From http://opbs.okstate.edu/~melcher/MG/MGW1/MG11226.html

21

2.1. collected notes CHAPTER 2. STUDY NOTES

At the first level of structure, eight histone molecules are clustered on 146 bp of DNA.

These clusters, called nucleosomes, are separated from one another by 20 to 100 bp

(depending on cell type, organism and physiological status) of spacer DNA.

o Extensive characterization of nucleosomes by neutron diffraction, crystallization,

X-ray diffraction, protein crosslinking, immuno electron microscopy and other

techniques revealed further properties.
o The DNA is wrapped left-handed around a 3.2 nm radius core of histones;

o There are 1.8 turns of DNA per nucleosome.

o DNase nicking of nucleosomes shows an average periodicity of 10.7 bp in

center; 10.0 near ends.

o The DNA is kinked; kinks are found at +/- 1 and +/- 4.

o Alpha helical regions of histones have basic residues that contact the

major groove of the DNA.

o The folding of DNA in nucleosomes results in a compaction factor of about 7 5.

Higher levels of chromatin structure involve histone H1 and non-histone

chromosomal proteins.

nucleosome

Repeating units of organization of chromatin fibres in chromosomes, consisting of around

200 base pairs, and two molecules each of the histones H2A, H2B, H3 and H4. Most of

the DNA (around 140 base pairs) is believed to be wound around a core formed by the

histones, the remainder joins adjacent nucleosomes, thus forming a structure reminiscent

of a string of beads.

http://www.average.org/~pruss/Nucleosomes/othersites.html have links on nuclesome.

 nucleosome consists of:
o core particle

 histone octamer (2 copies each of H2A, H2B, H3 and H4)

 146 bp of DNA wrapped around octamer

o linker DNA

 54 bp of DNA

o histone H1

 not found in all "beads" on the string

 is found in all nucleosomes in the chromatin fibre

 bound to linker DNA and core particle

 responsible for higher order folding of chromatin structure

22

2.1. collected notes CHAPTER 2. STUDY NOTES

from http://www.lbl.gov/Science-Articles/Research-Review/Magazine/1997-

fall/vr/DNA.html

DNA is typically wrapped around a mixture of proteins called "histone" that

provide the giant molecule with structural support. Repeating segments of

DNA, some 165 to 240 base pairs in length, combine with eight histone

molecules to form a distinct unit called a "nucleosome."

Nucleosomes are in turn organized into even larger units called "chromatin."

From http://aesop.rutgers.edu/~molgen/nucleosomes.htm

6. Model was derived partly from the dimensions of the components (Fig 19.5), 6 nm x

11 nm, length of DNA is ~2 x the circumference of the particle 34 nm. Height of the

particle is slightly larger than 2 x the diameter of DNA ~ 4 nm.

The nucleosome is ~10 nm diameter, produces the 10 nm fiber (Fig 19.17)

From http://www.mbg.cornell.edu/biobm332/exams/exams97-00/00finalkey.html

1. L = linking number, it is the number of times one strand winds

around the other

T = twisting number, it is the number of base pairs in a B form

DNA divided by 10.5

W = writhing number, it is the number of supercoils

1. The topology of a circular B-form DNA molecule has the following values;

L = 395, T = 400 and W = -5. How many nucleosomes are there on this

DNA molecule? (Assume that each nucleosome generates one negative

supercoil.)

5

23

2.1. collected notes CHAPTER 2. STUDY NOTES

check this below. Nice review.

http://www.cmb.uab.edu/courses/Lectures/harvey.pdf

http://www.mindfully.org/GE/DNA.htm

see http://www.mpip-mainz.mpg.de/~heli/chromatin.html for best diagram I

saw of nucleosome

from http://intranet.siu.edu/~mbmb/sample%20test2.html

5.Nucleosomes package DNA within the cell by wrapping DNA around the exterior of

the protein's cylindrical structure. About 200 base pairs of DNA is wrapped around the

nucleosome in a left-handed helical fashion and makes 1.7 wraps per nucleosome.

Starting with a relaxed 2 kilobase pair closed circular DNA, determine what the linking

number, writhe and twist are after 10 nucleosomes are bound per DNA molecule. The

relaxed plasmid is B-DNA with 10 base pairs per helical turn (10 points).

From http://web.uvic.ca/sciweb/Courses/B300/DNA%20supercoiling.html

DNA supercoiling - an outline

The strands of topologically closed DNA, for example, covalently closed circular plasmid

DNA, or DNA that loops out of the scaffolding structure in eukaryotic cells (cf. Figure

24-28), cannot change the number of times they cross each other: this is called their

linking number

If the twist (the basic double helical turns of the two strands about each other) of the

double helix in topologically closed DNA changes, there is supercoiling ("writhing"; the

coiled-coil) to keep the linking number constant

Most cellular DNA is underwound (917-918)

A sample of circular DNA isolated from a cell, e.g. plasmid DNA, if constrained to lie

flat, would have fewer twists of one strand about the other than B DNA does - this is

caused by intracellular conditions that favour partial unwinding (for example, parts of the

DNA that are being transcribed into RNA are unwound)

This is called underwinding, and is characteristic of natural DNAs

24

2.1. collected notes CHAPTER 2. STUDY NOTES

When underwound DNA is isolated, it tends to wind into a normal B DNA helix (10.5

bases per turn); in doing so, it generates negative supercoils because the linking number

cannot change (Figure 24-12)

The partially unwound state, and the fully wound-up, supercoiled state, are equivalent in

linking number (Figure 24-13)

DNA underwinding is defined by topological linking number (918-921)

Topologically closed DNA is characterised by its linking number, Lk, which is an integer

and which cannot change as long as no covalent bonds are broken

Lk is related to the twist (Tw) and the writhe (Wr) numbers by

Lk = Tw + Wr

Tw is about the same as the basic, B DNA winding number (10.5 bp per turn in
relaxed DNA), but may differ from this due to topological stress

Writhe is the supercoiling number, the coiling of the DNA coil

Tw and Wr need not be integers

If Tw changes, then Wr must change correspondingly, to keep Lk constant

For relaxed, closed circular B DNA (no supercoils), Lk and Tw are equal to the
number of base pairs divided by 10.5, and Wr is zero

The superhelical density  is defined as the number of turns that have been
added or subtracted in the supercoiled DNA, compared to the relaxed state,
divided by the total number of turns in the DNA if it were relaxed (normally
bp/10.5)

Typically,  is between -.05 and -.07 (5-7% underwinding) in isolated natural
DNA

Supercoils in isolated plasmid DNA are in the form shown in Figure 24-16; this is
called the plectonemic form of supercoiled DNA

Right-handed, plectonemic DNA has negative supercoils

Underwound DNA facilitates the formation of cruciforms (Figure 24-18), because
both have unpaired bases

Topoisomerases catalyze changes in the linking number of DNA (921-922)

25

2.1. collected notes CHAPTER 2. STUDY NOTES

Topoisomerases allow the linking number to change

Type I topoisomerases cause a transient break in one strand of duplex DNA,
allow the open end to rotate around the other strand, and then re-seal the broken
strand, to change the linking number by 1

Type II topoisomerases change the value of Lk by 2, by creating a double-
stranded break and allowing two strands to pass through before re-sealing the
break (Figure 24-20)

An unusual example of a Type II topoisomerase is E. coli gyrase, which can add
negative supercoils to an already negatively supercoiled DNA, using the energy
of ATP hydrolysis to drive the reaction; eukaryotic cells do not have gyrase
activity, but they do have Type II topoisomerases which can relax supercoiled
DNA

Eukaryotic topoisomerases of Type II can relax positive and negative supercoils,
as can eukaryotic topos of Type I

Plasmid DNAs differing in numbers of supercoils have different degrees of
compactness, and will have different mobilities on gel electrophoresis, as shown
for isolated plasmid treated with Type I Topoisomerase (Figure 24-19)

DNA compaction requires a special form of supercoiling (922-923)

The plectonemic form of supercoiling causes only a moderate compaction of
DNA

The alternative, solenoidal, form is more compact (Figure 24-22)

The solenoidal form exists in natural eukaryotic DNA, which is wound around
histone cores in the nucleosomes in a left-handed (negative) supercoil (Figure 24-
23)

This negative supercoiling of the DNA as the nucleosome forms introduces
positive supercoils in the segments of DNA linking nucleosomes, and these must
be relaxed by topoisomerases

26

2.1. collected notes CHAPTER 2. STUDY NOTES

From

http://216.239.33.100/search?q=cache:VtcfbuDe32YC:www.uovs.ac.za/faculties/nat/mkb

oc/biochem/Super.htm+twist+nucleosomes&hl=en&ie=UTF-8

Supercoiling

Introduction

Supercoiling simply means coiling of a coil. Supercoiling and topology, although perhaps

at first glance abstract mathematical concepts, have very relevant application in

molecular biology. The DNA molecule is subject to topological constraints, and these

have very real effects on the function of DNA. Negative supercoiling can stabilise

secondary DNA structures such as hairpin loops, cruciforms, and also facilitate the

formation of a melted region in the transition of a transcriptional pre-initiation complex

(PIC) to a elongating complex. Also, the DNA in both pro- and eukaryotes are naturally

negatively supercoiled. In prokaryotes this is due to the action of gyrases (these are

enzymes like topoisomerases, but induce supercoiling in an ATP-dependent manner). In

eukaryotes, the packaging of DNA into chromatin causes the DNA template (after

removal of proteins) to be supercoiled. In addition, the passage of the RNA polymerase

along the DNA molecule generates a twin supercoiled domain. The region behind the

polymerase is negatively supercoiled, and the region in front of the polymerase is

positively supercoiled. This superhelical stess is normally relaxed by topisomerases. In

yeast, there are two types: topoisomerase I (topo I) and topoisomerase II (topo II). Topo I

induces a single strand nick, and will relax the DNA molecule in units of 1. Topo II,

predictably, cuts both strands, and changes the superhelicity by units of 2. These enzymes

appear to be required for normal DNA function, and are involved in the relaxing of

superhelical stress that accumulates during transcription and replication of DNA. Thus, it

is clear that an understanding of many of the processes that can influence DNA function,

requires some understanding of supercoiling.

Classic Linking Theory (CLT).

The essential concept that is used in a theoretical study of supercoiling is the ribbon. The

ribbon has two sides (which can represent the phosphodiester backbones of the DNA

duplex), and it has an axis, equidistant from the ribbon edges, equivalent to the helix axis.

There are three parameters that are important when considering supercoiling: the linking

number (Lk), the twist (Tw) and the wrythe (Wr). The Lk and Tw is a function of the edge

of the ribbon, and has no meaning for a one-dimensional line, such as an axis. The Wr, on

the other hand, is a function of the ribbon (or helix) axis, and describes the shape of the

axis in space. These three parameters are related by the function

Lk = Tw + Wr 1

27

2.1. collected notes CHAPTER 2. STUDY NOTES

This function simply states that the Lk of a molecule is the sum of the Tw and Wr

parameters, and that if the Lk of a molecule is kept constant, but the shape of the axis (the

Wr) is changed, the Tw must change by an equal amount of opposite sign.

The linking number, roughly speaking, is the number of times the one DNA strand (or

ribbon edge) crosses the other in space. This is a topological property, since the smooth

deformation of the molecule does not change the linking number. In this sense a

doughnut and a coffee cup is topologically equivalent: both has a single hole, and, were it

made from soft clay, the one can be deformed into the other without breaking the clay or

introducing additional holes into it.
The linking number of a closed (the ends of the ribbon or DNA molecule meet, forming a circle) can be

calculated by inspection by viewing the entire ribbon from any orientation at an infinite distance (watch

those taxi fares). If one concentrates on only one edge, and count the number of times this edge crosses in

front of the other, one is, in effect, calculating the linking number. Note that the linking number has a sign.

If the edge one is inspecting crosses the other in a right-handed (clockwise) manner, the sign is positive.

Thus, in viewing the entire ribbon, if the one edge crossed in the one direction and then crosses back in the

other direction, the net Lk is zero, since the one crossing contributes +1, and the reverse crossing

Figure 1. The linking number of a DNA molecule. The schematic shows a small circular DNA molecule

where the one stand crosses the other a total of 6 times. The Lk of this molecule is thus 6. Since the helix is

right-handed, the sign of the linking number is positive, and Lk = +6.

On a plane, the twist is defines as 1 if the ribbon rates about the ribbon axis by 360º.

Thus, a flat ribbon that is bent in a plane, does not have twist. The Tw is not a topological

property, since the deformation of the ribbon (or DNA molecule) in space can change the

twist. When the ribbon is wound flat onto a cylinder, the twist of the ribbon is given by

the equation:

Tw = Nsin 2

Where N is the number of times (in units of radians, i.e. one rotation is 2) that the

ribbon revolves around the cylinder, and  is the pitch angle of the helix. Note that Tw is

normalised to 2 . When the winding of the ribbon onto a cylinder is very shallow (i.e.,

every gyre tends to a circle) the twist approaches 0 [2 ×sin(0)/2 = 1×0 = 0].

The wrythe is not an easy parameter to calculate. Generally, this parameter can be arrived

at by knowing the Lk and Tw of a molecule

Virtual surface linking theory (VSLT)

Despite its impressive name, virtual surface linking theory provides a more rigorous and

more easily understood theoretical frame within which to calculate supercoiling.
The Lk in VSLT is calculated relative to a surface, where the orientation of the surface is defined as shown

in Figure 2.

A normal vector to the surface is defined, with the direction of the vector deduced by the "right-hand rule".

Thus, in A, the direction of the vector is up. The direction of this vector becomes important when

calculating the sign of the Lk. The Lk itself is defined as the number of times the helix axis crosses the

spanning surface of the ribbon. The sign of Lk is positive if the axis direction (arbitrarily defined) crosses

the spanning surface in the same direction as the normal vector. The Lk is negative in the inverse situation,

as shown in Figure 3.

Figure 3. Calculation of the Lk and the association sign.

28

2.1. collected notes CHAPTER 2. STUDY NOTES

One can also calculate Lk in VSLT by looking at the whole structure from infinite

distance, or looking at the shadow that is produces by illuminating with a light from

infinite distance. In this case, if the strand on top is rotated in a clockwise direction by

less than 180º to point in the same direction as the helix axis, the crossing (node) is

assigned a negative value. If the rotation is anti-clockwise, the node is positive. Each

such node contributes ½ Lk unit. Note the similarity of this calculation with that given for

CLT, above. The determination of the sign of the node is illustrated in Figure 4.

Figure 4. Calculation of the sign of a crossing node

In VSLT the Wr is defined as the number of times that the helix axis crosses itself in a

plane projection, with the sign of the node calculated as shown in Fig. 3. However,

careful consideration will reveal that the number of times that the axis crosses itself is

dependent on the specific orientation of the projection. Thus, the Wr is the average of the

sum of the individual Wrp over all possible projections. Thus, Wr is not necessarily an

integer. It also follows directly that Wr = 0 for any molecule constrained to a plane,

irrespective of the complexity of the helix axis in the plane. This is so because there is no

possible orientation in which the axis will cross itself in any projection.

It is obvious that Wr is not a quantity that can be easily calculated for complex shapes.

However, again, Wr can be arrived at by measuring other more tenable parameter such as

Lk which is a function of Wr.

Twist

The definition of twist in VSLT is mathematically complex to calculate, but relatively

simple to understand. Twist is not simply the number of times the one DNA strand

crosses the helix axis, since the helix axis itself can contribute to Tw. The definition is as

follows: A plane, perpendicular to the helix axis, tansects the helix at a given point A.

From this point a, a vector runs to a point c of the one DNA strand, represented by curve

C. As the plane is moved forward by an infinitesimal amount, the vector ac will rotate

since the DNA strand revolves around A. If the helix axis A is planar, the Tw is simply

the number of times that ac rotates about A. However, when A is not planar, the

orientation of the coordinate system xyz, defined at a point a0, must be taken into

consideration. This Cartesian coordinate system xyz is defined so that the z axis coincides

with the infinitesimal length of A. As the plane is now moved along the axis A, the

component (or projection) of ac is the important quantity. The twist is the sum of the xy

component angles ac describes in the coordinate system of a0 as it is moved along the

entire length of A.

Figure 5. Definition of Tw. A is the helix axis, C is the phosphodiester backbone, and ac

is a vector connecting A to C at points a and c. Tw is the sum of the xy component of the

rotation of ac as the transecting plane, which stays perpendicular to A, is moved through

the DNA circle.

29

2.1. collected notes CHAPTER 2. STUDY NOTES

Figure 6. Definition of the virtual surface. The surface coincides with A, and has a

vector v perpendicular to the surface at point a.

This definition of Tw can be further refined by using a [virtual] surface as reference.

Although this may seem unnecessarily complex, it actually provides a very physical

framework within which to analyze real DNA molecules. Take the framework described

above, and place the axis A on a surface (that may be curved). Another vector v is now

defined that is perpendicular to this plane, and in the plane of the original ac vector. As

this plane is moved along A, the winding number () is defined as the number of times

that ac rotates past v. Since we are considering a closed circular molecule (Lk has no

physical meaning in linear molecules),  must necessarily be an integer. The helical

period h of the DNA is simply the length of the DNA divided by  (h = N/).

The helical repeat of DNA is often measured by adsorbing the molecule to a surface, and

examining the number of nuclease cleavage sites over the length of the molecule, where

it is assumed that maximal cleavage will occur where the DNA molecule is farthest from

the surface. The relation between the helical period so measured and  is now

immediately obvious.

What is the relation between  and Tw?

Although  is a component of Tw,  certainly does not equal Tw. An additional

parameter, surface twist (STw), which measures the way in which the reference vector v

changes, and therefore the virtual surface on which the axis A lies, is required to fully

define Tw. This is most clearly seen when considering an observer that walks along A on

the surface. This observer can count how many times the vector ac crosses his or her field

of vision. This is simply  . However, the observer will not be able to tell whether he or

she has rotated around A without reference to something else. This something else is a

displacement curve. This displacement curve is simply the trace of the observer's head as

he or she walks along the surface. This displacement curves measures the number of

times (or fraction thereof) that the observer rotated about A. Forward and backward

movements to not contribute to this curve. For instance, if the axis A lies on the equator

of a sphere, the observer can walk around the sphere on the equator, yet not rotate around

the axis A. Thus, in this case, STw is 0. In physical terms, STw measures the shape of the

DNA molecule in space.

This immediately takes us to the surface linking number SLk which measures the linking

of A with the displacement curve.

SLk = STw + Wr. 3

SLk for a helix formed on a sphere (interwound or plectonemic supercoiling) is 0. This is

because the displacement curve is not linked to A at all: it can be the central axis of the

spheroid. Thus, in this case STw = -Wr. For toroidal supercoiling (the type found in

chromatin), SLk is simply the number of toroidal turns, defined in the same way as for the

 .

By combining equations 1 and 3, we arrive at

Lk = STw +  + Wr 4

= SLk +  5

30

2.1. collected notes CHAPTER 2. STUDY NOTES

Thus, the Lk of a molecule can be determined from  which can be measures as the

helical period relative to a surface, and SLk, which can be calculated from the shape of

the molecule.

For any closed DNA on a spehroid, SLk = 0 and therefore Lk =  . For toroidal DNA,

SLk is simply the number of times that the helix winds about the super helix axis (n).

Usually, a DNA that is totally relaxed (for instance nicked and then religated) is assigned

a linking number N/ , since the relaxed molecule will be nearly planar and have little

contributions from STw and Wr. The linking number of such a molecule is often written

as Lk0. It is possible to measure the difference in linking number between this molecule

and another in an agarose gel, since the degree of supercoiling compacts the DNA, and its

migration through the gel matrix is different. Individual topoisomers can be so resolved,

and the  Lk of a specific topoisomer calculated by counting the number of topoisomers

between the Lk0 species, and the band (topoisomer) of interest.

A length independent number, the specific linking difference (), is calculated as

 =  Lk/Lk0 6

For bacterial plasmids, this is usually –0.06.

Nucleosomes and the linking number paradox

When viewing the structure of the nucleosome, it is seen that the helix winds almost two

times around the histone octamer over a length of 168bp. Yet, when the linking

difference of a nucleosome is measured, it is found to be ~-1.1. This became known as

the linking number paradox. Armed with our understanding of supercoiling theory, we

can now investigate why this may be so.

In nucleosomes, we have ~81bp per superhelical turn. Say we have a 4600bp circular

molecule containing nucleosome cores, we will have 57 left-handed superhelical turns.

The change in the winding number  for one supercoil in going from free DNA (which

has a helical period, h, of ~10.5) to nucleosomal DNA (where h = 10.0) is

  = N/hnuc – (N/h0)

=(81/10.0) – (81/10.5)

= 0.39

Thus, for 57 supercoils   = 22.

Now,

 Lk = SLk +  

= -57 + 22

= -35

Thus

 Lk = -0.61n

or, the linking number of the nucleosome is 0.61×-2 = -1.2

Applications

One dimensional resolution of topoisomers

This is good below

http://wine1.sb.fsu.edu/bch4053/Lecture21/Lecture21.htm

31

2.1. collected notes CHAPTER 2. STUDY NOTES

from http://searchlauncher.bcm.tmc.edu/help/AlignmentScore.html

The alignment score is the sum of the scores specified for each of the aligned pairs of

letters, and letters with nulls, in the alignment. The higher the alignment score, the better

the alignment.

http://www.cbil.upenn.edu/genlang/papers/fft.html

Cheever, E.A., Overton, G.C., and Searls, D.B. (1991) "Fast Fourier Transform-

Based Correlation of DNA Sequences using Complex Plane Encoding"

Computer Applications in the Biosciences 7(2):143-159.

The detection of similarities between DNA sequences can be accomplished using the

signal processing technique of cross correlation. An early method used the Fast Fourier

Transform (FFT) to perform correlations on DNA sequences in O(n log n) time for any

length sequence [Felsenstein et al, 1982]. However, this method requires many FFTs

(nine), runs no faster if one sequence is much shorter than the other, and measures only

global similarity, so that significant short local matches may be missed. We report that,

through the use of alternative encodings of the DNA sequence in the complex plane, the

number of FFTs performed can be traded off against (1) signal-to-noise ratio, and (2) a

certain degree of filtering for local similarity via k-tuple correlation. Also, when

comparing probe sequences against much longer targets, the algorithm can be sped up by

decomposing the target and performing multiple small FFTs in an overlap-save

arrangement. Finally, by decomposing the probe sequence as well, the detection of local

similarities can be further enhanced. With current advances in extremely fast hardware

implementations of signal processing operations, this approach may prove more practical

than heretofore.

From

http://hades.ph.tn.tudelft.nl/Internal/PHServices/Documentation/MathWorld/math/math/e

/e350.htm

Euler Graph

A Graph containing an Eulerian Circuit. An undirected Graph is Eulerian Iff every Vertex

has Even Degree. A Directed Graph is Eulerian Iff every Vertex has equal Indegree and

32

2.1. collected notes CHAPTER 2. STUDY NOTES

Outdegree. A planar Bipartite Graph is Dual to a planar Euler graph and vice versa. The

number of Euler graphs with nodes are 1, 1, 2, 3, 7, 16, 54, 243, ... (Sloane's A002854).

Eulerian Circuit

An Eulerian Trail which starts and ends at the same Vertex. In other words, it is a Cycle

which uses each Edge exactly once. The term Eulerian Cycle is also used synonymously

with Eulerian circuit. For technical reasons, Eulerian circuits are easier to study

mathematically than are Hamiltonian Circuits. As a generalization of the Königsberg

Bridge Problem, Euler showed (without proof) that a Connected Graph has an Eulerian

circuit Iff it has no Vertices of Odd Degree.

Eulerian Trail

A Walk on the Edges of a Graph which uses each Edge exactly once. A Connected Graph

has an Eulerian trail Iff it has at most two Vertices of Odd Degree.

From http://www.utc.edu/~cpmawata/petersen/lesson12.htm

An Euler circuit on a graph G is a circuit that visits each vertex of G and uses every edge

of G.

Vertex Degree

The degree of a Vertex of a Graph is the number of Edges which touch the

Vertex, also called the Local Degree. The Vertex degree of a point in a Graph,

denoted , satisfies

where is the total number of Edges. Directed Graphs have two types of degrees,

known as the Indegree and the Outdegree.

Indegree

33

2.1. collected notes CHAPTER 2. STUDY NOTES

The number of inward directed Edges from a given Vertex in a Directed Graph.

Outdegree

The number of outward directed Edges from a given Vertex in a Directed Graph.

NP-Complete Problem

A problem which is both NP (solvable in nondeterministic Polynomial time) and NP-

Hard (can be translated into any other NP-Problem). Examples of NP-hard problems

include the Hamiltonian Cycle and Traveling Salesman Problems.

In a landmark paper, Karp (1972) showed that 21 intractable combinatorial computational

problems are all NP-complete.

See also Hamiltonian Cycle, NP-Hard Problem, NP-Problem, P-Problem, Traveling

Salesman Problem

NP-Problem

A problem is assigned to the NP (nondeterministic Polynomial time) class if it is solvable

in polynomial time by a nondeterministic Turing Machine. (A nondeterministic Turing

Machine is a ``parallel'' Turing Machine which can take many computational paths

simultaneously, with the restriction that the parallel Turing machines cannot

communicate.) A P-Problem (whose solution time is bounded by a polynomial) is always

also NP. If a solution to an NP problem is known, it can be reduced to a single P

(Polynomial time) verification.

Linear Programming, long known to be NP and thought not to be P, was shown to be P

by L. Khachian in 1979. It is not known if all apparently NP problems are actually P.

A problem is said to be NP-Hard if an Algorithm for solving it can be translated into one

for solving any other NP-problem problem. It is much easier to show that a problem is

NP than to show that it is NP-Hard. A problem which is both NP and NP-Hard is called

an NP-Complete Problem.

See also Complexity Theory, NP-Complete Problem, NP-Hard Problem, P-Problem,

Turing Machine

P-Problem

34

2.1. collected notes CHAPTER 2. STUDY NOTES

A problem is assigned to the P (Polynomial time) class if the number of steps is

bounded by a Polynomial.

See also Complexity Theory, NP-Complete Problem, NP-Hard Problem, NP-Problem

Complexity Theory

The theory of classifying problems based on how difficult they are to solve. A problem is

assigned to the P-Problem (Polynomial time) class if the number of steps needed to solve

it is bounded by some Power of the problem's size. A problem is assigned to the NP-

Problem (nondeterministic Polynomial time) class if it permits a nondeterministic

solution and the number of steps of the solution is bounded by some power of the

problem's size. The class of P-Problems is a subset of the class of NP-Problems, but there

also exist problems which are not NP.

However, if a solution is known to an NP-Problem, it can be reduced to a single period

verification. A problem is NP-Complete if an Algorithm for solving it can be translated

into one for solving any other NP-Problem. Examples of NP-Complete Problems include

the Hamiltonian Cycle and Traveling Salesman Problems. Linear Programming, thought

to be an NP-Problem, was shown to actually be a P-Problem by L. Khachian in 1979. It is

not known if all apparently NP-Problems are actually P-Problems.

See also Bit Complexity, NP-Complete Problem, NP-Problem, P-Problem

Math 455.1 • 1 April 2002

Algorithm to Find Euler trail in Eulerian graph
Input
A connected graph in which each vertex has even degree.

Output
An Eulerian trail in .

Begin
(0) Remove all loops from .
(1) (1.1) Select an arbitrary vertex 0 of ;
(1.2) form some cycle in from 0 to 0 {use Cycle Lemma method};

and
(1.3) remove all edges in , leaving a subgraph of .
(2) While has edges . . .
(2.1) select some vertex of that is an end of some edge of ;
(2.2) select some cycle in from to ;
(2.3) let be the new walk obtained by inserting into at vertex 
{so that is a trail in };and

(2.4) let be the subgraph of obtained by removing from all edges
of and all the isolated (that is, degree 0) vertices of .
(3) At each vertex of , insert all loops of at .
(4) Return .

End

35

2.1. collected notes CHAPTER 2. STUDY NOTES

Theorem 2. (Fleury’s algorithm)

Let G be an Eulerian graph. Then the following construction is always possible, and

produces an Eulerian trail of G.

Start at any vertex u and traverse the edges arbitrarily, except subject to 2 rules:

(a) erase the edges as they are traversed, and the isolated vertices resulted (if any);

(b) use a bridge only if there is no alternative.

From http://www2.toki.or.id/book/AlgDesignManual/BOOK/BOOK4/NODE165.HTM

There are well-known conditions for determining whether a graph contains an

Eulerian cycle, or path:

 An undirected graph contains an Eulerian cycle iff (1) it is connected and (2) each

vertex is of even degree.

 An undirected graph contains an Eulerian path iff (1) it is connected and (2) all

but two vertices are of even degree. These two vertices will be the start and end

points of the path.

 A directed graph contains an Eulerian cycle iff (1) it is connected and (2) each

vertex has the same in-degree as out-degree.

 Finally, a directed graph contains an Eulerian path iff (1) it is connected and (2)

all but two vertices have the same in-degree as out-degree, and these two vertices

have their in-degree and out-degree differ by one.

From http://www.ctl.ua.edu/math103/euler/howcanwe.htm

How can we tell if a graph has an Euler path or circuit?

In solving the Königsberg bridge problem, Euler proved three theorems

which answer this question.

EULER’S THEOREMS

Euler’s Theorem 1

If a graph has any vertices of odd degree, then it CANNOT have an

EULER CIRCUIT.

AND

If a graph is connected and every vertex has even degree, then it has

36

2.1. collected notes CHAPTER 2. STUDY NOTES

AT LEAST ONE EULER CIRCUIT (usually more).

Euler’s Theorem 2

If a graph has more than 2 vertices of odd degree, then it CANNOT

have an EULER PATH.

AND

If a graph is connected and has exactly 2 vertices of odd degree, then it

has AT LEAST ONE EULER PATH (usually more). Any such path

must start at one of the odd-degree vertices and end at the other.

Euler’s Theorem 3

The sum of the degrees of all the vertices of a graph is an even number

(exactly twice the number of edges).

In every graph, the number of vertices of odd degree must be even.

The implications of Euler's theorems are summarized in the table

below:

of ODD Vertices
Implication (for a

connected graph)

0
There is at least

one Euler Circuit.

1
THIS IS IMPOSSIBLE!

(Try it yourself.)

2
There is no Euler Circuit

but at least 1 Euler Path.

more than 2

There are no Euler

Circuits

or Euler Paths.

Keep in mind:

 An Euler Circuit IS a type of Euler Path but an Euler Path is not

necessarily an Euler Circuit.

 The sum of the degrees of all the vertices of a graph is twice the

number of edges.

 The number of vertices of odd degree must be even.

Back

From http://www.ctl.ua.edu/math103/euler/ifagraph.htm

(Remember, only connected graphs with no vertices of odd deGMATe have Euler

circuits.)

37

2.1. collected notes CHAPTER 2. STUDY NOTES

oct 10, 2002 notes

How many Euler circuits are there starting from one random vertex? Are there are the

same number of Euler Circuits starting from any vertex?

 To help me understand about Alu, these are quotes from the internet related to Alu.

From http://www.accessexcellence.org/AE/AEPC/DNA/detection.html

The Alu family of short interspersed repeated DNA elements are distributed throughout primate genomes.

Over the past 65 million years, the Alu sequence has amplified via an RNA-mediated transposition process

to a copy number of about 500,000--comprising an estimated 5% of the human genome

An estimated 500-2,000 Alu elements are mostly restricted to the human genome

From http://www.sequenceanalysis.com/glossary.html#alu

Alu

A family of approx. 300 bp repetitive sequences, found

dispersed throughout the human genome. Almost any 100 kb

human nucleotide sequence will have Alu sequences within

it.

From the internet, found the definition of Alu sequence:

Alu sequences A family of 300-bp sequences occurring nearly a
million times in the human genome.

http://users.aber.ac.uk/obb0/pcr.htm

The alu sequence has 900,000 copies throughout the human genome.

From http://www.iephb.nw.ru/labs/lab38/spirov/hox_pro/rare-alu.html

Over the past 30 to 60 million years these insertions have occurred repeatedly, leaving

roughly a million copies of Alu scattered through the human genome and making up

almost 10 per cent of all the DNA in each cell. During this time, the sequences of the

various Alus have begun to diverge, so that four distinct subfamilies of Alu can now be

recognised.

The results also provide the first clear evidence that most Alus could have the potential to

regulate human genes. Apparently most Alus have little effect on nearby genes, perhaps

because they are bundled deep within folds of DNA. But with a million Alus strewn

38

2.1. collected notes CHAPTER 2. STUDY NOTES

randomly through the genome during the course of primate evolution, at least a few are

likely to have landed where they could regulate a nearby gene. When this occurred, the

effect would be equivalent to randomly twisting a knob on an instrument panel. Usually

the effect would be harmful, but once in a while it might produce an interesting and

beneficial genetic novelty. It seems that over the last 30 to 50 million years, it would

provide good evolutionary fodder.

This is reference paper for HW3, problem 2.

Roy-Engel AM, Salem AH, Oyeniran OO, Deininger L, Hedges DJ, Kilroy GE,

Batzer MA, Deininger PL.

Tulane Cancer Center, SL-66, Department of Environmental Health Sciences, Tulane

University-Health Sciences Center, New Orleans, Louisiana 70112, USA.

Long and short interspersed elements (LINEs and SINEs) are retroelements that make up

almost half of the human genome. L1 and Alu represent the most prolific human LINE

and SINE families, respectively. Only a few Alu elements are able to retropose, and the

factors determining their retroposition capacity are poorly understood. The data presented

in this paper indicate that the length of Alu "A-tails" is one of the principal factors in

determining the retropositional capability of an Alu element.

The A stretches of the Alu subfamilies analyzed, both old (Alu S and J) and young

(Ya5), had a Poisson distribution of A-tail lengths with a mean size of 21 and 26,

respectively. In contrast, the A-tails of very recent Alu insertions (disease causing)

were all between 40 and 97 bp in length.

The L1 elements analyzed displayed a similar tendency, in which the "disease"-

associated elements have much longer A-tails (mean of 77) than do the elements even

from the young Ta subfamily (mean of 41). Analysis of the draft sequence of the human

genome showed that only about 1000 of the over one million Alu elements have tails of

40 or more adenosine residues in length.

The presence of these long A stretches shows a strong bias toward the actively

amplifying subfamilies, consistent with their playing a major role in the amplification

process. Evaluation of the 19 Alu elements retrieved from the draft sequence of the

human genome that are identical to the Alu Ya5a2 insert in the NF1 gene showed that

only five have tails with 40 or more adenosine residues. Sequence analysis of the loci

with the Alu elements containing the longest A-tails (7 of the 19) from the genomes of

the NF1 patient and the father revealed that there are at least two loci with A-tails long

enough to serve as source elements within our model. Analysis of the A-tail lengths of 12

Ya5a2 elements in diverse human population groups showed substantial variability in

both the Alu A-tail length and sequence homogeneity. On the basis of these observations,

a model is presented for the role of A-tail length in determining which Alu elements

39

2.1. collected notes CHAPTER 2. STUDY NOTES

are active. [The sequence data from this study have been submitted to GenBank under

accession nos. AF504933-AF505511.]

retroposition
Simple backward displacement of a structure or organ, as the uterus, without inclination,
bending, retroversion, or retroflexion.

From http://www.dhushara.com/book/upd2/jan01/hgwww/hgp.htm

In the human, coding sequences comprise less than 5% of the genome (see below),

whereas repeat sequences account for at least 50% and probably much more. Broadly, the

repeats fall into five classes:

(1)transposon-derived repeats, often referred to as interspersed repeats;

(2) inactive (partially) retroposed copies of cellular genes (including protein-coding genes

and small structural RNAs), usually referred to as processed pseudogenes;

(3) simple sequence repeats, consisting of direct repetitions of relatively short k-mers

such as (A)n, (CA)n or (CGG)n;

(4) segmental duplications, consisting of blocks of around 10±300 kb that have been

copied from one region of the genome into another region; and

(5) blocks of tandemly repeated sequences, such as at centromeres, telomeres, the short

arms of acrocentric chromosomes and ribosomal gene clusters. (These regions are

intentionally under-represented in the draft genome sequence and are not discussed here.)

Classes of transposable elements. In mammals, almost all transposable elements fall into

one of four types (Fig. 17), of which three transpose through RNA intermediates and one

transposes directly as DNA. These are long interspersed elements (LINEs), short

interspersed elements (SINEs), LTR retrotransposons and DNA transposons.

Three distantly related LINE families are found in the human genome: LINE1, LINE2

and LINE3 Only LINE1 is still active.

SINEs are wildly successful freeloaders on the backs of LINE elements. They are short

(about 100±400 bp), harbour an internal polymerase III promoter and encode no proteins.

The promoter regions of all known SINEs are derived from tRNA sequences, with the

exception of a single monophyletic family of SINEs derived from the signal recognition

particle component 7SL. This family, which also does not share its 39 end with a LINE,

includes the only active SINE in the human genome: the Alu element.

40

2.1. collected notes CHAPTER 2. STUDY NOTES

If the sequences above represent DNA sequences, then taking the max of f*g corresponds

to finding the maximum overlap between two DNA sequences

From http://ccrma-www.stanford.edu/~jos/mdft/Convolution_Theorem.html

Convolution Theorem

Theorem: For any ,

Proof:

This is perhaps the most important single Fourier theorem of all. It is the basis of

a large number of applications of the FFT. Since the FFT provides a fast Fourier

transform, it also provides fast convolution, thanks to the convolution theorem. It

turns out that using the FFT to perform convolution is really more efficient in

practice only for reasonably long convolutions, such as . For much

41

2.1. collected notes CHAPTER 2. STUDY NOTES

longer convolutions, the savings become enormous compared with ``direct''

convolution. This happens because direct convolution requires on the order of

operations (multiplications and additions), while FFT-based convolution

requires on the order of operations.

The following simple Matlab example illustrates how much faster convolution can

be performed using the FFT:

>> N = 1024; % FFT much faster at this length

>> t = 0:N-1; % [0,1,2,...,N-1]

>> h = exp(-t); % filter impulse reponse = sampled exponential

>> H = fft(h); % filter frequency response

>> x = ones(1,N); % input = dc (any example will do)

>> t0 = clock; y = conv(x,h); t1 = etime(clock,t0); % Direct

>> t0 = clock; y = ifft(fft(x) .* H); t2 = etime(clock,t0); % FFT

>> sprintf(['Elapsed time for direct convolution = %f sec\n',...

 'Elapsed time for FFT convolution = %f sec\n',...

 'Ratio = %f (Direct/FFT)'],t1,t2,t1/t2)

ans =

Elapsed time for direct convolution = 8.542129 sec

Elapsed time for FFT convolution = 0.075038 sec

Ratio = 113.837376 (Direct/FFT)

From: Martin (martin.jonsson@cetus.se)
Subject: Re: ? Use FFT to do the convolution
in finite interval
Newsgroups: comp.soft-sys.matlab
Date: 2001-12-13 00:38:35 PST

Convolution in finite interval can easyly be done by correlation(xcorr) if

you got Signal Processing Tollbox

and the vectors are of equal length. conv(a,b)=xcorr(a,fliplr(b))

Example conv(a,b)=xcorr(a,fliplr(b))

a=[1 2 3 4 5 6 5 4 3 2 1 1 2 3 4 5];

b=[2 3 4 5 6 5 4 3 2 1 1 2 3 4 5 1];

k=xcorr(a,b);

View: Complete Thread (17 articles)
Original Format

42

2.1. collected notes CHAPTER 2. STUDY NOTES

figure,plot(k)

bb=fliplr(b);

c=conv(a,bb);%the same as xcorr(a,b)

hold on

plot(c,'r--')

%vector c and k will be the same

For finit conv interval use xcorr(a,bb,lag)

Example

lag=2;

convfinite=xcorr(a,bb,lag);%the same as conv(a,b) but with finit interval.

figure,plot(convfinite)

With lag you look at the center + 2(lag) sampels backwords and 2(lag)

forward.

If you don't have the signal processing toolbox or the vectors of different

length you could just fix the vectors

or write a little code snippet witch does the convolution.

Exampel of finit convolution.

a=[1 1 1 2 2 2 3 3 3 4]; % length 10

b=[1 1 2 2 3 3 4]; % length 7

ct=conv(a,b);% length 10+7-1=16

%for finite conv.

start=3; %start of finite conv

stop=7; %end of finite conv

%bb=fliplr(b);%bb=[4 3 3 2 2 1 1];

for r=start:stop

 if (r > length(a))

 c(r-start+1)=sum(fliplr(b(r-length(a)+1:r)).*a);

 elseif (r > length(b))

 c(r-start+1)=sum(a(r-length(b)+1:r).*fliplr(b));

 else

 c(r-start+1)=sum(a(1:r).*fliplr(b(1:r)));

 end

end

%plots the whole convolution ct and the finit c in tha same figure to

compere.

figure,plot(ct)

hold on

plot([3 4 5 6 7],c,'r--')

from http://www.nist.gov/dads/HTML/viterbiAlgorithm.html

43

2.1. collected notes CHAPTER 2. STUDY NOTES

Viterbi algorithm

(algorithm)

Definition: An algorithm to compute the optimal (most likely) state sequence in a

hidden Markov model given a sequence of observed outputs.

See also Baum Welch algorithm.

Note: Also used to decode, i.e. remove noise from, linear error-correcting codes.

hidden Markov model

(data structure)

Definition: A variant of a finite state machine having a set of states, Q, an output

alphabet, O, transition probabilities, A, output probabilities, B, and initial state

probabilities, . The current state is not observable. Instead, each state produces

an output with a certain probability, B. Usually the states, Q, and outputs, O, are

understood, so an HMM is said to be a triple, (A, B,).

Formal Definition: After Michael Cohen.

 A = {aij = P(qj at t+1 | qi at t)}, where P(a | b) is the conditional probability of a

given b, t 1 is time, and qi Q.

Informally, A is the probability that the next state is qj given that the current state

is qi.

 B = {bik = P(ok | qi)}, where ok O.

Informally, B is the probability that the output is ok given that the current state is

qi.

 = {pi = P(qi at t=1)}.

Also known as HMM.

See also Markov chain, Baum Welch algorithm, Viterbi algorithm.

Markov chain

(data structure)

Definition: A finite state machine with probabilities for each transition, that is, a

probability that the next state is sj given that the current state is si.

44

2.1. collected notes CHAPTER 2. STUDY NOTES

See also hidden Markov model.

Note: Equivalently, a weighted, directed graph in which the weights correspond

to the probability of that transition. In other words, the weights are nonnegative

and the total weight of outgoing edges is positive. If the weights are normalized,

the total weight, including self-loops, is 1. After [Leda98].

Author: PEB

Baum Welch algorithm

(algorithm)

Definition: An algorithm to find hidden Markov model parameters A, B, and with

the maximum likelihood of generating the given symbol sequence in the

observation vector.

See also Viterbi algorithm.

> interface(verboseproc=3);

> interface(warnlevel=4);

from http://uirvli.ai.uiuc.edu/dugad/

The Three Problems for HMMs

Most applications of HMMs are finally reduced to solving three main problems. These

are :

Problem 1 : Given the model how do we compute P(O), the probability of

occurrence of the observation sequence O = , ,..., .

Problem 2 Given the model how do we choose a state sequence I = , ,...,

 so that P(O,I),the joint probability of the observation sequence O = ,

,..., and the state sequence given the model is maximized.

45

2.1. collected notes CHAPTER 2. STUDY NOTES

Problem 3 How do we adjust the HMM model parameters so that P(O) (or P(

O,I)) is maximized.

Problems 1 and 2 can be viewed as analysis problems while Problem 3 is a typical

synthesis (or model identification or training) problem.

> restart;

Digits:= trunc(evalhf(Digits)):

n:= 100:

rnd01:= ()-> rand()/(10.^12-11):

X:= [seq(rnd01(), i= 1..n)]:

Y:= [seq(rnd01(), i= 1..n)]:

f:= (x,y)-> sqrt(-2*ln(x))*cos(2*Pi*y):

Z:= evalf(zip(f, X, Y)):

PLOT3D(POINTS([seq([X[i], Y[i], Z[i]], i= 1..n)]),

SYMBOL(CIRCLE));

From http://groups.google.com/groups?q=markov+entropy&hl=en&lr=&ie=UTF-

8&oe=UTF-8&selm=3v3hrn%24kd8%40nntp5.u.washington.edu&rnum=4

for an expository paper called ``An Entropy Primer'', or see the textbook

``Elements of Information Theory'' by Cover and Thomas, Wiley, 1991.

A related theorem (see ``Primer''), the Equipartition Theorem, says

that for ergodic text sources, the log of the probability of the particular

message you observed is, for sufficiently large n, very close to the

source entropy. (The source entropy is defined as you wrote it for

a Bernoulli source, and in a slightly different way for Markov shifts;

see ``Primer'' and other preprints linked to my home page, or see

the textbook ``An Introduction to Ergodic Theory'' by Peter Walters,

Springer, 1981.)

We should maximize H(X) = -Sum{pi*log(pi)} with the constraint that Sum{pi}

= 1.

(We also have another constraint that pi >= 0 for all i, but ignore it for

the time.)

Lagrangian multiplier, say m, is introduced to solve the constrained

maximization problem.

Now, H1(X) = -Sum{pi*log(pi)} + m(Sum{pi}-1) should be maximized.

46

2.1. collected notes CHAPTER 2. STUDY NOTES

The fact that partial derivative of H1 respective to pi (i = 1, 2, ..., n)

and m should be 0 yields the desired solution.

(And, the solution also meets the constraint pi >= 0.)

For order-K Markov chain:

H = - sum(i1=1 to m) ... sum(iK+1=1 to m) (

p(ai1, ... , aiK+1)*log(p(aiK+1|ai1, ... aiK))),

where a1, ..., am are alphabet symbols, p(x,y,z, ...) is a probability

of occurrence "x,y,z, ..." in source output and p(z| ...,x,y) is a

conditional probability of occurrence z after " ... ,x,y" in source output.

HIGH ORDER == LOW Entropy

So if a sequence is highly ordered, or in other words, highly predictable, then the entropy

will be LOW.

So, random data will have high entropy.

From the net, example to exec program from java and get its output

> You might try something like this...

import java.io.*;

public class Test

{ public static void main (String args[])

 { try {

 Runtime myRunTime = Runtime.getRuntime();

 Process myProcess;

 InputStream theInputStream;

 byte[] theResultBytes;

 int numberResultBytes;

 int resultCode;

 String cmdString = "C:/test.bat";

 String theResultString;

 myProcess = myRunTime.exec(cmdString);

 theInputStream = myProcess.getInputStream();

47

2.1. collected notes CHAPTER 2. STUDY NOTES

 myProcess.waitFor();

 numberResultBytes = theInputStream.available();

 System.out.println("numberResultBytes: " + numberResultBytes);

 theResultBytes = new byte[numberResultBytes];

 resultCode = theInputStream.read(theResultBytes);

 theResultString = new String("");

 while(resultCode != '\0' && resultCode != -1)

 { theResultString =

 new String(theResultString + new String(theResultBytes));

 resultCode = theInputStream.read(theResultBytes);

 }

 System.err.println(theResultString);

 theInputStream.close();

 }

 catch(java.lang.InterruptedException e)

 { System.err.println("Something went wrong");

 }

 catch(java.io.IOException e)

 { System.err.println("Something went wrong");

 }

 }

}

from http://www.asp.ucar.edu/colloquium/1992/notes/part1/node9.html

The mean of a set of measurements is the average:

(2.1)

The expectation value of a quantity is the value expected if averaged over the entire

parent population, and will be denoted by angle brackets: . For example, the mean in

the parent population that corresponds to the sample mean x is

So, the expected values is the AVERAGE, when done over the whole population.

When the sample size is smaller, then we called it the average. So, expectation is a

stronger sense of the average.

 L. Allison. Using Hirschberg's algorithm to generate random alignments. Inf.

Proc. Lett. 51 251-255 1994.

48

2.1. collected notes CHAPTER 2. STUDY NOTES

 L. Allison and C. S. Wallace. The posterior probability distribution of alignments

and its application to parameter estimation of evolutionary trees and to

optimization of multiple alignments. Jrnl. Molec. Evol. 39 418-430 1994.

 D. S. Hirschberg. A linear space algorithm for computing maximal common

subsequences. Inf. Proc. Lett. 18 341-343 1975.

D. S. Hirschberg.

Algorithms for the longest common subsequence problem.

J.ACM, 24:664-675, 1977.

http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Dynamic/Hirsch/

this below finds time and space complexity for hirsh. Algo

http://www.math.tau.ac.il/~rshamir/algmb/98/scribe/html/lec02/node10.html

gene finding and markov, time/space estimates:

http://www.csse.monash.edu.au/~lloyd/tildeStrings/Notes/20001205HMMgene.html

contains good gene struct

http://www.fruitfly.org/GASP1/tutorial/presentation/sld009.htm

49

2.1. collected notes CHAPTER 2. STUDY NOTES

from http://www.cs.mcgill.ca/~kaleigh/work/hmm/hmm_paper.html

A eukaryotic gene contains coding regions called exons which may be interupted by non-

coding regions called introns. The exons and introns are separated by splice sites.

Regions outside genes are called intergenic. The goal of gene finding is then to annotate

the sets of genomic data with the location of genes and within these genes, specific areas

such as promoter regions, introns and exons.

50

2.1. collected notes CHAPTER 2. STUDY NOTES

Check this:

[10]
Kanungo, Tapas. HMM software learning toolkit. University of Maryland

Institute for Advanced Computer Studies, Center for Automation Research,

Language and Media Processing Lab -

http://www.cfar.umd.edu/ kanungo/software/software.html.

51

2.1. collected notes CHAPTER 2. STUDY NOTES

from

http://web.njit.edu/~bcohen/teaching/786/studentProjects/geneFinding/geneFinding.ppt

52

2.1. collected notes CHAPTER 2. STUDY NOTES

this below from http://bio.lundberg.gu.se/courses/bio1/1_1.pdf

53

2.1. collected notes CHAPTER 2. STUDY NOTES

from http://www.genomicglossaries.com/content/proteins_glossary.asp

Poly A: A group of adenine ribonucleotides in which the phosphate residues of
each adenine ribonucleotide act as bridges in forming diester linkages between
the ribose moieties. [MeSH, 1976]

polyadenylation: The addition of a tail of polyadenylic acid (POLY A) to the 3'
end of mRNA (RNA, MESSENGER). Polyadenylation involves recognizing the
processing site signal, (AAUAAA), and cleaving of the mRNA to create a 3' OH
terminal end to which poly A polymerase (POLYNUCLEOTIDE
ADENYLTRANSFERASE) adds 60- 200 adenylate residues. The 3' end
processing of some messenger RNAs, such as histone mRNA, is carried out by a
different process that does not include the addition of poly A as described here.
[MeSH, 2002]

54

2.1. collected notes CHAPTER 2. STUDY NOTES

During the maturation of messenger RNA, about 200 adenosine nucleotides are
added in a polyadenylation reaction at the 3' end. These are not coded by the
corresponding gene. In certain cases there are multiple alternative
polyadenylation sites in the primary transcript. This was first observed in
adenoviruses [127 - 131]. In cellular genes many alternative polyadenylation
sites have also been found [see 132 for review]. Alternative polyadenylation sites
usually involve the untranslated trailer sequence in the messenger RNA, but they
can also involve translated sequences, and in this case they can affect the
structure of the encoded protein. Thus multiple polyadenylation sites are one
mechanism whereby a single gene can control the synthesis of more than one
polypeptide. [Petter Portin in "The Origin, Development and Present Status of
the Concept of the Gene: A Short Historical Account of the Discoveries" Univ. of
Turku, Finland, 2000] http://www.bentham.org/cg1-1/portin/P.Protin.htm

translation: The unidirectional process that takes place on the ribosomes
whereby the genetic information present in an mRNA is converted into a
corresponding sequence of amino acids in a protein. [IUPAC Bioinorganic

transcription, genetic: The transfer of genetic information from DNA to
messenger RNA by DNA- directed RNA polymerase. It includes reverse
transcription and transcription of early and late genes expressed early in an
organism's life cycle or during later development. [MeSH, 1973]

MAPLE:

evelyn wrote:

Just plot f,g,h with their ranges like

fplot := plot(f(x),x=a..b);

and then do

with(plots):

display({fplot,gplot,hplot});

Cheers,

Raphael

> Hello,

>

> I want to plot 3 different funtions f(x), g(x), h(x) in one plot and

> different colors. But every function has a different range. I will

> give an example:

>

55

2.1. collected notes CHAPTER 2. STUDY NOTES

> funcion 1: f in funcion of x in a range from x=0 to x=0.1

> funcion 2: g in funcion of x in a range from z=0.1 to x=2.5

> function 3: h in function of x in a range from x=2.5 to x=4

>

> Is that possible?

>

> Evelyn

CTG has been described as start codon for

start codon (initiation codon)

The triplet of nucleotides on a messenger RNA molecule (see codon) at which the

process of translation is initiated. In eukaryotes the start codon is AUG (see genetic

code), which codes for the amino acid methionine; in bacteria the start codon can be

either AUG, coding for N-formyl methionine, or GUG, coding for valine. Compare stop

codon.

This below takes a little on splice sites

http://www.fruitfly.org/GASP1/doc/format.html

maple

>plot3d('findstable(1,1,1,1,x,y,1)', x=0..1, y=0..1);

use `=`= Equals in

 x= 9; y= 9; z= 9;

 x= 9*6; x= x*3

 # Any number of statements can go in the use block

end use;

56

2.1. collected notes CHAPTER 2. STUDY NOTES

EXAM prep
Knots.

Q1. application to DNA supercolining.

Q2. explain topoisomerases and how it works.

A2.

See http://www.mun.ca/biochem/courses/3107/Lectures/Topics/supercoiling.html

The degree of supercoiling in the cell must be and is carefully controlled by the action of

topoisomerases.

These enzymes catalyse the transient breaking and rejoining of DNA strands.

Enzymes that change the degree of supercoiling in DNA by cutting one or both strands.

Type I topoisomerases cut only one strand of DNA; type I topoisomerase of E. coli > E.

coli (omega protein) relaxes negatively supercoiled DNA and does not act on positively

supercoiled DNA.

Type II topoisomerases cut both strands of DNA; type II topoisomerase of E. coli (DNA

gyrase) increases the degree of negative supercoiling in DNA and requires ATP. It is

inhibited by several antibiotics, including nalidixic acid and ovobiocin.

The major role of topoisomerases is to prevent DNA tangling.

As a result, the type I enzyme removes supercoils from DNA one at a time, whereas the

type II enzyme removes supercoils two at a time. Although the type II topoisomerase is

more efficient in removing supercoils, this enzyme requires the energy from ATP

hydrolysis, but the type I topoisomerase does not.

Without topoisomerases, the DNA cannot replicate normally.

Q3 what is a link number

A3 Number of times two DNA strands interwinds each others.

Another: This is only defined for two strands, not a single strand. Supercoiling in circular

DNA molecules is described mathematically by the number of times the two

phosphodiester backbones wrap around one another in a given distance. This quantity is

the Linking number (Lk). If either one of the two DNA strands is nicked, this value has

no meaning.

Because the entire molecule will be a closed circle, the linking number will always be an

integer.

57

2.1. collected notes CHAPTER 2. STUDY NOTES

Q4. what is the twist

A4. One definition: number of times basepairs twist around the central axis.

Another: The twist of a ribbon measures how much it twists around its axis and is defined

as the integral of the incremental twist around the ribbon

Q4.1 What is the Writhe number

Is a simple function of only the molecule axis vector r.

Q4.2 How to find the link number

This is defined ONLY for 2 components. A KNOT does not have a link number, it

has a crossing number. Linking number measures how many times one

components go around the other.

58

2.1. collected notes CHAPTER 2. STUDY NOTES

The linking number is 1.

either do the –1, +1 sum, and then divide by 2 the final result as shown below:

A link invariant defined for a two-component oriented link as the sum of

crossings and -1 crossing over all crossings between the two links divided by 2.

For components and ,

OR use this method below. I use this method to find the linking number between two

components, (it is easier)

From paper: http://www.biophysics.org/btol/img/Vologodskii.A.pdf

A nice way to find the link number. Take one strand, and make is a closed surface. Then

find how many times the other strand cuts the countor. If it cuts the contour twice from

the same side one after the other, then they both cancel each others. Now simply add the

number the other strand cuts the closed surface.

Just make one component shaded as above, and then add arrows to make sure the

direction of one strand is kept consistant, then count how many times the strands crosses

the shaded plan, as above.

59

2.1. collected notes CHAPTER 2. STUDY NOTES

Q5. what is crossing number

The least number of crossings that occur in any projection of a link. In general, it is

difficult to find the crossing number of a given link. Knots and links are generally

tabulated based on their crossing numbers.

Q6. What is a knot

A knot is defined as a closed, non-self-intersecting curve embedded in three dimensions.

A knot is a single component link

i.e. a knot is a CLOSED curve in 3D space that does not interest itself.

Teacher definition: a knot is a function which maps a unit circle into , and a link is a

function which maps a collection of disjoint unit circles into .

This is another definition: A knot is a polygon embedded in threespace

Q7. what is a component

More informally, a link or component is an assembly of knots with mutual

entanglements.

Q8. what does it mean that 2 knots are equivelant?

A8. This means there exist a number of reidmester moves that transforms one knot to the

other.

Q9 what is Jones polynomial

A9. It is a knot invariant in the form of a polynomial

Q10. what are the reidemeister moves

A10. twist, poke, slide.

Reidemeister first rigorously proved that knots exist which are distinct from the unknot.

He did this by showing that all knot deformations can be reduced to a sequence of three

types of "moves,"

NOTE: do both sense for this. When up/down.

60

2.1. collected notes CHAPTER 2. STUDY NOTES

Q11. What is the directed writhe ?

A11. This is when we give an orientation to the knot projection, at each crossing we have

a +1 or a –1. The sum of these is the writhe.

Also called the twist number. The sum of crossings p of a link L,

Q12. What is the calugareanu formula.

A12. Link number = Twist number + writhe number

Writhe number can be found as above, by counting +1, -1, or by an integral

A formula for the writhe is given by

61

2.1. collected notes CHAPTER 2. STUDY NOTES

Twist number: The twist of a ribbon measures how much it twists around its axis and is defined as

the integral of the incremental twist around the ribbon. A formula for the twist is given by

Link number is A link invariant defined for a two-component oriented link as the sum of

crossings and -1 crossing over all crossings between the two links divided by 2. For

components and ,

Q13 When are 2 knots equivalent?

Definition 4 Let , be knots (links). Then, if the knot diagram of can be

obtained from the knot diagram of using a finite sequence of Reidemeister moves.

Q14. How does assembly work?

A14. Assembly means finding the shortest common superstring for all the reads. This is

an NP complete problem. So use the greedy algorithm. This is done in two steps. First

find best overlap between each 2 reads, next put the reads togother. For first step, use

convolution to find max overlap.

Q15. What is coverage in assembly?

A15. This is a measure of how many times a position is found in different reads. For

example, 6x coverage means each position (base) is covered on 6 different reads or

fragments.

Q16. what is a gene
A segment of a DNA molecule that contains all the information required for synthesis of

a product (polypeptide chain or RNA molecule), including both coding and non-coding
sequences. It is the biological unit of heredity, self-reproducing, and transmitted from

parent to progeny. Each gene has a specific position (locus) on the chromosome map.

From the standpoint of function, genes are conceived of as structural, operator, and

regulatory genes.

OR

A gene is a segment of a chromosome that encodes instructions that allow a cell to

produce a specific product, typically a protein, that initiates one specific action.

62

2.1. collected notes CHAPTER 2. STUDY NOTES

Q17. what is an exon?
A segment of a eukaryotic gene that is transcribed as part of the primary transcript and
is retained, after processing, with other exons to form a functional mRNA molecule. See

DNA; intron; split gene; splicing.

Q18. what is an intron?

intron; intervening sequence A segment of DNA sequence of a eukaryotic gene, not

represented in the mature (final) mRNA transcript, because it is spliced out of the

primary transcript before it can be translated; a process known as intron splicing. Some

genes of higher eukaryotes contain a large number of introns, which make up the bulk
of the DNA sequence of the gene. Introns are also found in genes whose RNA transcripts

are not translated, namely eukaryotic rRNA and tRNA genes. In these cases the intron
sequence does not appear in the functional RNA molecule. cf exon.

DNA ---(transcript)---> preRNA (intron+exons) ---(splice)-- RNA --- (translate)- protein

Q19. what is HMM

A statistical method that describes a series of observations (in our case nucleotides) by

a hidden stochastic process.

Another nice definition. It is like a profile. From some observations, we deduce hidden

actions.

Q20. what is a suffix tree.
A given suffix tree can be used to search for a substring, pat[1..m] in O(m) time.

Q21: What repates are there?

A. Simple and interspread repeats. Simple like ACACACAC, while interspread are LINE

(Long
INTerspread repeats) and SINS (Short INTerspread repeats).

Q22. What is electrophresis?

A. Sorting DNA pieces by length. DNA travel across a potential in a rate of travel ~

1/LogL.

From help on clustALW http://www-igbmc.u-strasbg.fr/BioInfo/ClustalW/help2.html

Multiple alignments are carried out in 3 stages (automatically done from menu item 1

...Do complete multiple alignments now):

1. all sequences are compared to each other (pairwise alignments);

2. a dendrogram (like a phylogenetic tree) is constructed, describing the approximate

groupings of the sequences by similarity (stored in a file).

3. the final multiple alignment is carried out, using the dendrogram as a guide

this below also does multiple protein seq. alignment.

http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_clustalw.html

on divide-and-conqure, from
http://www.cse.ucsc.edu/research/compbio/papers/samspace/node2.html

63

2.1. collected notes CHAPTER 2. STUDY NOTES

The solution to this is to use a sequence alignment method that requires less space. In the

case of finding the single best path, there is an elegant divide-and-conquer algorithm that

requires only O(n+m) space, where n is the sequence length and m is the model length

[Hirschberg, 1975]. The approach of this algorithm is to find a midpoint of the best path

without saving all O(nm) dynamic programming entries, and then to solve two smaller

problems, each of approximate size nm/4 using the same algorithm. This algorithm is

well known in the computational biology community [Myers & Miller, 1988], and has,

for example, been implemented in the HMMer package for sequence alignment to a

trained HMM [Eddy et al., 1995].

More interesting and more complicated is the number of unlabeled trees on

n vertices ;^)

Here you can get an asymptotic in R. Otter: The number of trees in

the Annals of Mathematics, Vol 49, No 3 July 1948.

64

2.1. collected notes CHAPTER 2. STUDY NOTES

-1 2 3 4 5 6 7-2-3-4-5-6-7 0 1

-1 2 3 4 5 6 7-2-3-4-5-6-7 0 1

-1 2 3 4 5 6 7-2-3-4-5-6-7 0 1
n=0 y[n]

h[n]

x[n]

-1 2 3 4 5 6 7-2-3-4-5-6-7 0 1

-1 2 3 4 5 6 7-2-3-4-5-6-7 0 1

-1 2 3 4 5 6 7-2-3-4-5-6-7 0 1
n=1 y[n]

h[n]

x[n]

-1 2 3 4 5 6 7-2-3-4-5-6-7 0 1

-1 2 3 4 5 6 7-2-3-4-5-6-7 0 1

-1 2 3 4 5 6 7-2-3-4-5-6-7 0 1
n=2 y[n]

h[n]

x[n]

-1 2 3 4 5 6 7-2-3-4-5-6-7 0 1

-1 2 3 4 5 6 7-2-3-4-5-6-7 0 1

-1 2 3 4 5 6 7-2-3-4-5-6-7 0 1
n=3 y[n]

h[n]

x[n]

-1 2 3 4 5 6 7-2-3-4-5-6-7 0 1

-1 2 3 4 5 6 7-2-3-4-5-6-7 0 1

-1 2 3 4 5 6 7-2-3-4-5-6-7 0 1
n=4 y[n]

h[n]

x[n]

     
k

k

y n x k h n k




 Graphical representation of the convolution sum. ‘y’
is the response of the system. ‘x’ is the input, and ‘h’
is the response of the system to a unit impulse

Nasser Abbasi
oct 4, 2002.
convolution.vsd

Figure 2.1: convolution diagram

65

2.2. FFT project CHAPTER 2. STUDY NOTES

2.2 FFT project

up

Notes by Nasser M. Abbasi

During math 127, UC Berkeley, 2002

This is a simple way to remember how to calculate the FFT of a vector.

If n is the number of coordinates (or data points) in the vector x , then let

 fft x 

 is a complex vector of the same number of coordinates (or data points) as x

Let  , ,x a b c be the vector (possibly complex) that we want to find the fft for.

We will do a dot product of the above vector with vectors whose coordinates are the roots

of unity.

Recall that there are n roots  such that 1n 

But

     21 cos 2 sin 2 ii e    

so the n roots of unity are

1 2

2 2
1 cos sin

i

n ni e
n n


 


   

      
   

So, we divide the angle 2 by the number of roots, and each root will have the same

magnitude of 1, but it will be at an angle of
2

k
n

 
 
 

multiples where 0,1, 2, , 1k n  .

This is because, with complex numbers, when we multiply one by the other, we add

angles. Hence when we multiply a complex number by itself n times, we add n times the

angle it had with the x-axis. Since we want to get 1 at the end (which has 360 angle), we

divided 360 by n to get the above equation.

So, for 1n  there is one root, which is 1. for 2n  there are 2 roots, which are for

0,1k  , which are 1 and
ie =-1 and so on.

To see this better, use the argand diagram. For example, this below are the 3 roots of

unity. Since 3n  , then we divide 360 degrees by the number of roots, and each unity

root has an angle of
2

3


or 120 degrees away from the previous root.

66

2.2. FFT project CHAPTER 2. STUDY NOTES

3 roots of unity. Hence 360/3 = 120 degrees.

120

240

360

What does the roots of unity have to do with FFT?

Let me show how they are used.

In the case of 3n  (number of coordinates, or number of data points), we construct the 3

roots of unity.

Let
2

exp
i

n



  , then the roots of unity be written down as
0 1 1(, , ,)n    

but 3n  , so we get
0 1 2(, ,)   

So, the exponent multipliers above, are the angle multipliers

Now, from this one set of roots of unity shown above, generate n sets by multiplying the

exponents of  inside the brackets by zero, then by one, then by two, then by three, etc…

until 1n . When we multiply the exponent, this means we are rotating the root of unity

vector around.

Since 3n  here, we will get the 3 different sets of roots of unity, all generated from the

original 0 1 2(, ,)   :

67

2.2. FFT project CHAPTER 2. STUDY NOTES

0 0 0

0 1 2

0 2 4

(, ,)

(, ,)

(, ,)

  

  

  

This is a graphical representation of the above 3 sets

120

240

240

480

Notice that the roots are the same, we just change the angle of rotation to get to the root

each time.

Now, align the x vector on top of these roots of unity vectors, we get

 
0 0 0

0 1 2

0 2 4

, ,

(, ,)

(, ,)

(, ,)

a b c

  

  

  

Now to get the coordinates of  , do the dot product of x with each of the vectors below

it one at a time. Remember that the dot product of two vectors is just one number

(possibly complex) and not a set of numbers (or a vector).

So, the first coordinate of  will be

  0 0 0, , (, ,)a b c   

And the second coordinate of  will be the dot product of x with the second vector of

the roots of unity, that is

  0 1 2, , (, ,)a b c   

And the third and final coordinate will be

  0 2 4, , (, ,)a b c   

68

2.2. FFT project CHAPTER 2. STUDY NOTES

and the thn coordinate is

  0 1* 2*, , (, ,)n na b c   

Example

Let me show this with an simple example. Let

(1, 4,5,6)x 

be the data we want to find its FFT. Here 4n  , hence
0 1 2 3(, , ,)    

so we need 4 vectors of roots of unity generated from the above by multiplying the

exponents by 0,1,2 and 3 at a time, we get

0 0 0 0

0 1 2 3

0 2 4 6

0 3 6 9

(, , ,)

(, , ,)

(, , ,)

(, , ,)

   

   

   

   

Now do the dot product of x with each one of these vectors one at a time. Each time we

do a dot product, we get one data point in the FFT domain generated.

Notice that
2

0
0 4 1

i

e




 
 
  
2

1
1 4 2

i i

e e

 


 
 
  

2
2

2 4

i

ie e




 
 
  
2 33

3 4 2

i i

e e

 


 
 
  

2
4

4 24

i

ie e




 
 
  

2
6

6 34

i

ie e




 
 
  

2 99
9 4 2

i i

e e

 


 
 
  

notice that

cos sinie i   

so we get

69

2.2. FFT project CHAPTER 2. STUDY NOTES

0

1

2

3

4

6

9

1

1

1

1

i

i

i



















 

 



 



so, our 4 vectors of unity are now

(1,1,1,1)

(1, , 1,)

(1, 1,1, 1)

(1, , 1,)

i i

i i

 

 

 

Now do the dot product of x with each of the above vectors, and this will give us the

FFT.

(1,4,5,6) (1,1,1,1) 16

(1,4,5,6) (1, , 1,) 4 2

(1,4,5,6) (1, 1,1, 1) 4

(1,4,5,6) (1, , 1,) 4 2

i i i

i i i

 

     

    

     

so,

 

1 16

4 4 2

5 4

6 4 2

i
FFT x FFT

i

   
   

 
      
   
   

    

70

2.3. Small note on terfoil_combinations CHAPTER 2. STUDY NOTES

2.3 Small note on terfoil_combinations

up

A small note on knot generation

Nasser M. Abbasi

8/30/2002.

I want to generate all the knot diagrams from the planer graph generated from projecting

a knot diagram into a plane.

The above knot diagram has 3 vertices. So total knots that can be generated from it as 2^n or 8 diagram. This a simple

way to generate those diagram. Assign a direction from any point on the curve and follow that all the way around until you

get back to the starting point. At each crossing decide if the line will cross on TOP or BOTTOM of the other curve. Assign

the letter T when going on TOP of the other curve, and assign the letter B when going below the other curve.

So, at each vertix, we have a choice of a T or a B :

So, at the end we will have these permutations: TTT, TTB, TBT, TBB, BTT, BTB, BBT, BBB

draw all the above 8 combinations, we get:

71

2.3. Small note on terfoil_combinations CHAPTER 2. STUDY NOTES

The interesting thing, is that only TBT and BTB are knots. The rest are unknot. So, when we have the same letter

following each others, we know right away that this is a unknot.

These are the only 2 unknots out of the 8 knots:

These are the left and right handed trfoil knots.

The question now is, can this be generalized? I.e., for any M vertices knot graphs, is it

true that if we get a sequences of T’s and B’s with more than T or B following each other,

then we have an unknot? Also, what is the ratio of the unknot to the knot being

generated? In this case, we have 2/8 knots and 6/8 are unknot.

72

2.3. Small note on terfoil_combinations CHAPTER 2. STUDY NOTES

Let me try it with the figure 8 knot. This is the planer projection, it has 4 vertices. So total

number of knot diagrams is 2^4= 16

Assign a direction to follow:

Now, follow the arrow and assign a T or B according to the combination TTTT, TTTB,

TTBT, TTBB, TBTT, TBTB, TBBT, TBBB, BTTT, BTTB, BTBT, BTBB, BBTT,

BBTB, BBBT, BBBB

Here they draw, in the same order given above, from left to right, top to bottom:

73

2.3. Small note on terfoil_combinations CHAPTER 2. STUDY NOTES

Which are the unknot in the above? Looking at them I see numbers

1,2,3,4,5,8,9,12,13,14,15,16 are unknot.

These numbers refer to the diagram numbers above in the order left to right, top to

bottom.

So, the following are the unknot and knot combinations:

TTTT, TTTB, TTBT, TTBB, TBTT (1,2,3,4,5) are unknot

 TBTB, TBBT, (6,7) are knot

TBBB, BTTT, (8,9) are unknot

BTTB, BTBT, (10,11) are knot

BTBB, BBTT, BBTB, BBBT, BBBB (12,13,14,15,16) are unknot

The ratio for knot is 4/16 and for unknot is 12/16

Notice, this is double the ratio I saw above for n=3, where we had 2/8 for knot and 6/8 for

unknot. Does this mean the ratio will double each time the number of vertices is increase

by one?

74

2.3. Small note on terfoil_combinations CHAPTER 2. STUDY NOTES

Does this mean, for n=5 we will get 8/32 knot ratio and 24/32 unknot ratio, and so forth

for larger n’s ?

Write a program to find out.

Now, let me look at the pattern of the T’s and B’s.

For the unknot, I see either a 3 or more same consecetive letters (BBB or TTT), or a 2

same consecutive letters (TT or BB). I see in the knot pattern having a TT or BB next to

each others as well, however, in the knot pattern these are flip flips, while for unknot

pattern those where not.

For example, looking at unknot pattern TTBB, and the knot pattern TBBT. Both have the

pattern ‘BB’. But if we take 2 letters at a time from left to right, we never get the same

two letters in the knot patter, while in the unknot pattern we do. How can I generalize

this, so that given number of vertices, I can generate all the knot diagrams?

In the above, for n=4, we get

TBTB, TBBT, BTTB, BTBT

As the knots.

I can see the pattern here. If we assign X to TB, and Y to BT, then the pattern is

XX, XY, YX, YY

So, for n=5, will we get

XXX, XXY, XYX, XYY, YXX, YXY, YYX,YYY

Or

TBTBTB, TBTBBT, TBBTTB, TBBTBT, BTTBTB, BTTBBT, BTBTTB, BTBTBT

Let me try it and found out.

75

2.3. Small note on terfoil_combinations CHAPTER 2. STUDY NOTES

76

Chapter 3

HWs

Local contents
3.1 HW 1 . 78
3.2 HW 2 . 105
3.3 HW 3 . 138
3.4 HW 4 . 177
3.5 HW 5 . 203

77

3.1. HW 1 CHAPTER 3. HWS

3.1 HW 1

HW 1

Mathematics 127
Mathematical and Computational Methods in

Molecular Biology

Fall 2002
UC Berkeley, CA

Nasser M. Abbasi

Fall 2002 Compiled on August 2, 2022 at 8:06am [public]

78

3.1. HW 1 CHAPTER 3. HWS

Contents
1 Problems 3

2 Problem 1 6

3 Problem 2 12

4 Problem 3 17

5 Problem 4 19

6 Problem 5 21

7 Problem 6 25

1

79

3.1. HW 1 CHAPTER 3. HWS

2

80

3.1. HW 1 CHAPTER 3. HWS

3

1 Problems

Problem Set 1 (due Thursday September 12)
MATH 127: Mathematical and Computational Methods in Molecular

Biology

Please work on the starred problem alone.
Problem 1
Find a sequence of Reidemeister moves to untangle this unknot:

Can you do it without passing through a knot diagram with more than
seven crossings?

Can you do it without using all three types of Reidemeister moves?
Problem 2
The goal of this exercise is to introduce you to the NCBI website which

houses the GENBANK database (the public genome database). The website
is at http://www.ncbi.nlm.nih.gov/. We will use this site extensively
during the semester.

Go to the website and answer the following questions:

• Find the Ebola genome (Zaire Mayinga strain) and display it in FASTA
format. How many occurrences of the string “GATTACA” are there in
the genome?

• What is the current best estimate of the size of the mouse genome?

• How many amino acids are there in the human topoisomerase TOP
IIIa gene?

1

81

3.1. HW 1 CHAPTER 3. HWS

4

Problem 3∗ [Brunnian links]
a) Construct a link of four components such that the removal of any

component leaves a set of unlinked circles.
b) Construct a link of n components such that the removal of any com-

ponent leaves a set of unlinked circles.
Problem 4
Consider the helix described by the vector equation

r(t) = acosωti + asinωtj + bωtk,

where ω is a positive constant. Prove that the tangent line makes a constant
angle with the z-axis and that the cosine of this angle is

b√
a2 + b2

.

Problem 5
Consider two oriented perpendicular lines in R3. The first, labeled C1

consists of the set of points (0, 0, z) where −∞ < z < ∞. The second, C2

consists of the set of points (a, y, 0) where a is a constant and −∞ < y <∞.
Let ε, δ be constants and consider the contribution to the linking number of
the region where −ε < z < ε and −δ < y < δ and a→ 0 and show that it is
1
2
. In other words, show that the linking number integral reduces to

lima→0
1

4π

∫ ε

−ε

∫ δ

−δ

a

(a2 + y2 + z2)
3
2

dydz

and that it is equal to 1
2
.

2

82

3.1. HW 1 CHAPTER 3. HWS

5

Problem 6
Prove that the following process always will always produce an unknotted

diagram: Start drawing. Whenever you encounter a previously drawn line,
undercross it. Eventually return to the start.

3

83

3.1. HW 1 CHAPTER 3. HWS

6

2 Problem 1

HW1. MATH 127, UC Berkeley.

Due Thursday September 12, 2002.

By Nasser Abbasi (Alone).

Problem 1

Q: Find a sequence of Reidemeister moves to untangle this unknot:

Answer:

The following diagrams show the Reidemeister moves. Diagrams go from left to right,

top to bottom. Under each diagram I show the move number (1 which is a twist,2 which

is a slide ,or 3 which is a slide over a cross). And I show in RED the part of the diagram

that was affected by the Reidemeister move to make it easier to see the move.

84

3.1. HW 1 CHAPTER 3. HWS

7

85

3.1. HW 1 CHAPTER 3. HWS

8

86

3.1. HW 1 CHAPTER 3. HWS

9

87

3.1. HW 1 CHAPTER 3. HWS

10

Q: Can you do it without passing through a knot diagram with more than 7 crossing?

Answer: NO. Since the initial diagram has 7 crossings, then only applying an untwist

move, (move type I), initially will cause the number of crossing to decrease by one.

Looking at the initial diagram there is no such initial move.

Hence we must start with a move type 2 or move type 3.

Type 3 move does not change the number of crossing, however in this diagram, there is

no such initial move that can be made.

So, what is left is move type 2. This move can either decrease the number of

intersections by 2 (call this move 2a type), or increase it by 2 (call this move 2b type) as

seen in this diagram:

88

3.1. HW 1 CHAPTER 3. HWS

11

Looking at the original diagram, there is no possibility of starting with a move 2a type.

This means the only move left to start with is move 2b type, which increases the number

of intersections by 2. Hence it is not possible to untangle the unknot without passing

through a knot diagram with more than 7 crossings.

Q: Can you do it without using all three types of Reidemeister moves?

A: No. Move type 3 is needed to slide the right most edge to the left over the 3 crossings

in the middle of the diagram. If we have started with the left most edge and slide that to

the right instead, we still have to use move 3 to pass through the 3 intersections in the

middle of the diagram.

89

3.1. HW 1 CHAPTER 3. HWS

12

3 Problem 2

HW1, problem 2.

MATH 127, UC Berkeley.

By Nasser Abbasi (worked on alone).

Q: Go to http://www.ncbi.nlm.nih.gov and answer the following questions

1. Find the Ebola genome (Zaire Mayinga strain) and display it in FASTA format.

How many occurrences of the string “GATTACA” are there in the genome?

2. What is the current best estimate of the size of the mouse genome?

3. How many amino acids are there in the human topoisomerase TOP IIIa gene?

Answer for part 1

!. I went to the above URL. Then selected “Nucleotide” in the search window.

Next, typed “Ebola” in the ‘for’ window. Then clicked GO.

Then a window appeared which listed all GENBANK records for Ebola. I Clicked on the

second one in the list (locus AF499101), since that is the strain Zair Mayinga.

A new window appeared showing the GENBANK record for the this virus genome:

LOCUS AF499101 18960 bp RNA linear VRL 28-AUG-2002

DEFINITION Zaire Ebola virus strain Mayinga, complete genome.

ACCESSION AF499101

Etc…

In the display option, I selected FASTA, Then clicked on the “TEXT” button. A new

window came up showing the geneome in FASAT format.

Showing below few lines of the sequence:

>gi|21702647|gb|AF499101.1| Zaire Ebola virus strain Mayinga, complete genome

CGGACACACAAAAAGAAAGAAGAATTTTTAGGATCTTTTGTGTGCGAATAACTATGAGGAAGATTAATAA

TTTTCCTCTCATTGAAATTTATATCGGAATTTAAATTGAAATTGTTACTGTAATCACACCTGGTTTGTTT

CAGAGCCACATCACAAAGATAGAGAACAACCTAGGTCTCCGAAGGGAGCAAGGGCATCAGTGTGCTCAGT

TGAAAATCCCTTGTCAACACCTAGGTCTTATCACATCACAAGTTCCACCTCAGACTCTGCAGGGTGATCC

…..

ATGATAATTAAGACATTGACCACGCTCATCAGAAGGCTCGCCAGAATAAACGTTGCAAAAAGGATTCCTG

GAAAAATGGTCGCACACAAAAATTTAAAAATAAATCTATTTCTTCTTTTTTGTGTGTCCA

To answer the question of how many occurances of “GATTACA” in the sequence. I used

BLAST 2.0 program. Went to http://www.ncbi.nlm.nih.gov/gorf/bl2.html web page

I set the ‘EXPECT’ value to 1,000,000 and reduced the ‘WORD SIZE’ from 11 to 7.

Typed in the query sequence “GATTACA” in the top search box. Then for the other

90

3.1. HW 1 CHAPTER 3. HWS

13

sequence (the Ebola sequence), entered the ACCESSION value AF499101 which I got

from the above query. Next I clicked on the align button:

The result came back and showed 3 occurances.

From 9164..9152, 125..119, 725..731

91

3.1. HW 1 CHAPTER 3. HWS

14

Answer for part 2 question:

To find the best estimate for the size of the mouse genome, went to

http://www.ncbi.nlm.nih.gov/genome/seq/MmProgress.shtml

There are 21 chromosoms. The table shows the size of each chromosom in kilo bases

(Kb). The total shown is 3,088,000 kb, this is little over 3 billion base pairs. (it is close to

the human genome in size).

92

3.1. HW 1 CHAPTER 3. HWS

15

Answer for part 3 question

Went to the home page of NCBI again, and selected the Protein database, then typed in

‘TOP IIIa’ in the ‘for’ field as shown:

A new page came up with the result:

I clicked in the link and got this page:

93

3.1. HW 1 CHAPTER 3. HWS

16

The size of the sequence (number of AMINO acids since this is a protein sequence) is

1003. This can be seen by looking the the features field ‘source’

FEATURES Location/Qualifiers

 source 1..1003

94

3.1. HW 1 CHAPTER 3. HWS

17

4 Problem 3

Hw I pY-CJ6/-e~"3

1/ Cf ';f~er At;be'1S~
--...

<t) ,F;".-, -} m.):" "'- .J L~."'~ 7 .fr/ v ; .J Ii",k. ~ ...U
4 I;,,):.

~ . ~. /J /
' k

-J ~ ..J ~~"? e -f Y/vIAA l"t :

AlO /,,, ~~t- JfI.. 2- I;., 1-$

&

~ ~ ~'d ~dn~ Ie I 50

11 vr t1 ~ J,...)c... re IV'ofl'l1 ft: v: 1 .

~ Ctb~ i~ ~."..;J ~;I'}~ we ~.~ ,I,'de C: / ~1\ 00/-' C",t.""'~e-

A ~"Je- ~ ~/Ih v, f~e-)~v ."j/ ~~
~ cJJ tt /~"'I~ OV1~ ~ ~- ~I 'I f~ k~ C,r>-1t;! /);'r1-tJV"~

Ii Yj r- "

-r; /~.J,Jwf fJ.t! 4 h~ i J UYr~ c-f) -L IN;/! reWltIV-E- / ~ 4- ~

~'~~l A) 0 ~J c 10 ~~ ~f 7t- 1.3'tf~/cjK___f

/iYJr: (.e.:. ~ /J :... .
r/r;

.
jJ,rtr..,. J<C ,I

& ~ (11',
>

-- -

95

3.1. HW 1 CHAPTER 3. HWS

18

tlh"~ 10 h. /h;Jlf be l2#'ier ft h v~ ';f .fl"'" ?6~';,,;,f

M':Jh! YJe",)to 5/u-.v eI(.s~/~ ?'(':SIv'J5/~ SOWleW '
-- -

A.

- ---

~ ;.s IIIl.!. c{ ~ ~.J J j Yi ~ .

,J'11 u fr / ~ I s p~e. h'l'lr;L-p~

,D' ~<-E- fo 5 },'j ~ ~-f .

96

3.1. HW 1 CHAPTER 3. HWS

19

5 Problem 4

!I~ / p,.vb;~ 1-

N4 sse, Aht.rf S"/
IJI}IlTJI /2 =t-

<j;; s~.:tJ..4- ""t'~ -11..+--d'-'-T V<'~f-,.r M.. jee.< ~J..4 -fi....

73 ""'''".. If,' ",d ~ "'1 »: j j;.. Vafrrr ~ $I..v-J

xL0 -n~ + -f1 r- ~~,...,..., {- i, i~..I.,~.,,,.:i' I' t .

{o ~i\LA.. ({-+): (tt ~i(Jt) ~~ji'J~t J b'Ui:)

~ T t~):: dr{.{) -
off. ~ -

/;l; -s~ $.A :bL ~

- -
~..b

/~/ t'~i-

-
wk~ a, h cJ/r4- CCJ ~d v~~~

tt- J e i.s Gf'\-\<5;~ J:)1(j-+-N~-- 4-.

Co! = (-CJ.<J 5; I.Jt J tl OJW>t.Jt J J, (...J) · C "J 0 J I)

I T I 1-

/:; frVlJ J T/ / 1- {
(-t1 -s;rJL-VL)t L (JI,J 1v'tJ T bW)

= II
.... . 1- /;

a"2..w'-lJt i" "Lt..J'-d,.1..w $, YJ !.AI -r-

w \I t;fl. (1-wr+ C:/'Y)1-.ri:) + b-

V t\ 1- 1- b

- ?L0

97

3.1. HW 1 CHAPTER 3. HWS

20

(- a. 0 .,~£).. t) a UJ(.u)Ivt)b "') · (0) QJ I)

W I c{ l- of b "1..-

5" ~ e -

-

-

98

3.1. HW 1 CHAPTER 3. HWS

21

6 Problem 5

, I...,~ ; , ~.

....

,/ .' ! !

~ ."" I "-::>. . ~ .' 0

11 I.\. A. //"f",.. T'PA- t dl.£ , -./ < (. -. I " ~,(' to" .: /

.,"t.cf ~s;)~ Ji- ~ ~-h-,b~ Iv -jL /,..,Jc:"~n~-t: 1-

ii- r~;or, LV~ - ~ <- ~ <: ~ ~ -I.c.;. <.. {' J 4:~o

~ J ~ ..tt--l ~/f ',5 fL ~ dfl..-r (# ~ / .sIt--; ;/7L/ fl-

/,'" ~;({ r1~.b r I "fOr-1 r.J ~ -Iv

E:
c,

)6 .J

a.

1 j.

li..-v-

-L)e:ta ¥7/

o)3a'L.iJ t-
-(;- -+

f if - I
2-

.skl-

99

3.1. HW 1 CHAPTER 3. HWS

22

-

-
Sv -t '"L- X -6) -

-

,,' (:) e;,

//'j /, D -" ~ ~ I .

(a'II")- (Ola/~)
::

II ((JI ~ I ()) - (r; J () I~) 1/

e=-

So LI/::

f

)

L . I I

f{) '/~ o/t- L2 ~j C I hA,.\It. tl I)I'J~ J a.

C~ 4".1 C. /N;I! f,AVL I/n,l::- Of ~e~

/ ~

ff
-J - t-

(CLjJ-~)

J

--). ~.~

t1 r~ of-2.

I

,
W':) /,).

~

100

3.1. HW 1 CHAPTER 3. HWS

23

6-

L
J

C{~

21; / r cl~
-?

7)r/ 1:- l/f~j MfJP(E

-the t; '-VI.tt ~,() I b ~-r

ab~ t::4A~ fakL-

~ f2v- ?;"J ~J r

~ e"'#l~~ 14-
.:: 5e-1- ?

p / t'''-I e- .!"t~ ~ ~ c h.J .
I

2-- -

-+1'0--
Co

101

3.1. HW 1 CHAPTER 3. HWS

24

>eql:= (1/(4*Pi»*a*(aA2+yA2+zA2)A(-3/2);
>

> eq2 :=in t (eql ,y=-del ta. .del ta) ;

1 a [)

eq2 := 2: Jt (a2 + Z2) J~2 + [)2 + Z2

>eq3:=int(eq2,z=-epsilon..epsilon);

> limi t (eq3, a=O) ;
o

I j
J /; w,

10()
E.. :t ex:;

tot iI
")

102

3.1. HW 1 CHAPTER 3. HWS

25

7 Problem 6

)-/J,J) J)r~bj.v-, b
A I J\'

/vc, $~c..(r . c .

~:..~ c.. w~.rt CJJ.L.(0- J ..;"'} r
~ 'J"I. /_. I"'" I ,. '-'!f ~ r'('iI"#'. \.-i 0-, . -r VVot:!ji-..<..A

\(/

"

\ c,

'\

~

?.tJ I j;L :) {Js,; C ""' C-- <.-f
...;e. --

=D
. / D -\-

d C; .-r ' ,-
'-- ./ u< /\

-- (/
\ /_ -"d- I

X a /'\ 4)<

103

3.1. HW 1 CHAPTER 3. HWS

26

"",,/

C -j

o~
u
u

IJ:

~, ~ ~ -/1..1 ~,,?~
/Ai<... -fu +1' ~ i./v' I::..{\d-+ dv-r-L

/'f"Ip,/~ YI p rr-f ~J Jv ht1,.~ ~Wt

i'v'\CJV..(2 T ~,J IT". (mcJv~ 7;- j;,

u

f1 ~ 'lZ) ~ v s e }'Yt,W\4Z l!1:.
- .

if .../.11 'fI,.f4J-7vr '

e/rdS5t'7 1." ~~.

-'" ,-- "'-

-S:
/,

"-- '-"

'" ,-
J

.-/

104

3.2. HW 2 CHAPTER 3. HWS

3.2 HW 2

HW 2

Mathematics 127
Mathematical and Computational Methods in

Molecular Biology

Fall 2002
UC Berkeley, CA

Nasser M. Abbasi

Fall 2002 Compiled on August 2, 2022 at 8:08am [public]

105

3.2. HW 2 CHAPTER 3. HWS

Contents
1 Problems 3

2 Problem 1 4

3 Problem 2 10

4 Problem 3 13

5 Problem 4 14

6 Problem 5 16

7 Problem 6 17

8 Problem 7 18
8.1 Problem 7 source code . 26

1

106

3.2. HW 2 CHAPTER 3. HWS

2

107

3.2. HW 2 CHAPTER 3. HWS

3

1 Problems

Problem Set 2 (due Thursday September 26)
MATH 127: Mathematical and Computational Methods in Molecular

Biology

Please work on the starred problem alone.
Problem 1
Estimate the number of nucleosomes used for supercoiling in human chro-

mosome 17.
Problem 2∗

Show (in full detail) that the directed writhe of a knot is invariant under
Reidemeister moves of type 2 and 3.

Problem 3
Given two sequences of length n, and a scoring scheme 1,−1,−2 (for

match, mismatch gap), let the score of the optimal global alignment be G
and the optimal local alignment be L.

a) Prove that L ≥ G, and find an example where strict equality holds.
b) What is the maximum value of L−G?
Problem 4
If the Jones polynomial of a knot is X(L) what is the Jones polynomial

of the mirror image of the knot?
Problem 5
Compute the Jones polynomial of the trefoil knot. Then show that the

trefoil knot and its mirror image are not equivalent (use problem 4).
Problem 6 (optional)
Given sequences of lengths n and m what is the maximum number of

optimal alignments (with the same score) that can result from a scoring
scheme of 1 for a match, a for a mismatch and b for a gap.

Problem 7 (optional)
a) Implement the Needleman-Wunsch algorithm where the parameters

are an input.
b) Use the scoring scheme of 1 for a match, and 0 for a mismatch and

gap to find the average length of the longest increasing subsequence in a
permutation of length n by simulation.

1

108

3.2. HW 2 CHAPTER 3. HWS

4

2 Problem 1

?/CJh/&Y1 /
(YJafl?/27-

f/4$SQ ~bb~~I'

!lVY"'("' ft..{

~ ().,.-
ft; tufY/

Lie- -

j;; ?'dYJ.fi r""" 7J;~4

C /'1 b b~ wr~tlY~
6

.30 17 'J('()

2.£XJ

- - - - -- -

5; L -t Wy'"

b c
50 97X IQ DJ7x'/J + Ivy"-

It).5
-

It)

5 Wr - lj(lqoLf

rLf6' I J qOt(;?cJ j7Jw€- t:J\/ .e...
4-fPYI

(JtAC / oSOh1es-

109

3.2. HW 2 CHAPTER 3. HWS

5

-
!~,-l ~

<

~j,

I J

. I

t:?' I<.C';"', ' .), . f-I--ttJ 5 ~
/ It I>-""#-(~ ~

V

Wf=- ~

}

(
<-: '7

(
\

r-t'
I,

) ,. +\

.,

, ..A
~, -/

/'"

,

.J ---

/'

(
i

lAJr= +/-1 =- 0

: .J(-: - (t I =c.J

wr::::- + i - (~ 0

~'Jr - _i-t c)

1j C~ - t,...~

,I J.......
/

I

i i I,

,
I I . .of!

;......

110

3.2. HW 2 CHAPTER 3. HWS

6

w(-=-o

! !

{;vf :; -I -1- I -::- 0

wy -= -I -t I ~O

Wf ~ T 1-(= d

- - - - - -- - - ---

.3

?-

111

3.2. HW 2 CHAPTER 3. HWS

7

I

Y
J

j
(/)

I..,ok;~ ~t (l) f2~',
Pt) 1 ~ j b/~ 4fn,.., IA; n I{ -/-"~.s " ,",

B

~~
I

J

~~-I
~

I

~ 7,

~y
-1-\)-- ~

- -- ---

-
"

"'" ~ ..-

/ f/~
~

~r= I

wr::::- -3

wr == 1-

lIvr=- 1.

....
--;:>

112

3.2. HW 2 CHAPTER 3. HWS

8

(p}{-=- -)

- --- --

,
J .s ..

! V11/1\ '/,)1-

~--~

(..,.

~

-- -

"y
~~ wr::::-3/'- -\
,./' ,----,':'......

~-I

.. - +/
-1""1

I .~

~, '7~ .~,-
'-_ _\ .-1/

-, '-I~' -I __ ~
/1 ! '7

--- -

113

3.2. HW 2 CHAPTER 3. HWS

9

.10 '1 s h.r.-.J f- -h:Jf ~ '2. ,.~J..3 1z-,..::!-

c;t,'I ~~f.J tv y-/I-<€- ~ ; h V0 : --:. , q ~ l)

- - --- -- - -

114

3.2. HW 2 CHAPTER 3. HWS

10

3 Problem 2

?r~))prr 3
H vJ z..

114 ~$ w.t:. ;4bbe. ~ " , k~

, 1/" ...J.J 5(./rv> d +- fit~ 5~-c ...:f -e"--G!- cell"'" f1. ~
I f)~ s~~ lJ1 I ~ /f~ ./

1.) h i I J I , ~ IA ~ ~ ~ · ..:... ~
h'1;r rY' j ",q/d"S r ;)'ob#f1l. ~ ~" - .

'0" s~ L ; s h,. 5"~ e>} fz.. s~ d e~J... c.t(,.., -/1..~

~",J-Ax ~ -f1,~ I~~ -t.-~n~€A--f f~g. 1-'h~ i~ ~~ (j/ob~

A. /~I) "V' .c2.A-t f-< t"- ~ "1 -h 4"L .,."...t i-N x b lilT Iv' ~ "'2- Ltr,"'to { ~ (;., ,. -~ ~ 'Is
'P",f{.! . J C

/I<r>.JJ "- L.:>~.J <?-t;) h'"f f' 11 €A)II s~ <-oJh..,....

Ce,/J i J-\ fA~ vv (~. 'X :i;t,.#L r j,A"<- ~ ~ df ~. 5?J

L~ n

L=:::G

'1..-t- -==I:- b--t. fr-r ttU

:/ho ~ be-~

..i= I 011

.I, +lA,

IdGJ .-<j/.,J1 ~e.~ T
(

~ ~ J!."IV~ ~..~ /4r~ t

115

3.2. HW 2 CHAPTER 3. HWS

11

():;) In~X j ~ v~ V~e 3-

a~j ~ is "..;",~. ~.

L - c, ~ Wh~ Lis rn ~ X-

i $ - lj n f-< .JI,; ~Jo

--- - - - - - - b, k 1-b~ ' . . - - - . hV]

cA,- t12..- ~~ - C1'"{- QV)

b, - 62 - h3,- blf - bV)
)

!J?"

Or _ INAd." ft.,~ k .. -S d ~ 7 ;It; I I Cd""''' W;;":; -;/1,- rjr<x> e... -/-" ",-'"

!fjYLiC&':r. -fp-/.M/ ~)~-'J(.

dr~~ f1,e- C~"'J""I\.A#[~'~ ..5c~ d../~v:J ft- ,,'~ ~ ~ 5!-"'ir ~.;.-y>.f .

/o<-d "'; A ~ -I- p<-f',w ~ -h-. S t.ef5 I 0(/40-(I 1:1.<2- 2 -,~ /~vJ

f7."- 6." ~ /0"- ~I " I~Y'~.A ;" ft- 4r-o f-i .. tr"'-S :5h 1'5 wi # .j1.e-

~~ t:)v~ -n.-Q =2.G.-.yt.) 1~"'t.J. fh~ L' .5~ is' ft~

he') ~-t c)f ~e ~ f st-4!;P'

0e.. G. J~ j S .fv.. he..::),f-7- ft,q loOt 57 -/1.~t ""J~ 4- /1......

.e.V\.) if- f1;toQ s'(v-Lh ~

- -- -- --

YVle /hf L'lGr

fl
Irr

$' A..' ,-I y I;,
lJh c:t -b. i =- I'"'

-t' - '1

116

3.2. HW 2 CHAPTER 3. HWS

12

-

cAW) IJ;~
.$~ I

~

J--
1

5~t

0+ 5'~

I~
I

I

- -- - --
d/()6,J ~j,' or.h~ Q,vj.-t-v

G,

~ --tfv; d;e:Lfr~ J 5e~ jl.. f Cr ~ L~x'
(

'5 j" "- :f {;, 0= L3} ~./ L3 h"fJI-~1 ~ ~ f7,.~ ~J"'+

L i ttl-I L/~ / ~ c:;, --=l. cJ~~; -S1fI.- L) GJ' L L

tYvL {G-I'"~4 ~-vt L.3 / ~./ h VYICL 6. mV$ f. kit' s~ ~.NJ

L) ~J L L ~ l-1.Jd.{.

- -- -- - -

117

3.2. HW 2 CHAPTER 3. HWS

13

4 Problem 3
Did not do.

118

3.2. HW 2 CHAPTER 3. HWS

14

5 Problem 4

?r~hJ~ I'YI Lj
)-jW ~

/Vp~~(f ,Ab~i

if :7 P-:)l""'; J is ,X(L),

C); +;,..~ n? '; r1'''tI''r i WI" S~ 0I f1'. e.

I ~ - w (L)

X(Lj== L-A]

w{ L) i s -/1.~ jir ~ f't!:j
'/ ?r1a~~ 0) ~,

.+-r-t' fr/ / kf,l) +- C1~) db

3

'-"-' .(!! ~ ul! J :r ~ C;.,J Lu,'v jt.
~ I '-, I ~

.c L- / ~?..i J ;~ ; ~ 'C' '"
I <:.

':';;;'d . .~ ,<' JI"'f" ~ I ",fc.,(J
L.-

rf.-i.I'(

(u,J ~ ~'--

, ,
, ') _.;

-

,
/;.,' 'r'''''''

,

<.-) CJ

() v ' (, (.
. ;.-.

In/' C

i, C (r .,

- --

i"') f
.r

" 'rJ ..::

-'
~/Lr/--

J7

t:--

-

"

/I-If-l ?
'(-'I Pot;C j!,

;

,
C. /I~ ..- C'~;,;,. <;... 'I

{ (

.....

---'/

119

3.2. HW 2 CHAPTER 3. HWS

15

,

(' . '7

?6 ~~~ ~~I,~, ;', / -'\. .c:.:. ~ ~

J?4'1/.(G'~t:t e)(?~~"c j)
I

/~}; l '(i'"5''''' ../ r, ": - ~ ~
C:

~/fJ /}Q < f -"
(/f

.--
;-~

/

<.L>

,

- <: ' '- I
. : ;

r:;.., j') ' ",; :

I <....___

. p

---.--

'" .,(/, ' /
'

/'" . I.-

/

,

IAJ/ I ~;:'r

,
LL)

\

'I!'~/ (I(' f; 7
I

h.L.A... LJ(1-)
,
'5

I

LL,/
, ,
fS -/t'-"

120

3.2. HW 2 CHAPTER 3. HWS

16

6 Problem 5

121

3.2. HW 2 CHAPTER 3. HWS

17

7 Problem 6

~I) 6,

~
5~~~ /-zb

cA - (.I-1.b

J}
-2-b -26 -2-b

-:. -Gb

Y7) h-J ,-

AllWjpJ7~""". ~
-

QI - - a(
I

Q,

_ b, bl - b}

0 @
I

CDI

/. .J Jh$

"f (j)
, -2-6I S

s of67 ; s
- 1.-10

rr f& ;s
I v-(' -

)/)
fr h:: J h--7 -=- I

J

f.-r /1::.L ..) VM f

4, q 1-

(CjJ <1'-1

-
I

I "', - "l'L { ef,42- -hi - - b/ C, - bl _ - - b(-

122

3.2. HW 2 CHAPTER 3. HWS

18

8 Problem 7

Problem 7

HW2

MATH 127

By Nasser Abbasi

Sept 26, 2002.

Part (a):

Implemented needleman-Wunsch algorithm. Source code is below (also in floppy

attached).

To test, I used the example given in the lecture to verify the output is correct.

When running the program, it formats the output showing the sequences and the scoring

matrix.

K» help nma_problem_7_part_a

 function R=nma_problen7_part_a(s1,s2,match,mismatch,gap)

 solves problem 7, HW 1 for MATH 127

 by Nasser Abbasi

 sept 25, 2002.

 implements Needleman-Wunsch algorithm

 INPUT

 s1: is one sequence. example S1=['g' 'a' 't' 'c' 'g'];

 s2: is the second sequence.

 match: score for matching bases. such as 1

 mismatch: score for mismatch. such as -1

 gap: penatly factor for gaps. such as -2

 NOTE: S1 is the row sequence at the top, and S2 is column sequence at left.

123

3.2. HW 2 CHAPTER 3. HWS

19

This is an example:

K» S1=['G' 'A' 'T' 'T'];

K» S2=['G' 'A' 'T' 'A' 'C' 'G' 'T'];

K» match=1;

K» gap=-2;

K» mismatch=-1;

K»

K» nma_problem_7_part_a(S1,S2,match,mismatch,gap)

 G A T T

 0 -2 -4 -6 -8

G -2 1 -1 -3 -5

A -4 -1 2 0 -2

T -6 -3 0 3 1

A -8 -5 -2 1 2

C -10 -7 -4 -1 0

G -12 -9 -6 -3 -2

T -14 -11 -8 -5 -2

K»

This is another example:

K» S1=['T' 'T' 'T' 'C' 'G' 'T' 'A' 'G' 'T' 'T'];

K» S2=['T' 'T' 'C' 'C' 'G' 'A' 'A' 'G' 'C' 'T'];

K» nma_problem_7_part_a(S1,S2,match,mismatch,gap)

 T T T C G T A G T T

 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20

T -2 1 -1 -3 -5 -7 -9 -11 -13 -15 -17

T -4 -1 2 0 -2 -4 -6 -8 -10 -12 -14

C -6 -3 0 1 1 -1 -3 -5 -7 -9 -11

C -8 -5 -2 -1 2 0 -2 -4 -6 -8 -10

G -10 -7 -4 -3 0 3 1 -1 -3 -5 -7

A -12 -9 -6 -5 -2 1 2 2 0 -2 -4

A -14 -11 -8 -7 -4 -1 0 3 1 -1 -3

G -16 -13 -10 -9 -6 -3 -2 1 4 2 0

C -18 -15 -12 -11 -8 -5 -4 -1 2 3 1

T -20 -17 -14 -11 -10 -7 -4 -3 0 3 4

124

3.2. HW 2 CHAPTER 3. HWS

20

function R=nma_problem7_part_a(s1,s2,match,mismatch,gap)

%function R=nma_problen7_part_a(s1,s2,match,mismatch,gap)

%

% solves problem 7, HW 1 for MATH 127

% by Nasser Abbasi

% sept 25, 2002.

%

% implements Needleman-Wunsch algorithm

%

% INPUT

% s1: is one sequence. example S1=['g' 'a' 't' 'c' 'g'];

% s2: is the second sequence.

% match: score for matching bases. such as 1

% mismatch: score for mismatch. such as -1

% gap: penatly factor for gaps. such as -2

%

% NOTE: S1 is the row sequence at the top, and S2 is column sequence at left.

%

125

3.2. HW 2 CHAPTER 3. HWS

21

% reserve space for the score matrix.

nRow=length(s2)+1;

nCol=length(s1)+1;

v=zeros(nRow,nCol);

%

% for needleman, set the boundary condition to gap penalites

%

for(i=2:size(v,2))

 v(1,i)=v(1,i-1)+gap;

end

for(i=2:size(v,1))

 v(i,1)=v(i-1,1)+gap;

end

for n=1:length(s2)

 nn= n+1;

 for m=1:length(s1)

 mm= m+1;

 if s2(n) == s1(m)

 diagonal= match;

 else

 diagonal = mismatch;

 end

 diagonal = diagonal + v(nn-1,mm-1);

 upScore = v(nn-1,mm)+gap;

 leftScore = v(nn,mm-1)+gap;

 v(nn,mm) = max([upScore, leftScore, diagonal]); %, 0]);

 end

end

% print the score matrix

fprintf('\t\t');

for(i=1:length(s1))

 fprintf('%c\t',s1(i));

end

fprintf('\n');

for(i=1:nRow)

 if(i==1)

 fprintf('\t');

 else

 fprintf('%c\t',s2(i-1));

 end

 for(j=1:nCol)

 fprintf('%d\t',v(i,j));

 end

 fprintf('\n');

end

126

3.2. HW 2 CHAPTER 3. HWS

22

Problem 7

HW2

MATH 127

By Nasser Abbasi

Sept 26, 2002.

Part (b)

In this part, the input is ‘n’ which is the length of the sequence. I’ll use the MATLAB

function ‘perms’ to generate all permutations of length n (which will be n! many). Then

for each permutation, will use global alignment, then look at the score in the bottom right

corner of the matrix. This gives me the length of the longest increasing subsequence for

this one permutation. I add all these lengths and divide by n! to get the average.

I implemented this in the function nma_problem_7_part_b.m

» help nma_problem_7_part_b

 function R=nma_problen7_part_b(n,match,mismatch,gap)

 solves problem 7 part b, HW 1 for MATH 127

 by Nasser Abbasi

 sept 25, 2002.

 find the average length of the longest increasing subsequence

 in a permutation of length n.

 INPUT

 n : the length of the sequence.

 match: score for matching bases. such as 1

 mismatch: score for mismatch. such as -1

 gap: penatly factor for gaps. such as –2

Example runs:

» nma_problem_7_part_b(2,match,mismatch,gap)

Average length of longest increasing subsequence in perms of length 2 is 1.500000

» nma_problem_7_part_b(3,match,mismatch,gap)

Average length of longest increasing subsequence in perms of length 3 is 2.000000

» nma_problem_7_part_b(4,match,mismatch,gap)

Average length of longest increasing subsequence in perms of length 4 is 2.416667

» nma_problem_7_part_b(5,match,mismatch,gap)

Average length of longest increasing subsequence in perms of length 5 is 2.791667

127

3.2. HW 2 CHAPTER 3. HWS

23

» nma_problem_7_part_b(6,match,mismatch,gap)

Average length of longest increasing subsequence in perms of length 6 is 3.140278

» nma_problem_7_part_b(7,match,mismatch,gap)

Average length of longest increasing subsequence in perms of length 7 is 3.465278

» nma_problem_7_part_b(8,match,mismatch,gap)

Average length of longest increasing subsequence in perms of length 8 is 3.770337

» nma_problem_7_part_b(9,match,mismatch,gap)

Average length of longest increasing subsequence in perms of length 9 is 4.059350

Plotting average length as function of n using MATLAB gives this:

128

3.2. HW 2 CHAPTER 3. HWS

24

function R=nma_problem7_part_b(n,match,mismatch,gap)

%function R=nma_problen7_part_b(n,match,mismatch,gap)

%

% solves problem 7 part b, HW 1 for MATH 127

% by Nasser Abbasi

% sept 25, 2002.

%

% find the average length of the longest increasing subsequence

% in a permutation of length n.

%

% INPUT

% n : the length of the sequence.

% match: score for matching bases. such as 1

% mismatch: score for mismatch. such as -1

% gap: penatly factor for gaps. such as -2

%

%

thePerms = perms(1:n);

totLen=0;

for(k=1:size(thePerms,1))

 totLen = totLen +

getLengthOfLongestSubSequence(thePerms(k,:),match,mismatch,gap);

end

av=totLen/factorial(n);

fprintf('Average length of longest increasing subsequence in perms of

length %d is %f\m',...

 n,av);

129

3.2. HW 2 CHAPTER 3. HWS

25

%%%%%%%%%%%%%%%%%%%%

%

%

%%%%%%%%%%%%%%%%%%%%

function len=getLengthOfLongestSubSequence(seq,match,mismatch,gap)

s2=1:length(seq);

s1=seq;

%

% reserve space for the score matrix.

nRow=length(s2)+1;

nCol=length(s1)+1;

v=zeros(nRow,nCol);

%

% for needleman, set the boundary condition to gap penalites

%

for(i=2:size(v,2))

 v(1,i)=v(1,i-1)+gap;

end

for(i=2:size(v,1))

 v(i,1)=v(i-1,1)+gap;

end

for n=1:length(s2)

 nn= n+1;

 for m=1:length(s1)

 mm= m+1;

 if s2(n) == s1(m)

 diagonal= match;

 else

 diagonal = mismatch;

 end

 diagonal = diagonal + v(nn-1,mm-1);

 upScore = v(nn-1,mm)+gap;

 leftScore = v(nn,mm-1)+gap;

 v(nn,mm) = max([upScore, leftScore, diagonal]); %, 0]);

 end

end

len = v(end,end);

130

3.2. HW 2 CHAPTER 3. HWS

26

8.1 Problem 7 source code� �
function nma_alignment_main()

h0= nma_alignment_GUI;

nma_alignment_callbacks('init',h0);� �
� �
function R=nma_problem7_part_a(s1,s2,match,mismatch,gap)
%function R=nma_problen7_part_a(s1,s2,match,mismatch,gap)
%
% solves problem 7, HW 1 for MATH 127
% by Nasser Abbasi
% sept 25, 2002.
%
% implements Needleman-Wunsch algorithm
%
% INPUT
% s1: is one sequence. example S1=['g' 'a' 't' 'c' 'g'];
% s2: is the second sequence.
% match: score for matching bases. such as 1
% mismatch: score for mismatch. such as -1
% gap: penatly factor for gaps. such as -2
%
% NOTE: S1 is the row sequence at the top, and S2 is column sequence at left.
%

%
% reserve space for the score matrix.
nRow=length(s2)+1;
nCol=length(s1)+1;

S=zeros(nRow,nCol); %setup space for scoring matrix.

%
% for needleman, set the boundary condition to gap penalites
%

for(i=2:size(S,2))
S(1,i)=S(1,i-1)+gap;

end

for(i=2:size(S,1))
S(i,1)=S(i-1,1)+gap;

end

131

3.2. HW 2 CHAPTER 3. HWS

27

for n=1:length(s2)
nn= n+1;
for m=1:length(s1)

mm= m+1;
if s2(n) == s1(m)

diagonal= match;
else

diagonal = mismatch;
end

diagonal = diagonal + S(nn-1,mm-1);
upScore = S(nn-1,mm)+gap;
leftScore = S(nn,mm-1)+gap;

S(nn,mm) = max([upScore, leftScore, diagonal]); %, 0]);
end

end

% print the score matrix
fprintf('\t\t');
for(i=1:length(s1))

fprintf('%c\t',s1(i));
end
fprintf('\n');

for(i=1:nRow)

if(i==1)
fprintf('\t');

else
fprintf('%c\t',s2(i-1));

end

for(j=1:nCol)
fprintf('%d\t',S(i,j));

end
fprintf('\n');

end

%print the alignment
doAlignment(S,s1,s2);

%%%%%%%%%%%%%%%5

132

3.2. HW 2 CHAPTER 3. HWS

28

%
%
%%%%%%%%%%%%%%%%%%%
function doAlignment(S,topSeq,leftSeq)

[nRow,nCol]=size(S);
i=nRow;
j=nCol;
A=zeros(2*(nRow+nCol-2),2)'; %create space for the alignment.
k=0;

top=topSeq(j-1);
btm=leftSeq(i-1);

while(1)
k=k+1;

% if(i==1 | j==1)
% if(i==1)
% btm='-';
% while(j>=i)
% top=topSeq(j);
% A(1,k)=top;
% A(2,k)=btm;
% j=j-1;
% k=k+1;
% end
% else
% top='-';
% while(i>=1)
% btm=leftSeq(i);
% A(1,k)=top;
% A(2,k)=btm;
% k=k+1;
% i=i-1;
% end
% end
% break;
% end

[newi,newj]=maxParent(S,i,j);

if(newi==i) %same row
top=topSeq(j-1);
btm='-';

else
if(newj==j) %same column

top='-';

133

3.2. HW 2 CHAPTER 3. HWS

29

btm=leftSeq(i-1);
else

top=topSeq(j-1);
btm=leftSeq(i-1);

end
end
A(1,k)=top;
A(2,k)=btm;

if(newi==1 | newj==1)
break;

end

i=newi;
j=newj;

end

for(i=k:-1:1)
fprintf('%c',A(1,i));

end
fprintf('\n');
for(i=k:-1:1)

if(isequal(A(1,i),A(2,i)))
fprintf('|');

else
fprintf(' ');

end
end
fprintf('\n');
for(i=k:-1:1)

fprintf('%c',A(2,i));
end

%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%%
function [newi,newj]=maxParent(S,i,j)

[nRow,nCol]=size(S);
if(i==1 & j==1)

newi=i;
newj=j;

else

134

3.2. HW 2 CHAPTER 3. HWS

30

if(j==1)
newi=i-1;
newj=j;

else
if(i==1)

newj=j-1;
newi=i;

else
if(S(i,j-1) > S(i-1,j-1))

if(S(i,j-1)>S(i-1,j))
newi=i;
newj=j-1;

else
newi=i-1;
newj=j;

end
else

if(S(i-1,j-1)>=S(i-1,j))
newi=i-1;
newj=j-1;

else
newi=i-1;
newj=j;

end
end

end
end

end� �
� �
function R=nma_problem7_part_b(n,match,mismatch,gap)
%function R=nma_problen7_part_b(n,match,mismatch,gap)
%
% solves problem 7 part b, HW 1 for MATH 127
% by Nasser Abbasi
% sept 25, 2002.
%
% find the average length of the longest increasing subsequence
% in a permutation of length n.
%
% INPUT
% n : the length of the sequence.
% match: score for matching bases. such as 1
% mismatch: score for mismatch. such as -1
% gap: penatly factor for gaps. such as -2
%
%

135

3.2. HW 2 CHAPTER 3. HWS

31

thePerms = perms(1:n);
totLen=0;

for(k=1:size(thePerms,1))
totLen = totLen + getLengthOfLongestSubSequence(thePerms(k,:),match,mismatch,gap);

end

av=totLen/factorial(n);

fprintf('Average length of longest increasing subsequence in perms of length %d is %f\m',...
n,av);

%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%
function len=getLengthOfLongestSubSequence(seq,match,mismatch,gap)

s2=1:length(seq);
s1=seq;

%
% reserve space for the score matrix.
nRow=length(s2)+1;
nCol=length(s1)+1;

v=zeros(nRow,nCol);

%
% for needleman, set the boundary condition to gap penalites
%

for(i=2:size(v,2))
v(1,i)=v(1,i-1)+gap;

end

for(i=2:size(v,1))
v(i,1)=v(i-1,1)+gap;

end

for n=1:length(s2)
nn= n+1;
for m=1:length(s1)

mm= m+1;
if s2(n) == s1(m)

diagonal= match;

136

3.2. HW 2 CHAPTER 3. HWS

32

else
diagonal = mismatch;

end

diagonal = diagonal + v(nn-1,mm-1);
upScore = v(nn-1,mm)+gap;
leftScore = v(nn,mm-1)+gap;

v(nn,mm) = max([upScore, leftScore, diagonal]); %, 0]);
end

end

len = v(end,end);� �

137

3.3. HW 3 CHAPTER 3. HWS

3.3 HW 3

HW 3

Mathematics 127
Mathematical and Computational Methods in

Molecular Biology

Fall 2002
UC Berkeley, CA

Nasser M. Abbasi

Fall 2002 Compiled on August 2, 2022 at 8:09am [public]

138

3.3. HW 3 CHAPTER 3. HWS

Contents
1 Problems 3

2 Problem 1 6

3 Problem 2 16

4 Problem 3 20

5 Problem 4 24

6 Problem 5 26
6.1 Problem 5 source code . 31

1

139

3.3. HW 3 CHAPTER 3. HWS

2

140

3.3. HW 3 CHAPTER 3. HWS

3

1 Problems

Problem Set 3 (due Tuesday October 15)
MATH 127: Mathematical and Computational Methods in Molecular

Biology

Please work on the starred problem alone.
Problem 1
Prove that a non-trivial connected graph is Eulerian if, and only if, every

edge belongs to an odd number of cycles.
Problem 2∗

The goal of this problem is to obtain some familiarity with running Re-
peatMasker:

You’ll need to use the web server at
http://ftp.genome.washington.edu/cgi-bin/RepeatMasker

a) Get the sequence with accession AF548051 from Genbank. How long
is the particular A tail of the repeat? Find the article in the literature (on
which this Genbank entry is based), read it, and report on the maximum
length of observed Alu A tails in the human genome. What is the apparent
function of the A tail?

b) RepeatMask the sequence at the RepeatMasker web server. How does
the answer depend on the type of organism selected? What SW score do you
get? What is its meaning?

c) How dependent is RepeatMasker on the A tail? Try removing the A
tail. Does RepeatMasker still find the repeat? Try extending it considerably
(beyond the observed length of A tail in the genome)? Does RepeatMasker
still find the repeat?

Problem 3
Consider the overlap detection method described in class for DNA: Com-

pute the convolution vector 4 times, each time setting one of the bases to
1 and the rest to 0. Suppose you try to find the overlap between two ran-
dom DNA sequences of length 500, each of which contains equal amounts of
the four bases. What do you expect the maximum value of an element in
the convolution vector to be? What kind of bound does this place on the
minimum size overlap you can detect reliably with the method?

Problem 4
The paper by Pevzner, Tang and Waterman states that “the spectral

alignment problem can be efficiently solved by dynamic programming in the

1

141

3.3. HW 3 CHAPTER 3. HWS

4

case where the number of mutations is small”. Make this statement precise
and describe the algorithm for solving it.

Optional Problem
Implement the overlap detection method discussed in class.
Note: this is easy using the MATLAB FFT and IFFT commands (type

help FFT or help IFFT to learn more about them). To view the convolution
vector you can use the PLOT command.

a) Write a function that takes as input two sequences f, g of the same
length and finds the convolution f ∗ g.

b) Test your program on the sequences [00001010110000010] and
[01010110000010000]. What is the best shift? (Remember, you will have to
reverse one of the sequences).

2

142

3.3. HW 3 CHAPTER 3. HWS

5

A

Edge L

Generating all the cycles that
edge L is part of.
15 cycles found.

Figure 1: Example generating all cycles an edge is part of

143

3.3. HW 3 CHAPTER 3. HWS

6

2 Problem 1

Math 127, UC Berkeley.
HW 3

Problem 1
By Nasser Abbasi

Question
Prove that a non-trivial connected graphs is Eulerian IFF every edge

belongs to an odd number of cycles.

Answer

An euler graphs has an even degree on all of its vertices.

A cycle in the above, is meant to be a path 1 2 1, , , n nv v v where v v

Since this is an IFF problem, There are two statements that needs to be
proved.

Statement one: IF a graph is Euler, then each edge belongs to an odd

number of edges.
Statement two: IF each edge belongs to odd number of cycles, then the
graph is Euler.

Proof for statement one

Proof by induction over the number of vertices v

For number of vertices = 1, the statement is true. Because given an Euler

graph with one vertex, there are even number of edges, hence all edges
must be of this form

L

Hence, each edge can only belong to 1 cycle. Since if we have more than
one edge, as in

LR

144

3.3. HW 3 CHAPTER 3. HWS

7

Then the cycle over L can not go over R, since this implies the vertex in

the middle was visited twice. And the cycle over R can not go over L as
well.

Hence the statement is true for all Euler graphs of one vertex.

Now, Assume the statement is true for all connected Euler graphs with K
vertices.

Now, need to show the statement is true for any Euler graph Z of K+1
vertices.

Looking at any one edge H in Z, such as (Figure 1 below)

.

.

.

.

.

.

L1

L2

Ln

R1

R2

Rm

R3L3

Edge H
VL VR

Transform the graphs of K+1 vertices to K vertices, remove the edge H
and collaps the two vertices to one vertex to get this (figure 2):

.

.

.

.

.

.

L1

L2

Ln

R1

R2

Rm

R3L3

145

3.3. HW 3 CHAPTER 3. HWS

8

Since this is a K vertices Euler graph, then it will have all the edges in it
part of odd number of cycles (by assumption). That is, number of cycles

over each L edge is odd, and number of cycles of each R edge is odd.

Since the above also is a Euler graph, then the degree of the above one
vertex is even. This means n+m is an even number. Hence n and m can
be both even, or can be both odd numbers. (will show below that only

case possible is for n,m to be both odd numbers).

Now, looking back at figure 1 above, since this is a Euler graph, then the

degree of VL is even, and the degree of VR is even.

But edge H adds one degree to each vertex, that is n+1 is even, and m+1
is even.

hence n and m must be both odd numbers.

Now, I need to show that an edge such as H in the Euler graph of K+1
vertices (see figure 1) can only be part of an odd cycles.

There are two cases here.

Case one, all the cycles passing over the edges iL (or edges jR) also pass

over edge H.

.

.

.

.

.

.

L1

L2

Ln

R1

R2

Rm

R3L3

Edge H
VL VR

In this case, we have, since each edge in L has an odd number of cycles
as shown above, the total number of cycles that edge H is part of is given
by

1 2 nq q q Z   

where N is an odd number, and each q is an odd number.

146

3.3. HW 3 CHAPTER 3. HWS

9

When we add odd number of times odd numbers, we get an odd number.

Hence Z is an odd number.
 Hence number of cycles over H are odd.

Case two, in this case, not all cycles that pass over any or all edge iL (or

edges jR) also pass over edge H as in the following figure example

.

.

.

.

.

.

L1

L2

Ln

R1

R2

Rm

R3L3

Edge H
VL VR

Cycle x

Now, each time we get a cycle such as cycle x above, it will contribute 1
to the count of cycles to both edges it travels over (in this example edges

L1 and L2).

This cycle also can not come back over another edge to cover H, since
then it will visit vertex VL, and this is not possible by the definition of a
cycle.

Hence for each such cycle as ‘x’ above, I have to subtract 2 from the total
possible number of cycles passing over edge H.

So in this case, total number of cycles passing over edge H is

 1 2 (2*)nq q q number of cycles not going over edge H   

but since n is odd, (it is 1 subtracted from the degree of the vertex vL),
and each q is odd, then the above is an odd number – even number.

Which is an odd number.

Hence number of cycles over H are odd.

This completes the proof for statement one.

To prove statement two: IF each edge belongs to odd number of cycles,
then the graph is Euler.

147

3.3. HW 3 CHAPTER 3. HWS

10

Looking at any one edge, such as H, in such a graph

.

.

.

.

.

.

L1

L2

Ln

R1

R2

Rm

R3L3

Edge H
VL VR

I need to show, given that number of cycles over H are odd, then the
degree of each vertex must be even (.i.e. the graph is Euler).

I use proof by contradiction.

In a proof by contradiction, when we need to proof the following
statement is true

IF A => B

We assume that given the following is true:

A and NOT B

and we try to show this is not possible. Hence A=>B.

So, in this example, A is ‘each edge has odd number of cycles’, B is
‘Graph is Euler’.

So, Assume we have a graph with each edge has odd number of cycles,

and it is NOT Euler.

Looking at the above figure, we have two cases.

Case one, all the cycles passing over edges iL (or edges jR) also pass over

edge H.

148

3.3. HW 3 CHAPTER 3. HWS

11

.

.

.

.

.

.

L1

L2

Ln

R1

R2

Rm

R3L3

Edge H
VL VR

Summing all cycles going over H, assume number of cycles over i iL is q

1 2 nq q q Z   

where Z is the cycles over H. But Z must be an odd number (given), and

each q in the above sum is odd also (given).

The only way to add odd numbers N times and still get an odd number,
is when N itself is odd.

Hence the number of L edges coming into VL in the above diagram is
odd. Add the edge H itself, then the degree of vertex VL can only be even.

Hence for this case, it is not possible to have odd number of cycles and
have the vertex not have an even degree. Hence the graph must be Euler,
which contradict the assumption.

Now to prove it for case two:

Case two: not all cycles that pass over the edges iL (or edges jR) also

pass over edge H as in the example

.

.

.

.

.

.

L1

L2

Ln

R1

R2

Rm

R3L3

Edge H
VL VR

Cycle x

Again, as argued earlier:

149

3.3. HW 3 CHAPTER 3. HWS

12

Now, each time we get a cycle such as cycle x above, it will contribute 1

to the count of cycles to both edges it travels over (in this example edges
L1 and L2).

This cycle also can not come back over another edge (say L3) to cover H,
since then it will visit vertex VL, and this is not possible by the definition

of a cycle.

Hence for each such cycle as ‘x’ above, we subtract 2 from the total

number of cycles passing over edge H. So total number of cycles Z going
over H is

   1 2 2*nq q q cycles not going over H Z    

or

 1 2 nq q q even number Z    

Since Z is odd, then  1 2 nq q q   must be odd.

Hence n must be odd.

Hence the number of edges coming into VL in the above diagram is odd.

Add the edge H itself, then the number degree of vertex VL can only be
even. Hence for this case, it is not possible to have odd number of cycles
and have the vertex not have an even degree. Hence the graph must be

Euler, which contradict the assumption.

This completes the proof of the second statement.

QED.

Problem 1 extra

Extra on problem 1

Dr, as I was studying for this problem, I read about the Fleury algorithm
to find all the cycles in an Euler graph. To learn how this algorithm
works, I found 3 cycles in some graph, showing step by step how the

algorithm works. I am including this below, (even thought it is not
required to solve this problem, but it helped me understand the subject a

little more).

150

3.3. HW 3 CHAPTER 3. HWS

13

Only connected graphs with has no vertices of odd degree can have an Euler circuit.

So the above graphs must have at least one Euler circuit. To find, use Fleury algorithm:

1. Start at any vertex.

2. Pick an edge to travel. If one of the edges is a bridge (Going along it, there is no way to come back to the vertex other than on it, then do not select it, unless

it is the one edge left from that vertex).

2. Remove the edge traveled. If a vertex left with no edges leaving it, remove the vertex.

3. repeat step 2 until no more edges left.

4. The order of the edges traveled is the Euler circuit.

A B

C

E
F

D

A B

C

E
F

D

A B

C

E
F

D

A B

C

E
F

D

A B

C

E
F

D

A B

C

E
F

D

A B

C

E

D

A B

C

E

A B

C

E

A B

C

A B

C

A B
A

After AE removed. Back to

starting vertex, and no

edges left. Euler circuit.

Original graph

Start at E. 1 in 6

choice.

After EF removed

1 in 6 choices

After FA removed 1

in 4 choices.

After AE removed

1 in 3 choice.

After ED removed. 1 in 3 choice. Notice

now have option of going DC or DF.

After DF removed. 1 in 2 choices.

Notice, can not travel DC, since DC

is a bridge.

After FD removed.

Only choice.

After DC removed.

Only choice

After CE removed. 1

in 3 choices

After EB removed.

Only choice After BC removed

1 in 2 choices

After CB removed After BA removed

E E

E E

A B

C

E
F

D

1

2
3

4
6

5

7

8

9

12

11
10

Showing Euler circuit. Visit each edge

once, and visit all edges. Starting

from E and back to E.

13

One Euler cicruit.

151

3.3. HW 3 CHAPTER 3. HWS

14

A B

C

E
F

D

A B

C

E
F

D

A B

C

EF

D

A B

C

E
F

D

A

After AE removed. Back to

starting vertex, and no

edges left. Euler circuit.

Original graph

Start at E. 1 in 6

choice.

After ED removed

1 in 6 choices

After DC removed 1

in 3 choices.

After CE removed

1 in 4 choice.
After EB removed. 1 in 4 choice.

After BC removed. 1 in 3 choices.

Notice, can not remove BA, since BA is a

bridge.

After CB removed.

Only choice.

After AF removed. 1

in 3 choices

After FD removed.

Notice, can not

remove FE as it is a

bridge
After DF removed

only choice.

After FE removed.

Only choice

After EA removed

E

A B

C

E
F

D

11

8
12

1
9

10

2

3

4

7

6
5

Showing Euler circuit. Visit each edge

once, and visit all edges. Starting

from E and back to E.

13

second Euler cicruit starting from E

A B

C

E
F

D

A B

C

E
F

D

A B

E
F

D

After BA removed.

Only choice.

A

E
F

D

A

E
F

D

A

E
F

D

A

E
F

A

E

152

3.3. HW 3 CHAPTER 3. HWS

15

A B

C

E
F

D

A B

C

E
F

D

A

After AE removed. Back to

starting vertex, and no

edges left. Euler circuit.

Original graph

Start at E. 1 in 6

choice.

After EC removed

1 in 6 choices

After CB removed 1

in 2 choices.

After AF removed. 1 in 3 choice.

After FE removed. 1 in 3 choices.
After EB removed. 1

in 4 choices

After CD removed.

Only choice

After DF removed.

Notice, can not

remove DE as it is a

bridge

After DE removed.

Only choice

After EA removed

E

A B

C

E
F

D

5

4
12

11
9

10

8

1

6

3

7
5

Showing Euler circuit. Visit each edge

once, and visit all edges. Starting

from E and back to E.

13

Third Euler cicruit starting from E

After BC removed.

Only choice.

A

E
F

D

A

E

A B

C

E
F

After BA removed 1

in 3 choices.

A B

C

E
F

A B

C

E
F

A B

C

E
F

A B

C

E
F

A

C

E
F

A

E
F

D

D D

D D
D

D

A

E

D
After FD removed.

153

3.3. HW 3 CHAPTER 3. HWS

16

3 Problem 2

MATH 127, UC Berkeley

HW 3

Problem 2

Nasser Abbasi

Part A

From NCBI web site http://www.ncbi.nlm.nih.gov , typed AF548051 in
the ‘for’ window, with ‘search’ window set to Nucleotide, and hit’GO’. The

result is:

 Then select the ‘FASTA’ option in the display menu, and click on the
link, I get

>gi|23395425|gb|AF548051.1| Homo sapiens clone AFAM1-Ya5NBC243.seq Alu Ya5a2 subfamily repeat region

GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACGAGGTC
AAGAGATCGAGACCATCCCGGCTAAAACGGTGAAACCCCGTCTCTACTAAAAATACAAAAAAATTAGCCG

GGCGTAGTGGCGGGCGCCTGTAGTCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATGGCGTGAACCCGGG

AGGCGGAGCTTGCAGTGAGCCGAGATCCCGCCACTGCACTCCAGCCTGGGCGACAGAGCGAGACTCCGTC

TCAAAAAAAAAAAAAAAAAAAAAAAAGGAAA

The A tail of the above repeat is ‘AAAAAAAAAAAAAAAAAAAAAAAAGCAAA’ which is 24

long. (I stopped counting at just before ‘GGAAA’. Since from the paper, it
said to stop counting the A-tail when at least 2 consecutive non-
adenosine bases show up.

From the article,

AUTHORS Roy-Engel,A.M., Salem,A.H., Oyeniran,O.O., Deininger,L.,

 Hedges,D.J., Kilroy,G.E., Batzer,M.A. and Deininger,P.L.

 TITLE Active alu element 'A-Tails': size does matter

 JOURNAL Genome Res. 12 (9), 1333-1344 (2002)

From the article, it said the maxmimum A-length for Alu was 97 bases:

Some of the A-lengths in this group reach as high as 97 bases for Alu and almost
180 bases for L1.

154

3.3. HW 3 CHAPTER 3. HWS

17

The apparent function of the A-Tail, is that the length of the Alu A-Tail
correlate to which Alu is active, that is, which Alu elements are able to

retropose. So the A-Tail is a factor in determining the retropositional
capability of the Alu sequence as it said in the citation.

Part B

cut/paste the above, and went to http://ftp.genome.washington.edu/cgi-

bin/RepeatMasker and submitted the above sequence using default
setting. Tried for all organisms. The result is shown below

Organism Number of

matching

repeats found

in DB

SW

score

Matching

repeats

family Matching position

In query

Primates 1 2870 AluYa5 SINE 1..311

RODENTs 2 528

772

PB1

FAM

SINE

SINE

2..132

137..296

Other mammals

2 625

805

FLAM_A

FAM

SINE

SINE

2..133

137..300
other vertebrates 0

Arabidopsis 1 219 (A)n Simple_repeat 283..311

Grasses 0

Drosophila 1 219 (A)n Simple_repeat 283..311

By doing the search assuming the query sequence belongs to different
organism (that is, seach different repeats database), a different alignment
score is obtained. The highest score was for Primates covering the whole

query sequence. This means the primates have all of the query sequence
(1..311) repeated in the genome in different locations. While for Rodents
and other mammals, only parts of the sequence is repeated (2 parts, the

first ‘half’ and the ‘second’ half). So, this repeat sequence is unique to
Primates only.

In Arabidopsis and Drosophilla, only the tail-A
‘AAAAAAAAAAAAAAAAAAAAAAAAGGAAA’ was found to be a repeat.

Part C

Here, I removed the A-Tail. This is the subsequence
AAAAAAAAAAAAAAAAAAAAAAAAGGAAA from the original sequence, and re-run all the
tests as above. This is the new table.

155

3.3. HW 3 CHAPTER 3. HWS

18

Organism Number of

matching

repeats found

in DB

SW

Score

Matching

repeats

family Matching position

In query

Primates 1 2637 AluYa5 SINE 1..282

RODENTs 2 528

649

PB1

FAM

SINE

SINE

2..132

137..282

Other mammals

2 625

660

FLAM_A

FAM

SINE

SINE

2..133

137..282
other vertebrates 0

Arabidopsis 0

Grasses 0

Drosophila 0

So this shows that repateMasker was still able to find the repeats in the

data base without the A-Tail.

Now, I extend the A-Tail, by adding ‘A’s to the end of the tail. I added 120
‘A’s to the A-tail, now the A-tail length is 149 (since the A-Tail original

length was 29). I choose 120, since from the paper it said that the longest
A-Tail was 97 in recent Alu insertions. So, this means an extension of 50
beyond the longest A-Tail

So, the new query sequence I used is this:

>gi|23395425|gb|AF548051.1| Homo sapiens clone AFAM1-Ya5NBC243.seq Alu Ya5a2 subfamily repeat region

GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACGAGGTC
AAGAGATCGAGACCATCCCGGCTAAAACGGTGAAACCCCGTCTCTACTAAAAATACAAAAAAATTAGCCG

GGCGTAGTGGCGGGCGCCTGTAGTCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATGGCGTGAACCCGGG

AGGCGGAGCTTGCAGTGAGCCGAGATCCCGCCACTGCACTCCAGCCTGGGCGACAGAGCGAGACTCCGTCTC
AAAAAAAAAAAAAAAAAAAAAAAAGGAA

AA

A

So, the new query sequence is now of length 311+120=431

I run the same tests as above, and the result is shown in this table

Organism Number of

matching

repeats found

in DB

SW

Score

Matching

repeats

family Matching position

In query

Primates 1 2880 AluYa5 SINE 1..431

RODENTs 2 528

773

PB1

FAM

SINE

SINE

2..132

137..431

Other mammals

2 625

806

FLAM_A

FAM

SINE

SINE

2..133

137..431

156

3.3. HW 3 CHAPTER 3. HWS

19

other vertebrates 0

Arabidopsis 1 1299 (A)n Simple_repeat 283..431

Grasses 0

Drosophila 1 1299 (A)n Simple_repeat 283..431

The above shows extending the A-tail considerably did not affect

repeateMasker ability to find the repeats.
Notice that in Arabidopsis and Drosophilla, only the tail-A is the repeat.

The more ‘A’s I added, the higher the score became for those organisms.
This shows there are long simple_repeats of ‘A’s in those organisms.

157

3.3. HW 3 CHAPTER 3. HWS

20

4 Problem 3

MATH 127, UC Berkeley.
HW3

Problem 3
Nasser Abbasi

Answer
To help me understand this problem, I worked a simple example of how

to use convolution to find similarity between 2 DNA sequences.

158

3.3. HW 3 CHAPTER 3. HWS

21

ACGTT

TCGAA

A=1
10000

00011

01100

C=1
01000

01000

10000

G=1
00100

00100

00100

T=1
00011

10000

01100convolution

Original DNA sequences we want to find the where max alignment between them occur

Now, sum the 4 convolution vectors 01100

10000

00100

01100

12300
Nasser Abbasi

overlap_cobvolution.vsd

oct 12, 2002.

So, the max value is at

position 3 (it has the value

of 3). So, looking back the

two DNA sequences, this

tells us where the max

similarity is. ACGTT

TCGAA

The convolution is a circular convolution. Done using these steps.

1. Align the sequences on top of each others, multiply corresponding elements (i.e. element at position j

from top row with element at position j from second row, and add the final result.
10000

00011

00000 = 0

The above gives us the first element of the convolution vector, which is zero.

2. Now do a one position right shift of the lower sequence, and wrap around. So, a sequence ‘abcde’

when shifted one position to the right, will become ‘eabcd’.
10000

10001

10000 = 1

The above gives us the first element of the convolution vector, which is 1.

again, right shift the lower sequence again from above, and multiply and sum, we get

10000

11000

10000 = 1

again, right shift the lower sequence again from above, and multiply and sum, we get 10000

01100

00000 = 0

sum

multiply

again, right shift the lower sequence again from above, and multiply and sum, we get 10000

00110

00000 = 0

Since now the lower sequence has been shifted 4 times, and the size of the sequence is 5, we stop. The

final convolution vector is then [01100].

Replace one letter at by 1, and all the others by zero. Do this for A,C,G,T at a time. So we get 4 sets of sequences. Do the

convolution between each 2 sequences at a time. So, we get 4 convolution vectors a the end. Next, sum the 4 convolution

vectors.

To make sure the above makes sense and I did not make any mistakes, I

worked a bigger example below to verify the method, to find the overlap
between two larger DNA sequences.

159

3.3. HW 3 CHAPTER 3. HWS

22

TATAGCCTCCTC

TCCTCATCCTGT

A=1
010100000000

000001000000

010100000000convolution

Original DNA sequences we want to find the

overlap between them, the red sections is where I

would expect the sequences to overlap.

Now, sum the 4 convolution vectors

 255345347334

Nasser Abbasi

overlap_cobvolution.vsd

oct 12, 2002.

So, the max value is at

position 9 (it has the value

of 7). So, looking back the

two DNA sequences, this

tells us where the overlap

max position is.

Resulting in TATAGCCTCCTCATCCTGT

C=1
000001101101

011010011000

123123134122

G=1

000010000000

000000000010

000000000100

T=1

101000010010

100100100101

122122213112

010100000000

123123134122

000000000100

122122213112

TATAGCCTCCTC

TCCTCATCCTGT

The above shows the method does find the overlap region. (but it is not
clear to me how does one go about determining the extent of the overlap

if needed. May be the extent of the overlap is not needed, we just need a
point to know where to fold the two sequences next to each other from)
and this method gives us this.

Now, to answer the question. For the maximum value, it will occur when

we have maximum overlap.

The max is when the two sequences are identical ofcourse. However,

since these are random sequences, one would assume this is not likely to
occur.

Since there are equal number of each base, there will be 125 of each type
of base. These will be randomly distributed. So there is a chance of 1 out

of 4 that an A from one sequence will be at the same position as an A in
the other sequence, and the same for T,G and C.

Since the sequence length is 500, the chance of both sequences coming
out the same is then (1/4)^500, which is almost impossible, but when
this is the case, each convolution vector will a max value of 125, and the

final convolution vector (the sum of the 4 convolution vectors will have a
max value of 500.

But for normal random distribution, the bases are uniformly distributed,
and there is 25% chance that a base at one position in one sequence will

be the same as the base in the same position in the second sequence. So,
the convolution vector for say ‘A’ will have a max value of 125/4 or

about 32.25. But we add 4 convolution vectors to get the final

160

3.3. HW 3 CHAPTER 3. HWS

23

convolution vector, and the chance that the vector for ‘G’ or ‘C or ‘T’ will
have its maximum value at the same column as ‘A’ is 1/500, so I can not

just add 32.5 4 times to get 125. (I am assuming a fair random sequence
generator, else I would have picked 125 as the maximum).

Instead, I think I should pick one maximum from one vector (say ‘A’)
which is 32.5, and then assume the value at this column in the second,

third and fourth row vectors from each of other 3 convolution vectors is
the average value, which is 16 so, this gives a maximum of
32.5+16+16+16=80.

This 80 value gives a minimum size of 80 overlap that can be reliably

detected (or about 20% of the size of the sequence).

161

3.3. HW 3 CHAPTER 3. HWS

24

5 Problem 4

MATH 127
HW 3

Problem 4
Nasser Abbasi

The Euler assembly algorithm is a determination of superpath in de-
Bruijn graph. A read is an edge in such a graph. However, these reads
should have little errors in them. To remove these errors early on, the

reads are broken into l-tuples and multiple sequence alignment is
performed on these short strings and read errors detected and the
original reads are then modified to remove these errors, and the new

modified error-corrected reads (reduced errors) are then used in the de-
Bruijn graph.

The spectral alignment problem is one solution to finding these read
errors early on. To help me understand the concepts in the paper more, I

made the following very simple example. Imagine a Genome G which is
‘CCTTGCATCCTC’, with 3 reads, each of length 6. let l, the length of the
tuple be 3. This is what I get:

Genome = C C T T G C A T C C T C

read 1

read 2

read 3

CCTTGC

CCT

 CTT

 TTG

 TGC

TGCATC

TGC

 GCA

 CAT

 ATC

ATCCTC

ATC

 TCC

 CCT

 CTC

Assume we have 3 reads, each of length n=6. Assume L=3 (tuple size). Each read is broken into n-L+1, or 4

tuples as shown.

solid
-tu

ples

so
lid

-tu
pl
es

In the above, using M=1, there are those shown solid-tuples. Solid tuple are ones that belong to more

than M reads. In the above simple example, there are 3 such solid tuples. The rest are called weak L-

tuples. The approximated Genome (used by the error-correction method in the paper) will then be the

set of all solid-tuples.

Now, a collection of L-tuples short strings is called a spectrum. A string
‘s’ belongs this spectrum if each one of its L-tuples can be found in this

spectrum. The spectral alignment problem is to find the minimum
number of letter changes we have to make in the string ‘s’ to cause all its
tuples to be found in the given spectrum.

162

3.3. HW 3 CHAPTER 3. HWS

25

As an example, let string s=’CCTG’, with L=3, it then has ‘CCT’ and ‘CTG’
as its two tuples. (4-3+1=2).

Given a spectrum T={ ‘ACT’,’TCT’,’CCA’,’CTG’}, we see that ‘s’ as it stands

does not belong to T, since one of ‘s’ tuples (the first one) is missing from
T.

To make ‘s’ a T-string, we have to change one or more letters in ‘s’, but
when doing this change, we have to make sure we do not cause a
removal of a tuple that was already found in T, else we just added a tuple

in and removed one. In the above then, if we change the first letter in ‘s’
from C to A, this will cause ‘s’ now to be a T-string, since now the first

tuple becomes ‘ACT’ instead of ‘CCT’ and this already in T. Hence this is
the minimum change needed to make ‘s’ be a T-string. A one letter
change. So, the reason why we need the number of mutations made to be small,

so that we do not end up changing the original reads too much, causing the final

approximated Genome to be much different from the actual one. The
approximated Genome (with error-correction) is the one used to
construct the de-Bruijn graph.

The algorithm for spectral alignment works as follows.

Step 1. First construct the set of all solid L-tuples from all the initial
reads from the sequencing project. (this is the set of all L-tuples that are
found in more than M reads, where M is some threshold). This will be

our initial spectrum, called T.

Step 2. Now, for each read which does not have all its L-tuples in T (i.e. it
contains a number of weak L-tuples with respect to T) make the smallest
letter changes (mutations) to cause one weak L-tuple to become a solid

L-tuple (i.e. to show up in T). For example, in the above, I made one letter
change in the weak L-tuple ‘CCT’ to cause to become a solid L-tuple.

Step 3. Now, generate the T spectrum again.

Repeat steps 2,3. Each time using the newly modified reads until no
more reads with weak L-tuples is found (or stop at some threshold on
number of mutations to make?).

This completes the algorithm, and generates new modified reads and an

approximate Genome based on those error-corrected reads.

163

3.3. HW 3 CHAPTER 3. HWS

26

6 Problem 5

Math 127

HW3

Problem 5 (Optional)

Nasser Abbasi

Part (A)
I wrote a function that takes two DNA sequences, and returns the convolution vector.

The position of the maximum element in the convolution vector is where the overlap occurs.

This below are few examples showing how to use this function. (I highlight by red where the

overlap actually is).

Example 1

>> clear all

>>% 1 2 3 4 5 67 8 9 0 1 23 4 5 6 7 8

>> x='ACGTATTACCCCGGGCCC';

>> y='CCCCGGGCCCTAGTATTT';

>> nma_hw3_problem5(x,y)

ans =

 4 5 4 2 3 2 6 10 15 8 6 6 2 3 6 4 4 3

>> [v,I]=max(ans);

>> I

I =

 9

So, this says the overlap occurred at position 9, which is correct by looking at the above

sequences.

164

3.3. HW 3 CHAPTER 3. HWS

27

Example 2

>>% 1 2 3 4 5 6 78 9 0 1 2 3 4 5 6 7 8 9 0

>> x='ACTGTTGATATATATATATA';

>> y='ATATATCGTCGTCGTCGTCG';

>> nma_hw3_problem5(x,y)

 4 4 3 5 4 6 2 10 3 7 4 9 1 10 3 7 5 7 2 6

>> [v,I]=max(ans);

>> I

I =

 8

Notice that there are another maximum location (of value 10) in the convolution vector, which is

at position 14. This is the ‘end’ location. The max() function in matlab finds the first max in a

vector. For overlap, I need the last one, the one near the edge.

165

3.3. HW 3 CHAPTER 3. HWS

28

Part B

To test the program against the given sequences, I use directly the circular convolution

function I wrote (which is called by the function used in part A).

This is the output

>> help nma_cconv

 function nma_cconv(A,B) implement direct circular convolution for A,B

 vectors. Must be of equall length (for now).

 returns V, the convolution vector

>>% 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7

>> x=[0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0];

>> y=[0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0];

>> nma_cconv(x,y)

ans =

 1 2 1 5 1 2 1 1 1 2 1 1 1 1 2 1 1

>>

So, from the above, the maximum convolution is at position 4 and this gives the best

shift.

166

3.3. HW 3 CHAPTER 3. HWS

29

function V=nma_hw3_problem5(x,y)

%function p=nma_hw3_problem5(x,y)

%

% This function takes 2 DNA sequences, and returns

% the convolution vector for the sequneces

%

% calls the function nma_cconv.m to do the convolution

p=0;

if(nargin ~=2)

 error('x,y expected');

end

N=length(x);

if(N ~= length(y))

 error('x,y must be equal length');

end

DNA='ATCG';

V=zeros(N,1); % store final convolution vector here.

for(i=1:length(DNA))

 V=V+nma_cconv(normalize(x,(DNA(i))), ...

 normalize(y,(DNA(i))));

end

V=V';

%%%%%%%%%%%%%%%%%%%%%%%%

% this function replaces each letter in S with 0

% except those that matches w, they are replaced with 1

%%%%%%%%%%%%%%%%%%%%%%%%%

function T=normalize(S,w)

S=upper(S);

T=zeros(length(S),1);

for(i=1:length(S))

 if(S(i)==w)

 T(i)=1;

 end

end

167

3.3. HW 3 CHAPTER 3. HWS

30

function v=nma_cconv(A,B)

%function nma_cconv(A,B) implement direct circular convolution for A,B

%vectors. Must be of equall length (for now).

%returns V, the convolution vector

%By Nasser Abbasi, Oct 12,2002.

%Written for HW 3, problem 5.

%Math 127, UC Berkeley.

N=length(A);

if(N ~= length(B))

 error('A,B must be of equal length');

end

Bi=1:N;

v=zeros(N,1);

for(i=0:N-1)

 v(i+1)=sum(A .* B(Bi));

 Bi=[N-i:N 1:N-(i+1)]; %right sided circular shift

end

v=v';

168

3.3. HW 3 CHAPTER 3. HWS

31

6.1 Problem 5 source code
Matlab code� �
function V=nma_hw3_problem5(x,y)
%function p=nma_hw3_problem5(x,y)
%
% This function takes 2 DNA sequences, and returns
% the convolution vector for the sequneces
%
% calls the function nma_cconv.m to do the convolution

p=0;

if(nargin ~=2)
error('x,y expected');

end

N=length(x);
if(N ~= length(y))

error('x,y must be equal length');
end

DNA='ATCG';
V=zeros(N,1); % store final convolution vector here.
V=V';

for(i=1:length(DNA))
V=V+nma_cconv(normalize(x,(DNA(i))), ...

normalize(y,(DNA(i))));
end

%%%%%%%%%%%%%%%%%%%%%%%%
% this function replaces each letter in S with 0
% except those that matches w, they are replaced with 1
%%%%%%%%%%%%%%%%%%%%%%%%%
function T=normalize(S,w)

S=upper(S);
T=zeros(length(S),1);

for(i=1:length(S))
if(S(i)==w)

T(i)=1;
end

end� �

169

3.3. HW 3 CHAPTER 3. HWS

32

� �
function [y,zf]=nma_filter_v1(b,a,x,zi)
% function y=nma_filter_v1(b,a,x,zi)
%
% implement IIR filter to give the same output as matlab own
% filter.m function, and then convert the code to C++.
%
% The filter is a "Direct Form II Transposed"
% implementation of the standard difference equation:
%
% a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)
% - a(2)*y(n-1) - ... - a(na+1)*y(n-na)
%

% Nasser Abbasi, sept 27,2002.
% done for the 5Prime project work.

b=b(:);
a=a(:);

if(size(b,2) ~= 1)
error('b must be a vector');

end

if(size(a,2) ~= 1)
error('a must be a vector');

end

nb = length(b);
na = length(a);

if(nb ~= na)
error('length(a) must equal length(b) in this implementation');

end

if(a(1) ~= 1.0)
a=a/a(1);
b=b/a(1);

end

nChannels=size(x,2);
nScan=size(x,1);
y=zeros(nScan,nChannels);
zf=zeros(nb-1,nChannels);

if(nargin==4)
if(~isempty(zi))

nCol=size(zi,2);

170

3.3. HW 3 CHAPTER 3. HWS

33

if(nCol>nChannels)
error('Zi number of columns can not be larger than number of X columns');

end
for(k=1:nCol)

zf(:,k)=zi(:,k);
end

end
end

for(k=1:nChannels)
for(n=1:nScan)

nDelay=1;
zf(:,k)=Z_(nDelay,x(:,k),y(:,k),zf(:,k),a,b,n-1);
y(n,k)=b(1)*x(n,k)+zf(nDelay,k);

end
k

end

%%%
% find the delay z at level at time t
%
%%
function zf=Z_(nDelay,x,y,zf,a,b,n)

nb=length(b);

if(n==0)
return;

else
if(nDelay==nb-1)

zf(nDelay)=b(nDelay+1)*x(n)-a(nDelay+1)*y(n);
else

zf=Z_(nDelay+1,x,y,zf,a,b,n-1);
zf(nDelay)=b(nDelay+1)*x(n)+zf(nDelay+1)-a(nDelay+1)*y(n);

end
end� �
� �
function c=nma_dconv(x,y)
%function c=nma_dconv(x,y)
% finds convolution using direct method.

if(length(x) ~= length(y))
error('x and y must be same length');

end

n=length(x);

171

3.3. HW 3 CHAPTER 3. HWS

34

c=zeros(n,1);
yi=[1 n:-1:2];
yy=y(yi);

for(shift=0:n-1)

t=0;
for(i=1:n)

t=t+x(i)*yy(i);
end
c(shift+1)=t;

yi=[mod((yi+1),n)];
I=find(yi==0);
yi(I)=n;
yy=y(yi);

end� �
� �
function c = nma_cconv2(a,b,ctr)

if (exist('ctr') ~= 1)
ctr = 0;

end

if ((size(a,1) >= size(b,1)) & (size(a,2) >= size(b,2)))
large = a; small = b;

elseif ((size(a,1) <= size(b,1)) & (size(a,2) <= size(b,2)))
large = b; small = a;

else
error('one arg must be larger than the other in both dimensions!');

end

ly = size(large,1);
lx = size(large,2);
sy = size(small,1);
sx = size(small,2);

%% These values are the index of the small mtx that falls on the
%% border pixel of the large matrix when computing the first
%% convolution response sample:
sy2 = floor((sy+ctr+1)/2);
sx2 = floor((sx+ctr+1)/2);

% pad:

172

3.3. HW 3 CHAPTER 3. HWS

35

clarge = [...
large(ly-sy+sy2+1:ly,lx-sx+sx2+1:lx), large(ly-sy+sy2+1:ly,:), ...

large(ly-sy+sy2+1:ly,1:sx2-1); ...
large(:,lx-sx+sx2+1:lx), large, large(:,1:sx2-1); ...
large(1:sy2-1,lx-sx+sx2+1:lx), ...

large(1:sy2-1,:), ...
large(1:sy2-1,1:sx2-1)];

c = conv2(clarge,small,'valid');� �
� �
function v=nma_cconv(A,B)
%function nma_cconv(A,B) implement direct circular convolution for A,B
%vectors. Must be of equall length (for now).
%returns V, the convolution vector

%By Nasser Abbasi, Oct 12,2002.
%Written for HW 3, problem 5.
%Math 127, UC Berkeley.

N=length(A);

if(N ~= length(B))
error('A,B must be of equal length');

end

Bi=1:N;
v=zeros(N,1);

for(i=0:N-1)
v(i+1)=sum(A .* B(Bi));
Bi=[N-i:N 1:N-(i+1)]; %right sided circular shift

end

v=v';� �
Maple code� �
by Nasser Abbasi, oct 16, 2002.
how to read clipped data file using MAPLE.

INPIT: filename, the clipped full path file name.
OUTPUT: a Matrix that contains the clipped data. it has
as many rows as there are in the clipped file.

epg := proc(filename)
local line,y,f,x,k;

173

3.3. HW 3 CHAPTER 3. HWS

36

try
f := fopen(filename,READ);

catch:
printf("Failed to open file %s\n",filename);
return;

end try;

line := readline(f);
line := readline(f);

line := readline(f);
x := Matrix();
k:=1;
while(line <> 0) do

y := sscanf(line,cat("%a" $ length(line)));
y := y[3..nops(y)];
y := convert(y,Vector[row]);
if(k>1) then

x := < x , y >;
else

x:= y;
end if;
k:= k+1;
printf("read line %d\n",k);
line := readline(f);

end do;

fclose(f);
return x;

end proc;� �� �
hw3:=module()

export solve,nma_cconv;
local normalize_it;

##############
#
#
##############

solve := proc(x::string,y::string)

local N,DNA,V,i,t1,c;

N:= length(x);

174

3.3. HW 3 CHAPTER 3. HWS

37

if(N <> length(y)) then
error("Length of sequences must match");

end if;

DNA:="ATCG";
V:=Vector(N);

for i from 1 to length(DNA) do
c:=DNA[i];
t1 := normalize_it(x,c);
print(t1);
#V:=V+nma_cconv(normalize_it(x,DNA[i]),normalize(y,DNA[i]));

end do

end proc;

#####################
#
#####################

#nma_cconv:=proc(x::string,y::string)

#end proc();

##############
#
#
##############

normalize_it := proc(s::string,c)

local S,i,T;

S:=StringTools[UpperCase](s);
T:=Vector(length(S));

print("s = "); print(s);
print("S="); print(S);
print("length S is"); print(length(S));
print("c="); print(c);

for i from 1 to length(S) do
print("check on S[i] , c"); print(S[i]); print(c);

if(S[i]=c) then
print("set T[i] to 1"); print("i=",i);
T[i]:=1;
print("T now is "); print(T);

else

175

3.3. HW 3 CHAPTER 3. HWS

38

print("set T[i] to 0");
T[i]:=0;

end if;
end do;

print("T=",T);
return T;

end proc;
end module;� �

176

3.4. HW 4 CHAPTER 3. HWS

3.4 HW 4

HW 4

Mathematics 127
Mathematical and Computational Methods in

Molecular Biology

Fall 2002
UC Berkeley, CA

Nasser M. Abbasi

Fall 2002 Compiled on August 2, 2022 at 8:10am [public]

177

3.4. HW 4 CHAPTER 3. HWS

Contents
1 Problems 3

2 Problem 1 6

3 Problem 2 10

4 Problem 3 21

5 Problem 4 23

1

178

3.4. HW 4 CHAPTER 3. HWS

2

179

3.4. HW 4 CHAPTER 3. HWS

3

1 Problems

180

3.4. HW 4 CHAPTER 3. HWS

4

181

3.4. HW 4 CHAPTER 3. HWS

5

promoter initial exon intron Internal exon intron Terminal exon polyA

ATG

start codon

donner
site

AAG

5' 3'

GT

acceptor
site

donner
site

acceptor
site

AG TAA
TAG
TGA

Any one of
these is the
stop codon

AATAAAAAG GT GT AG

Showing the gene structure with expected based around the splice sites.
By Nasser Abbasi
gene_model.vsd
Oct 30, 2002

Figure 1: Gene model

182

3.4. HW 4 CHAPTER 3. HWS

6

2 Problem 1

j?rob/e hi :i.

j-et S ~~ :S+J:.. (.;)b~.. Cxbe. I~t T ~ 5..J..;):z t.J~ "t')+~tyAh>ttJ1'(JI'\'

I
7/(5'.) =- :2

As =- 1
)

I

7/{TJ =}
I

Prr =- ~
I

P.sT =-.2)
I

~:s:i..

I I

bs(/<) = l
, I

bT (k) = ~
// 7

2.

s

I /. . , .
i:. =.4 .

1;; ff.,J A r-k. i ~ ;~~ J 3, ~, b, "2! U$Q. f4... f=;<~~.1

d~"': fh 0([,;+) . D((I, t) "'''''., ",.,p..blI

(0",- .bQI"~ I' :~1~ \ i '\-\- j
pi 3,4) b, . =- o<.. (S.Jt:'1) -;- 0<, I. t"J . ~. 'l' //l / \. I) t '''''''CO!...L /' /'

-fCJ c~/t:..-L:Ii 0< ~ stJ;. 5 -<--t -f:-Y 5~-t-,(t t~' ~yJ"'.)+oc~...t'''- ,-- ,.-,.- - \".

0((5) 1) = 7/; b5 (3)

0((s,:z) = fD«(5,1) g5 T c{(t.) R-s J 6s ('n

0((~/"2,) -=- [0((S",.<) P55 T e>\ (p) P,.c.] b. 5 C' ')

ex (5, <-0 == [C>((SI ~) fis"t 0{ (T;~, ff~ ~ b:: C :~

, /,.\
bs '- X) rre,.,..S

1nL el'Y"\~ ~ ",,'

prob.o~ ~~ i-'"
, I C

X t.,..I(,.tof' ' 4(
<::"......

183

3.4. HW 4 CHAPTER 3. HWS

7

76 Gd~i;: ex: -to>(" ~ 7 UJ> ~ t =-1-

eX (T. ,) = 7T-r bT (3:;

0(CT,;?) :0 [Di.(r..) P-r, T 0((s,0By J by (' 'I ')

cXb,~ =- [o«(p) Pn t o({s~ ?'T] bT (6)

oi(1;~ " [0((7:3,' R.. I 01::,3) Ps T} b, (':<:')

_ Izf-
Ib : g~1

-= GZS
33/77 (;

J-

-- - - - - -- - --- - -

/J£

-3

-- - - -

184

3.4. HW 4 CHAPTER 3. HWS

8

"To p"./ """i M? 51"~~ -p s,t.t-. -).J ~ f'rr.<' ~j 1-',- J{~

f J, 'f.) b, 2 r I Uj~ -11", V,f~6: aJ~:.fA-, (1)
;to fi,.' "-0av:fL.- I fi "'./ ~<- ~ J h t. ".,., -fL- ""-~~ ~
cJv. 5 /-.:t. ~ "'~0 ft.. U I " J f,. }<:IL.f2 """ .Y ."~ - ~ J ~+ j +;'" I>i

..J /' J I
'I C~ _ -J- . d h' 1-D

~ ""tiMe. t. +- J UJ~ ~ IY-qY, '~";.5 '" ,.,...)"0"'" L)"'l ~ I""-

~~~ ~ ~., .J?, ',5 In (Flj b; (X-t))
Sf) I ..,1: t = i I "if, (S) = In (7f; b.s ('3 J) = If) (iV:/~,~)

1 '(; C

~ " ( l '

¥] .: I ~ ' , 1 '
~ I TJ :0 Ir: \ / T C-7' \ .3 J) "'- II') ( 1, ~J:O /r \ a J ~-8

c::~ ~ I A..1 '-r -}
I, '/1 '

~ ;,r'57- ':;Ie:{.T€. I 5 I >"" 4 11" i 15 -t (,feat ,..!:. ,'$ a ~ .

. e. _ _

/
13 I ~I'

s -/2.

\'V F/ v
F

\~'
/ .

-r
F

.'_ _ -8
_ 0 - - >.:: .- -

p - - )--/6 _od',J-

. I
/5 7'

,
~..-

185



3.4. HW 4 CHAPTER 3. HWS

9

S-t:~ .

lvI/!J5ht ~ 7t:2,~ 7;" ~

w~:i1f- m 1-i: ==2~ S'l:~ 3

_00

=- 1}'1~ 'I 1 =- -1 0

( -'-tD / I

---r t~'1 / )..~ <t .,,~ ~=3~ )fo'f iT",f 5£=1 ~ ~:'f .

I r> / / n b I' '

)
\ ) (1. I) {t1 (-l

)
'-;=-12

~ tvtJ \t-,.f ~:. ~ _ .

::: Y"\ ( '5s ~ C. 2 ) J ~ n '""').;;:= /2
) v " i " ~ ./ ':"/ . I /.::..-

f., ~)t "'" S{., -.,. 7L''( = If) ('R r br ('2')) 0- /11 (~ ' t)== If) (1) =- 8

(_Lfo - 12 r -5"2-
S~ M.4 '(

(
=- nlt'l)f

;_L) 0 - & - Lf B
. ~

($

,
I S

/')UJ~+ li~'iJ ~ +r~~s'h~
/3/ ',-/'

S .

-=- -if 8

--
/ f

--1- 4 r) ~ ~.~ -
, I

b '2/

.. - .

/~
->,.- # ., ...

Ii

T -b=1

186



3.4. HW 4 CHAPTER 3. HWS

10

3 Problem 2

HW 4 
Problem 2 

MATH 127, UC Berkeley 
By Nasser Abbasi 

 

Part A 
 

The sequence U73304 submitted to genscan. This is the output: 

 

 
 

Looking at the sequence in DNA format, I see that position 122 for exon 

start to be ATG (shown in red):  tatgaagtcg  

 

The last 3 nucleotides up to position 1540 are TGA (shown in red)  
ggctctgtga 

 

the PolyA sequence according to GENSCAN is from 2132 to 2137. Below I 
show the sequence from 2121 up to 2140 showing in red where 

GENSCAN predicted the polyA signal 

 

1  2 3 4 5 6 7 8 9 0     1 2  3 4 5 6  7 8 9 0 

ATAACTTTAG    AAATAAACCT 

  

187



3.4. HW 4 CHAPTER 3. HWS

11

GENSCAN did correctly find the polyA (polyadenylic acid) site.  This special 
consensus signal (AATAAA, which becomes AAUAAA in mRNA) is a 

special site that is recognized in the pre mRNA during the splicing 
process as to where to cleavage the pre mRNA at to produce the final 

mRNA.  
 
So this signal is used to know where to cut (cleavage) the pre mRNA 

at during the splicing process. 

 

Also, during the splicing process, a particular polymerase will recognize 
this signal and then add about 60-200 Adenylic Acid (A nueclitieds) 
which as called the A-tail, to the end of this site during a process called 

polyadenulation. From the reference paper we were given to read (Active 
Alu Element A-tails: size does matter), it says: “the length of the Alu A-

tail is one of the principle factors in determining the retropositional of an 
Alu element” 

188



3.4. HW 4 CHAPTER 3. HWS

12

 peptide_1|150_aa 

Part b 
 

The sequence AF276990 submitted to GENSCAN. The result shows that 

10 Genes found. 

 

The I went to http://www.ncbi.nlm.nih.gov/BLAST/ and clicked on the 
link to blastp. Then in the new screen, made sure the data base is set to 
‘nr’ (non-repeats). And copied/paste each of the GENSCAN predicted 

peptides to the blastp window and run BLASTb. Then when the result is 
obtained, I clicked on the ‘FORMAT’ button. Then a new screen comes up 

which shows all the protein sequences that were matched to the query 
sequences ordered by decreasing blast score. In the table below I show 
the score for the top sequence hit from each run. 

 

This is the description of blastp from the NCBI web page (the one I used 

is the standard protein-protein blast): 

Protein BLAST allows one to input protein sequences and compare 

these against other protein sequences.  
Standard protein-protein BLAST - Takes protein sequences in FASTA 

format, GenBank Accession numbers or GI numbers and compares them 
against the NCBI protein databases.  

 

The database used to search against is ‘nr’ which is defined as: 

nr  
All non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF 

 

Matrix used for similarity by blastp is BLOSUM62. 

This is the final result shown in the table below. 

189



3.4. HW 4 CHAPTER 3. HWS

13

BLASTP result 

GENSCAN peptide 

number 

Blastp 

highest 

score  

E 

value 

LOCUS of the 

highest 

matching 

protein 

sequence 

Authors Definition of the 

highest matching 

protein sequence 

Peptide_1|150_aa 34 0.43 LOC224881 NCBI 
Annotation 
Project 

similar to Retrovirus-
related POL 
polyprotein 
(Endonuclease) [Mus 

musculus]. 

Peptide_2|442_aa 660 0.0 KIAA0202 NCBI 
Annotation 
Project. 
 

similar to Septin-like 
protein KIAA0202 
[Homo sapiens]. 

Peptide_3|405_aa 
 

175 9e-43 Ccni Jensen cyclin I [Mus 
musculus]. 

peptide_4|968_aa 
 

708 0.0 LOC192762 NCBI 
Annotation 
Project. 

similar to KINESIN-
LIKE PROTEIN KIF3A 
(MICROTUBULE PLUS 
END-DIRECTED 
KINESIN MOTOR 3A) 
[Mus musculus]. 

peptide_5|131_aa 
 

244 2e-64 AF244915_1   Yang,S. interleukin-13 [Canis 
familiaris]. 

peptide_6|303_aa  N/A N/A N/A N/A No significant 
similarity found 

peptide_7|64_aa  N/A N/A N/A N/A No significant 
similarity found 

peptide_8|271_aa 
 

 213 1e-54  CAA99729 Offenberg,H
.H. 

RAD50 homologue 
hsRAD50 [Homo 
sapiens]. 

peptide_9|408_aa  615 e-175 BAA90817 Kitamura glyceraldehyde-3-
phosphate 

dehydrogenase [Canis 
familiaris]. 

peptide_10|847_aa 941 0.0 RAD50   Dolganov RAD50 homolog 

isoform 1 [Homo 
sapiens]. 
 

 

  

190



3.4. HW 4 CHAPTER 3. HWS

14

Next, I used tblastn against each peptide to seach for all 6 reading frames. From NCBI 

web page, this is the definition of tblastn: 

 

Protein query - Translated db [tblastn] - Takes a protein query sequence and 

compares it against an NCBI nucleotide database which has been translated in all six 

reading frames. 

tblastn result 

GENSCAN peptide 

number 

tBlastn 

highest 

score  

E 

value 

LOCUS of the  

matching 

Nucleotide 

sequence 

Authors Definition of the 

highest matching 

Nucleotide  

sequence 

Peptide_1|150_aa 77 3e-13 AC004775 Kimmerly Homo sapiens 
chromosome 5, P1 
clone 1308e5 (LBNL 
H13), complete 
sequence. 

Peptide_2|442_aa 665 0.0 AK057797   Nishi,T., 
 

Homo sapiens cDNA 

FLJ25068 fis, clone 

CBL05137, highly similar 

to Mus musculus Sep2 

mRNA. 

Peptide_3|405_aa 

 

 191  2e-46 AC004775    Kimmerly Homo sapiens 

chromosome 5, P1 
clone 1308e5 (LBNL 
H13), complete 
sequence. 

peptide_4|968_aa 
 

723 0.0 BC032599   Strausberg,
R. 
 

Homo sapiens, Similar to 

kinesin family member 

3A, clone 

IMAGE:5533541, mRNA. 

peptide_5|131_aa 
 

259 3e-68 AF244915 Yang,S., Canis familiaris 
interleukin-13 mRNA, 
complete cds. 

peptide_6|303_aa  49 6e-04 AY079157S1 Zangerl Canis familiaris 
glucocorticoid 
receptor DNA binding 

factor 1 (GRLF1) gene 

peptide_7|64_aa  36 0.78 AL845433 Whitehead,
S. 

Human DNA 
sequence from clone 
RP11-674N8 on 
chromosome X, 
complete sequence. 

peptide_8|271_aa 
 

 231 9e-59  HSRAD50   Offenberg,
H.H. 

H.sapiens mRNA for 
RAD50. 

peptide_9|408_aa  605 e-173 RABGLY3PHO    Applequist Oryctolagus 
cuniculus 
glyceraldehyde-3-
phosphate 
dehydrogenase 
mRNA, complete cds. 

peptide_10|847_aa 1196 0.0 RAD50   Dolganov Homo sapiens RAD50 
homolog (S.cerevisiae) 
(RAD50), transcript 
variant 2, mRNA.  

 

191



3.4. HW 4 CHAPTER 3. HWS

15

  

To better compare blastp result with tblastn, I show the result in this table. 

 

Blastp and tblastn score comparison 

GENSCAN peptide 

number 

blastp highest 

score  

blastP E value tblastn highest 

score 

tblastn E value 

Peptide_1|150_aa 34 0.43 77 3e-13 

Peptide_2|442_aa 660 0.0 665 0.0 

Peptide_3|405_aa 

 

175 9e-43 191 2e-46 

peptide_4|968_aa 
 

708 0.0 723 0.0 

peptide_5|131_aa 
 

244 2e-64 259 3e-68 

peptide_6|303_aa N/A N/A 49 6e-4 

peptide_7|64_aa N/A N/A 36 0.78 

peptide_8|271_aa 
 

213 1e-54 231 9e-59 

peptide_9|408_aa 615 e-175 605 e-173 

peptide_10|847_aa 941 0.0 1196 0.0 

 

Conclusion. To answer the question on which prediction I should believe, I use the blast 

score and the expect value E as the main criteria.  The expect value is defined in NCBI 

web page. Here is the text 

 

Q: What is the Expect (E) value?  

The Expect value (E) is a parameter that describes the number of hits one can "expect" 

to see just by chance when searching a database of a particular size. It decreases 
exponentially with the Score (S) that is assigned to a match between two sequences. 

Essentially, the E value describes the random background noise that exists for matches 

between sequences. For example, an E value of 1 assigned to a hit can be interpreted as 

meaning that in a database of the current size one might expect to see 1 match with a 

similar score simply by chance. This means that the lower the E-value, or the closer 

it is to "0" the more "significant" the match is. However, keep in mind that searches 
with short sequences, can be virtually indentical and have relatively high EValue. This 

is because the calculation of the E-value also takes into account the length of the Query 

sequence. This is because shorter sequences have a high probability of occuring in the 

database purely by chance.   

 

The higher the scores and the lower the E values, the more belivalble the prediction will 

be. Since this means GENSCAN did produce a sequence which actually exist in the 

database and documented to high similarity score. 

  

192



3.4. HW 4 CHAPTER 3. HWS

16

This table below is my final result of the prediction by GENSCAN. 

 

GENSCAN peptide 

number 

True or false 

prediction?  

WHY? 

Peptide_1|150_aa FALSE Low score and E values from both 
blastp and tblastn 

Peptide_2|442_aa TRUE High score and E value from both 
blastp and tblastn. Documented 
protein sequence. 

Peptide_3|405_aa 

 

TRUE As above 

peptide_4|968_aa 
 

TRUE As above 

peptide_5|131_aa 
 

TRUE As above 

peptide_6|303_aa FALSE Blastp failed to find a significant 
match, tblastn low score. 

peptide_7|64_aa FALSE As above 

peptide_8|271_aa 
 

TRUE High score and E value from both 
blastp and tblastn. Documented 
protein sequence. 

peptide_9|408_aa TRUE As above. 

peptide_10|847_aa TRUE As above. 

 

 

193



3.4. HW 4 CHAPTER 3. HWS

17

Part C 

 

 
 

For 10
th

 prediction. To help me solve this I needed to find what happens around the splice 

sites.  This is the exon/intron boundaries. Looking at a gene from 5’ to 3’, the following 

is typically found 

 

1. Initial exon starts with ATG 

2. Exon ends with AAG. (Donor site) 

3. Intron starts with GT. 

4. Intron ends with AG (Acceptor site). 

5. Terminal exon (last exon in a gene) ends with TAA or TAG or TGA. 

6. PolyA is AATAAA. 

 

I drew a diagram to help illustrate the above: 

 

promoter initial exon intron Internal exon intron Terminal exon polyA

ATG

start codon

donner

site

AAG

5' 3'

GT

acceptor

site

donner

site

acceptor

site

AG TAA

TAG

TGA

Any one of

these is the

stop codon

AATAAAAAG GT GT AG

Showing the gene structure with expected based around the splice sites.

By Nasser Abbasi

gene_model.vsd

Oct 30, 2002  

194



3.4. HW 4 CHAPTER 3. HWS

18

 

 

So, for each exon/intron boundaries as predicted by GENSCAN, I verified if the above is 

correct or not. I put the result in this table. In this table, I show for each exon the 2 bases 

at the end of the codon before, the codon at the start and end of the exon, and the 2 bases 

at the start of the next intron. If those value meet the diagram above, then I call the 

prediction correct. Note that GENSCAN found this 10
th

 gene on the reverse strand, so in 

this table below I show the on both strands, then in the final table I show it from 5’ to 3’ 

sense to make it easier to compare with the above diagram. 

  

195



3.4. HW 4 CHAPTER 3. HWS

19

exon Exon 

position 

2 bases at 

end of 

previous 

intron 

Codon at start 

of this exon 

Codon at end of 

this exon 

2 bases at 

start of next 

codon 

Init 210056: 

209849 

N/A 5’ CAT  3’ 

3’ GTA  5’ 

5’  CTC  3’ 

3’  GAG  5’ 

5’  AC  3’ 

3’  TG  5’ 

Internal 201315: 

201221 

5’  CT  3’ 

3’  GA 5’ 

5’  AAT 3’ 

3’  TTA 5’ 

5’  CTG  3’ 

3’  GAC  5’ 

5’  CT  3’ 

3’  GA  5’ 

Internal 199440: 

199312 

5’  CT 3’ 

3’  GA 5’ 

5’  ATT 3’ 

3’  TAA 5’ 

5’  CTT  3’ 

3’  GAA 5’ 

5’  AC  3’ 

3’  TG  5’ 

Internal 199077: 

198912 

5’  CT 3’ 

3’  GA 5’ 

5’  AAC  3’ 

3’  TTC  5’ 

5’  CCT  3’ 

3’  GGA  5’ 

5’  AC  3’ 

3’  TG  5’ 

internal 197297: 

197104 

5’ CT 3’ 

5’ GA 5’ 

5’  GAC 3’ 

3’  CTG  5’ 

5’  CAT 3’ 

3’  GTA 5’ 

5’ AC 3’ 

3’ TG 5’ 

Internal 195824: 

195618 

5’  CT 3’ 

3’  GA 5’ 

5’  ATT  3’ 

3’  GAA 5’ 

5’  AGC  3’ 

3’  TCG  5’ 

5’  AC  3’ 

3’  TG  5’ 

Internal 193421: 

193264 

5’  CT 3’ 

3’  GA 5’ 

5’  AGC 3’ 

3’  TCG 3’ 

5’  TTC  3’ 

3’  AAG 5’ 

5’  AC  3’ 

3’  TG  5’ 

Internal 189936: 

189761 

5’  CT  3’ 

3’  GA 5’ 

5’  TTG 3’ 

3’  AAC 5’ 

5’  CTC  3’ 

3’  GAG 5’ 

5’  AC 3’ 

3’  TG  5’ 

Internal 189215: 

188978 

5’  GA 3’ 

3’  CT  5’ 

5’ TAA  3’ 

3’ GTT  5’ 

5’  CTC  3’ 

3’  GAG 3’ 

5’  AC 3’ 

3’  TG  5’ 

Internal 182850: 

182661 

5’  CT 3’ 

3’  GA 5’ 

5’  TGC  3’ 

3’  ACG  5’ 

5’ CTG  3’ 

3’ GAG 5’ 

5’ AC 3’ 

3’ TG 5’ 

Internal 182421: 

182295 

5’  TC  3’ 

3’  AG 5’ 

5’  CAT  3’ 

3’  GTA 3’ 

5’  ACC 3’ 

3’  TGG 5’ 

5’  TT  3’ 

3’  AA 5’ 

Internal 181859: 

181666 

5’  CT 3’ 

3’  GA 5’ 

5’ AAA 3’ 

3’ TTT 5’ 

5’  CTT  3’ 

3’  GAA 5’ 

5’  AC  3’ 

3’  TG 5’ 

Internal 179279: 

179169 

5’  CT 3’ 

3’  GA 5’ 

5’  ATC  3’ 

3’  TAG  5’ 

5’ TTT 3’ 

3’ AAA 5’ 

5’  AC 3’ 

3’  TG  5’ 

Internal 178723: 

178631 

5’ CT 3’ 

3’ GA 5’ 

5’  CAT 3’ 

3’  GTA 5’ 

5’  CTT 3’ 

3’  GAA 5’ 

5’  AC 3’ 

3’  TG 5’ 

Internal 178556: 

178443 

5’  CT  3’ 

3’  GA 5’ 

5’  TTG  3’ 

3’  AAC 5’ 

5’ CTT 3’ 

3’ GAA 5’ 

5’  AC 3’ 

3’  TG 5’ 

Terminal 176151: 

176008 

5’  CT 3’ 

3’  GA 5’ 

5’  AAT  3’ 

3’  TTA  5’ 

5’  TCA 3’ 

3’  AGT 5’ 

5’  GC 3’ 

3’  CG 5’ 

PolyA 165036: 

165031 

5’ AG 3’ 

3’ TC 5’ 

5’ TTTATT 3’ 

3’ AAATAA 5’ 

N/A N/A 

 

  

196



3.4. HW 4 CHAPTER 3. HWS

20

Now I show the above table, but list everything from 5’ to 3’ sense. I.e. when looking at 

3’  ATG 5’, I list it now as  5’  GTA 3’ 

 

 

exon 2 bases at 

end of 

previous 

intron 

Codon at 

start of this 

exon 

Codon at 

end of 

this exon 

2 bases at 

start of 

next 

codon 

GENSCAN 

probability 

Correct 

prediction? 

Init N/A ATG   GAG GT   12.03 YES 

Internal AG   ATT CAG AG (error) 3.06 NO 

Internal AG   AAT AAG GT 6.87 YES 

Internal AG   CTT AGG GT 10.21 YES 

Internal AG GTC ATG GT 14.89 YES 

Internal AG AAG GCT GT 13.05 YES 

Internal AG GCT GAA GT 3.79 YES 

Internal AG CAA GAG GT 15.46 YES 

Internal TC (error) TTG GAG GT 2.95 NO 

Internal AG GCA GAG GT 10.87 YES 

Internal GA(error) ATG GGT AA (error) 4.93 NO 

Internal AG TTT AAG GT 18.19 YES 

Internal AG GAT AAA GT 2.96 YES 

Internal AG ATG AAG GT 5.54 YES 

Internal AG CAA AAG GT 10.32 YES 

Terminal AG ATT TGA GC  7.63 YES 

PolyA N/A AATAAA N/A N/A 1.05 YES 

 

Some observation: From what I understood, the codon at the end of each internal exon 

should be AAG. However from the table above, this does not show to be the case, so 

since I am not sure if this rule is correct now, I will not use it.  

 

I will only use the rules that says that the start of each intron after an exon should be GT 

and the end of each intron just before an exon start should be AG.  

 

Based on these two rules, I see that GENSCAN did not correctly predict 3 exons. These 

are the ones where I wrote an ‘error’ next to them in the above table. Also notice that the 

ones that GENSCAN did not predict correctly has LOW probability of less than 5. 

 
   
 

197



3.4. HW 4 CHAPTER 3. HWS

21

4 Problem 3

pr~~Jey, 3
HvJ if
n1If J-;j, 1.2 =t-

j (J~ b.,J~ is

J f{J~

E : (!-p)
-i-I

~r

'....

L 3, I J .. p4- A.-

S=: / -t 2P+ 3P --I 'i f -I- -- -- +ltlj-'/ '.1
L "2-~ '"3 L/ d -

~S:=. p + 2P -t 3P + i f -t - - - + Q-v F

5ubWt~ R5 ~ S t~~~
2.:J J -I

(s - P6) ==(1- P) S ~ I+ P + P t P -t -- - -f F
- -- - - - -

.(-=I
d-I

+ cI f ',
. ct

+ <1,'D

- -- --

198



3.4. HW 4 CHAPTER 3. HWS

22

L. J P
d

/+P+P-+~~- +
So

{I-p) S ~

,

So {I-p) S ~ (1_ P)

s '= C-~)L

£ = (I-P) ~

..

-
(

\ I -I:)
I... - ,--

5. e1~~1~) /e-:f" If --y r 54 ;.

F~ e'l- ---o'k. I f-"f" p.: . I

p:;; .1

r~ .3

f ~ .1

f~ ,b

f ~ ,1-

P ~ ~~

p ~ ' ~
p ~ ,~,

~ IZ= /.H(I

::::7 E:::- 1. ~5

-9- 12- ::: I,~ 2<DS 1-
-9 E- ~ I,Gb

~ ~ :;;-1-

~ g ~ J,5
~ f ~ 3.)j

~ t ::.5

~ c ~ (0
,..

='? t: -::: Iot)
-- --- -- -

I

l'

-
J-~

199



3.4. HW 4 CHAPTER 3. HWS

23

5 Problem 4

t-Iw:#Lf
pr.1'biewt ~ '1

J/lATH /;1.f-

efc.

\ J
f $ -ht..

1.l. "I - ,
7'

. 5 17S"'dV1

I, . ,- '---
r

. r 10 to ! 2... i S 04t1U cJV.;f sf..:t..
r 0 0

Ie)

r £2. le or £XOII g "-

Or '

.
'IS I+ ..[-.I tl JUoL.

l 0
L'H')',+ + /;toll M4l<I€..

GO . . +0 'D.

7>- t 'f"'Vl e..

"

200



3.4. HW 4 CHAPTER 3. HWS

24

d. ~ if/~ s~ ~/f a S'I"eN 4. ~f h-r.JMJ)7J;... s ~ jA /~-14
p,f f1"L e.1Dfl. .

.:r; ,"'- hi ~ Sc!.-+- m.. x (e.-.~)t. &j ex"Y1 -Iv h 7)/ ~ 11"'.. j +."

'" ~ J /0.1<... 0 +;",e- S 1-£1'.5 ( .or b",..) h 'cc.k tJ Iu..- fa i"s ,J..,

.J-,' ~ J ~ h--LcL ?\ V4 f'€-\( l-v~5 ~f "h ~j if tu ~J ~ i..J- fhQ..

~Lsc:J("~..J-/~ .

s: L-t -I ) <) T p,'. b; ('tJ'"b..{..+h t)

~ It-I Jj) + R. 6. (.sI.j~bJ,fI'~ t)
J <.. -t U

5d1~ ~ ve- t..JtVI'tf Jz, a'-~,.f f--r

~ ~ locJ J.:- D Iou ~.

J.,"". -f.h,J 'IA. /Yo.«';. a.+ -Ii-e t ) 6J I.. k."") o.t no. !>to.)( '"-t .j.:, e (t -I)
plvs ~e. 1r~hc;; ~~ tv~uh+ t1.V11ei\1I$~;d'o\N4S),f -Jz,L~ s~.

Exo~ 1Jf mq)( Ie.-~ /-l.. D.I

1I; f r-(b; b~~€fi)

- - -- ----

201



3.4. HW 4 CHAPTER 3. HWS

25

be. C-~ 4 + e4c.~ +1 ~ S.J..e..f LJ<L hoo("~ -tv JI!). f=:. ~ t-

s+..~ ,p"" e-..<h $ +.:f b ~+ we h... v< It s Iri:- }

Ib'DT ~ (1cor)

~~cf: c(.. ~s~+ '5f'il ~~

'vi 1--<1b ; 'l U4'<: t-j,~ 1>" ft H;1/I;I1 . tJ"'; '<:5 f1. ~ ".1 .fm.r,

f-I " r .s"J, h.<-rJ S r" '-'- i... d'"'''~ + lJ ~"- r.. cfJ'>.A. C ~ /'"rn .-, i h f>....-

I'Y>J,+"';f ;$ .r>j 'hoe..1..) .".,.) 1'evS~ 0 v.u- ""j .J"oM I h r-I.. I}

\(.-

10 0 o . . . .

It . - . · :;) _;) ""'.) -# src..
. ' . J ettGh +i /1Y\Q S f-e-f)ft..L

'5 (I/~ ('e (5 1/5 J, if ~ II

~ ~ s-hp f" ~ r/J~+'

I ·~ ,. .. ,

I~

s. f... A- J;...en D (SAd 500 "-" """" £)/0'" I~ft. ..ll&<-..J)
.,, ,/.u ~,I "¥ f ?; j S ;2lt!Jo ..-r t'dI.,$ + Q ~ + ·

;.-It- l ~.,~ h~.J ~ k~"r $~ fu r.eh1.Q hd ~( -L J';) t,-(. D s~

66-('}:.. c.-J J.-.r Y s~. S<.J ~s~ s,A)<tc.-.r -1...--

-f1.-L rcJ"~;'~ f,'~ ~/C?"I' ~ (.IlI'l'1i!1juAA ..s~r, hLf"

T . ",.., I J I I 1.1

¥
..IJ.J Jh Jfvlc.k. tnJ).

Iq f ~ 'ftJ7)U ~j ~ , .."u s~ 11"...,- .
/ (-<.", '()~'" Sf<r.lt.y (

() ( DT)

W~- ---- - - -- - - - -- --

..s
W-t. v"i JD

'IVVle +"fS I.N
Uce.+

No-v 1 w II 5 -I-o)

h V(L

'Jft:t
+a .5f-

o5 D S'fj;..s .

I;# k\S -jA '08LJr-,W'I
,4"0.9--.

D

202



3.5. HW 5 CHAPTER 3. HWS

3.5 HW 5

HW 5

Mathematics 127
Mathematical and Computational Methods in

Molecular Biology

Fall 2002
UC Berkeley, CA

Nasser M. Abbasi

Fall 2002 Compiled on August 2, 2022 at 8:11am [public]

203



3.5. HW 5 CHAPTER 3. HWS

Contents
1 Problems 3

2 Problem 2 5

3 Problem 4 9

1

204



3.5. HW 5 CHAPTER 3. HWS

2

205



3.5. HW 5 CHAPTER 3. HWS

3

1 Problems

Problem Set 5 (due Tuesday November 26)
MATH 127: Mathematical and Computational Methods in Molecular

Biology

Problem 1
a) Consider a tree with n leaves and internal nodes all of which have

degree k. How many edges are there in the tree?
b) How many unlabelled treees are there on 2,3,4 vertices? Conjecture

a formula for the number of unlabelled trees on n vertices.
Problem 2
Go to http://www.ch.embnet.org/software/ClustalW.html. Enter

the sequences:
GATTACA
AGAGACGATGA
GAGAAGGGAAGGAATTACA
GATATATGCA
GAGAGTG
Align the sequences and look at the output (clustalw aln format). How

sensitive is the multiple alignment to the extension and separation gap penal-
ties?

Problem 3∗

Consider the dynamic programming method for aligning k sequences of
length n (generalization of Needleman-Wunsch). The divide-and-conquer
Needleman-Wunsch algorithm can be generalized to the k sequences problem.
What is its running time and space requirement?

Problem 4
a) Find the accession AC129884 at NCBI. What organism is this sequence

from? How many pieces is it in?
b) Go to http://pipeline.lbl.gov/cgi-bin/GenomeVista. Put in the

GENBANK accession above, and find it on the Mouse Genome
c) What genes does the sequence contain? (it may help to click on

TextBrowser and then look at the Vista picture)
d) Go to
http://www.nisc.nih.gov/open page.html?/projects/zooseq/pubmap/PubZooSeq Targets.cgi

Which target region contains the gene of AC129884? Click on that target.
How many organisms have sequence available in GENBANK?

1

206



3.5. HW 5 CHAPTER 3. HWS

4

Optional Problem Prove the formula conjectured in 1b for the number
of unlabelled trees on n vertices.

2

207



3.5. HW 5 CHAPTER 3. HWS

5

2 Problem 2

Problem 2 

HW 5. 

Math 127, UC Berkeley, Fall 2002. 

Nasser Abbasi 

 

Went to 

 

http://www.ch.embnet.org/software/ClustalW.html 

 

and used the UI to enters the 5 sequences. 

 

for help on ClustalW, I found this site is useful: 

http://www.swbic.org/origin/proc_man/Clustal/search/help.html 

 

Before I show the results, first I needed to better understand the parameters and what they 

actually mean. From the above help, this the summary: 

 

Open gap penalty: Increasing the gap opening penalty will make gaps less frequent. 

Extend gap penalty:  Increasing the gap extension penalty will make gaps shorter. 

Separation gape penalty: This is the same as gap distance. From the net, I found this 

definition: 

“GAP SEPARATION DISTANCE tries to decrease the chances of gaps being too close 

to each other. Gaps that are less than this distance apart  are penalised more than other 

gaps.  This does not prevent close gaps; it makes them less frequent, promoting a block-

like appearance of the alignment” 

 

So, the above tells me that if I increase the gap separation penalty, I should see gaps more 

far apart. 

 

 

208



3.5. HW 5 CHAPTER 3. HWS

6

 
 

I started by fixing the value of the extend gap penalty and changing the separation gap 

penalty. Then fixed the separation gap penalty and changed the extend gap penalty. Then 

changed both at the same time. These are the result of these trials: 

  

209



3.5. HW 5 CHAPTER 3. HWS

7

Tries done to see the effect of changing the gap separation penalty: 

 

Extend  

Gap  

Separation  

Gap 

Multiple alignment observation 

0.05 0.0 seq1            -------------GATTACA 

seq2            AGAGACG-------ATGA-- 

seq3            -GAGAAGGGAAGGAATTACA 

seq4            -GATAT--------ATGCA- 

seq5            -GAGAG---------TG--- 

                               *     

Original default 

setting 

0.05 0.01 same as above No change seen 

0.05 0.07 same as above No change seen 

0.05 0.08 same as above No change seen 

0.05 0.09 same as above No change seen 

0.05 0.1 same as above No changes seen 

0.05 1.0 same as above No changes seen 

0.05 2.0 same as above No changes seen 

0.05 3.0 same as above No changes seen 

0.05 5.0 same as above No changes seen 

0.05 20 same as above No changes seen 

0.05 200 same as above No changes seen 

 

Conclusion: In the above sequences, the gap separation penalty have no effect.  This 

shows ClusalW is not sensitive to this penalty, at least in this example. 

  

210



3.5. HW 5 CHAPTER 3. HWS

8

Tries done to see the effect of changing the gap extension penalty: 

 

Extend  

Gap  

Separation  

Gap 

Multiple alignment observation 

0.05 0.06 seq1         -------------GATTACA 

seq2         AGAGACG-------ATGA-- 

seq3         -GAGAAGGGAAGGAATTACA 

seq4         -GATAT--------ATGCA- 

seq5         -GAGAG---------TG--- 

                            *     

Original default 

setting 

0.1 0.06 same as above No changes seen 

0.2 0.06 same as above No changes seen 

0.3 0.06 same as above No changes seen 

0.4 0.06 same as above No changes seen 

0.5 0.06 same as above No changes seen 

0.51 0.06 same as above No changes seen 

0.52 0.06 same as above No changes seen 

0.53 0.06 Same as above No changes seen 

0.530000001 0.06 Same as above No changes seen 

0.530000002 0.06 seq1         ------------GATTACA 

seq2         ------AGAGACGATGA-- 

seq3         GAGAAGGGAAGGAATTACA 

seq4         -------GATAT-ATGCA- 

seq5         -------GAGAG--TG--- 

                           *     

A tiny change in the 

extend gap penealty now 

shows large effect for 

first time. First gape 

on seq3 is gone, and 

gaps inside seq 2,4,5 

are gone. GAPS HAVE 

BECOME SHORTER AS 

EXPECTED. 

0.54 0.6 Same as above No changes seen 

1.0 0.6 Same as above No changes seen 

2.0 0.6 Same as above No changes seen 

8.99999952 0.6 Same as above No changes seen 

8.99999953 0.6 seq1         ------------GATTACA 

seq2         ------AGAGACGATGA-- 

seq3         GAGAAGGGAAGGAATTACA 

seq4         -------GATATATGCA-- 

seq5         -----GAGAGTG------- 

A tiny change now shows 

another change. Now all 

internal gaps are gone. 

GAPS HAVE BECOME 

SHORTER AS EXPECTED. 

100 0.6 Same as above No changes seen 

 

Conclusion: ClustalW  is more sensitive to gap extension penalty. The larger this penalty, 

the less gaps are seen inside the sequences as expected. It is very sensitive in that a 

change from 0.530000001 to 0.530000002 (a change on only 0.000000001) causes such a 

large effect in the alignment as shown above. As the penalty is increased all the way to 

8.99999952 no more change is seen. But a change from 8.99999952 to 8.99999953 

caused the final gap inside the last 2 sequences to close.   

 

211



3.5. HW 5 CHAPTER 3. HWS

9

3 Problem 4

Problem 4 

HW 5 

Math 127, UC Berkeley, Fall 2002. 

Nasser Abbasi 

 

Part a). from the NCBI web page, AC129884 sequence is from organism 

Ornithorhynchus anatinus. Genbank common name: platypus (to be honest, I do not know 

what this organism is supposed to be, I just got the name from the NCBI default display 

for this locus). The length of the sequence is 121,483 bp     

 

For the number of pieces this sequences is made of, I looked down the description, and in 

the comment section it says that this sequence is a working draft, and it is made of 7 

contigs.  

 

            *     1            4203: contig of  4,203 bp in length 

            *     4304    15192: contig of  10,889 bp in length 

            *    15293    24847: contig of  9,555 bp in length 

            *    24948    34501: contig of  9,554 bp in length 

            *    34602    51540: contig of  16,939 bp in length 

            *    51641    76311: contig of  24,671 bp in length 

            *    76412   121483: contig of  45,072 bp in length. 

 

Part b) 

 

Went to http://pipeline.lbl.gov/cgi-bin/GenomeVista . 

 

First I needed to understand what GenomeVista does. This is below the description from 

the above web page: 

 

GenomeVista allows users to perform comparative analysis of their own data sets using 

the Berkeley Genome Pipeline (Godzilla). The draft or finished sequences are aligned 

with the base genome of your choice, and conserved region analysis is performed. The 

resulting alignments can be browsed via the Vista Genome Browser or the Godzilla Text 

Browser. 

 

So, GenomeVista locates a sequence on either the human or the mouse genome. The 

question asks to find this sequence on the mouse genome. So, I set the ‘Base Genome’ 

choice to ‘Mouse feb 2002’ and and entered the above accession number. This is the 

result: 

 

212



3.5. HW 5 CHAPTER 3. HWS

10

 
 

The above result is a little confusing to me. At the top it says that 2 alignments found on 

Chromosome 6 of the mouse genome. But in the lower part under the text browser, it lists 

a position in Chromosome 11.  I assume this is just to show how the format looks like. 

I.e. it is an example. (but it should actually say so). 

 

So, I clicked on the ‘Text Brower’ to see where on Chr 6 these sequences found. And this 

is the result. 

 

 
 

 

From the above, these are the locations of the sequence on mouse genome: 
 

chr6:17409146-17454346  length=45,201bp 

chr6:17517206-17533827 length=16,622bp 

 

Looking at the NCBI output, I see that the above alignment seem to have been made on 

contigs 5 and 7 of the sequence, because those are the lengths closes to result from 

GenomeVista. (The original sequence had a length of 121,483, but the locations found 

have smaller lengths to them, so that is why I assume that the alignments was made on 

the whole sequence but only pieces 5 and 7 were found on the mouse genome). 

  

213



3.5. HW 5 CHAPTER 3. HWS

11

Part c) 

To find what genes in this sequence, I searched in both the mouse genome and the human 

genome. 

 

For the mouse genome: 

 

Clicked on the TextBrower, then for each alignment (there are 2 of them as shown 

above), I click on the ‘Vista’ link to the right of the screen. To see both alignments, I 

zoomed out. This is the result 

 

 
 

In the above, the first alignment (the first window above) is contig chr6:17409146-17454346  

length=45,201bp While the second alignment (in the lower window) is contig chr6:17517206-

17533827 length=16,622bp 

 

The question asks to find the genes contained in the sequence.  

 

Clicked on the ‘VISTA’ link, this shows this result (the vista plot shows the gene name 

on top of the diagram on the arrow line). 

 

Contig Gene 
chr6:17409146-17454346   MEL 
chr6:17517206-17533827 CAPPA2 

 

For the human genome, similarly, the following genes found (there were 3 contigs found 

when search human genome june 2002). 

 

Contig Gene 
 chr7:114880956-114924418   MET 
chr7:114927608-114928484 NO GENE FOUND 
chr7:115006025-115034040 CAPZA2 

 

So, the answer to part C is: Mei, Met, Cappa2, and Capza2.  4 genes, 2 in mouse 

genome and 2 in human genome. 

 

(note: It was hard to read the names of the genes on top of the diagrams in the vista 

window, but I zoomed in to verify that the names are correct as above).  

 

214



3.5. HW 5 CHAPTER 3. HWS

12

While working on this part, I show the result of gene prediction using the UCSD 

software. This below is the output when I hide everything expect the gene predictions 

from a number of applications. 

 

I clicked on the UCSD brower and in the ‘position’ window, I typed in  

chr6:17409146-17454346  (which is the first contig) which contains gene Mei: 

 

 

 
 

This is for the second contig which contains gene Cappa2: 

 

 
  

215



3.5. HW 5 CHAPTER 3. HWS

13

part d) 

went to 

http://www.nisc.nih.gov/open_page.html?/projects/zooseq/pubmap/PubZooSeq_Targets 

 

For MET gene, it is contained in target 1 

For MEL gene, it is contained in target 1 

For CAPPA2, it is contained in target 1 

For CAPZA2, it is contained in target 1. 

 

So the answer to part d is target 1. 

 

Target 1 is about 1.5 Mbases. Organisms shown are : Chimp, Orangutan, Baboon, 

Macaque, Vervet, Lemur, Pig, Horse, Cow, Cat, Dog, Ajbat, Cpbat, Rabbit, Hedgehog, 

Mouse, Rat, Opossum, Dunnart, Platypus, Chicken, Zebrafish, Fugu, Tetraodon. 

 

24 organisms.  

 

 

 

 

 

 

 

 

 

 

216


	Introduction
	A bit about UC Berkeley
	Course description

	Study notes
	collected notes
	FFT project
	Small note on terfoil_combinations

	HWs
	HW 1
	HW 2
	HW 3
	HW 4
	HW 5


